code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig _snake_case = logging.get_logger(__name__) # General docstring _snake_case = "RegNetConfig" # Base docstring _snake_case = "facebook/regnet-y-040" _snake_case = [1, 1088, 7, 7] # Image classification docstring _snake_case = "facebook/regnet-y-040" _snake_case = "tabby, tabby cat" _snake_case = [ "facebook/regnet-y-040", # See all regnet models at https://huggingface.co/models?filter=regnet ] class lowercase ( nn.Module ): def __init__( self , _a , _a , _a = 3 , _a = 1 , _a = 1 , _a = "relu" , ) -> Any: super().__init__() _A : Dict = nn.Convad( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , kernel_size=__SCREAMING_SNAKE_CASE , stride=__SCREAMING_SNAKE_CASE , padding=kernel_size // 2 , groups=__SCREAMING_SNAKE_CASE , bias=__SCREAMING_SNAKE_CASE , ) _A : int = nn.BatchNormad(__SCREAMING_SNAKE_CASE ) _A : List[Any] = ACTaFN[activation] if activation is not None else nn.Identity() def a__ ( self , _a ) -> Any: _A : Tuple = self.convolution(__SCREAMING_SNAKE_CASE ) _A : Dict = self.normalization(__SCREAMING_SNAKE_CASE ) _A : Optional[Any] = self.activation(__SCREAMING_SNAKE_CASE ) return hidden_state class lowercase ( nn.Module ): def __init__( self , _a ) -> Any: super().__init__() _A : Dict = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act ) _A : Union[str, Any] = config.num_channels def a__ ( self , _a ) -> Union[str, Any]: _A : Union[str, Any] = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""" ) _A : Any = self.embedder(__SCREAMING_SNAKE_CASE ) return hidden_state class lowercase ( nn.Module ): def __init__( self , _a , _a , _a = 2 ) -> List[Any]: super().__init__() _A : Optional[Any] = nn.Convad(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , kernel_size=1 , stride=__SCREAMING_SNAKE_CASE , bias=__SCREAMING_SNAKE_CASE ) _A : List[str] = nn.BatchNormad(__SCREAMING_SNAKE_CASE ) def a__ ( self , _a ) -> List[str]: _A : str = self.convolution(__SCREAMING_SNAKE_CASE ) _A : List[Any] = self.normalization(__SCREAMING_SNAKE_CASE ) return hidden_state class lowercase ( nn.Module ): def __init__( self , _a , _a ) -> Optional[int]: super().__init__() _A : Any = nn.AdaptiveAvgPoolad((1, 1) ) _A : Tuple = nn.Sequential( nn.Convad(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , kernel_size=1 ) , nn.ReLU() , nn.Convad(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , kernel_size=1 ) , nn.Sigmoid() , ) def a__ ( self , _a ) -> Optional[int]: _A : Optional[Any] = self.pooler(__SCREAMING_SNAKE_CASE ) _A : Optional[Any] = self.attention(__SCREAMING_SNAKE_CASE ) _A : Tuple = hidden_state * attention return hidden_state class lowercase ( nn.Module ): def __init__( self , _a , _a , _a , _a = 1 ) -> Dict: super().__init__() _A : Any = in_channels != out_channels or stride != 1 _A : str = max(1 , out_channels // config.groups_width ) _A : str = ( RegNetShortCut(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , stride=__SCREAMING_SNAKE_CASE ) if should_apply_shortcut else nn.Identity() ) _A : int = nn.Sequential( RegNetConvLayer(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , stride=__SCREAMING_SNAKE_CASE , groups=__SCREAMING_SNAKE_CASE , activation=config.hidden_act ) , RegNetConvLayer(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , kernel_size=1 , activation=__SCREAMING_SNAKE_CASE ) , ) _A : Optional[int] = ACTaFN[config.hidden_act] def a__ ( self , _a ) -> Tuple: _A : Dict = hidden_state _A : int = self.layer(__SCREAMING_SNAKE_CASE ) _A : Optional[int] = self.shortcut(__SCREAMING_SNAKE_CASE ) hidden_state += residual _A : str = self.activation(__SCREAMING_SNAKE_CASE ) return hidden_state class lowercase ( nn.Module ): def __init__( self , _a , _a , _a , _a = 1 ) -> Any: super().__init__() _A : Optional[int] = in_channels != out_channels or stride != 1 _A : Dict = max(1 , out_channels // config.groups_width ) _A : Dict = ( RegNetShortCut(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , stride=__SCREAMING_SNAKE_CASE ) if should_apply_shortcut else nn.Identity() ) _A : str = nn.Sequential( RegNetConvLayer(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , stride=__SCREAMING_SNAKE_CASE , groups=__SCREAMING_SNAKE_CASE , activation=config.hidden_act ) , RegNetSELayer(__SCREAMING_SNAKE_CASE , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , kernel_size=1 , activation=__SCREAMING_SNAKE_CASE ) , ) _A : Optional[Any] = ACTaFN[config.hidden_act] def a__ ( self , _a ) -> str: _A : Optional[int] = hidden_state _A : Optional[Any] = self.layer(__SCREAMING_SNAKE_CASE ) _A : Tuple = self.shortcut(__SCREAMING_SNAKE_CASE ) hidden_state += residual _A : Union[str, Any] = self.activation(__SCREAMING_SNAKE_CASE ) return hidden_state class lowercase ( nn.Module ): def __init__( self , _a , _a , _a , _a = 2 , _a = 2 , ) -> List[Any]: super().__init__() _A : Any = RegNetXLayer if config.layer_type == '''x''' else RegNetYLayer _A : Any = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , stride=__SCREAMING_SNAKE_CASE , ) , *[layer(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for _ in range(depth - 1 )] , ) def a__ ( self , _a ) -> Optional[int]: _A : Dict = self.layers(__SCREAMING_SNAKE_CASE ) return hidden_state class lowercase ( nn.Module ): def __init__( self , _a ) -> List[str]: super().__init__() _A : Optional[Any] = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( __SCREAMING_SNAKE_CASE , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) _A : Dict = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(__SCREAMING_SNAKE_CASE , config.depths[1:] ): self.stages.append(RegNetStage(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , depth=__SCREAMING_SNAKE_CASE ) ) def a__ ( self , _a , _a = False , _a = True ) -> List[str]: _A : int = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _A : int = hidden_states + (hidden_state,) _A : List[str] = stage_module(__SCREAMING_SNAKE_CASE ) if output_hidden_states: _A : Optional[int] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=__SCREAMING_SNAKE_CASE , hidden_states=__SCREAMING_SNAKE_CASE ) class lowercase ( lowerCamelCase_ ): _a = RegNetConfig _a = "regnet" _a = "pixel_values" _a = True def a__ ( self , _a ) -> Optional[Any]: if isinstance(__SCREAMING_SNAKE_CASE , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode="""fan_out""" , nonlinearity="""relu""" ) elif isinstance(__SCREAMING_SNAKE_CASE , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def a__ ( self , _a , _a=False ) -> Optional[int]: if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): _A : Union[str, Any] = value _snake_case = r"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" _snake_case = r"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top.",lowerCamelCase_,) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class lowercase ( lowerCamelCase_ ): def __init__( self , _a ) -> Optional[Any]: super().__init__(__SCREAMING_SNAKE_CASE ) _A : Optional[int] = config _A : Tuple = RegNetEmbeddings(__SCREAMING_SNAKE_CASE ) _A : List[Any] = RegNetEncoder(__SCREAMING_SNAKE_CASE ) _A : Tuple = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__SCREAMING_SNAKE_CASE ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__SCREAMING_SNAKE_CASE , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def a__ ( self , _a , _a = None , _a = None ) -> Any: _A : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _A : str = return_dict if return_dict is not None else self.config.use_return_dict _A : int = self.embedder(__SCREAMING_SNAKE_CASE ) _A : Tuple = self.encoder( __SCREAMING_SNAKE_CASE , output_hidden_states=__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE ) _A : Optional[Any] = encoder_outputs[0] _A : List[Any] = self.pooler(__SCREAMING_SNAKE_CASE ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__SCREAMING_SNAKE_CASE , pooler_output=__SCREAMING_SNAKE_CASE , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ",lowerCamelCase_,) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class lowercase ( lowerCamelCase_ ): def __init__( self , _a ) -> str: super().__init__(__SCREAMING_SNAKE_CASE ) _A : str = config.num_labels _A : Optional[int] = RegNetModel(__SCREAMING_SNAKE_CASE ) # classification head _A : List[Any] = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__SCREAMING_SNAKE_CASE ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__SCREAMING_SNAKE_CASE , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def a__ ( self , _a = None , _a = None , _a = None , _a = None , ) -> str: _A : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict _A : str = self.regnet(__SCREAMING_SNAKE_CASE , output_hidden_states=__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE ) _A : Optional[int] = outputs.pooler_output if return_dict else outputs[1] _A : Any = self.classifier(__SCREAMING_SNAKE_CASE ) _A : Any = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _A : str = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _A : List[Any] = '''single_label_classification''' else: _A : Optional[int] = '''multi_label_classification''' if self.config.problem_type == "regression": _A : int = MSELoss() if self.num_labels == 1: _A : Dict = loss_fct(logits.squeeze() , labels.squeeze() ) else: _A : List[str] = loss_fct(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) elif self.config.problem_type == "single_label_classification": _A : List[str] = CrossEntropyLoss() _A : str = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _A : Union[str, Any] = BCEWithLogitsLoss() _A : Optional[int] = loss_fct(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if not return_dict: _A : str = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=__SCREAMING_SNAKE_CASE , logits=__SCREAMING_SNAKE_CASE , hidden_states=outputs.hidden_states )
26
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowercase : int = logging.get_logger(__name__) _lowercase : List[Any] = { "shi-labs/nat-mini-in1k-224": "https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json", # See all Nat models at https://huggingface.co/models?filter=nat } class lowerCAmelCase__ ( lowerCamelCase_ , lowerCamelCase_ ): lowerCAmelCase_ = '''nat''' lowerCAmelCase_ = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=64 , __SCREAMING_SNAKE_CASE=[3, 4, 6, 5] , __SCREAMING_SNAKE_CASE=[2, 4, 8, 16] , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=3.0 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1E-5 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = patch_size lowercase_ : List[Any] = num_channels lowercase_ : str = embed_dim lowercase_ : List[str] = depths lowercase_ : str = len(__SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = num_heads lowercase_ : int = kernel_size lowercase_ : Union[str, Any] = mlp_ratio lowercase_ : Optional[int] = qkv_bias lowercase_ : List[Any] = hidden_dropout_prob lowercase_ : Optional[int] = attention_probs_dropout_prob lowercase_ : List[Any] = drop_path_rate lowercase_ : List[Any] = hidden_act lowercase_ : int = layer_norm_eps lowercase_ : int = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowercase_ : Dict = int(embed_dim * 2 ** (len(__SCREAMING_SNAKE_CASE ) - 1) ) lowercase_ : Tuple = layer_scale_init_value lowercase_ : Union[str, Any] = ['''stem'''] + [F'''stage{idx}''' for idx in range(1 , len(__SCREAMING_SNAKE_CASE ) + 1 )] lowercase_ , lowercase_ : int = get_aligned_output_features_output_indices( out_features=__SCREAMING_SNAKE_CASE , out_indices=__SCREAMING_SNAKE_CASE , stage_names=self.stage_names )
93
0
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def __lowercase ( a__ , a__ , a__ , a__ , a__=True , a__="pt" ) -> Dict: __SCREAMING_SNAKE_CASE = {'add_prefix_space': True} if isinstance(a__ , a__ ) and not line.startswith(' ' ) else {} __SCREAMING_SNAKE_CASE = padding_side return tokenizer( [line] , max_length=a__ , padding='max_length' if pad_to_max_length else None , truncation=a__ , return_tensors=a__ , add_special_tokens=a__ , **a__ , ) def __lowercase ( a__ , a__ , a__=None , ) -> Any: __SCREAMING_SNAKE_CASE = input_ids.ne(a__ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class UpperCAmelCase_ ( UpperCamelCase_ ): '''simple docstring''' def __init__( self , _A , _A , _A , _A , _A="train" , _A=None , _A=None , _A=None , _A="" , ): '''simple docstring''' super().__init__() __SCREAMING_SNAKE_CASE = Path(_A ).joinpath(type_path + '.source' ) __SCREAMING_SNAKE_CASE = Path(_A ).joinpath(type_path + '.target' ) __SCREAMING_SNAKE_CASE = self.get_char_lens(self.src_file ) __SCREAMING_SNAKE_CASE = max_source_length __SCREAMING_SNAKE_CASE = max_target_length assert min(self.src_lens ) > 0, f"""found empty line in {self.src_file}""" __SCREAMING_SNAKE_CASE = tokenizer __SCREAMING_SNAKE_CASE = prefix if n_obs is not None: __SCREAMING_SNAKE_CASE = self.src_lens[:n_obs] __SCREAMING_SNAKE_CASE = src_lang __SCREAMING_SNAKE_CASE = tgt_lang def __len__( self ): '''simple docstring''' return len(self.src_lens ) def __getitem__( self , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = index + 1 # linecache starts at 1 __SCREAMING_SNAKE_CASE = self.prefix + linecache.getline(str(self.src_file ) , _A ).rstrip('\n' ) __SCREAMING_SNAKE_CASE = linecache.getline(str(self.tgt_file ) , _A ).rstrip('\n' ) assert source_line, f"""empty source line for index {index}""" assert tgt_line, f"""empty tgt line for index {index}""" # Need to add eos token manually for T5 if isinstance(self.tokenizer , _A ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right __SCREAMING_SNAKE_CASE = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , _A ) else self.tokenizer ) __SCREAMING_SNAKE_CASE = self.tokenizer.generator if isinstance(self.tokenizer , _A ) else self.tokenizer __SCREAMING_SNAKE_CASE = encode_line(_A , _A , self.max_source_length , 'right' ) __SCREAMING_SNAKE_CASE = encode_line(_A , _A , self.max_target_length , 'right' ) __SCREAMING_SNAKE_CASE = source_inputs['input_ids'].squeeze() __SCREAMING_SNAKE_CASE = target_inputs['input_ids'].squeeze() __SCREAMING_SNAKE_CASE = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def _A ( _A ): '''simple docstring''' return [len(_A ) for x in Path(_A ).open().readlines()] def _A ( self , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = torch.stack([x['input_ids'] for x in batch] ) __SCREAMING_SNAKE_CASE = torch.stack([x['attention_mask'] for x in batch] ) __SCREAMING_SNAKE_CASE = torch.stack([x['decoder_input_ids'] for x in batch] ) __SCREAMING_SNAKE_CASE = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , _A ) else self.tokenizer.pad_token_id ) __SCREAMING_SNAKE_CASE = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , _A ) else self.tokenizer.pad_token_id ) __SCREAMING_SNAKE_CASE = trim_batch(_A , _A ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = trim_batch(_A , _A , attention_mask=_A ) __SCREAMING_SNAKE_CASE = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch lowerCAmelCase__ : str =getLogger(__name__) def __lowercase ( a__ ) -> List[str]: return list(itertools.chain.from_iterable(a__ ) ) def __lowercase ( a__ ) -> None: __SCREAMING_SNAKE_CASE = get_git_info() save_json(a__ , os.path.join(a__ , 'git_log.json' ) ) def __lowercase ( a__ , a__ , a__=4 , **a__ ) -> str: with open(a__ , 'w' ) as f: json.dump(a__ , a__ , indent=a__ , **a__ ) def __lowercase ( a__ ) -> List[Any]: with open(a__ ) as f: return json.load(a__ ) def __lowercase ( ) -> Dict: __SCREAMING_SNAKE_CASE = git.Repo(search_parent_directories=a__ ) __SCREAMING_SNAKE_CASE = { 'repo_id': str(a__ ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def __lowercase ( a__ , a__ ) -> List: return list(map(a__ , a__ ) ) def __lowercase ( a__ , a__ ) -> List[str]: with open(a__ , 'wb' ) as f: return pickle.dump(a__ , a__ ) def __lowercase ( a__ ) -> List[str]: def remove_articles(a__ ): return re.sub(R'\b(a|an|the)\b' , ' ' , a__ ) def white_space_fix(a__ ): return " ".join(text.split() ) def remove_punc(a__ ): __SCREAMING_SNAKE_CASE = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(a__ ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(a__ ) ) ) ) def __lowercase ( a__ , a__ ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = normalize_answer(a__ ).split() __SCREAMING_SNAKE_CASE = normalize_answer(a__ ).split() __SCREAMING_SNAKE_CASE = Counter(a__ ) & Counter(a__ ) __SCREAMING_SNAKE_CASE = sum(common.values() ) if num_same == 0: return 0 __SCREAMING_SNAKE_CASE = 1.0 * num_same / len(a__ ) __SCREAMING_SNAKE_CASE = 1.0 * num_same / len(a__ ) __SCREAMING_SNAKE_CASE = (2 * precision * recall) / (precision + recall) return fa def __lowercase ( a__ , a__ ) -> int: return normalize_answer(a__ ) == normalize_answer(a__ ) def __lowercase ( a__ , a__ ) -> Dict: assert len(a__ ) == len(a__ ) __SCREAMING_SNAKE_CASE = 0 for hypo, pred in zip(a__ , a__ ): em += exact_match_score(a__ , a__ ) if len(a__ ) > 0: em /= len(a__ ) return {"em": em} def __lowercase ( a__ ) -> Union[str, Any]: return model_prefix.startswith('rag' ) def __lowercase ( a__ , a__ , a__ ) -> int: __SCREAMING_SNAKE_CASE = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead __SCREAMING_SNAKE_CASE = 'dropout_rate' for p in extra_params: if getattr(a__ , a__ , a__ ): if not hasattr(a__ , a__ ) and not hasattr(a__ , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(a__ ) ) delattr(a__ , a__ ) continue __SCREAMING_SNAKE_CASE = p if hasattr(a__ , a__ ) else equivalent_param[p] setattr(a__ , a__ , getattr(a__ , a__ ) ) delattr(a__ , a__ ) return hparams, config
118
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase__ : str ={'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Optional[int] =[ '''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMAEForPreTraining''', '''ViTMAELayer''', '''ViTMAEModel''', '''ViTMAEPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : List[str] =[ '''TFViTMAEForPreTraining''', '''TFViTMAEModel''', '''TFViTMAEPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys lowerCAmelCase__ : Optional[int] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
118
1
def _a ( SCREAMING_SNAKE_CASE : Optional[int] ) -> str: """simple docstring""" __lowerCAmelCase: Dict = int(SCREAMING_SNAKE_CASE ) if decimal in (0, 1): # Exit cases for the recursion return str(SCREAMING_SNAKE_CASE ) __lowerCAmelCase: str = divmod(SCREAMING_SNAKE_CASE , 2 ) return binary_recursive(SCREAMING_SNAKE_CASE ) + str(SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE : str ) -> str: """simple docstring""" __lowerCAmelCase: int = str(SCREAMING_SNAKE_CASE ).strip() if not number: raise ValueError('No input value was provided' ) __lowerCAmelCase: Dict = """-""" if number.startswith('-' ) else """""" __lowerCAmelCase: List[str] = number.lstrip('-' ) if not number.isnumeric(): raise ValueError('Input value is not an integer' ) return f'''{negative}0b{binary_recursive(int(SCREAMING_SNAKE_CASE ) )}''' if __name__ == "__main__": from doctest import testmod testmod()
322
'''simple docstring''' # This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES _A : Dict ='''tiny-wmt19-en-ru''' # Build # borrowed from a test _A : List[str] =[ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] _A : str =dict(zip(vocab, range(len(vocab)))) _A : List[str] =['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] with tempfile.TemporaryDirectory() as tmpdirname: _A : Union[str, Any] =Path(tmpdirname) _A : str =build_dir / VOCAB_FILES_NAMES['''src_vocab_file'''] _A : int =build_dir / VOCAB_FILES_NAMES['''tgt_vocab_file'''] _A : List[Any] =build_dir / VOCAB_FILES_NAMES['''merges_file'''] with open(src_vocab_file, '''w''') as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, '''w''') as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, '''w''') as fp: fp.write('''\n'''.join(merges)) _A : int =FSMTTokenizer( langs=['''en''', '''ru'''], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) _A : List[str] =FSMTConfig( langs=['''ru''', '''en'''], src_vocab_size=1_000, tgt_vocab_size=1_000, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) _A : Union[str, Any] =FSMTForConditionalGeneration(config) print(F'num of params {tiny_model.num_parameters()}') # Test _A : List[str] =tokenizer(['''Making tiny model'''], return_tensors='''pt''') _A : Tuple =tiny_model(**batch) print('''test output:''', len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F'Generated {mname_tiny}') # Upload # transformers-cli upload tiny-wmt19-en-ru
41
0
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=A_ ) class UpperCAmelCase_ ( A_ ): lowercase__ = field(default='''image-classification''', metadata={'''include_in_asdict_even_if_is_default''': True} ) lowercase__ = Features({'''image''': Image()} ) lowercase__ = Features({'''labels''': ClassLabel} ) lowercase__ = '''image''' lowercase__ = '''labels''' def __magic_name__ ( self : List[str] , snake_case_ : str ) -> Tuple: '''simple docstring''' if self.label_column not in features: raise ValueError(F"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , snake_case_ ): raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""" ) A__ = copy.deepcopy(self ) A__ = self.label_schema.copy() A__ = features[self.label_column] A__ = label_schema return task_template @property def __magic_name__ ( self : Any ) -> Dict[str, str]: '''simple docstring''' return { self.image_column: "image", self.label_column: "labels", }
371
"""simple docstring""" from argparse import ArgumentParser from .env import EnvironmentCommand def _SCREAMING_SNAKE_CASE ( ) -> List[Any]: A__ = ArgumentParser("Diffusers CLI tool" , usage="diffusers-cli <command> [<args>]" ) A__ = parser.add_subparsers(help="diffusers-cli command helpers" ) # Register commands EnvironmentCommand.register_subcommand(lowercase_ ) # Let's go A__ = parser.parse_args() if not hasattr(lowercase_ , "func" ): parser.print_help() exit(1 ) # Run A__ = args.func(lowercase_ ) service.run() if __name__ == "__main__": main()
230
0
'''simple docstring''' import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser( description=( 'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='bert', choices=['bert']) parser.add_argument('--model_name', default='bert-base-uncased', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') lowerCamelCase : str = parser.parse_args() if args.model_type == "bert": lowerCamelCase : List[Any] = BertForMaskedLM.from_pretrained(args.model_name) lowerCamelCase : Any = 'bert' else: raise ValueError('args.model_type should be "bert".') lowerCamelCase : int = model.state_dict() lowerCamelCase : int = {} for w in ["word_embeddings", "position_embeddings"]: lowerCamelCase : Any = state_dict[f"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: lowerCamelCase : Any = state_dict[f"""{prefix}.embeddings.LayerNorm.{w}"""] lowerCamelCase : Tuple = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: lowerCamelCase : Dict = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] lowerCamelCase : Dict = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] lowerCamelCase : List[Any] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] lowerCamelCase : Tuple = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] lowerCamelCase : Optional[int] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] lowerCamelCase : Optional[Any] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] lowerCamelCase : Dict = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] lowerCamelCase : Any = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 lowerCamelCase : Optional[int] = state_dict['cls.predictions.decoder.weight'] lowerCamelCase : str = state_dict['cls.predictions.bias'] if args.vocab_transform: for w in ["weight", "bias"]: lowerCamelCase : str = state_dict[f"""cls.predictions.transform.dense.{w}"""] lowerCamelCase : Any = state_dict[f"""cls.predictions.transform.LayerNorm.{w}"""] print(f"""N layers selected for distillation: {std_idx}""") print(f"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(f"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
2
import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml __snake_case = NewType("""DataClass""", Any) __snake_case = NewType("""DataClassType""", Any) def _lowercase ( UpperCamelCase_ ) -> int: '''simple docstring''' if isinstance(UpperCamelCase_ , UpperCamelCase_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F'Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).' ) def _lowercase ( UpperCamelCase_ ) -> Callable[[str], Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = {str(UpperCamelCase_ ): choice for choice in choices} return lambda UpperCamelCase_ : str_to_choice.get(UpperCamelCase_ , UpperCamelCase_ ) def _lowercase ( *, UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = dataclasses.MISSING , UpperCamelCase_ = dataclasses.MISSING , UpperCamelCase_ = None , **UpperCamelCase_ , ) -> dataclasses.Field: '''simple docstring''' if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls SCREAMING_SNAKE_CASE__ = {} if aliases is not None: SCREAMING_SNAKE_CASE__ = aliases if help is not None: SCREAMING_SNAKE_CASE__ = help return dataclasses.field(metadata=UpperCamelCase_ , default=UpperCamelCase_ , default_factory=UpperCamelCase_ , **UpperCamelCase_ ) class lowercase__ ( _UpperCAmelCase ): A__ : Iterable[DataClassType] def __init__( self : Union[str, Any] , UpperCAmelCase_ : Union[DataClassType, Iterable[DataClassType]] , **UpperCAmelCase_ : Optional[Any] ): # To make the default appear when using --help if "formatter_class" not in kwargs: SCREAMING_SNAKE_CASE__ = ArgumentDefaultsHelpFormatter super().__init__(**UpperCAmelCase_ ) if dataclasses.is_dataclass(UpperCAmelCase_ ): SCREAMING_SNAKE_CASE__ = [dataclass_types] SCREAMING_SNAKE_CASE__ = list(UpperCAmelCase_ ) for dtype in self.dataclass_types: self._add_dataclass_arguments(UpperCAmelCase_ ) @staticmethod def A_ ( UpperCAmelCase_ : ArgumentParser , UpperCAmelCase_ : dataclasses.Field ): SCREAMING_SNAKE_CASE__ = F'--{field.name}' SCREAMING_SNAKE_CASE__ = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , UpperCAmelCase_ ): raise RuntimeError( 'Unresolved type detected, which should have been done with the help of ' '`typing.get_type_hints` method by default' ) SCREAMING_SNAKE_CASE__ = kwargs.pop('aliases' , [] ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): SCREAMING_SNAKE_CASE__ = [aliases] SCREAMING_SNAKE_CASE__ = getattr(field.type , '__origin__' , field.type ) if origin_type is Union or (hasattr(UpperCAmelCase_ , 'UnionType' ) and isinstance(UpperCAmelCase_ , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(UpperCAmelCase_ ) not in field.type.__args__ ): raise ValueError( 'Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because' ' the argument parser only supports one type per argument.' F' Problem encountered in field \'{field.name}\'.' ) if type(UpperCAmelCase_ ) not in field.type.__args__: # filter `str` in Union SCREAMING_SNAKE_CASE__ = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] SCREAMING_SNAKE_CASE__ = getattr(field.type , '__origin__' , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) SCREAMING_SNAKE_CASE__ = ( field.type.__args__[0] if isinstance(UpperCAmelCase_ , field.type.__args__[1] ) else field.type.__args__[1] ) SCREAMING_SNAKE_CASE__ = getattr(field.type , '__origin__' , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) SCREAMING_SNAKE_CASE__ = {} if origin_type is Literal or (isinstance(field.type , UpperCAmelCase_ ) and issubclass(field.type , UpperCAmelCase_ )): if origin_type is Literal: SCREAMING_SNAKE_CASE__ = field.type.__args__ else: SCREAMING_SNAKE_CASE__ = [x.value for x in field.type] SCREAMING_SNAKE_CASE__ = make_choice_type_function(kwargs['choices'] ) if field.default is not dataclasses.MISSING: SCREAMING_SNAKE_CASE__ = field.default else: SCREAMING_SNAKE_CASE__ = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument SCREAMING_SNAKE_CASE__ = copy(UpperCAmelCase_ ) # Hack because type=bool in argparse does not behave as we want. SCREAMING_SNAKE_CASE__ = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. SCREAMING_SNAKE_CASE__ = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way SCREAMING_SNAKE_CASE__ = default # This tells argparse we accept 0 or 1 value after --field_name SCREAMING_SNAKE_CASE__ = '?' # This is the value that will get picked if we do --field_name (without value) SCREAMING_SNAKE_CASE__ = True elif isclass(UpperCAmelCase_ ) and issubclass(UpperCAmelCase_ , UpperCAmelCase_ ): SCREAMING_SNAKE_CASE__ = field.type.__args__[0] SCREAMING_SNAKE_CASE__ = '+' if field.default_factory is not dataclasses.MISSING: SCREAMING_SNAKE_CASE__ = field.default_factory() elif field.default is dataclasses.MISSING: SCREAMING_SNAKE_CASE__ = True else: SCREAMING_SNAKE_CASE__ = field.type if field.default is not dataclasses.MISSING: SCREAMING_SNAKE_CASE__ = field.default elif field.default_factory is not dataclasses.MISSING: SCREAMING_SNAKE_CASE__ = field.default_factory() else: SCREAMING_SNAKE_CASE__ = True parser.add_argument(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_ ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): SCREAMING_SNAKE_CASE__ = False parser.add_argument(F'--no_{field.name}' , action='store_false' , dest=field.name , **UpperCAmelCase_ ) def A_ ( self : List[Any] , UpperCAmelCase_ : DataClassType ): if hasattr(UpperCAmelCase_ , '_argument_group_name' ): SCREAMING_SNAKE_CASE__ = self.add_argument_group(dtype._argument_group_name ) else: SCREAMING_SNAKE_CASE__ = self try: SCREAMING_SNAKE_CASE__ = get_type_hints(UpperCAmelCase_ ) except NameError: raise RuntimeError( F'Type resolution failed for {dtype}. Try declaring the class in global scope or ' 'removing line of `from __future__ import annotations` which opts in Postponed ' 'Evaluation of Annotations (PEP 563)' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(UpperCAmelCase_ ): SCREAMING_SNAKE_CASE__ = '.'.join(map(UpperCAmelCase_ , sys.version_info[:3] ) ) raise RuntimeError( F'Type resolution failed for {dtype} on Python {python_version}. Try removing ' 'line of `from __future__ import annotations` which opts in union types as ' '`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ' 'support Python versions that lower than 3.10, you need to use ' '`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ' '`X | None`.' ) from ex raise for field in dataclasses.fields(UpperCAmelCase_ ): if not field.init: continue SCREAMING_SNAKE_CASE__ = type_hints[field.name] self._parse_dataclass_field(UpperCAmelCase_ , UpperCAmelCase_ ) def A_ ( self : Dict , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : str=None , UpperCAmelCase_ : str=None , ): if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): SCREAMING_SNAKE_CASE__ = [] if args_filename: args_files.append(Path(UpperCAmelCase_ ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('.args' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values SCREAMING_SNAKE_CASE__ = ArgumentParser() args_file_parser.add_argument(UpperCAmelCase_ , type=UpperCAmelCase_ , action='append' ) # Use only remaining args for further parsing (remove the args_file_flag) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = args_file_parser.parse_known_args(args=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = vars(UpperCAmelCase_ ).get(args_file_flag.lstrip('-' ) , UpperCAmelCase_ ) if cmd_args_file_paths: args_files.extend([Path(UpperCAmelCase_ ) for p in cmd_args_file_paths] ) SCREAMING_SNAKE_CASE__ = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last SCREAMING_SNAKE_CASE__ = file_args + args if args is not None else file_args + sys.argv[1:] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.parse_known_args(args=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = [] for dtype in self.dataclass_types: SCREAMING_SNAKE_CASE__ = {f.name for f in dataclasses.fields(UpperCAmelCase_ ) if f.init} SCREAMING_SNAKE_CASE__ = {k: v for k, v in vars(UpperCAmelCase_ ).items() if k in keys} for k in keys: delattr(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = dtype(**UpperCAmelCase_ ) outputs.append(UpperCAmelCase_ ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(UpperCAmelCase_ ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F'Some specified arguments are not used by the HfArgumentParser: {remaining_args}' ) return (*outputs,) def A_ ( self : str , UpperCAmelCase_ : Dict[str, Any] , UpperCAmelCase_ : bool = False ): SCREAMING_SNAKE_CASE__ = set(args.keys() ) SCREAMING_SNAKE_CASE__ = [] for dtype in self.dataclass_types: SCREAMING_SNAKE_CASE__ = {f.name for f in dataclasses.fields(UpperCAmelCase_ ) if f.init} SCREAMING_SNAKE_CASE__ = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) SCREAMING_SNAKE_CASE__ = dtype(**UpperCAmelCase_ ) outputs.append(UpperCAmelCase_ ) if not allow_extra_keys and unused_keys: raise ValueError(F'Some keys are not used by the HfArgumentParser: {sorted(UpperCAmelCase_ )}' ) return tuple(UpperCAmelCase_ ) def A_ ( self : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : bool = False ): with open(Path(UpperCAmelCase_ ) , encoding='utf-8' ) as open_json_file: SCREAMING_SNAKE_CASE__ = json.loads(open_json_file.read() ) SCREAMING_SNAKE_CASE__ = self.parse_dict(UpperCAmelCase_ , allow_extra_keys=UpperCAmelCase_ ) return tuple(UpperCAmelCase_ ) def A_ ( self : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : bool = False ): SCREAMING_SNAKE_CASE__ = self.parse_dict(yaml.safe_load(Path(UpperCAmelCase_ ).read_text() ) , allow_extra_keys=UpperCAmelCase_ ) return tuple(UpperCAmelCase_ )
176
0
from __future__ import annotations def a__ ( A__, A__ ): SCREAMING_SNAKE_CASE_ : list[list[int]] = [] SCREAMING_SNAKE_CASE_ : list[int] = [] SCREAMING_SNAKE_CASE_ : Any = 0 SCREAMING_SNAKE_CASE_ : Optional[int] = sum(A__ ) create_state_space_tree(A__, A__, A__, A__, A__, A__ ) return result def a__ ( A__, A__, A__, A__, A__, A__, ): if sum(A__ ) > max_sum or (remaining_nums_sum + sum(A__ )) < max_sum: return if sum(A__ ) == max_sum: result.append(A__ ) return for index in range(A__, len(A__ ) ): create_state_space_tree( A__, A__, index + 1, [*path, nums[index]], A__, remaining_nums_sum - nums[index], ) lowerCAmelCase__ : int =[3, 34, 4, 12, 5, 2] lowerCAmelCase__ : str =9 lowerCAmelCase__ : int =generate_sum_of_subsets_soln(nums, max_sum) print(*result)
162
from typing import Any def a__ ( A__, A__, A__, A__, A__, ): _validation( A__, A__, A__, A__, A__, ) # Creates data structures and fill initial step SCREAMING_SNAKE_CASE_ : dict = {} SCREAMING_SNAKE_CASE_ : dict = {} for state in states_space: SCREAMING_SNAKE_CASE_ : int = observations_space[0] SCREAMING_SNAKE_CASE_ : Union[str, Any] = ( initial_probabilities[state] * emission_probabilities[state][observation] ) SCREAMING_SNAKE_CASE_ : str = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1, len(A__ ) ): SCREAMING_SNAKE_CASE_ : List[str] = observations_space[o] SCREAMING_SNAKE_CASE_ : str = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function SCREAMING_SNAKE_CASE_ : Union[str, Any] = '' SCREAMING_SNAKE_CASE_ : str = -1 for k_state in states_space: SCREAMING_SNAKE_CASE_ : List[str] = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: SCREAMING_SNAKE_CASE_ : Tuple = probability SCREAMING_SNAKE_CASE_ : Optional[int] = k_state # Update probabilities and pointers dicts SCREAMING_SNAKE_CASE_ : List[Any] = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) SCREAMING_SNAKE_CASE_ : Tuple = arg_max # The final observation SCREAMING_SNAKE_CASE_ : Optional[int] = observations_space[len(A__ ) - 1] # argmax for given final observation SCREAMING_SNAKE_CASE_ : Union[str, Any] = '' SCREAMING_SNAKE_CASE_ : List[str] = -1 for k_state in states_space: SCREAMING_SNAKE_CASE_ : int = probabilities[(k_state, final_observation)] if probability > max_probability: SCREAMING_SNAKE_CASE_ : List[Any] = probability SCREAMING_SNAKE_CASE_ : Tuple = k_state SCREAMING_SNAKE_CASE_ : Optional[Any] = arg_max # Process pointers backwards SCREAMING_SNAKE_CASE_ : Union[str, Any] = last_state SCREAMING_SNAKE_CASE_ : List[str] = [] for o in range(len(A__ ) - 1, -1, -1 ): result.append(A__ ) SCREAMING_SNAKE_CASE_ : Tuple = pointers[previous, observations_space[o]] result.reverse() return result def a__ ( A__, A__, A__, A__, A__, ): _validate_not_empty( A__, A__, A__, A__, A__, ) _validate_lists(A__, A__ ) _validate_dicts( A__, A__, A__ ) def a__ ( A__, A__, A__, A__, A__, ): if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('There\'s an empty parameter' ) def a__ ( A__, A__ ): _validate_list(A__, 'observations_space' ) _validate_list(A__, 'states_space' ) def a__ ( A__, A__ ): if not isinstance(_object, A__ ): SCREAMING_SNAKE_CASE_ : List[str] = F'''{var_name} must be a list''' raise ValueError(A__ ) else: for x in _object: if not isinstance(A__, A__ ): SCREAMING_SNAKE_CASE_ : Dict = F'''{var_name} must be a list of strings''' raise ValueError(A__ ) def a__ ( A__, A__, A__, ): _validate_dict(A__, 'initial_probabilities', A__ ) _validate_nested_dict(A__, 'transition_probabilities' ) _validate_nested_dict(A__, 'emission_probabilities' ) def a__ ( A__, A__ ): _validate_dict(_object, A__, A__ ) for x in _object.values(): _validate_dict(A__, A__, A__, A__ ) def a__ ( A__, A__, A__, A__ = False ): if not isinstance(_object, A__ ): SCREAMING_SNAKE_CASE_ : Dict = F'''{var_name} must be a dict''' raise ValueError(A__ ) if not all(isinstance(A__, A__ ) for x in _object ): SCREAMING_SNAKE_CASE_ : Optional[int] = F'''{var_name} all keys must be strings''' raise ValueError(A__ ) if not all(isinstance(A__, A__ ) for x in _object.values() ): SCREAMING_SNAKE_CASE_ : Optional[Any] = 'nested dictionary ' if nested else '' SCREAMING_SNAKE_CASE_ : Any = F'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(A__ ) if __name__ == "__main__": from doctest import testmod testmod()
162
1
"""simple docstring""" def lowercase ( _snake_case : int , _snake_case : int ) ->int: """simple docstring""" return int((input_a, input_a).count(0 ) != 0 ) def lowercase ( ) ->None: """simple docstring""" assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
102
'''simple docstring''' from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class __UpperCamelCase : lowercase : Union[str, Any] =XGLMConfig lowercase : Optional[Any] ={} lowercase : Optional[int] ='gelu' def __init__( self, lowerCAmelCase, lowerCAmelCase=14, lowerCAmelCase=7, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=99, lowerCAmelCase=32, lowerCAmelCase=2, lowerCAmelCase=4, lowerCAmelCase=37, lowerCAmelCase="gelu", lowerCAmelCase=0.1, lowerCAmelCase=0.1, lowerCAmelCase=512, lowerCAmelCase=0.0_2, ): """simple docstring""" lowerCamelCase_ =parent lowerCamelCase_ =batch_size lowerCamelCase_ =seq_length lowerCamelCase_ =is_training lowerCamelCase_ =use_input_mask lowerCamelCase_ =use_labels lowerCamelCase_ =vocab_size lowerCamelCase_ =d_model lowerCamelCase_ =num_hidden_layers lowerCamelCase_ =num_attention_heads lowerCamelCase_ =ffn_dim lowerCamelCase_ =activation_function lowerCamelCase_ =activation_dropout lowerCamelCase_ =attention_dropout lowerCamelCase_ =max_position_embeddings lowerCamelCase_ =initializer_range lowerCamelCase_ =None lowerCamelCase_ =0 lowerCamelCase_ =2 lowerCamelCase_ =1 def lowercase__ ( self ): """simple docstring""" return XGLMConfig.from_pretrained('''facebook/xglm-564M''' ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length], self.vocab_size ), clip_value_min=0, clip_value_max=3 ) lowerCamelCase_ =None if self.use_input_mask: lowerCamelCase_ =random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ =self.get_config() lowerCamelCase_ =floats_tensor([self.num_hidden_layers, self.num_attention_heads], 2 ) return ( config, input_ids, input_mask, head_mask, ) def lowercase__ ( self ): """simple docstring""" return XGLMConfig( vocab_size=self.vocab_size, d_model=self.hidden_size, num_layers=self.num_hidden_layers, attention_heads=self.num_attention_heads, ffn_dim=self.ffn_dim, activation_function=self.activation_function, activation_dropout=self.activation_dropout, attention_dropout=self.attention_dropout, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, use_cache=lowerCAmelCase, bos_token_id=self.bos_token_id, eos_token_id=self.eos_token_id, pad_token_id=self.pad_token_id, return_dict=lowerCAmelCase, ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.prepare_config_and_inputs() ( ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ) =config_and_inputs lowerCamelCase_ ={ '''input_ids''': input_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_tf class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): lowercase : int =(TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () lowercase : Optional[Any] =(TFXGLMForCausalLM,) if is_tf_available() else () lowercase : Tuple =( {'feature-extraction': TFXGLMModel, 'text-generation': TFXGLMForCausalLM} if is_tf_available() else {} ) lowercase : Optional[Any] =False lowercase : Optional[Any] =False lowercase : Optional[int] =False def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =TFXGLMModelTester(self ) lowerCamelCase_ =ConfigTester(self, config_class=lowerCAmelCase, n_embd=37 ) def lowercase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() @slow def lowercase__ ( self ): """simple docstring""" for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ =TFXGLMModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) @unittest.skip(reason='''Currently, model embeddings are going to undergo a major refactor.''' ) def lowercase__ ( self ): """simple docstring""" super().test_resize_token_embeddings() @require_tf class __UpperCamelCase ( unittest.TestCase ): @slow def lowercase__ ( self, lowerCAmelCase=True ): """simple docstring""" lowerCamelCase_ =TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) lowerCamelCase_ =tf.convert_to_tensor([[2, 268, 9_865]], dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off lowerCamelCase_ =[2, 268, 9_865, 67, 11, 1_988, 57_252, 9_865, 5, 984, 67, 1_988, 213_838, 1_658, 53, 70_446, 33, 6_657, 278, 1_581] # fmt: on lowerCamelCase_ =model.generate(lowerCAmelCase, do_sample=lowerCAmelCase, num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist(), lowerCAmelCase ) @slow def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) lowerCamelCase_ =TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) tf.random.set_seed(0 ) lowerCamelCase_ =tokenizer('''Today is a nice day and''', return_tensors='''tf''' ) lowerCamelCase_ =tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(''':/CPU:0''' ): lowerCamelCase_ =model.generate(lowerCAmelCase, do_sample=lowerCAmelCase, seed=[7, 0] ) lowerCamelCase_ =tokenizer.decode(output_ids[0], skip_special_tokens=lowerCAmelCase ) lowerCamelCase_ =( '''Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due''' ) self.assertEqual(lowerCAmelCase, lowerCAmelCase ) @slow def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) lowerCamelCase_ =XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) lowerCamelCase_ ='''left''' # use different length sentences to test batching lowerCamelCase_ =[ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When''', '''Hello, my dog is a little''', ] lowerCamelCase_ =tokenizer(lowerCAmelCase, return_tensors='''tf''', padding=lowerCAmelCase ) lowerCamelCase_ =inputs['''input_ids'''] lowerCamelCase_ =model.generate(input_ids=lowerCAmelCase, attention_mask=inputs['''attention_mask'''], max_new_tokens=12 ) lowerCamelCase_ =tokenizer(sentences[0], return_tensors='''tf''' ).input_ids lowerCamelCase_ =model.generate(input_ids=lowerCAmelCase, max_new_tokens=12 ) lowerCamelCase_ =tokenizer(sentences[1], return_tensors='''tf''' ).input_ids lowerCamelCase_ =model.generate(input_ids=lowerCAmelCase, max_new_tokens=12 ) lowerCamelCase_ =tokenizer.batch_decode(lowerCAmelCase, skip_special_tokens=lowerCAmelCase ) lowerCamelCase_ =tokenizer.decode(output_non_padded[0], skip_special_tokens=lowerCAmelCase ) lowerCamelCase_ =tokenizer.decode(output_padded[0], skip_special_tokens=lowerCAmelCase ) lowerCamelCase_ =[ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ''' '''a single''', '''Hello, my dog is a little bit of a shy one, but he is very friendly''', ] self.assertListEqual(lowerCAmelCase, lowerCAmelCase ) self.assertListEqual(lowerCAmelCase, [non_padded_sentence, padded_sentence] )
75
0
'''simple docstring''' import os import pytest from transformers.dynamic_module_utils import get_imports _lowercase : List[Any] = "\nimport os\n" _lowercase : List[str] = "\ndef foo():\n import os\n return False\n" _lowercase : List[str] = "\ndef foo():\n def bar():\n if True:\n import os\n return False\n return bar()\n" _lowercase : Any = "\nimport os\n\ntry:\n import bar\nexcept ImportError:\n raise ValueError()\n" _lowercase : str = "\nimport os\n\ndef foo():\n try:\n import bar\n except ImportError:\n raise ValueError()\n" _lowercase : List[Any] = "\nimport os\n\ntry:\n import bar\nexcept (ImportError, AttributeError):\n raise ValueError()\n" _lowercase : Optional[int] = "\nimport os\n\ntry:\n import bar\nexcept ImportError as e:\n raise ValueError()\n" _lowercase : Tuple = "\nimport os\n\ntry:\n import bar\nexcept:\n raise ValueError()\n" _lowercase : List[Any] = "\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n raise ValueError()\n" _lowercase : Optional[int] = "\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n x = 1\n raise ValueError()\n" _lowercase : Any = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize("""case""" , UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Tuple ) -> Union[str, Any]: lowercase_ : Tuple = os.path.join(UpperCAmelCase__ , """test_file.py""" ) with open(UpperCAmelCase__ , """w""" ) as _tmp_file: _tmp_file.write(UpperCAmelCase__ ) lowercase_ : Optional[Any] = get_imports(UpperCAmelCase__ ) assert parsed_imports == ["os"]
356
'''simple docstring''' import os import numpy import onnx def lowerCamelCase ( UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : str ) -> Tuple: lowercase_ : Tuple = a.name lowercase_ : Tuple = b.name lowercase_ : Any = """""" lowercase_ : List[Any] = """""" lowercase_ : List[Any] = a == b lowercase_ : Union[str, Any] = name_a lowercase_ : Optional[Any] = name_b return res def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any] ) -> Union[str, Any]: for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(UpperCAmelCase__ , UpperCAmelCase__ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase__ , UpperCAmelCase__ ) _graph_replace_input_with(node_proto.attribute[1].g , UpperCAmelCase__ , UpperCAmelCase__ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str ) -> int: for n in graph_proto.node: _node_replace_input_with(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict ) -> List[str]: lowercase_ : int = list(model.graph.initializer ) lowercase_ : List[str] = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i lowercase_ : Optional[Any] = inits[i].name lowercase_ : List[str] = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : int ) -> List[str]: lowercase_ : Dict = os.path.dirname(UpperCAmelCase__ ) lowercase_ : Optional[Any] = os.path.basename(UpperCAmelCase__ ) lowercase_ : str = onnx.load(os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) ) lowercase_ : List[Any] = list(model.graph.initializer ) lowercase_ : int = set() lowercase_ : int = {} lowercase_ : str = [] lowercase_ : int = 0 for i in range(len(UpperCAmelCase__ ) ): if i in dup_set: continue for j in range(i + 1 , len(UpperCAmelCase__ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(UpperCAmelCase__ ) dup_set.add(UpperCAmelCase__ ) lowercase_ : Dict = inits[j].data_type lowercase_ : List[str] = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("""unexpected data type: """ , UpperCAmelCase__ ) total_reduced_size += mem_size lowercase_ : int = inits[i].name lowercase_ : List[str] = inits[j].name if name_i in dup_map: dup_map[name_i].append(UpperCAmelCase__ ) else: lowercase_ : Optional[int] = [name_j] ind_to_replace.append((j, i) ) print("""total reduced size: """ , total_reduced_size / 1024 / 1024 / 1024 , """GB""" ) lowercase_ : Tuple = sorted(UpperCAmelCase__ ) _remove_dup_initializers_from_model(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ : Union[str, Any] = """optimized_""" + model_file_name lowercase_ : Optional[int] = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) onnx.save(UpperCAmelCase__ , UpperCAmelCase__ ) return new_model
21
0
import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self : Optional[Any] , __magic_name__ : Union[str, "sqlalchemy.sql.Selectable"] , __magic_name__ : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , __magic_name__ : Optional[Features] = None , __magic_name__ : str = None , __magic_name__ : bool = False , **__magic_name__ : Dict , ) -> List[Any]: super().__init__(features=__magic_name__ , cache_dir=__magic_name__ , keep_in_memory=__magic_name__ , **__magic_name__ ) SCREAMING_SNAKE_CASE_ = Sql( cache_dir=__magic_name__ , features=__magic_name__ , sql=__magic_name__ , con=__magic_name__ , **__magic_name__ , ) def __A ( self : Dict ) -> List[str]: SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None self.builder.download_and_prepare( download_config=__magic_name__ , download_mode=__magic_name__ , verification_mode=__magic_name__ , base_path=__magic_name__ , ) # Build dataset for splits SCREAMING_SNAKE_CASE_ = self.builder.as_dataset( split="train" , verification_mode=__magic_name__ , in_memory=self.keep_in_memory ) return dataset class lowerCamelCase : """simple docstring""" def __init__( self : str , __magic_name__ : Dataset , __magic_name__ : str , __magic_name__ : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , __magic_name__ : Optional[int] = None , __magic_name__ : Optional[int] = None , **__magic_name__ : Dict , ) -> Tuple: if num_proc is not None and num_proc <= 0: raise ValueError(F'''num_proc {num_proc} must be an integer > 0.''' ) SCREAMING_SNAKE_CASE_ = dataset SCREAMING_SNAKE_CASE_ = name SCREAMING_SNAKE_CASE_ = con SCREAMING_SNAKE_CASE_ = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE SCREAMING_SNAKE_CASE_ = num_proc SCREAMING_SNAKE_CASE_ = to_sql_kwargs def __A ( self : Union[str, Any] ) -> int: SCREAMING_SNAKE_CASE_ = self.to_sql_kwargs.pop("sql" , __magic_name__ ) SCREAMING_SNAKE_CASE_ = self.to_sql_kwargs.pop("con" , __magic_name__ ) SCREAMING_SNAKE_CASE_ = self.to_sql_kwargs.pop("index" , __magic_name__ ) SCREAMING_SNAKE_CASE_ = self._write(index=__magic_name__ , **self.to_sql_kwargs ) return written def __A ( self : str , __magic_name__ : int ) -> str: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = args SCREAMING_SNAKE_CASE_ = {**to_sql_kwargs, "if_exists": "append"} if offset > 0 else to_sql_kwargs SCREAMING_SNAKE_CASE_ = query_table( table=self.dataset.data , key=slice(__magic_name__ , offset + self.batch_size ) , indices=self.dataset._indices , ) SCREAMING_SNAKE_CASE_ = batch.to_pandas() SCREAMING_SNAKE_CASE_ = df.to_sql(self.name , self.con , index=__magic_name__ , **__magic_name__ ) return num_rows or len(__magic_name__ ) def __A ( self : Tuple , __magic_name__ : str , **__magic_name__ : Any ) -> int: SCREAMING_SNAKE_CASE_ = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating SQL from Arrow format" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , __magic_name__ , __magic_name__ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating SQL from Arrow format" , ): written += num_rows return written
118
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) A : Optional[int] = logging.getLogger(__name__) A : int = "Hello world! cécé herlolip" A : List[Any] = namedtuple( "BertAbsConfig", [ "temp_dir", "large", "use_bert_emb", "finetune_bert", "encoder", "share_emb", "max_pos", "enc_layers", "enc_hidden_size", "enc_heads", "enc_ff_size", "enc_dropout", "dec_layers", "dec_hidden_size", "dec_heads", "dec_ff_size", "dec_dropout", ], ) def a__ ( __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = BertAbsConfig( temp_dir="." , finetune_bert=__UpperCamelCase , large=__UpperCamelCase , share_emb=__UpperCamelCase , use_bert_emb=__UpperCamelCase , encoder="bert" , max_pos=5_1_2 , enc_layers=6 , enc_hidden_size=5_1_2 , enc_heads=8 , enc_ff_size=5_1_2 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=7_6_8 , dec_heads=8 , dec_ff_size=2_0_4_8 , dec_dropout=0.2 , ) SCREAMING_SNAKE_CASE_ = torch.load(__UpperCamelCase , lambda __UpperCamelCase , __UpperCamelCase : storage ) SCREAMING_SNAKE_CASE_ = AbsSummarizer(__UpperCamelCase , torch.device("cpu" ) , __UpperCamelCase ) original.eval() SCREAMING_SNAKE_CASE_ = BertAbsSummarizer(__UpperCamelCase , torch.device("cpu" ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("convert the model" ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("Make sure that the models' outputs are identical" ) SCREAMING_SNAKE_CASE_ = BertTokenizer.from_pretrained("bert-base-uncased" ) # prepare the model inputs SCREAMING_SNAKE_CASE_ = tokenizer.encode("This is sample éàalj'-." ) encoder_input_ids.extend([tokenizer.pad_token_id] * (5_1_2 - len(__UpperCamelCase )) ) SCREAMING_SNAKE_CASE_ = torch.tensor(__UpperCamelCase ).unsqueeze(0 ) SCREAMING_SNAKE_CASE_ = tokenizer.encode("This is sample 3 éàalj'-." ) decoder_input_ids.extend([tokenizer.pad_token_id] * (5_1_2 - len(__UpperCamelCase )) ) SCREAMING_SNAKE_CASE_ = torch.tensor(__UpperCamelCase ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass SCREAMING_SNAKE_CASE_ = encoder_input_ids SCREAMING_SNAKE_CASE_ = decoder_input_ids SCREAMING_SNAKE_CASE_ = SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical SCREAMING_SNAKE_CASE_ = original(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )[0] SCREAMING_SNAKE_CASE_ = original.generator(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = new_model( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )[0] SCREAMING_SNAKE_CASE_ = new_model.generator(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print("Maximum absolute difference beween weights: {:.2f}".format(__UpperCamelCase ) ) SCREAMING_SNAKE_CASE_ = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print("Maximum absolute difference beween weights: {:.2f}".format(__UpperCamelCase ) ) SCREAMING_SNAKE_CASE_ = torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-3 ) if are_identical: logging.info("all weights are equal up to 1e-3" ) else: raise ValueError("the weights are different. The new model is likely different from the original one." ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("saving the model's state dictionary" ) torch.save( new_model.state_dict() , "./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin" ) if __name__ == "__main__": A : Any = argparse.ArgumentParser() parser.add_argument( "--bertabs_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model.", ) A : int = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
118
1
from __future__ import annotations from scipy.special import comb # type: ignore class __lowercase : """simple docstring""" def __init__( self : Union[str, Any] , lowerCAmelCase__ : list[tuple[float, float]]): SCREAMING_SNAKE_CASE_: int = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. SCREAMING_SNAKE_CASE_: Dict = len(lowercase_) - 1 def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : float): assert 0 <= t <= 1, "Time t must be between 0 and 1." SCREAMING_SNAKE_CASE_: list[float] = [] for i in range(len(self.list_of_points)): # basis function for each i output_values.append( comb(self.degree , lowercase_) * ((1 - t) ** (self.degree - i)) * (t**i)) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(lowercase_) , 5) == 1 return output_values def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : float): assert 0 <= t <= 1, "Time t must be between 0 and 1." SCREAMING_SNAKE_CASE_: List[str] = self.basis_function(lowercase_) SCREAMING_SNAKE_CASE_: Tuple = 0.0 SCREAMING_SNAKE_CASE_: Dict = 0.0 for i in range(len(self.list_of_points)): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : float = 0.01): from matplotlib import pyplot as plt # type: ignore SCREAMING_SNAKE_CASE_: list[float] = [] # x coordinates of points to plot SCREAMING_SNAKE_CASE_: list[float] = [] # y coordinates of points to plot SCREAMING_SNAKE_CASE_: Tuple = 0.0 while t <= 1: SCREAMING_SNAKE_CASE_: Any = self.bezier_curve_function(lowercase_) to_plot_x.append(value[0]) to_plot_y.append(value[1]) t += step_size SCREAMING_SNAKE_CASE_: Any = [i[0] for i in self.list_of_points] SCREAMING_SNAKE_CASE_: List[str] = [i[1] for i in self.list_of_points] plt.plot( lowercase_ , lowercase_ , color="blue" , label="Curve of Degree " + str(self.degree) , ) plt.scatter(lowercase_ , lowercase_ , color="red" , label="Control Points") plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
371
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class __lowercase : """simple docstring""" _UpperCAmelCase : int _UpperCAmelCase : int class __lowercase : """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: list[list[Edge]] = [[] for _ in range(lowerCAmelCase__)] SCREAMING_SNAKE_CASE_: Dict = size def __getitem__( self : Dict , lowerCAmelCase__ : int): return iter(self._graph[vertex]) @property def _SCREAMING_SNAKE_CASE ( self : Tuple): return self._size def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int): if weight not in (0, 1): raise ValueError("Edge weight must be either 0 or 1.") if to_vertex < 0 or to_vertex >= self.size: raise ValueError("Vertex indexes must be in [0; size).") self._graph[from_vertex].append(Edge(lowerCAmelCase__ , lowerCAmelCase__)) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Optional[int] = deque([start_vertex]) SCREAMING_SNAKE_CASE_: list[int | None] = [None] * self.size SCREAMING_SNAKE_CASE_: List[Any] = 0 while queue: SCREAMING_SNAKE_CASE_: int = queue.popleft() SCREAMING_SNAKE_CASE_: str = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: SCREAMING_SNAKE_CASE_: Optional[int] = current_distance + edge.weight SCREAMING_SNAKE_CASE_: str = distances[edge.destination_vertex] if ( isinstance(lowerCAmelCase__ , lowerCAmelCase__) and new_distance >= dest_vertex_distance ): continue SCREAMING_SNAKE_CASE_: Any = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex) else: queue.append(edge.destination_vertex) if distances[finish_vertex] is None: raise ValueError("No path from start_vertex to finish_vertex.") return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
127
0
'''simple docstring''' import math import sys def UpperCAmelCase_ (__a : Optional[int] ): """simple docstring""" _a : Optional[Any] = '''''' try: with open(__lowerCAmelCase , 'rb' ) as binary_file: _a : int = binary_file.read() for dat in data: _a : Any = f"""{dat:08b}""" result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def UpperCAmelCase_ (__a : int ): """simple docstring""" _a : List[str] = {'''0''': '''0''', '''1''': '''1'''} _a : List[Any] = '''''', '''''' _a : Tuple = len(__lowerCAmelCase ) for i in range(len(__lowerCAmelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue _a : Tuple = lexicon[curr_string] result += last_match_id _a : Any = last_match_id + '''0''' if math.loga(__lowerCAmelCase ).is_integer(): _a : Tuple = {} for curr_key in list(__lowerCAmelCase ): _a : Union[str, Any] = lexicon.pop(__lowerCAmelCase ) _a : Optional[Any] = new_lex _a : Tuple = last_match_id + '''1''' index += 1 _a : Dict = '''''' return result def UpperCAmelCase_ (__a : str , __a : Tuple ): """simple docstring""" _a : Dict = 8 try: with open(__lowerCAmelCase , 'wb' ) as opened_file: _a : Union[str, Any] = [ to_write[i : i + byte_length] for i in range(0 , len(__lowerCAmelCase ) , __lowerCAmelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(__lowerCAmelCase , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def UpperCAmelCase_ (__a : int ): """simple docstring""" _a : Any = 0 for letter in data_bits: if letter == "1": break counter += 1 _a : Optional[int] = data_bits[counter:] _a : int = data_bits[counter + 1 :] return data_bits def UpperCAmelCase_ (__a : Union[str, Any] , __a : Optional[int] ): """simple docstring""" _a : Union[str, Any] = read_file_binary(__lowerCAmelCase ) _a : List[str] = remove_prefix(__lowerCAmelCase ) _a : Any = decompress_data(__lowerCAmelCase ) write_file_binary(__lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
271
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ = logging.get_logger(__name__) A__ = { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/config.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/config.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json''' ), '''distilbert-base-uncased-finetuned-sst-2-english''': ( '''https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json''' ), } class a ( __lowerCamelCase ): __lowerCAmelCase : str = """distilbert""" __lowerCAmelCase : str = { """hidden_size""": """dim""", """num_attention_heads""": """n_heads""", """num_hidden_layers""": """n_layers""", } def __init__( self :Dict ,__lowercase :Tuple=3_0_5_2_2 ,__lowercase :Optional[Any]=5_1_2 ,__lowercase :List[str]=False ,__lowercase :List[str]=6 ,__lowercase :Optional[Any]=1_2 ,__lowercase :Tuple=7_6_8 ,__lowercase :int=4 * 7_6_8 ,__lowercase :List[Any]=0.1 ,__lowercase :List[str]=0.1 ,__lowercase :Union[str, Any]="gelu" ,__lowercase :List[str]=0.02 ,__lowercase :Optional[int]=0.1 ,__lowercase :Dict=0.2 ,__lowercase :Union[str, Any]=0 ,**__lowercase :Optional[Any] ,): snake_case__ : List[str] = vocab_size snake_case__ : Tuple = max_position_embeddings snake_case__ : Optional[int] = sinusoidal_pos_embds snake_case__ : str = n_layers snake_case__ : List[Any] = n_heads snake_case__ : Tuple = dim snake_case__ : str = hidden_dim snake_case__ : int = dropout snake_case__ : Dict = attention_dropout snake_case__ : Tuple = activation snake_case__ : int = initializer_range snake_case__ : Optional[Any] = qa_dropout snake_case__ : Union[str, Any] = seq_classif_dropout super().__init__(**__lowercase ,pad_token_id=__lowercase ) class a ( __lowerCamelCase ): @property def __lowerCamelCase ( self :Union[str, Any] ): if self.task == "multiple-choice": snake_case__ : str = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: snake_case__ : Optional[int] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
230
0
"""simple docstring""" class _a : """simple docstring""" def __init__( self : Tuple , __UpperCamelCase : int )->None: _UpperCAmelCase = size _UpperCAmelCase = [0] * size _UpperCAmelCase = [0] * size @staticmethod def lowercase__ ( __UpperCamelCase : int )->int: return index | (index + 1) @staticmethod def lowercase__ ( __UpperCamelCase : int )->int: return (index & (index + 1)) - 1 def lowercase__ ( self : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : int )->None: _UpperCAmelCase = value while index < self.size: _UpperCAmelCase = self.get_prev(__UpperCamelCase ) + 1 if current_left_border == index: _UpperCAmelCase = value else: _UpperCAmelCase = max(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = self.get_next(__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : int , __UpperCamelCase : int )->int: right -= 1 # Because of right is exclusive _UpperCAmelCase = 0 while left <= right: _UpperCAmelCase = self.get_prev(__UpperCamelCase ) if left <= current_left: _UpperCAmelCase = max(__UpperCamelCase , self.tree[right] ) _UpperCAmelCase = current_left else: _UpperCAmelCase = max(__UpperCamelCase , self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
326
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : Optional[int] = {"configuration_mmbt": ["MMBTConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = ["MMBTForClassification", "MMBTModel", "ModalEmbeddings"] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys __A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
326
1
'''simple docstring''' from __future__ import annotations class A__ : def __init__( self , UpperCamelCase__=None ) -> Any: '''simple docstring''' A_ = data A_ = None def __repr__( self ) -> List[str]: '''simple docstring''' A_ = [] A_ = self while temp: string_rep.append(f'''{temp.data}''' ) A_ = temp.next return "->".join(UpperCamelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Tuple: if not elements_list: raise Exception("""The Elements List is empty""" ) A_ = A_ = Node(elements_list[0] ) for i in range(1, len(UpperCAmelCase__ ) ): A_ = Node(elements_list[i] ) A_ = current.next return head def UpperCAmelCase__ ( UpperCAmelCase__ ) -> None: if head_node is not None and isinstance(UpperCAmelCase__, UpperCAmelCase__ ): print_reverse(head_node.next ) print(head_node.data ) def UpperCAmelCase__ ( ) -> Optional[Any]: from doctest import testmod testmod() A_ = make_linked_list([14, 52, 14, 12, 43] ) print("""Linked List:""" ) print(UpperCAmelCase__ ) print("""Elements in Reverse:""" ) print_reverse(UpperCAmelCase__ ) if __name__ == "__main__": main()
162
'''simple docstring''' from functools import lru_cache def UpperCAmelCase__ ( UpperCAmelCase__ ) -> set: A_ = 2 A_ = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(UpperCAmelCase__ ) if n > 1: factors.add(UpperCAmelCase__ ) return factors @lru_cache def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: return len(unique_prime_factors(UpperCAmelCase__ ) ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: return len(set(UpperCAmelCase__ ) ) in (0, 1) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> list: A_ = 2 while True: # Increment each value of a generated range A_ = [base + i for i in range(UpperCAmelCase__ )] # Run elements through out unique_prime_factors function # Append our target number to the end. A_ = [upf_len(UpperCAmelCase__ ) for x in group] checker.append(UpperCAmelCase__ ) # If all numbers in the list are equal, return the group variable. if equality(UpperCAmelCase__ ): return group # Increment our base variable by 1 base += 1 def UpperCAmelCase__ ( UpperCAmelCase__ = 4 ) -> int: A_ = run(UpperCAmelCase__ ) return results[0] if len(UpperCAmelCase__ ) else None if __name__ == "__main__": print(solution())
162
1
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: _lowerCamelCase : Union[str, Any] = None _lowerCamelCase : str = logging.get_logger(__name__) _lowerCamelCase : Dict = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} _lowerCamelCase : List[Any] = { '''vocab_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json''' ), }, } _lowerCamelCase : Optional[int] = { '''facebook/nllb-large-en-ro''': 1_0_2_4, '''facebook/nllb-200-distilled-600M''': 1_0_2_4, } # fmt: off _lowerCamelCase : Optional[Any] = ['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn'''] class lowerCamelCase (__lowerCamelCase ): """simple docstring""" UpperCAmelCase_ = VOCAB_FILES_NAMES UpperCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ = ["input_ids", "attention_mask"] UpperCAmelCase_ = NllbTokenizer UpperCAmelCase_ = [] UpperCAmelCase_ = [] def __init__( self : Optional[int], _UpperCAmelCase : Optional[int]=None, _UpperCAmelCase : str=None, _UpperCAmelCase : Optional[Any]="<s>", _UpperCAmelCase : Dict="</s>", _UpperCAmelCase : Optional[int]="</s>", _UpperCAmelCase : str="<s>", _UpperCAmelCase : Any="<unk>", _UpperCAmelCase : Dict="<pad>", _UpperCAmelCase : Optional[int]="<mask>", _UpperCAmelCase : Union[str, Any]=None, _UpperCAmelCase : Dict=None, _UpperCAmelCase : List[str]=None, _UpperCAmelCase : Any=False, **_UpperCAmelCase : List[Any], ) -> int: """simple docstring""" # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE__ : List[str] = AddedToken(_UpperCAmelCase, lstrip=_UpperCAmelCase, rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase, _UpperCAmelCase ) else mask_token SCREAMING_SNAKE_CASE__ : List[Any] = legacy_behaviour super().__init__( vocab_file=_UpperCAmelCase, tokenizer_file=_UpperCAmelCase, bos_token=_UpperCAmelCase, eos_token=_UpperCAmelCase, sep_token=_UpperCAmelCase, cls_token=_UpperCAmelCase, unk_token=_UpperCAmelCase, pad_token=_UpperCAmelCase, mask_token=_UpperCAmelCase, src_lang=_UpperCAmelCase, tgt_lang=_UpperCAmelCase, additional_special_tokens=_UpperCAmelCase, legacy_behaviour=_UpperCAmelCase, **_UpperCAmelCase, ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = vocab_file SCREAMING_SNAKE_CASE__ : Tuple = False if not self.vocab_file else True SCREAMING_SNAKE_CASE__ : int = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"additional_special_tokens": _additional_special_tokens} ) SCREAMING_SNAKE_CASE__ : List[str] = { lang_code: self.convert_tokens_to_ids(_UpperCAmelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } SCREAMING_SNAKE_CASE__ : List[str] = src_lang if src_lang is not None else "eng_Latn" SCREAMING_SNAKE_CASE__ : int = self.convert_tokens_to_ids(self._src_lang ) SCREAMING_SNAKE_CASE__ : Optional[Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def A_ ( self : str ) -> str: """simple docstring""" return self._src_lang @src_lang.setter def A_ ( self : List[Any], _UpperCAmelCase : str ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def A_ ( self : int, _UpperCAmelCase : List[int], _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def A_ ( self : List[str], _UpperCAmelCase : List[int], _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = [self.sep_token_id] SCREAMING_SNAKE_CASE__ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A_ ( self : Optional[Any], _UpperCAmelCase : Optional[Any], _UpperCAmelCase : str, _UpperCAmelCase : Optional[str], _UpperCAmelCase : Optional[str], **_UpperCAmelCase : List[Any] ) -> Union[str, Any]: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) SCREAMING_SNAKE_CASE__ : Any = src_lang SCREAMING_SNAKE_CASE__ : List[str] = self(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase, return_tensors=_UpperCAmelCase, **_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Any = self.convert_tokens_to_ids(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = tgt_lang_id return inputs def A_ ( self : Optional[Any], _UpperCAmelCase : List[str], _UpperCAmelCase : str = "eng_Latn", _UpperCAmelCase : Optional[List[str]] = None, _UpperCAmelCase : str = "fra_Latn", **_UpperCAmelCase : Any, ) -> BatchEncoding: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = src_lang SCREAMING_SNAKE_CASE__ : str = tgt_lang return super().prepare_seqaseq_batch(_UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ) def A_ ( self : str ) -> List[Any]: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def A_ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def A_ ( self : str, _UpperCAmelCase : Dict ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = self.convert_tokens_to_ids(_UpperCAmelCase ) if self.legacy_behaviour: SCREAMING_SNAKE_CASE__ : Any = [] SCREAMING_SNAKE_CASE__ : int = [self.eos_token_id, self.cur_lang_code] else: SCREAMING_SNAKE_CASE__ : Union[str, Any] = [self.cur_lang_code] SCREAMING_SNAKE_CASE__ : Dict = [self.eos_token_id] SCREAMING_SNAKE_CASE__ : str = self.convert_ids_to_tokens(self.prefix_tokens ) SCREAMING_SNAKE_CASE__ : int = self.convert_ids_to_tokens(self.suffix_tokens ) SCREAMING_SNAKE_CASE__ : List[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str, pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str, special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens ) ), ) def A_ ( self : Tuple, _UpperCAmelCase : str ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = self.convert_tokens_to_ids(_UpperCAmelCase ) if self.legacy_behaviour: SCREAMING_SNAKE_CASE__ : str = [] SCREAMING_SNAKE_CASE__ : Union[str, Any] = [self.eos_token_id, self.cur_lang_code] else: SCREAMING_SNAKE_CASE__ : int = [self.cur_lang_code] SCREAMING_SNAKE_CASE__ : Tuple = [self.eos_token_id] SCREAMING_SNAKE_CASE__ : Tuple = self.convert_ids_to_tokens(self.prefix_tokens ) SCREAMING_SNAKE_CASE__ : Dict = self.convert_ids_to_tokens(self.suffix_tokens ) SCREAMING_SNAKE_CASE__ : Optional[int] = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str, pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str, special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens ) ), ) def A_ ( self : List[str], _UpperCAmelCase : str, _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(_UpperCAmelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory.''' ) return SCREAMING_SNAKE_CASE__ : Any = os.path.join( _UpperCAmelCase, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ): copyfile(self.vocab_file, _UpperCAmelCase ) return (out_vocab_file,)
191
_lowerCamelCase : dict[tuple[int, int, int], int] = {} def _a ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> int: '''simple docstring''' if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on SCREAMING_SNAKE_CASE__ : Union[str, Any] = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one SCREAMING_SNAKE_CASE__ : Tuple = _calculate(days - 1 , SCREAMING_SNAKE_CASE__ , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 SCREAMING_SNAKE_CASE__ : Dict = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter SCREAMING_SNAKE_CASE__ : Any = _calculate(days - 1 , SCREAMING_SNAKE_CASE__ , 0 ) SCREAMING_SNAKE_CASE__ : str = state_late + state_absent + state_ontime SCREAMING_SNAKE_CASE__ : Optional[int] = prizestrings return prizestrings def _a ( SCREAMING_SNAKE_CASE__ : int = 30 ) -> int: '''simple docstring''' return _calculate(SCREAMING_SNAKE_CASE__ , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
191
1
def lowercase__ ( __snake_case : Optional[Any] = 1_000 ): '''simple docstring''' UpperCAmelCase_ : Tuple = -1 UpperCAmelCase_ : List[str] = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c UpperCAmelCase_ : Optional[int] = (n * n - 2 * a * n) // (2 * n - 2 * a) UpperCAmelCase_ : Tuple = n - a - b if c * c == (a * a + b * b): UpperCAmelCase_ : str = a * b * c if candidate >= product: UpperCAmelCase_ : Any = candidate return product if __name__ == "__main__": print(F'{solution() = }')
29
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class _lowerCamelCase( unittest.TestCase ): lowercase_ : Dict = JukeboxTokenizer lowercase_ : Dict = { """artist""": """Zac Brown Band""", """genres""": """Country""", """lyrics""": """I met a traveller from an antique land, Who said \"Two vast and trunkless legs of stone Stand in the desert. . . . Near them, on the sand, Half sunk a shattered visage lies, whose frown, And wrinkled lip, and sneer of cold command, Tell that its sculptor well those passions read Which yet survive, stamped on these lifeless things, The hand that mocked them, and the heart that fed; And on the pedestal, these words appear: My name is Ozymandias, King of Kings; Look on my Works, ye Mighty, and despair! Nothing beside remains. Round the decay Of that colossal Wreck, boundless and bare The lone and level sands stretch far away """, } @require_torch def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" import torch _lowercase : str = JukeboxTokenizer.from_pretrained('openai/jukebox-1b-lyrics') _lowercase : Optional[Any] = tokenizer(**self.metas)['input_ids'] # fmt: off _lowercase : Optional[int] = [ torch.tensor([[ 0, 0, 0, 71_69, 5_07, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]]), torch.tensor([[0, 0, 0, 10_69, 11]]), torch.tensor([[0, 0, 0, 10_69, 11]]), ] # fmt: on self.assertTrue(torch.allclose(tokens[0], EXPECTED_OUTPUT[0])) self.assertTrue(torch.allclose(tokens[1], EXPECTED_OUTPUT[1])) self.assertTrue(torch.allclose(tokens[2], EXPECTED_OUTPUT[2])) @require_torch def UpperCamelCase ( self) -> int: """simple docstring""" import torch _lowercase : List[str] = JukeboxTokenizer.from_pretrained('openai/jukebox-5b-lyrics') _lowercase : List[str] = tokenizer(**self.metas)['input_ids'] # fmt: off _lowercase : Optional[int] = [ torch.tensor([[ 0, 0, 0, 10_69, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]]), torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]]), torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]]), ] # fmt: on self.assertTrue(torch.allclose(tokens[0], EXPECTED_OUTPUT[0])) self.assertTrue(torch.allclose(tokens[1], EXPECTED_OUTPUT[1])) self.assertTrue(torch.allclose(tokens[2], EXPECTED_OUTPUT[2]))
21
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool UpperCAmelCase__ = { 'Acehnese Arabic': 'ace_Arab', 'Acehnese Latin': 'ace_Latn', 'Mesopotamian Arabic': 'acm_Arab', 'Ta\'izzi-Adeni Arabic': 'acq_Arab', 'Tunisian Arabic': 'aeb_Arab', 'Afrikaans': 'afr_Latn', 'South Levantine Arabic': 'ajp_Arab', 'Akan': 'aka_Latn', 'Amharic': 'amh_Ethi', 'North Levantine Arabic': 'apc_Arab', 'Modern Standard Arabic': 'arb_Arab', 'Modern Standard Arabic Romanized': 'arb_Latn', 'Najdi Arabic': 'ars_Arab', 'Moroccan Arabic': 'ary_Arab', 'Egyptian Arabic': 'arz_Arab', 'Assamese': 'asm_Beng', 'Asturian': 'ast_Latn', 'Awadhi': 'awa_Deva', 'Central Aymara': 'ayr_Latn', 'South Azerbaijani': 'azb_Arab', 'North Azerbaijani': 'azj_Latn', 'Bashkir': 'bak_Cyrl', 'Bambara': 'bam_Latn', 'Balinese': 'ban_Latn', 'Belarusian': 'bel_Cyrl', 'Bemba': 'bem_Latn', 'Bengali': 'ben_Beng', 'Bhojpuri': 'bho_Deva', 'Banjar Arabic': 'bjn_Arab', 'Banjar Latin': 'bjn_Latn', 'Standard Tibetan': 'bod_Tibt', 'Bosnian': 'bos_Latn', 'Buginese': 'bug_Latn', 'Bulgarian': 'bul_Cyrl', 'Catalan': 'cat_Latn', 'Cebuano': 'ceb_Latn', 'Czech': 'ces_Latn', 'Chokwe': 'cjk_Latn', 'Central Kurdish': 'ckb_Arab', 'Crimean Tatar': 'crh_Latn', 'Welsh': 'cym_Latn', 'Danish': 'dan_Latn', 'German': 'deu_Latn', 'Southwestern Dinka': 'dik_Latn', 'Dyula': 'dyu_Latn', 'Dzongkha': 'dzo_Tibt', 'Greek': 'ell_Grek', 'English': 'eng_Latn', 'Esperanto': 'epo_Latn', 'Estonian': 'est_Latn', 'Basque': 'eus_Latn', 'Ewe': 'ewe_Latn', 'Faroese': 'fao_Latn', 'Fijian': 'fij_Latn', 'Finnish': 'fin_Latn', 'Fon': 'fon_Latn', 'French': 'fra_Latn', 'Friulian': 'fur_Latn', 'Nigerian Fulfulde': 'fuv_Latn', 'Scottish Gaelic': 'gla_Latn', 'Irish': 'gle_Latn', 'Galician': 'glg_Latn', 'Guarani': 'grn_Latn', 'Gujarati': 'guj_Gujr', 'Haitian Creole': 'hat_Latn', 'Hausa': 'hau_Latn', 'Hebrew': 'heb_Hebr', 'Hindi': 'hin_Deva', 'Chhattisgarhi': 'hne_Deva', 'Croatian': 'hrv_Latn', 'Hungarian': 'hun_Latn', 'Armenian': 'hye_Armn', 'Igbo': 'ibo_Latn', 'Ilocano': 'ilo_Latn', 'Indonesian': 'ind_Latn', 'Icelandic': 'isl_Latn', 'Italian': 'ita_Latn', 'Javanese': 'jav_Latn', 'Japanese': 'jpn_Jpan', 'Kabyle': 'kab_Latn', 'Jingpho': 'kac_Latn', 'Kamba': 'kam_Latn', 'Kannada': 'kan_Knda', 'Kashmiri Arabic': 'kas_Arab', 'Kashmiri Devanagari': 'kas_Deva', 'Georgian': 'kat_Geor', 'Central Kanuri Arabic': 'knc_Arab', 'Central Kanuri Latin': 'knc_Latn', 'Kazakh': 'kaz_Cyrl', 'Kabiyè': 'kbp_Latn', 'Kabuverdianu': 'kea_Latn', 'Khmer': 'khm_Khmr', 'Kikuyu': 'kik_Latn', 'Kinyarwanda': 'kin_Latn', 'Kyrgyz': 'kir_Cyrl', 'Kimbundu': 'kmb_Latn', 'Northern Kurdish': 'kmr_Latn', 'Kikongo': 'kon_Latn', 'Korean': 'kor_Hang', 'Lao': 'lao_Laoo', 'Ligurian': 'lij_Latn', 'Limburgish': 'lim_Latn', 'Lingala': 'lin_Latn', 'Lithuanian': 'lit_Latn', 'Lombard': 'lmo_Latn', 'Latgalian': 'ltg_Latn', 'Luxembourgish': 'ltz_Latn', 'Luba-Kasai': 'lua_Latn', 'Ganda': 'lug_Latn', 'Luo': 'luo_Latn', 'Mizo': 'lus_Latn', 'Standard Latvian': 'lvs_Latn', 'Magahi': 'mag_Deva', 'Maithili': 'mai_Deva', 'Malayalam': 'mal_Mlym', 'Marathi': 'mar_Deva', 'Minangkabau Arabic ': 'min_Arab', 'Minangkabau Latin': 'min_Latn', 'Macedonian': 'mkd_Cyrl', 'Plateau Malagasy': 'plt_Latn', 'Maltese': 'mlt_Latn', 'Meitei Bengali': 'mni_Beng', 'Halh Mongolian': 'khk_Cyrl', 'Mossi': 'mos_Latn', 'Maori': 'mri_Latn', 'Burmese': 'mya_Mymr', 'Dutch': 'nld_Latn', 'Norwegian Nynorsk': 'nno_Latn', 'Norwegian Bokmål': 'nob_Latn', 'Nepali': 'npi_Deva', 'Northern Sotho': 'nso_Latn', 'Nuer': 'nus_Latn', 'Nyanja': 'nya_Latn', 'Occitan': 'oci_Latn', 'West Central Oromo': 'gaz_Latn', 'Odia': 'ory_Orya', 'Pangasinan': 'pag_Latn', 'Eastern Panjabi': 'pan_Guru', 'Papiamento': 'pap_Latn', 'Western Persian': 'pes_Arab', 'Polish': 'pol_Latn', 'Portuguese': 'por_Latn', 'Dari': 'prs_Arab', 'Southern Pashto': 'pbt_Arab', 'Ayacucho Quechua': 'quy_Latn', 'Romanian': 'ron_Latn', 'Rundi': 'run_Latn', 'Russian': 'rus_Cyrl', 'Sango': 'sag_Latn', 'Sanskrit': 'san_Deva', 'Santali': 'sat_Olck', 'Sicilian': 'scn_Latn', 'Shan': 'shn_Mymr', 'Sinhala': 'sin_Sinh', 'Slovak': 'slk_Latn', 'Slovenian': 'slv_Latn', 'Samoan': 'smo_Latn', 'Shona': 'sna_Latn', 'Sindhi': 'snd_Arab', 'Somali': 'som_Latn', 'Southern Sotho': 'sot_Latn', 'Spanish': 'spa_Latn', 'Tosk Albanian': 'als_Latn', 'Sardinian': 'srd_Latn', 'Serbian': 'srp_Cyrl', 'Swati': 'ssw_Latn', 'Sundanese': 'sun_Latn', 'Swedish': 'swe_Latn', 'Swahili': 'swh_Latn', 'Silesian': 'szl_Latn', 'Tamil': 'tam_Taml', 'Tatar': 'tat_Cyrl', 'Telugu': 'tel_Telu', 'Tajik': 'tgk_Cyrl', 'Tagalog': 'tgl_Latn', 'Thai': 'tha_Thai', 'Tigrinya': 'tir_Ethi', 'Tamasheq Latin': 'taq_Latn', 'Tamasheq Tifinagh': 'taq_Tfng', 'Tok Pisin': 'tpi_Latn', 'Tswana': 'tsn_Latn', 'Tsonga': 'tso_Latn', 'Turkmen': 'tuk_Latn', 'Tumbuka': 'tum_Latn', 'Turkish': 'tur_Latn', 'Twi': 'twi_Latn', 'Central Atlas Tamazight': 'tzm_Tfng', 'Uyghur': 'uig_Arab', 'Ukrainian': 'ukr_Cyrl', 'Umbundu': 'umb_Latn', 'Urdu': 'urd_Arab', 'Northern Uzbek': 'uzn_Latn', 'Venetian': 'vec_Latn', 'Vietnamese': 'vie_Latn', 'Waray': 'war_Latn', 'Wolof': 'wol_Latn', 'Xhosa': 'xho_Latn', 'Eastern Yiddish': 'ydd_Hebr', 'Yoruba': 'yor_Latn', 'Yue Chinese': 'yue_Hant', 'Chinese Simplified': 'zho_Hans', 'Chinese Traditional': 'zho_Hant', 'Standard Malay': 'zsm_Latn', 'Zulu': 'zul_Latn', } class lowerCAmelCase__ ( A_ ): __a = """facebook/nllb-200-distilled-600M""" __a = ( """This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """ """be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """ """which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """ """plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`.""" ) __a = """translator""" __a = AutoTokenizer __a = AutoModelForSeqaSeqLM __a = LANGUAGE_CODES __a = ["""text""", """text""", """text"""] __a = ["""text"""] def lowercase ( self : Union[str, Any] , _lowerCamelCase : str , _lowerCamelCase : Any , _lowerCamelCase : Dict ): if src_lang not in self.lang_to_code: raise ValueError(f'''{src_lang} is not a supported language.''' ) if tgt_lang not in self.lang_to_code: raise ValueError(f'''{tgt_lang} is not a supported language.''' ) _snake_case = self.lang_to_code[src_lang] _snake_case = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( _lowerCamelCase , return_tensors='''pt''' , src_lang=_lowerCamelCase , tgt_lang=_lowerCamelCase ) def lowercase ( self : Tuple , _lowerCamelCase : Optional[Any] ): return self.model.generate(**_lowerCamelCase ) def lowercase ( self : Optional[Any] , _lowerCamelCase : str ): return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=_lowerCamelCase )
40
"""simple docstring""" import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class lowerCAmelCase__ : def __init__( self : List[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : List[Any]=2 , _lowerCamelCase : List[str]=True , _lowerCamelCase : Optional[Any]=False , _lowerCamelCase : Optional[Any]=10 , _lowerCamelCase : Dict=3 , _lowerCamelCase : Optional[int]=32 * 8 , _lowerCamelCase : Optional[int]=32 * 8 , _lowerCamelCase : Dict=4 , _lowerCamelCase : Optional[int]=64 , ): _snake_case = parent _snake_case = batch_size _snake_case = is_training _snake_case = use_auxiliary_loss _snake_case = num_queries _snake_case = num_channels _snake_case = min_size _snake_case = max_size _snake_case = num_labels _snake_case = hidden_dim _snake_case = hidden_dim def lowercase ( self : List[str] ): _snake_case = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _lowerCamelCase ) _snake_case = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_lowerCamelCase ) _snake_case = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_lowerCamelCase ) > 0.5 ).float() _snake_case = (torch.rand((self.batch_size, self.num_labels) , device=_lowerCamelCase ) > 0.5).long() _snake_case = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowercase ( self : Optional[Any] ): _snake_case = MaskaFormerConfig( hidden_size=self.hidden_dim , ) _snake_case = self.num_queries _snake_case = self.num_labels _snake_case = [1, 1, 1, 1] _snake_case = self.num_channels _snake_case = 64 _snake_case = 128 _snake_case = self.hidden_dim _snake_case = self.hidden_dim _snake_case = self.hidden_dim return config def lowercase ( self : Any ): _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = self.prepare_config_and_inputs() _snake_case = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def lowercase ( self : Union[str, Any] , _lowerCamelCase : List[Any] , _lowerCamelCase : int ): _snake_case = output.encoder_hidden_states _snake_case = output.pixel_decoder_hidden_states _snake_case = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_lowerCamelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowerCamelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowerCamelCase ) , config.decoder_layers ) def lowercase ( self : List[Any] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Any , _lowerCamelCase : List[Any] , _lowerCamelCase : Dict=False ): with torch.no_grad(): _snake_case = MaskaFormerModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() _snake_case = model(pixel_values=_lowerCamelCase , pixel_mask=_lowerCamelCase ) _snake_case = model(_lowerCamelCase , output_hidden_states=_lowerCamelCase ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_lowerCamelCase , _lowerCamelCase ) def lowercase ( self : int , _lowerCamelCase : Dict , _lowerCamelCase : List[Any] , _lowerCamelCase : Any , _lowerCamelCase : str , _lowerCamelCase : Union[str, Any] ): _snake_case = MaskaFormerForUniversalSegmentation(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() def comm_check_on_output(_lowerCamelCase : List[str] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): _snake_case = model(pixel_values=_lowerCamelCase , pixel_mask=_lowerCamelCase ) _snake_case = model(_lowerCamelCase ) comm_check_on_output(_lowerCamelCase ) _snake_case = model( pixel_values=_lowerCamelCase , pixel_mask=_lowerCamelCase , mask_labels=_lowerCamelCase , class_labels=_lowerCamelCase ) comm_check_on_output(_lowerCamelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class lowerCAmelCase__ ( A_ , A_ , unittest.TestCase ): __a = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () __a = {"""feature-extraction""": MaskaFormerModel} if is_torch_available() else {} __a = False __a = False __a = False __a = False def lowercase ( self : int ): _snake_case = MaskaFormerModelTester(self ) _snake_case = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase ) def lowercase ( self : Dict ): self.config_tester.run_common_tests() def lowercase ( self : Tuple ): _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_lowerCamelCase , **_lowerCamelCase , output_hidden_states=_lowerCamelCase ) def lowercase ( self : Any ): _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_lowerCamelCase ) @unittest.skip(reason='''Mask2Former does not use inputs_embeds''' ) def lowercase ( self : Optional[int] ): pass @unittest.skip(reason='''Mask2Former does not have a get_input_embeddings method''' ) def lowercase ( self : Dict ): pass @unittest.skip(reason='''Mask2Former is not a generative model''' ) def lowercase ( self : int ): pass @unittest.skip(reason='''Mask2Former does not use token embeddings''' ) def lowercase ( self : List[str] ): pass @require_torch_multi_gpu @unittest.skip( reason='''Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def lowercase ( self : Optional[int] ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowercase ( self : str ): pass def lowercase ( self : Optional[int] ): _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(_lowerCamelCase ) _snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) @slow def lowercase ( self : Optional[int] ): for model_name in ["facebook/mask2former-swin-small-coco-instance"]: _snake_case = MaskaFormerModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def lowercase ( self : List[Any] ): _snake_case = (self.model_tester.min_size,) * 2 _snake_case = { '''pixel_values''': torch.randn((2, 3, *size) , device=_lowerCamelCase ), '''mask_labels''': torch.randn((2, 10, *size) , device=_lowerCamelCase ), '''class_labels''': torch.zeros(2 , 10 , device=_lowerCamelCase ).long(), } _snake_case = self.model_tester.get_config() _snake_case = MaskaFormerForUniversalSegmentation(_lowerCamelCase ).to(_lowerCamelCase ) _snake_case = model(**_lowerCamelCase ) self.assertTrue(outputs.loss is not None ) def lowercase ( self : Union[str, Any] ): _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_lowerCamelCase , **_lowerCamelCase , output_hidden_states=_lowerCamelCase ) def lowercase ( self : str ): _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(_lowerCamelCase ).to(_lowerCamelCase ) _snake_case = model(**_lowerCamelCase , output_attentions=_lowerCamelCase ) self.assertTrue(outputs.attentions is not None ) def lowercase ( self : str ): if not self.model_tester.is_training: return _snake_case = self.all_model_classes[1] _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs() _snake_case = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.train() _snake_case = model(_lowerCamelCase , mask_labels=_lowerCamelCase , class_labels=_lowerCamelCase ).loss loss.backward() def lowercase ( self : Optional[int] ): _snake_case = self.all_model_classes[1] _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs() _snake_case = True _snake_case = True _snake_case = model_class(_lowerCamelCase ).to(_lowerCamelCase ) model.train() _snake_case = model(_lowerCamelCase , mask_labels=_lowerCamelCase , class_labels=_lowerCamelCase ) _snake_case = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _snake_case = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() _snake_case = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _snake_case = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_lowerCamelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) UpperCAmelCase__ = 1e-4 def _UpperCAmelCase ( ) -> Tuple: _snake_case = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @slow class lowerCAmelCase__ ( unittest.TestCase ): @cached_property def lowercase ( self : Optional[Any] ): return "facebook/mask2former-swin-small-coco-instance" @cached_property def lowercase ( self : int ): return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def lowercase ( self : Any ): _snake_case = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_lowerCamelCase ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) _snake_case = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_lowerCamelCase , (1, 3, 384, 384) ) with torch.no_grad(): _snake_case = model(**_lowerCamelCase ) _snake_case = torch.tensor( [[-0.2_7_9_0, -1.0_7_1_7, -1.1_6_6_8], [-0.5_1_2_8, -0.3_1_2_8, -0.4_9_8_7], [-0.5_8_3_2, 0.1_9_7_1, -0.0_1_9_7]] ).to(_lowerCamelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) _snake_case = torch.tensor( [[0.8_9_7_3, 1.1_8_4_7, 1.1_7_7_6], [1.1_9_3_4, 1.5_0_4_0, 1.5_1_2_8], [1.1_1_5_3, 1.4_4_8_6, 1.4_9_5_1]] ).to(_lowerCamelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) _snake_case = torch.tensor( [[2.1_1_5_2, 1.7_0_0_0, -0.8_6_0_3], [1.5_8_0_8, 1.8_0_0_4, -0.9_3_5_3], [1.6_0_4_3, 1.7_4_9_5, -0.5_9_9_9]] ).to(_lowerCamelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) def lowercase ( self : str ): _snake_case = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_lowerCamelCase ).eval() _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) _snake_case = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_lowerCamelCase , (1, 3, 384, 384) ) with torch.no_grad(): _snake_case = model(**_lowerCamelCase ) # masks_queries_logits _snake_case = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) _snake_case = [ [-8.7_8_3_9, -9.0_0_5_6, -8.8_1_2_1], [-7.4_1_0_4, -7.0_3_1_3, -6.5_4_0_1], [-6.6_1_0_5, -6.3_4_2_7, -6.4_6_7_5], ] _snake_case = torch.tensor(_lowerCamelCase ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) # class_queries_logits _snake_case = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) _snake_case = torch.tensor( [ [1.8_3_2_4, -8.0_8_3_5, -4.1_9_2_2], [0.8_4_5_0, -9.0_0_5_0, -3.6_0_5_3], [0.3_0_4_5, -7.7_2_9_3, -3.0_2_7_5], ] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) def lowercase ( self : Optional[int] ): _snake_case = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_lowerCamelCase ).eval() _snake_case = self.default_image_processor _snake_case = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='''pt''' , ) _snake_case = inputs['''pixel_values'''].to(_lowerCamelCase ) _snake_case = [el.to(_lowerCamelCase ) for el in inputs['''mask_labels''']] _snake_case = [el.to(_lowerCamelCase ) for el in inputs['''class_labels''']] with torch.no_grad(): _snake_case = model(**_lowerCamelCase ) self.assertTrue(outputs.loss is not None )
40
1
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class a__ ( A__ , A__ , A__ , unittest.TestCase ): A = StableUnCLIPImgaImgPipeline A = TEXT_GUIDED_IMAGE_VARIATION_PARAMS A = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS A = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A = frozenset([] ) def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = 32 SCREAMING_SNAKE_CASE_ : Dict = embedder_hidden_size # image encoding components SCREAMING_SNAKE_CASE_ : List[Any] = CLIPImageProcessor(crop_size=32,size=32 ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : List[str] = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=_A,projection_dim=_A,num_hidden_layers=5,num_attention_heads=4,image_size=32,intermediate_size=37,patch_size=1,) ) # regular denoising components torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : List[str] = StableUnCLIPImageNormalizer(embedding_dim=_A ) SCREAMING_SNAKE_CASE_ : List[str] = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Dict = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : List[str] = CLIPTextModel( CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=_A,projection_dim=32,intermediate_size=37,layer_norm_eps=1E-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=1000,) ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Tuple = UNetaDConditionModel( sample_size=32,in_channels=4,out_channels=4,down_block_types=("CrossAttnDownBlock2D", "DownBlock2D"),up_block_types=("UpBlock2D", "CrossAttnUpBlock2D"),block_out_channels=(32, 64),attention_head_dim=(2, 4),class_embed_type="projection",projection_class_embeddings_input_dim=embedder_projection_dim * 2,cross_attention_dim=_A,layers_per_block=1,upcast_attention=_A,use_linear_projection=_A,) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Tuple = DDIMScheduler( beta_schedule="scaled_linear",beta_start=0.00085,beta_end=0.012,prediction_type="v_prediction",set_alpha_to_one=_A,steps_offset=1,) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Any = AutoencoderKL() SCREAMING_SNAKE_CASE_ : str = { # image encoding components "feature_extractor": feature_extractor, "image_encoder": image_encoder.eval(), # image noising components "image_normalizer": image_normalizer.eval(), "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder.eval(), "unet": unet.eval(), "scheduler": scheduler, "vae": vae.eval(), } return components def __UpperCamelCase ( self : int,_A : str,_A : Optional[int]=0,_A : Union[str, Any]=True ): """simple docstring""" if str(_A ).startswith("mps" ): SCREAMING_SNAKE_CASE_ : int = torch.manual_seed(_A ) else: SCREAMING_SNAKE_CASE_ : int = torch.Generator(device=_A ).manual_seed(_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = floats_tensor((1, 3, 32, 32),rng=random.Random(_A ) ).to(_A ) if pil_image: SCREAMING_SNAKE_CASE_ : Union[str, Any] = input_image * 0.5 + 0.5 SCREAMING_SNAKE_CASE_ : Union[str, Any] = input_image.clamp(0,1 ) SCREAMING_SNAKE_CASE_ : int = input_image.cpu().permute(0,2,3,1 ).float().numpy() SCREAMING_SNAKE_CASE_ : Union[str, Any] = DiffusionPipeline.numpy_to_pil(_A )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = "cpu" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_ : List[str] = self.get_dummy_components() SCREAMING_SNAKE_CASE_ : Dict = StableUnCLIPImgaImgPipeline(**_A ) SCREAMING_SNAKE_CASE_ : Optional[Any] = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE_ : List[str] = self.get_dummy_inputs(_A ) inputs.update({"image_embeds": None} ) SCREAMING_SNAKE_CASE_ : Dict = sd_pipe(**_A ).images SCREAMING_SNAKE_CASE_ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE_ : Optional[Any] = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = torch_device in ["cpu", "mps"] self._test_attention_slicing_forward_pass(test_max_difference=_A ) def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=_A ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(),reason="XFormers attention is only available with CUDA and `xformers` installed",) def __UpperCamelCase ( self : int ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_max_difference=_A ) @slow @require_torch_gpu class a__ ( unittest.TestCase ): def __UpperCamelCase ( self : str ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) SCREAMING_SNAKE_CASE_ : Dict = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy" ) SCREAMING_SNAKE_CASE_ : Optional[Any] = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-l-img2img",torch_dtype=torch.floataa ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE_ : Tuple = torch.Generator(device="cpu" ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Optional[int] = pipe(_A,"anime turle",generator=_A,output_type="np" ) SCREAMING_SNAKE_CASE_ : Any = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_A,_A ) def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) SCREAMING_SNAKE_CASE_ : Tuple = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy" ) SCREAMING_SNAKE_CASE_ : Tuple = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img",torch_dtype=torch.floataa ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE_ : Dict = torch.Generator(device="cpu" ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Optional[int] = pipe(_A,"anime turle",generator=_A,output_type="np" ) SCREAMING_SNAKE_CASE_ : Optional[int] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_A,_A ) def __UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() SCREAMING_SNAKE_CASE_ : int = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img",torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE_ : int = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE_ : Optional[int] = pipe( _A,"anime turtle",num_inference_steps=2,output_type="np",) SCREAMING_SNAKE_CASE_ : List[Any] = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
18
def UpperCAmelCase__ (UpperCamelCase_ = 4_00_00_00 ): """simple docstring""" snake_case = [0, 1] snake_case = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 snake_case = 0 for j in range(len(UpperCamelCase_ ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(f'''{solution() = }''')
127
0
"""simple docstring""" import math import flax.linen as nn import jax.numpy as jnp def _snake_case ( UpperCamelCase : jnp.ndarray , UpperCamelCase : int , UpperCamelCase : float = 1 , UpperCamelCase : float = 1 , UpperCamelCase : float = 1.0e4 , UpperCamelCase : bool = False , UpperCamelCase : float = 1.0 , ): assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, F"Embedding dimension {embedding_dim} should be even" UpperCAmelCase : List[str] = float(embedding_dim // 2 ) UpperCAmelCase : int = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) UpperCAmelCase : Dict = min_timescale * jnp.exp(jnp.arange(UpperCamelCase , dtype=jnp.floataa ) * -log_timescale_increment ) UpperCAmelCase : int = jnp.expand_dims(UpperCamelCase , 1 ) * jnp.expand_dims(UpperCamelCase , 0 ) # scale embeddings UpperCAmelCase : Any = scale * emb if flip_sin_to_cos: UpperCAmelCase : Optional[Any] = jnp.concatenate([jnp.cos(UpperCamelCase ), jnp.sin(UpperCamelCase )] , axis=1 ) else: UpperCAmelCase : int = jnp.concatenate([jnp.sin(UpperCamelCase ), jnp.cos(UpperCamelCase )] , axis=1 ) UpperCAmelCase : Optional[int] = jnp.reshape(UpperCamelCase , [jnp.shape(UpperCamelCase )[0], embedding_dim] ) return signal class SCREAMING_SNAKE_CASE__ ( nn.Module ): __lowerCAmelCase : int = 32 __lowerCAmelCase : jnp.dtype = jnp.floataa @nn.compact def __call__( self , _SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Optional[Any] = nn.Dense(self.time_embed_dim , dtype=self.dtype , name="""linear_1""" )(a__ ) UpperCAmelCase : Any = nn.silu(a__ ) UpperCAmelCase : Optional[int] = nn.Dense(self.time_embed_dim , dtype=self.dtype , name="""linear_2""" )(a__ ) return temb class SCREAMING_SNAKE_CASE__ ( nn.Module ): __lowerCAmelCase : int = 32 __lowerCAmelCase : bool = False __lowerCAmelCase : float = 1 @nn.compact def __call__( self , _SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' return get_sinusoidal_embeddings( a__ , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
353
"""simple docstring""" def _snake_case ( UpperCamelCase : dict ): UpperCAmelCase : set[int] = set() # To detect a back edge, keep track of vertices currently in the recursion stack UpperCAmelCase : set[int] = set() return any( node not in visited and depth_first_search(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) for node in graph ) def _snake_case ( UpperCamelCase : dict , UpperCamelCase : int , UpperCamelCase : set , UpperCamelCase : set ): visited.add(UpperCamelCase ) rec_stk.add(UpperCamelCase ) for node in graph[vertex]: if node not in visited: if depth_first_search(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(UpperCamelCase ) return False if __name__ == "__main__": from doctest import testmod testmod()
76
0
def lowerCAmelCase__( lowercase : bytes ) -> str: return "".join([hex(lowercase )[2:].zfill(2 ).upper() for byte in list(lowercase )] ) def lowerCAmelCase__( lowercase : str ) -> bytes: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(lowercase ) % 2) != 0: raise ValueError( "Base16 encoded data is invalid:\nData does not have an even number of hex digits." ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(lowercase ) <= set("0123456789ABCDEF" ): raise ValueError( "Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters." ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(lowercase ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
326
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = torch.device('''cpu''') def lowerCAmelCase__( ) -> Any: __snake_case : List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" __snake_case : Optional[int] = Image.open(requests.get(lowercase , stream=lowercase ).raw ) return im def lowerCAmelCase__( lowercase : Dict ) -> List[Any]: if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_703E00, 2.1_107E00, -2.0_811E00, 8.8_685E-01, 2.4_360E-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_636E-01, 2.3_478E-01, -1.6_963E00, -1.7_381E00, -8.6_337E-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_768E-01, -4.7_429E-01, -1.0_897E00, -1.0_248E00, 3.5_523E-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_330E-01, 2.4_211E-01, -6.0_185E-01, -8.2_789E-01, -6.0_446E-02] ) def lowerCAmelCase__( lowercase : Tuple , lowercase : Union[str, Any] , lowercase : Union[str, Any] ) -> List[Any]: __snake_case : List[Any] = dct.pop(lowercase ) __snake_case : List[Any] = val def lowerCAmelCase__( lowercase : Union[str, Any] ) -> Tuple: __snake_case : Optional[Any] = [] for k in state_dict.keys(): __snake_case : Union[str, Any] = k if ".pwconv" in k: __snake_case : Any = k_new.replace(".pwconv" , ".point_wise_conv" ) if ".dwconv" in k: __snake_case : List[Any] = k_new.replace(".dwconv" , ".depth_wise_conv" ) if ".Proj." in k: __snake_case : Optional[int] = k_new.replace(".Proj." , ".proj." ) if "patch_embed" in k_new: __snake_case : int = k_new.replace("patch_embed" , "swiftformer.patch_embed.patch_embedding" ) if "network" in k_new: __snake_case : int = k_new.split("." ) if ls[2].isdigit(): __snake_case : List[Any] = "swiftformer.encoder.network." + ls[1] + ".blocks." + ls[2] + "." + ".".join(ls[3:] ) else: __snake_case : Optional[int] = k_new.replace("network" , "swiftformer.encoder.network" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def lowerCAmelCase__( lowercase : List[Any] , lowercase : Optional[Any] , lowercase : List[str] ) -> Union[str, Any]: __snake_case : List[str] = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size __snake_case : Tuple = 1000 __snake_case : Any = "huggingface/label-files" __snake_case : int = "imagenet-1k-id2label.json" __snake_case : Dict = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="dataset" ) , "r" ) ) __snake_case : str = {int(lowercase ): v for k, v in idalabel.items()} __snake_case : int = idalabel __snake_case : Optional[int] = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": __snake_case : Optional[Any] = [3, 3, 6, 4] __snake_case : Optional[int] = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": __snake_case : List[str] = [3, 3, 9, 6] __snake_case : Optional[Any] = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": __snake_case : Optional[int] = [4, 3, 10, 5] __snake_case : Dict = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": __snake_case : str = [4, 4, 12, 6] __snake_case : Optional[Any] = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("https" ): __snake_case : Optional[Any] = torch.hub.load_state_dict_from_url(lowercase , map_location="cpu" , check_hash=lowercase ) else: __snake_case : Tuple = torch.load(lowercase , map_location="cpu" ) __snake_case : Optional[int] = checkpoint __snake_case : Any = create_rename_keys(lowercase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(lowercase , lowercase , lowercase ) # load HuggingFace model __snake_case : Tuple = SwiftFormerForImageClassification(lowercase ).eval() hf_model.load_state_dict(lowercase ) # prepare test inputs __snake_case : Optional[Any] = prepare_img() __snake_case : str = ViTImageProcessor.from_pretrained("preprocessor_config" ) __snake_case : Optional[int] = processor(images=lowercase , return_tensors="pt" ) # compare outputs from both models __snake_case : str = get_expected_output(lowercase ) __snake_case : Optional[int] = hf_model(inputs["pixel_values"] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , lowercase , atol=1E-3 ) Path(lowercase ).mkdir(exist_ok=lowercase ) print(f"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(lowercase ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swiftformer_name''', default='''swiftformer_xs''', choices=['''swiftformer_xs''', '''swiftformer_s''', '''swiftformer_l1''', '''swiftformer_l3'''], type=str, help='''Name of the SwiftFormer model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''./converted_outputs/''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--original_ckpt''', default=None, type=str, help='''Path to the original model checkpoint.''') _UpperCamelCase = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
326
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''transfo-xl-wt103''': '''https://huggingface.co/transfo-xl-wt103/resolve/main/config.json''', } class __lowerCamelCase ( __snake_case ): lowerCamelCase_ : str = 'transfo-xl' lowerCamelCase_ : Union[str, Any] = ['mems'] lowerCamelCase_ : Any = { 'n_token': 'vocab_size', 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , lowerCamelCase=267735 , lowerCamelCase=[20000, 40000, 200000] , lowerCamelCase=1024 , lowerCamelCase=1024 , lowerCamelCase=16 , lowerCamelCase=64 , lowerCamelCase=4096 , lowerCamelCase=4 , lowerCamelCase=False , lowerCamelCase=18 , lowerCamelCase=1600 , lowerCamelCase=1000 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=0 , lowerCamelCase=-1 , lowerCamelCase=True , lowerCamelCase=0.1 , lowerCamelCase=0.0 , lowerCamelCase=True , lowerCamelCase="normal" , lowerCamelCase=0.01 , lowerCamelCase=0.01 , lowerCamelCase=0.02 , lowerCamelCase=1e-5 , lowerCamelCase=0 , **lowerCamelCase , ) -> Any: snake_case_ = vocab_size snake_case_ = [] self.cutoffs.extend(lowerCamelCase ) if proj_share_all_but_first: snake_case_ = [False] + [True] * len(self.cutoffs ) else: snake_case_ = [False] + [False] * len(self.cutoffs ) snake_case_ = d_model snake_case_ = d_embed snake_case_ = d_head snake_case_ = d_inner snake_case_ = div_val snake_case_ = pre_lnorm snake_case_ = n_layer snake_case_ = n_head snake_case_ = mem_len snake_case_ = same_length snake_case_ = attn_type snake_case_ = clamp_len snake_case_ = sample_softmax snake_case_ = adaptive snake_case_ = dropout snake_case_ = dropatt snake_case_ = untie_r snake_case_ = init snake_case_ = init_range snake_case_ = proj_init_std snake_case_ = init_std snake_case_ = layer_norm_epsilon super().__init__(eos_token_id=lowerCamelCase , **lowerCamelCase ) @property def lowerCAmelCase_ ( self ) -> Any: # Message copied from Transformer-XL documentation logger.info(f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def lowerCAmelCase_ ( self , lowerCamelCase ) -> List[Any]: # Message copied from Transformer-XL documentation raise NotImplementedError( f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
34
import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class __lowerCamelCase : def __init__( self , lowerCamelCase , lowerCamelCase=13 , lowerCamelCase=7 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=99 , lowerCamelCase=32 , lowerCamelCase=5 , lowerCamelCase=4 , lowerCamelCase=4 , lowerCamelCase="gelu" , lowerCamelCase=0.0 , lowerCamelCase=0.1 , lowerCamelCase=True , lowerCamelCase=512 , lowerCamelCase=16 , lowerCamelCase=2 , lowerCamelCase=0.02 , lowerCamelCase=3 , lowerCamelCase=4 , lowerCamelCase=None , ) -> Union[str, Any]: snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_multiple_size snake_case_ = hidden_act snake_case_ = hidden_dropout snake_case_ = attention_dropout snake_case_ = weight_tying snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = num_choices snake_case_ = scope def lowerCAmelCase_ ( self ) -> str: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = self.get_config() return config, input_ids, input_mask, token_labels def lowerCAmelCase_ ( self ) -> Optional[int]: return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase , initializer_range=self.initializer_range , ) def lowerCAmelCase_ ( self ) -> int: snake_case_ , snake_case_ , snake_case_ , snake_case_ = self.prepare_config_and_inputs() snake_case_ = True return config, input_ids, input_mask, token_labels def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Optional[int]: snake_case_ = GPTNeoXJapaneseModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() snake_case_ = model(lowerCamelCase , attention_mask=lowerCamelCase ) snake_case_ = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Optional[int]: snake_case_ = True snake_case_ = GPTNeoXJapaneseModel(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() snake_case_ = model(lowerCamelCase , attention_mask=lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Optional[Any]: snake_case_ = GPTNeoXJapaneseForCausalLM(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() snake_case_ = model(lowerCamelCase , attention_mask=lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Tuple: snake_case_ = True snake_case_ = GPTNeoXJapaneseForCausalLM(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() # first forward pass snake_case_ = model(lowerCamelCase , attention_mask=lowerCamelCase , use_cache=lowerCamelCase ) snake_case_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids snake_case_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case_ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and snake_case_ = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case_ = torch.cat([input_mask, next_mask] , dim=-1 ) snake_case_ = model(lowerCamelCase , attention_mask=lowerCamelCase , output_hidden_states=lowerCamelCase ) snake_case_ = output_from_no_past["""hidden_states"""][0] snake_case_ = model( lowerCamelCase , attention_mask=lowerCamelCase , past_key_values=lowerCamelCase , output_hidden_states=lowerCamelCase , )["""hidden_states"""][0] # select random slice snake_case_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case_ = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase , lowerCamelCase , atol=1e-3 ) ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __lowerCamelCase ( __snake_case , __snake_case , unittest.TestCase ): lowerCamelCase_ : Any = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () lowerCamelCase_ : str = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () lowerCamelCase_ : Any = ( {'feature-extraction': GPTNeoXJapaneseModel, 'text-generation': GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) lowerCamelCase_ : Tuple = False lowerCamelCase_ : Dict = False lowerCamelCase_ : Tuple = False lowerCamelCase_ : Optional[int] = False def lowerCAmelCase_ ( self ) -> Tuple: snake_case_ = GPTNeoXJapaneseModelTester(self ) snake_case_ = ConfigTester(self , config_class=lowerCamelCase , hidden_size=37 ) def lowerCAmelCase_ ( self ) -> str: self.config_tester.run_common_tests() def lowerCAmelCase_ ( self ) -> str: snake_case_ , snake_case_ , snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def lowerCAmelCase_ ( self ) -> Tuple: snake_case_ , snake_case_ , snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def lowerCAmelCase_ ( self ) -> Tuple: # This regression test was failing with PyTorch < 1.3 snake_case_ , snake_case_ , snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_decoder() snake_case_ = None self.model_tester.create_and_check_model_as_decoder(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def lowerCAmelCase_ ( self ) -> Dict: snake_case_ , snake_case_ , snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def lowerCAmelCase_ ( self ) -> Dict: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*lowerCamelCase ) @slow def lowerCAmelCase_ ( self ) -> Any: snake_case_ = """abeja/gpt-neox-japanese-2.7b""" snake_case_ = ["""データサイエンティストとは、""", """100年後に必要とされる会社は、""", """フルリモートの環境で働くために必要なことは、""", """国境の長いトンネルを抜けると""", """美味しい日本食といえば、"""] snake_case_ = [ """データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。""", """100年後に必要とされる会社は、「人」が中心の会社です。""", """フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。""", """国境の長いトンネルを抜けると、そこは雪国だった。""", """美味しい日本食といえば、やっぱりお寿司ですよね。""", ] snake_case_ = GPTNeoXJapaneseTokenizer.from_pretrained(lowerCamelCase ) snake_case_ = GPTNeoXJapaneseForCausalLM.from_pretrained(lowerCamelCase ) snake_case_ = [] for prompt in prompts: snake_case_ = tokenizer(lowerCamelCase , return_tensors="""pt""" ).input_ids snake_case_ = model.generate(lowerCamelCase , max_length=50 ) snake_case_ = tokenizer.batch_decode(lowerCamelCase , skip_special_tokens=lowerCamelCase ) predicted_outputs += generated_string self.assertListEqual(lowerCamelCase , lowerCamelCase )
34
1
"""simple docstring""" import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline lowerCamelCase_ = { "n_samples": 6_4, "horizon": 3_2, "num_inference_steps": 2_0, "n_guide_steps": 2, # can set to 0 for faster sampling, does not use value network "scale_grad_by_std": True, "scale": 0.1, "eta": 0.0, "t_grad_cutoff": 2, "device": "cpu", } if __name__ == "__main__": lowerCamelCase_ = "hopper-medium-v2" lowerCamelCase_ = gym.make(env_name) lowerCamelCase_ = ValueGuidedRLPipeline.from_pretrained( "bglick13/hopper-medium-v2-value-function-hor32", env=env, ) env.seed(0) lowerCamelCase_ = env.reset() lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 1_0_0_0 lowerCamelCase_ = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy lowerCamelCase_ = pipeline(obs, planning_horizon=3_2) # execute action in environment lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = env.step(denorm_actions) lowerCamelCase_ = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( f'Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:' f' {total_score}' ) # save observations for rendering rollout.append(next_observation.copy()) lowerCamelCase_ = next_observation except KeyboardInterrupt: pass print(f'Total reward: {total_reward}')
191
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase_ = { "configuration_blip_2": [ "BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Blip2Config", "Blip2QFormerConfig", "Blip2VisionConfig", ], "processing_blip_2": ["Blip2Processor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ "BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST", "Blip2Model", "Blip2QFormerModel", "Blip2PreTrainedModel", "Blip2ForConditionalGeneration", "Blip2VisionModel", ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
191
1
'''simple docstring''' from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run _lowerCamelCase : int = True except (ImportError, AttributeError): _lowerCamelCase : Optional[Any] = object def __a ( *UpperCAmelCase , **UpperCAmelCase ) ->int: """simple docstring""" pass _lowerCamelCase : List[str] = False _lowerCamelCase : List[str] = logging.get_logger('transformers-cli/serving') def __a ( UpperCAmelCase ) ->Optional[Any]: """simple docstring""" A = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) return ServeCommand(UpperCAmelCase , args.host , args.port , args.workers ) class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = 42 class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = 42 __lowerCAmelCase = 42 class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = 42 class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = 42 class __UpperCAmelCase ( A__ ): '''simple docstring''' @staticmethod def A (_lowerCAmelCase : ArgumentParser ): A = parser.add_parser( """serve""" , help="""CLI tool to run inference requests through REST and GraphQL endpoints.""" ) serve_parser.add_argument( """--task""" , type=_lowerCAmelCase , choices=get_supported_tasks() , help="""The task to run the pipeline on""" , ) serve_parser.add_argument("""--host""" , type=_lowerCAmelCase , default="""localhost""" , help="""Interface the server will listen on.""" ) serve_parser.add_argument("""--port""" , type=_lowerCAmelCase , default=8888 , help="""Port the serving will listen to.""" ) serve_parser.add_argument("""--workers""" , type=_lowerCAmelCase , default=1 , help="""Number of http workers""" ) serve_parser.add_argument("""--model""" , type=_lowerCAmelCase , help="""Model's name or path to stored model.""" ) serve_parser.add_argument("""--config""" , type=_lowerCAmelCase , help="""Model's config name or path to stored model.""" ) serve_parser.add_argument("""--tokenizer""" , type=_lowerCAmelCase , help="""Tokenizer name to use.""" ) serve_parser.add_argument( """--device""" , type=_lowerCAmelCase , default=-1 , help="""Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)""" , ) serve_parser.set_defaults(func=_lowerCAmelCase ) def __init__(self : List[Any] , _lowerCAmelCase : Pipeline , _lowerCAmelCase : str , _lowerCAmelCase : int , _lowerCAmelCase : int ): A = pipeline A = host A = port A = workers if not _serve_dependencies_installed: raise RuntimeError( """Using serve command requires FastAPI and uvicorn. """ """Please install transformers with [serving]: pip install \"transformers[serving]\".""" """Or install FastAPI and uvicorn separately.""" ) else: logger.info(F"""Serving model over {host}:{port}""" ) A = FastAPI( routes=[ APIRoute( """/""" , self.model_info , response_model=_lowerCAmelCase , response_class=_lowerCAmelCase , methods=["""GET"""] , ), APIRoute( """/tokenize""" , self.tokenize , response_model=_lowerCAmelCase , response_class=_lowerCAmelCase , methods=["""POST"""] , ), APIRoute( """/detokenize""" , self.detokenize , response_model=_lowerCAmelCase , response_class=_lowerCAmelCase , methods=["""POST"""] , ), APIRoute( """/forward""" , self.forward , response_model=_lowerCAmelCase , response_class=_lowerCAmelCase , methods=["""POST"""] , ), ] , timeout=600 , ) def A (self : int ): run(self._app , host=self.host , port=self.port , workers=self.workers ) def A (self : List[Any] ): return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def A (self : int , _lowerCAmelCase : str = Body(_lowerCAmelCase , embed=_lowerCAmelCase ) , _lowerCAmelCase : bool = Body(_lowerCAmelCase , embed=_lowerCAmelCase ) ): try: A = self._pipeline.tokenizer.tokenize(_lowerCAmelCase ) if return_ids: A = self._pipeline.tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) return ServeTokenizeResult(tokens=_lowerCAmelCase , tokens_ids=_lowerCAmelCase ) else: return ServeTokenizeResult(tokens=_lowerCAmelCase ) except Exception as e: raise HTTPException(status_code=500 , detail={"""model""": """""", """error""": str(_lowerCAmelCase )} ) def A (self : Any , _lowerCAmelCase : List[int] = Body(_lowerCAmelCase , embed=_lowerCAmelCase ) , _lowerCAmelCase : bool = Body(_lowerCAmelCase , embed=_lowerCAmelCase ) , _lowerCAmelCase : bool = Body(_lowerCAmelCase , embed=_lowerCAmelCase ) , ): try: A = self._pipeline.tokenizer.decode(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return ServeDeTokenizeResult(model="""""" , text=_lowerCAmelCase ) except Exception as e: raise HTTPException(status_code=500 , detail={"""model""": """""", """error""": str(_lowerCAmelCase )} ) async def A (self : str , _lowerCAmelCase : Optional[int]=Body(_lowerCAmelCase , embed=_lowerCAmelCase ) ): # Check we don't have empty string if len(_lowerCAmelCase ) == 0: return ServeForwardResult(output=[] , attention=[] ) try: # Forward through the model A = self._pipeline(_lowerCAmelCase ) return ServeForwardResult(output=_lowerCAmelCase ) except Exception as e: raise HTTPException(500 , {"""error""": str(_lowerCAmelCase )} )
337
'''simple docstring''' import heapq as hq import math from collections.abc import Iterator class __UpperCAmelCase : '''simple docstring''' def __init__(self : Any , _lowerCAmelCase : List[Any] ): A = str(id_ ) A = None A = None A = [] A = {} # {vertex:distance} def __lt__(self : List[Any] , _lowerCAmelCase : Tuple ): return self.key < other.key def __repr__(self : str ): return self.id def A (self : Union[str, Any] , _lowerCAmelCase : List[str] ): self.neighbors.append(_lowerCAmelCase ) def A (self : str , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] ): A = weight def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->List[Any]: """simple docstring""" graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , UpperCAmelCase ) graph[b - 1].add_edge(graph[a - 1] , UpperCAmelCase ) def __a ( UpperCAmelCase , UpperCAmelCase ) ->list: """simple docstring""" A = [] for u in graph: A = math.inf A = None A = 0 A = graph[:] while q: A = min(UpperCAmelCase ) q.remove(UpperCAmelCase ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): A = u A = u.edges[v.id] for i in range(1 , len(UpperCAmelCase ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def __a ( UpperCAmelCase , UpperCAmelCase ) ->Iterator[tuple]: """simple docstring""" for u in graph: A = math.inf A = None A = 0 A = list(UpperCAmelCase ) hq.heapify(UpperCAmelCase ) while h: A = hq.heappop(UpperCAmelCase ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): A = u A = u.edges[v.id] hq.heapify(UpperCAmelCase ) for i in range(1 , len(UpperCAmelCase ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def __a ( ) ->None: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
337
1
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class _A ( _a ): """simple docstring""" UpperCAmelCase : Union[str, Any] = """microsoft/speecht5_tts""" UpperCAmelCase : Optional[Any] = ( """This is a tool that reads an English text out loud. It takes an input named `text` which should contain the """ """text to read (in English) and returns a waveform object containing the sound.""" ) UpperCAmelCase : str = """text_reader""" UpperCAmelCase : str = SpeechTaProcessor UpperCAmelCase : Tuple = SpeechTaForTextToSpeech UpperCAmelCase : Tuple = SpeechTaHifiGan UpperCAmelCase : Optional[Any] = ["""text"""] UpperCAmelCase : List[Any] = ["""audio"""] def __snake_case ( self : Tuple): if self.post_processor is None: a : Tuple = "microsoft/speecht5_hifigan" super().setup() def __snake_case ( self : List[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[Any]=None): a : Any = self.pre_processor(text=__UpperCAmelCase , return_tensors="pt" , truncation=__UpperCAmelCase) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("Datasets needs to be installed if not passing speaker embeddings.") a : List[str] = load_dataset("Matthijs/cmu-arctic-xvectors" , split="validation") a : Optional[int] = torch.tensor(embeddings_dataset[7305]["xvector"]).unsqueeze(0) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def __snake_case ( self : Union[str, Any] , __UpperCAmelCase : Optional[int]): with torch.no_grad(): return self.model.generate_speech(**__UpperCAmelCase) def __snake_case ( self : Tuple , __UpperCAmelCase : str): with torch.no_grad(): return self.post_processor(__UpperCAmelCase).cpu().detach()
40
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class _A ( _a ): """simple docstring""" UpperCAmelCase : str = """naver-clova-ix/donut-base-finetuned-docvqa""" UpperCAmelCase : Tuple = ( """This is a tool that answers a question about an document (pdf). It takes an input named `document` which """ """should be the document containing the information, as well as a `question` that is the question about the """ """document. It returns a text that contains the answer to the question.""" ) UpperCAmelCase : List[str] = """document_qa""" UpperCAmelCase : str = AutoProcessor UpperCAmelCase : Optional[int] = VisionEncoderDecoderModel UpperCAmelCase : int = ["""image""", """text"""] UpperCAmelCase : int = ["""text"""] def __init__( self : Tuple , *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : Any): if not is_vision_available(): raise ValueError("Pillow must be installed to use the DocumentQuestionAnsweringTool.") super().__init__(*__UpperCAmelCase , **__UpperCAmelCase) def __snake_case ( self : Tuple , __UpperCAmelCase : "Image" , __UpperCAmelCase : str): a : Any = "<s_docvqa><s_question>{user_input}</s_question><s_answer>" a : Union[str, Any] = task_prompt.replace("{user_input}" , __UpperCAmelCase) a : Optional[Any] = self.pre_processor.tokenizer( __UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_tensors="pt").input_ids a : Any = self.pre_processor(__UpperCAmelCase , return_tensors="pt").pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def __snake_case ( self : int , __UpperCAmelCase : int): return self.model.generate( inputs["pixel_values"].to(self.device) , decoder_input_ids=inputs["decoder_input_ids"].to(self.device) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__UpperCAmelCase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__UpperCAmelCase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__UpperCAmelCase , ).sequences def __snake_case ( self : str , __UpperCAmelCase : List[Any]): a : Union[str, Any] = self.pre_processor.batch_decode(__UpperCAmelCase)[0] a : Optional[Any] = sequence.replace(self.pre_processor.tokenizer.eos_token , "") a : Any = sequence.replace(self.pre_processor.tokenizer.pad_token , "") a : Optional[Any] = re.sub(r"<.*?>" , "" , __UpperCAmelCase , count=1).strip() # remove first task start token a : List[str] = self.pre_processor.tokenajson(__UpperCAmelCase) return sequence["answer"]
40
1
"""simple docstring""" import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCamelCase : str = { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json", } class __snake_case (_a ): lowerCAmelCase__ = "mvp" lowerCAmelCase__ = ["past_key_values"] lowerCAmelCase__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Tuple , _UpperCAmelCase : Optional[Any]=5_0267 , _UpperCAmelCase : List[Any]=1024 , _UpperCAmelCase : List[Any]=12 , _UpperCAmelCase : Optional[int]=4096 , _UpperCAmelCase : Tuple=16 , _UpperCAmelCase : List[Any]=12 , _UpperCAmelCase : Tuple=4096 , _UpperCAmelCase : Tuple=16 , _UpperCAmelCase : str=0.0 , _UpperCAmelCase : Optional[int]=0.0 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : Dict=1024 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : Optional[int]=0.0 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : Tuple=False , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : int=0 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : int=2 , _UpperCAmelCase : Any=2 , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : Any=100 , _UpperCAmelCase : int=800 , **_UpperCAmelCase : Optional[Any] , ) -> List[str]: '''simple docstring''' _lowerCAmelCase : Any = vocab_size _lowerCAmelCase : Tuple = max_position_embeddings _lowerCAmelCase : int = d_model _lowerCAmelCase : Optional[int] = encoder_ffn_dim _lowerCAmelCase : Dict = encoder_layers _lowerCAmelCase : int = encoder_attention_heads _lowerCAmelCase : str = decoder_ffn_dim _lowerCAmelCase : Tuple = decoder_layers _lowerCAmelCase : str = decoder_attention_heads _lowerCAmelCase : Optional[int] = dropout _lowerCAmelCase : int = attention_dropout _lowerCAmelCase : List[str] = activation_dropout _lowerCAmelCase : Tuple = activation_function _lowerCAmelCase : Dict = init_std _lowerCAmelCase : Tuple = encoder_layerdrop _lowerCAmelCase : Any = decoder_layerdrop _lowerCAmelCase : Union[str, Any] = classifier_dropout _lowerCAmelCase : str = use_cache _lowerCAmelCase : Union[str, Any] = encoder_layers _lowerCAmelCase : List[str] = scale_embedding # scale factor will be sqrt(d_model) if True _lowerCAmelCase : Any = use_prompt _lowerCAmelCase : Optional[int] = prompt_length _lowerCAmelCase : Optional[int] = prompt_mid_dim super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , forced_eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , _UpperCAmelCase ): _lowerCAmelCase : Optional[Any] = self.bos_token_id warnings.warn( f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. " """The config can simply be saved and uploaded again to be fixed.""" )
358
import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) _lowerCamelCase : List[str] = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } _lowerCamelCase : Dict = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def _UpperCAmelCase (UpperCamelCase_ : List[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : int , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : int ): '''simple docstring''' for attribute in key.split(""".""" ): _lowerCAmelCase : Optional[int] = getattr(UpperCamelCase_ , UpperCamelCase_ ) if weight_type is not None: _lowerCAmelCase : Optional[Any] = getattr(UpperCamelCase_ , UpperCamelCase_ ).shape else: _lowerCAmelCase : Any = hf_pointer.shape assert hf_shape == value.shape, ( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": _lowerCAmelCase : Tuple = value elif weight_type == "weight_g": _lowerCAmelCase : Optional[int] = value elif weight_type == "weight_v": _lowerCAmelCase : str = value elif weight_type == "bias": _lowerCAmelCase : str = value else: _lowerCAmelCase : Tuple = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def _UpperCAmelCase (UpperCamelCase_ : List[Any] , UpperCamelCase_ : Union[str, Any] ): '''simple docstring''' _lowerCAmelCase : List[str] = [] _lowerCAmelCase : Tuple = fairseq_model.state_dict() _lowerCAmelCase : str = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight _lowerCAmelCase : Any = None for name, value in fairseq_dict.items(): _lowerCAmelCase : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , hf_model.config.feat_extract_norm == """group""" , ) _lowerCAmelCase : Any = True elif name.split(""".""" )[0] == "proj": _lowerCAmelCase : Union[str, Any] = fairseq_model.proj _lowerCAmelCase : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: _lowerCAmelCase : Union[str, Any] = True if "*" in mapped_key: _lowerCAmelCase : Union[str, Any] = name.split(UpperCamelCase_ )[0].split(""".""" )[-2] _lowerCAmelCase : Optional[Any] = mapped_key.replace("""*""" , UpperCamelCase_ ) if "weight_g" in name: _lowerCAmelCase : List[str] = """weight_g""" elif "weight_v" in name: _lowerCAmelCase : Tuple = """weight_v""" elif "bias" in name: _lowerCAmelCase : Dict = """bias""" elif "weight" in name: _lowerCAmelCase : Optional[int] = """weight""" else: _lowerCAmelCase : Optional[Any] = None set_recursively(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) continue if not is_used: unused_weights.append(UpperCamelCase_ ) logger.warning(F"Unused weights: {unused_weights}" ) return proj_weight def _UpperCAmelCase (UpperCamelCase_ : Any , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : str , UpperCamelCase_ : Tuple , UpperCamelCase_ : int ): '''simple docstring''' _lowerCAmelCase : List[str] = full_name.split("""conv_layers.""" )[-1] _lowerCAmelCase : Optional[int] = name.split(""".""" ) _lowerCAmelCase : List[str] = int(items[0] ) _lowerCAmelCase : Dict = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) _lowerCAmelCase : List[Any] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) _lowerCAmelCase : Any = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) _lowerCAmelCase : Tuple = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) _lowerCAmelCase : Union[str, Any] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(UpperCamelCase_ ) def _UpperCAmelCase (UpperCamelCase_ : int ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Optional[int] = emb.weight.shape _lowerCAmelCase : Union[str, Any] = nn.Linear(UpperCamelCase_ , UpperCamelCase_ , bias=UpperCamelCase_ ) _lowerCAmelCase : List[Any] = emb.weight.data return lin_layer def _UpperCAmelCase (UpperCamelCase_ : Any ): '''simple docstring''' with open(UpperCamelCase_ , """r""" , encoding="""utf-8""" ) as f: _lowerCAmelCase : Optional[int] = f.readlines() _lowerCAmelCase : Dict = [line.split(""" """ )[0] for line in lines] _lowerCAmelCase : Dict = len(UpperCamelCase_ ) _lowerCAmelCase : Optional[int] = { """<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3, } vocab_dict.update(dict(zip(UpperCamelCase_ , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def _UpperCAmelCase (UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[str] , ): '''simple docstring''' _lowerCAmelCase : Any = WavaVecaConfig.from_pretrained(UpperCamelCase_ ) _lowerCAmelCase : Union[str, Any] = SpeechaTextaConfig.from_pretrained( UpperCamelCase_ , vocab_size=UpperCamelCase_ , decoder_layers=UpperCamelCase_ , do_stable_layer_norm=UpperCamelCase_ ) _lowerCAmelCase : List[str] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : str = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) _lowerCAmelCase : Tuple = model[0].eval() # set weights for wav2vec2 encoder _lowerCAmelCase : Union[str, Any] = WavaVecaModel(UpperCamelCase_ ) _lowerCAmelCase : Union[str, Any] = recursively_load_weights_wavaveca(model.encoder , UpperCamelCase_ ) _lowerCAmelCase : List[str] = SpeechaTextaForCausalLM(UpperCamelCase_ ) _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=UpperCamelCase_ ) # set output linear layer unexpected_keys.remove("""embed_out""" ) _lowerCAmelCase : Dict = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F"The following keys are missing when loading the decoder weights: {missing_keys}" ) logger.warning(F"The following keys are unexpected when loading the decoder weights: {unexpected_keys}" ) _lowerCAmelCase : List[Any] = SpeechEncoderDecoderModel(encoder=UpperCamelCase_ , decoder=UpperCamelCase_ ) _lowerCAmelCase : Any = False # add projection layer _lowerCAmelCase : List[Any] = nn.Parameter(projection_layer.weight ) _lowerCAmelCase : Union[str, Any] = nn.Parameter(projection_layer.bias ) _lowerCAmelCase : Any = create_vocab_dict(UpperCamelCase_ ) with open(os.path.join(UpperCamelCase_ , """vocab.json""" ) , """w""" ) as fp: json.dump(UpperCamelCase_ , UpperCamelCase_ ) _lowerCAmelCase : Any = SpeechaTextaTokenizer(os.path.join(UpperCamelCase_ , """vocab.json""" ) ) tokenizer.save_pretrained(UpperCamelCase_ ) _lowerCAmelCase : str = hf_wavavec.config.to_dict() _lowerCAmelCase : Any = tokenizer.pad_token_id _lowerCAmelCase : List[str] = tokenizer.bos_token_id _lowerCAmelCase : Any = tokenizer.eos_token_id _lowerCAmelCase : Union[str, Any] = """speech_to_text_2""" _lowerCAmelCase : Any = """wav2vec2""" _lowerCAmelCase : str = SpeechEncoderDecoderConfig.from_dict(UpperCamelCase_ ) hf_wavavec.save_pretrained(UpperCamelCase_ ) feature_extractor.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": _lowerCamelCase : int = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-large-lv60", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/s2t-small-mustc-en-fr-st", type=str, help="Path to hf decoder s2t checkpoint config", ) parser.add_argument("--vocab_size", default=1_0_2_2_4, type=int, help="Vocab size of decoder") parser.add_argument("--num_decoder_layers", default=7, type=int, help="Number of decoder layers") _lowerCamelCase : Optional[Any] = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
159
0
def lowerCamelCase_ ( UpperCamelCase__ : int ) -> str: """simple docstring""" if number > 0: raise ValueError('input must be a negative integer' ) __lowerCamelCase = len(bin(UpperCamelCase__ )[3:] ) __lowerCamelCase = bin(abs(UpperCamelCase__ ) - (1 << binary_number_length) )[3:] __lowerCamelCase = ( ( '1' + '0' * (binary_number_length - len(UpperCamelCase__ )) + twos_complement_number ) if number < 0 else '0' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
90
import os def lowerCamelCase__ ( ): with open(os.path.dirname(_a) + "/p022_names.txt") as file: SCREAMING_SNAKE_CASE : List[str] = str(file.readlines()[0]) SCREAMING_SNAKE_CASE : List[Any] = names.replace("\"" , "").split(",") names.sort() SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : Dict = 0 for i, name in enumerate(_a): for letter in name: name_score += ord(_a) - 64 total_score += (i + 1) * name_score SCREAMING_SNAKE_CASE : str = 0 return total_score if __name__ == "__main__": print(solution())
76
0
import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('1.6'): snake_case__ : Dict = True from torch.cuda.amp import autocast snake_case__ : Tuple = logging.getLogger(__name__) @dataclass class A_ : lowerCAmelCase__ = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) lowerCAmelCase__ = field( default=_lowerCamelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) lowerCAmelCase__ = field( default=_lowerCamelCase , metadata={"""help""": """Whether to freeze the feature extractor layers of the model."""} ) lowerCAmelCase__ = field( default=_lowerCamelCase , metadata={"""help""": """Whether to log verbose messages or not."""} , ) lowerCAmelCase__ = field( default=2.0 , metadata={"""help""": """Maximum temperature for gumbel softmax."""} ) lowerCAmelCase__ = field( default=0.5 , metadata={"""help""": """Minimum temperature for gumbel softmax."""} ) lowerCAmelCase__ = field( default=0.999_995 , metadata={"""help""": """Decay of gumbel temperature during training."""} ) def _a ( lowerCamelCase: ModelArguments , lowerCamelCase: TrainingArguments ) -> List[str]: '''simple docstring''' logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) __A = logging.WARNING if model_args.verbose_logging: __A = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): __A = logging.INFO logger.setLevel(lowerCamelCase ) @dataclass class A_ : lowerCAmelCase__ = field( default=_lowerCamelCase , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) lowerCAmelCase__ = field( default=_lowerCamelCase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) lowerCAmelCase__ = field( default="""train""" , metadata={ """help""": """The name of the training data set split to use (via the datasets library). Defaults to 'train'""" } , ) lowerCAmelCase__ = field( default="""validation""" , metadata={ """help""": ( """The name of the validation data set split to use (via the datasets library). Defaults to 'validation'""" ) } , ) lowerCAmelCase__ = field( default="""file""" , metadata={"""help""": """Column in the dataset that contains speech file path. Defaults to 'file'"""} , ) lowerCAmelCase__ = field( default=_lowerCamelCase , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) lowerCAmelCase__ = field( default=1 , metadata={ """help""": """The percentage of the train set used as validation set in case there's no validation split""" } , ) lowerCAmelCase__ = field( default=_lowerCamelCase , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) lowerCAmelCase__ = field( default=20.0 , metadata={"""help""": """Filter audio files that are longer than `max_duration_in_seconds` seconds"""} ) @dataclass class A_ : lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = "longest" lowerCAmelCase__ = None lowerCAmelCase__ = None def __call__(self :Union[str, Any] , _UpperCamelCase :List[Dict[str, Union[List[int], torch.Tensor]]] )-> Dict[str, torch.Tensor]: # reformat list to dict and set to pytorch format __A = self.feature_extractor.pad( _UpperCamelCase , max_length=self.max_length , padding=self.padding , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) __A = self.model._get_feat_extract_output_lengths(batch['''input_values'''].shape[-1] ) __A = batch['''input_values'''].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula __A = self.model._get_feat_extract_output_lengths(batch['''attention_mask'''].sum(-1 ) ).to( torch.long ) __A = torch.zeros( (batch_size, mask_indices_seq_length) , dtype=torch.long , device=batch['''input_values'''].device ) # these two operations makes sure that all values # before the output lengths indices are attended to __A = 1 __A = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices __A = _compute_mask_indices( (batch_size, mask_indices_seq_length) , self.model.config.mask_time_prob , self.model.config.mask_time_length , attention_mask=_UpperCamelCase , min_masks=2 , ) return batch class A_ ( _lowerCamelCase ): def __init__(self :List[str] , *_UpperCamelCase :Union[str, Any] , _UpperCamelCase :Optional[int]=1 , _UpperCamelCase :Union[str, Any]=0 , _UpperCamelCase :Union[str, Any]=1.0 , **_UpperCamelCase :int )-> Union[str, Any]: super().__init__(*_UpperCamelCase , **_UpperCamelCase ) __A = 0 __A = max_gumbel_temp __A = min_gumbel_temp __A = gumbel_temp_decay def _lowerCAmelCase (self :List[str] , _UpperCamelCase :nn.Module , _UpperCamelCase :Dict[str, Union[torch.Tensor, Any]] )-> torch.Tensor: model.train() __A = self._prepare_inputs(_UpperCamelCase ) if self.use_amp: with autocast(): __A = self.compute_loss(_UpperCamelCase , _UpperCamelCase ) else: __A = self.compute_loss(_UpperCamelCase , _UpperCamelCase ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": __A = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": __A = loss.sum() / (inputs['''mask_time_indices''']).sum() else: raise ValueError(f"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: __A = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(_UpperCamelCase ).backward() elif self.use_apex: with amp.scale_loss(_UpperCamelCase , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(_UpperCamelCase ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) return loss.detach() def _a ( ) -> Union[str, Any]: '''simple docstring''' __A = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __A , __A , __A = parser.parse_args_into_dataclasses() configure_logger(lowerCamelCase , lowerCamelCase ) # Downloading and loading a dataset from the hub. __A = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" __A = DatasetDict() __A = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"""{data_args.train_split_name}[:{data_args.validation_split_percentage}%]""" , cache_dir=model_args.cache_dir , ) __A = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"""{data_args.train_split_name}[{data_args.validation_split_percentage}%:]""" , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" __A = DatasetDict() __A = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split='''validation''' , cache_dir=model_args.cache_dir , ) __A = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"""{data_args.train_split_name}""" , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported __A = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=lowerCamelCase ) def prepare_dataset(lowerCamelCase: Any ): # check that all files have the correct sampling rate __A , __A = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays __A = datasets.map( lowerCamelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets['''train'''].column_names ) # filter audio files that are too long __A = vectorized_datasets.filter( lambda lowerCamelCase : len(data['''speech'''] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(lowerCamelCase: int ): return feature_extractor(batch['''speech'''] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` __A = vectorized_datasets.map( lowerCamelCase , batched=lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets['''train'''].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 __A = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( '''PreTraining is only supported for ``config.do_stable_layer_norm=True`` and''' ''' ``config.feat_extract_norm=\'layer\'''' ) __A = WavaVecaForPreTraining(lowerCamelCase ) __A = DataCollatorForWavaVecaPretraining(model=lowerCamelCase , feature_extractor=lowerCamelCase ) __A = WavaVecaPreTrainer( model=lowerCamelCase , data_collator=lowerCamelCase , args=lowerCamelCase , train_dataset=vectorized_datasets['''train'''] , eval_dataset=vectorized_datasets['''validation'''] , tokenizer=lowerCamelCase , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
250
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ : Tuple = logging.get_logger(__name__) snake_case__ : int = { 'sayakpaul/vit-msn-base': 'https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class A_ ( _lowerCamelCase ): lowerCAmelCase__ = """vit_msn""" def __init__(self :str , _UpperCamelCase :List[Any]=768 , _UpperCamelCase :Optional[int]=12 , _UpperCamelCase :Any=12 , _UpperCamelCase :Dict=3072 , _UpperCamelCase :str="gelu" , _UpperCamelCase :str=0.0 , _UpperCamelCase :Union[str, Any]=0.0 , _UpperCamelCase :Optional[int]=0.0_2 , _UpperCamelCase :Any=1e-06 , _UpperCamelCase :Any=224 , _UpperCamelCase :Optional[Any]=16 , _UpperCamelCase :Any=3 , _UpperCamelCase :str=True , **_UpperCamelCase :Dict , )-> Union[str, Any]: super().__init__(**_UpperCamelCase ) __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = initializer_range __A = layer_norm_eps __A = image_size __A = patch_size __A = num_channels __A = qkv_bias
250
1
'''simple docstring''' from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def snake_case_ (_a : Tuple ): return {key.lstrip('''-''' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def snake_case_ (): UpperCAmelCase = ArgumentParser( '''HuggingFace Datasets CLI tool''' , usage='''datasets-cli <command> [<args>]''' , allow_abbrev=_a ) UpperCAmelCase = parser.add_subparsers(help='''datasets-cli command helpers''' ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(_a ) EnvironmentCommand.register_subcommand(_a ) TestCommand.register_subcommand(_a ) RunBeamCommand.register_subcommand(_a ) DummyDataCommand.register_subcommand(_a ) # Parse args UpperCAmelCase , UpperCAmelCase = parser.parse_known_args() if not hasattr(_a , '''func''' ): parser.print_help() exit(1 ) UpperCAmelCase = parse_unknown_args(_a ) # Run UpperCAmelCase = args.func(_a , **_a ) service.run() if __name__ == "__main__": main()
34
'''simple docstring''' from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": A =input('Enter image url: ').strip() print(f"""Downloading image from {url} ...""") A =BeautifulSoup(requests.get(url).content, 'html.parser') # The image URL is in the content field of the first meta tag with property og:image A =soup.find('meta', {'property': 'og:image'})['content'] A =requests.get(image_url).content A =f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg""" with open(file_name, 'wb') as fp: fp.write(image_data) print(f"""Done. Image saved to disk as {file_name}.""")
34
1
"""simple docstring""" import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _lowercase ( __UpperCAmelCase ): def __init__( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) -> Tuple: super().__init__() self.register_modules(vqvae=UpperCAmelCase_ , unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ ) @torch.no_grad() def __call__( self , UpperCAmelCase_ = 1 , UpperCAmelCase_ = None , UpperCAmelCase_ = 0.0 , UpperCAmelCase_ = 50 , UpperCAmelCase_ = "pil" , UpperCAmelCase_ = True , **UpperCAmelCase_ , ) -> Union[Tuple, ImagePipelineOutput]: lowerCamelCase : Dict = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=UpperCAmelCase_ , ) lowerCamelCase : str = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCamelCase : Optional[int] = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(UpperCAmelCase_ ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature lowerCamelCase : Any = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCamelCase : Tuple = {} if accepts_eta: lowerCamelCase : List[Any] = eta for t in self.progress_bar(self.scheduler.timesteps ): lowerCamelCase : Union[str, Any] = self.scheduler.scale_model_input(UpperCAmelCase_ , UpperCAmelCase_ ) # predict the noise residual lowerCamelCase : Optional[int] = self.unet(UpperCAmelCase_ , UpperCAmelCase_ ).sample # compute the previous noisy sample x_t -> x_t-1 lowerCamelCase : Tuple = self.scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ).prev_sample # decode the image latents with the VAE lowerCamelCase : Optional[int] = self.vqvae.decode(UpperCAmelCase_ ).sample lowerCamelCase : Any = (image / 2 + 0.5).clamp(0 , 1 ) lowerCamelCase : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCamelCase : Any = self.numpy_to_pil(UpperCAmelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCAmelCase_ )
357
"""simple docstring""" def UpperCAmelCase ( a_ = 10 ): '''simple docstring''' if not isinstance(a_, a_ ) or n < 0: raise ValueError('Invalid input' ) lowerCamelCase : Union[str, Any] = 10**n lowerCamelCase : int = 2_8433 * (pow(2, 783_0457, a_ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F"""{solution(1_0) = }""")
205
0
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--txt2img_unclip''', default='''kakaobrain/karlo-v1-alpha''', type=str, required=False, help='''The pretrained txt2img unclip.''', ) __a = parser.parse_args() __a = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) __a = CLIPImageProcessor() __a = CLIPVisionModelWithProjection.from_pretrained('''openai/clip-vit-large-patch14''') __a = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
337
from __future__ import annotations def __lowercase ( _UpperCamelCase ) ->float: """simple docstring""" if not nums: raise ValueError('''List is empty''' ) return sum(_UpperCamelCase ) / len(_UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
337
1
"""simple docstring""" import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase__ = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } lowerCAmelCase__ = { '''allenai/led-base-16384''': 16_384, } class _lowerCamelCase ( _lowercase ): UpperCAmelCase_ = VOCAB_FILES_NAMES UpperCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ = LEDTokenizer UpperCAmelCase_ = ["input_ids", "attention_mask"] def __init__(self , __a=None , __a=None , __a=None , __a="replace" , __a="<s>" , __a="</s>" , __a="</s>" , __a="<s>" , __a="<unk>" , __a="<pad>" , __a="<mask>" , __a=False , __a=True , **__a , ) -> Dict: super().__init__( __a , __a , tokenizer_file=__a , errors=__a , bos_token=__a , eos_token=__a , sep_token=__a , cls_token=__a , unk_token=__a , pad_token=__a , mask_token=__a , add_prefix_space=__a , trim_offsets=__a , **__a , ) UpperCamelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , __a ) != add_prefix_space: UpperCamelCase = getattr(__a , pre_tok_state.pop("type" ) ) UpperCamelCase = add_prefix_space UpperCamelCase = pre_tok_class(**__a ) UpperCamelCase = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` UpperCamelCase = "post_processor" UpperCamelCase = getattr(self.backend_tokenizer , __a , __a ) if tokenizer_component_instance: UpperCamelCase = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: UpperCamelCase = tuple(state["sep"] ) if "cls" in state: UpperCamelCase = tuple(state["cls"] ) UpperCamelCase = False if state.get("add_prefix_space" , __a ) != add_prefix_space: UpperCamelCase = add_prefix_space UpperCamelCase = True if state.get("trim_offsets" , __a ) != trim_offsets: UpperCamelCase = trim_offsets UpperCamelCase = True if changes_to_apply: UpperCamelCase = getattr(__a , state.pop("type" ) ) UpperCamelCase = component_class(**__a ) setattr(self.backend_tokenizer , __a , __a ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def snake_case_ (self ) -> str: if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def snake_case_ (self , __a ) -> Optional[int]: UpperCamelCase = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else value UpperCamelCase = value def snake_case_ (self , *__a , **__a ) -> BatchEncoding: UpperCamelCase = kwargs.get("is_split_into_words" , __a ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__a , **__a ) def snake_case_ (self , *__a , **__a ) -> BatchEncoding: UpperCamelCase = kwargs.get("is_split_into_words" , __a ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*__a , **__a ) def snake_case_ (self , __a , __a = None ) -> Tuple[str]: UpperCamelCase = self._tokenizer.model.save(__a , name=__a ) return tuple(__a ) def snake_case_ (self , __a , __a=None ) -> str: UpperCamelCase = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def snake_case_ (self , __a , __a = None ) -> List[int]: UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def snake_case_ (self , __a , __a = None , __a = PaddingStrategy.DO_NOT_PAD , __a = None , __a = None , ) -> dict: UpperCamelCase = super()._pad( encoded_inputs=__a , max_length=__a , padding_strategy=__a , pad_to_multiple_of=__a , return_attention_mask=__a , ) # Load from model defaults if return_attention_mask is None: UpperCamelCase = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: UpperCamelCase = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. UpperCamelCase = len(encoded_inputs["global_attention_mask"] ) != len(__a ) if needs_to_be_padded: UpperCamelCase = len(__a ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` UpperCamelCase = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": UpperCamelCase = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
244
"""simple docstring""" import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" if isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ): return image elif isinstance(_SCREAMING_SNAKE_CASE , PIL.Image.Image ): UpperCamelCase = [image] if isinstance(image[0] , PIL.Image.Image ): UpperCamelCase = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) )[None, :] for i in image] UpperCamelCase = np.concatenate(_SCREAMING_SNAKE_CASE , axis=0 ) UpperCamelCase = np.array(_SCREAMING_SNAKE_CASE ).astype(np.floataa ) / 2_55.0 UpperCamelCase = image.transpose(0 , 3 , 1 , 2 ) UpperCamelCase = 2.0 * image - 1.0 UpperCamelCase = torch.from_numpy(_SCREAMING_SNAKE_CASE ) elif isinstance(image[0] , torch.Tensor ): UpperCamelCase = torch.cat(_SCREAMING_SNAKE_CASE , dim=0 ) return image def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0.99_95 ): """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ): UpperCamelCase = True UpperCamelCase = va.device UpperCamelCase = va.cpu().numpy() UpperCamelCase = va.cpu().numpy() UpperCamelCase = np.sum(va * va / (np.linalg.norm(_SCREAMING_SNAKE_CASE ) * np.linalg.norm(_SCREAMING_SNAKE_CASE )) ) if np.abs(_SCREAMING_SNAKE_CASE ) > DOT_THRESHOLD: UpperCamelCase = (1 - t) * va + t * va else: UpperCamelCase = np.arccos(_SCREAMING_SNAKE_CASE ) UpperCamelCase = np.sin(_SCREAMING_SNAKE_CASE ) UpperCamelCase = theta_a * t UpperCamelCase = np.sin(_SCREAMING_SNAKE_CASE ) UpperCamelCase = np.sin(theta_a - theta_t ) / sin_theta_a UpperCamelCase = sin_theta_t / sin_theta_a UpperCamelCase = sa * va + sa * va if inputs_are_torch: UpperCamelCase = torch.from_numpy(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) return va def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = F.normalize(_SCREAMING_SNAKE_CASE , dim=-1 ) UpperCamelCase = F.normalize(_SCREAMING_SNAKE_CASE , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" for param in model.parameters(): UpperCamelCase = value class _lowerCamelCase ( _lowercase ): def __init__(self , __a , __a , __a , __a , __a , __a , __a , __a=None , __a=None , __a=None , ) -> Tuple: super().__init__() self.register_modules( vae=__a , text_encoder=__a , clip_model=__a , tokenizer=__a , unet=__a , scheduler=__a , feature_extractor=__a , coca_model=__a , coca_tokenizer=__a , coca_transform=__a , ) UpperCamelCase = ( feature_extractor.size if isinstance(feature_extractor.size , __a ) else feature_extractor.size["shortest_edge"] ) UpperCamelCase = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , __a ) set_requires_grad(self.clip_model , __a ) def snake_case_ (self , __a = "auto" ) -> List[Any]: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCamelCase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__a ) def snake_case_ (self ) -> Optional[int]: self.enable_attention_slicing(__a ) def snake_case_ (self ) -> int: set_requires_grad(self.vae , __a ) def snake_case_ (self ) -> Optional[Any]: set_requires_grad(self.vae , __a ) def snake_case_ (self ) -> Optional[int]: set_requires_grad(self.unet , __a ) def snake_case_ (self ) -> str: set_requires_grad(self.unet , __a ) def snake_case_ (self , __a , __a , __a ) -> str: # get the original timestep using init_timestep UpperCamelCase = min(int(num_inference_steps * strength ) , __a ) UpperCamelCase = max(num_inference_steps - init_timestep , 0 ) UpperCamelCase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def snake_case_ (self , __a , __a , __a , __a , __a , __a=None ) -> Tuple: if not isinstance(__a , torch.Tensor ): raise ValueError(F"`image` has to be of type `torch.Tensor` but is {type(__a )}" ) UpperCamelCase = image.to(device=__a , dtype=__a ) if isinstance(__a , __a ): UpperCamelCase = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(__a ) ] UpperCamelCase = torch.cat(__a , dim=0 ) else: UpperCamelCase = self.vae.encode(__a ).latent_dist.sample(__a ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor UpperCamelCase = 0.18215 * init_latents UpperCamelCase = init_latents.repeat_interleave(__a , dim=0 ) UpperCamelCase = randn_tensor(init_latents.shape , generator=__a , device=__a , dtype=__a ) # get latents UpperCamelCase = self.scheduler.add_noise(__a , __a , __a ) UpperCamelCase = init_latents return latents def snake_case_ (self , __a ) -> Union[str, Any]: UpperCamelCase = self.coca_transform(__a ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): UpperCamelCase = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) UpperCamelCase = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split("<end_of_text>" )[0].replace("<start_of_text>" , "" ).rstrip(" .," ) def snake_case_ (self , __a , __a ) -> Union[str, Any]: UpperCamelCase = self.feature_extractor.preprocess(__a ) UpperCamelCase = torch.from_numpy(clip_image_input["pixel_values"][0] ).unsqueeze(0 ).to(self.device ).half() UpperCamelCase = self.clip_model.get_image_features(__a ) UpperCamelCase = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=__a ) UpperCamelCase = image_embeddings_clip.repeat_interleave(__a , dim=0 ) return image_embeddings_clip @torch.enable_grad() def snake_case_ (self , __a , __a , __a , __a , __a , __a , __a , ) -> List[str]: UpperCamelCase = latents.detach().requires_grad_() UpperCamelCase = self.scheduler.scale_model_input(__a , __a ) # predict the noise residual UpperCamelCase = self.unet(__a , __a , encoder_hidden_states=__a ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): UpperCamelCase = self.scheduler.alphas_cumprod[timestep] UpperCamelCase = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf UpperCamelCase = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 UpperCamelCase = torch.sqrt(__a ) UpperCamelCase = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , __a ): UpperCamelCase = self.scheduler.sigmas[index] UpperCamelCase = latents - sigma * noise_pred else: raise ValueError(F"scheduler type {type(self.scheduler )} not supported" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor UpperCamelCase = 1 / 0.18215 * sample UpperCamelCase = self.vae.decode(__a ).sample UpperCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase = transforms.Resize(self.feature_extractor_size )(__a ) UpperCamelCase = self.normalize(__a ).to(latents.dtype ) UpperCamelCase = self.clip_model.get_image_features(__a ) UpperCamelCase = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=__a ) UpperCamelCase = spherical_dist_loss(__a , __a ).mean() * clip_guidance_scale UpperCamelCase = -torch.autograd.grad(__a , __a )[0] if isinstance(self.scheduler , __a ): UpperCamelCase = latents.detach() + grads * (sigma**2) UpperCamelCase = noise_pred_original else: UpperCamelCase = noise_pred_original - torch.sqrt(__a ) * grads return noise_pred, latents @torch.no_grad() def __call__(self , __a , __a , __a = None , __a = None , __a = 5_12 , __a = 5_12 , __a = 0.6 , __a = 50 , __a = 7.5 , __a = 1 , __a = 0.0 , __a = 1_00 , __a = None , __a = "pil" , __a = True , __a = 0.8 , __a = 0.1 , __a = 0.1 , ) -> List[Any]: if isinstance(__a , __a ) and len(__a ) != batch_size: raise ValueError(F"You have passed {batch_size} batch_size, but only {len(__a )} generators." ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if isinstance(__a , torch.Generator ) and batch_size > 1: UpperCamelCase = [generator] + [None] * (batch_size - 1) UpperCamelCase = [ ("model", self.coca_model is None), ("tokenizer", self.coca_tokenizer is None), ("transform", self.coca_transform is None), ] UpperCamelCase = [x[0] for x in coca_is_none if x[1]] UpperCamelCase = ", ".join(__a ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(__a ): raise ValueError( F"Content prompt is None and CoCa [{coca_is_none_str}] is None." F"Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline." ) UpperCamelCase = self.get_image_description(__a ) if style_prompt is None: if len(__a ): raise ValueError( F"Style prompt is None and CoCa [{coca_is_none_str}] is None." F" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline." ) UpperCamelCase = self.get_image_description(__a ) # get prompt text embeddings for content and style UpperCamelCase = self.tokenizer( __a , padding="max_length" , max_length=self.tokenizer.model_max_length , truncation=__a , return_tensors="pt" , ) UpperCamelCase = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] UpperCamelCase = self.tokenizer( __a , padding="max_length" , max_length=self.tokenizer.model_max_length , truncation=__a , return_tensors="pt" , ) UpperCamelCase = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] UpperCamelCase = slerp(__a , __a , __a ) # duplicate text embeddings for each generation per prompt UpperCamelCase = text_embeddings.repeat_interleave(__a , dim=0 ) # set timesteps UpperCamelCase = "offset" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) UpperCamelCase = {} if accepts_offset: UpperCamelCase = 1 self.scheduler.set_timesteps(__a , **__a ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) UpperCamelCase , UpperCamelCase = self.get_timesteps(__a , __a , self.device ) UpperCamelCase = timesteps[:1].repeat(__a ) # Preprocess image UpperCamelCase = preprocess(__a , __a , __a ) UpperCamelCase = self.prepare_latents( __a , __a , __a , text_embeddings.dtype , self.device , __a ) UpperCamelCase = preprocess(__a , __a , __a ) UpperCamelCase = self.prepare_latents( __a , __a , __a , text_embeddings.dtype , self.device , __a ) UpperCamelCase = slerp(__a , __a , __a ) if clip_guidance_scale > 0: UpperCamelCase = self.get_clip_image_embeddings(__a , __a ) UpperCamelCase = self.get_clip_image_embeddings(__a , __a ) UpperCamelCase = slerp( __a , __a , __a ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. UpperCamelCase = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: UpperCamelCase = content_text_input.input_ids.shape[-1] UpperCamelCase = self.tokenizer([""] , padding="max_length" , max_length=__a , return_tensors="pt" ) UpperCamelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt UpperCamelCase = uncond_embeddings.repeat_interleave(__a , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCamelCase = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. UpperCamelCase = (batch_size, self.unet.config.in_channels, height // 8, width // 8) UpperCamelCase = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps UpperCamelCase = torch.randn(__a , generator=__a , device="cpu" , dtype=__a ).to( self.device ) else: UpperCamelCase = torch.randn(__a , generator=__a , device=self.device , dtype=__a ) else: if latents.shape != latents_shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) UpperCamelCase = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCamelCase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCamelCase = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCamelCase = {} if accepts_eta: UpperCamelCase = eta # check if the scheduler accepts generator UpperCamelCase = "generator" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: UpperCamelCase = generator with self.progress_bar(total=__a ): for i, t in enumerate(__a ): # expand the latents if we are doing classifier free guidance UpperCamelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCamelCase = self.scheduler.scale_model_input(__a , __a ) # predict the noise residual UpperCamelCase = self.unet(__a , __a , encoder_hidden_states=__a ).sample # perform classifier free guidance if do_classifier_free_guidance: UpperCamelCase , UpperCamelCase = noise_pred.chunk(2 ) UpperCamelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: UpperCamelCase = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) UpperCamelCase , UpperCamelCase = self.cond_fn( __a , __a , __a , __a , __a , __a , __a , ) # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase = self.scheduler.step(__a , __a , __a , **__a ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor UpperCamelCase = 1 / 0.18215 * latents UpperCamelCase = self.vae.decode(__a ).sample UpperCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase = self.numpy_to_pil(__a ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=__a , nsfw_content_detected=__a )
244
1
'''simple docstring''' import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def snake_case__ ( _A: List[str] ) -> str: '''simple docstring''' lowerCAmelCase = [] for line in lines: lowerCAmelCase = re.sub(r"""#.*""" , """""" , lowerCAmelCase_ ) # remove comments if line: filtered_lines.append(lowerCAmelCase_ ) lowerCAmelCase = """\n""".join(lowerCAmelCase_ ) # Make a hash from all this code lowerCAmelCase = full_str.encode("""utf-8""" ) return shaaaa(lowerCAmelCase_ ).hexdigest() # get importable module names and hash for caching __lowercase = { '''csv''': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), '''json''': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), '''pandas''': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), '''parquet''': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), '''arrow''': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), '''text''': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), '''imagefolder''': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), '''audiofolder''': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions __lowercase = { '''.csv''': ('''csv''', {}), '''.tsv''': ('''csv''', {'''sep''': '''\t'''}), '''.json''': ('''json''', {}), '''.jsonl''': ('''json''', {}), '''.parquet''': ('''parquet''', {}), '''.arrow''': ('''arrow''', {}), '''.txt''': ('''text''', {}), } _EXTENSION_TO_MODULE.update({ext: ('''imagefolder''', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('''imagefolder''', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('''audiofolder''', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('''audiofolder''', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) __lowercase = {'''imagefolder''', '''audiofolder'''} # Used to filter data files based on extensions given a module name __lowercase = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('''.zip''') _MODULE_TO_EXTENSIONS["audiofolder"].append('''.zip''')
272
from __future__ import annotations from collections import namedtuple def _lowerCAmelCase ( lowerCAmelCase_ :float , lowerCAmelCase_ :float , lowerCAmelCase_ :float )->tuple: '''simple docstring''' snake_case_ = namedtuple("result" , "name value" ) if (voltage, current, power).count(0 ) != 1: raise ValueError("Only one argument must be 0" ) elif power < 0: raise ValueError( "Power cannot be negative in any electrical/electronics system" ) elif voltage == 0: return result("voltage" , power / current ) elif current == 0: return result("current" , power / voltage ) elif power == 0: return result("power" , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
159
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class _lowercase ( lowerCAmelCase, lowerCAmelCase, unittest.TestCase ): """simple docstring""" __A = StableDiffusionPanoramaPipeline __A = TEXT_TO_IMAGE_PARAMS __A = TEXT_TO_IMAGE_BATCH_PARAMS __A = TEXT_TO_IMAGE_IMAGE_PARAMS __A = TEXT_TO_IMAGE_IMAGE_PARAMS def UpperCamelCase_ (self ): """simple docstring""" torch.manual_seed(0 ) a = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) a = DDIMScheduler() torch.manual_seed(0 ) a = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) a = CLIPTextModel(lowerCamelCase_ ) a = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) a = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_=0 ): """simple docstring""" a = torch.manual_seed(lowerCamelCase_ ) a = { "prompt": "a photo of the dolomites", "generator": generator, # Setting height and width to None to prevent OOMs on CPU. "height": None, "width": None, "num_inference_steps": 1, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def UpperCamelCase_ (self ): """simple docstring""" a = "cpu" # ensure determinism for the device-dependent torch.Generator a = self.get_dummy_components() a = StableDiffusionPanoramaPipeline(**lowerCamelCase_ ) a = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) a = self.get_dummy_inputs(lowerCamelCase_ ) a = sd_pipe(**lowerCamelCase_ ).images a = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) a = np.array([0.6186, 0.5374, 0.4915, 0.4135, 0.4114, 0.4563, 0.5128, 0.4977, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase_ (self ): """simple docstring""" super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCamelCase_ (self ): """simple docstring""" super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.2_5E-3 ) def UpperCamelCase_ (self ): """simple docstring""" a = "cpu" # ensure determinism for the device-dependent torch.Generator a = self.get_dummy_components() a = StableDiffusionPanoramaPipeline(**lowerCamelCase_ ) a = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) a = self.get_dummy_inputs(lowerCamelCase_ ) a = "french fries" a = sd_pipe(**lowerCamelCase_ , negative_prompt=lowerCamelCase_ ) a = output.images a = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) a = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase_ (self ): """simple docstring""" a = "cpu" # ensure determinism for the device-dependent torch.Generator a = self.get_dummy_components() a = StableDiffusionPanoramaPipeline(**lowerCamelCase_ ) a = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) a = self.get_dummy_inputs(lowerCamelCase_ ) a = sd_pipe(**lowerCamelCase_ , view_batch_size=2 ) a = output.images a = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) a = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase_ (self ): """simple docstring""" a = "cpu" # ensure determinism for the device-dependent torch.Generator a = self.get_dummy_components() a = EulerAncestralDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="scaled_linear" ) a = StableDiffusionPanoramaPipeline(**lowerCamelCase_ ) a = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) a = self.get_dummy_inputs(lowerCamelCase_ ) a = sd_pipe(**lowerCamelCase_ ).images a = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) a = np.array([0.4024, 0.6510, 0.4901, 0.5378, 0.5813, 0.5622, 0.4795, 0.4467, 0.4952] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase_ (self ): """simple docstring""" a = "cpu" # ensure determinism for the device-dependent torch.Generator a = self.get_dummy_components() a = PNDMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="scaled_linear" , skip_prk_steps=lowerCamelCase_ ) a = StableDiffusionPanoramaPipeline(**lowerCamelCase_ ) a = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) a = self.get_dummy_inputs(lowerCamelCase_ ) a = sd_pipe(**lowerCamelCase_ ).images a = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) a = np.array([0.6391, 0.6291, 0.4861, 0.5134, 0.5552, 0.4578, 0.5032, 0.5023, 0.4539] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class _lowercase ( unittest.TestCase ): """simple docstring""" def UpperCamelCase_ (self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ (self , lowerCamelCase_=0 ): """simple docstring""" a = torch.manual_seed(lowerCamelCase_ ) a = { "prompt": "a photo of the dolomites", "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def UpperCamelCase_ (self ): """simple docstring""" a = "stabilityai/stable-diffusion-2-base" a = DDIMScheduler.from_pretrained(lowerCamelCase_ , subfolder="scheduler" ) a = StableDiffusionPanoramaPipeline.from_pretrained(lowerCamelCase_ , scheduler=lowerCamelCase_ , safety_checker=lowerCamelCase_ ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) pipe.enable_attention_slicing() a = self.get_inputs() a = pipe(**lowerCamelCase_ ).images a = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) a = np.array( [ 0.3696_8392, 0.2702_5372, 0.3244_6766, 0.2837_9387, 0.3636_3274, 0.3073_3347, 0.2710_0027, 0.2705_4125, 0.2553_6096, ] ) assert np.abs(expected_slice - image_slice ).max() < 1E-2 def UpperCamelCase_ (self ): """simple docstring""" a = StableDiffusionPanoramaPipeline.from_pretrained( "stabilityai/stable-diffusion-2-base" , safety_checker=lowerCamelCase_ ) a = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) pipe.enable_attention_slicing() a = self.get_inputs() a = pipe(**lowerCamelCase_ ).images a = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) a = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def UpperCamelCase_ (self ): """simple docstring""" a = 0 def callback_fn(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> None: a = True nonlocal number_of_steps number_of_steps += 1 if step == 1: a = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) a = latents[0, -3:, -3:, -1] a = np.array( [ 0.1868_1869, 0.3390_7816, 0.536_1276, 0.1443_2865, -0.0285_6611, -0.7394_1123, 0.2339_7987, 0.4732_2682, -0.3782_3164, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: a = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) a = latents[0, -3:, -3:, -1] a = np.array( [ 0.1853_9645, 0.3398_7248, 0.537_8559, 0.1443_7142, -0.0245_5261, -0.733_8317, 0.2399_0755, 0.4735_6272, -0.378_6505, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 a = False a = "stabilityai/stable-diffusion-2-base" a = DDIMScheduler.from_pretrained(lowerCamelCase_ , subfolder="scheduler" ) a = StableDiffusionPanoramaPipeline.from_pretrained(lowerCamelCase_ , scheduler=lowerCamelCase_ , safety_checker=lowerCamelCase_ ) a = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) pipe.enable_attention_slicing() a = self.get_inputs() pipe(**lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def UpperCamelCase_ (self ): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() a = "stabilityai/stable-diffusion-2-base" a = DDIMScheduler.from_pretrained(lowerCamelCase_ , subfolder="scheduler" ) a = StableDiffusionPanoramaPipeline.from_pretrained(lowerCamelCase_ , scheduler=lowerCamelCase_ , safety_checker=lowerCamelCase_ ) a = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() a = self.get_inputs() a = pipe(**lowerCamelCase_ ) a = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
71
import os def a( ) -> List[str]: """simple docstring""" with open(os.path.dirname(A ) + "/grid.txt" ) as f: a = [] # noqa: E741 for _ in range(20 ): l.append([int(A ) for x in f.readline().split()] ) a = 0 # right for i in range(20 ): for j in range(17 ): a = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: a = temp # down for i in range(17 ): for j in range(20 ): a = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: a = temp # diagonal 1 for i in range(17 ): for j in range(17 ): a = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: a = temp # diagonal 2 for i in range(17 ): for j in range(3 , 20 ): a = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: a = temp return maximum if __name__ == "__main__": print(solution())
71
1
'''simple docstring''' from __future__ import annotations def _A ( snake_case ) -> float: if not nums: raise ValueError("List is empty" ) return sum(snake_case ) / len(snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
250
'''simple docstring''' import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html _snake_case = 'platform' import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class a__ : _SCREAMING_SNAKE_CASE : Tuple = PegasusConfig _SCREAMING_SNAKE_CASE : int = {} _SCREAMING_SNAKE_CASE : Optional[int] = 'gelu' def __init__( self , _UpperCamelCase , _UpperCamelCase=13 , _UpperCamelCase=7 , _UpperCamelCase=True , _UpperCamelCase=False , _UpperCamelCase=99 , _UpperCamelCase=32 , _UpperCamelCase=5 , _UpperCamelCase=4 , _UpperCamelCase=37 , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=20 , _UpperCamelCase=2 , _UpperCamelCase=1 , _UpperCamelCase=0 , ): """simple docstring""" _lowercase : Union[str, Any] = parent _lowercase : Optional[int] = batch_size _lowercase : List[str] = seq_length _lowercase : Optional[Any] = is_training _lowercase : int = use_labels _lowercase : Optional[int] = vocab_size _lowercase : str = hidden_size _lowercase : Optional[Any] = num_hidden_layers _lowercase : Union[str, Any] = num_attention_heads _lowercase : Tuple = intermediate_size _lowercase : Optional[int] = hidden_dropout_prob _lowercase : Optional[Any] = attention_probs_dropout_prob _lowercase : Tuple = max_position_embeddings _lowercase : List[str] = eos_token_id _lowercase : Optional[int] = pad_token_id _lowercase : Optional[Any] = bos_token_id def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) _lowercase : Tuple = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) _lowercase : int = np.concatenate([input_ids, eos_tensor] , axis=1 ) _lowercase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowercase : List[str] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _lowercase : Optional[int] = prepare_pegasus_inputs_dict(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) return config, inputs_dict def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" _lowercase : List[Any] = 20 _lowercase : int = model_class_name(_UpperCamelCase ) _lowercase : str = model.encode(inputs_dict["input_ids"] ) _lowercase , _lowercase : List[str] = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) _lowercase : List[Any] = model.init_cache(decoder_input_ids.shape[0] , _UpperCamelCase , _UpperCamelCase ) _lowercase : str = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" ) _lowercase : Tuple = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _lowercase : Union[str, Any] = model.decode( decoder_input_ids[:, :-1] , _UpperCamelCase , decoder_attention_mask=_UpperCamelCase , past_key_values=_UpperCamelCase , decoder_position_ids=_UpperCamelCase , ) _lowercase : Union[str, Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) _lowercase : Optional[Any] = model.decode( decoder_input_ids[:, -1:] , _UpperCamelCase , decoder_attention_mask=_UpperCamelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_UpperCamelCase , ) _lowercase : Any = model.decode(_UpperCamelCase , _UpperCamelCase ) _lowercase : int = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f'''Max diff is {diff}''' ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" _lowercase : List[str] = 20 _lowercase : List[Any] = model_class_name(_UpperCamelCase ) _lowercase : Dict = model.encode(inputs_dict["input_ids"] ) _lowercase , _lowercase : int = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) _lowercase : Optional[int] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) _lowercase : int = model.init_cache(decoder_input_ids.shape[0] , _UpperCamelCase , _UpperCamelCase ) _lowercase : List[str] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _lowercase : Optional[int] = model.decode( decoder_input_ids[:, :-1] , _UpperCamelCase , decoder_attention_mask=_UpperCamelCase , past_key_values=_UpperCamelCase , decoder_position_ids=_UpperCamelCase , ) _lowercase : List[Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) _lowercase : Optional[int] = model.decode( decoder_input_ids[:, -1:] , _UpperCamelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_UpperCamelCase , decoder_position_ids=_UpperCamelCase , ) _lowercase : Dict = model.decode(_UpperCamelCase , _UpperCamelCase , decoder_attention_mask=_UpperCamelCase ) _lowercase : Union[str, Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f'''Max diff is {diff}''' ) def _A ( snake_case , snake_case , snake_case , snake_case=None , snake_case=None , ) -> int: if attention_mask is None: _lowercase : int = np.not_equal(snake_case , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: _lowercase : Dict = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class a__ ( lowerCamelCase_ , unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) _SCREAMING_SNAKE_CASE : List[str] = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () _SCREAMING_SNAKE_CASE : List[str] = True _SCREAMING_SNAKE_CASE : int = False _SCREAMING_SNAKE_CASE : List[Any] = False _SCREAMING_SNAKE_CASE : Optional[int] = False def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Optional[Any] = FlaxPegasusModelTester(self ) _lowercase : Union[str, Any] = ConfigTester(self , config_class=_UpperCamelCase ) def _lowerCamelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() def _lowerCamelCase ( self ): """simple docstring""" _lowercase , _lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase , _lowercase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase , _lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowercase : Optional[int] = self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) _lowercase : Union[str, Any] = model_class(_UpperCamelCase ) @jax.jit def encode_jitted(_UpperCamelCase , _UpperCamelCase=None , **_UpperCamelCase ): return model.encode(input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase ) with self.subTest("JIT Enabled" ): _lowercase : Optional[Any] = encode_jitted(**_UpperCamelCase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): _lowercase : Dict = encode_jitted(**_UpperCamelCase ).to_tuple() self.assertEqual(len(_UpperCamelCase ) , len(_UpperCamelCase ) ) for jitted_output, output in zip(_UpperCamelCase , _UpperCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase , _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowercase : Optional[int] = model_class(_UpperCamelCase ) _lowercase : Tuple = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] ) _lowercase : List[Any] = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): return model.decode( decoder_input_ids=_UpperCamelCase , decoder_attention_mask=_UpperCamelCase , encoder_outputs=_UpperCamelCase , ) with self.subTest("JIT Enabled" ): _lowercase : List[Any] = decode_jitted(**_UpperCamelCase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): _lowercase : Optional[Any] = decode_jitted(**_UpperCamelCase ).to_tuple() self.assertEqual(len(_UpperCamelCase ) , len(_UpperCamelCase ) ) for jitted_output, output in zip(_UpperCamelCase , _UpperCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _lowerCamelCase ( self ): """simple docstring""" for model_class_name in self.all_model_classes: _lowercase : List[Any] = model_class_name.from_pretrained("google/pegasus-large" , from_pt=_UpperCamelCase ) _lowercase : Optional[int] = np.ones((1, 1) ) _lowercase : int = model(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) @slow def _lowerCamelCase ( self ): """simple docstring""" _lowercase : str = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum" ) _lowercase : str = PegasusTokenizer.from_pretrained("google/pegasus-xsum" ) _lowercase : str = [ " PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.", " The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" ", ] _lowercase : Optional[int] = [ "California's largest electricity provider has turned off power to hundreds of thousands of customers.", "Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.", ] _lowercase : Optional[int] = tokenizer(_UpperCamelCase , return_tensors="np" , truncation=_UpperCamelCase , max_length=512 , padding=_UpperCamelCase ) _lowercase : Tuple = model.generate(**_UpperCamelCase , num_beams=2 ).sequences _lowercase : Union[str, Any] = tokenizer.batch_decode(_UpperCamelCase , skip_special_tokens=_UpperCamelCase ) assert tgt_text == decoded
250
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _lowercase : List[str] = { 'configuration_transfo_xl': ['TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TransfoXLConfig'], 'tokenization_transfo_xl': ['TransfoXLCorpus', 'TransfoXLTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Dict = [ 'TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'AdaptiveEmbedding', 'TransfoXLForSequenceClassification', 'TransfoXLLMHeadModel', 'TransfoXLModel', 'TransfoXLPreTrainedModel', 'load_tf_weights_in_transfo_xl', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Dict = [ 'TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFAdaptiveEmbedding', 'TFTransfoXLForSequenceClassification', 'TFTransfoXLLMHeadModel', 'TFTransfoXLMainLayer', 'TFTransfoXLModel', 'TFTransfoXLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys _lowercase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
86
"""simple docstring""" from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar _lowercase : List[Any] = TypeVar('T') class _UpperCAmelCase ( Generic[T] ): a__ : deque[T] # Cache store of keys a__ : set[T] # References of the keys in cache a__ : int = 10 # Maximum capacity of cache def __init__( self : Optional[Any] , _lowercase : int ): __UpperCAmelCase = deque() __UpperCAmelCase = set() if not n: __UpperCAmelCase = sys.maxsize elif n < 0: raise ValueError('''n should be an integer greater than 0.''' ) else: __UpperCAmelCase = n def a ( self : Optional[Any] , _lowercase : T ): if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: __UpperCAmelCase = self.dq_store.pop() self.key_reference.remove(_lowercase ) else: self.dq_store.remove(_lowercase ) self.dq_store.appendleft(_lowercase ) self.key_reference.add(_lowercase ) def a ( self : str ): for k in self.dq_store: print(_lowercase ) def __repr__( self : Dict ): return F'''LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}''' if __name__ == "__main__": import doctest doctest.testmod() _lowercase : LRUCache[str | int] = LRUCache(4) lru_cache.refer('A') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('A') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
86
1
"""simple docstring""" from __future__ import annotations def __A ( a_ :list[int] , a_ :list[int] , a_ :int) -> tuple[float, list[float]]: __a : Optional[int] = list(range(len(A__))) __a : Dict = [v / w for v, w in zip(A__ , A__)] index.sort(key=lambda a_: ratio[i] , reverse=A__) __a : List[Any] = 0 __a : Tuple = [0] * len(A__) for i in index: if weight[i] <= capacity: __a : str = 1 max_value += value[i] capacity -= weight[i] else: __a : Tuple = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
160
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class __lowerCAmelCase ( TensorFormatter[Mapping, """torch.Tensor""", Mapping] ): def __init__( self , lowerCAmelCase=None , **lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' super().__init__(features=lowerCAmelCase ) _lowercase =torch_tensor_kwargs import torch # noqa import torch at initialization def A__ ( self , lowerCAmelCase ) -> int: '''simple docstring''' import torch if isinstance(lowerCAmelCase , lowerCAmelCase ) and column: if all( isinstance(lowerCAmelCase , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(lowerCAmelCase ) return column def A__ ( self , lowerCAmelCase ) -> str: '''simple docstring''' import torch if isinstance(lowerCAmelCase , (str, bytes, type(lowerCAmelCase )) ): return value elif isinstance(lowerCAmelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() _lowercase ={} if isinstance(lowerCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): _lowercase ={'dtype': torch.intaa} elif isinstance(lowerCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): _lowercase ={'dtype': torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(lowerCAmelCase , PIL.Image.Image ): _lowercase =np.asarray(lowerCAmelCase ) return torch.tensor(lowerCAmelCase , **{**default_dtype, **self.torch_tensor_kwargs} ) def A__ ( self , lowerCAmelCase ) -> str: '''simple docstring''' import torch # support for torch, tf, jax etc. if hasattr(lowerCAmelCase , '__array__' ) and not isinstance(lowerCAmelCase , torch.Tensor ): _lowercase =data_struct.__array__() # support for nested types like struct of list of struct if isinstance(lowerCAmelCase , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(lowerCAmelCase ) for substruct in data_struct] ) elif isinstance(lowerCAmelCase , (list, tuple) ): return self._consolidate([self.recursive_tensorize(lowerCAmelCase ) for substruct in data_struct] ) return self._tensorize(lowerCAmelCase ) def A__ ( self , lowerCAmelCase ) -> Tuple: '''simple docstring''' return map_nested(self._recursive_tensorize , lowerCAmelCase , map_list=lowerCAmelCase ) def A__ ( self , lowerCAmelCase ) -> Mapping: '''simple docstring''' _lowercase =self.numpy_arrow_extractor().extract_row(lowerCAmelCase ) _lowercase =self.python_features_decoder.decode_row(lowerCAmelCase ) return self.recursive_tensorize(lowerCAmelCase ) def A__ ( self , lowerCAmelCase ) -> "torch.Tensor": '''simple docstring''' _lowercase =self.numpy_arrow_extractor().extract_column(lowerCAmelCase ) _lowercase =self.python_features_decoder.decode_column(lowerCAmelCase , pa_table.column_names[0] ) _lowercase =self.recursive_tensorize(lowerCAmelCase ) _lowercase =self._consolidate(lowerCAmelCase ) return column def A__ ( self , lowerCAmelCase ) -> Mapping: '''simple docstring''' _lowercase =self.numpy_arrow_extractor().extract_batch(lowerCAmelCase ) _lowercase =self.python_features_decoder.decode_batch(lowerCAmelCase ) _lowercase =self.recursive_tensorize(lowerCAmelCase ) for column_name in batch: _lowercase =self._consolidate(batch[column_name] ) return batch
205
0
'''simple docstring''' import math import qiskit def _A (lowerCAmelCase__ :int = 1 , lowerCAmelCase__ :int = 1 , lowerCAmelCase__ :int = 1 ) -> qiskit.result.counts.Counts: '''simple docstring''' if ( isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) ): raise TypeError('inputs must be integers.' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('inputs must be positive.' ) if ( (math.floor(lowerCAmelCase__ ) != input_a) or (math.floor(lowerCAmelCase__ ) != input_a) or (math.floor(lowerCAmelCase__ ) != carry_in) ): raise ValueError('inputs must be exact integers.' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('inputs must be less or equal to 2.' ) # build registers _a = qiskit.QuantumRegister(4 , 'qr' ) _a = qiskit.ClassicalRegister(2 , 'cr' ) # list the entries _a = [input_a, input_a, carry_in] _a = qiskit.QuantumCircuit(lowerCAmelCase__ , lowerCAmelCase__ ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(lowerCAmelCase__ ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(lowerCAmelCase__ ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(lowerCAmelCase__ ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , lowerCAmelCase__ ) # measure the last two qbits _a = qiskit.Aer.get_backend('aer_simulator' ) _a = qiskit.execute(lowerCAmelCase__ , lowerCAmelCase__ , shots=10_00 ) return job.result().get_counts(lowerCAmelCase__ ) if __name__ == "__main__": print(f'''Total sum count for state is: {quantum_full_adder(1, 1, 1)}''')
104
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy a_ : List[str] = logging.get_logger(__name__) class a ( _SCREAMING_SNAKE_CASE ): def __init__( self , __magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ) -> Any: _a = feature_size _a = sampling_rate _a = padding_value _a = kwargs.pop('padding_side' , 'right' ) _a = kwargs.pop('return_attention_mask' , __magic_name__ ) super().__init__(**__magic_name__ ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ = True , __magic_name__ = None , __magic_name__ = False , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , ) -> BatchFeature: # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(__magic_name__ , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): _a = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( 'You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`' f' to this method that includes {self.model_input_names[0]}, but you provided' f' {list(processed_features.keys() )}' ) _a = processed_features[self.model_input_names[0]] _a = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(__magic_name__ ) == 0: if return_attention_mask: _a = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch _a = required_input[0] if isinstance(__magic_name__ , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. _a = 0 while len(required_input[index] ) == 0: index += 1 if index < len(__magic_name__ ): _a = required_input[index][0] if return_tensors is None: if is_tf_tensor(__magic_name__ ): _a = 'tf' elif is_torch_tensor(__magic_name__ ): _a = 'pt' elif isinstance(__magic_name__ , (int, float, list, tuple, np.ndarray) ): _a = 'np' else: raise ValueError( f'type of {first_element} unknown: {type(__magic_name__ )}. ' 'Should be one of a python, numpy, pytorch or tensorflow object.' ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): _a = to_numpy(__magic_name__ ) else: _a = [to_numpy(__magic_name__ ) for v in value] # Convert padding_strategy in PaddingStrategy _a = self._get_padding_strategies(padding=__magic_name__ , max_length=__magic_name__ ) _a = processed_features[self.model_input_names[0]] _a = len(__magic_name__ ) if not all(len(__magic_name__ ) == batch_size for v in processed_features.values() ): raise ValueError('Some items in the output dictionary have a different batch size than others.' ) _a = [] for i in range(__magic_name__ ): _a = {k: v[i] for k, v in processed_features.items()} # truncation _a = self._truncate( __magic_name__ , max_length=__magic_name__ , pad_to_multiple_of=__magic_name__ , truncation=__magic_name__ , ) truncated_inputs.append(__magic_name__ ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length _a = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) _a = PaddingStrategy.MAX_LENGTH _a = {} for i in range(__magic_name__ ): # padding _a = self._pad( truncated_inputs[i] , max_length=__magic_name__ , padding_strategy=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_attention_mask=__magic_name__ , ) for key, value in outputs.items(): if key not in batch_outputs: _a = [] if value.dtype is np.dtype(np.floataa ): _a = value.astype(np.floataa ) batch_outputs[key].append(__magic_name__ ) return BatchFeature(__magic_name__ , tensor_type=__magic_name__ ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ = None , __magic_name__ = PaddingStrategy.DO_NOT_PAD , __magic_name__ = None , __magic_name__ = None , ) -> dict: _a = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: _a = len(__magic_name__ ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): _a = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of _a = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(__magic_name__ ) < max_length if return_attention_mask and "attention_mask" not in processed_features: _a = np.ones(len(__magic_name__ ) , dtype=np.intaa ) if needs_to_be_padded: _a = max_length - len(__magic_name__ ) if self.padding_side == "right": if return_attention_mask: _a = np.pad( processed_features['attention_mask'] , (0, difference) ) _a = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) _a = np.pad( __magic_name__ , __magic_name__ , 'constant' , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: _a = np.pad( processed_features['attention_mask'] , (difference, 0) ) _a = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) _a = np.pad( __magic_name__ , __magic_name__ , 'constant' , constant_values=self.padding_value ) else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return processed_features def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , ) -> List[str]: if not truncation: return processed_features elif truncation and max_length is None: raise ValueError('When setting ``truncation=True``, make sure that ``max_length`` is defined.' ) _a = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): _a = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of _a = len(__magic_name__ ) > max_length if needs_to_be_truncated: _a = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: _a = processed_features['attention_mask'][:max_length] return processed_features def __UpperCAmelCase ( self , __magic_name__=False , __magic_name__=None ) -> Dict: # Get padding strategy if padding is not False: if padding is True: _a = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(__magic_name__ , __magic_name__ ): _a = PaddingStrategy(__magic_name__ ) elif isinstance(__magic_name__ , __magic_name__ ): _a = padding else: _a = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f'When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined' ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( 'Asking to pad but the feature_extractor does not have a padding value. Please select a value to use' ' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.' ) return padding_strategy
104
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class __A( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = """facebook/bart-large-mnli""" SCREAMING_SNAKE_CASE__ = ( """This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which """ """should be the text to classify, and `labels`, which should be the list of labels to use for classification. """ """It returns the most likely label in the list of provided `labels` for the input text.""" ) SCREAMING_SNAKE_CASE__ = """text_classifier""" SCREAMING_SNAKE_CASE__ = AutoTokenizer SCREAMING_SNAKE_CASE__ = AutoModelForSequenceClassification SCREAMING_SNAKE_CASE__ = ["""text""", ["""text"""]] SCREAMING_SNAKE_CASE__ = ["""text"""] def UpperCAmelCase_ (self ): super().setup() UpperCamelCase__ = self.model.config UpperCamelCase__ = -1 for idx, label in config.idalabel.items(): if label.lower().startswith("""entail""" ): UpperCamelCase__ = int(SCREAMING_SNAKE_CASE_ ) if self.entailment_id == -1: raise ValueError("""Could not determine the entailment ID from the model config, please pass it at init.""" ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = labels return self.pre_processor( [text] * len(SCREAMING_SNAKE_CASE_ ) , [F"This example is {label}" for label in labels] , return_tensors="""pt""" , padding="""max_length""" , ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = outputs.logits UpperCamelCase__ = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
244
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class __A( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): for model_result in results.values(): for batch_size, sequence_length in zip(model_result["""bs"""] , model_result["""ss"""] ): UpperCamelCase__ = model_result["""result"""][batch_size][sequence_length] self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = """sshleifer/tiny-gpt2""" UpperCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE_ , inference=SCREAMING_SNAKE_CASE_ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=SCREAMING_SNAKE_CASE_ , multi_process=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase__ = TensorFlowBenchmark(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase_ (self ): UpperCamelCase__ = """sgugger/tiny-distilbert-classification""" UpperCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE_ , inference=SCREAMING_SNAKE_CASE_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE_ , only_pretrain_model=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase__ = TensorFlowBenchmark(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase_ (self ): UpperCamelCase__ = """sshleifer/tiny-gpt2""" UpperCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE_ , inference=SCREAMING_SNAKE_CASE_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase__ = TensorFlowBenchmark(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase_ (self ): UpperCamelCase__ = """sshleifer/tiny-gpt2""" UpperCamelCase__ = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE_ , inference=SCREAMING_SNAKE_CASE_ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=SCREAMING_SNAKE_CASE_ , multi_process=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase__ = TensorFlowBenchmark(SCREAMING_SNAKE_CASE_ , [config] ) UpperCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase_ (self ): UpperCamelCase__ = """sshleifer/tiny-gpt2""" UpperCamelCase__ = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE_ , inference=SCREAMING_SNAKE_CASE_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase__ = TensorFlowBenchmark(SCREAMING_SNAKE_CASE_ , [config] ) UpperCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase_ (self ): UpperCamelCase__ = """sshleifer/tiny-gpt2""" UpperCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE_ , inference=SCREAMING_SNAKE_CASE_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase__ = TensorFlowBenchmark(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCAmelCase_ (self ): UpperCamelCase__ = """sshleifer/tiny-gpt2""" UpperCamelCase__ = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE_ , inference=SCREAMING_SNAKE_CASE_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase__ = TensorFlowBenchmark(SCREAMING_SNAKE_CASE_ , [config] ) UpperCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCAmelCase_ (self ): UpperCamelCase__ = """patrickvonplaten/t5-tiny-random""" UpperCamelCase__ = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE_ , inference=SCREAMING_SNAKE_CASE_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase__ = TensorFlowBenchmark(SCREAMING_SNAKE_CASE_ , configs=[config] ) UpperCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , """Cannot do xla on CPU.""" ) def UpperCAmelCase_ (self ): UpperCamelCase__ = """sshleifer/tiny-gpt2""" UpperCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE_ , inference=SCREAMING_SNAKE_CASE_ , sequence_lengths=[8] , batch_sizes=[1] , use_xla=SCREAMING_SNAKE_CASE_ , multi_process=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase__ = TensorFlowBenchmark(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase_ (self ): UpperCamelCase__ = """sshleifer/tiny-gpt2""" with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=SCREAMING_SNAKE_CASE_ , save_to_csv=SCREAMING_SNAKE_CASE_ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(SCREAMING_SNAKE_CASE_ , """inf_time.csv""" ) , inference_memory_csv_file=os.path.join(SCREAMING_SNAKE_CASE_ , """inf_mem.csv""" ) , env_info_csv_file=os.path.join(SCREAMING_SNAKE_CASE_ , """env.csv""" ) , multi_process=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase__ = TensorFlowBenchmark(SCREAMING_SNAKE_CASE_ ) benchmark.run() self.assertTrue(Path(os.path.join(SCREAMING_SNAKE_CASE_ , """inf_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(SCREAMING_SNAKE_CASE_ , """inf_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(SCREAMING_SNAKE_CASE_ , """env.csv""" ) ).exists() ) def UpperCAmelCase_ (self ): UpperCamelCase__ = """sshleifer/tiny-gpt2""" def _check_summary_is_not_empty(SCREAMING_SNAKE_CASE_ ): self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """sequential""" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """cumulative""" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """current""" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """total""" ) ) with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=SCREAMING_SNAKE_CASE_ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(SCREAMING_SNAKE_CASE_ , """log.txt""" ) , log_print=SCREAMING_SNAKE_CASE_ , trace_memory_line_by_line=SCREAMING_SNAKE_CASE_ , eager_mode=SCREAMING_SNAKE_CASE_ , multi_process=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase__ = TensorFlowBenchmark(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(SCREAMING_SNAKE_CASE_ , """log.txt""" ) ).exists() )
244
1
"""simple docstring""" import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def lowercase ( lowerCAmelCase__ : str=None , lowerCAmelCase__ : Optional[int]=None ) -> Tuple: return field(default_factory=lambda: default , metadata=lowerCAmelCase__ ) @dataclass class __lowerCAmelCase : '''simple docstring''' __UpperCAmelCase : str = field( metadata={'help': 'The csv file to plot.'} , ) __UpperCAmelCase : bool = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Whether to plot along batch size or sequence length. Defaults to sequence length.'} , ) __UpperCAmelCase : bool = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Whether the csv file has time results or memory results. Defaults to memory results.'} , ) __UpperCAmelCase : bool = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Disable logarithmic scale when plotting'} , ) __UpperCAmelCase : bool = field( default=__SCREAMING_SNAKE_CASE , metadata={ 'help': 'Whether the csv file has training results or inference results. Defaults to inference results.' } , ) __UpperCAmelCase : Optional[str] = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Filename under which the plot will be saved. If unused no plot is saved.'} , ) __UpperCAmelCase : Optional[List[str]] = list_field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'List of model names that are used instead of the ones in the csv file.'} ) def lowercase ( lowerCAmelCase__ : Dict ) -> Any: try: int(lowerCAmelCase__ ) return True except ValueError: return False def lowercase ( lowerCAmelCase__ : Optional[int] ) -> Optional[Any]: try: float(lowerCAmelCase__ ) return True except ValueError: return False class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a ): __a = args __a = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline='''''' ) as csv_file: __a = csv.DictReader(_a ) for row in reader: __a = row['''model'''] self.result_dict[model_name]["bsz"].append(int(row['''batch_size'''] ) ) self.result_dict[model_name]["seq_len"].append(int(row['''sequence_length'''] ) ) if can_convert_to_int(row['''result'''] ): # value is not None __a = int(row['''result'''] ) elif can_convert_to_float(row['''result'''] ): # value is not None __a = float(row['''result'''] ) def __UpperCAmelCase ( self ): __a , __a = plt.subplots() __a = '''Time usage''' if self.args.is_time else '''Memory usage''' __a = title_str + ''' for training''' if self.args.is_train else title_str + ''' for inference''' if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('''log''' ) ax.set_yscale('''log''' ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): __a = sorted(set(self.result_dict[model_name]['''bsz'''] ) ) __a = sorted(set(self.result_dict[model_name]['''seq_len'''] ) ) __a = self.result_dict[model_name]['''result'''] ((__a) , (__a)) = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) __a = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: __a = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=_a , ) else: __a = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((__a) , (__a)) = ( ('''batch_size''', '''len''') if self.args.plot_along_batch else ('''in #tokens''', '''bsz''') ) __a = np.asarray(_a , _a )[: len(_a )] plt.scatter( _a , _a , label=f'''{label_model_name} - {inner_loop_label}: {inner_loop_value}''' ) plt.plot(_a , _a , '''--''' ) title_str += f''' {label_model_name} vs.''' __a = title_str[:-4] __a = '''Time in s''' if self.args.is_time else '''Memory in MB''' # plot plt.title(_a ) plt.xlabel(_a ) plt.ylabel(_a ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def lowercase ( ) -> List[str]: __a = HfArgumentParser(lowerCAmelCase__ ) __a = parser.parse_args_into_dataclasses()[0] __a = Plot(args=lowerCAmelCase__ ) plot.plot() if __name__ == "__main__": main()
11
"""simple docstring""" import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[str] = (UnCLIPScheduler,) def __UpperCAmelCase ( self , **_a ): __a = { '''num_train_timesteps''': 1_000, '''variance_type''': '''fixed_small_log''', '''clip_sample''': True, '''clip_sample_range''': 1.0, '''prediction_type''': '''epsilon''', } config.update(**_a ) return config def __UpperCAmelCase ( self ): for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=_a ) def __UpperCAmelCase ( self ): for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_a ) def __UpperCAmelCase ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=_a ) def __UpperCAmelCase ( self ): for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=_a ) def __UpperCAmelCase ( self ): for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_a ) def __UpperCAmelCase ( self ): for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_a , prev_timestep=_a ) def __UpperCAmelCase ( self ): __a = self.scheduler_classes[0] __a = self.get_scheduler_config(variance_type='''fixed_small_log''' ) __a = scheduler_class(**_a ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0_000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.054_9625 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.999_4987 ) ) < 1E-5 def __UpperCAmelCase ( self ): __a = self.scheduler_classes[0] __a = self.get_scheduler_config(variance_type='''learned_range''' ) __a = scheduler_class(**_a ) __a = 0.5 assert scheduler._get_variance(1 , predicted_variance=_a ) - -10.171_2790 < 1E-5 assert scheduler._get_variance(487 , predicted_variance=_a ) - -5.799_8052 < 1E-5 assert scheduler._get_variance(999 , predicted_variance=_a ) - -0.001_0011 < 1E-5 def __UpperCAmelCase ( self ): __a = self.scheduler_classes[0] __a = self.get_scheduler_config() __a = scheduler_class(**_a ) __a = scheduler.timesteps __a = self.dummy_model() __a = self.dummy_sample_deter __a = torch.manual_seed(0 ) for i, t in enumerate(_a ): # 1. predict noise residual __a = model(_a , _a ) # 2. predict previous mean of sample x_t-1 __a = scheduler.step(_a , _a , _a , generator=_a ).prev_sample __a = pred_prev_sample __a = torch.sum(torch.abs(_a ) ) __a = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 252.268_2495 ) < 1E-2 assert abs(result_mean.item() - 0.328_4743 ) < 1E-3 def __UpperCAmelCase ( self ): __a = self.scheduler_classes[0] __a = self.get_scheduler_config() __a = scheduler_class(**_a ) scheduler.set_timesteps(25 ) __a = scheduler.timesteps __a = self.dummy_model() __a = self.dummy_sample_deter __a = torch.manual_seed(0 ) for i, t in enumerate(_a ): # 1. predict noise residual __a = model(_a , _a ) if i + 1 == timesteps.shape[0]: __a = None else: __a = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 __a = scheduler.step( _a , _a , _a , prev_timestep=_a , generator=_a ).prev_sample __a = pred_prev_sample __a = torch.sum(torch.abs(_a ) ) __a = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 258.204_4983 ) < 1E-2 assert abs(result_mean.item() - 0.336_2038 ) < 1E-3 def __UpperCAmelCase ( self ): pass def __UpperCAmelCase ( self ): pass
11
1
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class __A : """simple docstring""" UpperCamelCase__ : int =XGLMConfig UpperCamelCase__ : Optional[Any] ={} UpperCamelCase__ : List[str] ="""gelu""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=14 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=99 , lowerCamelCase__=32 , lowerCamelCase__=2 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=0.02 , ): """simple docstring""" __UpperCamelCase : Tuple =parent __UpperCamelCase : List[str] =batch_size __UpperCamelCase : str =seq_length __UpperCamelCase : Dict =is_training __UpperCamelCase : Tuple =use_input_mask __UpperCamelCase : List[Any] =use_labels __UpperCamelCase : Any =vocab_size __UpperCamelCase : List[Any] =d_model __UpperCamelCase : Optional[int] =num_hidden_layers __UpperCamelCase : List[str] =num_attention_heads __UpperCamelCase : Optional[int] =ffn_dim __UpperCamelCase : str =activation_function __UpperCamelCase : Any =activation_dropout __UpperCamelCase : Optional[int] =attention_dropout __UpperCamelCase : Optional[int] =max_position_embeddings __UpperCamelCase : Any =initializer_range __UpperCamelCase : Dict =None __UpperCamelCase : Optional[int] =0 __UpperCamelCase : Optional[Any] =2 __UpperCamelCase : str =1 def __lowercase ( self ): """simple docstring""" return XGLMConfig.from_pretrained('facebook/xglm-564M' ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[Any] =tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) __UpperCamelCase : Union[str, Any] =None if self.use_input_mask: __UpperCamelCase : Dict =random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase : Any =self.get_config() __UpperCamelCase : Optional[Any] =floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def __lowercase ( self ): """simple docstring""" return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=lowerCamelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=lowerCamelCase__ , ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[str] =self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) : int =config_and_inputs __UpperCamelCase : Optional[Any] ={ 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class __A ( a , a , unittest.TestCase ): """simple docstring""" UpperCamelCase__ : Union[str, Any] =(TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () UpperCamelCase__ : str =(TFXGLMForCausalLM,) if is_tf_available() else () UpperCamelCase__ : Optional[Any] =( {"""feature-extraction""": TFXGLMModel, """text-generation""": TFXGLMForCausalLM} if is_tf_available() else {} ) UpperCamelCase__ : Tuple =False UpperCamelCase__ : Tuple =False UpperCamelCase__ : Optional[Any] =False def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Tuple =TFXGLMModelTester(self ) __UpperCamelCase : Dict =ConfigTester(self , config_class=lowerCamelCase__ , n_embd=37 ) def __lowercase ( self ): """simple docstring""" self.config_tester.run_common_tests() @slow def __lowercase ( self ): """simple docstring""" for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase : Optional[Any] =TFXGLMModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) @unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' ) def __lowercase ( self ): """simple docstring""" super().test_resize_token_embeddings() @require_tf class __A ( unittest.TestCase ): """simple docstring""" @slow def __lowercase ( self , lowerCamelCase__=True ): """simple docstring""" __UpperCamelCase : int =TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase : List[str] =tf.convert_to_tensor([[2, 268, 9865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __UpperCamelCase : str =[2, 268, 9865, 67, 11, 1988, 57252, 9865, 5, 984, 67, 1988, 213838, 1658, 53, 70446, 33, 6657, 278, 1581] # fmt: on __UpperCamelCase : Optional[Any] =model.generate(lowerCamelCase__ , do_sample=lowerCamelCase__ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , lowerCamelCase__ ) @slow def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[str] =XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase : Union[str, Any] =TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) tf.random.set_seed(0 ) __UpperCamelCase : str =tokenizer('Today is a nice day and' , return_tensors='tf' ) __UpperCamelCase : Union[str, Any] =tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(':/CPU:0' ): __UpperCamelCase : Any =model.generate(lowerCamelCase__ , do_sample=lowerCamelCase__ , seed=[7, 0] ) __UpperCamelCase : Tuple =tokenizer.decode(output_ids[0] , skip_special_tokens=lowerCamelCase__ ) __UpperCamelCase : List[Any] =( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) @slow def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Tuple =TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase : Optional[Any] =XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase : Optional[Any] ='left' # use different length sentences to test batching __UpperCamelCase : Optional[int] =[ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] __UpperCamelCase : List[Any] =tokenizer(lowerCamelCase__ , return_tensors='tf' , padding=lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] =inputs['input_ids'] __UpperCamelCase : Dict =model.generate(input_ids=lowerCamelCase__ , attention_mask=inputs['attention_mask'] , max_new_tokens=12 ) __UpperCamelCase : List[Any] =tokenizer(sentences[0] , return_tensors='tf' ).input_ids __UpperCamelCase : Dict =model.generate(input_ids=lowerCamelCase__ , max_new_tokens=12 ) __UpperCamelCase : Any =tokenizer(sentences[1] , return_tensors='tf' ).input_ids __UpperCamelCase : Optional[Any] =model.generate(input_ids=lowerCamelCase__ , max_new_tokens=12 ) __UpperCamelCase : Optional[int] =tokenizer.batch_decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] =tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCamelCase__ ) __UpperCamelCase : int =tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCamelCase__ ) __UpperCamelCase : Any =[ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , [non_padded_sentence, padded_sentence] )
71
A_ :Optional[int] = ''' # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git ''' A_ :Union[str, Any] = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] A_ :Optional[Any] = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
71
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case = { """configuration_instructblip""": [ """INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """InstructBlipConfig""", """InstructBlipQFormerConfig""", """InstructBlipVisionConfig""", ], """processing_instructblip""": ["""InstructBlipProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """InstructBlipQFormerModel""", """InstructBlipPreTrainedModel""", """InstructBlipForConditionalGeneration""", """InstructBlipVisionModel""", ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
353
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy __snake_case = logging.getLogger(__name__) def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = False , ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ = bnb_quantization_config.load_in_abit SCREAMING_SNAKE_CASE__ = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( 'You have a version of `bitsandbytes` that is not compatible with 8bit quantization,' ' make sure you have the latest version of `bitsandbytes` installed.' ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( 'You have a version of `bitsandbytes` that is not compatible with 4bit quantization,' 'make sure you have the latest version of `bitsandbytes` installed.' ) SCREAMING_SNAKE_CASE__ = [] # custom device map if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(device_map.keys() ) > 1: SCREAMING_SNAKE_CASE__ = [key for key, value in device_map.items() if value in ['disk', 'cpu']] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: SCREAMING_SNAKE_CASE__ = get_keys_to_not_convert(UpperCamelCase_ ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(UpperCamelCase_ ) # compatibility with peft SCREAMING_SNAKE_CASE__ = load_in_abit SCREAMING_SNAKE_CASE__ = load_in_abit SCREAMING_SNAKE_CASE__ = get_parameter_device(UpperCamelCase_ ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( 'It is not recommended to quantize a loaded model. ' 'The model should be instantiated under the `init_empty_weights` context manager.' ) SCREAMING_SNAKE_CASE__ = replace_with_bnb_layers(UpperCamelCase_ , UpperCamelCase_ , modules_to_not_convert=UpperCamelCase_ ) # convert param to the right dtype SCREAMING_SNAKE_CASE__ = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: SCREAMING_SNAKE_CASE__ = name.replace('.weight' , '' ).replace('.bias' , '' ) SCREAMING_SNAKE_CASE__ = getattr(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(UpperCamelCase_ ): param.to(UpperCamelCase_ ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError('No GPU found. A GPU is needed for quantization.' ) logger.info( F'The model device type is {model_device.type}. However, cuda is needed for quantization.' 'We move the model to cuda.' ) return model elif weights_location is None: raise RuntimeError( F'`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ' ) else: with init_empty_weights(): SCREAMING_SNAKE_CASE__ = replace_with_bnb_layers( UpperCamelCase_ , UpperCamelCase_ , modules_to_not_convert=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = get_quantized_model_device_map( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , max_memory=UpperCamelCase_ , no_split_module_classes=UpperCamelCase_ , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = any(x in list(device_map.values() ) for x in ['cpu', 'disk'] ) load_checkpoint_in_model( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , dtype=bnb_quantization_config.torch_dtype , offload_folder=UpperCamelCase_ , offload_state_dict=UpperCamelCase_ , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(UpperCamelCase_ , device_map=UpperCamelCase_ , offload_dir=UpperCamelCase_ ) def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None ) -> Optional[Any]: '''simple docstring''' if device_map is None: if torch.cuda.is_available(): SCREAMING_SNAKE_CASE__ = {'': torch.cuda.current_device()} else: raise RuntimeError('No GPU found. A GPU is needed for quantization.' ) logger.info('The device_map was not initialized.' 'Setting device_map to `{\'\':torch.cuda.current_device()}`.' ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( 'If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or ' '\'sequential\'.' ) SCREAMING_SNAKE_CASE__ = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = special_dtypes SCREAMING_SNAKE_CASE__ = no_split_module_classes SCREAMING_SNAKE_CASE__ = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": SCREAMING_SNAKE_CASE__ = get_balanced_memory( UpperCamelCase_ , low_zero=(device_map == 'balanced_low_0') , max_memory=UpperCamelCase_ , **UpperCamelCase_ , ) SCREAMING_SNAKE_CASE__ = max_memory SCREAMING_SNAKE_CASE__ = infer_auto_device_map(UpperCamelCase_ , **UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): # check if don't have any quantized module on the cpu SCREAMING_SNAKE_CASE__ = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules SCREAMING_SNAKE_CASE__ = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( '\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n ' ) else: logger.info( 'Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit' ) del device_map_without_some_modules return device_map def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None , UpperCamelCase_=None ) -> Optional[Any]: '''simple docstring''' if modules_to_not_convert is None: SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = _replace_with_bnb_layers( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if not has_been_replaced: logger.warning( 'You are loading your model in 8bit or 4bit but no linear modules were found in your model.' ' this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.' ' Please double check your model architecture, or submit an issue on github if you think this is' ' a bug.' ) return model def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None , UpperCamelCase_=None , ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = False for name, module in model.named_children(): if current_key_name is None: SCREAMING_SNAKE_CASE__ = [] current_key_name.append(UpperCamelCase_ ) if isinstance(UpperCamelCase_ , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` SCREAMING_SNAKE_CASE__ = '.'.join(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: SCREAMING_SNAKE_CASE__ = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: SCREAMING_SNAKE_CASE__ = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=UpperCamelCase_ , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: SCREAMING_SNAKE_CASE__ = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError('load_in_8bit and load_in_4bit can\'t be both False' ) SCREAMING_SNAKE_CASE__ = module.weight.data if module.bias is not None: SCREAMING_SNAKE_CASE__ = module.bias.data bnb_module.requires_grad_(UpperCamelCase_ ) setattr(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = True if len(list(module.children() ) ) > 0: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = _replace_with_bnb_layers( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def _lowercase ( UpperCamelCase_ ) -> Union[str, Any]: '''simple docstring''' with init_empty_weights(): SCREAMING_SNAKE_CASE__ = deepcopy(UpperCamelCase_ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` SCREAMING_SNAKE_CASE__ = find_tied_parameters(UpperCamelCase_ ) # For compatibility with Accelerate < 0.18 if isinstance(UpperCamelCase_ , UpperCamelCase_ ): SCREAMING_SNAKE_CASE__ = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: SCREAMING_SNAKE_CASE__ = sum(UpperCamelCase_ , [] ) SCREAMING_SNAKE_CASE__ = len(UpperCamelCase_ ) > 0 # Check if it is a base model SCREAMING_SNAKE_CASE__ = False if hasattr(UpperCamelCase_ , 'base_model_prefix' ): SCREAMING_SNAKE_CASE__ = not hasattr(UpperCamelCase_ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head SCREAMING_SNAKE_CASE__ = list(model.named_children() ) SCREAMING_SNAKE_CASE__ = [list_modules[-1][0]] # add last module together with tied weights SCREAMING_SNAKE_CASE__ = set(UpperCamelCase_ ) - set(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = list(set(UpperCamelCase_ ) ) + list(UpperCamelCase_ ) # remove ".weight" from the keys SCREAMING_SNAKE_CASE__ = ['.weight', '.bias'] SCREAMING_SNAKE_CASE__ = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: SCREAMING_SNAKE_CASE__ = name.replace(UpperCamelCase_ , '' ) filtered_module_names.append(UpperCamelCase_ ) return filtered_module_names def _lowercase ( UpperCamelCase_ ) -> str: '''simple docstring''' for m in model.modules(): if isinstance(UpperCamelCase_ , bnb.nn.Linearabit ): return True return False def _lowercase ( UpperCamelCase_ ) -> str: '''simple docstring''' return next(parameter.parameters() ).device def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> List[str]: '''simple docstring''' if fpaa_statistics is None: set_module_tensor_to_device(UpperCamelCase_ , UpperCamelCase_ , 0 , dtype=UpperCamelCase_ , value=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = param_name SCREAMING_SNAKE_CASE__ = model if "." in tensor_name: SCREAMING_SNAKE_CASE__ = tensor_name.split('.' ) for split in splits[:-1]: SCREAMING_SNAKE_CASE__ = getattr(UpperCamelCase_ , UpperCamelCase_ ) if new_module is None: raise ValueError(F'{module} has no attribute {split}.' ) SCREAMING_SNAKE_CASE__ = new_module SCREAMING_SNAKE_CASE__ = splits[-1] # offload weights SCREAMING_SNAKE_CASE__ = False offload_weight(module._parameters[tensor_name] , UpperCamelCase_ , UpperCamelCase_ , index=UpperCamelCase_ ) if hasattr(module._parameters[tensor_name] , 'SCB' ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace('weight' , 'SCB' ) , UpperCamelCase_ , index=UpperCamelCase_ , ) else: offload_weight(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , index=UpperCamelCase_ ) offload_weight(UpperCamelCase_ , param_name.replace('weight' , 'SCB' ) , UpperCamelCase_ , index=UpperCamelCase_ ) set_module_tensor_to_device(UpperCamelCase_ , UpperCamelCase_ , 'meta' , dtype=UpperCamelCase_ , value=torch.empty(*param.size() ) )
169
0
"""simple docstring""" from collections.abc import Generator def __lowerCAmelCase (): __lowerCAmelCase , __lowerCAmelCase : List[Any] = 0, 1 while True: __lowerCAmelCase , __lowerCAmelCase : Optional[int] = b, a + b yield b def __lowerCAmelCase (_UpperCamelCase = 1000 ): __lowerCAmelCase : Optional[int] = 1 __lowerCAmelCase : List[str] = fibonacci_generator() while len(str(next(_UpperCamelCase ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
86
"""simple docstring""" import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class A__ ( enum.Enum): A_ : List[Any] = 0 A_ : Dict = 1 A_ : Union[str, Any] = 2 @add_end_docstrings(_lowerCamelCase) class A__ ( _lowerCamelCase): A_ : str = '\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n ' def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == 'tf' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. __lowerCAmelCase : Any = None if self.model.config.prefix is not None: __lowerCAmelCase : str = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. __lowerCAmelCase : Tuple = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Union[str, Any] = self._sanitize_parameters(prefix=_SCREAMING_SNAKE_CASE , **self._forward_params ) __lowerCAmelCase : List[str] = {**self._preprocess_params, **preprocess_params} __lowerCAmelCase : List[str] = {**self._forward_params, **forward_params} def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE , ): __lowerCAmelCase : Optional[int] = {} if prefix is not None: __lowerCAmelCase : Union[str, Any] = prefix if prefix: __lowerCAmelCase : Dict = self.tokenizer( _SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , return_tensors=self.framework ) __lowerCAmelCase : List[Any] = prefix_inputs['input_ids'].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( f"{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected" ' [None, \'hole\']' ) __lowerCAmelCase : int = handle_long_generation preprocess_params.update(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = generate_kwargs __lowerCAmelCase : List[Any] = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_full_text`' ) if return_tensors is not None: raise ValueError('`return_full_text` is mutually exclusive with `return_tensors`' ) __lowerCAmelCase : Optional[Any] = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_tensors`' ) __lowerCAmelCase : List[Any] = ReturnType.TENSORS if return_type is not None: __lowerCAmelCase : Optional[Any] = return_type if clean_up_tokenization_spaces is not None: __lowerCAmelCase : Tuple = clean_up_tokenization_spaces if stop_sequence is not None: __lowerCAmelCase : Union[str, Any] = self.tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 1: warnings.warn( 'Stopping on a multiple token sequence is not yet supported on transformers. The first token of' ' the stop sequence will be used as the stop sequence string in the interim.' ) __lowerCAmelCase : Optional[Any] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def __lowerCamelCase ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'add_space_before_punct_symbol': True} ) return super()._parse_and_tokenize(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def __call__( self , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): return super().__call__(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="" , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Any = self.tokenizer( prefix + prompt_text , padding=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , return_tensors=self.framework ) __lowerCAmelCase : Optional[Any] = prompt_text if handle_long_generation == "hole": __lowerCAmelCase : str = inputs['input_ids'].shape[-1] if "max_new_tokens" in generate_kwargs: __lowerCAmelCase : Union[str, Any] = generate_kwargs['max_new_tokens'] else: __lowerCAmelCase : Any = generate_kwargs.get('max_length' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('We cannot infer how many new tokens are expected' ) if cur_len + new_tokens > self.tokenizer.model_max_length: __lowerCAmelCase : Any = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( 'We cannot use `hole` to handle this generation the number of desired tokens exceeds the' ' models max length' ) __lowerCAmelCase : int = inputs['input_ids'][:, -keep_length:] if "attention_mask" in inputs: __lowerCAmelCase : List[Any] = inputs['attention_mask'][:, -keep_length:] return inputs def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): __lowerCAmelCase : str = model_inputs['input_ids'] __lowerCAmelCase : List[Any] = model_inputs.get('attention_mask' , _SCREAMING_SNAKE_CASE ) # Allow empty prompts if input_ids.shape[1] == 0: __lowerCAmelCase : Dict = None __lowerCAmelCase : str = None __lowerCAmelCase : Tuple = 1 else: __lowerCAmelCase : Any = input_ids.shape[0] __lowerCAmelCase : Union[str, Any] = model_inputs.pop('prompt_text' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. __lowerCAmelCase : Optional[int] = generate_kwargs.pop('prefix_length' , 0 ) if prefix_length > 0: __lowerCAmelCase : Any = 'max_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].max_new_tokens is not None ) if not has_max_new_tokens: __lowerCAmelCase : List[str] = generate_kwargs.get('max_length' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length __lowerCAmelCase : Dict = 'min_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL __lowerCAmelCase : Optional[int] = self.model.generate(input_ids=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = generated_sequence.shape[0] if self.framework == "pt": __lowerCAmelCase : Dict = generated_sequence.reshape(_SCREAMING_SNAKE_CASE , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": __lowerCAmelCase : Any = tf.reshape(_SCREAMING_SNAKE_CASE , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=ReturnType.FULL_TEXT , _SCREAMING_SNAKE_CASE=True ): __lowerCAmelCase : Any = model_outputs['generated_sequence'][0] __lowerCAmelCase : Tuple = model_outputs['input_ids'] __lowerCAmelCase : Any = model_outputs['prompt_text'] __lowerCAmelCase : int = generated_sequence.numpy().tolist() __lowerCAmelCase : Union[str, Any] = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: __lowerCAmelCase : int = {'generated_token_ids': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text __lowerCAmelCase : Any = self.tokenizer.decode( _SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=_SCREAMING_SNAKE_CASE , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: __lowerCAmelCase : Optional[Any] = 0 else: __lowerCAmelCase : Any = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=_SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=_SCREAMING_SNAKE_CASE , ) ) if return_type == ReturnType.FULL_TEXT: __lowerCAmelCase : Union[str, Any] = prompt_text + text[prompt_length:] else: __lowerCAmelCase : int = text[prompt_length:] __lowerCAmelCase : Dict = {'generated_text': all_text} records.append(_SCREAMING_SNAKE_CASE ) return records
86
1
from manim import * class _snake_case ( lowercase__): def A__ ( self : Optional[int] ): lowercase__ = Rectangle(height=0.5, width=0.5 ) lowercase__ = Rectangle(height=0.25, width=0.25 ) lowercase__ = Rectangle(height=0.46, width=0.46 ).set_stroke(width=0 ) lowercase__ = [mem.copy() for i in range(6 )] lowercase__ = [mem.copy() for i in range(6 )] lowercase__ = VGroup(*__lowercase ).arrange(__lowercase, buff=0 ) lowercase__ = VGroup(*__lowercase ).arrange(__lowercase, buff=0 ) lowercase__ = VGroup(__lowercase, __lowercase ).arrange(__lowercase, buff=0 ) lowercase__ = Text("CPU", font_size=24 ) lowercase__ = Group(__lowercase, __lowercase ).arrange(__lowercase, buff=0.5, aligned_edge=__lowercase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__lowercase ) lowercase__ = [mem.copy() for i in range(4 )] lowercase__ = VGroup(*__lowercase ).arrange(__lowercase, buff=0 ) lowercase__ = Text("GPU", font_size=24 ) lowercase__ = Group(__lowercase, __lowercase ).arrange(__lowercase, buff=0.5, aligned_edge=__lowercase ) gpu.move_to([-1, -1, 0] ) self.add(__lowercase ) lowercase__ = [mem.copy() for i in range(6 )] lowercase__ = VGroup(*__lowercase ).arrange(__lowercase, buff=0 ) lowercase__ = Text("Model", font_size=24 ) lowercase__ = Group(__lowercase, __lowercase ).arrange(__lowercase, buff=0.5, aligned_edge=__lowercase ) model.move_to([3, -1.0, 0] ) self.add(__lowercase ) lowercase__ = [] lowercase__ = [] lowercase__ = [] for i, rect in enumerate(__lowercase ): rect.set_stroke(__lowercase ) lowercase__ = Rectangle(height=0.46 / 4, width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__lowercase, opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ), buff=0.02, direction=__lowercase ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0], direction=__lowercase, buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1], direction=__lowercase, buff=0.0 ) self.add(__lowercase ) model_cpu_arr.append(__lowercase ) self.add(*__lowercase, *__lowercase, *__lowercase ) lowercase__ = [mem.copy() for i in range(6 )] lowercase__ = VGroup(*__lowercase ).arrange(__lowercase, buff=0 ) lowercase__ = Text("Loaded Checkpoint", font_size=24 ) lowercase__ = Group(__lowercase, __lowercase ).arrange(__lowercase, buff=0.5, aligned_edge=__lowercase ) checkpoint.move_to([3, 0.5, 0] ) self.add(__lowercase ) lowercase__ = [] lowercase__ = [] for i, rect in enumerate(__lowercase ): lowercase__ = fill.copy().set_fill(__lowercase, opacity=0.7 ) target.move_to(__lowercase ) ckpt_arr.append(__lowercase ) lowercase__ = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(__lowercase ) self.add(*__lowercase, *__lowercase ) lowercase__ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowercase__ = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''', font_size=18, ) key_text.move_to([-5, 2.4, 0] ) self.add(__lowercase, __lowercase ) lowercase__ = MarkupText( F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''', font_size=18, ) blue_text.next_to(__lowercase, DOWN * 2.4, aligned_edge=key_text.get_left() ) self.add(__lowercase ) lowercase__ = MarkupText( F'''Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.''', font_size=24, ) step_a.move_to([2, 2, 0] ) lowercase__ = [meta_mem.copy() for i in range(6 )] lowercase__ = [meta_mem.copy() for i in range(6 )] lowercase__ = VGroup(*__lowercase ).arrange(__lowercase, buff=0 ) lowercase__ = VGroup(*__lowercase ).arrange(__lowercase, buff=0 ) lowercase__ = VGroup(__lowercase, __lowercase ).arrange(__lowercase, buff=0 ) lowercase__ = Text("Disk", font_size=24 ) lowercase__ = Group(__lowercase, __lowercase ).arrange(__lowercase, buff=0.5, aligned_edge=__lowercase ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(__lowercase, run_time=3 ), Write(__lowercase, run_time=1 ), Create(__lowercase, run_time=1 ) ) lowercase__ = [] for i, rect in enumerate(__lowercase ): lowercase__ = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(__lowercase, run_time=1.5 ) ) self.play(*__lowercase ) self.play(FadeOut(__lowercase ) ) lowercase__ = MarkupText(F'''Then, the checkpoint is removed from memory\nthrough garbage collection.''', font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(__lowercase, run_time=3 ) ) self.play( FadeOut(__lowercase, __lowercase, *__lowercase, *__lowercase ), ) self.wait()
224
from __future__ import annotations from typing import TypedDict class _snake_case ( lowercase__): UpperCamelCase__ : str UpperCamelCase__ : int def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise TypeError("The parameter s type must be str." ) return [s[i:] + s[:i] for i in range(len(SCREAMING_SNAKE_CASE_ ) )] def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise TypeError("The parameter s type must be str." ) if not s: raise ValueError("The parameter s must not be empty." ) lowercase__ = all_rotations(SCREAMING_SNAKE_CASE_ ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation lowercase__ = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(SCREAMING_SNAKE_CASE_ ), } return response def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise TypeError("The parameter bwt_string type must be str." ) if not bwt_string: raise ValueError("The parameter bwt_string must not be empty." ) try: lowercase__ = int(SCREAMING_SNAKE_CASE_ ) except ValueError: raise TypeError( "The parameter idx_original_string type must be int or passive" " of cast to int." ) if idx_original_string < 0: raise ValueError("The parameter idx_original_string must not be lower than 0." ) if idx_original_string >= len(SCREAMING_SNAKE_CASE_ ): raise ValueError( "The parameter idx_original_string must be lower than" " len(bwt_string)." ) lowercase__ = [""] * len(SCREAMING_SNAKE_CASE_ ) for _ in range(len(SCREAMING_SNAKE_CASE_ ) ): for i in range(len(SCREAMING_SNAKE_CASE_ ) ): lowercase__ = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": lowercase_ = """Provide a string that I will generate its BWT transform: """ lowercase_ = input(entry_msg).strip() lowercase_ = bwt_transform(s) print( F'Burrows Wheeler transform for string \'{s}\' results ' F'in \'{result["bwt_string"]}\'' ) lowercase_ = reverse_bwt(result["""bwt_string"""], result["""idx_original_string"""]) print( F'Reversing Burrows Wheeler transform for entry \'{result["bwt_string"]}\' ' F'we get original string \'{original_string}\'' )
224
1
'''simple docstring''' from math import loga def _A ( A__ ): """simple docstring""" if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(A__ , A__ ): raise TypeError('''Input value must be a \'int\' type''' ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
104
'''simple docstring''' import os lowerCAmelCase__ = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 100, '''D''': 500, '''M''': 1000} def _A ( A__ ): """simple docstring""" __lowercase = 0 __lowercase = 0 while index < len(A__ ) - 1: __lowercase = SYMBOLS[numerals[index]] __lowercase = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def _A ( A__ ): """simple docstring""" __lowercase = '''''' __lowercase = num // 1000 numerals += m_count * "M" num %= 1000 __lowercase = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 __lowercase = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def _A ( A__ = "/p089_roman.txt" ): """simple docstring""" __lowercase = 0 with open(os.path.dirname(A__ ) + roman_numerals_filename ) as filea: __lowercase = filea.readlines() for line in lines: __lowercase = line.strip() __lowercase = parse_roman_numerals(A__ ) __lowercase = generate_roman_numerals(A__ ) savings += len(A__ ) - len(A__ ) return savings if __name__ == "__main__": print(f'{solution() = }')
104
1
"""simple docstring""" import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class lowercase_ : '''simple docstring''' def __init__( self : Any , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int]=100 , _UpperCAmelCase : Any=13 , _UpperCAmelCase : Optional[int]=30 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : int=3 , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : List[Any]=32 , _UpperCAmelCase : Dict=4 , _UpperCAmelCase : Dict=4 , _UpperCAmelCase : Optional[int]=37 , _UpperCAmelCase : str="gelu" , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Dict=10 , _UpperCAmelCase : List[str]=0.02 , _UpperCAmelCase : Optional[Any]=3 , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Dict=[0, 1, 2, 3] , ): _A = parent _A = 100 _A = batch_size _A = image_size _A = patch_size _A = num_channels _A = is_training _A = use_labels _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = type_sequence_label_size _A = initializer_range _A = scope _A = out_indices _A = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _A = (image_size // patch_size) ** 2 _A = num_patches + 1 def lowerCAmelCase_ ( self : Dict ): _A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A = None _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _A = self.get_config() return config, pixel_values, labels, pixel_labels def lowerCAmelCase_ ( self : Tuple ): return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ): _A = BeitModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() _A = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] ): _A = BeitForMaskedImageModeling(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() _A = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict ): _A = self.type_sequence_label_size _A = BeitForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() _A = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _A = 1 _A = BeitForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() _A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _A = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase_ ( self : str , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] ): _A = self.num_labels _A = BeitForSemanticSegmentation(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() _A = model(UpperCamelCase__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) _A = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def lowerCAmelCase_ ( self : str ): _A = self.prepare_config_and_inputs() _A , _A , _A , _A = config_and_inputs _A = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase_ ( __a , __a , unittest.TestCase ): '''simple docstring''' UpperCAmelCase : int = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) UpperCAmelCase : str = ( { '''feature-extraction''': BeitModel, '''image-classification''': BeitForImageClassification, '''image-segmentation''': BeitForSemanticSegmentation, } if is_torch_available() else {} ) UpperCAmelCase : int = False UpperCAmelCase : Tuple = False UpperCAmelCase : str = False def lowerCAmelCase_ ( self : Tuple ): _A = BeitModelTester(self ) _A = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def lowerCAmelCase_ ( self : int ): self.config_tester.run_common_tests() @unittest.skip(reason='BEiT does not use inputs_embeds' ) def lowerCAmelCase_ ( self : List[str] ): pass @require_torch_multi_gpu @unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def lowerCAmelCase_ ( self : Optional[int] ): pass def lowerCAmelCase_ ( self : str ): _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _A = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) ) def lowerCAmelCase_ ( self : Dict ): _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(UpperCamelCase__ ) _A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A = [*signature.parameters.keys()] _A = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def lowerCAmelCase_ ( self : Any ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def lowerCAmelCase_ ( self : Union[str, Any] ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase__ ) def lowerCAmelCase_ ( self : List[str] ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) def lowerCAmelCase_ ( self : int ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*UpperCamelCase__ ) def lowerCAmelCase_ ( self : Optional[Any] ): if not self.model_tester.is_training: return _A , _A = self.model_tester.prepare_config_and_inputs_for_common() _A = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(UpperCamelCase__ ), BeitForMaskedImageModeling]: continue _A = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.train() _A = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) _A = model(**UpperCamelCase__ ).loss loss.backward() def lowerCAmelCase_ ( self : List[str] ): _A , _A = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return _A = False _A = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(UpperCamelCase__ ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue _A = model_class(UpperCamelCase__ ) model.gradient_checkpointing_enable() model.to(UpperCamelCase__ ) model.train() _A = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) _A = model(**UpperCamelCase__ ).loss loss.backward() def lowerCAmelCase_ ( self : Union[str, Any] ): _A , _A = self.model_tester.prepare_config_and_inputs_for_common() _A = _config_zero_init(UpperCamelCase__ ) for model_class in self.all_model_classes: _A = model_class(config=UpperCamelCase__ ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def lowerCAmelCase_ ( self : List[Any] ): for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = BeitModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def _snake_case ( ) -> Union[str, Any]: '''simple docstring''' _A = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase_ ( self : Union[str, Any] ): return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def lowerCAmelCase_ ( self : Optional[Any] ): _A = BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(UpperCamelCase__ ) _A = self.default_image_processor _A = prepare_img() _A = image_processor(images=UpperCamelCase__ , return_tensors='pt' ).pixel_values.to(UpperCamelCase__ ) # prepare bool_masked_pos _A = torch.ones((1, 196) , dtype=torch.bool ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): _A = model(pixel_values=UpperCamelCase__ , bool_masked_pos=UpperCamelCase__ ) _A = outputs.logits # verify the logits _A = torch.Size((1, 196, 8_192) ) self.assertEqual(logits.shape , UpperCamelCase__ ) _A = torch.tensor( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , UpperCamelCase__ , atol=1E-2 ) ) @slow def lowerCAmelCase_ ( self : Any ): _A = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(UpperCamelCase__ ) _A = self.default_image_processor _A = prepare_img() _A = image_processor(images=UpperCamelCase__ , return_tensors='pt' ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): _A = model(**UpperCamelCase__ ) _A = outputs.logits # verify the logits _A = torch.Size((1, 1_000) ) self.assertEqual(logits.shape , UpperCamelCase__ ) _A = torch.tensor([-1.2385, -1.0987, -1.0108] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(logits[0, :3] , UpperCamelCase__ , atol=1E-4 ) ) _A = 281 self.assertEqual(logits.argmax(-1 ).item() , UpperCamelCase__ ) @slow def lowerCAmelCase_ ( self : Union[str, Any] ): _A = BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to( UpperCamelCase__ ) _A = self.default_image_processor _A = prepare_img() _A = image_processor(images=UpperCamelCase__ , return_tensors='pt' ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): _A = model(**UpperCamelCase__ ) _A = outputs.logits # verify the logits _A = torch.Size((1, 21_841) ) self.assertEqual(logits.shape , UpperCamelCase__ ) _A = torch.tensor([1.6881, -0.2787, 0.5901] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(logits[0, :3] , UpperCamelCase__ , atol=1E-4 ) ) _A = 2_396 self.assertEqual(logits.argmax(-1 ).item() , UpperCamelCase__ ) @slow def lowerCAmelCase_ ( self : int ): _A = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) _A = model.to(UpperCamelCase__ ) _A = BeitImageProcessor(do_resize=UpperCamelCase__ , size=640 , do_center_crop=UpperCamelCase__ ) _A = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) _A = Image.open(ds[0]['file'] ) _A = image_processor(images=UpperCamelCase__ , return_tensors='pt' ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): _A = model(**UpperCamelCase__ ) _A = outputs.logits # verify the logits _A = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , UpperCamelCase__ ) _A = version.parse(PIL.__version__ ) < version.parse('9.0.0' ) if is_pillow_less_than_a: _A = torch.tensor( [ [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]], [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]], [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]], ] , device=UpperCamelCase__ , ) else: _A = torch.tensor( [ [[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]], [[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]], [[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]], ] , device=UpperCamelCase__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , UpperCamelCase__ , atol=1E-4 ) ) @slow def lowerCAmelCase_ ( self : Dict ): _A = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) _A = model.to(UpperCamelCase__ ) _A = BeitImageProcessor(do_resize=UpperCamelCase__ , size=640 , do_center_crop=UpperCamelCase__ ) _A = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) _A = Image.open(ds[0]['file'] ) _A = image_processor(images=UpperCamelCase__ , return_tensors='pt' ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): _A = model(**UpperCamelCase__ ) _A = outputs.logits.detach().cpu() _A = image_processor.post_process_semantic_segmentation(outputs=UpperCamelCase__ , target_sizes=[(500, 300)] ) _A = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , UpperCamelCase__ ) _A = image_processor.post_process_semantic_segmentation(outputs=UpperCamelCase__ ) _A = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , UpperCamelCase__ )
369
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings a = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : bool = field(default=__lowerCAmelCase , metadata={'''help''': '''Whether to use SortishSampler or not.'''} ) UpperCAmelCase : bool = field( default=__lowerCAmelCase , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) UpperCAmelCase : Optional[int] = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `max_length` value of the model configuration.''' ) } , ) UpperCAmelCase : Optional[int] = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `num_beams` value of the model configuration.''' ) } , ) UpperCAmelCase : Optional[Union[str, Path, GenerationConfig]] = field( default=__lowerCAmelCase , metadata={ '''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.''' } , ) def lowerCAmelCase_ ( self : int ): _A = super().to_dict() for k, v in d.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _A = v.to_dict() return d
271
0
import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def _UpperCAmelCase (UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : int=None ): return field(default_factory=lambda: default , metadata=UpperCamelCase__ ) @dataclass class lowerCAmelCase__ : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( metadata={"help": "The csv file to plot."} , ) __SCREAMING_SNAKE_CASE = field( default=a , metadata={"help": "Whether to plot along batch size or sequence length. Defaults to sequence length."} , ) __SCREAMING_SNAKE_CASE = field( default=a , metadata={"help": "Whether the csv file has time results or memory results. Defaults to memory results."} , ) __SCREAMING_SNAKE_CASE = field( default=a , metadata={"help": "Disable logarithmic scale when plotting"} , ) __SCREAMING_SNAKE_CASE = field( default=a , metadata={ "help": "Whether the csv file has training results or inference results. Defaults to inference results." } , ) __SCREAMING_SNAKE_CASE = field( default=a , metadata={"help": "Filename under which the plot will be saved. If unused no plot is saved."} , ) __SCREAMING_SNAKE_CASE = list_field( default=a , metadata={"help": "List of model names that are used instead of the ones in the csv file."}) def _UpperCAmelCase (UpperCamelCase__ : Union[str, Any] ): try: int(UpperCamelCase__ ) return True except ValueError: return False def _UpperCAmelCase (UpperCamelCase__ : List[str] ): try: float(UpperCamelCase__ ) return True except ValueError: return False class lowerCAmelCase__ : '''simple docstring''' def __init__( self , __lowerCamelCase) -> Dict: _A : Any = args _A : Optional[Any] = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}}) with open(self.args.csv_file , newline="") as csv_file: _A : Union[str, Any] = csv.DictReader(__lowerCamelCase) for row in reader: _A : Tuple = row["model"] self.result_dict[model_name]["bsz"].append(int(row["batch_size"])) self.result_dict[model_name]["seq_len"].append(int(row["sequence_length"])) if can_convert_to_int(row["result"]): # value is not None _A : Union[str, Any] = int(row["result"]) elif can_convert_to_float(row["result"]): # value is not None _A : Tuple = float(row["result"]) def _lowerCamelCase ( self) -> int: _A , _A : Union[str, Any] = plt.subplots() _A : str = "Time usage" if self.args.is_time else "Memory usage" _A : Dict = title_str + " for training" if self.args.is_train else title_str + " for inference" if not self.args.no_log_scale: # set logarithm scales ax.set_xscale("log") ax.set_yscale("log") for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter()) for model_name_idx, model_name in enumerate(self.result_dict.keys()): _A : List[str] = sorted(set(self.result_dict[model_name]["bsz"])) _A : int = sorted(set(self.result_dict[model_name]["seq_len"])) _A : List[str] = self.result_dict[model_name]["result"] ((_A) , (_A)) : Dict = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) _A : Any = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: _A : Optional[int] = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=__lowerCamelCase , ) else: _A : List[str] = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((_A) , (_A)) : Union[str, Any] = ( ("batch_size", "len") if self.args.plot_along_batch else ("in #tokens", "bsz") ) _A : int = np.asarray(__lowerCamelCase , __lowerCamelCase)[: len(__lowerCamelCase)] plt.scatter( __lowerCamelCase , __lowerCamelCase , label=F"{label_model_name} - {inner_loop_label}: {inner_loop_value}") plt.plot(__lowerCamelCase , __lowerCamelCase , "--") title_str += F" {label_model_name} vs." _A : str = title_str[:-4] _A : int = "Time in s" if self.args.is_time else "Memory in MB" # plot plt.title(__lowerCamelCase) plt.xlabel(__lowerCamelCase) plt.ylabel(__lowerCamelCase) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file) else: plt.show() def _UpperCAmelCase (): _A : List[str] = HfArgumentParser(UpperCamelCase__ ) _A : Union[str, Any] = parser.parse_args_into_dataclasses()[0] _A : Any = Plot(args=UpperCamelCase__ ) plot.plot() if __name__ == "__main__": main()
11
import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class lowerCAmelCase__ ( a , a , unittest.TestCase): '''simple docstring''' __SCREAMING_SNAKE_CASE = VQModel __SCREAMING_SNAKE_CASE = "sample" @property def _lowerCamelCase ( self , __lowerCamelCase=(3_2, 3_2)) -> Optional[Any]: _A : Optional[int] = 4 _A : Tuple = 3 _A : List[Any] = floats_tensor((batch_size, num_channels) + sizes).to(__lowerCamelCase) return {"sample": image} @property def _lowerCamelCase ( self) -> int: return (3, 3_2, 3_2) @property def _lowerCamelCase ( self) -> List[Any]: return (3, 3_2, 3_2) def _lowerCamelCase ( self) -> Union[str, Any]: _A : List[Any] = { "block_out_channels": [3_2, 6_4], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 3, } _A : int = self.dummy_input return init_dict, inputs_dict def _lowerCamelCase ( self) -> Union[str, Any]: pass def _lowerCamelCase ( self) -> Any: pass def _lowerCamelCase ( self) -> Any: _A , _A : List[Any] = VQModel.from_pretrained("fusing/vqgan-dummy" , output_loading_info=__lowerCamelCase) self.assertIsNotNone(__lowerCamelCase) self.assertEqual(len(loading_info["missing_keys"]) , 0) model.to(__lowerCamelCase) _A : str = model(**self.dummy_input) assert image is not None, "Make sure output is not None" def _lowerCamelCase ( self) -> Union[str, Any]: _A : Optional[Any] = VQModel.from_pretrained("fusing/vqgan-dummy") model.to(__lowerCamelCase).eval() torch.manual_seed(0) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0) _A : Tuple = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size) _A : Optional[int] = image.to(__lowerCamelCase) with torch.no_grad(): _A : List[str] = model(__lowerCamelCase).sample _A : int = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off _A : Optional[Any] = torch.tensor([-0.0_1_5_3, -0.4_0_4_4, -0.1_8_8_0, -0.5_1_6_1, -0.2_4_1_8, -0.4_0_7_2, -0.1_6_1_2, -0.0_6_3_3, -0.0_1_4_3]) # fmt: on self.assertTrue(torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3))
11
1
"""simple docstring""" import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging a__ = logging.get_logger(__name__) def __UpperCAmelCase ( __a : Union[str, Any]=None ,__a : Dict=None ) -> List[Any]: """simple docstring""" return field(default_factory=lambda: default ,metadata=__a ) @dataclass class UpperCAmelCase_ : """simple docstring""" UpperCAmelCase__ : List[str] = list_field( default=[] , metadata={ "help": ( "Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version" " of all available models" ) } , ) UpperCAmelCase__ : List[int] = list_field( default=[8] , metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"} ) UpperCAmelCase__ : List[int] = list_field( default=[8, 32, 128, 512] , metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"} , ) UpperCAmelCase__ : bool = field( default=__lowercase , metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."} , ) UpperCAmelCase__ : bool = field( default=__lowercase , metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."} , ) UpperCAmelCase__ : bool = field( default=__lowercase , metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."} ) UpperCAmelCase__ : bool = field(default=__lowercase , metadata={"help": "Use FP16 to accelerate inference."} ) UpperCAmelCase__ : bool = field(default=__lowercase , metadata={"help": "Benchmark training of model"} ) UpperCAmelCase__ : bool = field(default=__lowercase , metadata={"help": "Verbose memory tracing"} ) UpperCAmelCase__ : bool = field( default=__lowercase , metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."} , ) UpperCAmelCase__ : bool = field( default=__lowercase , metadata={ "help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory" } , ) UpperCAmelCase__ : bool = field(default=__lowercase , metadata={"help": "Trace memory line by line"} ) UpperCAmelCase__ : bool = field(default=__lowercase , metadata={"help": "Save result to a CSV file"} ) UpperCAmelCase__ : bool = field(default=__lowercase , metadata={"help": "Save all print statements in a log file"} ) UpperCAmelCase__ : bool = field(default=__lowercase , metadata={"help": "Whether to print environment information"} ) UpperCAmelCase__ : bool = field( default=__lowercase , metadata={ "help": ( "Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use" " multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled" " for debugging / testing and on TPU." ) } , ) UpperCAmelCase__ : str = field( default=F'''inference_time_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving time results to csv."} , ) UpperCAmelCase__ : str = field( default=F'''inference_memory_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving memory results to csv."} , ) UpperCAmelCase__ : str = field( default=F'''train_time_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving time results to csv for training."} , ) UpperCAmelCase__ : str = field( default=F'''train_memory_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving memory results to csv for training."} , ) UpperCAmelCase__ : str = field( default=F'''env_info_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving environment information."} , ) UpperCAmelCase__ : str = field( default=F'''log_{round(time() )}.csv''' , metadata={"help": "Log filename used if print statements are saved in log."} , ) UpperCAmelCase__ : int = field(default=3 , metadata={"help": "Times an experiment will be run."} ) UpperCAmelCase__ : bool = field( default=__lowercase , metadata={ "help": ( "Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain" " model weights." ) } , ) def __lowercase ( self ) -> Union[str, Any]: warnings.warn( F"""The class {self.__class__} is deprecated. Hugging Face Benchmarking utils""" ''' are deprecated in general and it is advised to use external Benchmarking libraries ''' ''' to benchmark Transformer models.''' , _a , ) def __lowercase ( self ) -> List[Any]: return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def __lowercase ( self ) -> List[str]: if len(self.models ) <= 0: raise ValueError( '''Please make sure you provide at least one model name / model identifier, *e.g.* `--models''' ''' bert-base-cased` or `args.models = [\'bert-base-cased\'].''' ) return self.models @property def __lowercase ( self ) -> List[str]: if not self.multi_process: return False elif self.is_tpu: logger.info('''Multiprocessing is currently not possible on TPU.''' ) return False else: return True
353
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def __UpperCAmelCase ( ) -> Optional[Any]: """simple docstring""" _a : int = ArgumentParser('''Accelerate CLI tool''' ,usage='''accelerate <command> [<args>]''' ,allow_abbrev=__a ) _a : Optional[int] = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=__a ) env_command_parser(subparsers=__a ) launch_command_parser(subparsers=__a ) tpu_command_parser(subparsers=__a ) test_command_parser(subparsers=__a ) # Let's go _a : Dict = parser.parse_args() if not hasattr(__a ,'''func''' ): parser.print_help() exit(1 ) # Run args.func(__a ) if __name__ == "__main__": main()
15
0
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int): return abs(_lowerCamelCase) if a == 0 else greatest_common_divisor(b % a , _lowerCamelCase) def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int): while y: # --> when y=0 then loop will terminate and return x as final GCD. lowercase__ , lowercase__ : Dict = y, x % y return abs(_lowerCamelCase) def lowercase_ ( ): try: lowercase__ : Dict = input("Enter two integers separated by comma (,): ").split(",") lowercase__ : Optional[Any] = int(nums[0]) lowercase__ : List[Any] = int(nums[1]) print( f'''greatest_common_divisor({num_a}, {num_a}) = ''' f'''{greatest_common_divisor(_lowerCamelCase , _lowerCamelCase)}''') print(f'''By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(_lowerCamelCase , _lowerCamelCase)}''') except (IndexError, UnboundLocalError, ValueError): print("Wrong input") if __name__ == "__main__": main()
87
import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class _UpperCamelCase ( lowerCAmelCase , unittest.TestCase ): UpperCAmelCase_ = FlaxAutoencoderKL @property def UpperCAmelCase_ ( self :int ) -> Optional[int]: UpperCAmelCase__ = 4 UpperCAmelCase__ = 3 UpperCAmelCase__ = (32, 32) UpperCAmelCase__ = jax.random.PRNGKey(0 ) UpperCAmelCase__ = jax.random.uniform(lowerCamelCase , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def UpperCAmelCase_ ( self :Optional[Any] ) -> Any: UpperCAmelCase__ = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } UpperCAmelCase__ = self.dummy_input return init_dict, inputs_dict
169
0
"""simple docstring""" import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class SCREAMING_SNAKE_CASE__ ( lowercase , unittest.TestCase ): """simple docstring""" a : int =XLMProphetNetTokenizer a : str =False a : Any =True def lowercase__ ( self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : Optional[Any] = XLMProphetNetTokenizer(snake_case__ , keep_accents=snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = "[PAD]" lowerCAmelCase : List[Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "[PAD]" ) self.assertEqual(vocab_keys[1] , "[CLS]" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(snake_case__ ) , 1_012 ) def lowercase__ ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_012 ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = XLMProphetNetTokenizer(snake_case__ , keep_accents=snake_case__ ) lowerCAmelCase : List[Any] = tokenizer.tokenize("This is a test" ) self.assertListEqual(snake_case__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowerCAmelCase : Union[str, Any] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) lowerCAmelCase : str = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual( snake_case__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) lowerCAmelCase : List[Any] = tokenizer.convert_ids_to_tokens(snake_case__ ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "[UNK]", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "[UNK]", ".", ] , ) @cached_property def lowercase__ ( self ): """simple docstring""" return XLMProphetNetTokenizer.from_pretrained("microsoft/xprophetnet-large-wiki100-cased" ) @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = "Hello World!" lowerCAmelCase : int = [35_389, 6_672, 49, 2] self.assertListEqual(snake_case__ , self.big_tokenizer.encode(snake_case__ ) ) @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = {"input_ids": [[11_073, 82_783, 18, 26, 82_783, 549, 51_540, 248, 17_209, 1_301, 217, 20, 215_186, 1_325, 147, 17_209, 1_301, 217, 20, 56_370, 53, 122_020, 20, 16_477, 27, 87_355, 4_548, 20, 4_728, 78_392, 17, 159_969, 18, 26, 24_491, 629, 15, 538, 22_704, 5_439, 15, 2_788, 24_491, 9_885, 15, 43_534, 605, 15, 814, 18_403, 33_200, 29, 15, 43_534, 24_458, 12_410, 111, 24_966, 83_669, 9_637, 144_068, 26, 850, 22_346, 27, 147, 24_966, 83_669, 83_490, 26, 39_113, 735, 27, 689, 656, 2_800, 1_339, 4_600, 53, 122_020, 115_785, 34, 816, 1_339, 46_887, 18, 147, 53_905, 1_951, 42_238, 41_170, 17_732, 834, 436, 15, 27_523, 98_733, 217, 147, 5_542, 4_981, 930, 17_347, 16, 2], [20_091, 629, 94, 82_786, 58, 490, 20, 1_528, 84, 53_905, 344, 80_592, 110_128, 18_822, 5_267, 1_306, 62, 152_537, 308, 7_997, 401, 124_427, 549, 35_442, 225, 109, 15_055, 25_748, 147, 7_119, 43_712, 34, 767, 135_366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63_784, 119_466, 17, 147_808, 88_214, 18, 656, 81, 32, 3_296, 10_280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name="microsoft/xprophetnet-large-wiki100-cased" , revision="1acad1643ddd54a44df6a1b797ada8373685d90e" , )
133
"""simple docstring""" import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def a__ ( SCREAMING_SNAKE_CASE : str ): # picklable for multiprocessing '''simple docstring''' return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def a__ ( ): '''simple docstring''' with parallel_backend("spark" ): assert ParallelBackendConfig.backend_name == "spark" lowerCAmelCase : List[str] = [1, 2, 3] with pytest.raises(SCREAMING_SNAKE_CASE ): with parallel_backend("unsupported backend" ): map_nested(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , num_proc=2 ) with pytest.raises(SCREAMING_SNAKE_CASE ): with parallel_backend("unsupported backend" ): map_nested(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("num_proc" , [2, -1] ) def a__ ( SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' lowerCAmelCase : Tuple = [1, 2] lowerCAmelCase : int = {"a": 1, "b": 2} lowerCAmelCase : List[str] = {"a": [1, 2], "b": [3, 4]} lowerCAmelCase : Dict = {"a": {"1": 1}, "b": 2} lowerCAmelCase : Tuple = {"a": 1, "b": 2, "c": 3, "d": 4} lowerCAmelCase : Any = [2, 3] lowerCAmelCase : Any = {"a": 2, "b": 3} lowerCAmelCase : Optional[int] = {"a": [2, 3], "b": [4, 5]} lowerCAmelCase : Optional[int] = {"a": {"1": 2}, "b": 3} lowerCAmelCase : str = {"a": 2, "b": 3, "c": 4, "d": 5} with parallel_backend("spark" ): assert map_nested(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , num_proc=SCREAMING_SNAKE_CASE ) == expected_map_nested_sa assert map_nested(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , num_proc=SCREAMING_SNAKE_CASE ) == expected_map_nested_sa assert map_nested(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , num_proc=SCREAMING_SNAKE_CASE ) == expected_map_nested_sa assert map_nested(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , num_proc=SCREAMING_SNAKE_CASE ) == expected_map_nested_sa assert map_nested(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , num_proc=SCREAMING_SNAKE_CASE ) == expected_map_nested_sa
133
1
"""simple docstring""" import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self : str ): with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights lowerCAmelCase_ : int = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Optional[Any] = [t[-1] for t in os.walk(os.path.join(SCREAMING_SNAKE_CASE_ , os.listdir(SCREAMING_SNAKE_CASE_ )[0] , 'snapshots' ) )] lowerCAmelCase_ : str = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin' ) for f in files ) @slow @require_flax class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self : Tuple ): lowerCAmelCase_ ,lowerCAmelCase_ : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[str] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCAmelCase_ : Any = jax.random.PRNGKey(0 ) lowerCAmelCase_ : Tuple = 4 lowerCAmelCase_ : List[Any] = jax.device_count() lowerCAmelCase_ : List[Any] = num_samples * [prompt] lowerCAmelCase_ : Any = pipeline.prepare_inputs(SCREAMING_SNAKE_CASE_ ) # shard inputs and rng lowerCAmelCase_ : Optional[Any] = replicate(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Tuple = jax.random.split(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Union[str, Any] = shard(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[str] = pipeline(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , jit=SCREAMING_SNAKE_CASE_ ).images assert images.shape == (num_samples, 1, 6_4, 6_4, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_51_47_45 ) < 1E-3 assert np.abs(np.abs(SCREAMING_SNAKE_CASE_ , dtype=np.floataa ).sum() - 4_99_47.8_75 ) < 5E-1 lowerCAmelCase_ : str = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(SCREAMING_SNAKE_CASE_ ) == num_samples def SCREAMING_SNAKE_CASE__ ( self : Dict ): lowerCAmelCase_ ,lowerCAmelCase_ : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='flax' , safety_checker=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[Any] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCAmelCase_ : List[Any] = jax.random.PRNGKey(0 ) lowerCAmelCase_ : Union[str, Any] = 5_0 lowerCAmelCase_ : str = jax.device_count() lowerCAmelCase_ : Any = num_samples * [prompt] lowerCAmelCase_ : Tuple = pipeline.prepare_inputs(SCREAMING_SNAKE_CASE_ ) # shard inputs and rng lowerCAmelCase_ : List[str] = replicate(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Optional[Any] = jax.random.split(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : str = shard(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[Any] = pipeline(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , jit=SCREAMING_SNAKE_CASE_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05_65_24_01) ) < 1E-3 assert np.abs((np.abs(SCREAMING_SNAKE_CASE_ , dtype=np.floataa ).sum() - 2_38_38_08.2) ) < 5E-1 def SCREAMING_SNAKE_CASE__ ( self : int ): lowerCAmelCase_ ,lowerCAmelCase_ : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : str = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCAmelCase_ : Optional[int] = jax.random.PRNGKey(0 ) lowerCAmelCase_ : List[Any] = 5_0 lowerCAmelCase_ : List[Any] = jax.device_count() lowerCAmelCase_ : Optional[Any] = num_samples * [prompt] lowerCAmelCase_ : Union[str, Any] = pipeline.prepare_inputs(SCREAMING_SNAKE_CASE_ ) # shard inputs and rng lowerCAmelCase_ : List[Any] = replicate(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[Any] = jax.random.split(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Dict = shard(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[Any] = pipeline(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , jit=SCREAMING_SNAKE_CASE_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3 assert np.abs((np.abs(SCREAMING_SNAKE_CASE_ , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1 def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): lowerCAmelCase_ ,lowerCAmelCase_ : str = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa ) lowerCAmelCase_ : List[Any] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCAmelCase_ : Optional[Any] = jax.random.PRNGKey(0 ) lowerCAmelCase_ : List[str] = 5_0 lowerCAmelCase_ : Tuple = jax.device_count() lowerCAmelCase_ : List[str] = num_samples * [prompt] lowerCAmelCase_ : Optional[Any] = pipeline.prepare_inputs(SCREAMING_SNAKE_CASE_ ) # shard inputs and rng lowerCAmelCase_ : List[Any] = replicate(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[Any] = jax.random.split(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[Any] = shard(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Dict = pipeline(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , jit=SCREAMING_SNAKE_CASE_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3 assert np.abs((np.abs(SCREAMING_SNAKE_CASE_ , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1 def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): lowerCAmelCase_ : List[str] = FlaxDDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , set_alpha_to_one=SCREAMING_SNAKE_CASE_ , steps_offset=1 , ) lowerCAmelCase_ ,lowerCAmelCase_ : Dict = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , scheduler=SCREAMING_SNAKE_CASE_ , safety_checker=SCREAMING_SNAKE_CASE_ , ) lowerCAmelCase_ : Optional[Any] = scheduler.create_state() lowerCAmelCase_ : List[Any] = scheduler_state lowerCAmelCase_ : List[str] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCAmelCase_ : Union[str, Any] = jax.random.PRNGKey(0 ) lowerCAmelCase_ : int = 5_0 lowerCAmelCase_ : Tuple = jax.device_count() lowerCAmelCase_ : Any = num_samples * [prompt] lowerCAmelCase_ : Dict = pipeline.prepare_inputs(SCREAMING_SNAKE_CASE_ ) # shard inputs and rng lowerCAmelCase_ : str = replicate(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Union[str, Any] = jax.random.split(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : str = shard(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Union[str, Any] = pipeline(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , jit=SCREAMING_SNAKE_CASE_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_45_04_39_45) ) < 1E-3 assert np.abs((np.abs(SCREAMING_SNAKE_CASE_ , dtype=np.floataa ).sum() - 2_34_76_93.5) ) < 5E-1 def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): lowerCAmelCase_ : str = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCAmelCase_ : int = jax.device_count() lowerCAmelCase_ : Optional[int] = num_samples * [prompt] lowerCAmelCase_ : int = jax.random.split(jax.random.PRNGKey(0 ) , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ ,lowerCAmelCase_ : Any = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=SCREAMING_SNAKE_CASE_ , ) lowerCAmelCase_ : List[str] = replicate(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Dict = pipeline.prepare_inputs(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Optional[int] = shard(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : int = pipeline(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , jit=SCREAMING_SNAKE_CASE_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) lowerCAmelCase_ : Optional[Any] = images[2, 0, 2_5_6, 1_0:1_7, 1] # With memory efficient attention lowerCAmelCase_ ,lowerCAmelCase_ : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=SCREAMING_SNAKE_CASE_ , use_memory_efficient_attention=SCREAMING_SNAKE_CASE_ , ) lowerCAmelCase_ : str = replicate(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Tuple = pipeline.prepare_inputs(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Optional[int] = shard(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Optional[int] = pipeline(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , jit=SCREAMING_SNAKE_CASE_ ).images assert images_eff.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) lowerCAmelCase_ : int = images[2, 0, 2_5_6, 1_0:1_7, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1E-2
224
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): lowerCAmelCase_ : Union[str, Any] = inspect.getfile(accelerate.test_utils ) lowerCAmelCase_ : Dict = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) lowerCAmelCase_ : int = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_distributed_data_loop.py'] ) lowerCAmelCase_ : Union[str, Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_ops.py'] ) @require_multi_gpu def SCREAMING_SNAKE_CASE__ ( self : Any ): print(F"Found {torch.cuda.device_count()} devices." ) lowerCAmelCase_ : Optional[int] = ['torchrun', F"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=os.environ.copy() ) @require_multi_gpu def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): print(F"Found {torch.cuda.device_count()} devices." ) lowerCAmelCase_ : int = ['torchrun', F"--nproc_per_node={torch.cuda.device_count()}", self.operation_file_path] print(F"Command: {cmd}" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=os.environ.copy() ) @require_multi_gpu def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): lowerCAmelCase_ : List[Any] = ['torchrun', F"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=os.environ.copy() ) @require_multi_gpu def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): print(F"Found {torch.cuda.device_count()} devices, using 2 devices only" ) lowerCAmelCase_ : Any = ['torchrun', F"--nproc_per_node={torch.cuda.device_count()}", self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices='0,1' ): execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=os.environ.copy() ) if __name__ == "__main__": lowercase__ : Dict = Accelerator() lowercase__ : List[Any] = (accelerator.state.process_index + 2, 1_0) lowercase__ : Any = torch.randint(0, 1_0, shape).to(accelerator.device) lowercase__ : List[Any] = """""" lowercase__ : Union[str, Any] = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." lowercase__ : Optional[Any] = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." lowercase__ : Any = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
224
1
import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def _UpperCamelCase (a__ :Optional[int] , a__ :List[str] , a__ :Dict , a__ :str=None , a__ :Any=None , a__ :List[Any]=None , a__ :List[Any]=None , a__ :List[Any]=None , ): """simple docstring""" if attention_mask is None: UpperCamelCase__ = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: UpperCamelCase__ = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: UpperCamelCase__ = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=a__ ) if decoder_head_mask is None: UpperCamelCase__ = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=a__ ) if cross_attn_head_mask is None: UpperCamelCase__ = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=a__ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class __SCREAMING_SNAKE_CASE : def __init__( self , __lowerCAmelCase , __lowerCAmelCase=13 , __lowerCAmelCase=7 , __lowerCAmelCase=True , __lowerCAmelCase=False , __lowerCAmelCase=99 , __lowerCAmelCase=16 , __lowerCAmelCase=2 , __lowerCAmelCase=4 , __lowerCAmelCase=4 , __lowerCAmelCase="relu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.0 , __lowerCAmelCase=20 , __lowerCAmelCase=2 , __lowerCAmelCase=1 , __lowerCAmelCase=0 , ): UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = seq_length UpperCamelCase__ = is_training UpperCamelCase__ = use_labels UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = encoder_layerdrop UpperCamelCase__ = decoder_layerdrop UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = eos_token_id UpperCamelCase__ = pad_token_id UpperCamelCase__ = bos_token_id def _lowerCamelCase ( self ): UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = self.eos_token_id # Eos Token UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input UpperCamelCase__ = input_ids.clamp(self.pad_token_id + 1 ) UpperCamelCase__ = decoder_input_ids.clamp(self.pad_token_id + 1 ) UpperCamelCase__ = self.get_config() UpperCamelCase__ = prepare_mam_aaa_inputs_dict(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return config, inputs_dict def _lowerCamelCase ( self ): return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def _lowerCamelCase ( self ): UpperCamelCase__ , UpperCamelCase__ = self.prepare_config_and_inputs() return config, inputs_dict def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ = MaMaaaModel(config=__lowerCAmelCase ).get_decoder().to(__lowerCAmelCase ).eval() UpperCamelCase__ = inputs_dict["""input_ids"""] UpperCamelCase__ = inputs_dict["""attention_mask"""] UpperCamelCase__ = inputs_dict["""head_mask"""] # first forward pass UpperCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , head_mask=__lowerCAmelCase , use_cache=__lowerCAmelCase ) UpperCamelCase__ , UpperCamelCase__ = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase__ = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and UpperCamelCase__ = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase__ = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) UpperCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase )["""last_hidden_state"""] UpperCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , past_key_values=__lowerCAmelCase )[ """last_hidden_state""" ] # select random slice UpperCamelCase__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase__ = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-2 ) ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ = MaMaaaModel(config=__lowerCAmelCase ).to(__lowerCAmelCase ).eval() UpperCamelCase__ = model(**__lowerCAmelCase ) UpperCamelCase__ = outputs.encoder_last_hidden_state UpperCamelCase__ = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase__ = model.get_encoder() encoder.save_pretrained(__lowerCAmelCase ) UpperCamelCase__ = MaMaaaEncoder.from_pretrained(__lowerCAmelCase ).to(__lowerCAmelCase ) UpperCamelCase__ = encoder(inputs_dict["""input_ids"""] , attention_mask=inputs_dict["""attention_mask"""] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase__ = model.get_decoder() decoder.save_pretrained(__lowerCAmelCase ) UpperCamelCase__ = MaMaaaDecoder.from_pretrained(__lowerCAmelCase ).to(__lowerCAmelCase ) UpperCamelCase__ = decoder( input_ids=inputs_dict["""decoder_input_ids"""] , attention_mask=inputs_dict["""decoder_attention_mask"""] , encoder_hidden_states=__lowerCAmelCase , encoder_attention_mask=inputs_dict["""attention_mask"""] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class __SCREAMING_SNAKE_CASE ( _a , _a , _a , unittest.TestCase ): snake_case : int = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) snake_case : Any = (MaMaaaForConditionalGeneration,) if is_torch_available() else () snake_case : str = ( { """conversational""": MaMaaaForConditionalGeneration, """feature-extraction""": MaMaaaModel, """summarization""": MaMaaaForConditionalGeneration, """text2text-generation""": MaMaaaForConditionalGeneration, """translation""": MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) snake_case : Dict = True snake_case : Any = True snake_case : Dict = False snake_case : List[Any] = False def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def _lowerCamelCase ( self ): UpperCamelCase__ = MaMaaaModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=__lowerCAmelCase ) def _lowerCamelCase ( self ): self.config_tester.run_common_tests() def _lowerCamelCase ( self ): UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: UpperCamelCase__ = model_class(__lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowerCAmelCase ) UpperCamelCase__ , UpperCamelCase__ = model_class.from_pretrained(__lowerCAmelCase , output_loading_info=__lowerCAmelCase ) self.assertEqual(info["""missing_keys"""] , [] ) def _lowerCamelCase ( self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__lowerCAmelCase ) def _lowerCamelCase ( self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__lowerCAmelCase ) def _lowerCamelCase ( self ): UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): UpperCamelCase__ = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() UpperCamelCase__ = copy.deepcopy(self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) ) if not self.is_encoder_decoder: UpperCamelCase__ = inputs["""input_ids"""] del inputs["input_ids"] else: UpperCamelCase__ = inputs["""input_ids"""] UpperCamelCase__ = inputs.get("""decoder_input_ids""" , __lowerCAmelCase ) del inputs["input_ids"] inputs.pop("""decoder_input_ids""" , __lowerCAmelCase ) UpperCamelCase__ = model.get_input_embeddings() if not self.is_encoder_decoder: UpperCamelCase__ = wte(__lowerCAmelCase ) else: UpperCamelCase__ = wte(__lowerCAmelCase ) UpperCamelCase__ = wte(__lowerCAmelCase ) with torch.no_grad(): model(**__lowerCAmelCase )[0] def _lowerCamelCase ( self ): UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() UpperCamelCase__ = input_dict["""input_ids"""] UpperCamelCase__ = input_ids.ne(1 ).to(__lowerCAmelCase ) UpperCamelCase__ = MaMaaaForConditionalGeneration(__lowerCAmelCase ).eval().to(__lowerCAmelCase ) if torch_device == "cuda": model.half() model.generate(__lowerCAmelCase , attention_mask=__lowerCAmelCase ) model.generate(num_beams=4 , do_sample=__lowerCAmelCase , early_stopping=__lowerCAmelCase , num_return_sequences=3 ) def _UpperCamelCase (a__ :Optional[int] ): """simple docstring""" return torch.tensor(a__ , dtype=torch.long , device=a__ ) UpperCamelCase__ = 1e-4 @require_torch @require_sentencepiece @require_tokenizers @slow class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self ): return MaMaaaTokenizer.from_pretrained("""facebook/m2m100_418M""" ) def _lowerCamelCase ( self ): UpperCamelCase__ = MaMaaaModel.from_pretrained("""facebook/m2m100_418M""" ).to(__lowerCAmelCase ) UpperCamelCase__ = _long_tensor([[128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38, 2]] ) UpperCamelCase__ = _long_tensor([[2, 128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38]] ) UpperCamelCase__ = prepare_mam_aaa_inputs_dict(model.config , __lowerCAmelCase , __lowerCAmelCase ) with torch.no_grad(): UpperCamelCase__ = model(**__lowerCAmelCase )[0] UpperCamelCase__ = torch.Size((1, 11, 1024) ) self.assertEqual(output.shape , __lowerCAmelCase ) # change to expected output here UpperCamelCase__ = torch.tensor( [[-0.7780, -0.1676, 0.1038], [-6.7556, -1.3992, 0.0567], [-7.5383, -0.5920, -0.2779]] , device=__lowerCAmelCase ) self.assertTrue(torch.allclose(output[:, :3, :3] , __lowerCAmelCase , atol=__lowerCAmelCase ) ) def _lowerCamelCase ( self ): UpperCamelCase__ = MaMaaaForConditionalGeneration.from_pretrained("""facebook/m2m100_418M""" ).to(__lowerCAmelCase ) # change to intended input UpperCamelCase__ = _long_tensor([[128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38, 2]] ) UpperCamelCase__ = _long_tensor([[2, 128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38]] ) UpperCamelCase__ = prepare_mam_aaa_inputs_dict(model.config , __lowerCAmelCase , __lowerCAmelCase ) with torch.no_grad(): UpperCamelCase__ = model(**__lowerCAmelCase )[0] UpperCamelCase__ = torch.Size((1, 11, model.config.vocab_size) ) self.assertEqual(output.shape , __lowerCAmelCase ) # change to expected output here UpperCamelCase__ = torch.tensor( [[-1.0448, -1.0411, 3.7992], [-3.2191, -3.2386, -1.3451], [-3.6210, -3.5993, 0.4925]] , device=__lowerCAmelCase ) self.assertTrue(torch.allclose(output[:, :3, :3] , __lowerCAmelCase , atol=__lowerCAmelCase ) ) def _lowerCamelCase ( self ): UpperCamelCase__ = MaMaaaForConditionalGeneration.from_pretrained("""facebook/m2m100_418M""" ).to(__lowerCAmelCase ) UpperCamelCase__ = MaMaaaTokenizer.from_pretrained("""facebook/m2m100_418M""" , src_lang="""fr""" , tgt_lang="""en""" ) UpperCamelCase__ = [ """L'affaire NSA souligne l'absence totale de débat sur le renseignement""", """Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.""", """Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent""" """ Fabius convoque l'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de""" """ l'ampleur de la surveillance américaine sur l'ensemble des communications en France.""", ] # The below article tests that we don't add any hypotheses outside of the top n_beams UpperCamelCase__ = tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase , return_tensors="""pt""" ) UpperCamelCase__ = model.generate( input_ids=dct["""input_ids"""].to(__lowerCAmelCase ) , attention_mask=dct["""attention_mask"""].to(__lowerCAmelCase ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id("""en""" ) , ) UpperCamelCase__ = [ """The NSA case highlights the total absence of intelligence debate""", """I think there are two levels of response from the French government.""", """When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S.""" """ Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all""" """ communications in France.""", ] UpperCamelCase__ = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase ) assert generated == expected_en
87
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask UpperCamelCase__ = logging.getLogger(__name__) class __SCREAMING_SNAKE_CASE ( _a ): snake_case : str = """token-classification""" def __init__( self , __lowerCAmelCase ): if type(__lowerCAmelCase ) == dict: UpperCamelCase__ = Namespace(**__lowerCAmelCase ) UpperCamelCase__ = import_module("""tasks""" ) try: UpperCamelCase__ = getattr(__lowerCAmelCase , hparams.task_type ) UpperCamelCase__ = token_classification_task_clazz() except AttributeError: raise ValueError( f"""Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ f"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" ) UpperCamelCase__ = self.token_classification_task.get_labels(hparams.labels ) UpperCamelCase__ = CrossEntropyLoss().ignore_index super().__init__(__lowerCAmelCase , len(self.labels ) , self.mode ) def _lowerCamelCase ( self , **__lowerCAmelCase ): return self.model(**__lowerCAmelCase ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type != "distilbert": UpperCamelCase__ = ( batch[2] if self.config.model_type in ["""bert""", """xlnet"""] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCamelCase__ = self(**__lowerCAmelCase ) UpperCamelCase__ = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def _lowerCamelCase ( self ): UpperCamelCase__ = self.hparams for mode in ["train", "dev", "test"]: UpperCamelCase__ = self._feature_file(__lowerCAmelCase ) if os.path.exists(__lowerCAmelCase ) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""" , __lowerCAmelCase ) UpperCamelCase__ = torch.load(__lowerCAmelCase ) else: logger.info("""Creating features from dataset file at %s""" , args.data_dir ) UpperCamelCase__ = self.token_classification_task.read_examples_from_file(args.data_dir , __lowerCAmelCase ) UpperCamelCase__ = self.token_classification_task.convert_examples_to_features( __lowerCAmelCase , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["""xlnet"""] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["""xlnet"""] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=__lowerCAmelCase , pad_on_left=bool(self.config.model_type in ["""xlnet"""] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info("""Saving features into cached file %s""" , __lowerCAmelCase ) torch.save(__lowerCAmelCase , __lowerCAmelCase ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = False ): UpperCamelCase__ = self._feature_file(__lowerCAmelCase ) logger.info("""Loading features from cached file %s""" , __lowerCAmelCase ) UpperCamelCase__ = torch.load(__lowerCAmelCase ) UpperCamelCase__ = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) UpperCamelCase__ = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: UpperCamelCase__ = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: UpperCamelCase__ = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) UpperCamelCase__ = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) , batch_size=__lowerCAmelCase ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase ): """Compute validation""" "" UpperCamelCase__ = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type != "distilbert": UpperCamelCase__ = ( batch[2] if self.config.model_type in ["""bert""", """xlnet"""] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCamelCase__ = self(**__lowerCAmelCase ) UpperCamelCase__ , UpperCamelCase__ = outputs[:2] UpperCamelCase__ = logits.detach().cpu().numpy() UpperCamelCase__ = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _lowerCamelCase ( self , __lowerCAmelCase ): UpperCamelCase__ = torch.stack([x["""val_loss"""] for x in outputs] ).mean() UpperCamelCase__ = np.concatenate([x["""pred"""] for x in outputs] , axis=0 ) UpperCamelCase__ = np.argmax(__lowerCAmelCase , axis=2 ) UpperCamelCase__ = np.concatenate([x["""target"""] for x in outputs] , axis=0 ) UpperCamelCase__ = dict(enumerate(self.labels ) ) UpperCamelCase__ = [[] for _ in range(out_label_ids.shape[0] )] UpperCamelCase__ = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) UpperCamelCase__ = { """val_loss""": val_loss_mean, """accuracy_score""": accuracy_score(__lowerCAmelCase , __lowerCAmelCase ), """precision""": precision_score(__lowerCAmelCase , __lowerCAmelCase ), """recall""": recall_score(__lowerCAmelCase , __lowerCAmelCase ), """f1""": fa_score(__lowerCAmelCase , __lowerCAmelCase ), } UpperCamelCase__ = dict(results.items() ) UpperCamelCase__ = results return ret, preds_list, out_label_list def _lowerCamelCase ( self , __lowerCAmelCase ): # when stable UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self._eval_end(__lowerCAmelCase ) UpperCamelCase__ = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _lowerCamelCase ( self , __lowerCAmelCase ): # updating to test_epoch_end instead of deprecated test_end UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self._eval_end(__lowerCAmelCase ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 UpperCamelCase__ = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _lowerCamelCase ( __lowerCAmelCase , __lowerCAmelCase ): # Add NER specific options BaseTransformer.add_model_specific_args(__lowerCAmelCase , __lowerCAmelCase ) parser.add_argument( """--task_type""" , default="""NER""" , type=__lowerCAmelCase , help="""Task type to fine tune in training (e.g. NER, POS, etc)""" ) parser.add_argument( """--max_seq_length""" , default=128 , type=__lowerCAmelCase , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--labels""" , default="""""" , type=__lowerCAmelCase , help="""Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.""" , ) parser.add_argument( """--gpus""" , default=0 , type=__lowerCAmelCase , help="""The number of GPUs allocated for this, it is by default 0 meaning none""" , ) parser.add_argument( """--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" ) return parser if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) UpperCamelCase__ = NERTransformer.add_model_specific_args(parser, os.getcwd()) UpperCamelCase__ = parser.parse_args() UpperCamelCase__ = NERTransformer(args) UpperCamelCase__ = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 UpperCamelCase__ = sorted(glob.glob(os.path.join(args.output_dir, "checkpoint-epoch=*.ckpt"), recursive=True)) UpperCamelCase__ = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
87
1
"""simple docstring""" import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO, ) snake_case_ = logging.getLogger(__name__) def _lowerCAmelCase ( lowercase_ ): UpperCAmelCase = git.Repo(search_parent_directories=lowercase_ ) UpperCAmelCase = { 'repo_id': str(lowercase_ ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), } with open(os.path.join(lowercase_ , 'git_log.json' ) , 'w' ) as f: json.dump(lowercase_ , lowercase_ , indent=4 ) def _lowerCAmelCase ( lowercase_ ): if params.n_gpu <= 0: UpperCAmelCase = 0 UpperCAmelCase = -1 UpperCAmelCase = True UpperCAmelCase = False return assert torch.cuda.is_available() logger.info('Initializing GPUs' ) if params.n_gpu > 1: assert params.local_rank != -1 UpperCAmelCase = int(os.environ['WORLD_SIZE'] ) UpperCAmelCase = int(os.environ['N_GPU_NODE'] ) UpperCAmelCase = int(os.environ['RANK'] ) # number of nodes / node ID UpperCAmelCase = params.world_size // params.n_gpu_per_node UpperCAmelCase = params.global_rank // params.n_gpu_per_node UpperCAmelCase = True assert params.n_nodes == int(os.environ['N_NODES'] ) assert params.node_id == int(os.environ['NODE_RANK'] ) # local job (single GPU) else: assert params.local_rank == -1 UpperCAmelCase = 1 UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase = 1 UpperCAmelCase = 1 UpperCAmelCase = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode UpperCAmelCase = params.node_id == 0 and params.local_rank == 0 UpperCAmelCase = params.n_nodes > 1 # summary UpperCAmelCase = F"""--- Global rank: {params.global_rank} - """ logger.info(PREFIX + 'Number of nodes: %i' % params.n_nodes ) logger.info(PREFIX + 'Node ID : %i' % params.node_id ) logger.info(PREFIX + 'Local rank : %i' % params.local_rank ) logger.info(PREFIX + 'World size : %i' % params.world_size ) logger.info(PREFIX + 'GPUs per node : %i' % params.n_gpu_per_node ) logger.info(PREFIX + 'Master : %s' % str(params.is_master ) ) logger.info(PREFIX + 'Multi-node : %s' % str(params.multi_node ) ) logger.info(PREFIX + 'Multi-GPU : %s' % str(params.multi_gpu ) ) logger.info(PREFIX + 'Hostname : %s' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('Initializing PyTorch distributed' ) torch.distributed.init_process_group( init_method='env://' , backend='nccl' , ) def _lowerCAmelCase ( lowercase_ ): np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
78
'''simple docstring''' import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor __lowerCAmelCase = logging.get_logger(__name__) class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" def __init__( self : Tuple ,*_a : List[str] ,**_a : Any ): '''simple docstring''' warnings.warn( 'The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use VideoMAEImageProcessor instead.' ,_a ,) super().__init__(*_a ,**_a )
271
0
'''simple docstring''' def _lowerCamelCase ( lowerCamelCase_ : int = 1000 ): """simple docstring""" return sum(e for e in range(3 , lowerCamelCase_ ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(f'''{solution() = }''')
274
'''simple docstring''' import os import time import numpy as np import onnxruntime as ort snake_case__ : Optional[int] = '''1''' snake_case__ : str = '''0''' snake_case__ : List[str] = '''1''' snake_case__ : List[str] = ort.SessionOptions() snake_case__ : str = ort.GraphOptimizationLevel.ORT_DISABLE_ALL print('''Create inference session...''') snake_case__ : Dict = ['''TensorrtExecutionProvider''', '''CUDAExecutionProvider'''] snake_case__ : Dict = ort.InferenceSession('''model.onnx''', sess_options=sess_opt, providers=execution_provider) snake_case__ : str = ort.RunOptions() snake_case__ : List[Any] = 128 snake_case__ : Union[str, Any] = 1 snake_case__ : Tuple = np.ones((batch, sequence), dtype=np.intaa) snake_case__ : Tuple = np.ones((batch, sequence), dtype=np.intaa) snake_case__ : Union[str, Any] = np.ones((batch, sequence), dtype=np.intaa) print('''Warm up phase...''') sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print('''Start inference...''') snake_case__ : Union[str, Any] = time.time() snake_case__ : str = 2000 snake_case__ : Tuple = {} for iter in range(max_iters): snake_case__ : str = sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print('''Average Inference Time = {:.3f} ms'''.format((time.time() - start_time) * 1000 / max_iters))
274
1
'''simple docstring''' from __future__ import annotations import math from collections.abc import Callable def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = 1_0_0, ): __lowerCAmelCase = x_start __lowerCAmelCase = fnc(a_) __lowerCAmelCase = 0.0 for _ in range(a_): # Approximates curve as a sequence of linear lines and sums their length __lowerCAmelCase = (x_end - x_start) / steps + xa __lowerCAmelCase = fnc(a_) length += math.hypot(xa - xa, fxa - fxa) # Increment step __lowerCAmelCase = xa __lowerCAmelCase = fxa return length if __name__ == "__main__": def __magic_name__( lowerCamelCase): return math.sin(1_0 * x) print("""f(x) = sin(10 * x)""") print("""The length of the curve from x = -10 to x = 10 is:""") _UpperCAmelCase : Tuple = 1_0 while i <= 1_0_0_0_0_0: print(f"""With {i} steps: {line_length(f, -1_0, 1_0, i)}""") i *= 1_0
174
import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def UpperCAmelCase ( a_ ) -> List[str]: """simple docstring""" return sum(param.float().sum() if "encoder.embeddings" not in key else 0 for key, param in state_dict.items() ) def UpperCAmelCase ( a_ , a_ ) -> Tuple: """simple docstring""" __A = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue __A = key.replace("heads.cmd.mim_head.cls.predictions" , "mmm_image_head" ) __A = key.replace("heads.cmd.mlm_head.cls.predictions" , "mmm_text_head" ) __A = key.replace("heads.cmd.itm_head.cls" , "itm_head" ) __A = key.replace("heads.cmd.itm_head.pooler" , "itm_head.pooler" ) __A = key.replace("heads.cmd.clip_head.logit_scale" , "flava.logit_scale" ) __A = key.replace("heads.fairseq_mlm.cls.predictions" , "mlm_head" ) __A = key.replace("heads.imagenet.mim_head.cls.predictions" , "mim_head" ) __A = key.replace("mm_text_projection" , "flava.text_to_mm_projection" ) __A = key.replace("mm_image_projection" , "flava.image_to_mm_projection" ) __A = key.replace("image_encoder.module" , "flava.image_model" ) __A = key.replace("text_encoder.module" , "flava.text_model" ) __A = key.replace("mm_encoder.module.encoder.cls_token" , "flava.multimodal_model.cls_token" ) __A = key.replace("mm_encoder.module" , "flava.multimodal_model" ) __A = key.replace("text_projection" , "flava.text_projection" ) __A = key.replace("image_projection" , "flava.image_projection" ) __A = value.float() for key, value in codebook_state_dict.items(): __A = value return upgrade @torch.no_grad() def UpperCAmelCase ( a_ , a_ , a_ , a_=None ) -> Tuple: """simple docstring""" if config_path is not None: __A = FlavaConfig.from_pretrained(a_ ) else: __A = FlavaConfig() __A = FlavaForPreTraining(a_ ).eval() __A = convert_dalle_checkpoint(a_ , a_ , save_checkpoint=a_ ) if os.path.exists(a_ ): __A = torch.load(a_ , map_location="cpu" ) else: __A = torch.hub.load_state_dict_from_url(a_ , map_location="cpu" ) __A = upgrade_state_dict(a_ , a_ ) hf_model.load_state_dict(a_ ) __A = hf_model.state_dict() __A = count_parameters(a_ ) __A = count_parameters(a_ ) + count_parameters(a_ ) assert torch.allclose(a_ , a_ , atol=1E-3 ) hf_model.save_pretrained(a_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE :Any = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint') parser.add_argument('--codebook_path', default=None, type=str, help='Path to flava codebook checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') SCREAMING_SNAKE_CASE :Optional[int] = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
15
0
"""simple docstring""" import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def _UpperCamelCase (a__ :Optional[int] , a__ :List[str] ): """simple docstring""" assert isinstance(a__ , a__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def _UpperCamelCase (a__ :Any , a__ :str , a__ :Union[str, Any] ): """simple docstring""" UpperCamelCase__ = tmp_path / """cache""" UpperCamelCase__ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCamelCase__ = JsonDatasetReader(a__ , cache_dir=a__ , keep_in_memory=a__ ).read() _check_json_dataset(a__ , a__ ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def _UpperCamelCase (a__ :str , a__ :List[str] , a__ :Union[str, Any] ): """simple docstring""" UpperCamelCase__ = tmp_path / """cache""" UpperCamelCase__ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} UpperCamelCase__ = features.copy() if features else default_expected_features UpperCamelCase__ = ( Features({feature: Value(a__ ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCamelCase__ = JsonDatasetReader(a__ , features=a__ , cache_dir=a__ ).read() _check_json_dataset(a__ , a__ ) @pytest.mark.parametrize( """features""" , [ None, {"""col_3""": """float64""", """col_1""": """string""", """col_2""": """int64"""}, ] , ) def _UpperCamelCase (a__ :List[Any] , a__ :List[Any] , a__ :Tuple ): """simple docstring""" UpperCamelCase__ = tmp_path / """cache""" UpperCamelCase__ = {"""col_3""": """float64""", """col_1""": """string""", """col_2""": """int64"""} UpperCamelCase__ = features.copy() if features else default_expected_features UpperCamelCase__ = ( Features({feature: Value(a__ ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCamelCase__ = JsonDatasetReader(a__ , features=a__ , cache_dir=a__ ).read() assert isinstance(a__ , a__ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def _UpperCamelCase (a__ :Optional[int] , a__ :Optional[Any] ): """simple docstring""" UpperCamelCase__ = {"""col_2""": """int64""", """col_3""": """float64""", """col_1""": """string"""} UpperCamelCase__ = features.copy() UpperCamelCase__ = ( Features({feature: Value(a__ ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCamelCase__ = tmp_path / """cache""" UpperCamelCase__ = JsonDatasetReader(a__ , features=a__ , cache_dir=a__ ).read() assert isinstance(a__ , a__ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def _UpperCamelCase (a__ :List[Any] , a__ :Optional[int] , a__ :Union[str, Any] ): """simple docstring""" UpperCamelCase__ = tmp_path / """cache""" UpperCamelCase__ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} UpperCamelCase__ = JsonDatasetReader(a__ , cache_dir=a__ , split=a__ ).read() _check_json_dataset(a__ , a__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def _UpperCamelCase (a__ :List[str] , a__ :List[Any] , a__ :str ): """simple docstring""" if issubclass(a__ , a__ ): UpperCamelCase__ = jsonl_path elif issubclass(a__ , a__ ): UpperCamelCase__ = [jsonl_path] UpperCamelCase__ = tmp_path / """cache""" UpperCamelCase__ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} UpperCamelCase__ = JsonDatasetReader(a__ , cache_dir=a__ ).read() _check_json_dataset(a__ , a__ ) def _UpperCamelCase (a__ :Any , a__ :Optional[Any] , a__ :str=("train",) ): """simple docstring""" assert isinstance(a__ , a__ ) for split in splits: UpperCamelCase__ = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def _UpperCamelCase (a__ :Union[str, Any] , a__ :Tuple , a__ :Union[str, Any] ): """simple docstring""" UpperCamelCase__ = tmp_path / """cache""" UpperCamelCase__ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCamelCase__ = JsonDatasetReader({"""train""": jsonl_path} , cache_dir=a__ , keep_in_memory=a__ ).read() _check_json_datasetdict(a__ , a__ ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def _UpperCamelCase (a__ :int , a__ :Union[str, Any] , a__ :str ): """simple docstring""" UpperCamelCase__ = tmp_path / """cache""" UpperCamelCase__ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} UpperCamelCase__ = features.copy() if features else default_expected_features UpperCamelCase__ = ( Features({feature: Value(a__ ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCamelCase__ = JsonDatasetReader({"""train""": jsonl_path} , features=a__ , cache_dir=a__ ).read() _check_json_datasetdict(a__ , a__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def _UpperCamelCase (a__ :Optional[Any] , a__ :Optional[int] , a__ :int ): """simple docstring""" if split: UpperCamelCase__ = {split: jsonl_path} else: UpperCamelCase__ = """train""" UpperCamelCase__ = {"""train""": jsonl_path, """test""": jsonl_path} UpperCamelCase__ = tmp_path / """cache""" UpperCamelCase__ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} UpperCamelCase__ = JsonDatasetReader(a__ , cache_dir=a__ ).read() _check_json_datasetdict(a__ , a__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def _UpperCamelCase (a__ :Any ): """simple docstring""" return json.load(a__ ) def _UpperCamelCase (a__ :Tuple ): """simple docstring""" return [json.loads(a__ ) for line in buffer] class __SCREAMING_SNAKE_CASE : @pytest.mark.parametrize("""lines, load_json_function""" , [(True, load_json_lines), (False, load_json)] ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): with io.BytesIO() as buffer: JsonDatasetWriter(__lowerCAmelCase , __lowerCAmelCase , lines=__lowerCAmelCase ).write() buffer.seek(0 ) UpperCamelCase__ = load_json_function(__lowerCAmelCase ) assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) assert isinstance(exported_content[0] , __lowerCAmelCase ) assert len(__lowerCAmelCase ) == 10 @pytest.mark.parametrize( """orient, container, keys, len_at""" , [ ("""records""", list, {"""tokens""", """labels""", """answers""", """id"""}, None), ("""split""", dict, {"""columns""", """data"""}, """data"""), ("""index""", dict, set("""0123456789""" ), None), ("""columns""", dict, {"""tokens""", """labels""", """answers""", """id"""}, """tokens"""), ("""values""", list, None, None), ("""table""", dict, {"""schema""", """data"""}, """data"""), ] , ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): with io.BytesIO() as buffer: JsonDatasetWriter(__lowerCAmelCase , __lowerCAmelCase , lines=__lowerCAmelCase , orient=__lowerCAmelCase ).write() buffer.seek(0 ) UpperCamelCase__ = load_json(__lowerCAmelCase ) assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(__lowerCAmelCase , """keys""" ) and not hasattr(exported_content[0] , """keys""" ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(__lowerCAmelCase ) == 10 @pytest.mark.parametrize("""lines, load_json_function""" , [(True, load_json_lines), (False, load_json)] ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): with io.BytesIO() as buffer: JsonDatasetWriter(__lowerCAmelCase , __lowerCAmelCase , lines=__lowerCAmelCase , num_proc=2 ).write() buffer.seek(0 ) UpperCamelCase__ = load_json_function(__lowerCAmelCase ) assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) assert isinstance(exported_content[0] , __lowerCAmelCase ) assert len(__lowerCAmelCase ) == 10 @pytest.mark.parametrize( """orient, container, keys, len_at""" , [ ("""records""", list, {"""tokens""", """labels""", """answers""", """id"""}, None), ("""split""", dict, {"""columns""", """data"""}, """data"""), ("""index""", dict, set("""0123456789""" ), None), ("""columns""", dict, {"""tokens""", """labels""", """answers""", """id"""}, """tokens"""), ("""values""", list, None, None), ("""table""", dict, {"""schema""", """data"""}, """data"""), ] , ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): with io.BytesIO() as buffer: JsonDatasetWriter(__lowerCAmelCase , __lowerCAmelCase , lines=__lowerCAmelCase , orient=__lowerCAmelCase , num_proc=2 ).write() buffer.seek(0 ) UpperCamelCase__ = load_json(__lowerCAmelCase ) assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(__lowerCAmelCase , """keys""" ) and not hasattr(exported_content[0] , """keys""" ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(__lowerCAmelCase ) == 10 def _lowerCamelCase ( self , __lowerCAmelCase ): with pytest.raises(__lowerCAmelCase ): with io.BytesIO() as buffer: JsonDatasetWriter(__lowerCAmelCase , __lowerCAmelCase , num_proc=0 ) @pytest.mark.parametrize("""compression, extension""" , [("""gzip""", """gz"""), ("""bz2""", """bz2"""), ("""xz""", """xz""")] ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ = tmp_path_factory.mktemp("""data""" ) / f"""test.json.{extension}""" UpperCamelCase__ = str(shared_datadir / f"""test_file.json.{extension}""" ) JsonDatasetWriter(__lowerCAmelCase , __lowerCAmelCase , compression=__lowerCAmelCase ).write() with fsspec.open(__lowerCAmelCase , """rb""" , compression="""infer""" ) as f: UpperCamelCase__ = f.read() with fsspec.open(__lowerCAmelCase , """rb""" , compression="""infer""" ) as f: UpperCamelCase__ = f.read() assert exported_content == original_content
356
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _lowerCamelCase ( self ): UpperCamelCase__ = """ZinengTang/tvlt-base""" UpperCamelCase__ = tempfile.mkdtemp() def _lowerCamelCase ( self , **__lowerCAmelCase ): return TvltImageProcessor.from_pretrained(self.checkpoint , **__lowerCAmelCase ) def _lowerCamelCase ( self , **__lowerCAmelCase ): return TvltFeatureExtractor.from_pretrained(self.checkpoint , **__lowerCAmelCase ) def _lowerCamelCase ( self ): shutil.rmtree(self.tmpdirname ) def _lowerCamelCase ( self ): UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_feature_extractor() UpperCamelCase__ = TvltProcessor(image_processor=__lowerCAmelCase , feature_extractor=__lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase__ = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , __lowerCAmelCase ) self.assertIsInstance(processor.image_processor , __lowerCAmelCase ) def _lowerCamelCase ( self ): UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_feature_extractor() UpperCamelCase__ = TvltProcessor(image_processor=__lowerCAmelCase , feature_extractor=__lowerCAmelCase ) UpperCamelCase__ = np.ones([12000] ) UpperCamelCase__ = feature_extractor(__lowerCAmelCase , return_tensors="""np""" ) UpperCamelCase__ = processor(audio=__lowerCAmelCase , return_tensors="""np""" ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _lowerCamelCase ( self ): UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_feature_extractor() UpperCamelCase__ = TvltProcessor(image_processor=__lowerCAmelCase , feature_extractor=__lowerCAmelCase ) UpperCamelCase__ = np.ones([3, 224, 224] ) UpperCamelCase__ = image_processor(__lowerCAmelCase , return_tensors="""np""" ) UpperCamelCase__ = processor(images=__lowerCAmelCase , return_tensors="""np""" ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _lowerCamelCase ( self ): UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_feature_extractor() UpperCamelCase__ = TvltProcessor(image_processor=__lowerCAmelCase , feature_extractor=__lowerCAmelCase ) UpperCamelCase__ = np.ones([12000] ) UpperCamelCase__ = np.ones([3, 224, 224] ) UpperCamelCase__ = processor(audio=__lowerCAmelCase , images=__lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""audio_values""", """audio_mask""", """pixel_values""", """pixel_mask"""] ) # test if it raises when no input is passed with pytest.raises(__lowerCAmelCase ): processor() def _lowerCamelCase ( self ): UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_feature_extractor() UpperCamelCase__ = TvltProcessor(image_processor=__lowerCAmelCase , feature_extractor=__lowerCAmelCase ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg="""`processor` and `image_processor`+`feature_extractor` model input names do not match""" , )
87
0
import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP lowercase_ : Union[str, Any] = False try: lowercase_ : Dict = _is_package_available('google.colab') except ModuleNotFoundError: pass @input.register class __lowerCAmelCase : def __init__( self : int , snake_case__ : str = None , snake_case__ : list = [] ): """simple docstring""" _UpperCAmelCase = 0 _UpperCAmelCase = choices _UpperCAmelCase = prompt if sys.platform == "win32": _UpperCAmelCase = "*" else: _UpperCAmelCase = "➔ " def UpperCamelCase ( self : Tuple , snake_case__ : int , snake_case__ : str = "" ): """simple docstring""" if sys.platform != "win32": writeColor(self.choices[index] , 32 , snake_case__ ) else: forceWrite(self.choices[index] , snake_case__ ) def UpperCamelCase ( self : str , snake_case__ : int ): """simple docstring""" if index == self.position: forceWrite(F""" {self.arrow_char} """ ) self.write_choice(snake_case__ ) else: forceWrite(F""" {self.choices[index]}""" ) reset_cursor() def UpperCamelCase ( self : int , snake_case__ : Direction , snake_case__ : int = 1 ): """simple docstring""" _UpperCAmelCase = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(snake_case__ ) move_cursor(snake_case__ , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP["up"] ) def UpperCamelCase ( self : List[str] ): """simple docstring""" self.move_direction(Direction.UP ) @input.mark(KEYMAP["down"] ) def UpperCamelCase ( self : List[Any] ): """simple docstring""" self.move_direction(Direction.DOWN ) @input.mark(KEYMAP["newline"] ) def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" move_cursor(len(self.choices ) - self.position , "DOWN" ) return self.position @input.mark(KEYMAP["interrupt"] ) def UpperCamelCase ( self : str ): """simple docstring""" move_cursor(len(self.choices ) - self.position , "DOWN" ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(snake_case__ )] for number in range(10 )] ) def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" _UpperCAmelCase = int(chr(self.current_selection ) ) _UpperCAmelCase = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , snake_case__ ) else: return else: return def UpperCamelCase ( self : Any , snake_case__ : int = 0 ): """simple docstring""" if self.prompt: linebreak() forceWrite(self.prompt , "\n" ) if in_colab: forceWrite("Please input a choice index (starting from 0), and press enter" , "\n" ) else: forceWrite("Please select a choice using the arrow or number keys, and selecting with enter" , "\n" ) _UpperCAmelCase = default_choice for i in range(len(self.choices ) ): self.print_choice(snake_case__ ) forceWrite("\n" ) move_cursor(len(self.choices ) - self.position , "UP" ) with cursor.hide(): while True: if in_colab: try: _UpperCAmelCase = int(builtins.input() ) except ValueError: _UpperCAmelCase = default_choice else: _UpperCAmelCase = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , "UP" ) clear_line() self.write_choice(snake_case__ , "\n" ) return choice
133
from typing import Any class __lowerCAmelCase : def __init__( self : List[Any] , snake_case__ : Any ): """simple docstring""" _UpperCAmelCase = data _UpperCAmelCase = None class __lowerCAmelCase : def __init__( self : Optional[Any] ): """simple docstring""" _UpperCAmelCase = None def UpperCamelCase ( self : List[Any] ): """simple docstring""" _UpperCAmelCase = self.head while temp is not None: print(temp.data , end=" " ) _UpperCAmelCase = temp.next print() def UpperCamelCase ( self : Any , snake_case__ : Any ): """simple docstring""" _UpperCAmelCase = Node(snake_case__ ) _UpperCAmelCase = self.head _UpperCAmelCase = new_node def UpperCamelCase ( self : List[str] , snake_case__ : int , snake_case__ : Optional[Any] ): """simple docstring""" if node_data_a == node_data_a: return else: _UpperCAmelCase = self.head while node_a is not None and node_a.data != node_data_a: _UpperCAmelCase = node_a.next _UpperCAmelCase = self.head while node_a is not None and node_a.data != node_data_a: _UpperCAmelCase = node_a.next if node_a is None or node_a is None: return _UpperCAmelCase , _UpperCAmelCase = node_a.data, node_a.data if __name__ == "__main__": lowercase_ : Union[str, Any] = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print('After swapping') ll.print_list()
133
1
'''simple docstring''' from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES SCREAMING_SNAKE_CASE_: Any =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: List[Any] =OrderedDict( [ # Base model mapping ('albert', 'FlaxAlbertModel'), ('bart', 'FlaxBartModel'), ('beit', 'FlaxBeitModel'), ('bert', 'FlaxBertModel'), ('big_bird', 'FlaxBigBirdModel'), ('blenderbot', 'FlaxBlenderbotModel'), ('blenderbot-small', 'FlaxBlenderbotSmallModel'), ('clip', 'FlaxCLIPModel'), ('distilbert', 'FlaxDistilBertModel'), ('electra', 'FlaxElectraModel'), ('gpt-sw3', 'FlaxGPT2Model'), ('gpt2', 'FlaxGPT2Model'), ('gpt_neo', 'FlaxGPTNeoModel'), ('gptj', 'FlaxGPTJModel'), ('longt5', 'FlaxLongT5Model'), ('marian', 'FlaxMarianModel'), ('mbart', 'FlaxMBartModel'), ('mt5', 'FlaxMT5Model'), ('opt', 'FlaxOPTModel'), ('pegasus', 'FlaxPegasusModel'), ('regnet', 'FlaxRegNetModel'), ('resnet', 'FlaxResNetModel'), ('roberta', 'FlaxRobertaModel'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'), ('roformer', 'FlaxRoFormerModel'), ('t5', 'FlaxT5Model'), ('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'), ('vit', 'FlaxViTModel'), ('wav2vec2', 'FlaxWav2Vec2Model'), ('whisper', 'FlaxWhisperModel'), ('xglm', 'FlaxXGLMModel'), ('xlm-roberta', 'FlaxXLMRobertaModel'), ] ) SCREAMING_SNAKE_CASE_: List[Any] =OrderedDict( [ # Model for pre-training mapping ('albert', 'FlaxAlbertForPreTraining'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForPreTraining'), ('big_bird', 'FlaxBigBirdForPreTraining'), ('electra', 'FlaxElectraForPreTraining'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('t5', 'FlaxT5ForConditionalGeneration'), ('wav2vec2', 'FlaxWav2Vec2ForPreTraining'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) SCREAMING_SNAKE_CASE_: Any =OrderedDict( [ # Model for Masked LM mapping ('albert', 'FlaxAlbertForMaskedLM'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForMaskedLM'), ('big_bird', 'FlaxBigBirdForMaskedLM'), ('distilbert', 'FlaxDistilBertForMaskedLM'), ('electra', 'FlaxElectraForMaskedLM'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) SCREAMING_SNAKE_CASE_: int =OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('bart', 'FlaxBartForConditionalGeneration'), ('blenderbot', 'FlaxBlenderbotForConditionalGeneration'), ('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'), ('encoder-decoder', 'FlaxEncoderDecoderModel'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('marian', 'FlaxMarianMTModel'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('pegasus', 'FlaxPegasusForConditionalGeneration'), ('t5', 'FlaxT5ForConditionalGeneration'), ] ) SCREAMING_SNAKE_CASE_: str =OrderedDict( [ # Model for Image-classsification ('beit', 'FlaxBeitForImageClassification'), ('regnet', 'FlaxRegNetForImageClassification'), ('resnet', 'FlaxResNetForImageClassification'), ('vit', 'FlaxViTForImageClassification'), ] ) SCREAMING_SNAKE_CASE_: str =OrderedDict( [ ('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'), ] ) SCREAMING_SNAKE_CASE_: List[Any] =OrderedDict( [ # Model for Causal LM mapping ('bart', 'FlaxBartForCausalLM'), ('bert', 'FlaxBertForCausalLM'), ('big_bird', 'FlaxBigBirdForCausalLM'), ('electra', 'FlaxElectraForCausalLM'), ('gpt-sw3', 'FlaxGPT2LMHeadModel'), ('gpt2', 'FlaxGPT2LMHeadModel'), ('gpt_neo', 'FlaxGPTNeoForCausalLM'), ('gptj', 'FlaxGPTJForCausalLM'), ('opt', 'FlaxOPTForCausalLM'), ('roberta', 'FlaxRobertaForCausalLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'), ('xglm', 'FlaxXGLMForCausalLM'), ('xlm-roberta', 'FlaxXLMRobertaForCausalLM'), ] ) SCREAMING_SNAKE_CASE_: Optional[int] =OrderedDict( [ # Model for Sequence Classification mapping ('albert', 'FlaxAlbertForSequenceClassification'), ('bart', 'FlaxBartForSequenceClassification'), ('bert', 'FlaxBertForSequenceClassification'), ('big_bird', 'FlaxBigBirdForSequenceClassification'), ('distilbert', 'FlaxDistilBertForSequenceClassification'), ('electra', 'FlaxElectraForSequenceClassification'), ('mbart', 'FlaxMBartForSequenceClassification'), ('roberta', 'FlaxRobertaForSequenceClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'), ('roformer', 'FlaxRoFormerForSequenceClassification'), ('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'), ] ) SCREAMING_SNAKE_CASE_: Any =OrderedDict( [ # Model for Question Answering mapping ('albert', 'FlaxAlbertForQuestionAnswering'), ('bart', 'FlaxBartForQuestionAnswering'), ('bert', 'FlaxBertForQuestionAnswering'), ('big_bird', 'FlaxBigBirdForQuestionAnswering'), ('distilbert', 'FlaxDistilBertForQuestionAnswering'), ('electra', 'FlaxElectraForQuestionAnswering'), ('mbart', 'FlaxMBartForQuestionAnswering'), ('roberta', 'FlaxRobertaForQuestionAnswering'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'), ('roformer', 'FlaxRoFormerForQuestionAnswering'), ('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'), ] ) SCREAMING_SNAKE_CASE_: Any =OrderedDict( [ # Model for Token Classification mapping ('albert', 'FlaxAlbertForTokenClassification'), ('bert', 'FlaxBertForTokenClassification'), ('big_bird', 'FlaxBigBirdForTokenClassification'), ('distilbert', 'FlaxDistilBertForTokenClassification'), ('electra', 'FlaxElectraForTokenClassification'), ('roberta', 'FlaxRobertaForTokenClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'), ('roformer', 'FlaxRoFormerForTokenClassification'), ('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'), ] ) SCREAMING_SNAKE_CASE_: Optional[Any] =OrderedDict( [ # Model for Multiple Choice mapping ('albert', 'FlaxAlbertForMultipleChoice'), ('bert', 'FlaxBertForMultipleChoice'), ('big_bird', 'FlaxBigBirdForMultipleChoice'), ('distilbert', 'FlaxDistilBertForMultipleChoice'), ('electra', 'FlaxElectraForMultipleChoice'), ('roberta', 'FlaxRobertaForMultipleChoice'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'), ('roformer', 'FlaxRoFormerForMultipleChoice'), ('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'), ] ) SCREAMING_SNAKE_CASE_: int =OrderedDict( [ ('bert', 'FlaxBertForNextSentencePrediction'), ] ) SCREAMING_SNAKE_CASE_: List[Any] =OrderedDict( [ ('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ] ) SCREAMING_SNAKE_CASE_: Optional[int] =OrderedDict( [ ('whisper', 'FlaxWhisperForAudioClassification'), ] ) SCREAMING_SNAKE_CASE_: str =_LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) SCREAMING_SNAKE_CASE_: str =_LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) SCREAMING_SNAKE_CASE_: List[str] =_LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) SCREAMING_SNAKE_CASE_: List[Any] =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_: Optional[Any] =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_: Dict =_LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) SCREAMING_SNAKE_CASE_: Optional[Any] =_LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) SCREAMING_SNAKE_CASE_: Any =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_: List[str] =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_: Dict =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_: Any =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_: Dict =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_: Dict =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_: Optional[Any] =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class __A ( _BaseAutoModelClass ): a__ : int = FLAX_MODEL_MAPPING SCREAMING_SNAKE_CASE_: Dict =auto_class_update(FlaxAutoModel) class __A ( _BaseAutoModelClass ): a__ : str = FLAX_MODEL_FOR_PRETRAINING_MAPPING SCREAMING_SNAKE_CASE_: Dict =auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining') class __A ( _BaseAutoModelClass ): a__ : Optional[Any] = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING SCREAMING_SNAKE_CASE_: Tuple =auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling') class __A ( _BaseAutoModelClass ): a__ : Optional[Any] = FLAX_MODEL_FOR_MASKED_LM_MAPPING SCREAMING_SNAKE_CASE_: Optional[Any] =auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling') class __A ( _BaseAutoModelClass ): a__ : List[Any] = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING SCREAMING_SNAKE_CASE_: Optional[Any] =auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base' ) class __A ( _BaseAutoModelClass ): a__ : Union[str, Any] = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_: Optional[int] =auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='sequence classification' ) class __A ( _BaseAutoModelClass ): a__ : Optional[int] = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING SCREAMING_SNAKE_CASE_: List[Any] =auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering') class __A ( _BaseAutoModelClass ): a__ : Tuple = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_: List[Any] =auto_class_update( FlaxAutoModelForTokenClassification, head_doc='token classification' ) class __A ( _BaseAutoModelClass ): a__ : Dict = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING SCREAMING_SNAKE_CASE_: Any =auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice') class __A ( _BaseAutoModelClass ): a__ : Union[str, Any] = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING SCREAMING_SNAKE_CASE_: int =auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction' ) class __A ( _BaseAutoModelClass ): a__ : int = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_: Dict =auto_class_update( FlaxAutoModelForImageClassification, head_doc='image classification' ) class __A ( _BaseAutoModelClass ): a__ : Any = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING SCREAMING_SNAKE_CASE_: Optional[int] =auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling') class __A ( _BaseAutoModelClass ): a__ : List[Any] = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING SCREAMING_SNAKE_CASE_: Union[str, Any] =auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling' )
363
'''simple docstring''' import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('1.0.0a'): raise Exception('requires fairseq >= 1.0.0a') logging.set_verbosity_info() SCREAMING_SNAKE_CASE_: List[Any] =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: Tuple ='Hello world! cécé herlolip' def lowerCAmelCase_ ( snake_case_ : str , snake_case_ : str , snake_case_ : bool ) -> Any: '''simple docstring''' UpperCAmelCase_ = FairseqRobertaModel.from_pretrained(snake_case_ ) roberta.eval() # disable dropout UpperCAmelCase_ = roberta.model.encoder.sentence_encoder UpperCAmelCase_ = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_14 , type_vocab_size=1 , layer_norm_eps=1E-5 , ) if classification_head: UpperCAmelCase_ = roberta.model.classification_heads["mnli"].out_proj.weight.shape[0] print("Our RoBERTa config:" , snake_case_ ) UpperCAmelCase_ = XLMRobertaXLForSequenceClassification(snake_case_ ) if classification_head else XLMRobertaXLForMaskedLM(snake_case_ ) model.eval() # Now let's copy all the weights. # Embeddings UpperCAmelCase_ = roberta_sent_encoder.embed_tokens.weight UpperCAmelCase_ = roberta_sent_encoder.embed_positions.weight UpperCAmelCase_ = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. UpperCAmelCase_ = roberta_sent_encoder.layer_norm.weight UpperCAmelCase_ = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer UpperCAmelCase_ = model.roberta.encoder.layer[i] UpperCAmelCase_ = roberta_sent_encoder.layers[i] UpperCAmelCase_ = layer.attention UpperCAmelCase_ = roberta_layer.self_attn_layer_norm.weight UpperCAmelCase_ = roberta_layer.self_attn_layer_norm.bias # self attention UpperCAmelCase_ = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) UpperCAmelCase_ = roberta_layer.self_attn.q_proj.weight UpperCAmelCase_ = roberta_layer.self_attn.q_proj.bias UpperCAmelCase_ = roberta_layer.self_attn.k_proj.weight UpperCAmelCase_ = roberta_layer.self_attn.k_proj.bias UpperCAmelCase_ = roberta_layer.self_attn.v_proj.weight UpperCAmelCase_ = roberta_layer.self_attn.v_proj.bias # self-attention output UpperCAmelCase_ = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape UpperCAmelCase_ = roberta_layer.self_attn.out_proj.weight UpperCAmelCase_ = roberta_layer.self_attn.out_proj.bias # this one is final layer norm UpperCAmelCase_ = roberta_layer.final_layer_norm.weight UpperCAmelCase_ = roberta_layer.final_layer_norm.bias # intermediate UpperCAmelCase_ = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape UpperCAmelCase_ = roberta_layer.fca.weight UpperCAmelCase_ = roberta_layer.fca.bias # output UpperCAmelCase_ = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape UpperCAmelCase_ = roberta_layer.fca.weight UpperCAmelCase_ = roberta_layer.fca.bias # end of layer if classification_head: UpperCAmelCase_ = roberta.model.classification_heads["mnli"].dense.weight UpperCAmelCase_ = roberta.model.classification_heads["mnli"].dense.bias UpperCAmelCase_ = roberta.model.classification_heads["mnli"].out_proj.weight UpperCAmelCase_ = roberta.model.classification_heads["mnli"].out_proj.bias else: # LM Head UpperCAmelCase_ = roberta.model.encoder.lm_head.dense.weight UpperCAmelCase_ = roberta.model.encoder.lm_head.dense.bias UpperCAmelCase_ = roberta.model.encoder.lm_head.layer_norm.weight UpperCAmelCase_ = roberta.model.encoder.lm_head.layer_norm.bias UpperCAmelCase_ = roberta.model.encoder.lm_head.weight UpperCAmelCase_ = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. UpperCAmelCase_ = roberta.encode(snake_case_ ).unsqueeze(0 ) # batch of size 1 UpperCAmelCase_ = model(snake_case_ )[0] if classification_head: UpperCAmelCase_ = roberta.model.classification_heads["mnli"](roberta.extract_features(snake_case_ ) ) else: UpperCAmelCase_ = roberta.model(snake_case_ )[0] print(our_output.shape , their_output.shape ) UpperCAmelCase_ = torch.max(torch.abs(our_output - their_output ) ).item() print(f"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 UpperCAmelCase_ = torch.allclose(snake_case_ , snake_case_ , atol=1E-3 ) print("Do both models output the same tensors?" , "🔥" if success else "💩" ) if not success: raise Exception("Something went wRoNg" ) pathlib.Path(snake_case_ ).mkdir(parents=snake_case_ , exist_ok=snake_case_ ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(snake_case_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_: Optional[int] =argparse.ArgumentParser() # Required parameters parser.add_argument( '--roberta_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--classification_head', action='store_true', help='Whether to convert a final classification head.' ) SCREAMING_SNAKE_CASE_: Union[str, Any] =parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
106
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase = {'''configuration_yolos''': ['''YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''YolosConfig''', '''YolosOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''YolosFeatureExtractor'''] UpperCamelCase = ['''YolosImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''YolosForObjectDetection''', '''YolosModel''', '''YolosPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
87
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar UpperCamelCase = TypeVar('''T''') class snake_case_ ( Generic[T] ): __A : deque[T] # Cache store of keys __A : set[T] # References of the keys in cache __A : int = 10 # Maximum capacity of cache def __init__( self : Union[str, Any] , lowercase_ : int ) -> None: lowercase__ : int = deque() lowercase__ : str = set() if not n: lowercase__ : str = sys.maxsize elif n < 0: raise ValueError("n should be an integer greater than 0." ) else: lowercase__ : List[Any] = n def __UpperCamelCase ( self : Dict , lowercase_ : T ) -> None: if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: lowercase__ : Dict = self.dq_store.pop() self.key_reference.remove(lowercase_ ) else: self.dq_store.remove(lowercase_ ) self.dq_store.appendleft(lowercase_ ) self.key_reference.add(lowercase_ ) def __UpperCamelCase ( self : Dict ) -> None: for k in self.dq_store: print(lowercase_ ) def __repr__( self : Optional[int] ) -> str: return F'''LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}''' if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = LRUCache(4) lru_cache.refer('''A''') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('''A''') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
87
1
'''simple docstring''' import torch def _lowercase ( ): '''simple docstring''' if torch.cuda.is_available(): __UpperCamelCase = torch.cuda.device_count() else: __UpperCamelCase = 0 print(f"Successfully ran on {num_gpus} GPUs" ) if __name__ == "__main__": main()
243
'''simple docstring''' import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def _lowercase ( __A ,__A ,__A ,__A ,__A=True ,__A="pt" ): '''simple docstring''' __UpperCamelCase = {"""add_prefix_space""": True} if isinstance(__A ,__A ) and not line.startswith(""" """ ) else {} __UpperCamelCase = padding_side return tokenizer( [line] ,max_length=__A ,padding="""max_length""" if pad_to_max_length else None ,truncation=__A ,return_tensors=__A ,add_special_tokens=__A ,**__A ,) def _lowercase ( __A ,__A ,__A=None ,): '''simple docstring''' __UpperCamelCase = input_ids.ne(__A ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class UpperCAmelCase__ ( UpperCAmelCase_): def __init__( self , lowercase , lowercase , lowercase , lowercase , lowercase="train" , lowercase=None , lowercase=None , lowercase=None , lowercase="" , ) -> List[Any]: super().__init__() __UpperCamelCase = Path(lowercase ).joinpath(type_path + """.source""" ) __UpperCamelCase = Path(lowercase ).joinpath(type_path + """.target""" ) __UpperCamelCase = self.get_char_lens(self.src_file ) __UpperCamelCase = max_source_length __UpperCamelCase = max_target_length assert min(self.src_lens ) > 0, f"found empty line in {self.src_file}" __UpperCamelCase = tokenizer __UpperCamelCase = prefix if n_obs is not None: __UpperCamelCase = self.src_lens[:n_obs] __UpperCamelCase = src_lang __UpperCamelCase = tgt_lang def __len__( self ) -> Union[str, Any]: return len(self.src_lens ) def __getitem__( self , lowercase ) -> Dict[str, torch.Tensor]: __UpperCamelCase = index + 1 # linecache starts at 1 __UpperCamelCase = self.prefix + linecache.getline(str(self.src_file ) , lowercase ).rstrip("""\n""" ) __UpperCamelCase = linecache.getline(str(self.tgt_file ) , lowercase ).rstrip("""\n""" ) assert source_line, f"empty source line for index {index}" assert tgt_line, f"empty tgt line for index {index}" # Need to add eos token manually for T5 if isinstance(self.tokenizer , lowercase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right __UpperCamelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , lowercase ) else self.tokenizer ) __UpperCamelCase = self.tokenizer.generator if isinstance(self.tokenizer , lowercase ) else self.tokenizer __UpperCamelCase = encode_line(lowercase , lowercase , self.max_source_length , """right""" ) __UpperCamelCase = encode_line(lowercase , lowercase , self.max_target_length , """right""" ) __UpperCamelCase = source_inputs["""input_ids"""].squeeze() __UpperCamelCase = target_inputs["""input_ids"""].squeeze() __UpperCamelCase = source_inputs["""attention_mask"""].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def __lowerCamelCase ( lowercase ) -> str: return [len(lowercase ) for x in Path(lowercase ).open().readlines()] def __lowerCamelCase ( self , lowercase ) -> Dict[str, torch.Tensor]: __UpperCamelCase = torch.stack([x["""input_ids"""] for x in batch] ) __UpperCamelCase = torch.stack([x["""attention_mask"""] for x in batch] ) __UpperCamelCase = torch.stack([x["""decoder_input_ids"""] for x in batch] ) __UpperCamelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , lowercase ) else self.tokenizer.pad_token_id ) __UpperCamelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , lowercase ) else self.tokenizer.pad_token_id ) __UpperCamelCase = trim_batch(lowercase , lowercase ) __UpperCamelCase , __UpperCamelCase = trim_batch(lowercase , lowercase , attention_mask=lowercase ) __UpperCamelCase = { """input_ids""": source_ids, """attention_mask""": source_mask, """decoder_input_ids""": y, } return batch a__ : Optional[int] = getLogger(__name__) def _lowercase ( __A ): '''simple docstring''' return list(itertools.chain.from_iterable(__A ) ) def _lowercase ( __A ): '''simple docstring''' __UpperCamelCase = get_git_info() save_json(__A ,os.path.join(__A ,"""git_log.json""" ) ) def _lowercase ( __A ,__A ,__A=4 ,**__A ): '''simple docstring''' with open(__A ,"""w""" ) as f: json.dump(__A ,__A ,indent=__A ,**__A ) def _lowercase ( __A ): '''simple docstring''' with open(__A ) as f: return json.load(__A ) def _lowercase ( ): '''simple docstring''' __UpperCamelCase = git.Repo(search_parent_directories=__A ) __UpperCamelCase = { """repo_id""": str(__A ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), """hostname""": str(socket.gethostname() ), } return repo_infos def _lowercase ( __A ,__A ): '''simple docstring''' return list(map(__A ,__A ) ) def _lowercase ( __A ,__A ): '''simple docstring''' with open(__A ,"""wb""" ) as f: return pickle.dump(__A ,__A ) def _lowercase ( __A ): '''simple docstring''' def remove_articles(__A ): return re.sub(R"""\b(a|an|the)\b""" ,""" """ ,__A ) def white_space_fix(__A ): return " ".join(text.split() ) def remove_punc(__A ): __UpperCamelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__A ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__A ) ) ) ) def _lowercase ( __A ,__A ): '''simple docstring''' __UpperCamelCase = normalize_answer(__A ).split() __UpperCamelCase = normalize_answer(__A ).split() __UpperCamelCase = Counter(__A ) & Counter(__A ) __UpperCamelCase = sum(common.values() ) if num_same == 0: return 0 __UpperCamelCase = 1.0 * num_same / len(__A ) __UpperCamelCase = 1.0 * num_same / len(__A ) __UpperCamelCase = (2 * precision * recall) / (precision + recall) return fa def _lowercase ( __A ,__A ): '''simple docstring''' return normalize_answer(__A ) == normalize_answer(__A ) def _lowercase ( __A ,__A ): '''simple docstring''' assert len(__A ) == len(__A ) __UpperCamelCase = 0 for hypo, pred in zip(__A ,__A ): em += exact_match_score(__A ,__A ) if len(__A ) > 0: em /= len(__A ) return {"em": em} def _lowercase ( __A ): '''simple docstring''' return model_prefix.startswith("""rag""" ) def _lowercase ( __A ,__A ,__A ): '''simple docstring''' __UpperCamelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead __UpperCamelCase = """dropout_rate""" for p in extra_params: if getattr(__A ,__A ,__A ): if not hasattr(__A ,__A ) and not hasattr(__A ,equivalent_param[p] ): logger.info("""config doesn't have a `{}` attribute""".format(__A ) ) delattr(__A ,__A ) continue __UpperCamelCase = p if hasattr(__A ,__A ) else equivalent_param[p] setattr(__A ,__A ,getattr(__A ,__A ) ) delattr(__A ,__A ) return hparams, config
243
1
import math def __lowerCamelCase ( __a :int ) -> list[int]: """simple docstring""" A__ = [] A__ = 2 A__ = int(math.sqrt(__a ) ) # Size of every segment A__ = [True] * (end + 1) A__ = [] while start <= end: if temp[start] is True: in_prime.append(__a ) for i in range(start * start , end + 1 , __a ): A__ = False start += 1 prime += in_prime A__ = end + 1 A__ = min(2 * end , __a ) while low <= n: A__ = [True] * (high - low + 1) for each in in_prime: A__ = math.floor(low / each ) * each if t < low: t += each for j in range(__a , high + 1 , __a ): A__ = False for j in range(len(__a ) ): if temp[j] is True: prime.append(j + low ) A__ = high + 1 A__ = min(high + end , __a ) return prime print(sieve(1_0**6))
274
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging A : Dict = logging.get_logger(__name__) def __lowerCamelCase ( __a :int=None , __a :Optional[Any]=None ) -> int: """simple docstring""" return field(default_factory=lambda: default , metadata=__a ) @dataclass class A : '''simple docstring''' __lowerCamelCase : List[str] = list_field( default=[] , metadata={ '''help''': ( '''Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version''' ''' of all available models''' ) } , ) __lowerCamelCase : List[int] = list_field( default=[8] , metadata={'''help''': '''List of batch sizes for which memory and time performance will be evaluated'''} ) __lowerCamelCase : List[int] = list_field( default=[8, 32, 128, 512] , metadata={'''help''': '''List of sequence lengths for which memory and time performance will be evaluated'''} , ) __lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Whether to benchmark inference of model. Inference can be disabled via --no-inference.'''} , ) __lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Whether to run on available cuda devices. Cuda can be disabled via --no-cuda.'''} , ) __lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Whether to run on available tpu devices. TPU can be disabled via --no-tpu.'''} ) __lowerCamelCase : bool = field(default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Use FP16 to accelerate inference.'''} ) __lowerCamelCase : bool = field(default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Benchmark training of model'''} ) __lowerCamelCase : bool = field(default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Verbose memory tracing'''} ) __lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Whether to perform speed measurements. Speed measurements can be disabled via --no-speed.'''} , ) __lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE , metadata={ '''help''': '''Whether to perform memory measurements. Memory measurements can be disabled via --no-memory''' } , ) __lowerCamelCase : bool = field(default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Trace memory line by line'''} ) __lowerCamelCase : bool = field(default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Save result to a CSV file'''} ) __lowerCamelCase : bool = field(default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Save all print statements in a log file'''} ) __lowerCamelCase : bool = field(default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Whether to print environment information'''} ) __lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE , metadata={ '''help''': ( '''Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use''' ''' multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled''' ''' for debugging / testing and on TPU.''' ) } , ) __lowerCamelCase : str = field( default=F'''inference_time_{round(time() )}.csv''' , metadata={'''help''': '''CSV filename used if saving time results to csv.'''} , ) __lowerCamelCase : str = field( default=F'''inference_memory_{round(time() )}.csv''' , metadata={'''help''': '''CSV filename used if saving memory results to csv.'''} , ) __lowerCamelCase : str = field( default=F'''train_time_{round(time() )}.csv''' , metadata={'''help''': '''CSV filename used if saving time results to csv for training.'''} , ) __lowerCamelCase : str = field( default=F'''train_memory_{round(time() )}.csv''' , metadata={'''help''': '''CSV filename used if saving memory results to csv for training.'''} , ) __lowerCamelCase : str = field( default=F'''env_info_{round(time() )}.csv''' , metadata={'''help''': '''CSV filename used if saving environment information.'''} , ) __lowerCamelCase : str = field( default=F'''log_{round(time() )}.csv''' , metadata={'''help''': '''Log filename used if print statements are saved in log.'''} , ) __lowerCamelCase : int = field(default=3 , metadata={'''help''': '''Times an experiment will be run.'''} ) __lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE , metadata={ '''help''': ( '''Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain''' ''' model weights.''' ) } , ) def a_ ( self : Dict ) -> Union[str, Any]: """simple docstring""" warnings.warn( f'The class {self.__class__} is deprecated. Hugging Face Benchmarking utils' """ are deprecated in general and it is advised to use external Benchmarking libraries """ """ to benchmark Transformer models.""" , __lowerCAmelCase , ) def a_ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def a_ ( self : Tuple ) -> List[str]: """simple docstring""" if len(self.models ) <= 0: raise ValueError( """Please make sure you provide at least one model name / model identifier, *e.g.* `--models""" """ bert-base-cased` or `args.models = ['bert-base-cased'].""" ) return self.models @property def a_ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" if not self.multi_process: return False elif self.is_tpu: logger.info("""Multiprocessing is currently not possible on TPU.""" ) return False else: return True
274
1
def lowerCamelCase ( a_ ) -> Optional[int]: lowerCAmelCase_ = [0] * len(a_ ) lowerCAmelCase_ = [] lowerCAmelCase_ = [1] * len(a_ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(a_ ) ): if indegree[i] == 0: queue.append(a_ ) while queue: lowerCAmelCase_ = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: lowerCAmelCase_ = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(a_ ) print(max(a_ ) ) # Adjacency list of Graph lowerCamelCase_ = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
14
from __future__ import annotations lowerCamelCase_ = 1_0 def lowerCamelCase ( a_ ) -> list[int]: lowerCAmelCase_ = 1 lowerCAmelCase_ = max(a_ ) while placement <= max_digit: # declare and initialize empty buckets lowerCAmelCase_ = [[] for _ in range(a_ )] # split list_of_ints between the buckets for i in list_of_ints: lowerCAmelCase_ = int((i / placement) % RADIX ) buckets[tmp].append(a_ ) # put each buckets' contents into list_of_ints lowerCAmelCase_ = 0 for b in range(a_ ): for i in buckets[b]: lowerCAmelCase_ = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
14
1
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def a_ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int=1_024 , SCREAMING_SNAKE_CASE__ : List[Any]=1_024 , SCREAMING_SNAKE_CASE__ : List[Any]=False , **SCREAMING_SNAKE_CASE__ : Optional[int] ): '''simple docstring''' _lowerCamelCase : Optional[Any] =AutoTokenizer.from_pretrained(_lowerCamelCase ) _lowerCamelCase : Optional[Any] =SeqaSeqDataset(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , type_path='train' , **_lowerCamelCase ) _lowerCamelCase : Union[str, Any] =tok.pad_token_id def get_lens(SCREAMING_SNAKE_CASE__ : Optional[Any] ): _lowerCamelCase : Optional[int] =tqdm( DataLoader(_lowerCamelCase , batch_size=512 , num_workers=8 , shuffle=_lowerCamelCase , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) _lowerCamelCase : List[str] =[] for batch in dl: _lowerCamelCase : Any =batch["input_ids"].ne(_lowerCamelCase ).sum(1 ).tolist() _lowerCamelCase : List[str] =batch["labels"].ne(_lowerCamelCase ).sum(1 ).tolist() if consider_target: for src, tgt in zip(_lowerCamelCase , _lowerCamelCase ): max_lens.append(max(_lowerCamelCase , _lowerCamelCase ) ) else: max_lens.extend(_lowerCamelCase ) return max_lens _lowerCamelCase : List[Any] =get_lens(_lowerCamelCase ) _lowerCamelCase : List[Any] =SeqaSeqDataset(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , type_path='val' , **_lowerCamelCase ) _lowerCamelCase : int =get_lens(_lowerCamelCase ) pickle_save(_lowerCamelCase , train_ds.len_file ) pickle_save(_lowerCamelCase , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
199
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging UpperCamelCase = logging.get_logger(__name__) if is_vision_available(): import PIL class snake_case_ ( __A ): __A : str = ["pixel_values"] def __init__( self : int , lowercase_ : bool = True , lowercase_ : Dict[str, int] = None , lowercase_ : PILImageResampling = PILImageResampling.BICUBIC , lowercase_ : bool = True , lowercase_ : Dict[str, int] = None , lowercase_ : bool = True , lowercase_ : Union[int, float] = 1 / 2_55 , lowercase_ : bool = True , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : bool = True , **lowercase_ : Union[str, Any] , ) -> None: super().__init__(**lowercase_ ) lowercase__ : Tuple = size if size is not None else {"shortest_edge": 2_24} lowercase__ : Tuple = get_size_dict(lowercase_ , default_to_square=lowercase_ ) lowercase__ : List[str] = crop_size if crop_size is not None else {"height": 2_24, "width": 2_24} lowercase__ : Tuple = get_size_dict(lowercase_ , default_to_square=lowercase_ , param_name="crop_size" ) lowercase__ : Dict = do_resize lowercase__ : List[Any] = size lowercase__ : int = resample lowercase__ : Union[str, Any] = do_center_crop lowercase__ : Optional[int] = crop_size lowercase__ : List[str] = do_rescale lowercase__ : int = rescale_factor lowercase__ : List[Any] = do_normalize lowercase__ : Union[str, Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowercase__ : str = image_std if image_std is not None else OPENAI_CLIP_STD lowercase__ : Dict = do_convert_rgb def __UpperCamelCase ( self : Optional[Any] , lowercase_ : np.ndarray , lowercase_ : Dict[str, int] , lowercase_ : PILImageResampling = PILImageResampling.BICUBIC , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : Union[str, Any] , ) -> np.ndarray: lowercase__ : str = get_size_dict(lowercase_ , default_to_square=lowercase_ ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) lowercase__ : Dict = get_resize_output_image_size(lowercase_ , size=size["shortest_edge"] , default_to_square=lowercase_ ) return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) def __UpperCamelCase ( self : int , lowercase_ : np.ndarray , lowercase_ : Dict[str, int] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : int , ) -> np.ndarray: lowercase__ : Optional[Any] = get_size_dict(lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(lowercase_ , size=(size["height"], size["width"]) , data_format=lowercase_ , **lowercase_ ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : np.ndarray , lowercase_ : Union[int, float] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : Optional[Any] , ) -> Any: return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_ ) def __UpperCamelCase ( self : str , lowercase_ : np.ndarray , lowercase_ : Union[float, List[float]] , lowercase_ : Union[float, List[float]] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : str , ) -> np.ndarray: return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_ ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : ImageInput , lowercase_ : bool = None , lowercase_ : Dict[str, int] = None , lowercase_ : PILImageResampling = None , lowercase_ : bool = None , lowercase_ : int = None , lowercase_ : bool = None , lowercase_ : float = None , lowercase_ : bool = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : bool = None , lowercase_ : Optional[Union[str, TensorType]] = None , lowercase_ : Optional[ChannelDimension] = ChannelDimension.FIRST , **lowercase_ : Union[str, Any] , ) -> PIL.Image.Image: lowercase__ : int = do_resize if do_resize is not None else self.do_resize lowercase__ : Dict = size if size is not None else self.size lowercase__ : List[Any] = get_size_dict(lowercase_ , param_name="size" , default_to_square=lowercase_ ) lowercase__ : Dict = resample if resample is not None else self.resample lowercase__ : int = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase__ : Dict = crop_size if crop_size is not None else self.crop_size lowercase__ : List[str] = get_size_dict(lowercase_ , param_name="crop_size" , default_to_square=lowercase_ ) lowercase__ : int = do_rescale if do_rescale is not None else self.do_rescale lowercase__ : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize lowercase__ : int = image_mean if image_mean is not None else self.image_mean lowercase__ : List[str] = image_std if image_std is not None else self.image_std lowercase__ : Union[str, Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowercase__ : Union[str, Any] = make_list_of_images(lowercase_ ) if not valid_images(lowercase_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowercase__ : Dict = [convert_to_rgb(lowercase_ ) for image in images] # All transformations expect numpy arrays. lowercase__ : Optional[Any] = [to_numpy_array(lowercase_ ) for image in images] if do_resize: lowercase__ : List[Any] = [self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) for image in images] if do_center_crop: lowercase__ : int = [self.center_crop(image=lowercase_ , size=lowercase_ ) for image in images] if do_rescale: lowercase__ : str = [self.rescale(image=lowercase_ , scale=lowercase_ ) for image in images] if do_normalize: lowercase__ : Optional[int] = [self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_ ) for image in images] lowercase__ : Optional[Any] = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images] lowercase__ : List[str] = {"pixel_values": images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_ )
87
0
'''simple docstring''' import fire from utils import calculate_rouge, save_json def a_ ( _UpperCAmelCase : Union[str, Any] ,_UpperCAmelCase : int ,_UpperCAmelCase : str=None ,**_UpperCAmelCase : str ) -> str: __snake_case : List[str] = [x.strip() for x in open(_UpperCAmelCase ).readlines()] __snake_case : List[str] = [x.strip() for x in open(_UpperCAmelCase ).readlines()][: len(_UpperCAmelCase )] __snake_case : List[Any] = calculate_rouge(_UpperCAmelCase ,_UpperCAmelCase ,**_UpperCAmelCase ) if save_path is not None: save_json(_UpperCAmelCase ,_UpperCAmelCase ,indent=_UpperCAmelCase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
354
'''simple docstring''' from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class snake_case__ ( SCREAMING_SNAKE_CASE_ ): def A_ ( self : List[Any] ) -> int: '''simple docstring''' __snake_case : Optional[int] = SMALL_MODEL_IDENTIFIER __snake_case : str = 'pt' __snake_case : Union[str, Any] = 'tf' def A_ ( self : Dict , __a : Tuple ) -> Dict: '''simple docstring''' __snake_case : Optional[int] = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(__a ) def A_ ( self : Any , __a : Optional[Any] ) -> Dict: '''simple docstring''' __snake_case : Union[str, Any] = TFAutoModel.from_pretrained(self.test_model , from_pt=__a ) model_tf.save_pretrained(__a ) def A_ ( self : Any ) -> Tuple: '''simple docstring''' __snake_case : Tuple = 'mock_framework' # Framework provided - return whatever the user provides __snake_case : int = FeaturesManager.determine_framework(self.test_model , __a ) self.assertEqual(__a , __a ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__a ) __snake_case : List[Any] = FeaturesManager.determine_framework(__a , __a ) self.assertEqual(__a , __a ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__a ) __snake_case : Tuple = FeaturesManager.determine_framework(__a , __a ) self.assertEqual(__a , __a ) def A_ ( self : Union[str, Any] ) -> Any: '''simple docstring''' # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__a ) __snake_case : Tuple = FeaturesManager.determine_framework(__a ) self.assertEqual(__a , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__a ) __snake_case : Union[str, Any] = FeaturesManager.determine_framework(__a ) self.assertEqual(__a , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(__a ): __snake_case : Optional[int] = FeaturesManager.determine_framework(__a ) def A_ ( self : Any ) -> List[Any]: '''simple docstring''' __snake_case : Union[str, Any] = MagicMock(return_value=__a ) with patch('transformers.onnx.features.is_tf_available' , __a ): __snake_case : int = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__a , self.framework_pt ) # PyTorch not in environment -> use TensorFlow __snake_case : Tuple = MagicMock(return_value=__a ) with patch('transformers.onnx.features.is_torch_available' , __a ): __snake_case : Dict = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__a , self.framework_tf ) # Both in environment -> use PyTorch __snake_case : Optional[Any] = MagicMock(return_value=__a ) __snake_case : Tuple = MagicMock(return_value=__a ) with patch('transformers.onnx.features.is_tf_available' , __a ), patch( 'transformers.onnx.features.is_torch_available' , __a ): __snake_case : Dict = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__a , self.framework_pt ) # Both not in environment -> raise error __snake_case : str = MagicMock(return_value=__a ) __snake_case : List[Any] = MagicMock(return_value=__a ) with patch('transformers.onnx.features.is_tf_available' , __a ), patch( 'transformers.onnx.features.is_torch_available' , __a ): with self.assertRaises(__a ): __snake_case : Tuple = FeaturesManager.determine_framework(self.test_model )
0
0
import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = WavaVecaForSequenceClassification.from_pretrained(A_ , config=A_ ) SCREAMING_SNAKE_CASE = downstream_dict['''projector.weight'''] SCREAMING_SNAKE_CASE = downstream_dict['''projector.bias'''] SCREAMING_SNAKE_CASE = downstream_dict['''model.post_net.linear.weight'''] SCREAMING_SNAKE_CASE = downstream_dict['''model.post_net.linear.bias'''] return model def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = WavaVecaForAudioFrameClassification.from_pretrained(A_ , config=A_ ) SCREAMING_SNAKE_CASE = downstream_dict['''model.linear.weight'''] SCREAMING_SNAKE_CASE = downstream_dict['''model.linear.bias'''] return model def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = WavaVecaForXVector.from_pretrained(A_ , config=A_ ) SCREAMING_SNAKE_CASE = downstream_dict['''connector.weight'''] SCREAMING_SNAKE_CASE = downstream_dict['''connector.bias'''] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): SCREAMING_SNAKE_CASE = downstream_dict[ F"""model.framelevel_feature_extractor.module.{i}.kernel.weight""" ] SCREAMING_SNAKE_CASE = downstream_dict[F"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""] SCREAMING_SNAKE_CASE = downstream_dict['''model.utterancelevel_feature_extractor.linear1.weight'''] SCREAMING_SNAKE_CASE = downstream_dict['''model.utterancelevel_feature_extractor.linear1.bias'''] SCREAMING_SNAKE_CASE = downstream_dict['''model.utterancelevel_feature_extractor.linear2.weight'''] SCREAMING_SNAKE_CASE = downstream_dict['''model.utterancelevel_feature_extractor.linear2.bias'''] SCREAMING_SNAKE_CASE = downstream_dict['''objective.W'''] return model @torch.no_grad() def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = torch.load(A_ , map_location="""cpu""" ) SCREAMING_SNAKE_CASE = checkpoint['''Downstream'''] SCREAMING_SNAKE_CASE = WavaVecaConfig.from_pretrained(A_ ) SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained( A_ , return_attention_mask=A_ , do_normalize=A_ ) SCREAMING_SNAKE_CASE = hf_config.architectures[0] if arch.endswith("""ForSequenceClassification""" ): SCREAMING_SNAKE_CASE = convert_classification(A_ , A_ , A_ ) elif arch.endswith("""ForAudioFrameClassification""" ): SCREAMING_SNAKE_CASE = convert_diarization(A_ , A_ , A_ ) elif arch.endswith("""ForXVector""" ): SCREAMING_SNAKE_CASE = convert_xvector(A_ , A_ , A_ ) else: raise NotImplementedError(F"""S3PRL weights conversion is not supported for {arch}""" ) if hf_config.use_weighted_layer_sum: SCREAMING_SNAKE_CASE = checkpoint['''Featurizer''']['''weights'''] hf_feature_extractor.save_pretrained(A_ ) hf_model.save_pretrained(A_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() parser.add_argument( """--base_model_name""", default=None, type=str, help="""Name of the huggingface pretrained base model.""" ) parser.add_argument("""--config_path""", default=None, type=str, help="""Path to the huggingface classifier config.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to the s3prl checkpoint.""") parser.add_argument("""--model_dump_path""", default=None, type=str, help="""Path to the final converted model.""") SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
296
"""simple docstring""" import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": __UpperCamelCase : Tuple = '''%20'''.join(argv[1:]) if len(argv) > 1 else quote(str(input('''Search: '''))) print('''Googling.....''') __UpperCamelCase : Optional[int] = F'''https://www.google.com/search?q={query}&num=100''' __UpperCamelCase : Optional[Any] = requests.get( url, headers={'''User-Agent''': str(UserAgent().random)}, ) try: __UpperCamelCase : Union[str, Any] = ( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''yuRUbf'''}) .find('''a''') .get('''href''') ) except AttributeError: __UpperCamelCase : str = parse_qs( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''kCrYT'''}) .find('''a''') .get('''href''') )['''url'''][0] webbrowser.open(link)
106
0
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) UpperCamelCase_ =logging.get_logger(__name__) # pylint: disable=invalid-name UpperCamelCase_ =""" Examples: ```py >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline >>> from diffusers.utils import load_image >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior.to(\"cuda\") >>> prompt = \"A red cartoon frog, 4k\" >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False) >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16 ... ) >>> pipe.to(\"cuda\") >>> init_image = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/frog.png\" ... ) >>> image = pipe( ... image=init_image, ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... strength=0.2, ... ).images >>> image[0].save(\"red_frog.png\") ``` """ def a_ ( _lowercase , _lowercase , _lowercase=8 ): _UpperCamelCase : Dict = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _UpperCamelCase : List[Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def a_ ( _lowercase , _lowercase=512 , _lowercase=512 ): _UpperCamelCase : List[str] = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) _UpperCamelCase : Tuple = np.array(pil_image.convert('''RGB''' ) ) _UpperCamelCase : Dict = arr.astype(np.floataa ) / 127.5 - 1 _UpperCamelCase : Optional[int] = np.transpose(_lowercase , [2, 0, 1] ) _UpperCamelCase : List[Any] = torch.from_numpy(_lowercase ).unsqueeze(0 ) return image class _a ( _lowerCAmelCase ): def __init__( self : int, lowerCAmelCase__ : UNetaDConditionModel, lowerCAmelCase__ : DDPMScheduler, lowerCAmelCase__ : VQModel, ) -> Union[str, Any]: '''simple docstring''' super().__init__() self.register_modules( unet=lowerCAmelCase__, scheduler=lowerCAmelCase__, movq=lowerCAmelCase__, ) _UpperCamelCase : List[str] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def snake_case ( self : str, lowerCAmelCase__ : List[Any], lowerCAmelCase__ : List[str], lowerCAmelCase__ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : List[str] = min(int(num_inference_steps * strength ), lowerCAmelCase__ ) _UpperCamelCase : Optional[Any] = max(num_inference_steps - init_timestep, 0 ) _UpperCamelCase : int = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def snake_case ( self : Union[str, Any], lowerCAmelCase__ : Dict, lowerCAmelCase__ : Optional[int], lowerCAmelCase__ : Tuple, lowerCAmelCase__ : Any, lowerCAmelCase__ : int, lowerCAmelCase__ : Any, lowerCAmelCase__ : Tuple=None ) -> Optional[Any]: '''simple docstring''' if not isinstance(lowerCAmelCase__, (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowerCAmelCase__ )}""" ) _UpperCamelCase : int = image.to(device=lowerCAmelCase__, dtype=lowerCAmelCase__ ) _UpperCamelCase : str = batch_size * num_images_per_prompt if image.shape[1] == 4: _UpperCamelCase : Any = image else: if isinstance(lowerCAmelCase__, lowerCAmelCase__ ) and len(lowerCAmelCase__ ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(lowerCAmelCase__ )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) elif isinstance(lowerCAmelCase__, lowerCAmelCase__ ): _UpperCamelCase : Optional[Any] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(lowerCAmelCase__ ) ] _UpperCamelCase : List[str] = torch.cat(lowerCAmelCase__, dim=0 ) else: _UpperCamelCase : Dict = self.movq.encode(lowerCAmelCase__ ).latent_dist.sample(lowerCAmelCase__ ) _UpperCamelCase : List[str] = self.movq.config.scaling_factor * init_latents _UpperCamelCase : Any = torch.cat([init_latents], dim=0 ) _UpperCamelCase : int = init_latents.shape _UpperCamelCase : Any = randn_tensor(lowerCAmelCase__, generator=lowerCAmelCase__, device=lowerCAmelCase__, dtype=lowerCAmelCase__ ) # get latents _UpperCamelCase : Any = self.scheduler.add_noise(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__ ) _UpperCamelCase : int = init_latents return latents def snake_case ( self : Dict, lowerCAmelCase__ : str=0 ) -> Dict: '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) _UpperCamelCase : int = torch.device(f"""cuda:{gpu_id}""" ) _UpperCamelCase : Tuple = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowerCAmelCase__, lowerCAmelCase__ ) def snake_case ( self : List[str], lowerCAmelCase__ : Tuple=0 ) -> Union[str, Any]: '''simple docstring''' if is_accelerate_available() and is_accelerate_version('''>=''', '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) _UpperCamelCase : int = torch.device(f"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to('''cpu''', silence_dtype_warnings=lowerCAmelCase__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _UpperCamelCase : int = None for cpu_offloaded_model in [self.unet, self.movq]: _UpperCamelCase , _UpperCamelCase : List[Any] = cpu_offload_with_hook(lowerCAmelCase__, lowerCAmelCase__, prev_module_hook=lowerCAmelCase__ ) # We'll offload the last model manually. _UpperCamelCase : Dict = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def snake_case ( self : Optional[Any] ) -> Tuple: '''simple docstring''' if not hasattr(self.unet, '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(lowerCAmelCase__, '''_hf_hook''' ) and hasattr(module._hf_hook, '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowerCAmelCase__ ) def __call__( self : int, lowerCAmelCase__ : Union[torch.FloatTensor, List[torch.FloatTensor]], lowerCAmelCase__ : Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]], lowerCAmelCase__ : Union[torch.FloatTensor, List[torch.FloatTensor]], lowerCAmelCase__ : int = 5_1_2, lowerCAmelCase__ : int = 5_1_2, lowerCAmelCase__ : int = 1_0_0, lowerCAmelCase__ : float = 4.0, lowerCAmelCase__ : float = 0.3, lowerCAmelCase__ : int = 1, lowerCAmelCase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None, lowerCAmelCase__ : Optional[str] = "pil", lowerCAmelCase__ : bool = True, ) -> Tuple: '''simple docstring''' _UpperCamelCase : Dict = self._execution_device _UpperCamelCase : Union[str, Any] = guidance_scale > 1.0 if isinstance(lowerCAmelCase__, lowerCAmelCase__ ): _UpperCamelCase : int = torch.cat(lowerCAmelCase__, dim=0 ) _UpperCamelCase : List[Any] = image_embeds.shape[0] if isinstance(lowerCAmelCase__, lowerCAmelCase__ ): _UpperCamelCase : Optional[int] = torch.cat(lowerCAmelCase__, dim=0 ) if do_classifier_free_guidance: _UpperCamelCase : Tuple = image_embeds.repeat_interleave(lowerCAmelCase__, dim=0 ) _UpperCamelCase : int = negative_image_embeds.repeat_interleave(lowerCAmelCase__, dim=0 ) _UpperCamelCase : Dict = torch.cat([negative_image_embeds, image_embeds], dim=0 ).to(dtype=self.unet.dtype, device=lowerCAmelCase__ ) if not isinstance(lowerCAmelCase__, lowerCAmelCase__ ): _UpperCamelCase : Tuple = [image] if not all(isinstance(lowerCAmelCase__, (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( f"""Input is in incorrect format: {[type(lowerCAmelCase__ ) for i in image]}. Currently, we only support PIL image and pytorch tensor""" ) _UpperCamelCase : Union[str, Any] = torch.cat([prepare_image(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__ ) for i in image], dim=0 ) _UpperCamelCase : str = image.to(dtype=image_embeds.dtype, device=lowerCAmelCase__ ) _UpperCamelCase : Optional[Any] = self.movq.encode(lowerCAmelCase__ )['''latents'''] _UpperCamelCase : Optional[Any] = latents.repeat_interleave(lowerCAmelCase__, dim=0 ) self.scheduler.set_timesteps(lowerCAmelCase__, device=lowerCAmelCase__ ) _UpperCamelCase , _UpperCamelCase : List[Any] = self.get_timesteps(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__ ) _UpperCamelCase : str = timesteps[:1].repeat(batch_size * num_images_per_prompt ) _UpperCamelCase , _UpperCamelCase : Tuple = downscale_height_and_width(lowerCAmelCase__, lowerCAmelCase__, self.movq_scale_factor ) _UpperCamelCase : Optional[Any] = self.prepare_latents( lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, image_embeds.dtype, lowerCAmelCase__, lowerCAmelCase__ ) for i, t in enumerate(self.progress_bar(lowerCAmelCase__ ) ): # expand the latents if we are doing classifier free guidance _UpperCamelCase : int = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _UpperCamelCase : Dict = {'''image_embeds''': image_embeds} _UpperCamelCase : List[Any] = self.unet( sample=lowerCAmelCase__, timestep=lowerCAmelCase__, encoder_hidden_states=lowerCAmelCase__, added_cond_kwargs=lowerCAmelCase__, return_dict=lowerCAmelCase__, )[0] if do_classifier_free_guidance: _UpperCamelCase , _UpperCamelCase : Optional[int] = noise_pred.split(latents.shape[1], dim=1 ) _UpperCamelCase , _UpperCamelCase : List[str] = noise_pred.chunk(2 ) _UpperCamelCase , _UpperCamelCase : int = variance_pred.chunk(2 ) _UpperCamelCase : List[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _UpperCamelCase : List[str] = torch.cat([noise_pred, variance_pred_text], dim=1 ) if not ( hasattr(self.scheduler.config, '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _UpperCamelCase , _UpperCamelCase : Optional[Any] = noise_pred.split(latents.shape[1], dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _UpperCamelCase : List[Any] = self.scheduler.step( lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, generator=lowerCAmelCase__, )[0] # post-processing _UpperCamelCase : int = self.movq.decode(lowerCAmelCase__, force_not_quantize=lowerCAmelCase__ )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: _UpperCamelCase : List[Any] = image * 0.5 + 0.5 _UpperCamelCase : Dict = image.clamp(0, 1 ) _UpperCamelCase : Tuple = image.cpu().permute(0, 2, 3, 1 ).float().numpy() if output_type == "pil": _UpperCamelCase : Any = self.numpy_to_pil(lowerCAmelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase__ )
128
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def a_ ( _lowercase ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4E00 and cp <= 0X9FFF) or (cp >= 0X3400 and cp <= 0X4DBF) # or (cp >= 0X20000 and cp <= 0X2A6DF) # or (cp >= 0X2A700 and cp <= 0X2B73F) # or (cp >= 0X2B740 and cp <= 0X2B81F) # or (cp >= 0X2B820 and cp <= 0X2CEAF) # or (cp >= 0XF900 and cp <= 0XFAFF) or (cp >= 0X2F800 and cp <= 0X2FA1F) # ): # return True return False def a_ ( _lowercase ): # word like '180' or '身高' or '神' for char in word: _UpperCamelCase : Dict = ord(_lowercase ) if not _is_chinese_char(_lowercase ): return 0 return 1 def a_ ( _lowercase ): _UpperCamelCase : List[str] = set() for token in tokens: _UpperCamelCase : int = len(_lowercase ) > 1 and is_chinese(_lowercase ) if chinese_word: word_set.add(_lowercase ) _UpperCamelCase : Optional[int] = list(_lowercase ) return word_list def a_ ( _lowercase , _lowercase ): if not chinese_word_set: return bert_tokens _UpperCamelCase : Tuple = max([len(_lowercase ) for w in chinese_word_set] ) _UpperCamelCase : int = bert_tokens _UpperCamelCase , _UpperCamelCase : Union[str, Any] = 0, len(_lowercase ) while start < end: _UpperCamelCase : Union[str, Any] = True if is_chinese(bert_word[start] ): _UpperCamelCase : List[Any] = min(end - start , _lowercase ) for i in range(_lowercase , 1 , -1 ): _UpperCamelCase : str = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): _UpperCamelCase : int = '''##''' + bert_word[j] _UpperCamelCase : int = start + i _UpperCamelCase : Union[str, Any] = False break if single_word: start += 1 return bert_word def a_ ( _lowercase , _lowercase , _lowercase ): _UpperCamelCase : List[Any] = [] for i in range(0 , len(_lowercase ) , 100 ): _UpperCamelCase : Optional[int] = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=['''cws'''] ).cws _UpperCamelCase : Optional[int] = [get_chinese_word(_lowercase ) for r in res] ltp_res.extend(_lowercase ) assert len(_lowercase ) == len(_lowercase ) _UpperCamelCase : Dict = [] for i in range(0 , len(_lowercase ) , 100 ): _UpperCamelCase : Optional[int] = bert_tokenizer(lines[i : i + 100] , add_special_tokens=_lowercase , truncation=_lowercase , max_length=512 ) bert_res.extend(res['''input_ids'''] ) assert len(_lowercase ) == len(_lowercase ) _UpperCamelCase : Optional[Any] = [] for input_ids, chinese_word in zip(_lowercase , _lowercase ): _UpperCamelCase : str = [] for id in input_ids: _UpperCamelCase : Dict = bert_tokenizer._convert_id_to_token(_lowercase ) input_tokens.append(_lowercase ) _UpperCamelCase : str = add_sub_symbol(_lowercase , _lowercase ) _UpperCamelCase : List[str] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_lowercase ): if token[:2] == "##": _UpperCamelCase : int = token[2:] # save chinese tokens' pos if len(_lowercase ) == 1 and _is_chinese_char(ord(_lowercase ) ): ref_id.append(_lowercase ) ref_ids.append(_lowercase ) assert len(_lowercase ) == len(_lowercase ) return ref_ids def a_ ( _lowercase ): # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f: _UpperCamelCase : Union[str, Any] = f.readlines() _UpperCamelCase : Tuple = [line.strip() for line in data if len(_lowercase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _UpperCamelCase : List[Any] = LTP(args.ltp ) # faster in GPU device _UpperCamelCase : int = BertTokenizer.from_pretrained(args.bert ) _UpperCamelCase : List[str] = prepare_ref(_lowercase , _lowercase , _lowercase ) with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f: _UpperCamelCase : List[Any] = [json.dumps(_lowercase ) + '''\n''' for ref in ref_ids] f.writelines(_lowercase ) if __name__ == "__main__": UpperCamelCase_ =argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", required=False, type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", required=False, type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""", ) parser.add_argument( """--bert""", required=False, type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""", ) parser.add_argument( """--save_path""", required=False, type=str, default="""./resources/ref.txt""", help="""path to save res""", ) UpperCamelCase_ =parser.parse_args() main(args)
128
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : Optional[int] = """yolos""" def __init__( self , __UpperCAmelCase=7_68 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=30_72 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=[5_12, 8_64] , __UpperCAmelCase=16 , __UpperCAmelCase=3 , __UpperCAmelCase=True , __UpperCAmelCase=1_00 , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=1 , __UpperCAmelCase=5 , __UpperCAmelCase=2 , __UpperCAmelCase=5 , __UpperCAmelCase=2 , __UpperCAmelCase=0.1 , **__UpperCAmelCase , ) ->str: super().__init__(**__UpperCAmelCase) a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = initializer_range a_ = layer_norm_eps a_ = image_size a_ = patch_size a_ = num_channels a_ = qkv_bias a_ = num_detection_tokens a_ = use_mid_position_embeddings a_ = auxiliary_loss # Hungarian matcher a_ = class_cost a_ = bbox_cost a_ = giou_cost # Loss coefficients a_ = bbox_loss_coefficient a_ = giou_loss_coefficient a_ = eos_coefficient class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : List[Any] = version.parse("""1.11""" ) @property def UpperCAmelCase__ ( self) ->Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ]) @property def UpperCAmelCase__ ( self) ->float: return 1E-4 @property def UpperCAmelCase__ ( self) ->int: return 12
243
"""simple docstring""" import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=True , UpperCAmelCase="pt" ) ->Tuple: """simple docstring""" a_ = {"add_prefix_space": True} if isinstance(UpperCAmelCase , UpperCAmelCase ) and not line.startswith(" " ) else {} a_ = padding_side return tokenizer( [line] , max_length=UpperCAmelCase , padding="max_length" if pad_to_max_length else None , truncation=UpperCAmelCase , return_tensors=UpperCAmelCase , add_special_tokens=UpperCAmelCase , **UpperCAmelCase , ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , ) ->Tuple: """simple docstring""" a_ = input_ids.ne(UpperCAmelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class snake_case ( SCREAMING_SNAKE_CASE_ ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase="train" , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="" , ) ->Any: super().__init__() a_ = Path(__UpperCAmelCase).joinpath(type_path + ".source") a_ = Path(__UpperCAmelCase).joinpath(type_path + ".target") a_ = self.get_char_lens(self.src_file) a_ = max_source_length a_ = max_target_length assert min(self.src_lens) > 0, F'''found empty line in {self.src_file}''' a_ = tokenizer a_ = prefix if n_obs is not None: a_ = self.src_lens[:n_obs] a_ = src_lang a_ = tgt_lang def __len__( self) ->Optional[Any]: return len(self.src_lens) def __getitem__( self , __UpperCAmelCase) ->Dict[str, torch.Tensor]: a_ = index + 1 # linecache starts at 1 a_ = self.prefix + linecache.getline(str(self.src_file) , __UpperCAmelCase).rstrip("\n") a_ = linecache.getline(str(self.tgt_file) , __UpperCAmelCase).rstrip("\n") assert source_line, F'''empty source line for index {index}''' assert tgt_line, F'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer , __UpperCAmelCase): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right a_ = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , __UpperCAmelCase) else self.tokenizer ) a_ = self.tokenizer.generator if isinstance(self.tokenizer , __UpperCAmelCase) else self.tokenizer a_ = encode_line(__UpperCAmelCase , __UpperCAmelCase , self.max_source_length , "right") a_ = encode_line(__UpperCAmelCase , __UpperCAmelCase , self.max_target_length , "right") a_ = source_inputs["input_ids"].squeeze() a_ = target_inputs["input_ids"].squeeze() a_ = source_inputs["attention_mask"].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def UpperCAmelCase__ ( __UpperCAmelCase) ->Dict: return [len(__UpperCAmelCase) for x in Path(__UpperCAmelCase).open().readlines()] def UpperCAmelCase__ ( self , __UpperCAmelCase) ->Dict[str, torch.Tensor]: a_ = torch.stack([x["input_ids"] for x in batch]) a_ = torch.stack([x["attention_mask"] for x in batch]) a_ = torch.stack([x["decoder_input_ids"] for x in batch]) a_ = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , __UpperCAmelCase) else self.tokenizer.pad_token_id ) a_ = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , __UpperCAmelCase) else self.tokenizer.pad_token_id ) a_ = trim_batch(__UpperCAmelCase , __UpperCAmelCase) a_ , a_ = trim_batch(__UpperCAmelCase , __UpperCAmelCase , attention_mask=__UpperCAmelCase) a_ = { "input_ids": source_ids, "attention_mask": source_mask, "decoder_input_ids": y, } return batch UpperCamelCase_ = getLogger(__name__) def UpperCamelCase ( UpperCAmelCase ) ->Optional[int]: """simple docstring""" return list(itertools.chain.from_iterable(UpperCAmelCase ) ) def UpperCamelCase ( UpperCAmelCase ) ->None: """simple docstring""" a_ = get_git_info() save_json(UpperCAmelCase , os.path.join(UpperCAmelCase , "git_log.json" ) ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=4 , **UpperCAmelCase ) ->Tuple: """simple docstring""" with open(UpperCAmelCase , "w" ) as f: json.dump(UpperCAmelCase , UpperCAmelCase , indent=UpperCAmelCase , **UpperCAmelCase ) def UpperCamelCase ( UpperCAmelCase ) ->Tuple: """simple docstring""" with open(UpperCAmelCase ) as f: return json.load(UpperCAmelCase ) def UpperCamelCase ( ) ->Dict: """simple docstring""" a_ = git.Repo(search_parent_directories=UpperCAmelCase ) a_ = { "repo_id": str(UpperCAmelCase ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), "hostname": str(socket.gethostname() ), } return repo_infos def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->List: """simple docstring""" return list(map(UpperCAmelCase , UpperCAmelCase ) ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->List[str]: """simple docstring""" with open(UpperCAmelCase , "wb" ) as f: return pickle.dump(UpperCAmelCase , UpperCAmelCase ) def UpperCamelCase ( UpperCAmelCase ) ->List[str]: """simple docstring""" def remove_articles(UpperCAmelCase ): return re.sub(r"\b(a|an|the)\b" , " " , UpperCAmelCase ) def white_space_fix(UpperCAmelCase ): return " ".join(text.split() ) def remove_punc(UpperCAmelCase ): a_ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(UpperCAmelCase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(UpperCAmelCase ) ) ) ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" a_ = normalize_answer(UpperCAmelCase ).split() a_ = normalize_answer(UpperCAmelCase ).split() a_ = Counter(UpperCAmelCase ) & Counter(UpperCAmelCase ) a_ = sum(common.values() ) if num_same == 0: return 0 a_ = 1.0 * num_same / len(UpperCAmelCase ) a_ = 1.0 * num_same / len(UpperCAmelCase ) a_ = (2 * precision * recall) / (precision + recall) return fa def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->Optional[int]: """simple docstring""" return normalize_answer(UpperCAmelCase ) == normalize_answer(UpperCAmelCase ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->Dict: """simple docstring""" assert len(UpperCAmelCase ) == len(UpperCAmelCase ) a_ = 0 for hypo, pred in zip(UpperCAmelCase , UpperCAmelCase ): em += exact_match_score(UpperCAmelCase , UpperCAmelCase ) if len(UpperCAmelCase ) > 0: em /= len(UpperCAmelCase ) return {"em": em} def UpperCamelCase ( UpperCAmelCase ) ->Optional[Any]: """simple docstring""" return model_prefix.startswith("rag" ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->str: """simple docstring""" a_ = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead a_ = "dropout_rate" for p in extra_params: if getattr(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): if not hasattr(UpperCAmelCase , UpperCAmelCase ) and not hasattr(UpperCAmelCase , equivalent_param[p] ): logger.info("config doesn't have a `{}` attribute".format(UpperCAmelCase ) ) delattr(UpperCAmelCase , UpperCAmelCase ) continue a_ = p if hasattr(UpperCAmelCase , UpperCAmelCase ) else equivalent_param[p] setattr(UpperCAmelCase , UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) delattr(UpperCAmelCase , UpperCAmelCase ) return hparams, config
243
1
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class _SCREAMING_SNAKE_CASE: def __init__( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=12 ,SCREAMING_SNAKE_CASE__=7 ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=99 ,SCREAMING_SNAKE_CASE__=32 ,SCREAMING_SNAKE_CASE__=32 ,SCREAMING_SNAKE_CASE__=2 ,SCREAMING_SNAKE_CASE__=4 ,SCREAMING_SNAKE_CASE__=37 ,SCREAMING_SNAKE_CASE__=0.1 ,SCREAMING_SNAKE_CASE__=0.1 ,SCREAMING_SNAKE_CASE__=5_12 ,SCREAMING_SNAKE_CASE__=0.0_2 ,SCREAMING_SNAKE_CASE__=0 ,SCREAMING_SNAKE_CASE__=None ,) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :List[str] = parent __SCREAMING_SNAKE_CASE :Any = batch_size __SCREAMING_SNAKE_CASE :List[str] = seq_length __SCREAMING_SNAKE_CASE :int = is_training __SCREAMING_SNAKE_CASE :Optional[int] = use_input_mask __SCREAMING_SNAKE_CASE :Union[str, Any] = use_labels __SCREAMING_SNAKE_CASE :int = vocab_size __SCREAMING_SNAKE_CASE :int = hidden_size __SCREAMING_SNAKE_CASE :Tuple = projection_dim __SCREAMING_SNAKE_CASE :str = num_hidden_layers __SCREAMING_SNAKE_CASE :Dict = num_attention_heads __SCREAMING_SNAKE_CASE :int = intermediate_size __SCREAMING_SNAKE_CASE :Any = dropout __SCREAMING_SNAKE_CASE :List[str] = attention_dropout __SCREAMING_SNAKE_CASE :List[str] = max_position_embeddings __SCREAMING_SNAKE_CASE :Dict = initializer_range __SCREAMING_SNAKE_CASE :int = scope __SCREAMING_SNAKE_CASE :List[Any] = bos_token_id def _UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE :List[str] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __SCREAMING_SNAKE_CASE :Optional[int] = None if self.use_input_mask: __SCREAMING_SNAKE_CASE :List[str] = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: __SCREAMING_SNAKE_CASE :Any = input_mask.numpy() __SCREAMING_SNAKE_CASE :str = input_mask.shape __SCREAMING_SNAKE_CASE :Union[str, Any] = np.random.randint(1 ,seq_length - 1 ,size=(batch_size,) ) for batch_idx, start_index in enumerate(SCREAMING_SNAKE_CASE__ ): __SCREAMING_SNAKE_CASE :Dict = 1 __SCREAMING_SNAKE_CASE :Any = 0 __SCREAMING_SNAKE_CASE :Dict = self.get_config() return config, input_ids, tf.convert_to_tensor(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" return BlipTextConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,projection_dim=self.projection_dim ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,dropout=self.dropout ,attention_dropout=self.attention_dropout ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,bos_token_id=self.bos_token_id ,) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE :List[str] = TFBlipTextModel(config=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Union[str, Any] = model(SCREAMING_SNAKE_CASE__ ,attention_mask=SCREAMING_SNAKE_CASE__ ,training=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Any = model(SCREAMING_SNAKE_CASE__ ,training=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def _UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE :Any = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE :Union[str, Any] = config_and_inputs __SCREAMING_SNAKE_CASE :List[str] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class _SCREAMING_SNAKE_CASE( A , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : int = (TFBlipTextModel,) if is_tf_available() else () SCREAMING_SNAKE_CASE_ : Dict = False SCREAMING_SNAKE_CASE_ : Dict = False SCREAMING_SNAKE_CASE_ : Tuple = False def _UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE :List[str] = BlipTextModelTester(self ) __SCREAMING_SNAKE_CASE :List[str] = ConfigTester(self ,config_class=SCREAMING_SNAKE_CASE__ ,hidden_size=37 ) def _UpperCamelCase ( self ) -> int: """simple docstring""" self.config_tester.run_common_tests() def _UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ) -> Any: """simple docstring""" pass def _UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason='''Blip does not use inputs_embeds''' ) def _UpperCamelCase ( self ) -> Dict: """simple docstring""" pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def _UpperCamelCase ( self ) -> Dict: """simple docstring""" pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def _UpperCamelCase ( self ) -> Dict: """simple docstring""" pass @slow def _UpperCamelCase ( self ) -> int: """simple docstring""" for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE :List[str] = TFBlipTextModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__=True ) -> Union[str, Any]: """simple docstring""" super().test_pt_tf_model_equivalence(allow_missing_keys=SCREAMING_SNAKE_CASE__ )
353
"""simple docstring""" def __lowerCamelCase ( a_ : str , a_ : str ) -> str: __SCREAMING_SNAKE_CASE :int = len(a_ ) __SCREAMING_SNAKE_CASE :int = len(a_ ) __SCREAMING_SNAKE_CASE :int = ( first_str_length if first_str_length > second_str_length else second_str_length ) __SCREAMING_SNAKE_CASE :list = [] for char_count in range(a_ ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(a_ ) if __name__ == "__main__": print(alternative_string_arrange("AB", "XYZ"), end=" ")
239
0
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Any: """simple docstring""" A__ = [0] * len(lowercase_ ) A__ = [] A__ = [1] * len(lowercase_ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(lowercase_ ) ): if indegree[i] == 0: queue.append(lowercase_ ) while queue: A__ = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: A__ = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(lowercase_ ) print(max(lowercase_ ) ) # Adjacency list of Graph _lowerCamelCase : Optional[int] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
14
import os import sys import unittest _lowerCamelCase : Optional[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) _lowerCamelCase : Any = os.path.join("""tests""", """models""", """bert""", """test_modeling_bert.py""") _lowerCamelCase : str = os.path.join("""tests""", """models""", """blip""", """test_modeling_blip.py""") class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self : Tuple) ->Tuple: '''simple docstring''' A__ = get_test_to_tester_mapping(UpperCAmelCase__) A__ = get_test_to_tester_mapping(UpperCAmelCase__) A__ = {'''BertModelTest''': '''BertModelTester'''} A__ = { '''BlipModelTest''': '''BlipModelTester''', '''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''', '''BlipTextModelTest''': '''BlipTextModelTester''', '''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''', '''BlipVQAModelTest''': '''BlipVQAModelTester''', '''BlipVisionModelTest''': '''BlipVisionModelTester''', } self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__) self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Tuple) ->List[Any]: '''simple docstring''' A__ = get_model_to_test_mapping(UpperCAmelCase__) A__ = get_model_to_test_mapping(UpperCAmelCase__) A__ = { '''BertForMaskedLM''': ['''BertModelTest'''], '''BertForMultipleChoice''': ['''BertModelTest'''], '''BertForNextSentencePrediction''': ['''BertModelTest'''], '''BertForPreTraining''': ['''BertModelTest'''], '''BertForQuestionAnswering''': ['''BertModelTest'''], '''BertForSequenceClassification''': ['''BertModelTest'''], '''BertForTokenClassification''': ['''BertModelTest'''], '''BertLMHeadModel''': ['''BertModelTest'''], '''BertModel''': ['''BertModelTest'''], } A__ = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''], '''BlipModel''': ['''BlipModelTest'''], '''BlipTextModel''': ['''BlipTextModelTest'''], '''BlipVisionModel''': ['''BlipVisionModelTest'''], } self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__) self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->str: '''simple docstring''' A__ = get_model_to_tester_mapping(UpperCAmelCase__) A__ = get_model_to_tester_mapping(UpperCAmelCase__) A__ = { '''BertForMaskedLM''': ['''BertModelTester'''], '''BertForMultipleChoice''': ['''BertModelTester'''], '''BertForNextSentencePrediction''': ['''BertModelTester'''], '''BertForPreTraining''': ['''BertModelTester'''], '''BertForQuestionAnswering''': ['''BertModelTester'''], '''BertForSequenceClassification''': ['''BertModelTester'''], '''BertForTokenClassification''': ['''BertModelTester'''], '''BertLMHeadModel''': ['''BertModelTester'''], '''BertModel''': ['''BertModelTester'''], } A__ = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''], '''BlipModel''': ['''BlipModelTester'''], '''BlipTextModel''': ['''BlipTextModelTester'''], '''BlipVisionModel''': ['''BlipVisionModelTester'''], } self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__) self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
14
1
from torch import nn def __UpperCamelCase ( lowercase__ : Dict ) -> List[str]: '''simple docstring''' if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f'Unsupported activation function: {act_fn}' )
28
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor __UpperCAmelCase = logging.get_logger(__name__) class __a ( __UpperCamelCase ): def __init__( self : Union[str, Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Dict ): warnings.warn( """The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use GLPNImageProcessor instead.""" , UpperCAmelCase , ) super().__init__(*UpperCAmelCase , **UpperCAmelCase )
28
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __snake_case = { '''configuration_pix2struct''': [ '''PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Pix2StructConfig''', '''Pix2StructTextConfig''', '''Pix2StructVisionConfig''', ], '''processing_pix2struct''': ['''Pix2StructProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''Pix2StructImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Pix2StructPreTrainedModel''', '''Pix2StructForConditionalGeneration''', '''Pix2StructVisionModel''', '''Pix2StructTextModel''', ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
348
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class lowercase_ ( lowercase ): '''simple docstring''' def __lowerCAmelCase ( self : str ) ->int: """simple docstring""" a = SMALL_MODEL_IDENTIFIER a = '''pt''' a = '''tf''' def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : str ) ->Union[str, Any]: """simple docstring""" a = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(__UpperCAmelCase ) def __lowerCAmelCase ( self : Any , __UpperCAmelCase : Union[str, Any] ) ->List[str]: """simple docstring""" a = TFAutoModel.from_pretrained(self.test_model , from_pt=__UpperCAmelCase ) model_tf.save_pretrained(__UpperCAmelCase ) def __lowerCAmelCase ( self : Any ) ->int: """simple docstring""" a = '''mock_framework''' # Framework provided - return whatever the user provides a = FeaturesManager.determine_framework(self.test_model , __UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__UpperCAmelCase ) a = FeaturesManager.determine_framework(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__UpperCAmelCase ) a = FeaturesManager.determine_framework(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) def __lowerCAmelCase ( self : str ) ->int: """simple docstring""" with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__UpperCAmelCase ) a = FeaturesManager.determine_framework(__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__UpperCAmelCase ) a = FeaturesManager.determine_framework(__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(__UpperCAmelCase ): a = FeaturesManager.determine_framework(__UpperCAmelCase ) def __lowerCAmelCase ( self : Optional[int] ) ->List[str]: """simple docstring""" a = MagicMock(return_value=__UpperCAmelCase ) with patch('''transformers.onnx.features.is_tf_available''' , __UpperCAmelCase ): a = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__UpperCAmelCase , self.framework_pt ) # PyTorch not in environment -> use TensorFlow a = MagicMock(return_value=__UpperCAmelCase ) with patch('''transformers.onnx.features.is_torch_available''' , __UpperCAmelCase ): a = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__UpperCAmelCase , self.framework_tf ) # Both in environment -> use PyTorch a = MagicMock(return_value=__UpperCAmelCase ) a = MagicMock(return_value=__UpperCAmelCase ) with patch('''transformers.onnx.features.is_tf_available''' , __UpperCAmelCase ), patch( '''transformers.onnx.features.is_torch_available''' , __UpperCAmelCase ): a = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__UpperCAmelCase , self.framework_pt ) # Both not in environment -> raise error a = MagicMock(return_value=__UpperCAmelCase ) a = MagicMock(return_value=__UpperCAmelCase ) with patch('''transformers.onnx.features.is_tf_available''' , __UpperCAmelCase ), patch( '''transformers.onnx.features.is_torch_available''' , __UpperCAmelCase ): with self.assertRaises(__UpperCAmelCase ): a = FeaturesManager.determine_framework(self.test_model )
0
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class snake_case__ ( unittest.TestCase ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=7 , lowerCAmelCase__=3 , lowerCAmelCase__=18 , lowerCAmelCase__=30 , lowerCAmelCase__=4_00 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , lowerCAmelCase__=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , lowerCAmelCase__=True , ) -> List[str]: __magic_name__ : Tuple = size if size is not None else {'''height''': 2_24, '''width''': 2_24} __magic_name__ : List[str] = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} __magic_name__ : List[Any] = parent __magic_name__ : List[str] = batch_size __magic_name__ : str = num_channels __magic_name__ : int = image_size __magic_name__ : Union[str, Any] = min_resolution __magic_name__ : str = max_resolution __magic_name__ : Tuple = do_resize __magic_name__ : Union[str, Any] = size __magic_name__ : Any = do_center_crop __magic_name__ : int = crop_size __magic_name__ : Any = do_normalize __magic_name__ : str = image_mean __magic_name__ : List[Any] = image_std __magic_name__ : Dict = do_convert_rgb def __magic_name__ ( self ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def __magic_name__ ( self , lowerCAmelCase__=False , lowerCAmelCase__=False , lowerCAmelCase__=False ) -> Optional[int]: assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: __magic_name__ : Union[str, Any] = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 2_55 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta ) ) else: __magic_name__ : Any = [] for i in range(self.batch_size ): __magic_name__ : Optional[Any] = np.random.choice(np.arange(self.min_resolution , self.max_resolution ) , 2 ) image_inputs.append(np.random.randint(2_55 , size=(self.num_channels, width, height) , dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension __magic_name__ : List[Any] = [Image.fromarray(np.moveaxis(lowerCAmelCase__ , 0 , -1 ) ) for x in image_inputs] if torchify: __magic_name__ : List[str] = [torch.from_numpy(lowerCAmelCase__ ) for x in image_inputs] return image_inputs @require_torch @require_vision class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : List[str] = ChineseCLIPImageProcessor if is_vision_available() else None def __magic_name__ ( self ) -> List[str]: __magic_name__ : Any = ChineseCLIPImageProcessingTester(self , do_center_crop=lowerCAmelCase__ ) @property def __magic_name__ ( self ) -> List[Any]: return self.image_processor_tester.prepare_image_processor_dict() def __magic_name__ ( self ) -> str: __magic_name__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """size""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_center_crop""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """center_crop""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_mean""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_std""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_convert_rgb""" ) ) def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 2_24, """width""": 2_24} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) __magic_name__ : Dict = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def __magic_name__ ( self ) -> Tuple: pass def __magic_name__ ( self ) -> Union[str, Any]: # Initialize image_processing __magic_name__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __magic_name__ : Union[str, Any] = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input __magic_name__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __magic_name__ : Any = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def __magic_name__ ( self ) -> str: # Initialize image_processing __magic_name__ : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __magic_name__ : Any = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input __magic_name__ : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __magic_name__ : Dict = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def __magic_name__ ( self ) -> Tuple: # Initialize image_processing __magic_name__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __magic_name__ : List[str] = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input __magic_name__ : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __magic_name__ : List[str] = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) @require_torch @require_vision class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : Union[str, Any] = ChineseCLIPImageProcessor if is_vision_available() else None def __magic_name__ ( self ) -> str: __magic_name__ : Any = ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=lowerCAmelCase__ ) __magic_name__ : List[Any] = 3 @property def __magic_name__ ( self ) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """size""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_center_crop""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """center_crop""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_mean""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_std""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_convert_rgb""" ) ) def __magic_name__ ( self ) -> int: pass def __magic_name__ ( self ) -> Optional[Any]: # Initialize image_processing __magic_name__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __magic_name__ : str = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input __magic_name__ : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __magic_name__ : Optional[int] = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
352
__magic_name__: List[Any] = "\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" __magic_name__: Dict = [{"type": "code", "content": INSTALL_CONTENT}] __magic_name__: Optional[Any] = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
138
0
def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase): if discount_rate < 0: raise ValueError("Discount rate cannot be negative") if not cash_flows: raise ValueError("Cash flows list cannot be empty") UpperCamelCase_ = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(_lowerCAmelCase)) return round(_lowerCAmelCase , ndigits=2) if __name__ == "__main__": import doctest doctest.testmod()
128
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": UpperCAmelCase : Dict =argparse.ArgumentParser() parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--txt2img_unclip""", default="""kakaobrain/karlo-v1-alpha""", type=str, required=False, help="""The pretrained txt2img unclip.""", ) UpperCAmelCase : Optional[int] =parser.parse_args() UpperCAmelCase : List[Any] =UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) UpperCAmelCase : List[str] =CLIPImageProcessor() UpperCAmelCase : Optional[int] =CLIPVisionModelWithProjection.from_pretrained("""openai/clip-vit-large-patch14""") UpperCAmelCase : Any =UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
128
1
def _UpperCamelCase ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : int , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int ) -> Optional[int]: """simple docstring""" if index == r: for j in range(UpperCamelCase_ ): print(data[j] , end=' ' ) print(' ' ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location lowerCAmelCase__ = arr[i] combination_util(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , index + 1 , UpperCamelCase_ , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def _UpperCamelCase ( UpperCamelCase_ : str , UpperCamelCase_ : Any , UpperCamelCase_ : Optional[Any] ) -> List[Any]: """simple docstring""" lowerCAmelCase__ = [0] * r # Print all combination using temporary array 'data[]' combination_util(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , 0 , UpperCamelCase_ , 0 ) if __name__ == "__main__": # Driver code to check the function above __snake_case : Dict = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
122
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class __SCREAMING_SNAKE_CASE ( unittest.TestCase): def __init__( self , _UpperCamelCase , _UpperCamelCase=7 , _UpperCamelCase=3 , _UpperCamelCase=30 , _UpperCamelCase=4_00 , _UpperCamelCase=True , _UpperCamelCase=None , _UpperCamelCase=True , _UpperCamelCase=[0.5, 0.5, 0.5] , _UpperCamelCase=[0.5, 0.5, 0.5] , _UpperCamelCase=True , _UpperCamelCase=1 / 2_55 , _UpperCamelCase=True , ): """simple docstring""" # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowerCAmelCase__ = size if size is not None else {'shortest_edge': 18, 'longest_edge': 13_33} lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = min_resolution lowerCAmelCase__ = max_resolution lowerCAmelCase__ = do_resize lowerCAmelCase__ = size lowerCAmelCase__ = do_normalize lowerCAmelCase__ = image_mean lowerCAmelCase__ = image_std lowerCAmelCase__ = do_rescale lowerCAmelCase__ = rescale_factor lowerCAmelCase__ = do_pad def UpperCamelCase__ ( self ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase=False ): """simple docstring""" if not batched: lowerCAmelCase__ = image_inputs[0] if isinstance(_UpperCamelCase , Image.Image ): lowerCAmelCase__ , lowerCAmelCase__ = image.size else: lowerCAmelCase__ , lowerCAmelCase__ = image.shape[1], image.shape[2] if w < h: lowerCAmelCase__ = int(self.size['shortest_edge'] * h / w ) lowerCAmelCase__ = self.size['shortest_edge'] elif w > h: lowerCAmelCase__ = self.size['shortest_edge'] lowerCAmelCase__ = int(self.size['shortest_edge'] * w / h ) else: lowerCAmelCase__ = self.size['shortest_edge'] lowerCAmelCase__ = self.size['shortest_edge'] else: lowerCAmelCase__ = [] for image in image_inputs: lowerCAmelCase__ , lowerCAmelCase__ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCAmelCase__ = max(_UpperCamelCase , key=lambda _UpperCamelCase : item[0] )[0] lowerCAmelCase__ = max(_UpperCamelCase , key=lambda _UpperCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( __lowercase , unittest.TestCase): _SCREAMING_SNAKE_CASE : Dict = DeformableDetrImageProcessor if is_vision_available() else None def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = DeformableDetrImageProcessingTester(self ) @property def UpperCamelCase__ ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCamelCase , 'image_mean' ) ) self.assertTrue(hasattr(_UpperCamelCase , 'image_std' ) ) self.assertTrue(hasattr(_UpperCamelCase , 'do_normalize' ) ) self.assertTrue(hasattr(_UpperCamelCase , 'do_resize' ) ) self.assertTrue(hasattr(_UpperCamelCase , 'do_rescale' ) ) self.assertTrue(hasattr(_UpperCamelCase , 'do_pad' ) ) self.assertTrue(hasattr(_UpperCamelCase , 'size' ) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 13_33} ) self.assertEqual(image_processor.do_pad , _UpperCamelCase ) lowerCAmelCase__ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_UpperCamelCase ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , _UpperCamelCase ) def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" # Initialize image_processing lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , Image.Image ) # Test not batched input lowerCAmelCase__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values lowerCAmelCase__ , lowerCAmelCase__ = self.image_processor_tester.get_expected_values(_UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase__ , lowerCAmelCase__ = self.image_processor_tester.get_expected_values(_UpperCamelCase , batched=_UpperCamelCase ) lowerCAmelCase__ = image_processing(_UpperCamelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase__ ( self ): """simple docstring""" # Initialize image_processing lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase , numpify=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , np.ndarray ) # Test not batched input lowerCAmelCase__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values lowerCAmelCase__ , lowerCAmelCase__ = self.image_processor_tester.get_expected_values(_UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase__ = image_processing(_UpperCamelCase , return_tensors='pt' ).pixel_values lowerCAmelCase__ , lowerCAmelCase__ = self.image_processor_tester.get_expected_values(_UpperCamelCase , batched=_UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase__ ( self ): """simple docstring""" # Initialize image_processing lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase , torchify=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , torch.Tensor ) # Test not batched input lowerCAmelCase__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values lowerCAmelCase__ , lowerCAmelCase__ = self.image_processor_tester.get_expected_values(_UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase__ = image_processing(_UpperCamelCase , return_tensors='pt' ).pixel_values lowerCAmelCase__ , lowerCAmelCase__ = self.image_processor_tester.get_expected_values(_UpperCamelCase , batched=_UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def UpperCamelCase__ ( self ): """simple docstring""" # prepare image and target lowerCAmelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: lowerCAmelCase__ = json.loads(f.read() ) lowerCAmelCase__ = {'image_id': 3_97_69, 'annotations': target} # encode them lowerCAmelCase__ = DeformableDetrImageProcessor() lowerCAmelCase__ = image_processing(images=_UpperCamelCase , annotations=_UpperCamelCase , return_tensors='pt' ) # verify pixel values lowerCAmelCase__ = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['pixel_values'].shape , _UpperCamelCase ) lowerCAmelCase__ = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _UpperCamelCase , atol=1E-4 ) ) # verify area lowerCAmelCase__ = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _UpperCamelCase ) ) # verify boxes lowerCAmelCase__ = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _UpperCamelCase ) lowerCAmelCase__ = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _UpperCamelCase , atol=1E-3 ) ) # verify image_id lowerCAmelCase__ = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _UpperCamelCase ) ) # verify is_crowd lowerCAmelCase__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _UpperCamelCase ) ) # verify class_labels lowerCAmelCase__ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _UpperCamelCase ) ) # verify orig_size lowerCAmelCase__ = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _UpperCamelCase ) ) # verify size lowerCAmelCase__ = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _UpperCamelCase ) ) @slow def UpperCamelCase__ ( self ): """simple docstring""" # prepare image, target and masks_path lowerCAmelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: lowerCAmelCase__ = json.loads(f.read() ) lowerCAmelCase__ = {'file_name': '000000039769.png', 'image_id': 3_97_69, 'segments_info': target} lowerCAmelCase__ = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them lowerCAmelCase__ = DeformableDetrImageProcessor(format='coco_panoptic' ) lowerCAmelCase__ = image_processing(images=_UpperCamelCase , annotations=_UpperCamelCase , masks_path=_UpperCamelCase , return_tensors='pt' ) # verify pixel values lowerCAmelCase__ = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['pixel_values'].shape , _UpperCamelCase ) lowerCAmelCase__ = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _UpperCamelCase , atol=1E-4 ) ) # verify area lowerCAmelCase__ = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _UpperCamelCase ) ) # verify boxes lowerCAmelCase__ = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _UpperCamelCase ) lowerCAmelCase__ = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _UpperCamelCase , atol=1E-3 ) ) # verify image_id lowerCAmelCase__ = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _UpperCamelCase ) ) # verify is_crowd lowerCAmelCase__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _UpperCamelCase ) ) # verify class_labels lowerCAmelCase__ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _UpperCamelCase ) ) # verify masks lowerCAmelCase__ = 82_28_73 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , _UpperCamelCase ) # verify orig_size lowerCAmelCase__ = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _UpperCamelCase ) ) # verify size lowerCAmelCase__ = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _UpperCamelCase ) )
122
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _a = logging.get_logger(__name__) _a = {"vocab_file": "spiece.model"} _a = { "vocab_file": { "bert_for_seq_generation": ( "https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model" ), } } _a = {"bert_for_seq_generation": 512} class __A ( _UpperCAmelCase ): '''simple docstring''' lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = [] lowerCAmelCase_ = ["""input_ids""", """attention_mask"""] def __init__( self , __lowerCAmelCase , __lowerCAmelCase="<s>" , __lowerCAmelCase="</s>" , __lowerCAmelCase="<unk>" , __lowerCAmelCase="<pad>" , __lowerCAmelCase="<::::>" , __lowerCAmelCase = None , **__lowerCAmelCase , ): '''simple docstring''' lowerCamelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , pad_token=lowercase_ , sep_token=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , **lowercase_ , ) lowerCamelCase__ = vocab_file lowerCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase_ ) @property def __lowerCamelCase ( self ): '''simple docstring''' return self.sp_model.get_piece_size() def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = {self.convert_ids_to_tokens(lowercase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): '''simple docstring''' lowerCamelCase__ = self.__dict__.copy() lowerCamelCase__ = None return state def __setstate__( self , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowerCamelCase__ = {} lowerCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' return self.sp_model.encode(lowercase_ , out_type=lowercase_ ) def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' return self.sp_model.piece_to_id(lowercase_ ) def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = self.sp_model.IdToPiece(lowercase_ ) return token def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = [] lowerCamelCase__ = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowercase_ ) + token lowerCamelCase__ = [] else: current_sub_tokens.append(lowercase_ ) out_string += self.sp_model.decode(lowercase_ ) return out_string.strip() def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None ): '''simple docstring''' if not os.path.isdir(lowercase_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowerCamelCase__ = os.path.join( lowercase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase_ , '''wb''' ) as fi: lowerCamelCase__ = self.sp_model.serialized_model_proto() fi.write(lowercase_ ) return (out_vocab_file,)
209
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: _lowercase : int = None _lowercase : Union[str, Any] = logging.get_logger(__name__) _lowercase : Tuple = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} _lowercase : Dict = { "vocab_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/spiece.model", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/spiece.model", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/spiece.model", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/spiece.model", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model", }, "tokenizer_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json", }, } _lowercase : int = { "albert-base-v1": 512, "albert-large-v1": 512, "albert-xlarge-v1": 512, "albert-xxlarge-v1": 512, "albert-base-v2": 512, "albert-large-v2": 512, "albert-xlarge-v2": 512, "albert-xxlarge-v2": 512, } _lowercase : Tuple = "▁" class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = VOCAB_FILES_NAMES UpperCamelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ = AlbertTokenizer def __init__( self : Optional[Any] , lowercase_ : Union[str, Any]=None , lowercase_ : str=None , lowercase_ : Any=True , lowercase_ : Optional[int]=True , lowercase_ : List[str]=False , lowercase_ : Optional[int]="[CLS]" , lowercase_ : Any="[SEP]" , lowercase_ : int="<unk>" , lowercase_ : Any="[SEP]" , lowercase_ : int="<pad>" , lowercase_ : Tuple="[CLS]" , lowercase_ : Dict="[MASK]" , **lowercase_ : Optional[int] , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. lowercase_ : Tuple = ( AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ , normalized=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else mask_token ) super().__init__( lowercase_ , tokenizer_file=lowercase_ , do_lower_case=lowercase_ , remove_space=lowercase_ , keep_accents=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , pad_token=lowercase_ , cls_token=lowercase_ , mask_token=lowercase_ , **lowercase_ , ) lowercase_ : Optional[int] = do_lower_case lowercase_ : Any = remove_space lowercase_ : Dict = keep_accents lowercase_ : Optional[int] = vocab_file lowercase_ : Any = False if not self.vocab_file else True def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ): lowercase_ : Tuple = [self.sep_token_id] lowercase_ : str = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE_ ( self : Any , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ): lowercase_ : Union[str, Any] = [self.sep_token_id] lowercase_ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : str , lowercase_ : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(lowercase_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase_ : Optional[Any] = os.path.join( lowercase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ): copyfile(self.vocab_file , lowercase_ ) return (out_vocab_file,)
239
0
import os import sys __snake_case : int = os.path.join(os.path.dirname(__file__), """src""") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) __snake_case : Union[str, Any] = [ 'torch', 'numpy', 'tokenizers', 'filelock', 'requests', 'tqdm', 'regex', 'sentencepiece', 'sacremoses', 'importlib_metadata', 'huggingface_hub', ] @add_start_docstrings(AutoConfig.__doc__ ) def _UpperCamelCase ( *UpperCamelCase_ : Union[str, Any] , **UpperCamelCase_ : Union[str, Any] ) -> Any: """simple docstring""" return AutoConfig.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def _UpperCamelCase ( *UpperCamelCase_ : Dict , **UpperCamelCase_ : Any ) -> Dict: """simple docstring""" return AutoTokenizer.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModel.__doc__ ) def _UpperCamelCase ( *UpperCamelCase_ : Union[str, Any] , **UpperCamelCase_ : Optional[Any] ) -> int: """simple docstring""" return AutoModel.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def _UpperCamelCase ( *UpperCamelCase_ : int , **UpperCamelCase_ : Union[str, Any] ) -> Any: """simple docstring""" return AutoModelForCausalLM.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def _UpperCamelCase ( *UpperCamelCase_ : Union[str, Any] , **UpperCamelCase_ : Union[str, Any] ) -> int: """simple docstring""" return AutoModelForMaskedLM.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def _UpperCamelCase ( *UpperCamelCase_ : Union[str, Any] , **UpperCamelCase_ : Any ) -> Optional[Any]: """simple docstring""" return AutoModelForSequenceClassification.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def _UpperCamelCase ( *UpperCamelCase_ : Any , **UpperCamelCase_ : Union[str, Any] ) -> Tuple: """simple docstring""" return AutoModelForQuestionAnswering.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ )
367
from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
122
0
'''simple docstring''' from timeit import timeit def __lowerCamelCase ( A__ ) -> int: """simple docstring""" if number < 0: raise ValueError('the value of input must not be negative' ) UpperCamelCase = 0 while number: number &= number - 1 result += 1 return result def __lowerCamelCase ( A__ ) -> int: """simple docstring""" if number < 0: raise ValueError('the value of input must not be negative' ) UpperCamelCase = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def __lowerCamelCase ( ) -> None: """simple docstring""" def do_benchmark(A__ ) -> None: UpperCamelCase = 'import __main__ as z' print(F"""Benchmark when {number = }:""" ) print(F"""{get_set_bits_count_using_modulo_operator(A__ ) = }""" ) UpperCamelCase = timeit('z.get_set_bits_count_using_modulo_operator(25)' , setup=A__ ) print(F"""timeit() runs in {timing} seconds""" ) print(F"""{get_set_bits_count_using_brian_kernighans_algorithm(A__ ) = }""" ) UpperCamelCase = timeit( 'z.get_set_bits_count_using_brian_kernighans_algorithm(25)' , setup=A__ , ) print(F"""timeit() runs in {timing} seconds""" ) for number in (25, 37, 58, 0): do_benchmark(A__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
28
'''simple docstring''' import math class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Union[str, Any] , UpperCamelCase__ : Optional[Any]=0 ): # a graph with Node 0,1,...,N-1 """simple docstring""" UpperCamelCase = n UpperCamelCase = [ [math.inf for j in range(0 , UpperCamelCase__ )] for i in range(0 , UpperCamelCase__ ) ] # adjacency matrix for weight UpperCamelCase = [ [math.inf for j in range(0 , UpperCamelCase__ )] for i in range(0 , UpperCamelCase__ ) ] # dp[i][j] stores minimum distance from i to j def A ( self : Optional[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple ): """simple docstring""" UpperCamelCase = w def A ( self : str ): """simple docstring""" for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): UpperCamelCase = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def A ( self : Optional[Any] , UpperCamelCase__ : str , UpperCamelCase__ : List[Any] ): """simple docstring""" return self.dp[u][v] if __name__ == "__main__": _lowerCamelCase : List[str] = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
28
1
from random import shuffle import tensorflow as tf from numpy import array def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple , __UpperCamelCase : List[str] ) -> Tuple: UpperCAmelCase_ = int(__UpperCamelCase ) assert noofclusters < len(__UpperCamelCase ) # Find out the dimensionality UpperCAmelCase_ = len(vectors[0] ) # Will help select random centroids from among the available vectors UpperCAmelCase_ = list(range(len(__UpperCamelCase ) ) ) shuffle(__UpperCamelCase ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. UpperCAmelCase_ = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION UpperCAmelCase_ = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points UpperCAmelCase_ = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(__UpperCamelCase ) ] ##These nodes will assign the centroid Variables the appropriate ##values UpperCAmelCase_ = tf.placeholder('''float64''' , [dim] ) UpperCAmelCase_ = [] for centroid in centroids: cent_assigns.append(tf.assign(__UpperCamelCase , __UpperCamelCase ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) UpperCAmelCase_ = [tf.Variable(0 ) for i in range(len(__UpperCamelCase ) )] ##These nodes will assign an assignment Variable the appropriate ##value UpperCAmelCase_ = tf.placeholder('''int32''' ) UpperCAmelCase_ = [] for assignment in assignments: cluster_assigns.append(tf.assign(__UpperCamelCase , __UpperCamelCase ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input UpperCAmelCase_ = tf.placeholder('''float''' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors UpperCAmelCase_ = tf.reduce_mean(__UpperCamelCase , 0 ) ##Node for computing Euclidean distances # Placeholders for input UpperCAmelCase_ = tf.placeholder('''float''' , [dim] ) UpperCAmelCase_ = tf.placeholder('''float''' , [dim] ) UpperCAmelCase_ = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(__UpperCamelCase , __UpperCamelCase ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input UpperCAmelCase_ = tf.placeholder('''float''' , [noofclusters] ) UpperCAmelCase_ = tf.argmin(__UpperCamelCase , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. UpperCAmelCase_ = tf.initialize_all_variables() # Initialize all variables sess.run(__UpperCamelCase ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. UpperCAmelCase_ = 100 for _ in range(__UpperCamelCase ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(__UpperCamelCase ) ): UpperCAmelCase_ = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. UpperCAmelCase_ = [ sess.run(__UpperCamelCase , feed_dict={va: vect, va: sess.run(__UpperCamelCase )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input UpperCAmelCase_ = sess.run( __UpperCamelCase , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(__UpperCamelCase ): # Collect all the vectors assigned to this cluster UpperCAmelCase_ = [ vectors[i] for i in range(len(__UpperCamelCase ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location UpperCAmelCase_ = sess.run( __UpperCamelCase , feed_dict={mean_input: array(__UpperCamelCase )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments UpperCAmelCase_ = sess.run(__UpperCamelCase ) UpperCAmelCase_ = sess.run(__UpperCamelCase ) return centroids, assignments
351
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict=2_8123 ) -> str: UpperCAmelCase_ = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i UpperCAmelCase_ = set() UpperCAmelCase_ = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(__UpperCamelCase ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
177
0
import pprint import requests UpperCamelCase__ = 'https://zenquotes.io/api' def lowerCAmelCase_ ( ) -> list: '''simple docstring''' return requests.get(API_ENDPOINT_URL + "/today" ).json() def lowerCAmelCase_ ( ) -> list: '''simple docstring''' return requests.get(API_ENDPOINT_URL + "/random" ).json() if __name__ == "__main__": UpperCamelCase__ = random_quotes() pprint.pprint(response)
65
from ...configuration_utils import PretrainedConfig from ...utils import logging __A : List[str] = logging.get_logger(__name__) __A : Optional[Any] = { '''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class __A ( lowerCAmelCase ): lowerCAmelCase_ : List[Any] = "vit_mae" def __init__( self : Optional[int] , UpperCAmelCase_ : Dict=768 , UpperCAmelCase_ : int=12 , UpperCAmelCase_ : Dict=12 , UpperCAmelCase_ : Optional[Any]=3072 , UpperCAmelCase_ : List[str]="gelu" , UpperCAmelCase_ : Union[str, Any]=0.0 , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : List[str]=0.02 , UpperCAmelCase_ : Union[str, Any]=1E-12 , UpperCAmelCase_ : Any=224 , UpperCAmelCase_ : int=16 , UpperCAmelCase_ : Union[str, Any]=3 , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : int=16 , UpperCAmelCase_ : Union[str, Any]=512 , UpperCAmelCase_ : Any=8 , UpperCAmelCase_ : List[Any]=2048 , UpperCAmelCase_ : Tuple=0.75 , UpperCAmelCase_ : str=False , **UpperCAmelCase_ : str , ): super().__init__(**UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : List[str] = num_hidden_layers lowerCAmelCase : Union[str, Any] = num_attention_heads lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : str = hidden_act lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : Optional[int] = attention_probs_dropout_prob lowerCAmelCase : List[Any] = initializer_range lowerCAmelCase : Union[str, Any] = layer_norm_eps lowerCAmelCase : Any = image_size lowerCAmelCase : Union[str, Any] = patch_size lowerCAmelCase : Union[str, Any] = num_channels lowerCAmelCase : Any = qkv_bias lowerCAmelCase : Union[str, Any] = decoder_num_attention_heads lowerCAmelCase : Tuple = decoder_hidden_size lowerCAmelCase : int = decoder_num_hidden_layers lowerCAmelCase : Optional[Any] = decoder_intermediate_size lowerCAmelCase : Union[str, Any] = mask_ratio lowerCAmelCase : Any = norm_pix_loss
138
0
def snake_case_(_UpperCamelCase ) -> list[int]: """simple docstring""" if num <= 0: raise ValueError('''Input must be a positive integer''' ) _snake_case = [True] * (num + 1) _snake_case = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , snake_case__ ): _snake_case = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() __A = int(input('''Enter a positive integer: ''').strip()) print(prime_sieve_eratosthenes(user_num))
365
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset __A = random.Random() def snake_case_(_UpperCamelCase , _UpperCamelCase=1.0 , _UpperCamelCase=None , _UpperCamelCase=None ) -> Optional[int]: """simple docstring""" if rng is None: _snake_case = global_rng _snake_case = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowercase_ ( unittest.TestCase ): def __init__( self : List[Any] , A__ : List[Any] , A__ : int=7 , A__ : Tuple=400 , A__ : int=2000 , A__ : Any=2048 , A__ : List[Any]=128 , A__ : Optional[int]=1 , A__ : Optional[Any]=512 , A__ : Any=30 , A__ : Any=44100 , ) -> int: _snake_case = parent _snake_case = batch_size _snake_case = min_seq_length _snake_case = max_seq_length _snake_case = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _snake_case = spectrogram_length _snake_case = feature_size _snake_case = num_audio_channels _snake_case = hop_length _snake_case = chunk_length _snake_case = sampling_rate def UpperCamelCase_ ( self : str ) -> Optional[int]: return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def UpperCamelCase_ ( self : Any , A__ : Any=False , A__ : List[str]=False ) -> Tuple: def _flatten(A__ : List[str] ): return list(itertools.chain(*A__ ) ) if equal_length: _snake_case = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _snake_case = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _snake_case = [np.asarray(A__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowercase_ ( __lowercase , unittest.TestCase ): UpperCamelCase_ : Optional[int] = TvltFeatureExtractor def UpperCamelCase_ ( self : Dict ) -> List[str]: _snake_case = TvltFeatureExtractionTester(self ) def UpperCamelCase_ ( self : int ) -> Optional[int]: _snake_case = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(A__ , '''spectrogram_length''' ) ) self.assertTrue(hasattr(A__ , '''feature_size''' ) ) self.assertTrue(hasattr(A__ , '''num_audio_channels''' ) ) self.assertTrue(hasattr(A__ , '''hop_length''' ) ) self.assertTrue(hasattr(A__ , '''chunk_length''' ) ) self.assertTrue(hasattr(A__ , '''sampling_rate''' ) ) def UpperCamelCase_ ( self : Any ) -> Union[str, Any]: _snake_case = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _snake_case = feat_extract_first.save_pretrained(A__ )[0] check_json_file_has_correct_format(A__ ) _snake_case = self.feature_extraction_class.from_pretrained(A__ ) _snake_case = feat_extract_first.to_dict() _snake_case = feat_extract_second.to_dict() _snake_case = dict_first.pop('''mel_filters''' ) _snake_case = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(A__ , A__ ) ) self.assertEqual(A__ , A__ ) def UpperCamelCase_ ( self : int ) -> Union[str, Any]: _snake_case = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _snake_case = os.path.join(A__ , '''feat_extract.json''' ) feat_extract_first.to_json_file(A__ ) _snake_case = self.feature_extraction_class.from_json_file(A__ ) _snake_case = feat_extract_first.to_dict() _snake_case = feat_extract_second.to_dict() _snake_case = dict_first.pop('''mel_filters''' ) _snake_case = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(A__ , A__ ) ) self.assertEqual(A__ , A__ ) def UpperCamelCase_ ( self : Union[str, Any] ) -> Any: # Initialize feature_extractor _snake_case = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 _snake_case = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _snake_case = [np.asarray(A__ ) for speech_input in speech_inputs] # Test not batched input _snake_case = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched _snake_case = feature_extractor(A__ , return_tensors='''np''' , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking _snake_case = feature_extractor( A__ , return_tensors='''np''' , sampling_rate=44100 , mask_audio=A__ ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. _snake_case = [floats_list((1, x) )[0] for x in (800, 800, 800)] _snake_case = np.asarray(A__ ) _snake_case = feature_extractor(A__ , return_tensors='''np''' , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def UpperCamelCase_ ( self : Optional[Any] , A__ : Any ) -> Optional[int]: _snake_case = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech _snake_case = ds.sort('''id''' ).select(range(A__ ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def UpperCamelCase_ ( self : List[str] ) -> Optional[Any]: _snake_case = self._load_datasamples(1 ) _snake_case = TvltFeatureExtractor() _snake_case = feature_extractor(A__ , return_tensors='''pt''' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) _snake_case = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , A__ , atol=1e-4 ) )
278
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _A = logging.get_logger(__name__) _A = '''▁''' _A = {'''vocab_file''': '''sentencepiece.bpe.model''', '''monolingual_vocab_file''': '''dict.txt'''} _A = { '''vocab_file''': { '''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model''', }, '''monolingual_vocab_file''': { '''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt''', }, } _A = {'''vinai/bartpho-syllable''': 1_024} class lowercase_ ( __SCREAMING_SNAKE_CASE ): A__ : List[Any] = VOCAB_FILES_NAMES A__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP A__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Union[str, Any] = ["""input_ids""", """attention_mask"""] def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase="<s>" , __UpperCamelCase="</s>" , __UpperCamelCase="</s>" , __UpperCamelCase="<s>" , __UpperCamelCase="<unk>" , __UpperCamelCase="<pad>" , __UpperCamelCase="<mask>" , __UpperCamelCase = None , **__UpperCamelCase , ): """simple docstring""" UpperCamelCase_ = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else mask_token UpperCamelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , unk_token=__UpperCamelCase , sep_token=__UpperCamelCase , cls_token=__UpperCamelCase , pad_token=__UpperCamelCase , mask_token=__UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCamelCase , ) UpperCamelCase_ = vocab_file UpperCamelCase_ = monolingual_vocab_file UpperCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__UpperCamelCase ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility UpperCamelCase_ = {} UpperCamelCase_ = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(__UpperCamelCase ) not in self.fairseq_tokens_to_ids: UpperCamelCase_ = cnt cnt += 1 with open(__UpperCamelCase , """r""" , encoding="""utf-8""" ) as f: for line in f.readlines(): UpperCamelCase_ = line.strip().split()[0] UpperCamelCase_ = len(self.fairseq_tokens_to_ids ) if str(__UpperCamelCase ) not in self.fairseq_tokens_to_ids: UpperCamelCase_ = len(self.fairseq_tokens_to_ids ) UpperCamelCase_ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): """simple docstring""" UpperCamelCase_ = self.__dict__.copy() UpperCamelCase_ = None UpperCamelCase_ = self.sp_model.serialized_model_proto() return state def __setstate__( self , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): UpperCamelCase_ = {} UpperCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase_ = [self.cls_token_id] UpperCamelCase_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCamelCase , token_ids_a=__UpperCamelCase , already_has_special_tokens=__UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCamelCase )) + [1] return [1] + ([0] * len(__UpperCamelCase )) + [1, 1] + ([0] * len(__UpperCamelCase )) + [1] def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase = None ): """simple docstring""" UpperCamelCase_ = [self.sep_token_id] UpperCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCamelCase_ ( self ): """simple docstring""" return len(self.fairseq_ids_to_tokens ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = {self.convert_ids_to_tokens(__UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase_ ( self , __UpperCamelCase ): """simple docstring""" return self.sp_model.encode(__UpperCamelCase , out_type=__UpperCamelCase ) def lowerCamelCase_ ( self , __UpperCamelCase ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def lowerCamelCase_ ( self , __UpperCamelCase ): """simple docstring""" return self.fairseq_ids_to_tokens[index] def lowerCamelCase_ ( self , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = """""".join(__UpperCamelCase ).replace(__UpperCamelCase , """ """ ).strip() return out_string def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase = None ): """simple docstring""" if not os.path.isdir(__UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase_ = os.path.join( __UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCamelCase_ = os.path.join( __UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""monolingual_vocab_file"""] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCamelCase , """wb""" ) as fi: UpperCamelCase_ = self.sp_model.serialized_model_proto() fi.write(__UpperCamelCase ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( __UpperCamelCase ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , __UpperCamelCase ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(__UpperCamelCase , """w""" , encoding="""utf-8""" ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f'''{str(__UpperCamelCase )} \n''' ) return out_vocab_file, out_monolingual_vocab_file
122
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class lowercase_ ( __SCREAMING_SNAKE_CASE ): A__ : torch.FloatTensor class lowercase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): @register_to_config def __init__( self , __UpperCamelCase = 3 , __UpperCamelCase = 3 , __UpperCamelCase = ("DownEncoderBlock2D",) , __UpperCamelCase = ("UpDecoderBlock2D",) , __UpperCamelCase = (6_4,) , __UpperCamelCase = 1 , __UpperCamelCase = "silu" , __UpperCamelCase = 3 , __UpperCamelCase = 3_2 , __UpperCamelCase = 2_5_6 , __UpperCamelCase = 3_2 , __UpperCamelCase = None , __UpperCamelCase = 0.18_215 , __UpperCamelCase = "group" , ): """simple docstring""" super().__init__() # pass init params to Encoder UpperCamelCase_ = Encoder( in_channels=__UpperCamelCase , out_channels=__UpperCamelCase , down_block_types=__UpperCamelCase , block_out_channels=__UpperCamelCase , layers_per_block=__UpperCamelCase , act_fn=__UpperCamelCase , norm_num_groups=__UpperCamelCase , double_z=__UpperCamelCase , ) UpperCamelCase_ = vq_embed_dim if vq_embed_dim is not None else latent_channels UpperCamelCase_ = nn.Convad(__UpperCamelCase , __UpperCamelCase , 1 ) UpperCamelCase_ = VectorQuantizer(__UpperCamelCase , __UpperCamelCase , beta=0.25 , remap=__UpperCamelCase , sane_index_shape=__UpperCamelCase ) UpperCamelCase_ = nn.Convad(__UpperCamelCase , __UpperCamelCase , 1 ) # pass init params to Decoder UpperCamelCase_ = Decoder( in_channels=__UpperCamelCase , out_channels=__UpperCamelCase , up_block_types=__UpperCamelCase , block_out_channels=__UpperCamelCase , layers_per_block=__UpperCamelCase , act_fn=__UpperCamelCase , norm_num_groups=__UpperCamelCase , norm_type=__UpperCamelCase , ) @apply_forward_hook def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase = True ): """simple docstring""" UpperCamelCase_ = self.encoder(__UpperCamelCase ) UpperCamelCase_ = self.quant_conv(__UpperCamelCase ) if not return_dict: return (h,) return VQEncoderOutput(latents=__UpperCamelCase ) @apply_forward_hook def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase = False , __UpperCamelCase = True ): """simple docstring""" if not force_not_quantize: UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.quantize(__UpperCamelCase ) else: UpperCamelCase_ = h UpperCamelCase_ = self.post_quant_conv(__UpperCamelCase ) UpperCamelCase_ = self.decoder(__UpperCamelCase , quant if self.config.norm_type == """spatial""" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=__UpperCamelCase ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase = True ): """simple docstring""" UpperCamelCase_ = sample UpperCamelCase_ = self.encode(__UpperCamelCase ).latents UpperCamelCase_ = self.decode(__UpperCamelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=__UpperCamelCase )
122
1
"""simple docstring""" import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase =logging.get_logger(__name__) def _A ( _a : Tuple , _a : Any , _a : int ): """simple docstring""" A = os.path.abspath(_a ) logger.info(f'Converting TensorFlow checkpoint from {tf_path}' ) # Load weights from TF model A = tf.train.list_variables(_a ) A = [] A = [] A = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") A = full_name.split("""/""" ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(f'Skipping non-model layer {full_name}' ) continue if "optimizer" in full_name: logger.info(f'Skipping optimization layer {full_name}' ) continue if name[0] == "model": # ignore initial 'model' A = name[1:] # figure out how many levels deep the name is A = 0 for _name in name: if _name.startswith("""layer_with_weights""" ): depth += 1 else: break layer_depth.append(_a ) # read data A = tf.train.load_variable(_a , _a ) names.append("""/""".join(_a ) ) arrays.append(_a ) logger.info(f'Read a total of {len(_a ):,} layers' ) # Sanity check if len(set(_a ) ) != 1: raise ValueError(f'Found layer names with different depths (layer depth {list(set(_a ) )})' ) A = list(set(_a ) )[0] if layer_depth != 1: raise ValueError( """The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP""" """ heads.""" ) # convert layers logger.info("""Converting weights...""" ) for full_name, array in zip(_a , _a ): A = full_name.split("""/""" ) A = model A = [] for i, m_name in enumerate(_a ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith("""layer_with_weights""" ): A = int(m_name.split("""-""" )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(["""embeddings""", """LayerNorm"""] ) A = getattr(_a , """embeddings""" ) A = getattr(_a , """LayerNorm""" ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(["""encoder""", """layer""", str(layer_num - 4 )] ) A = getattr(_a , """encoder""" ) A = getattr(_a , """layer""" ) A = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(["""pooler""", """dense"""] ) A = getattr(_a , """pooler""" ) A = getattr(_a , """dense""" ) elif m_name == "embeddings": trace.append("""embeddings""" ) A = getattr(_a , """embeddings""" ) if layer_num == 0: trace.append("""word_embeddings""" ) A = getattr(_a , """word_embeddings""" ) elif layer_num == 1: trace.append("""position_embeddings""" ) A = getattr(_a , """position_embeddings""" ) elif layer_num == 2: trace.append("""token_type_embeddings""" ) A = getattr(_a , """token_type_embeddings""" ) else: raise ValueError(f'Unknown embedding layer with name {full_name}' ) trace.append("""weight""" ) A = getattr(_a , """weight""" ) elif m_name == "_attention_layer": # self-attention layer trace.extend(["""attention""", """self"""] ) A = getattr(_a , """attention""" ) A = getattr(_a , """self""" ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(["""attention""", """output""", """LayerNorm"""] ) A = getattr(_a , """attention""" ) A = getattr(_a , """output""" ) A = getattr(_a , """LayerNorm""" ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(["""attention""", """output""", """dense"""] ) A = getattr(_a , """attention""" ) A = getattr(_a , """output""" ) A = getattr(_a , """dense""" ) elif m_name == "_output_dense": # output dense trace.extend(["""output""", """dense"""] ) A = getattr(_a , """output""" ) A = getattr(_a , """dense""" ) elif m_name == "_output_layer_norm": # output dense trace.extend(["""output""", """LayerNorm"""] ) A = getattr(_a , """output""" ) A = getattr(_a , """LayerNorm""" ) elif m_name == "_key_dense": # attention key trace.append("""key""" ) A = getattr(_a , """key""" ) elif m_name == "_query_dense": # attention query trace.append("""query""" ) A = getattr(_a , """query""" ) elif m_name == "_value_dense": # attention value trace.append("""value""" ) A = getattr(_a , """value""" ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(["""intermediate""", """dense"""] ) A = getattr(_a , """intermediate""" ) A = getattr(_a , """dense""" ) elif m_name == "_output_layer_norm": # output layer norm trace.append("""output""" ) A = getattr(_a , """output""" ) # weights & biases elif m_name in ["bias", "beta"]: trace.append("""bias""" ) A = getattr(_a , """bias""" ) elif m_name in ["kernel", "gamma"]: trace.append("""weight""" ) A = getattr(_a , """weight""" ) else: logger.warning(f'Ignored {m_name}' ) # for certain layers reshape is necessary A = """.""".join(_a ) if re.match(r"""(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)""" , _a ) or re.match( r"""(\S+)\.attention\.output\.dense\.weight""" , _a ): A = array.reshape(pointer.data.shape ) if "kernel" in full_name: A = array.transpose() if pointer.shape == array.shape: A = torch.from_numpy(_a ) else: raise ValueError( f'Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:' f' {array.shape}' ) logger.info(f'Successfully set variable {full_name} to PyTorch layer {trace}' ) return model def _A ( _a : Any , _a : int , _a : str ): """simple docstring""" logger.info(f'Loading model based on config from {config_path}...' ) A = BertConfig.from_json_file(_a ) A = BertModel(_a ) # Load weights from checkpoint logger.info(f'Loading weights from checkpoint {tf_checkpoint_path}...' ) load_tfa_weights_in_bert(_a , _a , _a ) # Save pytorch-model logger.info(f'Saving PyTorch model to {pytorch_dump_path}...' ) torch.save(model.state_dict() , _a ) if __name__ == "__main__": UpperCAmelCase =argparse.ArgumentParser() parser.add_argument( "--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow 2.x checkpoint path." ) parser.add_argument( "--bert_config_file", type=str, required=True, help="The config json file corresponding to the BERT model. This specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", type=str, required=True, help="Path to the output PyTorch model (must include filename).", ) UpperCAmelCase =parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
77
"""simple docstring""" from __future__ import annotations import math from collections.abc import Callable def _A ( _a : Callable[[int | float], int | float] , _a : int | float , _a : int | float , _a : int = 1_0_0 , ): """simple docstring""" A = x_start A = fnc(_a ) A = 0.0 for _ in range(_a ): # Approximates curve as a sequence of linear lines and sums their length A = (x_end - x_start) / steps + xa A = fnc(_a ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step A = xa A = fxa return length if __name__ == "__main__": def _A ( _a : Tuple ): """simple docstring""" return math.sin(1_0 * x ) print("f(x) = sin(10 * x)") print("The length of the curve from x = -10 to x = 10 is:") UpperCAmelCase =10 while i <= 100_000: print(f"""With {i} steps: {line_length(f, -10, 10, i)}""") i *= 10
77
1
def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def A ( _lowerCamelCase , _lowerCamelCase=0 ): '''simple docstring''' return sorted(_lowerCamelCase , key=lambda _lowerCamelCase : x[column] ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=float("inf" ) ): '''simple docstring''' for i in range(points_counts - 1 ): for j in range(i + 1 , _lowerCamelCase ): _lowerCAmelCase : int = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: _lowerCAmelCase : List[str] = current_dis return min_dis def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=float("inf" ) ): '''simple docstring''' for i in range(min(6 , points_counts - 1 ) , _lowerCamelCase ): for j in range(max(0 , i - 6 ) , _lowerCamelCase ): _lowerCAmelCase : str = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: _lowerCAmelCase : List[Any] = current_dis return min_dis def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if points_counts <= 3: return dis_between_closest_pair(_lowerCamelCase , _lowerCamelCase ) # recursion _lowerCAmelCase : Any = points_counts // 2 _lowerCAmelCase : Dict = closest_pair_of_points_sqr( _lowerCamelCase , points_sorted_on_y[:mid] , _lowerCamelCase ) _lowerCAmelCase : str = closest_pair_of_points_sqr( _lowerCamelCase , points_sorted_on_y[mid:] , points_counts - mid ) _lowerCAmelCase : Union[str, Any] = min(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : str = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(_lowerCamelCase ) _lowerCAmelCase : str = dis_between_closest_in_strip( _lowerCamelCase , len(_lowerCamelCase ) , _lowerCamelCase ) return min(_lowerCamelCase , _lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = column_based_sort(_lowerCamelCase , column=0 ) _lowerCAmelCase : Optional[int] = column_based_sort(_lowerCamelCase , column=1 ) return ( closest_pair_of_points_sqr( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ) ** 0.5 if __name__ == "__main__": _snake_case = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print("Distance:", closest_pair_of_points(points, len(points)))
36
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def lowerCamelCase__ ( ) -> tuple[list[int], int]: UpperCamelCase_ = [randint(-1000 , 1000 ) for i in range(10 )] UpperCamelCase_ = randint(-5000 , 5000 ) return (arr, r) _A = make_dataset() def lowerCamelCase__ ( a__ : list[int] , a__ : int ) -> tuple[int, ...]: for triplet in permutations(a__ , 3 ): if sum(a__ ) == target: return tuple(sorted(a__ ) ) return (0, 0, 0) def lowerCamelCase__ ( a__ : list[int] , a__ : int ) -> tuple[int, int, int]: arr.sort() UpperCamelCase_ = len(a__ ) for i in range(n - 1 ): UpperCamelCase_ , UpperCamelCase_ = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def lowerCamelCase__ ( ) -> tuple[float, float]: UpperCamelCase_ = """ from __main__ import dataset, triplet_sum1, triplet_sum2 """ UpperCamelCase_ = """ triplet_sum1(*dataset) """ UpperCamelCase_ = """ triplet_sum2(*dataset) """ UpperCamelCase_ = repeat(setup=a__ , stmt=a__ , repeat=5 , number=1_0000 ) UpperCamelCase_ = repeat(setup=a__ , stmt=a__ , repeat=5 , number=1_0000 ) return (min(a__ ), min(a__ )) if __name__ == "__main__": from doctest import testmod testmod() _A = solution_times() print(F'''The time for naive implementation is {times[0]}.''') print(F'''The time for optimized implementation is {times[1]}.''')
122
0
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : float = 1 / sqrt(2 ) ): '''simple docstring''' UpperCAmelCase__ = tau * frequency / samplerate UpperCAmelCase__ = sin(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = cos(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = _sin / (2 * q_factor) UpperCAmelCase__ = (1 - _cos) / 2 UpperCAmelCase__ = 1 - _cos UpperCAmelCase__ = 1 + alpha UpperCAmelCase__ = -2 * _cos UpperCAmelCase__ = 1 - alpha UpperCAmelCase__ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : float = 1 / sqrt(2 ) ): '''simple docstring''' UpperCAmelCase__ = tau * frequency / samplerate UpperCAmelCase__ = sin(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = cos(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = _sin / (2 * q_factor) UpperCAmelCase__ = (1 + _cos) / 2 UpperCAmelCase__ = -1 - _cos UpperCAmelCase__ = 1 + alpha UpperCAmelCase__ = -2 * _cos UpperCAmelCase__ = 1 - alpha UpperCAmelCase__ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : float = 1 / sqrt(2 ) ): '''simple docstring''' UpperCAmelCase__ = tau * frequency / samplerate UpperCAmelCase__ = sin(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = cos(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = _sin / (2 * q_factor) UpperCAmelCase__ = _sin / 2 UpperCAmelCase__ = 0 UpperCAmelCase__ = -ba UpperCAmelCase__ = 1 + alpha UpperCAmelCase__ = -2 * _cos UpperCAmelCase__ = 1 - alpha UpperCAmelCase__ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : float = 1 / sqrt(2 ) ): '''simple docstring''' UpperCAmelCase__ = tau * frequency / samplerate UpperCAmelCase__ = sin(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = cos(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = _sin / (2 * q_factor) UpperCAmelCase__ = 1 - alpha UpperCAmelCase__ = -2 * _cos UpperCAmelCase__ = 1 + alpha UpperCAmelCase__ = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float = 1 / sqrt(2 ) , ): '''simple docstring''' UpperCAmelCase__ = tau * frequency / samplerate UpperCAmelCase__ = sin(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = cos(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = _sin / (2 * q_factor) UpperCAmelCase__ = 10 ** (gain_db / 40) UpperCAmelCase__ = 1 + alpha * big_a UpperCAmelCase__ = -2 * _cos UpperCAmelCase__ = 1 - alpha * big_a UpperCAmelCase__ = 1 + alpha / big_a UpperCAmelCase__ = -2 * _cos UpperCAmelCase__ = 1 - alpha / big_a UpperCAmelCase__ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float = 1 / sqrt(2 ) , ): '''simple docstring''' UpperCAmelCase__ = tau * frequency / samplerate UpperCAmelCase__ = sin(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = cos(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = _sin / (2 * q_factor) UpperCAmelCase__ = 10 ** (gain_db / 40) UpperCAmelCase__ = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase__ = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase__ = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase__ = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase__ = 2 * sqrt(SCREAMING_SNAKE_CASE__ ) * alpha UpperCAmelCase__ = big_a * (pmc + aaa) UpperCAmelCase__ = 2 * big_a * mpc UpperCAmelCase__ = big_a * (pmc - aaa) UpperCAmelCase__ = ppmc + aaa UpperCAmelCase__ = -2 * pmpc UpperCAmelCase__ = ppmc - aaa UpperCAmelCase__ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float = 1 / sqrt(2 ) , ): '''simple docstring''' UpperCAmelCase__ = tau * frequency / samplerate UpperCAmelCase__ = sin(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = cos(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = _sin / (2 * q_factor) UpperCAmelCase__ = 10 ** (gain_db / 40) UpperCAmelCase__ = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase__ = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase__ = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase__ = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase__ = 2 * sqrt(SCREAMING_SNAKE_CASE__ ) * alpha UpperCAmelCase__ = big_a * (ppmc + aaa) UpperCAmelCase__ = -2 * big_a * pmpc UpperCAmelCase__ = big_a * (ppmc - aaa) UpperCAmelCase__ = pmc + aaa UpperCAmelCase__ = 2 * mpc UpperCAmelCase__ = pmc - aaa UpperCAmelCase__ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
364
'''simple docstring''' import os def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any ): '''simple docstring''' UpperCAmelCase__ = len(grid[0] ) UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(SCREAMING_SNAKE_CASE__ ): for j in range(n_rows - 3 ): UpperCAmelCase__ = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] UpperCAmelCase__ = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: UpperCAmelCase__ = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: UpperCAmelCase__ = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) UpperCAmelCase__ = max( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if max_product > largest: UpperCAmelCase__ = max_product return largest def _UpperCamelCase ( ): '''simple docstring''' UpperCAmelCase__ = [] with open(os.path.dirname(SCREAMING_SNAKE_CASE__ ) + """/grid.txt""" ) as file: for line in file: grid.append(line.strip("""\n""" ).split(""" """ ) ) UpperCAmelCase__ = [[int(SCREAMING_SNAKE_CASE__ ) for i in grid[j]] for j in range(len(SCREAMING_SNAKE_CASE__ ) )] return largest_product(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": print(solution())
61
0
import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _lowerCAmelCase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): _lowercase =IFInpaintingSuperResolutionPipeline _lowercase =TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} _lowercase =TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'''original_image'''} ) _lowercase =PipelineTesterMixin.required_optional_params - {"latents"} def __a ( self ) -> Dict: return self._get_superresolution_dummy_components() def __a ( self , _UpperCamelCase , _UpperCamelCase=0 ) -> List[Any]: if str(_UpperCAmelCase ).startswith("mps" ): lowerCAmelCase_ = torch.manual_seed(_UpperCAmelCase ) else: lowerCAmelCase_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowerCAmelCase_ = floats_tensor((1, 3, 16, 16) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowerCAmelCase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowerCAmelCase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowerCAmelCase_ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def __a ( self ) -> Optional[Any]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def __a ( self ) -> Optional[int]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def __a ( self ) -> Dict: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def __a ( self ) -> Optional[Any]: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def __a ( self ) -> Optional[int]: self._test_save_load_local() def __a ( self ) -> Dict: self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
231
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer __A = logging.get_logger(__name__) __A = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __A = { "vocab_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json" ), }, } __A = { "yjernite/retribert-base-uncased": 5_1_2, } __A = { "yjernite/retribert-base-uncased": {"do_lower_case": True}, } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Dict = VOCAB_FILES_NAMES _UpperCAmelCase :str = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase :Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase :Optional[int] = PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase :str = RetriBertTokenizer _UpperCAmelCase :List[str] = ["input_ids", "attention_mask"] def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase="[UNK]" , _UpperCAmelCase="[SEP]" , _UpperCAmelCase="[PAD]" , _UpperCAmelCase="[CLS]" , _UpperCAmelCase="[MASK]" , _UpperCAmelCase=True , _UpperCAmelCase=None , **_UpperCAmelCase , ): super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , do_lower_case=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , tokenize_chinese_chars=_UpperCAmelCase , strip_accents=_UpperCAmelCase , **_UpperCAmelCase , ) lowercase__: Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _UpperCAmelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , _UpperCAmelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _UpperCAmelCase ) != tokenize_chinese_chars ): lowercase__: str = getattr(_UpperCAmelCase , normalizer_state.pop('''type''' ) ) lowercase__: Optional[Any] = do_lower_case lowercase__: Tuple = strip_accents lowercase__: str = tokenize_chinese_chars lowercase__: Union[str, Any] = normalizer_class(**_UpperCAmelCase ) lowercase__: List[str] = do_lower_case def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=None ): lowercase__: Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = None ): lowercase__: Optional[int] = [self.sep_token_id] lowercase__: Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = None ): lowercase__: List[str] = self._tokenizer.model.save(_UpperCAmelCase , name=_UpperCAmelCase ) return tuple(_UpperCAmelCase )
177
0
'''simple docstring''' from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging lowerCAmelCase__ : Union[str, Any] = logging.get_logger(__name__) def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase ): try: with open(_UpperCAmelCase, "rb" ) as flax_state_f: __UpperCAmelCase : List[Any] = from_bytes(_UpperCAmelCase, flax_state_f.read() ) except UnpicklingError as e: try: with open(_UpperCAmelCase ) as f: if f.read().startswith("version" ): raise OSError( "You seem to have cloned a repository without having git-lfs installed. Please" " install git-lfs and run `git lfs install` followed by `git lfs pull` in the" " folder you cloned." ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(F"Unable to convert {model_file} to Flax deserializable object. " ) return load_flax_weights_in_pytorch_model(_UpperCAmelCase, _UpperCAmelCase ) def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase ): try: import torch # noqa: F401 except ImportError: logger.error( "Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise # check if we have bf16 weights __UpperCAmelCase : Optional[int] = flatten_dict(jax.tree_util.tree_map(lambda _UpperCAmelCase : x.dtype == jnp.bfloataa, _UpperCAmelCase ) ).values() if any(_UpperCAmelCase ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( "Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` " "before loading those in PyTorch model." ) __UpperCAmelCase : Optional[int] = jax.tree_util.tree_map( lambda _UpperCAmelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params, _UpperCAmelCase ) __UpperCAmelCase : int = "" __UpperCAmelCase : Optional[Any] = flatten_dict(_UpperCAmelCase, sep="." ) __UpperCAmelCase : List[Any] = pt_model.state_dict() # keep track of unexpected & missing keys __UpperCAmelCase : Optional[Any] = [] __UpperCAmelCase : int = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): __UpperCAmelCase : Optional[Any] = flax_key_tuple.split("." ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: __UpperCAmelCase : List[str] = flax_key_tuple_array[:-1] + ["weight"] __UpperCAmelCase : int = jnp.transpose(_UpperCAmelCase, (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": __UpperCAmelCase : Union[str, Any] = flax_key_tuple_array[:-1] + ["weight"] __UpperCAmelCase : List[Any] = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": __UpperCAmelCase : Dict = flax_key_tuple_array[:-1] + ["weight"] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(_UpperCAmelCase ): __UpperCAmelCase : Optional[Any] = ( flax_key_tuple_string.replace("_0", ".0" ) .replace("_1", ".1" ) .replace("_2", ".2" ) .replace("_3", ".3" ) .replace("_4", ".4" ) .replace("_5", ".5" ) .replace("_6", ".6" ) .replace("_7", ".7" ) .replace("_8", ".8" ) .replace("_9", ".9" ) ) __UpperCAmelCase : Optional[Any] = ".".join(_UpperCAmelCase ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F"Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected " F"to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}." ) else: # add weight to pytorch dict __UpperCAmelCase : Any = np.asarray(_UpperCAmelCase ) if not isinstance(_UpperCAmelCase, np.ndarray ) else flax_tensor __UpperCAmelCase : Any = torch.from_numpy(_UpperCAmelCase ) # remove from missing keys missing_keys.remove(_UpperCAmelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(_UpperCAmelCase ) pt_model.load_state_dict(_UpperCAmelCase ) # re-transform missing_keys to list __UpperCAmelCase : str = list(_UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: logger.warning( "Some weights of the Flax model were not used when initializing the PyTorch model" F" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing" F" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture" " (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This" F" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect" " to be exactly identical (e.g. initializing a BertForSequenceClassification model from a" " FlaxBertForSequenceClassification model)." ) if len(_UpperCAmelCase ) > 0: logger.warning( F"Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly" F" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to" " use it for predictions and inference." ) return pt_model
37
'''simple docstring''' from __future__ import annotations def __UpperCamelCase ( _UpperCAmelCase ): if not nums: raise ValueError("List is empty" ) return sum(_UpperCAmelCase ) / len(_UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
37
1
"""simple docstring""" from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf lowercase__ = logging.get_logger(__name__) @dataclass class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = [ """no_inference""", """no_cuda""", """no_tpu""", """no_speed""", """no_memory""", """no_env_print""", """no_multi_process""", ] def __init__( self , **lowercase ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: _lowerCamelCase : Any = deprecated_arg[3:] _lowerCamelCase : int = not kwargs.pop(lowercase ) logger.warning( F'''{deprecated_arg} is depreciated. Please use --no-{positive_arg} or''' F''' {positive_arg}={kwargs[positive_arg]}''' ) _lowerCamelCase : Any = kwargs.pop('tpu_name' , self.tpu_name ) _lowerCamelCase : Dict = kwargs.pop('device_idx' , self.device_idx ) _lowerCamelCase : int = kwargs.pop('eager_mode' , self.eager_mode ) _lowerCamelCase : List[str] = kwargs.pop('use_xla' , self.use_xla ) super().__init__(**lowercase ) lowerCamelCase__ = field( default=lowercase, metadata={"""help""": """Name of TPU"""}, ) lowerCamelCase__ = field( default=0, metadata={"""help""": """CPU / GPU device index. Defaults to 0."""}, ) lowerCamelCase__ = field(default=lowercase, metadata={"""help""": """Benchmark models in eager model."""} ) lowerCamelCase__ = field( default=lowercase, metadata={ """help""": """Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.""" }, ) @cached_property def A_ ( self ): requires_backends(self , ['tf'] ) _lowerCamelCase : int = None if self.tpu: try: if self.tpu_name: _lowerCamelCase : List[Any] = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: _lowerCamelCase : str = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: _lowerCamelCase : List[str] = None return tpu @cached_property def A_ ( self ): requires_backends(self , ['tf'] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) _lowerCamelCase : Any = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , 'GPU' ) _lowerCamelCase : Dict = tf.distribute.OneDeviceStrategy(device=F'''/gpu:{self.device_idx}''' ) else: tf.config.set_visible_devices([] , 'GPU' ) # disable GPU _lowerCamelCase : int = tf.distribute.OneDeviceStrategy(device=F'''/cpu:{self.device_idx}''' ) return strategy @property def A_ ( self ): requires_backends(self , ['tf'] ) return self._setup_tpu is not None @property def A_ ( self ): requires_backends(self , ['tf'] ) return self._setup_strategy @property def A_ ( self ): requires_backends(self , ['tf'] ) return tf.config.list_physical_devices('GPU' ) @property def A_ ( self ): requires_backends(self , ['tf'] ) if self.cuda: return len(self.gpu_list ) return 0 @property def A_ ( self ): return self.n_gpu > 0
96
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def __UpperCamelCase ( _A , _A ): lowerCAmelCase_ = args.log_outputs lowerCAmelCase_ = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] ) # load metric lowerCAmelCase_ = load_metric('''wer''' ) lowerCAmelCase_ = load_metric('''cer''' ) # compute metrics lowerCAmelCase_ = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) lowerCAmelCase_ = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) # print & log results lowerCAmelCase_ = f"WER: {wer_result}\nCER: {cer_result}" print(_A ) with open(f"{dataset_id}_eval_results.txt" , '''w''' ) as f: f.write(_A ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: lowerCAmelCase_ = f"log_{dataset_id}_predictions.txt" lowerCAmelCase_ = f"log_{dataset_id}_targets.txt" with open(_A , '''w''' ) as p, open(_A , '''w''' ) as t: # mapping function to write output def write_to_file(_A , _A ): p.write(f"{i}" + '''\n''' ) p.write(batch['''prediction'''] + '''\n''' ) t.write(f"{i}" + '''\n''' ) t.write(batch['''target'''] + '''\n''' ) result.map(_A , with_indices=_A ) def __UpperCamelCase ( _A ): lowerCAmelCase_ = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training lowerCAmelCase_ = re.sub(_A , '''''' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! lowerCAmelCase_ = ['''\n\n''', '''\n''', ''' ''', ''' '''] for t in token_sequences_to_ignore: lowerCAmelCase_ = ''' '''.join(text.split(_A ) ) return text def __UpperCamelCase ( _A ): # load dataset lowerCAmelCase_ = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=_A ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor lowerCAmelCase_ = AutoFeatureExtractor.from_pretrained(args.model_id ) lowerCAmelCase_ = feature_extractor.sampling_rate # resample audio lowerCAmelCase_ = dataset.cast_column('''audio''' , Audio(sampling_rate=_A ) ) # load eval pipeline if args.device is None: lowerCAmelCase_ = 0 if torch.cuda.is_available() else -1 lowerCAmelCase_ = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(_A ): lowerCAmelCase_ = asr( batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) lowerCAmelCase_ = prediction['''text'''] lowerCAmelCase_ = normalize_text(batch['''sentence'''] ) return batch # run inference on all examples lowerCAmelCase_ = dataset.map(_A , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(_A , _A ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument( '''--model_id''', type=str, required=True, help='''Model identifier. Should be loadable with 🤗 Transformers''' ) parser.add_argument( '''--dataset''', type=str, required=True, help='''Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets''', ) parser.add_argument( '''--config''', type=str, required=True, help='''Config of the dataset. *E.g.* `\'en\'` for Common Voice''' ) parser.add_argument('''--split''', type=str, required=True, help='''Split of the dataset. *E.g.* `\'test\'`''') parser.add_argument( '''--chunk_length_s''', type=float, default=None, help='''Chunk length in seconds. Defaults to 5 seconds.''' ) parser.add_argument( '''--stride_length_s''', type=float, default=None, help='''Stride of the audio chunks. Defaults to 1 second.''' ) parser.add_argument( '''--log_outputs''', action='''store_true''', help='''If defined, write outputs to log file for analysis.''' ) parser.add_argument( '''--device''', type=int, default=None, help='''The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.''', ) _A = parser.parse_args() main(args)
278
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowerCamelCase = {'''configuration_unispeech''': ['''UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''UniSpeechConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST''', '''UniSpeechForCTC''', '''UniSpeechForPreTraining''', '''UniSpeechForSequenceClassification''', '''UniSpeechModel''', '''UniSpeechPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
101
'''simple docstring''' import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures __lowerCamelCase = logging.get_logger(__name__) @dataclass class A__ : lowercase = field(metadata={"help": "The name of the task to train on: " + ", ".join(glue_processors.keys() )} ) lowercase = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) lowercase = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) lowercase = field( default=_snake_case , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = self.task_name.lower() class A__ ( _snake_case ): lowercase = "train" lowercase = "dev" lowercase = "test" class A__ ( _snake_case ): lowercase = 42 lowercase = 42 lowercase = 42 def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = Split.train , UpperCamelCase__ = None , ) -> List[Any]: '''simple docstring''' warnings.warn( """This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" , UpperCamelCase__ , ) A_ = args A_ = glue_processors[args.task_name]() A_ = glue_output_modes[args.task_name] if isinstance(UpperCamelCase__ , UpperCamelCase__ ): try: A_ = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) # Load data features from cache or dataset file A_ = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}''' , ) A_ = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) A_ , A_ = label_list[2], label_list[1] A_ = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. A_ = cached_features_file + """.lock""" with FileLock(UpperCamelCase__ ): if os.path.exists(UpperCamelCase__ ) and not args.overwrite_cache: A_ = time.time() A_ = torch.load(UpperCamelCase__ ) logger.info( f'''Loading features from cached file {cached_features_file} [took %.3f s]''' , time.time() - start ) else: logger.info(f'''Creating features from dataset file at {args.data_dir}''' ) if mode == Split.dev: A_ = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: A_ = self.processor.get_test_examples(args.data_dir ) else: A_ = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: A_ = examples[:limit_length] A_ = glue_convert_examples_to_features( UpperCamelCase__ , UpperCamelCase__ , max_length=args.max_seq_length , label_list=UpperCamelCase__ , output_mode=self.output_mode , ) A_ = time.time() torch.save(self.features , UpperCamelCase__ ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self ) -> str: '''simple docstring''' return len(self.features ) def __getitem__( self , UpperCamelCase__ ) -> InputFeatures: '''simple docstring''' return self.features[i] def snake_case_ ( self ) -> Dict: '''simple docstring''' return self.label_list
101
1
"""simple docstring""" def a_ ( _lowerCAmelCase : List[str] ): '''simple docstring''' lowercase__ : Optional[int] = [0] * len(_lowerCAmelCase ) lowercase__ : Tuple = [] lowercase__ : Tuple = [] lowercase__ : str = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_lowerCAmelCase ) ): if indegree[i] == 0: queue.append(_lowerCAmelCase ) while queue: lowercase__ : Any = queue.pop(0 ) cnt += 1 topo.append(_lowerCAmelCase ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(_lowerCAmelCase ) if cnt != len(_lowerCAmelCase ): print('Cycle exists' ) else: print(_lowerCAmelCase ) # Adjacency List of Graph _UpperCamelCase : Optional[Any] = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
77
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase : Tuple = logging.get_logger(__name__) _UpperCamelCase : Union[str, Any] = { "alibaba-damo/mgp-str-base": "https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json", } class UpperCAmelCase_ ( _a): lowerCamelCase__ : List[Any] = "mgp-str" def __init__( self , a=[3_2, 1_2_8] , a=4 , a=3 , a=2_7 , a=3_8 , a=5_0_2_5_7 , a=3_0_5_2_2 , a=7_6_8 , a=1_2 , a=1_2 , a=4.0 , a=True , a=False , a=1e-5 , a=0.0 , a=0.0 , a=0.0 , a=False , a=0.02 , **a , ) -> Tuple: super().__init__(**a ) lowercase__ : int = image_size lowercase__ : List[Any] = patch_size lowercase__ : Optional[Any] = num_channels lowercase__ : Optional[Any] = max_token_length lowercase__ : Dict = num_character_labels lowercase__ : Optional[int] = num_bpe_labels lowercase__ : Dict = num_wordpiece_labels lowercase__ : Tuple = hidden_size lowercase__ : List[Any] = num_hidden_layers lowercase__ : Union[str, Any] = num_attention_heads lowercase__ : Dict = mlp_ratio lowercase__ : Optional[int] = distilled lowercase__ : Optional[int] = layer_norm_eps lowercase__ : Optional[int] = drop_rate lowercase__ : List[str] = qkv_bias lowercase__ : Optional[int] = attn_drop_rate lowercase__ : Any = drop_path_rate lowercase__ : List[Any] = output_aa_attentions lowercase__ : Tuple = initializer_range
77
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A : List[str] = { 'configuration_table_transformer': [ 'TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TableTransformerConfig', 'TableTransformerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = [ 'TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TableTransformerForObjectDetection', 'TableTransformerModel', 'TableTransformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys A : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
358
'''simple docstring''' # DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class __lowerCamelCase ( a_ ): """simple docstring""" a = 42 a = None def lowerCAmelCase__ ( lowerCamelCase : int ,lowerCamelCase : Tuple=0.999 ,lowerCamelCase : int="cosine" ,): if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCamelCase : str ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCamelCase : Dict ): return math.exp(t * -12.0 ) else: raise ValueError(F'Unsupported alpha_tranform_type: {alpha_transform_type}' ) _A : Tuple = [] for i in range(lowerCamelCase ): _A : Optional[Any] = i / num_diffusion_timesteps _A : Tuple = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCamelCase ) / alpha_bar_fn(lowerCamelCase ) ,lowerCamelCase ) ) return torch.tensor(lowerCamelCase ,dtype=torch.floataa ) class __lowerCamelCase ( a_ , a_ ): """simple docstring""" a = 1 @register_to_config def __init__( self : Tuple , SCREAMING_SNAKE_CASE : int = 1000 , SCREAMING_SNAKE_CASE : float = 0.0001 , SCREAMING_SNAKE_CASE : float = 0.02 , SCREAMING_SNAKE_CASE : str = "linear" , SCREAMING_SNAKE_CASE : Optional[Union[np.ndarray, List[float]]] = None , SCREAMING_SNAKE_CASE : bool = True , SCREAMING_SNAKE_CASE : bool = True , SCREAMING_SNAKE_CASE : int = 0 , SCREAMING_SNAKE_CASE : str = "epsilon" , SCREAMING_SNAKE_CASE : float = 1.0 , **SCREAMING_SNAKE_CASE : List[str] , ): if kwargs.get('set_alpha_to_one' , SCREAMING_SNAKE_CASE) is not None: _A : Tuple = ( 'The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.' ) deprecate('set_alpha_to_one' , '1.0.0' , SCREAMING_SNAKE_CASE , standard_warn=SCREAMING_SNAKE_CASE) _A : Tuple = kwargs['set_alpha_to_one'] if trained_betas is not None: _A : Any = torch.tensor(SCREAMING_SNAKE_CASE , dtype=torch.floataa) elif beta_schedule == "linear": _A : List[Any] = torch.linspace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , dtype=torch.floataa) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _A : List[str] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , SCREAMING_SNAKE_CASE , dtype=torch.floataa) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _A : List[Any] = betas_for_alpha_bar(SCREAMING_SNAKE_CASE) else: raise NotImplementedError(F'{beta_schedule} does is not implemented for {self.__class__}') _A : Optional[int] = 1.0 - self.betas _A : Union[str, Any] = torch.cumprod(self.alphas , dim=0) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. _A : Optional[int] = torch.tensor(0.0) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution _A : Union[str, Any] = 1.0 # setable values _A : List[str] = None _A : Dict = torch.from_numpy(np.arange(0 , SCREAMING_SNAKE_CASE).copy().astype(np.intaa)) def A ( self : str , SCREAMING_SNAKE_CASE : torch.FloatTensor , SCREAMING_SNAKE_CASE : Optional[int] = None): return sample def A ( self : Dict , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Union[str, torch.device] = None): if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F'`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:' F' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle' F' maximal {self.config.num_train_timesteps} timesteps.') _A : Optional[Any] = num_inference_steps _A : List[Any] = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _A : List[str] = (np.arange(0 , SCREAMING_SNAKE_CASE) * step_ratio).round().copy().astype(np.intaa) _A : int = torch.from_numpy(SCREAMING_SNAKE_CASE).to(SCREAMING_SNAKE_CASE) self.timesteps += self.config.steps_offset def A ( self : List[Any] , SCREAMING_SNAKE_CASE : torch.FloatTensor , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : torch.FloatTensor , SCREAMING_SNAKE_CASE : float = 0.0 , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : Optional[torch.FloatTensor] = None , SCREAMING_SNAKE_CASE : bool = True , ): # 1. get previous step value (=t+1) _A : Union[str, Any] = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process _A : List[str] = self.alphas_cumprod[timestep] _A : List[str] = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) _A : List[str] = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": _A : Any = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 _A : List[Any] = model_output elif self.config.prediction_type == "sample": _A : List[Any] = model_output _A : Dict = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": _A : List[str] = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output _A : Optional[int] = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or' ' `v_prediction`') # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: _A : str = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _A : Any = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _A : Tuple = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=SCREAMING_SNAKE_CASE , pred_original_sample=SCREAMING_SNAKE_CASE) def __len__( self : List[Any]): return self.config.num_train_timesteps
227
0
import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL snake_case_ = version.parse(version.parse(torch.__version__).base_version) < version.parse('1.11') def lowerCamelCase__ ( snake_case_ : List[Any] , snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : str , snake_case_ : Tuple , snake_case_ : Union[str, Any] , snake_case_ : List[str] , snake_case_ : str=False , ) -> Optional[Any]: output_path.parent.mkdir(parents=__lowerCamelCase , exist_ok=__lowerCamelCase ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( __lowerCamelCase , __lowerCamelCase , f=output_path.as_posix() , input_names=__lowerCamelCase , output_names=__lowerCamelCase , dynamic_axes=__lowerCamelCase , do_constant_folding=__lowerCamelCase , use_external_data_format=__lowerCamelCase , enable_onnx_checker=__lowerCamelCase , opset_version=__lowerCamelCase , ) else: export( __lowerCamelCase , __lowerCamelCase , f=output_path.as_posix() , input_names=__lowerCamelCase , output_names=__lowerCamelCase , dynamic_axes=__lowerCamelCase , do_constant_folding=__lowerCamelCase , opset_version=__lowerCamelCase , ) @torch.no_grad() def lowerCamelCase__ ( snake_case_ : int , snake_case_ : Union[str, Any] , snake_case_ : int , snake_case_ : Union[str, Any] = False ) -> int: __snake_case = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): __snake_case = "cuda" elif fpaa and not torch.cuda.is_available(): raise ValueError('''`float16` model export is only supported on GPUs with CUDA''' ) else: __snake_case = "cpu" __snake_case = Path(__lowerCamelCase ) # VAE DECODER __snake_case = AutoencoderKL.from_pretrained(model_path + '''/vae''' ) __snake_case = vae_decoder.config.latent_channels # forward only through the decoder part __snake_case = vae_decoder.decode onnx_export( __lowerCamelCase , model_args=( torch.randn(1 , __lowerCamelCase , 25 , 25 ).to(device=__lowerCamelCase , dtype=__lowerCamelCase ), False, ) , output_path=output_path / '''vae_decoder''' / '''model.onnx''' , ordered_input_names=['''latent_sample''', '''return_dict'''] , output_names=['''sample'''] , dynamic_axes={ '''latent_sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, } , opset=__lowerCamelCase , ) del vae_decoder if __name__ == "__main__": snake_case_ = argparse.ArgumentParser() parser.add_argument( '--model_path', type=str, required=True, help='Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).', ) parser.add_argument('--output_path', type=str, required=True, help='Path to the output model.') parser.add_argument( '--opset', default=14, type=int, help='The version of the ONNX operator set to use.', ) parser.add_argument('--fp16', action='store_true', default=False, help='Export the models in `float16` mode') snake_case_ = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print('SD: Done: ONNX')
24
"""simple docstring""" from collections import namedtuple _a = namedtuple('from_to', 'from_ to') _a = { 'cubicmeter': from_to(1, 1), 'litre': from_to(0.001, 1_000), 'kilolitre': from_to(1, 1), 'gallon': from_to(0.0_0454, 264.172), 'cubicyard': from_to(0.7_6455, 1.3_0795), 'cubicfoot': from_to(0.028, 35.3147), 'cup': from_to(0.0_0023_6588, 4226.75), } def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): if from_type not in METRIC_CONVERSION: raise ValueError( f"""Invalid 'from_type' value: {from_type!r} Supported values are:\n""" + ", ".join(__lowerCamelCase ) ) if to_type not in METRIC_CONVERSION: raise ValueError( f"""Invalid 'to_type' value: {to_type!r}. Supported values are:\n""" + ", ".join(__lowerCamelCase ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
61
0
'''simple docstring''' import math def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCamelCase__ ( lowerCAmelCase = 0.1 ): """simple docstring""" _lowerCAmelCase = 3 _lowerCAmelCase = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(lowerCAmelCase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
220
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool A__ : List[str] ={ '''Acehnese Arabic''': '''ace_Arab''', '''Acehnese Latin''': '''ace_Latn''', '''Mesopotamian Arabic''': '''acm_Arab''', '''Ta\'izzi-Adeni Arabic''': '''acq_Arab''', '''Tunisian Arabic''': '''aeb_Arab''', '''Afrikaans''': '''afr_Latn''', '''South Levantine Arabic''': '''ajp_Arab''', '''Akan''': '''aka_Latn''', '''Amharic''': '''amh_Ethi''', '''North Levantine Arabic''': '''apc_Arab''', '''Modern Standard Arabic''': '''arb_Arab''', '''Modern Standard Arabic Romanized''': '''arb_Latn''', '''Najdi Arabic''': '''ars_Arab''', '''Moroccan Arabic''': '''ary_Arab''', '''Egyptian Arabic''': '''arz_Arab''', '''Assamese''': '''asm_Beng''', '''Asturian''': '''ast_Latn''', '''Awadhi''': '''awa_Deva''', '''Central Aymara''': '''ayr_Latn''', '''South Azerbaijani''': '''azb_Arab''', '''North Azerbaijani''': '''azj_Latn''', '''Bashkir''': '''bak_Cyrl''', '''Bambara''': '''bam_Latn''', '''Balinese''': '''ban_Latn''', '''Belarusian''': '''bel_Cyrl''', '''Bemba''': '''bem_Latn''', '''Bengali''': '''ben_Beng''', '''Bhojpuri''': '''bho_Deva''', '''Banjar Arabic''': '''bjn_Arab''', '''Banjar Latin''': '''bjn_Latn''', '''Standard Tibetan''': '''bod_Tibt''', '''Bosnian''': '''bos_Latn''', '''Buginese''': '''bug_Latn''', '''Bulgarian''': '''bul_Cyrl''', '''Catalan''': '''cat_Latn''', '''Cebuano''': '''ceb_Latn''', '''Czech''': '''ces_Latn''', '''Chokwe''': '''cjk_Latn''', '''Central Kurdish''': '''ckb_Arab''', '''Crimean Tatar''': '''crh_Latn''', '''Welsh''': '''cym_Latn''', '''Danish''': '''dan_Latn''', '''German''': '''deu_Latn''', '''Southwestern Dinka''': '''dik_Latn''', '''Dyula''': '''dyu_Latn''', '''Dzongkha''': '''dzo_Tibt''', '''Greek''': '''ell_Grek''', '''English''': '''eng_Latn''', '''Esperanto''': '''epo_Latn''', '''Estonian''': '''est_Latn''', '''Basque''': '''eus_Latn''', '''Ewe''': '''ewe_Latn''', '''Faroese''': '''fao_Latn''', '''Fijian''': '''fij_Latn''', '''Finnish''': '''fin_Latn''', '''Fon''': '''fon_Latn''', '''French''': '''fra_Latn''', '''Friulian''': '''fur_Latn''', '''Nigerian Fulfulde''': '''fuv_Latn''', '''Scottish Gaelic''': '''gla_Latn''', '''Irish''': '''gle_Latn''', '''Galician''': '''glg_Latn''', '''Guarani''': '''grn_Latn''', '''Gujarati''': '''guj_Gujr''', '''Haitian Creole''': '''hat_Latn''', '''Hausa''': '''hau_Latn''', '''Hebrew''': '''heb_Hebr''', '''Hindi''': '''hin_Deva''', '''Chhattisgarhi''': '''hne_Deva''', '''Croatian''': '''hrv_Latn''', '''Hungarian''': '''hun_Latn''', '''Armenian''': '''hye_Armn''', '''Igbo''': '''ibo_Latn''', '''Ilocano''': '''ilo_Latn''', '''Indonesian''': '''ind_Latn''', '''Icelandic''': '''isl_Latn''', '''Italian''': '''ita_Latn''', '''Javanese''': '''jav_Latn''', '''Japanese''': '''jpn_Jpan''', '''Kabyle''': '''kab_Latn''', '''Jingpho''': '''kac_Latn''', '''Kamba''': '''kam_Latn''', '''Kannada''': '''kan_Knda''', '''Kashmiri Arabic''': '''kas_Arab''', '''Kashmiri Devanagari''': '''kas_Deva''', '''Georgian''': '''kat_Geor''', '''Central Kanuri Arabic''': '''knc_Arab''', '''Central Kanuri Latin''': '''knc_Latn''', '''Kazakh''': '''kaz_Cyrl''', '''Kabiyè''': '''kbp_Latn''', '''Kabuverdianu''': '''kea_Latn''', '''Khmer''': '''khm_Khmr''', '''Kikuyu''': '''kik_Latn''', '''Kinyarwanda''': '''kin_Latn''', '''Kyrgyz''': '''kir_Cyrl''', '''Kimbundu''': '''kmb_Latn''', '''Northern Kurdish''': '''kmr_Latn''', '''Kikongo''': '''kon_Latn''', '''Korean''': '''kor_Hang''', '''Lao''': '''lao_Laoo''', '''Ligurian''': '''lij_Latn''', '''Limburgish''': '''lim_Latn''', '''Lingala''': '''lin_Latn''', '''Lithuanian''': '''lit_Latn''', '''Lombard''': '''lmo_Latn''', '''Latgalian''': '''ltg_Latn''', '''Luxembourgish''': '''ltz_Latn''', '''Luba-Kasai''': '''lua_Latn''', '''Ganda''': '''lug_Latn''', '''Luo''': '''luo_Latn''', '''Mizo''': '''lus_Latn''', '''Standard Latvian''': '''lvs_Latn''', '''Magahi''': '''mag_Deva''', '''Maithili''': '''mai_Deva''', '''Malayalam''': '''mal_Mlym''', '''Marathi''': '''mar_Deva''', '''Minangkabau Arabic ''': '''min_Arab''', '''Minangkabau Latin''': '''min_Latn''', '''Macedonian''': '''mkd_Cyrl''', '''Plateau Malagasy''': '''plt_Latn''', '''Maltese''': '''mlt_Latn''', '''Meitei Bengali''': '''mni_Beng''', '''Halh Mongolian''': '''khk_Cyrl''', '''Mossi''': '''mos_Latn''', '''Maori''': '''mri_Latn''', '''Burmese''': '''mya_Mymr''', '''Dutch''': '''nld_Latn''', '''Norwegian Nynorsk''': '''nno_Latn''', '''Norwegian Bokmål''': '''nob_Latn''', '''Nepali''': '''npi_Deva''', '''Northern Sotho''': '''nso_Latn''', '''Nuer''': '''nus_Latn''', '''Nyanja''': '''nya_Latn''', '''Occitan''': '''oci_Latn''', '''West Central Oromo''': '''gaz_Latn''', '''Odia''': '''ory_Orya''', '''Pangasinan''': '''pag_Latn''', '''Eastern Panjabi''': '''pan_Guru''', '''Papiamento''': '''pap_Latn''', '''Western Persian''': '''pes_Arab''', '''Polish''': '''pol_Latn''', '''Portuguese''': '''por_Latn''', '''Dari''': '''prs_Arab''', '''Southern Pashto''': '''pbt_Arab''', '''Ayacucho Quechua''': '''quy_Latn''', '''Romanian''': '''ron_Latn''', '''Rundi''': '''run_Latn''', '''Russian''': '''rus_Cyrl''', '''Sango''': '''sag_Latn''', '''Sanskrit''': '''san_Deva''', '''Santali''': '''sat_Olck''', '''Sicilian''': '''scn_Latn''', '''Shan''': '''shn_Mymr''', '''Sinhala''': '''sin_Sinh''', '''Slovak''': '''slk_Latn''', '''Slovenian''': '''slv_Latn''', '''Samoan''': '''smo_Latn''', '''Shona''': '''sna_Latn''', '''Sindhi''': '''snd_Arab''', '''Somali''': '''som_Latn''', '''Southern Sotho''': '''sot_Latn''', '''Spanish''': '''spa_Latn''', '''Tosk Albanian''': '''als_Latn''', '''Sardinian''': '''srd_Latn''', '''Serbian''': '''srp_Cyrl''', '''Swati''': '''ssw_Latn''', '''Sundanese''': '''sun_Latn''', '''Swedish''': '''swe_Latn''', '''Swahili''': '''swh_Latn''', '''Silesian''': '''szl_Latn''', '''Tamil''': '''tam_Taml''', '''Tatar''': '''tat_Cyrl''', '''Telugu''': '''tel_Telu''', '''Tajik''': '''tgk_Cyrl''', '''Tagalog''': '''tgl_Latn''', '''Thai''': '''tha_Thai''', '''Tigrinya''': '''tir_Ethi''', '''Tamasheq Latin''': '''taq_Latn''', '''Tamasheq Tifinagh''': '''taq_Tfng''', '''Tok Pisin''': '''tpi_Latn''', '''Tswana''': '''tsn_Latn''', '''Tsonga''': '''tso_Latn''', '''Turkmen''': '''tuk_Latn''', '''Tumbuka''': '''tum_Latn''', '''Turkish''': '''tur_Latn''', '''Twi''': '''twi_Latn''', '''Central Atlas Tamazight''': '''tzm_Tfng''', '''Uyghur''': '''uig_Arab''', '''Ukrainian''': '''ukr_Cyrl''', '''Umbundu''': '''umb_Latn''', '''Urdu''': '''urd_Arab''', '''Northern Uzbek''': '''uzn_Latn''', '''Venetian''': '''vec_Latn''', '''Vietnamese''': '''vie_Latn''', '''Waray''': '''war_Latn''', '''Wolof''': '''wol_Latn''', '''Xhosa''': '''xho_Latn''', '''Eastern Yiddish''': '''ydd_Hebr''', '''Yoruba''': '''yor_Latn''', '''Yue Chinese''': '''yue_Hant''', '''Chinese Simplified''': '''zho_Hans''', '''Chinese Traditional''': '''zho_Hant''', '''Standard Malay''': '''zsm_Latn''', '''Zulu''': '''zul_Latn''', } class UpperCAmelCase ( snake_case_ ): _lowercase: Dict = '''facebook/nllb-200-distilled-600M''' _lowercase: int = ( '''This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ''' '''be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ''' '''which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ''' '''plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.''' ) _lowercase: Any = '''translator''' _lowercase: Optional[int] = AutoTokenizer _lowercase: str = AutoModelForSeqaSeqLM _lowercase: List[Any] = LANGUAGE_CODES _lowercase: Tuple = ['''text''', '''text''', '''text'''] _lowercase: List[str] = ['''text'''] def lowercase__ ( self : str , __snake_case : Union[str, Any] , __snake_case : Optional[int] , __snake_case : Dict ) -> Optional[Any]: if src_lang not in self.lang_to_code: raise ValueError(f"{src_lang} is not a supported language." ) if tgt_lang not in self.lang_to_code: raise ValueError(f"{tgt_lang} is not a supported language." ) _lowerCAmelCase = self.lang_to_code[src_lang] _lowerCAmelCase = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( __snake_case , return_tensors="""pt""" , src_lang=__snake_case , tgt_lang=__snake_case ) def lowercase__ ( self : Optional[int] , __snake_case : Any ) -> List[str]: return self.model.generate(**__snake_case ) def lowercase__ ( self : Dict , __snake_case : List[Any] ) -> Any: return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=__snake_case )
220
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Tuple = ['''keras_nlp'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Union[str, Any]: requires_backends(self ,["""keras_nlp"""] )
37
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { '''facebook/xlm-roberta-xl''': '''https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json''', '''facebook/xlm-roberta-xxl''': '''https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json''', # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : int = '''xlm-roberta-xl''' def __init__( self ,__UpperCAmelCase=25_0880 ,__UpperCAmelCase=2560 ,__UpperCAmelCase=36 ,__UpperCAmelCase=32 ,__UpperCAmelCase=1_0240 ,__UpperCAmelCase="gelu" ,__UpperCAmelCase=0.1 ,__UpperCAmelCase=0.1 ,__UpperCAmelCase=514 ,__UpperCAmelCase=1 ,__UpperCAmelCase=0.0_2 ,__UpperCAmelCase=1E-05 ,__UpperCAmelCase=1 ,__UpperCAmelCase=0 ,__UpperCAmelCase=2 ,__UpperCAmelCase="absolute" ,__UpperCAmelCase=True ,__UpperCAmelCase=None ,**__UpperCAmelCase ,) -> str: super().__init__(pad_token_id=__UpperCAmelCase ,bos_token_id=__UpperCAmelCase ,eos_token_id=__UpperCAmelCase ,**__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = vocab_size lowerCAmelCase__ : int = hidden_size lowerCAmelCase__ : int = num_hidden_layers lowerCAmelCase__ : str = num_attention_heads lowerCAmelCase__ : int = hidden_act lowerCAmelCase__ : Dict = intermediate_size lowerCAmelCase__ : List[Any] = hidden_dropout_prob lowerCAmelCase__ : str = attention_probs_dropout_prob lowerCAmelCase__ : Optional[int] = max_position_embeddings lowerCAmelCase__ : List[str] = type_vocab_size lowerCAmelCase__ : List[Any] = initializer_range lowerCAmelCase__ : Tuple = layer_norm_eps lowerCAmelCase__ : int = position_embedding_type lowerCAmelCase__ : Optional[Any] = use_cache lowerCAmelCase__ : Optional[Any] = classifier_dropout class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @property def UpperCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowerCAmelCase__ : Dict = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowerCAmelCase__ : Any = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
37
1
"""simple docstring""" class __A : def __init__( self ): _lowerCAmelCase : Dict = """""" _lowerCAmelCase : Optional[Any] = """""" _lowerCAmelCase : Optional[int] = [] def __A ( self , a__ , a__ ): if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: _lowerCAmelCase : List[str] = self.__min_dist_top_down_dp(m - 1 , n - 1 ) else: _lowerCAmelCase : Optional[int] = self.__min_dist_top_down_dp(a__ , n - 1 ) _lowerCAmelCase : str = self.__min_dist_top_down_dp(m - 1 , a__ ) _lowerCAmelCase : Any = self.__min_dist_top_down_dp(m - 1 , n - 1 ) _lowerCAmelCase : Dict = 1 + min(a__ , a__ , a__ ) return self.dp[m][n] def __A ( self , a__ , a__ ): _lowerCAmelCase : int = worda _lowerCAmelCase : Dict = worda _lowerCAmelCase : Dict = [[-1 for _ in range(len(a__ ) )] for _ in range(len(a__ ) )] return self.__min_dist_top_down_dp(len(a__ ) - 1 , len(a__ ) - 1 ) def __A ( self , a__ , a__ ): _lowerCAmelCase : Optional[Any] = worda _lowerCAmelCase : Optional[Any] = worda _lowerCAmelCase : Optional[Any] = len(a__ ) _lowerCAmelCase : Union[str, Any] = len(a__ ) _lowerCAmelCase : List[Any] = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty _lowerCAmelCase : Union[str, Any] = j elif j == 0: # second string is empty _lowerCAmelCase : List[str] = i elif worda[i - 1] == worda[j - 1]: # last characters are equal _lowerCAmelCase : Any = self.dp[i - 1][j - 1] else: _lowerCAmelCase : List[Any] = self.dp[i][j - 1] _lowerCAmelCase : Dict = self.dp[i - 1][j] _lowerCAmelCase : Union[str, Any] = self.dp[i - 1][j - 1] _lowerCAmelCase : Any = 1 + min(a__ , a__ , a__ ) return self.dp[m][n] if __name__ == "__main__": _a : Any = EditDistance() print('****************** Testing Edit Distance DP Algorithm ******************') print() _a : Tuple = input('Enter the first string: ').strip() _a : Tuple = input('Enter the second string: ').strip() print() print(F"""The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}""") print(F"""The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}""") print() print('*************** End of Testing Edit Distance DP Algorithm ***************')
126
"""simple docstring""" from __future__ import annotations def SCREAMING_SNAKE_CASE ( _lowerCamelCase : list ) -> float: if not nums: raise ValueError("""List is empty""" ) return sum(_lowerCamelCase ) / len(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
126
1
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowercase__ :List[Any] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-classification/requirements.txt") lowercase__ :Dict = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) lowercase__ :List[str] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' with open(lowerCAmelCase__ , '''rb''' ) as f: lowercase = Image.open(lowerCAmelCase__ ) return im.convert('''RGB''' ) @dataclass class lowercase : lowercase_ : Optional[str] =field( default=SCREAMING_SNAKE_CASE__ , metadata={ '''help''': '''Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).''' } , ) lowercase_ : Optional[str] =field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) lowercase_ : Optional[str] =field(default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''A folder containing the training data.'''} ) lowercase_ : Optional[str] =field(default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''A folder containing the validation data.'''} ) lowercase_ : Optional[float] =field( default=0.15 , metadata={'''help''': '''Percent to split off of train for validation.'''} ) lowercase_ : Optional[int] =field( default=SCREAMING_SNAKE_CASE__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) lowercase_ : Optional[int] =field( default=SCREAMING_SNAKE_CASE__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def A__ ( self): if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( '''You must specify either a dataset name from the hub or a train and/or validation directory.''') @dataclass class lowercase : lowercase_ : str =field( default='''google/vit-base-patch16-224-in21k''' , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} , ) lowercase_ : Optional[str] =field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(SCREAMING_SNAKE_CASE__ )} , ) lowercase_ : Optional[str] =field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) lowercase_ : Optional[str] =field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from s3'''} ) lowercase_ : str =field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) lowercase_ : str =field(default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Name or path of preprocessor config.'''} ) lowercase_ : bool =field( default=SCREAMING_SNAKE_CASE__ , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) lowercase_ : bool =field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''} , ) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = torch.stack([example['''pixel_values'''] for example in examples] ) lowercase = torch.tensor([example['''labels'''] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def UpperCamelCase ( ): '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase , lowercase , lowercase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase , lowercase , lowercase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_image_classification''' , lowerCAmelCase__ , lowerCAmelCase__ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowercase = training_args.get_process_log_level() logger.setLevel(lowerCAmelCase__ ) transformers.utils.logging.set_verbosity(lowerCAmelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. lowercase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: lowercase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task='''image-classification''' , use_auth_token=True if model_args.use_auth_token else None , ) else: lowercase = {} if data_args.train_dir is not None: lowercase = os.path.join(data_args.train_dir , '''**''' ) if data_args.validation_dir is not None: lowercase = os.path.join(data_args.validation_dir , '''**''' ) lowercase = load_dataset( '''imagefolder''' , data_files=lowerCAmelCase__ , cache_dir=model_args.cache_dir , task='''image-classification''' , ) # If we don't have a validation split, split off a percentage of train as validation. lowercase = None if '''validation''' in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , lowerCAmelCase__ ) and data_args.train_val_split > 0.0: lowercase = dataset['''train'''].train_test_split(data_args.train_val_split ) lowercase = split['''train'''] lowercase = split['''test'''] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. lowercase = dataset['''train'''].features['''labels'''].names lowercase , lowercase = {}, {} for i, label in enumerate(lowerCAmelCase__ ): lowercase = str(lowerCAmelCase__ ) lowercase = label # Load the accuracy metric from the datasets package lowercase = evaluate.load('''accuracy''' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowerCAmelCase__ ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) lowercase = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(lowerCAmelCase__ ) , labelaid=lowerCAmelCase__ , idalabel=lowerCAmelCase__ , finetuning_task='''image-classification''' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowercase = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=lowerCAmelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) lowercase = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: lowercase = image_processor.size['''shortest_edge'''] else: lowercase = (image_processor.size['''height'''], image_processor.size['''width''']) lowercase = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) lowercase = Compose( [ RandomResizedCrop(lowerCAmelCase__ ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) lowercase = Compose( [ Resize(lowerCAmelCase__ ), CenterCrop(lowerCAmelCase__ ), ToTensor(), normalize, ] ) def train_transforms(lowerCAmelCase__ ): lowercase = [ _train_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image'''] ] return example_batch def val_transforms(lowerCAmelCase__ ): lowercase = [_val_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image''']] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: lowercase = ( dataset['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(lowerCAmelCase__ ) if training_args.do_eval: if "validation" not in dataset: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: lowercase = ( dataset['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(lowerCAmelCase__ ) # Initalize our trainer lowercase = Trainer( model=lowerCAmelCase__ , args=lowerCAmelCase__ , train_dataset=dataset['''train'''] if training_args.do_train else None , eval_dataset=dataset['''validation'''] if training_args.do_eval else None , compute_metrics=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , data_collator=lowerCAmelCase__ , ) # Training if training_args.do_train: lowercase = None if training_args.resume_from_checkpoint is not None: lowercase = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase = last_checkpoint lowercase = trainer.train(resume_from_checkpoint=lowerCAmelCase__ ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowercase = trainer.evaluate() trainer.log_metrics('''eval''' , lowerCAmelCase__ ) trainer.save_metrics('''eval''' , lowerCAmelCase__ ) # Write model card and (optionally) push to hub lowercase = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''image-classification''', '''dataset''': data_args.dataset_name, '''tags''': ['''image-classification''', '''vision'''], } if training_args.push_to_hub: trainer.push_to_hub(**lowerCAmelCase__ ) else: trainer.create_model_card(**lowerCAmelCase__ ) if __name__ == "__main__": main()
101
import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class lowercase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): lowercase_ : Union[str, Any] =RoCBertTokenizer lowercase_ : str =None lowercase_ : Optional[Any] =False lowercase_ : Any =True lowercase_ : int =filter_non_english def A__ ( self): super().setUp() lowercase = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''你''', '''好''', '''是''', '''谁''', '''a''', '''b''', '''c''', '''d'''] lowercase = {} lowercase = {} for i, value in enumerate(A__): lowercase = i lowercase = i lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file''']) lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''word_shape_file''']) lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''word_pronunciation_file''']) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''') as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens])) with open(self.word_shape_file ,'''w''' ,encoding='''utf-8''') as word_shape_writer: json.dump(A__ ,A__ ,ensure_ascii=A__) with open(self.word_pronunciation_file ,'''w''' ,encoding='''utf-8''') as word_pronunciation_writer: json.dump(A__ ,A__ ,ensure_ascii=A__) def A__ ( self): lowercase = self.tokenizer_class(self.vocab_file ,self.word_shape_file ,self.word_pronunciation_file) lowercase = tokenizer.tokenize('''你好[SEP]你是谁''') self.assertListEqual(A__ ,['''你''', '''好''', '''[SEP]''', '''你''', '''是''', '''谁''']) self.assertListEqual(tokenizer.convert_tokens_to_ids(A__) ,[5, 6, 2, 5, 7, 8]) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(A__) ,[5, 6, 2, 5, 7, 8]) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(A__) ,[5, 6, 2, 5, 7, 8]) def A__ ( self): lowercase = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''') ,['''ah''', '''\u535A''', '''\u63A8''', '''zz''']) def A__ ( self): lowercase = RoCBertBasicTokenizer(do_lower_case=A__) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''') ,['''hello''', '''!''', '''how''', '''are''', '''you''', '''?''']) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''') ,['''hello''']) def A__ ( self): lowercase = RoCBertBasicTokenizer(do_lower_case=A__ ,strip_accents=A__) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''') ,['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?''']) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''') ,['''h\u00E9llo''']) def A__ ( self): lowercase = RoCBertBasicTokenizer(do_lower_case=A__ ,strip_accents=A__) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''') ,['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?''']) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''') ,['''hello''']) def A__ ( self): lowercase = RoCBertBasicTokenizer(do_lower_case=A__) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''') ,['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?''']) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''') ,['''hello''']) def A__ ( self): lowercase = RoCBertBasicTokenizer(do_lower_case=A__) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''') ,['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''']) def A__ ( self): lowercase = RoCBertBasicTokenizer(do_lower_case=A__ ,strip_accents=A__) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''') ,['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''']) def A__ ( self): lowercase = RoCBertBasicTokenizer(do_lower_case=A__ ,strip_accents=A__) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''') ,['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''']) def A__ ( self): lowercase = RoCBertBasicTokenizer(do_lower_case=A__ ,never_split=['''[UNK]''']) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''') ,['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]''']) def A__ ( self): lowercase = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] lowercase = {} for i, token in enumerate(A__): lowercase = i lowercase = RoCBertWordpieceTokenizer(vocab=A__ ,unk_token='''[UNK]''') self.assertListEqual(tokenizer.tokenize('''''') ,[]) self.assertListEqual(tokenizer.tokenize('''unwanted running''') ,['''un''', '''##want''', '''##ed''', '''runn''', '''##ing''']) self.assertListEqual(tokenizer.tokenize('''unwantedX running''') ,['''[UNK]''', '''runn''', '''##ing''']) def A__ ( self): self.assertTrue(_is_whitespace(''' ''')) self.assertTrue(_is_whitespace('''\t''')) self.assertTrue(_is_whitespace('''\r''')) self.assertTrue(_is_whitespace('''\n''')) self.assertTrue(_is_whitespace('''\u00A0''')) self.assertFalse(_is_whitespace('''A''')) self.assertFalse(_is_whitespace('''-''')) def A__ ( self): self.assertTrue(_is_control('''\u0005''')) self.assertFalse(_is_control('''A''')) self.assertFalse(_is_control(''' ''')) self.assertFalse(_is_control('''\t''')) self.assertFalse(_is_control('''\r''')) def A__ ( self): self.assertTrue(_is_punctuation('''-''')) self.assertTrue(_is_punctuation('''$''')) self.assertTrue(_is_punctuation('''`''')) self.assertTrue(_is_punctuation('''.''')) self.assertFalse(_is_punctuation('''A''')) self.assertFalse(_is_punctuation(''' ''')) def A__ ( self): lowercase = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(A__) for t in ['''Test''', '''\xad''', '''test''']] ,[['''[UNK]'''], [], ['''[UNK]''']]) if self.test_rust_tokenizer: lowercase = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(A__) for t in ['''Test''', '''\xad''', '''test''']] ,[['''[UNK]'''], [], ['''[UNK]''']]) def A__ ( self): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})'): lowercase = self.rust_tokenizer_class.from_pretrained(A__ ,**A__) lowercase = f'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.' lowercase = tokenizer_r.encode_plus( A__ ,return_attention_mask=A__ ,return_token_type_ids=A__ ,return_offsets_mapping=A__ ,add_special_tokens=A__ ,) lowercase = tokenizer_r.do_lower_case if hasattr(A__ ,'''do_lower_case''') else False lowercase = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), '''Allen'''), ((2_1, 2_3), '''##NL'''), ((2_3, 2_4), '''##P'''), ((2_5, 3_3), '''sentence'''), ((3_3, 3_4), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), '''allen'''), ((2_1, 2_3), '''##nl'''), ((2_3, 2_4), '''##p'''), ((2_5, 3_3), '''sentence'''), ((3_3, 3_4), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] ,tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''])) self.assertEqual([e[0] for e in expected_results] ,tokens['''offset_mapping''']) def A__ ( self): lowercase = ['''的''', '''人''', '''有'''] lowercase = ''''''.join(A__) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})'): lowercase = True lowercase = self.tokenizer_class.from_pretrained(A__ ,**A__) lowercase = self.rust_tokenizer_class.from_pretrained(A__ ,**A__) lowercase = tokenizer_p.encode(A__ ,add_special_tokens=A__) lowercase = tokenizer_r.encode(A__ ,add_special_tokens=A__) lowercase = tokenizer_r.convert_ids_to_tokens(A__) lowercase = tokenizer_p.convert_ids_to_tokens(A__) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(A__ ,A__) self.assertListEqual(A__ ,A__) lowercase = False lowercase = self.rust_tokenizer_class.from_pretrained(A__ ,**A__) lowercase = self.tokenizer_class.from_pretrained(A__ ,**A__) lowercase = tokenizer_r.encode(A__ ,add_special_tokens=A__) lowercase = tokenizer_p.encode(A__ ,add_special_tokens=A__) lowercase = tokenizer_r.convert_ids_to_tokens(A__) lowercase = tokenizer_p.convert_ids_to_tokens(A__) # it is expected that only the first Chinese character is not preceded by "##". lowercase = [ f'##{token}' if idx != 0 else token for idx, token in enumerate(A__) ] self.assertListEqual(A__ ,A__) self.assertListEqual(A__ ,A__) @slow def A__ ( self): lowercase = self.tokenizer_class(self.vocab_file ,self.word_shape_file ,self.word_pronunciation_file) lowercase = tokenizer.encode('''你好''' ,add_special_tokens=A__) lowercase = tokenizer.encode('''你是谁''' ,add_special_tokens=A__) lowercase = tokenizer.build_inputs_with_special_tokens(A__) lowercase = tokenizer.build_inputs_with_special_tokens(A__ ,A__) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def A__ ( self): lowercase = self.get_tokenizers(do_lower_case=A__) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}'): lowercase = '''你好,你是谁''' lowercase = tokenizer.tokenize(A__) lowercase = tokenizer.convert_tokens_to_ids(A__) lowercase = tokenizer.convert_tokens_to_shape_ids(A__) lowercase = tokenizer.convert_tokens_to_pronunciation_ids(A__) lowercase = tokenizer.prepare_for_model( A__ ,A__ ,A__ ,add_special_tokens=A__) lowercase = tokenizer.encode_plus(A__ ,add_special_tokens=A__) self.assertEqual(A__ ,A__)
101
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore __UpperCAmelCase = '\nHuman: <<task>>\n\nAssistant: ' __UpperCAmelCase = 'huggingface-tools/default-prompts' __UpperCAmelCase = {'chat': 'chat_prompt_template.txt', 'run': 'run_prompt_template.txt'} def __UpperCamelCase ( lowercase__ : Union[str, Any] , lowercase__ : List[str] , lowercase__ : Optional[int]="run" ) -> Any: '''simple docstring''' if prompt_or_repo_id is None: lowerCAmelCase_ : int = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("""\\s""" , lowercase__ ) is not None: return prompt_or_repo_id lowerCAmelCase_ : Optional[Any] = cached_file( lowercase__ , PROMPT_FILES[mode] , repo_type="""dataset""" , user_agent={"""agent""": agent_name} ) with open(lowercase__ , """r""" , encoding="""utf-8""" ) as f: return f.read()
28
from math import ceil def __UpperCamelCase ( lowercase__ : int = 1001 ) -> int: '''simple docstring''' lowerCAmelCase_ : List[str] = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): lowerCAmelCase_ : Optional[Any] = 2 * i + 1 lowerCAmelCase_ : Union[str, Any] = 2 * i lowerCAmelCase_ : Optional[Any] = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: __UpperCAmelCase = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number')
28
1
"""simple docstring""" from __future__ import annotations class lowerCAmelCase__ : '''simple docstring''' def __init__( self : Any , lowercase_ : int = 0): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = key def _SCREAMING_SNAKE_CASE ( self : Any , lowercase_ : str , lowercase_ : int): '''simple docstring''' assert isinstance(lowercase_ , lowercase_) and isinstance(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : Dict = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(lowercase_) ^ key) for ch in content] def _SCREAMING_SNAKE_CASE ( self : str , lowercase_ : str , lowercase_ : int): '''simple docstring''' assert isinstance(lowercase_ , lowercase_) and isinstance(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(lowercase_) ^ key) for ch in content] def _SCREAMING_SNAKE_CASE ( self : Tuple , lowercase_ : str , lowercase_ : int = 0): '''simple docstring''' assert isinstance(lowercase_ , lowercase_) and isinstance(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : int = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned SCREAMING_SNAKE_CASE_ : List[str] = '''''' for ch in content: ans += chr(ord(lowercase_) ^ key) return ans def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : str , lowercase_ : int = 0): '''simple docstring''' assert isinstance(lowercase_ , lowercase_) and isinstance(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned SCREAMING_SNAKE_CASE_ : List[Any] = '''''' for ch in content: ans += chr(ord(lowercase_) ^ key) return ans def _SCREAMING_SNAKE_CASE ( self : str , lowercase_ : str , lowercase_ : int = 0): '''simple docstring''' assert isinstance(lowercase_ , lowercase_) and isinstance(lowercase_ , lowercase_) try: with open(lowercase_) as fin, open('''encrypt.out''' , '''w+''') as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(lowercase_ , lowercase_)) except OSError: return False return True def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : str , lowercase_ : int): '''simple docstring''' assert isinstance(lowercase_ , lowercase_) and isinstance(lowercase_ , lowercase_) try: with open(lowercase_) as fin, open('''decrypt.out''' , '''w+''') as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(lowercase_ , lowercase_)) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
91
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm _lowercase: Optional[int] = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex _lowercase: Dict = 10 _lowercase: Optional[Any] = 256 def a( A : List[str] ) -> Optional[MinHash]: """simple docstring""" if len(A ) < MIN_NUM_TOKENS: return None a = MinHash(num_perm=A ) for token in set(A ): min_hash.update(token.encode() ) return min_hash def a( A : str ) -> Set[str]: """simple docstring""" return {t for t in NON_ALPHA.split(A ) if len(t.strip() ) > 0} class _lowercase : """simple docstring""" def __init__(self , *, lowerCamelCase_ = 0.85 , ): """simple docstring""" a = duplication_jaccard_threshold a = NUM_PERM a = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) a = defaultdict(lowerCamelCase_ ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" a = self._index.query(lowerCamelCase_ ) if code_key in self._index.keys: print(F'''Duplicate key {code_key}''' ) return self._index.insert(lowerCamelCase_ , lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(lowerCamelCase_ ) break else: self._duplicate_clusters[close_duplicates[0]].add(lowerCamelCase_ ) def UpperCamelCase_ (self ): """simple docstring""" a = [] for base, duplicates in self._duplicate_clusters.items(): a = [base] + list(lowerCamelCase_ ) # reformat the cluster to be a list of dict a = [{"base_index": el[0], "repo_name": el[1], "path": el[2]} for el in cluster] duplicate_clusters.append(lowerCamelCase_ ) return duplicate_clusters def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" a = self.get_duplicate_clusters() with open(lowerCamelCase_ , "w" ) as f: json.dump(lowerCamelCase_ , lowerCamelCase_ ) def a( A : Any ) -> List[Any]: """simple docstring""" a , a = element a = get_min_hash([t for t in NON_ALPHA.split(data["content"] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def a( A : Type[Dataset] ) -> List[Any]: """simple docstring""" with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(A , max_queue_size=1_0000 ) , chunksize=100 , ): if data is not None: yield data def a( A : Type[Dataset] , A : float ) -> Dict: """simple docstring""" a = DuplicationIndex(duplication_jaccard_threshold=A ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(A ) ) , max_queue_size=100 ) ): di.add(A , A ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def a( A : str , A : str ) -> float: """simple docstring""" a = get_tokens(A ) a = get_tokens(A ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) _lowercase: int = None def a( A : str , A : Tuple ) -> int: """simple docstring""" a = [] for elementa in cluster: a = _shared_dataset[elementa["base_index"]]["content"] for elementa in extremes: a = _shared_dataset[elementa["base_index"]]["content"] if jaccard_similarity(A , A ) >= jaccard_threshold: elementa["copies"] += 1 break else: a = 1 extremes.append(A ) return extremes def a( A : str , A : List[str] , A : int ) -> Tuple: """simple docstring""" global _shared_dataset a = dataset a = [] a = partial(_find_cluster_extremes_shared , jaccard_threshold=A ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( A , A , ) , total=len(A ) , ): extremes_list.append(A ) return extremes_list def a( A : Type[Dataset] , A : float = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]: """simple docstring""" a = make_duplicate_clusters(A , A ) a = {x["base_index"] for cluster in duplicate_clusters for x in cluster} a = {} a = find_extremes(A , A , A ) for extremes in extremes_clusters: for element in extremes: a = element a = duplicate_indices - set(extreme_dict.keys() ) a = dataset.filter(lambda A , A : idx not in remove_indices , with_indices=A ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: a = element["base_index"] in extreme_dict if element["is_extreme"]: a = extreme_dict[element["base_index"]]["copies"] print(f'''Original dataset size: {len(A )}''' ) print(f'''Number of duplicate clusters: {len(A )}''' ) print(f'''Files in duplicate cluster: {len(A )}''' ) print(f'''Unique files in duplicate cluster: {len(A )}''' ) print(f'''Filtered dataset size: {len(A )}''' ) return ds_filter, duplicate_clusters
227
0
import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class UpperCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCAmelCase_ = 1 @register_to_config def __init__( self , lowerCAmelCase_ = 1000 , lowerCAmelCase_ = None ) -> Optional[int]: # set `betas`, `alphas`, `timesteps` self.set_timesteps(lowerCAmelCase_ ) # standard deviation of the initial noise distribution _snake_case = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. _snake_case = 4 # running values _snake_case = [] def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> List[str]: _snake_case = num_inference_steps _snake_case = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] _snake_case = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: _snake_case = torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: _snake_case = torch.sin(steps * math.pi / 2 ) ** 2 _snake_case = (1.0 - self.betas**2) ** 0.5 _snake_case = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] _snake_case = timesteps.to(lowerCAmelCase_ ) _snake_case = [] def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = True , ) -> Union[SchedulerOutput, Tuple]: if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) _snake_case = (self.timesteps == timestep).nonzero().item() _snake_case = timestep_index + 1 _snake_case = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(lowerCAmelCase_ ) if len(self.ets ) == 1: _snake_case = self.ets[-1] elif len(self.ets ) == 2: _snake_case = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: _snake_case = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: _snake_case = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) _snake_case = self._get_prev_sample(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> torch.FloatTensor: return sample def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Any: _snake_case = self.alphas[timestep_index] _snake_case = self.betas[timestep_index] _snake_case = self.alphas[prev_timestep_index] _snake_case = self.betas[prev_timestep_index] _snake_case = (sample - sigma * ets) / max(lowerCAmelCase_ , 1E-8 ) _snake_case = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self ) -> Optional[Any]: return self.config.num_train_timesteps
368
import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor UpperCAmelCase_ = logging.get_logger(__name__) class UpperCamelCase_ ( _lowerCamelCase ): def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> None: warnings.warn( 'The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use FlavaImageProcessor instead.' , lowerCAmelCase_ , ) super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ )
295
0
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( __snake_case : str ): '''simple docstring''' lowercase = 0 for ch in input_str: lowercase = ord(__snake_case ) lowercase = pow(2 , __snake_case ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
220
"""simple docstring""" import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class a : @staticmethod def UpperCamelCase_ ( *_lowerCamelCase , **_lowerCamelCase ): pass @is_pipeline_test @require_torch @require_vision class a ( unittest.TestCase ): UpperCAmelCase_ : Union[str, Any] =MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowercase = pipeline('visual-question-answering' , model='hf-internal-testing/tiny-vilt-random-vqa' ) lowercase = [ { 'image': Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'question': 'How many cats are there?', }, { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'question': 'How many cats are there?', }, ] return vqa_pipeline, examples def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase ): lowercase = vqa_pipeline(_lowerCamelCase , top_k=1 ) self.assertEqual( _lowerCamelCase , [ [{'score': ANY(_lowerCamelCase ), 'answer': ANY(_lowerCamelCase )}], [{'score': ANY(_lowerCamelCase ), 'answer': ANY(_lowerCamelCase )}], ] , ) @require_torch def UpperCamelCase_ ( self ): lowercase = pipeline('visual-question-answering' , model='hf-internal-testing/tiny-vilt-random-vqa' ) lowercase = './tests/fixtures/tests_samples/COCO/000000039769.png' lowercase = 'How many cats are there?' lowercase = vqa_pipeline(image=_lowerCamelCase , question='How many cats are there?' , top_k=2 ) self.assertEqual( _lowerCamelCase , [{'score': ANY(_lowerCamelCase ), 'answer': ANY(_lowerCamelCase )}, {'score': ANY(_lowerCamelCase ), 'answer': ANY(_lowerCamelCase )}] ) lowercase = vqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( _lowerCamelCase , [{'score': ANY(_lowerCamelCase ), 'answer': ANY(_lowerCamelCase )}, {'score': ANY(_lowerCamelCase ), 'answer': ANY(_lowerCamelCase )}] ) @slow @require_torch def UpperCamelCase_ ( self ): lowercase = pipeline('visual-question-answering' , model='dandelin/vilt-b32-finetuned-vqa' ) lowercase = './tests/fixtures/tests_samples/COCO/000000039769.png' lowercase = 'How many cats are there?' lowercase = vqa_pipeline(image=_lowerCamelCase , question=_lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=4 ) , [{'score': 0.8_7_9_9, 'answer': '2'}, {'score': 0.2_9_6, 'answer': '1'}] ) lowercase = vqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=4 ) , [{'score': 0.8_7_9_9, 'answer': '2'}, {'score': 0.2_9_6, 'answer': '1'}] ) lowercase = vqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=4 ) , [[{'score': 0.8_7_9_9, 'answer': '2'}, {'score': 0.2_9_6, 'answer': '1'}]] * 2 , ) @require_tf @unittest.skip('Visual question answering not implemented in TF' ) def UpperCamelCase_ ( self ): pass
220
1
'''simple docstring''' lowerCAmelCase: int = [sum(int(c, 1_0) ** 2 for c in i.__str__()) for i in range(1_0_0_0_0_0)] def lowerCamelCase__ ( _A ): a : Any = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000] number //= 10_0000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution lowerCAmelCase: list[bool | None] = [None] * 1_0_0_0_0_0_0_0 lowerCAmelCase: Tuple = True lowerCAmelCase: Dict = False def lowerCamelCase__ ( _A ): if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore a : Tuple = chain(next_number(_A ) ) a : Dict = number_chain while number < 1000_0000: a : Dict = number_chain number *= 10 return number_chain def lowerCamelCase__ ( _A = 1000_0000 ): for i in range(1 , _A ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(_A ) if __name__ == "__main__": import doctest doctest.testmod() print(F"{solution() = }")
96
'''simple docstring''' import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets lowerCAmelCase: Dict = '\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' lowerCAmelCase: Optional[Any] = '\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n' lowerCAmelCase: List[Any] = '\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=["About 95 species are currently accepted ."]\n >>> predictions=["About 95 you now get in ."]\n >>> references=[["About 95 species are currently known ."]]\n >>> wiki_split = datasets.load_metric("wiki_split")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0}\n' def lowerCamelCase__ ( _A ): def remove_articles(_A ): a : Union[str, Any] = re.compile(r'\b(a|an|the)\b' , re.UNICODE ) return re.sub(_A , ' ' , _A ) def white_space_fix(_A ): return " ".join(text.split() ) def remove_punc(_A ): a : Tuple = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_A ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_A ) ) ) ) def lowerCamelCase__ ( _A , _A ): return int(normalize_answer(_A ) == normalize_answer(_A ) ) def lowerCamelCase__ ( _A , _A ): a : List[Any] = [any(compute_exact(_A , _A ) for ref in refs ) for pred, refs in zip(_A , _A )] return (sum(_A ) / len(_A )) * 100 def lowerCamelCase__ ( _A , _A , _A , _A ): a : List[Any] = [rgram for rgrams in rgramslist for rgram in rgrams] a : Any = Counter(_A ) a : Dict = Counter(_A ) a : Tuple = Counter() for sgram, scount in sgramcounter.items(): a : List[str] = scount * numref a : Optional[int] = Counter(_A ) a : Optional[int] = Counter() for cgram, ccount in cgramcounter.items(): a : List[str] = ccount * numref # KEEP a : Optional[Any] = sgramcounter_rep & cgramcounter_rep a : Union[str, Any] = keepgramcounter_rep & rgramcounter a : Any = sgramcounter_rep & rgramcounter a : str = 0 a : Optional[Any] = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. a : Tuple = 1 a : Any = 1 if len(_A ) > 0: a : Optional[int] = keeptmpscorea / len(_A ) if len(_A ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) a : Tuple = keeptmpscorea / sum(keepgramcounterall_rep.values() ) a : List[str] = 0 if keepscore_precision > 0 or keepscore_recall > 0: a : Dict = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION a : List[Any] = sgramcounter_rep - cgramcounter_rep a : Any = delgramcounter_rep - rgramcounter a : Union[str, Any] = sgramcounter_rep - rgramcounter a : Tuple = 0 a : str = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. a : str = 1 if len(_A ) > 0: a : Tuple = deltmpscorea / len(_A ) # ADDITION a : Any = set(_A ) - set(_A ) a : Optional[int] = set(_A ) & set(_A ) a : Union[str, Any] = set(_A ) - set(_A ) a : List[str] = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. a : Tuple = 1 a : Optional[Any] = 1 if len(_A ) > 0: a : str = addtmpscore / len(_A ) if len(_A ) > 0: a : Optional[Any] = addtmpscore / len(_A ) a : str = 0 if addscore_precision > 0 or addscore_recall > 0: a : List[str] = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def lowerCamelCase__ ( _A , _A , _A ): a : List[str] = len(_A ) a : List[str] = ssent.split(' ' ) a : int = csent.split(' ' ) a : Optional[Any] = [] a : Tuple = [] a : Optional[Any] = [] a : Optional[Any] = [] a : Union[str, Any] = [] a : str = [] a : Dict = [] a : Dict = [] a : str = [] a : Any = [] for rsent in rsents: a : List[Any] = rsent.split(' ' ) a : Dict = [] a : Optional[Any] = [] a : Optional[Any] = [] ragramslist.append(_A ) for i in range(0 , len(_A ) - 1 ): if i < len(_A ) - 1: a : List[str] = ragrams[i] + ' ' + ragrams[i + 1] ragrams.append(_A ) if i < len(_A ) - 2: a : Union[str, Any] = ragrams[i] + ' ' + ragrams[i + 1] + ' ' + ragrams[i + 2] ragrams.append(_A ) if i < len(_A ) - 3: a : Tuple = ragrams[i] + ' ' + ragrams[i + 1] + ' ' + ragrams[i + 2] + ' ' + ragrams[i + 3] ragrams.append(_A ) ragramslist.append(_A ) ragramslist.append(_A ) ragramslist.append(_A ) for i in range(0 , len(_A ) - 1 ): if i < len(_A ) - 1: a : Tuple = sagrams[i] + ' ' + sagrams[i + 1] sagrams.append(_A ) if i < len(_A ) - 2: a : Union[str, Any] = sagrams[i] + ' ' + sagrams[i + 1] + ' ' + sagrams[i + 2] sagrams.append(_A ) if i < len(_A ) - 3: a : List[str] = sagrams[i] + ' ' + sagrams[i + 1] + ' ' + sagrams[i + 2] + ' ' + sagrams[i + 3] sagrams.append(_A ) for i in range(0 , len(_A ) - 1 ): if i < len(_A ) - 1: a : Any = cagrams[i] + ' ' + cagrams[i + 1] cagrams.append(_A ) if i < len(_A ) - 2: a : Optional[Any] = cagrams[i] + ' ' + cagrams[i + 1] + ' ' + cagrams[i + 2] cagrams.append(_A ) if i < len(_A ) - 3: a : Optional[Any] = cagrams[i] + ' ' + cagrams[i + 1] + ' ' + cagrams[i + 2] + ' ' + cagrams[i + 3] cagrams.append(_A ) ((a) , (a) , (a)) : int = SARIngram(_A , _A , _A , _A ) ((a) , (a) , (a)) : Optional[int] = SARIngram(_A , _A , _A , _A ) ((a) , (a) , (a)) : Union[str, Any] = SARIngram(_A , _A , _A , _A ) ((a) , (a) , (a)) : int = SARIngram(_A , _A , _A , _A ) a : Dict = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 a : Any = sum([delascore, delascore, delascore, delascore] ) / 4 a : Union[str, Any] = sum([addascore, addascore, addascore, addascore] ) / 4 a : str = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def lowerCamelCase__ ( _A , _A = True , _A = "13a" , _A = True ): # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: a : Dict = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: a : List[str] = sacrebleu.metrics.bleu._get_tokenizer(_A )()(_A ) else: a : str = sacrebleu.TOKENIZERS[tokenizer]()(_A ) elif tokenizer == "moses": a : List[Any] = sacremoses.MosesTokenizer().tokenize(_A , return_str=_A , escape=_A ) elif tokenizer == "penn": a : Tuple = sacremoses.MosesTokenizer().penn_tokenize(_A , return_str=_A ) else: a : List[Any] = sentence if not return_str: a : Optional[Any] = normalized_sent.split() return normalized_sent def lowerCamelCase__ ( _A , _A , _A ): if not (len(_A ) == len(_A ) == len(_A )): raise ValueError('Sources length must match predictions and references lengths.' ) a : Tuple = 0 for src, pred, refs in zip(_A , _A , _A ): sari_score += SARIsent(normalize(_A ) , normalize(_A ) , [normalize(_A ) for sent in refs] ) a : Tuple = sari_score / len(_A ) return 100 * sari_score def lowerCamelCase__ ( _A , _A , _A="exp" , _A=None , _A=False , _A=False , _A=False , ): a : Optional[int] = len(references[0] ) if any(len(_A ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) a : List[Any] = [[refs[i] for refs in references] for i in range(_A )] a : Optional[Any] = sacrebleu.corpus_bleu( _A , _A , smooth_method=_A , smooth_value=_A , force=_A , lowercase=_A , use_effective_order=_A , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__( datasets.Metric ): def lowercase_ ( self : Optional[int] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=[ 'https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py', 'https://github.com/cocoxu/simplification/blob/master/SARI.py', 'https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py', 'https://github.com/mjpost/sacreBLEU', ] , reference_urls=[ 'https://www.aclweb.org/anthology/Q16-1029.pdf', 'https://github.com/mjpost/sacreBLEU', 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] , ) def lowercase_ ( self : str , __snake_case : Optional[Any] , __snake_case : int , __snake_case : str ): a : int = {} result.update({'sari': compute_sari(sources=__snake_case , predictions=__snake_case , references=__snake_case )} ) result.update({'sacrebleu': compute_sacrebleu(predictions=__snake_case , references=__snake_case )} ) result.update({'exact': compute_em(predictions=__snake_case , references=__snake_case )} ) return result
96
1
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class A_ : """simple docstring""" def __init__( self :str , lowerCamelCase_ :int , lowerCamelCase_ :List[str]=13 , lowerCamelCase_ :List[Any]=7 , lowerCamelCase_ :str=True , lowerCamelCase_ :int=True , lowerCamelCase_ :List[str]=True , lowerCamelCase_ :Any=99 , lowerCamelCase_ :Optional[int]=32 , lowerCamelCase_ :Dict=5 , lowerCamelCase_ :Any=4 , lowerCamelCase_ :Tuple=37 , lowerCamelCase_ :Union[str, Any]="gelu" , lowerCamelCase_ :Dict=0.1 , lowerCamelCase_ :Any=0.1 , lowerCamelCase_ :List[str]=512 , lowerCamelCase_ :int=16 , lowerCamelCase_ :List[str]=2 , lowerCamelCase_ :List[str]=0.02 , lowerCamelCase_ :List[Any]=3 , lowerCamelCase_ :Dict=4 , lowerCamelCase_ :Optional[Any]=None , ): """simple docstring""" lowerCamelCase__ : Any =parent lowerCamelCase__ : Union[str, Any] =batch_size lowerCamelCase__ : Dict =seq_length lowerCamelCase__ : List[str] =is_training lowerCamelCase__ : List[Any] =use_token_type_ids lowerCamelCase__ : Union[str, Any] =use_labels lowerCamelCase__ : Optional[Any] =vocab_size lowerCamelCase__ : List[Any] =hidden_size lowerCamelCase__ : Optional[int] =num_hidden_layers lowerCamelCase__ : Tuple =num_attention_heads lowerCamelCase__ : Optional[Any] =intermediate_size lowerCamelCase__ : Optional[int] =hidden_act lowerCamelCase__ : List[Any] =hidden_dropout_prob lowerCamelCase__ : str =attention_probs_dropout_prob lowerCamelCase__ : Tuple =max_position_embeddings lowerCamelCase__ : Union[str, Any] =type_vocab_size lowerCamelCase__ : Dict =type_sequence_label_size lowerCamelCase__ : str =initializer_range lowerCamelCase__ : Any =num_labels lowerCamelCase__ : int =num_choices lowerCamelCase__ : List[str] =scope lowerCamelCase__ : List[str] =self.vocab_size - 1 def UpperCAmelCase__ ( self :Any ): """simple docstring""" lowerCamelCase__ : str =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ : Union[str, Any] =None if self.use_token_type_ids: lowerCamelCase__ : Optional[int] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase__ : Any =None lowerCamelCase__ : Any =None lowerCamelCase__ : str =None if self.use_labels: lowerCamelCase__ : int =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : List[Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase__ : Any =ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase__ : int =OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) lowerCamelCase__ : List[str] =ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def UpperCAmelCase__ ( self :List[str] , lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[str] , lowerCamelCase_ :List[str] , lowerCamelCase_ :Optional[int] , *lowerCamelCase_ :Any ): """simple docstring""" lowerCamelCase__ : Any =OpenAIGPTModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : int =model(lowerCamelCase_ , token_type_ids=lowerCamelCase_ , head_mask=lowerCamelCase_ ) lowerCamelCase__ : Optional[int] =model(lowerCamelCase_ , token_type_ids=lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] =model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self :List[str] , lowerCamelCase_ :str , lowerCamelCase_ :Any , lowerCamelCase_ :Dict , lowerCamelCase_ :List[str] , *lowerCamelCase_ :List[Any] ): """simple docstring""" lowerCamelCase__ : int =OpenAIGPTLMHeadModel(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : int =model(lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self :Tuple , lowerCamelCase_ :List[str] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :List[str] , lowerCamelCase_ :str , *lowerCamelCase_ :Dict ): """simple docstring""" lowerCamelCase__ : Tuple =OpenAIGPTDoubleHeadsModel(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Optional[Any] =model(lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self :List[Any] , lowerCamelCase_ :int , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :str , *lowerCamelCase_ :List[Any] ): """simple docstring""" lowerCamelCase__ : List[str] =self.num_labels lowerCamelCase__ : Tuple =OpenAIGPTForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Optional[int] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : List[str] =model(lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase__ ( self :List[str] ): """simple docstring""" lowerCamelCase__ : str =self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : Dict =config_and_inputs lowerCamelCase__ : Tuple ={ 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask, } return config, inputs_dict @require_torch class A_ ( A__ , A__ , A__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly SCREAMING_SNAKE_CASE_ = ( { """feature-extraction""": OpenAIGPTModel, """text-classification""": OpenAIGPTForSequenceClassification, """text-generation""": OpenAIGPTLMHeadModel, """zero-shot""": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def UpperCAmelCase__ ( self :int , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[str] ): """simple docstring""" if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def UpperCAmelCase__ ( self :Dict , lowerCamelCase_ :Tuple , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :List[Any]=False ): """simple docstring""" lowerCamelCase__ : str =super()._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ , return_labels=lowerCamelCase_ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": lowerCamelCase__ : Dict =torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=lowerCamelCase_ , ) lowerCamelCase__ : Union[str, Any] =inputs_dict['labels'] lowerCamelCase__ : Tuple =inputs_dict['labels'] lowerCamelCase__ : int =torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=lowerCamelCase_ , ) lowerCamelCase__ : Optional[Any] =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase_ ) return inputs_dict def UpperCAmelCase__ ( self :str ): """simple docstring""" lowerCamelCase__ : List[str] =OpenAIGPTModelTester(self ) lowerCamelCase__ : Union[str, Any] =ConfigTester(self , config_class=lowerCamelCase_ , n_embd=37 ) def UpperCAmelCase__ ( self :int ): """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase__ ( self :Union[str, Any] ): """simple docstring""" lowerCamelCase__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*lowerCamelCase_ ) def UpperCAmelCase__ ( self :Union[str, Any] ): """simple docstring""" lowerCamelCase__ : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*lowerCamelCase_ ) def UpperCAmelCase__ ( self :Union[str, Any] ): """simple docstring""" lowerCamelCase__ : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*lowerCamelCase_ ) def UpperCAmelCase__ ( self :str ): """simple docstring""" lowerCamelCase__ : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*lowerCamelCase_ ) @slow def UpperCAmelCase__ ( self :List[str] ): """simple docstring""" for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : Optional[Any] =OpenAIGPTModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) @require_torch class A_ ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self :Optional[Any] ): """simple docstring""" lowerCamelCase__ : Optional[Any] =OpenAIGPTLMHeadModel.from_pretrained('openai-gpt' ) model.to(lowerCamelCase_ ) lowerCamelCase__ : List[str] =torch.tensor([[481, 4_735, 544]] , dtype=torch.long , device=lowerCamelCase_ ) # the president is lowerCamelCase__ : List[Any] =[ 481, 4_735, 544, 246, 963, 870, 762, 239, 244, 40_477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the lowerCamelCase__ : Tuple =model.generate(lowerCamelCase_ , do_sample=lowerCamelCase_ ) self.assertListEqual(output_ids[0].tolist() , lowerCamelCase_ )
126
"""simple docstring""" import torch from transformers import AutoModel class A_ ( torch.nn.Module ): """simple docstring""" def __init__( self :Optional[Any] , lowerCamelCase_ :Dict="sayef/fsner-bert-base-uncased" ): """simple docstring""" super(lowerCamelCase_ , self ).__init__() lowerCamelCase__ : Dict =AutoModel.from_pretrained(lowerCamelCase_ , return_dict=lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] =torch.nn.CosineSimilarity(3 , 1e-08 ) lowerCamelCase__ : int =torch.nn.Softmax(dim=1 ) def UpperCAmelCase__ ( self :str , **lowerCamelCase_ :Optional[Any] ): """simple docstring""" return self.bert(**lowerCamelCase_ ).last_hidden_state def UpperCAmelCase__ ( self :Optional[Any] , lowerCamelCase_ :int ): """simple docstring""" return token_embeddings.sum(2 , keepdim=lowerCamelCase_ ) def UpperCAmelCase__ ( self :Optional[int] , lowerCamelCase_ :Any , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :int=1 ): """simple docstring""" return self.softmax(T * self.cos(lowerCamelCase_ , lowerCamelCase_ ) ) def UpperCAmelCase__ ( self :Optional[int] , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :str ): """simple docstring""" lowerCamelCase__ : List[str] =W_supports['sizes'].tolist() lowerCamelCase__ : Tuple =W_supports['start_token_id'].item() lowerCamelCase__ : Optional[Any] =W_supports['end_token_id'].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] lowerCamelCase__ : int =self.BERT(**lowerCamelCase_ ) lowerCamelCase__ : Dict =self.BERT(**lowerCamelCase_ ) lowerCamelCase__ : List[str] =None lowerCamelCase__ : Any =None lowerCamelCase__ : Any =W_supports['input_ids'] == start_token_id lowerCamelCase__ : Union[str, Any] =W_supports['input_ids'] == end_token_id for i, size in enumerate(lowerCamelCase_ ): if i == 0: lowerCamelCase__ : Optional[Any] =0 else: lowerCamelCase__ : Union[str, Any] =support_sizes[i - 1] lowerCamelCase__ : List[Any] =S[s : s + size][start_token_masks[s : s + size]] lowerCamelCase__ : Dict =S[s : s + size][end_token_masks[s : s + size]] lowerCamelCase__ : str =torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) lowerCamelCase__ : Union[str, Any] =torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: lowerCamelCase__ : Optional[Any] =torch.vstack((p_starts, p_start) ) lowerCamelCase__ : List[Any] =torch.vstack((p_ends, p_end) ) else: lowerCamelCase__ : Any =p_start lowerCamelCase__ : Any =p_end return p_starts, p_ends
126
1
"""simple docstring""" import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , a__ , a__ , a__ ): super().__init__() self.register_modules(vqvae=a__ , unet=a__ , scheduler=a__ ) @torch.no_grad() def __call__( self , a__ = 1 , a__ = None , a__ = 0.0 , a__ = 50 , a__ = "pil" , a__ = True , **a__ , ): _lowerCAmelCase : str = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=a__ , ) _lowerCAmelCase : List[str] = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _lowerCAmelCase : Optional[int] = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(a__ ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature _lowerCAmelCase : List[Any] = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _lowerCAmelCase : Dict = {} if accepts_eta: _lowerCAmelCase : List[Any] = eta for t in self.progress_bar(self.scheduler.timesteps ): _lowerCAmelCase : Union[str, Any] = self.scheduler.scale_model_input(a__ , a__ ) # predict the noise residual _lowerCAmelCase : Any = self.unet(a__ , a__ ).sample # compute the previous noisy sample x_t -> x_t-1 _lowerCAmelCase : List[str] = self.scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample # decode the image latents with the VAE _lowerCAmelCase : List[Any] = self.vqvae.decode(a__ ).sample _lowerCAmelCase : Any = (image / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _lowerCAmelCase : str = self.numpy_to_pil(a__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=a__ )
370
"""simple docstring""" from ..utils import DummyObject, requires_backends class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Optional[Any] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : List[Any] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : int = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : str = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Optional[int] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : List[Any] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : str = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Union[str, Any] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Optional[int] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : List[str] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Any = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : str = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Tuple = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : str = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Tuple = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : str = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Tuple = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : str = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Dict = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Dict = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Union[str, Any] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Tuple = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : List[Any] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Optional[int] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Optional[Any] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Optional[Any] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : List[Any] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : int = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Dict = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : List[str] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : int = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] )
126
0