code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from __future__ import annotations def lowerCAmelCase__ ( a__: int = 4 ) -> list[list[int]]: '''simple docstring''' _UpperCAmelCase = abs(a__ ) or 4 return [[1 + x + y * row_size for x in range(a__ )] for y in range(a__ )] def lowerCAmelCase__ ( a__: list[list[int]] ) -> list[list[int]]: '''simple docstring''' return reverse_row(transpose(a__ ) ) # OR.. transpose(reverse_column(matrix)) def lowerCAmelCase__ ( a__: list[list[int]] ) -> list[list[int]]: '''simple docstring''' return reverse_row(reverse_column(a__ ) ) # OR.. reverse_column(reverse_row(matrix)) def lowerCAmelCase__ ( a__: list[list[int]] ) -> list[list[int]]: '''simple docstring''' return reverse_column(transpose(a__ ) ) # OR.. transpose(reverse_row(matrix)) def lowerCAmelCase__ ( a__: list[list[int]] ) -> list[list[int]]: '''simple docstring''' _UpperCAmelCase = [list(a__ ) for x in zip(*a__ )] return matrix def lowerCAmelCase__ ( a__: list[list[int]] ) -> list[list[int]]: '''simple docstring''' _UpperCAmelCase = matrix[::-1] return matrix def lowerCAmelCase__ ( a__: list[list[int]] ) -> list[list[int]]: '''simple docstring''' _UpperCAmelCase = [x[::-1] for x in matrix] return matrix def lowerCAmelCase__ ( a__: list[list[int]] ) -> None: '''simple docstring''' for i in matrix: print(*a__ ) if __name__ == "__main__": lowerCAmelCase__ :Optional[Any] = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 90 counterclockwise:\n''') print_matrix(rotate_aa(matrix)) lowerCAmelCase__ :Union[str, Any] = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 180:\n''') print_matrix(rotate_aaa(matrix)) lowerCAmelCase__ :List[Any] = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 270 counterclockwise:\n''') print_matrix(rotate_aaa(matrix))
329
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ :str = { '''configuration_megatron_bert''': ['''MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegatronBertConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ :Union[str, Any] = [ '''MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegatronBertForCausalLM''', '''MegatronBertForMaskedLM''', '''MegatronBertForMultipleChoice''', '''MegatronBertForNextSentencePrediction''', '''MegatronBertForPreTraining''', '''MegatronBertForQuestionAnswering''', '''MegatronBertForSequenceClassification''', '''MegatronBertForTokenClassification''', '''MegatronBertModel''', '''MegatronBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys lowerCAmelCase__ :List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
329
1
'''simple docstring''' import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def UpperCamelCase ( a , a ) -> List[str]: '''simple docstring''' __magic_name__ =args.log_outputs __magic_name__ ='_'.join(args.dataset.split('''/''' ) + [args.config, args.split] ) # load metric __magic_name__ =load_metric('''wer''' ) __magic_name__ =load_metric('''cer''' ) # compute metrics __magic_name__ =wer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) __magic_name__ =cer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) # print & log results __magic_name__ =F'''WER: {wer_result}\nCER: {cer_result}''' print(_UpperCAmelCase ) with open(F'''{dataset_id}_eval_results.txt''' , '''w''' ) as f: f.write(_UpperCAmelCase ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: __magic_name__ =F'''log_{dataset_id}_predictions.txt''' __magic_name__ =F'''log_{dataset_id}_targets.txt''' with open(_UpperCAmelCase , '''w''' ) as p, open(_UpperCAmelCase , '''w''' ) as t: # mapping function to write output def write_to_file(a , a ): p.write(F'''{i}''' + '''\n''' ) p.write(batch['''prediction'''] + '''\n''' ) t.write(F'''{i}''' + '''\n''' ) t.write(batch['''target'''] + '''\n''' ) result.map(_UpperCAmelCase , with_indices=_UpperCAmelCase ) def UpperCamelCase ( a ) -> str: '''simple docstring''' __magic_name__ ='[,?.!\-\;\:"“%‘”�—’…–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training __magic_name__ =re.sub(_UpperCAmelCase , '''''' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! __magic_name__ =['\n\n', '\n', ' ', ' '] for t in token_sequences_to_ignore: __magic_name__ =' '.join(text.split(_UpperCAmelCase ) ) return text def UpperCamelCase ( a ) -> Union[str, Any]: '''simple docstring''' # load dataset __magic_name__ =load_dataset(args.dataset , args.config , split=args.split , use_auth_token=_UpperCAmelCase ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor __magic_name__ =AutoFeatureExtractor.from_pretrained(args.model_id ) __magic_name__ =feature_extractor.sampling_rate # resample audio __magic_name__ =dataset.cast_column('''audio''' , Audio(sampling_rate=_UpperCAmelCase ) ) # load eval pipeline if args.device is None: __magic_name__ =0 if torch.cuda.is_available() else -1 __magic_name__ =pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(a ): __magic_name__ =asr( batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) __magic_name__ =prediction['text'] __magic_name__ =normalize_text(batch['''sentence'''] ) return batch # run inference on all examples __magic_name__ =dataset.map(_UpperCAmelCase , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( "--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers" ) parser.add_argument( "--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets", ) parser.add_argument( "--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice" ) parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`") parser.add_argument( "--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds." ) parser.add_argument( "--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second." ) parser.add_argument( "--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis." ) parser.add_argument( "--device", type=int, default=None, help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.", ) _lowerCAmelCase = parser.parse_args() main(args)
351
'''simple docstring''' from pathlib import Path import fire from tqdm import tqdm def UpperCamelCase ( a="ro" , a="en" , a="wmt16" , a=None ) -> None: '''simple docstring''' try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError('''run pip install datasets''' ) __magic_name__ = F'''{src_lang}-{tgt_lang}''' print(F'''Converting {dataset}-{pair}''' ) __magic_name__ = datasets.load_dataset(a , a ) if save_dir is None: __magic_name__ = F'''{dataset}-{pair}''' __magic_name__ = Path(a ) save_dir.mkdir(exist_ok=a ) for split in ds.keys(): print(F'''Splitting {split} with {ds[split].num_rows} records''' ) # to save to val.source, val.target like summary datasets __magic_name__ = '''val''' if split == '''validation''' else split __magic_name__ = save_dir.joinpath(F'''{fn}.source''' ) __magic_name__ = save_dir.joinpath(F'''{fn}.target''' ) __magic_name__ = src_path.open('''w+''' ) __magic_name__ = tgt_path.open('''w+''' ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): __magic_name__ = x['''translation'''] src_fp.write(ex[src_lang] + '''\n''' ) tgt_fp.write(ex[tgt_lang] + '''\n''' ) print(F'''Saved {dataset} dataset to {save_dir}''' ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
98
0
class __snake_case : def __init__( self ,snake_case ): '''simple docstring''' lowercase : List[Any] = arr.split(""",""" ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Tuple = [int(self.array[0] )] * len(self.array ) lowercase : Any = [int(self.array[0] )] * len(self.array ) for i in range(1 ,len(self.array ) ): lowercase : Optional[int] = max( int(self.array[i] ) + sum_value[i - 1] ,int(self.array[i] ) ) lowercase : Optional[int] = max(sum_value[i] ,rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": lowercase : Any = input("""please input some numbers:""") lowercase : Union[str, Any] = SubArray(whole_array) lowercase : Any = array.solve_sub_array() print(("""the results is:""", re))
20
lowerCAmelCase_ = { "joule": 1.0, "kilojoule": 1_0_0_0, "megajoule": 1_0_0_0_0_0_0, "gigajoule": 1_0_0_0_0_0_0_0_0_0, "wattsecond": 1.0, "watthour": 3_6_0_0, "kilowatthour": 3_6_0_0_0_0_0, "newtonmeter": 1.0, "calorie_nutr": 4_1_8_6.8, "kilocalorie_nutr": 4_1_8_6_8_0_0.0_0, "electronvolt": 1.602_176_634e-19, "britishthermalunit_it": 1_0_5_5.0_5_5_8_5, "footpound": 1.355_818, } def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> float: """simple docstring""" if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: snake_case_ : str = ( f'''Incorrect \'from_type\' or \'to_type\' value: {from_type!r}, {to_type!r}\n''' f'''Valid values are: {", ".join(_UpperCamelCase )}''' ) raise ValueError(_UpperCamelCase ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
279
0
"""simple docstring""" from sklearn.metrics import mean_squared_error import datasets a__ : int = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' a__ : Dict = '''\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. ''' a__ : Any = ''' Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. "raw_values" : Returns a full set of errors in case of multioutput input. "uniform_average" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric("mse") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {\'mse\': 0.6123724356957945} If you\'re using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric("mse", "multilist") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {\'mse\': array([0.41666667, 1. ])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class UpperCamelCase_ ( datasets.Metric): """simple docstring""" def UpperCAmelCase_ ( self : Optional[Any] ) -> List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ "https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html" ] , ) def UpperCAmelCase_ ( self : Tuple ) -> List[str]: if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("float" ) ), "references": datasets.Sequence(datasets.Value("float" ) ), } else: return { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } def UpperCAmelCase_ ( self : Tuple , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Any=None , UpperCAmelCase__ : List[Any]="uniform_average" , UpperCAmelCase__ : Optional[Any]=True ) -> Any: __SCREAMING_SNAKE_CASE = mean_squared_error( UpperCAmelCase__ , UpperCAmelCase__ , sample_weight=UpperCAmelCase__ , multioutput=UpperCAmelCase__ , squared=UpperCAmelCase__ ) return {"mse": mse}
195
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a__ : List[str] = { '''configuration_biogpt''': ['''BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BioGptConfig'''], '''tokenization_biogpt''': ['''BioGptTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Union[str, Any] = [ '''BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BioGptForCausalLM''', '''BioGptForTokenClassification''', '''BioGptForSequenceClassification''', '''BioGptModel''', '''BioGptPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys a__ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
195
1
'''simple docstring''' def __lowerCamelCase ( __snake_case : int, __snake_case : int ) -> int: """simple docstring""" return number | (1 << position) def __lowerCamelCase ( __snake_case : int, __snake_case : int ) -> int: """simple docstring""" return number & ~(1 << position) def __lowerCamelCase ( __snake_case : int, __snake_case : int ) -> int: """simple docstring""" return number ^ (1 << position) def __lowerCamelCase ( __snake_case : int, __snake_case : int ) -> bool: """simple docstring""" return ((number >> position) & 1) == 1 def __lowerCamelCase ( __snake_case : int, __snake_case : int ) -> int: """simple docstring""" return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
134
'''simple docstring''' import os from math import logaa def __lowerCamelCase ( __snake_case : str = "base_exp.txt" ) -> int: """simple docstring""" A__ : float =0 A__ : Optional[int] =0 for i, line in enumerate(open(os.path.join(os.path.dirname(__snake_case ), __snake_case ) ) ): A__ , A__ : Union[str, Any] =list(map(__snake_case, line.split(""",""" ) ) ) if x * logaa(__snake_case ) > largest: A__ : List[str] =x * logaa(__snake_case ) A__ : Any =i + 1 return result if __name__ == "__main__": print(solution())
134
1
'''simple docstring''' from __future__ import annotations import math def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): if depth < 0: raise ValueError("Depth cannot be less than 0" ) if not scores: raise ValueError("Scores cannot be empty" ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1, node_index * 2, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ), minimax(depth + 1, node_index * 2 + 1, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ), ) if is_max else min( minimax(depth + 1, node_index * 2, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ), minimax(depth + 1, node_index * 2 + 1, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ), ) ) def __UpperCamelCase ( ): __UpperCAmelCase : Dict = [90, 23, 6, 33, 21, 65, 123, 34423] __UpperCAmelCase : Optional[Any] = math.log(len(_UpperCAmelCase ), 2 ) print(F"Optimal value : {minimax(0, 0, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase )}" ) if __name__ == "__main__": import doctest doctest.testmod() main()
37
'''simple docstring''' import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor lowerCAmelCase__ : Optional[Any] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( snake_case__ ): """simple docstring""" def __init__( self : Any , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Union[str, Any] ): """simple docstring""" warnings.warn( "The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use ImageGPTImageProcessor instead." , UpperCAmelCase_ , ) super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_ )
37
1
'''simple docstring''' from typing import Any import numpy as np def lowercase_ ( _lowercase ) -> bool: '''simple docstring''' return np.array_equal(_lowercase , matrix.conjugate().T ) def lowercase_ ( _lowercase , _lowercase ) -> Any: '''simple docstring''' lowerCamelCase_ : Tuple = v.conjugate().T lowerCamelCase_ : Union[str, Any] = v_star.dot(_lowercase ) assert isinstance(_lowercase , np.ndarray ) return (v_star_dot.dot(_lowercase )) / (v_star.dot(_lowercase )) def lowercase_ ( ) -> None: '''simple docstring''' lowerCamelCase_ : int = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) lowerCamelCase_ : Union[str, Any] = np.array([[1], [2], [3]] ) assert is_hermitian(_lowercase ), F"""{a} is not hermitian.""" print(rayleigh_quotient(_lowercase , _lowercase ) ) lowerCamelCase_ : str = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(_lowercase ), F"""{a} is not hermitian.""" assert rayleigh_quotient(_lowercase , _lowercase ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
318
'''simple docstring''' from __future__ import annotations import time __lowercase : List[Any] = list[tuple[int, int]] __lowercase : List[Any] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __lowercase : Dict = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class __lowercase : def __init__(self , A , A , A , A , A ): lowerCamelCase_ : Optional[int] = pos_x lowerCamelCase_ : List[str] = pos_y lowerCamelCase_ : List[Any] = (pos_y, pos_x) lowerCamelCase_ : List[str] = goal_x lowerCamelCase_ : Union[str, Any] = goal_y lowerCamelCase_ : int = parent class __lowercase : def __init__(self , A , A ): lowerCamelCase_ : Any = Node(start[1] , start[0] , goal[1] , goal[0] , A ) lowerCamelCase_ : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , A ) lowerCamelCase_ : Union[str, Any] = [self.start] lowerCamelCase_ : List[str] = False def UpperCAmelCase__ (self ): while self.node_queue: lowerCamelCase_ : Optional[Any] = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: lowerCamelCase_ : List[str] = True return self.retrace_path(A ) lowerCamelCase_ : str = self.get_successors(A ) for node in successors: self.node_queue.append(A ) if not self.reached: return [self.start.pos] return None def UpperCAmelCase__ (self , A ): lowerCamelCase_ : Dict = [] for action in delta: lowerCamelCase_ : Any = parent.pos_x + action[1] lowerCamelCase_ : Dict = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(A ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(A , A , self.target.pos_y , self.target.pos_x , A ) ) return successors def UpperCAmelCase__ (self , A ): lowerCamelCase_ : int = node lowerCamelCase_ : str = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) lowerCamelCase_ : List[Any] = current_node.parent path.reverse() return path class __lowercase : def __init__(self , A , A ): lowerCamelCase_ : List[str] = BreadthFirstSearch(A , A ) lowerCamelCase_ : Any = BreadthFirstSearch(A , A ) lowerCamelCase_ : Union[str, Any] = False def UpperCAmelCase__ (self ): while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: lowerCamelCase_ : List[str] = self.fwd_bfs.node_queue.pop(0 ) lowerCamelCase_ : int = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: lowerCamelCase_ : Optional[Any] = True return self.retrace_bidirectional_path( A , A ) lowerCamelCase_ : Optional[int] = current_bwd_node lowerCamelCase_ : List[str] = current_fwd_node lowerCamelCase_ : List[str] = { self.fwd_bfs: self.fwd_bfs.get_successors(A ), self.bwd_bfs: self.bwd_bfs.get_successors(A ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(A ) if not self.reached: return [self.fwd_bfs.start.pos] return None def UpperCAmelCase__ (self , A , A ): lowerCamelCase_ : List[str] = self.fwd_bfs.retrace_path(A ) lowerCamelCase_ : int = self.bwd_bfs.retrace_path(A ) bwd_path.pop() bwd_path.reverse() lowerCamelCase_ : Dict = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() __lowercase : List[str] = (0, 0) __lowercase : List[Any] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __lowercase : Tuple = time.time() __lowercase : int = BreadthFirstSearch(init, goal) __lowercase : Dict = bfs.search() __lowercase : Dict = time.time() - start_bfs_time print('''Unidirectional BFS computation time : ''', bfs_time) __lowercase : int = time.time() __lowercase : Optional[Any] = BidirectionalBreadthFirstSearch(init, goal) __lowercase : Any = bd_bfs.search() __lowercase : Dict = time.time() - start_bd_bfs_time print('''Bidirectional BFS computation time : ''', bd_bfs_time)
318
1
"""simple docstring""" import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() _lowercase : Any = logging.get_logger(__name__) _lowercase : Optional[Any] = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } _lowercase : Union[str, Any] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def snake_case__ ( __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : int , __lowerCamelCase : str , __lowerCamelCase : List[Any] ): """simple docstring""" for attribute in key.split('''.''' ): lowerCamelCase__ : int =getattr(__lowerCamelCase , __lowerCamelCase ) if weight_type is not None: lowerCamelCase__ : Union[str, Any] =getattr(__lowerCamelCase , __lowerCamelCase ).shape else: lowerCamelCase__ : str =hf_pointer.shape assert hf_shape == value.shape, ( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowerCamelCase__ : Optional[int] =value elif weight_type == "weight_g": lowerCamelCase__ : Optional[int] =value elif weight_type == "weight_v": lowerCamelCase__ : Optional[Any] =value elif weight_type == "bias": lowerCamelCase__ : Dict =value else: lowerCamelCase__ : Optional[int] =value logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def snake_case__ ( __lowerCamelCase : str , __lowerCamelCase : Any ): """simple docstring""" lowerCamelCase__ : Dict =[] lowerCamelCase__ : List[str] =fairseq_model.state_dict() lowerCamelCase__ : Optional[int] =hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight lowerCamelCase__ : Dict =None for name, value in fairseq_dict.items(): lowerCamelCase__ : List[str] =False if "conv_layers" in name: load_conv_layer( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == '''group''' , ) lowerCamelCase__ : List[str] =True elif name.split('''.''' )[0] == "proj": lowerCamelCase__ : List[Any] =fairseq_model.proj lowerCamelCase__ : Any =True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: lowerCamelCase__ : Optional[int] =True if "*" in mapped_key: lowerCamelCase__ : Any =name.split(__lowerCamelCase )[0].split('''.''' )[-2] lowerCamelCase__ : Any =mapped_key.replace('''*''' , __lowerCamelCase ) if "weight_g" in name: lowerCamelCase__ : Dict ='''weight_g''' elif "weight_v" in name: lowerCamelCase__ : Union[str, Any] ='''weight_v''' elif "bias" in name: lowerCamelCase__ : List[str] ='''bias''' elif "weight" in name: lowerCamelCase__ : Any ='''weight''' else: lowerCamelCase__ : Dict =None set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) continue if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(f'''Unused weights: {unused_weights}''' ) return proj_weight def snake_case__ ( __lowerCamelCase : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : int ): """simple docstring""" lowerCamelCase__ : List[Any] =full_name.split('''conv_layers.''' )[-1] lowerCamelCase__ : Union[str, Any] =name.split('''.''' ) lowerCamelCase__ : Tuple =int(items[0] ) lowerCamelCase__ : int =int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowerCamelCase__ : Optional[int] =value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowerCamelCase__ : Tuple =value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) lowerCamelCase__ : List[Any] =value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) lowerCamelCase__ : Tuple =value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__lowerCamelCase ) def snake_case__ ( __lowerCamelCase : str ): """simple docstring""" lowerCamelCase__ : str =emb.weight.shape lowerCamelCase__ : str =nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) lowerCamelCase__ : List[str] =emb.weight.data return lin_layer def snake_case__ ( __lowerCamelCase : Optional[int] ): """simple docstring""" with open(__lowerCamelCase , '''r''' , encoding='''utf-8''' ) as f: lowerCamelCase__ : Optional[int] =f.readlines() lowerCamelCase__ : Optional[Any] =[line.split(''' ''' )[0] for line in lines] lowerCamelCase__ : Optional[Any] =len(__lowerCamelCase ) lowerCamelCase__ : Tuple ={ '''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3, } vocab_dict.update(dict(zip(__lowerCamelCase , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def snake_case__ ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : str , __lowerCamelCase : Tuple , __lowerCamelCase : int , ): """simple docstring""" lowerCamelCase__ : Any =WavaVecaConfig.from_pretrained(__lowerCamelCase ) lowerCamelCase__ : List[Any] =SpeechaTextaConfig.from_pretrained( __lowerCamelCase , vocab_size=__lowerCamelCase , decoder_layers=__lowerCamelCase , do_stable_layer_norm=__lowerCamelCase ) lowerCamelCase__ : Any =WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) lowerCamelCase__ : List[str] =fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) lowerCamelCase__ : Any =model[0].eval() # set weights for wav2vec2 encoder lowerCamelCase__ : Tuple =WavaVecaModel(__lowerCamelCase ) lowerCamelCase__ : Optional[Any] =recursively_load_weights_wavaveca(model.encoder , __lowerCamelCase ) lowerCamelCase__ : Dict =SpeechaTextaForCausalLM(__lowerCamelCase ) lowerCamelCase__ : List[str] =hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=__lowerCamelCase ) # set output linear layer unexpected_keys.remove('''embed_out''' ) lowerCamelCase__ : Optional[int] =nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(f'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(f'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) lowerCamelCase__ : Optional[Any] =SpeechEncoderDecoderModel(encoder=__lowerCamelCase , decoder=__lowerCamelCase ) lowerCamelCase__ : List[Any] =False # add projection layer lowerCamelCase__ : Optional[Any] =nn.Parameter(projection_layer.weight ) lowerCamelCase__ : List[Any] =nn.Parameter(projection_layer.bias ) lowerCamelCase__ : Union[str, Any] =create_vocab_dict(__lowerCamelCase ) with open(os.path.join(__lowerCamelCase , '''vocab.json''' ) , '''w''' ) as fp: json.dump(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : Optional[int] =SpeechaTextaTokenizer(os.path.join(__lowerCamelCase , '''vocab.json''' ) ) tokenizer.save_pretrained(__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] =hf_wavavec.config.to_dict() lowerCamelCase__ : int =tokenizer.pad_token_id lowerCamelCase__ : Union[str, Any] =tokenizer.bos_token_id lowerCamelCase__ : Union[str, Any] =tokenizer.eos_token_id lowerCamelCase__ : Optional[Any] ='''speech_to_text_2''' lowerCamelCase__ : Optional[int] ='''wav2vec2''' lowerCamelCase__ : Any =SpeechEncoderDecoderConfig.from_dict(__lowerCamelCase ) hf_wavavec.save_pretrained(__lowerCamelCase ) feature_extractor.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": _lowercase : Dict = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-large-lv60", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/s2t-small-mustc-en-fr-st", type=str, help="Path to hf decoder s2t checkpoint config", ) parser.add_argument("--vocab_size", default=1_0_2_2_4, type=int, help="Vocab size of decoder") parser.add_argument("--num_decoder_layers", default=7, type=int, help="Number of decoder layers") _lowercase : List[str] = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
369
"""simple docstring""" import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def snake_case ( self : Union[str, Any] )-> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() def snake_case ( self : str )-> Any: lowerCamelCase__ , lowerCamelCase__ : Optional[Any] =FlaxControlNetModel.from_pretrained( '''lllyasviel/sd-controlnet-canny''', from_pt=lowerCamelCase, dtype=jnp.bfloataa ) lowerCamelCase__ , lowerCamelCase__ : Optional[int] =FlaxStableDiffusionControlNetPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''', controlnet=lowerCamelCase, from_pt=lowerCamelCase, dtype=jnp.bfloataa ) lowerCamelCase__ : Optional[int] =controlnet_params lowerCamelCase__ : Dict ='''bird''' lowerCamelCase__ : List[str] =jax.device_count() lowerCamelCase__ : Optional[Any] =pipe.prepare_text_inputs([prompts] * num_samples ) lowerCamelCase__ : Dict =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''' ) lowerCamelCase__ : List[Any] =pipe.prepare_image_inputs([canny_image] * num_samples ) lowerCamelCase__ : Optional[int] =jax.random.PRNGKey(0 ) lowerCamelCase__ : Dict =jax.random.split(lowerCamelCase, jax.device_count() ) lowerCamelCase__ : Tuple =replicate(lowerCamelCase ) lowerCamelCase__ : Tuple =shard(lowerCamelCase ) lowerCamelCase__ : Optional[int] =shard(lowerCamelCase ) lowerCamelCase__ : Tuple =pipe( prompt_ids=lowerCamelCase, image=lowerCamelCase, params=lowerCamelCase, prng_seed=lowerCamelCase, num_inference_steps=50, jit=lowerCamelCase, ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) lowerCamelCase__ : Dict =images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCamelCase__ : Any =images[0, 253:256, 253:256, -1] lowerCamelCase__ : Optional[Any] =jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCamelCase__ : Dict =jnp.array( [0.167_969, 0.116_699, 0.081_543, 0.154_297, 0.132_812, 0.108_887, 0.169_922, 0.169_922, 0.205_078] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def snake_case ( self : Optional[int] )-> Optional[int]: lowerCamelCase__ , lowerCamelCase__ : Dict =FlaxControlNetModel.from_pretrained( '''lllyasviel/sd-controlnet-openpose''', from_pt=lowerCamelCase, dtype=jnp.bfloataa ) lowerCamelCase__ , lowerCamelCase__ : List[Any] =FlaxStableDiffusionControlNetPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''', controlnet=lowerCamelCase, from_pt=lowerCamelCase, dtype=jnp.bfloataa ) lowerCamelCase__ : Optional[Any] =controlnet_params lowerCamelCase__ : int ='''Chef in the kitchen''' lowerCamelCase__ : Optional[Any] =jax.device_count() lowerCamelCase__ : Any =pipe.prepare_text_inputs([prompts] * num_samples ) lowerCamelCase__ : Any =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png''' ) lowerCamelCase__ : List[Any] =pipe.prepare_image_inputs([pose_image] * num_samples ) lowerCamelCase__ : Tuple =jax.random.PRNGKey(0 ) lowerCamelCase__ : Optional[Any] =jax.random.split(lowerCamelCase, jax.device_count() ) lowerCamelCase__ : int =replicate(lowerCamelCase ) lowerCamelCase__ : List[Any] =shard(lowerCamelCase ) lowerCamelCase__ : int =shard(lowerCamelCase ) lowerCamelCase__ : Tuple =pipe( prompt_ids=lowerCamelCase, image=lowerCamelCase, params=lowerCamelCase, prng_seed=lowerCamelCase, num_inference_steps=50, jit=lowerCamelCase, ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) lowerCamelCase__ : Dict =images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCamelCase__ : List[str] =images[0, 253:256, 253:256, -1] lowerCamelCase__ : int =jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCamelCase__ : Any =jnp.array( [[0.271_484, 0.261_719, 0.275_391, 0.277_344, 0.279_297, 0.291_016, 0.294_922, 0.302_734, 0.302_734]] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
272
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase = logging.get_logger(__name__) __lowercase = { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json''' ), '''google/realm-orqa-nq-openqa''': '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json''', '''google/realm-orqa-nq-reader''': '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json''', '''google/realm-orqa-wq-openqa''': '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json''', '''google/realm-orqa-wq-reader''': '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json''', # See all REALM models at https://huggingface.co/models?filter=realm } class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : Any = """realm""" def __init__( self , __lowercase=30_522 , __lowercase=768 , __lowercase=128 , __lowercase=12 , __lowercase=12 , __lowercase=8 , __lowercase=3_072 , __lowercase="gelu_new" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=512 , __lowercase=2 , __lowercase=0.02 , __lowercase=1E-1_2 , __lowercase=256 , __lowercase=10 , __lowercase=1E-3 , __lowercase=5 , __lowercase=320 , __lowercase=13_353_718 , __lowercase=5_000 , __lowercase=1 , __lowercase=0 , __lowercase=2 , **__lowercase , ) -> Tuple: super().__init__(pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase) # Common config __UpperCamelCase :Union[str, Any] = vocab_size __UpperCamelCase :int = max_position_embeddings __UpperCamelCase :List[Any] = hidden_size __UpperCamelCase :List[str] = retriever_proj_size __UpperCamelCase :int = num_hidden_layers __UpperCamelCase :str = num_attention_heads __UpperCamelCase :List[str] = num_candidates __UpperCamelCase :List[Any] = intermediate_size __UpperCamelCase :List[str] = hidden_act __UpperCamelCase :List[Any] = hidden_dropout_prob __UpperCamelCase :int = attention_probs_dropout_prob __UpperCamelCase :List[Any] = initializer_range __UpperCamelCase :Dict = type_vocab_size __UpperCamelCase :List[str] = layer_norm_eps # Reader config __UpperCamelCase :List[Any] = span_hidden_size __UpperCamelCase :int = max_span_width __UpperCamelCase :List[str] = reader_layer_norm_eps __UpperCamelCase :Optional[int] = reader_beam_size __UpperCamelCase :Optional[Any] = reader_seq_len # Retrieval config __UpperCamelCase :str = num_block_records __UpperCamelCase :Any = searcher_beam_size
43
"""simple docstring""" import os import sys import unittest lowerCAmelCase__ : Tuple = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) lowerCAmelCase__ : Tuple = os.path.join('tests', 'models', 'bert', 'test_modeling_bert.py') lowerCAmelCase__ : Optional[Any] = os.path.join('tests', 'models', 'blip', 'test_modeling_blip.py') class snake_case ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : List[str] ): UpperCAmelCase__ = get_test_to_tester_mapping(lowerCamelCase__ ) UpperCAmelCase__ = get_test_to_tester_mapping(lowerCamelCase__ ) UpperCAmelCase__ = {'BertModelTest': 'BertModelTester'} UpperCAmelCase__ = { 'BlipModelTest': 'BlipModelTester', 'BlipTextImageModelTest': 'BlipTextImageModelsModelTester', 'BlipTextModelTest': 'BlipTextModelTester', 'BlipTextRetrievalModelTest': 'BlipTextRetrievalModelTester', 'BlipVQAModelTest': 'BlipVQAModelTester', 'BlipVisionModelTest': 'BlipVisionModelTester', } self.assertEqual(get_test_info.to_json(lowerCamelCase__ ) ,lowerCamelCase__ ) self.assertEqual(get_test_info.to_json(lowerCamelCase__ ) ,lowerCamelCase__ ) def __lowerCAmelCase ( self : Optional[Any] ): UpperCAmelCase__ = get_model_to_test_mapping(lowerCamelCase__ ) UpperCAmelCase__ = get_model_to_test_mapping(lowerCamelCase__ ) UpperCAmelCase__ = { 'BertForMaskedLM': ['BertModelTest'], 'BertForMultipleChoice': ['BertModelTest'], 'BertForNextSentencePrediction': ['BertModelTest'], 'BertForPreTraining': ['BertModelTest'], 'BertForQuestionAnswering': ['BertModelTest'], 'BertForSequenceClassification': ['BertModelTest'], 'BertForTokenClassification': ['BertModelTest'], 'BertLMHeadModel': ['BertModelTest'], 'BertModel': ['BertModelTest'], } UpperCAmelCase__ = { 'BlipForConditionalGeneration': ['BlipTextImageModelTest'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTest'], 'BlipForQuestionAnswering': ['BlipVQAModelTest'], 'BlipModel': ['BlipModelTest'], 'BlipTextModel': ['BlipTextModelTest'], 'BlipVisionModel': ['BlipVisionModelTest'], } self.assertEqual(get_test_info.to_json(lowerCamelCase__ ) ,lowerCamelCase__ ) self.assertEqual(get_test_info.to_json(lowerCamelCase__ ) ,lowerCamelCase__ ) def __lowerCAmelCase ( self : int ): UpperCAmelCase__ = get_model_to_tester_mapping(lowerCamelCase__ ) UpperCAmelCase__ = get_model_to_tester_mapping(lowerCamelCase__ ) UpperCAmelCase__ = { 'BertForMaskedLM': ['BertModelTester'], 'BertForMultipleChoice': ['BertModelTester'], 'BertForNextSentencePrediction': ['BertModelTester'], 'BertForPreTraining': ['BertModelTester'], 'BertForQuestionAnswering': ['BertModelTester'], 'BertForSequenceClassification': ['BertModelTester'], 'BertForTokenClassification': ['BertModelTester'], 'BertLMHeadModel': ['BertModelTester'], 'BertModel': ['BertModelTester'], } UpperCAmelCase__ = { 'BlipForConditionalGeneration': ['BlipTextImageModelsModelTester'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTester'], 'BlipForQuestionAnswering': ['BlipVQAModelTester'], 'BlipModel': ['BlipModelTester'], 'BlipTextModel': ['BlipTextModelTester'], 'BlipVisionModel': ['BlipVisionModelTester'], } self.assertEqual(get_test_info.to_json(lowerCamelCase__ ) ,lowerCamelCase__ ) self.assertEqual(get_test_info.to_json(lowerCamelCase__ ) ,lowerCamelCase__ )
98
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { """facebook/xlm-roberta-xl""": """https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json""", """facebook/xlm-roberta-xxl""": """https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json""", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class UpperCAmelCase_ ( _lowercase): snake_case__ = '''xlm-roberta-xl''' def __init__( self : Tuple , __UpperCamelCase : Any=25_0880 , __UpperCamelCase : List[str]=2560 , __UpperCamelCase : Union[str, Any]=36 , __UpperCamelCase : Tuple=32 , __UpperCamelCase : Optional[Any]=1_0240 , __UpperCamelCase : Union[str, Any]="gelu" , __UpperCamelCase : str=0.1 , __UpperCamelCase : Union[str, Any]=0.1 , __UpperCamelCase : Optional[Any]=514 , __UpperCamelCase : Union[str, Any]=1 , __UpperCamelCase : List[Any]=0.0_2 , __UpperCamelCase : Any=1E-05 , __UpperCamelCase : Dict=1 , __UpperCamelCase : Dict=0 , __UpperCamelCase : Dict=2 , __UpperCamelCase : Optional[int]="absolute" , __UpperCamelCase : str=True , __UpperCamelCase : Tuple=None , **__UpperCamelCase : Dict , ) -> Union[str, Any]: super().__init__(pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase ) _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_act _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = initializer_range _UpperCamelCase = layer_norm_eps _UpperCamelCase = position_embedding_type _UpperCamelCase = use_cache _UpperCamelCase = classifier_dropout class UpperCAmelCase_ ( _lowercase): @property def _UpperCamelCase ( self : Dict ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _UpperCamelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _UpperCamelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
54
"""simple docstring""" from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCAmelCase_ ( _lowercase , _lowercase): @register_to_config def __init__( self : Tuple , __UpperCamelCase : bool , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : Optional[int] = None ) -> int: super().__init__() _UpperCamelCase = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" _UpperCamelCase = torch.zeros(__UpperCamelCase , __UpperCamelCase ) else: _UpperCamelCase = None _UpperCamelCase = torch.nn.Parameter(__UpperCamelCase ) class UpperCAmelCase_ ( _lowercase): snake_case__ = 42 snake_case__ = 42 snake_case__ = 42 snake_case__ = 42 snake_case__ = 42 snake_case__ = 42 def __init__( self : List[str] , __UpperCamelCase : VQModel , __UpperCamelCase : CLIPTextModel , __UpperCamelCase : CLIPTokenizer , __UpperCamelCase : TransformeraDModel , __UpperCamelCase : VQDiffusionScheduler , __UpperCamelCase : LearnedClassifierFreeSamplingEmbeddings , ) -> Optional[int]: super().__init__() self.register_modules( vqvae=__UpperCamelCase , transformer=__UpperCamelCase , text_encoder=__UpperCamelCase , tokenizer=__UpperCamelCase , scheduler=__UpperCamelCase , learned_classifier_free_sampling_embeddings=__UpperCamelCase , ) def _UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Dict , __UpperCamelCase : List[str] ) -> str: _UpperCamelCase = len(__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else 1 # get prompt text embeddings _UpperCamelCase = self.tokenizer( __UpperCamelCase , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) _UpperCamelCase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: _UpperCamelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) _UpperCamelCase = text_input_ids[:, : self.tokenizer.model_max_length] _UpperCamelCase = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 _UpperCamelCase = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=__UpperCamelCase ) # duplicate text embeddings for each generation per prompt _UpperCamelCase = prompt_embeds.repeat_interleave(__UpperCamelCase , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: _UpperCamelCase = self.learned_classifier_free_sampling_embeddings.embeddings _UpperCamelCase = negative_prompt_embeds.unsqueeze(0 ).repeat(__UpperCamelCase , 1 , 1 ) else: _UpperCamelCase = [''''''] * batch_size _UpperCamelCase = text_input_ids.shape[-1] _UpperCamelCase = self.tokenizer( __UpperCamelCase , padding='''max_length''' , max_length=__UpperCamelCase , truncation=__UpperCamelCase , return_tensors='''pt''' , ) _UpperCamelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings _UpperCamelCase = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=__UpperCamelCase ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method _UpperCamelCase = negative_prompt_embeds.shape[1] _UpperCamelCase = negative_prompt_embeds.repeat(1 , __UpperCamelCase , 1 ) _UpperCamelCase = negative_prompt_embeds.view(batch_size * num_images_per_prompt , __UpperCamelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _UpperCamelCase = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self : List[str] , __UpperCamelCase : Union[str, List[str]] , __UpperCamelCase : int = 100 , __UpperCamelCase : float = 5.0 , __UpperCamelCase : float = 1.0 , __UpperCamelCase : int = 1 , __UpperCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __UpperCamelCase : Optional[torch.FloatTensor] = None , __UpperCamelCase : Optional[str] = "pil" , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __UpperCamelCase : int = 1 , ) -> Union[ImagePipelineOutput, Tuple]: if isinstance(__UpperCamelCase , __UpperCamelCase ): _UpperCamelCase = 1 elif isinstance(__UpperCamelCase , __UpperCamelCase ): _UpperCamelCase = len(__UpperCamelCase ) else: raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(__UpperCamelCase )}''' ) _UpperCamelCase = batch_size * num_images_per_prompt _UpperCamelCase = guidance_scale > 1.0 _UpperCamelCase = self._encode_prompt(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__UpperCamelCase , __UpperCamelCase ) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(__UpperCamelCase )}.''' ) # get the initial completely masked latents unless the user supplied it _UpperCamelCase = (batch_size, self.transformer.num_latent_pixels) if latents is None: _UpperCamelCase = self.transformer.num_vector_embeds - 1 _UpperCamelCase = torch.full(__UpperCamelCase , __UpperCamelCase ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( '''Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,''' F''' {self.transformer.num_vector_embeds - 1} (inclusive).''' ) _UpperCamelCase = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__UpperCamelCase , device=self.device ) _UpperCamelCase = self.scheduler.timesteps.to(self.device ) _UpperCamelCase = latents for i, t in enumerate(self.progress_bar(__UpperCamelCase ) ): # expand the sample if we are doing classifier free guidance _UpperCamelCase = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` _UpperCamelCase = self.transformer(__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , timestep=__UpperCamelCase ).sample if do_classifier_free_guidance: _UpperCamelCase , _UpperCamelCase = model_output.chunk(2 ) _UpperCamelCase = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(__UpperCamelCase , dim=1 , keepdim=__UpperCamelCase ) _UpperCamelCase = self.truncate(__UpperCamelCase , __UpperCamelCase ) # remove `log(0)`'s (`-inf`s) _UpperCamelCase = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 _UpperCamelCase = self.scheduler.step(__UpperCamelCase , timestep=__UpperCamelCase , sample=__UpperCamelCase , generator=__UpperCamelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) _UpperCamelCase = self.vqvae.config.vq_embed_dim _UpperCamelCase = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) _UpperCamelCase = self.vqvae.quantize.get_codebook_entry(__UpperCamelCase , shape=__UpperCamelCase ) _UpperCamelCase = self.vqvae.decode(__UpperCamelCase , force_not_quantize=__UpperCamelCase ).sample _UpperCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) _UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _UpperCamelCase = self.numpy_to_pil(__UpperCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__UpperCamelCase ) def _UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : float ) -> torch.FloatTensor: _UpperCamelCase , _UpperCamelCase = torch.sort(__UpperCamelCase , 1 , descending=__UpperCamelCase ) _UpperCamelCase = torch.exp(__UpperCamelCase ) _UpperCamelCase = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out _UpperCamelCase = torch.full_like(keep_mask[:, 0:1, :] , __UpperCamelCase ) _UpperCamelCase = torch.cat((all_true, keep_mask) , dim=1 ) _UpperCamelCase = keep_mask[:, :-1, :] _UpperCamelCase = keep_mask.gather(1 , indices.argsort(1 ) ) _UpperCamelCase = log_p_x_0.clone() _UpperCamelCase = -torch.inf # -inf = log(0) return rv
54
1
import argparse import os import re import packaging.version UpperCAmelCase = '''examples/''' UpperCAmelCase = { '''examples''': (re.compile(R'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(R'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(R'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), R'''\1version="VERSION",'''), '''doc''': (re.compile(R'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } UpperCAmelCase = { '''init''': '''src/diffusers/__init__.py''', '''setup''': '''setup.py''', } UpperCAmelCase = '''README.md''' def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): with open(__SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' , newline='\n' ) as f: lowercase = f.read() lowercase , lowercase = REPLACE_PATTERNS[pattern] lowercase = replace.replace('VERSION' , __SCREAMING_SNAKE_CASE ) lowercase = re_pattern.sub(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) with open(__SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(__SCREAMING_SNAKE_CASE ) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): for folder, directories, fnames in os.walk(__SCREAMING_SNAKE_CASE ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('research_projects' ) if "legacy" in directories: directories.remove('legacy' ) for fname in fnames: if fname.endswith('.py' ): update_version_in_file(os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , pattern='examples' ) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if not patch: update_version_in_examples(__SCREAMING_SNAKE_CASE ) def UpperCAmelCase_ ( ): lowercase = '🤗 Transformers currently provides the following architectures' lowercase = '1. Want to contribute a new model?' with open(__SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' , newline='\n' ) as f: lowercase = f.readlines() # Find the start of the list. lowercase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 lowercase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('1.' ): lowercase = lines[index].replace( 'https://huggingface.co/docs/diffusers/main/model_doc' , 'https://huggingface.co/docs/diffusers/model_doc' , ) index += 1 with open(__SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(__SCREAMING_SNAKE_CASE ) def UpperCAmelCase_ ( ): with open(REPLACE_FILES['init'] , 'r' ) as f: lowercase = f.read() lowercase = REPLACE_PATTERNS['init'][0].search(__SCREAMING_SNAKE_CASE ).groups()[0] return packaging.version.parse(__SCREAMING_SNAKE_CASE ) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE=False ): lowercase = get_version() if patch and default_version.is_devrelease: raise ValueError('Can\'t create a patch version from the dev branch, checkout a released version!' ) if default_version.is_devrelease: lowercase = default_version.base_version elif patch: lowercase = F'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: lowercase = F'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. lowercase = input(F'''Which version are you releasing? [{default_version}]''' ) if len(__SCREAMING_SNAKE_CASE ) == 0: lowercase = default_version print(F'''Updating version to {version}.''' ) global_version_update(__SCREAMING_SNAKE_CASE , patch=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase_ ( ): lowercase = get_version() lowercase = F'''{current_version.major}.{current_version.minor + 1}.0.dev0''' lowercase = current_version.base_version # Check with the user we got that right. lowercase = input(F'''Which version are we developing now? [{dev_version}]''' ) if len(__SCREAMING_SNAKE_CASE ) == 0: lowercase = dev_version print(F'''Updating version to {version}.''' ) global_version_update(__SCREAMING_SNAKE_CASE ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') UpperCAmelCase = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
195
from manim import * class A_ ( __lowerCamelCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self ): lowercase = Rectangle(height=0.5 , width=0.5 ) lowercase = Rectangle(height=0.25 , width=0.25 ) lowercase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowercase = [mem.copy() for i in range(6 )] lowercase = [mem.copy() for i in range(6 )] lowercase = VGroup(*snake_case ).arrange(snake_case , buff=0 ) lowercase = VGroup(*snake_case ).arrange(snake_case , buff=0 ) lowercase = VGroup(snake_case , snake_case ).arrange(snake_case , buff=0 ) lowercase = Text('CPU' , font_size=24 ) lowercase = Group(snake_case , snake_case ).arrange(snake_case , buff=0.5 , aligned_edge=snake_case ) cpu.move_to([-2.5, -0.5, 0] ) self.add(snake_case ) lowercase = [mem.copy() for i in range(4 )] lowercase = VGroup(*snake_case ).arrange(snake_case , buff=0 ) lowercase = Text('GPU' , font_size=24 ) lowercase = Group(snake_case , snake_case ).arrange(snake_case , buff=0.5 , aligned_edge=snake_case ) gpu.move_to([-1, -1, 0] ) self.add(snake_case ) lowercase = [mem.copy() for i in range(6 )] lowercase = VGroup(*snake_case ).arrange(snake_case , buff=0 ) lowercase = Text('Model' , font_size=24 ) lowercase = Group(snake_case , snake_case ).arrange(snake_case , buff=0.5 , aligned_edge=snake_case ) model.move_to([3, -1.0, 0] ) self.add(snake_case ) lowercase = [] lowercase = [] lowercase = [] for i, rect in enumerate(snake_case ): rect.set_stroke(snake_case ) lowercase = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(snake_case , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=snake_case ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=snake_case , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=snake_case , buff=0.0 ) self.add(snake_case ) model_cpu_arr.append(snake_case ) self.add(*snake_case , *snake_case , *snake_case ) lowercase = [mem.copy() for i in range(6 )] lowercase = VGroup(*snake_case ).arrange(snake_case , buff=0 ) lowercase = Text('Loaded Checkpoint' , font_size=24 ) lowercase = Group(snake_case , snake_case ).arrange(snake_case , buff=0.5 , aligned_edge=snake_case ) checkpoint.move_to([3, 0.5, 0] ) self.add(snake_case ) lowercase = [] lowercase = [] for i, rect in enumerate(snake_case ): lowercase = fill.copy().set_fill(snake_case , opacity=0.7 ) target.move_to(snake_case ) ckpt_arr.append(snake_case ) lowercase = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(snake_case ) self.add(*snake_case , *snake_case ) lowercase = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowercase = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(snake_case , snake_case ) lowercase = MarkupText( F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(snake_case , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(snake_case ) lowercase = MarkupText( F'''Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) lowercase = [meta_mem.copy() for i in range(6 )] lowercase = [meta_mem.copy() for i in range(6 )] lowercase = VGroup(*snake_case ).arrange(snake_case , buff=0 ) lowercase = VGroup(*snake_case ).arrange(snake_case , buff=0 ) lowercase = VGroup(snake_case , snake_case ).arrange(snake_case , buff=0 ) lowercase = Text('Disk' , font_size=24 ) lowercase = Group(snake_case , snake_case ).arrange(snake_case , buff=0.5 , aligned_edge=snake_case ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(snake_case , run_time=3 ) , Write(snake_case , run_time=1 ) , Create(snake_case , run_time=1 ) ) lowercase = [] for i, rect in enumerate(snake_case ): lowercase = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(snake_case , run_time=1.5 ) ) self.play(*snake_case ) self.play(FadeOut(snake_case ) ) lowercase = MarkupText(F'''Then, the checkpoint is removed from memory\nthrough garbage collection.''' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(snake_case , run_time=3 ) ) self.play( FadeOut(snake_case , snake_case , *snake_case , *snake_case ) , ) self.wait()
195
1
'''simple docstring''' import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py lowerCamelCase : Optional[Any] = "src/diffusers" lowerCamelCase : Optional[Any] = "." # This is to make sure the diffusers module imported is the one in the repo. lowerCamelCase : Tuple = importlib.util.spec_from_file_location( "diffusers", os.path.join(DIFFUSERS_PATH, "__init__.py"), submodule_search_locations=[DIFFUSERS_PATH], ) lowerCamelCase : Optional[int] = spec.loader.load_module() def _lowerCAmelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Dict ) -> int: """simple docstring""" return line.startswith(_UpperCamelCase ) or len(_UpperCamelCase ) <= 1 or re.search(r'^\s*\)(\s*->.*:|:)\s*$' , _UpperCamelCase ) is not None def _lowerCAmelCase ( _UpperCamelCase : List[Any] ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =object_name.split('.' ) _SCREAMING_SNAKE_CASE =0 # First let's find the module where our object lives. _SCREAMING_SNAKE_CASE =parts[i] while i < len(_UpperCamelCase ) and not os.path.isfile(os.path.join(_UpperCamelCase , f"{module}.py" ) ): i += 1 if i < len(_UpperCamelCase ): _SCREAMING_SNAKE_CASE =os.path.join(_UpperCamelCase , parts[i] ) if i >= len(_UpperCamelCase ): raise ValueError(f"`object_name` should begin with the name of a module of diffusers but got {object_name}." ) with open(os.path.join(_UpperCamelCase , f"{module}.py" ) , 'r' , encoding='utf-8' , newline='\n' ) as f: _SCREAMING_SNAKE_CASE =f.readlines() # Now let's find the class / func in the code! _SCREAMING_SNAKE_CASE ='' _SCREAMING_SNAKE_CASE =0 for name in parts[i + 1 :]: while ( line_index < len(_UpperCamelCase ) and re.search(rf"^{indent}(class|def)\s+{name}(\(|\:)" , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(_UpperCamelCase ): raise ValueError(f" {object_name} does not match any function or class in {module}." ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). _SCREAMING_SNAKE_CASE =line_index while line_index < len(_UpperCamelCase ) and _should_continue(lines[line_index] , _UpperCamelCase ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _SCREAMING_SNAKE_CASE =lines[start_index:line_index] return "".join(_UpperCamelCase ) lowerCamelCase : Any = re.compile(r"^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)") lowerCamelCase : Optional[int] = re.compile(r"^\s*(\S+)->(\S+)(\s+.*|$)") lowerCamelCase : Tuple = re.compile(r"<FILL\s+[^>]*>") def _lowerCAmelCase ( _UpperCamelCase : Dict ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =code.split('\n' ) _SCREAMING_SNAKE_CASE =0 while idx < len(_UpperCamelCase ) and len(lines[idx] ) == 0: idx += 1 if idx < len(_UpperCamelCase ): return re.search(r'^(\s*)\S' , lines[idx] ).groups()[0] return "" def _lowerCAmelCase ( _UpperCamelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =len(get_indent(_UpperCamelCase ) ) > 0 if has_indent: _SCREAMING_SNAKE_CASE =f"class Bla:\n{code}" _SCREAMING_SNAKE_CASE =black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 , preview=_UpperCamelCase ) _SCREAMING_SNAKE_CASE =black.format_str(_UpperCamelCase , mode=_UpperCamelCase ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =style_docstrings_in_code(_UpperCamelCase ) return result[len('class Bla:\n' ) :] if has_indent else result def _lowerCAmelCase ( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any]=False ) -> List[str]: """simple docstring""" with open(_UpperCamelCase , 'r' , encoding='utf-8' , newline='\n' ) as f: _SCREAMING_SNAKE_CASE =f.readlines() _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(_UpperCamelCase ): _SCREAMING_SNAKE_CASE =_re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =search.groups() _SCREAMING_SNAKE_CASE =find_code_in_diffusers(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =get_indent(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =line_index + 1 if indent == theoretical_indent else line_index + 2 _SCREAMING_SNAKE_CASE =theoretical_indent _SCREAMING_SNAKE_CASE =start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. _SCREAMING_SNAKE_CASE =True while line_index < len(_UpperCamelCase ) and should_continue: line_index += 1 if line_index >= len(_UpperCamelCase ): break _SCREAMING_SNAKE_CASE =lines[line_index] _SCREAMING_SNAKE_CASE =_should_continue(_UpperCamelCase , _UpperCamelCase ) and re.search(f"^{indent}# End copy" , _UpperCamelCase ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _SCREAMING_SNAKE_CASE =lines[start_index:line_index] _SCREAMING_SNAKE_CASE =''.join(_UpperCamelCase ) # Remove any nested `Copied from` comments to avoid circular copies _SCREAMING_SNAKE_CASE =[line for line in theoretical_code.split('\n' ) if _re_copy_warning.search(_UpperCamelCase ) is None] _SCREAMING_SNAKE_CASE ='\n'.join(_UpperCamelCase ) # Before comparing, use the `replace_pattern` on the original code. if len(_UpperCamelCase ) > 0: _SCREAMING_SNAKE_CASE =replace_pattern.replace('with' , '' ).split(',' ) _SCREAMING_SNAKE_CASE =[_re_replace_pattern.search(_UpperCamelCase ) for p in patterns] for pattern in patterns: if pattern is None: continue _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =pattern.groups() _SCREAMING_SNAKE_CASE =re.sub(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if option.strip() == "all-casing": _SCREAMING_SNAKE_CASE =re.sub(obja.lower() , obja.lower() , _UpperCamelCase ) _SCREAMING_SNAKE_CASE =re.sub(obja.upper() , obja.upper() , _UpperCamelCase ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line _SCREAMING_SNAKE_CASE =blackify(lines[start_index - 1] + theoretical_code ) _SCREAMING_SNAKE_CASE =theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: _SCREAMING_SNAKE_CASE =lines[:start_index] + [theoretical_code] + lines[line_index:] _SCREAMING_SNAKE_CASE =start_index + 1 if overwrite and len(_UpperCamelCase ) > 0: # Warn the user a file has been modified. print(f"Detected changes, rewriting {filename}." ) with open(_UpperCamelCase , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(_UpperCamelCase ) return diffs def _lowerCAmelCase ( _UpperCamelCase : bool = False ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =glob.glob(os.path.join(_UpperCamelCase , '**/*.py' ) , recursive=_UpperCamelCase ) _SCREAMING_SNAKE_CASE =[] for filename in all_files: _SCREAMING_SNAKE_CASE =is_copy_consistent(_UpperCamelCase , _UpperCamelCase ) diffs += [f"- {filename}: copy does not match {d[0]} at line {d[1]}" for d in new_diffs] if not overwrite and len(_UpperCamelCase ) > 0: _SCREAMING_SNAKE_CASE ='\n'.join(_UpperCamelCase ) raise Exception( 'Found the following copy inconsistencies:\n' + diff + '\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.' ) if __name__ == "__main__": lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") lowerCamelCase : Tuple = parser.parse_args() check_copies(args.fix_and_overwrite)
114
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase : Tuple = {"configuration_fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[Any] = ["FNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = ["FNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = [ "FNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FNetForMaskedLM", "FNetForMultipleChoice", "FNetForNextSentencePrediction", "FNetForPreTraining", "FNetForQuestionAnswering", "FNetForSequenceClassification", "FNetForTokenClassification", "FNetLayer", "FNetModel", "FNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys lowerCamelCase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
114
1
'''simple docstring''' # Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar _lowerCAmelCase = TypeVar('''T''') class lowerCAmelCase_( Generic[T] ): '''simple docstring''' def __init__( self ,__UpperCAmelCase = True ) -> None: lowerCAmelCase__ : dict[T, list[T]] = {} # dictionary of lists lowerCAmelCase__ : Optional[int] = directed def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> GraphAdjacencyList[T]: if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(__UpperCAmelCase ) self.adj_list[destination_vertex].append(__UpperCAmelCase ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(__UpperCAmelCase ) lowerCAmelCase__ : List[str] = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(__UpperCAmelCase ) lowerCAmelCase__ : str = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: lowerCAmelCase__ : List[Any] = [destination_vertex] lowerCAmelCase__ : str = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(__UpperCAmelCase ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(__UpperCAmelCase ) lowerCAmelCase__ : List[str] = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: lowerCAmelCase__ : List[str] = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: lowerCAmelCase__ : Dict = [destination_vertex] lowerCAmelCase__ : Optional[Any] = [] return self def __repr__( self ) -> str: return pformat(self.adj_list )
37
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class lowerCAmelCase_: '''simple docstring''' def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase=2 ,__UpperCAmelCase=True ,__UpperCAmelCase=False ,__UpperCAmelCase=10 ,__UpperCAmelCase=3 ,__UpperCAmelCase=32 * 4 ,__UpperCAmelCase=32 * 6 ,__UpperCAmelCase=4 ,__UpperCAmelCase=32 ,) -> str: lowerCAmelCase__ : Optional[int] = parent lowerCAmelCase__ : Optional[int] = batch_size lowerCAmelCase__ : Optional[int] = is_training lowerCAmelCase__ : Dict = use_auxiliary_loss lowerCAmelCase__ : Union[str, Any] = num_queries lowerCAmelCase__ : str = num_channels lowerCAmelCase__ : List[str] = min_size lowerCAmelCase__ : int = max_size lowerCAmelCase__ : Optional[Any] = num_labels lowerCAmelCase__ : List[Any] = mask_feature_size def UpperCAmelCase_ ( self ) -> Tuple: lowerCAmelCase__ : str = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( __UpperCAmelCase ) lowerCAmelCase__ : str = torch.ones([self.batch_size, self.min_size, self.max_size] ,device=__UpperCAmelCase ) lowerCAmelCase__ : Any = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] ,device=__UpperCAmelCase ) > 0.5 ).float() lowerCAmelCase__ : Optional[int] = (torch.rand((self.batch_size, self.num_labels) ,device=__UpperCAmelCase ) > 0.5).long() lowerCAmelCase__ : Any = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def UpperCAmelCase_ ( self ) -> Dict: return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] ,) ,decoder_config=DetrConfig( decoder_ffn_dim=128 ,num_queries=self.num_queries ,decoder_attention_heads=2 ,d_model=self.mask_feature_size ,) ,mask_feature_size=self.mask_feature_size ,fpn_feature_size=self.mask_feature_size ,num_channels=self.num_channels ,num_labels=self.num_labels ,) def UpperCAmelCase_ ( self ) -> Optional[int]: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.prepare_config_and_inputs() lowerCAmelCase__ : List[str] = {"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> Any: lowerCAmelCase__ : Optional[int] = output.encoder_hidden_states lowerCAmelCase__ : Optional[int] = output.pixel_decoder_hidden_states lowerCAmelCase__ : Dict = output.transformer_decoder_hidden_states self.parent.assertTrue(len(__UpperCAmelCase ) ,len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__UpperCAmelCase ) ,len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__UpperCAmelCase ) ,config.decoder_config.decoder_layers ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase=False ) -> Optional[Any]: with torch.no_grad(): lowerCAmelCase__ : int = MaskFormerModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ : str = model(pixel_values=__UpperCAmelCase ,pixel_mask=__UpperCAmelCase ) lowerCAmelCase__ : int = model(__UpperCAmelCase ,output_hidden_states=__UpperCAmelCase ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape ,(self.batch_size, self.num_queries, self.mask_feature_size) ,) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(__UpperCAmelCase ,__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Optional[int]: lowerCAmelCase__ : Dict = MaskFormerForInstanceSegmentation(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() def comm_check_on_output(__UpperCAmelCase ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape ,(self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) ,) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape ,(self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): lowerCAmelCase__ : List[Any] = model(pixel_values=__UpperCAmelCase ,pixel_mask=__UpperCAmelCase ) lowerCAmelCase__ : Dict = model(__UpperCAmelCase ) comm_check_on_output(__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = model( pixel_values=__UpperCAmelCase ,pixel_mask=__UpperCAmelCase ,mask_labels=__UpperCAmelCase ,class_labels=__UpperCAmelCase ) comm_check_on_output(__UpperCAmelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape ,torch.Size([1] ) ) @require_torch class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): '''simple docstring''' __lowercase : Optional[Any] = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () __lowercase : int = ( {'''feature-extraction''': MaskFormerModel, '''image-segmentation''': MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) __lowercase : Union[str, Any] = False __lowercase : Dict = False __lowercase : Tuple = False __lowercase : List[Any] = False def UpperCAmelCase_ ( self ) -> Optional[int]: lowerCAmelCase__ : str = MaskFormerModelTester(self ) lowerCAmelCase__ : List[Any] = ConfigTester(self ,config_class=__UpperCAmelCase ,has_text_modality=__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> List[str]: self.config_tester.run_common_tests() def UpperCAmelCase_ ( self ) -> Union[str, Any]: lowerCAmelCase__ , lowerCAmelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(__UpperCAmelCase ,**__UpperCAmelCase ,output_hidden_states=__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> Optional[int]: lowerCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*__UpperCAmelCase ) @unittest.skip(reason="""MaskFormer does not use inputs_embeds""" ) def UpperCAmelCase_ ( self ) -> List[Any]: pass @unittest.skip(reason="""MaskFormer does not have a get_input_embeddings method""" ) def UpperCAmelCase_ ( self ) -> str: pass @unittest.skip(reason="""MaskFormer is not a generative model""" ) def UpperCAmelCase_ ( self ) -> Any: pass @unittest.skip(reason="""MaskFormer does not use token embeddings""" ) def UpperCAmelCase_ ( self ) -> List[str]: pass @require_torch_multi_gpu @unittest.skip( reason="""MaskFormer has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCAmelCase_ ( self ) -> List[str]: pass def UpperCAmelCase_ ( self ) -> Tuple: lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : str = model_class(__UpperCAmelCase ) lowerCAmelCase__ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ : Dict = [*signature.parameters.keys()] lowerCAmelCase__ : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,__UpperCAmelCase ) @slow def UpperCAmelCase_ ( self ) -> Union[str, Any]: for model_name in ["facebook/maskformer-swin-small-coco"]: lowerCAmelCase__ : List[str] = MaskFormerModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> str: lowerCAmelCase__ : List[Any] = (self.model_tester.min_size,) * 2 lowerCAmelCase__ : Any = { """pixel_values""": torch.randn((2, 3, *size) ,device=__UpperCAmelCase ), """mask_labels""": torch.randn((2, 10, *size) ,device=__UpperCAmelCase ), """class_labels""": torch.zeros(2 ,10 ,device=__UpperCAmelCase ).long(), } lowerCAmelCase__ : Tuple = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = model(**__UpperCAmelCase ) self.assertTrue(outputs.loss is not None ) def UpperCAmelCase_ ( self ) -> str: lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(__UpperCAmelCase ,**__UpperCAmelCase ,output_hidden_states=__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> Tuple: lowerCAmelCase__ , lowerCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : int = model_class(__UpperCAmelCase ).to(__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = model(**__UpperCAmelCase ,output_attentions=__UpperCAmelCase ) self.assertTrue(outputs.attentions is not None ) def UpperCAmelCase_ ( self ) -> int: if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss lowerCAmelCase__ : Dict = self.all_model_classes[1] lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() lowerCAmelCase__ : List[Any] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.train() lowerCAmelCase__ : List[str] = model(__UpperCAmelCase ,mask_labels=__UpperCAmelCase ,class_labels=__UpperCAmelCase ).loss loss.backward() def UpperCAmelCase_ ( self ) -> List[str]: # only MaskFormerForInstanceSegmentation has the loss lowerCAmelCase__ : Tuple = self.all_model_classes[1] lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() lowerCAmelCase__ : Union[str, Any] = True lowerCAmelCase__ : Tuple = True lowerCAmelCase__ : Optional[Any] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.train() lowerCAmelCase__ : Dict = model(__UpperCAmelCase ,mask_labels=__UpperCAmelCase ,class_labels=__UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() lowerCAmelCase__ : str = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't lowerCAmelCase__ : Union[str, Any] = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() lowerCAmelCase__ : List[Any] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=__UpperCAmelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) _lowerCAmelCase = 1e-4 def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class lowerCAmelCase_( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase_ ( self ) -> List[Any]: return ( MaskFormerImageProcessor.from_pretrained("""facebook/maskformer-swin-small-coco""" ) if is_vision_available() else None ) def UpperCAmelCase_ ( self ) -> Any: lowerCAmelCase__ : Any = MaskFormerModel.from_pretrained("""facebook/maskformer-swin-small-coco""" ).to(__UpperCAmelCase ) lowerCAmelCase__ : str = self.default_image_processor lowerCAmelCase__ : str = prepare_img() lowerCAmelCase__ : Optional[int] = image_processor(__UpperCAmelCase ,return_tensors="""pt""" ).to(__UpperCAmelCase ) lowerCAmelCase__ : Dict = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__UpperCAmelCase ,(1, 3, 800, 1088) ) with torch.no_grad(): lowerCAmelCase__ : Union[str, Any] = model(**__UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = torch.tensor( [[-0.0_4_8_2, 0.9_2_2_8, 0.4_9_5_1], [-0.2_5_4_7, 0.8_0_1_7, 0.8_5_2_7], [-0.0_0_6_9, 0.3_3_8_5, -0.0_0_8_9]] ).to(__UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] ,__UpperCAmelCase ,atol=__UpperCAmelCase ) ) lowerCAmelCase__ : Dict = torch.tensor( [[-0.8_4_2_2, -0.8_4_3_4, -0.9_7_1_8], [-1.0_1_4_4, -0.5_5_6_5, -0.4_1_9_5], [-1.0_0_3_8, -0.4_4_8_4, -0.1_9_6_1]] ).to(__UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] ,__UpperCAmelCase ,atol=__UpperCAmelCase ) ) lowerCAmelCase__ : Optional[int] = torch.tensor( [[0.2_8_5_2, -0.0_1_5_9, 0.9_7_3_5], [0.6_2_5_4, 0.1_8_5_8, 0.8_5_2_9], [-0.0_6_8_0, -0.4_1_1_6, 1.8_4_1_3]] ).to(__UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] ,__UpperCAmelCase ,atol=__UpperCAmelCase ) ) def UpperCAmelCase_ ( self ) -> Optional[Any]: lowerCAmelCase__ : List[Any] = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" ) .to(__UpperCAmelCase ) .eval() ) lowerCAmelCase__ : Optional[Any] = self.default_image_processor lowerCAmelCase__ : List[str] = prepare_img() lowerCAmelCase__ : str = image_processor(__UpperCAmelCase ,return_tensors="""pt""" ).to(__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__UpperCAmelCase ,(1, 3, 800, 1088) ) with torch.no_grad(): lowerCAmelCase__ : List[Any] = model(**__UpperCAmelCase ) # masks_queries_logits lowerCAmelCase__ : Optional[int] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape ,(1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ,) lowerCAmelCase__ : Optional[int] = [ [-1.3_7_3_7_1_2_4, -1.7_7_2_4_9_3_7, -1.9_3_6_4_2_3_3], [-1.5_9_7_7_2_8_1, -1.9_8_6_7_9_3_9, -2.1_5_2_3_6_9_5], [-1.5_7_9_5_3_9_8, -1.9_2_6_9_8_3_2, -2.0_9_3_9_4_2], ] lowerCAmelCase__ : Optional[int] = torch.tensor(__UpperCAmelCase ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] ,__UpperCAmelCase ,atol=__UpperCAmelCase ) ) # class_queries_logits lowerCAmelCase__ : Tuple = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape ,(1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) lowerCAmelCase__ : Union[str, Any] = torch.tensor( [ [1.65_12E00, -5.25_72E00, -3.35_19E00], [3.61_69E-02, -5.90_25E00, -2.93_13E00], [1.07_66E-04, -7.76_30E00, -5.12_63E00], ] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] ,__UpperCAmelCase ,atol=__UpperCAmelCase ) ) def UpperCAmelCase_ ( self ) -> str: lowerCAmelCase__ : List[Any] = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-resnet101-coco-stuff""" ) .to(__UpperCAmelCase ) .eval() ) lowerCAmelCase__ : Optional[Any] = self.default_image_processor lowerCAmelCase__ : int = prepare_img() lowerCAmelCase__ : Optional[Any] = image_processor(__UpperCAmelCase ,return_tensors="""pt""" ).to(__UpperCAmelCase ) lowerCAmelCase__ : str = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__UpperCAmelCase ,(1, 3, 800, 1088) ) with torch.no_grad(): lowerCAmelCase__ : str = model(**__UpperCAmelCase ) # masks_queries_logits lowerCAmelCase__ : Optional[Any] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape ,(1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ,) lowerCAmelCase__ : int = [[-0.9_0_4_6, -2.6_3_6_6, -4.6_0_6_2], [-3.4_1_7_9, -5.7_8_9_0, -8.8_0_5_7], [-4.9_1_7_9, -7.6_5_6_0, -1_0.7_7_1_1]] lowerCAmelCase__ : List[str] = torch.tensor(__UpperCAmelCase ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] ,__UpperCAmelCase ,atol=__UpperCAmelCase ) ) # class_queries_logits lowerCAmelCase__ : Optional[Any] = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape ,(1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) lowerCAmelCase__ : Tuple = torch.tensor( [[4.7_1_8_8, -3.2_5_8_5, -2.8_8_5_7], [6.6_8_7_1, -2.9_1_8_1, -1.2_4_8_7], [7.2_4_4_9, -2.2_7_6_4, -2.1_8_7_4]] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] ,__UpperCAmelCase ,atol=__UpperCAmelCase ) ) def UpperCAmelCase_ ( self ) -> Optional[Any]: lowerCAmelCase__ : str = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" ) .to(__UpperCAmelCase ) .eval() ) lowerCAmelCase__ : Dict = self.default_image_processor lowerCAmelCase__ : Union[str, Any] = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] ,segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] ,return_tensors="""pt""" ,) lowerCAmelCase__ : Tuple = inputs["""pixel_values"""].to(__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = [el.to(__UpperCAmelCase ) for el in inputs["""mask_labels"""]] lowerCAmelCase__ : Union[str, Any] = [el.to(__UpperCAmelCase ) for el in inputs["""class_labels"""]] with torch.no_grad(): lowerCAmelCase__ : Any = model(**__UpperCAmelCase ) self.assertTrue(outputs.loss is not None )
37
1
"""simple docstring""" from __future__ import annotations def lowercase ( lowerCAmelCase__ : list[int] , lowerCAmelCase__ : list[int] , lowerCAmelCase__ : int ) -> tuple[float, list[float]]: __a = list(range(len(lowerCAmelCase__ ) ) ) __a = [v / w for v, w in zip(lowerCAmelCase__ , lowerCAmelCase__ )] index.sort(key=lambda lowerCAmelCase__ : ratio[i] , reverse=lowerCAmelCase__ ) __a = 0 __a = [0] * len(lowerCAmelCase__ ) for i in index: if weight[i] <= capacity: __a = 1 max_value += value[i] capacity -= weight[i] else: __a = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
11
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = { "configuration_blip_2": [ "BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Blip2Config", "Blip2QFormerConfig", "Blip2VisionConfig", ], "processing_blip_2": ["Blip2Processor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST", "Blip2Model", "Blip2QFormerModel", "Blip2PreTrainedModel", "Blip2ForConditionalGeneration", "Blip2VisionModel", ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
11
1
'''simple docstring''' def lowerCAmelCase (__A): """simple docstring""" _a = 0 for ch in input_str: _a = ord(_A) _a = pow(2 , _A) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
211
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowercase = { '''configuration_resnet''': ['''RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ResNetConfig''', '''ResNetOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''RESNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ResNetForImageClassification''', '''ResNetModel''', '''ResNetPreTrainedModel''', '''ResNetBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFResNetForImageClassification''', '''TFResNetModel''', '''TFResNetPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''FlaxResNetForImageClassification''', '''FlaxResNetModel''', '''FlaxResNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys __lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
272
0
"""simple docstring""" # DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class __magic_name__ ( __UpperCAmelCase ): __A : torch.FloatTensor __A : Optional[torch.FloatTensor] = None def lowerCamelCase (a_ :List[Any] , a_ :List[str]=0.9_99 , a_ :List[Any]="cosine" , ) -> str: if alpha_transform_type == "cosine": def alpha_bar_fn(a_ :Union[str, Any]): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(a_ :Tuple): return math.exp(t * -12.0) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""") lowercase :str = [] for i in range(a_): lowercase :Optional[Any] = i / num_diffusion_timesteps lowercase :Union[str, Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(a_) / alpha_bar_fn(a_) , a_)) return torch.tensor(a_ , dtype=torch.floataa) class __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ): __A : Tuple = 1 @register_to_config def __init__( self : Union[str, Any] , snake_case__ : int = 1_0_0_0 , snake_case__ : float = 0.00_01 , snake_case__ : float = 0.02 , snake_case__ : str = "linear" , snake_case__ : Optional[Union[np.ndarray, List[float]]] = None , snake_case__ : bool = True , snake_case__ : bool = True , snake_case__ : int = 0 , snake_case__ : str = "epsilon" , snake_case__ : float = 1.0 , **snake_case__ : Union[str, Any] , ): '''simple docstring''' if kwargs.get('''set_alpha_to_one''' , snake_case__ ) is not None: lowercase :Any = ( '''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.''' ) deprecate('''set_alpha_to_one''' , '''1.0.0''' , snake_case__ , standard_warn=snake_case__ ) lowercase :str = kwargs['''set_alpha_to_one'''] if trained_betas is not None: lowercase :Any = torch.tensor(snake_case__ , dtype=torch.floataa ) elif beta_schedule == "linear": lowercase :Optional[Any] = torch.linspace(snake_case__ , snake_case__ , snake_case__ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowercase :Tuple = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , snake_case__ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowercase :Dict = betas_for_alpha_bar(snake_case__ ) else: raise NotImplementedError(f"""{beta_schedule} does is not implemented for {self.__class__}""" ) lowercase :int = 1.0 - self.betas lowercase :int = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. lowercase :Tuple = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution lowercase :Any = 1.0 # setable values lowercase :Dict = None lowercase :int = torch.from_numpy(np.arange(0 , snake_case__ ).copy().astype(np.intaa ) ) def __snake_case ( self : List[Any] , snake_case__ : torch.FloatTensor , snake_case__ : Optional[int] = None ): '''simple docstring''' return sample def __snake_case ( self : Dict , snake_case__ : int , snake_case__ : Union[str, torch.device] = None ): '''simple docstring''' if num_inference_steps > self.config.num_train_timesteps: raise ValueError( f"""`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:""" f""" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle""" f""" maximal {self.config.num_train_timesteps} timesteps.""" ) lowercase :Any = num_inference_steps lowercase :Union[str, Any] = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowercase :str = (np.arange(0 , snake_case__ ) * step_ratio).round().copy().astype(np.intaa ) lowercase :Any = torch.from_numpy(snake_case__ ).to(snake_case__ ) self.timesteps += self.config.steps_offset def __snake_case ( self : List[Any] , snake_case__ : torch.FloatTensor , snake_case__ : int , snake_case__ : torch.FloatTensor , snake_case__ : float = 0.0 , snake_case__ : bool = False , snake_case__ : Optional[torch.FloatTensor] = None , snake_case__ : bool = True , ): '''simple docstring''' lowercase :Optional[Any] = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process lowercase :List[Any] = self.alphas_cumprod[timestep] lowercase :List[str] = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) lowercase :Any = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": lowercase :Any = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 lowercase :str = model_output elif self.config.prediction_type == "sample": lowercase :List[Any] = model_output lowercase :List[str] = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": lowercase :Any = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output lowercase :Tuple = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or""" ''' `v_prediction`''' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: lowercase :Dict = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowercase :List[Any] = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowercase :Optional[int] = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=snake_case__ , pred_original_sample=snake_case__ ) def __len__( self : Tuple ): '''simple docstring''' return self.config.num_train_timesteps
172
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { '''caidas/swin2sr-classicalsr-x2-64''': ( '''https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json''' ), } class __magic_name__ ( __UpperCAmelCase ): __A : Tuple = "swin2sr" __A : Dict = { "hidden_size": "embed_dim", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : List[str] , snake_case__ : List[str]=6_4 , snake_case__ : Union[str, Any]=1 , snake_case__ : Tuple=3 , snake_case__ : int=1_8_0 , snake_case__ : Union[str, Any]=[6, 6, 6, 6, 6, 6] , snake_case__ : List[str]=[6, 6, 6, 6, 6, 6] , snake_case__ : Tuple=8 , snake_case__ : List[Any]=2.0 , snake_case__ : Any=True , snake_case__ : Dict=0.0 , snake_case__ : Dict=0.0 , snake_case__ : Dict=0.1 , snake_case__ : Dict="gelu" , snake_case__ : Optional[int]=False , snake_case__ : Any=0.02 , snake_case__ : Any=1e-5 , snake_case__ : Optional[int]=2 , snake_case__ : Optional[int]=1.0 , snake_case__ : Optional[Any]="1conv" , snake_case__ : List[str]="pixelshuffle" , **snake_case__ : Tuple , ): '''simple docstring''' super().__init__(**snake_case__ ) lowercase :Dict = image_size lowercase :List[str] = patch_size lowercase :Tuple = num_channels lowercase :int = embed_dim lowercase :Any = depths lowercase :Union[str, Any] = len(snake_case__ ) lowercase :List[str] = num_heads lowercase :int = window_size lowercase :Tuple = mlp_ratio lowercase :List[Any] = qkv_bias lowercase :Optional[int] = hidden_dropout_prob lowercase :Tuple = attention_probs_dropout_prob lowercase :Tuple = drop_path_rate lowercase :Optional[Any] = hidden_act lowercase :Union[str, Any] = use_absolute_embeddings lowercase :Dict = layer_norm_eps lowercase :Optional[Any] = initializer_range lowercase :Optional[Any] = upscale lowercase :Any = img_range lowercase :Optional[int] = resi_connection lowercase :Union[str, Any] = upsampler
172
1
"""simple docstring""" def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' return int((input_a, input_a).count(1 ) != 0 ) def UpperCAmelCase__ (): '''simple docstring''' assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
54
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy a__ : Union[str, Any] = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" def __init__( self : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : float , **UpperCAmelCase__ : List[str] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = feature_size __SCREAMING_SNAKE_CASE = sampling_rate __SCREAMING_SNAKE_CASE = padding_value __SCREAMING_SNAKE_CASE = kwargs.pop("padding_side" , "right" ) __SCREAMING_SNAKE_CASE = kwargs.pop("return_attention_mask" , UpperCAmelCase__ ) super().__init__(**UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] , UpperCAmelCase__ : Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , UpperCAmelCase__ : Union[bool, str, PaddingStrategy] = True , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[Union[str, TensorType]] = None , ) -> BatchFeature: # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(UpperCAmelCase__ , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): __SCREAMING_SNAKE_CASE = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( "You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`" F""" to this method that includes {self.model_input_names[0]}, but you provided""" F""" {list(processed_features.keys() )}""" ) __SCREAMING_SNAKE_CASE = processed_features[self.model_input_names[0]] __SCREAMING_SNAKE_CASE = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(UpperCAmelCase__ ) == 0: if return_attention_mask: __SCREAMING_SNAKE_CASE = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch __SCREAMING_SNAKE_CASE = required_input[0] if isinstance(UpperCAmelCase__ , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. __SCREAMING_SNAKE_CASE = 0 while len(required_input[index] ) == 0: index += 1 if index < len(UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = required_input[index][0] if return_tensors is None: if is_tf_tensor(UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = "tf" elif is_torch_tensor(UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = "pt" elif isinstance(UpperCAmelCase__ , (int, float, list, tuple, np.ndarray) ): __SCREAMING_SNAKE_CASE = "np" else: raise ValueError( F"""type of {first_element} unknown: {type(UpperCAmelCase__ )}. """ "Should be one of a python, numpy, pytorch or tensorflow object." ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): __SCREAMING_SNAKE_CASE = to_numpy(UpperCAmelCase__ ) else: __SCREAMING_SNAKE_CASE = [to_numpy(UpperCAmelCase__ ) for v in value] # Convert padding_strategy in PaddingStrategy __SCREAMING_SNAKE_CASE = self._get_padding_strategies(padding=UpperCAmelCase__ , max_length=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = processed_features[self.model_input_names[0]] __SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) if not all(len(UpperCAmelCase__ ) == batch_size for v in processed_features.values() ): raise ValueError("Some items in the output dictionary have a different batch size than others." ) __SCREAMING_SNAKE_CASE = [] for i in range(UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = {k: v[i] for k, v in processed_features.items()} # truncation __SCREAMING_SNAKE_CASE = self._truncate( UpperCAmelCase__ , max_length=UpperCAmelCase__ , pad_to_multiple_of=UpperCAmelCase__ , truncation=UpperCAmelCase__ , ) truncated_inputs.append(UpperCAmelCase__ ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length __SCREAMING_SNAKE_CASE = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) __SCREAMING_SNAKE_CASE = PaddingStrategy.MAX_LENGTH __SCREAMING_SNAKE_CASE = {} for i in range(UpperCAmelCase__ ): # padding __SCREAMING_SNAKE_CASE = self._pad( truncated_inputs[i] , max_length=UpperCAmelCase__ , padding_strategy=UpperCAmelCase__ , pad_to_multiple_of=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , ) for key, value in outputs.items(): if key not in batch_outputs: __SCREAMING_SNAKE_CASE = [] if value.dtype is np.dtype(np.floataa ): __SCREAMING_SNAKE_CASE = value.astype(np.floataa ) batch_outputs[key].append(UpperCAmelCase__ ) return BatchFeature(UpperCAmelCase__ , tensor_type=UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] , UpperCAmelCase__ : Union[Dict[str, np.ndarray], BatchFeature] , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[bool] = None , ) -> dict: __SCREAMING_SNAKE_CASE = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: __SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __SCREAMING_SNAKE_CASE = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __SCREAMING_SNAKE_CASE = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(UpperCAmelCase__ ) < max_length if return_attention_mask and "attention_mask" not in processed_features: __SCREAMING_SNAKE_CASE = np.ones(len(UpperCAmelCase__ ) , dtype=np.intaa ) if needs_to_be_padded: __SCREAMING_SNAKE_CASE = max_length - len(UpperCAmelCase__ ) if self.padding_side == "right": if return_attention_mask: __SCREAMING_SNAKE_CASE = np.pad( processed_features["attention_mask"] , (0, difference) ) __SCREAMING_SNAKE_CASE = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) __SCREAMING_SNAKE_CASE = np.pad( UpperCAmelCase__ , UpperCAmelCase__ , "constant" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: __SCREAMING_SNAKE_CASE = np.pad( processed_features["attention_mask"] , (difference, 0) ) __SCREAMING_SNAKE_CASE = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) __SCREAMING_SNAKE_CASE = np.pad( UpperCAmelCase__ , UpperCAmelCase__ , "constant" , constant_values=self.padding_value ) else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return processed_features def UpperCAmelCase_ ( self : Union[str, Any] , UpperCAmelCase__ : Union[Dict[str, np.ndarray], BatchFeature] , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[bool] = None , ) -> str: if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("When setting ``truncation=True``, make sure that ``max_length`` is defined." ) __SCREAMING_SNAKE_CASE = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __SCREAMING_SNAKE_CASE = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) > max_length if needs_to_be_truncated: __SCREAMING_SNAKE_CASE = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: __SCREAMING_SNAKE_CASE = processed_features["attention_mask"][:max_length] return processed_features def UpperCAmelCase_ ( self : Optional[int] , UpperCAmelCase__ : Optional[Any]=False , UpperCAmelCase__ : Optional[int]=None ) -> str: # Get padding strategy if padding is not False: if padding is True: __SCREAMING_SNAKE_CASE = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = PaddingStrategy(UpperCAmelCase__ ) elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = padding else: __SCREAMING_SNAKE_CASE = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( F"""When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined""" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( "Asking to pad but the feature_extractor does not have a padding value. Please select a value to use" " as `padding_value`. For example: `feature_extractor.padding_value = 0.0`." ) return padding_strategy
54
1
from __future__ import annotations from statistics import mean def lowercase_ ( A__ , A__ , A__ ) -> list[int]: """simple docstring""" snake_case = [0] * no_of_processes snake_case = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(lowerCamelCase__ ): snake_case = burst_time[i] snake_case = [] snake_case = 0 snake_case = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: snake_case = [] snake_case = -1 for i in range(lowerCamelCase__ ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0: snake_case = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: snake_case = i total_time += burst_time[target_process] completed += 1 snake_case = 0 snake_case = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def lowercase_ ( A__ , A__ , A__ ) -> list[int]: """simple docstring""" snake_case = [0] * no_of_processes for i in range(lowerCamelCase__ ): snake_case = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("[TEST CASE 01]") _A = 4 _A = [2, 5, 3, 7] _A = [0, 0, 0, 0] _A = calculate_waitingtime(arrival_time, burst_time, no_of_processes) _A = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time") for i, process_id in enumerate(list(range(1, 5))): print( f"{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t" f"{waiting_time[i]}\t\t\t\t{turn_around_time[i]}" ) print(f"\nAverage waiting time = {mean(waiting_time):.5f}") print(f"Average turnaround time = {mean(turn_around_time):.5f}")
354
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy _A = logging.getLogger(__name__) _A = "pytorch_model.bin" @dataclasses.dataclass class lowerCamelCase : UpperCAmelCase__ : str = dataclasses.field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."} ) UpperCAmelCase__ : Optional[str] = dataclasses.field( default=A_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co."} , ) @dataclasses.dataclass class lowerCamelCase : UpperCAmelCase__ : str = dataclasses.field(metadata={"help": "A csv or a json file containing the training data."} ) UpperCAmelCase__ : str = dataclasses.field(metadata={"help": "A csv or a json file containing the data to predict on."} ) UpperCAmelCase__ : Optional[str] = dataclasses.field( default=A_ , metadata={"help": "A csv or a json file containing the validation data."} ) UpperCAmelCase__ : Optional[str] = dataclasses.field( default=A_ , metadata={"help": "The name of the task to train on."} , ) UpperCAmelCase__ : Optional[List[str]] = dataclasses.field( default=A_ , metadata={"help": "The list of labels for the task."} ) @dataclasses.dataclass class lowerCamelCase : UpperCAmelCase__ : str = dataclasses.field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."} ) UpperCAmelCase__ : Optional[str] = dataclasses.field( default="accuracy" , metadata={"help": "The evaluation metric used for the task."} ) UpperCAmelCase__ : Optional[str] = dataclasses.field( default="no" , metadata={ "help": "The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]" } , ) UpperCAmelCase__ : Optional[int] = dataclasses.field( default=10 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) UpperCAmelCase__ : Optional[float] = dataclasses.field( default=0.0 , metadata={ "help": "How much the specified evaluation metric must improve to satisfy early stopping conditions." } , ) UpperCAmelCase__ : Optional[bool] = dataclasses.field( default=A_ , metadata={"help": "Whether to filter the pseudo-labeled data based on the confidence score."} , ) UpperCAmelCase__ : Optional[bool] = dataclasses.field( default=A_ , metadata={"help": "Whether to filter the pseudo-labeled data based on the validation performance."} , ) UpperCAmelCase__ : Optional[bool] = dataclasses.field( default=A_ , metadata={"help": "Whether to fine-tune on labeled data after pseudo training."} , ) UpperCAmelCase__ : Optional[float] = dataclasses.field( default=0.0 , metadata={"help": "Confidence threshold for pseudo-labeled data filtering."} , ) UpperCAmelCase__ : Optional[int] = dataclasses.field( default=1_00 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) UpperCAmelCase__ : Optional[int] = dataclasses.field( default=A_ , metadata={"help": "Random seed for initialization."} , ) def lowercase_ ( A__ , A__ , A__ , A__ , A__ , A__ ) -> Union[str, Any]: """simple docstring""" snake_case = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: snake_case = dataset.filter(lambda A__ : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 snake_case = int(eval_result * len(A__ ) ) print(A__ ) snake_case = dataset.sort("probability" , reverse=A__ ) snake_case = dataset.select(range(A__ ) ) snake_case = dataset.remove_columns(["label", "probability"] ) snake_case = dataset.rename_column("prediction" , "label" ) snake_case = dataset.map(lambda A__ : {"label": idalabel[example["label"]]} ) snake_case = dataset.shuffle(seed=args.seed ) snake_case = os.path.join(A__ , F'train_pseudo.{args.data_file_extension}' ) if args.data_file_extension == "csv": dataset.to_csv(A__ , index=A__ ) else: dataset.to_json(A__ ) def lowercase_ ( A__ , A__ , A__ , A__ , **A__ ) -> List[Any]: """simple docstring""" snake_case = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() snake_case = STModelArguments(model_name_or_path=A__ ) snake_case = STDataArguments(train_file=A__ , infer_file=A__ ) snake_case = STTrainingArguments(output_dir=A__ ) snake_case = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(A__ ).items(): setattr(A__ , A__ , A__ ) for key, value in kwargs.items(): if hasattr(A__ , A__ ): setattr(A__ , A__ , A__ ) # Sanity checks snake_case = {} snake_case = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None snake_case = args.train_file snake_case = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None snake_case = args.eval_file for key in data_files: snake_case = data_files[key].split("." )[-1] assert extension in ["csv", "json"], F'`{key}_file` should be a csv or a json file.' if args.data_file_extension is None: snake_case = extension else: assert extension == args.data_file_extension, F'`{key}_file` should be a {args.data_file_extension} file`.' assert ( args.eval_metric in datasets.list_metrics() ), F'{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info("Creating the initial data directory for self-training..." ) snake_case = F'{args.output_dir}/self-train_iter-{{}}'.format snake_case = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=A__ ) os.makedirs(A__ , exist_ok=A__ ) accelerator.wait_for_everyone() snake_case = None snake_case = None snake_case = 0 snake_case = False # Show the progress bar snake_case = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): snake_case = data_dir_format(A__ ) assert os.path.exists(A__ ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 snake_case = os.path.join(A__ , "stage-1" ) snake_case = { "accelerator": accelerator, "model_name_or_path": args.model_name_or_path, "cache_dir": args.cache_dir, "do_train": True, "train_file": data_files["train"] if iteration == 0 else data_files["train_pseudo"], "do_eval": True if args.eval_file is not None else False, "eval_file": data_files["eval"], "do_predict": True, "infer_file": data_files["infer"], "task_name": args.task_name, "label_list": args.label_list, "output_dir": current_output_dir, "eval_metric": args.eval_metric, "evaluation_strategy": args.evaluation_strategy, "early_stopping_patience": args.early_stopping_patience, "early_stopping_threshold": args.early_stopping_threshold, "seed": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(A__ , A__ ): arguments_dict.update({key: value} ) snake_case = os.path.join(A__ , "best-checkpoint" , A__ ) if os.path.exists(A__ ): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1." , A__ , A__ , ) else: logger.info("***** Running self-training: iteration: %d, stage: 1 *****" , A__ ) finetune(**A__ ) accelerator.wait_for_everyone() assert os.path.exists(A__ ) logger.info("Self-training job completed: iteration: %d, stage: 1." , A__ ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data snake_case = os.path.join(A__ , "best-checkpoint" ) snake_case = os.path.join(A__ , "stage-2" ) # Update arguments_dict snake_case = model_path snake_case = data_files["train"] snake_case = current_output_dir snake_case = os.path.join(A__ , "best-checkpoint" , A__ ) if os.path.exists(A__ ): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2." , A__ , A__ , ) else: logger.info("***** Running self-training: iteration: %d, stage: 2 *****" , A__ ) finetune(**A__ ) accelerator.wait_for_everyone() assert os.path.exists(A__ ) logger.info("Self-training job completed: iteration: %d, stage: 2." , A__ ) snake_case = iteration snake_case = data_dir_format(iteration + 1 ) snake_case = AutoConfig.from_pretrained(os.path.join(A__ , "best-checkpoint" ) ) snake_case = config.idalabel snake_case = os.path.join(A__ , "eval_results_best-checkpoint.json" ) snake_case = os.path.join(A__ , "test_results_best-checkpoint.json" ) assert os.path.exists(A__ ) with open(A__ , "r" ) as f: snake_case = float(json.load(A__ )[args.eval_metric] ) snake_case = os.path.join(A__ , "infer_output_best-checkpoint.csv" ) assert os.path.exists(A__ ) # Loading the dataset from local csv or json files. snake_case = load_dataset(args.data_file_extension , data_files={"data": data_files["infer"]} )["data"] snake_case = load_dataset("csv" , data_files={"data": infer_output_file} )["data"] if accelerator.is_main_process: os.makedirs(A__ , exist_ok=A__ ) shutil.copy(A__ , os.path.join(A__ , F'eval_results_iter-{iteration}.json' ) ) if os.path.exists(A__ ): shutil.copy(A__ , os.path.join(A__ , F'test_results_iter-{iteration}.json' ) ) create_pseudo_labeled_data(A__ , A__ , A__ , A__ , A__ , A__ ) accelerator.wait_for_everyone() snake_case = os.path.join(A__ , F'train_pseudo.{args.data_file_extension}' ) if args.evaluation_strategy != IntervalStrategy.NO.value: snake_case = eval_result if best_iteration is None: snake_case = new_iteration snake_case = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: snake_case = new_iteration snake_case = new_eval_result snake_case = 0 else: if new_eval_result == best_eval_result: snake_case = new_iteration snake_case = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: snake_case = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info("Best iteration: %d" , A__ ) logger.info("Best evaluation result: %s = %f" , args.eval_metric , A__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(A__ , F'eval_results_iter-{iteration}.json' ) , os.path.join(A__ , "eval_results_best-iteration.json" ) , ) else: # Assume that the last iteration is the best logger.info("Best iteration: %d" , args.max_selftrain_iterations - 1 ) logger.info("Best evaluation result: %s = %f" , args.eval_metric , A__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(A__ , F'eval_results_iter-{args.max_selftrain_iterations - 1}.json' ) , os.path.join(A__ , "eval_results_best-iteration.json" ) , )
137
0
import gc import threading import time import psutil import torch class a : """simple docstring""" def __init__( self : int ) -> Tuple: __UpperCAmelCase : Tuple = psutil.Process() __UpperCAmelCase : str = False def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: __UpperCAmelCase : Optional[int] = -1 while True: __UpperCAmelCase : Optional[int] = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def UpperCAmelCase ( self : Any ) -> Any: __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : Optional[Any] = threading.Thread(target=self.peak_monitor ) __UpperCAmelCase : Tuple = True self.thread.start() def UpperCAmelCase ( self : Optional[int] ) -> int: __UpperCAmelCase : List[Any] = False self.thread.join() return self.cpu_memory_peak a : str = PeakCPUMemory() def lowerCamelCase__ ( ): # Time __UpperCAmelCase : List[Any] = {"""time""": time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem __UpperCAmelCase : Any = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): __UpperCAmelCase : Any = torch.cuda.memory_allocated(__lowerCamelCase ) torch.cuda.reset_peak_memory_stats() return measures def lowerCamelCase__ ( __lowerCamelCase : Tuple ): # Time __UpperCAmelCase : Any = {"""time""": time.time() - start_measures["""time"""]} gc.collect() torch.cuda.empty_cache() # CPU mem __UpperCAmelCase : Optional[int] = (psutil.Process().memory_info().rss - start_measures["""cpu"""]) / 2**20 __UpperCAmelCase : str = (cpu_peak_tracker.stop() - start_measures["""cpu"""]) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): __UpperCAmelCase : List[Any] = (torch.cuda.memory_allocated(__lowerCamelCase ) - start_measures[str(__lowerCamelCase )]) / 2**20 __UpperCAmelCase : List[str] = (torch.cuda.max_memory_allocated(__lowerCamelCase ) - start_measures[str(__lowerCamelCase )]) / 2**20 return measures def lowerCamelCase__ ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Any ): print(f"""{description}:""" ) print(f"""- Time: {measures["time"]:.2f}s""" ) for i in range(torch.cuda.device_count() ): print(f"""- GPU {i} allocated: {measures[str(__lowerCamelCase )]:.2f}MiB""" ) __UpperCAmelCase : Optional[int] = measures[f"""{i}-peak"""] print(f"""- GPU {i} peak: {peak:.2f}MiB""" ) print(f"""- CPU RAM allocated: {measures["cpu"]:.2f}MiB""" ) print(f"""- CPU RAM peak: {measures["cpu-peak"]:.2f}MiB""" )
114
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class a ( lowercase__ , unittest.TestCase ): """simple docstring""" a : int = 'hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline' def UpperCAmelCase ( self : List[str] , __lowercase : Optional[Any]=0 ) -> Any: __UpperCAmelCase : Any = floats_tensor((1, 3, 128, 128) , rng=random.Random(__lowercase ) ) __UpperCAmelCase : int = np.random.RandomState(__lowercase ) __UpperCAmelCase : Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """strength""": 0.75, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]: __UpperCAmelCase : List[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=__lowercase ) __UpperCAmelCase : int = self.get_dummy_inputs() __UpperCAmelCase : Optional[Any] = pipe(**__lowercase ).images __UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) __UpperCAmelCase : List[str] = np.array([0.69_643, 0.58_484, 0.50_314, 0.58_760, 0.55_368, 0.59_643, 0.51_529, 0.41_217, 0.49_087] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def UpperCAmelCase ( self : Optional[Any] ) -> List[str]: __UpperCAmelCase : Dict = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __UpperCAmelCase : int = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __UpperCAmelCase : Any = self.get_dummy_inputs() __UpperCAmelCase : Tuple = pipe(**__lowercase ).images __UpperCAmelCase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __UpperCAmelCase : str = np.array([0.61_737, 0.54_642, 0.53_183, 0.54_465, 0.52_742, 0.60_525, 0.49_969, 0.40_655, 0.48_154] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def UpperCAmelCase ( self : str ) -> Tuple: __UpperCAmelCase : Tuple = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __UpperCAmelCase : int = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__lowercase ) # warmup pass to apply optimizations __UpperCAmelCase : Optional[int] = pipe(**self.get_dummy_inputs() ) __UpperCAmelCase : Tuple = self.get_dummy_inputs() __UpperCAmelCase : Any = pipe(**__lowercase ).images __UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __UpperCAmelCase : Optional[int] = np.array([0.52_761, 0.59_977, 0.49_033, 0.49_619, 0.54_282, 0.50_311, 0.47_600, 0.40_918, 0.45_203] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def UpperCAmelCase ( self : Optional[Any] ) -> str: __UpperCAmelCase : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __UpperCAmelCase : Union[str, Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__lowercase ) __UpperCAmelCase : List[str] = self.get_dummy_inputs() __UpperCAmelCase : int = pipe(**__lowercase ).images __UpperCAmelCase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __UpperCAmelCase : Tuple = np.array([0.52_911, 0.60_004, 0.49_229, 0.49_805, 0.54_502, 0.50_680, 0.47_777, 0.41_028, 0.45_304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def UpperCAmelCase ( self : int ) -> Any: __UpperCAmelCase : Any = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __UpperCAmelCase : List[Any] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__lowercase ) __UpperCAmelCase : Union[str, Any] = self.get_dummy_inputs() __UpperCAmelCase : int = pipe(**__lowercase ).images __UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __UpperCAmelCase : List[str] = np.array([0.52_911, 0.60_004, 0.49_229, 0.49_805, 0.54_502, 0.50_680, 0.47_777, 0.41_028, 0.45_304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def UpperCAmelCase ( self : Tuple ) -> str: __UpperCAmelCase : Dict = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __UpperCAmelCase : str = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__lowercase ) __UpperCAmelCase : Optional[Any] = self.get_dummy_inputs() __UpperCAmelCase : int = pipe(**__lowercase ).images __UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __UpperCAmelCase : Union[str, Any] = np.array([0.65_331, 0.58_277, 0.48_204, 0.56_059, 0.53_665, 0.56_235, 0.50_969, 0.40_009, 0.46_552] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class a ( unittest.TestCase ): """simple docstring""" @property def UpperCAmelCase ( self : Dict ) -> List[Any]: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCAmelCase ( self : Tuple ) -> Tuple: __UpperCAmelCase : Optional[int] = ort.SessionOptions() __UpperCAmelCase : List[Any] = False return options def UpperCAmelCase ( self : List[str] ) -> Tuple: __UpperCAmelCase : List[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) __UpperCAmelCase : Dict = init_image.resize((768, 512) ) # using the PNDM scheduler by default __UpperCAmelCase : Any = OnnxStableDiffusionImgaImgPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=__lowercase , feature_extractor=__lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__lowercase ) __UpperCAmelCase : Dict = """A fantasy landscape, trending on artstation""" __UpperCAmelCase : str = np.random.RandomState(0 ) __UpperCAmelCase : Optional[Any] = pipe( prompt=__lowercase , image=__lowercase , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=__lowercase , output_type="""np""" , ) __UpperCAmelCase : str = output.images __UpperCAmelCase : int = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __UpperCAmelCase : Union[str, Any] = np.array([0.4_909, 0.5_059, 0.5_372, 0.4_623, 0.4_876, 0.5_049, 0.4_820, 0.4_956, 0.5_019] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def UpperCAmelCase ( self : Optional[Any] ) -> str: __UpperCAmelCase : Tuple = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) __UpperCAmelCase : int = init_image.resize((768, 512) ) __UpperCAmelCase : Tuple = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) __UpperCAmelCase : Tuple = OnnxStableDiffusionImgaImgPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=__lowercase , safety_checker=__lowercase , feature_extractor=__lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__lowercase ) __UpperCAmelCase : Dict = """A fantasy landscape, trending on artstation""" __UpperCAmelCase : int = np.random.RandomState(0 ) __UpperCAmelCase : Optional[int] = pipe( prompt=__lowercase , image=__lowercase , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=__lowercase , output_type="""np""" , ) __UpperCAmelCase : Union[str, Any] = output.images __UpperCAmelCase : Union[str, Any] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __UpperCAmelCase : str = np.array([0.8_043, 0.926, 0.9_581, 0.8_119, 0.8_954, 0.913, 0.7_209, 0.7_463, 0.7_431] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
114
1
from __future__ import annotations import requests def lowerCAmelCase_ ( __A ) -> Dict: '''simple docstring''' UpperCAmelCase__ = f"""https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty""" return requests.get(A_ ).json() def lowerCAmelCase_ ( __A = 10 ) -> List[str]: '''simple docstring''' UpperCAmelCase__ = '''https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty''' UpperCAmelCase__ = requests.get(A_ ).json()[:max_stories] return [get_hackernews_story(A_ ) for story_id in story_ids] def lowerCAmelCase_ ( __A = 10 ) -> List[Any]: '''simple docstring''' UpperCAmelCase__ = hackernews_top_stories(A_ ) return "\n".join("* [{title}]({url})".format(**A_ ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
358
from __future__ import annotations def lowerCAmelCase_ ( __A, __A, __A, ) -> tuple: '''simple docstring''' if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative in a semiconductor" ) elif hole_conc < 0: raise ValueError("Hole concentration cannot be negative in a semiconductor" ) elif intrinsic_conc < 0: raise ValueError( "Intrinsic concentration cannot be negative in a semiconductor" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
143
0
from __future__ import annotations def _UpperCAmelCase (UpperCamelCase__ : list[int] , UpperCamelCase__ : list[int] , UpperCamelCase__ : int ): _A : Dict = list(range(len(UpperCamelCase__ ) ) ) _A : Any = [v / w for v, w in zip(UpperCamelCase__ , UpperCamelCase__ )] index.sort(key=lambda UpperCamelCase__ : ratio[i] , reverse=UpperCamelCase__ ) _A : float = 0 _A : list[float] = [0] * len(UpperCamelCase__ ) for i in index: if weight[i] <= capacity: _A : Union[str, Any] = 1 max_value += value[i] capacity -= weight[i] else: _A : Optional[Any] = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
11
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels lowerCAmelCase__ = object() # For specifying empty leaf dict `{}` lowerCAmelCase__ = object() def _UpperCAmelCase (UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any] ): _A : str = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(UpperCamelCase__ ) - len(UpperCamelCase__ ) + 1 ): _A : Tuple = [x.match(UpperCamelCase__ ) for x, y in zip(UpperCamelCase__ , ks[i:] )] if matches and all(UpperCamelCase__ ): return True return False def _UpperCAmelCase (UpperCamelCase__ : str ): def replace(UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[int] ): for rule, replacement in rules: if _match(UpperCamelCase__ , UpperCamelCase__ ): return replacement return val return replace def _UpperCAmelCase (): return [ # embeddings (("transformer", "wpe", "embedding"), P("mp" , UpperCamelCase__ )), (("transformer", "wte", "embedding"), P("mp" , UpperCamelCase__ )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(UpperCamelCase__ , "mp" )), (("attention", "out_proj", "kernel"), P("mp" , UpperCamelCase__ )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(UpperCamelCase__ , "mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp" , UpperCamelCase__ )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def _UpperCAmelCase (UpperCamelCase__ : List[str] ): _A : int = _get_partition_rules() _A : Optional[int] = _replacement_rules(UpperCamelCase__ ) _A : Optional[int] = {k: _unmatched for k in flatten_dict(UpperCamelCase__ )} _A : List[str] = {k: replace(UpperCamelCase__ , UpperCamelCase__ ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(UpperCamelCase__ ) )
11
1
'''simple docstring''' A__ : Any = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] A__ : str = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] A__ : Tuple = { 0: '''Sunday''', 1: '''Monday''', 2: '''Tuesday''', 3: '''Wednesday''', 4: '''Thursday''', 5: '''Friday''', 6: '''Saturday''', } def a_ ( _UpperCAmelCase : int ,_UpperCAmelCase : int ,_UpperCAmelCase : int ) -> str: assert len(str(_UpperCAmelCase ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: __snake_case : str = year // 1_00 __snake_case : Tuple = (5 * (century % 4) + 2) % 7 __snake_case : Any = year % 1_00 __snake_case : Optional[int] = centurian % 12 __snake_case : List[Any] = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 __snake_case : Optional[int] = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 4_00) == 0) else DOOMSDAY_LEAP[month - 1] ) __snake_case : Dict = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
353
'''simple docstring''' def a_ ( _UpperCAmelCase : float ,_UpperCAmelCase : float ) -> float: return price * (1 + tax_rate) if __name__ == "__main__": print(F"""{price_plus_tax(1_0_0, 0.25) = }""") print(F"""{price_plus_tax(1_25.50, 0.05) = }""")
0
0
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class UpperCamelCase ( lowercase ): UpperCAmelCase : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
172
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class UpperCamelCase ( lowercase ): UpperCAmelCase : Any = """Wav2Vec2FeatureExtractor""" UpperCAmelCase : List[str] = """AutoTokenizer""" def __init__(self : int , _A : List[str] , _A : str) -> str: super().__init__(_A , _A) __snake_case : Tuple = self.feature_extractor __snake_case : str = False @classmethod def _lowercase (cls : Union[str, Any] , _A : Optional[Any] , **_A : str) -> List[Any]: try: return super().from_pretrained(_A , **_A) except OSError: warnings.warn( f"Loading a tokenizer inside {cls.__name__} from a config that does not" ' include a `tokenizer_class` attribute is deprecated and will be ' 'removed in v5. Please add `\'tokenizer_class\': \'Wav2Vec2CTCTokenizer\'`' ' attribute to either your `config.json` or `tokenizer_config.json` ' 'file to suppress this warning: ' , _A , ) __snake_case : List[str] = WavaVecaFeatureExtractor.from_pretrained(_A , **_A) __snake_case : Any = WavaVecaCTCTokenizer.from_pretrained(_A , **_A) return cls(feature_extractor=_A , tokenizer=_A) def __call__(self : int , *_A : List[Any] , **_A : str) -> str: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_A , **_A) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.') __snake_case : int = kwargs.pop('raw_speech') else: __snake_case : Optional[Any] = kwargs.pop('audio' , _A) __snake_case : Tuple = kwargs.pop('sampling_rate' , _A) __snake_case : Any = kwargs.pop('text' , _A) if len(_A) > 0: __snake_case : Any = args[0] __snake_case : Dict = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.') if audio is not None: __snake_case : str = self.feature_extractor(_A , *_A , sampling_rate=_A , **_A) if text is not None: __snake_case : List[str] = self.tokenizer(_A , **_A) if text is None: return inputs elif audio is None: return encodings else: __snake_case : List[str] = encodings['input_ids'] return inputs def _lowercase (self : str , *_A : Optional[Any] , **_A : int) -> Any: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*_A , **_A) __snake_case : Optional[int] = kwargs.pop('input_features' , _A) __snake_case : List[Any] = kwargs.pop('labels' , _A) if len(_A) > 0: __snake_case : Tuple = args[0] __snake_case : Union[str, Any] = args[1:] if input_features is not None: __snake_case : Optional[Any] = self.feature_extractor.pad(_A , *_A , **_A) if labels is not None: __snake_case : Tuple = self.tokenizer.pad(_A , **_A) if labels is None: return input_features elif input_features is None: return labels else: __snake_case : str = labels['input_ids'] return input_features def _lowercase (self : Union[str, Any] , *_A : Any , **_A : List[Any]) -> List[Any]: return self.tokenizer.batch_decode(*_A , **_A) def _lowercase (self : Union[str, Any] , *_A : Dict , **_A : Union[str, Any]) -> Any: return self.tokenizer.decode(*_A , **_A) @contextmanager def _lowercase (self : List[str]) -> int: warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.') __snake_case : Dict = True __snake_case : Union[str, Any] = self.tokenizer yield __snake_case : Optional[Any] = self.feature_extractor __snake_case : int = False
172
1
import os import numpy import onnx def _a ( SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[int] ): __lowerCAmelCase = a.name __lowerCAmelCase = b.name __lowerCAmelCase = "" __lowerCAmelCase = "" __lowerCAmelCase = a == b __lowerCAmelCase = name_a __lowerCAmelCase = name_b return res def _a ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[Any] ): for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _graph_replace_input_with(node_proto.attribute[1].g , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _a ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[Any] ): for n in graph_proto.node: _node_replace_input_with(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _a ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : str ): __lowerCAmelCase = list(model.graph.initializer ) __lowerCAmelCase = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i __lowerCAmelCase = inits[i].name __lowerCAmelCase = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _a ( SCREAMING_SNAKE_CASE_ : Optional[int] ): __lowerCAmelCase = os.path.dirname(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = os.path.basename(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = onnx.load(os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) __lowerCAmelCase = list(model.graph.initializer ) __lowerCAmelCase = set() __lowerCAmelCase = {} __lowerCAmelCase = [] __lowerCAmelCase = 0 for i in range(len(SCREAMING_SNAKE_CASE_ ) ): if i in dup_set: continue for j in range(i + 1 , len(SCREAMING_SNAKE_CASE_ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(SCREAMING_SNAKE_CASE_ ) dup_set.add(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = inits[j].data_type __lowerCAmelCase = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("unexpected data type: " , SCREAMING_SNAKE_CASE_ ) total_reduced_size += mem_size __lowerCAmelCase = inits[i].name __lowerCAmelCase = inits[j].name if name_i in dup_map: dup_map[name_i].append(SCREAMING_SNAKE_CASE_ ) else: __lowerCAmelCase = [name_j] ind_to_replace.append((j, i) ) print("total reduced size: " , total_reduced_size / 10_24 / 10_24 / 10_24 , "GB" ) __lowerCAmelCase = sorted(SCREAMING_SNAKE_CASE_ ) _remove_dup_initializers_from_model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = "optimized_" + model_file_name __lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) onnx.save(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return new_model
369
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class a__ : @staticmethod def __SCREAMING_SNAKE_CASE( *_A , **_A ): """simple docstring""" pass def _a ( SCREAMING_SNAKE_CASE_ : Image ): __lowerCAmelCase = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class a__ ( unittest.TestCase ): _a : Tuple = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def __SCREAMING_SNAKE_CASE( self , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = DepthEstimationPipeline(model=_A , image_processor=_A ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def __SCREAMING_SNAKE_CASE( self , _A , _A ): """simple docstring""" __lowerCAmelCase = depth_estimator("./tests/fixtures/tests_samples/COCO/000000039769.png" ) self.assertEqual({"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )} , _A ) import datasets __lowerCAmelCase = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) __lowerCAmelCase = depth_estimator( [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] ) self.assertEqual( [ {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, ] , _A , ) @require_tf @unittest.skip("Depth estimation is not implemented in TF" ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" pass @slow @require_torch def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = "Intel/dpt-large" __lowerCAmelCase = pipeline("depth-estimation" , model=_A ) __lowerCAmelCase = depth_estimator("http://images.cocodataset.org/val2017/000000039769.jpg" ) __lowerCAmelCase = hashimage(outputs["depth"] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs["predicted_depth"].max().item() ) , 29.3_04 ) self.assertEqual(nested_simplify(outputs["predicted_depth"].min().item() ) , 2.6_62 ) @require_torch def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" self.skipTest("There is not hf-internal-testing tiny model for either GLPN nor DPT" )
102
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor SCREAMING_SNAKE_CASE_: str =logging.get_logger(__name__) class __A ( UpperCamelCase__ ): def __init__(self : List[Any] , *__a : List[str] , **__a : List[Any] ): warnings.warn( "The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use FlavaImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
1
import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger a_ : List[Any] = get_logger(__name__) class _snake_case ( enum.Enum ): _lowercase : Any = '''all_checks''' _lowercase : str = '''basic_checks''' _lowercase : str = '''no_checks''' class _snake_case ( A__ ): pass class _snake_case ( A__ ): pass class _snake_case ( A__ ): pass class _snake_case ( A__ ): pass def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None): if expected_checksums is None: logger.info('Unable to verify checksums.') return if len(set(_UpperCAmelCase) - set(_UpperCAmelCase)) > 0: raise ExpectedMoreDownloadedFiles(str(set(_UpperCAmelCase) - set(_UpperCAmelCase))) if len(set(_UpperCAmelCase) - set(_UpperCAmelCase)) > 0: raise UnexpectedDownloadedFile(str(set(_UpperCAmelCase) - set(_UpperCAmelCase))) SCREAMING_SNAKE_CASE = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] SCREAMING_SNAKE_CASE = ' for ' + verification_name if verification_name is not None else '' if len(_UpperCAmelCase) > 0: raise NonMatchingChecksumError( F'''Checksums didn\'t match{for_verification_name}:\n''' F'''{bad_urls}\n''' 'Set `verification_mode=\'no_checks\'` to skip checksums verification and ignore this error') logger.info('All the checksums matched successfully' + for_verification_name) class _snake_case ( A__ ): pass class _snake_case ( A__ ): pass class _snake_case ( A__ ): pass class _snake_case ( A__ ): pass def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): if expected_splits is None: logger.info('Unable to verify splits sizes.') return if len(set(_UpperCAmelCase) - set(_UpperCAmelCase)) > 0: raise ExpectedMoreSplits(str(set(_UpperCAmelCase) - set(_UpperCAmelCase))) if len(set(_UpperCAmelCase) - set(_UpperCAmelCase)) > 0: raise UnexpectedSplits(str(set(_UpperCAmelCase) - set(_UpperCAmelCase))) SCREAMING_SNAKE_CASE = [ {'expected': expected_splits[name], 'recorded': recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(_UpperCAmelCase) > 0: raise NonMatchingSplitsSizesError(str(_UpperCAmelCase)) logger.info('All the splits matched successfully.') def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase = True): if record_checksum: SCREAMING_SNAKE_CASE = shaaaa() with open(_UpperCAmelCase , 'rb') as f: for chunk in iter(lambda: f.read(1 << 20) , B''): m.update(_UpperCAmelCase) SCREAMING_SNAKE_CASE = m.hexdigest() else: SCREAMING_SNAKE_CASE = None return {"num_bytes": os.path.getsize(_UpperCAmelCase), "checksum": checksum} def lowerCamelCase__ (_UpperCAmelCase): if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
137
0
_snake_case = "Input must be a string of 8 numbers plus letter" _snake_case = "TRWAGMYFPDXBNJZSQVHLCKE" def A ( _lowerCamelCase ): '''simple docstring''' if not isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = F"Expected string as input, found {type(_lowerCamelCase ).__name__}" raise TypeError(_lowerCamelCase ) _lowerCAmelCase : Dict = spanish_id.replace("-" , "" ).upper() if len(_lowerCamelCase ) != 9: raise ValueError(_lowerCamelCase ) try: _lowerCAmelCase : Union[str, Any] = int(spanish_id_clean[0:8] ) _lowerCAmelCase : int = spanish_id_clean[8] except ValueError as ex: raise ValueError(_lowerCamelCase ) from ex if letter.isdigit(): raise ValueError(_lowerCamelCase ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
362
_snake_case = 8.3144598 def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if temperature < 0: raise Exception("Temperature cannot be less than 0 K" ) if molar_mass <= 0: raise Exception("Molar mass cannot be less than or equal to 0 kg/mol" ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example _snake_case = 300 _snake_case = 28 _snake_case = rms_speed_of_molecule(temperature, molar_mass) print(f'''Vrms of Nitrogen gas at 300 K is {vrms} m/s''')
300
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A_ :Any = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ :Any = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ :Optional[int] = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ :Optional[Any] = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ :Tuple = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ :Tuple = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys A_ :Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
71
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ : int = logging.get_logger(__name__) def UpperCamelCase__ ( A__ , A__=False ) -> List[Any]: snake_case__ : str = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""deit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""deit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""deit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""deit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""deit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""deit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""deit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""deit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""deit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""deit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'deit.embeddings.cls_token'), ('dist_token', 'deit.embeddings.distillation_token'), ('patch_embed.proj.weight', 'deit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'deit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'deit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" snake_case__ : Dict = [(pair[0], pair[1][4:]) if pair[1].startswith('deit' ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ('norm.weight', 'deit.layernorm.weight'), ('norm.bias', 'deit.layernorm.bias'), ('head.weight', 'cls_classifier.weight'), ('head.bias', 'cls_classifier.bias'), ('head_dist.weight', 'distillation_classifier.weight'), ('head_dist.bias', 'distillation_classifier.bias'), ] ) return rename_keys def UpperCamelCase__ ( A__ , A__ , A__=False ) -> Dict: for i in range(config.num_hidden_layers ): if base_model: snake_case__ : Tuple = '' else: snake_case__ : List[Any] = 'deit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case__ : Tuple = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) snake_case__ : List[Any] = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case__ : int = in_proj_weight[ : config.hidden_size, : ] snake_case__ : Optional[Any] = in_proj_bias[: config.hidden_size] snake_case__ : List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case__ : str = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case__ : Tuple = in_proj_weight[ -config.hidden_size :, : ] snake_case__ : int = in_proj_bias[-config.hidden_size :] def UpperCamelCase__ ( A__ , A__ , A__ ) -> str: snake_case__ : Optional[int] = dct.pop(A__ ) snake_case__ : int = val def UpperCamelCase__ ( ) -> Dict: snake_case__ : str = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case__ : Dict = Image.open(requests.get(A__ , stream=A__ ).raw ) return im @torch.no_grad() def UpperCamelCase__ ( A__ , A__ ) -> List[str]: snake_case__ : List[Any] = DeiTConfig() # all deit models have fine-tuned heads snake_case__ : Optional[int] = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size snake_case__ : Any = 1000 snake_case__ : Union[str, Any] = 'huggingface/label-files' snake_case__ : int = 'imagenet-1k-id2label.json' snake_case__ : str = json.load(open(hf_hub_download(A__ , A__ , repo_type='dataset' ) , 'r' ) ) snake_case__ : int = {int(A__ ): v for k, v in idalabel.items()} snake_case__ : List[Any] = idalabel snake_case__ : List[Any] = {v: k for k, v in idalabel.items()} snake_case__ : Tuple = int(deit_name[-6:-4] ) snake_case__ : str = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith('tiny' ): snake_case__ : Optional[int] = 192 snake_case__ : str = 768 snake_case__ : Optional[Any] = 12 snake_case__ : Tuple = 3 elif deit_name[9:].startswith('small' ): snake_case__ : str = 384 snake_case__ : str = 1536 snake_case__ : Dict = 12 snake_case__ : str = 6 if deit_name[9:].startswith('base' ): pass elif deit_name[4:].startswith('large' ): snake_case__ : List[Any] = 1024 snake_case__ : str = 4096 snake_case__ : Tuple = 24 snake_case__ : Tuple = 16 # load original model from timm snake_case__ : Optional[int] = timm.create_model(A__ , pretrained=A__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys snake_case__ : Optional[Any] = timm_model.state_dict() snake_case__ : Tuple = create_rename_keys(A__ , A__ ) for src, dest in rename_keys: rename_key(A__ , A__ , A__ ) read_in_q_k_v(A__ , A__ , A__ ) # load HuggingFace model snake_case__ : int = DeiTForImageClassificationWithTeacher(A__ ).eval() model.load_state_dict(A__ ) # Check outputs on an image, prepared by DeiTImageProcessor snake_case__ : Union[str, Any] = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 snake_case__ : List[Any] = DeiTImageProcessor(size=A__ , crop_size=config.image_size ) snake_case__ : Tuple = image_processor(images=prepare_img() , return_tensors='pt' ) snake_case__ : Tuple = encoding['pixel_values'] snake_case__ : Dict = model(A__ ) snake_case__ : Union[str, Any] = timm_model(A__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(A__ , outputs.logits , atol=1e-3 ) Path(A__ ).mkdir(exist_ok=A__ ) print(F"""Saving model {deit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(A__ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(A__ ) if __name__ == "__main__": lowerCAmelCase__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--deit_name''', default='''vit_deit_base_distilled_patch16_224''', type=str, help='''Name of the DeiT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) lowerCAmelCase__ : int = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
143
0
"""simple docstring""" import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def lowerCAmelCase__ ( _UpperCamelCase : List[str] ) -> int: """simple docstring""" snake_case = SwinConfig() snake_case = swin_name.split('_' ) snake_case = name_split[1] snake_case = int(name_split[4] ) snake_case = int(name_split[3][-1] ) if model_size == "tiny": snake_case = 9_6 snake_case = (2, 2, 6, 2) snake_case = (3, 6, 1_2, 2_4) elif model_size == "small": snake_case = 9_6 snake_case = (2, 2, 1_8, 2) snake_case = (3, 6, 1_2, 2_4) elif model_size == "base": snake_case = 1_2_8 snake_case = (2, 2, 1_8, 2) snake_case = (4, 8, 1_6, 3_2) else: snake_case = 1_9_2 snake_case = (2, 2, 1_8, 2) snake_case = (6, 1_2, 2_4, 4_8) if "in22k" in swin_name: snake_case = 2_1_8_4_1 else: snake_case = 1_0_0_0 snake_case = 'huggingface/label-files' snake_case = 'imagenet-1k-id2label.json' snake_case = json.load(open(hf_hub_download(_UpperCamelCase , _UpperCamelCase , repo_type='dataset' ) , 'r' ) ) snake_case = {int(_UpperCamelCase ): v for k, v in idalabel.items()} snake_case = idalabel snake_case = {v: k for k, v in idalabel.items()} snake_case = img_size snake_case = num_classes snake_case = embed_dim snake_case = depths snake_case = num_heads snake_case = window_size return config def lowerCAmelCase__ ( _UpperCamelCase : int ) -> int: """simple docstring""" if "patch_embed.proj" in name: snake_case = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: snake_case = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: snake_case = 'encoder.' + name if "attn.proj" in name: snake_case = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: snake_case = name.replace('attn' , 'attention.self' ) if "norm1" in name: snake_case = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: snake_case = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: snake_case = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: snake_case = name.replace('mlp.fc2' , 'output.dense' ) if name == "norm.weight": snake_case = 'layernorm.weight' if name == "norm.bias": snake_case = 'layernorm.bias' if "head" in name: snake_case = name.replace('head' , 'classifier' ) else: snake_case = 'swin.' + name return name def lowerCAmelCase__ ( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Dict ) -> str: """simple docstring""" for key in orig_state_dict.copy().keys(): snake_case = orig_state_dict.pop(_UpperCamelCase ) if "mask" in key: continue elif "qkv" in key: snake_case = key.split('.' ) snake_case = int(key_split[1] ) snake_case = int(key_split[3] ) snake_case = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: snake_case = val[:dim, :] snake_case = val[ dim : dim * 2, : ] snake_case = val[-dim:, :] else: snake_case = val[ :dim ] snake_case = val[ dim : dim * 2 ] snake_case = val[ -dim: ] else: snake_case = val return orig_state_dict def lowerCAmelCase__ ( _UpperCamelCase : int , _UpperCamelCase : Optional[int] ) -> List[str]: """simple docstring""" snake_case = timm.create_model(_UpperCamelCase , pretrained=_UpperCamelCase ) timm_model.eval() snake_case = get_swin_config(_UpperCamelCase ) snake_case = SwinForImageClassification(_UpperCamelCase ) model.eval() snake_case = convert_state_dict(timm_model.state_dict() , _UpperCamelCase ) model.load_state_dict(_UpperCamelCase ) snake_case = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swin_name.replace('_' , '-' ) ) ) snake_case = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw ) snake_case = image_processor(images=_UpperCamelCase , return_tensors='pt' ) snake_case = timm_model(inputs['pixel_values'] ) snake_case = model(**_UpperCamelCase ).logits assert torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-3 ) print(f"""Saving model {swin_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_UpperCamelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swin_name", default="swin_tiny_patch4_window7_224", type=str, help="Name of the Swin timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
149
"""simple docstring""" from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowerCAmelCase_ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase : int = [r"""h\.\d+\.attn\.bias""", r"""h\.\d+\.attn\.masked_bias"""] @register_to_config def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = 5_02_57 , lowerCAmelCase = 10_24 , lowerCAmelCase = 7_68 , lowerCAmelCase = 12 , lowerCAmelCase = 12 , lowerCAmelCase = None , lowerCAmelCase = "gelu_new" , lowerCAmelCase = 0.1 , lowerCAmelCase = 0.1 , lowerCAmelCase = 0.1 , lowerCAmelCase = 1E-5 , lowerCAmelCase = 0.02 , lowerCAmelCase = True , lowerCAmelCase = True , lowerCAmelCase = False , lowerCAmelCase = False , ): """simple docstring""" super().__init__() snake_case = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( F"""`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and""" F""" `n_embd`: {n_embd} are not equal.""" ) snake_case = prefix_inner_dim snake_case = prefix_hidden_dim snake_case = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) snake_case = ( nn.Linear(self.prefix_hidden_dim , lowerCAmelCase ) if self.prefix_hidden_dim is not None else nn.Identity() ) snake_case = GPTaConfig( vocab_size=lowerCAmelCase , n_positions=lowerCAmelCase , n_embd=lowerCAmelCase , n_layer=lowerCAmelCase , n_head=lowerCAmelCase , n_inner=lowerCAmelCase , activation_function=lowerCAmelCase , resid_pdrop=lowerCAmelCase , embd_pdrop=lowerCAmelCase , attn_pdrop=lowerCAmelCase , layer_norm_epsilon=lowerCAmelCase , initializer_range=lowerCAmelCase , scale_attn_weights=lowerCAmelCase , use_cache=lowerCAmelCase , scale_attn_by_inverse_layer_idx=lowerCAmelCase , reorder_and_upcast_attn=lowerCAmelCase , ) snake_case = GPTaLMHeadModel(lowerCAmelCase ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , ): """simple docstring""" snake_case = self.transformer.transformer.wte(lowerCAmelCase ) snake_case = self.encode_prefix(lowerCAmelCase ) snake_case = self.decode_prefix(lowerCAmelCase ) snake_case = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: snake_case = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) snake_case = torch.cat((dummy_token, input_ids) , dim=1 ) snake_case = self.transformer(inputs_embeds=lowerCAmelCase , labels=lowerCAmelCase , attention_mask=lowerCAmelCase ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def snake_case ( self , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" return torch.zeros(lowerCAmelCase , self.prefix_length , dtype=torch.intaa , device=lowerCAmelCase ) def snake_case ( self , lowerCAmelCase ): """simple docstring""" return self.encode_prefix(lowerCAmelCase ) @torch.no_grad() def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" snake_case = torch.split(lowerCAmelCase , 1 , dim=0 ) snake_case = [] snake_case = [] for feature in features: snake_case = self.decode_prefix(feature.to(lowerCAmelCase ) ) # back to the clip feature # Only support beam search for now snake_case ,snake_case = self.generate_beam( input_embeds=lowerCAmelCase , device=lowerCAmelCase , eos_token_id=lowerCAmelCase ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) snake_case = torch.stack(lowerCAmelCase ) snake_case = torch.stack(lowerCAmelCase ) return generated_tokens, generated_seq_lengths @torch.no_grad() def snake_case ( self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase = 5 , lowerCAmelCase = 67 , lowerCAmelCase = 1.0 , lowerCAmelCase = None , ): """simple docstring""" snake_case = eos_token_id snake_case = None snake_case = None snake_case = torch.ones(lowerCAmelCase , device=lowerCAmelCase , dtype=torch.int ) snake_case = torch.zeros(lowerCAmelCase , device=lowerCAmelCase , dtype=torch.bool ) if input_embeds is not None: snake_case = input_embeds else: snake_case = self.transformer.transformer.wte(lowerCAmelCase ) for i in range(lowerCAmelCase ): snake_case = self.transformer(inputs_embeds=lowerCAmelCase ) snake_case = outputs.logits snake_case = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) snake_case = logits.softmax(-1 ).log() if scores is None: snake_case ,snake_case = logits.topk(lowerCAmelCase , -1 ) snake_case = generated.expand(lowerCAmelCase , *generated.shape[1:] ) snake_case ,snake_case = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: snake_case = next_tokens else: snake_case = tokens.expand(lowerCAmelCase , *tokens.shape[1:] ) snake_case = torch.cat((tokens, next_tokens) , dim=1 ) else: snake_case = -float(np.inf ) snake_case = 0 snake_case = scores[:, None] + logits seq_lengths[~is_stopped] += 1 snake_case = scores_sum / seq_lengths[:, None] snake_case ,snake_case = scores_sum_average.view(-1 ).topk(lowerCAmelCase , -1 ) snake_case = next_tokens // scores_sum.shape[1] snake_case = seq_lengths[next_tokens_source] snake_case = next_tokens % scores_sum.shape[1] snake_case = next_tokens.unsqueeze(1 ) snake_case = tokens[next_tokens_source] snake_case = torch.cat((tokens, next_tokens) , dim=1 ) snake_case = generated[next_tokens_source] snake_case = scores_sum_average * seq_lengths snake_case = is_stopped[next_tokens_source] snake_case = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) snake_case = torch.cat((generated, next_token_embed) , dim=1 ) snake_case = is_stopped + next_tokens.eq(lowerCAmelCase ).squeeze() if is_stopped.all(): break snake_case = scores / seq_lengths snake_case = scores.argsort(descending=lowerCAmelCase ) # tokens tensors are already padded to max_seq_length snake_case = [tokens[i] for i in order] snake_case = torch.stack(lowerCAmelCase , dim=0 ) snake_case = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
149
1
import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def a ( A__ : Optional[Any] , A__ : Optional[Any] , A__ : Any=[] ) -> Optional[int]: """simple docstring""" _lowercase =size[0] - overlap_pixels * 2 _lowercase =size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels _lowercase =np.ones((size_y, size_x) , dtype=np.uinta ) * 255 _lowercase =np.pad(A__ , mode='linear_ramp' , pad_width=A__ , end_values=0 ) if "l" in remove_borders: _lowercase =mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: _lowercase =mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: _lowercase =mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: _lowercase =mask[0 : mask.shape[0] - overlap_pixels, :] return mask def a ( A__ : Optional[Any] , A__ : Optional[int] , A__ : Union[str, Any] ) -> Any: """simple docstring""" return max(A__ , min(A__ , A__ ) ) def a ( A__ : [int] , A__ : [int] , A__ : [int] ) -> int: """simple docstring""" return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def a ( A__ : [int] , A__ : int , A__ : [int] ) -> Optional[int]: """simple docstring""" _lowercase =list(A__ ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap _lowercase =clamp_rect(A__ , [0, 0] , [image_size[0], image_size[1]] ) return rect def a ( A__ : List[str] , A__ : str , A__ : Optional[int] , A__ : List[Any] ) -> Dict: """simple docstring""" _lowercase =Image.new('RGB' , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(A__ , (original_slice, 0) ) return result def a ( A__ : Union[str, Any] , A__ : List[Any] ) -> Dict: """simple docstring""" _lowercase =(original_image_slice * 4, 0, tile.size[0], tile.size[1]) _lowercase =tile.crop(A__ ) return tile def a ( A__ : List[str] , A__ : Optional[Any] ) -> int: """simple docstring""" _lowercase =n % d return n - divisor class __lowerCAmelCase ( SCREAMING_SNAKE_CASE ): def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 350 , ) -> int: '''simple docstring''' super().__init__( vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , unet=__UpperCAmelCase , low_res_scheduler=__UpperCAmelCase , scheduler=__UpperCAmelCase , max_noise_level=__UpperCAmelCase , ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) _lowercase =( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) _lowercase =add_overlap_rect(__UpperCAmelCase , __UpperCAmelCase , image.size ) _lowercase =image.crop(__UpperCAmelCase ) _lowercase =((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] _lowercase =translated_slice_x - (original_image_slice / 2) _lowercase =max(0 , __UpperCAmelCase ) _lowercase =squeeze_tile(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) _lowercase =to_input.size _lowercase =to_input.resize((tile_size, tile_size) , Image.BICUBIC ) _lowercase =super(__UpperCAmelCase , self ).__call__(image=__UpperCAmelCase , **__UpperCAmelCase ).images[0] _lowercase =upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) _lowercase =unsqueeze_tile(__UpperCAmelCase , __UpperCAmelCase ) _lowercase =upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) _lowercase =[] if x == 0: remove_borders.append('l' ) elif crop_rect[2] == image.size[0]: remove_borders.append('r' ) if y == 0: remove_borders.append('t' ) elif crop_rect[3] == image.size[1]: remove_borders.append('b' ) _lowercase =Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=__UpperCAmelCase ) , mode='L' , ) final_image.paste( __UpperCAmelCase , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , __UpperCAmelCase ) @torch.no_grad() def __call__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 75 , lowerCAmelCase = 9.0 , lowerCAmelCase = 50 , lowerCAmelCase = None , lowerCAmelCase = 1 , lowerCAmelCase = 0.0 , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = 1 , lowerCAmelCase = 128 , lowerCAmelCase = 32 , lowerCAmelCase = 32 , ) -> Optional[int]: '''simple docstring''' _lowercase =Image.new('RGB' , (image.size[0] * 4, image.size[1] * 4) ) _lowercase =math.ceil(image.size[0] / tile_size ) _lowercase =math.ceil(image.size[1] / tile_size ) _lowercase =tcx * tcy _lowercase =0 for y in range(__UpperCAmelCase ): for x in range(__UpperCAmelCase ): self._process_tile( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , prompt=__UpperCAmelCase , num_inference_steps=__UpperCAmelCase , guidance_scale=__UpperCAmelCase , noise_level=__UpperCAmelCase , negative_prompt=__UpperCAmelCase , num_images_per_prompt=__UpperCAmelCase , eta=__UpperCAmelCase , generator=__UpperCAmelCase , latents=__UpperCAmelCase , ) current_count += 1 if callback is not None: callback({'progress': current_count / total_tile_count, 'image': final_image} ) return final_image def a ( ) -> Dict: """simple docstring""" _lowercase ='stabilityai/stable-diffusion-x4-upscaler' _lowercase =StableDiffusionTiledUpscalePipeline.from_pretrained(A__ , revision='fp16' , torch_dtype=torch.floataa ) _lowercase =pipe.to('cuda' ) _lowercase =Image.open('../../docs/source/imgs/diffusers_library.jpg' ) def callback(A__ : str ): print(F'''progress: {obj["progress"]:.4f}''' ) obj["image"].save('diffusers_library_progress.jpg' ) _lowercase =pipe(image=A__ , prompt='Black font, white background, vector' , noise_level=40 , callback=A__ ) final_image.save('diffusers_library.jpg' ) if __name__ == "__main__": main()
205
def _a ( a :float , a :float ) -> float: return price * (1 + tax_rate) if __name__ == "__main__": print(f"""{price_plus_tax(100, 0.25) = }""") print(f"""{price_plus_tax(125.50, 0.05) = }""")
0
0
from collections.abc import Generator from math import sin def UpperCAmelCase ( _lowerCamelCase ): if len(_lowerCamelCase ) != 32: raise ValueError("Input must be of length 32" ) A : Any = B"" for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def UpperCAmelCase ( _lowerCamelCase ): if i < 0: raise ValueError("Input must be non-negative" ) A : List[Any] = format(_lowerCamelCase , "08x" )[-8:] A : List[str] = B"" for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("utf-8" ) return little_endian_hex def UpperCAmelCase ( _lowerCamelCase ): A : Optional[Any] = B"" for char in message: bit_string += format(_lowerCamelCase , "08b" ).encode("utf-8" ) A : int = format(len(_lowerCamelCase ) , "064b" ).encode("utf-8" ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(_lowerCamelCase ) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def UpperCAmelCase ( _lowerCamelCase ): if len(_lowerCamelCase ) % 512 != 0: raise ValueError("Input must have length that's a multiple of 512" ) for pos in range(0 , len(_lowerCamelCase ) , 512 ): A : Optional[int] = bit_string[pos : pos + 512] A : List[str] = [] for i in range(0 , 512 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def UpperCAmelCase ( _lowerCamelCase ): if i < 0: raise ValueError("Input must be non-negative" ) A : Union[str, Any] = format(_lowerCamelCase , "032b" ) A : List[str] = "" for c in i_str: new_str += "1" if c == "0" else "0" return int(_lowerCamelCase , 2 ) def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase ): return (a + b) % 2**32 def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase ): if i < 0: raise ValueError("Input must be non-negative" ) if shift < 0: raise ValueError("Shift must be non-negative" ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def UpperCAmelCase ( _lowerCamelCase ): A : Union[str, Any] = preprocess(_lowerCamelCase ) A : Any = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states A : Optional[int] = 0X67452301 A : Any = 0Xefcdab89 A : Tuple = 0X98badcfe A : Union[str, Any] = 0X10325476 A : Optional[Any] = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(_lowerCamelCase ): A : Optional[Any] = aa A : Optional[Any] = ba A : List[Any] = ca A : Optional[int] = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f A : Dict = d ^ (b & (c ^ d)) A : Optional[Any] = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f A : Optional[int] = c ^ (d & (b ^ c)) A : List[Any] = (5 * i + 1) % 16 elif i <= 47: A : Tuple = b ^ c ^ d A : str = (3 * i + 5) % 16 else: A : Union[str, Any] = c ^ (b | not_aa(_lowerCamelCase )) A : Any = (7 * i) % 16 A : Union[str, Any] = (f + a + added_consts[i] + block_words[g]) % 2**32 A : Dict = d A : Optional[int] = c A : Optional[int] = b A : Any = sum_aa(_lowerCamelCase , left_rotate_aa(_lowerCamelCase , shift_amounts[i] ) ) # Add hashed chunk to running total A : Dict = sum_aa(_lowerCamelCase , _lowerCamelCase ) A : Any = sum_aa(_lowerCamelCase , _lowerCamelCase ) A : Dict = sum_aa(_lowerCamelCase , _lowerCamelCase ) A : Union[str, Any] = sum_aa(_lowerCamelCase , _lowerCamelCase ) A : Optional[Any] = reformat_hex(_lowerCamelCase ) + reformat_hex(_lowerCamelCase ) + reformat_hex(_lowerCamelCase ) + reformat_hex(_lowerCamelCase ) return digest if __name__ == "__main__": import doctest doctest.testmod()
256
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __SCREAMING_SNAKE_CASE = {"""configuration_ibert""": ["""IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """IBertConfig""", """IBertOnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE = [ """IBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """IBertForMaskedLM""", """IBertForMultipleChoice""", """IBertForQuestionAnswering""", """IBertForSequenceClassification""", """IBertForTokenClassification""", """IBertModel""", """IBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
256
1
'''simple docstring''' from __future__ import annotations __a: List[str] = 1.6021E-19 # units = C def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ): if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif conductivity < 0: raise ValueError('''Conductivity cannot be negative''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative''' ) elif mobility < 0: raise ValueError('''mobility cannot be negative''' ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
198
"""simple docstring""" import pytest import datasets # Import fixture modules as plugins SCREAMING_SNAKE_CASE : List[Any] = ["""tests.fixtures.files""", """tests.fixtures.hub""", """tests.fixtures.fsspec"""] def lowercase ( _snake_case : Optional[int] , _snake_case : Optional[int] ) ->Tuple: """simple docstring""" for item in items: if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ): continue item.add_marker(pytest.mark.unit ) def lowercase ( _snake_case : List[str] ) ->Optional[int]: """simple docstring""" config.addinivalue_line('''markers''' , '''torchaudio_latest: mark test to run with torchaudio>=0.12''' ) @pytest.fixture(autouse=_snake_case ) def lowercase ( _snake_case : Optional[Any] , _snake_case : Dict ) ->Any: """simple docstring""" __snake_case : List[Any] = tmp_path_factory.getbasetemp() / '''cache''' __snake_case : int = test_hf_cache_home / '''datasets''' __snake_case : Tuple = test_hf_cache_home / '''metrics''' __snake_case : List[str] = test_hf_cache_home / '''modules''' monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''' , str(_snake_case ) ) monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''' , str(_snake_case ) ) monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''' , str(_snake_case ) ) __snake_case : Optional[int] = test_hf_datasets_cache / '''downloads''' monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''' , str(_snake_case ) ) __snake_case : Tuple = test_hf_datasets_cache / '''downloads''' / '''extracted''' monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(_snake_case ) ) @pytest.fixture(autouse=_snake_case , scope='''session''' ) def lowercase ( ) ->Any: """simple docstring""" datasets.disable_progress_bar() @pytest.fixture(autouse=_snake_case ) def lowercase ( _snake_case : Tuple ) ->Union[str, Any]: """simple docstring""" monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''' , _snake_case ) @pytest.fixture def lowercase ( _snake_case : Any ) ->Optional[Any]: """simple docstring""" monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''' , _snake_case )
102
0
'''simple docstring''' import argparse import logging import pickle from collections import Counter logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) _UpperCamelCase = logging.getLogger(__name__) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser( description='''Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)''' ) parser.add_argument( '''--data_file''', type=str, default='''data/dump.bert-base-uncased.pickle''', help='''The binarized dataset.''' ) parser.add_argument( '''--token_counts_dump''', type=str, default='''data/token_counts.bert-base-uncased.pickle''', help='''The dump file.''' ) parser.add_argument('''--vocab_size''', default=3_0522, type=int) _UpperCamelCase = parser.parse_args() logger.info(F'Loading data from {args.data_file}') with open(args.data_file, '''rb''') as fp: _UpperCamelCase = pickle.load(fp) logger.info('''Counting occurrences for MLM.''') _UpperCamelCase = Counter() for tk_ids in data: counter.update(tk_ids) _UpperCamelCase = [0] * args.vocab_size for k, v in counter.items(): _UpperCamelCase = v logger.info(F'Dump to {args.token_counts_dump}') with open(args.token_counts_dump, '''wb''') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
16
'''simple docstring''' class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : int = data __UpperCAmelCase : int = previous __UpperCAmelCase : Union[str, Any] = next_node def __str__( self ) -> str: '''simple docstring''' return f'{self.data}' def __A ( self ) -> int: '''simple docstring''' return self.data def __A ( self ) -> List[str]: '''simple docstring''' return self.next def __A ( self ) -> str: '''simple docstring''' return self.previous class _A : def __init__( self , __UpperCAmelCase ) -> str: '''simple docstring''' __UpperCAmelCase : int = head def __iter__( self ) -> str: '''simple docstring''' return self def __A ( self ) -> str: '''simple docstring''' if not self.current: raise StopIteration else: __UpperCAmelCase : List[str] = self.current.get_data() __UpperCAmelCase : int = self.current.get_next() return value class _A : def __init__( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = None # First node in list __UpperCAmelCase : List[str] = None # Last node in list def __str__( self ) -> int: '''simple docstring''' __UpperCAmelCase : Tuple = self.head __UpperCAmelCase : Optional[int] = [] while current is not None: nodes.append(current.get_data() ) __UpperCAmelCase : Any = current.get_next() return " ".join(str(__UpperCAmelCase ) for node in nodes ) def __contains__( self , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : List[Any] = self.head while current: if current.get_data() == value: return True __UpperCAmelCase : Optional[Any] = current.get_next() return False def __iter__( self ) -> str: '''simple docstring''' return LinkedListIterator(self.head ) def __A ( self ) -> List[Any]: '''simple docstring''' if self.head: return self.head.get_data() return None def __A ( self ) -> Optional[Any]: '''simple docstring''' if self.tail: return self.tail.get_data() return None def __A ( self , __UpperCAmelCase ) -> None: '''simple docstring''' if self.head is None: __UpperCAmelCase : str = node __UpperCAmelCase : List[str] = node else: self.insert_before_node(self.head , __UpperCAmelCase ) def __A ( self , __UpperCAmelCase ) -> None: '''simple docstring''' if self.head is None: self.set_head(__UpperCAmelCase ) else: self.insert_after_node(self.tail , __UpperCAmelCase ) def __A ( self , __UpperCAmelCase ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[int] = Node(__UpperCAmelCase ) if self.head is None: self.set_head(__UpperCAmelCase ) else: self.set_tail(__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: '''simple docstring''' __UpperCAmelCase : Tuple = node __UpperCAmelCase : List[Any] = node.previous if node.get_previous() is None: __UpperCAmelCase : str = node_to_insert else: __UpperCAmelCase : Optional[Any] = node_to_insert __UpperCAmelCase : List[Any] = node_to_insert def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: '''simple docstring''' __UpperCAmelCase : List[str] = node __UpperCAmelCase : Union[str, Any] = node.next if node.get_next() is None: __UpperCAmelCase : Dict = node_to_insert else: __UpperCAmelCase : Any = node_to_insert __UpperCAmelCase : List[str] = node_to_insert def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[Any] = 1 __UpperCAmelCase : Optional[Any] = Node(__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = self.head while node: if current_position == position: self.insert_before_node(__UpperCAmelCase , __UpperCAmelCase ) return current_position += 1 __UpperCAmelCase : int = node.next self.insert_after_node(self.tail , __UpperCAmelCase ) def __A ( self , __UpperCAmelCase ) -> Node: '''simple docstring''' __UpperCAmelCase : Dict = self.head while node: if node.get_data() == item: return node __UpperCAmelCase : List[str] = node.get_next() raise Exception("""Node not found""" ) def __A ( self , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' if (node := self.get_node(__UpperCAmelCase )) is not None: if node == self.head: __UpperCAmelCase : Optional[int] = self.head.get_next() if node == self.tail: __UpperCAmelCase : Union[str, Any] = self.tail.get_previous() self.remove_node_pointers(__UpperCAmelCase ) @staticmethod def __A ( __UpperCAmelCase ) -> None: '''simple docstring''' if node.get_next(): __UpperCAmelCase : Optional[Any] = node.previous if node.get_previous(): __UpperCAmelCase : int = node.next __UpperCAmelCase : Tuple = None __UpperCAmelCase : Union[str, Any] = None def __A ( self ) -> List[Any]: '''simple docstring''' return self.head is None def lowercase_ ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
16
1
from __future__ import annotations def UpperCAmelCase ( a_ ) -> float: """simple docstring""" __A = 0.00 __A = 0 for resistor in resistors: if resistor <= 0: __A = F'''Resistor at index {index} has a negative or zero value!''' raise ValueError(_lowerCAmelCase ) first_sum += 1 / float(_lowerCAmelCase ) index += 1 return 1 / first_sum def UpperCAmelCase ( a_ ) -> float: """simple docstring""" __A = 0.00 __A = 0 for resistor in resistors: sum_r += resistor if resistor < 0: __A = F'''Resistor at index {index} has a negative value!''' raise ValueError(_lowerCAmelCase ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
15
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = (DDPMScheduler,) def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , **snake_case :str ): '''simple docstring''' A_ : Dict = { "num_train_timesteps": 1_000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**snake_case ) return config def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=snake_case ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=snake_case , beta_end=snake_case ) def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=snake_case ) def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=snake_case ) def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=snake_case ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' self.check_over_configs(thresholding=snake_case ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=snake_case , prediction_type=snake_case , sample_max_value=snake_case , ) def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=snake_case ) def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' for t in [0, 500, 999]: self.check_over_forward(time_step=snake_case ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' A_ : Tuple = self.scheduler_classes[0] A_ : List[str] = self.get_scheduler_config() A_ : List[str] = scheduler_class(**snake_case ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5 def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : int = self.scheduler_classes[0] A_ : List[str] = self.get_scheduler_config() A_ : int = scheduler_class(**snake_case ) A_ : Tuple = len(snake_case ) A_ : List[str] = self.dummy_model() A_ : Optional[Any] = self.dummy_sample_deter A_ : List[str] = torch.manual_seed(0 ) for t in reversed(range(snake_case ) ): # 1. predict noise residual A_ : Tuple = model(snake_case , snake_case ) # 2. predict previous mean of sample x_t-1 A_ : Dict = scheduler.step(snake_case , snake_case , snake_case , generator=snake_case ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance A_ : Optional[int] = pred_prev_sample A_ : Tuple = torch.sum(torch.abs(snake_case ) ) A_ : str = torch.mean(torch.abs(snake_case ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' A_ : Optional[int] = self.scheduler_classes[0] A_ : int = self.get_scheduler_config(prediction_type="v_prediction" ) A_ : List[str] = scheduler_class(**snake_case ) A_ : int = len(snake_case ) A_ : Dict = self.dummy_model() A_ : str = self.dummy_sample_deter A_ : Any = torch.manual_seed(0 ) for t in reversed(range(snake_case ) ): # 1. predict noise residual A_ : Optional[int] = model(snake_case , snake_case ) # 2. predict previous mean of sample x_t-1 A_ : Tuple = scheduler.step(snake_case , snake_case , snake_case , generator=snake_case ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance A_ : List[str] = pred_prev_sample A_ : Optional[Any] = torch.sum(torch.abs(snake_case ) ) A_ : List[str] = torch.mean(torch.abs(snake_case ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ : str = self.scheduler_classes[0] A_ : Optional[Any] = self.get_scheduler_config() A_ : Dict = scheduler_class(**snake_case ) A_ : Optional[int] = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=snake_case ) A_ : Optional[int] = scheduler.timesteps for i, timestep in enumerate(snake_case ): if i == len(snake_case ) - 1: A_ : str = -1 else: A_ : List[str] = timesteps[i + 1] A_ : Optional[int] = scheduler.previous_timestep(snake_case ) A_ : List[str] = prev_t.item() self.assertEqual(snake_case , snake_case ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : Optional[Any] = self.scheduler_classes[0] A_ : int = self.get_scheduler_config() A_ : Tuple = scheduler_class(**snake_case ) A_ : List[str] = [100, 87, 50, 51, 0] with self.assertRaises(snake_case , msg="`custom_timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=snake_case ) def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' A_ : Any = self.scheduler_classes[0] A_ : Union[str, Any] = self.get_scheduler_config() A_ : Optional[int] = scheduler_class(**snake_case ) A_ : Union[str, Any] = [100, 87, 50, 1, 0] A_ : Optional[int] = len(snake_case ) with self.assertRaises(snake_case , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`." ): scheduler.set_timesteps(num_inference_steps=snake_case , timesteps=snake_case ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : Union[str, Any] = self.scheduler_classes[0] A_ : Optional[Any] = self.get_scheduler_config() A_ : Optional[int] = scheduler_class(**snake_case ) A_ : Optional[int] = [scheduler.config.num_train_timesteps] with self.assertRaises( snake_case , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=snake_case )
300
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase : Optional[int] = {'configuration_yolos': ['YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'YolosConfig', 'YolosOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Any = ['YolosFeatureExtractor'] lowercase : List[Any] = ['YolosImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[Any] = [ 'YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST', 'YolosForObjectDetection', 'YolosModel', 'YolosPreTrainedModel', ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys lowercase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
151
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging lowercase : List[str] = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple , _lowerCamelCase : List[Any]) -> Any: '''simple docstring''' __UpperCamelCase : str = set() __UpperCamelCase : Optional[Any] = [] def parse_line(_lowerCamelCase : Tuple): for line in fp: if isinstance(_lowerCamelCase , _lowerCamelCase): __UpperCamelCase : Tuple = line.decode("UTF-8") if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(" "): # process a single warning and move it to `selected_warnings`. if len(_lowerCamelCase) > 0: __UpperCamelCase : Optional[Any] = "\n".join(_lowerCamelCase) # Only keep the warnings specified in `targets` if any(F': {x}: ' in warning for x in targets): selected_warnings.add(_lowerCamelCase) buffer.clear() continue else: __UpperCamelCase : Optional[Any] = line.strip() buffer.append(_lowerCamelCase) if from_gh: for filename in os.listdir(_lowerCamelCase): __UpperCamelCase : Any = os.path.join(_lowerCamelCase , _lowerCamelCase) if not os.path.isdir(_lowerCamelCase): # read the file if filename != "warnings.txt": continue with open(_lowerCamelCase) as fp: parse_line(_lowerCamelCase) else: try: with zipfile.ZipFile(_lowerCamelCase) as z: for filename in z.namelist(): if not os.path.isdir(_lowerCamelCase): # read the file if filename != "warnings.txt": continue with z.open(_lowerCamelCase) as fp: parse_line(_lowerCamelCase) except Exception: logger.warning( F'{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.') return selected_warnings def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Any , _lowerCamelCase : Optional[int]) -> Dict: '''simple docstring''' __UpperCamelCase : Union[str, Any] = set() __UpperCamelCase : str = [os.path.join(_lowerCamelCase , _lowerCamelCase) for p in os.listdir(_lowerCamelCase) if (p.endswith(".zip") or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(_lowerCamelCase , _lowerCamelCase)) return selected_warnings if __name__ == "__main__": def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple) -> str: '''simple docstring''' return values.split(",") lowercase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') parser.add_argument( '--output_dir', type=str, required=True, help='Where to store the downloaded artifacts and other result files.', ) parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.') # optional parameters parser.add_argument( '--targets', default='DeprecationWarning,UserWarning,FutureWarning', type=list_str, help='Comma-separated list of target warning(s) which we want to extract.', ) parser.add_argument( '--from_gh', action='store_true', help='If running from a GitHub action workflow and collecting warnings from its artifacts.', ) lowercase : Union[str, Any] = parser.parse_args() lowercase : Tuple = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links lowercase : int = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print('=' * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts lowercase : Any = extract_warnings(args.output_dir, args.targets) lowercase : int = sorted(selected_warnings) with open(os.path.join(args.output_dir, 'selected_warnings.json'), 'w', encoding='UTF-8') as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
151
1
from maths.prime_check import is_prime def lowerCAmelCase_ ( A_): if not isinstance(A_ ,A_): UpperCamelCase__: Any = F"Input value of [number={number}] must be an integer" raise TypeError(A_) if is_prime(A_) and is_prime(number + 2): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
149
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class _a ( UpperCamelCase__): """simple docstring""" UpperCamelCase__ = (DDIMParallelScheduler,) UpperCamelCase__ = (("""eta""", 0.0), ("""num_inference_steps""", 50)) def UpperCAmelCase_ ( self: int , **__lowerCamelCase: Dict ): '''simple docstring''' UpperCamelCase__: Any = { "num_train_timesteps": 1000, "beta_start": 0.0_001, "beta_end": 0.02, "beta_schedule": "linear", "clip_sample": True, } config.update(**__lowerCamelCase ) return config def UpperCAmelCase_ ( self: int , **__lowerCamelCase: Optional[int] ): '''simple docstring''' UpperCamelCase__: str = self.scheduler_classes[0] UpperCamelCase__: Optional[int] = self.get_scheduler_config(**__lowerCamelCase ) UpperCamelCase__: List[str] = scheduler_class(**__lowerCamelCase ) UpperCamelCase__ , UpperCamelCase__: int = 10, 0.0 UpperCamelCase__: List[Any] = self.dummy_model() UpperCamelCase__: Optional[int] = self.dummy_sample_deter scheduler.set_timesteps(__lowerCamelCase ) for t in scheduler.timesteps: UpperCamelCase__: Optional[Any] = model(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase__: Tuple = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ).prev_sample return sample def UpperCAmelCase_ ( self: List[Any] ): '''simple docstring''' for timesteps in [100, 500, 1000]: self.check_over_configs(num_train_timesteps=__lowerCamelCase ) def UpperCAmelCase_ ( self: Tuple ): '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__lowerCamelCase ) UpperCamelCase__: Tuple = self.scheduler_classes[0] UpperCamelCase__: Optional[int] = self.get_scheduler_config(steps_offset=1 ) UpperCamelCase__: str = scheduler_class(**__lowerCamelCase ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) ) def UpperCAmelCase_ ( self: Optional[Any] ): '''simple docstring''' for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__lowerCamelCase , beta_end=__lowerCamelCase ) def UpperCAmelCase_ ( self: Union[str, Any] ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__lowerCamelCase ) def UpperCAmelCase_ ( self: List[str] ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__lowerCamelCase ) def UpperCAmelCase_ ( self: Dict ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=__lowerCamelCase ) def UpperCAmelCase_ ( self: Any ): '''simple docstring''' for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=__lowerCamelCase ) def UpperCAmelCase_ ( self: List[str] ): '''simple docstring''' for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=__lowerCamelCase ) def UpperCAmelCase_ ( self: Optional[int] ): '''simple docstring''' self.check_over_configs(thresholding=__lowerCamelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=__lowerCamelCase , prediction_type=__lowerCamelCase , sample_max_value=__lowerCamelCase , ) def UpperCAmelCase_ ( self: Tuple ): '''simple docstring''' for t in [1, 10, 49]: self.check_over_forward(time_step=__lowerCamelCase ) def UpperCAmelCase_ ( self: int ): '''simple docstring''' for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ): self.check_over_forward(time_step=__lowerCamelCase , num_inference_steps=__lowerCamelCase ) def UpperCAmelCase_ ( self: Optional[int] ): '''simple docstring''' for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=__lowerCamelCase , eta=__lowerCamelCase ) def UpperCAmelCase_ ( self: Optional[int] ): '''simple docstring''' UpperCamelCase__: Any = self.scheduler_classes[0] UpperCamelCase__: Optional[int] = self.get_scheduler_config() UpperCamelCase__: str = scheduler_class(**__lowerCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.14_771 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.32_460 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.00_979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1e-5 def UpperCAmelCase_ ( self: Optional[Any] ): '''simple docstring''' UpperCamelCase__: List[Any] = self.scheduler_classes[0] UpperCamelCase__: Union[str, Any] = self.get_scheduler_config() UpperCamelCase__: Any = scheduler_class(**__lowerCamelCase ) UpperCamelCase__ , UpperCamelCase__: Union[str, Any] = 10, 0.0 scheduler.set_timesteps(__lowerCamelCase ) UpperCamelCase__: Tuple = self.dummy_model() UpperCamelCase__: Union[str, Any] = self.dummy_sample_deter UpperCamelCase__: Dict = self.dummy_sample_deter + 0.1 UpperCamelCase__: Dict = self.dummy_sample_deter - 0.1 UpperCamelCase__: int = samplea.shape[0] UpperCamelCase__: List[str] = torch.stack([samplea, samplea, samplea] , dim=0 ) UpperCamelCase__: Union[str, Any] = torch.arange(__lowerCamelCase )[0:3, None].repeat(1 , __lowerCamelCase ) UpperCamelCase__: str = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) UpperCamelCase__: Optional[int] = scheduler.batch_step_no_noise(__lowerCamelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , __lowerCamelCase ) UpperCamelCase__: Dict = torch.sum(torch.abs(__lowerCamelCase ) ) UpperCamelCase__: Tuple = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 1_147.7_904 ) < 1e-2 assert abs(result_mean.item() - 0.4_982 ) < 1e-3 def UpperCAmelCase_ ( self: Optional[Any] ): '''simple docstring''' UpperCamelCase__: str = self.full_loop() UpperCamelCase__: List[str] = torch.sum(torch.abs(__lowerCamelCase ) ) UpperCamelCase__: Any = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 172.0_067 ) < 1e-2 assert abs(result_mean.item() - 0.223_967 ) < 1e-3 def UpperCAmelCase_ ( self: str ): '''simple docstring''' UpperCamelCase__: Optional[int] = self.full_loop(prediction_type="v_prediction" ) UpperCamelCase__: List[Any] = torch.sum(torch.abs(__lowerCamelCase ) ) UpperCamelCase__: Optional[Any] = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 52.5_302 ) < 1e-2 assert abs(result_mean.item() - 0.0_684 ) < 1e-3 def UpperCAmelCase_ ( self: List[str] ): '''simple docstring''' UpperCamelCase__: Any = self.full_loop(set_alpha_to_one=__lowerCamelCase , beta_start=0.01 ) UpperCamelCase__: Optional[Any] = torch.sum(torch.abs(__lowerCamelCase ) ) UpperCamelCase__: Optional[Any] = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 149.8_295 ) < 1e-2 assert abs(result_mean.item() - 0.1_951 ) < 1e-3 def UpperCAmelCase_ ( self: List[Any] ): '''simple docstring''' UpperCamelCase__: Tuple = self.full_loop(set_alpha_to_one=__lowerCamelCase , beta_start=0.01 ) UpperCamelCase__: Optional[int] = torch.sum(torch.abs(__lowerCamelCase ) ) UpperCamelCase__: List[Any] = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 149.0_784 ) < 1e-2 assert abs(result_mean.item() - 0.1_941 ) < 1e-3
149
1
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ = { "configuration_mctct": ["MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MCTCTConfig"], "feature_extraction_mctct": ["MCTCTFeatureExtractor"], "processing_mctct": ["MCTCTProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST", "MCTCTForCTC", "MCTCTModel", "MCTCTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
310
"""simple docstring""" import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Dict , __a : List[Any] , __a : str=13 , __a : Any=30 , __a : List[str]=2 , __a : Dict=3 , __a : Union[str, Any]=True , __a : Dict=True , __a : List[str]=32 , __a : Tuple=5 , __a : str=4 , __a : List[str]=37 , __a : Tuple="gelu" , __a : str=0.1 , __a : Optional[int]=0.1 , __a : Union[str, Any]=10 , __a : Optional[Any]=0.02 , __a : List[Any]=None , __a : str=2 , ) -> int: _UpperCamelCase : Tuple = parent _UpperCamelCase : str = batch_size _UpperCamelCase : Tuple = image_size _UpperCamelCase : List[str] = patch_size _UpperCamelCase : Dict = num_channels _UpperCamelCase : List[str] = is_training _UpperCamelCase : Any = use_labels _UpperCamelCase : int = hidden_size _UpperCamelCase : List[Any] = num_hidden_layers _UpperCamelCase : Union[str, Any] = num_attention_heads _UpperCamelCase : Optional[int] = intermediate_size _UpperCamelCase : Any = hidden_act _UpperCamelCase : Dict = hidden_dropout_prob _UpperCamelCase : Dict = attention_probs_dropout_prob _UpperCamelCase : Optional[int] = type_sequence_label_size _UpperCamelCase : int = initializer_range _UpperCamelCase : Optional[int] = scope _UpperCamelCase : Any = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _UpperCamelCase : Optional[int] = (image_size // patch_size) ** 2 _UpperCamelCase : Optional[int] = num_patches + 1 def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: _UpperCamelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCamelCase : Union[str, Any] = None if self.use_labels: _UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase : Any = self.get_config() return config, pixel_values, labels def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__a , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : Optional[int] , __a : Union[str, Any] , __a : Tuple ) -> Union[str, Any]: _UpperCamelCase : Optional[Any] = ViTModel(config=__a ) model.to(__a ) model.eval() _UpperCamelCase : Tuple = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __SCREAMING_SNAKE_CASE ( self : Dict , __a : str , __a : Optional[int] , __a : int ) -> Optional[int]: _UpperCamelCase : Tuple = ViTForMaskedImageModeling(config=__a ) model.to(__a ) model.eval() _UpperCamelCase : Any = model(__a ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _UpperCamelCase : Union[str, Any] = 1 _UpperCamelCase : Union[str, Any] = ViTForMaskedImageModeling(__a ) model.to(__a ) model.eval() _UpperCamelCase : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCamelCase : Dict = model(__a ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : Tuple , __a : int , __a : Dict ) -> int: _UpperCamelCase : Any = self.type_sequence_label_size _UpperCamelCase : Optional[Any] = ViTForImageClassification(__a ) model.to(__a ) model.eval() _UpperCamelCase : int = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _UpperCamelCase : Tuple = 1 _UpperCamelCase : Union[str, Any] = ViTForImageClassification(__a ) model.to(__a ) model.eval() _UpperCamelCase : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCamelCase : List[Any] = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: _UpperCamelCase : Dict = self.prepare_config_and_inputs() ( ( _UpperCamelCase ), ( _UpperCamelCase ), ( _UpperCamelCase ), ) : Union[str, Any] = config_and_inputs _UpperCamelCase : Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[Any] = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ :Any = ( {"feature-extraction": ViTModel, "image-classification": ViTForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ :str = True SCREAMING_SNAKE_CASE__ :List[Any] = False SCREAMING_SNAKE_CASE__ :int = False SCREAMING_SNAKE_CASE__ :int = False def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: _UpperCamelCase : Dict = ViTModelTester(self ) _UpperCamelCase : Any = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37 ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def __SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: pass def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: _UpperCamelCase, _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : List[Any] = model_class(__a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _UpperCamelCase : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear ) ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: _UpperCamelCase, _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Any = model_class(__a ) _UpperCamelCase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase : List[str] = [*signature.parameters.keys()] _UpperCamelCase : Optional[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , __a ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> int: _UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def __SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__a ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: _UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) @slow def __SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : List[str] = ViTModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def lowercase__ ( ) -> str: """simple docstring""" _UpperCamelCase : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]: return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None @slow def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: _UpperCamelCase : List[Any] = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ).to(__a ) _UpperCamelCase : str = self.default_image_processor _UpperCamelCase : List[Any] = prepare_img() _UpperCamelCase : Any = image_processor(images=__a , return_tensors="pt" ).to(__a ) # forward pass with torch.no_grad(): _UpperCamelCase : Dict = model(**__a ) # verify the logits _UpperCamelCase : Tuple = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __a ) _UpperCamelCase : str = torch.tensor([-0.27_44, 0.82_15, -0.08_36] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1e-4 ) ) @slow def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. _UpperCamelCase : List[str] = ViTModel.from_pretrained("facebook/dino-vits8" ).to(__a ) _UpperCamelCase : Union[str, Any] = ViTImageProcessor.from_pretrained("facebook/dino-vits8" , size=480 ) _UpperCamelCase : List[str] = prepare_img() _UpperCamelCase : int = image_processor(images=__a , return_tensors="pt" ) _UpperCamelCase : Any = inputs.pixel_values.to(__a ) # forward pass with torch.no_grad(): _UpperCamelCase : str = model(__a , interpolate_pos_encoding=__a ) # verify the logits _UpperCamelCase : int = torch.Size((1, 3601, 384) ) self.assertEqual(outputs.last_hidden_state.shape , __a ) _UpperCamelCase : int = torch.tensor( [[4.23_40, 4.39_06, -6.66_92], [4.54_63, 1.89_28, -6.72_57], [4.44_29, 0.84_96, -5.85_85]] ).to(__a ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , __a , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: _UpperCamelCase : Tuple = ViTModel.from_pretrained("facebook/dino-vits8" , torch_dtype=torch.floataa , device_map="auto" ) _UpperCamelCase : int = self.default_image_processor _UpperCamelCase : Dict = prepare_img() _UpperCamelCase : Union[str, Any] = image_processor(images=__a , return_tensors="pt" ) _UpperCamelCase : Any = inputs.pixel_values.to(__a ) # forward pass to make sure inference works in fp16 with torch.no_grad(): _UpperCamelCase : int = model(__a )
310
1
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class UpperCAmelCase_ ( unittest.TestCase): def __init__( self : Tuple , __UpperCamelCase : List[Any] , __UpperCamelCase : str=7 , __UpperCamelCase : Optional[int]=3 , __UpperCamelCase : List[Any]=30 , __UpperCamelCase : List[Any]=400 , __UpperCamelCase : List[str]=True , __UpperCamelCase : List[Any]=None , __UpperCamelCase : List[Any]=True , __UpperCamelCase : Optional[Any]=[0.5, 0.5, 0.5] , __UpperCamelCase : str=[0.5, 0.5, 0.5] , __UpperCamelCase : Optional[int]=True , __UpperCamelCase : List[Any]=1 / 255 , __UpperCamelCase : Tuple=True , ) -> Optional[Any]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p _UpperCamelCase = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333} _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = num_channels _UpperCamelCase = min_resolution _UpperCamelCase = max_resolution _UpperCamelCase = do_resize _UpperCamelCase = size _UpperCamelCase = do_normalize _UpperCamelCase = image_mean _UpperCamelCase = image_std _UpperCamelCase = do_rescale _UpperCamelCase = rescale_factor _UpperCamelCase = do_pad def _UpperCamelCase ( self : Tuple ) -> int: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _UpperCamelCase ( self : int , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict=False ) -> int: if not batched: _UpperCamelCase = image_inputs[0] if isinstance(__UpperCamelCase , Image.Image ): _UpperCamelCase , _UpperCamelCase = image.size else: _UpperCamelCase , _UpperCamelCase = image.shape[1], image.shape[2] if w < h: _UpperCamelCase = int(self.size['''shortest_edge'''] * h / w ) _UpperCamelCase = self.size['''shortest_edge'''] elif w > h: _UpperCamelCase = self.size['''shortest_edge'''] _UpperCamelCase = int(self.size['''shortest_edge'''] * w / h ) else: _UpperCamelCase = self.size['''shortest_edge'''] _UpperCamelCase = self.size['''shortest_edge'''] else: _UpperCamelCase = [] for image in image_inputs: _UpperCamelCase , _UpperCamelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _UpperCamelCase = max(__UpperCamelCase , key=lambda __UpperCamelCase : item[0] )[0] _UpperCamelCase = max(__UpperCamelCase , key=lambda __UpperCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCAmelCase_ ( _lowercase , unittest.TestCase): snake_case__ = DetaImageProcessor if is_vision_available() else None def _UpperCamelCase ( self : Optional[Any] ) -> Optional[int]: _UpperCamelCase = DetaImageProcessingTester(self ) @property def _UpperCamelCase ( self : str ) -> Dict: return self.image_processor_tester.prepare_image_processor_dict() def _UpperCamelCase ( self : Union[str, Any] ) -> Dict: _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCamelCase , '''image_mean''' ) ) self.assertTrue(hasattr(__UpperCamelCase , '''image_std''' ) ) self.assertTrue(hasattr(__UpperCamelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(__UpperCamelCase , '''do_resize''' ) ) self.assertTrue(hasattr(__UpperCamelCase , '''do_rescale''' ) ) self.assertTrue(hasattr(__UpperCamelCase , '''do_pad''' ) ) self.assertTrue(hasattr(__UpperCamelCase , '''size''' ) ) def _UpperCamelCase ( self : Any ) -> Tuple: _UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} ) self.assertEqual(image_processor.do_pad , __UpperCamelCase ) def _UpperCamelCase ( self : str ) -> int: pass def _UpperCamelCase ( self : Tuple ) -> Any: # Initialize image_processing _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , Image.Image ) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(__UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(__UpperCamelCase , batched=__UpperCamelCase ) _UpperCamelCase = image_processing(__UpperCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _UpperCamelCase ( self : Any ) -> List[str]: # Initialize image_processing _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , numpify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , np.ndarray ) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(__UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCamelCase = image_processing(__UpperCamelCase , return_tensors='''pt''' ).pixel_values _UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(__UpperCamelCase , batched=__UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _UpperCamelCase ( self : Tuple ) -> Union[str, Any]: # Initialize image_processing _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , torchify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , torch.Tensor ) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(__UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCamelCase = image_processing(__UpperCamelCase , return_tensors='''pt''' ).pixel_values _UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(__UpperCamelCase , batched=__UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _UpperCamelCase ( self : Union[str, Any] ) -> Tuple: # prepare image and target _UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: _UpperCamelCase = json.loads(f.read() ) _UpperCamelCase = {'''image_id''': 3_9769, '''annotations''': target} # encode them _UpperCamelCase = DetaImageProcessor() _UpperCamelCase = image_processing(images=__UpperCamelCase , annotations=__UpperCamelCase , return_tensors='''pt''' ) # verify pixel values _UpperCamelCase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , __UpperCamelCase ) _UpperCamelCase = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __UpperCamelCase , atol=1E-4 ) ) # verify area _UpperCamelCase = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __UpperCamelCase ) ) # verify boxes _UpperCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __UpperCamelCase ) _UpperCamelCase = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __UpperCamelCase , atol=1E-3 ) ) # verify image_id _UpperCamelCase = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __UpperCamelCase ) ) # verify is_crowd _UpperCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __UpperCamelCase ) ) # verify class_labels _UpperCamelCase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __UpperCamelCase ) ) # verify orig_size _UpperCamelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __UpperCamelCase ) ) # verify size _UpperCamelCase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __UpperCamelCase ) ) @slow def _UpperCamelCase ( self : List[str] ) -> Dict: # prepare image, target and masks_path _UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: _UpperCamelCase = json.loads(f.read() ) _UpperCamelCase = {'''file_name''': '''000000039769.png''', '''image_id''': 3_9769, '''segments_info''': target} _UpperCamelCase = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them _UpperCamelCase = DetaImageProcessor(format='''coco_panoptic''' ) _UpperCamelCase = image_processing(images=__UpperCamelCase , annotations=__UpperCamelCase , masks_path=__UpperCamelCase , return_tensors='''pt''' ) # verify pixel values _UpperCamelCase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , __UpperCamelCase ) _UpperCamelCase = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __UpperCamelCase , atol=1E-4 ) ) # verify area _UpperCamelCase = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __UpperCamelCase ) ) # verify boxes _UpperCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __UpperCamelCase ) _UpperCamelCase = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __UpperCamelCase , atol=1E-3 ) ) # verify image_id _UpperCamelCase = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __UpperCamelCase ) ) # verify is_crowd _UpperCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __UpperCamelCase ) ) # verify class_labels _UpperCamelCase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __UpperCamelCase ) ) # verify masks _UpperCamelCase = 82_2873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , __UpperCamelCase ) # verify orig_size _UpperCamelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __UpperCamelCase ) ) # verify size _UpperCamelCase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __UpperCamelCase ) )
256
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin UpperCAmelCase = """ Hugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning. In March 2021, Hugging Face raised $40 million in a Series B funding round.[3] On April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5] """ class UpperCAmelCase_ ( unittest.TestCase , _lowercase): def _UpperCamelCase ( self : List[str] ) -> Tuple: _UpperCamelCase = load_tool('''text-question-answering''' ) self.tool.setup() _UpperCamelCase = load_tool('''text-question-answering''' , remote=__UpperCamelCase ) def _UpperCamelCase ( self : Union[str, Any] ) -> int: _UpperCamelCase = self.tool(__UpperCamelCase , '''What did Hugging Face do in April 2021?''' ) self.assertEqual(__UpperCamelCase , '''launched the BigScience Research Workshop''' ) def _UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: _UpperCamelCase = self.remote_tool(__UpperCamelCase , '''What did Hugging Face do in April 2021?''' ) self.assertEqual(__UpperCamelCase , '''launched the BigScience Research Workshop''' ) def _UpperCamelCase ( self : Dict ) -> int: _UpperCamelCase = self.tool(text=__UpperCamelCase , question='''What did Hugging Face do in April 2021?''' ) self.assertEqual(__UpperCamelCase , '''launched the BigScience Research Workshop''' ) def _UpperCamelCase ( self : Optional[int] ) -> Union[str, Any]: _UpperCamelCase = self.remote_tool(text=__UpperCamelCase , question='''What did Hugging Face do in April 2021?''' ) self.assertEqual(__UpperCamelCase , '''launched the BigScience Research Workshop''' )
256
1
"""simple docstring""" import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCamelCase ( lowercase , unittest.TestCase ): UpperCAmelCase : str = AudioLDMPipeline UpperCAmelCase : str = TEXT_TO_AUDIO_PARAMS UpperCAmelCase : Union[str, Any] = TEXT_TO_AUDIO_BATCH_PARAMS UpperCAmelCase : str = frozenset( [ """num_inference_steps""", """num_waveforms_per_prompt""", """generator""", """latents""", """output_type""", """return_dict""", """callback""", """callback_steps""", ] ) def _lowercase (self : int) -> Union[str, Any]: torch.manual_seed(0) __snake_case : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=(32, 64) , class_embed_type='simple_projection' , projection_class_embeddings_input_dim=32 , class_embeddings_concat=_A , ) __snake_case : int = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=_A , set_alpha_to_one=_A , ) torch.manual_seed(0) __snake_case : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0) __snake_case : Tuple = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , projection_dim=32 , ) __snake_case : Tuple = ClapTextModelWithProjection(_A) __snake_case : Optional[Any] = RobertaTokenizer.from_pretrained('hf-internal-testing/tiny-random-roberta' , model_max_length=77) __snake_case : Union[str, Any] = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=1_60_00 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=_A , ) __snake_case : List[Any] = SpeechTaHifiGan(_A) __snake_case : Tuple = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'vocoder': vocoder, } return components def _lowercase (self : List[str] , _A : Dict , _A : List[Any]=0) -> Dict: if str(_A).startswith('mps'): __snake_case : List[Any] = torch.manual_seed(_A) else: __snake_case : Tuple = torch.Generator(device=_A).manual_seed(_A) __snake_case : Tuple = { 'prompt': 'A hammer hitting a wooden surface', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, } return inputs def _lowercase (self : Optional[Any]) -> Dict: __snake_case : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator __snake_case : Dict = self.get_dummy_components() __snake_case : Union[str, Any] = AudioLDMPipeline(**_A) __snake_case : Any = audioldm_pipe.to(_A) audioldm_pipe.set_progress_bar_config(disable=_A) __snake_case : List[str] = self.get_dummy_inputs(_A) __snake_case : str = audioldm_pipe(**_A) __snake_case : Tuple = output.audios[0] assert audio.ndim == 1 assert len(_A) == 2_56 __snake_case : Any = audio[:10] __snake_case : Optional[Any] = np.array( [-0.0_050, 0.0_050, -0.0_060, 0.0_033, -0.0_026, 0.0_033, -0.0_027, 0.0_033, -0.0_028, 0.0_033]) assert np.abs(audio_slice - expected_slice).max() < 1E-2 def _lowercase (self : Optional[Any]) -> Union[str, Any]: __snake_case : Any = self.get_dummy_components() __snake_case : Optional[int] = AudioLDMPipeline(**_A) __snake_case : List[Any] = audioldm_pipe.to(_A) __snake_case : List[str] = audioldm_pipe.to(_A) audioldm_pipe.set_progress_bar_config(disable=_A) __snake_case : Union[str, Any] = self.get_dummy_inputs(_A) __snake_case : Dict = 3 * [inputs['prompt']] # forward __snake_case : List[Any] = audioldm_pipe(**_A) __snake_case : Union[str, Any] = output.audios[0] __snake_case : List[str] = self.get_dummy_inputs(_A) __snake_case : Optional[Any] = 3 * [inputs.pop('prompt')] __snake_case : Dict = audioldm_pipe.tokenizer( _A , padding='max_length' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=_A , return_tensors='pt' , ) __snake_case : Tuple = text_inputs['input_ids'].to(_A) __snake_case : str = audioldm_pipe.text_encoder( _A , ) __snake_case : Union[str, Any] = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state __snake_case : Optional[int] = F.normalize(_A , dim=-1) __snake_case : Any = prompt_embeds # forward __snake_case : Tuple = audioldm_pipe(**_A) __snake_case : Optional[Any] = output.audios[0] assert np.abs(audio_a - audio_a).max() < 1E-2 def _lowercase (self : Tuple) -> int: __snake_case : Optional[Any] = self.get_dummy_components() __snake_case : str = AudioLDMPipeline(**_A) __snake_case : List[str] = audioldm_pipe.to(_A) __snake_case : Dict = audioldm_pipe.to(_A) audioldm_pipe.set_progress_bar_config(disable=_A) __snake_case : str = self.get_dummy_inputs(_A) __snake_case : str = 3 * ['this is a negative prompt'] __snake_case : Any = negative_prompt __snake_case : Optional[int] = 3 * [inputs['prompt']] # forward __snake_case : str = audioldm_pipe(**_A) __snake_case : Union[str, Any] = output.audios[0] __snake_case : Dict = self.get_dummy_inputs(_A) __snake_case : Any = 3 * [inputs.pop('prompt')] __snake_case : Dict = [] for p in [prompt, negative_prompt]: __snake_case : int = audioldm_pipe.tokenizer( _A , padding='max_length' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=_A , return_tensors='pt' , ) __snake_case : Optional[Any] = text_inputs['input_ids'].to(_A) __snake_case : Tuple = audioldm_pipe.text_encoder( _A , ) __snake_case : Union[str, Any] = text_embeds.text_embeds # additional L_2 normalization over each hidden-state __snake_case : Tuple = F.normalize(_A , dim=-1) embeds.append(_A) __snake_case , __snake_case : Tuple = embeds # forward __snake_case : int = audioldm_pipe(**_A) __snake_case : List[Any] = output.audios[0] assert np.abs(audio_a - audio_a).max() < 1E-2 def _lowercase (self : Optional[Any]) -> Union[str, Any]: __snake_case : Tuple = 'cpu' # ensure determinism for the device-dependent torch.Generator __snake_case : Any = self.get_dummy_components() __snake_case : int = PNDMScheduler(skip_prk_steps=_A) __snake_case : Any = AudioLDMPipeline(**_A) __snake_case : Dict = audioldm_pipe.to(_A) audioldm_pipe.set_progress_bar_config(disable=_A) __snake_case : Tuple = self.get_dummy_inputs(_A) __snake_case : Tuple = 'egg cracking' __snake_case : Union[str, Any] = audioldm_pipe(**_A , negative_prompt=_A) __snake_case : Dict = output.audios[0] assert audio.ndim == 1 assert len(_A) == 2_56 __snake_case : Any = audio[:10] __snake_case : Tuple = np.array( [-0.0_051, 0.0_050, -0.0_060, 0.0_034, -0.0_026, 0.0_033, -0.0_027, 0.0_033, -0.0_028, 0.0_032]) assert np.abs(audio_slice - expected_slice).max() < 1E-2 def _lowercase (self : List[str]) -> str: __snake_case : Optional[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator __snake_case : Union[str, Any] = self.get_dummy_components() __snake_case : Union[str, Any] = PNDMScheduler(skip_prk_steps=_A) __snake_case : List[str] = AudioLDMPipeline(**_A) __snake_case : List[Any] = audioldm_pipe.to(_A) audioldm_pipe.set_progress_bar_config(disable=_A) __snake_case : List[Any] = 'A hammer hitting a wooden surface' # test num_waveforms_per_prompt=1 (default) __snake_case : Dict = audioldm_pipe(_A , num_inference_steps=2).audios assert audios.shape == (1, 2_56) # test num_waveforms_per_prompt=1 (default) for batch of prompts __snake_case : Tuple = 2 __snake_case : Tuple = audioldm_pipe([prompt] * batch_size , num_inference_steps=2).audios assert audios.shape == (batch_size, 2_56) # test num_waveforms_per_prompt for single prompt __snake_case : List[Any] = 2 __snake_case : List[Any] = audioldm_pipe(_A , num_inference_steps=2 , num_waveforms_per_prompt=_A).audios assert audios.shape == (num_waveforms_per_prompt, 2_56) # test num_waveforms_per_prompt for batch of prompts __snake_case : Optional[Any] = 2 __snake_case : Dict = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=_A).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 2_56) def _lowercase (self : List[Any]) -> Tuple: __snake_case : List[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator __snake_case : int = self.get_dummy_components() __snake_case : Union[str, Any] = AudioLDMPipeline(**_A) __snake_case : Union[str, Any] = audioldm_pipe.to(_A) audioldm_pipe.set_progress_bar_config(disable=_A) __snake_case : Optional[Any] = audioldm_pipe.vocoder.config.sampling_rate __snake_case : Any = self.get_dummy_inputs(_A) __snake_case : Tuple = audioldm_pipe(audio_length_in_s=0.016 , **_A) __snake_case : Dict = output.audios[0] assert audio.ndim == 1 assert len(_A) / vocoder_sampling_rate == 0.016 __snake_case : Any = audioldm_pipe(audio_length_in_s=0.032 , **_A) __snake_case : int = output.audios[0] assert audio.ndim == 1 assert len(_A) / vocoder_sampling_rate == 0.032 def _lowercase (self : Tuple) -> Optional[Any]: __snake_case : Optional[Any] = self.get_dummy_components() __snake_case : Dict = AudioLDMPipeline(**_A) __snake_case : int = audioldm_pipe.to(_A) audioldm_pipe.set_progress_bar_config(disable=_A) __snake_case : Any = ['hey'] __snake_case : Any = audioldm_pipe(_A , num_inference_steps=1) __snake_case : Optional[Any] = output.audios.shape assert audio_shape == (1, 2_56) __snake_case : Any = audioldm_pipe.vocoder.config config.model_in_dim *= 2 __snake_case : Tuple = SpeechTaHifiGan(_A).to(_A) __snake_case : Tuple = audioldm_pipe(_A , num_inference_steps=1) __snake_case : Any = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 2_56) def _lowercase (self : Optional[Any]) -> Tuple: self._test_attention_slicing_forward_pass(test_mean_pixel_difference=_A) def _lowercase (self : Tuple) -> Optional[Any]: self._test_inference_batch_single_identical(test_mean_pixel_difference=_A) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _lowercase (self : List[Any]) -> Any: self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=_A) @slow class UpperCamelCase ( unittest.TestCase ): def _lowercase (self : int) -> Optional[int]: super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase (self : int , _A : Union[str, Any] , _A : Any="cpu" , _A : Optional[Any]=torch.floataa , _A : Any=0) -> Any: __snake_case : Tuple = torch.Generator(device=_A).manual_seed(_A) __snake_case : Dict = np.random.RandomState(_A).standard_normal((1, 8, 1_28, 16)) __snake_case : Tuple = torch.from_numpy(_A).to(device=_A , dtype=_A) __snake_case : Tuple = { 'prompt': 'A hammer hitting a wooden surface', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 2.5, } return inputs def _lowercase (self : Optional[Any]) -> int: __snake_case : Any = AudioLDMPipeline.from_pretrained('cvssp/audioldm') __snake_case : List[str] = audioldm_pipe.to(_A) audioldm_pipe.set_progress_bar_config(disable=_A) __snake_case : int = self.get_inputs(_A) __snake_case : Tuple = 25 __snake_case : Dict = audioldm_pipe(**_A).audios[0] assert audio.ndim == 1 assert len(_A) == 8_19_20 __snake_case : Union[str, Any] = audio[7_72_30:7_72_40] __snake_case : List[str] = np.array( [-0.4_884, -0.4_607, 0.0_023, 0.5_007, 0.5_896, 0.5_151, 0.3_813, -0.0_208, -0.3_687, -0.4_315]) __snake_case : List[str] = np.abs(expected_slice - audio_slice).max() assert max_diff < 1E-2 def _lowercase (self : Dict) -> str: __snake_case : Dict = AudioLDMPipeline.from_pretrained('cvssp/audioldm') __snake_case : Union[str, Any] = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config) __snake_case : str = audioldm_pipe.to(_A) audioldm_pipe.set_progress_bar_config(disable=_A) __snake_case : Dict = self.get_inputs(_A) __snake_case : Optional[int] = audioldm_pipe(**_A).audios[0] assert audio.ndim == 1 assert len(_A) == 8_19_20 __snake_case : List[str] = audio[2_77_80:2_77_90] __snake_case : List[str] = np.array([-0.2_131, -0.0_873, -0.0_124, -0.0_189, 0.0_569, 0.1_373, 0.1_883, 0.2_886, 0.3_297, 0.2_212]) __snake_case : Optional[int] = np.abs(expected_slice - audio_slice).max() assert max_diff < 3E-2
95
"""simple docstring""" def __UpperCAmelCase ( UpperCAmelCase_ : list , UpperCAmelCase_ : int , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : int = 0 ) -> int: '''simple docstring''' __snake_case : str = right or len(UpperCAmelCase_ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(UpperCAmelCase_ , UpperCAmelCase_ , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
95
1
"""simple docstring""" import argparse import logging import pickle from collections import Counter logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) lowerCAmelCase_ = logging.getLogger(__name__) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser( description='Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)' ) parser.add_argument( '--data_file', type=str, default='data/dump.bert-base-uncased.pickle', help='The binarized dataset.' ) parser.add_argument( '--token_counts_dump', type=str, default='data/token_counts.bert-base-uncased.pickle', help='The dump file.' ) parser.add_argument('--vocab_size', default=30_522, type=int) lowerCAmelCase_ = parser.parse_args() logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file, 'rb') as fp: lowerCAmelCase_ = pickle.load(fp) logger.info('Counting occurrences for MLM.') lowerCAmelCase_ = Counter() for tk_ids in data: counter.update(tk_ids) lowerCAmelCase_ = [0] * args.vocab_size for k, v in counter.items(): lowerCAmelCase_ = v logger.info(F'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, 'wb') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
16
"""simple docstring""" from ...configuration_utils import PretrainedConfig lowerCAmelCase_ = { 'google/tapas-base-finetuned-sqa': ( 'https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json' ), 'google/tapas-base-finetuned-wtq': ( 'https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json' ), 'google/tapas-base-finetuned-wikisql-supervised': ( 'https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json' ), 'google/tapas-base-finetuned-tabfact': ( 'https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json' ), } class __A ( A_ ): '''simple docstring''' lowerCAmelCase : str = "tapas" def __init__( self : List[Any] ,_snake_case : Dict=30_522 ,_snake_case : Union[str, Any]=768 ,_snake_case : int=12 ,_snake_case : Union[str, Any]=12 ,_snake_case : Union[str, Any]=3_072 ,_snake_case : List[Any]="gelu" ,_snake_case : Optional[int]=0.1 ,_snake_case : Tuple=0.1 ,_snake_case : List[Any]=1_024 ,_snake_case : Any=[3, 256, 256, 2, 256, 256, 10] ,_snake_case : List[Any]=0.02 ,_snake_case : Union[str, Any]=1e-12 ,_snake_case : str=0 ,_snake_case : Any=10.0 ,_snake_case : int=0 ,_snake_case : Optional[Any]=1.0 ,_snake_case : List[str]=None ,_snake_case : Tuple=1.0 ,_snake_case : Tuple=False ,_snake_case : List[Any]=None ,_snake_case : int=1.0 ,_snake_case : List[Any]=1.0 ,_snake_case : Optional[int]=False ,_snake_case : Optional[int]=False ,_snake_case : Optional[int]="ratio" ,_snake_case : Any=None ,_snake_case : Union[str, Any]=None ,_snake_case : List[str]=64 ,_snake_case : Optional[Any]=32 ,_snake_case : Optional[Any]=False ,_snake_case : Optional[int]=True ,_snake_case : Dict=False ,_snake_case : Tuple=False ,_snake_case : int=True ,_snake_case : List[str]=False ,_snake_case : Dict=None ,_snake_case : Optional[int]=None ,**_snake_case : int ,) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=_snake_case ,**_snake_case ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) lowercase__ : Optional[int] = vocab_size lowercase__ : List[str] = hidden_size lowercase__ : Any = num_hidden_layers lowercase__ : Optional[Any] = num_attention_heads lowercase__ : Optional[int] = hidden_act lowercase__ : List[Any] = intermediate_size lowercase__ : List[Any] = hidden_dropout_prob lowercase__ : Dict = attention_probs_dropout_prob lowercase__ : str = max_position_embeddings lowercase__ : Dict = type_vocab_sizes lowercase__ : Optional[Any] = initializer_range lowercase__ : Dict = layer_norm_eps # Fine-tuning task hyperparameters lowercase__ : Any = positive_label_weight lowercase__ : int = num_aggregation_labels lowercase__ : List[str] = aggregation_loss_weight lowercase__ : Optional[int] = use_answer_as_supervision lowercase__ : Optional[Any] = answer_loss_importance lowercase__ : Union[str, Any] = use_normalized_answer_loss lowercase__ : str = huber_loss_delta lowercase__ : str = temperature lowercase__ : int = aggregation_temperature lowercase__ : List[Any] = use_gumbel_for_cells lowercase__ : Tuple = use_gumbel_for_aggregation lowercase__ : Union[str, Any] = average_approximation_function lowercase__ : Union[str, Any] = cell_selection_preference lowercase__ : Any = answer_loss_cutoff lowercase__ : List[Any] = max_num_rows lowercase__ : str = max_num_columns lowercase__ : int = average_logits_per_cell lowercase__ : str = select_one_column lowercase__ : str = allow_empty_column_selection lowercase__ : Any = init_cell_selection_weights_to_zero lowercase__ : Optional[int] = reset_position_index_per_cell lowercase__ : Union[str, Any] = disable_per_token_loss # Aggregation hyperparameters lowercase__ : Optional[Any] = aggregation_labels lowercase__ : List[Any] = no_aggregation_label_index if isinstance(self.aggregation_labels ,_snake_case ): lowercase__ : Union[str, Any] = {int(_snake_case ): v for k, v in aggregation_labels.items()}
16
1
'''simple docstring''' from __future__ import annotations def _snake_case ( A , A ) -> int: if len(A ) < k or k < 0: raise ValueError('''Invalid Input''' ) lowerCAmelCase__ = lowerCAmelCase__ = sum(array[:k] ) for i in range(len(A ) - k ): lowerCAmelCase__ = current_sum - array[i] + array[i + k] lowerCAmelCase__ = max(A , A ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() __UpperCAmelCase = [randint(-1_000, 1_000) for i in range(100)] __UpperCAmelCase = randint(0, 110) print(f"""The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}""")
370
'''simple docstring''' from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract __UpperCAmelCase = logging.get_logger(__name__) def _snake_case ( A , A , A ) -> Optional[Any]: return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def _snake_case ( A , A , A ) -> Union[str, Any]: lowerCAmelCase__ = to_pil_image(A ) lowerCAmelCase__ , lowerCAmelCase__ = pil_image.size lowerCAmelCase__ = pytesseract.image_to_data(A , lang=A , output_type='''dict''' , config=A ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates lowerCAmelCase__ = [idx for idx, word in enumerate(A ) if not word.strip()] lowerCAmelCase__ = [word for idx, word in enumerate(A ) if idx not in irrelevant_indices] lowerCAmelCase__ = [coord for idx, coord in enumerate(A ) if idx not in irrelevant_indices] lowerCAmelCase__ = [coord for idx, coord in enumerate(A ) if idx not in irrelevant_indices] lowerCAmelCase__ = [coord for idx, coord in enumerate(A ) if idx not in irrelevant_indices] lowerCAmelCase__ = [coord for idx, coord in enumerate(A ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format lowerCAmelCase__ = [] for x, y, w, h in zip(A , A , A , A ): lowerCAmelCase__ = [x, y, x + w, y + h] actual_boxes.append(A ) # finally, normalize the bounding boxes lowerCAmelCase__ = [] for box in actual_boxes: normalized_boxes.append(normalize_box(A , A , A ) ) assert len(A ) == len(A ), "Not as many words as there are bounding boxes" return words, normalized_boxes class a__ ( a__ ): '''simple docstring''' lowercase__ : Any = ["pixel_values"] def __init__( self , lowerCamelCase_ = True , lowerCamelCase_ = None , lowerCamelCase_ = PILImageResampling.BILINEAR , lowerCamelCase_ = True , lowerCamelCase_ = 1 / 2_55 , lowerCamelCase_ = True , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = True , lowerCamelCase_ = None , lowerCamelCase_ = "" , **lowerCamelCase_ , ) -> None: super().__init__(**lowerCamelCase_ ) lowerCAmelCase__ = size if size is not None else {'''height''': 2_24, '''width''': 2_24} lowerCAmelCase__ = get_size_dict(lowerCamelCase_ ) lowerCAmelCase__ = do_resize lowerCAmelCase__ = size lowerCAmelCase__ = resample lowerCAmelCase__ = do_rescale lowerCAmelCase__ = rescale_value lowerCAmelCase__ = do_normalize lowerCAmelCase__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase__ = image_std if image_std is not None else IMAGENET_STANDARD_STD lowerCAmelCase__ = apply_ocr lowerCAmelCase__ = ocr_lang lowerCAmelCase__ = tesseract_config def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = PILImageResampling.BILINEAR , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> np.ndarray: lowerCAmelCase__ = get_size_dict(lowerCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) lowerCAmelCase__ = (size['''height'''], size['''width''']) return resize(lowerCamelCase_ , size=lowerCamelCase_ , resample=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> np.ndarray: return rescale(lowerCamelCase_ , scale=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> np.ndarray: return normalize(lowerCamelCase_ , mean=lowerCamelCase_ , std=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_=None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = ChannelDimension.FIRST , **lowerCamelCase_ , ) -> PIL.Image.Image: lowerCAmelCase__ = do_resize if do_resize is not None else self.do_resize lowerCAmelCase__ = size if size is not None else self.size lowerCAmelCase__ = get_size_dict(lowerCamelCase_ ) lowerCAmelCase__ = resample if resample is not None else self.resample lowerCAmelCase__ = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase__ = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase__ = image_mean if image_mean is not None else self.image_mean lowerCAmelCase__ = image_std if image_std is not None else self.image_std lowerCAmelCase__ = apply_ocr if apply_ocr is not None else self.apply_ocr lowerCAmelCase__ = ocr_lang if ocr_lang is not None else self.ocr_lang lowerCAmelCase__ = tesseract_config if tesseract_config is not None else self.tesseract_config lowerCAmelCase__ = make_list_of_images(lowerCamelCase_ ) if not valid_images(lowerCamelCase_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' ) # All transformations expect numpy arrays. lowerCAmelCase__ = [to_numpy_array(lowerCamelCase_ ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , '''pytesseract''' ) lowerCAmelCase__ = [] lowerCAmelCase__ = [] for image in images: lowerCAmelCase__ , lowerCAmelCase__ = apply_tesseract(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) words_batch.append(lowerCamelCase_ ) boxes_batch.append(lowerCamelCase_ ) if do_resize: lowerCAmelCase__ = [self.resize(image=lowerCamelCase_ , size=lowerCamelCase_ , resample=lowerCamelCase_ ) for image in images] if do_rescale: lowerCAmelCase__ = [self.rescale(image=lowerCamelCase_ , scale=lowerCamelCase_ ) for image in images] if do_normalize: lowerCAmelCase__ = [self.normalize(image=lowerCamelCase_ , mean=lowerCamelCase_ , std=lowerCamelCase_ ) for image in images] lowerCAmelCase__ = [to_channel_dimension_format(lowerCamelCase_ , lowerCamelCase_ ) for image in images] lowerCAmelCase__ = BatchFeature(data={'''pixel_values''': images} , tensor_type=lowerCamelCase_ ) if apply_ocr: lowerCAmelCase__ = words_batch lowerCAmelCase__ = boxes_batch return data
228
0
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase__ = { "configuration_informer": [ "INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "InformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ "INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "InformerForPrediction", "InformerModel", "InformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
151
'''simple docstring''' import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) lowercase__ = { "sample_size": 32, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": 1000, "block_out_channels": [32, 64], "attention_head_dim": 8, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } lowercase__ = { "sample_size": 64, "in_channels": 3, "out_channels": 3, "layers_per_block": 3, "num_class_embeds": 1000, "block_out_channels": [192, 192 * 2, 192 * 3, 192 * 4], "attention_head_dim": 64, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } lowercase__ = { "sample_size": 256, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": None, "block_out_channels": [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], "attention_head_dim": 64, "down_block_types": [ "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "default", "upsample_type": "resnet", "downsample_type": "resnet", } lowercase__ = { "num_train_timesteps": 40, "sigma_min": 0.002, "sigma_max": 80.0, } lowercase__ = { "num_train_timesteps": 201, "sigma_min": 0.002, "sigma_max": 80.0, } lowercase__ = { "num_train_timesteps": 151, "sigma_min": 0.002, "sigma_max": 80.0, } def UpperCamelCase( UpperCAmelCase_ ): if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('boolean value expected' ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=False ): UpperCAmelCase : str = checkpoint[F"""{old_prefix}.in_layers.0.weight"""] UpperCAmelCase : List[str] = checkpoint[F"""{old_prefix}.in_layers.0.bias"""] UpperCAmelCase : int = checkpoint[F"""{old_prefix}.in_layers.2.weight"""] UpperCAmelCase : int = checkpoint[F"""{old_prefix}.in_layers.2.bias"""] UpperCAmelCase : List[str] = checkpoint[F"""{old_prefix}.emb_layers.1.weight"""] UpperCAmelCase : Optional[int] = checkpoint[F"""{old_prefix}.emb_layers.1.bias"""] UpperCAmelCase : str = checkpoint[F"""{old_prefix}.out_layers.0.weight"""] UpperCAmelCase : int = checkpoint[F"""{old_prefix}.out_layers.0.bias"""] UpperCAmelCase : str = checkpoint[F"""{old_prefix}.out_layers.3.weight"""] UpperCAmelCase : Tuple = checkpoint[F"""{old_prefix}.out_layers.3.bias"""] if has_skip: UpperCAmelCase : int = checkpoint[F"""{old_prefix}.skip_connection.weight"""] UpperCAmelCase : Optional[int] = checkpoint[F"""{old_prefix}.skip_connection.bias"""] return new_checkpoint def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=None ): UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = checkpoint[F"""{old_prefix}.qkv.weight"""].chunk(3 , dim=0 ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : str = checkpoint[F"""{old_prefix}.qkv.bias"""].chunk(3 , dim=0 ) UpperCAmelCase : List[Any] = checkpoint[F"""{old_prefix}.norm.weight"""] UpperCAmelCase : Dict = checkpoint[F"""{old_prefix}.norm.bias"""] UpperCAmelCase : Dict = weight_q.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase : List[Any] = bias_q.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase : Optional[Any] = weight_k.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase : Any = bias_k.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase : Dict = weight_v.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase : int = bias_v.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase : List[str] = ( checkpoint[F"""{old_prefix}.proj_out.weight"""].squeeze(-1 ).squeeze(-1 ) ) UpperCAmelCase : Tuple = checkpoint[F"""{old_prefix}.proj_out.bias"""].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = torch.load(UpperCAmelCase_ , map_location='cpu' ) UpperCAmelCase : Optional[Any] = {} UpperCAmelCase : str = checkpoint['time_embed.0.weight'] UpperCAmelCase : Dict = checkpoint['time_embed.0.bias'] UpperCAmelCase : Optional[int] = checkpoint['time_embed.2.weight'] UpperCAmelCase : str = checkpoint['time_embed.2.bias'] if unet_config["num_class_embeds"] is not None: UpperCAmelCase : str = checkpoint['label_emb.weight'] UpperCAmelCase : Any = checkpoint['input_blocks.0.0.weight'] UpperCAmelCase : List[str] = checkpoint['input_blocks.0.0.bias'] UpperCAmelCase : Tuple = unet_config['down_block_types'] UpperCAmelCase : Union[str, Any] = unet_config['layers_per_block'] UpperCAmelCase : Dict = unet_config['attention_head_dim'] UpperCAmelCase : Optional[Any] = unet_config['block_out_channels'] UpperCAmelCase : str = 1 UpperCAmelCase : int = channels_list[0] for i, layer_type in enumerate(UpperCAmelCase_ ): UpperCAmelCase : Optional[Any] = channels_list[i] UpperCAmelCase : Any = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(UpperCAmelCase_ ): UpperCAmelCase : Any = F"""down_blocks.{i}.resnets.{j}""" UpperCAmelCase : Any = F"""input_blocks.{current_layer}.0""" UpperCAmelCase : Dict = True if j == 0 and downsample_block_has_skip else False UpperCAmelCase : List[Any] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(UpperCAmelCase_ ): UpperCAmelCase : str = F"""down_blocks.{i}.resnets.{j}""" UpperCAmelCase : Optional[Any] = F"""input_blocks.{current_layer}.0""" UpperCAmelCase : Tuple = True if j == 0 and downsample_block_has_skip else False UpperCAmelCase : Tuple = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) UpperCAmelCase : Optional[Any] = F"""down_blocks.{i}.attentions.{j}""" UpperCAmelCase : List[Any] = F"""input_blocks.{current_layer}.1""" UpperCAmelCase : Optional[int] = convert_attention( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) current_layer += 1 if i != len(UpperCAmelCase_ ) - 1: UpperCAmelCase : Optional[Any] = F"""down_blocks.{i}.downsamplers.0""" UpperCAmelCase : List[str] = F"""input_blocks.{current_layer}.0""" UpperCAmelCase : str = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) current_layer += 1 UpperCAmelCase : Tuple = current_channels # hardcoded the mid-block for now UpperCAmelCase : int = 'mid_block.resnets.0' UpperCAmelCase : Tuple = 'middle_block.0' UpperCAmelCase : str = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) UpperCAmelCase : List[Any] = 'mid_block.attentions.0' UpperCAmelCase : List[Any] = 'middle_block.1' UpperCAmelCase : Optional[int] = convert_attention(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) UpperCAmelCase : Optional[Any] = 'mid_block.resnets.1' UpperCAmelCase : Dict = 'middle_block.2' UpperCAmelCase : Union[str, Any] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) UpperCAmelCase : List[str] = 0 UpperCAmelCase : int = unet_config['up_block_types'] for i, layer_type in enumerate(UpperCAmelCase_ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): UpperCAmelCase : int = F"""up_blocks.{i}.resnets.{j}""" UpperCAmelCase : List[Any] = F"""output_blocks.{current_layer}.0""" UpperCAmelCase : List[str] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) current_layer += 1 if i != len(UpperCAmelCase_ ) - 1: UpperCAmelCase : Any = F"""up_blocks.{i}.upsamplers.0""" UpperCAmelCase : int = F"""output_blocks.{current_layer-1}.1""" UpperCAmelCase : List[Any] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): UpperCAmelCase : int = F"""up_blocks.{i}.resnets.{j}""" UpperCAmelCase : int = F"""output_blocks.{current_layer}.0""" UpperCAmelCase : Optional[int] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) UpperCAmelCase : Union[str, Any] = F"""up_blocks.{i}.attentions.{j}""" UpperCAmelCase : Tuple = F"""output_blocks.{current_layer}.1""" UpperCAmelCase : Any = convert_attention( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) current_layer += 1 if i != len(UpperCAmelCase_ ) - 1: UpperCAmelCase : str = F"""up_blocks.{i}.upsamplers.0""" UpperCAmelCase : Optional[Any] = F"""output_blocks.{current_layer-1}.2""" UpperCAmelCase : Any = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) UpperCAmelCase : Any = checkpoint['out.0.weight'] UpperCAmelCase : Optional[int] = checkpoint['out.0.bias'] UpperCAmelCase : Tuple = checkpoint['out.2.weight'] UpperCAmelCase : str = checkpoint['out.2.bias'] return new_checkpoint if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument("--unet_path", default=None, type=str, required=True, help="Path to the unet.pt to convert.") parser.add_argument( "--dump_path", default=None, type=str, required=True, help="Path to output the converted UNet model." ) parser.add_argument("--class_cond", default=True, type=str, help="Whether the model is class-conditional.") lowercase__ = parser.parse_args() lowercase__ = strabool(args.class_cond) lowercase__ = os.path.basename(args.unet_path) print(f'''Checkpoint: {ckpt_name}''') # Get U-Net config if "imagenet64" in ckpt_name: lowercase__ = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): lowercase__ = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: lowercase__ = TEST_UNET_CONFIG else: raise ValueError(f'''Checkpoint type {ckpt_name} is not currently supported.''') if not args.class_cond: lowercase__ = None lowercase__ = con_pt_to_diffuser(args.unet_path, unet_config) lowercase__ = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: lowercase__ = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: lowercase__ = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): lowercase__ = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(f'''Checkpoint type {ckpt_name} is not currently supported.''') lowercase__ = CMStochasticIterativeScheduler(**scheduler_config) lowercase__ = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
151
1
'''simple docstring''' from __future__ import annotations from math import pi, sqrt def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase ): if inductance <= 0: raise ValueError("Inductance cannot be 0 or negative" ) elif capacitance <= 0: raise ValueError("Capacitance cannot be 0 or negative" ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
37
'''simple docstring''' from datetime import datetime as dt import os from github import Github lowerCAmelCase__ : Union[str, Any] = [ "good first issue", "good second issue", "good difficult issue", "feature request", "new model", "wip", ] def __UpperCamelCase ( ): __UpperCAmelCase : Optional[int] = Github(os.environ["GITHUB_TOKEN"] ) __UpperCAmelCase : Union[str, Any] = g.get_repo("huggingface/transformers" ) __UpperCAmelCase : Union[str, Any] = repo.get_issues(state="open" ) for issue in open_issues: __UpperCAmelCase : int = sorted([comment for comment in issue.get_comments()], key=lambda _UpperCAmelCase : i.created_at, reverse=_UpperCAmelCase ) __UpperCAmelCase : Any = comments[0] if len(_UpperCAmelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="closed" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) if __name__ == "__main__": main()
37
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __snake_case = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMAEForPreTraining''', '''ViTMAELayer''', '''ViTMAEModel''', '''ViTMAEPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''TFViTMAEForPreTraining''', '''TFViTMAEModel''', '''TFViTMAEPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
310
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = MgpstrTokenizer _lowercase = False _lowercase = {} _lowercase = False def snake_case_ ( self: int ): '''simple docstring''' super().setUp() # fmt: off __UpperCamelCase = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on __UpperCamelCase = dict(zip(A_,range(len(A_ ) ) ) ) __UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file,'w',encoding='utf-8' ) as fp: fp.write(json.dumps(A_ ) + '\n' ) def snake_case_ ( self: Dict,**A_: Tuple ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname,**A_ ) def snake_case_ ( self: List[Any],A_: Optional[Any] ): '''simple docstring''' __UpperCamelCase = 'tester' __UpperCamelCase = 'tester' return input_text, output_text @unittest.skip('MGP-STR always lower cases letters.' ) def snake_case_ ( self: str ): '''simple docstring''' pass def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = self.get_tokenizers(do_lower_case=A_ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): __UpperCamelCase = '[SPECIAL_TOKEN]' tokenizer.add_special_tokens({'cls_token': special_token} ) __UpperCamelCase = tokenizer.encode([special_token],add_special_tokens=A_ ) self.assertEqual(len(A_ ),1 ) __UpperCamelCase = tokenizer.decode(A_,skip_special_tokens=A_ ) self.assertTrue(special_token not in decoded ) def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): __UpperCamelCase, __UpperCamelCase = self.get_input_output_texts(A_ ) __UpperCamelCase = tokenizer.tokenize(A_ ) __UpperCamelCase = tokenizer.convert_tokens_to_ids(A_ ) __UpperCamelCase = tokenizer.encode(A_,add_special_tokens=A_ ) self.assertListEqual(A_,A_ ) __UpperCamelCase = tokenizer.convert_ids_to_tokens(A_ ) self.assertNotEqual(len(A_ ),0 ) __UpperCamelCase = tokenizer.decode(A_ ) self.assertIsInstance(A_,A_ ) self.assertEqual(text_a.replace(' ','' ),A_ ) @unittest.skip('MGP-STR tokenizer only handles one sequence.' ) def snake_case_ ( self: int ): '''simple docstring''' pass @unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer' ) def snake_case_ ( self: List[str] ): '''simple docstring''' pass
310
1
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class _snake_case ( unittest.TestCase ): @slow def snake_case__ ( self): UpperCAmelCase__ : Any = XLMRobertaModel.from_pretrained("""xlm-roberta-base""") UpperCAmelCase__ : Optional[int] = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]]) # The dog is cute and lives in the garden house UpperCAmelCase__ : Dict = torch.Size((1, 12, 768)) # batch_size, sequence_length, embedding_vector_dim UpperCAmelCase__ : List[Any] = torch.tensor( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCAmelCase__ : Dict = model(_lowerCamelCase)["""last_hidden_state"""].detach() self.assertEqual(output.shape , _lowerCamelCase) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _lowerCamelCase , atol=1e-3)) @slow def snake_case__ ( self): UpperCAmelCase__ : List[Any] = XLMRobertaModel.from_pretrained("""xlm-roberta-large""") UpperCAmelCase__ : Dict = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]]) # The dog is cute and lives in the garden house UpperCAmelCase__ : List[str] = torch.Size((1, 12, 1024)) # batch_size, sequence_length, embedding_vector_dim UpperCAmelCase__ : Union[str, Any] = torch.tensor( [[-0.0699, -0.0318, 0.0705, -0.1241, 0.0999, -0.0520, 0.1004, -0.1838, -0.4704, 0.1437, 0.0821, 0.0126]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCAmelCase__ : Optional[int] = model(_lowerCamelCase)["""last_hidden_state"""].detach() self.assertEqual(output.shape , _lowerCamelCase) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _lowerCamelCase , atol=1e-3))
283
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A ={ 'configuration_table_transformer': [ 'TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TableTransformerConfig', 'TableTransformerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ 'TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TableTransformerForObjectDetection', 'TableTransformerModel', 'TableTransformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys __A =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
283
1
import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home UpperCAmelCase : Tuple = HUGGINGFACE_HUB_CACHE UpperCAmelCase : Union[str, Any] = """config.json""" UpperCAmelCase : Union[str, Any] = """diffusion_pytorch_model.bin""" UpperCAmelCase : Optional[Any] = """diffusion_flax_model.msgpack""" UpperCAmelCase : Optional[int] = """model.onnx""" UpperCAmelCase : int = """diffusion_pytorch_model.safetensors""" UpperCAmelCase : List[Any] = """weights.pb""" UpperCAmelCase : Optional[int] = """https://huggingface.co""" UpperCAmelCase : str = default_cache_path UpperCAmelCase : str = """diffusers_modules""" UpperCAmelCase : int = os.getenv("""HF_MODULES_CACHE""", os.path.join(hf_cache_home, """modules""")) UpperCAmelCase : Dict = ["""fp16""", """non-ema"""] UpperCAmelCase : List[str] = """.self_attn"""
95
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class __lowerCAmelCase ( UpperCamelCase__): _lowercase : Tuple = """M-CLIP""" def __init__( self , lowerCAmelCase__=1_0_2_4 , lowerCAmelCase__=7_6_8 , **lowerCAmelCase__ ) -> Any: '''simple docstring''' a__ : int =transformerDimSize a__ : Dict =imageDimSize super().__init__(**lowerCAmelCase__ ) class __lowerCAmelCase ( UpperCamelCase__): _lowercase : Optional[Any] = MCLIPConfig def __init__( self , lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[str]: '''simple docstring''' super().__init__(lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ ) a__ : Tuple =XLMRobertaModel(lowerCAmelCase__ ) a__ : List[str] =torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' a__ : Optional[Any] =self.transformer(input_ids=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )[0] a__ : int =(embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(lowerCAmelCase__ ), embs
95
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowercase: Union[str, Any] = { "configuration_squeezebert": [ "SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "SqueezeBertConfig", "SqueezeBertOnnxConfig", ], "tokenization_squeezebert": ["SqueezeBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase: Dict = ["SqueezeBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase: Union[str, Any] = [ "SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "SqueezeBertForMaskedLM", "SqueezeBertForMultipleChoice", "SqueezeBertForQuestionAnswering", "SqueezeBertForSequenceClassification", "SqueezeBertForTokenClassification", "SqueezeBertModel", "SqueezeBertModule", "SqueezeBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys __lowercase: Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
351
'''simple docstring''' def SCREAMING_SNAKE_CASE__( _UpperCamelCase : float , _UpperCamelCase : float ) -> float: '''simple docstring''' if density <= 0: raise ValueError("Impossible fluid density" ) if bulk_modulus <= 0: raise ValueError("Impossible bulk modulus" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
31
0
"""simple docstring""" import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def _lowerCamelCase ( self , _UpperCAmelCase=0 ): __a : str = floats_tensor((1, 3, 128, 128) , rng=random.Random(_UpperCAmelCase ) ) __a : List[str] = np.random.RandomState(_UpperCAmelCase ) __a : str = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''strength''': 0.7_5, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def _lowerCamelCase ( self ): __a : str = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : Optional[Any] = self.get_dummy_inputs() __a : Optional[int] = pipe(**_UpperCAmelCase ).images __a : str = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) __a : Dict = np.array([0.6_9_6_4_3, 0.5_8_4_8_4, 0.5_0_3_1_4, 0.5_8_7_6_0, 0.5_5_3_6_8, 0.5_9_6_4_3, 0.5_1_5_2_9, 0.4_1_2_1_7, 0.4_9_0_8_7] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def _lowerCamelCase ( self ): __a : str = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __a : Optional[int] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : Any = self.get_dummy_inputs() __a : List[str] = pipe(**_UpperCAmelCase ).images __a : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __a : int = np.array([0.6_1_7_3_7, 0.5_4_6_4_2, 0.5_3_1_8_3, 0.5_4_4_6_5, 0.5_2_7_4_2, 0.6_0_5_2_5, 0.4_9_9_6_9, 0.4_0_6_5_5, 0.4_8_1_5_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowerCamelCase ( self ): __a : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __a : str = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) # warmup pass to apply optimizations __a : Any = pipe(**self.get_dummy_inputs() ) __a : Union[str, Any] = self.get_dummy_inputs() __a : List[str] = pipe(**_UpperCAmelCase ).images __a : str = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __a : List[Any] = np.array([0.5_2_7_6_1, 0.5_9_9_7_7, 0.4_9_0_3_3, 0.4_9_6_1_9, 0.5_4_2_8_2, 0.5_0_3_1_1, 0.4_7_6_0_0, 0.4_0_9_1_8, 0.4_5_2_0_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowerCamelCase ( self ): __a : Optional[int] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __a : List[Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : Tuple = self.get_dummy_inputs() __a : Any = pipe(**_UpperCAmelCase ).images __a : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __a : Optional[Any] = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowerCamelCase ( self ): __a : Union[str, Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __a : Tuple = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : Any = self.get_dummy_inputs() __a : Dict = pipe(**_UpperCAmelCase ).images __a : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __a : Dict = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowerCamelCase ( self ): __a : Dict = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __a : Optional[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : List[Any] = self.get_dummy_inputs() __a : str = pipe(**_UpperCAmelCase ).images __a : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __a : Optional[Any] = np.array([0.6_5_3_3_1, 0.5_8_2_7_7, 0.4_8_2_0_4, 0.5_6_0_5_9, 0.5_3_6_6_5, 0.5_6_2_3_5, 0.5_0_9_6_9, 0.4_0_0_0_9, 0.4_6_5_5_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class __lowercase ( unittest.TestCase ): '''simple docstring''' @property def _lowerCamelCase ( self ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _lowerCamelCase ( self ): __a : Optional[int] = ort.SessionOptions() __a : Any = False return options def _lowerCamelCase ( self ): __a : str = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) __a : Optional[Any] = init_image.resize((768, 512) ) # using the PNDM scheduler by default __a : Optional[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''onnx''' , safety_checker=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : int = '''A fantasy landscape, trending on artstation''' __a : Union[str, Any] = np.random.RandomState(0 ) __a : Tuple = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=10 , generator=_UpperCAmelCase , output_type='''np''' , ) __a : Optional[int] = output.images __a : Tuple = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __a : str = np.array([0.4_9_0_9, 0.5_0_5_9, 0.5_3_7_2, 0.4_6_2_3, 0.4_8_7_6, 0.5_0_4_9, 0.4_8_2_0, 0.4_9_5_6, 0.5_0_1_9] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _lowerCamelCase ( self ): __a : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) __a : Any = init_image.resize((768, 512) ) __a : str = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , subfolder='''scheduler''' , revision='''onnx''' ) __a : str = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : Union[str, Any] = '''A fantasy landscape, trending on artstation''' __a : Tuple = np.random.RandomState(0 ) __a : Dict = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=20 , generator=_UpperCAmelCase , output_type='''np''' , ) __a : Tuple = output.images __a : Tuple = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __a : List[str] = np.array([0.8_0_4_3, 0.9_2_6, 0.9_5_8_1, 0.8_1_1_9, 0.8_9_5_4, 0.9_1_3, 0.7_2_0_9, 0.7_4_6_3, 0.7_4_3_1] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
160
from __future__ import annotations from collections.abc import Iterator class __lowerCAmelCase : def __init__( self :Optional[Any] , __magic_name__ :int ): '''simple docstring''' a = value a = None a = None class __lowerCAmelCase : def __init__( self :str , __magic_name__ :Node ): '''simple docstring''' a = tree def lowerCamelCase__ ( self :str , __magic_name__ :Node | None ): '''simple docstring''' if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self :Tuple ): '''simple docstring''' yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
228
0
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): __magic_name__ = True from torch.cuda.amp import autocast __magic_name__ = logging.getLogger(__name__) def _lowerCAmelCase ( A__: Any=None , A__: int=None ): '''simple docstring''' return field(default_factory=lambda: default , metadata=A__ ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __SCREAMING_SNAKE_CASE = field( default=A__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) __SCREAMING_SNAKE_CASE = field( default=A__ , metadata={"""help""": """Whether to freeze the feature extractor layers of the model."""} ) __SCREAMING_SNAKE_CASE = field( default=0.1 , metadata={"""help""": """The dropout ratio for the attention probabilities."""} ) __SCREAMING_SNAKE_CASE = field( default=0.1 , metadata={"""help""": """The dropout ratio for activations inside the fully connected layer."""} ) __SCREAMING_SNAKE_CASE = field( default=0.1 , metadata={ """help""": """The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.""" } , ) __SCREAMING_SNAKE_CASE = field( default=0.1 , metadata={"""help""": """The dropout probabilitiy for all 1D convolutional layers in feature extractor."""} , ) __SCREAMING_SNAKE_CASE = field( default=0.05 , metadata={ """help""": ( """Propability of each feature vector along the time axis to be chosen as the start of the vector""" """span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature""" """vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``.""" ) } , ) __SCREAMING_SNAKE_CASE = field(default=0.0 , metadata={"""help""": """The LayerDrop probability."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default=A__ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) __SCREAMING_SNAKE_CASE = field( default="""train+validation""" , metadata={ """help""": """The name of the training data set split to use (via the datasets library). Defaults to 'train'""" } , ) __SCREAMING_SNAKE_CASE = field( default=A__ , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) __SCREAMING_SNAKE_CASE = field( default=A__ , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) __SCREAMING_SNAKE_CASE = field( default=A__ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) __SCREAMING_SNAKE_CASE = field( default=A__ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of validation examples to this """ """value if set.""" ) } , ) __SCREAMING_SNAKE_CASE = list_field( default=[""",""", """?""", """.""", """!""", """-""", """;""", """:""", """\"\"""", """%""", """'""", """\"""", """�"""] , metadata={"""help""": """A list of characters to remove from the transcripts."""} , ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None def __call__( self , _snake_case ) -> Dict[str, torch.Tensor]: """simple docstring""" # split inputs and labels since they have to be of different lenghts and need # different padding methods UpperCAmelCase = [{'''input_values''': feature['''input_values''']} for feature in features] UpperCAmelCase = [{'''input_ids''': feature['''labels''']} for feature in features] UpperCAmelCase = self.processor.pad( _snake_case , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) UpperCAmelCase = self.processor.pad( labels=_snake_case , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='''pt''' , ) # replace padding with -100 to ignore loss correctly UpperCAmelCase = labels_batch['''input_ids'''].masked_fill(labels_batch.attention_mask.ne(1 ) , -100 ) UpperCAmelCase = labels return batch class lowercase ( A__ ): '''simple docstring''' def snake_case_ ( self , _snake_case , _snake_case ) -> torch.Tensor: """simple docstring""" model.train() UpperCAmelCase = self._prepare_inputs(_snake_case ) if self.use_amp: with autocast(): UpperCAmelCase = self.compute_loss(_snake_case , _snake_case ) else: UpperCAmelCase = self.compute_loss(_snake_case , _snake_case ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": UpperCAmelCase = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": UpperCAmelCase = loss.sum() / (inputs['''labels'''] >= 0).sum() else: raise ValueError(f"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: UpperCAmelCase = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(_snake_case ).backward() elif self.use_apex: with amp.scale_loss(_snake_case , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(_snake_case ) else: loss.backward() return loss.detach() def _lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. UpperCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , A__ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: UpperCAmelCase = datasets.load_dataset( '''common_voice''' , data_args.dataset_config_name , split=data_args.train_split_name ) UpperCAmelCase = datasets.load_dataset('''common_voice''' , data_args.dataset_config_name , split='''test''' ) # Create and save tokenizer UpperCAmelCase = F"""[{''.join(data_args.chars_to_ignore )}]""" def remove_special_characters(A__: Any ): UpperCAmelCase = re.sub(A__ , '''''' , batch['''sentence'''] ).lower() + ''' ''' return batch UpperCAmelCase = train_dataset.map(A__ , remove_columns=['''sentence'''] ) UpperCAmelCase = eval_dataset.map(A__ , remove_columns=['''sentence'''] ) def extract_all_chars(A__: Union[str, Any] ): UpperCAmelCase = ''' '''.join(batch['''text'''] ) UpperCAmelCase = list(set(A__ ) ) return {"vocab": [vocab], "all_text": [all_text]} UpperCAmelCase = train_dataset.map( A__ , batched=A__ , batch_size=-1 , keep_in_memory=A__ , remove_columns=train_dataset.column_names , ) UpperCAmelCase = train_dataset.map( A__ , batched=A__ , batch_size=-1 , keep_in_memory=A__ , remove_columns=eval_dataset.column_names , ) UpperCAmelCase = list(set(vocab_train['''vocab'''][0] ) | set(vocab_test['''vocab'''][0] ) ) UpperCAmelCase = {v: k for k, v in enumerate(A__ )} UpperCAmelCase = vocab_dict[''' '''] del vocab_dict[" "] UpperCAmelCase = len(A__ ) UpperCAmelCase = len(A__ ) with open('''vocab.json''' , '''w''' ) as vocab_file: json.dump(A__ , A__ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase = WavaVecaCTCTokenizer( '''vocab.json''' , unk_token='''[UNK]''' , pad_token='''[PAD]''' , word_delimiter_token='''|''' , ) UpperCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0.0 , do_normalize=A__ , return_attention_mask=A__ ) UpperCAmelCase = WavaVecaProcessor(feature_extractor=A__ , tokenizer=A__ ) UpperCAmelCase = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction='''mean''' , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: UpperCAmelCase = min(len(A__ ) , data_args.max_train_samples ) UpperCAmelCase = train_dataset.select(range(A__ ) ) if data_args.max_val_samples is not None: UpperCAmelCase = eval_dataset.select(range(data_args.max_val_samples ) ) UpperCAmelCase = torchaudio.transforms.Resample(4_8000 , 1_6000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(A__: str ): UpperCAmelCase , UpperCAmelCase = torchaudio.load(batch['''path'''] ) UpperCAmelCase = resampler(A__ ).squeeze().numpy() UpperCAmelCase = 1_6000 UpperCAmelCase = batch['''text'''] return batch UpperCAmelCase = train_dataset.map( A__ , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) UpperCAmelCase = eval_dataset.map( A__ , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(A__: List[str] ): # check that all files have the correct sampling rate assert ( len(set(batch['''sampling_rate'''] ) ) == 1 ), F"""Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.""" UpperCAmelCase = processor( audio=batch['''speech'''] , text=batch['''target_text'''] , sampling_rate=batch['''sampling_rate'''][0] ) batch.update(A__ ) return batch UpperCAmelCase = train_dataset.map( A__ , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=A__ , num_proc=data_args.preprocessing_num_workers , ) UpperCAmelCase = eval_dataset.map( A__ , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=A__ , num_proc=data_args.preprocessing_num_workers , ) # Metric UpperCAmelCase = datasets.load_metric('''wer''' ) def compute_metrics(A__: Optional[Any] ): UpperCAmelCase = pred.predictions UpperCAmelCase = np.argmax(A__ , axis=-1 ) UpperCAmelCase = processor.tokenizer.pad_token_id UpperCAmelCase = processor.batch_decode(A__ ) # we do not want to group tokens when computing the metrics UpperCAmelCase = processor.batch_decode(pred.label_ids , group_tokens=A__ ) UpperCAmelCase = wer_metric.compute(predictions=A__ , references=A__ ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator UpperCAmelCase = DataCollatorCTCWithPadding(processor=A__ , padding=A__ ) # Initialize our Trainer UpperCAmelCase = CTCTrainer( model=A__ , data_collator=A__ , args=A__ , compute_metrics=A__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: UpperCAmelCase = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): UpperCAmelCase = model_args.model_name_or_path else: UpperCAmelCase = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) UpperCAmelCase = trainer.train(resume_from_checkpoint=A__ ) trainer.save_model() UpperCAmelCase = train_result.metrics UpperCAmelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(A__ ) ) UpperCAmelCase = min(A__ , len(A__ ) ) trainer.log_metrics('''train''' , A__ ) trainer.save_metrics('''train''' , A__ ) trainer.save_state() # Evaluation UpperCAmelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) UpperCAmelCase = trainer.evaluate() UpperCAmelCase = data_args.max_val_samples if data_args.max_val_samples is not None else len(A__ ) UpperCAmelCase = min(A__ , len(A__ ) ) trainer.log_metrics('''eval''' , A__ ) trainer.save_metrics('''eval''' , A__ ) return results if __name__ == "__main__": main()
152
import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def _lowerCAmelCase ( A__: List[Any] , A__: Tuple ): '''simple docstring''' UpperCAmelCase = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg''' UpperCAmelCase = Image.open(requests.get(A__ , stream=A__ ).raw ).convert('''RGB''' ) UpperCAmelCase = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.4814_5466, 0.457_8275, 0.4082_1073) , (0.2686_2954, 0.2613_0258, 0.2757_7711) ), ] ) UpperCAmelCase = transform(A__ ).unsqueeze(0 ).to(A__ ) return image def _lowerCAmelCase ( A__: Optional[int] ): '''simple docstring''' if "visual_encoder" in key: UpperCAmelCase = re.sub('''visual_encoder*''' , '''vision_model.encoder''' , A__ ) if "blocks" in key: UpperCAmelCase = re.sub(r'''blocks''' , '''layers''' , A__ ) if "attn" in key: UpperCAmelCase = re.sub(r'''attn''' , '''self_attn''' , A__ ) if "norm1" in key: UpperCAmelCase = re.sub(r'''norm1''' , '''layer_norm1''' , A__ ) if "norm2" in key: UpperCAmelCase = re.sub(r'''norm2''' , '''layer_norm2''' , A__ ) if "encoder.norm" in key: UpperCAmelCase = re.sub(r'''encoder.norm''' , '''post_layernorm''' , A__ ) if "encoder.patch_embed.proj" in key: UpperCAmelCase = re.sub(r'''encoder.patch_embed.proj''' , '''embeddings.patch_embedding''' , A__ ) if "encoder.pos_embed" in key: UpperCAmelCase = re.sub(r'''encoder.pos_embed''' , '''embeddings.position_embedding''' , A__ ) if "encoder.cls_token" in key: UpperCAmelCase = re.sub(r'''encoder.cls_token''' , '''embeddings.class_embedding''' , A__ ) if "self_attn" in key: UpperCAmelCase = re.sub(r'''self_attn.proj''' , '''self_attn.projection''' , A__ ) return key @torch.no_grad() def _lowerCAmelCase ( A__: List[Any] , A__: Any=None ): '''simple docstring''' if config_path is not None: UpperCAmelCase = BlipConfig.from_pretrained(A__ ) else: UpperCAmelCase = BlipConfig(projection_dim=512 , text_config={} , vision_config={} ) UpperCAmelCase = BlipForConditionalGeneration(A__ ).eval() UpperCAmelCase = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth''' UpperCAmelCase = blip_decoder(pretrained=A__ , image_size=384 , vit='''base''' ) UpperCAmelCase = pt_model.eval() UpperCAmelCase = pt_model.state_dict() for key in modified_state_dict.copy(): UpperCAmelCase = modified_state_dict.pop(A__ ) UpperCAmelCase = rename_key(A__ ) UpperCAmelCase = value hf_model.load_state_dict(A__ ) UpperCAmelCase = 384 UpperCAmelCase = load_demo_image(image_size=A__ , device='''cpu''' ) UpperCAmelCase = BertTokenizer.from_pretrained('''bert-base-uncased''' ) UpperCAmelCase = tokenizer(['''a picture of'''] ).input_ids UpperCAmelCase = hf_model.generate(A__ , A__ ) assert out[0].tolist() == [3_0522, 1037, 3861, 1997, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] UpperCAmelCase = hf_model.generate(A__ ) assert out[0].tolist() == [3_0522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(A__ ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' UpperCAmelCase = ( '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth''' ) UpperCAmelCase = blip_vqa(pretrained=A__ , image_size=A__ , vit='''base''' ) vqa_model.eval() UpperCAmelCase = vqa_model.state_dict() for key in modified_state_dict.copy(): UpperCAmelCase = modified_state_dict.pop(A__ ) UpperCAmelCase = rename_key(A__ ) UpperCAmelCase = value UpperCAmelCase = BlipForQuestionAnswering(A__ ) hf_vqa_model.load_state_dict(A__ ) UpperCAmelCase = ['''How many dogs are in this image?'''] UpperCAmelCase = tokenizer(A__ , return_tensors='''pt''' ).input_ids UpperCAmelCase = hf_vqa_model.generate(A__ , A__ ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '''_vqa''' ) UpperCAmelCase = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth''' UpperCAmelCase = blip_itm(pretrained=A__ , image_size=A__ , vit='''base''' ) itm_model.eval() UpperCAmelCase = itm_model.state_dict() for key in modified_state_dict.copy(): UpperCAmelCase = modified_state_dict.pop(A__ ) UpperCAmelCase = rename_key(A__ ) UpperCAmelCase = value UpperCAmelCase = BlipForImageTextRetrieval(A__ ) UpperCAmelCase = ['''A picture of a woman with a dog sitting in a beach'''] UpperCAmelCase = tokenizer( A__ , return_tensors='''pt''' , padding='''max_length''' , truncation=A__ , max_length=35 , ).input_ids hf_itm_model.load_state_dict(A__ ) hf_itm_model.eval() UpperCAmelCase = hf_itm_model(A__ , A__ , use_itm_head=A__ ) UpperCAmelCase = hf_itm_model(A__ , A__ , use_itm_head=A__ ) assert out[0].item() == 0.2110_6874_9427_7954 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_5698_8453_8650_5127 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '''_itm''' ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") __magic_name__ = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
152
1
'''simple docstring''' # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers _lowerCAmelCase = '''3''' print('''Python version:''', sys.version) print('''transformers version:''', transformers.__version__) try: import torch print('''Torch version:''', torch.__version__) print('''Cuda available:''', torch.cuda.is_available()) print('''Cuda version:''', torch.version.cuda) print('''CuDNN version:''', torch.backends.cudnn.version()) print('''Number of GPUs available:''', torch.cuda.device_count()) print('''NCCL version:''', torch.cuda.nccl.version()) except ImportError: print('''Torch version:''', None) try: import deepspeed print('''DeepSpeed version:''', deepspeed.__version__) except ImportError: print('''DeepSpeed version:''', None) try: import tensorflow as tf print('''TensorFlow version:''', tf.__version__) print('''TF GPUs available:''', bool(tf.config.list_physical_devices('''GPU'''))) print('''Number of TF GPUs available:''', len(tf.config.list_physical_devices('''GPU'''))) except ImportError: print('''TensorFlow version:''', None)
37
'''simple docstring''' from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record _lowerCAmelCase = '''\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } ''' _lowerCAmelCase = '''\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. ''' _lowerCAmelCase = ''' Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for \'record\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'prediction_text\': the predicted answer text - for \'multirc\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question-answer pair as specified by the dataset - \'prediction\': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for \'record\': list of question-answers dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'answers\': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for \'record\': - \'exact_match\': Exact match between answer and gold answer - \'f1\': F1 score - for \'multirc\': - \'exact_match\': Exact match between answer and gold answer - \'f1_m\': Per-question macro-F1 score - \'f1_a\': Average F1 score over all answers - for \'axb\': \'matthews_correlation\': Matthew Correlation - for \'cb\': - \'accuracy\': Accuracy - \'f1\': F1 score - for all others: - \'accuracy\': Accuracy Examples: >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\') >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}] >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\') >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" return float((preds == labels).mean() ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase="binary" ): """simple docstring""" lowerCAmelCase__ : Any = simple_accuracy(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : Tuple = float(fa_score(y_true=UpperCamelCase , y_pred=UpperCamelCase , average=UpperCamelCase ) ) return { "accuracy": acc, "f1": fa, } def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : List[str] = {} for id_pred, label in zip(UpperCamelCase , UpperCamelCase ): lowerCAmelCase__ : str = f"""{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}""" lowerCAmelCase__ : Dict = id_pred["""prediction"""] if question_id in question_map: question_map[question_id].append((pred, label) ) else: lowerCAmelCase__ : Optional[int] = [(pred, label)] lowerCAmelCase__ , lowerCAmelCase__ : int = [], [] for question, preds_labels in question_map.items(): lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = zip(*UpperCamelCase ) lowerCAmelCase__ : List[Any] = fa_score(y_true=UpperCamelCase , y_pred=UpperCamelCase , average="""macro""" ) fas.append(UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = int(sum(pred == label for pred, label in preds_labels ) == len(UpperCamelCase ) ) ems.append(UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = float(sum(UpperCamelCase ) / len(UpperCamelCase ) ) lowerCAmelCase__ : List[Any] = sum(UpperCamelCase ) / len(UpperCamelCase ) lowerCAmelCase__ : Dict = float(fa_score(y_true=UpperCamelCase , y_pred=[id_pred["""prediction"""] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_( datasets.Metric ): '''simple docstring''' def UpperCAmelCase_ ( self ) -> Optional[Any]: if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" ) return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(self._get_feature_types() ) ,codebase_urls=[] ,reference_urls=[] ,format="""numpy""" if not self.config_name == """record""" and not self.config_name == """multirc""" else None ,) def UpperCAmelCase_ ( self ) -> str: if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "prediction_text": datasets.Value("""string""" ), }, "references": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "answers": datasets.Sequence(datasets.Value("""string""" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("""int64""" ), "paragraph": datasets.Value("""int64""" ), "question": datasets.Value("""int64""" ), }, "prediction": datasets.Value("""int64""" ), }, "references": datasets.Value("""int64""" ), } else: return { "predictions": datasets.Value("""int64""" ), "references": datasets.Value("""int64""" ), } def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> Any: if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(__UpperCAmelCase ,__UpperCAmelCase )} elif self.config_name == "cb": return acc_and_fa(__UpperCAmelCase ,__UpperCAmelCase ,fa_avg="""macro""" ) elif self.config_name == "record": lowerCAmelCase__ : Optional[Any] = [ { """qas""": [ {"""id""": ref["""idx"""]["""query"""], """answers""": [{"""text""": ans} for ans in ref["""answers"""]]} for ref in references ] } ] lowerCAmelCase__ : Union[str, Any] = {pred["""idx"""]["""query"""]: pred["""prediction_text"""] for pred in predictions} return evaluate_record(__UpperCAmelCase ,__UpperCAmelCase )[0] elif self.config_name == "multirc": return evaluate_multirc(__UpperCAmelCase ,__UpperCAmelCase ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(__UpperCAmelCase ,__UpperCAmelCase )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" )
37
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCamelCase : Union[str, Any] = { 'configuration_distilbert': [ 'DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DistilBertConfig', 'DistilBertOnnxConfig', ], 'tokenization_distilbert': ['DistilBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : str = ['DistilBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = [ 'DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DistilBertForMaskedLM', 'DistilBertForMultipleChoice', 'DistilBertForQuestionAnswering', 'DistilBertForSequenceClassification', 'DistilBertForTokenClassification', 'DistilBertModel', 'DistilBertPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : str = [ 'TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDistilBertForMaskedLM', 'TFDistilBertForMultipleChoice', 'TFDistilBertForQuestionAnswering', 'TFDistilBertForSequenceClassification', 'TFDistilBertForTokenClassification', 'TFDistilBertMainLayer', 'TFDistilBertModel', 'TFDistilBertPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Union[str, Any] = [ 'FlaxDistilBertForMaskedLM', 'FlaxDistilBertForMultipleChoice', 'FlaxDistilBertForQuestionAnswering', 'FlaxDistilBertForSequenceClassification', 'FlaxDistilBertForTokenClassification', 'FlaxDistilBertModel', 'FlaxDistilBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys __UpperCamelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
361
from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class lowercase__ ( UpperCamelCase_): UpperCamelCase_ = 42 UpperCamelCase_ = 42 if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
258
0
import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def lowercase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' return (data["data"], data["target"]) def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : List[Any] = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Predict target for test data lowerCamelCase : List[str] = xgb.predict(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : str = predictions.reshape(len(SCREAMING_SNAKE_CASE_ ) , 1 ) return predictions def lowercase_( ): '''simple docstring''' lowerCamelCase : Any = fetch_california_housing() lowerCamelCase , lowerCamelCase : List[Any] = data_handling(SCREAMING_SNAKE_CASE_ ) lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase : Any = train_test_split( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , test_size=0.25 , random_state=1 ) lowerCamelCase : List[str] = xgboost(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Error printing print(f"""Mean Absolute Error : {mean_absolute_error(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )}""" ) print(f"""Mean Square Error : {mean_squared_error(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )}""" ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
283
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class UpperCAmelCase_ ( UpperCamelCase ): '''simple docstring''' __A : Optional[int] = "M-CLIP" def __init__( self , __A=1024 , __A=768 , **__A ): """simple docstring""" lowerCamelCase : str = transformerDimSize lowerCamelCase : Any = imageDimSize super().__init__(**__A ) class UpperCAmelCase_ ( UpperCamelCase ): '''simple docstring''' __A : Tuple = MCLIPConfig def __init__( self , __A , *__A , **__A ): """simple docstring""" super().__init__(__A , *__A , **__A ) lowerCamelCase : Tuple = XLMRobertaModel(__A ) lowerCamelCase : Optional[Any] = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def _snake_case ( self , __A , __A ): """simple docstring""" lowerCamelCase : Any = self.transformer(input_ids=__A , attention_mask=__A )[0] lowerCamelCase : int = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(__A ), embs
283
1
import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( "kwargs, expected" , [ ({"num_shards": 0, "max_num_jobs": 1}, []), ({"num_shards": 1_0, "max_num_jobs": 1}, [range(1_0 )]), ({"num_shards": 1_0, "max_num_jobs": 1_0}, [range(__UpperCamelCase , i + 1 ) for i in range(1_0 )]), ({"num_shards": 1, "max_num_jobs": 1_0}, [range(1 )]), ({"num_shards": 1_0, "max_num_jobs": 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 1_0 )]), ({"num_shards": 3, "max_num_jobs": 1_0}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def a__ ( __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = _distribute_shards(**__UpperCamelCase ) assert out == expected @pytest.mark.parametrize( "gen_kwargs, max_num_jobs, expected" , [ ({"foo": 0}, 1_0, [{"foo": 0}]), ({"shards": [0, 1, 2, 3]}, 1, [{"shards": [0, 1, 2, 3]}]), ({"shards": [0, 1, 2, 3]}, 4, [{"shards": [0]}, {"shards": [1]}, {"shards": [2]}, {"shards": [3]}]), ({"shards": [0, 1]}, 4, [{"shards": [0]}, {"shards": [1]}]), ({"shards": [0, 1, 2, 3]}, 2, [{"shards": [0, 1]}, {"shards": [2, 3]}]), ] , ) def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = _split_gen_kwargs(__UpperCamelCase , __UpperCamelCase ) assert out == expected @pytest.mark.parametrize( "gen_kwargs, expected" , [ ({"foo": 0}, 1), ({"shards": [0]}, 1), ({"shards": [0, 1, 2, 3]}, 4), ({"shards": [0, 1, 2, 3], "foo": 0}, 4), ({"shards": [0, 1, 2, 3], "other": (0, 1)}, 4), ({"shards": [0, 1, 2, 3], "shards2": [0, 1]}, RuntimeError), ] , ) def a__ ( __UpperCamelCase , __UpperCamelCase ): if expected is RuntimeError: with pytest.raises(__UpperCamelCase ): _number_of_shards_in_gen_kwargs(__UpperCamelCase ) else: SCREAMING_SNAKE_CASE_ = _number_of_shards_in_gen_kwargs(__UpperCamelCase ) assert out == expected
305
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available A : List[str] = {"configuration_swin": ["SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP", "SwinConfig", "SwinOnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Any = [ "SWIN_PRETRAINED_MODEL_ARCHIVE_LIST", "SwinForImageClassification", "SwinForMaskedImageModeling", "SwinModel", "SwinPreTrainedModel", "SwinBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = [ "TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST", "TFSwinForImageClassification", "TFSwinForMaskedImageModeling", "TFSwinModel", "TFSwinPreTrainedModel", ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys A : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
305
1
'''simple docstring''' import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( "split_dict" , [ SplitDict(), SplitDict({"train": SplitInfo(name="train" , num_bytes=1337 , num_examples=42 , dataset_name="my_dataset" )} ), SplitDict({"train": SplitInfo(name="train" , num_bytes=1337 , num_examples=42 )} ), SplitDict({"train": SplitInfo()} ), ] , ) def UpperCAmelCase_ ( __lowercase : SplitDict ) -> int: '''simple docstring''' _UpperCAmelCase = split_dict._to_yaml_list() assert len(__lowercase ) == len(__lowercase ) _UpperCAmelCase = SplitDict._from_yaml_list(__lowercase ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump _UpperCAmelCase = None # the split name of split_dict takes over the name of the split info object _UpperCAmelCase = split_name assert split_dict == reloaded @pytest.mark.parametrize( "split_info" , [SplitInfo(), SplitInfo(dataset_name=__lowercase ), SplitInfo(dataset_name="my_dataset" )] ) def UpperCAmelCase_ ( __lowercase : List[Any] ) -> Dict: '''simple docstring''' _UpperCAmelCase = asdict(SplitDict({"train": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
22
'''simple docstring''' import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class lowerCamelCase_ (snake_case__ , snake_case__ ): '''simple docstring''' __UpperCamelCase: Optional[Any] = 1 @register_to_config def __init__( self : Optional[int] , A : int = 1000 , A : Optional[Union[np.ndarray, List[float]]] = None ): # set `betas`, `alphas`, `timesteps` self.set_timesteps(A ) # standard deviation of the initial noise distribution _UpperCAmelCase : int = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. _UpperCAmelCase : int = 4 # running values _UpperCAmelCase : Dict = [] def _A ( self : Optional[int] , A : int , A : Union[str, torch.device] = None ): _UpperCAmelCase : int = num_inference_steps _UpperCAmelCase : Union[str, Any] = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] _UpperCAmelCase : Any = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: _UpperCAmelCase : str = torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: _UpperCAmelCase : Dict = torch.sin(steps * math.pi / 2 ) ** 2 _UpperCAmelCase : List[Any] = (1.0 - self.betas**2) ** 0.5 _UpperCAmelCase : List[str] = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] _UpperCAmelCase : Dict = timesteps.to(A ) _UpperCAmelCase : Dict = [] def _A ( self : Optional[int] , A : torch.FloatTensor , A : int , A : torch.FloatTensor , A : bool = True , ): if self.num_inference_steps is None: raise ValueError( "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" ) _UpperCAmelCase : Tuple = (self.timesteps == timestep).nonzero().item() _UpperCAmelCase : Optional[Any] = timestep_index + 1 _UpperCAmelCase : int = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(A ) if len(self.ets ) == 1: _UpperCAmelCase : List[Any] = self.ets[-1] elif len(self.ets ) == 2: _UpperCAmelCase : str = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: _UpperCAmelCase : Tuple = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: _UpperCAmelCase : Union[str, Any] = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) _UpperCAmelCase : Union[str, Any] = self._get_prev_sample(A , A , A , A ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=A ) def _A ( self : Union[str, Any] , A : torch.FloatTensor , *A : Union[str, Any] , **A : Dict ): return sample def _A ( self : Optional[Any] , A : Optional[int] , A : int , A : Optional[Any] , A : List[str] ): _UpperCAmelCase : List[str] = self.alphas[timestep_index] _UpperCAmelCase : List[Any] = self.betas[timestep_index] _UpperCAmelCase : Optional[Any] = self.alphas[prev_timestep_index] _UpperCAmelCase : Dict = self.betas[prev_timestep_index] _UpperCAmelCase : Tuple = (sample - sigma * ets) / max(A , 1E-8 ) _UpperCAmelCase : List[str] = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self : Union[str, Any] ): return self.config.num_train_timesteps
31
0
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class SCREAMING_SNAKE_CASE__ ( snake_case__ ): """simple docstring""" SCREAMING_SNAKE_CASE = 42 class SCREAMING_SNAKE_CASE__ ( snake_case__ ,snake_case__ ): """simple docstring""" @register_to_config def __init__( self : Union[str, Any] , UpperCAmelCase_ : int = 65_536 , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : int = 2 , UpperCAmelCase_ : int = 2 , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : str = "fourier" , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , UpperCAmelCase_ : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , UpperCAmelCase_ : Tuple[str] = "UNetMidBlock1D" , UpperCAmelCase_ : str = None , UpperCAmelCase_ : Tuple[int] = (32, 32, 64) , UpperCAmelCase_ : str = None , UpperCAmelCase_ : int = 8 , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : bool = False , ): """simple docstring""" super().__init__() __UpperCAmelCase : str = sample_size # time if time_embedding_type == "fourier": __UpperCAmelCase : int = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=UpperCAmelCase_ , log=UpperCAmelCase_ , flip_sin_to_cos=UpperCAmelCase_ ) __UpperCAmelCase : str = 2 * block_out_channels[0] elif time_embedding_type == "positional": __UpperCAmelCase : str = Timesteps( block_out_channels[0] , flip_sin_to_cos=UpperCAmelCase_ , downscale_freq_shift=UpperCAmelCase_ ) __UpperCAmelCase : Dict = block_out_channels[0] if use_timestep_embedding: __UpperCAmelCase : Union[str, Any] = block_out_channels[0] * 4 __UpperCAmelCase : str = TimestepEmbedding( in_channels=UpperCAmelCase_ , time_embed_dim=UpperCAmelCase_ , act_fn=UpperCAmelCase_ , out_dim=block_out_channels[0] , ) __UpperCAmelCase : Tuple = nn.ModuleList([] ) __UpperCAmelCase : int = None __UpperCAmelCase : Optional[Any] = nn.ModuleList([] ) __UpperCAmelCase : Dict = None # down __UpperCAmelCase : str = in_channels for i, down_block_type in enumerate(UpperCAmelCase_ ): __UpperCAmelCase : Optional[Any] = output_channel __UpperCAmelCase : Optional[int] = block_out_channels[i] if i == 0: input_channel += extra_in_channels __UpperCAmelCase : Tuple = i == len(UpperCAmelCase_ ) - 1 __UpperCAmelCase : List[str] = get_down_block( UpperCAmelCase_ , num_layers=UpperCAmelCase_ , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(UpperCAmelCase_ ) # mid __UpperCAmelCase : Optional[Any] = get_mid_block( UpperCAmelCase_ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=UpperCAmelCase_ , add_downsample=UpperCAmelCase_ , ) # up __UpperCAmelCase : Tuple = list(reversed(UpperCAmelCase_ ) ) __UpperCAmelCase : Any = reversed_block_out_channels[0] if out_block_type is None: __UpperCAmelCase : Union[str, Any] = out_channels else: __UpperCAmelCase : Dict = block_out_channels[0] for i, up_block_type in enumerate(UpperCAmelCase_ ): __UpperCAmelCase : int = output_channel __UpperCAmelCase : str = ( reversed_block_out_channels[i + 1] if i < len(UpperCAmelCase_ ) - 1 else final_upsample_channels ) __UpperCAmelCase : Tuple = i == len(UpperCAmelCase_ ) - 1 __UpperCAmelCase : Dict = get_up_block( UpperCAmelCase_ , num_layers=UpperCAmelCase_ , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(UpperCAmelCase_ ) __UpperCAmelCase : Union[str, Any] = output_channel # out __UpperCAmelCase : Optional[int] = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) __UpperCAmelCase : List[Any] = get_out_block( out_block_type=UpperCAmelCase_ , num_groups_out=UpperCAmelCase_ , embed_dim=block_out_channels[0] , out_channels=UpperCAmelCase_ , act_fn=UpperCAmelCase_ , fc_dim=block_out_channels[-1] // 4 , ) def lowerCamelCase_ ( self : Optional[int] , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : Union[torch.Tensor, float, int] , UpperCAmelCase_ : bool = True , ): """simple docstring""" __UpperCAmelCase : Dict = timestep if not torch.is_tensor(UpperCAmelCase_ ): __UpperCAmelCase : List[str] = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(UpperCAmelCase_ ) and len(timesteps.shape ) == 0: __UpperCAmelCase : List[str] = timesteps[None].to(sample.device ) __UpperCAmelCase : List[str] = self.time_proj(UpperCAmelCase_ ) if self.config.use_timestep_embedding: __UpperCAmelCase : Any = self.time_mlp(UpperCAmelCase_ ) else: __UpperCAmelCase : Any = timestep_embed[..., None] __UpperCAmelCase : int = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) __UpperCAmelCase : Dict = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down __UpperCAmelCase : int = () for downsample_block in self.down_blocks: __UpperCAmelCase , __UpperCAmelCase : int = downsample_block(hidden_states=UpperCAmelCase_ , temb=UpperCAmelCase_ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: __UpperCAmelCase : List[str] = self.mid_block(UpperCAmelCase_ , UpperCAmelCase_ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): __UpperCAmelCase : Any = down_block_res_samples[-1:] __UpperCAmelCase : List[Any] = down_block_res_samples[:-1] __UpperCAmelCase : str = upsample_block(UpperCAmelCase_ , res_hidden_states_tuple=UpperCAmelCase_ , temb=UpperCAmelCase_ ) # 5. post-process if self.out_block: __UpperCAmelCase : Tuple = self.out_block(UpperCAmelCase_ , UpperCAmelCase_ ) if not return_dict: return (sample,) return UNetaDOutput(sample=UpperCAmelCase_ )
37
'''simple docstring''' def __UpperCamelCase ( _UpperCAmelCase ): try: __UpperCAmelCase : Union[str, Any] = float(_UpperCAmelCase ) except ValueError: raise ValueError("Please enter a valid number" ) __UpperCAmelCase : str = decimal - int(_UpperCAmelCase ) if fractional_part == 0: return int(_UpperCAmelCase ), 1 else: __UpperCAmelCase : Dict = len(str(_UpperCAmelCase ).split("." )[1] ) __UpperCAmelCase : List[Any] = int(decimal * (10**number_of_frac_digits) ) __UpperCAmelCase : Any = 10**number_of_frac_digits __UpperCAmelCase , __UpperCAmelCase : Tuple = denominator, numerator while True: __UpperCAmelCase : Dict = dividend % divisor if remainder == 0: break __UpperCAmelCase , __UpperCAmelCase : str = divisor, remainder __UpperCAmelCase , __UpperCAmelCase : List[str] = numerator / divisor, denominator / divisor return int(_UpperCAmelCase ), int(_UpperCAmelCase ) if __name__ == "__main__": print(f"{decimal_to_fraction(2) = }") print(f"{decimal_to_fraction(89.0) = }") print(f"{decimal_to_fraction('67') = }") print(f"{decimal_to_fraction('45.0') = }") print(f"{decimal_to_fraction(1.5) = }") print(f"{decimal_to_fraction('6.25') = }") print(f"{decimal_to_fraction('78td') = }")
37
1
'''simple docstring''' import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(4_2) a_ = 'bert-base-cased' a_ = 'fp16' a_ = 'bf16' a_ = [FPaa, BFaa] @require_fsdp @require_cuda class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): def __magic_name__ ( self : List[Any] ) -> Dict: super().setUp() SCREAMING_SNAKE_CASE__ : List[Any] =dict( ACCELERATE_USE_FSDP='''true''' , MASTER_ADDR='''localhost''' , MASTER_PORT='''10999''' , RANK='''0''' , LOCAL_RANK='''0''' , WORLD_SIZE='''1''' , ) def __magic_name__ ( self : List[str] ) -> Optional[int]: from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(__lowercase ): SCREAMING_SNAKE_CASE__ : Optional[int] =self.dist_env.copy() SCREAMING_SNAKE_CASE__ : List[Any] =F"{i + 1}" SCREAMING_SNAKE_CASE__ : Optional[int] =strategy with mockenv_context(**__lowercase ): SCREAMING_SNAKE_CASE__ : Dict =FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) ) def __magic_name__ ( self : List[Any] ) -> str: from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(__lowercase ): SCREAMING_SNAKE_CASE__ : Any =self.dist_env.copy() SCREAMING_SNAKE_CASE__ : str =prefetch_policy with mockenv_context(**__lowercase ): SCREAMING_SNAKE_CASE__ : Tuple =FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) ) def __magic_name__ ( self : List[Any] ) -> List[str]: from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(__lowercase ): SCREAMING_SNAKE_CASE__ : Tuple =self.dist_env.copy() SCREAMING_SNAKE_CASE__ : Optional[int] =state_dict_type with mockenv_context(**__lowercase ): SCREAMING_SNAKE_CASE__ : int =FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def __magic_name__ ( self : str ) -> Tuple: SCREAMING_SNAKE_CASE__ : Union[str, Any] =AutoModel.from_pretrained(__lowercase ) for policy in FSDP_AUTO_WRAP_POLICY: SCREAMING_SNAKE_CASE__ : Tuple =self.dist_env.copy() SCREAMING_SNAKE_CASE__ : List[Any] =policy if policy == "TRANSFORMER_BASED_WRAP": SCREAMING_SNAKE_CASE__ : List[Any] ='''BertLayer''' elif policy == "SIZE_BASED_WRAP": SCREAMING_SNAKE_CASE__ : Any ='''2000''' with mockenv_context(**__lowercase ): SCREAMING_SNAKE_CASE__ : int =FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__lowercase ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) SCREAMING_SNAKE_CASE__ : Optional[Any] =self.dist_env.copy() SCREAMING_SNAKE_CASE__ : Optional[int] ='''TRANSFORMER_BASED_WRAP''' SCREAMING_SNAKE_CASE__ : Optional[int] ='''T5Layer''' with mockenv_context(**__lowercase ): SCREAMING_SNAKE_CASE__ : List[str] =FullyShardedDataParallelPlugin() with self.assertRaises(__lowercase ) as cm: fsdp_plugin.set_auto_wrap_policy(__lowercase ) self.assertTrue('''Could not find the transformer layer class to wrap in the model.''' in str(cm.exception ) ) SCREAMING_SNAKE_CASE__ : int =self.dist_env.copy() SCREAMING_SNAKE_CASE__ : int ='''SIZE_BASED_WRAP''' SCREAMING_SNAKE_CASE__ : List[str] ='''0''' with mockenv_context(**__lowercase ): SCREAMING_SNAKE_CASE__ : List[str] =FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__lowercase ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def __magic_name__ ( self : Dict ) -> List[str]: from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: SCREAMING_SNAKE_CASE__ : Optional[int] =self.dist_env.copy() SCREAMING_SNAKE_CASE__ : List[Any] =mp_dtype with mockenv_context(**__lowercase ): SCREAMING_SNAKE_CASE__ : List[Any] =Accelerator() if mp_dtype == "fp16": SCREAMING_SNAKE_CASE__ : int =torch.floataa elif mp_dtype == "bf16": SCREAMING_SNAKE_CASE__ : Optional[int] =torch.bfloataa SCREAMING_SNAKE_CASE__ : List[str] =MixedPrecision(param_dtype=__lowercase , reduce_dtype=__lowercase , buffer_dtype=__lowercase ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , __lowercase ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , __lowercase ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(__lowercase ) def __magic_name__ ( self : Union[str, Any] ) -> str: from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: SCREAMING_SNAKE_CASE__ : Any =self.dist_env.copy() SCREAMING_SNAKE_CASE__ : Any =str(__lowercase ).lower() with mockenv_context(**__lowercase ): SCREAMING_SNAKE_CASE__ : List[Any] =FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=__lowercase ) ) @require_fsdp @require_multi_gpu @slow class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): def __magic_name__ ( self : Dict ) -> Union[str, Any]: super().setUp() SCREAMING_SNAKE_CASE__ : Union[str, Any] =0.82 SCREAMING_SNAKE_CASE__ : List[str] =[ '''fsdp_shard_grad_op_transformer_based_wrap''', '''fsdp_full_shard_transformer_based_wrap''', ] SCREAMING_SNAKE_CASE__ : List[Any] ={ '''multi_gpu_fp16''': 32_00, '''fsdp_shard_grad_op_transformer_based_wrap_fp16''': 20_00, '''fsdp_full_shard_transformer_based_wrap_fp16''': 19_00, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } SCREAMING_SNAKE_CASE__ : List[str] =1_60 SCREAMING_SNAKE_CASE__ : str =1_60 SCREAMING_SNAKE_CASE__ : str =inspect.getfile(accelerate.test_utils ) SCREAMING_SNAKE_CASE__ : str =os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps'''] ) def __magic_name__ ( self : Any ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : Tuple =os.path.join(self.test_scripts_folder , '''test_performance.py''' ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =['''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', '''--use_fsdp'''] for config in self.performance_configs: SCREAMING_SNAKE_CASE__ : Optional[Any] =cmd.copy() for i, strategy in enumerate(__lowercase ): if strategy.lower() in config: cmd_config.append(F"--fsdp_sharding_strategy={i+1}" ) break if "fp32" in config: cmd_config.append('''--mixed_precision=no''' ) else: cmd_config.append('''--mixed_precision=fp16''' ) if "cpu_offload" in config: cmd_config.append('''--fsdp_offload_params=True''' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(F"--fsdp_auto_wrap_policy={policy}" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('''--fsdp_min_num_params=2000''' ) cmd_config.extend( [ self.test_file_path, F"--output_dir={self.tmpdir}", F"--performance_lower_bound={self.performance_lower_bound}", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__lowercase , env=os.environ.copy() ) def __magic_name__ ( self : Union[str, Any] ) -> Any: SCREAMING_SNAKE_CASE__ : Any =os.path.join(self.test_scripts_folder , '''test_checkpointing.py''' ) SCREAMING_SNAKE_CASE__ : List[str] =[ '''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', '''--use_fsdp''', '''--mixed_precision=fp16''', '''--fsdp_transformer_layer_cls_to_wrap=BertLayer''', ] for i, strategy in enumerate(__lowercase ): SCREAMING_SNAKE_CASE__ : Optional[Any] =cmd.copy() cmd_config.append(F"--fsdp_sharding_strategy={i+1}" ) if strategy != "FULL_SHARD": continue SCREAMING_SNAKE_CASE__ : Any =len(__lowercase ) for state_dict_type in FSDP_STATE_DICT_TYPE: SCREAMING_SNAKE_CASE__ : Optional[Any] =cmd_config[:state_dict_config_index] cmd_config.append(F"--fsdp_state_dict_type={state_dict_type}" ) cmd_config.extend( [ self.test_file_path, F"--output_dir={self.tmpdir}", '''--partial_train_epoch=1''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__lowercase , env=os.environ.copy() ) SCREAMING_SNAKE_CASE__ : List[Any] =cmd_config[:-1] SCREAMING_SNAKE_CASE__ : int =os.path.join(self.tmpdir , '''epoch_0''' ) cmd_config.extend( [ F"--resume_from_checkpoint={resume_from_checkpoint}", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__lowercase , env=os.environ.copy() ) def __magic_name__ ( self : int ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ : List[str] =os.path.join(self.test_scripts_folder , '''test_peak_memory_usage.py''' ) SCREAMING_SNAKE_CASE__ : str =[ '''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): SCREAMING_SNAKE_CASE__ : Union[str, Any] =cmd.copy() if "fp16" in spec: cmd_config.extend(['''--mixed_precision=fp16'''] ) else: cmd_config.extend(['''--mixed_precision=no'''] ) if "multi_gpu" in spec: continue else: cmd_config.extend(['''--use_fsdp'''] ) for i, strategy in enumerate(__lowercase ): if strategy.lower() in spec: cmd_config.append(F"--fsdp_sharding_strategy={i+1}" ) break if "cpu_offload" in spec: cmd_config.append('''--fsdp_offload_params=True''' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(F"--fsdp_auto_wrap_policy={policy}" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('''--fsdp_min_num_params=2000''' ) cmd_config.extend( [ self.test_file_path, F"--output_dir={self.tmpdir}", F"--peak_memory_upper_bound={peak_mem_upper_bound}", F"--n_train={self.n_train}", F"--n_val={self.n_val}", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__lowercase , env=os.environ.copy() )
152
'''simple docstring''' from __future__ import annotations import math a_ = '2020.9.26' a_ = 'xcodz-dot, cclaus, dhruvmanila' def _a( UpperCamelCase__ : float, UpperCamelCase__ : float, UpperCamelCase__ : float, UpperCamelCase__ : float, UpperCamelCase__ : float ): '''simple docstring''' if not all(isinstance(UpperCamelCase__, (float, int) ) for val in locals().values() ): SCREAMING_SNAKE_CASE__ : int =f"Input values must either be float or int: {list(locals().values() )}" raise TypeError(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Dict =((x * distance) / (z + distance)) * scale SCREAMING_SNAKE_CASE__ : Tuple =((y * distance) / (z + distance)) * scale return projected_x, projected_y def _a( UpperCamelCase__ : float, UpperCamelCase__ : float, UpperCamelCase__ : float, UpperCamelCase__ : str, UpperCamelCase__ : float ): '''simple docstring''' if not isinstance(UpperCamelCase__, UpperCamelCase__ ): raise TypeError('''Axis must be a str''' ) SCREAMING_SNAKE_CASE__ : List[Any] =locals() del input_variables["axis"] if not all(isinstance(UpperCamelCase__, (float, int) ) for val in input_variables.values() ): SCREAMING_SNAKE_CASE__ : List[str] =( '''Input values except axis must either be float or int: ''' f"{list(input_variables.values() )}" ) raise TypeError(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Tuple =(angle % 3_6_0) / 4_5_0 * 1_8_0 / math.pi if axis == "z": SCREAMING_SNAKE_CASE__ : str =x * math.cos(UpperCamelCase__ ) - y * math.sin(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Tuple =y * math.cos(UpperCamelCase__ ) + x * math.sin(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : str =z elif axis == "x": SCREAMING_SNAKE_CASE__ : Dict =y * math.cos(UpperCamelCase__ ) - z * math.sin(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Optional[int] =z * math.cos(UpperCamelCase__ ) + y * math.sin(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =x elif axis == "y": SCREAMING_SNAKE_CASE__ : Tuple =x * math.cos(UpperCamelCase__ ) - z * math.sin(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] =z * math.cos(UpperCamelCase__ ) + x * math.sin(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : List[Any] =y else: raise ValueError('''not a valid axis, choose one of \'x\', \'y\', \'z\'''' ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(F'''{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }''') print(F'''{rotate(1.0, 2.0, 3.0, 'y', 90.0) = }''')
152
1
'''simple docstring''' import math def UpperCAmelCase_ (__a : int ): """simple docstring""" if not isinstance(__a , __a ): _a : Tuple = f"""Input value of [number={number}] must be an integer""" raise TypeError(__a ) if number < 1: _a : Any = f"""Input value of [number={number}] must be > 0""" raise ValueError(__a ) elif number == 1: return 3 elif number == 2: return 5 else: _a : str = int(math.log(number // 3 , 2 ) ) + 2 _a : Union[str, Any] = [3, 5] _a : Any = 2 _a : List[Any] = 3 for block in range(1 , __a ): for _ in range(__a ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(1_1): __lowerCAmelCase = 0 try: __lowerCAmelCase = proth(number) except ValueError: print(f'''ValueError: there is no {number}th Proth number''') continue print(f'''The {number}th Proth number: {value}''')
5
'''simple docstring''' __lowerCAmelCase = { """A""": """.-""", """B""": """-...""", """C""": """-.-.""", """D""": """-..""", """E""": """.""", """F""": """..-.""", """G""": """--.""", """H""": """....""", """I""": """..""", """J""": """.---""", """K""": """-.-""", """L""": """.-..""", """M""": """--""", """N""": """-.""", """O""": """---""", """P""": """.--.""", """Q""": """--.-""", """R""": """.-.""", """S""": """...""", """T""": """-""", """U""": """..-""", """V""": """...-""", """W""": """.--""", """X""": """-..-""", """Y""": """-.--""", """Z""": """--..""", """1""": """.----""", """2""": """..---""", """3""": """...--""", """4""": """....-""", """5""": """.....""", """6""": """-....""", """7""": """--...""", """8""": """---..""", """9""": """----.""", """0""": """-----""", """&""": """.-...""", """@""": """.--.-.""", """:""": """---...""", """,""": """--..--""", """.""": """.-.-.-""", """'""": """.----.""", """\"""": """.-..-.""", """?""": """..--..""", """/""": """-..-.""", """=""": """-...-""", """+""": """.-.-.""", """-""": """-....-""", """(""": """-.--.""", """)""": """-.--.-""", """!""": """-.-.--""", """ """: """/""" } # Exclamation mark is not in ITU-R recommendation # fmt: on __lowerCAmelCase = {value: key for key, value in MORSE_CODE_DICT.items()} def UpperCAmelCase_ (__a : str ): """simple docstring""" return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def UpperCAmelCase_ (__a : str ): """simple docstring""" return "".join(REVERSE_DICT[char] for char in message.split() ) def UpperCAmelCase_ (): """simple docstring""" _a : List[str] = 'Morse code here!' print(__a ) _a : Tuple = encrypt(__a ) print(__a ) _a : str = decrypt(__a ) print(__a ) if __name__ == "__main__": main()
5
1
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration UpperCAmelCase__ : Optional[Any] = 500000 UpperCAmelCase__ : Optional[Any] = os.path.split(__file__) UpperCAmelCase__ : Tuple = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def lowerCamelCase__ ( a , **a ) -> Dict: _A: Optional[Any] = dataset.map(**a ) @get_duration def lowerCamelCase__ ( a , **a ) -> List[str]: _A: Any = dataset.filter(**a ) def lowerCamelCase__ ( ) -> Tuple: _A: str = {'''num examples''': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: _A: Any = datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} ) _A: List[Any] = generate_example_dataset( os.path.join(a , '''dataset.arrow''' ) , a , num_examples=a ) _A: Optional[int] = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=a ) def tokenize(a ): return tokenizer(examples['''text'''] ) _A: List[str] = map(a ) _A: str = map(a , batched=a ) _A: int = map(a , function=lambda a : None , batched=a ) with dataset.formatted_as(type='''numpy''' ): _A: int = map(a , function=lambda a : None , batched=a ) with dataset.formatted_as(type='''pandas''' ): _A: Union[str, Any] = map(a , function=lambda a : None , batched=a ) with dataset.formatted_as(type='''torch''' , columns='''numbers''' ): _A: Optional[int] = map(a , function=lambda a : None , batched=a ) with dataset.formatted_as(type='''tensorflow''' , columns='''numbers''' ): _A: Dict = map(a , function=lambda a : None , batched=a ) _A: Any = map(a , function=a , batched=a ) _A: Optional[Any] = filter(a ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(a , '''wb''' ) as f: f.write(json.dumps(a ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
121
'''simple docstring''' def __a ( UpperCAmelCase , UpperCAmelCase ) ->float: """simple docstring""" if density <= 0: raise ValueError("""Impossible fluid density""" ) if bulk_modulus <= 0: raise ValueError("""Impossible bulk modulus""" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
258
0
def snake_case (__lowercase , __lowercase , __lowercase , __lowercase ) -> bool: '''simple docstring''' if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def snake_case (__lowercase , __lowercase , __lowercase ) -> bool: '''simple docstring''' if curr_ind == len(__lowercase ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(__lowercase ) ): if valid_connection(__lowercase , __lowercase , __lowercase , __lowercase ): # Insert current vertex into path as next transition _snake_case : Tuple = next_ver # Validate created path if util_hamilton_cycle(__lowercase , __lowercase , curr_ind + 1 ): return True # Backtrack _snake_case : Dict = -1 return False def snake_case (__lowercase , __lowercase = 0 ) -> list[int]: '''simple docstring''' _snake_case : Union[str, Any] = [-1] * (len(__lowercase ) + 1) # initialize start and end of path with starting index _snake_case : Any = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(__lowercase , __lowercase , 1 ) else []
352
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf __SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) @dataclass class lowercase_ ( __snake_case ): _lowerCamelCase = [ 'no_inference', 'no_cuda', 'no_tpu', 'no_speed', 'no_memory', 'no_env_print', 'no_multi_process', ] def __init__( self , **lowercase_ ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: _snake_case : List[str] = deprecated_arg[3:] _snake_case : Optional[int] = not kwargs.pop(lowercase_ ) logger.warning( f"""{deprecated_arg} is depreciated. Please use --no-{positive_arg} or""" f""" {positive_arg}={kwargs[positive_arg]}""" ) _snake_case : Tuple = kwargs.pop("tpu_name" , self.tpu_name ) _snake_case : Any = kwargs.pop("device_idx" , self.device_idx ) _snake_case : List[str] = kwargs.pop("eager_mode" , self.eager_mode ) _snake_case : List[str] = kwargs.pop("use_xla" , self.use_xla ) super().__init__(**lowercase_ ) _lowerCamelCase = field( default=__snake_case , metadata={'help': 'Name of TPU'} , ) _lowerCamelCase = field( default=0 , metadata={'help': 'CPU / GPU device index. Defaults to 0.'} , ) _lowerCamelCase = field(default=__snake_case , metadata={'help': 'Benchmark models in eager model.'} ) _lowerCamelCase = field( default=__snake_case , metadata={ 'help': 'Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.' } , ) @cached_property def UpperCamelCase ( self ): requires_backends(self , ["tf"] ) _snake_case : str = None if self.tpu: try: if self.tpu_name: _snake_case : Optional[Any] = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: _snake_case : List[str] = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: _snake_case : Union[str, Any] = None return tpu @cached_property def UpperCamelCase ( self ): requires_backends(self , ["tf"] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) _snake_case : List[str] = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , "GPU" ) _snake_case : Any = tf.distribute.OneDeviceStrategy(device=f"""/gpu:{self.device_idx}""" ) else: tf.config.set_visible_devices([] , "GPU" ) # disable GPU _snake_case : Any = tf.distribute.OneDeviceStrategy(device=f"""/cpu:{self.device_idx}""" ) return strategy @property def UpperCamelCase ( self ): requires_backends(self , ["tf"] ) return self._setup_tpu is not None @property def UpperCamelCase ( self ): requires_backends(self , ["tf"] ) return self._setup_strategy @property def UpperCamelCase ( self ): requires_backends(self , ["tf"] ) return tf.config.list_physical_devices("GPU" ) @property def UpperCamelCase ( self ): requires_backends(self , ["tf"] ) if self.cuda: return len(self.gpu_list ) return 0 @property def UpperCamelCase ( self ): return self.n_gpu > 0
284
0
import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel A : List[Any] = '0.12' # assumed parallelism: 8 @require_flax @is_staging_test class A ( unittest.TestCase ): '''simple docstring''' @classmethod def lowerCamelCase__ (cls : str ) -> Any: """simple docstring""" lowercase__ = TOKEN HfFolder.save_token(_UpperCAmelCase ) @classmethod def lowerCamelCase__ (cls : Any ) -> Any: """simple docstring""" try: delete_repo(token=cls._token , repo_id="""test-model-flax""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-model-flax-org""" ) except HTTPError: pass def lowerCamelCase__ (self : Any ) -> List[Any]: """simple docstring""" lowercase__ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) lowercase__ = FlaxBertModel(_UpperCAmelCase ) model.push_to_hub("""test-model-flax""" , use_auth_token=self._token ) lowercase__ = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) lowercase__ = flatten_dict(unfreeze(model.params ) ) lowercase__ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): lowercase__ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_UpperCAmelCase , 1E-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id="""test-model-flax""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_UpperCAmelCase , repo_id="""test-model-flax""" , push_to_hub=_UpperCAmelCase , use_auth_token=self._token ) lowercase__ = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) lowercase__ = flatten_dict(unfreeze(model.params ) ) lowercase__ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): lowercase__ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_UpperCAmelCase , 1E-3 , msg=f'''{key} not identical''' ) def lowerCamelCase__ (self : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) lowercase__ = FlaxBertModel(_UpperCAmelCase ) model.push_to_hub("""valid_org/test-model-flax-org""" , use_auth_token=self._token ) lowercase__ = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" ) lowercase__ = flatten_dict(unfreeze(model.params ) ) lowercase__ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): lowercase__ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_UpperCAmelCase , 1E-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-model-flax-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _UpperCAmelCase , repo_id="""valid_org/test-model-flax-org""" , push_to_hub=_UpperCAmelCase , use_auth_token=self._token ) lowercase__ = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" ) lowercase__ = flatten_dict(unfreeze(model.params ) ) lowercase__ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): lowercase__ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_UpperCAmelCase , 1E-3 , msg=f'''{key} not identical''' ) def UpperCamelCase ( __magic_name__ : Optional[int] , __magic_name__ : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = True lowercase__ = flatten_dict(modela.params ) lowercase__ = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1E-4: lowercase__ = False return models_are_equal @require_flax class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Dict ) -> Tuple: """simple docstring""" lowercase__ = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) lowercase__ = FlaxBertModel(_UpperCAmelCase ) lowercase__ = """bert""" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) ) with self.assertRaises(_UpperCAmelCase ): lowercase__ = FlaxBertModel.from_pretrained(_UpperCAmelCase ) lowercase__ = FlaxBertModel.from_pretrained(_UpperCAmelCase , subfolder=_UpperCAmelCase ) self.assertTrue(check_models_equal(_UpperCAmelCase , _UpperCAmelCase ) ) def lowerCamelCase__ (self : List[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) lowercase__ = FlaxBertModel(_UpperCAmelCase ) lowercase__ = """bert""" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , max_shard_size="""10KB""" ) with self.assertRaises(_UpperCAmelCase ): lowercase__ = FlaxBertModel.from_pretrained(_UpperCAmelCase ) lowercase__ = FlaxBertModel.from_pretrained(_UpperCAmelCase , subfolder=_UpperCAmelCase ) self.assertTrue(check_models_equal(_UpperCAmelCase , _UpperCAmelCase ) ) def lowerCamelCase__ (self : List[str] ) -> Dict: """simple docstring""" lowercase__ = """bert""" lowercase__ = """hf-internal-testing/tiny-random-bert-subfolder""" with self.assertRaises(_UpperCAmelCase ): lowercase__ = FlaxBertModel.from_pretrained(_UpperCAmelCase ) lowercase__ = FlaxBertModel.from_pretrained(_UpperCAmelCase , subfolder=_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def lowerCamelCase__ (self : Tuple ) -> Dict: """simple docstring""" lowercase__ = """bert""" lowercase__ = """hf-internal-testing/tiny-random-bert-sharded-subfolder""" with self.assertRaises(_UpperCAmelCase ): lowercase__ = FlaxBertModel.from_pretrained(_UpperCAmelCase ) lowercase__ = FlaxBertModel.from_pretrained(_UpperCAmelCase , subfolder=_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase )
305
class A : '''simple docstring''' def __init__(self : List[str] ) -> Tuple: """simple docstring""" lowercase__ = 0 lowercase__ = 0 lowercase__ = {} def lowerCamelCase__ (self : Dict , _UpperCAmelCase : Tuple ) -> Optional[int]: """simple docstring""" if vertex not in self.adjacency: lowercase__ = {} self.num_vertices += 1 def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : List[str] ) -> Tuple: """simple docstring""" self.add_vertex(_UpperCAmelCase ) self.add_vertex(_UpperCAmelCase ) if head == tail: return lowercase__ = weight lowercase__ = weight def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" lowercase__ = self.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge edges.remove((tail, head, weight) ) for i in range(len(_UpperCAmelCase ) ): lowercase__ = list(edges[i] ) edges.sort(key=lambda _UpperCAmelCase : e[2] ) for i in range(len(_UpperCAmelCase ) - 1 ): if edges[i][2] >= edges[i + 1][2]: lowercase__ = edges[i][2] + 1 for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge lowercase__ = weight lowercase__ = weight def __str__(self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = """""" for tail in self.adjacency: for head in self.adjacency[tail]: lowercase__ = self.adjacency[head][tail] string += f'''{head} -> {tail} == {weight}\n''' return string.rstrip("""\n""" ) def lowerCamelCase__ (self : Any ) -> str: """simple docstring""" lowercase__ = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def lowerCamelCase__ (self : Optional[int] ) -> Optional[int]: """simple docstring""" return self.adjacency.keys() @staticmethod def lowerCamelCase__ (_UpperCAmelCase : List[str]=None , _UpperCAmelCase : Any=None ) -> Union[str, Any]: """simple docstring""" lowercase__ = Graph() if vertices is None: lowercase__ = [] if edges is None: lowercase__ = [] for vertex in vertices: g.add_vertex(_UpperCAmelCase ) for edge in edges: g.add_edge(*_UpperCAmelCase ) return g class A : '''simple docstring''' def __init__(self : Optional[Any] ) -> str: """simple docstring""" lowercase__ = {} lowercase__ = {} def __len__(self : Optional[Any] ) -> Dict: """simple docstring""" return len(self.parent ) def lowerCamelCase__ (self : str , _UpperCAmelCase : Dict ) -> Any: """simple docstring""" if item in self.parent: return self.find(_UpperCAmelCase ) lowercase__ = item lowercase__ = 0 return item def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Dict ) -> Any: """simple docstring""" if item not in self.parent: return self.make_set(_UpperCAmelCase ) if item != self.parent[item]: lowercase__ = self.find(self.parent[item] ) return self.parent[item] def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = self.find(_UpperCAmelCase ) lowercase__ = self.find(_UpperCAmelCase ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: lowercase__ = roota return roota if self.rank[roota] < self.rank[roota]: lowercase__ = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 lowercase__ = roota return roota return None @staticmethod def lowerCamelCase__ (_UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" lowercase__ = graph.num_vertices lowercase__ = Graph.UnionFind() lowercase__ = [] while num_components > 1: lowercase__ = {} for vertex in graph.get_vertices(): lowercase__ = -1 lowercase__ = graph.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge edges.remove((tail, head, weight) ) for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge lowercase__ = union_find.find(_UpperCAmelCase ) lowercase__ = union_find.find(_UpperCAmelCase ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: lowercase__ , lowercase__ , lowercase__ = cheap_edge[vertex] if union_find.find(_UpperCAmelCase ) != union_find.find(_UpperCAmelCase ): union_find.union(_UpperCAmelCase , _UpperCAmelCase ) mst_edges.append(cheap_edge[vertex] ) lowercase__ = num_components - 1 lowercase__ = Graph.build(edges=_UpperCAmelCase ) return mst
305
1
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _lowerCAmelCase ( snake_case__, snake_case__, unittest.TestCase ): """simple docstring""" lowerCamelCase = IFInpaintingPipeline lowerCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""} lowerCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowerCamelCase = PipelineTesterMixin.required_optional_params - {"""latents"""} def UpperCAmelCase_ ( self ) -> List[Any]: return self._get_dummy_components() def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase=0 ) -> Union[str, Any]: if str(_A ).startswith("""mps""" ): A_ : Dict = torch.manual_seed(_A ) else: A_ : List[Any] = torch.Generator(device=_A ).manual_seed(_A ) A_ : int = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) A_ : Optional[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) A_ : Dict = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def UpperCAmelCase_ ( self ) -> List[Any]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def UpperCAmelCase_ ( self ) -> Optional[Any]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def UpperCAmelCase_ ( self ) -> Tuple: super().test_save_load_floataa(expected_max_diff=1e-1 ) def UpperCAmelCase_ ( self ) -> List[str]: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def UpperCAmelCase_ ( self ) -> int: self._test_save_load_local() def UpperCAmelCase_ ( self ) -> Union[str, Any]: self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
364
'''simple docstring''' import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging UpperCamelCase__ : List[Any] = logging.get_logger(__name__) class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = ['''input_values''', '''attention_mask'''] def __init__( self , _lowerCamelCase = 1 , _lowerCamelCase = 1_6000 , _lowerCamelCase = 0.0 , _lowerCamelCase = False , _lowerCamelCase = 80 , _lowerCamelCase = 16 , _lowerCamelCase = 64 , _lowerCamelCase = "hann_window" , _lowerCamelCase = 1.0 , _lowerCamelCase = 80 , _lowerCamelCase = 7600 , _lowerCamelCase = 1e-10 , _lowerCamelCase = 2 , _lowerCamelCase = True , **_lowerCamelCase , ) -> List[Any]: super().__init__(feature_size=_lowerCamelCase , sampling_rate=_lowerCamelCase , padding_value=_lowerCamelCase , **_lowerCamelCase ) A_ : List[Any] = do_normalize A_ : Union[str, Any] = return_attention_mask A_ : Tuple = num_mel_bins A_ : List[str] = hop_length A_ : int = win_length A_ : Optional[int] = win_function A_ : List[Any] = frame_signal_scale A_ : str = fmin A_ : Optional[Any] = fmax A_ : Any = mel_floor A_ : Any = reduction_factor A_ : Tuple = win_length * sampling_rate // 1000 A_ : Dict = hop_length * sampling_rate // 1000 A_ : Dict = optimal_fft_length(self.sample_size ) A_ : str = (self.n_fft // 2) + 1 A_ : int = window_function(window_length=self.sample_size , name=self.win_function , periodic=_lowerCamelCase ) A_ : Optional[int] = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm="""slaney""" , mel_scale="""slaney""" , ) if frame_signal_scale != 1.0: warnings.warn( """The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers""" , _lowerCamelCase , ) if reduction_factor != 2.0: warnings.warn( """The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers""" , _lowerCamelCase , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def UpperCAmelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 0.0 ) -> List[np.ndarray]: if attention_mask is not None: A_ : Dict = np.array(_lowerCamelCase , np.intaa ) A_ : Dict = [] for vector, length in zip(_lowerCamelCase , attention_mask.sum(-1 ) ): A_ : Optional[int] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: A_ : Any = padding_value normed_input_values.append(_lowerCamelCase ) else: A_ : List[str] = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def UpperCAmelCase_ ( self , _lowerCamelCase , ) -> np.ndarray: A_ : int = spectrogram( _lowerCamelCase , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel="""log10""" , ) return log_mel_spec.T def __call__( self , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , **_lowerCamelCase , ) -> BatchFeature: if audio is None and audio_target is None: raise ValueError("""You must provide either `audio` or `audio_target` values.""" ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" F" {self.sampling_rate}. Please make sure that the provided audio input was sampled with" F" {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( """It is strongly recommended to pass the ``sampling_rate`` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) if audio is not None: A_ : Dict = self._process_audio( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase , ) else: A_ : Optional[int] = None if audio_target is not None: A_ : Union[str, Any] = self._process_audio( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase , ) if inputs is None: return inputs_target else: A_ : Optional[int] = inputs_target["""input_values"""] A_ : Tuple = inputs_target.get("""attention_mask""" ) if decoder_attention_mask is not None: A_ : int = decoder_attention_mask return inputs def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , **_lowerCamelCase , ) -> BatchFeature: A_ : Optional[int] = isinstance(_lowerCamelCase , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(F"Only mono-channel audio is supported for input to {self}" ) A_ : List[str] = is_batched_numpy or ( isinstance(_lowerCamelCase , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: A_ : Union[str, Any] = [np.asarray(_lowerCamelCase , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(_lowerCamelCase , np.ndarray ): A_ : List[str] = np.asarray(_lowerCamelCase , dtype=np.floataa ) elif isinstance(_lowerCamelCase , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): A_ : Optional[Any] = speech.astype(np.floataa ) # always return batch if not is_batched: A_ : int = [speech] # needed to make pad() work on spectrogram inputs A_ : List[Any] = self.feature_size # convert into correct format for padding if is_target: A_ : Tuple = [self._extract_mel_features(_lowerCamelCase ) for waveform in speech] A_ : Tuple = BatchFeature({"""input_values""": features} ) A_ : Dict = self.num_mel_bins else: A_ : Union[str, Any] = BatchFeature({"""input_values""": speech} ) A_ : Tuple = self.pad( _lowerCamelCase , padding=_lowerCamelCase , max_length=_lowerCamelCase , truncation=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_attention_mask=_lowerCamelCase , **_lowerCamelCase , ) A_ : Union[str, Any] = feature_size_hack # convert input values to correct format A_ : str = padded_inputs["""input_values"""] if not isinstance(input_values[0] , np.ndarray ): A_ : str = [np.asarray(_lowerCamelCase , dtype=np.floataa ) for array in input_values] elif ( not isinstance(_lowerCamelCase , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): A_ : Tuple = [array.astype(np.floataa ) for array in input_values] elif isinstance(_lowerCamelCase , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): A_ : List[Any] = input_values.astype(np.floataa ) # convert attention_mask to correct format A_ : Any = padded_inputs.get("""attention_mask""" ) if attention_mask is not None: A_ : str = [np.asarray(_lowerCamelCase , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: A_ : Any = ( attention_mask if self._get_padding_strategies(_lowerCamelCase , max_length=_lowerCamelCase ) is not PaddingStrategy.DO_NOT_PAD else None ) A_ : Any = self.zero_mean_unit_var_norm( padded_inputs["""input_values"""] , attention_mask=_lowerCamelCase , padding_value=self.padding_value ) if return_tensors is not None: A_ : Dict = padded_inputs.convert_to_tensors(_lowerCamelCase ) return padded_inputs def UpperCAmelCase_ ( self ) -> Dict[str, Any]: A_ : List[Any] = super().to_dict() # Don't serialize these as they are derived from the other properties. A_ : Optional[int] = ["""window""", """mel_filters""", """sample_size""", """sample_stride""", """n_fft""", """n_freqs"""] for name in names: if name in output: del output[name] return output
164
0
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): '''simple docstring''' __lowercase : Union[str, Any] = XLNetTokenizer __lowercase : List[Any] = XLNetTokenizerFast __lowercase : List[str] = True __lowercase : str = True def UpperCAmelCase_ ( self ) -> int: super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase__ : Optional[int] = XLNetTokenizer(__UpperCAmelCase ,keep_accents=__UpperCAmelCase ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase_ ( self ) -> Optional[Any]: lowerCAmelCase__ : List[Any] = """<s>""" lowerCAmelCase__ : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) ,__UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) ,__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> Dict: lowerCAmelCase__ : Optional[int] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"""<unk>""" ) self.assertEqual(vocab_keys[1] ,"""<s>""" ) self.assertEqual(vocab_keys[-1] ,"""<eod>""" ) self.assertEqual(len(__UpperCAmelCase ) ,1006 ) def UpperCAmelCase_ ( self ) -> Dict: self.assertEqual(self.get_tokenizer().vocab_size ,1000 ) def UpperCAmelCase_ ( self ) -> Optional[Any]: lowerCAmelCase__ : Tuple = XLNetTokenizer(__UpperCAmelCase ,keep_accents=__UpperCAmelCase ) lowerCAmelCase__ : List[str] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__UpperCAmelCase ,["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) ,[285, 46, 10, 170, 382] ) lowerCAmelCase__ : Tuple = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __UpperCAmelCase ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] ,) lowerCAmelCase__ : List[Any] = tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase ,[8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] ) lowerCAmelCase__ : List[Any] = tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] ,) def UpperCAmelCase_ ( self ) -> Optional[int]: lowerCAmelCase__ : Optional[Any] = XLNetTokenizer(__UpperCAmelCase ,do_lower_case=__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __UpperCAmelCase ,[ SPIECE_UNDERLINE + """""", """i""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] ,) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""▁he""", """ll""", """o"""] ) def UpperCAmelCase_ ( self ) -> Optional[int]: lowerCAmelCase__ : Dict = XLNetTokenizer(__UpperCAmelCase ,do_lower_case=__UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __UpperCAmelCase ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] ,) @slow def UpperCAmelCase_ ( self ) -> Union[str, Any]: lowerCAmelCase__ : Tuple = XLNetTokenizer.from_pretrained("""xlnet-base-cased""" ) lowerCAmelCase__ : int = tokenizer.encode("""sequence builders""" ,add_special_tokens=__UpperCAmelCase ) lowerCAmelCase__ : Dict = tokenizer.encode("""multi-sequence build""" ,add_special_tokens=__UpperCAmelCase ) lowerCAmelCase__ : Dict = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase ) lowerCAmelCase__ : Any = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase ,__UpperCAmelCase ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def UpperCAmelCase_ ( self ) -> int: # fmt: off lowerCAmelCase__ : Optional[Any] = {"""input_ids""": [[17, 2_1442, 270, 17, 10, 1_4645, 318, 34, 17, 4546, 3145, 787, 13, 7752, 2_2018, 23, 21, 17, 4546, 3145, 787, 13, 3352, 1_4431, 13, 5500, 11, 1176, 580, 13, 1_6819, 4797, 23, 17, 10, 1_7135, 658, 19, 457, 7932, 13, 184, 19, 3154, 1_7135, 6468, 19, 1404, 1_2269, 19, 4229, 5356, 1_6264, 46, 19, 17, 2_0545, 1_0395, 9, 9, 9, 11, 28, 6421, 9531, 2_0729, 17, 10, 353, 1_7022, 11, 21, 6421, 9531, 1_6949, 17, 10, 1_1509, 753, 11, 33, 95, 2421, 7385, 956, 1_4431, 2626, 25, 842, 7385, 4836, 21, 1429, 2272, 9855, 3120, 161, 2_4738, 19, 1_3203, 658, 218, 787, 21, 430, 1_8482, 847, 2637, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 322, 2_2178, 27, 1064, 22, 956, 13, 1_1101, 1429, 5854, 2_4313, 1_8953, 40, 422, 2_4366, 68, 1758, 37, 1_0483, 1_4257, 31, 207, 263, 21, 203, 3773, 25, 71, 9735, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 2049, 3442, 17, 1_3894, 3380, 23, 95, 18, 1_7634, 2288, 9, 4, 3]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCAmelCase ,model_name="""xlnet-base-cased""" ,revision="""c841166438c31ec7ca9a106dee7bb312b73ae511""" ,)
37
'''simple docstring''' import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , ) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.p3.16xlarge''', '''results''': {'''train_runtime''': 6_5_0, '''eval_accuracy''': 0.7, '''eval_loss''': 0.6}, }, { '''framework''': '''pytorch''', '''script''': '''run_ddp.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.p3.16xlarge''', '''results''': {'''train_runtime''': 6_0_0, '''eval_accuracy''': 0.7, '''eval_loss''': 0.6}, }, { '''framework''': '''tensorflow''', '''script''': '''run_tf_dist.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.p3.16xlarge''', '''results''': {'''train_runtime''': 6_0_0, '''eval_accuracy''': 0.6, '''eval_loss''': 0.7}, }, ] ) class lowerCAmelCase_( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self ) -> Optional[Any]: if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() ,encoding="""utf-8""" ,check=__UpperCAmelCase ,) assert hasattr(self ,"""env""" ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Optional[Any]: lowerCAmelCase__ : Optional[int] = F"""{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}""" # distributed data settings lowerCAmelCase__ : Any = {"""smdistributed""": {"""dataparallel""": {"""enabled""": True}}} if self.script != """run_ddp.py""" else None # creates estimator return HuggingFace( entry_point=self.script ,source_dir=self.env.test_path ,role=self.env.role ,image_uri=self.env.image_uri ,base_job_name=__UpperCAmelCase ,instance_count=__UpperCAmelCase ,instance_type=self.instance_type ,debugger_hook_config=__UpperCAmelCase ,hyperparameters={**self.env.distributed_hyperparameters, """model_name_or_path""": self.model_name_or_path} ,metric_definitions=self.env.metric_definitions ,distribution=__UpperCAmelCase ,py_version="""py36""" ,) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Optional[Any]: TrainingJobAnalytics(__UpperCAmelCase ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(2,)] ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Any: # create estimator lowerCAmelCase__ : List[Any] = self.create_estimator(__UpperCAmelCase ) # run training estimator.fit() # result dataframe lowerCAmelCase__ : Any = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowerCAmelCase__ : int = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) lowerCAmelCase__ : List[Any] = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowerCAmelCase__ : List[str] = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" ,99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" ,"""w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} ,__UpperCAmelCase )
37
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _A : str ={ '''configuration_bigbird_pegasus''': [ '''BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BigBirdPegasusConfig''', '''BigBirdPegasusOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : str =[ '''BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BigBirdPegasusForCausalLM''', '''BigBirdPegasusForConditionalGeneration''', '''BigBirdPegasusForQuestionAnswering''', '''BigBirdPegasusForSequenceClassification''', '''BigBirdPegasusModel''', '''BigBirdPegasusPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys _A : Optional[Any] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
354
'''simple docstring''' from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput _A : Union[str, Any] =8 def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase=BITS ) -> Tuple: lowerCamelCase__ : List[str] = x.device lowerCamelCase__ : Any = (x * 255).int().clamp(0 , 255 ) lowerCamelCase__ : Optional[int] = 2 ** torch.arange(bits - 1 , -1 , -1 , device=UpperCamelCase ) lowerCamelCase__ : int = rearrange(UpperCamelCase , """d -> d 1 1""" ) lowerCamelCase__ : List[str] = rearrange(UpperCamelCase , """b c h w -> b c 1 h w""" ) lowerCamelCase__ : Tuple = ((x & mask) != 0).float() lowerCamelCase__ : List[Any] = rearrange(UpperCamelCase , """b c d h w -> b (c d) h w""" ) lowerCamelCase__ : Optional[int] = bits * 2 - 1 return bits def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase=BITS ) -> List[Any]: lowerCamelCase__ : List[Any] = x.device lowerCamelCase__ : Dict = (x > 0).int() lowerCamelCase__ : Optional[Any] = 2 ** torch.arange(bits - 1 , -1 , -1 , device=UpperCamelCase , dtype=torch.intaa ) lowerCamelCase__ : List[Any] = rearrange(UpperCamelCase , """d -> d 1 1""" ) lowerCamelCase__ : List[str] = rearrange(UpperCamelCase , """b (c d) h w -> b c d h w""" , d=8 ) lowerCamelCase__ : List[Any] = reduce(x * mask , """b c d h w -> b c h w""" , """sum""" ) return (dec / 255).clamp(0.0 , 1.0 ) def SCREAMING_SNAKE_CASE_ (self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = 0.0 , UpperCamelCase = True , UpperCamelCase=None , UpperCamelCase = True , ) -> Union[DDIMSchedulerOutput, Tuple]: if self.num_inference_steps is None: raise ValueError( """Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler""" ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) lowerCamelCase__ : Optional[int] = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas lowerCamelCase__ : str = self.alphas_cumprod[timestep] lowerCamelCase__ : List[str] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod lowerCamelCase__ : Optional[int] = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowerCamelCase__ : Optional[int] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" lowerCamelCase__ : Dict = self.bit_scale if self.config.clip_sample: lowerCamelCase__ : Optional[Any] = torch.clamp(UpperCamelCase , -scale , UpperCamelCase ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) lowerCamelCase__ : Tuple = self._get_variance(UpperCamelCase , UpperCamelCase ) lowerCamelCase__ : Optional[int] = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide lowerCamelCase__ : int = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowerCamelCase__ : Optional[Any] = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowerCamelCase__ : Tuple = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 lowerCamelCase__ : Dict = model_output.device if torch.is_tensor(UpperCamelCase ) else """cpu""" lowerCamelCase__ : str = torch.randn(model_output.shape , dtype=model_output.dtype , generator=UpperCamelCase ).to(UpperCamelCase ) lowerCamelCase__ : Optional[Any] = self._get_variance(UpperCamelCase , UpperCamelCase ) ** 0.5 * eta * noise lowerCamelCase__ : int = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=UpperCamelCase , pred_original_sample=UpperCamelCase ) def SCREAMING_SNAKE_CASE_ (self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase="epsilon" , UpperCamelCase=None , UpperCamelCase = True , ) -> Union[DDPMSchedulerOutput, Tuple]: lowerCamelCase__ : List[Any] = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = torch.split(UpperCamelCase , sample.shape[1] , dim=1 ) else: lowerCamelCase__ : List[str] = None # 1. compute alphas, betas lowerCamelCase__ : str = self.alphas_cumprod[t] lowerCamelCase__ : List[str] = self.alphas_cumprod[t - 1] if t > 0 else self.one lowerCamelCase__ : str = 1 - alpha_prod_t lowerCamelCase__ : List[Any] = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": lowerCamelCase__ : Union[str, Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": lowerCamelCase__ : Optional[Any] = model_output else: raise ValueError(f'''Unsupported prediction_type {prediction_type}.''' ) # 3. Clip "predicted x_0" lowerCamelCase__ : str = self.bit_scale if self.config.clip_sample: lowerCamelCase__ : List[Any] = torch.clamp(UpperCamelCase , -scale , UpperCamelCase ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCamelCase__ : Tuple = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t lowerCamelCase__ : Tuple = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCamelCase__ : int = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise lowerCamelCase__ : Optional[Any] = 0 if t > 0: lowerCamelCase__ : Optional[Any] = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=UpperCamelCase ).to(model_output.device ) lowerCamelCase__ : str = (self._get_variance(UpperCamelCase , predicted_variance=UpperCamelCase ) ** 0.5) * noise lowerCamelCase__ : Optional[int] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=UpperCamelCase , pred_original_sample=UpperCamelCase ) class _lowercase ( _lowercase ): def __init__( self: List[str] , UpperCamelCase__: UNetaDConditionModel , UpperCamelCase__: Union[DDIMScheduler, DDPMScheduler] , UpperCamelCase__: Optional[float] = 1.0 , ): super().__init__() lowerCamelCase__ : Optional[int] = bit_scale lowerCamelCase__ : List[Any] = ( ddim_bit_scheduler_step if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else ddpm_bit_scheduler_step ) self.register_modules(unet=UpperCamelCase__ , scheduler=UpperCamelCase__ ) @torch.no_grad() def __call__( self: Union[str, Any] , UpperCamelCase__: Optional[int] = 256 , UpperCamelCase__: Optional[int] = 256 , UpperCamelCase__: Optional[int] = 50 , UpperCamelCase__: Optional[torch.Generator] = None , UpperCamelCase__: Optional[int] = 1 , UpperCamelCase__: Optional[str] = "pil" , UpperCamelCase__: bool = True , **UpperCamelCase__: int , ): lowerCamelCase__ : List[Any] = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=UpperCamelCase__ , ) lowerCamelCase__ : Union[str, Any] = decimal_to_bits(UpperCamelCase__ ) * self.bit_scale lowerCamelCase__ : Union[str, Any] = latents.to(self.device ) self.scheduler.set_timesteps(UpperCamelCase__ ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual lowerCamelCase__ : Tuple = self.unet(UpperCamelCase__ , UpperCamelCase__ ).sample # compute the previous noisy sample x_t -> x_t-1 lowerCamelCase__ : Any = self.scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample lowerCamelCase__ : Dict = bits_to_decimal(UpperCamelCase__ ) if output_type == "pil": lowerCamelCase__ : int = self.numpy_to_pil(UpperCamelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase__ )
129
0
import math def UpperCAmelCase_ ( __snake_case ) -> int: """simple docstring""" if not isinstance(__snake_case , __snake_case ): _lowercase =F"Input value of [number={number}] must be an integer" raise TypeError(__snake_case ) if number < 1: _lowercase =F"Input value of [number={number}] must be > 0" raise ValueError(__snake_case ) elif number == 1: return 3 elif number == 2: return 5 else: _lowercase =int(math.log(number // 3 , 2 ) ) + 2 _lowercase =[3, 5] _lowercase =2 _lowercase =3 for block in range(1 , __snake_case ): for _ in range(__snake_case ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(11): UpperCAmelCase__ = 0 try: UpperCAmelCase__ = proth(number) except ValueError: print(f'''ValueError: there is no {number}th Proth number''') continue print(f'''The {number}th Proth number: {value}''')
5
import comet # From: unbabel-comet import torch import datasets UpperCAmelCase__ = datasets.logging.get_logger(__name__) UpperCAmelCase__ = '''\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel\'s Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = "{COMET}: A Neural Framework for {MT} Evaluation", author = "Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.emnlp-main.213", pages = "2685--2702", } ''' UpperCAmelCase__ = '''\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA\'s or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. ''' UpperCAmelCase__ = ''' COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric(\'comet\') >>> # comet_metric = load_metric(\'comet\', \'wmt20-comet-da\') # you can also choose which model to use >>> source = ["Dem Feuer konnte Einhalt geboten werden", "Schulen und Kindergärten wurden eröffnet."] >>> hypothesis = ["The fire could be stopped", "Schools and kindergartens were open"] >>> reference = ["They were able to control the fire.", "Schools and kindergartens opened"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results["scores"]]) [0.19, 0.92] ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class lowerCamelCase__ ( datasets.Metric): def __A (self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://unbabel.github.io/COMET/html/index.html''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''sources''': datasets.Value('''string''' , id='''sequence''' ), '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/Unbabel/COMET'''] , reference_urls=[ '''https://github.com/Unbabel/COMET''', '''https://www.aclweb.org/anthology/2020.emnlp-main.213/''', '''http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6''', ] , ) def __A (self , UpperCAmelCase ) -> Dict: if self.config_name == "default": _lowercase =comet.load_from_checkpoint(comet.download_model('''wmt20-comet-da''' ) ) else: _lowercase =comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=False ) -> int: if gpus is None: _lowercase =1 if torch.cuda.is_available() else 0 _lowercase ={'''src''': sources, '''mt''': predictions, '''ref''': references} _lowercase =[dict(zip(UpperCAmelCase , UpperCAmelCase ) ) for t in zip(*data.values() )] _lowercase , _lowercase =self.scorer.predict(UpperCAmelCase , gpus=UpperCAmelCase , progress_bar=UpperCAmelCase ) return {"mean_score": mean_score, "scores": scores}
5
1
import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) lowercase__ =logging.getLogger(__name__) def __UpperCamelCase ( ): __a : List[Any] = argparse.ArgumentParser( description='''Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).''' ) parser.add_argument('''--file_path''' , type=lowerCAmelCase__ , default='''data/dump.txt''' , help='''The path to the data.''' ) parser.add_argument('''--tokenizer_type''' , type=lowerCAmelCase__ , default='''bert''' , choices=['''bert''', '''roberta''', '''gpt2'''] ) parser.add_argument('''--tokenizer_name''' , type=lowerCAmelCase__ , default='''bert-base-uncased''' , help='''The tokenizer to use.''' ) parser.add_argument('''--dump_file''' , type=lowerCAmelCase__ , default='''data/dump''' , help='''The dump file prefix.''' ) __a : Optional[int] = parser.parse_args() logger.info(f"Loading Tokenizer ({args.tokenizer_name})" ) if args.tokenizer_type == "bert": __a : Dict = BertTokenizer.from_pretrained(args.tokenizer_name ) __a : int = tokenizer.special_tokens_map['''cls_token'''] # `[CLS]` __a : int = tokenizer.special_tokens_map['''sep_token'''] # `[SEP]` elif args.tokenizer_type == "roberta": __a : int = RobertaTokenizer.from_pretrained(args.tokenizer_name ) __a : int = tokenizer.special_tokens_map['''cls_token'''] # `<s>` __a : Optional[Any] = tokenizer.special_tokens_map['''sep_token'''] # `</s>` elif args.tokenizer_type == "gpt2": __a : Optional[int] = GPTaTokenizer.from_pretrained(args.tokenizer_name ) __a : List[Any] = tokenizer.special_tokens_map['''bos_token'''] # `<|endoftext|>` __a : Dict = tokenizer.special_tokens_map['''eos_token'''] # `<|endoftext|>` logger.info(f"Loading text from {args.file_path}" ) with open(args.file_path , '''r''' , encoding='''utf8''' ) as fp: __a : Union[str, Any] = fp.readlines() logger.info('''Start encoding''' ) logger.info(f"{len(lowerCAmelCase__ )} examples to process." ) __a : Optional[int] = [] __a : Union[str, Any] = 0 __a : List[Any] = 1_0_0_0_0 __a : Tuple = time.time() for text in data: __a : Optional[Any] = f"{bos} {text.strip()} {sep}" __a : Dict = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) rslt.append(lowerCAmelCase__ ) iter += 1 if iter % interval == 0: __a : List[Any] = time.time() logger.info(f"{iter} examples processed. - {(end-start):.2f}s/{interval}expl" ) __a : Any = time.time() logger.info('''Finished binarization''' ) logger.info(f"{len(lowerCAmelCase__ )} examples processed." ) __a : Optional[int] = f"{args.dump_file}.{args.tokenizer_name}.pickle" __a : Dict = tokenizer.vocab_size if vocab_size < (1 << 1_6): __a : Optional[int] = [np.uintaa(lowerCAmelCase__ ) for d in rslt] else: __a : List[str] = [np.intaa(lowerCAmelCase__ ) for d in rslt] random.shuffle(rslt_ ) logger.info(f"Dump to {dp_file}" ) with open(lowerCAmelCase__ , '''wb''' ) as handle: pickle.dump(rslt_ , lowerCAmelCase__ , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
90
import argparse import os import re import packaging.version lowercase__ ='examples/' lowercase__ ={ 'examples': (re.compile(R'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'), 'init': (re.compile(R'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile(R'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), R'\1version="VERSION",'), 'doc': (re.compile(R'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'), } lowercase__ ={ 'init': 'src/transformers/__init__.py', 'setup': 'setup.py', } lowercase__ ='README.md' def __UpperCamelCase ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple ): with open(lowerCAmelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __a : Tuple = f.read() __a , __a : Optional[int] = REPLACE_PATTERNS[pattern] __a : List[Any] = replace.replace('''VERSION''' , lowerCAmelCase__ ) __a : Any = re_pattern.sub(lowerCAmelCase__ , lowerCAmelCase__ ) with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(lowerCAmelCase__ ) def __UpperCamelCase ( lowerCAmelCase__ : Tuple ): for folder, directories, fnames in os.walk(lowerCAmelCase__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ , pattern='''examples''' ) def __UpperCamelCase ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if not patch: update_version_in_examples(lowerCAmelCase__ ) def __UpperCamelCase ( ): __a : Optional[int] = '''🤗 Transformers currently provides the following architectures''' __a : int = '''1. Want to contribute a new model?''' with open(lowerCAmelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __a : Tuple = f.readlines() # Find the start of the list. __a : Optional[int] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __a : Any = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): __a : str = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(lowerCAmelCase__ ) def __UpperCamelCase ( ): with open(REPLACE_FILES['''init'''] , '''r''' ) as f: __a : Optional[int] = f.read() __a : str = REPLACE_PATTERNS['''init'''][0].search(lowerCAmelCase__ ).groups()[0] return packaging.version.parse(lowerCAmelCase__ ) def __UpperCamelCase ( lowerCAmelCase__ : Union[str, Any]=False ): __a : str = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: __a : Union[str, Any] = default_version.base_version elif patch: __a : Tuple = f"{default_version.major}.{default_version.minor}.{default_version.micro + 1}" else: __a : List[str] = f"{default_version.major}.{default_version.minor + 1}.0" # Now let's ask nicely if that's the right one. __a : List[str] = input(f"Which version are you releasing? [{default_version}]" ) if len(lowerCAmelCase__ ) == 0: __a : Tuple = default_version print(f"Updating version to {version}." ) global_version_update(lowerCAmelCase__ , patch=lowerCAmelCase__ ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def __UpperCamelCase ( ): __a : Dict = get_version() __a : str = f"{current_version.major}.{current_version.minor + 1}.0.dev0" __a : Any = current_version.base_version # Check with the user we got that right. __a : Any = input(f"Which version are we developing now? [{dev_version}]" ) if len(lowerCAmelCase__ ) == 0: __a : Any = dev_version print(f"Updating version to {version}." ) global_version_update(lowerCAmelCase__ ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": lowercase__ =argparse.ArgumentParser() parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.') parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.') lowercase__ =parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('Nothing to do after a patch :-)') else: post_release_work()
90
1
"""simple docstring""" import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) a : List[Any] = logging.getLogger(__name__) @dataclass(frozen=a__ ) class __UpperCamelCase : lowerCamelCase : str lowerCamelCase : str lowerCamelCase : Optional[str] =None lowerCamelCase : Optional[str] =None lowerCamelCase : Optional[str] =None @dataclass(frozen=a__ ) class __UpperCamelCase : lowerCamelCase : List[int] lowerCamelCase : Optional[List[int]] =None lowerCamelCase : Optional[List[int]] =None lowerCamelCase : Optional[Union[int, float]] =None lowerCamelCase : Optional[int] =None if is_torch_available(): import torch from torch.utils.data import Dataset class __UpperCamelCase ( a__ ): lowerCamelCase : List[InputFeatures] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__=False , lowerCAmelCase__ = False , ) -> Optional[int]: a : Union[str, Any] = hans_processors[task]() a : Dict = os.path.join( lowerCAmelCase__ , "cached_{}_{}_{}_{}".format( "dev" if evaluate else "train" , tokenizer.__class__.__name__ , str(lowerCAmelCase__ ) , lowerCAmelCase__ , ) , ) a : Dict = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) a, a : Union[str, Any] = label_list[2], label_list[1] a : Optional[Any] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. a : int = cached_features_file + ".lock" with FileLock(lowerCAmelCase__ ): if os.path.exists(lowerCAmelCase__ ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) a : Union[str, Any] = torch.load(lowerCAmelCase__ ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) a : List[Any] = ( processor.get_dev_examples(lowerCAmelCase__ ) if evaluate else processor.get_train_examples(lowerCAmelCase__ ) ) logger.info("Training examples: %s" , len(lowerCAmelCase__ ) ) a : Union[str, Any] = hans_convert_examples_to_features(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) logger.info("Saving features into cached file %s" , lowerCAmelCase__ ) torch.save(self.features , lowerCAmelCase__ ) def __len__( self ) -> int: return len(self.features ) def __getitem__( self , lowerCAmelCase__ ) -> InputFeatures: return self.features[i] def __a ( self ) -> Optional[Any]: return self.label_list if is_tf_available(): import tensorflow as tf class __UpperCamelCase : lowerCamelCase : List[InputFeatures] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 128 , lowerCAmelCase__=False , lowerCAmelCase__ = False , ) -> Dict: a : Tuple = hans_processors[task]() a : Union[str, Any] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) a, a : List[Any] = label_list[2], label_list[1] a : int = label_list a : Dict = processor.get_dev_examples(lowerCAmelCase__ ) if evaluate else processor.get_train_examples(lowerCAmelCase__ ) a : int = hans_convert_examples_to_features(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc="convert examples to features" ): if ex_index % 1_0000 == 0: logger.info("Writing example %d of %d" % (ex_index, len(lowerCAmelCase__ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) a : List[Any] = tf.data.Dataset.from_generator( lowerCAmelCase__ , ( { "example_id": tf.intaa, "input_ids": tf.intaa, "attention_mask": tf.intaa, "token_type_ids": tf.intaa, }, tf.intaa, ) , ( { "example_id": tf.TensorShape([] ), "input_ids": tf.TensorShape([None, None] ), "attention_mask": tf.TensorShape([None, None] ), "token_type_ids": tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def __a ( self ) -> Tuple: return self.dataset def __len__( self ) -> Tuple: return len(self.features ) def __getitem__( self , lowerCAmelCase__ ) -> InputFeatures: return self.features[i] def __a ( self ) -> Optional[int]: return self.label_list class __UpperCamelCase ( a__ ): def __a ( self , lowerCAmelCase__ ) -> Any: return self._create_examples(self._read_tsv(os.path.join(lowerCAmelCase__ , "heuristics_train_set.txt" ) ) , "train" ) def __a ( self , lowerCAmelCase__ ) -> List[str]: return self._create_examples(self._read_tsv(os.path.join(lowerCAmelCase__ , "heuristics_evaluation_set.txt" ) ) , "dev" ) def __a ( self ) -> Optional[int]: return ["contradiction", "entailment", "neutral"] def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: a : List[str] = [] for i, line in enumerate(lowerCAmelCase__ ): if i == 0: continue a : Union[str, Any] = "%s-%s" % (set_type, line[0]) a : Optional[int] = line[5] a : List[Any] = line[6] a : int = line[7][2:] if line[7].startswith("ex" ) else line[7] a : List[str] = line[0] examples.append(InputExample(guid=lowerCAmelCase__ , text_a=lowerCAmelCase__ , text_b=lowerCAmelCase__ , label=lowerCAmelCase__ , pairID=lowerCAmelCase__ ) ) return examples def _SCREAMING_SNAKE_CASE ( _lowercase : List[InputExample] , _lowercase : List[str] , _lowercase : int , _lowercase : PreTrainedTokenizer , ) ->List[str]: '''simple docstring''' a : Optional[int] = {label: i for i, label in enumerate(_lowercase )} a : str = [] for ex_index, example in tqdm.tqdm(enumerate(_lowercase ) , desc="convert examples to features" ): if ex_index % 1_0000 == 0: logger.info("Writing example %d" % (ex_index) ) a : List[Any] = tokenizer( example.text_a , example.text_b , add_special_tokens=_lowercase , max_length=_lowercase , padding="max_length" , truncation=_lowercase , return_overflowing_tokens=_lowercase , ) a : Tuple = label_map[example.label] if example.label in label_map else 0 a : Tuple = int(example.pairID ) features.append(InputFeatures(**_lowercase , label=_lowercase , pairID=_lowercase ) ) for i, example in enumerate(examples[:5] ): logger.info("*** Example ***" ) logger.info(F"""guid: {example}""" ) logger.info(F"""features: {features[i]}""" ) return features a : Tuple = { '''hans''': 3, } a : Dict = { '''hans''': HansProcessor, }
105
from __future__ import annotations import math def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : int, lowerCAmelCase_ : bool, lowerCAmelCase_ : list[int], lowerCAmelCase_ : float ): if depth < 0: raise ValueError('Depth cannot be less than 0' ) if len(lowerCAmelCase_ ) == 0: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1, node_index * 2, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ), minimax(depth + 1, node_index * 2 + 1, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ), ) return min( minimax(depth + 1, node_index * 2, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ), minimax(depth + 1, node_index * 2 + 1, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ), ) def a_ ( ): __lowerCAmelCase = [90, 23, 6, 33, 21, 65, 123, 3_4423] __lowerCAmelCase = math.log(len(lowerCAmelCase_ ), 2 ) print('Optimal value : ', end='' ) print(minimax(0, 0, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
284
0
'''simple docstring''' import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def a__ ( a__ ): """simple docstring""" return 1.0 / (1.0 + np.exp(-_outputs )) def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = np.max(_outputs , axis=-1 , keepdims=a__ ) __SCREAMING_SNAKE_CASE = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=a__ ) class lowerCAmelCase__ ( a ): """simple docstring""" lowerCAmelCase__ = "sigmoid" lowerCAmelCase__ = "softmax" lowerCAmelCase__ = "none" @add_end_docstrings( a , r"\n return_all_scores (`bool`, *optional*, defaults to `False`):\n Whether to return all prediction scores or just the one of the predicted class.\n function_to_apply (`str`, *optional*, defaults to `\"default\"`):\n The function to apply to the model outputs in order to retrieve the scores. Accepts four different values:\n\n - `\"default\"`: if the model has a single label, will apply the sigmoid function on the output. If the model\n has several labels, will apply the softmax function on the output.\n - `\"sigmoid\"`: Applies the sigmoid function on the output.\n - `\"softmax\"`: Applies the softmax function on the output.\n - `\"none\"`: Does not apply any function on the output.\n " , ) class lowerCAmelCase__ ( a ): """simple docstring""" lowerCAmelCase__ = False lowerCAmelCase__ = ClassificationFunction.NONE def __init__( self : Optional[Any] , **__SCREAMING_SNAKE_CASE : Optional[Any] ) -> Any: """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def UpperCAmelCase__ ( self : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int]=None , __SCREAMING_SNAKE_CASE : List[str]=None , __SCREAMING_SNAKE_CASE : int="" , **__SCREAMING_SNAKE_CASE : Dict ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = tokenizer_kwargs __SCREAMING_SNAKE_CASE = {} if hasattr(self.model.config , """return_all_scores""" ) and return_all_scores is None: __SCREAMING_SNAKE_CASE = self.model.config.return_all_scores if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) or top_k is None: __SCREAMING_SNAKE_CASE = top_k __SCREAMING_SNAKE_CASE = False elif return_all_scores is not None: warnings.warn( """`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of""" """ `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.""" , __SCREAMING_SNAKE_CASE , ) if return_all_scores: __SCREAMING_SNAKE_CASE = None else: __SCREAMING_SNAKE_CASE = 1 if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: __SCREAMING_SNAKE_CASE = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self : Dict , *__SCREAMING_SNAKE_CASE : str , **__SCREAMING_SNAKE_CASE : Dict ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = super().__call__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. __SCREAMING_SNAKE_CASE = """top_k""" not in kwargs if isinstance(args[0] , __SCREAMING_SNAKE_CASE ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def UpperCAmelCase__ ( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any] , **__SCREAMING_SNAKE_CASE : Any ) -> Dict[str, GenericTensor]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.framework if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): return self.tokenizer(**__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and len(__SCREAMING_SNAKE_CASE ) == 1 and isinstance(inputs[0] , __SCREAMING_SNAKE_CASE ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( """The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a""" """ dictionary `{\"text\": \"My text\", \"text_pair\": \"My pair\"}` in order to send a text pair.""" ) return self.tokenizer(__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any] ) -> str: """simple docstring""" return self.model(**__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : str , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any]=None , __SCREAMING_SNAKE_CASE : int=1 , __SCREAMING_SNAKE_CASE : List[Any]=True ) -> Union[str, Any]: """simple docstring""" if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: __SCREAMING_SNAKE_CASE = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: __SCREAMING_SNAKE_CASE = ClassificationFunction.SOFTMAX elif hasattr(self.model.config , """function_to_apply""" ) and function_to_apply is None: __SCREAMING_SNAKE_CASE = self.model.config.function_to_apply else: __SCREAMING_SNAKE_CASE = ClassificationFunction.NONE __SCREAMING_SNAKE_CASE = model_outputs["""logits"""][0] __SCREAMING_SNAKE_CASE = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: __SCREAMING_SNAKE_CASE = sigmoid(__SCREAMING_SNAKE_CASE ) elif function_to_apply == ClassificationFunction.SOFTMAX: __SCREAMING_SNAKE_CASE = softmax(__SCREAMING_SNAKE_CASE ) elif function_to_apply == ClassificationFunction.NONE: __SCREAMING_SNAKE_CASE = outputs else: raise ValueError(f'Unrecognized `function_to_apply` argument: {function_to_apply}' ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} __SCREAMING_SNAKE_CASE = [ {"""label""": self.model.config.idalabel[i], """score""": score.item()} for i, score in enumerate(__SCREAMING_SNAKE_CASE ) ] if not _legacy: dict_scores.sort(key=lambda __SCREAMING_SNAKE_CASE : x["score"] , reverse=__SCREAMING_SNAKE_CASE ) if top_k is not None: __SCREAMING_SNAKE_CASE = dict_scores[:top_k] return dict_scores
331
'''simple docstring''' from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar UpperCAmelCase : Dict = TypeVar('T') def a__ ( a__ ): """simple docstring""" return (position - 1) // 2 def a__ ( a__ ): """simple docstring""" return (2 * position) + 1 def a__ ( a__ ): """simple docstring""" return (2 * position) + 2 class lowerCAmelCase__ ( Generic[T] ): """simple docstring""" def __init__( self : List[str] ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = 0 def __len__( self : Optional[Any] ) -> int: """simple docstring""" return self.elements def __repr__( self : List[str] ) -> str: """simple docstring""" return str(self.heap ) def UpperCAmelCase__ ( self : Tuple ) -> bool: """simple docstring""" return self.elements == 0 def UpperCAmelCase__ ( self : int , __SCREAMING_SNAKE_CASE : T , __SCREAMING_SNAKE_CASE : int ) -> None: """simple docstring""" self.heap.append((elem, weight) ) __SCREAMING_SNAKE_CASE = self.elements self.elements += 1 self._bubble_up(__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Any ) -> T: """simple docstring""" if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[0] self._bubble_down(__SCREAMING_SNAKE_CASE ) return elem def UpperCAmelCase__ ( self : List[Any] , __SCREAMING_SNAKE_CASE : T , __SCREAMING_SNAKE_CASE : int ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = self.position_map[elem] __SCREAMING_SNAKE_CASE = (elem, weight) if position > 0: __SCREAMING_SNAKE_CASE = get_parent_position(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[parent_position] if parent_weight > weight: self._bubble_up(__SCREAMING_SNAKE_CASE ) else: self._bubble_down(__SCREAMING_SNAKE_CASE ) else: self._bubble_down(__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[Any] , __SCREAMING_SNAKE_CASE : T ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = self.position_map[elem] if curr_pos == 0: return None __SCREAMING_SNAKE_CASE = get_parent_position(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[curr_pos] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return self._bubble_up(__SCREAMING_SNAKE_CASE ) return None def UpperCAmelCase__ ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : T ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = self.position_map[elem] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[curr_pos] __SCREAMING_SNAKE_CASE = get_child_left_position(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = get_child_right_position(__SCREAMING_SNAKE_CASE ) if child_left_position < self.elements and child_right_position < self.elements: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[child_left_position] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return self._bubble_down(__SCREAMING_SNAKE_CASE ) if child_left_position < self.elements: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return self._bubble_down(__SCREAMING_SNAKE_CASE ) else: return None if child_right_position < self.elements: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return self._bubble_down(__SCREAMING_SNAKE_CASE ) return None def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = self.heap[nodea_pos][0] __SCREAMING_SNAKE_CASE = self.heap[nodea_pos][0] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = ( self.heap[nodea_pos], self.heap[nodea_pos], ) __SCREAMING_SNAKE_CASE = nodea_pos __SCREAMING_SNAKE_CASE = nodea_pos class lowerCAmelCase__ ( Generic[T] ): """simple docstring""" def __init__( self : Union[str, Any] ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = 0 def __repr__( self : Dict ) -> str: """simple docstring""" return str(self.connections ) def __len__( self : Dict ) -> int: """simple docstring""" return self.nodes def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : T ) -> None: """simple docstring""" if node not in self.connections: __SCREAMING_SNAKE_CASE = {} self.nodes += 1 def UpperCAmelCase__ ( self : int , __SCREAMING_SNAKE_CASE : T , __SCREAMING_SNAKE_CASE : T , __SCREAMING_SNAKE_CASE : int ) -> None: """simple docstring""" self.add_node(__SCREAMING_SNAKE_CASE ) self.add_node(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = weight __SCREAMING_SNAKE_CASE = weight def a__ ( a__ , ): """simple docstring""" __SCREAMING_SNAKE_CASE = {node: maxsize for node in graph.connections} __SCREAMING_SNAKE_CASE = {node: None for node in graph.connections} __SCREAMING_SNAKE_CASE = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(a__ , a__ ) if priority_queue.is_empty(): return dist, parent # initialization __SCREAMING_SNAKE_CASE = priority_queue.extract_min() __SCREAMING_SNAKE_CASE = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: __SCREAMING_SNAKE_CASE = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(a__ , dist[neighbour] ) __SCREAMING_SNAKE_CASE = node # running prim's algorithm while not priority_queue.is_empty(): __SCREAMING_SNAKE_CASE = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: __SCREAMING_SNAKE_CASE = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(a__ , dist[neighbour] ) __SCREAMING_SNAKE_CASE = node return dist, parent
331
1
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def A_ ( A__ ) -> str: a__ : Any = filter(lambda A__ : p.requires_grad , model.parameters() ) a__ : Union[str, Any] = sum([np.prod(p.size() ) for p in model_parameters] ) return params lowercase : Union[str, Any] = logging.getLogger(__name__) def A_ ( A__ , A__ ) -> int: if metric == "rouge2": a__ : Any = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": a__ : Tuple = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": a__ : Union[str, Any] = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": a__ : int = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( F'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' ' function.' ) a__ : Tuple = ModelCheckpoint( dirpath=A__ , filename=A__ , monitor=F'val_{metric}' , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def A_ ( A__ , A__ ) -> str: return EarlyStopping( monitor=F'val_{metric}' , mode='min' if 'loss' in metric else 'max' , patience=A__ , verbose=A__ , ) class A__ ( pl.Callback ): """simple docstring""" def __lowercase ( self , lowercase , lowercase) -> Optional[int]: '''simple docstring''' a__ : Any = {F'lr_group_{i}': param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups)} pl_module.logger.log_metrics(lowercase) @rank_zero_only def __lowercase ( self , lowercase , lowercase , lowercase , lowercase=True) -> None: '''simple docstring''' logger.info(F'***** {type_path} results at step {trainer.global_step:05d} *****') a__ : Optional[Any] = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']}) # Log results a__ : Any = Path(pl_module.hparams.output_dir) if type_path == "test": a__ : Dict = od / 'test_results.txt' a__ : str = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. a__ : Any = od / F'{type_path}_results/{trainer.global_step:05d}.txt' a__ : Union[str, Any] = od / F'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=lowercase) generations_file.parent.mkdir(exist_ok=lowercase) with open(lowercase , 'a+') as writer: for key in sorted(lowercase): if key in ["log", "progress_bar", "preds"]: continue a__ : Dict = metrics[key] if isinstance(lowercase , torch.Tensor): a__ : Optional[Any] = val.item() a__ : Dict = F'{key}: {val:.6f}\n' writer.write(lowercase) if not save_generations: return if "preds" in metrics: a__ : Tuple = '\n'.join(metrics['preds']) generations_file.open('w+').write(lowercase) @rank_zero_only def __lowercase ( self , lowercase , lowercase) -> int: '''simple docstring''' try: a__ : int = pl_module.model.model.num_parameters() except AttributeError: a__ : str = pl_module.model.num_parameters() a__ : Union[str, Any] = count_trainable_parameters(lowercase) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1e6, 'grad_mp': n_trainable_pars / 1e6}) @rank_zero_only def __lowercase ( self , lowercase , lowercase) -> Any: '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path) return self._write_logs(lowercase , lowercase , 'test') @rank_zero_only def __lowercase ( self , lowercase , lowercase) -> Dict: '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
99
'''simple docstring''' import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json __A = "sshleifer/mar_enro_6_3_student" class A ( __UpperCAmelCase ): def A__ ( self ) -> List[Any]: '''simple docstring''' super().setUp() lowercase__ = cached_path( """https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz""" , extract_compressed_file=lowerCamelCase__ , ) lowercase__ = F'''{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k''' @slow @require_torch_gpu def A__ ( self ) -> str: '''simple docstring''' MarianMTModel.from_pretrained(lowerCamelCase__ ) @slow @require_torch_gpu def A__ ( self ) -> List[Any]: '''simple docstring''' lowercase__ = { """$MAX_LEN""": 64, """$BS""": 64, """$GAS""": 1, """$ENRO_DIR""": self.data_dir, """facebook/mbart-large-cc25""": MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", """--learning_rate=3e-5""": """--learning_rate 3e-4""", """--num_train_epochs 6""": """--num_train_epochs 1""", } # Clean up bash script lowercase__ = (self.test_file_dir / """train_mbart_cc25_enro.sh""").open().read().split("""finetune.py""" )[1].strip() lowercase__ = bash_script.replace("""\\\n""" , """""" ).strip().replace("""\"$@\"""" , """""" ) for k, v in env_vars_to_replace.items(): lowercase__ = bash_script.replace(lowerCamelCase__ , str(lowerCamelCase__ ) ) lowercase__ = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") lowercase__ = F''' --output_dir {output_dir} --tokenizer_name Helsinki-NLP/opus-mt-en-ro --sortish_sampler --do_predict --gpus 1 --freeze_encoder --n_train 40000 --n_val 500 --n_test 500 --fp16_opt_level O1 --num_sanity_val_steps 0 --eval_beams 2 '''.split() # XXX: args.gpus > 1 : handle multi_gpu in the future lowercase__ = ["""finetune.py"""] + bash_script.split() + args with patch.object(lowerCamelCase__ , """argv""" , lowerCamelCase__ ): lowercase__ = argparse.ArgumentParser() lowercase__ = pl.Trainer.add_argparse_args(lowerCamelCase__ ) lowercase__ = SummarizationModule.add_model_specific_args(lowerCamelCase__ , os.getcwd() ) lowercase__ = parser.parse_args() lowercase__ = main(lowerCamelCase__ ) # Check metrics lowercase__ = load_json(model.metrics_save_path ) lowercase__ = metrics["""val"""][0] lowercase__ = metrics["""val"""][-1] self.assertEqual(len(metrics["""val"""] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] , lowerCamelCase__ ) self.assertGreater(last_step_stats["""val_avg_gen_time"""] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats["""val_avg_gen_time"""] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats["""val_avg_bleu"""] - first_step_stats["""val_avg_bleu"""] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats["""val_avg_bleu"""] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics["""val"""][-1]["""val_avg_bleu"""] - metrics["""test"""][-1]["""test_avg_bleu"""] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict lowercase__ = os.listdir(lowerCamelCase__ ) lowercase__ = [x for x in contents if x.endswith(""".ckpt""" )][0] lowercase__ = os.path.join(args.output_dir , lowerCamelCase__ ) lowercase__ = torch.load(lowerCamelCase__ , map_location="""cpu""" ) lowercase__ = """model.model.decoder.layers.0.encoder_attn_layer_norm.weight""" assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: lowercase__ = {os.path.basename(lowerCamelCase__ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics["""test"""] ) == 1 class A ( __UpperCAmelCase ): @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def A__ ( self ) -> Dict: '''simple docstring''' lowercase__ = F'''{self.test_file_dir_str}/test_data/wmt_en_ro''' lowercase__ = { """--fp16_opt_level=O1""": """""", """$MAX_LEN""": 128, """$BS""": 16, """$GAS""": 1, """$ENRO_DIR""": data_dir, """$m""": """sshleifer/student_marian_en_ro_6_1""", """val_check_interval=0.25""": """val_check_interval=1.0""", } # Clean up bash script lowercase__ = ( (self.test_file_dir / """distil_marian_no_teacher.sh""").open().read().split("""distillation.py""" )[1].strip() ) lowercase__ = bash_script.replace("""\\\n""" , """""" ).strip().replace("""\"$@\"""" , """""" ) lowercase__ = bash_script.replace("""--fp16 """ , """ """ ) for k, v in env_vars_to_replace.items(): lowercase__ = bash_script.replace(lowerCamelCase__ , str(lowerCamelCase__ ) ) lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = bash_script.replace("""--fp16""" , """""" ) lowercase__ = 6 lowercase__ = ( ["""distillation.py"""] + bash_script.split() + [ F'''--output_dir={output_dir}''', """--gpus=1""", """--learning_rate=1e-3""", F'''--num_train_epochs={epochs}''', """--warmup_steps=10""", """--val_check_interval=1.0""", """--do_predict""", ] ) with patch.object(lowerCamelCase__ , """argv""" , lowerCamelCase__ ): lowercase__ = argparse.ArgumentParser() lowercase__ = pl.Trainer.add_argparse_args(lowerCamelCase__ ) lowercase__ = SummarizationDistiller.add_model_specific_args(lowerCamelCase__ , os.getcwd() ) lowercase__ = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu lowercase__ = distill_main(lowerCamelCase__ ) # Check metrics lowercase__ = load_json(model.metrics_save_path ) lowercase__ = metrics["""val"""][0] lowercase__ = metrics["""val"""][-1] assert len(metrics["""val"""] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] , lowerCamelCase__ ) # check lightning ckpt can be loaded and has a reasonable statedict lowercase__ = os.listdir(lowerCamelCase__ ) lowercase__ = [x for x in contents if x.endswith(""".ckpt""" )][0] lowercase__ = os.path.join(args.output_dir , lowerCamelCase__ ) lowercase__ = torch.load(lowerCamelCase__ , map_location="""cpu""" ) lowercase__ = """model.model.decoder.layers.0.encoder_attn_layer_norm.weight""" assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: lowercase__ = {os.path.basename(lowerCamelCase__ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics["""test"""] ) == 1
164
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: _a : Tuple = None _a : str = logging.get_logger(__name__) _a : str = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} _a : Tuple = { 'vocab_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json' ), }, } _a : int = { 'facebook/nllb-large-en-ro': 1_024, 'facebook/nllb-200-distilled-600M': 1_024, } # fmt: off _a : Union[str, Any] = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Union[str, Any] = VOCAB_FILES_NAMES _UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Dict = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : str = ["input_ids", "attention_mask"] _UpperCamelCase : Tuple = NllbTokenizer _UpperCamelCase : List[int] = [] _UpperCamelCase : List[int] = [] def __init__( self , a__=None , a__=None , a__="<s>" , a__="</s>" , a__="</s>" , a__="<s>" , a__="<unk>" , a__="<pad>" , a__="<mask>" , a__=None , a__=None , a__=None , a__=False , **a__ , ): # Mask token behave like a normal word, i.e. include the space before it _lowerCAmelCase : Optional[int] = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else mask_token _lowerCAmelCase : int = legacy_behaviour super().__init__( vocab_file=a__ , tokenizer_file=a__ , bos_token=a__ , eos_token=a__ , sep_token=a__ , cls_token=a__ , unk_token=a__ , pad_token=a__ , mask_token=a__ , src_lang=a__ , tgt_lang=a__ , additional_special_tokens=a__ , legacy_behaviour=a__ , **a__ , ) _lowerCAmelCase : List[Any] = vocab_file _lowerCAmelCase : List[str] = False if not self.vocab_file else True _lowerCAmelCase : List[str] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) _lowerCAmelCase : Tuple = { lang_code: self.convert_tokens_to_ids(a__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } _lowerCAmelCase : List[str] = src_lang if src_lang is not None else """eng_Latn""" _lowerCAmelCase : int = self.convert_tokens_to_ids(self._src_lang ) _lowerCAmelCase : str = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __A ( self ): return self._src_lang @src_lang.setter def __A ( self , a__ ): _lowerCAmelCase : List[Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __A ( self , a__ , a__ = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __A ( self , a__ , a__ = None ): _lowerCAmelCase : Tuple = [self.sep_token_id] _lowerCAmelCase : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __A ( self , a__ , a__ , a__ , a__ , **a__ ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) _lowerCAmelCase : str = src_lang _lowerCAmelCase : List[Any] = self(a__ , add_special_tokens=a__ , return_tensors=a__ , **a__ ) _lowerCAmelCase : Dict = self.convert_tokens_to_ids(a__ ) _lowerCAmelCase : Dict = tgt_lang_id return inputs def __A ( self , a__ , a__ = "eng_Latn" , a__ = None , a__ = "fra_Latn" , **a__ , ): _lowerCAmelCase : List[Any] = src_lang _lowerCAmelCase : Optional[int] = tgt_lang return super().prepare_seqaseq_batch(a__ , a__ , **a__ ) def __A ( self ): return self.set_src_lang_special_tokens(self.src_lang ) def __A ( self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __A ( self , a__ ): _lowerCAmelCase : Optional[Any] = self.convert_tokens_to_ids(a__ ) if self.legacy_behaviour: _lowerCAmelCase : Optional[int] = [] _lowerCAmelCase : Union[str, Any] = [self.eos_token_id, self.cur_lang_code] else: _lowerCAmelCase : str = [self.cur_lang_code] _lowerCAmelCase : List[Any] = [self.eos_token_id] _lowerCAmelCase : List[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) _lowerCAmelCase : Any = self.convert_ids_to_tokens(self.suffix_tokens ) _lowerCAmelCase : Optional[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __A ( self , a__ ): _lowerCAmelCase : Any = self.convert_tokens_to_ids(a__ ) if self.legacy_behaviour: _lowerCAmelCase : Optional[int] = [] _lowerCAmelCase : str = [self.eos_token_id, self.cur_lang_code] else: _lowerCAmelCase : int = [self.cur_lang_code] _lowerCAmelCase : Optional[int] = [self.eos_token_id] _lowerCAmelCase : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) _lowerCAmelCase : int = self.convert_ids_to_tokens(self.suffix_tokens ) _lowerCAmelCase : str = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __A ( self , a__ , a__ = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(a__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory." ) return _lowerCAmelCase : Optional[Any] = os.path.join( a__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a__ ): copyfile(self.vocab_file , a__ ) return (out_vocab_file,)
126
"""simple docstring""" import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def SCREAMING_SNAKE_CASE ( ) -> Tuple: _lowerCAmelCase : Tuple = torch.nn.Linear(2 ,4 ) _lowerCAmelCase : Union[str, Any] = torch.optim.AdamW(model.parameters() ,lr=1.0 ) _lowerCAmelCase : Tuple = torch.optim.lr_scheduler.OneCycleLR(_lowerCamelCase ,max_lr=0.01 ,steps_per_epoch=2 ,epochs=1 ) _lowerCAmelCase : Tuple = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) _lowerCAmelCase : List[Any] = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Any ) -> int: return (model.weight.abs().sum() + model.bias.abs().sum()).item() def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[str] ) -> Any: _lowerCAmelCase : List[str] = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(_lowerCamelCase ) class __A ( SCREAMING_SNAKE_CASE_ ): @require_cuda def __A ( self ): _lowerCAmelCase : Union[str, Any] = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(a__ ): _lowerCAmelCase : Tuple = Accelerator(cpu=a__ ) def __A ( self ): _lowerCAmelCase : Dict = Accelerator() _lowerCAmelCase : Any = GradientState() assert state.num_steps == 1 _lowerCAmelCase : Optional[int] = 4 assert state.num_steps == 4 assert state.sync_gradients is True _lowerCAmelCase : Dict = False assert state.sync_gradients is False GradientState._reset_state() def __A ( self ): _lowerCAmelCase : Optional[int] = Accelerator() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = create_components() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : int = accelerator.prepare(a__ , a__ , a__ , a__ , a__ ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def __A ( self ): _lowerCAmelCase : Optional[Any] = Accelerator() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : List[Any] = create_components() accelerator.prepare(a__ , a__ , a__ , a__ , a__ ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def __A ( self ): PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*a__ , **a__ ): pass with patch("""torch.cuda.set_device""" , a__ ), patch_environment(ACCELERATE_TORCH_DEVICE="""cuda:64""" ): _lowerCAmelCase : Dict = Accelerator() self.assertEqual(str(accelerator.state.device ) , """cuda:64""" ) def __A ( self ): _lowerCAmelCase : Any = Accelerator() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : List[str] = create_components() accelerator.prepare(a__ , a__ , a__ , a__ , a__ ) _lowerCAmelCase : List[Any] = get_signature(a__ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(a__ ) # make sure random weights don't match load_random_weights(a__ ) self.assertTrue(abs(model_signature - get_signature(a__ ) ) > 1e-3 ) # make sure loaded weights match accelerator.load_state(a__ ) self.assertTrue(abs(model_signature - get_signature(a__ ) ) < 1e-3 ) def __A ( self ): _lowerCAmelCase : str = Accelerator() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : str = create_components() accelerator.prepare(a__ , a__ , a__ , a__ , a__ ) _lowerCAmelCase : Optional[Any] = get_signature(a__ ) # saving hook def save_config(a__ , a__ , a__ ): _lowerCAmelCase : Dict = {"""class_name""": models[0].__class__.__name__} with open(os.path.join(a__ , """data.json""" ) , """w""" ) as f: json.dump(a__ , a__ ) # loading hook def load_config(a__ , a__ ): with open(os.path.join(a__ , """data.json""" ) , """r""" ) as f: _lowerCAmelCase : int = json.load(a__ ) _lowerCAmelCase : str = config["""class_name"""] _lowerCAmelCase : Union[str, Any] = accelerator.register_save_state_pre_hook(a__ ) _lowerCAmelCase : int = accelerator.register_load_state_pre_hook(a__ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(a__ ) # make sure random weights don't match with hooks load_random_weights(a__ ) self.assertTrue(abs(model_signature - get_signature(a__ ) ) > 1e-3 ) # random class name to verify correct one is loaded _lowerCAmelCase : Dict = """random""" # make sure loaded weights match with hooks accelerator.load_state(a__ ) self.assertTrue(abs(model_signature - get_signature(a__ ) ) < 1e-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(a__ ) # make sure random weights don't match with hooks removed load_random_weights(a__ ) self.assertTrue(abs(model_signature - get_signature(a__ ) ) > 1e-3 ) # random class name to verify correct one is loaded _lowerCAmelCase : Optional[Any] = """random""" # make sure loaded weights match with hooks removed accelerator.load_state(a__ ) self.assertTrue(abs(model_signature - get_signature(a__ ) ) < 1e-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def __A ( self ): _lowerCAmelCase : Optional[Any] = Accelerator() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = create_components() _lowerCAmelCase : Any = None # This should work _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : int = accelerator.prepare( a__ , a__ , a__ , a__ , a__ , a__ ) self.assertTrue(dummy_obj is None ) def __A ( self ): _lowerCAmelCase : str = Accelerator() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = create_components() _lowerCAmelCase : Optional[int] = [1, 2, 3] # This should work _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : str = accelerator.prepare( a__ , a__ , a__ , a__ , a__ , a__ ) self.assertEqual( getattr(a__ , """_is_accelerate_prepared""" , a__ ) , a__ , """Dummy object should have `_is_accelerate_prepared` set to `True`""" , ) self.assertEqual( getattr(a__ , """_is_accelerate_prepared""" , a__ ) , a__ , """Model is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(a__ , """_is_accelerate_prepared""" , a__ ) , a__ , """Optimizer is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(a__ , """_is_accelerate_prepared""" , a__ ) , a__ , """Scheduler is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(a__ , """_is_accelerate_prepared""" , a__ ) , a__ , """Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(a__ , """_is_accelerate_prepared""" , a__ ) , a__ , """Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`""" , ) @slow @require_bnb def __A ( self ): from transformers import AutoModelForCausalLM _lowerCAmelCase : List[str] = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , load_in_abit=a__ , device_map={"""""": 0} , ) _lowerCAmelCase : List[str] = Accelerator() # This should work _lowerCAmelCase : List[Any] = accelerator.prepare(a__ ) @slow @require_bnb def __A ( self ): from transformers import AutoModelForCausalLM _lowerCAmelCase : Any = Accelerator() with init_empty_weights(): _lowerCAmelCase : Dict = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , ) model.tie_weights() _lowerCAmelCase : int = infer_auto_device_map(a__ ) _lowerCAmelCase : Optional[Any] = """cpu""" _lowerCAmelCase : Dict = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , device_map=a__ , load_in_abit=a__ , llm_inta_enable_fpaa_cpu_offload=a__ ) # This should not work and get value error with self.assertRaises(a__ ): _lowerCAmelCase : List[str] = accelerator.prepare(a__ ) @slow @require_bnb @require_multi_gpu def __A ( self ): from transformers import AutoModelForCausalLM _lowerCAmelCase : Dict = {"""distributed_type""": DistributedType.MULTI_GPU} with init_empty_weights(): _lowerCAmelCase : Optional[Any] = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , ) model.tie_weights() _lowerCAmelCase : List[str] = infer_auto_device_map(a__ ) _lowerCAmelCase : Union[str, Any] = 1 _lowerCAmelCase : int = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , load_in_abit=a__ , device_map=a__ , ) _lowerCAmelCase : Tuple = Accelerator() # This should not work and get value error with self.assertRaises(a__ ): _lowerCAmelCase : Optional[int] = accelerator.prepare(a__ ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def __A ( self ): from transformers import AutoModelForCausalLM with init_empty_weights(): _lowerCAmelCase : Dict = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , ) _lowerCAmelCase : int = infer_auto_device_map(a__ ) _lowerCAmelCase : List[Any] = 1 _lowerCAmelCase : Optional[Any] = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , load_in_abit=a__ , device_map=a__ , ) _lowerCAmelCase : str = Accelerator() # This should work _lowerCAmelCase : str = accelerator.prepare(a__ ) @require_cuda def __A ( self ): _lowerCAmelCase : Union[str, Any] = torch.nn.Linear(10 , 10 ) _lowerCAmelCase : Any = torch.optim.SGD(model.parameters() , lr=0.0_1 ) _lowerCAmelCase : List[str] = Accelerator(cpu=a__ ) _lowerCAmelCase : Tuple = accelerator.prepare(a__ )
126
1
from __future__ import annotations from collections.abc import Generator def __UpperCamelCase ( ): lowerCAmelCase_ = {} lowerCAmelCase_ = 2 while True: lowerCAmelCase_ = factor_map.pop(lowerCamelCase_ , lowerCamelCase_ ) if factor: lowerCAmelCase_ = factor + prime while x in factor_map: x += factor lowerCAmelCase_ = factor else: lowerCAmelCase_ = prime yield prime prime += 1 def __UpperCamelCase ( _A = 1E1_0 ): lowerCAmelCase_ = sieve() lowerCAmelCase_ = 1 while True: lowerCAmelCase_ = next(lowerCamelCase_ ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(lowerCamelCase_ ) n += 2 if __name__ == "__main__": print(solution())
278
import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin __snake_case : int =logging.get_logger(__name__) enable_full_determinism() class lowerCamelCase__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase): '''simple docstring''' snake_case_ =UNetaDModel snake_case_ ="""sample""" @property def lowerCAmelCase__ (self ) -> Any: """simple docstring""" lowerCAmelCase__ : List[str] = 4 lowerCAmelCase__ : List[str] = 3 lowerCAmelCase__ : Any = (32, 32) lowerCAmelCase__ : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes ).to(__lowerCamelCase ) lowerCAmelCase__ : Union[str, Any] = torch.tensor([10] ).to(__lowerCamelCase ) return {"sample": noise, "timestep": time_step} @property def lowerCAmelCase__ (self ) -> List[Any]: """simple docstring""" return (3, 32, 32) @property def lowerCAmelCase__ (self ) -> Optional[int]: """simple docstring""" return (3, 32, 32) def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" lowerCAmelCase__ : str = { '''block_out_channels''': (32, 64), '''down_block_types''': ('''DownBlock2D''', '''AttnDownBlock2D'''), '''up_block_types''': ('''AttnUpBlock2D''', '''UpBlock2D'''), '''attention_head_dim''': 3, '''out_channels''': 3, '''in_channels''': 3, '''layers_per_block''': 2, '''sample_size''': 32, } lowerCAmelCase__ : List[str] = self.dummy_input return init_dict, inputs_dict class lowerCamelCase__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase): '''simple docstring''' snake_case_ =UNetaDModel snake_case_ ="""sample""" @property def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" lowerCAmelCase__ : str = 4 lowerCAmelCase__ : Optional[int] = 4 lowerCAmelCase__ : Optional[Any] = (32, 32) lowerCAmelCase__ : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes ).to(__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = torch.tensor([10] ).to(__lowerCamelCase ) return {"sample": noise, "timestep": time_step} @property def lowerCAmelCase__ (self ) -> List[Any]: """simple docstring""" return (4, 32, 32) @property def lowerCAmelCase__ (self ) -> Any: """simple docstring""" return (4, 32, 32) def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" lowerCAmelCase__ : Tuple = { '''sample_size''': 32, '''in_channels''': 4, '''out_channels''': 4, '''layers_per_block''': 2, '''block_out_channels''': (32, 64), '''attention_head_dim''': 32, '''down_block_types''': ('''DownBlock2D''', '''DownBlock2D'''), '''up_block_types''': ('''UpBlock2D''', '''UpBlock2D'''), } lowerCAmelCase__ : Optional[Any] = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase__ (self ) -> int: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ,output_loading_info=__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertEqual(len(loading_info['''missing_keys'''] ) ,0 ) model.to(__lowerCamelCase ) lowerCAmelCase__ : Tuple = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' ,'''This test is supposed to run on GPU''' ) def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : Dict = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ,output_loading_info=__lowerCamelCase ) model.to(__lowerCamelCase ) lowerCAmelCase__ : Optional[Any] = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' ,'''This test is supposed to run on GPU''' ) def lowerCAmelCase__ (self ) -> str: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ,output_loading_info=__lowerCamelCase ) model_accelerate.to(__lowerCamelCase ) model_accelerate.eval() lowerCAmelCase__ : Union[str, Any] = torch.randn( 1 ,model_accelerate.config.in_channels ,model_accelerate.config.sample_size ,model_accelerate.config.sample_size ,generator=torch.manual_seed(0 ) ,) lowerCAmelCase__ : Dict = noise.to(__lowerCamelCase ) lowerCAmelCase__ : List[Any] = torch.tensor([10] * noise.shape[0] ).to(__lowerCamelCase ) lowerCAmelCase__ : Tuple = model_accelerate(__lowerCamelCase ,__lowerCamelCase )['''sample'''] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() lowerCAmelCase__ , lowerCAmelCase__ : Tuple = UNetaDModel.from_pretrained( '''fusing/unet-ldm-dummy-update''' ,output_loading_info=__lowerCamelCase ,low_cpu_mem_usage=__lowerCamelCase ) model_normal_load.to(__lowerCamelCase ) model_normal_load.eval() lowerCAmelCase__ : List[Any] = model_normal_load(__lowerCamelCase ,__lowerCamelCase )['''sample'''] assert torch_all_close(__lowerCamelCase ,__lowerCamelCase ,rtol=1e-3 ) def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" lowerCAmelCase__ : List[str] = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ) model.eval() model.to(__lowerCamelCase ) lowerCAmelCase__ : Union[str, Any] = torch.randn( 1 ,model.config.in_channels ,model.config.sample_size ,model.config.sample_size ,generator=torch.manual_seed(0 ) ,) lowerCAmelCase__ : str = noise.to(__lowerCamelCase ) lowerCAmelCase__ : List[Any] = torch.tensor([10] * noise.shape[0] ).to(__lowerCamelCase ) with torch.no_grad(): lowerCAmelCase__ : str = model(__lowerCamelCase ,__lowerCamelCase ).sample lowerCAmelCase__ : List[str] = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off lowerCAmelCase__ : str = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800] ) # fmt: on self.assertTrue(torch_all_close(__lowerCamelCase ,__lowerCamelCase ,rtol=1e-3 ) ) class lowerCamelCase__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase): '''simple docstring''' snake_case_ =UNetaDModel snake_case_ ="""sample""" @property def lowerCAmelCase__ (self ,__lowerCamelCase=(32, 32) ) -> Dict: """simple docstring""" lowerCAmelCase__ : str = 4 lowerCAmelCase__ : Optional[int] = 3 lowerCAmelCase__ : Tuple = floats_tensor((batch_size, num_channels) + sizes ).to(__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa ,device=__lowerCamelCase ) return {"sample": noise, "timestep": time_step} @property def lowerCAmelCase__ (self ) -> str: """simple docstring""" return (3, 32, 32) @property def lowerCAmelCase__ (self ) -> Optional[int]: """simple docstring""" return (3, 32, 32) def lowerCAmelCase__ (self ) -> Any: """simple docstring""" lowerCAmelCase__ : Tuple = { '''block_out_channels''': [32, 64, 64, 64], '''in_channels''': 3, '''layers_per_block''': 1, '''out_channels''': 3, '''time_embedding_type''': '''fourier''', '''norm_eps''': 1e-6, '''mid_block_scale_factor''': math.sqrt(2.0 ), '''norm_num_groups''': None, '''down_block_types''': [ '''SkipDownBlock2D''', '''AttnSkipDownBlock2D''', '''SkipDownBlock2D''', '''SkipDownBlock2D''', ], '''up_block_types''': [ '''SkipUpBlock2D''', '''SkipUpBlock2D''', '''AttnSkipUpBlock2D''', '''SkipUpBlock2D''', ], } lowerCAmelCase__ : Tuple = self.dummy_input return init_dict, inputs_dict @slow def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : Dict = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' ,output_loading_info=__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertEqual(len(loading_info['''missing_keys'''] ) ,0 ) model.to(__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = self.dummy_input lowerCAmelCase__ : Tuple = floats_tensor((4, 3) + (2_56, 2_56) ).to(__lowerCamelCase ) lowerCAmelCase__ : Union[str, Any] = noise lowerCAmelCase__ : Union[str, Any] = model(**__lowerCamelCase ) assert image is not None, "Make sure output is not None" @slow def lowerCAmelCase__ (self ) -> str: """simple docstring""" lowerCAmelCase__ : Optional[int] = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' ) model.to(__lowerCamelCase ) lowerCAmelCase__ : Dict = 4 lowerCAmelCase__ : Optional[Any] = 3 lowerCAmelCase__ : List[Any] = (2_56, 2_56) lowerCAmelCase__ : str = torch.ones((batch_size, num_channels) + sizes ).to(__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = torch.tensor(batch_size * [1e-4] ).to(__lowerCamelCase ) with torch.no_grad(): lowerCAmelCase__ : List[Any] = model(__lowerCamelCase ,__lowerCamelCase ).sample lowerCAmelCase__ : Any = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off lowerCAmelCase__ : Optional[Any] = torch.tensor([-4842.8691, -6499.6631, -3800.1953, -7978.2686, -1_0980.7129, -2_0028.8535, 8148.2822, 2342.2905, 567.7608] ) # fmt: on self.assertTrue(torch_all_close(__lowerCamelCase ,__lowerCamelCase ,rtol=1e-2 ) ) def lowerCAmelCase__ (self ) -> Any: """simple docstring""" lowerCAmelCase__ : int = UNetaDModel.from_pretrained('''fusing/ncsnpp-ffhq-ve-dummy-update''' ) model.to(__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = 4 lowerCAmelCase__ : Dict = 3 lowerCAmelCase__ : str = (32, 32) lowerCAmelCase__ : Tuple = torch.ones((batch_size, num_channels) + sizes ).to(__lowerCamelCase ) lowerCAmelCase__ : Tuple = torch.tensor(batch_size * [1e-4] ).to(__lowerCamelCase ) with torch.no_grad(): lowerCAmelCase__ : Optional[int] = model(__lowerCamelCase ,__lowerCamelCase ).sample lowerCAmelCase__ : List[Any] = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off lowerCAmelCase__ : Union[str, Any] = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256] ) # fmt: on self.assertTrue(torch_all_close(__lowerCamelCase ,__lowerCamelCase ,rtol=1e-2 ) ) def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" pass
129
0
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin __snake_case = get_tests_dir('''fixtures/test_sentencepiece.model''') __snake_case = {'''target_lang''': '''fi''', '''source_lang''': '''en'''} __snake_case = '''>>zh<<''' __snake_case = '''Helsinki-NLP/''' if is_torch_available(): __snake_case = '''pt''' elif is_tf_available(): __snake_case = '''tf''' else: __snake_case = '''jax''' @require_sentencepiece class lowercase ( A__ , unittest.TestCase ): """simple docstring""" _a = MarianTokenizer _a = False _a = True def lowerCAmelCase__ ( self ): '''simple docstring''' super().setUp() UpperCamelCase__ :Dict = ['''</s>''', '''<unk>''', '''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''', '''\u0120''', '''<pad>'''] UpperCamelCase__ :str = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) UpperCamelCase__ :Dict = Path(self.tmpdirname ) save_json(UpperCamelCase_ , save_dir / VOCAB_FILES_NAMES['''vocab'''] ) save_json(UpperCamelCase_ , save_dir / VOCAB_FILES_NAMES['''tokenizer_config_file'''] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(UpperCamelCase_ , save_dir / VOCAB_FILES_NAMES['''source_spm'''] ) copyfile(UpperCamelCase_ , save_dir / VOCAB_FILES_NAMES['''target_spm'''] ) UpperCamelCase__ :Optional[int] = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase__ ( self , **UpperCamelCase_ ): '''simple docstring''' return MarianTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' return ( "This is a test", "This is a test", ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Union[str, Any] = '''</s>''' UpperCamelCase__ :Optional[Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase_ ) , UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''</s>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''<pad>''' ) self.assertEqual(len(UpperCamelCase_ ) , 9 ) def lowerCAmelCase__ ( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Union[str, Any] = MarianTokenizer.from_pretrained(F'''{ORG_NAME}opus-mt-en-de''' ) UpperCamelCase__ :Optional[Any] = en_de_tokenizer(['''I am a small frog'''] , return_tensors=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase__ :Union[str, Any] = [38, 121, 14, 697, 38848, 0] self.assertListEqual(UpperCamelCase_ , batch.input_ids[0] ) UpperCamelCase__ :str = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(UpperCamelCase_ ) UpperCamelCase__ :Any = [x.name for x in Path(UpperCamelCase_ ).glob('''*''' )] self.assertIn('''source.spm''' , UpperCamelCase_ ) MarianTokenizer.from_pretrained(UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[Any] = self.get_tokenizer() UpperCamelCase__ :int = tok( ['''I am a small frog''' * 1000, '''I am a small frog'''] , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , return_tensors=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(batch.input_ids.shape , (2, 512) ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[Any] = self.get_tokenizer() UpperCamelCase__ :Optional[Any] = tok(['''I am a tiny frog''', '''I am a small frog'''] , padding=UpperCamelCase_ , return_tensors=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Dict = {'''input_ids''': [[43495, 462, 20, 42164, 1369, 52, 464, 132, 1703, 492, 13, 7491, 38999, 6, 8, 464, 132, 1703, 492, 13, 4669, 37867, 13, 7525, 27, 1593, 988, 13, 33972, 7029, 6, 20, 8251, 383, 2, 270, 5866, 3788, 2, 2353, 8251, 12338, 2, 13958, 387, 2, 3629, 6953, 188, 2900, 2, 13958, 8011, 11501, 23, 8460, 4073, 34009, 20, 435, 11439, 27, 8, 8460, 4073, 6004, 20, 9988, 375, 27, 33, 266, 1945, 1076, 1350, 37867, 3288, 5, 577, 1076, 4374, 8, 5082, 5, 26453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 10767, 6, 316, 304, 4239, 3, 0], [148, 15722, 19, 1839, 12, 1350, 13, 22327, 5082, 5418, 47567, 35938, 59, 318, 19552, 108, 2183, 54, 14976, 4835, 32, 547, 1114, 8, 315, 2417, 5, 92, 19088, 3, 0, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100], [36, 6395, 12570, 39147, 11597, 6, 266, 4, 45405, 7296, 3, 0, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase_ , model_name='''Helsinki-NLP/opus-mt-en-de''' , revision='''1a8c2263da11e68e50938f97e10cd57820bd504c''' , decode_kwargs={'''use_source_tokenizer''': True} , ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :int = MarianTokenizer.from_pretrained('''hf-internal-testing/test-marian-two-vocabs''' ) UpperCamelCase__ :Any = '''Tämä on testi''' UpperCamelCase__ :Tuple = '''This is a test''' UpperCamelCase__ :Optional[int] = [76, 7, 2047, 2] UpperCamelCase__ :List[str] = [69, 12, 11, 940, 2] UpperCamelCase__ :Optional[int] = tokenizer(UpperCamelCase_ ).input_ids self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase__ :Optional[int] = tokenizer(text_target=UpperCamelCase_ ).input_ids self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase__ :int = tokenizer.decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
219
'''simple docstring''' from __future__ import annotations __snake_case = list[list[int]] # assigning initial values to the grid __snake_case = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution __snake_case = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def a ( __a , __a , __a , __a ) -> bool: '''simple docstring''' for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def a ( __a ) -> tuple[int, int] | None: '''simple docstring''' for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def a ( __a ) -> Matrix | None: '''simple docstring''' if location := find_empty_location(__a ): UpperCamelCase__ , UpperCamelCase__ :Optional[int] = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(__a , __a , __a , __a ): UpperCamelCase__ :Tuple = digit if sudoku(__a ) is not None: return grid UpperCamelCase__ :Union[str, Any] = 0 return None def a ( __a ) -> None: '''simple docstring''' for row in grid: for cell in row: print(__a , end=''' ''' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('''\nExample grid:\n''' + '''=''' * 20) print_solution(example_grid) print('''\nExample grid solution:''') __snake_case = sudoku(example_grid) if solution is not None: print_solution(solution) else: print('''Cannot find a solution.''')
219
1
from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = False , lowerCamelCase__ = False , lowerCamelCase__ = None , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> Union[str, Any]: '''simple docstring''' super().__init__( features=lowerCamelCase__ , cache_dir=lowerCamelCase__ , keep_in_memory=lowerCamelCase__ , streaming=lowerCamelCase__ , num_proc=lowerCamelCase__ , **lowerCamelCase__ , ) __lowerCamelCase = Generator( cache_dir=lowerCamelCase__ , features=lowerCamelCase__ , generator=lowerCamelCase__ , gen_kwargs=lowerCamelCase__ , **lowerCamelCase__ , ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' # Build iterable dataset if self.streaming: __lowerCamelCase = self.builder.as_streaming_dataset(split='train' ) # Build regular (map-style) dataset else: __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = None self.builder.download_and_prepare( download_config=lowerCamelCase__ , download_mode=lowerCamelCase__ , verification_mode=lowerCamelCase__ , base_path=lowerCamelCase__ , num_proc=self.num_proc , ) __lowerCamelCase = self.builder.as_dataset( split='train' , verification_mode=lowerCamelCase__ , in_memory=self.keep_in_memory ) return dataset
90
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __A = logging.get_logger(__name__) __A = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} __A = { "tokenizer_file": { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json", }, } __A = { "gpt-neox-20b": 20_48, } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ['''input_ids''', '''attention_mask'''] def __init__( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__="<|endoftext|>" , lowerCamelCase__="<|endoftext|>" , lowerCamelCase__="<|endoftext|>" , lowerCamelCase__=False , **lowerCamelCase__ , ) -> int: '''simple docstring''' super().__init__( lowerCamelCase__ , lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , unk_token=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , **lowerCamelCase__ , ) __lowerCamelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , lowerCamelCase__ ) != add_prefix_space: __lowerCamelCase = getattr(lowerCamelCase__ , pre_tok_state.pop('type' ) ) __lowerCamelCase = add_prefix_space __lowerCamelCase = pre_tok_class(**lowerCamelCase__ ) __lowerCamelCase = add_prefix_space def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> Tuple[str]: '''simple docstring''' __lowerCamelCase = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ ) -> List[int]: '''simple docstring''' __lowerCamelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) + [self.eos_token_id] ) if len(lowerCamelCase__ ) > self.model_max_length: __lowerCamelCase = input_ids[-self.model_max_length :] return input_ids
90
1
import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case : Tuple = logging.get_logger(__name__) _snake_case : Any = { "kakaobrain/align-base": "https://huggingface.co/kakaobrain/align-base/resolve/main/config.json", } class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : List[str] = "align_text_model" def __init__( self : str , lowerCamelCase : str=30522 , lowerCamelCase : Optional[int]=768 , lowerCamelCase : Union[str, Any]=12 , lowerCamelCase : Any=12 , lowerCamelCase : Dict=3072 , lowerCamelCase : Optional[Any]="gelu" , lowerCamelCase : Dict=0.1 , lowerCamelCase : List[str]=0.1 , lowerCamelCase : List[Any]=512 , lowerCamelCase : List[str]=2 , lowerCamelCase : Optional[int]=0.02 , lowerCamelCase : Optional[int]=1E-12 , lowerCamelCase : Tuple=0 , lowerCamelCase : List[str]="absolute" , lowerCamelCase : Tuple=True , **lowerCamelCase : Tuple , ) -> Tuple: super().__init__(**_SCREAMING_SNAKE_CASE ) __snake_case : Dict = vocab_size __snake_case : Union[str, Any] = hidden_size __snake_case : Optional[Any] = num_hidden_layers __snake_case : List[str] = num_attention_heads __snake_case : Tuple = hidden_act __snake_case : Dict = intermediate_size __snake_case : str = hidden_dropout_prob __snake_case : List[str] = attention_probs_dropout_prob __snake_case : Any = max_position_embeddings __snake_case : Union[str, Any] = type_vocab_size __snake_case : str = initializer_range __snake_case : str = layer_norm_eps __snake_case : Optional[int] = position_embedding_type __snake_case : Optional[int] = use_cache __snake_case : Optional[Any] = pad_token_id @classmethod def __snake_case ( cls : Optional[int] , lowerCamelCase : Any , **lowerCamelCase : List[Any] ) -> "PretrainedConfig": cls._set_token_in_kwargs(_SCREAMING_SNAKE_CASE ) __snake_case : int = cls.get_config_dict(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) # get the text config dict if we are loading from AlignConfig if config_dict.get("model_type" ) == "align": __snake_case : List[str] = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : List[Any] = "align_vision_model" def __init__( self : int , lowerCamelCase : Optional[int] = 3 , lowerCamelCase : Optional[int] = 600 , lowerCamelCase : Optional[Any] = 2.0 , lowerCamelCase : Optional[int] = 3.1 , lowerCamelCase : Union[str, Any] = 8 , lowerCamelCase : Dict = [3, 3, 5, 3, 5, 5, 3] , lowerCamelCase : Optional[Any] = [32, 16, 24, 40, 80, 112, 192] , lowerCamelCase : Optional[Any] = [16, 24, 40, 80, 112, 192, 320] , lowerCamelCase : Dict = [] , lowerCamelCase : str = [1, 2, 2, 2, 1, 2, 1] , lowerCamelCase : int = [1, 2, 2, 3, 3, 4, 1] , lowerCamelCase : Any = [1, 6, 6, 6, 6, 6, 6] , lowerCamelCase : int = 0.25 , lowerCamelCase : Optional[Any] = "swish" , lowerCamelCase : List[Any] = 2560 , lowerCamelCase : List[Any] = "mean" , lowerCamelCase : Dict = 0.02 , lowerCamelCase : str = 0.0_01 , lowerCamelCase : List[str] = 0.99 , lowerCamelCase : Optional[int] = 0.2 , **lowerCamelCase : int , ) -> Optional[int]: super().__init__(**_SCREAMING_SNAKE_CASE ) __snake_case : List[str] = num_channels __snake_case : Any = image_size __snake_case : Tuple = width_coefficient __snake_case : Dict = depth_coefficient __snake_case : List[str] = depth_divisor __snake_case : List[str] = kernel_sizes __snake_case : Dict = in_channels __snake_case : Optional[int] = out_channels __snake_case : Optional[int] = depthwise_padding __snake_case : str = strides __snake_case : Dict = num_block_repeats __snake_case : Optional[int] = expand_ratios __snake_case : Union[str, Any] = squeeze_expansion_ratio __snake_case : Any = hidden_act __snake_case : Tuple = hidden_dim __snake_case : Dict = pooling_type __snake_case : Dict = initializer_range __snake_case : Dict = batch_norm_eps __snake_case : Dict = batch_norm_momentum __snake_case : Tuple = drop_connect_rate __snake_case : Optional[Any] = sum(_SCREAMING_SNAKE_CASE ) * 4 @classmethod def __snake_case ( cls : List[Any] , lowerCamelCase : str , **lowerCamelCase : Optional[int] ) -> "PretrainedConfig": cls._set_token_in_kwargs(_SCREAMING_SNAKE_CASE ) __snake_case : Any = cls.get_config_dict(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) # get the vision config dict if we are loading from AlignConfig if config_dict.get("model_type" ) == "align": __snake_case : Optional[Any] = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : List[Any] = "align" __UpperCAmelCase : List[str] = True def __init__( self : Optional[Any] , lowerCamelCase : List[str]=None , lowerCamelCase : Tuple=None , lowerCamelCase : List[str]=640 , lowerCamelCase : Tuple=1.0 , lowerCamelCase : Any=0.02 , **lowerCamelCase : List[str] , ) -> int: super().__init__(**_SCREAMING_SNAKE_CASE ) if text_config is None: __snake_case : Dict = {} logger.info("text_config is None. Initializing the AlignTextConfig with default values." ) if vision_config is None: __snake_case : List[Any] = {} logger.info("vision_config is None. Initializing the AlignVisionConfig with default values." ) __snake_case : List[str] = AlignTextConfig(**_SCREAMING_SNAKE_CASE ) __snake_case : str = AlignVisionConfig(**_SCREAMING_SNAKE_CASE ) __snake_case : Union[str, Any] = projection_dim __snake_case : List[Any] = temperature_init_value __snake_case : int = initializer_range @classmethod def __snake_case ( cls : Tuple , lowerCamelCase : int , lowerCamelCase : Union[str, Any] , **lowerCamelCase : int ) -> int: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_SCREAMING_SNAKE_CASE ) def __snake_case ( self : List[Any] ) -> Union[str, Any]: __snake_case : str = copy.deepcopy(self.__dict__ ) __snake_case : Optional[int] = self.text_config.to_dict() __snake_case : List[str] = self.vision_config.to_dict() __snake_case : Tuple = self.__class__.model_type return output
371
import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case : Union[str, Any] = logging.get_logger(__name__) _snake_case : List[str] = { "facebook/encodec_24khz": "https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json", "facebook/encodec_48khz": "https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json", } class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : Tuple = "encodec" def __init__( self : Any , lowerCamelCase : Optional[int]=[1.5, 3.0, 6.0, 12.0, 24.0] , lowerCamelCase : List[str]=24000 , lowerCamelCase : int=1 , lowerCamelCase : Optional[int]=False , lowerCamelCase : Dict=None , lowerCamelCase : Tuple=None , lowerCamelCase : Optional[int]=128 , lowerCamelCase : Optional[int]=32 , lowerCamelCase : List[str]=1 , lowerCamelCase : str=[8, 5, 4, 2] , lowerCamelCase : List[str]="weight_norm" , lowerCamelCase : Any=7 , lowerCamelCase : Tuple=7 , lowerCamelCase : int=3 , lowerCamelCase : int=2 , lowerCamelCase : Union[str, Any]=True , lowerCamelCase : List[Any]="reflect" , lowerCamelCase : Union[str, Any]=2 , lowerCamelCase : Optional[int]=2 , lowerCamelCase : int=1.0 , lowerCamelCase : Optional[Any]=1024 , lowerCamelCase : Optional[Any]=None , lowerCamelCase : str=True , **lowerCamelCase : Dict , ) -> Any: __snake_case : Tuple = target_bandwidths __snake_case : Union[str, Any] = sampling_rate __snake_case : Union[str, Any] = audio_channels __snake_case : Dict = normalize __snake_case : List[Any] = chunk_length_s __snake_case : Tuple = overlap __snake_case : Optional[int] = hidden_size __snake_case : List[Any] = num_filters __snake_case : Union[str, Any] = num_residual_layers __snake_case : Optional[int] = upsampling_ratios __snake_case : List[str] = norm_type __snake_case : Optional[int] = kernel_size __snake_case : Dict = last_kernel_size __snake_case : Tuple = residual_kernel_size __snake_case : List[Any] = dilation_growth_rate __snake_case : Optional[int] = use_causal_conv __snake_case : Tuple = pad_mode __snake_case : Union[str, Any] = compress __snake_case : Union[str, Any] = num_lstm_layers __snake_case : int = trim_right_ratio __snake_case : Tuple = codebook_size __snake_case : Optional[Any] = codebook_dim if codebook_dim is not None else hidden_size __snake_case : int = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( F'self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}' ) super().__init__(**lowerCamelCase ) @property def __snake_case ( self : int ) -> Optional[int]: if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def __snake_case ( self : Union[str, Any] ) -> Optional[int]: if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def __snake_case ( self : Optional[Any] ) -> int: __snake_case : Union[str, Any] = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def __snake_case ( self : Optional[Any] ) -> int: return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
134
0
'''simple docstring''' import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging lowerCAmelCase :Optional[int] = logging.get_logger(__name__) def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : int ): """simple docstring""" __magic_name__ : Optional[Any] = set() __magic_name__ : List[Any] = [] def parse_line(lowerCAmelCase : int ): for line in fp: if isinstance(lowerCAmelCase , lowerCAmelCase ): __magic_name__ : Union[str, Any] = line.decode('UTF-8' ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(' ' ): # process a single warning and move it to `selected_warnings`. if len(lowerCAmelCase ) > 0: __magic_name__ : int = '\n'.join(lowerCAmelCase ) # Only keep the warnings specified in `targets` if any(f': {x}: ' in warning for x in targets ): selected_warnings.add(lowerCAmelCase ) buffer.clear() continue else: __magic_name__ : Optional[int] = line.strip() buffer.append(lowerCAmelCase ) if from_gh: for filename in os.listdir(lowerCAmelCase ): __magic_name__ : int = os.path.join(lowerCAmelCase , lowerCAmelCase ) if not os.path.isdir(lowerCAmelCase ): # read the file if filename != "warnings.txt": continue with open(lowerCAmelCase ) as fp: parse_line(lowerCAmelCase ) else: try: with zipfile.ZipFile(lowerCAmelCase ) as z: for filename in z.namelist(): if not os.path.isdir(lowerCAmelCase ): # read the file if filename != "warnings.txt": continue with z.open(lowerCAmelCase ) as fp: parse_line(lowerCAmelCase ) except Exception: logger.warning( f'{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.' ) return selected_warnings def lowerCamelCase ( lowerCAmelCase : Tuple , lowerCAmelCase : Any ): """simple docstring""" __magic_name__ : List[Any] = set() __magic_name__ : Dict = [os.path.join(lowerCAmelCase , lowerCAmelCase ) for p in os.listdir(lowerCAmelCase ) if (p.endswith('.zip' ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(lowerCAmelCase , lowerCAmelCase ) ) return selected_warnings if __name__ == "__main__": def lowerCamelCase ( lowerCAmelCase : str ): """simple docstring""" return values.split(',' ) lowerCAmelCase :List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') parser.add_argument( '''--output_dir''', type=str, required=True, help='''Where to store the downloaded artifacts and other result files.''', ) parser.add_argument('''--token''', default=None, type=str, help='''A token that has actions:read permission.''') # optional parameters parser.add_argument( '''--targets''', default='''DeprecationWarning,UserWarning,FutureWarning''', type=list_str, help='''Comma-separated list of target warning(s) which we want to extract.''', ) parser.add_argument( '''--from_gh''', action='''store_true''', help='''If running from a GitHub action workflow and collecting warnings from its artifacts.''', ) lowerCAmelCase :Optional[Any] = parser.parse_args() lowerCAmelCase :Tuple = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links lowerCAmelCase :List[str] = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, '''artifacts.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print('''=''' * 8_0) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts lowerCAmelCase :int = extract_warnings(args.output_dir, args.targets) lowerCAmelCase :Optional[Any] = sorted(selected_warnings) with open(os.path.join(args.output_dir, '''selected_warnings.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
331
'''simple docstring''' import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version lowerCAmelCase :Dict = logging.getLogger(__name__) require_version('''pytorch_lightning>=1.0.4''') lowerCAmelCase :str = { '''base''': AutoModel, '''sequence-classification''': AutoModelForSequenceClassification, '''question-answering''': AutoModelForQuestionAnswering, '''pretraining''': AutoModelForPreTraining, '''token-classification''': AutoModelForTokenClassification, '''language-modeling''': AutoModelWithLMHead, '''summarization''': AutoModelForSeqaSeqLM, '''translation''': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization lowerCAmelCase :Any = { '''linear''': get_linear_schedule_with_warmup, '''cosine''': get_cosine_schedule_with_warmup, '''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup, '''polynomial''': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } lowerCAmelCase :Tuple = sorted(arg_to_scheduler.keys()) lowerCAmelCase :Any = '''{''' + ''', '''.join(arg_to_scheduler_choices) + '''}''' class _lowerCamelCase ( pl.LightningModule ): '''simple docstring''' def __init__( self : Union[str, Any] , _A : argparse.Namespace , _A : List[Any]=None , _A : Any="base" , _A : Tuple=None , _A : Union[str, Any]=None , _A : List[Any]=None , **_A : Optional[Any] , ) -> Optional[int]: super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(_A ) __magic_name__ : List[str] = 0 __magic_name__ : Union[str, Any] = Path(self.hparams.output_dir ) __magic_name__ : str = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: __magic_name__ : Optional[Any] = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'num_labels': num_labels} if num_labels is not None else {}) , cache_dir=_A , **_A , ) else: __magic_name__ : PretrainedConfig = config __magic_name__ : Any = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(self.hparams , _A , _A ): assert hasattr(self.config , _A ), F'model config doesn\'t have a `{p}` attribute' setattr(self.config , _A , getattr(self.hparams , _A ) ) if tokenizer is None: __magic_name__ : List[Any] = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=_A , ) else: __magic_name__ : PreTrainedTokenizer = tokenizer __magic_name__ : Optional[int] = MODEL_MODES[mode] if model is None: __magic_name__ : Tuple = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('.ckpt' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=_A , ) else: __magic_name__ : str = model def __lowerCAmelCase ( self : Optional[int] , *_A : Union[str, Any] , **_A : Union[str, Any] ) -> Tuple: __magic_name__ : Any = self.model_type.from_pretrained(*_A , **_A ) def __lowerCAmelCase ( self : Dict ) -> Union[str, Any]: __magic_name__ : Optional[Any] = arg_to_scheduler[self.hparams.lr_scheduler] __magic_name__ : str = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) __magic_name__ : int = {'scheduler': scheduler, 'interval': 'step', 'frequency': 1} return scheduler def __lowerCAmelCase ( self : str ) -> Optional[Any]: __magic_name__ : Optional[Any] = self.model __magic_name__ : int = ['bias', 'LayerNorm.weight'] __magic_name__ : Dict = [ { 'params': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters 'weight_decay': self.hparams.weight_decay, }, { 'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] if self.hparams.adafactor: __magic_name__ : str = Adafactor( _A , lr=self.hparams.learning_rate , scale_parameter=_A , relative_step=_A ) else: __magic_name__ : Tuple = AdamW( _A , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) __magic_name__ : List[str] = optimizer __magic_name__ : int = self.get_lr_scheduler() return [optimizer], [scheduler] def __lowerCAmelCase ( self : Optional[Any] , _A : Optional[int] , _A : Tuple ) -> Optional[Any]: return self.validation_step(_A , _A ) def __lowerCAmelCase ( self : Dict , _A : List[str] ) -> Any: return self.validation_end(_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> int: __magic_name__ : int = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores __magic_name__ : Dict = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def __lowerCAmelCase ( self : str , _A : Optional[int] ) -> str: if stage == "test": __magic_name__ : Any = len(self.test_dataloader().dataset ) else: __magic_name__ : List[Any] = self.get_dataloader('train' , self.hparams.train_batch_size , shuffle=_A ) __magic_name__ : int = len(self.train_dataloader().dataset ) def __lowerCAmelCase ( self : List[str] , _A : str , _A : int , _A : bool = False ) -> Optional[int]: raise NotImplementedError('You must implement this for your task' ) def __lowerCAmelCase ( self : int ) -> List[str]: return self.train_loader def __lowerCAmelCase ( self : Tuple ) -> int: return self.get_dataloader('dev' , self.hparams.eval_batch_size , shuffle=_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: return self.get_dataloader('test' , self.hparams.eval_batch_size , shuffle=_A ) def __lowerCAmelCase ( self : Optional[Any] , _A : Any ) -> str: return os.path.join( self.hparams.data_dir , 'cached_{}_{}_{}'.format( _A , list(filter(_A , self.hparams.model_name_or_path.split('/' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def __lowerCAmelCase ( self : List[str] , _A : Dict[str, Any] ) -> None: __magic_name__ : Dict = self.output_dir.joinpath('best_tfmr' ) __magic_name__ : List[Any] = self.step_count self.model.save_pretrained(_A ) self.tokenizer.save_pretrained(_A ) @staticmethod def __lowerCAmelCase ( _A : List[str] , _A : Optional[Any] ) -> Tuple: parser.add_argument( '--model_name_or_path' , default=_A , type=_A , required=_A , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--config_name' , default='' , type=_A , help='Pretrained config name or path if not the same as model_name' ) parser.add_argument( '--tokenizer_name' , default=_A , type=_A , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument( '--cache_dir' , default=str(Path(_A ).parent / 'test_run' / 'cache' ) , type=_A , help='Where do you want to store the pre-trained models downloaded from huggingface.co' , ) parser.add_argument( '--encoder_layerdrop' , type=_A , help='Encoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--decoder_layerdrop' , type=_A , help='Decoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--dropout' , type=_A , help='Dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--attention_dropout' , type=_A , help='Attention dropout probability (Optional). Goes into model.config' , ) parser.add_argument('--learning_rate' , default=5E-5 , type=_A , help='The initial learning rate for Adam.' ) parser.add_argument( '--lr_scheduler' , default='linear' , choices=_A , metavar=_A , type=_A , help='Learning rate scheduler' , ) parser.add_argument('--weight_decay' , default=0.0 , type=_A , help='Weight decay if we apply some.' ) parser.add_argument('--adam_epsilon' , default=1E-8 , type=_A , help='Epsilon for Adam optimizer.' ) parser.add_argument('--warmup_steps' , default=0 , type=_A , help='Linear warmup over warmup_steps.' ) parser.add_argument('--num_workers' , default=4 , type=_A , help='kwarg passed to DataLoader' ) parser.add_argument('--num_train_epochs' , dest='max_epochs' , default=3 , type=_A ) parser.add_argument('--train_batch_size' , default=32 , type=_A ) parser.add_argument('--eval_batch_size' , default=32 , type=_A ) parser.add_argument('--adafactor' , action='store_true' ) class _lowerCamelCase ( pl.Callback ): '''simple docstring''' def __lowerCAmelCase ( self : List[str] , _A : List[Any] , _A : List[Any] ) -> List[str]: if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class _lowerCamelCase ( pl.Callback ): '''simple docstring''' def __lowerCAmelCase ( self : List[str] , _A : Dict , _A : str ) -> List[str]: # print(pl_module.model.rag) for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(_A ) class _lowerCamelCase ( pl.Callback ): '''simple docstring''' def __lowerCAmelCase ( self : Optional[int] , _A : List[Any] , _A : Dict ) -> Optional[Any]: __magic_name__ : Dict = trainer.lr_schedulers[0]['scheduler'] __magic_name__ : int = {F'lr_group_{i}': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(_A ) def __lowerCAmelCase ( self : Any , _A : pl.Trainer , _A : pl.LightningModule ) -> Optional[int]: rank_zero_info('***** Validation results *****' ) __magic_name__ : str = trainer.callback_metrics # Log results for key in sorted(_A ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(_A , str(metrics[key] ) ) ) def __lowerCAmelCase ( self : Union[str, Any] , _A : pl.Trainer , _A : pl.LightningModule ) -> Optional[Any]: rank_zero_info('***** Test results *****' ) __magic_name__ : Optional[int] = trainer.callback_metrics # Log and save results to file __magic_name__ : Optional[Any] = os.path.join(pl_module.hparams.output_dir , 'test_results.txt' ) with open(_A , 'w' ) as writer: for key in sorted(_A ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(_A , str(metrics[key] ) ) ) writer.write('{} = {}\n'.format(_A , str(metrics[key] ) ) ) def lowerCamelCase ( lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] ): """simple docstring""" parser.add_argument( '--output_dir' , default=str(Path(lowerCAmelCase ).parent / 'test_run' / 'model_checkpoints' ) , type=lowerCAmelCase , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=lowerCAmelCase , default='O2' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_tpu_cores' , dest='tpu_cores' , type=lowerCAmelCase ) parser.add_argument('--max_grad_norm' , dest='gradient_clip_val' , default=1.0 , type=lowerCAmelCase , help='Max gradient norm' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_predict' , action='store_true' , help='Whether to run predictions on the test set.' ) parser.add_argument( '--gradient_accumulation_steps' , dest='accumulate_grad_batches' , type=lowerCAmelCase , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--seed' , type=lowerCAmelCase , default=42 , help='random seed for initialization' ) parser.add_argument( '--data_dir' , default=str(Path(lowerCAmelCase ).parent / 'test_run' / 'dummy-train-data' ) , type=lowerCAmelCase , help='The input data dir. Should contain the training files for the CoNLL-2003 NER task.' , ) def lowerCamelCase ( lowerCAmelCase : BaseTransformer , lowerCAmelCase : argparse.Namespace , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Optional[Any]=[] , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : Any=None , **lowerCAmelCase : Union[str, Any] , ): """simple docstring""" pl.seed_everything(args.seed ) # init model __magic_name__ : Any = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=lowerCAmelCase ) # add custom checkpoints if checkpoint_callback is None: __magic_name__ : List[Any] = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='checkpoint' , monitor='val_loss' , mode='min' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(lowerCAmelCase ) if logging_callback is None: __magic_name__ : Dict = LoggingCallback() __magic_name__ : List[str] = {} if args.fpaa: __magic_name__ : Dict = 16 if args.gpus > 1: __magic_name__ : Tuple = 'auto' __magic_name__ : int = 'ddp' __magic_name__ : str = args.accumulate_grad_batches __magic_name__ : str = None __magic_name__ : List[str] = 'auto' __magic_name__ : List[Any] = pl.Trainer.from_argparse_args( lowerCAmelCase , weights_summary=lowerCAmelCase , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=lowerCAmelCase , val_check_interval=1 , num_sanity_val_steps=2 , **lowerCAmelCase , ) if args.do_train: trainer.fit(lowerCAmelCase ) else: print('RAG modeling tests with new set functions successfuly executed!' ) return trainer
331
1
from __future__ import annotations def __UpperCamelCase ( lowercase__ : list[int] , lowercase__ : list[int] , lowercase__ : list[int] , lowercase__ : list[list[str]] , lowercase__ : int , ) -> None: '''simple docstring''' lowerCAmelCase_ : str = len(lowercase__ ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(lowercase__ ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , lowercase__ , lowercase__ , ) def __UpperCamelCase ( lowercase__ : int ) -> None: '''simple docstring''' lowerCAmelCase_ : list[list[str]] = [] depth_first_search([] , [] , [] , lowercase__ , lowercase__ ) # Print all the boards for board in boards: for column in board: print(lowercase__ ) print("""""" ) print(len(lowercase__ ) , """solutions were found.""" ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
28
from datetime import datetime as dt import os from github import Github __UpperCAmelCase = [ 'good first issue', 'good second issue', 'good difficult issue', 'feature request', 'new model', 'wip', ] def __UpperCamelCase ( ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Dict = Github(os.environ["""GITHUB_TOKEN"""] ) lowerCAmelCase_ : Tuple = g.get_repo("""huggingface/transformers""" ) lowerCAmelCase_ : Any = repo.get_issues(state="""open""" ) for issue in open_issues: lowerCAmelCase_ : Union[str, Any] = sorted([comment for comment in issue.get_comments()] , key=lambda lowercase__ : i.created_at , reverse=lowercase__ ) lowerCAmelCase_ : str = comments[0] if len(lowercase__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="""closed""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
28
1
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def lowerCAmelCase_ ( snake_case_ : str ) ->str: lowerCamelCase__ : Optional[Any] =3_8_4 lowerCamelCase__ : Optional[int] =7 if "tiny" in model_name: lowerCamelCase__ : Optional[int] =9_6 lowerCamelCase__ : Any =(2, 2, 6, 2) lowerCamelCase__ : List[str] =(3, 6, 1_2, 2_4) elif "small" in model_name: lowerCamelCase__ : Any =9_6 lowerCamelCase__ : Tuple =(2, 2, 1_8, 2) lowerCamelCase__ : List[str] =(3, 6, 1_2, 2_4) elif "base" in model_name: lowerCamelCase__ : int =1_2_8 lowerCamelCase__ : Union[str, Any] =(2, 2, 1_8, 2) lowerCamelCase__ : Union[str, Any] =(4, 8, 1_6, 3_2) lowerCamelCase__ : Tuple =1_2 lowerCamelCase__ : Dict =5_1_2 elif "large" in model_name: lowerCamelCase__ : List[Any] =1_9_2 lowerCamelCase__ : int =(2, 2, 1_8, 2) lowerCamelCase__ : int =(6, 1_2, 2_4, 4_8) lowerCamelCase__ : Dict =1_2 lowerCamelCase__ : Tuple =7_6_8 # set label information lowerCamelCase__ : Optional[int] =1_5_0 lowerCamelCase__ : List[str] ='huggingface/label-files' lowerCamelCase__ : Optional[Any] ='ade20k-id2label.json' lowerCamelCase__ : Union[str, Any] =json.load(open(hf_hub_download(snake_case_ , snake_case_ , repo_type='dataset' ) , 'r' ) ) lowerCamelCase__ : Optional[Any] ={int(snake_case_ ): v for k, v in idalabel.items()} lowerCamelCase__ : Tuple ={v: k for k, v in idalabel.items()} lowerCamelCase__ : Optional[Any] =SwinConfig( embed_dim=snake_case_ , depths=snake_case_ , num_heads=snake_case_ , window_size=snake_case_ , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) lowerCamelCase__ : Union[str, Any] =UperNetConfig( backbone_config=snake_case_ , auxiliary_in_channels=snake_case_ , num_labels=snake_case_ , idalabel=snake_case_ , labelaid=snake_case_ , ) return config def lowerCAmelCase_ ( snake_case_ : Tuple ) ->Tuple: lowerCamelCase__ : Optional[Any] =[] # fmt: off # stem rename_keys.append(('backbone.patch_embed.projection.weight', 'backbone.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.patch_embed.projection.bias', 'backbone.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.patch_embed.norm.weight', 'backbone.embeddings.norm.weight') ) rename_keys.append(('backbone.patch_embed.norm.bias', 'backbone.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.norm1.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.norm1.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table""", f"""backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index""", f"""backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.norm2.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.norm2.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((f"""backbone.stages.{i}.downsample.reduction.weight""", f"""backbone.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((f"""backbone.stages.{i}.downsample.norm.weight""", f"""backbone.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((f"""backbone.stages.{i}.downsample.norm.bias""", f"""backbone.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((f"""backbone.norm{i}.weight""", f"""backbone.hidden_states_norms.stage{i+1}.weight""") ) rename_keys.append((f"""backbone.norm{i}.bias""", f"""backbone.hidden_states_norms.stage{i+1}.bias""") ) # decode head rename_keys.extend( [ ('decode_head.conv_seg.weight', 'decode_head.classifier.weight'), ('decode_head.conv_seg.bias', 'decode_head.classifier.bias'), ('auxiliary_head.conv_seg.weight', 'auxiliary_head.classifier.weight'), ('auxiliary_head.conv_seg.bias', 'auxiliary_head.classifier.bias'), ] ) # fmt: on return rename_keys def lowerCAmelCase_ ( snake_case_ : Dict , snake_case_ : Optional[Any] , snake_case_ : List[str] ) ->Dict: lowerCamelCase__ : Optional[int] =dct.pop(snake_case_ ) lowerCamelCase__ : List[str] =val def lowerCAmelCase_ ( snake_case_ : List[str] , snake_case_ : Union[str, Any] ) ->List[Any]: lowerCamelCase__ : Any =[int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): lowerCamelCase__ : int =num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) lowerCamelCase__ : Dict =state_dict.pop(f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight""" ) lowerCamelCase__ : Union[str, Any] =state_dict.pop(f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__ : List[Any] =in_proj_weight[:dim, :] lowerCamelCase__ : str =in_proj_bias[: dim] lowerCamelCase__ : Dict =in_proj_weight[ dim : dim * 2, : ] lowerCamelCase__ : Union[str, Any] =in_proj_bias[ dim : dim * 2 ] lowerCamelCase__ : str =in_proj_weight[ -dim :, : ] lowerCamelCase__ : int =in_proj_bias[-dim :] # fmt: on def lowerCAmelCase_ ( snake_case_ : List[Any] ) ->Tuple: lowerCamelCase__ , lowerCamelCase__ : Tuple =x.shape lowerCamelCase__ : Any =x.reshape(snake_case_ , 4 , in_channel // 4 ) lowerCamelCase__ : int =x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(snake_case_ , snake_case_ ) return x def lowerCAmelCase_ ( snake_case_ : Optional[Any] ) ->Dict: lowerCamelCase__ , lowerCamelCase__ : List[Any] =x.shape lowerCamelCase__ : str =x.reshape(snake_case_ , in_channel // 4 , 4 ) lowerCamelCase__ : Dict =x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(snake_case_ , snake_case_ ) return x def lowerCAmelCase_ ( snake_case_ : Any ) ->Any: lowerCamelCase__ : Dict =x.shape[0] lowerCamelCase__ : Tuple =x.reshape(4 , in_channel // 4 ) lowerCamelCase__ : List[str] =x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(snake_case_ ) return x def lowerCAmelCase_ ( snake_case_ : Any ) ->Dict: lowerCamelCase__ : Dict =x.shape[0] lowerCamelCase__ : str =x.reshape(in_channel // 4 , 4 ) lowerCamelCase__ : Union[str, Any] =x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(snake_case_ ) return x def lowerCAmelCase_ ( snake_case_ : Dict , snake_case_ : Optional[int] , snake_case_ : List[Any] ) ->int: lowerCamelCase__ : List[str] ={ 'upernet-swin-tiny': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth', 'upernet-swin-small': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth', 'upernet-swin-base': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth', 'upernet-swin-large': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth', } lowerCamelCase__ : Dict =model_name_to_url[model_name] lowerCamelCase__ : Optional[Any] =torch.hub.load_state_dict_from_url(snake_case_ , map_location='cpu' , file_name=snake_case_ )[ 'state_dict' ] for name, param in state_dict.items(): print(snake_case_ , param.shape ) lowerCamelCase__ : List[str] =get_upernet_config(snake_case_ ) lowerCamelCase__ : Any =UperNetForSemanticSegmentation(snake_case_ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): lowerCamelCase__ : Optional[int] =state_dict.pop(snake_case_ ) if "bn" in key: lowerCamelCase__ : int =key.replace('bn' , 'batch_norm' ) lowerCamelCase__ : List[Any] =val # rename keys lowerCamelCase__ : Optional[int] =create_rename_keys(snake_case_ ) for src, dest in rename_keys: rename_key(snake_case_ , snake_case_ , snake_case_ ) read_in_q_k_v(snake_case_ , config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: lowerCamelCase__ : str =reverse_correct_unfold_reduction_order(snake_case_ ) if "norm" in key: lowerCamelCase__ : Union[str, Any] =reverse_correct_unfold_norm_order(snake_case_ ) model.load_state_dict(snake_case_ ) # verify on image lowerCamelCase__ : Tuple ='https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg' lowerCamelCase__ : int =Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ).convert('RGB' ) lowerCamelCase__ : List[str] =SegformerImageProcessor() lowerCamelCase__ : List[Any] =processor(snake_case_ , return_tensors='pt' ).pixel_values with torch.no_grad(): lowerCamelCase__ : int =model(snake_case_ ) lowerCamelCase__ : Optional[Any] =outputs.logits print(logits.shape ) print('First values of logits:' , logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": lowerCamelCase__ : Union[str, Any] =torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ) elif model_name == "upernet-swin-small": lowerCamelCase__ : Any =torch.tensor( [[-7.1921, -7.1921, -6.9532], [-7.1921, -7.1921, -6.9532], [-7.0908, -7.0908, -6.8534]] ) elif model_name == "upernet-swin-base": lowerCamelCase__ : Optional[int] =torch.tensor( [[-6.5851, -6.5851, -6.4330], [-6.5851, -6.5851, -6.4330], [-6.4763, -6.4763, -6.3254]] ) elif model_name == "upernet-swin-large": lowerCamelCase__ : Dict =torch.tensor( [[-7.5297, -7.5297, -7.3802], [-7.5297, -7.5297, -7.3802], [-7.4044, -7.4044, -7.2586]] ) print('Logits:' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , snake_case_ , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(snake_case_ ) print(f"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(snake_case_ ) if push_to_hub: print(f"""Pushing model and processor for {model_name} to hub""" ) model.push_to_hub(f"""openmmlab/{model_name}""" ) processor.push_to_hub(f"""openmmlab/{model_name}""" ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""upernet-swin-tiny""", type=str, choices=[f"""upernet-swin-{size}""" for size in ["""tiny""", """small""", """base""", """large"""]], help="""Name of the Swin + UperNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCAmelCase = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
126
"""simple docstring""" # Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar lowerCAmelCase = TypeVar("""T""") class A_ ( Generic[T] ): """simple docstring""" def __init__( self :Dict , lowerCamelCase_ :bool = True ): """simple docstring""" lowerCamelCase__ : dict[T, list[T]] ={} # dictionary of lists lowerCamelCase__ : int =directed def UpperCAmelCase__ ( self :str , lowerCamelCase_ :T , lowerCamelCase_ :T ): """simple docstring""" if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCamelCase_ ) self.adj_list[destination_vertex].append(lowerCamelCase_ ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCamelCase_ ) lowerCamelCase__ : Dict =[source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(lowerCamelCase_ ) lowerCamelCase__ : Dict =[destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: lowerCamelCase__ : Union[str, Any] =[destination_vertex] lowerCamelCase__ : Any =[source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCamelCase_ ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] =[] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: lowerCamelCase__ : Tuple =[destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: lowerCamelCase__ : str =[destination_vertex] lowerCamelCase__ : Optional[Any] =[] return self def __repr__( self :Optional[Any] ): """simple docstring""" return pformat(self.adj_list )
126
1
from __future__ import annotations def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : int ) -> tuple[int, int]: """simple docstring""" if b == 0: return (1, 0) ((__lowerCamelCase) , (__lowerCamelCase)) = extended_euclid(UpperCamelCase__ , a % b ) __lowerCamelCase = a // b return (y, x - k * y) def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int ) -> int: """simple docstring""" ((__lowerCamelCase) , (__lowerCamelCase)) = extended_euclid(UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = na * na __lowerCamelCase = ra * x * na + ra * y * na return (n % m + m) % m def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : int ) -> int: """simple docstring""" ((__lowerCamelCase) , (__lowerCamelCase)) = extended_euclid(UpperCamelCase__ , UpperCamelCase__ ) if b < 0: __lowerCamelCase = (b % n + n) % n return b def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int ) -> int: """simple docstring""" __lowerCamelCase , __lowerCamelCase = invert_modulo(UpperCamelCase__ , UpperCamelCase__ ), invert_modulo(UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = na * na __lowerCamelCase = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="chinese_remainder_theorem", verbose=True) testmod(name="chinese_remainder_theorem2", verbose=True) testmod(name="invert_modulo", verbose=True) testmod(name="extended_euclid", verbose=True)
348
__A = { "joule": 1.0, "kilojoule": 10_00, "megajoule": 1_00_00_00, "gigajoule": 10_00_00_00_00, "wattsecond": 1.0, "watthour": 36_00, "kilowatthour": 3_60_00_00, "newtonmeter": 1.0, "calorie_nutr": 41_86.8, "kilocalorie_nutr": 4_18_68_00.00, "electronvolt": 1.6_0_2_1_7_6_6_3_4e-1_9, "britishthermalunit_it": 10_55.0_55_85, "footpound": 1.3_5_5_8_1_8, } def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : float ) -> float: """simple docstring""" if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: __lowerCamelCase = ( F"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n""" F"""Valid values are: {', '.join(UpperCamelCase__ )}""" ) raise ValueError(UpperCamelCase__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
348
1
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __snake_case ( lowerCamelCase_ ): lowerCAmelCase_ = ["image_processor", "tokenizer"] lowerCAmelCase_ = "BlipImageProcessor" lowerCAmelCase_ = "AutoTokenizer" def __init__( self : Dict , _lowercase : int , _lowercase : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = False super().__init__(_lowercase , _lowercase ) SCREAMING_SNAKE_CASE__ = self.image_processor def __call__( self : int , _lowercase : ImageInput = None , _lowercase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _lowercase : bool = True , _lowercase : Union[bool, str, PaddingStrategy] = False , _lowercase : Union[bool, str, TruncationStrategy] = None , _lowercase : Optional[int] = None , _lowercase : int = 0 , _lowercase : Optional[int] = None , _lowercase : Optional[bool] = None , _lowercase : bool = False , _lowercase : bool = False , _lowercase : bool = False , _lowercase : bool = False , _lowercase : bool = False , _lowercase : bool = True , _lowercase : Optional[Union[str, TensorType]] = None , **_lowercase : Union[str, Any] , ): """simple docstring""" if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None: SCREAMING_SNAKE_CASE__ = self.tokenizer SCREAMING_SNAKE_CASE__ = self.tokenizer( text=_lowercase , add_special_tokens=_lowercase , padding=_lowercase , truncation=_lowercase , max_length=_lowercase , stride=_lowercase , pad_to_multiple_of=_lowercase , return_attention_mask=_lowercase , return_overflowing_tokens=_lowercase , return_special_tokens_mask=_lowercase , return_offsets_mapping=_lowercase , return_token_type_ids=_lowercase , return_length=_lowercase , verbose=_lowercase , return_tensors=_lowercase , **_lowercase , ) return text_encoding # add pixel_values SCREAMING_SNAKE_CASE__ = self.image_processor(_lowercase , return_tensors=_lowercase ) if text is not None: SCREAMING_SNAKE_CASE__ = self.tokenizer( text=_lowercase , add_special_tokens=_lowercase , padding=_lowercase , truncation=_lowercase , max_length=_lowercase , stride=_lowercase , pad_to_multiple_of=_lowercase , return_attention_mask=_lowercase , return_overflowing_tokens=_lowercase , return_special_tokens_mask=_lowercase , return_offsets_mapping=_lowercase , return_token_type_ids=_lowercase , return_length=_lowercase , verbose=_lowercase , return_tensors=_lowercase , **_lowercase , ) else: SCREAMING_SNAKE_CASE__ = None if text_encoding is not None: encoding_image_processor.update(_lowercase ) return encoding_image_processor def __a ( self : List[str] , *_lowercase : Optional[int] , **_lowercase : str ): """simple docstring""" return self.tokenizer.batch_decode(*_lowercase , **_lowercase ) def __a ( self : Union[str, Any] , *_lowercase : Optional[Any] , **_lowercase : Optional[int] ): """simple docstring""" return self.tokenizer.decode(*_lowercase , **_lowercase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def __a ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
219
def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : int ) -> str: """simple docstring""" if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) SCREAMING_SNAKE_CASE__ = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b" SCREAMING_SNAKE_CASE__ = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b" SCREAMING_SNAKE_CASE__ = max(len(__UpperCamelCase ) , len(__UpperCamelCase ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(__UpperCamelCase ) , b_binary.zfill(__UpperCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
219
1
'''simple docstring''' import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def _lowercase ( __A ,__A ,__A ,__A ): '''simple docstring''' __UpperCamelCase = s.rsplit(__A ,__A ) return new.join(__A ) def _lowercase ( __A ): '''simple docstring''' return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def _lowercase ( __A ): '''simple docstring''' __UpperCamelCase = {} __UpperCamelCase = ["""group_1""", """group_2""", """group_3""", """group_4"""] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: __UpperCamelCase = key.replace(f"{group_key}." ,f"{group_key}.group." ) if "res_path" in key: __UpperCamelCase = key.replace("""res_path.""" ,"""res_path.path.""" ) if key.endswith(""".w""" ): __UpperCamelCase = rreplace(__A ,""".w""" ,""".weight""" ,1 ) if key.endswith(""".b""" ): __UpperCamelCase = rreplace(__A ,""".b""" ,""".bias""" ,1 ) __UpperCamelCase = value.float() return upgrade @torch.no_grad() def _lowercase ( __A ,__A ,__A=None ,__A=True ): '''simple docstring''' from dall_e import Encoder __UpperCamelCase = Encoder() if os.path.exists(__A ): __UpperCamelCase = torch.load(__A ) else: __UpperCamelCase = torch.hub.load_state_dict_from_url(__A ) if isinstance(__A ,__A ): __UpperCamelCase = ckpt.state_dict() encoder.load_state_dict(__A ) if config_path is not None: __UpperCamelCase = FlavaImageCodebookConfig.from_pretrained(__A ) else: __UpperCamelCase = FlavaImageCodebookConfig() __UpperCamelCase = FlavaImageCodebook(__A ).eval() __UpperCamelCase = encoder.state_dict() __UpperCamelCase = upgrade_state_dict(__A ) hf_model.load_state_dict(__A ) __UpperCamelCase = hf_model.state_dict() __UpperCamelCase = count_parameters(__A ) __UpperCamelCase = count_parameters(__A ) assert torch.allclose(__A ,__A ,atol=1E-3 ) if save_checkpoint: hf_model.save_pretrained(__A ) else: return hf_state_dict if __name__ == "__main__": a__ : Optional[Any] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') a__ : Dict = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
243
'''simple docstring''' import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": a__ : Optional[int] = '%20'.join(argv[1:]) if len(argv) > 1 else quote(str(input('Search: '))) print('Googling.....') a__ : Optional[int] = f'''https://www.google.com/search?q={query}&num=100''' a__ : Union[str, Any] = requests.get( url, headers={'User-Agent': str(UserAgent().random)}, ) try: a__ : Optional[Any] = ( BeautifulSoup(res.text, 'html.parser') .find('div', attrs={'class': 'yuRUbf'}) .find('a') .get('href') ) except AttributeError: a__ : Union[str, Any] = parse_qs( BeautifulSoup(res.text, 'html.parser') .find('div', attrs={'class': 'kCrYT'}) .find('a') .get('href') )['url'][0] webbrowser.open(link)
243
1
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): if index == number_of_items: return 0 __UpperCamelCase =0 __UpperCamelCase =0 __UpperCamelCase =knapsack(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , index + 1 ) if weights[index] <= max_weight: __UpperCamelCase =values[index] + knapsack( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , max_weight - weights[index] , index + 1 ) return max(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod()
62
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCamelCase ( metaclass=lowercase_ ): '''simple docstring''' __snake_case = ['speech'] def __init__( self : Tuple , *lowerCAmelCase_ : List[str] , **lowerCAmelCase_ : Dict ) -> int: '''simple docstring''' requires_backends(self , ["""speech"""] ) class lowerCamelCase ( metaclass=lowercase_ ): '''simple docstring''' __snake_case = ['speech'] def __init__( self : Union[str, Any] , *lowerCAmelCase_ : Tuple , **lowerCAmelCase_ : List[str] ) -> str: '''simple docstring''' requires_backends(self , ["""speech"""] )
134
0
"""simple docstring""" from __future__ import annotations def _lowerCamelCase( a , a ): if b == 0: return (1, 0) ((__a) , (__a)) = extended_euclid(a , a % b ) __a = a // b return (y, x - k * y) def _lowerCamelCase( a , a , a , a ): ((__a) , (__a)) = extended_euclid(a , a ) __a = na * na __a = ra * x * na + ra * y * na return (n % m + m) % m def _lowerCamelCase( a , a ): ((__a) , (__a)) = extended_euclid(a , a ) if b < 0: __a = (b % n + n) % n return b def _lowerCamelCase( a , a , a , a ): __a , __a = invert_modulo(a , a ), invert_modulo(a , a ) __a = na * na __a = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="""chinese_remainder_theorem""", verbose=True) testmod(name="""chinese_remainder_theorem2""", verbose=True) testmod(name="""invert_modulo""", verbose=True) testmod(name="""extended_euclid""", verbose=True)
268
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL SCREAMING_SNAKE_CASE__:Tuple = logging.get_logger(__name__) class snake_case__ ( snake_case_ ): _snake_case : Optional[Any] = ["""pixel_values"""] def __init__( self , lowerCamelCase = True , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = PILImageResampling.BILINEAR , lowerCamelCase = True , lowerCamelCase = 1 / 255 , lowerCamelCase = True , lowerCamelCase = None , lowerCamelCase = None , **lowerCamelCase , ): super().__init__(**lowerCamelCase ) __a = size if size is not None else {"shortest_edge": 384} __a = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase ) __a = do_resize __a = size # Default value set here for backwards compatibility where the value in config is None __a = crop_pct if crop_pct is not None else 224 / 256 __a = resample __a = do_rescale __a = rescale_factor __a = do_normalize __a = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __a = image_std if image_std is not None else IMAGENET_STANDARD_STD def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = PILImageResampling.BICUBIC , lowerCamelCase = None , **lowerCamelCase , ): __a = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase ) if "shortest_edge" not in size: raise ValueError(F"Size dictionary must contain 'shortest_edge' key. Got {size.keys()}" ) __a = size["shortest_edge"] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct __a = int(shortest_edge / crop_pct ) __a = get_resize_output_image_size(lowerCamelCase , size=lowerCamelCase , default_to_square=lowerCamelCase ) __a = resize(image=lowerCamelCase , size=lowerCamelCase , resample=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=lowerCamelCase , size=(shortest_edge, shortest_edge) , data_format=lowerCamelCase , **lowerCamelCase ) else: # warping (no cropping) when evaluated at 384 or larger return resize( lowerCamelCase , size=(shortest_edge, shortest_edge) , resample=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase , ): return rescale(lowerCamelCase , scale=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase , ): return normalize(lowerCamelCase , mean=lowerCamelCase , std=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def a__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = ChannelDimension.FIRST , **lowerCamelCase , ): __a = do_resize if do_resize is not None else self.do_resize __a = crop_pct if crop_pct is not None else self.crop_pct __a = resample if resample is not None else self.resample __a = do_rescale if do_rescale is not None else self.do_rescale __a = rescale_factor if rescale_factor is not None else self.rescale_factor __a = do_normalize if do_normalize is not None else self.do_normalize __a = image_mean if image_mean is not None else self.image_mean __a = image_std if image_std is not None else self.image_std __a = size if size is not None else self.size __a = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase ) __a = make_list_of_images(lowerCamelCase ) if not valid_images(lowerCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("crop_pct must be specified if size < 384." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. __a = [to_numpy_array(lowerCamelCase ) for image in images] if do_resize: __a = [self.resize(image=lowerCamelCase , size=lowerCamelCase , crop_pct=lowerCamelCase , resample=lowerCamelCase ) for image in images] if do_rescale: __a = [self.rescale(image=lowerCamelCase , scale=lowerCamelCase ) for image in images] if do_normalize: __a = [self.normalize(image=lowerCamelCase , mean=lowerCamelCase , std=lowerCamelCase ) for image in images] __a = [to_channel_dimension_format(lowerCamelCase , lowerCamelCase ) for image in images] __a = {"pixel_values": images} return BatchFeature(data=lowerCamelCase , tensor_type=lowerCamelCase )
268
1
'''simple docstring''' import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Any , UpperCamelCase__ : str = "cpu" , UpperCamelCase__ : str = "openai/clip-vit-large-patch14" ): """simple docstring""" UpperCamelCase = device UpperCamelCase = CLIPTokenizerFast.from_pretrained(UpperCamelCase__ ) UpperCamelCase = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] UpperCamelCase = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] UpperCamelCase = torchvision.transforms.Normalize(self.image_mean , self.image_std ) UpperCamelCase = torchvision.transforms.Resize(2_2_4 ) UpperCamelCase = torchvision.transforms.CenterCrop(2_2_4 ) def A ( self : str , UpperCamelCase__ : Dict ): """simple docstring""" UpperCamelCase = self.resize(UpperCamelCase__ ) UpperCamelCase = self.center_crop(UpperCamelCase__ ) UpperCamelCase = self.normalize(UpperCamelCase__ ) return images def __call__( self : Union[str, Any] , UpperCamelCase__ : int=None , UpperCamelCase__ : Optional[Any]=None , **UpperCamelCase__ : Any ): """simple docstring""" UpperCamelCase = self.tokenizer(text=UpperCamelCase__ , **UpperCamelCase__ ) UpperCamelCase = self.preprocess_img(UpperCamelCase__ ) UpperCamelCase = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" def __init__( self : Any , UpperCamelCase__ : Optional[int]=1_0 , UpperCamelCase__ : Optional[int]=0.0_1 , UpperCamelCase__ : str=None , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : Any=None , UpperCamelCase__ : int=None , UpperCamelCase__ : Dict=None , UpperCamelCase__ : str=None , UpperCamelCase__ : List[str]=False , UpperCamelCase__ : str=True , UpperCamelCase__ : List[str]="image" , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : Dict=False , UpperCamelCase__ : List[Any]=False , UpperCamelCase__ : Dict=False , ): """simple docstring""" super().__init__() UpperCamelCase = None UpperCamelCase = device if device else get_device() if vqgan: UpperCamelCase = vqgan else: UpperCamelCase = load_vqgan(self.device , conf_path=UpperCamelCase__ , ckpt_path=UpperCamelCase__ ) self.vqgan.eval() if clip: UpperCamelCase = clip else: UpperCamelCase = CLIPModel.from_pretrained('openai/clip-vit-base-patch32' ) self.clip.to(self.device ) UpperCamelCase = ProcessorGradientFlow(device=self.device ) UpperCamelCase = iterations UpperCamelCase = lr UpperCamelCase = log UpperCamelCase = make_grid UpperCamelCase = return_val UpperCamelCase = quantize UpperCamelCase = self.vqgan.decoder.z_shape def A ( self : List[Any] , UpperCamelCase__ : Any=None , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : List[str]=5 , UpperCamelCase__ : List[str]=True ): """simple docstring""" UpperCamelCase = [] if output_path is None: UpperCamelCase = './animation.gif' if input_path is None: UpperCamelCase = self.save_path UpperCamelCase = sorted(glob(input_path + '/*' ) ) if not len(UpperCamelCase__ ): raise ValueError( 'No images found in save path, aborting (did you pass save_intermediate=True to the generate' ' function?)' ) if len(UpperCamelCase__ ) == 1: print('Only one image found in save path, (did you pass save_intermediate=True to the generate function?)' ) UpperCamelCase = total_duration / len(UpperCamelCase__ ) UpperCamelCase = [frame_duration] * len(UpperCamelCase__ ) if extend_frames: UpperCamelCase = 1.5 UpperCamelCase = 3 for file_name in paths: if file_name.endswith('.png' ): images.append(imageio.imread(UpperCamelCase__ ) ) imageio.mimsave(UpperCamelCase__ , UpperCamelCase__ , duration=UpperCamelCase__ ) print(f"""gif saved to {output_path}""" ) def A ( self : Optional[Any] , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : Optional[Any]=None ): """simple docstring""" if not (path or img): raise ValueError('Input either path or tensor' ) if img is not None: raise NotImplementedError UpperCamelCase = preprocess(Image.open(UpperCamelCase__ ) , target_image_size=2_5_6 ).to(self.device ) UpperCamelCase = preprocess_vqgan(UpperCamelCase__ ) UpperCamelCase , *UpperCamelCase = self.vqgan.encode(UpperCamelCase__ ) return z def A ( self : str , UpperCamelCase__ : List[str] ): """simple docstring""" UpperCamelCase = self.latent.detach().requires_grad_() UpperCamelCase = base_latent + transform_vector if self.quantize: UpperCamelCase , *UpperCamelCase = self.vqgan.quantize(UpperCamelCase__ ) else: UpperCamelCase = trans_latent return self.vqgan.decode(UpperCamelCase__ ) def A ( self : Dict , UpperCamelCase__ : Tuple , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Union[str, Any]=None ): """simple docstring""" UpperCamelCase = self.clip_preprocessor(text=UpperCamelCase__ , images=UpperCamelCase__ , return_tensors='pt' , padding=UpperCamelCase__ ) UpperCamelCase = self.clip(**UpperCamelCase__ ) UpperCamelCase = clip_outputs.logits_per_image if weights is not None: UpperCamelCase = similarity_logits * weights return similarity_logits.sum() def A ( self : Dict , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str] , UpperCamelCase__ : Union[str, Any] ): """simple docstring""" UpperCamelCase = self._get_clip_similarity(pos_prompts['prompts'] , UpperCamelCase__ , weights=(1 / pos_prompts['weights']) ) if neg_prompts: UpperCamelCase = self._get_clip_similarity(neg_prompts['prompts'] , UpperCamelCase__ , weights=neg_prompts['weights'] ) else: UpperCamelCase = torch.tensor([1] , device=self.device ) UpperCamelCase = -torch.log(UpperCamelCase__ ) + torch.log(UpperCamelCase__ ) return loss def A ( self : Optional[int] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Any , UpperCamelCase__ : List[str] ): """simple docstring""" UpperCamelCase = torch.randn_like(self.latent , requires_grad=UpperCamelCase__ , device=self.device ) UpperCamelCase = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() UpperCamelCase = self._add_vector(UpperCamelCase__ ) UpperCamelCase = loop_post_process(UpperCamelCase__ ) UpperCamelCase = self._get_CLIP_loss(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) print('CLIP loss' , UpperCamelCase__ ) if self.log: wandb.log({'CLIP Loss': clip_loss} ) clip_loss.backward(retain_graph=UpperCamelCase__ ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def A ( self : List[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : int , UpperCamelCase__ : Any ): """simple docstring""" wandb.init(reinit=UpperCamelCase__ , project='face-editor' ) wandb.config.update({'Positive Prompts': positive_prompts} ) wandb.config.update({'Negative Prompts': negative_prompts} ) wandb.config.update({'lr': self.lr, 'iterations': self.iterations} ) if image_path: UpperCamelCase = Image.open(UpperCamelCase__ ) UpperCamelCase = image.resize((2_5_6, 2_5_6) ) wandb.log('Original Image' , wandb.Image(UpperCamelCase__ ) ) def A ( self : Any , UpperCamelCase__ : List[Any] ): """simple docstring""" if not prompts: return [] UpperCamelCase = [] UpperCamelCase = [] if isinstance(UpperCamelCase__ , UpperCamelCase__ ): UpperCamelCase = [prompt.strip() for prompt in prompts.split('|' )] for prompt in prompts: if isinstance(UpperCamelCase__ , (tuple, list) ): UpperCamelCase = prompt[0] UpperCamelCase = float(prompt[1] ) elif ":" in prompt: UpperCamelCase , UpperCamelCase = prompt.split(':' ) UpperCamelCase = float(UpperCamelCase__ ) else: UpperCamelCase = prompt UpperCamelCase = 1.0 processed_prompts.append(UpperCamelCase__ ) weights.append(UpperCamelCase__ ) return { "prompts": processed_prompts, "weights": torch.tensor(UpperCamelCase__ , device=self.device ), } def A ( self : Optional[int] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str=None , UpperCamelCase__ : str=None , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : List[str]=False , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : Optional[Any]=None , ): """simple docstring""" if image_path: UpperCamelCase = self._get_latent(UpperCamelCase__ ) else: UpperCamelCase = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) assert pos_prompts, "You must provide at least one positive prompt." UpperCamelCase = self.process_prompts(UpperCamelCase__ ) UpperCamelCase = self.process_prompts(UpperCamelCase__ ) if save_final and save_path is None: UpperCamelCase = os.path.join('./outputs/' , '_'.join(pos_prompts['prompts'] ) ) if not os.path.exists(UpperCamelCase__ ): os.makedirs(UpperCamelCase__ ) else: UpperCamelCase = save_path + '_' + get_timestamp() os.makedirs(UpperCamelCase__ ) UpperCamelCase = save_path UpperCamelCase = self.vqgan.decode(self.latent )[0] if show_intermediate: print('Original Image' ) show_pil(custom_to_pil(UpperCamelCase__ ) ) UpperCamelCase = loop_post_process(UpperCamelCase__ ) for iter, transformed_img in enumerate(self._optimize_CLIP(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ): if show_intermediate: show_pil(UpperCamelCase__ ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , f"""iter_{iter:03d}.png""" ) ) if self.log: wandb.log({'Image': wandb.Image(UpperCamelCase__ )} ) if show_final: show_pil(UpperCamelCase__ ) if save_final: transformed_img.save(os.path.join(self.save_path , f"""iter_{iter:03d}_final.png""" ) )
28
'''simple docstring''' import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration _lowerCamelCase : List[str] = 5_0000 _lowerCamelCase : Optional[int] = 5000 _lowerCamelCase ,_lowerCamelCase : int = os.path.split(__file__) _lowerCamelCase : str = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json")) @get_duration def __lowerCamelCase ( A__ , A__ ) -> Any: """simple docstring""" for i in range(A__ ): UpperCamelCase = dataset[i] @get_duration def __lowerCamelCase ( A__ , A__ , A__ ) -> int: """simple docstring""" for i in range(0 , len(A__ ) , A__ ): UpperCamelCase = dataset[i : i + batch_size] @get_duration def __lowerCamelCase ( A__ , A__ , A__ ) -> List[Any]: """simple docstring""" with dataset.formatted_as(type=A__ ): for i in range(A__ ): UpperCamelCase = dataset[i] @get_duration def __lowerCamelCase ( A__ , A__ , A__ , A__ ) -> int: """simple docstring""" with dataset.formatted_as(type=A__ ): for i in range(0 , A__ , A__ ): UpperCamelCase = dataset[i : i + batch_size] def __lowerCamelCase ( ) -> List[str]: """simple docstring""" UpperCamelCase = {'num examples': SPEED_TEST_N_EXAMPLES} UpperCamelCase = [ (read, {'length': SMALL_TEST}), (read, {'length': SPEED_TEST_N_EXAMPLES}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 10}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 100}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1_000}), (read_formatted, {'type': 'numpy', 'length': SMALL_TEST}), (read_formatted, {'type': 'pandas', 'length': SMALL_TEST}), (read_formatted, {'type': 'torch', 'length': SMALL_TEST}), (read_formatted, {'type': 'tensorflow', 'length': SMALL_TEST}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 10}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 1_000}), ] UpperCamelCase = [ (read, {'length': SMALL_TEST}), (read, {'length': SPEED_TEST_N_EXAMPLES}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 10}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 100}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1_000}), (read_formatted, {'type': 'numpy', 'length': SMALL_TEST}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 10}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 1_000}), ] with tempfile.TemporaryDirectory() as tmp_dir: print('generating dataset' ) UpperCamelCase = datasets.Features( {'list': datasets.Sequence(datasets.Value('float32' ) ), 'numbers': datasets.Value('float32' )} ) UpperCamelCase = generate_example_dataset( os.path.join(A__ , 'dataset.arrow' ) , A__ , num_examples=A__ , seq_shapes={'list': (100,)} , ) print('first set of iterations' ) for func, kwargs in functions: print(func.__name__ , str(A__ ) ) UpperCamelCase = func(A__ , **A__ ) print('shuffling dataset' ) UpperCamelCase = dataset.shuffle() print('Second set of iterations (after shuffling' ) for func, kwargs in functions_shuffled: print('shuffled ' , func.__name__ , str(A__ ) ) UpperCamelCase = func( A__ , **A__ ) with open(A__ , 'wb' ) as f: f.write(json.dumps(A__ ).encode('utf-8' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
28
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) lowercase : List[Any] = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Any = ["ViTFeatureExtractor"] lowercase : str = ["ViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : int = [ "VIT_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTForImageClassification", "ViTForMaskedImageModeling", "ViTModel", "ViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Tuple = [ "TFViTForImageClassification", "TFViTModel", "TFViTPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Dict = [ "FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys lowercase : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
363
'''simple docstring''' import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml lowercase : int = NewType("DataClass", Any) lowercase : Dict = NewType("DataClassType", Any) def SCREAMING_SNAKE_CASE__ ( __A ) -> Optional[Any]: if isinstance(__A , __A ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F'Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).' ) def SCREAMING_SNAKE_CASE__ ( __A ) -> Callable[[str], Any]: _snake_case = {str(__A ): choice for choice in choices} return lambda __A : str_to_choice.get(__A , __A ) def SCREAMING_SNAKE_CASE__ ( *, __A = None , __A = None , __A = dataclasses.MISSING , __A = dataclasses.MISSING , __A = None , **__A , ) -> dataclasses.Field: if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls _snake_case = {} if aliases is not None: _snake_case = aliases if help is not None: _snake_case = help return dataclasses.field(metadata=__A , default=__A , default_factory=__A , **__A ) class __UpperCAmelCase ( _lowerCamelCase ): __lowercase = 42 def __init__( self , lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" if "formatter_class" not in kwargs: _snake_case = ArgumentDefaultsHelpFormatter super().__init__(**lowerCAmelCase_ ) if dataclasses.is_dataclass(lowerCAmelCase_ ): _snake_case = [dataclass_types] _snake_case = list(lowerCAmelCase_ ) for dtype in self.dataclass_types: self._add_dataclass_arguments(lowerCAmelCase_ ) @staticmethod def lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = F'--{field.name}' _snake_case = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , lowerCAmelCase_ ): raise RuntimeError( 'Unresolved type detected, which should have been done with the help of ' '`typing.get_type_hints` method by default' ) _snake_case = kwargs.pop('aliases' , [] ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = [aliases] _snake_case = getattr(field.type , '__origin__' , field.type ) if origin_type is Union or (hasattr(lowerCAmelCase_ , 'UnionType' ) and isinstance(lowerCAmelCase_ , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(lowerCAmelCase_ ) not in field.type.__args__ ): raise ValueError( 'Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because' ' the argument parser only supports one type per argument.' F' Problem encountered in field \'{field.name}\'.' ) if type(lowerCAmelCase_ ) not in field.type.__args__: # filter `str` in Union _snake_case = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] _snake_case = getattr(field.type , '__origin__' , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) _snake_case = ( field.type.__args__[0] if isinstance(lowerCAmelCase_ , field.type.__args__[1] ) else field.type.__args__[1] ) _snake_case = getattr(field.type , '__origin__' , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) _snake_case = {} if origin_type is Literal or (isinstance(field.type , lowerCAmelCase_ ) and issubclass(field.type , lowerCAmelCase_ )): if origin_type is Literal: _snake_case = field.type.__args__ else: _snake_case = [x.value for x in field.type] _snake_case = make_choice_type_function(kwargs['choices'] ) if field.default is not dataclasses.MISSING: _snake_case = field.default else: _snake_case = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument _snake_case = copy(lowerCAmelCase_ ) # Hack because type=bool in argparse does not behave as we want. _snake_case = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. _snake_case = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way _snake_case = default # This tells argparse we accept 0 or 1 value after --field_name _snake_case = '?' # This is the value that will get picked if we do --field_name (without value) _snake_case = True elif isclass(lowerCAmelCase_ ) and issubclass(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = field.type.__args__[0] _snake_case = '+' if field.default_factory is not dataclasses.MISSING: _snake_case = field.default_factory() elif field.default is dataclasses.MISSING: _snake_case = True else: _snake_case = field.type if field.default is not dataclasses.MISSING: _snake_case = field.default elif field.default_factory is not dataclasses.MISSING: _snake_case = field.default_factory() else: _snake_case = True parser.add_argument(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): _snake_case = False parser.add_argument(F'--no_{field.name}' , action='store_false' , dest=field.name , **lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" if hasattr(lowerCAmelCase_ , '_argument_group_name' ): _snake_case = self.add_argument_group(dtype._argument_group_name ) else: _snake_case = self try: _snake_case = get_type_hints(lowerCAmelCase_ ) except NameError: raise RuntimeError( F'Type resolution failed for {dtype}. Try declaring the class in global scope or ' 'removing line of `from __future__ import annotations` which opts in Postponed ' 'Evaluation of Annotations (PEP 563)' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(lowerCAmelCase_ ): _snake_case = '.'.join(map(lowerCAmelCase_ , sys.version_info[:3] ) ) raise RuntimeError( F'Type resolution failed for {dtype} on Python {python_version}. Try removing ' 'line of `from __future__ import annotations` which opts in union types as ' '`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ' 'support Python versions that lower than 3.10, you need to use ' '`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ' '`X | None`.' ) from ex raise for field in dataclasses.fields(lowerCAmelCase_ ): if not field.init: continue _snake_case = type_hints[field.name] self._parse_dataclass_field(lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_=None , lowerCAmelCase_=False , lowerCAmelCase_=True , lowerCAmelCase_=None , lowerCAmelCase_=None , ): """simple docstring""" if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): _snake_case = [] if args_filename: args_files.append(Path(lowerCAmelCase_ ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('.args' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values _snake_case = ArgumentParser() args_file_parser.add_argument(lowerCAmelCase_ , type=lowerCAmelCase_ , action='append' ) # Use only remaining args for further parsing (remove the args_file_flag) _snake_case , _snake_case = args_file_parser.parse_known_args(args=lowerCAmelCase_ ) _snake_case = vars(lowerCAmelCase_ ).get(args_file_flag.lstrip('-' ) , lowerCAmelCase_ ) if cmd_args_file_paths: args_files.extend([Path(lowerCAmelCase_ ) for p in cmd_args_file_paths] ) _snake_case = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last _snake_case = file_args + args if args is not None else file_args + sys.argv[1:] _snake_case , _snake_case = self.parse_known_args(args=lowerCAmelCase_ ) _snake_case = [] for dtype in self.dataclass_types: _snake_case = {f.name for f in dataclasses.fields(lowerCAmelCase_ ) if f.init} _snake_case = {k: v for k, v in vars(lowerCAmelCase_ ).items() if k in keys} for k in keys: delattr(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = dtype(**lowerCAmelCase_ ) outputs.append(lowerCAmelCase_ ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(lowerCAmelCase_ ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F'Some specified arguments are not used by the HfArgumentParser: {remaining_args}' ) return (*outputs,) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = False ): """simple docstring""" _snake_case = set(args.keys() ) _snake_case = [] for dtype in self.dataclass_types: _snake_case = {f.name for f in dataclasses.fields(lowerCAmelCase_ ) if f.init} _snake_case = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) _snake_case = dtype(**lowerCAmelCase_ ) outputs.append(lowerCAmelCase_ ) if not allow_extra_keys and unused_keys: raise ValueError(F'Some keys are not used by the HfArgumentParser: {sorted(lowerCAmelCase_ )}' ) return tuple(lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = False ): """simple docstring""" with open(Path(lowerCAmelCase_ ) , encoding='utf-8' ) as open_json_file: _snake_case = json.loads(open_json_file.read() ) _snake_case = self.parse_dict(lowerCAmelCase_ , allow_extra_keys=lowerCAmelCase_ ) return tuple(lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = False ): """simple docstring""" _snake_case = self.parse_dict(yaml.safe_load(Path(lowerCAmelCase_ ).read_text() ) , allow_extra_keys=lowerCAmelCase_ ) return tuple(lowerCAmelCase_ )
160
0
from __future__ import annotations def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> tuple[int, int]: '''simple docstring''' if b == 0: return (1, 0) ((UpperCAmelCase) , (UpperCAmelCase)) : int =extended_euclid(__lowerCAmelCase , a % b ) UpperCAmelCase : Dict =a // b return (y, x - k * y) def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> int: '''simple docstring''' ((UpperCAmelCase) , (UpperCAmelCase)) : int =extended_euclid(__lowerCAmelCase , __lowerCAmelCase ) UpperCAmelCase : Dict =na * na UpperCAmelCase : int =ra * x * na + ra * y * na return (n % m + m) % m def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> int: '''simple docstring''' ((UpperCAmelCase) , (UpperCAmelCase)) : Union[str, Any] =extended_euclid(__lowerCAmelCase , __lowerCAmelCase ) if b < 0: UpperCAmelCase : List[str] =(b % n + n) % n return b def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> int: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : List[str] =invert_modulo(__lowerCAmelCase , __lowerCAmelCase ), invert_modulo(__lowerCAmelCase , __lowerCAmelCase ) UpperCAmelCase : Optional[int] =na * na UpperCAmelCase : Union[str, Any] =ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name='''chinese_remainder_theorem''', verbose=True) testmod(name='''chinese_remainder_theorem2''', verbose=True) testmod(name='''invert_modulo''', verbose=True) testmod(name='''extended_euclid''', verbose=True)
348
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) # TODO Update this __snake_case = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : Tuple = """esm""" def __init__( self , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=1026 , snake_case__=0.02 , snake_case__=1e-12 , snake_case__="absolute" , snake_case__=True , snake_case__=None , snake_case__=False , snake_case__=False , snake_case__=None , snake_case__=None , **snake_case__ , ) -> Union[str, Any]: '''simple docstring''' super().__init__(pad_token_id=snake_case__ , mask_token_id=snake_case__ , **snake_case__ ) UpperCAmelCase : List[str] =vocab_size UpperCAmelCase : str =hidden_size UpperCAmelCase : List[Any] =num_hidden_layers UpperCAmelCase : Optional[Any] =num_attention_heads UpperCAmelCase : str =intermediate_size UpperCAmelCase : Any =hidden_dropout_prob UpperCAmelCase : int =attention_probs_dropout_prob UpperCAmelCase : Dict =max_position_embeddings UpperCAmelCase : List[str] =initializer_range UpperCAmelCase : Union[str, Any] =layer_norm_eps UpperCAmelCase : Dict =position_embedding_type UpperCAmelCase : Optional[Any] =use_cache UpperCAmelCase : int =emb_layer_norm_before UpperCAmelCase : List[str] =token_dropout UpperCAmelCase : Optional[Any] =is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) UpperCAmelCase : Optional[Any] =EsmFoldConfig() elif isinstance(snake_case__ , snake_case__ ): UpperCAmelCase : Optional[int] =EsmFoldConfig(**snake_case__ ) UpperCAmelCase : Tuple =esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) UpperCAmelCase : Any =get_default_vocab_list() else: UpperCAmelCase : Tuple =vocab_list else: UpperCAmelCase : Optional[int] =None UpperCAmelCase : Union[str, Any] =None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , snake_case__ ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Union[str, Any] =super().to_dict() if isinstance(self.esmfold_config , snake_case__ ): UpperCAmelCase : str =self.esmfold_config.to_dict() return output @dataclass class __snake_case : __lowerCamelCase : str = None __lowerCamelCase : bool = True __lowerCamelCase : bool = False __lowerCamelCase : bool = False __lowerCamelCase : bool = False __lowerCamelCase : float = 0 __lowerCamelCase : bool = True __lowerCamelCase : bool = False __lowerCamelCase : int = 128 __lowerCamelCase : "TrunkConfig" = None def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' if self.trunk is None: UpperCAmelCase : str =TrunkConfig() elif isinstance(self.trunk , snake_case__ ): UpperCAmelCase : Optional[int] =TrunkConfig(**self.trunk ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Optional[Any] =asdict(self ) UpperCAmelCase : Any =self.trunk.to_dict() return output @dataclass class __snake_case : __lowerCamelCase : int = 48 __lowerCamelCase : int = 1024 __lowerCamelCase : int = 128 __lowerCamelCase : int = 32 __lowerCamelCase : int = 32 __lowerCamelCase : int = 32 __lowerCamelCase : float = 0 __lowerCamelCase : float = 0 __lowerCamelCase : bool = False __lowerCamelCase : int = 4 __lowerCamelCase : Optional[int] = 128 __lowerCamelCase : "StructureModuleConfig" = None def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' if self.structure_module is None: UpperCAmelCase : Any =StructureModuleConfig() elif isinstance(self.structure_module , snake_case__ ): UpperCAmelCase : str =StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f'''`max_recycles` should be positive, got {self.max_recycles}.''' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' f''' {self.sequence_state_dim} and {self.sequence_state_dim}.''' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' f''' {self.pairwise_state_dim} and {self.pairwise_state_dim}.''' ) UpperCAmelCase : Optional[int] =self.sequence_state_dim // self.sequence_head_width UpperCAmelCase : Any =self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' f''' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.''' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' f''' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.''' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f'''`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.''' ) if self.dropout >= 0.4: raise ValueError(f'''`dropout` should not be greater than 0.4, got {self.dropout}.''' ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Union[str, Any] =asdict(self ) UpperCAmelCase : Tuple =self.structure_module.to_dict() return output @dataclass class __snake_case : __lowerCamelCase : int = 384 __lowerCamelCase : int = 128 __lowerCamelCase : int = 16 __lowerCamelCase : int = 128 __lowerCamelCase : int = 12 __lowerCamelCase : int = 4 __lowerCamelCase : int = 8 __lowerCamelCase : float = 0.1 __lowerCamelCase : int = 8 __lowerCamelCase : int = 1 __lowerCamelCase : int = 2 __lowerCamelCase : int = 7 __lowerCamelCase : int = 10 __lowerCamelCase : float = 1E-8 __lowerCamelCase : float = 1E5 def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' return asdict(self ) def lowerCAmelCase_ ( )-> Tuple: '''simple docstring''' return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
348
1
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar __UpperCAmelCase = TypeVar("""T""") class SCREAMING_SNAKE_CASE ( Generic[T] ): """simple docstring""" def __init__( self : str , lowerCAmelCase : T ) -> List[Any]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = data __lowerCAmelCase : Node[T] | None = None def __str__( self : Optional[int] ) -> str: """simple docstring""" return f'''{self.data}''' class SCREAMING_SNAKE_CASE ( Generic[T] ): """simple docstring""" def __init__( self : List[str] ) -> None: """simple docstring""" __lowerCAmelCase : Node[T] | None = None def __iter__( self : Any ) -> Iterator[T]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = self.top while node: yield node.data __lowerCAmelCase : Tuple = node.next def __str__( self : int ) -> str: """simple docstring""" return "->".join([str(lowerCAmelCase ) for item in self] ) def __len__( self : List[str] ) -> int: """simple docstring""" return len(tuple(iter(self ) ) ) def SCREAMING_SNAKE_CASE ( self : Any ) -> bool: """simple docstring""" return self.top is None def SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase : T ) -> None: """simple docstring""" __lowerCAmelCase : Dict = Node(lowerCAmelCase ) if not self.is_empty(): __lowerCAmelCase : str = self.top __lowerCAmelCase : Any = node def SCREAMING_SNAKE_CASE ( self : List[str] ) -> T: """simple docstring""" if self.is_empty(): raise IndexError("""pop from empty stack""" ) assert isinstance(self.top , lowerCAmelCase ) __lowerCAmelCase : Union[str, Any] = self.top __lowerCAmelCase : Any = self.top.next return pop_node.data def SCREAMING_SNAKE_CASE ( self : str ) -> T: """simple docstring""" if self.is_empty(): raise IndexError("""peek from empty stack""" ) assert self.top is not None return self.top.data def SCREAMING_SNAKE_CASE ( self : List[str] ) -> None: """simple docstring""" __lowerCAmelCase : Any = None if __name__ == "__main__": from doctest import testmod testmod()
139
import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def snake_case_ (__A : Optional[int] , __A : Any ) -> Any: __lowerCAmelCase : Union[str, Any] = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'''encoder.deit.blocks.{i}.norm1.weight''', f'''encoder.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''encoder.deit.blocks.{i}.norm1.bias''', f'''encoder.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (f'''encoder.deit.blocks.{i}.attn.proj.weight''', f'''encoder.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (f'''encoder.deit.blocks.{i}.attn.proj.bias''', f'''encoder.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append( (f'''encoder.deit.blocks.{i}.norm2.weight''', f'''encoder.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''encoder.deit.blocks.{i}.norm2.bias''', f'''encoder.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append( (f'''encoder.deit.blocks.{i}.mlp.fc1.weight''', f'''encoder.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append( (f'''encoder.deit.blocks.{i}.mlp.fc1.bias''', f'''encoder.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append( (f'''encoder.deit.blocks.{i}.mlp.fc2.weight''', f'''encoder.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''encoder.deit.blocks.{i}.mlp.fc2.bias''', f'''encoder.encoder.layer.{i}.output.dense.bias''') ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("""encoder.deit.cls_token""", """encoder.embeddings.cls_token"""), ("""encoder.deit.pos_embed""", """encoder.embeddings.position_embeddings"""), ("""encoder.deit.patch_embed.proj.weight""", """encoder.embeddings.patch_embeddings.projection.weight"""), ("""encoder.deit.patch_embed.proj.bias""", """encoder.embeddings.patch_embeddings.projection.bias"""), ("""encoder.deit.norm.weight""", """encoder.layernorm.weight"""), ("""encoder.deit.norm.bias""", """encoder.layernorm.bias"""), ] ) return rename_keys def snake_case_ (__A : List[str] , __A : str ) -> Optional[Any]: for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) __lowerCAmelCase : Optional[Any] = state_dict.pop(f'''encoder.deit.blocks.{i}.attn.qkv.weight''' ) __lowerCAmelCase : Tuple = in_proj_weight[ : encoder_config.hidden_size, : ] __lowerCAmelCase : str = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] __lowerCAmelCase : str = in_proj_weight[ -encoder_config.hidden_size :, : ] def snake_case_ (__A : Union[str, Any] , __A : str , __A : Optional[Any] ) -> Optional[Any]: __lowerCAmelCase : Any = dct.pop(__A ) __lowerCAmelCase : str = val def snake_case_ (__A : int ) -> Tuple: if "handwritten" in checkpoint_url: __lowerCAmelCase : Tuple = """https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg""" # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: __lowerCAmelCase : Optional[Any] = """https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg""" __lowerCAmelCase : Dict = Image.open(requests.get(__A , stream=__A ).raw ).convert("""RGB""" ) return im @torch.no_grad() def snake_case_ (__A : Any , __A : Union[str, Any] ) -> Optional[int]: __lowerCAmelCase : List[Any] = ViTConfig(image_size=3_8_4 , qkv_bias=__A ) __lowerCAmelCase : List[Any] = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: __lowerCAmelCase : Union[str, Any] = 7_6_8 elif "large" in checkpoint_url: # use ViT-large encoder __lowerCAmelCase : Any = 1_0_2_4 __lowerCAmelCase : Any = 4_0_9_6 __lowerCAmelCase : Optional[int] = 2_4 __lowerCAmelCase : str = 1_6 __lowerCAmelCase : List[Any] = 1_0_2_4 else: raise ValueError("""Should either find 'base' or 'large' in checkpoint URL""" ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: __lowerCAmelCase : Tuple = False __lowerCAmelCase : Union[str, Any] = """relu""" __lowerCAmelCase : List[Any] = 1_0_2_4 __lowerCAmelCase : Any = True __lowerCAmelCase : List[Any] = False __lowerCAmelCase : Dict = False # load HuggingFace model __lowerCAmelCase : Dict = ViTModel(__A , add_pooling_layer=__A ) __lowerCAmelCase : Union[str, Any] = TrOCRForCausalLM(__A ) __lowerCAmelCase : Any = VisionEncoderDecoderModel(encoder=__A , decoder=__A ) model.eval() # load state_dict of original model, rename some keys __lowerCAmelCase : Union[str, Any] = torch.hub.load_state_dict_from_url(__A , map_location="""cpu""" , check_hash=__A )["""model"""] __lowerCAmelCase : Any = create_rename_keys(__A , __A ) for src, dest in rename_keys: rename_key(__A , __A , __A ) read_in_q_k_v(__A , __A ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): __lowerCAmelCase : Tuple = state_dict.pop(__A ) if key.startswith("""decoder""" ) and "output_projection" not in key: __lowerCAmelCase : str = val else: __lowerCAmelCase : Tuple = val # load state dict model.load_state_dict(__A ) # Check outputs on an image __lowerCAmelCase : List[Any] = ViTImageProcessor(size=encoder_config.image_size ) __lowerCAmelCase : List[str] = RobertaTokenizer.from_pretrained("""roberta-large""" ) __lowerCAmelCase : List[Any] = TrOCRProcessor(__A , __A ) __lowerCAmelCase : List[str] = processor(images=prepare_img(__A ) , return_tensors="""pt""" ).pixel_values # verify logits __lowerCAmelCase : List[str] = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) __lowerCAmelCase : List[str] = model(pixel_values=__A , decoder_input_ids=__A ) __lowerCAmelCase : Optional[Any] = outputs.logits __lowerCAmelCase : Union[str, Any] = torch.Size([1, 1, 5_0_2_6_5] ) if "trocr-base-handwritten" in checkpoint_url: __lowerCAmelCase : Dict = torch.tensor( [-1.4502, -4.6683, -0.5347, -2.9291, 9.1435, -3.0571, 8.9764, 1.7560, 8.7358, -1.5311] ) elif "trocr-large-handwritten" in checkpoint_url: __lowerCAmelCase : List[Any] = torch.tensor( [-2.6437, -1.3129, -2.2596, -5.3455, 6.3539, 1.7604, 5.4991, 1.4702, 5.6113, 2.0170] ) elif "trocr-base-printed" in checkpoint_url: __lowerCAmelCase : Tuple = torch.tensor( [-5.6816, -5.8388, 1.1398, -6.9034, 6.8505, -2.4393, 1.2284, -1.0232, -1.9661, -3.9210] ) elif "trocr-large-printed" in checkpoint_url: __lowerCAmelCase : List[Any] = torch.tensor( [-6.0162, -7.0959, 4.4155, -5.1063, 7.0468, -3.1631, 2.6466, -0.3081, -0.8106, -1.7535] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :1_0] , __A , atol=1e-3 ), "First elements of logits not as expected" Path(__A ).mkdir(exist_ok=__A ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__A ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(__A ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt""", type=str, help="""URL to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) __UpperCAmelCase = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
139
1
"""simple docstring""" def UpperCamelCase ( ) ->list[list[int]]: """simple docstring""" return [list(range(1_000 - i , -1_000 - i , -1 ) ) for i in range(1_000 )] UpperCamelCase_ = generate_large_matrix() UpperCamelCase_ = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def UpperCamelCase ( UpperCAmelCase ) ->None: """simple docstring""" assert all(row == sorted(UpperCAmelCase , reverse=UpperCAmelCase ) for row in grid ) assert all(list(UpperCAmelCase ) == sorted(UpperCAmelCase , reverse=UpperCAmelCase ) for col in zip(*UpperCAmelCase ) ) def UpperCamelCase ( UpperCAmelCase ) ->int: """simple docstring""" a_ = 0 a_ = len(UpperCAmelCase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: a_ = (left + right) // 2 a_ = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: a_ = mid + 1 else: a_ = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(UpperCAmelCase ) def UpperCamelCase ( UpperCAmelCase ) ->int: """simple docstring""" a_ = 0 a_ = len(grid[0] ) for i in range(len(UpperCAmelCase ) ): a_ = find_negative_index(grid[i][:bound] ) total += bound return (len(UpperCAmelCase ) * len(grid[0] )) - total def UpperCamelCase ( UpperCAmelCase ) ->int: """simple docstring""" return len([number for row in grid for number in row if number < 0] ) def UpperCamelCase ( UpperCAmelCase ) ->int: """simple docstring""" a_ = 0 for row in grid: for i, number in enumerate(UpperCAmelCase ): if number < 0: total += len(UpperCAmelCase ) - i break return total def UpperCamelCase ( ) ->None: """simple docstring""" from timeit import timeit print("Running benchmarks" ) a_ = ( "from __main__ import count_negatives_binary_search, " "count_negatives_brute_force, count_negatives_brute_force_with_break, grid" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): a_ = timeit(F'''{func}(grid=grid)''' , setup=UpperCAmelCase , number=500 ) print(F'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
243
"""simple docstring""" from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def UpperCamelCase ( UpperCAmelCase ) ->List[Any]: """simple docstring""" def is_in_circle(UpperCAmelCase , UpperCAmelCase ) -> bool: a_ = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle a_ = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(UpperCAmelCase ) ) # The ratio of the area for circle to square is pi/4. a_ = proportion * 4 print(F'''The estimated value of pi is {pi_estimate}''' ) print(F'''The numpy value of pi is {pi}''' ) print(F'''The total error is {abs(pi - pi_estimate )}''' ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 0.0 , UpperCAmelCase = 1.0 , ) ->float: """simple docstring""" return mean( function_to_integrate(uniform(UpperCAmelCase , UpperCAmelCase ) ) for _ in range(UpperCAmelCase ) ) * (max_value - min_value) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase = 0.0 , UpperCAmelCase = 1.0 ) ->None: """simple docstring""" def identity_function(UpperCAmelCase ) -> float: return x a_ = area_under_curve_estimator( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) a_ = (max_value * max_value - min_value * min_value) / 2 print("******************" ) print(F'''Estimating area under y=x where x varies from {min_value} to {max_value}''' ) print(F'''Estimated value is {estimated_value}''' ) print(F'''Expected value is {expected_value}''' ) print(F'''Total error is {abs(estimated_value - expected_value )}''' ) print("******************" ) def UpperCamelCase ( UpperCAmelCase ) ->None: """simple docstring""" def function_to_integrate(UpperCAmelCase ) -> float: return sqrt(4.0 - x * x ) a_ = area_under_curve_estimator( UpperCAmelCase , UpperCAmelCase , 0.0 , 2.0 ) print("******************" ) print("Estimating pi using area_under_curve_estimator" ) print(F'''Estimated value is {estimated_value}''' ) print(F'''Expected value is {pi}''' ) print(F'''Total error is {abs(estimated_value - pi )}''' ) print("******************" ) if __name__ == "__main__": import doctest doctest.testmod()
243
1
"""simple docstring""" def UpperCAmelCase__ (snake_case__ : Optional[Any] ): """simple docstring""" _snake_case : Optional[Any] = [0] * len(snake_case__ ) _snake_case : List[str] = [] _snake_case : Tuple = [1] * len(snake_case__ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(snake_case__ ) ): if indegree[i] == 0: queue.append(snake_case__ ) while queue: _snake_case : Union[str, Any] = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: _snake_case : Dict = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(snake_case__ ) print(max(snake_case__ ) ) # Adjacency list of Graph A_ = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
132
"""simple docstring""" from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
132
1
"""simple docstring""" import math def snake_case ( A__ ): return math.sqrt(A__ ) * math.sqrt(A__ ) == num def snake_case ( A__ ): UpperCAmelCase_ : str = 0 UpperCAmelCase_ : List[str] = n while left <= right: UpperCAmelCase_ : List[Any] = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: UpperCAmelCase_ : Optional[Any] = mid - 1 else: UpperCAmelCase_ : Tuple = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
268
"""simple docstring""" import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( '''The `inpainting.py` script is outdated. Please use directly `from diffusers import''' ''' StableDiffusionInpaintPipeline` instead.''' )
268
1
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def lowercase__ ( ): '''simple docstring''' UpperCAmelCase_ : Tuple = ArgumentParser( description=( 'PyTorch TPU distributed training launch ' 'helper utility that will spawn up ' 'multiple distributed processes' ) ) # Optional arguments for the launch helper parser.add_argument('--num_cores' , type=__snake_case , default=1 , help='Number of TPU cores to use (1 or 8).' ) # positional parser.add_argument( 'training_script' , type=__snake_case , help=( 'The full path to the single TPU training ' 'program/script to be launched in parallel, ' 'followed by all the arguments for the ' 'training script' ) , ) # rest from the training program parser.add_argument('training_script_args' , nargs=__snake_case ) return parser.parse_args() def lowercase__ ( ): '''simple docstring''' UpperCAmelCase_ : Dict = parse_args() # Import training_script as a module. UpperCAmelCase_ : Optional[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) UpperCAmelCase_ : Union[str, Any] = script_fpath.stem UpperCAmelCase_ : Optional[Any] = importlib.import_module(__snake_case ) # Patch sys.argv UpperCAmelCase_ : List[str] = [args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
145
import os import re import shutil import sys import tempfile import unittest import black __UpperCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. __UpperCAmelCase = ' \"""\n Output class for the scheduler\'s step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"""\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n' class lowerCamelCase (unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ) -> Tuple: UpperCAmelCase_ : str = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , 'schedulers/' ) ) UpperCAmelCase_ : int = self.diffusers_dir shutil.copy( os.path.join(_UpperCamelCase , 'src/diffusers/schedulers/scheduling_ddpm.py' ) , os.path.join(self.diffusers_dir , 'schedulers/scheduling_ddpm.py' ) , ) def __UpperCAmelCase ( self ) -> Optional[int]: UpperCAmelCase_ : str = 'src/diffusers' shutil.rmtree(self.diffusers_dir ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None ) -> Optional[Any]: UpperCAmelCase_ : Dict = comment + f"\nclass {class_name}(nn.Module):\n" + class_code if overwrite_result is not None: UpperCAmelCase_ : Optional[Any] = comment + f"\nclass {class_name}(nn.Module):\n" + overwrite_result UpperCAmelCase_ : Any = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9 ) UpperCAmelCase_ : Optional[Any] = black.format_str(_UpperCamelCase , mode=_UpperCamelCase ) UpperCAmelCase_ : Any = os.path.join(self.diffusers_dir , 'new_code.py' ) with open(_UpperCamelCase , 'w' , newline='\n' ) as f: f.write(_UpperCamelCase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_UpperCamelCase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_UpperCamelCase ) with open(_UpperCamelCase , 'r' ) as f: self.assertTrue(f.read() , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> List[str]: UpperCAmelCase_ : List[Any] = check_copies.find_code_in_diffusers('schedulers.scheduling_ddpm.DDPMSchedulerOutput' ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> str: # Base copy consistency self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , _UpperCamelCase , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , re.sub('DDPM' , 'Test' , _UpperCamelCase ) , ) # Copy consistency with a really long name UpperCAmelCase_ : Optional[int] = 'TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( f"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}" , f"{long_class_name}SchedulerOutput" , re.sub('Bert' , _UpperCamelCase , _UpperCamelCase ) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , _UpperCamelCase , overwrite_result=re.sub('DDPM' , 'Test' , _UpperCamelCase ) , )
145
1
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets UpperCAmelCase_ : int = '\\n@inproceedings{lin-2004-rouge,\n title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",\n author = "Lin, Chin-Yew",\n booktitle = "Text Summarization Branches Out",\n month = jul,\n year = "2004",\n address = "Barcelona, Spain",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W04-1013",\n pages = "74--81",\n}\n' UpperCAmelCase_ : Any = '\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n' UpperCAmelCase_ : List[Any] = '\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,\n `"rougeL"`: Longest common subsequence based scoring.\n `"rougeLSum"`: rougeLsum splits text using `"\n"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric(\'rouge\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\']\n >>> print(results["rouge1"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results["rouge1"].mid.fmeasure)\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): def SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[ 'https://en.wikipedia.org/wiki/ROUGE_(metric)', 'https://github.com/google-research/google-research/tree/master/rouge', ] , ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : Tuple=False ) -> Optional[Any]: if rouge_types is None: a_ : Dict = ['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] a_ : Union[str, Any] = rouge_scorer.RougeScorer(rouge_types=SCREAMING_SNAKE_CASE__ , use_stemmer=SCREAMING_SNAKE_CASE__ ) if use_aggregator: a_ : Tuple = scoring.BootstrapAggregator() else: a_ : Union[str, Any] = [] for ref, pred in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): a_ : Dict = scorer.score(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if use_aggregator: aggregator.add_scores(SCREAMING_SNAKE_CASE__ ) else: scores.append(SCREAMING_SNAKE_CASE__ ) if use_aggregator: a_ : Tuple = aggregator.aggregate() else: a_ : Optional[int] = {} for key in scores[0]: a_ : Any = [score[key] for score in scores] return result
32
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A = { '''configuration_luke''': ['''LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LukeConfig'''], '''tokenization_luke''': ['''LukeTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ '''LUKE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LukeForEntityClassification''', '''LukeForEntityPairClassification''', '''LukeForEntitySpanClassification''', '''LukeForMultipleChoice''', '''LukeForQuestionAnswering''', '''LukeForSequenceClassification''', '''LukeForTokenClassification''', '''LukeForMaskedLM''', '''LukeModel''', '''LukePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
160
0
from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer _A = logging.get_logger(__name__) _A = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } _A = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } _A = { '''facebook/blenderbot_small-90M''': 512, } class A ( __UpperCAmelCase ): __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case = BlenderbotSmallTokenizer def __init__( self, UpperCamelCase__=None, UpperCamelCase__=None, UpperCamelCase__="<|endoftext|>", UpperCamelCase__="<|endoftext|>", UpperCamelCase__="<|endoftext|>", UpperCamelCase__=False, UpperCamelCase__=True, **UpperCamelCase__, ): """simple docstring""" super().__init__( ByteLevelBPETokenizer( vocab=UpperCamelCase__, merges=UpperCamelCase__, add_prefix_space=UpperCamelCase__, trim_offsets=UpperCamelCase__, ), bos_token=UpperCamelCase__, eos_token=UpperCamelCase__, unk_token=UpperCamelCase__, **UpperCamelCase__, ) lowerCAmelCase_ = add_prefix_space def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__=None ): """simple docstring""" lowerCAmelCase_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ = None ): """simple docstring""" lowerCAmelCase_ = [self.sep_token_id] lowerCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
167
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 _A = get_tests_dir('''fixtures''') class A ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = mock.Mock() lowerCAmelCase_ = 500 lowerCAmelCase_ = {} lowerCAmelCase_ = HTTPError lowerCAmelCase_ = {} # Download this model to make sure it's in the cache. lowerCAmelCase_ = ViTImageProcessor.from_pretrained('''hf-internal-testing/tiny-random-vit''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''', return_value=UpperCamelCase__ ) as mock_head: lowerCAmelCase_ = ViTImageProcessor.from_pretrained('''hf-internal-testing/tiny-random-vit''' ) # This check we did call the fake head request mock_head.assert_called() def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = ViTImageProcessor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json''' ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" with self.assertRaises(UpperCamelCase__ ): # config is in subfolder, the following should not work without specifying the subfolder lowerCAmelCase_ = AutoImageProcessor.from_pretrained('''hf-internal-testing/stable-diffusion-all-variants''' ) lowerCAmelCase_ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/stable-diffusion-all-variants''', subfolder='''feature_extractor''' ) self.assertIsNotNone(UpperCamelCase__ ) @is_staging_test class A ( unittest.TestCase ): @classmethod def SCREAMING_SNAKE_CASE__ ( cls ): """simple docstring""" lowerCAmelCase_ = TOKEN HfFolder.save_token(UpperCamelCase__ ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls ): """simple docstring""" try: delete_repo(token=cls._token, repo_id='''test-image-processor''' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='''valid_org/test-image-processor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='''test-dynamic-image-processor''' ) except HTTPError: pass def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = ViTImageProcessor.from_pretrained(UpperCamelCase__ ) image_processor.push_to_hub('''test-image-processor''', use_auth_token=self._token ) lowerCAmelCase_ = ViTImageProcessor.from_pretrained(f"{USER}/test-image-processor" ) for k, v in image_processor.__dict__.items(): self.assertEqual(UpperCamelCase__, getattr(UpperCamelCase__, UpperCamelCase__ ) ) # Reset repo delete_repo(token=self._token, repo_id='''test-image-processor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( UpperCamelCase__, repo_id='''test-image-processor''', push_to_hub=UpperCamelCase__, use_auth_token=self._token ) lowerCAmelCase_ = ViTImageProcessor.from_pretrained(f"{USER}/test-image-processor" ) for k, v in image_processor.__dict__.items(): self.assertEqual(UpperCamelCase__, getattr(UpperCamelCase__, UpperCamelCase__ ) ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = ViTImageProcessor.from_pretrained(UpperCamelCase__ ) image_processor.push_to_hub('''valid_org/test-image-processor''', use_auth_token=self._token ) lowerCAmelCase_ = ViTImageProcessor.from_pretrained('''valid_org/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(UpperCamelCase__, getattr(UpperCamelCase__, UpperCamelCase__ ) ) # Reset repo delete_repo(token=self._token, repo_id='''valid_org/test-image-processor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( UpperCamelCase__, repo_id='''valid_org/test-image-processor-org''', push_to_hub=UpperCamelCase__, use_auth_token=self._token ) lowerCAmelCase_ = ViTImageProcessor.from_pretrained('''valid_org/test-image-processor-org''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(UpperCamelCase__, getattr(UpperCamelCase__, UpperCamelCase__ ) ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" CustomImageProcessor.register_for_auto_class() lowerCAmelCase_ = CustomImageProcessor.from_pretrained(UpperCamelCase__ ) image_processor.push_to_hub('''test-dynamic-image-processor''', use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map, {'''AutoImageProcessor''': '''custom_image_processing.CustomImageProcessor'''}, ) lowerCAmelCase_ = AutoImageProcessor.from_pretrained( f"{USER}/test-dynamic-image-processor", trust_remote_code=UpperCamelCase__ ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__, '''CustomImageProcessor''' )
167
1
'''simple docstring''' # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position A_ = "2.13.1" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("3.7"): raise ImportWarning( "To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition." ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( "To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n" "If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`." ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip A_ = concatenate_datasets A_ = DownloadConfig A_ = DownloadManager A_ = DownloadMode A_ = DownloadConfig A_ = DownloadMode A_ = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
139
'''simple docstring''' from __future__ import annotations import numpy as np def A_ ( snake_case ): return np.maximum(0 , snake_case ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
139
1
"""simple docstring""" from collections.abc import Generator from math import sin def _snake_case ( _snake_case : bytes ) -> bytes: '''simple docstring''' if len(_snake_case ) != 32: raise ValueError('Input must be of length 32' ) _A = B'' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def _snake_case ( _snake_case : int ) -> bytes: '''simple docstring''' if i < 0: raise ValueError('Input must be non-negative' ) _A = format(_snake_case , '08x' )[-8:] _A = B'' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' ) return little_endian_hex def _snake_case ( _snake_case : bytes ) -> bytes: '''simple docstring''' _A = B'' for char in message: bit_string += format(_snake_case , '08b' ).encode('utf-8' ) _A = format(len(_snake_case ) , '064b' ).encode('utf-8' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(_snake_case ) % 5_12 != 4_48: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def _snake_case ( _snake_case : bytes ) -> Generator[list[int], None, None]: '''simple docstring''' if len(_snake_case ) % 5_12 != 0: raise ValueError('Input must have length that\'s a multiple of 512' ) for pos in range(0 , len(_snake_case ) , 5_12 ): _A = bit_string[pos : pos + 5_12] _A = [] for i in range(0 , 5_12 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def _snake_case ( _snake_case : int ) -> int: '''simple docstring''' if i < 0: raise ValueError('Input must be non-negative' ) _A = format(_snake_case , '032b' ) _A = '' for c in i_str: new_str += "1" if c == "0" else "0" return int(_snake_case , 2 ) def _snake_case ( _snake_case : int , _snake_case : int ) -> int: '''simple docstring''' return (a + b) % 2**32 def _snake_case ( _snake_case : int , _snake_case : int ) -> int: '''simple docstring''' if i < 0: raise ValueError('Input must be non-negative' ) if shift < 0: raise ValueError('Shift must be non-negative' ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def _snake_case ( _snake_case : bytes ) -> bytes: '''simple docstring''' _A = preprocess(_snake_case ) _A = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states _A = 0X6745_2301 _A = 0Xefcd_ab89 _A = 0X98ba_dcfe _A = 0X1032_5476 _A = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(_snake_case ): _A = aa _A = ba _A = ca _A = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f _A = d ^ (b & (c ^ d)) _A = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f _A = c ^ (d & (b ^ c)) _A = (5 * i + 1) % 16 elif i <= 47: _A = b ^ c ^ d _A = (3 * i + 5) % 16 else: _A = c ^ (b | not_aa(_snake_case )) _A = (7 * i) % 16 _A = (f + a + added_consts[i] + block_words[g]) % 2**32 _A = d _A = c _A = b _A = sum_aa(_snake_case , left_rotate_aa(_snake_case , shift_amounts[i] ) ) # Add hashed chunk to running total _A = sum_aa(_snake_case , _snake_case ) _A = sum_aa(_snake_case , _snake_case ) _A = sum_aa(_snake_case , _snake_case ) _A = sum_aa(_snake_case , _snake_case ) _A = reformat_hex(_snake_case ) + reformat_hex(_snake_case ) + reformat_hex(_snake_case ) + reformat_hex(_snake_case ) return digest if __name__ == "__main__": import doctest doctest.testmod()
271
"""simple docstring""" import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger a = get_logger(__name__) class lowercase_ ( enum.Enum ): '''simple docstring''' UpperCAmelCase : Optional[int] = '''all_checks''' UpperCAmelCase : List[Any] = '''basic_checks''' UpperCAmelCase : Any = '''no_checks''' class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def _snake_case ( _snake_case : Optional[dict] , _snake_case : dict , _snake_case : Dict=None ) -> Dict: '''simple docstring''' if expected_checksums is None: logger.info('Unable to verify checksums.' ) return if len(set(_snake_case ) - set(_snake_case ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(_snake_case ) - set(_snake_case ) ) ) if len(set(_snake_case ) - set(_snake_case ) ) > 0: raise UnexpectedDownloadedFile(str(set(_snake_case ) - set(_snake_case ) ) ) _A = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] _A = ' for ' + verification_name if verification_name is not None else '' if len(_snake_case ) > 0: raise NonMatchingChecksumError( F'''Checksums didn\'t match{for_verification_name}:\n''' F'''{bad_urls}\n''' 'Set `verification_mode=\'no_checks\'` to skip checksums verification and ignore this error' ) logger.info('All the checksums matched successfully' + for_verification_name ) class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def _snake_case ( _snake_case : Optional[dict] , _snake_case : dict ) -> List[str]: '''simple docstring''' if expected_splits is None: logger.info('Unable to verify splits sizes.' ) return if len(set(_snake_case ) - set(_snake_case ) ) > 0: raise ExpectedMoreSplits(str(set(_snake_case ) - set(_snake_case ) ) ) if len(set(_snake_case ) - set(_snake_case ) ) > 0: raise UnexpectedSplits(str(set(_snake_case ) - set(_snake_case ) ) ) _A = [ {'expected': expected_splits[name], 'recorded': recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(_snake_case ) > 0: raise NonMatchingSplitsSizesError(str(_snake_case ) ) logger.info('All the splits matched successfully.' ) def _snake_case ( _snake_case : str , _snake_case : bool = True ) -> dict: '''simple docstring''' if record_checksum: _A = shaaaa() with open(_snake_case , 'rb' ) as f: for chunk in iter(lambda: f.read(1 << 20 ) , B'' ): m.update(_snake_case ) _A = m.hexdigest() else: _A = None return {"num_bytes": os.path.getsize(_snake_case ), "checksum": checksum} def _snake_case ( _snake_case : int ) -> int: '''simple docstring''' if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
271
1
"""simple docstring""" from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class __a (UpperCamelCase_): '''simple docstring''' _SCREAMING_SNAKE_CASE :torch.FloatTensor class __a (UpperCamelCase_ , UpperCamelCase_): '''simple docstring''' @register_to_config def __init__( self , _a = 32 , _a = 64 , _a = 20 , _a = 768 , _a=77 , _a=4 , _a = 0.0 , _a = "silu" , _a = None , _a = None , _a = "linear" , _a = "prd" , _a = None , _a = None , _a = None , ) -> Optional[int]: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ : Dict = num_attention_heads SCREAMING_SNAKE_CASE__ : List[str] = attention_head_dim SCREAMING_SNAKE_CASE__ : str = num_attention_heads * attention_head_dim SCREAMING_SNAKE_CASE__ : List[str] = additional_embeddings SCREAMING_SNAKE_CASE__ : List[str] = time_embed_dim or inner_dim SCREAMING_SNAKE_CASE__ : int = embedding_proj_dim or embedding_dim SCREAMING_SNAKE_CASE__ : Any = clip_embed_dim or embedding_dim SCREAMING_SNAKE_CASE__ : Tuple = Timesteps(_a , _a , 0 ) SCREAMING_SNAKE_CASE__ : Optional[int] = TimestepEmbedding(_a , _a , out_dim=_a , act_fn=_a ) SCREAMING_SNAKE_CASE__ : Dict = nn.Linear(_a , _a ) if embedding_proj_norm_type is None: SCREAMING_SNAKE_CASE__ : Tuple = None elif embedding_proj_norm_type == "layer": SCREAMING_SNAKE_CASE__ : Optional[Any] = nn.LayerNorm(_a ) else: raise ValueError(f'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' ) SCREAMING_SNAKE_CASE__ : str = nn.Linear(_a , _a ) if encoder_hid_proj_type is None: SCREAMING_SNAKE_CASE__ : Dict = None elif encoder_hid_proj_type == "linear": SCREAMING_SNAKE_CASE__ : int = nn.Linear(_a , _a ) else: raise ValueError(f'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' ) SCREAMING_SNAKE_CASE__ : Any = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , _a ) ) if added_emb_type == "prd": SCREAMING_SNAKE_CASE__ : str = nn.Parameter(torch.zeros(1 , 1 , _a ) ) elif added_emb_type is None: SCREAMING_SNAKE_CASE__ : int = None else: raise ValueError( f'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' ) SCREAMING_SNAKE_CASE__ : Dict = nn.ModuleList( [ BasicTransformerBlock( _a , _a , _a , dropout=_a , activation_fn="""gelu""" , attention_bias=_a , ) for d in range(_a ) ] ) if norm_in_type == "layer": SCREAMING_SNAKE_CASE__ : List[str] = nn.LayerNorm(_a ) elif norm_in_type is None: SCREAMING_SNAKE_CASE__ : Optional[Any] = None else: raise ValueError(f'''Unsupported norm_in_type: {norm_in_type}.''' ) SCREAMING_SNAKE_CASE__ : Dict = nn.LayerNorm(_a ) SCREAMING_SNAKE_CASE__ : List[Any] = nn.Linear(_a , _a ) SCREAMING_SNAKE_CASE__ : Dict = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10_000.0 ) causal_attention_mask.triu_(1 ) SCREAMING_SNAKE_CASE__ : Optional[Any] = causal_attention_mask[None, ...] self.register_buffer("""causal_attention_mask""" , _a , persistent=_a ) SCREAMING_SNAKE_CASE__ : Tuple = nn.Parameter(torch.zeros(1 , _a ) ) SCREAMING_SNAKE_CASE__ : Tuple = nn.Parameter(torch.zeros(1 , _a ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def _a ( self ) -> Dict[str, AttentionProcessor]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = {} def fn_recursive_add_processors(_a , _a , _a ): if hasattr(_a , """set_processor""" ): SCREAMING_SNAKE_CASE__ : Any = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f'''{name}.{sub_name}''' , _a , _a ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_a , _a , _a ) return processors def _a ( self , _a ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = len(self.attn_processors.keys() ) if isinstance(_a , _a ) and len(_a ) != count: raise ValueError( f'''A dict of processors was passed, but the number of processors {len(_a )} does not match the''' f''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(_a , _a , _a ): if hasattr(_a , """set_processor""" ): if not isinstance(_a , _a ): module.set_processor(_a ) else: module.set_processor(processor.pop(f'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f'''{name}.{sub_name}''' , _a , _a ) for name, module in self.named_children(): fn_recursive_attn_processor(_a , _a , _a ) def _a ( self ) -> Dict: """simple docstring""" self.set_attn_processor(AttnProcessor() ) def _a ( self , _a , _a , _a , _a = None , _a = None , _a = True , ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = hidden_states.shape[0] SCREAMING_SNAKE_CASE__ : List[Any] = timestep if not torch.is_tensor(_a ): SCREAMING_SNAKE_CASE__ : Dict = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(_a ) and len(timesteps.shape ) == 0: SCREAMING_SNAKE_CASE__ : int = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML SCREAMING_SNAKE_CASE__ : Dict = timesteps * torch.ones(_a , dtype=timesteps.dtype , device=timesteps.device ) SCREAMING_SNAKE_CASE__ : List[Any] = self.time_proj(_a ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. SCREAMING_SNAKE_CASE__ : Dict = timesteps_projected.to(dtype=self.dtype ) SCREAMING_SNAKE_CASE__ : List[Any] = self.time_embedding(_a ) if self.embedding_proj_norm is not None: SCREAMING_SNAKE_CASE__ : Tuple = self.embedding_proj_norm(_a ) SCREAMING_SNAKE_CASE__ : List[str] = self.embedding_proj(_a ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: SCREAMING_SNAKE_CASE__ : int = self.encoder_hidden_states_proj(_a ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError("""`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set""" ) SCREAMING_SNAKE_CASE__ : Optional[int] = self.proj_in(_a ) SCREAMING_SNAKE_CASE__ : Tuple = self.positional_embedding.to(hidden_states.dtype ) SCREAMING_SNAKE_CASE__ : Any = [] SCREAMING_SNAKE_CASE__ : Optional[Any] = 0 if encoder_hidden_states is not None: additional_embeds.append(_a ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: SCREAMING_SNAKE_CASE__ : Optional[Any] = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: SCREAMING_SNAKE_CASE__ : str = hidden_states[:, None, :] SCREAMING_SNAKE_CASE__ : Optional[int] = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: SCREAMING_SNAKE_CASE__ : Tuple = self.prd_embedding.to(hidden_states.dtype ).expand(_a , -1 , -1 ) additional_embeds.append(_a ) SCREAMING_SNAKE_CASE__ : Dict = torch.cat( _a , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens SCREAMING_SNAKE_CASE__ : Optional[int] = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: SCREAMING_SNAKE_CASE__ : List[str] = F.pad( _a , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) SCREAMING_SNAKE_CASE__ : str = hidden_states + positional_embeddings if attention_mask is not None: SCREAMING_SNAKE_CASE__ : List[str] = (1 - attention_mask.to(hidden_states.dtype )) * -10_000.0 SCREAMING_SNAKE_CASE__ : Dict = F.pad(_a , (0, self.additional_embeddings) , value=0.0 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) SCREAMING_SNAKE_CASE__ : Dict = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: SCREAMING_SNAKE_CASE__ : int = self.norm_in(_a ) for block in self.transformer_blocks: SCREAMING_SNAKE_CASE__ : Optional[int] = block(_a , attention_mask=_a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self.norm_out(_a ) if self.prd_embedding is not None: SCREAMING_SNAKE_CASE__ : Optional[int] = hidden_states[:, -1] else: SCREAMING_SNAKE_CASE__ : Optional[int] = hidden_states[:, additional_embeddings_len:] SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.proj_to_clip_embeddings(_a ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=_a ) def _a ( self , _a ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
132
"""simple docstring""" import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging a :Tuple = ( "https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py" ) a :int = logging.get_logger(__name__) # pylint: disable=invalid-name def _lowercase ( ) -> Dict: SCREAMING_SNAKE_CASE__ : Any = """https://pypi.org/pypi/diffusers/json""" SCREAMING_SNAKE_CASE__ : str = json.loads(request.urlopen(__lowerCAmelCase ).read() )["""releases"""].keys() return sorted(__lowerCAmelCase , key=lambda __lowerCAmelCase : version.Version(__lowerCAmelCase ) ) def _lowercase ( ) -> Optional[Any]: # This function has already been executed if HF_MODULES_CACHE already is in the Python path. if HF_MODULES_CACHE in sys.path: return sys.path.append(__lowerCAmelCase ) os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : str = Path(__lowerCAmelCase ) / """__init__.py""" if not init_path.exists(): init_path.touch() def _lowercase ( __lowerCAmelCase ) -> Optional[int]: init_hf_modules() SCREAMING_SNAKE_CASE__ : List[Any] = Path(__lowerCAmelCase ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = dynamic_module_path / """__init__.py""" if not init_path.exists(): init_path.touch() def _lowercase ( __lowerCAmelCase ) -> Tuple: with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" ) as f: SCREAMING_SNAKE_CASE__ : int = f.read() # Imports of the form `import .xxx` SCREAMING_SNAKE_CASE__ : Optional[Any] = re.findall("""^\s*import\s+\.(\S+)\s*$""" , __lowerCAmelCase , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall("""^\s*from\s+\.(\S+)\s+import""" , __lowerCAmelCase , flags=re.MULTILINE ) # Unique-ify return list(set(__lowerCAmelCase ) ) def _lowercase ( __lowerCAmelCase ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : Optional[int] = False SCREAMING_SNAKE_CASE__ : List[str] = [module_file] SCREAMING_SNAKE_CASE__ : str = [] # Let's recurse through all relative imports while not no_change: SCREAMING_SNAKE_CASE__ : Dict = [] for f in files_to_check: new_imports.extend(get_relative_imports(__lowerCAmelCase ) ) SCREAMING_SNAKE_CASE__ : int = Path(__lowerCAmelCase ).parent SCREAMING_SNAKE_CASE__ : Dict = [str(module_path / m ) for m in new_imports] SCREAMING_SNAKE_CASE__ : Optional[Any] = [f for f in new_import_files if f not in all_relative_imports] SCREAMING_SNAKE_CASE__ : Any = [F'''{f}.py''' for f in new_import_files] SCREAMING_SNAKE_CASE__ : Union[str, Any] = len(__lowerCAmelCase ) == 0 all_relative_imports.extend(__lowerCAmelCase ) return all_relative_imports def _lowercase ( __lowerCAmelCase ) -> Any: with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" ) as f: SCREAMING_SNAKE_CASE__ : Dict = f.read() # Imports of the form `import xxx` SCREAMING_SNAKE_CASE__ : Optional[Any] = re.findall("""^\s*import\s+(\S+)\s*$""" , __lowerCAmelCase , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall("""^\s*from\s+(\S+)\s+import""" , __lowerCAmelCase , flags=re.MULTILINE ) # Only keep the top-level module SCREAMING_SNAKE_CASE__ : str = [imp.split(""".""" )[0] for imp in imports if not imp.startswith(""".""" )] # Unique-ify and test we got them all SCREAMING_SNAKE_CASE__ : Tuple = list(set(__lowerCAmelCase ) ) SCREAMING_SNAKE_CASE__ : List[str] = [] for imp in imports: try: importlib.import_module(__lowerCAmelCase ) except ImportError: missing_packages.append(__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: raise ImportError( """This modeling file requires the following packages that were not found in your environment: """ F'''{', '.join(__lowerCAmelCase )}. Run `pip install {' '.join(__lowerCAmelCase )}`''' ) return get_relative_imports(__lowerCAmelCase ) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> Any: SCREAMING_SNAKE_CASE__ : str = module_path.replace(os.path.sep , """.""" ) SCREAMING_SNAKE_CASE__ : Any = importlib.import_module(__lowerCAmelCase ) if class_name is None: return find_pipeline_class(__lowerCAmelCase ) return getattr(__lowerCAmelCase , __lowerCAmelCase ) def _lowercase ( __lowerCAmelCase ) -> Optional[int]: from ..pipelines import DiffusionPipeline SCREAMING_SNAKE_CASE__ : Tuple = dict(inspect.getmembers(__lowerCAmelCase , inspect.isclass ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , __lowerCAmelCase ) and cls.__module__.split(""".""" )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( F'''Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:''' F''' {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in''' F''' {loaded_module}.''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] = cls return pipeline_class def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = False , ) -> Dict: SCREAMING_SNAKE_CASE__ : str = str(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) if os.path.isfile(__lowerCAmelCase ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = module_file_or_url SCREAMING_SNAKE_CASE__ : List[str] = """local""" elif pretrained_model_name_or_path.count("""/""" ) == 0: SCREAMING_SNAKE_CASE__ : Optional[int] = get_diffusers_versions() # cut ".dev0" SCREAMING_SNAKE_CASE__ : List[Any] = """v""" + """.""".join(__version__.split(""".""" )[:3] ) # retrieve github version that matches if revision is None: SCREAMING_SNAKE_CASE__ : Any = latest_version if latest_version[1:] in available_versions else """main""" logger.info(F'''Defaulting to latest_version: {revision}.''' ) elif revision in available_versions: SCREAMING_SNAKE_CASE__ : List[str] = F'''v{revision}''' elif revision == "main": SCREAMING_SNAKE_CASE__ : int = revision else: raise ValueError( F'''`custom_revision`: {revision} does not exist. Please make sure to choose one of''' F''' {', '.join(available_versions + ['main'] )}.''' ) # community pipeline on GitHub SCREAMING_SNAKE_CASE__ : int = COMMUNITY_PIPELINES_URL.format(revision=__lowerCAmelCase , pipeline=__lowerCAmelCase ) try: SCREAMING_SNAKE_CASE__ : Dict = cached_download( __lowerCAmelCase , cache_dir=__lowerCAmelCase , force_download=__lowerCAmelCase , proxies=__lowerCAmelCase , resume_download=__lowerCAmelCase , local_files_only=__lowerCAmelCase , use_auth_token=__lowerCAmelCase , ) SCREAMING_SNAKE_CASE__ : Optional[int] = """git""" SCREAMING_SNAKE_CASE__ : Optional[Any] = pretrained_model_name_or_path + """.py""" except EnvironmentError: logger.error(F'''Could not locate the {module_file} inside {pretrained_model_name_or_path}.''' ) raise else: try: # Load from URL or cache if already cached SCREAMING_SNAKE_CASE__ : Any = hf_hub_download( __lowerCAmelCase , __lowerCAmelCase , cache_dir=__lowerCAmelCase , force_download=__lowerCAmelCase , proxies=__lowerCAmelCase , resume_download=__lowerCAmelCase , local_files_only=__lowerCAmelCase , use_auth_token=__lowerCAmelCase , ) SCREAMING_SNAKE_CASE__ : Dict = os.path.join("""local""" , """--""".join(pretrained_model_name_or_path.split("""/""" ) ) ) except EnvironmentError: logger.error(F'''Could not locate the {module_file} inside {pretrained_model_name_or_path}.''' ) raise # Check we have all the requirements in our environment SCREAMING_SNAKE_CASE__ : Optional[int] = check_imports(__lowerCAmelCase ) # Now we move the module inside our cached dynamic modules. SCREAMING_SNAKE_CASE__ : Any = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Tuple = Path(__lowerCAmelCase ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(__lowerCAmelCase , submodule_path / module_file ) for module_needed in modules_needed: SCREAMING_SNAKE_CASE__ : Tuple = F'''{module_needed}.py''' shutil.copy(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(__lowerCAmelCase , __lowerCAmelCase ): SCREAMING_SNAKE_CASE__ : Dict = use_auth_token elif use_auth_token is True: SCREAMING_SNAKE_CASE__ : Optional[int] = HfFolder.get_token() else: SCREAMING_SNAKE_CASE__ : Optional[int] = None SCREAMING_SNAKE_CASE__ : int = model_info(__lowerCAmelCase , revision=__lowerCAmelCase , token=__lowerCAmelCase ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. SCREAMING_SNAKE_CASE__ : Optional[Any] = submodule_path / commit_hash SCREAMING_SNAKE_CASE__ : Optional[Any] = full_submodule + os.path.sep + commit_hash create_dynamic_module(__lowerCAmelCase ) if not (submodule_path / module_file).exists(): shutil.copy(__lowerCAmelCase , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( __lowerCAmelCase , F'''{module_needed}.py''' , cache_dir=__lowerCAmelCase , force_download=__lowerCAmelCase , resume_download=__lowerCAmelCase , proxies=__lowerCAmelCase , use_auth_token=__lowerCAmelCase , revision=__lowerCAmelCase , local_files_only=__lowerCAmelCase , ) return os.path.join(__lowerCAmelCase , __lowerCAmelCase ) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = False , **__lowerCAmelCase , ) -> List[Any]: SCREAMING_SNAKE_CASE__ : Union[str, Any] = get_cached_module_file( __lowerCAmelCase , __lowerCAmelCase , cache_dir=__lowerCAmelCase , force_download=__lowerCAmelCase , resume_download=__lowerCAmelCase , proxies=__lowerCAmelCase , use_auth_token=__lowerCAmelCase , revision=__lowerCAmelCase , local_files_only=__lowerCAmelCase , ) return get_class_in_module(__lowerCAmelCase , final_module.replace(""".py""" , """""" ) )
132
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( unittest.TestCase): @slow def SCREAMING_SNAKE_CASE ( self: Optional[Any] ): lowercase :str = TFCamembertModel.from_pretrained("jplu/tf-camembert-base" ) lowercase :List[str] = tf.convert_to_tensor( [[5, 1_21, 11, 6_60, 16, 7_30, 2_55_43, 1_10, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" lowercase :List[str] = model(_SCREAMING_SNAKE_CASE )["last_hidden_state"] lowercase :List[Any] = tf.TensorShape((1, 10, 7_68) ) self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) # compare the actual values for a slice. lowercase :Union[str, Any] = tf.convert_to_tensor( [[[-0.02_54, 0.02_35, 0.10_27], [0.06_06, -0.18_11, -0.04_18], [-0.15_61, -0.11_27, 0.26_87]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
368
import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class __lowerCAmelCase ( lowerCAmelCase): def __init__( self: Any , _lowerCAmelCase: int , _lowerCAmelCase: str , _lowerCAmelCase: Union[str, Any] ): lowercase :List[str] = dataset lowercase :Optional[int] = process lowercase :Union[str, Any] = params def __len__( self: str ): return len(self.dataset ) def __getitem__( self: int , _lowerCAmelCase: Dict ): lowercase :Union[str, Any] = self.dataset[i] lowercase :Optional[int] = self.process(_lowerCAmelCase , **self.params ) return processed class __lowerCAmelCase ( lowerCAmelCase): def __init__( self: int , _lowerCAmelCase: Tuple , _lowerCAmelCase: Union[str, Any] , _lowerCAmelCase: int , _lowerCAmelCase: Optional[int]=None ): lowercase :Optional[Any] = loader lowercase :int = infer lowercase :Dict = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether lowercase :Union[str, Any] = None lowercase :Any = loader_batch_size # Internal bookkeeping lowercase :Optional[Any] = None lowercase :Dict = None def __len__( self: Tuple ): return len(self.loader ) def __iter__( self: List[str] ): lowercase :Dict = iter(self.loader ) return self def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice lowercase :Optional[int] = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) lowercase :str = {} for k, element in self._loader_batch_data.items(): if isinstance(_lowerCAmelCase , _lowerCAmelCase ): # Convert ModelOutput to tuple first lowercase :Dict = element.to_tuple() if isinstance(element[0] , torch.Tensor ): lowercase :int = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): lowercase :List[str] = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(_lowerCAmelCase , _lowerCAmelCase ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): lowercase :Union[str, Any] = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): lowercase :List[Any] = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around lowercase :Optional[int] = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers lowercase :Optional[Any] = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers lowercase :Any = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. lowercase :List[Any] = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 lowercase :List[Any] = self._loader_batch_data.__class__(_lowerCAmelCase ) self._loader_batch_index += 1 return result def SCREAMING_SNAKE_CASE ( self: Optional[Any] ): if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch lowercase :Tuple = next(self.iterator ) lowercase :Dict = self.infer(_lowerCAmelCase , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(_lowerCAmelCase , torch.Tensor ): lowercase :List[str] = processed else: lowercase :Tuple = list(processed.keys() )[0] lowercase :Optional[Any] = processed[key] if isinstance(_lowerCAmelCase , _lowerCAmelCase ): lowercase :Optional[int] = len(_lowerCAmelCase ) else: lowercase :Dict = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. lowercase :Tuple = observed_batch_size # Setting internal index to unwrap the batch lowercase :int = processed lowercase :Optional[Any] = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class __lowerCAmelCase ( lowerCAmelCase): def __init__( self: Union[str, Any] , _lowerCAmelCase: Tuple , _lowerCAmelCase: str , _lowerCAmelCase: str , _lowerCAmelCase: Optional[Any]=None ): super().__init__(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def __iter__( self: Tuple ): lowercase :List[str] = iter(self.loader ) lowercase :str = None return self def SCREAMING_SNAKE_CASE ( self: Optional[Any] ): if self.subiterator is None: lowercase :List[Any] = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item lowercase :str = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators lowercase :Tuple = self.infer(next(self.iterator ) , **self.params ) lowercase :Dict = next(self.subiterator ) return processed class __lowerCAmelCase ( lowerCAmelCase): def __iter__( self: str ): lowercase :List[Any] = iter(self.loader ) return self def SCREAMING_SNAKE_CASE ( self: str ): # Extremely similar to PipelineIterator in its unpacking mechanism # BUT, we have an extra required item which is the presence of `is_last` # That is because everything is flattened by `PipelineChunkIterator` we # need to keep track of how to regroup here in the original `process` # boundaries so that `process` and `postprocess` see the same data. # This iterator accumulates items (possibly while unbatching) until it # its a `is_last` and then just passes it on to the caller. lowercase :str = False lowercase :int = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: lowercase :str = self.loader_batch_item() lowercase :int = item.pop("is_last" ) accumulator.append(_lowerCAmelCase ) if is_last: return accumulator while not is_last: lowercase :str = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(_lowerCAmelCase , torch.Tensor ): lowercase :Tuple = processed else: lowercase :Union[str, Any] = list(processed.keys() )[0] lowercase :Any = processed[key] if isinstance(_lowerCAmelCase , _lowerCAmelCase ): lowercase :Dict = len(_lowerCAmelCase ) else: lowercase :List[str] = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. lowercase :Union[str, Any] = observed_batch_size lowercase :str = processed lowercase :Optional[int] = 0 while self._loader_batch_index < self.loader_batch_size: lowercase :Any = self.loader_batch_item() lowercase :int = item.pop("is_last" ) accumulator.append(_lowerCAmelCase ) if is_last: return accumulator else: lowercase :Optional[Any] = processed lowercase :str = item.pop("is_last" ) accumulator.append(_lowerCAmelCase ) return accumulator class __lowerCAmelCase ( lowerCAmelCase): def __init__( self: Union[str, Any] , _lowerCAmelCase: Dataset , _lowerCAmelCase: str ): lowercase :Tuple = dataset lowercase :Dict = key def __len__( self: Any ): return len(self.dataset ) def __getitem__( self: int , _lowerCAmelCase: int ): return self.dataset[i][self.key] class __lowerCAmelCase ( lowerCAmelCase): def __init__( self: List[Any] , _lowerCAmelCase: Dataset , _lowerCAmelCase: str , _lowerCAmelCase: str ): lowercase :Union[str, Any] = dataset lowercase :Optional[int] = keya lowercase :str = keya def __len__( self: Optional[Any] ): return len(self.dataset ) def __getitem__( self: Optional[Any] , _lowerCAmelCase: int ): return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
158
0
'''simple docstring''' import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : int = ['''image_processor''', '''tokenizer'''] UpperCamelCase_ : Tuple = '''OwlViTImageProcessor''' UpperCamelCase_ : Dict = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : int , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : Any=None , **lowerCAmelCase__ : List[Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : List[str] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , lowerCAmelCase__ , ) _UpperCAmelCase : str = kwargs.pop("feature_extractor" ) _UpperCAmelCase : List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(lowerCAmelCase__ , lowerCAmelCase__ ) def __call__( self : Dict , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : List[Any]=None , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : List[str]="max_length" , lowerCAmelCase__ : Union[str, Any]="np" , **lowerCAmelCase__ : Optional[Any] ) -> List[Any]: """simple docstring""" if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none." ) if text is not None: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or (isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and not isinstance(text[0] , lowerCAmelCase__ )): _UpperCAmelCase : Tuple = [self.tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ )] elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(text[0] , lowerCAmelCase__ ): _UpperCAmelCase : List[str] = [] # Maximum number of queries across batch _UpperCAmelCase : Optional[Any] = max([len(lowerCAmelCase__ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(lowerCAmelCase__ ) != max_num_queries: _UpperCAmelCase : List[str] = t + [" "] * (max_num_queries - len(lowerCAmelCase__ )) _UpperCAmelCase : List[Any] = self.tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ ) encodings.append(lowerCAmelCase__ ) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings" ) if return_tensors == "np": _UpperCAmelCase : List[str] = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) _UpperCAmelCase : Any = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp _UpperCAmelCase : Any = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) _UpperCAmelCase : Dict = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch _UpperCAmelCase : str = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0 ) _UpperCAmelCase : str = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf _UpperCAmelCase : Dict = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0 ) _UpperCAmelCase : int = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0 ) else: raise ValueError("Target return tensor type could not be returned" ) _UpperCAmelCase : Union[str, Any] = BatchEncoding() _UpperCAmelCase : Optional[Any] = input_ids _UpperCAmelCase : int = attention_mask if query_images is not None: _UpperCAmelCase : List[str] = BatchEncoding() _UpperCAmelCase : Optional[Any] = self.image_processor( lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ ).pixel_values _UpperCAmelCase : Dict = query_pixel_values if images is not None: _UpperCAmelCase : List[str] = self.image_processor(lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ ) if text is not None and images is not None: _UpperCAmelCase : Any = image_features.pixel_values return encoding elif query_images is not None and images is not None: _UpperCAmelCase : List[Any] = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase__ ) , tensor_type=lowerCAmelCase__ ) def _lowerCAmelCase ( self : str , *lowerCAmelCase__ : Union[str, Any] , **lowerCAmelCase__ : Optional[int] ) -> Tuple: """simple docstring""" return self.image_processor.post_process(*lowerCAmelCase__ , **lowerCAmelCase__ ) def _lowerCAmelCase ( self : Any , *lowerCAmelCase__ : str , **lowerCAmelCase__ : List[Any] ) -> List[Any]: """simple docstring""" return self.image_processor.post_process_object_detection(*lowerCAmelCase__ , **lowerCAmelCase__ ) def _lowerCAmelCase ( self : Union[str, Any] , *lowerCAmelCase__ : Any , **lowerCAmelCase__ : List[Any] ) -> List[Any]: """simple docstring""" return self.image_processor.post_process_image_guided_detection(*lowerCAmelCase__ , **lowerCAmelCase__ ) def _lowerCAmelCase ( self : Optional[Any] , *lowerCAmelCase__ : Dict , **lowerCAmelCase__ : int ) -> Optional[int]: """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) def _lowerCAmelCase ( self : Dict , *lowerCAmelCase__ : Any , **lowerCAmelCase__ : Optional[int] ) -> Tuple: """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) @property def _lowerCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , lowerCAmelCase__ , ) return self.image_processor_class @property def _lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , lowerCAmelCase__ , ) return self.image_processor
145
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class A__ ( unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self : str ) -> int: """simple docstring""" _UpperCAmelCase : Any = AutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" , return_dict=lowerCAmelCase__ ).to(lowerCAmelCase__ ) _UpperCAmelCase : str = AutoTokenizer.from_pretrained("google/mt5-small" ) _UpperCAmelCase : str = tokenizer("Hello there" , return_tensors="pt" ).input_ids _UpperCAmelCase : str = tokenizer("Hi I am" , return_tensors="pt" ).input_ids _UpperCAmelCase : Any = model(input_ids.to(lowerCAmelCase__ ) , labels=labels.to(lowerCAmelCase__ ) ).loss _UpperCAmelCase : Dict = -(labels.shape[-1] * loss.item()) _UpperCAmelCase : Any = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
145
1
"""simple docstring""" import random from typing import Any def SCREAMING_SNAKE_CASE_ ( snake_case : list )-> Optional[Any]: for _ in range(len(lowerCamelCase_ ) ): _lowerCamelCase = random.randint(0 , len(lowerCamelCase_ ) - 1 ) _lowerCamelCase = random.randint(0 , len(lowerCamelCase_ ) - 1 ) _lowerCamelCase = data[b], data[a] return data if __name__ == "__main__": A_ : Any =[0, 1, 2, 3, 4, 5, 6, 7] A_ : List[str] =['python', 'says', 'hello', '!'] print("""Fisher-Yates Shuffle:""") print("""List""", integers, strings) print("""FY Shuffle""", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
355
"""simple docstring""" from __future__ import annotations A_ : List[Any] =list[tuple[int, int]] A_ : Tuple =[ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] A_ : List[str] =([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class __a : def __init__( self , a__ , a__ , a__ , a__ , a__ , a__ , ): _lowerCamelCase = pos_x _lowerCamelCase = pos_y _lowerCamelCase = (pos_y, pos_x) _lowerCamelCase = goal_x _lowerCamelCase = goal_y _lowerCamelCase = g_cost _lowerCamelCase = parent _lowerCamelCase = self.calculate_heuristic() def snake_case_ ( self ): _lowerCamelCase = abs(self.pos_x - self.goal_x ) _lowerCamelCase = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self , a__ ): return self.f_cost < other.f_cost class __a : def __init__( self , a__ , a__ ): _lowerCamelCase = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , a__ ) _lowerCamelCase = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_99_99 , a__ ) _lowerCamelCase = [self.start] _lowerCamelCase = [] _lowerCamelCase = False def snake_case_ ( self ): while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() _lowerCamelCase = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: _lowerCamelCase = True return self.retrace_path(a__ ) self.closed_nodes.append(a__ ) _lowerCamelCase = self.get_successors(a__ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(a__ ) else: # retrieve the best current path _lowerCamelCase = self.open_nodes.pop(self.open_nodes.index(a__ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(a__ ) else: self.open_nodes.append(a__ ) if not self.reached: return [self.start.pos] return None def snake_case_ ( self , a__ ): _lowerCamelCase = [] for action in delta: _lowerCamelCase = parent.pos_x + action[1] _lowerCamelCase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(a__ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( a__ , a__ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , a__ , ) ) return successors def snake_case_ ( self , a__ ): _lowerCamelCase = node _lowerCamelCase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _lowerCamelCase = current_node.parent path.reverse() return path if __name__ == "__main__": A_ : str =(0, 0) A_ : Tuple =(len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print("""------""") A_ : List[str] =GreedyBestFirst(init, goal) A_ : Optional[int] =greedy_bf.search() if path: for pos_x, pos_y in path: A_ : Optional[Any] =2 for elem in grid: print(elem)
80
0
"""simple docstring""" from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class lowercase ( __UpperCAmelCase): __lowerCAmelCase : torch.FloatTensor class lowercase ( __UpperCAmelCase , __UpperCAmelCase): @register_to_config def __init__( self : Any , _lowerCamelCase : int = 16 , _lowerCamelCase : int = 88 , _lowerCamelCase : Optional[int] = None , _lowerCamelCase : Optional[int] = None , _lowerCamelCase : int = 1 , _lowerCamelCase : float = 0.0 , _lowerCamelCase : int = 32 , _lowerCamelCase : Optional[int] = None , _lowerCamelCase : bool = False , _lowerCamelCase : Optional[int] = None , _lowerCamelCase : str = "geglu" , _lowerCamelCase : bool = True , _lowerCamelCase : bool = True , ): """simple docstring""" super().__init__() A_ : int = num_attention_heads A_ : Union[str, Any] = attention_head_dim A_ : Optional[int] = num_attention_heads * attention_head_dim A_ : Any = in_channels A_ : Tuple = torch.nn.GroupNorm(num_groups=_lowerCamelCase , num_channels=_lowerCamelCase , eps=1E-6 , affine=_lowerCamelCase ) A_ : Optional[int] = nn.Linear(_lowerCamelCase , _lowerCamelCase ) # 3. Define transformers blocks A_ : Any = nn.ModuleList( [ BasicTransformerBlock( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , dropout=_lowerCamelCase , cross_attention_dim=_lowerCamelCase , activation_fn=_lowerCamelCase , attention_bias=_lowerCamelCase , double_self_attention=_lowerCamelCase , norm_elementwise_affine=_lowerCamelCase , ) for d in range(_lowerCamelCase ) ] ) A_ : Optional[int] = nn.Linear(_lowerCamelCase , _lowerCamelCase ) def a_ ( self : int , _lowerCamelCase : List[Any] , _lowerCamelCase : Any=None , _lowerCamelCase : List[Any]=None , _lowerCamelCase : int=None , _lowerCamelCase : Tuple=1 , _lowerCamelCase : Optional[int]=None , _lowerCamelCase : bool = True , ): """simple docstring""" A_ , A_ , A_ , A_ : List[Any] = hidden_states.shape A_ : Union[str, Any] = batch_frames // num_frames A_ : List[str] = hidden_states A_ : Tuple = hidden_states[None, :].reshape(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A_ : str = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) A_ : List[str] = self.norm(_lowerCamelCase ) A_ : List[Any] = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , _lowerCamelCase , _lowerCamelCase ) A_ : Dict = self.proj_in(_lowerCamelCase ) # 2. Blocks for block in self.transformer_blocks: A_ : Optional[int] = block( _lowerCamelCase , encoder_hidden_states=_lowerCamelCase , timestep=_lowerCamelCase , cross_attention_kwargs=_lowerCamelCase , class_labels=_lowerCamelCase , ) # 3. Output A_ : List[str] = self.proj_out(_lowerCamelCase ) A_ : Any = ( hidden_states[None, None, :] .reshape(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) A_ : List[str] = hidden_states.reshape(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A_ : List[str] = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=_lowerCamelCase )
167
"""simple docstring""" from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase ( __UpperCAmelCase): def a_ ( self : List[str] ): """simple docstring""" A_ : Optional[int] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_lowerCamelCase , '''embed_dim''' ) ) self.parent.assertTrue(hasattr(_lowerCamelCase , '''num_heads''' ) ) class lowercase : def __init__( self : Tuple , _lowerCamelCase : List[Any] , _lowerCamelCase : Union[str, Any]=13 , _lowerCamelCase : List[str]=64 , _lowerCamelCase : int=3 , _lowerCamelCase : int=[16, 48, 96] , _lowerCamelCase : Dict=[1, 3, 6] , _lowerCamelCase : List[Any]=[1, 2, 10] , _lowerCamelCase : Optional[int]=[7, 3, 3] , _lowerCamelCase : Optional[int]=[4, 2, 2] , _lowerCamelCase : Union[str, Any]=[2, 1, 1] , _lowerCamelCase : str=[2, 2, 2] , _lowerCamelCase : Tuple=[False, False, True] , _lowerCamelCase : Union[str, Any]=[0.0, 0.0, 0.0] , _lowerCamelCase : Optional[Any]=0.02 , _lowerCamelCase : Dict=1E-12 , _lowerCamelCase : Union[str, Any]=True , _lowerCamelCase : Optional[int]=True , _lowerCamelCase : List[Any]=2 , ): """simple docstring""" A_ : Tuple = parent A_ : Dict = batch_size A_ : str = image_size A_ : Dict = patch_sizes A_ : Optional[int] = patch_stride A_ : Optional[int] = patch_padding A_ : Optional[Any] = is_training A_ : Union[str, Any] = use_labels A_ : str = num_labels A_ : Optional[int] = num_channels A_ : str = embed_dim A_ : Tuple = num_heads A_ : List[Any] = stride_kv A_ : str = depth A_ : Dict = cls_token A_ : Optional[Any] = attention_drop_rate A_ : str = initializer_range A_ : Tuple = layer_norm_eps def a_ ( self : Tuple ): """simple docstring""" A_ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : List[Any] = None if self.use_labels: # create a random int32 tensor of given shape A_ : Tuple = ids_tensor([self.batch_size] , self.num_labels ) A_ : Tuple = self.get_config() return config, pixel_values, labels def a_ ( self : Any ): """simple docstring""" return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def a_ ( self : List[str] , _lowerCamelCase : List[Any] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Union[str, Any] ): """simple docstring""" A_ : str = TFCvtModel(config=_lowerCamelCase ) A_ : Any = model(_lowerCamelCase , training=_lowerCamelCase ) A_ : int = (self.image_size, self.image_size) A_ , A_ : Optional[int] = image_size[0], image_size[1] for i in range(len(self.depth ) ): A_ : List[str] = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) A_ : int = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def a_ ( self : Tuple , _lowerCamelCase : Optional[int] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Tuple ): """simple docstring""" A_ : Any = self.num_labels A_ : str = TFCvtForImageClassification(_lowerCamelCase ) A_ : List[Any] = model(_lowerCamelCase , labels=_lowerCamelCase , training=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a_ ( self : Tuple ): """simple docstring""" A_ : Union[str, Any] = self.prepare_config_and_inputs() A_ , A_ , A_ : Tuple = config_and_inputs A_ : Any = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class lowercase ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase): __lowerCAmelCase : str = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () __lowerCAmelCase : Tuple = ( {"""feature-extraction""": TFCvtModel, """image-classification""": TFCvtForImageClassification} if is_tf_available() else {} ) __lowerCAmelCase : int = False __lowerCAmelCase : List[Any] = False __lowerCAmelCase : List[Any] = False __lowerCAmelCase : List[str] = False __lowerCAmelCase : List[str] = False def a_ ( self : int ): """simple docstring""" A_ : Dict = TFCvtModelTester(self ) A_ : int = TFCvtConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 ) def a_ ( self : Any ): """simple docstring""" self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason='''Cvt does not output attentions''' ) def a_ ( self : str ): """simple docstring""" pass @unittest.skip(reason='''Cvt does not use inputs_embeds''' ) def a_ ( self : Tuple ): """simple docstring""" pass @unittest.skip(reason='''Cvt does not support input and output embeddings''' ) def a_ ( self : Tuple ): """simple docstring""" pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , reason='''TF does not support backprop for grouped convolutions on CPU.''' , ) def a_ ( self : Tuple ): """simple docstring""" super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , reason='''TF does not support backprop for grouped convolutions on CPU.''' , ) @slow def a_ ( self : Dict ): """simple docstring""" super().test_keras_fit() @unittest.skip(reason='''Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8''' ) def a_ ( self : int ): """simple docstring""" A_ : List[Any] = tf.keras.mixed_precision.Policy('''mixed_float16''' ) tf.keras.mixed_precision.set_global_policy(_lowerCamelCase ) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy('''float32''' ) def a_ ( self : str ): """simple docstring""" A_ , A_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Optional[Any] = model_class(_lowerCamelCase ) A_ : Optional[Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : Dict = [*signature.parameters.keys()] A_ : Optional[int] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def a_ ( self : int ): """simple docstring""" def check_hidden_states_output(_lowerCamelCase : int , _lowerCamelCase : Any , _lowerCamelCase : Union[str, Any] ): A_ : Union[str, Any] = model_class(_lowerCamelCase ) A_ : Tuple = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) A_ : Optional[int] = outputs.hidden_states A_ : Union[str, Any] = len(self.model_tester.depth ) self.assertEqual(len(_lowerCamelCase ) , _lowerCamelCase ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) A_ , A_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : str = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A_ : Dict = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def a_ ( self : Tuple ): """simple docstring""" A_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def a_ ( self : int ): """simple docstring""" A_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) @slow def a_ ( self : List[Any] ): """simple docstring""" for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : List[Any] = TFCvtModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def lowercase_ ( ): """simple docstring""" A_ : Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class lowercase ( unittest.TestCase): @cached_property def a_ ( self : List[Any] ): """simple docstring""" return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def a_ ( self : Any ): """simple docstring""" A_ : Optional[int] = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) A_ : int = self.default_image_processor A_ : str = prepare_img() A_ : Optional[int] = image_processor(images=_lowerCamelCase , return_tensors='''tf''' ) # forward pass A_ : Dict = model(**_lowerCamelCase ) # verify the logits A_ : Union[str, Any] = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) A_ : Tuple = tf.constant([0.9285, 0.9015, -0.3150] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _lowerCamelCase , atol=1E-4 ) )
167
1
import baseaa def lowerCamelCase__ ( a__ : str ) -> bytes: return baseaa.baaencode(string.encode("""utf-8""" ) ) def lowerCamelCase__ ( a__ : bytes ) -> str: return baseaa.baadecode(a__ ).decode("""utf-8""" ) if __name__ == "__main__": _A = '''Hello World!''' _A = baseaa_encode(test) print(encoded) _A = baseaa_decode(encoded) print(decoded)
261
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _A = logging.get_logger(__name__) class lowercase_ ( __SCREAMING_SNAKE_CASE ): A__ : Union[str, Any] = ["""pixel_values"""] def __init__( self , __UpperCamelCase = True , __UpperCamelCase = None , __UpperCamelCase = PILImageResampling.BICUBIC , __UpperCamelCase = True , __UpperCamelCase = True , __UpperCamelCase = 1 / 2_5_5 , __UpperCamelCase = None , __UpperCamelCase = True , __UpperCamelCase = None , __UpperCamelCase = None , **__UpperCamelCase , ): """simple docstring""" super().__init__(**__UpperCamelCase ) UpperCamelCase_ = size if size is not None else {"""height""": 2_2_4, """width""": 2_2_4} UpperCamelCase_ = get_size_dict(__UpperCamelCase ) UpperCamelCase_ = crop_size if crop_size is not None else {"""height""": 2_2_4, """width""": 2_2_4} UpperCamelCase_ = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase , param_name="""crop_size""" ) UpperCamelCase_ = do_resize UpperCamelCase_ = do_rescale UpperCamelCase_ = do_normalize UpperCamelCase_ = do_center_crop UpperCamelCase_ = crop_size UpperCamelCase_ = size UpperCamelCase_ = resample UpperCamelCase_ = rescale_factor UpperCamelCase_ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN UpperCamelCase_ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = PILImageResampling.BILINEAR , __UpperCamelCase = None , **__UpperCamelCase , ): """simple docstring""" UpperCamelCase_ = get_size_dict(__UpperCamelCase ) if "shortest_edge" in size: UpperCamelCase_ = get_resize_output_image_size(__UpperCamelCase , size=size["""shortest_edge"""] , default_to_square=__UpperCamelCase ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: UpperCamelCase_ = (size["""height"""], size["""width"""]) else: raise ValueError(f'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''' ) return resize(__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , **__UpperCamelCase , ): """simple docstring""" UpperCamelCase_ = get_size_dict(__UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(__UpperCamelCase , size=(size["""height"""], size["""width"""]) , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , **__UpperCamelCase ): """simple docstring""" return rescale(__UpperCamelCase , scale=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , **__UpperCamelCase , ): """simple docstring""" return normalize(__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = ChannelDimension.FIRST , **__UpperCamelCase , ): """simple docstring""" UpperCamelCase_ = do_resize if do_resize is not None else self.do_resize UpperCamelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase_ = crop_size if crop_size is not None else self.crop_size UpperCamelCase_ = get_size_dict(__UpperCamelCase , param_name="""crop_size""" , default_to_square=__UpperCamelCase ) UpperCamelCase_ = resample if resample is not None else self.resample UpperCamelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase_ = image_mean if image_mean is not None else self.image_mean UpperCamelCase_ = image_std if image_std is not None else self.image_std UpperCamelCase_ = size if size is not None else self.size UpperCamelCase_ = get_size_dict(__UpperCamelCase ) if not is_batched(__UpperCamelCase ): UpperCamelCase_ = [images] if not valid_images(__UpperCamelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. UpperCamelCase_ = [to_numpy_array(__UpperCamelCase ) for image in images] if do_resize: UpperCamelCase_ = [self.resize(image=__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase ) for image in images] if do_center_crop: UpperCamelCase_ = [self.center_crop(image=__UpperCamelCase , size=__UpperCamelCase ) for image in images] if do_rescale: UpperCamelCase_ = [self.rescale(image=__UpperCamelCase , scale=__UpperCamelCase ) for image in images] if do_normalize: UpperCamelCase_ = [self.normalize(image=__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase ) for image in images] UpperCamelCase_ = [to_channel_dimension_format(__UpperCamelCase , __UpperCamelCase ) for image in images] UpperCamelCase_ = {"""pixel_values""": images} return BatchFeature(data=__UpperCamelCase , tensor_type=__UpperCamelCase )
261
1
'''simple docstring''' import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @parameterized.expand([(None,), ('foo.json',)] ) def __lowercase ( self : Optional[Any] ,_a : str ): '''simple docstring''' _a : List[str] = GenerationConfig( do_sample=_a ,temperature=0.7 ,length_penalty=1.0 ,bad_words_ids=[[1, 2, 3], [4, 5]] ,) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_a ,config_name=_a ) _a : Tuple = GenerationConfig.from_pretrained(_a ,config_name=_a ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample ,_a ) self.assertEqual(loaded_config.temperature ,0.7 ) self.assertEqual(loaded_config.length_penalty ,1.0 ) self.assertEqual(loaded_config.bad_words_ids ,[[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k ,50 ) self.assertEqual(loaded_config.max_length ,20 ) self.assertEqual(loaded_config.max_time ,_a ) def __lowercase ( self : int ): '''simple docstring''' _a : Union[str, Any] = AutoConfig.from_pretrained('gpt2' ) _a : Tuple = GenerationConfig.from_model_config(_a ) _a : List[Any] = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(_a ,_a ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id ,default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id ,model_config.eos_token_id ) def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : Optional[Any] = GenerationConfig() _a : Dict = { 'max_new_tokens': 1024, 'foo': 'bar', } _a : Optional[int] = copy.deepcopy(_a ) _a : List[str] = generation_config.update(**_a ) # update_kwargs was not modified (no side effects) self.assertEqual(_a ,_a ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens ,1024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(_a ,{'foo': 'bar'} ) def __lowercase ( self : Dict ): '''simple docstring''' _a : Optional[Any] = GenerationConfig() _a : Optional[Any] = 'bar' with tempfile.TemporaryDirectory('test-generation-config' ) as tmp_dir: generation_config.save_pretrained(_a ) _a : Optional[int] = GenerationConfig.from_pretrained(_a ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo ,'bar' ) _a : List[str] = GenerationConfig.from_model_config(_a ) assert not hasattr(_a ,'foo' ) # no new kwargs should be initialized if from config def __lowercase ( self : List[Any] ): '''simple docstring''' _a : List[str] = GenerationConfig() self.assertEqual(default_config.temperature ,1.0 ) self.assertEqual(default_config.do_sample ,_a ) self.assertEqual(default_config.num_beams ,1 ) _a : List[Any] = GenerationConfig( do_sample=_a ,temperature=0.7 ,length_penalty=1.0 ,bad_words_ids=[[1, 2, 3], [4, 5]] ,) self.assertEqual(config.temperature ,0.7 ) self.assertEqual(config.do_sample ,_a ) self.assertEqual(config.num_beams ,1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_a ) _a : Optional[Any] = GenerationConfig.from_pretrained(_a ,temperature=1.0 ) self.assertEqual(loaded_config.temperature ,1.0 ) self.assertEqual(loaded_config.do_sample ,_a ) self.assertEqual(loaded_config.num_beams ,1 ) # default value @is_staging_test class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @classmethod def __lowercase ( cls : str ): '''simple docstring''' _a : List[str] = TOKEN HfFolder.save_token(_a ) @classmethod def __lowercase ( cls : Optional[int] ): '''simple docstring''' try: delete_repo(token=cls._token ,repo_id='test-generation-config' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='valid_org/test-generation-config-org' ) except HTTPError: pass def __lowercase ( self : str ): '''simple docstring''' _a : List[Any] = GenerationConfig( do_sample=_a ,temperature=0.7 ,length_penalty=1.0 ,) config.push_to_hub('test-generation-config' ,use_auth_token=self._token ) _a : Optional[Any] = GenerationConfig.from_pretrained(F"""{USER}/test-generation-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a ,getattr(_a ,_a ) ) # Reset repo delete_repo(token=self._token ,repo_id='test-generation-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _a ,repo_id='test-generation-config' ,push_to_hub=_a ,use_auth_token=self._token ) _a : Optional[int] = GenerationConfig.from_pretrained(F"""{USER}/test-generation-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a ,getattr(_a ,_a ) ) def __lowercase ( self : Tuple ): '''simple docstring''' _a : Tuple = GenerationConfig( do_sample=_a ,temperature=0.7 ,length_penalty=1.0 ,) config.push_to_hub('valid_org/test-generation-config-org' ,use_auth_token=self._token ) _a : Union[str, Any] = GenerationConfig.from_pretrained('valid_org/test-generation-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a ,getattr(_a ,_a ) ) # Reset repo delete_repo(token=self._token ,repo_id='valid_org/test-generation-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _a ,repo_id='valid_org/test-generation-config-org' ,push_to_hub=_a ,use_auth_token=self._token ) _a : Tuple = GenerationConfig.from_pretrained('valid_org/test-generation-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a ,getattr(_a ,_a ) )
271
'''simple docstring''' from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { """linear""": get_linear_schedule_with_warmup, """cosine""": get_cosine_schedule_with_warmup, """cosine_w_restarts""": get_cosine_with_hard_restarts_schedule_with_warmup, """polynomial""": get_polynomial_decay_schedule_with_warmup, """constant""": get_constant_schedule, """constant_w_warmup""": get_constant_schedule_with_warmup, } class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" def __init__( self : Optional[int] ,_a : Optional[Any]=None ,_a : Dict=None ,*_a : int ,**_a : str ): '''simple docstring''' super().__init__(*_a ,**_a ) if config is None: assert isinstance(self.model ,_a ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" F""" {self.model.__class__}""" ) _a : List[Any] = self.model.config else: _a : Optional[int] = config _a : List[str] = data_args _a : List[Any] = self.config.tgt_vocab_size if isinstance(self.config ,_a ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( F"""The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for""" ' padding..' ) if self.args.label_smoothing == 0: _a : List[str] = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss _a : Tuple = label_smoothed_nll_loss def __lowercase ( self : List[str] ,_a : int ): '''simple docstring''' if self.optimizer is None: _a : Union[str, Any] = ['bias', 'LayerNorm.weight'] _a : Tuple = [ { 'params': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], 'weight_decay': self.args.weight_decay, }, { 'params': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] _a : Optional[int] = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: _a : Any = Adafactor _a : Dict = {'scale_parameter': False, 'relative_step': False} else: _a : Union[str, Any] = AdamW _a : str = { 'betas': (self.args.adam_betaa, self.args.adam_betaa), 'eps': self.args.adam_epsilon, } _a : Union[str, Any] = self.args.learning_rate if self.sharded_ddp: _a : str = OSS( params=_a ,optim=_a ,**_a ,) else: _a : Tuple = optimizer_cls(_a ,**_a ) if self.lr_scheduler is None: _a : List[Any] = self._get_lr_scheduler(_a ) else: # ignoring --lr_scheduler logger.warning('scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.' ) def __lowercase ( self : List[Any] ,_a : List[Any] ): '''simple docstring''' _a : str = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": _a : int = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": _a : List[str] = schedule_func(self.optimizer ,num_warmup_steps=self.args.warmup_steps ) else: _a : Optional[int] = schedule_func( self.optimizer ,num_warmup_steps=self.args.warmup_steps ,num_training_steps=_a ) return scheduler def __lowercase ( self : Tuple ): '''simple docstring''' if isinstance(self.train_dataset ,torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size ,distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) ,) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def __lowercase ( self : Dict ,_a : Dict ,_a : Any ,_a : Dict ): '''simple docstring''' if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token _a : List[Any] = model(**_a ,use_cache=_a )[0] _a : Union[str, Any] = self.loss_fn(logits.view(-1 ,logits.shape[-1] ) ,labels.view(-1 ) ) else: # compute usual loss via models _a, _a : Union[str, Any] = model(**_a ,labels=_a ,use_cache=_a )[:2] else: # compute label smoothed loss _a : List[Any] = model(**_a ,use_cache=_a )[0] _a : Any = torch.nn.functional.log_softmax(_a ,dim=-1 ) _a, _a : List[str] = self.loss_fn(_a ,_a ,self.args.label_smoothing ,ignore_index=self.config.pad_token_id ) return loss, logits def __lowercase ( self : Optional[int] ,_a : Union[str, Any] ,_a : List[Any] ): '''simple docstring''' _a : Optional[int] = inputs.pop('labels' ) _a, _a : int = self._compute_loss(_a ,_a ,_a ) return loss def __lowercase ( self : Optional[Any] ,_a : nn.Module ,_a : Dict[str, Union[torch.Tensor, Any]] ,_a : bool ,_a : Optional[List[str]] = None ,): '''simple docstring''' _a : int = self._prepare_inputs(_a ) _a : Any = { 'max_length': self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, 'num_beams': self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: _a : int = self.model.generate( inputs['input_ids'] ,attention_mask=inputs['attention_mask'] ,**_a ,) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: _a : int = self._pad_tensors_to_max_len(_a ,gen_kwargs['max_length'] ) _a : Union[str, Any] = inputs.pop('labels' ) with torch.no_grad(): # compute loss on predict data _a, _a : Optional[int] = self._compute_loss(_a ,_a ,_a ) _a : Optional[Any] = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) _a : Optional[Any] = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: _a : Dict = self._pad_tensors_to_max_len(_a ,gen_kwargs['max_length'] ) return (loss, logits, labels) def __lowercase ( self : str ,_a : Tuple ,_a : Tuple ): '''simple docstring''' _a : List[Any] = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( 'Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be' F""" padded to `max_length`={max_length}""" ) _a : int = pad_token_id * torch.ones( (tensor.shape[0], max_length) ,dtype=tensor.dtype ,device=tensor.device ) _a : Union[str, Any] = tensor return padded_tensor
271
1
import os import sys import unittest lowerCAmelCase_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path lowerCAmelCase_ = os.path.join(git_repo_path, """src""", """transformers""") lowerCAmelCase_ = "\n{0} = None\n" lowerCAmelCase_ = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n" lowerCAmelCase_ = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n" class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Dict = find_backend(' _import_structure[\"models.albert\"].append(\"AlbertTokenizerFast\")' ) self.assertIsNone(_a ) _snake_case : Dict = find_backend(' if not is_tokenizers_available():' ) self.assertEqual(_a , 'tokenizers' ) _snake_case : int = find_backend(' if not is_tensorflow_text_available():' ) self.assertEqual(_a , 'tensorflow_text' ) _snake_case : Tuple = find_backend(' if not (is_sentencepiece_available() and is_tokenizers_available()):' ) self.assertEqual(_a , 'sentencepiece_and_tokenizers' ) _snake_case : Optional[int] = find_backend( ' if not (is_sentencepiece_available() and is_tensorflow_text_available()):' ) self.assertEqual(_a , 'sentencepiece_and_tensorflow_text' ) _snake_case : int = find_backend( ' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):' ) self.assertEqual(_a , 'sentencepiece_and_tokenizers_and_vision' ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Optional[int] = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('torch' , _a ) self.assertIn('tensorflow_text' , _a ) self.assertIn('sentencepiece_and_tokenizers' , _a ) # Likewise, we can't assert on the exact content of a key self.assertIn('BertModel' , objects['torch'] ) self.assertIn('TFBertModel' , objects['tf'] ) self.assertIn('FlaxBertModel' , objects['flax'] ) self.assertIn('BertModel' , objects['torch'] ) self.assertIn('TFBertTokenizer' , objects['tensorflow_text'] ) self.assertIn('convert_slow_tokenizer' , objects['sentencepiece_and_tokenizers'] ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _snake_case : Optional[int] = create_dummy_object('CONSTANT' , '\'torch\'' ) self.assertEqual(_a , '\nCONSTANT = None\n' ) _snake_case : Tuple = create_dummy_object('function' , '\'torch\'' ) self.assertEqual( _a , '\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n' ) _snake_case : Any = "\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n" _snake_case : Any = create_dummy_object('FakeClass' , '\'torch\'' ) self.assertEqual(_a , _a ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : int = "# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n" _snake_case : Optional[Any] = create_dummy_files({'torch': ['CONSTANT', 'function', 'FakeClass']} ) self.assertEqual(dummy_files['torch'] , _a )
369
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase_ ( lowerCAmelCase: List[str] , lowerCAmelCase: int , lowerCAmelCase: List[Any] )-> Dict: # Initialise PyTorch model _snake_case : Dict = RemBertConfig.from_json_file(lowerCAmelCase ) print('Building PyTorch model from configuration: {}'.format(str(lowerCAmelCase ) ) ) _snake_case : Optional[Any] = RemBertModel(lowerCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_rembert(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Save pytorch-model print('Save PyTorch model to {}'.format(lowerCAmelCase ) ) torch.save(model.state_dict() , lowerCAmelCase ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--rembert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained RemBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowerCAmelCase_ = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
260
0