repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
seckcoder/lang-learn
python/sklearn/examples/linear_model/plot_multi_task_lasso_support.py
4
2176
#!/usr/bin/env python """ ============================================= Joint feature selection with multi-task Lasso ============================================= The multi-task lasso allows to fit multiple regression problems jointly enforcing the selected features to be the same accross tasks. This example simulates sequential measurements, each task is a time instant, and the relevant features vary in amplitude over time while being the same. The multi-task lasso imposes that features that are selected at one time point are select for all time point. This makes feature selection by the Lasso more stable. """ print __doc__ # Author: Alexandre Gramfort <[email protected]> # License: BSD Style. import pylab as pl import numpy as np from sklearn.linear_model import MultiTaskLasso, Lasso rng = np.random.RandomState(42) # Generate some 2D coefficients with sine waves with random frequency and phase n_samples, n_features, n_tasks = 100, 30, 40 n_relevant_features = 5 coef = np.zeros((n_tasks, n_features)) times = np.linspace(0, 2 * np.pi, n_tasks) for k in range(n_relevant_features): coef[:, k] = np.sin((1. + rng.randn(1)) * times + 3 * rng.randn(1)) X = rng.randn(n_samples, n_features) Y = np.dot(X, coef.T) + rng.randn(n_samples, n_tasks) coef_lasso_ = np.array([Lasso(alpha=0.5).fit(X, y).coef_ for y in Y.T]) coef_multi_task_lasso_ = MultiTaskLasso(alpha=1.).fit(X, Y).coef_ ############################################################################### # Plot support and time series fig = pl.figure(figsize=(8, 5)) pl.subplot(1, 2, 1) pl.spy(coef_lasso_) pl.xlabel('Feature') pl.ylabel('Time (or Task)') pl.text(10, 5, 'Lasso') pl.subplot(1, 2, 2) pl.spy(coef_multi_task_lasso_) pl.xlabel('Feature') pl.ylabel('Time (or Task)') pl.text(10, 5, 'MultiTaskLasso') fig.suptitle('Coefficient non-zero location') feature_to_plot = 0 pl.figure() pl.plot(coef[:, feature_to_plot], 'k', label='Ground truth') pl.plot(coef_lasso_[:, feature_to_plot], 'g', label='Lasso') pl.plot(coef_multi_task_lasso_[:, feature_to_plot], 'r', label='MultiTaskLasso') pl.legend(loc='upper center') pl.axis('tight') pl.ylim([-1.1, 1.1]) pl.show()
unlicense
cngo-github/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/pylab.py
70
10245
""" This is a procedural interface to the matplotlib object-oriented plotting library. The following plotting commands are provided; the majority have Matlab(TM) analogs and similar argument. _Plotting commands acorr - plot the autocorrelation function annotate - annotate something in the figure arrow - add an arrow to the axes axes - Create a new axes axhline - draw a horizontal line across axes axvline - draw a vertical line across axes axhspan - draw a horizontal bar across axes axvspan - draw a vertical bar across axes axis - Set or return the current axis limits bar - make a bar chart barh - a horizontal bar chart broken_barh - a set of horizontal bars with gaps box - set the axes frame on/off state boxplot - make a box and whisker plot cla - clear current axes clabel - label a contour plot clf - clear a figure window clim - adjust the color limits of the current image close - close a figure window colorbar - add a colorbar to the current figure cohere - make a plot of coherence contour - make a contour plot contourf - make a filled contour plot csd - make a plot of cross spectral density delaxes - delete an axes from the current figure draw - Force a redraw of the current figure errorbar - make an errorbar graph figlegend - make legend on the figure rather than the axes figimage - make a figure image figtext - add text in figure coords figure - create or change active figure fill - make filled polygons findobj - recursively find all objects matching some criteria gca - return the current axes gcf - return the current figure gci - get the current image, or None getp - get a handle graphics property grid - set whether gridding is on hist - make a histogram hold - set the axes hold state ioff - turn interaction mode off ion - turn interaction mode on isinteractive - return True if interaction mode is on imread - load image file into array imshow - plot image data ishold - return the hold state of the current axes legend - make an axes legend loglog - a log log plot matshow - display a matrix in a new figure preserving aspect pcolor - make a pseudocolor plot pcolormesh - make a pseudocolor plot using a quadrilateral mesh pie - make a pie chart plot - make a line plot plot_date - plot dates plotfile - plot column data from an ASCII tab/space/comma delimited file pie - pie charts polar - make a polar plot on a PolarAxes psd - make a plot of power spectral density quiver - make a direction field (arrows) plot rc - control the default params rgrids - customize the radial grids and labels for polar savefig - save the current figure scatter - make a scatter plot setp - set a handle graphics property semilogx - log x axis semilogy - log y axis show - show the figures specgram - a spectrogram plot spy - plot sparsity pattern using markers or image stem - make a stem plot subplot - make a subplot (numrows, numcols, axesnum) subplots_adjust - change the params controlling the subplot positions of current figure subplot_tool - launch the subplot configuration tool suptitle - add a figure title table - add a table to the plot text - add some text at location x,y to the current axes thetagrids - customize the radial theta grids and labels for polar title - add a title to the current axes xcorr - plot the autocorrelation function of x and y xlim - set/get the xlimits ylim - set/get the ylimits xticks - set/get the xticks yticks - set/get the yticks xlabel - add an xlabel to the current axes ylabel - add a ylabel to the current axes autumn - set the default colormap to autumn bone - set the default colormap to bone cool - set the default colormap to cool copper - set the default colormap to copper flag - set the default colormap to flag gray - set the default colormap to gray hot - set the default colormap to hot hsv - set the default colormap to hsv jet - set the default colormap to jet pink - set the default colormap to pink prism - set the default colormap to prism spring - set the default colormap to spring summer - set the default colormap to summer winter - set the default colormap to winter spectral - set the default colormap to spectral _Event handling connect - register an event handler disconnect - remove a connected event handler _Matrix commands cumprod - the cumulative product along a dimension cumsum - the cumulative sum along a dimension detrend - remove the mean or besdt fit line from an array diag - the k-th diagonal of matrix diff - the n-th differnce of an array eig - the eigenvalues and eigen vectors of v eye - a matrix where the k-th diagonal is ones, else zero find - return the indices where a condition is nonzero fliplr - flip the rows of a matrix up/down flipud - flip the columns of a matrix left/right linspace - a linear spaced vector of N values from min to max inclusive logspace - a log spaced vector of N values from min to max inclusive meshgrid - repeat x and y to make regular matrices ones - an array of ones rand - an array from the uniform distribution [0,1] randn - an array from the normal distribution rot90 - rotate matrix k*90 degress counterclockwise squeeze - squeeze an array removing any dimensions of length 1 tri - a triangular matrix tril - a lower triangular matrix triu - an upper triangular matrix vander - the Vandermonde matrix of vector x svd - singular value decomposition zeros - a matrix of zeros _Probability levypdf - The levy probability density function from the char. func. normpdf - The Gaussian probability density function rand - random numbers from the uniform distribution randn - random numbers from the normal distribution _Statistics corrcoef - correlation coefficient cov - covariance matrix amax - the maximum along dimension m mean - the mean along dimension m median - the median along dimension m amin - the minimum along dimension m norm - the norm of vector x prod - the product along dimension m ptp - the max-min along dimension m std - the standard deviation along dimension m asum - the sum along dimension m _Time series analysis bartlett - M-point Bartlett window blackman - M-point Blackman window cohere - the coherence using average periodiogram csd - the cross spectral density using average periodiogram fft - the fast Fourier transform of vector x hamming - M-point Hamming window hanning - M-point Hanning window hist - compute the histogram of x kaiser - M length Kaiser window psd - the power spectral density using average periodiogram sinc - the sinc function of array x _Dates date2num - convert python datetimes to numeric representation drange - create an array of numbers for date plots num2date - convert numeric type (float days since 0001) to datetime _Other angle - the angle of a complex array griddata - interpolate irregularly distributed data to a regular grid load - load ASCII data into array polyfit - fit x, y to an n-th order polynomial polyval - evaluate an n-th order polynomial roots - the roots of the polynomial coefficients in p save - save an array to an ASCII file trapz - trapezoidal integration __end """ import sys, warnings from cbook import flatten, is_string_like, exception_to_str, popd, \ silent_list, iterable, dedent import numpy as np from numpy import ma from matplotlib import mpl # pulls in most modules from matplotlib.dates import date2num, num2date,\ datestr2num, strpdate2num, drange,\ epoch2num, num2epoch, mx2num,\ DateFormatter, IndexDateFormatter, DateLocator,\ RRuleLocator, YearLocator, MonthLocator, WeekdayLocator,\ DayLocator, HourLocator, MinuteLocator, SecondLocator,\ rrule, MO, TU, WE, TH, FR, SA, SU, YEARLY, MONTHLY,\ WEEKLY, DAILY, HOURLY, MINUTELY, SECONDLY, relativedelta import matplotlib.dates # bring all the symbols in so folks can import them from # pylab in one fell swoop from matplotlib.mlab import window_hanning, window_none,\ conv, detrend, detrend_mean, detrend_none, detrend_linear,\ polyfit, polyval, entropy, normpdf, griddata,\ levypdf, find, trapz, prepca, rem, norm, orth, rank,\ sqrtm, prctile, center_matrix, rk4, exp_safe, amap,\ sum_flat, mean_flat, rms_flat, l1norm, l2norm, norm, frange,\ diagonal_matrix, base_repr, binary_repr, log2, ispower2,\ bivariate_normal, load, save from matplotlib.mlab import stineman_interp, slopes, \ stineman_interp, inside_poly, poly_below, poly_between, \ is_closed_polygon, path_length, distances_along_curve, vector_lengths from numpy import * from numpy.fft import * from numpy.random import * from numpy.linalg import * from matplotlib.mlab import window_hanning, window_none, conv, detrend, demean, \ detrend_mean, detrend_none, detrend_linear, entropy, normpdf, levypdf, \ find, longest_contiguous_ones, longest_ones, prepca, prctile, prctile_rank, \ center_matrix, rk4, bivariate_normal, get_xyz_where, get_sparse_matrix, dist, \ dist_point_to_segment, segments_intersect, fftsurr, liaupunov, movavg, \ save, load, exp_safe, \ amap, rms_flat, l1norm, l2norm, norm_flat, frange, diagonal_matrix, identity, \ base_repr, binary_repr, log2, ispower2, fromfunction_kw, rem, norm, orth, rank, sqrtm,\ mfuncC, approx_real, rec_append_field, rec_drop_fields, rec_join, csv2rec, rec2csv, isvector from matplotlib.pyplot import * # provide the recommended module abbrevs in the pylab namespace import matplotlib.pyplot as plt import numpy as np
agpl-3.0
MAndelkovic/pybinding
docs/advanced/kwant_example.py
1
5660
#! /usr/bin/env python3 """Transport through a barrier The `main()` function build identical models in pybinding and kwant and then calculates the transmission using `kwant.smatrix`. The results are plotted to verify that they are identical. The `measure_and_plot()` function compares transport calculation time for various system sizes. Modify the `__name__ == '__main__'` section at the bottom to run this benchmark. """ import math import numpy as np import matplotlib.pyplot as plt import kwant import pybinding as pb from pybinding.repository import graphene pb.pltutils.use_style() pb.pltutils.set_palette("Set1", start=3) def measure_pybinding(width, length, electron_energy, barrier_heights, plot=False): def potential_barrier(v0): @pb.onsite_energy_modifier(is_double=True) def function(energy, x): energy[np.logical_and(-length / 4 <= x, x <= length / 4)] = v0 return energy return function def make_model(v0=0): model = pb.Model( graphene.monolayer().with_min_neighbors(1), pb.rectangle(length, width), potential_barrier(v0), ) model.attach_lead(-1, pb.line([-length/2, -width/2], [-length/2, width/2])) model.attach_lead(+1, pb.line([ length/2, -width/2], [ length/2, width/2])) return model if plot: make_model().plot() plt.show() transmission = [] for v in barrier_heights: smatrix = kwant.smatrix(make_model(v).tokwant(), energy=electron_energy) transmission.append(smatrix.transmission(1, 0)) return transmission def measure_kwant(width, length, electron_energy, barrier_heights, plot=False): def make_system(): t = 2.8 a_cc = 0.142 a = a_cc * math.sqrt(3) graphene_lattice = kwant.lattice.general([(a, 0), (a / 2, a / 2 * math.sqrt(3))], [(0, -a_cc / 2), (0, a_cc / 2)]) def shape(pos): x, y = pos return -length / 2 <= x <= length / 2 and -width / 2 <= y <= width / 2 def onsite(site, v0): x, _ = site.pos return v0 if -length / 4 <= x <= length / 4 else 0 builder = kwant.Builder() builder[graphene_lattice.shape(shape, (0, 0))] = onsite builder[graphene_lattice.neighbors()] = -t def lead_shape(pos): x, y = pos return -width / 2 <= y <= width / 2 lead = kwant.Builder(kwant.TranslationalSymmetry(graphene_lattice.vec((-1, 0)))) lead[graphene_lattice.shape(lead_shape, (0, 0))] = 0 lead[graphene_lattice.neighbors()] = -t builder.attach_lead(lead) builder.attach_lead(lead.reversed()) return builder.finalized() system = make_system() if plot: kwant.plot(system) transmission = [] for v in barrier_heights: smatrix = kwant.smatrix(system, energy=electron_energy, args=[v]) transmission.append(smatrix.transmission(1, 0)) return transmission def main(): """Build the same model using pybinding and kwant and verify that the results are identical""" width, length = 15, 15 electron_energy = 0.25 barrier_heights = np.linspace(0, 0.5, 100) with pb.utils.timed("pybinding:"): pb_transmission = measure_pybinding(width, length, electron_energy, barrier_heights) with pb.utils.timed("kwant:"): kwant_transmission = measure_kwant(width, length, electron_energy, barrier_heights) plt.plot(barrier_heights, pb_transmission, lw=1, label="pybinding") plt.plot(barrier_heights, kwant_transmission, lw=2.5, ls="--", label="kwant") plt.ylabel("transmission") plt.xlabel("barrier height (eV)") plt.axvline(electron_energy, 0, 0.5, color="gray", ls=":") plt.annotate("electron energy\n{} eV".format(electron_energy), (electron_energy, 0.52), xycoords=("data", "axes fraction"), ha="center") pb.pltutils.despine() pb.pltutils.legend() plt.show() def plot_time(sizes, times, label): plt.plot(sizes, times, label=label, marker='o', markersize=5, lw=2, zorder=10) plt.grid(True, which='major', color='gray', ls=':', alpha=0.5) plt.title("transmission calculation time") plt.xlabel("system size (nm)") plt.ylabel("compute time (seconds)") plt.xlim(0.8 * min(sizes), 1.05 * max(sizes)) pb.pltutils.despine() pb.pltutils.legend(loc='upper left', reverse=True) def measure_and_plot(sizes): """Measure transport calculation time The list of `sizes` specifies the dimensions of the scattering region in nanometers. """ electron_energy = 0.25 barrier_heights = np.linspace(0, 0.5, 100) print("pybinding:") pb_times = [] for size in sizes: with pb.utils.timed() as time: measure_pybinding(size, size, electron_energy, barrier_heights) print(" {:7} <-> size = {} nm".format(str(time), size)) pb_times.append(time.elapsed) print("\nkwant:") kwant_times = [] for size in sizes: with pb.utils.timed() as time: measure_kwant(size, size, electron_energy, barrier_heights) print(" {:7} <-> size = {} nm".format(str(time), size)) kwant_times.append(time.elapsed) plt.figure(figsize=(3, 2.4)) plot_time(sizes, pb_times, label="pybinding") plot_time(sizes, kwant_times, label="kwant") filename = "kwant_example_results.png" plt.savefig(filename) print("\nDone! Results saved to file: {}".format(filename)) if __name__ == '__main__': # measure_and_plot(sizes=[5, 10, 15, 20, 25, 30]) main()
bsd-2-clause
lukebarnard1/bokeh
bokeh/charts/builder/dot_builder.py
43
6160
"""This is the Bokeh charts interface. It gives you a high level API to build complex plot is a simple way. This is the Dot class which lets you build your Dot charts just passing the arguments to the Chart class and calling the proper functions. """ #----------------------------------------------------------------------------- # Copyright (c) 2012 - 2014, Continuum Analytics, Inc. All rights reserved. # # Powered by the Bokeh Development Team. # # The full license is in the file LICENSE.txt, distributed with this software. #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- from __future__ import absolute_import import numpy as np try: import pandas as pd except ImportError: pd = None from ..utils import chunk, cycle_colors, make_scatter from .._builder import Builder, create_and_build from ...models import ColumnDataSource, FactorRange, GlyphRenderer, Range1d from ...models.glyphs import Segment from ...properties import Any, Bool, Either, List def Dot(values, cat=None, stem=True, xscale="categorical", yscale="linear", xgrid=False, ygrid=True, **kws): """ Create a dot chart using :class:`DotBuilder <bokeh.charts.builder.dot_builder.DotBuilder>` to render the geometry from values and cat. Args: values (iterable): iterable 2d representing the data series values matrix. cat (list or bool, optional): list of string representing the categories. Defaults to None. In addition the the parameters specific to this chart, :ref:`userguide_charts_generic_arguments` are also accepted as keyword parameters. Returns: a new :class:`Chart <bokeh.charts.Chart>` Examples: .. bokeh-plot:: :source-position: above from collections import OrderedDict from bokeh.charts import Dot, output_file, show # dict, OrderedDict, lists, arrays and DataFrames are valid inputs xyvalues = OrderedDict() xyvalues['python']=[2, 5] xyvalues['pypy']=[12, 40] xyvalues['jython']=[22, 30] dot = Dot(xyvalues, ['cpu1', 'cpu2'], title='dots') output_file('dot.html') show(dot) """ return create_and_build( DotBuilder, values, cat=cat, stem=stem, xscale=xscale, yscale=yscale, xgrid=xgrid, ygrid=ygrid, **kws ) #----------------------------------------------------------------------------- # Classes and functions #----------------------------------------------------------------------------- class DotBuilder(Builder): """This is the Dot class and it is in charge of plotting Dot chart in an easy and intuitive way. Essentially, it provides a way to ingest the data, make the proper calculations and push the references into a source object. We additionally make calculations for the ranges. And finally add the needed glyphs (segments and circles) taking the references from the source. """ cat = Either(Bool, List(Any), help=""" List of string representing the categories. (Defaults to None.) """) stem = Bool(True, help=""" Whether to draw a stem from each do to the axis. """) def _process_data(self): """Take the Dot data from the input **value. It calculates the chart properties accordingly. Then build a dict containing references to all the calculated points to be used by the rect glyph inside the ``_yield_renderers`` method. """ if not self.cat: self.cat = [str(x) for x in self._values.index] self._data = dict(cat=self.cat, zero=np.zeros(len(self.cat))) # list to save all the attributes we are going to create # list to save all the groups available in the incoming input # Grouping self._groups.extend(self._values.keys()) step = np.linspace(0, 1.0, len(self._values.keys()) + 1, endpoint=False) for i, (val, values) in enumerate(self._values.items()): # original y value self.set_and_get("", val, values) # x value cats = [c + ":" + str(step[i + 1]) for c in self.cat] self.set_and_get("cat", val, cats) # zeros self.set_and_get("z_", val, np.zeros(len(values))) # segment top y value self.set_and_get("seg_top_", val, values) def _set_sources(self): """Push the Dot data into the ColumnDataSource and calculate the proper ranges. """ self._source = ColumnDataSource(self._data) self.x_range = FactorRange(factors=self._source.data["cat"]) cat = [i for i in self._attr if not i.startswith(("cat",))] end = 1.1 * max(max(self._data[i]) for i in cat) self.y_range = Range1d(start=0, end=end) def _yield_renderers(self): """Use the rect glyphs to display the bars. Takes reference points from data loaded at the source and renders circle glyphs (and segments) on the related coordinates. """ self._tuples = list(chunk(self._attr, 4)) colors = cycle_colors(self._tuples, self.palette) # quartet elements are: [data, cat, zeros, segment_top] for i, quartet in enumerate(self._tuples): # draw segment first so when scatter will be place on top of it # and it won't show segment chunk on top of the circle if self.stem: glyph = Segment( x0=quartet[1], y0=quartet[2], x1=quartet[1], y1=quartet[3], line_color="black", line_width=2 ) yield GlyphRenderer(data_source=self._source, glyph=glyph) renderer = make_scatter( self._source, quartet[1], quartet[0], 'circle', colors[i - 1], line_color='black', size=15, fill_alpha=1., ) self._legends.append((self._groups[i], [renderer])) yield renderer
bsd-3-clause
jniediek/mne-python
tutorials/plot_modifying_data_inplace.py
4
2936
""" .. _tut_modifying_data_inplace: Modifying data in-place ======================= """ from __future__ import print_function import mne import os.path as op import numpy as np from matplotlib import pyplot as plt ############################################################################### # It is often necessary to modify data once you have loaded it into memory. # Common examples of this are signal processing, feature extraction, and data # cleaning. Some functionality is pre-built into MNE-python, though it is also # possible to apply an arbitrary function to the data. # Load an example dataset, the preload flag loads the data into memory now data_path = op.join(mne.datasets.sample.data_path(), 'MEG', 'sample', 'sample_audvis_raw.fif') raw = mne.io.read_raw_fif(data_path, preload=True, add_eeg_ref=False) raw = raw.crop(0, 10) print(raw) ############################################################################### # Signal processing # ----------------- # # Most MNE objects have in-built methods for filtering: filt_bands = [(1, 3), (3, 10), (10, 20), (20, 60)] f, (ax, ax2) = plt.subplots(2, 1, figsize=(15, 10)) _ = ax.plot(raw._data[0]) for fband in filt_bands: raw_filt = raw.copy() raw_filt.filter(*fband, h_trans_bandwidth='auto', l_trans_bandwidth='auto', filter_length='auto', phase='zero') _ = ax2.plot(raw_filt[0][0][0]) ax2.legend(filt_bands) ax.set_title('Raw data') ax2.set_title('Band-pass filtered data') ############################################################################### # In addition, there are functions for applying the Hilbert transform, which is # useful to calculate phase / amplitude of your signal. # Filter signal with a fairly steep filter, then take hilbert transform raw_band = raw.copy() raw_band.filter(12, 18, l_trans_bandwidth=2., h_trans_bandwidth=2., filter_length='auto', phase='zero') raw_hilb = raw_band.copy() hilb_picks = mne.pick_types(raw_band.info, meg=False, eeg=True) raw_hilb.apply_hilbert(hilb_picks) print(raw_hilb._data.dtype) ############################################################################### # Finally, it is possible to apply arbitrary functions to your data to do # what you want. Here we will use this to take the amplitude and phase of # the hilbert transformed data. # # .. note:: You can also use ``amplitude=True`` in the call to # :meth:`mne.io.Raw.apply_hilbert` to do this automatically. # # Take the amplitude and phase raw_amp = raw_hilb.copy() raw_amp.apply_function(np.abs, hilb_picks, float, 1) raw_phase = raw_hilb.copy() raw_phase.apply_function(np.angle, hilb_picks, float, 1) f, (a1, a2) = plt.subplots(2, 1, figsize=(15, 10)) a1.plot(raw_band._data[hilb_picks[0]]) a1.plot(raw_amp._data[hilb_picks[0]]) a2.plot(raw_phase._data[hilb_picks[0]]) a1.set_title('Amplitude of frequency band') a2.set_title('Phase of frequency band')
bsd-3-clause
0asa/scikit-learn
examples/cluster/plot_ward_structured_vs_unstructured.py
29
3349
""" =========================================================== Hierarchical clustering: structured vs unstructured ward =========================================================== Example builds a swiss roll dataset and runs hierarchical clustering on their position. For more information, see :ref:`hierarchical_clustering`. In a first step, the hierarchical clustering is performed without connectivity constraints on the structure and is solely based on distance, whereas in a second step the clustering is restricted to the k-Nearest Neighbors graph: it's a hierarchical clustering with structure prior. Some of the clusters learned without connectivity constraints do not respect the structure of the swiss roll and extend across different folds of the manifolds. On the opposite, when opposing connectivity constraints, the clusters form a nice parcellation of the swiss roll. """ # Authors : Vincent Michel, 2010 # Alexandre Gramfort, 2010 # Gael Varoquaux, 2010 # License: BSD 3 clause print(__doc__) import time as time import numpy as np import matplotlib.pyplot as plt import mpl_toolkits.mplot3d.axes3d as p3 from sklearn.cluster import AgglomerativeClustering from sklearn.datasets.samples_generator import make_swiss_roll ############################################################################### # Generate data (swiss roll dataset) n_samples = 1500 noise = 0.05 X, _ = make_swiss_roll(n_samples, noise) # Make it thinner X[:, 1] *= .5 ############################################################################### # Compute clustering print("Compute unstructured hierarchical clustering...") st = time.time() ward = AgglomerativeClustering(n_clusters=6, linkage='ward').fit(X) elapsed_time = time.time() - st label = ward.labels_ print("Elapsed time: %.2fs" % elapsed_time) print("Number of points: %i" % label.size) ############################################################################### # Plot result fig = plt.figure() ax = p3.Axes3D(fig) ax.view_init(7, -80) for l in np.unique(label): ax.plot3D(X[label == l, 0], X[label == l, 1], X[label == l, 2], 'o', color=plt.cm.jet(np.float(l) / np.max(label + 1))) plt.title('Without connectivity constraints (time %.2fs)' % elapsed_time) ############################################################################### # Define the structure A of the data. Here a 10 nearest neighbors from sklearn.neighbors import kneighbors_graph connectivity = kneighbors_graph(X, n_neighbors=10) ############################################################################### # Compute clustering print("Compute structured hierarchical clustering...") st = time.time() ward = AgglomerativeClustering(n_clusters=6, connectivity=connectivity, linkage='ward').fit(X) elapsed_time = time.time() - st label = ward.labels_ print("Elapsed time: %.2fs" % elapsed_time) print("Number of points: %i" % label.size) ############################################################################### # Plot result fig = plt.figure() ax = p3.Axes3D(fig) ax.view_init(7, -80) for l in np.unique(label): ax.plot3D(X[label == l, 0], X[label == l, 1], X[label == l, 2], 'o', color=plt.cm.jet(float(l) / np.max(label + 1))) plt.title('With connectivity constraints (time %.2fs)' % elapsed_time) plt.show()
bsd-3-clause
OshynSong/scikit-learn
examples/ensemble/plot_forest_importances.py
241
1761
""" ========================================= Feature importances with forests of trees ========================================= This examples shows the use of forests of trees to evaluate the importance of features on an artificial classification task. The red bars are the feature importances of the forest, along with their inter-trees variability. As expected, the plot suggests that 3 features are informative, while the remaining are not. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import make_classification from sklearn.ensemble import ExtraTreesClassifier # Build a classification task using 3 informative features X, y = make_classification(n_samples=1000, n_features=10, n_informative=3, n_redundant=0, n_repeated=0, n_classes=2, random_state=0, shuffle=False) # Build a forest and compute the feature importances forest = ExtraTreesClassifier(n_estimators=250, random_state=0) forest.fit(X, y) importances = forest.feature_importances_ std = np.std([tree.feature_importances_ for tree in forest.estimators_], axis=0) indices = np.argsort(importances)[::-1] # Print the feature ranking print("Feature ranking:") for f in range(10): print("%d. feature %d (%f)" % (f + 1, indices[f], importances[indices[f]])) # Plot the feature importances of the forest plt.figure() plt.title("Feature importances") plt.bar(range(10), importances[indices], color="r", yerr=std[indices], align="center") plt.xticks(range(10), indices) plt.xlim([-1, 10]) plt.show()
bsd-3-clause
lbishal/scikit-learn
sklearn/tests/test_calibration.py
62
12288
# Authors: Alexandre Gramfort <[email protected]> # License: BSD 3 clause import numpy as np from scipy import sparse from sklearn.utils.testing import (assert_array_almost_equal, assert_equal, assert_greater, assert_almost_equal, assert_greater_equal, assert_array_equal, assert_raises, ignore_warnings, assert_warns_message) from sklearn.datasets import make_classification, make_blobs from sklearn.naive_bayes import MultinomialNB from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor from sklearn.svm import LinearSVC from sklearn.linear_model import Ridge from sklearn.pipeline import Pipeline from sklearn.preprocessing import Imputer from sklearn.metrics import brier_score_loss, log_loss from sklearn.calibration import CalibratedClassifierCV from sklearn.calibration import _sigmoid_calibration, _SigmoidCalibration from sklearn.calibration import calibration_curve @ignore_warnings def test_calibration(): """Test calibration objects with isotonic and sigmoid""" n_samples = 100 X, y = make_classification(n_samples=2 * n_samples, n_features=6, random_state=42) sample_weight = np.random.RandomState(seed=42).uniform(size=y.size) X -= X.min() # MultinomialNB only allows positive X # split train and test X_train, y_train, sw_train = \ X[:n_samples], y[:n_samples], sample_weight[:n_samples] X_test, y_test = X[n_samples:], y[n_samples:] # Naive-Bayes clf = MultinomialNB().fit(X_train, y_train, sample_weight=sw_train) prob_pos_clf = clf.predict_proba(X_test)[:, 1] pc_clf = CalibratedClassifierCV(clf, cv=y.size + 1) assert_raises(ValueError, pc_clf.fit, X, y) # Naive Bayes with calibration for this_X_train, this_X_test in [(X_train, X_test), (sparse.csr_matrix(X_train), sparse.csr_matrix(X_test))]: for method in ['isotonic', 'sigmoid']: pc_clf = CalibratedClassifierCV(clf, method=method, cv=2) # Note that this fit overwrites the fit on the entire training # set pc_clf.fit(this_X_train, y_train, sample_weight=sw_train) prob_pos_pc_clf = pc_clf.predict_proba(this_X_test)[:, 1] # Check that brier score has improved after calibration assert_greater(brier_score_loss(y_test, prob_pos_clf), brier_score_loss(y_test, prob_pos_pc_clf)) # Check invariance against relabeling [0, 1] -> [1, 2] pc_clf.fit(this_X_train, y_train + 1, sample_weight=sw_train) prob_pos_pc_clf_relabeled = pc_clf.predict_proba(this_X_test)[:, 1] assert_array_almost_equal(prob_pos_pc_clf, prob_pos_pc_clf_relabeled) # Check invariance against relabeling [0, 1] -> [-1, 1] pc_clf.fit(this_X_train, 2 * y_train - 1, sample_weight=sw_train) prob_pos_pc_clf_relabeled = pc_clf.predict_proba(this_X_test)[:, 1] assert_array_almost_equal(prob_pos_pc_clf, prob_pos_pc_clf_relabeled) # Check invariance against relabeling [0, 1] -> [1, 0] pc_clf.fit(this_X_train, (y_train + 1) % 2, sample_weight=sw_train) prob_pos_pc_clf_relabeled = \ pc_clf.predict_proba(this_X_test)[:, 1] if method == "sigmoid": assert_array_almost_equal(prob_pos_pc_clf, 1 - prob_pos_pc_clf_relabeled) else: # Isotonic calibration is not invariant against relabeling # but should improve in both cases assert_greater(brier_score_loss(y_test, prob_pos_clf), brier_score_loss((y_test + 1) % 2, prob_pos_pc_clf_relabeled)) # check that calibration can also deal with regressors that have # a decision_function clf_base_regressor = CalibratedClassifierCV(Ridge()) clf_base_regressor.fit(X_train, y_train) clf_base_regressor.predict(X_test) # Check failure cases: # only "isotonic" and "sigmoid" should be accepted as methods clf_invalid_method = CalibratedClassifierCV(clf, method="foo") assert_raises(ValueError, clf_invalid_method.fit, X_train, y_train) # base-estimators should provide either decision_function or # predict_proba (most regressors, for instance, should fail) clf_base_regressor = \ CalibratedClassifierCV(RandomForestRegressor(), method="sigmoid") assert_raises(RuntimeError, clf_base_regressor.fit, X_train, y_train) def test_sample_weight_warning(): n_samples = 100 X, y = make_classification(n_samples=2 * n_samples, n_features=6, random_state=42) sample_weight = np.random.RandomState(seed=42).uniform(size=len(y)) X_train, y_train, sw_train = \ X[:n_samples], y[:n_samples], sample_weight[:n_samples] X_test = X[n_samples:] for method in ['sigmoid', 'isotonic']: base_estimator = LinearSVC(random_state=42) calibrated_clf = CalibratedClassifierCV(base_estimator, method=method) # LinearSVC does not currently support sample weights but they # can still be used for the calibration step (with a warning) msg = "LinearSVC does not support sample_weight." assert_warns_message( UserWarning, msg, calibrated_clf.fit, X_train, y_train, sample_weight=sw_train) probs_with_sw = calibrated_clf.predict_proba(X_test) # As the weights are used for the calibration, they should still yield # a different predictions calibrated_clf.fit(X_train, y_train) probs_without_sw = calibrated_clf.predict_proba(X_test) diff = np.linalg.norm(probs_with_sw - probs_without_sw) assert_greater(diff, 0.1) def test_calibration_multiclass(): """Test calibration for multiclass """ # test multi-class setting with classifier that implements # only decision function clf = LinearSVC() X, y_idx = make_blobs(n_samples=100, n_features=2, random_state=42, centers=3, cluster_std=3.0) # Use categorical labels to check that CalibratedClassifierCV supports # them correctly target_names = np.array(['a', 'b', 'c']) y = target_names[y_idx] X_train, y_train = X[::2], y[::2] X_test, y_test = X[1::2], y[1::2] clf.fit(X_train, y_train) for method in ['isotonic', 'sigmoid']: cal_clf = CalibratedClassifierCV(clf, method=method, cv=2) cal_clf.fit(X_train, y_train) probas = cal_clf.predict_proba(X_test) assert_array_almost_equal(np.sum(probas, axis=1), np.ones(len(X_test))) # Check that log-loss of calibrated classifier is smaller than # log-loss of naively turned OvR decision function to probabilities # via softmax def softmax(y_pred): e = np.exp(-y_pred) return e / e.sum(axis=1).reshape(-1, 1) uncalibrated_log_loss = \ log_loss(y_test, softmax(clf.decision_function(X_test))) calibrated_log_loss = log_loss(y_test, probas) assert_greater_equal(uncalibrated_log_loss, calibrated_log_loss) # Test that calibration of a multiclass classifier decreases log-loss # for RandomForestClassifier X, y = make_blobs(n_samples=100, n_features=2, random_state=42, cluster_std=3.0) X_train, y_train = X[::2], y[::2] X_test, y_test = X[1::2], y[1::2] clf = RandomForestClassifier(n_estimators=10, random_state=42) clf.fit(X_train, y_train) clf_probs = clf.predict_proba(X_test) loss = log_loss(y_test, clf_probs) for method in ['isotonic', 'sigmoid']: cal_clf = CalibratedClassifierCV(clf, method=method, cv=3) cal_clf.fit(X_train, y_train) cal_clf_probs = cal_clf.predict_proba(X_test) cal_loss = log_loss(y_test, cal_clf_probs) assert_greater(loss, cal_loss) def test_calibration_prefit(): """Test calibration for prefitted classifiers""" n_samples = 50 X, y = make_classification(n_samples=3 * n_samples, n_features=6, random_state=42) sample_weight = np.random.RandomState(seed=42).uniform(size=y.size) X -= X.min() # MultinomialNB only allows positive X # split train and test X_train, y_train, sw_train = \ X[:n_samples], y[:n_samples], sample_weight[:n_samples] X_calib, y_calib, sw_calib = \ X[n_samples:2 * n_samples], y[n_samples:2 * n_samples], \ sample_weight[n_samples:2 * n_samples] X_test, y_test = X[2 * n_samples:], y[2 * n_samples:] # Naive-Bayes clf = MultinomialNB() clf.fit(X_train, y_train, sw_train) prob_pos_clf = clf.predict_proba(X_test)[:, 1] # Naive Bayes with calibration for this_X_calib, this_X_test in [(X_calib, X_test), (sparse.csr_matrix(X_calib), sparse.csr_matrix(X_test))]: for method in ['isotonic', 'sigmoid']: pc_clf = CalibratedClassifierCV(clf, method=method, cv="prefit") for sw in [sw_calib, None]: pc_clf.fit(this_X_calib, y_calib, sample_weight=sw) y_prob = pc_clf.predict_proba(this_X_test) y_pred = pc_clf.predict(this_X_test) prob_pos_pc_clf = y_prob[:, 1] assert_array_equal(y_pred, np.array([0, 1])[np.argmax(y_prob, axis=1)]) assert_greater(brier_score_loss(y_test, prob_pos_clf), brier_score_loss(y_test, prob_pos_pc_clf)) def test_sigmoid_calibration(): """Test calibration values with Platt sigmoid model""" exF = np.array([5, -4, 1.0]) exY = np.array([1, -1, -1]) # computed from my python port of the C++ code in LibSVM AB_lin_libsvm = np.array([-0.20261354391187855, 0.65236314980010512]) assert_array_almost_equal(AB_lin_libsvm, _sigmoid_calibration(exF, exY), 3) lin_prob = 1. / (1. + np.exp(AB_lin_libsvm[0] * exF + AB_lin_libsvm[1])) sk_prob = _SigmoidCalibration().fit(exF, exY).predict(exF) assert_array_almost_equal(lin_prob, sk_prob, 6) # check that _SigmoidCalibration().fit only accepts 1d array or 2d column # arrays assert_raises(ValueError, _SigmoidCalibration().fit, np.vstack((exF, exF)), exY) def test_calibration_curve(): """Check calibration_curve function""" y_true = np.array([0, 0, 0, 1, 1, 1]) y_pred = np.array([0., 0.1, 0.2, 0.8, 0.9, 1.]) prob_true, prob_pred = calibration_curve(y_true, y_pred, n_bins=2) prob_true_unnormalized, prob_pred_unnormalized = \ calibration_curve(y_true, y_pred * 2, n_bins=2, normalize=True) assert_equal(len(prob_true), len(prob_pred)) assert_equal(len(prob_true), 2) assert_almost_equal(prob_true, [0, 1]) assert_almost_equal(prob_pred, [0.1, 0.9]) assert_almost_equal(prob_true, prob_true_unnormalized) assert_almost_equal(prob_pred, prob_pred_unnormalized) # probabilities outside [0, 1] should not be accepted when normalize # is set to False assert_raises(ValueError, calibration_curve, [1.1], [-0.1], normalize=False) def test_calibration_nan_imputer(): """Test that calibration can accept nan""" X, y = make_classification(n_samples=10, n_features=2, n_informative=2, n_redundant=0, random_state=42) X[0, 0] = np.nan clf = Pipeline( [('imputer', Imputer()), ('rf', RandomForestClassifier(n_estimators=1))]) clf_c = CalibratedClassifierCV(clf, cv=2, method='isotonic') clf_c.fit(X, y) clf_c.predict(X)
bsd-3-clause
eragonruan/text-detection-ctpn
utils/dataset/data_provider.py
1
3253
# encoding:utf-8 import os import time import cv2 import matplotlib.pyplot as plt import numpy as np from utils.dataset.data_util import GeneratorEnqueuer DATA_FOLDER = "data/dataset/mlt/" def get_training_data(): img_files = [] exts = ['jpg', 'png', 'jpeg', 'JPG'] for parent, dirnames, filenames in os.walk(os.path.join(DATA_FOLDER, "image")): for filename in filenames: for ext in exts: if filename.endswith(ext): img_files.append(os.path.join(parent, filename)) break print('Find {} images'.format(len(img_files))) return img_files def load_annoataion(p): bbox = [] with open(p, "r") as f: lines = f.readlines() for line in lines: line = line.strip().split(",") x_min, y_min, x_max, y_max = map(int, line) bbox.append([x_min, y_min, x_max, y_max, 1]) return bbox def generator(vis=False): image_list = np.array(get_training_data()) print('{} training images in {}'.format(image_list.shape[0], DATA_FOLDER)) index = np.arange(0, image_list.shape[0]) while True: np.random.shuffle(index) for i in index: try: im_fn = image_list[i] im = cv2.imread(im_fn) h, w, c = im.shape im_info = np.array([h, w, c]).reshape([1, 3]) _, fn = os.path.split(im_fn) fn, _ = os.path.splitext(fn) txt_fn = os.path.join(DATA_FOLDER, "label", fn + '.txt') if not os.path.exists(txt_fn): print("Ground truth for image {} not exist!".format(im_fn)) continue bbox = load_annoataion(txt_fn) if len(bbox) == 0: print("Ground truth for image {} empty!".format(im_fn)) continue if vis: for p in bbox: cv2.rectangle(im, (p[0], p[1]), (p[2], p[3]), color=(0, 0, 255), thickness=1) fig, axs = plt.subplots(1, 1, figsize=(30, 30)) axs.imshow(im[:, :, ::-1]) axs.set_xticks([]) axs.set_yticks([]) plt.tight_layout() plt.show() plt.close() yield [im], bbox, im_info except Exception as e: print(e) continue def get_batch(num_workers, **kwargs): try: enqueuer = GeneratorEnqueuer(generator(**kwargs), use_multiprocessing=True) enqueuer.start(max_queue_size=24, workers=num_workers) generator_output = None while True: while enqueuer.is_running(): if not enqueuer.queue.empty(): generator_output = enqueuer.queue.get() break else: time.sleep(0.01) yield generator_output generator_output = None finally: if enqueuer is not None: enqueuer.stop() if __name__ == '__main__': gen = get_batch(num_workers=2, vis=True) while True: image, bbox, im_info = next(gen) print('done')
mit
kenshay/ImageScript
ProgramData/SystemFiles/Python/Lib/site-packages/pandas/tests/test_msgpack/test_limits.py
9
2700
#!/usr/bin/env python # coding: utf-8 from __future__ import (absolute_import, division, print_function, unicode_literals) import pandas.util.testing as tm from pandas.msgpack import packb, unpackb, Packer, Unpacker, ExtType class TestLimits(tm.TestCase): def test_integer(self): x = -(2 ** 63) assert unpackb(packb(x)) == x self.assertRaises((OverflowError, ValueError), packb, x - 1) x = 2 ** 64 - 1 assert unpackb(packb(x)) == x self.assertRaises((OverflowError, ValueError), packb, x + 1) def test_array_header(self): packer = Packer() packer.pack_array_header(2 ** 32 - 1) self.assertRaises((OverflowError, ValueError), packer.pack_array_header, 2 ** 32) def test_map_header(self): packer = Packer() packer.pack_map_header(2 ** 32 - 1) self.assertRaises((OverflowError, ValueError), packer.pack_array_header, 2 ** 32) def test_max_str_len(self): d = 'x' * 3 packed = packb(d) unpacker = Unpacker(max_str_len=3, encoding='utf-8') unpacker.feed(packed) assert unpacker.unpack() == d unpacker = Unpacker(max_str_len=2, encoding='utf-8') unpacker.feed(packed) self.assertRaises(ValueError, unpacker.unpack) def test_max_bin_len(self): d = b'x' * 3 packed = packb(d, use_bin_type=True) unpacker = Unpacker(max_bin_len=3) unpacker.feed(packed) assert unpacker.unpack() == d unpacker = Unpacker(max_bin_len=2) unpacker.feed(packed) self.assertRaises(ValueError, unpacker.unpack) def test_max_array_len(self): d = [1, 2, 3] packed = packb(d) unpacker = Unpacker(max_array_len=3) unpacker.feed(packed) assert unpacker.unpack() == d unpacker = Unpacker(max_array_len=2) unpacker.feed(packed) self.assertRaises(ValueError, unpacker.unpack) def test_max_map_len(self): d = {1: 2, 3: 4, 5: 6} packed = packb(d) unpacker = Unpacker(max_map_len=3) unpacker.feed(packed) assert unpacker.unpack() == d unpacker = Unpacker(max_map_len=2) unpacker.feed(packed) self.assertRaises(ValueError, unpacker.unpack) def test_max_ext_len(self): d = ExtType(42, b"abc") packed = packb(d) unpacker = Unpacker(max_ext_len=3) unpacker.feed(packed) assert unpacker.unpack() == d unpacker = Unpacker(max_ext_len=2) unpacker.feed(packed) self.assertRaises(ValueError, unpacker.unpack)
gpl-3.0
cybernet14/scikit-learn
examples/svm/plot_separating_hyperplane_unbalanced.py
329
1850
""" ================================================= SVM: Separating hyperplane for unbalanced classes ================================================= Find the optimal separating hyperplane using an SVC for classes that are unbalanced. We first find the separating plane with a plain SVC and then plot (dashed) the separating hyperplane with automatically correction for unbalanced classes. .. currentmodule:: sklearn.linear_model .. note:: This example will also work by replacing ``SVC(kernel="linear")`` with ``SGDClassifier(loss="hinge")``. Setting the ``loss`` parameter of the :class:`SGDClassifier` equal to ``hinge`` will yield behaviour such as that of a SVC with a linear kernel. For example try instead of the ``SVC``:: clf = SGDClassifier(n_iter=100, alpha=0.01) """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm #from sklearn.linear_model import SGDClassifier # we create 40 separable points rng = np.random.RandomState(0) n_samples_1 = 1000 n_samples_2 = 100 X = np.r_[1.5 * rng.randn(n_samples_1, 2), 0.5 * rng.randn(n_samples_2, 2) + [2, 2]] y = [0] * (n_samples_1) + [1] * (n_samples_2) # fit the model and get the separating hyperplane clf = svm.SVC(kernel='linear', C=1.0) clf.fit(X, y) w = clf.coef_[0] a = -w[0] / w[1] xx = np.linspace(-5, 5) yy = a * xx - clf.intercept_[0] / w[1] # get the separating hyperplane using weighted classes wclf = svm.SVC(kernel='linear', class_weight={1: 10}) wclf.fit(X, y) ww = wclf.coef_[0] wa = -ww[0] / ww[1] wyy = wa * xx - wclf.intercept_[0] / ww[1] # plot separating hyperplanes and samples h0 = plt.plot(xx, yy, 'k-', label='no weights') h1 = plt.plot(xx, wyy, 'k--', label='with weights') plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired) plt.legend() plt.axis('tight') plt.show()
bsd-3-clause
ddboline/driven_data_predict_restraurant_inspections
plot_data.py
1
2185
#!/usr/bin/python # -*- coding: utf-8 -*- """ Created on Tue Apr 28 23:15:29 2015 @author: ddboline """ import os import matplotlib matplotlib.use('Agg') import pylab as pl from pandas.tools.plotting import scatter_matrix def create_html_page_of_plots(list_of_plots, prefix='html'): """ create html page with png files """ if not os.path.exists(prefix): os.makedirs(prefix) os.system('mv *.png %s' % prefix) #print(list_of_plots) idx = 0 htmlfile = open('%s/index_0.html' % prefix, 'w') htmlfile.write('<!DOCTYPE html><html><body><div>\n') for plot in list_of_plots: if idx > 0 and idx % 200 == 0: htmlfile.write('</div></html></html>\n') htmlfile.close() htmlfile = open('%s/index_%d.html' % (prefix, (idx//200)), 'w') htmlfile.write('<!DOCTYPE html><html><body><div>\n') htmlfile.write('<p><img src="%s"></p>\n' % plot) idx += 1 htmlfile.write('</div></html></html>\n') htmlfile.close() def plot_data(indf, prefix='html'): """ create scatter matrix plot, histograms """ list_of_plots = [] column_groups = [] column_list = [] for col in indf.columns: if len(indf[col].unique()) > 5 and 'checkin' not in col: column_list.append(col) for idx in range(0, len(column_list), 3): print len(column_list), idx, (idx+3) column_groups.append(column_list[idx:(idx+3)]) for idx in range(len(column_groups)): for idy in range(0, idx): if idx == idy: continue print column_groups[idx]+column_groups[idy] pl.clf() scatter_matrix(indf[column_groups[idx]+column_groups[idy]]) pl.savefig('scatter_matrix_%d_%d.png' % (idx, idy)) list_of_plots.append('scatter_matrix_%d_%d.png' % (idx, idy)) pl.close() for col in indf: pl.clf() print col indf[col].hist(histtype='step', normed=True) pl.title(col) pl.savefig('%s_hist.png' % col) list_of_plots.append('%s_hist.png' % col) create_html_page_of_plots(list_of_plots, prefix) return
mit
xuleiboy1234/autoTitle
tensorflow/tensorflow/examples/get_started/regression/imports85.py
8
3495
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A dataset loader for imports85.data.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import numpy as np import pandas as pd import tensorflow as tf header = collections.OrderedDict([ ("symboling", np.int32), ("normalized-losses", np.float32), ("make", str), ("fuel-type", str), ("aspiration", str), ("num-of-doors", str), ("body-style", str), ("drive-wheels", str), ("engine-location", str), ("wheel-base", np.float32), ("length", np.float32), ("width", np.float32), ("height", np.float32), ("curb-weight", np.float32), ("engine-type", str), ("num-of-cylinders", str), ("engine-size", np.float32), ("fuel-system", str), ("bore", np.float32), ("stroke", np.float32), ("compression-ratio", np.float32), ("horsepower", np.float32), ("peak-rpm", np.float32), ("city-mpg", np.float32), ("highway-mpg", np.float32), ("price", np.float32) ]) # pyformat: disable def raw(): """Get the imports85 data and load it as a pd.DataFrame.""" url = "https://archive.ics.uci.edu/ml/machine-learning-databases/autos/imports-85.data" # pylint: disable=line-too-long # Download and cache the data. path = tf.contrib.keras.utils.get_file(url.split("/")[-1], url) # Load the CSV data into a pandas dataframe. df = pd.read_csv(path, names=header.keys(), dtype=header, na_values="?") return df def load_data(y_name="price", train_fraction=0.7, seed=None): """Returns the imports85 shuffled and split into train and test subsets. A description of the data is available at: https://archive.ics.uci.edu/ml/datasets/automobile The data itself can be found at: https://archive.ics.uci.edu/ml/machine-learning-databases/autos/imports-85.data Args: y_name: the column to return as the label. train_fraction: the fraction of the dataset to use for training. seed: The random seed to use when shuffling the data. `None` generates a unique shuffle every run. Returns: a pair of pairs where the first pair is the training data, and the second is the test data: `(x_train, y_train), (x_test, y_test) = get_imports85_dataset(...)` `x` contains a pandas DataFrame of features, while `y` contains the label array. """ # Load the raw data columns. data = raw() # Delete rows with unknowns data = data.dropna() # Shuffle the data np.random.seed(seed) # Split the data into train/test subsets. x_train = data.sample(frac=train_fraction, random_state=seed) x_test = data.drop(x_train.index) # Extract the label from the features dataframe. y_train = x_train.pop(y_name) y_test = x_test.pop(y_name) return (x_train, y_train), (x_test, y_test)
mit
lin-credible/scikit-learn
examples/datasets/plot_random_multilabel_dataset.py
93
3460
""" ============================================== Plot randomly generated multilabel dataset ============================================== This illustrates the `datasets.make_multilabel_classification` dataset generator. Each sample consists of counts of two features (up to 50 in total), which are differently distributed in each of two classes. Points are labeled as follows, where Y means the class is present: ===== ===== ===== ====== 1 2 3 Color ===== ===== ===== ====== Y N N Red N Y N Blue N N Y Yellow Y Y N Purple Y N Y Orange Y Y N Green Y Y Y Brown ===== ===== ===== ====== A star marks the expected sample for each class; its size reflects the probability of selecting that class label. The left and right examples highlight the ``n_labels`` parameter: more of the samples in the right plot have 2 or 3 labels. Note that this two-dimensional example is very degenerate: generally the number of features would be much greater than the "document length", while here we have much larger documents than vocabulary. Similarly, with ``n_classes > n_features``, it is much less likely that a feature distinguishes a particular class. """ from __future__ import print_function import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import make_multilabel_classification as make_ml_clf print(__doc__) COLORS = np.array(['!', '#FF3333', # red '#0198E1', # blue '#BF5FFF', # purple '#FCD116', # yellow '#FF7216', # orange '#4DBD33', # green '#87421F' # brown ]) # Use same random seed for multiple calls to make_multilabel_classification to # ensure same distributions RANDOM_SEED = np.random.randint(2 ** 10) def plot_2d(ax, n_labels=1, n_classes=3, length=50): X, Y, p_c, p_w_c = make_ml_clf(n_samples=150, n_features=2, n_classes=n_classes, n_labels=n_labels, length=length, allow_unlabeled=False, return_indicator=True, return_distributions=True, random_state=RANDOM_SEED) ax.scatter(X[:, 0], X[:, 1], color=COLORS.take((Y * [1, 2, 4] ).sum(axis=1)), marker='.') ax.scatter(p_w_c[0] * length, p_w_c[1] * length, marker='*', linewidth=.5, edgecolor='black', s=20 + 1500 * p_c ** 2, color=COLORS.take([1, 2, 4])) ax.set_xlabel('Feature 0 count') return p_c, p_w_c _, (ax1, ax2) = plt.subplots(1, 2, sharex='row', sharey='row', figsize=(8, 4)) plt.subplots_adjust(bottom=.15) p_c, p_w_c = plot_2d(ax1, n_labels=1) ax1.set_title('n_labels=1, length=50') ax1.set_ylabel('Feature 1 count') plot_2d(ax2, n_labels=3) ax2.set_title('n_labels=3, length=50') ax2.set_xlim(left=0, auto=True) ax2.set_ylim(bottom=0, auto=True) plt.show() print('The data was generated from (random_state=%d):' % RANDOM_SEED) print('Class', 'P(C)', 'P(w0|C)', 'P(w1|C)', sep='\t') for k, p, p_w in zip(['red', 'blue', 'yellow'], p_c, p_w_c.T): print('%s\t%0.2f\t%0.2f\t%0.2f' % (k, p, p_w[0], p_w[1]))
bsd-3-clause
phaustin/pyman
Book/chap9/Supporting Materials/specFuncPlots.py
3
2545
import numpy as np import scipy.special import matplotlib.pyplot as plt # create a figure window fig = plt.figure(1, figsize=(9,8)) # create arrays for a few Bessel functions and plot them x = np.linspace(0, 20, 256) j0 = scipy.special.jn(0, x) j1 = scipy.special.jn(1, x) y0 = scipy.special.yn(0, x) y1 = scipy.special.yn(1, x) ax1 = fig.add_subplot(321) ax1.plot(x,j0, x,j1, x,y0, x,y1) ax1.axhline(color="grey", ls="--", zorder=-1) ax1.set_ylim(-1,1) ax1.text(0.5, 0.95,'Bessel', ha='center', va='top', transform = ax1.transAxes) # gamma function x = np.linspace(-3.5, 6., 3601) g = scipy.special.gamma(x) g = np.ma.masked_outside(g, -100, 400) ax2 = fig.add_subplot(322) ax2.plot(x,g) ax2.set_xlim(-3.5, 6) ax2.axhline(color="grey", ls="--", zorder=-1) ax2.axvline(color="grey", ls="--", zorder=-1) ax2.set_ylim(-20, 100) ax2.text(0.5, 0.95,'Gamma', ha='center', va='top', transform = ax2.transAxes) # error function x = np.linspace(0, 2.5, 256) ef = scipy.special.erf(x) ax3 = fig.add_subplot(323) ax3.plot(x,ef) ax3.set_ylim(0,1.1) ax3.text(0.5, 0.95,'Error', ha='center', va='top', transform = ax3.transAxes) # Airy function x = np.linspace(-15, 4, 256) ai, aip, bi, bip = scipy.special.airy(x) ax4 = fig.add_subplot(324) ax4.plot(x,ai, x,bi) ax4.axhline(color="grey", ls="--", zorder=-1) ax4.axvline(color="grey", ls="--", zorder=-1) ax4.set_xlim(-15,4) ax4.set_ylim(-0.5,0.6) ax4.text(0.5, 0.95,'Airy', ha='center', va='top', transform = ax4.transAxes) # Legendre polynomials x = np.linspace(-1, 1, 256) lp0 = np.polyval(scipy.special.legendre(0),x) lp1 = np.polyval(scipy.special.legendre(1),x) lp2 = np.polyval(scipy.special.legendre(2),x) lp3 = np.polyval(scipy.special.legendre(3),x) ax5 = fig.add_subplot(325) ax5.plot(x,lp0, x,lp1, x,lp2, x,lp3) ax5.axhline(color="grey", ls="--", zorder=-1) ax5.axvline(color="grey", ls="--", zorder=-1) ax5.set_ylim(-1,1.1) ax5.text(0.5, 0.9,'Legendre', ha='center', va='top', transform = ax5.transAxes) # Laguerre polynomials x = np.linspace(-5, 8, 256) lg0 = np.polyval(scipy.special.laguerre(0),x) lg1 = np.polyval(scipy.special.laguerre(1),x) lg2 = np.polyval(scipy.special.laguerre(2),x) lg3 = np.polyval(scipy.special.laguerre(3),x) ax6 = fig.add_subplot(326) ax6.plot(x,lg0, x,lg1, x,lg2, x,lg3) ax6.axhline(color="grey", ls="--", zorder=-1) ax6.axvline(color="grey", ls="--", zorder=-1) ax6.set_xlim(-5,8) ax6.set_ylim(-5,10) ax6.text(0.5, 0.9,'Laguerre', ha='center', va='top', transform = ax6.transAxes) plt.savefig("specFuncPlots.pdf") plt.show()
cc0-1.0
JaviMerino/trappy
trappy/plotter/StaticPlot.py
1
9823
# Copyright 2016-2016 ARM Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Base matplotlib plotter module""" from abc import abstractmethod, ABCMeta from collections import defaultdict as ddict import matplotlib.pyplot as plt from trappy.plotter import AttrConf from trappy.plotter.Constraint import ConstraintManager from trappy.plotter.PlotLayout import PlotLayout from trappy.plotter.AbstractDataPlotter import AbstractDataPlotter from trappy.plotter.ColorMap import ColorMap class StaticPlot(AbstractDataPlotter): """ This class uses :mod:`trappy.plotter.Constraint.Constraint` to represent different permutations of input parameters. These constraints are generated by creating an instance of :mod:`trappy.plotter.Constraint.ConstraintManager`. :param traces: The input data :type traces: a list of :mod:`trappy.trace.FTrace` or :mod:`pandas.DataFrame` or a single instance of them :param column: specifies the name of the column to be plotted. :type column: (str, list(str)) :param templates: TRAPpy events .. note:: This is not required if a :mod:`pandas.DataFrame` is used :type templates: :mod:`trappy.base.Base` :param filters: Filter the column to be plotted as per the specified criteria. For Example: :: filters = { "pid": [ 3338 ], "cpu": [0, 2, 4], } :type filters: dict :param per_line: Used to control the number of graphs in each graph subplot row :type per_line: int :param concat: Draw all the pivots on a single graph :type concat: bool :param permute: Draw one plot for each of the traces specified :type permute: bool :param drawstyle: This argument is forwarded to the matplotlib corresponding :func:`matplotlib.pyplot.plot` call drawing style. .. note:: step plots are not currently supported for filled graphs :param xlim: A tuple representing the upper and lower xlimits :type xlim: tuple :param ylim: A tuple representing the upper and lower ylimits :type ylim: tuple :param title: A title describing all the generated plots :type title: str :param style: Created pre-styled graphs loaded from :mod:`trappy.plotter.AttrConf.MPL_STYLE` :type style: bool :param signals: A string of the type event_name:column to indicate the value that needs to be plotted .. note:: - Only one of `signals` or both `templates` and `columns` should be specified - Signals format won't work for :mod:`pandas.DataFrame` input :type signals: str :param legend_ncol: A positive integer that represents the number of columns in the legend :type legend_ncol: int """ __metaclass__ = ABCMeta def __init__(self, traces, templates, **kwargs): self._fig = None self._layout = None super(StaticPlot, self).__init__(traces=traces, templates=templates) self.set_defaults() for key in kwargs: if key in AttrConf.ARGS_TO_FORWARD: self._attr["args_to_forward"][key] = kwargs[key] else: self._attr[key] = kwargs[key] if "signals" in self._attr: self._describe_signals() self._check_data() if "column" not in self._attr: raise RuntimeError("Value Column not specified") zip_constraints = not self._attr["permute"] self.c_mgr = ConstraintManager(traces, self._attr["column"], self.templates, self._attr["pivot"], self._attr["filters"], zip_constraints) def savefig(self, *args, **kwargs): """Save the plot as a PNG fill. This calls into :mod:`matplotlib.figure.savefig` """ if self._fig is None: self.view() self._fig.savefig(*args, **kwargs) @abstractmethod def set_defaults(self): """Sets the default attrs""" self._attr["width"] = AttrConf.WIDTH self._attr["length"] = AttrConf.LENGTH self._attr["per_line"] = AttrConf.PER_LINE self._attr["concat"] = AttrConf.CONCAT self._attr["filters"] = {} self._attr["style"] = True self._attr["permute"] = False self._attr["pivot"] = AttrConf.PIVOT self._attr["xlim"] = AttrConf.XLIM self._attr["ylim"] = AttrConf.XLIM self._attr["title"] = AttrConf.TITLE self._attr["args_to_forward"] = {} self._attr["map_label"] = {} self._attr["_legend_handles"] = [] self._attr["_legend_labels"] = [] self._attr["legend_ncol"] = AttrConf.LEGEND_NCOL def view(self, test=False): """Displays the graph""" if test: self._attr["style"] = True AttrConf.MPL_STYLE["interactive"] = False permute = self._attr["permute"] and not self._attr["concat"] if self._attr["style"]: with plt.rc_context(AttrConf.MPL_STYLE): self._resolve(permute, self._attr["concat"]) else: self._resolve(permute, self._attr["concat"]) def make_title(self, constraint, pivot, permute, concat): """Generates a title string for an axis""" if concat: return str(constraint) if permute: return constraint.get_data_name() elif pivot != AttrConf.PIVOT_VAL: return "{0}: {1}".format(self._attr["pivot"], self._attr["map_label"].get(pivot, pivot)) else: return "" def add_to_legend(self, series_index, handle, constraint, pivot, concat, permute): """ Add series handles and names to the legend A handle is returned from a plot on an axis e.g. Line2D from axis.plot() """ self._attr["_legend_handles"][series_index] = handle legend_labels = self._attr["_legend_labels"] if concat and pivot == AttrConf.PIVOT_VAL: legend_labels[series_index] = self._attr["column"] elif concat: legend_labels[series_index] = "{0}: {1}".format( self._attr["pivot"], self._attr["map_label"].get(pivot, pivot) ) elif permute: legend_labels[series_index] = constraint._template.name + ":" + constraint.column else: legend_labels[series_index] = str(constraint) def _resolve(self, permute, concat): """Determine what data to plot on which axis""" pivot_vals, len_pivots = self.c_mgr.generate_pivots(permute) pivot_vals = list(pivot_vals) num_of_axes = len(self.c_mgr) if concat else len_pivots # Create a 2D Layout self._layout = PlotLayout( self._attr["per_line"], num_of_axes, width=self._attr["width"], length=self._attr["length"], title=self._attr['title']) self._fig = self._layout.get_fig() # Determine what constraint to plot and the corresponding pivot value if permute: legend_len = self.c_mgr._max_len pivots = [y for _, y in pivot_vals] c_dict = {c : str(c) for c in self.c_mgr} c_list = sorted(c_dict.items(), key=lambda x: (x[1].split(":")[-1], x[1].split(":")[0])) constraints = [c[0] for c in c_list] cp_pairs = [(c, p) for c in constraints for p in sorted(set(pivots))] else: legend_len = len_pivots if concat else len(self.c_mgr) pivots = pivot_vals cp_pairs = [(c, p) for c in self.c_mgr for p in pivots if p in c.result] # Initialise legend data and colormap self._attr["_legend_handles"] = [None] * legend_len self._attr["_legend_labels"] = [None] * legend_len self._cmap = ColorMap(legend_len) # Group constraints/series with the axis they are to be plotted on figure_data = ddict(list) for i, (constraint, pivot) in enumerate(cp_pairs): axis = self._layout.get_axis(constraint.trace_index if concat else i) figure_data[axis].append((constraint, pivot)) # Plot each axis for axis, series_list in figure_data.iteritems(): self.plot_axis( axis, series_list, permute, self._attr["concat"], self._attr["args_to_forward"] ) # Show legend legend = self._fig.legend(self._attr["_legend_handles"], self._attr["_legend_labels"], loc='lower center', ncol=self._attr["legend_ncol"], borderaxespad=0.) legend.get_frame().set_facecolor('#F4F4F4') self._layout.finish(num_of_axes) def plot_axis(self, axis, series_list, permute, concat, args_to_forward): """Internal Method called to plot data (series_list) on a given axis""" raise NotImplementedError("Method Not Implemented")
apache-2.0
raghavrv/scikit-learn
sklearn/decomposition/tests/test_sparse_pca.py
63
6459
# Author: Vlad Niculae # License: BSD 3 clause import sys import numpy as np from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import SkipTest from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import if_safe_multiprocessing_with_blas from sklearn.decomposition import SparsePCA, MiniBatchSparsePCA from sklearn.utils import check_random_state def generate_toy_data(n_components, n_samples, image_size, random_state=None): n_features = image_size[0] * image_size[1] rng = check_random_state(random_state) U = rng.randn(n_samples, n_components) V = rng.randn(n_components, n_features) centers = [(3, 3), (6, 7), (8, 1)] sz = [1, 2, 1] for k in range(n_components): img = np.zeros(image_size) xmin, xmax = centers[k][0] - sz[k], centers[k][0] + sz[k] ymin, ymax = centers[k][1] - sz[k], centers[k][1] + sz[k] img[xmin:xmax][:, ymin:ymax] = 1.0 V[k, :] = img.ravel() # Y is defined by : Y = UV + noise Y = np.dot(U, V) Y += 0.1 * rng.randn(Y.shape[0], Y.shape[1]) # Add noise return Y, U, V # SparsePCA can be a bit slow. To avoid having test times go up, we # test different aspects of the code in the same test def test_correct_shapes(): rng = np.random.RandomState(0) X = rng.randn(12, 10) spca = SparsePCA(n_components=8, random_state=rng) U = spca.fit_transform(X) assert_equal(spca.components_.shape, (8, 10)) assert_equal(U.shape, (12, 8)) # test overcomplete decomposition spca = SparsePCA(n_components=13, random_state=rng) U = spca.fit_transform(X) assert_equal(spca.components_.shape, (13, 10)) assert_equal(U.shape, (12, 13)) def test_fit_transform(): alpha = 1 rng = np.random.RandomState(0) Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng) # wide array spca_lars = SparsePCA(n_components=3, method='lars', alpha=alpha, random_state=0) spca_lars.fit(Y) # Test that CD gives similar results spca_lasso = SparsePCA(n_components=3, method='cd', random_state=0, alpha=alpha) spca_lasso.fit(Y) assert_array_almost_equal(spca_lasso.components_, spca_lars.components_) # Test that deprecated ridge_alpha parameter throws warning warning_msg = "The ridge_alpha parameter on transform()" assert_warns_message(DeprecationWarning, warning_msg, spca_lars.transform, Y, ridge_alpha=0.01) assert_warns_message(DeprecationWarning, warning_msg, spca_lars.transform, Y, ridge_alpha=None) @if_safe_multiprocessing_with_blas def test_fit_transform_parallel(): alpha = 1 rng = np.random.RandomState(0) Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng) # wide array spca_lars = SparsePCA(n_components=3, method='lars', alpha=alpha, random_state=0) spca_lars.fit(Y) U1 = spca_lars.transform(Y) # Test multiple CPUs spca = SparsePCA(n_components=3, n_jobs=2, method='lars', alpha=alpha, random_state=0).fit(Y) U2 = spca.transform(Y) assert_true(not np.all(spca_lars.components_ == 0)) assert_array_almost_equal(U1, U2) def test_transform_nan(): # Test that SparsePCA won't return NaN when there is 0 feature in all # samples. rng = np.random.RandomState(0) Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng) # wide array Y[:, 0] = 0 estimator = SparsePCA(n_components=8) assert_false(np.any(np.isnan(estimator.fit_transform(Y)))) def test_fit_transform_tall(): rng = np.random.RandomState(0) Y, _, _ = generate_toy_data(3, 65, (8, 8), random_state=rng) # tall array spca_lars = SparsePCA(n_components=3, method='lars', random_state=rng) U1 = spca_lars.fit_transform(Y) spca_lasso = SparsePCA(n_components=3, method='cd', random_state=rng) U2 = spca_lasso.fit(Y).transform(Y) assert_array_almost_equal(U1, U2) def test_initialization(): rng = np.random.RandomState(0) U_init = rng.randn(5, 3) V_init = rng.randn(3, 4) model = SparsePCA(n_components=3, U_init=U_init, V_init=V_init, max_iter=0, random_state=rng) model.fit(rng.randn(5, 4)) assert_array_equal(model.components_, V_init) def test_mini_batch_correct_shapes(): rng = np.random.RandomState(0) X = rng.randn(12, 10) pca = MiniBatchSparsePCA(n_components=8, random_state=rng) U = pca.fit_transform(X) assert_equal(pca.components_.shape, (8, 10)) assert_equal(U.shape, (12, 8)) # test overcomplete decomposition pca = MiniBatchSparsePCA(n_components=13, random_state=rng) U = pca.fit_transform(X) assert_equal(pca.components_.shape, (13, 10)) assert_equal(U.shape, (12, 13)) def test_mini_batch_fit_transform(): raise SkipTest("skipping mini_batch_fit_transform.") alpha = 1 rng = np.random.RandomState(0) Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng) # wide array spca_lars = MiniBatchSparsePCA(n_components=3, random_state=0, alpha=alpha).fit(Y) U1 = spca_lars.transform(Y) # Test multiple CPUs if sys.platform == 'win32': # fake parallelism for win32 import sklearn.externals.joblib.parallel as joblib_par _mp = joblib_par.multiprocessing joblib_par.multiprocessing = None try: U2 = MiniBatchSparsePCA(n_components=3, n_jobs=2, alpha=alpha, random_state=0).fit(Y).transform(Y) finally: joblib_par.multiprocessing = _mp else: # we can efficiently use parallelism U2 = MiniBatchSparsePCA(n_components=3, n_jobs=2, alpha=alpha, random_state=0).fit(Y).transform(Y) assert_true(not np.all(spca_lars.components_ == 0)) assert_array_almost_equal(U1, U2) # Test that CD gives similar results spca_lasso = MiniBatchSparsePCA(n_components=3, method='cd', alpha=alpha, random_state=0).fit(Y) assert_array_almost_equal(spca_lasso.components_, spca_lars.components_)
bsd-3-clause
lukasmarshall/embedded-network-model
participant.py
1
2188
import numpy as np import pandas as pd import datetime import util class Participant: # Need to update to have both network and retail tariffs as inputs def __init__(self, participant_id, participant_type, retail_tariff_type, network_tariff_type,retailer): self.participant_id = participant_id self.participant_type = participant_type self.retail_tariff_type = retail_tariff_type self.network_tariff_type = network_tariff_type self.retailer = retailer def print_attributes(self): print(self.participant_type, self.retail_tariff_type, self.network_tariff_type, self.retailer) # TODO - make this work def calc_net_export(self, date_time, interval_min): return np.random.uniform(-10,10) def get_id(self): return self.participant_id def get_retail_tariff_type(self): return self.retail_tariff_type def get_network_tariff_type(self): return self.network_tariff_type class CSV_Participant(Participant): def __init__(self, participant_id, participant_type, retail_tariff_type, network_tariff_type, retailer, solar_path, load_path, solar_capacity): Participant.__init__(self, participant_id, participant_type, retail_tariff_type, network_tariff_type, retailer) self.solar_path = solar_path self.load_path = load_path solar_data = pd.read_csv(solar_path,index_col = 'date_time', parse_dates=True, date_parser=util.date_parser) load_data = pd.read_csv(load_path,index_col = 'date_time', parse_dates=False, date_parser=util.date_parser) # Delete all cols not relevant to this participant self.load_data = load_data[participant_id] self.solar_data = solar_data[participant_id] # Apply capacity to solar data self.solar_data = self.solar_data * solar_capacity # print solar_data def calc_net_export(self, date_time, interval_min): solar_data = float(self.solar_data.loc[date_time]) load_data = float(self.load_data.loc[date_time]) net_export = solar_data - load_data return net_export
mit
shenzebang/scikit-learn
sklearn/ensemble/weight_boosting.py
97
40773
"""Weight Boosting This module contains weight boosting estimators for both classification and regression. The module structure is the following: - The ``BaseWeightBoosting`` base class implements a common ``fit`` method for all the estimators in the module. Regression and classification only differ from each other in the loss function that is optimized. - ``AdaBoostClassifier`` implements adaptive boosting (AdaBoost-SAMME) for classification problems. - ``AdaBoostRegressor`` implements adaptive boosting (AdaBoost.R2) for regression problems. """ # Authors: Noel Dawe <[email protected]> # Gilles Louppe <[email protected]> # Hamzeh Alsalhi <[email protected]> # Arnaud Joly <[email protected]> # # Licence: BSD 3 clause from abc import ABCMeta, abstractmethod import numpy as np from numpy.core.umath_tests import inner1d from .base import BaseEnsemble from ..base import ClassifierMixin, RegressorMixin from ..externals import six from ..externals.six.moves import zip from ..externals.six.moves import xrange as range from .forest import BaseForest from ..tree import DecisionTreeClassifier, DecisionTreeRegressor from ..tree.tree import BaseDecisionTree from ..tree._tree import DTYPE from ..utils import check_array, check_X_y, check_random_state from ..metrics import accuracy_score, r2_score from sklearn.utils.validation import has_fit_parameter, check_is_fitted __all__ = [ 'AdaBoostClassifier', 'AdaBoostRegressor', ] class BaseWeightBoosting(six.with_metaclass(ABCMeta, BaseEnsemble)): """Base class for AdaBoost estimators. Warning: This class should not be used directly. Use derived classes instead. """ @abstractmethod def __init__(self, base_estimator=None, n_estimators=50, estimator_params=tuple(), learning_rate=1., random_state=None): super(BaseWeightBoosting, self).__init__( base_estimator=base_estimator, n_estimators=n_estimators, estimator_params=estimator_params) self.learning_rate = learning_rate self.random_state = random_state def fit(self, X, y, sample_weight=None): """Build a boosted classifier/regressor from the training set (X, y). Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. COO, DOK, and LIL are converted to CSR. The dtype is forced to DTYPE from tree._tree if the base classifier of this ensemble weighted boosting classifier is a tree or forest. y : array-like of shape = [n_samples] The target values (class labels in classification, real numbers in regression). sample_weight : array-like of shape = [n_samples], optional Sample weights. If None, the sample weights are initialized to 1 / n_samples. Returns ------- self : object Returns self. """ # Check parameters if self.learning_rate <= 0: raise ValueError("learning_rate must be greater than zero") if (self.base_estimator is None or isinstance(self.base_estimator, (BaseDecisionTree, BaseForest))): dtype = DTYPE accept_sparse = 'csc' else: dtype = None accept_sparse = ['csr', 'csc'] X, y = check_X_y(X, y, accept_sparse=accept_sparse, dtype=dtype) if sample_weight is None: # Initialize weights to 1 / n_samples sample_weight = np.empty(X.shape[0], dtype=np.float) sample_weight[:] = 1. / X.shape[0] else: # Normalize existing weights sample_weight = sample_weight / sample_weight.sum(dtype=np.float64) # Check that the sample weights sum is positive if sample_weight.sum() <= 0: raise ValueError( "Attempting to fit with a non-positive " "weighted number of samples.") # Check parameters self._validate_estimator() # Clear any previous fit results self.estimators_ = [] self.estimator_weights_ = np.zeros(self.n_estimators, dtype=np.float) self.estimator_errors_ = np.ones(self.n_estimators, dtype=np.float) for iboost in range(self.n_estimators): # Boosting step sample_weight, estimator_weight, estimator_error = self._boost( iboost, X, y, sample_weight) # Early termination if sample_weight is None: break self.estimator_weights_[iboost] = estimator_weight self.estimator_errors_[iboost] = estimator_error # Stop if error is zero if estimator_error == 0: break sample_weight_sum = np.sum(sample_weight) # Stop if the sum of sample weights has become non-positive if sample_weight_sum <= 0: break if iboost < self.n_estimators - 1: # Normalize sample_weight /= sample_weight_sum return self @abstractmethod def _boost(self, iboost, X, y, sample_weight): """Implement a single boost. Warning: This method needs to be overriden by subclasses. Parameters ---------- iboost : int The index of the current boost iteration. X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. COO, DOK, and LIL are converted to CSR. y : array-like of shape = [n_samples] The target values (class labels). sample_weight : array-like of shape = [n_samples] The current sample weights. Returns ------- sample_weight : array-like of shape = [n_samples] or None The reweighted sample weights. If None then boosting has terminated early. estimator_weight : float The weight for the current boost. If None then boosting has terminated early. error : float The classification error for the current boost. If None then boosting has terminated early. """ pass def staged_score(self, X, y, sample_weight=None): """Return staged scores for X, y. This generator method yields the ensemble score after each iteration of boosting and therefore allows monitoring, such as to determine the score on a test set after each boost. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. y : array-like, shape = [n_samples] Labels for X. sample_weight : array-like, shape = [n_samples], optional Sample weights. Returns ------- z : float """ for y_pred in self.staged_predict(X): if isinstance(self, ClassifierMixin): yield accuracy_score(y, y_pred, sample_weight=sample_weight) else: yield r2_score(y, y_pred, sample_weight=sample_weight) @property def feature_importances_(self): """Return the feature importances (the higher, the more important the feature). Returns ------- feature_importances_ : array, shape = [n_features] """ if self.estimators_ is None or len(self.estimators_) == 0: raise ValueError("Estimator not fitted, " "call `fit` before `feature_importances_`.") try: norm = self.estimator_weights_.sum() return (sum(weight * clf.feature_importances_ for weight, clf in zip(self.estimator_weights_, self.estimators_)) / norm) except AttributeError: raise AttributeError( "Unable to compute feature importances " "since base_estimator does not have a " "feature_importances_ attribute") def _check_sample_weight(self): if not has_fit_parameter(self.base_estimator_, "sample_weight"): raise ValueError("%s doesn't support sample_weight." % self.base_estimator_.__class__.__name__) def _validate_X_predict(self, X): """Ensure that X is in the proper format""" if (self.base_estimator is None or isinstance(self.base_estimator, (BaseDecisionTree, BaseForest))): X = check_array(X, accept_sparse='csr', dtype=DTYPE) else: X = check_array(X, accept_sparse=['csr', 'csc', 'coo']) return X def _samme_proba(estimator, n_classes, X): """Calculate algorithm 4, step 2, equation c) of Zhu et al [1]. References ---------- .. [1] J. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost", 2009. """ proba = estimator.predict_proba(X) # Displace zero probabilities so the log is defined. # Also fix negative elements which may occur with # negative sample weights. proba[proba < np.finfo(proba.dtype).eps] = np.finfo(proba.dtype).eps log_proba = np.log(proba) return (n_classes - 1) * (log_proba - (1. / n_classes) * log_proba.sum(axis=1)[:, np.newaxis]) class AdaBoostClassifier(BaseWeightBoosting, ClassifierMixin): """An AdaBoost classifier. An AdaBoost [1] classifier is a meta-estimator that begins by fitting a classifier on the original dataset and then fits additional copies of the classifier on the same dataset but where the weights of incorrectly classified instances are adjusted such that subsequent classifiers focus more on difficult cases. This class implements the algorithm known as AdaBoost-SAMME [2]. Read more in the :ref:`User Guide <adaboost>`. Parameters ---------- base_estimator : object, optional (default=DecisionTreeClassifier) The base estimator from which the boosted ensemble is built. Support for sample weighting is required, as well as proper `classes_` and `n_classes_` attributes. n_estimators : integer, optional (default=50) The maximum number of estimators at which boosting is terminated. In case of perfect fit, the learning procedure is stopped early. learning_rate : float, optional (default=1.) Learning rate shrinks the contribution of each classifier by ``learning_rate``. There is a trade-off between ``learning_rate`` and ``n_estimators``. algorithm : {'SAMME', 'SAMME.R'}, optional (default='SAMME.R') If 'SAMME.R' then use the SAMME.R real boosting algorithm. ``base_estimator`` must support calculation of class probabilities. If 'SAMME' then use the SAMME discrete boosting algorithm. The SAMME.R algorithm typically converges faster than SAMME, achieving a lower test error with fewer boosting iterations. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Attributes ---------- estimators_ : list of classifiers The collection of fitted sub-estimators. classes_ : array of shape = [n_classes] The classes labels. n_classes_ : int The number of classes. estimator_weights_ : array of floats Weights for each estimator in the boosted ensemble. estimator_errors_ : array of floats Classification error for each estimator in the boosted ensemble. feature_importances_ : array of shape = [n_features] The feature importances if supported by the ``base_estimator``. See also -------- AdaBoostRegressor, GradientBoostingClassifier, DecisionTreeClassifier References ---------- .. [1] Y. Freund, R. Schapire, "A Decision-Theoretic Generalization of on-Line Learning and an Application to Boosting", 1995. .. [2] J. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost", 2009. """ def __init__(self, base_estimator=None, n_estimators=50, learning_rate=1., algorithm='SAMME.R', random_state=None): super(AdaBoostClassifier, self).__init__( base_estimator=base_estimator, n_estimators=n_estimators, learning_rate=learning_rate, random_state=random_state) self.algorithm = algorithm def fit(self, X, y, sample_weight=None): """Build a boosted classifier from the training set (X, y). Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. y : array-like of shape = [n_samples] The target values (class labels). sample_weight : array-like of shape = [n_samples], optional Sample weights. If None, the sample weights are initialized to ``1 / n_samples``. Returns ------- self : object Returns self. """ # Check that algorithm is supported if self.algorithm not in ('SAMME', 'SAMME.R'): raise ValueError("algorithm %s is not supported" % self.algorithm) # Fit return super(AdaBoostClassifier, self).fit(X, y, sample_weight) def _validate_estimator(self): """Check the estimator and set the base_estimator_ attribute.""" super(AdaBoostClassifier, self)._validate_estimator( default=DecisionTreeClassifier(max_depth=1)) # SAMME-R requires predict_proba-enabled base estimators if self.algorithm == 'SAMME.R': if not hasattr(self.base_estimator_, 'predict_proba'): raise TypeError( "AdaBoostClassifier with algorithm='SAMME.R' requires " "that the weak learner supports the calculation of class " "probabilities with a predict_proba method.\n" "Please change the base estimator or set " "algorithm='SAMME' instead.") self._check_sample_weight() def _boost(self, iboost, X, y, sample_weight): """Implement a single boost. Perform a single boost according to the real multi-class SAMME.R algorithm or to the discrete SAMME algorithm and return the updated sample weights. Parameters ---------- iboost : int The index of the current boost iteration. X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. y : array-like of shape = [n_samples] The target values (class labels). sample_weight : array-like of shape = [n_samples] The current sample weights. Returns ------- sample_weight : array-like of shape = [n_samples] or None The reweighted sample weights. If None then boosting has terminated early. estimator_weight : float The weight for the current boost. If None then boosting has terminated early. estimator_error : float The classification error for the current boost. If None then boosting has terminated early. """ if self.algorithm == 'SAMME.R': return self._boost_real(iboost, X, y, sample_weight) else: # elif self.algorithm == "SAMME": return self._boost_discrete(iboost, X, y, sample_weight) def _boost_real(self, iboost, X, y, sample_weight): """Implement a single boost using the SAMME.R real algorithm.""" estimator = self._make_estimator() try: estimator.set_params(random_state=self.random_state) except ValueError: pass estimator.fit(X, y, sample_weight=sample_weight) y_predict_proba = estimator.predict_proba(X) if iboost == 0: self.classes_ = getattr(estimator, 'classes_', None) self.n_classes_ = len(self.classes_) y_predict = self.classes_.take(np.argmax(y_predict_proba, axis=1), axis=0) # Instances incorrectly classified incorrect = y_predict != y # Error fraction estimator_error = np.mean( np.average(incorrect, weights=sample_weight, axis=0)) # Stop if classification is perfect if estimator_error <= 0: return sample_weight, 1., 0. # Construct y coding as described in Zhu et al [2]: # # y_k = 1 if c == k else -1 / (K - 1) # # where K == n_classes_ and c, k in [0, K) are indices along the second # axis of the y coding with c being the index corresponding to the true # class label. n_classes = self.n_classes_ classes = self.classes_ y_codes = np.array([-1. / (n_classes - 1), 1.]) y_coding = y_codes.take(classes == y[:, np.newaxis]) # Displace zero probabilities so the log is defined. # Also fix negative elements which may occur with # negative sample weights. proba = y_predict_proba # alias for readability proba[proba < np.finfo(proba.dtype).eps] = np.finfo(proba.dtype).eps # Boost weight using multi-class AdaBoost SAMME.R alg estimator_weight = (-1. * self.learning_rate * (((n_classes - 1.) / n_classes) * inner1d(y_coding, np.log(y_predict_proba)))) # Only boost the weights if it will fit again if not iboost == self.n_estimators - 1: # Only boost positive weights sample_weight *= np.exp(estimator_weight * ((sample_weight > 0) | (estimator_weight < 0))) return sample_weight, 1., estimator_error def _boost_discrete(self, iboost, X, y, sample_weight): """Implement a single boost using the SAMME discrete algorithm.""" estimator = self._make_estimator() try: estimator.set_params(random_state=self.random_state) except ValueError: pass estimator.fit(X, y, sample_weight=sample_weight) y_predict = estimator.predict(X) if iboost == 0: self.classes_ = getattr(estimator, 'classes_', None) self.n_classes_ = len(self.classes_) # Instances incorrectly classified incorrect = y_predict != y # Error fraction estimator_error = np.mean( np.average(incorrect, weights=sample_weight, axis=0)) # Stop if classification is perfect if estimator_error <= 0: return sample_weight, 1., 0. n_classes = self.n_classes_ # Stop if the error is at least as bad as random guessing if estimator_error >= 1. - (1. / n_classes): self.estimators_.pop(-1) if len(self.estimators_) == 0: raise ValueError('BaseClassifier in AdaBoostClassifier ' 'ensemble is worse than random, ensemble ' 'can not be fit.') return None, None, None # Boost weight using multi-class AdaBoost SAMME alg estimator_weight = self.learning_rate * ( np.log((1. - estimator_error) / estimator_error) + np.log(n_classes - 1.)) # Only boost the weights if I will fit again if not iboost == self.n_estimators - 1: # Only boost positive weights sample_weight *= np.exp(estimator_weight * incorrect * ((sample_weight > 0) | (estimator_weight < 0))) return sample_weight, estimator_weight, estimator_error def predict(self, X): """Predict classes for X. The predicted class of an input sample is computed as the weighted mean prediction of the classifiers in the ensemble. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. Returns ------- y : array of shape = [n_samples] The predicted classes. """ pred = self.decision_function(X) if self.n_classes_ == 2: return self.classes_.take(pred > 0, axis=0) return self.classes_.take(np.argmax(pred, axis=1), axis=0) def staged_predict(self, X): """Return staged predictions for X. The predicted class of an input sample is computed as the weighted mean prediction of the classifiers in the ensemble. This generator method yields the ensemble prediction after each iteration of boosting and therefore allows monitoring, such as to determine the prediction on a test set after each boost. Parameters ---------- X : array-like of shape = [n_samples, n_features] The input samples. Returns ------- y : generator of array, shape = [n_samples] The predicted classes. """ n_classes = self.n_classes_ classes = self.classes_ if n_classes == 2: for pred in self.staged_decision_function(X): yield np.array(classes.take(pred > 0, axis=0)) else: for pred in self.staged_decision_function(X): yield np.array(classes.take( np.argmax(pred, axis=1), axis=0)) def decision_function(self, X): """Compute the decision function of ``X``. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. Returns ------- score : array, shape = [n_samples, k] The decision function of the input samples. The order of outputs is the same of that of the `classes_` attribute. Binary classification is a special cases with ``k == 1``, otherwise ``k==n_classes``. For binary classification, values closer to -1 or 1 mean more like the first or second class in ``classes_``, respectively. """ check_is_fitted(self, "n_classes_") X = self._validate_X_predict(X) n_classes = self.n_classes_ classes = self.classes_[:, np.newaxis] pred = None if self.algorithm == 'SAMME.R': # The weights are all 1. for SAMME.R pred = sum(_samme_proba(estimator, n_classes, X) for estimator in self.estimators_) else: # self.algorithm == "SAMME" pred = sum((estimator.predict(X) == classes).T * w for estimator, w in zip(self.estimators_, self.estimator_weights_)) pred /= self.estimator_weights_.sum() if n_classes == 2: pred[:, 0] *= -1 return pred.sum(axis=1) return pred def staged_decision_function(self, X): """Compute decision function of ``X`` for each boosting iteration. This method allows monitoring (i.e. determine error on testing set) after each boosting iteration. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. Returns ------- score : generator of array, shape = [n_samples, k] The decision function of the input samples. The order of outputs is the same of that of the `classes_` attribute. Binary classification is a special cases with ``k == 1``, otherwise ``k==n_classes``. For binary classification, values closer to -1 or 1 mean more like the first or second class in ``classes_``, respectively. """ check_is_fitted(self, "n_classes_") X = self._validate_X_predict(X) n_classes = self.n_classes_ classes = self.classes_[:, np.newaxis] pred = None norm = 0. for weight, estimator in zip(self.estimator_weights_, self.estimators_): norm += weight if self.algorithm == 'SAMME.R': # The weights are all 1. for SAMME.R current_pred = _samme_proba(estimator, n_classes, X) else: # elif self.algorithm == "SAMME": current_pred = estimator.predict(X) current_pred = (current_pred == classes).T * weight if pred is None: pred = current_pred else: pred += current_pred if n_classes == 2: tmp_pred = np.copy(pred) tmp_pred[:, 0] *= -1 yield (tmp_pred / norm).sum(axis=1) else: yield pred / norm def predict_proba(self, X): """Predict class probabilities for X. The predicted class probabilities of an input sample is computed as the weighted mean predicted class probabilities of the classifiers in the ensemble. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. Returns ------- p : array of shape = [n_samples] The class probabilities of the input samples. The order of outputs is the same of that of the `classes_` attribute. """ check_is_fitted(self, "n_classes_") n_classes = self.n_classes_ X = self._validate_X_predict(X) if self.algorithm == 'SAMME.R': # The weights are all 1. for SAMME.R proba = sum(_samme_proba(estimator, n_classes, X) for estimator in self.estimators_) else: # self.algorithm == "SAMME" proba = sum(estimator.predict_proba(X) * w for estimator, w in zip(self.estimators_, self.estimator_weights_)) proba /= self.estimator_weights_.sum() proba = np.exp((1. / (n_classes - 1)) * proba) normalizer = proba.sum(axis=1)[:, np.newaxis] normalizer[normalizer == 0.0] = 1.0 proba /= normalizer return proba def staged_predict_proba(self, X): """Predict class probabilities for X. The predicted class probabilities of an input sample is computed as the weighted mean predicted class probabilities of the classifiers in the ensemble. This generator method yields the ensemble predicted class probabilities after each iteration of boosting and therefore allows monitoring, such as to determine the predicted class probabilities on a test set after each boost. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. Returns ------- p : generator of array, shape = [n_samples] The class probabilities of the input samples. The order of outputs is the same of that of the `classes_` attribute. """ X = self._validate_X_predict(X) n_classes = self.n_classes_ proba = None norm = 0. for weight, estimator in zip(self.estimator_weights_, self.estimators_): norm += weight if self.algorithm == 'SAMME.R': # The weights are all 1. for SAMME.R current_proba = _samme_proba(estimator, n_classes, X) else: # elif self.algorithm == "SAMME": current_proba = estimator.predict_proba(X) * weight if proba is None: proba = current_proba else: proba += current_proba real_proba = np.exp((1. / (n_classes - 1)) * (proba / norm)) normalizer = real_proba.sum(axis=1)[:, np.newaxis] normalizer[normalizer == 0.0] = 1.0 real_proba /= normalizer yield real_proba def predict_log_proba(self, X): """Predict class log-probabilities for X. The predicted class log-probabilities of an input sample is computed as the weighted mean predicted class log-probabilities of the classifiers in the ensemble. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. Returns ------- p : array of shape = [n_samples] The class probabilities of the input samples. The order of outputs is the same of that of the `classes_` attribute. """ return np.log(self.predict_proba(X)) class AdaBoostRegressor(BaseWeightBoosting, RegressorMixin): """An AdaBoost regressor. An AdaBoost [1] regressor is a meta-estimator that begins by fitting a regressor on the original dataset and then fits additional copies of the regressor on the same dataset but where the weights of instances are adjusted according to the error of the current prediction. As such, subsequent regressors focus more on difficult cases. This class implements the algorithm known as AdaBoost.R2 [2]. Read more in the :ref:`User Guide <adaboost>`. Parameters ---------- base_estimator : object, optional (default=DecisionTreeRegressor) The base estimator from which the boosted ensemble is built. Support for sample weighting is required. n_estimators : integer, optional (default=50) The maximum number of estimators at which boosting is terminated. In case of perfect fit, the learning procedure is stopped early. learning_rate : float, optional (default=1.) Learning rate shrinks the contribution of each regressor by ``learning_rate``. There is a trade-off between ``learning_rate`` and ``n_estimators``. loss : {'linear', 'square', 'exponential'}, optional (default='linear') The loss function to use when updating the weights after each boosting iteration. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Attributes ---------- estimators_ : list of classifiers The collection of fitted sub-estimators. estimator_weights_ : array of floats Weights for each estimator in the boosted ensemble. estimator_errors_ : array of floats Regression error for each estimator in the boosted ensemble. feature_importances_ : array of shape = [n_features] The feature importances if supported by the ``base_estimator``. See also -------- AdaBoostClassifier, GradientBoostingRegressor, DecisionTreeRegressor References ---------- .. [1] Y. Freund, R. Schapire, "A Decision-Theoretic Generalization of on-Line Learning and an Application to Boosting", 1995. .. [2] H. Drucker, "Improving Regressors using Boosting Techniques", 1997. """ def __init__(self, base_estimator=None, n_estimators=50, learning_rate=1., loss='linear', random_state=None): super(AdaBoostRegressor, self).__init__( base_estimator=base_estimator, n_estimators=n_estimators, learning_rate=learning_rate, random_state=random_state) self.loss = loss self.random_state = random_state def fit(self, X, y, sample_weight=None): """Build a boosted regressor from the training set (X, y). Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. y : array-like of shape = [n_samples] The target values (real numbers). sample_weight : array-like of shape = [n_samples], optional Sample weights. If None, the sample weights are initialized to 1 / n_samples. Returns ------- self : object Returns self. """ # Check loss if self.loss not in ('linear', 'square', 'exponential'): raise ValueError( "loss must be 'linear', 'square', or 'exponential'") # Fit return super(AdaBoostRegressor, self).fit(X, y, sample_weight) def _validate_estimator(self): """Check the estimator and set the base_estimator_ attribute.""" super(AdaBoostRegressor, self)._validate_estimator( default=DecisionTreeRegressor(max_depth=3)) self._check_sample_weight() def _boost(self, iboost, X, y, sample_weight): """Implement a single boost for regression Perform a single boost according to the AdaBoost.R2 algorithm and return the updated sample weights. Parameters ---------- iboost : int The index of the current boost iteration. X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. y : array-like of shape = [n_samples] The target values (class labels in classification, real numbers in regression). sample_weight : array-like of shape = [n_samples] The current sample weights. Returns ------- sample_weight : array-like of shape = [n_samples] or None The reweighted sample weights. If None then boosting has terminated early. estimator_weight : float The weight for the current boost. If None then boosting has terminated early. estimator_error : float The regression error for the current boost. If None then boosting has terminated early. """ estimator = self._make_estimator() try: estimator.set_params(random_state=self.random_state) except ValueError: pass generator = check_random_state(self.random_state) # Weighted sampling of the training set with replacement # For NumPy >= 1.7.0 use np.random.choice cdf = sample_weight.cumsum() cdf /= cdf[-1] uniform_samples = generator.random_sample(X.shape[0]) bootstrap_idx = cdf.searchsorted(uniform_samples, side='right') # searchsorted returns a scalar bootstrap_idx = np.array(bootstrap_idx, copy=False) # Fit on the bootstrapped sample and obtain a prediction # for all samples in the training set estimator.fit(X[bootstrap_idx], y[bootstrap_idx]) y_predict = estimator.predict(X) error_vect = np.abs(y_predict - y) error_max = error_vect.max() if error_max != 0.: error_vect /= error_max if self.loss == 'square': error_vect **= 2 elif self.loss == 'exponential': error_vect = 1. - np.exp(- error_vect) # Calculate the average loss estimator_error = (sample_weight * error_vect).sum() if estimator_error <= 0: # Stop if fit is perfect return sample_weight, 1., 0. elif estimator_error >= 0.5: # Discard current estimator only if it isn't the only one if len(self.estimators_) > 1: self.estimators_.pop(-1) return None, None, None beta = estimator_error / (1. - estimator_error) # Boost weight using AdaBoost.R2 alg estimator_weight = self.learning_rate * np.log(1. / beta) if not iboost == self.n_estimators - 1: sample_weight *= np.power( beta, (1. - error_vect) * self.learning_rate) return sample_weight, estimator_weight, estimator_error def _get_median_predict(self, X, limit): # Evaluate predictions of all estimators predictions = np.array([ est.predict(X) for est in self.estimators_[:limit]]).T # Sort the predictions sorted_idx = np.argsort(predictions, axis=1) # Find index of median prediction for each sample weight_cdf = self.estimator_weights_[sorted_idx].cumsum(axis=1) median_or_above = weight_cdf >= 0.5 * weight_cdf[:, -1][:, np.newaxis] median_idx = median_or_above.argmax(axis=1) median_estimators = sorted_idx[np.arange(X.shape[0]), median_idx] # Return median predictions return predictions[np.arange(X.shape[0]), median_estimators] def predict(self, X): """Predict regression value for X. The predicted regression value of an input sample is computed as the weighted median prediction of the classifiers in the ensemble. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. Returns ------- y : array of shape = [n_samples] The predicted regression values. """ check_is_fitted(self, "estimator_weights_") X = self._validate_X_predict(X) return self._get_median_predict(X, len(self.estimators_)) def staged_predict(self, X): """Return staged predictions for X. The predicted regression value of an input sample is computed as the weighted median prediction of the classifiers in the ensemble. This generator method yields the ensemble prediction after each iteration of boosting and therefore allows monitoring, such as to determine the prediction on a test set after each boost. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. Returns ------- y : generator of array, shape = [n_samples] The predicted regression values. """ check_is_fitted(self, "estimator_weights_") X = self._validate_X_predict(X) for i, _ in enumerate(self.estimators_, 1): yield self._get_median_predict(X, limit=i)
bsd-3-clause
toobaz/pandas
pandas/tests/reshape/test_qcut.py
2
6328
import os import numpy as np import pytest from pandas import ( Categorical, DatetimeIndex, Interval, IntervalIndex, NaT, Series, TimedeltaIndex, Timestamp, cut, date_range, isna, qcut, timedelta_range, ) from pandas.api.types import CategoricalDtype as CDT from pandas.core.algorithms import quantile import pandas.util.testing as tm from pandas.tseries.offsets import Day, Nano def test_qcut(): arr = np.random.randn(1000) # We store the bins as Index that have been # rounded to comparisons are a bit tricky. labels, bins = qcut(arr, 4, retbins=True) ex_bins = quantile(arr, [0, 0.25, 0.5, 0.75, 1.0]) result = labels.categories.left.values assert np.allclose(result, ex_bins[:-1], atol=1e-2) result = labels.categories.right.values assert np.allclose(result, ex_bins[1:], atol=1e-2) ex_levels = cut(arr, ex_bins, include_lowest=True) tm.assert_categorical_equal(labels, ex_levels) def test_qcut_bounds(): arr = np.random.randn(1000) factor = qcut(arr, 10, labels=False) assert len(np.unique(factor)) == 10 def test_qcut_specify_quantiles(): arr = np.random.randn(100) factor = qcut(arr, [0, 0.25, 0.5, 0.75, 1.0]) expected = qcut(arr, 4) tm.assert_categorical_equal(factor, expected) def test_qcut_all_bins_same(): with pytest.raises(ValueError, match="edges.*unique"): qcut([0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 3) def test_qcut_include_lowest(): values = np.arange(10) ii = qcut(values, 4) ex_levels = IntervalIndex( [ Interval(-0.001, 2.25), Interval(2.25, 4.5), Interval(4.5, 6.75), Interval(6.75, 9), ] ) tm.assert_index_equal(ii.categories, ex_levels) def test_qcut_nas(): arr = np.random.randn(100) arr[:20] = np.nan result = qcut(arr, 4) assert isna(result[:20]).all() def test_qcut_index(): result = qcut([0, 2], 2) intervals = [Interval(-0.001, 1), Interval(1, 2)] expected = Categorical(intervals, ordered=True) tm.assert_categorical_equal(result, expected) def test_qcut_binning_issues(datapath): # see gh-1978, gh-1979 cut_file = datapath(os.path.join("reshape", "data", "cut_data.csv")) arr = np.loadtxt(cut_file) result = qcut(arr, 20) starts = [] ends = [] for lev in np.unique(result): s = lev.left e = lev.right assert s != e starts.append(float(s)) ends.append(float(e)) for (sp, sn), (ep, en) in zip( zip(starts[:-1], starts[1:]), zip(ends[:-1], ends[1:]) ): assert sp < sn assert ep < en assert ep <= sn def test_qcut_return_intervals(): ser = Series([0, 1, 2, 3, 4, 5, 6, 7, 8]) res = qcut(ser, [0, 0.333, 0.666, 1]) exp_levels = np.array( [Interval(-0.001, 2.664), Interval(2.664, 5.328), Interval(5.328, 8)] ) exp = Series(exp_levels.take([0, 0, 0, 1, 1, 1, 2, 2, 2])).astype(CDT(ordered=True)) tm.assert_series_equal(res, exp) @pytest.mark.parametrize( "kwargs,msg", [ (dict(duplicates="drop"), None), (dict(), "Bin edges must be unique"), (dict(duplicates="raise"), "Bin edges must be unique"), (dict(duplicates="foo"), "invalid value for 'duplicates' parameter"), ], ) def test_qcut_duplicates_bin(kwargs, msg): # see gh-7751 values = [0, 0, 0, 0, 1, 2, 3] if msg is not None: with pytest.raises(ValueError, match=msg): qcut(values, 3, **kwargs) else: result = qcut(values, 3, **kwargs) expected = IntervalIndex([Interval(-0.001, 1), Interval(1, 3)]) tm.assert_index_equal(result.categories, expected) @pytest.mark.parametrize( "data,start,end", [(9.0, 8.999, 9.0), (0.0, -0.001, 0.0), (-9.0, -9.001, -9.0)] ) @pytest.mark.parametrize("length", [1, 2]) @pytest.mark.parametrize("labels", [None, False]) def test_single_quantile(data, start, end, length, labels): # see gh-15431 ser = Series([data] * length) result = qcut(ser, 1, labels=labels) if labels is None: intervals = IntervalIndex([Interval(start, end)] * length, closed="right") expected = Series(intervals).astype(CDT(ordered=True)) else: expected = Series([0] * length) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "ser", [ Series(DatetimeIndex(["20180101", NaT, "20180103"])), Series(TimedeltaIndex(["0 days", NaT, "2 days"])), ], ids=lambda x: str(x.dtype), ) def test_qcut_nat(ser): # see gh-19768 intervals = IntervalIndex.from_tuples( [(ser[0] - Nano(), ser[2] - Day()), np.nan, (ser[2] - Day(), ser[2])] ) expected = Series(Categorical(intervals, ordered=True)) result = qcut(ser, 2) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("bins", [3, np.linspace(0, 1, 4)]) def test_datetime_tz_qcut(bins): # see gh-19872 tz = "US/Eastern" ser = Series(date_range("20130101", periods=3, tz=tz)) result = qcut(ser, bins) expected = Series( IntervalIndex( [ Interval( Timestamp("2012-12-31 23:59:59.999999999", tz=tz), Timestamp("2013-01-01 16:00:00", tz=tz), ), Interval( Timestamp("2013-01-01 16:00:00", tz=tz), Timestamp("2013-01-02 08:00:00", tz=tz), ), Interval( Timestamp("2013-01-02 08:00:00", tz=tz), Timestamp("2013-01-03 00:00:00", tz=tz), ), ] ) ).astype(CDT(ordered=True)) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "arg,expected_bins", [ [ timedelta_range("1day", periods=3), TimedeltaIndex(["1 days", "2 days", "3 days"]), ], [ date_range("20180101", periods=3), DatetimeIndex(["2018-01-01", "2018-01-02", "2018-01-03"]), ], ], ) def test_date_like_qcut_bins(arg, expected_bins): # see gh-19891 ser = Series(arg) result, result_bins = qcut(ser, 2, retbins=True) tm.assert_index_equal(result_bins, expected_bins)
bsd-3-clause
benoitsteiner/tensorflow
tensorflow/examples/learn/boston.py
33
1981
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Example of DNNRegressor for Housing dataset.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from sklearn import datasets from sklearn import metrics from sklearn import model_selection from sklearn import preprocessing import tensorflow as tf def main(unused_argv): # Load dataset boston = datasets.load_boston() x, y = boston.data, boston.target # Split dataset into train / test x_train, x_test, y_train, y_test = model_selection.train_test_split( x, y, test_size=0.2, random_state=42) # Scale data (training set) to 0 mean and unit standard deviation. scaler = preprocessing.StandardScaler() x_train = scaler.fit_transform(x_train) # Build 2 layer fully connected DNN with 10, 10 units respectively. feature_columns = tf.contrib.learn.infer_real_valued_columns_from_input( x_train) regressor = tf.contrib.learn.DNNRegressor( feature_columns=feature_columns, hidden_units=[10, 10]) # Fit regressor.fit(x_train, y_train, steps=5000, batch_size=1) # Transform x_transformed = scaler.transform(x_test) # Predict and score y_predicted = list(regressor.predict(x_transformed, as_iterable=True)) score = metrics.mean_squared_error(y_predicted, y_test) print('MSE: {0:f}'.format(score)) if __name__ == '__main__': tf.app.run()
apache-2.0
cwu2011/scikit-learn
sklearn/datasets/lfw.py
38
19042
"""Loader for the Labeled Faces in the Wild (LFW) dataset This dataset is a collection of JPEG pictures of famous people collected over the internet, all details are available on the official website: http://vis-www.cs.umass.edu/lfw/ Each picture is centered on a single face. The typical task is called Face Verification: given a pair of two pictures, a binary classifier must predict whether the two images are from the same person. An alternative task, Face Recognition or Face Identification is: given the picture of the face of an unknown person, identify the name of the person by referring to a gallery of previously seen pictures of identified persons. Both Face Verification and Face Recognition are tasks that are typically performed on the output of a model trained to perform Face Detection. The most popular model for Face Detection is called Viola-Johns and is implemented in the OpenCV library. The LFW faces were extracted by this face detector from various online websites. """ # Copyright (c) 2011 Olivier Grisel <[email protected]> # License: BSD 3 clause from os import listdir, makedirs, remove from os.path import join, exists, isdir from sklearn.utils import deprecated import logging import numpy as np try: import urllib.request as urllib # for backwards compatibility except ImportError: import urllib from .base import get_data_home, Bunch from ..externals.joblib import Memory from ..externals.six import b logger = logging.getLogger(__name__) BASE_URL = "http://vis-www.cs.umass.edu/lfw/" ARCHIVE_NAME = "lfw.tgz" FUNNELED_ARCHIVE_NAME = "lfw-funneled.tgz" TARGET_FILENAMES = [ 'pairsDevTrain.txt', 'pairsDevTest.txt', 'pairs.txt', ] def scale_face(face): """Scale back to 0-1 range in case of normalization for plotting""" scaled = face - face.min() scaled /= scaled.max() return scaled # # Common private utilities for data fetching from the original LFW website # local disk caching, and image decoding. # def check_fetch_lfw(data_home=None, funneled=True, download_if_missing=True): """Helper function to download any missing LFW data""" data_home = get_data_home(data_home=data_home) lfw_home = join(data_home, "lfw_home") if funneled: archive_path = join(lfw_home, FUNNELED_ARCHIVE_NAME) data_folder_path = join(lfw_home, "lfw_funneled") archive_url = BASE_URL + FUNNELED_ARCHIVE_NAME else: archive_path = join(lfw_home, ARCHIVE_NAME) data_folder_path = join(lfw_home, "lfw") archive_url = BASE_URL + ARCHIVE_NAME if not exists(lfw_home): makedirs(lfw_home) for target_filename in TARGET_FILENAMES: target_filepath = join(lfw_home, target_filename) if not exists(target_filepath): if download_if_missing: url = BASE_URL + target_filename logger.warn("Downloading LFW metadata: %s", url) urllib.urlretrieve(url, target_filepath) else: raise IOError("%s is missing" % target_filepath) if not exists(data_folder_path): if not exists(archive_path): if download_if_missing: logger.warn("Downloading LFW data (~200MB): %s", archive_url) urllib.urlretrieve(archive_url, archive_path) else: raise IOError("%s is missing" % target_filepath) import tarfile logger.info("Decompressing the data archive to %s", data_folder_path) tarfile.open(archive_path, "r:gz").extractall(path=lfw_home) remove(archive_path) return lfw_home, data_folder_path def _load_imgs(file_paths, slice_, color, resize): """Internally used to load images""" # Try to import imread and imresize from PIL. We do this here to prevent # the whole sklearn.datasets module from depending on PIL. try: try: from scipy.misc import imread except ImportError: from scipy.misc.pilutil import imread from scipy.misc import imresize except ImportError: raise ImportError("The Python Imaging Library (PIL)" " is required to load data from jpeg files") # compute the portion of the images to load to respect the slice_ parameter # given by the caller default_slice = (slice(0, 250), slice(0, 250)) if slice_ is None: slice_ = default_slice else: slice_ = tuple(s or ds for s, ds in zip(slice_, default_slice)) h_slice, w_slice = slice_ h = (h_slice.stop - h_slice.start) // (h_slice.step or 1) w = (w_slice.stop - w_slice.start) // (w_slice.step or 1) if resize is not None: resize = float(resize) h = int(resize * h) w = int(resize * w) # allocate some contiguous memory to host the decoded image slices n_faces = len(file_paths) if not color: faces = np.zeros((n_faces, h, w), dtype=np.float32) else: faces = np.zeros((n_faces, h, w, 3), dtype=np.float32) # iterate over the collected file path to load the jpeg files as numpy # arrays for i, file_path in enumerate(file_paths): if i % 1000 == 0: logger.info("Loading face #%05d / %05d", i + 1, n_faces) face = np.asarray(imread(file_path)[slice_], dtype=np.float32) face /= 255.0 # scale uint8 coded colors to the [0.0, 1.0] floats if resize is not None: face = imresize(face, resize) if not color: # average the color channels to compute a gray levels # representaion face = face.mean(axis=2) faces[i, ...] = face return faces # # Task #1: Face Identification on picture with names # def _fetch_lfw_people(data_folder_path, slice_=None, color=False, resize=None, min_faces_per_person=0): """Perform the actual data loading for the lfw people dataset This operation is meant to be cached by a joblib wrapper. """ # scan the data folder content to retain people with more that # `min_faces_per_person` face pictures person_names, file_paths = [], [] for person_name in sorted(listdir(data_folder_path)): folder_path = join(data_folder_path, person_name) if not isdir(folder_path): continue paths = [join(folder_path, f) for f in listdir(folder_path)] n_pictures = len(paths) if n_pictures >= min_faces_per_person: person_name = person_name.replace('_', ' ') person_names.extend([person_name] * n_pictures) file_paths.extend(paths) n_faces = len(file_paths) if n_faces == 0: raise ValueError("min_faces_per_person=%d is too restrictive" % min_faces_per_person) target_names = np.unique(person_names) target = np.searchsorted(target_names, person_names) faces = _load_imgs(file_paths, slice_, color, resize) # shuffle the faces with a deterministic RNG scheme to avoid having # all faces of the same person in a row, as it would break some # cross validation and learning algorithms such as SGD and online # k-means that make an IID assumption indices = np.arange(n_faces) np.random.RandomState(42).shuffle(indices) faces, target = faces[indices], target[indices] return faces, target, target_names def fetch_lfw_people(data_home=None, funneled=True, resize=0.5, min_faces_per_person=0, color=False, slice_=(slice(70, 195), slice(78, 172)), download_if_missing=True): """Loader for the Labeled Faces in the Wild (LFW) people dataset This dataset is a collection of JPEG pictures of famous people collected on the internet, all details are available on the official website: http://vis-www.cs.umass.edu/lfw/ Each picture is centered on a single face. Each pixel of each channel (color in RGB) is encoded by a float in range 0.0 - 1.0. The task is called Face Recognition (or Identification): given the picture of a face, find the name of the person given a training set (gallery). The original images are 250 x 250 pixels, but the default slice and resize arguments reduce them to 62 x 74. Parameters ---------- data_home : optional, default: None Specify another download and cache folder for the datasets. By default all scikit learn data is stored in '~/scikit_learn_data' subfolders. funneled : boolean, optional, default: True Download and use the funneled variant of the dataset. resize : float, optional, default 0.5 Ratio used to resize the each face picture. min_faces_per_person : int, optional, default None The extracted dataset will only retain pictures of people that have at least `min_faces_per_person` different pictures. color : boolean, optional, default False Keep the 3 RGB channels instead of averaging them to a single gray level channel. If color is True the shape of the data has one more dimension than than the shape with color = False. slice_ : optional Provide a custom 2D slice (height, width) to extract the 'interesting' part of the jpeg files and avoid use statistical correlation from the background download_if_missing : optional, True by default If False, raise a IOError if the data is not locally available instead of trying to download the data from the source site. Returns ------- dataset : dict-like object with the following attributes: dataset.data : numpy array of shape (13233, 2914) Each row corresponds to a ravelled face image of original size 62 x 47 pixels. Changing the ``slice_`` or resize parameters will change the shape of the output. dataset.images : numpy array of shape (13233, 62, 47) Each row is a face image corresponding to one of the 5749 people in the dataset. Changing the ``slice_`` or resize parameters will change the shape of the output. dataset.target : numpy array of shape (13233,) Labels associated to each face image. Those labels range from 0-5748 and correspond to the person IDs. dataset.DESCR : string Description of the Labeled Faces in the Wild (LFW) dataset. """ lfw_home, data_folder_path = check_fetch_lfw( data_home=data_home, funneled=funneled, download_if_missing=download_if_missing) logger.info('Loading LFW people faces from %s', lfw_home) # wrap the loader in a memoizing function that will return memmaped data # arrays for optimal memory usage m = Memory(cachedir=lfw_home, compress=6, verbose=0) load_func = m.cache(_fetch_lfw_people) # load and memoize the pairs as np arrays faces, target, target_names = load_func( data_folder_path, resize=resize, min_faces_per_person=min_faces_per_person, color=color, slice_=slice_) # pack the results as a Bunch instance return Bunch(data=faces.reshape(len(faces), -1), images=faces, target=target, target_names=target_names, DESCR="LFW faces dataset") # # Task #2: Face Verification on pairs of face pictures # def _fetch_lfw_pairs(index_file_path, data_folder_path, slice_=None, color=False, resize=None): """Perform the actual data loading for the LFW pairs dataset This operation is meant to be cached by a joblib wrapper. """ # parse the index file to find the number of pairs to be able to allocate # the right amount of memory before starting to decode the jpeg files with open(index_file_path, 'rb') as index_file: split_lines = [ln.strip().split(b('\t')) for ln in index_file] pair_specs = [sl for sl in split_lines if len(sl) > 2] n_pairs = len(pair_specs) # interating over the metadata lines for each pair to find the filename to # decode and load in memory target = np.zeros(n_pairs, dtype=np.int) file_paths = list() for i, components in enumerate(pair_specs): if len(components) == 3: target[i] = 1 pair = ( (components[0], int(components[1]) - 1), (components[0], int(components[2]) - 1), ) elif len(components) == 4: target[i] = 0 pair = ( (components[0], int(components[1]) - 1), (components[2], int(components[3]) - 1), ) else: raise ValueError("invalid line %d: %r" % (i + 1, components)) for j, (name, idx) in enumerate(pair): try: person_folder = join(data_folder_path, name) except TypeError: person_folder = join(data_folder_path, str(name, 'UTF-8')) filenames = list(sorted(listdir(person_folder))) file_path = join(person_folder, filenames[idx]) file_paths.append(file_path) pairs = _load_imgs(file_paths, slice_, color, resize) shape = list(pairs.shape) n_faces = shape.pop(0) shape.insert(0, 2) shape.insert(0, n_faces // 2) pairs.shape = shape return pairs, target, np.array(['Different persons', 'Same person']) @deprecated("Function 'load_lfw_people' has been deprecated in 0.17 and will be " "removed in 0.19." "Use fetch_lfw_people(download_if_missing=False) instead.") def load_lfw_people(download_if_missing=False, **kwargs): """Alias for fetch_lfw_people(download_if_missing=False) Check fetch_lfw_people.__doc__ for the documentation and parameter list. """ return fetch_lfw_people(download_if_missing=download_if_missing, **kwargs) def fetch_lfw_pairs(subset='train', data_home=None, funneled=True, resize=0.5, color=False, slice_=(slice(70, 195), slice(78, 172)), download_if_missing=True): """Loader for the Labeled Faces in the Wild (LFW) pairs dataset This dataset is a collection of JPEG pictures of famous people collected on the internet, all details are available on the official website: http://vis-www.cs.umass.edu/lfw/ Each picture is centered on a single face. Each pixel of each channel (color in RGB) is encoded by a float in range 0.0 - 1.0. The task is called Face Verification: given a pair of two pictures, a binary classifier must predict whether the two images are from the same person. In the official `README.txt`_ this task is described as the "Restricted" task. As I am not sure as to implement the "Unrestricted" variant correctly, I left it as unsupported for now. .. _`README.txt`: http://vis-www.cs.umass.edu/lfw/README.txt The original images are 250 x 250 pixels, but the default slice and resize arguments reduce them to 62 x 74. Read more in the :ref:`User Guide <labeled_faces_in_the_wild>`. Parameters ---------- subset : optional, default: 'train' Select the dataset to load: 'train' for the development training set, 'test' for the development test set, and '10_folds' for the official evaluation set that is meant to be used with a 10-folds cross validation. data_home : optional, default: None Specify another download and cache folder for the datasets. By default all scikit learn data is stored in '~/scikit_learn_data' subfolders. funneled : boolean, optional, default: True Download and use the funneled variant of the dataset. resize : float, optional, default 0.5 Ratio used to resize the each face picture. color : boolean, optional, default False Keep the 3 RGB channels instead of averaging them to a single gray level channel. If color is True the shape of the data has one more dimension than than the shape with color = False. slice_ : optional Provide a custom 2D slice (height, width) to extract the 'interesting' part of the jpeg files and avoid use statistical correlation from the background download_if_missing : optional, True by default If False, raise a IOError if the data is not locally available instead of trying to download the data from the source site. Returns ------- The data is returned as a Bunch object with the following attributes: data : numpy array of shape (2200, 5828) Each row corresponds to 2 ravel'd face images of original size 62 x 47 pixels. Changing the ``slice_`` or resize parameters will change the shape of the output. pairs : numpy array of shape (2200, 2, 62, 47) Each row has 2 face images corresponding to same or different person from the dataset containing 5749 people. Changing the ``slice_`` or resize parameters will change the shape of the output. target : numpy array of shape (13233,) Labels associated to each pair of images. The two label values being different persons or the same person. DESCR : string Description of the Labeled Faces in the Wild (LFW) dataset. """ lfw_home, data_folder_path = check_fetch_lfw( data_home=data_home, funneled=funneled, download_if_missing=download_if_missing) logger.info('Loading %s LFW pairs from %s', subset, lfw_home) # wrap the loader in a memoizing function that will return memmaped data # arrays for optimal memory usage m = Memory(cachedir=lfw_home, compress=6, verbose=0) load_func = m.cache(_fetch_lfw_pairs) # select the right metadata file according to the requested subset label_filenames = { 'train': 'pairsDevTrain.txt', 'test': 'pairsDevTest.txt', '10_folds': 'pairs.txt', } if subset not in label_filenames: raise ValueError("subset='%s' is invalid: should be one of %r" % ( subset, list(sorted(label_filenames.keys())))) index_file_path = join(lfw_home, label_filenames[subset]) # load and memoize the pairs as np arrays pairs, target, target_names = load_func( index_file_path, data_folder_path, resize=resize, color=color, slice_=slice_) # pack the results as a Bunch instance return Bunch(data=pairs.reshape(len(pairs), -1), pairs=pairs, target=target, target_names=target_names, DESCR="'%s' segment of the LFW pairs dataset" % subset) @deprecated("Function 'load_lfw_pairs' has been deprecated in 0.17 and will be " "removed in 0.19." "Use fetch_lfw_pairs(download_if_missing=False) instead.") def load_lfw_pairs(download_if_missing=False, **kwargs): """Alias for fetch_lfw_pairs(download_if_missing=False) Check fetch_lfw_pairs.__doc__ for the documentation and parameter list. """ return fetch_lfw_pairs(download_if_missing=download_if_missing, **kwargs)
bsd-3-clause
raghavrv/scikit-learn
examples/decomposition/plot_pca_3d.py
10
2432
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Principal components analysis (PCA) ========================================================= These figures aid in illustrating how a point cloud can be very flat in one direction--which is where PCA comes in to choose a direction that is not flat. """ print(__doc__) # Authors: Gael Varoquaux # Jaques Grobler # Kevin Hughes # License: BSD 3 clause from sklearn.decomposition import PCA from mpl_toolkits.mplot3d import Axes3D import numpy as np import matplotlib.pyplot as plt from scipy import stats # ############################################################################# # Create the data e = np.exp(1) np.random.seed(4) def pdf(x): return 0.5 * (stats.norm(scale=0.25 / e).pdf(x) + stats.norm(scale=4 / e).pdf(x)) y = np.random.normal(scale=0.5, size=(30000)) x = np.random.normal(scale=0.5, size=(30000)) z = np.random.normal(scale=0.1, size=len(x)) density = pdf(x) * pdf(y) pdf_z = pdf(5 * z) density *= pdf_z a = x + y b = 2 * y c = a - b + z norm = np.sqrt(a.var() + b.var()) a /= norm b /= norm # ############################################################################# # Plot the figures def plot_figs(fig_num, elev, azim): fig = plt.figure(fig_num, figsize=(4, 3)) plt.clf() ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=elev, azim=azim) ax.scatter(a[::10], b[::10], c[::10], c=density[::10], marker='+', alpha=.4) Y = np.c_[a, b, c] # Using SciPy's SVD, this would be: # _, pca_score, V = scipy.linalg.svd(Y, full_matrices=False) pca = PCA(n_components=3) pca.fit(Y) pca_score = pca.explained_variance_ratio_ V = pca.components_ x_pca_axis, y_pca_axis, z_pca_axis = V.T * pca_score / pca_score.min() x_pca_axis, y_pca_axis, z_pca_axis = 3 * V.T x_pca_plane = np.r_[x_pca_axis[:2], - x_pca_axis[1::-1]] y_pca_plane = np.r_[y_pca_axis[:2], - y_pca_axis[1::-1]] z_pca_plane = np.r_[z_pca_axis[:2], - z_pca_axis[1::-1]] x_pca_plane.shape = (2, 2) y_pca_plane.shape = (2, 2) z_pca_plane.shape = (2, 2) ax.plot_surface(x_pca_plane, y_pca_plane, z_pca_plane) ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) elev = -40 azim = -80 plot_figs(1, elev, azim) elev = 30 azim = 20 plot_figs(2, elev, azim) plt.show()
bsd-3-clause
appapantula/scikit-learn
sklearn/feature_extraction/tests/test_dict_vectorizer.py
276
3790
# Authors: Lars Buitinck <[email protected]> # Dan Blanchard <[email protected]> # License: BSD 3 clause from random import Random import numpy as np import scipy.sparse as sp from numpy.testing import assert_array_equal from sklearn.utils.testing import (assert_equal, assert_in, assert_false, assert_true) from sklearn.feature_extraction import DictVectorizer from sklearn.feature_selection import SelectKBest, chi2 def test_dictvectorizer(): D = [{"foo": 1, "bar": 3}, {"bar": 4, "baz": 2}, {"bar": 1, "quux": 1, "quuux": 2}] for sparse in (True, False): for dtype in (int, np.float32, np.int16): for sort in (True, False): for iterable in (True, False): v = DictVectorizer(sparse=sparse, dtype=dtype, sort=sort) X = v.fit_transform(iter(D) if iterable else D) assert_equal(sp.issparse(X), sparse) assert_equal(X.shape, (3, 5)) assert_equal(X.sum(), 14) assert_equal(v.inverse_transform(X), D) if sparse: # CSR matrices can't be compared for equality assert_array_equal(X.A, v.transform(iter(D) if iterable else D).A) else: assert_array_equal(X, v.transform(iter(D) if iterable else D)) if sort: assert_equal(v.feature_names_, sorted(v.feature_names_)) def test_feature_selection(): # make two feature dicts with two useful features and a bunch of useless # ones, in terms of chi2 d1 = dict([("useless%d" % i, 10) for i in range(20)], useful1=1, useful2=20) d2 = dict([("useless%d" % i, 10) for i in range(20)], useful1=20, useful2=1) for indices in (True, False): v = DictVectorizer().fit([d1, d2]) X = v.transform([d1, d2]) sel = SelectKBest(chi2, k=2).fit(X, [0, 1]) v.restrict(sel.get_support(indices=indices), indices=indices) assert_equal(v.get_feature_names(), ["useful1", "useful2"]) def test_one_of_k(): D_in = [{"version": "1", "ham": 2}, {"version": "2", "spam": .3}, {"version=3": True, "spam": -1}] v = DictVectorizer() X = v.fit_transform(D_in) assert_equal(X.shape, (3, 5)) D_out = v.inverse_transform(X) assert_equal(D_out[0], {"version=1": 1, "ham": 2}) names = v.get_feature_names() assert_true("version=2" in names) assert_false("version" in names) def test_unseen_or_no_features(): D = [{"camelot": 0, "spamalot": 1}] for sparse in [True, False]: v = DictVectorizer(sparse=sparse).fit(D) X = v.transform({"push the pram a lot": 2}) if sparse: X = X.toarray() assert_array_equal(X, np.zeros((1, 2))) X = v.transform({}) if sparse: X = X.toarray() assert_array_equal(X, np.zeros((1, 2))) try: v.transform([]) except ValueError as e: assert_in("empty", str(e)) def test_deterministic_vocabulary(): # Generate equal dictionaries with different memory layouts items = [("%03d" % i, i) for i in range(1000)] rng = Random(42) d_sorted = dict(items) rng.shuffle(items) d_shuffled = dict(items) # check that the memory layout does not impact the resulting vocabulary v_1 = DictVectorizer().fit([d_sorted]) v_2 = DictVectorizer().fit([d_shuffled]) assert_equal(v_1.vocabulary_, v_2.vocabulary_)
bsd-3-clause
markmuetz/stormtracks
stormtracks/analysis/plotting.py
1
28762
from __future__ import print_function import copy import os import datetime as dt from glob import glob import simplejson import pylab as plt import numpy as np from mpl_toolkits.basemap import Basemap from ..utils.c_wrapper import cvort, cvort4 from ..load_settings import settings SAVE_FILE_TPL = 'plot_{0}.json' DEFAULT_PLOTTER_LAYOUT = { 'version': 0.1, 'date': None, 'name': None, 'figure': 1, 'plot_settings': [], 'ensemble_member': 0, 'ensemble_mode': 'member', } DEFAULT_PLOT_SETTINGS = { 'subplot': '111', 'field': 'prmsl', 'points': 'pmins', 'loc': 'wa', 'vmax': None, 'vmin': None, 'best_track_index': -1, 'vort_max_track_index': -1, 'pressure_min_track_index': -1, 'match_index': -1, } def plot_pandas_matched_unmatched(df_year, bt_matches, f1='vort', f2='t850s', flip=False, alpha=0.5): plt.clf() comb = df_year.join(bt_matches) matched = comb[~comb.bt_name.isnull()] unmatched = comb[comb.bt_name.isnull()] if not flip: zo1 = 1 zo2 = 2 alpha1=1 alpha2=alpha else: zo1 = 2 zo2 = 1 alpha1=alpha alpha2=1 uf1 = getattr(unmatched, f1) uf2 = getattr(unmatched, f2) mf1 = getattr(matched, f1) mf2 = getattr(matched, f2) plt.scatter(uf1, uf2, c='k', marker='s', zorder=zo1, alpha=alpha1) plt.scatter(mf1, mf2, c=matched.bt_wind, marker='s', zorder=zo2, alpha=alpha2) plt.xlim((uf1.min(), uf1.max())) plt.ylim((uf2.min(), uf2.max())) def plot_pandas_tracks(ib, matched, mode='all'): for bt in ib.best_tracks: plt.plot(bt.lons, bt.lats, 'r-', zorder=1) plt.scatter(x=bt.lons, y=bt.lats, c=bt.winds, marker='o', zorder=2) if mode == 'all': lon_lat = matched[matched.bt_name == bt.name] plt.scatter(lon_lat.lon, lon_lat.lat, marker='x', zorder=0) elif mode == 'mean': lon_lat = matched[matched.bt_name == bt.name].groupby('date')['lon', 'lat'].mean() lon_lat_std = matched[matched.bt_name == bt.name].groupby('date')['lon', 'lat'].std() plt.errorbar(lon_lat.lon, lon_lat.lat, xerr=lon_lat_std.lon, yerr=lon_lat_std.lat, marker='x', zorder=0) plt.clim(0, 150) elif mode == 'median': lon_lat = matched[matched.bt_name == bt.name].groupby('date')['lon', 'lat'].median() lon_lat_std = matched[matched.bt_name == bt.name].groupby('date')['lon', 'lat'].std() plt.errorbar(lon_lat.lon, lon_lat.lat, xerr=lon_lat_std.lon, yerr=lon_lat_std.lat, marker='x', zorder=0) plt.clim(0, 150) plt.title('Best track {}: {} - {}'.format(bt.name, bt.dates[0], bt.dates[-1])) plt.pause(.1) raw_input() plt.clf() def datetime_encode_handler(obj): if hasattr(obj, 'isoformat'): return {'__isotime__': obj.isoformat()} else: raise TypeError('Object of type %s with value of {0} is not JSON serializable'.format( type(obj), repr(obj))) def datetime_decode_hook(dct): if '__isotime__' in dct: return dt.datetime.strptime(dct['__isotime__'], '%Y-%m-%dT%H:%M:%S') return dct class Plotter(object): def __init__(self, title, best_tracks, c20data, all_matches): self.title = title self.best_tracks = best_tracks self.c20data = c20data self.all_matches = all_matches self.date = self.c20data.first_date() self.layout = copy.copy(DEFAULT_PLOTTER_LAYOUT) self.layout['date'] = self.date self.layout['plot_settings'].append(DEFAULT_PLOT_SETTINGS) self.date = None self.field_names = ['prmsl', 'vort', 'vort4', 'windspeed'] self.track_names = ['best', 'vort_max', 'pressure_min'] self.point_names = ['vort_max', 'pressure_min'] def plot_match_from_best_track(self, best_track): for matches in self.all_matches: for match in matches: if best_track.name == match.best_track.name: for settings in self.layout['plot_settings']: settings['match_index'] = matches.index(match) self.plot() return print('Match not found for track') def plot(self): ensemble_member = self.layout['ensemble_member'] date = self.layout['date'] plt.figure(self.layout['figure']) plt.clf() for plot_settings in self.layout['plot_settings']: plt.subplot(plot_settings['subplot']) title = [self.title, str(date), str(ensemble_member)] if plot_settings['field']: title.append(plot_settings['field']) field = getattr(self.c20data, plot_settings['field']) raster_on_earth(self.c20data.lons, self.c20data.lats, field, plot_settings['vmin'], plot_settings['vmax'], plot_settings['loc']) else: raster_on_earth(self.c20data.lons, self.c20data.lats, None, None, None, plot_settings['loc']) if plot_settings['points']: title.append(plot_settings['points']) points = getattr(self.c20data, plot_settings['points']) for p_val, p_loc in points: plot_point_on_earth(p_loc[0], p_loc[1], 'kx') if plot_settings['best_track_index'] != -1: plot_ibtrack_with_date(self.best_tracks[plot_settings['best_track_index']], date) if plot_settings['vort_max_track_index'] != -1: pass if plot_settings['pressure_min_track_index'] != -1: pass if plot_settings['match_index'] != -1: plot_match_with_date( self.all_matches[ensemble_member][plot_settings['match_index']], date) plt.title(' '.join(title)) def save(self, name): self.layout['name'] = name f = open(os.path.join(settings.SETTINGS_DIR, 'plots', SAVE_FILE_TPL.format(self.layout['name'])), 'w') simplejson.dump(self.layout, f, default=datetime_encode_handler, indent=4) def load(self, name, is_plot=True): try: f = open(os.path.join(settings.SETTINGS_DIR, 'plots', SAVE_FILE_TPL.format(name)), 'r') layout = simplejson.load(f, object_hook=datetime_decode_hook) print(layout) if layout['version'] != self.layout['version']: r = raw_input('version mismatch, may not work! Press c to continue anyway: ') if r != 'c': raise Exception('Version mismatch (user cancelled)') self.layout['name'] = name self.layout = layout self.set_date(self.layout['date'], is_plot) except Exception, e: print('Settings {0} could not be loaded'.format(name)) print('{0}'.format(e.message)) raise def print_list(self): for plot_settings_name in self.list(): print(plot_settings_name) def delete(self, name): file_name = os.path.join(settings.SETTINGS_DIR, 'plots', SAVE_FILE_TPL.format(name)) os.remove(file_name) def list(self): plot_settings = [] for fn in glob(os.path.join(settings.SETTINGS_DIR, 'plots', SAVE_FILE_TPL.format('*'))): plot_settings.append('_'.join(os.path.basename(fn).split('.')[0].split('_')[1:])) return plot_settings def set_date(self, date, is_plot=True): self.layout['date'] = self.c20data.set_date( date, self.layout['ensemble_member'], self.layout['ensemble_mode']) if is_plot: self.plot() def next_date(self): self.layout['date'] = self.c20data.next_date( self.layout['ensemble_member'], self.layout['ensemble_mode']) self.plot() def prev_date(self): self.layout['date'] = self.c20data.prev_date( self.layout['ensemble_member'], self.layout['ensemble_mode']) self.plot() def set_ensemble_member(self, ensemble_member): self.layout['ensemble_member'] = ensemble_member self.c20data.set_date( self.layout['date'], self.layout['ensemble_member'], self.layout['ensemble_mode']) self.plot() def next_ensemble_member(self): self.set_ensemble_member(self.layout['ensemble_member'] + 1) def prev_ensemble_member(self): self.set_ensemble_member(self.layout['ensemble_member'] - 1) def set_match(self, match_index): self.match_index = match_index for plot_settings in self.layout['plot_settings']: plot_settings.match_index = match_index self.plot() def next_match(self): self.set_match(self.match_index + 1) def prev_match(self): self.set_match(self.match_index - 1) def interactive_plot(self): cmd = '' args = [] while True: try: prev_cmd = cmd prev_args = args if cmd not in ['c', 'cr']: r = raw_input('# ') if r == '': cmd = prev_cmd args = prev_args else: try: cmd = r.split(' ')[0] args = r.split(' ')[1:] except: cmd = r args = None if cmd == 'q': break elif cmd == 'pl': print('plot') self.next_date() self.plot() elif cmd == 'n': print('next') self.next_date() self.plot() elif cmd == 'p': print('prev') self.prev_date() self.plot() elif cmd == 'c': print('continuing') self.c20data.next_date() plt.pause(0.01) self.plot() elif cmd == 'cr': print('continuing backwards') self.c20data.prev_date() plt.pause(0.01) self.plot() elif cmd == 's': self.save(args[0]) elif cmd == 'l': self.load(args[0]) elif cmd == 'ls': self.list() elif cmd == 'em': if args[0] == 'n': self.next_ensemble_member() elif args[0] == 'p': self.prev_ensemble_member() else: try: self.set_ensemble_member(int(args[0])) except: pass except KeyboardInterrupt, ki: # Handle ctrl+c # deletes ^C from terminal: print('\r', end='') cmd = '' print('ctrl+c pressed') def plot_3d_scatter(cyclone_matches, unmatched_cyclones): fig = plt.figure(4) ax = fig.add_subplot(111, projection='3d') ps = {'hu': {'xs': [], 'ys': [], 'zs': []}, 'ts': {'xs': [], 'ys': [], 'zs': []}, 'no': {'xs': [], 'ys': [], 'zs': []}} for match in cyclone_matches: best_track = match.best_track cyclone = match.cyclone plotted_dates = [] for date, cls in zip(best_track.dates, best_track.cls): if date in cyclone.dates and cyclone.pmins[date]: plotted_dates.append(date) if cls == 'HU': ps['hu']['xs'].append(cyclone.pmins[date]) ps['hu']['ys'].append(cyclone.p_ambient_diffs[date]) ps['hu']['zs'].append(cyclone.vortmax_track.vortmax_by_date[date].vort) else: ps['ts']['xs'].append(cyclone.pmins[date]) ps['ts']['ys'].append(cyclone.p_ambient_diffs[date]) ps['ts']['zs'].append(cyclone.vortmax_track.vortmax_by_date[date].vort) for date in cyclone.dates: if date not in plotted_dates and cyclone.pmins[date]: ps['no']['xs'].append(cyclone.pmins[date]) ps['no']['ys'].append(cyclone.p_ambient_diffs[date]) ps['no']['zs'].append(cyclone.vortmax_track.vortmax_by_date[date].vort) ax.scatter(c='r', marker='o', **ps['hu']) ax.scatter(c='b', marker='o', **ps['ts']) ax.scatter(c='b', marker='x', **ps['no']) SCATTER_ATTRS = { # Normally x. 'vort': {'range': (0, 0.0012)}, # 1st row. 'pmin': {'range': (96000, 104000)}, 'pambdiff': {'range': (-1000, 5000)}, 'mindist': {'range': (0, 1000)}, 'max_windspeed': {'range': (0, 100)}, # 2nd row. 't995': {'range': (260, 320)}, 't850': {'range': (250, 310)}, 't_anom': {'range': (-15, 10)}, 'max_windspeed_dist': {'range': (0, 1000)}, 'max_windspeed_dir': {'range': (-np.pi, np.pi)}, 'lon': {'range': (200, 360)}, 'lat': {'range': (0, 70)}, } def plot_2d_scatter(ps, var1, var2, unmatched_lim=None): attr1 = SCATTER_ATTRS[var1] attr2 = SCATTER_ATTRS[var2] plt.xlim(attr1['range']) plt.ylim(attr2['range']) plt.xlabel(var1) plt.ylabel(var2) if not unmatched_lim: unmatched_lim = len(ps['unmatched']['xs']) plt.plot(ps['unmatched']['xs'][:unmatched_lim], ps['unmatched']['ys'][:unmatched_lim], 'g+', zorder=0) plt.plot(ps['no']['xs'], ps['no']['ys'], 'bx', zorder=1) plt.plot(ps['ts']['xs'], ps['ts']['ys'], 'bo', zorder=2) plt.plot(ps['hu']['xs'], ps['hu']['ys'], 'ro', zorder=3) def plot_2d_error_scatter(ps, var1, var2, unmatched_lim=None): attr1 = SCATTER_ATTRS[var1] attr2 = SCATTER_ATTRS[var2] plt.xlim(attr1['range']) plt.ylim(attr2['range']) plt.xlabel(var1) plt.ylabel(var2) if not unmatched_lim: unmatched_lim = len(ps['un']['xs']) plt.plot(ps['un']['xs'][:unmatched_lim], ps['un']['ys'][:unmatched_lim], 'kx', zorder=0) plt.plot(ps['fp']['xs'], ps['fp']['ys'], 'bo', zorder=1) plt.plot(ps['fn']['xs'], ps['fn']['ys'], 'r^', zorder=2) plt.plot(ps['tp']['xs'], ps['tp']['ys'], 'ro', zorder=3) plt.plot(ps['tn']['xs'], ps['tn']['ys'], 'b^', zorder=4) def plot_ensemble_matches(c20data, matches): plt.clf() raster_on_earth(c20data.lons, c20data.lats, None, None, None, 'wa') for match in matches: plot_track(match.av_vort_track) if match.store_all_tracks: for vort_track in match.vort_tracks: plot_track(vort_track, 'b+') # if raw_input() == 'q': # return def plot_vortmax_track_with_date(vortmax_track, date=None): plot_track(vortmax_track, plt_fmt='b--') if date: try: index = np.where(vortmax_track.dates == date)[0][0] plot_point_on_earth(vortmax_track.lons[index], vortmax_track.lats[index], 'ko') except: pass # print("Couldn't plot track at date {0} (start {1}, end {2})".format( # date, vortmax_track.dates[0], vortmax_track.dates[-1])) def plot_ibtrack_with_date(best_track, date=None): plot_track(best_track) if date: try: index = np.where(best_track.dates == date)[0][0] if best_track.cls[index] == 'HU': plot_point_on_earth(best_track.lons[index], best_track.lats[index], 'ro') else: plot_point_on_earth(best_track.lons[index], best_track.lats[index], 'ko') except: pass # print("Couldn't plot best_track at date {0} (start {1}, end {2})".format( # date, best_track.dates[0], best_track.dates[-1])) # TODO: integrate with Plotting class. def time_plot_match(c20data, match): best_track = match.best_track vort_track = match.vort_track for date in best_track.dates: c20data.set_date(date) plt.clf() plt.title(date) raster_on_earth(c20data.lons, c20data.lats, c20data.vort, -6e-5, 5e-4, 'wa') plot_vortmax_track_with_date(vort_track, date) plot_ibtrack_with_date(best_track, date) plot_match_dist_with_date(match, date) raw_input() # TODO: integrate with Plotting class. def time_plot_ibtrack(c20data, best_track): for date in best_track.dates: c20data.set_date(date) plt.clf() plt.subplot(2, 1, 1) plt.title(date) plot_ibtrack_with_date(best_track, date) raster_on_earth(c20data.lons, c20data.lats, c20data.prmsl, vmin=99500, vmax=103000, loc='wa') plt.subplot(2, 1, 2) plot_ibtrack_with_date(best_track, date) raster_on_earth(c20data.lons, c20data.lats, c20data.vort, -6e-5, 5e-4, loc='wa') raw_input() # TODO: integrate with Plotting class. def time_plot_vmax(gdata): for date in gdata.vortmax_time_series.keys(): vortmaxes = gdata.vortmax_time_series[date] plt.clf() plt.title(date) raster_on_earth(gdata.c20data.lons, gdata.c20data.lats, None, 0, 0, 'wa') for vmax in vortmaxes: plot_point_on_earth(vmax.pos[0], vmax.pos[1], 'ko') raw_input() # TODO: integrate with Plotting class. def plot_matches(c20data, matches, clear=False): for match in matches: if clear: plt.clf() raster_on_earth(c20data.lons, c20data.lats, None, 0, 0, 'wa') plot_match_with_date(match) raw_input() def cvorticity(u, v, dx, dy): '''Calculates the (2nd order) vorticity by calling into a c function''' vort = np.zeros_like(u) cvort(u, v, u.shape[0], u.shape[1], dx, dy, vort) return vort def plot_grib_vorticity_at_level(c20gribdata, level_key): level = c20gribdata.levels[level_key] raster_on_earth(level.lons, level.lats, level.vort, loc='wa') def plot_match_with_date(match, date=None): plot_vortmax_track_with_date(match.vort_track, date) plot_ibtrack_with_date(match.best_track, date) plot_match_dist_with_date(match, date) print('Overlap: {0}, cum dist: {1}, av dist: {2}'.format( match.overlap, match.cum_dist, match.av_dist())) def plot_match_dist_with_date(match, date): best_track = match.best_track vortmax_track = match.vort_track track_index = np.where(best_track.dates == match.overlap_start)[0][0] vortmax_track_index = np.where(vortmax_track.dates == match.overlap_start)[0][0] while True: vortmax = vortmax_track.vortmaxes[vortmax_track_index] if date and date == best_track.dates[track_index]: plot_path_on_earth(np.array((best_track.lons[track_index], vortmax.pos[0])), np.array((best_track.lats[track_index], vortmax.pos[1])), 'r-') else: plot_path_on_earth(np.array((best_track.lons[track_index], vortmax.pos[0])), np.array((best_track.lats[track_index], vortmax.pos[1])), 'y-') track_index += 1 vortmax_track_index += 1 if track_index >= len(best_track.lons) or vortmax_track_index >= len(vortmax_track.lons): break def plot_vort_vort4(c20data, date): c20data.set_date(date) plt.clf() plt.subplot(2, 2, 1) plt.title(date) raster_on_earth(c20data.lons, c20data.lats, c20data.vort, vmin=-5e-6, vmax=2e-4) plt.subplot(2, 2, 3) raster_on_earth(c20data.lons, c20data.lats, c20data.vort4, vmin=-5e-6, vmax=2e-4) plt.subplot(2, 2, 2) raster_on_earth(c20data.lons, c20data.lats, None) print(len(c20data.vmaxs)) for v, vmax in c20data.vmaxs: if v > 1e-4: plot_point_on_earth(vmax[0], vmax[1], 'go') else: plot_point_on_earth(vmax[0], vmax[1], 'kx') plt.subplot(2, 2, 4) raster_on_earth(c20data.lons, c20data.lats, None) print(len(c20data.v4maxs)) for v, vmax in c20data.v4maxs: if v > 5e-5: plot_point_on_earth(vmax[0], vmax[1], 'go') else: plot_point_on_earth(vmax[0], vmax[1], 'kx') def time_plot_ibtracks_pressure_vort(c20data, best_tracks, dates): for i, date in enumerate(dates): c20data.set_date(date) plt.clf() plt.subplot(2, 2, 1) plt.title(date) raster_on_earth(c20data.lons, c20data.lats, c20data.prmsl, vmin=99500, vmax=103000) plt.subplot(2, 2, 3) raster_on_earth(c20data.lons, c20data.lats, c20data.vort, vmin=-5e-6, vmax=2e-4) plt.subplot(2, 2, 2) raster_on_earth(c20data.lons, c20data.lats, None) for p, pmin in c20data.pmins: plot_point_on_earth(pmin[0], pmin[1], 'kx') plt.subplot(2, 2, 4) raster_on_earth(c20data.lons, c20data.lats, None) for v, vmax in c20data.vmaxs: if v > 10: plot_point_on_earth(vmax[0], vmax[1], 'go') else: plot_point_on_earth(vmax[0], vmax[1], 'kx') for best_track in best_tracks: if best_track.dates[0] > date or best_track.dates[-1] < date: continue index = 0 for j, track_date in enumerate(best_track.dates): if track_date == date: index = j break for i in range(4): plt.subplot(2, 2, i + 1) plot_ibtrack_with_date(best_track, date) plt.pause(0.1) print(date) raw_input() def time_plot_ibtracks_vort_smoothedvort(c20data, best_tracks, dates): if not c20data.smoothing: print('Turning on smoothing for c20 data') c20data.smoothing = True for i, date in enumerate(dates): c20data.set_date(date) plt.clf() plt.subplot(2, 2, 1) plt.title(date) raster_on_earth(c20data.lons, c20data.lats, c20data.vort) plt.subplot(2, 2, 3) raster_on_earth(c20data.lons, c20data.lats, c20data.smoothed_vort) plt.subplot(2, 2, 2) raster_on_earth(c20data.lons, c20data.lats, None) for v, vmax in c20data.vmaxs: if v > 10: plot_point_on_earth(vmax[0], vmax[1], 'go') elif v > 4: plot_point_on_earth(vmax[0], vmax[1], 'kx') else: plot_point_on_earth(vmax[0], vmax[1], 'y+') plt.subplot(2, 2, 4) raster_on_earth(c20data.lons, c20data.lats, None) for v, vmax in c20data.smoothed_vmaxs: if v > 10: plot_point_on_earth(vmax[0], vmax[1], 'go') elif v > 4: plot_point_on_earth(vmax[0], vmax[1], 'kx') else: plot_point_on_earth(vmax[0], vmax[1], 'y+') for best_track in best_tracks: if best_track.dates[0] > date or best_track.dates[-1] < date: continue index = 0 for j, track_date in enumerate(best_track.dates): if track_date == date: index = j break for i in range(4): plt.subplot(2, 2, i + 1) plot_ibtrack_with_date(best_track, date) plt.pause(0.1) print(date) raw_input() def plot_ibtracks(best_tracks, start_date, end_date): for best_track in best_tracks: if best_track.dates[0] >= start_date and best_track.dates[0] <= end_date: plot_track(best_track) def plot_track(track, plt_fmt=None, zorder=1): if plt_fmt: plot_path_on_earth(track.lons, track.lats, plt_fmt, zorder=zorder) else: plot_path_on_earth(track.lons, track.lats, 'r-', zorder=zorder) # TODO: integrate with Plotting class. def plot_wilma(c20data): plot_between_dates(c20data, dt.datetime(2005, 10, 18), dt.datetime(2005, 10, 28)) # TODO: integrate with Plotting class. def plot_between_dates(c20data, start_date, end_date): date = c20data.set_date(start_date) while date < end_date: plt.clf() plt.subplot(2, 2, 1) plt.title(date) # raster_on_earth(c20data.lons, c20data.lats, c20data.prmsl, 97000, 106000, 'wa') raster_on_earth(c20data.lons, c20data.lats, c20data.vort, -6e-5, 5e-4, 'wa') plt.subplot(2, 2, 3) raster_on_earth(c20data.lons, c20data.lats, c20data.vort4, -6e-5, 5e-4, 'wa') plt.subplot(2, 2, 2) raster_on_earth(c20data.lons, c20data.lats, None, 0, 0, 'wa') for v, vmax in c20data.vmaxs: if v > 3e-4: plot_point_on_earth(vmax[0], vmax[1], 'ro') plt.annotate('{0:2.1f}'.format(v * 1e4), (vmax[0], vmax[1] + 0.2)) elif v > 2e-4: plot_point_on_earth(vmax[0], vmax[1], 'yo') plt.annotate('{0:2.1f}'.format(v * 1e4), (vmax[0], vmax[1] + 0.2)) elif v > 1e-4: plot_point_on_earth(vmax[0], vmax[1], 'go') else: # plot_point_on_earth(vmax[0], vmax[1], 'kx') pass plt.subplot(2, 2, 4) raster_on_earth(c20data.lons, c20data.lats, None, 0, 0, 'wa') for v, vmax in c20data.v4maxs: if v > 3e-4: plot_point_on_earth(vmax[0], vmax[1], 'ro') plt.annotate('{0:2.1f}'.format(v * 1e4), (vmax[0], vmax[1] + 0.2)) elif v > 2e-4: plot_point_on_earth(vmax[0], vmax[1], 'yo') plt.annotate('{0:2.1f}'.format(v * 1e4), (vmax[0], vmax[1] + 0.2)) elif v > 1e-4: plot_point_on_earth(vmax[0], vmax[1], 'go') else: # plot_point_on_earth(vmax[0], vmax[1], 'kx') pass raw_input() date = c20data.next_date() # plt.pause(0.1) def lons_convert(lons): new_lons = lons.copy() m = new_lons > 180 new_lons[m] = new_lons[m] - 360 return new_lons def lon_convert(lon): return lon if lon <= 180 else lon - 360 def plot_path_on_earth(lons, lats, plot_fmt=None, zorder=1): if plot_fmt: plt.plot(lons_convert(lons), lats, plot_fmt, zorder=zorder) else: plt.plot(lons_convert(lons), lats, zorder=zorder) def plot_point_on_earth(lon, lat, plot_fmt=None): if plot_fmt: plt.plot(lon_convert(lon), lat, plot_fmt) else: plt.plot(lon_convert(lon), lat) def raster_on_earth(lons, lats, data, vmin=None, vmax=None, loc='earth'): if loc == 'earth': m = Basemap(projection='cyl', resolution='c', llcrnrlat=-90, urcrnrlat=90, llcrnrlon=-180, urcrnrlon=180) elif loc in ['wa', 'west_atlantic']: m = Basemap(projection='cyl', resolution='c', llcrnrlat=0, urcrnrlat=60, llcrnrlon=-120, urcrnrlon=-30) elif loc in ['nwp', 'northwest_pacific']: m = Basemap(projection='cyl', resolution='c', llcrnrlat=0, urcrnrlat=50, llcrnrlon=100, urcrnrlon=180) if data is not None: plot_lons, plot_data = extend_data(lons, lats, data) lons, lats = np.meshgrid(plot_lons, lats) x, y = m(lons, lats) if vmin: m.pcolormesh(x, y, plot_data, vmin=vmin, vmax=vmax) else: m.pcolormesh(x, y, plot_data) m.drawcoastlines() p_labels = [0, 1, 0, 0] m.drawparallels(np.arange(-90., 90.1, 45.), labels=p_labels, fontsize=10) m.drawmeridians(np.arange(-180., 180., 60.), labels=[0, 0, 0, 1], fontsize=10) def extend_data(lons, lats, data): if False: # TODO: probably doesn't work! # Adds extra data at the end. plot_offset = 2 plot_lons = np.zeros((lons.shape[0] + plot_offset,)) plot_lons[:-plot_offset] = lons plot_lons[-plot_offset:] = lons[-plot_offset:] + 3.75 * plot_offset plot_data = np.zeros((data.shape[0], data.shape[1] + plot_offset)) plot_data[:, :-plot_offset] = data plot_data[:, -plot_offset:] = data[:, :plot_offset] else: # Adds extra data before the start. delta = lons[1] - lons[0] plot_offset = 180 plot_lons = np.ma.zeros((lons.shape[0] + plot_offset,)) plot_lons[plot_offset:] = lons plot_lons[:plot_offset] = lons[-plot_offset:] - delta * (lons.shape[0]) plot_data = np.ma.zeros((data.shape[0], data.shape[1] + plot_offset)) plot_data[:, plot_offset:] = data plot_data[:, :plot_offset] = data[:, -plot_offset:] return plot_lons, plot_data
mit
wavelets/machine-learning
code/abalone.py
2
1908
# abalone # Classification and Clustering of Wheat Dataset # # Author: Author: Benjamin Bengfort <[email protected]> # Created: Thu Feb 26 17:56:52 2015 -0500 # # Copyright (C) 2015 District Data Labs # For license information, see LICENSE.txt # # ID: abalone.py [] [email protected] $ """ Classification and Clustering of Abalone Dataset """ ########################################################################## ## Imports ########################################################################## import time import pickle from abaloneUtils import * from sklearn import cross_validation ########################################################################## ## Logistic Regression Classification ########################################################################## from sklearn import metrics from sklearn.linear_model import LogisticRegression start_time = time.time() # Load the dataset dataset = load_abalone() data = dataset.data target = dataset.target # Get training and testing splits splits = cross_validation.train_test_split(data, target, test_size=0.2) data_train, data_test, target_train, target_test = splits load_time = time.time() # Fit the training data to the model model = LogisticRegression() model.fit(data_train, target_train) build_time = time.time() print model # Make predictions expected = target_test predicted = model.predict(data_test) # Evaluate the predictions print metrics.classification_report(expected, predicted) print metrics.confusion_matrix(expected, predicted) eval_time = time.time() print "Times: %0.3f sec loading, %0.3f sec building, %0.3f sec evaluation" % (load_time-start_time, build_time-load_time, eval_time-build_time,) print "Total time: %0.3f seconds" % (eval_time-start_time) # Save the model to disk with open('abaloneModel.pickle', 'w') as f: pickle.dump(model, f)
mit
jayflo/scikit-learn
examples/manifold/plot_compare_methods.py
259
4031
""" ========================================= Comparison of Manifold Learning methods ========================================= An illustration of dimensionality reduction on the S-curve dataset with various manifold learning methods. For a discussion and comparison of these algorithms, see the :ref:`manifold module page <manifold>` For a similar example, where the methods are applied to a sphere dataset, see :ref:`example_manifold_plot_manifold_sphere.py` Note that the purpose of the MDS is to find a low-dimensional representation of the data (here 2D) in which the distances respect well the distances in the original high-dimensional space, unlike other manifold-learning algorithms, it does not seeks an isotropic representation of the data in the low-dimensional space. """ # Author: Jake Vanderplas -- <[email protected]> print(__doc__) from time import time import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib.ticker import NullFormatter from sklearn import manifold, datasets # Next line to silence pyflakes. This import is needed. Axes3D n_points = 1000 X, color = datasets.samples_generator.make_s_curve(n_points, random_state=0) n_neighbors = 10 n_components = 2 fig = plt.figure(figsize=(15, 8)) plt.suptitle("Manifold Learning with %i points, %i neighbors" % (1000, n_neighbors), fontsize=14) try: # compatibility matplotlib < 1.0 ax = fig.add_subplot(251, projection='3d') ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=color, cmap=plt.cm.Spectral) ax.view_init(4, -72) except: ax = fig.add_subplot(251, projection='3d') plt.scatter(X[:, 0], X[:, 2], c=color, cmap=plt.cm.Spectral) methods = ['standard', 'ltsa', 'hessian', 'modified'] labels = ['LLE', 'LTSA', 'Hessian LLE', 'Modified LLE'] for i, method in enumerate(methods): t0 = time() Y = manifold.LocallyLinearEmbedding(n_neighbors, n_components, eigen_solver='auto', method=method).fit_transform(X) t1 = time() print("%s: %.2g sec" % (methods[i], t1 - t0)) ax = fig.add_subplot(252 + i) plt.scatter(Y[:, 0], Y[:, 1], c=color, cmap=plt.cm.Spectral) plt.title("%s (%.2g sec)" % (labels[i], t1 - t0)) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) plt.axis('tight') t0 = time() Y = manifold.Isomap(n_neighbors, n_components).fit_transform(X) t1 = time() print("Isomap: %.2g sec" % (t1 - t0)) ax = fig.add_subplot(257) plt.scatter(Y[:, 0], Y[:, 1], c=color, cmap=plt.cm.Spectral) plt.title("Isomap (%.2g sec)" % (t1 - t0)) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) plt.axis('tight') t0 = time() mds = manifold.MDS(n_components, max_iter=100, n_init=1) Y = mds.fit_transform(X) t1 = time() print("MDS: %.2g sec" % (t1 - t0)) ax = fig.add_subplot(258) plt.scatter(Y[:, 0], Y[:, 1], c=color, cmap=plt.cm.Spectral) plt.title("MDS (%.2g sec)" % (t1 - t0)) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) plt.axis('tight') t0 = time() se = manifold.SpectralEmbedding(n_components=n_components, n_neighbors=n_neighbors) Y = se.fit_transform(X) t1 = time() print("SpectralEmbedding: %.2g sec" % (t1 - t0)) ax = fig.add_subplot(259) plt.scatter(Y[:, 0], Y[:, 1], c=color, cmap=plt.cm.Spectral) plt.title("SpectralEmbedding (%.2g sec)" % (t1 - t0)) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) plt.axis('tight') t0 = time() tsne = manifold.TSNE(n_components=n_components, init='pca', random_state=0) Y = tsne.fit_transform(X) t1 = time() print("t-SNE: %.2g sec" % (t1 - t0)) ax = fig.add_subplot(250) plt.scatter(Y[:, 0], Y[:, 1], c=color, cmap=plt.cm.Spectral) plt.title("t-SNE (%.2g sec)" % (t1 - t0)) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) plt.axis('tight') plt.show()
bsd-3-clause
scw/scipy-devsummit-2016-talk
examples/pandas-filter.py
3
1218
import pandas data = pandas.read_csv('data/season-ratings.csv') data.columns #Index([u'season', u'households', u'rank', u'tv_households', \ # u'net_indep', u'primetime_pct'], dtype='object') majority_simpsons = data[data.primetime_pct > 50] """ season households tv_households net_indep primetime_pct 0 1 13.4m[41] 92.1 51.6 80.751174 1 2 12.2m[n2] 92.1 50.4 78.504673 2 3 12.0m[n3] 92.1 48.4 76.582278 3 4 12.1m[48] 93.1 46.2 72.755906 4 5 10.5m[n4] 93.1 46.5 72.093023 5 6 9.0m[50] 95.4 46.1 71.032357 6 7 8.0m[51] 95.9 46.6 70.713202 7 8 8.6m[52] 97.0 44.2 67.584098 8 9 9.1m[53] 98.0 42.3 64.383562 9 10 7.9m[54] 99.4 39.9 60.916031 10 11 8.2m[55] 100.8 38.1 57.466063 11 12 14.7m[56] 102.2 36.8 53.958944 12 13 12.4m[57] 105.5 35.0 51.094891 """ print(majority_simpsons)
apache-2.0
joernhees/scikit-learn
examples/cluster/plot_feature_agglomeration_vs_univariate_selection.py
87
3903
""" ============================================== Feature agglomeration vs. univariate selection ============================================== This example compares 2 dimensionality reduction strategies: - univariate feature selection with Anova - feature agglomeration with Ward hierarchical clustering Both methods are compared in a regression problem using a BayesianRidge as supervised estimator. """ # Author: Alexandre Gramfort <[email protected]> # License: BSD 3 clause print(__doc__) import shutil import tempfile import numpy as np import matplotlib.pyplot as plt from scipy import linalg, ndimage from sklearn.feature_extraction.image import grid_to_graph from sklearn import feature_selection from sklearn.cluster import FeatureAgglomeration from sklearn.linear_model import BayesianRidge from sklearn.pipeline import Pipeline from sklearn.externals.joblib import Memory from sklearn.model_selection import GridSearchCV from sklearn.model_selection import KFold ############################################################################### # Generate data n_samples = 200 size = 40 # image size roi_size = 15 snr = 5. np.random.seed(0) mask = np.ones([size, size], dtype=np.bool) coef = np.zeros((size, size)) coef[0:roi_size, 0:roi_size] = -1. coef[-roi_size:, -roi_size:] = 1. X = np.random.randn(n_samples, size ** 2) for x in X: # smooth data x[:] = ndimage.gaussian_filter(x.reshape(size, size), sigma=1.0).ravel() X -= X.mean(axis=0) X /= X.std(axis=0) y = np.dot(X, coef.ravel()) noise = np.random.randn(y.shape[0]) noise_coef = (linalg.norm(y, 2) / np.exp(snr / 20.)) / linalg.norm(noise, 2) y += noise_coef * noise # add noise ############################################################################### # Compute the coefs of a Bayesian Ridge with GridSearch cv = KFold(2) # cross-validation generator for model selection ridge = BayesianRidge() cachedir = tempfile.mkdtemp() mem = Memory(cachedir=cachedir, verbose=1) # Ward agglomeration followed by BayesianRidge connectivity = grid_to_graph(n_x=size, n_y=size) ward = FeatureAgglomeration(n_clusters=10, connectivity=connectivity, memory=mem) clf = Pipeline([('ward', ward), ('ridge', ridge)]) # Select the optimal number of parcels with grid search clf = GridSearchCV(clf, {'ward__n_clusters': [10, 20, 30]}, n_jobs=1, cv=cv) clf.fit(X, y) # set the best parameters coef_ = clf.best_estimator_.steps[-1][1].coef_ coef_ = clf.best_estimator_.steps[0][1].inverse_transform(coef_) coef_agglomeration_ = coef_.reshape(size, size) # Anova univariate feature selection followed by BayesianRidge f_regression = mem.cache(feature_selection.f_regression) # caching function anova = feature_selection.SelectPercentile(f_regression) clf = Pipeline([('anova', anova), ('ridge', ridge)]) # Select the optimal percentage of features with grid search clf = GridSearchCV(clf, {'anova__percentile': [5, 10, 20]}, cv=cv) clf.fit(X, y) # set the best parameters coef_ = clf.best_estimator_.steps[-1][1].coef_ coef_ = clf.best_estimator_.steps[0][1].inverse_transform(coef_.reshape(1, -1)) coef_selection_ = coef_.reshape(size, size) ############################################################################### # Inverse the transformation to plot the results on an image plt.close('all') plt.figure(figsize=(7.3, 2.7)) plt.subplot(1, 3, 1) plt.imshow(coef, interpolation="nearest", cmap=plt.cm.RdBu_r) plt.title("True weights") plt.subplot(1, 3, 2) plt.imshow(coef_selection_, interpolation="nearest", cmap=plt.cm.RdBu_r) plt.title("Feature Selection") plt.subplot(1, 3, 3) plt.imshow(coef_agglomeration_, interpolation="nearest", cmap=plt.cm.RdBu_r) plt.title("Feature Agglomeration") plt.subplots_adjust(0.04, 0.0, 0.98, 0.94, 0.16, 0.26) plt.show() # Attempt to remove the temporary cachedir, but don't worry if it fails shutil.rmtree(cachedir, ignore_errors=True)
bsd-3-clause
maheshakya/scikit-learn
examples/manifold/plot_compare_methods.py
259
4031
""" ========================================= Comparison of Manifold Learning methods ========================================= An illustration of dimensionality reduction on the S-curve dataset with various manifold learning methods. For a discussion and comparison of these algorithms, see the :ref:`manifold module page <manifold>` For a similar example, where the methods are applied to a sphere dataset, see :ref:`example_manifold_plot_manifold_sphere.py` Note that the purpose of the MDS is to find a low-dimensional representation of the data (here 2D) in which the distances respect well the distances in the original high-dimensional space, unlike other manifold-learning algorithms, it does not seeks an isotropic representation of the data in the low-dimensional space. """ # Author: Jake Vanderplas -- <[email protected]> print(__doc__) from time import time import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib.ticker import NullFormatter from sklearn import manifold, datasets # Next line to silence pyflakes. This import is needed. Axes3D n_points = 1000 X, color = datasets.samples_generator.make_s_curve(n_points, random_state=0) n_neighbors = 10 n_components = 2 fig = plt.figure(figsize=(15, 8)) plt.suptitle("Manifold Learning with %i points, %i neighbors" % (1000, n_neighbors), fontsize=14) try: # compatibility matplotlib < 1.0 ax = fig.add_subplot(251, projection='3d') ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=color, cmap=plt.cm.Spectral) ax.view_init(4, -72) except: ax = fig.add_subplot(251, projection='3d') plt.scatter(X[:, 0], X[:, 2], c=color, cmap=plt.cm.Spectral) methods = ['standard', 'ltsa', 'hessian', 'modified'] labels = ['LLE', 'LTSA', 'Hessian LLE', 'Modified LLE'] for i, method in enumerate(methods): t0 = time() Y = manifold.LocallyLinearEmbedding(n_neighbors, n_components, eigen_solver='auto', method=method).fit_transform(X) t1 = time() print("%s: %.2g sec" % (methods[i], t1 - t0)) ax = fig.add_subplot(252 + i) plt.scatter(Y[:, 0], Y[:, 1], c=color, cmap=plt.cm.Spectral) plt.title("%s (%.2g sec)" % (labels[i], t1 - t0)) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) plt.axis('tight') t0 = time() Y = manifold.Isomap(n_neighbors, n_components).fit_transform(X) t1 = time() print("Isomap: %.2g sec" % (t1 - t0)) ax = fig.add_subplot(257) plt.scatter(Y[:, 0], Y[:, 1], c=color, cmap=plt.cm.Spectral) plt.title("Isomap (%.2g sec)" % (t1 - t0)) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) plt.axis('tight') t0 = time() mds = manifold.MDS(n_components, max_iter=100, n_init=1) Y = mds.fit_transform(X) t1 = time() print("MDS: %.2g sec" % (t1 - t0)) ax = fig.add_subplot(258) plt.scatter(Y[:, 0], Y[:, 1], c=color, cmap=plt.cm.Spectral) plt.title("MDS (%.2g sec)" % (t1 - t0)) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) plt.axis('tight') t0 = time() se = manifold.SpectralEmbedding(n_components=n_components, n_neighbors=n_neighbors) Y = se.fit_transform(X) t1 = time() print("SpectralEmbedding: %.2g sec" % (t1 - t0)) ax = fig.add_subplot(259) plt.scatter(Y[:, 0], Y[:, 1], c=color, cmap=plt.cm.Spectral) plt.title("SpectralEmbedding (%.2g sec)" % (t1 - t0)) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) plt.axis('tight') t0 = time() tsne = manifold.TSNE(n_components=n_components, init='pca', random_state=0) Y = tsne.fit_transform(X) t1 = time() print("t-SNE: %.2g sec" % (t1 - t0)) ax = fig.add_subplot(250) plt.scatter(Y[:, 0], Y[:, 1], c=color, cmap=plt.cm.Spectral) plt.title("t-SNE (%.2g sec)" % (t1 - t0)) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) plt.axis('tight') plt.show()
bsd-3-clause
crpurcell/RM-tools
RMutils/corner.py
2
22955
# -*- coding: utf-8 -*- from __future__ import print_function, absolute_import import logging import numpy as np import matplotlib.pyplot as pl from matplotlib.ticker import MaxNLocator, NullLocator from matplotlib.colors import LinearSegmentedColormap, colorConverter from matplotlib.ticker import ScalarFormatter try: from scipy.ndimage import gaussian_filter except ImportError: gaussian_filter = None __all__ = ["corner", "hist2d", "quantile"] def corner(xs, bins=20, range=None, weights=None, color="k", smooth=None, smooth1d=None, labels=None, label_kwargs=None, show_titles=False, title_fmt=".2f", title_kwargs=None, truths=None, truth_color="#4682b4", scale_hist=False, quantiles=None, verbose=False, fig=None, max_n_ticks=5, top_ticks=False, use_math_text=False, reverse=False, hist_kwargs=None, **hist2d_kwargs): """ Make a *sick* corner plot showing the projections of a data set in a multi-dimensional space. kwargs are passed to hist2d() or used for `matplotlib` styling. Parameters ---------- xs : array_like[nsamples, ndim] The samples. This should be a 1- or 2-dimensional array. For a 1-D array this results in a simple histogram. For a 2-D array, the zeroth axis is the list of samples and the next axis are the dimensions of the space. bins : int or array_like[ndim,] The number of bins to use in histograms, either as a fixed value for all dimensions, or as a list of integers for each dimension. weights : array_like[nsamples,] The weight of each sample. If `None` (default), samples are given equal weight. color : str A ``matplotlib`` style color for all histograms. smooth, smooth1d : float The standard deviation for Gaussian kernel passed to `scipy.ndimage.gaussian_filter` to smooth the 2-D and 1-D histograms respectively. If `None` (default), no smoothing is applied. labels : iterable (ndim,) A list of names for the dimensions. If a ``xs`` is a ``pandas.DataFrame``, labels will default to column names. label_kwargs : dict Any extra keyword arguments to send to the `set_xlabel` and `set_ylabel` methods. show_titles : bool Displays a title above each 1-D histogram showing the 0.5 quantile with the upper and lower errors supplied by the quantiles argument. title_fmt : string The format string for the quantiles given in titles. If you explicitly set ``show_titles=True`` and ``title_fmt=None``, the labels will be shown as the titles. (default: ``.2f``) title_kwargs : dict Any extra keyword arguments to send to the `set_title` command. range : iterable (ndim,) A list where each element is either a length 2 tuple containing lower and upper bounds or a float in range (0., 1.) giving the fraction of samples to include in bounds, e.g., [(0.,10.), (1.,5), 0.999, etc.]. If a fraction, the bounds are chosen to be equal-tailed. truths : iterable (ndim,) A list of reference values to indicate on the plots. Individual values can be omitted by using ``None``. truth_color : str A ``matplotlib`` style color for the ``truths`` makers. scale_hist : bool Should the 1-D histograms be scaled in such a way that the zero line is visible? quantiles : iterable A list of fractional quantiles to show on the 1-D histograms as vertical dashed lines. verbose : bool If true, print the values of the computed quantiles. plot_contours : bool Draw contours for dense regions of the plot. use_math_text : bool If true, then axis tick labels for very large or small exponents will be displayed as powers of 10 rather than using `e`. reverse : bool If true, plot the corner plot starting in the upper-right corner instead of the usual bottom-left corner max_n_ticks: int Maximum number of ticks to try to use top_ticks : bool If true, label the top ticks of each axis fig : matplotlib.Figure Overplot onto the provided figure object. hist_kwargs : dict Any extra keyword arguments to send to the 1-D histogram plots. **hist2d_kwargs Any remaining keyword arguments are sent to `corner.hist2d` to generate the 2-D histogram plots. """ if quantiles is None: quantiles = [] if title_kwargs is None: title_kwargs = dict() if label_kwargs is None: label_kwargs = dict() # Try filling in labels from pandas.DataFrame columns. if labels is None: try: labels = xs.columns except AttributeError: pass # Deal with 1D sample lists. xs = np.atleast_1d(xs) if len(xs.shape) == 1: xs = np.atleast_2d(xs) else: assert len(xs.shape) == 2, "The input sample array must be 1- or 2-D." xs = xs.T assert xs.shape[0] <= xs.shape[1], "I don't believe that you want more " \ "dimensions than samples!" # Parse the weight array. if weights is not None: weights = np.asarray(weights) if weights.ndim != 1: raise ValueError("Weights must be 1-D") if xs.shape[1] != weights.shape[0]: raise ValueError("Lengths of weights must match number of samples") # Parse the parameter ranges. if range is None: if "extents" in hist2d_kwargs: logging.warn("Deprecated keyword argument 'extents'. " "Use 'range' instead.") range = hist2d_kwargs.pop("extents") else: range = [[x.min(), x.max()] for x in xs] # Check for parameters that never change. m = np.array([e[0] == e[1] for e in range], dtype=bool) if np.any(m): raise ValueError(("It looks like the parameter(s) in " "column(s) {0} have no dynamic range. " "Please provide a `range` argument.") .format(", ".join(map( "{0}".format, np.arange(len(m))[m])))) else: # If any of the extents are percentiles, convert them to ranges. # Also make sure it's a normal list. range = list(range) for i, _ in enumerate(range): try: emin, emax = range[i] except TypeError: q = [0.5 - 0.5*range[i], 0.5 + 0.5*range[i]] range[i] = quantile(xs[i], q, weights=weights) if len(range) != xs.shape[0]: raise ValueError("Dimension mismatch between samples and range") # Parse the bin specifications. try: bins = [int(bins) for _ in range] except TypeError: if len(bins) != len(range): raise ValueError("Dimension mismatch between bins and range") # Some magic numbers for pretty axis layout. K = len(xs) factor = 2.0 # size of one side of one panel if reverse: lbdim = 0.2 * factor # size of left/bottom margin trdim = 0.5 * factor # size of top/right margin else: lbdim = 0.5 * factor # size of left/bottom margin trdim = 0.2 * factor # size of top/right margin whspace = 0.05 # w/hspace size plotdim = factor * K + factor * (K - 1.) * whspace dim = lbdim + plotdim + trdim # Create a new figure if one wasn't provided. if fig is None: fig, axes = pl.subplots(K, K, figsize=(dim, dim)) else: try: axes = np.array(fig.axes).reshape((K, K)) except: raise ValueError("Provided figure has {0} axes, but data has " "dimensions K={1}".format(len(fig.axes), K)) # Format the figure. lb = lbdim / dim tr = (lbdim + plotdim) / dim fig.subplots_adjust(left=lb, bottom=lb, right=tr, top=tr, wspace=whspace, hspace=whspace) # Set up the default histogram keywords. if hist_kwargs is None: hist_kwargs = dict() hist_kwargs["color"] = hist_kwargs.get("color", color) if smooth1d is None: hist_kwargs["histtype"] = hist_kwargs.get("histtype", "step") for i, x in enumerate(xs): # Deal with masked arrays. if hasattr(x, "compressed"): x = x.compressed() if np.shape(xs)[0] == 1: ax = axes else: if reverse: ax = axes[K-i-1, K-i-1] else: ax = axes[i, i] # Plot the histograms. if smooth1d is None: n, _, _ = ax.hist(x, bins=bins[i], weights=weights, range=np.sort(range[i]), **hist_kwargs) else: if gaussian_filter is None: raise ImportError("Please install scipy for smoothing") n, b = np.histogram(x, bins=bins[i], weights=weights, range=np.sort(range[i])) n = gaussian_filter(n, smooth1d) x0 = np.array(list(zip(b[:-1], b[1:]))).flatten() y0 = np.array(list(zip(n, n))).flatten() ax.plot(x0, y0, **hist_kwargs) if truths is not None and truths[i] is not None: ax.axvline(truths[i], color=truth_color) # Plot quantiles if wanted. if len(quantiles) > 0: qvalues = quantile(x, quantiles, weights=weights) for q in qvalues: ax.axvline(q, ls="dashed", color=color) if verbose: print("Quantiles:") print([item for item in zip(quantiles, qvalues)]) if show_titles: title = None if title_fmt is not None: # Compute the quantiles for the title. This might redo # unneeded computation but who cares. q_16, q_50, q_84 = quantile(x, [0.16, 0.5, 0.84], weights=weights) q_m, q_p = q_50-q_16, q_84-q_50 # Format the quantile display. fmt = "{{0:{0}}}".format(title_fmt).format title = r"${{{0}}}_{{-{1}}}^{{+{2}}}$" title = title.format(fmt(q_50), fmt(q_m), fmt(q_p)) # Add in the column name if it's given. if labels is not None: title = "{0} = {1}".format(labels[i], title) elif labels is not None: title = "{0}".format(labels[i]) if title is not None: if reverse: ax.set_xlabel(title, **title_kwargs) else: ax.set_title(title, **title_kwargs) # Set up the axes. ax.set_xlim(range[i]) if scale_hist: maxn = np.max(n) ax.set_ylim(-0.1 * maxn, 1.1 * maxn) else: ax.set_ylim(0, 1.1 * np.max(n)) ax.set_yticklabels([]) if max_n_ticks == 0: ax.xaxis.set_major_locator(NullLocator()) ax.yaxis.set_major_locator(NullLocator()) else: ax.xaxis.set_major_locator(MaxNLocator(max_n_ticks, prune="lower")) ax.yaxis.set_major_locator(NullLocator()) if i < K - 1: if top_ticks: ax.xaxis.set_ticks_position("top") [l.set_rotation(45) for l in ax.get_xticklabels()] else: ax.set_xticklabels([]) else: if reverse: ax.xaxis.tick_top() [l.set_rotation(45) for l in ax.get_xticklabels()] if labels is not None: if reverse: ax.set_title(labels[i], y=1.25, **label_kwargs) else: ax.set_xlabel(labels[i], **label_kwargs) # use MathText for axes ticks ax.xaxis.set_major_formatter( ScalarFormatter(useMathText=use_math_text)) for j, y in enumerate(xs): if np.shape(xs)[0] == 1: ax = axes else: if reverse: ax = axes[K-i-1, K-j-1] else: ax = axes[i, j] if j > i: ax.set_frame_on(False) ax.set_xticks([]) ax.set_yticks([]) continue elif j == i: continue # Deal with masked arrays. if hasattr(y, "compressed"): y = y.compressed() hist2d(y, x, ax=ax, range=[range[j], range[i]], weights=weights, color=color, smooth=smooth, bins=[bins[j], bins[i]], **hist2d_kwargs) if truths is not None: if truths[i] is not None and truths[j] is not None: ax.plot(truths[j], truths[i], "s", color=truth_color) if truths[j] is not None: ax.axvline(truths[j], color=truth_color) if truths[i] is not None: ax.axhline(truths[i], color=truth_color) if max_n_ticks == 0: ax.xaxis.set_major_locator(NullLocator()) ax.yaxis.set_major_locator(NullLocator()) else: ax.xaxis.set_major_locator(MaxNLocator(max_n_ticks, prune="lower")) ax.yaxis.set_major_locator(MaxNLocator(max_n_ticks, prune="lower")) if i < K - 1: ax.set_xticklabels([]) else: if reverse: ax.xaxis.tick_top() [l.set_rotation(45) for l in ax.get_xticklabels()] if labels is not None: ax.set_xlabel(labels[j], **label_kwargs) if reverse: ax.xaxis.set_label_coords(0.5, 1.4) else: ax.xaxis.set_label_coords(0.5, -0.3) # use MathText for axes ticks ax.xaxis.set_major_formatter( ScalarFormatter(useMathText=use_math_text)) if j > 0: ax.set_yticklabels([]) else: if reverse: ax.yaxis.tick_right() [l.set_rotation(45) for l in ax.get_yticklabels()] if labels is not None: if reverse: ax.set_ylabel(labels[i], rotation=-90, **label_kwargs) ax.yaxis.set_label_coords(1.3, 0.5) else: ax.set_ylabel(labels[i], **label_kwargs) ax.yaxis.set_label_coords(-0.3, 0.5) # use MathText for axes ticks ax.yaxis.set_major_formatter( ScalarFormatter(useMathText=use_math_text)) return fig def quantile(x, q, weights=None): """ Compute sample quantiles with support for weighted samples. Note ---- When ``weights`` is ``None``, this method simply calls numpy's percentile function with the values of ``q`` multiplied by 100. Parameters ---------- x : array_like[nsamples,] The samples. q : array_like[nquantiles,] The list of quantiles to compute. These should all be in the range ``[0, 1]``. weights : Optional[array_like[nsamples,]] An optional weight corresponding to each sample. These Returns ------- quantiles : array_like[nquantiles,] The sample quantiles computed at ``q``. Raises ------ ValueError For invalid quantiles; ``q`` not in ``[0, 1]`` or dimension mismatch between ``x`` and ``weights``. """ x = np.atleast_1d(x) q = np.atleast_1d(q) if np.any(q < 0.0) or np.any(q > 1.0): raise ValueError("Quantiles must be between 0 and 1") if weights is None: return np.percentile(x, list(100.0 * q)) else: weights = np.atleast_1d(weights) if len(x) != len(weights): raise ValueError("Dimension mismatch: len(weights) != len(x)") idx = np.argsort(x) sw = weights[idx] cdf = np.cumsum(sw)[:-1] cdf /= cdf[-1] cdf = np.append(0, cdf) return np.interp(q, cdf, x[idx]).tolist() def hist2d(x, y, bins=20, range=None, weights=None, levels=None, smooth=None, ax=None, color=None, plot_datapoints=True, plot_density=True, plot_contours=True, no_fill_contours=False, fill_contours=False, contour_kwargs=None, contourf_kwargs=None, data_kwargs=None, **kwargs): """ Plot a 2-D histogram of samples. Parameters ---------- x : array_like[nsamples,] The samples. y : array_like[nsamples,] The samples. levels : array_like The contour levels to draw. ax : matplotlib.Axes A axes instance on which to add the 2-D histogram. plot_datapoints : bool Draw the individual data points. plot_density : bool Draw the density colormap. plot_contours : bool Draw the contours. no_fill_contours : bool Add no filling at all to the contours (unlike setting ``fill_contours=False``, which still adds a white fill at the densest points). fill_contours : bool Fill the contours. contour_kwargs : dict Any additional keyword arguments to pass to the `contour` method. contourf_kwargs : dict Any additional keyword arguments to pass to the `contourf` method. data_kwargs : dict Any additional keyword arguments to pass to the `plot` method when adding the individual data points. """ if ax is None: ax = pl.gca() # Set the default range based on the data range if not provided. if range is None: if "extent" in kwargs: logging.warn("Deprecated keyword argument 'extent'. " "Use 'range' instead.") range = kwargs["extent"] else: range = [[x.min(), x.max()], [y.min(), y.max()]] # Set up the default plotting arguments. if color is None: color = "k" # Choose the default "sigma" contour levels. if levels is None: levels = 1.0 - np.exp(-0.5 * np.arange(0.5, 2.1, 0.5) ** 2) # This is the color map for the density plot, over-plotted to indicate the # density of the points near the center. density_cmap = LinearSegmentedColormap.from_list( "density_cmap", [color, (1, 1, 1, 0)]) # This color map is used to hide the points at the high density areas. white_cmap = LinearSegmentedColormap.from_list( "white_cmap", [(1, 1, 1), (1, 1, 1)], N=2) # This "color map" is the list of colors for the contour levels if the # contours are filled. rgba_color = colorConverter.to_rgba(color) contour_cmap = [list(rgba_color) for l in levels] + [rgba_color] for i, l in enumerate(levels): contour_cmap[i][-1] *= float(i) / (len(levels)+1) # We'll make the 2D histogram to directly estimate the density. try: H, X, Y = np.histogram2d(x.flatten(), y.flatten(), bins=bins, range=list(map(np.sort, range)), weights=weights) except ValueError: raise ValueError("It looks like at least one of your sample columns " "have no dynamic range. You could try using the " "'range' argument.") if smooth is not None: if gaussian_filter is None: raise ImportError("Please install scipy for smoothing") H = gaussian_filter(H, smooth) # Compute the density levels. Hflat = H.flatten() inds = np.argsort(Hflat)[::-1] Hflat = Hflat[inds] sm = np.cumsum(Hflat) sm /= sm[-1] V = np.empty(len(levels)) for i, v0 in enumerate(levels): try: V[i] = Hflat[sm <= v0][-1] except: V[i] = Hflat[0] V.sort() m = np.diff(V) == 0 if np.any(m): logging.warning("Too few points to create valid contours") while np.any(m): V[np.where(m)[0][0]] *= 1.0 - 1e-4 m = np.diff(V) == 0 V.sort() # Compute the bin centers. X1, Y1 = 0.5 * (X[1:] + X[:-1]), 0.5 * (Y[1:] + Y[:-1]) # Extend the array for the sake of the contours at the plot edges. H2 = H.min() + np.zeros((H.shape[0] + 4, H.shape[1] + 4)) H2[2:-2, 2:-2] = H H2[2:-2, 1] = H[:, 0] H2[2:-2, -2] = H[:, -1] H2[1, 2:-2] = H[0] H2[-2, 2:-2] = H[-1] H2[1, 1] = H[0, 0] H2[1, -2] = H[0, -1] H2[-2, 1] = H[-1, 0] H2[-2, -2] = H[-1, -1] X2 = np.concatenate([ X1[0] + np.array([-2, -1]) * np.diff(X1[:2]), X1, X1[-1] + np.array([1, 2]) * np.diff(X1[-2:]), ]) Y2 = np.concatenate([ Y1[0] + np.array([-2, -1]) * np.diff(Y1[:2]), Y1, Y1[-1] + np.array([1, 2]) * np.diff(Y1[-2:]), ]) if plot_datapoints: if data_kwargs is None: data_kwargs = dict() data_kwargs["color"] = data_kwargs.get("color", color) data_kwargs["ms"] = data_kwargs.get("ms", 2.0) data_kwargs["mec"] = data_kwargs.get("mec", "none") data_kwargs["alpha"] = data_kwargs.get("alpha", 0.1) ax.plot(x, y, "o", zorder=-1, rasterized=True, **data_kwargs) # Plot the base fill to hide the densest data points. if (plot_contours or plot_density) and not no_fill_contours: ax.contourf(X2, Y2, H2.T, [V.min(), H.max()], cmap=white_cmap, antialiased=False) if plot_contours and fill_contours: if contourf_kwargs is None: contourf_kwargs = dict() contourf_kwargs["colors"] = contourf_kwargs.get("colors", contour_cmap) contourf_kwargs["antialiased"] = contourf_kwargs.get("antialiased", False) ax.contourf(X2, Y2, H2.T, np.concatenate([[0], V, [H.max()*(1+1e-4)]]), **contourf_kwargs) # Plot the density map. This can't be plotted at the same time as the # contour fills. elif plot_density: ax.pcolor(X, Y, H.max() - H.T, cmap=density_cmap) # Plot the contour edge colors. if plot_contours: if contour_kwargs is None: contour_kwargs = dict() contour_kwargs["colors"] = contour_kwargs.get("colors", color) ax.contour(X2, Y2, H2.T, V, **contour_kwargs) ax.set_xlim(range[0]) ax.set_ylim(range[1])
mit
murphy214/berrl
build/lib/berrl/postgis_interface.py
2
7979
import psycopg2 import pandas as pd import sys import itertools from sqlalchemy import create_engine ''' Purpose: This module exists as an easy postgis integration module its purpose is to bring in database in its entirety into memory in the future in may support more robust querries but for now only supports getting an entire database into memory Currently only supports input databases with no passwords. Its currently meant to be used for postgis polygons and linestrings, in the future may also support point data. Created by: Bennett Murphy ''' # intially connects to database def connect_to_db(dbname): string = "dbname=%s user=postgres password=secret" % (dbname) try: conn = psycopg2.connect(string) except Exception: print 'failed connection' return conn def retrieve(conn,dbname,SID,geomcolumn): DEC2FLOAT = psycopg2.extensions.new_type( psycopg2.extensions.DECIMAL.values, 'DEC2FLOAT', lambda value, curs: float(value) if value is not None else None) psycopg2.extensions.register_type(DEC2FLOAT) if SID==0: string = "SELECT *,ST_AsEWKT(%s) FROM %s;" % (geomcolumn,dbname) ''' elif SID==10000: string = """""SELECT gid, ST_AsEWKT(ST_Collect(ST_MakePolygon(geom))) As geom FROM(SELECT gid, ST_ExteriorRing((ST_Dump(geom)).geom) As geom FROM %s)s GROUP BY gid; """"" % (dbname) ''' else: string = "SELECT *,ST_AsEWKT(ST_Transform(%s,%s)) FROM %s;" % (geomcolumn,SID,dbname) cur = conn.cursor() try: cur.execute(string) except psycopg2.Error as e: print 'failed' data = cur.fetchall() return data # returns an engine and an sql querry # to be sent into read_sql querry # regular_db is bool kwarg for whether # the dbname your querry is to return geometries def make_query(dbname,**kwargs): regular_db = False tablename = False for key,value in kwargs.iteritems(): if key == 'regular_db': regular_db = value if key == 'tablename': tablename = value # getting appropriate sql querry if regular_db == False: if tablename == False: try: sqlquerry = "SELECT *,ST_AsEWKT(ST_Transform(geom,4326)) FROM %s" % dbname except: sqlquerry = "SELECT * FROM %s" % dbname else: sqlquerry = "SELECT * FROM %s" % tablename else: if tablename == False: sqlquerry = "SELECT * FROM %s" % dbname else: sqlquerry = "SELECT * FROM %s" % tablename # creating engine using sqlalchemy engine = create_engine('postgresql://postgres:pass@localhost/%s' % dbname) return sqlquerry,engine # creating simpoly an engine for a given def create_sql_engine(dbname): return create_engine('postgresql://postgres:pass@localhost/%s') def retrieve_buffer(conn,dbname,args,geomcolumn): #unpacking arguments SID,size,normal_db,tablename = args if not tablename == False: dbname = tablename cur = conn.cursor('cursor-name') cur.itersize = 1000 if size == False: size = 100000 DEC2FLOAT = psycopg2.extensions.new_type( psycopg2.extensions.DECIMAL.values, 'DEC2FLOAT', lambda value, curs: float(value) if value is not None else None) psycopg2.extensions.register_type(DEC2FLOAT) if SID==0: string = "SELECT *,ST_AsEWKT(%s) FROM %s;" % (geomcolumn,dbname) ''' elif SID==10000: string = """""SELECT gid, ST_AsEWKT(ST_Collect(ST_MakePolygon(geom))) As geom FROM(SELECT gid, ST_ExteriorRing((ST_Dump(geom)).geom) As geom FROM %s)s GROUP BY gid; """"" % (dbname) ''' else: if normal_db == False: string = "SELECT *,ST_AsEWKT(ST_Transform(%s,%s)) FROM %s LIMIT %s;" % (geomcolumn,SID,dbname,size) else: string = "SELECT * FROM %s LIMIT %s;" % (dbname,size) cur.execute(string) data = cur.fetchall() cur.close() return data,conn def get_header(conn,dbname,normal_db): cur = conn.cursor() string = "SELECT a.attname as column_name, format_type(a.atttypid, a.atttypmod) AS data_type FROM pg_attribute a JOIN pg_class b ON (a.attrelid = b.relfilenode) WHERE b.relname = '%s' and a.attstattarget = -1;" % (dbname) try: cur.execute(string) except psycopg2.Error as e: print 'failed' header = cur.fetchall() newheader = [] for row in header: newheader.append(row[0]) if normal_db == False: newheader.append('st_asewkt') return newheader # takes a list and turns it into a datafrae def list2df(df): df = pd.DataFrame(df[1:], columns=df[0]) return df # takes a dataframe and turns it into a list def df2list(df): df = [df.columns.values.tolist()]+df.values.tolist() return df # gets both column header and data def get_both(conn,dbname,SID): header = get_header(conn,dbname) for row in header: if 'geom' in str(row): geometryheader = row data = retrieve(conn,dbname,SID,geometryheader) data = pd.DataFrame(data,columns=header) return data # gets both column header and data def get_both2(conn,dbname,args): a,b,normal_db,tablename = args if not tablename == False: header = get_header(conn,tablename,normal_db) else: header = get_header(conn,dbname,normal_db) geometryheader = False for row in header: if 'geom' in str(row): geometryheader = row data,conn = retrieve_buffer(conn,dbname,args,geometryheader) data = pd.DataFrame(data,columns=header) return data,conn # gets database assuming you have postgres sql server running, returns dataframe def get_database(dbname,**kwargs): SID=4326 # dbname is the database name # SID is the spatial identifier you wish to output your table as usually 4326 if kwargs is not None: for key,value in kwargs.iteritems(): if key == 'SID': SID = int(value) conn = connect_to_db(dbname) data = get_both(conn,dbname,SID) return data # gets database assuming you have postgres sql server running, returns dataframe def get_database_buffer(dbname,**kwargs): conn = False size = False normal_db = False tablename = False for key,value in kwargs.iteritems(): if key == 'conn': conn = value if key == 'size': size = value if key == 'normal_db': normal_db = value if key == 'tablename': tablename = value SID=4326 print size # dbname is the database name # SID is the spatial identifier you wish to output your table as usually 4326 if kwargs is not None: for key,value in kwargs.iteritems(): if key == 'SID': SID = int(value) if conn == False: conn = connect_to_db(dbname) # putting args in list so i dont have to carry through for no reason args = [SID,size,normal_db,tablename] data,conn = get_both2(conn,dbname,args) return data,conn def db_buffer(dbname,**kwargs): conn = False size = False normal_db = False tablename = False size = 100000 for key,value in kwargs.iteritems(): if key == 'conn': conn = value if key == 'size': size = value if key == 'normal_db': normal_db = value if key == 'tablename': tablename = value count = 0 total = 0 while size == size: if count == 0: data,conn = get_database_buffer(dbname,tablename=tablename,normal_db=normal_db,size=size) else: data,conn = get_database_buffer(dbname,tablename=tablename,normal_db=normal_db,size=size,conn=conn) itersize = len(data) total += itersize print 'Blocks Generated: %s,Total Rows Generated: %s' % (count,total) count += 1 yield data # generates a querry for a given lists of indexs # reads the sql into pandas and returns result # indexs are expected to be in string format def select_fromindexs(dbname,field,indexs,**kwargs): normal_db = False tablename = False # handling even if indexs arent in str format if type(indexs[0]) == int: indexs = [str(row) for row in indexs] for key,value in kwargs.iteritems(): if key == 'size': size = value if key == 'normal_db': normal_db = value if key == 'tablename': tablename = value a,engine = make_query(dbname,tablename=tablename,normal_db=normal_db) stringindexs = ','.join(indexs) if not tablename == False: dbname = tablename # now making querry query = '''SELECT * FROM %s WHERE %s IN (%s);''' % (dbname,field,stringindexs) return pd.read_sql_query(query,engine)
apache-2.0
YinongLong/scikit-learn
sklearn/covariance/tests/test_robust_covariance.py
77
3825
# Author: Alexandre Gramfort <[email protected]> # Gael Varoquaux <[email protected]> # Virgile Fritsch <[email protected]> # # License: BSD 3 clause import numpy as np from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raise_message from sklearn.exceptions import NotFittedError from sklearn import datasets from sklearn.covariance import empirical_covariance, MinCovDet, \ EllipticEnvelope from sklearn.covariance import fast_mcd X = datasets.load_iris().data X_1d = X[:, 0] n_samples, n_features = X.shape def test_mcd(): # Tests the FastMCD algorithm implementation # Small data set # test without outliers (random independent normal data) launch_mcd_on_dataset(100, 5, 0, 0.01, 0.1, 80) # test with a contaminated data set (medium contamination) launch_mcd_on_dataset(100, 5, 20, 0.01, 0.01, 70) # test with a contaminated data set (strong contamination) launch_mcd_on_dataset(100, 5, 40, 0.1, 0.1, 50) # Medium data set launch_mcd_on_dataset(1000, 5, 450, 0.1, 0.1, 540) # Large data set launch_mcd_on_dataset(1700, 5, 800, 0.1, 0.1, 870) # 1D data set launch_mcd_on_dataset(500, 1, 100, 0.001, 0.001, 350) def test_fast_mcd_on_invalid_input(): X = np.arange(100) assert_raise_message(ValueError, 'fast_mcd expects at least 2 samples', fast_mcd, X) def test_mcd_class_on_invalid_input(): X = np.arange(100) mcd = MinCovDet() assert_raise_message(ValueError, 'MinCovDet expects at least 2 samples', mcd.fit, X) def launch_mcd_on_dataset(n_samples, n_features, n_outliers, tol_loc, tol_cov, tol_support): rand_gen = np.random.RandomState(0) data = rand_gen.randn(n_samples, n_features) # add some outliers outliers_index = rand_gen.permutation(n_samples)[:n_outliers] outliers_offset = 10. * \ (rand_gen.randint(2, size=(n_outliers, n_features)) - 0.5) data[outliers_index] += outliers_offset inliers_mask = np.ones(n_samples).astype(bool) inliers_mask[outliers_index] = False pure_data = data[inliers_mask] # compute MCD by fitting an object mcd_fit = MinCovDet(random_state=rand_gen).fit(data) T = mcd_fit.location_ S = mcd_fit.covariance_ H = mcd_fit.support_ # compare with the estimates learnt from the inliers error_location = np.mean((pure_data.mean(0) - T) ** 2) assert(error_location < tol_loc) error_cov = np.mean((empirical_covariance(pure_data) - S) ** 2) assert(error_cov < tol_cov) assert(np.sum(H) >= tol_support) assert_array_almost_equal(mcd_fit.mahalanobis(data), mcd_fit.dist_) def test_mcd_issue1127(): # Check that the code does not break with X.shape = (3, 1) # (i.e. n_support = n_samples) rnd = np.random.RandomState(0) X = rnd.normal(size=(3, 1)) mcd = MinCovDet() mcd.fit(X) def test_outlier_detection(): rnd = np.random.RandomState(0) X = rnd.randn(100, 10) clf = EllipticEnvelope(contamination=0.1) assert_raises(NotFittedError, clf.predict, X) assert_raises(NotFittedError, clf.decision_function, X) clf.fit(X) y_pred = clf.predict(X) decision = clf.decision_function(X, raw_values=True) decision_transformed = clf.decision_function(X, raw_values=False) assert_array_almost_equal( decision, clf.mahalanobis(X)) assert_array_almost_equal(clf.mahalanobis(X), clf.dist_) assert_almost_equal(clf.score(X, np.ones(100)), (100 - y_pred[y_pred == -1].size) / 100.) assert(sum(y_pred == -1) == sum(decision_transformed < 0))
bsd-3-clause
tmrowco/electricitymap
parsers/US_SVERI.py
1
4545
#!/usr/bin/env python3 """Parser for the SVERI area of the USA.""" from datetime import datetime, timedelta from io import StringIO import logging import pandas as pd import pytz import requests # SVERI = Southwest Variable Energy Resource Initiative # https://sveri.energy.arizona.edu/#howto # SVERI participants include Arizona's G&T Cooperatives, Arizona Public Service, # El Paso Electric, Imperial Irrigation District, Public Service Company of New Mexico, # Salt River Project, Tucson Electric Power and the Western Area Power Administration’s Desert Southwest Region. #TODO geothermal is negative, 15 to add to request GENERATION_URL = 'https://sveri.energy.arizona.edu/api?ids=1,2,4,5,6,7,8,16&saveData=true' GENERATION_MAPPING = {'Solar Aggregate (MW)': 'solar', 'Wind Aggregate (MW)': 'wind', 'Hydro Aggregate (MW)': 'hydro', 'Coal Aggregate (MW)': 'coal', 'Gas Aggregate (MW)': 'gas', 'Other Fossil Fuels Aggregate (MW)': 'unknown', 'Nuclear Aggregate (MW)': 'nuclear', #'Geothermal Aggregate (MW)': 'geothermal', 'Biomass/gas Aggregate (MW)': 'biomass'} def query_api(limits, session=None): """Makes a request to the SVERI api and returns a dataframe.""" s = session or requests.Session() url = GENERATION_URL + '&startDate={}&endDate={}'.format(limits[0], limits[1]) data_req = s.get(url) df = pd.read_csv(StringIO(data_req.text)) return df def timestamp_converter(timestamp): """Turns string representation of timestamp into an aware datetime object.""" dt_naive = datetime.strptime(timestamp, '%Y-%m-%d %H:%M:%S') mountain = pytz.timezone('America/Dawson_Creek') dt_aware = mountain.localize(dt_naive) return dt_aware def data_processor(raw_data, logger): """ Maps generation data to type, logging and removing unknown types. Returns a list of tuples in the form (datetime, production). """ mapped_df = raw_data.rename(columns=lambda x: GENERATION_MAPPING.get(x,x)) actual_keys = set(mapped_df.columns) expected_keys = set(GENERATION_MAPPING.values()) | {'Time (MST)'} unknown_keys = actual_keys - expected_keys for k in unknown_keys: logger.warning('New type {} seen in US-SVERI data source'.format(k), extra={'key': 'US-SVERI'}) mapped_df.drop(k, axis=1, inplace=True) processed_data = [] for index, row in mapped_df.iterrows(): production = row.to_dict() dt = production.pop('Time (MST)') dt = timestamp_converter(dt) processed_data.append((dt, production)) return processed_data def fetch_production(zone_key='US-SVERI', session=None, target_datetime=None, logger=logging.getLogger(__name__)): """ Requests the last known production mix (in MW) of a given zone Arguments: zone_key (optional): used in case a parser is able to fetch multiple zones session: request session passed in order to re-use an existing session target_datetime: datetime object that allows historical data to be fetched Return: A list of dictionaries in the form: { 'zoneKey': 'FR', 'datetime': '2017-01-01T00:00:00Z', 'production': { 'biomass': 0.0, 'coal': 0.0, 'gas': 0.0, 'hydro': 0.0, 'nuclear': None, 'oil': 0.0, 'solar': 0.0, 'wind': 0.0, 'geothermal': 0.0, 'unknown': 0.0 }, 'storage': { 'hydro': -10.0, }, 'source': 'mysource.com' } """ if target_datetime is None: target_datetime = datetime.now() start_date = target_datetime.strftime('%Y-%m-%d') shift_date = target_datetime + timedelta(days=1) end_date = shift_date.strftime('%Y-%m-%d') limits = (start_date, end_date) raw_data = query_api(limits, session=session) processed_data = data_processor(raw_data, logger) data = [] for item in processed_data: datapoint = { 'zoneKey': zone_key, 'datetime': item[0], 'production': item[1], 'storage': {}, 'source': 'sveri.energy.arizona.edu' } data.append(datapoint) return data if __name__ == '__main__': "Main method, never used by the Electricity Map backend, but handy for testing." print('fetch_production() ->') print(fetch_production())
gpl-3.0
DonBeo/scikit-learn
examples/linear_model/plot_lasso_and_elasticnet.py
249
1982
""" ======================================== Lasso and Elastic Net for Sparse Signals ======================================== Estimates Lasso and Elastic-Net regression models on a manually generated sparse signal corrupted with an additive noise. Estimated coefficients are compared with the ground-truth. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.metrics import r2_score ############################################################################### # generate some sparse data to play with np.random.seed(42) n_samples, n_features = 50, 200 X = np.random.randn(n_samples, n_features) coef = 3 * np.random.randn(n_features) inds = np.arange(n_features) np.random.shuffle(inds) coef[inds[10:]] = 0 # sparsify coef y = np.dot(X, coef) # add noise y += 0.01 * np.random.normal((n_samples,)) # Split data in train set and test set n_samples = X.shape[0] X_train, y_train = X[:n_samples / 2], y[:n_samples / 2] X_test, y_test = X[n_samples / 2:], y[n_samples / 2:] ############################################################################### # Lasso from sklearn.linear_model import Lasso alpha = 0.1 lasso = Lasso(alpha=alpha) y_pred_lasso = lasso.fit(X_train, y_train).predict(X_test) r2_score_lasso = r2_score(y_test, y_pred_lasso) print(lasso) print("r^2 on test data : %f" % r2_score_lasso) ############################################################################### # ElasticNet from sklearn.linear_model import ElasticNet enet = ElasticNet(alpha=alpha, l1_ratio=0.7) y_pred_enet = enet.fit(X_train, y_train).predict(X_test) r2_score_enet = r2_score(y_test, y_pred_enet) print(enet) print("r^2 on test data : %f" % r2_score_enet) plt.plot(enet.coef_, label='Elastic net coefficients') plt.plot(lasso.coef_, label='Lasso coefficients') plt.plot(coef, '--', label='original coefficients') plt.legend(loc='best') plt.title("Lasso R^2: %f, Elastic Net R^2: %f" % (r2_score_lasso, r2_score_enet)) plt.show()
bsd-3-clause
moutai/scikit-learn
examples/semi_supervised/plot_label_propagation_structure.py
45
2433
""" ============================================== Label Propagation learning a complex structure ============================================== Example of LabelPropagation learning a complex internal structure to demonstrate "manifold learning". The outer circle should be labeled "red" and the inner circle "blue". Because both label groups lie inside their own distinct shape, we can see that the labels propagate correctly around the circle. """ print(__doc__) # Authors: Clay Woolam <[email protected]> # Andreas Mueller <[email protected]> # Licence: BSD import numpy as np import matplotlib.pyplot as plt from sklearn.semi_supervised import label_propagation from sklearn.datasets import make_circles # generate ring with inner box n_samples = 200 X, y = make_circles(n_samples=n_samples, shuffle=False) outer, inner = 0, 1 labels = -np.ones(n_samples) labels[0] = outer labels[-1] = inner ############################################################################### # Learn with LabelSpreading label_spread = label_propagation.LabelSpreading(kernel='knn', alpha=1.0) label_spread.fit(X, labels) ############################################################################### # Plot output labels output_labels = label_spread.transduction_ plt.figure(figsize=(8.5, 4)) plt.subplot(1, 2, 1) plt.scatter(X[labels == outer, 0], X[labels == outer, 1], color='navy', marker='s', lw=0, label="outer labeled", s=10) plt.scatter(X[labels == inner, 0], X[labels == inner, 1], color='c', marker='s', lw=0, label='inner labeled', s=10) plt.scatter(X[labels == -1, 0], X[labels == -1, 1], color='darkorange', marker='.', label='unlabeled') plt.legend(scatterpoints=1, shadow=False, loc='upper right') plt.title("Raw data (2 classes=outer and inner)") plt.subplot(1, 2, 2) output_label_array = np.asarray(output_labels) outer_numbers = np.where(output_label_array == outer)[0] inner_numbers = np.where(output_label_array == inner)[0] plt.scatter(X[outer_numbers, 0], X[outer_numbers, 1], color='navy', marker='s', lw=0, s=10, label="outer learned") plt.scatter(X[inner_numbers, 0], X[inner_numbers, 1], color='c', marker='s', lw=0, s=10, label="inner learned") plt.legend(scatterpoints=1, shadow=False, loc='upper right') plt.title("Labels learned with Label Spreading (KNN)") plt.subplots_adjust(left=0.07, bottom=0.07, right=0.93, top=0.92) plt.show()
bsd-3-clause
WarrenWeckesser/scikits-image
doc/examples/plot_tinting_grayscale_images.py
9
5593
""" ========================= Tinting gray-scale images ========================= It can be useful to artificially tint an image with some color, either to highlight particular regions of an image or maybe just to liven up a grayscale image. This example demonstrates image-tinting by scaling RGB values and by adjusting colors in the HSV color-space. In 2D, color images are often represented in RGB---3 layers of 2D arrays, where the 3 layers represent (R)ed, (G)reen and (B)lue channels of the image. The simplest way of getting a tinted image is to set each RGB channel to the grayscale image scaled by a different multiplier for each channel. For example, multiplying the green and blue channels by 0 leaves only the red channel and produces a bright red image. Similarly, zeroing-out the blue channel leaves only the red and green channels, which combine to form yellow. """ import matplotlib.pyplot as plt from skimage import data from skimage import color from skimage import img_as_float grayscale_image = img_as_float(data.camera()[::2, ::2]) image = color.gray2rgb(grayscale_image) red_multiplier = [1, 0, 0] yellow_multiplier = [1, 1, 0] fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(8, 4), sharex=True, sharey=True) ax1.imshow(red_multiplier * image) ax2.imshow(yellow_multiplier * image) ax1.set_adjustable('box-forced') ax2.set_adjustable('box-forced') """ .. image:: PLOT2RST.current_figure In many cases, dealing with RGB values may not be ideal. Because of that, there are many other `color spaces`_ in which you can represent a color image. One popular color space is called HSV, which represents hue (~the color), saturation (~colorfulness), and value (~brightness). For example, a color (hue) might be green, but its saturation is how intense that green is---where olive is on the low end and neon on the high end. In some implementations, the hue in HSV goes from 0 to 360, since hues wrap around in a circle. In scikit-image, however, hues are float values from 0 to 1, so that hue, saturation, and value all share the same scale. .. _color spaces: http://en.wikipedia.org/wiki/List_of_color_spaces_and_their_uses Below, we plot a linear gradient in the hue, with the saturation and value turned all the way up: """ import numpy as np hue_gradient = np.linspace(0, 1) hsv = np.ones(shape=(1, len(hue_gradient), 3), dtype=float) hsv[:, :, 0] = hue_gradient all_hues = color.hsv2rgb(hsv) fig, ax = plt.subplots(figsize=(5, 2)) # Set image extent so hues go from 0 to 1 and the image is a nice aspect ratio. ax.imshow(all_hues, extent=(0, 1, 0, 0.2)) ax.set_axis_off() """ .. image:: PLOT2RST.current_figure Notice how the colors at the far left and far right are the same. That reflects the fact that the hues wrap around like the color wheel (see HSV_ for more info). .. _HSV: http://en.wikipedia.org/wiki/HSL_and_HSV Now, let's create a little utility function to take an RGB image and: 1. Transform the RGB image to HSV 2. Set the hue and saturation 3. Transform the HSV image back to RGB """ def colorize(image, hue, saturation=1): """ Add color of the given hue to an RGB image. By default, set the saturation to 1 so that the colors pop! """ hsv = color.rgb2hsv(image) hsv[:, :, 1] = saturation hsv[:, :, 0] = hue return color.hsv2rgb(hsv) """ Notice that we need to bump up the saturation; images with zero saturation are grayscale, so we need to a non-zero value to actually see the color we've set. Using the function above, we plot six images with a linear gradient in the hue and a non-zero saturation: """ hue_rotations = np.linspace(0, 1, 6) fig, axes = plt.subplots(nrows=2, ncols=3, sharex=True, sharey=True) for ax, hue in zip(axes.flat, hue_rotations): # Turn down the saturation to give it that vintage look. tinted_image = colorize(image, hue, saturation=0.3) ax.imshow(tinted_image, vmin=0, vmax=1) ax.set_axis_off() ax.set_adjustable('box-forced') fig.tight_layout() """ .. image:: PLOT2RST.current_figure You can combine this tinting effect with numpy slicing and fancy-indexing to selectively tint your images. In the example below, we set the hue of some rectangles using slicing and scale the RGB values of some pixels found by thresholding. In practice, you might want to define a region for tinting based on segmentation results or blob detection methods. """ from skimage.filters import rank # Square regions defined as slices over the first two dimensions. top_left = (slice(100),) * 2 bottom_right = (slice(-100, None),) * 2 sliced_image = image.copy() sliced_image[top_left] = colorize(image[top_left], 0.82, saturation=0.5) sliced_image[bottom_right] = colorize(image[bottom_right], 0.5, saturation=0.5) # Create a mask selecting regions with interesting texture. noisy = rank.entropy(grayscale_image, np.ones((9, 9))) textured_regions = noisy > 4 # Note that using `colorize` here is a bit more difficult, since `rgb2hsv` # expects an RGB image (height x width x channel), but fancy-indexing returns # a set of RGB pixels (# pixels x channel). masked_image = image.copy() masked_image[textured_regions, :] *= red_multiplier fig, (ax1, ax2) = plt.subplots(ncols=2, nrows=1, figsize=(8, 4), sharex=True, sharey=True) ax1.imshow(sliced_image) ax2.imshow(masked_image) ax1.set_adjustable('box-forced') ax2.set_adjustable('box-forced') plt.show() """ .. image:: PLOT2RST.current_figure For coloring multiple regions, you may also be interested in `skimage.color.label2rgb <http://scikit-image.org/docs/0.9.x/api/skimage.color.html#label2rgb>`_. """
bsd-3-clause
artwr/airflow
airflow/contrib/hooks/bigquery_hook.py
2
86753
# -*- coding: utf-8 -*- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # """ This module contains a BigQuery Hook, as well as a very basic PEP 249 implementation for BigQuery. """ import time import six from builtins import range from copy import deepcopy from six import iteritems from past.builtins import basestring from airflow import AirflowException from airflow.contrib.hooks.gcp_api_base_hook import GoogleCloudBaseHook from airflow.hooks.dbapi_hook import DbApiHook from airflow.utils.log.logging_mixin import LoggingMixin from googleapiclient.discovery import build from googleapiclient.errors import HttpError from pandas_gbq.gbq import \ _check_google_client_version as gbq_check_google_client_version from pandas_gbq import read_gbq from pandas_gbq.gbq import \ _test_google_api_imports as gbq_test_google_api_imports from pandas_gbq.gbq import GbqConnector class BigQueryHook(GoogleCloudBaseHook, DbApiHook): """ Interact with BigQuery. This hook uses the Google Cloud Platform connection. """ conn_name_attr = 'bigquery_conn_id' def __init__(self, bigquery_conn_id='bigquery_default', delegate_to=None, use_legacy_sql=True, location=None): super(BigQueryHook, self).__init__( gcp_conn_id=bigquery_conn_id, delegate_to=delegate_to) self.use_legacy_sql = use_legacy_sql self.location = location def get_conn(self): """ Returns a BigQuery PEP 249 connection object. """ service = self.get_service() project = self._get_field('project') return BigQueryConnection( service=service, project_id=project, use_legacy_sql=self.use_legacy_sql, location=self.location, ) def get_service(self): """ Returns a BigQuery service object. """ http_authorized = self._authorize() return build( 'bigquery', 'v2', http=http_authorized, cache_discovery=False) def insert_rows(self, table, rows, target_fields=None, commit_every=1000): """ Insertion is currently unsupported. Theoretically, you could use BigQuery's streaming API to insert rows into a table, but this hasn't been implemented. """ raise NotImplementedError() def get_pandas_df(self, sql, parameters=None, dialect=None): """ Returns a Pandas DataFrame for the results produced by a BigQuery query. The DbApiHook method must be overridden because Pandas doesn't support PEP 249 connections, except for SQLite. See: https://github.com/pydata/pandas/blob/master/pandas/io/sql.py#L447 https://github.com/pydata/pandas/issues/6900 :param sql: The BigQuery SQL to execute. :type sql: str :param parameters: The parameters to render the SQL query with (not used, leave to override superclass method) :type parameters: mapping or iterable :param dialect: Dialect of BigQuery SQL – legacy SQL or standard SQL defaults to use `self.use_legacy_sql` if not specified :type dialect: str in {'legacy', 'standard'} """ private_key = self._get_field('key_path', None) or self._get_field('keyfile_dict', None) if dialect is None: dialect = 'legacy' if self.use_legacy_sql else 'standard' return read_gbq(sql, project_id=self._get_field('project'), dialect=dialect, verbose=False, private_key=private_key) def table_exists(self, project_id, dataset_id, table_id): """ Checks for the existence of a table in Google BigQuery. :param project_id: The Google cloud project in which to look for the table. The connection supplied to the hook must provide access to the specified project. :type project_id: str :param dataset_id: The name of the dataset in which to look for the table. :type dataset_id: str :param table_id: The name of the table to check the existence of. :type table_id: str """ service = self.get_service() try: service.tables().get( projectId=project_id, datasetId=dataset_id, tableId=table_id).execute() return True except HttpError as e: if e.resp['status'] == '404': return False raise class BigQueryPandasConnector(GbqConnector): """ This connector behaves identically to GbqConnector (from Pandas), except that it allows the service to be injected, and disables a call to self.get_credentials(). This allows Airflow to use BigQuery with Pandas without forcing a three legged OAuth connection. Instead, we can inject service account credentials into the binding. """ def __init__(self, project_id, service, reauth=False, verbose=False, dialect='legacy'): super(BigQueryPandasConnector, self).__init__(project_id) gbq_check_google_client_version() gbq_test_google_api_imports() self.project_id = project_id self.reauth = reauth self.service = service self.verbose = verbose self.dialect = dialect class BigQueryConnection(object): """ BigQuery does not have a notion of a persistent connection. Thus, these objects are small stateless factories for cursors, which do all the real work. """ def __init__(self, *args, **kwargs): self._args = args self._kwargs = kwargs def close(self): """ BigQueryConnection does not have anything to close. """ pass def commit(self): """ BigQueryConnection does not support transactions. """ pass def cursor(self): """ Return a new :py:class:`Cursor` object using the connection. """ return BigQueryCursor(*self._args, **self._kwargs) def rollback(self): raise NotImplementedError( "BigQueryConnection does not have transactions") class BigQueryBaseCursor(LoggingMixin): """ The BigQuery base cursor contains helper methods to execute queries against BigQuery. The methods can be used directly by operators, in cases where a PEP 249 cursor isn't needed. """ def __init__(self, service, project_id, use_legacy_sql=True, api_resource_configs=None, location=None): self.service = service self.project_id = project_id self.use_legacy_sql = use_legacy_sql if api_resource_configs: _validate_value("api_resource_configs", api_resource_configs, dict) self.api_resource_configs = api_resource_configs \ if api_resource_configs else {} self.running_job_id = None self.location = location def create_empty_table(self, project_id, dataset_id, table_id, schema_fields=None, time_partitioning=None, cluster_fields=None, labels=None, view=None, num_retries=5): """ Creates a new, empty table in the dataset. To create a view, which is defined by a SQL query, parse a dictionary to 'view' kwarg :param project_id: The project to create the table into. :type project_id: str :param dataset_id: The dataset to create the table into. :type dataset_id: str :param table_id: The Name of the table to be created. :type table_id: str :param schema_fields: If set, the schema field list as defined here: https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs#configuration.load.schema :type schema_fields: list :param labels: a dictionary containing labels for the table, passed to BigQuery :type labels: dict **Example**: :: schema_fields=[{"name": "emp_name", "type": "STRING", "mode": "REQUIRED"}, {"name": "salary", "type": "INTEGER", "mode": "NULLABLE"}] :param time_partitioning: configure optional time partitioning fields i.e. partition by field, type and expiration as per API specifications. .. seealso:: https://cloud.google.com/bigquery/docs/reference/rest/v2/tables#timePartitioning :type time_partitioning: dict :param cluster_fields: [Optional] The fields used for clustering. Must be specified with time_partitioning, data in the table will be first partitioned and subsequently clustered. https://cloud.google.com/bigquery/docs/reference/rest/v2/tables#clustering.fields :type cluster_fields: list :param view: [Optional] A dictionary containing definition for the view. If set, it will create a view instead of a table: https://cloud.google.com/bigquery/docs/reference/rest/v2/tables#view :type view: dict **Example**: :: view = { "query": "SELECT * FROM `test-project-id.test_dataset_id.test_table_prefix*` LIMIT 1000", "useLegacySql": False } :return: None """ project_id = project_id if project_id is not None else self.project_id table_resource = { 'tableReference': { 'tableId': table_id } } if schema_fields: table_resource['schema'] = {'fields': schema_fields} if time_partitioning: table_resource['timePartitioning'] = time_partitioning if cluster_fields: table_resource['clustering'] = { 'fields': cluster_fields } if labels: table_resource['labels'] = labels if view: table_resource['view'] = view self.log.info('Creating Table %s:%s.%s', project_id, dataset_id, table_id) try: self.service.tables().insert( projectId=project_id, datasetId=dataset_id, body=table_resource).execute(num_retries=num_retries) self.log.info('Table created successfully: %s:%s.%s', project_id, dataset_id, table_id) except HttpError as err: raise AirflowException( 'BigQuery job failed. Error was: {}'.format(err.content) ) def create_external_table(self, external_project_dataset_table, schema_fields, source_uris, source_format='CSV', autodetect=False, compression='NONE', ignore_unknown_values=False, max_bad_records=0, skip_leading_rows=0, field_delimiter=',', quote_character=None, allow_quoted_newlines=False, allow_jagged_rows=False, src_fmt_configs=None, labels=None ): """ Creates a new external table in the dataset with the data in Google Cloud Storage. See here: https://cloud.google.com/bigquery/docs/reference/rest/v2/tables#resource for more details about these parameters. :param external_project_dataset_table: The dotted (<project>.|<project>:)<dataset>.<table>($<partition>) BigQuery table name to create external table. If <project> is not included, project will be the project defined in the connection json. :type external_project_dataset_table: str :param schema_fields: The schema field list as defined here: https://cloud.google.com/bigquery/docs/reference/rest/v2/tables#resource :type schema_fields: list :param source_uris: The source Google Cloud Storage URI (e.g. gs://some-bucket/some-file.txt). A single wild per-object name can be used. :type source_uris: list :param source_format: File format to export. :type source_format: str :param autodetect: Try to detect schema and format options automatically. Any option specified explicitly will be honored. :type autodetect: bool :param compression: [Optional] The compression type of the data source. Possible values include GZIP and NONE. The default value is NONE. This setting is ignored for Google Cloud Bigtable, Google Cloud Datastore backups and Avro formats. :type compression: str :param ignore_unknown_values: [Optional] Indicates if BigQuery should allow extra values that are not represented in the table schema. If true, the extra values are ignored. If false, records with extra columns are treated as bad records, and if there are too many bad records, an invalid error is returned in the job result. :type ignore_unknown_values: bool :param max_bad_records: The maximum number of bad records that BigQuery can ignore when running the job. :type max_bad_records: int :param skip_leading_rows: Number of rows to skip when loading from a CSV. :type skip_leading_rows: int :param field_delimiter: The delimiter to use when loading from a CSV. :type field_delimiter: str :param quote_character: The value that is used to quote data sections in a CSV file. :type quote_character: str :param allow_quoted_newlines: Whether to allow quoted newlines (true) or not (false). :type allow_quoted_newlines: bool :param allow_jagged_rows: Accept rows that are missing trailing optional columns. The missing values are treated as nulls. If false, records with missing trailing columns are treated as bad records, and if there are too many bad records, an invalid error is returned in the job result. Only applicable when soure_format is CSV. :type allow_jagged_rows: bool :param src_fmt_configs: configure optional fields specific to the source format :type src_fmt_configs: dict :param labels: a dictionary containing labels for the table, passed to BigQuery :type labels: dict """ if src_fmt_configs is None: src_fmt_configs = {} project_id, dataset_id, external_table_id = \ _split_tablename(table_input=external_project_dataset_table, default_project_id=self.project_id, var_name='external_project_dataset_table') # bigquery only allows certain source formats # we check to make sure the passed source format is valid # if it's not, we raise a ValueError # Refer to this link for more details: # https://cloud.google.com/bigquery/docs/reference/rest/v2/tables#externalDataConfiguration.sourceFormat source_format = source_format.upper() allowed_formats = [ "CSV", "NEWLINE_DELIMITED_JSON", "AVRO", "GOOGLE_SHEETS", "DATASTORE_BACKUP", "PARQUET" ] if source_format not in allowed_formats: raise ValueError("{0} is not a valid source format. " "Please use one of the following types: {1}" .format(source_format, allowed_formats)) compression = compression.upper() allowed_compressions = ['NONE', 'GZIP'] if compression not in allowed_compressions: raise ValueError("{0} is not a valid compression format. " "Please use one of the following types: {1}" .format(compression, allowed_compressions)) table_resource = { 'externalDataConfiguration': { 'autodetect': autodetect, 'sourceFormat': source_format, 'sourceUris': source_uris, 'compression': compression, 'ignoreUnknownValues': ignore_unknown_values }, 'tableReference': { 'projectId': project_id, 'datasetId': dataset_id, 'tableId': external_table_id, } } if schema_fields: table_resource['externalDataConfiguration'].update({ 'schema': { 'fields': schema_fields } }) self.log.info('Creating external table: %s', external_project_dataset_table) if max_bad_records: table_resource['externalDataConfiguration']['maxBadRecords'] = max_bad_records # if following fields are not specified in src_fmt_configs, # honor the top-level params for backward-compatibility if 'skipLeadingRows' not in src_fmt_configs: src_fmt_configs['skipLeadingRows'] = skip_leading_rows if 'fieldDelimiter' not in src_fmt_configs: src_fmt_configs['fieldDelimiter'] = field_delimiter if 'quote_character' not in src_fmt_configs: src_fmt_configs['quote'] = quote_character if 'allowQuotedNewlines' not in src_fmt_configs: src_fmt_configs['allowQuotedNewlines'] = allow_quoted_newlines if 'allowJaggedRows' not in src_fmt_configs: src_fmt_configs['allowJaggedRows'] = allow_jagged_rows src_fmt_to_param_mapping = { 'CSV': 'csvOptions', 'GOOGLE_SHEETS': 'googleSheetsOptions' } src_fmt_to_configs_mapping = { 'csvOptions': [ 'allowJaggedRows', 'allowQuotedNewlines', 'fieldDelimiter', 'skipLeadingRows', 'quote' ], 'googleSheetsOptions': ['skipLeadingRows'] } if source_format in src_fmt_to_param_mapping.keys(): valid_configs = src_fmt_to_configs_mapping[ src_fmt_to_param_mapping[source_format] ] src_fmt_configs = { k: v for k, v in src_fmt_configs.items() if k in valid_configs } table_resource['externalDataConfiguration'][src_fmt_to_param_mapping[ source_format]] = src_fmt_configs if labels: table_resource['labels'] = labels try: self.service.tables().insert( projectId=project_id, datasetId=dataset_id, body=table_resource ).execute() self.log.info('External table created successfully: %s', external_project_dataset_table) except HttpError as err: raise Exception( 'BigQuery job failed. Error was: {}'.format(err.content) ) def patch_table(self, dataset_id, table_id, project_id=None, description=None, expiration_time=None, external_data_configuration=None, friendly_name=None, labels=None, schema=None, time_partitioning=None, view=None, require_partition_filter=None): """ Patch information in an existing table. It only updates fileds that are provided in the request object. Reference: https://cloud.google.com/bigquery/docs/reference/rest/v2/tables/patch :param dataset_id: The dataset containing the table to be patched. :type dataset_id: str :param table_id: The Name of the table to be patched. :type table_id: str :param project_id: The project containing the table to be patched. :type project_id: str :param description: [Optional] A user-friendly description of this table. :type description: str :param expiration_time: [Optional] The time when this table expires, in milliseconds since the epoch. :type expiration_time: int :param external_data_configuration: [Optional] A dictionary containing properties of a table stored outside of BigQuery. :type external_data_configuration: dict :param friendly_name: [Optional] A descriptive name for this table. :type friendly_name: str :param labels: [Optional] A dictionary containing labels associated with this table. :type labels: dict :param schema: [Optional] If set, the schema field list as defined here: https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs#configuration.load.schema The supported schema modifications and unsupported schema modification are listed here: https://cloud.google.com/bigquery/docs/managing-table-schemas **Example**: :: schema=[{"name": "emp_name", "type": "STRING", "mode": "REQUIRED"}, {"name": "salary", "type": "INTEGER", "mode": "NULLABLE"}] :type schema: list :param time_partitioning: [Optional] A dictionary containing time-based partitioning definition for the table. :type time_partitioning: dict :param view: [Optional] A dictionary containing definition for the view. If set, it will patch a view instead of a table: https://cloud.google.com/bigquery/docs/reference/rest/v2/tables#view **Example**: :: view = { "query": "SELECT * FROM `test-project-id.test_dataset_id.test_table_prefix*` LIMIT 500", "useLegacySql": False } :type view: dict :param require_partition_filter: [Optional] If true, queries over the this table require a partition filter. If false, queries over the table :type require_partition_filter: bool """ project_id = project_id if project_id is not None else self.project_id table_resource = {} if description is not None: table_resource['description'] = description if expiration_time is not None: table_resource['expirationTime'] = expiration_time if external_data_configuration: table_resource['externalDataConfiguration'] = external_data_configuration if friendly_name is not None: table_resource['friendlyName'] = friendly_name if labels: table_resource['labels'] = labels if schema: table_resource['schema'] = {'fields': schema} if time_partitioning: table_resource['timePartitioning'] = time_partitioning if view: table_resource['view'] = view if require_partition_filter is not None: table_resource['requirePartitionFilter'] = require_partition_filter self.log.info('Patching Table %s:%s.%s', project_id, dataset_id, table_id) try: self.service.tables().patch( projectId=project_id, datasetId=dataset_id, tableId=table_id, body=table_resource).execute() self.log.info('Table patched successfully: %s:%s.%s', project_id, dataset_id, table_id) except HttpError as err: raise AirflowException( 'BigQuery job failed. Error was: {}'.format(err.content) ) def run_query(self, sql, destination_dataset_table=None, write_disposition='WRITE_EMPTY', allow_large_results=False, flatten_results=None, udf_config=None, use_legacy_sql=None, maximum_billing_tier=None, maximum_bytes_billed=None, create_disposition='CREATE_IF_NEEDED', query_params=None, labels=None, schema_update_options=(), priority='INTERACTIVE', time_partitioning=None, api_resource_configs=None, cluster_fields=None, location=None): """ Executes a BigQuery SQL query. Optionally persists results in a BigQuery table. See here: https://cloud.google.com/bigquery/docs/reference/v2/jobs For more details about these parameters. :param sql: The BigQuery SQL to execute. :type sql: str :param destination_dataset_table: The dotted <dataset>.<table> BigQuery table to save the query results. :type destination_dataset_table: str :param write_disposition: What to do if the table already exists in BigQuery. :type write_disposition: str :param allow_large_results: Whether to allow large results. :type allow_large_results: bool :param flatten_results: If true and query uses legacy SQL dialect, flattens all nested and repeated fields in the query results. ``allowLargeResults`` must be true if this is set to false. For standard SQL queries, this flag is ignored and results are never flattened. :type flatten_results: bool :param udf_config: The User Defined Function configuration for the query. See https://cloud.google.com/bigquery/user-defined-functions for details. :type udf_config: list :param use_legacy_sql: Whether to use legacy SQL (true) or standard SQL (false). If `None`, defaults to `self.use_legacy_sql`. :type use_legacy_sql: bool :param api_resource_configs: a dictionary that contain params 'configuration' applied for Google BigQuery Jobs API: https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs for example, {'query': {'useQueryCache': False}}. You could use it if you need to provide some params that are not supported by the BigQueryHook like args. :type api_resource_configs: dict :param maximum_billing_tier: Positive integer that serves as a multiplier of the basic price. :type maximum_billing_tier: int :param maximum_bytes_billed: Limits the bytes billed for this job. Queries that will have bytes billed beyond this limit will fail (without incurring a charge). If unspecified, this will be set to your project default. :type maximum_bytes_billed: float :param create_disposition: Specifies whether the job is allowed to create new tables. :type create_disposition: str :param query_params: a list of dictionary containing query parameter types and values, passed to BigQuery :type query_params: list :param labels: a dictionary containing labels for the job/query, passed to BigQuery :type labels: dict :param schema_update_options: Allows the schema of the destination table to be updated as a side effect of the query job. :type schema_update_options: tuple :param priority: Specifies a priority for the query. Possible values include INTERACTIVE and BATCH. The default value is INTERACTIVE. :type priority: str :param time_partitioning: configure optional time partitioning fields i.e. partition by field, type and expiration as per API specifications. :type time_partitioning: dict :param cluster_fields: Request that the result of this query be stored sorted by one or more columns. This is only available in combination with time_partitioning. The order of columns given determines the sort order. :type cluster_fields: list[str] :param location: The geographic location of the job. Required except for US and EU. See details at https://cloud.google.com/bigquery/docs/locations#specifying_your_location :type location: str """ if time_partitioning is None: time_partitioning = {} if location: self.location = location if not api_resource_configs: api_resource_configs = self.api_resource_configs else: _validate_value('api_resource_configs', api_resource_configs, dict) configuration = deepcopy(api_resource_configs) if 'query' not in configuration: configuration['query'] = {} else: _validate_value("api_resource_configs['query']", configuration['query'], dict) if sql is None and not configuration['query'].get('query', None): raise TypeError('`BigQueryBaseCursor.run_query` ' 'missing 1 required positional argument: `sql`') # BigQuery also allows you to define how you want a table's schema to change # as a side effect of a query job # for more details: # https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs#configuration.query.schemaUpdateOptions allowed_schema_update_options = [ 'ALLOW_FIELD_ADDITION', "ALLOW_FIELD_RELAXATION" ] if not set(allowed_schema_update_options ).issuperset(set(schema_update_options)): raise ValueError("{0} contains invalid schema update options. " "Please only use one or more of the following " "options: {1}" .format(schema_update_options, allowed_schema_update_options)) if schema_update_options: if write_disposition not in ["WRITE_APPEND", "WRITE_TRUNCATE"]: raise ValueError("schema_update_options is only " "allowed if write_disposition is " "'WRITE_APPEND' or 'WRITE_TRUNCATE'.") if destination_dataset_table: destination_project, destination_dataset, destination_table = \ _split_tablename(table_input=destination_dataset_table, default_project_id=self.project_id) destination_dataset_table = { 'projectId': destination_project, 'datasetId': destination_dataset, 'tableId': destination_table, } if cluster_fields: cluster_fields = {'fields': cluster_fields} query_param_list = [ (sql, 'query', None, six.string_types), (priority, 'priority', 'INTERACTIVE', six.string_types), (use_legacy_sql, 'useLegacySql', self.use_legacy_sql, bool), (query_params, 'queryParameters', None, list), (udf_config, 'userDefinedFunctionResources', None, list), (maximum_billing_tier, 'maximumBillingTier', None, int), (maximum_bytes_billed, 'maximumBytesBilled', None, float), (time_partitioning, 'timePartitioning', {}, dict), (schema_update_options, 'schemaUpdateOptions', None, tuple), (destination_dataset_table, 'destinationTable', None, dict), (cluster_fields, 'clustering', None, dict), ] for param_tuple in query_param_list: param, param_name, param_default, param_type = param_tuple if param_name not in configuration['query'] and param in [None, {}, ()]: if param_name == 'timePartitioning': param_default = _cleanse_time_partitioning( destination_dataset_table, time_partitioning) param = param_default if param not in [None, {}, ()]: _api_resource_configs_duplication_check( param_name, param, configuration['query']) configuration['query'][param_name] = param # check valid type of provided param, # it last step because we can get param from 2 sources, # and first of all need to find it _validate_value(param_name, configuration['query'][param_name], param_type) if param_name == 'schemaUpdateOptions' and param: self.log.info("Adding experimental 'schemaUpdateOptions': " "{0}".format(schema_update_options)) if param_name == 'destinationTable': for key in ['projectId', 'datasetId', 'tableId']: if key not in configuration['query']['destinationTable']: raise ValueError( "Not correct 'destinationTable' in " "api_resource_configs. 'destinationTable' " "must be a dict with {'projectId':'', " "'datasetId':'', 'tableId':''}") configuration['query'].update({ 'allowLargeResults': allow_large_results, 'flattenResults': flatten_results, 'writeDisposition': write_disposition, 'createDisposition': create_disposition, }) if 'useLegacySql' in configuration['query'] and configuration['query']['useLegacySql'] and\ 'queryParameters' in configuration['query']: raise ValueError("Query parameters are not allowed " "when using legacy SQL") if labels: _api_resource_configs_duplication_check( 'labels', labels, configuration) configuration['labels'] = labels return self.run_with_configuration(configuration) def run_extract( # noqa self, source_project_dataset_table, destination_cloud_storage_uris, compression='NONE', export_format='CSV', field_delimiter=',', print_header=True, labels=None): """ Executes a BigQuery extract command to copy data from BigQuery to Google Cloud Storage. See here: https://cloud.google.com/bigquery/docs/reference/v2/jobs For more details about these parameters. :param source_project_dataset_table: The dotted <dataset>.<table> BigQuery table to use as the source data. :type source_project_dataset_table: str :param destination_cloud_storage_uris: The destination Google Cloud Storage URI (e.g. gs://some-bucket/some-file.txt). Follows convention defined here: https://cloud.google.com/bigquery/exporting-data-from-bigquery#exportingmultiple :type destination_cloud_storage_uris: list :param compression: Type of compression to use. :type compression: str :param export_format: File format to export. :type export_format: str :param field_delimiter: The delimiter to use when extracting to a CSV. :type field_delimiter: str :param print_header: Whether to print a header for a CSV file extract. :type print_header: bool :param labels: a dictionary containing labels for the job/query, passed to BigQuery :type labels: dict """ source_project, source_dataset, source_table = \ _split_tablename(table_input=source_project_dataset_table, default_project_id=self.project_id, var_name='source_project_dataset_table') configuration = { 'extract': { 'sourceTable': { 'projectId': source_project, 'datasetId': source_dataset, 'tableId': source_table, }, 'compression': compression, 'destinationUris': destination_cloud_storage_uris, 'destinationFormat': export_format, } } if labels: configuration['labels'] = labels if export_format == 'CSV': # Only set fieldDelimiter and printHeader fields if using CSV. # Google does not like it if you set these fields for other export # formats. configuration['extract']['fieldDelimiter'] = field_delimiter configuration['extract']['printHeader'] = print_header return self.run_with_configuration(configuration) def run_copy(self, source_project_dataset_tables, destination_project_dataset_table, write_disposition='WRITE_EMPTY', create_disposition='CREATE_IF_NEEDED', labels=None): """ Executes a BigQuery copy command to copy data from one BigQuery table to another. See here: https://cloud.google.com/bigquery/docs/reference/v2/jobs#configuration.copy For more details about these parameters. :param source_project_dataset_tables: One or more dotted ``(project:|project.)<dataset>.<table>`` BigQuery tables to use as the source data. Use a list if there are multiple source tables. If <project> is not included, project will be the project defined in the connection json. :type source_project_dataset_tables: list|string :param destination_project_dataset_table: The destination BigQuery table. Format is: ``(project:|project.)<dataset>.<table>`` :type destination_project_dataset_table: str :param write_disposition: The write disposition if the table already exists. :type write_disposition: str :param create_disposition: The create disposition if the table doesn't exist. :type create_disposition: str :param labels: a dictionary containing labels for the job/query, passed to BigQuery :type labels: dict """ source_project_dataset_tables = ([ source_project_dataset_tables ] if not isinstance(source_project_dataset_tables, list) else source_project_dataset_tables) source_project_dataset_tables_fixup = [] for source_project_dataset_table in source_project_dataset_tables: source_project, source_dataset, source_table = \ _split_tablename(table_input=source_project_dataset_table, default_project_id=self.project_id, var_name='source_project_dataset_table') source_project_dataset_tables_fixup.append({ 'projectId': source_project, 'datasetId': source_dataset, 'tableId': source_table }) destination_project, destination_dataset, destination_table = \ _split_tablename(table_input=destination_project_dataset_table, default_project_id=self.project_id) configuration = { 'copy': { 'createDisposition': create_disposition, 'writeDisposition': write_disposition, 'sourceTables': source_project_dataset_tables_fixup, 'destinationTable': { 'projectId': destination_project, 'datasetId': destination_dataset, 'tableId': destination_table } } } if labels: configuration['labels'] = labels return self.run_with_configuration(configuration) def run_load(self, destination_project_dataset_table, source_uris, schema_fields=None, source_format='CSV', create_disposition='CREATE_IF_NEEDED', skip_leading_rows=0, write_disposition='WRITE_EMPTY', field_delimiter=',', max_bad_records=0, quote_character=None, ignore_unknown_values=False, allow_quoted_newlines=False, allow_jagged_rows=False, schema_update_options=(), src_fmt_configs=None, time_partitioning=None, cluster_fields=None, autodetect=False): """ Executes a BigQuery load command to load data from Google Cloud Storage to BigQuery. See here: https://cloud.google.com/bigquery/docs/reference/v2/jobs For more details about these parameters. :param destination_project_dataset_table: The dotted (<project>.|<project>:)<dataset>.<table>($<partition>) BigQuery table to load data into. If <project> is not included, project will be the project defined in the connection json. If a partition is specified the operator will automatically append the data, create a new partition or create a new DAY partitioned table. :type destination_project_dataset_table: str :param schema_fields: The schema field list as defined here: https://cloud.google.com/bigquery/docs/reference/v2/jobs#configuration.load Required if autodetect=False; optional if autodetect=True. :type schema_fields: list :param autodetect: Attempt to autodetect the schema for CSV and JSON source files. :type autodetect: bool :param source_uris: The source Google Cloud Storage URI (e.g. gs://some-bucket/some-file.txt). A single wild per-object name can be used. :type source_uris: list :param source_format: File format to export. :type source_format: str :param create_disposition: The create disposition if the table doesn't exist. :type create_disposition: str :param skip_leading_rows: Number of rows to skip when loading from a CSV. :type skip_leading_rows: int :param write_disposition: The write disposition if the table already exists. :type write_disposition: str :param field_delimiter: The delimiter to use when loading from a CSV. :type field_delimiter: str :param max_bad_records: The maximum number of bad records that BigQuery can ignore when running the job. :type max_bad_records: int :param quote_character: The value that is used to quote data sections in a CSV file. :type quote_character: str :param ignore_unknown_values: [Optional] Indicates if BigQuery should allow extra values that are not represented in the table schema. If true, the extra values are ignored. If false, records with extra columns are treated as bad records, and if there are too many bad records, an invalid error is returned in the job result. :type ignore_unknown_values: bool :param allow_quoted_newlines: Whether to allow quoted newlines (true) or not (false). :type allow_quoted_newlines: bool :param allow_jagged_rows: Accept rows that are missing trailing optional columns. The missing values are treated as nulls. If false, records with missing trailing columns are treated as bad records, and if there are too many bad records, an invalid error is returned in the job result. Only applicable when soure_format is CSV. :type allow_jagged_rows: bool :param schema_update_options: Allows the schema of the destination table to be updated as a side effect of the load job. :type schema_update_options: tuple :param src_fmt_configs: configure optional fields specific to the source format :type src_fmt_configs: dict :param time_partitioning: configure optional time partitioning fields i.e. partition by field, type and expiration as per API specifications. :type time_partitioning: dict :param cluster_fields: Request that the result of this load be stored sorted by one or more columns. This is only available in combination with time_partitioning. The order of columns given determines the sort order. :type cluster_fields: list[str] """ # bigquery only allows certain source formats # we check to make sure the passed source format is valid # if it's not, we raise a ValueError # Refer to this link for more details: # https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs#configuration.query.tableDefinitions.(key).sourceFormat if schema_fields is None and not autodetect: raise ValueError( 'You must either pass a schema or autodetect=True.') if src_fmt_configs is None: src_fmt_configs = {} source_format = source_format.upper() allowed_formats = [ "CSV", "NEWLINE_DELIMITED_JSON", "AVRO", "GOOGLE_SHEETS", "DATASTORE_BACKUP", "PARQUET" ] if source_format not in allowed_formats: raise ValueError("{0} is not a valid source format. " "Please use one of the following types: {1}" .format(source_format, allowed_formats)) # bigquery also allows you to define how you want a table's schema to change # as a side effect of a load # for more details: # https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs#configuration.load.schemaUpdateOptions allowed_schema_update_options = [ 'ALLOW_FIELD_ADDITION', "ALLOW_FIELD_RELAXATION" ] if not set(allowed_schema_update_options).issuperset( set(schema_update_options)): raise ValueError( "{0} contains invalid schema update options." "Please only use one or more of the following options: {1}" .format(schema_update_options, allowed_schema_update_options)) destination_project, destination_dataset, destination_table = \ _split_tablename(table_input=destination_project_dataset_table, default_project_id=self.project_id, var_name='destination_project_dataset_table') configuration = { 'load': { 'autodetect': autodetect, 'createDisposition': create_disposition, 'destinationTable': { 'projectId': destination_project, 'datasetId': destination_dataset, 'tableId': destination_table, }, 'sourceFormat': source_format, 'sourceUris': source_uris, 'writeDisposition': write_disposition, 'ignoreUnknownValues': ignore_unknown_values } } time_partitioning = _cleanse_time_partitioning( destination_project_dataset_table, time_partitioning ) if time_partitioning: configuration['load'].update({ 'timePartitioning': time_partitioning }) if cluster_fields: configuration['load'].update({'clustering': {'fields': cluster_fields}}) if schema_fields: configuration['load']['schema'] = {'fields': schema_fields} if schema_update_options: if write_disposition not in ["WRITE_APPEND", "WRITE_TRUNCATE"]: raise ValueError("schema_update_options is only " "allowed if write_disposition is " "'WRITE_APPEND' or 'WRITE_TRUNCATE'.") else: self.log.info( "Adding experimental " "'schemaUpdateOptions': {0}".format(schema_update_options)) configuration['load'][ 'schemaUpdateOptions'] = schema_update_options if max_bad_records: configuration['load']['maxBadRecords'] = max_bad_records # if following fields are not specified in src_fmt_configs, # honor the top-level params for backward-compatibility if 'skipLeadingRows' not in src_fmt_configs: src_fmt_configs['skipLeadingRows'] = skip_leading_rows if 'fieldDelimiter' not in src_fmt_configs: src_fmt_configs['fieldDelimiter'] = field_delimiter if 'ignoreUnknownValues' not in src_fmt_configs: src_fmt_configs['ignoreUnknownValues'] = ignore_unknown_values if quote_character is not None: src_fmt_configs['quote'] = quote_character if allow_quoted_newlines: src_fmt_configs['allowQuotedNewlines'] = allow_quoted_newlines src_fmt_to_configs_mapping = { 'CSV': [ 'allowJaggedRows', 'allowQuotedNewlines', 'autodetect', 'fieldDelimiter', 'skipLeadingRows', 'ignoreUnknownValues', 'nullMarker', 'quote' ], 'DATASTORE_BACKUP': ['projectionFields'], 'NEWLINE_DELIMITED_JSON': ['autodetect', 'ignoreUnknownValues'], 'PARQUET': ['autodetect', 'ignoreUnknownValues'], 'AVRO': [], } valid_configs = src_fmt_to_configs_mapping[source_format] src_fmt_configs = { k: v for k, v in src_fmt_configs.items() if k in valid_configs } configuration['load'].update(src_fmt_configs) if allow_jagged_rows: configuration['load']['allowJaggedRows'] = allow_jagged_rows return self.run_with_configuration(configuration) def run_with_configuration(self, configuration): """ Executes a BigQuery SQL query. See here: https://cloud.google.com/bigquery/docs/reference/v2/jobs For more details about the configuration parameter. :param configuration: The configuration parameter maps directly to BigQuery's configuration field in the job object. See https://cloud.google.com/bigquery/docs/reference/v2/jobs for details. """ jobs = self.service.jobs() job_data = {'configuration': configuration} # Send query and wait for reply. query_reply = jobs \ .insert(projectId=self.project_id, body=job_data) \ .execute() self.running_job_id = query_reply['jobReference']['jobId'] if 'location' in query_reply['jobReference']: location = query_reply['jobReference']['location'] else: location = self.location # Wait for query to finish. keep_polling_job = True while keep_polling_job: try: if location: job = jobs.get( projectId=self.project_id, jobId=self.running_job_id, location=location).execute() else: job = jobs.get( projectId=self.project_id, jobId=self.running_job_id).execute() if job['status']['state'] == 'DONE': keep_polling_job = False # Check if job had errors. if 'errorResult' in job['status']: raise Exception( 'BigQuery job failed. Final error was: {}. The job was: {}'. format(job['status']['errorResult'], job)) else: self.log.info('Waiting for job to complete : %s, %s', self.project_id, self.running_job_id) time.sleep(5) except HttpError as err: if err.resp.status in [500, 503]: self.log.info( '%s: Retryable error, waiting for job to complete: %s', err.resp.status, self.running_job_id) time.sleep(5) else: raise Exception( 'BigQuery job status check failed. Final error was: %s', err.resp.status) return self.running_job_id def poll_job_complete(self, job_id): jobs = self.service.jobs() try: if self.location: job = jobs.get(projectId=self.project_id, jobId=job_id, location=self.location).execute() else: job = jobs.get(projectId=self.project_id, jobId=job_id).execute() if job['status']['state'] == 'DONE': return True except HttpError as err: if err.resp.status in [500, 503]: self.log.info( '%s: Retryable error while polling job with id %s', err.resp.status, job_id) else: raise Exception( 'BigQuery job status check failed. Final error was: %s', err.resp.status) return False def cancel_query(self): """ Cancel all started queries that have not yet completed """ jobs = self.service.jobs() if (self.running_job_id and not self.poll_job_complete(self.running_job_id)): self.log.info('Attempting to cancel job : %s, %s', self.project_id, self.running_job_id) if self.location: jobs.cancel( projectId=self.project_id, jobId=self.running_job_id, location=self.location).execute() else: jobs.cancel( projectId=self.project_id, jobId=self.running_job_id).execute() else: self.log.info('No running BigQuery jobs to cancel.') return # Wait for all the calls to cancel to finish max_polling_attempts = 12 polling_attempts = 0 job_complete = False while polling_attempts < max_polling_attempts and not job_complete: polling_attempts = polling_attempts + 1 job_complete = self.poll_job_complete(self.running_job_id) if job_complete: self.log.info('Job successfully canceled: %s, %s', self.project_id, self.running_job_id) elif polling_attempts == max_polling_attempts: self.log.info( "Stopping polling due to timeout. Job with id %s " "has not completed cancel and may or may not finish.", self.running_job_id) else: self.log.info('Waiting for canceled job with id %s to finish.', self.running_job_id) time.sleep(5) def get_schema(self, dataset_id, table_id): """ Get the schema for a given datset.table. see https://cloud.google.com/bigquery/docs/reference/v2/tables#resource :param dataset_id: the dataset ID of the requested table :param table_id: the table ID of the requested table :return: a table schema """ tables_resource = self.service.tables() \ .get(projectId=self.project_id, datasetId=dataset_id, tableId=table_id) \ .execute() return tables_resource['schema'] def get_tabledata(self, dataset_id, table_id, max_results=None, selected_fields=None, page_token=None, start_index=None): """ Get the data of a given dataset.table and optionally with selected columns. see https://cloud.google.com/bigquery/docs/reference/v2/tabledata/list :param dataset_id: the dataset ID of the requested table. :param table_id: the table ID of the requested table. :param max_results: the maximum results to return. :param selected_fields: List of fields to return (comma-separated). If unspecified, all fields are returned. :param page_token: page token, returned from a previous call, identifying the result set. :param start_index: zero based index of the starting row to read. :return: map containing the requested rows. """ optional_params = {} if max_results: optional_params['maxResults'] = max_results if selected_fields: optional_params['selectedFields'] = selected_fields if page_token: optional_params['pageToken'] = page_token if start_index: optional_params['startIndex'] = start_index return (self.service.tabledata().list( projectId=self.project_id, datasetId=dataset_id, tableId=table_id, **optional_params).execute()) def run_table_delete(self, deletion_dataset_table, ignore_if_missing=False): """ Delete an existing table from the dataset; If the table does not exist, return an error unless ignore_if_missing is set to True. :param deletion_dataset_table: A dotted ``(<project>.|<project>:)<dataset>.<table>`` that indicates which table will be deleted. :type deletion_dataset_table: str :param ignore_if_missing: if True, then return success even if the requested table does not exist. :type ignore_if_missing: bool :return: """ deletion_project, deletion_dataset, deletion_table = \ _split_tablename(table_input=deletion_dataset_table, default_project_id=self.project_id) try: self.service.tables() \ .delete(projectId=deletion_project, datasetId=deletion_dataset, tableId=deletion_table) \ .execute() self.log.info('Deleted table %s:%s.%s.', deletion_project, deletion_dataset, deletion_table) except HttpError: if not ignore_if_missing: raise Exception('Table deletion failed. Table does not exist.') else: self.log.info('Table does not exist. Skipping.') def run_table_upsert(self, dataset_id, table_resource, project_id=None): """ creates a new, empty table in the dataset; If the table already exists, update the existing table. Since BigQuery does not natively allow table upserts, this is not an atomic operation. :param dataset_id: the dataset to upsert the table into. :type dataset_id: str :param table_resource: a table resource. see https://cloud.google.com/bigquery/docs/reference/v2/tables#resource :type table_resource: dict :param project_id: the project to upsert the table into. If None, project will be self.project_id. :return: """ # check to see if the table exists table_id = table_resource['tableReference']['tableId'] project_id = project_id if project_id is not None else self.project_id tables_list_resp = self.service.tables().list( projectId=project_id, datasetId=dataset_id).execute() while True: for table in tables_list_resp.get('tables', []): if table['tableReference']['tableId'] == table_id: # found the table, do update self.log.info('Table %s:%s.%s exists, updating.', project_id, dataset_id, table_id) return self.service.tables().update( projectId=project_id, datasetId=dataset_id, tableId=table_id, body=table_resource).execute() # If there is a next page, we need to check the next page. if 'nextPageToken' in tables_list_resp: tables_list_resp = self.service.tables()\ .list(projectId=project_id, datasetId=dataset_id, pageToken=tables_list_resp['nextPageToken'])\ .execute() # If there is no next page, then the table doesn't exist. else: # do insert self.log.info('Table %s:%s.%s does not exist. creating.', project_id, dataset_id, table_id) return self.service.tables().insert( projectId=project_id, datasetId=dataset_id, body=table_resource).execute() def run_grant_dataset_view_access(self, source_dataset, view_dataset, view_table, source_project=None, view_project=None): """ Grant authorized view access of a dataset to a view table. If this view has already been granted access to the dataset, do nothing. This method is not atomic. Running it may clobber a simultaneous update. :param source_dataset: the source dataset :type source_dataset: str :param view_dataset: the dataset that the view is in :type view_dataset: str :param view_table: the table of the view :type view_table: str :param source_project: the project of the source dataset. If None, self.project_id will be used. :type source_project: str :param view_project: the project that the view is in. If None, self.project_id will be used. :type view_project: str :return: the datasets resource of the source dataset. """ # Apply default values to projects source_project = source_project if source_project else self.project_id view_project = view_project if view_project else self.project_id # we don't want to clobber any existing accesses, so we have to get # info on the dataset before we can add view access source_dataset_resource = self.service.datasets().get( projectId=source_project, datasetId=source_dataset).execute() access = source_dataset_resource[ 'access'] if 'access' in source_dataset_resource else [] view_access = { 'view': { 'projectId': view_project, 'datasetId': view_dataset, 'tableId': view_table } } # check to see if the view we want to add already exists. if view_access not in access: self.log.info( 'Granting table %s:%s.%s authorized view access to %s:%s dataset.', view_project, view_dataset, view_table, source_project, source_dataset) access.append(view_access) return self.service.datasets().patch( projectId=source_project, datasetId=source_dataset, body={ 'access': access }).execute() else: # if view is already in access, do nothing. self.log.info( 'Table %s:%s.%s already has authorized view access to %s:%s dataset.', view_project, view_dataset, view_table, source_project, source_dataset) return source_dataset_resource def create_empty_dataset(self, dataset_id="", project_id="", dataset_reference=None): """ Create a new empty dataset: https://cloud.google.com/bigquery/docs/reference/rest/v2/datasets/insert :param project_id: The name of the project where we want to create an empty a dataset. Don't need to provide, if projectId in dataset_reference. :type project_id: str :param dataset_id: The id of dataset. Don't need to provide, if datasetId in dataset_reference. :type dataset_id: str :param dataset_reference: Dataset reference that could be provided with request body. More info: https://cloud.google.com/bigquery/docs/reference/rest/v2/datasets#resource :type dataset_reference: dict """ if dataset_reference: _validate_value('dataset_reference', dataset_reference, dict) else: dataset_reference = {} if "datasetReference" not in dataset_reference: dataset_reference["datasetReference"] = {} if not dataset_reference["datasetReference"].get("datasetId") and not dataset_id: raise ValueError( "{} not provided datasetId. Impossible to create dataset") dataset_required_params = [(dataset_id, "datasetId", ""), (project_id, "projectId", self.project_id)] for param_tuple in dataset_required_params: param, param_name, param_default = param_tuple if param_name not in dataset_reference['datasetReference']: if param_default and not param: self.log.info("{} was not specified. Will be used default " "value {}.".format(param_name, param_default)) param = param_default dataset_reference['datasetReference'].update( {param_name: param}) elif param: _api_resource_configs_duplication_check( param_name, param, dataset_reference['datasetReference'], 'dataset_reference') dataset_id = dataset_reference.get("datasetReference").get("datasetId") dataset_project_id = dataset_reference.get("datasetReference").get( "projectId") self.log.info('Creating Dataset: %s in project: %s ', dataset_id, dataset_project_id) try: self.service.datasets().insert( projectId=dataset_project_id, body=dataset_reference).execute() self.log.info('Dataset created successfully: In project %s ' 'Dataset %s', dataset_project_id, dataset_id) except HttpError as err: raise AirflowException( 'BigQuery job failed. Error was: {}'.format(err.content) ) def delete_dataset(self, project_id, dataset_id): """ Delete a dataset of Big query in your project. :param project_id: The name of the project where we have the dataset . :type project_id: str :param dataset_id: The dataset to be delete. :type dataset_id: str :return: """ project_id = project_id if project_id is not None else self.project_id self.log.info('Deleting from project: %s Dataset:%s', project_id, dataset_id) try: self.service.datasets().delete( projectId=project_id, datasetId=dataset_id).execute() self.log.info('Dataset deleted successfully: In project %s ' 'Dataset %s', project_id, dataset_id) except HttpError as err: raise AirflowException( 'BigQuery job failed. Error was: {}'.format(err.content) ) def get_dataset(self, dataset_id, project_id=None): """ Method returns dataset_resource if dataset exist and raised 404 error if dataset does not exist :param dataset_id: The BigQuery Dataset ID :type dataset_id: str :param project_id: The GCP Project ID :type project_id: str :return: dataset_resource .. seealso:: For more information, see Dataset Resource content: https://cloud.google.com/bigquery/docs/reference/rest/v2/datasets#resource """ if not dataset_id or not isinstance(dataset_id, str): raise ValueError("dataset_id argument must be provided and has " "a type 'str'. You provided: {}".format(dataset_id)) dataset_project_id = project_id if project_id else self.project_id try: dataset_resource = self.service.datasets().get( datasetId=dataset_id, projectId=dataset_project_id).execute() self.log.info("Dataset Resource: {}".format(dataset_resource)) except HttpError as err: raise AirflowException( 'BigQuery job failed. Error was: {}'.format(err.content)) return dataset_resource def get_datasets_list(self, project_id=None): """ Method returns full list of BigQuery datasets in the current project .. seealso:: For more information, see: https://cloud.google.com/bigquery/docs/reference/rest/v2/datasets/list :param project_id: Google Cloud Project for which you try to get all datasets :type project_id: str :return: datasets_list Example of returned datasets_list: :: { "kind":"bigquery#dataset", "location":"US", "id":"your-project:dataset_2_test", "datasetReference":{ "projectId":"your-project", "datasetId":"dataset_2_test" } }, { "kind":"bigquery#dataset", "location":"US", "id":"your-project:dataset_1_test", "datasetReference":{ "projectId":"your-project", "datasetId":"dataset_1_test" } } ] """ dataset_project_id = project_id if project_id else self.project_id try: datasets_list = self.service.datasets().list( projectId=dataset_project_id).execute()['datasets'] self.log.info("Datasets List: {}".format(datasets_list)) except HttpError as err: raise AirflowException( 'BigQuery job failed. Error was: {}'.format(err.content)) return datasets_list def insert_all(self, project_id, dataset_id, table_id, rows, ignore_unknown_values=False, skip_invalid_rows=False, fail_on_error=False): """ Method to stream data into BigQuery one record at a time without needing to run a load job .. seealso:: For more information, see: https://cloud.google.com/bigquery/docs/reference/rest/v2/tabledata/insertAll :param project_id: The name of the project where we have the table :type project_id: str :param dataset_id: The name of the dataset where we have the table :type dataset_id: str :param table_id: The name of the table :type table_id: str :param rows: the rows to insert :type rows: list **Example or rows**: rows=[{"json": {"a_key": "a_value_0"}}, {"json": {"a_key": "a_value_1"}}] :param ignore_unknown_values: [Optional] Accept rows that contain values that do not match the schema. The unknown values are ignored. The default value is false, which treats unknown values as errors. :type ignore_unknown_values: bool :param skip_invalid_rows: [Optional] Insert all valid rows of a request, even if invalid rows exist. The default value is false, which causes the entire request to fail if any invalid rows exist. :type skip_invalid_rows: bool :param fail_on_error: [Optional] Force the task to fail if any errors occur. The default value is false, which indicates the task should not fail even if any insertion errors occur. :type fail_on_error: bool """ dataset_project_id = project_id if project_id else self.project_id body = { "rows": rows, "ignoreUnknownValues": ignore_unknown_values, "kind": "bigquery#tableDataInsertAllRequest", "skipInvalidRows": skip_invalid_rows, } try: self.log.info('Inserting {} row(s) into Table {}:{}.{}'.format( len(rows), dataset_project_id, dataset_id, table_id)) resp = self.service.tabledata().insertAll( projectId=dataset_project_id, datasetId=dataset_id, tableId=table_id, body=body ).execute() if 'insertErrors' not in resp: self.log.info('All row(s) inserted successfully: {}:{}.{}'.format( dataset_project_id, dataset_id, table_id)) else: error_msg = '{} insert error(s) occurred: {}:{}.{}. Details: {}'.format( len(resp['insertErrors']), dataset_project_id, dataset_id, table_id, resp['insertErrors']) if fail_on_error: raise AirflowException( 'BigQuery job failed. Error was: {}'.format(error_msg) ) self.log.info(error_msg) except HttpError as err: raise AirflowException( 'BigQuery job failed. Error was: {}'.format(err.content) ) class BigQueryCursor(BigQueryBaseCursor): """ A very basic BigQuery PEP 249 cursor implementation. The PyHive PEP 249 implementation was used as a reference: https://github.com/dropbox/PyHive/blob/master/pyhive/presto.py https://github.com/dropbox/PyHive/blob/master/pyhive/common.py """ def __init__(self, service, project_id, use_legacy_sql=True, location=None): super(BigQueryCursor, self).__init__( service=service, project_id=project_id, use_legacy_sql=use_legacy_sql, location=location, ) self.buffersize = None self.page_token = None self.job_id = None self.buffer = [] self.all_pages_loaded = False @property def description(self): """ The schema description method is not currently implemented. """ raise NotImplementedError def close(self): """ By default, do nothing """ pass @property def rowcount(self): """ By default, return -1 to indicate that this is not supported. """ return -1 def execute(self, operation, parameters=None): """ Executes a BigQuery query, and returns the job ID. :param operation: The query to execute. :type operation: str :param parameters: Parameters to substitute into the query. :type parameters: dict """ sql = _bind_parameters(operation, parameters) if parameters else operation self.job_id = self.run_query(sql) def executemany(self, operation, seq_of_parameters): """ Execute a BigQuery query multiple times with different parameters. :param operation: The query to execute. :type operation: str :param seq_of_parameters: List of dictionary parameters to substitute into the query. :type seq_of_parameters: list """ for parameters in seq_of_parameters: self.execute(operation, parameters) def fetchone(self): """ Fetch the next row of a query result set. """ return self.next() def next(self): """ Helper method for fetchone, which returns the next row from a buffer. If the buffer is empty, attempts to paginate through the result set for the next page, and load it into the buffer. """ if not self.job_id: return None if len(self.buffer) == 0: if self.all_pages_loaded: return None query_results = (self.service.jobs().getQueryResults( projectId=self.project_id, jobId=self.job_id, pageToken=self.page_token).execute()) if 'rows' in query_results and query_results['rows']: self.page_token = query_results.get('pageToken') fields = query_results['schema']['fields'] col_types = [field['type'] for field in fields] rows = query_results['rows'] for dict_row in rows: typed_row = ([ _bq_cast(vs['v'], col_types[idx]) for idx, vs in enumerate(dict_row['f']) ]) self.buffer.append(typed_row) if not self.page_token: self.all_pages_loaded = True else: # Reset all state since we've exhausted the results. self.page_token = None self.job_id = None self.page_token = None return None return self.buffer.pop(0) def fetchmany(self, size=None): """ Fetch the next set of rows of a query result, returning a sequence of sequences (e.g. a list of tuples). An empty sequence is returned when no more rows are available. The number of rows to fetch per call is specified by the parameter. If it is not given, the cursor's arraysize determines the number of rows to be fetched. The method should try to fetch as many rows as indicated by the size parameter. If this is not possible due to the specified number of rows not being available, fewer rows may be returned. An :py:class:`~pyhive.exc.Error` (or subclass) exception is raised if the previous call to :py:meth:`execute` did not produce any result set or no call was issued yet. """ if size is None: size = self.arraysize result = [] for _ in range(size): one = self.fetchone() if one is None: break else: result.append(one) return result def fetchall(self): """ Fetch all (remaining) rows of a query result, returning them as a sequence of sequences (e.g. a list of tuples). """ result = [] while True: one = self.fetchone() if one is None: break else: result.append(one) return result def get_arraysize(self): """ Specifies the number of rows to fetch at a time with .fetchmany() """ return self._buffersize if self.buffersize else 1 def set_arraysize(self, arraysize): """ Specifies the number of rows to fetch at a time with .fetchmany() """ self.buffersize = arraysize arraysize = property(get_arraysize, set_arraysize) def setinputsizes(self, sizes): """ Does nothing by default """ pass def setoutputsize(self, size, column=None): """ Does nothing by default """ pass def _bind_parameters(operation, parameters): """ Helper method that binds parameters to a SQL query. """ # inspired by MySQL Python Connector (conversion.py) string_parameters = {} for (name, value) in iteritems(parameters): if value is None: string_parameters[name] = 'NULL' elif isinstance(value, basestring): string_parameters[name] = "'" + _escape(value) + "'" else: string_parameters[name] = str(value) return operation % string_parameters def _escape(s): """ Helper method that escapes parameters to a SQL query. """ e = s e = e.replace('\\', '\\\\') e = e.replace('\n', '\\n') e = e.replace('\r', '\\r') e = e.replace("'", "\\'") e = e.replace('"', '\\"') return e def _bq_cast(string_field, bq_type): """ Helper method that casts a BigQuery row to the appropriate data types. This is useful because BigQuery returns all fields as strings. """ if string_field is None: return None elif bq_type == 'INTEGER': return int(string_field) elif bq_type == 'FLOAT' or bq_type == 'TIMESTAMP': return float(string_field) elif bq_type == 'BOOLEAN': if string_field not in ['true', 'false']: raise ValueError("{} must have value 'true' or 'false'".format( string_field)) return string_field == 'true' else: return string_field def _split_tablename(table_input, default_project_id, var_name=None): if '.' not in table_input: raise ValueError( 'Expected target table name in the format of ' '<dataset>.<table>. Got: {}'.format(table_input)) if not default_project_id: raise ValueError("INTERNAL: No default project is specified") def var_print(var_name): if var_name is None: return "" else: return "Format exception for {var}: ".format(var=var_name) if table_input.count('.') + table_input.count(':') > 3: raise Exception(('{var}Use either : or . to specify project ' 'got {input}').format( var=var_print(var_name), input=table_input)) cmpt = table_input.rsplit(':', 1) project_id = None rest = table_input if len(cmpt) == 1: project_id = None rest = cmpt[0] elif len(cmpt) == 2 and cmpt[0].count(':') <= 1: if cmpt[-1].count('.') != 2: project_id = cmpt[0] rest = cmpt[1] else: raise Exception(('{var}Expect format of (<project:)<dataset>.<table>, ' 'got {input}').format( var=var_print(var_name), input=table_input)) cmpt = rest.split('.') if len(cmpt) == 3: if project_id: raise ValueError( "{var}Use either : or . to specify project".format( var=var_print(var_name))) project_id = cmpt[0] dataset_id = cmpt[1] table_id = cmpt[2] elif len(cmpt) == 2: dataset_id = cmpt[0] table_id = cmpt[1] else: raise Exception( ('{var}Expect format of (<project.|<project:)<dataset>.<table>, ' 'got {input}').format(var=var_print(var_name), input=table_input)) if project_id is None: if var_name is not None: log = LoggingMixin().log log.info('Project not included in {var}: {input}; ' 'using project "{project}"'.format( var=var_name, input=table_input, project=default_project_id)) project_id = default_project_id return project_id, dataset_id, table_id def _cleanse_time_partitioning(destination_dataset_table, time_partitioning_in): # if it is a partitioned table ($ is in the table name) add partition load option if time_partitioning_in is None: time_partitioning_in = {} time_partitioning_out = {} if destination_dataset_table and '$' in destination_dataset_table: time_partitioning_out['type'] = 'DAY' time_partitioning_out.update(time_partitioning_in) return time_partitioning_out def _validate_value(key, value, expected_type): """ function to check expected type and raise error if type is not correct """ if not isinstance(value, expected_type): raise TypeError("{} argument must have a type {} not {}".format( key, expected_type, type(value))) def _api_resource_configs_duplication_check(key, value, config_dict, config_dict_name='api_resource_configs'): if key in config_dict and value != config_dict[key]: raise ValueError("Values of {param_name} param are duplicated. " "{dict_name} contained {param_name} param " "in `query` config and {param_name} was also provided " "with arg to run_query() method. Please remove duplicates." .format(param_name=key, dict_name=config_dict_name))
apache-2.0
OshynSong/scikit-learn
examples/linear_model/plot_lasso_and_elasticnet.py
249
1982
""" ======================================== Lasso and Elastic Net for Sparse Signals ======================================== Estimates Lasso and Elastic-Net regression models on a manually generated sparse signal corrupted with an additive noise. Estimated coefficients are compared with the ground-truth. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.metrics import r2_score ############################################################################### # generate some sparse data to play with np.random.seed(42) n_samples, n_features = 50, 200 X = np.random.randn(n_samples, n_features) coef = 3 * np.random.randn(n_features) inds = np.arange(n_features) np.random.shuffle(inds) coef[inds[10:]] = 0 # sparsify coef y = np.dot(X, coef) # add noise y += 0.01 * np.random.normal((n_samples,)) # Split data in train set and test set n_samples = X.shape[0] X_train, y_train = X[:n_samples / 2], y[:n_samples / 2] X_test, y_test = X[n_samples / 2:], y[n_samples / 2:] ############################################################################### # Lasso from sklearn.linear_model import Lasso alpha = 0.1 lasso = Lasso(alpha=alpha) y_pred_lasso = lasso.fit(X_train, y_train).predict(X_test) r2_score_lasso = r2_score(y_test, y_pred_lasso) print(lasso) print("r^2 on test data : %f" % r2_score_lasso) ############################################################################### # ElasticNet from sklearn.linear_model import ElasticNet enet = ElasticNet(alpha=alpha, l1_ratio=0.7) y_pred_enet = enet.fit(X_train, y_train).predict(X_test) r2_score_enet = r2_score(y_test, y_pred_enet) print(enet) print("r^2 on test data : %f" % r2_score_enet) plt.plot(enet.coef_, label='Elastic net coefficients') plt.plot(lasso.coef_, label='Lasso coefficients') plt.plot(coef, '--', label='original coefficients') plt.legend(loc='best') plt.title("Lasso R^2: %f, Elastic Net R^2: %f" % (r2_score_lasso, r2_score_enet)) plt.show()
bsd-3-clause
ggirelli/gpseq-img-py
pygpseq/fish/nucleus.py
1
15768
# -*- coding: utf-8 -*- ''' @author: Gabriele Girelli @contact: [email protected] @description: methods for nuclear channels manipulation. ''' # DEPENDENCIES ================================================================= import matplotlib import matplotlib.pyplot as plt import math import numpy as np import os import pandas as pd from scipy.ndimage.measurements import center_of_mass from skimage import draw from skimage.morphology import dilation from .. import const from ..anim import Nucleus from ..tools import image as imt from ..tools import plot from ..tools import stat as stt # FUNCTIONS ==================================================================== def annotate_compartments(msg, t, nuclei, outdir, pole_fraction, aspect): ''' Add compartment status to dots table (by DOTTER). For each nucleus: the major three axes are identified, the nucleus is centered and rotated. Then, the dots are also centered and rotated, and assigned to different compartments based on the fitted ellipsoid. Information on the goodness of ellipsoid fit is added to the main log and can be extracted by grepping lines starting with " >>>> GoF_ellipse:". Args: msg (string): log message, to be continued. t (pd.DataFrame): DOTTER output table. aspect (tuple): Z,Y,X voxel sides in real units. Returns: ''' # Temporarily remove dots outside cells nan_cond = np.isnan(t.loc[:, 'cell_ID']) vcomp_table = pd.DataFrame() subt = t.loc[np.logical_not(nan_cond), :].copy() if 0 == subt.shape[0]: print("!WARNING! All dots in FoV#%d are outside cells." % ( t['File'].values[0],)) return((t, vcomp_table, msg)) fid = subt['File'].values[0] # Create empty table to host compartment volume data vcomp_table = pd.DataFrame(index = range(1, int(subt['cell_ID'].max()) + 1)) vcomp_table['File'] = fid vcomp_table['cell_ID'] = range(1, int(subt['cell_ID'].max()) + 1) vcomp_table['center_bot'] = np.nan vcomp_table['center_top'] = np.nan vcomp_table['poles'] = np.nan vcomp_table['ndots_center_bot'] = np.nan vcomp_table['ndots_center_top'] = np.nan vcomp_table['ndots_poles'] = np.nan vcomp_table['a'] = np.nan vcomp_table['b'] = np.nan vcomp_table['c'] = np.nan for cid in range(int(subt['cell_ID'].max()) + 1): if cid in nuclei.keys(): msg += " >>> Working on cell #%d...\n" % (cid,) cell_cond = cid == subt['cell_ID'] # Extract dots coordinates ----------------------------------------- dot_coords = np.vstack([ subt.loc[cell_cond, 'z'] - nuclei[cid].box_origin[0], subt.loc[cell_cond, 'x'] - nuclei[cid].box_origin[1], subt.loc[cell_cond, 'y'] - nuclei[cid].box_origin[2] ]) # Center coordinates ----------------------------------------------- x, y, z, xd, yd, zd = stt.centered_coords_3d( nuclei[cid].mask, dot_coords) coords = np.vstack([x, y, z]) dot_coords = np.vstack([xd, yd, zd]) # Rotate data ------------------------------------------------------ # First axis xv, yv, zv = stt.extract_3ev(coords) theta1 = stt.calc_theta(xv[0], yv[0]) xt, yt, zt = stt.rotate3d(coords, theta1, 2) tcoords = np.vstack([xt, yt, zt]) # # Third axis # xv, yv, zv = stt.extract_3ev(tcoords) # theta3 = stt.calc_theta(xv[2], zv[2]) # if np.abs(theta3) > np.pi / 2.: # if theta3 > 0: # theta3 = -np.abs(theta3 - np.pi / 2.) # else: # theta3 = np.abs(theta3 + np.pi / 2.) # else: # theta3 = -np.abs(theta3 + np.pi / 2.) # xt, yt, zt = stt.rotate3d(tcoords, theta3, 1) # tcoords = np.vstack([xt, yt, zt]) # # Second axis # xv, yv, zv = stt.extract_3ev(tcoords) # theta2 = stt.calc_theta(yv[1], zv[1]) # xt, yt, zt = stt.rotate3d(tcoords, theta2, 0) # tcoords = np.vstack([xt, yt, zt]) # Fit ellipsoid ---------------------------------------------------- # Round up rotated coordinates trcoords = tcoords.astype('i') # Convert to rotated image icoords = np.transpose(trcoords) + abs(trcoords.min(1)) trbin = np.zeros((icoords.max(0) + 1).tolist()[::-1]) trbin[icoords[:, 2], icoords[:, 1], icoords[:, 0]] = 1 # Calculate axes size zax_size, yax_size, xax_size = trbin.shape el = draw.ellipsoid(zax_size / 2., yax_size / 2., xax_size / 2.) el = el[2:(zax_size + 2), 1:(yax_size + 1), 1:(xax_size + 1)] # Calculate intersection with fitting ellipsoid inter_size = np.logical_and(trbin, el).sum() # Log intersection comments = [] comments.append("%s%%%s [%s.%s]." % ( round(inter_size / float(trbin.sum()) * 100, 2,), " of the nucleus is in the ellipsoid", fid, cid,)) comments.append("%s%%%s [%s.%s]." % ( round(inter_size / float(el.sum()) * 100, 2,), " of the ellipsoid is in the nucleus", fid, cid,)) msg += "".join([" >>>> GoF_ellipse: %s\n" % (s,) for s in comments]) # Rotate dots ------------------------------------------------------ dot_coords_t = np.vstack(stt.rotate3d(dot_coords, theta1, 2)) #dot_coords_t = np.vstack(stt.rotate3d(dot_coords_t, theta2, 0)) #dot_coords_t = np.vstack(stt.rotate3d(dot_coords_t, theta3, 1)) # Assign compartments ---------------------------------------------- # Compartment code: # 0 = center-top # 1 = center-bottom # 2 = pole c = zax_size / 2. b = yax_size / 2. a = xax_size / 2. cf = 1 - 2 * pole_fraction status = np.zeros(dot_coords.shape[1]) status[dot_coords_t[2] < 0] = 1 status[dot_coords_t[0] > cf * a] = 2 status[dot_coords_t[0] < -(cf * a)] = 2 subt.loc[cell_cond, 'compartment'] = status # Rescale coords --------------------------------------------------- dot_coords_t2 = dot_coords_t.copy() dot_coords_t2[0] = dot_coords_t[0] / a dot_coords_t2[1] = dot_coords_t[1] / b dot_coords_t2[2] = dot_coords_t[2] / zax_size * 2 # Store rescaled coords -------------------------------------------- subt.loc[cell_cond, 'znorm'] = dot_coords_t2[2] subt.loc[cell_cond, 'xnorm'] = dot_coords_t2[0] subt.loc[cell_cond, 'ynorm'] = dot_coords_t2[1] # Calculate compartment volume ------------------------------------- # Round up coordinates xt = xt.astype('i') zt = zt.astype('i') # Count voxels in compartments vpole = sum(xt > cf * a) + sum(xt < -(cf * a)) centr_cond = np.logical_and(xt < (cf * a), xt > -(cf * a)) vctop = np.logical_and(centr_cond, zt >= 0).sum() vcbot = np.logical_and(centr_cond, zt < 0).sum() vcomp_table.loc[cid, 'center_top'] = vctop vcomp_table.loc[cid, 'center_bot'] = vcbot vcomp_table.loc[cid, 'poles'] = vpole # Count dots vcomp_table.loc[cid, 'ndots_center_top'] = (status == 0).sum() vcomp_table.loc[cid, 'ndots_center_bot'] = (status == 1).sum() vcomp_table.loc[cid, 'ndots_poles'] = (status == 2).sum() # Store nucleus dimensions vcomp_table.loc[cid, 'a'] = xax_size / 2. vcomp_table.loc[cid, 'b'] = yax_size / 2. vcomp_table.loc[cid, 'c'] = zax_size / 2. # Assign volume information volume = np.zeros(dot_coords.shape[1]) volume[:] = vctop volume[dot_coords_t[2] < 0] = vcbot volume[dot_coords_t[1] > cf * a] = vpole volume[dot_coords_t[1] < -(cf * a)] = vpole subt.loc[cell_cond, 'compartment_volume'] = volume # Generate compartment plot with dots ------------------------------ if not type(None) == type(outdir): outpng = open(os.path.join(outdir, "%s.%s.png" % (fid, cid,)), "wb") plt.close("all") plot.ortho_3d(tcoords, dot_coords = dot_coords_t, aspect = aspect, c = a * cf, channels = subt.loc[cell_cond, 'Channel'].values) plt.suptitle("\n".join(comments)) plt.savefig(outpng, format = "png") plt.close("all") outpng.close() t.loc[np.logical_not(nan_cond), :] = subt # Make aggregated visualization -------------------------------------------- # Calculate median a/b/c a = np.median(vcomp_table['a'].values) b = np.median(vcomp_table['b'].values) c = np.median(vcomp_table['c'].values) coords = np.vstack([t['xnorm'].values * a, t['ynorm'].values * b, t['znorm'].values * c]) # Plot if not type(None) == type(outdir): # All-channels visualization plot.dots_in_ellipsoid(a, b, c, coords, aspect = aspect, channels = t['Channel'].values, title = "[f%d] Aggregated FISH visualization" % fid, outpng = os.path.join(outdir, "%d.aggregated.all.png" % fid)) # Single channel visualization for channel in set(t['Channel'].values.tolist()): title = "[f%d] Aggregated FISH visualization" % fid title += " for channel '%s'" % channel plot.dots_in_ellipsoid(a, b, c, coords[:, t['Channel'].values == channel], aspect = aspect, channels = t['Channel'].values[t['Channel'].values == channel], title = title, outpng = os.path.join(outdir, "%d.aggregated.%s.png" % (fid, channel))) # All-channels folded visualization plot.dots_in_ellipsoid(a, b, c, coords, aspect = aspect, channels = t['Channel'].values, fold = True, title = "[f%d] Aggregated-folded FISH visualization" % fid, outpng = os.path.join(outdir, "%d.aggregated.all.folded.png" % fid)) # Single channel folded visualization for channel in set(t['Channel'].values.tolist()): title = "[f%d] Aggregated-folded FISH visualization" % fid title += " for channel '%s'" % channel plot.dots_in_ellipsoid(a, b, c, coords[:, t['Channel'].values == channel], channels = t['Channel'].values[t['Channel'].values == channel], aspect = aspect, fold = True, title = title, outpng = os.path.join(outdir, "%d.aggregated.%s.folded.png" % (fid, channel))) return((t, vcomp_table, msg)) def build_nuclei(msg, L, dilate_factor, series_id, thr, dna_bg, sig_bg, aspect, offset, logpath, i, istruct): ''' Build nuclei objects Args: msg (string): log message, to be continued. L (np.ndarray): labeled mask. dilate_factor (int): dilation factor. series_id (int): series ID. thr (float): global threshold value. dna_bg (float): DNA channel background. sig_bg (float): signal channel background. aspect (tuple): Z,Y,X voxel sides in real units. offset (tuple): tuple with pixel offset for bounding box. logpath (string): path to log file. i (np.array): image. Returns: (string, list): log message and list of Nucleus objects. ''' # Prepare input for Nucleus class kwargs = { 'series_id' : series_id, 'thr' : thr, 'dna_bg' : dna_bg, 'sig_bg' : sig_bg, 'aspect' : aspect, 'offset' : offset, 'logpath' : logpath, 'i' : i } # Default nuclear ID list and empty dictionary seq = range(1, L.max() + 1) curnuclei = {} # Log operation if 0 != dilate_factor: msg += " - Saving %d nuclei with dilation [%d]...\n" % ( L.max(), dilate_factor) else: msg += " - Saving %d nuclei...\n" % (L.max(),) # Iterate through nuclei for n in seq: # Make nucleus if 0 != dilate_factor: # With dilated mask mask = dilation(L == n, istruct) nucleus = Nucleus(n = n, mask = mask, **kwargs) else: mask = L == n nucleus = Nucleus(n = n, mask = mask, **kwargs) # Apply box msg += " > Applying nuclear box [%d]...\n" % (n,) mask = imt.apply_box(mask, nucleus.box) # Store nucleus nucleus.mask = mask nucleus.box_origin = np.array([c[0] + 1 for c in nucleus.box]) nucleus.box_sides = np.array([np.diff(c) for c in nucleus.box]) nucleus.box_mass_center = center_of_mass(mask) nucleus.dilate_factor = dilate_factor curnuclei[n] = nucleus return((msg, curnuclei)) def flag_G1_cells(t, nuclei, outdir, dilate_factor, dot_file_name): ''' Assign a binary flag identifying the predominant cell population based on flatten size and intensity sum Args: t (pd.DataFrame): DOTTER output table. nuclei (list(gp.Nucleus)): identified nuclei. outdir (string): path to output folder. dilate_factor (int): number of dilation operations. dot_file_name (string): output file name. Returns: pd.DataFrame:. ''' print("> Flagging G1 cells...") # Retrieve nuclei summaries ------------------------------------------------ print(' > Retrieving nuclear summary...') summary = np.zeros(len(nuclei), dtype = const.DTYPE_NUCLEAR_SUMMARY) for i in range(len(nuclei)): summary[i] = nuclei[i].get_summary() # Filter nuclei ------------------------------------------------------------ print(' > Filtering nuclei based on flatten size and intensity...') cond_name = 'none' sigma = .1 nsf = (const.NSEL_FLAT_SIZE, const.NSEL_SUMI) out_dir = '.' # Filter features sel_data = {} ranges = {} plot_counter = 1 for nsfi in nsf: # Identify Nuclear Selection Feature nsf_field = const.NSEL_FIELDS[nsfi] nsf_name = const.NSEL_NAMES[nsfi] print(' >> Filtering %s...' % (nsf_name,)) # Start building output d = {'data' : summary[nsf_field]} # Calculate density d['density'] = stt.calc_density(d['data'], sigma = sigma) # Identify range args = [d['density']['x'], d['density']['y']] d['fwhm_range'] = stt.get_fwhm(*args) ranges[nsf_name] = d['fwhm_range'] # Plot sel_data[nsf_field] = d # Select based on range f = lambda x, r: x >= r[0] and x <= r[1] for nsfi in nsf: nsf_field = const.NSEL_FIELDS[nsfi] nsf_name = const.NSEL_NAMES[nsfi] print(" > Selecting range for %s ..." % (nsf_name,)) # Identify nuclei in the FWHM range nsf_data = sel_data[nsf_field] nsf_data['sel'] = [f(i, nsf_data['fwhm_range']) for i in nsf_data['data']] sel_data[nsf_field] = nsf_data # Select those in every FWHM range print(" > Applying selection criteria") nsfields = [const.NSEL_FIELDS[nsfi] for nsfi in nsf] selected = [sel_data[f]['sel'] for f in nsfields] g = lambda i: all([sel[i] for sel in selected]) selected = [i for i in range(len(selected[0])) if g(i)] sub_data = np.array(summary[selected]) # Identify selected nuclei objects sel_nuclei_labels = ["_%d.%d_" % (n, s) for (n, s) in sub_data[['s', 'n']]] sel_nucl = [n for n in nuclei if "_%d.%d_" % (n.s, n.n) in sel_nuclei_labels] # Check which dots are in which nucleus and update flag -------------------- print(" > Matching DOTTER cells with GPSeq cells...") t['G1'] = 0 t.loc[np.where(np.isnan(t['cell_ID']))[0], 'G1'] = np.nan t['universalID'] = ["_%s.%s_" % x for x in zip( t['File'].values, t['cell_ID'].values )] g1ids = [i for i in range(t.shape[0]) if t.loc[i, 'universalID'] in sel_nuclei_labels] t.loc[g1ids, 'G1'] = 1 t = t.drop('universalID', 1) # Add G1 status to summary ------------------------------------------------- summary = pd.DataFrame(summary) summary['G1'] = np.zeros((summary.shape[0],)) summary['universalID'] = ["_%s.%s_" % x for x in zip(summary['s'].values, summary['n'].astype("f").values)] g1ids = [i for i in range(summary.shape[0]) if summary.loc[i, 'universalID'] in sel_nuclei_labels] summary.loc[g1ids, 'G1'] = 1 summary = summary.drop('universalID', 1) # Estimate radius ---------------------------------------------------------- summary['sphere_radius'] = summary['size'].values * 3 / (4 * math.pi) summary['sphere_radius'] = (summary['sphere_radius'])**(1/3.) # Export ------------------------------------------------------------------- # Export feature ranges s = "" for (k, v) in ranges.items(): s += "%s\t%f\t%f\n" % (k, v[0], v[1]) f = open("%s/feature_ranges.txt" % (outdir,), "w+") f.write(s) f.close() # Export summary outname = "%s/nuclei.out.dilate%d.%s" % ( outdir, dilate_factor, dot_file_name) summary.to_csv(outname, sep = '\t', index = False) # Output ------------------------------------------------------------------- print("> Flagged G1 cells...") return(t) # END ========================================================================== ################################################################################
mit
ifuding/Kaggle
TalkingDataFraudDetect/Code/BarisKanber.py
3
14070
""" A non-blending lightGBM model that incorporates portions and ideas from various public kernels This kernel gives LB: 0.977 when the parameter 'debug' below is set to 0 but this implementation requires a machine with ~32 GB of memory """ import pandas as pd import time import numpy as np from sklearn.cross_validation import train_test_split import lightgbm as lgb import gc import matplotlib.pyplot as plt import os debug=1 if debug: print('*** debug parameter set: this is a test run for debugging purposes ***') def lgb_modelfit_nocv(params, dtrain, dvalid, predictors, target='target', objective='binary', metrics='auc', feval=None, early_stopping_rounds=20, num_boost_round=3000, verbose_eval=10, categorical_features=None): lgb_params = { 'boosting_type': 'gbdt', 'objective': objective, 'metric':metrics, 'learning_rate': 0.2, #'is_unbalance': 'true', #because training data is unbalance (replaced with scale_pos_weight) 'num_leaves': 31, # we should let it be smaller than 2^(max_depth) 'max_depth': -1, # -1 means no limit 'min_child_samples': 20, # Minimum number of data need in a child(min_data_in_leaf) 'max_bin': 255, # Number of bucketed bin for feature values 'subsample': 0.6, # Subsample ratio of the training instance. 'subsample_freq': 0, # frequence of subsample, <=0 means no enable 'colsample_bytree': 0.3, # Subsample ratio of columns when constructing each tree. 'min_child_weight': 5, # Minimum sum of instance weight(hessian) needed in a child(leaf) 'subsample_for_bin': 200000, # Number of samples for constructing bin 'min_split_gain': 0, # lambda_l1, lambda_l2 and min_gain_to_split to regularization 'reg_alpha': 0, # L1 regularization term on weights 'reg_lambda': 0, # L2 regularization term on weights 'nthread': 4, 'verbose': 0, 'metric':metrics } lgb_params.update(params) print("preparing validation datasets") xgtrain = lgb.Dataset(dtrain[predictors].values, label=dtrain[target].values, feature_name=predictors, categorical_feature=categorical_features ) xgvalid = lgb.Dataset(dvalid[predictors].values, label=dvalid[target].values, feature_name=predictors, categorical_feature=categorical_features ) evals_results = {} bst1 = lgb.train(lgb_params, xgtrain, valid_sets=[xgtrain, xgvalid], valid_names=['train','valid'], evals_result=evals_results, num_boost_round=num_boost_round, early_stopping_rounds=early_stopping_rounds, verbose_eval=10, feval=feval) print("\nModel Report") print("bst1.best_iteration: ", bst1.best_iteration) print(metrics+":", evals_results['valid'][metrics][bst1.best_iteration-1]) return (bst1,bst1.best_iteration) def DO(frm,to,fileno): dtypes = { 'ip' : 'uint32', 'app' : 'uint16', 'device' : 'uint16', 'os' : 'uint16', 'channel' : 'uint16', 'is_attributed' : 'uint8', 'click_id' : 'uint32', } print('loading train data...',frm,to) train_df = pd.read_csv("../input/train.csv", parse_dates=['click_time'], skiprows=range(1,frm), nrows=to-frm, dtype=dtypes, usecols=['ip','app','device','os', 'channel', 'click_time', 'is_attributed']) print('loading test data...') if debug: test_df = pd.read_csv("../input/test.csv", nrows=100000, parse_dates=['click_time'], dtype=dtypes, usecols=['ip','app','device','os', 'channel', 'click_time', 'click_id']) else: test_df = pd.read_csv("../input/test.csv", parse_dates=['click_time'], dtype=dtypes, usecols=['ip','app','device','os', 'channel', 'click_time', 'click_id']) len_train = len(train_df) train_df=train_df.append(test_df) del test_df gc.collect() print('Extracting new features...') train_df['hour'] = pd.to_datetime(train_df.click_time).dt.hour.astype('uint8') train_df['day'] = pd.to_datetime(train_df.click_time).dt.day.astype('uint8') gc.collect() naddfeat=9 for i in range(0,naddfeat): if i==0: selcols=['ip', 'channel']; QQ=4; if i==1: selcols=['ip', 'device', 'os', 'app']; QQ=5; if i==2: selcols=['ip', 'day', 'hour']; QQ=4; if i==3: selcols=['ip', 'app']; QQ=4; if i==4: selcols=['ip', 'app', 'os']; QQ=4; if i==5: selcols=['ip', 'device']; QQ=4; if i==6: selcols=['app', 'channel']; QQ=4; if i==7: selcols=['ip', 'os']; QQ=5; if i==8: selcols=['ip', 'device', 'os', 'app']; QQ=4; print('selcols',selcols,'QQ',QQ) filename='X%d_%d_%d.csv'%(i,frm,to) if os.path.exists(filename): if QQ==5: gp=pd.read_csv(filename,header=None) train_df['X'+str(i)]=gp else: gp=pd.read_csv(filename) train_df = train_df.merge(gp, on=selcols[0:len(selcols)-1], how='left') else: if QQ==0: gp = train_df[selcols].groupby(by=selcols[0:len(selcols)-1])[selcols[len(selcols)-1]].count().reset_index().\ rename(index=str, columns={selcols[len(selcols)-1]: 'X'+str(i)}) train_df = train_df.merge(gp, on=selcols[0:len(selcols)-1], how='left') if QQ==1: gp = train_df[selcols].groupby(by=selcols[0:len(selcols)-1])[selcols[len(selcols)-1]].mean().reset_index().\ rename(index=str, columns={selcols[len(selcols)-1]: 'X'+str(i)}) train_df = train_df.merge(gp, on=selcols[0:len(selcols)-1], how='left') if QQ==2: gp = train_df[selcols].groupby(by=selcols[0:len(selcols)-1])[selcols[len(selcols)-1]].var().reset_index().\ rename(index=str, columns={selcols[len(selcols)-1]: 'X'+str(i)}) train_df = train_df.merge(gp, on=selcols[0:len(selcols)-1], how='left') if QQ==3: gp = train_df[selcols].groupby(by=selcols[0:len(selcols)-1])[selcols[len(selcols)-1]].skew().reset_index().\ rename(index=str, columns={selcols[len(selcols)-1]: 'X'+str(i)}) train_df = train_df.merge(gp, on=selcols[0:len(selcols)-1], how='left') if QQ==4: gp = train_df[selcols].groupby(by=selcols[0:len(selcols)-1])[selcols[len(selcols)-1]].nunique().reset_index().\ rename(index=str, columns={selcols[len(selcols)-1]: 'X'+str(i)}) train_df = train_df.merge(gp, on=selcols[0:len(selcols)-1], how='left') if QQ==5: gp = train_df[selcols].groupby(by=selcols[0:len(selcols)-1])[selcols[len(selcols)-1]].cumcount() train_df['X'+str(i)]=gp.values if not debug: gp.to_csv(filename,index=False) del gp gc.collect() print('doing nextClick') predictors=[] new_feature = 'nextClick' filename='nextClick_%d_%d.csv'%(frm,to) if os.path.exists(filename): print('loading from save file') QQ=pd.read_csv(filename).values else: D=2**26 train_df['category'] = (train_df['ip'].astype(str) + "_" + train_df['app'].astype(str) + "_" + train_df['device'].astype(str) \ + "_" + train_df['os'].astype(str)).apply(hash) % D click_buffer= np.full(D, 3000000000, dtype=np.uint32) train_df['epochtime']= train_df['click_time'].astype(np.int64) // 10 ** 9 next_clicks= [] for category, t in zip(reversed(train_df['category'].values), reversed(train_df['epochtime'].values)): next_clicks.append(click_buffer[category]-t) click_buffer[category]= t del(click_buffer) QQ= list(reversed(next_clicks)) if not debug: print('saving') pd.DataFrame(QQ).to_csv(filename,index=False) train_df[new_feature] = QQ predictors.append(new_feature) train_df[new_feature+'_shift'] = pd.DataFrame(QQ).shift(+1).values predictors.append(new_feature+'_shift') del QQ gc.collect() print('grouping by ip-day-hour combination...') gp = train_df[['ip','day','hour','channel']].groupby(by=['ip','day','hour'])[['channel']].count().reset_index().rename(index=str, columns={'channel': 'ip_tcount'}) train_df = train_df.merge(gp, on=['ip','day','hour'], how='left') del gp gc.collect() print('grouping by ip-app combination...') gp = train_df[['ip', 'app', 'channel']].groupby(by=['ip', 'app'])[['channel']].count().reset_index().rename(index=str, columns={'channel': 'ip_app_count'}) train_df = train_df.merge(gp, on=['ip','app'], how='left') del gp gc.collect() print('grouping by ip-app-os combination...') gp = train_df[['ip','app', 'os', 'channel']].groupby(by=['ip', 'app', 'os'])[['channel']].count().reset_index().rename(index=str, columns={'channel': 'ip_app_os_count'}) train_df = train_df.merge(gp, on=['ip','app', 'os'], how='left') del gp gc.collect() # Adding features with var and mean hour (inspired from nuhsikander's script) print('grouping by : ip_day_chl_var_hour') gp = train_df[['ip','day','hour','channel']].groupby(by=['ip','day','channel'])[['hour']].var().reset_index().rename(index=str, columns={'hour': 'ip_tchan_count'}) train_df = train_df.merge(gp, on=['ip','day','channel'], how='left') del gp gc.collect() print('grouping by : ip_app_os_var_hour') gp = train_df[['ip','app', 'os', 'hour']].groupby(by=['ip', 'app', 'os'])[['hour']].var().reset_index().rename(index=str, columns={'hour': 'ip_app_os_var'}) train_df = train_df.merge(gp, on=['ip','app', 'os'], how='left') del gp gc.collect() print('grouping by : ip_app_channel_var_day') gp = train_df[['ip','app', 'channel', 'day']].groupby(by=['ip', 'app', 'channel'])[['day']].var().reset_index().rename(index=str, columns={'day': 'ip_app_channel_var_day'}) train_df = train_df.merge(gp, on=['ip','app', 'channel'], how='left') del gp gc.collect() print('grouping by : ip_app_chl_mean_hour') gp = train_df[['ip','app', 'channel','hour']].groupby(by=['ip', 'app', 'channel'])[['hour']].mean().reset_index().rename(index=str, columns={'hour': 'ip_app_channel_mean_hour'}) print("merging...") train_df = train_df.merge(gp, on=['ip','app', 'channel'], how='left') del gp gc.collect() print("vars and data type: ") train_df.info() train_df['ip_tcount'] = train_df['ip_tcount'].astype('uint16') train_df['ip_app_count'] = train_df['ip_app_count'].astype('uint16') train_df['ip_app_os_count'] = train_df['ip_app_os_count'].astype('uint16') target = 'is_attributed' predictors.extend(['app','device','os', 'channel', 'hour', 'day', 'ip_tcount', 'ip_tchan_count', 'ip_app_count', 'ip_app_os_count', 'ip_app_os_var', 'ip_app_channel_var_day','ip_app_channel_mean_hour']) categorical = ['app', 'device', 'os', 'channel', 'hour', 'day'] for i in range(0,naddfeat): predictors.append('X'+str(i)) print('predictors',predictors) test_df = train_df[len_train:] val_df = train_df[(len_train-val_size):len_train] train_df = train_df[:(len_train-val_size)] print("train size: ", len(train_df)) print("valid size: ", len(val_df)) print("test size : ", len(test_df)) sub = pd.DataFrame() sub['click_id'] = test_df['click_id'].astype('int') gc.collect() print("Training...") start_time = time.time() params = { 'learning_rate': 0.20, #'is_unbalance': 'true', # replaced with scale_pos_weight argument 'num_leaves': 7, # 2^max_depth - 1 'max_depth': 3, # -1 means no limit 'min_child_samples': 100, # Minimum number of data need in a child(min_data_in_leaf) 'max_bin': 100, # Number of bucketed bin for feature values 'subsample': 0.7, # Subsample ratio of the training instance. 'subsample_freq': 1, # frequence of subsample, <=0 means no enable 'colsample_bytree': 0.9, # Subsample ratio of columns when constructing each tree. 'min_child_weight': 0, # Minimum sum of instance weight(hessian) needed in a child(leaf) 'scale_pos_weight':200 # because training data is extremely unbalanced } (bst,best_iteration) = lgb_modelfit_nocv(params, train_df, val_df, predictors, target, objective='binary', metrics='auc', early_stopping_rounds=30, verbose_eval=True, num_boost_round=1000, categorical_features=categorical) print('[{}]: model training time'.format(time.time() - start_time)) del train_df del val_df gc.collect() print('Plot feature importances...') ax = lgb.plot_importance(bst, max_num_features=100) plt.show() print("Predicting...") sub['is_attributed'] = bst.predict(test_df[predictors],num_iteration=best_iteration) if not debug: print("writing...") sub.to_csv('sub_it%d.csv.gz'%(fileno),index=False,compression='gzip') print("done...") return sub nrows=184903891-1 nchunk=40000000 val_size=2500000 frm=nrows-75000000 if debug: frm=0 nchunk=100000 val_size=10000 to=frm+nchunk sub=DO(frm,to,0)
apache-2.0
Scapogo/zipline
tests/pipeline/test_frameload.py
5
7703
""" Tests for zipline.pipeline.loaders.frame.DataFrameLoader. """ from unittest import TestCase from mock import patch from numpy import arange, ones from numpy.testing import assert_array_equal from pandas import ( DataFrame, DatetimeIndex, Int64Index, ) from zipline.lib.adjustment import ( ADD, Float64Add, Float64Multiply, Float64Overwrite, MULTIPLY, OVERWRITE, ) from zipline.pipeline.data import USEquityPricing from zipline.pipeline.loaders.frame import ( DataFrameLoader, ) from zipline.utils.calendars import get_calendar class DataFrameLoaderTestCase(TestCase): def setUp(self): self.trading_day = get_calendar("NYSE").day self.nsids = 5 self.ndates = 20 self.sids = Int64Index(range(self.nsids)) self.dates = DatetimeIndex( start='2014-01-02', freq=self.trading_day, periods=self.ndates, ) self.mask = ones((len(self.dates), len(self.sids)), dtype=bool) def tearDown(self): pass def test_bad_input(self): data = arange(100).reshape(self.ndates, self.nsids) baseline = DataFrame(data, index=self.dates, columns=self.sids) loader = DataFrameLoader( USEquityPricing.close, baseline, ) with self.assertRaises(ValueError): # Wrong column. loader.load_adjusted_array( [USEquityPricing.open], self.dates, self.sids, self.mask ) with self.assertRaises(ValueError): # Too many columns. loader.load_adjusted_array( [USEquityPricing.open, USEquityPricing.close], self.dates, self.sids, self.mask, ) def test_baseline(self): data = arange(100).reshape(self.ndates, self.nsids) baseline = DataFrame(data, index=self.dates, columns=self.sids) loader = DataFrameLoader(USEquityPricing.close, baseline) dates_slice = slice(None, 10, None) sids_slice = slice(1, 3, None) [adj_array] = loader.load_adjusted_array( [USEquityPricing.close], self.dates[dates_slice], self.sids[sids_slice], self.mask[dates_slice, sids_slice], ).values() for idx, window in enumerate(adj_array.traverse(window_length=3)): expected = baseline.values[dates_slice, sids_slice][idx:idx + 3] assert_array_equal(window, expected) def test_adjustments(self): data = arange(100).reshape(self.ndates, self.nsids) baseline = DataFrame(data, index=self.dates, columns=self.sids) # Use the dates from index 10 on and sids 1-3. dates_slice = slice(10, None, None) sids_slice = slice(1, 4, None) # Adjustments that should actually affect the output. relevant_adjustments = [ { 'sid': 1, 'start_date': None, 'end_date': self.dates[15], 'apply_date': self.dates[16], 'value': 0.5, 'kind': MULTIPLY, }, { 'sid': 2, 'start_date': self.dates[5], 'end_date': self.dates[15], 'apply_date': self.dates[16], 'value': 1.0, 'kind': ADD, }, { 'sid': 2, 'start_date': self.dates[15], 'end_date': self.dates[16], 'apply_date': self.dates[17], 'value': 1.0, 'kind': ADD, }, { 'sid': 3, 'start_date': self.dates[16], 'end_date': self.dates[17], 'apply_date': self.dates[18], 'value': 99.0, 'kind': OVERWRITE, }, ] # These adjustments shouldn't affect the output. irrelevant_adjustments = [ { # Sid Not Requested 'sid': 0, 'start_date': self.dates[16], 'end_date': self.dates[17], 'apply_date': self.dates[18], 'value': -9999.0, 'kind': OVERWRITE, }, { # Sid Unknown 'sid': 9999, 'start_date': self.dates[16], 'end_date': self.dates[17], 'apply_date': self.dates[18], 'value': -9999.0, 'kind': OVERWRITE, }, { # Date Not Requested 'sid': 2, 'start_date': self.dates[1], 'end_date': self.dates[2], 'apply_date': self.dates[3], 'value': -9999.0, 'kind': OVERWRITE, }, { # Date Before Known Data 'sid': 2, 'start_date': self.dates[0] - (2 * self.trading_day), 'end_date': self.dates[0] - self.trading_day, 'apply_date': self.dates[0] - self.trading_day, 'value': -9999.0, 'kind': OVERWRITE, }, { # Date After Known Data 'sid': 2, 'start_date': self.dates[-1] + self.trading_day, 'end_date': self.dates[-1] + (2 * self.trading_day), 'apply_date': self.dates[-1] + (3 * self.trading_day), 'value': -9999.0, 'kind': OVERWRITE, }, ] adjustments = DataFrame(relevant_adjustments + irrelevant_adjustments) loader = DataFrameLoader( USEquityPricing.close, baseline, adjustments=adjustments, ) expected_baseline = baseline.iloc[dates_slice, sids_slice] formatted_adjustments = loader.format_adjustments( self.dates[dates_slice], self.sids[sids_slice], ) expected_formatted_adjustments = { 6: [ Float64Multiply( first_row=0, last_row=5, first_col=0, last_col=0, value=0.5, ), Float64Add( first_row=0, last_row=5, first_col=1, last_col=1, value=1.0, ), ], 7: [ Float64Add( first_row=5, last_row=6, first_col=1, last_col=1, value=1.0, ), ], 8: [ Float64Overwrite( first_row=6, last_row=7, first_col=2, last_col=2, value=99.0, ) ], } self.assertEqual(formatted_adjustments, expected_formatted_adjustments) mask = self.mask[dates_slice, sids_slice] with patch('zipline.pipeline.loaders.frame.AdjustedArray') as m: loader.load_adjusted_array( columns=[USEquityPricing.close], dates=self.dates[dates_slice], assets=self.sids[sids_slice], mask=mask, ) self.assertEqual(m.call_count, 1) args, kwargs = m.call_args assert_array_equal(kwargs['data'], expected_baseline.values) assert_array_equal(kwargs['mask'], mask) self.assertEqual(kwargs['adjustments'], expected_formatted_adjustments)
apache-2.0
credp/lisa
lisa/wa_results_collector.py
2
53959
#! /usr/bin/env python3 # SPDX-License-Identifier: Apache-2.0 # # Copyright (C) 2018, ARM Limited and contributors. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from collections import namedtuple, defaultdict import json import numpy as np import re import os import pandas as pd import subprocess import sqlite3 from scipy.stats import ttest_ind import matplotlib.cm as cm import matplotlib.pyplot as plt from matplotlib.colors import to_hex from devlib.target import KernelVersion from IPython.display import display from lisa.trace import Trace from lisa.git import find_shortest_symref, get_commit_message from lisa.utils import Loggable, memoized from lisa.datautils import series_integrate, series_mean class WaResultsCollector(Loggable): """ Collects, analyses and visualises results from multiple WA3 directories Takes a list of output directories from Workload Automation 3 and parses them. Finds metrics reported by WA itself, and extends those metrics with extra detail extracted from ftrace files, energy instrumentation output, and workload-specific artifacts that are found in the output. Results can be grouped according to the following terms: - 'metric' is a specific measurable quantity such as a single frame's rendering time or the average energy consumed during a workload run. - 'workload' is the general name of a workload such as 'jankbench' or 'youtube'. - 'test' is a more specific identification for workload - for example this might identify one of Jankbench's sub-benchmarks, or specifically playing a certain video on Youtube for 30s. WaResultsCollector ultimately derives 'test' names from the 'classifiers'::'test' field of the WA3 agenda file's 'workloads' entries. - 'tag' is an identifier for a set of run-time target configurations that the target was run under. For example there might exist one 'tag' identifying running under the schedutil governor and another for the performance governor. WaResultsCollector ultimately derives 'tag' names from the 'classifiers' field of the WA3 agenda file's 'sections' entries. - 'kernel' identifies the kernel that was running when the metric was collected. This may be a SHA1 or a symbolic ref (branch/tag) derived from a provided Git repository. To try to keep identifiers readable, common prefixes of refs are removed: if the raw refs are 'test/foo/bar' and 'test/foo/baz', they will be referred to just as 'bar' and 'baz'. Aside from the provided helper attributes, all metrics are exposed in a DataFrame as the ``results_df`` attribute. :param wa_dirs: List of paths to WA3 output directories or a regexp of WA3 output directories names to consider starting from the specified base_path :type wa_dirs: str :param base_dir: The path of a directory containing a collection of WA3 output directories :type base_dir: str :param plat_info: Optional LISA platform description. If provided, used to enrich extra metrics gleaned from trace analysis. :type plat_info: lisa.platforms.platinfo.PlatformInfo :param kernel_repo_path: Optional path to kernel repository. WA3 reports the SHA1 of the kernel that workloads were run against. If this param is provided, the repository is search for symbolic references to replace SHA1s in data representation. This is purely to make the output more manageable for humans. :param parse_traces: This class uses LISA to parse and analyse ftrace files for extra metrics. With multiple/large traces this can take some time. Set this param to False to disable trace parsing. :param use_cached_trace_metrics: This class uses LISA to parse and analyse ftrace files for extra metrics. With multiple/large traces this can take some time, so the extracted metrics are cached in the provided output directories. Set this param to False to disable this caching. :param display_charts: This class uses IPython.display module to render some charts of workloads' results. But we also want to use this class without rendering any charts when we are only interested in table of figures. Set this param to False if you only want table of results but not display them. """ RE_WLTEST_DIR = re.compile(r"wa\.(?P<sha1>\w+)_(?P<name>.+)") def __init__(self, base_dir=None, wa_dirs=".*", plat_info=None, kernel_repo_path=None, parse_traces=True, use_cached_trace_metrics=True, display_charts=True): logger = self.get_logger() if base_dir: base_dir = os.path.expanduser(base_dir) if not isinstance(wa_dirs, str): raise ValueError( 'If base_dir is provided, wa_dirs should be a regexp') regex = wa_dirs wa_dirs = self._list_wa_dirs(base_dir, regex) if not wa_dirs: raise ValueError(f"Couldn't find any WA results matching '{regex}' in {base_dir}") else: if not hasattr(wa_dirs, '__iter__'): raise ValueError( 'if base_dir is not provided, wa_dirs should be a list of paths') wa_dirs = [os.path.expanduser(p) for p in wa_dirs] self.plat_info = plat_info self.parse_traces = parse_traces if not self.parse_traces: logger.warning("Trace parsing disabled") self.use_cached_trace_metrics = use_cached_trace_metrics self.display_charts = display_charts df = pd.DataFrame() df_list = [] for wa_dir in wa_dirs: logger.info("Reading wa_dir %s", wa_dir) df_list.append(self._read_wa_dir(wa_dir)) df = df.append(df_list) kernel_refs = {} for sha1 in df['kernel_sha1'].unique(): if sha1 is None: continue if kernel_repo_path: try: symref = find_shortest_symref(kernel_repo_path, sha1) except ValueError: try: symref = get_commit_message(kernel_repo_path, sha1) except subprocess.CalledProcessError: symref = sha1 kernel_refs[sha1] = symref else: kernel_refs[sha1] = sha1 common_prefix = os.path.commonprefix(list(kernel_refs.values())) for sha1, ref in kernel_refs.items(): kernel_refs[sha1] = ref[len(common_prefix):] # The kernel identifier is the sha1 to ref mapping if it exists or the # original kernel version string. df['kernel'] = df['kernel_sha1'].map(kernel_refs).fillna( df['kernel_name']) self.results_df = df def _list_wa_dirs(self, base_dir, wa_dirs_re): dirs = [] logger = self.get_logger() logger.info("Processing WA3 dirs matching [%s], rooted at %s", wa_dirs_re, base_dir) wa_dirs_re = re.compile(wa_dirs_re) for subdir in os.listdir(base_dir): dir = os.path.join(base_dir, subdir) if not os.path.isdir(dir) or not wa_dirs_re.search(subdir): continue # WA3 results dirs contains a __meta directory at the top level. if '__meta' not in os.listdir(dir): logger.warning('Ignoring {}, does not contain __meta directory') continue dirs.append(dir) return dirs def _read_wa_dir(self, wa_dir): """ Get a DataFrame of metrics from a single WA3 output directory. Includes the extra metrics derived from workload-specific artifacts and ftrace files. Columns returned: kernel_name,kernel_sha1,kernel,id,workload,tag,test,iteration,metric,value,units """ # A WA output directory looks something like: # # wa_output/ # |- __meta/ # | | - jobs.json # | | (some other bits) # |- results.csv # |- pelt-wk1-jankbench-1/ # | | - result.json # | | (other results from iteration 1 of pelt-wk1, which is a # | | jankbench job) # |- pelt-wk1-jankbench-2/ # [etc] logger = self.get_logger() # results.csv contains all the metrics reported by WA for all jobs. df = pd.read_csv(os.path.join(wa_dir, 'results.csv')) # When using Monsoon, the device is a single channel which reports # two metrics. This means that devlib's DerivedEnergymeasurements class # cannot see the output. Due to the way that the monsoon.py script # works, it looks difficult to change Monsoon over to the Acme way of # operating. As a workaround, let's mangle the results here instead. unique_metrics = df['metric'].unique() if 'device_total_energy' not in unique_metrics: # potentially, we need to assemble a device_total_energy from # other energy values we can add together. if 'output_total_energy' in unique_metrics and 'USB_total_energy' in unique_metrics: new_rows = [] output_df = df[df['metric'] == 'output_total_energy'] usb_df = df[df['metric'] == 'USB_total_energy'] # for each 'output_total_energy' metric, we will find # the matching 'USB_total_energy' metric and assemble # a 'device_total_energy' metric by adding them. for row in output_df.iterrows(): vals = row[1] _id = vals['id'] _workload = vals['workload'] _iteration = vals['iteration'] _value = vals['value'] usb_row = usb_df[(usb_df['workload'] == _workload) & (usb_df['id'] == _id) & (usb_df['iteration'] == _iteration)] new_val = float(_value) + float(usb_row['value']) # instead of creating a new row, just change the name # and value of this one vals['metric'] = 'device_total_energy' vals['value'] = new_val new_rows.append(vals) # add all the new rows in one go at the end df = df.append(new_rows, ignore_index=True) # __meta/jobs.json describes the jobs that were run - we can use this to # find extra artifacts (like traces and detailed energy measurement # data) from the jobs, which we'll use to add additional metrics that WA # didn't report itself. with open(os.path.join(wa_dir, '__meta', 'jobs.json')) as f: jobs = json.load(f)['jobs'] subdirs_done = [] # Keep track of how many times we've seen each job id so we know which # iteration to look at (If we use the proper WA3 API this awkwardness # isn't necessary). next_iteration = defaultdict(lambda: 1) # Keep track of which jobs we skipped for each iteration skipped_jobs = defaultdict(lambda: []) # Dicts mapping job IDs to things determined about the job - this will # be used to add extra columns to the DataFrame (that aren't reported # directly in WA's results.csv) tag_map = {} test_map = {} job_dir_map = {} extra_dfs = [] for job in jobs: workload = job['workload_name'] job_id = job['id'] # If there's a 'tag' in the 'classifiers' object, use that to # identify the runtime configuration. If not, use a representation # of the full key=value pairs. classifiers = job['classifiers'] or {} if 'test' in classifiers: # If the workload spec has a 'test' classifier, use that to # identify it. test = classifiers.pop('test') elif 'test' in job['workload_parameters']: # If not, some workloads have a 'test' workload_parameter, try # using that test = job['workload_parameters']['test'] elif 'test_ids' in job['workload_parameters']: # If not, some workloads have a 'test_ids' workload_parameter, try # using that test = job['workload_parameters']['test_ids'] else: # Otherwise just use the workload name. # This isn't ideal because it means the results from jobs with # different workload parameters will be amalgamated. test = workload rich_tag = ';'.join(f'{k}={v}' for k, v in iter(classifiers.items())) tag = classifiers.get('tag', rich_tag) if job_id in tag_map: # Double check I didn't do a stupid if tag_map[job_id] != tag: raise RuntimeError(f'Multiple tags ({tag}, {tag_map[job_id]}) found for job ID {job_id}') tag_map[job_id] = tag if job_id in test_map: # Double check I didn't do a stupid if test_map[job_id] != test: raise RuntimeError(f'Multiple tests ({test}, {test_map[job_id]}) found for job ID {job_id}') test_map[job_id] = test iteration = next_iteration[job_id] next_iteration[job_id] += 1 job_dir = os.path.join(wa_dir, '-'.join([job_id, workload, str(iteration)])) job_dir_map[job_id] = job_dir # Jobs can fail due to target misconfiguration or other problems, # without preventing us from collecting the results for the jobs # that ran OK. my_file = os.path.join(job_dir, 'result.json') if not os.path.isfile(my_file): skipped_jobs[iteration].append(job_id) continue with open(my_file) as f: job_result = json.load(f) if job_result['status'] == 'FAILED': skipped_jobs[iteration].append(job_id) continue extra_df = self._get_extra_job_metrics(job_dir, workload) if extra_df.empty: continue extra_df['workload'] = workload extra_df['iteration'] = iteration extra_df['id'] = job_id extra_df['tag'] = tag extra_df['test'] = test # Collect all these DFs to merge them in one go at the end. extra_dfs.append(extra_df) # Append all extra DFs to the results WA's results DF if extra_dfs: df = df.append(extra_dfs) for iteration, job_ids in skipped_jobs.items(): logger.warning("Skipped failed iteration %d for jobs:", iteration) logger.warning(" %s", ', '.join(job_ids)) df['tag'] = df['id'].replace(tag_map) df['test'] = df['id'].replace(test_map) # TODO: This is a bit lazy: we're storing the directory that every # single metric came from in a DataFrame column. That's redundant really # - instead, to get from a row in results_df to a job output directory, # we should just store a mapping from kernel identifiers to wa_output # directories, then derive at the job dir from that mapping plus the # job_id+workload+iteration in the results_df row. This works fine for # now, though - that refactoring would probably belong alongside a # refactoring to use WA's own API for reading output directories. df['_job_dir'] = df['id'].replace(job_dir_map) df['kernel_name'] = self._wa_get_kernel_name(wa_dir) df['kernel_sha1'] = self._wa_get_kernel_sha1(wa_dir) return df def _get_trace_metrics(self, trace_path): """ Parse a trace (or used cached results) and extract extra metrics from it Returns a DataFrame with columns: metric,value,units """ logger = self.get_logger() cache_path = os.path.join(os.path.dirname(trace_path), 'lisa_trace_metrics.csv') if self.use_cached_trace_metrics and os.path.exists(cache_path): return pd.read_csv(cache_path) # I wonder if this should go in LISA itself? Probably. metrics = [] events = ['irq_handler_entry', 'cpu_frequency', 'nohz_kick', 'sched_switch', 'sched_load_cfs_rq', 'sched_load_avg_task', 'thermal_temperature', 'cpu_idle'] trace = Trace(trace_path, plat_info=self.plat_info, events=events) metrics.append(('cpu_wakeup_count', len(trace.analysis.idle.df_cpus_wakeups()), None)) # Helper to get area under curve of multiple CPU active signals def get_cpu_time(trace, cpus): df = pd.DataFrame([trace.analysis.idle.signal_cpu_active(cpu) for cpu in cpus]) return df.sum(axis=1).sum(axis=0) domains = trace.plat_info.get('freq-domains', []) for domain in domains: name = '-'.join(str(c) for c in domain) df = trace.analysis.frequency.df_domain_frequency_residency(domain) if df is None or df.empty: logger.warning("Can't get cluster freq residency from %s", trace.trace_path) else: df = df.reset_index() avg_freq = (df.frequency * df.time).sum() / df.time.sum() metric = f'avg_freq_cluster_{name}' metrics.append((metric, avg_freq, 'MHz')) df = trace.analysis.frequency.df_cpu_frequency(domain[0]) metrics.append((f'freq_transition_count_{name}', len(df), None)) active_time = series_integrate(trace.analysis.idle.signal_cluster_active(domain)) metrics.append((f'active_time_cluster_{name}', active_time, 'seconds')) metrics.append((f'cpu_time_cluster_{name}', get_cpu_time(trace, domain), 'cpu-seconds')) metrics.append(('cpu_time_total', get_cpu_time(trace, list(range(trace.cpus_count))), 'cpu-seconds')) event = None if trace.has_events('sched_load_cfs_rq'): event = 'sched_load_cfs_rq' def row_filter(r): return r.path == '/' column = 'util' elif trace.has_events('sched_load_avg_cpu'): event = 'sched_load_avg_cpu' def row_filter(r): return True column = 'util_avg' if event: df = trace.df_event(event) util_sum = (df[row_filter] .pivot(columns='cpu')[column].ffill().sum(axis=1)) avg_util_sum = series_mean(util_sum) metrics.append(('avg_util_sum', avg_util_sum, None)) if trace.has_events('thermal_temperature'): df = trace.df_event('thermal_temperature') for zone, zone_df in df.groupby('thermal_zone'): metrics.append((f'tz_{zone}_start_temp', zone_df.iloc[0]['temp_prev'], 'milliCelcius')) if len(zone_df == 1): # Avoid division by 0 avg_tmp = zone_df['temp'].iloc[0] else: avg_tmp = series_mean(zone_df['temp']) metrics.append((f'tz_{zone}_avg_temp', avg_tmp, 'milliCelcius')) ret = pd.DataFrame(metrics, columns=['metric', 'value', 'units']) ret.to_csv(cache_path, index=False) return ret def _read_energy_instrument_metrics(self, path): """ Parse the WA energy_measurement output. Use or create a Parquet cache version of the original CSV. Warning: If found, the cached version of the original CSV will _always_ be used. """ path_cache = path + ".parquet" try: df = pd.read_parquet(path_cache) except OSError: df = pd.read_csv(path) df.to_parquet(path_cache) if 'device_power' in df.columns: # Looks like this is from an ACME df = pd.DataFrame({'value': df['device_power']}) # Figure out what to call the sample metrics. If the # artifact name has something extra, that will be the # channel (IIO device) name. Use that to differentiate where # the samples came from. If not just call it # 'device_power_sample'. device_name = artifact_name[len('energy_instrument_output') + 1:] name_extra = device_name or 'device' df['metric'] = f'{name_extra}_power_sample' df['units'] = 'watts' elif 'output_power' in df.columns and 'USB_power' in df.columns: # Looks like this is from a Monsoon # For monsoon the USB and device power are collected # together with the same timestamps, so we can just add them # up. power_samples = df['output_power'] + df['USB_power'] df = pd.DataFrame({'value': power_samples}) df['metric'] = 'device_power_sample' df['units'] = 'watts' return df def _get_extra_job_metrics(self, job_dir, workload): """ Get extra metrics (not reported directly by WA) from a WA job output dir Returns a DataFrame with columns: metric,value,units """ logger = self.get_logger() # return # value,metric,units extra_metric_list = [] artifacts = self._read_artifacts(job_dir) if self.parse_traces and 'trace-cmd-bin' in artifacts: extra_metric_list.append( self._get_trace_metrics(artifacts['trace-cmd-bin'])) if 'jankbench_results_csv' in artifacts: df = pd.read_csv(artifacts['jankbench_results_csv']) df = pd.DataFrame({'value': df['total_duration']}) df['metric'] = 'frame_total_duration' df['units'] = 'ms' extra_metric_list.append(df) elif 'jankbench-results' in artifacts: con = sqlite3.connect(artifacts['jankbench-results']) df = pd.read_sql_query("SELECT _id, name, run_id, iteration, total_duration, jank_frame from ui_results", con) df = pd.DataFrame({'value': df['total_duration']}) df['metric'] = 'frame_total_duration' df['units'] = 'ms' extra_metric_list.append(df) # WA's metrics model just exports overall energy metrics, not individual # samples. We're going to extend that with individual samples so if you # want to you can see how much variation there was in energy usage. # So we'll look for the actual CSV files and parse that by hand. # The parsing necessary is specific to the energy measurement backend # that was used, which WA doesn't currently report directly. # TODO: once WA's reporting of this data has been cleaned up a bit I # think we can simplify this. for artifact_name, path in artifacts.items(): if os.stat(path).st_size == 0: logger.info(" no data for %s", path) continue if artifact_name.startswith('energy_instrument_output'): try: df = self._read_energy_instrument_metrics(path) except pandas.errors.ParserError as e: logger.info(" no data for %s", path) continue extra_metric_list.append(df) if len(extra_metric_list) > 0: return pd.DataFrame().append(extra_metric_list) else: return pd.DataFrame() @memoized def _wa_get_kernel_version(self, wa_dir): with open(os.path.join(wa_dir, '__meta', 'target_info.json')) as f: target_info = json.load(f) return KernelVersion(target_info['kernel_release']) @memoized def _wa_get_kernel_name(self, wa_dir): return self._wa_get_kernel_version(wa_dir).release @memoized def _wa_get_kernel_sha1(self, wa_dir): """ Find the SHA1 of the kernel that a WA3 run was run against """ kver = self._wa_get_kernel_version(wa_dir) if kver.sha1 is not None: return kver.sha1 # Couldn't get the release sha1, default to reading it from the # directory name built by test_series res_dir = os.path.basename(wa_dir) match = re.search(WaResultsCollector.RE_WLTEST_DIR, res_dir) if match: return match.group("sha1") # Git describe doesn't always produce a sha1 return None @memoized def _select(self, tag='.*', kernel='.*', test='.*'): _df = self.results_df _df = _df[_df.tag.str.contains(tag)] _df = _df[_df.kernel.str.contains(kernel)] _df = _df[_df.test.str.contains(test)] return _df @property def workloads(self): return self.results_df['workload'].unique() @property def tags(self): return self.results_df['tag'].unique() @memoized def tests(self, workload=None): df = self.results_df if workload: df = df[df['workload'] == workload] return df['test'].unique() def workload_available_metrics(self, workload): return (self.results_df .groupby('workload').get_group(workload) ['metric'].unique()) @memoized def _get_metric_df(self, workload, metric, tag, kernel, test): """ Common helper for getting results to plot for a given metric """ logger = self.get_logger() df = self._select(tag, kernel, test) if df.empty: logger.warning("No data to plot for (tag: %s, kernel: %s, test: %s)", tag, kernel, test) return None valid_workloads = df.workload.unique() if workload not in valid_workloads: logger.warning("No data for [%s] workload", workload) logger.info("Workloads with data, for the specified filters, are:") logger.info(" %s", ','.join(valid_workloads)) return None df = df[df['workload'] == workload] valid_metrics = df.metric.unique() if metric not in valid_metrics: logger.warning("No metric [%s] collected for workoad [%s]", metric, workload) logger.info("Metrics with data, for the specied filters, are:") logger.info(" %s", ', '.join(valid_metrics)) return None df = df[df['metric'] == metric] units = df['units'].unique() if len(units) > 1: raise RuntimeError(f'Found different units for workload "{workload}" metric "{metric}": {units}') return df SortBy = namedtuple('SortBy', ['key', 'params', 'column']) def _get_sort_params(self, sort_on): """ Validate a sort criteria and return the parameters required by the boxplot and report methods. """ valid_sort = ['count', 'mean', 'std', 'min', 'max'] # Verify if valid percentile string has been required match = re.match(r'^(?P<quantile>\d{1,3})\%$', sort_on) if match: quantile = int(match.group('quantile')) if quantile < 1 or quantile > 100: raise ValueError("Error sorting data: Quantile value out of range [1..100]") return self.SortBy('quantile', {'q': quantile / 100.}, sort_on) # Otherwise, verify if it's a valid Pandas::describe()'s column name if sort_on in valid_sort: return self.SortBy(sort_on, {}, sort_on) raise ValueError( f"sort_on={sort_on} not supported, allowed values are percentile or {valid_sort}") def boxplot(self, workload, metric, tag='.*', kernel='.*', test='.*', by=['test', 'tag', 'kernel'], sort_on='mean', ascending=False, xlim=None): """ Display boxplots of a certain metric Creates horizontal boxplots of metrics in the results. Check ``workloads`` and ``workload_available_metrics`` to find the available workloads and metrics. Check ``tags``, ``tests`` and ``kernels`` to find the names that results can be filtered against. By default, the box with the lowest mean value is plotted at the top of the graph, this can be customized with ``sort_on`` and ``ascending``. :param workload: Name of workload to display metrics for :param metric: Name of metric to display :param tag: regular expression to filter tags that should be plotted :param kernel: regular expression to filter kernels that should be plotted :param tag: regular expression to filter tags that should be plotted :param by: List of identifiers to group output as in DataFrame.groupby. :param sort_on: Name of the statistic to order data for. Supported values are: count, mean, std, min, max. You may alternatively specify a percentile to sort on, this should be an integer in the range [1..100] formatted as a percentage, e.g. 95% is the 95th percentile. :param ascending: When True, boxplots are plotted by increasing values (lowest-valued boxplot at the top of the graph) of the specified `sort_on` statistic. """ if not self.display_charts: return sp = self._get_sort_params(sort_on) df = self._get_metric_df(workload, metric, tag, kernel, test) if df is None: return gb = df.groupby(by) # Convert the groupby into a DataFrame with a column for each group max_group_size = max(len(group) for group in iter(gb.groups.values())) _df = pd.DataFrame() for group_name, group in gb: # Need to pad the group's column so that they all have the same # length padding_length = max_group_size - len(group) padding = pd.Series(np.nan, index=np.arange(padding_length)) col = group['value'].append(padding) col.index = np.arange(max_group_size) _df[group_name] = col # Sort the columns # With default params this puts the box with the lowest mean at the # bottom. # NOTE: the not(ascending) condition is required to keep these plots # aligned with the way describe() reports the stats corresponding to # each boxplot sorted_df = getattr(_df, sp.key)(**sp.params) sorted_df = sorted_df.sort_values(ascending=not(ascending)) _df = _df[sorted_df.index] # Plot boxes sorted by mean fig, axes = plt.subplots(figsize=(16, 8)) _df.boxplot(ax=axes, vert=False, showmeans=True) fig.suptitle('') if xlim: axes.set_xlim(xlim) [units] = df['units'].unique() axes.set_xlabel(f'{metric} [{units}]') axes.set_title(f'{workload}:{metric}') plt.show() return axes def describe(self, workload, metric, tag='.*', kernel='.*', test='.*', by=['test', 'tag', 'kernel'], sort_on='mean', ascending=False): """ Return a DataFrame of statistics for a certain metric Compute mean, std, min, max and [50, 75, 95, 99] percentiles for the values collected on each iteration of the specified metric. Check ``workloads`` and ``workload_available_metrics`` to find the available workloads and metrics. Check ``tags``, ``tests`` and ``kernels`` to find the names that results can be filtered against. :param workload: Name of workload to display metrics for :param metric: Name of metric to display :param tag: regular expression to filter tags that should be plotted :param kernel: regular expression to filter kernels that should be plotted :param tag: regular expression to filter tags that should be plotted :param by: List of identifiers to group output as in DataFrame.groupby. :param sort_on: Name of the statistic to order data for. Supported values are: count, mean, std, min, max. It's also supported at the usage of a percentile value, which has to be an integer in the range [1..100] and formatted as a percentage, e.g. 95% is the 95th percentile. :param ascending: When True, the statistics are reported by increasing values of the specified `sort_on` column """ sp = self._get_sort_params(sort_on) df = self._get_metric_df(workload, metric, tag, kernel, test) if df is None: return # Add the eventually required additional percentile percentiles = [0.75, 0.95, 0.99] if sp.params and 'q' in sp.params: percentiles.append(sp.params['q']) percentiles = sorted(list(set(percentiles))) grouped = df.groupby(by)['value'] stats_df = pd.DataFrame( grouped.describe(percentiles=percentiles)) # Use a consistent formatting independently from the PANDAs version if 'value' in stats_df.columns: # We must be running on a pre-0.20.0 version of pandas. # unstack will convert the old output format to the new. # http://pandas.pydata.org/pandas-docs/version/0.20/whatsnew.html#groupby-describe-formatting # Main difference is that here we have a top-level column # named 'value' stats_df = stats_df.unstack() else: # Let's add a top-level column named 'value' which will be replaced # by the actual metric name by the following code stats_df.columns = pd.MultiIndex.from_product( [['value'], stats_df.columns]) # Sort entries by the required metric and order value stats_df.sort_values(by=[('value', sp.column)], ascending=ascending, inplace=True) stats_df.rename(columns={'value': metric}, inplace=True) return stats_df def report(self, workload, metric, tag='.*', kernel='.*', test='.*', by=['test', 'tag', 'kernel'], sort_on='mean', ascending=False, xlim=None): """ Report a boxplot and a set of statistics for a certain metric This is a convenience method to call both ``boxplot`` and ``describe`` at the same time to get a consistent graphical and numerical representation of the values for the specified metric. Check ``workloads`` and ``workload_available_metrics`` to find the available workloads and metrics. Check ``tags``, ``tests`` and ``kernels`` to find the names that results can be filtered against. :param workload: Name of workload to display metrics for :param metric: Name of metric to display :param tag: regular expression to filter tags that should be plotted :param kernel: regular expression to filter kernels that should be plotted :param tag: regular expression to filter tags that should be plotted :param by: List of identifiers to group output as in DataFrame.groupby. """ axes = self.boxplot(workload, metric, tag, kernel, test, by, sort_on, ascending, xlim) stats_df = self.describe(workload, metric, tag, kernel, test, by, sort_on, ascending) if self.display_charts: display(stats_df) return (axes, stats_df) CDF = namedtuple('CDF', ['df', 'threshold', 'above', 'below']) def _get_cdf(self, data, threshold): """ Build the "Cumulative Distribution Function" (CDF) for the given data """ # Build the series of sorted values ser = data.sort_values() if len(ser) < 1000: # Append again the last (and largest) value. # This step is important especially for small sample sizes # in order to get an unbiased CDF ser = ser.append(pd.Series(ser.iloc[-1])) df = pd.Series(np.linspace(0., 1., len(ser)), index=ser) # Compute percentage of samples above/below the specified threshold below = float(max(df[:threshold])) above = 1 - below return self.CDF(df, threshold, above, below) def plot_cdf(self, workload='jankbench', metric='frame_total_duration', threshold=16, top_most=None, ncol=1, tag='.*', kernel='.*', test='.*'): """ Display cumulative distribution functions of a certain metric Draws CDFs of metrics in the results. Check ``workloads`` and ``workload_available_metrics`` to find the available workloads and metrics. Check ``tags``, ``tests`` and ``kernels`` to find the names that results can be filtered against. The most likely use-case for this is plotting frame rendering times under Jankbench, so default parameters are provided to make this easy. :param workload: Name of workload to display metrics for :type workload: str :param metric: Name of metric to display :type metric: str :param threshold: Value to highlight in the plot - the likely use for this is highlighting the maximum acceptable frame-rendering time in order to see at a glance the rough proportion of frames that were rendered in time. :type threshold: int :param top_most: Maximum number of CDFs to plot, all available plots if not specified :type top_most: int :param ncol: Number of columns in the legend, default: 1. If more than one column is requested the legend will be force placed below the plot to avoid covering the data. :type ncol: int :param tag: regular expression to filter tags that should be plotted :type tag: int :param kernel: regular expression to filter kernels that should be plotted :type kernel: int :param tests: regular expression to filter tests that should be plotted :type tests: str """ logger = self.get_logger() if not self.display_charts: return df = self._get_metric_df(workload, metric, tag, kernel, test) if df is None: return test_cnt = len(df.groupby(['test', 'tag', 'kernel'])) colors = iter(cm.rainbow(np.linspace(0, 1, test_cnt + 1))) fig, axes = plt.subplots() axes.axvspan(0, threshold, facecolor='g', alpha=0.1) # Pre-compute CDFs to support sorted plotting data = [] for keys, df in df.groupby(['test', 'tag', 'kernel']): cdf = self._get_cdf(df['value'], threshold) data.append((keys, df, cdf)) labels = [] lines = [] if top_most is None: top_most = len(data) for (keys, df, cdf) in sorted(data, key=lambda x: x[2].below, reverse=True)[:top_most]: color = next(colors) cdf.df.plot(legend=False, xlim=(0, None), figsize=(16, 6), label=test, color=to_hex(color)) lines.append(axes.lines[-1]) axes.axhline(y=cdf.below, linewidth=1, linestyle='--', color=to_hex(color)) labels.append("{:16s}: {:32s} ({:4.1f}%)".format( keys[2], keys[1], 100. * cdf.below)) logger.debug("%-32s: %-32s: %.1f", keys[2], keys[1], 100. * cdf.below) [units] = df['units'].unique() axes.set_title(f'Total duration CDFs (% within {threshold} [{units}] threshold)') axes.grid(True) if ncol < 2: axes.legend(lines, labels, loc='best') else: axes.legend(lines, labels, loc='upper left', ncol=ncol, bbox_to_anchor=(0, -.15)) plt.show() def find_comparisons(self, base_id=None, by='kernel'): """ Find metrics that changed between a baseline and variants The notion of 'variant' and 'baseline' is defined by the `by` param. If by='kernel', then `base_id` should be a kernel SHA (or whatever key the 'kernel' column in the results_df uses). If by='tag' then `base_id` should be a WA 'tag id' (as named in the WA agenda). """ logger = self.get_logger() comparisons = [] # I dunno why I wrote this with a namedtuple instead of just a dict or # whatever, but it works fine Comparison = namedtuple('Comparison', ['metric', 'test', 'inv_id', 'base_id', 'base_mean', 'base_std', 'new_id', 'new_mean', 'new_std', 'diff', 'diff_pct', 'pvalue']) # If comparing by kernel, only check comparisons where the 'tag' is the same # If comparing by tag, only check where kernel is same if by == 'kernel': invariant = 'tag' elif by == 'tag': invariant = 'kernel' else: raise ValueError('`by` must be "kernel" or "tag"') available_baselines = self.results_df[by].unique() if base_id is None: base_id = available_baselines[0] if base_id not in available_baselines: raise ValueError(f'base_id "{base_id}" not a valid "{by}" (available: {available_baselines}). Did you mean to set by="{invariant}"?') for metric, metric_results in self.results_df.groupby('metric'): # inv_id will either be the id of the kernel or of the tag, # depending on the `by` param. # So wl_inv_results will be the results entries for that workload on # that kernel/tag for (test, inv_id), wl_inv_results in metric_results.groupby(['test', invariant]): gb = wl_inv_results.groupby(by)['value'] if base_id not in gb.groups: logger.warning('Skipping - No baseline results for test ' '[%s] %s [%s] metric [%s]', test, invariant, inv_id, metric) continue base_results = gb.get_group(base_id) base_mean = base_results.mean() for group_id, group_results in gb: if group_id == base_id: continue # group_id is now a kernel id or a tag (depending on # `by`). group_results is a slice of all the rows of self.results_df # for a given metric, test, tag/test tuple. We # create comparison object to show how that metric changed # wrt. to the base tag/test. group_mean = group_results.mean() mean_diff = group_mean - base_mean # Calculate percentage difference in mean metric value if base_mean != 0: mean_diff_pct = mean_diff * 100. / base_mean else: # base mean is 0, can't divide by that. if group_mean == 0: # Both are 0 so diff_pct is 0 mean_diff_pct = 0 else: # Tricky one - base value was 0, new value isn't. # Let's just call it a 100% difference. mean_diff_pct = 100 if len(group_results) <= 1 or len(base_results) <= 1: # Can't do ttest_ind if we only have one sample. There # are proper t-tests for this, but let's just assume the # worst. pvalue = 1.0 elif mean_diff == 0: # ttest_ind also gives a warning if the two data sets # are the same and have no variance. I don't know why # that is to be honest, but anyway if there's no # difference in the mean, we don't care about the # p-value. pvalue = 1.0 else: # Find a p-value which hopefully represents the # (complement of the) certainty that any difference in # the mean represents something real. _, pvalue = ttest_ind(group_results, base_results, equal_var=False) comparisons.append(Comparison( metric, test, inv_id, base_id, base_mean, base_results.std(), group_id, group_mean, group_results.std(), mean_diff, mean_diff_pct, pvalue)) return pd.DataFrame(comparisons) def plot_comparisons(self, base_id=None, by='kernel'): """ Visualise metrics that changed between a baseline and variants The notion of 'variant' and 'baseline' is defined by the `by` param. If by='kernel', then `base_id` should be a kernel SHA (or whatever key the 'kernel' column in the results_df uses). If by='tag' then `base_id` should be a WA 'tag id' (as named in the WA agenda). """ logger = self.get_logger() if not self.display_charts: return df = self.find_comparisons(base_id=base_id, by=by) if df.empty: logger.error('No comparisons by %s found', by) if len(self.results_df[by].unique()) == 1: logger.warning('There is only one %s in the results', by) return # Separate plot for each test (e.g. one plot for Jankbench list_view) for (test, inv_id), test_comparisons in df.groupby(['test', 'inv_id']): # Vertical size of plot depends on how many metrics we're comparing # and how many things (kernels/tags) we're comparing metrics for. # a.k.a the total length of the comparisons df. fig, ax = plt.subplots(figsize=(15, len(test_comparisons) / 2.)) # pos is used as the Y-axis. The y-axis is a discrete axis with a # point for each of the metrics we're comparing. matplotlib needs # that in numerical form. # We also have one more tick on the Y-axis than we actually need - # this is a terrible hack which is necessary because when we set the # opacity of the first bar, it sets the opacity of the legend. So we # introduce a dummy bar with a value of 0 and an opacity of 1. all_metrics = test_comparisons['metric'].unique() pos = np.arange(-1, len(all_metrics)) # At each point on the discrete y-axis we'll have one bar for each # comparison: one per kernel/tag (depending on the `by` param), minus # one for the baseline. # If there are more bars we'll need to make them thinner so they # fit. The sum of the bars' thicknesses should be 60% of a tick on # the 'y-axis'. thickness = 0.6 / len(test_comparisons.groupby('new_id')) # TODO: something is up with the calculations above, because there's # always a bit of empty space at the bottom of the axes. gb = test_comparisons.groupby('new_id') colors = cm.rainbow(np.linspace(0, 1, len(gb))) for i, (group, gdf) in enumerate(gb): def get_dummy_row(metric): return pd.DataFrame({col: 0 for col in gdf.columns}, index=[metric]) missing_metrics = set(all_metrics) - set(gdf['metric'].unique()) gdf = gdf.set_index('metric') for missing_metric in missing_metrics: logger.warning( f"Data missing, can't compare metric [{missing_metric}] for {by} [{group}]") gdf = gdf.append(get_dummy_row(missing_metric)) # Ensure the comparisons are in the same order for each group gdf = gdf.reindex(all_metrics) # Append the dummy row we're using to fix the legend opacity gdf = get_dummy_row('').append(gdf) # For each of the things we're comparing we'll plot a bar chart # but slightly shifted. That's how we get multiple bars on each # y-axis point. bars = ax.barh(pos + (i * thickness), width=gdf['diff_pct'], height=thickness, label=group, color=colors[i % len(colors)], align='center') # Decrease the opacity for comparisons with a high p-value for bar, pvalue in zip(bars, gdf['pvalue']): bar.set_alpha(1 - (min(pvalue * 10, 0.95))) # Add some text for labels, title and axes ticks ax.set_xlabel('Percent difference') [baseline] = test_comparisons['base_id'].unique() ax.set_title(f'{test} ({inv_id}): Percent difference compared to {baseline} \nopacity depicts p-value') ax.set_yticklabels(gdf.index.tolist()) ax.set_yticks(pos + thickness / 2) # ax.set_xlim((-50, 50)) ax.legend(loc='best') ax.grid(True) plt.show() def _read_artifacts(self, job_dir): with open(os.path.join(job_dir, 'result.json')) as f: ret = {a['name']: os.path.join(job_dir, a['path']) for a in json.load(f)['artifacts']} return ret def _find_job_dir(self, workload='.*', tag='.*', kernel='.*', test='.*', iteration=1): df = self._select(tag, kernel, test) df = df[df['workload'].str.match(workload)] job_dirs = df['_job_dir'].unique() if len(job_dirs) > 1: raise ValueError("Params for get_artifacts don't uniquely identify a job. " "for workload='{}' tag='{}' kernel='{}' test='{}' iteration={}, " "found:\n{}" .format( workload, tag, kernel, test, iteration, '\n'.join(job_dirs))) if not job_dirs: raise ValueError( f"No job found for workload='{workload}' tag='{tag}' kernel='{kernel}' test='{test}' iteration={iteration}") [job_dir] = job_dirs return job_dir def get_artifacts(self, workload='.*', tag='.*', kernel='.*', test='.*', iteration=1): """ Get a dict mapping artifact names to file paths for a specific job. artifact_name specifies the name of an artifact, e.g. 'trace_bin' to find the ftrace file from the specific job run. The other parameters should be used to uniquely identify a run of a job. """ job_dir = self._find_job_dir(workload, tag, kernel, test, iteration) return self._read_artifacts(job_dir) def get_artifact(self, artifact_name, workload='.*', tag='.*', kernel='.*', test='.*', iteration=1): """ Get the path of an artifact attached to a job output. artifact_name specifies the name of an artifact, e.g. 'trace_bin' to find the ftrace file from the specific job run. The other parameters should be used to uniquely identify a run of a job. """ job_dir = self._find_job_dir(workload, tag, kernel, test, iteration) artifacts = self._read_artifacts(job_dir) if not artifact_name in artifacts: raise ValueError(f"No '{artifact_name}' artifact found in {job_dir} (have {list(artifacts.keys())})") return artifacts[artifact_name] # vim :set tabstop=4 shiftwidth=4 textwidth=80 expandtab
apache-2.0
wazeerzulfikar/scikit-learn
sklearn/metrics/cluster/supervised.py
13
31406
"""Utilities to evaluate the clustering performance of models. Functions named as *_score return a scalar value to maximize: the higher the better. """ # Authors: Olivier Grisel <[email protected]> # Wei LI <[email protected]> # Diego Molla <[email protected]> # Arnaud Fouchet <[email protected]> # Thierry Guillemot <[email protected]> # Gregory Stupp <[email protected]> # Joel Nothman <[email protected]> # License: BSD 3 clause from __future__ import division from math import log import numpy as np from scipy import sparse as sp from .expected_mutual_info_fast import expected_mutual_information from ...utils.validation import check_array from ...utils.fixes import comb def comb2(n): # the exact version is faster for k == 2: use it by default globally in # this module instead of the float approximate variant return comb(n, 2, exact=1) def check_clusterings(labels_true, labels_pred): """Check that the two clusterings matching 1D integer arrays.""" labels_true = np.asarray(labels_true) labels_pred = np.asarray(labels_pred) # input checks if labels_true.ndim != 1: raise ValueError( "labels_true must be 1D: shape is %r" % (labels_true.shape,)) if labels_pred.ndim != 1: raise ValueError( "labels_pred must be 1D: shape is %r" % (labels_pred.shape,)) if labels_true.shape != labels_pred.shape: raise ValueError( "labels_true and labels_pred must have same size, got %d and %d" % (labels_true.shape[0], labels_pred.shape[0])) return labels_true, labels_pred def contingency_matrix(labels_true, labels_pred, eps=None, sparse=False): """Build a contingency matrix describing the relationship between labels. Parameters ---------- labels_true : int array, shape = [n_samples] Ground truth class labels to be used as a reference labels_pred : array, shape = [n_samples] Cluster labels to evaluate eps : None or float, optional. If a float, that value is added to all values in the contingency matrix. This helps to stop NaN propagation. If ``None``, nothing is adjusted. sparse : boolean, optional. If True, return a sparse CSR continency matrix. If ``eps is not None``, and ``sparse is True``, will throw ValueError. .. versionadded:: 0.18 Returns ------- contingency : {array-like, sparse}, shape=[n_classes_true, n_classes_pred] Matrix :math:`C` such that :math:`C_{i, j}` is the number of samples in true class :math:`i` and in predicted class :math:`j`. If ``eps is None``, the dtype of this array will be integer. If ``eps`` is given, the dtype will be float. Will be a ``scipy.sparse.csr_matrix`` if ``sparse=True``. """ if eps is not None and sparse: raise ValueError("Cannot set 'eps' when sparse=True") classes, class_idx = np.unique(labels_true, return_inverse=True) clusters, cluster_idx = np.unique(labels_pred, return_inverse=True) n_classes = classes.shape[0] n_clusters = clusters.shape[0] # Using coo_matrix to accelerate simple histogram calculation, # i.e. bins are consecutive integers # Currently, coo_matrix is faster than histogram2d for simple cases contingency = sp.coo_matrix((np.ones(class_idx.shape[0]), (class_idx, cluster_idx)), shape=(n_classes, n_clusters), dtype=np.int) if sparse: contingency = contingency.tocsr() contingency.sum_duplicates() else: contingency = contingency.toarray() if eps is not None: # don't use += as contingency is integer contingency = contingency + eps return contingency # clustering measures def adjusted_rand_score(labels_true, labels_pred): """Rand index adjusted for chance. The Rand Index computes a similarity measure between two clusterings by considering all pairs of samples and counting pairs that are assigned in the same or different clusters in the predicted and true clusterings. The raw RI score is then "adjusted for chance" into the ARI score using the following scheme:: ARI = (RI - Expected_RI) / (max(RI) - Expected_RI) The adjusted Rand index is thus ensured to have a value close to 0.0 for random labeling independently of the number of clusters and samples and exactly 1.0 when the clusterings are identical (up to a permutation). ARI is a symmetric measure:: adjusted_rand_score(a, b) == adjusted_rand_score(b, a) Read more in the :ref:`User Guide <adjusted_rand_score>`. Parameters ---------- labels_true : int array, shape = [n_samples] Ground truth class labels to be used as a reference labels_pred : array, shape = [n_samples] Cluster labels to evaluate Returns ------- ari : float Similarity score between -1.0 and 1.0. Random labelings have an ARI close to 0.0. 1.0 stands for perfect match. Examples -------- Perfectly matching labelings have a score of 1 even >>> from sklearn.metrics.cluster import adjusted_rand_score >>> adjusted_rand_score([0, 0, 1, 1], [0, 0, 1, 1]) 1.0 >>> adjusted_rand_score([0, 0, 1, 1], [1, 1, 0, 0]) 1.0 Labelings that assign all classes members to the same clusters are complete be not always pure, hence penalized:: >>> adjusted_rand_score([0, 0, 1, 2], [0, 0, 1, 1]) # doctest: +ELLIPSIS 0.57... ARI is symmetric, so labelings that have pure clusters with members coming from the same classes but unnecessary splits are penalized:: >>> adjusted_rand_score([0, 0, 1, 1], [0, 0, 1, 2]) # doctest: +ELLIPSIS 0.57... If classes members are completely split across different clusters, the assignment is totally incomplete, hence the ARI is very low:: >>> adjusted_rand_score([0, 0, 0, 0], [0, 1, 2, 3]) 0.0 References ---------- .. [Hubert1985] `L. Hubert and P. Arabie, Comparing Partitions, Journal of Classification 1985` http://link.springer.com/article/10.1007%2FBF01908075 .. [wk] https://en.wikipedia.org/wiki/Rand_index#Adjusted_Rand_index See also -------- adjusted_mutual_info_score: Adjusted Mutual Information """ labels_true, labels_pred = check_clusterings(labels_true, labels_pred) n_samples = labels_true.shape[0] n_classes = np.unique(labels_true).shape[0] n_clusters = np.unique(labels_pred).shape[0] # Special limit cases: no clustering since the data is not split; # or trivial clustering where each document is assigned a unique cluster. # These are perfect matches hence return 1.0. if (n_classes == n_clusters == 1 or n_classes == n_clusters == 0 or n_classes == n_clusters == n_samples): return 1.0 # Compute the ARI using the contingency data contingency = contingency_matrix(labels_true, labels_pred, sparse=True) sum_comb_c = sum(comb2(n_c) for n_c in np.ravel(contingency.sum(axis=1))) sum_comb_k = sum(comb2(n_k) for n_k in np.ravel(contingency.sum(axis=0))) sum_comb = sum(comb2(n_ij) for n_ij in contingency.data) prod_comb = (sum_comb_c * sum_comb_k) / comb(n_samples, 2) mean_comb = (sum_comb_k + sum_comb_c) / 2. return (sum_comb - prod_comb) / (mean_comb - prod_comb) def homogeneity_completeness_v_measure(labels_true, labels_pred): """Compute the homogeneity and completeness and V-Measure scores at once. Those metrics are based on normalized conditional entropy measures of the clustering labeling to evaluate given the knowledge of a Ground Truth class labels of the same samples. A clustering result satisfies homogeneity if all of its clusters contain only data points which are members of a single class. A clustering result satisfies completeness if all the data points that are members of a given class are elements of the same cluster. Both scores have positive values between 0.0 and 1.0, larger values being desirable. Those 3 metrics are independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score values in any way. V-Measure is furthermore symmetric: swapping ``labels_true`` and ``label_pred`` will give the same score. This does not hold for homogeneity and completeness. Read more in the :ref:`User Guide <homogeneity_completeness>`. Parameters ---------- labels_true : int array, shape = [n_samples] ground truth class labels to be used as a reference labels_pred : array, shape = [n_samples] cluster labels to evaluate Returns ------- homogeneity : float score between 0.0 and 1.0. 1.0 stands for perfectly homogeneous labeling completeness : float score between 0.0 and 1.0. 1.0 stands for perfectly complete labeling v_measure : float harmonic mean of the first two See also -------- homogeneity_score completeness_score v_measure_score """ labels_true, labels_pred = check_clusterings(labels_true, labels_pred) if len(labels_true) == 0: return 1.0, 1.0, 1.0 entropy_C = entropy(labels_true) entropy_K = entropy(labels_pred) contingency = contingency_matrix(labels_true, labels_pred, sparse=True) MI = mutual_info_score(None, None, contingency=contingency) homogeneity = MI / (entropy_C) if entropy_C else 1.0 completeness = MI / (entropy_K) if entropy_K else 1.0 if homogeneity + completeness == 0.0: v_measure_score = 0.0 else: v_measure_score = (2.0 * homogeneity * completeness / (homogeneity + completeness)) return homogeneity, completeness, v_measure_score def homogeneity_score(labels_true, labels_pred): """Homogeneity metric of a cluster labeling given a ground truth. A clustering result satisfies homogeneity if all of its clusters contain only data points which are members of a single class. This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score value in any way. This metric is not symmetric: switching ``label_true`` with ``label_pred`` will return the :func:`completeness_score` which will be different in general. Read more in the :ref:`User Guide <homogeneity_completeness>`. Parameters ---------- labels_true : int array, shape = [n_samples] ground truth class labels to be used as a reference labels_pred : array, shape = [n_samples] cluster labels to evaluate Returns ------- homogeneity : float score between 0.0 and 1.0. 1.0 stands for perfectly homogeneous labeling References ---------- .. [1] `Andrew Rosenberg and Julia Hirschberg, 2007. V-Measure: A conditional entropy-based external cluster evaluation measure <http://aclweb.org/anthology/D/D07/D07-1043.pdf>`_ See also -------- completeness_score v_measure_score Examples -------- Perfect labelings are homogeneous:: >>> from sklearn.metrics.cluster import homogeneity_score >>> homogeneity_score([0, 0, 1, 1], [1, 1, 0, 0]) 1.0 Non-perfect labelings that further split classes into more clusters can be perfectly homogeneous:: >>> print("%.6f" % homogeneity_score([0, 0, 1, 1], [0, 0, 1, 2])) ... # doctest: +ELLIPSIS 1.0... >>> print("%.6f" % homogeneity_score([0, 0, 1, 1], [0, 1, 2, 3])) ... # doctest: +ELLIPSIS 1.0... Clusters that include samples from different classes do not make for an homogeneous labeling:: >>> print("%.6f" % homogeneity_score([0, 0, 1, 1], [0, 1, 0, 1])) ... # doctest: +ELLIPSIS 0.0... >>> print("%.6f" % homogeneity_score([0, 0, 1, 1], [0, 0, 0, 0])) ... # doctest: +ELLIPSIS 0.0... """ return homogeneity_completeness_v_measure(labels_true, labels_pred)[0] def completeness_score(labels_true, labels_pred): """Completeness metric of a cluster labeling given a ground truth. A clustering result satisfies completeness if all the data points that are members of a given class are elements of the same cluster. This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score value in any way. This metric is not symmetric: switching ``label_true`` with ``label_pred`` will return the :func:`homogeneity_score` which will be different in general. Read more in the :ref:`User Guide <homogeneity_completeness>`. Parameters ---------- labels_true : int array, shape = [n_samples] ground truth class labels to be used as a reference labels_pred : array, shape = [n_samples] cluster labels to evaluate Returns ------- completeness : float score between 0.0 and 1.0. 1.0 stands for perfectly complete labeling References ---------- .. [1] `Andrew Rosenberg and Julia Hirschberg, 2007. V-Measure: A conditional entropy-based external cluster evaluation measure <http://aclweb.org/anthology/D/D07/D07-1043.pdf>`_ See also -------- homogeneity_score v_measure_score Examples -------- Perfect labelings are complete:: >>> from sklearn.metrics.cluster import completeness_score >>> completeness_score([0, 0, 1, 1], [1, 1, 0, 0]) 1.0 Non-perfect labelings that assign all classes members to the same clusters are still complete:: >>> print(completeness_score([0, 0, 1, 1], [0, 0, 0, 0])) 1.0 >>> print(completeness_score([0, 1, 2, 3], [0, 0, 1, 1])) 1.0 If classes members are split across different clusters, the assignment cannot be complete:: >>> print(completeness_score([0, 0, 1, 1], [0, 1, 0, 1])) 0.0 >>> print(completeness_score([0, 0, 0, 0], [0, 1, 2, 3])) 0.0 """ return homogeneity_completeness_v_measure(labels_true, labels_pred)[1] def v_measure_score(labels_true, labels_pred): """V-measure cluster labeling given a ground truth. This score is identical to :func:`normalized_mutual_info_score`. The V-measure is the harmonic mean between homogeneity and completeness:: v = 2 * (homogeneity * completeness) / (homogeneity + completeness) This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score value in any way. This metric is furthermore symmetric: switching ``label_true`` with ``label_pred`` will return the same score value. This can be useful to measure the agreement of two independent label assignments strategies on the same dataset when the real ground truth is not known. Read more in the :ref:`User Guide <homogeneity_completeness>`. Parameters ---------- labels_true : int array, shape = [n_samples] ground truth class labels to be used as a reference labels_pred : array, shape = [n_samples] cluster labels to evaluate Returns ------- v_measure : float score between 0.0 and 1.0. 1.0 stands for perfectly complete labeling References ---------- .. [1] `Andrew Rosenberg and Julia Hirschberg, 2007. V-Measure: A conditional entropy-based external cluster evaluation measure <http://aclweb.org/anthology/D/D07/D07-1043.pdf>`_ See also -------- homogeneity_score completeness_score Examples -------- Perfect labelings are both homogeneous and complete, hence have score 1.0:: >>> from sklearn.metrics.cluster import v_measure_score >>> v_measure_score([0, 0, 1, 1], [0, 0, 1, 1]) 1.0 >>> v_measure_score([0, 0, 1, 1], [1, 1, 0, 0]) 1.0 Labelings that assign all classes members to the same clusters are complete be not homogeneous, hence penalized:: >>> print("%.6f" % v_measure_score([0, 0, 1, 2], [0, 0, 1, 1])) ... # doctest: +ELLIPSIS 0.8... >>> print("%.6f" % v_measure_score([0, 1, 2, 3], [0, 0, 1, 1])) ... # doctest: +ELLIPSIS 0.66... Labelings that have pure clusters with members coming from the same classes are homogeneous but un-necessary splits harms completeness and thus penalize V-measure as well:: >>> print("%.6f" % v_measure_score([0, 0, 1, 1], [0, 0, 1, 2])) ... # doctest: +ELLIPSIS 0.8... >>> print("%.6f" % v_measure_score([0, 0, 1, 1], [0, 1, 2, 3])) ... # doctest: +ELLIPSIS 0.66... If classes members are completely split across different clusters, the assignment is totally incomplete, hence the V-Measure is null:: >>> print("%.6f" % v_measure_score([0, 0, 0, 0], [0, 1, 2, 3])) ... # doctest: +ELLIPSIS 0.0... Clusters that include samples from totally different classes totally destroy the homogeneity of the labeling, hence:: >>> print("%.6f" % v_measure_score([0, 0, 1, 1], [0, 0, 0, 0])) ... # doctest: +ELLIPSIS 0.0... """ return homogeneity_completeness_v_measure(labels_true, labels_pred)[2] def mutual_info_score(labels_true, labels_pred, contingency=None): """Mutual Information between two clusterings. The Mutual Information is a measure of the similarity between two labels of the same data. Where :math:`|U_i|` is the number of the samples in cluster :math:`U_i` and :math:`|V_j|` is the number of the samples in cluster :math:`V_j`, the Mutual Information between clusterings :math:`U` and :math:`V` is given as: .. math:: MI(U,V)=\sum_{i=1}^|U| \sum_{j=1}^|V| \\frac{|U_i\cap V_j|}{N} \log\\frac{N|U_i \cap V_j|}{|U_i||V_j|} This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score value in any way. This metric is furthermore symmetric: switching ``label_true`` with ``label_pred`` will return the same score value. This can be useful to measure the agreement of two independent label assignments strategies on the same dataset when the real ground truth is not known. Read more in the :ref:`User Guide <mutual_info_score>`. Parameters ---------- labels_true : int array, shape = [n_samples] A clustering of the data into disjoint subsets. labels_pred : array, shape = [n_samples] A clustering of the data into disjoint subsets. contingency : {None, array, sparse matrix}, shape = [n_classes_true, n_classes_pred] A contingency matrix given by the :func:`contingency_matrix` function. If value is ``None``, it will be computed, otherwise the given value is used, with ``labels_true`` and ``labels_pred`` ignored. Returns ------- mi : float Mutual information, a non-negative value See also -------- adjusted_mutual_info_score: Adjusted against chance Mutual Information normalized_mutual_info_score: Normalized Mutual Information """ if contingency is None: labels_true, labels_pred = check_clusterings(labels_true, labels_pred) contingency = contingency_matrix(labels_true, labels_pred, sparse=True) else: contingency = check_array(contingency, accept_sparse=['csr', 'csc', 'coo'], dtype=[int, np.int32, np.int64]) if isinstance(contingency, np.ndarray): # For an array nzx, nzy = np.nonzero(contingency) nz_val = contingency[nzx, nzy] elif sp.issparse(contingency): # For a sparse matrix nzx, nzy, nz_val = sp.find(contingency) else: raise ValueError("Unsupported type for 'contingency': %s" % type(contingency)) contingency_sum = contingency.sum() pi = np.ravel(contingency.sum(axis=1)) pj = np.ravel(contingency.sum(axis=0)) log_contingency_nm = np.log(nz_val) contingency_nm = nz_val / contingency_sum # Don't need to calculate the full outer product, just for non-zeroes outer = pi.take(nzx) * pj.take(nzy) log_outer = -np.log(outer) + log(pi.sum()) + log(pj.sum()) mi = (contingency_nm * (log_contingency_nm - log(contingency_sum)) + contingency_nm * log_outer) return mi.sum() def adjusted_mutual_info_score(labels_true, labels_pred): """Adjusted Mutual Information between two clusterings. Adjusted Mutual Information (AMI) is an adjustment of the Mutual Information (MI) score to account for chance. It accounts for the fact that the MI is generally higher for two clusterings with a larger number of clusters, regardless of whether there is actually more information shared. For two clusterings :math:`U` and :math:`V`, the AMI is given as:: AMI(U, V) = [MI(U, V) - E(MI(U, V))] / [max(H(U), H(V)) - E(MI(U, V))] This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score value in any way. This metric is furthermore symmetric: switching ``label_true`` with ``label_pred`` will return the same score value. This can be useful to measure the agreement of two independent label assignments strategies on the same dataset when the real ground truth is not known. Be mindful that this function is an order of magnitude slower than other metrics, such as the Adjusted Rand Index. Read more in the :ref:`User Guide <mutual_info_score>`. Parameters ---------- labels_true : int array, shape = [n_samples] A clustering of the data into disjoint subsets. labels_pred : array, shape = [n_samples] A clustering of the data into disjoint subsets. Returns ------- ami: float(upperlimited by 1.0) The AMI returns a value of 1 when the two partitions are identical (ie perfectly matched). Random partitions (independent labellings) have an expected AMI around 0 on average hence can be negative. See also -------- adjusted_rand_score: Adjusted Rand Index mutual_information_score: Mutual Information (not adjusted for chance) Examples -------- Perfect labelings are both homogeneous and complete, hence have score 1.0:: >>> from sklearn.metrics.cluster import adjusted_mutual_info_score >>> adjusted_mutual_info_score([0, 0, 1, 1], [0, 0, 1, 1]) 1.0 >>> adjusted_mutual_info_score([0, 0, 1, 1], [1, 1, 0, 0]) 1.0 If classes members are completely split across different clusters, the assignment is totally in-complete, hence the AMI is null:: >>> adjusted_mutual_info_score([0, 0, 0, 0], [0, 1, 2, 3]) 0.0 References ---------- .. [1] `Vinh, Epps, and Bailey, (2010). Information Theoretic Measures for Clusterings Comparison: Variants, Properties, Normalization and Correction for Chance, JMLR <http://jmlr.csail.mit.edu/papers/volume11/vinh10a/vinh10a.pdf>`_ .. [2] `Wikipedia entry for the Adjusted Mutual Information <https://en.wikipedia.org/wiki/Adjusted_Mutual_Information>`_ """ labels_true, labels_pred = check_clusterings(labels_true, labels_pred) n_samples = labels_true.shape[0] classes = np.unique(labels_true) clusters = np.unique(labels_pred) # Special limit cases: no clustering since the data is not split. # This is a perfect match hence return 1.0. if (classes.shape[0] == clusters.shape[0] == 1 or classes.shape[0] == clusters.shape[0] == 0): return 1.0 contingency = contingency_matrix(labels_true, labels_pred, sparse=True) contingency = contingency.astype(np.float64) # Calculate the MI for the two clusterings mi = mutual_info_score(labels_true, labels_pred, contingency=contingency) # Calculate the expected value for the mutual information emi = expected_mutual_information(contingency, n_samples) # Calculate entropy for each labeling h_true, h_pred = entropy(labels_true), entropy(labels_pred) ami = (mi - emi) / (max(h_true, h_pred) - emi) return ami def normalized_mutual_info_score(labels_true, labels_pred): """Normalized Mutual Information between two clusterings. Normalized Mutual Information (NMI) is an normalization of the Mutual Information (MI) score to scale the results between 0 (no mutual information) and 1 (perfect correlation). In this function, mutual information is normalized by ``sqrt(H(labels_true) * H(labels_pred))`` This measure is not adjusted for chance. Therefore :func:`adjusted_mustual_info_score` might be preferred. This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score value in any way. This metric is furthermore symmetric: switching ``label_true`` with ``label_pred`` will return the same score value. This can be useful to measure the agreement of two independent label assignments strategies on the same dataset when the real ground truth is not known. Read more in the :ref:`User Guide <mutual_info_score>`. Parameters ---------- labels_true : int array, shape = [n_samples] A clustering of the data into disjoint subsets. labels_pred : array, shape = [n_samples] A clustering of the data into disjoint subsets. Returns ------- nmi : float score between 0.0 and 1.0. 1.0 stands for perfectly complete labeling See also -------- adjusted_rand_score: Adjusted Rand Index adjusted_mutual_info_score: Adjusted Mutual Information (adjusted against chance) Examples -------- Perfect labelings are both homogeneous and complete, hence have score 1.0:: >>> from sklearn.metrics.cluster import normalized_mutual_info_score >>> normalized_mutual_info_score([0, 0, 1, 1], [0, 0, 1, 1]) 1.0 >>> normalized_mutual_info_score([0, 0, 1, 1], [1, 1, 0, 0]) 1.0 If classes members are completely split across different clusters, the assignment is totally in-complete, hence the NMI is null:: >>> normalized_mutual_info_score([0, 0, 0, 0], [0, 1, 2, 3]) 0.0 """ labels_true, labels_pred = check_clusterings(labels_true, labels_pred) classes = np.unique(labels_true) clusters = np.unique(labels_pred) # Special limit cases: no clustering since the data is not split. # This is a perfect match hence return 1.0. if (classes.shape[0] == clusters.shape[0] == 1 or classes.shape[0] == clusters.shape[0] == 0): return 1.0 contingency = contingency_matrix(labels_true, labels_pred, sparse=True) contingency = contingency.astype(np.float64) # Calculate the MI for the two clusterings mi = mutual_info_score(labels_true, labels_pred, contingency=contingency) # Calculate the expected value for the mutual information # Calculate entropy for each labeling h_true, h_pred = entropy(labels_true), entropy(labels_pred) nmi = mi / max(np.sqrt(h_true * h_pred), 1e-10) return nmi def fowlkes_mallows_score(labels_true, labels_pred, sparse=False): """Measure the similarity of two clusterings of a set of points. The Fowlkes-Mallows index (FMI) is defined as the geometric mean between of the precision and recall:: FMI = TP / sqrt((TP + FP) * (TP + FN)) Where ``TP`` is the number of **True Positive** (i.e. the number of pair of points that belongs in the same clusters in both ``labels_true`` and ``labels_pred``), ``FP`` is the number of **False Positive** (i.e. the number of pair of points that belongs in the same clusters in ``labels_true`` and not in ``labels_pred``) and ``FN`` is the number of **False Negative** (i.e the number of pair of points that belongs in the same clusters in ``labels_pred`` and not in ``labels_True``). The score ranges from 0 to 1. A high value indicates a good similarity between two clusters. Read more in the :ref:`User Guide <fowlkes_mallows_scores>`. Parameters ---------- labels_true : int array, shape = (``n_samples``,) A clustering of the data into disjoint subsets. labels_pred : array, shape = (``n_samples``, ) A clustering of the data into disjoint subsets. sparse : bool Compute contingency matrix internally with sparse matrix. Returns ------- score : float The resulting Fowlkes-Mallows score. Examples -------- Perfect labelings are both homogeneous and complete, hence have score 1.0:: >>> from sklearn.metrics.cluster import fowlkes_mallows_score >>> fowlkes_mallows_score([0, 0, 1, 1], [0, 0, 1, 1]) 1.0 >>> fowlkes_mallows_score([0, 0, 1, 1], [1, 1, 0, 0]) 1.0 If classes members are completely split across different clusters, the assignment is totally random, hence the FMI is null:: >>> fowlkes_mallows_score([0, 0, 0, 0], [0, 1, 2, 3]) 0.0 References ---------- .. [1] `E. B. Fowkles and C. L. Mallows, 1983. "A method for comparing two hierarchical clusterings". Journal of the American Statistical Association <http://wildfire.stat.ucla.edu/pdflibrary/fowlkes.pdf>`_ .. [2] `Wikipedia entry for the Fowlkes-Mallows Index <https://en.wikipedia.org/wiki/Fowlkes-Mallows_index>`_ """ labels_true, labels_pred = check_clusterings(labels_true, labels_pred) n_samples, = labels_true.shape c = contingency_matrix(labels_true, labels_pred, sparse=True) tk = np.dot(c.data, c.data) - n_samples pk = np.sum(np.asarray(c.sum(axis=0)).ravel() ** 2) - n_samples qk = np.sum(np.asarray(c.sum(axis=1)).ravel() ** 2) - n_samples return tk / np.sqrt(pk * qk) if tk != 0. else 0. def entropy(labels): """Calculates the entropy for a labeling.""" if len(labels) == 0: return 1.0 label_idx = np.unique(labels, return_inverse=True)[1] pi = np.bincount(label_idx).astype(np.float64) pi = pi[pi > 0] pi_sum = np.sum(pi) # log(a / b) should be calculated as log(a) - log(b) for # possible loss of precision return -np.sum((pi / pi_sum) * (np.log(pi) - log(pi_sum)))
bsd-3-clause
laszlocsomor/tensorflow
tensorflow/contrib/learn/python/learn/estimators/estimator_test.py
21
53471
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Estimator.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import itertools import json import os import tempfile import numpy as np import six from six.moves import xrange # pylint: disable=redefined-builtin from google.protobuf import text_format from tensorflow.contrib import learn from tensorflow.contrib import lookup from tensorflow.contrib.framework.python.ops import variables from tensorflow.contrib.layers.python.layers import feature_column as feature_column_lib from tensorflow.contrib.layers.python.layers import optimizers from tensorflow.contrib.learn.python.learn import experiment from tensorflow.contrib.learn.python.learn import models from tensorflow.contrib.learn.python.learn import monitors as monitors_lib from tensorflow.contrib.learn.python.learn.datasets import base from tensorflow.contrib.learn.python.learn.estimators import _sklearn from tensorflow.contrib.learn.python.learn.estimators import constants from tensorflow.contrib.learn.python.learn.estimators import estimator from tensorflow.contrib.learn.python.learn.estimators import linear from tensorflow.contrib.learn.python.learn.estimators import model_fn from tensorflow.contrib.learn.python.learn.estimators import run_config from tensorflow.contrib.learn.python.learn.utils import input_fn_utils from tensorflow.contrib.metrics.python.ops import metric_ops from tensorflow.contrib.testing.python.framework import util_test from tensorflow.python.client import session as session_lib from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.lib.io import file_io from tensorflow.python.ops import array_ops from tensorflow.python.ops import check_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import parsing_ops from tensorflow.python.ops import variables as variables_lib from tensorflow.python.platform import gfile from tensorflow.python.platform import test from tensorflow.python.saved_model import loader from tensorflow.python.saved_model import tag_constants from tensorflow.python.summary import summary from tensorflow.python.training import basic_session_run_hooks from tensorflow.python.training import checkpoint_state_pb2 from tensorflow.python.training import input as input_lib from tensorflow.python.training import monitored_session from tensorflow.python.training import saver as saver_lib from tensorflow.python.training import session_run_hook from tensorflow.python.util import compat _BOSTON_INPUT_DIM = 13 _IRIS_INPUT_DIM = 4 def boston_input_fn(num_epochs=None): boston = base.load_boston() features = input_lib.limit_epochs( array_ops.reshape( constant_op.constant(boston.data), [-1, _BOSTON_INPUT_DIM]), num_epochs=num_epochs) labels = array_ops.reshape(constant_op.constant(boston.target), [-1, 1]) return features, labels def iris_input_fn(): iris = base.load_iris() features = array_ops.reshape( constant_op.constant(iris.data), [-1, _IRIS_INPUT_DIM]) labels = array_ops.reshape(constant_op.constant(iris.target), [-1]) return features, labels def iris_input_fn_labels_dict(): iris = base.load_iris() features = array_ops.reshape( constant_op.constant(iris.data), [-1, _IRIS_INPUT_DIM]) labels = { 'labels': array_ops.reshape(constant_op.constant(iris.target), [-1]) } return features, labels def boston_eval_fn(): boston = base.load_boston() n_examples = len(boston.target) features = array_ops.reshape( constant_op.constant(boston.data), [n_examples, _BOSTON_INPUT_DIM]) labels = array_ops.reshape( constant_op.constant(boston.target), [n_examples, 1]) return array_ops.concat([features, features], 0), array_ops.concat( [labels, labels], 0) def extract(data, key): if isinstance(data, dict): assert key in data return data[key] else: return data def linear_model_params_fn(features, labels, mode, params): features = extract(features, 'input') labels = extract(labels, 'labels') assert mode in (model_fn.ModeKeys.TRAIN, model_fn.ModeKeys.EVAL, model_fn.ModeKeys.INFER) prediction, loss = (models.linear_regression_zero_init(features, labels)) train_op = optimizers.optimize_loss( loss, variables.get_global_step(), optimizer='Adagrad', learning_rate=params['learning_rate']) return prediction, loss, train_op def linear_model_fn(features, labels, mode): features = extract(features, 'input') labels = extract(labels, 'labels') assert mode in (model_fn.ModeKeys.TRAIN, model_fn.ModeKeys.EVAL, model_fn.ModeKeys.INFER) if isinstance(features, dict): (_, features), = features.items() prediction, loss = (models.linear_regression_zero_init(features, labels)) train_op = optimizers.optimize_loss( loss, variables.get_global_step(), optimizer='Adagrad', learning_rate=0.1) return prediction, loss, train_op def linear_model_fn_with_model_fn_ops(features, labels, mode): """Same as linear_model_fn, but returns `ModelFnOps`.""" assert mode in (model_fn.ModeKeys.TRAIN, model_fn.ModeKeys.EVAL, model_fn.ModeKeys.INFER) prediction, loss = (models.linear_regression_zero_init(features, labels)) train_op = optimizers.optimize_loss( loss, variables.get_global_step(), optimizer='Adagrad', learning_rate=0.1) return model_fn.ModelFnOps( mode=mode, predictions=prediction, loss=loss, train_op=train_op) def logistic_model_no_mode_fn(features, labels): features = extract(features, 'input') labels = extract(labels, 'labels') labels = array_ops.one_hot(labels, 3, 1, 0) prediction, loss = (models.logistic_regression_zero_init(features, labels)) train_op = optimizers.optimize_loss( loss, variables.get_global_step(), optimizer='Adagrad', learning_rate=0.1) return { 'class': math_ops.argmax(prediction, 1), 'prob': prediction }, loss, train_op VOCAB_FILE_CONTENT = 'emerson\nlake\npalmer\n' EXTRA_FILE_CONTENT = 'kermit\npiggy\nralph\n' def _build_estimator_for_export_tests(tmpdir): def _input_fn(): iris = base.load_iris() return { 'feature': constant_op.constant( iris.data, dtype=dtypes.float32) }, constant_op.constant( iris.target, shape=[150], dtype=dtypes.int32) feature_columns = [ feature_column_lib.real_valued_column( 'feature', dimension=4) ] est = linear.LinearRegressor(feature_columns) est.fit(input_fn=_input_fn, steps=20) feature_spec = feature_column_lib.create_feature_spec_for_parsing( feature_columns) serving_input_fn = input_fn_utils.build_parsing_serving_input_fn(feature_spec) # hack in an op that uses an asset, in order to test asset export. # this is not actually valid, of course. def serving_input_fn_with_asset(): features, labels, inputs = serving_input_fn() vocab_file_name = os.path.join(tmpdir, 'my_vocab_file') vocab_file = gfile.GFile(vocab_file_name, mode='w') vocab_file.write(VOCAB_FILE_CONTENT) vocab_file.close() hashtable = lookup.HashTable( lookup.TextFileStringTableInitializer(vocab_file_name), 'x') features['bogus_lookup'] = hashtable.lookup( math_ops.to_int64(features['feature'])) return input_fn_utils.InputFnOps(features, labels, inputs) return est, serving_input_fn_with_asset def _build_estimator_for_resource_export_test(): def _input_fn(): iris = base.load_iris() return { 'feature': constant_op.constant(iris.data, dtype=dtypes.float32) }, constant_op.constant( iris.target, shape=[150], dtype=dtypes.int32) feature_columns = [ feature_column_lib.real_valued_column('feature', dimension=4) ] def resource_constant_model_fn(unused_features, unused_labels, mode): """A model_fn that loads a constant from a resource and serves it.""" assert mode in (model_fn.ModeKeys.TRAIN, model_fn.ModeKeys.EVAL, model_fn.ModeKeys.INFER) const = constant_op.constant(-1, dtype=dtypes.int64) table = lookup.MutableHashTable( dtypes.string, dtypes.int64, const, name='LookupTableModel') update_global_step = variables.get_global_step().assign_add(1) if mode in (model_fn.ModeKeys.TRAIN, model_fn.ModeKeys.EVAL): key = constant_op.constant(['key']) value = constant_op.constant([42], dtype=dtypes.int64) train_op_1 = table.insert(key, value) training_state = lookup.MutableHashTable( dtypes.string, dtypes.int64, const, name='LookupTableTrainingState') training_op_2 = training_state.insert(key, value) return (const, const, control_flow_ops.group(train_op_1, training_op_2, update_global_step)) if mode == model_fn.ModeKeys.INFER: key = constant_op.constant(['key']) prediction = table.lookup(key) return prediction, const, update_global_step est = estimator.Estimator(model_fn=resource_constant_model_fn) est.fit(input_fn=_input_fn, steps=1) feature_spec = feature_column_lib.create_feature_spec_for_parsing( feature_columns) serving_input_fn = input_fn_utils.build_parsing_serving_input_fn(feature_spec) return est, serving_input_fn class CheckCallsMonitor(monitors_lib.BaseMonitor): def __init__(self, expect_calls): super(CheckCallsMonitor, self).__init__() self.begin_calls = None self.end_calls = None self.expect_calls = expect_calls def begin(self, max_steps): self.begin_calls = 0 self.end_calls = 0 def step_begin(self, step): self.begin_calls += 1 return {} def step_end(self, step, outputs): self.end_calls += 1 return False def end(self): assert (self.end_calls == self.expect_calls and self.begin_calls == self.expect_calls) def _model_fn_ops( expected_features, expected_labels, actual_features, actual_labels, mode): assert_ops = tuple([ check_ops.assert_equal( expected_features[k], actual_features[k], name='assert_%s' % k) for k in expected_features ] + [ check_ops.assert_equal( expected_labels, actual_labels, name='assert_labels') ]) with ops.control_dependencies(assert_ops): return model_fn.ModelFnOps( mode=mode, predictions=constant_op.constant(0.), loss=constant_op.constant(0.), train_op=variables.get_global_step().assign_add(1)) def _make_input_fn(features, labels): def _input_fn(): return { k: constant_op.constant(v) for k, v in six.iteritems(features) }, constant_op.constant(labels) return _input_fn class EstimatorModelFnTest(test.TestCase): def testModelFnArgs(self): features = {'x': 42., 'y': 43.} labels = 44. expected_params = {'some_param': 'some_value'} expected_config = run_config.RunConfig() expected_config.i_am_test = True # TODO(ptucker): We have to roll our own mock since Estimator._get_arguments # doesn't work with mock fns. model_fn_call_count = [0] # `features` and `labels` are passed by position, `arg0` and `arg1` here. def _model_fn(arg0, arg1, mode, params, config): model_fn_call_count[0] += 1 self.assertItemsEqual(features.keys(), arg0.keys()) self.assertEqual(model_fn.ModeKeys.TRAIN, mode) self.assertEqual(expected_params, params) self.assertTrue(config.i_am_test) return _model_fn_ops(features, labels, arg0, arg1, mode) est = estimator.Estimator( model_fn=_model_fn, params=expected_params, config=expected_config) self.assertEqual(0, model_fn_call_count[0]) est.fit(input_fn=_make_input_fn(features, labels), steps=1) self.assertEqual(1, model_fn_call_count[0]) def testPartialModelFnArgs(self): features = {'x': 42., 'y': 43.} labels = 44. expected_params = {'some_param': 'some_value'} expected_config = run_config.RunConfig() expected_config.i_am_test = True expected_foo = 45. expected_bar = 46. # TODO(ptucker): We have to roll our own mock since Estimator._get_arguments # doesn't work with mock fns. model_fn_call_count = [0] # `features` and `labels` are passed by position, `arg0` and `arg1` here. def _model_fn(arg0, arg1, foo, mode, params, config, bar): model_fn_call_count[0] += 1 self.assertEqual(expected_foo, foo) self.assertEqual(expected_bar, bar) self.assertItemsEqual(features.keys(), arg0.keys()) self.assertEqual(model_fn.ModeKeys.TRAIN, mode) self.assertEqual(expected_params, params) self.assertTrue(config.i_am_test) return _model_fn_ops(features, labels, arg0, arg1, mode) partial_model_fn = functools.partial( _model_fn, foo=expected_foo, bar=expected_bar) est = estimator.Estimator( model_fn=partial_model_fn, params=expected_params, config=expected_config) self.assertEqual(0, model_fn_call_count[0]) est.fit(input_fn=_make_input_fn(features, labels), steps=1) self.assertEqual(1, model_fn_call_count[0]) def testModelFnWithModelDir(self): expected_param = {'some_param': 'some_value'} expected_model_dir = tempfile.mkdtemp() def _argument_checker(features, labels, mode, params, config=None, model_dir=None): _, _, _ = features, labels, config self.assertEqual(model_fn.ModeKeys.TRAIN, mode) self.assertEqual(expected_param, params) self.assertEqual(model_dir, expected_model_dir) return (constant_op.constant(0.), constant_op.constant(0.), variables.get_global_step().assign_add(1)) est = estimator.Estimator(model_fn=_argument_checker, params=expected_param, model_dir=expected_model_dir) est.fit(input_fn=boston_input_fn, steps=1) def testInvalidModelFn_no_train_op(self): def _invalid_model_fn(features, labels): # pylint: disable=unused-argument w = variables_lib.Variable(42.0, 'weight') update_global_step = variables.get_global_step().assign_add(1) with ops.control_dependencies([update_global_step]): loss = 100.0 - w return None, loss, None est = estimator.Estimator(model_fn=_invalid_model_fn) with self.assertRaisesRegexp(ValueError, 'Missing train_op'): est.fit(input_fn=boston_input_fn, steps=1) def testInvalidModelFn_no_loss(self): def _invalid_model_fn(features, labels, mode): # pylint: disable=unused-argument w = variables_lib.Variable(42.0, 'weight') loss = 100.0 - w update_global_step = variables.get_global_step().assign_add(1) with ops.control_dependencies([update_global_step]): train_op = w.assign_add(loss / 100.0) predictions = loss if mode == model_fn.ModeKeys.EVAL: loss = None return predictions, loss, train_op est = estimator.Estimator(model_fn=_invalid_model_fn) est.fit(input_fn=boston_input_fn, steps=1) with self.assertRaisesRegexp(ValueError, 'Missing loss'): est.evaluate(input_fn=boston_eval_fn, steps=1) def testInvalidModelFn_no_prediction(self): def _invalid_model_fn(features, labels): # pylint: disable=unused-argument w = variables_lib.Variable(42.0, 'weight') loss = 100.0 - w update_global_step = variables.get_global_step().assign_add(1) with ops.control_dependencies([update_global_step]): train_op = w.assign_add(loss / 100.0) return None, loss, train_op est = estimator.Estimator(model_fn=_invalid_model_fn) est.fit(input_fn=boston_input_fn, steps=1) with self.assertRaisesRegexp(ValueError, 'Missing prediction'): est.evaluate(input_fn=boston_eval_fn, steps=1) with self.assertRaisesRegexp(ValueError, 'Missing prediction'): est.predict(input_fn=boston_input_fn) with self.assertRaisesRegexp(ValueError, 'Missing prediction'): est.predict( input_fn=functools.partial( boston_input_fn, num_epochs=1), as_iterable=True) def testModelFnScaffoldInTraining(self): self.is_init_fn_called = False def _init_fn(scaffold, session): _, _ = scaffold, session self.is_init_fn_called = True def _model_fn_scaffold(features, labels, mode): _, _ = features, labels return model_fn.ModelFnOps( mode=mode, predictions=constant_op.constant(0.), loss=constant_op.constant(0.), train_op=variables.get_global_step().assign_add(1), scaffold=monitored_session.Scaffold(init_fn=_init_fn)) est = estimator.Estimator(model_fn=_model_fn_scaffold) est.fit(input_fn=boston_input_fn, steps=1) self.assertTrue(self.is_init_fn_called) def testModelFnScaffoldSaverUsage(self): def _model_fn_scaffold(features, labels, mode): _, _ = features, labels variables_lib.Variable(1., 'weight') real_saver = saver_lib.Saver() self.mock_saver = test.mock.Mock( wraps=real_saver, saver_def=real_saver.saver_def) return model_fn.ModelFnOps( mode=mode, predictions=constant_op.constant([[1.]]), loss=constant_op.constant(0.), train_op=variables.get_global_step().assign_add(1), scaffold=monitored_session.Scaffold(saver=self.mock_saver)) def input_fn(): return { 'x': constant_op.constant([[1.]]), }, constant_op.constant([[1.]]) est = estimator.Estimator(model_fn=_model_fn_scaffold) est.fit(input_fn=input_fn, steps=1) self.assertTrue(self.mock_saver.save.called) est.evaluate(input_fn=input_fn, steps=1) self.assertTrue(self.mock_saver.restore.called) est.predict(input_fn=input_fn) self.assertTrue(self.mock_saver.restore.called) def serving_input_fn(): serialized_tf_example = array_ops.placeholder(dtype=dtypes.string, shape=[None], name='input_example_tensor') features, labels = input_fn() return input_fn_utils.InputFnOps( features, labels, {'examples': serialized_tf_example}) est.export_savedmodel(os.path.join(est.model_dir, 'export'), serving_input_fn) self.assertTrue(self.mock_saver.restore.called) class EstimatorTest(test.TestCase): def testExperimentIntegration(self): exp = experiment.Experiment( estimator=estimator.Estimator(model_fn=linear_model_fn), train_input_fn=boston_input_fn, eval_input_fn=boston_input_fn) exp.test() def testCheckpointSaverHookSuppressesTheDefaultOne(self): saver_hook = test.mock.Mock( spec=basic_session_run_hooks.CheckpointSaverHook) saver_hook.before_run.return_value = None est = estimator.Estimator(model_fn=linear_model_fn) est.fit(input_fn=boston_input_fn, steps=1, monitors=[saver_hook]) # test nothing is saved, due to suppressing default saver with self.assertRaises(learn.NotFittedError): est.evaluate(input_fn=boston_input_fn, steps=1) def testCustomConfig(self): test_random_seed = 5783452 class TestInput(object): def __init__(self): self.random_seed = 0 def config_test_input_fn(self): self.random_seed = ops.get_default_graph().seed return constant_op.constant([[1.]]), constant_op.constant([1.]) config = run_config.RunConfig(tf_random_seed=test_random_seed) test_input = TestInput() est = estimator.Estimator(model_fn=linear_model_fn, config=config) est.fit(input_fn=test_input.config_test_input_fn, steps=1) # If input_fn ran, it will have given us the random seed set on the graph. self.assertEquals(test_random_seed, test_input.random_seed) def testRunConfigModelDir(self): config = run_config.RunConfig(model_dir='test_dir') est = estimator.Estimator(model_fn=linear_model_fn, config=config) self.assertEqual('test_dir', est.config.model_dir) self.assertEqual('test_dir', est.model_dir) def testModelDirAndRunConfigModelDir(self): config = run_config.RunConfig(model_dir='test_dir') est = estimator.Estimator(model_fn=linear_model_fn, config=config, model_dir='test_dir') self.assertEqual('test_dir', est.config.model_dir) with self.assertRaisesRegexp( ValueError, 'model_dir are set both in constructor and RunConfig, ' 'but with different'): estimator.Estimator(model_fn=linear_model_fn, config=config, model_dir='different_dir') def testModelDirIsCopiedToRunConfig(self): config = run_config.RunConfig() self.assertIsNone(config.model_dir) est = estimator.Estimator(model_fn=linear_model_fn, model_dir='test_dir', config=config) self.assertEqual('test_dir', est.config.model_dir) self.assertEqual('test_dir', est.model_dir) def testModelDirAsTempDir(self): with test.mock.patch.object(tempfile, 'mkdtemp', return_value='temp_dir'): est = estimator.Estimator(model_fn=linear_model_fn) self.assertEqual('temp_dir', est.config.model_dir) self.assertEqual('temp_dir', est.model_dir) def testCheckInputs(self): est = estimator.SKCompat(estimator.Estimator(model_fn=linear_model_fn)) # Lambdas so we have to different objects to compare right_features = lambda: np.ones(shape=[7, 8], dtype=np.float32) right_labels = lambda: np.ones(shape=[7, 10], dtype=np.int32) est.fit(right_features(), right_labels(), steps=1) # TODO(wicke): This does not fail for np.int32 because of data_feeder magic. wrong_type_features = np.ones(shape=[7, 8], dtype=np.int64) wrong_size_features = np.ones(shape=[7, 10]) wrong_type_labels = np.ones(shape=[7, 10], dtype=np.float32) wrong_size_labels = np.ones(shape=[7, 11]) est.fit(x=right_features(), y=right_labels(), steps=1) with self.assertRaises(ValueError): est.fit(x=wrong_type_features, y=right_labels(), steps=1) with self.assertRaises(ValueError): est.fit(x=wrong_size_features, y=right_labels(), steps=1) with self.assertRaises(ValueError): est.fit(x=right_features(), y=wrong_type_labels, steps=1) with self.assertRaises(ValueError): est.fit(x=right_features(), y=wrong_size_labels, steps=1) def testBadInput(self): est = estimator.Estimator(model_fn=linear_model_fn) self.assertRaisesRegexp( ValueError, 'Either x or input_fn must be provided.', est.fit, x=None, input_fn=None, steps=1) self.assertRaisesRegexp( ValueError, 'Can not provide both input_fn and x or y', est.fit, x='X', input_fn=iris_input_fn, steps=1) self.assertRaisesRegexp( ValueError, 'Can not provide both input_fn and x or y', est.fit, y='Y', input_fn=iris_input_fn, steps=1) self.assertRaisesRegexp( ValueError, 'Can not provide both input_fn and batch_size', est.fit, input_fn=iris_input_fn, batch_size=100, steps=1) self.assertRaisesRegexp( ValueError, 'Inputs cannot be tensors. Please provide input_fn.', est.fit, x=constant_op.constant(1.), steps=1) def testUntrained(self): boston = base.load_boston() est = estimator.SKCompat(estimator.Estimator(model_fn=linear_model_fn)) with self.assertRaises(learn.NotFittedError): _ = est.score(x=boston.data, y=boston.target.astype(np.float64)) with self.assertRaises(learn.NotFittedError): est.predict(x=boston.data) def testContinueTraining(self): boston = base.load_boston() output_dir = tempfile.mkdtemp() est = estimator.SKCompat( estimator.Estimator( model_fn=linear_model_fn, model_dir=output_dir)) float64_labels = boston.target.astype(np.float64) est.fit(x=boston.data, y=float64_labels, steps=50) scores = est.score( x=boston.data, y=float64_labels, metrics={'MSE': metric_ops.streaming_mean_squared_error}) del est # Create another estimator object with the same output dir. est2 = estimator.SKCompat( estimator.Estimator( model_fn=linear_model_fn, model_dir=output_dir)) # Check we can evaluate and predict. scores2 = est2.score( x=boston.data, y=float64_labels, metrics={'MSE': metric_ops.streaming_mean_squared_error}) self.assertAllClose(scores['MSE'], scores2['MSE']) predictions = np.array(list(est2.predict(x=boston.data))) other_score = _sklearn.mean_squared_error(predictions, float64_labels) self.assertAllClose(scores['MSE'], other_score) # Check we can keep training. est2.fit(x=boston.data, y=float64_labels, steps=100) scores3 = est2.score( x=boston.data, y=float64_labels, metrics={'MSE': metric_ops.streaming_mean_squared_error}) self.assertLess(scores3['MSE'], scores['MSE']) def test_checkpoint_contains_relative_paths(self): tmpdir = tempfile.mkdtemp() est = estimator.Estimator( model_dir=tmpdir, model_fn=linear_model_fn_with_model_fn_ops) est.fit(input_fn=boston_input_fn, steps=5) checkpoint_file_content = file_io.read_file_to_string( os.path.join(tmpdir, 'checkpoint')) ckpt = checkpoint_state_pb2.CheckpointState() text_format.Merge(checkpoint_file_content, ckpt) self.assertEqual(ckpt.model_checkpoint_path, 'model.ckpt-5') self.assertAllEqual( ['model.ckpt-1', 'model.ckpt-5'], ckpt.all_model_checkpoint_paths) def test_train_save_copy_reload(self): tmpdir = tempfile.mkdtemp() model_dir1 = os.path.join(tmpdir, 'model_dir1') est1 = estimator.Estimator( model_dir=model_dir1, model_fn=linear_model_fn_with_model_fn_ops) est1.fit(input_fn=boston_input_fn, steps=5) model_dir2 = os.path.join(tmpdir, 'model_dir2') os.renames(model_dir1, model_dir2) est2 = estimator.Estimator( model_dir=model_dir2, model_fn=linear_model_fn_with_model_fn_ops) self.assertEqual(5, est2.get_variable_value('global_step')) est2.fit(input_fn=boston_input_fn, steps=5) self.assertEqual(10, est2.get_variable_value('global_step')) def testEstimatorParams(self): boston = base.load_boston() est = estimator.SKCompat( estimator.Estimator( model_fn=linear_model_params_fn, params={'learning_rate': 0.01})) est.fit(x=boston.data, y=boston.target, steps=100) def testHooksNotChanged(self): est = estimator.Estimator(model_fn=logistic_model_no_mode_fn) # We pass empty array and expect it to remain empty after calling # fit and evaluate. Requires inside to copy this array if any hooks were # added. my_array = [] est.fit(input_fn=iris_input_fn, steps=100, monitors=my_array) _ = est.evaluate(input_fn=iris_input_fn, steps=1, hooks=my_array) self.assertEqual(my_array, []) def testIrisIterator(self): iris = base.load_iris() est = estimator.Estimator(model_fn=logistic_model_no_mode_fn) x_iter = itertools.islice(iris.data, 100) y_iter = itertools.islice(iris.target, 100) estimator.SKCompat(est).fit(x_iter, y_iter, steps=20) eval_result = est.evaluate(input_fn=iris_input_fn, steps=1) x_iter_eval = itertools.islice(iris.data, 100) y_iter_eval = itertools.islice(iris.target, 100) score_result = estimator.SKCompat(est).score(x_iter_eval, y_iter_eval) print(score_result) self.assertItemsEqual(eval_result.keys(), score_result.keys()) self.assertItemsEqual(['global_step', 'loss'], score_result.keys()) predictions = estimator.SKCompat(est).predict(x=iris.data)['class'] self.assertEqual(len(predictions), iris.target.shape[0]) def testIrisIteratorArray(self): iris = base.load_iris() est = estimator.Estimator(model_fn=logistic_model_no_mode_fn) x_iter = itertools.islice(iris.data, 100) y_iter = (np.array(x) for x in iris.target) est.fit(x_iter, y_iter, steps=100) _ = est.evaluate(input_fn=iris_input_fn, steps=1) _ = six.next(est.predict(x=iris.data))['class'] def testIrisIteratorPlainInt(self): iris = base.load_iris() est = estimator.Estimator(model_fn=logistic_model_no_mode_fn) x_iter = itertools.islice(iris.data, 100) y_iter = (v for v in iris.target) est.fit(x_iter, y_iter, steps=100) _ = est.evaluate(input_fn=iris_input_fn, steps=1) _ = six.next(est.predict(x=iris.data))['class'] def testIrisTruncatedIterator(self): iris = base.load_iris() est = estimator.Estimator(model_fn=logistic_model_no_mode_fn) x_iter = itertools.islice(iris.data, 50) y_iter = ([np.int32(v)] for v in iris.target) est.fit(x_iter, y_iter, steps=100) def testTrainStepsIsIncremental(self): est = estimator.Estimator(model_fn=linear_model_fn) est.fit(input_fn=boston_input_fn, steps=10) self.assertEqual(10, est.get_variable_value('global_step')) est.fit(input_fn=boston_input_fn, steps=15) self.assertEqual(25, est.get_variable_value('global_step')) def testTrainMaxStepsIsNotIncremental(self): est = estimator.Estimator(model_fn=linear_model_fn) est.fit(input_fn=boston_input_fn, max_steps=10) self.assertEqual(10, est.get_variable_value('global_step')) est.fit(input_fn=boston_input_fn, max_steps=15) self.assertEqual(15, est.get_variable_value('global_step')) def testPredict(self): est = estimator.Estimator(model_fn=linear_model_fn) boston = base.load_boston() est.fit(input_fn=boston_input_fn, steps=1) output = list(est.predict(x=boston.data, batch_size=10)) self.assertEqual(len(output), boston.target.shape[0]) def testWithModelFnOps(self): """Test for model_fn that returns `ModelFnOps`.""" est = estimator.Estimator(model_fn=linear_model_fn_with_model_fn_ops) boston = base.load_boston() est.fit(input_fn=boston_input_fn, steps=1) input_fn = functools.partial(boston_input_fn, num_epochs=1) scores = est.evaluate(input_fn=input_fn, steps=1) self.assertIn('loss', scores.keys()) output = list(est.predict(input_fn=input_fn)) self.assertEqual(len(output), boston.target.shape[0]) def testWrongInput(self): def other_input_fn(): return { 'other': constant_op.constant([0, 0, 0]) }, constant_op.constant([0, 0, 0]) est = estimator.Estimator(model_fn=linear_model_fn) est.fit(input_fn=boston_input_fn, steps=1) with self.assertRaises(ValueError): est.fit(input_fn=other_input_fn, steps=1) def testMonitorsForFit(self): est = estimator.Estimator(model_fn=linear_model_fn) est.fit(input_fn=boston_input_fn, steps=21, monitors=[CheckCallsMonitor(expect_calls=21)]) def testHooksForEvaluate(self): class CheckCallHook(session_run_hook.SessionRunHook): def __init__(self): self.run_count = 0 def after_run(self, run_context, run_values): self.run_count += 1 est = learn.Estimator(model_fn=linear_model_fn) est.fit(input_fn=boston_input_fn, steps=1) hook = CheckCallHook() est.evaluate(input_fn=boston_eval_fn, steps=3, hooks=[hook]) self.assertEqual(3, hook.run_count) def testSummaryWriting(self): est = estimator.Estimator(model_fn=linear_model_fn) est.fit(input_fn=boston_input_fn, steps=200) est.evaluate(input_fn=boston_input_fn, steps=200) loss_summary = util_test.simple_values_from_events( util_test.latest_events(est.model_dir), ['OptimizeLoss/loss']) self.assertEqual(1, len(loss_summary)) def testSummaryWritingWithSummaryProto(self): def _streaming_mean_squared_error_histogram(predictions, labels, weights=None, metrics_collections=None, updates_collections=None, name=None): metrics, update_ops = metric_ops.streaming_mean_squared_error( predictions, labels, weights=weights, metrics_collections=metrics_collections, updates_collections=updates_collections, name=name) return summary.histogram('histogram', metrics), update_ops est = estimator.Estimator(model_fn=linear_model_fn) est.fit(input_fn=boston_input_fn, steps=200) est.evaluate( input_fn=boston_input_fn, steps=200, metrics={'MSE': _streaming_mean_squared_error_histogram}) events = util_test.latest_events(est.model_dir + '/eval') output_values = {} for e in events: if e.HasField('summary'): for v in e.summary.value: output_values[v.tag] = v self.assertTrue('MSE' in output_values) self.assertTrue(output_values['MSE'].HasField('histo')) def testLossInGraphCollection(self): class _LossCheckerHook(session_run_hook.SessionRunHook): def begin(self): self.loss_collection = ops.get_collection(ops.GraphKeys.LOSSES) hook = _LossCheckerHook() est = estimator.Estimator(model_fn=linear_model_fn) est.fit(input_fn=boston_input_fn, steps=200, monitors=[hook]) self.assertTrue(hook.loss_collection) def test_export_returns_exported_dirname(self): expected = '/path/to/some_dir' with test.mock.patch.object(estimator, 'export') as mock_export_module: mock_export_module._export_estimator.return_value = expected est = estimator.Estimator(model_fn=linear_model_fn) actual = est.export('/path/to') self.assertEquals(expected, actual) def test_export_savedmodel(self): tmpdir = tempfile.mkdtemp() est, serving_input_fn = _build_estimator_for_export_tests(tmpdir) extra_file_name = os.path.join( compat.as_bytes(tmpdir), compat.as_bytes('my_extra_file')) extra_file = gfile.GFile(extra_file_name, mode='w') extra_file.write(EXTRA_FILE_CONTENT) extra_file.close() assets_extra = {'some/sub/directory/my_extra_file': extra_file_name} export_dir_base = os.path.join( compat.as_bytes(tmpdir), compat.as_bytes('export')) export_dir = est.export_savedmodel( export_dir_base, serving_input_fn, assets_extra=assets_extra) self.assertTrue(gfile.Exists(export_dir_base)) self.assertTrue(gfile.Exists(export_dir)) self.assertTrue( gfile.Exists( os.path.join( compat.as_bytes(export_dir), compat.as_bytes( 'saved_model.pb')))) self.assertTrue( gfile.Exists( os.path.join( compat.as_bytes(export_dir), compat.as_bytes('variables')))) self.assertTrue( gfile.Exists( os.path.join( compat.as_bytes(export_dir), compat.as_bytes('variables/variables.index')))) self.assertTrue( gfile.Exists( os.path.join( compat.as_bytes(export_dir), compat.as_bytes('variables/variables.data-00000-of-00001')))) self.assertTrue( gfile.Exists( os.path.join( compat.as_bytes(export_dir), compat.as_bytes('assets')))) self.assertTrue( gfile.Exists( os.path.join( compat.as_bytes(export_dir), compat.as_bytes('assets/my_vocab_file')))) self.assertEqual( compat.as_bytes(VOCAB_FILE_CONTENT), compat.as_bytes( gfile.GFile( os.path.join( compat.as_bytes(export_dir), compat.as_bytes('assets/my_vocab_file'))).read())) expected_extra_path = os.path.join( compat.as_bytes(export_dir), compat.as_bytes('assets.extra/some/sub/directory/my_extra_file')) self.assertTrue( gfile.Exists( os.path.join( compat.as_bytes(export_dir), compat.as_bytes('assets.extra')))) self.assertTrue(gfile.Exists(expected_extra_path)) self.assertEqual( compat.as_bytes(EXTRA_FILE_CONTENT), compat.as_bytes(gfile.GFile(expected_extra_path).read())) expected_vocab_file = os.path.join( compat.as_bytes(tmpdir), compat.as_bytes('my_vocab_file')) # Restore, to validate that the export was well-formed. with ops.Graph().as_default() as graph: with session_lib.Session(graph=graph) as sess: loader.load(sess, [tag_constants.SERVING], export_dir) assets = [ x.eval() for x in graph.get_collection(ops.GraphKeys.ASSET_FILEPATHS) ] self.assertItemsEqual([expected_vocab_file], assets) graph_ops = [x.name for x in graph.get_operations()] self.assertTrue('input_example_tensor' in graph_ops) self.assertTrue('ParseExample/ParseExample' in graph_ops) self.assertTrue('linear/linear/feature/matmul' in graph_ops) self.assertItemsEqual( ['bogus_lookup', 'feature'], [compat.as_str_any(x) for x in graph.get_collection( constants.COLLECTION_DEF_KEY_FOR_INPUT_FEATURE_KEYS)]) # cleanup gfile.DeleteRecursively(tmpdir) def test_export_savedmodel_with_resource(self): tmpdir = tempfile.mkdtemp() est, serving_input_fn = _build_estimator_for_resource_export_test() export_dir_base = os.path.join( compat.as_bytes(tmpdir), compat.as_bytes('export')) export_dir = est.export_savedmodel(export_dir_base, serving_input_fn) self.assertTrue(gfile.Exists(export_dir_base)) self.assertTrue(gfile.Exists(export_dir)) self.assertTrue( gfile.Exists( os.path.join( compat.as_bytes(export_dir), compat.as_bytes( 'saved_model.pb')))) self.assertTrue( gfile.Exists( os.path.join( compat.as_bytes(export_dir), compat.as_bytes('variables')))) self.assertTrue( gfile.Exists( os.path.join( compat.as_bytes(export_dir), compat.as_bytes('variables/variables.index')))) self.assertTrue( gfile.Exists( os.path.join( compat.as_bytes(export_dir), compat.as_bytes('variables/variables.data-00000-of-00001')))) # Restore, to validate that the export was well-formed. with ops.Graph().as_default() as graph: with session_lib.Session(graph=graph) as sess: loader.load(sess, [tag_constants.SERVING], export_dir) graph_ops = [x.name for x in graph.get_operations()] self.assertTrue('input_example_tensor' in graph_ops) self.assertTrue('ParseExample/ParseExample' in graph_ops) self.assertTrue('LookupTableModel' in graph_ops) self.assertFalse('LookupTableTrainingState' in graph_ops) # cleanup gfile.DeleteRecursively(tmpdir) def test_export_savedmodel_with_graph_transforms(self): tmpdir = tempfile.mkdtemp() est, serving_input_fn = _build_estimator_for_export_tests(tmpdir) extra_file_name = os.path.join( compat.as_bytes(tmpdir), compat.as_bytes('my_extra_file')) extra_file = gfile.GFile(extra_file_name, mode='w') extra_file.write(EXTRA_FILE_CONTENT) extra_file.close() assets_extra = {'some/sub/directory/my_extra_file': extra_file_name} export_dir_base = os.path.join( compat.as_bytes(tmpdir), compat.as_bytes('export')) export_dir = est.export_savedmodel( export_dir_base, serving_input_fn, assets_extra=assets_extra, graph_rewrite_specs=[ estimator.GraphRewriteSpec(['tag_1'], []), estimator.GraphRewriteSpec(['tag_2', 'tag_3'], ['strip_unused_nodes'])]) self.assertTrue(gfile.Exists(export_dir_base)) self.assertTrue(gfile.Exists(export_dir)) self.assertTrue( gfile.Exists( os.path.join( compat.as_bytes(export_dir), compat.as_bytes( 'saved_model.pb')))) self.assertTrue( gfile.Exists( os.path.join( compat.as_bytes(export_dir), compat.as_bytes('variables')))) self.assertTrue( gfile.Exists( os.path.join( compat.as_bytes(export_dir), compat.as_bytes('variables/variables.index')))) self.assertTrue( gfile.Exists( os.path.join( compat.as_bytes(export_dir), compat.as_bytes('variables/variables.data-00000-of-00001')))) self.assertTrue( gfile.Exists( os.path.join( compat.as_bytes(export_dir), compat.as_bytes('assets')))) self.assertTrue( gfile.Exists( os.path.join( compat.as_bytes(export_dir), compat.as_bytes('assets/my_vocab_file')))) self.assertEqual( compat.as_bytes(VOCAB_FILE_CONTENT), compat.as_bytes( gfile.GFile( os.path.join( compat.as_bytes(export_dir), compat.as_bytes('assets/my_vocab_file'))).read())) expected_extra_path = os.path.join( compat.as_bytes(export_dir), compat.as_bytes('assets.extra/some/sub/directory/my_extra_file')) self.assertTrue( gfile.Exists( os.path.join( compat.as_bytes(export_dir), compat.as_bytes('assets.extra')))) self.assertTrue(gfile.Exists(expected_extra_path)) self.assertEqual( compat.as_bytes(EXTRA_FILE_CONTENT), compat.as_bytes(gfile.GFile(expected_extra_path).read())) expected_vocab_file = os.path.join( compat.as_bytes(tmpdir), compat.as_bytes('my_vocab_file')) # Restore, to validate that the export was well-formed. # tag_1 is untransformed. tags = ['tag_1'] with ops.Graph().as_default() as graph: with session_lib.Session(graph=graph) as sess: loader.load(sess, tags, export_dir) assets = [ x.eval() for x in graph.get_collection(ops.GraphKeys.ASSET_FILEPATHS) ] self.assertItemsEqual([expected_vocab_file], assets) graph_ops = [x.name for x in graph.get_operations()] self.assertTrue('input_example_tensor' in graph_ops) self.assertTrue('ParseExample/ParseExample' in graph_ops) self.assertTrue('linear/linear/feature/matmul' in graph_ops) # Since there were no transforms, both save ops are still present. self.assertTrue('save/SaveV2/tensor_names' in graph_ops) self.assertTrue('save_1/SaveV2/tensor_names' in graph_ops) # Since there were no transforms, the hash table lookup is still there. self.assertTrue('hash_table_Lookup' in graph_ops) # Restore, to validate that the export was well-formed. # tag_2, tag_3 was subjected to strip_unused_nodes. tags = ['tag_2', 'tag_3'] with ops.Graph().as_default() as graph: with session_lib.Session(graph=graph) as sess: loader.load(sess, tags, export_dir) assets = [ x.eval() for x in graph.get_collection(ops.GraphKeys.ASSET_FILEPATHS) ] self.assertItemsEqual([expected_vocab_file], assets) graph_ops = [x.name for x in graph.get_operations()] self.assertTrue('input_example_tensor' in graph_ops) self.assertTrue('ParseExample/ParseExample' in graph_ops) self.assertTrue('linear/linear/feature/matmul' in graph_ops) # The Saver used to restore the checkpoint into the export Session # was not added to the SAVERS collection, so strip_unused_nodes removes # it. The one explicitly created in export_savedmodel is tracked in # the MetaGraphDef saver_def field, so that one is retained. # TODO(soergel): Make Savers sane again. I understand this is all a bit # nuts but for now the test demonstrates what actually happens. self.assertFalse('save/SaveV2/tensor_names' in graph_ops) self.assertTrue('save_1/SaveV2/tensor_names' in graph_ops) # The fake hash table lookup wasn't connected to anything; stripped. self.assertFalse('hash_table_Lookup' in graph_ops) # cleanup gfile.DeleteRecursively(tmpdir) class InferRealValuedColumnsTest(test.TestCase): def testInvalidArgs(self): with self.assertRaisesRegexp(ValueError, 'x or input_fn must be provided'): estimator.infer_real_valued_columns_from_input(None) with self.assertRaisesRegexp(ValueError, 'cannot be tensors'): estimator.infer_real_valued_columns_from_input(constant_op.constant(1.0)) def _assert_single_feature_column(self, expected_shape, expected_dtype, feature_columns): self.assertEqual(1, len(feature_columns)) feature_column = feature_columns[0] self.assertEqual('', feature_column.name) self.assertEqual( { '': parsing_ops.FixedLenFeature( shape=expected_shape, dtype=expected_dtype) }, feature_column.config) def testInt32Input(self): feature_columns = estimator.infer_real_valued_columns_from_input( np.ones( shape=[7, 8], dtype=np.int32)) self._assert_single_feature_column([8], dtypes.int32, feature_columns) def testInt32InputFn(self): feature_columns = estimator.infer_real_valued_columns_from_input_fn( lambda: (array_ops.ones(shape=[7, 8], dtype=dtypes.int32), None)) self._assert_single_feature_column([8], dtypes.int32, feature_columns) def testInt64Input(self): feature_columns = estimator.infer_real_valued_columns_from_input( np.ones( shape=[7, 8], dtype=np.int64)) self._assert_single_feature_column([8], dtypes.int64, feature_columns) def testInt64InputFn(self): feature_columns = estimator.infer_real_valued_columns_from_input_fn( lambda: (array_ops.ones(shape=[7, 8], dtype=dtypes.int64), None)) self._assert_single_feature_column([8], dtypes.int64, feature_columns) def testFloat32Input(self): feature_columns = estimator.infer_real_valued_columns_from_input( np.ones( shape=[7, 8], dtype=np.float32)) self._assert_single_feature_column([8], dtypes.float32, feature_columns) def testFloat32InputFn(self): feature_columns = estimator.infer_real_valued_columns_from_input_fn( lambda: (array_ops.ones(shape=[7, 8], dtype=dtypes.float32), None)) self._assert_single_feature_column([8], dtypes.float32, feature_columns) def testFloat64Input(self): feature_columns = estimator.infer_real_valued_columns_from_input( np.ones( shape=[7, 8], dtype=np.float64)) self._assert_single_feature_column([8], dtypes.float64, feature_columns) def testFloat64InputFn(self): feature_columns = estimator.infer_real_valued_columns_from_input_fn( lambda: (array_ops.ones(shape=[7, 8], dtype=dtypes.float64), None)) self._assert_single_feature_column([8], dtypes.float64, feature_columns) def testBoolInput(self): with self.assertRaisesRegexp( ValueError, 'on integer or non floating types are not supported'): estimator.infer_real_valued_columns_from_input( np.array([[False for _ in xrange(8)] for _ in xrange(7)])) def testBoolInputFn(self): with self.assertRaisesRegexp( ValueError, 'on integer or non floating types are not supported'): # pylint: disable=g-long-lambda estimator.infer_real_valued_columns_from_input_fn( lambda: (constant_op.constant(False, shape=[7, 8], dtype=dtypes.bool), None)) def testStringInput(self): with self.assertRaisesRegexp( ValueError, 'on integer or non floating types are not supported'): # pylint: disable=g-long-lambda estimator.infer_real_valued_columns_from_input( np.array([['%d.0' % i for i in xrange(8)] for _ in xrange(7)])) def testStringInputFn(self): with self.assertRaisesRegexp( ValueError, 'on integer or non floating types are not supported'): # pylint: disable=g-long-lambda estimator.infer_real_valued_columns_from_input_fn( lambda: ( constant_op.constant([['%d.0' % i for i in xrange(8)] for _ in xrange(7)]), None)) def testBostonInputFn(self): feature_columns = estimator.infer_real_valued_columns_from_input_fn( boston_input_fn) self._assert_single_feature_column([_BOSTON_INPUT_DIM], dtypes.float64, feature_columns) def testIrisInputFn(self): feature_columns = estimator.infer_real_valued_columns_from_input_fn( iris_input_fn) self._assert_single_feature_column([_IRIS_INPUT_DIM], dtypes.float64, feature_columns) class ReplicaDeviceSetterTest(test.TestCase): def testVariablesAreOnPs(self): tf_config = {'cluster': {run_config.TaskType.PS: ['fake_ps_0']}} with test.mock.patch.dict('os.environ', {'TF_CONFIG': json.dumps(tf_config)}): config = run_config.RunConfig() with ops.device(estimator._get_replica_device_setter(config)): v = variables_lib.Variable([1, 2]) w = variables_lib.Variable([2, 1]) a = v + w self.assertDeviceEqual('/job:ps/task:0', v.device) self.assertDeviceEqual('/job:ps/task:0', v.initializer.device) self.assertDeviceEqual('/job:ps/task:0', w.device) self.assertDeviceEqual('/job:ps/task:0', w.initializer.device) self.assertDeviceEqual('/job:worker', a.device) def testVariablesAreLocal(self): with ops.device( estimator._get_replica_device_setter(run_config.RunConfig())): v = variables_lib.Variable([1, 2]) w = variables_lib.Variable([2, 1]) a = v + w self.assertDeviceEqual('', v.device) self.assertDeviceEqual('', v.initializer.device) self.assertDeviceEqual('', w.device) self.assertDeviceEqual('', w.initializer.device) self.assertDeviceEqual('', a.device) def testMutableHashTableIsOnPs(self): tf_config = {'cluster': {run_config.TaskType.PS: ['fake_ps_0']}} with test.mock.patch.dict('os.environ', {'TF_CONFIG': json.dumps(tf_config)}): config = run_config.RunConfig() with ops.device(estimator._get_replica_device_setter(config)): default_val = constant_op.constant([-1, -1], dtypes.int64) table = lookup.MutableHashTable(dtypes.string, dtypes.int64, default_val) input_string = constant_op.constant(['brain', 'salad', 'tank']) output = table.lookup(input_string) self.assertDeviceEqual('/job:ps/task:0', table._table_ref.device) self.assertDeviceEqual('/job:ps/task:0', output.device) def testMutableHashTableIsLocal(self): with ops.device( estimator._get_replica_device_setter(run_config.RunConfig())): default_val = constant_op.constant([-1, -1], dtypes.int64) table = lookup.MutableHashTable(dtypes.string, dtypes.int64, default_val) input_string = constant_op.constant(['brain', 'salad', 'tank']) output = table.lookup(input_string) self.assertDeviceEqual('', table._table_ref.device) self.assertDeviceEqual('', output.device) def testTaskIsSetOnWorkerWhenJobNameIsSet(self): tf_config = { 'cluster': { run_config.TaskType.PS: ['fake_ps_0'] }, 'task': { 'type': run_config.TaskType.WORKER, 'index': 3 } } with test.mock.patch.dict('os.environ', {'TF_CONFIG': json.dumps(tf_config)}): config = run_config.RunConfig() with ops.device(estimator._get_replica_device_setter(config)): v = variables_lib.Variable([1, 2]) w = variables_lib.Variable([2, 1]) a = v + w self.assertDeviceEqual('/job:ps/task:0', v.device) self.assertDeviceEqual('/job:ps/task:0', v.initializer.device) self.assertDeviceEqual('/job:ps/task:0', w.device) self.assertDeviceEqual('/job:ps/task:0', w.initializer.device) self.assertDeviceEqual('/job:worker/task:3', a.device) if __name__ == '__main__': test.main()
apache-2.0
mne-tools/mne-python
tutorials/epochs/50_epochs_to_data_frame.py
10
6955
""" .. _tut-epochs-dataframe: Exporting Epochs to Pandas DataFrames ===================================== This tutorial shows how to export the data in :class:`~mne.Epochs` objects to a :class:`Pandas DataFrame <pandas.DataFrame>`, and applies a typical Pandas :doc:`split-apply-combine <pandas:user_guide/groupby>` workflow to examine the latencies of the response maxima across epochs and conditions. We'll use the :ref:`sample-dataset` dataset, but load a version of the raw file that has already been filtered and downsampled, and has an average reference applied to its EEG channels. As usual we'll start by importing the modules we need and loading the data: """ import os import seaborn as sns import mne sample_data_folder = mne.datasets.sample.data_path() sample_data_raw_file = os.path.join(sample_data_folder, 'MEG', 'sample', 'sample_audvis_filt-0-40_raw.fif') raw = mne.io.read_raw_fif(sample_data_raw_file, verbose=False) ############################################################################### # Next we'll load a list of events from file, map them to condition names with # an event dictionary, set some signal rejection thresholds (cf. # :ref:`tut-reject-epochs-section`), and segment the continuous data into # epochs: sample_data_events_file = os.path.join(sample_data_folder, 'MEG', 'sample', 'sample_audvis_filt-0-40_raw-eve.fif') events = mne.read_events(sample_data_events_file) event_dict = {'auditory/left': 1, 'auditory/right': 2, 'visual/left': 3, 'visual/right': 4} reject_criteria = dict(mag=3000e-15, # 3000 fT grad=3000e-13, # 3000 fT/cm eeg=100e-6, # 100 µV eog=200e-6) # 200 µV tmin, tmax = (-0.2, 0.5) # epoch from 200 ms before event to 500 ms after it baseline = (None, 0) # baseline period from start of epoch to time=0 epochs = mne.Epochs(raw, events, event_dict, tmin, tmax, proj=True, baseline=baseline, reject=reject_criteria, preload=True) del raw ############################################################################### # Converting an ``Epochs`` object to a ``DataFrame`` # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ # # Once we have our :class:`~mne.Epochs` object, converting it to a # :class:`~pandas.DataFrame` is simple: just call :meth:`epochs.to_data_frame() # <mne.Epochs.to_data_frame>`. Each channel's data will be a column of the new # :class:`~pandas.DataFrame`, alongside three additional columns of event name, # epoch number, and sample time. Here we'll just show the first few rows and # columns: df = epochs.to_data_frame() df.iloc[:5, :10] ############################################################################### # Scaling time and channel values # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # By default, time values are converted from seconds to milliseconds and # then rounded to the nearest integer; if you don't want this, you can pass # ``time_format=None`` to keep time as a :class:`float` value in seconds, or # convert it to a :class:`~pandas.Timedelta` value via # ``time_format='timedelta'``. # # Note also that, by default, channel measurement values are scaled so that EEG # data are converted to µV, magnetometer data are converted to fT, and # gradiometer data are converted to fT/cm. These scalings can be customized # through the ``scalings`` parameter, or suppressed by passing # ``scalings=dict(eeg=1, mag=1, grad=1)``. df = epochs.to_data_frame(time_format=None, scalings=dict(eeg=1, mag=1, grad=1)) df.iloc[:5, :10] ############################################################################### # Notice that the time values are no longer integers, and the channel values # have changed by several orders of magnitude compared to the earlier # DataFrame. # # # Setting the ``index`` # ~~~~~~~~~~~~~~~~~~~~~ # # It is also possible to move one or more of the indicator columns (event name, # epoch number, and sample time) into the :ref:`index <pandas:indexing>`, by # passing a string or list of strings as the ``index`` parameter. We'll also # demonstrate here the effect of ``time_format='timedelta'``, yielding # :class:`~pandas.Timedelta` values in the "time" column. df = epochs.to_data_frame(index=['condition', 'epoch'], time_format='timedelta') df.iloc[:5, :10] ############################################################################### # Wide- versus long-format DataFrames # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # Another parameter, ``long_format``, determines whether each channel's data is # in a separate column of the :class:`~pandas.DataFrame` # (``long_format=False``), or whether the measured values are pivoted into a # single ``'value'`` column with an extra indicator column for the channel name # (``long_format=True``). Passing ``long_format=True`` will also create an # extra column ``ch_type`` indicating the channel type. long_df = epochs.to_data_frame(time_format=None, index='condition', long_format=True) long_df.head() ############################################################################### # Generating the :class:`~pandas.DataFrame` in long format can be helpful when # using other Python modules for subsequent analysis or plotting. For example, # here we'll take data from the "auditory/left" condition, pick a couple MEG # channels, and use :func:`seaborn.lineplot` to automatically plot the mean and # confidence band for each channel, with confidence computed across the epochs # in the chosen condition: channels = ['MEG 1332', 'MEG 1342'] data = long_df.loc['auditory/left'].query('channel in @channels') # convert channel column (CategoryDtype → string; for a nicer-looking legend) data['channel'] = data['channel'].astype(str) sns.lineplot(x='time', y='value', hue='channel', data=data) ############################################################################### # We can also now use all the power of Pandas for grouping and transforming our # data. Here, we find the latency of peak activation of 2 gradiometers (one # near auditory cortex and one near visual cortex), and plot the distribution # of the timing of the peak in each channel as a :func:`~seaborn.violinplot`: # sphinx_gallery_thumbnail_number = 2 df = epochs.to_data_frame(time_format=None) peak_latency = (df.filter(regex=r'condition|epoch|MEG 1332|MEG 2123') .groupby(['condition', 'epoch']) .aggregate(lambda x: df['time'].iloc[x.idxmax()]) .reset_index() .melt(id_vars=['condition', 'epoch'], var_name='channel', value_name='latency of peak') ) ax = sns.violinplot(x='channel', y='latency of peak', hue='condition', data=peak_latency, palette='deep', saturation=1)
bsd-3-clause
AndreasMadsen/tensorflow
tensorflow/contrib/learn/python/learn/estimators/__init__.py
3
11622
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """An estimator is a rule for calculating an estimate of a given quantity. # Estimators * **Estimators** are used to train and evaluate TensorFlow models. They support regression and classification problems. * **Classifiers** are functions that have discrete outcomes. * **Regressors** are functions that predict continuous values. ## Choosing the correct estimator * For **Regression** problems use one of the following: * `LinearRegressor`: Uses linear model. * `DNNRegressor`: Uses DNN. * `DNNLinearCombinedRegressor`: Uses Wide & Deep. * `TensorForestEstimator`: Uses RandomForest. Use `.predict()` for regression problems. * `Estimator`: Use when you need a custom model. * For **Classification** problems use one of the following: * `LinearClassifier`: Multiclass classifier using Linear model. * `DNNClassifier`: Multiclass classifier using DNN. * `DNNLinearCombinedClassifier`: Multiclass classifier using Wide & Deep. * `TensorForestEstimator`: Uses RandomForest. Use `.predict_proba()` when using for binary classification problems. * `SVM`: Binary classifier using linear SVMs. * `LogisticRegressor`: Use when you need custom model for binary classification. * `Estimator`: Use when you need custom model for N class classification. ## Pre-canned Estimators Pre-canned estimators are machine learning estimators premade for general purpose problems. If you need more customization, you can always write your own custom estimator as described in the section below. Pre-canned estimators are tested and optimized for speed and quality. ### Define the feature columns Here are some possible types of feature columns used as inputs to a pre-canned estimator. Feature columns may vary based on the estimator used. So you can see which feature columns are fed to each estimator in the below section. ```python sparse_feature_a = sparse_column_with_keys( column_name="sparse_feature_a", keys=["AB", "CD", ...]) embedding_feature_a = embedding_column( sparse_id_column=sparse_feature_a, dimension=3, combiner="sum") sparse_feature_b = sparse_column_with_hash_bucket( column_name="sparse_feature_b", hash_bucket_size=1000) embedding_feature_b = embedding_column( sparse_id_column=sparse_feature_b, dimension=16, combiner="sum") crossed_feature_a_x_b = crossed_column( columns=[sparse_feature_a, sparse_feature_b], hash_bucket_size=10000) real_feature = real_valued_column("real_feature") real_feature_buckets = bucketized_column( source_column=real_feature, boundaries=[18, 25, 30, 35, 40, 45, 50, 55, 60, 65]) ``` ### Create the pre-canned estimator DNNClassifier, DNNRegressor, and DNNLinearCombinedClassifier are all pretty similar to each other in how you use them. You can easily plug in an optimizer and/or regularization to those estimators. #### DNNClassifier A classifier for TensorFlow DNN models. ```python my_features = [embedding_feature_a, embedding_feature_b] estimator = DNNClassifier( feature_columns=my_features, hidden_units=[1024, 512, 256], optimizer=tf.train.ProximalAdagradOptimizer( learning_rate=0.1, l1_regularization_strength=0.001 )) ``` #### DNNRegressor A regressor for TensorFlow DNN models. ```python my_features = [embedding_feature_a, embedding_feature_b] estimator = DNNRegressor( feature_columns=my_features, hidden_units=[1024, 512, 256]) # Or estimator using the ProximalAdagradOptimizer optimizer with # regularization. estimator = DNNRegressor( feature_columns=my_features, hidden_units=[1024, 512, 256], optimizer=tf.train.ProximalAdagradOptimizer( learning_rate=0.1, l1_regularization_strength=0.001 )) ``` #### DNNLinearCombinedClassifier A classifier for TensorFlow Linear and DNN joined training models. * Wide and deep model * Multi class (2 by default) ```python my_linear_features = [crossed_feature_a_x_b] my_deep_features = [embedding_feature_a, embedding_feature_b] estimator = DNNLinearCombinedClassifier( # Common settings n_classes=n_classes, weight_column_name=weight_column_name, # Wide settings linear_feature_columns=my_linear_features, linear_optimizer=tf.train.FtrlOptimizer(...), # Deep settings dnn_feature_columns=my_deep_features, dnn_hidden_units=[1000, 500, 100], dnn_optimizer=tf.train.AdagradOptimizer(...)) ``` #### LinearClassifier Train a linear model to classify instances into one of multiple possible classes. When number of possible classes is 2, this is binary classification. ```python my_features = [sparse_feature_b, crossed_feature_a_x_b] estimator = LinearClassifier( feature_columns=my_features, optimizer=tf.train.FtrlOptimizer( learning_rate=0.1, l1_regularization_strength=0.001 )) ``` #### LinearRegressor Train a linear regression model to predict a label value given observation of feature values. ```python my_features = [sparse_feature_b, crossed_feature_a_x_b] estimator = LinearRegressor( feature_columns=my_features) ``` ### LogisticRegressor Logistic regression estimator for binary classification. ```python # See tf.contrib.learn.Estimator(...) for details on model_fn structure def my_model_fn(...): pass estimator = LogisticRegressor(model_fn=my_model_fn) # Input builders def input_fn_train: pass estimator.fit(input_fn=input_fn_train) estimator.predict(x=x) ``` #### SVM - Support Vector Machine Support Vector Machine (SVM) model for binary classification. Currently only linear SVMs are supported. ```python my_features = [real_feature, sparse_feature_a] estimator = SVM( example_id_column='example_id', feature_columns=my_features, l2_regularization=10.0) ``` #### TensorForestEstimator Supports regression and binary classification. ```python params = tf.contrib.tensor_forest.python.tensor_forest.ForestHParams( num_classes=2, num_features=40, num_trees=10, max_nodes=1000) # Estimator using the default graph builder. estimator = TensorForestEstimator(params, model_dir=model_dir) # Or estimator using TrainingLossForest as the graph builder. estimator = TensorForestEstimator( params, graph_builder_class=tensor_forest.TrainingLossForest, model_dir=model_dir) # Input builders def input_fn_train: # returns x, y ... def input_fn_eval: # returns x, y ... estimator.fit(input_fn=input_fn_train) estimator.evaluate(input_fn=input_fn_eval) estimator.predict(x=x) ``` ### Use the estimator There are two main functions for using estimators, one of which is for training, and one of which is for evaluation. You can specify different data sources for each one in order to use different datasets for train and eval. ```python # Input builders def input_fn_train: # returns x, Y ... estimator.fit(input_fn=input_fn_train) def input_fn_eval: # returns x, Y ... estimator.evaluate(input_fn=input_fn_eval) estimator.predict(x=x) ``` ## Creating Custom Estimator To create a custom `Estimator`, provide a function to `Estimator`'s constructor that builds your model (`model_fn`, below): ```python estimator = tf.contrib.learn.Estimator( model_fn=model_fn, model_dir=model_dir) # Where the model's data (e.g., checkpoints) # are saved. ``` Here is a skeleton of this function, with descriptions of its arguments and return values in the accompanying tables: ```python def model_fn(features, targets, mode, params): # Logic to do the following: # 1. Configure the model via TensorFlow operations # 2. Define the loss function for training/evaluation # 3. Define the training operation/optimizer # 4. Generate predictions return predictions, loss, train_op ``` You may use `mode` and check against `tf.contrib.learn.ModeKeys.{TRAIN, EVAL, INFER}` to parameterize `model_fn`. In the Further Reading section below, there is an end-to-end TensorFlow tutorial for building a custom estimator. ## Additional Estimators There is an additional estimators under `tensorflow.contrib.factorization.python.ops`: * Gaussian mixture model (GMM) clustering ## Further reading For further reading, there are several tutorials with relevant topics, including: * [Overview of linear models](../../../tutorials/linear/overview.md) * [Linear model tutorial](../../../tutorials/wide/index.md) * [Wide and deep learning tutorial](../../../tutorials/wide_and_deep/index.md) * [Custom estimator tutorial](../../../tutorials/estimators/index.md) * [Building input functions](../../../tutorials/input_fn/index.md) """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.learn.python.learn.estimators._sklearn import NotFittedError from tensorflow.contrib.learn.python.learn.estimators.classifier import Classifier from tensorflow.contrib.learn.python.learn.estimators.dnn import DNNClassifier from tensorflow.contrib.learn.python.learn.estimators.dnn import DNNRegressor from tensorflow.contrib.learn.python.learn.estimators.dnn_linear_combined import DNNLinearCombinedClassifier from tensorflow.contrib.learn.python.learn.estimators.dnn_linear_combined import DNNLinearCombinedRegressor from tensorflow.contrib.learn.python.learn.estimators.estimator import BaseEstimator from tensorflow.contrib.learn.python.learn.estimators.estimator import Estimator from tensorflow.contrib.learn.python.learn.estimators.estimator import infer_real_valued_columns_from_input from tensorflow.contrib.learn.python.learn.estimators.estimator import infer_real_valued_columns_from_input_fn from tensorflow.contrib.learn.python.learn.estimators.estimator import SKCompat from tensorflow.contrib.learn.python.learn.estimators.kmeans import KMeansClustering from tensorflow.contrib.learn.python.learn.estimators.linear import LinearClassifier from tensorflow.contrib.learn.python.learn.estimators.linear import LinearRegressor from tensorflow.contrib.learn.python.learn.estimators.logistic_regressor import LogisticRegressor from tensorflow.contrib.learn.python.learn.estimators.metric_key import MetricKey from tensorflow.contrib.learn.python.learn.estimators.model_fn import ModeKeys from tensorflow.contrib.learn.python.learn.estimators.prediction_key import PredictionKey from tensorflow.contrib.learn.python.learn.estimators.random_forest import TensorForestEstimator from tensorflow.contrib.learn.python.learn.estimators.random_forest import TensorForestLossHook from tensorflow.contrib.learn.python.learn.estimators.run_config import ClusterConfig from tensorflow.contrib.learn.python.learn.estimators.run_config import Environment from tensorflow.contrib.learn.python.learn.estimators.run_config import RunConfig from tensorflow.contrib.learn.python.learn.estimators.run_config import TaskType from tensorflow.contrib.learn.python.learn.estimators.svm import SVM
apache-2.0
runt18/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/backends/backend_wx.py
1
77246
from __future__ import division """ backend_wx.py A wxPython backend for matplotlib, based (very heavily) on backend_template.py and backend_gtk.py Author: Jeremy O'Donoghue ([email protected]) Derived from original copyright work by John Hunter ([email protected]) Copyright (C) Jeremy O'Donoghue & John Hunter, 2003-4 License: This work is licensed under a PSF compatible license. A copy should be included with this source code. """ """ KNOWN BUGS - - Mousewheel (on Windows) only works after menu button has been pressed at least once - Mousewheel on Linux (wxGTK linked against GTK 1.2) does not work at all - Vertical text renders horizontally if you use a non TrueType font on Windows. This is a known wxPython issue. Work-around is to ensure that you use a TrueType font. - Pcolor demo puts chart slightly outside bounding box (approx 1-2 pixels to the bottom left) - Outputting to bitmap more than 300dpi results in some text being incorrectly scaled. Seems to be a wxPython bug on Windows or font point sizes > 60, as font size is correctly calculated. - Performance poorer than for previous direct rendering version - TIFF output not supported on wxGTK. This is a wxGTK issue - Text is not anti-aliased on wxGTK. This is probably a platform configuration issue. - If a second call is made to show(), no figure is generated (#866965) Not implemented: - Printing Fixed this release: - Bug #866967: Interactive operation issues fixed [JDH] - Bug #866969: Dynamic update does not function with backend_wx [JOD] Examples which work on this release: --------------------------------------------------------------- | Windows 2000 | Linux | | wxPython 2.3.3 | wxPython 2.4.2.4 | --------------------------------------------------------------| - alignment_test.py | TBE | OK | - arctest.py | TBE | (3) | - axes_demo.py | OK | OK | - axes_props.py | OK | OK | - bar_stacked.py | TBE | OK | - barchart_demo.py | OK | OK | - color_demo.py | OK | OK | - csd_demo.py | OK | OK | - dynamic_demo.py | N/A | N/A | - dynamic_demo_wx.py | TBE | OK | - embedding_in_gtk.py | N/A | N/A | - embedding_in_wx.py | OK | OK | - errorbar_demo.py | OK | OK | - figtext.py | OK | OK | - histogram_demo.py | OK | OK | - interactive.py | N/A (2) | N/A (2) | - interactive2.py | N/A (2) | N/A (2) | - legend_demo.py | OK | OK | - legend_demo2.py | OK | OK | - line_styles.py | OK | OK | - log_demo.py | OK | OK | - logo.py | OK | OK | - mpl_with_glade.py | N/A (2) | N/A (2) | - mri_demo.py | OK | OK | - mri_demo_with_eeg.py | OK | OK | - multiple_figs_demo.py | OK | OK | - pcolor_demo.py | OK | OK | - psd_demo.py | OK | OK | - scatter_demo.py | OK | OK | - scatter_demo2.py | OK | OK | - simple_plot.py | OK | OK | - stock_demo.py | OK | OK | - subplot_demo.py | OK | OK | - system_monitor.py | N/A (2) | N/A (2) | - text_handles.py | OK | OK | - text_themes.py | OK | OK | - vline_demo.py | OK | OK | --------------------------------------------------------------- (2) - Script uses GTK-specific features - cannot not run, but wxPython equivalent should be written. (3) - Clipping seems to be broken. """ cvs_id = '$Id: backend_wx.py 6484 2008-12-03 18:38:03Z jdh2358 $' import sys, os, os.path, math, StringIO, weakref, warnings import numpy as npy # Debugging settings here... # Debug level set here. If the debug level is less than 5, information # messages (progressively more info for lower value) are printed. In addition, # traceback is performed, and pdb activated, for all uncaught exceptions in # this case _DEBUG = 5 if _DEBUG < 5: import traceback, pdb _DEBUG_lvls = {1 : 'Low ', 2 : 'Med ', 3 : 'High', 4 : 'Error' } try: import wx backend_version = wx.VERSION_STRING except: raise ImportError("Matplotlib backend_wx requires wxPython be installed") #!!! this is the call that is causing the exception swallowing !!! #wx.InitAllImageHandlers() def DEBUG_MSG(string, lvl=3, o=None): if lvl >= _DEBUG: cls = o.__class__ # Jeremy, often times the commented line won't print but the # one below does. I think WX is redefining stderr, damned # beast #print >>sys.stderr, "%s- %s in %s" % (_DEBUG_lvls[lvl], string, cls) print "{0!s}- {1!s} in {2!s}".format(_DEBUG_lvls[lvl], string, cls) def debug_on_error(type, value, tb): """Code due to Thomas Heller - published in Python Cookbook (O'Reilley)""" traceback.print_exc(type, value, tb) print pdb.pm() # jdh uncomment class fake_stderr: """Wx does strange things with stderr, as it makes the assumption that there is probably no console. This redirects stderr to the console, since we know that there is one!""" def write(self, msg): print "Stderr: {0!s}\n\r".format(msg) #if _DEBUG < 5: # sys.excepthook = debug_on_error # WxLogger =wx.LogStderr() # sys.stderr = fake_stderr # Event binding code changed after version 2.5 if wx.VERSION_STRING >= '2.5': def bind(actor,event,action,**kw): actor.Bind(event,action,**kw) else: def bind(actor,event,action,id=None): if id is not None: event(actor, id, action) else: event(actor,action) import matplotlib from matplotlib import verbose from matplotlib.backend_bases import RendererBase, GraphicsContextBase,\ FigureCanvasBase, FigureManagerBase, NavigationToolbar2, \ cursors from matplotlib._pylab_helpers import Gcf from matplotlib.artist import Artist from matplotlib.cbook import exception_to_str, is_string_like, is_writable_file_like from matplotlib.figure import Figure from matplotlib.path import Path from matplotlib.text import _process_text_args, Text from matplotlib.transforms import Affine2D from matplotlib.widgets import SubplotTool from matplotlib import rcParams # the True dots per inch on the screen; should be display dependent # see http://groups.google.com/groups?q=screen+dpi+x11&hl=en&lr=&ie=UTF-8&oe=UTF-8&safe=off&selm=7077.26e81ad5%40swift.cs.tcd.ie&rnum=5 for some info about screen dpi PIXELS_PER_INCH = 75 # Delay time for idle checks IDLE_DELAY = 5 def error_msg_wx(msg, parent=None): """ Signal an error condition -- in a GUI, popup a error dialog """ dialog =wx.MessageDialog(parent = parent, message = msg, caption = 'Matplotlib backend_wx error', style=wx.OK | wx.CENTRE) dialog.ShowModal() dialog.Destroy() return None def raise_msg_to_str(msg): """msg is a return arg from a raise. Join with new lines""" if not is_string_like(msg): msg = '\n'.join(map(str, msg)) return msg class RendererWx(RendererBase): """ The renderer handles all the drawing primitives using a graphics context instance that controls the colors/styles. It acts as the 'renderer' instance used by many classes in the hierarchy. """ #In wxPython, drawing is performed on a wxDC instance, which will #generally be mapped to the client aread of the window displaying #the plot. Under wxPython, the wxDC instance has a wx.Pen which #describes the colour and weight of any lines drawn, and a wxBrush #which describes the fill colour of any closed polygon. fontweights = { 100 : wx.LIGHT, 200 : wx.LIGHT, 300 : wx.LIGHT, 400 : wx.NORMAL, 500 : wx.NORMAL, 600 : wx.NORMAL, 700 : wx.BOLD, 800 : wx.BOLD, 900 : wx.BOLD, 'ultralight' : wx.LIGHT, 'light' : wx.LIGHT, 'normal' : wx.NORMAL, 'medium' : wx.NORMAL, 'semibold' : wx.NORMAL, 'bold' : wx.BOLD, 'heavy' : wx.BOLD, 'ultrabold' : wx.BOLD, 'black' : wx.BOLD } fontangles = { 'italic' : wx.ITALIC, 'normal' : wx.NORMAL, 'oblique' : wx.SLANT } # wxPython allows for portable font styles, choosing them appropriately # for the target platform. Map some standard font names to the portable # styles # QUESTION: Is it be wise to agree standard fontnames across all backends? fontnames = { 'Sans' : wx.SWISS, 'Roman' : wx.ROMAN, 'Script' : wx.SCRIPT, 'Decorative' : wx.DECORATIVE, 'Modern' : wx.MODERN, 'Courier' : wx.MODERN, 'courier' : wx.MODERN } def __init__(self, bitmap, dpi): """ Initialise a wxWindows renderer instance. """ DEBUG_MSG("__init__()", 1, self) if wx.VERSION_STRING < "2.8": raise RuntimeError("matplotlib no longer supports wxPython < 2.8 for the Wx backend.\nYou may, however, use the WxAgg backend.") self.width = bitmap.GetWidth() self.height = bitmap.GetHeight() self.bitmap = bitmap self.fontd = {} self.dpi = dpi self.gc = None def flipy(self): return True def offset_text_height(self): return True def get_text_width_height_descent(self, s, prop, ismath): """ get the width and height in display coords of the string s with FontPropertry prop """ #return 1, 1 if ismath: s = self.strip_math(s) if self.gc is None: gc = self.new_gc() else: gc = self.gc gfx_ctx = gc.gfx_ctx font = self.get_wx_font(s, prop) gfx_ctx.SetFont(font, wx.BLACK) w, h, descent, leading = gfx_ctx.GetFullTextExtent(s) return w, h, descent def get_canvas_width_height(self): 'return the canvas width and height in display coords' return self.width, self.height def handle_clip_rectangle(self, gc): new_bounds = gc.get_clip_rectangle() if new_bounds is not None: new_bounds = new_bounds.bounds gfx_ctx = gc.gfx_ctx if gfx_ctx._lastcliprect != new_bounds: gfx_ctx._lastcliprect = new_bounds if new_bounds is None: gfx_ctx.ResetClip() else: gfx_ctx.Clip(new_bounds[0], self.height - new_bounds[1] - new_bounds[3], new_bounds[2], new_bounds[3]) #@staticmethod def convert_path(gfx_ctx, tpath): wxpath = gfx_ctx.CreatePath() for points, code in tpath.iter_segments(): if code == Path.MOVETO: wxpath.MoveToPoint(*points) elif code == Path.LINETO: wxpath.AddLineToPoint(*points) elif code == Path.CURVE3: wxpath.AddQuadCurveToPoint(*points) elif code == Path.CURVE4: wxpath.AddCurveToPoint(*points) elif code == Path.CLOSEPOLY: wxpath.CloseSubpath() return wxpath convert_path = staticmethod(convert_path) def draw_path(self, gc, path, transform, rgbFace=None): gc.select() self.handle_clip_rectangle(gc) gfx_ctx = gc.gfx_ctx transform = transform + Affine2D().scale(1.0, -1.0).translate(0.0, self.height) tpath = transform.transform_path(path) wxpath = self.convert_path(gfx_ctx, tpath) if rgbFace is not None: gfx_ctx.SetBrush(wx.Brush(gc.get_wxcolour(rgbFace))) gfx_ctx.DrawPath(wxpath) else: gfx_ctx.StrokePath(wxpath) gc.unselect() def draw_image(self, x, y, im, bbox, clippath=None, clippath_trans=None): if bbox is not None: l,b,w,h = bbox.bounds else: l=0 b=0, w=self.width h=self.height rows, cols, image_str = im.as_rgba_str() image_array = npy.fromstring(image_str, npy.uint8) image_array.shape = rows, cols, 4 bitmap = wx.BitmapFromBufferRGBA(cols,rows,image_array) gc = self.get_gc() gc.select() gc.gfx_ctx.DrawBitmap(bitmap,int(l),int(b),int(w),int(h)) gc.unselect() def draw_text(self, gc, x, y, s, prop, angle, ismath): """ Render the matplotlib.text.Text instance None) """ if ismath: s = self.strip_math(s) DEBUG_MSG("draw_text()", 1, self) gc.select() self.handle_clip_rectangle(gc) gfx_ctx = gc.gfx_ctx font = self.get_wx_font(s, prop) color = gc.get_wxcolour(gc.get_rgb()) gfx_ctx.SetFont(font, color) w, h, d = self.get_text_width_height_descent(s, prop, ismath) x = int(x) y = int(y-h) if angle == 0.0: gfx_ctx.DrawText(s, x, y) else: rads = angle / 180.0 * math.pi xo = h * math.sin(rads) yo = h * math.cos(rads) gfx_ctx.DrawRotatedText(s, x - xo, y - yo, rads) gc.unselect() def new_gc(self): """ Return an instance of a GraphicsContextWx, and sets the current gc copy """ DEBUG_MSG('new_gc()', 2, self) self.gc = GraphicsContextWx(self.bitmap, self) self.gc.select() self.gc.unselect() return self.gc def get_gc(self): """ Fetch the locally cached gc. """ # This is a dirty hack to allow anything with access to a renderer to # access the current graphics context assert self.gc is not None, "gc must be defined" return self.gc def get_wx_font(self, s, prop): """ Return a wx font. Cache instances in a font dictionary for efficiency """ DEBUG_MSG("get_wx_font()", 1, self) key = hash(prop) fontprop = prop fontname = fontprop.get_name() font = self.fontd.get(key) if font is not None: return font # Allow use of platform independent and dependent font names wxFontname = self.fontnames.get(fontname, wx.ROMAN) wxFacename = '' # Empty => wxPython chooses based on wx_fontname # Font colour is determined by the active wx.Pen # TODO: It may be wise to cache font information size = self.points_to_pixels(fontprop.get_size_in_points()) font =wx.Font(int(size+0.5), # Size wxFontname, # 'Generic' name self.fontangles[fontprop.get_style()], # Angle self.fontweights[fontprop.get_weight()], # Weight False, # Underline wxFacename) # Platform font name # cache the font and gc and return it self.fontd[key] = font return font def points_to_pixels(self, points): """ convert point measures to pixes using dpi and the pixels per inch of the display """ return points*(PIXELS_PER_INCH/72.0*self.dpi/72.0) class GraphicsContextWx(GraphicsContextBase): """ The graphics context provides the color, line styles, etc... This class stores a reference to a wxMemoryDC, and a wxGraphicsContext that draws to it. Creating a wxGraphicsContext seems to be fairly heavy, so these objects are cached based on the bitmap object that is passed in. The base GraphicsContext stores colors as a RGB tuple on the unit interval, eg, (0.5, 0.0, 1.0). wxPython uses an int interval, but since wxPython colour management is rather simple, I have not chosen to implement a separate colour manager class. """ _capd = { 'butt': wx.CAP_BUTT, 'projecting': wx.CAP_PROJECTING, 'round': wx.CAP_ROUND } _joind = { 'bevel': wx.JOIN_BEVEL, 'miter': wx.JOIN_MITER, 'round': wx.JOIN_ROUND } _dashd_wx = { 'solid': wx.SOLID, 'dashed': wx.SHORT_DASH, 'dashdot': wx.DOT_DASH, 'dotted': wx.DOT } _cache = weakref.WeakKeyDictionary() def __init__(self, bitmap, renderer): GraphicsContextBase.__init__(self) #assert self.Ok(), "wxMemoryDC not OK to use" DEBUG_MSG("__init__()", 1, self) dc, gfx_ctx = self._cache.get(bitmap, (None, None)) if dc is None: dc = wx.MemoryDC() dc.SelectObject(bitmap) gfx_ctx = wx.GraphicsContext.Create(dc) gfx_ctx._lastcliprect = None self._cache[bitmap] = dc, gfx_ctx self.bitmap = bitmap self.dc = dc self.gfx_ctx = gfx_ctx self._pen = wx.Pen('BLACK', 1, wx.SOLID) gfx_ctx.SetPen(self._pen) self._style = wx.SOLID self.renderer = renderer def select(self): """ Select the current bitmap into this wxDC instance """ if sys.platform=='win32': self.dc.SelectObject(self.bitmap) self.IsSelected = True def unselect(self): """ Select a Null bitmasp into this wxDC instance """ if sys.platform=='win32': self.dc.SelectObject(wx.NullBitmap) self.IsSelected = False def set_foreground(self, fg, isRGB=None): """ Set the foreground color. fg can be a matlab format string, a html hex color string, an rgb unit tuple, or a float between 0 and 1. In the latter case, grayscale is used. """ # Implementation note: wxPython has a separate concept of pen and # brush - the brush fills any outline trace left by the pen. # Here we set both to the same colour - if a figure is not to be # filled, the renderer will set the brush to be transparent # Same goes for text foreground... DEBUG_MSG("set_foreground()", 1, self) self.select() GraphicsContextBase.set_foreground(self, fg, isRGB) self._pen.SetColour(self.get_wxcolour(self.get_rgb())) self.gfx_ctx.SetPen(self._pen) self.unselect() def set_graylevel(self, frac): """ Set the foreground color. fg can be a matlab format string, a html hex color string, an rgb unit tuple, or a float between 0 and 1. In the latter case, grayscale is used. """ DEBUG_MSG("set_graylevel()", 1, self) self.select() GraphicsContextBase.set_graylevel(self, frac) self._pen.SetColour(self.get_wxcolour(self.get_rgb())) self.gfx_ctx.SetPen(self._pen) self.unselect() def set_linewidth(self, w): """ Set the line width. """ DEBUG_MSG("set_linewidth()", 1, self) self.select() if w>0 and w<1: w = 1 GraphicsContextBase.set_linewidth(self, w) lw = int(self.renderer.points_to_pixels(self._linewidth)) if lw==0: lw = 1 self._pen.SetWidth(lw) self.gfx_ctx.SetPen(self._pen) self.unselect() def set_capstyle(self, cs): """ Set the capstyle as a string in ('butt', 'round', 'projecting') """ DEBUG_MSG("set_capstyle()", 1, self) self.select() GraphicsContextBase.set_capstyle(self, cs) self._pen.SetCap(GraphicsContextWx._capd[self._capstyle]) self.gfx_ctx.SetPen(self._pen) self.unselect() def set_joinstyle(self, js): """ Set the join style to be one of ('miter', 'round', 'bevel') """ DEBUG_MSG("set_joinstyle()", 1, self) self.select() GraphicsContextBase.set_joinstyle(self, js) self._pen.SetJoin(GraphicsContextWx._joind[self._joinstyle]) self.gfx_ctx.SetPen(self._pen) self.unselect() def set_linestyle(self, ls): """ Set the line style to be one of """ DEBUG_MSG("set_linestyle()", 1, self) self.select() GraphicsContextBase.set_linestyle(self, ls) try: self._style = GraphicsContextWx._dashd_wx[ls] except KeyError: self._style = wx.LONG_DASH# Style not used elsewhere... # On MS Windows platform, only line width of 1 allowed for dash lines if wx.Platform == '__WXMSW__': self.set_linewidth(1) self._pen.SetStyle(self._style) self.gfx_ctx.SetPen(self._pen) self.unselect() def get_wxcolour(self, color): """return a wx.Colour from RGB format""" DEBUG_MSG("get_wx_color()", 1, self) if len(color) == 3: r, g, b = color r *= 255 g *= 255 b *= 255 return wx.Colour(red=int(r), green=int(g), blue=int(b)) else: r, g, b, a = color r *= 255 g *= 255 b *= 255 a *= 255 return wx.Colour(red=int(r), green=int(g), blue=int(b), alpha=int(a)) class FigureCanvasWx(FigureCanvasBase, wx.Panel): """ The FigureCanvas contains the figure and does event handling. In the wxPython backend, it is derived from wxPanel, and (usually) lives inside a frame instantiated by a FigureManagerWx. The parent window probably implements a wx.Sizer to control the displayed control size - but we give a hint as to our preferred minimum size. """ keyvald = { wx.WXK_CONTROL : 'control', wx.WXK_SHIFT : 'shift', wx.WXK_ALT : 'alt', wx.WXK_LEFT : 'left', wx.WXK_UP : 'up', wx.WXK_RIGHT : 'right', wx.WXK_DOWN : 'down', wx.WXK_ESCAPE : 'escape', wx.WXK_F1 : 'f1', wx.WXK_F2 : 'f2', wx.WXK_F3 : 'f3', wx.WXK_F4 : 'f4', wx.WXK_F5 : 'f5', wx.WXK_F6 : 'f6', wx.WXK_F7 : 'f7', wx.WXK_F8 : 'f8', wx.WXK_F9 : 'f9', wx.WXK_F10 : 'f10', wx.WXK_F11 : 'f11', wx.WXK_F12 : 'f12', wx.WXK_SCROLL : 'scroll_lock', wx.WXK_PAUSE : 'break', wx.WXK_BACK : 'backspace', wx.WXK_RETURN : 'enter', wx.WXK_INSERT : 'insert', wx.WXK_DELETE : 'delete', wx.WXK_HOME : 'home', wx.WXK_END : 'end', wx.WXK_PRIOR : 'pageup', wx.WXK_NEXT : 'pagedown', wx.WXK_PAGEUP : 'pageup', wx.WXK_PAGEDOWN : 'pagedown', wx.WXK_NUMPAD0 : '0', wx.WXK_NUMPAD1 : '1', wx.WXK_NUMPAD2 : '2', wx.WXK_NUMPAD3 : '3', wx.WXK_NUMPAD4 : '4', wx.WXK_NUMPAD5 : '5', wx.WXK_NUMPAD6 : '6', wx.WXK_NUMPAD7 : '7', wx.WXK_NUMPAD8 : '8', wx.WXK_NUMPAD9 : '9', wx.WXK_NUMPAD_ADD : '+', wx.WXK_NUMPAD_SUBTRACT : '-', wx.WXK_NUMPAD_MULTIPLY : '*', wx.WXK_NUMPAD_DIVIDE : '/', wx.WXK_NUMPAD_DECIMAL : 'dec', wx.WXK_NUMPAD_ENTER : 'enter', wx.WXK_NUMPAD_UP : 'up', wx.WXK_NUMPAD_RIGHT : 'right', wx.WXK_NUMPAD_DOWN : 'down', wx.WXK_NUMPAD_LEFT : 'left', wx.WXK_NUMPAD_PRIOR : 'pageup', wx.WXK_NUMPAD_NEXT : 'pagedown', wx.WXK_NUMPAD_PAGEUP : 'pageup', wx.WXK_NUMPAD_PAGEDOWN : 'pagedown', wx.WXK_NUMPAD_HOME : 'home', wx.WXK_NUMPAD_END : 'end', wx.WXK_NUMPAD_INSERT : 'insert', wx.WXK_NUMPAD_DELETE : 'delete', } def __init__(self, parent, id, figure): """ Initialise a FigureWx instance. - Initialise the FigureCanvasBase and wxPanel parents. - Set event handlers for: EVT_SIZE (Resize event) EVT_PAINT (Paint event) """ FigureCanvasBase.__init__(self, figure) # Set preferred window size hint - helps the sizer (if one is # connected) l,b,w,h = figure.bbox.bounds w = int(math.ceil(w)) h = int(math.ceil(h)) wx.Panel.__init__(self, parent, id, size=wx.Size(w, h)) def do_nothing(*args, **kwargs): warnings.warn('could not find a setinitialsize function for backend_wx; please report your wxpython version={0!s} to the matplotlib developers list'.format(backend_version)) pass # try to find the set size func across wx versions try: getattr(self, 'SetInitialSize') except AttributeError: self.SetInitialSize = getattr(self, 'SetBestFittingSize', do_nothing) if not hasattr(self,'IsShownOnScreen'): self.IsShownOnScreen = getattr(self, 'IsVisible', lambda *args: True) # Create the drawing bitmap self.bitmap =wx.EmptyBitmap(w, h) DEBUG_MSG("__init__() - bitmap w:{0:d} h:{1:d}".format(w, h), 2, self) # TODO: Add support for 'point' inspection and plot navigation. self._isDrawn = False bind(self, wx.EVT_SIZE, self._onSize) bind(self, wx.EVT_PAINT, self._onPaint) bind(self, wx.EVT_ERASE_BACKGROUND, self._onEraseBackground) bind(self, wx.EVT_KEY_DOWN, self._onKeyDown) bind(self, wx.EVT_KEY_UP, self._onKeyUp) bind(self, wx.EVT_RIGHT_DOWN, self._onRightButtonDown) bind(self, wx.EVT_RIGHT_DCLICK, self._onRightButtonDown) bind(self, wx.EVT_RIGHT_UP, self._onRightButtonUp) bind(self, wx.EVT_MOUSEWHEEL, self._onMouseWheel) bind(self, wx.EVT_LEFT_DOWN, self._onLeftButtonDown) bind(self, wx.EVT_LEFT_DCLICK, self._onLeftButtonDown) bind(self, wx.EVT_LEFT_UP, self._onLeftButtonUp) bind(self, wx.EVT_MOTION, self._onMotion) bind(self, wx.EVT_LEAVE_WINDOW, self._onLeave) bind(self, wx.EVT_ENTER_WINDOW, self._onEnter) bind(self, wx.EVT_IDLE, self._onIdle) self.SetBackgroundStyle(wx.BG_STYLE_CUSTOM) self.macros = {} # dict from wx id to seq of macros self.Printer_Init() def Destroy(self, *args, **kwargs): wx.Panel.Destroy(self, *args, **kwargs) def Copy_to_Clipboard(self, event=None): "copy bitmap of canvas to system clipboard" bmp_obj = wx.BitmapDataObject() bmp_obj.SetBitmap(self.bitmap) wx.TheClipboard.Open() wx.TheClipboard.SetData(bmp_obj) wx.TheClipboard.Close() def Printer_Init(self): """initialize printer settings using wx methods""" self.printerData = wx.PrintData() self.printerData.SetPaperId(wx.PAPER_LETTER) self.printerData.SetPrintMode(wx.PRINT_MODE_PRINTER) self.printerPageData= wx.PageSetupDialogData() self.printerPageData.SetMarginBottomRight((25,25)) self.printerPageData.SetMarginTopLeft((25,25)) self.printerPageData.SetPrintData(self.printerData) self.printer_width = 5.5 self.printer_margin= 0.5 def Printer_Setup(self, event=None): """set up figure for printing. The standard wx Printer Setup Dialog seems to die easily. Therefore, this setup simply asks for image width and margin for printing. """ dmsg = """Width of output figure in inches. The current aspect ration will be kept.""" dlg = wx.Dialog(self, -1, 'Page Setup for Printing' , (-1,-1)) df = dlg.GetFont() df.SetWeight(wx.NORMAL) df.SetPointSize(11) dlg.SetFont(df) x_wid = wx.TextCtrl(dlg,-1,value="{0:.2f}".format(self.printer_width), size=(70,-1)) x_mrg = wx.TextCtrl(dlg,-1,value="{0:.2f}".format(self.printer_margin),size=(70,-1)) sizerAll = wx.BoxSizer(wx.VERTICAL) sizerAll.Add(wx.StaticText(dlg,-1,dmsg), 0, wx.ALL | wx.EXPAND, 5) sizer = wx.FlexGridSizer(0,3) sizerAll.Add(sizer, 0, wx.ALL | wx.EXPAND, 5) sizer.Add(wx.StaticText(dlg,-1,'Figure Width'), 1, wx.ALIGN_LEFT|wx.ALL, 2) sizer.Add(x_wid, 1, wx.ALIGN_LEFT|wx.ALL, 2) sizer.Add(wx.StaticText(dlg,-1,'in'), 1, wx.ALIGN_LEFT|wx.ALL, 2) sizer.Add(wx.StaticText(dlg,-1,'Margin'), 1, wx.ALIGN_LEFT|wx.ALL, 2) sizer.Add(x_mrg, 1, wx.ALIGN_LEFT|wx.ALL, 2) sizer.Add(wx.StaticText(dlg,-1,'in'), 1, wx.ALIGN_LEFT|wx.ALL, 2) btn = wx.Button(dlg,wx.ID_OK, " OK ") btn.SetDefault() sizer.Add(btn, 1, wx.ALIGN_LEFT, 5) btn = wx.Button(dlg,wx.ID_CANCEL, " CANCEL ") sizer.Add(btn, 1, wx.ALIGN_LEFT, 5) dlg.SetSizer(sizerAll) dlg.SetAutoLayout(True) sizerAll.Fit(dlg) if dlg.ShowModal() == wx.ID_OK: try: self.printer_width = float(x_wid.GetValue()) self.printer_margin = float(x_mrg.GetValue()) except: pass if ((self.printer_width + self.printer_margin) > 7.5): self.printerData.SetOrientation(wx.LANDSCAPE) else: self.printerData.SetOrientation(wx.PORTRAIT) dlg.Destroy() return def Printer_Setup2(self, event=None): """set up figure for printing. Using the standard wx Printer Setup Dialog. """ if hasattr(self, 'printerData'): data = wx.PageSetupDialogData() data.SetPrintData(self.printerData) else: data = wx.PageSetupDialogData() data.SetMarginTopLeft( (15, 15) ) data.SetMarginBottomRight( (15, 15) ) dlg = wx.PageSetupDialog(self, data) if dlg.ShowModal() == wx.ID_OK: data = dlg.GetPageSetupData() tl = data.GetMarginTopLeft() br = data.GetMarginBottomRight() self.printerData = wx.PrintData(data.GetPrintData()) dlg.Destroy() def Printer_Preview(self, event=None): """ generate Print Preview with wx Print mechanism""" po1 = PrintoutWx(self, width=self.printer_width, margin=self.printer_margin) po2 = PrintoutWx(self, width=self.printer_width, margin=self.printer_margin) self.preview = wx.PrintPreview(po1,po2,self.printerData) if not self.preview.Ok(): print "error with preview" self.preview.SetZoom(50) frameInst= self while not isinstance(frameInst, wx.Frame): frameInst= frameInst.GetParent() frame = wx.PreviewFrame(self.preview, frameInst, "Preview") frame.Initialize() frame.SetPosition(self.GetPosition()) frame.SetSize((850,650)) frame.Centre(wx.BOTH) frame.Show(True) self.gui_repaint() def Printer_Print(self, event=None): """ Print figure using wx Print mechanism""" pdd = wx.PrintDialogData() # SetPrintData for 2.4 combatibility pdd.SetPrintData(self.printerData) pdd.SetToPage(1) printer = wx.Printer(pdd) printout = PrintoutWx(self, width=int(self.printer_width), margin=int(self.printer_margin)) print_ok = printer.Print(self, printout, True) if wx.VERSION_STRING >= '2.5': if not print_ok and not printer.GetLastError() == wx.PRINTER_CANCELLED: wx.MessageBox("""There was a problem printing. Perhaps your current printer is not set correctly?""", "Printing", wx.OK) else: if not print_ok: wx.MessageBox("""There was a problem printing. Perhaps your current printer is not set correctly?""", "Printing", wx.OK) printout.Destroy() self.gui_repaint() def draw_idle(self): """ Delay rendering until the GUI is idle. """ DEBUG_MSG("draw_idle()", 1, self) self._isDrawn = False # Force redraw # Create a timer for handling draw_idle requests # If there are events pending when the timer is # complete, reset the timer and continue. The # alternative approach, binding to wx.EVT_IDLE, # doesn't behave as nicely. if hasattr(self,'_idletimer'): self._idletimer.Restart(IDLE_DELAY) else: self._idletimer = wx.FutureCall(IDLE_DELAY,self._onDrawIdle) # FutureCall is a backwards-compatible alias; # CallLater became available in 2.7.1.1. def _onDrawIdle(self, *args, **kwargs): if wx.GetApp().Pending(): self._idletimer.Restart(IDLE_DELAY, *args, **kwargs) else: del self._idletimer # GUI event or explicit draw call may already # have caused the draw to take place if not self._isDrawn: self.draw(*args, **kwargs) def draw(self, drawDC=None): """ Render the figure using RendererWx instance renderer, or using a previously defined renderer if none is specified. """ DEBUG_MSG("draw()", 1, self) self.renderer = RendererWx(self.bitmap, self.figure.dpi) self.figure.draw(self.renderer) self._isDrawn = True self.gui_repaint(drawDC=drawDC) def flush_events(self): wx.Yield() def start_event_loop(self, timeout=0): """ Start an event loop. This is used to start a blocking event loop so that interactive functions, such as ginput and waitforbuttonpress, can wait for events. This should not be confused with the main GUI event loop, which is always running and has nothing to do with this. Call signature:: start_event_loop(self,timeout=0) This call blocks until a callback function triggers stop_event_loop() or *timeout* is reached. If *timeout* is <=0, never timeout. Raises RuntimeError if event loop is already running. """ if hasattr(self, '_event_loop'): raise RuntimeError("Event loop already running") id = wx.NewId() timer = wx.Timer(self, id=id) if timeout > 0: timer.Start(timeout*1000, oneShot=True) bind(self, wx.EVT_TIMER, self.stop_event_loop, id=id) # Event loop handler for start/stop event loop self._event_loop = wx.EventLoop() self._event_loop.Run() timer.Stop() def stop_event_loop(self, event=None): """ Stop an event loop. This is used to stop a blocking event loop so that interactive functions, such as ginput and waitforbuttonpress, can wait for events. Call signature:: stop_event_loop_default(self) """ if hasattr(self,'_event_loop'): if self._event_loop.IsRunning(): self._event_loop.Exit() del self._event_loop def _get_imagesave_wildcards(self): 'return the wildcard string for the filesave dialog' default_filetype = self.get_default_filetype() filetypes = self.get_supported_filetypes_grouped() sorted_filetypes = filetypes.items() sorted_filetypes.sort() wildcards = [] extensions = [] filter_index = 0 for i, (name, exts) in enumerate(sorted_filetypes): ext_list = ';'.join(['*.{0!s}'.format(ext) for ext in exts]) extensions.append(exts[0]) wildcard = '{0!s} ({1!s})|{2!s}'.format(name, ext_list, ext_list) if default_filetype in exts: filter_index = i wildcards.append(wildcard) wildcards = '|'.join(wildcards) return wildcards, extensions, filter_index def gui_repaint(self, drawDC=None): """ Performs update of the displayed image on the GUI canvas, using the supplied device context. If drawDC is None, a ClientDC will be used to redraw the image. """ DEBUG_MSG("gui_repaint()", 1, self) if self.IsShownOnScreen(): if drawDC is None: drawDC=wx.ClientDC(self) drawDC.BeginDrawing() drawDC.DrawBitmap(self.bitmap, 0, 0) drawDC.EndDrawing() #wx.GetApp().Yield() else: pass filetypes = FigureCanvasBase.filetypes.copy() filetypes['bmp'] = 'Windows bitmap' filetypes['jpeg'] = 'JPEG' filetypes['jpg'] = 'JPEG' filetypes['pcx'] = 'PCX' filetypes['png'] = 'Portable Network Graphics' filetypes['tif'] = 'Tagged Image Format File' filetypes['tiff'] = 'Tagged Image Format File' filetypes['xpm'] = 'X pixmap' def print_figure(self, filename, *args, **kwargs): # Use pure Agg renderer to draw FigureCanvasBase.print_figure(self, filename, *args, **kwargs) # Restore the current view; this is needed because the # artist contains methods rely on particular attributes # of the rendered figure for determining things like # bounding boxes. if self._isDrawn: self.draw() def print_bmp(self, filename, *args, **kwargs): return self._print_image(filename, wx.BITMAP_TYPE_BMP, *args, **kwargs) def print_jpeg(self, filename, *args, **kwargs): return self._print_image(filename, wx.BITMAP_TYPE_JPEG, *args, **kwargs) print_jpg = print_jpeg def print_pcx(self, filename, *args, **kwargs): return self._print_image(filename, wx.BITMAP_TYPE_PCX, *args, **kwargs) def print_png(self, filename, *args, **kwargs): return self._print_image(filename, wx.BITMAP_TYPE_PNG, *args, **kwargs) def print_tiff(self, filename, *args, **kwargs): return self._print_image(filename, wx.BITMAP_TYPE_TIF, *args, **kwargs) print_tif = print_tiff def print_xpm(self, filename, *args, **kwargs): return self._print_image(filename, wx.BITMAP_TYPE_XPM, *args, **kwargs) def _print_image(self, filename, filetype, *args, **kwargs): origBitmap = self.bitmap l,b,width,height = self.figure.bbox.bounds width = int(math.ceil(width)) height = int(math.ceil(height)) self.bitmap = wx.EmptyBitmap(width, height) renderer = RendererWx(self.bitmap, self.figure.dpi) gc = renderer.new_gc() self.figure.draw(renderer) # Now that we have rendered into the bitmap, save it # to the appropriate file type and clean up if is_string_like(filename): if not self.bitmap.SaveFile(filename, filetype): DEBUG_MSG('print_figure() file save error', 4, self) raise RuntimeError('Could not save figure to {0!s}\n'.format((filename))) elif is_writable_file_like(filename): if not self.bitmap.ConvertToImage().SaveStream(filename, filetype): DEBUG_MSG('print_figure() file save error', 4, self) raise RuntimeError('Could not save figure to {0!s}\n'.format((filename))) # Restore everything to normal self.bitmap = origBitmap # Note: draw is required here since bits of state about the # last renderer are strewn about the artist draw methods. Do # not remove the draw without first verifying that these have # been cleaned up. The artist contains() methods will fail # otherwise. if self._isDrawn: self.draw() self.Refresh() def get_default_filetype(self): return 'png' def _onPaint(self, evt): """ Called when wxPaintEvt is generated """ DEBUG_MSG("_onPaint()", 1, self) drawDC = wx.PaintDC(self) if not self._isDrawn: self.draw(drawDC=drawDC) else: self.gui_repaint(drawDC=drawDC) evt.Skip() def _onEraseBackground(self, evt): """ Called when window is redrawn; since we are blitting the entire image, we can leave this blank to suppress flicker. """ pass def _onSize(self, evt): """ Called when wxEventSize is generated. In this application we attempt to resize to fit the window, so it is better to take the performance hit and redraw the whole window. """ DEBUG_MSG("_onSize()", 2, self) # Create a new, correctly sized bitmap self._width, self._height = self.GetClientSize() self.bitmap =wx.EmptyBitmap(self._width, self._height) self._isDrawn = False if self._width <= 1 or self._height <= 1: return # Empty figure dpival = self.figure.dpi winch = self._width/dpival hinch = self._height/dpival self.figure.set_size_inches(winch, hinch) # Rendering will happen on the associated paint event # so no need to do anything here except to make sure # the whole background is repainted. self.Refresh(eraseBackground=False) def _get_key(self, evt): keyval = evt.m_keyCode if keyval in self.keyvald: key = self.keyvald[keyval] elif keyval <256: key = chr(keyval) else: key = None # why is wx upcasing this? if key is not None: key = key.lower() return key def _onIdle(self, evt): 'a GUI idle event' evt.Skip() FigureCanvasBase.idle_event(self, guiEvent=evt) def _onKeyDown(self, evt): """Capture key press.""" key = self._get_key(evt) evt.Skip() FigureCanvasBase.key_press_event(self, key, guiEvent=evt) def _onKeyUp(self, evt): """Release key.""" key = self._get_key(evt) #print 'release key', key evt.Skip() FigureCanvasBase.key_release_event(self, key, guiEvent=evt) def _onRightButtonDown(self, evt): """Start measuring on an axis.""" x = evt.GetX() y = self.figure.bbox.height - evt.GetY() evt.Skip() self.CaptureMouse() FigureCanvasBase.button_press_event(self, x, y, 3, guiEvent=evt) def _onRightButtonUp(self, evt): """End measuring on an axis.""" x = evt.GetX() y = self.figure.bbox.height - evt.GetY() evt.Skip() if self.HasCapture(): self.ReleaseMouse() FigureCanvasBase.button_release_event(self, x, y, 3, guiEvent=evt) def _onLeftButtonDown(self, evt): """Start measuring on an axis.""" x = evt.GetX() y = self.figure.bbox.height - evt.GetY() evt.Skip() self.CaptureMouse() FigureCanvasBase.button_press_event(self, x, y, 1, guiEvent=evt) def _onLeftButtonUp(self, evt): """End measuring on an axis.""" x = evt.GetX() y = self.figure.bbox.height - evt.GetY() #print 'release button', 1 evt.Skip() if self.HasCapture(): self.ReleaseMouse() FigureCanvasBase.button_release_event(self, x, y, 1, guiEvent=evt) def _onMouseWheel(self, evt): """Translate mouse wheel events into matplotlib events""" # Determine mouse location x = evt.GetX() y = self.figure.bbox.height - evt.GetY() # Convert delta/rotation/rate into a floating point step size delta = evt.GetWheelDelta() rotation = evt.GetWheelRotation() rate = evt.GetLinesPerAction() #print "delta,rotation,rate",delta,rotation,rate step = rate*float(rotation)/delta # Done handling event evt.Skip() # Mac is giving two events for every wheel event # Need to skip every second one if wx.Platform == '__WXMAC__': if not hasattr(self,'_skipwheelevent'): self._skipwheelevent = True elif self._skipwheelevent: self._skipwheelevent = False return # Return without processing event else: self._skipwheelevent = True # Convert to mpl event FigureCanvasBase.scroll_event(self, x, y, step, guiEvent=evt) def _onMotion(self, evt): """Start measuring on an axis.""" x = evt.GetX() y = self.figure.bbox.height - evt.GetY() evt.Skip() FigureCanvasBase.motion_notify_event(self, x, y, guiEvent=evt) def _onLeave(self, evt): """Mouse has left the window.""" evt.Skip() FigureCanvasBase.leave_notify_event(self, guiEvent = evt) def _onEnter(self, evt): """Mouse has entered the window.""" FigureCanvasBase.enter_notify_event(self, guiEvent = evt) ######################################################################## # # The following functions and classes are for pylab compatibility # mode (matplotlib.pylab) and implement figure managers, etc... # ######################################################################## def _create_wx_app(): """ Creates a wx.PySimpleApp instance if a wx.App has not been created. """ wxapp = wx.GetApp() if wxapp is None: wxapp = wx.PySimpleApp() wxapp.SetExitOnFrameDelete(True) # retain a reference to the app object so it does not get garbage # collected and cause segmentation faults _create_wx_app.theWxApp = wxapp def draw_if_interactive(): """ This should be overriden in a windowing environment if drawing should be done in interactive python mode """ DEBUG_MSG("draw_if_interactive()", 1, None) if matplotlib.is_interactive(): figManager = Gcf.get_active() if figManager is not None: figManager.canvas.draw() def show(): """ Current implementation assumes that matplotlib is executed in a PyCrust shell. It appears to be possible to execute wxPython applications from within a PyCrust without having to ensure that wxPython has been created in a secondary thread (e.g. SciPy gui_thread). Unfortunately, gui_thread seems to introduce a number of further dependencies on SciPy modules, which I do not wish to introduce into the backend at this point. If there is a need I will look into this in a later release. """ DEBUG_MSG("show()", 3, None) for figwin in Gcf.get_all_fig_managers(): figwin.frame.Show() if show._needmain and not matplotlib.is_interactive(): # start the wxPython gui event if there is not already one running wxapp = wx.GetApp() if wxapp is not None: # wxPython 2.4 has no wx.App.IsMainLoopRunning() method imlr = getattr(wxapp, 'IsMainLoopRunning', lambda: False) if not imlr(): wxapp.MainLoop() show._needmain = False show._needmain = True def new_figure_manager(num, *args, **kwargs): """ Create a new figure manager instance """ # in order to expose the Figure constructor to the pylab # interface we need to create the figure here DEBUG_MSG("new_figure_manager()", 3, None) _create_wx_app() FigureClass = kwargs.pop('FigureClass', Figure) fig = FigureClass(*args, **kwargs) frame = FigureFrameWx(num, fig) figmgr = frame.get_figure_manager() if matplotlib.is_interactive(): figmgr.frame.Show() return figmgr class FigureFrameWx(wx.Frame): def __init__(self, num, fig): # On non-Windows platform, explicitly set the position - fix # positioning bug on some Linux platforms if wx.Platform == '__WXMSW__': pos = wx.DefaultPosition else: pos =wx.Point(20,20) l,b,w,h = fig.bbox.bounds wx.Frame.__init__(self, parent=None, id=-1, pos=pos, title="Figure {0:d}".format(num)) # Frame will be sized later by the Fit method DEBUG_MSG("__init__()", 1, self) self.num = num statbar = StatusBarWx(self) self.SetStatusBar(statbar) self.canvas = self.get_canvas(fig) self.canvas.SetInitialSize(wx.Size(fig.bbox.width, fig.bbox.height)) self.sizer =wx.BoxSizer(wx.VERTICAL) self.sizer.Add(self.canvas, 1, wx.TOP | wx.LEFT | wx.EXPAND) # By adding toolbar in sizer, we are able to put it at the bottom # of the frame - so appearance is closer to GTK version self.toolbar = self._get_toolbar(statbar) if self.toolbar is not None: self.toolbar.Realize() if wx.Platform == '__WXMAC__': # Mac platform (OSX 10.3, MacPython) does not seem to cope with # having a toolbar in a sizer. This work-around gets the buttons # back, but at the expense of having the toolbar at the top self.SetToolBar(self.toolbar) else: # On Windows platform, default window size is incorrect, so set # toolbar width to figure width. tw, th = self.toolbar.GetSizeTuple() fw, fh = self.canvas.GetSizeTuple() # By adding toolbar in sizer, we are able to put it at the bottom # of the frame - so appearance is closer to GTK version. # As noted above, doesn't work for Mac. self.toolbar.SetSize(wx.Size(fw, th)) self.sizer.Add(self.toolbar, 0, wx.LEFT | wx.EXPAND) self.SetSizer(self.sizer) self.Fit() self.figmgr = FigureManagerWx(self.canvas, num, self) bind(self, wx.EVT_CLOSE, self._onClose) def _get_toolbar(self, statbar): if matplotlib.rcParams['toolbar']=='classic': toolbar = NavigationToolbarWx(self.canvas, True) elif matplotlib.rcParams['toolbar']=='toolbar2': toolbar = NavigationToolbar2Wx(self.canvas) toolbar.set_status_bar(statbar) else: toolbar = None return toolbar def get_canvas(self, fig): return FigureCanvasWx(self, -1, fig) def get_figure_manager(self): DEBUG_MSG("get_figure_manager()", 1, self) return self.figmgr def _onClose(self, evt): DEBUG_MSG("onClose()", 1, self) self.canvas.stop_event_loop() Gcf.destroy(self.num) #self.Destroy() def GetToolBar(self): """Override wxFrame::GetToolBar as we don't have managed toolbar""" return self.toolbar def Destroy(self, *args, **kwargs): wx.Frame.Destroy(self, *args, **kwargs) if self.toolbar is not None: self.toolbar.Destroy() wxapp = wx.GetApp() if wxapp: wxapp.Yield() return True class FigureManagerWx(FigureManagerBase): """ This class contains the FigureCanvas and GUI frame It is instantiated by GcfWx whenever a new figure is created. GcfWx is responsible for managing multiple instances of FigureManagerWx. NB: FigureManagerBase is found in _pylab_helpers public attrs canvas - a FigureCanvasWx(wx.Panel) instance window - a wxFrame instance - http://www.lpthe.jussieu.fr/~zeitlin/wxWindows/docs/wxwin_wxframe.html#wxframe """ def __init__(self, canvas, num, frame): DEBUG_MSG("__init__()", 1, self) FigureManagerBase.__init__(self, canvas, num) self.frame = frame self.window = frame self.tb = frame.GetToolBar() self.toolbar = self.tb # consistent with other backends def notify_axes_change(fig): 'this will be called whenever the current axes is changed' if self.tb is not None: self.tb.update() self.canvas.figure.add_axobserver(notify_axes_change) def showfig(*args): frame.Show() # attach a show method to the figure self.canvas.figure.show = showfig def destroy(self, *args): DEBUG_MSG("destroy()", 1, self) self.frame.Destroy() #if self.tb is not None: self.tb.Destroy() import wx #wx.GetApp().ProcessIdle() wx.WakeUpIdle() def set_window_title(self, title): self.window.SetTitle(title) def resize(self, width, height): 'Set the canvas size in pixels' self.canvas.SetInitialSize(wx.Size(width, height)) self.window.GetSizer().Fit(self.window) # Identifiers for toolbar controls - images_wx contains bitmaps for the images # used in the controls. wxWindows does not provide any stock images, so I've # 'stolen' those from GTK2, and transformed them into the appropriate format. #import images_wx _NTB_AXISMENU =wx.NewId() _NTB_AXISMENU_BUTTON =wx.NewId() _NTB_X_PAN_LEFT =wx.NewId() _NTB_X_PAN_RIGHT =wx.NewId() _NTB_X_ZOOMIN =wx.NewId() _NTB_X_ZOOMOUT =wx.NewId() _NTB_Y_PAN_UP =wx.NewId() _NTB_Y_PAN_DOWN =wx.NewId() _NTB_Y_ZOOMIN =wx.NewId() _NTB_Y_ZOOMOUT =wx.NewId() #_NTB_SUBPLOT =wx.NewId() _NTB_SAVE =wx.NewId() _NTB_CLOSE =wx.NewId() def _load_bitmap(filename): """ Load a bitmap file from the backends/images subdirectory in which the matplotlib library is installed. The filename parameter should not contain any path information as this is determined automatically. Returns a wx.Bitmap object """ basedir = os.path.join(rcParams['datapath'],'images') bmpFilename = os.path.normpath(os.path.join(basedir, filename)) if not os.path.exists(bmpFilename): raise IOError('Could not find bitmap file "{0!s}"; dying'.format(bmpFilename)) bmp = wx.Bitmap(bmpFilename) return bmp class MenuButtonWx(wx.Button): """ wxPython does not permit a menu to be incorporated directly into a toolbar. This class simulates the effect by associating a pop-up menu with a button in the toolbar, and managing this as though it were a menu. """ def __init__(self, parent): wx.Button.__init__(self, parent, _NTB_AXISMENU_BUTTON, "Axes: ", style=wx.BU_EXACTFIT) self._toolbar = parent self._menu =wx.Menu() self._axisId = [] # First two menu items never change... self._allId =wx.NewId() self._invertId =wx.NewId() self._menu.Append(self._allId, "All", "Select all axes", False) self._menu.Append(self._invertId, "Invert", "Invert axes selected", False) self._menu.AppendSeparator() bind(self, wx.EVT_BUTTON, self._onMenuButton, id=_NTB_AXISMENU_BUTTON) bind(self, wx.EVT_MENU, self._handleSelectAllAxes, id=self._allId) bind(self, wx.EVT_MENU, self._handleInvertAxesSelected, id=self._invertId) def Destroy(self): self._menu.Destroy() self.Destroy() def _onMenuButton(self, evt): """Handle menu button pressed.""" x, y = self.GetPositionTuple() w, h = self.GetSizeTuple() self.PopupMenuXY(self._menu, x, y+h-4) # When menu returned, indicate selection in button evt.Skip() def _handleSelectAllAxes(self, evt): """Called when the 'select all axes' menu item is selected.""" if len(self._axisId) == 0: return for i in range(len(self._axisId)): self._menu.Check(self._axisId[i], True) self._toolbar.set_active(self.getActiveAxes()) evt.Skip() def _handleInvertAxesSelected(self, evt): """Called when the invert all menu item is selected""" if len(self._axisId) == 0: return for i in range(len(self._axisId)): if self._menu.IsChecked(self._axisId[i]): self._menu.Check(self._axisId[i], False) else: self._menu.Check(self._axisId[i], True) self._toolbar.set_active(self.getActiveAxes()) evt.Skip() def _onMenuItemSelected(self, evt): """Called whenever one of the specific axis menu items is selected""" current = self._menu.IsChecked(evt.GetId()) if current: new = False else: new = True self._menu.Check(evt.GetId(), new) self._toolbar.set_active(self.getActiveAxes()) evt.Skip() def updateAxes(self, maxAxis): """Ensures that there are entries for max_axis axes in the menu (selected by default).""" if maxAxis > len(self._axisId): for i in range(len(self._axisId) + 1, maxAxis + 1, 1): menuId =wx.NewId() self._axisId.append(menuId) self._menu.Append(menuId, "Axis {0:d}".format(i), "Select axis {0:d}".format(i), True) self._menu.Check(menuId, True) bind(self, wx.EVT_MENU, self._onMenuItemSelected, id=menuId) self._toolbar.set_active(range(len(self._axisId))) def getActiveAxes(self): """Return a list of the selected axes.""" active = [] for i in range(len(self._axisId)): if self._menu.IsChecked(self._axisId[i]): active.append(i) return active def updateButtonText(self, lst): """Update the list of selected axes in the menu button""" axis_txt = '' for e in lst: axis_txt += '{0:d},'.format((e+1)) # remove trailing ',' and add to button string self.SetLabel("Axes: {0!s}".format(axis_txt[:-1])) cursord = { cursors.MOVE : wx.CURSOR_HAND, cursors.HAND : wx.CURSOR_HAND, cursors.POINTER : wx.CURSOR_ARROW, cursors.SELECT_REGION : wx.CURSOR_CROSS, } class SubplotToolWX(wx.Frame): def __init__(self, targetfig): wx.Frame.__init__(self, None, -1, "Configure subplots") toolfig = Figure((6,3)) canvas = FigureCanvasWx(self, -1, toolfig) # Create a figure manager to manage things figmgr = FigureManager(canvas, 1, self) # Now put all into a sizer sizer = wx.BoxSizer(wx.VERTICAL) # This way of adding to sizer allows resizing sizer.Add(canvas, 1, wx.LEFT|wx.TOP|wx.GROW) self.SetSizer(sizer) self.Fit() tool = SubplotTool(targetfig, toolfig) class NavigationToolbar2Wx(NavigationToolbar2, wx.ToolBar): def __init__(self, canvas): wx.ToolBar.__init__(self, canvas.GetParent(), -1) NavigationToolbar2.__init__(self, canvas) self.canvas = canvas self._idle = True self.statbar = None def get_canvas(self, frame, fig): return FigureCanvasWx(frame, -1, fig) def _init_toolbar(self): DEBUG_MSG("_init_toolbar", 1, self) self._parent = self.canvas.GetParent() _NTB2_HOME =wx.NewId() self._NTB2_BACK =wx.NewId() self._NTB2_FORWARD =wx.NewId() self._NTB2_PAN =wx.NewId() self._NTB2_ZOOM =wx.NewId() _NTB2_SAVE = wx.NewId() _NTB2_SUBPLOT =wx.NewId() self.SetToolBitmapSize(wx.Size(24,24)) self.AddSimpleTool(_NTB2_HOME, _load_bitmap('home.png'), 'Home', 'Reset original view') self.AddSimpleTool(self._NTB2_BACK, _load_bitmap('back.png'), 'Back', 'Back navigation view') self.AddSimpleTool(self._NTB2_FORWARD, _load_bitmap('forward.png'), 'Forward', 'Forward navigation view') # todo: get new bitmap self.AddCheckTool(self._NTB2_PAN, _load_bitmap('move.png'), shortHelp='Pan', longHelp='Pan with left, zoom with right') self.AddCheckTool(self._NTB2_ZOOM, _load_bitmap('zoom_to_rect.png'), shortHelp='Zoom', longHelp='Zoom to rectangle') self.AddSeparator() self.AddSimpleTool(_NTB2_SUBPLOT, _load_bitmap('subplots.png'), 'Configure subplots', 'Configure subplot parameters') self.AddSimpleTool(_NTB2_SAVE, _load_bitmap('filesave.png'), 'Save', 'Save plot contents to file') bind(self, wx.EVT_TOOL, self.home, id=_NTB2_HOME) bind(self, wx.EVT_TOOL, self.forward, id=self._NTB2_FORWARD) bind(self, wx.EVT_TOOL, self.back, id=self._NTB2_BACK) bind(self, wx.EVT_TOOL, self.zoom, id=self._NTB2_ZOOM) bind(self, wx.EVT_TOOL, self.pan, id=self._NTB2_PAN) bind(self, wx.EVT_TOOL, self.configure_subplot, id=_NTB2_SUBPLOT) bind(self, wx.EVT_TOOL, self.save, id=_NTB2_SAVE) self.Realize() def zoom(self, *args): self.ToggleTool(self._NTB2_PAN, False) NavigationToolbar2.zoom(self, *args) def pan(self, *args): self.ToggleTool(self._NTB2_ZOOM, False) NavigationToolbar2.pan(self, *args) def configure_subplot(self, evt): frame = wx.Frame(None, -1, "Configure subplots") toolfig = Figure((6,3)) canvas = self.get_canvas(frame, toolfig) # Create a figure manager to manage things figmgr = FigureManager(canvas, 1, frame) # Now put all into a sizer sizer = wx.BoxSizer(wx.VERTICAL) # This way of adding to sizer allows resizing sizer.Add(canvas, 1, wx.LEFT|wx.TOP|wx.GROW) frame.SetSizer(sizer) frame.Fit() tool = SubplotTool(self.canvas.figure, toolfig) frame.Show() def save(self, evt): # Fetch the required filename and file type. filetypes, exts, filter_index = self.canvas._get_imagesave_wildcards() default_file = "image." + self.canvas.get_default_filetype() dlg = wx.FileDialog(self._parent, "Save to file", "", default_file, filetypes, wx.SAVE|wx.OVERWRITE_PROMPT|wx.CHANGE_DIR) dlg.SetFilterIndex(filter_index) if dlg.ShowModal() == wx.ID_OK: dirname = dlg.GetDirectory() filename = dlg.GetFilename() DEBUG_MSG('Save file dir:{0!s} name:{1!s}'.format(dirname, filename), 3, self) format = exts[dlg.GetFilterIndex()] basename, ext = os.path.splitext(filename) if ext.startswith('.'): ext = ext[1:] if ext in ('svg', 'pdf', 'ps', 'eps', 'png') and format!=ext: #looks like they forgot to set the image type drop #down, going with the extension. warnings.warn('extension {0!s} did not match the selected image type {1!s}; going with {2!s}'.format(ext, format, ext), stacklevel=0) format = ext try: self.canvas.print_figure( os.path.join(dirname, filename), format=format) except Exception, e: error_msg_wx(str(e)) def set_cursor(self, cursor): cursor =wx.StockCursor(cursord[cursor]) self.canvas.SetCursor( cursor ) def release(self, event): try: del self.lastrect except AttributeError: pass def dynamic_update(self): d = self._idle self._idle = False if d: self.canvas.draw() self._idle = True def draw_rubberband(self, event, x0, y0, x1, y1): 'adapted from http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/189744' canvas = self.canvas dc =wx.ClientDC(canvas) # Set logical function to XOR for rubberbanding dc.SetLogicalFunction(wx.XOR) # Set dc brush and pen # Here I set brush and pen to white and grey respectively # You can set it to your own choices # The brush setting is not really needed since we # dont do any filling of the dc. It is set just for # the sake of completion. wbrush =wx.Brush(wx.Colour(255,255,255), wx.TRANSPARENT) wpen =wx.Pen(wx.Colour(200, 200, 200), 1, wx.SOLID) dc.SetBrush(wbrush) dc.SetPen(wpen) dc.ResetBoundingBox() dc.BeginDrawing() height = self.canvas.figure.bbox.height y1 = height - y1 y0 = height - y0 if y1<y0: y0, y1 = y1, y0 if x1<y0: x0, x1 = x1, x0 w = x1 - x0 h = y1 - y0 rect = int(x0), int(y0), int(w), int(h) try: lastrect = self.lastrect except AttributeError: pass else: dc.DrawRectangle(*lastrect) #erase last self.lastrect = rect dc.DrawRectangle(*rect) dc.EndDrawing() def set_status_bar(self, statbar): self.statbar = statbar def set_message(self, s): if self.statbar is not None: self.statbar.set_function(s) def set_history_buttons(self): can_backward = (self._views._pos > 0) can_forward = (self._views._pos < len(self._views._elements) - 1) self.EnableTool(self._NTB2_BACK, can_backward) self.EnableTool(self._NTB2_FORWARD, can_forward) class NavigationToolbarWx(wx.ToolBar): def __init__(self, canvas, can_kill=False): """ figure is the Figure instance that the toolboar controls win, if not None, is the wxWindow the Figure is embedded in """ wx.ToolBar.__init__(self, canvas.GetParent(), -1) DEBUG_MSG("__init__()", 1, self) self.canvas = canvas self._lastControl = None self._mouseOnButton = None self._parent = canvas.GetParent() self._NTB_BUTTON_HANDLER = { _NTB_X_PAN_LEFT : self.panx, _NTB_X_PAN_RIGHT : self.panx, _NTB_X_ZOOMIN : self.zoomx, _NTB_X_ZOOMOUT : self.zoomy, _NTB_Y_PAN_UP : self.pany, _NTB_Y_PAN_DOWN : self.pany, _NTB_Y_ZOOMIN : self.zoomy, _NTB_Y_ZOOMOUT : self.zoomy } self._create_menu() self._create_controls(can_kill) self.Realize() def _create_menu(self): """ Creates the 'menu' - implemented as a button which opens a pop-up menu since wxPython does not allow a menu as a control """ DEBUG_MSG("_create_menu()", 1, self) self._menu = MenuButtonWx(self) self.AddControl(self._menu) self.AddSeparator() def _create_controls(self, can_kill): """ Creates the button controls, and links them to event handlers """ DEBUG_MSG("_create_controls()", 1, self) # Need the following line as Windows toolbars default to 15x16 self.SetToolBitmapSize(wx.Size(16,16)) self.AddSimpleTool(_NTB_X_PAN_LEFT, _load_bitmap('stock_left.xpm'), 'Left', 'Scroll left') self.AddSimpleTool(_NTB_X_PAN_RIGHT, _load_bitmap('stock_right.xpm'), 'Right', 'Scroll right') self.AddSimpleTool(_NTB_X_ZOOMIN, _load_bitmap('stock_zoom-in.xpm'), 'Zoom in', 'Increase X axis magnification') self.AddSimpleTool(_NTB_X_ZOOMOUT, _load_bitmap('stock_zoom-out.xpm'), 'Zoom out', 'Decrease X axis magnification') self.AddSeparator() self.AddSimpleTool(_NTB_Y_PAN_UP,_load_bitmap('stock_up.xpm'), 'Up', 'Scroll up') self.AddSimpleTool(_NTB_Y_PAN_DOWN, _load_bitmap('stock_down.xpm'), 'Down', 'Scroll down') self.AddSimpleTool(_NTB_Y_ZOOMIN, _load_bitmap('stock_zoom-in.xpm'), 'Zoom in', 'Increase Y axis magnification') self.AddSimpleTool(_NTB_Y_ZOOMOUT, _load_bitmap('stock_zoom-out.xpm'), 'Zoom out', 'Decrease Y axis magnification') self.AddSeparator() self.AddSimpleTool(_NTB_SAVE, _load_bitmap('stock_save_as.xpm'), 'Save', 'Save plot contents as images') self.AddSeparator() bind(self, wx.EVT_TOOL, self._onLeftScroll, id=_NTB_X_PAN_LEFT) bind(self, wx.EVT_TOOL, self._onRightScroll, id=_NTB_X_PAN_RIGHT) bind(self, wx.EVT_TOOL, self._onXZoomIn, id=_NTB_X_ZOOMIN) bind(self, wx.EVT_TOOL, self._onXZoomOut, id=_NTB_X_ZOOMOUT) bind(self, wx.EVT_TOOL, self._onUpScroll, id=_NTB_Y_PAN_UP) bind(self, wx.EVT_TOOL, self._onDownScroll, id=_NTB_Y_PAN_DOWN) bind(self, wx.EVT_TOOL, self._onYZoomIn, id=_NTB_Y_ZOOMIN) bind(self, wx.EVT_TOOL, self._onYZoomOut, id=_NTB_Y_ZOOMOUT) bind(self, wx.EVT_TOOL, self._onSave, id=_NTB_SAVE) bind(self, wx.EVT_TOOL_ENTER, self._onEnterTool, id=self.GetId()) if can_kill: bind(self, wx.EVT_TOOL, self._onClose, id=_NTB_CLOSE) bind(self, wx.EVT_MOUSEWHEEL, self._onMouseWheel) def set_active(self, ind): """ ind is a list of index numbers for the axes which are to be made active """ DEBUG_MSG("set_active()", 1, self) self._ind = ind if ind is not None: self._active = [ self._axes[i] for i in self._ind ] else: self._active = [] # Now update button text wit active axes self._menu.updateButtonText(ind) def get_last_control(self): """Returns the identity of the last toolbar button pressed.""" return self._lastControl def panx(self, direction): DEBUG_MSG("panx()", 1, self) for a in self._active: a.xaxis.pan(direction) self.canvas.draw() self.canvas.Refresh(eraseBackground=False) def pany(self, direction): DEBUG_MSG("pany()", 1, self) for a in self._active: a.yaxis.pan(direction) self.canvas.draw() self.canvas.Refresh(eraseBackground=False) def zoomx(self, in_out): DEBUG_MSG("zoomx()", 1, self) for a in self._active: a.xaxis.zoom(in_out) self.canvas.draw() self.canvas.Refresh(eraseBackground=False) def zoomy(self, in_out): DEBUG_MSG("zoomy()", 1, self) for a in self._active: a.yaxis.zoom(in_out) self.canvas.draw() self.canvas.Refresh(eraseBackground=False) def update(self): """ Update the toolbar menu - called when (e.g.) a new subplot or axes are added """ DEBUG_MSG("update()", 1, self) self._axes = self.canvas.figure.get_axes() self._menu.updateAxes(len(self._axes)) def _do_nothing(self, d): """A NULL event handler - does nothing whatsoever""" pass # Local event handlers - mainly supply parameters to pan/scroll functions def _onEnterTool(self, evt): toolId = evt.GetSelection() try: self.button_fn = self._NTB_BUTTON_HANDLER[toolId] except KeyError: self.button_fn = self._do_nothing evt.Skip() def _onLeftScroll(self, evt): self.panx(-1) evt.Skip() def _onRightScroll(self, evt): self.panx(1) evt.Skip() def _onXZoomIn(self, evt): self.zoomx(1) evt.Skip() def _onXZoomOut(self, evt): self.zoomx(-1) evt.Skip() def _onUpScroll(self, evt): self.pany(1) evt.Skip() def _onDownScroll(self, evt): self.pany(-1) evt.Skip() def _onYZoomIn(self, evt): self.zoomy(1) evt.Skip() def _onYZoomOut(self, evt): self.zoomy(-1) evt.Skip() def _onMouseEnterButton(self, button): self._mouseOnButton = button def _onMouseLeaveButton(self, button): if self._mouseOnButton == button: self._mouseOnButton = None def _onMouseWheel(self, evt): if evt.GetWheelRotation() > 0: direction = 1 else: direction = -1 self.button_fn(direction) _onSave = NavigationToolbar2Wx.save def _onClose(self, evt): self.GetParent().Destroy() class StatusBarWx(wx.StatusBar): """ A status bar is added to _FigureFrame to allow measurements and the previously selected scroll function to be displayed as a user convenience. """ def __init__(self, parent): wx.StatusBar.__init__(self, parent, -1) self.SetFieldsCount(2) self.SetStatusText("None", 1) #self.SetStatusText("Measurement: None", 2) #self.Reposition() def set_function(self, string): self.SetStatusText("{0!s}".format(string), 1) #def set_measurement(self, string): # self.SetStatusText("Measurement: %s" % string, 2) #< Additions for printing support: Matt Newville class PrintoutWx(wx.Printout): """Simple wrapper around wx Printout class -- all the real work here is scaling the matplotlib canvas bitmap to the current printer's definition. """ def __init__(self, canvas, width=5.5,margin=0.5, title='matplotlib'): wx.Printout.__init__(self,title=title) self.canvas = canvas # width, in inches of output figure (approximate) self.width = width self.margin = margin def HasPage(self, page): #current only supports 1 page print return page == 1 def GetPageInfo(self): return (1, 1, 1, 1) def OnPrintPage(self, page): self.canvas.draw() dc = self.GetDC() (ppw,pph) = self.GetPPIPrinter() # printer's pixels per in (pgw,pgh) = self.GetPageSizePixels() # page size in pixels (dcw,dch) = dc.GetSize() (grw,grh) = self.canvas.GetSizeTuple() # save current figure dpi resolution and bg color, # so that we can temporarily set them to the dpi of # the printer, and the bg color to white bgcolor = self.canvas.figure.get_facecolor() fig_dpi = self.canvas.figure.dpi # draw the bitmap, scaled appropriately vscale = float(ppw) / fig_dpi # set figure resolution,bg color for printer self.canvas.figure.dpi = ppw self.canvas.figure.set_facecolor('#FFFFFF') renderer = RendererWx(self.canvas.bitmap, self.canvas.figure.dpi) self.canvas.figure.draw(renderer) self.canvas.bitmap.SetWidth( int(self.canvas.bitmap.GetWidth() * vscale)) self.canvas.bitmap.SetHeight( int(self.canvas.bitmap.GetHeight()* vscale)) self.canvas.draw() # page may need additional scaling on preview page_scale = 1.0 if self.IsPreview(): page_scale = float(dcw)/pgw # get margin in pixels = (margin in in) * (pixels/in) top_margin = int(self.margin * pph * page_scale) left_margin = int(self.margin * ppw * page_scale) # set scale so that width of output is self.width inches # (assuming grw is size of graph in inches....) user_scale = (self.width * fig_dpi * page_scale)/float(grw) dc.SetDeviceOrigin(left_margin,top_margin) dc.SetUserScale(user_scale,user_scale) # this cute little number avoid API inconsistencies in wx try: dc.DrawBitmap(self.canvas.bitmap, 0, 0) except: try: dc.DrawBitmap(self.canvas.bitmap, (0, 0)) except: pass # restore original figure resolution self.canvas.figure.set_facecolor(bgcolor) self.canvas.figure.dpi = fig_dpi self.canvas.draw() return True #> ######################################################################## # # Now just provide the standard names that backend.__init__ is expecting # ######################################################################## Toolbar = NavigationToolbarWx FigureManager = FigureManagerWx
agpl-3.0
kagayakidan/scikit-learn
sklearn/svm/tests/test_svm.py
70
31674
""" Testing for Support Vector Machine module (sklearn.svm) TODO: remove hard coded numerical results when possible """ import numpy as np import itertools from numpy.testing import assert_array_equal, assert_array_almost_equal from numpy.testing import assert_almost_equal from scipy import sparse from nose.tools import assert_raises, assert_true, assert_equal, assert_false from sklearn.base import ChangedBehaviorWarning from sklearn import svm, linear_model, datasets, metrics, base from sklearn.cross_validation import train_test_split from sklearn.datasets import make_classification, make_blobs from sklearn.metrics import f1_score from sklearn.metrics.pairwise import rbf_kernel from sklearn.utils import check_random_state from sklearn.utils import ConvergenceWarning from sklearn.utils.validation import NotFittedError from sklearn.utils.testing import assert_greater, assert_in, assert_less from sklearn.utils.testing import assert_raises_regexp, assert_warns from sklearn.utils.testing import assert_warns_message, assert_raise_message from sklearn.utils.testing import ignore_warnings # toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] Y = [1, 1, 1, 2, 2, 2] T = [[-1, -1], [2, 2], [3, 2]] true_result = [1, 2, 2] # also load the iris dataset iris = datasets.load_iris() rng = check_random_state(42) perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] def test_libsvm_parameters(): # Test parameters on classes that make use of libsvm. clf = svm.SVC(kernel='linear').fit(X, Y) assert_array_equal(clf.dual_coef_, [[-0.25, .25]]) assert_array_equal(clf.support_, [1, 3]) assert_array_equal(clf.support_vectors_, (X[1], X[3])) assert_array_equal(clf.intercept_, [0.]) assert_array_equal(clf.predict(X), Y) def test_libsvm_iris(): # Check consistency on dataset iris. # shuffle the dataset so that labels are not ordered for k in ('linear', 'rbf'): clf = svm.SVC(kernel=k).fit(iris.data, iris.target) assert_greater(np.mean(clf.predict(iris.data) == iris.target), 0.9) assert_array_equal(clf.classes_, np.sort(clf.classes_)) # check also the low-level API model = svm.libsvm.fit(iris.data, iris.target.astype(np.float64)) pred = svm.libsvm.predict(iris.data, *model) assert_greater(np.mean(pred == iris.target), .95) model = svm.libsvm.fit(iris.data, iris.target.astype(np.float64), kernel='linear') pred = svm.libsvm.predict(iris.data, *model, kernel='linear') assert_greater(np.mean(pred == iris.target), .95) pred = svm.libsvm.cross_validation(iris.data, iris.target.astype(np.float64), 5, kernel='linear', random_seed=0) assert_greater(np.mean(pred == iris.target), .95) # If random_seed >= 0, the libsvm rng is seeded (by calling `srand`), hence # we should get deteriministic results (assuming that there is no other # thread calling this wrapper calling `srand` concurrently). pred2 = svm.libsvm.cross_validation(iris.data, iris.target.astype(np.float64), 5, kernel='linear', random_seed=0) assert_array_equal(pred, pred2) @ignore_warnings def test_single_sample_1d(): # Test whether SVCs work on a single sample given as a 1-d array clf = svm.SVC().fit(X, Y) clf.predict(X[0]) clf = svm.LinearSVC(random_state=0).fit(X, Y) clf.predict(X[0]) def test_precomputed(): # SVC with a precomputed kernel. # We test it with a toy dataset and with iris. clf = svm.SVC(kernel='precomputed') # Gram matrix for train data (square matrix) # (we use just a linear kernel) K = np.dot(X, np.array(X).T) clf.fit(K, Y) # Gram matrix for test data (rectangular matrix) KT = np.dot(T, np.array(X).T) pred = clf.predict(KT) assert_raises(ValueError, clf.predict, KT.T) assert_array_equal(clf.dual_coef_, [[-0.25, .25]]) assert_array_equal(clf.support_, [1, 3]) assert_array_equal(clf.intercept_, [0]) assert_array_almost_equal(clf.support_, [1, 3]) assert_array_equal(pred, true_result) # Gram matrix for test data but compute KT[i,j] # for support vectors j only. KT = np.zeros_like(KT) for i in range(len(T)): for j in clf.support_: KT[i, j] = np.dot(T[i], X[j]) pred = clf.predict(KT) assert_array_equal(pred, true_result) # same as before, but using a callable function instead of the kernel # matrix. kernel is just a linear kernel kfunc = lambda x, y: np.dot(x, y.T) clf = svm.SVC(kernel=kfunc) clf.fit(X, Y) pred = clf.predict(T) assert_array_equal(clf.dual_coef_, [[-0.25, .25]]) assert_array_equal(clf.intercept_, [0]) assert_array_almost_equal(clf.support_, [1, 3]) assert_array_equal(pred, true_result) # test a precomputed kernel with the iris dataset # and check parameters against a linear SVC clf = svm.SVC(kernel='precomputed') clf2 = svm.SVC(kernel='linear') K = np.dot(iris.data, iris.data.T) clf.fit(K, iris.target) clf2.fit(iris.data, iris.target) pred = clf.predict(K) assert_array_almost_equal(clf.support_, clf2.support_) assert_array_almost_equal(clf.dual_coef_, clf2.dual_coef_) assert_array_almost_equal(clf.intercept_, clf2.intercept_) assert_almost_equal(np.mean(pred == iris.target), .99, decimal=2) # Gram matrix for test data but compute KT[i,j] # for support vectors j only. K = np.zeros_like(K) for i in range(len(iris.data)): for j in clf.support_: K[i, j] = np.dot(iris.data[i], iris.data[j]) pred = clf.predict(K) assert_almost_equal(np.mean(pred == iris.target), .99, decimal=2) clf = svm.SVC(kernel=kfunc) clf.fit(iris.data, iris.target) assert_almost_equal(np.mean(pred == iris.target), .99, decimal=2) def test_svr(): # Test Support Vector Regression diabetes = datasets.load_diabetes() for clf in (svm.NuSVR(kernel='linear', nu=.4, C=1.0), svm.NuSVR(kernel='linear', nu=.4, C=10.), svm.SVR(kernel='linear', C=10.), svm.LinearSVR(C=10.), svm.LinearSVR(C=10.), ): clf.fit(diabetes.data, diabetes.target) assert_greater(clf.score(diabetes.data, diabetes.target), 0.02) # non-regression test; previously, BaseLibSVM would check that # len(np.unique(y)) < 2, which must only be done for SVC svm.SVR().fit(diabetes.data, np.ones(len(diabetes.data))) svm.LinearSVR().fit(diabetes.data, np.ones(len(diabetes.data))) def test_linearsvr(): # check that SVR(kernel='linear') and LinearSVC() give # comparable results diabetes = datasets.load_diabetes() lsvr = svm.LinearSVR(C=1e3).fit(diabetes.data, diabetes.target) score1 = lsvr.score(diabetes.data, diabetes.target) svr = svm.SVR(kernel='linear', C=1e3).fit(diabetes.data, diabetes.target) score2 = svr.score(diabetes.data, diabetes.target) assert np.linalg.norm(lsvr.coef_ - svr.coef_) / np.linalg.norm(svr.coef_) < .1 assert np.abs(score1 - score2) < 0.1 def test_svr_errors(): X = [[0.0], [1.0]] y = [0.0, 0.5] # Bad kernel clf = svm.SVR(kernel=lambda x, y: np.array([[1.0]])) clf.fit(X, y) assert_raises(ValueError, clf.predict, X) def test_oneclass(): # Test OneClassSVM clf = svm.OneClassSVM() clf.fit(X) pred = clf.predict(T) assert_array_almost_equal(pred, [-1, -1, -1]) assert_array_almost_equal(clf.intercept_, [-1.008], decimal=3) assert_array_almost_equal(clf.dual_coef_, [[0.632, 0.233, 0.633, 0.234, 0.632, 0.633]], decimal=3) assert_raises(ValueError, lambda: clf.coef_) def test_oneclass_decision_function(): # Test OneClassSVM decision function clf = svm.OneClassSVM() rnd = check_random_state(2) # Generate train data X = 0.3 * rnd.randn(100, 2) X_train = np.r_[X + 2, X - 2] # Generate some regular novel observations X = 0.3 * rnd.randn(20, 2) X_test = np.r_[X + 2, X - 2] # Generate some abnormal novel observations X_outliers = rnd.uniform(low=-4, high=4, size=(20, 2)) # fit the model clf = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.1) clf.fit(X_train) # predict things y_pred_test = clf.predict(X_test) assert_greater(np.mean(y_pred_test == 1), .9) y_pred_outliers = clf.predict(X_outliers) assert_greater(np.mean(y_pred_outliers == -1), .9) dec_func_test = clf.decision_function(X_test) assert_array_equal((dec_func_test > 0).ravel(), y_pred_test == 1) dec_func_outliers = clf.decision_function(X_outliers) assert_array_equal((dec_func_outliers > 0).ravel(), y_pred_outliers == 1) def test_tweak_params(): # Make sure some tweaking of parameters works. # We change clf.dual_coef_ at run time and expect .predict() to change # accordingly. Notice that this is not trivial since it involves a lot # of C/Python copying in the libsvm bindings. # The success of this test ensures that the mapping between libsvm and # the python classifier is complete. clf = svm.SVC(kernel='linear', C=1.0) clf.fit(X, Y) assert_array_equal(clf.dual_coef_, [[-.25, .25]]) assert_array_equal(clf.predict([[-.1, -.1]]), [1]) clf._dual_coef_ = np.array([[.0, 1.]]) assert_array_equal(clf.predict([[-.1, -.1]]), [2]) def test_probability(): # Predict probabilities using SVC # This uses cross validation, so we use a slightly bigger testing set. for clf in (svm.SVC(probability=True, random_state=0, C=1.0), svm.NuSVC(probability=True, random_state=0)): clf.fit(iris.data, iris.target) prob_predict = clf.predict_proba(iris.data) assert_array_almost_equal( np.sum(prob_predict, 1), np.ones(iris.data.shape[0])) assert_true(np.mean(np.argmax(prob_predict, 1) == clf.predict(iris.data)) > 0.9) assert_almost_equal(clf.predict_proba(iris.data), np.exp(clf.predict_log_proba(iris.data)), 8) def test_decision_function(): # Test decision_function # Sanity check, test that decision_function implemented in python # returns the same as the one in libsvm # multi class: clf = svm.SVC(kernel='linear', C=0.1, decision_function_shape='ovo').fit(iris.data, iris.target) dec = np.dot(iris.data, clf.coef_.T) + clf.intercept_ assert_array_almost_equal(dec, clf.decision_function(iris.data)) # binary: clf.fit(X, Y) dec = np.dot(X, clf.coef_.T) + clf.intercept_ prediction = clf.predict(X) assert_array_almost_equal(dec.ravel(), clf.decision_function(X)) assert_array_almost_equal( prediction, clf.classes_[(clf.decision_function(X) > 0).astype(np.int)]) expected = np.array([-1., -0.66, -1., 0.66, 1., 1.]) assert_array_almost_equal(clf.decision_function(X), expected, 2) # kernel binary: clf = svm.SVC(kernel='rbf', gamma=1, decision_function_shape='ovo') clf.fit(X, Y) rbfs = rbf_kernel(X, clf.support_vectors_, gamma=clf.gamma) dec = np.dot(rbfs, clf.dual_coef_.T) + clf.intercept_ assert_array_almost_equal(dec.ravel(), clf.decision_function(X)) def test_decision_function_shape(): # check that decision_function_shape='ovr' gives # correct shape and is consistent with predict clf = svm.SVC(kernel='linear', C=0.1, decision_function_shape='ovr').fit(iris.data, iris.target) dec = clf.decision_function(iris.data) assert_equal(dec.shape, (len(iris.data), 3)) assert_array_equal(clf.predict(iris.data), np.argmax(dec, axis=1)) # with five classes: X, y = make_blobs(n_samples=80, centers=5, random_state=0) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) clf = svm.SVC(kernel='linear', C=0.1, decision_function_shape='ovr').fit(X_train, y_train) dec = clf.decision_function(X_test) assert_equal(dec.shape, (len(X_test), 5)) assert_array_equal(clf.predict(X_test), np.argmax(dec, axis=1)) # check shape of ovo_decition_function=True clf = svm.SVC(kernel='linear', C=0.1, decision_function_shape='ovo').fit(X_train, y_train) dec = clf.decision_function(X_train) assert_equal(dec.shape, (len(X_train), 10)) # check deprecation warning clf.decision_function_shape = None msg = "change the shape of the decision function" dec = assert_warns_message(ChangedBehaviorWarning, msg, clf.decision_function, X_train) assert_equal(dec.shape, (len(X_train), 10)) def test_svr_decision_function(): # Test SVR's decision_function # Sanity check, test that decision_function implemented in python # returns the same as the one in libsvm X = iris.data y = iris.target # linear kernel reg = svm.SVR(kernel='linear', C=0.1).fit(X, y) dec = np.dot(X, reg.coef_.T) + reg.intercept_ assert_array_almost_equal(dec.ravel(), reg.decision_function(X).ravel()) # rbf kernel reg = svm.SVR(kernel='rbf', gamma=1).fit(X, y) rbfs = rbf_kernel(X, reg.support_vectors_, gamma=reg.gamma) dec = np.dot(rbfs, reg.dual_coef_.T) + reg.intercept_ assert_array_almost_equal(dec.ravel(), reg.decision_function(X).ravel()) def test_weight(): # Test class weights clf = svm.SVC(class_weight={1: 0.1}) # we give a small weights to class 1 clf.fit(X, Y) # so all predicted values belong to class 2 assert_array_almost_equal(clf.predict(X), [2] * 6) X_, y_ = make_classification(n_samples=200, n_features=10, weights=[0.833, 0.167], random_state=2) for clf in (linear_model.LogisticRegression(), svm.LinearSVC(random_state=0), svm.SVC()): clf.set_params(class_weight={0: .1, 1: 10}) clf.fit(X_[:100], y_[:100]) y_pred = clf.predict(X_[100:]) assert_true(f1_score(y_[100:], y_pred) > .3) def test_sample_weights(): # Test weights on individual samples # TODO: check on NuSVR, OneClass, etc. clf = svm.SVC() clf.fit(X, Y) assert_array_equal(clf.predict([X[2]]), [1.]) sample_weight = [.1] * 3 + [10] * 3 clf.fit(X, Y, sample_weight=sample_weight) assert_array_equal(clf.predict([X[2]]), [2.]) # test that rescaling all samples is the same as changing C clf = svm.SVC() clf.fit(X, Y) dual_coef_no_weight = clf.dual_coef_ clf.set_params(C=100) clf.fit(X, Y, sample_weight=np.repeat(0.01, len(X))) assert_array_almost_equal(dual_coef_no_weight, clf.dual_coef_) def test_auto_weight(): # Test class weights for imbalanced data from sklearn.linear_model import LogisticRegression # We take as dataset the two-dimensional projection of iris so # that it is not separable and remove half of predictors from # class 1. # We add one to the targets as a non-regression test: class_weight="balanced" # used to work only when the labels where a range [0..K). from sklearn.utils import compute_class_weight X, y = iris.data[:, :2], iris.target + 1 unbalanced = np.delete(np.arange(y.size), np.where(y > 2)[0][::2]) classes = np.unique(y[unbalanced]) class_weights = compute_class_weight('balanced', classes, y[unbalanced]) assert_true(np.argmax(class_weights) == 2) for clf in (svm.SVC(kernel='linear'), svm.LinearSVC(random_state=0), LogisticRegression()): # check that score is better when class='balanced' is set. y_pred = clf.fit(X[unbalanced], y[unbalanced]).predict(X) clf.set_params(class_weight='balanced') y_pred_balanced = clf.fit(X[unbalanced], y[unbalanced],).predict(X) assert_true(metrics.f1_score(y, y_pred, average='weighted') <= metrics.f1_score(y, y_pred_balanced, average='weighted')) def test_bad_input(): # Test that it gives proper exception on deficient input # impossible value of C assert_raises(ValueError, svm.SVC(C=-1).fit, X, Y) # impossible value of nu clf = svm.NuSVC(nu=0.0) assert_raises(ValueError, clf.fit, X, Y) Y2 = Y[:-1] # wrong dimensions for labels assert_raises(ValueError, clf.fit, X, Y2) # Test with arrays that are non-contiguous. for clf in (svm.SVC(), svm.LinearSVC(random_state=0)): Xf = np.asfortranarray(X) assert_false(Xf.flags['C_CONTIGUOUS']) yf = np.ascontiguousarray(np.tile(Y, (2, 1)).T) yf = yf[:, -1] assert_false(yf.flags['F_CONTIGUOUS']) assert_false(yf.flags['C_CONTIGUOUS']) clf.fit(Xf, yf) assert_array_equal(clf.predict(T), true_result) # error for precomputed kernelsx clf = svm.SVC(kernel='precomputed') assert_raises(ValueError, clf.fit, X, Y) # sample_weight bad dimensions clf = svm.SVC() assert_raises(ValueError, clf.fit, X, Y, sample_weight=range(len(X) - 1)) # predict with sparse input when trained with dense clf = svm.SVC().fit(X, Y) assert_raises(ValueError, clf.predict, sparse.lil_matrix(X)) Xt = np.array(X).T clf.fit(np.dot(X, Xt), Y) assert_raises(ValueError, clf.predict, X) clf = svm.SVC() clf.fit(X, Y) assert_raises(ValueError, clf.predict, Xt) def test_sparse_precomputed(): clf = svm.SVC(kernel='precomputed') sparse_gram = sparse.csr_matrix([[1, 0], [0, 1]]) try: clf.fit(sparse_gram, [0, 1]) assert not "reached" except TypeError as e: assert_in("Sparse precomputed", str(e)) def test_linearsvc_parameters(): # Test possible parameter combinations in LinearSVC # Generate list of possible parameter combinations losses = ['hinge', 'squared_hinge', 'logistic_regression', 'foo'] penalties, duals = ['l1', 'l2', 'bar'], [True, False] X, y = make_classification(n_samples=5, n_features=5) for loss, penalty, dual in itertools.product(losses, penalties, duals): clf = svm.LinearSVC(penalty=penalty, loss=loss, dual=dual) if ((loss, penalty) == ('hinge', 'l1') or (loss, penalty, dual) == ('hinge', 'l2', False) or (penalty, dual) == ('l1', True) or loss == 'foo' or penalty == 'bar'): assert_raises_regexp(ValueError, "Unsupported set of arguments.*penalty='%s.*" "loss='%s.*dual=%s" % (penalty, loss, dual), clf.fit, X, y) else: clf.fit(X, y) # Incorrect loss value - test if explicit error message is raised assert_raises_regexp(ValueError, ".*loss='l3' is not supported.*", svm.LinearSVC(loss="l3").fit, X, y) # FIXME remove in 1.0 def test_linearsvx_loss_penalty_deprecations(): X, y = [[0.0], [1.0]], [0, 1] msg = ("loss='%s' has been deprecated in favor of " "loss='%s' as of 0.16. Backward compatibility" " for the %s will be removed in %s") # LinearSVC # loss l1/L1 --> hinge assert_warns_message(DeprecationWarning, msg % ("l1", "hinge", "loss='l1'", "1.0"), svm.LinearSVC(loss="l1").fit, X, y) # loss l2/L2 --> squared_hinge assert_warns_message(DeprecationWarning, msg % ("L2", "squared_hinge", "loss='L2'", "1.0"), svm.LinearSVC(loss="L2").fit, X, y) # LinearSVR # loss l1/L1 --> epsilon_insensitive assert_warns_message(DeprecationWarning, msg % ("L1", "epsilon_insensitive", "loss='L1'", "1.0"), svm.LinearSVR(loss="L1").fit, X, y) # loss l2/L2 --> squared_epsilon_insensitive assert_warns_message(DeprecationWarning, msg % ("l2", "squared_epsilon_insensitive", "loss='l2'", "1.0"), svm.LinearSVR(loss="l2").fit, X, y) # FIXME remove in 0.18 def test_linear_svx_uppercase_loss_penalty(): # Check if Upper case notation is supported by _fit_liblinear # which is called by fit X, y = [[0.0], [1.0]], [0, 1] msg = ("loss='%s' has been deprecated in favor of " "loss='%s' as of 0.16. Backward compatibility" " for the uppercase notation will be removed in %s") # loss SQUARED_hinge --> squared_hinge assert_warns_message(DeprecationWarning, msg % ("SQUARED_hinge", "squared_hinge", "0.18"), svm.LinearSVC(loss="SQUARED_hinge").fit, X, y) # penalty L2 --> l2 assert_warns_message(DeprecationWarning, msg.replace("loss", "penalty") % ("L2", "l2", "0.18"), svm.LinearSVC(penalty="L2").fit, X, y) # loss EPSILON_INSENSITIVE --> epsilon_insensitive assert_warns_message(DeprecationWarning, msg % ("EPSILON_INSENSITIVE", "epsilon_insensitive", "0.18"), svm.LinearSVR(loss="EPSILON_INSENSITIVE").fit, X, y) def test_linearsvc(): # Test basic routines using LinearSVC clf = svm.LinearSVC(random_state=0).fit(X, Y) # by default should have intercept assert_true(clf.fit_intercept) assert_array_equal(clf.predict(T), true_result) assert_array_almost_equal(clf.intercept_, [0], decimal=3) # the same with l1 penalty clf = svm.LinearSVC(penalty='l1', loss='squared_hinge', dual=False, random_state=0).fit(X, Y) assert_array_equal(clf.predict(T), true_result) # l2 penalty with dual formulation clf = svm.LinearSVC(penalty='l2', dual=True, random_state=0).fit(X, Y) assert_array_equal(clf.predict(T), true_result) # l2 penalty, l1 loss clf = svm.LinearSVC(penalty='l2', loss='hinge', dual=True, random_state=0) clf.fit(X, Y) assert_array_equal(clf.predict(T), true_result) # test also decision function dec = clf.decision_function(T) res = (dec > 0).astype(np.int) + 1 assert_array_equal(res, true_result) def test_linearsvc_crammer_singer(): # Test LinearSVC with crammer_singer multi-class svm ovr_clf = svm.LinearSVC(random_state=0).fit(iris.data, iris.target) cs_clf = svm.LinearSVC(multi_class='crammer_singer', random_state=0) cs_clf.fit(iris.data, iris.target) # similar prediction for ovr and crammer-singer: assert_true((ovr_clf.predict(iris.data) == cs_clf.predict(iris.data)).mean() > .9) # classifiers shouldn't be the same assert_true((ovr_clf.coef_ != cs_clf.coef_).all()) # test decision function assert_array_equal(cs_clf.predict(iris.data), np.argmax(cs_clf.decision_function(iris.data), axis=1)) dec_func = np.dot(iris.data, cs_clf.coef_.T) + cs_clf.intercept_ assert_array_almost_equal(dec_func, cs_clf.decision_function(iris.data)) def test_crammer_singer_binary(): # Test Crammer-Singer formulation in the binary case X, y = make_classification(n_classes=2, random_state=0) for fit_intercept in (True, False): acc = svm.LinearSVC(fit_intercept=fit_intercept, multi_class="crammer_singer", random_state=0).fit(X, y).score(X, y) assert_greater(acc, 0.9) def test_linearsvc_iris(): # Test that LinearSVC gives plausible predictions on the iris dataset # Also, test symbolic class names (classes_). target = iris.target_names[iris.target] clf = svm.LinearSVC(random_state=0).fit(iris.data, target) assert_equal(set(clf.classes_), set(iris.target_names)) assert_greater(np.mean(clf.predict(iris.data) == target), 0.8) dec = clf.decision_function(iris.data) pred = iris.target_names[np.argmax(dec, 1)] assert_array_equal(pred, clf.predict(iris.data)) def test_dense_liblinear_intercept_handling(classifier=svm.LinearSVC): # Test that dense liblinear honours intercept_scaling param X = [[2, 1], [3, 1], [1, 3], [2, 3]] y = [0, 0, 1, 1] clf = classifier(fit_intercept=True, penalty='l1', loss='squared_hinge', dual=False, C=4, tol=1e-7, random_state=0) assert_true(clf.intercept_scaling == 1, clf.intercept_scaling) assert_true(clf.fit_intercept) # when intercept_scaling is low the intercept value is highly "penalized" # by regularization clf.intercept_scaling = 1 clf.fit(X, y) assert_almost_equal(clf.intercept_, 0, decimal=5) # when intercept_scaling is sufficiently high, the intercept value # is not affected by regularization clf.intercept_scaling = 100 clf.fit(X, y) intercept1 = clf.intercept_ assert_less(intercept1, -1) # when intercept_scaling is sufficiently high, the intercept value # doesn't depend on intercept_scaling value clf.intercept_scaling = 1000 clf.fit(X, y) intercept2 = clf.intercept_ assert_array_almost_equal(intercept1, intercept2, decimal=2) def test_liblinear_set_coef(): # multi-class case clf = svm.LinearSVC().fit(iris.data, iris.target) values = clf.decision_function(iris.data) clf.coef_ = clf.coef_.copy() clf.intercept_ = clf.intercept_.copy() values2 = clf.decision_function(iris.data) assert_array_almost_equal(values, values2) # binary-class case X = [[2, 1], [3, 1], [1, 3], [2, 3]] y = [0, 0, 1, 1] clf = svm.LinearSVC().fit(X, y) values = clf.decision_function(X) clf.coef_ = clf.coef_.copy() clf.intercept_ = clf.intercept_.copy() values2 = clf.decision_function(X) assert_array_equal(values, values2) def test_immutable_coef_property(): # Check that primal coef modification are not silently ignored svms = [ svm.SVC(kernel='linear').fit(iris.data, iris.target), svm.NuSVC(kernel='linear').fit(iris.data, iris.target), svm.SVR(kernel='linear').fit(iris.data, iris.target), svm.NuSVR(kernel='linear').fit(iris.data, iris.target), svm.OneClassSVM(kernel='linear').fit(iris.data), ] for clf in svms: assert_raises(AttributeError, clf.__setattr__, 'coef_', np.arange(3)) assert_raises((RuntimeError, ValueError), clf.coef_.__setitem__, (0, 0), 0) def test_linearsvc_verbose(): # stdout: redirect import os stdout = os.dup(1) # save original stdout os.dup2(os.pipe()[1], 1) # replace it # actual call clf = svm.LinearSVC(verbose=1) clf.fit(X, Y) # stdout: restore os.dup2(stdout, 1) # restore original stdout def test_svc_clone_with_callable_kernel(): # create SVM with callable linear kernel, check that results are the same # as with built-in linear kernel svm_callable = svm.SVC(kernel=lambda x, y: np.dot(x, y.T), probability=True, random_state=0, decision_function_shape='ovr') # clone for checking clonability with lambda functions.. svm_cloned = base.clone(svm_callable) svm_cloned.fit(iris.data, iris.target) svm_builtin = svm.SVC(kernel='linear', probability=True, random_state=0, decision_function_shape='ovr') svm_builtin.fit(iris.data, iris.target) assert_array_almost_equal(svm_cloned.dual_coef_, svm_builtin.dual_coef_) assert_array_almost_equal(svm_cloned.intercept_, svm_builtin.intercept_) assert_array_equal(svm_cloned.predict(iris.data), svm_builtin.predict(iris.data)) assert_array_almost_equal(svm_cloned.predict_proba(iris.data), svm_builtin.predict_proba(iris.data), decimal=4) assert_array_almost_equal(svm_cloned.decision_function(iris.data), svm_builtin.decision_function(iris.data)) def test_svc_bad_kernel(): svc = svm.SVC(kernel=lambda x, y: x) assert_raises(ValueError, svc.fit, X, Y) def test_timeout(): a = svm.SVC(kernel=lambda x, y: np.dot(x, y.T), probability=True, random_state=0, max_iter=1) assert_warns(ConvergenceWarning, a.fit, X, Y) def test_unfitted(): X = "foo!" # input validation not required when SVM not fitted clf = svm.SVC() assert_raises_regexp(Exception, r".*\bSVC\b.*\bnot\b.*\bfitted\b", clf.predict, X) clf = svm.NuSVR() assert_raises_regexp(Exception, r".*\bNuSVR\b.*\bnot\b.*\bfitted\b", clf.predict, X) # ignore convergence warnings from max_iter=1 @ignore_warnings def test_consistent_proba(): a = svm.SVC(probability=True, max_iter=1, random_state=0) proba_1 = a.fit(X, Y).predict_proba(X) a = svm.SVC(probability=True, max_iter=1, random_state=0) proba_2 = a.fit(X, Y).predict_proba(X) assert_array_almost_equal(proba_1, proba_2) def test_linear_svc_convergence_warnings(): # Test that warnings are raised if model does not converge lsvc = svm.LinearSVC(max_iter=2, verbose=1) assert_warns(ConvergenceWarning, lsvc.fit, X, Y) assert_equal(lsvc.n_iter_, 2) def test_svr_coef_sign(): # Test that SVR(kernel="linear") has coef_ with the right sign. # Non-regression test for #2933. X = np.random.RandomState(21).randn(10, 3) y = np.random.RandomState(12).randn(10) for svr in [svm.SVR(kernel='linear'), svm.NuSVR(kernel='linear'), svm.LinearSVR()]: svr.fit(X, y) assert_array_almost_equal(svr.predict(X), np.dot(X, svr.coef_.ravel()) + svr.intercept_) def test_linear_svc_intercept_scaling(): # Test that the right error message is thrown when intercept_scaling <= 0 for i in [-1, 0]: lsvc = svm.LinearSVC(intercept_scaling=i) msg = ('Intercept scaling is %r but needs to be greater than 0.' ' To disable fitting an intercept,' ' set fit_intercept=False.' % lsvc.intercept_scaling) assert_raise_message(ValueError, msg, lsvc.fit, X, Y) def test_lsvc_intercept_scaling_zero(): # Test that intercept_scaling is ignored when fit_intercept is False lsvc = svm.LinearSVC(fit_intercept=False) lsvc.fit(X, Y) assert_equal(lsvc.intercept_, 0.) def test_hasattr_predict_proba(): # Method must be (un)available before or after fit, switched by # `probability` param G = svm.SVC(probability=True) assert_true(hasattr(G, 'predict_proba')) G.fit(iris.data, iris.target) assert_true(hasattr(G, 'predict_proba')) G = svm.SVC(probability=False) assert_false(hasattr(G, 'predict_proba')) G.fit(iris.data, iris.target) assert_false(hasattr(G, 'predict_proba')) # Switching to `probability=True` after fitting should make # predict_proba available, but calling it must not work: G.probability = True assert_true(hasattr(G, 'predict_proba')) msg = "predict_proba is not available when fitted with probability=False" assert_raise_message(NotFittedError, msg, G.predict_proba, iris.data)
bsd-3-clause
hdmetor/scikit-learn
examples/neighbors/plot_kde_1d.py
347
5100
""" =================================== Simple 1D Kernel Density Estimation =================================== This example uses the :class:`sklearn.neighbors.KernelDensity` class to demonstrate the principles of Kernel Density Estimation in one dimension. The first plot shows one of the problems with using histograms to visualize the density of points in 1D. Intuitively, a histogram can be thought of as a scheme in which a unit "block" is stacked above each point on a regular grid. As the top two panels show, however, the choice of gridding for these blocks can lead to wildly divergent ideas about the underlying shape of the density distribution. If we instead center each block on the point it represents, we get the estimate shown in the bottom left panel. This is a kernel density estimation with a "top hat" kernel. This idea can be generalized to other kernel shapes: the bottom-right panel of the first figure shows a Gaussian kernel density estimate over the same distribution. Scikit-learn implements efficient kernel density estimation using either a Ball Tree or KD Tree structure, through the :class:`sklearn.neighbors.KernelDensity` estimator. The available kernels are shown in the second figure of this example. The third figure compares kernel density estimates for a distribution of 100 samples in 1 dimension. Though this example uses 1D distributions, kernel density estimation is easily and efficiently extensible to higher dimensions as well. """ # Author: Jake Vanderplas <[email protected]> # import numpy as np import matplotlib.pyplot as plt from scipy.stats import norm from sklearn.neighbors import KernelDensity #---------------------------------------------------------------------- # Plot the progression of histograms to kernels np.random.seed(1) N = 20 X = np.concatenate((np.random.normal(0, 1, 0.3 * N), np.random.normal(5, 1, 0.7 * N)))[:, np.newaxis] X_plot = np.linspace(-5, 10, 1000)[:, np.newaxis] bins = np.linspace(-5, 10, 10) fig, ax = plt.subplots(2, 2, sharex=True, sharey=True) fig.subplots_adjust(hspace=0.05, wspace=0.05) # histogram 1 ax[0, 0].hist(X[:, 0], bins=bins, fc='#AAAAFF', normed=True) ax[0, 0].text(-3.5, 0.31, "Histogram") # histogram 2 ax[0, 1].hist(X[:, 0], bins=bins + 0.75, fc='#AAAAFF', normed=True) ax[0, 1].text(-3.5, 0.31, "Histogram, bins shifted") # tophat KDE kde = KernelDensity(kernel='tophat', bandwidth=0.75).fit(X) log_dens = kde.score_samples(X_plot) ax[1, 0].fill(X_plot[:, 0], np.exp(log_dens), fc='#AAAAFF') ax[1, 0].text(-3.5, 0.31, "Tophat Kernel Density") # Gaussian KDE kde = KernelDensity(kernel='gaussian', bandwidth=0.75).fit(X) log_dens = kde.score_samples(X_plot) ax[1, 1].fill(X_plot[:, 0], np.exp(log_dens), fc='#AAAAFF') ax[1, 1].text(-3.5, 0.31, "Gaussian Kernel Density") for axi in ax.ravel(): axi.plot(X[:, 0], np.zeros(X.shape[0]) - 0.01, '+k') axi.set_xlim(-4, 9) axi.set_ylim(-0.02, 0.34) for axi in ax[:, 0]: axi.set_ylabel('Normalized Density') for axi in ax[1, :]: axi.set_xlabel('x') #---------------------------------------------------------------------- # Plot all available kernels X_plot = np.linspace(-6, 6, 1000)[:, None] X_src = np.zeros((1, 1)) fig, ax = plt.subplots(2, 3, sharex=True, sharey=True) fig.subplots_adjust(left=0.05, right=0.95, hspace=0.05, wspace=0.05) def format_func(x, loc): if x == 0: return '0' elif x == 1: return 'h' elif x == -1: return '-h' else: return '%ih' % x for i, kernel in enumerate(['gaussian', 'tophat', 'epanechnikov', 'exponential', 'linear', 'cosine']): axi = ax.ravel()[i] log_dens = KernelDensity(kernel=kernel).fit(X_src).score_samples(X_plot) axi.fill(X_plot[:, 0], np.exp(log_dens), '-k', fc='#AAAAFF') axi.text(-2.6, 0.95, kernel) axi.xaxis.set_major_formatter(plt.FuncFormatter(format_func)) axi.xaxis.set_major_locator(plt.MultipleLocator(1)) axi.yaxis.set_major_locator(plt.NullLocator()) axi.set_ylim(0, 1.05) axi.set_xlim(-2.9, 2.9) ax[0, 1].set_title('Available Kernels') #---------------------------------------------------------------------- # Plot a 1D density example N = 100 np.random.seed(1) X = np.concatenate((np.random.normal(0, 1, 0.3 * N), np.random.normal(5, 1, 0.7 * N)))[:, np.newaxis] X_plot = np.linspace(-5, 10, 1000)[:, np.newaxis] true_dens = (0.3 * norm(0, 1).pdf(X_plot[:, 0]) + 0.7 * norm(5, 1).pdf(X_plot[:, 0])) fig, ax = plt.subplots() ax.fill(X_plot[:, 0], true_dens, fc='black', alpha=0.2, label='input distribution') for kernel in ['gaussian', 'tophat', 'epanechnikov']: kde = KernelDensity(kernel=kernel, bandwidth=0.5).fit(X) log_dens = kde.score_samples(X_plot) ax.plot(X_plot[:, 0], np.exp(log_dens), '-', label="kernel = '{0}'".format(kernel)) ax.text(6, 0.38, "N={0} points".format(N)) ax.legend(loc='upper left') ax.plot(X[:, 0], -0.005 - 0.01 * np.random.random(X.shape[0]), '+k') ax.set_xlim(-4, 9) ax.set_ylim(-0.02, 0.4) plt.show()
bsd-3-clause
mrgloom/h2o-3
h2o-py/tests/testdir_golden/pyunit_svd_1_golden.py
3
2183
import sys sys.path.insert(1, "../../") import h2o def svd_1_golden(ip, port): print "Importing USArrests.csv data..." arrestsH2O = h2o.upload_file(h2o.locate("smalldata/pca_test/USArrests.csv")) print "Compare with SVD" fitH2O = h2o.svd(x=arrestsH2O[0:4], nv=4, transform="NONE", max_iterations=2000) print "Compare singular values (D)" h2o_d = fitH2O._model_json['output']['d'] r_d = [1419.06139509772, 194.825846110138, 45.6613376308754, 18.0695566224677] print "R Singular Values: {0}".format(r_d) print "H2O Singular Values: {0}".format(h2o_d) for r, h in zip(r_d, h2o_d): assert abs(r - h) < 1e-6, "H2O got {0}, but R got {1}".format(h, r) print "Compare right singular vectors (V)" h2o_v = fitH2O._model_json['output']['v'] r_v = [[-0.04239181, 0.01616262, -0.06588426, 0.99679535], [-0.94395706, 0.32068580, 0.06655170, -0.04094568], [-0.30842767, -0.93845891, 0.15496743, 0.01234261], [-0.10963744, -0.12725666, -0.98347101, -0.06760284]] print "R Right Singular Vectors: {0}".format(r_v) print "H2O Right Singular Vectors: {0}".format(h2o_v) for rl, hl in zip(r_v, h2o_v): for r, h in zip(rl, hl): assert abs(abs(r) - abs(h)) < 1e-5, "H2O got {0}, but R got {1}".format(h, r) print "Compare left singular vectors (U)" h2o_u = h2o.as_list(h2o.get_frame(fitH2O._model_json['output']['u_key']['name']), use_pandas=False) h2o_u.pop(0) r_u = [[-0.1716251, 0.096325710, 0.06515480, 0.15369551], [-0.1891166, 0.173452566, -0.42665785, -0.17801438], [-0.2155930, 0.078998111, 0.02063740, -0.28070784], [-0.1390244, 0.059889811, 0.01392269, 0.01610418], [-0.2067788, -0.009812026, -0.17633244, -0.21867425], [-0.1558794, -0.064555293, -0.28288280, -0.11797419]] print "R Left Singular Vectors: {0}".format(r_u) print "H2O Left Singular Vectors: {0}".format(h2o_u) for rl, hl in zip(r_u, h2o_u): for r, h in zip(rl, hl): assert abs(abs(r) - abs(float(h))) < 1e-5, "H2O got {0}, but R got {1}".format(h, r) if __name__ == "__main__": h2o.run_test(sys.argv, svd_1_golden)
apache-2.0
jpzk/evopy
evopy/examples/experiments/constraints_dses_dsessvc/latex.py
1
6832
''' This file is part of evopy. Copyright 2012 - 2013, Jendrik Poloczek evopy is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. evopy is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with evopy. If not, see <http://www.gnu.org/licenses/>. ''' from sys import path path.append("../../../..") import pdb from pickle import load from copy import deepcopy from numpy import matrix, log10, array from scipy.stats import wilcoxon, ranksums from itertools import chain from evopy.strategies.ori_dses_svc_repair import ORIDSESSVCR from evopy.strategies.ori_dses_svc import ORIDSESSVC from evopy.strategies.ori_dses import ORIDSES from evopy.simulators.simulator import Simulator from evopy.problems.sphere_problem_origin_r1 import SphereProblemOriginR1 from evopy.problems.sphere_problem_origin_r2 import SphereProblemOriginR2 from evopy.problems.schwefels_problem_26 import SchwefelsProblem26 from evopy.problems.tr_problem import TRProblem from evopy.metamodel.dses_svc_linear_meta_model import DSESSVCLinearMetaModel from sklearn.cross_validation import KFold from evopy.operators.scaling.scaling_standardscore import ScalingStandardscore from evopy.operators.scaling.scaling_dummy import ScalingDummy from evopy.metamodel.cv.svc_cv_sklearn_grid_linear import SVCCVSkGridLinear from evopy.operators.termination.or_combinator import ORCombinator from evopy.operators.termination.accuracy import Accuracy from evopy.operators.termination.generations import Generations from evopy.operators.termination.convergence import Convergence from setup import * cfcsf = file("output/cfcs_file.save", "r") cfcs = load(cfcsf) # statistics variable_names = ['min', 'max', 'mean', 'var', 'h'] variables = {} for variable in variable_names: variables[variable] = create_problem_optimizer_map(0.0) for problem in problems: for optimizer in optimizers[problem]: cfc = cfcs[problem][optimizer] cfc = list(chain.from_iterable(cfc)) variables['min'][problem][optimizer] = min(cfc) variables['max'][problem][optimizer] = max(cfc) variables['mean'][problem][optimizer] = array(cfc).mean() variables['var'][problem][optimizer] = array(cfc).var() variables['h'][problem][optimizer] =\ 1.06 * array(cfc).std() * (len(cfc)**(-1.0/5.0)) pvalues = {} for problem in problems: x = list(chain.from_iterable(cfcs[problem][optimizers[problem][0]])) y = list(chain.from_iterable(cfcs[problem][optimizers[problem][1]])) z, pvalues[problem] = ranksums(x,y) results = file("output/results.tex","w") lines = [ "\\begin{tabularx}{\\textwidth}{l X X X X X X X }\n", "\\toprule\n", "\\textbf{Problem} & p-Wert & SVK & Minimum & Mittel & Maximum & Varianz & h\\\\\n", "\midrule\n", "Kugel R. 1 & %1.2f & nein & %i & %1.2f & %i & %1.2f & %1.2f \\\\\n"\ % (pvalues[SphereProblemOriginR1],\ variables['min'][SphereProblemOriginR1][get_method_SphereProblemR1],\ variables['mean'][SphereProblemOriginR1][get_method_SphereProblemR1],\ variables['max'][SphereProblemOriginR1][get_method_SphereProblemR1],\ variables['var'][SphereProblemOriginR1][get_method_SphereProblemR1],\ variables['h'][SphereProblemOriginR1][get_method_SphereProblemR1]),\ "&& ja & %i & %1.2f & %i & %1.2f & %1.2f \\\\\n"\ % (variables['min'][SphereProblemOriginR1][get_method_SphereProblemR1_svc],\ variables['mean'][SphereProblemOriginR1][get_method_SphereProblemR1_svc],\ variables['max'][SphereProblemOriginR1][get_method_SphereProblemR1_svc],\ variables['var'][SphereProblemOriginR1][get_method_SphereProblemR1_svc],\ variables['h'][SphereProblemOriginR1][get_method_SphereProblemR1_svc]),\ "Kugel R. 2 & %1.2f & nein & %i & %1.2f & %i & %1.2f & %1.2f \\\\\n"\ % (pvalues[SphereProblemOriginR2],\ variables['min'][SphereProblemOriginR2][get_method_SphereProblemR2],\ variables['mean'][SphereProblemOriginR2][get_method_SphereProblemR2],\ variables['max'][SphereProblemOriginR2][get_method_SphereProblemR2],\ variables['var'][SphereProblemOriginR2][get_method_SphereProblemR2],\ variables['h'][SphereProblemOriginR2][get_method_SphereProblemR2_svc]),\ "&& ja & %i & %1.2f & %i & %1.2f & %1.2f \\\\\n"\ % (variables['min'][SphereProblemOriginR2][get_method_SphereProblemR2_svc],\ variables['mean'][SphereProblemOriginR2][get_method_SphereProblemR2_svc],\ variables['max'][SphereProblemOriginR2][get_method_SphereProblemR2_svc],\ variables['var'][SphereProblemOriginR2][get_method_SphereProblemR2_svc],\ variables['h'][SphereProblemOriginR2][get_method_SphereProblemR2_svc]),\ "TR2 & %1.2f & nein & %i & %1.2f & %i & %1.2f & %1.2f \\\\\n"\ % (pvalues[TRProblem],\ variables['min'][TRProblem][get_method_TR],\ variables['mean'][TRProblem][get_method_TR],\ variables['max'][TRProblem][get_method_TR],\ variables['var'][TRProblem][get_method_TR],\ variables['h'][TRProblem][get_method_TR]),\ "&& ja & %i & %1.2f & %i & %1.2f & %1.2f \\\\\n"\ % (variables['min'][TRProblem][get_method_TR_svc],\ variables['mean'][TRProblem][get_method_TR_svc],\ variables['max'][TRProblem][get_method_TR_svc],\ variables['var'][TRProblem][get_method_TR_svc],\ variables['h'][TRProblem][get_method_TR_svc]),\ "2.60 mit R. & %1.2f & nein & %i & %1.2f & %i & %1.2f & %1.2f\\\\\n"\ % (pvalues[SchwefelsProblem26],\ variables['min'][SchwefelsProblem26][get_method_Schwefel26],\ variables['mean'][SchwefelsProblem26][get_method_Schwefel26],\ variables['max'][SchwefelsProblem26][get_method_Schwefel26],\ variables['var'][SchwefelsProblem26][get_method_Schwefel26],\ variables['h'][SchwefelsProblem26][get_method_Schwefel26]),\ "&& ja & %i & %1.2f & %i & %1.2f & %1.2f \\\\\n"\ % (variables['min'][SchwefelsProblem26][get_method_Schwefel26_svc],\ variables['mean'][SchwefelsProblem26][get_method_Schwefel26_svc],\ variables['max'][SchwefelsProblem26][get_method_Schwefel26_svc],\ variables['var'][SchwefelsProblem26][get_method_Schwefel26_svc],\ variables['h'][SchwefelsProblem26][get_method_Schwefel26_svc]),\ "\\bottomrule\n",\ "\end{tabularx}\n"] results.writelines(lines) results.close()
gpl-3.0
perrygeo/geopandas
setup.py
7
2472
#!/usr/bin/env/python """Installation script Version handling borrowed from pandas project. """ import sys import os import warnings try: from setuptools import setup except ImportError: from distutils.core import setup LONG_DESCRIPTION = """GeoPandas is a project to add support for geographic data to `pandas`_ objects. The goal of GeoPandas is to make working with geospatial data in python easier. It combines the capabilities of `pandas`_ and `shapely`_, providing geospatial operations in pandas and a high-level interface to multiple geometries to shapely. GeoPandas enables you to easily do operations in python that would otherwise require a spatial database such as PostGIS. .. _pandas: http://pandas.pydata.org .. _shapely: http://toblerity.github.io/shapely """ MAJOR = 0 MINOR = 1 MICRO = 0 ISRELEASED = False VERSION = '%d.%d.%d' % (MAJOR, MINOR, MICRO) QUALIFIER = '' FULLVERSION = VERSION if not ISRELEASED: FULLVERSION += '.dev' try: import subprocess try: pipe = subprocess.Popen(["git", "rev-parse", "--short", "HEAD"], stdout=subprocess.PIPE).stdout except OSError: # msysgit compatibility pipe = subprocess.Popen( ["git.cmd", "describe", "HEAD"], stdout=subprocess.PIPE).stdout rev = pipe.read().strip() # makes distutils blow up on Python 2.7 if sys.version_info[0] >= 3: rev = rev.decode('ascii') FULLVERSION = '%d.%d.%d.dev-%s' % (MAJOR, MINOR, MICRO, rev) except: warnings.warn("WARNING: Couldn't get git revision") else: FULLVERSION += QUALIFIER def write_version_py(filename=None): cnt = """\ version = '%s' short_version = '%s' """ if not filename: filename = os.path.join( os.path.dirname(__file__), 'geopandas', 'version.py') a = open(filename, 'w') try: a.write(cnt % (FULLVERSION, VERSION)) finally: a.close() write_version_py() setup(name='geopandas', version=FULLVERSION, description='Geographic pandas extensions', license='BSD', author='Kelsey Jordahl', author_email='[email protected]', url='http://geopandas.org', long_description=LONG_DESCRIPTION, packages=['geopandas', 'geopandas.io', 'geopandas.tools'], install_requires=[ 'pandas', 'shapely', 'fiona', 'descartes', 'pyproj', 'rtree'], )
bsd-3-clause
CuppenResearch/SmallTools
categorizeSV.py
3
7039
#!/usr/local/bin/python ################################################################## # A table will be made that contains all SVs from each VCF-file, with the SVs sorted on type and length. # Each vcf file is put in a different column of the table. # In the command line a path should be provided of the vcf files to be processed. # # Author: Floor Dussel ################################################################## import os import re import numpy as np import pandas as pd import glob import vcf import argparse def categorize(path): list_vcf_names = [] df_all = pd.DataFrame() def extractInfoINVDELTRADUP (record): chrom = record.CHROM pos = record.POS end = record.INFO["END"] length_calc = end - pos length_abs = abs(length_calc) length = length_abs + 1 output = [chrom, pos, end, length] return output; def extractInfoINS (record): chrom = record.CHROM pos = record.POS end = record.INFO["END"] length = 0 if "INSLEN" in record.INFO: length_get = record.INFO["INSLEN"] length = abs(length_get) #print 'INSLENGTH used as length of insertion' elif "SVLEN" in record.INFO: length = record.INFO["SVLEN"] if length != int: length = length[0] if length < 0: length = length * -1 #print 'SVLEN used as length of insertion' #else: #print 'No insertion length found. Note: insertion is not taken into account in the table' output = [chrom, pos, end, length] return output; #BNDs are said to have length = 0 and END is said to be the same as POS def extractInfoBND (record): chrom = record.CHROM pos = record.POS end = pos length = 0 output = [chrom, pos, end, length] return output; def checkLengthSVs(record): if record.INFO["SVTYPE"] == "DEL": del_output = extractInfoINVDELTRADUP(record) length = del_output[3] if (length > 1000 and length < 10001): #1000-10001bp, so length of 1-10kb del_outputlist10.append(del_output) elif (length > 10000 and length <100001): #10-100kbp del_outputlist100.append(del_output) elif (length > 100000 and length <1000001): #100kb-1mbp del_outputlist1000.append(del_output) elif (length > 1000000 and length <10000001): #1mbp - 10 mbp del_outputlist10000.append(del_output) elif (length > 10000000): # >10Mb del_outputlist100000.append(del_output) if record.INFO["SVTYPE"] == "INS": ins_output = extractInfoINS(record) length = ins_output[3] if (length > 1000 and length < 10001): #1000-10001bp, so length of 1-10kb ins_outputlist10.append(ins_output) elif (length > 10000 and length <100001): #10-100kbp ins_outputlist100.append(ins_output) elif (length > 100000 and length <1000001): #100kb-1mbp ins_outputlist1000.append(ins_output) elif (length > 1000000 and length <10000001): #1mbp - 10 mbp ins_outputlist10000.append(ins_output) elif (length > 10000000): # >10Mb ins_outputlist100000.append(ins_output) if record.INFO["SVTYPE"] == "INV": inv_output = extractInfoINVDELTRADUP(record) length = inv_output[3] if (length > 1000 and length < 10001): #1000-10001bp, so length of 1-10kb inv_outputlist10.append(inv_output) elif (length > 10000 and length <100001): #10-100kbp inv_outputlist100.append(inv_output) elif (length > 100000 and length <1000001): #100kb-1mbp inv_outputlist1000.append(inv_output) elif (length > 1000000 and length <10000001): #1mbp - 10 mbp inv_outputlist10000.append(inv_output) elif (length > 10000000): # >10Mb inv_outputlist100000.append(inv_output) if record.INFO["SVTYPE"] == "TRA": tra_output = extractInfoINVDELTRADUP(record) tra_bnd_outputlist.append(tra_output) if record.INFO["SVTYPE"] == "DUP": dup_output = extractInfoINVDELTRADUP(record) length = dup_output[3] if (length > 1000 and length < 10001): #1000-10001bp, so length of 1-10kb dup_outputlist10.append(dup_output) elif (length > 10000 and length <100001): #10-100kbp dup_outputlist100.append(dup_output) elif (length > 100000 and length <1000001): #100kb-1mbp dup_outputlist1000.append(dup_output) elif (length > 1000000 and length <10000001): #1mbp - 10 mbp dup_outputlist10000.append(dup_output) elif (length > 10000000): # >10Mb dup_outputlist100000.append(dup_output) if record.INFO["SVTYPE"] == "BND": bnd_output = extractInfoBND(record) tra_bnd_outputlist.append(bnd_output) path_vcf = path #path = "/home/cog/fdussel/Documents/*.vcf" for vcf_filename in glob.glob(path_vcf): #vcf= open(vcf_filename) #print vcf_filename vcf_file = None df_vcf = pd.DataFrame() vcf_file_handle = open(vcf_filename, 'r') if os.path.getsize(vcf_filename) > 0: vcf_file = vcf.Reader(vcf_file_handle) else: continue del_outputlist10 = [] del_outputlist100 = [] del_outputlist1000 = [] del_outputlist10000 = [] del_outputlist100000 = [] ins_outputlist10 = [] ins_outputlist100 = [] ins_outputlist1000 = [] ins_outputlist10000 = [] ins_outputlist100000 = [] inv_outputlist10 = [] inv_outputlist100 = [] inv_outputlist1000 = [] inv_outputlist10000 = [] inv_outputlist100000 = [] tra_bnd_outputlist = [] dup_outputlist10 = [] dup_outputlist100 = [] dup_outputlist1000 = [] dup_outputlist10000 = [] dup_outputlist100000 = [] all_names = vcf_filename.rsplit('/', 1) name = all_names[1] list_vcf_names.append(name) for record in vcf_file: checkLengthSVs(record) dict_numberSV = {"del_1_10kb" : len(del_outputlist10), "del_10_100kb": len(del_outputlist100), "del_100kb_1mb": len(del_outputlist1000), "del_1mb_10mb" : len(del_outputlist10000), "del_>10mb": len(del_outputlist100000), "ins_1_10kb" : len(ins_outputlist10), "ins_10_100kb" : len(ins_outputlist100), "ins_100kb_1mb": len(ins_outputlist1000), "ins_1mb_10mb" : len(ins_outputlist10000), "ins_>10mb" : len(ins_outputlist100000), "inv_1_10kb" : len(inv_outputlist10), "inv_10_100kb": len(inv_outputlist100), "inv_100kb_1mb" : len(inv_outputlist1000), "inv_1mb_10mb" : len(inv_outputlist10000), "inv_>10mb" : len(inv_outputlist100000), "tra/bnd ": len(tra_bnd_outputlist), "dup_1_10kb" : len(dup_outputlist10), "dup_10_100kb" : len(dup_outputlist100), "dup_100kb_1mb" : len(dup_outputlist1000), "dup_1mb_10mb" : len(dup_outputlist10000), "dup_>10mb" : len(dup_outputlist100000)} df_vcf = pd.DataFrame({name: dict_numberSV}, index = dict_numberSV.keys()) vcf_file_handle.close() # Check whether data frame is empty if not df_vcf.empty: df_all = pd.concat([df_all, df_vcf], axis=1) df_all = df_all.sort_index() #print list_vcf_names print df_all if __name__ == '__main__': parser = argparse.ArgumentParser(description = 'Categorizing structural variants on type and length') required_named = parser.add_argument_group('Required arguments') required_named.add_argument('-p', '--path', help = "input a path for the vcf-file(s) to be processed", required=True) args = parser.parse_args() categorize(args.path)
gpl-3.0
dunkenj/smpy
scripts/dblpower_test.py
1
1035
import numpy as np import astropy.units as u from smpy import smpy as S from smpy import ssp as B from smpy.sfh import dblpower import matplotlib.pyplot as plt BC = B.BC('data/ssp/bc03/chab/lr/') models = S.CSP(BC) tau = 1*u.Gyr age = 3*u.Gyr sfh = [(1., -1., 0.3), (1., -1., 0.5)] dust = 0. metal = 1. #BC = B.BC('') def make_dbl_sfhs(nalpha, nbeta, ntau, lalpha_min=-1., lalpha_max=3., lbeta_min=-1., lbeta_max=3., tau_min=0.1, tau_max=1.0): alphas, betas, taus = np.meshgrid(np.logspace(lalpha_min, lalpha_max, nalpha), -1*np.logspace(lbeta_min, lbeta_max, nbeta), np.linspace(tau_min, tau_max, ntau)) sfh_params = np.vstack([alphas.flatten(), betas.flatten(), taus.flatten()]).T return sfh_params sfh = make_dbl_sfhs(9, 9, 7) #sfh = [(31.6227766,-31.6227766,0.7)] #sfh = [(31.62,-10.,0.7)] models.build(age, sfh, dust, metal, fesc=[0., 0.1, 0.2], sfh_law=dblpower, verbose=True)
mit
valexandersaulys/airbnb_kaggle_contest
venv/lib/python3.4/site-packages/sklearn/decomposition/tests/test_kernel_pca.py
57
8062
import numpy as np import scipy.sparse as sp from sklearn.utils.testing import (assert_array_almost_equal, assert_less, assert_equal, assert_not_equal, assert_raises) from sklearn.decomposition import PCA, KernelPCA from sklearn.datasets import make_circles from sklearn.linear_model import Perceptron from sklearn.pipeline import Pipeline from sklearn.grid_search import GridSearchCV from sklearn.metrics.pairwise import rbf_kernel def test_kernel_pca(): rng = np.random.RandomState(0) X_fit = rng.random_sample((5, 4)) X_pred = rng.random_sample((2, 4)) def histogram(x, y, **kwargs): # Histogram kernel implemented as a callable. assert_equal(kwargs, {}) # no kernel_params that we didn't ask for return np.minimum(x, y).sum() for eigen_solver in ("auto", "dense", "arpack"): for kernel in ("linear", "rbf", "poly", histogram): # histogram kernel produces singular matrix inside linalg.solve # XXX use a least-squares approximation? inv = not callable(kernel) # transform fit data kpca = KernelPCA(4, kernel=kernel, eigen_solver=eigen_solver, fit_inverse_transform=inv) X_fit_transformed = kpca.fit_transform(X_fit) X_fit_transformed2 = kpca.fit(X_fit).transform(X_fit) assert_array_almost_equal(np.abs(X_fit_transformed), np.abs(X_fit_transformed2)) # non-regression test: previously, gamma would be 0 by default, # forcing all eigenvalues to 0 under the poly kernel assert_not_equal(X_fit_transformed.size, 0) # transform new data X_pred_transformed = kpca.transform(X_pred) assert_equal(X_pred_transformed.shape[1], X_fit_transformed.shape[1]) # inverse transform if inv: X_pred2 = kpca.inverse_transform(X_pred_transformed) assert_equal(X_pred2.shape, X_pred.shape) def test_invalid_parameters(): assert_raises(ValueError, KernelPCA, 10, fit_inverse_transform=True, kernel='precomputed') def test_kernel_pca_sparse(): rng = np.random.RandomState(0) X_fit = sp.csr_matrix(rng.random_sample((5, 4))) X_pred = sp.csr_matrix(rng.random_sample((2, 4))) for eigen_solver in ("auto", "arpack"): for kernel in ("linear", "rbf", "poly"): # transform fit data kpca = KernelPCA(4, kernel=kernel, eigen_solver=eigen_solver, fit_inverse_transform=False) X_fit_transformed = kpca.fit_transform(X_fit) X_fit_transformed2 = kpca.fit(X_fit).transform(X_fit) assert_array_almost_equal(np.abs(X_fit_transformed), np.abs(X_fit_transformed2)) # transform new data X_pred_transformed = kpca.transform(X_pred) assert_equal(X_pred_transformed.shape[1], X_fit_transformed.shape[1]) # inverse transform # X_pred2 = kpca.inverse_transform(X_pred_transformed) # assert_equal(X_pred2.shape, X_pred.shape) def test_kernel_pca_linear_kernel(): rng = np.random.RandomState(0) X_fit = rng.random_sample((5, 4)) X_pred = rng.random_sample((2, 4)) # for a linear kernel, kernel PCA should find the same projection as PCA # modulo the sign (direction) # fit only the first four components: fifth is near zero eigenvalue, so # can be trimmed due to roundoff error assert_array_almost_equal( np.abs(KernelPCA(4).fit(X_fit).transform(X_pred)), np.abs(PCA(4).fit(X_fit).transform(X_pred))) def test_kernel_pca_n_components(): rng = np.random.RandomState(0) X_fit = rng.random_sample((5, 4)) X_pred = rng.random_sample((2, 4)) for eigen_solver in ("dense", "arpack"): for c in [1, 2, 4]: kpca = KernelPCA(n_components=c, eigen_solver=eigen_solver) shape = kpca.fit(X_fit).transform(X_pred).shape assert_equal(shape, (2, c)) def test_remove_zero_eig(): X = np.array([[1 - 1e-30, 1], [1, 1], [1, 1 - 1e-20]]) # n_components=None (default) => remove_zero_eig is True kpca = KernelPCA() Xt = kpca.fit_transform(X) assert_equal(Xt.shape, (3, 0)) kpca = KernelPCA(n_components=2) Xt = kpca.fit_transform(X) assert_equal(Xt.shape, (3, 2)) kpca = KernelPCA(n_components=2, remove_zero_eig=True) Xt = kpca.fit_transform(X) assert_equal(Xt.shape, (3, 0)) def test_kernel_pca_precomputed(): rng = np.random.RandomState(0) X_fit = rng.random_sample((5, 4)) X_pred = rng.random_sample((2, 4)) for eigen_solver in ("dense", "arpack"): X_kpca = KernelPCA(4, eigen_solver=eigen_solver).\ fit(X_fit).transform(X_pred) X_kpca2 = KernelPCA( 4, eigen_solver=eigen_solver, kernel='precomputed').fit( np.dot(X_fit, X_fit.T)).transform(np.dot(X_pred, X_fit.T)) X_kpca_train = KernelPCA( 4, eigen_solver=eigen_solver, kernel='precomputed').fit_transform(np.dot(X_fit, X_fit.T)) X_kpca_train2 = KernelPCA( 4, eigen_solver=eigen_solver, kernel='precomputed').fit( np.dot(X_fit, X_fit.T)).transform(np.dot(X_fit, X_fit.T)) assert_array_almost_equal(np.abs(X_kpca), np.abs(X_kpca2)) assert_array_almost_equal(np.abs(X_kpca_train), np.abs(X_kpca_train2)) def test_kernel_pca_invalid_kernel(): rng = np.random.RandomState(0) X_fit = rng.random_sample((2, 4)) kpca = KernelPCA(kernel="tototiti") assert_raises(ValueError, kpca.fit, X_fit) def test_gridsearch_pipeline(): # Test if we can do a grid-search to find parameters to separate # circles with a perceptron model. X, y = make_circles(n_samples=400, factor=.3, noise=.05, random_state=0) kpca = KernelPCA(kernel="rbf", n_components=2) pipeline = Pipeline([("kernel_pca", kpca), ("Perceptron", Perceptron())]) param_grid = dict(kernel_pca__gamma=2. ** np.arange(-2, 2)) grid_search = GridSearchCV(pipeline, cv=3, param_grid=param_grid) grid_search.fit(X, y) assert_equal(grid_search.best_score_, 1) def test_gridsearch_pipeline_precomputed(): # Test if we can do a grid-search to find parameters to separate # circles with a perceptron model using a precomputed kernel. X, y = make_circles(n_samples=400, factor=.3, noise=.05, random_state=0) kpca = KernelPCA(kernel="precomputed", n_components=2) pipeline = Pipeline([("kernel_pca", kpca), ("Perceptron", Perceptron())]) param_grid = dict(Perceptron__n_iter=np.arange(1, 5)) grid_search = GridSearchCV(pipeline, cv=3, param_grid=param_grid) X_kernel = rbf_kernel(X, gamma=2.) grid_search.fit(X_kernel, y) assert_equal(grid_search.best_score_, 1) def test_nested_circles(): # Test the linear separability of the first 2D KPCA transform X, y = make_circles(n_samples=400, factor=.3, noise=.05, random_state=0) # 2D nested circles are not linearly separable train_score = Perceptron().fit(X, y).score(X, y) assert_less(train_score, 0.8) # Project the circles data into the first 2 components of a RBF Kernel # PCA model. # Note that the gamma value is data dependent. If this test breaks # and the gamma value has to be updated, the Kernel PCA example will # have to be updated too. kpca = KernelPCA(kernel="rbf", n_components=2, fit_inverse_transform=True, gamma=2.) X_kpca = kpca.fit_transform(X) # The data is perfectly linearly separable in that space train_score = Perceptron().fit(X_kpca, y).score(X_kpca, y) assert_equal(train_score, 1.0)
gpl-2.0
RobertABT/heightmap
build/matplotlib/examples/animation/strip_chart_demo.py
7
1476
""" Emulate an oscilloscope. Requires the animation API introduced in matplotlib 1.0 SVN. """ import numpy as np from matplotlib.lines import Line2D import matplotlib.pyplot as plt import matplotlib.animation as animation class Scope: def __init__(self, ax, maxt=2, dt=0.02): self.ax = ax self.dt = dt self.maxt = maxt self.tdata = [0] self.ydata = [0] self.line = Line2D(self.tdata, self.ydata) self.ax.add_line(self.line) self.ax.set_ylim(-.1, 1.1) self.ax.set_xlim(0, self.maxt) def update(self, y): lastt = self.tdata[-1] if lastt > self.tdata[0] + self.maxt: # reset the arrays self.tdata = [self.tdata[-1]] self.ydata = [self.ydata[-1]] self.ax.set_xlim(self.tdata[0], self.tdata[0] + self.maxt) self.ax.figure.canvas.draw() t = self.tdata[-1] + self.dt self.tdata.append(t) self.ydata.append(y) self.line.set_data(self.tdata, self.ydata) return self.line, def emitter(p=0.03): 'return a random value with probability p, else 0' while True: v = np.random.rand(1) if v > p: yield 0. else: yield np.random.rand(1) fig, ax = plt.subplots() scope = Scope(ax) # pass a generator in "emitter" to produce data for the update func ani = animation.FuncAnimation(fig, scope.update, emitter, interval=10, blit=True) plt.show()
mit
JohnDMcMaster/uvscada
nuc/berton_plt.py
1
1382
import argparse import matplotlib.pyplot as plt import matplotlib.patches as mpatches import json def load_csv(f): f = open(f, 'r') data = [] print 'Loading' for l in f: try: j = json.loads(l) except: break data.append(j['v']) return data def load_jl(f): f = open(f, 'r') # skip metadata f.readline() data = [] print 'Loading' for l in f: try: j = json.loads(l) except: break data.append((j['vin'], j['vout'])) return data if __name__ == '__main__': parser = argparse.ArgumentParser(description='Help') parser.add_argument('fn', help='File') args = parser.parse_args() print 'Looping' fn = args.fn print print fn fn_out = fn.replace('.jl', '.png') if fn_out == fn: raise Exception() data = load_jl(fn) # x mv y V print 'Plotting (%d samples)' % (len(data),) #plt.subplot(221) plt.subplots_adjust(right=0.8) plt.plot(*zip(*data), label='Real') # Ideal plt.plot(*zip(*[(xmv/1000., xmv * -1000.0 / 9000) for xmv in xrange(0, 9000, 10)]), label='Ideal') #red_patch = mpatches.Patch(color='red', label='Ideal') #plt.legend(handles=[red_patch]) plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) plt.savefig(fn_out) #plt.show()
bsd-2-clause
sanketloke/scikit-learn
examples/svm/plot_separating_hyperplane_unbalanced.py
329
1850
""" ================================================= SVM: Separating hyperplane for unbalanced classes ================================================= Find the optimal separating hyperplane using an SVC for classes that are unbalanced. We first find the separating plane with a plain SVC and then plot (dashed) the separating hyperplane with automatically correction for unbalanced classes. .. currentmodule:: sklearn.linear_model .. note:: This example will also work by replacing ``SVC(kernel="linear")`` with ``SGDClassifier(loss="hinge")``. Setting the ``loss`` parameter of the :class:`SGDClassifier` equal to ``hinge`` will yield behaviour such as that of a SVC with a linear kernel. For example try instead of the ``SVC``:: clf = SGDClassifier(n_iter=100, alpha=0.01) """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm #from sklearn.linear_model import SGDClassifier # we create 40 separable points rng = np.random.RandomState(0) n_samples_1 = 1000 n_samples_2 = 100 X = np.r_[1.5 * rng.randn(n_samples_1, 2), 0.5 * rng.randn(n_samples_2, 2) + [2, 2]] y = [0] * (n_samples_1) + [1] * (n_samples_2) # fit the model and get the separating hyperplane clf = svm.SVC(kernel='linear', C=1.0) clf.fit(X, y) w = clf.coef_[0] a = -w[0] / w[1] xx = np.linspace(-5, 5) yy = a * xx - clf.intercept_[0] / w[1] # get the separating hyperplane using weighted classes wclf = svm.SVC(kernel='linear', class_weight={1: 10}) wclf.fit(X, y) ww = wclf.coef_[0] wa = -ww[0] / ww[1] wyy = wa * xx - wclf.intercept_[0] / ww[1] # plot separating hyperplanes and samples h0 = plt.plot(xx, yy, 'k-', label='no weights') h1 = plt.plot(xx, wyy, 'k--', label='with weights') plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired) plt.legend() plt.axis('tight') plt.show()
bsd-3-clause
jadhavhninad/-CSE_515_MWD_Analytics-
Phase 2/phase2Code/matrix_factorization.py
1
4456
from mysqlConn import DbConnect import pandas as pd #DB connector and curosor db = DbConnect() db_conn = db.get_connection() cur2 = db_conn.cursor(); def get_user_mvrating_DF(): #=========================================================================== #Generate user - movie_rating matrix. #For each movie, get its rating given by a user. If no rating then give zero #=========================================================================== dd_users_mvrating = {} dd_av_rating_for_genre = {} dd_total_movie_for_genre = {} #Limit is for checking that algorithm works. cur2.execute("SELECT userid FROM `mlusers` limit 1000") result0 = cur2.fetchall(); for usr in result0: #print "for user" , usr[0] dd_users_mvrating[usr[0]] = {} dd_av_rating_for_genre[usr[0]] = {} dd_total_movie_for_genre[usr[0]] = {} #Get all movies watched(and hence rated) by each user. cur2.execute("SELECT movieid, rating FROM `mlratings` where userid = %s",usr) result1 = cur2.fetchall() for data1 in result1: user_movie_id = data1[0] user_movie_rating = data1[1] if user_movie_id in dd_users_mvrating[usr[0]]: continue else: #print user_movie_id,user_movie_rating dd_users_mvrating[usr[0]][user_movie_id] = user_movie_rating #mlmovies_clean maps one movie to a single genre. #Get the genre of the movie and add the movie rating to the genre. cur2.execute("SELECT genres FROM `mlmovies_clean` where movieid = %s", {user_movie_id,}) result_gen = cur2.fetchone() for data in result_gen: if data[0] in dd_av_rating_for_genre[usr[0]]: dd_av_rating_for_genre[usr[0]][data[0]] += user_movie_rating dd_total_movie_for_genre[usr[0]][data[0]] += 1 else: dd_av_rating_for_genre[usr[0]][data[0]] = user_movie_rating; dd_total_movie_for_genre[usr[0]][data[0]] = 1 #Now for every genre of which the user has seen a movie we have the total rating of that genre #We can get the average rating given to a particular genre by a user. #WE need give rating to movies of mltags because it does not have a rating, # give rating = avg rating give to a particular genre to by a user. cur2.execute("SELECT movieid FROM `mltags` where userid = %s", usr) result2 = cur2.fetchall() for data in result2: #print data1 user_movie_id = data[0] cur2.execute("SELECT genres FROM `mlmovies_clean` where movieid = %s", {user_movie_id, }) mv_genre = cur2.fetchall() if user_movie_id in dd_users_mvrating[usr[0]]: continue else: #print user_movie_id val = 0.0 for gen in mv_genre: if gen in dd_av_rating_for_genre[usr[0]]: val += float(dd_av_rating_for_genre[usr[0]][gen])/float(dd_total_movie_for_genre[usr[0]][gen]) else: val = 1.0 dd_users_mvrating[usr[0]][user_movie_id] = val/float(len(mv_genre)) #Make rating of other movies to zero. cur2.execute("SELECT DISTINCT movieid FROM `mlmovies`") genreNames = cur2.fetchall() for keyval in genreNames: key = keyval[0] #print key if key in dd_users_mvrating[usr[0]]: continue else: dd_users_mvrating[usr[0]][key] = 0 #pprint.pprint(dd_users_genre) usr_mvrating_matrix = pd.DataFrame(dd_users_mvrating) #print list(usr_mvrating_matrix.columns.values) #print list(usr_mvrating_matrix.index) user_ids_df = pd.DataFrame(usr_mvrating_matrix.columns.values, columns=["user_ids"] ) movie_ids_df = pd.DataFrame(usr_mvrating_matrix.index, columns=["movie_ids"] ) user_ids_df.to_csv("user_ids.csv",sep="\t") movie_ids_df.to_csv("movie_ids.csv", sep="\t") return usr_mvrating_matrix if __name__ == "__main__": usr_mvrating_matrix = get_user_mvrating_DF() # usr_genre_matrix = usr_genre_matrix.T # pprint.pprint(usr_genre_matrix) usr_mvrating_matrix.to_csv("factorization_1_user_mvrating.csv", sep='\t')
gpl-3.0
Haleyo/spark-tk
regression-tests/sparktkregtests/testcases/graph/graph_weight_degree_test.py
11
4742
# vim: set encoding=utf-8 # Copyright (c) 2016 Intel Corporation  # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # #       http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ Tests the weighted_degree on a graph""" import unittest from sparktkregtests.lib import sparktk_test class WeightedDegreeTest(sparktk_test.SparkTKTestCase): def setUp(self): """Build frames and graphs to be tested""" super(WeightedDegreeTest, self).setUp() graph_data = self.get_file("clique_10.csv") schema = [('src', str), ('dst', str)] # set up the vertex frame, which is the union of the src and # the dst columns of the edges self.frame = self.context.frame.import_csv(graph_data, schema=schema) self.vertices = self.frame.copy() self.vertices2 = self.frame.copy() self.vertices.rename_columns({"src": "id"}) self.vertices.drop_columns(["dst"]) self.vertices2.rename_columns({"dst": "id"}) self.vertices2.drop_columns(["src"]) self.vertices.append(self.vertices2) self.vertices.drop_duplicates() self.frame.add_columns(lambda x: 2, ("value", int)) self.graph = self.context.graph.create(self.vertices, self.frame) def test_weighted_degree_isolated(self): """Test weighted degree with an isolated vertex""" vertex_frame = self.context.frame.create( [[1], [2], [3], [4], [5]], [("id", int)]) edge_frame = self.context.frame.create( [[2, 3, 1], [2, 1, 1], [2, 5, 2]], [("src", int), ("dst", int), ("weight", int)]) graph = self.context.graph.create(vertex_frame, edge_frame) degree = graph.weighted_degrees("weight") known_vals = {1: 1, 2: 4, 3: 1, 4: 0, 5: 2} degree_pandas = degree.to_pandas(degree.count()) for _, row in degree_pandas.iterrows(): self.assertAlmostEqual(known_vals[row["id"]], row['degree']) self.assertAlmostEqual(known_vals[row["id"]], row['degree']) self.assertAlmostEqual(known_vals[row["id"]], row['degree']) def test_annotate_weight_degree_out(self): """Test degree count weighted on out edges""" degree_weighted = self.graph.weighted_degrees("value", "out") res = degree_weighted.to_pandas(degree_weighted.count()) for _, row in res.iterrows(): row_val = row['id'].split('_') self.assertEqual(2*(int(row_val[2])-1), row['degree']) def test_weight_degree_in(self): """Test degree count weighted on in edges""" degree_weighted = self.graph.weighted_degrees("value", "in") res = degree_weighted.to_pandas(degree_weighted.count()) for _, row in res.iterrows(): row_val = row['id'].split('_') self.assertEqual( 2*(int(row_val[1])-int(row_val[2])), row['degree']) def test_weight_degree_undirected(self): """Test degree count weighted on undirected edges""" degree_weighted = self.graph.weighted_degrees("value", "undirected") res = degree_weighted.to_pandas(degree_weighted.count()) for _, row in res.iterrows(): row_val = row['id'].split('_') self.assertEqual(2*(int(row_val[1])-1), row['degree']) def test_weight_type_error(self): """Test degree count weighted with type error.""" with self.assertRaisesRegexp(TypeError, "unexpected keyword"): self.graph.weighted_degrees(edge_weight_property="badvalue") def test_weight_non_value(self): """Test degree count weighted with type error""" with self.assertRaisesRegexp(TypeError, "unexpected keyword"): self.graph.weighted_degrees(edge_weight_property="nonvalue") if __name__ == "__main__": unittest.main()
apache-2.0
shaochengcheng/hoaxy-network
hnetwork/degree.py
1
8145
import logging import networkx as nx import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib as mpl from matplotlib.ticker import LogLocator from matplotlib import gridspec from .data_process import get_data_file, get_out_file, ccdf from .data_process import nplog logger = logging.getLogger(__name__) def build_network(fn): fn = get_data_file(fn) df = pd.read_csv(fn) from_names = df[['from_raw_id', 'from_screen_name']].copy() from_names.columns = ['raw_id', 'screen_name'] to_names = df[['to_raw_id', 'to_screen_name']].copy() to_names.columns = ['raw_id', 'screen_name'] names = pd.concat([from_names, to_names], ignore_index=True) names = names.drop_duplicates() names = names.set_index('raw_id')['screen_name'] g = nx.from_pandas_dataframe( df, source='from_raw_id', target='to_raw_id', edge_attr='weight', create_using=nx.DiGraph()) nx.set_node_attributes(g, name='screen_name', values=names.to_dict()) return g def all_degrees(g): return dict( ki=pd.Series(g.in_degree(), name='ki'), ko=pd.Series(g.out_degree(), name='ko'), si=pd.Series(g.in_degree(weight='weight'), name='si'), so=pd.Series(g.out_degree(weight='weight'), name='so')) def deg_hub_stat(g, deg, fn, top=10): fn = get_data_file(fn) names = pd.Series(nx.get_node_attributes(g, name='screen_name')) dfs = [] for k, v in deg.items(): deg[k] = v.sort_values(ascending=False) hub = deg[k].iloc[:top].copy() hub_sn = names.loc[hub.index] hub_df = pd.concat([hub, hub_sn], axis=1) hub_df = hub_df.reset_index(drop=False) k_raw_id = k + '_raw_id' k_value = k + '_value' k_screen_name = k + '_screen_name' hub_df.columns = [k_raw_id, k_value, k_screen_name] dfs.append(hub_df) df = pd.concat(dfs, axis=1) df.to_csv(fn, index=False) print(df) def plot_deg_dist(deg1, deg2, figsize=(8, 6)): ccdf_deg1 = dict() ccdf_deg2 = dict() for k, v in deg1.items(): ccdf_deg1[k] = ccdf(v) for k, v in deg2.items(): ccdf_deg2[k] = ccdf(v) titles = (('ki', 'In Degree'), ('ko', 'Out Degree'), ('si', 'Weighted In Degree'), ('so', 'Weighted Out Degree')) fig, axarr = plt.subplots(2, 2, figsize=figsize) axarr = axarr.flatten() for i, tt in enumerate(titles): k, t = tt axarr[i].set_title(t) axarr[i].loglog( ccdf_deg1[k].index + 1, ccdf_deg1[k].values, label='Claim') axarr[i].loglog( ccdf_deg2[k].index + 1, ccdf_deg2[k].values, label='Fact Checking') fig.tight_layout() def prepare_deg_heatmap(df, base=2): c = df.columns X = df[c[0]].values + 1 Y = df[c[1]].values + 1 ximax = int(np.ceil(nplog(X.max(), base))) yimax = int(np.ceil(nplog(Y.max(), base))) xbins = [np.power(base, i) for i in range(ximax + 1)] ybins = [np.power(base, i) for i in range(yimax + 1)] H, xedges, yedges = np.histogram2d(X, Y, bins=[xbins, ybins]) return H, xedges, yedges def ax_deg_heatmap(ax, X, Y, H, vmin, vmax): # heatmap return ax.pcolormesh( X, Y, H.T, norm=mpl.colors.LogNorm(vmin=vmin, vmax=vmax), cmap='gnuplot2_r') def plot_deg_heatmap(deg1, deg2, base=2, figsize=(6, 5)): fig = plt.figure(figsize=figsize) fs = 9 gs = gridspec.GridSpec( 2, 3, wspace=0.15, hspace=0.25, width_ratios=[8, 8, 1], height_ratios=[0.5, 0.5]) axarr = [] axarr.append(fig.add_subplot(gs[0, 0])) axarr.append(fig.add_subplot(gs[0, 1])) axarr.append(fig.add_subplot(gs[1, 0])) axarr.append(fig.add_subplot(gs[1, 1])) axarr.append(fig.add_subplot(gs[:, 2])) axarr[0].set_title('Degree (Claim)', fontsize=fs) axarr[1].set_title('Weigthed Degree (Claim)', fontsize=fs) axarr[2].set_title('Degree (Fact Checking)', fontsize=fs) axarr[3].set_title('Weigthed Degree (Fact Checking)', fontsize=fs) df = [] df.append(pd.concat((deg1['ki'], deg1['ko']), axis=1)) df.append(pd.concat((deg1['si'], deg1['so']), axis=1)) df.append(pd.concat((deg2['ki'], deg2['ko']), axis=1)) df.append(pd.concat((deg2['si'], deg2['so']), axis=1)) X = [] Y = [] XE = [] YE = [] H = [] for d in df: c = d.columns X.append(d[c[0]].values + 1) Y.append(d[c[1]].values + 1) ximax = int(np.ceil(nplog(max(x.max() for x in X), base))) yimax = int(np.ceil(nplog(max(y.max() for y in Y), base))) xbins = [np.power(base, i) for i in range(ximax + 1)] ybins = [np.power(base, i) for i in range(yimax + 1)] for i in range(4): h, xedges, yedges = np.histogram2d(X[i], Y[i], bins=[xbins, ybins]) H.append(h) XE.append(xedges) YE.append(yedges) vmin = min(h.min() for h in H) + 1 vmax = max(h.max() for h in H) for i in range(4): xm, ym = np.meshgrid(XE[i], YE[i]) im = axarr[i].pcolormesh( xm, ym, H[i].T, norm=mpl.colors.LogNorm(vmin=vmin, vmax=vmax), cmap='gnuplot2_r') axarr[i].set_xscale('log') axarr[i].set_yscale('log') axarr[0].set_xticklabels([]) axarr[0].set_ylabel('Out') axarr[1].set_xticklabels([]) axarr[1].set_yticklabels([]) axarr[2].set_ylabel('Out') axarr[2].set_xlabel('In') axarr[3].set_yticklabels([]) axarr[3].set_xlabel('In') axarr[4].axis('off') # axarr[3].xaxis.set_major_locator(LogLocator(base=10)) # axarr[3].tick_params(axis='x', which='minor', length=4, color='r') plt.colorbar(im, ax=axarr[4], orientation='vertical', fraction=0.8) # fig.tight_layout() def mention_deg_dist(fn1='mention.20170921.fn.csv', fn2='mention.20170921.fc.csv', ofn='mention-degree-dist.pdf', ofn1='mention.20170921.hub.fn.csv', ofn2='mention.20170921.hub.fc.csv', top=10, figsize=(8, 6)): ofn = get_out_file(ofn) g1 = build_network(fn1) g2 = build_network(fn2) deg1 = all_degrees(g1) deg2 = all_degrees(g2) print('Mention of fake news:\n') deg_hub_stat(g1, deg1, ofn1, top=top) print('Mention of fact checking\n') deg_hub_stat(g2, deg2, ofn2, top=top) plot_deg_dist(deg1, deg2, figsize) plt.savefig(ofn) def retweet_deg_dist(fn1='retweet.20170921.fn.csv', fn2='retweet.20170921.fc.csv', ofn='retweet-degree-dist.pdf', ofn1='retweet.20170921.hub.fn.csv', ofn2='retweet.20170921.hub.fc.csv', top=10, figsize=(8, 6)): ofn = get_out_file(ofn) g1 = build_network(fn1) g2 = build_network(fn2) deg1 = all_degrees(g1) deg2 = all_degrees(g2) print('Retweet of fake news:\n') deg_hub_stat(g1, deg1, ofn1, top=top) print('Retweet of fact checking\n') deg_hub_stat(g2, deg2, ofn2, top=top) plot_deg_dist(deg1, deg2, figsize) plt.savefig(ofn) def mention_deg_heatmap(fn1='mention.20170921.fn.csv', fn2='mention.20170921.fc.csv', ofn='mention-degree-heatmap.pdf', base=2, figsize=(6, 5)): ofn = get_out_file(ofn) g1 = build_network(fn1) g2 = build_network(fn2) deg1 = all_degrees(g1) deg2 = all_degrees(g2) plot_deg_heatmap(deg1, deg2, base=base, figsize=figsize) plt.savefig(ofn) def retweet_deg_heatmap(fn1='retweet.20170921.fn.csv', fn2='retweet.20170921.fc.csv', ofn='retweet-degree-heatmap.pdf', base=2, figsize=(6, 5)): ofn = get_out_file(ofn) g1 = build_network(fn1) g2 = build_network(fn2) deg1 = all_degrees(g1) deg2 = all_degrees(g2) plot_deg_heatmap(deg1, deg2, base=base, figsize=figsize) plt.savefig(ofn)
gpl-3.0
penguinscontrol/Spinal-Cord-Modeling
ClarkesNetwork/test1_plot.py
1
5699
# -*- coding: utf-8 -*- """ Created on Thu Jan 07 11:08:41 2016 @author: Radu """ import numpy import simrun import time from ballandstick_clarke_new import ClarkeRelay #from neuron import h,gui from neuron import h h.load_file('stdgui.hoc') #h.load_file("stdrun.hoc") from math import sin, cos, pi from matplotlib import pyplot from itertools import izip from neuronpy.graphics import spikeplot from neuronpy.util import spiketrain def tweak_leak(cells, Ncells): #h.t = -1e10 #dtsav = h.dt #h.dt = 1e9 #if cvode is on, turn it off to do large fixed step #temp = h.cvode.active() #if temp!=0: # h.cvode.active(0) #while t<-1e9: # h.fadvance() # restore cvode if necessary #if temp!=0: # h.cvode.active(1) #h.dt = dtsav #h.t = 0 for a in range(Ncells): #cells[a].soma.e_pas =\ #(cells[a].soma.ina + cells[a].soma.ik\ #+ cells[a].soma.icaN_clarke + cells[a].soma.icaL_clarke\ #+ cells[a].soma.ikca_clarke + cells[a].soma.il_clarke\ #+ cells[a].soma.ikrect_clarke\ #+ cells[a].soma.g_pas*cells[a].soma.v) / cells[a].soma.g_pas # #cells[a].dend.e_pas =\ #(cells[a].dend.g_pas * cells[a].dend.v) / cells[a].dend.g_pas cells[a].soma.el_clarke =\ (cells[a].soma.ina_clarke + cells[a].soma.ikrect_clarke\ + cells[a].soma.icaN_clarke + cells[a].soma.icaL_clarke\ + cells[a].soma.ikca_clarke + cells[a].soma.inap_clarke\ + cells[a].soma.gl_clarke*cells[a].soma.v) / cells[a].soma.gl_clarke cells[a].dend.e_pas =\ (cells[a].dend.g_pas * cells[a].dend.v) / cells[a].dend.g_pas print 'hello from inside init' #h('t = -1e6') #h('dtsav = dt') #h('dt = 1') #h('temp = cvode.active()') #h('if (temp!=0) { cvode.active(0) }') #h('while (t<-0.5e6) { fadvance() }') #h('if (temp!=0) { cvode.active(1) }') #h('dt = dtsav') #h('t = 0') cells = [] N = 3 r = 50 # Radius of cell locations from origin (0,0,0) in microns for i in range(N): cell = ClarkeRelay() # When cells are created, the soma location is at (0,0,0) and # the dendrite extends along the X-axis. # First, at the origin, rotate about Z. cell.rotateZ(i*2*pi/N) # Then reposition x_loc = sin(i * 2 * pi / N) * r y_loc = cos(i * 2 * pi / N) * r cell.set_position(x_loc, y_loc, 0) cells.append(cell) cellSurface = h.area(0.5, sec = cells[0].soma) h.celsius = 37 #shape_window = h.PlotShape() #shape_window.exec_menu('Show Diam') #stim = h.NetStim() # Make a new stimulator # Attach it to a synapse in the middle of the dendrite # of the first cell in the network. (Named 'syn_' to avoid # being overwritten with the 'syn' var assigned later.) #syn_ = h.ExpSyn(cells[0].dend(0.5)) #syn_.tau = 10 #stim.number = 1 #stim.start = 9 #ncstim = h.NetCon(stim, syn_) #ncstim.delay = 1 #ncstim.weight[0] = 0.0075 # NetCon weight is a vector. #Stims and clamps stim = h.IClamp(cells[0].soma(0.5)) stim.delay = 200 stim.dur = 2 #clamp = h.SEClamp(cells[0].soma(0.5)) #clamp.dur1 = 1e9 #clamp.amp1 = -65 #clamp.rs = 1e2 stim2 = h.IClamp(cells[0].soma(0.5)) stim2.delay = 500 stim2.dur = 300 stim2.amp = 0 stim.amp = 5e-1-stim2.amp #stim.amp = 0 soma_v_vec, soma_m_vec, soma_h_vec, soma_n_vec,\ soma_inap_vec, soma_idap_vec, soma_ical_vec,\ soma_ican_vec, soma_ikca_vec, soma_ina_vec, soma_ikrect_vec,\ dend_v_vec, t_vec\ = simrun.set_recording_vectors(cells[0]) # Set recording vectors syn_i_vec = h.Vector() syn_i_vec.record(stim._ref_i) #h('v_init = 89') h.v_init = -65 fih = h.FInitializeHandler(2,(tweak_leak,(cells,N))) # Draw fig1 = pyplot.figure(figsize=(4,4)) ax1a = fig1.add_subplot(1,1,1) #ax1b = ax1a.twinx() #step = 2.5e-2 #CaN #step = 1e-5 #CaL #step = 5e-2 #KCa #step = 4e-5 #napbar #step = 5 #tau_mc #step = 1 #tau_hc #step = 1e-3 #dap weight #step = 5e-2 # gkrect #step = 0.01 #Na #step = 5 #tau_mp_bar #step = 1 # tau_n_bar step = 1e-2 #stim2 num_steps = 1 h.dt = 0.01 for i in numpy.linspace(0, step*num_steps, num_steps): #stim2.amp += step for a in range(N): pass #cells[a].soma.gcaN_clarke = cells[a].soma.gcaN_clarke + step #cells[a].soma.gcaL_clarke = cells[a].soma.gcaL_clarke + step #cells[a].soma.gcak_clarke = cells[a].soma.gcak_clarke + step #cells[a].soma.gnapbar_clarke = cells[a].soma.gnapbar_clarke + step #cells[a].soma.tau_mc_clarke = cells[a].soma.tau_mc_clarke + step #cells[a].soma.tau_hc_clarke = cells[a].soma.tau_hc_clarke + step #cells[a].dap_nc_.weight[0] = cells[a].dap_nc_.weight[0] +step #cells[a].soma.gkrect_clarke = cells[a].soma.gkrect_clarke + step #cells[a].soma.tau_mp_bar_clarke = cells[a].soma.tau_mp_bar_clarke + step #cells[a].soma.tau_n_bar_clarke = cells[a].soma.tau_n_bar_clarke + step #cells[a].soma.gnabar_clarke = cells[a].soma.gnabar_clarke + step simrun.simulate() time.sleep(1) lWid = 1 #kca_plot = ax1b.plot(t_vec, soma_ikca_vec, color='red', lw=lWid) soma_idap_mAcm2 = numpy.array(soma_idap_vec.to_python()) soma_idap_mAcm2 = 100*soma_idap_mAcm2/(cellSurface) #dap_plot = ax1b.plot(numpy.array(t_vec.to_python()),\ # soma_idap_mAcm2, color='orange', lw=lWid) lWid = 3 soma_plot = ax1a.plot(t_vec, soma_v_vec, color='black', lw=lWid) #ax1a.legend(soma_plot + kca_plot + dap_plot, # ['Membrane Voltage', 'I_KCa', 'I_DAP']) #ax1a.legend(soma_plot, # ['Membrane Voltage']) ax1a.set_ylabel('mV') #ax1b.set_ylabel('mA/cm2') ax1a.set_xlim([150,300]) ax1a.set_ylim([-72,-55]) pyplot.show() #h.quit()
gpl-2.0
TimDettmers/dlearndb
python_util/gpumodel.py
2
17749
# Copyright 2014 Google Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ---------------------------------------------------------------------------- # Copyright 2014 Nervana Systems Inc. All rights reserved. # # * added whitening code # * ability to save weights to disk, dump timing information # ---------------------------------------------------------------------------- import numpy as n import os from time import time, asctime, localtime, strftime from util import * from data import * from options import * from math import ceil, floor, sqrt from data import DataProvider, dp_types import sys import shutil import platform from os import linesep as NL from threading import Thread import tempfile as tf import numpy as np from ipdb import set_trace as trace class ModelStateException(Exception): pass class CheckpointWriter(Thread): def __init__(self, path, dic, remove_old=True): Thread.__init__(self) self.path = path self.dic = dic self.remove_old = remove_old def run(self): save_dir = os.path.dirname(self.path) save_file = os.path.basename(self.path) # Write checkpoint to temporary filename tmpfile = tf.NamedTemporaryFile(dir=os.path.dirname(save_dir), delete=False) pickle(tmpfile, self.dic) # Also closes tf # Move it to final filename os.rename(tmpfile.name, self.path) # Delete old checkpoints if (self.remove_old): for f in os.listdir(save_dir): if f != save_file: os.remove(os.path.join(save_dir, f)) # GPU Model interface class IGPUModel: def __init__(self, model_name, op, load_dic, filename_options=[], dp_params={}): # these are input parameters self.model_name = model_name self.op = op self.options = op.options self.load_dic = load_dic self.filename_options = filename_options self.dp_params = dp_params self.device_ids = self.op.get_value('gpu') self.fill_excused_options() self.checkpoint_writer = None self.hackWhiten = False if self.hackWhiten: print "WATCH OUT -- HackWhitening !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!" #assert self.op.all_values_given() for o in op.get_options_list(): setattr(self, o.name, o.value) self.loaded_from_checkpoint = load_dic is not None # these are things that the model must remember but they're not input parameters if self.loaded_from_checkpoint: self.model_state = load_dic["model_state"] self.save_file = self.options["save_file_override"].value if self.options["save_file_override"].value_given else self.options['load_file'].value if not os.path.isdir(self.save_file) and os.path.exists(self.save_file): self.save_file = os.path.dirname(self.save_file) # print self.options["save_file_override"].value, self.save_file else: self.model_state = {} self.save_file = self.options["save_file_override"].value if self.options["save_file_override"].value_given else os.path.join(self.options['save_path'].value, model_name + "_" + '_'.join(['%s_%s' % (char, self.options[opt].get_str_value()) for opt, char in filename_options]) + '_' + strftime('%Y-%m-%d_%H.%M.%S')) self.model_state["train_outputs"] = [] self.model_state["test_outputs"] = [] self.model_state["epoch"] = 1 self.model_state["batchnum"] = self.train_batch_range[0] # print self.save_file self.init_data_providers() if load_dic: self.train_data_provider.advance_batch() # model state often requries knowledge of data provider, so it's initialized after try: self.init_model_state() except ModelStateException, e: print e sys.exit(1) for var, val in self.model_state.iteritems(): setattr(self, var, val) self.import_model() self.init_model_lib() def import_model(self): print "=========================" print "Importing %s C++ module" % ('_' + self.model_name) self.libmodel = __import__('_' + self.model_name) def fill_excused_options(self): pass def init_data_providers(self): self.dp_params['convnet'] = self try: self.test_data_provider = DataProvider.get_instance(self.data_path, self.test_batch_range, type=self.dp_type, dp_params=self.dp_params, test=True) self.train_data_provider = DataProvider.get_instance(self.data_path, self.train_batch_range, self.model_state["epoch"], self.model_state["batchnum"], type=self.dp_type, dp_params=self.dp_params, test=False) except DataProviderException, e: print "Unable to create data provider: %s" % e self.print_data_providers() sys.exit() def init_model_state(self): pass def init_model_lib(self): pass def start(self): if self.test_only: self.test_outputs += [self.get_test_error()] self.print_test_results() else: self.train() self.cleanup() if self.force_save: self.save_state().join() sys.exit(0) def train(self): print "=========================" print "Training %s" % self.model_name self.op.print_values() print "=========================" self.print_model_state() print "Running on CUDA device(s) %s" % ", ".join("%d" % d for d in self.device_ids) print "Current time: %s" % asctime(localtime()) print "Saving checkpoints to %s" % self.save_file next_data = self.get_next_batch() print "data range %2.2f to %2.2f and shape %d %d" % ( n.min(next_data[2][0].flatten()), n.max(next_data[2][0].flatten()), next_data[2][0].shape[0], next_data[2][0].shape[1]) print "=========================" # woot woot, some hacky whitening code: if self.hackWhiten: from ipdb import set_trace as trace import matplotlib.pyplot as plt import numpy as np raw = next_data[2][0] # (1728, 10000) whiten on just 10k, whatever. raw = raw - raw.mean(1)[:,np.newaxis] E,D = np.linalg.eigh(np.cov(raw)) self.wM = np.dot(D, np.dot(np.diag((E+1)**-.5), D.T)).astype(np.float32) print "whitening the data" #trace() white = np.dot(self.wM, raw) next_data[2][0] = 10*white print "white data range %2.2f to %2.2f and shape %d %d" % ( n.min(next_data[2][0].flatten()), n.max(next_data[2][0].flatten()), next_data[2][0].shape[0], next_data[2][0].shape[1]) # whitened color images are weird to visualize, do /10+.5 to go to 0-1 space while self.epoch <= self.num_epochs: data = next_data self.epoch, self.batchnum = data[0], data[1] self.print_iteration() sys.stdout.flush() compute_time_py = time() self.start_batch(data) # load the next batch while the current one is computing next_data = self.get_next_batch() #trace() if self.hackWhiten: next_data[2][0] = 10*np.dot(self.wM, next_data[2][0]) # WOOOOOOOOOOOT HACK! batch_output = self.finish_batch() self.train_outputs += [batch_output] self.print_train_results() #leads to lot of dumping # self.sync_with_host() # self.save_weights() if self.get_num_batches_done() % self.testing_freq == 0: self.sync_with_host() self.test_outputs += [self.get_test_error()] self.print_test_results() self.print_test_status() self.conditional_save() self.print_elapsed_time(time() - compute_time_py) def cleanup(self): if self.checkpoint_writer is not None: self.checkpoint_writer.join() self.checkpoint_writer = None def print_model_state(self): pass def get_num_batches_done(self): return len(self.train_batch_range) * (self.epoch - 1) + self.batchnum - self.train_batch_range[0] + 1 def get_next_batch(self, train=True): dp = self.train_data_provider if not train: dp = self.test_data_provider return self.parse_batch_data(dp.get_next_batch(), train=train) def parse_batch_data(self, batch_data, train=True): return batch_data[0], batch_data[1], batch_data[2]['data'] def start_batch(self, batch_data, train=True): self.libmodel.startBatch(batch_data[2], not train) def finish_batch(self): return self.libmodel.finishBatch() def print_iteration(self): print "\t%d.%d..." % (self.epoch, self.batchnum), def print_elapsed_time(self, compute_time_py): print "(%.3f sec)" % (compute_time_py) def print_train_results(self): batch_error = self.train_outputs[-1][0] if not (batch_error > 0 and batch_error < 2e20): print "Crazy train error: %.6f" % batch_error self.cleanup() print "Train error: %.6f " % (batch_error), def print_test_results(self): batch_error = self.test_outputs[-1][0] print "%s\t\tTest error: %.6f" % (NL, batch_error), def print_test_status(self): status = (len(self.test_outputs) == 1 or self.test_outputs[-1][0] < self.test_outputs[-2][0]) and "ok" or "WORSE" print status, def sync_with_host(self): if self.checkpoint_writer is not None: self.checkpoint_writer.join() self.checkpoint_writer = None self.libmodel.syncWithHost() def conditional_save(self): batch_error = self.test_outputs[-1][0] if batch_error > 0 and batch_error < self.max_test_err: self.save_state() else: print "\tTest error > %g, not saving." % self.max_test_err, def aggregate_test_outputs(self, test_outputs): test_error = tuple([sum(t[r] for t in test_outputs) / (1 if self.test_one else len(self.test_batch_range)) for r in range(len(test_outputs[-1]))]) return test_error def get_test_error(self): next_data = self.get_next_batch(train=False) if self.hackWhiten: next_data[2][0] = 10*np.dot(self.wM, next_data[2][0]) test_outputs = [] while True: data = next_data start_time_test = time() self.start_batch(data, train=False) load_next = (not self.test_one or self.test_only) and data[1] < self.test_batch_range[-1] if load_next: # load next batch next_data = self.get_next_batch(train=False) if self.hackWhiten: next_data[2][0] = 10*np.dot(self.wM, next_data[2][0]) test_outputs += [self.finish_batch()] if self.test_only: # Print the individual batch results for safety print "batch %d: %s" % (data[1], str(test_outputs[-1])), self.print_elapsed_time(time() - start_time_test) if not load_next: break sys.stdout.flush() return self.aggregate_test_outputs(test_outputs) def set_var(self, var_name, var_val): setattr(self, var_name, var_val) self.model_state[var_name] = var_val return var_val def get_var(self, var_name): return self.model_state[var_name] def has_var(self, var_name): return var_name in self.model_state def save_state(self): for att in self.model_state: if hasattr(self, att): self.model_state[att] = getattr(self, att) dic = {"model_state": self.model_state, "op": self.op} checkpoint_file = "%d.%d" % (self.epoch, self.batchnum) checkpoint_file_full_path = os.path.join(self.save_file, checkpoint_file) if not os.path.exists(self.save_file): os.makedirs(self.save_file) assert self.checkpoint_writer is None self.checkpoint_writer = CheckpointWriter(checkpoint_file_full_path, dic) self.checkpoint_writer.start() print "-------------------------------------------------------" print "Saved checkpoint to %s" % self.save_file print "=======================================================", return self.checkpoint_writer def save_weights(self): checkpoint_file = "wts.%d.%d" % (self.epoch, self.batchnum) checkpoint_file_full_path = os.path.join(self.save_file, checkpoint_file) dic = {} for ln in ['conv1', 'conv2', 'fc10']: dic[ln] = [self.model_state['layers']['conv1']['weights'][0], self.model_state['layers']['conv1']['weightsInc'][0]] if not os.path.exists(self.save_file): os.makedirs(self.save_file) tmpfile = tf.NamedTemporaryFile(dir=self.save_file, delete=False) pickle(tmpfile, dic) # Also closes tf # Move it to final filename os.rename(tmpfile.name, checkpoint_file_full_path) def get_progress(self): num_batches_total = self.num_epochs * len(self.train_batch_range) return min(1.0, max(0.0, float(self.get_num_batches_done()-1) / num_batches_total)) @staticmethod def load_checkpoint(load_dir): if os.path.isdir(load_dir): return unpickle(os.path.join(load_dir, sorted(os.listdir(load_dir), key=alphanum_key)[-1])) return unpickle(load_dir) @staticmethod def get_options_parser(): op = OptionsParser() op.add_option("load-file", "load_file", StringOptionParser, "Load file", default="", excuses=OptionsParser.EXCUSE_ALL) op.add_option("save-path", "save_path", StringOptionParser, "Save path", excuses=['save_file_override']) op.add_option("save-file", "save_file_override", StringOptionParser, "Save file override", excuses=['save_path']) op.add_option("train-range", "train_batch_range", RangeOptionParser, "Data batch range: training") op.add_option("test-range", "test_batch_range", RangeOptionParser, "Data batch range: testing") op.add_option("data-provider", "dp_type", StringOptionParser, "Data provider", default="default") op.add_option("test-freq", "testing_freq", IntegerOptionParser, "Testing frequency", default=25) op.add_option("epochs", "num_epochs", IntegerOptionParser, "Number of epochs", default=500) op.add_option("data-path", "data_path", StringOptionParser, "Data path") op.add_option("max-test-err", "max_test_err", FloatOptionParser, "Maximum test error for saving") op.add_option("test-only", "test_only", BooleanOptionParser, "Test and quit?", default=0) op.add_option("test-one", "test_one", BooleanOptionParser, "Test on one batch at a time?", default=1) op.add_option("force-save", "force_save", BooleanOptionParser, "Force save before quitting", default=0) op.add_option("gpu", "gpu", ListOptionParser(IntegerOptionParser), "GPU override") return op @staticmethod def print_data_providers(): print "Available data providers:" for dp, desc in dp_types.iteritems(): print " %s: %s" % (dp, desc) @staticmethod def parse_options(op, argslist=sys.argv[1:]): try: load_dic = None options = op.parse(opargslist=argslist) load_location = None # print options['load_file'].value_given, options['save_file_override'].value_given # print options['save_file_override'].value if options['load_file'].value_given: load_location = options['load_file'].value elif options['save_file_override'].value_given and os.path.exists(options['save_file_override'].value): load_location = options['save_file_override'].value if load_location is not None: load_dic = IGPUModel.load_checkpoint(load_location) old_op = load_dic["op"] old_op.merge_from(op) op = old_op op.eval_expr_defaults() return op, load_dic except OptionMissingException, e: print e op.print_usage() except OptionException, e: print e except UnpickleError, e: print "Error loading checkpoint:" print e sys.exit()
apache-2.0
bigdataelephants/scikit-learn
examples/decomposition/plot_ica_blind_source_separation.py
349
2228
""" ===================================== Blind source separation using FastICA ===================================== An example of estimating sources from noisy data. :ref:`ICA` is used to estimate sources given noisy measurements. Imagine 3 instruments playing simultaneously and 3 microphones recording the mixed signals. ICA is used to recover the sources ie. what is played by each instrument. Importantly, PCA fails at recovering our `instruments` since the related signals reflect non-Gaussian processes. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from scipy import signal from sklearn.decomposition import FastICA, PCA ############################################################################### # Generate sample data np.random.seed(0) n_samples = 2000 time = np.linspace(0, 8, n_samples) s1 = np.sin(2 * time) # Signal 1 : sinusoidal signal s2 = np.sign(np.sin(3 * time)) # Signal 2 : square signal s3 = signal.sawtooth(2 * np.pi * time) # Signal 3: saw tooth signal S = np.c_[s1, s2, s3] S += 0.2 * np.random.normal(size=S.shape) # Add noise S /= S.std(axis=0) # Standardize data # Mix data A = np.array([[1, 1, 1], [0.5, 2, 1.0], [1.5, 1.0, 2.0]]) # Mixing matrix X = np.dot(S, A.T) # Generate observations # Compute ICA ica = FastICA(n_components=3) S_ = ica.fit_transform(X) # Reconstruct signals A_ = ica.mixing_ # Get estimated mixing matrix # We can `prove` that the ICA model applies by reverting the unmixing. assert np.allclose(X, np.dot(S_, A_.T) + ica.mean_) # For comparison, compute PCA pca = PCA(n_components=3) H = pca.fit_transform(X) # Reconstruct signals based on orthogonal components ############################################################################### # Plot results plt.figure() models = [X, S, S_, H] names = ['Observations (mixed signal)', 'True Sources', 'ICA recovered signals', 'PCA recovered signals'] colors = ['red', 'steelblue', 'orange'] for ii, (model, name) in enumerate(zip(models, names), 1): plt.subplot(4, 1, ii) plt.title(name) for sig, color in zip(model.T, colors): plt.plot(sig, color=color) plt.subplots_adjust(0.09, 0.04, 0.94, 0.94, 0.26, 0.46) plt.show()
bsd-3-clause
ngoix/OCRF
sklearn/tree/tests/test_tree.py
1
52385
""" Testing for the tree module (sklearn.tree). """ import pickle from functools import partial from itertools import product import platform import numpy as np from scipy.sparse import csc_matrix from scipy.sparse import csr_matrix from scipy.sparse import coo_matrix from sklearn.random_projection import sparse_random_matrix from sklearn.metrics import accuracy_score from sklearn.metrics import mean_squared_error from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_in from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_greater_equal from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_less_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_warns from sklearn.utils.testing import raises from sklearn.utils.testing import ignore_warnings from sklearn.utils.validation import check_random_state from sklearn.exceptions import NotFittedError from sklearn.tree import DecisionTreeClassifier from sklearn.tree import DecisionTreeRegressor from sklearn.tree import ExtraTreeClassifier from sklearn.tree import ExtraTreeRegressor from sklearn import tree from sklearn.tree.tree import SPARSE_SPLITTERS from sklearn.tree._tree import TREE_LEAF from sklearn import datasets from sklearn.utils import compute_sample_weight CLF_CRITERIONS = ("oneclassgini", "gini", "entropy") REG_CRITERIONS = ("mse", ) CLF_TREES = { "DecisionTreeClassifier": DecisionTreeClassifier, "Presort-DecisionTreeClassifier": partial(DecisionTreeClassifier, presort=True), "ExtraTreeClassifier": ExtraTreeClassifier, } REG_TREES = { "DecisionTreeRegressor": DecisionTreeRegressor, "Presort-DecisionTreeRegressor": partial(DecisionTreeRegressor, presort=True), "ExtraTreeRegressor": ExtraTreeRegressor, } ALL_TREES = dict() ALL_TREES.update(CLF_TREES) ALL_TREES.update(REG_TREES) SPARSE_TREES = ["DecisionTreeClassifier", "DecisionTreeRegressor", "ExtraTreeClassifier", "ExtraTreeRegressor"] X_small = np.array([ [0, 0, 4, 0, 0, 0, 1, -14, 0, -4, 0, 0, 0, 0, ], [0, 0, 5, 3, 0, -4, 0, 0, 1, -5, 0.2, 0, 4, 1, ], [-1, -1, 0, 0, -4.5, 0, 0, 2.1, 1, 0, 0, -4.5, 0, 1, ], [-1, -1, 0, -1.2, 0, 0, 0, 0, 0, 0, 0.2, 0, 0, 1, ], [-1, -1, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 1, ], [-1, -2, 0, 4, -3, 10, 4, 0, -3.2, 0, 4, 3, -4, 1, ], [2.11, 0, -6, -0.5, 0, 11, 0, 0, -3.2, 6, 0.5, 0, -3, 1, ], [2.11, 0, -6, -0.5, 0, 11, 0, 0, -3.2, 6, 0, 0, -2, 1, ], [2.11, 8, -6, -0.5, 0, 11, 0, 0, -3.2, 6, 0, 0, -2, 1, ], [2.11, 8, -6, -0.5, 0, 11, 0, 0, -3.2, 6, 0.5, 0, -1, 0, ], [2, 8, 5, 1, 0.5, -4, 10, 0, 1, -5, 3, 0, 2, 0, ], [2, 0, 1, 1, 1, -1, 1, 0, 0, -2, 3, 0, 1, 0, ], [2, 0, 1, 2, 3, -1, 10, 2, 0, -1, 1, 2, 2, 0, ], [1, 1, 0, 2, 2, -1, 1, 2, 0, -5, 1, 2, 3, 0, ], [3, 1, 0, 3, 0, -4, 10, 0, 1, -5, 3, 0, 3, 1, ], [2.11, 8, -6, -0.5, 0, 1, 0, 0, -3.2, 6, 0.5, 0, -3, 1, ], [2.11, 8, -6, -0.5, 0, 1, 0, 0, -3.2, 6, 1.5, 1, -1, -1, ], [2.11, 8, -6, -0.5, 0, 10, 0, 0, -3.2, 6, 0.5, 0, -1, -1, ], [2, 0, 5, 1, 0.5, -2, 10, 0, 1, -5, 3, 1, 0, -1, ], [2, 0, 1, 1, 1, -2, 1, 0, 0, -2, 0, 0, 0, 1, ], [2, 1, 1, 1, 2, -1, 10, 2, 0, -1, 0, 2, 1, 1, ], [1, 1, 0, 0, 1, -3, 1, 2, 0, -5, 1, 2, 1, 1, ], [3, 1, 0, 1, 0, -4, 1, 0, 1, -2, 0, 0, 1, 0, ]]) y_small = [1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0] y_small_reg = [1.0, 2.1, 1.2, 0.05, 10, 2.4, 3.1, 1.01, 0.01, 2.98, 3.1, 1.1, 0.0, 1.2, 2, 11, 0, 0, 4.5, 0.201, 1.06, 0.9, 0] # toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y = [-1, -1, -1, 1, 1, 1] T = [[-1, -1], [2, 2], [3, 2]] true_result = [-1, 1, 1] # also load the iris dataset # and randomly permute it iris = datasets.load_iris() rng = np.random.RandomState(1) perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] # also load the boston dataset # and randomly permute it boston = datasets.load_boston() perm = rng.permutation(boston.target.size) boston.data = boston.data[perm] boston.target = boston.target[perm] digits = datasets.load_digits() perm = rng.permutation(digits.target.size) digits.data = digits.data[perm] digits.target = digits.target[perm] random_state = check_random_state(0) X_multilabel, y_multilabel = datasets.make_multilabel_classification( random_state=0, n_samples=30, n_features=10) X_sparse_pos = random_state.uniform(size=(20, 5)) X_sparse_pos[X_sparse_pos <= 0.8] = 0. y_random = random_state.randint(0, 4, size=(20, )) X_sparse_mix = sparse_random_matrix(20, 10, density=0.25, random_state=0) DATASETS = { "iris": {"X": iris.data, "y": iris.target}, "boston": {"X": boston.data, "y": boston.target}, "digits": {"X": digits.data, "y": digits.target}, "toy": {"X": X, "y": y}, "clf_small": {"X": X_small, "y": y_small}, "reg_small": {"X": X_small, "y": y_small_reg}, "multilabel": {"X": X_multilabel, "y": y_multilabel}, "sparse-pos": {"X": X_sparse_pos, "y": y_random}, "sparse-neg": {"X": - X_sparse_pos, "y": y_random}, "sparse-mix": {"X": X_sparse_mix, "y": y_random}, "zeros": {"X": np.zeros((20, 3)), "y": y_random} } for name in DATASETS: DATASETS[name]["X_sparse"] = csc_matrix(DATASETS[name]["X"]) def assert_tree_equal(d, s, message): assert_equal(s.node_count, d.node_count, "{0}: inequal number of node ({1} != {2})" "".format(message, s.node_count, d.node_count)) assert_array_equal(d.children_right, s.children_right, message + ": inequal children_right") assert_array_equal(d.children_left, s.children_left, message + ": inequal children_left") external = d.children_right == TREE_LEAF internal = np.logical_not(external) assert_array_equal(d.feature[internal], s.feature[internal], message + ": inequal features") assert_array_equal(d.threshold[internal], s.threshold[internal], message + ": inequal threshold") assert_array_equal(d.n_node_samples.sum(), s.n_node_samples.sum(), message + ": inequal sum(n_node_samples)") assert_array_equal(d.n_node_samples, s.n_node_samples, message + ": inequal n_node_samples") assert_almost_equal(d.impurity, s.impurity, err_msg=message + ": inequal impurity") assert_array_almost_equal(d.value[external], s.value[external], err_msg=message + ": inequal value") def test_classification_toy(): # Check classification on a toy dataset. for name, Tree in CLF_TREES.items(): clf = Tree(random_state=0) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result, "Failed with {0}".format(name)) clf = Tree(max_features=1, random_state=1) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result, "Failed with {0}".format(name)) def test_weighted_classification_toy(): # Check classification on a weighted toy dataset. for name, Tree in CLF_TREES.items(): clf = Tree(random_state=0) clf.fit(X, y, sample_weight=np.ones(len(X))) assert_array_equal(clf.predict(T), true_result, "Failed with {0}".format(name)) clf.fit(X, y, sample_weight=np.ones(len(X)) * 0.5) assert_array_equal(clf.predict(T), true_result, "Failed with {0}".format(name)) def test_regression_toy(): # Check regression on a toy dataset. for name, Tree in REG_TREES.items(): reg = Tree(random_state=1) reg.fit(X, y) assert_almost_equal(reg.predict(T), true_result, err_msg="Failed with {0}".format(name)) clf = Tree(max_features=1, random_state=1) clf.fit(X, y) assert_almost_equal(reg.predict(T), true_result, err_msg="Failed with {0}".format(name)) def test_xor(): # Check on a XOR problem y = np.zeros((10, 10)) y[:5, :5] = 1 y[5:, 5:] = 1 gridx, gridy = np.indices(y.shape) X = np.vstack([gridx.ravel(), gridy.ravel()]).T y = y.ravel() for name, Tree in CLF_TREES.items(): clf = Tree(random_state=0) clf.fit(X, y) assert_equal(clf.score(X, y), 1.0, "Failed with {0}".format(name)) clf = Tree(random_state=0, max_features=1) clf.fit(X, y) assert_equal(clf.score(X, y), 1.0, "Failed with {0}".format(name)) def test_iris(): # Check consistency on dataset iris. for (name, Tree), criterion in product(CLF_TREES.items(), CLF_CRITERIONS): clf = Tree(criterion=criterion, random_state=0) clf.fit(iris.data, iris.target) score = accuracy_score(clf.predict(iris.data), iris.target) assert_greater(score, 0.9, "Failed with {0}, criterion = {1} and score = {2}" "".format(name, criterion, score)) clf = Tree(criterion=criterion, max_features=2, random_state=0) clf.fit(iris.data, iris.target) score = accuracy_score(clf.predict(iris.data), iris.target) assert_greater(score, 0.5, "Failed with {0}, criterion = {1} and score = {2}" "".format(name, criterion, score)) def test_boston(): # Check consistency on dataset boston house prices. for (name, Tree), criterion in product(REG_TREES.items(), REG_CRITERIONS): reg = Tree(criterion=criterion, random_state=0) reg.fit(boston.data, boston.target) score = mean_squared_error(boston.target, reg.predict(boston.data)) assert_less(score, 1, "Failed with {0}, criterion = {1} and score = {2}" "".format(name, criterion, score)) # using fewer features reduces the learning ability of this tree, # but reduces training time. reg = Tree(criterion=criterion, max_features=6, random_state=0) reg.fit(boston.data, boston.target) score = mean_squared_error(boston.target, reg.predict(boston.data)) assert_less(score, 2, "Failed with {0}, criterion = {1} and score = {2}" "".format(name, criterion, score)) def test_probability(): # Predict probabilities using DecisionTreeClassifier. for name, Tree in CLF_TREES.items(): clf = Tree(max_depth=1, max_features=1, random_state=42) clf.fit(iris.data, iris.target) prob_predict = clf.predict_proba(iris.data) assert_array_almost_equal(np.sum(prob_predict, 1), np.ones(iris.data.shape[0]), err_msg="Failed with {0}".format(name)) assert_array_equal(np.argmax(prob_predict, 1), clf.predict(iris.data), err_msg="Failed with {0}".format(name)) assert_almost_equal(clf.predict_proba(iris.data), np.exp(clf.predict_log_proba(iris.data)), 8, err_msg="Failed with {0}".format(name)) def test_arrayrepr(): # Check the array representation. # Check resize X = np.arange(10000)[:, np.newaxis] y = np.arange(10000) for name, Tree in REG_TREES.items(): reg = Tree(max_depth=None, random_state=0) reg.fit(X, y) def test_pure_set(): # Check when y is pure. X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y = [1, 1, 1, 1, 1, 1] for name, TreeClassifier in CLF_TREES.items(): clf = TreeClassifier(random_state=0) clf.fit(X, y) assert_array_equal(clf.predict(X), y, err_msg="Failed with {0}".format(name)) for name, TreeRegressor in REG_TREES.items(): reg = TreeRegressor(random_state=0) reg.fit(X, y) assert_almost_equal(clf.predict(X), y, err_msg="Failed with {0}".format(name)) def test_numerical_stability(): # Check numerical stability. X = np.array([ [152.08097839, 140.40744019, 129.75102234, 159.90493774], [142.50700378, 135.81935120, 117.82884979, 162.75781250], [127.28772736, 140.40744019, 129.75102234, 159.90493774], [132.37025452, 143.71923828, 138.35694885, 157.84558105], [103.10237122, 143.71928406, 138.35696411, 157.84559631], [127.71276855, 143.71923828, 138.35694885, 157.84558105], [120.91514587, 140.40744019, 129.75102234, 159.90493774]]) y = np.array( [1., 0.70209277, 0.53896582, 0., 0.90914464, 0.48026916, 0.49622521]) with np.errstate(all="raise"): for name, Tree in REG_TREES.items(): reg = Tree(random_state=0) reg.fit(X, y) reg.fit(X, -y) reg.fit(-X, y) reg.fit(-X, -y) def test_importances(): # Check variable importances. X, y = datasets.make_classification(n_samples=2000, n_features=10, n_informative=3, n_redundant=0, n_repeated=0, shuffle=False, random_state=0) for name, Tree in CLF_TREES.items(): clf = Tree(random_state=0) clf.fit(X, y) importances = clf.feature_importances_ n_important = np.sum(importances > 0.1) assert_equal(importances.shape[0], 10, "Failed with {0}".format(name)) assert_equal(n_important, 3, "Failed with {0}".format(name)) X_new = assert_warns( DeprecationWarning, clf.transform, X, threshold="mean") assert_less(0, X_new.shape[1], "Failed with {0}".format(name)) assert_less(X_new.shape[1], X.shape[1], "Failed with {0}".format(name)) # Check on iris that importances are the same for all builders clf = DecisionTreeClassifier(random_state=0) clf.fit(iris.data, iris.target) clf2 = DecisionTreeClassifier(random_state=0, max_leaf_nodes=len(iris.data)) clf2.fit(iris.data, iris.target) assert_array_equal(clf.feature_importances_, clf2.feature_importances_) @raises(ValueError) def test_importances_raises(): # Check if variable importance before fit raises ValueError. clf = DecisionTreeClassifier() clf.feature_importances_ def test_importances_gini_equal_mse(): # Check that gini is equivalent to mse for binary output variable X, y = datasets.make_classification(n_samples=2000, n_features=10, n_informative=3, n_redundant=0, n_repeated=0, shuffle=False, random_state=0) # The gini index and the mean square error (variance) might differ due # to numerical instability. Since those instabilities mainly occurs at # high tree depth, we restrict this maximal depth. clf = DecisionTreeClassifier(criterion="gini", max_depth=5, random_state=0).fit(X, y) reg = DecisionTreeRegressor(criterion="mse", max_depth=5, random_state=0).fit(X, y) assert_almost_equal(clf.feature_importances_, reg.feature_importances_) assert_array_equal(clf.tree_.feature, reg.tree_.feature) assert_array_equal(clf.tree_.children_left, reg.tree_.children_left) assert_array_equal(clf.tree_.children_right, reg.tree_.children_right) assert_array_equal(clf.tree_.n_node_samples, reg.tree_.n_node_samples) def test_max_features(): # Check max_features. for name, TreeRegressor in REG_TREES.items(): reg = TreeRegressor(max_features="auto") reg.fit(boston.data, boston.target) assert_equal(reg.max_features_, boston.data.shape[1]) for name, TreeClassifier in CLF_TREES.items(): clf = TreeClassifier(max_features="auto") clf.fit(iris.data, iris.target) assert_equal(clf.max_features_, 2) for name, TreeEstimator in ALL_TREES.items(): est = TreeEstimator(max_features="sqrt") est.fit(iris.data, iris.target) assert_equal(est.max_features_, int(np.sqrt(iris.data.shape[1]))) est = TreeEstimator(max_features="log2") est.fit(iris.data, iris.target) assert_equal(est.max_features_, int(np.log2(iris.data.shape[1]))) est = TreeEstimator(max_features=1) est.fit(iris.data, iris.target) assert_equal(est.max_features_, 1) est = TreeEstimator(max_features=3) est.fit(iris.data, iris.target) assert_equal(est.max_features_, 3) est = TreeEstimator(max_features=0.01) est.fit(iris.data, iris.target) assert_equal(est.max_features_, 1) est = TreeEstimator(max_features=0.5) est.fit(iris.data, iris.target) assert_equal(est.max_features_, int(0.5 * iris.data.shape[1])) est = TreeEstimator(max_features=1.0) est.fit(iris.data, iris.target) assert_equal(est.max_features_, iris.data.shape[1]) est = TreeEstimator(max_features=None) est.fit(iris.data, iris.target) assert_equal(est.max_features_, iris.data.shape[1]) # use values of max_features that are invalid est = TreeEstimator(max_features=10) assert_raises(ValueError, est.fit, X, y) est = TreeEstimator(max_features=-1) assert_raises(ValueError, est.fit, X, y) est = TreeEstimator(max_features=0.0) assert_raises(ValueError, est.fit, X, y) est = TreeEstimator(max_features=1.5) assert_raises(ValueError, est.fit, X, y) est = TreeEstimator(max_features="foobar") assert_raises(ValueError, est.fit, X, y) def test_error(): # Test that it gives proper exception on deficient input. for name, TreeEstimator in CLF_TREES.items(): # predict before fit est = TreeEstimator() assert_raises(NotFittedError, est.predict_proba, X) est.fit(X, y) X2 = [[-2, -1, 1]] # wrong feature shape for sample assert_raises(ValueError, est.predict_proba, X2) for name, TreeEstimator in ALL_TREES.items(): # Invalid values for parameters assert_raises(ValueError, TreeEstimator(min_samples_leaf=-1).fit, X, y) assert_raises(ValueError, TreeEstimator(min_samples_leaf=.6).fit, X, y) assert_raises(ValueError, TreeEstimator(min_samples_leaf=0.).fit, X, y) assert_raises(ValueError, TreeEstimator(min_weight_fraction_leaf=-1).fit, X, y) assert_raises(ValueError, TreeEstimator(min_weight_fraction_leaf=0.51).fit, X, y) assert_raises(ValueError, TreeEstimator(min_samples_split=-1).fit, X, y) assert_raises(ValueError, TreeEstimator(min_samples_split=0.0).fit, X, y) assert_raises(ValueError, TreeEstimator(min_samples_split=1.1).fit, X, y) assert_raises(ValueError, TreeEstimator(max_depth=-1).fit, X, y) assert_raises(ValueError, TreeEstimator(max_features=42).fit, X, y) # Wrong dimensions est = TreeEstimator() y2 = y[:-1] assert_raises(ValueError, est.fit, X, y2) # Test with arrays that are non-contiguous. Xf = np.asfortranarray(X) est = TreeEstimator() est.fit(Xf, y) assert_almost_equal(est.predict(T), true_result) # predict before fitting est = TreeEstimator() assert_raises(NotFittedError, est.predict, T) # predict on vector with different dims est.fit(X, y) t = np.asarray(T) assert_raises(ValueError, est.predict, t[:, 1:]) # wrong sample shape Xt = np.array(X).T est = TreeEstimator() est.fit(np.dot(X, Xt), y) assert_raises(ValueError, est.predict, X) assert_raises(ValueError, est.apply, X) clf = TreeEstimator() clf.fit(X, y) assert_raises(ValueError, clf.predict, Xt) assert_raises(ValueError, clf.apply, Xt) # apply before fitting est = TreeEstimator() assert_raises(NotFittedError, est.apply, T) def test_min_samples_split(): """Test min_samples_split parameter""" X = np.asfortranarray(iris.data.astype(tree._tree.DTYPE)) y = iris.target # test both DepthFirstTreeBuilder and BestFirstTreeBuilder # by setting max_leaf_nodes for max_leaf_nodes, name in product((None, 1000), ALL_TREES.keys()): TreeEstimator = ALL_TREES[name] # test for integer parameter est = TreeEstimator(min_samples_split=10, max_leaf_nodes=max_leaf_nodes, random_state=0) est.fit(X, y) # count samples on nodes, -1 means it is a leaf node_samples = est.tree_.n_node_samples[est.tree_.children_left != -1] assert_greater(np.min(node_samples), 9, "Failed with {0}".format(name)) # test for float parameter est = TreeEstimator(min_samples_split=0.2, max_leaf_nodes=max_leaf_nodes, random_state=0) est.fit(X, y) # count samples on nodes, -1 means it is a leaf node_samples = est.tree_.n_node_samples[est.tree_.children_left != -1] assert_greater(np.min(node_samples), 9, "Failed with {0}".format(name)) def test_min_samples_leaf(): # Test if leaves contain more than leaf_count training examples X = np.asfortranarray(iris.data.astype(tree._tree.DTYPE)) y = iris.target # test both DepthFirstTreeBuilder and BestFirstTreeBuilder # by setting max_leaf_nodes for max_leaf_nodes, name in product((None, 1000), ALL_TREES.keys()): TreeEstimator = ALL_TREES[name] # test integer parameter est = TreeEstimator(min_samples_leaf=5, max_leaf_nodes=max_leaf_nodes, random_state=0) est.fit(X, y) out = est.tree_.apply(X) node_counts = np.bincount(out) # drop inner nodes leaf_count = node_counts[node_counts != 0] assert_greater(np.min(leaf_count), 4, "Failed with {0}".format(name)) # test float parameter est = TreeEstimator(min_samples_leaf=0.1, max_leaf_nodes=max_leaf_nodes, random_state=0) est.fit(X, y) out = est.tree_.apply(X) node_counts = np.bincount(out) # drop inner nodes leaf_count = node_counts[node_counts != 0] assert_greater(np.min(leaf_count), 4, "Failed with {0}".format(name)) def check_min_weight_fraction_leaf(name, datasets, sparse=False): """Test if leaves contain at least min_weight_fraction_leaf of the training set""" if sparse: X = DATASETS[datasets]["X_sparse"].astype(np.float32) else: X = DATASETS[datasets]["X"].astype(np.float32) y = DATASETS[datasets]["y"] weights = rng.rand(X.shape[0]) total_weight = np.sum(weights) TreeEstimator = ALL_TREES[name] # test both DepthFirstTreeBuilder and BestFirstTreeBuilder # by setting max_leaf_nodes for max_leaf_nodes, frac in product((None, 1000), np.linspace(0, 0.5, 6)): est = TreeEstimator(min_weight_fraction_leaf=frac, max_leaf_nodes=max_leaf_nodes, random_state=0) est.fit(X, y, sample_weight=weights) if sparse: out = est.tree_.apply(X.tocsr()) else: out = est.tree_.apply(X) node_weights = np.bincount(out, weights=weights) # drop inner nodes leaf_weights = node_weights[node_weights != 0] assert_greater_equal( np.min(leaf_weights), total_weight * est.min_weight_fraction_leaf, "Failed with {0} " "min_weight_fraction_leaf={1}".format( name, est.min_weight_fraction_leaf)) def test_min_weight_fraction_leaf(): # Check on dense input for name in ALL_TREES: yield check_min_weight_fraction_leaf, name, "iris" # Check on sparse input for name in SPARSE_TREES: yield check_min_weight_fraction_leaf, name, "multilabel", True def test_pickle(): for name, TreeEstimator in ALL_TREES.items(): if "Classifier" in name: X, y = iris.data, iris.target else: X, y = boston.data, boston.target est = TreeEstimator(random_state=0) est.fit(X, y) score = est.score(X, y) fitted_attribute = dict() for attribute in ["max_depth", "node_count", "capacity"]: fitted_attribute[attribute] = getattr(est.tree_, attribute) serialized_object = pickle.dumps(est) est2 = pickle.loads(serialized_object) assert_equal(type(est2), est.__class__) score2 = est2.score(X, y) assert_equal(score, score2, "Failed to generate same score after pickling " "with {0}".format(name)) for attribute in fitted_attribute: assert_equal(getattr(est2.tree_, attribute), fitted_attribute[attribute], "Failed to generate same attribute {0} after " "pickling with {1}".format(attribute, name)) def test_multioutput(): # Check estimators on multi-output problems. X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1], [-2, 1], [-1, 1], [-1, 2], [2, -1], [1, -1], [1, -2]] y = [[-1, 0], [-1, 0], [-1, 0], [1, 1], [1, 1], [1, 1], [-1, 2], [-1, 2], [-1, 2], [1, 3], [1, 3], [1, 3]] T = [[-1, -1], [1, 1], [-1, 1], [1, -1]] y_true = [[-1, 0], [1, 1], [-1, 2], [1, 3]] # toy classification problem for name, TreeClassifier in CLF_TREES.items(): clf = TreeClassifier(random_state=0) y_hat = clf.fit(X, y).predict(T) assert_array_equal(y_hat, y_true) assert_equal(y_hat.shape, (4, 2)) proba = clf.predict_proba(T) assert_equal(len(proba), 2) assert_equal(proba[0].shape, (4, 2)) assert_equal(proba[1].shape, (4, 4)) log_proba = clf.predict_log_proba(T) assert_equal(len(log_proba), 2) assert_equal(log_proba[0].shape, (4, 2)) assert_equal(log_proba[1].shape, (4, 4)) # toy regression problem for name, TreeRegressor in REG_TREES.items(): reg = TreeRegressor(random_state=0) y_hat = reg.fit(X, y).predict(T) assert_almost_equal(y_hat, y_true) assert_equal(y_hat.shape, (4, 2)) def test_classes_shape(): # Test that n_classes_ and classes_ have proper shape. for name, TreeClassifier in CLF_TREES.items(): # Classification, single output clf = TreeClassifier(random_state=0) clf.fit(X, y) assert_equal(clf.n_classes_, 2) assert_array_equal(clf.classes_, [-1, 1]) # Classification, multi-output _y = np.vstack((y, np.array(y) * 2)).T clf = TreeClassifier(random_state=0) clf.fit(X, _y) assert_equal(len(clf.n_classes_), 2) assert_equal(len(clf.classes_), 2) assert_array_equal(clf.n_classes_, [2, 2]) assert_array_equal(clf.classes_, [[-1, 1], [-2, 2]]) def test_unbalanced_iris(): # Check class rebalancing. unbalanced_X = iris.data[:125] unbalanced_y = iris.target[:125] sample_weight = compute_sample_weight("balanced", unbalanced_y) for name, TreeClassifier in CLF_TREES.items(): clf = TreeClassifier(random_state=0) clf.fit(unbalanced_X, unbalanced_y, sample_weight=sample_weight) assert_almost_equal(clf.predict(unbalanced_X), unbalanced_y) def test_memory_layout(): # Check that it works no matter the memory layout for (name, TreeEstimator), dtype in product(ALL_TREES.items(), [np.float64, np.float32]): est = TreeEstimator(random_state=0) # Nothing X = np.asarray(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # C-order X = np.asarray(iris.data, order="C", dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # F-order X = np.asarray(iris.data, order="F", dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # Contiguous X = np.ascontiguousarray(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) if not est.presort: # csr matrix X = csr_matrix(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # csc_matrix X = csc_matrix(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # Strided X = np.asarray(iris.data[::3], dtype=dtype) y = iris.target[::3] assert_array_equal(est.fit(X, y).predict(X), y) def test_sample_weight(): # Check sample weighting. # Test that zero-weighted samples are not taken into account X = np.arange(100)[:, np.newaxis] y = np.ones(100) y[:50] = 0.0 sample_weight = np.ones(100) sample_weight[y == 0] = 0.0 clf = DecisionTreeClassifier(random_state=0) clf.fit(X, y, sample_weight=sample_weight) assert_array_equal(clf.predict(X), np.ones(100)) # Test that low weighted samples are not taken into account at low depth X = np.arange(200)[:, np.newaxis] y = np.zeros(200) y[50:100] = 1 y[100:200] = 2 X[100:200, 0] = 200 sample_weight = np.ones(200) sample_weight[y == 2] = .51 # Samples of class '2' are still weightier clf = DecisionTreeClassifier(max_depth=1, random_state=0) clf.fit(X, y, sample_weight=sample_weight) assert_equal(clf.tree_.threshold[0], 149.5) sample_weight[y == 2] = .5 # Samples of class '2' are no longer weightier clf = DecisionTreeClassifier(max_depth=1, random_state=0) clf.fit(X, y, sample_weight=sample_weight) assert_equal(clf.tree_.threshold[0], 49.5) # Threshold should have moved # Test that sample weighting is the same as having duplicates X = iris.data y = iris.target duplicates = rng.randint(0, X.shape[0], 100) clf = DecisionTreeClassifier(random_state=1) clf.fit(X[duplicates], y[duplicates]) sample_weight = np.bincount(duplicates, minlength=X.shape[0]) clf2 = DecisionTreeClassifier(random_state=1) clf2.fit(X, y, sample_weight=sample_weight) internal = clf.tree_.children_left != tree._tree.TREE_LEAF assert_array_almost_equal(clf.tree_.threshold[internal], clf2.tree_.threshold[internal]) def test_sample_weight_invalid(): # Check sample weighting raises errors. X = np.arange(100)[:, np.newaxis] y = np.ones(100) y[:50] = 0.0 clf = DecisionTreeClassifier(random_state=0) sample_weight = np.random.rand(100, 1) assert_raises(ValueError, clf.fit, X, y, sample_weight=sample_weight) sample_weight = np.array(0) assert_raises(ValueError, clf.fit, X, y, sample_weight=sample_weight) sample_weight = np.ones(101) assert_raises(ValueError, clf.fit, X, y, sample_weight=sample_weight) sample_weight = np.ones(99) assert_raises(ValueError, clf.fit, X, y, sample_weight=sample_weight) def check_class_weights(name): """Check class_weights resemble sample_weights behavior.""" TreeClassifier = CLF_TREES[name] # Iris is balanced, so no effect expected for using 'balanced' weights clf1 = TreeClassifier(random_state=0) clf1.fit(iris.data, iris.target) clf2 = TreeClassifier(class_weight='balanced', random_state=0) clf2.fit(iris.data, iris.target) assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_) # Make a multi-output problem with three copies of Iris iris_multi = np.vstack((iris.target, iris.target, iris.target)).T # Create user-defined weights that should balance over the outputs clf3 = TreeClassifier(class_weight=[{0: 2., 1: 2., 2: 1.}, {0: 2., 1: 1., 2: 2.}, {0: 1., 1: 2., 2: 2.}], random_state=0) clf3.fit(iris.data, iris_multi) assert_almost_equal(clf2.feature_importances_, clf3.feature_importances_) # Check against multi-output "auto" which should also have no effect clf4 = TreeClassifier(class_weight='balanced', random_state=0) clf4.fit(iris.data, iris_multi) assert_almost_equal(clf3.feature_importances_, clf4.feature_importances_) # Inflate importance of class 1, check against user-defined weights sample_weight = np.ones(iris.target.shape) sample_weight[iris.target == 1] *= 100 class_weight = {0: 1., 1: 100., 2: 1.} clf1 = TreeClassifier(random_state=0) clf1.fit(iris.data, iris.target, sample_weight) clf2 = TreeClassifier(class_weight=class_weight, random_state=0) clf2.fit(iris.data, iris.target) assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_) # Check that sample_weight and class_weight are multiplicative clf1 = TreeClassifier(random_state=0) clf1.fit(iris.data, iris.target, sample_weight ** 2) clf2 = TreeClassifier(class_weight=class_weight, random_state=0) clf2.fit(iris.data, iris.target, sample_weight) assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_) def test_class_weights(): for name in CLF_TREES: yield check_class_weights, name def check_class_weight_errors(name): # Test if class_weight raises errors and warnings when expected. TreeClassifier = CLF_TREES[name] _y = np.vstack((y, np.array(y) * 2)).T # Invalid preset string clf = TreeClassifier(class_weight='the larch', random_state=0) assert_raises(ValueError, clf.fit, X, y) assert_raises(ValueError, clf.fit, X, _y) # Not a list or preset for multi-output clf = TreeClassifier(class_weight=1, random_state=0) assert_raises(ValueError, clf.fit, X, _y) # Incorrect length list for multi-output clf = TreeClassifier(class_weight=[{-1: 0.5, 1: 1.}], random_state=0) assert_raises(ValueError, clf.fit, X, _y) def test_class_weight_errors(): for name in CLF_TREES: yield check_class_weight_errors, name def test_max_leaf_nodes(): # Test greedy trees with max_depth + 1 leafs. from sklearn.tree._tree import TREE_LEAF X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) k = 4 for name, TreeEstimator in ALL_TREES.items(): est = TreeEstimator(max_depth=None, max_leaf_nodes=k + 1).fit(X, y) tree = est.tree_ assert_equal((tree.children_left == TREE_LEAF).sum(), k + 1) # max_leaf_nodes in (0, 1) should raise ValueError est = TreeEstimator(max_depth=None, max_leaf_nodes=0) assert_raises(ValueError, est.fit, X, y) est = TreeEstimator(max_depth=None, max_leaf_nodes=1) assert_raises(ValueError, est.fit, X, y) est = TreeEstimator(max_depth=None, max_leaf_nodes=0.1) assert_raises(ValueError, est.fit, X, y) def test_max_leaf_nodes_max_depth(): # Test precedence of max_leaf_nodes over max_depth. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) k = 4 for name, TreeEstimator in ALL_TREES.items(): est = TreeEstimator(max_depth=1, max_leaf_nodes=k).fit(X, y) tree = est.tree_ assert_greater(tree.max_depth, 1) def test_arrays_persist(): # Ensure property arrays' memory stays alive when tree disappears # non-regression for #2726 for attr in ['n_classes', 'value', 'children_left', 'children_right', 'threshold', 'impurity', 'feature', 'n_node_samples']: value = getattr(DecisionTreeClassifier().fit([[0], [1]], [0, 1]).tree_, attr) # if pointing to freed memory, contents may be arbitrary assert_true(-3 <= value.flat[0] < 3, 'Array points to arbitrary memory') def test_only_constant_features(): random_state = check_random_state(0) X = np.zeros((10, 20)) y = random_state.randint(0, 2, (10, )) for name, TreeEstimator in ALL_TREES.items(): est = TreeEstimator(random_state=0) est.fit(X, y) assert_equal(est.tree_.max_depth, 0) def test_with_only_one_non_constant_features(): X = np.hstack([np.array([[1.], [1.], [0.], [0.]]), np.zeros((4, 1000))]) y = np.array([0., 1., 0., 1.0]) for name, TreeEstimator in CLF_TREES.items(): est = TreeEstimator(random_state=0, max_features=1) est.fit(X, y) assert_equal(est.tree_.max_depth, 1) assert_array_equal(est.predict_proba(X), 0.5 * np.ones((4, 2))) for name, TreeEstimator in REG_TREES.items(): est = TreeEstimator(random_state=0, max_features=1) est.fit(X, y) assert_equal(est.tree_.max_depth, 1) assert_array_equal(est.predict(X), 0.5 * np.ones((4, ))) def test_big_input(): # Test if the warning for too large inputs is appropriate. X = np.repeat(10 ** 40., 4).astype(np.float64).reshape(-1, 1) clf = DecisionTreeClassifier() try: clf.fit(X, [0, 1, 0, 1]) except ValueError as e: assert_in("float32", str(e)) def test_realloc(): from sklearn.tree._utils import _realloc_test assert_raises(MemoryError, _realloc_test) def test_huge_allocations(): n_bits = int(platform.architecture()[0].rstrip('bit')) X = np.random.randn(10, 2) y = np.random.randint(0, 2, 10) # Sanity check: we cannot request more memory than the size of the address # space. Currently raises OverflowError. huge = 2 ** (n_bits + 1) clf = DecisionTreeClassifier(splitter='best', max_leaf_nodes=huge) assert_raises(Exception, clf.fit, X, y) # Non-regression test: MemoryError used to be dropped by Cython # because of missing "except *". huge = 2 ** (n_bits - 1) - 1 clf = DecisionTreeClassifier(splitter='best', max_leaf_nodes=huge) assert_raises(MemoryError, clf.fit, X, y) def check_sparse_input(tree, dataset, max_depth=None): TreeEstimator = ALL_TREES[tree] X = DATASETS[dataset]["X"] X_sparse = DATASETS[dataset]["X_sparse"] y = DATASETS[dataset]["y"] # Gain testing time if dataset in ["digits", "boston"]: n_samples = X.shape[0] // 5 X = X[:n_samples] X_sparse = X_sparse[:n_samples] y = y[:n_samples] for sparse_format in (csr_matrix, csc_matrix, coo_matrix): X_sparse = sparse_format(X_sparse) # Check the default (depth first search) d = TreeEstimator(random_state=0, max_depth=max_depth).fit(X, y) s = TreeEstimator(random_state=0, max_depth=max_depth).fit(X_sparse, y) assert_tree_equal(d.tree_, s.tree_, "{0} with dense and sparse format gave different " "trees".format(tree)) y_pred = d.predict(X) if tree in CLF_TREES: y_proba = d.predict_proba(X) y_log_proba = d.predict_log_proba(X) for sparse_matrix in (csr_matrix, csc_matrix, coo_matrix): X_sparse_test = sparse_matrix(X_sparse, dtype=np.float32) assert_array_almost_equal(s.predict(X_sparse_test), y_pred) if tree in CLF_TREES: assert_array_almost_equal(s.predict_proba(X_sparse_test), y_proba) assert_array_almost_equal(s.predict_log_proba(X_sparse_test), y_log_proba) def test_sparse_input(): for tree, dataset in product(SPARSE_TREES, ("clf_small", "toy", "digits", "multilabel", "sparse-pos", "sparse-neg", "sparse-mix", "zeros")): max_depth = 3 if dataset == "digits" else None yield (check_sparse_input, tree, dataset, max_depth) # Due to numerical instability of MSE and too strict test, we limit the # maximal depth for tree, dataset in product(REG_TREES, ["boston", "reg_small"]): if tree in SPARSE_TREES: yield (check_sparse_input, tree, dataset, 2) def check_sparse_parameters(tree, dataset): TreeEstimator = ALL_TREES[tree] X = DATASETS[dataset]["X"] X_sparse = DATASETS[dataset]["X_sparse"] y = DATASETS[dataset]["y"] # Check max_features d = TreeEstimator(random_state=0, max_features=1, max_depth=2).fit(X, y) s = TreeEstimator(random_state=0, max_features=1, max_depth=2).fit(X_sparse, y) assert_tree_equal(d.tree_, s.tree_, "{0} with dense and sparse format gave different " "trees".format(tree)) assert_array_almost_equal(s.predict(X), d.predict(X)) # Check min_samples_split d = TreeEstimator(random_state=0, max_features=1, min_samples_split=10).fit(X, y) s = TreeEstimator(random_state=0, max_features=1, min_samples_split=10).fit(X_sparse, y) assert_tree_equal(d.tree_, s.tree_, "{0} with dense and sparse format gave different " "trees".format(tree)) assert_array_almost_equal(s.predict(X), d.predict(X)) # Check min_samples_leaf d = TreeEstimator(random_state=0, min_samples_leaf=X_sparse.shape[0] // 2).fit(X, y) s = TreeEstimator(random_state=0, min_samples_leaf=X_sparse.shape[0] // 2).fit(X_sparse, y) assert_tree_equal(d.tree_, s.tree_, "{0} with dense and sparse format gave different " "trees".format(tree)) assert_array_almost_equal(s.predict(X), d.predict(X)) # Check best-first search d = TreeEstimator(random_state=0, max_leaf_nodes=3).fit(X, y) s = TreeEstimator(random_state=0, max_leaf_nodes=3).fit(X_sparse, y) assert_tree_equal(d.tree_, s.tree_, "{0} with dense and sparse format gave different " "trees".format(tree)) assert_array_almost_equal(s.predict(X), d.predict(X)) def test_sparse_parameters(): for tree, dataset in product(SPARSE_TREES, ["sparse-pos", "sparse-neg", "sparse-mix", "zeros"]): yield (check_sparse_parameters, tree, dataset) def check_sparse_criterion(tree, dataset): TreeEstimator = ALL_TREES[tree] X = DATASETS[dataset]["X"] X_sparse = DATASETS[dataset]["X_sparse"] y = DATASETS[dataset]["y"] # Check various criterion CRITERIONS = REG_CRITERIONS if tree in REG_TREES else CLF_CRITERIONS for criterion in CRITERIONS: d = TreeEstimator(random_state=0, max_depth=3, criterion=criterion).fit(X, y) s = TreeEstimator(random_state=0, max_depth=3, criterion=criterion).fit(X_sparse, y) assert_tree_equal(d.tree_, s.tree_, "{0} with dense and sparse format gave different " "trees".format(tree)) assert_array_almost_equal(s.predict(X), d.predict(X)) def test_sparse_criterion(): for tree, dataset in product(SPARSE_TREES, ["sparse-pos", "sparse-neg", "sparse-mix", "zeros"]): yield (check_sparse_criterion, tree, dataset) def check_explicit_sparse_zeros(tree, max_depth=3, n_features=10): TreeEstimator = ALL_TREES[tree] # n_samples set n_feature to ease construction of a simultaneous # construction of a csr and csc matrix n_samples = n_features samples = np.arange(n_samples) # Generate X, y random_state = check_random_state(0) indices = [] data = [] offset = 0 indptr = [offset] for i in range(n_features): n_nonzero_i = random_state.binomial(n_samples, 0.5) indices_i = random_state.permutation(samples)[:n_nonzero_i] indices.append(indices_i) data_i = random_state.binomial(3, 0.5, size=(n_nonzero_i, )) - 1 data.append(data_i) offset += n_nonzero_i indptr.append(offset) indices = np.concatenate(indices) data = np.array(np.concatenate(data), dtype=np.float32) X_sparse = csc_matrix((data, indices, indptr), shape=(n_samples, n_features)) X = X_sparse.toarray() X_sparse_test = csr_matrix((data, indices, indptr), shape=(n_samples, n_features)) X_test = X_sparse_test.toarray() y = random_state.randint(0, 3, size=(n_samples, )) # Ensure that X_sparse_test owns its data, indices and indptr array X_sparse_test = X_sparse_test.copy() # Ensure that we have explicit zeros assert_greater((X_sparse.data == 0.).sum(), 0) assert_greater((X_sparse_test.data == 0.).sum(), 0) # Perform the comparison d = TreeEstimator(random_state=0, max_depth=max_depth).fit(X, y) s = TreeEstimator(random_state=0, max_depth=max_depth).fit(X_sparse, y) assert_tree_equal(d.tree_, s.tree_, "{0} with dense and sparse format gave different " "trees".format(tree)) Xs = (X_test, X_sparse_test) for X1, X2 in product(Xs, Xs): assert_array_almost_equal(s.tree_.apply(X1), d.tree_.apply(X2)) assert_array_almost_equal(s.apply(X1), d.apply(X2)) assert_array_almost_equal(s.apply(X1), s.tree_.apply(X1)) assert_array_almost_equal(s.tree_.decision_path(X1).toarray(), d.tree_.decision_path(X2).toarray()) assert_array_almost_equal(s.decision_path(X1).toarray(), d.decision_path(X2).toarray()) assert_array_almost_equal(s.decision_path(X1).toarray(), s.tree_.decision_path(X1).toarray()) assert_array_almost_equal(s.predict(X1), d.predict(X2)) if tree in CLF_TREES: assert_array_almost_equal(s.predict_proba(X1), d.predict_proba(X2)) def test_explicit_sparse_zeros(): for tree in SPARSE_TREES: yield (check_explicit_sparse_zeros, tree) @ignore_warnings def check_raise_error_on_1d_input(name): TreeEstimator = ALL_TREES[name] X = iris.data[:, 0].ravel() X_2d = iris.data[:, 0].reshape((-1, 1)) y = iris.target assert_raises(ValueError, TreeEstimator(random_state=0).fit, X, y) est = TreeEstimator(random_state=0) est.fit(X_2d, y) assert_raises(ValueError, est.predict, [X]) @ignore_warnings def test_1d_input(): for name in ALL_TREES: yield check_raise_error_on_1d_input, name def _check_min_weight_leaf_split_level(TreeEstimator, X, y, sample_weight): # Private function to keep pretty printing in nose yielded tests est = TreeEstimator(random_state=0) est.fit(X, y, sample_weight=sample_weight) assert_equal(est.tree_.max_depth, 1) est = TreeEstimator(random_state=0, min_weight_fraction_leaf=0.4) est.fit(X, y, sample_weight=sample_weight) assert_equal(est.tree_.max_depth, 0) def check_min_weight_leaf_split_level(name): TreeEstimator = ALL_TREES[name] X = np.array([[0], [0], [0], [0], [1]]) y = [0, 0, 0, 0, 1] sample_weight = [0.2, 0.2, 0.2, 0.2, 0.2] _check_min_weight_leaf_split_level(TreeEstimator, X, y, sample_weight) if not TreeEstimator().presort: _check_min_weight_leaf_split_level(TreeEstimator, csc_matrix(X), y, sample_weight) def test_min_weight_leaf_split_level(): for name in ALL_TREES: yield check_min_weight_leaf_split_level, name def check_public_apply(name): X_small32 = X_small.astype(tree._tree.DTYPE) est = ALL_TREES[name]() est.fit(X_small, y_small) assert_array_equal(est.apply(X_small), est.tree_.apply(X_small32)) def check_public_apply_sparse(name): X_small32 = csr_matrix(X_small.astype(tree._tree.DTYPE)) est = ALL_TREES[name]() est.fit(X_small, y_small) assert_array_equal(est.apply(X_small), est.tree_.apply(X_small32)) def test_public_apply(): for name in ALL_TREES: yield (check_public_apply, name) for name in SPARSE_TREES: yield (check_public_apply_sparse, name) def check_presort_sparse(est, X, y): assert_raises(ValueError, est.fit, X, y) def test_presort_sparse(): ests = (DecisionTreeClassifier(presort=True), DecisionTreeRegressor(presort=True)) sparse_matrices = (csr_matrix, csc_matrix, coo_matrix) y, X = datasets.make_multilabel_classification(random_state=0, n_samples=50, n_features=1, n_classes=20) y = y[:, 0] for est, sparse_matrix in product(ests, sparse_matrices): yield check_presort_sparse, est, sparse_matrix(X), y def test_decision_path_hardcoded(): X = iris.data y = iris.target est = DecisionTreeClassifier(random_state=0, max_depth=1).fit(X, y) node_indicator = est.decision_path(X[:2]).toarray() assert_array_equal(node_indicator, [[1, 1, 0], [1, 0, 1]]) def check_decision_path(name): X = iris.data y = iris.target n_samples = X.shape[0] TreeEstimator = ALL_TREES[name] est = TreeEstimator(random_state=0, max_depth=2) est.fit(X, y) node_indicator_csr = est.decision_path(X) node_indicator = node_indicator_csr.toarray() assert_equal(node_indicator.shape, (n_samples, est.tree_.node_count)) # Assert that leaves index are correct leaves = est.apply(X) leave_indicator = [node_indicator[i, j] for i, j in enumerate(leaves)] assert_array_almost_equal(leave_indicator, np.ones(shape=n_samples)) # Ensure only one leave node per sample all_leaves = est.tree_.children_left == TREE_LEAF assert_array_almost_equal(np.dot(node_indicator, all_leaves), np.ones(shape=n_samples)) # Ensure max depth is consistent with sum of indicator max_depth = node_indicator.sum(axis=1).max() assert_less_equal(est.tree_.max_depth, max_depth) def test_decision_path(): for name in ALL_TREES: yield (check_decision_path, name) def check_no_sparse_y_support(name): X, y = X_multilabel, csr_matrix(y_multilabel) TreeEstimator = ALL_TREES[name] assert_raises(TypeError, TreeEstimator(random_state=0).fit, X, y) def test_no_sparse_y_support(): # Currently we don't support sparse y for name in ALL_TREES: yield (check_no_sparse_y_support, name)
bsd-3-clause
econ-ark/HARK
HARK/interpolation.py
1
194285
""" Custom interpolation methods for representing approximations to functions. It also includes wrapper classes to enforce standard methods across classes. Each interpolation class must have a distance() method that compares itself to another instance; this is used in HARK.core's solve() method to check for solution convergence. The interpolator classes currently in this module inherit their distance method from MetricObject. """ import numpy as np from .core import MetricObject from copy import deepcopy from HARK.utilities import CRRAutility, CRRAutilityP, CRRAutilityPP import warnings def _isscalar(x): """ Check whether x is if a scalar type, or 0-dim. Parameters ---------- x : anything An input to be checked for scalar-ness. Returns ------- is_scalar : boolean True if the input is a scalar, False otherwise. """ return np.isscalar(x) or hasattr(x, "shape") and x.shape == () def _check_grid_dimensions(dimension, *args): if dimension == 1: if len(args[0]) != len(args[1]): raise ValueError("Grid dimensions of x and f(x) do not match") elif dimension == 2: if args[0].shape != (args[1].size, args[2].size): raise ValueError("Grid dimensions of x, y and f(x, y) do not match") elif dimension == 3: if args[0].shape != (args[1].size, args[2].size, args[3].size): raise ValueError("Grid dimensions of x, y, z and f(x, y, z) do not match") elif dimension == 4: if args[0].shape != (args[1].size, args[2].size, args[3].size, args[4].size): raise ValueError("Grid dimensions of x, y, z and f(x, y, z) do not match") else: raise ValueError("Dimension should be between 1 and 4 inclusive.") def _check_flatten(dimension, *args): if dimension == 1: if isinstance(args[0], np.ndarray) and args[0].shape != args[0].flatten().shape: warnings.warn("input not of the size (n, ), attempting to flatten") return False else: return True class HARKinterpolator1D(MetricObject): """ A wrapper class for 1D interpolation methods in HARK. """ distance_criteria = [] def __call__(self, x): """ Evaluates the interpolated function at the given input. Parameters ---------- x : np.array or float Real values to be evaluated in the interpolated function. Returns ------- y : np.array or float The interpolated function evaluated at x: y = f(x), with the same shape as x. """ z = np.asarray(x) return (self._evaluate(z.flatten())).reshape(z.shape) def derivative(self, x): """ Evaluates the derivative of the interpolated function at the given input. Parameters ---------- x : np.array or float Real values to be evaluated in the interpolated function. Returns ------- dydx : np.array or float The interpolated function's first derivative evaluated at x: dydx = f'(x), with the same shape as x. """ z = np.asarray(x) return (self._der(z.flatten())).reshape(z.shape) def eval_with_derivative(self, x): """ Evaluates the interpolated function and its derivative at the given input. Parameters ---------- x : np.array or float Real values to be evaluated in the interpolated function. Returns ------- y : np.array or float The interpolated function evaluated at x: y = f(x), with the same shape as x. dydx : np.array or float The interpolated function's first derivative evaluated at x: dydx = f'(x), with the same shape as x. """ z = np.asarray(x) y, dydx = self._evalAndDer(z.flatten()) return y.reshape(z.shape), dydx.reshape(z.shape) def _evaluate(self, x): """ Interpolated function evaluator, to be defined in subclasses. """ raise NotImplementedError() def _der(self, x): """ Interpolated function derivative evaluator, to be defined in subclasses. """ raise NotImplementedError() def _evalAndDer(self, x): """ Interpolated function and derivative evaluator, to be defined in subclasses. """ raise NotImplementedError() class HARKinterpolator2D(MetricObject): """ A wrapper class for 2D interpolation methods in HARK. """ distance_criteria = [] def __call__(self, x, y): """ Evaluates the interpolated function at the given input. Parameters ---------- x : np.array or float Real values to be evaluated in the interpolated function. y : np.array or float Real values to be evaluated in the interpolated function; must be the same size as x. Returns ------- fxy : np.array or float The interpolated function evaluated at x,y: fxy = f(x,y), with the same shape as x and y. """ xa = np.asarray(x) ya = np.asarray(y) return (self._evaluate(xa.flatten(), ya.flatten())).reshape(xa.shape) def derivativeX(self, x, y): """ Evaluates the partial derivative of interpolated function with respect to x (the first argument) at the given input. Parameters ---------- x : np.array or float Real values to be evaluated in the interpolated function. y : np.array or float Real values to be evaluated in the interpolated function; must be the same size as x. Returns ------- dfdx : np.array or float The derivative of the interpolated function with respect to x, eval- uated at x,y: dfdx = f_x(x,y), with the same shape as x and y. """ xa = np.asarray(x) ya = np.asarray(y) return (self._derX(xa.flatten(), ya.flatten())).reshape(xa.shape) def derivativeY(self, x, y): """ Evaluates the partial derivative of interpolated function with respect to y (the second argument) at the given input. Parameters ---------- x : np.array or float Real values to be evaluated in the interpolated function. y : np.array or float Real values to be evaluated in the interpolated function; must be the same size as x. Returns ------- dfdy : np.array or float The derivative of the interpolated function with respect to y, eval- uated at x,y: dfdx = f_y(x,y), with the same shape as x and y. """ xa = np.asarray(x) ya = np.asarray(y) return (self._derY(xa.flatten(), ya.flatten())).reshape(xa.shape) def _evaluate(self, x, y): """ Interpolated function evaluator, to be defined in subclasses. """ raise NotImplementedError() def _derX(self, x, y): """ Interpolated function x-derivative evaluator, to be defined in subclasses. """ raise NotImplementedError() def _derY(self, x, y): """ Interpolated function y-derivative evaluator, to be defined in subclasses. """ raise NotImplementedError() class HARKinterpolator3D(MetricObject): """ A wrapper class for 3D interpolation methods in HARK. """ distance_criteria = [] def __call__(self, x, y, z): """ Evaluates the interpolated function at the given input. Parameters ---------- x : np.array or float Real values to be evaluated in the interpolated function. y : np.array or float Real values to be evaluated in the interpolated function; must be the same size as x. z : np.array or float Real values to be evaluated in the interpolated function; must be the same size as x. Returns ------- fxyz : np.array or float The interpolated function evaluated at x,y,z: fxyz = f(x,y,z), with the same shape as x, y, and z. """ xa = np.asarray(x) ya = np.asarray(y) za = np.asarray(z) return (self._evaluate(xa.flatten(), ya.flatten(), za.flatten())).reshape( xa.shape ) def derivativeX(self, x, y, z): """ Evaluates the partial derivative of the interpolated function with respect to x (the first argument) at the given input. Parameters ---------- x : np.array or float Real values to be evaluated in the interpolated function. y : np.array or float Real values to be evaluated in the interpolated function; must be the same size as x. z : np.array or float Real values to be evaluated in the interpolated function; must be the same size as x. Returns ------- dfdx : np.array or float The derivative with respect to x of the interpolated function evaluated at x,y,z: dfdx = f_x(x,y,z), with the same shape as x, y, and z. """ xa = np.asarray(x) ya = np.asarray(y) za = np.asarray(z) return (self._derX(xa.flatten(), ya.flatten(), za.flatten())).reshape(xa.shape) def derivativeY(self, x, y, z): """ Evaluates the partial derivative of the interpolated function with respect to y (the second argument) at the given input. Parameters ---------- x : np.array or float Real values to be evaluated in the interpolated function. y : np.array or float Real values to be evaluated in the interpolated function; must be the same size as x. z : np.array or float Real values to be evaluated in the interpolated function; must be the same size as x. Returns ------- dfdy : np.array or float The derivative with respect to y of the interpolated function evaluated at x,y,z: dfdy = f_y(x,y,z), with the same shape as x, y, and z. """ xa = np.asarray(x) ya = np.asarray(y) za = np.asarray(z) return (self._derY(xa.flatten(), ya.flatten(), za.flatten())).reshape(xa.shape) def derivativeZ(self, x, y, z): """ Evaluates the partial derivative of the interpolated function with respect to z (the third argument) at the given input. Parameters ---------- x : np.array or float Real values to be evaluated in the interpolated function. y : np.array or float Real values to be evaluated in the interpolated function; must be the same size as x. z : np.array or float Real values to be evaluated in the interpolated function; must be the same size as x. Returns ------- dfdz : np.array or float The derivative with respect to z of the interpolated function evaluated at x,y,z: dfdz = f_z(x,y,z), with the same shape as x, y, and z. """ xa = np.asarray(x) ya = np.asarray(y) za = np.asarray(z) return (self._derZ(xa.flatten(), ya.flatten(), za.flatten())).reshape(xa.shape) def _evaluate(self, x, y, z): """ Interpolated function evaluator, to be defined in subclasses. """ raise NotImplementedError() def _derX(self, x, y, z): """ Interpolated function x-derivative evaluator, to be defined in subclasses. """ raise NotImplementedError() def _derY(self, x, y, z): """ Interpolated function y-derivative evaluator, to be defined in subclasses. """ raise NotImplementedError() def _derZ(self, x, y, z): """ Interpolated function y-derivative evaluator, to be defined in subclasses. """ raise NotImplementedError() class HARKinterpolator4D(MetricObject): """ A wrapper class for 4D interpolation methods in HARK. """ distance_criteria = [] def __call__(self, w, x, y, z): """ Evaluates the interpolated function at the given input. Parameters ---------- w : np.array or float Real values to be evaluated in the interpolated function. x : np.array or float Real values to be evaluated in the interpolated function; must be the same size as w. y : np.array or float Real values to be evaluated in the interpolated function; must be the same size as w. z : np.array or float Real values to be evaluated in the interpolated function; must be the same size as w. Returns ------- fwxyz : np.array or float The interpolated function evaluated at w,x,y,z: fwxyz = f(w,x,y,z), with the same shape as w, x, y, and z. """ wa = np.asarray(w) xa = np.asarray(x) ya = np.asarray(y) za = np.asarray(z) return ( self._evaluate(wa.flatten(), xa.flatten(), ya.flatten(), za.flatten()) ).reshape(wa.shape) def derivativeW(self, w, x, y, z): """ Evaluates the partial derivative with respect to w (the first argument) of the interpolated function at the given input. Parameters ---------- w : np.array or float Real values to be evaluated in the interpolated function. x : np.array or float Real values to be evaluated in the interpolated function; must be the same size as w. y : np.array or float Real values to be evaluated in the interpolated function; must be the same size as w. z : np.array or float Real values to be evaluated in the interpolated function; must be the same size as w. Returns ------- dfdw : np.array or float The derivative with respect to w of the interpolated function eval- uated at w,x,y,z: dfdw = f_w(w,x,y,z), with the same shape as inputs. """ wa = np.asarray(w) xa = np.asarray(x) ya = np.asarray(y) za = np.asarray(z) return ( self._derW(wa.flatten(), xa.flatten(), ya.flatten(), za.flatten()) ).reshape(wa.shape) def derivativeX(self, w, x, y, z): """ Evaluates the partial derivative with respect to x (the second argument) of the interpolated function at the given input. Parameters ---------- w : np.array or float Real values to be evaluated in the interpolated function. x : np.array or float Real values to be evaluated in the interpolated function; must be the same size as w. y : np.array or float Real values to be evaluated in the interpolated function; must be the same size as w. z : np.array or float Real values to be evaluated in the interpolated function; must be the same size as w. Returns ------- dfdx : np.array or float The derivative with respect to x of the interpolated function eval- uated at w,x,y,z: dfdx = f_x(w,x,y,z), with the same shape as inputs. """ wa = np.asarray(w) xa = np.asarray(x) ya = np.asarray(y) za = np.asarray(z) return ( self._derX(wa.flatten(), xa.flatten(), ya.flatten(), za.flatten()) ).reshape(wa.shape) def derivativeY(self, w, x, y, z): """ Evaluates the partial derivative with respect to y (the third argument) of the interpolated function at the given input. Parameters ---------- w : np.array or float Real values to be evaluated in the interpolated function. x : np.array or float Real values to be evaluated in the interpolated function; must be the same size as w. y : np.array or float Real values to be evaluated in the interpolated function; must be the same size as w. z : np.array or float Real values to be evaluated in the interpolated function; must be the same size as w. Returns ------- dfdy : np.array or float The derivative with respect to y of the interpolated function eval- uated at w,x,y,z: dfdy = f_y(w,x,y,z), with the same shape as inputs. """ wa = np.asarray(w) xa = np.asarray(x) ya = np.asarray(y) za = np.asarray(z) return ( self._derY(wa.flatten(), xa.flatten(), ya.flatten(), za.flatten()) ).reshape(wa.shape) def derivativeZ(self, w, x, y, z): """ Evaluates the partial derivative with respect to z (the fourth argument) of the interpolated function at the given input. Parameters ---------- w : np.array or float Real values to be evaluated in the interpolated function. x : np.array or float Real values to be evaluated in the interpolated function; must be the same size as w. y : np.array or float Real values to be evaluated in the interpolated function; must be the same size as w. z : np.array or float Real values to be evaluated in the interpolated function; must be the same size as w. Returns ------- dfdz : np.array or float The derivative with respect to z of the interpolated function eval- uated at w,x,y,z: dfdz = f_z(w,x,y,z), with the same shape as inputs. """ wa = np.asarray(w) xa = np.asarray(x) ya = np.asarray(y) za = np.asarray(z) return ( self._derZ(wa.flatten(), xa.flatten(), ya.flatten(), za.flatten()) ).reshape(wa.shape) def _evaluate(self, w, x, y, z): """ Interpolated function evaluator, to be defined in subclasses. """ raise NotImplementedError() def _derW(self, w, x, y, z): """ Interpolated function w-derivative evaluator, to be defined in subclasses. """ raise NotImplementedError() def _derX(self, w, x, y, z): """ Interpolated function w-derivative evaluator, to be defined in subclasses. """ raise NotImplementedError() def _derY(self, w, x, y, z): """ Interpolated function w-derivative evaluator, to be defined in subclasses. """ raise NotImplementedError() def _derZ(self, w, x, y, z): """ Interpolated function w-derivative evaluator, to be defined in subclasses. """ raise NotImplementedError() class IdentityFunction(MetricObject): """ A fairly trivial interpolator that simply returns one of its arguments. Useful for avoiding numeric error in extreme cases. Parameters ---------- i_dim : int Index of the dimension on which the identity is defined. f(*x) = x[i] n_dims : int Total number of input dimensions for this function. """ distance_criteria = ["i_dim"] def __init__(self, i_dim=0, n_dims=1): self.i_dim = i_dim self.n_dims = n_dims def __call__(self, *args): """ Evaluate the identity function. """ return args[self.i_dim] def derivative(self, *args): """ Returns the derivative of the function with respect to the first dimension. """ if self.i_dim == 0: return np.ones_like(*args[0]) else: return np.zeros_like(*args[0]) def derivativeX(self, *args): """ Returns the derivative of the function with respect to the X dimension. This is the first input whenever n_dims < 4 and the second input otherwise. """ if self.n_dims >= 4: j = 1 else: j = 0 if self.i_dim == j: return np.ones_like(*args[0]) else: return np.zeros_like(*args[0]) def derivativeY(self, *args): """ Returns the derivative of the function with respect to the Y dimension. This is the second input whenever n_dims < 4 and the third input otherwise. """ if self.n_dims >= 4: j = 2 else: j = 1 if self.i_dim == j: return np.ones_like(*args[0]) else: return np.zeros_like(*args[0]) def derivativeZ(self, *args): """ Returns the derivative of the function with respect to the Z dimension. This is the third input whenever n_dims < 4 and the fourth input otherwise. """ if self.n_dims >= 4: j = 3 else: j = 2 if self.i_dim == j: return np.ones_like(*args[0]) else: return np.zeros_like(*args[0]) def derivativeW(self, *args): """ Returns the derivative of the function with respect to the W dimension. This should only exist when n_dims >= 4. """ if self.n_dims >= 4: j = 0 else: assert ( False ), "Derivative with respect to W can't be called when n_dims < 4!" if self.i_dim == j: return np.ones_like(*args[0]) else: return np.zeros_like(*args[0]) class ConstantFunction(MetricObject): """ A class for representing trivial functions that return the same real output for any input. This is convenient for models where an object might be a (non-trivial) function, but in some variations that object is just a constant number. Rather than needing to make a (Bi/Tri/Quad)- LinearInterpolation with trivial state grids and the same f_value in every entry, ConstantFunction allows the user to quickly make a constant/trivial function. This comes up, e.g., in models with endogenous pricing of insurance contracts; a contract's premium might depend on some state variables of the individual, but in some variations the premium of a contract is just a number. Parameters ---------- value : float The constant value that the function returns. """ convergence_criteria = ["value"] def __init__(self, value): self.value = float(value) def __call__(self, *args): """ Evaluate the constant function. The first input must exist and should be an array. Returns an array of identical shape to args[0] (if it exists). """ if ( len(args) > 0 ): # If there is at least one argument, return appropriately sized array if _isscalar(args[0]): return self.value else: shape = args[0].shape return self.value * np.ones(shape) else: # Otherwise, return a single instance of the constant value return self.value def _der(self, *args): """ Evaluate the derivative of the function. The first input must exist and should be an array. Returns an array of identical shape to args[0] (if it exists). This is an array of zeros. """ if len(args) > 0: if _isscalar(args[0]): return 0.0 else: shape = args[0].shape return np.zeros(shape) else: return 0.0 # All other derivatives are also zero everywhere, so these methods just point to derivative derivative = _der derivativeX = derivative derivativeY = derivative derivativeZ = derivative derivativeW = derivative derivativeXX = derivative class LinearInterp(HARKinterpolator1D): """ A "from scratch" 1D linear interpolation class. Allows for linear or decay extrapolation (approaching a limiting linear function from below). NOTE: When no input is given for the limiting linear function, linear extrapolation is used above the highest gridpoint. Parameters ---------- x_list : np.array List of x values composing the grid. y_list : np.array List of y values, representing f(x) at the points in x_list. intercept_limit : float Intercept of limiting linear function. slope_limit : float Slope of limiting linear function. lower_extrap : boolean Indicator for whether lower extrapolation is allowed. False means f(x) = NaN for x < min(x_list); True means linear extrapolation. """ distance_criteria = ["x_list", "y_list"] def __init__( self, x_list, y_list, intercept_limit=None, slope_limit=None, lower_extrap=False ): # Make the basic linear spline interpolation self.x_list = ( np.array(x_list) if _check_flatten(1, x_list) else np.array(x_list).flatten() ) self.y_list = ( np.array(y_list) if _check_flatten(1, y_list) else np.array(y_list).flatten() ) _check_grid_dimensions(1, self.y_list, self.x_list) self.lower_extrap = lower_extrap self.x_n = self.x_list.size # Make a decay extrapolation if intercept_limit is not None and slope_limit is not None: slope_at_top = (y_list[-1] - y_list[-2]) / (x_list[-1] - x_list[-2]) level_diff = intercept_limit + slope_limit * x_list[-1] - y_list[-1] slope_diff = slope_limit - slope_at_top # If the model that can handle uncertainty has been calibrated with # with uncertainty set to zero, the 'extrapolation' will blow up # Guard against that and nearby problems by testing slope equality if not np.isclose(slope_limit, slope_at_top, atol=1e-15): self.decay_extrap_A = level_diff self.decay_extrap_B = -slope_diff / level_diff self.intercept_limit = intercept_limit self.slope_limit = slope_limit self.decay_extrap = True else: self.decay_extrap = False else: self.decay_extrap = False def _evalOrDer(self, x, _eval, _Der): """ Returns the level and/or first derivative of the function at each value in x. Only called internally by HARKinterpolator1D.eval_and_der (etc). Parameters ---------- x_list : scalar or np.array Set of points where we want to evlauate the interpolated function and/or its derivative.. _eval : boolean Indicator for whether to evalute the level of the interpolated function. _Der : boolean Indicator for whether to evaluate the derivative of the interpolated function. Returns ------- A list including the level and/or derivative of the interpolated function where requested. """ i = np.maximum(np.searchsorted(self.x_list[:-1], x), 1) alpha = (x - self.x_list[i - 1]) / (self.x_list[i] - self.x_list[i - 1]) if _eval: y = (1.0 - alpha) * self.y_list[i - 1] + alpha * self.y_list[i] if _Der: dydx = (self.y_list[i] - self.y_list[i - 1]) / ( self.x_list[i] - self.x_list[i - 1] ) if not self.lower_extrap: below_lower_bound = x < self.x_list[0] if _eval: y[below_lower_bound] = np.nan if _Der: dydx[below_lower_bound] = np.nan if self.decay_extrap: above_upper_bound = x > self.x_list[-1] x_temp = x[above_upper_bound] - self.x_list[-1] if _eval: y[above_upper_bound] = ( self.intercept_limit + self.slope_limit * x[above_upper_bound] - self.decay_extrap_A * np.exp(-self.decay_extrap_B * x_temp) ) if _Der: dydx[above_upper_bound] = ( self.slope_limit + self.decay_extrap_B * self.decay_extrap_A * np.exp(-self.decay_extrap_B * x_temp) ) output = [] if _eval: output += [ y, ] if _Der: output += [ dydx, ] return output def _evaluate(self, x, return_indices=False): """ Returns the level of the interpolated function at each value in x. Only called internally by HARKinterpolator1D.__call__ (etc). """ return self._evalOrDer(x, True, False)[0] def _der(self, x): """ Returns the first derivative of the interpolated function at each value in x. Only called internally by HARKinterpolator1D.derivative (etc). """ return self._evalOrDer(x, False, True)[0] def _evalAndDer(self, x): """ Returns the level and first derivative of the function at each value in x. Only called internally by HARKinterpolator1D.eval_and_der (etc). """ y, dydx = self._evalOrDer(x, True, True) return y, dydx class CubicInterp(HARKinterpolator1D): """ An interpolating function using piecewise cubic splines. Matches level and slope of 1D function at gridpoints, smoothly interpolating in between. Extrapolation above highest gridpoint approaches a limiting linear function if desired (linear extrapolation also enabled.) NOTE: When no input is given for the limiting linear function, linear extrapolation is used above the highest gridpoint. Parameters ---------- x_list : np.array List of x values composing the grid. y_list : np.array List of y values, representing f(x) at the points in x_list. dydx_list : np.array List of dydx values, representing f'(x) at the points in x_list intercept_limit : float Intercept of limiting linear function. slope_limit : float Slope of limiting linear function. lower_extrap : boolean Indicator for whether lower extrapolation is allowed. False means f(x) = NaN for x < min(x_list); True means linear extrapolation. """ distance_criteria = ["x_list", "y_list", "dydx_list"] def __init__( self, x_list, y_list, dydx_list, intercept_limit=None, slope_limit=None, lower_extrap=False, ): self.x_list = ( np.asarray(x_list) if _check_flatten(1, x_list) else np.array(x_list).flatten() ) self.y_list = ( np.asarray(y_list) if _check_flatten(1, y_list) else np.array(y_list).flatten() ) self.dydx_list = ( np.asarray(dydx_list) if _check_flatten(1, dydx_list) else np.array(dydx_list).flatten() ) _check_grid_dimensions(1, self.y_list, self.x_list) _check_grid_dimensions(1, self.dydx_list, self.x_list) self.n = len(x_list) # Define lower extrapolation as linear function (or just NaN) if lower_extrap: self.coeffs = [[y_list[0], dydx_list[0], 0, 0]] else: self.coeffs = [[np.nan, np.nan, np.nan, np.nan]] # Calculate interpolation coefficients on segments mapped to [0,1] for i in range(self.n - 1): x0 = x_list[i] y0 = y_list[i] x1 = x_list[i + 1] y1 = y_list[i + 1] Span = x1 - x0 dydx0 = dydx_list[i] * Span dydx1 = dydx_list[i + 1] * Span temp = [ y0, dydx0, 3 * (y1 - y0) - 2 * dydx0 - dydx1, 2 * (y0 - y1) + dydx0 + dydx1, ] self.coeffs.append(temp) # Calculate extrapolation coefficients as a decay toward limiting function y = mx+b if slope_limit is None and intercept_limit is None: slope_limit = dydx_list[-1] intercept_limit = y_list[-1] - slope_limit * x_list[-1] gap = slope_limit * x1 + intercept_limit - y1 slope = slope_limit - dydx_list[self.n - 1] if (gap != 0) and (slope <= 0): temp = [intercept_limit, slope_limit, gap, slope / gap] elif slope > 0: temp = [ intercept_limit, slope_limit, 0, 0, ] # fixing a problem when slope is positive else: temp = [intercept_limit, slope_limit, gap, 0] self.coeffs.append(temp) self.coeffs = np.array(self.coeffs) def _evaluate(self, x): """ Returns the level of the interpolated function at each value in x. Only called internally by HARKinterpolator1D.__call__ (etc). """ if _isscalar(x): pos = np.searchsorted(self.x_list, x) if pos == 0: y = self.coeffs[0, 0] + self.coeffs[0, 1] * (x - self.x_list[0]) elif pos < self.n: alpha = (x - self.x_list[pos - 1]) / ( self.x_list[pos] - self.x_list[pos - 1] ) y = self.coeffs[pos, 0] + alpha * ( self.coeffs[pos, 1] + alpha * (self.coeffs[pos, 2] + alpha * self.coeffs[pos, 3]) ) else: alpha = x - self.x_list[self.n - 1] y = ( self.coeffs[pos, 0] + x * self.coeffs[pos, 1] - self.coeffs[pos, 2] * np.exp(alpha * self.coeffs[pos, 3]) ) else: m = len(x) pos = np.searchsorted(self.x_list, x) y = np.zeros(m) if y.size > 0: out_bot = pos == 0 out_top = pos == self.n in_bnds = np.logical_not(np.logical_or(out_bot, out_top)) # Do the "in bounds" evaluation points i = pos[in_bnds] coeffs_in = self.coeffs[i, :] alpha = (x[in_bnds] - self.x_list[i - 1]) / ( self.x_list[i] - self.x_list[i - 1] ) y[in_bnds] = coeffs_in[:, 0] + alpha * ( coeffs_in[:, 1] + alpha * (coeffs_in[:, 2] + alpha * coeffs_in[:, 3]) ) # Do the "out of bounds" evaluation points y[out_bot] = self.coeffs[0, 0] + self.coeffs[0, 1] * ( x[out_bot] - self.x_list[0] ) alpha = x[out_top] - self.x_list[self.n - 1] y[out_top] = ( self.coeffs[self.n, 0] + x[out_top] * self.coeffs[self.n, 1] - self.coeffs[self.n, 2] * np.exp(alpha * self.coeffs[self.n, 3]) ) y[x == self.x_list[0]] = self.y_list[0] return y def _der(self, x): """ Returns the first derivative of the interpolated function at each value in x. Only called internally by HARKinterpolator1D.derivative (etc). """ if _isscalar(x): pos = np.searchsorted(self.x_list, x) if pos == 0: dydx = self.coeffs[0, 1] elif pos < self.n: alpha = (x - self.x_list[pos - 1]) / ( self.x_list[pos] - self.x_list[pos - 1] ) dydx = ( self.coeffs[pos, 1] + alpha * (2 * self.coeffs[pos, 2] + alpha * 3 * self.coeffs[pos, 3]) ) / (self.x_list[pos] - self.x_list[pos - 1]) else: alpha = x - self.x_list[self.n - 1] dydx = self.coeffs[pos, 1] - self.coeffs[pos, 2] * self.coeffs[ pos, 3 ] * np.exp(alpha * self.coeffs[pos, 3]) else: m = len(x) pos = np.searchsorted(self.x_list, x) dydx = np.zeros(m) if dydx.size > 0: out_bot = pos == 0 out_top = pos == self.n in_bnds = np.logical_not(np.logical_or(out_bot, out_top)) # Do the "in bounds" evaluation points i = pos[in_bnds] coeffs_in = self.coeffs[i, :] alpha = (x[in_bnds] - self.x_list[i - 1]) / ( self.x_list[i] - self.x_list[i - 1] ) dydx[in_bnds] = ( coeffs_in[:, 1] + alpha * (2 * coeffs_in[:, 2] + alpha * 3 * coeffs_in[:, 3]) ) / (self.x_list[i] - self.x_list[i - 1]) # Do the "out of bounds" evaluation points dydx[out_bot] = self.coeffs[0, 1] alpha = x[out_top] - self.x_list[self.n - 1] dydx[out_top] = self.coeffs[self.n, 1] - self.coeffs[ self.n, 2 ] * self.coeffs[self.n, 3] * np.exp(alpha * self.coeffs[self.n, 3]) return dydx def _evalAndDer(self, x): """ Returns the level and first derivative of the function at each value in x. Only called internally by HARKinterpolator1D.eval_and_der (etc). """ if _isscalar(x): pos = np.searchsorted(self.x_list, x) if pos == 0: y = self.coeffs[0, 0] + self.coeffs[0, 1] * (x - self.x_list[0]) dydx = self.coeffs[0, 1] elif pos < self.n: alpha = (x - self.x_list[pos - 1]) / ( self.x_list[pos] - self.x_list[pos - 1] ) y = self.coeffs[pos, 0] + alpha * ( self.coeffs[pos, 1] + alpha * (self.coeffs[pos, 2] + alpha * self.coeffs[pos, 3]) ) dydx = ( self.coeffs[pos, 1] + alpha * (2 * self.coeffs[pos, 2] + alpha * 3 * self.coeffs[pos, 3]) ) / (self.x_list[pos] - self.x_list[pos - 1]) else: alpha = x - self.x_list[self.n - 1] y = ( self.coeffs[pos, 0] + x * self.coeffs[pos, 1] - self.coeffs[pos, 2] * np.exp(alpha * self.coeffs[pos, 3]) ) dydx = self.coeffs[pos, 1] - self.coeffs[pos, 2] * self.coeffs[ pos, 3 ] * np.exp(alpha * self.coeffs[pos, 3]) else: m = len(x) pos = np.searchsorted(self.x_list, x) y = np.zeros(m) dydx = np.zeros(m) if y.size > 0: out_bot = pos == 0 out_top = pos == self.n in_bnds = np.logical_not(np.logical_or(out_bot, out_top)) # Do the "in bounds" evaluation points i = pos[in_bnds] coeffs_in = self.coeffs[i, :] alpha = (x[in_bnds] - self.x_list[i - 1]) / ( self.x_list[i] - self.x_list[i - 1] ) y[in_bnds] = coeffs_in[:, 0] + alpha * ( coeffs_in[:, 1] + alpha * (coeffs_in[:, 2] + alpha * coeffs_in[:, 3]) ) dydx[in_bnds] = ( coeffs_in[:, 1] + alpha * (2 * coeffs_in[:, 2] + alpha * 3 * coeffs_in[:, 3]) ) / (self.x_list[i] - self.x_list[i - 1]) # Do the "out of bounds" evaluation points y[out_bot] = self.coeffs[0, 0] + self.coeffs[0, 1] * ( x[out_bot] - self.x_list[0] ) dydx[out_bot] = self.coeffs[0, 1] alpha = x[out_top] - self.x_list[self.n - 1] y[out_top] = ( self.coeffs[self.n, 0] + x[out_top] * self.coeffs[self.n, 1] - self.coeffs[self.n, 2] * np.exp(alpha * self.coeffs[self.n, 3]) ) dydx[out_top] = self.coeffs[self.n, 1] - self.coeffs[ self.n, 2 ] * self.coeffs[self.n, 3] * np.exp(alpha * self.coeffs[self.n, 3]) return y, dydx class BilinearInterp(HARKinterpolator2D): """ Bilinear full (or tensor) grid interpolation of a function f(x,y). Parameters ---------- f_values : numpy.array An array of size (x_n,y_n) such that f_values[i,j] = f(x_list[i],y_list[j]) x_list : numpy.array An array of x values, with length designated x_n. y_list : numpy.array An array of y values, with length designated y_n. xSearchFunc : function An optional function that returns the reference location for x values: indices = xSearchFunc(x_list,x). Default is np.searchsorted ySearchFunc : function An optional function that returns the reference location for y values: indices = ySearchFunc(y_list,y). Default is np.searchsorted """ distance_criteria = ["x_list", "y_list", "f_values"] def __init__(self, f_values, x_list, y_list, xSearchFunc=None, ySearchFunc=None): self.f_values = f_values self.x_list = ( np.array(x_list) if _check_flatten(1, x_list) else np.array(x_list).flatten() ) self.y_list = ( np.array(y_list) if _check_flatten(1, y_list) else np.array(y_list).flatten() ) _check_grid_dimensions(2, self.f_values, self.x_list, self.y_list) self.x_n = x_list.size self.y_n = y_list.size if xSearchFunc is None: xSearchFunc = np.searchsorted if ySearchFunc is None: ySearchFunc = np.searchsorted self.xSearchFunc = xSearchFunc self.ySearchFunc = ySearchFunc def _evaluate(self, x, y): """ Returns the level of the interpolated function at each value in x,y. Only called internally by HARKinterpolator2D.__call__ (etc). """ if _isscalar(x): x_pos = max(min(self.xSearchFunc(self.x_list, x), self.x_n - 1), 1) y_pos = max(min(self.ySearchFunc(self.y_list, y), self.y_n - 1), 1) else: x_pos = self.xSearchFunc(self.x_list, x) x_pos[x_pos < 1] = 1 x_pos[x_pos > self.x_n - 1] = self.x_n - 1 y_pos = self.ySearchFunc(self.y_list, y) y_pos[y_pos < 1] = 1 y_pos[y_pos > self.y_n - 1] = self.y_n - 1 alpha = (x - self.x_list[x_pos - 1]) / ( self.x_list[x_pos] - self.x_list[x_pos - 1] ) beta = (y - self.y_list[y_pos - 1]) / ( self.y_list[y_pos] - self.y_list[y_pos - 1] ) f = ( (1 - alpha) * (1 - beta) * self.f_values[x_pos - 1, y_pos - 1] + (1 - alpha) * beta * self.f_values[x_pos - 1, y_pos] + alpha * (1 - beta) * self.f_values[x_pos, y_pos - 1] + alpha * beta * self.f_values[x_pos, y_pos] ) return f def _derX(self, x, y): """ Returns the derivative with respect to x of the interpolated function at each value in x,y. Only called internally by HARKinterpolator2D.derivativeX. """ if _isscalar(x): x_pos = max(min(self.xSearchFunc(self.x_list, x), self.x_n - 1), 1) y_pos = max(min(self.ySearchFunc(self.y_list, y), self.y_n - 1), 1) else: x_pos = self.xSearchFunc(self.x_list, x) x_pos[x_pos < 1] = 1 x_pos[x_pos > self.x_n - 1] = self.x_n - 1 y_pos = self.ySearchFunc(self.y_list, y) y_pos[y_pos < 1] = 1 y_pos[y_pos > self.y_n - 1] = self.y_n - 1 beta = (y - self.y_list[y_pos - 1]) / ( self.y_list[y_pos] - self.y_list[y_pos - 1] ) dfdx = ( ( (1 - beta) * self.f_values[x_pos, y_pos - 1] + beta * self.f_values[x_pos, y_pos] ) - ( (1 - beta) * self.f_values[x_pos - 1, y_pos - 1] + beta * self.f_values[x_pos - 1, y_pos] ) ) / (self.x_list[x_pos] - self.x_list[x_pos - 1]) return dfdx def _derY(self, x, y): """ Returns the derivative with respect to y of the interpolated function at each value in x,y. Only called internally by HARKinterpolator2D.derivativeY. """ if _isscalar(x): x_pos = max(min(self.xSearchFunc(self.x_list, x), self.x_n - 1), 1) y_pos = max(min(self.ySearchFunc(self.y_list, y), self.y_n - 1), 1) else: x_pos = self.xSearchFunc(self.x_list, x) x_pos[x_pos < 1] = 1 x_pos[x_pos > self.x_n - 1] = self.x_n - 1 y_pos = self.ySearchFunc(self.y_list, y) y_pos[y_pos < 1] = 1 y_pos[y_pos > self.y_n - 1] = self.y_n - 1 alpha = (x - self.x_list[x_pos - 1]) / ( self.x_list[x_pos] - self.x_list[x_pos - 1] ) dfdy = ( ( (1 - alpha) * self.f_values[x_pos - 1, y_pos] + alpha * self.f_values[x_pos, y_pos] ) - ( (1 - alpha) * self.f_values[x_pos - 1, y_pos - 1] + alpha * self.f_values[x_pos, y_pos - 1] ) ) / (self.y_list[y_pos] - self.y_list[y_pos - 1]) return dfdy class TrilinearInterp(HARKinterpolator3D): """ Trilinear full (or tensor) grid interpolation of a function f(x,y,z). Parameters ---------- f_values : numpy.array An array of size (x_n,y_n,z_n) such that f_values[i,j,k] = f(x_list[i],y_list[j],z_list[k]) x_list : numpy.array An array of x values, with length designated x_n. y_list : numpy.array An array of y values, with length designated y_n. z_list : numpy.array An array of z values, with length designated z_n. xSearchFunc : function An optional function that returns the reference location for x values: indices = xSearchFunc(x_list,x). Default is np.searchsorted ySearchFunc : function An optional function that returns the reference location for y values: indices = ySearchFunc(y_list,y). Default is np.searchsorted zSearchFunc : function An optional function that returns the reference location for z values: indices = zSearchFunc(z_list,z). Default is np.searchsorted """ distance_criteria = ["f_values", "x_list", "y_list", "z_list"] def __init__( self, f_values, x_list, y_list, z_list, xSearchFunc=None, ySearchFunc=None, zSearchFunc=None, ): self.f_values = f_values self.x_list = ( np.array(x_list) if _check_flatten(1, x_list) else np.array(x_list).flatten() ) self.y_list = ( np.array(y_list) if _check_flatten(1, y_list) else np.array(y_list).flatten() ) self.z_list = ( np.array(z_list) if _check_flatten(1, z_list) else np.array(z_list).flatten() ) _check_grid_dimensions(3, self.f_values, self.x_list, self.y_list, self.z_list) self.x_n = x_list.size self.y_n = y_list.size self.z_n = z_list.size if xSearchFunc is None: xSearchFunc = np.searchsorted if ySearchFunc is None: ySearchFunc = np.searchsorted if zSearchFunc is None: zSearchFunc = np.searchsorted self.xSearchFunc = xSearchFunc self.ySearchFunc = ySearchFunc self.zSearchFunc = zSearchFunc def _evaluate(self, x, y, z): """ Returns the level of the interpolated function at each value in x,y,z. Only called internally by HARKinterpolator3D.__call__ (etc). """ if _isscalar(x): x_pos = max(min(self.xSearchFunc(self.x_list, x), self.x_n - 1), 1) y_pos = max(min(self.ySearchFunc(self.y_list, y), self.y_n - 1), 1) z_pos = max(min(self.zSearchFunc(self.z_list, z), self.z_n - 1), 1) else: x_pos = self.xSearchFunc(self.x_list, x) x_pos[x_pos < 1] = 1 x_pos[x_pos > self.x_n - 1] = self.x_n - 1 y_pos = self.ySearchFunc(self.y_list, y) y_pos[y_pos < 1] = 1 y_pos[y_pos > self.y_n - 1] = self.y_n - 1 z_pos = self.zSearchFunc(self.z_list, z) z_pos[z_pos < 1] = 1 z_pos[z_pos > self.z_n - 1] = self.z_n - 1 alpha = (x - self.x_list[x_pos - 1]) / ( self.x_list[x_pos] - self.x_list[x_pos - 1] ) beta = (y - self.y_list[y_pos - 1]) / ( self.y_list[y_pos] - self.y_list[y_pos - 1] ) gamma = (z - self.z_list[z_pos - 1]) / ( self.z_list[z_pos] - self.z_list[z_pos - 1] ) f = ( (1 - alpha) * (1 - beta) * (1 - gamma) * self.f_values[x_pos - 1, y_pos - 1, z_pos - 1] + (1 - alpha) * (1 - beta) * gamma * self.f_values[x_pos - 1, y_pos - 1, z_pos] + (1 - alpha) * beta * (1 - gamma) * self.f_values[x_pos - 1, y_pos, z_pos - 1] + (1 - alpha) * beta * gamma * self.f_values[x_pos - 1, y_pos, z_pos] + alpha * (1 - beta) * (1 - gamma) * self.f_values[x_pos, y_pos - 1, z_pos - 1] + alpha * (1 - beta) * gamma * self.f_values[x_pos, y_pos - 1, z_pos] + alpha * beta * (1 - gamma) * self.f_values[x_pos, y_pos, z_pos - 1] + alpha * beta * gamma * self.f_values[x_pos, y_pos, z_pos] ) return f def _derX(self, x, y, z): """ Returns the derivative with respect to x of the interpolated function at each value in x,y,z. Only called internally by HARKinterpolator3D.derivativeX. """ if _isscalar(x): x_pos = max(min(self.xSearchFunc(self.x_list, x), self.x_n - 1), 1) y_pos = max(min(self.ySearchFunc(self.y_list, y), self.y_n - 1), 1) z_pos = max(min(self.zSearchFunc(self.z_list, z), self.z_n - 1), 1) else: x_pos = self.xSearchFunc(self.x_list, x) x_pos[x_pos < 1] = 1 x_pos[x_pos > self.x_n - 1] = self.x_n - 1 y_pos = self.ySearchFunc(self.y_list, y) y_pos[y_pos < 1] = 1 y_pos[y_pos > self.y_n - 1] = self.y_n - 1 z_pos = self.zSearchFunc(self.z_list, z) z_pos[z_pos < 1] = 1 z_pos[z_pos > self.z_n - 1] = self.z_n - 1 beta = (y - self.y_list[y_pos - 1]) / ( self.y_list[y_pos] - self.y_list[y_pos - 1] ) gamma = (z - self.z_list[z_pos - 1]) / ( self.z_list[z_pos] - self.z_list[z_pos - 1] ) dfdx = ( ( (1 - beta) * (1 - gamma) * self.f_values[x_pos, y_pos - 1, z_pos - 1] + (1 - beta) * gamma * self.f_values[x_pos, y_pos - 1, z_pos] + beta * (1 - gamma) * self.f_values[x_pos, y_pos, z_pos - 1] + beta * gamma * self.f_values[x_pos, y_pos, z_pos] ) - ( (1 - beta) * (1 - gamma) * self.f_values[x_pos - 1, y_pos - 1, z_pos - 1] + (1 - beta) * gamma * self.f_values[x_pos - 1, y_pos - 1, z_pos] + beta * (1 - gamma) * self.f_values[x_pos - 1, y_pos, z_pos - 1] + beta * gamma * self.f_values[x_pos - 1, y_pos, z_pos] ) ) / (self.x_list[x_pos] - self.x_list[x_pos - 1]) return dfdx def _derY(self, x, y, z): """ Returns the derivative with respect to y of the interpolated function at each value in x,y,z. Only called internally by HARKinterpolator3D.derivativeY. """ if _isscalar(x): x_pos = max(min(self.xSearchFunc(self.x_list, x), self.x_n - 1), 1) y_pos = max(min(self.ySearchFunc(self.y_list, y), self.y_n - 1), 1) z_pos = max(min(self.zSearchFunc(self.z_list, z), self.z_n - 1), 1) else: x_pos = self.xSearchFunc(self.x_list, x) x_pos[x_pos < 1] = 1 x_pos[x_pos > self.x_n - 1] = self.x_n - 1 y_pos = self.ySearchFunc(self.y_list, y) y_pos[y_pos < 1] = 1 y_pos[y_pos > self.y_n - 1] = self.y_n - 1 z_pos = self.zSearchFunc(self.z_list, z) z_pos[z_pos < 1] = 1 z_pos[z_pos > self.z_n - 1] = self.z_n - 1 alpha = (x - self.x_list[x_pos - 1]) / ( self.x_list[x_pos] - self.x_list[x_pos - 1] ) gamma = (z - self.z_list[z_pos - 1]) / ( self.z_list[z_pos] - self.z_list[z_pos - 1] ) dfdy = ( ( (1 - alpha) * (1 - gamma) * self.f_values[x_pos - 1, y_pos, z_pos - 1] + (1 - alpha) * gamma * self.f_values[x_pos - 1, y_pos, z_pos] + alpha * (1 - gamma) * self.f_values[x_pos, y_pos, z_pos - 1] + alpha * gamma * self.f_values[x_pos, y_pos, z_pos] ) - ( (1 - alpha) * (1 - gamma) * self.f_values[x_pos - 1, y_pos - 1, z_pos - 1] + (1 - alpha) * gamma * self.f_values[x_pos - 1, y_pos - 1, z_pos] + alpha * (1 - gamma) * self.f_values[x_pos, y_pos - 1, z_pos - 1] + alpha * gamma * self.f_values[x_pos, y_pos - 1, z_pos] ) ) / (self.y_list[y_pos] - self.y_list[y_pos - 1]) return dfdy def _derZ(self, x, y, z): """ Returns the derivative with respect to z of the interpolated function at each value in x,y,z. Only called internally by HARKinterpolator3D.derivativeZ. """ if _isscalar(x): x_pos = max(min(self.xSearchFunc(self.x_list, x), self.x_n - 1), 1) y_pos = max(min(self.ySearchFunc(self.y_list, y), self.y_n - 1), 1) z_pos = max(min(self.zSearchFunc(self.z_list, z), self.z_n - 1), 1) else: x_pos = self.xSearchFunc(self.x_list, x) x_pos[x_pos < 1] = 1 x_pos[x_pos > self.x_n - 1] = self.x_n - 1 y_pos = self.ySearchFunc(self.y_list, y) y_pos[y_pos < 1] = 1 y_pos[y_pos > self.y_n - 1] = self.y_n - 1 z_pos = self.zSearchFunc(self.z_list, z) z_pos[z_pos < 1] = 1 z_pos[z_pos > self.z_n - 1] = self.z_n - 1 alpha = (x - self.x_list[x_pos - 1]) / ( self.x_list[x_pos] - self.x_list[x_pos - 1] ) beta = (y - self.y_list[y_pos - 1]) / ( self.y_list[y_pos] - self.y_list[y_pos - 1] ) dfdz = ( ( (1 - alpha) * (1 - beta) * self.f_values[x_pos - 1, y_pos - 1, z_pos] + (1 - alpha) * beta * self.f_values[x_pos - 1, y_pos, z_pos] + alpha * (1 - beta) * self.f_values[x_pos, y_pos - 1, z_pos] + alpha * beta * self.f_values[x_pos, y_pos, z_pos] ) - ( (1 - alpha) * (1 - beta) * self.f_values[x_pos - 1, y_pos - 1, z_pos - 1] + (1 - alpha) * beta * self.f_values[x_pos - 1, y_pos, z_pos - 1] + alpha * (1 - beta) * self.f_values[x_pos, y_pos - 1, z_pos - 1] + alpha * beta * self.f_values[x_pos, y_pos, z_pos - 1] ) ) / (self.z_list[z_pos] - self.z_list[z_pos - 1]) return dfdz class QuadlinearInterp(HARKinterpolator4D): """ Quadlinear full (or tensor) grid interpolation of a function f(w,x,y,z). Parameters ---------- f_values : numpy.array An array of size (w_n,x_n,y_n,z_n) such that f_values[i,j,k,l] = f(w_list[i],x_list[j],y_list[k],z_list[l]) w_list : numpy.array An array of x values, with length designated w_n. x_list : numpy.array An array of x values, with length designated x_n. y_list : numpy.array An array of y values, with length designated y_n. z_list : numpy.array An array of z values, with length designated z_n. wSearchFunc : function An optional function that returns the reference location for w values: indices = wSearchFunc(w_list,w). Default is np.searchsorted xSearchFunc : function An optional function that returns the reference location for x values: indices = xSearchFunc(x_list,x). Default is np.searchsorted ySearchFunc : function An optional function that returns the reference location for y values: indices = ySearchFunc(y_list,y). Default is np.searchsorted zSearchFunc : function An optional function that returns the reference location for z values: indices = zSearchFunc(z_list,z). Default is np.searchsorted """ distance_criteria = ["f_values", "w_list", "x_list", "y_list", "z_list"] def __init__( self, f_values, w_list, x_list, y_list, z_list, wSearchFunc=None, xSearchFunc=None, ySearchFunc=None, zSearchFunc=None, ): self.f_values = f_values self.w_list = ( np.array(w_list) if _check_flatten(1, w_list) else np.array(w_list).flatten() ) self.x_list = ( np.array(x_list) if _check_flatten(1, x_list) else np.array(x_list).flatten() ) self.y_list = ( np.array(y_list) if _check_flatten(1, y_list) else np.array(y_list).flatten() ) self.z_list = ( np.array(z_list) if _check_flatten(1, z_list) else np.array(z_list).flatten() ) _check_grid_dimensions( 4, self.f_values, self.w_list, self.x_list, self.y_list, self.z_list ) self.w_n = w_list.size self.x_n = x_list.size self.y_n = y_list.size self.z_n = z_list.size if wSearchFunc is None: wSearchFunc = np.searchsorted if xSearchFunc is None: xSearchFunc = np.searchsorted if ySearchFunc is None: ySearchFunc = np.searchsorted if zSearchFunc is None: zSearchFunc = np.searchsorted self.wSearchFunc = wSearchFunc self.xSearchFunc = xSearchFunc self.ySearchFunc = ySearchFunc self.zSearchFunc = zSearchFunc def _evaluate(self, w, x, y, z): """ Returns the level of the interpolated function at each value in x,y,z. Only called internally by HARKinterpolator4D.__call__ (etc). """ if _isscalar(w): w_pos = max(min(self.wSearchFunc(self.w_list, w), self.w_n - 1), 1) x_pos = max(min(self.xSearchFunc(self.x_list, x), self.x_n - 1), 1) y_pos = max(min(self.ySearchFunc(self.y_list, y), self.y_n - 1), 1) z_pos = max(min(self.zSearchFunc(self.z_list, z), self.z_n - 1), 1) else: w_pos = self.wSearchFunc(self.w_list, w) w_pos[w_pos < 1] = 1 w_pos[w_pos > self.w_n - 1] = self.w_n - 1 x_pos = self.xSearchFunc(self.x_list, x) x_pos[x_pos < 1] = 1 x_pos[x_pos > self.x_n - 1] = self.x_n - 1 y_pos = self.ySearchFunc(self.y_list, y) y_pos[y_pos < 1] = 1 y_pos[y_pos > self.y_n - 1] = self.y_n - 1 z_pos = self.zSearchFunc(self.z_list, z) z_pos[z_pos < 1] = 1 z_pos[z_pos > self.z_n - 1] = self.z_n - 1 i = w_pos # for convenience j = x_pos k = y_pos l = z_pos alpha = (w - self.w_list[i - 1]) / (self.w_list[i] - self.w_list[i - 1]) beta = (x - self.x_list[j - 1]) / (self.x_list[j] - self.x_list[j - 1]) gamma = (y - self.y_list[k - 1]) / (self.y_list[k] - self.y_list[k - 1]) delta = (z - self.z_list[l - 1]) / (self.z_list[l] - self.z_list[l - 1]) f = (1 - alpha) * ( (1 - beta) * ( (1 - gamma) * (1 - delta) * self.f_values[i - 1, j - 1, k - 1, l - 1] + (1 - gamma) * delta * self.f_values[i - 1, j - 1, k - 1, l] + gamma * (1 - delta) * self.f_values[i - 1, j - 1, k, l - 1] + gamma * delta * self.f_values[i - 1, j - 1, k, l] ) + beta * ( (1 - gamma) * (1 - delta) * self.f_values[i - 1, j, k - 1, l - 1] + (1 - gamma) * delta * self.f_values[i - 1, j, k - 1, l] + gamma * (1 - delta) * self.f_values[i - 1, j, k, l - 1] + gamma * delta * self.f_values[i - 1, j, k, l] ) ) + alpha * ( (1 - beta) * ( (1 - gamma) * (1 - delta) * self.f_values[i, j - 1, k - 1, l - 1] + (1 - gamma) * delta * self.f_values[i, j - 1, k - 1, l] + gamma * (1 - delta) * self.f_values[i, j - 1, k, l - 1] + gamma * delta * self.f_values[i, j - 1, k, l] ) + beta * ( (1 - gamma) * (1 - delta) * self.f_values[i, j, k - 1, l - 1] + (1 - gamma) * delta * self.f_values[i, j, k - 1, l] + gamma * (1 - delta) * self.f_values[i, j, k, l - 1] + gamma * delta * self.f_values[i, j, k, l] ) ) return f def _derW(self, w, x, y, z): """ Returns the derivative with respect to w of the interpolated function at each value in w,x,y,z. Only called internally by HARKinterpolator4D.derivativeW. """ if _isscalar(w): w_pos = max(min(self.wSearchFunc(self.w_list, w), self.w_n - 1), 1) x_pos = max(min(self.xSearchFunc(self.x_list, x), self.x_n - 1), 1) y_pos = max(min(self.ySearchFunc(self.y_list, y), self.y_n - 1), 1) z_pos = max(min(self.zSearchFunc(self.z_list, z), self.z_n - 1), 1) else: w_pos = self.wSearchFunc(self.w_list, w) w_pos[w_pos < 1] = 1 w_pos[w_pos > self.w_n - 1] = self.w_n - 1 x_pos = self.xSearchFunc(self.x_list, x) x_pos[x_pos < 1] = 1 x_pos[x_pos > self.x_n - 1] = self.x_n - 1 y_pos = self.ySearchFunc(self.y_list, y) y_pos[y_pos < 1] = 1 y_pos[y_pos > self.y_n - 1] = self.y_n - 1 z_pos = self.zSearchFunc(self.z_list, z) z_pos[z_pos < 1] = 1 z_pos[z_pos > self.z_n - 1] = self.z_n - 1 i = w_pos # for convenience j = x_pos k = y_pos l = z_pos beta = (x - self.x_list[j - 1]) / (self.x_list[j] - self.x_list[j - 1]) gamma = (y - self.y_list[k - 1]) / (self.y_list[k] - self.y_list[k - 1]) delta = (z - self.z_list[l - 1]) / (self.z_list[l] - self.z_list[l - 1]) dfdw = ( ( (1 - beta) * (1 - gamma) * (1 - delta) * self.f_values[i, j - 1, k - 1, l - 1] + (1 - beta) * (1 - gamma) * delta * self.f_values[i, j - 1, k - 1, l] + (1 - beta) * gamma * (1 - delta) * self.f_values[i, j - 1, k, l - 1] + (1 - beta) * gamma * delta * self.f_values[i, j - 1, k, l] + beta * (1 - gamma) * (1 - delta) * self.f_values[i, j, k - 1, l - 1] + beta * (1 - gamma) * delta * self.f_values[i, j, k - 1, l] + beta * gamma * (1 - delta) * self.f_values[i, j, k, l - 1] + beta * gamma * delta * self.f_values[i, j, k, l] ) - ( (1 - beta) * (1 - gamma) * (1 - delta) * self.f_values[i - 1, j - 1, k - 1, l - 1] + (1 - beta) * (1 - gamma) * delta * self.f_values[i - 1, j - 1, k - 1, l] + (1 - beta) * gamma * (1 - delta) * self.f_values[i - 1, j - 1, k, l - 1] + (1 - beta) * gamma * delta * self.f_values[i - 1, j - 1, k, l] + beta * (1 - gamma) * (1 - delta) * self.f_values[i - 1, j, k - 1, l - 1] + beta * (1 - gamma) * delta * self.f_values[i - 1, j, k - 1, l] + beta * gamma * (1 - delta) * self.f_values[i - 1, j, k, l - 1] + beta * gamma * delta * self.f_values[i - 1, j, k, l] ) ) / (self.w_list[i] - self.w_list[i - 1]) return dfdw def _derX(self, w, x, y, z): """ Returns the derivative with respect to x of the interpolated function at each value in w,x,y,z. Only called internally by HARKinterpolator4D.derivativeX. """ if _isscalar(w): w_pos = max(min(self.wSearchFunc(self.w_list, w), self.w_n - 1), 1) x_pos = max(min(self.xSearchFunc(self.x_list, x), self.x_n - 1), 1) y_pos = max(min(self.ySearchFunc(self.y_list, y), self.y_n - 1), 1) z_pos = max(min(self.zSearchFunc(self.z_list, z), self.z_n - 1), 1) else: w_pos = self.wSearchFunc(self.w_list, w) w_pos[w_pos < 1] = 1 w_pos[w_pos > self.w_n - 1] = self.w_n - 1 x_pos = self.xSearchFunc(self.x_list, x) x_pos[x_pos < 1] = 1 x_pos[x_pos > self.x_n - 1] = self.x_n - 1 y_pos = self.ySearchFunc(self.y_list, y) y_pos[y_pos < 1] = 1 y_pos[y_pos > self.y_n - 1] = self.y_n - 1 z_pos = self.zSearchFunc(self.z_list, z) z_pos[z_pos < 1] = 1 z_pos[z_pos > self.z_n - 1] = self.z_n - 1 i = w_pos # for convenience j = x_pos k = y_pos l = z_pos alpha = (w - self.w_list[i - 1]) / (self.w_list[i] - self.w_list[i - 1]) gamma = (y - self.y_list[k - 1]) / (self.y_list[k] - self.y_list[k - 1]) delta = (z - self.z_list[l - 1]) / (self.z_list[l] - self.z_list[l - 1]) dfdx = ( ( (1 - alpha) * (1 - gamma) * (1 - delta) * self.f_values[i - 1, j, k - 1, l - 1] + (1 - alpha) * (1 - gamma) * delta * self.f_values[i - 1, j, k - 1, l] + (1 - alpha) * gamma * (1 - delta) * self.f_values[i - 1, j, k, l - 1] + (1 - alpha) * gamma * delta * self.f_values[i - 1, j, k, l] + alpha * (1 - gamma) * (1 - delta) * self.f_values[i, j, k - 1, l - 1] + alpha * (1 - gamma) * delta * self.f_values[i, j, k - 1, l] + alpha * gamma * (1 - delta) * self.f_values[i, j, k, l - 1] + alpha * gamma * delta * self.f_values[i, j, k, l] ) - ( (1 - alpha) * (1 - gamma) * (1 - delta) * self.f_values[i - 1, j - 1, k - 1, l - 1] + (1 - alpha) * (1 - gamma) * delta * self.f_values[i - 1, j - 1, k - 1, l] + (1 - alpha) * gamma * (1 - delta) * self.f_values[i - 1, j - 1, k, l - 1] + (1 - alpha) * gamma * delta * self.f_values[i - 1, j - 1, k, l] + alpha * (1 - gamma) * (1 - delta) * self.f_values[i, j - 1, k - 1, l - 1] + alpha * (1 - gamma) * delta * self.f_values[i, j - 1, k - 1, l] + alpha * gamma * (1 - delta) * self.f_values[i, j - 1, k, l - 1] + alpha * gamma * delta * self.f_values[i, j - 1, k, l] ) ) / (self.x_list[j] - self.x_list[j - 1]) return dfdx def _derY(self, w, x, y, z): """ Returns the derivative with respect to y of the interpolated function at each value in w,x,y,z. Only called internally by HARKinterpolator4D.derivativeY. """ if _isscalar(w): w_pos = max(min(self.wSearchFunc(self.w_list, w), self.w_n - 1), 1) x_pos = max(min(self.xSearchFunc(self.x_list, x), self.x_n - 1), 1) y_pos = max(min(self.ySearchFunc(self.y_list, y), self.y_n - 1), 1) z_pos = max(min(self.zSearchFunc(self.z_list, z), self.z_n - 1), 1) else: w_pos = self.wSearchFunc(self.w_list, w) w_pos[w_pos < 1] = 1 w_pos[w_pos > self.w_n - 1] = self.w_n - 1 x_pos = self.xSearchFunc(self.x_list, x) x_pos[x_pos < 1] = 1 x_pos[x_pos > self.x_n - 1] = self.x_n - 1 y_pos = self.ySearchFunc(self.y_list, y) y_pos[y_pos < 1] = 1 y_pos[y_pos > self.y_n - 1] = self.y_n - 1 z_pos = self.zSearchFunc(self.z_list, z) z_pos[z_pos < 1] = 1 z_pos[z_pos > self.z_n - 1] = self.z_n - 1 i = w_pos # for convenience j = x_pos k = y_pos l = z_pos alpha = (w - self.w_list[i - 1]) / (self.w_list[i] - self.w_list[i - 1]) beta = (x - self.x_list[j - 1]) / (self.x_list[j] - self.x_list[j - 1]) delta = (z - self.z_list[l - 1]) / (self.z_list[l] - self.z_list[l - 1]) dfdy = ( ( (1 - alpha) * (1 - beta) * (1 - delta) * self.f_values[i - 1, j - 1, k, l - 1] + (1 - alpha) * (1 - beta) * delta * self.f_values[i - 1, j - 1, k, l] + (1 - alpha) * beta * (1 - delta) * self.f_values[i - 1, j, k, l - 1] + (1 - alpha) * beta * delta * self.f_values[i - 1, j, k, l] + alpha * (1 - beta) * (1 - delta) * self.f_values[i, j - 1, k, l - 1] + alpha * (1 - beta) * delta * self.f_values[i, j - 1, k, l] + alpha * beta * (1 - delta) * self.f_values[i, j, k, l - 1] + alpha * beta * delta * self.f_values[i, j, k, l] ) - ( (1 - alpha) * (1 - beta) * (1 - delta) * self.f_values[i - 1, j - 1, k - 1, l - 1] + (1 - alpha) * (1 - beta) * delta * self.f_values[i - 1, j - 1, k - 1, l] + (1 - alpha) * beta * (1 - delta) * self.f_values[i - 1, j, k - 1, l - 1] + (1 - alpha) * beta * delta * self.f_values[i - 1, j, k - 1, l] + alpha * (1 - beta) * (1 - delta) * self.f_values[i, j - 1, k - 1, l - 1] + alpha * (1 - beta) * delta * self.f_values[i, j - 1, k - 1, l] + alpha * beta * (1 - delta) * self.f_values[i, j, k - 1, l - 1] + alpha * beta * delta * self.f_values[i, j, k - 1, l] ) ) / (self.y_list[k] - self.y_list[k - 1]) return dfdy def _derZ(self, w, x, y, z): """ Returns the derivative with respect to z of the interpolated function at each value in w,x,y,z. Only called internally by HARKinterpolator4D.derivativeZ. """ if _isscalar(w): w_pos = max(min(self.wSearchFunc(self.w_list, w), self.w_n - 1), 1) x_pos = max(min(self.xSearchFunc(self.x_list, x), self.x_n - 1), 1) y_pos = max(min(self.ySearchFunc(self.y_list, y), self.y_n - 1), 1) z_pos = max(min(self.zSearchFunc(self.z_list, z), self.z_n - 1), 1) else: w_pos = self.wSearchFunc(self.w_list, w) w_pos[w_pos < 1] = 1 w_pos[w_pos > self.w_n - 1] = self.w_n - 1 x_pos = self.xSearchFunc(self.x_list, x) x_pos[x_pos < 1] = 1 x_pos[x_pos > self.x_n - 1] = self.x_n - 1 y_pos = self.ySearchFunc(self.y_list, y) y_pos[y_pos < 1] = 1 y_pos[y_pos > self.y_n - 1] = self.y_n - 1 z_pos = self.zSearchFunc(self.z_list, z) z_pos[z_pos < 1] = 1 z_pos[z_pos > self.z_n - 1] = self.z_n - 1 i = w_pos # for convenience j = x_pos k = y_pos l = z_pos alpha = (w - self.w_list[i - 1]) / (self.w_list[i] - self.w_list[i - 1]) beta = (x - self.x_list[j - 1]) / (self.x_list[j] - self.x_list[j - 1]) gamma = (y - self.y_list[k - 1]) / (self.y_list[k] - self.y_list[k - 1]) dfdz = ( ( (1 - alpha) * (1 - beta) * (1 - gamma) * self.f_values[i - 1, j - 1, k - 1, l] + (1 - alpha) * (1 - beta) * gamma * self.f_values[i - 1, j - 1, k, l] + (1 - alpha) * beta * (1 - gamma) * self.f_values[i - 1, j, k - 1, l] + (1 - alpha) * beta * gamma * self.f_values[i - 1, j, k, l] + alpha * (1 - beta) * (1 - gamma) * self.f_values[i, j - 1, k - 1, l] + alpha * (1 - beta) * gamma * self.f_values[i, j - 1, k, l] + alpha * beta * (1 - gamma) * self.f_values[i, j, k - 1, l] + alpha * beta * gamma * self.f_values[i, j, k, l] ) - ( (1 - alpha) * (1 - beta) * (1 - gamma) * self.f_values[i - 1, j - 1, k - 1, l - 1] + (1 - alpha) * (1 - beta) * gamma * self.f_values[i - 1, j - 1, k, l - 1] + (1 - alpha) * beta * (1 - gamma) * self.f_values[i - 1, j, k - 1, l - 1] + (1 - alpha) * beta * gamma * self.f_values[i - 1, j, k, l - 1] + alpha * (1 - beta) * (1 - gamma) * self.f_values[i, j - 1, k - 1, l - 1] + alpha * (1 - beta) * gamma * self.f_values[i, j - 1, k, l - 1] + alpha * beta * (1 - gamma) * self.f_values[i, j, k - 1, l - 1] + alpha * beta * gamma * self.f_values[i, j, k, l - 1] ) ) / (self.z_list[l] - self.z_list[l - 1]) return dfdz class LowerEnvelope(HARKinterpolator1D): """ The lower envelope of a finite set of 1D functions, each of which can be of any class that has the methods __call__, derivative, and eval_with_derivative. Generally: it combines HARKinterpolator1Ds. Parameters ---------- *functions : function Any number of real functions; often instances of HARKinterpolator1D nan_bool : boolean An indicator for whether the solver should exclude NA's when forming the lower envelope """ distance_criteria = ["functions"] def __init__(self, *functions, nan_bool=True): if nan_bool: self.compare = np.nanmin self.argcompare = np.nanargmin else: self.compare = np.min self.argcompare = np.argmin self.functions = [] for function in functions: self.functions.append(function) self.funcCount = len(self.functions) def _evaluate(self, x): """ Returns the level of the function at each value in x as the minimum among all of the functions. Only called internally by HARKinterpolator1D.__call__. """ if _isscalar(x): y = self.compare([f(x) for f in self.functions]) else: m = len(x) fx = np.zeros((m, self.funcCount)) for j in range(self.funcCount): fx[:, j] = self.functions[j](x) y = self.compare(fx, axis=1) return y def _der(self, x): """ Returns the first derivative of the function at each value in x. Only called internally by HARKinterpolator1D.derivative. """ y, dydx = self._evalAndDer(x) return dydx # Sadly, this is the fastest / most convenient way... def _evalAndDer(self, x): """ Returns the level and first derivative of the function at each value in x. Only called internally by HARKinterpolator1D.eval_and_der. """ m = len(x) fx = np.zeros((m, self.funcCount)) for j in range(self.funcCount): fx[:, j] = self.functions[j](x) i = self.argcompare(fx, axis=1) y = fx[np.arange(m), i] dydx = np.zeros_like(y) for j in range(self.funcCount): c = i == j dydx[c] = self.functions[j].derivative(x[c]) return y, dydx class UpperEnvelope(HARKinterpolator1D): """ The upper envelope of a finite set of 1D functions, each of which can be of any class that has the methods __call__, derivative, and eval_with_derivative. Generally: it combines HARKinterpolator1Ds. Parameters ---------- *functions : function Any number of real functions; often instances of HARKinterpolator1D nan_bool : boolean An indicator for whether the solver should exclude NA's when forming the lower envelope. """ distance_criteria = ["functions"] def __init__(self, *functions, nan_bool=True): if nan_bool: self.compare = np.nanmax self.argcompare = np.nanargmax else: self.compare = np.max self.argcompare = np.argmax self.functions = [] for function in functions: self.functions.append(function) self.funcCount = len(self.functions) def _evaluate(self, x): """ Returns the level of the function at each value in x as the maximum among all of the functions. Only called internally by HARKinterpolator1D.__call__. """ if _isscalar(x): y = self.compare([f(x) for f in self.functions]) else: m = len(x) fx = np.zeros((m, self.funcCount)) for j in range(self.funcCount): fx[:, j] = self.functions[j](x) y = self.compare(fx, axis=1) return y def _der(self, x): """ Returns the first derivative of the function at each value in x. Only called internally by HARKinterpolator1D.derivative. """ y, dydx = self._evalAndDer(x) return dydx # Sadly, this is the fastest / most convenient way... def _evalAndDer(self, x): """ Returns the level and first derivative of the function at each value in x. Only called internally by HARKinterpolator1D.eval_and_der. """ m = len(x) fx = np.zeros((m, self.funcCount)) for j in range(self.funcCount): fx[:, j] = self.functions[j](x) i = self.argcompare(fx, axis=1) y = fx[np.arange(m), i] dydx = np.zeros_like(y) for j in range(self.funcCount): c = i == j dydx[c] = self.functions[j].derivative(x[c]) return y, dydx class LowerEnvelope2D(HARKinterpolator2D): """ The lower envelope of a finite set of 2D functions, each of which can be of any class that has the methods __call__, derivativeX, and derivativeY. Generally: it combines HARKinterpolator2Ds. Parameters ---------- *functions : function Any number of real functions; often instances of HARKinterpolator2D nan_bool : boolean An indicator for whether the solver should exclude NA's when forming the lower envelope. """ distance_criteria = ["functions"] def __init__(self, *functions, nan_bool=True): if nan_bool: self.compare = np.nanmin self.argcompare = np.nanargmin else: self.compare = np.min self.argcompare = np.argmin self.functions = [] for function in functions: self.functions.append(function) self.funcCount = len(self.functions) def _evaluate(self, x, y): """ Returns the level of the function at each value in (x,y) as the minimum among all of the functions. Only called internally by HARKinterpolator2D.__call__. """ if _isscalar(x): f = self.compare([f(x, y) for f in self.functions]) else: m = len(x) temp = np.zeros((m, self.funcCount)) for j in range(self.funcCount): temp[:, j] = self.functions[j](x, y) f = self.compare(temp, axis=1) return f def _derX(self, x, y): """ Returns the first derivative of the function with respect to X at each value in (x,y). Only called internally by HARKinterpolator2D._derX. """ m = len(x) temp = np.zeros((m, self.funcCount)) for j in range(self.funcCount): temp[:, j] = self.functions[j](x, y) i = self.argcompare(temp, axis=1) dfdx = np.zeros_like(x) for j in range(self.funcCount): c = i == j dfdx[c] = self.functions[j].derivativeX(x[c], y[c]) return dfdx def _derY(self, x, y): """ Returns the first derivative of the function with respect to Y at each value in (x,y). Only called internally by HARKinterpolator2D._derY. """ m = len(x) temp = np.zeros((m, self.funcCount)) for j in range(self.funcCount): temp[:, j] = self.functions[j](x, y) i = self.argcompare(temp, axis=1) y = temp[np.arange(m), i] dfdy = np.zeros_like(x) for j in range(self.funcCount): c = i == j dfdy[c] = self.functions[j].derivativeY(x[c], y[c]) return dfdy class LowerEnvelope3D(HARKinterpolator3D): """ The lower envelope of a finite set of 3D functions, each of which can be of any class that has the methods __call__, derivativeX, derivativeY, and derivativeZ. Generally: it combines HARKinterpolator2Ds. Parameters ---------- *functions : function Any number of real functions; often instances of HARKinterpolator3D nan_bool : boolean An indicator for whether the solver should exclude NA's when forming the lower envelope. """ distance_criteria = ["functions"] def __init__(self, *functions, nan_bool=True): if nan_bool: self.compare = np.nanmin self.argcompare = np.nanargmin else: self.compare = np.min self.argcompare = np.argmin self.functions = [] for function in functions: self.functions.append(function) self.funcCount = len(self.functions) def _evaluate(self, x, y, z): """ Returns the level of the function at each value in (x,y,z) as the minimum among all of the functions. Only called internally by HARKinterpolator3D.__call__. """ if _isscalar(x): f = self.compare([f(x, y, z) for f in self.functions]) else: m = len(x) temp = np.zeros((m, self.funcCount)) for j in range(self.funcCount): temp[:, j] = self.functions[j](x, y, z) f = self.compare(temp, axis=1) return f def _derX(self, x, y, z): """ Returns the first derivative of the function with respect to X at each value in (x,y,z). Only called internally by HARKinterpolator3D._derX. """ m = len(x) temp = np.zeros((m, self.funcCount)) for j in range(self.funcCount): temp[:, j] = self.functions[j](x, y, z) i = self.argcompare(temp, axis=1) dfdx = np.zeros_like(x) for j in range(self.funcCount): c = i == j dfdx[c] = self.functions[j].derivativeX(x[c], y[c], z[c]) return dfdx def _derY(self, x, y, z): """ Returns the first derivative of the function with respect to Y at each value in (x,y,z). Only called internally by HARKinterpolator3D._derY. """ m = len(x) temp = np.zeros((m, self.funcCount)) for j in range(self.funcCount): temp[:, j] = self.functions[j](x, y, z) i = self.argcompare(temp, axis=1) y = temp[np.arange(m), i] dfdy = np.zeros_like(x) for j in range(self.funcCount): c = i == j dfdy[c] = self.functions[j].derivativeY(x[c], y[c], z[c]) return dfdy def _derZ(self, x, y, z): """ Returns the first derivative of the function with respect to Z at each value in (x,y,z). Only called internally by HARKinterpolator3D._derZ. """ m = len(x) temp = np.zeros((m, self.funcCount)) for j in range(self.funcCount): temp[:, j] = self.functions[j](x, y, z) i = self.argcompare(temp, axis=1) y = temp[np.arange(m), i] dfdz = np.zeros_like(x) for j in range(self.funcCount): c = i == j dfdz[c] = self.functions[j].derivativeZ(x[c], y[c], z[c]) return dfdz class VariableLowerBoundFunc2D(MetricObject): """ A class for representing a function with two real inputs whose lower bound in the first input depends on the second input. Useful for managing curved natural borrowing constraints, as occurs in the persistent shocks model. Parameters ---------- func : function A function f: (R_+ x R) --> R representing the function of interest shifted by its lower bound in the first input. lowerBound : function The lower bound in the first input of the function of interest, as a function of the second input. """ distance_criteria = ["func", "lowerBound"] def __init__(self, func, lowerBound): self.func = func self.lowerBound = lowerBound def __call__(self, x, y): """ Evaluate the function at given state space points. Parameters ---------- x : np.array First input values. y : np.array Second input values; should be of same shape as x. Returns ------- f_out : np.array Function evaluated at (x,y), of same shape as inputs. """ xShift = self.lowerBound(y) f_out = self.func(x - xShift, y) return f_out def derivativeX(self, x, y): """ Evaluate the first derivative with respect to x of the function at given state space points. Parameters ---------- x : np.array First input values. y : np.array Second input values; should be of same shape as x. Returns ------- dfdx_out : np.array First derivative of function with respect to the first input, evaluated at (x,y), of same shape as inputs. """ xShift = self.lowerBound(y) dfdx_out = self.func.derivativeX(x - xShift, y) return dfdx_out def derivativeY(self, x, y): """ Evaluate the first derivative with respect to y of the function at given state space points. Parameters ---------- x : np.array First input values. y : np.array Second input values; should be of same shape as x. Returns ------- dfdy_out : np.array First derivative of function with respect to the second input, evaluated at (x,y), of same shape as inputs. """ xShift, xShiftDer = self.lowerBound.eval_with_derivative(y) dfdy_out = self.func.derivativeY( x - xShift, y ) - xShiftDer * self.func.derivativeX(x - xShift, y) return dfdy_out class VariableLowerBoundFunc3D(MetricObject): """ A class for representing a function with three real inputs whose lower bound in the first input depends on the second input. Useful for managing curved natural borrowing constraints. Parameters ---------- func : function A function f: (R_+ x R^2) --> R representing the function of interest shifted by its lower bound in the first input. lowerBound : function The lower bound in the first input of the function of interest, as a function of the second input. """ distance_criteria = ["func", "lowerBound"] def __init__(self, func, lowerBound): self.func = func self.lowerBound = lowerBound def __call__(self, x, y, z): """ Evaluate the function at given state space points. Parameters ---------- x : np.array First input values. y : np.array Second input values; should be of same shape as x. z : np.array Third input values; should be of same shape as x. Returns ------- f_out : np.array Function evaluated at (x,y,z), of same shape as inputs. """ xShift = self.lowerBound(y) f_out = self.func(x - xShift, y, z) return f_out def derivativeX(self, x, y, z): """ Evaluate the first derivative with respect to x of the function at given state space points. Parameters ---------- x : np.array First input values. y : np.array Second input values; should be of same shape as x. z : np.array Third input values; should be of same shape as x. Returns ------- dfdx_out : np.array First derivative of function with respect to the first input, evaluated at (x,y,z), of same shape as inputs. """ xShift = self.lowerBound(y) dfdx_out = self.func.derivativeX(x - xShift, y, z) return dfdx_out def derivativeY(self, x, y, z): """ Evaluate the first derivative with respect to y of the function at given state space points. Parameters ---------- x : np.array First input values. y : np.array Second input values; should be of same shape as x. z : np.array Third input values; should be of same shape as x. Returns ------- dfdy_out : np.array First derivative of function with respect to the second input, evaluated at (x,y,z), of same shape as inputs. """ xShift, xShiftDer = self.lowerBound.eval_with_derivative(y) dfdy_out = self.func.derivativeY( x - xShift, y, z ) - xShiftDer * self.func.derivativeX(x - xShift, y, z) return dfdy_out def derivativeZ(self, x, y, z): """ Evaluate the first derivative with respect to z of the function at given state space points. Parameters ---------- x : np.array First input values. y : np.array Second input values; should be of same shape as x. z : np.array Third input values; should be of same shape as x. Returns ------- dfdz_out : np.array First derivative of function with respect to the third input, evaluated at (x,y,z), of same shape as inputs. """ xShift = self.lowerBound(y) dfdz_out = self.func.derivativeZ(x - xShift, y, z) return dfdz_out class LinearInterpOnInterp1D(HARKinterpolator2D): """ A 2D interpolator that linearly interpolates among a list of 1D interpolators. Parameters ---------- xInterpolators : [HARKinterpolator1D] A list of 1D interpolations over the x variable. The nth element of xInterpolators represents f(x,y_values[n]). y_values: numpy.array An array of y values equal in length to xInterpolators. """ distance_criteria = ["xInterpolators", "y_list"] def __init__(self, xInterpolators, y_values): self.xInterpolators = xInterpolators self.y_list = y_values self.y_n = y_values.size def _evaluate(self, x, y): """ Returns the level of the interpolated function at each value in x,y. Only called internally by HARKinterpolator2D.__call__ (etc). """ if _isscalar(x): y_pos = max(min(np.searchsorted(self.y_list, y), self.y_n - 1), 1) alpha = (y - self.y_list[y_pos - 1]) / ( self.y_list[y_pos] - self.y_list[y_pos - 1] ) f = (1 - alpha) * self.xInterpolators[y_pos - 1]( x ) + alpha * self.xInterpolators[y_pos](x) else: m = len(x) y_pos = np.searchsorted(self.y_list, y) y_pos[y_pos > self.y_n - 1] = self.y_n - 1 y_pos[y_pos < 1] = 1 f = np.zeros(m) + np.nan if y.size > 0: for i in range(1, self.y_n): c = y_pos == i if np.any(c): alpha = (y[c] - self.y_list[i - 1]) / ( self.y_list[i] - self.y_list[i - 1] ) f[c] = (1 - alpha) * self.xInterpolators[i - 1]( x[c] ) + alpha * self.xInterpolators[i](x[c]) return f def _derX(self, x, y): """ Returns the derivative with respect to x of the interpolated function at each value in x,y. Only called internally by HARKinterpolator2D.derivativeX. """ if _isscalar(x): y_pos = max(min(np.searchsorted(self.y_list, y), self.y_n - 1), 1) alpha = (y - self.y_list[y_pos - 1]) / ( self.y_list[y_pos] - self.y_list[y_pos - 1] ) dfdx = (1 - alpha) * self.xInterpolators[y_pos - 1]._der( x ) + alpha * self.xInterpolators[y_pos]._der(x) else: m = len(x) y_pos = np.searchsorted(self.y_list, y) y_pos[y_pos > self.y_n - 1] = self.y_n - 1 y_pos[y_pos < 1] = 1 dfdx = np.zeros(m) + np.nan if y.size > 0: for i in range(1, self.y_n): c = y_pos == i if np.any(c): alpha = (y[c] - self.y_list[i - 1]) / ( self.y_list[i] - self.y_list[i - 1] ) dfdx[c] = (1 - alpha) * self.xInterpolators[i - 1]._der( x[c] ) + alpha * self.xInterpolators[i]._der(x[c]) return dfdx def _derY(self, x, y): """ Returns the derivative with respect to y of the interpolated function at each value in x,y. Only called internally by HARKinterpolator2D.derivativeY. """ if _isscalar(x): y_pos = max(min(np.searchsorted(self.y_list, y), self.y_n - 1), 1) dfdy = ( self.xInterpolators[y_pos](x) - self.xInterpolators[y_pos - 1](x) ) / (self.y_list[y_pos] - self.y_list[y_pos - 1]) else: m = len(x) y_pos = np.searchsorted(self.y_list, y) y_pos[y_pos > self.y_n - 1] = self.y_n - 1 y_pos[y_pos < 1] = 1 dfdy = np.zeros(m) + np.nan if y.size > 0: for i in range(1, self.y_n): c = y_pos == i if np.any(c): dfdy[c] = ( self.xInterpolators[i](x[c]) - self.xInterpolators[i - 1](x[c]) ) / (self.y_list[i] - self.y_list[i - 1]) return dfdy class BilinearInterpOnInterp1D(HARKinterpolator3D): """ A 3D interpolator that bilinearly interpolates among a list of lists of 1D interpolators. Constructor for the class, generating an approximation to a function of the form f(x,y,z) using interpolations over f(x,y_0,z_0) for a fixed grid of y_0 and z_0 values. Parameters ---------- xInterpolators : [[HARKinterpolator1D]] A list of lists of 1D interpolations over the x variable. The i,j-th element of xInterpolators represents f(x,y_values[i],z_values[j]). y_values: numpy.array An array of y values equal in length to xInterpolators. z_values: numpy.array An array of z values equal in length to xInterpolators[0]. """ distance_criteria = ["xInterpolators", "y_list", "z_list"] def __init__(self, xInterpolators, y_values, z_values): self.xInterpolators = xInterpolators self.y_list = y_values self.y_n = y_values.size self.z_list = z_values self.z_n = z_values.size def _evaluate(self, x, y, z): """ Returns the level of the interpolated function at each value in x,y,z. Only called internally by HARKinterpolator3D.__call__ (etc). """ if _isscalar(x): y_pos = max(min(np.searchsorted(self.y_list, y), self.y_n - 1), 1) z_pos = max(min(np.searchsorted(self.z_list, z), self.z_n - 1), 1) alpha = (y - self.y_list[y_pos - 1]) / ( self.y_list[y_pos] - self.y_list[y_pos - 1] ) beta = (z - self.z_list[z_pos - 1]) / ( self.z_list[z_pos] - self.z_list[z_pos - 1] ) f = ( (1 - alpha) * (1 - beta) * self.xInterpolators[y_pos - 1][z_pos - 1](x) + (1 - alpha) * beta * self.xInterpolators[y_pos - 1][z_pos](x) + alpha * (1 - beta) * self.xInterpolators[y_pos][z_pos - 1](x) + alpha * beta * self.xInterpolators[y_pos][z_pos](x) ) else: m = len(x) y_pos = np.searchsorted(self.y_list, y) y_pos[y_pos > self.y_n - 1] = self.y_n - 1 y_pos[y_pos < 1] = 1 z_pos = np.searchsorted(self.z_list, z) z_pos[z_pos > self.z_n - 1] = self.z_n - 1 z_pos[z_pos < 1] = 1 f = np.zeros(m) + np.nan for i in range(1, self.y_n): for j in range(1, self.z_n): c = np.logical_and(i == y_pos, j == z_pos) if np.any(c): alpha = (y[c] - self.y_list[i - 1]) / ( self.y_list[i] - self.y_list[i - 1] ) beta = (z[c] - self.z_list[j - 1]) / ( self.z_list[j] - self.z_list[j - 1] ) f[c] = ( (1 - alpha) * (1 - beta) * self.xInterpolators[i - 1][j - 1](x[c]) + (1 - alpha) * beta * self.xInterpolators[i - 1][j](x[c]) + alpha * (1 - beta) * self.xInterpolators[i][j - 1](x[c]) + alpha * beta * self.xInterpolators[i][j](x[c]) ) return f def _derX(self, x, y, z): """ Returns the derivative with respect to x of the interpolated function at each value in x,y,z. Only called internally by HARKinterpolator3D.derivativeX. """ if _isscalar(x): y_pos = max(min(np.searchsorted(self.y_list, y), self.y_n - 1), 1) z_pos = max(min(np.searchsorted(self.z_list, z), self.z_n - 1), 1) alpha = (y - self.y_list[y_pos - 1]) / ( self.y_list[y_pos] - self.y_list[y_pos - 1] ) beta = (z - self.z_list[z_pos - 1]) / ( self.z_list[z_pos] - self.z_list[z_pos - 1] ) dfdx = ( (1 - alpha) * (1 - beta) * self.xInterpolators[y_pos - 1][z_pos - 1]._der(x) + (1 - alpha) * beta * self.xInterpolators[y_pos - 1][z_pos]._der(x) + alpha * (1 - beta) * self.xInterpolators[y_pos][z_pos - 1]._der(x) + alpha * beta * self.xInterpolators[y_pos][z_pos]._der(x) ) else: m = len(x) y_pos = np.searchsorted(self.y_list, y) y_pos[y_pos > self.y_n - 1] = self.y_n - 1 y_pos[y_pos < 1] = 1 z_pos = np.searchsorted(self.z_list, z) z_pos[z_pos > self.z_n - 1] = self.z_n - 1 z_pos[z_pos < 1] = 1 dfdx = np.zeros(m) + np.nan for i in range(1, self.y_n): for j in range(1, self.z_n): c = np.logical_and(i == y_pos, j == z_pos) if np.any(c): alpha = (y[c] - self.y_list[i - 1]) / ( self.y_list[i] - self.y_list[i - 1] ) beta = (z[c] - self.z_list[j - 1]) / ( self.z_list[j] - self.z_list[j - 1] ) dfdx[c] = ( (1 - alpha) * (1 - beta) * self.xInterpolators[i - 1][j - 1]._der(x[c]) + (1 - alpha) * beta * self.xInterpolators[i - 1][j]._der(x[c]) + alpha * (1 - beta) * self.xInterpolators[i][j - 1]._der(x[c]) + alpha * beta * self.xInterpolators[i][j]._der(x[c]) ) return dfdx def _derY(self, x, y, z): """ Returns the derivative with respect to y of the interpolated function at each value in x,y,z. Only called internally by HARKinterpolator3D.derivativeY. """ if _isscalar(x): y_pos = max(min(np.searchsorted(self.y_list, y), self.y_n - 1), 1) z_pos = max(min(np.searchsorted(self.z_list, z), self.z_n - 1), 1) beta = (z - self.z_list[z_pos - 1]) / ( self.z_list[z_pos] - self.z_list[z_pos - 1] ) dfdy = ( ( (1 - beta) * self.xInterpolators[y_pos][z_pos - 1](x) + beta * self.xInterpolators[y_pos][z_pos](x) ) - ( (1 - beta) * self.xInterpolators[y_pos - 1][z_pos - 1](x) + beta * self.xInterpolators[y_pos - 1][z_pos](x) ) ) / (self.y_list[y_pos] - self.y_list[y_pos - 1]) else: m = len(x) y_pos = np.searchsorted(self.y_list, y) y_pos[y_pos > self.y_n - 1] = self.y_n - 1 y_pos[y_pos < 1] = 1 z_pos = np.searchsorted(self.z_list, z) z_pos[z_pos > self.z_n - 1] = self.z_n - 1 z_pos[z_pos < 1] = 1 dfdy = np.zeros(m) + np.nan for i in range(1, self.y_n): for j in range(1, self.z_n): c = np.logical_and(i == y_pos, j == z_pos) if np.any(c): beta = (z[c] - self.z_list[j - 1]) / ( self.z_list[j] - self.z_list[j - 1] ) dfdy[c] = ( ( (1 - beta) * self.xInterpolators[i][j - 1](x[c]) + beta * self.xInterpolators[i][j](x[c]) ) - ( (1 - beta) * self.xInterpolators[i - 1][j - 1](x[c]) + beta * self.xInterpolators[i - 1][j](x[c]) ) ) / (self.y_list[i] - self.y_list[i - 1]) return dfdy def _derZ(self, x, y, z): """ Returns the derivative with respect to z of the interpolated function at each value in x,y,z. Only called internally by HARKinterpolator3D.derivativeZ. """ if _isscalar(x): y_pos = max(min(np.searchsorted(self.y_list, y), self.y_n - 1), 1) z_pos = max(min(np.searchsorted(self.z_list, z), self.z_n - 1), 1) alpha = (y - self.y_list[y_pos - 1]) / ( self.y_list[y_pos] - self.y_list[y_pos - 1] ) dfdz = ( ( (1 - alpha) * self.xInterpolators[y_pos - 1][z_pos](x) + alpha * self.xInterpolators[y_pos][z_pos](x) ) - ( (1 - alpha) * self.xInterpolators[y_pos - 1][z_pos - 1](x) + alpha * self.xInterpolators[y_pos][z_pos - 1](x) ) ) / (self.z_list[z_pos] - self.z_list[z_pos - 1]) else: m = len(x) y_pos = np.searchsorted(self.y_list, y) y_pos[y_pos > self.y_n - 1] = self.y_n - 1 y_pos[y_pos < 1] = 1 z_pos = np.searchsorted(self.z_list, z) z_pos[z_pos > self.z_n - 1] = self.z_n - 1 z_pos[z_pos < 1] = 1 dfdz = np.zeros(m) + np.nan for i in range(1, self.y_n): for j in range(1, self.z_n): c = np.logical_and(i == y_pos, j == z_pos) if np.any(c): alpha = (y[c] - self.y_list[i - 1]) / ( self.y_list[i] - self.y_list[i - 1] ) dfdz[c] = ( ( (1 - alpha) * self.xInterpolators[i - 1][j](x[c]) + alpha * self.xInterpolators[i][j](x[c]) ) - ( (1 - alpha) * self.xInterpolators[i - 1][j - 1](x[c]) + alpha * self.xInterpolators[i][j - 1](x[c]) ) ) / (self.z_list[j] - self.z_list[j - 1]) return dfdz class TrilinearInterpOnInterp1D(HARKinterpolator4D): """ A 4D interpolator that trilinearly interpolates among a list of lists of 1D interpolators. Constructor for the class, generating an approximation to a function of the form f(w,x,y,z) using interpolations over f(w,x_0,y_0,z_0) for a fixed grid of y_0 and z_0 values. Parameters ---------- wInterpolators : [[[HARKinterpolator1D]]] A list of lists of lists of 1D interpolations over the x variable. The i,j,k-th element of wInterpolators represents f(w,x_values[i],y_values[j],z_values[k]). x_values: numpy.array An array of x values equal in length to wInterpolators. y_values: numpy.array An array of y values equal in length to wInterpolators[0]. z_values: numpy.array An array of z values equal in length to wInterpolators[0][0] """ distance_criteria = ["wInterpolators", "x_list", "y_list", "z_list"] def __init__(self, wInterpolators, x_values, y_values, z_values): self.wInterpolators = wInterpolators self.x_list = x_values self.x_n = x_values.size self.y_list = y_values self.y_n = y_values.size self.z_list = z_values self.z_n = z_values.size def _evaluate(self, w, x, y, z): """ Returns the level of the interpolated function at each value in w,x,y,z. Only called internally by HARKinterpolator4D.__call__ (etc). """ if _isscalar(w): x_pos = max(min(np.searchsorted(self.x_list, x), self.x_n - 1), 1) y_pos = max(min(np.searchsorted(self.y_list, y), self.y_n - 1), 1) z_pos = max(min(np.searchsorted(self.z_list, z), self.z_n - 1), 1) alpha = (x - self.x_list[x_pos - 1]) / ( self.x_list[x_pos] - self.x_list[x_pos - 1] ) beta = (y - self.y_list[y_pos - 1]) / ( self.y_list[y_pos] - self.y_list[y_pos - 1] ) gamma = (z - self.z_list[z_pos - 1]) / ( self.z_list[z_pos] - self.z_list[z_pos - 1] ) f = ( (1 - alpha) * (1 - beta) * (1 - gamma) * self.wInterpolators[x_pos - 1][y_pos - 1][z_pos - 1](w) + (1 - alpha) * (1 - beta) * gamma * self.wInterpolators[x_pos - 1][y_pos - 1][z_pos](w) + (1 - alpha) * beta * (1 - gamma) * self.wInterpolators[x_pos - 1][y_pos][z_pos - 1](w) + (1 - alpha) * beta * gamma * self.wInterpolators[x_pos - 1][y_pos][z_pos](w) + alpha * (1 - beta) * (1 - gamma) * self.wInterpolators[x_pos][y_pos - 1][z_pos - 1](w) + alpha * (1 - beta) * gamma * self.wInterpolators[x_pos][y_pos - 1][z_pos](w) + alpha * beta * (1 - gamma) * self.wInterpolators[x_pos][y_pos][z_pos - 1](w) + alpha * beta * gamma * self.wInterpolators[x_pos][y_pos][z_pos](w) ) else: m = len(x) x_pos = np.searchsorted(self.x_list, x) x_pos[x_pos > self.x_n - 1] = self.x_n - 1 y_pos = np.searchsorted(self.y_list, y) y_pos[y_pos > self.y_n - 1] = self.y_n - 1 y_pos[y_pos < 1] = 1 z_pos = np.searchsorted(self.z_list, z) z_pos[z_pos > self.z_n - 1] = self.z_n - 1 z_pos[z_pos < 1] = 1 f = np.zeros(m) + np.nan for i in range(1, self.x_n): for j in range(1, self.y_n): for k in range(1, self.z_n): c = np.logical_and( np.logical_and(i == x_pos, j == y_pos), k == z_pos ) if np.any(c): alpha = (x[c] - self.x_list[i - 1]) / ( self.x_list[i] - self.x_list[i - 1] ) beta = (y[c] - self.y_list[j - 1]) / ( self.y_list[j] - self.y_list[j - 1] ) gamma = (z[c] - self.z_list[k - 1]) / ( self.z_list[k] - self.z_list[k - 1] ) f[c] = ( (1 - alpha) * (1 - beta) * (1 - gamma) * self.wInterpolators[i - 1][j - 1][k - 1](w[c]) + (1 - alpha) * (1 - beta) * gamma * self.wInterpolators[i - 1][j - 1][k](w[c]) + (1 - alpha) * beta * (1 - gamma) * self.wInterpolators[i - 1][j][k - 1](w[c]) + (1 - alpha) * beta * gamma * self.wInterpolators[i - 1][j][k](w[c]) + alpha * (1 - beta) * (1 - gamma) * self.wInterpolators[i][j - 1][k - 1](w[c]) + alpha * (1 - beta) * gamma * self.wInterpolators[i][j - 1][k](w[c]) + alpha * beta * (1 - gamma) * self.wInterpolators[i][j][k - 1](w[c]) + alpha * beta * gamma * self.wInterpolators[i][j][k](w[c]) ) return f def _derW(self, w, x, y, z): """ Returns the derivative with respect to w of the interpolated function at each value in w,x,y,z. Only called internally by HARKinterpolator4D.derivativeW. """ if _isscalar(w): x_pos = max(min(np.searchsorted(self.x_list, x), self.x_n - 1), 1) y_pos = max(min(np.searchsorted(self.y_list, y), self.y_n - 1), 1) z_pos = max(min(np.searchsorted(self.z_list, z), self.z_n - 1), 1) alpha = (x - self.x_list[x_pos - 1]) / ( self.x_list[x_pos] - self.x_list[x_pos - 1] ) beta = (y - self.y_list[y_pos - 1]) / ( self.y_list[y_pos] - self.y_list[y_pos - 1] ) gamma = (z - self.z_list[z_pos - 1]) / ( self.z_list[z_pos] - self.z_list[z_pos - 1] ) dfdw = ( (1 - alpha) * (1 - beta) * (1 - gamma) * self.wInterpolators[x_pos - 1][y_pos - 1][z_pos - 1]._der(w) + (1 - alpha) * (1 - beta) * gamma * self.wInterpolators[x_pos - 1][y_pos - 1][z_pos]._der(w) + (1 - alpha) * beta * (1 - gamma) * self.wInterpolators[x_pos - 1][y_pos][z_pos - 1]._der(w) + (1 - alpha) * beta * gamma * self.wInterpolators[x_pos - 1][y_pos][z_pos]._der(w) + alpha * (1 - beta) * (1 - gamma) * self.wInterpolators[x_pos][y_pos - 1][z_pos - 1]._der(w) + alpha * (1 - beta) * gamma * self.wInterpolators[x_pos][y_pos - 1][z_pos]._der(w) + alpha * beta * (1 - gamma) * self.wInterpolators[x_pos][y_pos][z_pos - 1]._der(w) + alpha * beta * gamma * self.wInterpolators[x_pos][y_pos][z_pos]._der(w) ) else: m = len(x) x_pos = np.searchsorted(self.x_list, x) x_pos[x_pos > self.x_n - 1] = self.x_n - 1 y_pos = np.searchsorted(self.y_list, y) y_pos[y_pos > self.y_n - 1] = self.y_n - 1 y_pos[y_pos < 1] = 1 z_pos = np.searchsorted(self.z_list, z) z_pos[z_pos > self.z_n - 1] = self.z_n - 1 z_pos[z_pos < 1] = 1 dfdw = np.zeros(m) + np.nan for i in range(1, self.x_n): for j in range(1, self.y_n): for k in range(1, self.z_n): c = np.logical_and( np.logical_and(i == x_pos, j == y_pos), k == z_pos ) if np.any(c): alpha = (x[c] - self.x_list[i - 1]) / ( self.x_list[i] - self.x_list[i - 1] ) beta = (y[c] - self.y_list[j - 1]) / ( self.y_list[j] - self.y_list[j - 1] ) gamma = (z[c] - self.z_list[k - 1]) / ( self.z_list[k] - self.z_list[k - 1] ) dfdw[c] = ( (1 - alpha) * (1 - beta) * (1 - gamma) * self.wInterpolators[i - 1][j - 1][k - 1]._der(w[c]) + (1 - alpha) * (1 - beta) * gamma * self.wInterpolators[i - 1][j - 1][k]._der(w[c]) + (1 - alpha) * beta * (1 - gamma) * self.wInterpolators[i - 1][j][k - 1]._der(w[c]) + (1 - alpha) * beta * gamma * self.wInterpolators[i - 1][j][k]._der(w[c]) + alpha * (1 - beta) * (1 - gamma) * self.wInterpolators[i][j - 1][k - 1]._der(w[c]) + alpha * (1 - beta) * gamma * self.wInterpolators[i][j - 1][k]._der(w[c]) + alpha * beta * (1 - gamma) * self.wInterpolators[i][j][k - 1]._der(w[c]) + alpha * beta * gamma * self.wInterpolators[i][j][k]._der(w[c]) ) return dfdw def _derX(self, w, x, y, z): """ Returns the derivative with respect to x of the interpolated function at each value in w,x,y,z. Only called internally by HARKinterpolator4D.derivativeX. """ if _isscalar(w): x_pos = max(min(np.searchsorted(self.x_list, x), self.x_n - 1), 1) y_pos = max(min(np.searchsorted(self.y_list, y), self.y_n - 1), 1) z_pos = max(min(np.searchsorted(self.z_list, z), self.z_n - 1), 1) beta = (y - self.y_list[y_pos - 1]) / ( self.y_list[y_pos] - self.y_list[y_pos - 1] ) gamma = (z - self.z_list[z_pos - 1]) / ( self.z_list[z_pos] - self.z_list[z_pos - 1] ) dfdx = ( ( (1 - beta) * (1 - gamma) * self.wInterpolators[x_pos][y_pos - 1][z_pos - 1](w) + (1 - beta) * gamma * self.wInterpolators[x_pos][y_pos - 1][z_pos](w) + beta * (1 - gamma) * self.wInterpolators[x_pos][y_pos][z_pos - 1](w) + beta * gamma * self.wInterpolators[x_pos][y_pos][z_pos](w) ) - ( (1 - beta) * (1 - gamma) * self.wInterpolators[x_pos - 1][y_pos - 1][z_pos - 1](w) + (1 - beta) * gamma * self.wInterpolators[x_pos - 1][y_pos - 1][z_pos](w) + beta * (1 - gamma) * self.wInterpolators[x_pos - 1][y_pos][z_pos - 1](w) + beta * gamma * self.wInterpolators[x_pos - 1][y_pos][z_pos](w) ) ) / (self.x_list[x_pos] - self.x_list[x_pos - 1]) else: m = len(x) x_pos = np.searchsorted(self.x_list, x) x_pos[x_pos > self.x_n - 1] = self.x_n - 1 y_pos = np.searchsorted(self.y_list, y) y_pos[y_pos > self.y_n - 1] = self.y_n - 1 y_pos[y_pos < 1] = 1 z_pos = np.searchsorted(self.z_list, z) z_pos[z_pos > self.z_n - 1] = self.z_n - 1 z_pos[z_pos < 1] = 1 dfdx = np.zeros(m) + np.nan for i in range(1, self.x_n): for j in range(1, self.y_n): for k in range(1, self.z_n): c = np.logical_and( np.logical_and(i == x_pos, j == y_pos), k == z_pos ) if np.any(c): beta = (y[c] - self.y_list[j - 1]) / ( self.y_list[j] - self.y_list[j - 1] ) gamma = (z[c] - self.z_list[k - 1]) / ( self.z_list[k] - self.z_list[k - 1] ) dfdx[c] = ( ( (1 - beta) * (1 - gamma) * self.wInterpolators[i][j - 1][k - 1](w[c]) + (1 - beta) * gamma * self.wInterpolators[i][j - 1][k](w[c]) + beta * (1 - gamma) * self.wInterpolators[i][j][k - 1](w[c]) + beta * gamma * self.wInterpolators[i][j][k](w[c]) ) - ( (1 - beta) * (1 - gamma) * self.wInterpolators[i - 1][j - 1][k - 1](w[c]) + (1 - beta) * gamma * self.wInterpolators[i - 1][j - 1][k](w[c]) + beta * (1 - gamma) * self.wInterpolators[i - 1][j][k - 1](w[c]) + beta * gamma * self.wInterpolators[i - 1][j][k](w[c]) ) ) / (self.x_list[i] - self.x_list[i - 1]) return dfdx def _derY(self, w, x, y, z): """ Returns the derivative with respect to y of the interpolated function at each value in w,x,y,z. Only called internally by HARKinterpolator4D.derivativeY. """ if _isscalar(w): x_pos = max(min(np.searchsorted(self.x_list, x), self.x_n - 1), 1) y_pos = max(min(np.searchsorted(self.y_list, y), self.y_n - 1), 1) z_pos = max(min(np.searchsorted(self.z_list, z), self.z_n - 1), 1) alpha = (x - self.x_list[x_pos - 1]) / ( self.y_list[x_pos] - self.x_list[x_pos - 1] ) gamma = (z - self.z_list[z_pos - 1]) / ( self.z_list[z_pos] - self.z_list[z_pos - 1] ) dfdy = ( ( (1 - alpha) * (1 - gamma) * self.wInterpolators[x_pos - 1][y_pos][z_pos - 1](w) + (1 - alpha) * gamma * self.wInterpolators[x_pos - 1][y_pos][z_pos](w) + alpha * (1 - gamma) * self.wInterpolators[x_pos][y_pos][z_pos - 1](w) + alpha * gamma * self.wInterpolators[x_pos][y_pos][z_pos](w) ) - ( (1 - alpha) * (1 - gamma) * self.wInterpolators[x_pos - 1][y_pos - 1][z_pos - 1](w) + (1 - alpha) * gamma * self.wInterpolators[x_pos - 1][y_pos - 1][z_pos](w) + alpha * (1 - gamma) * self.wInterpolators[x_pos][y_pos - 1][z_pos - 1](w) + alpha * gamma * self.wInterpolators[x_pos][y_pos - 1][z_pos](w) ) ) / (self.y_list[y_pos] - self.y_list[y_pos - 1]) else: m = len(x) x_pos = np.searchsorted(self.x_list, x) x_pos[x_pos > self.x_n - 1] = self.x_n - 1 y_pos = np.searchsorted(self.y_list, y) y_pos[y_pos > self.y_n - 1] = self.y_n - 1 y_pos[y_pos < 1] = 1 z_pos = np.searchsorted(self.z_list, z) z_pos[z_pos > self.z_n - 1] = self.z_n - 1 z_pos[z_pos < 1] = 1 dfdy = np.zeros(m) + np.nan for i in range(1, self.x_n): for j in range(1, self.y_n): for k in range(1, self.z_n): c = np.logical_and( np.logical_and(i == x_pos, j == y_pos), k == z_pos ) if np.any(c): alpha = (x[c] - self.x_list[i - 1]) / ( self.x_list[i] - self.x_list[i - 1] ) gamma = (z[c] - self.z_list[k - 1]) / ( self.z_list[k] - self.z_list[k - 1] ) dfdy[c] = ( ( (1 - alpha) * (1 - gamma) * self.wInterpolators[i - 1][j][k - 1](w[c]) + (1 - alpha) * gamma * self.wInterpolators[i - 1][j][k](w[c]) + alpha * (1 - gamma) * self.wInterpolators[i][j][k - 1](w[c]) + alpha * gamma * self.wInterpolators[i][j][k](w[c]) ) - ( (1 - alpha) * (1 - gamma) * self.wInterpolators[i - 1][j - 1][k - 1](w[c]) + (1 - alpha) * gamma * self.wInterpolators[i - 1][j - 1][k](w[c]) + alpha * (1 - gamma) * self.wInterpolators[i][j - 1][k - 1](w[c]) + alpha * gamma * self.wInterpolators[i][j - 1][k](w[c]) ) ) / (self.y_list[j] - self.y_list[j - 1]) return dfdy def _derZ(self, w, x, y, z): """ Returns the derivative with respect to z of the interpolated function at each value in w,x,y,z. Only called internally by HARKinterpolator4D.derivativeZ. """ if _isscalar(w): x_pos = max(min(np.searchsorted(self.x_list, x), self.x_n - 1), 1) y_pos = max(min(np.searchsorted(self.y_list, y), self.y_n - 1), 1) z_pos = max(min(np.searchsorted(self.z_list, z), self.z_n - 1), 1) alpha = (x - self.x_list[x_pos - 1]) / ( self.y_list[x_pos] - self.x_list[x_pos - 1] ) beta = (y - self.y_list[y_pos - 1]) / ( self.y_list[y_pos] - self.y_list[y_pos - 1] ) dfdz = ( ( (1 - alpha) * (1 - beta) * self.wInterpolators[x_pos - 1][y_pos - 1][z_pos](w) + (1 - alpha) * beta * self.wInterpolators[x_pos - 1][y_pos][z_pos](w) + alpha * (1 - beta) * self.wInterpolators[x_pos][y_pos - 1][z_pos](w) + alpha * beta * self.wInterpolators[x_pos][y_pos][z_pos](w) ) - ( (1 - alpha) * (1 - beta) * self.wInterpolators[x_pos - 1][y_pos - 1][z_pos - 1](w) + (1 - alpha) * beta * self.wInterpolators[x_pos - 1][y_pos][z_pos - 1](w) + alpha * (1 - beta) * self.wInterpolators[x_pos][y_pos - 1][z_pos - 1](w) + alpha * beta * self.wInterpolators[x_pos][y_pos][z_pos - 1](w) ) ) / (self.z_list[z_pos] - self.z_list[z_pos - 1]) else: m = len(x) x_pos = np.searchsorted(self.x_list, x) x_pos[x_pos > self.x_n - 1] = self.x_n - 1 y_pos = np.searchsorted(self.y_list, y) y_pos[y_pos > self.y_n - 1] = self.y_n - 1 y_pos[y_pos < 1] = 1 z_pos = np.searchsorted(self.z_list, z) z_pos[z_pos > self.z_n - 1] = self.z_n - 1 z_pos[z_pos < 1] = 1 dfdz = np.zeros(m) + np.nan for i in range(1, self.x_n): for j in range(1, self.y_n): for k in range(1, self.z_n): c = np.logical_and( np.logical_and(i == x_pos, j == y_pos), k == z_pos ) if np.any(c): alpha = (x[c] - self.x_list[i - 1]) / ( self.x_list[i] - self.x_list[i - 1] ) beta = (y[c] - self.y_list[j - 1]) / ( self.y_list[j] - self.y_list[j - 1] ) dfdz[c] = ( ( (1 - alpha) * (1 - beta) * self.wInterpolators[i - 1][j - 1][k](w[c]) + (1 - alpha) * beta * self.wInterpolators[i - 1][j][k](w[c]) + alpha * (1 - beta) * self.wInterpolators[i][j - 1][k](w[c]) + alpha * beta * self.wInterpolators[i][j][k](w[c]) ) - ( (1 - alpha) * (1 - beta) * self.wInterpolators[i - 1][j - 1][k - 1](w[c]) + (1 - alpha) * beta * self.wInterpolators[i - 1][j][k - 1](w[c]) + alpha * (1 - beta) * self.wInterpolators[i][j - 1][k - 1](w[c]) + alpha * beta * self.wInterpolators[i][j][k - 1](w[c]) ) ) / (self.z_list[k] - self.z_list[k - 1]) return dfdz class LinearInterpOnInterp2D(HARKinterpolator3D): """ A 3D interpolation method that linearly interpolates between "layers" of arbitrary 2D interpolations. Useful for models with two endogenous state variables and one exogenous state variable when solving with the endogenous grid method. NOTE: should not be used if an exogenous 3D grid is used, will be significantly slower than TrilinearInterp. Constructor for the class, generating an approximation to a function of the form f(x,y,z) using interpolations over f(x,y,z_0) for a fixed grid of z_0 values. Parameters ---------- xyInterpolators : [HARKinterpolator2D] A list of 2D interpolations over the x and y variables. The nth element of xyInterpolators represents f(x,y,z_values[n]). z_values: numpy.array An array of z values equal in length to xyInterpolators. """ distance_criteria = ["xyInterpolators", "z_list"] def __init__(self, xyInterpolators, z_values): self.xyInterpolators = xyInterpolators self.z_list = z_values self.z_n = z_values.size def _evaluate(self, x, y, z): """ Returns the level of the interpolated function at each value in x,y,z. Only called internally by HARKinterpolator3D.__call__ (etc). """ if _isscalar(x): z_pos = max(min(np.searchsorted(self.z_list, z), self.z_n - 1), 1) alpha = (z - self.z_list[z_pos - 1]) / ( self.z_list[z_pos] - self.z_list[z_pos - 1] ) f = (1 - alpha) * self.xyInterpolators[z_pos - 1]( x, y ) + alpha * self.xyInterpolators[z_pos](x, y) else: m = len(x) z_pos = np.searchsorted(self.z_list, z) z_pos[z_pos > self.z_n - 1] = self.z_n - 1 z_pos[z_pos < 1] = 1 f = np.zeros(m) + np.nan if x.size > 0: for i in range(1, self.z_n): c = z_pos == i if np.any(c): alpha = (z[c] - self.z_list[i - 1]) / ( self.z_list[i] - self.z_list[i - 1] ) f[c] = (1 - alpha) * self.xyInterpolators[i - 1]( x[c], y[c] ) + alpha * self.xyInterpolators[i](x[c], y[c]) return f def _derX(self, x, y, z): """ Returns the derivative with respect to x of the interpolated function at each value in x,y,z. Only called internally by HARKinterpolator3D.derivativeX. """ if _isscalar(x): z_pos = max(min(np.searchsorted(self.z_list, z), self.z_n - 1), 1) alpha = (z - self.z_list[z_pos - 1]) / ( self.z_list[z_pos] - self.z_list[z_pos - 1] ) dfdx = (1 - alpha) * self.xyInterpolators[z_pos - 1].derivativeX( x, y ) + alpha * self.xyInterpolators[z_pos].derivativeX(x, y) else: m = len(x) z_pos = np.searchsorted(self.z_list, z) z_pos[z_pos > self.z_n - 1] = self.z_n - 1 z_pos[z_pos < 1] = 1 dfdx = np.zeros(m) + np.nan if x.size > 0: for i in range(1, self.z_n): c = z_pos == i if np.any(c): alpha = (z[c] - self.z_list[i - 1]) / ( self.z_list[i] - self.z_list[i - 1] ) dfdx[c] = (1 - alpha) * self.xyInterpolators[i - 1].derivativeX( x[c], y[c] ) + alpha * self.xyInterpolators[i].derivativeX(x[c], y[c]) return dfdx def _derY(self, x, y, z): """ Returns the derivative with respect to y of the interpolated function at each value in x,y,z. Only called internally by HARKinterpolator3D.derivativeY. """ if _isscalar(x): z_pos = max(min(np.searchsorted(self.z_list, z), self.z_n - 1), 1) alpha = (z - self.z_list[z_pos - 1]) / ( self.z_list[z_pos] - self.z_list[z_pos - 1] ) dfdy = (1 - alpha) * self.xyInterpolators[z_pos - 1].derivativeY( x, y ) + alpha * self.xyInterpolators[z_pos].derivativeY(x, y) else: m = len(x) z_pos = np.searchsorted(self.z_list, z) z_pos[z_pos > self.z_n - 1] = self.z_n - 1 z_pos[z_pos < 1] = 1 dfdy = np.zeros(m) + np.nan if x.size > 0: for i in range(1, self.z_n): c = z_pos == i if np.any(c): alpha = (z[c] - self.z_list[i - 1]) / ( self.z_list[i] - self.z_list[i - 1] ) dfdy[c] = (1 - alpha) * self.xyInterpolators[i - 1].derivativeY( x[c], y[c] ) + alpha * self.xyInterpolators[i].derivativeY(x[c], y[c]) return dfdy def _derZ(self, x, y, z): """ Returns the derivative with respect to z of the interpolated function at each value in x,y,z. Only called internally by HARKinterpolator3D.derivativeZ. """ if _isscalar(x): z_pos = max(min(np.searchsorted(self.z_list, z), self.z_n - 1), 1) dfdz = ( self.xyInterpolators[z_pos].derivativeX(x, y) - self.xyInterpolators[z_pos - 1].derivativeX(x, y) ) / (self.z_list[z_pos] - self.z_list[z_pos - 1]) else: m = len(x) z_pos = np.searchsorted(self.z_list, z) z_pos[z_pos > self.z_n - 1] = self.z_n - 1 z_pos[z_pos < 1] = 1 dfdz = np.zeros(m) + np.nan if x.size > 0: for i in range(1, self.z_n): c = z_pos == i if np.any(c): dfdz[c] = ( self.xyInterpolators[i](x[c], y[c]) - self.xyInterpolators[i - 1](x[c], y[c]) ) / (self.z_list[i] - self.z_list[i - 1]) return dfdz class BilinearInterpOnInterp2D(HARKinterpolator4D): """ A 4D interpolation method that bilinearly interpolates among "layers" of arbitrary 2D interpolations. Useful for models with two endogenous state variables and two exogenous state variables when solving with the endogenous grid method. NOTE: should not be used if an exogenous 4D grid is used, will be significantly slower than QuadlinearInterp. Constructor for the class, generating an approximation to a function of the form f(w,x,y,z) using interpolations over f(w,x,y_0,z_0) for a fixed grid of y_0 and z_0 values. Parameters ---------- wxInterpolators : [[HARKinterpolator2D]] A list of lists of 2D interpolations over the w and x variables. The i,j-th element of wxInterpolators represents f(w,x,y_values[i],z_values[j]). y_values: numpy.array An array of y values equal in length to wxInterpolators. z_values: numpy.array An array of z values equal in length to wxInterpolators[0]. """ distance_criteria = ["wxInterpolators", "y_list", "z_list"] def __init__(self, wxInterpolators, y_values, z_values): self.wxInterpolators = wxInterpolators self.y_list = y_values self.y_n = y_values.size self.z_list = z_values self.z_n = z_values.size def _evaluate(self, w, x, y, z): """ Returns the level of the interpolated function at each value in x,y,z. Only called internally by HARKinterpolator4D.__call__ (etc). """ if _isscalar(x): y_pos = max(min(np.searchsorted(self.y_list, y), self.y_n - 1), 1) z_pos = max(min(np.searchsorted(self.z_list, z), self.z_n - 1), 1) alpha = (y - self.y_list[y_pos - 1]) / ( self.y_list[y_pos] - self.y_list[y_pos - 1] ) beta = (z - self.z_list[z_pos - 1]) / ( self.z_list[z_pos] - self.z_list[z_pos - 1] ) f = ( (1 - alpha) * (1 - beta) * self.wxInterpolators[y_pos - 1][z_pos - 1](w, x) + (1 - alpha) * beta * self.wxInterpolators[y_pos - 1][z_pos](w, x) + alpha * (1 - beta) * self.wxInterpolators[y_pos][z_pos - 1](w, x) + alpha * beta * self.wxInterpolators[y_pos][z_pos](w, x) ) else: m = len(x) y_pos = np.searchsorted(self.y_list, y) y_pos[y_pos > self.y_n - 1] = self.y_n - 1 y_pos[y_pos < 1] = 1 z_pos = np.searchsorted(self.z_list, z) z_pos[z_pos > self.z_n - 1] = self.z_n - 1 z_pos[z_pos < 1] = 1 f = np.zeros(m) + np.nan for i in range(1, self.y_n): for j in range(1, self.z_n): c = np.logical_and(i == y_pos, j == z_pos) if np.any(c): alpha = (y[c] - self.y_list[i - 1]) / ( self.y_list[i] - self.y_list[i - 1] ) beta = (z[c] - self.z_list[j - 1]) / ( self.z_list[j] - self.z_list[j - 1] ) f[c] = ( (1 - alpha) * (1 - beta) * self.wxInterpolators[i - 1][j - 1](w[c], x[c]) + (1 - alpha) * beta * self.wxInterpolators[i - 1][j](w[c], x[c]) + alpha * (1 - beta) * self.wxInterpolators[i][j - 1](w[c], x[c]) + alpha * beta * self.wxInterpolators[i][j](w[c], x[c]) ) return f def _derW(self, w, x, y, z): """ Returns the derivative with respect to w of the interpolated function at each value in w,x,y,z. Only called internally by HARKinterpolator4D.derivativeW. """ # This may look strange, as we call the derivativeX() method to get the # derivative with respect to w, but that's just a quirk of 4D interpolations # beginning with w rather than x. The derivative wrt the first dimension # of an element of wxInterpolators is the w-derivative of the main function. if _isscalar(x): y_pos = max(min(np.searchsorted(self.y_list, y), self.y_n - 1), 1) z_pos = max(min(np.searchsorted(self.z_list, z), self.z_n - 1), 1) alpha = (y - self.y_list[y_pos - 1]) / ( self.y_list[y_pos] - self.y_list[y_pos - 1] ) beta = (z - self.z_list[z_pos - 1]) / ( self.z_list[z_pos] - self.z_list[z_pos - 1] ) dfdw = ( (1 - alpha) * (1 - beta) * self.wxInterpolators[y_pos - 1][z_pos - 1].derivativeX(w, x) + (1 - alpha) * beta * self.wxInterpolators[y_pos - 1][z_pos].derivativeX(w, x) + alpha * (1 - beta) * self.wxInterpolators[y_pos][z_pos - 1].derivativeX(w, x) + alpha * beta * self.wxInterpolators[y_pos][z_pos].derivativeX(w, x) ) else: m = len(x) y_pos = np.searchsorted(self.y_list, y) y_pos[y_pos > self.y_n - 1] = self.y_n - 1 y_pos[y_pos < 1] = 1 z_pos = np.searchsorted(self.z_list, z) z_pos[z_pos > self.z_n - 1] = self.z_n - 1 z_pos[z_pos < 1] = 1 dfdw = np.zeros(m) + np.nan for i in range(1, self.y_n): for j in range(1, self.z_n): c = np.logical_and(i == y_pos, j == z_pos) if np.any(c): alpha = (y[c] - self.y_list[i - 1]) / ( self.y_list[i] - self.y_list[i - 1] ) beta = (z[c] - self.z_list[j - 1]) / ( self.z_list[j] - self.z_list[j - 1] ) dfdw[c] = ( (1 - alpha) * (1 - beta) * self.wxInterpolators[i - 1][j - 1].derivativeX(w[c], x[c]) + (1 - alpha) * beta * self.wxInterpolators[i - 1][j].derivativeX(w[c], x[c]) + alpha * (1 - beta) * self.wxInterpolators[i][j - 1].derivativeX(w[c], x[c]) + alpha * beta * self.wxInterpolators[i][j].derivativeX(w[c], x[c]) ) return dfdw def _derX(self, w, x, y, z): """ Returns the derivative with respect to x of the interpolated function at each value in w,x,y,z. Only called internally by HARKinterpolator4D.derivativeX. """ # This may look strange, as we call the derivativeY() method to get the # derivative with respect to x, but that's just a quirk of 4D interpolations # beginning with w rather than x. The derivative wrt the second dimension # of an element of wxInterpolators is the x-derivative of the main function. if _isscalar(x): y_pos = max(min(np.searchsorted(self.y_list, y), self.y_n - 1), 1) z_pos = max(min(np.searchsorted(self.z_list, z), self.z_n - 1), 1) alpha = (y - self.y_list[y_pos - 1]) / ( self.y_list[y_pos] - self.y_list[y_pos - 1] ) beta = (z - self.z_list[z_pos - 1]) / ( self.z_list[z_pos] - self.z_list[z_pos - 1] ) dfdx = ( (1 - alpha) * (1 - beta) * self.wxInterpolators[y_pos - 1][z_pos - 1].derivativeY(w, x) + (1 - alpha) * beta * self.wxInterpolators[y_pos - 1][z_pos].derivativeY(w, x) + alpha * (1 - beta) * self.wxInterpolators[y_pos][z_pos - 1].derivativeY(w, x) + alpha * beta * self.wxInterpolators[y_pos][z_pos].derivativeY(w, x) ) else: m = len(x) y_pos = np.searchsorted(self.y_list, y) y_pos[y_pos > self.y_n - 1] = self.y_n - 1 y_pos[y_pos < 1] = 1 z_pos = np.searchsorted(self.z_list, z) z_pos[z_pos > self.z_n - 1] = self.z_n - 1 z_pos[z_pos < 1] = 1 dfdx = np.zeros(m) + np.nan for i in range(1, self.y_n): for j in range(1, self.z_n): c = np.logical_and(i == y_pos, j == z_pos) if np.any(c): alpha = (y[c] - self.y_list[i - 1]) / ( self.y_list[i] - self.y_list[i - 1] ) beta = (z[c] - self.z_list[j - 1]) / ( self.z_list[j] - self.z_list[j - 1] ) dfdx[c] = ( (1 - alpha) * (1 - beta) * self.wxInterpolators[i - 1][j - 1].derivativeY(w[c], x[c]) + (1 - alpha) * beta * self.wxInterpolators[i - 1][j].derivativeY(w[c], x[c]) + alpha * (1 - beta) * self.wxInterpolators[i][j - 1].derivativeY(w[c], x[c]) + alpha * beta * self.wxInterpolators[i][j].derivativeY(w[c], x[c]) ) return dfdx def _derY(self, w, x, y, z): """ Returns the derivative with respect to y of the interpolated function at each value in w,x,y,z. Only called internally by HARKinterpolator4D.derivativeY. """ if _isscalar(x): y_pos = max(min(np.searchsorted(self.y_list, y), self.y_n - 1), 1) z_pos = max(min(np.searchsorted(self.z_list, z), self.z_n - 1), 1) beta = (z - self.z_list[z_pos - 1]) / ( self.z_list[z_pos] - self.z_list[z_pos - 1] ) dfdy = ( ( (1 - beta) * self.wxInterpolators[y_pos][z_pos - 1](w, x) + beta * self.wxInterpolators[y_pos][z_pos](w, x) ) - ( (1 - beta) * self.wxInterpolators[y_pos - 1][z_pos - 1](w, x) + beta * self.wxInterpolators[y_pos - 1][z_pos](w, x) ) ) / (self.y_list[y_pos] - self.y_list[y_pos - 1]) else: m = len(x) y_pos = np.searchsorted(self.y_list, y) y_pos[y_pos > self.y_n - 1] = self.y_n - 1 y_pos[y_pos < 1] = 1 z_pos = np.searchsorted(self.z_list, z) z_pos[z_pos > self.z_n - 1] = self.z_n - 1 z_pos[z_pos < 1] = 1 dfdy = np.zeros(m) + np.nan for i in range(1, self.y_n): for j in range(1, self.z_n): c = np.logical_and(i == y_pos, j == z_pos) if np.any(c): beta = (z[c] - self.z_list[j - 1]) / ( self.z_list[j] - self.z_list[j - 1] ) dfdy[c] = ( ( (1 - beta) * self.wxInterpolators[i][j - 1](w[c], x[c]) + beta * self.wxInterpolators[i][j](w[c], x[c]) ) - ( (1 - beta) * self.wxInterpolators[i - 1][j - 1](w[c], x[c]) + beta * self.wxInterpolators[i - 1][j](w[c], x[c]) ) ) / (self.y_list[i] - self.y_list[i - 1]) return dfdy def _derZ(self, w, x, y, z): """ Returns the derivative with respect to z of the interpolated function at each value in w,x,y,z. Only called internally by HARKinterpolator4D.derivativeZ. """ if _isscalar(x): y_pos = max(min(np.searchsorted(self.y_list, y), self.y_n - 1), 1) z_pos = max(min(np.searchsorted(self.z_list, z), self.z_n - 1), 1) alpha = (y - self.y_list[y_pos - 1]) / ( self.y_list[y_pos] - self.y_list[y_pos - 1] ) dfdz = ( ( (1 - alpha) * self.wxInterpolators[y_pos - 1][z_pos](w, x) + alpha * self.wxInterpolators[y_pos][z_pos](w, x) ) - ( (1 - alpha) * self.wxInterpolators[y_pos - 1][z_pos - 1](w, x) + alpha * self.wxInterpolators[y_pos][z_pos - 1](w, x) ) ) / (self.z_list[z_pos] - self.z_list[z_pos - 1]) else: m = len(x) y_pos = np.searchsorted(self.y_list, y) y_pos[y_pos > self.y_n - 1] = self.y_n - 1 y_pos[y_pos < 1] = 1 z_pos = np.searchsorted(self.z_list, z) z_pos[z_pos > self.z_n - 1] = self.z_n - 1 z_pos[z_pos < 1] = 1 dfdz = np.zeros(m) + np.nan for i in range(1, self.y_n): for j in range(1, self.z_n): c = np.logical_and(i == y_pos, j == z_pos) if np.any(c): alpha = (y[c] - self.y_list[i - 1]) / ( self.y_list[i] - self.y_list[i - 1] ) dfdz[c] = ( ( (1 - alpha) * self.wxInterpolators[i - 1][j](w[c], x[c]) + alpha * self.wxInterpolators[i][j](w[c], x[c]) ) - ( (1 - alpha) * self.wxInterpolators[i - 1][j - 1](w[c], x[c]) + alpha * self.wxInterpolators[i][j - 1](w[c], x[c]) ) ) / (self.z_list[j] - self.z_list[j - 1]) return dfdz class Curvilinear2DInterp(HARKinterpolator2D): """ A 2D interpolation method for curvilinear or "warped grid" interpolation, as in White (2015). Used for models with two endogenous states that are solved with the endogenous grid method. Parameters ---------- f_values: numpy.array A 2D array of function values such that f_values[i,j] = f(x_values[i,j],y_values[i,j]). x_values: numpy.array A 2D array of x values of the same size as f_values. y_values: numpy.array A 2D array of y values of the same size as f_values. """ distance_criteria = ["f_values", "x_values", "y_values"] def __init__(self, f_values, x_values, y_values): self.f_values = f_values self.x_values = x_values self.y_values = y_values my_shape = f_values.shape self.x_n = my_shape[0] self.y_n = my_shape[1] self.update_polarity() def update_polarity(self): """ Fills in the polarity attribute of the interpolation, determining whether the "plus" (True) or "minus" (False) solution of the system of equations should be used for each sector. Needs to be called in __init__. Parameters ---------- none Returns ------- none """ # Grab a point known to be inside each sector: the midway point between # the lower left and upper right vertex of each sector x_temp = 0.5 * ( self.x_values[0: (self.x_n - 1), 0: (self.y_n - 1)] + self.x_values[1: self.x_n, 1: self.y_n] ) y_temp = 0.5 * ( self.y_values[0: (self.x_n - 1), 0: (self.y_n - 1)] + self.y_values[1: self.x_n, 1: self.y_n] ) size = (self.x_n - 1) * (self.y_n - 1) x_temp = np.reshape(x_temp, size) y_temp = np.reshape(y_temp, size) y_pos = np.tile(np.arange(0, self.y_n - 1), self.x_n - 1) x_pos = np.reshape( np.tile(np.arange(0, self.x_n - 1), (self.y_n - 1, 1)).transpose(), size ) # Set the polarity of all sectors to "plus", then test each sector self.polarity = np.ones((self.x_n - 1, self.y_n - 1), dtype=bool) alpha, beta = self.find_coords(x_temp, y_temp, x_pos, y_pos) polarity = np.logical_and( np.logical_and(alpha > 0, alpha < 1), np.logical_and(beta > 0, beta < 1) ) # Update polarity: if (alpha,beta) not in the unit square, then that # sector must use the "minus" solution instead self.polarity = np.reshape(polarity, (self.x_n - 1, self.y_n - 1)) def find_sector(self, x, y): """ Finds the quadrilateral "sector" for each (x,y) point in the input. Only called as a subroutine of _evaluate(). Parameters ---------- x : np.array Values whose sector should be found. y : np.array Values whose sector should be found. Should be same size as x. Returns ------- x_pos : np.array Sector x-coordinates for each point of the input, of the same size. y_pos : np.array Sector y-coordinates for each point of the input, of the same size. """ # Initialize the sector guess m = x.size x_pos_guess = (np.ones(m) * self.x_n / 2).astype(int) y_pos_guess = (np.ones(m) * self.y_n / 2).astype(int) # Define a function that checks whether a set of points violates a linear # boundary defined by (x_bound_1,y_bound_1) and (x_bound_2,y_bound_2), # where the latter is *COUNTER CLOCKWISE* from the former. Returns # 1 if the point is outside the boundary and 0 otherwise. violation_check = ( lambda x_check, y_check, x_bound_1, y_bound_1, x_bound_2, y_bound_2: ( (y_bound_2 - y_bound_1) * x_check - (x_bound_2 - x_bound_1) * y_check > x_bound_1 * y_bound_2 - y_bound_1 * x_bound_2 ) + 0 ) # Identify the correct sector for each point to be evaluated these = np.ones(m, dtype=bool) max_loops = self.x_n + self.y_n loops = 0 while np.any(these) and loops < max_loops: # Get coordinates for the four vertices: (xA,yA),...,(xD,yD) x_temp = x[these] y_temp = y[these] xA = self.x_values[x_pos_guess[these], y_pos_guess[these]] xB = self.x_values[x_pos_guess[these] + 1, y_pos_guess[these]] xC = self.x_values[x_pos_guess[these], y_pos_guess[these] + 1] xD = self.x_values[x_pos_guess[these] + 1, y_pos_guess[these] + 1] yA = self.y_values[x_pos_guess[these], y_pos_guess[these]] yB = self.y_values[x_pos_guess[these] + 1, y_pos_guess[these]] yC = self.y_values[x_pos_guess[these], y_pos_guess[these] + 1] yD = self.y_values[x_pos_guess[these] + 1, y_pos_guess[these] + 1] # Check the "bounding box" for the sector: is this guess plausible? move_down = (y_temp < np.minimum(yA, yB)) + 0 move_right = (x_temp > np.maximum(xB, xD)) + 0 move_up = (y_temp > np.maximum(yC, yD)) + 0 move_left = (x_temp < np.minimum(xA, xC)) + 0 # Check which boundaries are violated (and thus where to look next) c = (move_down + move_right + move_up + move_left) == 0 move_down[c] = violation_check( x_temp[c], y_temp[c], xA[c], yA[c], xB[c], yB[c] ) move_right[c] = violation_check( x_temp[c], y_temp[c], xB[c], yB[c], xD[c], yD[c] ) move_up[c] = violation_check( x_temp[c], y_temp[c], xD[c], yD[c], xC[c], yC[c] ) move_left[c] = violation_check( x_temp[c], y_temp[c], xC[c], yC[c], xA[c], yA[c] ) # Update the sector guess based on the violations x_pos_next = x_pos_guess[these] - move_left + move_right x_pos_next[x_pos_next < 0] = 0 x_pos_next[x_pos_next > (self.x_n - 2)] = self.x_n - 2 y_pos_next = y_pos_guess[these] - move_down + move_up y_pos_next[y_pos_next < 0] = 0 y_pos_next[y_pos_next > (self.y_n - 2)] = self.y_n - 2 # Check which sectors have not changed, and mark them as complete no_move = np.array( np.logical_and( x_pos_guess[these] == x_pos_next, y_pos_guess[these] == y_pos_next ) ) x_pos_guess[these] = x_pos_next y_pos_guess[these] = y_pos_next temp = these.nonzero() these[temp[0][no_move]] = False # Move to the next iteration of the search loops += 1 # Return the output x_pos = x_pos_guess y_pos = y_pos_guess return x_pos, y_pos def find_coords(self, x, y, x_pos, y_pos): """ Calculates the relative coordinates (alpha,beta) for each point (x,y), given the sectors (x_pos,y_pos) in which they reside. Only called as a subroutine of __call__(). Parameters ---------- x : np.array Values whose sector should be found. y : np.array Values whose sector should be found. Should be same size as x. x_pos : np.array Sector x-coordinates for each point in (x,y), of the same size. y_pos : np.array Sector y-coordinates for each point in (x,y), of the same size. Returns ------- alpha : np.array Relative "horizontal" position of the input in their respective sectors. beta : np.array Relative "vertical" position of the input in their respective sectors. """ # Calculate relative coordinates in the sector for each point xA = self.x_values[x_pos, y_pos] xB = self.x_values[x_pos + 1, y_pos] xC = self.x_values[x_pos, y_pos + 1] xD = self.x_values[x_pos + 1, y_pos + 1] yA = self.y_values[x_pos, y_pos] yB = self.y_values[x_pos + 1, y_pos] yC = self.y_values[x_pos, y_pos + 1] yD = self.y_values[x_pos + 1, y_pos + 1] polarity = 2.0 * self.polarity[x_pos, y_pos] - 1.0 a = xA b = xB - xA c = xC - xA d = xA - xB - xC + xD e = yA f = yB - yA g = yC - yA h = yA - yB - yC + yD denom = d * g - h * c mu = (h * b - d * f) / denom tau = (h * (a - x) - d * (e - y)) / denom zeta = a - x + c * tau eta = b + c * mu + d * tau theta = d * mu alpha = (-eta + polarity * np.sqrt(eta ** 2.0 - 4.0 * zeta * theta)) / ( 2.0 * theta ) beta = mu * alpha + tau # Alternate method if there are sectors that are "too regular" z = np.logical_or( np.isnan(alpha), np.isnan(beta) ) # These points weren't able to identify coordinates if np.any(z): these = np.isclose( f / b, (yD - yC) / (xD - xC) ) # iso-beta lines have equal slope if np.any(these): kappa = f[these] / b[these] int_bot = yA[these] - kappa * xA[these] int_top = yC[these] - kappa * xC[these] int_these = y[these] - kappa * x[these] beta_temp = (int_these - int_bot) / (int_top - int_bot) x_left = beta_temp * xC[these] + (1.0 - beta_temp) * xA[these] x_right = beta_temp * xD[these] + (1.0 - beta_temp) * xB[these] alpha_temp = (x[these] - x_left) / (x_right - x_left) beta[these] = beta_temp alpha[these] = alpha_temp # print(np.sum(np.isclose(g/c,(yD-yB)/(xD-xB)))) return alpha, beta def _evaluate(self, x, y): """ Returns the level of the interpolated function at each value in x,y. Only called internally by HARKinterpolator2D.__call__ (etc). """ x_pos, y_pos = self.find_sector(x, y) alpha, beta = self.find_coords(x, y, x_pos, y_pos) # Calculate the function at each point using bilinear interpolation f = ( (1 - alpha) * (1 - beta) * self.f_values[x_pos, y_pos] + (1 - alpha) * beta * self.f_values[x_pos, y_pos + 1] + alpha * (1 - beta) * self.f_values[x_pos + 1, y_pos] + alpha * beta * self.f_values[x_pos + 1, y_pos + 1] ) return f def _derX(self, x, y): """ Returns the derivative with respect to x of the interpolated function at each value in x,y. Only called internally by HARKinterpolator2D.derivativeX. """ x_pos, y_pos = self.find_sector(x, y) alpha, beta = self.find_coords(x, y, x_pos, y_pos) # Get four corners data for each point xA = self.x_values[x_pos, y_pos] xB = self.x_values[x_pos + 1, y_pos] xC = self.x_values[x_pos, y_pos + 1] xD = self.x_values[x_pos + 1, y_pos + 1] yA = self.y_values[x_pos, y_pos] yB = self.y_values[x_pos + 1, y_pos] yC = self.y_values[x_pos, y_pos + 1] yD = self.y_values[x_pos + 1, y_pos + 1] fA = self.f_values[x_pos, y_pos] fB = self.f_values[x_pos + 1, y_pos] fC = self.f_values[x_pos, y_pos + 1] fD = self.f_values[x_pos + 1, y_pos + 1] # Calculate components of the alpha,beta --> x,y delta translation matrix alpha_x = (1 - beta) * (xB - xA) + beta * (xD - xC) alpha_y = (1 - beta) * (yB - yA) + beta * (yD - yC) beta_x = (1 - alpha) * (xC - xA) + alpha * (xD - xB) beta_y = (1 - alpha) * (yC - yA) + alpha * (yD - yB) # Invert the delta translation matrix into x,y --> alpha,beta det = alpha_x * beta_y - beta_x * alpha_y x_alpha = beta_y / det x_beta = -alpha_y / det # Calculate the derivative of f w.r.t. alpha and beta dfda = (1 - beta) * (fB - fA) + beta * (fD - fC) dfdb = (1 - alpha) * (fC - fA) + alpha * (fD - fB) # Calculate the derivative with respect to x (and return it) dfdx = x_alpha * dfda + x_beta * dfdb return dfdx def _derY(self, x, y): """ Returns the derivative with respect to y of the interpolated function at each value in x,y. Only called internally by HARKinterpolator2D.derivativeX. """ x_pos, y_pos = self.find_sector(x, y) alpha, beta = self.find_coords(x, y, x_pos, y_pos) # Get four corners data for each point xA = self.x_values[x_pos, y_pos] xB = self.x_values[x_pos + 1, y_pos] xC = self.x_values[x_pos, y_pos + 1] xD = self.x_values[x_pos + 1, y_pos + 1] yA = self.y_values[x_pos, y_pos] yB = self.y_values[x_pos + 1, y_pos] yC = self.y_values[x_pos, y_pos + 1] yD = self.y_values[x_pos + 1, y_pos + 1] fA = self.f_values[x_pos, y_pos] fB = self.f_values[x_pos + 1, y_pos] fC = self.f_values[x_pos, y_pos + 1] fD = self.f_values[x_pos + 1, y_pos + 1] # Calculate components of the alpha,beta --> x,y delta translation matrix alpha_x = (1 - beta) * (xB - xA) + beta * (xD - xC) alpha_y = (1 - beta) * (yB - yA) + beta * (yD - yC) beta_x = (1 - alpha) * (xC - xA) + alpha * (xD - xB) beta_y = (1 - alpha) * (yC - yA) + alpha * (yD - yB) # Invert the delta translation matrix into x,y --> alpha,beta det = alpha_x * beta_y - beta_x * alpha_y y_alpha = -beta_x / det y_beta = alpha_x / det # Calculate the derivative of f w.r.t. alpha and beta dfda = (1 - beta) * (fB - fA) + beta * (fD - fC) dfdb = (1 - alpha) * (fC - fA) + alpha * (fD - fB) # Calculate the derivative with respect to x (and return it) dfdy = y_alpha * dfda + y_beta * dfdb return dfdy class DiscreteInterp(MetricObject): """ An interpolator for variables that can only take a discrete set of values. If the function we wish to interpolate, f(args) can take on the list of values discrete_vals, this class expects an interpolator for the index of f's value in discrete_vals. E.g., if f(a,b,c) = discrete_vals[5], then index_interp(a,b,c) = 5. Parameters ---------- index_interp: HARKInterpolator An interpolator giving an approximation to the index of the value in discrete_vals that corresponds to a given set of arguments. discrete_vals: numpy.array A 1D array containing the values in the range of the discrete function to be interpolated. """ distance_criteria = ["index_interp"] def __init__(self, index_interp, discrete_vals): self.index_interp = index_interp self.discrete_vals = discrete_vals self.n_vals = len(self.discrete_vals) def __call__(self, *args): # Interpolate indices and round to integers inds = np.rint(self.index_interp(*args)).astype(int) if type(inds) is not np.ndarray: inds = np.array(inds) # Deal with out-of range indices inds[inds < 0] = 0 inds[inds >= self.n_vals] = self.n_vals - 1 # Get values from grid return self.discrete_vals[inds] ############################################################################### ## Functions used in discrete choice models with T1EV taste shocks ############ ############################################################################### def calc_log_sum_choice_probs(Vals, sigma): """ Returns the final optimal value and choice probabilities given the choice specific value functions `Vals`. Probabilities are degenerate if sigma == 0.0. Parameters ---------- Vals : [numpy.array] A numpy.array that holds choice specific values at common grid points. sigma : float A number that controls the variance of the taste shocks Returns ------- V : [numpy.array] A numpy.array that holds the integrated value function. P : [numpy.array] A numpy.array that holds the discrete choice probabilities """ # Assumes that NaNs have been replaced by -numpy.inf or similar if sigma == 0.0: # We could construct a linear index here and use unravel_index. Pflat = np.argmax(Vals, axis=0) V = np.zeros(Vals[0].shape) Probs = np.zeros(Vals.shape) for i in range(Vals.shape[0]): optimalIndices = Pflat == i V[optimalIndices] = Vals[i][optimalIndices] Probs[i][optimalIndices] = 1 return V, Probs # else we have a taste shock maxV = np.max(Vals, axis=0) # calculate maxV+sigma*log(sum_i=1^J exp((V[i]-maxV))/sigma) sumexp = np.sum(np.exp((Vals - maxV) / sigma), axis=0) LogSumV = np.log(sumexp) LogSumV = maxV + sigma * LogSumV Probs = np.exp((Vals - LogSumV) / sigma) return LogSumV, Probs def calc_choice_probs(Vals, sigma): """ Returns the choice probabilities given the choice specific value functions `Vals`. Probabilities are degenerate if sigma == 0.0. Parameters ---------- Vals : [numpy.array] A numpy.array that holds choice specific values at common grid points. sigma : float A number that controls the variance of the taste shocks Returns ------- Probs : [numpy.array] A numpy.array that holds the discrete choice probabilities """ # Assumes that NaNs have been replaced by -numpy.inf or similar if sigma == 0.0: # We could construct a linear index here and use unravel_index. Pflat = np.argmax(Vals, axis=0) Probs = np.zeros(Vals.shape) for i in range(Vals.shape[0]): Probs[i][Pflat == i] = 1 return Probs maxV = np.max(Vals, axis=0) Probs = np.divide( np.exp((Vals - maxV) / sigma), np.sum(np.exp((Vals - maxV) / sigma), axis=0) ) return Probs def calc_log_sum(Vals, sigma): """ Returns the optimal value given the choice specific value functions Vals. Parameters ---------- Vals : [numpy.array] A numpy.array that holds choice specific values at common grid points. sigma : float A number that controls the variance of the taste shocks Returns ------- V : [numpy.array] A numpy.array that holds the integrated value function. """ # Assumes that NaNs have been replaced by -numpy.inf or similar if sigma == 0.0: # We could construct a linear index here and use unravel_index. V = np.amax(Vals, axis=0) return V # else we have a taste shock maxV = np.max(Vals, axis=0) # calculate maxV+sigma*log(sum_i=1^J exp((V[i]-maxV))/sigma) sumexp = np.sum(np.exp((Vals - maxV) / sigma), axis=0) LogSumV = np.log(sumexp) LogSumV = maxV + sigma * LogSumV return LogSumV ############################################################################### # Tools for value and marginal-value functions in models where # # - dvdm = u'(c). # # - u is of the CRRA family. # ############################################################################### class ValueFuncCRRA(MetricObject): """ A class for representing a value function. The underlying interpolation is in the space of (state,u_inv(v)); this class "re-curves" to the value function. Parameters ---------- vFuncNvrs : function A real function representing the value function composed with the inverse utility function, defined on the state: u_inv(vFunc(state)) CRRA : float Coefficient of relative risk aversion. """ distance_criteria = ["func", "CRRA"] def __init__(self, vFuncNvrs, CRRA): self.func = deepcopy(vFuncNvrs) self.CRRA = CRRA def __call__(self, *vFuncArgs): """ Evaluate the value function at given levels of market resources m. Parameters ---------- vFuncArgs : floats or np.arrays, all of the same dimensions. Values for the state variables. These usually start with 'm', market resources normalized by the level of permanent income. Returns ------- v : float or np.array Lifetime value of beginning this period with the given states; has same size as the state inputs. """ return CRRAutility(self.func(*vFuncArgs), gam=self.CRRA) class MargValueFuncCRRA(MetricObject): """ A class for representing a marginal value function in models where the standard envelope condition of dvdm(state) = u'(c(state)) holds (with CRRA utility). Parameters ---------- cFunc : function. Its first argument must be normalized market resources m. A real function representing the marginal value function composed with the inverse marginal utility function, defined on the state variables: uP_inv(dvdmFunc(state)). Called cFunc because when standard envelope condition applies, uP_inv(dvdm(state)) = cFunc(state). CRRA : float Coefficient of relative risk aversion. """ distance_criteria = ["cFunc", "CRRA"] def __init__(self, cFunc, CRRA): self.cFunc = deepcopy(cFunc) self.CRRA = CRRA def __call__(self, *cFuncArgs): """ Evaluate the marginal value function at given levels of market resources m. Parameters ---------- cFuncArgs : floats or np.arrays Values of the state variables at which to evaluate the marginal value function. Returns ------- vP : float or np.array Marginal lifetime value of beginning this period with state cFuncArgs """ return CRRAutilityP(self.cFunc(*cFuncArgs), gam=self.CRRA) def derivativeX(self, *cFuncArgs): """ Evaluate the derivative of the marginal value function with respect to market resources at given state; this is the marginal marginal value function. Parameters ---------- cFuncArgs : floats or np.arrays State variables. Returns ------- vPP : float or np.array Marginal marginal lifetime value of beginning this period with state cFuncArgs; has same size as inputs. """ # The derivative method depends on the dimension of the function if isinstance(self.cFunc, (HARKinterpolator1D)): c, MPC = self.cFunc.eval_with_derivative(*cFuncArgs) elif hasattr(self.cFunc, 'derivativeX'): c = self.cFunc(*cFuncArgs) MPC = self.cFunc.derivativeX(*cFuncArgs) else: raise Exception( "cFunc does not have a 'derivativeX' attribute. Can't compute" + "marginal marginal value." ) return MPC * CRRAutilityPP(c, gam=self.CRRA) class MargMargValueFuncCRRA(MetricObject): """ A class for representing a marginal marginal value function in models where the standard envelope condition of dvdm = u'(c(state)) holds (with CRRA utility). Parameters ---------- cFunc : function. Its first argument must be normalized market resources m. A real function representing the marginal value function composed with the inverse marginal utility function, defined on the state variables: uP_inv(dvdmFunc(state)). Called cFunc because when standard envelope condition applies, uP_inv(dvdm(state)) = cFunc(state). CRRA : float Coefficient of relative risk aversion. """ distance_criteria = ["cFunc", "CRRA"] def __init__(self, cFunc, CRRA): self.cFunc = deepcopy(cFunc) self.CRRA = CRRA def __call__(self, *cFuncArgs): """ Evaluate the marginal marginal value function at given levels of market resources m. Parameters ---------- m : float or np.array Market resources (normalized by permanent income) whose marginal marginal value is to be found. Returns ------- vPP : float or np.array Marginal marginal lifetime value of beginning this period with market resources m; has same size as input m. """ # The derivative method depends on the dimension of the function if isinstance(self.cFunc, (HARKinterpolator1D)): c, MPC = self.cFunc.eval_with_derivative(*cFuncArgs) elif hasattr(self.cFunc, 'derivativeX'): c = self.cFunc(*cFuncArgs) MPC = self.cFunc.derivativeX(*cFuncArgs) else: raise Exception( "cFunc does not have a 'derivativeX' attribute. Can't compute" + "marginal marginal value." ) return MPC * CRRAutilityPP(c, gam=self.CRRA) ############################################################################## # Examples and tests ############################################################################## def main(): print("Sorry, HARK.interpolation doesn't actually do much on its own.") print("To see some examples of its interpolation methods in action, look at any") print("of the model modules in /ConsumptionSavingModel. In the future, running") print("this module will show examples of each interpolation class.") from time import time import matplotlib.pyplot as plt RNG = np.random.RandomState(123) if False: x = np.linspace(1, 20, 39) y = np.log(x) dydx = 1.0 / x f = CubicInterp(x, y, dydx) x_test = np.linspace(0, 30, 200) y_test = f(x_test) plt.plot(x_test, y_test) plt.show() if False: def f(x, y): return 3.0 * x ** 2.0 + x * y + 4.0 * y ** 2.0 def dfdx(x, y): return 6.0 * x + y def dfdy(x, y): return x + 8.0 * y y_list = np.linspace(0, 5, 100, dtype=float) xInterpolators = [] xInterpolators_alt = [] for y in y_list: this_x_list = np.sort((RNG.rand(100) * 5.0)) this_interpolation = LinearInterp( this_x_list, f(this_x_list, y * np.ones(this_x_list.size)) ) that_interpolation = CubicInterp( this_x_list, f(this_x_list, y * np.ones(this_x_list.size)), dfdx(this_x_list, y * np.ones(this_x_list.size)), ) xInterpolators.append(this_interpolation) xInterpolators_alt.append(that_interpolation) g = LinearInterpOnInterp1D(xInterpolators, y_list) h = LinearInterpOnInterp1D(xInterpolators_alt, y_list) rand_x = RNG.rand(100) * 5.0 rand_y = RNG.rand(100) * 5.0 z = (f(rand_x, rand_y) - g(rand_x, rand_y)) / f(rand_x, rand_y) q = (dfdx(rand_x, rand_y) - g.derivativeX(rand_x, rand_y)) / dfdx( rand_x, rand_y ) r = (dfdy(rand_x, rand_y) - g.derivativeY(rand_x, rand_y)) / dfdy( rand_x, rand_y ) # print(z) # print(q) # print(r) z = (f(rand_x, rand_y) - g(rand_x, rand_y)) / f(rand_x, rand_y) q = (dfdx(rand_x, rand_y) - g.derivativeX(rand_x, rand_y)) / dfdx( rand_x, rand_y ) r = (dfdy(rand_x, rand_y) - g.derivativeY(rand_x, rand_y)) / dfdy( rand_x, rand_y ) print(z) # print(q) # print(r) if False: f = ( lambda x, y, z: 3.0 * x ** 2.0 + x * y + 4.0 * y ** 2.0 - 5 * z ** 2.0 + 1.5 * x * z ) def dfdx(x, y, z): return 6.0 * x + y + 1.5 * z def dfdy(x, y, z): return x + 8.0 * y def dfdz(x, y, z): return -10.0 * z + 1.5 * x y_list = np.linspace(0, 5, 51, dtype=float) z_list = np.linspace(0, 5, 51, dtype=float) xInterpolators = [] for y in y_list: temp = [] for z in z_list: this_x_list = np.sort((RNG.rand(100) * 5.0)) this_interpolation = LinearInterp( this_x_list, f( this_x_list, y * np.ones(this_x_list.size), z * np.ones(this_x_list.size), ), ) temp.append(this_interpolation) xInterpolators.append(deepcopy(temp)) g = BilinearInterpOnInterp1D(xInterpolators, y_list, z_list) rand_x = RNG.rand(1000) * 5.0 rand_y = RNG.rand(1000) * 5.0 rand_z = RNG.rand(1000) * 5.0 z = (f(rand_x, rand_y, rand_z) - g(rand_x, rand_y, rand_z)) / f( rand_x, rand_y, rand_z ) q = ( dfdx(rand_x, rand_y, rand_z) - g.derivativeX(rand_x, rand_y, rand_z) ) / dfdx(rand_x, rand_y, rand_z) r = ( dfdy(rand_x, rand_y, rand_z) - g.derivativeY(rand_x, rand_y, rand_z) ) / dfdy(rand_x, rand_y, rand_z) p = ( dfdz(rand_x, rand_y, rand_z) - g.derivativeZ(rand_x, rand_y, rand_z) ) / dfdz(rand_x, rand_y, rand_z) z.sort() if False: f = ( lambda w, x, y, z: 4.0 * w * z - 2.5 * w * x + w * y + 6.0 * x * y - 10.0 * x * z + 3.0 * y * z - 7.0 * z + 4.0 * x + 2.0 * y - 5.0 * w ) def dfdw(w, x, y, z): return 4.0 * z - 2.5 * x + y - 5.0 def dfdx(w, x, y, z): return -2.5 * w + 6.0 * y - 10.0 * z + 4.0 def dfdy(w, x, y, z): return w + 6.0 * x + 3.0 * z + 2.0 def dfdz(w, x, y, z): return 4.0 * w - 10.0 * x + 3.0 * y - 7 x_list = np.linspace(0, 5, 16, dtype=float) y_list = np.linspace(0, 5, 16, dtype=float) z_list = np.linspace(0, 5, 16, dtype=float) wInterpolators = [] for x in x_list: temp = [] for y in y_list: temptemp = [] for z in z_list: this_w_list = np.sort((RNG.rand(16) * 5.0)) this_interpolation = LinearInterp( this_w_list, f( this_w_list, x * np.ones(this_w_list.size), y * np.ones(this_w_list.size), z * np.ones(this_w_list.size), ), ) temptemp.append(this_interpolation) temp.append(deepcopy(temptemp)) wInterpolators.append(deepcopy(temp)) g = TrilinearInterpOnInterp1D(wInterpolators, x_list, y_list, z_list) N = 20000 rand_w = RNG.rand(N) * 5.0 rand_x = RNG.rand(N) * 5.0 rand_y = RNG.rand(N) * 5.0 rand_z = RNG.rand(N) * 5.0 t_start = time() z = (f(rand_w, rand_x, rand_y, rand_z) - g(rand_w, rand_x, rand_y, rand_z)) / f( rand_w, rand_x, rand_y, rand_z ) q = ( dfdw(rand_w, rand_x, rand_y, rand_z) - g.derivativeW(rand_w, rand_x, rand_y, rand_z) ) / dfdw(rand_w, rand_x, rand_y, rand_z) r = ( dfdx(rand_w, rand_x, rand_y, rand_z) - g.derivativeX(rand_w, rand_x, rand_y, rand_z) ) / dfdx(rand_w, rand_x, rand_y, rand_z) p = ( dfdy(rand_w, rand_x, rand_y, rand_z) - g.derivativeY(rand_w, rand_x, rand_y, rand_z) ) / dfdy(rand_w, rand_x, rand_y, rand_z) s = ( dfdz(rand_w, rand_x, rand_y, rand_z) - g.derivativeZ(rand_w, rand_x, rand_y, rand_z) ) / dfdz(rand_w, rand_x, rand_y, rand_z) t_end = time() z.sort() print(z) print(t_end - t_start) if False: def f(x, y): return 3.0 * x ** 2.0 + x * y + 4.0 * y ** 2.0 def dfdx(x, y): return 6.0 * x + y def dfdy(x, y): return x + 8.0 * y x_list = np.linspace(0, 5, 101, dtype=float) y_list = np.linspace(0, 5, 101, dtype=float) x_temp, y_temp = np.meshgrid(x_list, y_list, indexing="ij") g = BilinearInterp(f(x_temp, y_temp), x_list, y_list) rand_x = RNG.rand(100) * 5.0 rand_y = RNG.rand(100) * 5.0 z = (f(rand_x, rand_y) - g(rand_x, rand_y)) / f(rand_x, rand_y) q = (f(x_temp, y_temp) - g(x_temp, y_temp)) / f(x_temp, y_temp) # print(z) # print(q) if False: f = ( lambda x, y, z: 3.0 * x ** 2.0 + x * y + 4.0 * y ** 2.0 - 5 * z ** 2.0 + 1.5 * x * z ) def dfdx(x, y, z): return 6.0 * x + y + 1.5 * z def dfdy(x, y, z): return x + 8.0 * y def dfdz(x, y, z): return -10.0 * z + 1.5 * x x_list = np.linspace(0, 5, 11, dtype=float) y_list = np.linspace(0, 5, 11, dtype=float) z_list = np.linspace(0, 5, 101, dtype=float) x_temp, y_temp, z_temp = np.meshgrid(x_list, y_list, z_list, indexing="ij") g = TrilinearInterp(f(x_temp, y_temp, z_temp), x_list, y_list, z_list) rand_x = RNG.rand(1000) * 5.0 rand_y = RNG.rand(1000) * 5.0 rand_z = RNG.rand(1000) * 5.0 z = (f(rand_x, rand_y, rand_z) - g(rand_x, rand_y, rand_z)) / f( rand_x, rand_y, rand_z ) q = ( dfdx(rand_x, rand_y, rand_z) - g.derivativeX(rand_x, rand_y, rand_z) ) / dfdx(rand_x, rand_y, rand_z) r = ( dfdy(rand_x, rand_y, rand_z) - g.derivativeY(rand_x, rand_y, rand_z) ) / dfdy(rand_x, rand_y, rand_z) p = ( dfdz(rand_x, rand_y, rand_z) - g.derivativeZ(rand_x, rand_y, rand_z) ) / dfdz(rand_x, rand_y, rand_z) p.sort() plt.plot(p) if False: f = ( lambda w, x, y, z: 4.0 * w * z - 2.5 * w * x + w * y + 6.0 * x * y - 10.0 * x * z + 3.0 * y * z - 7.0 * z + 4.0 * x + 2.0 * y - 5.0 * w ) def dfdw(w, x, y, z): return 4.0 * z - 2.5 * x + y - 5.0 def dfdx(w, x, y, z): return -2.5 * w + 6.0 * y - 10.0 * z + 4.0 def dfdy(w, x, y, z): return w + 6.0 * x + 3.0 * z + 2.0 def dfdz(w, x, y, z): return 4.0 * w - 10.0 * x + 3.0 * y - 7 w_list = np.linspace(0, 5, 16, dtype=float) x_list = np.linspace(0, 5, 16, dtype=float) y_list = np.linspace(0, 5, 16, dtype=float) z_list = np.linspace(0, 5, 16, dtype=float) w_temp, x_temp, y_temp, z_temp = np.meshgrid( w_list, x_list, y_list, z_list, indexing="ij" ) def mySearch(trash, x): return np.floor(x / 5 * 32).astype(int) g = QuadlinearInterp( f(w_temp, x_temp, y_temp, z_temp), w_list, x_list, y_list, z_list ) N = 1000000 rand_w = RNG.rand(N) * 5.0 rand_x = RNG.rand(N) * 5.0 rand_y = RNG.rand(N) * 5.0 rand_z = RNG.rand(N) * 5.0 t_start = time() z = (f(rand_w, rand_x, rand_y, rand_z) - g(rand_w, rand_x, rand_y, rand_z)) / f( rand_w, rand_x, rand_y, rand_z ) t_end = time() # print(z) print(t_end - t_start) if False: def f(x, y): return 3.0 * x ** 2.0 + x * y + 4.0 * y ** 2.0 def dfdx(x, y): return 6.0 * x + y def dfdy(x, y): return x + 8.0 * y warp_factor = 0.01 x_list = np.linspace(0, 5, 71, dtype=float) y_list = np.linspace(0, 5, 51, dtype=float) x_temp, y_temp = np.meshgrid(x_list, y_list, indexing="ij") x_adj = x_temp + warp_factor * (RNG.rand(x_list.size, y_list.size) - 0.5) y_adj = y_temp + warp_factor * (RNG.rand(x_list.size, y_list.size) - 0.5) g = Curvilinear2DInterp(f(x_adj, y_adj), x_adj, y_adj) rand_x = RNG.rand(1000) * 5.0 rand_y = RNG.rand(1000) * 5.0 t_start = time() z = (f(rand_x, rand_y) - g(rand_x, rand_y)) / f(rand_x, rand_y) q = (dfdx(rand_x, rand_y) - g.derivativeX(rand_x, rand_y)) / dfdx( rand_x, rand_y ) r = (dfdy(rand_x, rand_y) - g.derivativeY(rand_x, rand_y)) / dfdy( rand_x, rand_y ) t_end = time() z.sort() q.sort() r.sort() # print(z) print(t_end - t_start) if False: f = ( lambda x, y, z: 3.0 * x ** 2.0 + x * y + 4.0 * y ** 2.0 - 5 * z ** 2.0 + 1.5 * x * z ) def dfdx(x, y, z): return 6.0 * x + y + 1.5 * z def dfdy(x, y, z): return x + 8.0 * y def dfdz(x, y, z): return -10.0 * z + 1.5 * x warp_factor = 0.01 x_list = np.linspace(0, 5, 11, dtype=float) y_list = np.linspace(0, 5, 11, dtype=float) z_list = np.linspace(0, 5, 101, dtype=float) x_temp, y_temp = np.meshgrid(x_list, y_list, indexing="ij") xyInterpolators = [] for j in range(z_list.size): x_adj = x_temp + warp_factor * (RNG.rand(x_list.size, y_list.size) - 0.5) y_adj = y_temp + warp_factor * (RNG.rand(x_list.size, y_list.size) - 0.5) z_temp = z_list[j] * np.ones(x_adj.shape) thisInterp = Curvilinear2DInterp(f(x_adj, y_adj, z_temp), x_adj, y_adj) xyInterpolators.append(thisInterp) g = LinearInterpOnInterp2D(xyInterpolators, z_list) N = 1000 rand_x = RNG.rand(N) * 5.0 rand_y = RNG.rand(N) * 5.0 rand_z = RNG.rand(N) * 5.0 z = (f(rand_x, rand_y, rand_z) - g(rand_x, rand_y, rand_z)) / f( rand_x, rand_y, rand_z ) p = ( dfdz(rand_x, rand_y, rand_z) - g.derivativeZ(rand_x, rand_y, rand_z) ) / dfdz(rand_x, rand_y, rand_z) p.sort() plt.plot(p) if False: f = ( lambda w, x, y, z: 4.0 * w * z - 2.5 * w * x + w * y + 6.0 * x * y - 10.0 * x * z + 3.0 * y * z - 7.0 * z + 4.0 * x + 2.0 * y - 5.0 * w ) def dfdw(w, x, y, z): return 4.0 * z - 2.5 * x + y - 5.0 def dfdx(w, x, y, z): return -2.5 * w + 6.0 * y - 10.0 * z + 4.0 def dfdy(w, x, y, z): return w + 6.0 * x + 3.0 * z + 2.0 def dfdz(w, x, y, z): return 4.0 * w - 10.0 * x + 3.0 * y - 7 warp_factor = 0.1 w_list = np.linspace(0, 5, 16, dtype=float) x_list = np.linspace(0, 5, 16, dtype=float) y_list = np.linspace(0, 5, 16, dtype=float) z_list = np.linspace(0, 5, 16, dtype=float) w_temp, x_temp = np.meshgrid(w_list, x_list, indexing="ij") wxInterpolators = [] for i in range(y_list.size): temp = [] for j in range(z_list.size): w_adj = w_temp + warp_factor * ( RNG.rand(w_list.size, x_list.size) - 0.5 ) x_adj = x_temp + warp_factor * ( RNG.rand(w_list.size, x_list.size) - 0.5 ) y_temp = y_list[i] * np.ones(w_adj.shape) z_temp = z_list[j] * np.ones(w_adj.shape) thisInterp = Curvilinear2DInterp( f(w_adj, x_adj, y_temp, z_temp), w_adj, x_adj ) temp.append(thisInterp) wxInterpolators.append(temp) g = BilinearInterpOnInterp2D(wxInterpolators, y_list, z_list) N = 1000000 rand_w = RNG.rand(N) * 5.0 rand_x = RNG.rand(N) * 5.0 rand_y = RNG.rand(N) * 5.0 rand_z = RNG.rand(N) * 5.0 t_start = time() z = (f(rand_w, rand_x, rand_y, rand_z) - g(rand_w, rand_x, rand_y, rand_z)) / f( rand_w, rand_x, rand_y, rand_z ) t_end = time() z.sort() print(z) print(t_end - t_start)
apache-2.0
elijah513/scikit-learn
sklearn/qda.py
140
7682
""" Quadratic Discriminant Analysis """ # Author: Matthieu Perrot <[email protected]> # # License: BSD 3 clause import warnings import numpy as np from .base import BaseEstimator, ClassifierMixin from .externals.six.moves import xrange from .utils import check_array, check_X_y from .utils.validation import check_is_fitted from .utils.fixes import bincount __all__ = ['QDA'] class QDA(BaseEstimator, ClassifierMixin): """ Quadratic Discriminant Analysis (QDA) A classifier with a quadratic decision boundary, generated by fitting class conditional densities to the data and using Bayes' rule. The model fits a Gaussian density to each class. Read more in the :ref:`User Guide <lda_qda>`. Parameters ---------- priors : array, optional, shape = [n_classes] Priors on classes reg_param : float, optional Regularizes the covariance estimate as ``(1-reg_param)*Sigma + reg_param*np.eye(n_features)`` Attributes ---------- covariances_ : list of array-like, shape = [n_features, n_features] Covariance matrices of each class. means_ : array-like, shape = [n_classes, n_features] Class means. priors_ : array-like, shape = [n_classes] Class priors (sum to 1). rotations_ : list of arrays For each class k an array of shape [n_features, n_k], with ``n_k = min(n_features, number of elements in class k)`` It is the rotation of the Gaussian distribution, i.e. its principal axis. scalings_ : list of arrays For each class k an array of shape [n_k]. It contains the scaling of the Gaussian distributions along its principal axes, i.e. the variance in the rotated coordinate system. Examples -------- >>> from sklearn.qda import QDA >>> import numpy as np >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> y = np.array([1, 1, 1, 2, 2, 2]) >>> clf = QDA() >>> clf.fit(X, y) QDA(priors=None, reg_param=0.0) >>> print(clf.predict([[-0.8, -1]])) [1] See also -------- sklearn.lda.LDA: Linear discriminant analysis """ def __init__(self, priors=None, reg_param=0.): self.priors = np.asarray(priors) if priors is not None else None self.reg_param = reg_param def fit(self, X, y, store_covariances=False, tol=1.0e-4): """ Fit the QDA model according to the given training data and parameters. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vector, where n_samples in the number of samples and n_features is the number of features. y : array, shape = [n_samples] Target values (integers) store_covariances : boolean If True the covariance matrices are computed and stored in the `self.covariances_` attribute. tol : float, optional, default 1.0e-4 Threshold used for rank estimation. """ X, y = check_X_y(X, y) self.classes_, y = np.unique(y, return_inverse=True) n_samples, n_features = X.shape n_classes = len(self.classes_) if n_classes < 2: raise ValueError('y has less than 2 classes') if self.priors is None: self.priors_ = bincount(y) / float(n_samples) else: self.priors_ = self.priors cov = None if store_covariances: cov = [] means = [] scalings = [] rotations = [] for ind in xrange(n_classes): Xg = X[y == ind, :] meang = Xg.mean(0) means.append(meang) if len(Xg) == 1: raise ValueError('y has only 1 sample in class %s, covariance ' 'is ill defined.' % str(self.classes_[ind])) Xgc = Xg - meang # Xgc = U * S * V.T U, S, Vt = np.linalg.svd(Xgc, full_matrices=False) rank = np.sum(S > tol) if rank < n_features: warnings.warn("Variables are collinear") S2 = (S ** 2) / (len(Xg) - 1) S2 = ((1 - self.reg_param) * S2) + self.reg_param if store_covariances: # cov = V * (S^2 / (n-1)) * V.T cov.append(np.dot(S2 * Vt.T, Vt)) scalings.append(S2) rotations.append(Vt.T) if store_covariances: self.covariances_ = cov self.means_ = np.asarray(means) self.scalings_ = scalings self.rotations_ = rotations return self def _decision_function(self, X): check_is_fitted(self, 'classes_') X = check_array(X) norm2 = [] for i in range(len(self.classes_)): R = self.rotations_[i] S = self.scalings_[i] Xm = X - self.means_[i] X2 = np.dot(Xm, R * (S ** (-0.5))) norm2.append(np.sum(X2 ** 2, 1)) norm2 = np.array(norm2).T # shape = [len(X), n_classes] u = np.asarray([np.sum(np.log(s)) for s in self.scalings_]) return (-0.5 * (norm2 + u) + np.log(self.priors_)) def decision_function(self, X): """Apply decision function to an array of samples. Parameters ---------- X : array-like, shape = [n_samples, n_features] Array of samples (test vectors). Returns ------- C : array, shape = [n_samples, n_classes] or [n_samples,] Decision function values related to each class, per sample. In the two-class case, the shape is [n_samples,], giving the log likelihood ratio of the positive class. """ dec_func = self._decision_function(X) # handle special case of two classes if len(self.classes_) == 2: return dec_func[:, 1] - dec_func[:, 0] return dec_func def predict(self, X): """Perform classification on an array of test vectors X. The predicted class C for each sample in X is returned. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- C : array, shape = [n_samples] """ d = self._decision_function(X) y_pred = self.classes_.take(d.argmax(1)) return y_pred def predict_proba(self, X): """Return posterior probabilities of classification. Parameters ---------- X : array-like, shape = [n_samples, n_features] Array of samples/test vectors. Returns ------- C : array, shape = [n_samples, n_classes] Posterior probabilities of classification per class. """ values = self._decision_function(X) # compute the likelihood of the underlying gaussian models # up to a multiplicative constant. likelihood = np.exp(values - values.max(axis=1)[:, np.newaxis]) # compute posterior probabilities return likelihood / likelihood.sum(axis=1)[:, np.newaxis] def predict_log_proba(self, X): """Return posterior probabilities of classification. Parameters ---------- X : array-like, shape = [n_samples, n_features] Array of samples/test vectors. Returns ------- C : array, shape = [n_samples, n_classes] Posterior log-probabilities of classification per class. """ # XXX : can do better to avoid precision overflows probas_ = self.predict_proba(X) return np.log(probas_)
bsd-3-clause
anjalisood/spark-tk
regression-tests/sparktkregtests/testcases/frames/unflatten_test.py
12
6371
# vim: set encoding=utf-8 # Copyright (c) 2016 Intel Corporation  # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # #       http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ Tests unflatten functionality""" import unittest from sparktkregtests.lib import sparktk_test class Unflatten(sparktk_test.SparkTKTestCase): def setUp(self): super(Unflatten, self).setUp() self.datafile_unflatten = self.get_file("unflatten_data_no_spaces.csv") self.schema_unflatten = [("user", str), ("day", str), ("time", str), ("reading", int)] def test_unflatten_one_column(self): """ test for unflatten comma-separated rows """ frame = self.context.frame.import_csv(self.datafile_unflatten, schema=self.schema_unflatten) # get as a pandas frame to access data pandas_frame = frame.to_pandas(frame.count()) pandas_data = [] # use this dictionary to store expected results by name name_lookup = {} # generate our expected results by unflattening # each row ourselves and storing it by name for index, row in pandas_frame.iterrows(): # if the name is not already in name lookup # index 0 refers to user name (see schema above) if row['user'] not in name_lookup: name_lookup[row['user']] = row else: row_copy = name_lookup[row['user']] # append each item in the row to a comma # delineated string for index in range(1, len(row_copy)): row_copy[index] = str(row_copy[index]) + "," + str(row[index]) name_lookup[row['user']] = row_copy # now we unflatten the columns using sparktk frame.unflatten_columns(['user']) # finally we iterate through what we got # from sparktk unflatten and compare # it to the expected results we created unflatten_pandas = frame.to_pandas() for index, row in unflatten_pandas.iterrows(): self.assertEqual(row['user'], name_lookup[row['user']]['user']) self.assertEqual(row['day'], name_lookup[row['user']]['day']) self.assertItemsEqual(row['time'].split(','), name_lookup[row['user']]['time'].split(',')) self.assertItemsEqual(row['reading'].split(','), name_lookup[row['user']]['reading'].split(',')) self.assertEqual(frame.count(), 5) def test_unflatten_multiple_cols(self): frame = self.context.frame.import_csv(self.datafile_unflatten, schema=self.schema_unflatten) # get a pandas frame of the data pandas_frame = frame.to_pandas(frame.count()) name_lookup = {} # same logic as for unflatten_one_column, # generate our expected results by unflattening for index, row in pandas_frame.iterrows(): if row['user'] not in name_lookup: name_lookup[row['user']] = row else: row_copy = name_lookup[row['user']] for index in range(1, len(row_copy)): # then only difference between multi col and single col # is that we will expect any data in the column at index 1 # (which is day, see the schema above) # to also be flattened # so we only append data if it isn't already there if index is not 1 or str(row[index]) not in str(row_copy[index]): row_copy[index] = str(row_copy[index]) + "," + str(row[index]) name_lookup[row['user']] = row_copy # now we unflatten using sparktk frame.unflatten_columns(['user', 'day']) # and compare our expected data with sparktk results # which we have taken as a pandas frame unflatten_pandas = frame.to_pandas() for index, row in unflatten_pandas.iterrows(): self.assertEqual(row['user'], name_lookup[row['user']]['user']) self.assertEqual(row['day'], name_lookup[row['user']]['day']) self.assertItemsEqual(row['time'].split(','), name_lookup[row['user']]['time'].split(',')) self.assertItemsEqual(row['reading'].split(','), name_lookup[row['user']]['reading'].split(',')) # same logic as single column but with sparse data # because there are so many rows in this data # (datafile contains thousands and thousands of lines) # we will not compare the content of the unflatten frame # as this would require us to iterate multiple times def test_unflatten_sparse_data(self): datafile_unflatten_sparse = self.get_file("unflatten_data_sparse.csv") schema_unflatten_sparse = [("user", int), ("day", str), ("time", str), ("reading", str)] frame_sparse = self.context.frame.import_csv( datafile_unflatten_sparse, schema=schema_unflatten_sparse) frame_sparse.unflatten_columns(['user']) pandas_frame_sparse = frame_sparse.to_pandas() # since this data set is huge we will just iterate once # to make sure the data has been appended for time and # reading for each row and that there are the correct # number of items that we would expect for the # unflattened frame for index, row in pandas_frame_sparse.iterrows(): self.assertEqual( len(str(row['time']).split(",")), len(str(row['reading']).split(","))) self.assertEqual(frame_sparse.count(), 100) if __name__ == "__main__": unittest.main()
apache-2.0
hitszxp/scikit-learn
examples/mixture/plot_gmm_pdf.py
284
1528
""" ============================================= Density Estimation for a mixture of Gaussians ============================================= Plot the density estimation of a mixture of two Gaussians. Data is generated from two Gaussians with different centers and covariance matrices. """ import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import LogNorm from sklearn import mixture n_samples = 300 # generate random sample, two components np.random.seed(0) # generate spherical data centered on (20, 20) shifted_gaussian = np.random.randn(n_samples, 2) + np.array([20, 20]) # generate zero centered stretched Gaussian data C = np.array([[0., -0.7], [3.5, .7]]) stretched_gaussian = np.dot(np.random.randn(n_samples, 2), C) # concatenate the two datasets into the final training set X_train = np.vstack([shifted_gaussian, stretched_gaussian]) # fit a Gaussian Mixture Model with two components clf = mixture.GMM(n_components=2, covariance_type='full') clf.fit(X_train) # display predicted scores by the model as a contour plot x = np.linspace(-20.0, 30.0) y = np.linspace(-20.0, 40.0) X, Y = np.meshgrid(x, y) XX = np.array([X.ravel(), Y.ravel()]).T Z = -clf.score_samples(XX)[0] Z = Z.reshape(X.shape) CS = plt.contour(X, Y, Z, norm=LogNorm(vmin=1.0, vmax=1000.0), levels=np.logspace(0, 3, 10)) CB = plt.colorbar(CS, shrink=0.8, extend='both') plt.scatter(X_train[:, 0], X_train[:, 1], .8) plt.title('Negative log-likelihood predicted by a GMM') plt.axis('tight') plt.show()
bsd-3-clause
stulp/dmpbbo
demos_cpp/functionapproximators/demoFunctionApproximatorTrainingWrapper.py
1
2740
# This file is part of DmpBbo, a set of libraries and programs for the # black-box optimization of dynamical movement primitives. # Copyright (C) 2014 Freek Stulp, ENSTA-ParisTech # # DmpBbo is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # DmpBbo is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with DmpBbo. If not, see <http://www.gnu.org/licenses/>. from mpl_toolkits.mplot3d.axes3d import Axes3D import numpy import matplotlib.pyplot as plt import os, sys lib_path = os.path.abspath('../') sys.path.append(lib_path) from executeBinary import executeBinary lib_path = os.path.abspath('../../python') sys.path.append(lib_path) from functionapproximators.functionapproximators_plotting import * if __name__=='__main__': """Run some training sessions and plot results.""" fig_number = 1; executable = "./demoFunctionApproximatorTraining" directory = "./demoFunctionApproximatorTrainingDataTmp/" fa_names = ["RBFN","GPR","RRRFF","LWR", "LWPR", "GMR"] for fa_name in fa_names: # Call the executable with the directory to which results should be written arguments = directory+" "+fa_name executeBinary(executable, arguments) for fa_name in fa_names: cur_directory = directory+fa_name+"_1D"; if not os.path.exists(cur_directory): break print("Plotting "+fa_name+" results") fig = plt.figure(fig_number,figsize=(15,5)) fig_number = fig_number+1 for dim in [1, 2]: cur_directory = directory+fa_name+"_"+str(dim)+"D"; if (getDataDimFromDirectory(cur_directory)==1): ax = fig.add_subplot(1, 3, 1) ax2 = None else: ax = fig.add_subplot(1, 3, 2, projection='3d') ax2 = fig.add_subplot(1, 3, 3, projection='3d') plotFunctionApproximatorTrainingFromDirectory(cur_directory,ax,ax2) ax.set_title(fa_name+" ("+str(dim)+"D data)") if ax2 != None: ax2.set_title(fa_name+" ("+str(dim)+"D basis functions)") plt.show()
lgpl-2.1
paalge/scikit-image
doc/examples/transform/plot_ssim.py
3
2376
""" =========================== Structural similarity index =========================== When comparing images, the mean squared error (MSE)--while simple to implement--is not highly indicative of perceived similarity. Structural similarity aims to address this shortcoming by taking texture into account [1]_, [2]_. The example shows two modifications of the input image, each with the same MSE, but with very different mean structural similarity indices. .. [1] Zhou Wang; Bovik, A.C.; ,"Mean squared error: Love it or leave it? A new look at Signal Fidelity Measures," Signal Processing Magazine, IEEE, vol. 26, no. 1, pp. 98-117, Jan. 2009. .. [2] Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, "Image quality assessment: From error visibility to structural similarity," IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600-612, Apr. 2004. """ import numpy as np import matplotlib.pyplot as plt from skimage import data, img_as_float from skimage.measure import compare_ssim as ssim img = img_as_float(data.camera()) rows, cols = img.shape noise = np.ones_like(img) * 0.2 * (img.max() - img.min()) noise[np.random.random(size=noise.shape) > 0.5] *= -1 def mse(x, y): return np.linalg.norm(x - y) img_noise = img + noise img_const = img + abs(noise) fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(10, 4), sharex=True, sharey=True, subplot_kw={'adjustable': 'box-forced'}) ax = axes.ravel() mse_none = mse(img, img) ssim_none = ssim(img, img, data_range=img.max() - img.min()) mse_noise = mse(img, img_noise) ssim_noise = ssim(img, img_noise, data_range=img_noise.max() - img_noise.min()) mse_const = mse(img, img_const) ssim_const = ssim(img, img_const, data_range=img_const.max() - img_const.min()) label = 'MSE: {:.2f}, SSIM: {:.2f}' ax[0].imshow(img, cmap=plt.cm.gray, vmin=0, vmax=1) ax[0].set_xlabel(label.format(mse_none, ssim_none)) ax[0].set_title('Original image') ax[1].imshow(img_noise, cmap=plt.cm.gray, vmin=0, vmax=1) ax[1].set_xlabel(label.format(mse_noise, ssim_noise)) ax[1].set_title('Image with noise') ax[2].imshow(img_const, cmap=plt.cm.gray, vmin=0, vmax=1) ax[2].set_xlabel(label.format(mse_const, ssim_const)) ax[2].set_title('Image plus constant') plt.tight_layout() plt.show()
bsd-3-clause
jamielapointe/PyPassiveRangingFilters
analysis/plotMqukf.py
1
11680
''' Created on May 9, 2017 @author: jamie ''' from analysis.plotter import Plotter import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D class PlotMqukf(Plotter): ''' Plot the modified quaternion unscented Kalman filter (UKF) ''' def __init__(self, inputData): ''' Constructor ''' super().__init__(inputData) def plotAll(self): self.plotRhoError() self.plotRangeError() self.plotLosError() self.plotNuError() self.plotRangeRateError() self.plotAngularRateError() self.plotResiduals() self.plotLosErrors() self.plotLos() self.plotTrajectory() plt.show() def plotRhoError(self): fig1, ax1 = plt.subplots() ax1.plot(self.data.simTime, [-x for x in self.data.estRho1Sigma], color=self.colors[0], linestyle=self.lines[0], marker=self.markers[0], linewidth=self.linewidth, label='1-sigma error') ax1.plot(self.data.simTime, self.data.rhoError, color=self.colors[1], linestyle=self.lines[4], marker=self.markers[3], linewidth=self.linewidth, label='rho error') ax1.plot(self.data.simTime, self.data.estRho1Sigma, color=self.colors[0], linestyle=self.lines[0], marker=self.markers[0], linewidth=self.linewidth, label='1-sigma error') ax1.legend() ax1.set_title('Rho error') ax1.set_ylabel('rhoError (1/m)') self.setupAxis(ax1, fig1) def plotRangeError(self): fig1, ax1 = plt.subplots() ax1.plot(self.data.simTime, [-x for x in self.data.estRange1Sigma], color=self.colors[0], linestyle=self.lines[0], marker=self.markers[0], linewidth=self.linewidth, label='1-sigma error') ax1.plot(self.data.simTime, self.data.rangeError, color=self.colors[1], linestyle=self.lines[4], marker=self.markers[3], linewidth=self.linewidth, label='range error') ax1.plot(self.data.simTime, self.data.estRange1Sigma, color=self.colors[0], linestyle=self.lines[0], marker=self.markers[0], linewidth=self.linewidth, label='1-sigma error') ax1.legend() ax1.set_title('Range error') ax1.set_ylabel('rhoError (m)') self.setupAxis(ax1, fig1) def plotLosError(self): fig1, ax1 = plt.subplots() ax1.plot(self.data.simTime, [-x for x in self.data.estLos1Sigma], color=self.colors[0], linestyle=self.lines[0], marker=self.markers[0], linewidth=self.linewidth, label='1-sigma error') ax1.plot(self.data.simTime, self.data.losError_I, color=self.colors[1], linestyle=self.lines[4], marker=self.markers[3], linewidth=self.linewidth, label='los error') ax1.plot(self.data.simTime, self.data.estLos1Sigma, color=self.colors[0], linestyle=self.lines[0], marker=self.markers[0], linewidth=self.linewidth, label='1-sigma error') ax1.legend() ax1.set_title('LOS error') ax1.set_ylabel('losError_I (rad)') self.setupAxis(ax1, fig1) def plotNuError(self): fig1, ax1 = plt.subplots() ax1.plot(self.data.simTime, [-x for x in self.data.estNu1Sigma], color=self.colors[0], linestyle=self.lines[0], marker=self.markers[0], linewidth=self.linewidth, label='1-sigma error') ax1.plot(self.data.simTime, self.data.nuError, color=self.colors[1], linestyle=self.lines[4], marker=self.markers[3], linewidth=self.linewidth, label='nu error') ax1.plot(self.data.simTime, self.data.estNu1Sigma, color=self.colors[0], linestyle=self.lines[0], marker=self.markers[0], linewidth=self.linewidth, label='1-sigma error') ax1.legend() ax1.set_title('Nu error') ax1.set_ylabel('nuError (1/s)') self.setupAxis(ax1, fig1) def plotRangeRateError(self): fig1, ax1 = plt.subplots() ax1.plot(self.data.simTime, self.data.rangeRateError, color=self.colors[1], linestyle=self.lines[4], marker=self.markers[3], linewidth=self.linewidth, label='rDot error') ax1.set_title('rDot error') ax1.set_ylabel('rDot (m/s)') self.setupAxis(ax1, fig1) def plotAngularRateError(self): fig1, ax1 = plt.subplots() ax1.plot(self.data.simTime, [-x for x in self.data.estAngularRate1Sigma], color=self.colors[0], linestyle=self.lines[0], marker=self.markers[0], linewidth=self.linewidth, label='1-sigma error') ax1.plot(self.data.simTime, self.data.angularRateError_L, color=self.colors[1], linestyle=self.lines[4], marker=self.markers[3], linewidth=self.linewidth, label='omega error') ax1.plot(self.data.simTime, self.data.estAngularRate1Sigma, color=self.colors[0], linestyle=self.lines[0], marker=self.markers[0], linewidth=self.linewidth, label='1-sigma error') ax1.legend() ax1.set_title('Angular Rate error') ax1.set_ylabel('omegaError (rad/sec)') self.setupAxis(ax1, fig1) def plotResiduals(self): fig1, ax1 = plt.subplots() ax1.plot(self.data.simTime, [-x for x in self.data.Pyy], color=self.colors[0], linestyle=self.lines[0], marker=self.markers[0], linewidth=self.linewidth, label='1-sigma error') ax1.plot(self.data.simTime, self.data.res, color=self.colors[1], linestyle=self.lines[4], marker=self.markers[3], linewidth=self.linewidth, label='residual') ax1.plot(self.data.simTime, self.data.Pyy, color=self.colors[0], linestyle=self.lines[0], marker=self.markers[0], linewidth=self.linewidth, label='1-sigma error') ax1.legend() ax1.set_title('Residuals') ax1.set_ylabel('residuals (rad)') self.setupAxis(ax1, fig1) def plotLosErrors(self): fig1, ax1 = plt.subplots() ax1.plot(self.data.simTime, self.data.measError[:,0], color=self.colors[1], linestyle=self.lines[4], marker=self.markers[3], linewidth=self.linewidth, label='LOS x error') ax1.plot(self.data.simTime, self.data.measError[:,1], color=self.colors[2], linestyle=self.lines[4], marker=self.markers[3], linewidth=self.linewidth, label='LOS y error') ax1.plot(self.data.simTime, self.data.measError[:,2], color=self.colors[3], linestyle=self.lines[4], marker=self.markers[3], linewidth=self.linewidth, label='LOS z error') ax1.legend() ax1.set_title('LOS error') ax1.set_ylabel('residuals (rad)') self.setupAxis(ax1, fig1) def plotLos(self): fig1, ax1 = plt.subplots() ax1.plot(self.data.simTime, self.data.trueLos_I[:,0], color=self.colors[1], linestyle=self.lines[4], marker=self.markers[3], linewidth=self.linewidth, label='LOS x') ax1.plot(self.data.simTime, self.data.trueLos_I[:,1], color=self.colors[2], linestyle=self.lines[4], marker=self.markers[3], linewidth=self.linewidth, label='LOS y') ax1.plot(self.data.simTime, self.data.trueLos_I[:,2], color=self.colors[3], linestyle=self.lines[4], marker=self.markers[3], linewidth=self.linewidth, label='LOS z') ax1.legend() ax1.set_title('LOS') self.setupAxis(ax1, fig1) def plotTrajectory(self): fig1 = plt.figure() ax1 = fig1.add_subplot(111, projection='3d') ax1.plot(self.data.true_obsPos_I[:,0], self.data.true_obsPos_I[:,1], self.data.true_obsPos_I[:,2], color=self.colors[1], linestyle=self.lines[4], marker=self.markers[1], linewidth=self.linewidth, markersize=1, label='Obs') ax1.plot([self.data.true_obsPos_I[0,0]], [self.data.true_obsPos_I[0,1]], [self.data.true_obsPos_I[0,2]], marker=self.markers[2], color=self.colors[1], markersize=5) ax1.plot([self.data.true_obsPos_I[-1,0]], [self.data.true_obsPos_I[-1,1]], [self.data.true_obsPos_I[-1,2]], marker=self.markers[3], color=self.colors[1], markersize=5) ax1.plot(self.data.true_tgtPos_I[:,0], self.data.true_tgtPos_I[:,1], self.data.true_tgtPos_I[:,2], color=self.colors[2], linestyle=self.lines[4], marker=self.markers[1], linewidth=self.linewidth, markersize=1, label='Tgt') ax1.plot([self.data.true_tgtPos_I[0,0]], [self.data.true_tgtPos_I[0,1]], [self.data.true_tgtPos_I[0,2]], marker=self.markers[2], color=self.colors[2], markersize=5) ax1.plot([self.data.true_tgtPos_I[-1,0]], [self.data.true_tgtPos_I[-1,1]], [self.data.true_tgtPos_I[-1,2]], marker=self.markers[3], color=self.colors[2], markersize=5) ax1.legend() ax1.set_aspect('equal') ax1.axis('equal') ax1.set_title('Trajectory') ax1.set_xlabel('x') ax1.set_ylabel('y') ax1.set_zlabel('z')
mit
Achuth17/scikit-learn
sklearn/utils/tests/test_utils.py
215
8100
import warnings import numpy as np import scipy.sparse as sp from scipy.linalg import pinv2 from itertools import chain from sklearn.utils.testing import (assert_equal, assert_raises, assert_true, assert_almost_equal, assert_array_equal, SkipTest, assert_raises_regex) from sklearn.utils import check_random_state from sklearn.utils import deprecated from sklearn.utils import resample from sklearn.utils import safe_mask from sklearn.utils import column_or_1d from sklearn.utils import safe_indexing from sklearn.utils import shuffle from sklearn.utils import gen_even_slices from sklearn.utils.extmath import pinvh from sklearn.utils.mocking import MockDataFrame def test_make_rng(): # Check the check_random_state utility function behavior assert_true(check_random_state(None) is np.random.mtrand._rand) assert_true(check_random_state(np.random) is np.random.mtrand._rand) rng_42 = np.random.RandomState(42) assert_true(check_random_state(42).randint(100) == rng_42.randint(100)) rng_42 = np.random.RandomState(42) assert_true(check_random_state(rng_42) is rng_42) rng_42 = np.random.RandomState(42) assert_true(check_random_state(43).randint(100) != rng_42.randint(100)) assert_raises(ValueError, check_random_state, "some invalid seed") def test_resample_noarg(): # Border case not worth mentioning in doctests assert_true(resample() is None) def test_deprecated(): # Test whether the deprecated decorator issues appropriate warnings # Copied almost verbatim from http://docs.python.org/library/warnings.html # First a function... with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") @deprecated() def ham(): return "spam" spam = ham() assert_equal(spam, "spam") # function must remain usable assert_equal(len(w), 1) assert_true(issubclass(w[0].category, DeprecationWarning)) assert_true("deprecated" in str(w[0].message).lower()) # ... then a class. with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") @deprecated("don't use this") class Ham(object): SPAM = 1 ham = Ham() assert_true(hasattr(ham, "SPAM")) assert_equal(len(w), 1) assert_true(issubclass(w[0].category, DeprecationWarning)) assert_true("deprecated" in str(w[0].message).lower()) def test_resample_value_errors(): # Check that invalid arguments yield ValueError assert_raises(ValueError, resample, [0], [0, 1]) assert_raises(ValueError, resample, [0, 1], [0, 1], n_samples=3) assert_raises(ValueError, resample, [0, 1], [0, 1], meaning_of_life=42) def test_safe_mask(): random_state = check_random_state(0) X = random_state.rand(5, 4) X_csr = sp.csr_matrix(X) mask = [False, False, True, True, True] mask = safe_mask(X, mask) assert_equal(X[mask].shape[0], 3) mask = safe_mask(X_csr, mask) assert_equal(X_csr[mask].shape[0], 3) def test_pinvh_simple_real(): a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 10]], dtype=np.float64) a = np.dot(a, a.T) a_pinv = pinvh(a) assert_almost_equal(np.dot(a, a_pinv), np.eye(3)) def test_pinvh_nonpositive(): a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.float64) a = np.dot(a, a.T) u, s, vt = np.linalg.svd(a) s[0] *= -1 a = np.dot(u * s, vt) # a is now symmetric non-positive and singular a_pinv = pinv2(a) a_pinvh = pinvh(a) assert_almost_equal(a_pinv, a_pinvh) def test_pinvh_simple_complex(): a = (np.array([[1, 2, 3], [4, 5, 6], [7, 8, 10]]) + 1j * np.array([[10, 8, 7], [6, 5, 4], [3, 2, 1]])) a = np.dot(a, a.conj().T) a_pinv = pinvh(a) assert_almost_equal(np.dot(a, a_pinv), np.eye(3)) def test_column_or_1d(): EXAMPLES = [ ("binary", ["spam", "egg", "spam"]), ("binary", [0, 1, 0, 1]), ("continuous", np.arange(10) / 20.), ("multiclass", [1, 2, 3]), ("multiclass", [0, 1, 2, 2, 0]), ("multiclass", [[1], [2], [3]]), ("multilabel-indicator", [[0, 1, 0], [0, 0, 1]]), ("multiclass-multioutput", [[1, 2, 3]]), ("multiclass-multioutput", [[1, 1], [2, 2], [3, 1]]), ("multiclass-multioutput", [[5, 1], [4, 2], [3, 1]]), ("multiclass-multioutput", [[1, 2, 3]]), ("continuous-multioutput", np.arange(30).reshape((-1, 3))), ] for y_type, y in EXAMPLES: if y_type in ["binary", 'multiclass', "continuous"]: assert_array_equal(column_or_1d(y), np.ravel(y)) else: assert_raises(ValueError, column_or_1d, y) def test_safe_indexing(): X = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] inds = np.array([1, 2]) X_inds = safe_indexing(X, inds) X_arrays = safe_indexing(np.array(X), inds) assert_array_equal(np.array(X_inds), X_arrays) assert_array_equal(np.array(X_inds), np.array(X)[inds]) def test_safe_indexing_pandas(): try: import pandas as pd except ImportError: raise SkipTest("Pandas not found") X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) X_df = pd.DataFrame(X) inds = np.array([1, 2]) X_df_indexed = safe_indexing(X_df, inds) X_indexed = safe_indexing(X_df, inds) assert_array_equal(np.array(X_df_indexed), X_indexed) # fun with read-only data in dataframes # this happens in joblib memmapping X.setflags(write=False) X_df_readonly = pd.DataFrame(X) with warnings.catch_warnings(record=True): X_df_ro_indexed = safe_indexing(X_df_readonly, inds) assert_array_equal(np.array(X_df_ro_indexed), X_indexed) def test_safe_indexing_mock_pandas(): X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) X_df = MockDataFrame(X) inds = np.array([1, 2]) X_df_indexed = safe_indexing(X_df, inds) X_indexed = safe_indexing(X_df, inds) assert_array_equal(np.array(X_df_indexed), X_indexed) def test_shuffle_on_ndim_equals_three(): def to_tuple(A): # to make the inner arrays hashable return tuple(tuple(tuple(C) for C in B) for B in A) A = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]) # A.shape = (2,2,2) S = set(to_tuple(A)) shuffle(A) # shouldn't raise a ValueError for dim = 3 assert_equal(set(to_tuple(A)), S) def test_shuffle_dont_convert_to_array(): # Check that shuffle does not try to convert to numpy arrays with float # dtypes can let any indexable datastructure pass-through. a = ['a', 'b', 'c'] b = np.array(['a', 'b', 'c'], dtype=object) c = [1, 2, 3] d = MockDataFrame(np.array([['a', 0], ['b', 1], ['c', 2]], dtype=object)) e = sp.csc_matrix(np.arange(6).reshape(3, 2)) a_s, b_s, c_s, d_s, e_s = shuffle(a, b, c, d, e, random_state=0) assert_equal(a_s, ['c', 'b', 'a']) assert_equal(type(a_s), list) assert_array_equal(b_s, ['c', 'b', 'a']) assert_equal(b_s.dtype, object) assert_equal(c_s, [3, 2, 1]) assert_equal(type(c_s), list) assert_array_equal(d_s, np.array([['c', 2], ['b', 1], ['a', 0]], dtype=object)) assert_equal(type(d_s), MockDataFrame) assert_array_equal(e_s.toarray(), np.array([[4, 5], [2, 3], [0, 1]])) def test_gen_even_slices(): # check that gen_even_slices contains all samples some_range = range(10) joined_range = list(chain(*[some_range[slice] for slice in gen_even_slices(10, 3)])) assert_array_equal(some_range, joined_range) # check that passing negative n_chunks raises an error slices = gen_even_slices(10, -1) assert_raises_regex(ValueError, "gen_even_slices got n_packs=-1, must be" " >=1", next, slices)
bsd-3-clause
iankuoli/final_rnn
rnn_minibatch.py
1
39689
""" Vanilla RNN Parallelizes scan over sequences by using mini-batches. @author Graham Taylor """ import numpy as np import theano import theano.tensor as T from sklearn.base import BaseEstimator import logging import time import os import datetime import _pickle as pickle logger = logging.getLogger(__name__) import matplotlib.pyplot as plt plt.ion() mode = theano.Mode(linker='cvm') #mode = 'DEBUG_MODE' class RNN(object): """ Recurrent neural network class Supported output types: real : linear output units, use mean-squared error binary : binary output units, use cross-entropy error softmax : single softmax out, use cross-entropy error """ def __init__(self, input, n_in, n_hidden, n_out, activation=T.tanh, output_type='real'): self.input = input self.activation = activation self.output_type = output_type self.batch_size = T.iscalar() # theta is a vector of all trainable parameters # it represents the value of W, W_in, W_out, h0, bh, by theta_shape = n_hidden ** 2 + n_in * n_hidden + n_hidden * n_out + \ n_hidden + n_hidden + n_out self.theta = theano.shared(value=np.zeros(theta_shape, dtype=theano.config.floatX)) # Parameters are reshaped views of theta param_idx = 0 # pointer to somewhere along parameter vector # recurrent weights as a shared variable self.W = self.theta[param_idx:(param_idx + n_hidden ** 2)].reshape( (n_hidden, n_hidden)) self.W.name = 'W' W_init = np.asarray(np.random.uniform(size=(n_hidden, n_hidden), low=-0.01, high=0.01), dtype=theano.config.floatX) param_idx += n_hidden ** 2 # input to hidden layer weights self.W_in = self.theta[param_idx:(param_idx + n_in * \ n_hidden)].reshape((n_in, n_hidden)) self.W_in.name = 'W_in' W_in_init = np.asarray(np.random.uniform(size=(n_in, n_hidden), low=-0.01, high=0.01), dtype=theano.config.floatX) param_idx += n_in * n_hidden # hidden to output layer weights self.W_out = self.theta[param_idx:(param_idx + n_hidden * \ n_out)].reshape((n_hidden, n_out)) self.W_out.name = 'W_out' W_out_init = np.asarray(np.random.uniform(size=(n_hidden, n_out), low=-0.01, high=0.01), dtype=theano.config.floatX) param_idx += n_hidden * n_out self.h0 = self.theta[param_idx:(param_idx + n_hidden)] self.h0.name = 'h0' h0_init = np.zeros((n_hidden,), dtype=theano.config.floatX) param_idx += n_hidden self.bh = self.theta[param_idx:(param_idx + n_hidden)] self.bh.name = 'bh' bh_init = np.zeros((n_hidden,), dtype=theano.config.floatX) param_idx += n_hidden self.by = self.theta[param_idx:(param_idx + n_out)] self.by.name = 'by' by_init = np.zeros((n_out,), dtype=theano.config.floatX) param_idx += n_out assert(param_idx == theta_shape) # for convenience self.params = [self.W, self.W_in, self.W_out, self.h0, self.bh, self.by] # shortcut to norms (for monitoring) self.l2_norms = {} for param in self.params: self.l2_norms[param] = T.sqrt(T.sum(param ** 2)) # initialize parameters # DEBUG_MODE gives division by zero error when we leave parameters # as zeros self.theta.set_value(np.concatenate([x.ravel() for x in (W_init, W_in_init, W_out_init, h0_init, bh_init, by_init)])) self.theta_update = theano.shared( value=np.zeros(theta_shape, dtype=theano.config.floatX)) # recurrent function (using tanh activation function) and arbitrary output # activation function def step(x_t, h_tm1): h_t = self.activation(T.dot(x_t, self.W_in) + \ T.dot(h_tm1, self.W) + self.bh) y_t = T.dot(h_t, self.W_out) + self.by return h_t, y_t # the hidden state `h` for the entire sequence, and the output for the # entire sequence `y` (first dimension is always time) # Note the implementation of weight-sharing h0 across variable-size # batches using T.ones multiplying h0 # Alternatively, T.alloc approach is more robust [self.h, self.y_pred], _ = theano.scan(step, sequences=self.input, outputs_info=[T.alloc(self.h0, self.input.shape[1], n_hidden), None]) # outputs_info=[T.ones(shape=(self.input.shape[1], # self.h0.shape[0])) * self.h0, None]) # L1 norm ; one regularization option is to enforce L1 norm to # be small self.L1 = 0 self.L1 += abs(self.W.sum()) self.L1 += abs(self.W_in.sum()) self.L1 += abs(self.W_out.sum()) # square of L2 norm ; one regularization option is to enforce # square of L2 norm to be small self.L2_sqr = 0 self.L2_sqr += (self.W ** 2).sum() self.L2_sqr += (self.W_in ** 2).sum() self.L2_sqr += (self.W_out ** 2).sum() if self.output_type == 'real': self.loss = lambda y: self.mse(y) elif self.output_type == 'binary': # push through sigmoid self.p_y_given_x = T.nnet.sigmoid(self.y_pred) # apply sigmoid self.y_out = T.round(self.p_y_given_x) # round to {0,1} self.loss = lambda y: self.nll_binary(y) elif self.output_type == 'softmax': # push through softmax, computing vector of class-membership # probabilities in symbolic form # # T.nnet.softmax will not operate on T.tensor3 types, only matrices # We take our n_steps x n_seq x n_classes output from the net # and reshape it into a (n_steps * n_seq) x n_classes matrix # apply softmax, then reshape back y_p = self.y_pred y_p_m = T.reshape(y_p, (y_p.shape[0] * y_p.shape[1], -1)) y_p_s = T.nnet.softmax(y_p_m) self.p_y_given_x = T.reshape(y_p_s, y_p.shape) # compute prediction as class whose probability is maximal self.y_out = T.argmax(self.p_y_given_x, axis=-1) self.loss = lambda y: self.nll_multiclass(y) else: raise NotImplementedError def mse(self, y): # error between output and target return T.mean((self.y_pred - y) ** 2) def nll_binary(self, y): # negative log likelihood based on binary cross entropy error return T.mean(T.nnet.binary_crossentropy(self.p_y_given_x, y)) def nll_multiclass(self, y): # negative log likelihood based on multiclass cross entropy error # # Theano's advanced indexing is limited # therefore we reshape our n_steps x n_seq x n_classes tensor3 of probs # to a (n_steps * n_seq) x n_classes matrix of probs # so that we can use advanced indexing (i.e. get the probs which # correspond to the true class) # the labels y also must be flattened when we do this to use the # advanced indexing p_y = self.p_y_given_x p_y_m = T.reshape(p_y, (p_y.shape[0] * p_y.shape[1], -1)) y_f = y.flatten(ndim=1) return -T.mean(T.log(p_y_m)[T.arange(p_y_m.shape[0]), y_f]) def errors(self, y): """Return a float representing the number of errors in the minibatch over the total number of examples of the minibatch ; zero one loss over the size of the minibatch :type y: theano.tensor.TensorType :param y: corresponds to a vector that gives for each example the correct label """ # check if y has same dimension of y_pred if y.ndim != self.y_out.ndim: raise TypeError('y should have the same shape as self.y_out', ('y', y.type, 'y_out', self.y_out.type)) # check if y is of the correct datatype if y.dtype.startswith('int'): # the T.neq operator returns a vector of 0s and 1s, where 1 # represents a mistake in prediction return T.mean(T.neq(self.y_out, y)) else: raise NotImplementedError() class MetaRNN(BaseEstimator): def __init__(self, n_in=5, n_hidden=50, n_out=5, learning_rate=0.01, n_epochs=100, batch_size=100, L1_reg=0.00, L2_reg=0.00, learning_rate_decay=1, activation='tanh', output_type='real', final_momentum=0.9, initial_momentum=0.5, momentum_switchover=5, snapshot_every=None, snapshot_path='/tmp'): self.n_in = int(n_in) self.n_hidden = int(n_hidden) self.n_out = int(n_out) self.learning_rate = float(learning_rate) self.learning_rate_decay = float(learning_rate_decay) self.n_epochs = int(n_epochs) self.batch_size = int(batch_size) self.L1_reg = float(L1_reg) self.L2_reg = float(L2_reg) self.activation = activation self.output_type = output_type self.initial_momentum = float(initial_momentum) self.final_momentum = float(final_momentum) self.momentum_switchover = int(momentum_switchover) if snapshot_every is not None: self.snapshot_every = int(snapshot_every) else: self.snapshot_every = None self.snapshot_path = snapshot_path self.ready() def ready(self): # input (where first dimension is time) self.x = T.tensor3(name='x') # target (where first dimension is time) if self.output_type == 'real': self.y = T.tensor3(name='y', dtype=theano.config.floatX) elif self.output_type == 'binary': self.y = T.tensor3(name='y', dtype='int32') elif self.output_type == 'softmax': # now it is a matrix (T x n_seq) self.y = T.matrix(name='y', dtype='int32') else: raise NotImplementedError # learning rate self.lr = T.scalar() if self.activation == 'tanh': activation = T.tanh elif self.activation == 'sigmoid': activation = T.nnet.sigmoid elif self.activation == 'relu': activation = lambda x: x * (x > 0) elif self.activation == 'cappedrelu': activation = lambda x: T.minimum(x * (x > 0), 6) else: raise NotImplementedError self.rnn = RNN(input=self.x, n_in=self.n_in, n_hidden=self.n_hidden, n_out=self.n_out, activation=activation, output_type=self.output_type) if self.output_type == 'real': self.predict = theano.function(inputs=[self.x, ], outputs=self.rnn.y_pred, mode=mode) elif self.output_type == 'binary': self.predict_proba = theano.function(inputs=[self.x, ], outputs=self.rnn.p_y_given_x, mode=mode) self.predict = theano.function(inputs=[self.x, ], outputs=T.round(self.rnn.p_y_given_x), mode=mode) elif self.output_type == 'softmax': self.predict_proba = theano.function(inputs=[self.x, ], outputs=self.rnn.p_y_given_x, mode=mode) self.predict = theano.function(inputs=[self.x, ], outputs=self.rnn.y_out, mode=mode) else: raise NotImplementedError def shared_dataset(self, data_xy, borrow=True): """ Load the dataset into shared variables """ data_x, data_y = data_xy shared_x = theano.shared(np.asarray(data_x, dtype=theano.config.floatX), borrow=True) shared_y = theano.shared(np.asarray(data_y, dtype=theano.config.floatX), borrow=True) if self.output_type in ('binary', 'softmax'): return shared_x, T.cast(shared_y, 'int32') else: return shared_x, shared_y def __getstate__(self): """ Return state sequence.""" params = self._get_params() # parameters set in constructor theta = self.rnn.theta.get_value() state = (params, theta) return state def _set_weights(self, theta): """ Set fittable parameters from weights sequence. """ self.rnn.theta.set_value(theta) def __setstate__(self, state): """ Set parameters from state sequence. """ params, theta = state self.set_params(**params) self.ready() self._set_weights(theta) def save(self, fpath='.', fname=None): """ Save a pickled representation of Model state. """ fpathstart, fpathext = os.path.splitext(fpath) if fpathext == '.pkl': # User supplied an absolute path to a pickle file fpath, fname = os.path.split(fpath) elif fname is None: # Generate filename based on date date_obj = datetime.datetime.now() date_str = date_obj.strftime('%Y-%m-%d-%H:%M:%S') class_name = self.__class__.__name__ fname = '%s.%s.pkl' % (class_name, date_str) fabspath = os.path.join(fpath, fname) logger.info("Saving to %s ..." % fabspath) file = open(fabspath, 'wb') state = self.__getstate__() pickle.dump(state, file, protocol=pickle.HIGHEST_PROTOCOL) file.close() def load(self, path): """ Load model parameters from path. """ logger.info("Loading from %s ..." % path) file = open(path, 'rb') state = pickle.load(file) self.__setstate__(state) file.close() def optional_output(self, train_set_x, show_norms=True, show_output=True): """ Produces some debugging output. """ if show_norms: norm_output = [] for param in self.rnn.params: norm_output.append('%s: %6.4f' % (param.name, self.get_norms[param]())) logger.info("norms: {" + ', '.join(norm_output) + "}") if show_output: # show output for a single case if self.output_type == 'binary': output_fn = self.predict_proba else: output_fn = self.predict logger.info("sample output: " + \ str(output_fn(train_set_x.get_value( borrow=True)[:, 0, :][:, np.newaxis, :]).flatten())) def fit(self, X_train, Y_train, X_test=None, Y_test=None, validate_every=100, optimizer='sgd', compute_zero_one=False, show_norms=True, show_output=True): """ Fit model Pass in X_test, Y_test to compute test error and report during training. X_train : ndarray (T x n_in) Y_train : ndarray (T x n_out) validation_frequency : int in terms of number of epochs optimizer : string Optimizer type. Possible values: 'sgd' : batch stochastic gradient descent 'cg' : nonlinear conjugate gradient algorithm (scipy.optimize.fmin_cg) 'bfgs' : quasi-Newton method of Broyden, Fletcher, Goldfarb, and Shanno (scipy.optimize.fmin_bfgs) 'l_bfgs_b' : Limited-memory BFGS (scipy.optimize.fmin_l_bfgs_b) compute_zero_one : bool in the case of binary output, compute zero-one error in addition to cross-entropy error show_norms : bool Show L2 norms of individual parameter groups while training. show_output : bool Show the model output on first training case while training. """ if X_test is not None: assert(Y_test is not None) self.interactive = True test_set_x, test_set_y = self.shared_dataset((X_test, Y_test)) else: self.interactive = False train_set_x, train_set_y = self.shared_dataset((X_train, Y_train)) if compute_zero_one: assert(self.output_type == 'binary' \ or self.output_type == 'softmax') # compute number of minibatches for training # note that cases are the second dimension, not the first n_train = train_set_x.get_value(borrow=True).shape[1] n_train_batches = int(np.ceil(1.0 * n_train / self.batch_size)) if self.interactive: n_test = test_set_x.get_value(borrow=True).shape[1] n_test_batches = int(np.ceil(1.0 * n_test / self.batch_size)) #validate_every is specified in terms of epochs validation_frequency = validate_every * n_train_batches ###################### # BUILD ACTUAL MODEL # ###################### logger.info('... building the model') index = T.lscalar('index') # index to a [mini]batch n_ex = T.lscalar('n_ex') # total number of examples # learning rate (may change) l_r = T.scalar('l_r', dtype=theano.config.floatX) mom = T.scalar('mom', dtype=theano.config.floatX) # momentum cost = self.rnn.loss(self.y) \ + self.L1_reg * self.rnn.L1 \ + self.L2_reg * self.rnn.L2_sqr # Proper implementation of variable-batch size evaluation # Note that classifier.errors() returns the mean error # But the last batch may be a smaller size # So we keep around the effective_batch_size (whose last element may # be smaller than the rest) # And weight the reported error by the batch_size when we average # Also, by keeping batch_start and batch_stop as symbolic variables, # we make the theano function easier to read batch_start = index * self.batch_size batch_stop = T.minimum(n_ex, (index + 1) * self.batch_size) effective_batch_size = batch_stop - batch_start get_batch_size = theano.function(inputs=[index, n_ex], outputs=effective_batch_size) compute_train_error = theano.function(inputs=[index, n_ex], outputs=self.rnn.loss(self.y), givens={self.x: train_set_x[:, batch_start:batch_stop], self.y: train_set_y[:, batch_start:batch_stop]}, mode=mode) if compute_zero_one: compute_train_zo = theano.function(inputs=[index, n_ex], outputs=self.rnn.errors(self.y), givens={self.x: train_set_x[:, batch_start:batch_stop], self.y: train_set_y[:, batch_start:batch_stop]}, mode=mode) if self.interactive: compute_test_error = theano.function(inputs=[index, n_ex], outputs=self.rnn.loss(self.y), givens={self.x: test_set_x[:, batch_start:batch_stop], self.y: test_set_y[:, batch_start:batch_stop]}, mode=mode) if compute_zero_one: compute_test_zo = theano.function(inputs=[index, n_ex], outputs=self.rnn.errors(self.y), givens={self.x: test_set_x[:, batch_start:batch_stop], self.y: test_set_y[:, batch_start:batch_stop]}, mode=mode) self.get_norms = {} for param in self.rnn.params: self.get_norms[param] = theano.function(inputs=[], outputs=self.rnn.l2_norms[param], mode=mode) # compute the gradient of cost with respect to theta using BPTT gtheta = T.grad(cost, self.rnn.theta) if optimizer == 'sgd': updates = {} theta = self.rnn.theta theta_update = self.rnn.theta_update # careful here, update to the shared variable # cannot depend on an updated other shared variable # since updates happen in parallel # so we need to be explicit upd = mom * theta_update - l_r * gtheta updates[theta_update] = upd updates[theta] = theta + upd # compiling a Theano function `train_model` that returns the # cost, but in the same time updates the parameter of the # model based on the rules defined in `updates` train_model = theano.function(inputs=[index, n_ex, l_r, mom], outputs=cost, updates=updates, givens={self.x: train_set_x[:, batch_start:batch_stop], self.y: train_set_y[:, batch_start:batch_stop]}, mode=mode) ############### # TRAIN MODEL # ############### logger.info('... training') epoch = 0 while (epoch < self.n_epochs): epoch = epoch + 1 effective_momentum = self.final_momentum \ if epoch > self.momentum_switchover \ else self.initial_momentum for minibatch_idx in range(n_train_batches): minibatch_avg_cost = train_model(minibatch_idx, n_train, self.learning_rate, effective_momentum) # iteration number (how many weight updates have we made?) # epoch is 1-based, index is 0 based iter = (epoch - 1) * n_train_batches + minibatch_idx + 1 if iter % validation_frequency == 0: # compute loss on training set train_losses = [compute_train_error(i, n_train) for i in range(n_train_batches)] train_batch_sizes = [get_batch_size(i, n_train) for i in range(n_train_batches)] this_train_loss = np.average(train_losses, weights=train_batch_sizes) if compute_zero_one: train_zero_one = [compute_train_zo(i, n_train) for i in range(n_train_batches)] this_train_zero_one = np.average(train_zero_one, weights=train_batch_sizes) if self.interactive: test_losses = [compute_test_error(i, n_test) for i in range(n_test_batches)] test_batch_sizes = [get_batch_size(i, n_test) for i in range(n_test_batches)] this_test_loss = np.average(test_losses, weights=test_batch_sizes) if compute_zero_one: test_zero_one = [compute_test_zo(i, n_test) for i in range(n_test_batches)] this_test_zero_one = np.average(test_zero_one, weights=test_batch_sizes) if compute_zero_one: logger.info('epoch %i, mb %i/%i, tr loss %f, ' 'tr zo %f, te loss %f ' 'te zo %f lr: %f' % \ (epoch, minibatch_idx + 1, n_train_batches, this_train_loss, this_train_zero_one, this_test_loss, this_test_zero_one, self.learning_rate)) else: logger.info('epoch %i, mb %i/%i, tr loss %f ' 'te loss %f lr: %f' % \ (epoch, minibatch_idx + 1, n_train_batches, this_train_loss, this_test_loss, self.learning_rate)) else: if compute_zero_one: logger.info('epoch %i, mb %i/%i, train loss %f' ' train zo %f ' 'lr: %f' % (epoch, minibatch_idx + 1, n_train_batches, this_train_loss, this_train_zero_one, self.learning_rate)) else: logger.info('epoch %i, mb %i/%i, train loss %f' ' lr: %f' % (epoch, minibatch_idx + 1, n_train_batches, this_train_loss, self.learning_rate)) self.optional_output(train_set_x, show_norms, show_output) self.learning_rate *= self.learning_rate_decay if self.snapshot_every is not None: if (epoch + 1) % self.snapshot_every == 0: date_obj = datetime.datetime.now() date_str = date_obj.strftime('%Y-%m-%d-%H:%M:%S') class_name = self.__class__.__name__ fname = '%s.%s-snapshot-%d.pkl' % (class_name, date_str, epoch + 1) fabspath = os.path.join(self.snapshot_path, fname) self.save(fpath=fabspath) elif optimizer == 'cg' or optimizer == 'bfgs' \ or optimizer == 'l_bfgs_b': # compile a theano function that returns the cost of a minibatch batch_cost = theano.function(inputs=[index, n_ex], outputs=cost, givens={self.x: train_set_x[:, batch_start:batch_stop], self.y: train_set_y[:, batch_start:batch_stop]}, mode=mode, name="batch_cost") # compile a theano function that returns the gradient of the # minibatch with respect to theta batch_grad = theano.function(inputs=[index, n_ex], outputs=T.grad(cost, self.rnn.theta), givens={self.x: train_set_x[:, batch_start:batch_stop], self.y: train_set_y[:, batch_start:batch_stop]}, mode=mode, name="batch_grad") # creates a function that computes the average cost on the training # set def train_fn(theta_value): self.rnn.theta.set_value(theta_value, borrow=True) train_losses = [batch_cost(i, n_train) for i in range(n_train_batches)] train_batch_sizes = [get_batch_size(i, n_train) for i in range(n_train_batches)] return np.average(train_losses, weights=train_batch_sizes) # creates a function that computes the average gradient of cost # with respect to theta def train_fn_grad(theta_value): self.rnn.theta.set_value(theta_value, borrow=True) train_grads = [batch_grad(i, n_train) for i in range(n_train_batches)] train_batch_sizes = [get_batch_size(i, n_train) for i in range(n_train_batches)] return np.average(train_grads, weights=train_batch_sizes, axis=0) # validation function, prints useful output after each iteration def callback(theta_value): self.epoch += 1 if (self.epoch) % validate_every == 0: self.rnn.theta.set_value(theta_value, borrow=True) # compute loss on training set train_losses = [compute_train_error(i, n_train) for i in range(n_train_batches)] train_batch_sizes = [get_batch_size(i, n_train) for i in range(n_train_batches)] this_train_loss = np.average(train_losses, weights=train_batch_sizes) if compute_zero_one: train_zero_one = [compute_train_zo(i, n_train) for i in range(n_train_batches)] this_train_zero_one = np.average(train_zero_one, weights=train_batch_sizes) if self.interactive: test_losses = [compute_test_error(i, n_test) for i in range(n_test_batches)] test_batch_sizes = [get_batch_size(i, n_test) for i in range(n_test_batches)] this_test_loss = np.average(test_losses, weights=test_batch_sizes) if compute_zero_one: test_zero_one = [compute_test_zo(i, n_test) for i in range(n_test_batches)] this_test_zero_one = np.average(test_zero_one, weights=test_batch_sizes) if compute_zero_one: logger.info('epoch %i, tr loss %f, ' 'tr zo %f, te loss %f ' 'te zo %f' % \ (self.epoch, this_train_loss, this_train_zero_one, this_test_loss, this_test_zero_one)) else: logger.info('epoch %i, tr loss %f, te loss %f' % \ (self.epoch, this_train_loss, this_test_loss, self.learning_rate)) else: if compute_zero_one: logger.info('epoch %i, train loss %f' ', train zo %f ' % \ (self.epoch, this_train_loss, this_train_zero_one)) else: logger.info('epoch %i, train loss %f ' % \ (self.epoch, this_train_loss)) self.optional_output(train_set_x, show_norms, show_output) ############### # TRAIN MODEL # ############### logger.info('... training') # using scipy conjugate gradient optimizer import scipy.optimize if optimizer == 'cg': of = scipy.optimize.fmin_cg elif optimizer == 'bfgs': of = scipy.optimize.fmin_bfgs elif optimizer == 'l_bfgs_b': of = scipy.optimize.fmin_l_bfgs_b logger.info("Optimizing using %s..." % of.__name__) start_time = time.clock() # keep track of epochs externally # these get updated through callback self.epoch = 0 # interface to l_bfgs_b is different than that of cg, bfgs # however, this will be changed in scipy 0.11 # unified under scipy.optimize.minimize if optimizer == 'cg' or optimizer == 'bfgs': best_theta = of( f=train_fn, x0=self.rnn.theta.get_value(), # x0=np.zeros(self.rnn.theta.get_value().shape, # dtype=theano.config.floatX), fprime=train_fn_grad, callback=callback, disp=1, retall=1, maxiter=self.n_epochs) elif optimizer == 'l_bfgs_b': best_theta, f_best_theta, info = of( func=train_fn, x0=self.rnn.theta.get_value(), fprime=train_fn_grad, iprint=validate_every, maxfun=self.n_epochs) # max number of feval end_time = time.clock() print("Optimization time: %f" % (end_time - start_time)) else: raise NotImplementedError def test_real(n_epochs=1000): """ Test RNN with real-valued outputs. """ n_hidden = 10 n_in = 5 n_out = 3 n_steps = 10 n_seq = 10 # per batch n_batches = 10 np.random.seed(0) # simple lag test seq = np.random.randn(n_steps, n_seq * n_batches, n_in) targets = np.zeros((n_steps, n_seq * n_batches, n_out)) targets[1:, :, 0] = seq[:-1, :, 3] # delayed 1 targets[1:, :, 1] = seq[:-1, :, 2] # delayed 1 targets[2:, :, 2] = seq[:-2, :, 0] # delayed 2 targets += 0.01 * np.random.standard_normal(targets.shape) model = MetaRNN(n_in=n_in, n_hidden=n_hidden, n_out=n_out, learning_rate=0.01, learning_rate_decay=0.999, n_epochs=n_epochs, batch_size=n_seq, activation='tanh', L2_reg=1e-3) model.fit(seq, targets, validate_every=100, optimizer='bfgs') plt.close('all') fig = plt.figure() ax1 = plt.subplot(211) plt.plot(seq[:, 0, :]) ax1.set_title('input') ax2 = plt.subplot(212) true_targets = plt.plot(targets[:, 0, :]) guess = model.predict(seq[:, 0, :][:, np.newaxis, :]) guessed_targets = plt.plot(guess.squeeze(), linestyle='--') for i, x in enumerate(guessed_targets): x.set_color(true_targets[i].get_color()) ax2.set_title('solid: true output, dashed: model output') def test_binary(multiple_out=False, n_epochs=1000, optimizer='cg'): """ Test RNN with binary outputs. """ n_hidden = 10 n_in = 5 if multiple_out: n_out = 2 else: n_out = 1 n_steps = 10 n_seq = 10 # per batch n_batches = 50 np.random.seed(0) # simple lag test seq = np.random.randn(n_steps, n_seq * n_batches, n_in) targets = np.zeros((n_steps, n_seq * n_batches, n_out)) # whether lag 1 (dim 3) is greater than lag 2 (dim 0) targets[2:, :, 0] = np.cast[np.int](seq[1:-1, :, 3] > seq[:-2, :, 0]) if multiple_out: # whether product of lag 1 (dim 4) and lag 1 (dim 2) # is less than lag 2 (dim 0) targets[2:, :, 1] = np.cast[np.int]( (seq[1:-1, :, 4] * seq[1:-1, :, 2]) > seq[:-2, :, 0]) model = MetaRNN(n_in=n_in, n_hidden=n_hidden, n_out=n_out, learning_rate=0.005, learning_rate_decay=0.999, n_epochs=n_epochs, batch_size=n_seq, activation='tanh', output_type='binary') model.fit(seq, targets, validate_every=100, compute_zero_one=True, optimizer=optimizer) seqs = range(10) plt.close('all') for seq_num in seqs: fig = plt.figure() ax1 = plt.subplot(211) plt.plot(seq[:, seq_num, :]) ax1.set_title('input') ax2 = plt.subplot(212) true_targets = plt.step(range(n_steps), targets[:, seq_num, :], marker='o') guess = model.predict_proba(seq[:, seq_num, :][:, np.newaxis, :]) guessed_targets = plt.step(range(n_steps), guess.squeeze()) plt.setp(guessed_targets, linestyle='--', marker='d') for i, x in enumerate(guessed_targets): x.set_color(true_targets[i].get_color()) ax2.set_ylim((-0.1, 1.1)) ax2.set_title('solid: true output, dashed: model output (prob)') def test_softmax(n_epochs=250, optimizer='cg'): """ Test RNN with softmax outputs. """ n_hidden = 10 n_in = 5 n_steps = 10 n_seq = 10 # per batch n_batches = 50 n_classes = 3 n_out = n_classes # restricted to single softmax per time step np.random.seed(0) # simple lag test seq = np.random.randn(n_steps, n_seq * n_batches, n_in) targets = np.zeros((n_steps, n_seq * n_batches), dtype=np.int) thresh = 0.5 # if lag 1 (dim 3) is greater than lag 2 (dim 0) + thresh # class 1 # if lag 1 (dim 3) is less than lag 2 (dim 0) - thresh # class 2 # if lag 2(dim0) - thresh <= lag 1 (dim 3) <= lag2(dim0) + thresh # class 0 targets[2:, :][seq[1:-1, :, 3] > seq[:-2, :, 0] + thresh] = 1 targets[2:, :][seq[1:-1, :, 3] < seq[:-2, :, 0] - thresh] = 2 #targets[:, 2:, 0] = np.cast[np.int](seq[:, 1:-1, 3] > seq[:, :-2, 0]) model = MetaRNN(n_in=n_in, n_hidden=n_hidden, n_out=n_out, learning_rate=0.005, learning_rate_decay=0.999, n_epochs=n_epochs, batch_size=n_seq, activation='tanh', output_type='softmax') model.fit(seq, targets, validate_every=10, compute_zero_one=True, optimizer=optimizer) seqs = range(10) plt.close('all') for seq_num in seqs: fig = plt.figure() ax1 = plt.subplot(211) plt.plot(seq[:, seq_num]) ax1.set_title('input') ax2 = plt.subplot(212) # blue line will represent true classes true_targets = plt.step(range(n_steps), targets[:, seq_num], marker='o') # show probabilities (in b/w) output by model guess = model.predict_proba(seq[:, seq_num][:, np.newaxis]) guessed_probs = plt.imshow(guess.squeeze().T, interpolation='nearest', cmap='gray') ax2.set_title('blue: true class, grayscale: probs assigned by model') if __name__ == "__main__": logging.basicConfig(level=logging.INFO) t0 = time.time() test_real(n_epochs=1000) #test_binary(optimizer='sgd', n_epochs=1000) #test_softmax(n_epochs=250, optimizer='sgd') print("Elapsed time: %f" % (time.time() - t0))
bsd-3-clause
MostafaGazar/tensorflow
tensorflow/contrib/learn/python/learn/learn_io/__init__.py
10
1992
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tools to allow different io formats.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.learn.python.learn.learn_io.dask_io import extract_dask_data from tensorflow.contrib.learn.python.learn.learn_io.dask_io import extract_dask_labels from tensorflow.contrib.learn.python.learn.learn_io.dask_io import HAS_DASK from tensorflow.contrib.learn.python.learn.learn_io.graph_io import queue_parsed_features from tensorflow.contrib.learn.python.learn.learn_io.graph_io import read_batch_examples from tensorflow.contrib.learn.python.learn.learn_io.graph_io import read_batch_features from tensorflow.contrib.learn.python.learn.learn_io.graph_io import read_batch_record_features from tensorflow.contrib.learn.python.learn.learn_io.graph_io import read_keyed_batch_examples from tensorflow.contrib.learn.python.learn.learn_io.graph_io import read_keyed_batch_features from tensorflow.contrib.learn.python.learn.learn_io.pandas_io import extract_pandas_data from tensorflow.contrib.learn.python.learn.learn_io.pandas_io import extract_pandas_labels from tensorflow.contrib.learn.python.learn.learn_io.pandas_io import extract_pandas_matrix from tensorflow.contrib.learn.python.learn.learn_io.pandas_io import HAS_PANDAS
apache-2.0
winklerand/pandas
pandas/stats/moments.py
1
31628
""" Provides rolling statistical moments and related descriptive statistics implemented in Cython """ from __future__ import division import warnings import numpy as np from pandas.core.dtypes.common import is_scalar from pandas.core.api import DataFrame, Series from pandas.util._decorators import Substitution, Appender __all__ = ['rolling_count', 'rolling_max', 'rolling_min', 'rolling_sum', 'rolling_mean', 'rolling_std', 'rolling_cov', 'rolling_corr', 'rolling_var', 'rolling_skew', 'rolling_kurt', 'rolling_quantile', 'rolling_median', 'rolling_apply', 'rolling_window', 'ewma', 'ewmvar', 'ewmstd', 'ewmvol', 'ewmcorr', 'ewmcov', 'expanding_count', 'expanding_max', 'expanding_min', 'expanding_sum', 'expanding_mean', 'expanding_std', 'expanding_cov', 'expanding_corr', 'expanding_var', 'expanding_skew', 'expanding_kurt', 'expanding_quantile', 'expanding_median', 'expanding_apply'] # ----------------------------------------------------------------------------- # Docs # The order of arguments for the _doc_template is: # (header, args, kwargs, returns, notes) _doc_template = """ %s Parameters ---------- %s%s Returns ------- %s %s """ _roll_kw = """window : int Size of the moving window. This is the number of observations used for calculating the statistic. min_periods : int, default None Minimum number of observations in window required to have a value (otherwise result is NA). freq : string or DateOffset object, optional (default None) Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object. center : boolean, default False Set the labels at the center of the window. how : string, default '%s' Method for down- or re-sampling """ _roll_notes = r""" Notes ----- By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting ``center=True``. The `freq` keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of :meth:`~pandas.Series.resample` (i.e. using the `mean`). """ _ewm_kw = r"""com : float, optional Specify decay in terms of center of mass, :math:`\alpha = 1 / (1 + com),\text{ for } com \geq 0` span : float, optional Specify decay in terms of span, :math:`\alpha = 2 / (span + 1),\text{ for } span \geq 1` halflife : float, optional Specify decay in terms of half-life, :math:`\alpha = 1 - exp(log(0.5) / halflife),\text{ for } halflife > 0` alpha : float, optional Specify smoothing factor :math:`\alpha` directly, :math:`0 < \alpha \leq 1` .. versionadded:: 0.18.0 min_periods : int, default 0 Minimum number of observations in window required to have a value (otherwise result is NA). freq : None or string alias / date offset object, default=None Frequency to conform to before computing statistic adjust : boolean, default True Divide by decaying adjustment factor in beginning periods to account for imbalance in relative weightings (viewing EWMA as a moving average) how : string, default 'mean' Method for down- or re-sampling ignore_na : boolean, default False Ignore missing values when calculating weights; specify True to reproduce pre-0.15.0 behavior """ _ewm_notes = r""" Notes ----- Exactly one of center of mass, span, half-life, and alpha must be provided. Allowed values and relationship between the parameters are specified in the parameter descriptions above; see the link at the end of this section for a detailed explanation. When adjust is True (default), weighted averages are calculated using weights (1-alpha)**(n-1), (1-alpha)**(n-2), ..., 1-alpha, 1. When adjust is False, weighted averages are calculated recursively as: weighted_average[0] = arg[0]; weighted_average[i] = (1-alpha)*weighted_average[i-1] + alpha*arg[i]. When ignore_na is False (default), weights are based on absolute positions. For example, the weights of x and y used in calculating the final weighted average of [x, None, y] are (1-alpha)**2 and 1 (if adjust is True), and (1-alpha)**2 and alpha (if adjust is False). When ignore_na is True (reproducing pre-0.15.0 behavior), weights are based on relative positions. For example, the weights of x and y used in calculating the final weighted average of [x, None, y] are 1-alpha and 1 (if adjust is True), and 1-alpha and alpha (if adjust is False). More details can be found at http://pandas.pydata.org/pandas-docs/stable/computation.html#exponentially-weighted-windows """ _expanding_kw = """min_periods : int, default None Minimum number of observations in window required to have a value (otherwise result is NA). freq : string or DateOffset object, optional (default None) Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object. """ _type_of_input_retval = "y : type of input argument" _flex_retval = """y : type depends on inputs DataFrame / DataFrame -> DataFrame (matches on columns) or Panel (pairwise) DataFrame / Series -> Computes result for each column Series / Series -> Series""" _pairwise_retval = "y : Panel whose items are df1.index values" _unary_arg = "arg : Series, DataFrame\n" _binary_arg_flex = """arg1 : Series, DataFrame, or ndarray arg2 : Series, DataFrame, or ndarray, optional if not supplied then will default to arg1 and produce pairwise output """ _binary_arg = """arg1 : Series, DataFrame, or ndarray arg2 : Series, DataFrame, or ndarray """ _pairwise_arg = """df1 : DataFrame df2 : DataFrame """ _pairwise_kw = """pairwise : bool, default False If False then only matching columns between arg1 and arg2 will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a Panel in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used. """ _ddof_kw = """ddof : int, default 1 Delta Degrees of Freedom. The divisor used in calculations is ``N - ddof``, where ``N`` represents the number of elements. """ _bias_kw = r"""bias : boolean, default False Use a standard estimation bias correction """ def ensure_compat(dispatch, name, arg, func_kw=None, *args, **kwargs): """ wrapper function to dispatch to the appropriate window functions wraps/unwraps ndarrays for compat can be removed when ndarray support is removed """ is_ndarray = isinstance(arg, np.ndarray) if is_ndarray: if arg.ndim == 1: arg = Series(arg) elif arg.ndim == 2: arg = DataFrame(arg) else: raise AssertionError("cannot support ndim > 2 for ndarray compat") warnings.warn("pd.{dispatch}_{name} is deprecated for ndarrays and " "will be removed " "in a future version" .format(dispatch=dispatch, name=name), FutureWarning, stacklevel=3) # get the functional keywords here if func_kw is None: func_kw = [] kwds = {} for k in func_kw: value = kwargs.pop(k, None) if value is not None: kwds[k] = value # how is a keyword that if not-None should be in kwds how = kwargs.pop('how', None) if how is not None: kwds['how'] = how r = getattr(arg, dispatch)(**kwargs) if not is_ndarray: # give a helpful deprecation message # with copy-pastable arguments pargs = ','.join("{a}={b}".format(a=a, b=b) for a, b in kwargs.items() if b is not None) aargs = ','.join(args) if len(aargs): aargs += ',' def f(a, b): if is_scalar(b): return "{a}={b}".format(a=a, b=b) return "{a}=<{b}>".format(a=a, b=type(b).__name__) aargs = ','.join(f(a, b) for a, b in kwds.items() if b is not None) warnings.warn("pd.{dispatch}_{name} is deprecated for {klass} " "and will be removed in a future version, replace with " "\n\t{klass}.{dispatch}({pargs}).{name}({aargs})" .format(klass=type(arg).__name__, pargs=pargs, aargs=aargs, dispatch=dispatch, name=name), FutureWarning, stacklevel=3) result = getattr(r, name)(*args, **kwds) if is_ndarray: result = result.values return result def rolling_count(arg, window, **kwargs): """ Rolling count of number of non-NaN observations inside provided window. Parameters ---------- arg : DataFrame or numpy ndarray-like window : int Size of the moving window. This is the number of observations used for calculating the statistic. freq : string or DateOffset object, optional (default None) Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object. center : boolean, default False Whether the label should correspond with center of window how : string, default 'mean' Method for down- or re-sampling Returns ------- rolling_count : type of caller Notes ----- The `freq` keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of :meth:`~pandas.Series.resample` (i.e. using the `mean`). To learn more about the frequency strings, please see `this link <http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases>`__. """ return ensure_compat('rolling', 'count', arg, window=window, **kwargs) @Substitution("Unbiased moving covariance.", _binary_arg_flex, _roll_kw % 'None' + _pairwise_kw + _ddof_kw, _flex_retval, _roll_notes) @Appender(_doc_template) def rolling_cov(arg1, arg2=None, window=None, pairwise=None, **kwargs): if window is None and isinstance(arg2, (int, float)): window = arg2 arg2 = arg1 pairwise = True if pairwise is None else pairwise # only default unset elif arg2 is None: arg2 = arg1 pairwise = True if pairwise is None else pairwise # only default unset return ensure_compat('rolling', 'cov', arg1, other=arg2, window=window, pairwise=pairwise, func_kw=['other', 'pairwise', 'ddof'], **kwargs) @Substitution("Moving sample correlation.", _binary_arg_flex, _roll_kw % 'None' + _pairwise_kw, _flex_retval, _roll_notes) @Appender(_doc_template) def rolling_corr(arg1, arg2=None, window=None, pairwise=None, **kwargs): if window is None and isinstance(arg2, (int, float)): window = arg2 arg2 = arg1 pairwise = True if pairwise is None else pairwise # only default unset elif arg2 is None: arg2 = arg1 pairwise = True if pairwise is None else pairwise # only default unset return ensure_compat('rolling', 'corr', arg1, other=arg2, window=window, pairwise=pairwise, func_kw=['other', 'pairwise'], **kwargs) # ----------------------------------------------------------------------------- # Exponential moving moments @Substitution("Exponentially-weighted moving average", _unary_arg, _ewm_kw, _type_of_input_retval, _ewm_notes) @Appender(_doc_template) def ewma(arg, com=None, span=None, halflife=None, alpha=None, min_periods=0, freq=None, adjust=True, how=None, ignore_na=False): return ensure_compat('ewm', 'mean', arg, com=com, span=span, halflife=halflife, alpha=alpha, min_periods=min_periods, freq=freq, adjust=adjust, how=how, ignore_na=ignore_na) @Substitution("Exponentially-weighted moving variance", _unary_arg, _ewm_kw + _bias_kw, _type_of_input_retval, _ewm_notes) @Appender(_doc_template) def ewmvar(arg, com=None, span=None, halflife=None, alpha=None, min_periods=0, bias=False, freq=None, how=None, ignore_na=False, adjust=True): return ensure_compat('ewm', 'var', arg, com=com, span=span, halflife=halflife, alpha=alpha, min_periods=min_periods, freq=freq, adjust=adjust, how=how, ignore_na=ignore_na, bias=bias, func_kw=['bias']) @Substitution("Exponentially-weighted moving std", _unary_arg, _ewm_kw + _bias_kw, _type_of_input_retval, _ewm_notes) @Appender(_doc_template) def ewmstd(arg, com=None, span=None, halflife=None, alpha=None, min_periods=0, bias=False, freq=None, how=None, ignore_na=False, adjust=True): return ensure_compat('ewm', 'std', arg, com=com, span=span, halflife=halflife, alpha=alpha, min_periods=min_periods, freq=freq, adjust=adjust, how=how, ignore_na=ignore_na, bias=bias, func_kw=['bias']) ewmvol = ewmstd @Substitution("Exponentially-weighted moving covariance", _binary_arg_flex, _ewm_kw + _pairwise_kw, _type_of_input_retval, _ewm_notes) @Appender(_doc_template) def ewmcov(arg1, arg2=None, com=None, span=None, halflife=None, alpha=None, min_periods=0, bias=False, freq=None, pairwise=None, how=None, ignore_na=False, adjust=True): if arg2 is None: arg2 = arg1 pairwise = True if pairwise is None else pairwise elif isinstance(arg2, (int, float)) and com is None: com = arg2 arg2 = arg1 pairwise = True if pairwise is None else pairwise return ensure_compat('ewm', 'cov', arg1, other=arg2, com=com, span=span, halflife=halflife, alpha=alpha, min_periods=min_periods, bias=bias, freq=freq, how=how, ignore_na=ignore_na, adjust=adjust, pairwise=pairwise, func_kw=['other', 'pairwise', 'bias']) @Substitution("Exponentially-weighted moving correlation", _binary_arg_flex, _ewm_kw + _pairwise_kw, _type_of_input_retval, _ewm_notes) @Appender(_doc_template) def ewmcorr(arg1, arg2=None, com=None, span=None, halflife=None, alpha=None, min_periods=0, freq=None, pairwise=None, how=None, ignore_na=False, adjust=True): if arg2 is None: arg2 = arg1 pairwise = True if pairwise is None else pairwise elif isinstance(arg2, (int, float)) and com is None: com = arg2 arg2 = arg1 pairwise = True if pairwise is None else pairwise return ensure_compat('ewm', 'corr', arg1, other=arg2, com=com, span=span, halflife=halflife, alpha=alpha, min_periods=min_periods, freq=freq, how=how, ignore_na=ignore_na, adjust=adjust, pairwise=pairwise, func_kw=['other', 'pairwise']) # --------------------------------------------------------------------- # Python interface to Cython functions def _rolling_func(name, desc, how=None, func_kw=None, additional_kw=''): if how is None: how_arg_str = 'None' else: how_arg_str = "'{how}".format(how=how) @Substitution(desc, _unary_arg, _roll_kw % how_arg_str + additional_kw, _type_of_input_retval, _roll_notes) @Appender(_doc_template) def f(arg, window, min_periods=None, freq=None, center=False, **kwargs): return ensure_compat('rolling', name, arg, window=window, min_periods=min_periods, freq=freq, center=center, func_kw=func_kw, **kwargs) return f rolling_max = _rolling_func('max', 'Moving maximum.', how='max') rolling_min = _rolling_func('min', 'Moving minimum.', how='min') rolling_sum = _rolling_func('sum', 'Moving sum.') rolling_mean = _rolling_func('mean', 'Moving mean.') rolling_median = _rolling_func('median', 'Moving median.', how='median') rolling_std = _rolling_func('std', 'Moving standard deviation.', func_kw=['ddof'], additional_kw=_ddof_kw) rolling_var = _rolling_func('var', 'Moving variance.', func_kw=['ddof'], additional_kw=_ddof_kw) rolling_skew = _rolling_func('skew', 'Unbiased moving skewness.') rolling_kurt = _rolling_func('kurt', 'Unbiased moving kurtosis.') def rolling_quantile(arg, window, quantile, min_periods=None, freq=None, center=False): """Moving quantile. Parameters ---------- arg : Series, DataFrame window : int Size of the moving window. This is the number of observations used for calculating the statistic. quantile : float 0 <= quantile <= 1 min_periods : int, default None Minimum number of observations in window required to have a value (otherwise result is NA). freq : string or DateOffset object, optional (default None) Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object. center : boolean, default False Whether the label should correspond with center of window Returns ------- y : type of input argument Notes ----- By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting ``center=True``. The `freq` keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of :meth:`~pandas.Series.resample` (i.e. using the `mean`). To learn more about the frequency strings, please see `this link <http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases>`__. """ return ensure_compat('rolling', 'quantile', arg, window=window, freq=freq, center=center, min_periods=min_periods, func_kw=['quantile'], quantile=quantile) def rolling_apply(arg, window, func, min_periods=None, freq=None, center=False, args=(), kwargs={}): """Generic moving function application. Parameters ---------- arg : Series, DataFrame window : int Size of the moving window. This is the number of observations used for calculating the statistic. func : function Must produce a single value from an ndarray input min_periods : int, default None Minimum number of observations in window required to have a value (otherwise result is NA). freq : string or DateOffset object, optional (default None) Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object. center : boolean, default False Whether the label should correspond with center of window args : tuple Passed on to func kwargs : dict Passed on to func Returns ------- y : type of input argument Notes ----- By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting ``center=True``. The `freq` keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of :meth:`~pandas.Series.resample` (i.e. using the `mean`). To learn more about the frequency strings, please see `this link <http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases>`__. """ return ensure_compat('rolling', 'apply', arg, window=window, freq=freq, center=center, min_periods=min_periods, func_kw=['func', 'args', 'kwargs'], func=func, args=args, kwargs=kwargs) def rolling_window(arg, window=None, win_type=None, min_periods=None, freq=None, center=False, mean=True, axis=0, how=None, **kwargs): """ Applies a moving window of type ``window_type`` and size ``window`` on the data. Parameters ---------- arg : Series, DataFrame window : int or ndarray Weighting window specification. If the window is an integer, then it is treated as the window length and win_type is required win_type : str, default None Window type (see Notes) min_periods : int, default None Minimum number of observations in window required to have a value (otherwise result is NA). freq : string or DateOffset object, optional (default None) Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object. center : boolean, default False Whether the label should correspond with center of window mean : boolean, default True If True computes weighted mean, else weighted sum axis : {0, 1}, default 0 how : string, default 'mean' Method for down- or re-sampling Returns ------- y : type of input argument Notes ----- The recognized window types are: * ``boxcar`` * ``triang`` * ``blackman`` * ``hamming`` * ``bartlett`` * ``parzen`` * ``bohman`` * ``blackmanharris`` * ``nuttall`` * ``barthann`` * ``kaiser`` (needs beta) * ``gaussian`` (needs std) * ``general_gaussian`` (needs power, width) * ``slepian`` (needs width). By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting ``center=True``. The `freq` keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of :meth:`~pandas.Series.resample` (i.e. using the `mean`). To learn more about the frequency strings, please see `this link <http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases>`__. """ func = 'mean' if mean else 'sum' return ensure_compat('rolling', func, arg, window=window, win_type=win_type, freq=freq, center=center, min_periods=min_periods, axis=axis, func_kw=kwargs.keys(), **kwargs) def _expanding_func(name, desc, func_kw=None, additional_kw=''): @Substitution(desc, _unary_arg, _expanding_kw + additional_kw, _type_of_input_retval, "") @Appender(_doc_template) def f(arg, min_periods=1, freq=None, **kwargs): return ensure_compat('expanding', name, arg, min_periods=min_periods, freq=freq, func_kw=func_kw, **kwargs) return f expanding_max = _expanding_func('max', 'Expanding maximum.') expanding_min = _expanding_func('min', 'Expanding minimum.') expanding_sum = _expanding_func('sum', 'Expanding sum.') expanding_mean = _expanding_func('mean', 'Expanding mean.') expanding_median = _expanding_func('median', 'Expanding median.') expanding_std = _expanding_func('std', 'Expanding standard deviation.', func_kw=['ddof'], additional_kw=_ddof_kw) expanding_var = _expanding_func('var', 'Expanding variance.', func_kw=['ddof'], additional_kw=_ddof_kw) expanding_skew = _expanding_func('skew', 'Unbiased expanding skewness.') expanding_kurt = _expanding_func('kurt', 'Unbiased expanding kurtosis.') def expanding_count(arg, freq=None): """ Expanding count of number of non-NaN observations. Parameters ---------- arg : DataFrame or numpy ndarray-like freq : string or DateOffset object, optional (default None) Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object. Returns ------- expanding_count : type of caller Notes ----- The `freq` keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of :meth:`~pandas.Series.resample` (i.e. using the `mean`). To learn more about the frequency strings, please see `this link <http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases>`__. """ return ensure_compat('expanding', 'count', arg, freq=freq) def expanding_quantile(arg, quantile, min_periods=1, freq=None): """Expanding quantile. Parameters ---------- arg : Series, DataFrame quantile : float 0 <= quantile <= 1 min_periods : int, default None Minimum number of observations in window required to have a value (otherwise result is NA). freq : string or DateOffset object, optional (default None) Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object. Returns ------- y : type of input argument Notes ----- The `freq` keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of :meth:`~pandas.Series.resample` (i.e. using the `mean`). To learn more about the frequency strings, please see `this link <http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases>`__. """ return ensure_compat('expanding', 'quantile', arg, freq=freq, min_periods=min_periods, func_kw=['quantile'], quantile=quantile) @Substitution("Unbiased expanding covariance.", _binary_arg_flex, _expanding_kw + _pairwise_kw + _ddof_kw, _flex_retval, "") @Appender(_doc_template) def expanding_cov(arg1, arg2=None, min_periods=1, freq=None, pairwise=None, ddof=1): if arg2 is None: arg2 = arg1 pairwise = True if pairwise is None else pairwise elif isinstance(arg2, (int, float)) and min_periods is None: min_periods = arg2 arg2 = arg1 pairwise = True if pairwise is None else pairwise return ensure_compat('expanding', 'cov', arg1, other=arg2, min_periods=min_periods, pairwise=pairwise, freq=freq, ddof=ddof, func_kw=['other', 'pairwise', 'ddof']) @Substitution("Expanding sample correlation.", _binary_arg_flex, _expanding_kw + _pairwise_kw, _flex_retval, "") @Appender(_doc_template) def expanding_corr(arg1, arg2=None, min_periods=1, freq=None, pairwise=None): if arg2 is None: arg2 = arg1 pairwise = True if pairwise is None else pairwise elif isinstance(arg2, (int, float)) and min_periods is None: min_periods = arg2 arg2 = arg1 pairwise = True if pairwise is None else pairwise return ensure_compat('expanding', 'corr', arg1, other=arg2, min_periods=min_periods, pairwise=pairwise, freq=freq, func_kw=['other', 'pairwise', 'ddof']) def expanding_apply(arg, func, min_periods=1, freq=None, args=(), kwargs={}): """Generic expanding function application. Parameters ---------- arg : Series, DataFrame func : function Must produce a single value from an ndarray input min_periods : int, default None Minimum number of observations in window required to have a value (otherwise result is NA). freq : string or DateOffset object, optional (default None) Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object. args : tuple Passed on to func kwargs : dict Passed on to func Returns ------- y : type of input argument Notes ----- The `freq` keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of :meth:`~pandas.Series.resample` (i.e. using the `mean`). To learn more about the frequency strings, please see `this link <http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases>`__. """ return ensure_compat('expanding', 'apply', arg, freq=freq, min_periods=min_periods, func_kw=['func', 'args', 'kwargs'], func=func, args=args, kwargs=kwargs)
bsd-3-clause
PythonProgramming/Monte-Carlo-Simulator
montecarlo7.py
1
2718
import random import matplotlib import matplotlib.pyplot as plt import time from matplotlib import style style.use("ggplot") def rollDice(): roll = random.randint(1,100) if roll == 100: return False elif roll <= 50: return False elif 100 > roll >= 50: return True def doubler_bettor(funds,initial_wager,wager_count): global broke_count value = funds wager = initial_wager wX = [] vY = [] currentWager = 1 previousWager = 'win' previousWagerAmount = initial_wager while currentWager <= wager_count: if previousWager == 'win': if rollDice(): value += wager wX.append(currentWager) vY.append(value) else: value -= wager previousWager = 'loss' previousWagerAmount = wager wX.append(currentWager) vY.append(value) if value < 0: broke_count += 1 currentWager += 10000000000000000 elif previousWager == 'loss': if rollDice(): wager = previousWagerAmount * 2 value += wager wager = initial_wager previousWager = 'win' wX.append(currentWager) vY.append(value) else: wager = previousWagerAmount * 2 value -= wager previousWager = 'loss' previousWagerAmount = wager wX.append(currentWager) vY.append(value) if value < 0: currentWager += 10000000000000000 broke_count += 1 currentWager += 1 plt.plot(wX,vY) def simple_bettor(funds,initial_wager,wager_count): #### global broke_count value = funds wager = initial_wager wX = [] vY = [] currentWager = 1 while currentWager <= wager_count: if rollDice(): value += wager wX.append(currentWager) vY.append(value) else: value -= wager wX.append(currentWager) vY.append(value) ###add me if value < 0: currentWager += 10000000000000000 broke_count += 1 currentWager += 1 plt.plot(wX,vY) x = 0 broke_count = 0 while x < 1000: simple_bettor(10000,100,1000) x+=1 print(('death rate:',(broke_count/float(x)) * 100)) print(('survival rate:',100 - ((broke_count/float(x)) * 100))) plt.axhline(0, color = 'r') plt.ylabel('Account Value') plt.xlabel('Wager Count') plt.show()
mit
jseabold/statsmodels
statsmodels/tsa/holtwinters/results.py
4
26366
import numpy as np import pandas as pd from scipy.special import inv_boxcox from scipy.stats import ( _distn_infrastructure, boxcox, rv_continuous, rv_discrete, ) from statsmodels.base.data import PandasData from statsmodels.base.model import Results from statsmodels.base.wrapper import ( ResultsWrapper, populate_wrapper, union_dicts, ) class HoltWintersResults(Results): """ Results from fitting Exponential Smoothing models. Parameters ---------- model : ExponentialSmoothing instance The fitted model instance. params : dict All the parameters for the Exponential Smoothing model. sse : float The sum of squared errors. aic : float The Akaike information criterion. aicc : float AIC with a correction for finite sample sizes. bic : float The Bayesian information criterion. optimized : bool Flag indicating whether the model parameters were optimized to fit the data. level : ndarray An array of the levels values that make up the fitted values. trend : ndarray An array of the trend values that make up the fitted values. season : ndarray An array of the seasonal values that make up the fitted values. params_formatted : pd.DataFrame DataFrame containing all parameters, their short names and a flag indicating whether the parameter's value was optimized to fit the data. resid : ndarray An array of the residuals of the fittedvalues and actual values. k : int The k parameter used to remove the bias in AIC, BIC etc. fittedvalues : ndarray An array of the fitted values. Fitted by the Exponential Smoothing model. fittedfcast : ndarray An array of both the fitted values and forecast values. fcastvalues : ndarray An array of the forecast values forecast by the Exponential Smoothing model. mle_retvals : {None, scipy.optimize.optimize.OptimizeResult} Optimization results if the parameters were optimized to fit the data. """ def __init__( self, model, params, sse, aic, aicc, bic, optimized, level, trend, season, params_formatted, resid, k, fittedvalues, fittedfcast, fcastvalues, mle_retvals=None, ): self.data = model.data super(HoltWintersResults, self).__init__(model, params) self._model = model self._sse = sse self._aic = aic self._aicc = aicc self._bic = bic self._optimized = optimized self._level = level self._trend = trend self._season = season self._params_formatted = params_formatted self._fittedvalues = fittedvalues self._fittedfcast = fittedfcast self._fcastvalues = fcastvalues self._resid = resid self._k = k self._mle_retvals = mle_retvals @property def aic(self): """ The Akaike information criterion. """ return self._aic @property def aicc(self): """ AIC with a correction for finite sample sizes. """ return self._aicc @property def bic(self): """ The Bayesian information criterion. """ return self._bic @property def sse(self): """ The sum of squared errors between the data and the fittted value. """ return self._sse @property def model(self): """ The model used to produce the results instance. """ return self._model @model.setter def model(self, value): self._model = value @property def level(self): """ An array of the levels values that make up the fitted values. """ return self._level @property def optimized(self): """ Flag indicating if model parameters were optimized to fit the data. """ return self._optimized @property def slope(self): """ An array of the slope values that make up the fitted values. .. deprecated:: 0.12 Use the trend property instead. """ import warnings warnings.warn( "slope is deprecated and will be removed after 0.13", FutureWarning ) return self._trend @property def trend(self): """ An array of the trend values that make up the fitted values. """ return self._trend @property def season(self): """ An array of the seasonal values that make up the fitted values. """ return self._season @property def params_formatted(self): """ DataFrame containing all parameters Contains short names and a flag indicating whether the parameter's value was optimized to fit the data. """ return self._params_formatted @property def fittedvalues(self): """ An array of the fitted values """ return self._fittedvalues @property def fittedfcast(self): """ An array of both the fitted values and forecast values. """ return self._fittedfcast @property def fcastvalues(self): """ An array of the forecast values """ return self._fcastvalues @property def resid(self): """ An array of the residuals of the fittedvalues and actual values. """ return self._resid @property def k(self): """ The k parameter used to remove the bias in AIC, BIC etc. """ return self._k @property def mle_retvals(self): """ Optimization results if the parameters were optimized to fit the data. """ return self._mle_retvals @mle_retvals.setter def mle_retvals(self, value): self._mle_retvals = value def predict(self, start=None, end=None): """ In-sample prediction and out-of-sample forecasting Parameters ---------- start : int, str, or datetime, optional Zero-indexed observation number at which to start forecasting, ie., the first forecast is start. Can also be a date string to parse or a datetime type. Default is the the zeroth observation. end : int, str, or datetime, optional Zero-indexed observation number at which to end forecasting, ie., the first forecast is start. Can also be a date string to parse or a datetime type. However, if the dates index does not have a fixed frequency, end must be an integer index if you want out of sample prediction. Default is the last observation in the sample. Returns ------- forecast : ndarray Array of out of sample forecasts. """ return self.model.predict(self.params, start, end) def forecast(self, steps=1): """ Out-of-sample forecasts Parameters ---------- steps : int The number of out of sample forecasts from the end of the sample. Returns ------- forecast : ndarray Array of out of sample forecasts """ try: freq = getattr(self.model._index, "freq", 1) if isinstance(freq, int): start = self.model._index.shape[0] end = start + steps - 1 else: start = self.model._index[-1] + freq end = self.model._index[-1] + steps * freq return self.model.predict(self.params, start=start, end=end) except (AttributeError, ValueError): # May occur when the index does not have a freq return self.model._predict(h=steps, **self.params).fcastvalues def summary(self): """ Summarize the fitted Model Returns ------- smry : Summary instance This holds the summary table and text, which can be printed or converted to various output formats. See Also -------- statsmodels.iolib.summary.Summary """ from statsmodels.iolib.summary import Summary from statsmodels.iolib.table import SimpleTable model = self.model title = model.__class__.__name__ + " Model Results" dep_variable = "endog" orig_endog = self.model.data.orig_endog if isinstance(orig_endog, pd.DataFrame): dep_variable = orig_endog.columns[0] elif isinstance(orig_endog, pd.Series): dep_variable = orig_endog.name seasonal_periods = ( None if self.model.seasonal is None else self.model.seasonal_periods ) lookup = { "add": "Additive", "additive": "Additive", "mul": "Multiplicative", "multiplicative": "Multiplicative", None: "None", } transform = self.params["use_boxcox"] box_cox_transform = True if transform else False box_cox_coeff = ( transform if isinstance(transform, str) else self.params["lamda"] ) if isinstance(box_cox_coeff, float): box_cox_coeff = "{:>10.5f}".format(box_cox_coeff) top_left = [ ("Dep. Variable:", [dep_variable]), ("Model:", [model.__class__.__name__]), ("Optimized:", [str(np.any(self.optimized))]), ("Trend:", [lookup[self.model.trend]]), ("Seasonal:", [lookup[self.model.seasonal]]), ("Seasonal Periods:", [str(seasonal_periods)]), ("Box-Cox:", [str(box_cox_transform)]), ("Box-Cox Coeff.:", [str(box_cox_coeff)]), ] top_right = [ ("No. Observations:", [str(len(self.model.endog))]), ("SSE", ["{:5.3f}".format(self.sse)]), ("AIC", ["{:5.3f}".format(self.aic)]), ("BIC", ["{:5.3f}".format(self.bic)]), ("AICC", ["{:5.3f}".format(self.aicc)]), ("Date:", None), ("Time:", None), ] smry = Summary() smry.add_table_2cols( self, gleft=top_left, gright=top_right, title=title ) formatted = self.params_formatted # type: pd.DataFrame def _fmt(x): abs_x = np.abs(x) scale = 1 if np.isnan(x): return f"{str(x):>20}" if abs_x != 0: scale = int(np.log10(abs_x)) if scale > 4 or scale < -3: return "{:>20.5g}".format(x) dec = min(7 - scale, 7) fmt = "{{:>20.{0}f}}".format(dec) return fmt.format(x) tab = [] for _, vals in formatted.iterrows(): tab.append( [ _fmt(vals.iloc[1]), "{0:>20}".format(vals.iloc[0]), "{0:>20}".format(str(bool(vals.iloc[2]))), ] ) params_table = SimpleTable( tab, headers=["coeff", "code", "optimized"], title="", stubs=list(formatted.index), ) smry.tables.append(params_table) return smry def simulate( self, nsimulations, anchor=None, repetitions=1, error="add", random_errors=None, random_state=None, ): r""" Random simulations using the state space formulation. Parameters ---------- nsimulations : int The number of simulation steps. anchor : int, str, or datetime, optional First period for simulation. The simulation will be conditional on all existing datapoints prior to the `anchor`. Type depends on the index of the given `endog` in the model. Two special cases are the strings 'start' and 'end'. `start` refers to beginning the simulation at the first period of the sample, and `end` refers to beginning the simulation at the first period after the sample. Integer values can run from 0 to `nobs`, or can be negative to apply negative indexing. Finally, if a date/time index was provided to the model, then this argument can be a date string to parse or a datetime type. Default is 'end'. repetitions : int, optional Number of simulated paths to generate. Default is 1 simulated path. error : {"add", "mul", "additive", "multiplicative"}, optional Error model for state space formulation. Default is ``"add"``. random_errors : optional Specifies how the random errors should be obtained. Can be one of the following: * ``None``: Random normally distributed values with variance estimated from the fit errors drawn from numpy's standard RNG (can be seeded with the `random_state` argument). This is the default option. * A distribution function from ``scipy.stats``, e.g. ``scipy.stats.norm``: Fits the distribution function to the fit errors and draws from the fitted distribution. Note the difference between ``scipy.stats.norm`` and ``scipy.stats.norm()``, the latter one is a frozen distribution function. * A frozen distribution function from ``scipy.stats``, e.g. ``scipy.stats.norm(scale=2)``: Draws from the frozen distribution function. * A ``np.ndarray`` with shape (`nsimulations`, `repetitions`): Uses the given values as random errors. * ``"bootstrap"``: Samples the random errors from the fit errors. random_state : int or np.random.RandomState, optional A seed for the random number generator or a ``np.random.RandomState`` object. Only used if `random_errors` is ``None``. Default is ``None``. Returns ------- sim : pd.Series, pd.DataFrame or np.ndarray An ``np.ndarray``, ``pd.Series``, or ``pd.DataFrame`` of simulated values. If the original data was a ``pd.Series`` or ``pd.DataFrame``, `sim` will be a ``pd.Series`` if `repetitions` is 1, and a ``pd.DataFrame`` of shape (`nsimulations`, `repetitions`) else. Otherwise, if `repetitions` is 1, a ``np.ndarray`` of shape (`nsimulations`,) is returned, and if `repetitions` is not 1 a ``np.ndarray`` of shape (`nsimulations`, `repetitions`) is returned. Notes ----- The simulation is based on the state space model of the Holt-Winter's methods. The state space model assumes that the true value at time :math:`t` is randomly distributed around the prediction value. If using the additive error model, this means: .. math:: y_t &= \hat{y}_{t|t-1} + e_t\\ e_t &\sim \mathcal{N}(0, \sigma^2) Using the multiplicative error model: .. math:: y_t &= \hat{y}_{t|t-1} \cdot (1 + e_t)\\ e_t &\sim \mathcal{N}(0, \sigma^2) Inserting these equations into the smoothing equation formulation leads to the state space equations. The notation used here follows [1]_. Additionally, .. math:: B_t &= b_{t-1} \circ_d \phi\\ L_t &= l_{t-1} \circ_b B_t\\ S_t &= s_{t-m}\\ Y_t &= L_t \circ_s S_t, where :math:`\circ_d` is the operation linking trend and damping parameter (multiplication if the trend is additive, power if the trend is multiplicative), :math:`\circ_b` is the operation linking level and trend (addition if the trend is additive, multiplication if the trend is multiplicative), and :math:`\circ_s` is the operation linking seasonality to the rest. The state space equations can then be formulated as .. math:: y_t &= Y_t + \eta \cdot e_t\\ l_t &= L_t + \alpha \cdot (M_e \cdot L_t + \kappa_l) \cdot e_t\\ b_t &= B_t + \beta \cdot (M_e \cdot B_t + \kappa_b) \cdot e_t\\ s_t &= S_t + \gamma \cdot (M_e \cdot S_t + \kappa_s) \cdot e_t\\ with .. math:: \eta &= \begin{cases} Y_t\quad\text{if error is multiplicative}\\ 1\quad\text{else} \end{cases}\\ M_e &= \begin{cases} 1\quad\text{if error is multiplicative}\\ 0\quad\text{else} \end{cases}\\ and, when using the additive error model, .. math:: \kappa_l &= \begin{cases} \frac{1}{S_t}\quad \text{if seasonality is multiplicative}\\ 1\quad\text{else} \end{cases}\\ \kappa_b &= \begin{cases} \frac{\kappa_l}{l_{t-1}}\quad \text{if trend is multiplicative}\\ \kappa_l\quad\text{else} \end{cases}\\ \kappa_s &= \begin{cases} \frac{1}{L_t}\quad\text{if seasonality is multiplicative}\\ 1\quad\text{else} \end{cases} When using the multiplicative error model .. math:: \kappa_l &= \begin{cases} 0\quad \text{if seasonality is multiplicative}\\ S_t\quad\text{else} \end{cases}\\ \kappa_b &= \begin{cases} \frac{\kappa_l}{l_{t-1}}\quad \text{if trend is multiplicative}\\ \kappa_l + l_{t-1}\quad\text{else} \end{cases}\\ \kappa_s &= \begin{cases} 0\quad\text{if seasonality is multiplicative}\\ L_t\quad\text{else} \end{cases} References ---------- .. [1] Hyndman, R.J., & Athanasopoulos, G. (2018) *Forecasting: principles and practice*, 2nd edition, OTexts: Melbourne, Australia. OTexts.com/fpp2. Accessed on February 28th 2020. """ # check inputs if error in ["additive", "multiplicative"]: error = {"additive": "add", "multiplicative": "mul"}[error] if error not in ["add", "mul"]: raise ValueError("error must be 'add' or 'mul'!") # Get the starting location if anchor is None or anchor == "end": start_idx = self.model.nobs elif anchor == "start": start_idx = 0 else: start_idx, _, _ = self.model._get_index_loc(anchor) if isinstance(start_idx, slice): start_idx = start_idx.start if start_idx < 0: start_idx += self.model.nobs if start_idx > self.model.nobs: raise ValueError("Cannot anchor simulation outside of the sample.") # get Holt-Winters settings and parameters trend = self.model.trend damped = self.model.damped_trend seasonal = self.model.seasonal use_boxcox = self.params["use_boxcox"] lamda = self.params["lamda"] alpha = self.params["smoothing_level"] beta = self.params["smoothing_trend"] gamma = self.params["smoothing_seasonal"] phi = self.params["damping_trend"] # if model has no seasonal component, use 1 as period length m = max(self.model.seasonal_periods, 1) n_params = ( 2 + 2 * self.model.has_trend + (m + 1) * self.model.has_seasonal + damped ) mul_seasonal = seasonal == "mul" mul_trend = trend == "mul" mul_error = error == "mul" # define trend, damping and seasonality operations if mul_trend: op_b = np.multiply op_d = np.power neutral_b = 1 else: op_b = np.add op_d = np.multiply neutral_b = 0 if mul_seasonal: op_s = np.multiply neutral_s = 1 else: op_s = np.add neutral_s = 0 # set initial values level = self.level _trend = self.trend season = self.season # (notation as in https://otexts.com/fpp2/ets.html) y = np.empty((nsimulations, repetitions)) # lvl instead of l because of E741 lvl = np.empty((nsimulations + 1, repetitions)) b = np.empty((nsimulations + 1, repetitions)) s = np.empty((nsimulations + m, repetitions)) # the following uses python's index wrapping if start_idx == 0: lvl[-1, :] = self.params["initial_level"] b[-1, :] = self.params["initial_trend"] else: lvl[-1, :] = level[start_idx - 1] b[-1, :] = _trend[start_idx - 1] if 0 <= start_idx and start_idx <= m: initial_seasons = self.params["initial_seasons"] _s = np.concatenate( (initial_seasons[start_idx:], season[:start_idx]) ) s[-m:, :] = np.tile(_s, (repetitions, 1)).T else: s[-m:, :] = np.tile( season[start_idx - m : start_idx], (repetitions, 1) ).T # set neutral values for unused features if trend is None: b[:, :] = neutral_b phi = 1 beta = 0 if seasonal is None: s[:, :] = neutral_s gamma = 0 if not damped: phi = 1 # calculate residuals for error covariance estimation if use_boxcox: fitted = boxcox(self.fittedvalues, lamda) else: fitted = self.fittedvalues if error == "add": resid = self.model._y - fitted else: resid = (self.model._y - fitted) / fitted sigma = np.sqrt(np.sum(resid ** 2) / (len(resid) - n_params)) # get random error eps if isinstance(random_errors, np.ndarray): if random_errors.shape != (nsimulations, repetitions): raise ValueError( "If random_errors is an ndarray, it must have shape " "(nsimulations, repetitions)" ) eps = random_errors elif random_errors == "bootstrap": eps = np.random.choice( resid, size=(nsimulations, repetitions), replace=True ) elif random_errors is None: if random_state is None: eps = np.random.randn(nsimulations, repetitions) * sigma elif isinstance(random_state, int): rng = np.random.RandomState(random_state) eps = rng.randn(nsimulations, repetitions) * sigma elif isinstance(random_state, np.random.RandomState): eps = random_state.randn(nsimulations, repetitions) * sigma else: raise ValueError( "Argument random_state must be None, an integer, " "or an instance of np.random.RandomState" ) elif isinstance(random_errors, (rv_continuous, rv_discrete)): params = random_errors.fit(resid) eps = random_errors.rvs(*params, size=(nsimulations, repetitions)) elif isinstance(random_errors, _distn_infrastructure.rv_frozen): eps = random_errors.rvs(size=(nsimulations, repetitions)) else: raise ValueError("Argument random_errors has unexpected value!") for t in range(nsimulations): b0 = op_d(b[t - 1, :], phi) l0 = op_b(lvl[t - 1, :], b0) s0 = s[t - m, :] y0 = op_s(l0, s0) if error == "add": eta = 1 kappa_l = 1 / s0 if mul_seasonal else 1 kappa_b = kappa_l / lvl[t - 1, :] if mul_trend else kappa_l kappa_s = 1 / l0 if mul_seasonal else 1 else: eta = y0 kappa_l = 0 if mul_seasonal else s0 kappa_b = ( kappa_l / lvl[t - 1, :] if mul_trend else kappa_l + lvl[t - 1, :] ) kappa_s = 0 if mul_seasonal else l0 y[t, :] = y0 + eta * eps[t, :] lvl[t, :] = l0 + alpha * (mul_error * l0 + kappa_l) * eps[t, :] b[t, :] = b0 + beta * (mul_error * b0 + kappa_b) * eps[t, :] s[t, :] = s0 + gamma * (mul_error * s0 + kappa_s) * eps[t, :] if use_boxcox: y = inv_boxcox(y, lamda) sim = np.atleast_1d(np.squeeze(y)) if y.shape[0] == 1 and y.size > 1: sim = sim[None, :] # Wrap data / squeeze where appropriate if not isinstance(self.model.data, PandasData): return sim _, _, _, index = self.model._get_prediction_index( start_idx, start_idx + nsimulations - 1 ) if repetitions == 1: sim = pd.Series(sim, index=index, name=self.model.endog_names) else: sim = pd.DataFrame(sim, index=index) return sim class HoltWintersResultsWrapper(ResultsWrapper): _attrs = { "fittedvalues": "rows", "level": "rows", "resid": "rows", "season": "rows", "trend": "rows", "slope": "rows", } _wrap_attrs = union_dicts(ResultsWrapper._wrap_attrs, _attrs) _methods = {"predict": "dates", "forecast": "dates"} _wrap_methods = union_dicts(ResultsWrapper._wrap_methods, _methods) populate_wrapper(HoltWintersResultsWrapper, HoltWintersResults)
bsd-3-clause
quheng/scikit-learn
examples/svm/plot_iris.py
225
3252
""" ================================================== Plot different SVM classifiers in the iris dataset ================================================== Comparison of different linear SVM classifiers on a 2D projection of the iris dataset. We only consider the first 2 features of this dataset: - Sepal length - Sepal width This example shows how to plot the decision surface for four SVM classifiers with different kernels. The linear models ``LinearSVC()`` and ``SVC(kernel='linear')`` yield slightly different decision boundaries. This can be a consequence of the following differences: - ``LinearSVC`` minimizes the squared hinge loss while ``SVC`` minimizes the regular hinge loss. - ``LinearSVC`` uses the One-vs-All (also known as One-vs-Rest) multiclass reduction while ``SVC`` uses the One-vs-One multiclass reduction. Both linear models have linear decision boundaries (intersecting hyperplanes) while the non-linear kernel models (polynomial or Gaussian RBF) have more flexible non-linear decision boundaries with shapes that depend on the kind of kernel and its parameters. .. NOTE:: while plotting the decision function of classifiers for toy 2D datasets can help get an intuitive understanding of their respective expressive power, be aware that those intuitions don't always generalize to more realistic high-dimensional problems. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm, datasets # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. We could # avoid this ugly slicing by using a two-dim dataset y = iris.target h = .02 # step size in the mesh # we create an instance of SVM and fit out data. We do not scale our # data since we want to plot the support vectors C = 1.0 # SVM regularization parameter svc = svm.SVC(kernel='linear', C=C).fit(X, y) rbf_svc = svm.SVC(kernel='rbf', gamma=0.7, C=C).fit(X, y) poly_svc = svm.SVC(kernel='poly', degree=3, C=C).fit(X, y) lin_svc = svm.LinearSVC(C=C).fit(X, y) # create a mesh to plot in x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # title for the plots titles = ['SVC with linear kernel', 'LinearSVC (linear kernel)', 'SVC with RBF kernel', 'SVC with polynomial (degree 3) kernel'] for i, clf in enumerate((svc, lin_svc, rbf_svc, poly_svc)): # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. plt.subplot(2, 2, i + 1) plt.subplots_adjust(wspace=0.4, hspace=0.4) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.contourf(xx, yy, Z, cmap=plt.cm.Paired, alpha=0.8) # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired) plt.xlabel('Sepal length') plt.ylabel('Sepal width') plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) plt.xticks(()) plt.yticks(()) plt.title(titles[i]) plt.show()
bsd-3-clause
MathYourLife/sandbox
python/novelty_viz/novelty_detector.py
1
3992
import numpy as np import matplotlib.pyplot as plt import time from sklearn import svm plt.ion() DURATION = 180 def generator(): z = np.random.normal start = time.time() center = (2, 2) while start + DURATION > time.time(): mode = int(time.time() / 15) % 4 x = z() * 0.2 + center[0] y = z() * 0.2 + center[1] if mode in (2, 3): x = -x if mode in (1, 2): y = -y yield (x, y) time.sleep(0.01) class Novelty(object): def __init__(self, variable_count, train_depth=20, threshold=0.3): self.stage = 0 self.variable_count = variable_count self.train_depth = train_depth self.clear() self.idx = 0 self.clf = None self.threshold = threshold self.rate = None def clear(self): self.train_data = np.array([np.nan] * self.train_depth * self.variable_count) self.train_data.shape = (self.train_depth, self.variable_count) self.normal = np.array([np.nan] * self.train_depth, dtype=np.bool) def new(self, data): self.idx += 1 self.idx %= self.train_depth if self.stage == 0: self.gather_training(data) if self.stage == 1: self.train() raise NewModel() if self.stage >= 2: self.predict(data) if self.stage == 2: self.stage += 1 if self.stage == 3: self.rate = float(np.sum(self.normal)) / self.train_depth if self.rate < self.threshold: print("Relearning: hit rate dropped to %s" % self.rate) self.stage = 0 self.clear() raise InvalidModel() def gather_training(self, data): self.train_data[self.idx] = data if np.sum(np.isnan(self.train_data)) == 0: self.stage += 1 def train(self): # fit the model self.clf = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.1) self.clf.fit(self.train_data) self.stage += 1 def predict(self, data): v = self.clf.predict(data) self.normal[self.idx] = v > 0 class NoveltyException(Exception): pass class InvalidModel(Exception): pass class NewModel(Exception): pass def update_title(ax, msg): if not msg == ax.get_title(): print msg ax.set_title(msg) def main(): x = [] y = [] lim = 4 xx, yy = np.meshgrid(np.linspace(-lim, lim, 500), np.linspace(-lim, lim, 500)) boundary = None n = Novelty(variable_count=2) fig, ax = plt.subplots(1,1) a, = ax.plot(x, y, "x", color="blue") ax.set_xlim([-lim, lim]) ax.set_ylim([-lim, lim]) rate = plt.text(0, 0, s='') for g in generator(): try: n.new(g) if n.stage == 0: update_title(ax, "Gathering Data for a Model") elif n.stage >= 2: update_title(ax, "Tracking Expected Behaviour") except NewModel: update_title(ax, "New Behaviour Model Created") Z = n.clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) if boundary: ax.clear() a, = ax.plot(x, y, "x", color="blue") rate = plt.text(0, 0, s='') boundary = ax.contour(xx, yy, Z, levels=[0, Z.max()], colors='red') except InvalidModel: x = [] y = [] ax.clear() rate = plt.text(0, 0, s='') update_title(ax, "Behaviour No Longer Matches the Model") a, = ax.plot(x, y, "x", color="blue") try: msg = "Hit Rate: %s%%" % (n.rate * 100) except TypeError: msg = "N/A" rate.set_text(msg) x.append(g[0]) y.append(g[1]) a.set_data(x, y) plt.draw() plt.pause(0.0001) if __name__ == '__main__': main()
mit
monash-merc/karaage
setup.py
2
3866
#!/usr/bin/env python # Copyright 2010, 2014-2015 VPAC # Copyright 2010, 2014 The University of Melbourne # # This file is part of Karaage. # # Karaage is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Karaage is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Karaage If not, see <http://www.gnu.org/licenses/>. """Karaage setup script.""" from setuptools import setup import os def fullsplit(path, result=None): """ Split a pathname into components (the opposite of os.path.join) in a platform-neutral way. """ if result is None: result = [] head, tail = os.path.split(path) if head == '': return [tail] + result if head == path: return result return fullsplit(head, [tail] + result) dirs = ['karaage', ] packages = [] for d in dirs: for dirpath, dirnames, filenames in os.walk(d): # Ignore dirnames that start with '.' for i, dirname in enumerate(dirnames): if dirname.startswith('.'): del dirnames[i] if filenames: packages.append('.'.join(fullsplit(dirpath))) tests_require = [ "django-extensions", "factory_boy", "mock", "cracklib", ] setup( name="karaage", version=open('VERSION.txt', 'r').readline().strip(), url='https://github.com/Karaage-Cluster/karaage', author='Brian May', author_email='[email protected]', description='Collection of Django apps to manage a clusters', packages=packages, license="GPL3+", long_description=open('README.rst').read(), classifiers=[ "Development Status :: 5 - Production/Stable", "Framework :: Django", "Intended Audience :: Developers", "Intended Audience :: System Administrators", "License :: OSI Approved :: GNU General Public " "License v3 or later (GPLv3+)", "Operating System :: OS Independent", "Programming Language :: Python :: 2", "Programming Language :: Python :: 3", "Topic :: Software Development :: Libraries :: Python Modules", ], keywords="karaage cluster user administration", package_data={ '': ['*.css', '*.html', '*.js', '*.png', '*.gif', '*.map', '*.txt', '*.json'], }, scripts=[ 'sbin/kg_set_secret_key', 'sbin/kg-manage', 'sbin/kg-migrate-south', ], data_files=[ ('/etc/karaage3', ['conf/settings.py', 'conf/karaage.wsgi']), ('/etc/apache2/conf-available', ['conf/karaage3-wsgi.conf']), ], install_requires=[ "cssmin", "Django >= 1.7", "python-alogger >= 2.0", "django-xmlrpc >= 0.1", "django-simple-captcha", "django-ajax-selects >= 1.1.3", "django_jsonfield >= 0.9.12", "django-model-utils >= 2.0.0", "python-tldap >= 0.3.3", "django-pipeline", "django-tables2", "django-filter", "six", "slimit>=0.8.1", ], tests_require=tests_require, extras_require={ 'tests': tests_require, 'applications': [ # no dependencies for kgapplications ], 'software': [ "karaage4[applications]", "karaage4[usage]", ], 'usage': [ "karaage4[software]", "django_celery", "django-filter", "matplotlib", ], }, )
gpl-3.0
M4573R/discrete-optimization-coursera-1
coloring/solver.py
2
1335
#!/usr/bin/python # -*- coding: utf-8 -*- import os from subprocess import Popen, PIPE import networkx as nx import matplotlib.pyplot as plt def solve_it(input_data): # Writes the inputData to a temporay file tmp_file_name = 'tmp.data' tmp_file = open(tmp_file_name, 'w') tmp_file.write(input_data) tmp_file.close() # Runs the command: java Solver -file=tmp.data tmp_file = open(tmp_file_name, 'r') process = Popen(['./Solver'], stdin=tmp_file, stdout=PIPE) (stdout, stderr) = process.communicate() # print stdout # removes the temporay file os.remove(tmp_file_name) # G = nx.Graph() # lines = input_data.split('\n') # [N,E] = lines[0].split() # G.add_nodes_from(range(int(N))) # for l in lines[1:-1]: # a = l.split(' ') # G.add_edge(int(a[0]),int(a[1])) # nx.draw(G) # plt.show() return stdout.strip() import sys if __name__ == '__main__': if len(sys.argv) > 1: file_location = sys.argv[1].strip() input_data_file = open(file_location, 'r') input_data = ''.join(input_data_file.readlines()) input_data_file.close() print solve_it(input_data) else: print 'This test requires an input file. Please select one from the data directory. (i.e. python solver.py ./data/gc_4_1)'
mit
nipunbatra/bayespy
bayespy/demos/lssm.py
2
11413
###################################################################### # Copyright (C) 2013-2014 Jaakko Luttinen # # This file is licensed under Version 3.0 of the GNU General Public # License. See LICENSE for a text of the license. ###################################################################### ###################################################################### # This file is part of BayesPy. # # BayesPy is free software: you can redistribute it and/or modify it # under the terms of the GNU General Public License version 3 as # published by the Free Software Foundation. # # BayesPy is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with BayesPy. If not, see <http://www.gnu.org/licenses/>. ###################################################################### """ Demonstrate linear Gaussian state-space model. Some of the functions in this module are re-usable: * ``model`` can be used to construct the classical linear state-space model. * ``infer`` can be used to apply linear state-space model to given data. """ import numpy as np import scipy import matplotlib.pyplot as plt from bayespy.nodes import GaussianMarkovChain from bayespy.nodes import Gaussian, GaussianARD from bayespy.nodes import Gamma from bayespy.nodes import SumMultiply from bayespy.inference.vmp.nodes.gamma import diagonal from bayespy.utils import random from bayespy.inference.vmp.vmp import VB from bayespy.inference.vmp import transformations import bayespy.plot.plotting as bpplt def model(M=10, N=100, D=3): """ Construct linear state-space model. See, for instance, the following publication: "Fast variational Bayesian linear state-space model" Luttinen (ECML 2013) """ # Dynamics matrix with ARD alpha = Gamma(1e-5, 1e-5, plates=(D,), name='alpha') A = GaussianARD(0, alpha, shape=(D,), plates=(D,), plotter=bpplt.GaussianHintonPlotter(rows=0, cols=1, scale=0), name='A') A.initialize_from_value(np.identity(D)) # Latent states with dynamics X = GaussianMarkovChain(np.zeros(D), # mean of x0 1e-3*np.identity(D), # prec of x0 A, # dynamics np.ones(D), # innovation n=N, # time instances plotter=bpplt.GaussianMarkovChainPlotter(scale=2), name='X') X.initialize_from_value(np.random.randn(N,D)) # Mixing matrix from latent space to observation space using ARD gamma = Gamma(1e-5, 1e-5, plates=(D,), name='gamma') gamma.initialize_from_value(1e-2*np.ones(D)) C = GaussianARD(0, gamma, shape=(D,), plates=(M,1), plotter=bpplt.GaussianHintonPlotter(rows=0, cols=2, scale=0), name='C') C.initialize_from_value(np.random.randn(M,1,D)) # Observation noise tau = Gamma(1e-5, 1e-5, name='tau') tau.initialize_from_value(1e2) # Underlying noiseless function F = SumMultiply('i,i', C, X, name='F') # Noisy observations Y = GaussianARD(F, tau, name='Y') Q = VB(Y, F, C, gamma, X, A, alpha, tau, C) return Q def infer(y, D, mask=True, maxiter=100, rotate=True, debug=False, precompute=False, update_hyper=0, start_rotating=0, plot_C=True, monitor=True, autosave=None): """ Apply linear state-space model for the given data. """ (M, N) = np.shape(y) # Construct the model Q = model(M, N, D) if not plot_C: Q['C'].set_plotter(None) if autosave is not None: Q.set_autosave(autosave, iterations=10) # Observe data Q['Y'].observe(y, mask=mask) # Set up rotation speed-up if rotate: # Initial rotate the D-dimensional state space (X, A, C) # Does not update hyperparameters rotA_init = transformations.RotateGaussianARD(Q['A'], axis=0, precompute=precompute) rotX_init = transformations.RotateGaussianMarkovChain(Q['X'], rotA_init) rotC_init = transformations.RotateGaussianARD(Q['C'], axis=0, precompute=precompute) R_X_init = transformations.RotationOptimizer(rotX_init, rotC_init, D) # Rotate the D-dimensional state space (X, A, C) rotA = transformations.RotateGaussianARD(Q['A'], Q['alpha'], axis=0, precompute=precompute) rotX = transformations.RotateGaussianMarkovChain(Q['X'], rotA) rotC = transformations.RotateGaussianARD(Q['C'], Q['gamma'], axis=0, precompute=precompute) R_X = transformations.RotationOptimizer(rotX, rotC, D) # Keyword arguments for the rotation if debug: rotate_kwargs = {'maxiter': 10, 'check_bound': True, 'check_gradient': True} else: rotate_kwargs = {'maxiter': 10} # Plot initial distributions if monitor: Q.plot() # Run inference using rotations for ind in range(maxiter): if ind < update_hyper: # It might be a good idea to learn the lower level nodes a bit # before starting to learn the upper level nodes. Q.update('X', 'C', 'A', 'tau', plot=monitor) if rotate and ind >= start_rotating: # Use the rotation which does not update alpha nor beta R_X_init.rotate(**rotate_kwargs) else: Q.update(plot=monitor) if rotate and ind >= start_rotating: # It might be a good idea to not rotate immediately because it # might lead to pruning out components too efficiently before # even estimating them roughly R_X.rotate(**rotate_kwargs) # Return the posterior approximation return Q def simulate_data(M, N): """ Generate a dataset using linear state-space model. The process has two latent oscillation components and one random walk component. """ # Simulate some data D = 3 c = np.random.randn(M, D) w = 0.3 a = np.array([[np.cos(w), -np.sin(w), 0], [np.sin(w), np.cos(w), 0], [0, 0, 1]]) x = np.empty((N,D)) f = np.empty((M,N)) y = np.empty((M,N)) x[0] = 10*np.random.randn(D) f[:,0] = np.dot(c,x[0]) y[:,0] = f[:,0] + 3*np.random.randn(M) for n in range(N-1): x[n+1] = np.dot(a,x[n]) + np.random.randn(D) f[:,n+1] = np.dot(c,x[n+1]) y[:,n+1] = f[:,n+1] + 3*np.random.randn(M) return (y, f) def demo(M=6, N=200, D=3, maxiter=100, debug=False, seed=42, rotate=True, precompute=False, plot=True, monitor=True): """ Run the demo for linear state-space model. """ # Use deterministic random numbers if seed is not None: np.random.seed(seed) # Get data (y, f) = simulate_data(M, N) # Add missing values randomly mask = random.mask(M, N, p=0.3) # Add missing values to a period of time mask[:,30:80] = False y[~mask] = np.nan # BayesPy doesn't require this. Just for plotting. # Run inference Q = infer(y, D, mask=mask, rotate=rotate, debug=debug, monitor=monitor, maxiter=maxiter) if plot: # Show results plt.figure() bpplt.timeseries_normal(Q['F'], scale=2) bpplt.timeseries(f, 'b-') bpplt.timeseries(y, 'r.') plt.show() if __name__ == '__main__': import sys, getopt, os try: opts, args = getopt.getopt(sys.argv[1:], "", ["m=", "n=", "d=", "seed=", "maxiter=", "debug", "precompute", "no-plot", "no-monitor", "no-rotation"]) except getopt.GetoptError: print('python lssm.py <options>') print('--m=<INT> Dimensionality of data vectors') print('--n=<INT> Number of data vectors') print('--d=<INT> Dimensionality of the latent vectors in the model') print('--no-rotation Do not apply speed-up rotations') print('--maxiter=<INT> Maximum number of VB iterations') print('--seed=<INT> Seed (integer) for the random number generator') print('--debug Check that the rotations are implemented correctly') print('--no-plot Do not plot the results') print('--no-monitor Do not plot distributions during learning') print('--precompute Precompute some moments when rotating. May ' 'speed up or slow down.') sys.exit(2) kwargs = {} for opt, arg in opts: if opt == "--no-rotation": kwargs["rotate"] = False elif opt == "--maxiter": kwargs["maxiter"] = int(arg) elif opt == "--debug": kwargs["debug"] = True elif opt == "--precompute": kwargs["precompute"] = True elif opt == "--seed": kwargs["seed"] = int(arg) elif opt in ("--m",): kwargs["M"] = int(arg) elif opt in ("--n",): kwargs["N"] = int(arg) elif opt in ("--d",): kwargs["D"] = int(arg) elif opt in ("--no-plot"): kwargs["plot"] = False elif opt in ("--no-monitor"): kwargs["monitor"] = False else: raise ValueError("Unhandled option given") demo(**kwargs)
gpl-3.0
jepegit/cellpy
cellpy/readers/instruments/biologics_mpr.py
1
22645
"""This file contains methods for importing Bio-Logic mpr-type files""" # This is based on the work by Chris Kerr # (https://github.com/chatcannon/galvani/blob/master/galvani/BioLogic.py) import os import tempfile import shutil import logging import warnings import time from collections import OrderedDict import datetime import pandas as pd import numpy as np from cellpy.readers.instruments.biologic_file_format import ( bl_dtypes, hdr_dtype, mpr_label, bl_log_pos_dtype, bl_flags, ) from cellpy.readers.core import FileID, Cell, check64bit, humanize_bytes from cellpy.parameters.internal_settings import get_headers_normal from cellpy.readers.instruments.mixin import Loader from cellpy.parameters import prms OLE_TIME_ZERO = datetime.datetime(1899, 12, 30, 0, 0, 0) SEEK_SET = 0 # from start SEEK_CUR = 1 # from current position SEEK_END = 2 # from end of file def ole2datetime(oledt): """converts from ole datetime float to datetime""" return OLE_TIME_ZERO + datetime.timedelta(days=float(oledt)) def datetime2ole(dt): """converts from datetime object to ole datetime float""" delta = dt - OLE_TIME_ZERO delta_float = delta / datetime.timedelta(days=1) # trick from SO return delta_float # The columns to choose if minimum selection is selected MINIMUM_SELECTION = [ "Data_Point", "Test_Time", "Step_Time", "DateTime", "Step_Index", "Cycle_Index", "Current", "Voltage", "Charge_Capacity", "Discharge_Capacity", "Internal_Resistance", ] def _read_modules(fileobj): module_magic = fileobj.read(len(b"MODULE")) hdr_bytes = fileobj.read(hdr_dtype.itemsize) hdr = np.fromstring( hdr_bytes, dtype=hdr_dtype, count=1 ) # TODO: change to frombuffer hdr_dict = dict(((n, hdr[n][0]) for n in hdr_dtype.names)) hdr_dict["offset"] = fileobj.tell() hdr_dict["data"] = fileobj.read(hdr_dict["length"]) fileobj.seek(hdr_dict["offset"] + hdr_dict["length"], SEEK_SET) hdr_dict["end"] = fileobj.tell() return hdr_dict class MprLoader(Loader): """ Class for loading biologics-data from mpr-files.""" # Note: the class is sub-classing Loader. At the moment, Loader does # not really contain anything... def __init__(self): self.logger = logging.getLogger(__name__) self.headers_normal = get_headers_normal() self.current_chunk = 0 # use this to set chunks to load self.mpr_data = None self.mpr_log = None self.mpr_settings = None self.cellpy_headers = get_headers_normal() @staticmethod def get_raw_units(): """Include the settings for the units used by the instrument. The units are defined w.r.t. the SI units ('unit-fractions'; currently only units that are multiples of Si units can be used). For example, for current defined in mA, the value for the current unit-fraction will be 0.001. Returns: dictionary containing the unit-fractions for current, charge, and mass """ raw_units = dict() raw_units["current"] = 1.0 # A raw_units["charge"] = 1.0 # Ah raw_units["mass"] = 0.001 # g return raw_units @staticmethod def get_raw_limits(): """Include the settings for how to decide what kind of step you are examining here. The raw limits are 'epsilons' used to check if the current and/or voltage is stable (for example for galvanostatic steps, one would expect that the current is stable (constant) and non-zero). It is expected that different instruments (with different resolution etc.) have different 'epsilons'. Returns: the raw limits (dict) """ raw_limits = dict() raw_limits["current_hard"] = 0.0000000000001 raw_limits["current_soft"] = 0.00001 raw_limits["stable_current_hard"] = 2.0 raw_limits["stable_current_soft"] = 4.0 raw_limits["stable_voltage_hard"] = 2.0 raw_limits["stable_voltage_soft"] = 4.0 raw_limits["stable_charge_hard"] = 2.0 raw_limits["stable_charge_soft"] = 5.0 raw_limits["ir_change"] = 0.00001 return raw_limits def load(self, file_name): """Load a raw data-file Args: file_name (path) Returns: loaded test """ raw_file_loader = self.loader new_rundata = raw_file_loader(file_name) new_rundata = self.inspect(new_rundata) return new_rundata def inspect(self, run_data): """inspect the file. """ return run_data def repair(self, file_name): """try to repair a broken/corrupted file""" raise NotImplementedError def dump(self, file_name, path): """Dumps the raw file to an intermediate hdf5 file. This method can be used if the raw file is too difficult to load and it is likely that it is more efficient to convert it to an hdf5 format and then load it using the `from_intermediate_file` function. Args: file_name: name of the raw file path: path to where to store the intermediate hdf5 file (optional) Returns: full path to stored intermediate hdf5 file information about the raw file (needed by the `from_intermediate_file` function) """ raise NotImplementedError def loader(self, file_name, bad_steps=None, **kwargs): """Loads data from biologics .mpr files. Args: file_name (str): path to .res file. bad_steps (list of tuples): (c, s) tuples of steps s (in cycle c) to skip loading. Returns: new_tests (list of data objects) """ new_tests = [] if not os.path.isfile(file_name): self.logger.info("Missing file_\n %s" % file_name) return None filesize = os.path.getsize(file_name) hfilesize = humanize_bytes(filesize) txt = "Filesize: %i (%s)" % (filesize, hfilesize) self.logger.debug(txt) # creating temporary file and connection temp_dir = tempfile.gettempdir() temp_filename = os.path.join(temp_dir, os.path.basename(file_name)) shutil.copy2(file_name, temp_dir) self.logger.debug("tmp file: %s" % temp_filename) self.logger.debug("HERE WE LOAD THE DATA") data = Cell() fid = FileID(file_name) # div parameters and information (probably load this last) test_no = 1 data.cell_no = test_no data.loaded_from = file_name # some overall prms data.channel_index = None data.channel_number = None data.creator = None data.item_ID = None data.schedule_file_name = None data.start_datetime = None data.test_ID = None data.test_name = None data.raw_data_files.append(fid) # --------- read raw-data (normal-data) ------------------------- self.logger.debug("reading raw-data") self.mpr_data = None self.mpr_log = None self.mpr_settings = None self._load_mpr_data(temp_filename, bad_steps) length_of_test = self.mpr_data.shape[0] self.logger.debug(f"length of test: {length_of_test}") self.logger.debug("renaming columns") self._rename_headers() # --------- stats-data (summary-data) ------------------------- summary_df = self._create_summary_data() if summary_df.empty: txt = "\nCould not find any summary (stats-file)!" txt += " (summary_df.empty = True)" txt += "\n -> issue make_summary(use_cellpy_stat_file=False)" warnings.warn(txt) data.summary = summary_df data.raw = self.mpr_data data.raw_data_files_length.append(length_of_test) new_tests.append(data) self._clean_up(temp_filename) return new_tests def _parse_mpr_log_data(self): for value in bl_log_pos_dtype: key, start, end, dtype = value self.mpr_log[key] = np.frombuffer( # replaced np.fromstring self.mpr_log["data"][start:], dtype=dtype, count=1 )[0] if "a" in dtype: self.mpr_log[key] = self.mpr_log[key].decode("utf8") # converting dates date_datetime = ole2datetime(self.mpr_log["Acquisition started on"]) self.mpr_log["Start"] = date_datetime def _parse_mpr_settings_data(self, settings_mod): tm = time.strptime(settings_mod["date"].decode(), "%m.%d.%y") startdate = datetime.date(tm.tm_year, tm.tm_mon, tm.tm_mday) mpr_settings = dict() mpr_settings["start_date"] = startdate mpr_settings["length"] = settings_mod["length"] mpr_settings["end"] = settings_mod["end"] mpr_settings["offset"] = settings_mod["offset"] mpr_settings["version"] = settings_mod["version"] mpr_settings["data"] = settings_mod["data"] self.mpr_settings = mpr_settings return None def _get_flag(self, flag_name): if flag_name in self.flags_dict: mask, dtype = self.flags_dict[flag_name] # print(f"flag: {flag_name}, mask: {mask}, dtype: {dtype}") return np.array(self.mpr_data["flags"] & mask, dtype=dtype) # elif flag_name in self.flags2_dict: # mask, dtype = self.flags2_dict[flag_name] # return np.array(self.mpr_data['flags2'] & mask, dtype=dtype) else: raise AttributeError("Flag '%s' not present" % flag_name) def _load_mpr_data(self, filename, bad_steps): if bad_steps is not None: warnings.warn("Exluding bad steps is not implemented") stats_info = os.stat(filename) mpr_modules = [] mpr_log = None mpr_data = None mpr_settings = None file_obj = open(filename, mode="rb") label = file_obj.read(len(mpr_label)) self.logger.debug(f"label: {label}") counter = 0 while True: counter += 1 new_module = _read_modules(file_obj) position = int(new_module["end"]) mpr_modules.append(new_module) if position >= stats_info.st_size: txt = "-reached end of file" if position == stats_info.st_size: txt += " --exactly at end of file" self.logger.info(txt) break file_obj.close() # ------------- set ----------------------------------- settings_mod = None for m in mpr_modules: if m["shortname"].strip().decode() == "VMP Set": settings_mod = m break if settings_mod is None: raise IOError("No settings-module found!") self._parse_mpr_settings_data(settings_mod) # ------------- data ----------------------------------- data_module = None for m in mpr_modules: if m["shortname"].strip().decode() == "VMP data": data_module = m if data_module is None: raise IOError("No data module!") data_version = data_module["version"] n_data_points = np.fromstring(data_module["data"][:4], dtype="<u4")[0] n_columns = np.fromstring(data_module["data"][4:5], dtype="u1")[0] logging.debug(f"data (points, cols): {n_data_points}, {n_columns}") if data_version == 0: logging.debug("data version 0") column_types = np.fromstring( data_module["data"][5:], dtype="u1", count=n_columns ) remaining_headers = data_module["data"][5 + n_columns : 100] main_data = data_module["data"][100:] elif data_version == 2: logging.debug("data version 2") column_types = np.fromstring( data_module["data"][5:], dtype="<u2", count=n_columns ) main_data = data_module["data"][405:] remaining_headers = data_module["data"][5 + 2 * n_columns : 405] else: raise IOError("Unrecognised version for data module: %d" % data_version) whats_left = remaining_headers.strip(b"\x00").decode("utf8") if whats_left: self.logger.debug("UPS! you have some columns left") self.logger.debug(whats_left) dtype_dict = OrderedDict() flags_dict = OrderedDict() for col in column_types: if col in bl_flags.keys(): flags_dict[bl_flags[col][0]] = bl_flags[col][1] dtype_dict[bl_dtypes[col][1]] = bl_dtypes[col][0] self.dtype_dict = dtype_dict self.flags_dict = flags_dict dtype = np.dtype(list(dtype_dict.items())) p = dtype.itemsize if not p == (len(main_data) / n_data_points): self.logger.info( "WARNING! You have defined %i bytes, " "but it seems it should be %i" % (p, len(main_data) / n_data_points) ) bulk = main_data bulk_data = np.fromstring(bulk, dtype=dtype) mpr_data = pd.DataFrame(bulk_data) self.logger.debug(mpr_data.columns) self.logger.debug(mpr_data.head()) # ------------- log ----------------------------------- log_module = None for m in mpr_modules: if m["shortname"].strip().decode() == "VMP LOG": log_module = m if log_module is None: txt = "error - no log module" raise IOError(txt) tm = time.strptime(log_module["date"].decode(), "%m.%d.%y") enddate = datetime.date(tm.tm_year, tm.tm_mon, tm.tm_mday) mpr_log = dict() mpr_log["end_date"] = enddate mpr_log["length2"] = log_module["length"] mpr_log["end2"] = log_module["end"] mpr_log["offset2"] = log_module["offset"] mpr_log["version2"] = log_module["version"] mpr_log["data"] = log_module[ "data" ] # Not sure if I will ever need it, but just in case.... self.mpr_log = mpr_log self._parse_mpr_log_data() self.mpr_data = mpr_data def _rename_header(self, h_old, h_new): try: self.mpr_data.rename( columns={h_new: self.cellpy_headers[h_old]}, inplace=True ) except KeyError as e: # warnings.warn(f"KeyError {e}") self.logger.info(f"Problem during conversion to cellpy-format ({e})") def _generate_cycle_index(self): flag = "Ns changes" n = self._get_flag(flag) self.mpr_data[self.cellpy_headers["cycle_index_txt"]] = 1 ns_changes = self.mpr_data[n].index.values for i in ns_changes: self.mpr_data.loc[i:, self.cellpy_headers["cycle_index_txt"]] += 1 def _generate_datetime(self): start_date = self.mpr_settings["start_date"] start_datetime = self.mpr_log["Start"] cellpy_header_txt = "datetime_txt" date_format = "%Y-%m-%d %H:%M:%S" # without microseconds self.mpr_data[self.cellpy_headers[cellpy_header_txt]] = [ start_datetime + datetime.timedelta(seconds=n) for n in self.mpr_data["time"].values ] # self.mpr_data[self.cellpy_headers[cellpy_header_txt]] # .start_date.strftime(date_format) # TODO: @jepe - currently storing as datetime object # (while for arbindata it is stored as str) def _generate_step_index(self): # TODO: @jepe - check and optionally fix me cellpy_header_txt = "step_index_txt" biologics_header_txt = "flags2" self._rename_header(cellpy_header_txt, biologics_header_txt) self.mpr_data[self.cellpy_headers[cellpy_header_txt]] += 1 def _generate_step_time(self): # TODO: @jepe - fix me self.mpr_data[self.cellpy_headers["step_time_txt"]] = np.nan def _generate_sub_step_time(self): # TODO: @jepe - fix me self.mpr_data[self.cellpy_headers["sub_step_time_txt"]] = np.nan def _generate_capacities(self): cap_col = self.mpr_data["QChargeDischarge"] self.mpr_data[self.cellpy_headers["discharge_capacity_txt"]] = [ 0.0 if x < 0 else x for x in cap_col ] self.mpr_data[self.cellpy_headers["charge_capacity_txt"]] = [ 0.0 if x >= 0 else x for x in cap_col ] def _rename_headers(self): # should ideally use the info from bl_dtypes, will do that later self.mpr_data[self.cellpy_headers["internal_resistance_txt"]] = np.nan self.mpr_data[self.cellpy_headers["data_point_txt"]] = np.arange( 1, self.mpr_data.shape[0] + 1, 1 ) self._generate_datetime() self._generate_cycle_index() self._generate_step_time() self._generate_sub_step_time() self._generate_step_index() self._generate_capacities() # simple renaming of column headers for the rest self._rename_header("frequency_txt", "freq") self._rename_header("voltage_txt", "Ewe") self._rename_header("current_txt", "I") self._rename_header("aci_phase_angle_txt", "phaseZ") self._rename_header("amplitude_txt", "absZ") self._rename_header("ref_voltage_txt", "Ece") self._rename_header("ref_aci_phase_angle_txt", "phaseZce") self._rename_header("test_time_txt", "time") self.mpr_data[self.cellpy_headers["sub_step_index_txt"]] = self.mpr_data[ self.cellpy_headers["step_index_txt"] ] def _create_summary_data(self): # Summary data should contain datapoint-number # for last point in the cycle. It must also contain # capacity df_summary = pd.DataFrame() mpr_log = self.mpr_log mpr_settings = self.mpr_settings # TODO: @jepe - finalise making summary of mpr-files # after figuring out steps etc warnings.warn( "Creating summary data for biologics mpr-files" " is not implemented yet" ) self.logger.info(mpr_settings) self.logger.info(mpr_log) start_date = mpr_settings["start_date"] self.logger.info(start_date) return df_summary def __raw_export(self, filename, df): filename_out = os.path.splitext(filename)[0] + "_test_out.csv" print("\n--------EXPORTING----------------------------") print(filename) print("->") print(filename_out) df.to_csv(filename_out, sep=";") print("------OK--------------------------------------") def _clean_up(self, tmp_filename): if os.path.isfile(tmp_filename): try: os.remove(tmp_filename) except WindowsError as e: self.logger.warning( "could not remove tmp-file\n%s %s" % (tmp_filename, e) ) pass if __name__ == "__main__": import logging import sys import os from cellpy import log from cellpy import cellreader # -------- defining overall path-names etc ---------- current_file_path = os.path.dirname(os.path.realpath(__file__)) # relative_test_data_dir = "../cellpy/data_ex" relative_test_data_dir = "../../../testdata" relative_out_data_dir = "../../../dev_data" test_data_dir = os.path.abspath( os.path.join(current_file_path, relative_test_data_dir) ) test_data_dir_out = os.path.abspath( os.path.join(current_file_path, relative_out_data_dir) ) test_data_dir_raw = os.path.join(test_data_dir, "data") if not os.path.isdir(test_data_dir_raw): print(f"Could not find {test_data_dir_raw}") sys.exit(-23) if not os.path.isdir(test_data_dir_out): sys.exit(-24) if not os.path.isdir(os.path.join(test_data_dir_out, "out")): os.mkdir(os.path.join(test_data_dir_out, "out")) test_data_dir_out = os.path.join(test_data_dir_out, "out") test_raw_file = "biol.mpr" test_raw_file_full = os.path.join(test_data_dir_raw, test_raw_file) test_data_dir_cellpy = os.path.join(test_data_dir, "hdf5") test_cellpy_file = "geis.h5" test_cellpy_file_tmp = "tmpfile.h5" test_cellpy_file_full = os.path.join(test_data_dir_cellpy, test_cellpy_file) test_cellpy_file_tmp_full = os.path.join(test_data_dir_cellpy, test_cellpy_file_tmp) raw_file_name = test_raw_file_full print("\n======================mpr-dev===========================") print(f"Test-file: {raw_file_name}") log.setup_logging(default_level="DEBUG") instrument = "biologics_mpr" cellpy_data_instance = cellreader.CellpyData() cellpy_data_instance.set_instrument(instrument=instrument) print("starting to load the file") cellpy_data_instance.from_raw(raw_file_name) print("printing cellpy instance:") print(cellpy_data_instance) print("---make step table") cellpy_data_instance.make_step_table() print("---make summary") cellpy_data_instance.make_summary() print("---saving to csv") try: temp_dir = tempfile.mkdtemp() cellpy_data_instance.to_csv(datadir=temp_dir) cellpy_data_instance.to_csv(datadir=test_data_dir_out) print("---saving to hdf5") print("NOT YET") finally: shutil.rmtree(temp_dir) # dtype = dtype([('flags', 'u1'), ('time/s', '<f8'), ('Ewe/V', '<f4'), ('dQ/mA.h', '<f8'), # ('I/mA', '<f4'), ('Ece/V', '<f4'), ('(Q-Qo)/mA.h', '<f8'), ('20', '<f8'), # ('freq/Hz', '<f4'), ('Phase(Z)/deg', '<f4'), ('|Z|/Ohm', '<f4'), # ('I Range', '<u2'), ('74', '<f8'), ('96', '<f8'), ('98', '<f8'), # ('99', '<f8'), ('100', '<f8'), ('101', '<f8'), ('123', '<f8'), # ('124', '<f8'), ('Capacitance charge/µF', '<f8'), ('Capacitance discharge/µF', '<f8'), # ('Ns', '<u2'), ('430', '<f8'), ('431', '<f8'), ('432', '<f8'), ('433', '<f8'), # ('Q charge/discharge/mA.h', '<f8'), ('half cycle', '<u4'), ('469', '<f8'), # ('471', '<f8')]) # # flags = OrderedDict( # [ # ('mode', (3, <class 'numpy.uint8'>)),('ox/red', (4, <class 'numpy.bool_'>)), # ('error', (8, <class 'numpy.bool_'>)), ('control changes', (16, <class 'numpy.bool_'>)), # ('Ns changes', (32, <class 'numpy.bool_'>)), ('counter inc.', (128, <class 'numpy.bool_'>))] # ) # flags2 = OrderedDict()
mit
Nyker510/scikit-learn
examples/linear_model/plot_lasso_model_selection.py
311
5431
""" =================================================== Lasso model selection: Cross-Validation / AIC / BIC =================================================== Use the Akaike information criterion (AIC), the Bayes Information criterion (BIC) and cross-validation to select an optimal value of the regularization parameter alpha of the :ref:`lasso` estimator. Results obtained with LassoLarsIC are based on AIC/BIC criteria. Information-criterion based model selection is very fast, but it relies on a proper estimation of degrees of freedom, are derived for large samples (asymptotic results) and assume the model is correct, i.e. that the data are actually generated by this model. They also tend to break when the problem is badly conditioned (more features than samples). For cross-validation, we use 20-fold with 2 algorithms to compute the Lasso path: coordinate descent, as implemented by the LassoCV class, and Lars (least angle regression) as implemented by the LassoLarsCV class. Both algorithms give roughly the same results. They differ with regards to their execution speed and sources of numerical errors. Lars computes a path solution only for each kink in the path. As a result, it is very efficient when there are only of few kinks, which is the case if there are few features or samples. Also, it is able to compute the full path without setting any meta parameter. On the opposite, coordinate descent compute the path points on a pre-specified grid (here we use the default). Thus it is more efficient if the number of grid points is smaller than the number of kinks in the path. Such a strategy can be interesting if the number of features is really large and there are enough samples to select a large amount. In terms of numerical errors, for heavily correlated variables, Lars will accumulate more errors, while the coordinate descent algorithm will only sample the path on a grid. Note how the optimal value of alpha varies for each fold. This illustrates why nested-cross validation is necessary when trying to evaluate the performance of a method for which a parameter is chosen by cross-validation: this choice of parameter may not be optimal for unseen data. """ print(__doc__) # Author: Olivier Grisel, Gael Varoquaux, Alexandre Gramfort # License: BSD 3 clause import time import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LassoCV, LassoLarsCV, LassoLarsIC from sklearn import datasets diabetes = datasets.load_diabetes() X = diabetes.data y = diabetes.target rng = np.random.RandomState(42) X = np.c_[X, rng.randn(X.shape[0], 14)] # add some bad features # normalize data as done by Lars to allow for comparison X /= np.sqrt(np.sum(X ** 2, axis=0)) ############################################################################## # LassoLarsIC: least angle regression with BIC/AIC criterion model_bic = LassoLarsIC(criterion='bic') t1 = time.time() model_bic.fit(X, y) t_bic = time.time() - t1 alpha_bic_ = model_bic.alpha_ model_aic = LassoLarsIC(criterion='aic') model_aic.fit(X, y) alpha_aic_ = model_aic.alpha_ def plot_ic_criterion(model, name, color): alpha_ = model.alpha_ alphas_ = model.alphas_ criterion_ = model.criterion_ plt.plot(-np.log10(alphas_), criterion_, '--', color=color, linewidth=3, label='%s criterion' % name) plt.axvline(-np.log10(alpha_), color=color, linewidth=3, label='alpha: %s estimate' % name) plt.xlabel('-log(alpha)') plt.ylabel('criterion') plt.figure() plot_ic_criterion(model_aic, 'AIC', 'b') plot_ic_criterion(model_bic, 'BIC', 'r') plt.legend() plt.title('Information-criterion for model selection (training time %.3fs)' % t_bic) ############################################################################## # LassoCV: coordinate descent # Compute paths print("Computing regularization path using the coordinate descent lasso...") t1 = time.time() model = LassoCV(cv=20).fit(X, y) t_lasso_cv = time.time() - t1 # Display results m_log_alphas = -np.log10(model.alphas_) plt.figure() ymin, ymax = 2300, 3800 plt.plot(m_log_alphas, model.mse_path_, ':') plt.plot(m_log_alphas, model.mse_path_.mean(axis=-1), 'k', label='Average across the folds', linewidth=2) plt.axvline(-np.log10(model.alpha_), linestyle='--', color='k', label='alpha: CV estimate') plt.legend() plt.xlabel('-log(alpha)') plt.ylabel('Mean square error') plt.title('Mean square error on each fold: coordinate descent ' '(train time: %.2fs)' % t_lasso_cv) plt.axis('tight') plt.ylim(ymin, ymax) ############################################################################## # LassoLarsCV: least angle regression # Compute paths print("Computing regularization path using the Lars lasso...") t1 = time.time() model = LassoLarsCV(cv=20).fit(X, y) t_lasso_lars_cv = time.time() - t1 # Display results m_log_alphas = -np.log10(model.cv_alphas_) plt.figure() plt.plot(m_log_alphas, model.cv_mse_path_, ':') plt.plot(m_log_alphas, model.cv_mse_path_.mean(axis=-1), 'k', label='Average across the folds', linewidth=2) plt.axvline(-np.log10(model.alpha_), linestyle='--', color='k', label='alpha CV') plt.legend() plt.xlabel('-log(alpha)') plt.ylabel('Mean square error') plt.title('Mean square error on each fold: Lars (train time: %.2fs)' % t_lasso_lars_cv) plt.axis('tight') plt.ylim(ymin, ymax) plt.show()
bsd-3-clause
manashmndl/scikit-learn
examples/cluster/plot_digits_agglomeration.py
377
1694
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Feature agglomeration ========================================================= These images how similar features are merged together using feature agglomeration. """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, cluster from sklearn.feature_extraction.image import grid_to_graph digits = datasets.load_digits() images = digits.images X = np.reshape(images, (len(images), -1)) connectivity = grid_to_graph(*images[0].shape) agglo = cluster.FeatureAgglomeration(connectivity=connectivity, n_clusters=32) agglo.fit(X) X_reduced = agglo.transform(X) X_restored = agglo.inverse_transform(X_reduced) images_restored = np.reshape(X_restored, images.shape) plt.figure(1, figsize=(4, 3.5)) plt.clf() plt.subplots_adjust(left=.01, right=.99, bottom=.01, top=.91) for i in range(4): plt.subplot(3, 4, i + 1) plt.imshow(images[i], cmap=plt.cm.gray, vmax=16, interpolation='nearest') plt.xticks(()) plt.yticks(()) if i == 1: plt.title('Original data') plt.subplot(3, 4, 4 + i + 1) plt.imshow(images_restored[i], cmap=plt.cm.gray, vmax=16, interpolation='nearest') if i == 1: plt.title('Agglomerated data') plt.xticks(()) plt.yticks(()) plt.subplot(3, 4, 10) plt.imshow(np.reshape(agglo.labels_, images[0].shape), interpolation='nearest', cmap=plt.cm.spectral) plt.xticks(()) plt.yticks(()) plt.title('Labels') plt.show()
bsd-3-clause
gautam1858/tensorflow
tensorflow/contrib/timeseries/examples/lstm.py
17
13869
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A more advanced example, of building an RNN-based time series model.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools from os import path import tempfile import numpy import tensorflow as tf from tensorflow.contrib.timeseries.python.timeseries import estimators as ts_estimators from tensorflow.contrib.timeseries.python.timeseries import model as ts_model from tensorflow.contrib.timeseries.python.timeseries import state_management try: import matplotlib # pylint: disable=g-import-not-at-top matplotlib.use("TkAgg") # Need Tk for interactive plots. from matplotlib import pyplot # pylint: disable=g-import-not-at-top HAS_MATPLOTLIB = True except ImportError: # Plotting requires matplotlib, but the unit test running this code may # execute in an environment without it (i.e. matplotlib is not a build # dependency). We'd still like to test the TensorFlow-dependent parts of this # example. HAS_MATPLOTLIB = False _MODULE_PATH = path.dirname(__file__) _DATA_FILE = path.join(_MODULE_PATH, "data/multivariate_periods.csv") class _LSTMModel(ts_model.SequentialTimeSeriesModel): """A time series model-building example using an RNNCell.""" def __init__(self, num_units, num_features, exogenous_feature_columns=None, dtype=tf.float32): """Initialize/configure the model object. Note that we do not start graph building here. Rather, this object is a configurable factory for TensorFlow graphs which are run by an Estimator. Args: num_units: The number of units in the model's LSTMCell. num_features: The dimensionality of the time series (features per timestep). exogenous_feature_columns: A list of `tf.feature_column`s representing features which are inputs to the model but are not predicted by it. These must then be present for training, evaluation, and prediction. dtype: The floating point data type to use. """ super(_LSTMModel, self).__init__( # Pre-register the metrics we'll be outputting (just a mean here). train_output_names=["mean"], predict_output_names=["mean"], num_features=num_features, exogenous_feature_columns=exogenous_feature_columns, dtype=dtype) self._num_units = num_units # Filled in by initialize_graph() self._lstm_cell = None self._lstm_cell_run = None self._predict_from_lstm_output = None def initialize_graph(self, input_statistics=None): """Save templates for components, which can then be used repeatedly. This method is called every time a new graph is created. It's safe to start adding ops to the current default graph here, but the graph should be constructed from scratch. Args: input_statistics: A math_utils.InputStatistics object. """ super(_LSTMModel, self).initialize_graph(input_statistics=input_statistics) with tf.variable_scope("", use_resource=True): # Use ResourceVariables to avoid race conditions. self._lstm_cell = tf.nn.rnn_cell.LSTMCell(num_units=self._num_units) # Create templates so we don't have to worry about variable reuse. self._lstm_cell_run = tf.make_template( name_="lstm_cell", func_=self._lstm_cell, create_scope_now_=True) # Transforms LSTM output into mean predictions. self._predict_from_lstm_output = tf.make_template( name_="predict_from_lstm_output", func_=functools.partial(tf.layers.dense, units=self.num_features), create_scope_now_=True) def get_start_state(self): """Return initial state for the time series model.""" return ( # Keeps track of the time associated with this state for error checking. tf.zeros([], dtype=tf.int64), # The previous observation or prediction. tf.zeros([self.num_features], dtype=self.dtype), # The most recently seen exogenous features. tf.zeros(self._get_exogenous_embedding_shape(), dtype=self.dtype), # The state of the RNNCell (batch dimension removed since this parent # class will broadcast). [tf.squeeze(state_element, axis=0) for state_element in self._lstm_cell.zero_state(batch_size=1, dtype=self.dtype)]) def _filtering_step(self, current_times, current_values, state, predictions): """Update model state based on observations. Note that we don't do much here aside from computing a loss. In this case it's easier to update the RNN state in _prediction_step, since that covers running the RNN both on observations (from this method) and our own predictions. This distinction can be important for probabilistic models, where repeatedly predicting without filtering should lead to low-confidence predictions. Args: current_times: A [batch size] integer Tensor. current_values: A [batch size, self.num_features] floating point Tensor with new observations. state: The model's state tuple. predictions: The output of the previous `_prediction_step`. Returns: A tuple of new state and a predictions dictionary updated to include a loss (note that we could also return other measures of goodness of fit, although only "loss" will be optimized). """ state_from_time, prediction, exogenous, lstm_state = state with tf.control_dependencies( [tf.assert_equal(current_times, state_from_time)]): # Subtract the mean and divide by the variance of the series. Slightly # more efficient if done for a whole window (using the normalize_features # argument to SequentialTimeSeriesModel). transformed_values = self._scale_data(current_values) # Use mean squared error across features for the loss. predictions["loss"] = tf.reduce_mean( (prediction - transformed_values) ** 2, axis=-1) # Keep track of the new observation in model state. It won't be run # through the LSTM until the next _imputation_step. new_state_tuple = (current_times, transformed_values, exogenous, lstm_state) return (new_state_tuple, predictions) def _prediction_step(self, current_times, state): """Advance the RNN state using a previous observation or prediction.""" _, previous_observation_or_prediction, exogenous, lstm_state = state # Update LSTM state based on the most recent exogenous and endogenous # features. inputs = tf.concat([previous_observation_or_prediction, exogenous], axis=-1) lstm_output, new_lstm_state = self._lstm_cell_run( inputs=inputs, state=lstm_state) next_prediction = self._predict_from_lstm_output(lstm_output) new_state_tuple = (current_times, next_prediction, exogenous, new_lstm_state) return new_state_tuple, {"mean": self._scale_back_data(next_prediction)} def _imputation_step(self, current_times, state): """Advance model state across a gap.""" # Does not do anything special if we're jumping across a gap. More advanced # models, especially probabilistic ones, would want a special case that # depends on the gap size. return state def _exogenous_input_step( self, current_times, current_exogenous_regressors, state): """Save exogenous regressors in model state for use in _prediction_step.""" state_from_time, prediction, _, lstm_state = state return (state_from_time, prediction, current_exogenous_regressors, lstm_state) def train_and_predict( csv_file_name=_DATA_FILE, training_steps=200, estimator_config=None, export_directory=None): """Train and predict using a custom time series model.""" # Construct an Estimator from our LSTM model. categorical_column = tf.feature_column.categorical_column_with_hash_bucket( key="categorical_exogenous_feature", hash_bucket_size=16) exogenous_feature_columns = [ # Exogenous features are not part of the loss, but can inform # predictions. In this example the features have no extra information, but # are included as an API example. tf.feature_column.numeric_column( "2d_exogenous_feature", shape=(2,)), tf.feature_column.embedding_column( categorical_column=categorical_column, dimension=10)] estimator = ts_estimators.TimeSeriesRegressor( model=_LSTMModel(num_features=5, num_units=128, exogenous_feature_columns=exogenous_feature_columns), optimizer=tf.train.AdamOptimizer(0.001), config=estimator_config, # Set state to be saved across windows. state_manager=state_management.ChainingStateManager()) reader = tf.contrib.timeseries.CSVReader( csv_file_name, column_names=((tf.contrib.timeseries.TrainEvalFeatures.TIMES,) + (tf.contrib.timeseries.TrainEvalFeatures.VALUES,) * 5 + ("2d_exogenous_feature",) * 2 + ("categorical_exogenous_feature",)), # Data types other than for `times` need to be specified if they aren't # float32. In this case one of our exogenous features has string dtype. column_dtypes=((tf.int64,) + (tf.float32,) * 7 + (tf.string,))) train_input_fn = tf.contrib.timeseries.RandomWindowInputFn( reader, batch_size=4, window_size=32) estimator.train(input_fn=train_input_fn, steps=training_steps) evaluation_input_fn = tf.contrib.timeseries.WholeDatasetInputFn(reader) evaluation = estimator.evaluate(input_fn=evaluation_input_fn, steps=1) # Predict starting after the evaluation predict_exogenous_features = { "2d_exogenous_feature": numpy.concatenate( [numpy.ones([1, 100, 1]), numpy.zeros([1, 100, 1])], axis=-1), "categorical_exogenous_feature": numpy.array( ["strkey"] * 100)[None, :, None]} (predictions,) = tuple(estimator.predict( input_fn=tf.contrib.timeseries.predict_continuation_input_fn( evaluation, steps=100, exogenous_features=predict_exogenous_features))) times = evaluation["times"][0] observed = evaluation["observed"][0, :, :] predicted_mean = numpy.squeeze(numpy.concatenate( [evaluation["mean"][0], predictions["mean"]], axis=0)) all_times = numpy.concatenate([times, predictions["times"]], axis=0) # Export the model in SavedModel format. We include a bit of extra boilerplate # for "cold starting" as if we didn't have any state from the Estimator, which # is the case when serving from a SavedModel. If Estimator output is # available, the result of "Estimator.evaluate" can be passed directly to # `tf.contrib.timeseries.saved_model_utils.predict_continuation` as the # `continue_from` argument. with tf.Graph().as_default(): filter_feature_tensors, _ = evaluation_input_fn() with tf.train.MonitoredSession() as session: # Fetch the series to "warm up" our state, which will allow us to make # predictions for its future values. This is just a dictionary of times, # values, and exogenous features mapping to numpy arrays. The use of an # input_fn is just a convenience for the example; they can also be # specified manually. filter_features = session.run(filter_feature_tensors) if export_directory is None: export_directory = tempfile.mkdtemp() input_receiver_fn = estimator.build_raw_serving_input_receiver_fn() export_location = estimator.export_saved_model(export_directory, input_receiver_fn) # Warm up and predict using the SavedModel with tf.Graph().as_default(): with tf.Session() as session: signatures = tf.saved_model.loader.load( session, [tf.saved_model.tag_constants.SERVING], export_location) state = tf.contrib.timeseries.saved_model_utils.cold_start_filter( signatures=signatures, session=session, features=filter_features) saved_model_output = ( tf.contrib.timeseries.saved_model_utils.predict_continuation( continue_from=state, signatures=signatures, session=session, steps=100, exogenous_features=predict_exogenous_features)) # The exported model gives the same results as the Estimator.predict() # call above. numpy.testing.assert_allclose( predictions["mean"], numpy.squeeze(saved_model_output["mean"], axis=0)) return times, observed, all_times, predicted_mean def main(unused_argv): if not HAS_MATPLOTLIB: raise ImportError( "Please install matplotlib to generate a plot from this example.") (observed_times, observations, all_times, predictions) = train_and_predict() pyplot.axvline(99, linestyle="dotted") observed_lines = pyplot.plot( observed_times, observations, label="Observed", color="k") predicted_lines = pyplot.plot( all_times, predictions, label="Predicted", color="b") pyplot.legend(handles=[observed_lines[0], predicted_lines[0]], loc="upper left") pyplot.show() if __name__ == "__main__": tf.app.run(main=main)
apache-2.0
linebp/pandas
pandas/core/strings.py
7
60118
import numpy as np from pandas.compat import zip from pandas.core.dtypes.generic import ABCSeries, ABCIndex from pandas.core.dtypes.missing import isnull, notnull from pandas.core.dtypes.common import ( is_bool_dtype, is_categorical_dtype, is_object_dtype, is_string_like, is_list_like, is_scalar, is_integer, is_re) from pandas.core.common import _values_from_object from pandas.core.algorithms import take_1d import pandas.compat as compat from pandas.core.base import AccessorProperty, NoNewAttributesMixin from pandas.util._decorators import Appender import re import pandas._libs.lib as lib import warnings import textwrap import codecs _cpython_optimized_encoders = ( "utf-8", "utf8", "latin-1", "latin1", "iso-8859-1", "mbcs", "ascii" ) _cpython_optimized_decoders = _cpython_optimized_encoders + ( "utf-16", "utf-32" ) _shared_docs = dict() def _get_array_list(arr, others): from pandas.core.series import Series if len(others) and isinstance(_values_from_object(others)[0], (list, np.ndarray, Series)): arrays = [arr] + list(others) else: arrays = [arr, others] return [np.asarray(x, dtype=object) for x in arrays] def str_cat(arr, others=None, sep=None, na_rep=None): """ Concatenate strings in the Series/Index with given separator. Parameters ---------- others : list-like, or list of list-likes If None, returns str concatenating strings of the Series sep : string or None, default None na_rep : string or None, default None If None, NA in the series are ignored. Returns ------- concat : Series/Index of objects or str Examples -------- When ``na_rep`` is `None` (default behavior), NaN value(s) in the Series are ignored. >>> Series(['a','b',np.nan,'c']).str.cat(sep=' ') 'a b c' >>> Series(['a','b',np.nan,'c']).str.cat(sep=' ', na_rep='?') 'a b ? c' If ``others`` is specified, corresponding values are concatenated with the separator. Result will be a Series of strings. >>> Series(['a', 'b', 'c']).str.cat(['A', 'B', 'C'], sep=',') 0 a,A 1 b,B 2 c,C dtype: object Otherwise, strings in the Series are concatenated. Result will be a string. >>> Series(['a', 'b', 'c']).str.cat(sep=',') 'a,b,c' Also, you can pass a list of list-likes. >>> Series(['a', 'b']).str.cat([['x', 'y'], ['1', '2']], sep=',') 0 a,x,1 1 b,y,2 dtype: object """ if sep is None: sep = '' if others is not None: arrays = _get_array_list(arr, others) n = _length_check(arrays) masks = np.array([isnull(x) for x in arrays]) cats = None if na_rep is None: na_mask = np.logical_or.reduce(masks, axis=0) result = np.empty(n, dtype=object) np.putmask(result, na_mask, np.nan) notmask = ~na_mask tuples = zip(*[x[notmask] for x in arrays]) cats = [sep.join(tup) for tup in tuples] result[notmask] = cats else: for i, x in enumerate(arrays): x = np.where(masks[i], na_rep, x) if cats is None: cats = x else: cats = cats + sep + x result = cats return result else: arr = np.asarray(arr, dtype=object) mask = isnull(arr) if na_rep is None and mask.any(): if sep == '': na_rep = '' else: return sep.join(arr[notnull(arr)]) return sep.join(np.where(mask, na_rep, arr)) def _length_check(others): n = None for x in others: try: if n is None: n = len(x) elif len(x) != n: raise ValueError('All arrays must be same length') except TypeError: raise ValueError("Did you mean to supply a `sep` keyword?") return n def _na_map(f, arr, na_result=np.nan, dtype=object): # should really _check_ for NA return _map(f, arr, na_mask=True, na_value=na_result, dtype=dtype) def _map(f, arr, na_mask=False, na_value=np.nan, dtype=object): if not len(arr): return np.ndarray(0, dtype=dtype) if isinstance(arr, ABCSeries): arr = arr.values if not isinstance(arr, np.ndarray): arr = np.asarray(arr, dtype=object) if na_mask: mask = isnull(arr) try: convert = not all(mask) result = lib.map_infer_mask(arr, f, mask.view(np.uint8), convert) except (TypeError, AttributeError) as e: # Reraise the exception if callable `f` got wrong number of args. # The user may want to be warned by this, instead of getting NaN if compat.PY2: p_err = r'takes (no|(exactly|at (least|most)) ?\d+) arguments?' else: p_err = (r'((takes)|(missing)) (?(2)from \d+ to )?\d+ ' r'(?(3)required )positional arguments?') if len(e.args) >= 1 and re.search(p_err, e.args[0]): raise e def g(x): try: return f(x) except (TypeError, AttributeError): return na_value return _map(g, arr, dtype=dtype) if na_value is not np.nan: np.putmask(result, mask, na_value) if result.dtype == object: result = lib.maybe_convert_objects(result) return result else: return lib.map_infer(arr, f) def str_count(arr, pat, flags=0): """ Count occurrences of pattern in each string of the Series/Index. Parameters ---------- pat : string, valid regular expression flags : int, default 0 (no flags) re module flags, e.g. re.IGNORECASE Returns ------- counts : Series/Index of integer values """ regex = re.compile(pat, flags=flags) f = lambda x: len(regex.findall(x)) return _na_map(f, arr, dtype=int) def str_contains(arr, pat, case=True, flags=0, na=np.nan, regex=True): """ Return boolean Series/``array`` whether given pattern/regex is contained in each string in the Series/Index. Parameters ---------- pat : string Character sequence or regular expression case : boolean, default True If True, case sensitive flags : int, default 0 (no flags) re module flags, e.g. re.IGNORECASE na : default NaN, fill value for missing values. regex : bool, default True If True use re.search, otherwise use Python in operator Returns ------- contained : Series/array of boolean values See Also -------- match : analogous, but stricter, relying on re.match instead of re.search """ if regex: if not case: flags |= re.IGNORECASE regex = re.compile(pat, flags=flags) if regex.groups > 0: warnings.warn("This pattern has match groups. To actually get the" " groups, use str.extract.", UserWarning, stacklevel=3) f = lambda x: bool(regex.search(x)) else: if case: f = lambda x: pat in x else: upper_pat = pat.upper() f = lambda x: upper_pat in x uppered = _na_map(lambda x: x.upper(), arr) return _na_map(f, uppered, na, dtype=bool) return _na_map(f, arr, na, dtype=bool) def str_startswith(arr, pat, na=np.nan): """ Return boolean Series/``array`` indicating whether each string in the Series/Index starts with passed pattern. Equivalent to :meth:`str.startswith`. Parameters ---------- pat : string Character sequence na : bool, default NaN Returns ------- startswith : Series/array of boolean values """ f = lambda x: x.startswith(pat) return _na_map(f, arr, na, dtype=bool) def str_endswith(arr, pat, na=np.nan): """ Return boolean Series indicating whether each string in the Series/Index ends with passed pattern. Equivalent to :meth:`str.endswith`. Parameters ---------- pat : string Character sequence na : bool, default NaN Returns ------- endswith : Series/array of boolean values """ f = lambda x: x.endswith(pat) return _na_map(f, arr, na, dtype=bool) def str_replace(arr, pat, repl, n=-1, case=None, flags=0): """ Replace occurrences of pattern/regex in the Series/Index with some other string. Equivalent to :meth:`str.replace` or :func:`re.sub`. Parameters ---------- pat : string or compiled regex String can be a character sequence or regular expression. .. versionadded:: 0.20.0 `pat` also accepts a compiled regex. repl : string or callable Replacement string or a callable. The callable is passed the regex match object and must return a replacement string to be used. See :func:`re.sub`. .. versionadded:: 0.20.0 `repl` also accepts a callable. n : int, default -1 (all) Number of replacements to make from start case : boolean, default None - If True, case sensitive (the default if `pat` is a string) - Set to False for case insensitive - Cannot be set if `pat` is a compiled regex flags : int, default 0 (no flags) - re module flags, e.g. re.IGNORECASE - Cannot be set if `pat` is a compiled regex Returns ------- replaced : Series/Index of objects Notes ----- When `pat` is a compiled regex, all flags should be included in the compiled regex. Use of `case` or `flags` with a compiled regex will raise an error. Examples -------- When `repl` is a string, every `pat` is replaced as with :meth:`str.replace`. NaN value(s) in the Series are left as is. >>> pd.Series(['foo', 'fuz', np.nan]).str.replace('f', 'b') 0 boo 1 buz 2 NaN dtype: object When `repl` is a callable, it is called on every `pat` using :func:`re.sub`. The callable should expect one positional argument (a regex object) and return a string. To get the idea: >>> pd.Series(['foo', 'fuz', np.nan]).str.replace('f', repr) 0 <_sre.SRE_Match object; span=(0, 1), match='f'>oo 1 <_sre.SRE_Match object; span=(0, 1), match='f'>uz 2 NaN dtype: object Reverse every lowercase alphabetic word: >>> repl = lambda m: m.group(0)[::-1] >>> pd.Series(['foo 123', 'bar baz', np.nan]).str.replace(r'[a-z]+', repl) 0 oof 123 1 rab zab 2 NaN dtype: object Using regex groups (extract second group and swap case): >>> pat = r"(?P<one>\w+) (?P<two>\w+) (?P<three>\w+)" >>> repl = lambda m: m.group('two').swapcase() >>> pd.Series(['One Two Three', 'Foo Bar Baz']).str.replace(pat, repl) 0 tWO 1 bAR dtype: object Using a compiled regex with flags >>> regex_pat = re.compile(r'FUZ', flags=re.IGNORECASE) >>> pd.Series(['foo', 'fuz', np.nan]).str.replace(regex_pat, 'bar') 0 foo 1 bar 2 NaN dtype: object """ # Check whether repl is valid (GH 13438, GH 15055) if not (is_string_like(repl) or callable(repl)): raise TypeError("repl must be a string or callable") is_compiled_re = is_re(pat) if is_compiled_re: if (case is not None) or (flags != 0): raise ValueError("case and flags cannot be set" " when pat is a compiled regex") else: # not a compiled regex # set default case if case is None: case = True # add case flag, if provided if case is False: flags |= re.IGNORECASE use_re = is_compiled_re or len(pat) > 1 or flags or callable(repl) if use_re: n = n if n >= 0 else 0 regex = re.compile(pat, flags=flags) f = lambda x: regex.sub(repl=repl, string=x, count=n) else: f = lambda x: x.replace(pat, repl, n) return _na_map(f, arr) def str_repeat(arr, repeats): """ Duplicate each string in the Series/Index by indicated number of times. Parameters ---------- repeats : int or array Same value for all (int) or different value per (array) Returns ------- repeated : Series/Index of objects """ if is_scalar(repeats): def rep(x): try: return compat.binary_type.__mul__(x, repeats) except TypeError: return compat.text_type.__mul__(x, repeats) return _na_map(rep, arr) else: def rep(x, r): try: return compat.binary_type.__mul__(x, r) except TypeError: return compat.text_type.__mul__(x, r) repeats = np.asarray(repeats, dtype=object) result = lib.vec_binop(_values_from_object(arr), repeats, rep) return result def str_match(arr, pat, case=True, flags=0, na=np.nan, as_indexer=None): """ Determine if each string matches a regular expression. Parameters ---------- pat : string Character sequence or regular expression case : boolean, default True If True, case sensitive flags : int, default 0 (no flags) re module flags, e.g. re.IGNORECASE na : default NaN, fill value for missing values. as_indexer : DEPRECATED Returns ------- Series/array of boolean values See Also -------- contains : analogous, but less strict, relying on re.search instead of re.match extract : extract matched groups """ if not case: flags |= re.IGNORECASE regex = re.compile(pat, flags=flags) if (as_indexer is False) and (regex.groups > 0): raise ValueError("as_indexer=False with a pattern with groups is no " "longer supported. Use '.str.extract(pat)' instead") elif as_indexer is not None: # Previously, this keyword was used for changing the default but # deprecated behaviour. This keyword is now no longer needed. warnings.warn("'as_indexer' keyword was specified but is ignored " "(match now returns a boolean indexer by default), " "and will be removed in a future version.", FutureWarning, stacklevel=3) dtype = bool f = lambda x: bool(regex.match(x)) return _na_map(f, arr, na, dtype=dtype) def _get_single_group_name(rx): try: return list(rx.groupindex.keys()).pop() except IndexError: return None def _groups_or_na_fun(regex): """Used in both extract_noexpand and extract_frame""" if regex.groups == 0: raise ValueError("pattern contains no capture groups") empty_row = [np.nan] * regex.groups def f(x): if not isinstance(x, compat.string_types): return empty_row m = regex.search(x) if m: return [np.nan if item is None else item for item in m.groups()] else: return empty_row return f def _str_extract_noexpand(arr, pat, flags=0): """ Find groups in each string in the Series using passed regular expression. This function is called from str_extract(expand=False), and can return Series, DataFrame, or Index. """ from pandas import DataFrame, Index regex = re.compile(pat, flags=flags) groups_or_na = _groups_or_na_fun(regex) if regex.groups == 1: result = np.array([groups_or_na(val)[0] for val in arr], dtype=object) name = _get_single_group_name(regex) else: if isinstance(arr, Index): raise ValueError("only one regex group is supported with Index") name = None names = dict(zip(regex.groupindex.values(), regex.groupindex.keys())) columns = [names.get(1 + i, i) for i in range(regex.groups)] if arr.empty: result = DataFrame(columns=columns, dtype=object) else: result = DataFrame( [groups_or_na(val) for val in arr], columns=columns, index=arr.index, dtype=object) return result, name def _str_extract_frame(arr, pat, flags=0): """ For each subject string in the Series, extract groups from the first match of regular expression pat. This function is called from str_extract(expand=True), and always returns a DataFrame. """ from pandas import DataFrame regex = re.compile(pat, flags=flags) groups_or_na = _groups_or_na_fun(regex) names = dict(zip(regex.groupindex.values(), regex.groupindex.keys())) columns = [names.get(1 + i, i) for i in range(regex.groups)] if len(arr) == 0: return DataFrame(columns=columns, dtype=object) try: result_index = arr.index except AttributeError: result_index = None return DataFrame( [groups_or_na(val) for val in arr], columns=columns, index=result_index, dtype=object) def str_extract(arr, pat, flags=0, expand=None): """ For each subject string in the Series, extract groups from the first match of regular expression pat. .. versionadded:: 0.13.0 Parameters ---------- pat : string Regular expression pattern with capturing groups flags : int, default 0 (no flags) re module flags, e.g. re.IGNORECASE .. versionadded:: 0.18.0 expand : bool, default False * If True, return DataFrame. * If False, return Series/Index/DataFrame. Returns ------- DataFrame with one row for each subject string, and one column for each group. Any capture group names in regular expression pat will be used for column names; otherwise capture group numbers will be used. The dtype of each result column is always object, even when no match is found. If expand=False and pat has only one capture group, then return a Series (if subject is a Series) or Index (if subject is an Index). See Also -------- extractall : returns all matches (not just the first match) Examples -------- A pattern with two groups will return a DataFrame with two columns. Non-matches will be NaN. >>> s = Series(['a1', 'b2', 'c3']) >>> s.str.extract('([ab])(\d)') 0 1 0 a 1 1 b 2 2 NaN NaN A pattern may contain optional groups. >>> s.str.extract('([ab])?(\d)') 0 1 0 a 1 1 b 2 2 NaN 3 Named groups will become column names in the result. >>> s.str.extract('(?P<letter>[ab])(?P<digit>\d)') letter digit 0 a 1 1 b 2 2 NaN NaN A pattern with one group will return a DataFrame with one column if expand=True. >>> s.str.extract('[ab](\d)', expand=True) 0 0 1 1 2 2 NaN A pattern with one group will return a Series if expand=False. >>> s.str.extract('[ab](\d)', expand=False) 0 1 1 2 2 NaN dtype: object """ if expand is None: warnings.warn( "currently extract(expand=None) " + "means expand=False (return Index/Series/DataFrame) " + "but in a future version of pandas this will be changed " + "to expand=True (return DataFrame)", FutureWarning, stacklevel=3) expand = False if not isinstance(expand, bool): raise ValueError("expand must be True or False") if expand: return _str_extract_frame(arr._orig, pat, flags=flags) else: result, name = _str_extract_noexpand(arr._data, pat, flags=flags) return arr._wrap_result(result, name=name, expand=expand) def str_extractall(arr, pat, flags=0): """ For each subject string in the Series, extract groups from all matches of regular expression pat. When each subject string in the Series has exactly one match, extractall(pat).xs(0, level='match') is the same as extract(pat). .. versionadded:: 0.18.0 Parameters ---------- pat : string Regular expression pattern with capturing groups flags : int, default 0 (no flags) re module flags, e.g. re.IGNORECASE Returns ------- A DataFrame with one row for each match, and one column for each group. Its rows have a MultiIndex with first levels that come from the subject Series. The last level is named 'match' and indicates the order in the subject. Any capture group names in regular expression pat will be used for column names; otherwise capture group numbers will be used. See Also -------- extract : returns first match only (not all matches) Examples -------- A pattern with one group will return a DataFrame with one column. Indices with no matches will not appear in the result. >>> s = Series(["a1a2", "b1", "c1"], index=["A", "B", "C"]) >>> s.str.extractall("[ab](\d)") 0 match A 0 1 1 2 B 0 1 Capture group names are used for column names of the result. >>> s.str.extractall("[ab](?P<digit>\d)") digit match A 0 1 1 2 B 0 1 A pattern with two groups will return a DataFrame with two columns. >>> s.str.extractall("(?P<letter>[ab])(?P<digit>\d)") letter digit match A 0 a 1 1 a 2 B 0 b 1 Optional groups that do not match are NaN in the result. >>> s.str.extractall("(?P<letter>[ab])?(?P<digit>\d)") letter digit match A 0 a 1 1 a 2 B 0 b 1 C 0 NaN 1 """ regex = re.compile(pat, flags=flags) # the regex must contain capture groups. if regex.groups == 0: raise ValueError("pattern contains no capture groups") if isinstance(arr, ABCIndex): arr = arr.to_series().reset_index(drop=True) names = dict(zip(regex.groupindex.values(), regex.groupindex.keys())) columns = [names.get(1 + i, i) for i in range(regex.groups)] match_list = [] index_list = [] is_mi = arr.index.nlevels > 1 for subject_key, subject in arr.iteritems(): if isinstance(subject, compat.string_types): if not is_mi: subject_key = (subject_key, ) for match_i, match_tuple in enumerate(regex.findall(subject)): if isinstance(match_tuple, compat.string_types): match_tuple = (match_tuple,) na_tuple = [np.NaN if group == "" else group for group in match_tuple] match_list.append(na_tuple) result_key = tuple(subject_key + (match_i, )) index_list.append(result_key) if 0 < len(index_list): from pandas import MultiIndex index = MultiIndex.from_tuples( index_list, names=arr.index.names + ["match"]) else: index = None result = arr._constructor_expanddim(match_list, index=index, columns=columns) return result def str_get_dummies(arr, sep='|'): """ Split each string in the Series by sep and return a frame of dummy/indicator variables. Parameters ---------- sep : string, default "|" String to split on. Returns ------- dummies : DataFrame Examples -------- >>> Series(['a|b', 'a', 'a|c']).str.get_dummies() a b c 0 1 1 0 1 1 0 0 2 1 0 1 >>> Series(['a|b', np.nan, 'a|c']).str.get_dummies() a b c 0 1 1 0 1 0 0 0 2 1 0 1 See Also -------- pandas.get_dummies """ arr = arr.fillna('') try: arr = sep + arr + sep except TypeError: arr = sep + arr.astype(str) + sep tags = set() for ts in arr.str.split(sep): tags.update(ts) tags = sorted(tags - set([""])) dummies = np.empty((len(arr), len(tags)), dtype=np.int64) for i, t in enumerate(tags): pat = sep + t + sep dummies[:, i] = lib.map_infer(arr.values, lambda x: pat in x) return dummies, tags def str_join(arr, sep): """ Join lists contained as elements in the Series/Index with passed delimiter. Equivalent to :meth:`str.join`. Parameters ---------- sep : string Delimiter Returns ------- joined : Series/Index of objects """ return _na_map(sep.join, arr) def str_findall(arr, pat, flags=0): """ Find all occurrences of pattern or regular expression in the Series/Index. Equivalent to :func:`re.findall`. Parameters ---------- pat : string Pattern or regular expression flags : int, default 0 (no flags) re module flags, e.g. re.IGNORECASE Returns ------- matches : Series/Index of lists See Also -------- extractall : returns DataFrame with one column per capture group """ regex = re.compile(pat, flags=flags) return _na_map(regex.findall, arr) def str_find(arr, sub, start=0, end=None, side='left'): """ Return indexes in each strings in the Series/Index where the substring is fully contained between [start:end]. Return -1 on failure. Parameters ---------- sub : str Substring being searched start : int Left edge index end : int Right edge index side : {'left', 'right'}, default 'left' Specifies a starting side, equivalent to ``find`` or ``rfind`` Returns ------- found : Series/Index of integer values """ if not isinstance(sub, compat.string_types): msg = 'expected a string object, not {0}' raise TypeError(msg.format(type(sub).__name__)) if side == 'left': method = 'find' elif side == 'right': method = 'rfind' else: # pragma: no cover raise ValueError('Invalid side') if end is None: f = lambda x: getattr(x, method)(sub, start) else: f = lambda x: getattr(x, method)(sub, start, end) return _na_map(f, arr, dtype=int) def str_index(arr, sub, start=0, end=None, side='left'): if not isinstance(sub, compat.string_types): msg = 'expected a string object, not {0}' raise TypeError(msg.format(type(sub).__name__)) if side == 'left': method = 'index' elif side == 'right': method = 'rindex' else: # pragma: no cover raise ValueError('Invalid side') if end is None: f = lambda x: getattr(x, method)(sub, start) else: f = lambda x: getattr(x, method)(sub, start, end) return _na_map(f, arr, dtype=int) def str_pad(arr, width, side='left', fillchar=' '): """ Pad strings in the Series/Index with an additional character to specified side. Parameters ---------- width : int Minimum width of resulting string; additional characters will be filled with spaces side : {'left', 'right', 'both'}, default 'left' fillchar : str Additional character for filling, default is whitespace Returns ------- padded : Series/Index of objects """ if not isinstance(fillchar, compat.string_types): msg = 'fillchar must be a character, not {0}' raise TypeError(msg.format(type(fillchar).__name__)) if len(fillchar) != 1: raise TypeError('fillchar must be a character, not str') if not is_integer(width): msg = 'width must be of integer type, not {0}' raise TypeError(msg.format(type(width).__name__)) if side == 'left': f = lambda x: x.rjust(width, fillchar) elif side == 'right': f = lambda x: x.ljust(width, fillchar) elif side == 'both': f = lambda x: x.center(width, fillchar) else: # pragma: no cover raise ValueError('Invalid side') return _na_map(f, arr) def str_split(arr, pat=None, n=None): """ Split each string (a la re.split) in the Series/Index by given pattern, propagating NA values. Equivalent to :meth:`str.split`. Parameters ---------- pat : string, default None String or regular expression to split on. If None, splits on whitespace n : int, default -1 (all) None, 0 and -1 will be interpreted as return all splits expand : bool, default False * If True, return DataFrame/MultiIndex expanding dimensionality. * If False, return Series/Index. .. versionadded:: 0.16.1 return_type : deprecated, use `expand` Returns ------- split : Series/Index or DataFrame/MultiIndex of objects """ if pat is None: if n is None or n == 0: n = -1 f = lambda x: x.split(pat, n) else: if len(pat) == 1: if n is None or n == 0: n = -1 f = lambda x: x.split(pat, n) else: if n is None or n == -1: n = 0 regex = re.compile(pat) f = lambda x: regex.split(x, maxsplit=n) res = _na_map(f, arr) return res def str_rsplit(arr, pat=None, n=None): """ Split each string in the Series/Index by the given delimiter string, starting at the end of the string and working to the front. Equivalent to :meth:`str.rsplit`. .. versionadded:: 0.16.2 Parameters ---------- pat : string, default None Separator to split on. If None, splits on whitespace n : int, default -1 (all) None, 0 and -1 will be interpreted as return all splits expand : bool, default False * If True, return DataFrame/MultiIndex expanding dimensionality. * If False, return Series/Index. Returns ------- split : Series/Index or DataFrame/MultiIndex of objects """ if n is None or n == 0: n = -1 f = lambda x: x.rsplit(pat, n) res = _na_map(f, arr) return res def str_slice(arr, start=None, stop=None, step=None): """ Slice substrings from each element in the Series/Index Parameters ---------- start : int or None stop : int or None step : int or None Returns ------- sliced : Series/Index of objects """ obj = slice(start, stop, step) f = lambda x: x[obj] return _na_map(f, arr) def str_slice_replace(arr, start=None, stop=None, repl=None): """ Replace a slice of each string in the Series/Index with another string. Parameters ---------- start : int or None stop : int or None repl : str or None String for replacement Returns ------- replaced : Series/Index of objects """ if repl is None: repl = '' def f(x): if x[start:stop] == '': local_stop = start else: local_stop = stop y = '' if start is not None: y += x[:start] y += repl if stop is not None: y += x[local_stop:] return y return _na_map(f, arr) def str_strip(arr, to_strip=None, side='both'): """ Strip whitespace (including newlines) from each string in the Series/Index. Parameters ---------- to_strip : str or unicode side : {'left', 'right', 'both'}, default 'both' Returns ------- stripped : Series/Index of objects """ if side == 'both': f = lambda x: x.strip(to_strip) elif side == 'left': f = lambda x: x.lstrip(to_strip) elif side == 'right': f = lambda x: x.rstrip(to_strip) else: # pragma: no cover raise ValueError('Invalid side') return _na_map(f, arr) def str_wrap(arr, width, **kwargs): r""" Wrap long strings in the Series/Index to be formatted in paragraphs with length less than a given width. This method has the same keyword parameters and defaults as :class:`textwrap.TextWrapper`. Parameters ---------- width : int Maximum line-width expand_tabs : bool, optional If true, tab characters will be expanded to spaces (default: True) replace_whitespace : bool, optional If true, each whitespace character (as defined by string.whitespace) remaining after tab expansion will be replaced by a single space (default: True) drop_whitespace : bool, optional If true, whitespace that, after wrapping, happens to end up at the beginning or end of a line is dropped (default: True) break_long_words : bool, optional If true, then words longer than width will be broken in order to ensure that no lines are longer than width. If it is false, long words will not be broken, and some lines may be longer than width. (default: True) break_on_hyphens : bool, optional If true, wrapping will occur preferably on whitespace and right after hyphens in compound words, as it is customary in English. If false, only whitespaces will be considered as potentially good places for line breaks, but you need to set break_long_words to false if you want truly insecable words. (default: True) Returns ------- wrapped : Series/Index of objects Notes ----- Internally, this method uses a :class:`textwrap.TextWrapper` instance with default settings. To achieve behavior matching R's stringr library str_wrap function, use the arguments: - expand_tabs = False - replace_whitespace = True - drop_whitespace = True - break_long_words = False - break_on_hyphens = False Examples -------- >>> s = pd.Series(['line to be wrapped', 'another line to be wrapped']) >>> s.str.wrap(12) 0 line to be\nwrapped 1 another line\nto be\nwrapped """ kwargs['width'] = width tw = textwrap.TextWrapper(**kwargs) return _na_map(lambda s: '\n'.join(tw.wrap(s)), arr) def str_translate(arr, table, deletechars=None): """ Map all characters in the string through the given mapping table. Equivalent to standard :meth:`str.translate`. Note that the optional argument deletechars is only valid if you are using python 2. For python 3, character deletion should be specified via the table argument. Parameters ---------- table : dict (python 3), str or None (python 2) In python 3, table is a mapping of Unicode ordinals to Unicode ordinals, strings, or None. Unmapped characters are left untouched. Characters mapped to None are deleted. :meth:`str.maketrans` is a helper function for making translation tables. In python 2, table is either a string of length 256 or None. If the table argument is None, no translation is applied and the operation simply removes the characters in deletechars. :func:`string.maketrans` is a helper function for making translation tables. deletechars : str, optional (python 2) A string of characters to delete. This argument is only valid in python 2. Returns ------- translated : Series/Index of objects """ if deletechars is None: f = lambda x: x.translate(table) else: from pandas import compat if compat.PY3: raise ValueError("deletechars is not a valid argument for " "str.translate in python 3. You should simply " "specify character deletions in the table " "argument") f = lambda x: x.translate(table, deletechars) return _na_map(f, arr) def str_get(arr, i): """ Extract element from lists, tuples, or strings in each element in the Series/Index. Parameters ---------- i : int Integer index (location) Returns ------- items : Series/Index of objects """ f = lambda x: x[i] if len(x) > i else np.nan return _na_map(f, arr) def str_decode(arr, encoding, errors="strict"): """ Decode character string in the Series/Index using indicated encoding. Equivalent to :meth:`str.decode` in python2 and :meth:`bytes.decode` in python3. Parameters ---------- encoding : str errors : str, optional Returns ------- decoded : Series/Index of objects """ if encoding in _cpython_optimized_decoders: # CPython optimized implementation f = lambda x: x.decode(encoding, errors) else: decoder = codecs.getdecoder(encoding) f = lambda x: decoder(x, errors)[0] return _na_map(f, arr) def str_encode(arr, encoding, errors="strict"): """ Encode character string in the Series/Index using indicated encoding. Equivalent to :meth:`str.encode`. Parameters ---------- encoding : str errors : str, optional Returns ------- encoded : Series/Index of objects """ if encoding in _cpython_optimized_encoders: # CPython optimized implementation f = lambda x: x.encode(encoding, errors) else: encoder = codecs.getencoder(encoding) f = lambda x: encoder(x, errors)[0] return _na_map(f, arr) def _noarg_wrapper(f, docstring=None, **kargs): def wrapper(self): result = _na_map(f, self._data, **kargs) return self._wrap_result(result) wrapper.__name__ = f.__name__ if docstring is not None: wrapper.__doc__ = docstring else: raise ValueError('Provide docstring') return wrapper def _pat_wrapper(f, flags=False, na=False, **kwargs): def wrapper1(self, pat): result = f(self._data, pat) return self._wrap_result(result) def wrapper2(self, pat, flags=0, **kwargs): result = f(self._data, pat, flags=flags, **kwargs) return self._wrap_result(result) def wrapper3(self, pat, na=np.nan): result = f(self._data, pat, na=na) return self._wrap_result(result) wrapper = wrapper3 if na else wrapper2 if flags else wrapper1 wrapper.__name__ = f.__name__ if f.__doc__: wrapper.__doc__ = f.__doc__ return wrapper def copy(source): "Copy a docstring from another source function (if present)" def do_copy(target): if source.__doc__: target.__doc__ = source.__doc__ return target return do_copy class StringMethods(NoNewAttributesMixin): """ Vectorized string functions for Series and Index. NAs stay NA unless handled otherwise by a particular method. Patterned after Python's string methods, with some inspiration from R's stringr package. Examples -------- >>> s.str.split('_') >>> s.str.replace('_', '') """ def __init__(self, data): self._is_categorical = is_categorical_dtype(data) self._data = data.cat.categories if self._is_categorical else data # save orig to blow up categoricals to the right type self._orig = data self._freeze() def __getitem__(self, key): if isinstance(key, slice): return self.slice(start=key.start, stop=key.stop, step=key.step) else: return self.get(key) def __iter__(self): i = 0 g = self.get(i) while g.notnull().any(): yield g i += 1 g = self.get(i) def _wrap_result(self, result, use_codes=True, name=None, expand=None): from pandas.core.index import Index, MultiIndex # for category, we do the stuff on the categories, so blow it up # to the full series again # But for some operations, we have to do the stuff on the full values, # so make it possible to skip this step as the method already did this # before the transformation... if use_codes and self._is_categorical: result = take_1d(result, self._orig.cat.codes) if not hasattr(result, 'ndim') or not hasattr(result, 'dtype'): return result assert result.ndim < 3 if expand is None: # infer from ndim if expand is not specified expand = False if result.ndim == 1 else True elif expand is True and not isinstance(self._orig, Index): # required when expand=True is explicitly specified # not needed when infered def cons_row(x): if is_list_like(x): return x else: return [x] result = [cons_row(x) for x in result] if not isinstance(expand, bool): raise ValueError("expand must be True or False") if expand is False: # if expand is False, result should have the same name # as the original otherwise specified if name is None: name = getattr(result, 'name', None) if name is None: # do not use logical or, _orig may be a DataFrame # which has "name" column name = self._orig.name # Wait until we are sure result is a Series or Index before # checking attributes (GH 12180) if isinstance(self._orig, Index): # if result is a boolean np.array, return the np.array # instead of wrapping it into a boolean Index (GH 8875) if is_bool_dtype(result): return result if expand: result = list(result) return MultiIndex.from_tuples(result, names=name) else: return Index(result, name=name) else: index = self._orig.index if expand: cons = self._orig._constructor_expanddim return cons(result, columns=name, index=index) else: # Must be a Series cons = self._orig._constructor return cons(result, name=name, index=index) @copy(str_cat) def cat(self, others=None, sep=None, na_rep=None): data = self._orig if self._is_categorical else self._data result = str_cat(data, others=others, sep=sep, na_rep=na_rep) return self._wrap_result(result, use_codes=(not self._is_categorical)) @copy(str_split) def split(self, pat=None, n=-1, expand=False): result = str_split(self._data, pat, n=n) return self._wrap_result(result, expand=expand) @copy(str_rsplit) def rsplit(self, pat=None, n=-1, expand=False): result = str_rsplit(self._data, pat, n=n) return self._wrap_result(result, expand=expand) _shared_docs['str_partition'] = (""" Split the string at the %(side)s occurrence of `sep`, and return 3 elements containing the part before the separator, the separator itself, and the part after the separator. If the separator is not found, return %(return)s. Parameters ---------- pat : string, default whitespace String to split on. expand : bool, default True * If True, return DataFrame/MultiIndex expanding dimensionality. * If False, return Series/Index. Returns ------- split : DataFrame/MultiIndex or Series/Index of objects See Also -------- %(also)s Examples -------- >>> s = Series(['A_B_C', 'D_E_F', 'X']) 0 A_B_C 1 D_E_F 2 X dtype: object >>> s.str.partition('_') 0 1 2 0 A _ B_C 1 D _ E_F 2 X >>> s.str.rpartition('_') 0 1 2 0 A_B _ C 1 D_E _ F 2 X """) @Appender(_shared_docs['str_partition'] % { 'side': 'first', 'return': '3 elements containing the string itself, followed by two ' 'empty strings', 'also': 'rpartition : Split the string at the last occurrence of `sep`' }) def partition(self, pat=' ', expand=True): f = lambda x: x.partition(pat) result = _na_map(f, self._data) return self._wrap_result(result, expand=expand) @Appender(_shared_docs['str_partition'] % { 'side': 'last', 'return': '3 elements containing two empty strings, followed by the ' 'string itself', 'also': 'partition : Split the string at the first occurrence of `sep`' }) def rpartition(self, pat=' ', expand=True): f = lambda x: x.rpartition(pat) result = _na_map(f, self._data) return self._wrap_result(result, expand=expand) @copy(str_get) def get(self, i): result = str_get(self._data, i) return self._wrap_result(result) @copy(str_join) def join(self, sep): result = str_join(self._data, sep) return self._wrap_result(result) @copy(str_contains) def contains(self, pat, case=True, flags=0, na=np.nan, regex=True): result = str_contains(self._data, pat, case=case, flags=flags, na=na, regex=regex) return self._wrap_result(result) @copy(str_match) def match(self, pat, case=True, flags=0, na=np.nan, as_indexer=None): result = str_match(self._data, pat, case=case, flags=flags, na=na, as_indexer=as_indexer) return self._wrap_result(result) @copy(str_replace) def replace(self, pat, repl, n=-1, case=None, flags=0): result = str_replace(self._data, pat, repl, n=n, case=case, flags=flags) return self._wrap_result(result) @copy(str_repeat) def repeat(self, repeats): result = str_repeat(self._data, repeats) return self._wrap_result(result) @copy(str_pad) def pad(self, width, side='left', fillchar=' '): result = str_pad(self._data, width, side=side, fillchar=fillchar) return self._wrap_result(result) _shared_docs['str_pad'] = (""" Filling %(side)s side of strings in the Series/Index with an additional character. Equivalent to :meth:`str.%(method)s`. Parameters ---------- width : int Minimum width of resulting string; additional characters will be filled with ``fillchar`` fillchar : str Additional character for filling, default is whitespace Returns ------- filled : Series/Index of objects """) @Appender(_shared_docs['str_pad'] % dict(side='left and right', method='center')) def center(self, width, fillchar=' '): return self.pad(width, side='both', fillchar=fillchar) @Appender(_shared_docs['str_pad'] % dict(side='right', method='ljust')) def ljust(self, width, fillchar=' '): return self.pad(width, side='right', fillchar=fillchar) @Appender(_shared_docs['str_pad'] % dict(side='left', method='rjust')) def rjust(self, width, fillchar=' '): return self.pad(width, side='left', fillchar=fillchar) def zfill(self, width): """ Filling left side of strings in the Series/Index with 0. Equivalent to :meth:`str.zfill`. Parameters ---------- width : int Minimum width of resulting string; additional characters will be filled with 0 Returns ------- filled : Series/Index of objects """ result = str_pad(self._data, width, side='left', fillchar='0') return self._wrap_result(result) @copy(str_slice) def slice(self, start=None, stop=None, step=None): result = str_slice(self._data, start, stop, step) return self._wrap_result(result) @copy(str_slice_replace) def slice_replace(self, start=None, stop=None, repl=None): result = str_slice_replace(self._data, start, stop, repl) return self._wrap_result(result) @copy(str_decode) def decode(self, encoding, errors="strict"): result = str_decode(self._data, encoding, errors) return self._wrap_result(result) @copy(str_encode) def encode(self, encoding, errors="strict"): result = str_encode(self._data, encoding, errors) return self._wrap_result(result) _shared_docs['str_strip'] = (""" Strip whitespace (including newlines) from each string in the Series/Index from %(side)s. Equivalent to :meth:`str.%(method)s`. Returns ------- stripped : Series/Index of objects """) @Appender(_shared_docs['str_strip'] % dict(side='left and right sides', method='strip')) def strip(self, to_strip=None): result = str_strip(self._data, to_strip, side='both') return self._wrap_result(result) @Appender(_shared_docs['str_strip'] % dict(side='left side', method='lstrip')) def lstrip(self, to_strip=None): result = str_strip(self._data, to_strip, side='left') return self._wrap_result(result) @Appender(_shared_docs['str_strip'] % dict(side='right side', method='rstrip')) def rstrip(self, to_strip=None): result = str_strip(self._data, to_strip, side='right') return self._wrap_result(result) @copy(str_wrap) def wrap(self, width, **kwargs): result = str_wrap(self._data, width, **kwargs) return self._wrap_result(result) @copy(str_get_dummies) def get_dummies(self, sep='|'): # we need to cast to Series of strings as only that has all # methods available for making the dummies... data = self._orig.astype(str) if self._is_categorical else self._data result, name = str_get_dummies(data, sep) return self._wrap_result(result, use_codes=(not self._is_categorical), name=name, expand=True) @copy(str_translate) def translate(self, table, deletechars=None): result = str_translate(self._data, table, deletechars) return self._wrap_result(result) count = _pat_wrapper(str_count, flags=True) startswith = _pat_wrapper(str_startswith, na=True) endswith = _pat_wrapper(str_endswith, na=True) findall = _pat_wrapper(str_findall, flags=True) @copy(str_extract) def extract(self, pat, flags=0, expand=None): return str_extract(self, pat, flags=flags, expand=expand) @copy(str_extractall) def extractall(self, pat, flags=0): return str_extractall(self._orig, pat, flags=flags) _shared_docs['find'] = (""" Return %(side)s indexes in each strings in the Series/Index where the substring is fully contained between [start:end]. Return -1 on failure. Equivalent to standard :meth:`str.%(method)s`. Parameters ---------- sub : str Substring being searched start : int Left edge index end : int Right edge index Returns ------- found : Series/Index of integer values See Also -------- %(also)s """) @Appender(_shared_docs['find'] % dict(side='lowest', method='find', also='rfind : Return highest indexes in each strings')) def find(self, sub, start=0, end=None): result = str_find(self._data, sub, start=start, end=end, side='left') return self._wrap_result(result) @Appender(_shared_docs['find'] % dict(side='highest', method='rfind', also='find : Return lowest indexes in each strings')) def rfind(self, sub, start=0, end=None): result = str_find(self._data, sub, start=start, end=end, side='right') return self._wrap_result(result) def normalize(self, form): """Return the Unicode normal form for the strings in the Series/Index. For more information on the forms, see the :func:`unicodedata.normalize`. Parameters ---------- form : {'NFC', 'NFKC', 'NFD', 'NFKD'} Unicode form Returns ------- normalized : Series/Index of objects """ import unicodedata f = lambda x: unicodedata.normalize(form, compat.u_safe(x)) result = _na_map(f, self._data) return self._wrap_result(result) _shared_docs['index'] = (""" Return %(side)s indexes in each strings where the substring is fully contained between [start:end]. This is the same as ``str.%(similar)s`` except instead of returning -1, it raises a ValueError when the substring is not found. Equivalent to standard ``str.%(method)s``. Parameters ---------- sub : str Substring being searched start : int Left edge index end : int Right edge index Returns ------- found : Series/Index of objects See Also -------- %(also)s """) @Appender(_shared_docs['index'] % dict(side='lowest', similar='find', method='index', also='rindex : Return highest indexes in each strings')) def index(self, sub, start=0, end=None): result = str_index(self._data, sub, start=start, end=end, side='left') return self._wrap_result(result) @Appender(_shared_docs['index'] % dict(side='highest', similar='rfind', method='rindex', also='index : Return lowest indexes in each strings')) def rindex(self, sub, start=0, end=None): result = str_index(self._data, sub, start=start, end=end, side='right') return self._wrap_result(result) _shared_docs['len'] = (""" Compute length of each string in the Series/Index. Returns ------- lengths : Series/Index of integer values """) len = _noarg_wrapper(len, docstring=_shared_docs['len'], dtype=int) _shared_docs['casemethods'] = (""" Convert strings in the Series/Index to %(type)s. Equivalent to :meth:`str.%(method)s`. Returns ------- converted : Series/Index of objects """) _shared_docs['lower'] = dict(type='lowercase', method='lower') _shared_docs['upper'] = dict(type='uppercase', method='upper') _shared_docs['title'] = dict(type='titlecase', method='title') _shared_docs['capitalize'] = dict(type='be capitalized', method='capitalize') _shared_docs['swapcase'] = dict(type='be swapcased', method='swapcase') lower = _noarg_wrapper(lambda x: x.lower(), docstring=_shared_docs['casemethods'] % _shared_docs['lower']) upper = _noarg_wrapper(lambda x: x.upper(), docstring=_shared_docs['casemethods'] % _shared_docs['upper']) title = _noarg_wrapper(lambda x: x.title(), docstring=_shared_docs['casemethods'] % _shared_docs['title']) capitalize = _noarg_wrapper(lambda x: x.capitalize(), docstring=_shared_docs['casemethods'] % _shared_docs['capitalize']) swapcase = _noarg_wrapper(lambda x: x.swapcase(), docstring=_shared_docs['casemethods'] % _shared_docs['swapcase']) _shared_docs['ismethods'] = (""" Check whether all characters in each string in the Series/Index are %(type)s. Equivalent to :meth:`str.%(method)s`. Returns ------- is : Series/array of boolean values """) _shared_docs['isalnum'] = dict(type='alphanumeric', method='isalnum') _shared_docs['isalpha'] = dict(type='alphabetic', method='isalpha') _shared_docs['isdigit'] = dict(type='digits', method='isdigit') _shared_docs['isspace'] = dict(type='whitespace', method='isspace') _shared_docs['islower'] = dict(type='lowercase', method='islower') _shared_docs['isupper'] = dict(type='uppercase', method='isupper') _shared_docs['istitle'] = dict(type='titlecase', method='istitle') _shared_docs['isnumeric'] = dict(type='numeric', method='isnumeric') _shared_docs['isdecimal'] = dict(type='decimal', method='isdecimal') isalnum = _noarg_wrapper(lambda x: x.isalnum(), docstring=_shared_docs['ismethods'] % _shared_docs['isalnum']) isalpha = _noarg_wrapper(lambda x: x.isalpha(), docstring=_shared_docs['ismethods'] % _shared_docs['isalpha']) isdigit = _noarg_wrapper(lambda x: x.isdigit(), docstring=_shared_docs['ismethods'] % _shared_docs['isdigit']) isspace = _noarg_wrapper(lambda x: x.isspace(), docstring=_shared_docs['ismethods'] % _shared_docs['isspace']) islower = _noarg_wrapper(lambda x: x.islower(), docstring=_shared_docs['ismethods'] % _shared_docs['islower']) isupper = _noarg_wrapper(lambda x: x.isupper(), docstring=_shared_docs['ismethods'] % _shared_docs['isupper']) istitle = _noarg_wrapper(lambda x: x.istitle(), docstring=_shared_docs['ismethods'] % _shared_docs['istitle']) isnumeric = _noarg_wrapper(lambda x: compat.u_safe(x).isnumeric(), docstring=_shared_docs['ismethods'] % _shared_docs['isnumeric']) isdecimal = _noarg_wrapper(lambda x: compat.u_safe(x).isdecimal(), docstring=_shared_docs['ismethods'] % _shared_docs['isdecimal']) class StringAccessorMixin(object): """ Mixin to add a `.str` acessor to the class.""" # string methods def _make_str_accessor(self): from pandas.core.index import Index if (isinstance(self, ABCSeries) and not ((is_categorical_dtype(self.dtype) and is_object_dtype(self.values.categories)) or (is_object_dtype(self.dtype)))): # it's neither a string series not a categorical series with # strings inside the categories. # this really should exclude all series with any non-string values # (instead of test for object dtype), but that isn't practical for # performance reasons until we have a str dtype (GH 9343) raise AttributeError("Can only use .str accessor with string " "values, which use np.object_ dtype in " "pandas") elif isinstance(self, Index): # can't use ABCIndex to exclude non-str # see scc/inferrence.pyx which can contain string values allowed_types = ('string', 'unicode', 'mixed', 'mixed-integer') if self.inferred_type not in allowed_types: message = ("Can only use .str accessor with string values " "(i.e. inferred_type is 'string', 'unicode' or " "'mixed')") raise AttributeError(message) if self.nlevels > 1: message = ("Can only use .str accessor with Index, not " "MultiIndex") raise AttributeError(message) return StringMethods(self) str = AccessorProperty(StringMethods, _make_str_accessor) def _dir_additions(self): return set() def _dir_deletions(self): try: getattr(self, 'str') except AttributeError: return set(['str']) return set()
bsd-3-clause
rfinn/LCS
paper1code/LCSanalyzeWise24.py
1
8015
#!/usr/bin/env python ''' GOAL: compare the results from sextractor photometry with the results from wise ''' import pyfits from LCScommon import * from pylab import * import os import mystuff as my from LCSReadmasterBaseNSA import * import matplotlib.cm as cm import chary_elbaz_24um as chary Lsol=3.826e33#normalize by solar luminosity bellconv=9.8e-11#converts Lir (in L_sun) to SFR/yr bellconv=4.5e-44#Kenn 98 conversion fro erg/s to SFR/yr #usefwhm24=1 fieldColor='0.7' Remin=1. mypath=os.getcwd() if mypath.find('Users') > -1: print "Running on Rose's mac pro" homedir='/Users/rfinn/' elif mypath.find('home') > -1: print "Running on coma" homedir='/home/rfinn/' figuredir=homedir+'Dropbox/Research/LocalClusters/SamplePlots/' figuredir=homedir+'research/LocalClusters/SamplePlots/' class cluster(baseClusterNSA): def __init__(self,clustername): baseClusterNSA.__init__(self,clustername) mypath=os.getcwd() if mypath.find('Users') > -1: print "Running on Rose's mac pro" infile='/Users/rfinn/research/LocalClusters/MasterTables/'+clustername+'mastertable.WithProfileFits.fits' elif mypath.find('home') > -1: print "Running on coma" infile=homedir+'research/LocalClusters/MasterTables/'+clustername+'mastertable.WithProfileFits.fits' self.mipssnrflag = self.mipssnr > 6. try: self.readsnr24NSA() except: print self.prefix,": couldn't read SNR24 file" try: self.readGalfitSersicResults() except: print self.prefix,": couln't read galfit sersic results" try: self.readGalfitResults() except: print self.prefix,": couldn't read galfit results" self.fwhm24=self.sex24.FWHM_DEG*3600. self.fwhm24=self.sex24.FLUX_RADIUS1*mipspixelscale self.member=self.membflag self.member=self.dvflag self.sample24flag= self.sex24.MATCHFLAG24 & ~self.agnflag & (self.n.SERSIC_TH50 > Remin) & (log10(self.stellarmass) > 9.5) & (log10(self.stellarmass) < 12) self.blueclustersample=self.member & self.blueflag & self.sample24flag self.bluefieldsample=~self.member & self.blueflag & self.sample24flag self.greenclustersample=self.member & self.greenflag & self.sample24flag self.greenfieldsample=~self.member & self.greenflag & self.sample24flag self.redclustersample=self.member & self.redflag & self.sample24flag self.redfieldsample=~self.member & self.redflag & self.sample24flag self.varlookup={'stellarmass':log10(self.stellarmass),'Re':self.n.SERSIC_TH50,'R24':self.sex24.FLUX_RADIUS1*mipspixelscale,'NUV':self.n.ABSMAG[:,1],'r':self.n.ABSMAG[:,4],'m24':self.sex24.MAG_BEST,'redshift':self.n.ZDIST,'NUVr':(self.n.ABSMAG[:,1]-self.n.ABSMAG[:,4]),'NUV24':(self.n.ABSMAG[:,1]-self.sex24.MAG_BEST),'24mass':(self.sex24.MAG_BEST-log10(self.stellarmass)),'ratioR':self.sex24.FLUX_RADIUS1*mipspixelscale/self.n.SERSIC_TH50} self.fw4=8.363*10.**(-1.*self.wise.W4MAG_3/2.5)*1.e6 # uJy self.fw4err=8.363*10.**(-1.*(self.wise.W4MAG_3 - self.wise.W4SIGM_3)/2.5)*1.e6 -self.fw4# uJy def plotmipswise(self,plotsingle=1): #zeropoint fluxes from http://wise2.ipac.caltech.edu/docs/release/allsky/expsup/sec4_4h.html#conv2ab #self.fw1=309.54*10.**(-1.*wtable.w1mpro/2.5) #self.fw2=171.787*10.**(-1.*wtable.w2mpro/2.5) #self.fw3=31.674*10.**(-1.*wtable.w3mpro/2.5) #self.fw4=8.363*10.**(-1.*wtable.w4mpro/2.5) if plotsingle: figure() flag=self.n.On24ImageFlag_1 & self.sex24.MATCHFLAG24 x=self.sex24.FLUX_BEST[flag]*mipsflux2umJyconv/1e3 # convert to mJy y=self.fw4[flag]/1e3 plot(x,y,'ko',markersize=4) xl=arange(-1,2.5,.1) xl=10.**xl plot(xl,xl,'k--') axhline(y=5.1,color='k',ls=':') gca().set_yscale('log') gca().set_xscale('log') if plotsingle: xlabel('MIPS 24um flux (mJy)') ylabel('WISE 22um flux (mJy)') ax=gca() axis([15/1e3,5.e2,.2,5.e2]) text(.1,.85,'$'+self.clustername+'$',fontsize=14,transform=ax.transAxes,horizontalalignment='left') def plotmipssnrflux(self,plotsingle=1): if plotsingle: figure() flag=self.n.On24ImageFlag_1 & self.sex24.MATCHFLAG24 x=self.sex24.FLUX_BEST[flag]*mipsflux2umJyconv/1e3 # convert to mJy xerr=self.sex24.FLUXERR_BEST[flag]*mipsflux2umJyconv/1e3 # convert to mJy y=abs(x/xerr) plot(x,y,'ro',markersize=4) y=abs(self.fw4/self.fw4err) plot(self.fw4/1e3,y,'ko',mfc='None',markersize=4) xl=arange(-1,2.,.1) xl=10.**xl #plot(xl,xl,'k--') axvline(x=5.1,color='k',ls=':') axvline(x=2,color='r',ls='--') axhline(y=5.,color='k',ls='--') axhline(y=3.,color='k',ls='--') axhline(y=10.,color='b',ls='--') gca().set_yscale('log') gca().set_xscale('log') if plotsingle: xlabel('MIPS 24um flux (mJy)') ylabel('SNR') ax=gca() axis([15/1e3,5.e2,.5,90]) text(.1,.85,'$'+self.clustername+'$',fontsize=14,transform=ax.transAxes,horizontalalignment='left') def plotF24hist(self): mybins=arange(0,5000,100) y=hist(self.mipsflux[self.apexflag],bins=mybins,histtype='step') ngal=y[0] x=y[1] xbin=zeros(len(ngal)) for i in range(len(xbin)): xbin[i]=0.5*(x[i]+x[i+1]) #clf() self.xbin=xbin self.ngal=ngal plot(xbin,ngal,'ro') errorbar(xbin,ngal,sqrt(ngal),fmt=None) axis([0,2000,0,20]) title(self.clustername) ax=gca() #ax.set_yscale('log') #ax.set_xscale('log') #xlabel('24um Flux') def plotL24hist(self): #figure(1) y=hist(log10(self.L24[self.apexflag]),bins=10,histtype='stepfilled') ax=gca() #ax.set_yscale('log') axis([6.5,11.,1,22]) xmin,xmax=xlim() xticks(arange(round(xmin),xmax+1,1,'i'),fontsize=10) ymin,ymax=ylim() title(self.clustername) #yticks(arange(round(ymin),ymax+1,2,'i'),fontsize=10) def plotF24histall(): figure(figsize=[10,10]) clf() subplots_adjust(wspace=.25,hspace=.35) i=0 for cl in mylocalclusters: i += 1 subplot(3,3,i) cl.plotF24hist() ax=gca() text(-.75,-.35,'$log_{10}(F_{24} \ (\mu Jy))$',fontsize=22,horizontalalignment='center',transform=ax.transAxes) subplot(3,3,4) text(-2.8,1.9,'$N_{gal}$',fontsize=22,verticalalignment='center',rotation=90,transform=ax.transAxes) savefig(figuredir+'PlotF24histAll.png') def plotwisemips24all(): figure(figsize=[10,8]) clf() subplots_adjust(wspace=.02,hspace=.02) i=0 for cl in mylocalclusters: i +=1 subplot(3,3,i) print cl.prefix cl.plotmipswise(plotsingle=0) multiplotaxes(i) multiplotlabels('$MIPS \ F_{24} \ (mJy) $','$ WISE \ F_{22} \ (mJy) $') savefig(figuredir+'PlotWiseMipsall.eps') def plotmipssnrfluxall(): figure(figsize=[10,8]) clf() subplots_adjust(wspace=.02,hspace=.02) i=0 for cl in mylocalclusters: i +=1 subplot(3,3,i) print cl.prefix cl.plotmipssnrflux(plotsingle=0) multiplotaxes(i) multiplotlabels('$MIPS \ F_{24} \ (mJy) $','$ SNR_{24} $') savefig(figuredir+'PlotWiseMipsall.eps') mkw11=cluster('MKW11') coma=cluster('Coma') mkw8=cluster('MKW8') awm4=cluster('AWM4') a2052=cluster('A2052') a2063=cluster('A2063') ngc=cluster('NGC6107') herc=cluster('Hercules') a1367=cluster('A1367') clustersbymass=[mkw8,mkw11,ngc,awm4,a2052,a2063,herc,a1367,coma] clustersbydistance=[a1367,coma,mkw11,mkw8,ngc,awm4,a2063,a2052] clustersbylx=[mkw11,ngc,mkw8,awm4,herc,a1367,a2063,a2052,coma] mylocalclusters=clustersbymass
gpl-3.0
vrenaville/ngo-addons-backport
addons/resource/faces/timescale.py
170
3902
############################################################################ # Copyright (C) 2005 by Reithinger GmbH # [email protected] # # This file is part of faces. # # faces is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # faces is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the # Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA ############################################################################ import faces.pcalendar as pcal import matplotlib.cbook as cbook import datetime import sys class TimeScale(object): def __init__(self, calendar): self.data_calendar = calendar self._create_chart_calendar() self.now = self.to_num(self.data_calendar.now) def to_datetime(self, xval): return xval.to_datetime() def to_num(self, date): return self.chart_calendar.WorkingDate(date) def is_free_slot(self, value): dt1 = self.chart_calendar.to_starttime(value) dt2 = self.data_calendar.to_starttime\ (self.data_calendar.from_datetime(dt1)) return dt1 != dt2 def is_free_day(self, value): dt1 = self.chart_calendar.to_starttime(value) dt2 = self.data_calendar.to_starttime\ (self.data_calendar.from_datetime(dt1)) return dt1.date() != dt2.date() def _create_chart_calendar(self): dcal = self.data_calendar ccal = self.chart_calendar = pcal.Calendar() ccal.minimum_time_unit = 1 #pad worktime slots of calendar (all days should be equally long) slot_sum = lambda slots: sum(map(lambda slot: slot[1] - slot[0], slots)) day_sum = lambda day: slot_sum(dcal.get_working_times(day)) max_work_time = max(map(day_sum, range(7))) #working_time should have 2/3 sum_time = 3 * max_work_time / 2 #now create timeslots for ccal def create_time_slots(day): src_slots = dcal.get_working_times(day) slots = [0, src_slots, 24*60] slots = tuple(cbook.flatten(slots)) slots = zip(slots[:-1], slots[1:]) #balance non working slots work_time = slot_sum(src_slots) non_work_time = sum_time - work_time non_slots = filter(lambda s: s not in src_slots, slots) non_slots = map(lambda s: (s[1] - s[0], s), non_slots) non_slots.sort() slots = [] i = 0 for l, s in non_slots: delta = non_work_time / (len(non_slots) - i) delta = min(l, delta) non_work_time -= delta slots.append((s[0], s[0] + delta)) i += 1 slots.extend(src_slots) slots.sort() return slots min_delta = sys.maxint for i in range(7): slots = create_time_slots(i) ccal.working_times[i] = slots min_delta = min(min_delta, min(map(lambda s: s[1] - s[0], slots))) ccal._recalc_working_time() self.slot_delta = min_delta self.day_delta = sum_time self.week_delta = ccal.week_time _default_scale = TimeScale(pcal._default_calendar) # vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4:
agpl-3.0
UNR-AERIAL/scikit-learn
examples/cluster/plot_birch_vs_minibatchkmeans.py
333
3694
""" ================================= Compare BIRCH and MiniBatchKMeans ================================= This example compares the timing of Birch (with and without the global clustering step) and MiniBatchKMeans on a synthetic dataset having 100,000 samples and 2 features generated using make_blobs. If ``n_clusters`` is set to None, the data is reduced from 100,000 samples to a set of 158 clusters. This can be viewed as a preprocessing step before the final (global) clustering step that further reduces these 158 clusters to 100 clusters. """ # Authors: Manoj Kumar <[email protected] # Alexandre Gramfort <[email protected]> # License: BSD 3 clause print(__doc__) from itertools import cycle from time import time import numpy as np import matplotlib.pyplot as plt import matplotlib.colors as colors from sklearn.preprocessing import StandardScaler from sklearn.cluster import Birch, MiniBatchKMeans from sklearn.datasets.samples_generator import make_blobs # Generate centers for the blobs so that it forms a 10 X 10 grid. xx = np.linspace(-22, 22, 10) yy = np.linspace(-22, 22, 10) xx, yy = np.meshgrid(xx, yy) n_centres = np.hstack((np.ravel(xx)[:, np.newaxis], np.ravel(yy)[:, np.newaxis])) # Generate blobs to do a comparison between MiniBatchKMeans and Birch. X, y = make_blobs(n_samples=100000, centers=n_centres, random_state=0) # Use all colors that matplotlib provides by default. colors_ = cycle(colors.cnames.keys()) fig = plt.figure(figsize=(12, 4)) fig.subplots_adjust(left=0.04, right=0.98, bottom=0.1, top=0.9) # Compute clustering with Birch with and without the final clustering step # and plot. birch_models = [Birch(threshold=1.7, n_clusters=None), Birch(threshold=1.7, n_clusters=100)] final_step = ['without global clustering', 'with global clustering'] for ind, (birch_model, info) in enumerate(zip(birch_models, final_step)): t = time() birch_model.fit(X) time_ = time() - t print("Birch %s as the final step took %0.2f seconds" % ( info, (time() - t))) # Plot result labels = birch_model.labels_ centroids = birch_model.subcluster_centers_ n_clusters = np.unique(labels).size print("n_clusters : %d" % n_clusters) ax = fig.add_subplot(1, 3, ind + 1) for this_centroid, k, col in zip(centroids, range(n_clusters), colors_): mask = labels == k ax.plot(X[mask, 0], X[mask, 1], 'w', markerfacecolor=col, marker='.') if birch_model.n_clusters is None: ax.plot(this_centroid[0], this_centroid[1], '+', markerfacecolor=col, markeredgecolor='k', markersize=5) ax.set_ylim([-25, 25]) ax.set_xlim([-25, 25]) ax.set_autoscaley_on(False) ax.set_title('Birch %s' % info) # Compute clustering with MiniBatchKMeans. mbk = MiniBatchKMeans(init='k-means++', n_clusters=100, batch_size=100, n_init=10, max_no_improvement=10, verbose=0, random_state=0) t0 = time() mbk.fit(X) t_mini_batch = time() - t0 print("Time taken to run MiniBatchKMeans %0.2f seconds" % t_mini_batch) mbk_means_labels_unique = np.unique(mbk.labels_) ax = fig.add_subplot(1, 3, 3) for this_centroid, k, col in zip(mbk.cluster_centers_, range(n_clusters), colors_): mask = mbk.labels_ == k ax.plot(X[mask, 0], X[mask, 1], 'w', markerfacecolor=col, marker='.') ax.plot(this_centroid[0], this_centroid[1], '+', markeredgecolor='k', markersize=5) ax.set_xlim([-25, 25]) ax.set_ylim([-25, 25]) ax.set_title("MiniBatchKMeans") ax.set_autoscaley_on(False) plt.show()
bsd-3-clause
yavalvas/yav_com
build/matplotlib/lib/matplotlib/tests/test_collections.py
1
17190
""" Tests specific to the collections module. """ from __future__ import (absolute_import, division, print_function, unicode_literals) import six from nose.tools import assert_equal import numpy as np from numpy.testing import assert_array_equal, assert_array_almost_equal import matplotlib.pyplot as plt import matplotlib.collections as mcollections import matplotlib.transforms as mtransforms from matplotlib.collections import EventCollection from matplotlib.testing.decorators import cleanup, image_comparison def generate_EventCollection_plot(): ''' generate the initial collection and plot it ''' positions = np.array([0., 1., 2., 3., 5., 8., 13., 21.]) extra_positions = np.array([34., 55., 89.]) orientation = 'horizontal' lineoffset = 1 linelength = .5 linewidth = 2 color = [1, 0, 0, 1] linestyle = 'solid' antialiased = True coll = EventCollection(positions, orientation=orientation, lineoffset=lineoffset, linelength=linelength, linewidth=linewidth, color=color, linestyle=linestyle, antialiased=antialiased ) fig = plt.figure() splt = fig.add_subplot(1, 1, 1) splt.add_collection(coll) splt.set_title('EventCollection: default') props = {'positions': positions, 'extra_positions': extra_positions, 'orientation': orientation, 'lineoffset': lineoffset, 'linelength': linelength, 'linewidth': linewidth, 'color': color, 'linestyle': linestyle, 'antialiased': antialiased } splt.set_xlim(-1, 22) splt.set_ylim(0, 2) return splt, coll, props @image_comparison(baseline_images=['EventCollection_plot__default']) def test__EventCollection__get_segments(): ''' check to make sure the default segments have the correct coordinates ''' _, coll, props = generate_EventCollection_plot() check_segments(coll, props['positions'], props['linelength'], props['lineoffset'], props['orientation']) @cleanup def test__EventCollection__get_positions(): ''' check to make sure the default positions match the input positions ''' _, coll, props = generate_EventCollection_plot() np.testing.assert_array_equal(props['positions'], coll.get_positions()) @cleanup def test__EventCollection__get_orientation(): ''' check to make sure the default orientation matches the input orientation ''' _, coll, props = generate_EventCollection_plot() assert_equal(props['orientation'], coll.get_orientation()) @cleanup def test__EventCollection__is_horizontal(): ''' check to make sure the default orientation matches the input orientation ''' _, coll, _ = generate_EventCollection_plot() assert_equal(True, coll.is_horizontal()) @cleanup def test__EventCollection__get_linelength(): ''' check to make sure the default linelength matches the input linelength ''' _, coll, props = generate_EventCollection_plot() assert_equal(props['linelength'], coll.get_linelength()) @cleanup def test__EventCollection__get_lineoffset(): ''' check to make sure the default lineoffset matches the input lineoffset ''' _, coll, props = generate_EventCollection_plot() assert_equal(props['lineoffset'], coll.get_lineoffset()) @cleanup def test__EventCollection__get_linestyle(): ''' check to make sure the default linestyle matches the input linestyle ''' _, coll, _ = generate_EventCollection_plot() assert_equal(coll.get_linestyle(), [(None, None)]) @cleanup def test__EventCollection__get_color(): ''' check to make sure the default color matches the input color ''' _, coll, props = generate_EventCollection_plot() np.testing.assert_array_equal(props['color'], coll.get_color()) check_allprop_array(coll.get_colors(), props['color']) @image_comparison(baseline_images=['EventCollection_plot__set_positions']) def test__EventCollection__set_positions(): ''' check to make sure set_positions works properly ''' splt, coll, props = generate_EventCollection_plot() new_positions = np.hstack([props['positions'], props['extra_positions']]) coll.set_positions(new_positions) np.testing.assert_array_equal(new_positions, coll.get_positions()) check_segments(coll, new_positions, props['linelength'], props['lineoffset'], props['orientation']) splt.set_title('EventCollection: set_positions') splt.set_xlim(-1, 90) @image_comparison(baseline_images=['EventCollection_plot__add_positions']) def test__EventCollection__add_positions(): ''' check to make sure add_positions works properly ''' splt, coll, props = generate_EventCollection_plot() new_positions = np.hstack([props['positions'], props['extra_positions'][0]]) coll.add_positions(props['extra_positions'][0]) np.testing.assert_array_equal(new_positions, coll.get_positions()) check_segments(coll, new_positions, props['linelength'], props['lineoffset'], props['orientation']) splt.set_title('EventCollection: add_positions') splt.set_xlim(-1, 35) @image_comparison(baseline_images=['EventCollection_plot__append_positions']) def test__EventCollection__append_positions(): ''' check to make sure append_positions works properly ''' splt, coll, props = generate_EventCollection_plot() new_positions = np.hstack([props['positions'], props['extra_positions'][2]]) coll.append_positions(props['extra_positions'][2]) np.testing.assert_array_equal(new_positions, coll.get_positions()) check_segments(coll, new_positions, props['linelength'], props['lineoffset'], props['orientation']) splt.set_title('EventCollection: append_positions') splt.set_xlim(-1, 90) @image_comparison(baseline_images=['EventCollection_plot__extend_positions']) def test__EventCollection__extend_positions(): ''' check to make sure extend_positions works properly ''' splt, coll, props = generate_EventCollection_plot() new_positions = np.hstack([props['positions'], props['extra_positions'][1:]]) coll.extend_positions(props['extra_positions'][1:]) np.testing.assert_array_equal(new_positions, coll.get_positions()) check_segments(coll, new_positions, props['linelength'], props['lineoffset'], props['orientation']) splt.set_title('EventCollection: extend_positions') splt.set_xlim(-1, 90) @image_comparison(baseline_images=['EventCollection_plot__switch_orientation']) def test__EventCollection__switch_orientation(): ''' check to make sure switch_orientation works properly ''' splt, coll, props = generate_EventCollection_plot() new_orientation = 'vertical' coll.switch_orientation() assert_equal(new_orientation, coll.get_orientation()) assert_equal(False, coll.is_horizontal()) new_positions = coll.get_positions() check_segments(coll, new_positions, props['linelength'], props['lineoffset'], new_orientation) splt.set_title('EventCollection: switch_orientation') splt.set_ylim(-1, 22) splt.set_xlim(0, 2) @image_comparison( baseline_images=['EventCollection_plot__switch_orientation__2x']) def test__EventCollection__switch_orientation_2x(): ''' check to make sure calling switch_orientation twice sets the orientation back to the default ''' splt, coll, props = generate_EventCollection_plot() coll.switch_orientation() coll.switch_orientation() new_positions = coll.get_positions() assert_equal(props['orientation'], coll.get_orientation()) assert_equal(True, coll.is_horizontal()) np.testing.assert_array_equal(props['positions'], new_positions) check_segments(coll, new_positions, props['linelength'], props['lineoffset'], props['orientation']) splt.set_title('EventCollection: switch_orientation 2x') @image_comparison(baseline_images=['EventCollection_plot__set_orientation']) def test__EventCollection__set_orientation(): ''' check to make sure set_orientation works properly ''' splt, coll, props = generate_EventCollection_plot() new_orientation = 'vertical' coll.set_orientation(new_orientation) assert_equal(new_orientation, coll.get_orientation()) assert_equal(False, coll.is_horizontal()) check_segments(coll, props['positions'], props['linelength'], props['lineoffset'], new_orientation) splt.set_title('EventCollection: set_orientation') splt.set_ylim(-1, 22) splt.set_xlim(0, 2) @image_comparison(baseline_images=['EventCollection_plot__set_linelength']) def test__EventCollection__set_linelength(): ''' check to make sure set_linelength works properly ''' splt, coll, props = generate_EventCollection_plot() new_linelength = 15 coll.set_linelength(new_linelength) assert_equal(new_linelength, coll.get_linelength()) check_segments(coll, props['positions'], new_linelength, props['lineoffset'], props['orientation']) splt.set_title('EventCollection: set_linelength') splt.set_ylim(-20, 20) @image_comparison(baseline_images=['EventCollection_plot__set_lineoffset']) def test__EventCollection__set_lineoffset(): ''' check to make sure set_lineoffset works properly ''' splt, coll, props = generate_EventCollection_plot() new_lineoffset = -5. coll.set_lineoffset(new_lineoffset) assert_equal(new_lineoffset, coll.get_lineoffset()) check_segments(coll, props['positions'], props['linelength'], new_lineoffset, props['orientation']) splt.set_title('EventCollection: set_lineoffset') splt.set_ylim(-6, -4) @image_comparison(baseline_images=['EventCollection_plot__set_linestyle']) def test__EventCollection__set_linestyle(): ''' check to make sure set_linestyle works properly ''' splt, coll, _ = generate_EventCollection_plot() new_linestyle = 'dashed' coll.set_linestyle(new_linestyle) assert_equal(coll.get_linestyle(), [(0, (6.0, 6.0))]) splt.set_title('EventCollection: set_linestyle') @image_comparison(baseline_images=['EventCollection_plot__set_linewidth']) def test__EventCollection__set_linewidth(): ''' check to make sure set_linestyle works properly ''' splt, coll, _ = generate_EventCollection_plot() new_linewidth = 5 coll.set_linewidth(new_linewidth) assert_equal(coll.get_linewidth(), new_linewidth) splt.set_title('EventCollection: set_linewidth') @image_comparison(baseline_images=['EventCollection_plot__set_color']) def test__EventCollection__set_color(): ''' check to make sure set_color works properly ''' splt, coll, _ = generate_EventCollection_plot() new_color = np.array([0, 1, 1, 1]) coll.set_color(new_color) np.testing.assert_array_equal(new_color, coll.get_color()) check_allprop_array(coll.get_colors(), new_color) splt.set_title('EventCollection: set_color') def check_segments(coll, positions, linelength, lineoffset, orientation): ''' check to make sure all values in the segment are correct, given a particular set of inputs note: this is not a test, it is used by tests ''' segments = coll.get_segments() if (orientation.lower() == 'horizontal' or orientation.lower() == 'none' or orientation is None): # if horizontal, the position in is in the y-axis pos1 = 1 pos2 = 0 elif orientation.lower() == 'vertical': # if vertical, the position in is in the x-axis pos1 = 0 pos2 = 1 else: raise ValueError("orientation must be 'horizontal' or 'vertical'") # test to make sure each segment is correct for i, segment in enumerate(segments): assert_equal(segment[0, pos1], lineoffset + linelength / 2.) assert_equal(segment[1, pos1], lineoffset - linelength / 2.) assert_equal(segment[0, pos2], positions[i]) assert_equal(segment[1, pos2], positions[i]) def check_allprop(values, target): ''' check to make sure all values match the given target note: this is not a test, it is used by tests ''' for value in values: assert_equal(value, target) def check_allprop_array(values, target): ''' check to make sure all values match the given target if arrays note: this is not a test, it is used by tests ''' for value in values: np.testing.assert_array_equal(value, target) def test_null_collection_datalim(): col = mcollections.PathCollection([]) col_data_lim = col.get_datalim(mtransforms.IdentityTransform()) assert_array_equal(col_data_lim.get_points(), mtransforms.Bbox.null().get_points()) @cleanup def test_add_collection(): # Test if data limits are unchanged by adding an empty collection. # Github issue #1490, pull #1497. ax = plt.axes() plt.figure() ax2 = plt.axes() coll = ax2.scatter([0, 1], [0, 1]) ax.add_collection(coll) bounds = ax.dataLim.bounds coll = ax2.scatter([], []) ax.add_collection(coll) assert_equal(ax.dataLim.bounds, bounds) @cleanup def test_quiver_limits(): ax = plt.axes() x, y = np.arange(8), np.arange(10) data = u = v = np.linspace(0, 10, 80).reshape(10, 8) q = plt.quiver(x, y, u, v) assert_equal(q.get_datalim(ax.transData).bounds, (0., 0., 7., 9.)) plt.figure() ax = plt.axes() x = np.linspace(-5, 10, 20) y = np.linspace(-2, 4, 10) y, x = np.meshgrid(y, x) trans = mtransforms.Affine2D().translate(25, 32) + ax.transData plt.quiver(x, y, np.sin(x), np.cos(y), transform=trans) assert_equal(ax.dataLim.bounds, (20.0, 30.0, 15.0, 6.0)) @cleanup def test_barb_limits(): ax = plt.axes() x = np.linspace(-5, 10, 20) y = np.linspace(-2, 4, 10) y, x = np.meshgrid(y, x) trans = mtransforms.Affine2D().translate(25, 32) + ax.transData plt.barbs(x, y, np.sin(x), np.cos(y), transform=trans) # The calculated bounds are approximately the bounds of the original data, # this is because the entire path is taken into account when updating the # datalim. assert_array_almost_equal(ax.dataLim.bounds, (20, 30, 15, 6), decimal=1) @image_comparison(baseline_images=['EllipseCollection_test_image'], extensions=['png'], remove_text=True) def test_EllipseCollection(): # Test basic functionality fig, ax = plt.subplots() x = np.arange(4) y = np.arange(3) X, Y = np.meshgrid(x, y) XY = np.vstack((X.ravel(), Y.ravel())).T ww = X/float(x[-1]) hh = Y/float(y[-1]) aa = np.ones_like(ww) * 20 # first axis is 20 degrees CCW from x axis ec = mcollections.EllipseCollection(ww, hh, aa, units='x', offsets=XY, transOffset=ax.transData, facecolors='none') ax.add_collection(ec) ax.autoscale_view() @image_comparison(baseline_images=['polycollection_close'], extensions=['png'], remove_text=True) def test_polycollection_close(): from mpl_toolkits.mplot3d import Axes3D vertsQuad = [ [[0., 0.], [0., 1.], [1., 1.], [1., 0.]], [[0., 1.], [2., 3.], [2., 2.], [1., 1.]], [[2., 2.], [2., 3.], [4., 1.], [3., 1.]], [[3., 0.], [3., 1.], [4., 1.], [4., 0.]]] fig = plt.figure() ax = Axes3D(fig) colors = ['r', 'g', 'b', 'y', 'k'] zpos = list(range(5)) poly = mcollections.PolyCollection( vertsQuad * len(zpos), linewidth=0.25) poly.set_alpha(0.7) ## need to have a z-value for *each* polygon = element! zs = [] cs = [] for z, c in zip(zpos, colors): zs.extend([z] * len(vertsQuad)) cs.extend([c] * len(vertsQuad)) poly.set_color(cs) ax.add_collection3d(poly, zs=zs, zdir='y') ## axis limit settings: ax.set_xlim3d(0, 4) ax.set_zlim3d(0, 3) ax.set_ylim3d(0, 4) if __name__ == '__main__': import nose nose.runmodule(argv=['-s', '--with-doctest'], exit=False)
mit
adrianschlatter/pyDynamics
tanuna/root.py
1
23905
# -*- coding: utf-8 -*- """ Root module of tanuna package. @author: Adrian Schlatter """ import numpy as np from scipy.linalg import expm class ApproximationError(Exception): pass class MatrixError(Exception): pass class ConnectionError(Exception): pass def minor(A, i, j): """Returns matrix obtained by deleting row i and column j from matrix A.""" rows, cols = A.shape rows = set(range(rows)) cols = set(range(cols)) M = A[list(rows - set([i])), :] M = M[:, list(cols - set([j]))] return(M) def determinant(A): """Determinant of square matrix A. Can handle matrices of poly1d.""" if A.shape == (1, 1): return(A[0, 0]) if A.shape == (0, 0): return(1.) cofacsum = 0. for j in range(A.shape[1]): cofacsum += (-1)**(0 + j) * A[0, j] * determinant(minor(A, 0, j)) return(cofacsum) def cofactorMat(A): """Cofactor matrix of matrix A. Can handle matrices of poly1d.""" C = np.zeros(A.shape, dtype=object) for i in range(A.shape[0]): for j in range(A.shape[1]): C[i, j] = (-1)**(i + j) * determinant(minor(A, i, j)) return(C) def polyDiag(polyList): """Construct diagonal matrix from list of poly1d""" N = len(polyList) A = np.matrix(np.zeros((N, N), dtype=object)) for i in range(N): A[i, i] = polyList[i] return(A) def connect(H, G, Gout=None, Hin=None): """ Connect outputs Gout of G to inputs Hin of H. The outputs and inputs of the connected system are arranged as follows: - remaining outputs of G get lower, the outputs of H the higher indices - inputs of G get the lower, remaining inputs of H the higher indices connect(H, G) is equivalent to H * G. """ if issubclass(type(H), type(G)): try: connection = H.__connect__(G, Gout, Hin) except AttributeError: connection = G.__rconnect__(H, Gout, Hin) else: try: connection = G.__rconnect__(H, Gout, Hin) except AttributeError: connection = H.__connect__(G, Gout, Hin) return(connection) def feedback(G, Gout, Gin): """Create feedback connection from outputs Gout to inputs Gin""" return(G.__feedback__(Gout, Gin)) class CT_System(object): """ Describes a continuous-time system with dynamics described by ordinary differential equations. s: Internal state (vector) of the system s0: Initial state of the system u: External input (vector) f(t, s, u): Dynamics of the system (ds/dt = f(t, s, u)) g(t, s, u): Function that maps state s to output y = g(t, s, u) It is solved by simply calling it with an argument t. t is either a float or array-like. In the latter case, the system is solved for all the times t in the array. """ def __init__(self, f, g, s0): pass def __call__(self, t): pass def steadyStates(self, u0, t): """Returns a list of tuples (s_i, stability_i) with: - s_i: A steady-state at time t, i.e. f(t, s_i, u0) = 0 - stability_i: True if this steady-state is stable, false otherwise """ raise NotImplementedError def observable(self, t): """Returns whether the system is observable at time t (i.e. its internal state is determinable from inputs u and outputs y).""" raise NotImplementedError def reachable(self, t): """Returns whether the system is reachable at time t (i.e. all states are reachable by providing an appropriate input u(t)).""" raise NotImplementedError def tangentLTI(self, s0, u0, t): """ Approximates the CT_System at time t near state s0 and input u0 by an LTISystem (linear, time-invariant system). Raises ApproximationError if the system can not be linearized. """ raise NotImplementedError class CT_LTI_System(CT_System): """Continuous-time, Linear, time-invariant system""" def __init__(self, A, B, C, D, x0=None): A, B, C, D = map(np.asmatrix, (A, B, C, D)) A, B, C, D = map(lambda M: M.astype('float'), (A, B, C, D)) order = A.shape[1] if x0 is None: x0 = np.matrix(np.zeros((order, 1))) # Verify dimensions: nout, nin = D.shape if not (A.shape == (order, order) and B.shape == (order, nin) and C.shape == (nout, order) and D.shape == (nout, nin)): raise MatrixError('State matrices do not have proper shapes') if not x0.shape == (order, 1): raise MatrixError('Initial state has wrong shape') self._A, self._B, self._C, self._D = A, B, C, D self.x = np.matrix(x0) @property def ABCD(self): return([self._A, self._B, self._C, self._D]) @property def order(self): """The order of the system""" return(self._A.shape[0]) @property def shape(self): """Number of outputs and inputs""" return(self._D.shape) @property def poles(self): """Eigenvalues of the state matrix""" return(self.zpk[1]) @property def stable(self): return(np.all(self.poles.real < 0)) @property def Wo(self): """Observability matrix""" W = np.matrix(np.zeros((0, self._C.shape[1]))) for n in range(self.order): W = np.vstack((W, self._C * self._A**n)) return(W) @property def Wr(self): """Reachability matrix""" W = np.matrix(np.zeros((self._B.shape[0], 0))) for n in range(self.order): W = np.hstack((W, self._A**n * self._B)) return(W) @property def reachable(self): """Returns True if the system is reachable.""" return(np.linalg.matrix_rank(self.Wr) == self.order) @property def observable(self): """Returns True if the system is observable.""" return(np.linalg.matrix_rank(self.Wo) == self.order) def _tResponse(self): """Automatically determines appropriate time axis for step- and impulse-response plotting""" tau = np.abs(1. / self.poles.real) f = self.poles.imag / (2 * np.pi) period = np.abs(1. / f[f != 0]) timescales = np.concatenate([tau, period]) dt = timescales.min() / 20. T = tau.max() * 10. return(np.arange(0., T, dt)) def stepResponse(self, t=None): """ Returns (t, ystep), where ystep : Step response t : Corresponding array of times t is either provided as an argument to this function or determined automatically. """ if t is None: t = self._tResponse() A, B, C, D = self.ABCD steady = D - C * A.I * B y = [C * A.I * expm(A * ti) * B + steady for ti in t] return((t, np.array(y).reshape((-1,) + self.shape))) def impulseResponse(self, t=None): """ Returns (t, yimpulse), where yimpulse : Impulse response (*without* direct term D) t : Corresponding array of times t is either provided as an argument to this function or determined automatically. """ if t is None: t = self._tResponse() A, B, C = self._A, self._B, self._C y = [C * expm(A * ti) * B for ti in t] return((t, np.array(y).reshape((-1,) + self.shape))) def freqResponse(self, f=None): """ Returns (f, r), where f : Array of frequencies r : (Complex) frequency response f is either provided as an argument to thin function or determined automatically. """ # see [astrom_feedback]_, page 153 # Automatically determine frequency axis: if f is None: t = self._tResponse() dt = t[1] - t[0] T = t[-1] + dt fmax = 1. / (2 * dt) fmin = 1. / T f = np.logspace(np.log10(fmin), np.log10(fmax), 200) b, a = self.tf s = 2 * np.pi * 1j * f resp = np.zeros((len(f),) + b.shape, dtype=complex) for i in range(b.shape[0]): for j in range(b.shape[1]): resp[:, i, j] = b[i, j](s) / a(s) return(f, resp) @property def tf(self): """ Transfer-function representation [b, a] of the system. Returns numerator (b) and denominator (a) coefficients. .. math:: G(s) = \\frac{b[0] * s^0 + ... + b[m] * s^m} {a[0] * s^0 + ... + a[n] * s^n} """ A, B, C, D = self.ABCD Aprime = polyDiag([np.poly1d([1, 0])] * self.order) - A det = determinant(Aprime) nout = self.shape[0] nominator = C * cofactorMat(Aprime).T * B + polyDiag([det] * nout) * D denominator = det return(nominator, denominator) @property def zpk(self): """ Gain, Pole, Zero representation of the system. Returns a tuple (z, p, k) with z the zeros, p the poles, and k the gain of the system. p is an array. The format of z and k depends on the number of inputs and outputs of the system: For a SISO system z is an array and k is float. For a system with more inputs or outputs, z and k are lists of 'shape' (nout, nin) containing arrays and floats, respectively. """ b, a = self.tf zeros = np.zeros(b.shape, dtype=list) gains = np.zeros(b.shape) for i in range(b.shape[0]): for j in range(b.shape[1]): zeros[i, j] = np.roots(b[i, j]) gains[i, j] = b[i, j][b[i, j].order] poles = np.roots(a) return(zeros, poles, gains) def __feedback__(self, Gout, Gin): G = self Nports = np.min(G.shape) if len(Gout) >= Nports: # cannot connect all ports: raise ConnectionError( 'at least 1 input and at least 1 output must remain unconnected') # connect one channel at a time. Start with Gout[0] => Hin[0] iout = Gout[0] jin = Gin[0] # Re-arange ports so that iout and jin in are the last output # and the last input, respectively: outorder = list(range(G.shape[0])) outorder.pop(iout) outorder += [iout] inorder = list(range(G.shape[1])) inorder.pop(jin) inorder += [jin] a, b, c, d = G.ABCD b = b[:, inorder] c = c[outorder, :] d = d[:, inorder] d = d[outorder, :] # Connect feedback: A = a + b[:, -1] * c[-1, :] B = b[:, :-1] + b[:, -1] * d[-1, :-1] C = c[:-1, :] + d[:-1, -1] * c[-1, :] D = d[:-1, :-1] + d[:-1, -1] * d[-1, :-1] if len(Gout) == 1: # work done => return result return(CT_LTI_System(A, B, C, D, G.x)) else: # More ports have to be connected => recurse return(self.__connect__(self, Gout[1:], Gin[1:])) def __connect__(self, right, Gout=None, Hin=None): H = self G = right if issubclass(type(G), CT_LTI_System): # Prepare Gout, Hin: # =============================== if Gout is None: # connect all outputs: Gout = np.arange(G.shape[0]) if Hin is None: # connect all inputs Hin = np.arange(H.shape[1]) if len(Gout) != len(Hin): raise ConnectionError( 'Number of inputs does not match number of outputs') Gout = np.asarray(Gout) Hin = np.asarray(Hin) # Prepare connection matrices: # =============================== # u_h = Sh * y_g: Sh = np.matrix(np.zeros((H.shape[1], G.shape[0]))) for k in range(len(Hin)): i = Hin[k] j = Gout[k] Sh[i, j] = 1. # u_h = sh * u_h,unconnected: sh = np.matrix(np.zeros((H.shape[1], H.shape[1] - len(Hin)))) u_h_unconnected = list(set(range(H.shape[1])) - set(Hin)) sh[u_h_unconnected, :] = np.eye(H.shape[1] - len(Hin)) # y_g,unconnected = sg * y_g: sg = np.matrix(np.zeros((G.shape[0] - len(Gout), G.shape[0]))) y_g_unconnected = list(set(range(G.shape[0])) - set(Gout)) sg[:, y_g_unconnected] = np.eye(G.shape[0] - len(Gout)) # Setup state matrices: # =============================== nH = H.order nG = G.order A = np.bmat([[G._A, np.zeros((nG, nH))], [H._B * Sh * G._C, H._A]]) B = np.bmat([[G._B, np.zeros((nG, len(u_h_unconnected)))], [H._B * Sh * G._D, H._B * sh]]) C = np.bmat([[sg * G._C, np.zeros((len(y_g_unconnected), nH))], [H._D * Sh * G._C, H._C]]) D = np.bmat([[sg * G._D, np.zeros((len(y_g_unconnected), len(u_h_unconnected)))], [H._D * Sh * G._D, H._D * sh]]) x0 = np.vstack([G.x, H.x]) elif issubclass(type(G), CT_System): # delegate to super class: return(G.__rconnect__(H, Gout, Hin)) elif issubclass(type(G), np.matrix): if H.shape[1] != G.shape[0]: raise ConnectionError('No. inputs and outputs do not match') # Multiply u by matrix before feeding into H: A = np.matrix(H._A) B = H._B * G C = np.matrix(H._C) D = H._D * G x0 = np.matrix(H.x) elif type(G) in [float, int]: # Apply gain G on input side: A = np.matrix(H._A) B = np.matrix(H._B) C = G * H._C D = G * H._D x0 = np.matrix(H.x) else: return(NotImplemented) return(CT_LTI_System(A, B, C, D, x0)) def __rconnect__(self, left, Gout=None, Hin=None): G = self H = left if issubclass(type(H), CT_LTI_System): return(H.__connect__(G, Gout, Hin)) elif issubclass(type(H), CT_System): # delegate to super class: return(H.__connect__(G, Gout, Hin)) elif issubclass(type(H), np.matrix): if H.shape[1] != G.shape[0]: raise ConnectionError('No. inputs and outputs do not match') # Multiply output of G by matrix: A = np.matrix(G._A) B = np.matrix(G._B) C = H * G._C D = H * G._D x0 = np.matrix(G.x) elif type(H) in [float, int]: # Apply gain H on output side: A = np.matrix(G._A) B = np.matrix(G._B) C = H * G._C D = H * G._D x0 = np.matrix(G.x) else: return(NotImplemented) return(CT_LTI_System(A, B, C, D, x0)) def __add__(self, right): G = self nG = G.order if issubclass(type(right), CT_LTI_System): H = right nH = H.order if self.shape != H.shape: raise ConnectionError('System shapes must be equal') A = np.bmat([[G._A, np.zeros((nG, nH))], [np.zeros((nH, nG)), H._A]]) B = np.vstack([G._B, H._B]) C = np.hstack([G._C, H._C]) D = G._D + H._D x0 = np.vstack([G.x, H.x]) return(CT_LTI_System(A, B, C, D, x0)) elif issubclass(type(right), np.matrix): if right.shape != G._D.shape: raise MatrixError('Shapes of right and self._D have to match') A = G._A B = G._B C = G._C D = G._D + right x0 = G.x return(CT_LTI_System(A, B, C, D, x0)) elif type(right) in [int, float]: right = np.matrix(np.ones(self.shape) * right) return(self + right) else: return(NotImplemented) def __radd__(self, left): return(self + left) def __sub__(self, right): return(self + -right) def __rsub__(self, left): return(left + -self) def __mul__(self, right): return(self.__connect__(right)) def __rmul__(self, left): return(self.__rconnect__(left)) def __neg__(self): return(self * (-1)) def __truediv__(self, right): if type(right) in [float, int]: invright = 1. / float(right) return(self * invright) else: return(NotImplemented) def __or__(self, right): """Connect systems in parallel""" Ag, Bg, Cg, Dg = self.ABCD gout, gin = self.shape ng = self.order Ah, Bh, Ch, Dh = right.ABCD hout, hin = right.shape nh = right.order A = np.bmat([[Ag, np.zeros([ng, ng])], [np.zeros([nh, nh]), Ah]]) B = np.bmat([[Bg, np.zeros([ng, gin])], [np.zeros([nh, hin]), Bh]]) C = np.bmat([[Cg, np.zeros([gout, ng])], [np.zeros([hout, nh]), Ch]]) D = np.bmat([[Dg, np.zeros([gout, gin])], [np.zeros([hout, hin]), Dh]]) x = np.vstack([self.x, right.x]) return(CT_LTI_System(A, B, C, D, x)) def __pow__(self, power): """Raise system to integer power""" if type(power) is not int: return(NotImplemented) if power < 1: return(NotImplemented) if power == 1: return(self) else: return(self * self**(power - 1)) def Thetaphi(b, a): """Translate filter-coefficient arrays b and a to Theta, phi representation: phi(B)*y_t = Theta(B)*x_t Theta, phi = Thetaphi(b, a) are the coefficient of the back-shift-operator polynomials (index i belongs to B^i)""" phi = np.array(a) if len(phi) > 1: phi[1:] = -phi[1:] Theta = np.array(b) return [Theta, phi] def ba(Theta, phi): """Translate backshift-operator polynomials Theta and phi to filter coefficient array b, a. a[0]*y[t] = a[1]*y[t-1] + ... + a[n]*y[t-n] + b[0]*x[t] + ... + b[m]*x[t-m] """ # XXX these b and a are not compatible with scipy.lfilter. Appararently, # scipy.lfilter expects Theta and phi # Thetaphi() is its own inverse: return(Thetaphi(Theta, phi)) def differenceEquation(b, a): """Takes filter coefficient arrays b and a and returns string with difference equation using powers of B, where B the backshift operator.""" Theta, phi = Thetaphi(b, a) s = '(' for i in range(len(phi)): s += '%.2f B^%d+' % (phi[i], i) s = s[:-1] + ')*y_t = (' for i in range(len(Theta)): s += '%.2f B^%d+' % (Theta[i], i) s = s[:-1]+')*x_t' return s class DT_LTV_System(): """Implements the discrete linear, time-variant system with input vector u[t], internal state vector x[t], and output vector y[t]: x[t+1] = A[t]*x[t] + B[t]*u[t] y[t] = C*x[t] + D*u[t] where A[t]: state matrices B[t]: input matrices C[t]: output matrices D[t]: feedthrough matrices The system is initialized with state vector x[0] = X0. """ def __init__(self, At, Bt, Ct, Dt, X0): self.At = At self.Bt = Bt self.Ct = Ct self.Dt = Dt self.X = X0 self.t = 0 def update(self, U): U.shape = (-1, 1) t = min(self.t, len(self.At)) self.X = np.dot(self.At[t], self.X) + np.dot(self.Bt[t], U) self.t += 1 return np.dot(self.Ct[t], self.X) + np.dot(self.Dt[t], U) def feed(self, Ut): return np.concatenate([self.update(U) for U in Ut.T]).T class DT_LTI_System(object): """Implements the discrete-time linear, time-invariant system with input vector u[t], internal state vector x[t], and output vector y[t]: x[t+1] = A * x[t] + B * u[t] y[t] = C * x[t] + D * u[t] where A: state matrix B: input matrix C: output matrix D: feedthrough matrix The system is initialized with state vector x[0] = x0. """ def __init__(self, A, B, C, D, x0=np.matrix([0., 0.]).T): self.A, self.B, self.C, self.C = A, B, C, D self.x = x0 @classmethod def fromTransferFunction(Theta, phi): """Initialize DiscreteLTI instance from transfer-function coefficients 'Theta' and 'phi'.""" raise NotImplementedError def __repr__(self): raise NotImplementedError def stable(self): """Returns True if the system is strictly stable""" raise NotImplementedError def observable(self): """Returns true if the system is observable""" raise NotImplementedError def reachable(self): """Returns True if the system is observable""" raise NotImplementedError def tf(self): """Returns the transfer function (b, a) where 'b' are the coefficients of the nominator polynomial and 'a' are the coefficients of the denominator polynomial.""" raise NotImplementedError def proper(self): """Returns true if the system's transfer function is strictly proper, i.e. the degree of the numerator is less than the degree of the denominator.""" raise NotImplementedError def __add__(self, right): raise NotImplementedError def __radd__(self, left): raise NotImplementedError def __rsub__(self, left): raise NotImplementedError def __mul__(self, right): raise NotImplementedError def __rmul__(self, left): raise NotImplementedError def __iadd__(self, right): raise NotImplementedError def __isub__(self, right): raise NotImplementedError def __imul__(self, right): raise NotImplementedError def __idiv__(self, right): raise NotImplementedError if __name__ == '__main__': import matplotlib.pyplot as pl pl.close('all') from CT_LTI import LowPass, HighPass J = connect(LowPass(10.), LowPass(10.), Gout=(), Hin=()) J = np.matrix([[1, 1]]) * J * np.matrix([[1], [1]]) w0 = 2 * np.pi * 10 zeta = 0.5 k = 1. A = np.matrix([[0, w0], [-w0, -2 * zeta * w0]]) B = np.matrix([0, k * w0]).T C = np.matrix([k, 0.]) D = np.matrix([0.]) G = CT_LTI_System(A, B, C, D) G = HighPass(10, 2) pl.figure() # STEP RESPONSE pl.subplot(4, 1, 1) pl.title('Step-Response') pl.plot(*G.stepResponse()) pl.xlabel('Time After Step (s)') pl.ylabel('y') # IMPULSE RESPONSE pl.subplot(4, 1, 2) pl.title('Impulse-Response') pl.plot(*G.impulseResponse()) pl.xlabel('Time After Impulse (s)') pl.ylabel('y') # BODE PLOT ax1 = pl.subplot(4, 1, 3) ax1.set_title('Bode Plot') f, Chi = G.freqResponse() Chi.shape = (-1) ax1.semilogx(f, 20 * np.log10(np.abs(Chi)), r'b-') ax1.set_xlabel('Frequency (Hz)') ax1.set_ylabel('Magnitude (dB)') ax2 = ax1.twinx() ax2.semilogx(f, np.angle(Chi) / np.pi, r'r-') ax2.set_ylabel('Phase ($\pi$)') # NYQUIST PLOT ax = pl.subplot(4, 1, 4) pl.title('Nyquist Plot') pl.plot(np.real(Chi), np.imag(Chi)) pl.plot([-1], [0], r'ro') pl.xlim([-2.5, 2]) pl.ylim([-1.5, 0.5]) ax.set_aspect('equal') pl.axhline(y=0, color='k') pl.axvline(x=0, color='k') pl.xlabel('Real Part') pl.ylabel('Imaginary Part')
bsd-3-clause
mdelorme/MNn
mnn/examples/simple_model.py
1
1497
import numpy as np import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec from mnn.model import MNnModel # Single disc model = MNnModel() model.add_disc('z', 1.0, 10.0, 100.0) # Evaluating density and potential : print(model.evaluate_density(1.0, 2.0, -0.5)) print(model.evaluate_potential(1.0, 2.0, -0.5)) print(model.evaluate_force(1.0, 2.0, -0.5)) # Using vectors to evaluate density along an axis : x = np.linspace(0.0, 30.0, 100.0) density = model.evaluate_density(x, 0.0, 0.0) fig = plt.plot(x, density) plt.show() # Plotting density meshgrid x, y, z, v = model.generate_dataset_meshgrid((0.0, 0.0, -10.0), (30.0, 0.0, 10.0), (300, 1, 200)) fig = plt.imshow(v[:, 0].T) plt.show() # Contour plot x = np.linspace(0.0, 30.0, 300) z = np.linspace(-10.0, 10.0, 200) plt.contour(x, z, v[:, 0].T) plt.show() # Plotting force meshgrid plt.close('all') x, y, z, f = model.generate_dataset_meshgrid((-30.0, -30.0, 0.0), (30.0, 30.0, 0.0), (30, 30, 1), 'force') x = x[:, :, 0].reshape(-1) y = y[:, :, 0].reshape(-1) fx = f[0, :, :, 0].reshape(-1) fy = f[1, :, :, 0].reshape(-1) extent = [x.min(), x.max(), y.min(), y.max()] plt.figure(figsize=(10, 10)) gs = gridspec.GridSpec(2, 2) ax1 = plt.subplot(gs[1, 0]) pl1 = ax1.imshow(f[1, :, :, 0].T, extent=extent, aspect='auto') ax2 = plt.subplot(gs[0, 1]) pl2 = ax2.imshow(f[0, :, :, 0].T, extent=extent, aspect='auto') ax3 = plt.subplot(gs[1, 1]) pl3 = ax3.quiver(x.T, y.T, fx.T, fy.T, units='width', scale=0.045) plt.show()
mit
stephenliu1989/msmbuilder
msmbuilder/cluster/kcenters.py
3
6519
# Author: Robert McGibbon <[email protected]> # Contributors: # Copyright (c) 2014, Stanford University # All rights reserved. #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- from __future__ import absolute_import, print_function, division import numpy as np from sklearn.utils import check_random_state from sklearn.base import ClusterMixin, TransformerMixin from .. import libdistance from . import MultiSequenceClusterMixin from ..base import BaseEstimator __all__ = ['KCenters'] #----------------------------------------------------------------------------- # Code #----------------------------------------------------------------------------- class _KCenters(ClusterMixin, TransformerMixin): """K-Centers clustering Cluster a vector or Trajectory dataset using a simple heuristic to minimize the maximum distance from any data point to its assigned cluster center. The runtime of this algorithm is O(kN), where k is the number of clusters and N is the size of the dataset, making it one of the least expensive clustering algorithms available. Parameters ---------- n_clusters : int, optional, default: 8 The number of clusters to form as well as the number of centroids to generate. metric : {"euclidean", "sqeuclidean", "cityblock", "chebyshev", "canberra", "braycurtis", "hamming", "jaccard", "cityblock", "rmsd"} The distance metric to use. metric = "rmsd" requires that sequences passed to ``fit()`` be ```md.Trajectory```; other distance metrics require ``np.ndarray``s. random_state : integer or numpy.RandomState, optional The generator used to initialize the centers. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. References ---------- .. [1] Gonzalez, Teofilo F. "Clustering to minimize the maximum intercluster distance." Theor. Comput. Sci. 38 (1985): 293-306. .. [2] Beauchamp, Kyle A., et al. "MSMBuilder2: modeling conformational dynamics on the picosecond to millisecond scale." J. Chem. Theory. Comput. 7.10 (2011): 3412-3419. Attributes ---------- cluster_ids_ : array, [n_clusters] Index of the data point that each cluster label corresponds to. cluster_centers_ : array, [n_clusters, n_features] or md.Trajectory Coordinates of cluster centers labels_ : array, [n_samples,] The label of each point is an integer in [0, n_clusters). distances_ : array, [n_samples,] Distance from each sample to the cluster center it is assigned to. inertia_ : float Sum of distances of samples to their closest cluster center. """ def __init__(self, n_clusters=8, metric='euclidean', random_state=None): self.n_clusters = n_clusters self.metric = metric self.random_state = random_state def fit(self, X, y=None): n_samples = len(X) new_center_index = check_random_state(self.random_state).randint(0, n_samples) self.labels_ = np.zeros(n_samples, dtype=int) self.distances_ = np.empty(n_samples, dtype=float) self.distances_.fill(np.inf) cluster_ids_ = [] for i in range(self.n_clusters): d = libdistance.dist(X, X[new_center_index], metric=self.metric) mask = (d < self.distances_) self.distances_[mask] = d[mask] self.labels_[mask] = i cluster_ids_.append(new_center_index) new_center_index = np.argmax(self.distances_) self.cluster_ids_ = cluster_ids_ self.cluster_centers_ = X[cluster_ids_] self.inertia_ = np.sum(self.distances_) return self def predict(self, X): """Predict the closest cluster each sample in X belongs to. In the vector quantization literature, `cluster_centers_` is called the code book and each value returned by `predict` is the index of the closest code in the code book. Parameters ---------- X : array-like, shape = [n_samples, n_features] New data to predict. Returns ------- Y : array, shape [n_samples,] Index of the closest center each sample belongs to. """ labels, inertia = libdistance.assign_nearest( X, self.cluster_centers_, metric=self.metric) return labels def fit_predict(self, X, y=None): return self.fit(X, y).labels_ class KCenters(MultiSequenceClusterMixin, _KCenters, BaseEstimator): _allow_trajectory = True __doc__ = _KCenters.__doc__[: _KCenters.__doc__.find('Attributes')] + \ ''' Attributes ---------- `cluster_centers_` : array, [n_clusters, n_features] Coordinates of cluster centers `labels_` : list of arrays, each of shape [sequence_length, ] `labels_[i]` is an array of the labels of each point in sequence `i`. The label of each point is an integer in [0, n_clusters). `distances_` : list of arrays, each of shape [sequence_length, ] `distances_[i]` is an array of the labels of each point in sequence `i`. Distance from each sample to the cluster center it is assigned to. ''' def fit(self, sequences, y=None): """Fit the kcenters clustering on the data Parameters ---------- sequences : list of array-like, each of shape [sequence_length, n_features] A list of multivariate timeseries, or ``md.Trajectory``. Each sequence may have a different length, but they all must have the same number of features, or the same number of atoms if they are ``md.Trajectory``s. Returns ------- self """ MultiSequenceClusterMixin.fit(self, sequences) self.distances_ = self._split(self.distances_) return self def summarize(self): return """KCenters clustering -------------------- n_clusters : {n_clusters} metric : {metric} Inertia : {inertia} Mean distance : {mean_distance} Max distance : {max_distance} """.format(n_clusters=self.n_clusters, metric=self.metric, inertia=self.inertia_, mean_distance=np.mean(np.concatenate(self.distances_)), max_distance=np.max(np.concatenate(self.distances_)))
lgpl-2.1
Scapogo/zipline
tests/test_restrictions.py
6
17001
import pandas as pd from pandas.util.testing import assert_series_equal from six import iteritems from functools import partial from toolz import groupby from zipline.finance.asset_restrictions import ( RESTRICTION_STATES, Restriction, HistoricalRestrictions, StaticRestrictions, SecurityListRestrictions, NoRestrictions, _UnionRestrictions, ) from zipline.testing import parameter_space from zipline.testing.fixtures import ( WithDataPortal, ZiplineTestCase, ) def str_to_ts(dt_str): return pd.Timestamp(dt_str, tz='UTC') FROZEN = RESTRICTION_STATES.FROZEN ALLOWED = RESTRICTION_STATES.ALLOWED MINUTE = pd.Timedelta(minutes=1) class RestrictionsTestCase(WithDataPortal, ZiplineTestCase): ASSET_FINDER_EQUITY_SIDS = 1, 2, 3 @classmethod def init_class_fixtures(cls): super(RestrictionsTestCase, cls).init_class_fixtures() cls.ASSET1 = cls.asset_finder.retrieve_asset(1) cls.ASSET2 = cls.asset_finder.retrieve_asset(2) cls.ASSET3 = cls.asset_finder.retrieve_asset(3) cls.ALL_ASSETS = [cls.ASSET1, cls.ASSET2, cls.ASSET3] def assert_is_restricted(self, rl, asset, dt): self.assertTrue(rl.is_restricted(asset, dt)) def assert_not_restricted(self, rl, asset, dt): self.assertFalse(rl.is_restricted(asset, dt)) def assert_all_restrictions(self, rl, expected, dt): self.assert_many_restrictions(rl, self.ALL_ASSETS, expected, dt) def assert_many_restrictions(self, rl, assets, expected, dt): assert_series_equal( rl.is_restricted(assets, dt), pd.Series(index=pd.Index(assets), data=expected), ) @parameter_space( date_offset=( pd.Timedelta(0), pd.Timedelta('1 minute'), pd.Timedelta('15 hours 5 minutes') ), restriction_order=( list(range(6)), # Keep restrictions in order. [0, 2, 1, 3, 5, 4], # Re-order within asset. [0, 3, 1, 4, 2, 5], # Scramble assets, maintain per-asset order. [0, 5, 2, 3, 1, 4], # Scramble assets and per-asset order. ), __fail_fast=True, ) def test_historical_restrictions(self, date_offset, restriction_order): """ Test historical restrictions for both interday and intraday restrictions, as well as restrictions defined in/not in order, for both single- and multi-asset queries """ def rdate(s): """Convert a date string into a restriction for that date.""" # Add date_offset to check that we handle intraday changes. return str_to_ts(s) + date_offset base_restrictions = [ Restriction(self.ASSET1, rdate('2011-01-04'), FROZEN), Restriction(self.ASSET1, rdate('2011-01-05'), ALLOWED), Restriction(self.ASSET1, rdate('2011-01-06'), FROZEN), Restriction(self.ASSET2, rdate('2011-01-05'), FROZEN), Restriction(self.ASSET2, rdate('2011-01-06'), ALLOWED), Restriction(self.ASSET2, rdate('2011-01-07'), FROZEN), ] # Scramble the restrictions based on restriction_order to check that we # don't depend on the order in which restrictions are provided to us. all_restrictions = [base_restrictions[i] for i in restriction_order] restrictions_by_asset = groupby(lambda r: r.asset, all_restrictions) rl = HistoricalRestrictions(all_restrictions) assert_not_restricted = partial(self.assert_not_restricted, rl) assert_is_restricted = partial(self.assert_is_restricted, rl) assert_all_restrictions = partial(self.assert_all_restrictions, rl) # Check individual restrictions. for asset, r_history in iteritems(restrictions_by_asset): freeze_dt, unfreeze_dt, re_freeze_dt = ( sorted([r.effective_date for r in r_history]) ) # Starts implicitly unrestricted. Restricted on or after the freeze assert_not_restricted(asset, freeze_dt - MINUTE) assert_is_restricted(asset, freeze_dt) assert_is_restricted(asset, freeze_dt + MINUTE) # Unrestricted on or after the unfreeze assert_is_restricted(asset, unfreeze_dt - MINUTE) assert_not_restricted(asset, unfreeze_dt) assert_not_restricted(asset, unfreeze_dt + MINUTE) # Restricted again on or after the freeze assert_not_restricted(asset, re_freeze_dt - MINUTE) assert_is_restricted(asset, re_freeze_dt) assert_is_restricted(asset, re_freeze_dt + MINUTE) # Should stay restricted for the rest of time assert_is_restricted(asset, re_freeze_dt + MINUTE * 1000000) # Check vectorized restrictions. # Expected results for [self.ASSET1, self.ASSET2, self.ASSET3], # ASSET3 is always False as it has no defined restrictions # 01/04 XX:00 ASSET1: ALLOWED --> FROZEN; ASSET2: ALLOWED d0 = rdate('2011-01-04') assert_all_restrictions([False, False, False], d0 - MINUTE) assert_all_restrictions([True, False, False], d0) assert_all_restrictions([True, False, False], d0 + MINUTE) # 01/05 XX:00 ASSET1: FROZEN --> ALLOWED; ASSET2: ALLOWED --> FROZEN d1 = rdate('2011-01-05') assert_all_restrictions([True, False, False], d1 - MINUTE) assert_all_restrictions([False, True, False], d1) assert_all_restrictions([False, True, False], d1 + MINUTE) # 01/06 XX:00 ASSET1: ALLOWED --> FROZEN; ASSET2: FROZEN --> ALLOWED d2 = rdate('2011-01-06') assert_all_restrictions([False, True, False], d2 - MINUTE) assert_all_restrictions([True, False, False], d2) assert_all_restrictions([True, False, False], d2 + MINUTE) # 01/07 XX:00 ASSET1: FROZEN; ASSET2: ALLOWED --> FROZEN d3 = rdate('2011-01-07') assert_all_restrictions([True, False, False], d3 - MINUTE) assert_all_restrictions([True, True, False], d3) assert_all_restrictions([True, True, False], d3 + MINUTE) # Should stay restricted for the rest of time assert_all_restrictions( [True, True, False], d3 + (MINUTE * 10000000) ) def test_historical_restrictions_consecutive_states(self): """ Test that defining redundant consecutive restrictions still works """ rl = HistoricalRestrictions([ Restriction(self.ASSET1, str_to_ts('2011-01-04'), ALLOWED), Restriction(self.ASSET1, str_to_ts('2011-01-05'), ALLOWED), Restriction(self.ASSET1, str_to_ts('2011-01-06'), FROZEN), Restriction(self.ASSET1, str_to_ts('2011-01-07'), FROZEN), ]) assert_not_restricted = partial(self.assert_not_restricted, rl) assert_is_restricted = partial(self.assert_is_restricted, rl) # (implicit) ALLOWED --> ALLOWED assert_not_restricted(self.ASSET1, str_to_ts('2011-01-04') - MINUTE) assert_not_restricted(self.ASSET1, str_to_ts('2011-01-04')) assert_not_restricted(self.ASSET1, str_to_ts('2011-01-04') + MINUTE) # ALLOWED --> ALLOWED assert_not_restricted(self.ASSET1, str_to_ts('2011-01-05') - MINUTE) assert_not_restricted(self.ASSET1, str_to_ts('2011-01-05')) assert_not_restricted(self.ASSET1, str_to_ts('2011-01-05') + MINUTE) # ALLOWED --> FROZEN assert_not_restricted(self.ASSET1, str_to_ts('2011-01-06') - MINUTE) assert_is_restricted(self.ASSET1, str_to_ts('2011-01-06')) assert_is_restricted(self.ASSET1, str_to_ts('2011-01-06') + MINUTE) # FROZEN --> FROZEN assert_is_restricted(self.ASSET1, str_to_ts('2011-01-07') - MINUTE) assert_is_restricted(self.ASSET1, str_to_ts('2011-01-07')) assert_is_restricted(self.ASSET1, str_to_ts('2011-01-07') + MINUTE) def test_static_restrictions(self): """ Test single- and multi-asset queries on static restrictions """ restricted_a1 = self.ASSET1 restricted_a2 = self.ASSET2 unrestricted_a3 = self.ASSET3 rl = StaticRestrictions([restricted_a1, restricted_a2]) assert_not_restricted = partial(self.assert_not_restricted, rl) assert_is_restricted = partial(self.assert_is_restricted, rl) assert_all_restrictions = partial(self.assert_all_restrictions, rl) for dt in [str_to_ts(dt_str) for dt_str in ('2011-01-03', '2011-01-04', '2011-01-04 1:01', '2020-01-04')]: assert_is_restricted(restricted_a1, dt) assert_is_restricted(restricted_a2, dt) assert_not_restricted(unrestricted_a3, dt) assert_all_restrictions([True, True, False], dt) def test_security_list_restrictions(self): """ Test single- and multi-asset queries on restrictions defined by zipline.utils.security_list.SecurityList """ # A mock SecurityList object filled with fake data class SecurityList(object): def __init__(self, assets_by_dt): self.assets_by_dt = assets_by_dt def current_securities(self, dt): return self.assets_by_dt[dt] assets_by_dt = { str_to_ts('2011-01-03'): [self.ASSET1], str_to_ts('2011-01-04'): [self.ASSET2, self.ASSET3], str_to_ts('2011-01-05'): [self.ASSET1, self.ASSET2, self.ASSET3], } rl = SecurityListRestrictions(SecurityList(assets_by_dt)) assert_not_restricted = partial(self.assert_not_restricted, rl) assert_is_restricted = partial(self.assert_is_restricted, rl) assert_all_restrictions = partial(self.assert_all_restrictions, rl) assert_is_restricted(self.ASSET1, str_to_ts('2011-01-03')) assert_not_restricted(self.ASSET2, str_to_ts('2011-01-03')) assert_not_restricted(self.ASSET3, str_to_ts('2011-01-03')) assert_all_restrictions( [True, False, False], str_to_ts('2011-01-03') ) assert_not_restricted(self.ASSET1, str_to_ts('2011-01-04')) assert_is_restricted(self.ASSET2, str_to_ts('2011-01-04')) assert_is_restricted(self.ASSET3, str_to_ts('2011-01-04')) assert_all_restrictions( [False, True, True], str_to_ts('2011-01-04') ) assert_is_restricted(self.ASSET1, str_to_ts('2011-01-05')) assert_is_restricted(self.ASSET2, str_to_ts('2011-01-05')) assert_is_restricted(self.ASSET3, str_to_ts('2011-01-05')) assert_all_restrictions( [True, True, True], str_to_ts('2011-01-05') ) def test_noop_restrictions(self): """ Test single- and multi-asset queries on no-op restrictions """ rl = NoRestrictions() assert_not_restricted = partial(self.assert_not_restricted, rl) assert_all_restrictions = partial(self.assert_all_restrictions, rl) for dt in [str_to_ts(dt_str) for dt_str in ('2011-01-03', '2011-01-04', '2020-01-04')]: assert_not_restricted(self.ASSET1, dt) assert_not_restricted(self.ASSET2, dt) assert_not_restricted(self.ASSET3, dt) assert_all_restrictions([False, False, False], dt) def test_union_restrictions(self): """ Test that we appropriately union restrictions together, including eliminating redundancy (ignoring NoRestrictions) and flattening out the underlying sub-restrictions of _UnionRestrictions """ no_restrictions_rl = NoRestrictions() st_restrict_asset1 = StaticRestrictions([self.ASSET1]) st_restrict_asset2 = StaticRestrictions([self.ASSET2]) st_restricted_assets = [self.ASSET1, self.ASSET2] before_frozen_dt = str_to_ts('2011-01-05') freeze_dt_1 = str_to_ts('2011-01-06') unfreeze_dt = str_to_ts('2011-01-06 16:00') hist_restrict_asset3_1 = HistoricalRestrictions([ Restriction(self.ASSET3, freeze_dt_1, FROZEN), Restriction(self.ASSET3, unfreeze_dt, ALLOWED) ]) freeze_dt_2 = str_to_ts('2011-01-07') hist_restrict_asset3_2 = HistoricalRestrictions([ Restriction(self.ASSET3, freeze_dt_2, FROZEN) ]) # A union of a NoRestrictions with a non-trivial restriction should # yield the original restriction trivial_union_restrictions = no_restrictions_rl | st_restrict_asset1 self.assertIsInstance(trivial_union_restrictions, StaticRestrictions) # A union of two non-trivial restrictions should yield a # UnionRestrictions st_union_restrictions = st_restrict_asset1 | st_restrict_asset2 self.assertIsInstance(st_union_restrictions, _UnionRestrictions) arb_dt = str_to_ts('2011-01-04') self.assert_is_restricted(st_restrict_asset1, self.ASSET1, arb_dt) self.assert_not_restricted(st_restrict_asset1, self.ASSET2, arb_dt) self.assert_not_restricted(st_restrict_asset2, self.ASSET1, arb_dt) self.assert_is_restricted(st_restrict_asset2, self.ASSET2, arb_dt) self.assert_is_restricted(st_union_restrictions, self.ASSET1, arb_dt) self.assert_is_restricted(st_union_restrictions, self.ASSET2, arb_dt) self.assert_many_restrictions( st_restrict_asset1, st_restricted_assets, [True, False], arb_dt ) self.assert_many_restrictions( st_restrict_asset2, st_restricted_assets, [False, True], arb_dt ) self.assert_many_restrictions( st_union_restrictions, st_restricted_assets, [True, True], arb_dt ) # A union of a 2-sub-restriction UnionRestrictions and a # non-trivial restrictions should yield a UnionRestrictions with # 3 sub restrictions. Works with UnionRestrictions on both the left # side or right side for r1, r2 in [ (st_union_restrictions, hist_restrict_asset3_1), (hist_restrict_asset3_1, st_union_restrictions) ]: union_or_hist_restrictions = r1 | r2 self.assertIsInstance( union_or_hist_restrictions, _UnionRestrictions) self.assertEqual( len(union_or_hist_restrictions.sub_restrictions), 3) # Includes the two static restrictions on ASSET1 and ASSET2, # and the historical restriction on ASSET3 starting on freeze_dt_1 # and ending on unfreeze_dt self.assert_all_restrictions( union_or_hist_restrictions, [True, True, False], before_frozen_dt ) self.assert_all_restrictions( union_or_hist_restrictions, [True, True, True], freeze_dt_1 ) self.assert_all_restrictions( union_or_hist_restrictions, [True, True, False], unfreeze_dt ) self.assert_all_restrictions( union_or_hist_restrictions, [True, True, False], freeze_dt_2 ) # A union of two 2-sub-restrictions UnionRestrictions should yield a # UnionRestrictions with 4 sub restrictions. hist_union_restrictions = \ hist_restrict_asset3_1 | hist_restrict_asset3_2 multi_union_restrictions = \ st_union_restrictions | hist_union_restrictions self.assertIsInstance(multi_union_restrictions, _UnionRestrictions) self.assertEqual(len(multi_union_restrictions.sub_restrictions), 4) # Includes the two static restrictions on ASSET1 and ASSET2, the # first historical restriction on ASSET3 starting on freeze_dt_1 and # ending on unfreeze_dt, and the second historical restriction on # ASSET3 starting on freeze_dt_2 self.assert_all_restrictions( multi_union_restrictions, [True, True, False], before_frozen_dt ) self.assert_all_restrictions( multi_union_restrictions, [True, True, True], freeze_dt_1 ) self.assert_all_restrictions( multi_union_restrictions, [True, True, False], unfreeze_dt ) self.assert_all_restrictions( multi_union_restrictions, [True, True, True], freeze_dt_2 )
apache-2.0
phoenixqm/cuda-convnet2
shownet.py
180
18206
# Copyright 2014 Google Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys from tarfile import TarFile, TarInfo from matplotlib import pylab as pl import numpy as n import getopt as opt from python_util.util import * from math import sqrt, ceil, floor from python_util.gpumodel import IGPUModel import random as r import numpy.random as nr from convnet import ConvNet from python_util.options import * from PIL import Image from time import sleep class ShowNetError(Exception): pass class ShowConvNet(ConvNet): def __init__(self, op, load_dic): ConvNet.__init__(self, op, load_dic) def init_data_providers(self): self.need_gpu = self.op.get_value('show_preds') class Dummy: def advance_batch(self): pass if self.need_gpu: ConvNet.init_data_providers(self) else: self.train_data_provider = self.test_data_provider = Dummy() def import_model(self): if self.need_gpu: ConvNet.import_model(self) def init_model_state(self): if self.op.get_value('show_preds'): self.softmax_name = self.op.get_value('show_preds') def init_model_lib(self): if self.need_gpu: ConvNet.init_model_lib(self) def plot_cost(self): if self.show_cost not in self.train_outputs[0][0]: raise ShowNetError("Cost function with name '%s' not defined by given convnet." % self.show_cost) # print self.test_outputs train_errors = [eval(self.layers[self.show_cost]['outputFilter'])(o[0][self.show_cost], o[1])[self.cost_idx] for o in self.train_outputs] test_errors = [eval(self.layers[self.show_cost]['outputFilter'])(o[0][self.show_cost], o[1])[self.cost_idx] for o in self.test_outputs] if self.smooth_test_errors: test_errors = [sum(test_errors[max(0,i-len(self.test_batch_range)):i])/(i-max(0,i-len(self.test_batch_range))) for i in xrange(1,len(test_errors)+1)] numbatches = len(self.train_batch_range) test_errors = n.row_stack(test_errors) test_errors = n.tile(test_errors, (1, self.testing_freq)) test_errors = list(test_errors.flatten()) test_errors += [test_errors[-1]] * max(0,len(train_errors) - len(test_errors)) test_errors = test_errors[:len(train_errors)] numepochs = len(train_errors) / float(numbatches) pl.figure(1) x = range(0, len(train_errors)) pl.plot(x, train_errors, 'k-', label='Training set') pl.plot(x, test_errors, 'r-', label='Test set') pl.legend() ticklocs = range(numbatches, len(train_errors) - len(train_errors) % numbatches + 1, numbatches) epoch_label_gran = int(ceil(numepochs / 20.)) epoch_label_gran = int(ceil(float(epoch_label_gran) / 10) * 10) if numepochs >= 10 else epoch_label_gran ticklabels = map(lambda x: str((x[1] / numbatches)) if x[0] % epoch_label_gran == epoch_label_gran-1 else '', enumerate(ticklocs)) pl.xticks(ticklocs, ticklabels) pl.xlabel('Epoch') # pl.ylabel(self.show_cost) pl.title('%s[%d]' % (self.show_cost, self.cost_idx)) # print "plotted cost" def make_filter_fig(self, filters, filter_start, fignum, _title, num_filters, combine_chans, FILTERS_PER_ROW=16): MAX_ROWS = 24 MAX_FILTERS = FILTERS_PER_ROW * MAX_ROWS num_colors = filters.shape[0] f_per_row = int(ceil(FILTERS_PER_ROW / float(1 if combine_chans else num_colors))) filter_end = min(filter_start+MAX_FILTERS, num_filters) filter_rows = int(ceil(float(filter_end - filter_start) / f_per_row)) filter_pixels = filters.shape[1] filter_size = int(sqrt(filters.shape[1])) fig = pl.figure(fignum) fig.text(.5, .95, '%s %dx%d filters %d-%d' % (_title, filter_size, filter_size, filter_start, filter_end-1), horizontalalignment='center') num_filters = filter_end - filter_start if not combine_chans: bigpic = n.zeros((filter_size * filter_rows + filter_rows + 1, filter_size*num_colors * f_per_row + f_per_row + 1), dtype=n.single) else: bigpic = n.zeros((3, filter_size * filter_rows + filter_rows + 1, filter_size * f_per_row + f_per_row + 1), dtype=n.single) for m in xrange(filter_start,filter_end ): filter = filters[:,:,m] y, x = (m - filter_start) / f_per_row, (m - filter_start) % f_per_row if not combine_chans: for c in xrange(num_colors): filter_pic = filter[c,:].reshape((filter_size,filter_size)) bigpic[1 + (1 + filter_size) * y:1 + (1 + filter_size) * y + filter_size, 1 + (1 + filter_size*num_colors) * x + filter_size*c:1 + (1 + filter_size*num_colors) * x + filter_size*(c+1)] = filter_pic else: filter_pic = filter.reshape((3, filter_size,filter_size)) bigpic[:, 1 + (1 + filter_size) * y:1 + (1 + filter_size) * y + filter_size, 1 + (1 + filter_size) * x:1 + (1 + filter_size) * x + filter_size] = filter_pic pl.xticks([]) pl.yticks([]) if not combine_chans: pl.imshow(bigpic, cmap=pl.cm.gray, interpolation='nearest') else: bigpic = bigpic.swapaxes(0,2).swapaxes(0,1) pl.imshow(bigpic, interpolation='nearest') def plot_filters(self): FILTERS_PER_ROW = 16 filter_start = 0 # First filter to show if self.show_filters not in self.layers: raise ShowNetError("Layer with name '%s' not defined by given convnet." % self.show_filters) layer = self.layers[self.show_filters] filters = layer['weights'][self.input_idx] # filters = filters - filters.min() # filters = filters / filters.max() if layer['type'] == 'fc': # Fully-connected layer num_filters = layer['outputs'] channels = self.channels filters = filters.reshape(channels, filters.shape[0]/channels, filters.shape[1]) elif layer['type'] in ('conv', 'local'): # Conv layer num_filters = layer['filters'] channels = layer['filterChannels'][self.input_idx] if layer['type'] == 'local': filters = filters.reshape((layer['modules'], channels, layer['filterPixels'][self.input_idx], num_filters)) filters = filters[:, :, :, self.local_plane] # first map for now (modules, channels, pixels) filters = filters.swapaxes(0,2).swapaxes(0,1) num_filters = layer['modules'] # filters = filters.swapaxes(0,1).reshape(channels * layer['filterPixels'][self.input_idx], num_filters * layer['modules']) # num_filters *= layer['modules'] FILTERS_PER_ROW = layer['modulesX'] else: filters = filters.reshape(channels, filters.shape[0]/channels, filters.shape[1]) # Convert YUV filters to RGB if self.yuv_to_rgb and channels == 3: R = filters[0,:,:] + 1.28033 * filters[2,:,:] G = filters[0,:,:] + -0.21482 * filters[1,:,:] + -0.38059 * filters[2,:,:] B = filters[0,:,:] + 2.12798 * filters[1,:,:] filters[0,:,:], filters[1,:,:], filters[2,:,:] = R, G, B combine_chans = not self.no_rgb and channels == 3 # Make sure you don't modify the backing array itself here -- so no -= or /= if self.norm_filters: #print filters.shape filters = filters - n.tile(filters.reshape((filters.shape[0] * filters.shape[1], filters.shape[2])).mean(axis=0).reshape(1, 1, filters.shape[2]), (filters.shape[0], filters.shape[1], 1)) filters = filters / n.sqrt(n.tile(filters.reshape((filters.shape[0] * filters.shape[1], filters.shape[2])).var(axis=0).reshape(1, 1, filters.shape[2]), (filters.shape[0], filters.shape[1], 1))) #filters = filters - n.tile(filters.min(axis=0).min(axis=0), (3, filters.shape[1], 1)) #filters = filters / n.tile(filters.max(axis=0).max(axis=0), (3, filters.shape[1], 1)) #else: filters = filters - filters.min() filters = filters / filters.max() self.make_filter_fig(filters, filter_start, 2, 'Layer %s' % self.show_filters, num_filters, combine_chans, FILTERS_PER_ROW=FILTERS_PER_ROW) def plot_predictions(self): epoch, batch, data = self.get_next_batch(train=False) # get a test batch num_classes = self.test_data_provider.get_num_classes() NUM_ROWS = 2 NUM_COLS = 4 NUM_IMGS = NUM_ROWS * NUM_COLS if not self.save_preds else data[0].shape[1] NUM_TOP_CLASSES = min(num_classes, 5) # show this many top labels NUM_OUTPUTS = self.model_state['layers'][self.softmax_name]['outputs'] PRED_IDX = 1 label_names = [lab.split(',')[0] for lab in self.test_data_provider.batch_meta['label_names']] if self.only_errors: preds = n.zeros((data[0].shape[1], NUM_OUTPUTS), dtype=n.single) else: preds = n.zeros((NUM_IMGS, NUM_OUTPUTS), dtype=n.single) #rand_idx = nr.permutation(n.r_[n.arange(1), n.where(data[1] == 552)[1], n.where(data[1] == 795)[1], n.where(data[1] == 449)[1], n.where(data[1] == 274)[1]])[:NUM_IMGS] rand_idx = nr.randint(0, data[0].shape[1], NUM_IMGS) if NUM_IMGS < data[0].shape[1]: data = [n.require(d[:,rand_idx], requirements='C') for d in data] # data += [preds] # Run the model print [d.shape for d in data], preds.shape self.libmodel.startFeatureWriter(data, [preds], [self.softmax_name]) IGPUModel.finish_batch(self) print preds data[0] = self.test_data_provider.get_plottable_data(data[0]) if self.save_preds: if not gfile.Exists(self.save_preds): gfile.MakeDirs(self.save_preds) preds_thresh = preds > 0.5 # Binarize predictions data[0] = data[0] * 255.0 data[0][data[0]<0] = 0 data[0][data[0]>255] = 255 data[0] = n.require(data[0], dtype=n.uint8) dir_name = '%s_predictions_batch_%d' % (os.path.basename(self.save_file), batch) tar_name = os.path.join(self.save_preds, '%s.tar' % dir_name) tfo = gfile.GFile(tar_name, "w") tf = TarFile(fileobj=tfo, mode='w') for img_idx in xrange(NUM_IMGS): img = data[0][img_idx,:,:,:] imsave = Image.fromarray(img) prefix = "CORRECT" if data[1][0,img_idx] == preds_thresh[img_idx,PRED_IDX] else "FALSE_POS" if preds_thresh[img_idx,PRED_IDX] == 1 else "FALSE_NEG" file_name = "%s_%.2f_%d_%05d_%d.png" % (prefix, preds[img_idx,PRED_IDX], batch, img_idx, data[1][0,img_idx]) # gf = gfile.GFile(file_name, "w") file_string = StringIO() imsave.save(file_string, "PNG") tarinf = TarInfo(os.path.join(dir_name, file_name)) tarinf.size = file_string.tell() file_string.seek(0) tf.addfile(tarinf, file_string) tf.close() tfo.close() # gf.close() print "Wrote %d prediction PNGs to %s" % (preds.shape[0], tar_name) else: fig = pl.figure(3, figsize=(12,9)) fig.text(.4, .95, '%s test samples' % ('Mistaken' if self.only_errors else 'Random')) if self.only_errors: # what the net got wrong if NUM_OUTPUTS > 1: err_idx = [i for i,p in enumerate(preds.argmax(axis=1)) if p not in n.where(data[2][:,i] > 0)[0]] else: err_idx = n.where(data[1][0,:] != preds[:,0].T)[0] print err_idx err_idx = r.sample(err_idx, min(len(err_idx), NUM_IMGS)) data[0], data[1], preds = data[0][:,err_idx], data[1][:,err_idx], preds[err_idx,:] import matplotlib.gridspec as gridspec import matplotlib.colors as colors cconv = colors.ColorConverter() gs = gridspec.GridSpec(NUM_ROWS*2, NUM_COLS, width_ratios=[1]*NUM_COLS, height_ratios=[2,1]*NUM_ROWS ) #print data[1] for row in xrange(NUM_ROWS): for col in xrange(NUM_COLS): img_idx = row * NUM_COLS + col if data[0].shape[0] <= img_idx: break pl.subplot(gs[(row * 2) * NUM_COLS + col]) #pl.subplot(NUM_ROWS*2, NUM_COLS, row * 2 * NUM_COLS + col + 1) pl.xticks([]) pl.yticks([]) img = data[0][img_idx,:,:,:] pl.imshow(img, interpolation='lanczos') show_title = data[1].shape[0] == 1 true_label = [int(data[1][0,img_idx])] if show_title else n.where(data[1][:,img_idx]==1)[0] #print true_label #print preds[img_idx,:].shape #print preds[img_idx,:].max() true_label_names = [label_names[i] for i in true_label] img_labels = sorted(zip(preds[img_idx,:], label_names), key=lambda x: x[0])[-NUM_TOP_CLASSES:] #print img_labels axes = pl.subplot(gs[(row * 2 + 1) * NUM_COLS + col]) height = 0.5 ylocs = n.array(range(NUM_TOP_CLASSES))*height pl.barh(ylocs, [l[0] for l in img_labels], height=height, \ color=['#ffaaaa' if l[1] in true_label_names else '#aaaaff' for l in img_labels]) #pl.title(", ".join(true_labels)) if show_title: pl.title(", ".join(true_label_names), fontsize=15, fontweight='bold') else: print true_label_names pl.yticks(ylocs + height/2, [l[1] for l in img_labels], x=1, backgroundcolor=cconv.to_rgba('0.65', alpha=0.5), weight='bold') for line in enumerate(axes.get_yticklines()): line[1].set_visible(False) #pl.xticks([width], ['']) #pl.yticks([]) pl.xticks([]) pl.ylim(0, ylocs[-1] + height) pl.xlim(0, 1) def start(self): self.op.print_values() # print self.show_cost if self.show_cost: self.plot_cost() if self.show_filters: self.plot_filters() if self.show_preds: self.plot_predictions() if pl: pl.show() sys.exit(0) @classmethod def get_options_parser(cls): op = ConvNet.get_options_parser() for option in list(op.options): if option not in ('gpu', 'load_file', 'inner_size', 'train_batch_range', 'test_batch_range', 'multiview_test', 'data_path', 'pca_noise', 'scalar_mean'): op.delete_option(option) op.add_option("show-cost", "show_cost", StringOptionParser, "Show specified objective function", default="") op.add_option("show-filters", "show_filters", StringOptionParser, "Show learned filters in specified layer", default="") op.add_option("norm-filters", "norm_filters", BooleanOptionParser, "Individually normalize filters shown with --show-filters", default=0) op.add_option("input-idx", "input_idx", IntegerOptionParser, "Input index for layer given to --show-filters", default=0) op.add_option("cost-idx", "cost_idx", IntegerOptionParser, "Cost function return value index for --show-cost", default=0) op.add_option("no-rgb", "no_rgb", BooleanOptionParser, "Don't combine filter channels into RGB in layer given to --show-filters", default=False) op.add_option("yuv-to-rgb", "yuv_to_rgb", BooleanOptionParser, "Convert RGB filters to YUV in layer given to --show-filters", default=False) op.add_option("channels", "channels", IntegerOptionParser, "Number of channels in layer given to --show-filters (fully-connected layers only)", default=0) op.add_option("show-preds", "show_preds", StringOptionParser, "Show predictions made by given softmax on test set", default="") op.add_option("save-preds", "save_preds", StringOptionParser, "Save predictions to given path instead of showing them", default="") op.add_option("only-errors", "only_errors", BooleanOptionParser, "Show only mistaken predictions (to be used with --show-preds)", default=False, requires=['show_preds']) op.add_option("local-plane", "local_plane", IntegerOptionParser, "Local plane to show", default=0) op.add_option("smooth-test-errors", "smooth_test_errors", BooleanOptionParser, "Use running average for test error plot?", default=1) op.options['load_file'].default = None return op if __name__ == "__main__": #nr.seed(6) try: op = ShowConvNet.get_options_parser() op, load_dic = IGPUModel.parse_options(op) model = ShowConvNet(op, load_dic) model.start() except (UnpickleError, ShowNetError, opt.GetoptError), e: print "----------------" print "Error:" print e
apache-2.0
sekikn/incubator-airflow
tests/test_utils/perf/scheduler_ops_metrics.py
7
7513
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import logging import sys import pandas as pd from airflow import settings from airflow.configuration import conf from airflow.jobs.scheduler_job import SchedulerJob from airflow.models import DagBag, DagModel, DagRun, TaskInstance from airflow.utils import timezone from airflow.utils.state import State SUBDIR = 'scripts/perf/dags' DAG_IDS = ['perf_dag_1', 'perf_dag_2'] MAX_RUNTIME_SECS = 6 class SchedulerMetricsJob(SchedulerJob): """ This class extends SchedulerJob to instrument the execution performance of task instances contained in each DAG. We want to know if any DAG is starved of resources, and this will be reflected in the stats printed out at the end of the test run. The following metrics will be instrumented for each task instance (dag_id, task_id, execution_date) tuple: 1. Queuing delay - time taken from starting the executor to the task instance to be added to the executor queue. 2. Start delay - time taken from starting the executor to the task instance to start execution. 3. Land time - time taken from starting the executor to task instance completion. 4. Duration - time taken for executing the task instance. The DAGs implement bash operators that call the system wait command. This is representative of typical operators run on Airflow - queries that are run on remote systems and spend the majority of their time on I/O wait. To Run: $ python scripts/perf/scheduler_ops_metrics.py [timeout] You can specify timeout in seconds as an optional parameter. Its default value is 6 seconds. """ __mapper_args__ = {'polymorphic_identity': 'SchedulerMetricsJob'} def __init__(self, dag_ids, subdir, max_runtime_secs): self.max_runtime_secs = max_runtime_secs super().__init__(dag_ids=dag_ids, subdir=subdir) def print_stats(self): """ Print operational metrics for the scheduler test. """ session = settings.Session() TI = TaskInstance tis = session.query(TI).filter(TI.dag_id.in_(DAG_IDS)).all() successful_tis = [x for x in tis if x.state == State.SUCCESS] ti_perf = [ ( ti.dag_id, ti.task_id, ti.execution_date, (ti.queued_dttm - self.start_date).total_seconds(), (ti.start_date - self.start_date).total_seconds(), (ti.end_date - self.start_date).total_seconds(), ti.duration, ) for ti in successful_tis ] ti_perf_df = pd.DataFrame( ti_perf, columns=[ 'dag_id', 'task_id', 'execution_date', 'queue_delay', 'start_delay', 'land_time', 'duration', ], ) print('Performance Results') print('###################') for dag_id in DAG_IDS: print(f'DAG {dag_id}') print(ti_perf_df[ti_perf_df['dag_id'] == dag_id]) print('###################') if len(tis) > len(successful_tis): print("WARNING!! The following task instances haven't completed") print( pd.DataFrame( [ (ti.dag_id, ti.task_id, ti.execution_date, ti.state) for ti in filter(lambda x: x.state != State.SUCCESS, tis) ], columns=['dag_id', 'task_id', 'execution_date', 'state'], ) ) session.commit() def heartbeat(self): """ Override the scheduler heartbeat to determine when the test is complete """ super().heartbeat() session = settings.Session() # Get all the relevant task instances TI = TaskInstance successful_tis = ( session.query(TI).filter(TI.dag_id.in_(DAG_IDS)).filter(TI.state.in_([State.SUCCESS])).all() ) session.commit() dagbag = DagBag(SUBDIR) dags = [dagbag.dags[dag_id] for dag_id in DAG_IDS] # the tasks in perf_dag_1 and per_dag_2 have a daily schedule interval. num_task_instances = sum( [(timezone.utcnow() - task.start_date).days for dag in dags for task in dag.tasks] ) if ( len(successful_tis) == num_task_instances or (timezone.utcnow() - self.start_date).total_seconds() > self.max_runtime_secs ): if len(successful_tis) == num_task_instances: self.log.info("All tasks processed! Printing stats.") else: self.log.info("Test timeout reached. Printing available stats.") self.print_stats() set_dags_paused_state(True) sys.exit() def clear_dag_runs(): """ Remove any existing DAG runs for the perf test DAGs. """ session = settings.Session() drs = ( session.query(DagRun) .filter( DagRun.dag_id.in_(DAG_IDS), ) .all() ) for dr in drs: logging.info('Deleting DagRun :: %s', dr) session.delete(dr) def clear_dag_task_instances(): """ Remove any existing task instances for the perf test DAGs. """ session = settings.Session() TI = TaskInstance tis = session.query(TI).filter(TI.dag_id.in_(DAG_IDS)).all() for ti in tis: logging.info('Deleting TaskInstance :: %s', ti) session.delete(ti) session.commit() def set_dags_paused_state(is_paused): """ Toggle the pause state of the DAGs in the test. """ session = settings.Session() dag_models = session.query(DagModel).filter(DagModel.dag_id.in_(DAG_IDS)) for dag_model in dag_models: logging.info('Setting DAG :: %s is_paused=%s', dag_model, is_paused) dag_model.is_paused = is_paused session.commit() def main(): """ Run the scheduler metrics jobs after loading the test configuration and clearing old instances of dags and tasks """ max_runtime_secs = MAX_RUNTIME_SECS if len(sys.argv) > 1: try: max_runtime_secs = int(sys.argv[1]) if max_runtime_secs < 1: raise ValueError except ValueError: logging.error('Specify a positive integer for timeout.') sys.exit(1) conf.load_test_config() set_dags_paused_state(False) clear_dag_runs() clear_dag_task_instances() job = SchedulerMetricsJob(dag_ids=DAG_IDS, subdir=SUBDIR, max_runtime_secs=max_runtime_secs) job.run() if __name__ == "__main__": main()
apache-2.0
lifeinoppo/littlefishlet-scode
RES/REF/python_sourcecode/ipython-master/IPython/core/interactiveshell.py
6
132557
# -*- coding: utf-8 -*- """Main IPython class.""" #----------------------------------------------------------------------------- # Copyright (C) 2001 Janko Hauser <[email protected]> # Copyright (C) 2001-2007 Fernando Perez. <[email protected]> # Copyright (C) 2008-2011 The IPython Development Team # # Distributed under the terms of the BSD License. The full license is in # the file COPYING, distributed as part of this software. #----------------------------------------------------------------------------- from __future__ import absolute_import, print_function import __future__ import abc import ast import atexit import functools import os import re import runpy import sys import tempfile import traceback import types import subprocess import warnings from io import open as io_open from pickleshare import PickleShareDB from traitlets.config.configurable import SingletonConfigurable from IPython.core import debugger, oinspect from IPython.core import magic from IPython.core import page from IPython.core import prefilter from IPython.core import shadowns from IPython.core import ultratb from IPython.core.alias import Alias, AliasManager from IPython.core.autocall import ExitAutocall from IPython.core.builtin_trap import BuiltinTrap from IPython.core.events import EventManager, available_events from IPython.core.compilerop import CachingCompiler, check_linecache_ipython from IPython.core.display_trap import DisplayTrap from IPython.core.displayhook import DisplayHook from IPython.core.displaypub import DisplayPublisher from IPython.core.error import InputRejected, UsageError from IPython.core.extensions import ExtensionManager from IPython.core.formatters import DisplayFormatter from IPython.core.history import HistoryManager from IPython.core.inputsplitter import IPythonInputSplitter, ESC_MAGIC, ESC_MAGIC2 from IPython.core.logger import Logger from IPython.core.macro import Macro from IPython.core.payload import PayloadManager from IPython.core.prefilter import PrefilterManager from IPython.core.profiledir import ProfileDir from IPython.core.prompts import PromptManager from IPython.core.usage import default_banner from IPython.testing.skipdoctest import skip_doctest from IPython.utils import PyColorize from IPython.utils import io from IPython.utils import py3compat from IPython.utils import openpy from IPython.utils.contexts import NoOpContext from IPython.utils.decorators import undoc from IPython.utils.io import ask_yes_no from IPython.utils.ipstruct import Struct from IPython.paths import get_ipython_dir from IPython.utils.path import get_home_dir, get_py_filename, unquote_filename, ensure_dir_exists from IPython.utils.process import system, getoutput from IPython.utils.py3compat import (builtin_mod, unicode_type, string_types, with_metaclass, iteritems) from IPython.utils.strdispatch import StrDispatch from IPython.utils.syspathcontext import prepended_to_syspath from IPython.utils.text import (format_screen, LSString, SList, DollarFormatter) from traitlets import (Integer, Bool, CBool, CaselessStrEnum, Enum, List, Dict, Unicode, Instance, Type) from IPython.utils.warn import warn, error import IPython.core.hooks #----------------------------------------------------------------------------- # Globals #----------------------------------------------------------------------------- # compiled regexps for autoindent management dedent_re = re.compile(r'^\s+raise|^\s+return|^\s+pass') #----------------------------------------------------------------------------- # Utilities #----------------------------------------------------------------------------- @undoc def softspace(file, newvalue): """Copied from code.py, to remove the dependency""" oldvalue = 0 try: oldvalue = file.softspace except AttributeError: pass try: file.softspace = newvalue except (AttributeError, TypeError): # "attribute-less object" or "read-only attributes" pass return oldvalue @undoc def no_op(*a, **kw): pass class SpaceInInput(Exception): pass @undoc class Bunch: pass def get_default_colors(): if sys.platform=='darwin': return "LightBG" elif os.name=='nt': return 'Linux' else: return 'Linux' class SeparateUnicode(Unicode): r"""A Unicode subclass to validate separate_in, separate_out, etc. This is a Unicode based trait that converts '0'->'' and ``'\\n'->'\n'``. """ def validate(self, obj, value): if value == '0': value = '' value = value.replace('\\n','\n') return super(SeparateUnicode, self).validate(obj, value) @undoc class DummyMod(object): """A dummy module used for IPython's interactive module when a namespace must be assigned to the module's __dict__.""" pass class ExecutionResult(object): """The result of a call to :meth:`InteractiveShell.run_cell` Stores information about what took place. """ execution_count = None error_before_exec = None error_in_exec = None result = None @property def success(self): return (self.error_before_exec is None) and (self.error_in_exec is None) def raise_error(self): """Reraises error if `success` is `False`, otherwise does nothing""" if self.error_before_exec is not None: raise self.error_before_exec if self.error_in_exec is not None: raise self.error_in_exec class InteractiveShell(SingletonConfigurable): """An enhanced, interactive shell for Python.""" _instance = None ast_transformers = List([], config=True, help= """ A list of ast.NodeTransformer subclass instances, which will be applied to user input before code is run. """ ) autocall = Enum((0,1,2), default_value=0, config=True, help= """ Make IPython automatically call any callable object even if you didn't type explicit parentheses. For example, 'str 43' becomes 'str(43)' automatically. The value can be '0' to disable the feature, '1' for 'smart' autocall, where it is not applied if there are no more arguments on the line, and '2' for 'full' autocall, where all callable objects are automatically called (even if no arguments are present). """ ) # TODO: remove all autoindent logic and put into frontends. # We can't do this yet because even runlines uses the autoindent. autoindent = CBool(True, config=True, help= """ Autoindent IPython code entered interactively. """ ) automagic = CBool(True, config=True, help= """ Enable magic commands to be called without the leading %. """ ) banner1 = Unicode(default_banner, config=True, help="""The part of the banner to be printed before the profile""" ) banner2 = Unicode('', config=True, help="""The part of the banner to be printed after the profile""" ) cache_size = Integer(1000, config=True, help= """ Set the size of the output cache. The default is 1000, you can change it permanently in your config file. Setting it to 0 completely disables the caching system, and the minimum value accepted is 20 (if you provide a value less than 20, it is reset to 0 and a warning is issued). This limit is defined because otherwise you'll spend more time re-flushing a too small cache than working """ ) color_info = CBool(True, config=True, help= """ Use colors for displaying information about objects. Because this information is passed through a pager (like 'less'), and some pagers get confused with color codes, this capability can be turned off. """ ) colors = CaselessStrEnum(('NoColor','LightBG','Linux'), default_value=get_default_colors(), config=True, help="Set the color scheme (NoColor, Linux, or LightBG)." ) colors_force = CBool(False, help= """ Force use of ANSI color codes, regardless of OS and readline availability. """ # FIXME: This is essentially a hack to allow ZMQShell to show colors # without readline on Win32. When the ZMQ formatting system is # refactored, this should be removed. ) debug = CBool(False, config=True) deep_reload = CBool(False, config=True, help= """ **Deprecated** Will be removed in IPython 6.0 Enable deep (recursive) reloading by default. IPython can use the deep_reload module which reloads changes in modules recursively (it replaces the reload() function, so you don't need to change anything to use it). `deep_reload` forces a full reload of modules whose code may have changed, which the default reload() function does not. When deep_reload is off, IPython will use the normal reload(), but deep_reload will still be available as dreload(). """ ) disable_failing_post_execute = CBool(False, config=True, help="Don't call post-execute functions that have failed in the past." ) display_formatter = Instance(DisplayFormatter, allow_none=True) displayhook_class = Type(DisplayHook) display_pub_class = Type(DisplayPublisher) data_pub_class = None exit_now = CBool(False) exiter = Instance(ExitAutocall) def _exiter_default(self): return ExitAutocall(self) # Monotonically increasing execution counter execution_count = Integer(1) filename = Unicode("<ipython console>") ipython_dir= Unicode('', config=True) # Set to get_ipython_dir() in __init__ # Input splitter, to transform input line by line and detect when a block # is ready to be executed. input_splitter = Instance('IPython.core.inputsplitter.IPythonInputSplitter', (), {'line_input_checker': True}) # This InputSplitter instance is used to transform completed cells before # running them. It allows cell magics to contain blank lines. input_transformer_manager = Instance('IPython.core.inputsplitter.IPythonInputSplitter', (), {'line_input_checker': False}) logstart = CBool(False, config=True, help= """ Start logging to the default log file in overwrite mode. Use `logappend` to specify a log file to **append** logs to. """ ) logfile = Unicode('', config=True, help= """ The name of the logfile to use. """ ) logappend = Unicode('', config=True, help= """ Start logging to the given file in append mode. Use `logfile` to specify a log file to **overwrite** logs to. """ ) object_info_string_level = Enum((0,1,2), default_value=0, config=True) pdb = CBool(False, config=True, help= """ Automatically call the pdb debugger after every exception. """ ) multiline_history = CBool(sys.platform != 'win32', config=True, help="Save multi-line entries as one entry in readline history" ) display_page = Bool(False, config=True, help="""If True, anything that would be passed to the pager will be displayed as regular output instead.""" ) # deprecated prompt traits: prompt_in1 = Unicode('In [\\#]: ', config=True, help="Deprecated, will be removed in IPython 5.0, use PromptManager.in_template") prompt_in2 = Unicode(' .\\D.: ', config=True, help="Deprecated, will be removed in IPython 5.0, use PromptManager.in2_template") prompt_out = Unicode('Out[\\#]: ', config=True, help="Deprecated, will be removed in IPython 5.0, use PromptManager.out_template") prompts_pad_left = CBool(True, config=True, help="Deprecated, will be removed in IPython 5.0, use PromptManager.justify") def _prompt_trait_changed(self, name, old, new): table = { 'prompt_in1' : 'in_template', 'prompt_in2' : 'in2_template', 'prompt_out' : 'out_template', 'prompts_pad_left' : 'justify', } warn("InteractiveShell.{name} is deprecated, use PromptManager.{newname}".format( name=name, newname=table[name]) ) # protect against weird cases where self.config may not exist: if self.config is not None: # propagate to corresponding PromptManager trait setattr(self.config.PromptManager, table[name], new) _prompt_in1_changed = _prompt_trait_changed _prompt_in2_changed = _prompt_trait_changed _prompt_out_changed = _prompt_trait_changed _prompt_pad_left_changed = _prompt_trait_changed show_rewritten_input = CBool(True, config=True, help="Show rewritten input, e.g. for autocall." ) quiet = CBool(False, config=True) history_length = Integer(10000, config=True) history_load_length = Integer(1000, config=True, help= """ The number of saved history entries to be loaded into the readline buffer at startup. """ ) # The readline stuff will eventually be moved to the terminal subclass # but for now, we can't do that as readline is welded in everywhere. readline_use = CBool(True, config=True) readline_remove_delims = Unicode('-/~', config=True) readline_delims = Unicode() # set by init_readline() # don't use \M- bindings by default, because they # conflict with 8-bit encodings. See gh-58,gh-88 readline_parse_and_bind = List([ 'tab: complete', '"\C-l": clear-screen', 'set show-all-if-ambiguous on', '"\C-o": tab-insert', '"\C-r": reverse-search-history', '"\C-s": forward-search-history', '"\C-p": history-search-backward', '"\C-n": history-search-forward', '"\e[A": history-search-backward', '"\e[B": history-search-forward', '"\C-k": kill-line', '"\C-u": unix-line-discard', ], config=True) _custom_readline_config = False def _readline_parse_and_bind_changed(self, name, old, new): # notice that readline config is customized # indicates that it should have higher priority than inputrc self._custom_readline_config = True ast_node_interactivity = Enum(['all', 'last', 'last_expr', 'none'], default_value='last_expr', config=True, help=""" 'all', 'last', 'last_expr' or 'none', specifying which nodes should be run interactively (displaying output from expressions).""") # TODO: this part of prompt management should be moved to the frontends. # Use custom TraitTypes that convert '0'->'' and '\\n'->'\n' separate_in = SeparateUnicode('\n', config=True) separate_out = SeparateUnicode('', config=True) separate_out2 = SeparateUnicode('', config=True) wildcards_case_sensitive = CBool(True, config=True) xmode = CaselessStrEnum(('Context','Plain', 'Verbose'), default_value='Context', config=True) # Subcomponents of InteractiveShell alias_manager = Instance('IPython.core.alias.AliasManager', allow_none=True) prefilter_manager = Instance('IPython.core.prefilter.PrefilterManager', allow_none=True) builtin_trap = Instance('IPython.core.builtin_trap.BuiltinTrap', allow_none=True) display_trap = Instance('IPython.core.display_trap.DisplayTrap', allow_none=True) extension_manager = Instance('IPython.core.extensions.ExtensionManager', allow_none=True) payload_manager = Instance('IPython.core.payload.PayloadManager', allow_none=True) history_manager = Instance('IPython.core.history.HistoryAccessorBase', allow_none=True) magics_manager = Instance('IPython.core.magic.MagicsManager', allow_none=True) profile_dir = Instance('IPython.core.application.ProfileDir', allow_none=True) @property def profile(self): if self.profile_dir is not None: name = os.path.basename(self.profile_dir.location) return name.replace('profile_','') # Private interface _post_execute = Dict() # Tracks any GUI loop loaded for pylab pylab_gui_select = None def __init__(self, ipython_dir=None, profile_dir=None, user_module=None, user_ns=None, custom_exceptions=((), None), **kwargs): # This is where traits with a config_key argument are updated # from the values on config. super(InteractiveShell, self).__init__(**kwargs) self.configurables = [self] # These are relatively independent and stateless self.init_ipython_dir(ipython_dir) self.init_profile_dir(profile_dir) self.init_instance_attrs() self.init_environment() # Check if we're in a virtualenv, and set up sys.path. self.init_virtualenv() # Create namespaces (user_ns, user_global_ns, etc.) self.init_create_namespaces(user_module, user_ns) # This has to be done after init_create_namespaces because it uses # something in self.user_ns, but before init_sys_modules, which # is the first thing to modify sys. # TODO: When we override sys.stdout and sys.stderr before this class # is created, we are saving the overridden ones here. Not sure if this # is what we want to do. self.save_sys_module_state() self.init_sys_modules() # While we're trying to have each part of the code directly access what # it needs without keeping redundant references to objects, we have too # much legacy code that expects ip.db to exist. self.db = PickleShareDB(os.path.join(self.profile_dir.location, 'db')) self.init_history() self.init_encoding() self.init_prefilter() self.init_syntax_highlighting() self.init_hooks() self.init_events() self.init_pushd_popd_magic() # self.init_traceback_handlers use to be here, but we moved it below # because it and init_io have to come after init_readline. self.init_user_ns() self.init_logger() self.init_builtins() # The following was in post_config_initialization self.init_inspector() # init_readline() must come before init_io(), because init_io uses # readline related things. self.init_readline() # We save this here in case user code replaces raw_input, but it needs # to be after init_readline(), because PyPy's readline works by replacing # raw_input. if py3compat.PY3: self.raw_input_original = input else: self.raw_input_original = raw_input # init_completer must come after init_readline, because it needs to # know whether readline is present or not system-wide to configure the # completers, since the completion machinery can now operate # independently of readline (e.g. over the network) self.init_completer() # TODO: init_io() needs to happen before init_traceback handlers # because the traceback handlers hardcode the stdout/stderr streams. # This logic in in debugger.Pdb and should eventually be changed. self.init_io() self.init_traceback_handlers(custom_exceptions) self.init_prompts() self.init_display_formatter() self.init_display_pub() self.init_data_pub() self.init_displayhook() self.init_magics() self.init_alias() self.init_logstart() self.init_pdb() self.init_extension_manager() self.init_payload() self.init_deprecation_warnings() self.hooks.late_startup_hook() self.events.trigger('shell_initialized', self) atexit.register(self.atexit_operations) def get_ipython(self): """Return the currently running IPython instance.""" return self #------------------------------------------------------------------------- # Trait changed handlers #------------------------------------------------------------------------- def _ipython_dir_changed(self, name, new): ensure_dir_exists(new) def set_autoindent(self,value=None): """Set the autoindent flag, checking for readline support. If called with no arguments, it acts as a toggle.""" if value != 0 and not self.has_readline: if os.name == 'posix': warn("The auto-indent feature requires the readline library") self.autoindent = 0 return if value is None: self.autoindent = not self.autoindent else: self.autoindent = value #------------------------------------------------------------------------- # init_* methods called by __init__ #------------------------------------------------------------------------- def init_ipython_dir(self, ipython_dir): if ipython_dir is not None: self.ipython_dir = ipython_dir return self.ipython_dir = get_ipython_dir() def init_profile_dir(self, profile_dir): if profile_dir is not None: self.profile_dir = profile_dir return self.profile_dir =\ ProfileDir.create_profile_dir_by_name(self.ipython_dir, 'default') def init_instance_attrs(self): self.more = False # command compiler self.compile = CachingCompiler() # Make an empty namespace, which extension writers can rely on both # existing and NEVER being used by ipython itself. This gives them a # convenient location for storing additional information and state # their extensions may require, without fear of collisions with other # ipython names that may develop later. self.meta = Struct() # Temporary files used for various purposes. Deleted at exit. self.tempfiles = [] self.tempdirs = [] # Keep track of readline usage (later set by init_readline) self.has_readline = False # keep track of where we started running (mainly for crash post-mortem) # This is not being used anywhere currently. self.starting_dir = py3compat.getcwd() # Indentation management self.indent_current_nsp = 0 # Dict to track post-execution functions that have been registered self._post_execute = {} def init_environment(self): """Any changes we need to make to the user's environment.""" pass def init_encoding(self): # Get system encoding at startup time. Certain terminals (like Emacs # under Win32 have it set to None, and we need to have a known valid # encoding to use in the raw_input() method try: self.stdin_encoding = sys.stdin.encoding or 'ascii' except AttributeError: self.stdin_encoding = 'ascii' def init_syntax_highlighting(self): # Python source parser/formatter for syntax highlighting pyformat = PyColorize.Parser().format self.pycolorize = lambda src: pyformat(src,'str',self.colors) def init_pushd_popd_magic(self): # for pushd/popd management self.home_dir = get_home_dir() self.dir_stack = [] def init_logger(self): self.logger = Logger(self.home_dir, logfname='ipython_log.py', logmode='rotate') def init_logstart(self): """Initialize logging in case it was requested at the command line. """ if self.logappend: self.magic('logstart %s append' % self.logappend) elif self.logfile: self.magic('logstart %s' % self.logfile) elif self.logstart: self.magic('logstart') def init_deprecation_warnings(self): """ register default filter for deprecation warning. This will allow deprecation warning of function used interactively to show warning to users, and still hide deprecation warning from libraries import. """ warnings.filterwarnings("default", category=DeprecationWarning, module=self.user_ns.get("__name__")) def init_builtins(self): # A single, static flag that we set to True. Its presence indicates # that an IPython shell has been created, and we make no attempts at # removing on exit or representing the existence of more than one # IPython at a time. builtin_mod.__dict__['__IPYTHON__'] = True # In 0.11 we introduced '__IPYTHON__active' as an integer we'd try to # manage on enter/exit, but with all our shells it's virtually # impossible to get all the cases right. We're leaving the name in for # those who adapted their codes to check for this flag, but will # eventually remove it after a few more releases. builtin_mod.__dict__['__IPYTHON__active'] = \ 'Deprecated, check for __IPYTHON__' self.builtin_trap = BuiltinTrap(shell=self) def init_inspector(self): # Object inspector self.inspector = oinspect.Inspector(oinspect.InspectColors, PyColorize.ANSICodeColors, 'NoColor', self.object_info_string_level) def init_io(self): # This will just use sys.stdout and sys.stderr. If you want to # override sys.stdout and sys.stderr themselves, you need to do that # *before* instantiating this class, because io holds onto # references to the underlying streams. if (sys.platform == 'win32' or sys.platform == 'cli') and self.has_readline: io.stdout = io.stderr = io.IOStream(self.readline._outputfile) else: io.stdout = io.IOStream(sys.stdout) io.stderr = io.IOStream(sys.stderr) def init_prompts(self): self.prompt_manager = PromptManager(shell=self, parent=self) self.configurables.append(self.prompt_manager) # Set system prompts, so that scripts can decide if they are running # interactively. sys.ps1 = 'In : ' sys.ps2 = '...: ' sys.ps3 = 'Out: ' def init_display_formatter(self): self.display_formatter = DisplayFormatter(parent=self) self.configurables.append(self.display_formatter) def init_display_pub(self): self.display_pub = self.display_pub_class(parent=self) self.configurables.append(self.display_pub) def init_data_pub(self): if not self.data_pub_class: self.data_pub = None return self.data_pub = self.data_pub_class(parent=self) self.configurables.append(self.data_pub) def init_displayhook(self): # Initialize displayhook, set in/out prompts and printing system self.displayhook = self.displayhook_class( parent=self, shell=self, cache_size=self.cache_size, ) self.configurables.append(self.displayhook) # This is a context manager that installs/revmoes the displayhook at # the appropriate time. self.display_trap = DisplayTrap(hook=self.displayhook) def init_virtualenv(self): """Add a virtualenv to sys.path so the user can import modules from it. This isn't perfect: it doesn't use the Python interpreter with which the virtualenv was built, and it ignores the --no-site-packages option. A warning will appear suggesting the user installs IPython in the virtualenv, but for many cases, it probably works well enough. Adapted from code snippets online. http://blog.ufsoft.org/2009/1/29/ipython-and-virtualenv """ if 'VIRTUAL_ENV' not in os.environ: # Not in a virtualenv return # venv detection: # stdlib venv may symlink sys.executable, so we can't use realpath. # but others can symlink *to* the venv Python, so we can't just use sys.executable. # So we just check every item in the symlink tree (generally <= 3) p = os.path.normcase(sys.executable) paths = [p] while os.path.islink(p): p = os.path.normcase(os.path.join(os.path.dirname(p), os.readlink(p))) paths.append(p) p_venv = os.path.normcase(os.environ['VIRTUAL_ENV']) if any(p.startswith(p_venv) for p in paths): # Running properly in the virtualenv, don't need to do anything return warn("Attempting to work in a virtualenv. If you encounter problems, please " "install IPython inside the virtualenv.") if sys.platform == "win32": virtual_env = os.path.join(os.environ['VIRTUAL_ENV'], 'Lib', 'site-packages') else: virtual_env = os.path.join(os.environ['VIRTUAL_ENV'], 'lib', 'python%d.%d' % sys.version_info[:2], 'site-packages') import site sys.path.insert(0, virtual_env) site.addsitedir(virtual_env) #------------------------------------------------------------------------- # Things related to injections into the sys module #------------------------------------------------------------------------- def save_sys_module_state(self): """Save the state of hooks in the sys module. This has to be called after self.user_module is created. """ self._orig_sys_module_state = {'stdin': sys.stdin, 'stdout': sys.stdout, 'stderr': sys.stderr, 'excepthook': sys.excepthook} self._orig_sys_modules_main_name = self.user_module.__name__ self._orig_sys_modules_main_mod = sys.modules.get(self.user_module.__name__) def restore_sys_module_state(self): """Restore the state of the sys module.""" try: for k, v in iteritems(self._orig_sys_module_state): setattr(sys, k, v) except AttributeError: pass # Reset what what done in self.init_sys_modules if self._orig_sys_modules_main_mod is not None: sys.modules[self._orig_sys_modules_main_name] = self._orig_sys_modules_main_mod #------------------------------------------------------------------------- # Things related to the banner #------------------------------------------------------------------------- @property def banner(self): banner = self.banner1 if self.profile and self.profile != 'default': banner += '\nIPython profile: %s\n' % self.profile if self.banner2: banner += '\n' + self.banner2 return banner def show_banner(self, banner=None): if banner is None: banner = self.banner self.write(banner) #------------------------------------------------------------------------- # Things related to hooks #------------------------------------------------------------------------- def init_hooks(self): # hooks holds pointers used for user-side customizations self.hooks = Struct() self.strdispatchers = {} # Set all default hooks, defined in the IPython.hooks module. hooks = IPython.core.hooks for hook_name in hooks.__all__: # default hooks have priority 100, i.e. low; user hooks should have # 0-100 priority self.set_hook(hook_name,getattr(hooks,hook_name), 100, _warn_deprecated=False) if self.display_page: self.set_hook('show_in_pager', page.as_hook(page.display_page), 90) def set_hook(self,name,hook, priority=50, str_key=None, re_key=None, _warn_deprecated=True): """set_hook(name,hook) -> sets an internal IPython hook. IPython exposes some of its internal API as user-modifiable hooks. By adding your function to one of these hooks, you can modify IPython's behavior to call at runtime your own routines.""" # At some point in the future, this should validate the hook before it # accepts it. Probably at least check that the hook takes the number # of args it's supposed to. f = types.MethodType(hook,self) # check if the hook is for strdispatcher first if str_key is not None: sdp = self.strdispatchers.get(name, StrDispatch()) sdp.add_s(str_key, f, priority ) self.strdispatchers[name] = sdp return if re_key is not None: sdp = self.strdispatchers.get(name, StrDispatch()) sdp.add_re(re.compile(re_key), f, priority ) self.strdispatchers[name] = sdp return dp = getattr(self.hooks, name, None) if name not in IPython.core.hooks.__all__: print("Warning! Hook '%s' is not one of %s" % \ (name, IPython.core.hooks.__all__ )) if _warn_deprecated and (name in IPython.core.hooks.deprecated): alternative = IPython.core.hooks.deprecated[name] warn("Hook {} is deprecated. Use {} instead.".format(name, alternative)) if not dp: dp = IPython.core.hooks.CommandChainDispatcher() try: dp.add(f,priority) except AttributeError: # it was not commandchain, plain old func - replace dp = f setattr(self.hooks,name, dp) #------------------------------------------------------------------------- # Things related to events #------------------------------------------------------------------------- def init_events(self): self.events = EventManager(self, available_events) self.events.register("pre_execute", self._clear_warning_registry) def register_post_execute(self, func): """DEPRECATED: Use ip.events.register('post_run_cell', func) Register a function for calling after code execution. """ warn("ip.register_post_execute is deprecated, use " "ip.events.register('post_run_cell', func) instead.") self.events.register('post_run_cell', func) def _clear_warning_registry(self): # clear the warning registry, so that different code blocks with # overlapping line number ranges don't cause spurious suppression of # warnings (see gh-6611 for details) if "__warningregistry__" in self.user_global_ns: del self.user_global_ns["__warningregistry__"] #------------------------------------------------------------------------- # Things related to the "main" module #------------------------------------------------------------------------- def new_main_mod(self, filename, modname): """Return a new 'main' module object for user code execution. ``filename`` should be the path of the script which will be run in the module. Requests with the same filename will get the same module, with its namespace cleared. ``modname`` should be the module name - normally either '__main__' or the basename of the file without the extension. When scripts are executed via %run, we must keep a reference to their __main__ module around so that Python doesn't clear it, rendering references to module globals useless. This method keeps said reference in a private dict, keyed by the absolute path of the script. This way, for multiple executions of the same script we only keep one copy of the namespace (the last one), thus preventing memory leaks from old references while allowing the objects from the last execution to be accessible. """ filename = os.path.abspath(filename) try: main_mod = self._main_mod_cache[filename] except KeyError: main_mod = self._main_mod_cache[filename] = types.ModuleType( py3compat.cast_bytes_py2(modname), doc="Module created for script run in IPython") else: main_mod.__dict__.clear() main_mod.__name__ = modname main_mod.__file__ = filename # It seems pydoc (and perhaps others) needs any module instance to # implement a __nonzero__ method main_mod.__nonzero__ = lambda : True return main_mod def clear_main_mod_cache(self): """Clear the cache of main modules. Mainly for use by utilities like %reset. Examples -------- In [15]: import IPython In [16]: m = _ip.new_main_mod(IPython.__file__, 'IPython') In [17]: len(_ip._main_mod_cache) > 0 Out[17]: True In [18]: _ip.clear_main_mod_cache() In [19]: len(_ip._main_mod_cache) == 0 Out[19]: True """ self._main_mod_cache.clear() #------------------------------------------------------------------------- # Things related to debugging #------------------------------------------------------------------------- def init_pdb(self): # Set calling of pdb on exceptions # self.call_pdb is a property self.call_pdb = self.pdb def _get_call_pdb(self): return self._call_pdb def _set_call_pdb(self,val): if val not in (0,1,False,True): raise ValueError('new call_pdb value must be boolean') # store value in instance self._call_pdb = val # notify the actual exception handlers self.InteractiveTB.call_pdb = val call_pdb = property(_get_call_pdb,_set_call_pdb,None, 'Control auto-activation of pdb at exceptions') def debugger(self,force=False): """Call the pydb/pdb debugger. Keywords: - force(False): by default, this routine checks the instance call_pdb flag and does not actually invoke the debugger if the flag is false. The 'force' option forces the debugger to activate even if the flag is false. """ if not (force or self.call_pdb): return if not hasattr(sys,'last_traceback'): error('No traceback has been produced, nothing to debug.') return # use pydb if available if debugger.has_pydb: from pydb import pm else: # fallback to our internal debugger pm = lambda : self.InteractiveTB.debugger(force=True) with self.readline_no_record: pm() #------------------------------------------------------------------------- # Things related to IPython's various namespaces #------------------------------------------------------------------------- default_user_namespaces = True def init_create_namespaces(self, user_module=None, user_ns=None): # Create the namespace where the user will operate. user_ns is # normally the only one used, and it is passed to the exec calls as # the locals argument. But we do carry a user_global_ns namespace # given as the exec 'globals' argument, This is useful in embedding # situations where the ipython shell opens in a context where the # distinction between locals and globals is meaningful. For # non-embedded contexts, it is just the same object as the user_ns dict. # FIXME. For some strange reason, __builtins__ is showing up at user # level as a dict instead of a module. This is a manual fix, but I # should really track down where the problem is coming from. Alex # Schmolck reported this problem first. # A useful post by Alex Martelli on this topic: # Re: inconsistent value from __builtins__ # Von: Alex Martelli <[email protected]> # Datum: Freitag 01 Oktober 2004 04:45:34 nachmittags/abends # Gruppen: comp.lang.python # Michael Hohn <[email protected]> wrote: # > >>> print type(builtin_check.get_global_binding('__builtins__')) # > <type 'dict'> # > >>> print type(__builtins__) # > <type 'module'> # > Is this difference in return value intentional? # Well, it's documented that '__builtins__' can be either a dictionary # or a module, and it's been that way for a long time. Whether it's # intentional (or sensible), I don't know. In any case, the idea is # that if you need to access the built-in namespace directly, you # should start with "import __builtin__" (note, no 's') which will # definitely give you a module. Yeah, it's somewhat confusing:-(. # These routines return a properly built module and dict as needed by # the rest of the code, and can also be used by extension writers to # generate properly initialized namespaces. if (user_ns is not None) or (user_module is not None): self.default_user_namespaces = False self.user_module, self.user_ns = self.prepare_user_module(user_module, user_ns) # A record of hidden variables we have added to the user namespace, so # we can list later only variables defined in actual interactive use. self.user_ns_hidden = {} # Now that FakeModule produces a real module, we've run into a nasty # problem: after script execution (via %run), the module where the user # code ran is deleted. Now that this object is a true module (needed # so doctest and other tools work correctly), the Python module # teardown mechanism runs over it, and sets to None every variable # present in that module. Top-level references to objects from the # script survive, because the user_ns is updated with them. However, # calling functions defined in the script that use other things from # the script will fail, because the function's closure had references # to the original objects, which are now all None. So we must protect # these modules from deletion by keeping a cache. # # To avoid keeping stale modules around (we only need the one from the # last run), we use a dict keyed with the full path to the script, so # only the last version of the module is held in the cache. Note, # however, that we must cache the module *namespace contents* (their # __dict__). Because if we try to cache the actual modules, old ones # (uncached) could be destroyed while still holding references (such as # those held by GUI objects that tend to be long-lived)> # # The %reset command will flush this cache. See the cache_main_mod() # and clear_main_mod_cache() methods for details on use. # This is the cache used for 'main' namespaces self._main_mod_cache = {} # A table holding all the namespaces IPython deals with, so that # introspection facilities can search easily. self.ns_table = {'user_global':self.user_module.__dict__, 'user_local':self.user_ns, 'builtin':builtin_mod.__dict__ } @property def user_global_ns(self): return self.user_module.__dict__ def prepare_user_module(self, user_module=None, user_ns=None): """Prepare the module and namespace in which user code will be run. When IPython is started normally, both parameters are None: a new module is created automatically, and its __dict__ used as the namespace. If only user_module is provided, its __dict__ is used as the namespace. If only user_ns is provided, a dummy module is created, and user_ns becomes the global namespace. If both are provided (as they may be when embedding), user_ns is the local namespace, and user_module provides the global namespace. Parameters ---------- user_module : module, optional The current user module in which IPython is being run. If None, a clean module will be created. user_ns : dict, optional A namespace in which to run interactive commands. Returns ------- A tuple of user_module and user_ns, each properly initialised. """ if user_module is None and user_ns is not None: user_ns.setdefault("__name__", "__main__") user_module = DummyMod() user_module.__dict__ = user_ns if user_module is None: user_module = types.ModuleType("__main__", doc="Automatically created module for IPython interactive environment") # We must ensure that __builtin__ (without the final 's') is always # available and pointing to the __builtin__ *module*. For more details: # http://mail.python.org/pipermail/python-dev/2001-April/014068.html user_module.__dict__.setdefault('__builtin__', builtin_mod) user_module.__dict__.setdefault('__builtins__', builtin_mod) if user_ns is None: user_ns = user_module.__dict__ return user_module, user_ns def init_sys_modules(self): # We need to insert into sys.modules something that looks like a # module but which accesses the IPython namespace, for shelve and # pickle to work interactively. Normally they rely on getting # everything out of __main__, but for embedding purposes each IPython # instance has its own private namespace, so we can't go shoving # everything into __main__. # note, however, that we should only do this for non-embedded # ipythons, which really mimic the __main__.__dict__ with their own # namespace. Embedded instances, on the other hand, should not do # this because they need to manage the user local/global namespaces # only, but they live within a 'normal' __main__ (meaning, they # shouldn't overtake the execution environment of the script they're # embedded in). # This is overridden in the InteractiveShellEmbed subclass to a no-op. main_name = self.user_module.__name__ sys.modules[main_name] = self.user_module def init_user_ns(self): """Initialize all user-visible namespaces to their minimum defaults. Certain history lists are also initialized here, as they effectively act as user namespaces. Notes ----- All data structures here are only filled in, they are NOT reset by this method. If they were not empty before, data will simply be added to therm. """ # This function works in two parts: first we put a few things in # user_ns, and we sync that contents into user_ns_hidden so that these # initial variables aren't shown by %who. After the sync, we add the # rest of what we *do* want the user to see with %who even on a new # session (probably nothing, so they really only see their own stuff) # The user dict must *always* have a __builtin__ reference to the # Python standard __builtin__ namespace, which must be imported. # This is so that certain operations in prompt evaluation can be # reliably executed with builtins. Note that we can NOT use # __builtins__ (note the 's'), because that can either be a dict or a # module, and can even mutate at runtime, depending on the context # (Python makes no guarantees on it). In contrast, __builtin__ is # always a module object, though it must be explicitly imported. # For more details: # http://mail.python.org/pipermail/python-dev/2001-April/014068.html ns = dict() # make global variables for user access to the histories ns['_ih'] = self.history_manager.input_hist_parsed ns['_oh'] = self.history_manager.output_hist ns['_dh'] = self.history_manager.dir_hist ns['_sh'] = shadowns # user aliases to input and output histories. These shouldn't show up # in %who, as they can have very large reprs. ns['In'] = self.history_manager.input_hist_parsed ns['Out'] = self.history_manager.output_hist # Store myself as the public api!!! ns['get_ipython'] = self.get_ipython ns['exit'] = self.exiter ns['quit'] = self.exiter # Sync what we've added so far to user_ns_hidden so these aren't seen # by %who self.user_ns_hidden.update(ns) # Anything put into ns now would show up in %who. Think twice before # putting anything here, as we really want %who to show the user their # stuff, not our variables. # Finally, update the real user's namespace self.user_ns.update(ns) @property def all_ns_refs(self): """Get a list of references to all the namespace dictionaries in which IPython might store a user-created object. Note that this does not include the displayhook, which also caches objects from the output.""" return [self.user_ns, self.user_global_ns, self.user_ns_hidden] + \ [m.__dict__ for m in self._main_mod_cache.values()] def reset(self, new_session=True): """Clear all internal namespaces, and attempt to release references to user objects. If new_session is True, a new history session will be opened. """ # Clear histories self.history_manager.reset(new_session) # Reset counter used to index all histories if new_session: self.execution_count = 1 # Flush cached output items if self.displayhook.do_full_cache: self.displayhook.flush() # The main execution namespaces must be cleared very carefully, # skipping the deletion of the builtin-related keys, because doing so # would cause errors in many object's __del__ methods. if self.user_ns is not self.user_global_ns: self.user_ns.clear() ns = self.user_global_ns drop_keys = set(ns.keys()) drop_keys.discard('__builtin__') drop_keys.discard('__builtins__') drop_keys.discard('__name__') for k in drop_keys: del ns[k] self.user_ns_hidden.clear() # Restore the user namespaces to minimal usability self.init_user_ns() # Restore the default and user aliases self.alias_manager.clear_aliases() self.alias_manager.init_aliases() # Flush the private list of module references kept for script # execution protection self.clear_main_mod_cache() def del_var(self, varname, by_name=False): """Delete a variable from the various namespaces, so that, as far as possible, we're not keeping any hidden references to it. Parameters ---------- varname : str The name of the variable to delete. by_name : bool If True, delete variables with the given name in each namespace. If False (default), find the variable in the user namespace, and delete references to it. """ if varname in ('__builtin__', '__builtins__'): raise ValueError("Refusing to delete %s" % varname) ns_refs = self.all_ns_refs if by_name: # Delete by name for ns in ns_refs: try: del ns[varname] except KeyError: pass else: # Delete by object try: obj = self.user_ns[varname] except KeyError: raise NameError("name '%s' is not defined" % varname) # Also check in output history ns_refs.append(self.history_manager.output_hist) for ns in ns_refs: to_delete = [n for n, o in iteritems(ns) if o is obj] for name in to_delete: del ns[name] # displayhook keeps extra references, but not in a dictionary for name in ('_', '__', '___'): if getattr(self.displayhook, name) is obj: setattr(self.displayhook, name, None) def reset_selective(self, regex=None): """Clear selective variables from internal namespaces based on a specified regular expression. Parameters ---------- regex : string or compiled pattern, optional A regular expression pattern that will be used in searching variable names in the users namespaces. """ if regex is not None: try: m = re.compile(regex) except TypeError: raise TypeError('regex must be a string or compiled pattern') # Search for keys in each namespace that match the given regex # If a match is found, delete the key/value pair. for ns in self.all_ns_refs: for var in ns: if m.search(var): del ns[var] def push(self, variables, interactive=True): """Inject a group of variables into the IPython user namespace. Parameters ---------- variables : dict, str or list/tuple of str The variables to inject into the user's namespace. If a dict, a simple update is done. If a str, the string is assumed to have variable names separated by spaces. A list/tuple of str can also be used to give the variable names. If just the variable names are give (list/tuple/str) then the variable values looked up in the callers frame. interactive : bool If True (default), the variables will be listed with the ``who`` magic. """ vdict = None # We need a dict of name/value pairs to do namespace updates. if isinstance(variables, dict): vdict = variables elif isinstance(variables, string_types+(list, tuple)): if isinstance(variables, string_types): vlist = variables.split() else: vlist = variables vdict = {} cf = sys._getframe(1) for name in vlist: try: vdict[name] = eval(name, cf.f_globals, cf.f_locals) except: print('Could not get variable %s from %s' % (name,cf.f_code.co_name)) else: raise ValueError('variables must be a dict/str/list/tuple') # Propagate variables to user namespace self.user_ns.update(vdict) # And configure interactive visibility user_ns_hidden = self.user_ns_hidden if interactive: for name in vdict: user_ns_hidden.pop(name, None) else: user_ns_hidden.update(vdict) def drop_by_id(self, variables): """Remove a dict of variables from the user namespace, if they are the same as the values in the dictionary. This is intended for use by extensions: variables that they've added can be taken back out if they are unloaded, without removing any that the user has overwritten. Parameters ---------- variables : dict A dictionary mapping object names (as strings) to the objects. """ for name, obj in iteritems(variables): if name in self.user_ns and self.user_ns[name] is obj: del self.user_ns[name] self.user_ns_hidden.pop(name, None) #------------------------------------------------------------------------- # Things related to object introspection #------------------------------------------------------------------------- def _ofind(self, oname, namespaces=None): """Find an object in the available namespaces. self._ofind(oname) -> dict with keys: found,obj,ospace,ismagic Has special code to detect magic functions. """ oname = oname.strip() #print '1- oname: <%r>' % oname # dbg if not oname.startswith(ESC_MAGIC) and \ not oname.startswith(ESC_MAGIC2) and \ not py3compat.isidentifier(oname, dotted=True): return dict(found=False) if namespaces is None: # Namespaces to search in: # Put them in a list. The order is important so that we # find things in the same order that Python finds them. namespaces = [ ('Interactive', self.user_ns), ('Interactive (global)', self.user_global_ns), ('Python builtin', builtin_mod.__dict__), ] # initialize results to 'null' found = False; obj = None; ospace = None; ismagic = False; isalias = False; parent = None # We need to special-case 'print', which as of python2.6 registers as a # function but should only be treated as one if print_function was # loaded with a future import. In this case, just bail. if (oname == 'print' and not py3compat.PY3 and not \ (self.compile.compiler_flags & __future__.CO_FUTURE_PRINT_FUNCTION)): return {'found':found, 'obj':obj, 'namespace':ospace, 'ismagic':ismagic, 'isalias':isalias, 'parent':parent} # Look for the given name by splitting it in parts. If the head is # found, then we look for all the remaining parts as members, and only # declare success if we can find them all. oname_parts = oname.split('.') oname_head, oname_rest = oname_parts[0],oname_parts[1:] for nsname,ns in namespaces: try: obj = ns[oname_head] except KeyError: continue else: #print 'oname_rest:', oname_rest # dbg for idx, part in enumerate(oname_rest): try: parent = obj # The last part is looked up in a special way to avoid # descriptor invocation as it may raise or have side # effects. if idx == len(oname_rest) - 1: obj = self._getattr_property(obj, part) else: obj = getattr(obj, part) except: # Blanket except b/c some badly implemented objects # allow __getattr__ to raise exceptions other than # AttributeError, which then crashes IPython. break else: # If we finish the for loop (no break), we got all members found = True ospace = nsname break # namespace loop # Try to see if it's magic if not found: obj = None if oname.startswith(ESC_MAGIC2): oname = oname.lstrip(ESC_MAGIC2) obj = self.find_cell_magic(oname) elif oname.startswith(ESC_MAGIC): oname = oname.lstrip(ESC_MAGIC) obj = self.find_line_magic(oname) else: # search without prefix, so run? will find %run? obj = self.find_line_magic(oname) if obj is None: obj = self.find_cell_magic(oname) if obj is not None: found = True ospace = 'IPython internal' ismagic = True isalias = isinstance(obj, Alias) # Last try: special-case some literals like '', [], {}, etc: if not found and oname_head in ["''",'""','[]','{}','()']: obj = eval(oname_head) found = True ospace = 'Interactive' return {'found':found, 'obj':obj, 'namespace':ospace, 'ismagic':ismagic, 'isalias':isalias, 'parent':parent} @staticmethod def _getattr_property(obj, attrname): """Property-aware getattr to use in object finding. If attrname represents a property, return it unevaluated (in case it has side effects or raises an error. """ if not isinstance(obj, type): try: # `getattr(type(obj), attrname)` is not guaranteed to return # `obj`, but does so for property: # # property.__get__(self, None, cls) -> self # # The universal alternative is to traverse the mro manually # searching for attrname in class dicts. attr = getattr(type(obj), attrname) except AttributeError: pass else: # This relies on the fact that data descriptors (with both # __get__ & __set__ magic methods) take precedence over # instance-level attributes: # # class A(object): # @property # def foobar(self): return 123 # a = A() # a.__dict__['foobar'] = 345 # a.foobar # == 123 # # So, a property may be returned right away. if isinstance(attr, property): return attr # Nothing helped, fall back. return getattr(obj, attrname) def _object_find(self, oname, namespaces=None): """Find an object and return a struct with info about it.""" return Struct(self._ofind(oname, namespaces)) def _inspect(self, meth, oname, namespaces=None, **kw): """Generic interface to the inspector system. This function is meant to be called by pdef, pdoc & friends.""" info = self._object_find(oname, namespaces) if info.found: pmethod = getattr(self.inspector, meth) formatter = format_screen if info.ismagic else None if meth == 'pdoc': pmethod(info.obj, oname, formatter) elif meth == 'pinfo': pmethod(info.obj, oname, formatter, info, **kw) else: pmethod(info.obj, oname) else: print('Object `%s` not found.' % oname) return 'not found' # so callers can take other action def object_inspect(self, oname, detail_level=0): """Get object info about oname""" with self.builtin_trap: info = self._object_find(oname) if info.found: return self.inspector.info(info.obj, oname, info=info, detail_level=detail_level ) else: return oinspect.object_info(name=oname, found=False) def object_inspect_text(self, oname, detail_level=0): """Get object info as formatted text""" with self.builtin_trap: info = self._object_find(oname) if info.found: return self.inspector._format_info(info.obj, oname, info=info, detail_level=detail_level ) else: raise KeyError(oname) #------------------------------------------------------------------------- # Things related to history management #------------------------------------------------------------------------- def init_history(self): """Sets up the command history, and starts regular autosaves.""" self.history_manager = HistoryManager(shell=self, parent=self) self.configurables.append(self.history_manager) #------------------------------------------------------------------------- # Things related to exception handling and tracebacks (not debugging) #------------------------------------------------------------------------- def init_traceback_handlers(self, custom_exceptions): # Syntax error handler. self.SyntaxTB = ultratb.SyntaxTB(color_scheme='NoColor') # The interactive one is initialized with an offset, meaning we always # want to remove the topmost item in the traceback, which is our own # internal code. Valid modes: ['Plain','Context','Verbose'] self.InteractiveTB = ultratb.AutoFormattedTB(mode = 'Plain', color_scheme='NoColor', tb_offset = 1, check_cache=check_linecache_ipython) # The instance will store a pointer to the system-wide exception hook, # so that runtime code (such as magics) can access it. This is because # during the read-eval loop, it may get temporarily overwritten. self.sys_excepthook = sys.excepthook # and add any custom exception handlers the user may have specified self.set_custom_exc(*custom_exceptions) # Set the exception mode self.InteractiveTB.set_mode(mode=self.xmode) def set_custom_exc(self, exc_tuple, handler): """set_custom_exc(exc_tuple,handler) Set a custom exception handler, which will be called if any of the exceptions in exc_tuple occur in the mainloop (specifically, in the run_code() method). Parameters ---------- exc_tuple : tuple of exception classes A *tuple* of exception classes, for which to call the defined handler. It is very important that you use a tuple, and NOT A LIST here, because of the way Python's except statement works. If you only want to trap a single exception, use a singleton tuple:: exc_tuple == (MyCustomException,) handler : callable handler must have the following signature:: def my_handler(self, etype, value, tb, tb_offset=None): ... return structured_traceback Your handler must return a structured traceback (a list of strings), or None. This will be made into an instance method (via types.MethodType) of IPython itself, and it will be called if any of the exceptions listed in the exc_tuple are caught. If the handler is None, an internal basic one is used, which just prints basic info. To protect IPython from crashes, if your handler ever raises an exception or returns an invalid result, it will be immediately disabled. WARNING: by putting in your own exception handler into IPython's main execution loop, you run a very good chance of nasty crashes. This facility should only be used if you really know what you are doing.""" assert type(exc_tuple)==type(()) , \ "The custom exceptions must be given AS A TUPLE." def dummy_handler(self,etype,value,tb,tb_offset=None): print('*** Simple custom exception handler ***') print('Exception type :',etype) print('Exception value:',value) print('Traceback :',tb) #print 'Source code :','\n'.join(self.buffer) def validate_stb(stb): """validate structured traceback return type return type of CustomTB *should* be a list of strings, but allow single strings or None, which are harmless. This function will *always* return a list of strings, and will raise a TypeError if stb is inappropriate. """ msg = "CustomTB must return list of strings, not %r" % stb if stb is None: return [] elif isinstance(stb, string_types): return [stb] elif not isinstance(stb, list): raise TypeError(msg) # it's a list for line in stb: # check every element if not isinstance(line, string_types): raise TypeError(msg) return stb if handler is None: wrapped = dummy_handler else: def wrapped(self,etype,value,tb,tb_offset=None): """wrap CustomTB handler, to protect IPython from user code This makes it harder (but not impossible) for custom exception handlers to crash IPython. """ try: stb = handler(self,etype,value,tb,tb_offset=tb_offset) return validate_stb(stb) except: # clear custom handler immediately self.set_custom_exc((), None) print("Custom TB Handler failed, unregistering", file=io.stderr) # show the exception in handler first stb = self.InteractiveTB.structured_traceback(*sys.exc_info()) print(self.InteractiveTB.stb2text(stb), file=io.stdout) print("The original exception:", file=io.stdout) stb = self.InteractiveTB.structured_traceback( (etype,value,tb), tb_offset=tb_offset ) return stb self.CustomTB = types.MethodType(wrapped,self) self.custom_exceptions = exc_tuple def excepthook(self, etype, value, tb): """One more defense for GUI apps that call sys.excepthook. GUI frameworks like wxPython trap exceptions and call sys.excepthook themselves. I guess this is a feature that enables them to keep running after exceptions that would otherwise kill their mainloop. This is a bother for IPython which excepts to catch all of the program exceptions with a try: except: statement. Normally, IPython sets sys.excepthook to a CrashHandler instance, so if any app directly invokes sys.excepthook, it will look to the user like IPython crashed. In order to work around this, we can disable the CrashHandler and replace it with this excepthook instead, which prints a regular traceback using our InteractiveTB. In this fashion, apps which call sys.excepthook will generate a regular-looking exception from IPython, and the CrashHandler will only be triggered by real IPython crashes. This hook should be used sparingly, only in places which are not likely to be true IPython errors. """ self.showtraceback((etype, value, tb), tb_offset=0) def _get_exc_info(self, exc_tuple=None): """get exc_info from a given tuple, sys.exc_info() or sys.last_type etc. Ensures sys.last_type,value,traceback hold the exc_info we found, from whichever source. raises ValueError if none of these contain any information """ if exc_tuple is None: etype, value, tb = sys.exc_info() else: etype, value, tb = exc_tuple if etype is None: if hasattr(sys, 'last_type'): etype, value, tb = sys.last_type, sys.last_value, \ sys.last_traceback if etype is None: raise ValueError("No exception to find") # Now store the exception info in sys.last_type etc. # WARNING: these variables are somewhat deprecated and not # necessarily safe to use in a threaded environment, but tools # like pdb depend on their existence, so let's set them. If we # find problems in the field, we'll need to revisit their use. sys.last_type = etype sys.last_value = value sys.last_traceback = tb return etype, value, tb def show_usage_error(self, exc): """Show a short message for UsageErrors These are special exceptions that shouldn't show a traceback. """ self.write_err("UsageError: %s" % exc) def get_exception_only(self, exc_tuple=None): """ Return as a string (ending with a newline) the exception that just occurred, without any traceback. """ etype, value, tb = self._get_exc_info(exc_tuple) msg = traceback.format_exception_only(etype, value) return ''.join(msg) def showtraceback(self, exc_tuple=None, filename=None, tb_offset=None, exception_only=False): """Display the exception that just occurred. If nothing is known about the exception, this is the method which should be used throughout the code for presenting user tracebacks, rather than directly invoking the InteractiveTB object. A specific showsyntaxerror() also exists, but this method can take care of calling it if needed, so unless you are explicitly catching a SyntaxError exception, don't try to analyze the stack manually and simply call this method.""" try: try: etype, value, tb = self._get_exc_info(exc_tuple) except ValueError: self.write_err('No traceback available to show.\n') return if issubclass(etype, SyntaxError): # Though this won't be called by syntax errors in the input # line, there may be SyntaxError cases with imported code. self.showsyntaxerror(filename) elif etype is UsageError: self.show_usage_error(value) else: if exception_only: stb = ['An exception has occurred, use %tb to see ' 'the full traceback.\n'] stb.extend(self.InteractiveTB.get_exception_only(etype, value)) else: try: # Exception classes can customise their traceback - we # use this in IPython.parallel for exceptions occurring # in the engines. This should return a list of strings. stb = value._render_traceback_() except Exception: stb = self.InteractiveTB.structured_traceback(etype, value, tb, tb_offset=tb_offset) self._showtraceback(etype, value, stb) if self.call_pdb: # drop into debugger self.debugger(force=True) return # Actually show the traceback self._showtraceback(etype, value, stb) except KeyboardInterrupt: self.write_err('\n' + self.get_exception_only()) def _showtraceback(self, etype, evalue, stb): """Actually show a traceback. Subclasses may override this method to put the traceback on a different place, like a side channel. """ print(self.InteractiveTB.stb2text(stb), file=io.stdout) def showsyntaxerror(self, filename=None): """Display the syntax error that just occurred. This doesn't display a stack trace because there isn't one. If a filename is given, it is stuffed in the exception instead of what was there before (because Python's parser always uses "<string>" when reading from a string). """ etype, value, last_traceback = self._get_exc_info() if filename and issubclass(etype, SyntaxError): try: value.filename = filename except: # Not the format we expect; leave it alone pass stb = self.SyntaxTB.structured_traceback(etype, value, []) self._showtraceback(etype, value, stb) # This is overridden in TerminalInteractiveShell to show a message about # the %paste magic. def showindentationerror(self): """Called by run_cell when there's an IndentationError in code entered at the prompt. This is overridden in TerminalInteractiveShell to show a message about the %paste magic.""" self.showsyntaxerror() #------------------------------------------------------------------------- # Things related to readline #------------------------------------------------------------------------- def init_readline(self): """Moved to terminal subclass, here only to simplify the init logic.""" self.readline = None # Set a number of methods that depend on readline to be no-op self.readline_no_record = NoOpContext() self.set_readline_completer = no_op self.set_custom_completer = no_op @skip_doctest def set_next_input(self, s, replace=False): """ Sets the 'default' input string for the next command line. Example:: In [1]: _ip.set_next_input("Hello Word") In [2]: Hello Word_ # cursor is here """ self.rl_next_input = py3compat.cast_bytes_py2(s) def _indent_current_str(self): """return the current level of indentation as a string""" return self.input_splitter.indent_spaces * ' ' #------------------------------------------------------------------------- # Things related to text completion #------------------------------------------------------------------------- def init_completer(self): """Initialize the completion machinery. This creates completion machinery that can be used by client code, either interactively in-process (typically triggered by the readline library), programmatically (such as in test suites) or out-of-process (typically over the network by remote frontends). """ from IPython.core.completer import IPCompleter from IPython.core.completerlib import (module_completer, magic_run_completer, cd_completer, reset_completer) self.Completer = IPCompleter(shell=self, namespace=self.user_ns, global_namespace=self.user_global_ns, use_readline=self.has_readline, parent=self, ) self.configurables.append(self.Completer) # Add custom completers to the basic ones built into IPCompleter sdisp = self.strdispatchers.get('complete_command', StrDispatch()) self.strdispatchers['complete_command'] = sdisp self.Completer.custom_completers = sdisp self.set_hook('complete_command', module_completer, str_key = 'import') self.set_hook('complete_command', module_completer, str_key = 'from') self.set_hook('complete_command', module_completer, str_key = '%aimport') self.set_hook('complete_command', magic_run_completer, str_key = '%run') self.set_hook('complete_command', cd_completer, str_key = '%cd') self.set_hook('complete_command', reset_completer, str_key = '%reset') def complete(self, text, line=None, cursor_pos=None): """Return the completed text and a list of completions. Parameters ---------- text : string A string of text to be completed on. It can be given as empty and instead a line/position pair are given. In this case, the completer itself will split the line like readline does. line : string, optional The complete line that text is part of. cursor_pos : int, optional The position of the cursor on the input line. Returns ------- text : string The actual text that was completed. matches : list A sorted list with all possible completions. The optional arguments allow the completion to take more context into account, and are part of the low-level completion API. This is a wrapper around the completion mechanism, similar to what readline does at the command line when the TAB key is hit. By exposing it as a method, it can be used by other non-readline environments (such as GUIs) for text completion. Simple usage example: In [1]: x = 'hello' In [2]: _ip.complete('x.l') Out[2]: ('x.l', ['x.ljust', 'x.lower', 'x.lstrip']) """ # Inject names into __builtin__ so we can complete on the added names. with self.builtin_trap: return self.Completer.complete(text, line, cursor_pos) def set_custom_completer(self, completer, pos=0): """Adds a new custom completer function. The position argument (defaults to 0) is the index in the completers list where you want the completer to be inserted.""" newcomp = types.MethodType(completer,self.Completer) self.Completer.matchers.insert(pos,newcomp) def set_completer_frame(self, frame=None): """Set the frame of the completer.""" if frame: self.Completer.namespace = frame.f_locals self.Completer.global_namespace = frame.f_globals else: self.Completer.namespace = self.user_ns self.Completer.global_namespace = self.user_global_ns #------------------------------------------------------------------------- # Things related to magics #------------------------------------------------------------------------- def init_magics(self): from IPython.core import magics as m self.magics_manager = magic.MagicsManager(shell=self, parent=self, user_magics=m.UserMagics(self)) self.configurables.append(self.magics_manager) # Expose as public API from the magics manager self.register_magics = self.magics_manager.register self.define_magic = self.magics_manager.define_magic self.register_magics(m.AutoMagics, m.BasicMagics, m.CodeMagics, m.ConfigMagics, m.DeprecatedMagics, m.DisplayMagics, m.ExecutionMagics, m.ExtensionMagics, m.HistoryMagics, m.LoggingMagics, m.NamespaceMagics, m.OSMagics, m.PylabMagics, m.ScriptMagics, ) # Register Magic Aliases mman = self.magics_manager # FIXME: magic aliases should be defined by the Magics classes # or in MagicsManager, not here mman.register_alias('ed', 'edit') mman.register_alias('hist', 'history') mman.register_alias('rep', 'recall') mman.register_alias('SVG', 'svg', 'cell') mman.register_alias('HTML', 'html', 'cell') mman.register_alias('file', 'writefile', 'cell') # FIXME: Move the color initialization to the DisplayHook, which # should be split into a prompt manager and displayhook. We probably # even need a centralize colors management object. self.magic('colors %s' % self.colors) # Defined here so that it's included in the documentation @functools.wraps(magic.MagicsManager.register_function) def register_magic_function(self, func, magic_kind='line', magic_name=None): self.magics_manager.register_function(func, magic_kind=magic_kind, magic_name=magic_name) def run_line_magic(self, magic_name, line): """Execute the given line magic. Parameters ---------- magic_name : str Name of the desired magic function, without '%' prefix. line : str The rest of the input line as a single string. """ fn = self.find_line_magic(magic_name) if fn is None: cm = self.find_cell_magic(magic_name) etpl = "Line magic function `%%%s` not found%s." extra = '' if cm is None else (' (But cell magic `%%%%%s` exists, ' 'did you mean that instead?)' % magic_name ) error(etpl % (magic_name, extra)) else: # Note: this is the distance in the stack to the user's frame. # This will need to be updated if the internal calling logic gets # refactored, or else we'll be expanding the wrong variables. stack_depth = 2 magic_arg_s = self.var_expand(line, stack_depth) # Put magic args in a list so we can call with f(*a) syntax args = [magic_arg_s] kwargs = {} # Grab local namespace if we need it: if getattr(fn, "needs_local_scope", False): kwargs['local_ns'] = sys._getframe(stack_depth).f_locals with self.builtin_trap: result = fn(*args,**kwargs) return result def run_cell_magic(self, magic_name, line, cell): """Execute the given cell magic. Parameters ---------- magic_name : str Name of the desired magic function, without '%' prefix. line : str The rest of the first input line as a single string. cell : str The body of the cell as a (possibly multiline) string. """ fn = self.find_cell_magic(magic_name) if fn is None: lm = self.find_line_magic(magic_name) etpl = "Cell magic `%%{0}` not found{1}." extra = '' if lm is None else (' (But line magic `%{0}` exists, ' 'did you mean that instead?)'.format(magic_name)) error(etpl.format(magic_name, extra)) elif cell == '': message = '%%{0} is a cell magic, but the cell body is empty.'.format(magic_name) if self.find_line_magic(magic_name) is not None: message += ' Did you mean the line magic %{0} (single %)?'.format(magic_name) raise UsageError(message) else: # Note: this is the distance in the stack to the user's frame. # This will need to be updated if the internal calling logic gets # refactored, or else we'll be expanding the wrong variables. stack_depth = 2 magic_arg_s = self.var_expand(line, stack_depth) with self.builtin_trap: result = fn(magic_arg_s, cell) return result def find_line_magic(self, magic_name): """Find and return a line magic by name. Returns None if the magic isn't found.""" return self.magics_manager.magics['line'].get(magic_name) def find_cell_magic(self, magic_name): """Find and return a cell magic by name. Returns None if the magic isn't found.""" return self.magics_manager.magics['cell'].get(magic_name) def find_magic(self, magic_name, magic_kind='line'): """Find and return a magic of the given type by name. Returns None if the magic isn't found.""" return self.magics_manager.magics[magic_kind].get(magic_name) def magic(self, arg_s): """DEPRECATED. Use run_line_magic() instead. Call a magic function by name. Input: a string containing the name of the magic function to call and any additional arguments to be passed to the magic. magic('name -opt foo bar') is equivalent to typing at the ipython prompt: In[1]: %name -opt foo bar To call a magic without arguments, simply use magic('name'). This provides a proper Python function to call IPython's magics in any valid Python code you can type at the interpreter, including loops and compound statements. """ # TODO: should we issue a loud deprecation warning here? magic_name, _, magic_arg_s = arg_s.partition(' ') magic_name = magic_name.lstrip(prefilter.ESC_MAGIC) return self.run_line_magic(magic_name, magic_arg_s) #------------------------------------------------------------------------- # Things related to macros #------------------------------------------------------------------------- def define_macro(self, name, themacro): """Define a new macro Parameters ---------- name : str The name of the macro. themacro : str or Macro The action to do upon invoking the macro. If a string, a new Macro object is created by passing the string to it. """ from IPython.core import macro if isinstance(themacro, string_types): themacro = macro.Macro(themacro) if not isinstance(themacro, macro.Macro): raise ValueError('A macro must be a string or a Macro instance.') self.user_ns[name] = themacro #------------------------------------------------------------------------- # Things related to the running of system commands #------------------------------------------------------------------------- def system_piped(self, cmd): """Call the given cmd in a subprocess, piping stdout/err Parameters ---------- cmd : str Command to execute (can not end in '&', as background processes are not supported. Should not be a command that expects input other than simple text. """ if cmd.rstrip().endswith('&'): # this is *far* from a rigorous test # We do not support backgrounding processes because we either use # pexpect or pipes to read from. Users can always just call # os.system() or use ip.system=ip.system_raw # if they really want a background process. raise OSError("Background processes not supported.") # we explicitly do NOT return the subprocess status code, because # a non-None value would trigger :func:`sys.displayhook` calls. # Instead, we store the exit_code in user_ns. self.user_ns['_exit_code'] = system(self.var_expand(cmd, depth=1)) def system_raw(self, cmd): """Call the given cmd in a subprocess using os.system on Windows or subprocess.call using the system shell on other platforms. Parameters ---------- cmd : str Command to execute. """ cmd = self.var_expand(cmd, depth=1) # protect os.system from UNC paths on Windows, which it can't handle: if sys.platform == 'win32': from IPython.utils._process_win32 import AvoidUNCPath with AvoidUNCPath() as path: if path is not None: cmd = '"pushd %s &&"%s' % (path, cmd) cmd = py3compat.unicode_to_str(cmd) try: ec = os.system(cmd) except KeyboardInterrupt: self.write_err('\n' + self.get_exception_only()) ec = -2 else: cmd = py3compat.unicode_to_str(cmd) # For posix the result of the subprocess.call() below is an exit # code, which by convention is zero for success, positive for # program failure. Exit codes above 128 are reserved for signals, # and the formula for converting a signal to an exit code is usually # signal_number+128. To more easily differentiate between exit # codes and signals, ipython uses negative numbers. For instance # since control-c is signal 2 but exit code 130, ipython's # _exit_code variable will read -2. Note that some shells like # csh and fish don't follow sh/bash conventions for exit codes. executable = os.environ.get('SHELL', None) try: # Use env shell instead of default /bin/sh ec = subprocess.call(cmd, shell=True, executable=executable) except KeyboardInterrupt: # intercept control-C; a long traceback is not useful here self.write_err('\n' + self.get_exception_only()) ec = 130 if ec > 128: ec = -(ec - 128) # We explicitly do NOT return the subprocess status code, because # a non-None value would trigger :func:`sys.displayhook` calls. # Instead, we store the exit_code in user_ns. Note the semantics # of _exit_code: for control-c, _exit_code == -signal.SIGNIT, # but raising SystemExit(_exit_code) will give status 254! self.user_ns['_exit_code'] = ec # use piped system by default, because it is better behaved system = system_piped def getoutput(self, cmd, split=True, depth=0): """Get output (possibly including stderr) from a subprocess. Parameters ---------- cmd : str Command to execute (can not end in '&', as background processes are not supported. split : bool, optional If True, split the output into an IPython SList. Otherwise, an IPython LSString is returned. These are objects similar to normal lists and strings, with a few convenience attributes for easier manipulation of line-based output. You can use '?' on them for details. depth : int, optional How many frames above the caller are the local variables which should be expanded in the command string? The default (0) assumes that the expansion variables are in the stack frame calling this function. """ if cmd.rstrip().endswith('&'): # this is *far* from a rigorous test raise OSError("Background processes not supported.") out = getoutput(self.var_expand(cmd, depth=depth+1)) if split: out = SList(out.splitlines()) else: out = LSString(out) return out #------------------------------------------------------------------------- # Things related to aliases #------------------------------------------------------------------------- def init_alias(self): self.alias_manager = AliasManager(shell=self, parent=self) self.configurables.append(self.alias_manager) #------------------------------------------------------------------------- # Things related to extensions #------------------------------------------------------------------------- def init_extension_manager(self): self.extension_manager = ExtensionManager(shell=self, parent=self) self.configurables.append(self.extension_manager) #------------------------------------------------------------------------- # Things related to payloads #------------------------------------------------------------------------- def init_payload(self): self.payload_manager = PayloadManager(parent=self) self.configurables.append(self.payload_manager) #------------------------------------------------------------------------- # Things related to the prefilter #------------------------------------------------------------------------- def init_prefilter(self): self.prefilter_manager = PrefilterManager(shell=self, parent=self) self.configurables.append(self.prefilter_manager) # Ultimately this will be refactored in the new interpreter code, but # for now, we should expose the main prefilter method (there's legacy # code out there that may rely on this). self.prefilter = self.prefilter_manager.prefilter_lines def auto_rewrite_input(self, cmd): """Print to the screen the rewritten form of the user's command. This shows visual feedback by rewriting input lines that cause automatic calling to kick in, like:: /f x into:: ------> f(x) after the user's input prompt. This helps the user understand that the input line was transformed automatically by IPython. """ if not self.show_rewritten_input: return rw = self.prompt_manager.render('rewrite') + cmd try: # plain ascii works better w/ pyreadline, on some machines, so # we use it and only print uncolored rewrite if we have unicode rw = str(rw) print(rw, file=io.stdout) except UnicodeEncodeError: print("------> " + cmd) #------------------------------------------------------------------------- # Things related to extracting values/expressions from kernel and user_ns #------------------------------------------------------------------------- def _user_obj_error(self): """return simple exception dict for use in user_expressions """ etype, evalue, tb = self._get_exc_info() stb = self.InteractiveTB.get_exception_only(etype, evalue) exc_info = { u'status' : 'error', u'traceback' : stb, u'ename' : unicode_type(etype.__name__), u'evalue' : py3compat.safe_unicode(evalue), } return exc_info def _format_user_obj(self, obj): """format a user object to display dict for use in user_expressions """ data, md = self.display_formatter.format(obj) value = { 'status' : 'ok', 'data' : data, 'metadata' : md, } return value def user_expressions(self, expressions): """Evaluate a dict of expressions in the user's namespace. Parameters ---------- expressions : dict A dict with string keys and string values. The expression values should be valid Python expressions, each of which will be evaluated in the user namespace. Returns ------- A dict, keyed like the input expressions dict, with the rich mime-typed display_data of each value. """ out = {} user_ns = self.user_ns global_ns = self.user_global_ns for key, expr in iteritems(expressions): try: value = self._format_user_obj(eval(expr, global_ns, user_ns)) except: value = self._user_obj_error() out[key] = value return out #------------------------------------------------------------------------- # Things related to the running of code #------------------------------------------------------------------------- def ex(self, cmd): """Execute a normal python statement in user namespace.""" with self.builtin_trap: exec(cmd, self.user_global_ns, self.user_ns) def ev(self, expr): """Evaluate python expression expr in user namespace. Returns the result of evaluation """ with self.builtin_trap: return eval(expr, self.user_global_ns, self.user_ns) def safe_execfile(self, fname, *where, **kw): """A safe version of the builtin execfile(). This version will never throw an exception, but instead print helpful error messages to the screen. This only works on pure Python files with the .py extension. Parameters ---------- fname : string The name of the file to be executed. where : tuple One or two namespaces, passed to execfile() as (globals,locals). If only one is given, it is passed as both. exit_ignore : bool (False) If True, then silence SystemExit for non-zero status (it is always silenced for zero status, as it is so common). raise_exceptions : bool (False) If True raise exceptions everywhere. Meant for testing. shell_futures : bool (False) If True, the code will share future statements with the interactive shell. It will both be affected by previous __future__ imports, and any __future__ imports in the code will affect the shell. If False, __future__ imports are not shared in either direction. """ kw.setdefault('exit_ignore', False) kw.setdefault('raise_exceptions', False) kw.setdefault('shell_futures', False) fname = os.path.abspath(os.path.expanduser(fname)) # Make sure we can open the file try: with open(fname): pass except: warn('Could not open file <%s> for safe execution.' % fname) return # Find things also in current directory. This is needed to mimic the # behavior of running a script from the system command line, where # Python inserts the script's directory into sys.path dname = os.path.dirname(fname) with prepended_to_syspath(dname): try: glob, loc = (where + (None, ))[:2] py3compat.execfile( fname, glob, loc, self.compile if kw['shell_futures'] else None) except SystemExit as status: # If the call was made with 0 or None exit status (sys.exit(0) # or sys.exit() ), don't bother showing a traceback, as both of # these are considered normal by the OS: # > python -c'import sys;sys.exit(0)'; echo $? # 0 # > python -c'import sys;sys.exit()'; echo $? # 0 # For other exit status, we show the exception unless # explicitly silenced, but only in short form. if status.code: if kw['raise_exceptions']: raise if not kw['exit_ignore']: self.showtraceback(exception_only=True) except: if kw['raise_exceptions']: raise # tb offset is 2 because we wrap execfile self.showtraceback(tb_offset=2) def safe_execfile_ipy(self, fname, shell_futures=False, raise_exceptions=False): """Like safe_execfile, but for .ipy or .ipynb files with IPython syntax. Parameters ---------- fname : str The name of the file to execute. The filename must have a .ipy or .ipynb extension. shell_futures : bool (False) If True, the code will share future statements with the interactive shell. It will both be affected by previous __future__ imports, and any __future__ imports in the code will affect the shell. If False, __future__ imports are not shared in either direction. raise_exceptions : bool (False) If True raise exceptions everywhere. Meant for testing. """ fname = os.path.abspath(os.path.expanduser(fname)) # Make sure we can open the file try: with open(fname): pass except: warn('Could not open file <%s> for safe execution.' % fname) return # Find things also in current directory. This is needed to mimic the # behavior of running a script from the system command line, where # Python inserts the script's directory into sys.path dname = os.path.dirname(fname) def get_cells(): """generator for sequence of code blocks to run""" if fname.endswith('.ipynb'): from nbformat import read with io_open(fname) as f: nb = read(f, as_version=4) if not nb.cells: return for cell in nb.cells: if cell.cell_type == 'code': yield cell.source else: with open(fname) as f: yield f.read() with prepended_to_syspath(dname): try: for cell in get_cells(): result = self.run_cell(cell, silent=True, shell_futures=shell_futures) if raise_exceptions: result.raise_error() elif not result.success: break except: if raise_exceptions: raise self.showtraceback() warn('Unknown failure executing file: <%s>' % fname) def safe_run_module(self, mod_name, where): """A safe version of runpy.run_module(). This version will never throw an exception, but instead print helpful error messages to the screen. `SystemExit` exceptions with status code 0 or None are ignored. Parameters ---------- mod_name : string The name of the module to be executed. where : dict The globals namespace. """ try: try: where.update( runpy.run_module(str(mod_name), run_name="__main__", alter_sys=True) ) except SystemExit as status: if status.code: raise except: self.showtraceback() warn('Unknown failure executing module: <%s>' % mod_name) def run_cell(self, raw_cell, store_history=False, silent=False, shell_futures=True): """Run a complete IPython cell. Parameters ---------- raw_cell : str The code (including IPython code such as %magic functions) to run. store_history : bool If True, the raw and translated cell will be stored in IPython's history. For user code calling back into IPython's machinery, this should be set to False. silent : bool If True, avoid side-effects, such as implicit displayhooks and and logging. silent=True forces store_history=False. shell_futures : bool If True, the code will share future statements with the interactive shell. It will both be affected by previous __future__ imports, and any __future__ imports in the code will affect the shell. If False, __future__ imports are not shared in either direction. Returns ------- result : :class:`ExecutionResult` """ result = ExecutionResult() if (not raw_cell) or raw_cell.isspace(): return result if silent: store_history = False if store_history: result.execution_count = self.execution_count def error_before_exec(value): result.error_before_exec = value return result self.events.trigger('pre_execute') if not silent: self.events.trigger('pre_run_cell') # If any of our input transformation (input_transformer_manager or # prefilter_manager) raises an exception, we store it in this variable # so that we can display the error after logging the input and storing # it in the history. preprocessing_exc_tuple = None try: # Static input transformations cell = self.input_transformer_manager.transform_cell(raw_cell) except SyntaxError: preprocessing_exc_tuple = sys.exc_info() cell = raw_cell # cell has to exist so it can be stored/logged else: if len(cell.splitlines()) == 1: # Dynamic transformations - only applied for single line commands with self.builtin_trap: try: # use prefilter_lines to handle trailing newlines # restore trailing newline for ast.parse cell = self.prefilter_manager.prefilter_lines(cell) + '\n' except Exception: # don't allow prefilter errors to crash IPython preprocessing_exc_tuple = sys.exc_info() # Store raw and processed history if store_history: self.history_manager.store_inputs(self.execution_count, cell, raw_cell) if not silent: self.logger.log(cell, raw_cell) # Display the exception if input processing failed. if preprocessing_exc_tuple is not None: self.showtraceback(preprocessing_exc_tuple) if store_history: self.execution_count += 1 return error_before_exec(preprocessing_exc_tuple[2]) # Our own compiler remembers the __future__ environment. If we want to # run code with a separate __future__ environment, use the default # compiler compiler = self.compile if shell_futures else CachingCompiler() with self.builtin_trap: cell_name = self.compile.cache(cell, self.execution_count) with self.display_trap: # Compile to bytecode try: code_ast = compiler.ast_parse(cell, filename=cell_name) except IndentationError as e: self.showindentationerror() if store_history: self.execution_count += 1 return error_before_exec(e) except (OverflowError, SyntaxError, ValueError, TypeError, MemoryError) as e: self.showsyntaxerror() if store_history: self.execution_count += 1 return error_before_exec(e) # Apply AST transformations try: code_ast = self.transform_ast(code_ast) except InputRejected as e: self.showtraceback() if store_history: self.execution_count += 1 return error_before_exec(e) # Give the displayhook a reference to our ExecutionResult so it # can fill in the output value. self.displayhook.exec_result = result # Execute the user code interactivity = "none" if silent else self.ast_node_interactivity self.run_ast_nodes(code_ast.body, cell_name, interactivity=interactivity, compiler=compiler, result=result) # Reset this so later displayed values do not modify the # ExecutionResult self.displayhook.exec_result = None self.events.trigger('post_execute') if not silent: self.events.trigger('post_run_cell') if store_history: # Write output to the database. Does nothing unless # history output logging is enabled. self.history_manager.store_output(self.execution_count) # Each cell is a *single* input, regardless of how many lines it has self.execution_count += 1 return result def transform_ast(self, node): """Apply the AST transformations from self.ast_transformers Parameters ---------- node : ast.Node The root node to be transformed. Typically called with the ast.Module produced by parsing user input. Returns ------- An ast.Node corresponding to the node it was called with. Note that it may also modify the passed object, so don't rely on references to the original AST. """ for transformer in self.ast_transformers: try: node = transformer.visit(node) except InputRejected: # User-supplied AST transformers can reject an input by raising # an InputRejected. Short-circuit in this case so that we # don't unregister the transform. raise except Exception: warn("AST transformer %r threw an error. It will be unregistered." % transformer) self.ast_transformers.remove(transformer) if self.ast_transformers: ast.fix_missing_locations(node) return node def run_ast_nodes(self, nodelist, cell_name, interactivity='last_expr', compiler=compile, result=None): """Run a sequence of AST nodes. The execution mode depends on the interactivity parameter. Parameters ---------- nodelist : list A sequence of AST nodes to run. cell_name : str Will be passed to the compiler as the filename of the cell. Typically the value returned by ip.compile.cache(cell). interactivity : str 'all', 'last', 'last_expr' or 'none', specifying which nodes should be run interactively (displaying output from expressions). 'last_expr' will run the last node interactively only if it is an expression (i.e. expressions in loops or other blocks are not displayed. Other values for this parameter will raise a ValueError. compiler : callable A function with the same interface as the built-in compile(), to turn the AST nodes into code objects. Default is the built-in compile(). result : ExecutionResult, optional An object to store exceptions that occur during execution. Returns ------- True if an exception occurred while running code, False if it finished running. """ if not nodelist: return if interactivity == 'last_expr': if isinstance(nodelist[-1], ast.Expr): interactivity = "last" else: interactivity = "none" if interactivity == 'none': to_run_exec, to_run_interactive = nodelist, [] elif interactivity == 'last': to_run_exec, to_run_interactive = nodelist[:-1], nodelist[-1:] elif interactivity == 'all': to_run_exec, to_run_interactive = [], nodelist else: raise ValueError("Interactivity was %r" % interactivity) try: for i, node in enumerate(to_run_exec): mod = ast.Module([node]) code = compiler(mod, cell_name, "exec") if self.run_code(code, result): return True for i, node in enumerate(to_run_interactive): mod = ast.Interactive([node]) code = compiler(mod, cell_name, "single") if self.run_code(code, result): return True # Flush softspace if softspace(sys.stdout, 0): print() except: # It's possible to have exceptions raised here, typically by # compilation of odd code (such as a naked 'return' outside a # function) that did parse but isn't valid. Typically the exception # is a SyntaxError, but it's safest just to catch anything and show # the user a traceback. # We do only one try/except outside the loop to minimize the impact # on runtime, and also because if any node in the node list is # broken, we should stop execution completely. if result: result.error_before_exec = sys.exc_info()[1] self.showtraceback() return True return False def run_code(self, code_obj, result=None): """Execute a code object. When an exception occurs, self.showtraceback() is called to display a traceback. Parameters ---------- code_obj : code object A compiled code object, to be executed result : ExecutionResult, optional An object to store exceptions that occur during execution. Returns ------- False : successful execution. True : an error occurred. """ # Set our own excepthook in case the user code tries to call it # directly, so that the IPython crash handler doesn't get triggered old_excepthook, sys.excepthook = sys.excepthook, self.excepthook # we save the original sys.excepthook in the instance, in case config # code (such as magics) needs access to it. self.sys_excepthook = old_excepthook outflag = 1 # happens in more places, so it's easier as default try: try: self.hooks.pre_run_code_hook() #rprint('Running code', repr(code_obj)) # dbg exec(code_obj, self.user_global_ns, self.user_ns) finally: # Reset our crash handler in place sys.excepthook = old_excepthook except SystemExit as e: if result is not None: result.error_in_exec = e self.showtraceback(exception_only=True) warn("To exit: use 'exit', 'quit', or Ctrl-D.", level=1) except self.custom_exceptions: etype, value, tb = sys.exc_info() if result is not None: result.error_in_exec = value self.CustomTB(etype, value, tb) except: if result is not None: result.error_in_exec = sys.exc_info()[1] self.showtraceback() else: outflag = 0 return outflag # For backwards compatibility runcode = run_code #------------------------------------------------------------------------- # Things related to GUI support and pylab #------------------------------------------------------------------------- def enable_gui(self, gui=None): raise NotImplementedError('Implement enable_gui in a subclass') def enable_matplotlib(self, gui=None): """Enable interactive matplotlib and inline figure support. This takes the following steps: 1. select the appropriate eventloop and matplotlib backend 2. set up matplotlib for interactive use with that backend 3. configure formatters for inline figure display 4. enable the selected gui eventloop Parameters ---------- gui : optional, string If given, dictates the choice of matplotlib GUI backend to use (should be one of IPython's supported backends, 'qt', 'osx', 'tk', 'gtk', 'wx' or 'inline'), otherwise we use the default chosen by matplotlib (as dictated by the matplotlib build-time options plus the user's matplotlibrc configuration file). Note that not all backends make sense in all contexts, for example a terminal ipython can't display figures inline. """ from IPython.core import pylabtools as pt gui, backend = pt.find_gui_and_backend(gui, self.pylab_gui_select) if gui != 'inline': # If we have our first gui selection, store it if self.pylab_gui_select is None: self.pylab_gui_select = gui # Otherwise if they are different elif gui != self.pylab_gui_select: print ('Warning: Cannot change to a different GUI toolkit: %s.' ' Using %s instead.' % (gui, self.pylab_gui_select)) gui, backend = pt.find_gui_and_backend(self.pylab_gui_select) pt.activate_matplotlib(backend) pt.configure_inline_support(self, backend) # Now we must activate the gui pylab wants to use, and fix %run to take # plot updates into account self.enable_gui(gui) self.magics_manager.registry['ExecutionMagics'].default_runner = \ pt.mpl_runner(self.safe_execfile) return gui, backend def enable_pylab(self, gui=None, import_all=True, welcome_message=False): """Activate pylab support at runtime. This turns on support for matplotlib, preloads into the interactive namespace all of numpy and pylab, and configures IPython to correctly interact with the GUI event loop. The GUI backend to be used can be optionally selected with the optional ``gui`` argument. This method only adds preloading the namespace to InteractiveShell.enable_matplotlib. Parameters ---------- gui : optional, string If given, dictates the choice of matplotlib GUI backend to use (should be one of IPython's supported backends, 'qt', 'osx', 'tk', 'gtk', 'wx' or 'inline'), otherwise we use the default chosen by matplotlib (as dictated by the matplotlib build-time options plus the user's matplotlibrc configuration file). Note that not all backends make sense in all contexts, for example a terminal ipython can't display figures inline. import_all : optional, bool, default: True Whether to do `from numpy import *` and `from pylab import *` in addition to module imports. welcome_message : deprecated This argument is ignored, no welcome message will be displayed. """ from IPython.core.pylabtools import import_pylab gui, backend = self.enable_matplotlib(gui) # We want to prevent the loading of pylab to pollute the user's # namespace as shown by the %who* magics, so we execute the activation # code in an empty namespace, and we update *both* user_ns and # user_ns_hidden with this information. ns = {} import_pylab(ns, import_all) # warn about clobbered names ignored = {"__builtins__"} both = set(ns).intersection(self.user_ns).difference(ignored) clobbered = [ name for name in both if self.user_ns[name] is not ns[name] ] self.user_ns.update(ns) self.user_ns_hidden.update(ns) return gui, backend, clobbered #------------------------------------------------------------------------- # Utilities #------------------------------------------------------------------------- def var_expand(self, cmd, depth=0, formatter=DollarFormatter()): """Expand python variables in a string. The depth argument indicates how many frames above the caller should be walked to look for the local namespace where to expand variables. The global namespace for expansion is always the user's interactive namespace. """ ns = self.user_ns.copy() try: frame = sys._getframe(depth+1) except ValueError: # This is thrown if there aren't that many frames on the stack, # e.g. if a script called run_line_magic() directly. pass else: ns.update(frame.f_locals) try: # We have to use .vformat() here, because 'self' is a valid and common # name, and expanding **ns for .format() would make it collide with # the 'self' argument of the method. cmd = formatter.vformat(cmd, args=[], kwargs=ns) except Exception: # if formatter couldn't format, just let it go untransformed pass return cmd def mktempfile(self, data=None, prefix='ipython_edit_'): """Make a new tempfile and return its filename. This makes a call to tempfile.mkstemp (created in a tempfile.mkdtemp), but it registers the created filename internally so ipython cleans it up at exit time. Optional inputs: - data(None): if data is given, it gets written out to the temp file immediately, and the file is closed again.""" dirname = tempfile.mkdtemp(prefix=prefix) self.tempdirs.append(dirname) handle, filename = tempfile.mkstemp('.py', prefix, dir=dirname) os.close(handle) # On Windows, there can only be one open handle on a file self.tempfiles.append(filename) if data: tmp_file = open(filename,'w') tmp_file.write(data) tmp_file.close() return filename # TODO: This should be removed when Term is refactored. def write(self,data): """Write a string to the default output""" io.stdout.write(data) # TODO: This should be removed when Term is refactored. def write_err(self,data): """Write a string to the default error output""" io.stderr.write(data) def ask_yes_no(self, prompt, default=None, interrupt=None): if self.quiet: return True return ask_yes_no(prompt,default,interrupt) def show_usage(self): """Show a usage message""" page.page(IPython.core.usage.interactive_usage) def extract_input_lines(self, range_str, raw=False): """Return as a string a set of input history slices. Parameters ---------- range_str : string The set of slices is given as a string, like "~5/6-~4/2 4:8 9", since this function is for use by magic functions which get their arguments as strings. The number before the / is the session number: ~n goes n back from the current session. raw : bool, optional By default, the processed input is used. If this is true, the raw input history is used instead. Notes ----- Slices can be described with two notations: * ``N:M`` -> standard python form, means including items N...(M-1). * ``N-M`` -> include items N..M (closed endpoint). """ lines = self.history_manager.get_range_by_str(range_str, raw=raw) return "\n".join(x for _, _, x in lines) def find_user_code(self, target, raw=True, py_only=False, skip_encoding_cookie=True, search_ns=False): """Get a code string from history, file, url, or a string or macro. This is mainly used by magic functions. Parameters ---------- target : str A string specifying code to retrieve. This will be tried respectively as: ranges of input history (see %history for syntax), url, corresponding .py file, filename, or an expression evaluating to a string or Macro in the user namespace. raw : bool If true (default), retrieve raw history. Has no effect on the other retrieval mechanisms. py_only : bool (default False) Only try to fetch python code, do not try alternative methods to decode file if unicode fails. Returns ------- A string of code. ValueError is raised if nothing is found, and TypeError if it evaluates to an object of another type. In each case, .args[0] is a printable message. """ code = self.extract_input_lines(target, raw=raw) # Grab history if code: return code utarget = unquote_filename(target) try: if utarget.startswith(('http://', 'https://')): return openpy.read_py_url(utarget, skip_encoding_cookie=skip_encoding_cookie) except UnicodeDecodeError: if not py_only : # Deferred import try: from urllib.request import urlopen # Py3 except ImportError: from urllib import urlopen response = urlopen(target) return response.read().decode('latin1') raise ValueError(("'%s' seem to be unreadable.") % utarget) potential_target = [target] try : potential_target.insert(0,get_py_filename(target)) except IOError: pass for tgt in potential_target : if os.path.isfile(tgt): # Read file try : return openpy.read_py_file(tgt, skip_encoding_cookie=skip_encoding_cookie) except UnicodeDecodeError : if not py_only : with io_open(tgt,'r', encoding='latin1') as f : return f.read() raise ValueError(("'%s' seem to be unreadable.") % target) elif os.path.isdir(os.path.expanduser(tgt)): raise ValueError("'%s' is a directory, not a regular file." % target) if search_ns: # Inspect namespace to load object source object_info = self.object_inspect(target, detail_level=1) if object_info['found'] and object_info['source']: return object_info['source'] try: # User namespace codeobj = eval(target, self.user_ns) except Exception: raise ValueError(("'%s' was not found in history, as a file, url, " "nor in the user namespace.") % target) if isinstance(codeobj, string_types): return codeobj elif isinstance(codeobj, Macro): return codeobj.value raise TypeError("%s is neither a string nor a macro." % target, codeobj) #------------------------------------------------------------------------- # Things related to IPython exiting #------------------------------------------------------------------------- def atexit_operations(self): """This will be executed at the time of exit. Cleanup operations and saving of persistent data that is done unconditionally by IPython should be performed here. For things that may depend on startup flags or platform specifics (such as having readline or not), register a separate atexit function in the code that has the appropriate information, rather than trying to clutter """ # Close the history session (this stores the end time and line count) # this must be *before* the tempfile cleanup, in case of temporary # history db self.history_manager.end_session() # Cleanup all tempfiles and folders left around for tfile in self.tempfiles: try: os.unlink(tfile) except OSError: pass for tdir in self.tempdirs: try: os.rmdir(tdir) except OSError: pass # Clear all user namespaces to release all references cleanly. self.reset(new_session=False) # Run user hooks self.hooks.shutdown_hook() def cleanup(self): self.restore_sys_module_state() class InteractiveShellABC(with_metaclass(abc.ABCMeta, object)): """An abstract base class for InteractiveShell.""" InteractiveShellABC.register(InteractiveShell)
gpl-2.0