repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
migueldiascosta/pymatgen
docs/_static/pmg_install.py
1
6875
#!/usr/bin/env python """ This is a simple installation script for casual users of pymatgen who simply plan to use pymatgen as a basic analysis library and is not planning to develop on it. This script should work on most Linux and Mac systems that have Python 2.7+ installed and setuptools installed. These are the only required pre-requisites. Once those are installed, the script should take care of the remainder of the installation process. There are only a few options in this script. Please note that you probably have to *run all commands with sudo* for the installation to proceed correctly. Simply running: ./pmg_install will install pymatgen with the basic dependencies. Running: ./pmg_install -f will install pymatgen with a few more optional packages and also start an initial setup process that guides you through basic configuration for POTCAR and Materials API support. Report any issues or suggestions for this script to [email protected]. """ __author__ = "Shyue Ping Ong" __version__ = "1.0" __email__ = "[email protected]" __date__ = "Apr 28, 2013" import sys import subprocess import urllib import os import shutil def build_enum(fortran_command="gfortran"): enumlib_url = "http://downloads.sourceforge.net/project/enum/enum/enum.tar.gz" currdir = os.getcwd() state = True try: os.makedirs("enumlib") os.chdir("enumlib") urllib.urlretrieve(enumlib_url, "enum.tar.gz") subprocess.call(["tar", "-zxf", "enum.tar.gz"]) os.chdir("celib") os.chdir("trunk") os.environ["F90"] = fortran_command subprocess.call(["make"]) os.chdir(os.path.join("..", "..")) enumpath = os.path.join("enumlib", "trunk") os.chdir(enumpath) subprocess.call(["make"]) for f in ["multienum.x", "makestr.x"]: subprocess.call(["make", f]) shutil.copy(f, os.path.join("..", "..", "..")) except Exception as ex: print(str(ex)) state = False finally: os.chdir(currdir) shutil.rmtree("enumlib") return state def build_bader(fortran_command="gfortran"): bader_url = "http://theory.cm.utexas.edu/henkelman/code/bader/download/bader.tar.gz" currdir = os.getcwd() state = True try: urllib.urlretrieve(bader_url, "bader.tar.gz") subprocess.call(["tar", "-zxf", "bader.tar.gz"]) os.chdir("bader") subprocess.call(["cp", "makefile.osx_"+fortran_command, "makefile"]) subprocess.call(["make"]) shutil.copy("bader", os.path.join("..", "bader_exe")) os.chdir("..") shutil.rmtree("bader") os.remove("bader.tar.gz") shutil.move("bader_exe", "bader") except Exception as ex: print(str(ex)) state = False finally: os.chdir(currdir) return state try: py_ver = sys.version_info print("Detected Python version %s" % ".".join(["%s" % i for i in py_ver])) if py_ver < (2, 7) or py_ver >= (2, 8): print("Python version 2.7+ required. Download and install the necessary " "python version from http://www.python.org/download/.") sys.exit(-1) except: print("Python version 2.7+ required. Download and install the necessary " "python version from http://www.python.org/download/.") sys.exit(-1) try: import setuptools print("Detected setuptools version {}".format(setuptools.__version__)) except ImportError: print("setuptools not detected. Get it from https://pypi.python" ".org/pypi/setuptools and follow the instructions to install first.") sys.exit(-1) try: gcc_ver = subprocess.Popen(["gcc", "--version"], stdout=subprocess.PIPE)\ .communicate()[0] except: print("gcc not found in PATH. gcc is needed for installation of numpy " "and C extensions. For Mac users, please install Xcode and its " "corresponding command-line tools first.") sys.exit(-1) try: import pip print("Detected pip version {}".format(pip.__version__)) except ImportError: print("pip not detected. Installing...") subprocess.call(["easy_install", "pip"]) try: import numpy from numpy.distutils.misc_util import get_numpy_include_dirs print("Detected numpy version {}".format(numpy.__version__)) except ImportError: print("numpy.distutils.misc_util cannot be imported. Installing...") subprocess.call(["pip", "install", "-q", "numpy>=1.8.0"]) from numpy.distutils.misc_util import get_numpy_include_dirs for pk in ["pyhull>=1.3.6", "pyyaml", "PyCifRW>=3.3", "requests>=1.0", "pybtex>=0.16"]: print("Installing {}".format(pk)) ret = subprocess.call(["pip", "install", "-q", pk]) if ret != 0: ret = subprocess.call(["easy_install", pk]) if ret != 0: print("Error installing required dependency {}".format(pk)) sys.exit(-1) print if subprocess.call(["pip", "install", "pymatgen"]) != 0: print("Error installing pymatgen") sys.exit(-1) print enum = False bader = False if "-f" in sys.argv: for pk in ["matplotlib>1.1"]: if subprocess.call(["pip", "install", pk]) != 0: print("Unable to install {}. Skipping...".format(pk)) if subprocess.call([ "pip", "install", "-Ivq", "https://wiki.fysik.dtu.dk/ase-files/python-ase-3.6.0.2515.tar.gz"] ) != 0: print("Unable to install ASE. Skipping...") print fortran_command = None try: if subprocess.call(["ifort", "--version"]) == 0: print("Found ifort") fortran_command = "ifort" elif subprocess.call(["gfortran", "--version"]) == 0: print("Found gfortran") fortran_command = "gfortran" except: fortran_command = None if fortran_command is not None: print("Building enumlib") enum = build_enum(fortran_command) print print("Building bader") bader = build_bader(fortran_command) print else: print("No fortran compiler found. Skipping enumlib and bader build.") print("Performing POTCAR setup. Press Ctrl-C at any prompt to skip this " "step.") try: subprocess.call(["potcar_setup"]) except: print("Skipping POTCAR setup.") print print("------------ Setup complete --------------") print("You still need to perform a few manual changes.") print if enum or bader: print("Please add {} to your PATH or move the executables multinum.x, " "makestr.x and bader to a location in your PATH." .format(os.path.abspath("."))) print print("To use the Materials API, get your Materials API key at " "https://www.materialsproject.org/profile and add it to your " "environment") print("export MAPI_KEY=YOUR_API_KEY") print
mit
McCabeJM/sklearn_pycon2015
notebooks/fig_code/sgd_separator.py
54
1148
import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import SGDClassifier from sklearn.datasets.samples_generator import make_blobs def plot_sgd_separator(): # we create 50 separable points X, Y = make_blobs(n_samples=50, centers=2, random_state=0, cluster_std=0.60) # fit the model clf = SGDClassifier(loss="hinge", alpha=0.01, n_iter=200, fit_intercept=True) clf.fit(X, Y) # plot the line, the points, and the nearest vectors to the plane xx = np.linspace(-1, 5, 10) yy = np.linspace(-1, 5, 10) X1, X2 = np.meshgrid(xx, yy) Z = np.empty(X1.shape) for (i, j), val in np.ndenumerate(X1): x1 = val x2 = X2[i, j] p = clf.decision_function([x1, x2]) Z[i, j] = p[0] levels = [-1.0, 0.0, 1.0] linestyles = ['dashed', 'solid', 'dashed'] colors = 'k' ax = plt.axes() ax.contour(X1, X2, Z, levels, colors=colors, linestyles=linestyles) ax.scatter(X[:, 0], X[:, 1], c=Y, cmap=plt.cm.Paired) ax.axis('tight') if __name__ == '__main__': plot_sgd_separator() plt.show()
bsd-3-clause
thkhavi/leafangle_supplement
v_sorghum/scripts/calculate_eabs.py
2
2603
#!/usr/bin/python # -*- coding: utf-8 -*- # SKT 10/2014 # Input: # (a) output file (Eabs) from WriteTable of Caribu in OpenAlea # Output: # (a) file that contains Eabs (energy absorbed) per layer, x. from pylab import * import matplotlib.pyplot as plt from operator import itemgetter import scipy.stats as sp from collections import defaultdict import numpy as np import sys def consume(iterator, n): collections.deque(itertools.islice(iterator, n)) if len(sys.argv) <= 1: print("calculate_eabs.py input_from_caribu.ssv") sys.exit() if sys.argv[1] == "--help" or sys.argv[1] == "-h": print("calculate_eabs.py input_from_caribu.ssv") sys.exit() try: # read in LILI_caribu_input LILI_caribu_input = [line.strip() for line in open(sys.argv[1])] LILI_caribu_input = [element.split(' ') for element in LILI_caribu_input] except IOError: print("Cannot open target file. Please check your input:") print("\t$ python calculate_eabs.py input_from_caribu.ssv") sys.exit() # write input into LILI_caribu_input li_tsv_temp=[] li_tsv_filtered=[] for i in range(len(LILI_caribu_input)): if i == 0: continue # header for j in range(len(LILI_caribu_input[i])): li_tsv_temp.append(float(LILI_caribu_input[i][9])) # Eabs li_tsv_temp.append(float(LILI_caribu_input[i][3])) # plant li_tsv_temp.append(float(LILI_caribu_input[i][4])) # leaf ? li_tsv_temp.append(float(LILI_caribu_input[i][5])) # area discretized li_tsv_filtered.append(li_tsv_temp) li_tsv_temp=[] LILI_caribu_input = li_tsv_filtered i_eabs=0.0 i_area=0.0 li_eabs=[] # For each plant for i in range (len(LILI_caribu_input)): if i == len(LILI_caribu_input)-1: i_eabs = i_eabs + LILI_caribu_input[i][0] i_area = i_area + LILI_caribu_input[i][3] li_tsv_temp.append(i_eabs) li_eabs.append(li_tsv_temp) continue # for each phytomer (leaf or stem) if (LILI_caribu_input[i][1] == LILI_caribu_input[i+1][1]): if (LILI_caribu_input[i][2] ==LILI_caribu_input[i+1][2]): i_eabs = i_eabs + LILI_caribu_input[i][0] i_area = i_area + LILI_caribu_input[i][3] else: li_tsv_temp.append(i_eabs) i_eabs=0.0 i_area=0.0 else: i_eabs = i_eabs + LILI_caribu_input[i][0] i_area = i_area + LILI_caribu_input[i][3] li_tsv_temp.append(i_eabs) i_eabs=0.0 i_area=0.0 li_eabs.append(li_tsv_temp) li_tsv_temp=[] print '\n'.join(('\t'.join(str(i) for i in item[0:])) for item in li_eabs)
gpl-2.0
elijah513/scikit-learn
examples/decomposition/plot_ica_blind_source_separation.py
349
2228
""" ===================================== Blind source separation using FastICA ===================================== An example of estimating sources from noisy data. :ref:`ICA` is used to estimate sources given noisy measurements. Imagine 3 instruments playing simultaneously and 3 microphones recording the mixed signals. ICA is used to recover the sources ie. what is played by each instrument. Importantly, PCA fails at recovering our `instruments` since the related signals reflect non-Gaussian processes. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from scipy import signal from sklearn.decomposition import FastICA, PCA ############################################################################### # Generate sample data np.random.seed(0) n_samples = 2000 time = np.linspace(0, 8, n_samples) s1 = np.sin(2 * time) # Signal 1 : sinusoidal signal s2 = np.sign(np.sin(3 * time)) # Signal 2 : square signal s3 = signal.sawtooth(2 * np.pi * time) # Signal 3: saw tooth signal S = np.c_[s1, s2, s3] S += 0.2 * np.random.normal(size=S.shape) # Add noise S /= S.std(axis=0) # Standardize data # Mix data A = np.array([[1, 1, 1], [0.5, 2, 1.0], [1.5, 1.0, 2.0]]) # Mixing matrix X = np.dot(S, A.T) # Generate observations # Compute ICA ica = FastICA(n_components=3) S_ = ica.fit_transform(X) # Reconstruct signals A_ = ica.mixing_ # Get estimated mixing matrix # We can `prove` that the ICA model applies by reverting the unmixing. assert np.allclose(X, np.dot(S_, A_.T) + ica.mean_) # For comparison, compute PCA pca = PCA(n_components=3) H = pca.fit_transform(X) # Reconstruct signals based on orthogonal components ############################################################################### # Plot results plt.figure() models = [X, S, S_, H] names = ['Observations (mixed signal)', 'True Sources', 'ICA recovered signals', 'PCA recovered signals'] colors = ['red', 'steelblue', 'orange'] for ii, (model, name) in enumerate(zip(models, names), 1): plt.subplot(4, 1, ii) plt.title(name) for sig, color in zip(model.T, colors): plt.plot(sig, color=color) plt.subplots_adjust(0.09, 0.04, 0.94, 0.94, 0.26, 0.46) plt.show()
bsd-3-clause
Quantipy/quantipy
tests/test_chain_old.py
1
12467
import unittest import os.path import test_helper import pandas as pd from pandas.util.testing import assert_frame_equal from quantipy.core.stack import Stack from quantipy.core.chain import Chain from quantipy.core.link import Link from quantipy.core.helpers.functions import load_json from quantipy.core.view_generators.view_maps import QuantipyViews from quantipy.core.helpers import functions class TestChainObject(unittest.TestCase): def setUp(self): self.path = './tests/' self.path_chain = './temp.chain'.format(self.path) # self.path = '' project_name = 'Example Data (A)' # Load Example Data (A) data and meta into self name_data = '%s.csv' % (project_name) path_data = '%s%s' % (self.path, name_data) self.example_data_A_data = pd.DataFrame.from_csv(path_data) name_meta = '%s.json' % (project_name) path_meta = '%s%s' % (self.path, name_meta) self.example_data_A_meta = load_json(path_meta) # The minimum list of variables required to populate a stack with all single*delimited set variations self.minimum = ['q2b', 'Wave', 'q2', 'q3', 'q5_1'] self.setup_stack_Example_Data_A() self.setup_chains_Example_Data_A() def test_save_chain(self): self.setup_chains_Example_Data_A() for chain in self.chains: # Create a dictionary with the attribute structure of the chain chain_attributes = chain.__dict__ chain_described = chain.describe() # Save and then load a copy of the chain chain.save(path=self.path_chain) loaded_chain = Chain.load(self.path_chain) # Ensure that we are not comparing the same variable (in memory) self.assertNotEqual(id(chain), id(loaded_chain)) # Create a dictionary with the attribute structure of the chain loaded_chain_attributes = loaded_chain.__dict__ loaded_chain_described = loaded_chain.describe() # Confirm that the chains contain the same views sort_order = ['data', 'filter', 'x', 'y', 'view'] if pd.__version__ == '0.19.2': actual = chain_described.sort_values(sort_order).values.tolist() expected = loaded_chain_described.sort_values(sort_order).values.tolist() else: actual = chain_described.sort(sort_order).values.tolist() expected = loaded_chain_described.sort(sort_order).values.tolist() self.assertSequenceEqual(actual, expected) # Make sure that this is working by altering the loaded_stack_attributes # and comparing the result. (It should fail) # Change a 'value' in the dict loaded_chain_attributes['name'] = 'SomeOtherName' with self.assertRaises(AssertionError): self.assertEqual(chain_attributes, loaded_chain_attributes) # reset the value loaded_chain_attributes['name'] = chain_attributes['name'] self.assertEqual(chain_attributes, loaded_chain_attributes) # Change a 'key' in the dict del loaded_chain_attributes['name'] loaded_chain_attributes['new_name'] = chain_attributes['name'] with self.assertRaises(AssertionError): self.assertEqual(chain_attributes, loaded_chain_attributes) # reset the value del loaded_chain_attributes['new_name'] loaded_chain_attributes['name'] = chain_attributes['name'] self.assertEqual(chain_attributes, loaded_chain_attributes) # Remove a key/value pair del loaded_chain_attributes['name'] with self.assertRaises(AssertionError): self.assertEqual(chain_attributes, loaded_chain_attributes) # Cleanup if os.path.exists('./tests/{0}.chain'.format(chain.name)): os.remove('./tests/{0}.chain'.format(chain.name)) def test_auto_orientation(self): fk = 'no_filter' xk = self.minimum yk = ['@'] + self.minimum views = ['cbase', 'counts', 'c%'] # If multiple x and y keys are given without orient_on # x-orientation chains are assumed. chain = self.stack.get_chain( name='y', data_keys=self.stack.name, filters=fk, x=xk, y=yk, views=views ) self.assertTrue(chain.orientation=='x') def test_lazy_name(self): fk = 'no_filter' xk = self.minimum yk = ['@'] + self.minimum views = ['cbase', 'counts', 'c%'] # get chain but do not name - y orientation chain_y = self.stack.get_chain( data_keys=self.stack.name, filters=fk, x=xk, y=yk[0], views=views ) # get chain but do not name - x orientation chain_x = self.stack.get_chain( data_keys=self.stack.name, filters=fk, x=xk[0], y=yk, views=views ) # check lazy_name is working as it should be self.assertEqual(chain_y.name, '[email protected]_1.cbase.counts.c%') self.assertEqual(chain_x.name, '[email protected]_1.cbase.counts.c%') def test_dervie_attributes(self): # check chain attributes self.assertEqual(self.chains[0].name, '@') self.assertEqual(self.chains[0].orientation, 'y') self.assertEqual(self.chains[0].source_name, '@') self.assertEqual(self.chains[0].len_of_axis, 5) self.assertEqual(self.chains[0].content_of_axis, ['q2b', 'Wave', 'q2', 'q3', 'q5_1']) self.assertEqual(self.chains[0].views, ['x|f|x:|||cbase', 'x|f|:|||counts', 'x|f|:|y||c%']) self.assertEqual(self.chains[0].data_key, 'Example Data (A)') self.assertEqual(self.chains[0].filter, 'no_filter') self.assertEqual(self.chains[0].source_type, None) self.assertEqual(self.chains[-1].name, 'q5_1') self.assertEqual(self.chains[-1].orientation, 'x') self.assertEqual(self.chains[-1].source_name, 'q5_1') self.assertEqual(self.chains[-1].len_of_axis, 6) self.assertEqual(self.chains[-1].content_of_axis, ['@', 'q2b', 'Wave', 'q2', 'q3', 'q5_1']) self.assertEqual(self.chains[-1].views, ['x|f|x:|||cbase', 'x|f|:|||counts', 'x|f|:|y||c%']) self.assertEqual(self.chains[-1].data_key, 'Example Data (A)') self.assertEqual(self.chains[-1].filter, 'no_filter') self.assertEqual(self.chains[-1].source_type, None) def test_describe(self): fk = 'no_filter' for chain in self.chains: chain_described = chain.describe() #test describe() returns a dataframe self.assertIsInstance(chain_described, pd.DataFrame) #test descibe() returns the expected dataframe - *no args* if chain.orientation == 'y': keys = chain[self.stack.name][fk].keys() views = chain[self.stack.name][fk][keys[0]][chain.source_name].keys() data = [self.stack.name]*(len(keys)*len(views)) filters = [fk]*(len(keys)*len(views)) x = [] for key in keys: x.extend([key]*len(views)) y = [chain.source_name]*(len(keys)*len(views)) view = [v for v in views]*len(keys) ones = [1]*(len(keys)*len(views)) df = pd.DataFrame({'data': data, 'filter': filters, 'x': x, 'y': y, 'view': view, '#': ones}) df = df[chain_described.columns.tolist()] assert_frame_equal(chain_described, df) elif chain.orientation == 'x': keys = chain[self.stack.name][fk][chain.source_name].keys() views = chain[self.stack.name][fk][chain.source_name][keys[0]].keys() data = [self.stack.name]*(len(keys)*len(views)) filters = [fk]*(len(keys)*len(views)) y = [] for key in keys: y.extend([key]*len(views)) x = [chain.source_name]*(len(keys)*len(views)) view = [v for v in views]*len(keys) ones = [1]*(len(keys)*len(views)) df = pd.DataFrame({'data': data, 'filter': filters, 'x': x, 'y': y, 'view': view, '#': ones}) df = df[chain_described.columns.tolist()] assert_frame_equal(chain_described, df) @classmethod def tearDownClass(self): self.stack = Stack("StackName") filepath ='./tests/'+self.stack.name+'.stack' if os.path.exists(filepath): os.remove(filepath) def is_empty(self, any_structure): if any_structure: #print('Structure is not empty.') return False else: #print('Structure is empty.') return True def create_key_stack(self, branch_pos="data"): """ Creates a dictionary that has the structure of the keys in the Stack It is used to loop through the stack without affecting it. """ key_stack = {} for data_key in self.stack: key_stack[data_key] = {} for the_filter in self.stack[data_key][branch_pos]: key_stack[data_key][the_filter] = {} for x in self.stack[data_key][branch_pos][the_filter]: key_stack[data_key][the_filter][x] = [] for y in self.stack[data_key][branch_pos][the_filter][x]: link = self.stack[data_key][branch_pos][the_filter][x][y] if not isinstance(link, Link): continue key_stack[data_key][the_filter][x].append(y) return key_stack def setup_stack_Example_Data_A(self, fk=None, xk=None, yk=None, views=None, weights=None): if fk is None: fk = 'no_filter' if xk is None: xk = self.minimum if yk is None: yk = ['@'] + self.minimum if views is None: views = ['default', 'cbase', 'counts', 'c%'] if not isinstance(weights, list): weights = [weights] self.stack = Stack(name="Example Data (A)") self.stack.add_data( data_key=self.stack.name, meta=self.example_data_A_meta, data=self.example_data_A_data ) for weight in weights: self.stack.add_link( data_keys=self.stack.name, filters=fk, x=xk, y=yk, views=QuantipyViews(views), weights=weight ) def setup_chains_Example_Data_A(self, fk=None, xk=None, yk=None, views=None, orient_on=None): if fk is None: fk = 'no_filter' if xk is None: xk = self.minimum if yk is None: yk = ['@'] + self.minimum if views is None: views = [ 'x|f|x:|||cbase', 'x|f|:|||counts', 'x|f|:|y||c%' ] self.chains = [] for y in yk: self.chains.append( self.stack.get_chain( name=y, data_keys=self.stack.name, filters='no_filter', x=xk, y=y, views=views ) ) for x in xk: self.chains.append( self.stack.get_chain( name=x, data_keys=self.stack.name, filters='no_filter', x=x, y=yk, views=views ) ) if __name__ == '__main__': unittest.main()
mit
bmorris3/friedrich
friedrich/fitting.py
1
16547
# Licensed under the MIT License - see LICENSE.rst """ Methods for fitting transit light curves, spot occultations, or both, using `scipy` minimizers and `emcee`. """ from __future__ import (absolute_import, division, print_function, unicode_literals) import numpy as np import emcee from scipy import optimize, signal import matplotlib.pyplot as plt import batman from copy import deepcopy from emcee.utils import MPIPool import sys def gaussian(times, amplitude, t0, sigma): """ Gaussian function. Parameters ---------- times : `numpy.ndarray` Times amplitude : float Amplitude of gaussian (not normalized) t0 : float Central time in units of `times` sigma : float Gaussian width. Returns ------- y : `numpy.ndarray` Gaussian evaluated at `times` """ return amplitude * np.exp(-0.5*(times - t0)**2/sigma**2) def peak_finder_chi2(theta, x, y, yerr): """ Chi^2 model given parameters `theta` and data {`x`, `y`, `yerr`} Parameters ---------- theta : list Trial parameters x : `numpy.ndarray` Times [JD] y : `numpy.ndarray` Fluxes yerr : `numpy.ndarray` Uncertainties on fluxes Returns ------- chi2 : float Chi^2 of the model """ model = summed_gaussians(x, theta) return np.sum((y-model)**2/yerr**2) def peak_finder(times, residuals, errors, transit_params, n_peaks=4, plots=False, verbose=False, skip_priors=False): """ Find peaks in the residuals from a fit to a transit light curve, which correspond to starspot occultations. Parameters ---------- times : `numpy.ndarray` Times [JD] residuals : `numpy.ndarray` Fluxes errors : `numpy.ndarray` Uncertainties on residuals transit_params : `~batman.TransitParams` Transit light curve parameters n_peaks : bool (optional) Number of peaks to search for. If more than `n_peaks` are found, return only the `n_peaks` largest amplitude peaks. plots : bool (optional) Show diagnostic plots verbose : bool (optional) Warn if no peaks are found Returns ------- result_in_transit : list or `None` List of all spot parameters in [amp, t0, sig, amp, t0, sig, ...] order for spots detected. Notes ----- Review of minimizers tried for `peak_finder`: `~scipy.optimize.fmin` gets amplitudes right, but doesn't vary sigmas much. For this reason, it tends to do a better job of finding nearby, semi- overlapping spots. `~scipy.optimize.fmin_powell` varies amplitudes and sigmas lots, but as a result, sometimes two nearby spots are fit with one wide gaussian. """ # http://stackoverflow.com/a/25666951 # Convolve residuals with a gaussian, find relative maxima n_points_kernel = 100 window = signal.general_gaussian(n_points_kernel+1, p=1, sig=10) filtered = signal.fftconvolve(window, residuals) filtered = (np.max(residuals) / np.max(filtered)) * filtered filtered = np.roll(filtered, int(-n_points_kernel/2))[:len(residuals)] maxes = signal.argrelmax(filtered)[0] # Only take maxima, not minima maxes = maxes[filtered[maxes] > 0] lower_t_bound, upper_t_bound = get_in_transit_bounds(times, transit_params) maxes_in_transit = maxes[(times[maxes] < upper_t_bound) & (times[maxes] > lower_t_bound)] # Only take the `n_peaks` highest peaks if len(maxes_in_transit) > n_peaks: highest_maxes_in_transit = maxes_in_transit[np.argsort(filtered[maxes_in_transit])][-n_peaks:] else: highest_maxes_in_transit = maxes_in_transit # plt.plot(times, filtered) # plt.plot(times, residuals, '.') # plt.plot(times[maxes_in_transit], filtered[maxes_in_transit], 'ro') # [plt.axvline(times[m], color='k') for m in maxes] # [plt.axvline(times[m], color='m') for m in maxes_in_transit] # if len(maxes_in_transit) > n_peaks: # [plt.axvline(times[m], color='b') for m in highest_maxes_in_transit] # plt.axvline(upper_t_bound, color='r') # plt.axvline(lower_t_bound, color='r') # plt.show() if len(maxes_in_transit) == 0: if verbose: print('no maxes found') return None peak_times = times[highest_maxes_in_transit] peak_amplitudes = residuals[highest_maxes_in_transit] peak_sigmas = np.zeros(len(peak_times)) + 2./60/24 # 3 min input_parameters = np.vstack([peak_amplitudes, peak_times, peak_sigmas]).T.ravel() result = optimize.fmin_powell(peak_finder_chi2, input_parameters, disp=False, args=(times, residuals, errors), xtol=0.00001, ftol=0.00001) # if np.all(result == input_parameters): # print('oh no!, fmin didnt produce a fit') # Only use gaussians that occur in transit (fmin fit is unbounded in time) # and amplitude is positive: split_result = np.split(result, len(input_parameters)/3) result_in_transit = [] for amplitude, t0, sigma in split_result: depth = transit_params.rp**2 trial_params = np.array([amplitude, t0, sigma]) if not np.isinf(lnprior(trial_params, residuals, lower_t_bound, upper_t_bound, transit_params, skip_priors)): result_in_transit.extend([amplitude, t0, np.abs(sigma)]) result_in_transit = np.array(result_in_transit) if len(result_in_transit) == 0: return None if plots: fig, ax = plt.subplots(3, 1, figsize=(8, 10), sharex=True) ax[0].errorbar(times, residuals, fmt='.', color='k') [ax[0].axvline(t) for t in result_in_transit[1::3]] ax[0].plot(times, summed_gaussians(times, input_parameters), 'r') ax[0].axhline(0, color='k', ls='--') ax[0].set_ylabel('Transit Residuals') ax[1].errorbar(times, residuals, fmt='.', color='k') ax[1].plot(times, summed_gaussians(times, result_in_transit), 'r') ax[1].axhline(0, color='k', ls='--') ax[1].set_ylabel('Residuals') ax[2].errorbar(times, residuals - summed_gaussians(times, result_in_transit), fmt='.', color='k') #ax[1].errorbar(times, gaussian_model, fmt='.', color='r') ax[2].axhline(0, color='k', ls='--') ax[2].set_ylabel('Residuals') for axis in ax: axis.axvline(upper_t_bound, color='r') axis.axvline(lower_t_bound, color='r') fig.tight_layout() plt.show() return result_in_transit def generate_lc(times, transit_params): """ Make a transit light curve. Parameters ---------- times : `numpy.ndarray` Times in JD transit_params : `~batman.TransitParams` Transit light curve parameters Returns ------- model_flux : `numpy.ndarray` Fluxes from model transit light curve """ exp_time = 1./60/24 # 1 minute cadence -> [days] m = batman.TransitModel(transit_params, times, supersample_factor=7, exp_time=exp_time) model_flux = m.light_curve(transit_params) return model_flux def summed_gaussians(times, spot_parameters): """ Take a list of gaussian input parameters (3 parameters per gaussian), make a model of the sum of all of those gaussians. Parameters ---------- times : `numpy.ndarray` Times in JD spot_parameters : list List of all spot parameters in [amp, t0, sig, amp, t0, sig, ...] order Returns ------- model : `numpy.ndarray` Sum of gaussians """ model = np.zeros(len(times), dtype=np.float128) if spot_parameters is not None and len(spot_parameters) % 3 == 0: split_input_parameters = np.split(np.array(spot_parameters), len(spot_parameters)/3) for amplitude, t0, sigma in split_input_parameters: model += gaussian(times, amplitude, t0, sigma) return model def get_in_transit_bounds(times, params, duration_fraction=0.9): """ Approximate the boundaries of "in-transit" for tranist occuring during times `times`. Parameters ---------- times : `numpy.ndarray` Times in JD params : `~batman.TransitParams` Transit light curve parameters duration_fraction : float Fraction of the full transit duration to consider "in-transit" Returns ------- lower_t_bound : float Earliest in-transit time [JD] upper_t_bound : float Latest in-transit time [JD] """ phased = (times - params.t0) % params.per near_transit = ((phased < params.duration*(0.5*duration_fraction)) | (phased > params.per - params.duration*(0.5*duration_fraction))) if np.count_nonzero(near_transit) == 0: near_transit = 0 return times[near_transit].min(), times[near_transit].max() def lnprior(theta, y, lower_t_bound, upper_t_bound, transit_params, skip_priors): """ Log prior for `emcee` runs. Parameters ---------- theta : list Fitting parameters y : `numpy.ndarray` Fluxes lower_t_bound : float Earliest in-transit time [JD] upper_t_bound : float Latest in-transit time [JD] skip_priors : bool Should the priors be skipped? Returns ------- lnpr : float Log-prior for trial parameters `theta` """ spot_params = theta amplitudes = spot_params[::3] t0s = spot_params[1::3] sigmas = spot_params[2::3] depth = transit_params.rp**2 min_sigma = 1.5/60/24 max_sigma = transit_params.duration # 6.0e-3 # upper_t_bound - lower_t_bound t0_ok = ((lower_t_bound < t0s) & (t0s < upper_t_bound)).all() sigma_ok = ((min_sigma < sigmas) & (sigmas < max_sigma)).all() if not skip_priors: amplitude_ok = ((0 <= amplitudes) & (amplitudes < depth)).all() else: amplitude_ok = (amplitudes >= 0).all() if amplitude_ok and t0_ok and sigma_ok: return 0.0 return -np.inf def lnlike(theta, x, y, yerr, transit_params, skip_priors=False): """ Log-likelihood of data given model. Parameters ---------- theta : list Trial parameters x : `numpy.ndarray` Times in JD y : `numpy.ndarray` Fluxes yerr : `numpy.ndarray` Uncertainties on fluxes transit_params : `~batman.TransitParams` Transit light curve parameters Returns ------- lnp : float Log-likelihood of data given model, i.e. ln( P(x | theta) ) """ model = spotted_transit_model(theta, x, transit_params, skip_priors) return -0.5*np.sum((y-model)**2/yerr**2) def lnprob(theta, x, y, yerr, lower_t_bound, upper_t_bound, transit_params, skip_priors): """ Log probability. Parameters ---------- theta : list Trial parameters x : `numpy.ndarray` Times in JD y : `numpy.ndarray` Fluxes yerr : `numpy.ndarray` Uncertainties on fluxes lower_t_bound : float Earliest in-transit time [JD] upper_t_bound : float Latest in-transit time [JD] transit_params : `~batman.TransitParams` Transit light curve parameters Returns ------- """ lp = lnprior(theta, y, lower_t_bound, upper_t_bound, transit_params, skip_priors) if not np.isfinite(lp): return -np.inf return lp + lnlike(theta, x, y, yerr, transit_params, skip_priors) def spotted_transit_model(theta, times, transit_params, skip_priors=False): """ Compute sum of spot model and transit model Parameters ---------- theta : list Trial parameters times : `numpy.ndarray` Times in JD transit_params : `~batman.TransitParams` Transit light curve parameters Returns ------- f : `numpy.ndarray` Model fluxes """ spot_params = theta # Set depth according to input parameters, compute transit model lower_t_bound, upper_t_bound = get_in_transit_bounds(times, transit_params, duration_fraction=1.0) transit_model = generate_lc(times, transit_params) spot_model = summed_gaussians(times, spot_params) # Sum the models only where planet is in transit transit_plus_spot_model = transit_model in_transit_times = (times < upper_t_bound) & (times > lower_t_bound) transit_plus_spot_model[in_transit_times] += spot_model[in_transit_times] if not skip_priors: # Force all model fluxes <=1 transit_plus_spot_model[transit_plus_spot_model > 1] = 1.0 return transit_plus_spot_model def spotted_transit_model_individuals(theta, times, transit_params): """ Compute sum of each spot model and the transit model individually, return a list of each. Parameters ---------- theta : list Trial parameters times : `numpy.ndarray` Times in JD transit_params : `~batman.TransitParams` Transit light curve parameters Returns ------- f_list : list List of model fluxes """ spot_params = theta split_spot_params = np.split(spot_params, len(spot_params)/3) return [spotted_transit_model(spot_params, times, transit_params) for spot_params in split_spot_params] def run_emcee_seeded(light_curve, transit_params, spot_parameters, n_steps, n_walkers, output_path, burnin=0.7, n_extra_spots=1, skip_priors=False): """ Fit for transit depth and spot parameters given initial guess informed by results from `peak_finder` Parameters ---------- light_curve : `friedrich.lightcurve.TransitLightCurve` Light curve to fit transit_params : `~batman.TransitParams` Transit light curve parameters spot_parameters : list List of all spot parameters in [amp, t0, sig, amp, t0, sig, ...] order n_steps : int Number of MCMC steps to take n_walkers : int Number of MCMC walkers to initialize (must be even, more than twice the number of free params in fit) output_path : str Path to HDF5 archive output for storing results burnin : float Fraction of total number of steps to save to output (will truncate the first `burnin` of the light curve) n_extra_spots : int Add `n_extra_spots` extra spots to the fit to soak up spots not predicted by `peak_finder` skip_priors : bool Should a prior be applied to the depth parameter? Returns ------- sampler : `emcee.EnsembleSampler` Sampler object returned by `emcee` """ times = light_curve.times.jd fluxes = light_curve.fluxes errors = light_curve.errors lower_t_bound, upper_t_bound = get_in_transit_bounds(times, transit_params) amps = spot_parameters[::3] init_depth = transit_params.rp**2 extra_spot_params = [0.1*np.min(amps), np.mean(times), 0.05*(upper_t_bound-lower_t_bound)] fit_params = np.concatenate([spot_parameters, n_extra_spots*extra_spot_params]) ndim, nwalkers = len(fit_params), n_walkers pos = [] while len(pos) < nwalkers: realization = fit_params + 1e-5*np.random.randn(ndim) if not np.isinf(lnprior(realization, fluxes, lower_t_bound, upper_t_bound, transit_params, skip_priors)): pos.append(realization) print('Begin MCMC...') pool = MPIPool(loadbalance=True) if not pool.is_master(): pool.wait() sys.exit(0) sampler = emcee.EnsembleSampler(nwalkers, ndim, lnprob, args=(times, fluxes, errors, lower_t_bound, upper_t_bound, transit_params, skip_priors), pool=pool) sampler.run_mcmc(pos, n_steps) print('Finished MCMC...') pool.close() burnin_len = int(burnin*n_steps) from .storage import create_results_archive create_results_archive(output_path, light_curve, sampler, burnin_len, ndim) return sampler
mit
xpspectre/multiple-myeloma
prep_baseline_clinical_data.py
1
3680
# Run this after prep_clinical_data.py import os import pandas as pd import numpy as np # from fancyimpute import KNN, MICE data_dir = 'data/processed' # Load study data - to keep just the CoMMpass patients study_data = pd.read_csv(os.path.join(data_dir, 'patient_study.csv')) study_data.set_index('PUBLIC_ID', inplace=True) # Load demographic data demo_data = pd.read_csv(os.path.join(data_dir, 'patient_data.csv')) demo_data.set_index('PUBLIC_ID', inplace=True) # Load visit data visit_data = pd.read_csv(os.path.join(data_dir, 'clinical_data.csv')) # Select just the baseline/screening data visit_data = visit_data.loc[visit_data['VISIT'] <= 0] # Combine rows for each patient # Averaging the rows takes care of missing data/NaNs properly # unique_ids = data['PUBLIC_ID'].unique() # print(unique_ids) visit_data = visit_data.groupby('PUBLIC_ID').mean() visit_data.drop(['VISIT', 'VISITDY'], axis=1, inplace=True) # Combine demographic and visit data data = demo_data data = data.join(visit_data) # Only keep CoMMpass patients data = data[study_data['STUDY_ID'] == 1] # Drop cols that represent change over last visit data.drop(['AT_INCREASEOF25F', 'AT_SERUMMCOMPONE', 'AT_URINEMCOMPONE', 'AT_ONLYINPATIENT', 'AT_ONLYINPATIENT2', 'AT_DEVELOPMENTOF'], axis=1, inplace=True) # Keep only the cols that have >= threashold % entries present # Set this to determine how much we have to consider missing data # A smallish amount of missing data should be pretty straightforward imputation # More missing data is harder # Which cols can be used for regression of missing data? (if our method requires that) keep_thres = 0.5 cols = list(data) present = [] N, N_cols = data.shape for col in cols: n = pd.notnull(data[col]).sum() present.append(float(n)/N) present = np.array(present) drop_cols = np.where(present < keep_thres)[0] data.drop(data.columns[drop_cols], axis=1, inplace=True) print('Dropped {n}/{N} cols that had less than {x} frac of values'.format(n=drop_cols.size, N=N_cols, x=keep_thres)) # Load endpoints and join/split with data endp_data = pd.read_csv(os.path.join(data_dir, 'patient_endp.csv')) endp_data.set_index('PUBLIC_ID', inplace=True) endp_cols = list(endp_data) data_ = data data_ = data_.join(endp_data) data = data_.drop(endp_cols, axis=1) endp_data = data_[endp_cols] # Save combined baseline patient data data.to_csv(os.path.join(data_dir, 'baseline_clinical_data.csv')) endp_data.to_csv(os.path.join(data_dir, 'baseline_clinical_endp.csv')) # Impute missing data # If all the cols are allowed to be treated as numeric vals, then this is OK as is # Otherwise, if some cols still need to be categorical/indicator, then threshold and convert # Not sure if these funs below are supposed to return multiple datasets? # May want to recombine categorical cols into 1 col, then multinomial or softmax logistic regression on them in MI, # then resplit do_mi = False if do_mi: cols = list(data) inds = data.index.values X = data.as_matrix() X_filled_knn = KNN(k=3).complete(X) data_filled_knn = pd.DataFrame(data=X_filled_knn, columns=cols) data_filled_knn.insert(0, 'PUBLIC_ID', inds) data_filled_knn.set_index('PUBLIC_ID', inplace=True) X_filled_mice = MICE().complete(X) data_filled_mice = pd.DataFrame(data=X_filled_mice, columns=cols) data_filled_mice.insert(0, 'PUBLIC_ID', inds) data_filled_mice.set_index('PUBLIC_ID', inplace=True) # Save imputed data ready for standard analysis data_filled_knn.to_csv(os.path.join(data_dir, 'baseline_clinical_data_imputed_knn.csv')) data_filled_mice.to_csv(os.path.join(data_dir, 'baseline_clinical_data_imputed_mice.csv'))
mit
samuel1208/scikit-learn
sklearn/__init__.py
154
3014
""" Machine learning module for Python ================================== sklearn is a Python module integrating classical machine learning algorithms in the tightly-knit world of scientific Python packages (numpy, scipy, matplotlib). It aims to provide simple and efficient solutions to learning problems that are accessible to everybody and reusable in various contexts: machine-learning as a versatile tool for science and engineering. See http://scikit-learn.org for complete documentation. """ import sys import re import warnings # Make sure that DeprecationWarning within this package always gets printed warnings.filterwarnings('always', category=DeprecationWarning, module='^{0}\.'.format(re.escape(__name__))) # PEP0440 compatible formatted version, see: # https://www.python.org/dev/peps/pep-0440/ # # Generic release markers: # X.Y # X.Y.Z # For bugfix releases # # Admissible pre-release markers: # X.YaN # Alpha release # X.YbN # Beta release # X.YrcN # Release Candidate # X.Y # Final release # # Dev branch marker is: 'X.Y.dev' or 'X.Y.devN' where N is an integer. # 'X.Y.dev0' is the canonical version of 'X.Y.dev' # __version__ = '0.17.dev0' try: # This variable is injected in the __builtins__ by the build # process. It used to enable importing subpackages of sklearn when # the binaries are not built __SKLEARN_SETUP__ except NameError: __SKLEARN_SETUP__ = False if __SKLEARN_SETUP__: sys.stderr.write('Partial import of sklearn during the build process.\n') # We are not importing the rest of the scikit during the build # process, as it may not be compiled yet else: from . import __check_build from .base import clone __check_build # avoid flakes unused variable error __all__ = ['calibration', 'cluster', 'covariance', 'cross_decomposition', 'cross_validation', 'datasets', 'decomposition', 'dummy', 'ensemble', 'externals', 'feature_extraction', 'feature_selection', 'gaussian_process', 'grid_search', 'isotonic', 'kernel_approximation', 'kernel_ridge', 'lda', 'learning_curve', 'linear_model', 'manifold', 'metrics', 'mixture', 'multiclass', 'naive_bayes', 'neighbors', 'neural_network', 'pipeline', 'preprocessing', 'qda', 'random_projection', 'semi_supervised', 'svm', 'tree', # Non-modules: 'clone'] def setup_module(module): """Fixture for the tests to assure globally controllable seeding of RNGs""" import os import numpy as np import random # It could have been provided in the environment _random_seed = os.environ.get('SKLEARN_SEED', None) if _random_seed is None: _random_seed = np.random.uniform() * (2 ** 31 - 1) _random_seed = int(_random_seed) print("I: Seeding RNGs with %r" % _random_seed) np.random.seed(_random_seed) random.seed(_random_seed)
bsd-3-clause
AWPorter/aima-python
grading/bayesian-submissions.py
15
2415
import importlib import traceback from grading.util import roster, print_table # from logic import FolKB # from utils import expr import os from sklearn.naive_bayes import GaussianNB gnb = GaussianNB() def indent(howMuch = 1): space = ' ' for i in range(1, howMuch): space += ' ' return space def printKB(label, kb): print(indent(), label + ' example:') print(indent(2), 'knowledge base:') for clause in kb.clauses: print(indent(3), str(clause)) def printResults(query, gen, limit=3): for count in range(limit): try: long = next(gen) except StopIteration: print() return short = {} for v in long: if v in query.args: short[v] = long[v] print(short, end=' ') print('...') def tryOne(label, frame): fit = gnb.fit(frame.data, frame.target) print('') print_table(fit.theta_, header=[frame.feature_names], topLeft=['Means:'], leftColumn=frame.target_names, numfmt='%6.3f', njust='center', tjust='rjust', ) y_pred = fit.predict(frame.data) print("Number of mislabeled points out of a total %d points : %d" % (len(frame.data), (frame.target != y_pred).sum())) def tryExamples(examples): for label in examples: tryOne(label, examples[label]) submissions = {} scores = {} message1 = 'Submissions that compile:' root = os.getcwd() for student in roster: try: os.chdir(root + '/submissions/' + student) # http://stackoverflow.com/a/17136796/2619926 mod = importlib.import_module('submissions.' + student + '.myBayes') submissions[student] = mod.Examples message1 += ' ' + student except ImportError: pass except: traceback.print_exc() os.chdir(root) print(message1) print('----------------------------------------') for student in roster: if not student in submissions.keys(): continue scores[student] = [] try: examples = submissions[student] print('Bayesian Networks from:', student) tryExamples(examples) except: traceback.print_exc() print(student + ' scores ' + str(scores[student]) + ' = ' + str(sum(scores[student]))) print('----------------------------------------')
mit
dalejung/pandas-composition
pandas_composition/test/test_series.py
1
4278
from unittest import TestCase import pickle import pandas as pd import pandas.util.testing as tm import numpy as np import pandas_composition as composition UserSeries = composition.UserSeries from pandas_composition.util.tempdir import TemporaryDirectory class TestSeries(TestCase): def __init__(self, *args, **kwargs): TestCase.__init__(self, *args, **kwargs) def runTest(self): pass def setUp(self): pass def test_timeseries_vs_series(self): """ Due to the auto changing of Series to TimeSeries when having a DatetimeIndex my _wrap check had a problem with it's direct check. Technically, UserSeries has two pandas types, pd.Series and pd.TimeSeries """ class SubSeries(UserSeries): pass # check pd.Series s = SubSeries(range(10)) bools = s > 0 assert type(bools) is SubSeries # check TimeSeries ind = pd.date_range(start="2000", freq="D", periods=10) s = SubSeries(range(10), index=ind) bools = s > 0 assert type(bools) is SubSeries def test_series_pickle(self): """ Test that the UserSeries pickles correctly """ s = UserSeries(range(10)) s.frank = '123' with TemporaryDirectory() as td: fn = td + '/test.save' with open(fn, 'wb') as f: pickle.dump(s, f, protocol=0) with open(fn, 'rb') as f: test = pickle.load(f) tm.assert_almost_equal(s, test) assert isinstance(test, UserSeries) assert test.frank == '123' def test_init_args(self): """ Support init params for things like `series + 1`. While metadata propogates, currently (2013/07/01) wrapping fails because it calls the constructor instead of calling .view """ class SubSeries(UserSeries): def __init__(self, *args, **kwargs): bob = kwargs.pop('bob') self.bob = bob super(SubSeries, self).__init__(*args, **kwargs) ss = SubSeries(range(10), bob=123) assert ss.bob == 123 test = ss + 1 # currently errors assert test.bob == 123 def test_init_args_set_meta_check(self): """ Support init params for things like `series + 1`. While metadata propogates, currently (2013/07/01) wrapping fails because it calls the constructor instead of calling .view """ class SubSeries(UserSeries): def __init__(self, *args, **kwargs): bob = kwargs.pop('bob') self.bob = bob super(SubSeries, self).__init__(*args, **kwargs) ss = SubSeries(range(10), bob=123) assert ss.bob == 123 # pandas constructors vars go to pandas object # this is due to the fact that pandas sets its init args as # member variables ss.copy = True assert 'copy' not in ss.meta assert 'copy' in ss.pobj.__dict__ try: ss.set_meta('copy', False) except: pass else: assert False, 'copy should fail as it is a constructor arg' def test_monkeyed_pandas_object(self): """ A monkey-patched method on base pandas object is callable but will pass in that base type instead of the subclass """ return # not sure if this is error def type_method(self): return type(self) pd.Series.type_method = type_method class SubSeries(UserSeries): pass s = SubSeries(range(10)) t = s.type_method() assert t is SubSeries def test_np_where(self): us = UserSeries(range(10)) bools = us > 5 tvals = np.repeat(1, len(us)) fvals = np.repeat(0, len(us)) wh = np.where(bools, tvals, fvals) assert isinstance(wh, UserSeries) def test_series_view(self): """ """ us = UserSeries(range(10)) us.view('i8') class SubSeries(UserSeries): pass if __name__ == '__main__': import nose nose.runmodule(argv=[__file__,'-vvs','-x','--pdb', '--pdb-failure'],exit=False)
mit
airanmehr/bio
Scripts/Miscellaneous/CSE280A/Assigment1.py
1
3969
''' Copyleft Jan 15, 2016 Arya Iranmehr, PhD Student, Bafna Lab, UC San Diego, Email: [email protected] ''' import numpy as np; np.set_printoptions(linewidth=200, precision=5, suppress=True) import pandas as pd; pd.options.display.max_rows=60;pd.options.display.max_columns=50;pd.options.display.expand_frame_repr=False import pylab as plt; import matplotlib as mpl import os; home=os.path.expanduser('~') +'/' path=home+'datasets/cse280a/' from time import time def problem3(): b=np.log(np.array([18,21,12,7,3,5])/200.) A=np.array([[1, 1, 0, 0], [1, 0, 1, 0], [1, 0, 0, 1], [0, 1, 1, 0], [0, 1, 0, 1], [0, 0, 1, 1]]) print 'Problem 3 Soulution:',np.exp(np.linalg.pinv(A).dot(b)) def fastPylogeny(A): A=radixSort(A.T).values cladeAncestor=0 for i in range(A.shape[0]): if (A[cladeAncestor] == A[i]).all(): continue if (A[cladeAncestor]* A[i]).sum(): #has an intersection if ((1-A[cladeAncestor])* A[i]).sum()!=0: return False else: cladeAncestor=i return True def problem4(): def loadData(fname): return pd.DataFrame(map(lambda x: list(str.strip(x)), open(path+fname).readlines())).astype(int) a=loadData('a1data{}.txt'.format(1)) print 'Problem 4', print 'reading data...' Data=[loadData('a1data{}.txt'.format(i)) for i in range(1,7)] print 'testing for perfect pylogeny...' times=[] for i,a in enumerate(Data): start=time() testResult=fastPylogeny(a) elapsed=time()-start print 'Dataset {} does{} have a perfect phylogeny. Done in {:.1f} secs, mn={:.0e} ).'.format(i+1,(' NOT','')[testResult],elapsed, a.shape[0]*a.shape[0]) times.append((a.shape[0]*a.shape[1],elapsed)) a=pd.DataFrame(times); a.set_index(0,inplace=True); a.plot(style='-o',logx=True,logy=True,grid=True,legend=False,linewidth=2,markersize=10);plt.xlabel('n x m');plt.ylabel('Time');plt.xlim(80,1.2*Data[-1].shape[0]*Data[-1].shape[0]) plt.show() def radixSort(A): idx=np.arange(A.shape[0]) for j in range(A.shape[1])[::-1]: idx=idx[np.append(np.where(A.iloc[idx,j].values)[0],np.where(1-A.iloc[idx,j].values)[0])] return A.iloc[idx] # problem4() def getLevelTree(a): def getBranch(a,mu,allele=0): idx=a.iloc[:,mu]==allele if idx.sum(): return getLevelTree(a.ix[idx,a.columns!=a.columns[mu]]) else: return None,None if a.shape[0]==1: return [a.index[0],None,None], None a=a.ix[:,a.sum(0)!=a.shape[0]] root = a.index[a.sum(1) == 0][0] # print ','.join([root] + list(a.index[ a.duplicated()])) a=a.loc[a.index!=root] a.sum(0) mu = a.sum(0).values.argsort()[-1] left,leftg=getBranch(a, mu, allele=0) right, rightg=getBranch(a, mu, allele=1) if root=='12': root='12,15' left=None;leftg=None graph={root:[]} if left is not None : graph[root].append(str(left[0])) if right is not None: graph[root].append(str(right[0])) if leftg is not None: graph.update(leftg) if rightg is not None: graph.update(rightg) if root==1: graph= {str(k):v for k,v in graph.items()} print graph return [root,left, right ],graph def problem5(): a=pd.read_csv(path+'a1globedata.txt',sep=' ',header=0,index_col=0) a.index=a.index.astype(str) d=getLevelTree(a)[1] import pygraphviz as pg # d={'11': ['4'], '10': ['6', '5'], '13': ['11', '8'], '12,15': ['3'], '16': ['9'], '1': ['14', '7'], '2': ['12,15'], '4': ['10'], '7': ['16', '13'], '8': ['2']} A=pg.AGraph(d,strict=False,directed=True) A.node_attr['fontsize']='16' A.node_attr['color']='goldenrod2' A.node_attr['style']='filled' A.layout(prog='dot') A.draw(home+'migration.png') problem3() problem4() problem5()
mit
BMJHayward/infusionsoft_xpmt
examples/scrap.py
1
3586
import glob import os, os.path import sys import csv import dataserv import matplotchart as mpc import statistics import sqlite3 from datetime import date, datetime import time from dateutil import parser def filelinecount(filename): if type(filename) != str: filename = str(filename) with open(filename) as file: for i, l in enumerate(file): pass return i + 1 def linecount(): numlines = [] for file in list(os.walk('.'))[0][2]: if file.endswith('py'): try: numlines.append(filelinecount(file)) except: pass return sum(numlines) def plottest(): import matplotchart as mpc import matplotlib.pyplot as plt import pandas as pd qdata = mpc.sqltopandas() dates, values = qdata['Order Date'], qdata['Order Total'] mpc.plotdates(dates, values) def datefromcsv(file): reader = csv.DictReader(file, delimiter=';') #read the csv file for row in reader: date = datetime.strptime(row['Order Date'], '%Y-%m-%d %H:%M:%S') #datetime value in the right date format values[date.strftime('%Y-%m-%d')] += 1 #increment the date with a step of 1 for date, value in sorted(values.items()): result = (value / 3927.2) * 100 #Sla calcul with the theoritic number of line print('Date: {}'.format(date)) #SLA display print('Result: {}'.format(result)) class SQLtoPandas: ''' Basic SQL tasks in pandas DataFrames. ''' self.describe = self.df.describe() '''SELECT * FROM <table> LIMIT 10''' self.df[:10] '''SELECT col1, col2, FROM <table> LIMIT 3''' self.df[[col1, col2]][:3] '''SELECT col1, col2, col3 FROM <table> ORDER BY col3 LIMIT 3''' self.df.sort(col3)[[col1, col2, col3]][:3] '''SELECT col1, col2, col3 FROM <table> ORDER BY col3 desc LIMIT 3''' self.df.sort(col3, ascending=False)[[col1, col2, col3]][:3] '''SELECT * FROM <table> WHERE col1='somevalue' or col1='someother' ORDER BY col2 desc LIMIT 5;''' self.df[(df[col1]=='somevalue' | (df[col1]=='someother')].sort(col2, ascending=False)[:5] '''SELECT * FROM <table> WHERE col1 < 9000 ORDER BY col3 DESC LIMIT 1;''' self.df[df[col1]<9000].sort(col3, ascending=False)[:1] '''SELECT COUNT(DISTINCT(col1)) FROM <table>;''' len(self.df(col1).unique()) '''SELECT DISTINCT(col1) FROM (SELECT * FROM <table> ORDER BY col2 DESC LIMIT 20);''' self.df[:20].sort(col2, ascending=False)[col1].unique() '''SELECT col1, COUNT(col1) AS alt_col1_name FROM (SELECT * FROM col2 ORDER BY col3 LIMIT 100) GROUP BY col1 ORDER BY alt_col1_name DESC;''' self.df[:100][col1].value_counts() '''SELECT col1, AVG(col2), AVG(col3) FROM (SELECT * FROM <table> ORDER BY col3 DESC LIMIT 100) GROUP BY col1;''' self.df.sort(col3)[:100].groupby(col1).mean()[[col2, col3]] '''SELECT col1, COUNT(col1) FROM <table> GROUP BY col1;''' self.df.groupby(col1).count()[table] '''SELECT * FROM <table1> LEFT JOIN <table2> ON <table1>.col1=<table2>.col1 LIMIT 1;''' self.df1 = pd.read_csv('df1.csv') self.df2 = pd.read_csv('df2.csv') self.df1.merge(self.df2, on=col1)[:1] def __init__(*csvfiles): import pandas as pd self.df_array = [] for csvfile in csvfile: self.df = pd.read_csv(csvfile) self.df.head() self.df_array.append(self.df) return self.df_array if __name__ == "__main__": x = linecount() print(x)
mit
datapythonista/pandas
pandas/tests/frame/methods/test_count.py
3
1081
from pandas import ( DataFrame, Series, ) import pandas._testing as tm class TestDataFrameCount: def test_count(self): # corner case frame = DataFrame() ct1 = frame.count(1) assert isinstance(ct1, Series) ct2 = frame.count(0) assert isinstance(ct2, Series) # GH#423 df = DataFrame(index=range(10)) result = df.count(1) expected = Series(0, index=df.index) tm.assert_series_equal(result, expected) df = DataFrame(columns=range(10)) result = df.count(0) expected = Series(0, index=df.columns) tm.assert_series_equal(result, expected) df = DataFrame() result = df.count() expected = Series(0, index=[]) tm.assert_series_equal(result, expected) def test_count_objects(self, float_string_frame): dm = DataFrame(float_string_frame._series) df = DataFrame(float_string_frame._series) tm.assert_series_equal(dm.count(), df.count()) tm.assert_series_equal(dm.count(1), df.count(1))
bsd-3-clause
rehrlich/roary_analysis
plot_fsgm_results.py
1
4288
# Author: Rachel Ehrlich # This program takes as input an output directory (where it expects to find fsgm # output with the same nickname) and a nickname for the analysis. It creates # two plots of the data, the likelihood of various N values and the number of # expected new genes per strain sequenced. import matplotlib.pyplot as plt from matplotlib.backends.backend_pdf import PdfPages import operator import sys # Input is a list of strings that are ints with possible white space # Returns a list of ints def strip_ints_list(data): data = [x.strip() for x in data] data = [int(x) for x in data if len(x) > 0] return data # input is the connand window file from the fsgm program # returns the number of new, core and total genes for each number of genomes def get_genes_per_genome_data(my_file): in_core = False core = list() in_new_genes = False new_genes = list() in_total = False total = list() with open(my_file, 'rU') as f: for line in f: if line.startswith("core_stdv ="): in_total = False if in_total: total.append(line) if line.startswith("total ="): in_new_genes = False in_total = True if in_new_genes: new_genes.append(line) if line.startswith("new ="): in_core = False in_new_genes = True if in_core: core.append(line) if line.startswith("core ="): in_core = True return (core, new_genes, total) # Input is a tuple with lists of counts for core, new and total genes, an # output file name and the most likely value for n. Writes a pdf plot to the # output file def plot_genes_per_genome((core, new_genes, total), out_file, best_n=0): num_genomes = range(1, len(new_genes) + 1) with PdfPages(out_file) as pdf: plt.plot(num_genomes, new_genes, 'ro', label='new') plt.plot(num_genomes, total, 'bs', label='total') plt.plot(num_genomes, core, 'g^', label='core') if best_n > 0: plt.axhline(best_n, color = 'k') plt.annotate(s='N=' + str(best_n), xy=(5, best_n - 120)) plt.xlabel("Number of genomes") plt.ylabel('Number of genes') plt.title("Estimated size of distributed genome per strain sequenced") plt.legend(loc=0, numpoints=1) pdf.savefig() plt.close() # Input is the likelihood file from the fsgm program # returns a list of n values and a lis of their likelihoods def get_lik_data(my_file): with open(my_file, 'rU') as f: data = f.read() split_data = [x.split('\t') for x in data.split('\n') if len(x) > 0] n = [int(x[0]) for x in split_data] lik = [float(x[1]) for x in split_data] return n, lik # Graphs the n against lik and saves the results to out_file # Returns the most likely value of n def plot_lik_vs_n(n, lik, out_file): with PdfPages(out_file) as pdf: plt.plot(n, lik, 'ko') plt.xlabel("Number of genes") plt.ylabel('Log likelihood') max_index, max_lik = max(enumerate(lik), key=operator.itemgetter(1)) best_n = n[max_index] label = '(' + str(best_n) + ' ,' + str(max_lik) + ')' plt.annotate(s=label, xy=(best_n, max_lik), xytext=(best_n + 500, max_lik - 40), arrowprops=dict(facecolor='red', shrink=0.05)) plt.title("Number of genes in the pan genome") pdf.savefig() plt.close() return best_n def main(): out_dir = sys.argv[1] nickname = sys.argv[2] fsgm_lik_file = out_dir + "/N_vs_likelihood_" + nickname + ".txt" fsgm_file = out_dir + "/CommandWindow_" + nickname + ".txt" n, lik = get_lik_data(fsgm_lik_file) out_file = out_dir + '/' + nickname + '_genes_in_pan_genome.pdf' best_n = plot_lik_vs_n(n, lik, out_file) genes_per_genome = get_genes_per_genome_data(fsgm_file) genes_per_genome = [strip_ints_list(x) for x in genes_per_genome] out_file = out_dir + '/' + nickname + '_new_genes_per_sequenced_genome.pdf' plot_genes_per_genome(genes_per_genome, out_file, best_n) if __name__ == "__main__": main()
gpl-2.0
dhuang/incubator-airflow
airflow/hooks/druid_hook.py
1
5386
# -*- coding: utf-8 -*- # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import requests import time from pydruid.db import connect from airflow.exceptions import AirflowException from airflow.hooks.base_hook import BaseHook from airflow.hooks.dbapi_hook import DbApiHook class DruidHook(BaseHook): """ Connection to Druid overlord for ingestion :param druid_ingest_conn_id: The connection id to the Druid overlord machine which accepts index jobs :type druid_ingest_conn_id: string :param timeout: The interval between polling the Druid job for the status of the ingestion job :type timeout: int :param max_ingestion_time: The maximum ingestion time before assuming the job failed :type max_ingestion_time: int """ def __init__( self, druid_ingest_conn_id='druid_ingest_default', timeout=1, max_ingestion_time=None): self.druid_ingest_conn_id = druid_ingest_conn_id self.timeout = timeout self.max_ingestion_time = max_ingestion_time self.header = {'content-type': 'application/json'} def get_conn_url(self): conn = self.get_connection(self.druid_ingest_conn_id) host = conn.host port = conn.port schema = conn.extra_dejson.get('schema', 'http') endpoint = conn.extra_dejson.get('endpoint', '') return "http://{host}:{port}/{endpoint}".format(**locals()) def submit_indexing_job(self, json_index_spec): url = self.get_conn_url() req_index = requests.post(url, data=json_index_spec, headers=self.header) if (req_index.status_code != 200): raise AirflowException("Did not get 200 when submitting the Druid job to {}".format(url)) req_json = req_index.json() # Wait until the job is completed druid_task_id = req_json['task'] running = True sec = 0 while running: req_status = requests.get("{0}/{1}/status".format(url, druid_task_id)) self.log.info("Job still running for %s seconds...", sec) sec = sec + 1 if self.max_ingestion_time and sec > self.max_ingestion_time: # ensure that the job gets killed if the max ingestion time is exceeded requests.post("{0}/{1}/shutdown".format(url, druid_task_id)) raise AirflowException('Druid ingestion took more than %s seconds', self.max_ingestion_time) time.sleep(self.timeout) status = req_status.json()['status']['status'] if status == 'RUNNING': running = True elif status == 'SUCCESS': running = False # Great success! elif status == 'FAILED': raise AirflowException('Druid indexing job failed, check console for more info') else: raise AirflowException('Could not get status of the job, got %s', status) self.log.info('Successful index') class DruidDbApiHook(DbApiHook): """ Interact with Druid broker This hook is purely for users to query druid broker. For ingestion, please use druidHook. """ conn_name_attr = 'druid_broker_conn_id' default_conn_name = 'druid_broker_default' supports_autocommit = False def __init__(self, *args, **kwargs): super(DruidDbApiHook, self).__init__(*args, **kwargs) def get_conn(self): """ Establish a connection to druid broker. """ conn = self.get_connection(self.druid_broker_conn_id) druid_broker_conn = connect( host=conn.host, port=conn.port, path=conn.extra_dejson.get('endpoint', '/druid/v2/sql'), scheme=conn.extra_dejson.get('schema', 'http') ) self.log('Get the connection to druid broker on {host}'.format(host=conn.host)) return druid_broker_conn def get_uri(self): """ Get the connection uri for druid broker. e.g: druid://localhost:8082/druid/v2/sql/ """ conn = self.get_connection(getattr(self, self.conn_name_attr)) host = conn.host if conn.port is not None: host += ':{port}'.format(port=conn.port) conn_type = 'druid' if not conn.conn_type else conn.conn_type endpoint = conn.extra_dejson.get('endpoint', 'druid/v2/sql') return '{conn_type}://{host}/{endpoint}'.format( conn_type=conn_type, host=host, endpoint=endpoint) def set_autocommit(self, conn, autocommit): raise NotImplementedError() def get_pandas_df(self, sql, parameters=None): raise NotImplementedError() def insert_rows(self, table, rows, target_fields=None, commit_every=1000): raise NotImplementedError()
apache-2.0
corochann/chainerex
chainerex/utils/visualize/plot.py
1
2950
""" 2017.11.25 Note the name has changed to Original `plot_roc_auc_curve` method has changed to the name `plot_roc_auc_curve_by_fpr_tpr` And `plot_roc_auc_curve` as implemented as more convenient function """ import matplotlib.pyplot as plt from sklearn import metrics def plot_roc_auc_curve(filepath, label, prob, pos_label=1, title=None): """Plot ROC-AUC curve, and save in png file. Ref: http://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html#sphx-glr-auto-examples-model-selection-plot-roc-py Admonition ...Examples >>> import numpy as np >>> test_label = np.array([1, 1, 0, 0]) >>> test_score = np.array([0.1, 0.4, 0.35, 0.8]) >>> plot_roc_auc_curve('roc.png', test_label, test_score) Args: filepath: label: prob: title: Returns: """ roc_auc = metrics.roc_auc_score(label, prob) fpr, tpr, thresholds = metrics.roc_curve(label, prob, pos_label=pos_label) plot_roc_auc_curve_by_fpr_tpr(filepath, fpr, tpr, roc_auc=roc_auc, title=title) return roc_auc, fpr, tpr, thresholds def plot_roc_auc_curve_by_fpr_tpr(filepath, fpr, tpr, roc_auc=None, title=None): """Plot ROC-AUC curve, and save in png file. Ref: http://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html#sphx-glr-auto-examples-model-selection-plot-roc-py Admonition ...Examples >>> import numpy as np >>> from sklearn import metrics >>> test_label = np.array([1, 1, 0, 0]) >>> test_score = np.array([0.1, 0.4, 0.35, 0.8]) >>> roc_auc = metrics.roc_auc_score(test_label, test_prob) >>> fpr, tpr, thresholds = metrics.roc_curve(test_label, test_prob, pos_label=1) >>> plot_roc_auc_curve_by_fpr_tpr('roc.png', fpr, tpr, roc_auc) Args: filepath (str): fpr (numpy.ndarray): tpr (numpy.ndarray): roc_auc (float or None): title (str or None): """ lw = 2 title = title or 'Receiver operating characteristic' if roc_auc is not None: label = 'ROC curve (area = {:0.2f})'.format(roc_auc) else: label = 'ROC curve' plt.figure() plt.plot(fpr, tpr, color='darkorange', lw=lw, label=label) plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title(title) plt.legend(loc="lower right") plt.savefig(filepath) if __name__ == '__main__': import numpy as np test_label = np.array([0, 0, 1, 1]) test_score = np.array([0.1, 0.4, 0.35, 0.8]) roc_auc = metrics.roc_auc_score(test_label, test_score) fpr, tpr, thresholds = metrics.roc_curve(test_label, test_score, pos_label=1) plot_roc_auc_curve_by_fpr_tpr('roc.png', fpr, tpr, roc_auc)
mit
EricssonResearch/scott-eu
simulation-ros/src/turtlebot2i/turtlebot2i_msdn/msdn/faster_rcnn/rpn_msr/generate.py
6
4403
# -------------------------------------------------------- # Faster R-CNN # Copyright (c) 2015 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ross Girshick # -------------------------------------------------------- import numpy as np import cv2 import matplotlib.pyplot as plt from ..utils.blob import im_list_to_blob from ..utils.timer import Timer # TODO: make fast_rcnn irrelevant # >>>> obsolete, because it depends on sth outside of this project from ..fast_rcnn.config import cfg # <<<< obsolete def _vis_proposals(im, dets, thresh=0.5): """Draw detected bounding boxes.""" inds = np.where(dets[:, -1] >= thresh)[0] if len(inds) == 0: return class_name = 'obj' im = im[:, :, (2, 1, 0)] fig, ax = plt.subplots(figsize=(12, 12)) ax.imshow(im, aspect='equal') for i in inds: bbox = dets[i, :4] score = dets[i, -1] ax.add_patch( plt.Rectangle((bbox[0], bbox[1]), bbox[2] - bbox[0], bbox[3] - bbox[1], fill=False, edgecolor='red', linewidth=3.5) ) ax.text(bbox[0], bbox[1] - 2, '{:s} {:.3f}'.format(class_name, score), bbox=dict(facecolor='blue', alpha=0.5), fontsize=14, color='white') ax.set_title(('{} detections with ' 'p({} | box) >= {:.1f}').format(class_name, class_name, thresh), fontsize=14) plt.axis('off') plt.tight_layout() plt.draw() def _get_image_blob(im): """Converts an image into a network input. Arguments: im (ndarray): a color image in BGR order Returns: blob (ndarray): a data blob holding an image pyramid im_scale_factors (list): list of image scales (relative to im) used in the image pyramid """ im_orig = im.astype(np.float32, copy=True) im_orig -= cfg.PIXEL_MEANS processed_ims = [] assert len(cfg.TEST.SCALES_BASE) == 1 im_scale = cfg.TRAIN.SCALES_BASE[0] im = cv2.resize(im_orig, None, None, fx=im_scale, fy=im_scale, interpolation=cv2.INTER_LINEAR) im_info = np.hstack((im.shape[:2], im_scale))[np.newaxis, :] processed_ims.append(im) # Create a blob to hold the input images blob = im_list_to_blob(processed_ims) return blob, im_info def im_proposals(net, im): """Generate RPN proposals on a single image.""" blobs = {} blobs['data'], blobs['im_info'] = _get_image_blob(im) net.blobs['data'].reshape(*(blobs['data'].shape)) net.blobs['im_info'].reshape(*(blobs['im_info'].shape)) blobs_out = net.forward( data=blobs['data'].astype(np.float32, copy=False), im_info=blobs['im_info'].astype(np.float32, copy=False)) scale = blobs['im_info'][0, 2] boxes = blobs_out['rois'][:, 1:].copy() / scale scores = blobs_out['scores'].copy() return boxes, scores def imdb_proposals(net, imdb): """Generate RPN proposals on all images in an imdb.""" _t = Timer() imdb_boxes = [[] for _ in xrange(imdb.num_images)] for i in xrange(imdb.num_images): im = cv2.imread(imdb.image_path_at(i)) _t.tic() imdb_boxes[i], scores = im_proposals(net, im) _t.toc() print 'im_proposals: {:d}/{:d} {:.3f}s' \ .format(i + 1, imdb.num_images, _t.average_time) if 0: dets = np.hstack((imdb_boxes[i], scores)) # from IPython import embed; embed() _vis_proposals(im, dets[:3, :], thresh=0.9) plt.show() return imdb_boxes def imdb_proposals_det(net, imdb): """Generate RPN proposals on all images in an imdb.""" _t = Timer() imdb_boxes = [[] for _ in xrange(imdb.num_images)] for i in xrange(imdb.num_images): im = cv2.imread(imdb.image_path_at(i)) _t.tic() boxes, scores = im_proposals(net, im) _t.toc() print 'im_proposals: {:d}/{:d} {:.3f}s' \ .format(i + 1, imdb.num_images, _t.average_time) dets = np.hstack((boxes, scores)) imdb_boxes[i] = dets if 0: # from IPython import embed; embed() _vis_proposals(im, dets[:3, :], thresh=0.9) plt.show() return imdb_boxes
apache-2.0
KevinHCChen/wireless-aoa
scripts/mlAOA.py
1
4026
import numpy as np import matplotlib.pyplot as plt import scipy from scipy.ndimage.morphology import binary_dilation, binary_erosion from matplotlib import colors import sys import itertools from sklearn.cross_validation import LeavePOut # from sklearn.svm import LinearSVC as SVM from sklearn.svm import SVC as SVM from sklearn.linear_model import LogisticRegression as LR from sklearn.neighbors import KNeighborsClassifier as KNN from MLP import MLPClassifier from MLP import MLPRegressor import math # 96 inches (indoor) # 28.5 feet (outdoor) rx_num = 4 distance_between_rx = 0.088 frequency = 916e6 speedoflight = 3e8 wavelength = speedoflight/frequency def angle2c(theta): return 1j*np.sin(theta)+np.cos(theta) def steeringVector(theta): phase_diff = distance_between_rx*np.cos(theta)*2*np.pi/wavelength return angle2c(np.array([rx*phase_diff for rx in range(rx_num)])) def angleDiff(signal1, signal2): return np.mod(np.angle(signal1)-np.angle(signal2)+np.pi, 2*np.pi)-np.pi def angular_diff(samples): return [angleDiff( samples[i+1], samples[i] ) for i in range(len(samples)-1) ] def shift2degree(x): return np.arccos(x)/np.pi*180. def degree2shift(x): return (np.cos(x/180.*np.pi)) def identity(x): return x plt.ion() DataFolder = '../data/0620-outdoor/' # DataFolder = '../data/0621-indoor/' data = np.loadtxt(DataFolder+'ANGDIFF.txt',delimiter=',') mlp = MLPClassifier(hidden_layer_sizes=(50, 50), activation='tanh', algorithm='adam', alpha=0.0001) mlp_reg = MLPRegressor(hidden_layer_sizes=(200, 50, 50), activation='relu', verbose=True, algorithm='adam', alpha=0.000, tol=1e-5, early_stopping=True) # from sklearn.svm import SVC as SVM svm = SVM(C=100) # classifier = svm classifier = mlp classifier = mlp_reg if False: X = data[:,-3:] Y = data[:,0].astype(int) # Y = np.cos(Y/180.*np.pi) # Y = degree2shift(Y) ID = data[:,1] f = identity else: Y = np.random.randint(800,1200, size=(300))/10. X = np.vstack( [ angular_diff(steeringVector(theta)) for theta in Y/180.*np.pi ] ) X = X + np.random.randn(X.shape[0], X.shape[1])*5e-2 # Y = np.cos(Y/180.*np.pi) ID = Y f = identity # Y = degree2shift(Y) # f = shift2degree # Start doing the standard thing # X = np.hstack([X**p/math.factorial(p) for p in range(1,5)]) X = np.hstack([X**p for p in range(1,4)]) plt.clf() plt.plot(f(Y), f(Y) ,'o-', alpha=0.3) plt.plot(f(Y), f(classifier.fit(X,Y).predict(X)) ,'.') # assert(0) score = [] labels = [] max_run = 100 for train_index, test_index in LeavePOut(len(X), 1): max_run -= 1 if max_run <1: break classifier.fit(X[train_index,:],Y[train_index]) score.append( classifier.score(X[test_index,:],Y[test_index]) ) # print classifier.score(X[test_index,:],Y[test_index]), Y[test_index], ID[test_index] labels.append([classifier.predict(X[test_index,:]), Y[test_index]]) if score[-1] != 1: print Y[test_index], classifier.predict(X[test_index,:]), ID[test_index] from sklearn.metrics import confusion_matrix as cm labels = np.hstack(labels) error = (labels[0]-labels[1]) error_ml = np.abs(error) # plt.plot(Y, Y ,'o-', alpha=0.3) plt.plot(f(labels[1]), f(labels[0]),'.') if False: Y = (np.random.randint(300,1200, size=(1500)))/10. X = np.vstack( [ angular_diff(steeringVector(theta)) for theta in Y/180.*np.pi ] ) X = np.hstack([X**p for p in range(1,4)]) Y = np.cos((180-Y)/180.*np.pi) ID = Y classifier.fit(X,Y) X = data[:,-3:] X = np.hstack([X**p for p in range(1,4)]) Y = data[:,0].astype(int) Y = np.cos(Y/180.*np.pi) ID = data[:,1] plt.clf(); plt.plot(f(Y), f(classifier.predict(X)),'.') labels = [f(Y), f(classifier.predict(X))] error = (labels[0]-labels[1]) error_ml = np.abs(error) print np.mean(error_ml)
mit
anurag313/scikit-learn
examples/svm/plot_custom_kernel.py
171
1546
""" ====================== SVM with custom kernel ====================== Simple usage of Support Vector Machines to classify a sample. It will plot the decision surface and the support vectors. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm, datasets # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. We could # avoid this ugly slicing by using a two-dim dataset Y = iris.target def my_kernel(X, Y): """ We create a custom kernel: (2 0) k(X, Y) = X ( ) Y.T (0 1) """ M = np.array([[2, 0], [0, 1.0]]) return np.dot(np.dot(X, M), Y.T) h = .02 # step size in the mesh # we create an instance of SVM and fit out data. clf = svm.SVC(kernel=my_kernel) clf.fit(X, Y) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired) # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=Y, cmap=plt.cm.Paired) plt.title('3-Class classification using Support Vector Machine with custom' ' kernel') plt.axis('tight') plt.show()
bsd-3-clause
low-sky/colira
plots/galplots.py
1
1206
from astropy.table import Table import matplotlib.pyplot as p import numpy as np from matplotlib import rc #rc('text', usetex=True) rc('font',family='serif') def galscatter2d(): t = Table.read('brs.bygal2d.txt',format='ascii') fig = p.figure(figsize=(4.5,4.5)) t['R21+'] = t['R21+']-t['R21'] t['R21-'] = t['R21']-t['R21-'] t['R32+'] = t['R32+']-t['R32'] t['R32-'] = t['R32']-t['R32-'] ax = p.subplot(111) #ax.set_xlim(6e-4,1e-1) ax.set_xlabel(r'$R_{21}$') ax.set_ylabel(r'$R_{32}$') marker = np.ones(len(t['Name'])).astype('str') marker[:]='4' p.errorbar(t['R21'],t['R32'], xerr=[t['R21-'],t['R21+']], yerr=[t['R32-'],t['R32+']], linestyle='None',marker=marker,color='grey', label=np.asarray(t['Name'])) p.legend() # for ii,gal in enumerate(t['Name']): # p.errorbar(t['R21'][ii],t['R32'][ii], # xerr=[t['R21-'][ii],t['R21+'][ii]], # yerr=[t['R32-'][ii],t['R32+'][ii]], # linestyle='None',marker='o',color='grey',label=gal) p.tight_layout() p.savefig('ratio_bygal2d.pdf',bbox='tight') p.close()
gpl-2.0
musically-ut/statsmodels
statsmodels/sandbox/tsa/examples/ex_mle_garch.py
31
10676
# -*- coding: utf-8 -*- """ Created on Fri Feb 12 01:01:50 2010 Author: josef-pktd latest result ------------- all are very close garch0 has different parameterization of constant ordering of parameters is different seed 2780185 h.shape (2000,) Optimization terminated successfully. Current function value: 2093.813397 Iterations: 387 Function evaluations: 676 ggres.params [-0.6146253 0.1914537 0.01039355 0.78802188] Optimization terminated successfully. Current function value: 2093.972953 Iterations: 201 Function evaluations: 372 ggres0.params [-0.61537527 0.19635128 4.00706058] Warning: Desired error not necessarily achieveddue to precision loss Current function value: 2093.972953 Iterations: 51 Function evaluations: 551 Gradient evaluations: 110 ggres0.params [-0.61537855 0.19635265 4.00694669] Optimization terminated successfully. Current function value: 2093.751420 Iterations: 103 Function evaluations: 187 [ 0.78671519 0.19692222 0.61457171] -2093.75141963 Final Estimate: LLH: 2093.750 norm LLH: 2.093750 omega alpha1 beta1 0.7867438 0.1970437 0.6145467 long run variance comparison ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ R >>> 0.7867438/(1- 0.1970437- 0.6145467) 4.1757097302897526 Garch (gjr) asymetric, longrun var ? >>> 1/(1-0.6146253 - 0.1914537 - 0.01039355) * 0.78802188 4.2937548579245242 >>> 1/(1-0.6146253 - 0.1914537 + 0.01039355) * 0.78802188 3.8569053452140345 Garch0 >>> (1-0.61537855 - 0.19635265) * 4.00694669 0.7543830449902722 >>> errgjr4.var() #for different random seed 4.0924199964716106 todo: add code and verify, check for longer lagpolys """ from __future__ import print_function import numpy as np from numpy.testing import assert_almost_equal import matplotlib.pyplot as plt import numdifftools as ndt import statsmodels.api as sm from statsmodels.sandbox import tsa from statsmodels.sandbox.tsa.garch import * # local import nobs = 1000 examples = ['garch', 'rpyfit'] if 'garch' in examples: err,h = generate_kindofgarch(nobs, [1.0, -0.95], [1.0, 0.1], mu=0.5) plt.figure() plt.subplot(211) plt.plot(err) plt.subplot(212) plt.plot(h) #plt.show() seed = 3842774 #91234 #8837708 seed = np.random.randint(9999999) print('seed', seed) np.random.seed(seed) ar1 = -0.9 err,h = generate_garch(nobs, [1.0, ar1], [1.0, 0.50], mu=0.0,scale=0.1) # plt.figure() # plt.subplot(211) # plt.plot(err) # plt.subplot(212) # plt.plot(h) # plt.figure() # plt.subplot(211) # plt.plot(err[-400:]) # plt.subplot(212) # plt.plot(h[-400:]) #plt.show() garchplot(err, h) garchplot(err[-400:], h[-400:]) np.random.seed(seed) errgjr,hgjr, etax = generate_gjrgarch(nobs, [1.0, ar1], [[1,0],[0.5,0]], mu=0.0,scale=0.1) garchplot(errgjr[:nobs], hgjr[:nobs], 'GJR-GARCH(1,1) Simulation - symmetric') garchplot(errgjr[-400:nobs], hgjr[-400:nobs], 'GJR-GARCH(1,1) Simulation - symmetric') np.random.seed(seed) errgjr2,hgjr2, etax = generate_gjrgarch(nobs, [1.0, ar1], [[1,0],[0.1,0.9]], mu=0.0,scale=0.1) garchplot(errgjr2[:nobs], hgjr2[:nobs], 'GJR-GARCH(1,1) Simulation') garchplot(errgjr2[-400:nobs], hgjr2[-400:nobs], 'GJR-GARCH(1,1) Simulation') np.random.seed(seed) errgjr3,hgjr3, etax3 = generate_gjrgarch(nobs, [1.0, ar1], [[1,0],[0.1,0.9],[0.1,0.9],[0.1,0.9]], mu=0.0,scale=0.1) garchplot(errgjr3[:nobs], hgjr3[:nobs], 'GJR-GARCH(1,3) Simulation') garchplot(errgjr3[-400:nobs], hgjr3[-400:nobs], 'GJR-GARCH(1,3) Simulation') np.random.seed(seed) errgjr4,hgjr4, etax4 = generate_gjrgarch(nobs, [1.0, ar1], [[1., 1,0],[0, 0.1,0.9],[0, 0.1,0.9],[0, 0.1,0.9]], mu=0.0,scale=0.1) garchplot(errgjr4[:nobs], hgjr4[:nobs], 'GJR-GARCH(1,3) Simulation') garchplot(errgjr4[-400:nobs], hgjr4[-400:nobs], 'GJR-GARCH(1,3) Simulation') varinno = np.zeros(100) varinno[0] = 1. errgjr5,hgjr5, etax5 = generate_gjrgarch(100, [1.0, -0.], [[1., 1,0],[0, 0.1,0.8],[0, 0.05,0.7],[0, 0.01,0.6]], mu=0.0,scale=0.1, varinnovation=varinno) garchplot(errgjr5[:20], hgjr5[:20], 'GJR-GARCH(1,3) Simulation') #garchplot(errgjr4[-400:nobs], hgjr4[-400:nobs], 'GJR-GARCH(1,3) Simulation') #plt.show() seed = np.random.randint(9999999) # 9188410 print('seed', seed) x = np.arange(20).reshape(10,2) x3 = np.column_stack((np.ones((x.shape[0],1)),x)) y, inp = miso_lfilter([1., 0],np.array([[-2.0,3,1],[0.0,0.0,0]]),x3) nobs = 1000 warmup = 1000 np.random.seed(seed) ar = [1.0, -0.7]#7, -0.16, -0.1] #ma = [[1., 1, 0],[0, 0.6,0.1],[0, 0.1,0.1],[0, 0.1,0.1]] ma = [[1., 0, 0],[0, 0.8,0.0]] #,[0, 0.9,0.0]] # errgjr4,hgjr4, etax4 = generate_gjrgarch(warmup+nobs, [1.0, -0.99], # [[1., 1, 0],[0, 0.6,0.1],[0, 0.1,0.1],[0, 0.1,0.1]], # mu=0.2, scale=0.25) errgjr4,hgjr4, etax4 = generate_gjrgarch(warmup+nobs, ar, ma, mu=0.4, scale=1.01) errgjr4,hgjr4, etax4 = errgjr4[warmup:], hgjr4[warmup:], etax4[warmup:] garchplot(errgjr4[:nobs], hgjr4[:nobs], 'GJR-GARCH(1,3) Simulation - DGP') ggmod = Garch(errgjr4-errgjr4.mean())#hgjr4[:nobs])#-hgjr4.mean()) #errgjr4) ggmod.nar = 1 ggmod.nma = 1 ggmod._start_params = np.array([-0.6, 0.1, 0.2, 0.0]) ggres = ggmod.fit(start_params=np.array([-0.6, 0.1, 0.2, 0.0]), maxiter=1000) print('ggres.params', ggres.params) garchplot(ggmod.errorsest, ggmod.h, title='Garch estimated') ggmod0 = Garch0(errgjr4-errgjr4.mean())#hgjr4[:nobs])#-hgjr4.mean()) #errgjr4) ggmod0.nar = 1 ggmod.nma = 1 start_params = np.array([-0.6, 0.2, 0.1]) ggmod0._start_params = start_params #np.array([-0.6, 0.1, 0.2, 0.0]) ggres0 = ggmod0.fit(start_params=start_params, maxiter=2000) print('ggres0.params', ggres0.params) ggmod0 = Garch0(errgjr4-errgjr4.mean())#hgjr4[:nobs])#-hgjr4.mean()) #errgjr4) ggmod0.nar = 1 ggmod.nma = 1 start_params = np.array([-0.6, 0.2, 0.1]) ggmod0._start_params = start_params #np.array([-0.6, 0.1, 0.2, 0.0]) ggres0 = ggmod0.fit(start_params=start_params, method='bfgs', maxiter=2000) print('ggres0.params', ggres0.params) g11res = optimize.fmin(lambda params: -loglike_GARCH11(params, errgjr4-errgjr4.mean())[0], [0.93, 0.9, 0.2]) print(g11res) llf = loglike_GARCH11(g11res, errgjr4-errgjr4.mean()) print(llf[0]) if 'rpyfit' in examples: from rpy import r r.library('fGarch') f = r.formula('~garch(1, 1)') fit = r.garchFit(f, data = errgjr4-errgjr4.mean(), include_mean=False) if 'rpysim' in examples: from rpy import r f = r.formula('~garch(1, 1)') #fit = r.garchFit(f, data = errgjr4) x = r.garchSim( n = 500) print('R acf', tsa.acf(np.power(x,2))[:15]) arma3 = Arma(np.power(x,2)) arma3res = arma3.fit(start_params=[-0.2,0.1,0.5],maxiter=5000) print(arma3res.params) arma3b = Arma(np.power(x,2)) arma3bres = arma3b.fit(start_params=[-0.2,0.1,0.5],maxiter=5000, method='bfgs') print(arma3bres.params) xr = r.garchSim( n = 100) x = np.asarray(xr) ggmod = Garch(x-x.mean()) ggmod.nar = 1 ggmod.nma = 1 ggmod._start_params = np.array([-0.6, 0.1, 0.2, 0.0]) ggres = ggmod.fit(start_params=np.array([-0.6, 0.1, 0.2, 0.0]), maxiter=1000) print('ggres.params', ggres.params) g11res = optimize.fmin(lambda params: -loglike_GARCH11(params, x-x.mean())[0], [0.6, 0.6, 0.2]) print(g11res) llf = loglike_GARCH11(g11res, x-x.mean()) print(llf[0]) garchplot(ggmod.errorsest, ggmod.h, title='Garch estimated') fit = r.garchFit(f, data = x-x.mean(), include_mean=False, trace=False) print(r.summary(fit)) '''based on R default simulation model = list(omega = 1e-06, alpha = 0.1, beta = 0.8) nobs = 1000 (with nobs=500, gjrgarch doesn't do well >>> ggres = ggmod.fit(start_params=np.array([-0.6, 0.1, 0.2, 0.0]), maxiter=1000) Optimization terminated successfully. Current function value: -448.861335 Iterations: 385 Function evaluations: 690 >>> print('ggres.params', ggres.params ggres.params [ -7.75090330e-01 1.57714749e-01 -9.60223930e-02 8.76021411e-07] rearranged 8.76021411e-07 1.57714749e-01(-9.60223930e-02) 7.75090330e-01 >>> print(g11res [ 2.97459808e-06 7.83128600e-01 2.41110860e-01] >>> llf = loglike_GARCH11(g11res, x-x.mean()) >>> print(llf[0] 442.603541936 Log Likelihood: -448.9376 normalized: -4.489376 omega alpha1 beta1 1.01632e-06 1.02802e-01 7.57537e-01 ''' ''' the following is for errgjr4-errgjr4.mean() ggres.params [-0.54510407 0.22723132 0.06482633 0.82325803] Final Estimate: LLH: 2065.56 norm LLH: 2.06556 mu omega alpha1 beta1 0.07229732 0.83069480 0.26313883 0.53986167 ggres.params [-0.50779163 0.2236606 0.00700036 1.154832 Final Estimate: LLH: 2116.084 norm LLH: 2.116084 mu omega alpha1 beta1 -4.759227e-17 1.145404e+00 2.288348e-01 5.085949e-01 run3 DGP 0.4/?? 0.8 0.7 gjrgarch: ggres.params [-0.45196579 0.2569641 0.02201904 1.11942636] rearranged const/omega ma1/alpha1 ar1/beta1 1.11942636 0.2569641(+0.02201904) 0.45196579 g11: [ 1.10262688 0.26680468 0.45724957] -2055.73912687 R: Final Estimate: LLH: 2055.738 norm LLH: 2.055738 mu omega alpha1 beta1 -1.665226e-17 1.102396e+00 2.668712e-01 4.573224e-01 fit = r.garchFit(f, data = errgjr4-errgjr4.mean()) rpy.RPy_RException: Error in solve.default(fit$hessian) : Lapack routine dgesv: system is exactly singular run4 DGP: mu=0.4, scale=1.01 ma = [[1., 0, 0],[0, 0.8,0.0]], ar = [1.0, -0.7] maybe something wrong with simulation gjrgarch ggres.params [-0.50554663 0.24449867 -0.00521004 1.00796791] rearranged 1.00796791 0.24449867(-0.00521004) 0.50554663 garch11: [ 1.01258264 0.24149155 0.50479994] -2056.3877404 R include_constant=False Final Estimate: LLH: 2056.397 norm LLH: 2.056397 omega alpha1 beta1 1.0123560 0.2409589 0.5049154 ''' erro,ho, etaxo = generate_gjrgarch(20, ar, ma, mu=0.04, scale=0.01, varinnovation = np.ones(20)) if 'sp500' in examples: import tabular as tb import scikits.timeseries as ts a = tb.loadSV(r'C:\Josef\work-oth\gspc_table.csv') s = ts.time_series(a[0]['Close'][::-1], dates=ts.date_array(a[0]['Date'][::-1],freq="D")) sp500 = a[0]['Close'][::-1] sp500r = np.diff(np.log(sp500)) #plt.show()
bsd-3-clause
rjeli/scikit-image
skimage/external/tifffile/tifffile.py
7
219462
#!/usr/bin/env python # -*- coding: utf-8 -*- # tifffile.py # Copyright (c) 2008-2016, Christoph Gohlke # Copyright (c) 2008-2016, The Regents of the University of California # Produced at the Laboratory for Fluorescence Dynamics # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the copyright holders nor the names of any # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """Read image and meta data from (bio)TIFF files. Save numpy arrays as TIFF. Image and metadata can be read from TIFF, BigTIFF, OME-TIFF, STK, LSM, NIH, SGI, ImageJ, MicroManager, FluoView, SEQ and GEL files. Only a subset of the TIFF specification is supported, mainly uncompressed and losslessly compressed 2**(0 to 6) bit integer, 16, 32 and 64-bit float, grayscale and RGB(A) images, which are commonly used in bio-scientific imaging. Specifically, reading JPEG and CCITT compressed image data, chroma subsampling, or EXIF, IPTC, GPS, and XMP metadata is not implemented. Only primary info records are read for STK, FluoView, MicroManager, and NIH Image formats. TIFF, the Tagged Image File Format aka Thousands of Incompatible File Formats, is under the control of Adobe Systems. BigTIFF allows for files greater than 4 GB. STK, LSM, FluoView, SGI, SEQ, GEL, and OME-TIFF, are custom extensions defined by Molecular Devices (Universal Imaging Corporation), Carl Zeiss MicroImaging, Olympus, Silicon Graphics International, Media Cybernetics, Molecular Dynamics, and the Open Microscopy Environment consortium respectively. For command line usage run `python tifffile.py --help` :Author: `Christoph Gohlke <http://www.lfd.uci.edu/~gohlke/>`_ :Organization: Laboratory for Fluorescence Dynamics, University of California, Irvine :Version: 2016.04.18 Requirements ------------ * `CPython 2.7 or 3.5 <http://www.python.org>`_ (64 bit recommended) * `Numpy 1.10 <http://www.numpy.org>`_ * `Matplotlib 1.5 <http://www.matplotlib.org>`_ (optional for plotting) * `Tifffile.c 2016.04.13 <http://www.lfd.uci.edu/~gohlke/>`_ (recommended for faster decoding of PackBits and LZW encoded strings) Revisions --------- 2016.04.18 Pass 1932 tests. TiffWriter, imread, and imsave accept open binary file streams. 2016.04.13 Correctly handle reversed fill order in 2 and 4 bps images (bug fix). Implement reverse_bitorder in C. 2016.03.18 Fixed saving additional ImageJ metadata. 2016.02.22 Pass 1920 tests. Write 8 bytes double tag values using offset if necessary (bug fix). Add option to disable writing second image description tag. Detect tags with incorrect counts. Disable color mapping for LSM. 2015.11.13 Read LSM 6 mosaics. Add option to specify directory of memory-mapped files. Add command line options to specify vmin and vmax values for colormapping. 2015.10.06 New helper function to apply colormaps. Renamed is_palette attributes to is_indexed (backwards incompatible). Color-mapped samples are now contiguous (backwards incompatible). Do not color-map ImageJ hyperstacks (backwards incompatible). Towards supporting Leica SCN. 2015.09.25 Read images with reversed bit order (fill_order is lsb2msb). 2015.09.21 Read RGB OME-TIFF. Warn about malformed OME-XML. 2015.09.16 Detect some corrupted ImageJ metadata. Better axes labels for 'shaped' files. Do not create TiffTags for default values. Chroma subsampling is not supported. Memory-map data in TiffPageSeries if possible (optional). 2015.08.17 Pass 1906 tests. Write ImageJ hyperstacks (optional). Read and write LZMA compressed data. Specify datetime when saving (optional). Save tiled and color-mapped images (optional). Ignore void byte_counts and offsets if possible. Ignore bogus image_depth tag created by ISS Vista software. Decode floating point horizontal differencing (not tiled). Save image data contiguously if possible. Only read first IFD from ImageJ files if possible. Read ImageJ 'raw' format (files larger than 4 GB). TiffPageSeries class for pages with compatible shape and data type. Try to read incomplete tiles. Open file dialog if no filename is passed on command line. Ignore errors when decoding OME-XML. Rename decoder functions (backwards incompatible) 2014.08.24 TiffWriter class for incremental writing images. Simplified examples. 2014.08.19 Add memmap function to FileHandle. Add function to determine if image data in TiffPage is memory-mappable. Do not close files if multifile_close parameter is False. 2014.08.10 Pass 1730 tests. Return all extrasamples by default (backwards incompatible). Read data from series of pages into memory-mapped array (optional). Squeeze OME dimensions (backwards incompatible). Workaround missing EOI code in strips. Support image and tile depth tags (SGI extension). Better handling of STK/UIC tags (backwards incompatible). Disable color mapping for STK. Julian to datetime converter. TIFF ASCII type may be NULL separated. Unwrap strip offsets for LSM files greater than 4 GB. Correct strip byte counts in compressed LSM files. Skip missing files in OME series. Read embedded TIFF files. 2014.02.05 Save rational numbers as type 5 (bug fix). 2013.12.20 Keep other files in OME multi-file series closed. FileHandle class to abstract binary file handle. Disable color mapping for bad OME-TIFF produced by bio-formats. Read bad OME-XML produced by ImageJ when cropping. 2013.11.03 Allow zlib compress data in imsave function (optional). Memory-map contiguous image data (optional). 2013.10.28 Read MicroManager metadata and little endian ImageJ tag. Save extra tags in imsave function. Save tags in ascending order by code (bug fix). 2012.10.18 Accept file like objects (read from OIB files). 2012.08.21 Rename TIFFfile to TiffFile and TIFFpage to TiffPage. TiffSequence class for reading sequence of TIFF files. Read UltraQuant tags. Allow float numbers as resolution in imsave function. 2012.08.03 Read MD GEL tags and NIH Image header. 2012.07.25 Read ImageJ tags. ... Notes ----- The API is not stable yet and might change between revisions. Tested on little-endian platforms only. Other Python packages and modules for reading bio-scientific TIFF files: * `Imread <https://github.com/luispedro/imread>`_ * `PyLibTiff <https://github.com/pearu/pylibtiff>`_ * `SimpleITK <http://www.simpleitk.org>`_ * `PyLSM <https://launchpad.net/pylsm>`_ * `PyMca.TiffIO.py <https://github.com/vasole/pymca>`_ (same as fabio.TiffIO) * `BioImageXD.Readers <http://www.bioimagexd.net/>`_ * `Cellcognition.io <http://cellcognition.org/>`_ * `CellProfiler.bioformats <https://github.com/CellProfiler/python-bioformats>`_ Acknowledgements ---------------- * Egor Zindy, University of Manchester, for cz_lsm_scan_info specifics. * Wim Lewis for a bug fix and some read_cz_lsm functions. * Hadrien Mary for help on reading MicroManager files. * Christian Kliche for help writing tiled and color-mapped files. References ---------- (1) TIFF 6.0 Specification and Supplements. Adobe Systems Incorporated. http://partners.adobe.com/public/developer/tiff/ (2) TIFF File Format FAQ. http://www.awaresystems.be/imaging/tiff/faq.html (3) MetaMorph Stack (STK) Image File Format. http://support.meta.moleculardevices.com/docs/t10243.pdf (4) Image File Format Description LSM 5/7 Release 6.0 (ZEN 2010). Carl Zeiss MicroImaging GmbH. BioSciences. May 10, 2011 (5) File Format Description - LSM 5xx Release 2.0. http://ibb.gsf.de/homepage/karsten.rodenacker/IDL/Lsmfile.doc (6) The OME-TIFF format. http://www.openmicroscopy.org/site/support/file-formats/ome-tiff (7) UltraQuant(r) Version 6.0 for Windows Start-Up Guide. http://www.ultralum.com/images%20ultralum/pdf/UQStart%20Up%20Guide.pdf (8) Micro-Manager File Formats. http://www.micro-manager.org/wiki/Micro-Manager_File_Formats (9) Tags for TIFF and Related Specifications. Digital Preservation. http://www.digitalpreservation.gov/formats/content/tiff_tags.shtml Examples -------- >>> data = numpy.random.rand(5, 301, 219) >>> imsave('temp.tif', data) >>> image = imread('temp.tif') >>> numpy.testing.assert_array_equal(image, data) >>> with TiffFile('temp.tif') as tif: ... images = tif.asarray() ... for page in tif: ... for tag in page.tags.values(): ... t = tag.name, tag.value ... image = page.asarray() """ from __future__ import division, print_function import sys import os import re import glob import math import zlib import time import json import struct import warnings import tempfile import datetime import collections from fractions import Fraction from xml.etree import cElementTree as etree import numpy try: import lzma except ImportError: try: import backports.lzma as lzma except ImportError: lzma = None try: if __package__: from . import _tifffile else: import _tifffile except ImportError: warnings.warn( "failed to import the optional _tifffile C extension module.\n" "Loading of some compressed images will be very slow.\n" "Tifffile.c can be obtained at http://www.lfd.uci.edu/~gohlke/") __version__ = '2016.04.18' __docformat__ = 'restructuredtext en' __all__ = ( 'imsave', 'imread', 'imshow', 'TiffFile', 'TiffWriter', 'TiffSequence', # utility functions used in oiffile and czifile 'FileHandle', 'lazyattr', 'natural_sorted', 'decode_lzw', 'stripnull') def imsave(file, data, **kwargs): """Write image data to TIFF file. Refer to the TiffWriter class and member functions for documentation. Parameters ---------- file : str or binary stream File name or writable binary stream, such as a open file or BytesIO. data : array_like Input image. The last dimensions are assumed to be image depth, height, width, and samples. kwargs : dict Parameters 'byteorder', 'bigtiff', 'software', and 'imagej', are passed to the TiffWriter class. Parameters 'photometric', 'planarconfig', 'resolution', 'compress', 'colormap', 'tile', 'description', 'datetime', 'metadata', 'contiguous' and 'extratags' are passed to the TiffWriter.save function. Examples -------- >>> data = numpy.random.rand(2, 5, 3, 301, 219) >>> imsave('temp.tif', data, compress=6, metadata={'axes': 'TZCYX'}) """ tifargs = {} for key in ('byteorder', 'bigtiff', 'software', 'imagej'): if key in kwargs: tifargs[key] = kwargs[key] del kwargs[key] if 'bigtiff' not in tifargs and 'imagej' not in tifargs and ( data.size*data.dtype.itemsize > 2000*2**20): tifargs['bigtiff'] = True with TiffWriter(file, **tifargs) as tif: tif.save(data, **kwargs) class TiffWriter(object): """Write image data to TIFF file. TiffWriter instances must be closed using the 'close' method, which is automatically called when using the 'with' statement. Examples -------- >>> data = numpy.random.rand(2, 5, 3, 301, 219) >>> with TiffWriter('temp.tif', bigtiff=True) as tif: ... for i in range(data.shape[0]): ... tif.save(data[i], compress=6) """ TYPES = {'B': 1, 's': 2, 'H': 3, 'I': 4, '2I': 5, 'b': 6, 'h': 8, 'i': 9, 'f': 11, 'd': 12, 'Q': 16, 'q': 17} TAGS = { 'new_subfile_type': 254, 'subfile_type': 255, 'image_width': 256, 'image_length': 257, 'bits_per_sample': 258, 'compression': 259, 'photometric': 262, 'document_name': 269, 'image_description': 270, 'strip_offsets': 273, 'orientation': 274, 'samples_per_pixel': 277, 'rows_per_strip': 278, 'strip_byte_counts': 279, 'x_resolution': 282, 'y_resolution': 283, 'planar_configuration': 284, 'page_name': 285, 'resolution_unit': 296, 'software': 305, 'datetime': 306, 'predictor': 317, 'color_map': 320, 'tile_width': 322, 'tile_length': 323, 'tile_offsets': 324, 'tile_byte_counts': 325, 'extra_samples': 338, 'sample_format': 339, 'smin_sample_value': 340, 'smax_sample_value': 341, 'image_depth': 32997, 'tile_depth': 32998} def __init__(self, file, bigtiff=False, byteorder=None, software='tifffile.py', imagej=False): """Open a TIFF file for writing. Use bigtiff=True when creating files larger than 2 GB. Parameters ---------- file : str, binary stream, or FileHandle File name or writable binary stream, such as a open file or BytesIO. bigtiff : bool If True, the BigTIFF format is used. byteorder : {'<', '>'} The endianness of the data in the file. By default this is the system's native byte order. software : str Name of the software used to create the file. Saved with the first page in the file only. imagej : bool If True, write an ImageJ hyperstack compatible file. This format can handle data types uint8, uint16, or float32 and data shapes up to 6 dimensions in TZCYXS order. RGB images (S=3 or S=4) must be uint8. ImageJ's default byte order is big endian but this implementation uses the system's native byte order by default. ImageJ does not support BigTIFF format or LZMA compression. The ImageJ file format is undocumented. """ if byteorder not in (None, '<', '>'): raise ValueError("invalid byteorder %s" % byteorder) if byteorder is None: byteorder = '<' if sys.byteorder == 'little' else '>' if imagej and bigtiff: warnings.warn("writing incompatible bigtiff ImageJ") self._byteorder = byteorder self._software = software self._imagej = bool(imagej) self._metadata = None self._colormap = None self._description_offset = 0 self._description_len_offset = 0 self._description_len = 0 self._tags = None self._shape = None # normalized shape of data in consecutive pages self._data_shape = None # shape of data in consecutive pages self._data_dtype = None # data type self._data_offset = None # offset to data self._data_byte_counts = None # byte counts per plane self._tag_offsets = None # strip or tile offset tag code self._fh = FileHandle(file, mode='wb', size=0) self._fh.write({'<': b'II', '>': b'MM'}[byteorder]) if bigtiff: self._bigtiff = True self._offset_size = 8 self._tag_size = 20 self._numtag_format = 'Q' self._offset_format = 'Q' self._value_format = '8s' self._fh.write(struct.pack(byteorder+'HHH', 43, 8, 0)) else: self._bigtiff = False self._offset_size = 4 self._tag_size = 12 self._numtag_format = 'H' self._offset_format = 'I' self._value_format = '4s' self._fh.write(struct.pack(byteorder+'H', 42)) # first IFD self._ifd_offset = self._fh.tell() self._fh.write(struct.pack(byteorder+self._offset_format, 0)) def save(self, data, photometric=None, planarconfig=None, resolution=None, compress=0, colormap=None, tile=None, datetime=None, description=None, metadata={}, contiguous=True, extratags=()): """Write image data and tags to TIFF file. Image data are written in one stripe per plane by default. Dimensions larger than 2 to 4 (depending on photometric mode, planar configuration, and SGI mode) are flattened and saved as separate pages. The 'sample_format' and 'bits_per_sample' tags are derived from the data type. Parameters ---------- data : numpy.ndarray Input image. The last dimensions are assumed to be image depth, height (length), width, and samples. If a colormap is provided, the dtype must be uint8 or uint16 and the data values are indices into the last dimension of the colormap. photometric : {'minisblack', 'miniswhite', 'rgb', 'palette'} The color space of the image data. By default this setting is inferred from the data shape and the value of colormap. planarconfig : {'contig', 'planar'} Specifies if samples are stored contiguous or in separate planes. By default this setting is inferred from the data shape. 'contig': last dimension contains samples. 'planar': third last dimension contains samples. resolution : (float, float) or ((int, int), (int, int)) X and Y resolution in dots per inch as float or rational numbers. compress : int or 'lzma' Values from 0 to 9 controlling the level of zlib compression. If 0, data are written uncompressed (default). Compression cannot be used to write contiguous files. If 'lzma', LZMA compression is used, which is not available on all platforms. colormap : numpy.ndarray RGB color values for the corresponding data value. Must be of shape (3, 2**(data.itemsize*8)) and dtype uint16. tile : tuple of int The shape (depth, length, width) of image tiles to write. If None (default), image data are written in one stripe per plane. The tile length and width must be a multiple of 16. If the tile depth is provided, the SGI image_depth and tile_depth tags are used to save volume data. Few software can read the SGI format, e.g. MeVisLab. datetime : datetime Date and time of image creation. Saved with the first page only. If None (default), the current date and time is used. description : str The subject of the image. Saved with the first page only. Cannot be used with the ImageJ format. metadata : dict Additional meta data to be saved along with shape information in JSON or ImageJ formats in an image_description tag. If None, do not write second image_description tag. contiguous : bool If True (default) and the data and parameters are compatible with previous ones, if any, the data are stored contiguously after the previous one. Parameters 'photometric' and 'planarconfig' are ignored. extratags : sequence of tuples Additional tags as [(code, dtype, count, value, writeonce)]. code : int The TIFF tag Id. dtype : str Data type of items in 'value' in Python struct format. One of B, s, H, I, 2I, b, h, i, f, d, Q, or q. count : int Number of data values. Not used for string values. value : sequence 'Count' values compatible with 'dtype'. writeonce : bool If True, the tag is written to the first page only. """ # TODO: refactor this function fh = self._fh byteorder = self._byteorder numtag_format = self._numtag_format value_format = self._value_format offset_format = self._offset_format offset_size = self._offset_size tag_size = self._tag_size data = numpy.asarray(data, dtype=byteorder+data.dtype.char, order='C') # just append contiguous data if possible if self._data_shape: if (not contiguous or self._data_shape[1:] != data.shape or self._data_dtype != data.dtype or (compress and self._tags) or tile or not numpy.array_equal(colormap, self._colormap)): # incompatible shape, dtype, compression mode, or colormap self._write_remaining_pages() self._write_image_description() self._description_offset = 0 self._description_len_offset = 0 self._data_shape = None self._colormap = None if self._imagej: raise ValueError( "ImageJ does not support non-contiguous data") else: # consecutive mode self._data_shape = (self._data_shape[0] + 1,) + data.shape if not compress: # write contiguous data, write ifds/tags later fh.write_array(data) return if photometric not in (None, 'minisblack', 'miniswhite', 'rgb', 'palette'): raise ValueError("invalid photometric %s" % photometric) if planarconfig not in (None, 'contig', 'planar'): raise ValueError("invalid planarconfig %s" % planarconfig) # prepare compression if not compress: compress = False compress_tag = 1 elif compress == 'lzma': compress = lzma.compress compress_tag = 34925 if self._imagej: raise ValueError("ImageJ can not handle LZMA compression") elif not 0 <= compress <= 9: raise ValueError("invalid compression level %s" % compress) elif compress: def compress(data, level=compress): return zlib.compress(data, level) compress_tag = 32946 # prepare ImageJ format if self._imagej: if description: warnings.warn("not writing description to ImageJ file") description = None volume = False if data.dtype.char not in 'BHhf': raise ValueError("ImageJ does not support data type '%s'" % data.dtype.char) ijrgb = photometric == 'rgb' if photometric else None if data.dtype.char not in 'B': ijrgb = False ijshape = imagej_shape(data.shape, ijrgb) if ijshape[-1] in (3, 4): photometric = 'rgb' if data.dtype.char not in 'B': raise ValueError("ImageJ does not support data type '%s' " "for RGB" % data.dtype.char) elif photometric is None: photometric = 'minisblack' planarconfig = None if planarconfig == 'planar': raise ValueError("ImageJ does not support planar images") else: planarconfig = 'contig' if ijrgb else None # verify colormap and indices if colormap is not None: if data.dtype.char not in 'BH': raise ValueError("invalid data dtype for palette mode") colormap = numpy.asarray(colormap, dtype=byteorder+'H') if colormap.shape != (3, 2**(data.itemsize * 8)): raise ValueError("invalid color map shape") self._colormap = colormap # verify tile shape if tile: tile = tuple(int(i) for i in tile[:3]) volume = len(tile) == 3 if (len(tile) < 2 or tile[-1] % 16 or tile[-2] % 16 or any(i < 1 for i in tile)): raise ValueError("invalid tile shape") else: tile = () volume = False # normalize data shape to 5D or 6D, depending on volume: # (pages, planar_samples, [depth,] height, width, contig_samples) data_shape = shape = data.shape data = numpy.atleast_2d(data) samplesperpixel = 1 extrasamples = 0 if volume and data.ndim < 3: volume = False if colormap is not None: photometric = 'palette' planarconfig = None if photometric is None: if planarconfig: photometric = 'rgb' elif data.ndim > 2 and shape[-1] in (3, 4): photometric = 'rgb' elif self._imagej: photometric = 'minisblack' elif volume and data.ndim > 3 and shape[-4] in (3, 4): photometric = 'rgb' elif data.ndim > 2 and shape[-3] in (3, 4): photometric = 'rgb' else: photometric = 'minisblack' if planarconfig and len(shape) <= (3 if volume else 2): planarconfig = None photometric = 'minisblack' if photometric == 'rgb': if len(shape) < 3: raise ValueError("not a RGB(A) image") if len(shape) < 4: volume = False if planarconfig is None: if shape[-1] in (3, 4): planarconfig = 'contig' elif shape[-4 if volume else -3] in (3, 4): planarconfig = 'planar' elif shape[-1] > shape[-4 if volume else -3]: planarconfig = 'planar' else: planarconfig = 'contig' if planarconfig == 'contig': data = data.reshape((-1, 1) + shape[(-4 if volume else -3):]) samplesperpixel = data.shape[-1] else: data = data.reshape( (-1,) + shape[(-4 if volume else -3):] + (1,)) samplesperpixel = data.shape[1] if samplesperpixel > 3: extrasamples = samplesperpixel - 3 elif planarconfig and len(shape) > (3 if volume else 2): if planarconfig == 'contig': data = data.reshape((-1, 1) + shape[(-4 if volume else -3):]) samplesperpixel = data.shape[-1] else: data = data.reshape( (-1,) + shape[(-4 if volume else -3):] + (1,)) samplesperpixel = data.shape[1] extrasamples = samplesperpixel - 1 else: planarconfig = None # remove trailing 1s while len(shape) > 2 and shape[-1] == 1: shape = shape[:-1] if len(shape) < 3: volume = False if False and ( photometric != 'palette' and len(shape) > (3 if volume else 2) and shape[-1] < 5 and all(shape[-1] < i for i in shape[(-4 if volume else -3):-1])): # DISABLED: non-standard TIFF, e.g. (220, 320, 2) planarconfig = 'contig' samplesperpixel = shape[-1] data = data.reshape((-1, 1) + shape[(-4 if volume else -3):]) else: data = data.reshape( (-1, 1) + shape[(-3 if volume else -2):] + (1,)) # normalize shape to 6D assert len(data.shape) in (5, 6) if len(data.shape) == 5: data = data.reshape(data.shape[:2] + (1,) + data.shape[2:]) shape = data.shape if tile and not volume: tile = (1, tile[-2], tile[-1]) if photometric == 'palette': if (samplesperpixel != 1 or extrasamples or shape[1] != 1 or shape[-1] != 1): raise ValueError("invalid data shape for palette mode") if samplesperpixel == 2: warnings.warn("writing non-standard TIFF (samplesperpixel 2)") bytestr = bytes if sys.version[0] == '2' else ( lambda x: bytes(x, 'utf-8') if isinstance(x, str) else x) tags = [] # list of (code, ifdentry, ifdvalue, writeonce) strip_or_tile = 'tile' if tile else 'strip' tag_byte_counts = TiffWriter.TAGS[strip_or_tile + '_byte_counts'] tag_offsets = TiffWriter.TAGS[strip_or_tile + '_offsets'] self._tag_offsets = tag_offsets def pack(fmt, *val): return struct.pack(byteorder+fmt, *val) def addtag(code, dtype, count, value, writeonce=False): # Compute ifdentry & ifdvalue bytes from code, dtype, count, value # Append (code, ifdentry, ifdvalue, writeonce) to tags list code = int(TiffWriter.TAGS.get(code, code)) try: tifftype = TiffWriter.TYPES[dtype] except KeyError: raise ValueError("unknown dtype %s" % dtype) rawcount = count if dtype == 's': value = bytestr(value) + b'\0' count = rawcount = len(value) rawcount = value.find(b'\0\0') if rawcount < 0: rawcount = count else: rawcount += 1 # length of string without buffer value = (value,) if len(dtype) > 1: count *= int(dtype[:-1]) dtype = dtype[-1] ifdentry = [pack('HH', code, tifftype), pack(offset_format, rawcount)] ifdvalue = None if struct.calcsize(dtype) * count <= offset_size: # value(s) can be written directly if count == 1: if isinstance(value, (tuple, list, numpy.ndarray)): value = value[0] ifdentry.append(pack(value_format, pack(dtype, value))) else: ifdentry.append(pack(value_format, pack(str(count)+dtype, *value))) else: # use offset to value(s) ifdentry.append(pack(offset_format, 0)) if isinstance(value, numpy.ndarray): assert value.size == count assert value.dtype.char == dtype ifdvalue = value.tobytes() elif isinstance(value, (tuple, list)): ifdvalue = pack(str(count)+dtype, *value) else: ifdvalue = pack(dtype, value) tags.append((code, b''.join(ifdentry), ifdvalue, writeonce)) def rational(arg, max_denominator=1000000): # return nominator and denominator from float or two integers try: f = Fraction.from_float(arg) except TypeError: f = Fraction(arg[0], arg[1]) f = f.limit_denominator(max_denominator) return f.numerator, f.denominator if description: # user provided description addtag('image_description', 's', 0, description, writeonce=True) # write shape and metadata to image_description self._metadata = {} if not metadata else metadata if self._imagej: description = imagej_description( data_shape, shape[-1] in (3, 4), self._colormap is not None, **self._metadata) elif metadata or metadata == {}: description = image_description( data_shape, self._colormap is not None, **self._metadata) else: description = None if description: # add 32 bytes buffer # the image description might be updated later with the final shape description += b'\0'*32 self._description_len = len(description) addtag('image_description', 's', 0, description, writeonce=True) if self._software: addtag('software', 's', 0, self._software, writeonce=True) self._software = None # only save to first page in file if datetime is None: datetime = self._now() addtag('datetime', 's', 0, datetime.strftime("%Y:%m:%d %H:%M:%S"), writeonce=True) addtag('compression', 'H', 1, compress_tag) addtag('image_width', 'I', 1, shape[-2]) addtag('image_length', 'I', 1, shape[-3]) if tile: addtag('tile_width', 'I', 1, tile[-1]) addtag('tile_length', 'I', 1, tile[-2]) if tile[0] > 1: addtag('image_depth', 'I', 1, shape[-4]) addtag('tile_depth', 'I', 1, tile[0]) addtag('new_subfile_type', 'I', 1, 0) addtag('sample_format', 'H', 1, {'u': 1, 'i': 2, 'f': 3, 'c': 6}[data.dtype.kind]) addtag('photometric', 'H', 1, {'miniswhite': 0, 'minisblack': 1, 'rgb': 2, 'palette': 3}[photometric]) if colormap is not None: addtag('color_map', 'H', colormap.size, colormap) addtag('samples_per_pixel', 'H', 1, samplesperpixel) if planarconfig and samplesperpixel > 1: addtag('planar_configuration', 'H', 1, 1 if planarconfig == 'contig' else 2) addtag('bits_per_sample', 'H', samplesperpixel, (data.dtype.itemsize * 8,) * samplesperpixel) else: addtag('bits_per_sample', 'H', 1, data.dtype.itemsize * 8) if extrasamples: if photometric == 'rgb' and extrasamples == 1: addtag('extra_samples', 'H', 1, 1) # associated alpha channel else: addtag('extra_samples', 'H', extrasamples, (0,) * extrasamples) if resolution: addtag('x_resolution', '2I', 1, rational(resolution[0])) addtag('y_resolution', '2I', 1, rational(resolution[1])) addtag('resolution_unit', 'H', 1, 2) if not tile: addtag('rows_per_strip', 'I', 1, shape[-3]) # * shape[-4] if tile: # use one chunk per tile per plane tiles = ((shape[2] + tile[0] - 1) // tile[0], (shape[3] + tile[1] - 1) // tile[1], (shape[4] + tile[2] - 1) // tile[2]) numtiles = product(tiles) * shape[1] strip_byte_counts = [ product(tile) * shape[-1] * data.dtype.itemsize] * numtiles addtag(tag_byte_counts, offset_format, numtiles, strip_byte_counts) addtag(tag_offsets, offset_format, numtiles, [0] * numtiles) # allocate tile buffer chunk = numpy.empty(tile + (shape[-1],), dtype=data.dtype) else: # use one strip per plane strip_byte_counts = [ data[0, 0].size * data.dtype.itemsize] * shape[1] addtag(tag_byte_counts, offset_format, shape[1], strip_byte_counts) addtag(tag_offsets, offset_format, shape[1], [0] * shape[1]) # add extra tags from user for t in extratags: addtag(*t) # TODO: check TIFFReadDirectoryCheckOrder warning in files containing # multiple tags of same code # the entries in an IFD must be sorted in ascending order by tag code tags = sorted(tags, key=lambda x: x[0]) if not (self._bigtiff or self._imagej) and ( fh.tell() + data.size*data.dtype.itemsize > 2**31-1): raise ValueError("data too large for standard TIFF file") # if not compressed or tiled, write the first ifd and then all data # contiguously; else, write all ifds and data interleaved for pageindex in range(shape[0] if (compress or tile) else 1): # update pointer at ifd_offset pos = fh.tell() fh.seek(self._ifd_offset) fh.write(pack(offset_format, pos)) fh.seek(pos) # write ifdentries fh.write(pack(numtag_format, len(tags))) tag_offset = fh.tell() fh.write(b''.join(t[1] for t in tags)) self._ifd_offset = fh.tell() fh.write(pack(offset_format, 0)) # offset to next IFD # write tag values and patch offsets in ifdentries, if necessary for tagindex, tag in enumerate(tags): if tag[2]: pos = fh.tell() fh.seek(tag_offset + tagindex*tag_size + offset_size + 4) fh.write(pack(offset_format, pos)) fh.seek(pos) if tag[0] == tag_offsets: strip_offsets_offset = pos elif tag[0] == tag_byte_counts: strip_byte_counts_offset = pos elif tag[0] == 270 and tag[2].endswith(b'\0\0\0\0'): # image description buffer self._description_offset = pos self._description_len_offset = ( tag_offset + tagindex * tag_size + 4) fh.write(tag[2]) # write image data data_offset = fh.tell() if compress: strip_byte_counts = [] if tile: for plane in data[pageindex]: for tz in range(tiles[0]): for ty in range(tiles[1]): for tx in range(tiles[2]): c0 = min(tile[0], shape[2] - tz*tile[0]) c1 = min(tile[1], shape[3] - ty*tile[1]) c2 = min(tile[2], shape[4] - tx*tile[2]) chunk[c0:, c1:, c2:] = 0 chunk[:c0, :c1, :c2] = plane[ tz*tile[0]:tz*tile[0]+c0, ty*tile[1]:ty*tile[1]+c1, tx*tile[2]:tx*tile[2]+c2] if compress: t = compress(chunk) strip_byte_counts.append(len(t)) fh.write(t) else: fh.write_array(chunk) fh.flush() elif compress: for plane in data[pageindex]: plane = compress(plane) strip_byte_counts.append(len(plane)) fh.write(plane) else: fh.write_array(data) # update strip/tile offsets and byte_counts if necessary pos = fh.tell() for tagindex, tag in enumerate(tags): if tag[0] == tag_offsets: # strip/tile offsets if tag[2]: fh.seek(strip_offsets_offset) strip_offset = data_offset for size in strip_byte_counts: fh.write(pack(offset_format, strip_offset)) strip_offset += size else: fh.seek(tag_offset + tagindex*tag_size + offset_size + 4) fh.write(pack(offset_format, data_offset)) elif tag[0] == tag_byte_counts: # strip/tile byte_counts if compress: if tag[2]: fh.seek(strip_byte_counts_offset) for size in strip_byte_counts: fh.write(pack(offset_format, size)) else: fh.seek(tag_offset + tagindex*tag_size + offset_size + 4) fh.write(pack(offset_format, strip_byte_counts[0])) break fh.seek(pos) fh.flush() # remove tags that should be written only once if pageindex == 0: tags = [tag for tag in tags if not tag[-1]] # if uncompressed, write remaining ifds/tags later if not (compress or tile): self._tags = tags self._shape = shape self._data_shape = (1,) + data_shape self._data_dtype = data.dtype self._data_offset = data_offset self._data_byte_counts = strip_byte_counts def _write_remaining_pages(self): """Write outstanding IFDs and tags to file.""" if not self._tags: return fh = self._fh byteorder = self._byteorder numtag_format = self._numtag_format offset_format = self._offset_format offset_size = self._offset_size tag_size = self._tag_size data_offset = self._data_offset page_data_size = sum(self._data_byte_counts) tag_bytes = b''.join(t[1] for t in self._tags) numpages = self._shape[0] * self._data_shape[0] - 1 pos = fh.tell() if not self._bigtiff and pos + len(tag_bytes) * numpages > 2**32 - 256: if self._imagej: warnings.warn("truncating ImageJ file") return raise ValueError("data too large for non-bigtiff file") def pack(fmt, *val): return struct.pack(byteorder+fmt, *val) for _ in range(numpages): # update pointer at ifd_offset pos = fh.tell() fh.seek(self._ifd_offset) fh.write(pack(offset_format, pos)) fh.seek(pos) # write ifd entries fh.write(pack(numtag_format, len(self._tags))) tag_offset = fh.tell() fh.write(tag_bytes) self._ifd_offset = fh.tell() fh.write(pack(offset_format, 0)) # offset to next IFD # offset to image data data_offset += page_data_size # write tag values and patch offsets in ifdentries, if necessary for tagindex, tag in enumerate(self._tags): if tag[2]: pos = fh.tell() fh.seek(tag_offset + tagindex*tag_size + offset_size + 4) fh.write(pack(offset_format, pos)) fh.seek(pos) if tag[0] == self._tag_offsets: strip_offsets_offset = pos fh.write(tag[2]) # update strip/tile offsets if necessary pos = fh.tell() for tagindex, tag in enumerate(self._tags): if tag[0] == self._tag_offsets: # strip/tile offsets if tag[2]: fh.seek(strip_offsets_offset) strip_offset = data_offset for size in self._data_byte_counts: fh.write(pack(offset_format, strip_offset)) strip_offset += size else: fh.seek(tag_offset + tagindex*tag_size + offset_size + 4) fh.write(pack(offset_format, data_offset)) break fh.seek(pos) self._tags = None self._data_dtype = None self._data_offset = None self._data_byte_counts = None # do not reset _shape or _data_shape def _write_image_description(self): """Write meta data to image_description tag.""" if (not self._data_shape or self._data_shape[0] == 1 or self._description_offset <= 0): return colormapped = self._colormap is not None if self._imagej: isrgb = self._shape[-1] in (3, 4) description = imagej_description( self._data_shape, isrgb, colormapped, **self._metadata) else: description = image_description( self._data_shape, colormapped, **self._metadata) # rewrite description and its length to file description = description[:self._description_len-1] pos = self._fh.tell() self._fh.seek(self._description_offset) self._fh.write(description) self._fh.seek(self._description_len_offset) self._fh.write(struct.pack(self._byteorder+self._offset_format, len(description)+1)) self._fh.seek(pos) self._description_offset = 0 self._description_len_offset = 0 self._description_len = 0 def _now(self): """Return current date and time.""" return datetime.datetime.now() def close(self, truncate=False): """Write remaining pages (if not truncate) and close file handle.""" if not truncate: self._write_remaining_pages() self._write_image_description() self._fh.close() def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.close() def imread(files, **kwargs): """Return image data from TIFF file(s) as numpy array. The first image series is returned if no arguments are provided. Parameters ---------- files : str, binary stream, or sequence File name, seekable binary stream, glob pattern, or sequence of file names. key : int, slice, or sequence of page indices Defines which pages to return as array. series : int Defines which series of pages in file to return as array. multifile : bool If True (default), OME-TIFF data may include pages from multiple files. pattern : str Regular expression pattern that matches axes names and indices in file names. kwargs : dict Additional parameters passed to the TiffFile or TiffSequence asarray function. Examples -------- >>> imsave('temp.tif', numpy.random.rand(3, 4, 301, 219)) >>> im = imread('temp.tif', key=0) >>> im.shape (4, 301, 219) >>> ims = imread(['temp.tif', 'temp.tif']) >>> ims.shape (2, 3, 4, 301, 219) """ kwargs_file = {} if 'multifile' in kwargs: kwargs_file['multifile'] = kwargs['multifile'] del kwargs['multifile'] else: kwargs_file['multifile'] = True kwargs_seq = {} if 'pattern' in kwargs: kwargs_seq['pattern'] = kwargs['pattern'] del kwargs['pattern'] if isinstance(files, basestring) and any(i in files for i in '?*'): files = glob.glob(files) if not files: raise ValueError('no files found') if not hasattr(files, 'seek') and len(files) == 1: files = files[0] if isinstance(files, basestring) or hasattr(files, 'seek'): with TiffFile(files, **kwargs_file) as tif: return tif.asarray(**kwargs) else: with TiffSequence(files, **kwargs_seq) as imseq: return imseq.asarray(**kwargs) class lazyattr(object): """Lazy object attribute whose value is computed on first access.""" __slots__ = ('func',) def __init__(self, func): self.func = func def __get__(self, instance, owner): if instance is None: return self value = self.func(instance) if value is NotImplemented: return getattr(super(owner, instance), self.func.__name__) setattr(instance, self.func.__name__, value) return value class TiffFile(object): """Read image and metadata from TIFF, STK, LSM, and FluoView files. TiffFile instances must be closed using the 'close' method, which is automatically called when using the 'with' statement. Attributes ---------- pages : list of TiffPage All TIFF pages in file. series : list of TiffPageSeries TIFF pages with compatible shapes and types. micromanager_metadata: dict Extra MicroManager non-TIFF metadata in the file, if exists. All attributes are read-only. Examples -------- >>> with TiffFile('temp.tif') as tif: ... data = tif.asarray() ... data.shape (5, 301, 219) """ def __init__(self, arg, name=None, offset=None, size=None, multifile=True, multifile_close=True, maxpages=None, fastij=True): """Initialize instance from file. Parameters ---------- arg : str or open file Name of file or open file object. The file objects are closed in TiffFile.close(). name : str Optional name of file in case 'arg' is a file handle. offset : int Optional start position of embedded file. By default this is the current file position. size : int Optional size of embedded file. By default this is the number of bytes from the 'offset' to the end of the file. multifile : bool If True (default), series may include pages from multiple files. Currently applies to OME-TIFF only. multifile_close : bool If True (default), keep the handles of other files in multifile series closed. This is inefficient when few files refer to many pages. If False, the C runtime may run out of resources. maxpages : int Number of pages to read (default: no limit). fastij : bool If True (default), try to use only the metadata from the first page of ImageJ files. Significantly speeds up loading movies with thousands of pages. """ self._fh = FileHandle(arg, mode='rb', name=name, offset=offset, size=size) self.offset_size = None self.pages = [] self._multifile = bool(multifile) self._multifile_close = bool(multifile_close) self._files = {self._fh.name: self} # cache of TiffFiles try: self._fromfile(maxpages, fastij) except Exception: self._fh.close() raise @property def filehandle(self): """Return file handle.""" return self._fh @property def filename(self): """Return name of file handle.""" return self._fh.name def close(self): """Close open file handle(s).""" for tif in self._files.values(): tif._fh.close() self._files = {} def _fromfile(self, maxpages=None, fastij=True): """Read TIFF header and all page records from file.""" self._fh.seek(0) try: self.byteorder = {b'II': '<', b'MM': '>'}[self._fh.read(2)] except KeyError: raise ValueError("not a valid TIFF file") self._is_native = self.byteorder == {'big': '>', 'little': '<'}[sys.byteorder] version = struct.unpack(self.byteorder+'H', self._fh.read(2))[0] if version == 43: # BigTiff self.offset_size, zero = struct.unpack(self.byteorder+'HH', self._fh.read(4)) if zero or self.offset_size != 8: raise ValueError("not a valid BigTIFF file") elif version == 42: self.offset_size = 4 else: raise ValueError("not a TIFF file") self.pages = [] while True: try: page = TiffPage(self) self.pages.append(page) except StopIteration: break if maxpages and len(self.pages) > maxpages: break if fastij and page.is_imagej: if page._patch_imagej(): break # only read the first page of ImageJ files fastij = False if not self.pages: raise ValueError("empty TIFF file") if self.is_micromanager: # MicroManager files contain metadata not stored in TIFF tags. self.micromanager_metadata = read_micromanager_metadata(self._fh) if self.is_lsm: self._fix_lsm_strip_offsets() self._fix_lsm_strip_byte_counts() def _fix_lsm_strip_offsets(self): """Unwrap strip offsets for LSM files greater than 4 GB.""" # each series and position require separate unwrappig (undocumented) for series in self.series: positions = 1 for i in 0, 1: if series.axes[i] in 'PM': positions *= series.shape[i] positions = len(series.pages) // positions for i, page in enumerate(series.pages): if not i % positions: wrap = 0 previous_offset = 0 strip_offsets = [] for current_offset in page.strip_offsets: if current_offset < previous_offset: wrap += 2**32 strip_offsets.append(current_offset + wrap) previous_offset = current_offset page.strip_offsets = tuple(strip_offsets) def _fix_lsm_strip_byte_counts(self): """Set strip_byte_counts to size of compressed data. The strip_byte_counts tag in LSM files contains the number of bytes for the uncompressed data. """ if not self.pages: return strips = {} for page in self.pages: assert len(page.strip_offsets) == len(page.strip_byte_counts) for offset, bytecount in zip(page.strip_offsets, page.strip_byte_counts): strips[offset] = bytecount offsets = sorted(strips.keys()) offsets.append(min(offsets[-1] + strips[offsets[-1]], self._fh.size)) for i, offset in enumerate(offsets[:-1]): strips[offset] = min(strips[offset], offsets[i+1] - offset) for page in self.pages: if page.compression: page.strip_byte_counts = tuple( strips[offset] for offset in page.strip_offsets) def asarray(self, key=None, series=None, memmap=False, tempdir=None): """Return image data from multiple TIFF pages as numpy array. By default the first image series is returned. Parameters ---------- key : int, slice, or sequence of page indices Defines which pages to return as array. series : int or TiffPageSeries Defines which series of pages to return as array. memmap : bool If True, return an read-only array stored in a binary file on disk if possible. The TIFF file is used if possible, else a temporary file is created. tempdir : str The directory where the memory-mapped file will be created. """ if key is None and series is None: series = 0 if series is not None: try: series = self.series[series] except (KeyError, TypeError): pass pages = series.pages else: pages = self.pages if key is None: pass elif isinstance(key, int): pages = [pages[key]] elif isinstance(key, slice): pages = pages[key] elif isinstance(key, collections.Iterable): pages = [pages[k] for k in key] else: raise TypeError("key must be an int, slice, or sequence") if not len(pages): raise ValueError("no pages selected") if self.is_nih: if pages[0].is_indexed: result = stack_pages(pages, colormapped=False, squeeze=False) result = apply_colormap(result, pages[0].color_map) else: result = stack_pages(pages, memmap=memmap, tempdir=tempdir, colormapped=False, squeeze=False) elif len(pages) == 1: result = pages[0].asarray(memmap=memmap) elif self.is_ome: assert not self.is_indexed, "color mapping disabled for ome-tiff" if any(p is None for p in pages): # zero out missing pages firstpage = next(p for p in pages if p) nopage = numpy.zeros_like( firstpage.asarray(memmap=False)) if memmap: with tempfile.NamedTemporaryFile() as fh: result = numpy.memmap(fh, series.dtype, shape=series.shape) result = result.reshape(-1) else: result = numpy.empty(series.shape, series.dtype).reshape(-1) index = 0 class KeepOpen: # keep Tiff files open between consecutive pages def __init__(self, parent, close): self.master = parent self.parent = parent self._close = close def open(self, page): if self._close and page and page.parent != self.parent: if self.parent != self.master: self.parent.filehandle.close() self.parent = page.parent self.parent.filehandle.open() def close(self): if self._close and self.parent != self.master: self.parent.filehandle.close() keep = KeepOpen(self, self._multifile_close) for page in pages: keep.open(page) if page: a = page.asarray(memmap=False, colormapped=False, reopen=False) else: a = nopage try: result[index:index + a.size] = a.reshape(-1) except ValueError as e: warnings.warn("ome-tiff: %s" % e) break index += a.size keep.close() elif key is None and series and series.offset: result = self.filehandle.memmap_array(series.dtype, series.shape, series.offset) else: result = stack_pages(pages, memmap=memmap, tempdir=tempdir) if key is None: try: result.shape = series.shape except ValueError: try: warnings.warn("failed to reshape %s to %s" % ( result.shape, series.shape)) # try series of expected shapes result.shape = (-1,) + series.shape except ValueError: # revert to generic shape result.shape = (-1,) + pages[0].shape elif len(pages) == 1: result.shape = pages[0].shape else: result.shape = (-1,) + pages[0].shape return result @lazyattr def series(self): """Return pages with compatible properties as TiffPageSeries.""" if not self.pages: return [] series = [] if self.is_ome: series = self._ome_series() elif self.is_fluoview: series = self._fluoview_series() elif self.is_lsm: series = self._lsm_series() elif self.is_imagej: series = self._imagej_series() elif self.is_nih: series = self._nih_series() if not series: # generic detection of series shapes = [] pages = {} index = 0 for page in self.pages: if not page.shape: continue if page.is_shaped: index += 1 # shape starts a new series shape = page.shape + (index, page.axes, page.compression in TIFF_DECOMPESSORS) if shape in pages: pages[shape].append(page) else: shapes.append(shape) pages[shape] = [page] series = [] for s in shapes: shape = ((len(pages[s]),) + s[:-3] if len(pages[s]) > 1 else s[:-3]) axes = (('I' + s[-2]) if len(pages[s]) > 1 else s[-2]) page0 = pages[s][0] if page0.is_shaped: metadata = image_description_dict(page0.is_shaped) reshape = metadata['shape'] if 'axes' in metadata: reaxes = metadata['axes'] if len(reaxes) == len(reshape): axes = reaxes shape = reshape else: warnings.warn("axes do not match shape") try: axes = reshape_axes(axes, shape, reshape) shape = reshape except ValueError as e: warnings.warn(e.message) series.append( TiffPageSeries(pages[s], shape, page0.dtype, axes)) # remove empty series, e.g. in MD Gel files series = [s for s in series if sum(s.shape) > 0] return series def _fluoview_series(self): """Return image series in FluoView file.""" page0 = self.pages[0] dims = { b'X': 'X', b'Y': 'Y', b'Z': 'Z', b'T': 'T', b'WAVELENGTH': 'C', b'TIME': 'T', b'XY': 'R', b'EVENT': 'V', b'EXPOSURE': 'L'} mmhd = list(reversed(page0.mm_header.dimensions)) axes = ''.join(dims.get(i[0].strip().upper(), 'Q') for i in mmhd if i[1] > 1) shape = tuple(int(i[1]) for i in mmhd if i[1] > 1) return [TiffPageSeries(self.pages, shape, page0.dtype, axes)] def _lsm_series(self): """Return image series in LSM file.""" page0 = self.pages[0] lsmi = page0.cz_lsm_info axes = CZ_SCAN_TYPES[lsmi.scan_type] if page0.is_rgb: axes = axes.replace('C', '').replace('XY', 'XYC') if hasattr(lsmi, 'dimension_p') and lsmi.dimension_p > 1: axes += 'P' if hasattr(lsmi, 'dimension_m') and lsmi.dimension_m > 1: axes += 'M' axes = axes[::-1] shape = tuple(getattr(lsmi, CZ_DIMENSIONS[i]) for i in axes) pages = [p for p in self.pages if not p.is_reduced] dtype = pages[0].dtype series = [TiffPageSeries(pages, shape, dtype, axes)] if len(pages) != len(self.pages): # reduced RGB pages pages = [p for p in self.pages if p.is_reduced] cp = 1 i = 0 while cp < len(pages) and i < len(shape)-2: cp *= shape[i] i += 1 shape = shape[:i] + pages[0].shape axes = axes[:i] + 'CYX' dtype = pages[0].dtype series.append(TiffPageSeries(pages, shape, dtype, axes)) return series def _imagej_series(self): """Return image series in ImageJ file.""" # ImageJ's dimension order is always TZCYXS # TODO: fix loading of color, composite or palette images shape = [] axes = [] page0 = self.pages[0] ij = page0.imagej_tags if 'frames' in ij: shape.append(ij['frames']) axes.append('T') if 'slices' in ij: shape.append(ij['slices']) axes.append('Z') if 'channels' in ij and not (self.is_rgb and not ij.get('hyperstack', False)): shape.append(ij['channels']) axes.append('C') remain = ij.get('images', len(self.pages)) // (product(shape) if shape else 1) if remain > 1: shape.append(remain) axes.append('I') if page0.axes[0] == 'I': # contiguous multiple images shape.extend(page0.shape[1:]) axes.extend(page0.axes[1:]) elif page0.axes[:2] == 'SI': # color-mapped contiguous multiple images shape = page0.shape[0:1] + tuple(shape) + page0.shape[2:] axes = list(page0.axes[0]) + axes + list(page0.axes[2:]) else: shape.extend(page0.shape) axes.extend(page0.axes) return [TiffPageSeries(self.pages, shape, page0.dtype, axes)] def _nih_series(self): """Return image series in NIH file.""" page0 = self.pages[0] if len(self.pages) == 1: shape = page0.shape axes = page0.axes else: shape = (len(self.pages),) + page0.shape axes = 'I' + page0.axes return [TiffPageSeries(self.pages, shape, page0.dtype, axes)] def _ome_series(self): """Return image series in OME-TIFF file(s).""" omexml = self.pages[0].tags['image_description'].value try: root = etree.fromstring(omexml) except etree.ParseError as e: # TODO: test this warnings.warn("ome-xml: %s" % e) omexml = omexml.decode('utf-8', 'ignore').encode('utf-8') root = etree.fromstring(omexml) uuid = root.attrib.get('UUID', None) self._files = {uuid: self} dirname = self._fh.dirname modulo = {} series = [] for element in root: if element.tag.endswith('BinaryOnly'): warnings.warn("ome-xml: not an ome-tiff master file") break if element.tag.endswith('StructuredAnnotations'): for annot in element: if not annot.attrib.get('Namespace', '').endswith('modulo'): continue for value in annot: for modul in value: for along in modul: if not along.tag[:-1].endswith('Along'): continue axis = along.tag[-1] newaxis = along.attrib.get('Type', 'other') newaxis = AXES_LABELS[newaxis] if 'Start' in along.attrib: labels = range( int(along.attrib['Start']), int(along.attrib['End']) + 1, int(along.attrib.get('Step', 1))) else: labels = [label.text for label in along if label.tag.endswith('Label')] modulo[axis] = (newaxis, labels) if not element.tag.endswith('Image'): continue for pixels in element: if not pixels.tag.endswith('Pixels'): continue atr = pixels.attrib dtype = atr.get('Type', None) axes = ''.join(reversed(atr['DimensionOrder'])) shape = list(int(atr['Size'+ax]) for ax in axes) size = product(shape[:-2]) ifds = [None] * (size // self.pages[0].samples_per_pixel) for data in pixels: if not data.tag.endswith('TiffData'): continue atr = data.attrib ifd = int(atr.get('IFD', 0)) num = int(atr.get('NumPlanes', 1 if 'IFD' in atr else 0)) num = int(atr.get('PlaneCount', num)) idx = [int(atr.get('First'+ax, 0)) for ax in axes[:-2]] try: idx = numpy.ravel_multi_index(idx, shape[:-2]) except ValueError: # ImageJ produces invalid ome-xml when cropping warnings.warn("ome-xml: invalid TiffData index") continue for uuid in data: if not uuid.tag.endswith('UUID'): continue if uuid.text not in self._files: if not self._multifile: # abort reading multifile OME series # and fall back to generic series return [] fname = uuid.attrib['FileName'] try: tif = TiffFile(os.path.join(dirname, fname)) except (IOError, ValueError): tif.close() warnings.warn( "ome-xml: failed to read '%s'" % fname) break self._files[uuid.text] = tif if self._multifile_close: tif.close() pages = self._files[uuid.text].pages try: for i in range(num if num else len(pages)): ifds[idx + i] = pages[ifd + i] except IndexError: warnings.warn("ome-xml: index out of range") # only process first uuid break else: pages = self.pages try: for i in range(num if num else len(pages)): ifds[idx + i] = pages[ifd + i] except IndexError: warnings.warn("ome-xml: index out of range") if all(i is None for i in ifds): # skip images without data continue dtype = next(i for i in ifds if i).dtype series.append(TiffPageSeries(ifds, shape, dtype, axes, self)) for serie in series: shape = list(serie.shape) for axis, (newaxis, labels) in modulo.items(): i = serie.axes.index(axis) size = len(labels) if shape[i] == size: serie.axes = serie.axes.replace(axis, newaxis, 1) else: shape[i] //= size shape.insert(i+1, size) serie.axes = serie.axes.replace(axis, axis+newaxis, 1) serie.shape = tuple(shape) # squeeze dimensions for serie in series: serie.shape, serie.axes = squeeze_axes(serie.shape, serie.axes) return series def __len__(self): """Return number of image pages in file.""" return len(self.pages) def __getitem__(self, key): """Return specified page.""" return self.pages[key] def __iter__(self): """Return iterator over pages.""" return iter(self.pages) def __str__(self): """Return string containing information about file.""" result = [ self._fh.name.capitalize(), format_size(self._fh.size), {'<': 'little endian', '>': 'big endian'}[self.byteorder]] if self.is_bigtiff: result.append("bigtiff") if len(self.pages) > 1: result.append("%i pages" % len(self.pages)) if len(self.series) > 1: result.append("%i series" % len(self.series)) if len(self._files) > 1: result.append("%i files" % (len(self._files))) return ", ".join(result) def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.close() @lazyattr def fstat(self): try: return os.fstat(self._fh.fileno()) except Exception: # io.UnsupportedOperation return None @lazyattr def is_bigtiff(self): """File has BigTIFF format.""" return self.offset_size != 4 @lazyattr def is_rgb(self): """File contains only RGB images.""" return all(p.is_rgb for p in self.pages) @lazyattr def is_indexed(self): """File contains only indexed images.""" return all(p.is_indexed for p in self.pages) @lazyattr def is_mdgel(self): """File has MD Gel format.""" return any(p.is_mdgel for p in self.pages) @lazyattr def is_mediacy(self): """File was created by Media Cybernetics software.""" return any(p.is_mediacy for p in self.pages) @lazyattr def is_stk(self): """File has MetaMorph STK format.""" return all(p.is_stk for p in self.pages) @lazyattr def is_lsm(self): """File was created by Carl Zeiss software.""" return len(self.pages) and self.pages[0].is_lsm @lazyattr def is_vista(self): """File was created by ISS Vista.""" return len(self.pages) and self.pages[0].is_vista @lazyattr def is_imagej(self): """File has ImageJ format.""" return len(self.pages) and self.pages[0].is_imagej @lazyattr def is_micromanager(self): """File was created by MicroManager.""" return len(self.pages) and self.pages[0].is_micromanager @lazyattr def is_nih(self): """File has NIH Image format.""" return len(self.pages) and self.pages[0].is_nih @lazyattr def is_fluoview(self): """File was created by Olympus FluoView.""" return len(self.pages) and self.pages[0].is_fluoview @lazyattr def is_ome(self): """File has OME-TIFF format.""" return len(self.pages) and self.pages[0].is_ome @lazyattr def is_scn(self): """File has Leica SCN format.""" return len(self.pages) and self.pages[0].is_scn class TiffPage(object): """A TIFF image file directory (IFD). Attributes ---------- index : int Index of page in file. dtype : str {TIFF_SAMPLE_DTYPES} Data type of image, color-mapped if applicable. shape : tuple Dimensions of the image array in TIFF page, color-mapped and with extra samples if applicable. axes : str Axes label codes: 'X' width, 'Y' height, 'S' sample, 'I' image series|page|plane, 'Z' depth, 'C' color|em-wavelength|channel, 'E' ex-wavelength|lambda, 'T' time, 'R' region|tile, 'A' angle, 'P' phase, 'H' lifetime, 'L' exposure, 'V' event, 'Q' unknown, '_' missing tags : TiffTags Dictionary of tags in page. Tag values are also directly accessible as attributes. color_map : numpy.ndarray Color look up table, if exists. cz_lsm_scan_info: Record(dict) LSM scan info attributes, if exists. imagej_tags: Record(dict) Consolidated ImageJ description and metadata tags, if exists. uic_tags: Record(dict) Consolidated MetaMorph STK/UIC tags, if exists. All attributes are read-only. Notes ----- The internal, normalized '_shape' attribute is 6 dimensional: 0. number planes/images (stk, ij). 1. planar samples_per_pixel. 2. image_depth Z (sgi). 3. image_length Y. 4. image_width X. 5. contig samples_per_pixel. """ def __init__(self, parent): """Initialize instance from file.""" self.parent = parent self.index = len(parent.pages) self.shape = self._shape = () self.dtype = self._dtype = None self.axes = "" self.tags = TiffTags() self._offset = 0 self._fromfile() self._process_tags() def _fromfile(self): """Read TIFF IFD structure and its tags from file. File cursor must be at storage position of IFD offset and is left at offset to next IFD. Raises StopIteration if offset (first bytes read) is 0 or a corrupted page list is encountered. """ fh = self.parent.filehandle byteorder = self.parent.byteorder offset_size = self.parent.offset_size # read offset to this IFD fmt = {4: 'I', 8: 'Q'}[offset_size] offset = struct.unpack(byteorder + fmt, fh.read(offset_size))[0] if not offset: raise StopIteration() if offset >= fh.size: warnings.warn("invalid page offset > file size") raise StopIteration() self._offset = offset # read standard tags tags = self.tags fh.seek(offset) fmt, size = {4: ('H', 2), 8: ('Q', 8)}[offset_size] try: numtags = struct.unpack(byteorder + fmt, fh.read(size))[0] if numtags > 4096: raise ValueError("suspicious number of tags") except Exception: warnings.warn("corrupted page list at offset %i" % offset) raise StopIteration() tagcode = 0 for _ in range(numtags): try: tag = TiffTag(self.parent) except TiffTag.Error as e: warnings.warn(str(e)) continue if tagcode > tag.code: # expected for early LSM and tifffile versions warnings.warn("tags are not ordered by code") tagcode = tag.code if tag.name not in tags: tags[tag.name] = tag else: # some files contain multiple IFD with same code # e.g. MicroManager files contain two image_description i = 1 while True: name = "%s_%i" % (tag.name, i) if name not in tags: tags[name] = tag break pos = fh.tell() # where offset to next IFD can be found if self.is_lsm or (self.index and self.parent.is_lsm): # correct non standard LSM bitspersample tags self.tags['bits_per_sample']._fix_lsm_bitspersample(self) if self.is_lsm: # read LSM info subrecords for name, reader in CZ_LSM_INFO_READERS.items(): try: offset = self.cz_lsm_info['offset_'+name] except KeyError: continue if offset < 8: # older LSM revision continue fh.seek(offset) try: setattr(self, 'cz_lsm_'+name, reader(fh)) except ValueError: pass elif self.is_stk and 'uic1tag' in tags and not tags['uic1tag'].value: # read uic1tag now that plane count is known uic1tag = tags['uic1tag'] fh.seek(uic1tag.value_offset) tags['uic1tag'].value = Record( read_uic1tag(fh, byteorder, uic1tag.dtype, uic1tag.count, tags['uic2tag'].count)) fh.seek(pos) def _process_tags(self): """Validate standard tags and initialize attributes. Raise ValueError if tag values are not supported. """ tags = self.tags for code, (name, default, dtype, count, validate) in TIFF_TAGS.items(): if name in tags: #tags[name] = TiffTag(code, dtype=dtype, count=count, # value=default, name=name) if validate: try: if tags[name].count == 1: setattr(self, name, validate[tags[name].value]) else: setattr(self, name, tuple( validate[value] for value in tags[name].value)) except KeyError: raise ValueError("%s.value (%s) not supported" % (name, tags[name].value)) elif default is not None: setattr(self, name, validate[default] if validate else default) if 'bits_per_sample' in tags: tag = tags['bits_per_sample'] if tag.count == 1: self.bits_per_sample = tag.value else: # LSM might list more items than samples_per_pixel value = tag.value[:self.samples_per_pixel] if any((v-value[0] for v in value)): self.bits_per_sample = value else: self.bits_per_sample = value[0] if 'sample_format' in tags: tag = tags['sample_format'] if tag.count == 1: self.sample_format = TIFF_SAMPLE_FORMATS[tag.value] else: value = tag.value[:self.samples_per_pixel] if any((v-value[0] for v in value)): self.sample_format = [TIFF_SAMPLE_FORMATS[v] for v in value] else: self.sample_format = TIFF_SAMPLE_FORMATS[value[0]] if 'photometric' not in tags: self.photometric = None if 'image_length' in tags: self.strips_per_image = int(math.floor( float(self.image_length + self.rows_per_strip - 1) / self.rows_per_strip)) else: self.strips_per_image = 0 key = (self.sample_format, self.bits_per_sample) self.dtype = self._dtype = TIFF_SAMPLE_DTYPES.get(key, None) if 'image_length' not in self.tags or 'image_width' not in self.tags: # some GEL file pages are missing image data self.image_length = 0 self.image_width = 0 self.image_depth = 0 self.strip_offsets = 0 self._shape = () self.shape = () self.axes = '' if self.is_vista or self.parent.is_vista: # ISS Vista writes wrong image_depth tag self.image_depth = 1 if self.is_indexed: self.dtype = self.tags['color_map'].dtype[1] self.color_map = numpy.array(self.color_map, self.dtype) dmax = self.color_map.max() if dmax < 256: self.dtype = numpy.uint8 self.color_map = self.color_map.astype(self.dtype) #else: # self.dtype = numpy.uint8 # self.color_map >>= 8 # self.color_map = self.color_map.astype(self.dtype) # TODO: support other photometric modes than RGB self.color_map.shape = (3, -1) # determine shape of data image_length = self.image_length image_width = self.image_width image_depth = self.image_depth samples_per_pixel = self.samples_per_pixel if self.is_stk: assert self.image_depth == 1 planes = self.tags['uic2tag'].count if self.is_contig: self._shape = (planes, 1, 1, image_length, image_width, samples_per_pixel) if samples_per_pixel == 1: self.shape = (planes, image_length, image_width) self.axes = 'YX' else: self.shape = (planes, image_length, image_width, samples_per_pixel) self.axes = 'YXS' else: self._shape = (planes, samples_per_pixel, 1, image_length, image_width, 1) if samples_per_pixel == 1: self.shape = (planes, image_length, image_width) self.axes = 'YX' else: self.shape = (planes, samples_per_pixel, image_length, image_width) self.axes = 'SYX' # detect type of series if planes == 1: self.shape = self.shape[1:] elif numpy.all(self.uic2tag.z_distance != 0): self.axes = 'Z' + self.axes elif numpy.all(numpy.diff(self.uic2tag.time_created) != 0): self.axes = 'T' + self.axes else: self.axes = 'I' + self.axes # DISABLED if self.is_indexed: assert False, "color mapping disabled for stk" if self.color_map.shape[1] >= 2**self.bits_per_sample: if image_depth == 1: self.shape = (planes, image_length, image_width, self.color_map.shape[0]) else: self.shape = (planes, image_depth, image_length, image_width, self.color_map.shape[0]) self.axes = self.axes + 'S' else: warnings.warn("palette cannot be applied") self.is_indexed = False elif self.is_indexed: samples = 1 if 'extra_samples' in self.tags: samples += self.tags['extra_samples'].count if self.is_contig: self._shape = (1, 1, image_depth, image_length, image_width, samples) else: self._shape = (1, samples, image_depth, image_length, image_width, 1) if self.color_map.shape[1] >= 2**self.bits_per_sample: if image_depth == 1: self.shape = (image_length, image_width, self.color_map.shape[0]) self.axes = 'YXS' else: self.shape = (image_depth, image_length, image_width, self.color_map.shape[0]) self.axes = 'ZYXS' else: warnings.warn("palette cannot be applied") self.is_indexed = False if image_depth == 1: self.shape = (image_length, image_width) self.axes = 'YX' else: self.shape = (image_depth, image_length, image_width) self.axes = 'ZYX' elif self.is_rgb or samples_per_pixel > 1: if self.is_contig: self._shape = (1, 1, image_depth, image_length, image_width, samples_per_pixel) if image_depth == 1: self.shape = (image_length, image_width, samples_per_pixel) self.axes = 'YXS' else: self.shape = (image_depth, image_length, image_width, samples_per_pixel) self.axes = 'ZYXS' else: self._shape = (1, samples_per_pixel, image_depth, image_length, image_width, 1) if image_depth == 1: self.shape = (samples_per_pixel, image_length, image_width) self.axes = 'SYX' else: self.shape = (samples_per_pixel, image_depth, image_length, image_width) self.axes = 'SZYX' if False and self.is_rgb and 'extra_samples' in self.tags: # DISABLED: only use RGB and first alpha channel if exists extra_samples = self.extra_samples if self.tags['extra_samples'].count == 1: extra_samples = (extra_samples,) for exs in extra_samples: if exs in ('unassalpha', 'assocalpha', 'unspecified'): if self.is_contig: self.shape = self.shape[:-1] + (4,) else: self.shape = (4,) + self.shape[1:] break else: self._shape = (1, 1, image_depth, image_length, image_width, 1) if image_depth == 1: self.shape = (image_length, image_width) self.axes = 'YX' else: self.shape = (image_depth, image_length, image_width) self.axes = 'ZYX' if not self.compression and 'strip_byte_counts' not in tags: self.strip_byte_counts = ( product(self.shape) * (self.bits_per_sample // 8),) assert len(self.shape) == len(self.axes) def _patch_imagej(self): """Return if ImageJ data are contiguous and adjust page attributes. Patch 'strip_offsets' and 'strip_byte_counts' tags to span the complete contiguous data. ImageJ stores all image metadata in the first page and image data is stored contiguously before the second page, if any. No need to read other pages. """ if not self.is_imagej or not self.is_contiguous or self.parent.is_ome: return images = self.imagej_tags.get('images', 0) if images <= 1: return offset, count = self.is_contiguous shape = self.shape if self.is_indexed: shape = shape[:-1] if (count != product(shape) * self.bits_per_sample // 8 or offset + count*images > self.parent.filehandle.size): self.is_imagej = False warnings.warn("corrupted ImageJ metadata or file") return pre = 'tile' if self.is_tiled else 'strip' self.tags[pre+'_offsets'].value = (offset,) self.tags[pre+'_byte_counts'].value = (count * images,) self.shape = (images,) + self.shape self._shape = (images,) + self._shape[1:] self.axes = 'I' + self.axes return True def asarray(self, squeeze=True, colormapped=True, rgbonly=False, scale_mdgel=False, memmap=False, reopen=True, maxsize=64*1024*1024*1024): """Read image data from file and return as numpy array. Raise ValueError if format is unsupported. If any of 'squeeze', 'colormapped', or 'rgbonly' are not the default, the shape of the returned array might be different from the page shape. Parameters ---------- squeeze : bool If True, all length-1 dimensions (except X and Y) are squeezed out from result. colormapped : bool If True, color mapping is applied for palette-indexed images. rgbonly : bool If True, return RGB(A) image without additional extra samples. memmap : bool If True, use numpy.memmap to read arrays from file if possible. For use on 64 bit systems and files with few huge contiguous data. reopen : bool If True and the parent file handle is closed, the file is temporarily re-opened (and closed if no exception occurs). scale_mdgel : bool If True, MD Gel data will be scaled according to the private metadata in the second TIFF page. The dtype will be float32. maxsize: int or None Maximum size of data before a ValueError is raised. Can be used to catch DOS. Default: 64 GB. """ if not self._shape: return if maxsize and product(self._shape) > maxsize: raise ValueError("data is too large %s" % str(self._shape)) if self.dtype is None: raise ValueError("data type not supported: %s%i" % ( self.sample_format, self.bits_per_sample)) if self.compression not in TIFF_DECOMPESSORS: raise ValueError("cannot decompress %s" % self.compression) if 'sample_format' in self.tags: tag = self.tags['sample_format'] if tag.count != 1 and any((i-tag.value[0] for i in tag.value)): raise ValueError("sample formats do not match %s" % tag.value) if self.is_chroma_subsampled: # TODO: implement chroma subsampling raise NotImplementedError("chroma subsampling not supported") fh = self.parent.filehandle closed = fh.closed if closed: if reopen: fh.open() else: raise IOError("file handle is closed") dtype = self._dtype shape = self._shape image_width = self.image_width image_length = self.image_length image_depth = self.image_depth typecode = self.parent.byteorder + dtype bits_per_sample = self.bits_per_sample lsb2msb = self.fill_order == 'lsb2msb' byte_counts, offsets = self._byte_counts_offsets if self.is_tiled: tile_width = self.tile_width tile_length = self.tile_length tile_depth = self.tile_depth if 'tile_depth' in self.tags else 1 tw = (image_width + tile_width - 1) // tile_width tl = (image_length + tile_length - 1) // tile_length td = (image_depth + tile_depth - 1) // tile_depth shape = (shape[0], shape[1], td*tile_depth, tl*tile_length, tw*tile_width, shape[-1]) tile_shape = (tile_depth, tile_length, tile_width, shape[-1]) runlen = tile_width else: runlen = image_width if memmap and self._is_memmappable(rgbonly, colormapped): result = fh.memmap_array(typecode, shape, offset=offsets[0]) elif self.is_contiguous: fh.seek(offsets[0]) result = fh.read_array(typecode, product(shape)) result = result.astype('=' + dtype) if lsb2msb: reverse_bitorder(result) else: if self.is_contig: runlen *= self.samples_per_pixel if bits_per_sample in (8, 16, 32, 64, 128): if (bits_per_sample * runlen) % 8: raise ValueError("data and sample size mismatch") def unpack(x, typecode=typecode): if self.predictor == 'float': # the floating point horizontal differencing decoder # needs the raw byte order typecode = dtype try: return numpy.fromstring(x, typecode) except ValueError as e: # strips may be missing EOI warnings.warn("unpack: %s" % e) xlen = ((len(x) // (bits_per_sample // 8)) * (bits_per_sample // 8)) return numpy.fromstring(x[:xlen], typecode) elif isinstance(bits_per_sample, tuple): def unpack(x): return unpack_rgb(x, typecode, bits_per_sample) else: def unpack(x): return unpack_ints(x, typecode, bits_per_sample, runlen) decompress = TIFF_DECOMPESSORS[self.compression] if self.compression == 'jpeg': table = self.jpeg_tables if 'jpeg_tables' in self.tags else b'' def decompress(x): return decode_jpeg(x, table, self.photometric) if self.is_tiled: result = numpy.empty(shape, dtype) tw, tl, td, pl = 0, 0, 0, 0 for offset, bytecount in zip(offsets, byte_counts): fh.seek(offset) tile = fh.read(bytecount) if lsb2msb: tile = reverse_bitorder(tile) tile = decompress(tile) tile = unpack(tile) try: tile.shape = tile_shape except ValueError: # incomplete tiles; see gdal issue #1179 warnings.warn("invalid tile data") t = numpy.zeros(tile_shape, dtype).reshape(-1) s = min(tile.size, t.size) t[:s] = tile[:s] tile = t.reshape(tile_shape) if self.predictor == 'horizontal': numpy.cumsum(tile, axis=-2, dtype=dtype, out=tile) elif self.predictor == 'float': raise NotImplementedError() result[0, pl, td:td+tile_depth, tl:tl+tile_length, tw:tw+tile_width, :] = tile del tile tw += tile_width if tw >= shape[4]: tw, tl = 0, tl + tile_length if tl >= shape[3]: tl, td = 0, td + tile_depth if td >= shape[2]: td, pl = 0, pl + 1 result = result[..., :image_depth, :image_length, :image_width, :] else: strip_size = (self.rows_per_strip * self.image_width * self.samples_per_pixel) result = numpy.empty(shape, dtype).reshape(-1) index = 0 for offset, bytecount in zip(offsets, byte_counts): fh.seek(offset) strip = fh.read(bytecount) if lsb2msb: strip = reverse_bitorder(strip) strip = decompress(strip) strip = unpack(strip) size = min(result.size, strip.size, strip_size, result.size - index) result[index:index+size] = strip[:size] del strip index += size result.shape = self._shape if self.predictor and not (self.is_tiled and not self.is_contiguous): if self.parent.is_lsm and not self.compression: pass # work around bug in LSM510 software elif self.predictor == 'horizontal': numpy.cumsum(result, axis=-2, dtype=dtype, out=result) elif self.predictor == 'float': result = decode_floats(result) if colormapped and self.is_indexed: if self.color_map.shape[1] >= 2**bits_per_sample: # FluoView and LSM might fail here result = apply_colormap(result[:, 0:1, :, :, :, 0:1], self.color_map) elif rgbonly and self.is_rgb and 'extra_samples' in self.tags: # return only RGB and first alpha channel if exists extra_samples = self.extra_samples if self.tags['extra_samples'].count == 1: extra_samples = (extra_samples,) for i, exs in enumerate(extra_samples): if exs in ('unassalpha', 'assocalpha', 'unspecified'): if self.is_contig: result = result[..., [0, 1, 2, 3+i]] else: result = result[:, [0, 1, 2, 3+i]] break else: if self.is_contig: result = result[..., :3] else: result = result[:, :3] if squeeze: try: result.shape = self.shape except ValueError: warnings.warn("failed to reshape from %s to %s" % ( str(result.shape), str(self.shape))) if scale_mdgel and self.parent.is_mdgel: # MD Gel stores private metadata in the second page tags = self.parent.pages[1] if tags.md_file_tag in (2, 128): scale = tags.md_scale_pixel scale = scale[0] / scale[1] # rational result = result.astype('float32') if tags.md_file_tag == 2: result **= 2 # squary root data format result *= scale if closed: # TODO: file should remain open if an exception occurred above fh.close() return result @lazyattr def _byte_counts_offsets(self): """Return simplified byte_counts and offsets.""" if 'tile_offsets' in self.tags: byte_counts = self.tile_byte_counts offsets = self.tile_offsets else: byte_counts = self.strip_byte_counts offsets = self.strip_offsets j = 0 for i, (b, o) in enumerate(zip(byte_counts, offsets)): if b > 0 and o > 0: if i > j: byte_counts[j] = b offsets[j] = o j += 1 elif b > 0 and o <= 0: raise ValueError("invalid offset") else: warnings.warn("empty byte count") if j == 0: j = 1 return byte_counts[:j], offsets[:j] def _is_memmappable(self, rgbonly, colormapped): """Return if page's image data in file can be memory-mapped.""" return (self.parent.filehandle.is_file and self.is_contiguous and (self.bits_per_sample == 8 or self.parent._is_native) and self.fill_order == 'msb2lsb' and not self.predictor and not self.is_chroma_subsampled and not (rgbonly and 'extra_samples' in self.tags) and not (colormapped and self.is_indexed)) @lazyattr def is_contiguous(self): """Return offset and size of contiguous data, else None. Excludes prediction, fill_order, and colormapping. """ if self.compression or self.bits_per_sample not in (8, 16, 32, 64): return if self.is_tiled: if (self.image_width != self.tile_width or self.image_length % self.tile_length or self.tile_width % 16 or self.tile_length % 16): return if ('image_depth' in self.tags and 'tile_depth' in self.tags and (self.image_length != self.tile_length or self.image_depth % self.tile_depth)): return offsets = self.tile_offsets byte_counts = self.tile_byte_counts else: offsets = self.strip_offsets byte_counts = self.strip_byte_counts if len(offsets) == 1: return offsets[0], byte_counts[0] if self.is_stk or all(offsets[i] + byte_counts[i] == offsets[i+1] or byte_counts[i+1] == 0 # no data/ignore offset for i in range(len(offsets)-1)): return offsets[0], sum(byte_counts) def __str__(self): """Return string containing information about page.""" s = ', '.join(s for s in ( ' x '.join(str(i) for i in self.shape), str(numpy.dtype(self.dtype)), '%s bit' % str(self.bits_per_sample), self.photometric if 'photometric' in self.tags else '', self.compression if self.compression else 'raw', '|'.join(t[3:] for t in ( 'is_stk', 'is_lsm', 'is_nih', 'is_ome', 'is_imagej', 'is_micromanager', 'is_fluoview', 'is_mdgel', 'is_mediacy', 'is_scn', 'is_sgi', 'is_reduced', 'is_tiled', 'is_contiguous') if getattr(self, t))) if s) return "Page %i: %s" % (self.index, s) def __getattr__(self, name): """Return tag value.""" if name in self.tags: value = self.tags[name].value setattr(self, name, value) return value raise AttributeError(name) @lazyattr def uic_tags(self): """Consolidate UIC tags.""" if not self.is_stk: raise AttributeError("uic_tags") tags = self.tags result = Record() result.number_planes = tags['uic2tag'].count if 'image_description' in tags: result.plane_descriptions = self.image_description.split(b'\x00') if 'uic1tag' in tags: result.update(tags['uic1tag'].value) if 'uic3tag' in tags: result.update(tags['uic3tag'].value) # wavelengths if 'uic4tag' in tags: result.update(tags['uic4tag'].value) # override uic1 tags uic2tag = tags['uic2tag'].value result.z_distance = uic2tag.z_distance result.time_created = uic2tag.time_created result.time_modified = uic2tag.time_modified try: result.datetime_created = [ julian_datetime(*dt) for dt in zip(uic2tag.date_created, uic2tag.time_created)] result.datetime_modified = [ julian_datetime(*dt) for dt in zip(uic2tag.date_modified, uic2tag.time_modified)] except ValueError as e: warnings.warn("uic_tags: %s" % e) return result @lazyattr def imagej_tags(self): """Consolidate ImageJ metadata.""" if not self.is_imagej: raise AttributeError("imagej_tags") result = imagej_description_dict(self.is_imagej) if 'imagej_metadata' in self.tags: try: result.update(imagej_metadata( self.tags['imagej_metadata'].value, self.tags['imagej_byte_counts'].value, self.parent.byteorder)) except Exception as e: warnings.warn(str(e)) return Record(result) @lazyattr def is_rgb(self): """Page contains a RGB image.""" return ('photometric' in self.tags and self.tags['photometric'].value == 2) @lazyattr def is_contig(self): """Page contains contiguous image.""" if 'planar_configuration' in self.tags: return self.tags['planar_configuration'].value == 1 return True @lazyattr def is_indexed(self): """Page contains indexed, palette-colored image. Disable color-mapping for OME, LSM, STK, and ImageJ hyperstacks. """ if (self.is_stk or self.is_lsm or self.parent.is_lsm or self.is_ome or self.parent.is_ome): return False if self.is_imagej: if b'mode' in self.is_imagej: return False elif self.parent.is_imagej: return self.parent.is_indexed return ('photometric' in self.tags and self.tags['photometric'].value == 3) @lazyattr def is_tiled(self): """Page contains tiled image.""" return 'tile_width' in self.tags @lazyattr def is_reduced(self): """Page is reduced image of another image.""" return ('new_subfile_type' in self.tags and self.tags['new_subfile_type'].value & 1) @lazyattr def is_chroma_subsampled(self): """Page contains chroma subsampled image.""" return ('ycbcr_subsampling' in self.tags and self.tags['ycbcr_subsampling'].value != (1, 1)) @lazyattr def is_mdgel(self): """Page contains md_file_tag tag.""" return 'md_file_tag' in self.tags @lazyattr def is_mediacy(self): """Page contains Media Cybernetics Id tag.""" return ('mc_id' in self.tags and self.tags['mc_id'].value.startswith(b'MC TIFF')) @lazyattr def is_stk(self): """Page contains UIC2Tag tag.""" return 'uic2tag' in self.tags @lazyattr def is_lsm(self): """Page contains LSM CZ_LSM_INFO tag.""" return 'cz_lsm_info' in self.tags @lazyattr def is_fluoview(self): """Page contains FluoView MM_STAMP tag.""" return 'mm_stamp' in self.tags @lazyattr def is_nih(self): """Page contains NIH image header.""" return 'nih_image_header' in self.tags @lazyattr def is_sgi(self): """Page contains SGI image and tile depth tags.""" return 'image_depth' in self.tags and 'tile_depth' in self.tags @lazyattr def is_vista(self): """Software tag is 'ISS Vista'.""" return ('software' in self.tags and self.tags['software'].value == b'ISS Vista') @lazyattr def is_ome(self): """Page contains OME-XML in image_description tag.""" if 'image_description' not in self.tags: return False d = self.tags['image_description'].value.strip() return d.startswith(b'<?xml version=') and d.endswith(b'</OME>') @lazyattr def is_scn(self): """Page contains Leica SCN XML in image_description tag.""" if 'image_description' not in self.tags: return False d = self.tags['image_description'].value.strip() return d.startswith(b'<?xml version=') and d.endswith(b'</scn>') @lazyattr def is_shaped(self): """Return description containing shape if exists, else None.""" if 'image_description' in self.tags: description = self.tags['image_description'].value if b'"shape":' in description or b'shape=(' in description: return description if 'image_description_1' in self.tags: description = self.tags['image_description_1'].value if b'"shape":' in description or b'shape=(' in description: return description @lazyattr def is_imagej(self): """Return ImageJ description if exists, else None.""" if 'image_description' in self.tags: description = self.tags['image_description'].value if description.startswith(b'ImageJ='): return description if 'image_description_1' in self.tags: # Micromanager description = self.tags['image_description_1'].value if description.startswith(b'ImageJ='): return description @lazyattr def is_micromanager(self): """Page contains Micro-Manager metadata.""" return 'micromanager_metadata' in self.tags class TiffTag(object): """A TIFF tag structure. Attributes ---------- name : string Attribute name of tag. code : int Decimal code of tag. dtype : str Datatype of tag data. One of TIFF_DATA_TYPES. count : int Number of values. value : various types Tag data as Python object. value_offset : int Location of value in file, if any. All attributes are read-only. """ __slots__ = ('code', 'name', 'count', 'dtype', 'value', 'value_offset', '_offset', '_value', '_type') class Error(Exception): pass def __init__(self, arg, **kwargs): """Initialize instance from file or arguments.""" self._offset = None if hasattr(arg, '_fh'): self._fromfile(arg, **kwargs) else: self._fromdata(arg, **kwargs) def _fromdata(self, code, dtype, count, value, name=None): """Initialize instance from arguments.""" self.code = int(code) self.name = name if name else str(code) self.dtype = TIFF_DATA_TYPES[dtype] self.count = int(count) self.value = value self._value = value self._type = dtype def _fromfile(self, parent): """Read tag structure from open file. Advance file cursor.""" fh = parent.filehandle byteorder = parent.byteorder self._offset = fh.tell() self.value_offset = self._offset + parent.offset_size + 4 fmt, size = {4: ('HHI4s', 12), 8: ('HHQ8s', 20)}[parent.offset_size] data = fh.read(size) code, dtype = struct.unpack(byteorder + fmt[:2], data[:4]) count, value = struct.unpack(byteorder + fmt[2:], data[4:]) self._value = value self._type = dtype if code in TIFF_TAGS: name, _, _, cout_, _ = TIFF_TAGS[code] if cout_ and cout_ != count: count = cout_ warnings.warn("incorrect count for tag '%s'" % name) elif code in CUSTOM_TAGS: name = CUSTOM_TAGS[code][0] else: name = str(code) try: dtype = TIFF_DATA_TYPES[self._type] except KeyError: raise TiffTag.Error("unknown tag data type %i" % self._type) fmt = '%s%i%s' % (byteorder, count*int(dtype[0]), dtype[1]) size = struct.calcsize(fmt) if size > parent.offset_size or code in CUSTOM_TAGS: pos = fh.tell() tof = {4: 'I', 8: 'Q'}[parent.offset_size] self.value_offset = offset = struct.unpack(byteorder+tof, value)[0] if offset < 0 or offset > parent.filehandle.size: raise TiffTag.Error("corrupt file - invalid tag value offset") elif offset < 4: raise TiffTag.Error("corrupt value offset for tag %i" % code) fh.seek(offset) if code in CUSTOM_TAGS: readfunc = CUSTOM_TAGS[code][1] value = readfunc(fh, byteorder, dtype, count) if isinstance(value, dict): # numpy.core.records.record value = Record(value) elif code in TIFF_TAGS or dtype[-1] == 's': value = struct.unpack(fmt, fh.read(size)) else: value = read_numpy(fh, byteorder, dtype, count) fh.seek(pos) else: value = struct.unpack(fmt, value[:size]) if code not in CUSTOM_TAGS and code not in ( 273, 279, 324, 325, 530, 531): # scalar value if not strip/tile offsets/byte_counts or subsampling if len(value) == 1: value = value[0] if (dtype.endswith('s') and isinstance(value, bytes) and self._type != 7): # TIFF ASCII fields can contain multiple strings, # each terminated with a NUL value = stripascii(value) self.code = code self.name = name self.dtype = dtype self.count = count self.value = value def _fix_lsm_bitspersample(self, parent): """Correct LSM bitspersample tag. Old LSM writers may use a separate region for two 16-bit values, although they fit into the tag value element of the tag. """ if self.code == 258 and self.count == 2: # TODO: test this case; need example file warnings.warn("correcting LSM bitspersample tag") fh = parent.filehandle tof = {4: '<I', 8: '<Q'}[parent.offset_size] self.value_offset = struct.unpack(tof, self._value)[0] fh.seek(self.value_offset) self.value = struct.unpack("<HH", fh.read(4)) def as_str(self): """Return value as human readable string.""" return ((str(self.value).split('\n', 1)[0]) if (self._type != 7) else '<undefined>') def __str__(self): """Return string containing information about tag.""" return ' '.join(str(getattr(self, s)) for s in self.__slots__) class TiffPageSeries(object): """Series of TIFF pages with compatible shape and data type. Attributes ---------- pages : list of TiffPage Sequence of TiffPages in series. dtype : numpy.dtype or str Data type of the image array in series. shape : tuple Dimensions of the image array in series. axes : str Labels of axes in shape. See TiffPage.axes. offset : int or None Position of image data in file if memory-mappable, else None. """ #__slots__ = 'pages', 'shape', 'dtype', 'axes', 'parent' def __init__(self, pages, shape, dtype, axes, parent=None): # TODO? sort pages by page number? self.pages = pages self.shape = tuple(shape) self.axes = ''.join(axes) self.dtype = numpy.dtype(dtype) if parent: self.parent = parent elif len(pages): self.parent = pages[0].parent else: self.parent = None def asarray(self, memmap=False): """Return image data from series of TIFF pages as numpy array. Parameters ---------- memmap : bool If True, return an array stored in a binary file on disk if possible. """ if self.parent: return self.parent.asarray(series=self, memmap=memmap) @lazyattr def offset(self): """Return offset to memory-mappable data in page series.""" if len(self.pages) == 0: return rgbonly = False colormapped = self.pages[0].is_indexed pos = 0 for page in self.pages: if page is None: return if not page._is_memmappable(rgbonly, colormapped): return if not pos: pos = page.is_contiguous[0] + page.is_contiguous[1] continue if pos != page.is_contiguous[0]: return pos += page.is_contiguous[1] offset = self.pages[0].is_contiguous[0] if (pos != offset + product(self.shape) * self.dtype.itemsize and not self.pages[0].is_imagej): return return offset def __len__(self): """Return number of TiffPages in series.""" return len(self.pages) def __getitem__(self, key): """Return specified TiffPage.""" return self.pages[key] def __iter__(self): """Return iterator over TiffPages in series.""" return iter(self.pages) def __str__(self): """Return string with information about series.""" return "\n".join("* %s: %s" % kv for kv in ( ("pages", len(self.pages)), ("dtype", str(self.dtype)), ("shape", str(self.shape)), ("axes", self.axes), ("offset", self.offset) )) class TiffSequence(object): """Sequence of image files. The data shape and dtype of all files must match. Attributes ---------- files : list List of file names. shape : tuple Shape of image sequence. axes : str Labels of axes in shape. Examples -------- >>> tifs = TiffSequence("test.oif.files/*.tif") # doctest: +SKIP >>> tifs.shape, tifs.axes # doctest: +SKIP ((2, 100), 'CT') >>> data = tifs.asarray() # doctest: +SKIP >>> data.shape # doctest: +SKIP (2, 100, 256, 256) """ _patterns = { 'axes': r""" # matches Olympus OIF and Leica TIFF series _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4})) _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))? _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))? _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))? _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))? _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))? _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))? """} class ParseError(Exception): pass def __init__(self, files, imread=TiffFile, pattern='axes', *args, **kwargs): """Initialize instance from multiple files. Parameters ---------- files : str, or sequence of str Glob pattern or sequence of file names. Binary streams are not supported. imread : function or class Image read function or class with asarray function returning numpy array from single file. pattern : str Regular expression pattern that matches axes names and sequence indices in file names. By default this matches Olympus OIF and Leica TIFF series. """ if isinstance(files, basestring): files = natural_sorted(glob.glob(files)) files = list(files) if not files: raise ValueError("no files found") if not isinstance(files[0], basestring): raise ValueError("not a file name") #if not os.path.isfile(files[0]): # raise ValueError("file not found") self.files = files if hasattr(imread, 'asarray'): # redefine imread _imread = imread def imread(fname, *args, **kwargs): with _imread(fname) as im: return im.asarray(*args, **kwargs) self.imread = imread self.pattern = self._patterns.get(pattern, pattern) try: self._parse() if not self.axes: self.axes = 'I' except self.ParseError: self.axes = 'I' self.shape = (len(files),) self._start_index = (0,) self._indices = tuple((i,) for i in range(len(files))) def __str__(self): """Return string with information about image sequence.""" return "\n".join([ self.files[0], '* files: %i' % len(self.files), '* axes: %s' % self.axes, '* shape: %s' % str(self.shape)]) def __len__(self): return len(self.files) def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.close() def close(self): pass def asarray(self, memmap=False, tempdir=None, *args, **kwargs): """Read image data from all files and return as single numpy array. If memmap is True, return an array stored in a binary file on disk. The args and kwargs parameters are passed to the imread function. Raise IndexError or ValueError if image shapes do not match. """ im = self.imread(self.files[0], *args, **kwargs) shape = self.shape + im.shape if memmap: with tempfile.NamedTemporaryFile(dir=tempdir) as fh: result = numpy.memmap(fh, dtype=im.dtype, shape=shape) else: result = numpy.zeros(shape, dtype=im.dtype) result = result.reshape(-1, *im.shape) for index, fname in zip(self._indices, self.files): index = [i-j for i, j in zip(index, self._start_index)] index = numpy.ravel_multi_index(index, self.shape) im = self.imread(fname, *args, **kwargs) result[index] = im result.shape = shape return result def _parse(self): """Get axes and shape from file names.""" if not self.pattern: raise self.ParseError("invalid pattern") pattern = re.compile(self.pattern, re.IGNORECASE | re.VERBOSE) matches = pattern.findall(self.files[0]) if not matches: raise self.ParseError("pattern does not match file names") matches = matches[-1] if len(matches) % 2: raise self.ParseError("pattern does not match axis name and index") axes = ''.join(m for m in matches[::2] if m) if not axes: raise self.ParseError("pattern does not match file names") indices = [] for fname in self.files: matches = pattern.findall(fname)[-1] if axes != ''.join(m for m in matches[::2] if m): raise ValueError("axes do not match within the image sequence") indices.append([int(m) for m in matches[1::2] if m]) shape = tuple(numpy.max(indices, axis=0)) start_index = tuple(numpy.min(indices, axis=0)) shape = tuple(i-j+1 for i, j in zip(shape, start_index)) if product(shape) != len(self.files): warnings.warn("files are missing. Missing data are zeroed") self.axes = axes.upper() self.shape = shape self._indices = indices self._start_index = start_index class Record(dict): """Dictionary with attribute access. Can also be initialized with numpy.core.records.record. """ __slots__ = () def __init__(self, arg=None, **kwargs): if kwargs: arg = kwargs elif arg is None: arg = {} try: dict.__init__(self, arg) except (TypeError, ValueError): for i, name in enumerate(arg.dtype.names): v = arg[i] self[name] = v if v.dtype.char != 'S' else stripnull(v) def __getattr__(self, name): return self[name] def __setattr__(self, name, value): self.__setitem__(name, value) def __str__(self): """Pretty print Record.""" s = [] lists = [] for k in sorted(self): try: if k.startswith('_'): # does not work with byte continue except AttributeError: pass v = self[k] if isinstance(v, (list, tuple)) and len(v): if isinstance(v[0], Record): lists.append((k, v)) continue elif isinstance(v[0], TiffPage): v = [i.index for i in v if i] s.append( ("* %s: %s" % (k, str(v))).split("\n", 1)[0] [:PRINT_LINE_LEN].rstrip()) for k, v in lists: l = [] for i, w in enumerate(v): l.append("* %s[%i]\n %s" % (k, i, str(w).replace("\n", "\n "))) s.append('\n'.join(l)) return '\n'.join(s) class TiffTags(Record): """Dictionary of TiffTag with attribute access.""" def __str__(self): """Return string with information about all tags.""" s = [] for tag in sorted(self.values(), key=lambda x: x.code): typecode = "%i%s" % (tag.count * int(tag.dtype[0]), tag.dtype[1]) line = "* %i %s (%s) %s" % ( tag.code, tag.name, typecode, tag.as_str()) s.append(line[:PRINT_LINE_LEN].lstrip()) return '\n'.join(s) class FileHandle(object): """Binary file handle. A limited, special purpose file handler that: * handles embedded files (for CZI within CZI files) * allows to re-open closed files (for multi file formats, such as OME-TIFF) * reads and writes numpy arrays and records from file like objects Only 'rb' and 'wb' modes are supported. Concurrently reading and writing of the same stream is untested. When initialized from another file handle, do not use it unless this FileHandle is closed. Attributes ---------- name : str Name of the file. path : str Absolute path to file. size : int Size of file in bytes. is_file : bool If True, file has a filno and can be memory-mapped. All attributes are read-only. """ __slots__ = ('_fh', '_file', '_mode', '_name', '_dir', '_offset', '_size', '_close', 'is_file') def __init__(self, file, mode='rb', name=None, offset=None, size=None): """Initialize file handle from file name or another file handle. Parameters ---------- file : str, binary stream, or FileHandle File name or seekable binary stream, such as a open file or BytesIO. mode : str File open mode in case 'file' is a file name. Must be 'rb' or 'wb'. name : str Optional name of file in case 'file' is a binary stream. offset : int Optional start position of embedded file. By default this is the current file position. size : int Optional size of embedded file. By default this is the number of bytes from the 'offset' to the end of the file. """ self._fh = None self._file = file self._mode = mode self._name = name self._dir = '' self._offset = offset self._size = size self._close = True self.is_file = False self.open() def open(self): """Open or re-open file.""" if self._fh: return # file is open if isinstance(self._file, basestring): # file name self._file = os.path.abspath(self._file) self._dir, self._name = os.path.split(self._file) self._fh = open(self._file, self._mode) self._close = True if self._offset is None: self._offset = 0 elif isinstance(self._file, FileHandle): # FileHandle self._fh = self._file._fh if self._offset is None: self._offset = 0 self._offset += self._file._offset self._close = False if not self._name: if self._offset: name, ext = os.path.splitext(self._file._name) self._name = "%s@%i%s" % (name, self._offset, ext) else: self._name = self._file._name if self._mode and self._mode != self._file._mode: raise ValueError('FileHandle has wrong mode') self._mode = self._file._mode self._dir = self._file._dir elif hasattr(self._file, 'seek'): # binary stream: open file, BytesIO try: self._file.tell() except Exception: raise ValueError("binary stream is not seekable") self._fh = self._file if self._offset is None: self._offset = self._file.tell() self._close = False if not self._name: try: self._dir, self._name = os.path.split(self._fh.name) except AttributeError: self._name = "Unnamed binary stream" try: self._mode = self._fh.mode except AttributeError: pass else: raise ValueError("The first parameter must be a file name, " "seekable binary stream, or FileHandle") # if self._mode not in (None, 'rb', 'wb', 'r+b', 'rb+', 'w+b', 'wb+'): # raise ValueError('file mode not supported: %s' % self._mode) if self._offset: self._fh.seek(self._offset) if self._size is None: pos = self._fh.tell() self._fh.seek(self._offset, 2) self._size = self._fh.tell() self._fh.seek(pos) try: self._fh.fileno() self.is_file = True except Exception: self.is_file = False def read(self, size=-1): """Read 'size' bytes from file, or until EOF is reached.""" if size < 0 and self._offset: size = self._size return self._fh.read(size) def write(self, bytestring): """Write bytestring to file.""" return self._fh.write(bytestring) def flush(self): """Flush write buffers if applicable.""" return self._fh.flush() def memmap_array(self, dtype, shape, offset=0, mode='r', order='C'): """Return numpy.memmap of data stored in file.""" if not self.is_file: raise ValueError("Can not memory-map file without fileno.") return numpy.memmap(self._fh, dtype=dtype, mode=mode, offset=self._offset + offset, shape=shape, order=order) def read_array(self, dtype, count=-1, sep=""): """Return numpy array from file. Work around numpy issue #2230, "numpy.fromfile does not accept StringIO object" https://github.com/numpy/numpy/issues/2230. """ try: return numpy.fromfile(self._fh, dtype, count, sep) except IOError: if count < 0: size = self._size else: size = count * numpy.dtype(dtype).itemsize data = self._fh.read(size) return numpy.fromstring(data, dtype, count, sep) def read_record(self, dtype, shape=1, byteorder=None): """Return numpy record from file.""" try: rec = numpy.rec.fromfile(self._fh, dtype, shape, byteorder=byteorder) except Exception: dtype = numpy.dtype(dtype) if shape is None: shape = self._size // dtype.itemsize size = product(sequence(shape)) * dtype.itemsize data = self._fh.read(size) return numpy.rec.fromstring(data, dtype, shape, byteorder=byteorder) return rec[0] if shape == 1 else rec def write_array(self, data): """Write numpy array to binary file.""" try: data.tofile(self._fh) except Exception: # BytesIO self._fh.write(data.tostring()) def tell(self): """Return file's current position.""" return self._fh.tell() - self._offset def seek(self, offset, whence=0): """Set file's current position.""" if self._offset: if whence == 0: self._fh.seek(self._offset + offset, whence) return elif whence == 2 and self._size > 0: self._fh.seek(self._offset + self._size + offset, 0) return self._fh.seek(offset, whence) def close(self): """Close file.""" if self._close and self._fh: self._fh.close() self._fh = None def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.close() def __getattr__(self, name): """Return attribute from underlying file object.""" if self._offset: warnings.warn( "FileHandle: '%s' not implemented for embedded files" % name) return getattr(self._fh, name) @property def name(self): return self._name @property def dirname(self): return self._dir @property def path(self): return os.path.join(self._dir, self._name) @property def size(self): return self._size @property def closed(self): return self._fh is None def read_bytes(fh, byteorder, dtype, count): """Read tag data from file and return as byte string.""" dtype = 'b' if dtype[-1] == 's' else byteorder+dtype[-1] return fh.read_array(dtype, count).tostring() def read_numpy(fh, byteorder, dtype, count): """Read tag data from file and return as numpy array.""" dtype = 'b' if dtype[-1] == 's' else byteorder+dtype[-1] return fh.read_array(dtype, count) def read_json(fh, byteorder, dtype, count): """Read JSON tag data from file and return as object.""" data = fh.read(count) try: return json.loads(unicode(stripnull(data), 'utf-8')) except ValueError: warnings.warn("invalid JSON '%s'" % data) def read_mm_header(fh, byteorder, dtype, count): """Read MM_HEADER tag from file and return as numpy.rec.array.""" return fh.read_record(MM_HEADER, byteorder=byteorder) def read_mm_stamp(fh, byteorder, dtype, count): """Read MM_STAMP tag from file and return as numpy.ndarray.""" return fh.read_array(byteorder+'f8', 8) def read_uic1tag(fh, byteorder, dtype, count, plane_count=None): """Read MetaMorph STK UIC1Tag from file and return as dictionary. Return empty dictionary if plane_count is unknown. """ assert dtype in ('2I', '1I') and byteorder == '<' result = {} if dtype == '2I': # pre MetaMorph 2.5 (not tested) values = fh.read_array('<u4', 2*count).reshape(count, 2) result = {'z_distance': values[:, 0] / values[:, 1]} elif plane_count: for _ in range(count): tagid = struct.unpack('<I', fh.read(4))[0] if tagid in (28, 29, 37, 40, 41): # silently skip unexpected tags fh.read(4) continue name, value = read_uic_tag(fh, tagid, plane_count, offset=True) result[name] = value return result def read_uic2tag(fh, byteorder, dtype, plane_count): """Read MetaMorph STK UIC2Tag from file and return as dictionary.""" assert dtype == '2I' and byteorder == '<' values = fh.read_array('<u4', 6*plane_count).reshape(plane_count, 6) return { 'z_distance': values[:, 0] / values[:, 1], 'date_created': values[:, 2], # julian days 'time_created': values[:, 3], # milliseconds 'date_modified': values[:, 4], # julian days 'time_modified': values[:, 5], # milliseconds } def read_uic3tag(fh, byteorder, dtype, plane_count): """Read MetaMorph STK UIC3Tag from file and return as dictionary.""" assert dtype == '2I' and byteorder == '<' values = fh.read_array('<u4', 2*plane_count).reshape(plane_count, 2) return {'wavelengths': values[:, 0] / values[:, 1]} def read_uic4tag(fh, byteorder, dtype, plane_count): """Read MetaMorph STK UIC4Tag from file and return as dictionary.""" assert dtype == '1I' and byteorder == '<' result = {} while True: tagid = struct.unpack('<H', fh.read(2))[0] if tagid == 0: break name, value = read_uic_tag(fh, tagid, plane_count, offset=False) result[name] = value return result def read_uic_tag(fh, tagid, plane_count, offset): """Read a single UIC tag value from file and return tag name and value. UIC1Tags use an offset. """ def read_int(count=1): value = struct.unpack('<%iI' % count, fh.read(4*count)) return value[0] if count == 1 else value try: name, dtype = UIC_TAGS[tagid] except KeyError: # unknown tag return '_tagid_%i' % tagid, read_int() if offset: pos = fh.tell() if dtype not in (int, None): off = read_int() if off < 8: warnings.warn("invalid offset for uic tag '%s': %i" % (name, off)) return name, off fh.seek(off) if dtype is None: # skip name = '_' + name value = read_int() elif dtype is int: # int value = read_int() elif dtype is Fraction: # fraction value = read_int(2) value = value[0] / value[1] elif dtype is julian_datetime: # datetime value = julian_datetime(*read_int(2)) elif dtype is read_uic_image_property: # ImagePropertyEx value = read_uic_image_property(fh) elif dtype is str: # pascal string size = read_int() if 0 <= size < 2**10: value = struct.unpack('%is' % size, fh.read(size))[0][:-1] value = stripnull(value) elif offset: value = '' warnings.warn("corrupt string in uic tag '%s'" % name) else: raise ValueError("invalid string size %i" % size) elif dtype == '%ip': # sequence of pascal strings value = [] for _ in range(plane_count): size = read_int() if 0 <= size < 2**10: string = struct.unpack('%is' % size, fh.read(size))[0][:-1] string = stripnull(string) value.append(string) elif offset: warnings.warn("corrupt string in uic tag '%s'" % name) else: raise ValueError("invalid string size %i" % size) else: # struct or numpy type dtype = '<' + dtype if '%i' in dtype: dtype = dtype % plane_count if '(' in dtype: # numpy type value = fh.read_array(dtype, 1)[0] if value.shape[-1] == 2: # assume fractions value = value[..., 0] / value[..., 1] else: # struct format value = struct.unpack(dtype, fh.read(struct.calcsize(dtype))) if len(value) == 1: value = value[0] if offset: fh.seek(pos + 4) return name, value def read_uic_image_property(fh): """Read UIC ImagePropertyEx tag from file and return as dict.""" # TODO: test this size = struct.unpack('B', fh.read(1))[0] name = struct.unpack('%is' % size, fh.read(size))[0][:-1] flags, prop = struct.unpack('<IB', fh.read(5)) if prop == 1: value = struct.unpack('II', fh.read(8)) value = value[0] / value[1] else: size = struct.unpack('B', fh.read(1))[0] value = struct.unpack('%is' % size, fh.read(size))[0] return dict(name=name, flags=flags, value=value) def read_cz_lsm_info(fh, byteorder, dtype, count): """Read CS_LSM_INFO tag from file and return as numpy.rec.array.""" assert byteorder == '<' magic_number, structure_size = struct.unpack('<II', fh.read(8)) if magic_number not in (50350412, 67127628): raise ValueError("not a valid CS_LSM_INFO structure") fh.seek(-8, 1) if structure_size < numpy.dtype(CZ_LSM_INFO).itemsize: # adjust structure according to structure_size cz_lsm_info = [] size = 0 for name, dtype in CZ_LSM_INFO: size += numpy.dtype(dtype).itemsize if size > structure_size: break cz_lsm_info.append((name, dtype)) else: cz_lsm_info = CZ_LSM_INFO return fh.read_record(cz_lsm_info, byteorder=byteorder) def read_cz_lsm_floatpairs(fh): """Read LSM sequence of float pairs from file and return as list.""" size = struct.unpack('<i', fh.read(4))[0] return fh.read_array('<2f8', count=size) def read_cz_lsm_positions(fh): """Read LSM positions from file and return as list.""" size = struct.unpack('<I', fh.read(4))[0] return fh.read_array('<2f8', count=size) def read_cz_lsm_time_stamps(fh): """Read LSM time stamps from file and return as list.""" size, count = struct.unpack('<ii', fh.read(8)) if size != (8 + 8 * count): raise ValueError("lsm_time_stamps block is too short") # return struct.unpack('<%dd' % count, fh.read(8*count)) return fh.read_array('<f8', count=count) def read_cz_lsm_event_list(fh): """Read LSM events from file and return as list of (time, type, text).""" count = struct.unpack('<II', fh.read(8))[1] events = [] while count > 0: esize, etime, etype = struct.unpack('<IdI', fh.read(16)) etext = stripnull(fh.read(esize - 16)) events.append((etime, etype, etext)) count -= 1 return events def read_cz_lsm_scan_info(fh): """Read LSM scan information from file and return as Record.""" block = Record() blocks = [block] unpack = struct.unpack if 0x10000000 != struct.unpack('<I', fh.read(4))[0]: # not a Recording sub block raise ValueError("not a lsm_scan_info structure") fh.read(8) while True: entry, dtype, size = unpack('<III', fh.read(12)) if dtype == 2: # ascii value = stripnull(fh.read(size)) elif dtype == 4: # long value = unpack('<i', fh.read(4))[0] elif dtype == 5: # rational value = unpack('<d', fh.read(8))[0] else: value = 0 if entry in CZ_LSM_SCAN_INFO_ARRAYS: blocks.append(block) name = CZ_LSM_SCAN_INFO_ARRAYS[entry] newobj = [] setattr(block, name, newobj) block = newobj elif entry in CZ_LSM_SCAN_INFO_STRUCTS: blocks.append(block) newobj = Record() block.append(newobj) block = newobj elif entry in CZ_LSM_SCAN_INFO_ATTRIBUTES: name = CZ_LSM_SCAN_INFO_ATTRIBUTES[entry] setattr(block, name, value) elif entry == 0xffffffff: # end sub block block = blocks.pop() else: # unknown entry setattr(block, "entry_0x%x" % entry, value) if not blocks: break return block def read_nih_image_header(fh, byteorder, dtype, count): """Read NIH_IMAGE_HEADER tag from file and return as numpy.rec.array.""" a = fh.read_record(NIH_IMAGE_HEADER, byteorder=byteorder) a = a.newbyteorder(byteorder) a.xunit = a.xunit[:a._xunit_len] a.um = a.um[:a._um_len] return a def read_micromanager_metadata(fh): """Read MicroManager non-TIFF settings from open file and return as dict. The settings can be used to read image data without parsing the TIFF file. Raise ValueError if file does not contain valid MicroManager metadata. """ fh.seek(0) try: byteorder = {b'II': '<', b'MM': '>'}[fh.read(2)] except IndexError: raise ValueError("not a MicroManager TIFF file") results = {} fh.seek(8) (index_header, index_offset, display_header, display_offset, comments_header, comments_offset, summary_header, summary_length ) = struct.unpack(byteorder + "IIIIIIII", fh.read(32)) if summary_header != 2355492: raise ValueError("invalid MicroManager summary_header") results['summary'] = read_json(fh, byteorder, None, summary_length) if index_header != 54773648: raise ValueError("invalid MicroManager index_header") fh.seek(index_offset) header, count = struct.unpack(byteorder + "II", fh.read(8)) if header != 3453623: raise ValueError("invalid MicroManager index_header") data = struct.unpack(byteorder + "IIIII"*count, fh.read(20*count)) results['index_map'] = { 'channel': data[::5], 'slice': data[1::5], 'frame': data[2::5], 'position': data[3::5], 'offset': data[4::5]} if display_header != 483765892: raise ValueError("invalid MicroManager display_header") fh.seek(display_offset) header, count = struct.unpack(byteorder + "II", fh.read(8)) if header != 347834724: raise ValueError("invalid MicroManager display_header") results['display_settings'] = read_json(fh, byteorder, None, count) if comments_header != 99384722: raise ValueError("invalid MicroManager comments_header") fh.seek(comments_offset) header, count = struct.unpack(byteorder + "II", fh.read(8)) if header != 84720485: raise ValueError("invalid MicroManager comments_header") results['comments'] = read_json(fh, byteorder, None, count) return results def imagej_metadata(data, bytecounts, byteorder): """Return dictionary from ImageJ metadata tag value.""" _str = str if sys.version_info[0] < 3 else lambda x: str(x, 'cp1252') def read_string(data, byteorder): return _str(stripnull(data[0 if byteorder == '<' else 1::2])) def read_double(data, byteorder): return struct.unpack(byteorder+('d' * (len(data) // 8)), data) def read_bytes(data, byteorder): #return struct.unpack('b' * len(data), data) return numpy.fromstring(data, 'uint8') metadata_types = { # big endian b'info': ('info', read_string), b'labl': ('labels', read_string), b'rang': ('ranges', read_double), b'luts': ('luts', read_bytes), b'roi ': ('roi', read_bytes), b'over': ('overlays', read_bytes)} metadata_types.update( # little endian dict((k[::-1], v) for k, v in metadata_types.items())) if not bytecounts: raise ValueError("no ImageJ metadata") if not data[:4] in (b'IJIJ', b'JIJI'): raise ValueError("invalid ImageJ metadata") header_size = bytecounts[0] if header_size < 12 or header_size > 804: raise ValueError("invalid ImageJ metadata header size") ntypes = (header_size - 4) // 8 header = struct.unpack(byteorder+'4sI'*ntypes, data[4:4+ntypes*8]) pos = 4 + ntypes * 8 counter = 0 result = {} for mtype, count in zip(header[::2], header[1::2]): values = [] name, func = metadata_types.get(mtype, (_str(mtype), read_bytes)) for _ in range(count): counter += 1 pos1 = pos + bytecounts[counter] values.append(func(data[pos:pos1], byteorder)) pos = pos1 result[name.strip()] = values[0] if count == 1 else values return result def imagej_description_dict(description): """Return dictionary from ImageJ image description byte string. Raise ValueError if not a valid ImageJ description. >>> description = b'ImageJ=1.11a\\nimages=510\\nhyperstack=true\\n' >>> imagej_description_dict(description) # doctest: +SKIP {'ImageJ': '1.11a', 'images': 510, 'hyperstack': True} """ def _bool(val): return {b'true': True, b'false': False}[val.lower()] _str = str if sys.version_info[0] < 3 else lambda x: str(x, 'cp1252') result = {} for line in description.splitlines(): try: key, val = line.split(b'=') except Exception: continue key = key.strip() val = val.strip() for dtype in (int, float, _bool, _str): try: val = dtype(val) break except Exception: pass result[_str(key)] = val if 'ImageJ' not in result: raise ValueError("not a ImageJ image description") return result def imagej_description(shape, rgb=None, colormaped=False, version='1.11a', hyperstack=None, mode=None, loop=None, **kwargs): """Return ImageJ image decription from data shape as byte string. ImageJ can handle up to 6 dimensions in order TZCYXS. >>> imagej_description((51, 5, 2, 196, 171)) # doctest: +SKIP ImageJ=1.11a images=510 channels=2 slices=5 frames=51 hyperstack=true mode=grayscale loop=false """ if colormaped: raise NotImplementedError("ImageJ colormapping not supported") shape = imagej_shape(shape, rgb=rgb) rgb = shape[-1] in (3, 4) result = ['ImageJ=%s' % version] append = [] result.append('images=%i' % product(shape[:-3])) if hyperstack is None: #if product(shape[:-3]) > 1: hyperstack = True append.append('hyperstack=true') else: append.append('hyperstack=%s' % bool(hyperstack)) if shape[2] > 1: result.append('channels=%i' % shape[2]) if mode is None and not rgb: mode = 'grayscale' if hyperstack and mode: append.append('mode=%s' % mode) if shape[1] > 1: result.append('slices=%i' % shape[1]) if shape[0] > 1: result.append("frames=%i" % shape[0]) if loop is None: append.append('loop=false') if loop is not None: append.append('loop=%s' % bool(loop)) for key, value in kwargs.items(): append.append('%s=%s' % (key.lower(), value)) return str2bytes('\n'.join(result + append + [''])) def imagej_shape(shape, rgb=None): """Return shape normalized to 6D ImageJ hyperstack TZCYXS. Raise ValueError if not a valid ImageJ hyperstack shape. >>> imagej_shape((2, 3, 4, 5, 3), False) (2, 3, 4, 5, 3, 1) """ shape = tuple(int(i) for i in shape) ndim = len(shape) if 1 > ndim > 6: raise ValueError("invalid ImageJ hyperstack: not 2 to 6 dimensional") if rgb is None: rgb = shape[-1] in (3, 4) and ndim > 2 if rgb and shape[-1] not in (3, 4): raise ValueError("invalid ImageJ hyperstack: not a RGB image") if not rgb and ndim == 6 and shape[-1] != 1: raise ValueError("invalid ImageJ hyperstack: not a non-RGB image") if rgb or shape[-1] == 1: return (1, ) * (6 - ndim) + shape else: return (1, ) * (5 - ndim) + shape + (1,) def image_description_dict(description): """Return dictionary from image description byte string. Raise ValuError if description is of unknown format. >>> image_description_dict(b'shape=(256, 256, 3)') {'shape': (256, 256, 3)} >>> description = b'{"shape": [256, 256, 3], "axes": "YXS"}' >>> image_description_dict(description) # doctest: +SKIP {'shape': [256, 256, 3], 'axes': 'YXS'} """ if description.startswith(b'shape='): # old style 'shaped' description shape = tuple(int(i) for i in description[7:-1].split(b',')) return dict(shape=shape) if description.startswith(b'{') and description.endswith(b'}'): # JSON description return json.loads(description.decode('utf-8')) raise ValueError("unknown image description") def image_description(shape, colormaped=False, **metadata): """Return image description from data shape and meta data. Return UTF-8 encoded JSON. >>> image_description((256, 256, 3), axes='YXS') # doctest: +SKIP b'{"shape": [256, 256, 3], "axes": "YXS"}' """ if colormaped: shape = shape + (3,) metadata.update({'shape': shape}) return json.dumps(metadata).encode('utf-8') def _replace_by(module_function, package=__package__, warn=False): """Try replace decorated function by module.function.""" try: from importlib import import_module except ImportError: warnings.warn('could not import module importlib') return lambda func: func def decorate(func, module_function=module_function, warn=warn): try: module, function = module_function.split('.') if package: module = import_module('.' + module, package=package) else: module = import_module(module) func, oldfunc = getattr(module, function), func globals()['__old_' + func.__name__] = oldfunc except Exception: if warn: warnings.warn("failed to import %s" % module_function) return func return decorate def decode_floats(data): """Decode floating point horizontal differencing. The TIFF predictor type 3 reorders the bytes of the image values and applies horizontal byte differencing to improve compression of floating point images. The ordering of interleaved color channels is preserved. Parameters ---------- data : numpy.ndarray The image to be decoded. The dtype must be a floating point. The shape must include the number of contiguous samples per pixel even if 1. """ shape = data.shape dtype = data.dtype if len(shape) < 3: raise ValueError('invalid data shape') if dtype.char not in 'dfe': raise ValueError('not a floating point image') littleendian = data.dtype.byteorder == '<' or ( sys.byteorder == 'little' and data.dtype.byteorder == '=') # undo horizontal byte differencing data = data.view('uint8') data.shape = shape[:-2] + (-1,) + shape[-1:] numpy.cumsum(data, axis=-2, dtype='uint8', out=data) # reorder bytes if littleendian: data.shape = shape[:-2] + (-1,) + shape[-2:] data = numpy.swapaxes(data, -3, -2) data = numpy.swapaxes(data, -2, -1) data = data[..., ::-1] # back to float data = numpy.ascontiguousarray(data) data = data.view(dtype) data.shape = shape return data def decode_jpeg(encoded, tables=b'', photometric=None, ycbcr_subsampling=None, ycbcr_positioning=None): """Decode JPEG encoded byte string (using _czifile extension module).""" from czifile import _czifile image = _czifile.decode_jpeg(encoded, tables) if photometric == 'rgb' and ycbcr_subsampling and ycbcr_positioning: # TODO: convert YCbCr to RGB pass return image.tostring() @_replace_by('_tifffile.decode_packbits') def decode_packbits(encoded): """Decompress PackBits encoded byte string. PackBits is a simple byte-oriented run-length compression scheme. """ func = ord if sys.version[0] == '2' else lambda x: x result = [] result_extend = result.extend i = 0 try: while True: n = func(encoded[i]) + 1 i += 1 if n < 129: result_extend(encoded[i:i+n]) i += n elif n > 129: result_extend(encoded[i:i+1] * (258-n)) i += 1 except IndexError: pass return b''.join(result) if sys.version[0] == '2' else bytes(result) @_replace_by('_tifffile.decode_lzw') def decode_lzw(encoded): """Decompress LZW (Lempel-Ziv-Welch) encoded TIFF strip (byte string). The strip must begin with a CLEAR code and end with an EOI code. This is an implementation of the LZW decoding algorithm described in (1). It is not compatible with old style LZW compressed files like quad-lzw.tif. """ len_encoded = len(encoded) bitcount_max = len_encoded * 8 unpack = struct.unpack if sys.version[0] == '2': newtable = [chr(i) for i in range(256)] else: newtable = [bytes([i]) for i in range(256)] newtable.extend((0, 0)) def next_code(): """Return integer of 'bitw' bits at 'bitcount' position in encoded.""" start = bitcount // 8 s = encoded[start:start+4] try: code = unpack('>I', s)[0] except Exception: code = unpack('>I', s + b'\x00'*(4-len(s)))[0] code <<= bitcount % 8 code &= mask return code >> shr switchbitch = { # code: bit-width, shr-bits, bit-mask 255: (9, 23, int(9*'1'+'0'*23, 2)), 511: (10, 22, int(10*'1'+'0'*22, 2)), 1023: (11, 21, int(11*'1'+'0'*21, 2)), 2047: (12, 20, int(12*'1'+'0'*20, 2)), } bitw, shr, mask = switchbitch[255] bitcount = 0 if len_encoded < 4: raise ValueError("strip must be at least 4 characters long") if next_code() != 256: raise ValueError("strip must begin with CLEAR code") code = 0 oldcode = 0 result = [] result_append = result.append while True: code = next_code() # ~5% faster when inlining this function bitcount += bitw if code == 257 or bitcount >= bitcount_max: # EOI break if code == 256: # CLEAR table = newtable[:] table_append = table.append lentable = 258 bitw, shr, mask = switchbitch[255] code = next_code() bitcount += bitw if code == 257: # EOI break result_append(table[code]) else: if code < lentable: decoded = table[code] newcode = table[oldcode] + decoded[:1] else: newcode = table[oldcode] newcode += newcode[:1] decoded = newcode result_append(decoded) table_append(newcode) lentable += 1 oldcode = code if lentable in switchbitch: bitw, shr, mask = switchbitch[lentable] if code != 257: warnings.warn("unexpected end of lzw stream (code %i)" % code) return b''.join(result) @_replace_by('_tifffile.unpack_ints') def unpack_ints(data, dtype, itemsize, runlen=0): """Decompress byte string to array of integers of any bit size <= 32. Parameters ---------- data : byte str Data to decompress. dtype : numpy.dtype or str A numpy boolean or integer type. itemsize : int Number of bits per integer. runlen : int Number of consecutive integers, after which to start at next byte. """ if itemsize == 1: # bitarray data = numpy.fromstring(data, '|B') data = numpy.unpackbits(data) if runlen % 8: data = data.reshape(-1, runlen + (8 - runlen % 8)) data = data[:, :runlen].reshape(-1) return data.astype(dtype) dtype = numpy.dtype(dtype) if itemsize in (8, 16, 32, 64): return numpy.fromstring(data, dtype) if itemsize < 1 or itemsize > 32: raise ValueError("itemsize out of range: %i" % itemsize) if dtype.kind not in "biu": raise ValueError("invalid dtype") itembytes = next(i for i in (1, 2, 4, 8) if 8 * i >= itemsize) if itembytes != dtype.itemsize: raise ValueError("dtype.itemsize too small") if runlen == 0: runlen = len(data) // itembytes skipbits = runlen*itemsize % 8 if skipbits: skipbits = 8 - skipbits shrbits = itembytes*8 - itemsize bitmask = int(itemsize*'1'+'0'*shrbits, 2) dtypestr = '>' + dtype.char # dtype always big endian? unpack = struct.unpack l = runlen * (len(data)*8 // (runlen*itemsize + skipbits)) result = numpy.empty((l,), dtype) bitcount = 0 for i in range(len(result)): start = bitcount // 8 s = data[start:start+itembytes] try: code = unpack(dtypestr, s)[0] except Exception: code = unpack(dtypestr, s + b'\x00'*(itembytes-len(s)))[0] code <<= bitcount % 8 code &= bitmask result[i] = code >> shrbits bitcount += itemsize if (i+1) % runlen == 0: bitcount += skipbits return result def unpack_rgb(data, dtype='<B', bitspersample=(5, 6, 5), rescale=True): """Return array from byte string containing packed samples. Use to unpack RGB565 or RGB555 to RGB888 format. Parameters ---------- data : byte str The data to be decoded. Samples in each pixel are stored consecutively. Pixels are aligned to 8, 16, or 32 bit boundaries. dtype : numpy.dtype The sample data type. The byteorder applies also to the data stream. bitspersample : tuple Number of bits for each sample in a pixel. rescale : bool Upscale samples to the number of bits in dtype. Returns ------- result : ndarray Flattened array of unpacked samples of native dtype. Examples -------- >>> data = struct.pack('BBBB', 0x21, 0x08, 0xff, 0xff) >>> print(unpack_rgb(data, '<B', (5, 6, 5), False)) [ 1 1 1 31 63 31] >>> print(unpack_rgb(data, '<B', (5, 6, 5))) [ 8 4 8 255 255 255] >>> print(unpack_rgb(data, '<B', (5, 5, 5))) [ 16 8 8 255 255 255] """ dtype = numpy.dtype(dtype) bits = int(numpy.sum(bitspersample)) if not (bits <= 32 and all(i <= dtype.itemsize*8 for i in bitspersample)): raise ValueError("sample size not supported %s" % str(bitspersample)) dt = next(i for i in 'BHI' if numpy.dtype(i).itemsize*8 >= bits) data = numpy.fromstring(data, dtype.byteorder+dt) result = numpy.empty((data.size, len(bitspersample)), dtype.char) for i, bps in enumerate(bitspersample): t = data >> int(numpy.sum(bitspersample[i+1:])) t &= int('0b'+'1'*bps, 2) if rescale: o = ((dtype.itemsize * 8) // bps + 1) * bps if o > data.dtype.itemsize * 8: t = t.astype('I') t *= (2**o - 1) // (2**bps - 1) t //= 2**(o - (dtype.itemsize * 8)) result[:, i] = t return result.reshape(-1) @_replace_by('_tifffile.reverse_bitorder') def reverse_bitorder(data): """Reverse bits in each byte of byte string or numpy array. Decode data where pixels with lower column values are stored in the lower-order bits of the bytes (fill_order == 'lsb2msb'). Parameters ---------- data : byte string or ndarray The data to be bit reversed. If byte string, a new bit-reversed byte string is returned. Numpy arrays are bit-reversed in-place. Examples -------- >>> reverse_bitorder(b'\x01\x64') # doctest: +SKIP b'\x80&' >>> data = numpy.array([1, 666], dtype='uint16') >>> reverse_bitorder(data) >>> data array([ 128, 16473], dtype=uint16) """ try: # numpy array view = data.view('uint8') table = numpy.array([ 0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0, 0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0, 0x70, 0xF0, 0x08, 0x88, 0x48, 0xC8, 0x28, 0xA8, 0x68, 0xE8, 0x18, 0x98, 0x58, 0xD8, 0x38, 0xB8, 0x78, 0xF8, 0x04, 0x84, 0x44, 0xC4, 0x24, 0xA4, 0x64, 0xE4, 0x14, 0x94, 0x54, 0xD4, 0x34, 0xB4, 0x74, 0xF4, 0x0C, 0x8C, 0x4C, 0xCC, 0x2C, 0xAC, 0x6C, 0xEC, 0x1C, 0x9C, 0x5C, 0xDC, 0x3C, 0xBC, 0x7C, 0xFC, 0x02, 0x82, 0x42, 0xC2, 0x22, 0xA2, 0x62, 0xE2, 0x12, 0x92, 0x52, 0xD2, 0x32, 0xB2, 0x72, 0xF2, 0x0A, 0x8A, 0x4A, 0xCA, 0x2A, 0xAA, 0x6A, 0xEA, 0x1A, 0x9A, 0x5A, 0xDA, 0x3A, 0xBA, 0x7A, 0xFA, 0x06, 0x86, 0x46, 0xC6, 0x26, 0xA6, 0x66, 0xE6, 0x16, 0x96, 0x56, 0xD6, 0x36, 0xB6, 0x76, 0xF6, 0x0E, 0x8E, 0x4E, 0xCE, 0x2E, 0xAE, 0x6E, 0xEE, 0x1E, 0x9E, 0x5E, 0xDE, 0x3E, 0xBE, 0x7E, 0xFE, 0x01, 0x81, 0x41, 0xC1, 0x21, 0xA1, 0x61, 0xE1, 0x11, 0x91, 0x51, 0xD1, 0x31, 0xB1, 0x71, 0xF1, 0x09, 0x89, 0x49, 0xC9, 0x29, 0xA9, 0x69, 0xE9, 0x19, 0x99, 0x59, 0xD9, 0x39, 0xB9, 0x79, 0xF9, 0x05, 0x85, 0x45, 0xC5, 0x25, 0xA5, 0x65, 0xE5, 0x15, 0x95, 0x55, 0xD5, 0x35, 0xB5, 0x75, 0xF5, 0x0D, 0x8D, 0x4D, 0xCD, 0x2D, 0xAD, 0x6D, 0xED, 0x1D, 0x9D, 0x5D, 0xDD, 0x3D, 0xBD, 0x7D, 0xFD, 0x03, 0x83, 0x43, 0xC3, 0x23, 0xA3, 0x63, 0xE3, 0x13, 0x93, 0x53, 0xD3, 0x33, 0xB3, 0x73, 0xF3, 0x0B, 0x8B, 0x4B, 0xCB, 0x2B, 0xAB, 0x6B, 0xEB, 0x1B, 0x9B, 0x5B, 0xDB, 0x3B, 0xBB, 0x7B, 0xFB, 0x07, 0x87, 0x47, 0xC7, 0x27, 0xA7, 0x67, 0xE7, 0x17, 0x97, 0x57, 0xD7, 0x37, 0xB7, 0x77, 0xF7, 0x0F, 0x8F, 0x4F, 0xCF, 0x2F, 0xAF, 0x6F, 0xEF, 0x1F, 0x9F, 0x5F, 0xDF, 0x3F, 0xBF, 0x7F, 0xFF], dtype='uint8') numpy.take(table, view, out=view) except AttributeError: # byte string # TODO: use string translate data = numpy.fromstring(data, dtype='uint8') reverse_bitorder(data) return data.tostring() def apply_colormap(image, colormap, contig=True): """Return palette-colored image. The image values are used to index the colormap on axis 1. The returned image is of shape image.shape+colormap.shape[0] and dtype colormap.dtype. Parameters ---------- image : numpy.ndarray Indexes into the colormap. colormap : numpy.ndarray RGB lookup table aka palette of shape (3, 2**bits_per_sample). contig : bool If True, return a contiguous array. Examples -------- >>> image = numpy.arange(256, dtype='uint8') >>> colormap = numpy.vstack([image, image, image]).astype('uint16') * 256 >>> apply_colormap(image, colormap)[-1] array([65280, 65280, 65280], dtype=uint16) """ image = numpy.take(colormap, image, axis=1) image = numpy.rollaxis(image, 0, image.ndim) if contig: image = numpy.ascontiguousarray(image) return image def reorient(image, orientation): """Return reoriented view of image array. Parameters ---------- image : numpy.ndarray Non-squeezed output of asarray() functions. Axes -3 and -2 must be image length and width respectively. orientation : int or str One of TIFF_ORIENTATIONS keys or values. """ o = TIFF_ORIENTATIONS.get(orientation, orientation) if o == 'top_left': return image elif o == 'top_right': return image[..., ::-1, :] elif o == 'bottom_left': return image[..., ::-1, :, :] elif o == 'bottom_right': return image[..., ::-1, ::-1, :] elif o == 'left_top': return numpy.swapaxes(image, -3, -2) elif o == 'right_top': return numpy.swapaxes(image, -3, -2)[..., ::-1, :] elif o == 'left_bottom': return numpy.swapaxes(image, -3, -2)[..., ::-1, :, :] elif o == 'right_bottom': return numpy.swapaxes(image, -3, -2)[..., ::-1, ::-1, :] def squeeze_axes(shape, axes, skip='XY'): """Return shape and axes with single-dimensional entries removed. Remove unused dimensions unless their axes are listed in 'skip'. >>> squeeze_axes((5, 1, 2, 1, 1), 'TZYXC') ((5, 2, 1), 'TYX') """ if len(shape) != len(axes): raise ValueError("dimensions of axes and shape do not match") shape, axes = zip(*(i for i in zip(shape, axes) if i[0] > 1 or i[1] in skip)) return tuple(shape), ''.join(axes) def transpose_axes(data, axes, asaxes='CTZYX'): """Return data with its axes permuted to match specified axes. A view is returned if possible. >>> transpose_axes(numpy.zeros((2, 3, 4, 5)), 'TYXC', asaxes='CTZYX').shape (5, 2, 1, 3, 4) """ for ax in axes: if ax not in asaxes: raise ValueError("unknown axis %s" % ax) # add missing axes to data shape = data.shape for ax in reversed(asaxes): if ax not in axes: axes = ax + axes shape = (1,) + shape data = data.reshape(shape) # transpose axes data = data.transpose([axes.index(ax) for ax in asaxes]) return data def reshape_axes(axes, shape, newshape): """Return axes matching new shape. Unknown dimensions are labelled 'Q'. >>> reshape_axes('YXS', (219, 301, 1), (219, 301)) 'YX' >>> reshape_axes('IYX', (12, 219, 301), (3, 4, 219, 1, 301, 1)) 'QQYQXQ' """ if len(axes) != len(shape): raise ValueError("axes do not match shape") if product(shape) != product(newshape): raise ValueError("can not reshape %s to %s" % (shape, newshape)) if not axes or not newshape: return '' lendiff = max(0, len(shape) - len(newshape)) if lendiff: newshape = newshape + (1,) * lendiff i = len(shape)-1 prodns = 1 prods = 1 result = [] for ns in newshape[::-1]: prodns *= ns while i > 0 and shape[i] == 1 and ns != 1: i -= 1 if ns == shape[i] and prodns == prods*shape[i]: prods *= shape[i] result.append(axes[i]) i -= 1 else: result.append('Q') return ''.join(reversed(result[lendiff:])) def stack_pages(pages, memmap=False, tempdir=None, *args, **kwargs): """Read data from sequence of TiffPage and stack them vertically. If memmap is True, return an array stored in a binary file on disk. Additional parameters are passsed to the page asarray function. """ if len(pages) == 0: raise ValueError("no pages") if len(pages) == 1: return pages[0].asarray(memmap=memmap, *args, **kwargs) data0 = pages[0].asarray(*args, **kwargs) shape = (len(pages),) + data0.shape if memmap: with tempfile.NamedTemporaryFile(dir=tempdir) as fh: data = numpy.memmap(fh, dtype=data0.dtype, shape=shape) else: data = numpy.empty(shape, dtype=data0.dtype) data[0] = data0 if memmap: data.flush() del data0 for i, page in enumerate(pages[1:]): data[i+1] = page.asarray(*args, **kwargs) if memmap: data.flush() return data def stripnull(string): """Return string truncated at first null character. Clean NULL terminated C strings. >>> stripnull(b'string\\x00') # doctest: +SKIP b'string' """ i = string.find(b'\x00') return string if (i < 0) else string[:i] def stripascii(string): """Return string truncated at last byte that is 7bit ASCII. Clean NULL separated and terminated TIFF strings. >>> stripascii(b'string\\x00string\\n\\x01\\x00') # doctest: +SKIP b'string\\x00string\\n' >>> stripascii(b'\\x00') # doctest: +SKIP b'' """ # TODO: pythonize this ord_ = ord if sys.version_info[0] < 3 else lambda x: x i = len(string) while i: i -= 1 if 8 < ord_(string[i]) < 127: break else: i = -1 return string[:i+1] def format_size(size): """Return file size as string from byte size.""" for unit in ('B', 'KB', 'MB', 'GB', 'TB'): if size < 2048: return "%.f %s" % (size, unit) size /= 1024.0 def sequence(value): """Return tuple containing value if value is not a sequence. >>> sequence(1) (1,) >>> sequence([1]) [1] """ try: len(value) return value except TypeError: return (value,) def product(iterable): """Return product of sequence of numbers. Equivalent of functools.reduce(operator.mul, iterable, 1). >>> product([2**8, 2**30]) 274877906944 >>> product([]) 1 """ prod = 1 for i in iterable: prod *= i return prod def natural_sorted(iterable): """Return human sorted list of strings. E.g. for sorting file names. >>> natural_sorted(['f1', 'f2', 'f10']) ['f1', 'f2', 'f10'] """ def sortkey(x): return [(int(c) if c.isdigit() else c) for c in re.split(numbers, x)] numbers = re.compile(r'(\d+)') return sorted(iterable, key=sortkey) def excel_datetime(timestamp, epoch=datetime.datetime.fromordinal(693594)): """Return datetime object from timestamp in Excel serial format. Convert LSM time stamps. >>> excel_datetime(40237.029999999795) datetime.datetime(2010, 2, 28, 0, 43, 11, 999982) """ return epoch + datetime.timedelta(timestamp) def julian_datetime(julianday, milisecond=0): """Return datetime from days since 1/1/4713 BC and ms since midnight. Convert Julian dates according to MetaMorph. >>> julian_datetime(2451576, 54362783) datetime.datetime(2000, 2, 2, 15, 6, 2, 783) """ if julianday <= 1721423: # no datetime before year 1 return None a = julianday + 1 if a > 2299160: alpha = math.trunc((a - 1867216.25) / 36524.25) a += 1 + alpha - alpha // 4 b = a + (1524 if a > 1721423 else 1158) c = math.trunc((b - 122.1) / 365.25) d = math.trunc(365.25 * c) e = math.trunc((b - d) / 30.6001) day = b - d - math.trunc(30.6001 * e) month = e - (1 if e < 13.5 else 13) year = c - (4716 if month > 2.5 else 4715) hour, milisecond = divmod(milisecond, 1000 * 60 * 60) minute, milisecond = divmod(milisecond, 1000 * 60) second, milisecond = divmod(milisecond, 1000) return datetime.datetime(year, month, day, hour, minute, second, milisecond) def test_tifffile(directory='testimages', verbose=True): """Read all images in directory. Print error message on failure. >>> test_tifffile(verbose=False) """ successful = 0 failed = 0 start = time.time() for f in glob.glob(os.path.join(directory, '*.*')): if verbose: print("\n%s>\n" % f.lower(), end='') t0 = time.time() try: tif = TiffFile(f, multifile=True) except Exception as e: if not verbose: print(f, end=' ') print("ERROR:", e) failed += 1 continue try: img = tif.asarray() except ValueError: try: img = tif[0].asarray() except Exception as e: if not verbose: print(f, end=' ') print("ERROR:", e) failed += 1 continue finally: tif.close() successful += 1 if verbose: print("%s, %s %s, %s, %.0f ms" % ( str(tif), str(img.shape), img.dtype, tif[0].compression, (time.time()-t0) * 1e3)) if verbose: print("\nSuccessfully read %i of %i files in %.3f s\n" % ( successful, successful+failed, time.time()-start)) class TIFF_SUBFILE_TYPES(object): def __getitem__(self, key): result = [] if key & 1: result.append('reduced_image') if key & 2: result.append('page') if key & 4: result.append('mask') return tuple(result) TIFF_PHOTOMETRICS = { 0: 'miniswhite', 1: 'minisblack', 2: 'rgb', 3: 'palette', 4: 'mask', 5: 'separated', # CMYK 6: 'ycbcr', 8: 'cielab', 9: 'icclab', 10: 'itulab', 32803: 'cfa', # Color Filter Array 32844: 'logl', 32845: 'logluv', 34892: 'linear_raw' } TIFF_COMPESSIONS = { 1: None, 2: 'ccittrle', 3: 'ccittfax3', 4: 'ccittfax4', 5: 'lzw', 6: 'ojpeg', 7: 'jpeg', 8: 'adobe_deflate', 9: 't85', 10: 't43', 32766: 'next', 32771: 'ccittrlew', 32773: 'packbits', 32809: 'thunderscan', 32895: 'it8ctpad', 32896: 'it8lw', 32897: 'it8mp', 32898: 'it8bl', 32908: 'pixarfilm', 32909: 'pixarlog', 32946: 'deflate', 32947: 'dcs', 34661: 'jbig', 34676: 'sgilog', 34677: 'sgilog24', 34712: 'jp2000', 34713: 'nef', 34925: 'lzma', } TIFF_DECOMPESSORS = { None: lambda x: x, 'adobe_deflate': zlib.decompress, 'deflate': zlib.decompress, 'packbits': decode_packbits, 'lzw': decode_lzw, # 'jpeg': decode_jpeg } if lzma: TIFF_DECOMPESSORS['lzma'] = lzma.decompress TIFF_DATA_TYPES = { 1: '1B', # BYTE 8-bit unsigned integer. 2: '1s', # ASCII 8-bit byte that contains a 7-bit ASCII code; # the last byte must be NULL (binary zero). 3: '1H', # SHORT 16-bit (2-byte) unsigned integer 4: '1I', # LONG 32-bit (4-byte) unsigned integer. 5: '2I', # RATIONAL Two LONGs: the first represents the numerator of # a fraction; the second, the denominator. 6: '1b', # SBYTE An 8-bit signed (twos-complement) integer. 7: '1s', # UNDEFINED An 8-bit byte that may contain anything, # depending on the definition of the field. 8: '1h', # SSHORT A 16-bit (2-byte) signed (twos-complement) integer. 9: '1i', # SLONG A 32-bit (4-byte) signed (twos-complement) integer. 10: '2i', # SRATIONAL Two SLONGs: the first represents the numerator # of a fraction, the second the denominator. 11: '1f', # FLOAT Single precision (4-byte) IEEE format. 12: '1d', # DOUBLE Double precision (8-byte) IEEE format. 13: '1I', # IFD unsigned 4 byte IFD offset. #14: '', # UNICODE #15: '', # COMPLEX 16: '1Q', # LONG8 unsigned 8 byte integer (BigTiff) 17: '1q', # SLONG8 signed 8 byte integer (BigTiff) 18: '1Q', # IFD8 unsigned 8 byte IFD offset (BigTiff) } TIFF_SAMPLE_FORMATS = { 1: 'uint', 2: 'int', 3: 'float', #4: 'void', #5: 'complex_int', 6: 'complex', } TIFF_SAMPLE_DTYPES = { ('uint', 1): '?', # bitmap ('uint', 2): 'B', ('uint', 3): 'B', ('uint', 4): 'B', ('uint', 5): 'B', ('uint', 6): 'B', ('uint', 7): 'B', ('uint', 8): 'B', ('uint', 9): 'H', ('uint', 10): 'H', ('uint', 11): 'H', ('uint', 12): 'H', ('uint', 13): 'H', ('uint', 14): 'H', ('uint', 15): 'H', ('uint', 16): 'H', ('uint', 17): 'I', ('uint', 18): 'I', ('uint', 19): 'I', ('uint', 20): 'I', ('uint', 21): 'I', ('uint', 22): 'I', ('uint', 23): 'I', ('uint', 24): 'I', ('uint', 25): 'I', ('uint', 26): 'I', ('uint', 27): 'I', ('uint', 28): 'I', ('uint', 29): 'I', ('uint', 30): 'I', ('uint', 31): 'I', ('uint', 32): 'I', ('uint', 64): 'Q', ('int', 8): 'b', ('int', 16): 'h', ('int', 32): 'i', ('int', 64): 'q', ('float', 16): 'e', ('float', 32): 'f', ('float', 64): 'd', ('complex', 64): 'F', ('complex', 128): 'D', ('uint', (5, 6, 5)): 'B', } TIFF_ORIENTATIONS = { 1: 'top_left', 2: 'top_right', 3: 'bottom_right', 4: 'bottom_left', 5: 'left_top', 6: 'right_top', 7: 'right_bottom', 8: 'left_bottom', } # TODO: is there a standard for character axes labels? AXES_LABELS = { 'X': 'width', 'Y': 'height', 'Z': 'depth', 'S': 'sample', # rgb(a) 'I': 'series', # general sequence, plane, page, IFD 'T': 'time', 'C': 'channel', # color, emission wavelength 'A': 'angle', 'P': 'phase', # formerly F # P is Position in LSM! 'R': 'tile', # region, point, mosaic 'H': 'lifetime', # histogram 'E': 'lambda', # excitation wavelength 'L': 'exposure', # lux 'V': 'event', 'Q': 'other', 'M': 'mosaic', # LSM 6 } AXES_LABELS.update(dict((v, k) for k, v in AXES_LABELS.items())) # Map OME pixel types to numpy dtype OME_PIXEL_TYPES = { 'int8': 'i1', 'int16': 'i2', 'int32': 'i4', 'uint8': 'u1', 'uint16': 'u2', 'uint32': 'u4', 'float': 'f4', # 'bit': 'bit', 'double': 'f8', 'complex': 'c8', 'double-complex': 'c16', } # NIH Image PicHeader v1.63 NIH_IMAGE_HEADER = [ ('fileid', 'a8'), ('nlines', 'i2'), ('pixelsperline', 'i2'), ('version', 'i2'), ('oldlutmode', 'i2'), ('oldncolors', 'i2'), ('colors', 'u1', (3, 32)), ('oldcolorstart', 'i2'), ('colorwidth', 'i2'), ('extracolors', 'u2', (6, 3)), ('nextracolors', 'i2'), ('foregroundindex', 'i2'), ('backgroundindex', 'i2'), ('xscale', 'f8'), ('_x0', 'i2'), ('_x1', 'i2'), ('units_t', 'i2'), # NIH_UNITS_TYPE ('p1', [('x', 'i2'), ('y', 'i2')]), ('p2', [('x', 'i2'), ('y', 'i2')]), ('curvefit_t', 'i2'), # NIH_CURVEFIT_TYPE ('ncoefficients', 'i2'), ('coeff', 'f8', 6), ('_um_len', 'u1'), ('um', 'a15'), ('_x2', 'u1'), ('binarypic', 'b1'), ('slicestart', 'i2'), ('sliceend', 'i2'), ('scalemagnification', 'f4'), ('nslices', 'i2'), ('slicespacing', 'f4'), ('currentslice', 'i2'), ('frameinterval', 'f4'), ('pixelaspectratio', 'f4'), ('colorstart', 'i2'), ('colorend', 'i2'), ('ncolors', 'i2'), ('fill1', '3u2'), ('fill2', '3u2'), ('colortable_t', 'u1'), # NIH_COLORTABLE_TYPE ('lutmode_t', 'u1'), # NIH_LUTMODE_TYPE ('invertedtable', 'b1'), ('zeroclip', 'b1'), ('_xunit_len', 'u1'), ('xunit', 'a11'), ('stacktype_t', 'i2'), # NIH_STACKTYPE_TYPE ] NIH_COLORTABLE_TYPE = ( 'CustomTable', 'AppleDefault', 'Pseudo20', 'Pseudo32', 'Rainbow', 'Fire1', 'Fire2', 'Ice', 'Grays', 'Spectrum') NIH_LUTMODE_TYPE = ( 'PseudoColor', 'OldAppleDefault', 'OldSpectrum', 'GrayScale', 'ColorLut', 'CustomGrayscale') NIH_CURVEFIT_TYPE = ( 'StraightLine', 'Poly2', 'Poly3', 'Poly4', 'Poly5', 'ExpoFit', 'PowerFit', 'LogFit', 'RodbardFit', 'SpareFit1', 'Uncalibrated', 'UncalibratedOD') NIH_UNITS_TYPE = ( 'Nanometers', 'Micrometers', 'Millimeters', 'Centimeters', 'Meters', 'Kilometers', 'Inches', 'Feet', 'Miles', 'Pixels', 'OtherUnits') NIH_STACKTYPE_TYPE = ( 'VolumeStack', 'RGBStack', 'MovieStack', 'HSVStack') # Map Universal Imaging Corporation MetaMorph internal tag ids to name and type UIC_TAGS = { 0: ('auto_scale', int), 1: ('min_scale', int), 2: ('max_scale', int), 3: ('spatial_calibration', int), 4: ('x_calibration', Fraction), 5: ('y_calibration', Fraction), 6: ('calibration_units', str), 7: ('name', str), 8: ('thresh_state', int), 9: ('thresh_state_red', int), 10: ('tagid_10', None), # undefined 11: ('thresh_state_green', int), 12: ('thresh_state_blue', int), 13: ('thresh_state_lo', int), 14: ('thresh_state_hi', int), 15: ('zoom', int), 16: ('create_time', julian_datetime), 17: ('last_saved_time', julian_datetime), 18: ('current_buffer', int), 19: ('gray_fit', None), 20: ('gray_point_count', None), 21: ('gray_x', Fraction), 22: ('gray_y', Fraction), 23: ('gray_min', Fraction), 24: ('gray_max', Fraction), 25: ('gray_unit_name', str), 26: ('standard_lut', int), 27: ('wavelength', int), 28: ('stage_position', '(%i,2,2)u4'), # N xy positions as fractions 29: ('camera_chip_offset', '(%i,2,2)u4'), # N xy offsets as fractions 30: ('overlay_mask', None), 31: ('overlay_compress', None), 32: ('overlay', None), 33: ('special_overlay_mask', None), 34: ('special_overlay_compress', None), 35: ('special_overlay', None), 36: ('image_property', read_uic_image_property), 37: ('stage_label', '%ip'), # N str 38: ('autoscale_lo_info', Fraction), 39: ('autoscale_hi_info', Fraction), 40: ('absolute_z', '(%i,2)u4'), # N fractions 41: ('absolute_z_valid', '(%i,)u4'), # N long 42: ('gamma', int), 43: ('gamma_red', int), 44: ('gamma_green', int), 45: ('gamma_blue', int), 46: ('camera_bin', int), 47: ('new_lut', int), 48: ('image_property_ex', None), 49: ('plane_property', int), 50: ('user_lut_table', '(256,3)u1'), 51: ('red_autoscale_info', int), 52: ('red_autoscale_lo_info', Fraction), 53: ('red_autoscale_hi_info', Fraction), 54: ('red_minscale_info', int), 55: ('red_maxscale_info', int), 56: ('green_autoscale_info', int), 57: ('green_autoscale_lo_info', Fraction), 58: ('green_autoscale_hi_info', Fraction), 59: ('green_minscale_info', int), 60: ('green_maxscale_info', int), 61: ('blue_autoscale_info', int), 62: ('blue_autoscale_lo_info', Fraction), 63: ('blue_autoscale_hi_info', Fraction), 64: ('blue_min_scale_info', int), 65: ('blue_max_scale_info', int), #66: ('overlay_plane_color', read_uic_overlay_plane_color), } # Olympus FluoView MM_DIMENSION = [ ('name', 'a16'), ('size', 'i4'), ('origin', 'f8'), ('resolution', 'f8'), ('unit', 'a64'), ] MM_HEADER = [ ('header_flag', 'i2'), ('image_type', 'u1'), ('image_name', 'a257'), ('offset_data', 'u4'), ('palette_size', 'i4'), ('offset_palette0', 'u4'), ('offset_palette1', 'u4'), ('comment_size', 'i4'), ('offset_comment', 'u4'), ('dimensions', MM_DIMENSION, 10), ('offset_position', 'u4'), ('map_type', 'i2'), ('map_min', 'f8'), ('map_max', 'f8'), ('min_value', 'f8'), ('max_value', 'f8'), ('offset_map', 'u4'), ('gamma', 'f8'), ('offset', 'f8'), ('gray_channel', MM_DIMENSION), ('offset_thumbnail', 'u4'), ('voice_field', 'i4'), ('offset_voice_field', 'u4'), ] # Carl Zeiss LSM CZ_LSM_INFO = [ ('magic_number', 'u4'), ('structure_size', 'i4'), ('dimension_x', 'i4'), ('dimension_y', 'i4'), ('dimension_z', 'i4'), ('dimension_channels', 'i4'), ('dimension_time', 'i4'), ('data_type', 'i4'), # CZ_DATA_TYPES ('thumbnail_x', 'i4'), ('thumbnail_y', 'i4'), ('voxel_size_x', 'f8'), ('voxel_size_y', 'f8'), ('voxel_size_z', 'f8'), ('origin_x', 'f8'), ('origin_y', 'f8'), ('origin_z', 'f8'), ('scan_type', 'u2'), ('spectral_scan', 'u2'), ('type_of_data', 'u4'), # CZ_TYPE_OF_DATA ('offset_vector_overlay', 'u4'), ('offset_input_lut', 'u4'), ('offset_output_lut', 'u4'), ('offset_channel_colors', 'u4'), ('time_interval', 'f8'), ('offset_channel_data_types', 'u4'), ('offset_scan_info', 'u4'), # CZ_LSM_SCAN_INFO ('offset_ks_data', 'u4'), ('offset_time_stamps', 'u4'), ('offset_event_list', 'u4'), ('offset_roi', 'u4'), ('offset_bleach_roi', 'u4'), ('offset_next_recording', 'u4'), # LSM 2.0 ends here ('display_aspect_x', 'f8'), ('display_aspect_y', 'f8'), ('display_aspect_z', 'f8'), ('display_aspect_time', 'f8'), ('offset_mean_of_roi_overlay', 'u4'), ('offset_topo_isoline_overlay', 'u4'), ('offset_topo_profile_overlay', 'u4'), ('offset_linescan_overlay', 'u4'), ('offset_toolbar_flags', 'u4'), ('offset_channel_wavelength', 'u4'), ('offset_channel_factors', 'u4'), ('objective_sphere_correction', 'f8'), ('offset_unmix_parameters', 'u4'), # LSM 3.2, 4.0 end here ('offset_acquisition_parameters', 'u4'), ('offset_characteristics', 'u4'), ('offset_palette', 'u4'), ('time_difference_x', 'f8'), ('time_difference_y', 'f8'), ('time_difference_z', 'f8'), ('internal_use_1', 'u4'), ('dimension_p', 'i4'), ('dimension_m', 'i4'), ('dimensions_reserved', '16i4'), ('offset_tile_positions', 'u4'), ('reserved_1', '9u4'), ('offset_positions', 'u4'), ('reserved_2', '21u4'), # must be 0 ] # Import functions for LSM_INFO sub-records CZ_LSM_INFO_READERS = { 'scan_info': read_cz_lsm_scan_info, 'time_stamps': read_cz_lsm_time_stamps, 'event_list': read_cz_lsm_event_list, 'channel_colors': read_cz_lsm_floatpairs, 'positions': read_cz_lsm_floatpairs, 'tile_positions': read_cz_lsm_floatpairs, } # Map cz_lsm_info.scan_type to dimension order CZ_SCAN_TYPES = { 0: 'XYZCT', # x-y-z scan 1: 'XYZCT', # z scan (x-z plane) 2: 'XYZCT', # line scan 3: 'XYTCZ', # time series x-y 4: 'XYZTC', # time series x-z 5: 'XYTCZ', # time series 'Mean of ROIs' 6: 'XYZTC', # time series x-y-z 7: 'XYCTZ', # spline scan 8: 'XYCZT', # spline scan x-z 9: 'XYTCZ', # time series spline plane x-z 10: 'XYZCT', # point mode } # Map dimension codes to cz_lsm_info attribute CZ_DIMENSIONS = { 'X': 'dimension_x', 'Y': 'dimension_y', 'Z': 'dimension_z', 'C': 'dimension_channels', 'T': 'dimension_time', 'P': 'dimension_p', 'M': 'dimension_m', } # Description of cz_lsm_info.data_type CZ_DATA_TYPES = { 0: 'varying data types', 1: '8 bit unsigned integer', 2: '12 bit unsigned integer', 5: '32 bit float', } # Description of cz_lsm_info.type_of_data CZ_TYPE_OF_DATA = { 0: 'Original scan data', 1: 'Calculated data', 2: '3D reconstruction', 3: 'Topography height map', } CZ_LSM_SCAN_INFO_ARRAYS = { 0x20000000: "tracks", 0x30000000: "lasers", 0x60000000: "detection_channels", 0x80000000: "illumination_channels", 0xa0000000: "beam_splitters", 0xc0000000: "data_channels", 0x11000000: "timers", 0x13000000: "markers", } CZ_LSM_SCAN_INFO_STRUCTS = { # 0x10000000: "recording", 0x40000000: "track", 0x50000000: "laser", 0x70000000: "detection_channel", 0x90000000: "illumination_channel", 0xb0000000: "beam_splitter", 0xd0000000: "data_channel", 0x12000000: "timer", 0x14000000: "marker", } CZ_LSM_SCAN_INFO_ATTRIBUTES = { # recording 0x10000001: "name", 0x10000002: "description", 0x10000003: "notes", 0x10000004: "objective", 0x10000005: "processing_summary", 0x10000006: "special_scan_mode", 0x10000007: "scan_type", 0x10000008: "scan_mode", 0x10000009: "number_of_stacks", 0x1000000a: "lines_per_plane", 0x1000000b: "samples_per_line", 0x1000000c: "planes_per_volume", 0x1000000d: "images_width", 0x1000000e: "images_height", 0x1000000f: "images_number_planes", 0x10000010: "images_number_stacks", 0x10000011: "images_number_channels", 0x10000012: "linscan_xy_size", 0x10000013: "scan_direction", 0x10000014: "time_series", 0x10000015: "original_scan_data", 0x10000016: "zoom_x", 0x10000017: "zoom_y", 0x10000018: "zoom_z", 0x10000019: "sample_0x", 0x1000001a: "sample_0y", 0x1000001b: "sample_0z", 0x1000001c: "sample_spacing", 0x1000001d: "line_spacing", 0x1000001e: "plane_spacing", 0x1000001f: "plane_width", 0x10000020: "plane_height", 0x10000021: "volume_depth", 0x10000023: "nutation", 0x10000034: "rotation", 0x10000035: "precession", 0x10000036: "sample_0time", 0x10000037: "start_scan_trigger_in", 0x10000038: "start_scan_trigger_out", 0x10000039: "start_scan_event", 0x10000040: "start_scan_time", 0x10000041: "stop_scan_trigger_in", 0x10000042: "stop_scan_trigger_out", 0x10000043: "stop_scan_event", 0x10000044: "stop_scan_time", 0x10000045: "use_rois", 0x10000046: "use_reduced_memory_rois", 0x10000047: "user", 0x10000048: "use_bc_correction", 0x10000049: "position_bc_correction1", 0x10000050: "position_bc_correction2", 0x10000051: "interpolation_y", 0x10000052: "camera_binning", 0x10000053: "camera_supersampling", 0x10000054: "camera_frame_width", 0x10000055: "camera_frame_height", 0x10000056: "camera_offset_x", 0x10000057: "camera_offset_y", 0x10000059: "rt_binning", 0x1000005a: "rt_frame_width", 0x1000005b: "rt_frame_height", 0x1000005c: "rt_region_width", 0x1000005d: "rt_region_height", 0x1000005e: "rt_offset_x", 0x1000005f: "rt_offset_y", 0x10000060: "rt_zoom", 0x10000061: "rt_line_period", 0x10000062: "prescan", 0x10000063: "scan_direction_z", # track 0x40000001: "multiplex_type", # 0 after line; 1 after frame 0x40000002: "multiplex_order", 0x40000003: "sampling_mode", # 0 sample; 1 line average; 2 frame average 0x40000004: "sampling_method", # 1 mean; 2 sum 0x40000005: "sampling_number", 0x40000006: "acquire", 0x40000007: "sample_observation_time", 0x4000000b: "time_between_stacks", 0x4000000c: "name", 0x4000000d: "collimator1_name", 0x4000000e: "collimator1_position", 0x4000000f: "collimator2_name", 0x40000010: "collimator2_position", 0x40000011: "is_bleach_track", 0x40000012: "is_bleach_after_scan_number", 0x40000013: "bleach_scan_number", 0x40000014: "trigger_in", 0x40000015: "trigger_out", 0x40000016: "is_ratio_track", 0x40000017: "bleach_count", 0x40000018: "spi_center_wavelength", 0x40000019: "pixel_time", 0x40000021: "condensor_frontlens", 0x40000023: "field_stop_value", 0x40000024: "id_condensor_aperture", 0x40000025: "condensor_aperture", 0x40000026: "id_condensor_revolver", 0x40000027: "condensor_filter", 0x40000028: "id_transmission_filter1", 0x40000029: "id_transmission1", 0x40000030: "id_transmission_filter2", 0x40000031: "id_transmission2", 0x40000032: "repeat_bleach", 0x40000033: "enable_spot_bleach_pos", 0x40000034: "spot_bleach_posx", 0x40000035: "spot_bleach_posy", 0x40000036: "spot_bleach_posz", 0x40000037: "id_tubelens", 0x40000038: "id_tubelens_position", 0x40000039: "transmitted_light", 0x4000003a: "reflected_light", 0x4000003b: "simultan_grab_and_bleach", 0x4000003c: "bleach_pixel_time", # laser 0x50000001: "name", 0x50000002: "acquire", 0x50000003: "power", # detection_channel 0x70000001: "integration_mode", 0x70000002: "special_mode", 0x70000003: "detector_gain_first", 0x70000004: "detector_gain_last", 0x70000005: "amplifier_gain_first", 0x70000006: "amplifier_gain_last", 0x70000007: "amplifier_offs_first", 0x70000008: "amplifier_offs_last", 0x70000009: "pinhole_diameter", 0x7000000a: "counting_trigger", 0x7000000b: "acquire", 0x7000000c: "point_detector_name", 0x7000000d: "amplifier_name", 0x7000000e: "pinhole_name", 0x7000000f: "filter_set_name", 0x70000010: "filter_name", 0x70000013: "integrator_name", 0x70000014: "channel_name", 0x70000015: "detector_gain_bc1", 0x70000016: "detector_gain_bc2", 0x70000017: "amplifier_gain_bc1", 0x70000018: "amplifier_gain_bc2", 0x70000019: "amplifier_offset_bc1", 0x70000020: "amplifier_offset_bc2", 0x70000021: "spectral_scan_channels", 0x70000022: "spi_wavelength_start", 0x70000023: "spi_wavelength_stop", 0x70000026: "dye_name", 0x70000027: "dye_folder", # illumination_channel 0x90000001: "name", 0x90000002: "power", 0x90000003: "wavelength", 0x90000004: "aquire", 0x90000005: "detchannel_name", 0x90000006: "power_bc1", 0x90000007: "power_bc2", # beam_splitter 0xb0000001: "filter_set", 0xb0000002: "filter", 0xb0000003: "name", # data_channel 0xd0000001: "name", 0xd0000003: "acquire", 0xd0000004: "color", 0xd0000005: "sample_type", 0xd0000006: "bits_per_sample", 0xd0000007: "ratio_type", 0xd0000008: "ratio_track1", 0xd0000009: "ratio_track2", 0xd000000a: "ratio_channel1", 0xd000000b: "ratio_channel2", 0xd000000c: "ratio_const1", 0xd000000d: "ratio_const2", 0xd000000e: "ratio_const3", 0xd000000f: "ratio_const4", 0xd0000010: "ratio_const5", 0xd0000011: "ratio_const6", 0xd0000012: "ratio_first_images1", 0xd0000013: "ratio_first_images2", 0xd0000014: "dye_name", 0xd0000015: "dye_folder", 0xd0000016: "spectrum", 0xd0000017: "acquire", # timer 0x12000001: "name", 0x12000002: "description", 0x12000003: "interval", 0x12000004: "trigger_in", 0x12000005: "trigger_out", 0x12000006: "activation_time", 0x12000007: "activation_number", # marker 0x14000001: "name", 0x14000002: "description", 0x14000003: "trigger_in", 0x14000004: "trigger_out", } # Map TIFF tag code to attribute name, default value, type, count, validator TIFF_TAGS = { 254: ('new_subfile_type', 0, 4, 1, TIFF_SUBFILE_TYPES()), 255: ('subfile_type', None, 3, 1, {0: 'undefined', 1: 'image', 2: 'reduced_image', 3: 'page'}), 256: ('image_width', None, 4, 1, None), 257: ('image_length', None, 4, 1, None), 258: ('bits_per_sample', 1, 3, None, None), 259: ('compression', 1, 3, 1, TIFF_COMPESSIONS), 262: ('photometric', None, 3, 1, TIFF_PHOTOMETRICS), 266: ('fill_order', 1, 3, 1, {1: 'msb2lsb', 2: 'lsb2msb'}), 269: ('document_name', None, 2, None, None), 270: ('image_description', None, 2, None, None), 271: ('make', None, 2, None, None), 272: ('model', None, 2, None, None), 273: ('strip_offsets', None, 4, None, None), 274: ('orientation', 1, 3, 1, TIFF_ORIENTATIONS), 277: ('samples_per_pixel', 1, 3, 1, None), 278: ('rows_per_strip', 2**32-1, 4, 1, None), 279: ('strip_byte_counts', None, 4, None, None), 280: ('min_sample_value', None, 3, None, None), 281: ('max_sample_value', None, 3, None, None), # 2**bits_per_sample 282: ('x_resolution', None, 5, 1, None), 283: ('y_resolution', None, 5, 1, None), 284: ('planar_configuration', 1, 3, 1, {1: 'contig', 2: 'separate'}), 285: ('page_name', None, 2, None, None), 286: ('x_position', None, 5, 1, None), 287: ('y_position', None, 5, 1, None), 296: ('resolution_unit', 2, 4, 1, {1: 'none', 2: 'inch', 3: 'centimeter'}), 297: ('page_number', None, 3, 2, None), 305: ('software', None, 2, None, None), 306: ('datetime', None, 2, None, None), 315: ('artist', None, 2, None, None), 316: ('host_computer', None, 2, None, None), 317: ('predictor', 1, 3, 1, {1: None, 2: 'horizontal', 3: 'float'}), 318: ('white_point', None, 5, 2, None), 319: ('primary_chromaticities', None, 5, 6, None), 320: ('color_map', None, 3, None, None), 322: ('tile_width', None, 4, 1, None), 323: ('tile_length', None, 4, 1, None), 324: ('tile_offsets', None, 4, None, None), 325: ('tile_byte_counts', None, 4, None, None), 338: ('extra_samples', None, 3, None, {0: 'unspecified', 1: 'assocalpha', 2: 'unassalpha'}), 339: ('sample_format', 1, 3, None, TIFF_SAMPLE_FORMATS), 340: ('smin_sample_value', None, None, None, None), 341: ('smax_sample_value', None, None, None, None), 346: ('indexed', 0, 3, 1, None), 347: ('jpeg_tables', None, 7, None, None), 530: ('ycbcr_subsampling', (1, 1), 3, 2, None), 531: ('ycbcr_positioning', (1, 1), 3, 1, None), 532: ('reference_black_white', None, 5, 1, None), 32996: ('sgi_matteing', None, None, 1, None), # use extra_samples 32996: ('sgi_datatype', None, None, None, None), # use sample_format 32997: ('image_depth', 1, 4, 1, None), 32998: ('tile_depth', None, 4, 1, None), 33432: ('copyright', None, 1, None, None), 33445: ('md_file_tag', None, 4, 1, None), 33446: ('md_scale_pixel', None, 5, 1, None), 33447: ('md_color_table', None, 3, None, None), 33448: ('md_lab_name', None, 2, None, None), 33449: ('md_sample_info', None, 2, None, None), 33450: ('md_prep_date', None, 2, None, None), 33451: ('md_prep_time', None, 2, None, None), 33452: ('md_file_units', None, 2, None, None), 33550: ('model_pixel_scale', None, 12, 3, None), 33922: ('model_tie_point', None, 12, None, None), 34665: ('exif_ifd', None, None, 1, None), 34735: ('geo_key_directory', None, 3, None, None), 34736: ('geo_double_params', None, 12, None, None), 34737: ('geo_ascii_params', None, 2, None, None), 34853: ('gps_ifd', None, None, 1, None), 37510: ('user_comment', None, None, None, None), 42112: ('gdal_metadata', None, 2, None, None), 42113: ('gdal_nodata', None, 2, None, None), 50289: ('mc_xy_position', None, 12, 2, None), 50290: ('mc_z_position', None, 12, 1, None), 50291: ('mc_xy_calibration', None, 12, 3, None), 50292: ('mc_lens_lem_na_n', None, 12, 3, None), 50293: ('mc_channel_name', None, 1, None, None), 50294: ('mc_ex_wavelength', None, 12, 1, None), 50295: ('mc_time_stamp', None, 12, 1, None), 50838: ('imagej_byte_counts', None, None, None, None), 51023: ('fibics_xml', None, 2, None, None), 65200: ('flex_xml', None, 2, None, None), # code: (attribute name, default value, type, count, validator) } # Map custom TIFF tag codes to attribute names and import functions CUSTOM_TAGS = { 700: ('xmp', read_bytes), 34377: ('photoshop', read_numpy), 33723: ('iptc', read_bytes), 34675: ('icc_profile', read_bytes), 33628: ('uic1tag', read_uic1tag), # Universal Imaging Corporation STK 33629: ('uic2tag', read_uic2tag), 33630: ('uic3tag', read_uic3tag), 33631: ('uic4tag', read_uic4tag), 34361: ('mm_header', read_mm_header), # Olympus FluoView 34362: ('mm_stamp', read_mm_stamp), 34386: ('mm_user_block', read_bytes), 34412: ('cz_lsm_info', read_cz_lsm_info), # Carl Zeiss LSM 43314: ('nih_image_header', read_nih_image_header), # 40001: ('mc_ipwinscal', read_bytes), 40100: ('mc_id_old', read_bytes), 50288: ('mc_id', read_bytes), 50296: ('mc_frame_properties', read_bytes), 50839: ('imagej_metadata', read_bytes), 51123: ('micromanager_metadata', read_json), } # Max line length of printed output PRINT_LINE_LEN = 79 def imshow(data, title=None, vmin=0, vmax=None, cmap=None, bitspersample=None, photometric='rgb', interpolation='nearest', dpi=96, figure=None, subplot=111, maxdim=8192, **kwargs): """Plot n-dimensional images using matplotlib.pyplot. Return figure, subplot and plot axis. Requires pyplot already imported `from matplotlib import pyplot`. Parameters ---------- bitspersample : int or None Number of bits per channel in integer RGB images. photometric : {'miniswhite', 'minisblack', 'rgb', or 'palette'} The color space of the image data. title : str Window and subplot title. figure : matplotlib.figure.Figure (optional). Matplotlib to use for plotting. subplot : int A matplotlib.pyplot.subplot axis. maxdim : int maximum image width and length. kwargs : optional Arguments for matplotlib.pyplot.imshow. """ #if photometric not in ('miniswhite', 'minisblack', 'rgb', 'palette'): # raise ValueError("Can not handle %s photometrics" % photometric) # TODO: handle photometric == 'separated' (CMYK) isrgb = photometric in ('rgb', 'palette') data = numpy.atleast_2d(data.squeeze()) dims = data.ndim if dims < 2: raise ValueError("not an image") elif dims == 2: dims = 0 isrgb = False else: if isrgb and data.shape[-3] in (3, 4): data = numpy.swapaxes(data, -3, -2) data = numpy.swapaxes(data, -2, -1) elif not isrgb and (data.shape[-1] < data.shape[-2] // 8 and data.shape[-1] < data.shape[-3] // 8 and data.shape[-1] < 5): data = numpy.swapaxes(data, -3, -1) data = numpy.swapaxes(data, -2, -1) isrgb = isrgb and data.shape[-1] in (3, 4) dims -= 3 if isrgb else 2 if isrgb: data = data[..., :maxdim, :maxdim, :maxdim] else: data = data[..., :maxdim, :maxdim] if photometric == 'palette' and isrgb: datamax = data.max() if datamax > 255: data >>= 8 # possible precision loss data = data.astype('B') elif data.dtype.kind in 'ui': if not (isrgb and data.dtype.itemsize <= 1) or bitspersample is None: try: bitspersample = int(math.ceil(math.log(data.max(), 2))) except Exception: bitspersample = data.dtype.itemsize * 8 elif not isinstance(bitspersample, int): # bitspersample can be tuple, e.g. (5, 6, 5) bitspersample = data.dtype.itemsize * 8 datamax = 2**bitspersample if isrgb: if bitspersample < 8: data <<= 8 - bitspersample elif bitspersample > 8: data >>= bitspersample - 8 # precision loss data = data.astype('B') elif data.dtype.kind == 'f': datamax = data.max() if isrgb and datamax > 1.0: if data.dtype.char == 'd': data = data.astype('f') data /= datamax elif data.dtype.kind == 'b': datamax = 1 elif data.dtype.kind == 'c': # TODO: handle complex types raise NotImplementedError("complex type") if not isrgb: if vmax is None: vmax = datamax if vmin is None: if data.dtype.kind == 'i': dtmin = numpy.iinfo(data.dtype).min vmin = numpy.min(data) if vmin == dtmin: vmin = numpy.min(data > dtmin) if data.dtype.kind == 'f': dtmin = numpy.finfo(data.dtype).min vmin = numpy.min(data) if vmin == dtmin: vmin = numpy.min(data > dtmin) else: vmin = 0 pyplot = sys.modules['matplotlib.pyplot'] if figure is None: pyplot.rc('font', family='sans-serif', weight='normal', size=8) figure = pyplot.figure(dpi=dpi, figsize=(10.3, 6.3), frameon=True, facecolor='1.0', edgecolor='w') try: figure.canvas.manager.window.title(title) except Exception: pass pyplot.subplots_adjust(bottom=0.03*(dims+2), top=0.9, left=0.1, right=0.95, hspace=0.05, wspace=0.0) subplot = pyplot.subplot(subplot) if title: try: title = unicode(title, 'Windows-1252') except TypeError: pass pyplot.title(title, size=11) if cmap is None: if data.dtype.kind in 'ubf' or vmin == 0: cmap = 'cubehelix' else: cmap = 'coolwarm' if photometric == 'miniswhite': cmap += '_r' image = pyplot.imshow(data[(0,) * dims].squeeze(), vmin=vmin, vmax=vmax, cmap=cmap, interpolation=interpolation, **kwargs) if not isrgb: pyplot.colorbar() # panchor=(0.55, 0.5), fraction=0.05 def format_coord(x, y): # callback function to format coordinate display in toolbar x = int(x + 0.5) y = int(y + 0.5) try: if dims: return "%s @ %s [%4i, %4i]" % (cur_ax_dat[1][y, x], current, x, y) else: return "%s @ [%4i, %4i]" % (data[y, x], x, y) except IndexError: return "" pyplot.gca().format_coord = format_coord if dims: current = list((0,) * dims) cur_ax_dat = [0, data[tuple(current)].squeeze()] sliders = [pyplot.Slider( pyplot.axes([0.125, 0.03*(axis+1), 0.725, 0.025]), 'Dimension %i' % axis, 0, data.shape[axis]-1, 0, facecolor='0.5', valfmt='%%.0f [%i]' % data.shape[axis]) for axis in range(dims)] for slider in sliders: slider.drawon = False def set_image(current, sliders=sliders, data=data): # change image and redraw canvas cur_ax_dat[1] = data[tuple(current)].squeeze() image.set_data(cur_ax_dat[1]) for ctrl, index in zip(sliders, current): ctrl.eventson = False ctrl.set_val(index) ctrl.eventson = True figure.canvas.draw() def on_changed(index, axis, data=data, current=current): # callback function for slider change event index = int(round(index)) cur_ax_dat[0] = axis if index == current[axis]: return if index >= data.shape[axis]: index = 0 elif index < 0: index = data.shape[axis] - 1 current[axis] = index set_image(current) def on_keypressed(event, data=data, current=current): # callback function for key press event key = event.key axis = cur_ax_dat[0] if str(key) in '0123456789': on_changed(key, axis) elif key == 'right': on_changed(current[axis] + 1, axis) elif key == 'left': on_changed(current[axis] - 1, axis) elif key == 'up': cur_ax_dat[0] = 0 if axis == len(data.shape)-1 else axis + 1 elif key == 'down': cur_ax_dat[0] = len(data.shape)-1 if axis == 0 else axis - 1 elif key == 'end': on_changed(data.shape[axis] - 1, axis) elif key == 'home': on_changed(0, axis) figure.canvas.mpl_connect('key_press_event', on_keypressed) for axis, ctrl in enumerate(sliders): ctrl.on_changed(lambda k, a=axis: on_changed(k, a)) return figure, subplot, image def _app_show(): """Block the GUI. For use as skimage plugin.""" pyplot = sys.modules['matplotlib.pyplot'] pyplot.show() def askopenfilename(**kwargs): """Return file name(s) from Tkinter's file open dialog.""" try: from Tkinter import Tk import tkFileDialog as filedialog except ImportError: from tkinter import Tk, filedialog root = Tk() root.withdraw() root.update() filenames = filedialog.askopenfilename(**kwargs) root.destroy() return filenames def main(argv=None): """Command line usage main function.""" if float(sys.version[0:3]) < 2.6: print("This script requires Python version 2.6 or better.") print("This is Python version %s" % sys.version) return 0 if argv is None: argv = sys.argv import optparse parser = optparse.OptionParser( usage="usage: %prog [options] path", description="Display image data in TIFF files.", version="%%prog %s" % __version__) opt = parser.add_option opt('-p', '--page', dest='page', type='int', default=-1, help="display single page") opt('-s', '--series', dest='series', type='int', default=-1, help="display series of pages of same shape") opt('--nomultifile', dest='nomultifile', action='store_true', default=False, help="do not read OME series from multiple files") opt('--noplot', dest='noplot', action='store_true', default=False, help="do not display images") opt('--interpol', dest='interpol', metavar='INTERPOL', default='bilinear', help="image interpolation method") opt('--dpi', dest='dpi', type='int', default=96, help="set plot resolution") opt('--vmin', dest='vmin', type='int', default=None, help="set minimum value for colormapping") opt('--vmax', dest='vmax', type='int', default=None, help="set maximum value for colormapping") opt('--debug', dest='debug', action='store_true', default=False, help="raise exception on failures") opt('--test', dest='test', action='store_true', default=False, help="try read all images in path") opt('--doctest', dest='doctest', action='store_true', default=False, help="runs the docstring examples") opt('-v', '--verbose', dest='verbose', action='store_true', default=True) opt('-q', '--quiet', dest='verbose', action='store_false') settings, path = parser.parse_args() path = ' '.join(path) if settings.doctest: import doctest doctest.testmod() return 0 if not path: path = askopenfilename( title="Select a TIFF file", filetypes=[("TIF files", "*.tif"), ("LSM files", "*.lsm"), ("STK files", "*.stk"), ("allfiles", "*")]) if not path: parser.error("No file specified") if settings.test: test_tifffile(path, settings.verbose) return 0 if any(i in path for i in '?*'): path = glob.glob(path) if not path: print('no files match the pattern') return 0 # TODO: handle image sequences #if len(path) == 1: path = path[0] print("Reading file structure...", end=' ') start = time.time() try: tif = TiffFile(path, multifile=not settings.nomultifile) except Exception as e: if settings.debug: raise else: print("\n", e) sys.exit(0) print("%.3f ms" % ((time.time()-start) * 1e3)) if tif.is_ome: settings.norgb = True images = [(None, tif[0 if settings.page < 0 else settings.page])] if not settings.noplot: print("Reading image data... ", end=' ') def notnone(x): return next(i for i in x if i is not None) start = time.time() try: if settings.page >= 0: images = [(tif.asarray(key=settings.page), tif[settings.page])] elif settings.series >= 0: images = [(tif.asarray(series=settings.series), notnone(tif.series[settings.series].pages))] else: images = [] for i, s in enumerate(tif.series): try: images.append( (tif.asarray(series=i), notnone(s.pages))) except ValueError as e: images.append((None, notnone(s.pages))) if settings.debug: raise else: print("\n* series %i failed: %s... " % (i, e), end='') print("%.3f ms" % ((time.time()-start) * 1e3)) except Exception as e: if settings.debug: raise else: print(e) tif.close() print("\nTIFF file:", tif) print() for i, s in enumerate(tif.series): print ("Series %i" % i) print(s) print() for i, page in images: print(page) print(page.tags) if page.is_indexed: print("\nColor Map:", page.color_map.shape, page.color_map.dtype) for attr in ('cz_lsm_info', 'cz_lsm_scan_info', 'uic_tags', 'mm_header', 'imagej_tags', 'micromanager_metadata', 'nih_image_header'): if hasattr(page, attr): print("", attr.upper(), Record(getattr(page, attr)), sep="\n") print() if page.is_micromanager: print('MICROMANAGER_FILE_METADATA') print(Record(tif.micromanager_metadata)) if images and not settings.noplot: try: import matplotlib matplotlib.use('TkAgg') from matplotlib import pyplot except ImportError as e: warnings.warn("failed to import matplotlib.\n%s" % e) else: for img, page in images: if img is None: continue vmin, vmax = settings.vmin, settings.vmax if 'gdal_nodata' in page.tags: try: vmin = numpy.min(img[img > float(page.gdal_nodata)]) except ValueError: pass if page.is_stk: try: vmin = page.uic_tags['min_scale'] vmax = page.uic_tags['max_scale'] except KeyError: pass else: if vmax <= vmin: vmin, vmax = settings.vmin, settings.vmax title = "%s\n %s" % (str(tif), str(page)) imshow(img, title=title, vmin=vmin, vmax=vmax, bitspersample=page.bits_per_sample, photometric=page.photometric, interpolation=settings.interpol, dpi=settings.dpi) pyplot.show() TIFFfile = TiffFile # backwards compatibility if sys.version_info[0] > 2: basestring = str, bytes unicode = str def str2bytes(s, encoding="latin-1"): return s.encode(encoding) else: def str2bytes(s): return s if __name__ == "__main__": sys.exit(main())
bsd-3-clause
mitschabaude/nanopores
scripts/numerics/implicit_vs_explicit.py
1
2013
"compare implicit and explicit molecule model visually for 2D Howorka pore" import os, numpy, Howorka from dolfin import * from nanopores import * #from matplotlib.pyplot import figure, plot, legend, show, title, xlabel, ylabel, savefig add_params( himp = .2, hexp = .2, Nimp = 1e4, Nexp = 1e4, z0 = 2., Qmol = -1., ) # simulate explicit molecule def explicit(): geo, phys = Howorka.setup2D(z0=z0, h=hexp, Qmol=Qmol) #plot(geo.pwconst("permittivity")) pb, pnps = Howorka.solve2D(geo, phys, Nmax=Nexp, cheapest=True) (v, cp, cm, u, p) = pnps.solutions() pnps.visualize("fluid") return geo, phys, v, u # simulate implicit molecule def implicit(): geo, phys = Howorka.setup2D(z0=None, h=himp) pb, pnps = Howorka.solve2D(geo, phys, Nmax=Nimp, cheapest=True) (v, cp, cm, u, p) = pnps.solutions() #pnps.visualize("fluid") return v, u geo, phys, vexp, uexp = explicit() vimp, uimp = implicit() # analytical potential from molecule in homogeneous dielectric fluid eps = phys.eperm*phys.rpermw q = phys.qq lscale = phys.lscale x0 = [0., z0] class vAna(Expression): def eval(self, value, x): r = sqrt(sum((t - t0)**2 for t, t0 in zip(x, x0))) value[0] = -q*lscale/(4.*pi*eps*r) synonyme = dict( notmol = {"fluid", "dna", "membrane"} ) geo.import_synonymes(synonyme) mesh = geo.submesh("notmol") V = FunctionSpace(mesh, "CG", 1) v = Function(V) va = Function(V) v0 = Function(V) dv = Function(V) v.interpolate(vexp) v0.interpolate(vimp) plot(v, title="explicit") plot(v0, title="implicit") va.interpolate(vAna()) plot(va, title="analytical") dv.vector()[:] = v.vector()[:] - v0.vector()[:] #- va.vector()[:] plot(dv, title="difference") U = VectorFunctionSpace(mesh, "CG", 1) u = Function(U) u0 = Function(U) du = Function(U) u.interpolate(uexp) u0.interpolate(uimp) plot(u, title="explicit") plot(u0, title="implicit") du.vector()[:] = u.vector()[:] - u0.vector()[:] plot(du, title="difference") interactive()
mit
davidgardenier/frbpoppy
tests/monte_carlo/run_mc.py
1
4393
"""Link together all classes to run a full Monte Carlo.""" import pandas as pd import numpy as np import frbpoppy.paths import os from simulations import MonteCarlo, POP_SIZE from goodness_of_fit import GoodnessOfFit from plot import Plot GENERATE = True CALC_GOFS = True RUNS = [10] class RunOverview: """Gather input for each run.""" def __init__(self, load_csv=True): p = frbpoppy.paths.populations() self.filename = f'{p}mc/run_overview.csv' if load_csv and os.path.isfile(self.filename): self.df = self.load() else: self.df = self.gen_runs() def gen_run(self): return {'alpha': None, 'si': None, 'li': None, 'lum_min': None, 'lum_max': None, 'w_mean': None, 'w_std': None, 'dm_igm_slope': None, 'dm_host': None, 'execute': True, 'par_set': 0, 'run': 0} def gen_runs(self): runs = [] for i in range(10): r = self.gen_run() r['run_number'] = i + 1 r['execute'] = True r['par_set'] = i % 4 + 1 if i == 9: # Holder for best values r['execute'] = False runs.append(r) df = pd.DataFrame(runs) df.set_index('run', inplace=True) return df def load(self): df = pd.read_csv(self.filename) df.run = df.run.astype(int) df.par_set = df.par_set.astype(int) df = df.loc[:, ~df.columns.str.contains('^Unnamed')] return df def save(self, df=None): if df is None: df = self.df df.to_csv(self.filename) if __name__ == '__main__': print('Commencing') runs = RunOverview(load_csv=True) mc = MonteCarlo(pop_size=POP_SIZE) for i, run in runs.df.iterrows(): run = runs.df.iloc[i] print('='*50) print(f'On Run {run.run} with par_set {run.par_set}') print('='*50) print(run) if run.run not in RUNS: continue # Generate parameter sets if GENERATE: if run.par_set == 1: mc.gen_par_set_1(lum_min=run.lum_min, lum_max=run.lum_max, w_mean=run.w_mean, w_std=run.w_std, dm_igm_slope=run.dm_igm_slope, dm_host=run.dm_host, run=run.run) if run.par_set == 2: mc.gen_par_set_2(alpha=run.alpha, si=run.si, w_mean=run.w_mean, w_std=run.w_std, dm_igm_slope=run.dm_igm_slope, dm_host=run.dm_host, run=run.run) if run.par_set == 3: mc.gen_par_set_3(alpha=run.alpha, si=run.si, li=run.li, lum_min=run.lum_min, lum_max=run.lum_max, dm_igm_slope=run.dm_igm_slope, dm_host=run.dm_host, run=run.run) if run.par_set == 4: mc.gen_par_set_4(alpha=run.alpha, si=run.si, li=run.li, lum_min=run.lum_min, lum_max=run.lum_max, w_mean=run.w_mean, w_std=run.w_std, run=run.run) # Determine the goodness of fit gf = GoodnessOfFit() if CALC_GOFS: gf.calc_gofs(run.run) # Find global maximums gf = GoodnessOfFit() gms = gf.calc_global_max(run.run) print('\n') print(f' Best fits from run {run.run}-> {gms}') print('\n') # Adapt the input for future runs for j in range(i+1, len(runs.df)): for par in gms: runs.df.at[j, par] = gms[par][0] runs.save() Plot()
mit
pv/scikit-learn
sklearn/cluster/mean_shift_.py
106
14056
"""Mean shift clustering algorithm. Mean shift clustering aims to discover *blobs* in a smooth density of samples. It is a centroid based algorithm, which works by updating candidates for centroids to be the mean of the points within a given region. These candidates are then filtered in a post-processing stage to eliminate near-duplicates to form the final set of centroids. Seeding is performed using a binning technique for scalability. """ # Authors: Conrad Lee <[email protected]> # Alexandre Gramfort <[email protected]> # Gael Varoquaux <[email protected]> import numpy as np import warnings from collections import defaultdict from ..externals import six from ..utils.validation import check_is_fitted from ..utils import extmath, check_random_state, gen_batches, check_array from ..base import BaseEstimator, ClusterMixin from ..neighbors import NearestNeighbors from ..metrics.pairwise import pairwise_distances_argmin def estimate_bandwidth(X, quantile=0.3, n_samples=None, random_state=0): """Estimate the bandwidth to use with the mean-shift algorithm. That this function takes time at least quadratic in n_samples. For large datasets, it's wise to set that parameter to a small value. Parameters ---------- X : array-like, shape=[n_samples, n_features] Input points. quantile : float, default 0.3 should be between [0, 1] 0.5 means that the median of all pairwise distances is used. n_samples : int, optional The number of samples to use. If not given, all samples are used. random_state : int or RandomState Pseudo-random number generator state used for random sampling. Returns ------- bandwidth : float The bandwidth parameter. """ random_state = check_random_state(random_state) if n_samples is not None: idx = random_state.permutation(X.shape[0])[:n_samples] X = X[idx] nbrs = NearestNeighbors(n_neighbors=int(X.shape[0] * quantile)) nbrs.fit(X) bandwidth = 0. for batch in gen_batches(len(X), 500): d, _ = nbrs.kneighbors(X[batch, :], return_distance=True) bandwidth += np.max(d, axis=1).sum() return bandwidth / X.shape[0] def mean_shift(X, bandwidth=None, seeds=None, bin_seeding=False, min_bin_freq=1, cluster_all=True, max_iter=300, max_iterations=None): """Perform mean shift clustering of data using a flat kernel. Read more in the :ref:`User Guide <mean_shift>`. Parameters ---------- X : array-like, shape=[n_samples, n_features] Input data. bandwidth : float, optional Kernel bandwidth. If bandwidth is not given, it is determined using a heuristic based on the median of all pairwise distances. This will take quadratic time in the number of samples. The sklearn.cluster.estimate_bandwidth function can be used to do this more efficiently. seeds : array-like, shape=[n_seeds, n_features] or None Point used as initial kernel locations. If None and bin_seeding=False, each data point is used as a seed. If None and bin_seeding=True, see bin_seeding. bin_seeding : boolean, default=False If true, initial kernel locations are not locations of all points, but rather the location of the discretized version of points, where points are binned onto a grid whose coarseness corresponds to the bandwidth. Setting this option to True will speed up the algorithm because fewer seeds will be initialized. Ignored if seeds argument is not None. min_bin_freq : int, default=1 To speed up the algorithm, accept only those bins with at least min_bin_freq points as seeds. cluster_all : boolean, default True If true, then all points are clustered, even those orphans that are not within any kernel. Orphans are assigned to the nearest kernel. If false, then orphans are given cluster label -1. max_iter : int, default 300 Maximum number of iterations, per seed point before the clustering operation terminates (for that seed point), if has not converged yet. Returns ------- cluster_centers : array, shape=[n_clusters, n_features] Coordinates of cluster centers. labels : array, shape=[n_samples] Cluster labels for each point. Notes ----- See examples/cluster/plot_meanshift.py for an example. """ # FIXME To be removed in 0.18 if max_iterations is not None: warnings.warn("The `max_iterations` parameter has been renamed to " "`max_iter` from version 0.16. The `max_iterations` " "parameter will be removed in 0.18", DeprecationWarning) max_iter = max_iterations if bandwidth is None: bandwidth = estimate_bandwidth(X) elif bandwidth <= 0: raise ValueError("bandwidth needs to be greater than zero or None, got %f" % bandwidth) if seeds is None: if bin_seeding: seeds = get_bin_seeds(X, bandwidth, min_bin_freq) else: seeds = X n_samples, n_features = X.shape stop_thresh = 1e-3 * bandwidth # when mean has converged center_intensity_dict = {} nbrs = NearestNeighbors(radius=bandwidth).fit(X) # For each seed, climb gradient until convergence or max_iter for my_mean in seeds: completed_iterations = 0 while True: # Find mean of points within bandwidth i_nbrs = nbrs.radius_neighbors([my_mean], bandwidth, return_distance=False)[0] points_within = X[i_nbrs] if len(points_within) == 0: break # Depending on seeding strategy this condition may occur my_old_mean = my_mean # save the old mean my_mean = np.mean(points_within, axis=0) # If converged or at max_iter, adds the cluster if (extmath.norm(my_mean - my_old_mean) < stop_thresh or completed_iterations == max_iter): center_intensity_dict[tuple(my_mean)] = len(points_within) break completed_iterations += 1 if not center_intensity_dict: # nothing near seeds raise ValueError("No point was within bandwidth=%f of any seed." " Try a different seeding strategy or increase the bandwidth." % bandwidth) # POST PROCESSING: remove near duplicate points # If the distance between two kernels is less than the bandwidth, # then we have to remove one because it is a duplicate. Remove the # one with fewer points. sorted_by_intensity = sorted(center_intensity_dict.items(), key=lambda tup: tup[1], reverse=True) sorted_centers = np.array([tup[0] for tup in sorted_by_intensity]) unique = np.ones(len(sorted_centers), dtype=np.bool) nbrs = NearestNeighbors(radius=bandwidth).fit(sorted_centers) for i, center in enumerate(sorted_centers): if unique[i]: neighbor_idxs = nbrs.radius_neighbors([center], return_distance=False)[0] unique[neighbor_idxs] = 0 unique[i] = 1 # leave the current point as unique cluster_centers = sorted_centers[unique] # ASSIGN LABELS: a point belongs to the cluster that it is closest to nbrs = NearestNeighbors(n_neighbors=1).fit(cluster_centers) labels = np.zeros(n_samples, dtype=np.int) distances, idxs = nbrs.kneighbors(X) if cluster_all: labels = idxs.flatten() else: labels.fill(-1) bool_selector = distances.flatten() <= bandwidth labels[bool_selector] = idxs.flatten()[bool_selector] return cluster_centers, labels def get_bin_seeds(X, bin_size, min_bin_freq=1): """Finds seeds for mean_shift. Finds seeds by first binning data onto a grid whose lines are spaced bin_size apart, and then choosing those bins with at least min_bin_freq points. Parameters ---------- X : array-like, shape=[n_samples, n_features] Input points, the same points that will be used in mean_shift. bin_size : float Controls the coarseness of the binning. Smaller values lead to more seeding (which is computationally more expensive). If you're not sure how to set this, set it to the value of the bandwidth used in clustering.mean_shift. min_bin_freq : integer, optional Only bins with at least min_bin_freq will be selected as seeds. Raising this value decreases the number of seeds found, which makes mean_shift computationally cheaper. Returns ------- bin_seeds : array-like, shape=[n_samples, n_features] Points used as initial kernel positions in clustering.mean_shift. """ # Bin points bin_sizes = defaultdict(int) for point in X: binned_point = np.round(point / bin_size) bin_sizes[tuple(binned_point)] += 1 # Select only those bins as seeds which have enough members bin_seeds = np.array([point for point, freq in six.iteritems(bin_sizes) if freq >= min_bin_freq], dtype=np.float32) if len(bin_seeds) == len(X): warnings.warn("Binning data failed with provided bin_size=%f, using data" " points as seeds." % bin_size) return X bin_seeds = bin_seeds * bin_size return bin_seeds class MeanShift(BaseEstimator, ClusterMixin): """Mean shift clustering using a flat kernel. Mean shift clustering aims to discover "blobs" in a smooth density of samples. It is a centroid-based algorithm, which works by updating candidates for centroids to be the mean of the points within a given region. These candidates are then filtered in a post-processing stage to eliminate near-duplicates to form the final set of centroids. Seeding is performed using a binning technique for scalability. Read more in the :ref:`User Guide <mean_shift>`. Parameters ---------- bandwidth : float, optional Bandwidth used in the RBF kernel. If not given, the bandwidth is estimated using sklearn.cluster.estimate_bandwidth; see the documentation for that function for hints on scalability (see also the Notes, below). seeds : array, shape=[n_samples, n_features], optional Seeds used to initialize kernels. If not set, the seeds are calculated by clustering.get_bin_seeds with bandwidth as the grid size and default values for other parameters. bin_seeding : boolean, optional If true, initial kernel locations are not locations of all points, but rather the location of the discretized version of points, where points are binned onto a grid whose coarseness corresponds to the bandwidth. Setting this option to True will speed up the algorithm because fewer seeds will be initialized. default value: False Ignored if seeds argument is not None. min_bin_freq : int, optional To speed up the algorithm, accept only those bins with at least min_bin_freq points as seeds. If not defined, set to 1. cluster_all : boolean, default True If true, then all points are clustered, even those orphans that are not within any kernel. Orphans are assigned to the nearest kernel. If false, then orphans are given cluster label -1. Attributes ---------- cluster_centers_ : array, [n_clusters, n_features] Coordinates of cluster centers. labels_ : Labels of each point. Notes ----- Scalability: Because this implementation uses a flat kernel and a Ball Tree to look up members of each kernel, the complexity will is to O(T*n*log(n)) in lower dimensions, with n the number of samples and T the number of points. In higher dimensions the complexity will tend towards O(T*n^2). Scalability can be boosted by using fewer seeds, for example by using a higher value of min_bin_freq in the get_bin_seeds function. Note that the estimate_bandwidth function is much less scalable than the mean shift algorithm and will be the bottleneck if it is used. References ---------- Dorin Comaniciu and Peter Meer, "Mean Shift: A robust approach toward feature space analysis". IEEE Transactions on Pattern Analysis and Machine Intelligence. 2002. pp. 603-619. """ def __init__(self, bandwidth=None, seeds=None, bin_seeding=False, min_bin_freq=1, cluster_all=True): self.bandwidth = bandwidth self.seeds = seeds self.bin_seeding = bin_seeding self.cluster_all = cluster_all self.min_bin_freq = min_bin_freq def fit(self, X, y=None): """Perform clustering. Parameters ----------- X : array-like, shape=[n_samples, n_features] Samples to cluster. """ X = check_array(X) self.cluster_centers_, self.labels_ = \ mean_shift(X, bandwidth=self.bandwidth, seeds=self.seeds, min_bin_freq=self.min_bin_freq, bin_seeding=self.bin_seeding, cluster_all=self.cluster_all) return self def predict(self, X): """Predict the closest cluster each sample in X belongs to. Parameters ---------- X : {array-like, sparse matrix}, shape=[n_samples, n_features] New data to predict. Returns ------- labels : array, shape [n_samples,] Index of the cluster each sample belongs to. """ check_is_fitted(self, "cluster_centers_") return pairwise_distances_argmin(X, self.cluster_centers_)
bsd-3-clause
kelseyoo14/Wander
venv_2_7/lib/python2.7/site-packages/pandas/computation/ops.py
9
15234
"""Operator classes for eval. """ import operator as op from functools import partial from datetime import datetime import numpy as np import pandas as pd from pandas.compat import PY3, string_types, text_type import pandas.core.common as com from pandas.core.base import StringMixin from pandas.computation.common import _ensure_decoded, _result_type_many from pandas.computation.scope import _DEFAULT_GLOBALS _reductions = 'sum', 'prod' _unary_math_ops = ('sin', 'cos', 'exp', 'log', 'expm1', 'log1p', 'sqrt', 'sinh', 'cosh', 'tanh', 'arcsin', 'arccos', 'arctan', 'arccosh', 'arcsinh', 'arctanh', 'abs') _binary_math_ops = ('arctan2',) _mathops = _unary_math_ops + _binary_math_ops _LOCAL_TAG = '__pd_eval_local_' class UndefinedVariableError(NameError): """NameError subclass for local variables.""" def __init__(self, name, is_local): if is_local: msg = 'local variable {0!r} is not defined' else: msg = 'name {0!r} is not defined' super(UndefinedVariableError, self).__init__(msg.format(name)) class Term(StringMixin): def __new__(cls, name, env, side=None, encoding=None): klass = Constant if not isinstance(name, string_types) else cls supr_new = super(Term, klass).__new__ return supr_new(klass) def __init__(self, name, env, side=None, encoding=None): self._name = name self.env = env self.side = side tname = text_type(name) self.is_local = (tname.startswith(_LOCAL_TAG) or tname in _DEFAULT_GLOBALS) self._value = self._resolve_name() self.encoding = encoding @property def local_name(self): return self.name.replace(_LOCAL_TAG, '') def __unicode__(self): return com.pprint_thing(self.name) def __call__(self, *args, **kwargs): return self.value def evaluate(self, *args, **kwargs): return self def _resolve_name(self): res = self.env.resolve(self.local_name, is_local=self.is_local) self.update(res) if hasattr(res, 'ndim') and res.ndim > 2: raise NotImplementedError("N-dimensional objects, where N > 2," " are not supported with eval") return res def update(self, value): """ search order for local (i.e., @variable) variables: scope, key_variable [('locals', 'local_name'), ('globals', 'local_name'), ('locals', 'key'), ('globals', 'key')] """ key = self.name # if it's a variable name (otherwise a constant) if isinstance(key, string_types): self.env.swapkey(self.local_name, key, new_value=value) self.value = value @property def isscalar(self): return np.isscalar(self._value) @property def type(self): try: # potentially very slow for large, mixed dtype frames return self._value.values.dtype except AttributeError: try: # ndarray return self._value.dtype except AttributeError: # scalar return type(self._value) return_type = type @property def raw(self): return com.pprint_thing('{0}(name={1!r}, type={2})' ''.format(self.__class__.__name__, self.name, self.type)) @property def is_datetime(self): try: t = self.type.type except AttributeError: t = self.type return issubclass(t, (datetime, np.datetime64)) @property def value(self): return self._value @value.setter def value(self, new_value): self._value = new_value @property def name(self): return self._name @name.setter def name(self, new_name): self._name = new_name @property def ndim(self): return self._value.ndim class Constant(Term): def __init__(self, value, env, side=None, encoding=None): super(Constant, self).__init__(value, env, side=side, encoding=encoding) def _resolve_name(self): return self._name @property def name(self): return self.value _bool_op_map = {'not': '~', 'and': '&', 'or': '|'} class Op(StringMixin): """Hold an operator of arbitrary arity """ def __init__(self, op, operands, *args, **kwargs): self.op = _bool_op_map.get(op, op) self.operands = operands self.encoding = kwargs.get('encoding', None) def __iter__(self): return iter(self.operands) def __unicode__(self): """Print a generic n-ary operator and its operands using infix notation""" # recurse over the operands parened = ('({0})'.format(com.pprint_thing(opr)) for opr in self.operands) return com.pprint_thing(' {0} '.format(self.op).join(parened)) @property def return_type(self): # clobber types to bool if the op is a boolean operator if self.op in (_cmp_ops_syms + _bool_ops_syms): return np.bool_ return _result_type_many(*(term.type for term in com.flatten(self))) @property def has_invalid_return_type(self): types = self.operand_types obj_dtype_set = frozenset([np.dtype('object')]) return self.return_type == object and types - obj_dtype_set @property def operand_types(self): return frozenset(term.type for term in com.flatten(self)) @property def isscalar(self): return all(operand.isscalar for operand in self.operands) @property def is_datetime(self): try: t = self.return_type.type except AttributeError: t = self.return_type return issubclass(t, (datetime, np.datetime64)) def _in(x, y): """Compute the vectorized membership of ``x in y`` if possible, otherwise use Python. """ try: return x.isin(y) except AttributeError: if com.is_list_like(x): try: return y.isin(x) except AttributeError: pass return x in y def _not_in(x, y): """Compute the vectorized membership of ``x not in y`` if possible, otherwise use Python. """ try: return ~x.isin(y) except AttributeError: if com.is_list_like(x): try: return ~y.isin(x) except AttributeError: pass return x not in y _cmp_ops_syms = '>', '<', '>=', '<=', '==', '!=', 'in', 'not in' _cmp_ops_funcs = op.gt, op.lt, op.ge, op.le, op.eq, op.ne, _in, _not_in _cmp_ops_dict = dict(zip(_cmp_ops_syms, _cmp_ops_funcs)) _bool_ops_syms = '&', '|', 'and', 'or' _bool_ops_funcs = op.and_, op.or_, op.and_, op.or_ _bool_ops_dict = dict(zip(_bool_ops_syms, _bool_ops_funcs)) _arith_ops_syms = '+', '-', '*', '/', '**', '//', '%' _arith_ops_funcs = (op.add, op.sub, op.mul, op.truediv if PY3 else op.div, op.pow, op.floordiv, op.mod) _arith_ops_dict = dict(zip(_arith_ops_syms, _arith_ops_funcs)) _special_case_arith_ops_syms = '**', '//', '%' _special_case_arith_ops_funcs = op.pow, op.floordiv, op.mod _special_case_arith_ops_dict = dict(zip(_special_case_arith_ops_syms, _special_case_arith_ops_funcs)) _binary_ops_dict = {} for d in (_cmp_ops_dict, _bool_ops_dict, _arith_ops_dict): _binary_ops_dict.update(d) def _cast_inplace(terms, dtype): """Cast an expression inplace. Parameters ---------- terms : Op The expression that should cast. dtype : str or numpy.dtype The dtype to cast to. """ dt = np.dtype(dtype) for term in terms: try: new_value = term.value.astype(dt) except AttributeError: new_value = dt.type(term.value) term.update(new_value) def is_term(obj): return isinstance(obj, Term) class BinOp(Op): """Hold a binary operator and its operands Parameters ---------- op : str left : Term or Op right : Term or Op """ def __init__(self, op, lhs, rhs, **kwargs): super(BinOp, self).__init__(op, (lhs, rhs)) self.lhs = lhs self.rhs = rhs self._disallow_scalar_only_bool_ops() self.convert_values() try: self.func = _binary_ops_dict[op] except KeyError: # has to be made a list for python3 keys = list(_binary_ops_dict.keys()) raise ValueError('Invalid binary operator {0!r}, valid' ' operators are {1}'.format(op, keys)) def __call__(self, env): """Recursively evaluate an expression in Python space. Parameters ---------- env : Scope Returns ------- object The result of an evaluated expression. """ # handle truediv if self.op == '/' and env.scope['truediv']: self.func = op.truediv # recurse over the left/right nodes left = self.lhs(env) right = self.rhs(env) return self.func(left, right) def evaluate(self, env, engine, parser, term_type, eval_in_python): """Evaluate a binary operation *before* being passed to the engine. Parameters ---------- env : Scope engine : str parser : str term_type : type eval_in_python : list Returns ------- term_type The "pre-evaluated" expression as an instance of ``term_type`` """ if engine == 'python': res = self(env) else: # recurse over the left/right nodes left = self.lhs.evaluate(env, engine=engine, parser=parser, term_type=term_type, eval_in_python=eval_in_python) right = self.rhs.evaluate(env, engine=engine, parser=parser, term_type=term_type, eval_in_python=eval_in_python) # base cases if self.op in eval_in_python: res = self.func(left.value, right.value) else: res = pd.eval(self, local_dict=env, engine=engine, parser=parser) name = env.add_tmp(res) return term_type(name, env=env) def convert_values(self): """Convert datetimes to a comparable value in an expression. """ def stringify(value): if self.encoding is not None: encoder = partial(com.pprint_thing_encoded, encoding=self.encoding) else: encoder = com.pprint_thing return encoder(value) lhs, rhs = self.lhs, self.rhs if is_term(lhs) and lhs.is_datetime and is_term(rhs) and rhs.isscalar: v = rhs.value if isinstance(v, (int, float)): v = stringify(v) v = pd.Timestamp(_ensure_decoded(v)) if v.tz is not None: v = v.tz_convert('UTC') self.rhs.update(v) if is_term(rhs) and rhs.is_datetime and is_term(lhs) and lhs.isscalar: v = lhs.value if isinstance(v, (int, float)): v = stringify(v) v = pd.Timestamp(_ensure_decoded(v)) if v.tz is not None: v = v.tz_convert('UTC') self.lhs.update(v) def _disallow_scalar_only_bool_ops(self): if ((self.lhs.isscalar or self.rhs.isscalar) and self.op in _bool_ops_dict and (not (issubclass(self.rhs.return_type, (bool, np.bool_)) and issubclass(self.lhs.return_type, (bool, np.bool_))))): raise NotImplementedError("cannot evaluate scalar only bool ops") def isnumeric(dtype): return issubclass(np.dtype(dtype).type, np.number) class Div(BinOp): """Div operator to special case casting. Parameters ---------- lhs, rhs : Term or Op The Terms or Ops in the ``/`` expression. truediv : bool Whether or not to use true division. With Python 3 this happens regardless of the value of ``truediv``. """ def __init__(self, lhs, rhs, truediv, *args, **kwargs): super(Div, self).__init__('/', lhs, rhs, *args, **kwargs) if not isnumeric(lhs.return_type) or not isnumeric(rhs.return_type): raise TypeError("unsupported operand type(s) for {0}:" " '{1}' and '{2}'".format(self.op, lhs.return_type, rhs.return_type)) if truediv or PY3: _cast_inplace(com.flatten(self), np.float_) _unary_ops_syms = '+', '-', '~', 'not' _unary_ops_funcs = op.pos, op.neg, op.invert, op.invert _unary_ops_dict = dict(zip(_unary_ops_syms, _unary_ops_funcs)) class UnaryOp(Op): """Hold a unary operator and its operands Parameters ---------- op : str The token used to represent the operator. operand : Term or Op The Term or Op operand to the operator. Raises ------ ValueError * If no function associated with the passed operator token is found. """ def __init__(self, op, operand): super(UnaryOp, self).__init__(op, (operand,)) self.operand = operand try: self.func = _unary_ops_dict[op] except KeyError: raise ValueError('Invalid unary operator {0!r}, valid operators ' 'are {1}'.format(op, _unary_ops_syms)) def __call__(self, env): operand = self.operand(env) return self.func(operand) def __unicode__(self): return com.pprint_thing('{0}({1})'.format(self.op, self.operand)) @property def return_type(self): operand = self.operand if operand.return_type == np.dtype('bool'): return np.dtype('bool') if (isinstance(operand, Op) and (operand.op in _cmp_ops_dict or operand.op in _bool_ops_dict)): return np.dtype('bool') return np.dtype('int') class MathCall(Op): def __init__(self, func, args): super(MathCall, self).__init__(func.name, args) self.func = func def __call__(self, env): operands = [op(env) for op in self.operands] return self.func.func(*operands) def __unicode__(self): operands = map(str, self.operands) return com.pprint_thing('{0}({1})'.format(self.op, ','.join(operands))) class FuncNode(object): def __init__(self, name): if name not in _mathops: raise ValueError("\"{0}\" is not a supported function".format(name)) self.name = name self.func = getattr(np, name) def __call__(self, *args): return MathCall(self, args)
artistic-2.0
RPGOne/scikit-learn
examples/linear_model/plot_bayesian_ridge.py
50
2733
""" ========================= Bayesian Ridge Regression ========================= Computes a Bayesian Ridge Regression on a synthetic dataset. See :ref:`bayesian_ridge_regression` for more information on the regressor. Compared to the OLS (ordinary least squares) estimator, the coefficient weights are slightly shifted toward zeros, which stabilises them. As the prior on the weights is a Gaussian prior, the histogram of the estimated weights is Gaussian. The estimation of the model is done by iteratively maximizing the marginal log-likelihood of the observations. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from scipy import stats from sklearn.linear_model import BayesianRidge, LinearRegression ############################################################################### # Generating simulated data with Gaussian weights np.random.seed(0) n_samples, n_features = 100, 100 X = np.random.randn(n_samples, n_features) # Create Gaussian data # Create weights with a precision lambda_ of 4. lambda_ = 4. w = np.zeros(n_features) # Only keep 10 weights of interest relevant_features = np.random.randint(0, n_features, 10) for i in relevant_features: w[i] = stats.norm.rvs(loc=0, scale=1. / np.sqrt(lambda_)) # Create noise with a precision alpha of 50. alpha_ = 50. noise = stats.norm.rvs(loc=0, scale=1. / np.sqrt(alpha_), size=n_samples) # Create the target y = np.dot(X, w) + noise ############################################################################### # Fit the Bayesian Ridge Regression and an OLS for comparison clf = BayesianRidge(compute_score=True) clf.fit(X, y) ols = LinearRegression() ols.fit(X, y) ############################################################################### # Plot true weights, estimated weights and histogram of the weights lw = 2 plt.figure(figsize=(6, 5)) plt.title("Weights of the model") plt.plot(clf.coef_, color='lightgreen', linewidth=lw, label="Bayesian Ridge estimate") plt.plot(w, color='gold', linewidth=lw, label="Ground truth") plt.plot(ols.coef_, color='navy', linestyle='--', label="OLS estimate") plt.xlabel("Features") plt.ylabel("Values of the weights") plt.legend(loc="best", prop=dict(size=12)) plt.figure(figsize=(6, 5)) plt.title("Histogram of the weights") plt.hist(clf.coef_, bins=n_features, color='gold', log=True) plt.scatter(clf.coef_[relevant_features], 5 * np.ones(len(relevant_features)), color='navy', label="Relevant features") plt.ylabel("Features") plt.xlabel("Values of the weights") plt.legend(loc="upper left") plt.figure(figsize=(6, 5)) plt.title("Marginal log-likelihood") plt.plot(clf.scores_, color='navy', linewidth=lw) plt.ylabel("Score") plt.xlabel("Iterations") plt.show()
bsd-3-clause
griffincalme/MicroDeconvolution
TestingScripts/RetinexFilter.py
1
2673
#multiscale retinex color restoration? #adapted from https://gist.github.com/shunsukeaihara/4603234 import numpy as np from skimage.io import imread import matplotlib.pyplot as plt #imgArray = imread('/home/griffin/Desktop/MicroDeconvolution/TestingScripts/SamplePics/SK107 1960 B11_2_CD3_IFN G_Set 2_20X_Take 2.jpg') #imgArray = imread(r'/home/griffin/Desktop/Screenshot at 2016-07-25 19:46:26.png') imgArray = imread(r'/home/griffin/Desktop/house.png') print(type(imgArray)) #plt.imshow(imgArray) def retinex(nimg): #rgb array -> splits into three 2d color arrays (one for each of R, G, and B) nimg = nimg.transpose(2, 0, 1).astype(np.uint32) max_intens_green = nimg[1].max() nimg[0] = np.minimum(nimg[0]*(max_intens_green/float(nimg[0].max())),255) nimg[2] = np.minimum(nimg[2]*(max_intens_green/float(nimg[2].max())),255) return nimg.transpose(1, 2, 0).astype(np.uint8) def retinex_adjust(nimg): """ from 'Combining Gray World and Retinex Theory for Automatic White Balance in Digital Photography' """ nimg = nimg.transpose(2, 0, 1).astype(np.uint32) sum_r = np.sum(nimg[0]) sum_r2 = np.sum(nimg[0]**2) max_r = nimg[0].max() max_r2 = max_r**2 sum_g = np.sum(nimg[1]) max_g = nimg[1].max() coefficient = np.linalg.solve(np.array([[sum_r2,sum_r],[max_r2,max_r]]), np.array([sum_g,max_g])) nimg[0] = np.minimum((nimg[0]**2)*coefficient[0] + nimg[0]*coefficient[1],255) sum_b = np.sum(nimg[1]) sum_b2 = np.sum(nimg[1]**2) max_b = nimg[1].max() max_b2 = max_r**2 coefficient = np.linalg.solve(np.array([[sum_b2,sum_b],[max_b2,max_b]]), np.array([sum_g,max_g])) nimg[1] = np.minimum((nimg[1]**2)*coefficient[0] + nimg[1]*coefficient[1],255) return nimg.transpose(1, 2, 0).astype(np.uint8) retinexImage = retinex(imgArray) retinexAdjustedImage = retinex_adjust(retinexImage) r_adj_w_out = retinex_adjust(imgArray) """PLOTTING IMAGES""" #Plot images fig, axes = plt.subplots(2, 2, figsize=(12, 11)) #ax0 = axes.ravel() ax0, ax1, ax2, ax3 = axes.ravel() ax0.imshow(imgArray, cmap=plt.cm.gray, interpolation='nearest') ax0.set_title("Original") ax1.imshow(retinexImage, cmap=plt.cm.gray, interpolation='nearest') ax1.set_title("retinex image") ax2.imshow(retinexAdjustedImage, cmap=plt.cm.gray) ax2.set_title("retinex image adjusted") ax3.imshow(r_adj_w_out, cmap=plt.cm.gray) ax3.set_title("retinex adjust without retinex function") for ax in axes.ravel(): ax.axis('off') fig.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=None, hspace=None) plt.show()
apache-2.0
farizrahman4u/keras-contrib
examples/conll2000_chunking_crf.py
2
3642
"""Train CRF and BiLSTM-CRF on CONLL2000 chunking data, similar to https://arxiv.org/pdf/1508.01991v1.pdf. """ from __future__ import absolute_import from __future__ import print_function from __future__ import division import numpy from collections import Counter from keras.models import Sequential from keras.layers import Embedding, Bidirectional, LSTM from keras_contrib.layers import CRF from keras_contrib.losses import crf_loss from keras_contrib.metrics import crf_viterbi_accuracy from keras_contrib.datasets import conll2000 EPOCHS = 10 EMBED_DIM = 200 BiRNN_UNITS = 200 def classification_report(y_true, y_pred, labels): '''Similar to the one in sklearn.metrics, reports per classs recall, precision and F1 score''' y_true = numpy.asarray(y_true).ravel() y_pred = numpy.asarray(y_pred).ravel() corrects = Counter(yt for yt, yp in zip(y_true, y_pred) if yt == yp) y_true_counts = Counter(y_true) y_pred_counts = Counter(y_pred) report = ((lab, # label corrects[i] / max(1, y_true_counts[i]), # recall corrects[i] / max(1, y_pred_counts[i]), # precision y_true_counts[i] # support ) for i, lab in enumerate(labels)) report = [(l, r, p, 2 * r * p / max(1e-9, r + p), s) for l, r, p, s in report] print('{:<15}{:>10}{:>10}{:>10}{:>10}\n'.format('', 'recall', 'precision', 'f1-score', 'support')) formatter = '{:<15}{:>10.2f}{:>10.2f}{:>10.2f}{:>10d}'.format for r in report: print(formatter(*r)) print('') report2 = list(zip(*[(r * s, p * s, f1 * s) for l, r, p, f1, s in report])) N = len(y_true) print(formatter('avg / total', sum(report2[0]) / N, sum(report2[1]) / N, sum(report2[2]) / N, N) + '\n') # ------ # Data # ----- # conll200 has two different targets, here will only use # IBO like chunking as an example train, test, voc = conll2000.load_data() (train_x, _, train_y) = train (test_x, _, test_y) = test (vocab, _, class_labels) = voc # -------------- # 1. Regular CRF # -------------- print('==== training CRF ====') model = Sequential() model.add(Embedding(len(vocab), EMBED_DIM, mask_zero=True)) # Random embedding crf = CRF(len(class_labels), sparse_target=True) model.add(crf) model.summary() # The default `crf_loss` for `learn_mode='join'` is negative log likelihood. model.compile('adam', loss=crf_loss, metrics=[crf_viterbi_accuracy]) model.fit(train_x, train_y, epochs=EPOCHS, validation_data=[test_x, test_y]) test_y_pred = model.predict(test_x).argmax(-1)[test_x > 0] test_y_true = test_y[test_x > 0] print('\n---- Result of CRF ----\n') classification_report(test_y_true, test_y_pred, class_labels) # ------------- # 2. BiLSTM-CRF # ------------- print('==== training BiLSTM-CRF ====') model = Sequential() model.add(Embedding(len(vocab), EMBED_DIM, mask_zero=True)) # Random embedding model.add(Bidirectional(LSTM(BiRNN_UNITS // 2, return_sequences=True))) crf = CRF(len(class_labels), sparse_target=True) model.add(crf) model.summary() model.compile('adam', loss=crf_loss, metrics=[crf_viterbi_accuracy]) model.fit(train_x, train_y, epochs=EPOCHS, validation_data=[test_x, test_y]) test_y_pred = model.predict(test_x).argmax(-1)[test_x > 0] test_y_true = test_y[test_x > 0] print('\n---- Result of BiLSTM-CRF ----\n') classification_report(test_y_true, test_y_pred, class_labels)
mit
abinashpanda/pgmpy
docs/sphinxext/numpy_ext/docscrape_sphinx.py
408
8061
import re import inspect import textwrap import pydoc from .docscrape import NumpyDocString from .docscrape import FunctionDoc from .docscrape import ClassDoc class SphinxDocString(NumpyDocString): def __init__(self, docstring, config=None): config = {} if config is None else config self.use_plots = config.get('use_plots', False) NumpyDocString.__init__(self, docstring, config=config) # string conversion routines def _str_header(self, name, symbol='`'): return ['.. rubric:: ' + name, ''] def _str_field_list(self, name): return [':' + name + ':'] def _str_indent(self, doc, indent=4): out = [] for line in doc: out += [' ' * indent + line] return out def _str_signature(self): return [''] if self['Signature']: return ['``%s``' % self['Signature']] + [''] else: return [''] def _str_summary(self): return self['Summary'] + [''] def _str_extended_summary(self): return self['Extended Summary'] + [''] def _str_param_list(self, name): out = [] if self[name]: out += self._str_field_list(name) out += [''] for param, param_type, desc in self[name]: out += self._str_indent(['**%s** : %s' % (param.strip(), param_type)]) out += [''] out += self._str_indent(desc, 8) out += [''] return out @property def _obj(self): if hasattr(self, '_cls'): return self._cls elif hasattr(self, '_f'): return self._f return None def _str_member_list(self, name): """ Generate a member listing, autosummary:: table where possible, and a table where not. """ out = [] if self[name]: out += ['.. rubric:: %s' % name, ''] prefix = getattr(self, '_name', '') if prefix: prefix = '~%s.' % prefix autosum = [] others = [] for param, param_type, desc in self[name]: param = param.strip() if not self._obj or hasattr(self._obj, param): autosum += [" %s%s" % (prefix, param)] else: others.append((param, param_type, desc)) if autosum: # GAEL: Toctree commented out below because it creates # hundreds of sphinx warnings # out += ['.. autosummary::', ' :toctree:', ''] out += ['.. autosummary::', ''] out += autosum if others: maxlen_0 = max([len(x[0]) for x in others]) maxlen_1 = max([len(x[1]) for x in others]) hdr = "=" * maxlen_0 + " " + "=" * maxlen_1 + " " + "=" * 10 fmt = '%%%ds %%%ds ' % (maxlen_0, maxlen_1) n_indent = maxlen_0 + maxlen_1 + 4 out += [hdr] for param, param_type, desc in others: out += [fmt % (param.strip(), param_type)] out += self._str_indent(desc, n_indent) out += [hdr] out += [''] return out def _str_section(self, name): out = [] if self[name]: out += self._str_header(name) out += [''] content = textwrap.dedent("\n".join(self[name])).split("\n") out += content out += [''] return out def _str_see_also(self, func_role): out = [] if self['See Also']: see_also = super(SphinxDocString, self)._str_see_also(func_role) out = ['.. seealso::', ''] out += self._str_indent(see_also[2:]) return out def _str_warnings(self): out = [] if self['Warnings']: out = ['.. warning::', ''] out += self._str_indent(self['Warnings']) return out def _str_index(self): idx = self['index'] out = [] if len(idx) == 0: return out out += ['.. index:: %s' % idx.get('default', '')] for section, references in idx.iteritems(): if section == 'default': continue elif section == 'refguide': out += [' single: %s' % (', '.join(references))] else: out += [' %s: %s' % (section, ','.join(references))] return out def _str_references(self): out = [] if self['References']: out += self._str_header('References') if isinstance(self['References'], str): self['References'] = [self['References']] out.extend(self['References']) out += [''] # Latex collects all references to a separate bibliography, # so we need to insert links to it import sphinx # local import to avoid test dependency if sphinx.__version__ >= "0.6": out += ['.. only:: latex', ''] else: out += ['.. latexonly::', ''] items = [] for line in self['References']: m = re.match(r'.. \[([a-z0-9._-]+)\]', line, re.I) if m: items.append(m.group(1)) out += [' ' + ", ".join(["[%s]_" % item for item in items]), ''] return out def _str_examples(self): examples_str = "\n".join(self['Examples']) if (self.use_plots and 'import matplotlib' in examples_str and 'plot::' not in examples_str): out = [] out += self._str_header('Examples') out += ['.. plot::', ''] out += self._str_indent(self['Examples']) out += [''] return out else: return self._str_section('Examples') def __str__(self, indent=0, func_role="obj"): out = [] out += self._str_signature() out += self._str_index() + [''] out += self._str_summary() out += self._str_extended_summary() for param_list in ('Parameters', 'Returns', 'Raises', 'Attributes'): out += self._str_param_list(param_list) out += self._str_warnings() out += self._str_see_also(func_role) out += self._str_section('Notes') out += self._str_references() out += self._str_examples() for param_list in ('Methods',): out += self._str_member_list(param_list) out = self._str_indent(out, indent) return '\n'.join(out) class SphinxFunctionDoc(SphinxDocString, FunctionDoc): def __init__(self, obj, doc=None, config={}): self.use_plots = config.get('use_plots', False) FunctionDoc.__init__(self, obj, doc=doc, config=config) class SphinxClassDoc(SphinxDocString, ClassDoc): def __init__(self, obj, doc=None, func_doc=None, config={}): self.use_plots = config.get('use_plots', False) ClassDoc.__init__(self, obj, doc=doc, func_doc=None, config=config) class SphinxObjDoc(SphinxDocString): def __init__(self, obj, doc=None, config=None): self._f = obj SphinxDocString.__init__(self, doc, config=config) def get_doc_object(obj, what=None, doc=None, config={}): if what is None: if inspect.isclass(obj): what = 'class' elif inspect.ismodule(obj): what = 'module' elif callable(obj): what = 'function' else: what = 'object' if what == 'class': return SphinxClassDoc(obj, func_doc=SphinxFunctionDoc, doc=doc, config=config) elif what in ('function', 'method'): return SphinxFunctionDoc(obj, doc=doc, config=config) else: if doc is None: doc = pydoc.getdoc(obj) return SphinxObjDoc(obj, doc, config=config)
mit
edublancas/python-ds-tools
examples/pipeline/basic/.ipynb_checkpoints/pipeline-checkpoint.py
2
4339
# This example shows the most basic usage of the `dstools.pipeline` module. # # Note: run this using `ipython` or in a Jupyter notebook (it won't run using `python`). # + from pathlib import Path import tempfile import pandas as pd from IPython.display import Image, display from dstools.pipeline import DAG from dstools.pipeline.tasks import PythonCallable from dstools.pipeline.products import File from dstools.pipeline import tasks # - # A `DAG` is a workflow representation, it is a collection of `Tasks` that are executed in a given order, each task is associated with a `Product`, which is a persistent change in a system (i.e. a table in a remote database or a file in the local filesystem), a task can products from other tasks as inputs, these are known as upstream dependencies, finally, a task can have extra parameters, but it is recommended to keep these as simple as possible. # ## Building a simple DAG dag = DAG(name='my pipeline') # Let's now build the first tasks, they will just download some data, this pipeline is entirely declared in a single file to simplify things, a real pipeline will likely be splitted among several files. # # Tasks can be a lot of things (bash scripts, SQL scripts, etc), for this example they will be Python functions. # + # these function pull the data and save it, the product # parameter is required in every Task def get_red_wine_data(product): """Get red wine data """ df = pd.read_csv('http://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-red.csv', sep=';', index_col=False) # producg is a File type so you have to cast it to a str df.to_csv(str(product)) def get_white_wine_data(product): """Get white wine data """ df = pd.read_csv('http://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-white.csv', sep=';', index_col=False) df.to_csv(str(product)) # if the task has any dependencies, an upstream parameter is required def concat_data(upstream, product): """Concatenate red and white wine data """ red = pd.read_csv(str(upstream['red'])) white = pd.read_csv(str(upstream['white'])) df = pd.concat([red, white]) df.to_csv(str(product)) # + # create a temporary directory to store data tmp_dir = Path(tempfile.mkdtemp()) # convert our functions to Task objects, note # that the product is a File object, which means # this functions will create a file in the local filesystem red_task = PythonCallable(get_red_wine_data, product=File(tmp_dir / 'red.csv'), dag=dag) white_task = PythonCallable(get_white_wine_data, product=File(tmp_dir / 'white.csv'), dag=dag) concat_task = PythonCallable(concat_data, product=File(tmp_dir / 'all.csv'), dag=dag) # now we declare how our tasks relate to each other red_task >> concat_task white_task >> concat_task # - # we can plot our dag path_to_image = dag.plot(open_image=False) display(Image(filename=path_to_image)) # build the dag (execute all the tasks) dag.build() # Each time the DAG is run it will save the current timestamp and the source code of each task, next time we run it it will only run the necessary tasks to get everything up-to-date, there is a simple rule to that: a task will run if its code (or the code from any dependency) has changed since the last time it ran. # if we build it again, nothing will run dag.build() # the plot will show which tasks are up-to-date # in green path_to_image = dag.plot(open_image=False) display(Image(filename=path_to_image)) # status returns a summary of each task status dag.status() # ## Inspecting the `DAG` object # # The DAG object has utilities to debug and use the pipeline. # list all tasks in the dag list(dag) # get a task task = dag['red'] task # task plan returns the source code to be executed along with the input parameters and product task.plan() # avoid hardcoding paths to files by loading them directly # from the DAG, casting a Task to a str, will cause them # to return a valid representation, in this case, our # product is a File, so it will return a path to it df = pd.read_csv(str(dag['red'])) df.head()
mit
Garrett-R/scikit-learn
examples/text/mlcomp_sparse_document_classification.py
292
4498
""" ======================================================== Classification of text documents: using a MLComp dataset ======================================================== This is an example showing how the scikit-learn can be used to classify documents by topics using a bag-of-words approach. This example uses a scipy.sparse matrix to store the features instead of standard numpy arrays. The dataset used in this example is the 20 newsgroups dataset and should be downloaded from the http://mlcomp.org (free registration required): http://mlcomp.org/datasets/379 Once downloaded unzip the archive somewhere on your filesystem. For instance in:: % mkdir -p ~/data/mlcomp % cd ~/data/mlcomp % unzip /path/to/dataset-379-20news-18828_XXXXX.zip You should get a folder ``~/data/mlcomp/379`` with a file named ``metadata`` and subfolders ``raw``, ``train`` and ``test`` holding the text documents organized by newsgroups. Then set the ``MLCOMP_DATASETS_HOME`` environment variable pointing to the root folder holding the uncompressed archive:: % export MLCOMP_DATASETS_HOME="~/data/mlcomp" Then you are ready to run this example using your favorite python shell:: % ipython examples/mlcomp_sparse_document_classification.py """ # Author: Olivier Grisel <[email protected]> # License: BSD 3 clause from __future__ import print_function from time import time import sys import os import numpy as np import scipy.sparse as sp import pylab as pl from sklearn.datasets import load_mlcomp from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import SGDClassifier from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report from sklearn.naive_bayes import MultinomialNB print(__doc__) if 'MLCOMP_DATASETS_HOME' not in os.environ: print("MLCOMP_DATASETS_HOME not set; please follow the above instructions") sys.exit(0) # Load the training set print("Loading 20 newsgroups training set... ") news_train = load_mlcomp('20news-18828', 'train') print(news_train.DESCR) print("%d documents" % len(news_train.filenames)) print("%d categories" % len(news_train.target_names)) print("Extracting features from the dataset using a sparse vectorizer") t0 = time() vectorizer = TfidfVectorizer(encoding='latin1') X_train = vectorizer.fit_transform((open(f).read() for f in news_train.filenames)) print("done in %fs" % (time() - t0)) print("n_samples: %d, n_features: %d" % X_train.shape) assert sp.issparse(X_train) y_train = news_train.target print("Loading 20 newsgroups test set... ") news_test = load_mlcomp('20news-18828', 'test') t0 = time() print("done in %fs" % (time() - t0)) print("Predicting the labels of the test set...") print("%d documents" % len(news_test.filenames)) print("%d categories" % len(news_test.target_names)) print("Extracting features from the dataset using the same vectorizer") t0 = time() X_test = vectorizer.transform((open(f).read() for f in news_test.filenames)) y_test = news_test.target print("done in %fs" % (time() - t0)) print("n_samples: %d, n_features: %d" % X_test.shape) ############################################################################### # Benchmark classifiers def benchmark(clf_class, params, name): print("parameters:", params) t0 = time() clf = clf_class(**params).fit(X_train, y_train) print("done in %fs" % (time() - t0)) if hasattr(clf, 'coef_'): print("Percentage of non zeros coef: %f" % (np.mean(clf.coef_ != 0) * 100)) print("Predicting the outcomes of the testing set") t0 = time() pred = clf.predict(X_test) print("done in %fs" % (time() - t0)) print("Classification report on test set for classifier:") print(clf) print() print(classification_report(y_test, pred, target_names=news_test.target_names)) cm = confusion_matrix(y_test, pred) print("Confusion matrix:") print(cm) # Show confusion matrix pl.matshow(cm) pl.title('Confusion matrix of the %s classifier' % name) pl.colorbar() print("Testbenching a linear classifier...") parameters = { 'loss': 'hinge', 'penalty': 'l2', 'n_iter': 50, 'alpha': 0.00001, 'fit_intercept': True, } benchmark(SGDClassifier, parameters, 'SGD') print("Testbenching a MultinomialNB classifier...") parameters = {'alpha': 0.01} benchmark(MultinomialNB, parameters, 'MultinomialNB') pl.show()
bsd-3-clause
WillArmentrout/galSims
plotting/VeloPlot.py
1
2033
import pylab as p import math from matplotlib.pyplot import Rectangle # Used to make dummy legend # Open CSV File datafile = open('3DHiiRegions.csv', 'r') csvFile = [] for row in datafile: csvFile.append(row.strip().split(',')) # Save Galactic Radius Info from CSV to new list ldata = list() vdata = list() galRad = list() regNum = list() index = 0 while index < len(csvFile) : galRad.append(float(csvFile[index][0])) index += 1 index=0 while index < len(csvFile) : if galRad[index] > 3 : ldata.append(float(csvFile[index][8])) vdata.append(float(csvFile[index][9])) if (csvFile[index][10] == str(1)) : regNum.append(str('#FF0000')) elif csvFile[index][10] == str(2) : regNum.append(str('black')) elif csvFile[index][10] == str(3) : regNum.append(str('y')) elif csvFile[index][10] == str(4) : regNum.append(str('g')) elif csvFile[index][10] == str(5) : regNum.append(str('b')) elif csvFile[index][10] == str(6) : regNum.append(str('#FF9900')) elif csvFile[index][10] == str(7) : regNum.append(str('#00FF00')) elif csvFile[index][10] == str(8) : regNum.append(str('#00CCFF')) index += 1 p.scatter(ldata,vdata,s=3,facecolor=regNum, lw = 0) p.xlabel('Galactic Longitude (deg)') p.ylabel('VLSR (km/s)') p.title('Longitude-Velocity Plot for Simulated HII Regions') prox1 = Rectangle((0, 0), 1, 1, fc="#FF0000") prox2 = Rectangle((0, 0), 1, 1, fc="black") prox3 = Rectangle((0, 0), 1, 1, fc="y") prox4 = Rectangle((0, 0), 1, 1, fc="g") prox5 = Rectangle((0, 0), 1, 1, fc="b") prox6 = Rectangle((0, 0), 1, 1, fc="#FF9900") prox7 = Rectangle((0, 0), 1, 1, fc="#00FF00") prox8 = Rectangle((0, 0), 1, 1, fc="#00CCFF") p.legend([prox1, prox2,prox3,prox4,prox5,prox6,prox7,prox8], ["Diffuse", "Bar", "3kpc Arm","Ring","Outer Arm", "Outer Scutum-Centaurus Arm","Perseus Arm","Scutum-Centaurus Arm"]) p.savefig('Longitude-Velocity Plot') p.show()
gpl-2.0
381426068/MissionPlanner
Lib/site-packages/numpy/lib/polynomial.py
58
35930
""" Functions to operate on polynomials. """ __all__ = ['poly', 'roots', 'polyint', 'polyder', 'polyadd', 'polysub', 'polymul', 'polydiv', 'polyval', 'poly1d', 'polyfit', 'RankWarning'] import re import warnings import numpy.core.numeric as NX from numpy.core import isscalar, abs, finfo, atleast_1d, hstack from numpy.lib.twodim_base import diag, vander from numpy.lib.function_base import trim_zeros, sort_complex from numpy.lib.type_check import iscomplex, real, imag from numpy.linalg import eigvals, lstsq class RankWarning(UserWarning): """ Issued by `polyfit` when the Vandermonde matrix is rank deficient. For more information, a way to suppress the warning, and an example of `RankWarning` being issued, see `polyfit`. """ pass def poly(seq_of_zeros): """ Find the coefficients of a polynomial with the given sequence of roots. Returns the coefficients of the polynomial whose leading coefficient is one for the given sequence of zeros (multiple roots must be included in the sequence as many times as their multiplicity; see Examples). A square matrix (or array, which will be treated as a matrix) can also be given, in which case the coefficients of the characteristic polynomial of the matrix are returned. Parameters ---------- seq_of_zeros : array_like, shape (N,) or (N, N) A sequence of polynomial roots, or a square array or matrix object. Returns ------- c : ndarray 1D array of polynomial coefficients from highest to lowest degree: ``c[0] * x**(N) + c[1] * x**(N-1) + ... + c[N-1] * x + c[N]`` where c[0] always equals 1. Raises ------ ValueError If input is the wrong shape (the input must be a 1-D or square 2-D array). See Also -------- polyval : Evaluate a polynomial at a point. roots : Return the roots of a polynomial. polyfit : Least squares polynomial fit. poly1d : A one-dimensional polynomial class. Notes ----- Specifying the roots of a polynomial still leaves one degree of freedom, typically represented by an undetermined leading coefficient. [1]_ In the case of this function, that coefficient - the first one in the returned array - is always taken as one. (If for some reason you have one other point, the only automatic way presently to leverage that information is to use ``polyfit``.) The characteristic polynomial, :math:`p_a(t)`, of an `n`-by-`n` matrix **A** is given by :math:`p_a(t) = \\mathrm{det}(t\\, \\mathbf{I} - \\mathbf{A})`, where **I** is the `n`-by-`n` identity matrix. [2]_ References ---------- .. [1] M. Sullivan and M. Sullivan, III, "Algebra and Trignometry, Enhanced With Graphing Utilities," Prentice-Hall, pg. 318, 1996. .. [2] G. Strang, "Linear Algebra and Its Applications, 2nd Edition," Academic Press, pg. 182, 1980. Examples -------- Given a sequence of a polynomial's zeros: >>> np.poly((0, 0, 0)) # Multiple root example array([1, 0, 0, 0]) The line above represents z**3 + 0*z**2 + 0*z + 0. >>> np.poly((-1./2, 0, 1./2)) array([ 1. , 0. , -0.25, 0. ]) The line above represents z**3 - z/4 >>> np.poly((np.random.random(1.)[0], 0, np.random.random(1.)[0])) array([ 1. , -0.77086955, 0.08618131, 0. ]) #random Given a square array object: >>> P = np.array([[0, 1./3], [-1./2, 0]]) >>> np.poly(P) array([ 1. , 0. , 0.16666667]) Or a square matrix object: >>> np.poly(np.matrix(P)) array([ 1. , 0. , 0.16666667]) Note how in all cases the leading coefficient is always 1. """ seq_of_zeros = atleast_1d(seq_of_zeros) sh = seq_of_zeros.shape if len(sh) == 2 and sh[0] == sh[1] and sh[0] != 0: seq_of_zeros = eigvals(seq_of_zeros) elif len(sh) == 1: pass else: raise ValueError, "input must be 1d or square 2d array." if len(seq_of_zeros) == 0: return 1.0 a = [1] for k in range(len(seq_of_zeros)): a = NX.convolve(a, [1, -seq_of_zeros[k]], mode='full') if issubclass(a.dtype.type, NX.complexfloating): # if complex roots are all complex conjugates, the roots are real. roots = NX.asarray(seq_of_zeros, complex) pos_roots = sort_complex(NX.compress(roots.imag > 0, roots)) neg_roots = NX.conjugate(sort_complex( NX.compress(roots.imag < 0,roots))) if (len(pos_roots) == len(neg_roots) and NX.alltrue(neg_roots == pos_roots)): a = a.real.copy() return a def roots(p): """ Return the roots of a polynomial with coefficients given in p. The values in the rank-1 array `p` are coefficients of a polynomial. If the length of `p` is n+1 then the polynomial is described by p[0] * x**n + p[1] * x**(n-1) + ... + p[n-1]*x + p[n] Parameters ---------- p : array_like of shape(M,) Rank-1 array of polynomial co-efficients. Returns ------- out : ndarray An array containing the complex roots of the polynomial. Raises ------ ValueError: When `p` cannot be converted to a rank-1 array. See also -------- poly : Find the coefficients of a polynomial with a given sequence of roots. polyval : Evaluate a polynomial at a point. polyfit : Least squares polynomial fit. poly1d : A one-dimensional polynomial class. Notes ----- The algorithm relies on computing the eigenvalues of the companion matrix [1]_. References ---------- .. [1] Wikipedia, "Companion matrix", http://en.wikipedia.org/wiki/Companion_matrix Examples -------- >>> coeff = [3.2, 2, 1] >>> np.roots(coeff) array([-0.3125+0.46351241j, -0.3125-0.46351241j]) """ # If input is scalar, this makes it an array p = atleast_1d(p) if len(p.shape) != 1: raise ValueError,"Input must be a rank-1 array." # find non-zero array entries non_zero = NX.nonzero(NX.ravel(p))[0] # Return an empty array if polynomial is all zeros if len(non_zero) == 0: return NX.array([]) # find the number of trailing zeros -- this is the number of roots at 0. trailing_zeros = len(p) - non_zero[-1] - 1 # strip leading and trailing zeros p = p[int(non_zero[0]):int(non_zero[-1])+1] # casting: if incoming array isn't floating point, make it floating point. if not issubclass(p.dtype.type, (NX.floating, NX.complexfloating)): p = p.astype(float) N = len(p) if N > 1: # build companion matrix and find its eigenvalues (the roots) A = diag(NX.ones((N-2,), p.dtype), -1) A[0, :] = -p[1:] / p[0] roots = eigvals(A) else: roots = NX.array([]) # tack any zeros onto the back of the array roots = hstack((roots, NX.zeros(trailing_zeros, roots.dtype))) return roots def polyint(p, m=1, k=None): """ Return an antiderivative (indefinite integral) of a polynomial. The returned order `m` antiderivative `P` of polynomial `p` satisfies :math:`\\frac{d^m}{dx^m}P(x) = p(x)` and is defined up to `m - 1` integration constants `k`. The constants determine the low-order polynomial part .. math:: \\frac{k_{m-1}}{0!} x^0 + \\ldots + \\frac{k_0}{(m-1)!}x^{m-1} of `P` so that :math:`P^{(j)}(0) = k_{m-j-1}`. Parameters ---------- p : {array_like, poly1d} Polynomial to differentiate. A sequence is interpreted as polynomial coefficients, see `poly1d`. m : int, optional Order of the antiderivative. (Default: 1) k : {None, list of `m` scalars, scalar}, optional Integration constants. They are given in the order of integration: those corresponding to highest-order terms come first. If ``None`` (default), all constants are assumed to be zero. If `m = 1`, a single scalar can be given instead of a list. See Also -------- polyder : derivative of a polynomial poly1d.integ : equivalent method Examples -------- The defining property of the antiderivative: >>> p = np.poly1d([1,1,1]) >>> P = np.polyint(p) >>> P poly1d([ 0.33333333, 0.5 , 1. , 0. ]) >>> np.polyder(P) == p True The integration constants default to zero, but can be specified: >>> P = np.polyint(p, 3) >>> P(0) 0.0 >>> np.polyder(P)(0) 0.0 >>> np.polyder(P, 2)(0) 0.0 >>> P = np.polyint(p, 3, k=[6,5,3]) >>> P poly1d([ 0.01666667, 0.04166667, 0.16666667, 3. , 5. , 3. ]) Note that 3 = 6 / 2!, and that the constants are given in the order of integrations. Constant of the highest-order polynomial term comes first: >>> np.polyder(P, 2)(0) 6.0 >>> np.polyder(P, 1)(0) 5.0 >>> P(0) 3.0 """ m = int(m) if m < 0: raise ValueError, "Order of integral must be positive (see polyder)" if k is None: k = NX.zeros(m, float) k = atleast_1d(k) if len(k) == 1 and m > 1: k = k[0]*NX.ones(m, float) if len(k) < m: raise ValueError, \ "k must be a scalar or a rank-1 array of length 1 or >m." truepoly = isinstance(p, poly1d) p = NX.asarray(p) if m == 0: if truepoly: return poly1d(p) return p else: # Note: this must work also with object and integer arrays y = NX.concatenate((p.__truediv__(NX.arange(len(p), 0, -1)), [k[0]])) val = polyint(y, m - 1, k=k[1:]) if truepoly: return poly1d(val) return val def polyder(p, m=1): """ Return the derivative of the specified order of a polynomial. Parameters ---------- p : poly1d or sequence Polynomial to differentiate. A sequence is interpreted as polynomial coefficients, see `poly1d`. m : int, optional Order of differentiation (default: 1) Returns ------- der : poly1d A new polynomial representing the derivative. See Also -------- polyint : Anti-derivative of a polynomial. poly1d : Class for one-dimensional polynomials. Examples -------- The derivative of the polynomial :math:`x^3 + x^2 + x^1 + 1` is: >>> p = np.poly1d([1,1,1,1]) >>> p2 = np.polyder(p) >>> p2 poly1d([3, 2, 1]) which evaluates to: >>> p2(2.) 17.0 We can verify this, approximating the derivative with ``(f(x + h) - f(x))/h``: >>> (p(2. + 0.001) - p(2.)) / 0.001 17.007000999997857 The fourth-order derivative of a 3rd-order polynomial is zero: >>> np.polyder(p, 2) poly1d([6, 2]) >>> np.polyder(p, 3) poly1d([6]) >>> np.polyder(p, 4) poly1d([ 0.]) """ m = int(m) if m < 0: raise ValueError, "Order of derivative must be positive (see polyint)" truepoly = isinstance(p, poly1d) p = NX.asarray(p) n = len(p) - 1 y = p[:-1] * NX.arange(n, 0, -1) if m == 0: val = p else: val = polyder(y, m - 1) if truepoly: val = poly1d(val) return val def polyfit(x, y, deg, rcond=None, full=False): """ Least squares polynomial fit. Fit a polynomial ``p(x) = p[0] * x**deg + ... + p[deg]`` of degree `deg` to points `(x, y)`. Returns a vector of coefficients `p` that minimises the squared error. Parameters ---------- x : array_like, shape (M,) x-coordinates of the M sample points ``(x[i], y[i])``. y : array_like, shape (M,) or (M, K) y-coordinates of the sample points. Several data sets of sample points sharing the same x-coordinates can be fitted at once by passing in a 2D-array that contains one dataset per column. deg : int Degree of the fitting polynomial rcond : float, optional Relative condition number of the fit. Singular values smaller than this relative to the largest singular value will be ignored. The default value is len(x)*eps, where eps is the relative precision of the float type, about 2e-16 in most cases. full : bool, optional Switch determining nature of return value. When it is False (the default) just the coefficients are returned, when True diagnostic information from the singular value decomposition is also returned. Returns ------- p : ndarray, shape (M,) or (M, K) Polynomial coefficients, highest power first. If `y` was 2-D, the coefficients for `k`-th data set are in ``p[:,k]``. residuals, rank, singular_values, rcond : present only if `full` = True Residuals of the least-squares fit, the effective rank of the scaled Vandermonde coefficient matrix, its singular values, and the specified value of `rcond`. For more details, see `linalg.lstsq`. Warns ----- RankWarning The rank of the coefficient matrix in the least-squares fit is deficient. The warning is only raised if `full` = False. The warnings can be turned off by >>> import warnings >>> warnings.simplefilter('ignore', np.RankWarning) See Also -------- polyval : Computes polynomial values. linalg.lstsq : Computes a least-squares fit. scipy.interpolate.UnivariateSpline : Computes spline fits. Notes ----- The solution minimizes the squared error .. math :: E = \\sum_{j=0}^k |p(x_j) - y_j|^2 in the equations:: x[0]**n * p[n] + ... + x[0] * p[1] + p[0] = y[0] x[1]**n * p[n] + ... + x[1] * p[1] + p[0] = y[1] ... x[k]**n * p[n] + ... + x[k] * p[1] + p[0] = y[k] The coefficient matrix of the coefficients `p` is a Vandermonde matrix. `polyfit` issues a `RankWarning` when the least-squares fit is badly conditioned. This implies that the best fit is not well-defined due to numerical error. The results may be improved by lowering the polynomial degree or by replacing `x` by `x` - `x`.mean(). The `rcond` parameter can also be set to a value smaller than its default, but the resulting fit may be spurious: including contributions from the small singular values can add numerical noise to the result. Note that fitting polynomial coefficients is inherently badly conditioned when the degree of the polynomial is large or the interval of sample points is badly centered. The quality of the fit should always be checked in these cases. When polynomial fits are not satisfactory, splines may be a good alternative. References ---------- .. [1] Wikipedia, "Curve fitting", http://en.wikipedia.org/wiki/Curve_fitting .. [2] Wikipedia, "Polynomial interpolation", http://en.wikipedia.org/wiki/Polynomial_interpolation Examples -------- >>> x = np.array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0]) >>> y = np.array([0.0, 0.8, 0.9, 0.1, -0.8, -1.0]) >>> z = np.polyfit(x, y, 3) >>> z array([ 0.08703704, -0.81349206, 1.69312169, -0.03968254]) It is convenient to use `poly1d` objects for dealing with polynomials: >>> p = np.poly1d(z) >>> p(0.5) 0.6143849206349179 >>> p(3.5) -0.34732142857143039 >>> p(10) 22.579365079365115 High-order polynomials may oscillate wildly: >>> p30 = np.poly1d(np.polyfit(x, y, 30)) /... RankWarning: Polyfit may be poorly conditioned... >>> p30(4) -0.80000000000000204 >>> p30(5) -0.99999999999999445 >>> p30(4.5) -0.10547061179440398 Illustration: >>> import matplotlib.pyplot as plt >>> xp = np.linspace(-2, 6, 100) >>> plt.plot(x, y, '.', xp, p(xp), '-', xp, p30(xp), '--') [<matplotlib.lines.Line2D object at 0x...>, <matplotlib.lines.Line2D object at 0x...>, <matplotlib.lines.Line2D object at 0x...>] >>> plt.ylim(-2,2) (-2, 2) >>> plt.show() """ order = int(deg) + 1 x = NX.asarray(x) + 0.0 y = NX.asarray(y) + 0.0 # check arguments. if deg < 0 : raise ValueError, "expected deg >= 0" if x.ndim != 1: raise TypeError, "expected 1D vector for x" if x.size == 0: raise TypeError, "expected non-empty vector for x" if y.ndim < 1 or y.ndim > 2 : raise TypeError, "expected 1D or 2D array for y" if x.shape[0] != y.shape[0] : raise TypeError, "expected x and y to have same length" # set rcond if rcond is None : rcond = len(x)*finfo(x.dtype).eps # scale x to improve condition number scale = abs(x).max() if scale != 0 : x /= scale # solve least squares equation for powers of x v = vander(x, order) c, resids, rank, s = lstsq(v, y, rcond) # warn on rank reduction, which indicates an ill conditioned matrix if rank != order and not full: msg = "Polyfit may be poorly conditioned" warnings.warn(msg, RankWarning) # scale returned coefficients if scale != 0 : if c.ndim == 1 : c /= vander([scale], order)[0] else : c /= vander([scale], order).T if full : return c, resids, rank, s, rcond else : return c def polyval(p, x): """ Evaluate a polynomial at specific values. If `p` is of length N, this function returns the value: ``p[0]*x**(N-1) + p[1]*x**(N-2) + ... + p[N-2]*x + p[N-1]`` If `x` is a sequence, then `p(x)` is returned for each element of `x`. If `x` is another polynomial then the composite polynomial `p(x(t))` is returned. Parameters ---------- p : array_like or poly1d object 1D array of polynomial coefficients (including coefficients equal to zero) from highest degree to the constant term, or an instance of poly1d. x : array_like or poly1d object A number, a 1D array of numbers, or an instance of poly1d, "at" which to evaluate `p`. Returns ------- values : ndarray or poly1d If `x` is a poly1d instance, the result is the composition of the two polynomials, i.e., `x` is "substituted" in `p` and the simplified result is returned. In addition, the type of `x` - array_like or poly1d - governs the type of the output: `x` array_like => `values` array_like, `x` a poly1d object => `values` is also. See Also -------- poly1d: A polynomial class. Notes ----- Horner's scheme [1]_ is used to evaluate the polynomial. Even so, for polynomials of high degree the values may be inaccurate due to rounding errors. Use carefully. References ---------- .. [1] I. N. Bronshtein, K. A. Semendyayev, and K. A. Hirsch (Eng. trans. Ed.), *Handbook of Mathematics*, New York, Van Nostrand Reinhold Co., 1985, pg. 720. Examples -------- >>> np.polyval([3,0,1], 5) # 3 * 5**2 + 0 * 5**1 + 1 76 >>> np.polyval([3,0,1], np.poly1d(5)) poly1d([ 76.]) >>> np.polyval(np.poly1d([3,0,1]), 5) 76 >>> np.polyval(np.poly1d([3,0,1]), np.poly1d(5)) poly1d([ 76.]) """ p = NX.asarray(p) if isinstance(x, poly1d): y = 0 else: x = NX.asarray(x) y = NX.zeros_like(x) for i in range(len(p)): y = x * y + p[i] return y def polyadd(a1, a2): """ Find the sum of two polynomials. Returns the polynomial resulting from the sum of two input polynomials. Each input must be either a poly1d object or a 1D sequence of polynomial coefficients, from highest to lowest degree. Parameters ---------- a1, a2 : array_like or poly1d object Input polynomials. Returns ------- out : ndarray or poly1d object The sum of the inputs. If either input is a poly1d object, then the output is also a poly1d object. Otherwise, it is a 1D array of polynomial coefficients from highest to lowest degree. See Also -------- poly1d : A one-dimensional polynomial class. poly, polyadd, polyder, polydiv, polyfit, polyint, polysub, polyval Examples -------- >>> np.polyadd([1, 2], [9, 5, 4]) array([9, 6, 6]) Using poly1d objects: >>> p1 = np.poly1d([1, 2]) >>> p2 = np.poly1d([9, 5, 4]) >>> print p1 1 x + 2 >>> print p2 2 9 x + 5 x + 4 >>> print np.polyadd(p1, p2) 2 9 x + 6 x + 6 """ truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d)) a1 = atleast_1d(a1) a2 = atleast_1d(a2) diff = len(a2) - len(a1) if diff == 0: val = a1 + a2 elif diff > 0: zr = NX.zeros(diff, a1.dtype) val = NX.concatenate((zr, a1)) + a2 else: zr = NX.zeros(abs(diff), a2.dtype) val = a1 + NX.concatenate((zr, a2)) if truepoly: val = poly1d(val) return val def polysub(a1, a2): """ Difference (subtraction) of two polynomials. Given two polynomials `a1` and `a2`, returns ``a1 - a2``. `a1` and `a2` can be either array_like sequences of the polynomials' coefficients (including coefficients equal to zero), or `poly1d` objects. Parameters ---------- a1, a2 : array_like or poly1d Minuend and subtrahend polynomials, respectively. Returns ------- out : ndarray or poly1d Array or `poly1d` object of the difference polynomial's coefficients. See Also -------- polyval, polydiv, polymul, polyadd Examples -------- .. math:: (2 x^2 + 10 x - 2) - (3 x^2 + 10 x -4) = (-x^2 + 2) >>> np.polysub([2, 10, -2], [3, 10, -4]) array([-1, 0, 2]) """ truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d)) a1 = atleast_1d(a1) a2 = atleast_1d(a2) diff = len(a2) - len(a1) if diff == 0: val = a1 - a2 elif diff > 0: zr = NX.zeros(diff, a1.dtype) val = NX.concatenate((zr, a1)) - a2 else: zr = NX.zeros(abs(diff), a2.dtype) val = a1 - NX.concatenate((zr, a2)) if truepoly: val = poly1d(val) return val def polymul(a1, a2): """ Find the product of two polynomials. Finds the polynomial resulting from the multiplication of the two input polynomials. Each input must be either a poly1d object or a 1D sequence of polynomial coefficients, from highest to lowest degree. Parameters ---------- a1, a2 : array_like or poly1d object Input polynomials. Returns ------- out : ndarray or poly1d object The polynomial resulting from the multiplication of the inputs. If either inputs is a poly1d object, then the output is also a poly1d object. Otherwise, it is a 1D array of polynomial coefficients from highest to lowest degree. See Also -------- poly1d : A one-dimensional polynomial class. poly, polyadd, polyder, polydiv, polyfit, polyint, polysub, polyval Examples -------- >>> np.polymul([1, 2, 3], [9, 5, 1]) array([ 9, 23, 38, 17, 3]) Using poly1d objects: >>> p1 = np.poly1d([1, 2, 3]) >>> p2 = np.poly1d([9, 5, 1]) >>> print p1 2 1 x + 2 x + 3 >>> print p2 2 9 x + 5 x + 1 >>> print np.polymul(p1, p2) 4 3 2 9 x + 23 x + 38 x + 17 x + 3 """ truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d)) a1,a2 = poly1d(a1),poly1d(a2) val = NX.convolve(a1, a2) if truepoly: val = poly1d(val) return val def polydiv(u, v): """ Returns the quotient and remainder of polynomial division. The input arrays are the coefficients (including any coefficients equal to zero) of the "numerator" (dividend) and "denominator" (divisor) polynomials, respectively. Parameters ---------- u : array_like or poly1d Dividend polynomial's coefficients. v : array_like or poly1d Divisor polynomial's coefficients. Returns ------- q : ndarray Coefficients, including those equal to zero, of the quotient. r : ndarray Coefficients, including those equal to zero, of the remainder. See Also -------- poly, polyadd, polyder, polydiv, polyfit, polyint, polymul, polysub, polyval Notes ----- Both `u` and `v` must be 0-d or 1-d (ndim = 0 or 1), but `u.ndim` need not equal `v.ndim`. In other words, all four possible combinations - ``u.ndim = v.ndim = 0``, ``u.ndim = v.ndim = 1``, ``u.ndim = 1, v.ndim = 0``, and ``u.ndim = 0, v.ndim = 1`` - work. Examples -------- .. math:: \\frac{3x^2 + 5x + 2}{2x + 1} = 1.5x + 1.75, remainder 0.25 >>> x = np.array([3.0, 5.0, 2.0]) >>> y = np.array([2.0, 1.0]) >>> np.polydiv(x, y) (array([ 1.5 , 1.75]), array([ 0.25])) """ truepoly = (isinstance(u, poly1d) or isinstance(u, poly1d)) u = atleast_1d(u) + 0.0 v = atleast_1d(v) + 0.0 # w has the common type w = u[0] + v[0] m = len(u) - 1 n = len(v) - 1 scale = 1. / v[0] q = NX.zeros((max(m - n + 1, 1),), w.dtype) r = u.copy() for k in range(0, m-n+1): d = scale * r[k] q[k] = d r[k:k+n+1] -= d*v while NX.allclose(r[0], 0, rtol=1e-14) and (r.shape[-1] > 1): r = r[1:] if truepoly: return poly1d(q), poly1d(r) return q, r _poly_mat = re.compile(r"[*][*]([0-9]*)") def _raise_power(astr, wrap=70): n = 0 line1 = '' line2 = '' output = ' ' while 1: mat = _poly_mat.search(astr, n) if mat is None: break span = mat.span() power = mat.groups()[0] partstr = astr[n:span[0]] n = span[1] toadd2 = partstr + ' '*(len(power)-1) toadd1 = ' '*(len(partstr)-1) + power if ((len(line2)+len(toadd2) > wrap) or \ (len(line1)+len(toadd1) > wrap)): output += line1 + "\n" + line2 + "\n " line1 = toadd1 line2 = toadd2 else: line2 += partstr + ' '*(len(power)-1) line1 += ' '*(len(partstr)-1) + power output += line1 + "\n" + line2 return output + astr[n:] class poly1d(object): """ A one-dimensional polynomial class. A convenience class, used to encapsulate "natural" operations on polynomials so that said operations may take on their customary form in code (see Examples). Parameters ---------- c_or_r : array_like The polynomial's coefficients, in decreasing powers, or if the value of the second parameter is True, the polynomial's roots (values where the polynomial evaluates to 0). For example, ``poly1d([1, 2, 3])`` returns an object that represents :math:`x^2 + 2x + 3`, whereas ``poly1d([1, 2, 3], True)`` returns one that represents :math:`(x-1)(x-2)(x-3) = x^3 - 6x^2 + 11x -6`. r : bool, optional If True, `c_or_r` specifies the polynomial's roots; the default is False. variable : str, optional Changes the variable used when printing `p` from `x` to `variable` (see Examples). Examples -------- Construct the polynomial :math:`x^2 + 2x + 3`: >>> p = np.poly1d([1, 2, 3]) >>> print np.poly1d(p) 2 1 x + 2 x + 3 Evaluate the polynomial at :math:`x = 0.5`: >>> p(0.5) 4.25 Find the roots: >>> p.r array([-1.+1.41421356j, -1.-1.41421356j]) >>> p(p.r) array([ -4.44089210e-16+0.j, -4.44089210e-16+0.j]) These numbers in the previous line represent (0, 0) to machine precision Show the coefficients: >>> p.c array([1, 2, 3]) Display the order (the leading zero-coefficients are removed): >>> p.order 2 Show the coefficient of the k-th power in the polynomial (which is equivalent to ``p.c[-(i+1)]``): >>> p[1] 2 Polynomials can be added, subtracted, multiplied, and divided (returns quotient and remainder): >>> p * p poly1d([ 1, 4, 10, 12, 9]) >>> (p**3 + 4) / p (poly1d([ 1., 4., 10., 12., 9.]), poly1d([ 4.])) ``asarray(p)`` gives the coefficient array, so polynomials can be used in all functions that accept arrays: >>> p**2 # square of polynomial poly1d([ 1, 4, 10, 12, 9]) >>> np.square(p) # square of individual coefficients array([1, 4, 9]) The variable used in the string representation of `p` can be modified, using the `variable` parameter: >>> p = np.poly1d([1,2,3], variable='z') >>> print p 2 1 z + 2 z + 3 Construct a polynomial from its roots: >>> np.poly1d([1, 2], True) poly1d([ 1, -3, 2]) This is the same polynomial as obtained by: >>> np.poly1d([1, -1]) * np.poly1d([1, -2]) poly1d([ 1, -3, 2]) """ coeffs = None order = None variable = None def __init__(self, c_or_r, r=0, variable=None): if isinstance(c_or_r, poly1d): for key in c_or_r.__dict__.keys(): self.__dict__[key] = c_or_r.__dict__[key] if variable is not None: self.__dict__['variable'] = variable return if r: c_or_r = poly(c_or_r) c_or_r = atleast_1d(c_or_r) if len(c_or_r.shape) > 1: raise ValueError, "Polynomial must be 1d only." c_or_r = trim_zeros(c_or_r, trim='f') if len(c_or_r) == 0: c_or_r = NX.array([0.]) self.__dict__['coeffs'] = c_or_r self.__dict__['order'] = len(c_or_r) - 1 if variable is None: variable = 'x' self.__dict__['variable'] = variable def __array__(self, t=None): if t: return NX.asarray(self.coeffs, t) else: return NX.asarray(self.coeffs) def __repr__(self): vals = repr(self.coeffs) vals = vals[6:-1] return "poly1d(%s)" % vals def __len__(self): return self.order def __str__(self): thestr = "0" var = self.variable # Remove leading zeros coeffs = self.coeffs[NX.logical_or.accumulate(self.coeffs != 0)] N = len(coeffs)-1 def fmt_float(q): s = '%.4g' % q if s.endswith('.0000'): s = s[:-5] return s for k in range(len(coeffs)): if not iscomplex(coeffs[k]): coefstr = fmt_float(real(coeffs[k])) elif real(coeffs[k]) == 0: coefstr = '%sj' % fmt_float(imag(coeffs[k])) else: coefstr = '(%s + %sj)' % (fmt_float(real(coeffs[k])), fmt_float(imag(coeffs[k]))) power = (N-k) if power == 0: if coefstr != '0': newstr = '%s' % (coefstr,) else: if k == 0: newstr = '0' else: newstr = '' elif power == 1: if coefstr == '0': newstr = '' elif coefstr == 'b': newstr = var else: newstr = '%s %s' % (coefstr, var) else: if coefstr == '0': newstr = '' elif coefstr == 'b': newstr = '%s**%d' % (var, power,) else: newstr = '%s %s**%d' % (coefstr, var, power) if k > 0: if newstr != '': if newstr.startswith('-'): thestr = "%s - %s" % (thestr, newstr[1:]) else: thestr = "%s + %s" % (thestr, newstr) else: thestr = newstr return _raise_power(thestr) def __call__(self, val): return polyval(self.coeffs, val) def __neg__(self): return poly1d(-self.coeffs) def __pos__(self): return self def __mul__(self, other): if isscalar(other): return poly1d(self.coeffs * other) else: other = poly1d(other) return poly1d(polymul(self.coeffs, other.coeffs)) def __rmul__(self, other): if isscalar(other): return poly1d(other * self.coeffs) else: other = poly1d(other) return poly1d(polymul(self.coeffs, other.coeffs)) def __add__(self, other): other = poly1d(other) return poly1d(polyadd(self.coeffs, other.coeffs)) def __radd__(self, other): other = poly1d(other) return poly1d(polyadd(self.coeffs, other.coeffs)) def __pow__(self, val): if not isscalar(val) or int(val) != val or val < 0: raise ValueError, "Power to non-negative integers only." res = [1] for _ in range(val): res = polymul(self.coeffs, res) return poly1d(res) def __sub__(self, other): other = poly1d(other) return poly1d(polysub(self.coeffs, other.coeffs)) def __rsub__(self, other): other = poly1d(other) return poly1d(polysub(other.coeffs, self.coeffs)) def __div__(self, other): if isscalar(other): return poly1d(self.coeffs/other) else: other = poly1d(other) return polydiv(self, other) __truediv__ = __div__ def __rdiv__(self, other): if isscalar(other): return poly1d(other/self.coeffs) else: other = poly1d(other) return polydiv(other, self) __rtruediv__ = __rdiv__ def __eq__(self, other): return NX.alltrue(self.coeffs == other.coeffs) def __ne__(self, other): return NX.any(self.coeffs != other.coeffs) def __setattr__(self, key, val): raise ValueError, "Attributes cannot be changed this way." def __getattr__(self, key): if key in ['r', 'roots']: return roots(self.coeffs) elif key in ['c','coef','coefficients']: return self.coeffs elif key in ['o']: return self.order else: try: return self.__dict__[key] except KeyError: raise AttributeError("'%s' has no attribute '%s'" % (self.__class__, key)) def __getitem__(self, val): ind = self.order - val if val > self.order: return 0 if val < 0: return 0 return self.coeffs[ind] def __setitem__(self, key, val): ind = self.order - key if key < 0: raise ValueError, "Does not support negative powers." if key > self.order: zr = NX.zeros(key-self.order, self.coeffs.dtype) self.__dict__['coeffs'] = NX.concatenate((zr, self.coeffs)) self.__dict__['order'] = key ind = 0 self.__dict__['coeffs'][ind] = val return def __iter__(self): return iter(self.coeffs) def integ(self, m=1, k=0): """ Return an antiderivative (indefinite integral) of this polynomial. Refer to `polyint` for full documentation. See Also -------- polyint : equivalent function """ return poly1d(polyint(self.coeffs, m=m, k=k)) def deriv(self, m=1): """ Return a derivative of this polynomial. Refer to `polyder` for full documentation. See Also -------- polyder : equivalent function """ return poly1d(polyder(self.coeffs, m=m)) # Stuff to do on module import warnings.simplefilter('always',RankWarning)
gpl-3.0
scikit-learn-contrib/py-earth
pyearth/export.py
3
8244
def export_python_function(earth_model): """ Exports model as a pure python function, with no numpy/scipy/sklearn dependencies. :param earth_model: Trained pyearth model :return: A function that accepts an iterator over examples, and returns an iterator over transformed examples """ i = 0 accessors = [] for bf in earth_model.basis_: if not bf.is_pruned(): accessors.append(bf.func_factory(earth_model.coef_[0, i])) i += 1 def func(example_iterator): return [sum(accessor(row) for accessor in accessors) for row in example_iterator] return func def export_python_string(earth_model, function_name="model"): """ Exports model as a string that evaluates as python code, with no numpy/scipy/sklearn dependencies. :param earth_model: Trained pyearth model :param function_name: string, optional, will be the name of the function in the returned string :return: string, when executed (either by writing to a file, or using `exec`, will define a python function that accepts an iterator over examples, and returns an iterator over transformed examples """ i = 0 accessors = [] for bf in earth_model.basis_: if not bf.is_pruned(): accessors.append(bf.func_string_factory(earth_model.coef_[0, i])) i += 1 return """def {:s}(example_iterator): accessors = [{:s}] for x in example_iterator: yield sum(accessor(x) for accessor in accessors) """.format(function_name, ",\n\t\t".join(accessors)) def export_sympy_term_expressions(earth_model): """ Construct a list of sympy expressions for all non-pruned terms in the model. :param earth_model: Trained pyearth model :return: a list of sympy expressions representing terms in the model. These expressions are the symbolic equivalent of the Earth.transform method. """ from sympy import Symbol, Add, Mul, Max, RealNumber, Piecewise, Pow, And, nan, Function, Not from ._basis import LinearBasisFunction, HingeBasisFunction, SmoothedHingeBasisFunction, \ MissingnessBasisFunction, ConstantBasisFunction, VariableBasisFunction Missing = Function('Missing') NaNProtect = Function('NaNProtect') def linear_bf_to_factor(bf, bf_var): return bf_var def smoothed_hinge_bf_to_factor(bf, bf_var): knot = RealNumber(bf.get_knot()) knot_minus = RealNumber(bf.get_knot_minus()) knot_plus = RealNumber(bf.get_knot_plus()) r = RealNumber(bf.get_r()) p = RealNumber(bf.get_p()) if bf.get_reverse(): lower_p = (-(bf_var - knot)), (bf_var <= knot_minus) upper_p = (0, bf_var >= knot_plus) left_exp = Mul(p, Pow((bf_var - knot_plus), 2)) right_exp = Mul(r, Pow((bf_var - knot_plus), 3)) middle_b = And(knot_minus < bf_var, bf_var < knot_plus) middle_exp = (Add(left_exp, right_exp), middle_b) piecewise = Piecewise(lower_p, upper_p, middle_exp) factor = piecewise else: lower_p = (0, bf_var <= knot_minus) upper_p = (bf_var - knot, bf_var >= knot_plus) left_exp = Mul(p, Pow((bf_var - knot_minus), 2)) right_exp = Mul(r, Pow((bf_var - knot_minus), 3)) middle_b = And(knot_minus < bf_var, bf_var < knot_plus) middle_exp = (Add(left_exp, right_exp), middle_b) piecewise = Piecewise(lower_p, upper_p, middle_exp) factor = piecewise return factor def hinge_bf_to_factor(bf, bf_var): knot = bf.get_knot() if bf.get_reverse(): factor = Max(0, RealNumber(knot) - bf_var) else: factor = Max(0, bf_var - RealNumber(knot)) return factor def missingness_bf_to_factor(bf, bf_var): # This is the error that should be raised when a user attempts to use functionality # that has not yet been implemented. if bf.complement: return Not(Missing(bf_var)) else: return Missing(bf_var) def constant_bf_to_factor(bf, bf_var): return RealNumber(1) def protect_from_nan(label, missables): return NaNProtect(Symbol(label)) if label in missables else Symbol(label) def dont_protect_from_nan(label, missables): return Symbol(label) bf_to_factor_dispatcher = {LinearBasisFunction: linear_bf_to_factor, SmoothedHingeBasisFunction: smoothed_hinge_bf_to_factor, HingeBasisFunction: hinge_bf_to_factor, MissingnessBasisFunction: missingness_bf_to_factor, ConstantBasisFunction: constant_bf_to_factor} nan_protect_dispatch = {LinearBasisFunction: protect_from_nan, SmoothedHingeBasisFunction: protect_from_nan, HingeBasisFunction: protect_from_nan, MissingnessBasisFunction: dont_protect_from_nan, ConstantBasisFunction: protect_from_nan} def bf_to_factor(bf, missables): ''' Convert a BasisFunction to a factor of a term. ''' if isinstance(bf, VariableBasisFunction): bf_var = nan_protect_dispatch[bf.__class__](bf.label, missables) else: bf_var = None return bf_to_factor_dispatcher[bf.__class__](bf, bf_var) def missingness_bf_get_missables(bf): bf_var = bf.label return set([bf_var]) def non_missable(bf): return set() bf_get_missables_dispatcher = {LinearBasisFunction: non_missable, SmoothedHingeBasisFunction: non_missable, HingeBasisFunction: non_missable, MissingnessBasisFunction: missingness_bf_get_missables, ConstantBasisFunction: non_missable} def get_missables(bf): missables = bf_get_missables_dispatcher[bf.__class__](bf) parent = bf.get_parent() if parent is None: return missables else: missables.update(get_missables(parent)) return missables def bf_to_term(bf, missables): ''' Convert a BasisFunction to a term (without coefficient). ''' term = bf_to_factor(bf, missables) parent = bf.get_parent() if parent is None: return term else: return Mul(term, bf_to_term(parent, missables)) return [bf_to_term(bf, get_missables(bf)) for bf in earth_model.basis_.piter()] def export_sympy(earth_model, columns=None): """ Constructs a sympy expression or list of sympy expressions from of a trained earth model. :param earth_model: Trained pyearth model :param columns: The index or indices of the output columns for which expressions are to be constructed. If an integer is used, a sympy expression is returned. If indices are given then a list of sympy expressions is returned. If columns is None, it is treated as if columns=0 for models with only one output column or as columns=slice(None) for more than one output column. :return: a sympy expression or list of sympy expressions equivalent to the Earth.predict method for the selected output columns. """ # Set a sane default for columns if columns is None: if earth_model.coef_.shape[0] == 1: columns = 0 else: columns = slice(None) # Get basis function terms terms = export_sympy_term_expressions(earth_model) # Handle column choice coefs = earth_model.coef_[columns] if len(coefs.shape) == 1: unwrap = True coefs = [coefs] n_cols = 1 else: unwrap = False n_cols = coefs.shape[0] # Combine coefficients with terms for each output column result = [sum([coefs[i][j] * term for j, term in enumerate(terms)]) for i in range(n_cols)] if unwrap: # Result should be an expression rather than a list of expressions. result = result[0] return result
bsd-3-clause
elkingtonmcb/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/backends/backend_emf.py
69
22336
""" Enhanced Metafile backend. See http://pyemf.sourceforge.net for the EMF driver library. """ from __future__ import division try: import pyemf except ImportError: raise ImportError('You must first install pyemf from http://pyemf.sf.net') import os,sys,math,re from matplotlib import verbose, __version__, rcParams from matplotlib._pylab_helpers import Gcf from matplotlib.backend_bases import RendererBase, GraphicsContextBase,\ FigureManagerBase, FigureCanvasBase from matplotlib.figure import Figure from matplotlib.transforms import Bbox from matplotlib.font_manager import findfont, FontProperties from matplotlib.ft2font import FT2Font, KERNING_UNFITTED, KERNING_DEFAULT, KERNING_UNSCALED # Font handling stuff snarfed from backend_ps, but only using TTF fonts _fontd = {} # Debug print stuff debugHandle = False debugPrint = False debugText = False # Hashable font properties class. In EMF, angle of rotation is a part # of the font properties, so a handle to a new font must be obtained # if the rotation changes. class EMFFontProperties(FontProperties): def __init__(self,other,angle): FontProperties.__init__(self,other.get_family(), other.get_style(), other.get_variant(), other.get_weight(), other.get_stretch(), other.get_size()) self.__angle=angle def __hash__(self): return hash( (FontProperties.__hash__(self), self.__angle)) def __str__(self): return str( (FontProperties.__str__(self), self.__angle)) def set_angle(self,angle): self.__angle=angle # Hashable pen (line style) properties. class EMFPen: def __init__(self,emf,gc): self.emf=emf self.gc=gc r,g,b=gc.get_rgb() self.r=int(r*255) self.g=int(g*255) self.b=int(b*255) self.width=int(gc.get_linewidth()) self.style=0 self.set_linestyle() if debugHandle: print "EMFPen: style=%d width=%d rgb=(%d,%d,%d)" % (self.style,self.width,self.r,self.g,self.b) def __hash__(self): return hash((self.style,self.width,self.r,self.g,self.b)) def set_linestyle(self): # Hack. Negative width lines will not get drawn. if self.width<0: self.style=pyemf.PS_NULL else: styles={'solid':pyemf.PS_SOLID, 'dashed':pyemf.PS_DASH, 'dashdot':pyemf.PS_DASHDOT, 'dotted':pyemf.PS_DOT} #style=styles.get(self.gc.get_linestyle('solid')) style=self.gc.get_linestyle('solid') if debugHandle: print "EMFPen: style=%d" % style if style in styles: self.style=styles[style] else: self.style=pyemf.PS_SOLID def get_handle(self): handle=self.emf.CreatePen(self.style,self.width,(self.r,self.g,self.b)) return handle # Hashable brush (fill style) properties. class EMFBrush: def __init__(self,emf,rgb): self.emf=emf r,g,b=rgb self.r=int(r*255) self.g=int(g*255) self.b=int(b*255) if debugHandle: print "EMFBrush: rgb=(%d,%d,%d)" % (self.r,self.g,self.b) def __hash__(self): return hash((self.r,self.g,self.b)) def get_handle(self): handle=self.emf.CreateSolidBrush((self.r,self.g,self.b)) return handle class RendererEMF(RendererBase): """ The renderer handles drawing/rendering operations through a pyemf.EMF instance. """ def __init__(self, outfile, width, height, dpi): "Initialize the renderer with a gd image instance" self.outfile = outfile # a map from get_color args to colors self._cached = {} # dict of hashed properties to already created font handles self._fontHandle = {} self.lastHandle = {'font':-1, 'pen':-1, 'brush':-1} self.emf=pyemf.EMF(width,height,dpi,'in') self.width=int(width*dpi) self.height=int(height*dpi) self.dpi = dpi self.pointstodpi = dpi/72.0 self.hackPointsForMathExponent = 2.0 # set background transparent for text self.emf.SetBkMode(pyemf.TRANSPARENT) # set baseline for text to be bottom left corner self.emf.SetTextAlign( pyemf.TA_BOTTOM|pyemf.TA_LEFT) if debugPrint: print "RendererEMF: (%f,%f) %s dpi=%f" % (self.width,self.height,outfile,dpi) def save(self): self.emf.save(self.outfile) def draw_arc(self, gcEdge, rgbFace, x, y, width, height, angle1, angle2, rotation): """ Draw an arc using GraphicsContext instance gcEdge, centered at x,y, with width and height and angles from 0.0 to 360.0 0 degrees is at 3-o'clock positive angles are anti-clockwise If the color rgbFace is not None, fill the arc with it. """ if debugPrint: print "draw_arc: (%f,%f) angles=(%f,%f) w,h=(%f,%f)" % (x,y,angle1,angle2,width,height) pen=self.select_pen(gcEdge) brush=self.select_brush(rgbFace) # This algorithm doesn't work very well on small circles # because of rounding error. This shows up most obviously on # legends where the circles are small anyway, and it is # compounded by the fact that it puts several circles right # next to each other so the differences are obvious. hw=width/2 hh=height/2 x1=int(x-width/2) y1=int(y-height/2) if brush: self.emf.Pie(int(x-hw),int(self.height-(y-hh)),int(x+hw),int(self.height-(y+hh)),int(x+math.cos(angle1*math.pi/180.0)*hw),int(self.height-(y+math.sin(angle1*math.pi/180.0)*hh)),int(x+math.cos(angle2*math.pi/180.0)*hw),int(self.height-(y+math.sin(angle2*math.pi/180.0)*hh))) else: self.emf.Arc(int(x-hw),int(self.height-(y-hh)),int(x+hw),int(self.height-(y+hh)),int(x+math.cos(angle1*math.pi/180.0)*hw),int(self.height-(y+math.sin(angle1*math.pi/180.0)*hh)),int(x+math.cos(angle2*math.pi/180.0)*hw),int(self.height-(y+math.sin(angle2*math.pi/180.0)*hh))) def draw_image(self, x, y, im, bbox): """ Draw the Image instance into the current axes; x is the distance in pixels from the left hand side of the canvas. y is the distance from the origin. That is, if origin is upper, y is the distance from top. If origin is lower, y is the distance from bottom bbox is a matplotlib.transforms.BBox instance for clipping, or None """ # pyemf2 currently doesn't support bitmaps. pass def draw_line(self, gc, x1, y1, x2, y2): """ Draw a single line from x1,y1 to x2,y2 """ if debugPrint: print "draw_line: (%f,%f) - (%f,%f)" % (x1,y1,x2,y2) if self.select_pen(gc): self.emf.Polyline([(long(x1),long(self.height-y1)),(long(x2),long(self.height-y2))]) else: if debugPrint: print "draw_line: optimizing away (%f,%f) - (%f,%f)" % (x1,y1,x2,y2) def draw_lines(self, gc, x, y): """ x and y are equal length arrays, draw lines connecting each point in x, y """ if debugPrint: print "draw_lines: %d points" % len(str(x)) # optimize away anything that won't actually be drawn. Edge # style must not be PS_NULL for it to appear on screen. if self.select_pen(gc): points = [(long(x[i]), long(self.height-y[i])) for i in range(len(x))] self.emf.Polyline(points) def draw_point(self, gc, x, y): """ Draw a single point at x,y Where 'point' is a device-unit point (or pixel), not a matplotlib point """ if debugPrint: print "draw_point: (%f,%f)" % (x,y) # don't cache this pen pen=EMFPen(self.emf,gc) self.emf.SetPixel(long(x),long(self.height-y),(pen.r,pen.g,pen.b)) def draw_polygon(self, gcEdge, rgbFace, points): """ Draw a polygon using the GraphicsContext instance gc. points is a len vertices tuple, each element giving the x,y coords a vertex If the color rgbFace is not None, fill the polygon with it """ if debugPrint: print "draw_polygon: %d points" % len(points) # optimize away anything that won't actually draw. Either a # face color or edge style must be defined pen=self.select_pen(gcEdge) brush=self.select_brush(rgbFace) if pen or brush: points = [(long(x), long(self.height-y)) for x,y in points] self.emf.Polygon(points) else: points = [(long(x), long(self.height-y)) for x,y in points] if debugPrint: print "draw_polygon: optimizing away polygon: %d points = %s" % (len(points),str(points)) def draw_rectangle(self, gcEdge, rgbFace, x, y, width, height): """ Draw a non-filled rectangle using the GraphicsContext instance gcEdge, with lower left at x,y with width and height. If rgbFace is not None, fill the rectangle with it. """ if debugPrint: print "draw_rectangle: (%f,%f) w=%f,h=%f" % (x,y,width,height) # optimize away anything that won't actually draw. Either a # face color or edge style must be defined pen=self.select_pen(gcEdge) brush=self.select_brush(rgbFace) if pen or brush: self.emf.Rectangle(int(x),int(self.height-y),int(x)+int(width),int(self.height-y)-int(height)) else: if debugPrint: print "draw_rectangle: optimizing away (%f,%f) w=%f,h=%f" % (x,y,width,height) def draw_text(self, gc, x, y, s, prop, angle, ismath=False): """ Draw the text.Text instance s at x,y (display coords) with font properties instance prop at angle in degrees, using GraphicsContext gc **backend implementers note** When you are trying to determine if you have gotten your bounding box right (which is what enables the text layout/alignment to work properly), it helps to change the line in text.py if 0: bbox_artist(self, renderer) to if 1, and then the actual bounding box will be blotted along with your text. """ if debugText: print "draw_text: (%f,%f) %d degrees: '%s'" % (x,y,angle,s) if ismath: self.draw_math_text(gc,x,y,s,prop,angle) else: self.draw_plain_text(gc,x,y,s,prop,angle) def draw_plain_text(self, gc, x, y, s, prop, angle): """ Draw a text string verbatim; no conversion is done. """ if debugText: print "draw_plain_text: (%f,%f) %d degrees: '%s'" % (x,y,angle,s) if debugText: print " properties:\n"+str(prop) self.select_font(prop,angle) # haxor follows! The subtleties of text placement in EMF # still elude me a bit. It always seems to be too high on the # page, about 10 pixels too high on a 300dpi resolution image. # So, I'm adding this hack for the moment: hackoffsetper300dpi=10 xhack=math.sin(angle*math.pi/180.0)*hackoffsetper300dpi*self.dpi/300.0 yhack=math.cos(angle*math.pi/180.0)*hackoffsetper300dpi*self.dpi/300.0 self.emf.TextOut(long(x+xhack),long(y+yhack),s) def draw_math_text(self, gc, x, y, s, prop, angle): """ Draw a subset of TeX, currently handles exponents only. Since pyemf doesn't have any raster functionality yet, the texmanager.get_rgba won't help. """ if debugText: print "draw_math_text: (%f,%f) %d degrees: '%s'" % (x,y,angle,s) s = s[1:-1] # strip the $ from front and back match=re.match("10\^\{(.+)\}",s) if match: exp=match.group(1) if debugText: print " exponent=%s" % exp font = self._get_font_ttf(prop) font.set_text("10", 0.0) w, h = font.get_width_height() w /= 64.0 # convert from subpixels h /= 64.0 self.draw_plain_text(gc,x,y,"10",prop,angle) propexp=prop.copy() propexp.set_size(prop.get_size_in_points()*.8) self.draw_plain_text(gc,x+w+self.points_to_pixels(self.hackPointsForMathExponent),y-(h/2),exp,propexp,angle) else: # if it isn't an exponent, then render the raw TeX string. self.draw_plain_text(gc,x,y,s,prop,angle) def get_math_text_width_height(self, s, prop): """ get the width and height in display coords of the string s with FontPropertry prop, ripped right out of backend_ps. This method must be kept in sync with draw_math_text. """ if debugText: print "get_math_text_width_height:" s = s[1:-1] # strip the $ from front and back match=re.match("10\^\{(.+)\}",s) if match: exp=match.group(1) if debugText: print " exponent=%s" % exp font = self._get_font_ttf(prop) font.set_text("10", 0.0) w1, h1 = font.get_width_height() propexp=prop.copy() propexp.set_size(prop.get_size_in_points()*.8) fontexp=self._get_font_ttf(propexp) fontexp.set_text(exp, 0.0) w2, h2 = fontexp.get_width_height() w=w1+w2 h=h1+(h2/2) w /= 64.0 # convert from subpixels h /= 64.0 w+=self.points_to_pixels(self.hackPointsForMathExponent) if debugText: print " math string=%s w,h=(%f,%f)" % (s, w, h) else: w,h=self.get_text_width_height(s,prop,False) return w, h def flipy(self): """return true if y small numbers are top for renderer Is used for drawing text (text.py) and images (image.py) only """ return True def get_canvas_width_height(self): """ return the canvas width and height in display coords """ return self.width,self.height def set_handle(self,type,handle): """ Update the EMF file with the current handle, but only if it isn't the same as the last one. Don't want to flood the file with duplicate info. """ if self.lastHandle[type] != handle: self.emf.SelectObject(handle) self.lastHandle[type]=handle def get_font_handle(self, prop, angle): """ Look up the handle for the font based on the dict of properties *and* the rotation angle, since in EMF the font rotation is a part of the font definition. """ prop=EMFFontProperties(prop,angle) size=int(prop.get_size_in_points()*self.pointstodpi) face=prop.get_name() key = hash(prop) handle = self._fontHandle.get(key) if handle is None: handle=self.emf.CreateFont(-size, 0, int(angle)*10, int(angle)*10, pyemf.FW_NORMAL, 0, 0, 0, pyemf.ANSI_CHARSET, pyemf.OUT_DEFAULT_PRECIS, pyemf.CLIP_DEFAULT_PRECIS, pyemf.DEFAULT_QUALITY, pyemf.DEFAULT_PITCH | pyemf.FF_DONTCARE, face); if debugHandle: print "get_font_handle: creating handle=%d for face=%s size=%d" % (handle,face,size) self._fontHandle[key]=handle if debugHandle: print " found font handle %d for face=%s size=%d" % (handle,face,size) self.set_handle("font",handle) return handle def select_font(self,prop,angle): handle=self.get_font_handle(prop,angle) self.set_handle("font",handle) def select_pen(self, gc): """ Select a pen that includes the color, line width and line style. Return the pen if it will draw a line, or None if the pen won't produce any output (i.e. the style is PS_NULL) """ pen=EMFPen(self.emf,gc) key=hash(pen) handle=self._fontHandle.get(key) if handle is None: handle=pen.get_handle() self._fontHandle[key]=handle if debugHandle: print " found pen handle %d" % handle self.set_handle("pen",handle) if pen.style != pyemf.PS_NULL: return pen else: return None def select_brush(self, rgb): """ Select a fill color, and return the brush if the color is valid or None if this won't produce a fill operation. """ if rgb is not None: brush=EMFBrush(self.emf,rgb) key=hash(brush) handle=self._fontHandle.get(key) if handle is None: handle=brush.get_handle() self._fontHandle[key]=handle if debugHandle: print " found brush handle %d" % handle self.set_handle("brush",handle) return brush else: return None def _get_font_ttf(self, prop): """ get the true type font properties, used because EMFs on windows will use true type fonts. """ key = hash(prop) font = _fontd.get(key) if font is None: fname = findfont(prop) if debugText: print "_get_font_ttf: name=%s" % fname font = FT2Font(str(fname)) _fontd[key] = font font.clear() size = prop.get_size_in_points() font.set_size(size, self.dpi) return font def get_text_width_height(self, s, prop, ismath): """ get the width and height in display coords of the string s with FontPropertry prop, ripped right out of backend_ps """ if debugText: print "get_text_width_height: ismath=%s properties: %s" % (str(ismath),str(prop)) if ismath: if debugText: print " MATH TEXT! = %s" % str(ismath) w,h = self.get_math_text_width_height(s, prop) return w,h font = self._get_font_ttf(prop) font.set_text(s, 0.0) w, h = font.get_width_height() w /= 64.0 # convert from subpixels h /= 64.0 if debugText: print " text string=%s w,h=(%f,%f)" % (s, w, h) return w, h def new_gc(self): return GraphicsContextEMF() def points_to_pixels(self, points): # if backend doesn't have dpi, eg, postscript or svg #return points # elif backend assumes a value for pixels_per_inch #return points/72.0 * self.dpi.get() * pixels_per_inch/72.0 # else return points/72.0 * self.dpi class GraphicsContextEMF(GraphicsContextBase): """ The graphics context provides the color, line styles, etc... See the gtk and postscript backends for examples of mapping the graphics context attributes (cap styles, join styles, line widths, colors) to a particular backend. In GTK this is done by wrapping a gtk.gdk.GC object and forwarding the appropriate calls to it using a dictionary mapping styles to gdk constants. In Postscript, all the work is done by the renderer, mapping line styles to postscript calls. If it's more appropriate to do the mapping at the renderer level (as in the postscript backend), you don't need to override any of the GC methods. If it's more appropriate to wrap an instance (as in the GTK backend) and do the mapping here, you'll need to override several of the setter methods. The base GraphicsContext stores colors as a RGB tuple on the unit interval, eg, (0.5, 0.0, 1.0). You may need to map this to colors appropriate for your backend. """ pass ######################################################################## # # The following functions and classes are for pylab and implement # window/figure managers, etc... # ######################################################################## def draw_if_interactive(): """ For image backends - is not required For GUI backends - this should be overriden if drawing should be done in interactive python mode """ pass def show(): """ For image backends - is not required For GUI backends - show() is usually the last line of a pylab script and tells the backend that it is time to draw. In interactive mode, this may be a do nothing func. See the GTK backend for an example of how to handle interactive versus batch mode """ for manager in Gcf.get_all_fig_managers(): # do something to display the GUI pass def new_figure_manager(num, *args, **kwargs): """ Create a new figure manager instance """ # if a main-level app must be created, this is the usual place to # do it -- see backend_wx, backend_wxagg and backend_tkagg for # examples. Not all GUIs require explicit instantiation of a # main-level app (egg backend_gtk, backend_gtkagg) for pylab FigureClass = kwargs.pop('FigureClass', Figure) thisFig = FigureClass(*args, **kwargs) canvas = FigureCanvasEMF(thisFig) manager = FigureManagerEMF(canvas, num) return manager class FigureCanvasEMF(FigureCanvasBase): """ The canvas the figure renders into. Calls the draw and print fig methods, creates the renderers, etc... Public attribute figure - A Figure instance """ def draw(self): """ Draw the figure using the renderer """ pass filetypes = {'emf': 'Enhanced Metafile'} def print_emf(self, filename, dpi=300, **kwargs): width, height = self.figure.get_size_inches() renderer = RendererEMF(filename,width,height,dpi) self.figure.draw(renderer) renderer.save() def get_default_filetype(self): return 'emf' class FigureManagerEMF(FigureManagerBase): """ Wrap everything up into a window for the pylab interface For non interactive backends, the base class does all the work """ pass ######################################################################## # # Now just provide the standard names that backend.__init__ is expecting # ######################################################################## FigureManager = FigureManagerEMF
agpl-3.0
sanketloke/scikit-learn
examples/linear_model/plot_omp.py
385
2263
""" =========================== Orthogonal Matching Pursuit =========================== Using orthogonal matching pursuit for recovering a sparse signal from a noisy measurement encoded with a dictionary """ print(__doc__) import matplotlib.pyplot as plt import numpy as np from sklearn.linear_model import OrthogonalMatchingPursuit from sklearn.linear_model import OrthogonalMatchingPursuitCV from sklearn.datasets import make_sparse_coded_signal n_components, n_features = 512, 100 n_nonzero_coefs = 17 # generate the data ################### # y = Xw # |x|_0 = n_nonzero_coefs y, X, w = make_sparse_coded_signal(n_samples=1, n_components=n_components, n_features=n_features, n_nonzero_coefs=n_nonzero_coefs, random_state=0) idx, = w.nonzero() # distort the clean signal ########################## y_noisy = y + 0.05 * np.random.randn(len(y)) # plot the sparse signal ######################## plt.figure(figsize=(7, 7)) plt.subplot(4, 1, 1) plt.xlim(0, 512) plt.title("Sparse signal") plt.stem(idx, w[idx]) # plot the noise-free reconstruction #################################### omp = OrthogonalMatchingPursuit(n_nonzero_coefs=n_nonzero_coefs) omp.fit(X, y) coef = omp.coef_ idx_r, = coef.nonzero() plt.subplot(4, 1, 2) plt.xlim(0, 512) plt.title("Recovered signal from noise-free measurements") plt.stem(idx_r, coef[idx_r]) # plot the noisy reconstruction ############################### omp.fit(X, y_noisy) coef = omp.coef_ idx_r, = coef.nonzero() plt.subplot(4, 1, 3) plt.xlim(0, 512) plt.title("Recovered signal from noisy measurements") plt.stem(idx_r, coef[idx_r]) # plot the noisy reconstruction with number of non-zeros set by CV ################################################################## omp_cv = OrthogonalMatchingPursuitCV() omp_cv.fit(X, y_noisy) coef = omp_cv.coef_ idx_r, = coef.nonzero() plt.subplot(4, 1, 4) plt.xlim(0, 512) plt.title("Recovered signal from noisy measurements with CV") plt.stem(idx_r, coef[idx_r]) plt.subplots_adjust(0.06, 0.04, 0.94, 0.90, 0.20, 0.38) plt.suptitle('Sparse signal recovery with Orthogonal Matching Pursuit', fontsize=16) plt.show()
bsd-3-clause
victor-prado/broker-manager
environment/lib/python3.5/site-packages/pandas/tests/series/test_alter_axes.py
7
6881
# coding=utf-8 # pylint: disable-msg=E1101,W0612 from datetime import datetime import numpy as np import pandas as pd from pandas import Index, Series from pandas.core.index import MultiIndex, RangeIndex from pandas.compat import lrange, range, zip from pandas.util.testing import assert_series_equal, assert_frame_equal import pandas.util.testing as tm from .common import TestData class TestSeriesAlterAxes(TestData, tm.TestCase): _multiprocess_can_split_ = True def test_setindex(self): # wrong type series = self.series.copy() self.assertRaises(TypeError, setattr, series, 'index', None) # wrong length series = self.series.copy() self.assertRaises(Exception, setattr, series, 'index', np.arange(len(series) - 1)) # works series = self.series.copy() series.index = np.arange(len(series)) tm.assertIsInstance(series.index, Index) def test_rename(self): renamer = lambda x: x.strftime('%Y%m%d') renamed = self.ts.rename(renamer) self.assertEqual(renamed.index[0], renamer(self.ts.index[0])) # dict rename_dict = dict(zip(self.ts.index, renamed.index)) renamed2 = self.ts.rename(rename_dict) assert_series_equal(renamed, renamed2) # partial dict s = Series(np.arange(4), index=['a', 'b', 'c', 'd'], dtype='int64') renamed = s.rename({'b': 'foo', 'd': 'bar'}) self.assert_index_equal(renamed.index, Index(['a', 'foo', 'c', 'bar'])) # index with name renamer = Series(np.arange(4), index=Index(['a', 'b', 'c', 'd'], name='name'), dtype='int64') renamed = renamer.rename({}) self.assertEqual(renamed.index.name, renamer.index.name) def test_rename_by_series(self): s = Series(range(5), name='foo') renamer = Series({1: 10, 2: 20}) result = s.rename(renamer) expected = Series(range(5), index=[0, 10, 20, 3, 4], name='foo') tm.assert_series_equal(result, expected) def test_rename_set_name(self): s = Series(range(4), index=list('abcd')) for name in ['foo', 123, 123., datetime(2001, 11, 11), ('foo',)]: result = s.rename(name) self.assertEqual(result.name, name) self.assert_numpy_array_equal(result.index.values, s.index.values) self.assertTrue(s.name is None) def test_rename_set_name_inplace(self): s = Series(range(3), index=list('abc')) for name in ['foo', 123, 123., datetime(2001, 11, 11), ('foo',)]: s.rename(name, inplace=True) self.assertEqual(s.name, name) exp = np.array(['a', 'b', 'c'], dtype=np.object_) self.assert_numpy_array_equal(s.index.values, exp) def test_set_name_attribute(self): s = Series([1, 2, 3]) s2 = Series([1, 2, 3], name='bar') for name in [7, 7., 'name', datetime(2001, 1, 1), (1,), u"\u05D0"]: s.name = name self.assertEqual(s.name, name) s2.name = name self.assertEqual(s2.name, name) def test_set_name(self): s = Series([1, 2, 3]) s2 = s._set_name('foo') self.assertEqual(s2.name, 'foo') self.assertTrue(s.name is None) self.assertTrue(s is not s2) def test_rename_inplace(self): renamer = lambda x: x.strftime('%Y%m%d') expected = renamer(self.ts.index[0]) self.ts.rename(renamer, inplace=True) self.assertEqual(self.ts.index[0], expected) def test_set_index_makes_timeseries(self): idx = tm.makeDateIndex(10) s = Series(lrange(10)) s.index = idx with tm.assert_produces_warning(FutureWarning): self.assertTrue(s.is_time_series) self.assertTrue(s.index.is_all_dates) def test_reset_index(self): df = tm.makeDataFrame()[:5] ser = df.stack() ser.index.names = ['hash', 'category'] ser.name = 'value' df = ser.reset_index() self.assertIn('value', df) df = ser.reset_index(name='value2') self.assertIn('value2', df) # check inplace s = ser.reset_index(drop=True) s2 = ser s2.reset_index(drop=True, inplace=True) assert_series_equal(s, s2) # level index = MultiIndex(levels=[['bar'], ['one', 'two', 'three'], [0, 1]], labels=[[0, 0, 0, 0, 0, 0], [0, 1, 2, 0, 1, 2], [0, 1, 0, 1, 0, 1]]) s = Series(np.random.randn(6), index=index) rs = s.reset_index(level=1) self.assertEqual(len(rs.columns), 2) rs = s.reset_index(level=[0, 2], drop=True) self.assert_index_equal(rs.index, Index(index.get_level_values(1))) tm.assertIsInstance(rs, Series) def test_reset_index_range(self): # GH 12071 s = pd.Series(range(2), name='A', dtype='int64') series_result = s.reset_index() tm.assertIsInstance(series_result.index, RangeIndex) series_expected = pd.DataFrame([[0, 0], [1, 1]], columns=['index', 'A'], index=RangeIndex(stop=2)) assert_frame_equal(series_result, series_expected) def test_reorder_levels(self): index = MultiIndex(levels=[['bar'], ['one', 'two', 'three'], [0, 1]], labels=[[0, 0, 0, 0, 0, 0], [0, 1, 2, 0, 1, 2], [0, 1, 0, 1, 0, 1]], names=['L0', 'L1', 'L2']) s = Series(np.arange(6), index=index) # no change, position result = s.reorder_levels([0, 1, 2]) assert_series_equal(s, result) # no change, labels result = s.reorder_levels(['L0', 'L1', 'L2']) assert_series_equal(s, result) # rotate, position result = s.reorder_levels([1, 2, 0]) e_idx = MultiIndex(levels=[['one', 'two', 'three'], [0, 1], ['bar']], labels=[[0, 1, 2, 0, 1, 2], [0, 1, 0, 1, 0, 1], [0, 0, 0, 0, 0, 0]], names=['L1', 'L2', 'L0']) expected = Series(np.arange(6), index=e_idx) assert_series_equal(result, expected) result = s.reorder_levels([0, 0, 0]) e_idx = MultiIndex(levels=[['bar'], ['bar'], ['bar']], labels=[[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]], names=['L0', 'L0', 'L0']) expected = Series(range(6), index=e_idx) assert_series_equal(result, expected) result = s.reorder_levels(['L0', 'L0', 'L0']) assert_series_equal(result, expected)
mit
DBernardes/ProjetoECC
Eficiência_Quântica/Codigo/QE_calcFluxo.py
1
6677
#!/usr/bin/python # -*- coding: UTF-8 -*- """ Criado em 08 de Novembro de 2016 Laboratorio Nacional de Astrofisica, Brazil. @author: Denis Varise Bernardes & Eder Martioli Descricao: esta bibloteca possui as seguintes funcoes: GeraVetorFluxoCamera: esta funcao tem como entrada o header de uma imagem, o numero de imagens com o mesmo comprimento de onda e o ganho do CCD previamente medido; sua tarefa e fornecer a imagem, tempo de exposicao, o valor da mediana do background e valor do ganho de cada imagem para a funcao calcFluxo, que retornara o valor do fluxo do CCD, adicionando-o a um vetor. criaArqFluxoCamera: fornecido os vetores do fluxo da camera e desvio padrao do fluxo, esta funcao cria o arquivo Fluxocamera.dat, escrevendo o conteudo destes dois vetores em duas colunas. calcFluxo: dado os parametros: imagem, tempo de exposicao, medianBackground, stdBackground e ganho, esta funcao calculara o valor do fluxo de fotons para a regiao dentro de uma caixa de pixels. Para tanto, faz a chamada da funcao caixaPixels. caixaPixels: fornecida a imagen e os valores das coordenadas centrais de dimensao da caixa, retorna um array dos pixels internos a essa regiao. getVetorEtime: dado o numero de imagens com mesmo adquiridas para o mesmo comprimento de onda, retorna o valor do tempo de exposicao da lista de imagens. getDadosBackground: esta funcao faz a leitura dos dados do arquivo dadosBackground.dat gerado anteriormente, retornando dois vetores: mediana e desvio padrao do background. CalcErroDetector: esta funcao tem como proposito calcular a porcentagem do erro do detector para um dado comprimento de onda. O funcionamento desta funcao foi baseada na descricao do manual de operaçao do dispositivo (OL-750-HSD-301C, Optronic Laboratories, Inc.). FluxoRelativo: esta funcao faz o calculo do fluxo relativo entre o CCD e o detector; junto a isso, faz a correcao do valor obtido para a curva de calibracao do detector (realiza a leitura do arquivo da curva de calibracao do detector fornecido pela chamada da funcao LeArq_curvaCalibDetector). Faz a somatoria da variancia das imagens com a variancia do detector (obtido pela chamada da funcao CalcErroDetector), convertendo adicionando seu valor a um vetor. example: ./BackgroundCompleto.py --list=list """ __version__ = "1.0" __copyright__ = """ Copyright (c) ... All rights reserved. """ import astropy.io.fits as fits import numpy as np import os from math import sqrt, cos from scipy.interpolate import interp1d from QE_reduceImgs_readArq import LeArquivoReturnLista, LeArq_curvaCalibFiltroDensidade from QE_GraphLib import returnMax import matplotlib.pyplot as plt def GeraVetorFluxoCamera(header,ganho, tagDado, tagRef, lenPixel, Dfotometro, images_path): print('\nCalculando o fluxo total da camera \n') chdir = images_path + '\\' + 'Imagens_reduzidas' coordx = int(header['naxis1']/2) coordy = int(header['naxis2']/2) Cdimension = int(Dfotometro/(lenPixel*1e-3)) #dimensao do fotometro dividido pelo tamanho do pixel do CCD = numero de pixels necessarios para a dimensao da caixa de pixels. etime2 = getVetorEtime(tagDado, images_path) etime1 = getVetorEtime(tagRef, images_path) VetorStdDiff = getStdDiffImages(images_path) vetorFluxoCamera, i = [], 0 with open(chdir + '\\' + 'listaImagensReduzidas') as f: lista = f.read().splitlines() for img in lista: data = fits.getdata(chdir + '\\' + img) data = caixaPixels(data,(coordx,coordy,Cdimension)) fluxo = calcFluxo(data, etime2[i]-etime1[i], ganho) vetorFluxoCamera.append(fluxo) i+=1 f.close() criaArqFluxoCamera(vetorFluxoCamera, VetorStdDiff, images_path) def caixaPixels(imagem, tupla): #retira apenas uma caixa de pixels, dada as coordenadas (x,y) e seu tamanho xcoord = tupla[0] ycoord = tupla[1] dimension = int(tupla[2]/2) d = dimension imagem = imagem[xcoord-d:xcoord+d,ycoord-d:ycoord+d] return imagem def calcFluxo(data, etime, ganho): Somapixels = sum(sum(data))*ganho #soma dos valores dos pixels subt. do Background mediano fluxoImagem = Somapixels/etime #contagens totais pelo tempo de exposicao return fluxoImagem def FluxoRelativo(Fluxocamera,Fluxodetector, Stdcamera, Strespectro, nomeArq_CalibFiltroDensidade, images_path): vetorEQ, vetorSigmaTotal = [], [] Split_Str_espectro = Strespectro.split(',') Einicial = int(Split_Str_espectro[0]) Efinal = int(Split_Str_espectro[1]) step = int(Split_Str_espectro[2]) n = int((Efinal - Einicial)/step) + 1 espectro = np.linspace(Einicial, Efinal, n) VetorFiltroDensidade = LeArq_curvaCalibFiltroDensidade(nomeArq_CalibFiltroDensidade, n, images_path) for i in range(len(Fluxocamera)): h = 6.62607004e-34 c = 299792458 #m/s ErroPorcentDetector = CalcErroDetector(espectro[i]) #caso nao seja fornecido o nome do arquivo do filtro de densidade, a funcao retornara um vetor contendo apenas o valor 1. A = Fluxocamera[i]*100 B = VetorFiltroDensidade[i]*Fluxodetector[i]*espectro[i]*1e-9/(h*c) sigmaDetector = ErroPorcentDetector*B EQ = A/B #print(A/(VetorFiltroDensidade[i]*espectro[i]*1e-9/(h*c))/0.27) varianceTotal = EQ**2*((Stdcamera[i]/A)**2+(sigmaDetector/B)**2) vetorEQ.append(EQ) vetorSigmaTotal.append(sqrt(varianceTotal)) i+=1 return vetorEQ, vetorSigmaTotal def getVetorEtime(tagDado, images_path): arquivoListaImagens = tagDado+'List.txt' vetorEtime = [] listaImagens = LeArquivoReturnLista(arquivoListaImagens, images_path) for i in range(len(listaImagens)): header = fits.getheader(listaImagens[i]) vetorEtime.append(header['exposure']) return vetorEtime def getStdDiffImages(images_path): StdDiff = [] with open(images_path + '\\' + 'StdDiffImages') as arq: listaValues = arq.read().splitlines() for linha in listaValues[1:]: StdDiff.append(float(linha)) arq.close() return StdDiff def CalcErroDetector(Comp_onda): photodiodeError = 0 NIST_OLSD = 0.005 if 250< Comp_onda < 400: photodiodeError = 0.010 if 400< Comp_onda < 900: photodiodeError = 0.005 if 900< Comp_onda < 1000: photodiodeError = 0.022 if 1000< Comp_onda < 1100: photodiodeError = 0.022 ErroDetector = NIST_OLSD**2 + photodiodeError**2 return sqrt(ErroDetector) def criaArqFluxoCamera(VetorF, vetorSigma, images_path): nome = images_path + '\\' + 'Fluxo camera.dat' try: arq = open(nome, 'w') except: nome.remove() arq = open(nome, 'w') arq.write(' Fluxo (e/s) Sigma (e/s)\n') for i in range(len(VetorF)): arq.write('%e \t\t\t %f\n' %(VetorF[i], vetorSigma[i])) arq.close()
mit
jmargeta/scikit-learn
sklearn/utils/arpack.py
4
64317
""" This contains a copy of the future version of scipy.sparse.linalg.eigen.arpack.eigsh It's an upgraded wrapper of the ARPACK library which allows the use of shift-invert mode for symmetric matrices. Find a few eigenvectors and eigenvalues of a matrix. Uses ARPACK: http://www.caam.rice.edu/software/ARPACK/ """ # Wrapper implementation notes # # ARPACK Entry Points # ------------------- # The entry points to ARPACK are # - (s,d)seupd : single and double precision symmetric matrix # - (s,d,c,z)neupd: single,double,complex,double complex general matrix # This wrapper puts the *neupd (general matrix) interfaces in eigs() # and the *seupd (symmetric matrix) in eigsh(). # There is no Hermetian complex/double complex interface. # To find eigenvalues of a Hermetian matrix you # must use eigs() and not eigsh() # It might be desirable to handle the Hermetian case differently # and, for example, return real eigenvalues. # Number of eigenvalues returned and complex eigenvalues # ------------------------------------------------------ # The ARPACK nonsymmetric real and double interface (s,d)naupd return # eigenvalues and eigenvectors in real (float,double) arrays. # Since the eigenvalues and eigenvectors are, in general, complex # ARPACK puts the real and imaginary parts in consecutive entries # in real-valued arrays. This wrapper puts the real entries # into complex data types and attempts to return the requested eigenvalues # and eigenvectors. # Solver modes # ------------ # ARPACK and handle shifted and shift-inverse computations # for eigenvalues by providing a shift (sigma) and a solver. __docformat__ = "restructuredtext en" __all__ = ['eigs', 'eigsh', 'svds', 'ArpackError', 'ArpackNoConvergence'] from scipy.sparse.linalg.eigen.arpack import _arpack import numpy as np from scipy.sparse.linalg.interface import aslinearoperator, LinearOperator from scipy.sparse import identity, isspmatrix, isspmatrix_csr from scipy.linalg import lu_factor, lu_solve from scipy.sparse.sputils import isdense from scipy.sparse.linalg import gmres, splu import scipy from distutils.version import LooseVersion _type_conv = {'f': 's', 'd': 'd', 'F': 'c', 'D': 'z'} _ndigits = {'f': 5, 'd': 12, 'F': 5, 'D': 12} DNAUPD_ERRORS = { 0: "Normal exit.", 1: "Maximum number of iterations taken. " "All possible eigenvalues of OP has been found. IPARAM(5) " "returns the number of wanted converged Ritz values.", 2: "No longer an informational error. Deprecated starting " "with release 2 of ARPACK.", 3: "No shifts could be applied during a cycle of the " "Implicitly restarted Arnoldi iteration. One possibility " "is to increase the size of NCV relative to NEV. ", -1: "N must be positive.", -2: "NEV must be positive.", -3: "NCV-NEV >= 2 and less than or equal to N.", -4: "The maximum number of Arnoldi update iterations allowed " "must be greater than zero.", -5: " WHICH must be one of 'LM', 'SM', 'LR', 'SR', 'LI', 'SI'", -6: "BMAT must be one of 'I' or 'G'.", -7: "Length of private work array WORKL is not sufficient.", -8: "Error return from LAPACK eigenvalue calculation;", -9: "Starting vector is zero.", -10: "IPARAM(7) must be 1,2,3,4.", -11: "IPARAM(7) = 1 and BMAT = 'G' are incompatable.", -12: "IPARAM(1) must be equal to 0 or 1.", -13: "NEV and WHICH = 'BE' are incompatable.", -9999: "Could not build an Arnoldi factorization. " "IPARAM(5) returns the size of the current Arnoldi " "factorization. The user is advised to check that " "enough workspace and array storage has been allocated." } SNAUPD_ERRORS = DNAUPD_ERRORS ZNAUPD_ERRORS = DNAUPD_ERRORS.copy() ZNAUPD_ERRORS[-10] = "IPARAM(7) must be 1,2,3." CNAUPD_ERRORS = ZNAUPD_ERRORS DSAUPD_ERRORS = { 0: "Normal exit.", 1: "Maximum number of iterations taken. " "All possible eigenvalues of OP has been found.", 2: "No longer an informational error. Deprecated starting with " "release 2 of ARPACK.", 3: "No shifts could be applied during a cycle of the Implicitly " "restarted Arnoldi iteration. One possibility is to increase " "the size of NCV relative to NEV. ", -1: "N must be positive.", -2: "NEV must be positive.", -3: "NCV must be greater than NEV and less than or equal to N.", -4: "The maximum number of Arnoldi update iterations allowed " "must be greater than zero.", -5: "WHICH must be one of 'LM', 'SM', 'LA', 'SA' or 'BE'.", -6: "BMAT must be one of 'I' or 'G'.", -7: "Length of private work array WORKL is not sufficient.", -8: "Error return from trid. eigenvalue calculation; " "Informational error from LAPACK routine dsteqr .", -9: "Starting vector is zero.", -10: "IPARAM(7) must be 1,2,3,4,5.", -11: "IPARAM(7) = 1 and BMAT = 'G' are incompatable.", -12: "IPARAM(1) must be equal to 0 or 1.", -13: "NEV and WHICH = 'BE' are incompatable. ", -9999: "Could not build an Arnoldi factorization. " "IPARAM(5) returns the size of the current Arnoldi " "factorization. The user is advised to check that " "enough workspace and array storage has been allocated.", } SSAUPD_ERRORS = DSAUPD_ERRORS DNEUPD_ERRORS = { 0: "Normal exit.", 1: "The Schur form computed by LAPACK routine dlahqr " "could not be reordered by LAPACK routine dtrsen. " "Re-enter subroutine dneupd with IPARAM(5)NCV and " "increase the size of the arrays DR and DI to have " "dimension at least dimension NCV and allocate at least NCV " "columns for Z. NOTE: Not necessary if Z and V share " "the same space. Please notify the authors if this error" "occurs.", -1: "N must be positive.", -2: "NEV must be positive.", -3: "NCV-NEV >= 2 and less than or equal to N.", -5: "WHICH must be one of 'LM', 'SM', 'LR', 'SR', 'LI', 'SI'", -6: "BMAT must be one of 'I' or 'G'.", -7: "Length of private work WORKL array is not sufficient.", -8: "Error return from calculation of a real Schur form. " "Informational error from LAPACK routine dlahqr .", -9: "Error return from calculation of eigenvectors. " "Informational error from LAPACK routine dtrevc.", -10: "IPARAM(7) must be 1,2,3,4.", -11: "IPARAM(7) = 1 and BMAT = 'G' are incompatible.", -12: "HOWMNY = 'S' not yet implemented", -13: "HOWMNY must be one of 'A' or 'P' if RVEC = .true.", -14: "DNAUPD did not find any eigenvalues to sufficient " "accuracy.", -15: "DNEUPD got a different count of the number of converged " "Ritz values than DNAUPD got. This indicates the user " "probably made an error in passing data from DNAUPD to " "DNEUPD or that the data was modified before entering " "DNEUPD", } SNEUPD_ERRORS = DNEUPD_ERRORS.copy() SNEUPD_ERRORS[1] = ("The Schur form computed by LAPACK routine slahqr " "could not be reordered by LAPACK routine strsen . " "Re-enter subroutine dneupd with IPARAM(5)=NCV and " "increase the size of the arrays DR and DI to have " "dimension at least dimension NCV and allocate at least " "NCV columns for Z. NOTE: Not necessary if Z and V share " "the same space. Please notify the authors if this error " "occurs.") SNEUPD_ERRORS[-14] = ("SNAUPD did not find any eigenvalues to sufficient " "accuracy.") SNEUPD_ERRORS[-15] = ("SNEUPD got a different count of the number of " "converged Ritz values than SNAUPD got. This indicates " "the user probably made an error in passing data from " "SNAUPD to SNEUPD or that the data was modified before " "entering SNEUPD") ZNEUPD_ERRORS = {0: "Normal exit.", 1: "The Schur form computed by LAPACK routine csheqr " "could not be reordered by LAPACK routine ztrsen. " "Re-enter subroutine zneupd with IPARAM(5)=NCV and " "increase the size of the array D to have " "dimension at least dimension NCV and allocate at least " "NCV columns for Z. NOTE: Not necessary if Z and V share " "the same space. Please notify the authors if this error " "occurs.", -1: "N must be positive.", -2: "NEV must be positive.", -3: "NCV-NEV >= 1 and less than or equal to N.", -5: "WHICH must be one of 'LM', 'SM', 'LR', 'SR', 'LI', 'SI'", -6: "BMAT must be one of 'I' or 'G'.", -7: "Length of private work WORKL array is not sufficient.", -8: "Error return from LAPACK eigenvalue calculation. " "This should never happened.", -9: "Error return from calculation of eigenvectors. " "Informational error from LAPACK routine ztrevc.", -10: "IPARAM(7) must be 1,2,3", -11: "IPARAM(7) = 1 and BMAT = 'G' are incompatible.", -12: "HOWMNY = 'S' not yet implemented", -13: "HOWMNY must be one of 'A' or 'P' if RVEC = .true.", -14: "ZNAUPD did not find any eigenvalues to sufficient " "accuracy.", -15: "ZNEUPD got a different count of the number of " "converged Ritz values than ZNAUPD got. This " "indicates the user probably made an error in passing " "data from ZNAUPD to ZNEUPD or that the data was " "modified before entering ZNEUPD"} CNEUPD_ERRORS = ZNEUPD_ERRORS.copy() CNEUPD_ERRORS[-14] = ("CNAUPD did not find any eigenvalues to sufficient " "accuracy.") CNEUPD_ERRORS[-15] = ("CNEUPD got a different count of the number of " "converged Ritz values than CNAUPD got. This indicates " "the user probably made an error in passing data from " "CNAUPD to CNEUPD or that the data was modified before " "entering CNEUPD") DSEUPD_ERRORS = { 0: "Normal exit.", -1: "N must be positive.", -2: "NEV must be positive.", -3: "NCV must be greater than NEV and less than or equal to N.", -5: "WHICH must be one of 'LM', 'SM', 'LA', 'SA' or 'BE'.", -6: "BMAT must be one of 'I' or 'G'.", -7: "Length of private work WORKL array is not sufficient.", -8: ("Error return from trid. eigenvalue calculation; " "Information error from LAPACK routine dsteqr."), -9: "Starting vector is zero.", -10: "IPARAM(7) must be 1,2,3,4,5.", -11: "IPARAM(7) = 1 and BMAT = 'G' are incompatible.", -12: "NEV and WHICH = 'BE' are incompatible.", -14: "DSAUPD did not find any eigenvalues to sufficient accuracy.", -15: "HOWMNY must be one of 'A' or 'S' if RVEC = .true.", -16: "HOWMNY = 'S' not yet implemented", -17: ("DSEUPD got a different count of the number of converged " "Ritz values than DSAUPD got. This indicates the user " "probably made an error in passing data from DSAUPD to " "DSEUPD or that the data was modified before entering " "DSEUPD.") } SSEUPD_ERRORS = DSEUPD_ERRORS.copy() SSEUPD_ERRORS[-14] = ("SSAUPD did not find any eigenvalues " "to sufficient accuracy.") SSEUPD_ERRORS[-17] = ("SSEUPD got a different count of the number of " "converged " "Ritz values than SSAUPD got. This indicates the user " "probably made an error in passing data from SSAUPD to " "SSEUPD or that the data was modified before entering " "SSEUPD.") _SAUPD_ERRORS = {'d': DSAUPD_ERRORS, 's': SSAUPD_ERRORS} _NAUPD_ERRORS = {'d': DNAUPD_ERRORS, 's': SNAUPD_ERRORS, 'z': ZNAUPD_ERRORS, 'c': CNAUPD_ERRORS} _SEUPD_ERRORS = {'d': DSEUPD_ERRORS, 's': SSEUPD_ERRORS} _NEUPD_ERRORS = {'d': DNEUPD_ERRORS, 's': SNEUPD_ERRORS, 'z': ZNEUPD_ERRORS, 'c': CNEUPD_ERRORS} # accepted values of parameter WHICH in _SEUPD _SEUPD_WHICH = ['LM', 'SM', 'LA', 'SA', 'BE'] # accepted values of parameter WHICH in _NAUPD _NEUPD_WHICH = ['LM', 'SM', 'LR', 'SR', 'LI', 'SI'] class ArpackError(RuntimeError): """ ARPACK error """ def __init__(self, info, infodict=_NAUPD_ERRORS): msg = infodict.get(info, "Unknown error") RuntimeError.__init__(self, "ARPACK error %d: %s" % (info, msg)) class ArpackNoConvergence(ArpackError): """ ARPACK iteration did not converge Attributes ---------- eigenvalues : ndarray Partial result. Converged eigenvalues. eigenvectors : ndarray Partial result. Converged eigenvectors. """ def __init__(self, msg, eigenvalues, eigenvectors): ArpackError.__init__(self, -1, {-1: msg}) self.eigenvalues = eigenvalues self.eigenvectors = eigenvectors class _ArpackParams(object): def __init__(self, n, k, tp, mode=1, sigma=None, ncv=None, v0=None, maxiter=None, which="LM", tol=0): if k <= 0: raise ValueError("k must be positive, k=%d" % k) if maxiter is None: maxiter = n * 10 if maxiter <= 0: raise ValueError("maxiter must be positive, maxiter=%d" % maxiter) if tp not in 'fdFD': raise ValueError("matrix type must be 'f', 'd', 'F', or 'D'") if v0 is not None: # ARPACK overwrites its initial resid, make a copy self.resid = np.array(v0, copy=True) info = 1 else: self.resid = np.zeros(n, tp) info = 0 if sigma is None: #sigma not used self.sigma = 0 else: self.sigma = sigma if ncv is None: ncv = 2 * k + 1 ncv = min(ncv, n) self.v = np.zeros((n, ncv), tp) # holds Ritz vectors self.iparam = np.zeros(11, "int") # set solver mode and parameters ishfts = 1 self.mode = mode self.iparam[0] = ishfts self.iparam[2] = maxiter self.iparam[3] = 1 self.iparam[6] = mode self.n = n self.tol = tol self.k = k self.maxiter = maxiter self.ncv = ncv self.which = which self.tp = tp self.info = info self.converged = False self.ido = 0 def _raise_no_convergence(self): msg = "No convergence (%d iterations, %d/%d eigenvectors converged)" k_ok = self.iparam[4] num_iter = self.iparam[2] try: ev, vec = self.extract(True) except ArpackError as err: msg = "%s [%s]" % (msg, err) ev = np.zeros((0,)) vec = np.zeros((self.n, 0)) k_ok = 0 raise ArpackNoConvergence(msg % (num_iter, k_ok, self.k), ev, vec) class _SymmetricArpackParams(_ArpackParams): def __init__(self, n, k, tp, matvec, mode=1, M_matvec=None, Minv_matvec=None, sigma=None, ncv=None, v0=None, maxiter=None, which="LM", tol=0): # The following modes are supported: # mode = 1: # Solve the standard eigenvalue problem: # A*x = lambda*x : # A - symmetric # Arguments should be # matvec = left multiplication by A # M_matvec = None [not used] # Minv_matvec = None [not used] # # mode = 2: # Solve the general eigenvalue problem: # A*x = lambda*M*x # A - symmetric # M - symmetric positive definite # Arguments should be # matvec = left multiplication by A # M_matvec = left multiplication by M # Minv_matvec = left multiplication by M^-1 # # mode = 3: # Solve the general eigenvalue problem in shift-invert mode: # A*x = lambda*M*x # A - symmetric # M - symmetric positive semi-definite # Arguments should be # matvec = None [not used] # M_matvec = left multiplication by M # or None, if M is the identity # Minv_matvec = left multiplication by [A-sigma*M]^-1 # # mode = 4: # Solve the general eigenvalue problem in Buckling mode: # A*x = lambda*AG*x # A - symmetric positive semi-definite # AG - symmetric indefinite # Arguments should be # matvec = left multiplication by A # M_matvec = None [not used] # Minv_matvec = left multiplication by [A-sigma*AG]^-1 # # mode = 5: # Solve the general eigenvalue problem in Cayley-transformed mode: # A*x = lambda*M*x # A - symmetric # M - symmetric positive semi-definite # Arguments should be # matvec = left multiplication by A # M_matvec = left multiplication by M # or None, if M is the identity # Minv_matvec = left multiplication by [A-sigma*M]^-1 if mode == 1: if matvec is None: raise ValueError("matvec must be specified for mode=1") if M_matvec is not None: raise ValueError("M_matvec cannot be specified for mode=1") if Minv_matvec is not None: raise ValueError("Minv_matvec cannot be specified for mode=1") self.OP = matvec self.B = lambda x: x self.bmat = 'I' elif mode == 2: if matvec is None: raise ValueError("matvec must be specified for mode=2") if M_matvec is None: raise ValueError("M_matvec must be specified for mode=2") if Minv_matvec is None: raise ValueError("Minv_matvec must be specified for mode=2") self.OP = lambda x: Minv_matvec(matvec(x)) self.OPa = Minv_matvec self.OPb = matvec self.B = M_matvec self.bmat = 'G' elif mode == 3: if matvec is not None: raise ValueError("matvec must not be specified for mode=3") if Minv_matvec is None: raise ValueError("Minv_matvec must be specified for mode=3") if M_matvec is None: self.OP = Minv_matvec self.OPa = Minv_matvec self.B = lambda x: x self.bmat = 'I' else: self.OP = lambda x: Minv_matvec(M_matvec(x)) self.OPa = Minv_matvec self.B = M_matvec self.bmat = 'G' elif mode == 4: if matvec is None: raise ValueError("matvec must be specified for mode=4") if M_matvec is not None: raise ValueError("M_matvec must not be specified for mode=4") if Minv_matvec is None: raise ValueError("Minv_matvec must be specified for mode=4") self.OPa = Minv_matvec self.OP = lambda x: self.OPa(matvec(x)) self.B = matvec self.bmat = 'G' elif mode == 5: if matvec is None: raise ValueError("matvec must be specified for mode=5") if Minv_matvec is None: raise ValueError("Minv_matvec must be specified for mode=5") self.OPa = Minv_matvec self.A_matvec = matvec if M_matvec is None: self.OP = lambda x: Minv_matvec(matvec(x) + sigma * x) self.B = lambda x: x self.bmat = 'I' else: self.OP = lambda x: Minv_matvec(matvec(x) + sigma * M_matvec(x)) self.B = M_matvec self.bmat = 'G' else: raise ValueError("mode=%i not implemented" % mode) if which not in _SEUPD_WHICH: raise ValueError("which must be one of %s" % ' '.join(_SEUPD_WHICH)) if k >= n: raise ValueError("k must be less than rank(A), k=%d" % k) _ArpackParams.__init__(self, n, k, tp, mode, sigma, ncv, v0, maxiter, which, tol) if self.ncv > n or self.ncv <= k: raise ValueError("ncv must be k<ncv<=n, ncv=%s" % self.ncv) self.workd = np.zeros(3 * n, self.tp) self.workl = np.zeros(self.ncv * (self.ncv + 8), self.tp) ltr = _type_conv[self.tp] if ltr not in ["s", "d"]: raise ValueError("Input matrix is not real-valued.") self._arpack_solver = _arpack.__dict__[ltr + 'saupd'] self._arpack_extract = _arpack.__dict__[ltr + 'seupd'] self.iterate_infodict = _SAUPD_ERRORS[ltr] self.extract_infodict = _SEUPD_ERRORS[ltr] self.ipntr = np.zeros(11, "int") def iterate(self): self.ido, self.resid, self.v, self.iparam, self.ipntr, self.info = \ self._arpack_solver(self.ido, self.bmat, self.which, self.k, self.tol, self.resid, self.v, self.iparam, self.ipntr, self.workd, self.workl, self.info) xslice = slice(self.ipntr[0] - 1, self.ipntr[0] - 1 + self.n) yslice = slice(self.ipntr[1] - 1, self.ipntr[1] - 1 + self.n) if self.ido == -1: # initialization self.workd[yslice] = self.OP(self.workd[xslice]) elif self.ido == 1: # compute y = Op*x if self.mode == 1: self.workd[yslice] = self.OP(self.workd[xslice]) elif self.mode == 2: self.workd[xslice] = self.OPb(self.workd[xslice]) self.workd[yslice] = self.OPa(self.workd[xslice]) elif self.mode == 5: Bxslice = slice(self.ipntr[2] - 1, self.ipntr[2] - 1 + self.n) Ax = self.A_matvec(self.workd[xslice]) self.workd[yslice] = self.OPa(Ax + (self.sigma * self.workd[Bxslice])) else: Bxslice = slice(self.ipntr[2] - 1, self.ipntr[2] - 1 + self.n) self.workd[yslice] = self.OPa(self.workd[Bxslice]) elif self.ido == 2: self.workd[yslice] = self.B(self.workd[xslice]) elif self.ido == 3: raise ValueError("ARPACK requested user shifts. Assure ISHIFT==0") else: self.converged = True if self.info == 0: pass elif self.info == 1: self._raise_no_convergence() else: raise ArpackError(self.info, infodict=self.iterate_infodict) def extract(self, return_eigenvectors): rvec = return_eigenvectors ierr = 0 howmny = 'A' # return all eigenvectors sselect = np.zeros(self.ncv, 'int') # unused d, z, ierr = self._arpack_extract(rvec, howmny, sselect, self.sigma, self.bmat, self.which, self.k, self.tol, self.resid, self.v, self.iparam[0:7], self.ipntr, self.workd[0:2 * self.n], self.workl, ierr) if ierr != 0: raise ArpackError(ierr, infodict=self.extract_infodict) k_ok = self.iparam[4] d = d[:k_ok] z = z[:, :k_ok] if return_eigenvectors: return d, z else: return d class _UnsymmetricArpackParams(_ArpackParams): def __init__(self, n, k, tp, matvec, mode=1, M_matvec=None, Minv_matvec=None, sigma=None, ncv=None, v0=None, maxiter=None, which="LM", tol=0): # The following modes are supported: # mode = 1: # Solve the standard eigenvalue problem: # A*x = lambda*x # A - square matrix # Arguments should be # matvec = left multiplication by A # M_matvec = None [not used] # Minv_matvec = None [not used] # # mode = 2: # Solve the generalized eigenvalue problem: # A*x = lambda*M*x # A - square matrix # M - symmetric, positive semi-definite # Arguments should be # matvec = left multiplication by A # M_matvec = left multiplication by M # Minv_matvec = left multiplication by M^-1 # # mode = 3,4: # Solve the general eigenvalue problem in shift-invert mode: # A*x = lambda*M*x # A - square matrix # M - symmetric, positive semi-definite # Arguments should be # matvec = None [not used] # M_matvec = left multiplication by M # or None, if M is the identity # Minv_matvec = left multiplication by [A-sigma*M]^-1 # if A is real and mode==3, use the real part of Minv_matvec # if A is real and mode==4, use the imag part of Minv_matvec # if A is complex and mode==3, # use real and imag parts of Minv_matvec if mode == 1: if matvec is None: raise ValueError("matvec must be specified for mode=1") if M_matvec is not None: raise ValueError("M_matvec cannot be specified for mode=1") if Minv_matvec is not None: raise ValueError("Minv_matvec cannot be specified for mode=1") self.OP = matvec self.B = lambda x: x self.bmat = 'I' elif mode == 2: if matvec is None: raise ValueError("matvec must be specified for mode=2") if M_matvec is None: raise ValueError("M_matvec must be specified for mode=2") if Minv_matvec is None: raise ValueError("Minv_matvec must be specified for mode=2") self.OP = lambda x: Minv_matvec(matvec(x)) self.OPa = Minv_matvec self.OPb = matvec self.B = M_matvec self.bmat = 'G' elif mode in (3, 4): if matvec is None: raise ValueError("matvec must be specified " "for mode in (3,4)") if Minv_matvec is None: raise ValueError("Minv_matvec must be specified " "for mode in (3,4)") self.matvec = matvec if tp in 'DF': # complex type if mode == 3: self.OPa = Minv_matvec else: raise ValueError("mode=4 invalid for complex A") else: # real type if mode == 3: self.OPa = lambda x: np.real(Minv_matvec(x)) else: self.OPa = lambda x: np.imag(Minv_matvec(x)) if M_matvec is None: self.B = lambda x: x self.bmat = 'I' self.OP = self.OPa else: self.B = M_matvec self.bmat = 'G' self.OP = lambda x: self.OPa(M_matvec(x)) else: raise ValueError("mode=%i not implemented" % mode) if which not in _NEUPD_WHICH: raise ValueError("Parameter which must be one of %s" % ' '.join(_NEUPD_WHICH)) if k >= n - 1: raise ValueError("k must be less than rank(A)-1, k=%d" % k) _ArpackParams.__init__(self, n, k, tp, mode, sigma, ncv, v0, maxiter, which, tol) if self.ncv > n or self.ncv <= k + 1: raise ValueError("ncv must be k+1<ncv<=n, ncv=%s" % self.ncv) self.workd = np.zeros(3 * n, self.tp) self.workl = np.zeros(3 * self.ncv * (self.ncv + 2), self.tp) ltr = _type_conv[self.tp] self._arpack_solver = _arpack.__dict__[ltr + 'naupd'] self._arpack_extract = _arpack.__dict__[ltr + 'neupd'] self.iterate_infodict = _NAUPD_ERRORS[ltr] self.extract_infodict = _NEUPD_ERRORS[ltr] self.ipntr = np.zeros(14, "int") if self.tp in 'FD': self.rwork = np.zeros(self.ncv, self.tp.lower()) else: self.rwork = None def iterate(self): if self.tp in 'fd': self.ido, self.resid, self.v, self.iparam, self.ipntr, self.info =\ self._arpack_solver(self.ido, self.bmat, self.which, self.k, self.tol, self.resid, self.v, self.iparam, self.ipntr, self.workd, self.workl, self.info) else: self.ido, self.resid, self.v, self.iparam, self.ipntr, self.info =\ self._arpack_solver(self.ido, self.bmat, self.which, self.k, self.tol, self.resid, self.v, self.iparam, self.ipntr, self.workd, self.workl, self.rwork, self.info) xslice = slice(self.ipntr[0] - 1, self.ipntr[0] - 1 + self.n) yslice = slice(self.ipntr[1] - 1, self.ipntr[1] - 1 + self.n) if self.ido == -1: # initialization self.workd[yslice] = self.OP(self.workd[xslice]) elif self.ido == 1: # compute y = Op*x if self.mode in (1, 2): self.workd[yslice] = self.OP(self.workd[xslice]) else: Bxslice = slice(self.ipntr[2] - 1, self.ipntr[2] - 1 + self.n) self.workd[yslice] = self.OPa(self.workd[Bxslice]) elif self.ido == 2: self.workd[yslice] = self.B(self.workd[xslice]) elif self.ido == 3: raise ValueError("ARPACK requested user shifts. Assure ISHIFT==0") else: self.converged = True if self.info == 0: pass elif self.info == 1: self._raise_no_convergence() else: raise ArpackError(self.info, infodict=self.iterate_infodict) def extract(self, return_eigenvectors): k, n = self.k, self.n ierr = 0 howmny = 'A' # return all eigenvectors sselect = np.zeros(self.ncv, 'int') # unused sigmar = np.real(self.sigma) sigmai = np.imag(self.sigma) workev = np.zeros(3 * self.ncv, self.tp) if self.tp in 'fd': dr = np.zeros(k + 1, self.tp) di = np.zeros(k + 1, self.tp) zr = np.zeros((n, k + 1), self.tp) dr, di, zr, ierr = \ self._arpack_extract( return_eigenvectors, howmny, sselect, sigmar, sigmai, workev, self.bmat, self.which, k, self.tol, self.resid, self.v, self.iparam, self.ipntr, self.workd, self.workl, self.info) if ierr != 0: raise ArpackError(ierr, infodict=self.extract_infodict) nreturned = self.iparam[4] # number of good eigenvalues returned # Build complex eigenvalues from real and imaginary parts d = dr + 1.0j * di # Arrange the eigenvectors: complex eigenvectors are stored as # real,imaginary in consecutive columns z = zr.astype(self.tp.upper()) # The ARPACK nonsymmetric real and double interface (s,d)naupd # return eigenvalues and eigenvectors in real (float,double) # arrays. # Efficiency: this should check that return_eigenvectors == True # before going through this construction. if sigmai == 0: i = 0 while i <= k: # check if complex if abs(d[i].imag) != 0: # this is a complex conjugate pair with eigenvalues # in consecutive columns if i < k: z[:, i] = zr[:, i] + 1.0j * zr[:, i + 1] z[:, i + 1] = z[:, i].conjugate() i += 1 else: #last eigenvalue is complex: the imaginary part of # the eigenvector has not been returned #this can only happen if nreturned > k, so we'll # throw out this case. nreturned -= 1 i += 1 else: # real matrix, mode 3 or 4, imag(sigma) is nonzero: # see remark 3 in <s,d>neupd.f # Build complex eigenvalues from real and imaginary parts i = 0 while i <= k: if abs(d[i].imag) == 0: d[i] = np.dot(zr[:, i], self.matvec(zr[:, i])) else: if i < k: z[:, i] = zr[:, i] + 1.0j * zr[:, i + 1] z[:, i + 1] = z[:, i].conjugate() d[i] = ((np.dot(zr[:, i], self.matvec(zr[:, i])) + np.dot(zr[:, i + 1], self.matvec(zr[:, i + 1]))) + 1j * (np.dot(zr[:, i], self.matvec(zr[:, i + 1])) - np.dot(zr[:, i + 1], self.matvec(zr[:, i])))) d[i + 1] = d[i].conj() i += 1 else: #last eigenvalue is complex: the imaginary part of # the eigenvector has not been returned #this can only happen if nreturned > k, so we'll # throw out this case. nreturned -= 1 i += 1 # Now we have k+1 possible eigenvalues and eigenvectors # Return the ones specified by the keyword "which" if nreturned <= k: # we got less or equal as many eigenvalues we wanted d = d[:nreturned] z = z[:, :nreturned] else: # we got one extra eigenvalue (likely a cc pair, but which?) # cut at approx precision for sorting rd = np.round(d, decimals=_ndigits[self.tp]) if self.which in ['LR', 'SR']: ind = np.argsort(rd.real) elif self.which in ['LI', 'SI']: # for LI,SI ARPACK returns largest,smallest # abs(imaginary) why? ind = np.argsort(abs(rd.imag)) else: ind = np.argsort(abs(rd)) if self.which in ['LR', 'LM', 'LI']: d = d[ind[-k:]] z = z[:, ind[-k:]] if self.which in ['SR', 'SM', 'SI']: d = d[ind[:k]] z = z[:, ind[:k]] else: # complex is so much simpler... d, z, ierr =\ self._arpack_extract( return_eigenvectors, howmny, sselect, self.sigma, workev, self.bmat, self.which, k, self.tol, self.resid, self.v, self.iparam, self.ipntr, self.workd, self.workl, self.rwork, ierr) if ierr != 0: raise ArpackError(ierr, infodict=self.extract_infodict) k_ok = self.iparam[4] d = d[:k_ok] z = z[:, :k_ok] if return_eigenvectors: return d, z else: return d def _aslinearoperator_with_dtype(m): m = aslinearoperator(m) if not hasattr(m, 'dtype'): x = np.zeros(m.shape[1]) m.dtype = (m * x).dtype return m class SpLuInv(LinearOperator): """ SpLuInv: helper class to repeatedly solve M*x=b using a sparse LU-decopposition of M """ def __init__(self, M): self.M_lu = splu(M) LinearOperator.__init__(self, M.shape, self._matvec, dtype=M.dtype) self.isreal = not np.issubdtype(self.dtype, np.complexfloating) def _matvec(self, x): # careful here: splu.solve will throw away imaginary # part of x if M is real if self.isreal and np.issubdtype(x.dtype, np.complexfloating): return (self.M_lu.solve(np.real(x)) + 1j * self.M_lu.solve(np.imag(x))) else: return self.M_lu.solve(x) class LuInv(LinearOperator): """ LuInv: helper class to repeatedly solve M*x=b using an LU-decomposition of M """ def __init__(self, M): self.M_lu = lu_factor(M) LinearOperator.__init__(self, M.shape, self._matvec, dtype=M.dtype) def _matvec(self, x): return lu_solve(self.M_lu, x) class IterInv(LinearOperator): """ IterInv: helper class to repeatedly solve M*x=b using an iterative method. """ def __init__(self, M, ifunc=gmres, tol=0): if tol <= 0: # when tol=0, ARPACK uses machine tolerance as calculated # by LAPACK's _LAMCH function. We should match this tol = np.finfo(M.dtype).eps self.M = M self.ifunc = ifunc self.tol = tol if hasattr(M, 'dtype'): dtype = M.dtype else: x = np.zeros(M.shape[1]) dtype = (M * x).dtype LinearOperator.__init__(self, M.shape, self._matvec, dtype=dtype) def _matvec(self, x): b, info = self.ifunc(self.M, x, tol=self.tol) if info != 0: raise ValueError("Error in inverting M: function " "%s did not converge (info = %i)." % (self.ifunc.__name__, info)) return b class IterOpInv(LinearOperator): """ IterOpInv: helper class to repeatedly solve [A-sigma*M]*x = b using an iterative method """ def __init__(self, A, M, sigma, ifunc=gmres, tol=0): if tol <= 0: # when tol=0, ARPACK uses machine tolerance as calculated # by LAPACK's _LAMCH function. We should match this tol = np.finfo(A.dtype).eps self.A = A self.M = M self.sigma = sigma self.ifunc = ifunc self.tol = tol x = np.zeros(A.shape[1]) if M is None: dtype = self.mult_func_M_None(x).dtype self.OP = LinearOperator(self.A.shape, self.mult_func_M_None, dtype=dtype) else: dtype = self.mult_func(x).dtype self.OP = LinearOperator(self.A.shape, self.mult_func, dtype=dtype) LinearOperator.__init__(self, A.shape, self._matvec, dtype=dtype) def mult_func(self, x): return self.A.matvec(x) - self.sigma * self.M.matvec(x) def mult_func_M_None(self, x): return self.A.matvec(x) - self.sigma * x def _matvec(self, x): b, info = self.ifunc(self.OP, x, tol=self.tol) if info != 0: raise ValueError("Error in inverting [A-sigma*M]: function " "%s did not converge (info = %i)." % (self.ifunc.__name__, info)) return b def get_inv_matvec(M, symmetric=False, tol=0): if isdense(M): return LuInv(M).matvec elif isspmatrix(M): if isspmatrix_csr(M) and symmetric: M = M.T return SpLuInv(M).matvec else: return IterInv(M, tol=tol).matvec def get_OPinv_matvec(A, M, sigma, symmetric=False, tol=0): if sigma == 0: return get_inv_matvec(A, symmetric=symmetric, tol=tol) if M is None: #M is the identity matrix if isdense(A): if (np.issubdtype(A.dtype, np.complexfloating) or np.imag(sigma) == 0): A = np.copy(A) else: A = A + 0j A.flat[::A.shape[1] + 1] -= sigma return LuInv(A).matvec elif isspmatrix(A): A = A - sigma * identity(A.shape[0]) if symmetric and isspmatrix_csr(A): A = A.T return SpLuInv(A.tocsc()).matvec else: return IterOpInv(_aslinearoperator_with_dtype(A), M, sigma, tol=tol).matvec else: if ((not isdense(A) and not isspmatrix(A)) or (not isdense(M) and not isspmatrix(M))): return IterOpInv(_aslinearoperator_with_dtype(A), _aslinearoperator_with_dtype(M), sigma, tol=tol).matvec elif isdense(A) or isdense(M): return LuInv(A - sigma * M).matvec else: OP = A - sigma * M if symmetric and isspmatrix_csr(OP): OP = OP.T return SpLuInv(OP.tocsc()).matvec def _eigs(A, k=6, M=None, sigma=None, which='LM', v0=None, ncv=None, maxiter=None, tol=0, return_eigenvectors=True, Minv=None, OPinv=None, OPpart=None): """ Find k eigenvalues and eigenvectors of the square matrix A. Solves ``A * x[i] = w[i] * x[i]``, the standard eigenvalue problem for w[i] eigenvalues with corresponding eigenvectors x[i]. If M is specified, solves ``A * x[i] = w[i] * M * x[i]``, the generalized eigenvalue problem for w[i] eigenvalues with corresponding eigenvectors x[i] Parameters ---------- A : An N x N matrix, array, sparse matrix, or LinearOperator representing the operation A * x, where A is a real or complex square matrix. k : integer The number of eigenvalues and eigenvectors desired. `k` must be smaller than N. It is not possible to compute all eigenvectors of a matrix. Returns ------- w : array Array of k eigenvalues. v : array An array of `k` eigenvectors. ``v[:, i]`` is the eigenvector corresponding to the eigenvalue w[i]. Other Parameters ---------------- M : An N x N matrix, array, sparse matrix, or LinearOperator representing the operation M*x for the generalized eigenvalue problem ``A * x = w * M * x`` M must represent a real symmetric matrix. For best results, M should be of the same type as A. Additionally: * If sigma==None, M is positive definite * If sigma is specified, M is positive semi-definite If sigma==None, eigs requires an operator to compute the solution of the linear equation `M * x = b`. This is done internally via a (sparse) LU decomposition for an explicit matrix M, or via an iterative solver for a general linear operator. Alternatively, the user can supply the matrix or operator Minv, which gives x = Minv * b = M^-1 * b sigma : real or complex Find eigenvalues near sigma using shift-invert mode. This requires an operator to compute the solution of the linear system `[A - sigma * M] * x = b`, where M is the identity matrix if unspecified. This is computed internally via a (sparse) LU decomposition for explicit matrices A & M, or via an iterative solver if either A or M is a general linear operator. Alternatively, the user can supply the matrix or operator OPinv, which gives x = OPinv * b = [A - sigma * M]^-1 * b. For a real matrix A, shift-invert can either be done in imaginary mode or real mode, specified by the parameter OPpart ('r' or 'i'). Note that when sigma is specified, the keyword 'which' (below) refers to the shifted eigenvalues w'[i] where: * If A is real and OPpart == 'r' (default), w'[i] = 1/2 * [ 1/(w[i]-sigma) + 1/(w[i]-conj(sigma)) ] * If A is real and OPpart == 'i', w'[i] = 1/2i * [ 1/(w[i]-sigma) - 1/(w[i]-conj(sigma)) ] * If A is complex, w'[i] = 1/(w[i]-sigma) v0 : array Starting vector for iteration. ncv : integer The number of Lanczos vectors generated `ncv` must be greater than `k`; it is recommended that ``ncv > 2*k``. which : string ['LM' | 'SM' | 'LR' | 'SR' | 'LI' | 'SI'] Which `k` eigenvectors and eigenvalues to find: - 'LM' : largest magnitude - 'SM' : smallest magnitude - 'LR' : largest real part - 'SR' : smallest real part - 'LI' : largest imaginary part - 'SI' : smallest imaginary part When sigma != None, 'which' refers to the shifted eigenvalues w'[i] (see discussion in 'sigma', above). ARPACK is generally better at finding large values than small values. If small eigenvalues are desired, consider using shift-invert mode for better performance. maxiter : integer Maximum number of Arnoldi update iterations allowed tol : float Relative accuracy for eigenvalues (stopping criterion) The default value of 0 implies machine precision. return_eigenvectors : boolean Return eigenvectors (True) in addition to eigenvalues Minv : N x N matrix, array, sparse matrix, or linear operator See notes in M, above. OPinv : N x N matrix, array, sparse matrix, or linear operator See notes in sigma, above. OPpart : 'r' or 'i'. See notes in sigma, above Raises ------ ArpackNoConvergence When the requested convergence is not obtained. The currently converged eigenvalues and eigenvectors can be found as ``eigenvalues`` and ``eigenvectors`` attributes of the exception object. See Also -------- eigsh : eigenvalues and eigenvectors for symmetric matrix A svds : singular value decomposition for a matrix A Examples -------- Find 6 eigenvectors of the identity matrix: >>> from sklearn.utils.arpack import eigs >>> id = np.identity(13) >>> vals, vecs = eigs(id, k=6) >>> vals array([ 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j]) >>> vecs.shape (13, 6) Notes ----- This function is a wrapper to the ARPACK [1]_ SNEUPD, DNEUPD, CNEUPD, ZNEUPD, functions which use the Implicitly Restarted Arnoldi Method to find the eigenvalues and eigenvectors [2]_. References ---------- .. [1] ARPACK Software, http://www.caam.rice.edu/software/ARPACK/ .. [2] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK USERS GUIDE: Solution of Large Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods. SIAM, Philadelphia, PA, 1998. """ if A.shape[0] != A.shape[1]: raise ValueError('expected square matrix (shape=%s)' % (A.shape,)) if M is not None: if M.shape != A.shape: raise ValueError('wrong M dimensions %s, should be %s' % (M.shape, A.shape)) if np.dtype(M.dtype).char.lower() != np.dtype(A.dtype).char.lower(): import warnings warnings.warn('M does not have the same type precision as A. ' 'This may adversely affect ARPACK convergence') n = A.shape[0] if k <= 0 or k >= n: raise ValueError("k must be between 1 and rank(A)-1") if sigma is None: matvec = _aslinearoperator_with_dtype(A).matvec if OPinv is not None: raise ValueError("OPinv should not be specified " "with sigma = None.") if OPpart is not None: raise ValueError("OPpart should not be specified with " "sigma = None or complex A") if M is None: #standard eigenvalue problem mode = 1 M_matvec = None Minv_matvec = None if Minv is not None: raise ValueError("Minv should not be " "specified with M = None.") else: #general eigenvalue problem mode = 2 if Minv is None: Minv_matvec = get_inv_matvec(M, symmetric=True, tol=tol) else: Minv = _aslinearoperator_with_dtype(Minv) Minv_matvec = Minv.matvec M_matvec = _aslinearoperator_with_dtype(M).matvec else: #sigma is not None: shift-invert mode if np.issubdtype(A.dtype, np.complexfloating): if OPpart is not None: raise ValueError("OPpart should not be specified " "with sigma=None or complex A") mode = 3 elif OPpart is None or OPpart.lower() == 'r': mode = 3 elif OPpart.lower() == 'i': if np.imag(sigma) == 0: raise ValueError("OPpart cannot be 'i' if sigma is real") mode = 4 else: raise ValueError("OPpart must be one of ('r','i')") matvec = _aslinearoperator_with_dtype(A).matvec if Minv is not None: raise ValueError("Minv should not be specified when sigma is") if OPinv is None: Minv_matvec = get_OPinv_matvec(A, M, sigma, symmetric=False, tol=tol) else: OPinv = _aslinearoperator_with_dtype(OPinv) Minv_matvec = OPinv.matvec if M is None: M_matvec = None else: M_matvec = _aslinearoperator_with_dtype(M).matvec params = _UnsymmetricArpackParams(n, k, A.dtype.char, matvec, mode, M_matvec, Minv_matvec, sigma, ncv, v0, maxiter, which, tol) while not params.converged: params.iterate() return params.extract(return_eigenvectors) def _eigsh(A, k=6, M=None, sigma=None, which='LM', v0=None, ncv=None, maxiter=None, tol=0, return_eigenvectors=True, Minv=None, OPinv=None, mode='normal'): """ Find k eigenvalues and eigenvectors of the real symmetric square matrix or complex hermitian matrix A. Solves ``A * x[i] = w[i] * x[i]``, the standard eigenvalue problem for w[i] eigenvalues with corresponding eigenvectors x[i]. If M is specified, solves ``A * x[i] = w[i] * M * x[i]``, the generalized eigenvalue problem for w[i] eigenvalues with corresponding eigenvectors x[i] Parameters ---------- A : An N x N matrix, array, sparse matrix, or LinearOperator representing the operation A * x, where A is a real symmetric matrix For buckling mode (see below) A must additionally be positive-definite k : integer The number of eigenvalues and eigenvectors desired. `k` must be smaller than N. It is not possible to compute all eigenvectors of a matrix. Returns ------- w : array Array of k eigenvalues v : array An array of k eigenvectors The v[i] is the eigenvector corresponding to the eigenvector w[i] Other Parameters ---------------- M : An N x N matrix, array, sparse matrix, or linear operator representing the operation M * x for the generalized eigenvalue problem ``A * x = w * M * x``. M must represent a real, symmetric matrix. For best results, M should be of the same type as A. Additionally: * If sigma == None, M is symmetric positive definite * If sigma is specified, M is symmetric positive semi-definite * In buckling mode, M is symmetric indefinite. If sigma == None, eigsh requires an operator to compute the solution of the linear equation `M * x = b`. This is done internally via a (sparse) LU decomposition for an explicit matrix M, or via an iterative solver for a general linear operator. Alternatively, the user can supply the matrix or operator Minv, which gives x = Minv * b = M^-1 * b sigma : real Find eigenvalues near sigma using shift-invert mode. This requires an operator to compute the solution of the linear system `[A - sigma * M] x = b`, where M is the identity matrix if unspecified. This is computed internally via a (sparse) LU decomposition for explicit matrices A & M, or via an iterative solver if either A or M is a general linear operator. Alternatively, the user can supply the matrix or operator OPinv, which gives x = OPinv * b = [A - sigma * M]^-1 * b. Note that when sigma is specified, the keyword 'which' refers to the shifted eigenvalues w'[i] where: - if mode == 'normal', w'[i] = 1 / (w[i] - sigma) - if mode == 'cayley', w'[i] = (w[i] + sigma) / (w[i] - sigma) - if mode == 'buckling', w'[i] = w[i] / (w[i] - sigma) (see further discussion in 'mode' below) v0 : array Starting vector for iteration. ncv : integer The number of Lanczos vectors generated ncv must be greater than k and smaller than n; it is recommended that ncv > 2*k which : string ['LM' | 'SM' | 'LA' | 'SA' | 'BE'] If A is a complex hermitian matrix, 'BE' is invalid. Which `k` eigenvectors and eigenvalues to find: - 'LM' : Largest (in magnitude) eigenvalues - 'SM' : Smallest (in magnitude) eigenvalues - 'LA' : Largest (algebraic) eigenvalues - 'SA' : Smallest (algebraic) eigenvalues - 'BE' : Half (k/2) from each end of the spectrum When k is odd, return one more (k/2+1) from the high end When sigma != None, 'which' refers to the shifted eigenvalues w'[i] (see discussion in 'sigma', above). ARPACK is generally better at finding large values than small values. If small eigenvalues are desired, consider using shift-invert mode for better performance. maxiter : integer Maximum number of Arnoldi update iterations allowed tol : float Relative accuracy for eigenvalues (stopping criterion). The default value of 0 implies machine precision. Minv : N x N matrix, array, sparse matrix, or LinearOperator See notes in M, above OPinv : N x N matrix, array, sparse matrix, or LinearOperator See notes in sigma, above. return_eigenvectors : boolean Return eigenvectors (True) in addition to eigenvalues mode : string ['normal' | 'buckling' | 'cayley'] Specify strategy to use for shift-invert mode. This argument applies only for real-valued A and sigma != None. For shift-invert mode, ARPACK internally solves the eigenvalue problem ``OP * x'[i] = w'[i] * B * x'[i]`` and transforms the resulting Ritz vectors x'[i] and Ritz values w'[i] into the desired eigenvectors and eigenvalues of the problem ``A * x[i] = w[i] * M * x[i]``. The modes are as follows: - 'normal' : OP = [A - sigma * M]^-1 * M B = M w'[i] = 1 / (w[i] - sigma) - 'buckling' : OP = [A - sigma * M]^-1 * A B = A w'[i] = w[i] / (w[i] - sigma) - 'cayley' : OP = [A - sigma * M]^-1 * [A + sigma * M] B = M w'[i] = (w[i] + sigma) / (w[i] - sigma) The choice of mode will affect which eigenvalues are selected by the keyword 'which', and can also impact the stability of convergence (see [2] for a discussion) Raises ------ ArpackNoConvergence When the requested convergence is not obtained. The currently converged eigenvalues and eigenvectors can be found as ``eigenvalues`` and ``eigenvectors`` attributes of the exception object. See Also -------- eigs : eigenvalues and eigenvectors for a general (nonsymmetric) matrix A svds : singular value decomposition for a matrix A Notes ----- This function is a wrapper to the ARPACK [1]_ SSEUPD and DSEUPD functions which use the Implicitly Restarted Lanczos Method to find the eigenvalues and eigenvectors [2]_. Examples -------- >>> from sklearn.utils.arpack import eigsh >>> id = np.identity(13) >>> vals, vecs = eigsh(id, k=6) >>> vals # doctest: +SKIP array([ 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j]) >>> print(vecs.shape) (13, 6) References ---------- .. [1] ARPACK Software, http://www.caam.rice.edu/software/ARPACK/ .. [2] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK USERS GUIDE: Solution of Large Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods. SIAM, Philadelphia, PA, 1998. """ # complex hermitian matrices should be solved with eigs if np.issubdtype(A.dtype, np.complexfloating): if mode != 'normal': raise ValueError("mode=%s cannot be used with " "complex matrix A" % mode) if which == 'BE': raise ValueError("which='BE' cannot be used with complex matrix A") elif which == 'LA': which = 'LR' elif which == 'SA': which = 'SR' ret = eigs(A, k, M=M, sigma=sigma, which=which, v0=v0, ncv=ncv, maxiter=maxiter, tol=tol, return_eigenvectors=return_eigenvectors, Minv=Minv, OPinv=OPinv) if return_eigenvectors: return ret[0].real, ret[1] else: return ret.real if A.shape[0] != A.shape[1]: raise ValueError('expected square matrix (shape=%s)' % (A.shape,)) if M is not None: if M.shape != A.shape: raise ValueError('wrong M dimensions %s, should be %s' % (M.shape, A.shape)) if np.dtype(M.dtype).char.lower() != np.dtype(A.dtype).char.lower(): import warnings warnings.warn('M does not have the same type precision as A. ' 'This may adversely affect ARPACK convergence') n = A.shape[0] if k <= 0 or k >= n: raise ValueError("k must be between 1 and rank(A)-1") if sigma is None: A = _aslinearoperator_with_dtype(A) matvec = A.matvec if OPinv is not None: raise ValueError("OPinv should not be specified " "with sigma = None.") if M is None: #standard eigenvalue problem mode = 1 M_matvec = None Minv_matvec = None if Minv is not None: raise ValueError("Minv should not be " "specified with M = None.") else: #general eigenvalue problem mode = 2 if Minv is None: Minv_matvec = get_inv_matvec(M, symmetric=True, tol=tol) else: Minv = _aslinearoperator_with_dtype(Minv) Minv_matvec = Minv.matvec M_matvec = _aslinearoperator_with_dtype(M).matvec else: # sigma is not None: shift-invert mode if Minv is not None: raise ValueError("Minv should not be specified when sigma is") # normal mode if mode == 'normal': mode = 3 matvec = None if OPinv is None: Minv_matvec = get_OPinv_matvec(A, M, sigma, symmetric=True, tol=tol) else: OPinv = _aslinearoperator_with_dtype(OPinv) Minv_matvec = OPinv.matvec if M is None: M_matvec = None else: M = _aslinearoperator_with_dtype(M) M_matvec = M.matvec # buckling mode elif mode == 'buckling': mode = 4 if OPinv is None: Minv_matvec = get_OPinv_matvec(A, M, sigma, symmetric=True, tol=tol) else: Minv_matvec = _aslinearoperator_with_dtype(OPinv).matvec matvec = _aslinearoperator_with_dtype(A).matvec M_matvec = None # cayley-transform mode elif mode == 'cayley': mode = 5 matvec = _aslinearoperator_with_dtype(A).matvec if OPinv is None: Minv_matvec = get_OPinv_matvec(A, M, sigma, symmetric=True, tol=tol) else: Minv_matvec = _aslinearoperator_with_dtype(OPinv).matvec if M is None: M_matvec = None else: M_matvec = _aslinearoperator_with_dtype(M).matvec # unrecognized mode else: raise ValueError("unrecognized mode '%s'" % mode) params = _SymmetricArpackParams(n, k, A.dtype.char, matvec, mode, M_matvec, Minv_matvec, sigma, ncv, v0, maxiter, which, tol) while not params.converged: params.iterate() return params.extract(return_eigenvectors) def _svds(A, k=6, ncv=None, tol=0): """Compute k singular values/vectors for a sparse matrix using ARPACK. Parameters ---------- A : sparse matrix Array to compute the SVD on k : int, optional Number of singular values and vectors to compute. ncv : integer The number of Lanczos vectors generated ncv must be greater than k+1 and smaller than n; it is recommended that ncv > 2*k tol : float, optional Tolerance for singular values. Zero (default) means machine precision. Notes ----- This is a naive implementation using an eigensolver on A.H * A or A * A.H, depending on which one is more efficient. """ if not (isinstance(A, np.ndarray) or isspmatrix(A)): A = np.asarray(A) n, m = A.shape if np.issubdtype(A.dtype, np.complexfloating): herm = lambda x: x.T.conjugate() eigensolver = eigs else: herm = lambda x: x.T eigensolver = eigsh if n > m: X = A XH = herm(A) else: XH = A X = herm(A) def matvec_XH_X(x): return XH.dot(X.dot(x)) XH_X = LinearOperator(matvec=matvec_XH_X, dtype=X.dtype, shape=(X.shape[1], X.shape[1])) eigvals, eigvec = eigensolver(XH_X, k=k, tol=tol ** 2) s = np.sqrt(eigvals) if n > m: v = eigvec u = X.dot(v) / s vh = herm(v) else: u = eigvec vh = herm(X.dot(u) / s) return u, s, vh # check if backport is actually needed: if scipy.version.version >= LooseVersion('0.10'): from scipy.sparse.linalg import eigs, eigsh, svds else: eigs, eigsh, svds = _eigs, _eigsh, _svds
bsd-3-clause
DTOcean/dtocean-core
dtocean_core/interfaces/plots_array_layout.py
1
19809
# -*- coding: utf-8 -*- # Copyright (C) 2016-2018 Mathew Topper # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. """ Created on Wed Apr 06 15:59:04 2016 .. moduleauthor:: Mathew Topper <[email protected]> """ import numpy as np import matplotlib.pyplot as plt from descartes import PolygonPatch from shapely.geometry import Point, Polygon from . import PlotInterface BLUE = '#6699cc' GREEN = '#32CD32' RED = '#B20000' GREY = '#999999' class ArrayLeasePlot(PlotInterface): @classmethod def get_name(cls): '''A class method for the common name of the interface. Returns: str: A unique string ''' return "Lease Area Array Layout" @classmethod def declare_inputs(cls): '''A class method to declare all the variables required as inputs by this interface. Returns: list: List of inputs identifiers Example: The returned value can be None or a list of identifier strings which appear in the data descriptions. For example:: inputs = ["My:first:variable", "My:second:variable", ] ''' input_list = ["site.lease_boundary", "project.layout", "options.boundary_padding" ] return input_list @classmethod def declare_optional(cls): option_list = ["options.boundary_padding"] return option_list @classmethod def declare_id_map(self): '''Declare the mapping for variable identifiers in the data description to local names for use in the interface. This helps isolate changes in the data description or interface from effecting the other. Returns: dict: Mapping of local to data description variable identifiers Example: The returned value must be a dictionary containing all the inputs and outputs from the data description and a local alias string. For example:: id_map = {"var1": "My:first:variable", "var2": "My:second:variable", "var3": "My:third:variable" } ''' id_map = {"lease_poly": "site.lease_boundary", "layout": "project.layout", "padding": "options.boundary_padding" } return id_map def connect(self): fig = plt.figure() ax1 = fig.add_subplot(1, 1, 1, aspect='equal') short_layout = {key.replace("device", ""): value for key, value in self.data.layout.items()} plot_point_dict(ax1, short_layout, "k+") plot_lease_boundary(ax1, self.data.lease_poly, self.data.padding) ax1.margins(0.1, 0.1) ax1.autoscale_view() xlabel = 'UTM x [$m$]' ylabel = 'UTM y [$m$]' plt.xlabel(xlabel) plt.ylabel(ylabel) plt.ticklabel_format(useOffset=False) plt.xticks(rotation=30, ha='right') plt.title("Array Layout in Lease Area") plt.tight_layout() self.fig_handle = plt.gcf() return class ArrayLeasePlotNumbers(PlotInterface): @classmethod def get_name(cls): '''A class method for the common name of the interface. Returns: str: A unique string ''' return "Lease Area Array Layout (With Device Numbers)" @classmethod def declare_inputs(cls): '''A class method to declare all the variables required as inputs by this interface. Returns: list: List of inputs identifiers Example: The returned value can be None or a list of identifier strings which appear in the data descriptions. For example:: inputs = ["My:first:variable", "My:second:variable", ] ''' input_list = ["site.lease_boundary", "project.layout", "options.boundary_padding" ] return input_list @classmethod def declare_optional(cls): option_list = ["options.boundary_padding"] return option_list @classmethod def declare_id_map(self): '''Declare the mapping for variable identifiers in the data description to local names for use in the interface. This helps isolate changes in the data description or interface from effecting the other. Returns: dict: Mapping of local to data description variable identifiers Example: The returned value must be a dictionary containing all the inputs and outputs from the data description and a local alias string. For example:: id_map = {"var1": "My:first:variable", "var2": "My:second:variable", "var3": "My:third:variable" } ''' id_map = {"lease_poly": "site.lease_boundary", "layout": "project.layout", "padding": "options.boundary_padding" } return id_map def connect(self): fig = plt.figure() ax1 = fig.add_subplot(1, 1, 1, aspect='equal') short_layout = {key.replace("device", ""): value for key, value in self.data.layout.items()} plot_point_dict(ax1, short_layout, "k+", annotate=True) plot_lease_boundary(ax1, self.data.lease_poly, self.data.padding) ax1.margins(0.1, 0.1) ax1.autoscale_view() xlabel = 'UTM x [$m$]' ylabel = 'UTM y [$m$]' plt.xlabel(xlabel) plt.ylabel(ylabel) plt.ticklabel_format(useOffset=False) plt.xticks(rotation=30, ha='right') plt.title("Array Layout in Lease Area") plt.tight_layout() self.fig_handle = plt.gcf() return class ArrayCablesPlot(PlotInterface): @classmethod def get_name(cls): '''A class method for the common name of the interface. Returns: str: A unique string ''' return "Array Cable Layout" @classmethod def declare_inputs(cls): '''A class method to declare all the variables required as inputs by this interface. Returns: list: List of inputs identifiers Example: The returned value can be None or a list of identifier strings which appear in the data descriptions. For example:: inputs = ["My:first:variable", "My:second:variable", ] ''' input_list = ["site.lease_boundary", "corridor.landing_point", "project.layout", "project.cable_routes", "project.substation_layout" ] return input_list @classmethod def declare_optional(cls): option_list = ["site.lease_boundary"] return option_list @classmethod def declare_id_map(self): '''Declare the mapping for variable identifiers in the data description to local names for use in the interface. This helps isolate changes in the data description or interface from effecting the other. Returns: dict: Mapping of local to data description variable identifiers Example: The returned value must be a dictionary containing all the inputs and outputs from the data description and a local alias string. For example:: id_map = {"var1": "My:first:variable", "var2": "My:second:variable", "var3": "My:third:variable" } ''' id_map = {"lease_poly": "site.lease_boundary", "landing_point": "corridor.landing_point", "layout": "project.layout", "cable_routes": "project.cable_routes", 'substation_layout': 'project.substation_layout', } return id_map def connect(self): fig = plt.figure() ax1 = fig.add_subplot(1, 1, 1, aspect='equal') short_layout = {key.replace("device", ""): value for key, value in self.data.layout.items()} landing_dict = {"Export Cable Landing": self.data.landing_point} lplot = plot_point_dict(ax1, landing_dict, 'or', "Export Cable Landing") dplot = plot_point_dict(ax1, short_layout, "k+", "Devices") splot = plot_point_dict(ax1, self.data.substation_layout, "gs", "Collection Points") plot_cables(ax1, self.data.cable_routes) if self.data.lease_poly is not None: plot_lease_boundary(ax1, self.data.lease_poly) ax1.margins(0.1, 0.1) ax1.autoscale_view() xlabel = 'UTM x [$m$]' ylabel = 'UTM y [$m$]' plt.xlabel(xlabel) plt.ylabel(ylabel) plt.ticklabel_format(useOffset=False) plt.xticks(rotation=30, ha='right') plt.legend(handles=[dplot, splot, lplot], bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0., numpoints=1) plt.title("Electrical Cable Layout") plt.tight_layout(rect=[0, 0.04, 0.84, 0.96]) self.fig_handle = plt.gcf() return class ArrayFoundationsPlot(PlotInterface): @classmethod def get_name(cls): '''A class method for the common name of the interface. Returns: str: A unique string ''' return "Array Foundations Layout" @classmethod def declare_inputs(cls): '''A class method to declare all the variables required as inputs by this interface. Returns: list: List of inputs identifiers Example: The returned value can be None or a list of identifier strings which appear in the data descriptions. For example:: inputs = ["My:first:variable", "My:second:variable", ] ''' input_list = ["site.lease_boundary", "project.layout", "project.substation_layout", "project.foundations_component_data" ] return input_list @classmethod def declare_optional(cls): option_list = ["site.lease_boundary"] return option_list @classmethod def declare_id_map(self): '''Declare the mapping for variable identifiers in the data description to local names for use in the interface. This helps isolate changes in the data description or interface from effecting the other. Returns: dict: Mapping of local to data description variable identifiers Example: The returned value must be a dictionary containing all the inputs and outputs from the data description and a local alias string. For example:: id_map = {"var1": "My:first:variable", "var2": "My:second:variable", "var3": "My:third:variable" } ''' id_map = {"lease_poly": "site.lease_boundary", "layout": "project.layout", 'substation_layout': 'project.substation_layout', "foundations_components": "project.foundations_component_data", } return id_map def connect(self): fig = plt.figure() ax1 = fig.add_subplot(1, 1, 1, aspect='equal') short_layout = {key.replace("device", ""): value for key, value in self.data.layout.items()} dplot = plot_point_dict(ax1, short_layout, "k+", "Devices") splot = plot_point_dict(ax1, self.data.substation_layout, "gs", "Collection Points") foundation_marker = {'shallowfoundation': "b_", 'gravity': "r^", 'pile': "co", 'suctioncaisson': "mp", 'directembedment': "y|", 'drag': "kv"} foundation_name = {'shallowfoundation': "Shallow", 'gravity': "Gravity", 'pile': "Pile", 'suctioncaisson': "Suction Caisson", 'directembedment': "Direct Embedment", 'drag': "Drag"} foundations_locations = self.data.foundations_components[ ["Type", "UTM X", "UTM Y"]] locations_groups = foundations_locations.groupby("Type") foundations_handles = [] for name, group in locations_groups: plot_marker = foundation_marker[name] plot_name = foundation_name[name] coords = group[["UTM X", "UTM Y"]].values plot_dict = {i: Point(xy) for i, xy in enumerate(coords)} fplot = plot_point_dict(ax1, plot_dict, plot_marker, plot_name, markersize=8) foundations_handles.append(fplot) if self.data.lease_poly is not None: plot_lease_boundary(ax1, self.data.lease_poly) ax1.margins(0.1, 0.1) ax1.autoscale_view() xlabel = 'UTM x [$m$]' ylabel = 'UTM y [$m$]' all_handles = [dplot, splot] + foundations_handles plt.xlabel(xlabel) plt.ylabel(ylabel) plt.ticklabel_format(useOffset=False) plt.xticks(rotation=30, ha='right') plt.legend(handles=all_handles, bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0., numpoints=1) plt.title("Foundations Layout") plt.tight_layout() self.fig_handle = plt.gcf() return def plot_point_dict(ax, layout, marker, label=None, annotate=False, markersize=None, text_weight=None, text_size=None): if text_weight is None: text_weight = 'normal' if text_size is None: text_size = 'medium' x = [] y = [] for coords in layout.itervalues(): x.append(coords.x) y.append(coords.y) kwargs = {"mew": 2, "markersize": 10} if label is not None: kwargs["label"] = label if markersize is not None: kwargs["markersize"] = markersize pplot = ax.plot(x, y, marker, **kwargs) if not annotate: return pplot[0] for key, point in layout.iteritems(): coords = list(point.coords)[0] ax.annotate(str(key), xy=coords[:2], xytext=(0, 10), xycoords='data', textcoords='offset pixels', horizontalalignment='center', weight=text_weight, size=text_size) return pplot[0] def plot_lease_boundary(ax, lease_boundary, padding=None): if padding is not None: outer_coords = list(lease_boundary.exterior.coords) inner_boundary = lease_boundary.buffer(-padding) inner_coords = list(inner_boundary.exterior.coords) # Check if the orientation of the polygons are the same if clockwise(*zip(*inner_coords)) == clockwise(*zip(*outer_coords)): inner_coords = inner_coords[::-1] lease_boundary = Polygon(outer_coords, [inner_coords]) patch = PolygonPatch(lease_boundary, fc=RED, fill=True, alpha=0.3, ls=None) ax.add_patch(patch) patch = PolygonPatch(lease_boundary, ec=BLUE, fill=False, linewidth=2) ax.add_patch(patch) maxy = lease_boundary.bounds[3] + 50. centroid = np.array(lease_boundary.centroid) ax.annotate("Lease Area", xy=(centroid[0], maxy), horizontalalignment='center', verticalalignment='bottom', weight="bold", size='large') return def plot_cables(ax, cable_routes): cables = cable_routes.groupby("Marker") xmax = -np.inf ymax = -np.inf xmin = np.inf ymin = np.inf for name, cable in cables: x = cable["UTM X"] y = cable["UTM Y"] xmax = max(list(x) + [xmax]) ymax = max(list(y) + [ymax]) xmin = min(list(x) + [xmin]) ymin = min(list(y) + [ymin]) line = plt.Line2D(x, y) ax.add_line(line) def clockwise(x, y): """ Use the shoelace formula to determine whether the polygon points are defined in a clockwise direction""" # https://stackoverflow.com/a/1165943/3215152 # https://stackoverflow.com/a/19875560/3215152 if sum(x[i] * (y[i + 1] - y[i - 1]) for i in xrange(-1, len(x) - 1)) < 0: return True return False
gpl-3.0
fedhere/SESNCfAlib
gps.py
1
6537
def readin(f): thissn=snstuff.mysn(f, addlit=True) ################read supernova data and check metadata lc, flux, dflux, snname = thissn.loadsn(f, fnir=True, verbose=True, lit=True, addlit=True) #thissn.printsn() #raw_input() thissn.readinfofileall(verbose=False, earliest=False, loose=True) #thissn.printsn() Dl = float(thissn.metadata['luminosity distance Mpc']) su = templutils.setupvars() thissn.setsn(thissn.metadata['Type'], thissn.Vmax) myebmv=su.ebmvs[thissn.snnameshort] print ("E(B-V)", myebmv) myebmv+=hostebmv#su.ebmvcfa[thissn.snnameshort] print ("E(B-V) total", myebmv) Vmax = thissn.Vmax thissn.setphot() thissn.getphot(myebmv) thissn.setphase() thissn.printsn(photometry=False) #thissn.printsn() fig = pl.figure(figsize=(5,3)) thissn.plotsn(photometry=True, show=True, fig = fig) return thissn def skgp (x, y, yerr, phases, t0): from sklearn.gaussian_process import GaussianProcess XX = np.atleast_2d(np.log(x-min(x)+1)).T #XX = np.atleast_2d(x).T gphere = GaussianProcess(corr='squared_exponential', theta0=t0, thetaL=t0*0.1, thetaU=t0*10, nugget=(yerr / y) ** 2, random_start=100) gphere.fit(XX, y) xx = np.atleast_2d(np.log(phases-min(X)+1)).T #xx = np.atleast_2d(phases).T y_pred, MSE = gphere.predict(xx, eval_MSE=True) sigma = np.sqrt(MSE) return (y_pred, sigma) def georgegp (x, y, yerr, phases, kc, kc1): import george # Set up the Gaussian process. kernel = kc1 * 10 * kernelfct(kc)#ExpSquaredKernel(1.0) gp = george.GP(kernel) #print ("wtf", gp.kernel) # adding a small random offset to the phase so that i never have # 2 measurements at the same time which would break the GP # Pre-compute the factorization of the matrix. XX = x XX = np.log(XX-XX.min()+1) # You need to compute the GP once before starting the optimization. gp.compute(XX, yerr) # Print the initial ln-likelihood. #print("here", gp.lnlikelihood(y)) #print("here", gp.grad_lnlikelihood(y)) # Run the optimization routine. if OPT: p0 = gp.kernel.vector results = op.minimize(nll, p0, jac=grad_nll, args=(gp)) print results.x # Update the kernel and print the final log-likelihood. gp.kernel[:] = results.x #print(gp.lnlikelihood(y)) # gp.compute(XX, yerr) # Compute the log likelihood. #print(gp.lnlikelihood(y)) #t = np.linspace(0, 10, 500) ##xx = np.log(phases-min(X)+1) xx = phases xx = np.log(xx-x.min()+1) mu, cov = gp.predict(y, xx) std = np.sqrt(np.diag(cov)) return (mu, std) import scipy.optimize as op # Define the objective function (negative log-likelihood in this case). def nll(p, gp): # Update the kernel parameters and compute the likelihood. gp.kernel[:] = p ll = gp.lnlikelihood(y, quiet=True) # The scipy optimizer doesn't play well with infinities. return -ll if np.isfinite(ll) else 1e25 # And the gradient of the objective function. def grad_nll(p, gp): # Update the kernel parameters and compute the likelihood. print ("wtf2", gp.kernel) gp.kernel[:] = p print (gp.kernel[:]) print -gp.grad_lnlikelihood(y, quiet=True) return -gp.grad_lnlikelihood(y, quiet=True) def getskgpreds(ts, x, y, yerr, phases, fig = None): t0, t1 = ts if t0 ==0 or t1==0: return 1e9 #print (t0,t1) gp1, gp2 = georgegp(x, y, yerr, x, t0, t1) s1= sum(((gp1-y)/yerr)**2)/len(y) #pl.figure(figsize=(1,3)) #pl.plot(x, gp1,'*') gp1, gp2 = georgegp(x, y, yerr, phases, t0, t1) s2= sum(np.abs((gp1[2:]+gp1[:-2]-2*gp1[1:-1])/\ (diff(phases)[1:]+diff(phases)[:-1]))) print ("%.3f"%t0, "%.3f"%t1, "%.1f"%s1, "%.3f"%s2, s1*s2) if fig: pl.errorbar(x,y,yerr=yerr,fmt='.') pl.plot(phases, gp1,'-') pl.fill_between(phases, gp1-gp2, gp1+gp2, color='k') pl.title("%.3f %.3f %.3f"%(t0, t1, (s1*s2)), fontsize=15) pl.ylim(pl.ylim()[1], pl.ylim()[0]) if isfinite(s1*s2) and not np.isnan(s1*s2): return s1*s2 return 1e9 def kernelfct(kc): from george.kernels import ExpSquaredKernel, WhiteKernel, ExpKernel, Matern32Kernel return ExpSquaredKernel(kc)# Matern32Kernel(kc) from scipy import stats sn = '08D' b='V' def findgp(sn, b): fall = glob.glob(os.getenv('SESNPATH')+'/finalphot/*'+sn+'*[cf]') if len(fall)>0: fall[-1] = [fall[-1]] + \ [ff for ff in glob.glob(os.environ['SESNPATH']+\ "/literaturedata/phot/*"+sn+".*[cf]")] else: fall = [[ff for ff in glob.glob(os.environ['SESNPATH']+"/literaturedata/phot/*"+sn+".*[cf]")]] f = fall[0] if not isinstance (f, basestring): f=f[0] x= thissn.photometry[b]['phase'] x+=0.01*np.random.randn(len(x)) y= thissn.photometry[b]['mag'] yerr= thissn.photometry[b]['dmag'] phases = np.arange(x.min(),x.max(),0.1) if x.max()<=30: if x.min()<=-15: x15 = np.where(np.abs(x+15)==np.abs(x+15).min())[0] print x15, y[x15[0]]+0.5 x = np.concatenate([x,[30]]) y = np.concatenate([y,[y[x15[0]]+0.5]]) yerr = np.concatenate([yerr,[0.5]]) print (x,y,yerr) elif (x>=15).sum()>1: slope, intercept, r_value, p_value, std_err = stats.linregress(x[x>=15],y[x>=15]) x = np.concatenate([x,[30]]) y = np.concatenate([y,[slope*30.+intercept]]) yerr = np.concatenate([yerr,[yerr.max()*2]]) print (x,y,yerr) else: return -1 #fig = pl.figure(figsize=(10,3)) results = op.minimize(getskgpreds, (0.4,1.0), args = (x,y,yerr,phases), bounds=((0,None),(0,None)), tol=1e-8) print (results.x) #t1s = np.exp(np.arange(-2,2,0.5)) #for tt in np.exp(np.arange(-2,2,0.5)): # fig = pl.figure(figsize=(10,3)) # for i,ttt in enumerate(t1s): # ax = fig.add_subplot(len(t1s),1,i+1) # getskgpreds(x,y,yerr,phases,tt,ttt) fig = pl.figure(figsize=(10,3)) getskgpreds(results.x,x,y,yerr,phases, fig) pl.ylabel(b+" magnitude")
mit
YuxingZhang/prescription
visualize/tsne.py
1
5462
# # tsne.py # # Implementation of t-SNE in Python. The implementation was tested on Python 2.7.10, and it requires a working # installation of NumPy. The implementation comes with an example on the MNIST dataset. In order to plot the # results of this example, a working installation of matplotlib is required. # # The example can be run by executing: `ipython tsne.py` # # # Created by Laurens van der Maaten on 20-12-08. # Copyright (c) 2008 Tilburg University. All rights reserved. import numpy as Math import pylab as Plot import pickle as pk import sys def Hbeta(D = Math.array([]), beta = 1.0): """Compute the perplexity and the P-row for a specific value of the precision of a Gaussian distribution.""" # Compute P-row and corresponding perplexity P = Math.exp(-D.copy() * beta); sumP = sum(P); H = Math.log(sumP) + beta * Math.sum(D * P) / sumP; P = P / sumP; return H, P; def x2p(X = Math.array([]), tol = 1e-5, perplexity = 30.0): """Performs a binary search to get P-values in such a way that each conditional Gaussian has the same perplexity.""" # Initialize some variables print "Computing pairwise distances..." (n, d) = X.shape; sum_X = Math.sum(Math.square(X), 1); D = Math.add(Math.add(-2 * Math.dot(X, X.T), sum_X).T, sum_X); P = Math.zeros((n, n)); beta = Math.ones((n, 1)); logU = Math.log(perplexity); # Loop over all datapoints for i in range(n): # Print progress if i % 500 == 0: print "Computing P-values for point ", i, " of ", n, "..." # Compute the Gaussian kernel and entropy for the current precision betamin = -Math.inf; betamax = Math.inf; Di = D[i, Math.concatenate((Math.r_[0:i], Math.r_[i+1:n]))]; (H, thisP) = Hbeta(Di, beta[i]); # Evaluate whether the perplexity is within tolerance Hdiff = H - logU; tries = 0; while Math.abs(Hdiff) > tol and tries < 50: # If not, increase or decrease precision if Hdiff > 0: betamin = beta[i].copy(); if betamax == Math.inf or betamax == -Math.inf: beta[i] = beta[i] * 2; else: beta[i] = (beta[i] + betamax) / 2; else: betamax = beta[i].copy(); if betamin == Math.inf or betamin == -Math.inf: beta[i] = beta[i] / 2; else: beta[i] = (beta[i] + betamin) / 2; # Recompute the values (H, thisP) = Hbeta(Di, beta[i]); Hdiff = H - logU; tries = tries + 1; # Set the final row of P P[i, Math.concatenate((Math.r_[0:i], Math.r_[i+1:n]))] = thisP; # Return final P-matrix print "Mean value of sigma: ", Math.mean(Math.sqrt(1 / beta)); return P; def pca(X = Math.array([]), no_dims = 50): """Runs PCA on the NxD array X in order to reduce its dimensionality to no_dims dimensions.""" print "Preprocessing the data using PCA..." (n, d) = X.shape; X = X - Math.tile(Math.mean(X, 0), (n, 1)); (l, M) = Math.linalg.eig(Math.dot(X.T, X)); Y = Math.dot(X, M[:,0:no_dims]); return Y; def tsne(X = Math.array([]), no_dims = 2, initial_dims = 50, perplexity = 30.0): """Runs t-SNE on the dataset in the NxD array X to reduce its dimensionality to no_dims dimensions. The syntaxis of the function is Y = tsne.tsne(X, no_dims, perplexity), where X is an NxD NumPy array.""" # Check inputs if isinstance(no_dims, float): print "Error: array X should have type float."; return -1; if round(no_dims) != no_dims: print "Error: number of dimensions should be an integer."; return -1; # Initialize variables X = pca(X, initial_dims).real; (n, d) = X.shape; max_iter = 1000; initial_momentum = 0.5; final_momentum = 0.8; eta = 500; min_gain = 0.01; Y = Math.random.randn(n, no_dims); dY = Math.zeros((n, no_dims)); iY = Math.zeros((n, no_dims)); gains = Math.ones((n, no_dims)); # Compute P-values P = x2p(X, 1e-5, perplexity); P = P + Math.transpose(P); P = P / Math.sum(P); P = P * 4; # early exaggeration P = Math.maximum(P, 1e-12); # Run iterations for iter in range(max_iter): # Compute pairwise affinities sum_Y = Math.sum(Math.square(Y), 1); num = 1 / (1 + Math.add(Math.add(-2 * Math.dot(Y, Y.T), sum_Y).T, sum_Y)); num[range(n), range(n)] = 0; Q = num / Math.sum(num); Q = Math.maximum(Q, 1e-12); # Compute gradient PQ = P - Q; for i in range(n): dY[i,:] = Math.sum(Math.tile(PQ[:,i] * num[:,i], (no_dims, 1)).T * (Y[i,:] - Y), 0); # Perform the update if iter < 20: momentum = initial_momentum else: momentum = final_momentum gains = (gains + 0.2) * ((dY > 0) != (iY > 0)) + (gains * 0.8) * ((dY > 0) == (iY > 0)); gains[gains < min_gain] = min_gain; iY = momentum * iY - eta * (gains * dY); Y = Y + iY; Y = Y - Math.tile(Math.mean(Y, 0), (n, 1)); # Compute current value of cost function if (iter + 1) % 10 == 0: C = Math.sum(P * Math.log(P / Q)); print "Iteration ", (iter + 1), ": error is ", C # Stop lying about P-values if iter == 100: P = P / 4; # Return solution return Y; if __name__ == "__main__": print "Run Y = tsne.tsne(X, no_dims, perplexity) to perform t-SNE on your dataset." print "Running example on 2,500 MNIST digits..." ''' usage: python tsne.py <x_file_name> <y_file_name> <output_file_name> ''' x_file = sys.argv[1] y_file = sys.argv[2] output_file = sys.argv[3] X = Math.loadtxt(x_file); labels = Math.loadtxt(y_file); Y = tsne(X, 2, 50, 20.0); f = open(output_file, 'w') pk.dump(Y, f) f.close() #Plot.scatter(Y[:,0], Y[:,1], 20, labels); #Plot.show();
bsd-3-clause
Og192/Python
machine-learning-algorithms/rnn/vanillaRnn.py
4
4077
from __future__ import print_function, division import numpy as np import tensorflow as tf import matplotlib.pyplot as plt num_epoches = 100 total_series_length = 50000 truncated_backprop_length = 15 state_size = 4 num_classes = 2 echo_step = 3 batch_size = 5 num_batches = total_series_length // batch_size // truncated_backprop_length def generateData(): x = np.array(np.random.choice(2, total_series_length, p = [0.5, 0.5])) y = np.roll(x, echo_step) y[0:echo_step] = 0 x = x.reshape((batch_size, -1)) y = y.reshape((batch_size, -1)) return (x, y) def plot(loss_list, predictions_series, batchX, batchY): plt.subplot(2, 3, 1) plt.cla() plt.plot(loss_list) for batch_series_idx in range(5): one_hot_output_series = np.array(predictions_series)[:, batch_series_idx, :] single_output_series = np.array([(1 if out[0] < 0.5 else 0) for out in one_hot_output_series]) plt.subplot(2, 3, batch_series_idx + 2) plt.cla() plt.axis([0, truncated_backprop_length, 0, 2]) left_offset = range(truncated_backprop_length) plt.bar(left_offset, batchX[batch_series_idx, :], width = 1, color = "blue") plt.bar(left_offset, batchY[batch_series_idx, :] * 5, width = 1, color = "red") plt.bar(left_offset, single_output_series * 0.3, width = 1, color = "green") plt.draw() plt.pause(0.0001) batchX_placeholder = tf.placeholder(tf.float32, [batch_size, truncated_backprop_length]) batchY_placeholder = tf.placeholder(tf.int32, [batch_size, truncated_backprop_length]) init_state = tf.placeholder(tf.float32, [batch_size, state_size]) W = tf.Variable(np.random.rand(state_size + 1, state_size), dtype=tf.float32) b = tf.Variable(np.zeros((1, state_size)), dtype=tf.float32) W2 = tf.Variable(np.random.rand(state_size, num_classes), dtype = tf.float32) b2 = tf.Variable(np.zeros((1, num_classes)), dtype=tf.float32) inputs_series = tf.unpack(batchX_placeholder, axis = 1) labels_series = tf.unpack(batchY_placeholder, axis = 1)#, axis = 1 #rnn layer current_state = init_state states_series = [] for current_input in inputs_series: current_input = tf.reshape(current_input, [batch_size, 1]) input_and_state_concatenated = tf.concat(1, [current_input, current_state]) next_state = tf.tanh(tf.matmul(input_and_state_concatenated, W) + b) states_series.append(next_state) current_state = next_state # softmax layer logits_series = [tf.matmul(state, W2) + b2 for state in states_series] predictions_series = [tf.nn.softmax(logits) for logits in logits_series] losses = [tf.nn.sparse_softmax_cross_entropy_with_logits(logits, labels) for logits, labels in zip(logits_series, labels_series)] total_loss = tf.reduce_mean(losses) train_step = tf.train.AdagradOptimizer(0.3).minimize(total_loss) with tf.Session() as sess: sess.run(tf.initialize_all_variables()) plt.ion() plt.figure() plt.show() loss_list = [] for epoch_idx in range(num_epoches): #generate data, input, labels, and initial state vector. x, y = generateData() _current_state = np.zeros((batch_size, state_size)) print("New data, epoch", epoch_idx) for batch_idx in range(num_batches): start_idx = batch_idx * truncated_backprop_length end_idx = start_idx + truncated_backprop_length batchX = x[:, start_idx:end_idx] batchY = y[:, start_idx:end_idx] _total_loss, _train_step, _current_state, _predictions_series = sess.run( [total_loss, train_step, current_state, predictions_series], feed_dict={ batchX_placeholder:batchX, batchY_placeholder:batchY, init_state:_current_state } ) loss_list.append(_total_loss) if batch_idx % 100 == 0: print("Step", batch_idx, "Loss", _total_loss) plot(loss_list, _predictions_series, batchX, batchY) plt.ioff() plt.show()
gpl-2.0
nmabhi/Webface
demos/web/websocket-server-persist.py
1
17183
#!/usr/bin/env python2 # # Copyright 2015-2016 Carnegie Mellon University # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys fileDir = os.path.dirname(os.path.realpath(__file__)) sys.path.append(os.path.join(fileDir, "..", "..")) import txaio txaio.use_twisted() from autobahn.twisted.websocket import WebSocketServerProtocol, \ WebSocketServerFactory from twisted.internet import task, defer from twisted.internet.ssl import DefaultOpenSSLContextFactory from twisted.python import log import argparse import cv2 import imagehash import json from PIL import Image import numpy as np import os import StringIO import urllib import base64 from sklearn.decomposition import PCA from sklearn.grid_search import GridSearchCV from sklearn.manifold import TSNE from sklearn.svm import SVC import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt import matplotlib.cm as cm import openface import pickle, pprint import json from numpy import genfromtxt modelDir = os.path.join(fileDir, '..', '..', 'models') dlibModelDir = os.path.join(modelDir, 'dlib') openfaceModelDir = os.path.join(modelDir, 'openface') # For TLS connections tls_crt = os.path.join(fileDir, 'tls', 'server.crt') tls_key = os.path.join(fileDir, 'tls', 'server.key') parser = argparse.ArgumentParser() parser.add_argument('--dlibFacePredictor', type=str, help="Path to dlib's face predictor.", default=os.path.join(dlibModelDir, "shape_predictor_68_face_landmarks.dat")) parser.add_argument('--networkModel', type=str, help="Path to Torch network model.", default=os.path.join(openfaceModelDir, 'nn4.small2.v1.t7')) parser.add_argument('--imgDim', type=int, help="Default image dimension.", default=96) parser.add_argument('--cuda', action='store_true') parser.add_argument('--unknown', type=bool, default=False, help='Try to predict unknown people') parser.add_argument('--port', type=int, default=9000, help='WebSocket Port') args = parser.parse_args() align = openface.AlignDlib(args.dlibFacePredictor) net = openface.TorchNeuralNet(args.networkModel, imgDim=args.imgDim, cuda=args.cuda) def loadImages(): try: with open('images.pkl', 'rb') as f: # if sys.version_info[0] < 3: images = pickle.load(f) return images except Exception as e: return {} #my_data = genfromtxt('people.csv', delimiter=',') def loadModel(): # model = open('model.pkl', 'r') # svm_persisted = pickle.load('model.pkl') # output.close() # return svm_persisted # return True try: with open('model.pkl', 'rb') as f: # if sys.version_info[0] < 3: mod = pickle.load(f) return mod except Exception as e: return None def loadPeople(): try: with open('people.pkl', 'rb') as f: mod = pickle.load(f) return mod except Exception as e: return [] # def calculateNumberOfImagesPerPerson(data_images): # images_count = {} # # print data_images # for image in data_images: # # print image, data_images[image] # # print data_images[image].identity # if(data_images[image].identity in images_count): # images_count[data_images[image].identity] += 1 # else: # images_count[data_images[image].identity] = 1 # # print images_count # sorted_images_count = {} # for key in sorted(images_count.iterkeys(), reverse=True): # sorted_images_count[key] = images_count[key] # # print sorted_images_count # return sorted_images_count class Face: def __init__(self, rep, identity): self.rep = rep self.identity = identity def __repr__(self): return "{{id: {}, rep[0:5]: {}}}".format( str(self.identity), self.rep[0:5] ) class OpenFaceServerProtocol(WebSocketServerProtocol): def __init__(self): super(OpenFaceServerProtocol, self).__init__() self.images = loadImages() self.training = True self.people = loadPeople() self.svm = loadModel() print self.images,self.people # self.images_count = calculateNumberOfImagesPerPerson(self.images) # print self.people # print self.images if args.unknown: self.unknownImgs = np.load("./examples/web/unknown.npy") def onConnect(self, request): print("Client connecting: {0}".format(request.peer)) self.training = True def onOpen(self): print("WebSocket connection open.") # calculateNumberOfImagesPerPerson(self.images) # print images_count # msg = { # "type": "INITIALIZE", # "people": self.people, # "images": calculateNumberOfImagesPerPerson(self.images) # } # self.sendMessage(json.dumps(msg)) def onMessage(self, payload, isBinary): raw = payload.decode('utf8') msg = json.loads(raw) print("Received {} message of length {}.".format( msg['type'], len(raw))) if msg['type'] == "ALL_STATE": self.loadState(msg['images'], msg['training'], msg['people']) print msg['images'] elif msg['type'] == "NULL": self.sendMessage('{"type": "NULL"}') elif msg['type'] == "FRAME": print "Frame message Identity", msg['identity'] #print "Frame message Url",msg['dataURL'] f = open( 'url.py', 'w' ) f.write( 'url = ' + repr(dict) + '\n' ) f.close() self.processFrame(msg['dataURL'], msg['identity']) # print msg['identity'] self.sendMessage('{"type": "PROCESSED"}') elif msg['type'] == "TRAINING": self.training = msg['val'] if not self.training: self.trainSVM() elif msg['type'] == "ADD_PERSON": if msg['val'].encode('ascii','ignore') not in self.people: self.people.append(msg['val'].encode('ascii', 'ignore')) self.people=self.people #np.savetxt("people.csv", self.people, delimiter=",") with open('people.pkl', 'w') as f: pickle.dump(self.people, f) print(self.people) elif msg['type'] == "UPDATE_IDENTITY": h = msg['hash'].encode('ascii', 'ignore') if h in self.images: self.images[h].identity = msg['idx'] if not self.training: self.trainSVM() else: print("Image not found.") elif msg['type'] == "REMOVE_IMAGE": h = msg['hash'].encode('ascii', 'ignore') if h in self.images: del self.images[h] if not self.training: self.trainSVM() else: print("Image not found.") elif msg['type'] == 'REQ_TSNE': self.sendTSNE(msg['people']) else: print("Warning: Unknown message type: {}".format(msg['type'])) def onClose(self, wasClean, code, reason): print("WebSocket connection closed: {0}".format(reason)) def loadState(self, jsImages, training, jsPeople): self.training = training print jsImages for jsImage in jsImages: h = jsImage['hash'].encode('ascii', 'ignore') self.images[h] = Face(np.array(jsImage['representation']), jsImage['identity']) for jsPerson in jsPeople: self.people.append(jsPerson.encode('ascii', 'ignore')) if not training: self.trainSVM() def getData(self): X = [] y = [] for img in self.images.values(): X.append(img.rep) y.append(img.identity) numIdentities = len(set(y + [-1])) - 1 if numIdentities == 0: return None if args.unknown: numUnknown = y.count(-1) numIdentified = len(y) - numUnknown numUnknownAdd = (numIdentified / numIdentities) - numUnknown if numUnknownAdd > 0: print("+ Augmenting with {} unknown images.".format(numUnknownAdd)) for rep in self.unknownImgs[:numUnknownAdd]: # print(rep) X.append(rep) y.append(-1) X = np.vstack(X) y = np.array(y) return (X, y) def sendTSNE(self, people): d = self.getData() if d is None: return else: (X, y) = d X_pca = PCA(n_components=50).fit_transform(X, X) tsne = TSNE(n_components=2, init='random', random_state=0) X_r = tsne.fit_transform(X_pca) yVals = list(np.unique(y)) colors = cm.rainbow(np.linspace(0, 1, len(yVals))) # print(yVals) plt.figure() for c, i in zip(colors, yVals): name = "Unknown" if i == -1 else people[i] plt.scatter(X_r[y == i, 0], X_r[y == i, 1], c=c, label=name) plt.legend() imgdata = StringIO.StringIO() plt.savefig(imgdata, format='png') imgdata.seek(0) content = 'data:image/png;base64,' + \ urllib.quote(base64.b64encode(imgdata.buf)) msg = { "type": "TSNE_DATA", "content": content } self.sendMessage(json.dumps(msg)) def trainSVM(self): print("+ Training SVM on {} labeled images.".format(len(self.images))) d = self.getData() print "Step 1" if d is None: self.svm = None print "d none" return else: print "d not none" (X, y) = d print "identity from getData()",y numIdentities = len(set(y + [-1])) print numIdentities,set(y+[-1]) if numIdentities <= 1: print "numIdentities <=1" return param_grid = [ {'C': [1, 10, 100, 1000], 'kernel': ['linear']}, {'C': [1, 10, 100, 1000], 'gamma': [0.001, 0.0001], 'kernel': ['rbf']} ] self.svm = GridSearchCV(SVC(C=1), param_grid, cv=5).fit(X, y) print "Persisting Model", self.svm self.persistModel(self.svm) print "Loading Model" #s = self.loadModel() #pprint.pprint(s) #self.svm=s # svm_persisted = pickle.dumps(self.svm) # self.svm = pickle.loads(svm_persisted) def loadModel(self): # model = open('model.pkl', 'r') # svm_persisted = pickle.load('model.pkl') # output.close() # return svm_persisted # return True with open('model.pkl', 'rb') as f: # if sys.version_info[0] < 3: mod = pickle.load(f) return mod def persistModel(self, mod): # output = open('model.pkl', 'w') with open('model.pkl', 'wb') as f: pickle.dump(mod, f) # svm_persisted = pickle.dump(mod, 'model.pkl', protocol=2) # output.close() return True def processFrame(self, dataURL, identity): head = "data:image/jpeg;base64," assert(dataURL.startswith(head)) imgdata = base64.b64decode(dataURL[len(head):]) imgF = StringIO.StringIO() imgF.write(imgdata) imgF.seek(0) img = Image.open(imgF) buf = np.fliplr(np.asarray(img)) rgbFrame = np.zeros((300, 400, 3), dtype=np.uint8) rgbFrame[:, :, 0] = buf[:, :, 2] rgbFrame[:, :, 1] = buf[:, :, 1] rgbFrame[:, :, 2] = buf[:, :, 0] if not self.training: annotatedFrame = np.copy(buf) # cv2.imshow('frame', rgbFrame) # if cv2.waitKey(1) & 0xFF == ord('q'): # return identities = [] if not self.training: bbs = align.getAllFaceBoundingBoxes(rgbFrame) else: bb = align.getLargestFaceBoundingBox(rgbFrame) bbs = [bb] if bb is not None else [] for bb in bbs: # print(len(bbs)) landmarks = align.findLandmarks(rgbFrame, bb) alignedFace = align.align(args.imgDim, rgbFrame, bb, landmarks=landmarks, landmarkIndices=openface.AlignDlib.OUTER_EYES_AND_NOSE) if alignedFace is None: continue phash = str(imagehash.phash(Image.fromarray(alignedFace))) if phash in self.images: identity = self.images[phash].identity else: rep = net.forward(alignedFace) # print(rep) if self.training: self.images[phash] = Face(rep, identity) # TODO: Transferring as a string is suboptimal. # content = [str(x) for x in cv2.resize(alignedFace, (0,0), # fx=0.5, fy=0.5).flatten()] content = [str(x) for x in alignedFace.flatten()] msg = { "type": "NEW_IMAGE", "hash": phash, "content": content, "identity": identity, "representation": rep.tolist() } print "training",identity self.sendMessage(json.dumps(msg)) #print "training",self.images # with open('images.json', 'w') as fp: # json.dump(self.images, fp) with open('images.pkl', 'w') as f: pickle.dump(self.images, f) else: if len(self.people) == 0: identity = -1 elif len(self.people) == 1: identity = 0 elif self.svm: print self.svm.predict identity = self.svm.predict(rep)[0] print "predicted",identity else: print("hhh") identity = -1 if identity not in identities: identities.append(identity) print identities if not self.training: bl = (bb.left(), bb.bottom()) tr = (bb.right(), bb.top()) cv2.rectangle(annotatedFrame, bl, tr, color=(153, 255, 204), thickness=3) for p in openface.AlignDlib.OUTER_EYES_AND_NOSE: cv2.circle(annotatedFrame, center=landmarks[p], radius=3, color=(102, 204, 255), thickness=-1) if identity == -1: if len(self.people) == 1: name = self.people[0] else: name = "Unknown" else: name = self.people[identity] print name cv2.putText(annotatedFrame, name, (bb.left(), bb.top() - 10), cv2.FONT_HERSHEY_SIMPLEX, fontScale=0.75, color=(152, 255, 204), thickness=2) if not self.training: msg = { "type": "IDENTITIES", "identities": identities } self.sendMessage(json.dumps(msg)) print identities plt.figure() plt.imshow(annotatedFrame) plt.xticks([]) plt.yticks([]) imgdata = StringIO.StringIO() plt.savefig(imgdata, format='png') imgdata.seek(0) content = 'data:image/png;base64,' + \ urllib.quote(base64.b64encode(imgdata.buf)) msg = { "type": "ANNOTATED", "content": content } plt.close() self.sendMessage(json.dumps(msg)) def main(reactor): log.startLogging(sys.stdout) factory = WebSocketServerFactory() factory.protocol = OpenFaceServerProtocol ctx_factory = DefaultOpenSSLContextFactory(tls_key, tls_crt) reactor.listenSSL(args.port, factory, ctx_factory) return defer.Deferred() if __name__ == '__main__': task.react(main)
apache-2.0
JeffAbrahamson/gtd
cluster_example.py
1
6522
#!/usr/bin/env python3 """Cluster data by tf-idf. """ from __future__ import print_function from sklearn import metrics from sklearn.datasets import fetch_20newsgroups from sklearn.decomposition import TruncatedSVD from sklearn.feature_extraction.text import HashingVectorizer from sklearn.feature_extraction.text import TfidfTransformer from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.pipeline import make_pipeline from sklearn.preprocessing import Normalizer from sklearn.cluster import KMeans, MiniBatchKMeans from optparse import OptionParser from time import time import logging import sys import numpy as np def load_data(): """Load data. """ ############################################################################### # Load some categories from the training set categories = [ 'alt.atheism', 'talk.religion.misc', 'comp.graphics', 'sci.space', ] # Uncomment the following to do the analysis on all the categories #categories = None print("Loading 20 newsgroups dataset for categories:") print(categories) dataset = fetch_20newsgroups(subset='all', categories=categories, shuffle=True, random_state=42) print("%d documents" % len(dataset.data)) print("%d categories" % len(dataset.target_names)) print() return dataset def do_cluster(opts, args): """ """ dataset = load_data() labels = dataset.target true_k = np.unique(labels).shape[0] print("Extracting features from the training dataset using a sparse vectorizer") t0 = time() if opts.use_hashing: if opts.use_idf: # Perform an IDF normalization on the output of HashingVectorizer hasher = HashingVectorizer(n_features=opts.n_features, stop_words='english', non_negative=True, norm=None, binary=False) vectorizer = make_pipeline(hasher, TfidfTransformer()) else: vectorizer = HashingVectorizer(n_features=opts.n_features, stop_words='english', non_negative=False, norm='l2', binary=False) else: vectorizer = TfidfVectorizer(max_df=0.5, max_features=opts.n_features, min_df=2, stop_words='english', use_idf=opts.use_idf) X = vectorizer.fit_transform(dataset.data) print("done in %fs" % (time() - t0)) print("n_samples: %d, n_features: %d" % X.shape) print() if opts.n_components: print("Performing dimensionality reduction using LSA") t0 = time() # Vectorizer results are normalized, which makes KMeans behave as # spherical k-means for better results. Since LSA/SVD results are # not normalized, we have to redo the normalization. svd = TruncatedSVD(opts.n_components) normalizer = Normalizer(copy=False) lsa = make_pipeline(svd, normalizer) X = lsa.fit_transform(X) print("done in %fs" % (time() - t0)) explained_variance = svd.explained_variance_ratio_.sum() print("Explained variance of the SVD step: {}%".format( int(explained_variance * 100))) print() ############################################################################### # Do the actual clustering if opts.minibatch: km = MiniBatchKMeans(n_clusters=true_k, init='k-means++', n_init=1, init_size=1000, batch_size=1000, verbose=opts.verbose) else: km = KMeans(n_clusters=true_k, init='k-means++', max_iter=100, n_init=1, verbose=opts.verbose) print("Clustering sparse data with %s" % km) t0 = time() km.fit(X) print("done in %0.3fs" % (time() - t0)) print() print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels, km.labels_)) print("Completeness: %0.3f" % metrics.completeness_score(labels, km.labels_)) print("V-measure: %0.3f" % metrics.v_measure_score(labels, km.labels_)) print("Adjusted Rand-Index: %.3f" % metrics.adjusted_rand_score(labels, km.labels_)) print("Silhouette Coefficient: %0.3f" % metrics.silhouette_score(X, km.labels_, sample_size=1000)) print() if not opts.use_hashing: print("Top terms per cluster:") if opts.n_components: original_space_centroids = svd.inverse_transform(km.cluster_centers_) order_centroids = original_space_centroids.argsort()[:, ::-1] else: order_centroids = km.cluster_centers_.argsort()[:, ::-1] terms = vectorizer.get_feature_names() for i in range(true_k): print("Cluster %d:" % i, end='') for ind in order_centroids[i, :10]: print(' %s' % terms[ind], end='') print() def main(): """Parse args and then go cluster. """ # Display progress logs on stdout logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s %(message)s') op = OptionParser() op.add_option("--lsa", dest="n_components", type="int", help="Preprocess documents with latent semantic analysis.") op.add_option("--no-minibatch", action="store_false", dest="minibatch", default=True, help="Use ordinary k-means algorithm (in batch mode).") op.add_option("--no-idf", action="store_false", dest="use_idf", default=True, help="Disable Inverse Document Frequency feature weighting.") op.add_option("--use-hashing", action="store_true", default=False, help="Use a hashing feature vectorizer") op.add_option("--n-features", type=int, default=10000, help="Maximum number of features (dimensions)" " to extract from text.") op.add_option("--verbose", action="store_true", dest="verbose", default=False, help="Print progress reports inside k-means algorithm.") print(__doc__) op.print_help() (opts, args) = op.parse_args() if len(args) > 0: op.error("this script takes no arguments.") sys.exit(1) do_cluster(opts, args) if __name__ == '__main__': main()
gpl-2.0
YinongLong/scikit-learn
sklearn/datasets/tests/test_rcv1.py
322
2414
"""Test the rcv1 loader. Skipped if rcv1 is not already downloaded to data_home. """ import errno import scipy.sparse as sp import numpy as np from sklearn.datasets import fetch_rcv1 from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import SkipTest def test_fetch_rcv1(): try: data1 = fetch_rcv1(shuffle=False, download_if_missing=False) except IOError as e: if e.errno == errno.ENOENT: raise SkipTest("Download RCV1 dataset to run this test.") X1, Y1 = data1.data, data1.target cat_list, s1 = data1.target_names.tolist(), data1.sample_id # test sparsity assert_true(sp.issparse(X1)) assert_true(sp.issparse(Y1)) assert_equal(60915113, X1.data.size) assert_equal(2606875, Y1.data.size) # test shapes assert_equal((804414, 47236), X1.shape) assert_equal((804414, 103), Y1.shape) assert_equal((804414,), s1.shape) assert_equal(103, len(cat_list)) # test ordering of categories first_categories = [u'C11', u'C12', u'C13', u'C14', u'C15', u'C151'] assert_array_equal(first_categories, cat_list[:6]) # test number of sample for some categories some_categories = ('GMIL', 'E143', 'CCAT') number_non_zero_in_cat = (5, 1206, 381327) for num, cat in zip(number_non_zero_in_cat, some_categories): j = cat_list.index(cat) assert_equal(num, Y1[:, j].data.size) # test shuffling and subset data2 = fetch_rcv1(shuffle=True, subset='train', random_state=77, download_if_missing=False) X2, Y2 = data2.data, data2.target s2 = data2.sample_id # The first 23149 samples are the training samples assert_array_equal(np.sort(s1[:23149]), np.sort(s2)) # test some precise values some_sample_ids = (2286, 3274, 14042) for sample_id in some_sample_ids: idx1 = s1.tolist().index(sample_id) idx2 = s2.tolist().index(sample_id) feature_values_1 = X1[idx1, :].toarray() feature_values_2 = X2[idx2, :].toarray() assert_almost_equal(feature_values_1, feature_values_2) target_values_1 = Y1[idx1, :].toarray() target_values_2 = Y2[idx2, :].toarray() assert_almost_equal(target_values_1, target_values_2)
bsd-3-clause
harisbal/pandas
pandas/io/msgpack/__init__.py
26
1233
# coding: utf-8 from collections import namedtuple from pandas.io.msgpack.exceptions import * # noqa from pandas.io.msgpack._version import version # noqa class ExtType(namedtuple('ExtType', 'code data')): """ExtType represents ext type in msgpack.""" def __new__(cls, code, data): if not isinstance(code, int): raise TypeError("code must be int") if not isinstance(data, bytes): raise TypeError("data must be bytes") if not 0 <= code <= 127: raise ValueError("code must be 0~127") return super(ExtType, cls).__new__(cls, code, data) import os # noqa from pandas.io.msgpack._packer import Packer # noqa from pandas.io.msgpack._unpacker import unpack, unpackb, Unpacker # noqa def pack(o, stream, **kwargs): """ Pack object `o` and write it to `stream` See :class:`Packer` for options. """ packer = Packer(**kwargs) stream.write(packer.pack(o)) def packb(o, **kwargs): """ Pack object `o` and return packed bytes See :class:`Packer` for options. """ return Packer(**kwargs).pack(o) # alias for compatibility to simplejson/marshal/pickle. load = unpack loads = unpackb dump = pack dumps = packb
bsd-3-clause
mgupta011235/TweetSafe
doc2vec/gridsearch_doc2vec.py
1
8087
import gensim import pandas as pd import random import numpy as np import matplotlib.pyplot as plt import cPickle as pickle from scipy.spatial.distance import cosine from nltk.tokenize import PunktSentenceTokenizer import time ########################################################################### # tokenization code def seperatePunct(incomingString): ''' Input:str, Output: str with all puncuations seperated by spaces ''' outstr = '' characters = set(['!','@','#','$',"%","^","&","*",":","\\", "(",")","+","=","?","\'","\"",";","/", "{","}","[","]","<",">","~","`","|"]) for char in incomingString: if char in characters: outstr = outstr + ' ' + char + ' ' else: outstr = outstr + char return outstr def hasNumbers(inputString): ''' Input: str Output: returns a 1 if the string contains a number ''' return any(char.isdigit() for char in inputString) def text_cleaner(wordList): ''' INPUT: List of words to be tokenized OUTPUT: List of tokenized words ''' tokenziedList = [] for word in wordList: #remove these substrings from the word word = word.replace('[deleted]','') word = word.replace('&gt','') #if link, replace with linktag if 'http' in word: tokenziedList.append('LINK_TAG') continue #if reference to subreddit, replace with reddittag if '/r/' in word: tokenziedList.append('SUBREDDIT_TAG') continue #if reference to reddit user, replace with usertag if '/u/' in word: tokenziedList.append('USER_TAG') continue #if reference to twitter user, replace with usertag if '@' in word: tokenziedList.append('USER_TAG') continue #if number, replace with numtag #m8 is a word, 5'10" and 54-59, 56:48 are numbers if hasNumbers(word) and not any(char.isalpha() for char in word): tokenziedList.append('NUM_TAG') continue #seperate puncuations and add to tokenizedList newwords = seperatePunct(word).split(" ") tokenziedList.extend(newwords) return tokenziedList def mytokenizer(comment): ''' Input: takes in a reddit comment as a str or unicode and tokenizes it Output: a tokenized list ''' tokenizer = PunktSentenceTokenizer() sentenceList = tokenizer.tokenize(comment) wordList = [] for sentence in sentenceList: wordList.extend(sentence.split(" ")) return text_cleaner(wordList) ############################################################################# #similarity code def mostSimilarDoc(model,comment,k,threshold): ''' Input: doc2vec model, comment is a str, k = number of similar doc vecs Output: an int indicating hate (1) or not hate (0),most similar subreddit ''' docvecs = model.docvecs numdocvec = len(docvecs) simVals = np.zeros((numdocvec, )) #tokenize comment wordTokens = mytokenizer(comment) #create vector of tokenized comment #avg over 100 vectors finalVec = np.zeros((300, )) for i in xrange(100): finalVec = finalVec + model.infer_vector(wordTokens) commentVec = finalVec/100.0 #compute similarity of comment to each subreddit for vec_ind in xrange(len(docvecs)): simVals[vec_ind] = 1 - cosine(commentVec,docvecs[vec_ind]) mostSimVecInd = np.argsort(simVals)[-k:] hatecount = 0 #count how many hates there are for index in mostSimVecInd: hatecount += ishateful(docvecs.index_to_doctag(index)) #majority vote to determine hateful/nothateful if hatecount>=threshold*len(mostSimVecInd): prediction = 1 else: prediction = 0 #find most similar subreddit # mostSimSubreddit = docvecs.index_to_doctag(mostSimVecInd[0]) return prediction ############################################################################## #hate/NotHate code def ishateful(subreddit): ''' Input: str subreddit Output: int 1 if hateful subreddit, 0 otherwise ''' # List of not hateful subreddits final_nothate_srs = ['politics', 'worldnews', 'history', 'blackladies', 'lgbt', 'TransSpace', 'women', 'TwoXChromosomes', 'DebateReligion', 'religion', 'islam', 'Judaism', 'BodyAcceptance', 'fatlogic' 'gaybros','AskMen','AskWomen'] # List of hateful subreddits final_hateful_srs = ['CoonTown', 'WhiteRights', 'Trans_fags', 'SlutJustice', 'TheRedPill', 'KotakuInAction', 'IslamUnveiled', 'GasTheKikes', 'AntiPOZi', 'fatpeoplehate', 'TalesofFatHate','hamplanethatred', 'shitniggerssay','neofag','altright'] if subreddit in final_hateful_srs: return 1 else: return 0 ############################################################################# #scoring code def test_score(model,path,k,threshold): '''Input: doc2vec model, path to test data, k val, threshold value Output: the following list [k,threshold,accu,recall,precision,TP,TN,FN,FP]''' # print "loading data..." df = pd.read_csv(path) tweets = df['tweet_text'].values labels = df['label'].values predict = np.zeros((len(labels),)) # print "scoring..." for row in xrange(len(labels)): tweet = tweets[row] prediction = mostSimilarDoc(model,tweet,k,threshold) predict[row] = prediction TP = sum(predict+labels == 2) TN = sum(predict+labels == 0) FP = sum(predict-labels == 1) FN = sum(predict-labels == -1) accu = (TP+TN)/float(len(labels)) recall = TP/float(TP+FN) precision = TP/float(TP+FP) print "" print "k: {}".format(k) print "threshold: {}".format(threshold) print "accuracy: {}".format(accu) print "recall: {}".format(recall) print "precision: {}".format(precision) print "" print "TP: {}".format(TP) print "TN: {}".format(TN) print "" print "FN: {}".format(FN) print "FP: {}".format(FP) #output data to be saved in a pd dataframe return [k,threshold,accu,recall,precision,TP,TN,FN,FP] ############################################################################## #Main if __name__ == '__main__': '''This script runs gridsearch on a doc2vec model to determine the optimal k and threshold values on the cross val set''' print "starting..." #dataset paths trainpath = '../../data/labeledRedditComments.p' trainpath2 = '../../data/labeledRedditComments2.p' cvpath = '../../data/twitter_cross_val.csv' testpath = '../../data/twitter_test.csv' sqlpath = '../../data/RedditMay2015Comments.sqlite' #model paths # modelPath = '../../doc2vec_models/basemodel2/basemodel2.doc2vec' # modelPath = '../../doc2vec_models/basemodel3/basemodel3.doc2vec' # modelPath = '../../doc2vec_models/basemodel4/basemodel4.doc2vec' modelPath = '../../doc2vec_models/basemodel5/basemodel5.doc2vec' # modelPath = '../../doc2vec_models/modellower/modellower.doc2vec' # modelPath = '../../doc2vec_models/model_split/model_split.doc2vec' print "loading model..." model = gensim.models.Doc2Vec.load(modelPath) tstart = time.time() print "gridsearch..." results = [] count = 0 for k in xrange(1,15): for threshold in [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1]: print "count: {}".format(count) results.append(test_score(model,cvpath,k,threshold)) count+=1 print "" labels = ['k','threshold','accuracy','recall','precision','TP','TN','FN','FP'] df = pd.DataFrame(data=results,columns=labels) tstop = time.time() dt = tstop-tstart print "total time: {}".format(dt) print "time per gridpoint: {}".format(dt/float(count)) df.to_csv('../../data/gridsearch_modelbase5_on_cross_val.csv')
gpl-3.0
fabioticconi/scikit-learn
examples/tree/plot_tree_regression.py
95
1516
""" =================================================================== Decision Tree Regression =================================================================== A 1D regression with decision tree. The :ref:`decision trees <tree>` is used to fit a sine curve with addition noisy observation. As a result, it learns local linear regressions approximating the sine curve. We can see that if the maximum depth of the tree (controlled by the `max_depth` parameter) is set too high, the decision trees learn too fine details of the training data and learn from the noise, i.e. they overfit. """ print(__doc__) # Import the necessary modules and libraries import numpy as np from sklearn.tree import DecisionTreeRegressor import matplotlib.pyplot as plt # Create a random dataset rng = np.random.RandomState(1) X = np.sort(5 * rng.rand(80, 1), axis=0) y = np.sin(X).ravel() y[::5] += 3 * (0.5 - rng.rand(16)) # Fit regression model regr_1 = DecisionTreeRegressor(max_depth=2) regr_2 = DecisionTreeRegressor(max_depth=5) regr_1.fit(X, y) regr_2.fit(X, y) # Predict X_test = np.arange(0.0, 5.0, 0.01)[:, np.newaxis] y_1 = regr_1.predict(X_test) y_2 = regr_2.predict(X_test) # Plot the results plt.figure() plt.scatter(X, y, c="darkorange", label="data") plt.plot(X_test, y_1, color="cornflowerblue", label="max_depth=2", linewidth=2) plt.plot(X_test, y_2, color="yellowgreen", label="max_depth=5", linewidth=2) plt.xlabel("data") plt.ylabel("target") plt.title("Decision Tree Regression") plt.legend() plt.show()
bsd-3-clause
soulmachine/scikit-learn
sklearn/metrics/pairwise.py
4
43059
# -*- coding: utf-8 -*- """ The :mod:`sklearn.metrics.pairwise` submodule implements utilities to evaluate pairwise distances, paired distances or affinity of sets of samples. This module contains both distance metrics and kernels. A brief summary is given on the two here. Distance metrics are a function d(a, b) such that d(a, b) < d(a, c) if objects a and b are considered "more similar" to objects a and c. Two objects exactly alike would have a distance of zero. One of the most popular examples is Euclidean distance. To be a 'true' metric, it must obey the following four conditions:: 1. d(a, b) >= 0, for all a and b 2. d(a, b) == 0, if and only if a = b, positive definiteness 3. d(a, b) == d(b, a), symmetry 4. d(a, c) <= d(a, b) + d(b, c), the triangle inequality Kernels are measures of similarity, i.e. ``s(a, b) > s(a, c)`` if objects ``a`` and ``b`` are considered "more similar" to objects ``a`` and ``c``. A kernel must also be positive semi-definite. There are a number of ways to convert between a distance metric and a similarity measure, such as a kernel. Let D be the distance, and S be the kernel: 1. ``S = np.exp(-D * gamma)``, where one heuristic for choosing ``gamma`` is ``1 / num_features`` 2. ``S = 1. / (D / np.max(D))`` """ # Authors: Alexandre Gramfort <[email protected]> # Mathieu Blondel <[email protected]> # Robert Layton <[email protected]> # Andreas Mueller <[email protected]> # Philippe Gervais <[email protected]> # Lars Buitinck <[email protected]> # License: BSD 3 clause import numpy as np from scipy.spatial import distance from scipy.sparse import csr_matrix from scipy.sparse import issparse from ..utils import check_array from ..utils import gen_even_slices from ..utils import gen_batches from ..utils.extmath import row_norms, safe_sparse_dot from ..preprocessing import normalize from ..externals.joblib import Parallel from ..externals.joblib import delayed from ..externals.joblib.parallel import cpu_count from .pairwise_fast import _chi2_kernel_fast, _sparse_manhattan # Utility Functions def check_pairwise_arrays(X, Y): """ Set X and Y appropriately and checks inputs If Y is None, it is set as a pointer to X (i.e. not a copy). If Y is given, this does not happen. All distance metrics should use this function first to assert that the given parameters are correct and safe to use. Specifically, this function first ensures that both X and Y are arrays, then checks that they are at least two dimensional while ensuring that their elements are floats. Finally, the function checks that the size of the second dimension of the two arrays is equal. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples_a, n_features) Y : {array-like, sparse matrix}, shape (n_samples_b, n_features) Returns ------- safe_X : {array-like, sparse matrix}, shape (n_samples_a, n_features) An array equal to X, guaranteed to be a numpy array. safe_Y : {array-like, sparse matrix}, shape (n_samples_b, n_features) An array equal to Y if Y was not None, guaranteed to be a numpy array. If Y was None, safe_Y will be a pointer to X. """ if Y is X or Y is None: X = Y = check_array(X, accept_sparse='csr') else: X = check_array(X, accept_sparse='csr') Y = check_array(Y, accept_sparse='csr') if X.shape[1] != Y.shape[1]: raise ValueError("Incompatible dimension for X and Y matrices: " "X.shape[1] == %d while Y.shape[1] == %d" % ( X.shape[1], Y.shape[1])) if not (X.dtype == Y.dtype == np.float32): if Y is X: X = Y = check_array(X, ['csr', 'csc', 'coo'], dtype=np.float) else: X = check_array(X, ['csr', 'csc', 'coo'], dtype=np.float) Y = check_array(Y, ['csr', 'csc', 'coo'], dtype=np.float) return X, Y def check_paired_arrays(X, Y): """ Set X and Y appropriately and checks inputs for paired distances All paired distance metrics should use this function first to assert that the given parameters are correct and safe to use. Specifically, this function first ensures that both X and Y are arrays, then checks that they are at least two dimensional while ensuring that their elements are floats. Finally, the function checks that the size of the dimensions of the two arrays are equal. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples_a, n_features) Y : {array-like, sparse matrix}, shape (n_samples_b, n_features) Returns ------- safe_X : {array-like, sparse matrix}, shape (n_samples_a, n_features) An array equal to X, guaranteed to be a numpy array. safe_Y : {array-like, sparse matrix}, shape (n_samples_b, n_features) An array equal to Y if Y was not None, guaranteed to be a numpy array. If Y was None, safe_Y will be a pointer to X. """ X, Y = check_pairwise_arrays(X, Y) if X.shape != Y.shape: raise ValueError("X and Y should be of same shape. They were " "respectively %r and %r long." % (X.shape, Y.shape)) return X, Y # Pairwise distances def euclidean_distances(X, Y=None, Y_norm_squared=None, squared=False): """ Considering the rows of X (and Y=X) as vectors, compute the distance matrix between each pair of vectors. For efficiency reasons, the euclidean distance between a pair of row vector x and y is computed as:: dist(x, y) = sqrt(dot(x, x) - 2 * dot(x, y) + dot(y, y)) This formulation has two advantages over other ways of computing distances. First, it is computationally efficient when dealing with sparse data. Second, if x varies but y remains unchanged, then the right-most dot product `dot(y, y)` can be pre-computed. However, this is not the most precise way of doing this computation, and the distance matrix returned by this function may not be exactly symmetric as required by, e.g., ``scipy.spatial.distance`` functions. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples_1, n_features) Y : {array-like, sparse matrix}, shape (n_samples_2, n_features) Y_norm_squared : array-like, shape (n_samples_2, ), optional Pre-computed dot-products of vectors in Y (e.g., ``(Y**2).sum(axis=1)``) squared : boolean, optional Return squared Euclidean distances. Returns ------- distances : {array, sparse matrix}, shape (n_samples_1, n_samples_2) Examples -------- >>> from sklearn.metrics.pairwise import euclidean_distances >>> X = [[0, 1], [1, 1]] >>> # distance between rows of X >>> euclidean_distances(X, X) array([[ 0., 1.], [ 1., 0.]]) >>> # get distance to origin >>> euclidean_distances(X, [[0, 0]]) array([[ 1. ], [ 1.41421356]]) See also -------- paired_distances : distances betweens pairs of elements of X and Y. """ # should not need X_norm_squared because if you could precompute that as # well as Y, then you should just pre-compute the output and not even # call this function. X, Y = check_pairwise_arrays(X, Y) if Y_norm_squared is not None: YY = check_array(Y_norm_squared) if YY.shape != (1, Y.shape[0]): raise ValueError( "Incompatible dimensions for Y and Y_norm_squared") else: YY = row_norms(Y, squared=True)[np.newaxis, :] if X is Y: # shortcut in the common case euclidean_distances(X, X) XX = YY.T else: XX = row_norms(X, squared=True)[:, np.newaxis] distances = safe_sparse_dot(X, Y.T, dense_output=True) distances *= -2 distances += XX distances += YY np.maximum(distances, 0, out=distances) if X is Y: # Ensure that distances between vectors and themselves are set to 0.0. # This may not be the case due to floating point rounding errors. distances.flat[::distances.shape[0] + 1] = 0.0 return distances if squared else np.sqrt(distances, out=distances) def pairwise_distances_argmin_min(X, Y, axis=1, metric="euclidean", batch_size=500, metric_kwargs=None): """Compute minimum distances between one point and a set of points. This function computes for each row in X, the index of the row of Y which is closest (according to the specified distance). The minimal distances are also returned. This is mostly equivalent to calling: (pairwise_distances(X, Y=Y, metric=metric).argmin(axis=axis), pairwise_distances(X, Y=Y, metric=metric).min(axis=axis)) but uses much less memory, and is faster for large arrays. Parameters ---------- X, Y : {array-like, sparse matrix} Arrays containing points. Respective shapes (n_samples1, n_features) and (n_samples2, n_features) batch_size : integer To reduce memory consumption over the naive solution, data are processed in batches, comprising batch_size rows of X and batch_size rows of Y. The default value is quite conservative, but can be changed for fine-tuning. The larger the number, the larger the memory usage. metric : string or callable metric to use for distance computation. Any metric from scikit-learn or scipy.spatial.distance can be used. If metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays as input and return one value indicating the distance between them. This works for Scipy's metrics, but is less efficient than passing the metric name as a string. Distance matrices are not supported. Valid values for metric are: - from scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2', 'manhattan'] - from scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev', 'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule'] See the documentation for scipy.spatial.distance for details on these metrics. metric_kwargs : dict, optional Keyword arguments to pass to specified metric function. Returns ------- argmin : numpy.ndarray Y[argmin[i], :] is the row in Y that is closest to X[i, :]. distances : numpy.ndarray distances[i] is the distance between the i-th row in X and the argmin[i]-th row in Y. See also -------- sklearn.metrics.pairwise_distances sklearn.metrics.pairwise_distances_argmin """ dist_func = None if metric in PAIRWISE_DISTANCE_FUNCTIONS: dist_func = PAIRWISE_DISTANCE_FUNCTIONS[metric] elif not callable(metric) and not isinstance(metric, str): raise ValueError("'metric' must be a string or a callable") X, Y = check_pairwise_arrays(X, Y) if metric_kwargs is None: metric_kwargs = {} if axis == 0: X, Y = Y, X # Allocate output arrays indices = np.empty(X.shape[0], dtype=np.intp) values = np.empty(X.shape[0]) values.fill(np.infty) for chunk_x in gen_batches(X.shape[0], batch_size): X_chunk = X[chunk_x, :] for chunk_y in gen_batches(Y.shape[0], batch_size): Y_chunk = Y[chunk_y, :] if dist_func is not None: if metric == 'euclidean': # special case, for speed d_chunk = safe_sparse_dot(X_chunk, Y_chunk.T, dense_output=True) d_chunk *= -2 d_chunk += row_norms(X_chunk, squared=True)[:, np.newaxis] d_chunk += row_norms(Y_chunk, squared=True)[np.newaxis, :] np.maximum(d_chunk, 0, d_chunk) else: d_chunk = dist_func(X_chunk, Y_chunk, **metric_kwargs) else: d_chunk = pairwise_distances(X_chunk, Y_chunk, metric=metric, **metric_kwargs) # Update indices and minimum values using chunk min_indices = d_chunk.argmin(axis=1) min_values = d_chunk[np.arange(chunk_x.stop - chunk_x.start), min_indices] flags = values[chunk_x] > min_values indices[chunk_x] = np.where( flags, min_indices + chunk_y.start, indices[chunk_x]) values[chunk_x] = np.where( flags, min_values, values[chunk_x]) if metric == "euclidean" and not metric_kwargs.get("squared", False): np.sqrt(values, values) return indices, values def pairwise_distances_argmin(X, Y, axis=1, metric="euclidean", batch_size=500, metric_kwargs={}): """Compute minimum distances between one point and a set of points. This function computes for each row in X, the index of the row of Y which is closest (according to the specified distance). This is mostly equivalent to calling: pairwise_distances(X, Y=Y, metric=metric).argmin(axis=axis) but uses much less memory, and is faster for large arrays. This function works with dense 2D arrays only. Parameters ========== X, Y : array-like Arrays containing points. Respective shapes (n_samples1, n_features) and (n_samples2, n_features) batch_size : integer To reduce memory consumption over the naive solution, data are processed in batches, comprising batch_size rows of X and batch_size rows of Y. The default value is quite conservative, but can be changed for fine-tuning. The larger the number, the larger the memory usage. metric : string or callable metric to use for distance computation. Any metric from scikit-learn or scipy.spatial.distance can be used. If metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays as input and return one value indicating the distance between them. This works for Scipy's metrics, but is less efficient than passing the metric name as a string. Distance matrices are not supported. Valid values for metric are: - from scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2', 'manhattan'] - from scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev', 'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule'] See the documentation for scipy.spatial.distance for details on these metrics. metric_kwargs : dict keyword arguments to pass to specified metric function. Returns ======= argmin : numpy.ndarray Y[argmin[i], :] is the row in Y that is closest to X[i, :]. See also ======== sklearn.metrics.pairwise_distances sklearn.metrics.pairwise_distances_argmin_min """ return pairwise_distances_argmin_min(X, Y, axis, metric, batch_size, metric_kwargs)[0] def manhattan_distances(X, Y=None, sum_over_features=True, size_threshold=5e8): """ Compute the L1 distances between the vectors in X and Y. With sum_over_features equal to False it returns the componentwise distances. Parameters ---------- X : array_like An array with shape (n_samples_X, n_features). Y : array_like, optional An array with shape (n_samples_Y, n_features). sum_over_features : bool, default=True If True the function returns the pairwise distance matrix else it returns the componentwise L1 pairwise-distances. Not supported for sparse matrix inputs. size_threshold : int, default=5e8 Avoid creating temporary matrices bigger than size_threshold (in bytes). If the problem size gets too big, the implementation then breaks it down in smaller problems. Returns ------- D : array If sum_over_features is False shape is (n_samples_X * n_samples_Y, n_features) and D contains the componentwise L1 pairwise-distances (ie. absolute difference), else shape is (n_samples_X, n_samples_Y) and D contains the pairwise L1 distances. Examples -------- >>> from sklearn.metrics.pairwise import manhattan_distances >>> manhattan_distances(3, 3)#doctest:+ELLIPSIS array([[ 0.]]) >>> manhattan_distances(3, 2)#doctest:+ELLIPSIS array([[ 1.]]) >>> manhattan_distances(2, 3)#doctest:+ELLIPSIS array([[ 1.]]) >>> manhattan_distances([[1, 2], [3, 4]],\ [[1, 2], [0, 3]])#doctest:+ELLIPSIS array([[ 0., 2.], [ 4., 4.]]) >>> import numpy as np >>> X = np.ones((1, 2)) >>> y = 2 * np.ones((2, 2)) >>> manhattan_distances(X, y, sum_over_features=False)#doctest:+ELLIPSIS array([[ 1., 1.], [ 1., 1.]]...) """ X, Y = check_pairwise_arrays(X, Y) if issparse(X) or issparse(Y): if not sum_over_features: raise TypeError("sum_over_features=%r not supported" " for sparse matrices" % sum_over_features) X = csr_matrix(X, copy=False) Y = csr_matrix(Y, copy=False) D = np.zeros((X.shape[0], Y.shape[0])) _sparse_manhattan(X.data, X.indices, X.indptr, Y.data, Y.indices, Y.indptr, X.shape[1], D) return D temporary_size = X.size * Y.shape[-1] # Convert to bytes temporary_size *= X.itemsize if temporary_size > size_threshold and sum_over_features: # Broadcasting the full thing would be too big: it's on the order # of magnitude of the gigabyte D = np.empty((X.shape[0], Y.shape[0]), dtype=X.dtype) index = 0 increment = 1 + int(size_threshold / float(temporary_size) * X.shape[0]) while index < X.shape[0]: this_slice = slice(index, index + increment) tmp = X[this_slice, np.newaxis, :] - Y[np.newaxis, :, :] tmp = np.abs(tmp, tmp) tmp = np.sum(tmp, axis=2) D[this_slice] = tmp index += increment else: D = X[:, np.newaxis, :] - Y[np.newaxis, :, :] D = np.abs(D, D) if sum_over_features: D = np.sum(D, axis=2) else: D = D.reshape((-1, X.shape[1])) return D def cosine_distances(X, Y=None): """ Compute cosine distance between samples in X and Y. Cosine distance is defined as 1.0 minus the cosine similarity. Parameters ---------- X : array_like, sparse matrix with shape (n_samples_X, n_features). Y : array_like, sparse matrix (optional) with shape (n_samples_Y, n_features). Returns ------- distance matrix : array An array with shape (n_samples_X, n_samples_Y). See also -------- sklearn.metrics.pairwise.cosine_similarity scipy.spatial.distance.cosine (dense matrices only) """ # 1.0 - cosine_similarity(X, Y) without copy S = cosine_similarity(X, Y) S *= -1 S += 1 return S # Paired distances def paired_euclidean_distances(X, Y): """ Computes the paired euclidean distances between X and Y Parameters ---------- X : array-like, shape (n_samples, n_features) Y : array-like, shape (n_samples, n_features) Returns ------- distances : ndarray (n_samples, ) """ X, Y = check_paired_arrays(X, Y) return np.sqrt(((X - Y) ** 2).sum(axis=-1)) def paired_manhattan_distances(X, Y): """Compute the L1 distances between the vectors in X and Y. Parameters ---------- X : array-like, shape (n_samples, n_features) Y : array-like, shape (n_samples, n_features) Returns ------- distances : ndarray (n_samples, ) """ X, Y = check_paired_arrays(X, Y) return np.abs(X - Y).sum(axis=-1) def paired_cosine_distances(X, Y): """ Computes the paired cosine distances between X and Y Parameters ---------- X : array-like, shape (n_samples, n_features) Y : array-like, shape (n_samples, n_features) Returns ------- distances : ndarray, shape (n_samples, ) Notes ------ The cosine distance is equivalent to the half the squared euclidean distance if each sample is normalized to unit norm """ X, Y = check_paired_arrays(X, Y) X_normalized = normalize(X, copy=True) X_normalized -= normalize(Y, copy=True) return .5 * (X_normalized ** 2).sum(axis=-1) PAIRED_DISTANCES = { 'cosine': paired_cosine_distances, 'euclidean': paired_euclidean_distances, 'l2': paired_euclidean_distances, 'l1': paired_manhattan_distances, 'manhattan': paired_manhattan_distances, 'cityblock': paired_manhattan_distances, } def paired_distances(X, Y, metric="euclidean", **kwds): """ Computes the paired distances between X and Y. Computes the distances between (X[0], Y[0]), (X[1], Y[1]), etc... Parameters ---------- X, Y : ndarray (n_samples, n_features) metric : string or callable The metric to use when calculating distance between instances in a feature array. If metric is a string, it must be one of the options specified in PAIRED_DISTANCES, including "euclidean", "manhattan", or "cosine". Alternatively, if metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays from X as input and return a value indicating the distance between them. Returns ------- distances : ndarray (n_samples, ) Examples -------- >>> from sklearn.metrics.pairwise import paired_distances >>> X = [[0, 1], [1, 1]] >>> Y = [[0, 1], [2, 1]] >>> paired_distances(X, Y) array([ 0., 1.]) See also -------- pairwise_distances : pairwise distances. """ if metric in PAIRED_DISTANCES: func = PAIRED_DISTANCES[metric] return func(X, Y) elif callable(metric): # Check the matrix first (it is usually done by the metric) X, Y = check_paired_arrays(X, Y) distances = np.zeros(len(X)) for i in range(len(X)): distances[i] = metric(X[i], Y[i]) return distances else: raise ValueError('Unknown distance %s' % metric) # Kernels def linear_kernel(X, Y=None): """ Compute the linear kernel between X and Y. Parameters ---------- X : array of shape (n_samples_1, n_features) Y : array of shape (n_samples_2, n_features) Returns ------- Gram matrix : array of shape (n_samples_1, n_samples_2) """ X, Y = check_pairwise_arrays(X, Y) return safe_sparse_dot(X, Y.T, dense_output=True) def polynomial_kernel(X, Y=None, degree=3, gamma=None, coef0=1): """ Compute the polynomial kernel between X and Y:: K(X, Y) = (gamma <X, Y> + coef0)^degree Parameters ---------- X : array of shape (n_samples_1, n_features) Y : array of shape (n_samples_2, n_features) degree : int Returns ------- Gram matrix : array of shape (n_samples_1, n_samples_2) """ X, Y = check_pairwise_arrays(X, Y) if gamma is None: gamma = 1.0 / X.shape[1] K = linear_kernel(X, Y) K *= gamma K += coef0 K **= degree return K def sigmoid_kernel(X, Y=None, gamma=None, coef0=1): """ Compute the sigmoid kernel between X and Y:: K(X, Y) = tanh(gamma <X, Y> + coef0) Parameters ---------- X : array of shape (n_samples_1, n_features) Y : array of shape (n_samples_2, n_features) degree : int Returns ------- Gram matrix: array of shape (n_samples_1, n_samples_2) """ X, Y = check_pairwise_arrays(X, Y) if gamma is None: gamma = 1.0 / X.shape[1] K = linear_kernel(X, Y) K *= gamma K += coef0 np.tanh(K, K) # compute tanh in-place return K def rbf_kernel(X, Y=None, gamma=None): """ Compute the rbf (gaussian) kernel between X and Y:: K(x, y) = exp(-gamma ||x-y||^2) for each pair of rows x in X and y in Y. Parameters ---------- X : array of shape (n_samples_X, n_features) Y : array of shape (n_samples_Y, n_features) gamma : float Returns ------- kernel_matrix : array of shape (n_samples_X, n_samples_Y) """ X, Y = check_pairwise_arrays(X, Y) if gamma is None: gamma = 1.0 / X.shape[1] K = euclidean_distances(X, Y, squared=True) K *= -gamma np.exp(K, K) # exponentiate K in-place return K def cosine_similarity(X, Y=None): """Compute cosine similarity between samples in X and Y. Cosine similarity, or the cosine kernel, computes similarity as the normalized dot product of X and Y: K(X, Y) = <X, Y> / (||X||*||Y||) On L2-normalized data, this function is equivalent to linear_kernel. Parameters ---------- X : array_like, sparse matrix with shape (n_samples_X, n_features). Y : array_like, sparse matrix (optional) with shape (n_samples_Y, n_features). Returns ------- kernel matrix : array An array with shape (n_samples_X, n_samples_Y). """ # to avoid recursive import X, Y = check_pairwise_arrays(X, Y) X_normalized = normalize(X, copy=True) if X is Y: Y_normalized = X_normalized else: Y_normalized = normalize(Y, copy=True) K = linear_kernel(X_normalized, Y_normalized) return K def additive_chi2_kernel(X, Y=None): """Computes the additive chi-squared kernel between observations in X and Y The chi-squared kernel is computed between each pair of rows in X and Y. X and Y have to be non-negative. This kernel is most commonly applied to histograms. The chi-squared kernel is given by:: k(x, y) = -Sum [(x - y)^2 / (x + y)] It can be interpreted as a weighted difference per entry. Notes ----- As the negative of a distance, this kernel is only conditionally positive definite. Parameters ---------- X : array-like of shape (n_samples_X, n_features) Y : array of shape (n_samples_Y, n_features) Returns ------- kernel_matrix : array of shape (n_samples_X, n_samples_Y) References ---------- * Zhang, J. and Marszalek, M. and Lazebnik, S. and Schmid, C. Local features and kernels for classification of texture and object categories: A comprehensive study International Journal of Computer Vision 2007 http://eprints.pascal-network.org/archive/00002309/01/Zhang06-IJCV.pdf See also -------- chi2_kernel : The exponentiated version of the kernel, which is usually preferable. sklearn.kernel_approximation.AdditiveChi2Sampler : A Fourier approximation to this kernel. """ if issparse(X) or issparse(Y): raise ValueError("additive_chi2 does not support sparse matrices.") X, Y = check_pairwise_arrays(X, Y) if (X < 0).any(): raise ValueError("X contains negative values.") if Y is not X and (Y < 0).any(): raise ValueError("Y contains negative values.") result = np.zeros((X.shape[0], Y.shape[0]), dtype=X.dtype) _chi2_kernel_fast(X, Y, result) return result def chi2_kernel(X, Y=None, gamma=1.): """Computes the exponential chi-squared kernel X and Y. The chi-squared kernel is computed between each pair of rows in X and Y. X and Y have to be non-negative. This kernel is most commonly applied to histograms. The chi-squared kernel is given by:: k(x, y) = exp(-gamma Sum [(x - y)^2 / (x + y)]) It can be interpreted as a weighted difference per entry. Parameters ---------- X : array-like of shape (n_samples_X, n_features) Y : array of shape (n_samples_Y, n_features) gamma : float, default=1. Scaling parameter of the chi2 kernel. Returns ------- kernel_matrix : array of shape (n_samples_X, n_samples_Y) References ---------- * Zhang, J. and Marszalek, M. and Lazebnik, S. and Schmid, C. Local features and kernels for classification of texture and object categories: A comprehensive study International Journal of Computer Vision 2007 http://eprints.pascal-network.org/archive/00002309/01/Zhang06-IJCV.pdf See also -------- additive_chi2_kernel : The additive version of this kernel sklearn.kernel_approximation.AdditiveChi2Sampler : A Fourier approximation to the additive version of this kernel. """ K = additive_chi2_kernel(X, Y) K *= gamma return np.exp(K, K) # Helper functions - distance PAIRWISE_DISTANCE_FUNCTIONS = { # If updating this dictionary, update the doc in both distance_metrics() # and also in pairwise_distances()! 'cityblock': manhattan_distances, 'cosine': cosine_distances, 'euclidean': euclidean_distances, 'l2': euclidean_distances, 'l1': manhattan_distances, 'manhattan': manhattan_distances, } def distance_metrics(): """Valid metrics for pairwise_distances. This function simply returns the valid pairwise distance metrics. It exists to allow for a description of the mapping for each of the valid strings. The valid distance metrics, and the function they map to, are: ============ ==================================== metric Function ============ ==================================== 'cityblock' metrics.pairwise.manhattan_distances 'cosine' metrics.pairwise.cosine_distances 'euclidean' metrics.pairwise.euclidean_distances 'l1' metrics.pairwise.manhattan_distances 'l2' metrics.pairwise.euclidean_distances 'manhattan' metrics.pairwise.manhattan_distances ============ ==================================== """ return PAIRWISE_DISTANCE_FUNCTIONS def _parallel_pairwise(X, Y, func, n_jobs, **kwds): """Break the pairwise matrix in n_jobs even slices and compute them in parallel""" if n_jobs < 0: n_jobs = max(cpu_count() + 1 + n_jobs, 1) if Y is None: Y = X ret = Parallel(n_jobs=n_jobs, verbose=0)( delayed(func)(X, Y[s], **kwds) for s in gen_even_slices(Y.shape[0], n_jobs)) return np.hstack(ret) _VALID_METRICS = ['euclidean', 'l2', 'l1', 'manhattan', 'cityblock', 'braycurtis', 'canberra', 'chebyshev', 'correlation', 'cosine', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule', "wminkowski"] def pairwise_distances(X, Y=None, metric="euclidean", n_jobs=1, **kwds): """ Compute the distance matrix from a vector array X and optional Y. This method takes either a vector array or a distance matrix, and returns a distance matrix. If the input is a vector array, the distances are computed. If the input is a distances matrix, it is returned instead. This method provides a safe way to take a distance matrix as input, while preserving compatibility with many other algorithms that take a vector array. If Y is given (default is None), then the returned matrix is the pairwise distance between the arrays from both X and Y. Valid values for metric are: - From scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2', 'manhattan']. These metrics support sparse matrix inputs. - From scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev', 'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule'] See the documentation for scipy.spatial.distance for details on these metrics. These metrics do not support sparse matrix inputs. Note that in the case of 'cityblock', 'cosine' and 'euclidean' (which are valid scipy.spatial.distance metrics), the scikit-learn implementation will be used, which is faster and has support for sparse matrices (except for 'cityblock'). For a verbose description of the metrics from scikit-learn, see the __doc__ of the sklearn.pairwise.distance_metrics function. Parameters ---------- X : array [n_samples_a, n_samples_a] if metric == "precomputed", or, \ [n_samples_a, n_features] otherwise Array of pairwise distances between samples, or a feature array. Y : array [n_samples_b, n_features] A second feature array only if X has shape [n_samples_a, n_features]. metric : string, or callable The metric to use when calculating distance between instances in a feature array. If metric is a string, it must be one of the options allowed by scipy.spatial.distance.pdist for its metric parameter, or a metric listed in pairwise.PAIRWISE_DISTANCE_FUNCTIONS. If metric is "precomputed", X is assumed to be a distance matrix. Alternatively, if metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays from X as input and return a value indicating the distance between them. n_jobs : int The number of jobs to use for the computation. This works by breaking down the pairwise matrix into n_jobs even slices and computing them in parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. `**kwds` : optional keyword parameters Any further parameters are passed directly to the distance function. If using a scipy.spatial.distance metric, the parameters are still metric dependent. See the scipy docs for usage examples. Returns ------- D : array [n_samples_a, n_samples_a] or [n_samples_a, n_samples_b] A distance matrix D such that D_{i, j} is the distance between the ith and jth vectors of the given matrix X, if Y is None. If Y is not None, then D_{i, j} is the distance between the ith array from X and the jth array from Y. """ if (metric not in _VALID_METRICS and not callable(metric) and metric != "precomputed"): raise ValueError("Unknown metric %s. " "Valid metrics are %s, or 'precomputed', or a " "callable" % (metric, _VALID_METRICS)) if metric == "precomputed": return X elif metric in PAIRWISE_DISTANCE_FUNCTIONS: func = PAIRWISE_DISTANCE_FUNCTIONS[metric] if n_jobs == 1: return func(X, Y, **kwds) else: return _parallel_pairwise(X, Y, func, n_jobs, **kwds) elif callable(metric): # Check matrices first (this is usually done by the metric). X, Y = check_pairwise_arrays(X, Y) n_x, n_y = X.shape[0], Y.shape[0] # Calculate distance for each element in X and Y. # FIXME: can use n_jobs here too # FIXME: np.zeros can be replaced by np.empty D = np.zeros((n_x, n_y), dtype='float') for i in range(n_x): start = 0 if X is Y: start = i for j in range(start, n_y): # distance assumed to be symmetric. D[i][j] = metric(X[i], Y[j], **kwds) if X is Y: D[j][i] = D[i][j] return D else: # Note: the distance module doesn't support sparse matrices! if type(X) is csr_matrix: raise TypeError("scipy distance metrics do not" " support sparse matrices.") if Y is None: return distance.squareform(distance.pdist(X, metric=metric, **kwds)) else: if type(Y) is csr_matrix: raise TypeError("scipy distance metrics do not" " support sparse matrices.") return distance.cdist(X, Y, metric=metric, **kwds) # Helper functions - distance PAIRWISE_KERNEL_FUNCTIONS = { # If updating this dictionary, update the doc in both distance_metrics() # and also in pairwise_distances()! 'additive_chi2': additive_chi2_kernel, 'chi2': chi2_kernel, 'linear': linear_kernel, 'polynomial': polynomial_kernel, 'poly': polynomial_kernel, 'rbf': rbf_kernel, 'sigmoid': sigmoid_kernel, 'cosine': cosine_similarity, } def kernel_metrics(): """ Valid metrics for pairwise_kernels This function simply returns the valid pairwise distance metrics. It exists, however, to allow for a verbose description of the mapping for each of the valid strings. The valid distance metrics, and the function they map to, are: =============== ======================================== metric Function =============== ======================================== 'additive_chi2' sklearn.pairwise.additive_chi2_kernel 'chi2' sklearn.pairwise.chi2_kernel 'linear' sklearn.pairwise.linear_kernel 'poly' sklearn.pairwise.polynomial_kernel 'polynomial' sklearn.pairwise.polynomial_kernel 'rbf' sklearn.pairwise.rbf_kernel 'sigmoid' sklearn.pairwise.sigmoid_kernel 'cosine' sklearn.pairwise.cosine_similarity =============== ======================================== """ return PAIRWISE_KERNEL_FUNCTIONS KERNEL_PARAMS = { "additive_chi2": (), "chi2": (), "cosine": (), "exp_chi2": frozenset(["gamma"]), "linear": (), "poly": frozenset(["gamma", "degree", "coef0"]), "polynomial": frozenset(["gamma", "degree", "coef0"]), "rbf": frozenset(["gamma"]), "sigmoid": frozenset(["gamma", "coef0"]), } def pairwise_kernels(X, Y=None, metric="linear", filter_params=False, n_jobs=1, **kwds): """Compute the kernel between arrays X and optional array Y. This method takes either a vector array or a kernel matrix, and returns a kernel matrix. If the input is a vector array, the kernels are computed. If the input is a kernel matrix, it is returned instead. This method provides a safe way to take a kernel matrix as input, while preserving compatibility with many other algorithms that take a vector array. If Y is given (default is None), then the returned matrix is the pairwise kernel between the arrays from both X and Y. Valid values for metric are:: ['rbf', 'sigmoid', 'polynomial', 'poly', 'linear', 'cosine'] Parameters ---------- X : array [n_samples_a, n_samples_a] if metric == "precomputed", or, \ [n_samples_a, n_features] otherwise Array of pairwise kernels between samples, or a feature array. Y : array [n_samples_b, n_features] A second feature array only if X has shape [n_samples_a, n_features]. metric : string, or callable The metric to use when calculating kernel between instances in a feature array. If metric is a string, it must be one of the metrics in pairwise.PAIRWISE_KERNEL_FUNCTIONS. If metric is "precomputed", X is assumed to be a kernel matrix. Alternatively, if metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays from X as input and return a value indicating the distance between them. n_jobs : int The number of jobs to use for the computation. This works by breaking down the pairwise matrix into n_jobs even slices and computing them in parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. filter_params: boolean Whether to filter invalid parameters or not. `**kwds` : optional keyword parameters Any further parameters are passed directly to the kernel function. Returns ------- K : array [n_samples_a, n_samples_a] or [n_samples_a, n_samples_b] A kernel matrix K such that K_{i, j} is the kernel between the ith and jth vectors of the given matrix X, if Y is None. If Y is not None, then K_{i, j} is the kernel between the ith array from X and the jth array from Y. Notes ----- If metric is 'precomputed', Y is ignored and X is returned. """ if metric == "precomputed": return X elif metric in PAIRWISE_KERNEL_FUNCTIONS: if filter_params: kwds = dict((k, kwds[k]) for k in kwds if k in KERNEL_PARAMS[metric]) func = PAIRWISE_KERNEL_FUNCTIONS[metric] if n_jobs == 1: return func(X, Y, **kwds) else: return _parallel_pairwise(X, Y, func, n_jobs, **kwds) elif callable(metric): # Check matrices first (this is usually done by the metric). X, Y = check_pairwise_arrays(X, Y) n_x, n_y = X.shape[0], Y.shape[0] # Calculate kernel for each element in X and Y. K = np.zeros((n_x, n_y), dtype='float') for i in range(n_x): start = 0 if X is Y: start = i for j in range(start, n_y): # Kernel assumed to be symmetric. K[i][j] = metric(X[i], Y[j], **kwds) if X is Y: K[j][i] = K[i][j] return K else: raise ValueError("Unknown kernel %r" % metric)
bsd-3-clause
joernhees/scikit-learn
sklearn/datasets/lfw.py
18
18714
"""Loader for the Labeled Faces in the Wild (LFW) dataset This dataset is a collection of JPEG pictures of famous people collected over the internet, all details are available on the official website: http://vis-www.cs.umass.edu/lfw/ Each picture is centered on a single face. The typical task is called Face Verification: given a pair of two pictures, a binary classifier must predict whether the two images are from the same person. An alternative task, Face Recognition or Face Identification is: given the picture of the face of an unknown person, identify the name of the person by referring to a gallery of previously seen pictures of identified persons. Both Face Verification and Face Recognition are tasks that are typically performed on the output of a model trained to perform Face Detection. The most popular model for Face Detection is called Viola-Johns and is implemented in the OpenCV library. The LFW faces were extracted by this face detector from various online websites. """ # Copyright (c) 2011 Olivier Grisel <[email protected]> # License: BSD 3 clause from os import listdir, makedirs, remove, rename from os.path import join, exists, isdir import logging import numpy as np try: import urllib.request as urllib # for backwards compatibility except ImportError: import urllib from .base import get_data_home from ..utils import Bunch from ..externals.joblib import Memory from ..externals.six import b logger = logging.getLogger(__name__) BASE_URL = "http://vis-www.cs.umass.edu/lfw/" ARCHIVE_NAME = "lfw.tgz" FUNNELED_ARCHIVE_NAME = "lfw-funneled.tgz" TARGET_FILENAMES = [ 'pairsDevTrain.txt', 'pairsDevTest.txt', 'pairs.txt', ] def scale_face(face): """Scale back to 0-1 range in case of normalization for plotting""" scaled = face - face.min() scaled /= scaled.max() return scaled # # Common private utilities for data fetching from the original LFW website # local disk caching, and image decoding. # def check_fetch_lfw(data_home=None, funneled=True, download_if_missing=True): """Helper function to download any missing LFW data""" data_home = get_data_home(data_home=data_home) lfw_home = join(data_home, "lfw_home") if funneled: archive_path = join(lfw_home, FUNNELED_ARCHIVE_NAME) data_folder_path = join(lfw_home, "lfw_funneled") archive_url = BASE_URL + FUNNELED_ARCHIVE_NAME else: archive_path = join(lfw_home, ARCHIVE_NAME) data_folder_path = join(lfw_home, "lfw") archive_url = BASE_URL + ARCHIVE_NAME if not exists(lfw_home): makedirs(lfw_home) for target_filename in TARGET_FILENAMES: target_filepath = join(lfw_home, target_filename) if not exists(target_filepath): if download_if_missing: url = BASE_URL + target_filename logger.warning("Downloading LFW metadata: %s", url) urllib.urlretrieve(url, target_filepath) else: raise IOError("%s is missing" % target_filepath) if not exists(data_folder_path): if not exists(archive_path): if download_if_missing: archive_path_temp = archive_path + ".tmp" logger.warning("Downloading LFW data (~200MB): %s", archive_url) urllib.urlretrieve(archive_url, archive_path_temp) rename(archive_path_temp, archive_path) else: raise IOError("%s is missing" % target_filepath) import tarfile logger.info("Decompressing the data archive to %s", data_folder_path) tarfile.open(archive_path, "r:gz").extractall(path=lfw_home) remove(archive_path) return lfw_home, data_folder_path def _load_imgs(file_paths, slice_, color, resize): """Internally used to load images""" # Try to import imread and imresize from PIL. We do this here to prevent # the whole sklearn.datasets module from depending on PIL. try: try: from scipy.misc import imread except ImportError: from scipy.misc.pilutil import imread from scipy.misc import imresize except ImportError: raise ImportError("The Python Imaging Library (PIL)" " is required to load data from jpeg files") # compute the portion of the images to load to respect the slice_ parameter # given by the caller default_slice = (slice(0, 250), slice(0, 250)) if slice_ is None: slice_ = default_slice else: slice_ = tuple(s or ds for s, ds in zip(slice_, default_slice)) h_slice, w_slice = slice_ h = (h_slice.stop - h_slice.start) // (h_slice.step or 1) w = (w_slice.stop - w_slice.start) // (w_slice.step or 1) if resize is not None: resize = float(resize) h = int(resize * h) w = int(resize * w) # allocate some contiguous memory to host the decoded image slices n_faces = len(file_paths) if not color: faces = np.zeros((n_faces, h, w), dtype=np.float32) else: faces = np.zeros((n_faces, h, w, 3), dtype=np.float32) # iterate over the collected file path to load the jpeg files as numpy # arrays for i, file_path in enumerate(file_paths): if i % 1000 == 0: logger.info("Loading face #%05d / %05d", i + 1, n_faces) # Checks if jpeg reading worked. Refer to issue #3594 for more # details. img = imread(file_path) if img.ndim is 0: raise RuntimeError("Failed to read the image file %s, " "Please make sure that libjpeg is installed" % file_path) face = np.asarray(img[slice_], dtype=np.float32) face /= 255.0 # scale uint8 coded colors to the [0.0, 1.0] floats if resize is not None: face = imresize(face, resize) if not color: # average the color channels to compute a gray levels # representation face = face.mean(axis=2) faces[i, ...] = face return faces # # Task #1: Face Identification on picture with names # def _fetch_lfw_people(data_folder_path, slice_=None, color=False, resize=None, min_faces_per_person=0): """Perform the actual data loading for the lfw people dataset This operation is meant to be cached by a joblib wrapper. """ # scan the data folder content to retain people with more that # `min_faces_per_person` face pictures person_names, file_paths = [], [] for person_name in sorted(listdir(data_folder_path)): folder_path = join(data_folder_path, person_name) if not isdir(folder_path): continue paths = [join(folder_path, f) for f in sorted(listdir(folder_path))] n_pictures = len(paths) if n_pictures >= min_faces_per_person: person_name = person_name.replace('_', ' ') person_names.extend([person_name] * n_pictures) file_paths.extend(paths) n_faces = len(file_paths) if n_faces == 0: raise ValueError("min_faces_per_person=%d is too restrictive" % min_faces_per_person) target_names = np.unique(person_names) target = np.searchsorted(target_names, person_names) faces = _load_imgs(file_paths, slice_, color, resize) # shuffle the faces with a deterministic RNG scheme to avoid having # all faces of the same person in a row, as it would break some # cross validation and learning algorithms such as SGD and online # k-means that make an IID assumption indices = np.arange(n_faces) np.random.RandomState(42).shuffle(indices) faces, target = faces[indices], target[indices] return faces, target, target_names def fetch_lfw_people(data_home=None, funneled=True, resize=0.5, min_faces_per_person=0, color=False, slice_=(slice(70, 195), slice(78, 172)), download_if_missing=True): """Loader for the Labeled Faces in the Wild (LFW) people dataset This dataset is a collection of JPEG pictures of famous people collected on the internet, all details are available on the official website: http://vis-www.cs.umass.edu/lfw/ Each picture is centered on a single face. Each pixel of each channel (color in RGB) is encoded by a float in range 0.0 - 1.0. The task is called Face Recognition (or Identification): given the picture of a face, find the name of the person given a training set (gallery). The original images are 250 x 250 pixels, but the default slice and resize arguments reduce them to 62 x 47. Parameters ---------- data_home : optional, default: None Specify another download and cache folder for the datasets. By default all scikit-learn data is stored in '~/scikit_learn_data' subfolders. funneled : boolean, optional, default: True Download and use the funneled variant of the dataset. resize : float, optional, default 0.5 Ratio used to resize the each face picture. min_faces_per_person : int, optional, default None The extracted dataset will only retain pictures of people that have at least `min_faces_per_person` different pictures. color : boolean, optional, default False Keep the 3 RGB channels instead of averaging them to a single gray level channel. If color is True the shape of the data has one more dimension than the shape with color = False. slice_ : optional Provide a custom 2D slice (height, width) to extract the 'interesting' part of the jpeg files and avoid use statistical correlation from the background download_if_missing : optional, True by default If False, raise a IOError if the data is not locally available instead of trying to download the data from the source site. Returns ------- dataset : dict-like object with the following attributes: dataset.data : numpy array of shape (13233, 2914) Each row corresponds to a ravelled face image of original size 62 x 47 pixels. Changing the ``slice_`` or resize parameters will change the shape of the output. dataset.images : numpy array of shape (13233, 62, 47) Each row is a face image corresponding to one of the 5749 people in the dataset. Changing the ``slice_`` or resize parameters will change the shape of the output. dataset.target : numpy array of shape (13233,) Labels associated to each face image. Those labels range from 0-5748 and correspond to the person IDs. dataset.DESCR : string Description of the Labeled Faces in the Wild (LFW) dataset. """ lfw_home, data_folder_path = check_fetch_lfw( data_home=data_home, funneled=funneled, download_if_missing=download_if_missing) logger.info('Loading LFW people faces from %s', lfw_home) # wrap the loader in a memoizing function that will return memmaped data # arrays for optimal memory usage m = Memory(cachedir=lfw_home, compress=6, verbose=0) load_func = m.cache(_fetch_lfw_people) # load and memoize the pairs as np arrays faces, target, target_names = load_func( data_folder_path, resize=resize, min_faces_per_person=min_faces_per_person, color=color, slice_=slice_) # pack the results as a Bunch instance return Bunch(data=faces.reshape(len(faces), -1), images=faces, target=target, target_names=target_names, DESCR="LFW faces dataset") # # Task #2: Face Verification on pairs of face pictures # def _fetch_lfw_pairs(index_file_path, data_folder_path, slice_=None, color=False, resize=None): """Perform the actual data loading for the LFW pairs dataset This operation is meant to be cached by a joblib wrapper. """ # parse the index file to find the number of pairs to be able to allocate # the right amount of memory before starting to decode the jpeg files with open(index_file_path, 'rb') as index_file: split_lines = [ln.strip().split(b('\t')) for ln in index_file] pair_specs = [sl for sl in split_lines if len(sl) > 2] n_pairs = len(pair_specs) # iterating over the metadata lines for each pair to find the filename to # decode and load in memory target = np.zeros(n_pairs, dtype=np.int) file_paths = list() for i, components in enumerate(pair_specs): if len(components) == 3: target[i] = 1 pair = ( (components[0], int(components[1]) - 1), (components[0], int(components[2]) - 1), ) elif len(components) == 4: target[i] = 0 pair = ( (components[0], int(components[1]) - 1), (components[2], int(components[3]) - 1), ) else: raise ValueError("invalid line %d: %r" % (i + 1, components)) for j, (name, idx) in enumerate(pair): try: person_folder = join(data_folder_path, name) except TypeError: person_folder = join(data_folder_path, str(name, 'UTF-8')) filenames = list(sorted(listdir(person_folder))) file_path = join(person_folder, filenames[idx]) file_paths.append(file_path) pairs = _load_imgs(file_paths, slice_, color, resize) shape = list(pairs.shape) n_faces = shape.pop(0) shape.insert(0, 2) shape.insert(0, n_faces // 2) pairs.shape = shape return pairs, target, np.array(['Different persons', 'Same person']) def fetch_lfw_pairs(subset='train', data_home=None, funneled=True, resize=0.5, color=False, slice_=(slice(70, 195), slice(78, 172)), download_if_missing=True): """Loader for the Labeled Faces in the Wild (LFW) pairs dataset This dataset is a collection of JPEG pictures of famous people collected on the internet, all details are available on the official website: http://vis-www.cs.umass.edu/lfw/ Each picture is centered on a single face. Each pixel of each channel (color in RGB) is encoded by a float in range 0.0 - 1.0. The task is called Face Verification: given a pair of two pictures, a binary classifier must predict whether the two images are from the same person. In the official `README.txt`_ this task is described as the "Restricted" task. As I am not sure as to implement the "Unrestricted" variant correctly, I left it as unsupported for now. .. _`README.txt`: http://vis-www.cs.umass.edu/lfw/README.txt The original images are 250 x 250 pixels, but the default slice and resize arguments reduce them to 62 x 47. Read more in the :ref:`User Guide <labeled_faces_in_the_wild>`. Parameters ---------- subset : optional, default: 'train' Select the dataset to load: 'train' for the development training set, 'test' for the development test set, and '10_folds' for the official evaluation set that is meant to be used with a 10-folds cross validation. data_home : optional, default: None Specify another download and cache folder for the datasets. By default all scikit-learn data is stored in '~/scikit_learn_data' subfolders. funneled : boolean, optional, default: True Download and use the funneled variant of the dataset. resize : float, optional, default 0.5 Ratio used to resize the each face picture. color : boolean, optional, default False Keep the 3 RGB channels instead of averaging them to a single gray level channel. If color is True the shape of the data has one more dimension than the shape with color = False. slice_ : optional Provide a custom 2D slice (height, width) to extract the 'interesting' part of the jpeg files and avoid use statistical correlation from the background download_if_missing : optional, True by default If False, raise a IOError if the data is not locally available instead of trying to download the data from the source site. Returns ------- The data is returned as a Bunch object with the following attributes: data : numpy array of shape (2200, 5828). Shape depends on ``subset``. Each row corresponds to 2 ravel'd face images of original size 62 x 47 pixels. Changing the ``slice_``, ``resize`` or ``subset`` parameters will change the shape of the output. pairs : numpy array of shape (2200, 2, 62, 47). Shape depends on ``subset``. Each row has 2 face images corresponding to same or different person from the dataset containing 5749 people. Changing the ``slice_``, ``resize`` or ``subset`` parameters will change the shape of the output. target : numpy array of shape (2200,). Shape depends on ``subset``. Labels associated to each pair of images. The two label values being different persons or the same person. DESCR : string Description of the Labeled Faces in the Wild (LFW) dataset. """ lfw_home, data_folder_path = check_fetch_lfw( data_home=data_home, funneled=funneled, download_if_missing=download_if_missing) logger.info('Loading %s LFW pairs from %s', subset, lfw_home) # wrap the loader in a memoizing function that will return memmaped data # arrays for optimal memory usage m = Memory(cachedir=lfw_home, compress=6, verbose=0) load_func = m.cache(_fetch_lfw_pairs) # select the right metadata file according to the requested subset label_filenames = { 'train': 'pairsDevTrain.txt', 'test': 'pairsDevTest.txt', '10_folds': 'pairs.txt', } if subset not in label_filenames: raise ValueError("subset='%s' is invalid: should be one of %r" % ( subset, list(sorted(label_filenames.keys())))) index_file_path = join(lfw_home, label_filenames[subset]) # load and memoize the pairs as np arrays pairs, target, target_names = load_func( index_file_path, data_folder_path, resize=resize, color=color, slice_=slice_) # pack the results as a Bunch instance return Bunch(data=pairs.reshape(len(pairs), -1), pairs=pairs, target=target, target_names=target_names, DESCR="'%s' segment of the LFW pairs dataset" % subset)
bsd-3-clause
nikitasingh981/scikit-learn
sklearn/covariance/tests/test_graph_lasso.py
33
6157
""" Test the graph_lasso module. """ import sys import numpy as np from scipy import linalg from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_less from sklearn.utils.testing import assert_warns_message from sklearn.covariance import (graph_lasso, GraphLasso, GraphLassoCV, empirical_covariance) from sklearn.datasets.samples_generator import make_sparse_spd_matrix from sklearn.externals.six.moves import StringIO from sklearn.utils import check_random_state from sklearn import datasets from numpy.testing import assert_equal def test_graph_lasso(random_state=0): # Sample data from a sparse multivariate normal dim = 20 n_samples = 100 random_state = check_random_state(random_state) prec = make_sparse_spd_matrix(dim, alpha=.95, random_state=random_state) cov = linalg.inv(prec) X = random_state.multivariate_normal(np.zeros(dim), cov, size=n_samples) emp_cov = empirical_covariance(X) for alpha in (0., .1, .25): covs = dict() icovs = dict() for method in ('cd', 'lars'): cov_, icov_, costs = graph_lasso(emp_cov, alpha=alpha, mode=method, return_costs=True) covs[method] = cov_ icovs[method] = icov_ costs, dual_gap = np.array(costs).T # Check that the costs always decrease (doesn't hold if alpha == 0) if not alpha == 0: assert_array_less(np.diff(costs), 0) # Check that the 2 approaches give similar results assert_array_almost_equal(covs['cd'], covs['lars'], decimal=4) assert_array_almost_equal(icovs['cd'], icovs['lars'], decimal=4) # Smoke test the estimator model = GraphLasso(alpha=.25).fit(X) model.score(X) assert_array_almost_equal(model.covariance_, covs['cd'], decimal=4) assert_array_almost_equal(model.covariance_, covs['lars'], decimal=4) # For a centered matrix, assume_centered could be chosen True or False # Check that this returns indeed the same result for centered data Z = X - X.mean(0) precs = list() for assume_centered in (False, True): prec_ = GraphLasso(assume_centered=assume_centered).fit(Z).precision_ precs.append(prec_) assert_array_almost_equal(precs[0], precs[1]) def test_graph_lasso_iris(): # Hard-coded solution from R glasso package for alpha=1.0 # The iris datasets in R and scikit-learn do not match in a few places, # these values are for the scikit-learn version. cov_R = np.array([ [0.68112222, 0.0, 0.2651911, 0.02467558], [0.00, 0.1867507, 0.0, 0.00], [0.26519111, 0.0, 3.0924249, 0.28774489], [0.02467558, 0.0, 0.2877449, 0.57853156] ]) icov_R = np.array([ [1.5188780, 0.0, -0.1302515, 0.0], [0.0, 5.354733, 0.0, 0.0], [-0.1302515, 0.0, 0.3502322, -0.1686399], [0.0, 0.0, -0.1686399, 1.8123908] ]) X = datasets.load_iris().data emp_cov = empirical_covariance(X) for method in ('cd', 'lars'): cov, icov = graph_lasso(emp_cov, alpha=1.0, return_costs=False, mode=method) assert_array_almost_equal(cov, cov_R) assert_array_almost_equal(icov, icov_R) def test_graph_lasso_iris_singular(): # Small subset of rows to test the rank-deficient case # Need to choose samples such that none of the variances are zero indices = np.arange(10, 13) # Hard-coded solution from R glasso package for alpha=0.01 cov_R = np.array([ [0.08, 0.056666662595, 0.00229729713223, 0.00153153142149], [0.056666662595, 0.082222222222, 0.00333333333333, 0.00222222222222], [0.002297297132, 0.003333333333, 0.00666666666667, 0.00009009009009], [0.001531531421, 0.002222222222, 0.00009009009009, 0.00222222222222] ]) icov_R = np.array([ [24.42244057, -16.831679593, 0.0, 0.0], [-16.83168201, 24.351841681, -6.206896552, -12.5], [0.0, -6.206896171, 153.103448276, 0.0], [0.0, -12.499999143, 0.0, 462.5] ]) X = datasets.load_iris().data[indices, :] emp_cov = empirical_covariance(X) for method in ('cd', 'lars'): cov, icov = graph_lasso(emp_cov, alpha=0.01, return_costs=False, mode=method) assert_array_almost_equal(cov, cov_R, decimal=5) assert_array_almost_equal(icov, icov_R, decimal=5) def test_graph_lasso_cv(random_state=1): # Sample data from a sparse multivariate normal dim = 5 n_samples = 6 random_state = check_random_state(random_state) prec = make_sparse_spd_matrix(dim, alpha=.96, random_state=random_state) cov = linalg.inv(prec) X = random_state.multivariate_normal(np.zeros(dim), cov, size=n_samples) # Capture stdout, to smoke test the verbose mode orig_stdout = sys.stdout try: sys.stdout = StringIO() # We need verbose very high so that Parallel prints on stdout GraphLassoCV(verbose=100, alphas=5, tol=1e-1).fit(X) finally: sys.stdout = orig_stdout # Smoke test with specified alphas GraphLassoCV(alphas=[0.8, 0.5], tol=1e-1, n_jobs=1).fit(X) def test_deprecated_grid_scores(random_state=1): dim = 5 n_samples = 6 random_state = check_random_state(random_state) prec = make_sparse_spd_matrix(dim, alpha=.96, random_state=random_state) cov = linalg.inv(prec) X = random_state.multivariate_normal(np.zeros(dim), cov, size=n_samples) graph_lasso = GraphLassoCV(alphas=[0.8, 0.5], tol=1e-1, n_jobs=1) graph_lasso.fit(X) depr_message = ("Attribute grid_scores was deprecated in version " "0.19 and will be removed in 0.21. Use " "'grid_scores_' instead") assert_warns_message(DeprecationWarning, depr_message, lambda: graph_lasso.grid_scores) assert_equal(graph_lasso.grid_scores, graph_lasso.grid_scores_)
bsd-3-clause
ClimbsRocks/scikit-learn
sklearn/tests/test_multiclass.py
7
24017
import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_raise_message from sklearn.multiclass import OneVsRestClassifier from sklearn.multiclass import OneVsOneClassifier from sklearn.multiclass import OutputCodeClassifier from sklearn.utils.multiclass import check_classification_targets, type_of_target from sklearn.utils import shuffle from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.svm import LinearSVC, SVC from sklearn.naive_bayes import MultinomialNB from sklearn.linear_model import (LinearRegression, Lasso, ElasticNet, Ridge, Perceptron, LogisticRegression) from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor from sklearn.model_selection import GridSearchCV from sklearn.pipeline import Pipeline from sklearn import svm from sklearn import datasets from sklearn.externals.six.moves import zip iris = datasets.load_iris() rng = np.random.RandomState(0) perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] n_classes = 3 def test_ovr_exceptions(): ovr = OneVsRestClassifier(LinearSVC(random_state=0)) assert_raises(ValueError, ovr.predict, []) # Fail on multioutput data assert_raises(ValueError, OneVsRestClassifier(MultinomialNB()).fit, np.array([[1, 0], [0, 1]]), np.array([[1, 2], [3, 1]])) assert_raises(ValueError, OneVsRestClassifier(MultinomialNB()).fit, np.array([[1, 0], [0, 1]]), np.array([[1.5, 2.4], [3.1, 0.8]])) def test_check_classification_targets(): # Test that check_classification_target return correct type. #5782 y = np.array([0.0, 1.1, 2.0, 3.0]) msg = type_of_target(y) assert_raise_message(ValueError, msg, check_classification_targets, y) def test_ovr_fit_predict(): # A classifier which implements decision_function. ovr = OneVsRestClassifier(LinearSVC(random_state=0)) pred = ovr.fit(iris.data, iris.target).predict(iris.data) assert_equal(len(ovr.estimators_), n_classes) clf = LinearSVC(random_state=0) pred2 = clf.fit(iris.data, iris.target).predict(iris.data) assert_equal(np.mean(iris.target == pred), np.mean(iris.target == pred2)) # A classifier which implements predict_proba. ovr = OneVsRestClassifier(MultinomialNB()) pred = ovr.fit(iris.data, iris.target).predict(iris.data) assert_greater(np.mean(iris.target == pred), 0.65) def test_ovr_partial_fit(): # Test if partial_fit is working as intented X, y = shuffle(iris.data, iris.target, random_state=0) ovr = OneVsRestClassifier(MultinomialNB()) ovr.partial_fit(X[:100], y[:100], np.unique(y)) ovr.partial_fit(X[100:], y[100:]) pred = ovr.predict(X) ovr2 = OneVsRestClassifier(MultinomialNB()) pred2 = ovr2.fit(X, y).predict(X) assert_almost_equal(pred, pred2) assert_equal(len(ovr.estimators_), len(np.unique(y))) assert_greater(np.mean(y == pred), 0.65) # Test when mini batches doesn't have all classes ovr = OneVsRestClassifier(MultinomialNB()) ovr.partial_fit(iris.data[:60], iris.target[:60], np.unique(iris.target)) ovr.partial_fit(iris.data[60:], iris.target[60:]) pred = ovr.predict(iris.data) ovr2 = OneVsRestClassifier(MultinomialNB()) pred2 = ovr2.fit(iris.data, iris.target).predict(iris.data) assert_almost_equal(pred, pred2) assert_equal(len(ovr.estimators_), len(np.unique(iris.target))) assert_greater(np.mean(iris.target == pred), 0.65) def test_ovr_ovo_regressor(): # test that ovr and ovo work on regressors which don't have a decision_function ovr = OneVsRestClassifier(DecisionTreeRegressor()) pred = ovr.fit(iris.data, iris.target).predict(iris.data) assert_equal(len(ovr.estimators_), n_classes) assert_array_equal(np.unique(pred), [0, 1, 2]) # we are doing something sensible assert_greater(np.mean(pred == iris.target), .9) ovr = OneVsOneClassifier(DecisionTreeRegressor()) pred = ovr.fit(iris.data, iris.target).predict(iris.data) assert_equal(len(ovr.estimators_), n_classes * (n_classes - 1) / 2) assert_array_equal(np.unique(pred), [0, 1, 2]) # we are doing something sensible assert_greater(np.mean(pred == iris.target), .9) def test_ovr_fit_predict_sparse(): for sparse in [sp.csr_matrix, sp.csc_matrix, sp.coo_matrix, sp.dok_matrix, sp.lil_matrix]: base_clf = MultinomialNB(alpha=1) X, Y = datasets.make_multilabel_classification(n_samples=100, n_features=20, n_classes=5, n_labels=3, length=50, allow_unlabeled=True, random_state=0) X_train, Y_train = X[:80], Y[:80] X_test = X[80:] clf = OneVsRestClassifier(base_clf).fit(X_train, Y_train) Y_pred = clf.predict(X_test) clf_sprs = OneVsRestClassifier(base_clf).fit(X_train, sparse(Y_train)) Y_pred_sprs = clf_sprs.predict(X_test) assert_true(clf.multilabel_) assert_true(sp.issparse(Y_pred_sprs)) assert_array_equal(Y_pred_sprs.toarray(), Y_pred) # Test predict_proba Y_proba = clf_sprs.predict_proba(X_test) # predict assigns a label if the probability that the # sample has the label is greater than 0.5. pred = Y_proba > .5 assert_array_equal(pred, Y_pred_sprs.toarray()) # Test decision_function clf_sprs = OneVsRestClassifier(svm.SVC()).fit(X_train, sparse(Y_train)) dec_pred = (clf_sprs.decision_function(X_test) > 0).astype(int) assert_array_equal(dec_pred, clf_sprs.predict(X_test).toarray()) def test_ovr_always_present(): # Test that ovr works with classes that are always present or absent. # Note: tests is the case where _ConstantPredictor is utilised X = np.ones((10, 2)) X[:5, :] = 0 # Build an indicator matrix where two features are always on. # As list of lists, it would be: [[int(i >= 5), 2, 3] for i in range(10)] y = np.zeros((10, 3)) y[5:, 0] = 1 y[:, 1] = 1 y[:, 2] = 1 ovr = OneVsRestClassifier(LogisticRegression()) assert_warns(UserWarning, ovr.fit, X, y) y_pred = ovr.predict(X) assert_array_equal(np.array(y_pred), np.array(y)) y_pred = ovr.decision_function(X) assert_equal(np.unique(y_pred[:, -2:]), 1) y_pred = ovr.predict_proba(X) assert_array_equal(y_pred[:, -1], np.ones(X.shape[0])) # y has a constantly absent label y = np.zeros((10, 2)) y[5:, 0] = 1 # variable label ovr = OneVsRestClassifier(LogisticRegression()) assert_warns(UserWarning, ovr.fit, X, y) y_pred = ovr.predict_proba(X) assert_array_equal(y_pred[:, -1], np.zeros(X.shape[0])) def test_ovr_multiclass(): # Toy dataset where features correspond directly to labels. X = np.array([[0, 0, 5], [0, 5, 0], [3, 0, 0], [0, 0, 6], [6, 0, 0]]) y = ["eggs", "spam", "ham", "eggs", "ham"] Y = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0], [0, 0, 1], [1, 0, 0]]) classes = set("ham eggs spam".split()) for base_clf in (MultinomialNB(), LinearSVC(random_state=0), LinearRegression(), Ridge(), ElasticNet()): clf = OneVsRestClassifier(base_clf).fit(X, y) assert_equal(set(clf.classes_), classes) y_pred = clf.predict(np.array([[0, 0, 4]]))[0] assert_equal(set(y_pred), set("eggs")) # test input as label indicator matrix clf = OneVsRestClassifier(base_clf).fit(X, Y) y_pred = clf.predict([[0, 0, 4]])[0] assert_array_equal(y_pred, [0, 0, 1]) def test_ovr_binary(): # Toy dataset where features correspond directly to labels. X = np.array([[0, 0, 5], [0, 5, 0], [3, 0, 0], [0, 0, 6], [6, 0, 0]]) y = ["eggs", "spam", "spam", "eggs", "spam"] Y = np.array([[0, 1, 1, 0, 1]]).T classes = set("eggs spam".split()) def conduct_test(base_clf, test_predict_proba=False): clf = OneVsRestClassifier(base_clf).fit(X, y) assert_equal(set(clf.classes_), classes) y_pred = clf.predict(np.array([[0, 0, 4]]))[0] assert_equal(set(y_pred), set("eggs")) if test_predict_proba: X_test = np.array([[0, 0, 4]]) probabilities = clf.predict_proba(X_test) assert_equal(2, len(probabilities[0])) assert_equal(clf.classes_[np.argmax(probabilities, axis=1)], clf.predict(X_test)) # test input as label indicator matrix clf = OneVsRestClassifier(base_clf).fit(X, Y) y_pred = clf.predict([[3, 0, 0]])[0] assert_equal(y_pred, 1) for base_clf in (LinearSVC(random_state=0), LinearRegression(), Ridge(), ElasticNet()): conduct_test(base_clf) for base_clf in (MultinomialNB(), SVC(probability=True), LogisticRegression()): conduct_test(base_clf, test_predict_proba=True) def test_ovr_multilabel(): # Toy dataset where features correspond directly to labels. X = np.array([[0, 4, 5], [0, 5, 0], [3, 3, 3], [4, 0, 6], [6, 0, 0]]) y = np.array([[0, 1, 1], [0, 1, 0], [1, 1, 1], [1, 0, 1], [1, 0, 0]]) for base_clf in (MultinomialNB(), LinearSVC(random_state=0), LinearRegression(), Ridge(), ElasticNet(), Lasso(alpha=0.5)): clf = OneVsRestClassifier(base_clf).fit(X, y) y_pred = clf.predict([[0, 4, 4]])[0] assert_array_equal(y_pred, [0, 1, 1]) assert_true(clf.multilabel_) def test_ovr_fit_predict_svc(): ovr = OneVsRestClassifier(svm.SVC()) ovr.fit(iris.data, iris.target) assert_equal(len(ovr.estimators_), 3) assert_greater(ovr.score(iris.data, iris.target), .9) def test_ovr_multilabel_dataset(): base_clf = MultinomialNB(alpha=1) for au, prec, recall in zip((True, False), (0.51, 0.66), (0.51, 0.80)): X, Y = datasets.make_multilabel_classification(n_samples=100, n_features=20, n_classes=5, n_labels=2, length=50, allow_unlabeled=au, random_state=0) X_train, Y_train = X[:80], Y[:80] X_test, Y_test = X[80:], Y[80:] clf = OneVsRestClassifier(base_clf).fit(X_train, Y_train) Y_pred = clf.predict(X_test) assert_true(clf.multilabel_) assert_almost_equal(precision_score(Y_test, Y_pred, average="micro"), prec, decimal=2) assert_almost_equal(recall_score(Y_test, Y_pred, average="micro"), recall, decimal=2) def test_ovr_multilabel_predict_proba(): base_clf = MultinomialNB(alpha=1) for au in (False, True): X, Y = datasets.make_multilabel_classification(n_samples=100, n_features=20, n_classes=5, n_labels=3, length=50, allow_unlabeled=au, random_state=0) X_train, Y_train = X[:80], Y[:80] X_test = X[80:] clf = OneVsRestClassifier(base_clf).fit(X_train, Y_train) # decision function only estimator. Fails in current implementation. decision_only = OneVsRestClassifier(svm.SVR()).fit(X_train, Y_train) assert_raises(AttributeError, decision_only.predict_proba, X_test) # Estimator with predict_proba disabled, depending on parameters. decision_only = OneVsRestClassifier(svm.SVC(probability=False)) decision_only.fit(X_train, Y_train) assert_raises(AttributeError, decision_only.predict_proba, X_test) Y_pred = clf.predict(X_test) Y_proba = clf.predict_proba(X_test) # predict assigns a label if the probability that the # sample has the label is greater than 0.5. pred = Y_proba > .5 assert_array_equal(pred, Y_pred) def test_ovr_single_label_predict_proba(): base_clf = MultinomialNB(alpha=1) X, Y = iris.data, iris.target X_train, Y_train = X[:80], Y[:80] X_test = X[80:] clf = OneVsRestClassifier(base_clf).fit(X_train, Y_train) # decision function only estimator. Fails in current implementation. decision_only = OneVsRestClassifier(svm.SVR()).fit(X_train, Y_train) assert_raises(AttributeError, decision_only.predict_proba, X_test) Y_pred = clf.predict(X_test) Y_proba = clf.predict_proba(X_test) assert_almost_equal(Y_proba.sum(axis=1), 1.0) # predict assigns a label if the probability that the # sample has the label is greater than 0.5. pred = np.array([l.argmax() for l in Y_proba]) assert_false((pred - Y_pred).any()) def test_ovr_multilabel_decision_function(): X, Y = datasets.make_multilabel_classification(n_samples=100, n_features=20, n_classes=5, n_labels=3, length=50, allow_unlabeled=True, random_state=0) X_train, Y_train = X[:80], Y[:80] X_test = X[80:] clf = OneVsRestClassifier(svm.SVC()).fit(X_train, Y_train) assert_array_equal((clf.decision_function(X_test) > 0).astype(int), clf.predict(X_test)) def test_ovr_single_label_decision_function(): X, Y = datasets.make_classification(n_samples=100, n_features=20, random_state=0) X_train, Y_train = X[:80], Y[:80] X_test = X[80:] clf = OneVsRestClassifier(svm.SVC()).fit(X_train, Y_train) assert_array_equal(clf.decision_function(X_test).ravel() > 0, clf.predict(X_test)) def test_ovr_gridsearch(): ovr = OneVsRestClassifier(LinearSVC(random_state=0)) Cs = [0.1, 0.5, 0.8] cv = GridSearchCV(ovr, {'estimator__C': Cs}) cv.fit(iris.data, iris.target) best_C = cv.best_estimator_.estimators_[0].C assert_true(best_C in Cs) def test_ovr_pipeline(): # Test with pipeline of length one # This test is needed because the multiclass estimators may fail to detect # the presence of predict_proba or decision_function. clf = Pipeline([("tree", DecisionTreeClassifier())]) ovr_pipe = OneVsRestClassifier(clf) ovr_pipe.fit(iris.data, iris.target) ovr = OneVsRestClassifier(DecisionTreeClassifier()) ovr.fit(iris.data, iris.target) assert_array_equal(ovr.predict(iris.data), ovr_pipe.predict(iris.data)) def test_ovr_coef_(): for base_classifier in [SVC(kernel='linear', random_state=0), LinearSVC(random_state=0)]: # SVC has sparse coef with sparse input data ovr = OneVsRestClassifier(base_classifier) for X in [iris.data, sp.csr_matrix(iris.data)]: # test with dense and sparse coef ovr.fit(X, iris.target) shape = ovr.coef_.shape assert_equal(shape[0], n_classes) assert_equal(shape[1], iris.data.shape[1]) # don't densify sparse coefficients assert_equal(sp.issparse(ovr.estimators_[0].coef_), sp.issparse(ovr.coef_)) def test_ovr_coef_exceptions(): # Not fitted exception! ovr = OneVsRestClassifier(LinearSVC(random_state=0)) # lambda is needed because we don't want coef_ to be evaluated right away assert_raises(ValueError, lambda x: ovr.coef_, None) # Doesn't have coef_ exception! ovr = OneVsRestClassifier(DecisionTreeClassifier()) ovr.fit(iris.data, iris.target) assert_raises(AttributeError, lambda x: ovr.coef_, None) def test_ovo_exceptions(): ovo = OneVsOneClassifier(LinearSVC(random_state=0)) assert_raises(ValueError, ovo.predict, []) def test_ovo_fit_on_list(): # Test that OneVsOne fitting works with a list of targets and yields the # same output as predict from an array ovo = OneVsOneClassifier(LinearSVC(random_state=0)) prediction_from_array = ovo.fit(iris.data, iris.target).predict(iris.data) iris_data_list = [list(a) for a in iris.data] prediction_from_list = ovo.fit(iris_data_list, list(iris.target)).predict(iris_data_list) assert_array_equal(prediction_from_array, prediction_from_list) def test_ovo_fit_predict(): # A classifier which implements decision_function. ovo = OneVsOneClassifier(LinearSVC(random_state=0)) ovo.fit(iris.data, iris.target).predict(iris.data) assert_equal(len(ovo.estimators_), n_classes * (n_classes - 1) / 2) # A classifier which implements predict_proba. ovo = OneVsOneClassifier(MultinomialNB()) ovo.fit(iris.data, iris.target).predict(iris.data) assert_equal(len(ovo.estimators_), n_classes * (n_classes - 1) / 2) def test_ovo_partial_fit_predict(): X, y = shuffle(iris.data, iris.target) ovo1 = OneVsOneClassifier(MultinomialNB()) ovo1.partial_fit(X[:100], y[:100], np.unique(y)) ovo1.partial_fit(X[100:], y[100:]) pred1 = ovo1.predict(X) ovo2 = OneVsOneClassifier(MultinomialNB()) ovo2.fit(X, y) pred2 = ovo2.predict(X) assert_equal(len(ovo1.estimators_), n_classes * (n_classes - 1) / 2) assert_greater(np.mean(y == pred1), 0.65) assert_almost_equal(pred1, pred2) # Test when mini-batches don't have all target classes ovo1 = OneVsOneClassifier(MultinomialNB()) ovo1.partial_fit(iris.data[:60], iris.target[:60], np.unique(iris.target)) ovo1.partial_fit(iris.data[60:], iris.target[60:]) pred1 = ovo1.predict(iris.data) ovo2 = OneVsOneClassifier(MultinomialNB()) pred2 = ovo2.fit(iris.data, iris.target).predict(iris.data) assert_almost_equal(pred1, pred2) assert_equal(len(ovo1.estimators_), len(np.unique(iris.target))) assert_greater(np.mean(iris.target == pred1), 0.65) def test_ovo_decision_function(): n_samples = iris.data.shape[0] ovo_clf = OneVsOneClassifier(LinearSVC(random_state=0)) ovo_clf.fit(iris.data, iris.target) decisions = ovo_clf.decision_function(iris.data) assert_equal(decisions.shape, (n_samples, n_classes)) assert_array_equal(decisions.argmax(axis=1), ovo_clf.predict(iris.data)) # Compute the votes votes = np.zeros((n_samples, n_classes)) k = 0 for i in range(n_classes): for j in range(i + 1, n_classes): pred = ovo_clf.estimators_[k].predict(iris.data) votes[pred == 0, i] += 1 votes[pred == 1, j] += 1 k += 1 # Extract votes and verify assert_array_equal(votes, np.round(decisions)) for class_idx in range(n_classes): # For each sample and each class, there only 3 possible vote levels # because they are only 3 distinct class pairs thus 3 distinct # binary classifiers. # Therefore, sorting predictions based on votes would yield # mostly tied predictions: assert_true(set(votes[:, class_idx]).issubset(set([0., 1., 2.]))) # The OVO decision function on the other hand is able to resolve # most of the ties on this data as it combines both the vote counts # and the aggregated confidence levels of the binary classifiers # to compute the aggregate decision function. The iris dataset # has 150 samples with a couple of duplicates. The OvO decisions # can resolve most of the ties: assert_greater(len(np.unique(decisions[:, class_idx])), 146) def test_ovo_gridsearch(): ovo = OneVsOneClassifier(LinearSVC(random_state=0)) Cs = [0.1, 0.5, 0.8] cv = GridSearchCV(ovo, {'estimator__C': Cs}) cv.fit(iris.data, iris.target) best_C = cv.best_estimator_.estimators_[0].C assert_true(best_C in Cs) def test_ovo_ties(): # Test that ties are broken using the decision function, # not defaulting to the smallest label X = np.array([[1, 2], [2, 1], [-2, 1], [-2, -1]]) y = np.array([2, 0, 1, 2]) multi_clf = OneVsOneClassifier(Perceptron(shuffle=False)) ovo_prediction = multi_clf.fit(X, y).predict(X) ovo_decision = multi_clf.decision_function(X) # Classifiers are in order 0-1, 0-2, 1-2 # Use decision_function to compute the votes and the normalized # sum_of_confidences, which is used to disambiguate when there is a tie in # votes. votes = np.round(ovo_decision) normalized_confidences = ovo_decision - votes # For the first point, there is one vote per class assert_array_equal(votes[0, :], 1) # For the rest, there is no tie and the prediction is the argmax assert_array_equal(np.argmax(votes[1:], axis=1), ovo_prediction[1:]) # For the tie, the prediction is the class with the highest score assert_equal(ovo_prediction[0], normalized_confidences[0].argmax()) def test_ovo_ties2(): # test that ties can not only be won by the first two labels X = np.array([[1, 2], [2, 1], [-2, 1], [-2, -1]]) y_ref = np.array([2, 0, 1, 2]) # cycle through labels so that each label wins once for i in range(3): y = (y_ref + i) % 3 multi_clf = OneVsOneClassifier(Perceptron(shuffle=False)) ovo_prediction = multi_clf.fit(X, y).predict(X) assert_equal(ovo_prediction[0], i % 3) def test_ovo_string_y(): # Test that the OvO doesn't mess up the encoding of string labels X = np.eye(4) y = np.array(['a', 'b', 'c', 'd']) ovo = OneVsOneClassifier(LinearSVC()) ovo.fit(X, y) assert_array_equal(y, ovo.predict(X)) def test_ecoc_exceptions(): ecoc = OutputCodeClassifier(LinearSVC(random_state=0)) assert_raises(ValueError, ecoc.predict, []) def test_ecoc_fit_predict(): # A classifier which implements decision_function. ecoc = OutputCodeClassifier(LinearSVC(random_state=0), code_size=2, random_state=0) ecoc.fit(iris.data, iris.target).predict(iris.data) assert_equal(len(ecoc.estimators_), n_classes * 2) # A classifier which implements predict_proba. ecoc = OutputCodeClassifier(MultinomialNB(), code_size=2, random_state=0) ecoc.fit(iris.data, iris.target).predict(iris.data) assert_equal(len(ecoc.estimators_), n_classes * 2) def test_ecoc_gridsearch(): ecoc = OutputCodeClassifier(LinearSVC(random_state=0), random_state=0) Cs = [0.1, 0.5, 0.8] cv = GridSearchCV(ecoc, {'estimator__C': Cs}) cv.fit(iris.data, iris.target) best_C = cv.best_estimator_.estimators_[0].C assert_true(best_C in Cs)
bsd-3-clause
gdementen/PyTables
doc/sphinxext/inheritance_diagram.py
98
13648
""" Defines a docutils directive for inserting inheritance diagrams. Provide the directive with one or more classes or modules (separated by whitespace). For modules, all of the classes in that module will be used. Example:: Given the following classes: class A: pass class B(A): pass class C(A): pass class D(B, C): pass class E(B): pass .. inheritance-diagram: D E Produces a graph like the following: A / \ B C / \ / E D The graph is inserted as a PNG+image map into HTML and a PDF in LaTeX. """ import inspect import os import re import subprocess try: from hashlib import md5 except ImportError: from md5 import md5 from docutils.nodes import Body, Element from docutils.parsers.rst import directives from sphinx.roles import xfileref_role def my_import(name): """Module importer - taken from the python documentation. This function allows importing names with dots in them.""" mod = __import__(name) components = name.split('.') for comp in components[1:]: mod = getattr(mod, comp) return mod class DotException(Exception): pass class InheritanceGraph(object): """ Given a list of classes, determines the set of classes that they inherit from all the way to the root "object", and then is able to generate a graphviz dot graph from them. """ def __init__(self, class_names, show_builtins=False): """ *class_names* is a list of child classes to show bases from. If *show_builtins* is True, then Python builtins will be shown in the graph. """ self.class_names = class_names self.classes = self._import_classes(class_names) self.all_classes = self._all_classes(self.classes) if len(self.all_classes) == 0: raise ValueError("No classes found for inheritance diagram") self.show_builtins = show_builtins py_sig_re = re.compile(r'''^([\w.]*\.)? # class names (\w+) \s* $ # optionally arguments ''', re.VERBOSE) def _import_class_or_module(self, name): """ Import a class using its fully-qualified *name*. """ try: path, base = self.py_sig_re.match(name).groups() except: raise ValueError( "Invalid class or module '%s' specified for inheritance diagram" % name) fullname = (path or '') + base path = (path and path.rstrip('.')) if not path: path = base try: module = __import__(path, None, None, []) # We must do an import of the fully qualified name. Otherwise if a # subpackage 'a.b' is requested where 'import a' does NOT provide # 'a.b' automatically, then 'a.b' will not be found below. This # second call will force the equivalent of 'import a.b' to happen # after the top-level import above. my_import(fullname) except ImportError: raise ValueError( "Could not import class or module '%s' specified for inheritance diagram" % name) try: todoc = module for comp in fullname.split('.')[1:]: todoc = getattr(todoc, comp) except AttributeError: raise ValueError( "Could not find class or module '%s' specified for inheritance diagram" % name) # If a class, just return it if inspect.isclass(todoc): return [todoc] elif inspect.ismodule(todoc): classes = [] for cls in todoc.__dict__.values(): if inspect.isclass(cls) and cls.__module__ == todoc.__name__: classes.append(cls) return classes raise ValueError( "'%s' does not resolve to a class or module" % name) def _import_classes(self, class_names): """ Import a list of classes. """ classes = [] for name in class_names: classes.extend(self._import_class_or_module(name)) return classes def _all_classes(self, classes): """ Return a list of all classes that are ancestors of *classes*. """ all_classes = {} def recurse(cls): all_classes[cls] = None for c in cls.__bases__: if c not in all_classes: recurse(c) for cls in classes: recurse(cls) return all_classes.keys() def class_name(self, cls, parts=0): """ Given a class object, return a fully-qualified name. This works for things I've tested in matplotlib so far, but may not be completely general. """ module = cls.__module__ if module == '__builtin__': fullname = cls.__name__ else: fullname = "%s.%s" % (module, cls.__name__) if parts == 0: return fullname name_parts = fullname.split('.') return '.'.join(name_parts[-parts:]) def get_all_class_names(self): """ Get all of the class names involved in the graph. """ return [self.class_name(x) for x in self.all_classes] # These are the default options for graphviz default_graph_options = { "rankdir": "LR", "size": '"8.0, 12.0"' } default_node_options = { "shape": "box", "fontsize": 10, "height": 0.25, "fontname": "Vera Sans, DejaVu Sans, Liberation Sans, Arial, Helvetica, sans", "style": '"setlinewidth(0.5)"' } default_edge_options = { "arrowsize": 0.5, "style": '"setlinewidth(0.5)"' } def _format_node_options(self, options): return ','.join(["%s=%s" % x for x in options.items()]) def _format_graph_options(self, options): return ''.join(["%s=%s;\n" % x for x in options.items()]) def generate_dot(self, fd, name, parts=0, urls={}, graph_options={}, node_options={}, edge_options={}): """ Generate a graphviz dot graph from the classes that were passed in to __init__. *fd* is a Python file-like object to write to. *name* is the name of the graph *urls* is a dictionary mapping class names to http urls *graph_options*, *node_options*, *edge_options* are dictionaries containing key/value pairs to pass on as graphviz properties. """ g_options = self.default_graph_options.copy() g_options.update(graph_options) n_options = self.default_node_options.copy() n_options.update(node_options) e_options = self.default_edge_options.copy() e_options.update(edge_options) fd.write('digraph %s {\n' % name) fd.write(self._format_graph_options(g_options)) for cls in self.all_classes: if not self.show_builtins and cls in __builtins__.values(): continue name = self.class_name(cls, parts) # Write the node this_node_options = n_options.copy() url = urls.get(self.class_name(cls)) if url is not None: this_node_options['URL'] = '"%s"' % url fd.write(' "%s" [%s];\n' % (name, self._format_node_options(this_node_options))) # Write the edges for base in cls.__bases__: if not self.show_builtins and base in __builtins__.values(): continue base_name = self.class_name(base, parts) fd.write(' "%s" -> "%s" [%s];\n' % (base_name, name, self._format_node_options(e_options))) fd.write('}\n') def run_dot(self, args, name, parts=0, urls={}, graph_options={}, node_options={}, edge_options={}): """ Run graphviz 'dot' over this graph, returning whatever 'dot' writes to stdout. *args* will be passed along as commandline arguments. *name* is the name of the graph *urls* is a dictionary mapping class names to http urls Raises DotException for any of the many os and installation-related errors that may occur. """ try: dot = subprocess.Popen(['dot'] + list(args), stdin=subprocess.PIPE, stdout=subprocess.PIPE, close_fds=True) except OSError: raise DotException("Could not execute 'dot'. Are you sure you have 'graphviz' installed?") except ValueError: raise DotException("'dot' called with invalid arguments") except: raise DotException("Unexpected error calling 'dot'") self.generate_dot(dot.stdin, name, parts, urls, graph_options, node_options, edge_options) dot.stdin.close() result = dot.stdout.read() returncode = dot.wait() if returncode != 0: raise DotException("'dot' returned the errorcode %d" % returncode) return result class inheritance_diagram(Body, Element): """ A docutils node to use as a placeholder for the inheritance diagram. """ pass def inheritance_diagram_directive(name, arguments, options, content, lineno, content_offset, block_text, state, state_machine): """ Run when the inheritance_diagram directive is first encountered. """ node = inheritance_diagram() class_names = arguments # Create a graph starting with the list of classes graph = InheritanceGraph(class_names) # Create xref nodes for each target of the graph's image map and # add them to the doc tree so that Sphinx can resolve the # references to real URLs later. These nodes will eventually be # removed from the doctree after we're done with them. for name in graph.get_all_class_names(): refnodes, x = xfileref_role( 'class', ':class:`%s`' % name, name, 0, state) node.extend(refnodes) # Store the graph object so we can use it to generate the # dot file later node['graph'] = graph # Store the original content for use as a hash node['parts'] = options.get('parts', 0) node['content'] = " ".join(class_names) return [node] def get_graph_hash(node): return md5(node['content'] + str(node['parts'])).hexdigest()[-10:] def html_output_graph(self, node): """ Output the graph for HTML. This will insert a PNG with clickable image map. """ graph = node['graph'] parts = node['parts'] graph_hash = get_graph_hash(node) name = "inheritance%s" % graph_hash path = '_images' dest_path = os.path.join(setup.app.builder.outdir, path) if not os.path.exists(dest_path): os.makedirs(dest_path) png_path = os.path.join(dest_path, name + ".png") path = setup.app.builder.imgpath # Create a mapping from fully-qualified class names to URLs. urls = {} for child in node: if child.get('refuri') is not None: urls[child['reftitle']] = child.get('refuri') elif child.get('refid') is not None: urls[child['reftitle']] = '#' + child.get('refid') # These arguments to dot will save a PNG file to disk and write # an HTML image map to stdout. image_map = graph.run_dot(['-Tpng', '-o%s' % png_path, '-Tcmapx'], name, parts, urls) return ('<img src="%s/%s.png" usemap="#%s" class="inheritance"/>%s' % (path, name, name, image_map)) def latex_output_graph(self, node): """ Output the graph for LaTeX. This will insert a PDF. """ graph = node['graph'] parts = node['parts'] graph_hash = get_graph_hash(node) name = "inheritance%s" % graph_hash dest_path = os.path.abspath(os.path.join(setup.app.builder.outdir, '_images')) if not os.path.exists(dest_path): os.makedirs(dest_path) pdf_path = os.path.abspath(os.path.join(dest_path, name + ".pdf")) graph.run_dot(['-Tpdf', '-o%s' % pdf_path], name, parts, graph_options={'size': '"6.0,6.0"'}) return '\n\\includegraphics{%s}\n\n' % pdf_path def visit_inheritance_diagram(inner_func): """ This is just a wrapper around html/latex_output_graph to make it easier to handle errors and insert warnings. """ def visitor(self, node): try: content = inner_func(self, node) except DotException, e: # Insert the exception as a warning in the document warning = self.document.reporter.warning(str(e), line=node.line) warning.parent = node node.children = [warning] else: source = self.document.attributes['source'] self.body.append(content) node.children = [] return visitor def do_nothing(self, node): pass def setup(app): setup.app = app setup.confdir = app.confdir app.add_node( inheritance_diagram, latex=(visit_inheritance_diagram(latex_output_graph), do_nothing), html=(visit_inheritance_diagram(html_output_graph), do_nothing)) app.add_directive( 'inheritance-diagram', inheritance_diagram_directive, False, (1, 100, 0), parts = directives.nonnegative_int)
bsd-3-clause
pierreg/tensorflow
tensorflow/contrib/learn/python/learn/estimators/linear_test.py
3
58598
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for estimators.linear.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import tempfile import numpy as np import tensorflow as tf from tensorflow.contrib.learn.python.learn.estimators import _sklearn from tensorflow.contrib.learn.python.learn.estimators import estimator_test_utils from tensorflow.contrib.learn.python.learn.metric_spec import MetricSpec def _prepare_iris_data_for_logistic_regression(): # Converts iris data to a logistic regression problem. iris = tf.contrib.learn.datasets.load_iris() ids = np.where((iris.target == 0) | (iris.target == 1)) iris = tf.contrib.learn.datasets.base.Dataset(data=iris.data[ids], target=iris.target[ids]) return iris def _iris_input_fn(): iris = tf.contrib.learn.datasets.load_iris() return { 'feature': tf.constant(iris.data, dtype=tf.float32) }, tf.constant(iris.target, shape=[150, 1], dtype=tf.int32) class LinearClassifierTest(tf.test.TestCase): def testEstimatorContract(self): estimator_test_utils.assert_estimator_contract( self, tf.contrib.learn.LinearClassifier) def testTrain(self): """Tests that loss goes down with training.""" def input_fn(): return { 'age': tf.constant([1]), 'language': tf.SparseTensor(values=['english'], indices=[[0, 0]], shape=[1, 1]) }, tf.constant([[1]]) language = tf.contrib.layers.sparse_column_with_hash_bucket('language', 100) age = tf.contrib.layers.real_valued_column('age') classifier = tf.contrib.learn.LinearClassifier( feature_columns=[age, language]) classifier.fit(input_fn=input_fn, steps=100) loss1 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] classifier.fit(input_fn=input_fn, steps=200) loss2 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss2, loss1) self.assertLess(loss2, 0.01) def testJointTrain(self): """Tests that loss goes down with training with joint weights.""" def input_fn(): return { 'age': tf.SparseTensor(values=['1'], indices=[[0, 0]], shape=[1, 1]), 'language': tf.SparseTensor(values=['english'], indices=[[0, 0]], shape=[1, 1]) }, tf.constant([[1]]) language = tf.contrib.layers.sparse_column_with_hash_bucket('language', 100) age = tf.contrib.layers.sparse_column_with_hash_bucket('age', 2) classifier = tf.contrib.learn.LinearClassifier( _joint_weight=True, feature_columns=[age, language]) classifier.fit(input_fn=input_fn, steps=100) loss1 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] classifier.fit(input_fn=input_fn, steps=200) loss2 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss2, loss1) self.assertLess(loss2, 0.01) def testMultiClass_MatrixData(self): """Tests multi-class classification using matrix data as input.""" feature_column = tf.contrib.layers.real_valued_column('feature', dimension=4) classifier = tf.contrib.learn.LinearClassifier( n_classes=3, feature_columns=[feature_column]) classifier.fit(input_fn=_iris_input_fn, steps=100) scores = classifier.evaluate(input_fn=_iris_input_fn, steps=100) self.assertGreater(scores['accuracy'], 0.9) def testMultiClass_MatrixData_Target1D(self): """Same as the last test, but target shape is [150] instead of [150, 1].""" def _input_fn(): iris = tf.contrib.learn.datasets.load_iris() return { 'feature': tf.constant(iris.data, dtype=tf.float32) }, tf.constant(iris.target, shape=[150], dtype=tf.int32) feature_column = tf.contrib.layers.real_valued_column('feature', dimension=4) classifier = tf.contrib.learn.LinearClassifier( n_classes=3, feature_columns=[feature_column]) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testMultiClass_NpMatrixData(self): """Tests multi-class classification using numpy matrix data as input.""" iris = tf.contrib.learn.datasets.load_iris() train_x = iris.data train_y = iris.target feature_column = tf.contrib.layers.real_valued_column('', dimension=4) classifier = tf.contrib.learn.LinearClassifier( n_classes=3, feature_columns=[feature_column]) classifier.fit(x=train_x, y=train_y, steps=100) scores = classifier.evaluate(x=train_x, y=train_y, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testLogisticRegression_MatrixData(self): """Tests binary classification using matrix data as input.""" def _input_fn(): iris = _prepare_iris_data_for_logistic_regression() return { 'feature': tf.constant(iris.data, dtype=tf.float32) }, tf.constant(iris.target, shape=[100, 1], dtype=tf.int32) feature_column = tf.contrib.layers.real_valued_column('feature', dimension=4) classifier = tf.contrib.learn.LinearClassifier( feature_columns=[feature_column]) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testLogisticRegression_MatrixData_Target1D(self): """Same as the last test, but target shape is [100] instead of [100, 1].""" def _input_fn(): iris = _prepare_iris_data_for_logistic_regression() return { 'feature': tf.constant(iris.data, dtype=tf.float32) }, tf.constant(iris.target, shape=[100], dtype=tf.int32) feature_column = tf.contrib.layers.real_valued_column('feature', dimension=4) classifier = tf.contrib.learn.LinearClassifier( feature_columns=[feature_column]) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testLogisticRegression_NpMatrixData(self): """Tests binary classification using numpy matrix data as input.""" iris = _prepare_iris_data_for_logistic_regression() train_x = iris.data train_y = iris.target feature_columns = [tf.contrib.layers.real_valued_column('', dimension=4)] classifier = tf.contrib.learn.LinearClassifier( feature_columns=feature_columns) classifier.fit(x=train_x, y=train_y, steps=100) scores = classifier.evaluate(x=train_x, y=train_y, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testWeightAndBiasNames(self): """Tests that weight and bias names haven't changed.""" feature_column = tf.contrib.layers.real_valued_column('feature', dimension=4) classifier = tf.contrib.learn.LinearClassifier( n_classes=3, feature_columns=[feature_column]) classifier.fit(input_fn=_iris_input_fn, steps=100) self.assertEqual(4, len(classifier.weights_)) self.assertEqual(3, len(classifier.bias_)) def testCustomOptimizerByObject(self): """Tests multi-class classification using matrix data as input.""" feature_column = tf.contrib.layers.real_valued_column('feature', dimension=4) classifier = tf.contrib.learn.LinearClassifier( n_classes=3, optimizer=tf.train.FtrlOptimizer(learning_rate=0.1), feature_columns=[feature_column]) classifier.fit(input_fn=_iris_input_fn, steps=100) scores = classifier.evaluate(input_fn=_iris_input_fn, steps=100) self.assertGreater(scores['accuracy'], 0.9) def testCustomOptimizerByString(self): """Tests multi-class classification using matrix data as input.""" feature_column = tf.contrib.layers.real_valued_column('feature', dimension=4) def _optimizer(): return tf.train.FtrlOptimizer(learning_rate=0.1) classifier = tf.contrib.learn.LinearClassifier( n_classes=3, optimizer=_optimizer, feature_columns=[feature_column]) classifier.fit(input_fn=_iris_input_fn, steps=100) scores = classifier.evaluate(input_fn=_iris_input_fn, steps=100) self.assertGreater(scores['accuracy'], 0.9) def testCustomOptimizerByFunction(self): """Tests multi-class classification using matrix data as input.""" feature_column = tf.contrib.layers.real_valued_column('feature', dimension=4) classifier = tf.contrib.learn.LinearClassifier( n_classes=3, optimizer='Ftrl', feature_columns=[feature_column]) classifier.fit(input_fn=_iris_input_fn, steps=100) scores = classifier.evaluate(input_fn=_iris_input_fn, steps=100) self.assertGreater(scores['accuracy'], 0.9) def testCustomMetrics(self): """Tests custom evaluation metrics.""" def _input_fn(num_epochs=None): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) target = tf.constant([[1], [0], [0], [0]], dtype=tf.float32) features = {'x': tf.train.limit_epochs( tf.ones(shape=[4, 1], dtype=tf.float32), num_epochs=num_epochs)} return features, target def _my_metric_op(predictions, targets): # For the case of binary classification, the 2nd column of "predictions" # denotes the model predictions. predictions = tf.slice(predictions, [0, 1], [-1, 1]) return tf.reduce_sum(tf.mul(predictions, targets)) classifier = tf.contrib.learn.LinearClassifier( feature_columns=[tf.contrib.layers.real_valued_column('x')]) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate( input_fn=_input_fn, steps=100, metrics={ 'my_accuracy': MetricSpec( metric_fn=tf.contrib.metrics.streaming_accuracy, prediction_key='classes'), 'my_precision': MetricSpec( metric_fn=tf.contrib.metrics.streaming_precision, prediction_key='classes'), 'my_metric': MetricSpec(metric_fn=_my_metric_op, prediction_key='probabilities') }) self.assertTrue( set(['loss', 'my_accuracy', 'my_precision', 'my_metric' ]).issubset(set(scores.keys()))) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = np.array(list(classifier.predict(input_fn=predict_input_fn))) self.assertEqual(_sklearn.accuracy_score([1, 0, 0, 0], predictions), scores['my_accuracy']) # Test the case where the 2nd element of the key is neither "classes" nor # "probabilities". with self.assertRaises(KeyError): classifier.evaluate( input_fn=_input_fn, steps=100, metrics={('bad_name', 'bad_type'): tf.contrib.metrics.streaming_auc}) # Test the case where the tuple of the key doesn't have 2 elements. with self.assertRaises(ValueError): classifier.evaluate( input_fn=_input_fn, steps=100, metrics={ ('bad_length_name', 'classes', 'bad_length'): tf.contrib.metrics.streaming_accuracy }) def testLogisticFractionalLabels(self): """Tests logistic training with fractional labels.""" def input_fn(num_epochs=None): return { 'age': tf.train.limit_epochs( tf.constant([[1], [2]]), num_epochs=num_epochs), }, tf.constant([[.7], [0]], dtype=tf.float32) age = tf.contrib.layers.real_valued_column('age') classifier = tf.contrib.learn.LinearClassifier( feature_columns=[age], config=tf.contrib.learn.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=input_fn, steps=500) predict_input_fn = functools.partial(input_fn, num_epochs=1) predictions_proba = list( classifier.predict_proba(input_fn=predict_input_fn)) # Prediction probabilities mirror the target column, which proves that the # classifier learns from float input. self.assertAllClose(predictions_proba, [[.3, .7], [1., 0.]], atol=.1) def testTrainWithPartitionedVariables(self): """Tests training with partitioned variables.""" def _input_fn(): features = { 'language': tf.SparseTensor(values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], shape=[3, 2]) } target = tf.constant([[1], [0], [0]]) return features, target sparse_features = [ # The given hash_bucket_size results in variables larger than the # default min_slice_size attribute, so the variables are partitioned. tf.contrib.layers.sparse_column_with_hash_bucket('language', hash_bucket_size=2e7) ] classifier = tf.contrib.learn.LinearClassifier( feature_columns=sparse_features, # Because we did not start a distributed cluster, we need to pass an # empty ClusterSpec, otherwise the device_setter will look for # distributed jobs, such as "/job:ps" which are not present. config=tf.contrib.learn.RunConfig( num_ps_replicas=2, cluster_spec=tf.train.ClusterSpec({}))) classifier.fit(input_fn=_input_fn, steps=200) loss = classifier.evaluate(input_fn=_input_fn, steps=1)['loss'] self.assertLess(loss, 0.07) def testTrainSaveLoad(self): """Tests that insures you can save and reload a trained model.""" def input_fn(num_epochs=None): return { 'age': tf.train.limit_epochs(tf.constant([1]), num_epochs=num_epochs), 'language': tf.SparseTensor( values=['english'], indices=[[0, 0]], shape=[1, 1]), }, tf.constant([[1]]) language = tf.contrib.layers.sparse_column_with_hash_bucket('language', 100) age = tf.contrib.layers.real_valued_column('age') model_dir = tempfile.mkdtemp() classifier = tf.contrib.learn.LinearClassifier( model_dir=model_dir, feature_columns=[age, language]) classifier.fit(input_fn=input_fn, steps=30) predict_input_fn = functools.partial(input_fn, num_epochs=1) out1_class = list(classifier.predict(input_fn=predict_input_fn, as_iterable=True)) out1_proba = list(classifier.predict_proba(input_fn=predict_input_fn, as_iterable=True)) del classifier classifier2 = tf.contrib.learn.LinearClassifier( model_dir=model_dir, feature_columns=[age, language]) out2_class = list(classifier2.predict(input_fn=predict_input_fn, as_iterable=True)) out2_proba = list(classifier2.predict_proba(input_fn=predict_input_fn, as_iterable=True)) self.assertTrue(np.array_equal(out1_class, out2_class)) self.assertTrue(np.array_equal(out1_proba, out2_proba)) def testWeightColumn(self): """Tests training with given weight column.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # First row has more weight than others. Model should fit (y=x) better # than (y=Not(x)) due to the relative higher weight of the first row. target = tf.constant([[1], [0], [0], [0]]) features = { 'x': tf.ones(shape=[4, 1], dtype=tf.float32), 'w': tf.constant([[100.], [3.], [2.], [2.]]) } return features, target def _input_fn_eval(): # Create 4 rows (y = x) target = tf.constant([[1], [1], [1], [1]]) features = { 'x': tf.ones(shape=[4, 1], dtype=tf.float32), 'w': tf.constant([[1.], [1.], [1.], [1.]]) } return features, target classifier = tf.contrib.learn.LinearClassifier( weight_column_name='w', feature_columns=[tf.contrib.layers.real_valued_column('x')], config=tf.contrib.learn.RunConfig(tf_random_seed=3)) classifier.fit(input_fn=_input_fn_train, steps=100) scores = classifier.evaluate(input_fn=_input_fn_eval, steps=1) # All examples in eval data set are y=x. self.assertGreater(scores['labels/actual_target_mean'], 0.9) # If there were no weight column, model would learn y=Not(x). Because of # weights, it learns y=x. self.assertGreater(scores['labels/prediction_mean'], 0.9) # All examples in eval data set are y=x. So if weight column were ignored, # then accuracy would be zero. Because of weights, accuracy should be close # to 1.0. self.assertGreater(scores['accuracy'], 0.9) scores_train_set = classifier.evaluate(input_fn=_input_fn_train, steps=1) # Considering weights, the mean target should be close to 1.0. # If weights were ignored, it would be 0.25. self.assertGreater(scores_train_set['labels/actual_target_mean'], 0.9) # The classifier has learned y=x. If weight column were ignored in # evaluation, then accuracy for the train set would be 0.25. # Because weight is not ignored, accuracy is greater than 0.6. self.assertGreater(scores_train_set['accuracy'], 0.6) def testWeightColumnLoss(self): """Test ensures that you can specify per-example weights for loss.""" def _input_fn(): features = { 'age': tf.constant([[20], [20], [20]]), 'weights': tf.constant([[100], [1], [1]]), } target = tf.constant([[1], [0], [0]]) return features, target age = tf.contrib.layers.real_valued_column('age') classifier = tf.contrib.learn.LinearClassifier( feature_columns=[age]) classifier.fit(input_fn=_input_fn, steps=100) loss_unweighted = classifier.evaluate(input_fn=_input_fn, steps=1)['loss'] classifier = tf.contrib.learn.LinearClassifier( feature_columns=[age], weight_column_name='weights') classifier.fit(input_fn=_input_fn, steps=100) loss_weighted = classifier.evaluate(input_fn=_input_fn, steps=1)['loss'] self.assertLess(loss_weighted, loss_unweighted) def testExport(self): """Tests that export model for servo works.""" def input_fn(): return { 'age': tf.constant([1]), 'language': tf.SparseTensor(values=['english'], indices=[[0, 0]], shape=[1, 1]) }, tf.constant([[1]]) language = tf.contrib.layers.sparse_column_with_hash_bucket('language', 100) age = tf.contrib.layers.real_valued_column('age') classifier = tf.contrib.learn.LinearClassifier( feature_columns=[age, language]) classifier.fit(input_fn=input_fn, steps=100) export_dir = tempfile.mkdtemp() classifier.export(export_dir) def testDisableCenteredBias(self): """Tests that we can disable centered bias.""" def input_fn(): return { 'age': tf.constant([1]), 'language': tf.SparseTensor(values=['english'], indices=[[0, 0]], shape=[1, 1]) }, tf.constant([[1]]) language = tf.contrib.layers.sparse_column_with_hash_bucket('language', 100) age = tf.contrib.layers.real_valued_column('age') classifier = tf.contrib.learn.LinearClassifier( feature_columns=[age, language], enable_centered_bias=False) classifier.fit(input_fn=input_fn, steps=100) self.assertFalse('centered_bias_weight' in classifier.get_variable_names()) def testEnableCenteredBias(self): """Tests that we can disable centered bias.""" def input_fn(): return { 'age': tf.constant([1]), 'language': tf.SparseTensor(values=['english'], indices=[[0, 0]], shape=[1, 1]) }, tf.constant([[1]]) language = tf.contrib.layers.sparse_column_with_hash_bucket('language', 100) age = tf.contrib.layers.real_valued_column('age') classifier = tf.contrib.learn.LinearClassifier( feature_columns=[age, language], enable_centered_bias=True) classifier.fit(input_fn=input_fn, steps=100) self.assertTrue('centered_bias_weight' in classifier.get_variable_names()) def testTrainOptimizerWithL1Reg(self): """Tests l1 regularized model has higher loss.""" def input_fn(): return { 'language': tf.SparseTensor(values=['hindi'], indices=[[0, 0]], shape=[1, 1]) }, tf.constant([[1]]) language = tf.contrib.layers.sparse_column_with_hash_bucket('language', 100) classifier_no_reg = tf.contrib.learn.LinearClassifier( feature_columns=[language]) classifier_with_reg = tf.contrib.learn.LinearClassifier( feature_columns=[language], optimizer=tf.train.FtrlOptimizer(learning_rate=1.0, l1_regularization_strength=100.)) loss_no_reg = classifier_no_reg.fit( input_fn=input_fn, steps=100).evaluate( input_fn=input_fn, steps=1)['loss'] loss_with_reg = classifier_with_reg.fit( input_fn=input_fn, steps=100).evaluate( input_fn=input_fn, steps=1)['loss'] self.assertLess(loss_no_reg, loss_with_reg) def testTrainWithMissingFeature(self): """Tests that training works with missing features.""" def input_fn(): return { 'language': tf.SparseTensor(values=['Swahili', 'turkish'], indices=[[0, 0], [2, 0]], shape=[3, 1]) }, tf.constant([[1], [1], [1]]) language = tf.contrib.layers.sparse_column_with_hash_bucket('language', 100) classifier = tf.contrib.learn.LinearClassifier(feature_columns=[language]) classifier.fit(input_fn=input_fn, steps=100) loss = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss, 0.07) def testSdcaOptimizerRealValuedFeatures(self): """Tests LinearClasssifier with SDCAOptimizer and real valued features.""" def input_fn(): return { 'example_id': tf.constant(['1', '2']), 'maintenance_cost': tf.constant([[500.0], [200.0]]), 'sq_footage': tf.constant([[800.0], [600.0]]), 'weights': tf.constant([[1.0], [1.0]]) }, tf.constant([[0], [1]]) maintenance_cost = tf.contrib.layers.real_valued_column('maintenance_cost') sq_footage = tf.contrib.layers.real_valued_column('sq_footage') sdca_optimizer = tf.contrib.linear_optimizer.SDCAOptimizer( example_id_column='example_id') classifier = tf.contrib.learn.LinearClassifier( feature_columns=[maintenance_cost, sq_footage], weight_column_name='weights', optimizer=sdca_optimizer) classifier.fit(input_fn=input_fn, steps=100) loss = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss, 0.05) def testSdcaOptimizerRealValuedFeatureWithHigherDimension(self): """Tests SDCAOptimizer with real valued features of higher dimension.""" # input_fn is identical to the one in testSdcaOptimizerRealValuedFeatures # where 2 1-dimensional dense features have been replaced by 1 2-dimensional # feature. def input_fn(): return { 'example_id': tf.constant(['1', '2']), 'dense_feature': tf.constant([[500.0, 800.0], [200.0, 600.0]]) }, tf.constant([[0], [1]]) dense_feature = tf.contrib.layers.real_valued_column( 'dense_feature', dimension=2) sdca_optimizer = tf.contrib.linear_optimizer.SDCAOptimizer( example_id_column='example_id') classifier = tf.contrib.learn.LinearClassifier( feature_columns=[dense_feature], optimizer=sdca_optimizer) classifier.fit(input_fn=input_fn, steps=100) loss = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss, 0.05) def testSdcaOptimizerBucketizedFeatures(self): """Tests LinearClasssifier with SDCAOptimizer and bucketized features.""" def input_fn(): return { 'example_id': tf.constant(['1', '2', '3']), 'price': tf.constant([[600.0], [1000.0], [400.0]]), 'sq_footage': tf.constant([[1000.0], [600.0], [700.0]]), 'weights': tf.constant([[1.0], [1.0], [1.0]]) }, tf.constant([[1], [0], [1]]) price_bucket = tf.contrib.layers.bucketized_column( tf.contrib.layers.real_valued_column('price'), boundaries=[500.0, 700.0]) sq_footage_bucket = tf.contrib.layers.bucketized_column( tf.contrib.layers.real_valued_column('sq_footage'), boundaries=[650.0]) sdca_optimizer = tf.contrib.linear_optimizer.SDCAOptimizer( example_id_column='example_id', symmetric_l2_regularization=1.0) classifier = tf.contrib.learn.LinearClassifier( feature_columns=[price_bucket, sq_footage_bucket], weight_column_name='weights', optimizer=sdca_optimizer) classifier.fit(input_fn=input_fn, steps=50) scores = classifier.evaluate(input_fn=input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testSdcaOptimizerSparseFeatures(self): """Tests LinearClasssifier with SDCAOptimizer and sparse features.""" def input_fn(): return { 'example_id': tf.constant(['1', '2', '3']), 'price': tf.constant([[0.4], [0.6], [0.3]]), 'country': tf.SparseTensor(values=['IT', 'US', 'GB'], indices=[[0, 0], [1, 3], [2, 1]], shape=[3, 5]), 'weights': tf.constant([[1.0], [1.0], [1.0]]) }, tf.constant([[1], [0], [1]]) price = tf.contrib.layers.real_valued_column('price') country = tf.contrib.layers.sparse_column_with_hash_bucket( 'country', hash_bucket_size=5) sdca_optimizer = tf.contrib.linear_optimizer.SDCAOptimizer( example_id_column='example_id') classifier = tf.contrib.learn.LinearClassifier( feature_columns=[price, country], weight_column_name='weights', optimizer=sdca_optimizer) classifier.fit(input_fn=input_fn, steps=50) scores = classifier.evaluate(input_fn=input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testSdcaOptimizerWeightedSparseFeatures(self): """LinearClasssifier with SDCAOptimizer and weighted sparse features.""" def input_fn(): return { 'example_id': tf.constant(['1', '2', '3']), 'price': tf.SparseTensor(values=[2., 3., 1.], indices=[[0, 0], [1, 0], [2, 0]], shape=[3, 5]), 'country': tf.SparseTensor(values=['IT', 'US', 'GB'], indices=[[0, 0], [1, 0], [2, 0]], shape=[3, 5]) }, tf.constant([[1], [0], [1]]) country = tf.contrib.layers.sparse_column_with_hash_bucket( 'country', hash_bucket_size=5) country_weighted_by_price = tf.contrib.layers.weighted_sparse_column( country, 'price') sdca_optimizer = tf.contrib.linear_optimizer.SDCAOptimizer( example_id_column='example_id') classifier = tf.contrib.learn.LinearClassifier( feature_columns=[country_weighted_by_price], optimizer=sdca_optimizer) classifier.fit(input_fn=input_fn, steps=50) scores = classifier.evaluate(input_fn=input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testSdcaOptimizerCrossedFeatures(self): """Tests LinearClasssifier with SDCAOptimizer and crossed features.""" def input_fn(): return { 'example_id': tf.constant(['1', '2', '3']), 'language': tf.SparseTensor(values=['english', 'italian', 'spanish'], indices=[[0, 0], [1, 0], [2, 0]], shape=[3, 1]), 'country': tf.SparseTensor(values=['US', 'IT', 'MX'], indices=[[0, 0], [1, 0], [2, 0]], shape=[3, 1]) }, tf.constant([[0], [0], [1]]) language = tf.contrib.layers.sparse_column_with_hash_bucket( 'language', hash_bucket_size=5) country = tf.contrib.layers.sparse_column_with_hash_bucket( 'country', hash_bucket_size=5) country_language = tf.contrib.layers.crossed_column( [language, country], hash_bucket_size=10) sdca_optimizer = tf.contrib.linear_optimizer.SDCAOptimizer( example_id_column='example_id') classifier = tf.contrib.learn.LinearClassifier( feature_columns=[country_language], optimizer=sdca_optimizer) classifier.fit(input_fn=input_fn, steps=10) scores = classifier.evaluate(input_fn=input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testSdcaOptimizerMixedFeatures(self): """Tests LinearClasssifier with SDCAOptimizer and a mix of features.""" def input_fn(): return { 'example_id': tf.constant(['1', '2', '3']), 'price': tf.constant([[0.6], [0.8], [0.3]]), 'sq_footage': tf.constant([[900.0], [700.0], [600.0]]), 'country': tf.SparseTensor(values=['IT', 'US', 'GB'], indices=[[0, 0], [1, 3], [2, 1]], shape=[3, 5]), 'weights': tf.constant([[3.0], [1.0], [1.0]]) }, tf.constant([[1], [0], [1]]) price = tf.contrib.layers.real_valued_column('price') sq_footage_bucket = tf.contrib.layers.bucketized_column( tf.contrib.layers.real_valued_column('sq_footage'), boundaries=[650.0, 800.0]) country = tf.contrib.layers.sparse_column_with_hash_bucket( 'country', hash_bucket_size=5) sq_footage_country = tf.contrib.layers.crossed_column( [sq_footage_bucket, country], hash_bucket_size=10) sdca_optimizer = tf.contrib.linear_optimizer.SDCAOptimizer( example_id_column='example_id') classifier = tf.contrib.learn.LinearClassifier( feature_columns=[price, sq_footage_bucket, country, sq_footage_country], weight_column_name='weights', optimizer=sdca_optimizer) classifier.fit(input_fn=input_fn, steps=50) scores = classifier.evaluate(input_fn=input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testEval(self): """Tests that eval produces correct metrics. """ def input_fn(): return { 'age': tf.constant([[1], [2]]), 'language': tf.SparseTensor(values=['greek', 'chinese'], indices=[[0, 0], [1, 0]], shape=[2, 1]), }, tf.constant([[1], [0]]) language = tf.contrib.layers.sparse_column_with_hash_bucket('language', 100) age = tf.contrib.layers.real_valued_column('age') classifier = tf.contrib.learn.LinearClassifier( feature_columns=[age, language]) # Evaluate on trained model classifier.fit(input_fn=input_fn, steps=100) classifier.evaluate(input_fn=input_fn, steps=1) # TODO(ispir): Enable accuracy check after resolving the randomness issue. # self.assertLess(evaluated_values['loss/mean'], 0.3) # self.assertGreater(evaluated_values['accuracy/mean'], .95) class LinearRegressorTest(tf.test.TestCase): def testEstimatorContract(self): estimator_test_utils.assert_estimator_contract( self, tf.contrib.learn.LinearRegressor) def testRegression(self): """Tests that loss goes down with training.""" def input_fn(): return { 'age': tf.constant([1]), 'language': tf.SparseTensor(values=['english'], indices=[[0, 0]], shape=[1, 1]) }, tf.constant([[10.]]) language = tf.contrib.layers.sparse_column_with_hash_bucket('language', 100) age = tf.contrib.layers.real_valued_column('age') classifier = tf.contrib.learn.LinearRegressor( feature_columns=[age, language]) classifier.fit(input_fn=input_fn, steps=100) loss1 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] classifier.fit(input_fn=input_fn, steps=200) loss2 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss2, loss1) self.assertLess(loss2, 0.5) def testRegression_MatrixData(self): """Tests regression using matrix data as input.""" cont_features = [ tf.contrib.layers.real_valued_column('feature', dimension=4)] regressor = tf.contrib.learn.LinearRegressor( feature_columns=cont_features, config=tf.contrib.learn.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_iris_input_fn, steps=100) scores = regressor.evaluate(input_fn=_iris_input_fn, steps=1) self.assertLess(scores['loss'], 0.2) def testRegression_TensorData(self): """Tests regression using tensor data as input.""" def _input_fn(num_epochs=None): features = { 'age': tf.train.limit_epochs(tf.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': tf.SparseTensor(values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], shape=[3, 2]) } return features, tf.constant([1.0, 0., 0.2], dtype=tf.float32) feature_columns = [ tf.contrib.layers.sparse_column_with_hash_bucket('language', hash_bucket_size=20), tf.contrib.layers.real_valued_column('age') ] regressor = tf.contrib.learn.LinearRegressor( feature_columns=feature_columns, config=tf.contrib.learn.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertLess(scores['loss'], 0.2) def testLoss(self): """Tests loss calculation.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # The algorithm should learn (y = 0.25). target = tf.constant([[1.], [0.], [0.], [0.]]) features = { 'x': tf.ones(shape=[4, 1], dtype=tf.float32), } return features, target regressor = tf.contrib.learn.LinearRegressor( feature_columns=[tf.contrib.layers.real_valued_column('x')], config=tf.contrib.learn.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=100) scores = regressor.evaluate(input_fn=_input_fn_train, steps=1) # Average square loss = (0.75^2 + 3*0.25^2) / 4 = 0.1875 self.assertAlmostEqual(scores['loss'], 0.1875, delta=0.1) def testLossWithWeights(self): """Tests loss calculation with weights.""" def _input_fn_train(): # 4 rows with equal weight, one of them (y = x), three of them (y=Not(x)) # The algorithm should learn (y = 0.25). target = tf.constant([[1.], [0.], [0.], [0.]]) features = { 'x': tf.ones(shape=[4, 1], dtype=tf.float32), 'w': tf.constant([[1.], [1.], [1.], [1.]]) } return features, target def _input_fn_eval(): # 4 rows, with different weights. target = tf.constant([[1.], [0.], [0.], [0.]]) features = { 'x': tf.ones(shape=[4, 1], dtype=tf.float32), 'w': tf.constant([[7.], [1.], [1.], [1.]]) } return features, target regressor = tf.contrib.learn.LinearRegressor( weight_column_name='w', feature_columns=[tf.contrib.layers.real_valued_column('x')], config=tf.contrib.learn.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=100) scores = regressor.evaluate(input_fn=_input_fn_eval, steps=1) # Weighted average square loss = (7*0.75^2 + 3*0.25^2) / 10 = 0.4125 self.assertAlmostEqual(scores['loss'], 0.4125, delta=0.1) def testTrainWithWeights(self): """Tests training with given weight column.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # First row has more weight than others. Model should fit (y=x) better # than (y=Not(x)) due to the relative higher weight of the first row. target = tf.constant([[1.], [0.], [0.], [0.]]) features = { 'x': tf.ones(shape=[4, 1], dtype=tf.float32), 'w': tf.constant([[100.], [3.], [2.], [2.]]) } return features, target def _input_fn_eval(): # Create 4 rows (y = x) target = tf.constant([[1.], [1.], [1.], [1.]]) features = { 'x': tf.ones(shape=[4, 1], dtype=tf.float32), 'w': tf.constant([[1.], [1.], [1.], [1.]]) } return features, target regressor = tf.contrib.learn.LinearRegressor( weight_column_name='w', feature_columns=[tf.contrib.layers.real_valued_column('x')], config=tf.contrib.learn.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=100) scores = regressor.evaluate(input_fn=_input_fn_eval, steps=1) # The model should learn (y = x) because of the weights, so the loss should # be close to zero. self.assertLess(scores['loss'], 0.1) def testPredict_AsIterableFalse(self): """Tests predict method with as_iterable=False.""" target = [1.0, 0., 0.2] def _input_fn(num_epochs=None): features = { 'age': tf.train.limit_epochs(tf.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': tf.SparseTensor(values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], shape=[3, 2]) } return features, tf.constant(target, dtype=tf.float32) feature_columns = [ tf.contrib.layers.sparse_column_with_hash_bucket('language', hash_bucket_size=20), tf.contrib.layers.real_valued_column('age') ] regressor = tf.contrib.learn.LinearRegressor( feature_columns=feature_columns, config=tf.contrib.learn.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertLess(scores['loss'], 0.1) predictions = regressor.predict(input_fn=_input_fn, as_iterable=False) self.assertAllClose(predictions, target, atol=0.1) def testPredict_AsIterable(self): """Tests predict method with as_iterable=True.""" target = [1.0, 0., 0.2] def _input_fn(num_epochs=None): features = { 'age': tf.train.limit_epochs(tf.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': tf.SparseTensor(values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], shape=[3, 2]) } return features, tf.constant(target, dtype=tf.float32) feature_columns = [ tf.contrib.layers.sparse_column_with_hash_bucket('language', hash_bucket_size=20), tf.contrib.layers.real_valued_column('age') ] regressor = tf.contrib.learn.LinearRegressor( feature_columns=feature_columns, config=tf.contrib.learn.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertLess(scores['loss'], 0.1) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = list( regressor.predict(input_fn=predict_input_fn, as_iterable=True)) self.assertAllClose(predictions, target, atol=0.1) def testCustomMetrics(self): """Tests custom evaluation metrics.""" def _input_fn(num_epochs=None): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) target = tf.constant([[1.], [0.], [0.], [0.]]) features = {'x': tf.train.limit_epochs( tf.ones(shape=[4, 1], dtype=tf.float32), num_epochs=num_epochs)} return features, target def _my_metric_op(predictions, targets): return tf.reduce_sum(tf.mul(predictions, targets)) regressor = tf.contrib.learn.LinearRegressor( feature_columns=[tf.contrib.layers.real_valued_column('x')], config=tf.contrib.learn.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ 'my_error': tf.contrib.metrics.streaming_mean_squared_error, 'my_metric': _my_metric_op }) self.assertIn('loss', set(scores.keys())) self.assertIn('my_error', set(scores.keys())) self.assertIn('my_metric', set(scores.keys())) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = np.array(list(regressor.predict(input_fn=predict_input_fn))) self.assertAlmostEqual( _sklearn.mean_squared_error(np.array([1, 0, 0, 0]), predictions), scores['my_error']) # Tests that when the key is a tuple, an error is raised. with self.assertRaises(KeyError): regressor.evaluate( input_fn=_input_fn, steps=1, metrics={('my_error', 'predictions' ): tf.contrib.metrics.streaming_mean_squared_error}) def testTrainSaveLoad(self): """Tests that insures you can save and reload a trained model.""" def _input_fn(num_epochs=None): features = { 'age': tf.train.limit_epochs(tf.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': tf.SparseTensor(values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], shape=[3, 2]) } return features, tf.constant([1.0, 0., 0.2], dtype=tf.float32) feature_columns = [ tf.contrib.layers.sparse_column_with_hash_bucket('language', hash_bucket_size=20), tf.contrib.layers.real_valued_column('age') ] model_dir = tempfile.mkdtemp() regressor = tf.contrib.learn.LinearRegressor( model_dir=model_dir, feature_columns=feature_columns, config=tf.contrib.learn.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = list(regressor.predict(input_fn=predict_input_fn)) del regressor regressor2 = tf.contrib.learn.LinearRegressor( model_dir=model_dir, feature_columns=feature_columns) predictions2 = list(regressor2.predict(input_fn=predict_input_fn)) self.assertAllClose(predictions, predictions2) def testTrainWithPartitionedVariables(self): """Tests training with partitioned variables.""" def _input_fn(num_epochs=None): features = { 'age': tf.train.limit_epochs(tf.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': tf.SparseTensor(values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], shape=[3, 2]) } return features, tf.constant([1.0, 0., 0.2], dtype=tf.float32) feature_columns = [ # The given hash_bucket_size results in variables larger than the # default min_slice_size attribute, so the variables are partitioned. tf.contrib.layers.sparse_column_with_hash_bucket('language', hash_bucket_size=2e7), tf.contrib.layers.real_valued_column('age') ] regressor = tf.contrib.learn.LinearRegressor( feature_columns=feature_columns, # Because we did not start a distributed cluster, we need to pass an # empty ClusterSpec, otherwise the device_setter will look for # distributed jobs, such as "/job:ps" which are not present. config=tf.contrib.learn.RunConfig( num_ps_replicas=2, cluster_spec=tf.train.ClusterSpec({}), tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertLess(scores['loss'], 0.1) def testDisableCenteredBias(self): """Tests that we can disable centered bias.""" def _input_fn(num_epochs=None): features = { 'age': tf.train.limit_epochs(tf.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': tf.SparseTensor(values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], shape=[3, 2]) } return features, tf.constant([1.0, 0., 0.2], dtype=tf.float32) feature_columns = [ tf.contrib.layers.sparse_column_with_hash_bucket('language', hash_bucket_size=20), tf.contrib.layers.real_valued_column('age') ] regressor = tf.contrib.learn.LinearRegressor( feature_columns=feature_columns, enable_centered_bias=False, config=tf.contrib.learn.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertLess(scores['loss'], 0.1) def testRecoverWeights(self): rng = np.random.RandomState(67) n = 1000 n_weights = 10 bias = 2 x = rng.uniform(-1, 1, (n, n_weights)) weights = 10 * rng.randn(n_weights) y = np.dot(x, weights) y += rng.randn(len(x)) * 0.05 + rng.normal(bias, 0.01) feature_columns = tf.contrib.learn.infer_real_valued_columns_from_input(x) regressor = tf.contrib.learn.LinearRegressor( feature_columns=feature_columns, optimizer=tf.train.FtrlOptimizer(learning_rate=0.8)) regressor.fit(x, y, batch_size=64, steps=2000) # Have to flatten weights since they come in (x, 1) shape. self.assertAllClose(weights, regressor.weights_.flatten(), rtol=1) # TODO(ispir): Disable centered_bias. # assert abs(bias - regressor.bias_) < 0.1 def testSdcaOptimizerRealValuedLinearFeatures(self): """Tests LinearRegressor with SDCAOptimizer and real valued features.""" x = [[1.2, 2.0, -1.5], [-2.0, 3.0, -0.5], [1.0, -0.5, 4.0]] weights = [[3.0], [-1.2], [0.5]] y = np.dot(x, weights) def input_fn(): return { 'example_id': tf.constant(['1', '2', '3']), 'x': tf.constant(x), 'weights': tf.constant([[10.0], [10.0], [10.0]]) }, tf.constant(y) x_column = tf.contrib.layers.real_valued_column('x', dimension=3) sdca_optimizer = tf.contrib.linear_optimizer.SDCAOptimizer( example_id_column='example_id') regressor = tf.contrib.learn.LinearRegressor( feature_columns=[x_column], weight_column_name='weights', optimizer=sdca_optimizer) regressor.fit(input_fn=input_fn, steps=20) loss = regressor.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss, 0.01) self.assertAllClose([w[0] for w in weights], regressor.weights_.flatten(), rtol=0.1) def testSdcaOptimizerMixedFeaturesArbitraryWeights(self): """Tests LinearRegressor with SDCAOptimizer and a mix of features.""" def input_fn(): return { 'example_id': tf.constant(['1', '2', '3']), 'price': tf.constant([[0.6], [0.8], [0.3]]), 'sq_footage': tf.constant([[900.0], [700.0], [600.0]]), 'country': tf.SparseTensor( values=['IT', 'US', 'GB'], indices=[[0, 0], [1, 3], [2, 1]], shape=[3, 5]), 'weights': tf.constant([[3.0], [5.0], [7.0]]) }, tf.constant([[1.55], [-1.25], [-3.0]]) price = tf.contrib.layers.real_valued_column('price') sq_footage_bucket = tf.contrib.layers.bucketized_column( tf.contrib.layers.real_valued_column('sq_footage'), boundaries=[650.0, 800.0]) country = tf.contrib.layers.sparse_column_with_hash_bucket( 'country', hash_bucket_size=5) sq_footage_country = tf.contrib.layers.crossed_column( [sq_footage_bucket, country], hash_bucket_size=10) sdca_optimizer = tf.contrib.linear_optimizer.SDCAOptimizer( example_id_column='example_id', symmetric_l2_regularization=1.0) regressor = tf.contrib.learn.LinearRegressor( feature_columns=[price, sq_footage_bucket, country, sq_footage_country], weight_column_name='weights', optimizer=sdca_optimizer) regressor.fit(input_fn=input_fn, steps=20) loss = regressor.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss, 0.05) def testSdcaOptimizerSparseFeaturesWithL1Reg(self): """Tests LinearClasssifier with SDCAOptimizer and sparse features.""" def input_fn(): return { 'example_id': tf.constant(['1', '2', '3']), 'price': tf.constant([[0.4], [0.6], [0.3]]), 'country': tf.SparseTensor( values=['IT', 'US', 'GB'], indices=[[0, 0], [1, 3], [2, 1]], shape=[3, 5]), 'weights': tf.constant([[10.0], [10.0], [10.0]]) }, tf.constant([[1.4], [-0.8], [2.6]]) price = tf.contrib.layers.real_valued_column('price') country = tf.contrib.layers.sparse_column_with_hash_bucket( 'country', hash_bucket_size=5) # Regressor with no L1 regularization. sdca_optimizer = tf.contrib.linear_optimizer.SDCAOptimizer( example_id_column='example_id') regressor = tf.contrib.learn.LinearRegressor( feature_columns=[price, country], weight_column_name='weights', optimizer=sdca_optimizer) regressor.fit(input_fn=input_fn, steps=20) no_l1_reg_loss = regressor.evaluate(input_fn=input_fn, steps=1)['loss'] no_l1_reg_weights = regressor.weights_ # Regressor with L1 regularization. sdca_optimizer = tf.contrib.linear_optimizer.SDCAOptimizer( example_id_column='example_id', symmetric_l1_regularization=1.0) regressor = tf.contrib.learn.LinearRegressor( feature_columns=[price, country], weight_column_name='weights', optimizer=sdca_optimizer) regressor.fit(input_fn=input_fn, steps=20) l1_reg_loss = regressor.evaluate(input_fn=input_fn, steps=1)['loss'] l1_reg_weights = regressor.weights_ # Unregularized loss is lower when there is no L1 regularization. self.assertLess(no_l1_reg_loss, l1_reg_loss) self.assertLess(no_l1_reg_loss, 0.05) # But weights returned by the regressor with L1 regularization have smaller # L1 norm. l1_reg_weights_norm, no_l1_reg_weights_norm = 0.0, 0.0 for var_name in sorted(l1_reg_weights): l1_reg_weights_norm += sum( np.absolute(l1_reg_weights[var_name].flatten())) no_l1_reg_weights_norm += sum( np.absolute(no_l1_reg_weights[var_name].flatten())) print('Var name: %s, value: %s' % (var_name, no_l1_reg_weights[var_name].flatten())) self.assertLess(l1_reg_weights_norm, no_l1_reg_weights_norm) def testSdcaOptimizerBiasOnly(self): """Tests LinearClasssifier with SDCAOptimizer and validates bias weight.""" def input_fn(): """Testing the bias weight when it's the only feature present. All of the instances in this input only have the bias feature, and a 1/4 of the labels are positive. This means that the expected weight for the bias should be close to the average prediction, i.e 0.25. Returns: Training data for the test. """ num_examples = 40 return { 'example_id': tf.constant([str(x+1) for x in range(num_examples)]), # place_holder is an empty column which is always 0 (absent), because # LinearClassifier requires at least one column. 'place_holder': tf.constant([[0.0]]*num_examples), }, tf.constant([[1 if i % 4 is 0 else 0] for i in range(num_examples)]) place_holder = tf.contrib.layers.real_valued_column('place_holder') sdca_optimizer = tf.contrib.linear_optimizer.SDCAOptimizer( example_id_column='example_id') regressor = tf.contrib.learn.LinearRegressor( feature_columns=[place_holder], optimizer=sdca_optimizer) regressor.fit(input_fn=input_fn, steps=100) self.assertNear(regressor.get_variable_value('linear/bias_weight')[0], 0.25, err=0.1) def testSdcaOptimizerBiasAndOtherColumns(self): """Tests LinearClasssifier with SDCAOptimizer and validates bias weight.""" def input_fn(): """Testing the bias weight when there are other features present. 1/2 of the instances in this input have feature 'a', the rest have feature 'b', and we expect the bias to be added to each instance as well. 0.4 of all instances that have feature 'a' are positive, and 0.2 of all instances that have feature 'b' are positive. The labels in the dataset are ordered to appear shuffled since SDCA expects shuffled data, and converges faster with this pseudo-random ordering. If the bias was centered we would expect the weights to be: bias: 0.3 a: 0.1 b: -0.1 Until b/29339026 is resolved, the bias gets regularized with the same global value for the other columns, and so the expected weights get shifted and are: bias: 0.2 a: 0.2 b: 0.0 Returns: The test dataset. """ num_examples = 200 half = int(num_examples/2) return { 'example_id': tf.constant([str(x+1) for x in range(num_examples)]), 'a': tf.constant([[1]]*int(half) + [[0]]*int(half)), 'b': tf.constant([[0]]*int(half) + [[1]]*int(half)), }, tf.constant([[x] for x in [1, 0, 0, 1, 1, 0, 0, 0, 1, 0] * int(half/10) + [0, 1, 0, 0, 0, 0, 0, 0, 1, 0] * int(half/10)]) sdca_optimizer = tf.contrib.linear_optimizer.SDCAOptimizer( example_id_column='example_id') regressor = tf.contrib.learn.LinearRegressor( feature_columns=[tf.contrib.layers.real_valued_column('a'), tf.contrib.layers.real_valued_column('b')], optimizer=sdca_optimizer) regressor.fit(input_fn=input_fn, steps=200) # TODO(b/29339026): Change the expected results to expect a centered bias. self.assertNear( regressor.get_variable_value('linear/bias_weight')[0], 0.2, err=0.05) self.assertNear(regressor.weights_['linear/a/weight'][0], 0.2, err=0.05) self.assertNear(regressor.weights_['linear/b/weight'][0], 0.0, err=0.05) def testSdcaOptimizerBiasAndOtherColumnsFabricatedCentered(self): """Tests LinearClasssifier with SDCAOptimizer and validates bias weight.""" def input_fn(): """Testing the bias weight when there are other features present. 1/2 of the instances in this input have feature 'a', the rest have feature 'b', and we expect the bias to be added to each instance as well. 0.1 of all instances that have feature 'a' have a label of 1, and 0.1 of all instances that have feature 'b' have a label of -1. We can expect the weights to be: bias: 0.0 a: 0.1 b: -0.1 Returns: The test dataset. """ num_examples = 200 half = int(num_examples/2) return { 'example_id': tf.constant([str(x+1) for x in range(num_examples)]), 'a': tf.constant([[1]]*int(half) + [[0]]*int(half)), 'b': tf.constant([[0]]*int(half) + [[1]]*int(half)), }, tf.constant([[1 if x%10 == 0 else 0] for x in range(half)] + [[-1 if x%10 == 0 else 0] for x in range(half)]) sdca_optimizer = tf.contrib.linear_optimizer.SDCAOptimizer( example_id_column='example_id') regressor = tf.contrib.learn.LinearRegressor( feature_columns=[tf.contrib.layers.real_valued_column('a'), tf.contrib.layers.real_valued_column('b')], optimizer=sdca_optimizer) regressor.fit(input_fn=input_fn, steps=100) self.assertNear( regressor.get_variable_value('linear/bias_weight')[0], 0.0, err=0.05) self.assertNear(regressor.weights_['linear/a/weight'][0], 0.1, err=0.05) self.assertNear(regressor.weights_['linear/b/weight'][0], -0.1, err=0.05) def boston_input_fn(): boston = tf.contrib.learn.datasets.load_boston() features = tf.cast(tf.reshape(tf.constant(boston.data), [-1, 13]), tf.float32) target = tf.cast(tf.reshape(tf.constant(boston.target), [-1, 1]), tf.float32) return features, target class FeatureColumnTest(tf.test.TestCase): def testTrain(self): feature_columns = tf.contrib.learn.infer_real_valued_columns_from_input_fn( boston_input_fn) est = tf.contrib.learn.LinearRegressor(feature_columns=feature_columns) est.fit(input_fn=boston_input_fn, steps=1) _ = est.evaluate(input_fn=boston_input_fn, steps=1) if __name__ == '__main__': tf.test.main()
apache-2.0
tinkoff-dwh/zeppelin
python/src/main/resources/python/zeppelin_python.py
9
9896
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os, sys, getopt, traceback, json, re from py4j.java_gateway import java_import, JavaGateway, GatewayClient from py4j.protocol import Py4JJavaError, Py4JNetworkError import warnings import ast import traceback import warnings import signal import base64 from io import BytesIO try: from StringIO import StringIO except ImportError: from io import StringIO # for back compatibility class Logger(object): def __init__(self): pass def write(self, message): intp.appendOutput(message) def reset(self): pass def flush(self): pass class PyZeppelinContext(object): """ A context impl that uses Py4j to communicate to JVM """ def __init__(self, z): self.z = z self.paramOption = gateway.jvm.org.apache.zeppelin.display.ui.OptionInput.ParamOption self.javaList = gateway.jvm.java.util.ArrayList self.max_result = 1000 self._displayhook = lambda *args: None self._setup_matplotlib() def getInterpreterContext(self): return self.z.getCurrentInterpreterContext() def input(self, name, defaultValue=""): return self.z.input(name, defaultValue) def textbox(self, name, defaultValue=""): return self.z.textbox(name, defaultValue) def noteTextbox(self, name, defaultValue=""): return self.z.noteTextbox(name, defaultValue) def select(self, name, options, defaultValue=""): return self.z.select(name, defaultValue, self.getParamOptions(options)) def noteSelect(self, name, options, defaultValue=""): return self.z.noteSelect(name, defaultValue, self.getParamOptions(options)) def checkbox(self, name, options, defaultChecked=[]): return self.z.checkbox(name, self.getDefaultChecked(defaultChecked), self.getParamOptions(options)) def noteCheckbox(self, name, options, defaultChecked=[]): return self.z.noteCheckbox(name, self.getDefaultChecked(defaultChecked), self.getParamOptions(options)) def getParamOptions(self, options): javaOptions = gateway.new_array(self.paramOption, len(options)) i = 0 for tuple in options: javaOptions[i] = self.paramOption(tuple[0], tuple[1]) i += 1 return javaOptions def getDefaultChecked(self, defaultChecked): javaDefaultChecked = self.javaList() for check in defaultChecked: javaDefaultChecked.append(check) return javaDefaultChecked def show(self, p, **kwargs): if hasattr(p, '__name__') and p.__name__ == "matplotlib.pyplot": self.show_matplotlib(p, **kwargs) elif type(p).__name__ == "DataFrame": # does not play well with sub-classes # `isinstance(p, DataFrame)` would req `import pandas.core.frame.DataFrame` # and so a dependency on pandas self.show_dataframe(p, **kwargs) elif hasattr(p, '__call__'): p() #error reporting def show_dataframe(self, df, show_index=False, **kwargs): """Pretty prints DF using Table Display System """ limit = len(df) > self.max_result header_buf = StringIO("") if show_index: idx_name = str(df.index.name) if df.index.name is not None else "" header_buf.write(idx_name + "\t") header_buf.write(str(df.columns[0])) for col in df.columns[1:]: header_buf.write("\t") header_buf.write(str(col)) header_buf.write("\n") body_buf = StringIO("") rows = df.head(self.max_result).values if limit else df.values index = df.index.values for idx, row in zip(index, rows): if show_index: body_buf.write("%html <strong>{}</strong>".format(idx)) body_buf.write("\t") body_buf.write(str(row[0])) for cell in row[1:]: body_buf.write("\t") body_buf.write(str(cell)) body_buf.write("\n") body_buf.seek(0); header_buf.seek(0) #TODO(bzz): fix it, so it shows red notice, as in Spark print("%table " + header_buf.read() + body_buf.read()) # + # ("\n<font color=red>Results are limited by {}.</font>" \ # .format(self.max_result) if limit else "") #) body_buf.close(); header_buf.close() def show_matplotlib(self, p, fmt="png", width="auto", height="auto", **kwargs): """Matplotlib show function """ if fmt == "png": img = BytesIO() p.savefig(img, format=fmt) img_str = b"data:image/png;base64," img_str += base64.b64encode(img.getvalue().strip()) img_tag = "<img src={img} style='width={width};height:{height}'>" # Decoding is necessary for Python 3 compability img_str = img_str.decode("ascii") img_str = img_tag.format(img=img_str, width=width, height=height) elif fmt == "svg": img = StringIO() p.savefig(img, format=fmt) img_str = img.getvalue() else: raise ValueError("fmt must be 'png' or 'svg'") html = "%html <div style='width:{width};height:{height}'>{img}<div>" print(html.format(width=width, height=height, img=img_str)) img.close() def configure_mpl(self, **kwargs): import mpl_config mpl_config.configure(**kwargs) def _setup_matplotlib(self): # If we don't have matplotlib installed don't bother continuing try: import matplotlib except ImportError: return # Make sure custom backends are available in the PYTHONPATH rootdir = os.environ.get('ZEPPELIN_HOME', os.getcwd()) mpl_path = os.path.join(rootdir, 'interpreter', 'lib', 'python') if mpl_path not in sys.path: sys.path.append(mpl_path) # Finally check if backend exists, and if so configure as appropriate try: matplotlib.use('module://backend_zinline') import backend_zinline # Everything looks good so make config assuming that we are using # an inline backend self._displayhook = backend_zinline.displayhook self.configure_mpl(width=600, height=400, dpi=72, fontsize=10, interactive=True, format='png') except ImportError: # Fall back to Agg if no custom backend installed matplotlib.use('Agg') warnings.warn("Unable to load inline matplotlib backend, " "falling back to Agg") def handler_stop_signals(sig, frame): sys.exit("Got signal : " + str(sig)) signal.signal(signal.SIGINT, handler_stop_signals) host = "127.0.0.1" if len(sys.argv) >= 3: host = sys.argv[2] _zcUserQueryNameSpace = {} client = GatewayClient(address=host, port=int(sys.argv[1])) #gateway = JavaGateway(client, auto_convert = True) gateway = JavaGateway(client) intp = gateway.entry_point intp.onPythonScriptInitialized(os.getpid()) java_import(gateway.jvm, "org.apache.zeppelin.display.Input") z = __zeppelin__ = PyZeppelinContext(intp.getZeppelinContext()) __zeppelin__._setup_matplotlib() _zcUserQueryNameSpace["__zeppelin__"] = __zeppelin__ _zcUserQueryNameSpace["z"] = z output = Logger() sys.stdout = output #sys.stderr = output while True : req = intp.getStatements() if req == None: break try: stmts = req.statements().split("\n") final_code = [] # Get post-execute hooks try: global_hook = intp.getHook('post_exec_dev') except: global_hook = None try: user_hook = __zeppelin__.getHook('post_exec') except: user_hook = None nhooks = 0 for hook in (global_hook, user_hook): if hook: nhooks += 1 for s in stmts: if s == None: continue # skip comment s_stripped = s.strip() if len(s_stripped) == 0 or s_stripped.startswith("#"): continue final_code.append(s) if final_code: # use exec mode to compile the statements except the last statement, # so that the last statement's evaluation will be printed to stdout code = compile('\n'.join(final_code), '<stdin>', 'exec', ast.PyCF_ONLY_AST, 1) to_run_hooks = [] if (nhooks > 0): to_run_hooks = code.body[-nhooks:] to_run_exec, to_run_single = (code.body[:-(nhooks + 1)], [code.body[-(nhooks + 1)]]) try: for node in to_run_exec: mod = ast.Module([node]) code = compile(mod, '<stdin>', 'exec') exec(code, _zcUserQueryNameSpace) for node in to_run_single: mod = ast.Interactive([node]) code = compile(mod, '<stdin>', 'single') exec(code, _zcUserQueryNameSpace) for node in to_run_hooks: mod = ast.Module([node]) code = compile(mod, '<stdin>', 'exec') exec(code, _zcUserQueryNameSpace) except: raise Exception(traceback.format_exc()) intp.setStatementsFinished("", False) except Py4JJavaError: excInnerError = traceback.format_exc() # format_tb() does not return the inner exception innerErrorStart = excInnerError.find("Py4JJavaError:") if innerErrorStart > -1: excInnerError = excInnerError[innerErrorStart:] intp.setStatementsFinished(excInnerError + str(sys.exc_info()), True) except Py4JNetworkError: # lost connection from gateway server. exit sys.exit(1) except: intp.setStatementsFinished(traceback.format_exc(), True) output.reset()
apache-2.0
srndic/mimicus
reproduction/fig11.py
1
5327
#!/usr/bin/env python ''' Copyright 2014 Nedim Srndic, University of Tuebingen This file is part of Mimicus. Mimicus is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Mimicus is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Mimicus. If not, see <http://www.gnu.org/licenses/>. ############################################################################## fig11.py Reproduction of Figure 11 of the paper "Practical Evasion of a Learning-Based Classifier: A Case Study" by Nedim Srndic and Pavel Laskov. Created on March 21, 2014. ''' from argparse import ArgumentParser import multiprocessing import os import random import sys from matplotlib import pyplot from mimicus.tools.featureedit import FeatureEdit from mimicus.tools.datasets import csv2numpy import common import config def mimicry(wolf_fname, sheep_feats, m_id): ''' Mimics file with the features sheep_feats using the attack file with the name wolf_fname. Returns the resulting feature vector. ''' mimic = FeatureEdit(wolf_fname).modify_file(sheep_feats, '/run/shm') os.remove(mimic['path']) return mimic['feats'], m_id def mimicry_wrap(args): ''' Helper function for calling the mimicry function in parallel. ''' return mimicry(*args) def fig11(tr_data, tr_labels, te_data, te_labels, tr_files): ''' Tests the vaccination defense against the Benign Random Noise (BRN) attack seeded by results of our mimicry attack against itself and original, unmodified data. Performs 5 trials. ''' mal_tr_ind = [i for i, l in enumerate(tr_labels) if l == 1] ben_tr_ind = [i for i, l in enumerate(tr_labels) if l == 0] mim_data, mim_labels = common.get_FTC_mimicry() TRIALS = 5 print '\n{:>6}{:>15}{:>15}'.format('%', 'ORIGINAL', 'OUR MIMICRY') pool = multiprocessing.Pool(processes=None) scores = [] for subset in (0, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1): acc = [0.0, 0.0] sys.stdout.write('{:>6.2f}'.format(subset * 100)) for _ in range(TRIALS): tr_mod = tr_data.copy() # Subsample malicious training files for attack wolf_ind = random.sample(mal_tr_ind, int(round(subset * len(mal_tr_ind)))) # Mimic random benign files using the sampled files pargs = [(tr_data[random.choice(ben_tr_ind)], tr_files[w_id], w_id) for w_id in wolf_ind] for mimic, w_id in pool.imap(mimicry_wrap, pargs): tr_mod[w_id] = mimic # Evaluate the classifier on both clean test data and mimicry data res = common.evaluate_classifier(tr_mod, tr_labels, [te_data, mim_data], [te_labels, mim_labels]) acc = [old + new for old, new in zip(acc, res)] acc = [acc[0] / TRIALS, acc[1] / TRIALS] print '{:>15.3f}{:>15.3f}'.format(acc[0], acc[1]) scores.append(tuple(acc)) return scores def main(): random.seed(0) parser = ArgumentParser() parser.add_argument('--plot', help='Where to save plot (file name)', default=False) parser.add_argument('--show', help='Show plot in a window', default=False) args = parser.parse_args() print 'Loading training data from CSV...' tr_data, tr_labels, tr_fnames = csv2numpy(config.get('datasets', 'contagio')) print 'Loading test data from CSV...' te_data, te_labels, _ = csv2numpy(config.get('datasets', 'contagio_test')) print 'Evaluating...' scores = fig11(tr_data, tr_labels, te_data, te_labels, tr_fnames) if not (args.plot or args.show): return 0 # Plot original, our_mimicry = zip(*scores) fig = pyplot.figure() pyplot.plot(original, label='Clean data', marker='o', color='k', linewidth=2) pyplot.plot(our_mimicry, label='Our mimicry', marker='+', color='k', linewidth=2, linestyle=':') axes = fig.gca() # Set up axes and labels axes.yaxis.set_ticks([r / 10.0 for r in range(11)]) axes.yaxis.grid() axes.set_ylim(0, 1) axes.set_ylabel('Accuracy') xticklabels = ['0', '0.05', '0.1', '0.5', '1', '5', '10', '50', '100'] axes.set_xticklabels(xticklabels, rotation=0) axes.set_xlabel('Training set perturbation (%)') fig.subplots_adjust(bottom=0.13, top=0.95, left=0.11, right=0.96) pyplot.legend(loc='lower right') if args.show: pyplot.show() if args.plot: pyplot.savefig(args.plot, dpi=300, bbox_inches='tight') return 0 if __name__ == '__main__': sys.exit(main())
gpl-3.0
RachitKansal/scikit-learn
examples/neighbors/plot_nearest_centroid.py
264
1804
""" =============================== Nearest Centroid Classification =============================== Sample usage of Nearest Centroid classification. It will plot the decision boundaries for each class. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap from sklearn import datasets from sklearn.neighbors import NearestCentroid n_neighbors = 15 # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. We could # avoid this ugly slicing by using a two-dim dataset y = iris.target h = .02 # step size in the mesh # Create color maps cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF']) cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF']) for shrinkage in [None, 0.1]: # we create an instance of Neighbours Classifier and fit the data. clf = NearestCentroid(shrink_threshold=shrinkage) clf.fit(X, y) y_pred = clf.predict(X) print(shrinkage, np.mean(y == y_pred)) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.figure() plt.pcolormesh(xx, yy, Z, cmap=cmap_light) # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold) plt.title("3-Class classification (shrink_threshold=%r)" % shrinkage) plt.axis('tight') plt.show()
bsd-3-clause
biocore/qiita
qiita_pet/test/rest/test_study_preparation.py
3
7792
# ----------------------------------------------------------------------------- # Copyright (c) 2014--, The Qiita Development Team. # # Distributed under the terms of the BSD 3-clause License. # # The full license is in the file LICENSE, distributed with this software. # ----------------------------------------------------------------------------- from unittest import main from io import StringIO import os import pandas as pd from tornado.escape import json_decode from qiita_db.metadata_template.util import load_template_to_dataframe from qiita_db.metadata_template.prep_template import PrepTemplate from qiita_pet.test.rest.test_base import RESTHandlerTestCase from qiita_db.util import get_mountpoint class StudyPrepCreatorTests(RESTHandlerTestCase): def test_post_non_existant_study(self): # study id that does not exist prep = StringIO(EXP_PREP_TEMPLATE.format(0)) prep_table = load_template_to_dataframe(prep) response = self.post('/api/v1/study/0/preparation?' '&data_type=16S', data=prep_table.T.to_dict(), headers=self.headers, asjson=True) self.assertEqual(response.code, 404) def test_post_non_matching_identifiers(self): prep = StringIO(EXP_PREP_TEMPLATE.format(100)) prep_table = load_template_to_dataframe(prep) response = self.post('/api/v1/study/1/preparation?' 'data_type=16S', data=prep_table.T.to_dict(), headers=self.headers, asjson=True) self.assertEqual(response.code, 406) obs = json_decode(response.body) self.assertCountEqual(obs.keys(), ['message']) self.assertGreater(len(obs['message']), 0) def test_post_valid_study(self): prep = StringIO(EXP_PREP_TEMPLATE.format(1)) prep_table = load_template_to_dataframe(prep) response = self.post('/api/v1/study/1/preparation?data_type=16S', data=prep_table.T.to_dict(), headers=self.headers, asjson=True) self.assertEqual(response.code, 201) exp = json_decode(response.body) exp_prep = PrepTemplate(exp['id']).to_dataframe() prep_table.index.name = 'sample_id' # sort columns to be comparable prep_table = prep_table[sorted(prep_table.columns.tolist())] exp_prep = exp_prep[sorted(exp_prep.columns.tolist())] exp_prep.drop('qiita_prep_id', axis=1, inplace=True) pd.util.testing.assert_frame_equal(prep_table, exp_prep) class StudyPrepArtifactCreatorTests(RESTHandlerTestCase): def test_post_non_existant_study(self): uri = '/api/v1/study/0/preparation/0/artifact' body = {'artifact_type': 'foo', 'filepaths': [['foo.txt', 1], ['bar.txt', 1]], 'artifact_name': 'a name is a name'} response = self.post(uri, data=body, headers=self.headers, asjson=True) exp = {'message': 'Study not found'} self.assertEqual(response.code, 404) obs = json_decode(response.body) self.assertEqual(obs, exp) def test_post_non_existant_prep(self): uri = '/api/v1/study/1/preparation/1337/artifact' body = {'artifact_type': 'foo', 'filepaths': [['foo.txt', 1], ['bar.txt', 1]], 'artifact_name': 'a name is a name'} response = self.post(uri, data=body, headers=self.headers, asjson=True) exp = {'message': 'Preparation not found'} self.assertEqual(response.code, 404) obs = json_decode(response.body) self.assertEqual(obs, exp) def test_post_unknown_artifact_type(self): uri = '/api/v1/study/1/preparation/1/artifact' body = {'artifact_type': 'foo', 'filepaths': [['foo.txt', 1], ['bar.txt', 1]], 'artifact_name': 'a name is a name'} response = self.post(uri, data=body, headers=self.headers, asjson=True) self.assertEqual(response.code, 406) obs = json_decode(response.body) self.assertCountEqual(obs.keys(), ['message']) self.assertGreater(len(obs['message']), 0) def test_post_unknown_filepath_type_id(self): uri = '/api/v1/study/1/preparation/1/artifact' body = {'artifact_type': 'foo', 'filepaths': [['foo.txt', 123123], ['bar.txt', 1]], 'artifact_name': 'a name is a name'} response = self.post(uri, data=body, headers=self.headers, asjson=True) self.assertEqual(response.code, 406) obs = json_decode(response.body) self.assertCountEqual(obs.keys(), ['message']) self.assertGreater(len(obs['message']), 0) def test_post_files_notfound(self): uri = '/api/v1/study/1/preparation/1/artifact' body = {'artifact_type': 'foo', 'filepaths': [['foo.txt', 1], ['bar.txt', 1]], 'artifact_name': 'a name is a name'} response = self.post(uri, data=body, headers=self.headers, asjson=True) self.assertEqual(response.code, 406) obs = json_decode(response.body) self.assertCountEqual(obs.keys(), ['message']) self.assertGreater(len(obs['message']), 0) def test_post_valid(self): dontcare, uploads_dir = get_mountpoint('uploads')[0] foo_fp = os.path.join(uploads_dir, '1', 'foo.txt') bar_fp = os.path.join(uploads_dir, '1', 'bar.txt') with open(foo_fp, 'w') as fp: fp.write("@x\nATGC\n+\nHHHH\n") with open(bar_fp, 'w') as fp: fp.write("@x\nATGC\n+\nHHHH\n") prep = StringIO(EXP_PREP_TEMPLATE.format(1)) prep_table = load_template_to_dataframe(prep) response = self.post('/api/v1/study/1/preparation?data_type=16S', data=prep_table.T.to_dict(), headers=self.headers, asjson=True) prepid = json_decode(response.body)['id'] uri = '/api/v1/study/1/preparation/%d/artifact' % prepid # 1 -> fwd or rev sequences in fastq # 3 -> barcodes body = {'artifact_type': 'FASTQ', 'filepaths': [['foo.txt', 1], ['bar.txt', 'raw_barcodes']], 'artifact_name': 'a name is a name'} response = self.post(uri, data=body, headers=self.headers, asjson=True) self.assertEqual(response.code, 201) obs = json_decode(response.body)['id'] prep_instance = PrepTemplate(prepid) exp = prep_instance.artifact.id self.assertEqual(obs, exp) EXP_PREP_TEMPLATE = ( 'sample_name\tbarcode\tcenter_name\tcenter_project_name\t' 'ebi_submission_accession\temp_status\texperiment_design_description\t' 'instrument_model\tlibrary_construction_protocol\tplatform\tprimer\t' 'bar\trun_prefix\tstr_column\n' '{0}.SKB7.640196\tCCTCTGAGAGCT\tANL\tTest Project\t\tEMP\tBBBB\t' 'Illumina MiSeq\tAAAA\tIllumina\tGTGCCAGCMGCCGCGGTAA\tfoo\t' 's_G1_L002_sequences\tValue for sample 3\n' '{0}.SKB8.640193\tGTCCGCAAGTTA\tANL\tTest Project\t\tEMP\tBBBB\t' 'Illumina MiSeq\tAAAA\tIllumina\tGTGCCAGCMGCCGCGGTAA\tfoo\t' 's_G1_L001_sequences\tValue for sample 1\n' '{0}.SKD8.640184\tCGTAGAGCTCTC\tANL\tTest Project\t\tEMP\tBBBB\t' 'Illumina MiSeq\tAAAA\tIllumina\tGTGCCAGCMGCCGCGGTAA\tfoo\t' 's_G1_L001_sequences\tValue for sample 2\n') if __name__ == '__main__': main()
bsd-3-clause
ragnarekker/Ice-modelling
utilities/getregobsdata.py
1
50189
# -*- coding: utf-8 -*- import datetime as dt import requests import os as os import copy as cp from icemodelling import ice as ice, constants as const from utilities import makepickle as mp, makelogs as ml, doconversions as dc from utilities import getmisc as gm import setenvironment as se import pandas as pd __author__ = 'ragnarekker' def get_obs_location(LocationName): """Uses OData query to get the ObsLocation data for a given ObsLocation name. :param LocationName: :return: """ oDataQuery = "{0}".format(LocationName) # get data for current view and dates url = "http://api.nve.no/hydrology/regobs/{0}/Odata.svc/ObsLocation/?$filter=LocationName eq '{1}'&$format=json"\ .format(se.odata_version, oDataQuery) data = requests.get(url).json() data_dict = data['d']['results'][0] return data_dict def get_ice_cover(LocationName, fromDate, toDate): """Method returns a list of IceCover objects from regObs between fromDate to toDate. :param LocationName: [string/list] name as given in regObs in ObsLocation table :param fromDate: [string] The from date as 'YYYY-MM-DD' :param toDate: [string] The to date as 'YYYY-MM-DD' :return: http://api.nve.no/hydrology/regobs/v0.9.4/Odata.svc/IceCoverObsV?$filter= DtObsTime%20gt%20datetime%272013-11-01%27%20and%20 DtObsTime%20lt%20datetime%272014-06-01%27%20and%20 LocationName%20eq%20%27Hakkloa%20nord%20372%20moh%27%20and%20 LangKey%20eq%201 """ iceCoverList = [] if isinstance(LocationName, list): for l in LocationName: iceCoverList = iceCoverList + get_ice_cover(l, fromDate, toDate) else: view = 'IceCoverObsV' OdataLocationName = LocationName oDataQuery = "DtObsTime gt datetime'{0}' and " \ "DtObsTime lt datetime'{1}' and " \ "LocationName eq '{2}' and " \ "LangKey eq 1".format(fromDate, toDate, OdataLocationName) # get data for current view and dates url = "http://api.nve.no/hydrology/regobs/{0}/Odata.svc/{2}?$filter={1}&$format=json".format(se.odata_version, oDataQuery, view) data = requests.get(url).json() datalist = data['d']['results'] for ic in datalist: iceCoverDate = dc.unix_time_2_normal(ic['DtObsTime']) iceCoverName = ic['IceCoverName'] iceCoverBefore = ic['IceCoverBeforeName'] cover = ice.IceCover(iceCoverDate, iceCoverName, iceCoverBefore, LocationName) cover.set_regid(ic['RegID']) cover.set_utm(ic['UTMNorth'], ic['UTMEast'], ic['UTMZone']) iceCoverList.append(cover) return iceCoverList def get_first_ice_cover(LocationName, fromDate, toDate): """Returns the first observation where ice can form on a lake. That is if the ice cover is partly or fully formed on observation location or the lake. If no such observation is found an "empty" ice cover is returned at fromDate. :param LocationName: [string/list] name as given in regObs in ObsLocation table :param fromDate: [string] The from date as 'YYYY-MM-DD' :param toDate: [string] The to date as 'YYYY-MM-DD' :return: """ iceCoverSeason = get_ice_cover(LocationName, fromDate, toDate) iceCoverSeason.sort(key=lambda IceCover: IceCover.date) # start looking at the oldest observations for ic in iceCoverSeason: # if the ice cover is partly or fully formed on observation location or the lake # 2) delvis islagt på målestedet # 3) helt islagt på målestedet # 21) hele sjøen islagt if (ic.iceCoverTID == 2) or (ic.iceCoverTID == 3) or (ic.iceCoverTID == 21): # and if icecover before was # 1) isfritt på målestedet # 2) delvis islagt på målestedet, # 11) islegging langs land # 20) hele sjøen isfri, this is fist ice if (ic.iceCoverBeforeTID == 1) or (ic.iceCoverBeforeTID == 2) or \ (ic.iceCoverBeforeTID == 11) or (ic.iceCoverBeforeTID == 20): return ic # datetime objects in IceCover datatype from_date = dt.datetime.strptime(fromDate, "%Y-%m-%d") return ice.IceCover(from_date, "Ikke gitt", 'Ikke gitt', LocationName) def get_last_ice_cover(LocationName, fromDate, toDate): """Method gives the observation confirming ice is gone for the season from a lake. It finds the first observation without ice after an observation(s) with ice. If none is found, an "empty" icecover object is returned on the last date in the period. Method works best when dates range over whole seasons. :param LocationName: [string/list] name as given in regObs in ObsLocation table :param fromDate: [string] The from date as 'YYYY-MM-DD' :param toDate: [string] The to date as 'YYYY-MM-DD' :return: """ iceCoverSeason = get_ice_cover(LocationName, fromDate, toDate) iceCoverSeason.sort(key=lambda IceCover: IceCover.date, reverse=True) # start looking at newest observations # datetime objects in ice cover data type to_date = dt.datetime.strptime(toDate, "%Y-%m-%d") # make "empty" ice cover object on last date. If there is no ice cover observation confirming that ice has gone, # this wil be returned. noIceCover = ice.IceCover(to_date, "Ikke gitt", 'Ikke gitt', LocationName) for ic in iceCoverSeason: # if "Isfritt på målestedet" (TID=1) or "Hele sjøen isfri" (TID=20). That is, if we have an older "no icecover" case if (ic.iceCoverTID == 1) or (ic.iceCoverTID == 20): noIceCover = ic # if "Delvis islagt på målestedet" (TID=2) or "Helt islagt på målestedet" (TID=3) or "Hele sjøen islagt" (TID=21) if (ic.iceCoverTID == 2) or (ic.iceCoverTID == 3) or (ic.iceCoverTID == 21): return noIceCover # we have confirmed ice on the lake so we return the no ice cover observation return noIceCover def get_ice_thickness_on_regid(regid): view = 'IceThicknessV' oDataQuery = "RegID eq {0} and " \ "LangKey eq 1".format(regid) # get data for current view and dates url = "http://api.nve.no/hydrology/regobs/{0}/Odata.svc/{2}?$filter={1}&$format=json".format(se.odata_version, oDataQuery, view) data = requests.get(url).json() datalist = data['d']['results'] #Only one ice column pr regid ice_column = _parse_ice_column(datalist[0]) return ice_column def get_ice_thickness_on_location(LocationName, fromDate, toDate): """Method returns a list of ice thickness between two dates for a given location in regObs. :param LocationName: [string/list] name as given in regObs in ObsLocation table. Multiploe locations posible :param fromDate: [string] The from date as 'YYYY-MM-DD' :param toDate: [string] The to date as 'YYYY-MM-DD' :return: """ ice_columns = [] if isinstance(LocationName, list): for l in LocationName: ice_columns = ice_columns + get_ice_thickness_on_location(l, fromDate, toDate) else: view = 'IceThicknessV' OdataLocationName = LocationName oDataQuery = "DtObsTime gt datetime'{0}' and " \ "DtObsTime lt datetime'{1}' and " \ "LocationName eq '{2}' and " \ "LangKey eq 1".format(fromDate, toDate, OdataLocationName) # get data for current view and dates url = "http://api.nve.no/hydrology/regobs/{0}/Odata.svc/{2}?$filter={1}&$format=json".format(se.odata_version, oDataQuery, view) data = requests.get(url).json() datalist = data['d']['results'] for ic in datalist: ice_column = _parse_ice_column(ic) if ice_column: ice_columns.append(ice_column) return ice_columns def _parse_ice_column(ic): RegID = ic['RegID'] layers = get_ice_thickness_layers(RegID) ice_column = None if layers is not None: date = dc.unix_time_2_normal(ic['DtObsTime']) if len(layers) == 0: layers = [ice.IceLayer(float(ic['IceThicknessSum']), 'unknown')] ice_column = ice.IceColumn(date, layers) ice_column.add_metadata('RegID', RegID) ice_column.add_metadata('LocationName', ic['LocationName']) ice_column.add_metadata('UTMNorth', ic['UTMNorth']) ice_column.add_metadata('UTMEast', ic['UTMEast']) ice_column.add_metadata('UTMZone', ic['UTMZone']) ice_column.add_layer_at_index(0, ice.IceLayer(ic['SlushSnow'], 'slush')) ice_column.add_layer_at_index(0, ice.IceLayer(ic['SnowDepth'], 'snow')) ice_column.merge_and_remove_excess_layers() ice_column.update_draft_thickness() ice_column.update_top_layer_is_slush() iha = ic['IceHeightAfter'] # if ice height after is not given I make an estimate so that I know where to put it in the plot if iha is None: ice_column.update_water_line() ice_column.add_metadata('IceHeightAfter', 'Modeled') iha = ice_column.draft_thickness - ice_column.water_line if ice_column.top_layer_is_slush: iha = iha + const.snow_pull_on_water ice_column.water_line = ice_column.draft_thickness - float(iha) if ice_column.top_layer_is_slush is True: ice_column.water_line -= ice_column.column[0].height return ice_column def get_all_season_ice_on_location(LocationNames, fromDate, toDate): """Uses odata-api. This returns a list of all ice columns in a period from fromDate to toDate. At index 0 is first ice (date with no ice layers) and on last index (-1) is last ice which is the date where there is no more ice on the lake. If no first or last ice is found in regObs the first or/and last dates in the request is used for initial and end of ice cover season, :param LocationNames: [string/list] name as given in regObs in ObsLocation table :param fromDate: [string] The from date as 'YYYY-MM-DD' :param toDate: [string] The to date as 'YYYY-MM-DD' :return: """ if not isinstance(LocationNames, list): LocationNames = [LocationNames] all_columns = [] for LocationName in LocationNames: first = get_first_ice_cover(LocationName, fromDate, toDate) last = get_last_ice_cover(LocationName, fromDate, toDate) start_column = [] end_column = [] fc = ice.IceColumn(first.date, 0) fc.add_metadata('LocationName', first.locationName) fc.add_metadata('RegID', first.RegID) fc.add_metadata('UTMNorth', first.UTMNorth) fc.add_metadata('UTMEast', first.UTMEast) fc.add_metadata('UTMZone', first.UTMZone) start_column.append(fc) lc = ice.IceColumn(last.date, 0) lc.add_metadata('LocationName', last.locationName) lc.add_metadata('RegID', last.RegID) lc.add_metadata('UTMNorth', last.UTMNorth) lc.add_metadata('UTMEast', last.UTMEast) lc.add_metadata('UTMZone', last.UTMZone) end_column.append(lc) columns = get_ice_thickness_on_location(LocationName, fromDate, toDate) all_columns += (start_column + columns + end_column) return all_columns def get_ice_thickness_layers(RegID): """ This method returns the ice layes of a given registration (RegID) in regObs. it reads only what is below the first solid ice layer. Thus snow and slush on the ice is not covered here and is added separately in the public method for retrieving the full ice column. This method is an internal method for getRegObdata.py :param RegID: :return: Example og a ice layer object in regObs: http://api.nve.no/hydrology/regobs/v0.9.5/Odata.svc/IceThicknessLayerV?$filter=RegID%20eq%2034801%20and%20LangKey%20eq%201&$format=json """ view = 'IceThicknessLayerV' url = "http://api.nve.no/hydrology/regobs/{0}/Odata.svc/{1}?" \ "$filter=RegID eq {2} and LangKey eq 1&$format=json"\ .format(se.odata_version, view, RegID) data = requests.get(url).json() datalist = data['d']['results'] layers = [] for l in datalist: thickness = l['IceLayerThickness'] if thickness == None or float(thickness) == 0: ml.log_and_print('getregobsdata.py -> get_ice_thickness_layers: RegID {0} har icelayers of None thicness.'.format(RegID)) # return empty list if some layers at zero or none. reversed_layers = [] return reversed_layers else: regobs_layer_name = l['IceLayerName'] layer_type = get_tid_from_name('IceLayerKDV', regobs_layer_name) layer_name = get_ice_type_from_tid(layer_type) layer = ice.IceLayer(float(thickness), layer_name) layers.append(layer) return layers def get_ice_type_from_tid(IceLayerTID): """Method returns a ice type available in the IceLayer class given the regObs type IceLayerTID. :param IceLayerTID: :return Ice type as string: List of layertypes availabel in regObs: http://api.nve.no/hydrology/regobs/v0.9.4/OData.svc/IceLayerKDV?$filter=Langkey%20eq%201%20&$format=json """ # if IceLayerTID == 1: return 'black_ice' elif IceLayerTID == 3: return 'slush_ice' elif IceLayerTID == 5: return 'slush' elif IceLayerTID == 11: # 'Stålis i nedbrytning' in regObs return 'black_ice' elif IceLayerTID == 13: # 'Sørpeis i nedbrytning' in regObs return 'slush_ice' elif IceLayerTID == 14: # 'Stavis (våris)' in regObs return 'slush_ice' else: return 'unknown'.format(IceLayerTID) def get_tid_from_name(x_kdv, name): """ Gets a xTID for a given xName from a xKDV element in regObs. In other words, it gets the ID for a given name. :param x_kdv: :param name: :return tid: """ x_kdv = get_kdv(x_kdv) tid = -1 for xTID, xName in x_kdv.items(): if xName == name: tid = xTID return tid def get_kdv(x_kdv, get_new=False): """Imports a x_kdv view from regObs and returns a dictionary with <key, value> = <ID, Name> An x_kdv is requested from the regObs api if a pickle file newer than a week exists. :param x_kdv: [string] x_kdv view :return dict: {} x_kdv as a dictionary Ex of use: aval_cause_kdv = get_kdv('AvalCauseKDV') Ex of url for returning values for IceCoverKDV in norwegian: http://api.nve.no/hydrology/regobs/v0.9.4/OData.svc/ForecastRegionKDV?$filter=Langkey%20eq%201%20&$format=json """ kdv_file = '{0}{1}.pickle'.format(se.kdv_elements_folder, x_kdv) dict = {} if get_new: url = 'http://api.nve.no/hydrology/regobs/{0}/OData.svc/{1}?$filter=Langkey%20eq%201%20&$format=json'\ .format(se.odata_version, x_kdv) ml.log_and_print("getregobsdata -> get_kdv: Getting KDV from URL:{0}".format(url)) kdv = requests.get(url).json() for a in kdv['d']['results']: try: if 'AvalCauseKDV' in url and a['ID'] > 9 and a['ID'] < 26: # this table gets special treatment dict[a["ID"]] = a["Description"] else: dict[a["ID"]] = a["Name"] except (RuntimeError, TypeError, NameError): pass mp.pickle_anything(dict, kdv_file) else: if os.path.exists(kdv_file): # Useful to test if the file is old and if so make a new one max_file_age = 7 mtime = os.path.getmtime(kdv_file) last_modified_date = dt.datetime.fromtimestamp(mtime).date() date_limit = dt.datetime.now() - dt.timedelta(days=max_file_age) # If file older than date limit, request a new. if last_modified_date < date_limit.date(): dict = get_kdv(x_kdv, get_new=True) else: # ml.log_and_print("getregobsdata -> get_kdv: Getting KDV from pickle:{0}".format(kdv_file)) dict = mp.unpickle_anything(kdv_file, print_message=False) else: dict = get_kdv(x_kdv, get_new=True) return dict # webapi # START VARSOMDATA def _stringtime_2_datetime(stringtime): """Takes in a date as string, both given as unix datetime or normal local time, as string. Method returns a normal datetime object. :param stringtime: :return: The date as datetime object """ if '/Date(' in stringtime: # oData gives unix time. Unix date time in milliseconds from 1.1.1970 unix_date_time = int(stringtime[6:-2]) unix_datetime_in_seconds = unix_date_time/1000 # For some reason they are given in miliseconds date = dt.datetime.fromtimestamp(int(unix_datetime_in_seconds)) else: # regobs api gives local time if '.' in stringtime: # though sometimes with seconds given with decimal places non_decimal_stringtime = stringtime[0:stringtime.index('.')] stringtime = non_decimal_stringtime date = dt.datetime.strptime(stringtime, '%Y-%m-%dT%H:%M:%S') ### DOES REGOBS API RETURN UT TIME??? ### return date def _make_data_frame(list): """Takes a list of objects and makes a Pandas data frame. :param list: [list of objects] :return: [data frame] """ if len(list) == 0: data_frame = pd.DataFrame() else: observation_fields = list[0].__dict__.keys() data_frame = pd.DataFrame(columns=observation_fields) i = 0 for l in list: observation_values = l.__dict__.values() data_frame.loc[i] = observation_values i += 1 return data_frame def _reg_types_dict(registration_tids=None): """Method maps single RegistrationTID values to the query dictionary used in regObs webapi :param registration_tids: [int or list of int] Definition given below :return: Registration IDs and names 10 Fritekst 11 Ulykke/hendelse 12 Bilde 13 Faretegn -14 Skader 21 Vær 22 Snødekke 23 Snøprofil -24 Skredfaretegn 25 Stabilitetstest 26 Skredhendelse 27 Observert skredaktivitet(2011) 28 Skredfarevurdering (2012) -29 Svakt lag 30 Skredfarevurdering (2013) 31 Skredfarevurdering 32 Skredproblem 33 Skredaktivitet 40 Snøskredvarsel 50 Istykkelse 51 Isdekningsgrad 61 Vannstand (2017) 62 Vannstand 71 Skredhendelse 80 Hendelser Grupperings type - Hendelser 81 Skred og faretegn Grupperings type - Skred og faretegn 82 Snødekke og vær Grupperings type - Snødekke og vær 83 Vurderinger og problemer Grupperings type - Vurderinger og problemer """ # If resources isn't a list, make it so if not isinstance(registration_tids, list): registration_tids = [registration_tids] registration_dicts = [] for registration_tid in registration_tids: if registration_tid is None: return None elif registration_tid == 10: # Fritekst registration_dicts.append({'Id': 10, 'SubTypes': []}) elif registration_tid == 11: # Ulykke/hendelse registration_dicts.append({'Id': 80, 'SubTypes': [11]}) elif registration_tid == 13: # Faretegn registration_dicts.append({'Id': 81, 'SubTypes': [13]}) elif registration_tid == 21: # Vær registration_dicts.append({'Id': 82, 'SubTypes': [21]}) elif registration_tid == 22: # Snødekke registration_dicts.append({'Id': 82, 'SubTypes': [22]}) elif registration_tid == 23: # Snøprofil registration_dicts.append({'Id': 82, 'SubTypes': [23]}) elif registration_tid == 25: # Stabilitetstest registration_dicts.append({'Id': 82, 'SubTypes': [25]}) elif registration_tid == 26: # Skredhendelse registration_dicts.append({'Id': 81, 'SubTypes': [26]}) elif registration_tid == 27: # Skredaktivitet(2011) registration_dicts.append({'Id': 81, 'SubTypes': [27]}) elif registration_tid == 28: # Skredfarevurdering (2012) registration_dicts.append({'Id': 83, 'SubTypes': [28]}) elif registration_tid == 30: # Skredfarevurdering (2013) registration_dicts.append({'Id': 83, 'SubTypes': [30]}) elif registration_tid == 31: # Skredfarevurdering registration_dicts.append({'Id': 83, 'SubTypes': [31]}) elif registration_tid == 32: # Skredproblem registration_dicts.append({'Id': 83, 'SubTypes': [32]}) elif registration_tid == 33: # Skredaktivitet registration_dicts.append({'Id': 81, 'SubTypes': [33]}) elif registration_tid == 50: # Istykkelse registration_dicts.append({'Id': 50, 'SubTypes': []}) elif registration_tid == 51: # Isdekningsgrad registration_dicts.append({'Id': 51, 'SubTypes': []}) else: ml.log_and_print('getobservations.py -> _reg_types_dict: RegistrationTID {0} not supported (yet).'.format(registration_tid)) return registration_dicts def _make_one_request(from_date=None, to_date=None, reg_id=None, registration_types=None, region_ids=None, location_id=None, observer_id=None, observer_nick=None, observer_competence=None, group_id=None, output='List', geohazard_tids=None, lang_key=1, recursive_count=5): """Part of get_data method. Parameters the same except observer_id and reg_id can not be lists. """ # Dates in the web-api request are strings if isinstance(from_date, dt.date): from_date = dt.date.strftime(from_date, '%Y-%m-%d') elif isinstance(from_date, dt.datetime): from_date = dt.datetime.strftime(from_date, '%Y-%m-%d') if isinstance(to_date, dt.date): to_date = dt.date.strftime(to_date, '%Y-%m-%d') elif isinstance(to_date, dt.datetime): to_date = dt.datetime.strftime(to_date, '%Y-%m-%d') data = [] # data from one query # query object posted in the request rssquery = {'LangKey': lang_key, 'RegId': reg_id, 'ObserverGuid': None, # eg. '4d11f3cc-07c5-4f43-837a-6597d318143c', 'SelectedRegistrationTypes': _reg_types_dict(registration_types), 'SelectedRegions': region_ids, 'SelectedGeoHazards': geohazard_tids, 'ObserverId': observer_id, 'ObserverNickName': observer_nick, 'ObserverCompetence': observer_competence, 'GroupId': group_id, 'LocationId': location_id, 'FromDate': from_date, 'ToDate': to_date, 'NumberOfRecords': None, # int 'Offset': 0} url = 'https://api.nve.no/hydrology/regobs/webapi_{0}/Search/Rss?geoHazard=0'.format(se.web_api_version) more_available = True # get data from regObs api. It returns 100 items at a time. If more, continue requesting with an offset. Paging. while more_available: # try or if there is an exception, try again. try: r = requests.post(url, json=rssquery) responds = r.json() data += responds['Results'] if output == 'Count nest': ml.log_and_print('getobservations.py -> _make_one_request: total matches {0}'.format(responds['TotalMatches'])) return [responds['TotalMatches']] except: ml.log_and_print("getobservations.py -> _make_one_request: EXCEPTION. RECURSIVE COUNT {0}".format(recursive_count)) if recursive_count > 1: recursive_count -= 1 # count down data += _make_one_request(from_date=from_date, to_date=to_date, reg_id=reg_id, registration_types=registration_types, region_ids=region_ids, location_id=location_id, observer_id=observer_id, observer_nick=observer_nick, observer_competence=observer_competence, group_id=group_id, output=output, geohazard_tids=geohazard_tids, lang_key=lang_key, recursive_count=recursive_count) # log request status if responds['TotalMatches'] == 0: ml.log_and_print("getobservations.py -> _make_one_request: no data") else: ml.log_and_print('getobservations.py -> _make_one_request: {0:.2f}%'.format(len(data) / responds['TotalMatches'] * 100)) # if more get more by adding to the offset if len(data) < responds['TotalMatches']: rssquery["Offset"] += 100 else: more_available = False return data def _get_general(registration_class_type, registration_types, from_date, to_date, region_ids=None, location_id=None, observer_ids=None, observer_nick=None, observer_competence=None, group_id=None, output='List', geohazard_tids=None, lang_key=1): """Gets observations of a requested type and mapps them to a class. :param registration_class_type: [class for the requested observations] :param registration_types: [int] RegistrationTID for the requested observation type :param from_date: [date] A query returns [from_date, to_date] :param to_date: [date] A query returns [from_date, to_date] :param region_ids: [int or list of ints] If region_ids = None, all regions are selected :param observer_ids: [int or list of ints] If observer_ids = None, all observers are selected :param observer_nick: [int or list of ints] Default None gives all. :param observer_competence: [string] Part of a observer nick name :param group_id: [int] :param output: [string] Options: 'List', 'DataFrame' and 'Count'. Default 'List'. :param geohazard_tids [int or list of ints] 10 is snow, 20,30,40 are dirt, 60 is water and 70 is ice :param lang_key [int] 1 is norwegian, 2 is english :return: """ list = None if output not in ['List', 'DataFrame', 'Count']: ml.log_and_print('getobservations.py -> _get_general: Illegal output option.') return list # In these methods "Count" is obviously to count the list ov observations weras in the more general get_data # counting a list and counting a nested list of full registratoins are two different tings. output_for_get_data = output if output == 'Count': output_for_get_data = 'Count list' # Dataframes are based on the lists if output == 'DataFrame': output_for_get_data = 'List' # AvalancheEvaluation3 = 31 and is the table for observed avalanche evaluations. data_with_more = get_data(from_date=from_date, to_date=to_date, region_ids=region_ids, observer_ids=observer_ids, observer_nick=observer_nick, observer_competence=observer_competence, group_id=group_id, location_id=location_id, lang_key=lang_key, output=output_for_get_data, registration_types=registration_types, geohazard_tids=geohazard_tids) # wash out all other observation types data = [] if registration_types: for d in data_with_more: if d['RegistrationTid'] == registration_types: data.append(d) else: # regisrtation_types is None is for all registrations and no single type is picked out. data = data_with_more if output == 'List' or output == 'DataFrame': list = [registration_class_type(d) for d in data] list = sorted(list, key=lambda registration_class_type: registration_class_type.DtObsTime) if output == 'List': return list if output == 'DataFrame': return _make_data_frame(list) if output == 'Count': return data def get_data(from_date=None, to_date=None, registration_types=None, reg_ids=None, region_ids=None, location_id=None, observer_ids=None, observer_nick=None, observer_competence=None, group_id=None, output='List', geohazard_tids=None, lang_key=1): """Gets data from regObs webapi. Each observation returned as a dictionary in a list. :param from_date: [string] 'yyyy-mm-dd'. Result includes from date. :param to_date: [string] 'yyyy-mm-dd'. Result includes to date. :param lang_key: [int] Default 1 gives Norwegian. :param reg_id: [int or list of ints] Default None gives all. :param registration_types: [string or list of strings] Default None gives all. :param region_ids: [int or list of ints] :param geo_hazards: [int or list of ints] Default None gives all. :param observer_id: [int or list of ints] Default None gives all. :param observer_nick [string] Part of a observer nick name :param observer_competence [int or list of int] as given in ComtetanceLevelKDV :param group_id: [int] :param location_id: [int] :param output: [string] 'Nested' collects all observations in one regid in one entry (defult for webapi). 'List' is a flatt structure with one entry pr observation type. 'Count nest' makes one request and picks out info on total matches 'Count list' counts every from in every observation :return: [list or int] Depending on output requested. """ # If resources isn't a list, make it so if not isinstance(registration_types, list): registration_types = [registration_types] if not isinstance(region_ids, list): region_ids = [region_ids] if not isinstance(geohazard_tids, list): geohazard_tids = [geohazard_tids] # regObs weabapi does not support multiple ObserverIDs and RegIDs. Making it so. if not isinstance(observer_ids, list): observer_ids = [observer_ids] if not isinstance(reg_ids, list): reg_ids = [reg_ids] # if output requested is 'Count' a number is expected, else a list og observations all_data = [] for reg_id in reg_ids: for observer_id in observer_ids: data = _make_one_request( from_date=from_date, to_date=to_date, lang_key=lang_key, reg_id=reg_id, registration_types=registration_types, region_ids=region_ids, geohazard_tids=geohazard_tids, observer_id=observer_id, observer_nick=observer_nick, observer_competence=observer_competence, group_id=group_id, location_id=location_id, output=output) all_data += data # Output 'Nested' is the structure returned from webapi. All observations on the same reg_id are grouped to one list item. # Output 'List' all observation elements are made a separate item on list. # Sums of each are available as 'Count list. and 'Count nest'. if output == 'Count nest': return sum(all_data) # data sorted with ascending observation time all_data = sorted(all_data, key=lambda d: d['DtObsTime']) if output == 'Nested': return all_data elif output == 'List' or output == 'Count list': listed_data = [] for d in all_data: for o in d['Registrations']: listed_data.append({**d, **o}) for p in d['Pictures']: p['RegistrationName'] = 'Bilde' listed_data.append({**d, **p}) if output == 'List': return listed_data if output == 'Count list': return len(listed_data) else: ml.log_and_print('getobservations.py -> get_data: Unsupported output type.') return None # END VARSOMDATA def _webapi_ice_col_to_ice_class(o): """This internal method maps an ice column object as given on webapi to the Ice.IceColumn class :param o: :return: """ reg_id = o['RegId'] layers = [] ordered_layers = sorted(o['FullObject']['IceThicknessLayers'], key=lambda l: l['IceLayerID']) for layer in ordered_layers: ice_type = get_ice_type_from_tid(layer['IceLayerTID']) ice_layer_height = layer['IceLayerThickness'] if ice_layer_height is not None: ice_layer = ice.IceLayer(ice_layer_height, ice_type) layers.append(ice_layer) date = dt.datetime.strptime(o['DtObsTime'][0:16], "%Y-%m-%dT%H:%M") if o['FullObject']['IceThicknessSum'] is not None: if len(layers) == 0: layers = [ice.IceLayer(float(o['FullObject']['IceThicknessSum']), 'unknown')] ice_column = ice.IceColumn(date, layers) ice_column.add_metadata('OriginalObject', o) ice_column.add_metadata('RegID', reg_id) ice_column.add_metadata('LocationName', o['LocationName']) ice_column.add_metadata('LocationID', o['LocationId']) ice_column.add_metadata('UTMNorth', o['UtmNorth']) ice_column.add_metadata('UTMEast', o['UtmEast']) ice_column.add_metadata('UTMZone', o['UtmZone']) ice_column.add_layer_at_index(0, ice.IceLayer(o['FullObject']['SlushSnow'], 'slush')) ice_column.add_layer_at_index(0, ice.IceLayer(o['FullObject']['SnowDepth'], 'snow')) ice_column.merge_and_remove_excess_layers() ice_column.update_draft_thickness() ice_column.update_top_layer_is_slush() # I tried to reference ice column to water surface given ice height after or slush snow, but then what if # ice height before is given. And what if there are combinations. To many possibilities in regObs.. # Iv calculate a theoretical ice height and use that. # ice_column.update_water_line() iha = o['FullObject']['IceHeightAfter'] # ihb = o['FullObject']['IceHeightBefore'] # if ice height after is not given I make an estimate so that I know where to put it in the plot if iha is None: ice_column.update_water_line() ice_column.add_metadata('IceHeightAfter', 'Modelled') iha = ice_column.draft_thickness - ice_column.water_line # Probably dont need the test of topp layer is slush because it is includet in draft thickness # if ice_column.top_layer_is_slush: # iha = iha + const.snow_pull_on_water ice_column.water_line = ice_column.draft_thickness - float(iha) # correct level if top layer was slush if ice_column.top_layer_is_slush is True: for layer in ice_column.column: if layer.get_enum() > 20: # material types >= 20 are snow continue elif layer.get_enum() == 2: # slush ice_column.water_line -= layer.height break # only the top most slush layer counts return ice_column else: return None def get_ice_thickness_today(): """Gets all the observed ice thickness from regObs for today (and 2 days back) :return: ice_thickeness_obs_dict """ to_date = dt.date.today() from_date = to_date - dt.timedelta(days=2) ice_thickeness_obs = get_data(from_date=from_date, to_date=to_date, registration_types=50, geohazard_tids=70) ice_thickeness_obs_dict = {} for o in ice_thickeness_obs: if o['RegistrationTid'] == 50: ice_column = _webapi_ice_col_to_ice_class(o) if ice_column is not None: ice_thickeness_obs_dict[o['RegId']] = ice_column return ice_thickeness_obs_dict def get_ice_thickness_observations(year, reset_and_get_new=False): """Gets all the observed ice thickness (RegistrationTID = 50) from regObs for one year. The inner workings of the method: 1. We have an option of resetting local storage (delete pickle) and thus forcing the get_new. 2.1 Try opening a pickle, if it doesnt exist, an exception is thrown and we get new data. 2.2 If the requested data is from a previous season, no changes are expected, so load the pickle without adding the last observations registered in regObs. Anyway, don't get new data. 2.3 If the requested data is from this season, set request from_date to the last modified date of the pickle and 7 days past that. Add these last obs to the pickle data, and thus it is not necessary to get new. 3. If get new, it gets all new data for the season. 4. Else, load pickle and if some last obs are to be added, do so. :param year: [string] Eg '2017-18' :param reset_and_get_new: [bool] :return: ice_thickeness_obs_dict """ log_referance = 'getregobsdata.py -> get_ice_thickness_observations' pickle_file_name = '{0}get_ice_thickness_observations_{1}.pickle'.format(se.local_storage, year) # 1. Remove pickle if it exists, forcing the get_new if reset_and_get_new: try: os.remove(pickle_file_name) except OSError: pass from_date, to_date = gm.get_dates_from_year(year) add_last_obs = None get_new = None try: mtime = os.path.getmtime(pickle_file_name) last_modified_date = dt.datetime.fromtimestamp(mtime).date() # if file newer than the season (that is, if this is historical data), load it without requesting new. dt_to_date = dt.datetime.strptime(to_date, '%Y-%m-%d').date() if last_modified_date > dt_to_date: add_last_obs = False else: add_last_obs = True to_date = dt.date.today() from_date = last_modified_date - dt.timedelta(days=7) get_new = False except OSError: # file does not exists, so get_new. ml.log_and_print("{0}: No matching pickle found, getting new data.".format(log_referance)) get_new = True if get_new: ml.log_and_print('{0}: Getting new for year {1}.'.format(log_referance, year)) ice_thickeness_obs = get_data(from_date=from_date, to_date=to_date, registration_types=50, geohazard_tids=70) ice_thickeness_obs_dict = {} for o in ice_thickeness_obs: if o['RegistrationTid'] == 50: ice_column = _webapi_ice_col_to_ice_class(o) if ice_column is not None: ice_thickeness_obs_dict[o['RegId']] = ice_column mp.pickle_anything(ice_thickeness_obs_dict, pickle_file_name) else: ice_thickeness_obs_dict = mp.unpickle_anything(pickle_file_name) if add_last_obs: ml.log_and_print("{0}: Adding observations from {1} to {2}".format(log_referance, from_date, to_date)) new_ice_thickeness_obs = get_data(from_date=from_date, to_date=to_date, registration_types=50, geohazard_tids=70) new_ice_thickeness_obs_dict = {} for o in new_ice_thickeness_obs: if o['RegistrationTid'] == 50: ice_column = _webapi_ice_col_to_ice_class(o) if ice_column is not None: new_ice_thickeness_obs_dict[o['RegId']] = ice_column for k,v in new_ice_thickeness_obs_dict.items(): ice_thickeness_obs_dict[k] = v mp.pickle_anything(ice_thickeness_obs_dict, pickle_file_name) return ice_thickeness_obs_dict def get_all_season_ice(year, get_new=True): """Returns observed ice columns from regObs-webapi over a requested season. Ice covers representing first ice or ice cover lost are represented by an ice column of zero height. The workings of this routine: 1. Get one season of data from regobs-api, spreads them out to a long list. 2. Pick out only cover and column and group them on location_ids. We keep only locations with date for fist ice that season. All observations are mapped to the cover and column class in Ice.py. 3. Map all covers where first_ice or ice_cover_lost is True to zero-height columns. Remove the rest. If get_new=True new data is retrieved. If get_new=false data is picked from pickle. :param year: :param get_new: :return: """ file_name_and_path = '{0}get_all_season_ice_{1}.pickle'.format(se.local_storage, year) from_date, to_date = gm.get_dates_from_year(year) if get_new: all_observations = get_data(from_date=from_date, to_date=to_date, geohazard_tids=70) all_locations = {} for o in all_observations: if o['RegistrationTid'] == 51 or o['RegistrationTid'] == 50: if o['LocationId'] in all_locations.keys(): all_locations[o['LocationId']].append(o) else: all_locations[o['LocationId']] = [o] # sort oldest first on each location for l, obs in all_locations.items(): sorted_list = sorted(obs, key=lambda d: d['DtObsTime']) all_locations[l] = sorted_list # Use only locations with verified "first ice cover" date. all_locations_with_first_ice = {} for l, obs in all_locations.items(): for o in obs: if o['RegistrationTid'] == 51: # if the ice cover is partly or fully formed on observation location or the lake # 2) delvis islagt på målestedet # 3) helt islagt på målestedet # 21) hele sjøen islagt if (o['FullObject']['IceCoverTID'] == 2) or (o['FullObject']['IceCoverTID'] == 3) or \ (o['FullObject']['IceCoverTID'] == 21): # and if ice cover before was # 1) isfritt på målestedet # 2) delvis islagt på målestedet, # 11) islegging langs land # 20) hele sjøen isfri, this is fist ice if (o['FullObject']['IceCoverBeforeTID'] == 1) or (o['FullObject']['IceCoverBeforeTID'] == 2) or \ (o['FullObject']['IceCoverBeforeTID'] == 11) or (o['FullObject']['IceCoverBeforeTID'] == 20): all_locations_with_first_ice[l] = obs # Map all observations from regObs-webapi result structure to the classes in ice.py all_locations_with_classes = {} for l, obs in all_locations_with_first_ice.items(): all_locations_with_classes[l] = [] location_name = obs[0]['LocationName'] previous_cover = ice.IceCover(dt.datetime.strptime(from_date, "%Y-%m-%d").date(), "Ikke gitt", 'Ikke gitt', location_name) for o in obs: if o['RegistrationTid'] == 51: cover_date = dt.datetime.strptime(o['DtObsTime'][0:16], "%Y-%m-%dT%H:%M") cover = o['FullObject']['IceCoverTName'] cover_before = o['FullObject']['IceCoverBeforeTName'] cover_after = o['FullObject']['IceCoverAfterTName'] cover_tid = o['FullObject']['IceCoverTID'] cover_before_tid = o['FullObject']['IceCoverBeforeTID'] cover_after_tid = o['FullObject']['IceCoverAfterTID'] this_cover = ice.IceCover(cover_date, cover, cover_before, location_name) this_cover.set_regid(o['RegId']) this_cover.set_locationid(o['LocationId']) this_cover.set_utm(o['UtmNorth'], o['UtmEast'], o['UtmZone']) this_cover.set_cover_after(cover_after, cover_after_tid) this_cover.add_original_object(o) # if the ice cover is partly or fully formed on observation location or the lake # 2) delvis islagt på målestedet # 3) helt islagt på målestedet # 21) hele sjøen islagt if cover_tid == 2 or cover_tid == 3 or cover_tid == 21: # and if ice cover before was # 1) isfritt, nå første is på målestedet på målestedet # 2) isfritt, nå første is ved land # 4) Gradvis islegging if cover_before_tid == 1 or cover_before_tid == 2 or cover_before_tid == 4: this_cover.mark_as_first_ice() # if the ice cover is partly or fully gone on location and there was ice yesterday # 1) Isfritt på målestedet # 2) delvis islagt på målestedet # 20) Hele sjøen isfri if cover_tid == 1 or cover_tid == 2 or cover_tid == 20: # 10) isfritt resten av vinteren # Accepts also ice free observation after 15. March to_year = this_cover.date.year first_accepted_date = dt.datetime(to_year, 3, 15) last_accepted_date = dt.datetime(to_year, 9, 1) if cover_after_tid == 10 or (cover_date > first_accepted_date and cover_date < last_accepted_date): this_cover.mark_as_ice_cover_lost() # copy of this cover so that in next iteration I may look up previous cover. previous_cover = cp.deepcopy(this_cover) all_locations_with_classes[l].append(this_cover) if o['RegistrationTid'] == 50: ice_column = _webapi_ice_col_to_ice_class(o) if ice_column is not None: all_locations_with_classes[l].append(ice_column) # Map all covers where first_ice or ice_cover_lost is True to zero-height columns. Remove all the rest. all_locations_with_columns = {} for k, v in all_locations_with_classes.items(): new_v = [] for o in v: if isinstance(o, ice.IceCover): if o.first_ice or o.ice_cover_lost: new_o = ice.IceColumn(o.date, []) new_o.add_metadata('OriginalObject', o.metadata['OriginalObject']) new_o.add_metadata('UTMEast', o.metadata['UTMEast']) new_o.add_metadata('UTMNorth', o.metadata['UTMNorth']) new_o.add_metadata('UTMZone', o.metadata['UTMZone']) new_o.add_metadata('LocationName', o.locationName) new_o.add_metadata('LocationID', o.LocationID) new_v.append(new_o) else: new_v.append(o) all_locations_with_columns[k] = new_v mp.pickle_anything(all_locations_with_columns, file_name_and_path) else: # if pickle file with all data for the season does not exist, get data anyway if not os.path.exists(file_name_and_path): all_locations_with_columns = get_all_season_ice(year, get_new=True) else: all_locations_with_columns = mp.unpickle_anything(file_name_and_path, print_message=False) return all_locations_with_columns def get_observations_on_location_id(location_id, year, get_new=False): """Uses new or stored data from get_all_season_ice and picks out one requested location. First ice cover is mapped to Ice.IceColumn of zero height. Ice cover lost (mid season or last) the same. :param location_id: [int] location id as used in regObs :param year: [string] Eg '2018-19' :param get_new: [bool] if get_new, new data is requested from regObs :return: [list of IceThickness] """ all_locations = get_all_season_ice(year, get_new=get_new) # get_all_season_ice returns a dictionary with observations grouped by location_id. observations_on_location_for_modeling = [] try: observations_on_location_for_modeling = all_locations[location_id] except Exception as e: ml.log_and_print("getregobsdata.py -> get_observations_on_location_id: {0} not found probably..".format(location_id), print_it=True) return observations_on_location_for_modeling def get_new_regobs_data(): get_all_season_ice('2019-20') get_all_season_ice('2018-19') get_all_season_ice('2017-18') get_all_season_ice('2016-17') get_all_season_ice('2015-16') get_all_season_ice('2014-15') get_all_season_ice('2013-14') get_all_season_ice('2012-13') get_all_season_ice('2011-12') if __name__ == "__main__": get_new_regobs_data() # ice_column = get_ice_thickness_on_regid(130979) # ice_thicks = get_ice_thickness_observations('2017-18') # ic = get_ice_cover(LocationNames, from_date, to_date) # first = get_first_ice_cover(LocationNames, from_date, to_date) # last = get_last_ice_cover(LocationNames, from_date, to_date) # ith = get_ice_thickness(LocationNames, from_date, to_date) # all_on_locations = get_all_season_ice_on_location(LocationNames, from_date, to_date) # all_in_all = get_all_season_ice('2016-17', get_new=True) pass
mit
mdrumond/tensorflow
tensorflow/examples/tutorials/input_fn/boston.py
76
2920
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """DNNRegressor with custom input_fn for Housing dataset.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import itertools import pandas as pd import tensorflow as tf tf.logging.set_verbosity(tf.logging.INFO) COLUMNS = ["crim", "zn", "indus", "nox", "rm", "age", "dis", "tax", "ptratio", "medv"] FEATURES = ["crim", "zn", "indus", "nox", "rm", "age", "dis", "tax", "ptratio"] LABEL = "medv" def get_input_fn(data_set, num_epochs=None, shuffle=True): return tf.estimator.inputs.pandas_input_fn( x=pd.DataFrame({k: data_set[k].values for k in FEATURES}), y=pd.Series(data_set[LABEL].values), num_epochs=num_epochs, shuffle=shuffle) def main(unused_argv): # Load datasets training_set = pd.read_csv("boston_train.csv", skipinitialspace=True, skiprows=1, names=COLUMNS) test_set = pd.read_csv("boston_test.csv", skipinitialspace=True, skiprows=1, names=COLUMNS) # Set of 6 examples for which to predict median house values prediction_set = pd.read_csv("boston_predict.csv", skipinitialspace=True, skiprows=1, names=COLUMNS) # Feature cols feature_cols = [tf.feature_column.numeric_column(k) for k in FEATURES] # Build 2 layer fully connected DNN with 10, 10 units respectively. regressor = tf.estimator.DNNRegressor(feature_columns=feature_cols, hidden_units=[10, 10], model_dir="/tmp/boston_model") # Train regressor.train(input_fn=get_input_fn(training_set), steps=5000) # Evaluate loss over one epoch of test_set. ev = regressor.evaluate( input_fn=get_input_fn(test_set, num_epochs=1, shuffle=False)) loss_score = ev["loss"] print("Loss: {0:f}".format(loss_score)) # Print out predictions over a slice of prediction_set. y = regressor.predict( input_fn=get_input_fn(prediction_set, num_epochs=1, shuffle=False)) # .predict() returns an iterator of dicts; convert to a list and print # predictions predictions = list(p["predictions"] for p in itertools.islice(y, 6)) print("Predictions: {}".format(str(predictions))) if __name__ == "__main__": tf.app.run()
apache-2.0
joshbohde/scikit-learn
examples/plot_neighbors.py
1
1236
""" ================= Nearest Neighbors ================= Sample usage of Nearest Neighbors classification. It will plot the decision boundaries for each class. """ print __doc__ import numpy as np import pylab as pl from sklearn import neighbors, datasets # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. We could # avoid this ugly slicing by using a two-dim dataset Y = iris.target h = .02 # step size in the mesh # we create an instance of Neighbours Classifier and fit the data. clf = neighbors.NeighborsClassifier() clf.fit(X, Y) # Plot the decision boundary. For that, we will asign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. x_min, x_max = X[:,0].min()-1, X[:,0].max() + 1 y_min, y_max = X[:,1].min()-1, X[:,1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) pl.set_cmap(pl.cm.Paired) pl.pcolormesh(xx, yy, Z) # Plot also the training points pl.scatter(X[:,0], X[:,1], c=Y) pl.title('3-Class classification using Nearest Neighbors') pl.axis('tight') pl.show()
bsd-3-clause
clairetang6/bokeh
bokeh/core/compat/mplexporter/exporter.py
8
12406
""" Matplotlib Exporter =================== This submodule contains tools for crawling a matplotlib figure and exporting relevant pieces to a renderer. """ import warnings import io from . import utils import matplotlib from matplotlib import transforms from matplotlib.backends.backend_agg import FigureCanvasAgg class Exporter(object): """Matplotlib Exporter Parameters ---------- renderer : Renderer object The renderer object called by the exporter to create a figure visualization. See mplexporter.Renderer for information on the methods which should be defined within the renderer. close_mpl : bool If True (default), close the matplotlib figure as it is rendered. This is useful for when the exporter is used within the notebook, or with an interactive matplotlib backend. """ def __init__(self, renderer, close_mpl=True): self.close_mpl = close_mpl self.renderer = renderer def run(self, fig): """ Run the exporter on the given figure Parameters --------- fig : matplotlib.Figure instance The figure to export """ # Calling savefig executes the draw() command, putting elements # in the correct place. if fig.canvas is None: fig.canvas = FigureCanvasAgg(fig) fig.savefig(io.BytesIO(), format='png', dpi=fig.dpi) if self.close_mpl: import matplotlib.pyplot as plt plt.close(fig) self.crawl_fig(fig) @staticmethod def process_transform(transform, ax=None, data=None, return_trans=False, force_trans=None): """Process the transform and convert data to figure or data coordinates Parameters ---------- transform : matplotlib Transform object The transform applied to the data ax : matplotlib Axes object (optional) The axes the data is associated with data : ndarray (optional) The array of data to be transformed. return_trans : bool (optional) If true, return the final transform of the data force_trans : matplotlib.transform instance (optional) If supplied, first force the data to this transform Returns ------- code : string Code is either "data", "axes", "figure", or "display", indicating the type of coordinates output. transform : matplotlib transform the transform used to map input data to output data. Returned only if return_trans is True new_data : ndarray Data transformed to match the given coordinate code. Returned only if data is specified """ if isinstance(transform, transforms.BlendedGenericTransform): warnings.warn("Blended transforms not yet supported. " "Zoom behavior may not work as expected.") if force_trans is not None: if data is not None: data = (transform - force_trans).transform(data) transform = force_trans code = "display" if ax is not None: for (c, trans) in [("data", ax.transData), ("axes", ax.transAxes), ("figure", ax.figure.transFigure), ("display", transforms.IdentityTransform())]: if transform.contains_branch(trans): code, transform = (c, transform - trans) break if data is not None: if return_trans: return code, transform.transform(data), transform else: return code, transform.transform(data) else: if return_trans: return code, transform else: return code def crawl_fig(self, fig): """Crawl the figure and process all axes""" with self.renderer.draw_figure(fig=fig, props=utils.get_figure_properties(fig)): for ax in fig.axes: self.crawl_ax(ax) def crawl_ax(self, ax): """Crawl the axes and process all elements within""" with self.renderer.draw_axes(ax=ax, props=utils.get_axes_properties(ax)): for line in ax.lines: self.draw_line(ax, line) for text in ax.texts: self.draw_text(ax, text) for (text, ttp) in zip([ax.xaxis.label, ax.yaxis.label, ax.title], ["xlabel", "ylabel", "title"]): if(hasattr(text, 'get_text') and text.get_text()): self.draw_text(ax, text, force_trans=ax.transAxes, text_type=ttp) for artist in ax.artists: # TODO: process other artists if isinstance(artist, matplotlib.text.Text): self.draw_text(ax, artist) for patch in ax.patches: self.draw_patch(ax, patch) for collection in ax.collections: self.draw_collection(ax, collection) for image in ax.images: self.draw_image(ax, image) legend = ax.get_legend() if legend is not None: props = utils.get_legend_properties(ax, legend) with self.renderer.draw_legend(legend=legend, props=props): if props['visible']: self.crawl_legend(ax, legend) def crawl_legend(self, ax, legend): """ Recursively look through objects in legend children """ legendElements = list(utils.iter_all_children(legend._legend_box, skipContainers=True)) legendElements.append(legend.legendPatch) for child in legendElements: # force a large zorder so it appears on top child.set_zorder(1E6 + child.get_zorder()) try: # What kind of object... if isinstance(child, matplotlib.patches.Patch): self.draw_patch(ax, child, force_trans=ax.transAxes) elif isinstance(child, matplotlib.text.Text): if not (child is legend.get_children()[-1] and child.get_text() == 'None'): self.draw_text(ax, child, force_trans=ax.transAxes) elif isinstance(child, matplotlib.lines.Line2D): self.draw_line(ax, child, force_trans=ax.transAxes) elif isinstance(child, matplotlib.collections.Collection): self.draw_collection(ax, child, force_pathtrans=ax.transAxes) else: warnings.warn("Legend element %s not implemented" % child) except NotImplementedError: warnings.warn("Legend element %s not implemented" % child) def draw_line(self, ax, line, force_trans=None): """Process a matplotlib line and call renderer.draw_line""" coordinates, data = self.process_transform(line.get_transform(), ax, line.get_xydata(), force_trans=force_trans) linestyle = utils.get_line_style(line) if linestyle['dasharray'] is None: linestyle = None markerstyle = utils.get_marker_style(line) if (markerstyle['marker'] in ['None', 'none', None] or markerstyle['markerpath'][0].size == 0): markerstyle = None label = line.get_label() if markerstyle or linestyle: self.renderer.draw_marked_line(data=data, coordinates=coordinates, linestyle=linestyle, markerstyle=markerstyle, label=label, mplobj=line) def draw_text(self, ax, text, force_trans=None, text_type=None): """Process a matplotlib text object and call renderer.draw_text""" content = text.get_text() if content: transform = text.get_transform() position = text.get_position() coords, position = self.process_transform(transform, ax, position, force_trans=force_trans) style = utils.get_text_style(text) self.renderer.draw_text(text=content, position=position, coordinates=coords, text_type=text_type, style=style, mplobj=text) def draw_patch(self, ax, patch, force_trans=None): """Process a matplotlib patch object and call renderer.draw_path""" vertices, pathcodes = utils.SVG_path(patch.get_path()) transform = patch.get_transform() coordinates, vertices = self.process_transform(transform, ax, vertices, force_trans=force_trans) linestyle = utils.get_path_style(patch, fill=patch.get_fill()) self.renderer.draw_path(data=vertices, coordinates=coordinates, pathcodes=pathcodes, style=linestyle, mplobj=patch) def draw_collection(self, ax, collection, force_pathtrans=None, force_offsettrans=None): """Process a matplotlib collection and call renderer.draw_collection""" (transform, transOffset, offsets, paths) = collection._prepare_points() offset_coords, offsets = self.process_transform( transOffset, ax, offsets, force_trans=force_offsettrans) path_coords = self.process_transform( transform, ax, force_trans=force_pathtrans) processed_paths = [utils.SVG_path(path) for path in paths] processed_paths = [(self.process_transform( transform, ax, path[0], force_trans=force_pathtrans)[1], path[1]) for path in processed_paths] path_transforms = collection.get_transforms() try: # matplotlib 1.3: path_transforms are transform objects. # Convert them to numpy arrays. path_transforms = [t.get_matrix() for t in path_transforms] except AttributeError: # matplotlib 1.4: path transforms are already numpy arrays. pass styles = {'linewidth': collection.get_linewidths(), 'facecolor': collection.get_facecolors(), 'edgecolor': collection.get_edgecolors(), 'alpha': collection._alpha, 'zorder': collection.get_zorder()} offset_dict = {"data": "before", "screen": "after"} offset_order = offset_dict[collection.get_offset_position()] self.renderer.draw_path_collection(paths=processed_paths, path_coordinates=path_coords, path_transforms=path_transforms, offsets=offsets, offset_coordinates=offset_coords, offset_order=offset_order, styles=styles, mplobj=collection) def draw_image(self, ax, image): """Process a matplotlib image object and call renderer.draw_image""" self.renderer.draw_image(imdata=utils.image_to_base64(image), extent=image.get_extent(), coordinates="data", style={"alpha": image.get_alpha(), "zorder": image.get_zorder()}, mplobj=image)
bsd-3-clause
IntelLabs/hpat
examples/basic_workflow_parallel.py
1
2075
# ***************************************************************************** # Copyright (c) 2020, Intel Corporation All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; # OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR # OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, # EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ***************************************************************************** import pandas as pd from numba import njit # Dataset for analysis FNAME = "employees.csv" # This function gets compiled by Numba* and multi-threaded @njit(parallel=True) def get_analyzed_data(): df = pd.read_csv(FNAME) s_bonus = pd.Series(df['Bonus %']) s_first_name = pd.Series(df['First Name']) m = s_bonus.mean() names = s_first_name.sort_values() return m, names # Printing names and their average bonus percent mean_bonus, sorted_first_names = get_analyzed_data() print(sorted_first_names) print('Average Bonus %:', mean_bonus)
bsd-2-clause
VitensTC/epynet
tests/test_network.py
1
6413
from epynet import Network from nose.tools import assert_equal, assert_almost_equal import pandas as pd class TestNetwork(object): @classmethod def setup_class(self): self.network = Network(inputfile="tests/testnetwork.inp") self.network.solve() @classmethod def teadown(self): self.network.ep.ENclose() def test01_network(self): # test0 node count assert_equal(len(self.network.nodes),11) # test0 link count assert_equal(len(self.network.links),12) # test0 reservoir count assert_equal(len(self.network.reservoirs),1) # test0 valve count assert_equal(len(self.network.valves),1) # test0 pump count assert_equal(len(self.network.pumps),1) # test0 tank count assert_equal(len(self.network.tanks),1) def test02_link(self): # test0 the properties of a single link link = self.network.links["11"] # pipe index and uid assert_equal(link.index,9) assert_equal(link.uid,"11") # from/to node assert_equal(link.from_node.uid,"4") assert_equal(link.to_node.uid,"9") def test03_pipe(self): # test0 the properties of a single pipe pipe = self.network.links["11"] # check type assert_equal(pipe.link_type,"pipe") assert_almost_equal(pipe.length,100,2) assert_almost_equal(pipe.diameter,150,2) assert_almost_equal(pipe.roughness,0.1,2) assert_almost_equal(pipe.minorloss,0.1,2) # flow assert_almost_equal(pipe.flow,87.92,2) # direction assert_almost_equal(pipe.velocity,1.38,2) # status assert_equal(pipe.status,1) # headloss assert_almost_equal(pipe.headloss,1.29,2) # upstream/downstream node assert_equal(pipe.upstream_node.uid,"4") assert_equal(pipe.downstream_node.uid,"9") def test04_pump(self): pump = self.network.pumps["2"] # check type assert_equal(pump.link_type,"pump") assert_equal(pump.speed,1.0) assert_almost_equal(pump.flow,109.67,2) # change speed pump.speed = 1.5 assert_equal(pump.speed,1.5) # resolve network self.network.solve() assert_almost_equal(pump.flow,164.5,2) # revert speed pump.speed = 1.0 self.network.solve() def test05_valve(self): valve = self.network.valves["9"] # check type assert_equal(valve.link_type,"valve") # check valve type assert_equal(valve.valve_type,"PRV") # valve settings assert_equal(valve.setting,5) assert_almost_equal(valve.downstream_node.pressure,5,2) # change setting valve.setting = 10 assert_equal(valve.setting,10) self.network.solve() assert_almost_equal(valve.downstream_node.pressure,10,2) def test06_node(self): node = self.network.nodes["4"] # uid assert_equal(node.uid,"4") # coordinates coordinates = node.coordinates assert_almost_equal(coordinates[0],2103.02,2) assert_almost_equal(coordinates[1],5747.69,2) # links assert_equal(len(node.links),3) # up and downstream links assert_equal(len(node.downstream_links),2) assert_equal(len(node.upstream_links),1) # inflow assert_equal(round(node.inflow,2),109.67) # outflow assert_equal(round(node.outflow,2),round(node.inflow,2)-node.demand) # elevation assert_equal(node.elevation,5) # head assert_equal(round(node.head,2),25.13) def test07_junction(self): junction = self.network.junctions["4"] assert_equal(round(junction.basedemand,2),1) assert_equal(round(junction.demand,2),1) def test08_tank(self): tank = self.network.tanks["11"] assert_equal(round(tank.diameter,2),50) assert_equal(round(tank.initvolume,2),19634.95) assert_equal(tank.minvolume,0) assert_equal(tank.minlevel,0) assert_equal(tank.maxlevel,20) assert_equal(round(tank.volume,2),19634.95) assert_equal(round(tank.maxvolume),2*round(tank.volume)) def test09_time(self): junction = self.network.junctions["4"] self.network.solve(3600) assert_equal(round(junction.demand,2),2) self.network.solve(7200) assert_equal(round(junction.demand,2),3) def test10_collections(self): # collection attributes as pandas Series assert_almost_equal(self.network.pipes.flow.mean(),46.78,2) assert_almost_equal(self.network.pipes.diameter.max(),150,2) assert_almost_equal(self.network.pipes.velocity.min(),0.105,2) assert_equal(self.network.valves.setting.mean(),10) assert_almost_equal(self.network.junctions.demand.mean(),2.33,2) # filtering and slicing collections assert_equal(len(self.network.pipes[self.network.pipes.velocity > 3]),3) assert_equal(len(self.network.nodes[self.network.nodes.pressure < 20]),5) #increase the size of all pipes self.network.pipes.diameter += 500 assert_almost_equal(self.network.pipes.diameter.mean(),605,2) self.network.pipes.diameter -= 500 self.network.solve() # resize pipes, and recalculate velocity self.network.pipes[self.network.pipes.velocity > 3].diameter += 100 self.network.solve() assert_equal(len(self.network.pipes[self.network.pipes.velocity > 3]),0) def test11_timeseries(self): # run network self.network.run() # check return types # should return Series assert(isinstance(self.network.pipes["1"].velocity, pd.Series)) # should return Dataframe assert(isinstance(self.network.pipes.velocity, pd.DataFrame)) # timeseries operations # pipe 1 max velocity assert_almost_equal(self.network.pipes["1"].velocity.mean(),1.66,2) # all day mean velocity assert_almost_equal(self.network.pipes.velocity.mean().mean(),1.14,2) # test revert to steady state calculation self.network.solve() assert(isinstance(self.network.pipes["1"].velocity, float)) assert(isinstance(self.network.pipes.velocity, pd.Series))
apache-2.0
droundy/deft
papers/polyhedra/figs/plot-order-parameter.py
1
1877
#!/usr/bin/python2 from __future__ import division import matplotlib, sys, os, argparse import read parser = argparse.ArgumentParser(description='Plot order parameter of polyhedra.') parser.add_argument('ff', metavar='ff', type=float, help='filling fraction') parser.add_argument('-N', metavar='N', type=int, default=0, help="""number of polyhedra, if not supplied then the first file with the proper filling fraction will be used""") parser.add_argument('-s', '--shape', metavar='S', default='truncated_tetrahedron', choices=['cube', 'tetrahedron', 'truncated_tetrahedron'], help='type of polyhedron, defaults to truncated_tetrahedron') parser.add_argument('-p', '--periodic', action='store_true', help='will use periodic cell - defaults to walls otherwise') parser.add_argument('--hide', action='store_true', help='will just save the plot and won\'t display it') args = parser.parse_args() ff = args.ff polyhedron = args.shape if args.periodic: celltype = 'periodic' else: celltype = 'walls' if args.N == 0: N = read.get_N("figs/mc/%s-%4.2f-order-%s" %(celltype, ff, polyhedron)) if N == 0: exit(1) else: N = args.N if args.hide: matplotlib.use('Agg') from pylab import * order_parameters = read.read_mc_order(ff, polyhedron, N, celltype) dim = read.read_mc_dimensions(ff, polyhedron, N, celltype) dz = dim[2]/len(order_parameters[0,:]) dcostheta = 1/len(order_parameters[:, 0]) print(dz) print(dcostheta) z = arange(0, dim[2], dz) costheta = arange(0, 1, dcostheta) z, costheta = meshgrid(z, costheta) ylim(cos(arctan(sqrt(2))), 1) print(order_parameters.shape) print(z.shape) highest = nanmax(order_parameters.flat) print(highest) pcolormesh(z, costheta, order_parameters, vmax=highest/10, vmin=0) print(len(z)) show()
gpl-2.0
sarahgrogan/scikit-learn
sklearn/svm/tests/test_svm.py
70
31674
""" Testing for Support Vector Machine module (sklearn.svm) TODO: remove hard coded numerical results when possible """ import numpy as np import itertools from numpy.testing import assert_array_equal, assert_array_almost_equal from numpy.testing import assert_almost_equal from scipy import sparse from nose.tools import assert_raises, assert_true, assert_equal, assert_false from sklearn.base import ChangedBehaviorWarning from sklearn import svm, linear_model, datasets, metrics, base from sklearn.cross_validation import train_test_split from sklearn.datasets import make_classification, make_blobs from sklearn.metrics import f1_score from sklearn.metrics.pairwise import rbf_kernel from sklearn.utils import check_random_state from sklearn.utils import ConvergenceWarning from sklearn.utils.validation import NotFittedError from sklearn.utils.testing import assert_greater, assert_in, assert_less from sklearn.utils.testing import assert_raises_regexp, assert_warns from sklearn.utils.testing import assert_warns_message, assert_raise_message from sklearn.utils.testing import ignore_warnings # toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] Y = [1, 1, 1, 2, 2, 2] T = [[-1, -1], [2, 2], [3, 2]] true_result = [1, 2, 2] # also load the iris dataset iris = datasets.load_iris() rng = check_random_state(42) perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] def test_libsvm_parameters(): # Test parameters on classes that make use of libsvm. clf = svm.SVC(kernel='linear').fit(X, Y) assert_array_equal(clf.dual_coef_, [[-0.25, .25]]) assert_array_equal(clf.support_, [1, 3]) assert_array_equal(clf.support_vectors_, (X[1], X[3])) assert_array_equal(clf.intercept_, [0.]) assert_array_equal(clf.predict(X), Y) def test_libsvm_iris(): # Check consistency on dataset iris. # shuffle the dataset so that labels are not ordered for k in ('linear', 'rbf'): clf = svm.SVC(kernel=k).fit(iris.data, iris.target) assert_greater(np.mean(clf.predict(iris.data) == iris.target), 0.9) assert_array_equal(clf.classes_, np.sort(clf.classes_)) # check also the low-level API model = svm.libsvm.fit(iris.data, iris.target.astype(np.float64)) pred = svm.libsvm.predict(iris.data, *model) assert_greater(np.mean(pred == iris.target), .95) model = svm.libsvm.fit(iris.data, iris.target.astype(np.float64), kernel='linear') pred = svm.libsvm.predict(iris.data, *model, kernel='linear') assert_greater(np.mean(pred == iris.target), .95) pred = svm.libsvm.cross_validation(iris.data, iris.target.astype(np.float64), 5, kernel='linear', random_seed=0) assert_greater(np.mean(pred == iris.target), .95) # If random_seed >= 0, the libsvm rng is seeded (by calling `srand`), hence # we should get deteriministic results (assuming that there is no other # thread calling this wrapper calling `srand` concurrently). pred2 = svm.libsvm.cross_validation(iris.data, iris.target.astype(np.float64), 5, kernel='linear', random_seed=0) assert_array_equal(pred, pred2) @ignore_warnings def test_single_sample_1d(): # Test whether SVCs work on a single sample given as a 1-d array clf = svm.SVC().fit(X, Y) clf.predict(X[0]) clf = svm.LinearSVC(random_state=0).fit(X, Y) clf.predict(X[0]) def test_precomputed(): # SVC with a precomputed kernel. # We test it with a toy dataset and with iris. clf = svm.SVC(kernel='precomputed') # Gram matrix for train data (square matrix) # (we use just a linear kernel) K = np.dot(X, np.array(X).T) clf.fit(K, Y) # Gram matrix for test data (rectangular matrix) KT = np.dot(T, np.array(X).T) pred = clf.predict(KT) assert_raises(ValueError, clf.predict, KT.T) assert_array_equal(clf.dual_coef_, [[-0.25, .25]]) assert_array_equal(clf.support_, [1, 3]) assert_array_equal(clf.intercept_, [0]) assert_array_almost_equal(clf.support_, [1, 3]) assert_array_equal(pred, true_result) # Gram matrix for test data but compute KT[i,j] # for support vectors j only. KT = np.zeros_like(KT) for i in range(len(T)): for j in clf.support_: KT[i, j] = np.dot(T[i], X[j]) pred = clf.predict(KT) assert_array_equal(pred, true_result) # same as before, but using a callable function instead of the kernel # matrix. kernel is just a linear kernel kfunc = lambda x, y: np.dot(x, y.T) clf = svm.SVC(kernel=kfunc) clf.fit(X, Y) pred = clf.predict(T) assert_array_equal(clf.dual_coef_, [[-0.25, .25]]) assert_array_equal(clf.intercept_, [0]) assert_array_almost_equal(clf.support_, [1, 3]) assert_array_equal(pred, true_result) # test a precomputed kernel with the iris dataset # and check parameters against a linear SVC clf = svm.SVC(kernel='precomputed') clf2 = svm.SVC(kernel='linear') K = np.dot(iris.data, iris.data.T) clf.fit(K, iris.target) clf2.fit(iris.data, iris.target) pred = clf.predict(K) assert_array_almost_equal(clf.support_, clf2.support_) assert_array_almost_equal(clf.dual_coef_, clf2.dual_coef_) assert_array_almost_equal(clf.intercept_, clf2.intercept_) assert_almost_equal(np.mean(pred == iris.target), .99, decimal=2) # Gram matrix for test data but compute KT[i,j] # for support vectors j only. K = np.zeros_like(K) for i in range(len(iris.data)): for j in clf.support_: K[i, j] = np.dot(iris.data[i], iris.data[j]) pred = clf.predict(K) assert_almost_equal(np.mean(pred == iris.target), .99, decimal=2) clf = svm.SVC(kernel=kfunc) clf.fit(iris.data, iris.target) assert_almost_equal(np.mean(pred == iris.target), .99, decimal=2) def test_svr(): # Test Support Vector Regression diabetes = datasets.load_diabetes() for clf in (svm.NuSVR(kernel='linear', nu=.4, C=1.0), svm.NuSVR(kernel='linear', nu=.4, C=10.), svm.SVR(kernel='linear', C=10.), svm.LinearSVR(C=10.), svm.LinearSVR(C=10.), ): clf.fit(diabetes.data, diabetes.target) assert_greater(clf.score(diabetes.data, diabetes.target), 0.02) # non-regression test; previously, BaseLibSVM would check that # len(np.unique(y)) < 2, which must only be done for SVC svm.SVR().fit(diabetes.data, np.ones(len(diabetes.data))) svm.LinearSVR().fit(diabetes.data, np.ones(len(diabetes.data))) def test_linearsvr(): # check that SVR(kernel='linear') and LinearSVC() give # comparable results diabetes = datasets.load_diabetes() lsvr = svm.LinearSVR(C=1e3).fit(diabetes.data, diabetes.target) score1 = lsvr.score(diabetes.data, diabetes.target) svr = svm.SVR(kernel='linear', C=1e3).fit(diabetes.data, diabetes.target) score2 = svr.score(diabetes.data, diabetes.target) assert np.linalg.norm(lsvr.coef_ - svr.coef_) / np.linalg.norm(svr.coef_) < .1 assert np.abs(score1 - score2) < 0.1 def test_svr_errors(): X = [[0.0], [1.0]] y = [0.0, 0.5] # Bad kernel clf = svm.SVR(kernel=lambda x, y: np.array([[1.0]])) clf.fit(X, y) assert_raises(ValueError, clf.predict, X) def test_oneclass(): # Test OneClassSVM clf = svm.OneClassSVM() clf.fit(X) pred = clf.predict(T) assert_array_almost_equal(pred, [-1, -1, -1]) assert_array_almost_equal(clf.intercept_, [-1.008], decimal=3) assert_array_almost_equal(clf.dual_coef_, [[0.632, 0.233, 0.633, 0.234, 0.632, 0.633]], decimal=3) assert_raises(ValueError, lambda: clf.coef_) def test_oneclass_decision_function(): # Test OneClassSVM decision function clf = svm.OneClassSVM() rnd = check_random_state(2) # Generate train data X = 0.3 * rnd.randn(100, 2) X_train = np.r_[X + 2, X - 2] # Generate some regular novel observations X = 0.3 * rnd.randn(20, 2) X_test = np.r_[X + 2, X - 2] # Generate some abnormal novel observations X_outliers = rnd.uniform(low=-4, high=4, size=(20, 2)) # fit the model clf = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.1) clf.fit(X_train) # predict things y_pred_test = clf.predict(X_test) assert_greater(np.mean(y_pred_test == 1), .9) y_pred_outliers = clf.predict(X_outliers) assert_greater(np.mean(y_pred_outliers == -1), .9) dec_func_test = clf.decision_function(X_test) assert_array_equal((dec_func_test > 0).ravel(), y_pred_test == 1) dec_func_outliers = clf.decision_function(X_outliers) assert_array_equal((dec_func_outliers > 0).ravel(), y_pred_outliers == 1) def test_tweak_params(): # Make sure some tweaking of parameters works. # We change clf.dual_coef_ at run time and expect .predict() to change # accordingly. Notice that this is not trivial since it involves a lot # of C/Python copying in the libsvm bindings. # The success of this test ensures that the mapping between libsvm and # the python classifier is complete. clf = svm.SVC(kernel='linear', C=1.0) clf.fit(X, Y) assert_array_equal(clf.dual_coef_, [[-.25, .25]]) assert_array_equal(clf.predict([[-.1, -.1]]), [1]) clf._dual_coef_ = np.array([[.0, 1.]]) assert_array_equal(clf.predict([[-.1, -.1]]), [2]) def test_probability(): # Predict probabilities using SVC # This uses cross validation, so we use a slightly bigger testing set. for clf in (svm.SVC(probability=True, random_state=0, C=1.0), svm.NuSVC(probability=True, random_state=0)): clf.fit(iris.data, iris.target) prob_predict = clf.predict_proba(iris.data) assert_array_almost_equal( np.sum(prob_predict, 1), np.ones(iris.data.shape[0])) assert_true(np.mean(np.argmax(prob_predict, 1) == clf.predict(iris.data)) > 0.9) assert_almost_equal(clf.predict_proba(iris.data), np.exp(clf.predict_log_proba(iris.data)), 8) def test_decision_function(): # Test decision_function # Sanity check, test that decision_function implemented in python # returns the same as the one in libsvm # multi class: clf = svm.SVC(kernel='linear', C=0.1, decision_function_shape='ovo').fit(iris.data, iris.target) dec = np.dot(iris.data, clf.coef_.T) + clf.intercept_ assert_array_almost_equal(dec, clf.decision_function(iris.data)) # binary: clf.fit(X, Y) dec = np.dot(X, clf.coef_.T) + clf.intercept_ prediction = clf.predict(X) assert_array_almost_equal(dec.ravel(), clf.decision_function(X)) assert_array_almost_equal( prediction, clf.classes_[(clf.decision_function(X) > 0).astype(np.int)]) expected = np.array([-1., -0.66, -1., 0.66, 1., 1.]) assert_array_almost_equal(clf.decision_function(X), expected, 2) # kernel binary: clf = svm.SVC(kernel='rbf', gamma=1, decision_function_shape='ovo') clf.fit(X, Y) rbfs = rbf_kernel(X, clf.support_vectors_, gamma=clf.gamma) dec = np.dot(rbfs, clf.dual_coef_.T) + clf.intercept_ assert_array_almost_equal(dec.ravel(), clf.decision_function(X)) def test_decision_function_shape(): # check that decision_function_shape='ovr' gives # correct shape and is consistent with predict clf = svm.SVC(kernel='linear', C=0.1, decision_function_shape='ovr').fit(iris.data, iris.target) dec = clf.decision_function(iris.data) assert_equal(dec.shape, (len(iris.data), 3)) assert_array_equal(clf.predict(iris.data), np.argmax(dec, axis=1)) # with five classes: X, y = make_blobs(n_samples=80, centers=5, random_state=0) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) clf = svm.SVC(kernel='linear', C=0.1, decision_function_shape='ovr').fit(X_train, y_train) dec = clf.decision_function(X_test) assert_equal(dec.shape, (len(X_test), 5)) assert_array_equal(clf.predict(X_test), np.argmax(dec, axis=1)) # check shape of ovo_decition_function=True clf = svm.SVC(kernel='linear', C=0.1, decision_function_shape='ovo').fit(X_train, y_train) dec = clf.decision_function(X_train) assert_equal(dec.shape, (len(X_train), 10)) # check deprecation warning clf.decision_function_shape = None msg = "change the shape of the decision function" dec = assert_warns_message(ChangedBehaviorWarning, msg, clf.decision_function, X_train) assert_equal(dec.shape, (len(X_train), 10)) def test_svr_decision_function(): # Test SVR's decision_function # Sanity check, test that decision_function implemented in python # returns the same as the one in libsvm X = iris.data y = iris.target # linear kernel reg = svm.SVR(kernel='linear', C=0.1).fit(X, y) dec = np.dot(X, reg.coef_.T) + reg.intercept_ assert_array_almost_equal(dec.ravel(), reg.decision_function(X).ravel()) # rbf kernel reg = svm.SVR(kernel='rbf', gamma=1).fit(X, y) rbfs = rbf_kernel(X, reg.support_vectors_, gamma=reg.gamma) dec = np.dot(rbfs, reg.dual_coef_.T) + reg.intercept_ assert_array_almost_equal(dec.ravel(), reg.decision_function(X).ravel()) def test_weight(): # Test class weights clf = svm.SVC(class_weight={1: 0.1}) # we give a small weights to class 1 clf.fit(X, Y) # so all predicted values belong to class 2 assert_array_almost_equal(clf.predict(X), [2] * 6) X_, y_ = make_classification(n_samples=200, n_features=10, weights=[0.833, 0.167], random_state=2) for clf in (linear_model.LogisticRegression(), svm.LinearSVC(random_state=0), svm.SVC()): clf.set_params(class_weight={0: .1, 1: 10}) clf.fit(X_[:100], y_[:100]) y_pred = clf.predict(X_[100:]) assert_true(f1_score(y_[100:], y_pred) > .3) def test_sample_weights(): # Test weights on individual samples # TODO: check on NuSVR, OneClass, etc. clf = svm.SVC() clf.fit(X, Y) assert_array_equal(clf.predict([X[2]]), [1.]) sample_weight = [.1] * 3 + [10] * 3 clf.fit(X, Y, sample_weight=sample_weight) assert_array_equal(clf.predict([X[2]]), [2.]) # test that rescaling all samples is the same as changing C clf = svm.SVC() clf.fit(X, Y) dual_coef_no_weight = clf.dual_coef_ clf.set_params(C=100) clf.fit(X, Y, sample_weight=np.repeat(0.01, len(X))) assert_array_almost_equal(dual_coef_no_weight, clf.dual_coef_) def test_auto_weight(): # Test class weights for imbalanced data from sklearn.linear_model import LogisticRegression # We take as dataset the two-dimensional projection of iris so # that it is not separable and remove half of predictors from # class 1. # We add one to the targets as a non-regression test: class_weight="balanced" # used to work only when the labels where a range [0..K). from sklearn.utils import compute_class_weight X, y = iris.data[:, :2], iris.target + 1 unbalanced = np.delete(np.arange(y.size), np.where(y > 2)[0][::2]) classes = np.unique(y[unbalanced]) class_weights = compute_class_weight('balanced', classes, y[unbalanced]) assert_true(np.argmax(class_weights) == 2) for clf in (svm.SVC(kernel='linear'), svm.LinearSVC(random_state=0), LogisticRegression()): # check that score is better when class='balanced' is set. y_pred = clf.fit(X[unbalanced], y[unbalanced]).predict(X) clf.set_params(class_weight='balanced') y_pred_balanced = clf.fit(X[unbalanced], y[unbalanced],).predict(X) assert_true(metrics.f1_score(y, y_pred, average='weighted') <= metrics.f1_score(y, y_pred_balanced, average='weighted')) def test_bad_input(): # Test that it gives proper exception on deficient input # impossible value of C assert_raises(ValueError, svm.SVC(C=-1).fit, X, Y) # impossible value of nu clf = svm.NuSVC(nu=0.0) assert_raises(ValueError, clf.fit, X, Y) Y2 = Y[:-1] # wrong dimensions for labels assert_raises(ValueError, clf.fit, X, Y2) # Test with arrays that are non-contiguous. for clf in (svm.SVC(), svm.LinearSVC(random_state=0)): Xf = np.asfortranarray(X) assert_false(Xf.flags['C_CONTIGUOUS']) yf = np.ascontiguousarray(np.tile(Y, (2, 1)).T) yf = yf[:, -1] assert_false(yf.flags['F_CONTIGUOUS']) assert_false(yf.flags['C_CONTIGUOUS']) clf.fit(Xf, yf) assert_array_equal(clf.predict(T), true_result) # error for precomputed kernelsx clf = svm.SVC(kernel='precomputed') assert_raises(ValueError, clf.fit, X, Y) # sample_weight bad dimensions clf = svm.SVC() assert_raises(ValueError, clf.fit, X, Y, sample_weight=range(len(X) - 1)) # predict with sparse input when trained with dense clf = svm.SVC().fit(X, Y) assert_raises(ValueError, clf.predict, sparse.lil_matrix(X)) Xt = np.array(X).T clf.fit(np.dot(X, Xt), Y) assert_raises(ValueError, clf.predict, X) clf = svm.SVC() clf.fit(X, Y) assert_raises(ValueError, clf.predict, Xt) def test_sparse_precomputed(): clf = svm.SVC(kernel='precomputed') sparse_gram = sparse.csr_matrix([[1, 0], [0, 1]]) try: clf.fit(sparse_gram, [0, 1]) assert not "reached" except TypeError as e: assert_in("Sparse precomputed", str(e)) def test_linearsvc_parameters(): # Test possible parameter combinations in LinearSVC # Generate list of possible parameter combinations losses = ['hinge', 'squared_hinge', 'logistic_regression', 'foo'] penalties, duals = ['l1', 'l2', 'bar'], [True, False] X, y = make_classification(n_samples=5, n_features=5) for loss, penalty, dual in itertools.product(losses, penalties, duals): clf = svm.LinearSVC(penalty=penalty, loss=loss, dual=dual) if ((loss, penalty) == ('hinge', 'l1') or (loss, penalty, dual) == ('hinge', 'l2', False) or (penalty, dual) == ('l1', True) or loss == 'foo' or penalty == 'bar'): assert_raises_regexp(ValueError, "Unsupported set of arguments.*penalty='%s.*" "loss='%s.*dual=%s" % (penalty, loss, dual), clf.fit, X, y) else: clf.fit(X, y) # Incorrect loss value - test if explicit error message is raised assert_raises_regexp(ValueError, ".*loss='l3' is not supported.*", svm.LinearSVC(loss="l3").fit, X, y) # FIXME remove in 1.0 def test_linearsvx_loss_penalty_deprecations(): X, y = [[0.0], [1.0]], [0, 1] msg = ("loss='%s' has been deprecated in favor of " "loss='%s' as of 0.16. Backward compatibility" " for the %s will be removed in %s") # LinearSVC # loss l1/L1 --> hinge assert_warns_message(DeprecationWarning, msg % ("l1", "hinge", "loss='l1'", "1.0"), svm.LinearSVC(loss="l1").fit, X, y) # loss l2/L2 --> squared_hinge assert_warns_message(DeprecationWarning, msg % ("L2", "squared_hinge", "loss='L2'", "1.0"), svm.LinearSVC(loss="L2").fit, X, y) # LinearSVR # loss l1/L1 --> epsilon_insensitive assert_warns_message(DeprecationWarning, msg % ("L1", "epsilon_insensitive", "loss='L1'", "1.0"), svm.LinearSVR(loss="L1").fit, X, y) # loss l2/L2 --> squared_epsilon_insensitive assert_warns_message(DeprecationWarning, msg % ("l2", "squared_epsilon_insensitive", "loss='l2'", "1.0"), svm.LinearSVR(loss="l2").fit, X, y) # FIXME remove in 0.18 def test_linear_svx_uppercase_loss_penalty(): # Check if Upper case notation is supported by _fit_liblinear # which is called by fit X, y = [[0.0], [1.0]], [0, 1] msg = ("loss='%s' has been deprecated in favor of " "loss='%s' as of 0.16. Backward compatibility" " for the uppercase notation will be removed in %s") # loss SQUARED_hinge --> squared_hinge assert_warns_message(DeprecationWarning, msg % ("SQUARED_hinge", "squared_hinge", "0.18"), svm.LinearSVC(loss="SQUARED_hinge").fit, X, y) # penalty L2 --> l2 assert_warns_message(DeprecationWarning, msg.replace("loss", "penalty") % ("L2", "l2", "0.18"), svm.LinearSVC(penalty="L2").fit, X, y) # loss EPSILON_INSENSITIVE --> epsilon_insensitive assert_warns_message(DeprecationWarning, msg % ("EPSILON_INSENSITIVE", "epsilon_insensitive", "0.18"), svm.LinearSVR(loss="EPSILON_INSENSITIVE").fit, X, y) def test_linearsvc(): # Test basic routines using LinearSVC clf = svm.LinearSVC(random_state=0).fit(X, Y) # by default should have intercept assert_true(clf.fit_intercept) assert_array_equal(clf.predict(T), true_result) assert_array_almost_equal(clf.intercept_, [0], decimal=3) # the same with l1 penalty clf = svm.LinearSVC(penalty='l1', loss='squared_hinge', dual=False, random_state=0).fit(X, Y) assert_array_equal(clf.predict(T), true_result) # l2 penalty with dual formulation clf = svm.LinearSVC(penalty='l2', dual=True, random_state=0).fit(X, Y) assert_array_equal(clf.predict(T), true_result) # l2 penalty, l1 loss clf = svm.LinearSVC(penalty='l2', loss='hinge', dual=True, random_state=0) clf.fit(X, Y) assert_array_equal(clf.predict(T), true_result) # test also decision function dec = clf.decision_function(T) res = (dec > 0).astype(np.int) + 1 assert_array_equal(res, true_result) def test_linearsvc_crammer_singer(): # Test LinearSVC with crammer_singer multi-class svm ovr_clf = svm.LinearSVC(random_state=0).fit(iris.data, iris.target) cs_clf = svm.LinearSVC(multi_class='crammer_singer', random_state=0) cs_clf.fit(iris.data, iris.target) # similar prediction for ovr and crammer-singer: assert_true((ovr_clf.predict(iris.data) == cs_clf.predict(iris.data)).mean() > .9) # classifiers shouldn't be the same assert_true((ovr_clf.coef_ != cs_clf.coef_).all()) # test decision function assert_array_equal(cs_clf.predict(iris.data), np.argmax(cs_clf.decision_function(iris.data), axis=1)) dec_func = np.dot(iris.data, cs_clf.coef_.T) + cs_clf.intercept_ assert_array_almost_equal(dec_func, cs_clf.decision_function(iris.data)) def test_crammer_singer_binary(): # Test Crammer-Singer formulation in the binary case X, y = make_classification(n_classes=2, random_state=0) for fit_intercept in (True, False): acc = svm.LinearSVC(fit_intercept=fit_intercept, multi_class="crammer_singer", random_state=0).fit(X, y).score(X, y) assert_greater(acc, 0.9) def test_linearsvc_iris(): # Test that LinearSVC gives plausible predictions on the iris dataset # Also, test symbolic class names (classes_). target = iris.target_names[iris.target] clf = svm.LinearSVC(random_state=0).fit(iris.data, target) assert_equal(set(clf.classes_), set(iris.target_names)) assert_greater(np.mean(clf.predict(iris.data) == target), 0.8) dec = clf.decision_function(iris.data) pred = iris.target_names[np.argmax(dec, 1)] assert_array_equal(pred, clf.predict(iris.data)) def test_dense_liblinear_intercept_handling(classifier=svm.LinearSVC): # Test that dense liblinear honours intercept_scaling param X = [[2, 1], [3, 1], [1, 3], [2, 3]] y = [0, 0, 1, 1] clf = classifier(fit_intercept=True, penalty='l1', loss='squared_hinge', dual=False, C=4, tol=1e-7, random_state=0) assert_true(clf.intercept_scaling == 1, clf.intercept_scaling) assert_true(clf.fit_intercept) # when intercept_scaling is low the intercept value is highly "penalized" # by regularization clf.intercept_scaling = 1 clf.fit(X, y) assert_almost_equal(clf.intercept_, 0, decimal=5) # when intercept_scaling is sufficiently high, the intercept value # is not affected by regularization clf.intercept_scaling = 100 clf.fit(X, y) intercept1 = clf.intercept_ assert_less(intercept1, -1) # when intercept_scaling is sufficiently high, the intercept value # doesn't depend on intercept_scaling value clf.intercept_scaling = 1000 clf.fit(X, y) intercept2 = clf.intercept_ assert_array_almost_equal(intercept1, intercept2, decimal=2) def test_liblinear_set_coef(): # multi-class case clf = svm.LinearSVC().fit(iris.data, iris.target) values = clf.decision_function(iris.data) clf.coef_ = clf.coef_.copy() clf.intercept_ = clf.intercept_.copy() values2 = clf.decision_function(iris.data) assert_array_almost_equal(values, values2) # binary-class case X = [[2, 1], [3, 1], [1, 3], [2, 3]] y = [0, 0, 1, 1] clf = svm.LinearSVC().fit(X, y) values = clf.decision_function(X) clf.coef_ = clf.coef_.copy() clf.intercept_ = clf.intercept_.copy() values2 = clf.decision_function(X) assert_array_equal(values, values2) def test_immutable_coef_property(): # Check that primal coef modification are not silently ignored svms = [ svm.SVC(kernel='linear').fit(iris.data, iris.target), svm.NuSVC(kernel='linear').fit(iris.data, iris.target), svm.SVR(kernel='linear').fit(iris.data, iris.target), svm.NuSVR(kernel='linear').fit(iris.data, iris.target), svm.OneClassSVM(kernel='linear').fit(iris.data), ] for clf in svms: assert_raises(AttributeError, clf.__setattr__, 'coef_', np.arange(3)) assert_raises((RuntimeError, ValueError), clf.coef_.__setitem__, (0, 0), 0) def test_linearsvc_verbose(): # stdout: redirect import os stdout = os.dup(1) # save original stdout os.dup2(os.pipe()[1], 1) # replace it # actual call clf = svm.LinearSVC(verbose=1) clf.fit(X, Y) # stdout: restore os.dup2(stdout, 1) # restore original stdout def test_svc_clone_with_callable_kernel(): # create SVM with callable linear kernel, check that results are the same # as with built-in linear kernel svm_callable = svm.SVC(kernel=lambda x, y: np.dot(x, y.T), probability=True, random_state=0, decision_function_shape='ovr') # clone for checking clonability with lambda functions.. svm_cloned = base.clone(svm_callable) svm_cloned.fit(iris.data, iris.target) svm_builtin = svm.SVC(kernel='linear', probability=True, random_state=0, decision_function_shape='ovr') svm_builtin.fit(iris.data, iris.target) assert_array_almost_equal(svm_cloned.dual_coef_, svm_builtin.dual_coef_) assert_array_almost_equal(svm_cloned.intercept_, svm_builtin.intercept_) assert_array_equal(svm_cloned.predict(iris.data), svm_builtin.predict(iris.data)) assert_array_almost_equal(svm_cloned.predict_proba(iris.data), svm_builtin.predict_proba(iris.data), decimal=4) assert_array_almost_equal(svm_cloned.decision_function(iris.data), svm_builtin.decision_function(iris.data)) def test_svc_bad_kernel(): svc = svm.SVC(kernel=lambda x, y: x) assert_raises(ValueError, svc.fit, X, Y) def test_timeout(): a = svm.SVC(kernel=lambda x, y: np.dot(x, y.T), probability=True, random_state=0, max_iter=1) assert_warns(ConvergenceWarning, a.fit, X, Y) def test_unfitted(): X = "foo!" # input validation not required when SVM not fitted clf = svm.SVC() assert_raises_regexp(Exception, r".*\bSVC\b.*\bnot\b.*\bfitted\b", clf.predict, X) clf = svm.NuSVR() assert_raises_regexp(Exception, r".*\bNuSVR\b.*\bnot\b.*\bfitted\b", clf.predict, X) # ignore convergence warnings from max_iter=1 @ignore_warnings def test_consistent_proba(): a = svm.SVC(probability=True, max_iter=1, random_state=0) proba_1 = a.fit(X, Y).predict_proba(X) a = svm.SVC(probability=True, max_iter=1, random_state=0) proba_2 = a.fit(X, Y).predict_proba(X) assert_array_almost_equal(proba_1, proba_2) def test_linear_svc_convergence_warnings(): # Test that warnings are raised if model does not converge lsvc = svm.LinearSVC(max_iter=2, verbose=1) assert_warns(ConvergenceWarning, lsvc.fit, X, Y) assert_equal(lsvc.n_iter_, 2) def test_svr_coef_sign(): # Test that SVR(kernel="linear") has coef_ with the right sign. # Non-regression test for #2933. X = np.random.RandomState(21).randn(10, 3) y = np.random.RandomState(12).randn(10) for svr in [svm.SVR(kernel='linear'), svm.NuSVR(kernel='linear'), svm.LinearSVR()]: svr.fit(X, y) assert_array_almost_equal(svr.predict(X), np.dot(X, svr.coef_.ravel()) + svr.intercept_) def test_linear_svc_intercept_scaling(): # Test that the right error message is thrown when intercept_scaling <= 0 for i in [-1, 0]: lsvc = svm.LinearSVC(intercept_scaling=i) msg = ('Intercept scaling is %r but needs to be greater than 0.' ' To disable fitting an intercept,' ' set fit_intercept=False.' % lsvc.intercept_scaling) assert_raise_message(ValueError, msg, lsvc.fit, X, Y) def test_lsvc_intercept_scaling_zero(): # Test that intercept_scaling is ignored when fit_intercept is False lsvc = svm.LinearSVC(fit_intercept=False) lsvc.fit(X, Y) assert_equal(lsvc.intercept_, 0.) def test_hasattr_predict_proba(): # Method must be (un)available before or after fit, switched by # `probability` param G = svm.SVC(probability=True) assert_true(hasattr(G, 'predict_proba')) G.fit(iris.data, iris.target) assert_true(hasattr(G, 'predict_proba')) G = svm.SVC(probability=False) assert_false(hasattr(G, 'predict_proba')) G.fit(iris.data, iris.target) assert_false(hasattr(G, 'predict_proba')) # Switching to `probability=True` after fitting should make # predict_proba available, but calling it must not work: G.probability = True assert_true(hasattr(G, 'predict_proba')) msg = "predict_proba is not available when fitted with probability=False" assert_raise_message(NotFittedError, msg, G.predict_proba, iris.data)
bsd-3-clause
victorbergelin/scikit-learn
examples/hetero_feature_union.py
288
6236
""" ============================================= Feature Union with Heterogeneous Data Sources ============================================= Datasets can often contain components of that require different feature extraction and processing pipelines. This scenario might occur when: 1. Your dataset consists of heterogeneous data types (e.g. raster images and text captions) 2. Your dataset is stored in a Pandas DataFrame and different columns require different processing pipelines. This example demonstrates how to use :class:`sklearn.feature_extraction.FeatureUnion` on a dataset containing different types of features. We use the 20-newsgroups dataset and compute standard bag-of-words features for the subject line and body in separate pipelines as well as ad hoc features on the body. We combine them (with weights) using a FeatureUnion and finally train a classifier on the combined set of features. The choice of features is not particularly helpful, but serves to illustrate the technique. """ # Author: Matt Terry <[email protected]> # # License: BSD 3 clause from __future__ import print_function import numpy as np from sklearn.base import BaseEstimator, TransformerMixin from sklearn.datasets import fetch_20newsgroups from sklearn.datasets.twenty_newsgroups import strip_newsgroup_footer from sklearn.datasets.twenty_newsgroups import strip_newsgroup_quoting from sklearn.decomposition import TruncatedSVD from sklearn.feature_extraction import DictVectorizer from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics import classification_report from sklearn.pipeline import FeatureUnion from sklearn.pipeline import Pipeline from sklearn.svm import SVC class ItemSelector(BaseEstimator, TransformerMixin): """For data grouped by feature, select subset of data at a provided key. The data is expected to be stored in a 2D data structure, where the first index is over features and the second is over samples. i.e. >> len(data[key]) == n_samples Please note that this is the opposite convention to sklearn feature matrixes (where the first index corresponds to sample). ItemSelector only requires that the collection implement getitem (data[key]). Examples include: a dict of lists, 2D numpy array, Pandas DataFrame, numpy record array, etc. >> data = {'a': [1, 5, 2, 5, 2, 8], 'b': [9, 4, 1, 4, 1, 3]} >> ds = ItemSelector(key='a') >> data['a'] == ds.transform(data) ItemSelector is not designed to handle data grouped by sample. (e.g. a list of dicts). If your data is structured this way, consider a transformer along the lines of `sklearn.feature_extraction.DictVectorizer`. Parameters ---------- key : hashable, required The key corresponding to the desired value in a mappable. """ def __init__(self, key): self.key = key def fit(self, x, y=None): return self def transform(self, data_dict): return data_dict[self.key] class TextStats(BaseEstimator, TransformerMixin): """Extract features from each document for DictVectorizer""" def fit(self, x, y=None): return self def transform(self, posts): return [{'length': len(text), 'num_sentences': text.count('.')} for text in posts] class SubjectBodyExtractor(BaseEstimator, TransformerMixin): """Extract the subject & body from a usenet post in a single pass. Takes a sequence of strings and produces a dict of sequences. Keys are `subject` and `body`. """ def fit(self, x, y=None): return self def transform(self, posts): features = np.recarray(shape=(len(posts),), dtype=[('subject', object), ('body', object)]) for i, text in enumerate(posts): headers, _, bod = text.partition('\n\n') bod = strip_newsgroup_footer(bod) bod = strip_newsgroup_quoting(bod) features['body'][i] = bod prefix = 'Subject:' sub = '' for line in headers.split('\n'): if line.startswith(prefix): sub = line[len(prefix):] break features['subject'][i] = sub return features pipeline = Pipeline([ # Extract the subject & body ('subjectbody', SubjectBodyExtractor()), # Use FeatureUnion to combine the features from subject and body ('union', FeatureUnion( transformer_list=[ # Pipeline for pulling features from the post's subject line ('subject', Pipeline([ ('selector', ItemSelector(key='subject')), ('tfidf', TfidfVectorizer(min_df=50)), ])), # Pipeline for standard bag-of-words model for body ('body_bow', Pipeline([ ('selector', ItemSelector(key='body')), ('tfidf', TfidfVectorizer()), ('best', TruncatedSVD(n_components=50)), ])), # Pipeline for pulling ad hoc features from post's body ('body_stats', Pipeline([ ('selector', ItemSelector(key='body')), ('stats', TextStats()), # returns a list of dicts ('vect', DictVectorizer()), # list of dicts -> feature matrix ])), ], # weight components in FeatureUnion transformer_weights={ 'subject': 0.8, 'body_bow': 0.5, 'body_stats': 1.0, }, )), # Use a SVC classifier on the combined features ('svc', SVC(kernel='linear')), ]) # limit the list of categories to make running this exmaple faster. categories = ['alt.atheism', 'talk.religion.misc'] train = fetch_20newsgroups(random_state=1, subset='train', categories=categories, ) test = fetch_20newsgroups(random_state=1, subset='test', categories=categories, ) pipeline.fit(train.data, train.target) y = pipeline.predict(test.data) print(classification_report(y, test.target))
bsd-3-clause
chenyyx/scikit-learn-doc-zh
examples/zh/svm/plot_iris.py
1
4011
# -*- coding:UTF-8 -*- """ =========================================================== 在鸢尾花卉数据集上绘制不同的 SVM 分类器 =========================================================== 在鸢尾花卉数据集的 2D 投影上的不同线性 SVM 分类器的比较。我们只考虑这个数据集的前 2 个特征: - 萼片长度 - 萼片宽度 此示例显示如何绘制具有不同 kernel 的四个 SVM 分类器的决策表面。 线性模型 ``LinearSVC()`` 和 ``SVC(kernel='linear')`` 产生稍微不同的决策边界。这可能是以下差异的结果: - ``LinearSVC`` 可以最大限度地减少 squared hinge loss 而 ``SVC`` 最大限度地减少 regular hinge loss. - ``LinearSVC`` 使用 One-vs-All (也被称作 One-vs-Rest) multiclass reduction ,而 ``SVC`` 则使用 One-vs-One multiclass reduction 。 两个线性模型具有线性决策边界(相交超平面),而非线性内核模型(多项式或 高斯 RBF)具有更灵活的非线性决策边界,其形状取决于内核的种类及其参数。 .. NOTE:: 在绘制玩具 2D 数据集分类器的决策函数的时候可以帮助您直观了解其各自的表现力,请注意,这些直觉并不总是推广到更加接近于现实的高维度的问题。 """ print(__doc__) # 加载 numpy, matplotlib, sklearn 等模块 import numpy as np import matplotlib.pyplot as plt from sklearn import svm, datasets def make_meshgrid(x, y, h=.02): """创建一个要绘制的点的网格 参数 ---------- x: 基于 x 轴的网格数据 y: 基于 y 轴的网格数据 h: meshgrid 的步长参数, 是可选的 返回 ------- xx, yy : ndarray """ x_min, x_max = x.min() - 1, x.max() + 1 y_min, y_max = y.min() - 1, y.max() + 1 # meshgrid() 函数用两个坐标轴上的点在平面上画格。具体参阅:https://docs.scipy.org/doc/numpy/reference/generated/numpy.meshgrid.html xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) return xx, yy def plot_contours(ax, clf, xx, yy, **params): """绘制分类器的决策边界. 参数 ---------- ax: matplotlib 轴对象 clf: 一个分类器 xx: meshgrid ndarray yy: meshgrid ndarray params: params 的字典传递给 contourf, 可选 """ Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) # contourf() 函数 具体用法参见:http://www.labri.fr/perso/nrougier/teaching/matplotlib/ 和 http://matplotlib.org/examples/pylab_examples/contourf_demo.html out = ax.contourf(xx, yy, Z, **params) return out # 加载一些需要玩的数据 iris = datasets.load_iris() # 只取前两个特征数据,我们可以通过 2 维数据集来避免这种情况 X = iris.data[:, :2] y = iris.target # 我们创建了一个 SVM 的实例并填充了数据。我们不扩展我们的数据,因为我们想绘制支持向量。 C = 1.0 # SVM 正则化参数 models = (svm.SVC(kernel='linear', C=C), svm.LinearSVC(C=C), svm.SVC(kernel='rbf', gamma=0.7, C=C), svm.SVC(kernel='poly', degree=3, C=C)) models = (clf.fit(X, y) for clf in models) # 绘图区域的标题 titles = ('SVC with linear kernel', 'LinearSVC (linear kernel)', 'SVC with RBF kernel', 'SVC with polynomial (degree 3) kernel') # 设置 2x2 的网格进行绘制. fig, sub = plt.subplots(2, 2) plt.subplots_adjust(wspace=0.4, hspace=0.4) X0, X1 = X[:, 0], X[:, 1] xx, yy = make_meshgrid(X0, X1) for clf, title, ax in zip(models, titles, sub.flatten()): plot_contours(ax, clf, xx, yy, cmap=plt.cm.coolwarm, alpha=0.8) ax.scatter(X0, X1, c=y, cmap=plt.cm.coolwarm, s=20, edgecolors='k') ax.set_xlim(xx.min(), xx.max()) ax.set_ylim(yy.min(), yy.max()) ax.set_xlabel('Sepal length') ax.set_ylabel('Sepal width') ax.set_xticks(()) ax.set_yticks(()) ax.set_title(title) plt.show()
gpl-3.0
gnieboer/tensorflow
tensorflow/examples/learn/multiple_gpu.py
49
3078
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Example of using Estimator with multiple GPUs to distribute one model. This example only runs if you have multiple GPUs to assign to. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from sklearn import cross_validation from sklearn import datasets from sklearn import metrics import tensorflow as tf layers = tf.contrib.layers learn = tf.contrib.learn def my_model(features, target): """DNN with three hidden layers, and dropout of 0.1 probability. Note: If you want to run this example with multiple GPUs, Cuda Toolkit 7.0 and CUDNN 6.5 V2 from NVIDIA need to be installed beforehand. Args: features: `Tensor` of input features. target: `Tensor` of targets. Returns: Tuple of predictions, loss and training op. """ # Convert the target to a one-hot tensor of shape (length of features, 3) and # with a on-value of 1 for each one-hot vector of length 3. target = tf.one_hot(target, 3, 1, 0) # Create three fully connected layers respectively of size 10, 20, and 10 with # each layer having a dropout probability of 0.1. normalizer_fn = layers.dropout normalizer_params = {'keep_prob': 0.5} with tf.device('/gpu:1'): features = layers.stack( features, layers.fully_connected, [10, 20, 10], normalizer_fn=normalizer_fn, normalizer_params=normalizer_params) with tf.device('/gpu:2'): # Compute logits (1 per class) and compute loss. logits = layers.fully_connected(features, 3, activation_fn=None) loss = tf.losses.softmax_cross_entropy(target, logits) # Create a tensor for training op. train_op = tf.contrib.layers.optimize_loss( loss, tf.contrib.framework.get_global_step(), optimizer='Adagrad', learning_rate=0.1) return ({ 'class': tf.argmax(logits, 1), 'prob': tf.nn.softmax(logits) }, loss, train_op) def main(unused_argv): iris = datasets.load_iris() x_train, x_test, y_train, y_test = cross_validation.train_test_split( iris.data, iris.target, test_size=0.2, random_state=42) classifier = learn.Estimator(model_fn=my_model) classifier.fit(x_train, y_train, steps=1000) y_predicted = [ p['class'] for p in classifier.predict( x_test, as_iterable=True) ] score = metrics.accuracy_score(y_test, y_predicted) print('Accuracy: {0:f}'.format(score)) if __name__ == '__main__': tf.app.run()
apache-2.0
kenshay/ImageScript
ProgramData/SystemFiles/Python/Lib/site-packages/pandas/core/reshape.py
7
40736
# pylint: disable=E1101,E1103 # pylint: disable=W0703,W0622,W0613,W0201 from pandas.compat import range, zip from pandas import compat import itertools import numpy as np from pandas.types.common import _ensure_platform_int, is_list_like from pandas.types.cast import _maybe_promote from pandas.types.missing import notnull import pandas.types.concat as _concat from pandas.core.series import Series from pandas.core.frame import DataFrame from pandas.core.sparse import SparseDataFrame, SparseSeries from pandas.sparse.array import SparseArray from pandas._sparse import IntIndex from pandas.core.categorical import Categorical, _factorize_from_iterable from pandas.core.groupby import get_group_index, _compress_group_index import pandas.core.algorithms as algos import pandas.algos as _algos from pandas.core.index import MultiIndex, _get_na_value class _Unstacker(object): """ Helper class to unstack data / pivot with multi-level index Parameters ---------- level : int or str, default last level Level to "unstack". Accepts a name for the level. Examples -------- >>> import pandas as pd >>> index = pd.MultiIndex.from_tuples([('one', 'a'), ('one', 'b'), ... ('two', 'a'), ('two', 'b')]) >>> s = pd.Series(np.arange(1.0, 5.0), index=index) >>> s one a 1 b 2 two a 3 b 4 dtype: float64 >>> s.unstack(level=-1) a b one 1 2 two 3 4 >>> s.unstack(level=0) one two a 1 2 b 3 4 Returns ------- unstacked : DataFrame """ def __init__(self, values, index, level=-1, value_columns=None, fill_value=None): self.is_categorical = None if values.ndim == 1: if isinstance(values, Categorical): self.is_categorical = values values = np.array(values) values = values[:, np.newaxis] self.values = values self.value_columns = value_columns self.fill_value = fill_value if value_columns is None and values.shape[1] != 1: # pragma: no cover raise ValueError('must pass column labels for multi-column data') self.index = index if isinstance(self.index, MultiIndex): if index._reference_duplicate_name(level): msg = ("Ambiguous reference to {0}. The index " "names are not unique.".format(level)) raise ValueError(msg) self.level = self.index._get_level_number(level) # when index includes `nan`, need to lift levels/strides by 1 self.lift = 1 if -1 in self.index.labels[self.level] else 0 self.new_index_levels = list(index.levels) self.new_index_names = list(index.names) self.removed_name = self.new_index_names.pop(self.level) self.removed_level = self.new_index_levels.pop(self.level) self._make_sorted_values_labels() self._make_selectors() def _make_sorted_values_labels(self): v = self.level labs = list(self.index.labels) levs = list(self.index.levels) to_sort = labs[:v] + labs[v + 1:] + [labs[v]] sizes = [len(x) for x in levs[:v] + levs[v + 1:] + [levs[v]]] comp_index, obs_ids = get_compressed_ids(to_sort, sizes) ngroups = len(obs_ids) indexer = _algos.groupsort_indexer(comp_index, ngroups)[0] indexer = _ensure_platform_int(indexer) self.sorted_values = algos.take_nd(self.values, indexer, axis=0) self.sorted_labels = [l.take(indexer) for l in to_sort] def _make_selectors(self): new_levels = self.new_index_levels # make the mask remaining_labels = self.sorted_labels[:-1] level_sizes = [len(x) for x in new_levels] comp_index, obs_ids = get_compressed_ids(remaining_labels, level_sizes) ngroups = len(obs_ids) comp_index = _ensure_platform_int(comp_index) stride = self.index.levshape[self.level] + self.lift self.full_shape = ngroups, stride selector = self.sorted_labels[-1] + stride * comp_index + self.lift mask = np.zeros(np.prod(self.full_shape), dtype=bool) mask.put(selector, True) if mask.sum() < len(self.index): raise ValueError('Index contains duplicate entries, ' 'cannot reshape') self.group_index = comp_index self.mask = mask self.unique_groups = obs_ids self.compressor = comp_index.searchsorted(np.arange(ngroups)) def get_result(self): # TODO: find a better way than this masking business values, value_mask = self.get_new_values() columns = self.get_new_columns() index = self.get_new_index() # filter out missing levels if values.shape[1] > 0: col_inds, obs_ids = _compress_group_index(self.sorted_labels[-1]) # rare case, level values not observed if len(obs_ids) < self.full_shape[1]: inds = (value_mask.sum(0) > 0).nonzero()[0] values = algos.take_nd(values, inds, axis=1) columns = columns[inds] # may need to coerce categoricals here if self.is_categorical is not None: categories = self.is_categorical.categories ordered = self.is_categorical.ordered values = [Categorical(values[:, i], categories=categories, ordered=ordered) for i in range(values.shape[-1])] return DataFrame(values, index=index, columns=columns) def get_new_values(self): values = self.values # place the values length, width = self.full_shape stride = values.shape[1] result_width = width * stride result_shape = (length, result_width) # if our mask is all True, then we can use our existing dtype if self.mask.all(): dtype = values.dtype new_values = np.empty(result_shape, dtype=dtype) else: dtype, fill_value = _maybe_promote(values.dtype, self.fill_value) new_values = np.empty(result_shape, dtype=dtype) new_values.fill(fill_value) new_mask = np.zeros(result_shape, dtype=bool) # is there a simpler / faster way of doing this? for i in range(values.shape[1]): chunk = new_values[:, i * width:(i + 1) * width] mask_chunk = new_mask[:, i * width:(i + 1) * width] chunk.flat[self.mask] = self.sorted_values[:, i] mask_chunk.flat[self.mask] = True return new_values, new_mask def get_new_columns(self): if self.value_columns is None: if self.lift == 0: return self.removed_level lev = self.removed_level return lev.insert(0, _get_na_value(lev.dtype.type)) stride = len(self.removed_level) + self.lift width = len(self.value_columns) propagator = np.repeat(np.arange(width), stride) if isinstance(self.value_columns, MultiIndex): new_levels = self.value_columns.levels + (self.removed_level,) new_names = self.value_columns.names + (self.removed_name,) new_labels = [lab.take(propagator) for lab in self.value_columns.labels] else: new_levels = [self.value_columns, self.removed_level] new_names = [self.value_columns.name, self.removed_name] new_labels = [propagator] new_labels.append(np.tile(np.arange(stride) - self.lift, width)) return MultiIndex(levels=new_levels, labels=new_labels, names=new_names, verify_integrity=False) def get_new_index(self): result_labels = [lab.take(self.compressor) for lab in self.sorted_labels[:-1]] # construct the new index if len(self.new_index_levels) == 1: lev, lab = self.new_index_levels[0], result_labels[0] if (lab == -1).any(): lev = lev.insert(len(lev), _get_na_value(lev.dtype.type)) return lev.take(lab) return MultiIndex(levels=self.new_index_levels, labels=result_labels, names=self.new_index_names, verify_integrity=False) def _unstack_multiple(data, clocs): from pandas.core.groupby import decons_obs_group_ids if len(clocs) == 0: return data # NOTE: This doesn't deal with hierarchical columns yet index = data.index clocs = [index._get_level_number(i) for i in clocs] rlocs = [i for i in range(index.nlevels) if i not in clocs] clevels = [index.levels[i] for i in clocs] clabels = [index.labels[i] for i in clocs] cnames = [index.names[i] for i in clocs] rlevels = [index.levels[i] for i in rlocs] rlabels = [index.labels[i] for i in rlocs] rnames = [index.names[i] for i in rlocs] shape = [len(x) for x in clevels] group_index = get_group_index(clabels, shape, sort=False, xnull=False) comp_ids, obs_ids = _compress_group_index(group_index, sort=False) recons_labels = decons_obs_group_ids(comp_ids, obs_ids, shape, clabels, xnull=False) dummy_index = MultiIndex(levels=rlevels + [obs_ids], labels=rlabels + [comp_ids], names=rnames + ['__placeholder__'], verify_integrity=False) if isinstance(data, Series): dummy = data.copy() dummy.index = dummy_index unstacked = dummy.unstack('__placeholder__') new_levels = clevels new_names = cnames new_labels = recons_labels else: if isinstance(data.columns, MultiIndex): result = data for i in range(len(clocs)): val = clocs[i] result = result.unstack(val) clocs = [v if i > v else v - 1 for v in clocs] return result dummy = data.copy() dummy.index = dummy_index unstacked = dummy.unstack('__placeholder__') if isinstance(unstacked, Series): unstcols = unstacked.index else: unstcols = unstacked.columns new_levels = [unstcols.levels[0]] + clevels new_names = [data.columns.name] + cnames new_labels = [unstcols.labels[0]] for rec in recons_labels: new_labels.append(rec.take(unstcols.labels[-1])) new_columns = MultiIndex(levels=new_levels, labels=new_labels, names=new_names, verify_integrity=False) if isinstance(unstacked, Series): unstacked.index = new_columns else: unstacked.columns = new_columns return unstacked def pivot(self, index=None, columns=None, values=None): """ See DataFrame.pivot """ if values is None: cols = [columns] if index is None else [index, columns] append = index is None indexed = self.set_index(cols, append=append) return indexed.unstack(columns) else: if index is None: index = self.index else: index = self[index] indexed = Series(self[values].values, index=MultiIndex.from_arrays([index, self[columns]])) return indexed.unstack(columns) def pivot_simple(index, columns, values): """ Produce 'pivot' table based on 3 columns of this DataFrame. Uses unique values from index / columns and fills with values. Parameters ---------- index : ndarray Labels to use to make new frame's index columns : ndarray Labels to use to make new frame's columns values : ndarray Values to use for populating new frame's values Notes ----- Obviously, all 3 of the input arguments must have the same length Returns ------- DataFrame """ if (len(index) != len(columns)) or (len(columns) != len(values)): raise AssertionError('Length of index, columns, and values must be the' ' same') if len(index) == 0: return DataFrame(index=[]) hindex = MultiIndex.from_arrays([index, columns]) series = Series(values.ravel(), index=hindex) series = series.sortlevel(0) return series.unstack() def _slow_pivot(index, columns, values): """ Produce 'pivot' table based on 3 columns of this DataFrame. Uses unique values from index / columns and fills with values. Parameters ---------- index : string or object Column name to use to make new frame's index columns : string or object Column name to use to make new frame's columns values : string or object Column name to use for populating new frame's values Could benefit from some Cython here. """ tree = {} for i, (idx, col) in enumerate(zip(index, columns)): if col not in tree: tree[col] = {} branch = tree[col] branch[idx] = values[i] return DataFrame(tree) def unstack(obj, level, fill_value=None): if isinstance(level, (tuple, list)): return _unstack_multiple(obj, level) if isinstance(obj, DataFrame): if isinstance(obj.index, MultiIndex): return _unstack_frame(obj, level, fill_value=fill_value) else: return obj.T.stack(dropna=False) else: unstacker = _Unstacker(obj.values, obj.index, level=level, fill_value=fill_value) return unstacker.get_result() def _unstack_frame(obj, level, fill_value=None): from pandas.core.internals import BlockManager, make_block if obj._is_mixed_type: unstacker = _Unstacker(np.empty(obj.shape, dtype=bool), # dummy obj.index, level=level, value_columns=obj.columns) new_columns = unstacker.get_new_columns() new_index = unstacker.get_new_index() new_axes = [new_columns, new_index] new_blocks = [] mask_blocks = [] for blk in obj._data.blocks: blk_items = obj._data.items[blk.mgr_locs.indexer] bunstacker = _Unstacker(blk.values.T, obj.index, level=level, value_columns=blk_items, fill_value=fill_value) new_items = bunstacker.get_new_columns() new_placement = new_columns.get_indexer(new_items) new_values, mask = bunstacker.get_new_values() mblk = make_block(mask.T, placement=new_placement) mask_blocks.append(mblk) newb = make_block(new_values.T, placement=new_placement) new_blocks.append(newb) result = DataFrame(BlockManager(new_blocks, new_axes)) mask_frame = DataFrame(BlockManager(mask_blocks, new_axes)) return result.ix[:, mask_frame.sum(0) > 0] else: unstacker = _Unstacker(obj.values, obj.index, level=level, value_columns=obj.columns, fill_value=fill_value) return unstacker.get_result() def get_compressed_ids(labels, sizes): from pandas.core.groupby import get_group_index ids = get_group_index(labels, sizes, sort=True, xnull=False) return _compress_group_index(ids, sort=True) def stack(frame, level=-1, dropna=True): """ Convert DataFrame to Series with multi-level Index. Columns become the second level of the resulting hierarchical index Returns ------- stacked : Series """ def factorize(index): if index.is_unique: return index, np.arange(len(index)) codes, categories = _factorize_from_iterable(index) return categories, codes N, K = frame.shape if isinstance(frame.columns, MultiIndex): if frame.columns._reference_duplicate_name(level): msg = ("Ambiguous reference to {0}. The column " "names are not unique.".format(level)) raise ValueError(msg) # Will also convert negative level numbers and check if out of bounds. level_num = frame.columns._get_level_number(level) if isinstance(frame.columns, MultiIndex): return _stack_multi_columns(frame, level_num=level_num, dropna=dropna) elif isinstance(frame.index, MultiIndex): new_levels = list(frame.index.levels) new_labels = [lab.repeat(K) for lab in frame.index.labels] clev, clab = factorize(frame.columns) new_levels.append(clev) new_labels.append(np.tile(clab, N).ravel()) new_names = list(frame.index.names) new_names.append(frame.columns.name) new_index = MultiIndex(levels=new_levels, labels=new_labels, names=new_names, verify_integrity=False) else: levels, (ilab, clab) = zip(*map(factorize, (frame.index, frame.columns))) labels = ilab.repeat(K), np.tile(clab, N).ravel() new_index = MultiIndex(levels=levels, labels=labels, names=[frame.index.name, frame.columns.name], verify_integrity=False) new_values = frame.values.ravel() if dropna: mask = notnull(new_values) new_values = new_values[mask] new_index = new_index[mask] return Series(new_values, index=new_index) def stack_multiple(frame, level, dropna=True): # If all passed levels match up to column names, no # ambiguity about what to do if all(lev in frame.columns.names for lev in level): result = frame for lev in level: result = stack(result, lev, dropna=dropna) # Otherwise, level numbers may change as each successive level is stacked elif all(isinstance(lev, int) for lev in level): # As each stack is done, the level numbers decrease, so we need # to account for that when level is a sequence of ints result = frame # _get_level_number() checks level numbers are in range and converts # negative numbers to positive level = [frame.columns._get_level_number(lev) for lev in level] # Can't iterate directly through level as we might need to change # values as we go for index in range(len(level)): lev = level[index] result = stack(result, lev, dropna=dropna) # Decrement all level numbers greater than current, as these # have now shifted down by one updated_level = [] for other in level: if other > lev: updated_level.append(other - 1) else: updated_level.append(other) level = updated_level else: raise ValueError("level should contain all level names or all level " "numbers, not a mixture of the two.") return result def _stack_multi_columns(frame, level_num=-1, dropna=True): def _convert_level_number(level_num, columns): """ Logic for converting the level number to something we can safely pass to swaplevel: We generally want to convert the level number into a level name, except when columns do not have names, in which case we must leave as a level number """ if level_num in columns.names: return columns.names[level_num] else: if columns.names[level_num] is None: return level_num else: return columns.names[level_num] this = frame.copy() # this makes life much simpler if level_num != frame.columns.nlevels - 1: # roll levels to put selected level at end roll_columns = this.columns for i in range(level_num, frame.columns.nlevels - 1): # Need to check if the ints conflict with level names lev1 = _convert_level_number(i, roll_columns) lev2 = _convert_level_number(i + 1, roll_columns) roll_columns = roll_columns.swaplevel(lev1, lev2) this.columns = roll_columns if not this.columns.is_lexsorted(): # Workaround the edge case where 0 is one of the column names, # which interferes with trying to sort based on the first # level level_to_sort = _convert_level_number(0, this.columns) this = this.sortlevel(level_to_sort, axis=1) # tuple list excluding level for grouping columns if len(frame.columns.levels) > 2: tuples = list(zip(*[lev.take(lab) for lev, lab in zip(this.columns.levels[:-1], this.columns.labels[:-1])])) unique_groups = [key for key, _ in itertools.groupby(tuples)] new_names = this.columns.names[:-1] new_columns = MultiIndex.from_tuples(unique_groups, names=new_names) else: new_columns = unique_groups = this.columns.levels[0] # time to ravel the values new_data = {} level_vals = this.columns.levels[-1] level_labels = sorted(set(this.columns.labels[-1])) level_vals_used = level_vals[level_labels] levsize = len(level_labels) drop_cols = [] for key in unique_groups: loc = this.columns.get_loc(key) slice_len = loc.stop - loc.start # can make more efficient? if slice_len == 0: drop_cols.append(key) continue elif slice_len != levsize: chunk = this.ix[:, this.columns[loc]] chunk.columns = level_vals.take(chunk.columns.labels[-1]) value_slice = chunk.reindex(columns=level_vals_used).values else: if frame._is_mixed_type: value_slice = this.ix[:, this.columns[loc]].values else: value_slice = this.values[:, loc] new_data[key] = value_slice.ravel() if len(drop_cols) > 0: new_columns = new_columns.difference(drop_cols) N = len(this) if isinstance(this.index, MultiIndex): new_levels = list(this.index.levels) new_names = list(this.index.names) new_labels = [lab.repeat(levsize) for lab in this.index.labels] else: new_levels = [this.index] new_labels = [np.arange(N).repeat(levsize)] new_names = [this.index.name] # something better? new_levels.append(frame.columns.levels[level_num]) new_labels.append(np.tile(level_labels, N)) new_names.append(frame.columns.names[level_num]) new_index = MultiIndex(levels=new_levels, labels=new_labels, names=new_names, verify_integrity=False) result = DataFrame(new_data, index=new_index, columns=new_columns) # more efficient way to go about this? can do the whole masking biz but # will only save a small amount of time... if dropna: result = result.dropna(axis=0, how='all') return result def melt(frame, id_vars=None, value_vars=None, var_name=None, value_name='value', col_level=None): """ "Unpivots" a DataFrame from wide format to long format, optionally leaving identifier variables set. This function is useful to massage a DataFrame into a format where one or more columns are identifier variables (`id_vars`), while all other columns, considered measured variables (`value_vars`), are "unpivoted" to the row axis, leaving just two non-identifier columns, 'variable' and 'value'. Parameters ---------- frame : DataFrame id_vars : tuple, list, or ndarray, optional Column(s) to use as identifier variables. value_vars : tuple, list, or ndarray, optional Column(s) to unpivot. If not specified, uses all columns that are not set as `id_vars`. var_name : scalar Name to use for the 'variable' column. If None it uses ``frame.columns.name`` or 'variable'. value_name : scalar, default 'value' Name to use for the 'value' column. col_level : int or string, optional If columns are a MultiIndex then use this level to melt. See also -------- pivot_table DataFrame.pivot Examples -------- >>> import pandas as pd >>> df = pd.DataFrame({'A': {0: 'a', 1: 'b', 2: 'c'}, ... 'B': {0: 1, 1: 3, 2: 5}, ... 'C': {0: 2, 1: 4, 2: 6}}) >>> df A B C 0 a 1 2 1 b 3 4 2 c 5 6 >>> pd.melt(df, id_vars=['A'], value_vars=['B']) A variable value 0 a B 1 1 b B 3 2 c B 5 >>> pd.melt(df, id_vars=['A'], value_vars=['B', 'C']) A variable value 0 a B 1 1 b B 3 2 c B 5 3 a C 2 4 b C 4 5 c C 6 The names of 'variable' and 'value' columns can be customized: >>> pd.melt(df, id_vars=['A'], value_vars=['B'], ... var_name='myVarname', value_name='myValname') A myVarname myValname 0 a B 1 1 b B 3 2 c B 5 If you have multi-index columns: >>> df.columns = [list('ABC'), list('DEF')] >>> df A B C D E F 0 a 1 2 1 b 3 4 2 c 5 6 >>> pd.melt(df, col_level=0, id_vars=['A'], value_vars=['B']) A variable value 0 a B 1 1 b B 3 2 c B 5 >>> pd.melt(df, id_vars=[('A', 'D')], value_vars=[('B', 'E')]) (A, D) variable_0 variable_1 value 0 a B E 1 1 b B E 3 2 c B E 5 """ # TODO: what about the existing index? if id_vars is not None: if not isinstance(id_vars, (tuple, list, np.ndarray)): id_vars = [id_vars] else: id_vars = list(id_vars) else: id_vars = [] if value_vars is not None: if not isinstance(value_vars, (tuple, list, np.ndarray)): value_vars = [value_vars] frame = frame.ix[:, id_vars + value_vars] else: frame = frame.copy() if col_level is not None: # allow list or other? # frame is a copy frame.columns = frame.columns.get_level_values(col_level) if var_name is None: if isinstance(frame.columns, MultiIndex): if len(frame.columns.names) == len(set(frame.columns.names)): var_name = frame.columns.names else: var_name = ['variable_%s' % i for i in range(len(frame.columns.names))] else: var_name = [frame.columns.name if frame.columns.name is not None else 'variable'] if isinstance(var_name, compat.string_types): var_name = [var_name] N, K = frame.shape K -= len(id_vars) mdata = {} for col in id_vars: mdata[col] = np.tile(frame.pop(col).values, K) mcolumns = id_vars + var_name + [value_name] mdata[value_name] = frame.values.ravel('F') for i, col in enumerate(var_name): # asanyarray will keep the columns as an Index mdata[col] = np.asanyarray(frame.columns.get_level_values(i)).repeat(N) return DataFrame(mdata, columns=mcolumns) def lreshape(data, groups, dropna=True, label=None): """ Reshape long-format data to wide. Generalized inverse of DataFrame.pivot Parameters ---------- data : DataFrame groups : dict {new_name : list_of_columns} dropna : boolean, default True Examples -------- >>> import pandas as pd >>> data = pd.DataFrame({'hr1': [514, 573], 'hr2': [545, 526], ... 'team': ['Red Sox', 'Yankees'], ... 'year1': [2007, 2008], 'year2': [2008, 2008]}) >>> data hr1 hr2 team year1 year2 0 514 545 Red Sox 2007 2008 1 573 526 Yankees 2007 2008 >>> pd.lreshape(data, {'year': ['year1', 'year2'], 'hr': ['hr1', 'hr2']}) team hr year 0 Red Sox 514 2007 1 Yankees 573 2007 2 Red Sox 545 2008 3 Yankees 526 2008 Returns ------- reshaped : DataFrame """ if isinstance(groups, dict): keys = list(groups.keys()) values = list(groups.values()) else: keys, values = zip(*groups) all_cols = list(set.union(*[set(x) for x in values])) id_cols = list(data.columns.difference(all_cols)) K = len(values[0]) for seq in values: if len(seq) != K: raise ValueError('All column lists must be same length') mdata = {} pivot_cols = [] for target, names in zip(keys, values): to_concat = [data[col].values for col in names] mdata[target] = _concat._concat_compat(to_concat) pivot_cols.append(target) for col in id_cols: mdata[col] = np.tile(data[col].values, K) if dropna: mask = np.ones(len(mdata[pivot_cols[0]]), dtype=bool) for c in pivot_cols: mask &= notnull(mdata[c]) if not mask.all(): mdata = dict((k, v[mask]) for k, v in compat.iteritems(mdata)) return DataFrame(mdata, columns=id_cols + pivot_cols) def wide_to_long(df, stubnames, i, j): """ Wide panel to long format. Less flexible but more user-friendly than melt. Parameters ---------- df : DataFrame The wide-format DataFrame stubnames : list A list of stub names. The wide format variables are assumed to start with the stub names. i : str The name of the id variable. j : str The name of the subobservation variable. stubend : str Regex to match for the end of the stubs. Returns ------- DataFrame A DataFrame that contains each stub name as a variable as well as variables for i and j. Examples -------- >>> import pandas as pd >>> import numpy as np >>> np.random.seed(123) >>> df = pd.DataFrame({"A1970" : {0 : "a", 1 : "b", 2 : "c"}, ... "A1980" : {0 : "d", 1 : "e", 2 : "f"}, ... "B1970" : {0 : 2.5, 1 : 1.2, 2 : .7}, ... "B1980" : {0 : 3.2, 1 : 1.3, 2 : .1}, ... "X" : dict(zip(range(3), np.random.randn(3))) ... }) >>> df["id"] = df.index >>> df A1970 A1980 B1970 B1980 X id 0 a d 2.5 3.2 -1.085631 0 1 b e 1.2 1.3 0.997345 1 2 c f 0.7 0.1 0.282978 2 >>> wide_to_long(df, ["A", "B"], i="id", j="year") X A B id year 0 1970 -1.085631 a 2.5 1 1970 0.997345 b 1.2 2 1970 0.282978 c 0.7 0 1980 -1.085631 d 3.2 1 1980 0.997345 e 1.3 2 1980 0.282978 f 0.1 Notes ----- All extra variables are treated as extra id variables. This simply uses `pandas.melt` under the hood, but is hard-coded to "do the right thing" in a typicaly case. """ def get_var_names(df, regex): return df.filter(regex=regex).columns.tolist() def melt_stub(df, stub, i, j): varnames = get_var_names(df, "^" + stub) newdf = melt(df, id_vars=i, value_vars=varnames, value_name=stub, var_name=j) newdf_j = newdf[j].str.replace(stub, "") try: newdf_j = newdf_j.astype(int) except ValueError: pass newdf[j] = newdf_j return newdf id_vars = get_var_names(df, "^(?!%s)" % "|".join(stubnames)) if i not in id_vars: id_vars += [i] newdf = melt_stub(df, stubnames[0], id_vars, j) for stub in stubnames[1:]: new = melt_stub(df, stub, id_vars, j) newdf = newdf.merge(new, how="outer", on=id_vars + [j], copy=False) return newdf.set_index([i, j]) def get_dummies(data, prefix=None, prefix_sep='_', dummy_na=False, columns=None, sparse=False, drop_first=False): """ Convert categorical variable into dummy/indicator variables Parameters ---------- data : array-like, Series, or DataFrame prefix : string, list of strings, or dict of strings, default None String to append DataFrame column names Pass a list with length equal to the number of columns when calling get_dummies on a DataFrame. Alternativly, `prefix` can be a dictionary mapping column names to prefixes. prefix_sep : string, default '_' If appending prefix, separator/delimiter to use. Or pass a list or dictionary as with `prefix.` dummy_na : bool, default False Add a column to indicate NaNs, if False NaNs are ignored. columns : list-like, default None Column names in the DataFrame to be encoded. If `columns` is None then all the columns with `object` or `category` dtype will be converted. sparse : bool, default False Whether the dummy columns should be sparse or not. Returns SparseDataFrame if `data` is a Series or if all columns are included. Otherwise returns a DataFrame with some SparseBlocks. .. versionadded:: 0.16.1 drop_first : bool, default False Whether to get k-1 dummies out of k categorical levels by removing the first level. .. versionadded:: 0.18.0 Returns ------- dummies : DataFrame or SparseDataFrame Examples -------- >>> import pandas as pd >>> s = pd.Series(list('abca')) >>> pd.get_dummies(s) a b c 0 1 0 0 1 0 1 0 2 0 0 1 3 1 0 0 >>> s1 = ['a', 'b', np.nan] >>> pd.get_dummies(s1) a b 0 1 0 1 0 1 2 0 0 >>> pd.get_dummies(s1, dummy_na=True) a b NaN 0 1 0 0 1 0 1 0 2 0 0 1 >>> df = pd.DataFrame({'A': ['a', 'b', 'a'], 'B': ['b', 'a', 'c'], 'C': [1, 2, 3]}) >>> pd.get_dummies(df, prefix=['col1', 'col2']) C col1_a col1_b col2_a col2_b col2_c 0 1 1 0 0 1 0 1 2 0 1 1 0 0 2 3 1 0 0 0 1 >>> pd.get_dummies(pd.Series(list('abcaa'))) a b c 0 1 0 0 1 0 1 0 2 0 0 1 3 1 0 0 4 1 0 0 >>> pd.get_dummies(pd.Series(list('abcaa')), drop_first=True)) b c 0 0 0 1 1 0 2 0 1 3 0 0 4 0 0 See Also -------- Series.str.get_dummies """ from pandas.tools.merge import concat from itertools import cycle if isinstance(data, DataFrame): # determine columns being encoded if columns is None: columns_to_encode = data.select_dtypes( include=['object', 'category']).columns else: columns_to_encode = columns # validate prefixes and separator to avoid silently dropping cols def check_len(item, name): length_msg = ("Length of '{0}' ({1}) did not match the length of " "the columns being encoded ({2}).") if is_list_like(item): if not len(item) == len(columns_to_encode): raise ValueError(length_msg.format(name, len(item), len(columns_to_encode))) check_len(prefix, 'prefix') check_len(prefix_sep, 'prefix_sep') if isinstance(prefix, compat.string_types): prefix = cycle([prefix]) if isinstance(prefix, dict): prefix = [prefix[col] for col in columns_to_encode] if prefix is None: prefix = columns_to_encode # validate separators if isinstance(prefix_sep, compat.string_types): prefix_sep = cycle([prefix_sep]) elif isinstance(prefix_sep, dict): prefix_sep = [prefix_sep[col] for col in columns_to_encode] if set(columns_to_encode) == set(data.columns): with_dummies = [] else: with_dummies = [data.drop(columns_to_encode, axis=1)] for (col, pre, sep) in zip(columns_to_encode, prefix, prefix_sep): dummy = _get_dummies_1d(data[col], prefix=pre, prefix_sep=sep, dummy_na=dummy_na, sparse=sparse, drop_first=drop_first) with_dummies.append(dummy) result = concat(with_dummies, axis=1) else: result = _get_dummies_1d(data, prefix, prefix_sep, dummy_na, sparse=sparse, drop_first=drop_first) return result def _get_dummies_1d(data, prefix, prefix_sep='_', dummy_na=False, sparse=False, drop_first=False): # Series avoids inconsistent NaN handling codes, levels = _factorize_from_iterable(Series(data)) def get_empty_Frame(data, sparse): if isinstance(data, Series): index = data.index else: index = np.arange(len(data)) if not sparse: return DataFrame(index=index) else: return SparseDataFrame(index=index) # if all NaN if not dummy_na and len(levels) == 0: return get_empty_Frame(data, sparse) codes = codes.copy() if dummy_na: codes[codes == -1] = len(levels) levels = np.append(levels, np.nan) # if dummy_na, we just fake a nan level. drop_first will drop it again if drop_first and len(levels) == 1: return get_empty_Frame(data, sparse) number_of_cols = len(levels) if prefix is not None: dummy_cols = ['%s%s%s' % (prefix, prefix_sep, v) for v in levels] else: dummy_cols = levels if isinstance(data, Series): index = data.index else: index = None if sparse: sparse_series = {} N = len(data) sp_indices = [[] for _ in range(len(dummy_cols))] for ndx, code in enumerate(codes): if code == -1: # Blank entries if not dummy_na and code == -1, #GH4446 continue sp_indices[code].append(ndx) if drop_first: # remove first categorical level to avoid perfect collinearity # GH12042 sp_indices = sp_indices[1:] dummy_cols = dummy_cols[1:] for col, ixs in zip(dummy_cols, sp_indices): sarr = SparseArray(np.ones(len(ixs), dtype=np.uint8), sparse_index=IntIndex(N, ixs), fill_value=0, dtype=np.uint8) sparse_series[col] = SparseSeries(data=sarr, index=index) out = SparseDataFrame(sparse_series, index=index, columns=dummy_cols, dtype=np.uint8) return out else: dummy_mat = np.eye(number_of_cols, dtype=np.uint8).take(codes, axis=0) if not dummy_na: # reset NaN GH4446 dummy_mat[codes == -1] = 0 if drop_first: # remove first GH12042 dummy_mat = dummy_mat[:, 1:] dummy_cols = dummy_cols[1:] return DataFrame(dummy_mat, index=index, columns=dummy_cols) def make_axis_dummies(frame, axis='minor', transform=None): """ Construct 1-0 dummy variables corresponding to designated axis labels Parameters ---------- frame : DataFrame axis : {'major', 'minor'}, default 'minor' transform : function, default None Function to apply to axis labels first. For example, to get "day of week" dummies in a time series regression you might call:: make_axis_dummies(panel, axis='major', transform=lambda d: d.weekday()) Returns ------- dummies : DataFrame Column names taken from chosen axis """ numbers = {'major': 0, 'minor': 1} num = numbers.get(axis, axis) items = frame.index.levels[num] labels = frame.index.labels[num] if transform is not None: mapped_items = items.map(transform) labels, items = _factorize_from_iterable(mapped_items.take(labels)) values = np.eye(len(items), dtype=float) values = values.take(labels, axis=0) return DataFrame(values, columns=items, index=frame.index)
gpl-3.0
dhutchis/systemml
projects/breast_cancer/breastcancer/preprocessing.py
15
26035
#------------------------------------------------------------- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # #------------------------------------------------------------- """ Preprocessing -- Predicting Breast Cancer Proliferation Scores with Apache SystemML This module contains functions for the preprocessing phase of the breast cancer project. """ import math import os import numpy as np import openslide from openslide import OpenSlideError from openslide.deepzoom import DeepZoomGenerator import pandas as pd from pyspark.ml.linalg import Vectors import pyspark.sql.functions as F from scipy.ndimage.morphology import binary_fill_holes from skimage.color import rgb2gray from skimage.feature import canny from skimage.morphology import binary_closing, binary_dilation, disk # Open Whole-Slide Image def open_slide(slide_num, folder, training): """ Open a whole-slide image, given an image number. Args: slide_num: Slide image number as an integer. folder: Directory in which the slides folder is stored, as a string. This should contain either a `training_image_data` folder with images in the format `TUPAC-TR-###.svs`, or a `testing_image_data` folder with images in the format `TUPAC-TE-###.svs`. training: Boolean for training or testing datasets. Returns: An OpenSlide object representing a whole-slide image. """ if training: filename = os.path.join(folder, "training_image_data", "TUPAC-TR-{}.svs".format(str(slide_num).zfill(3))) else: # Testing images filename = os.path.join(folder, "testing_image_data", "TUPAC-TE-{}.svs".format(str(slide_num).zfill(3))) try: slide = openslide.open_slide(filename) except OpenSlideError: slide = None except FileNotFoundError: slide = None return slide # Create Tile Generator def create_tile_generator(slide, tile_size, overlap): """ Create a tile generator for the given slide. This generator is able to extract tiles from the overall whole-slide image. Args: slide: An OpenSlide object representing a whole-slide image. tile_size: The width and height of a square tile to be generated. overlap: Number of pixels by which to overlap the tiles. Returns: A DeepZoomGenerator object representing the tile generator. Each extracted tile is a PIL Image with shape (tile_size, tile_size, channels). Note: This generator is not a true "Python generator function", but rather is an object that is capable of extracting individual tiles. """ generator = DeepZoomGenerator(slide, tile_size=tile_size, overlap=overlap, limit_bounds=True) return generator # Determine 20x Magnification Zoom Level def get_20x_zoom_level(slide, generator): """ Return the zoom level that corresponds to a 20x magnification. The generator can extract tiles from multiple zoom levels, downsampling by a factor of 2 per level from highest to lowest resolution. Args: slide: An OpenSlide object representing a whole-slide image. generator: A DeepZoomGenerator object representing a tile generator. Note: This generator is not a true "Python generator function", but rather is an object that is capable of extracting individual tiles. Returns: Zoom level corresponding to a 20x magnification, or as close as possible. """ highest_zoom_level = generator.level_count - 1 # 0-based indexing try: mag = int(slide.properties[openslide.PROPERTY_NAME_OBJECTIVE_POWER]) # `mag / 20` gives the downsampling factor between the slide's # magnification and the desired 20x magnification. # `(mag / 20) / 2` gives the zoom level offset from the highest # resolution level, based on a 2x downsampling factor in the # generator. offset = math.floor((mag / 20) / 2) level = highest_zoom_level - offset except ValueError: # In case the slide magnification level is unknown, just # use the highest resolution. level = highest_zoom_level return level # Generate Tile Indices For Whole-Slide Image. def process_slide(slide_num, folder, training, tile_size, overlap): """ Generate all possible tile indices for a whole-slide image. Given a slide number, tile size, and overlap, generate all possible (slide_num, tile_size, overlap, zoom_level, col, row) indices. Args: slide_num: Slide image number as an integer. folder: Directory in which the slides folder is stored, as a string. This should contain either a `training_image_data` folder with images in the format `TUPAC-TR-###.svs`, or a `testing_image_data` folder with images in the format `TUPAC-TE-###.svs`. training: Boolean for training or testing datasets. tile_size: The width and height of a square tile to be generated. overlap: Number of pixels by which to overlap the tiles. Returns: A list of (slide_num, tile_size, overlap, zoom_level, col, row) integer index tuples representing possible tiles to extract. """ # Open slide. slide = open_slide(slide_num, folder, training) # Create tile generator. generator = create_tile_generator(slide, tile_size, overlap) # Get 20x zoom level. zoom_level = get_20x_zoom_level(slide, generator) # Generate all possible (zoom_level, col, row) tile index tuples. cols, rows = generator.level_tiles[zoom_level] tile_indices = [(slide_num, tile_size, overlap, zoom_level, col, row) for col in range(cols) for row in range(rows)] return tile_indices # Generate Tile From Tile Index def process_tile_index(tile_index, folder, training): """ Generate a tile from a tile index. Given a (slide_num, tile_size, overlap, zoom_level, col, row) tile index, generate a (slide_num, tile) tuple. Args: tile_index: A (slide_num, tile_size, overlap, zoom_level, col, row) integer index tuple representing a tile to extract. folder: Directory in which the slides folder is stored, as a string. This should contain either a `training_image_data` folder with images in the format `TUPAC-TR-###.svs`, or a `testing_image_data` folder with images in the format `TUPAC-TE-###.svs`. training: Boolean for training or testing datasets. Returns: A (slide_num, tile) tuple, where slide_num is an integer, and tile is a 3D NumPy array of shape (tile_size, tile_size, channels) in RGB format. """ slide_num, tile_size, overlap, zoom_level, col, row = tile_index # Open slide. slide = open_slide(slide_num, folder, training) # Create tile generator. generator = create_tile_generator(slide, tile_size, overlap) # Generate tile. tile = np.asarray(generator.get_tile(zoom_level, (col, row))) return (slide_num, tile) # Filter Tile For Dimensions & Tissue Threshold def optical_density(tile): """ Convert a tile to optical density values. Args: tile: A 3D NumPy array of shape (tile_size, tile_size, channels). Returns: A 3D NumPy array of shape (tile_size, tile_size, channels) representing optical density values. """ tile = tile.astype(np.float64) #od = -np.log10(tile/255 + 1e-8) od = -np.log((tile+1)/240) return od def keep_tile(tile_tuple, tile_size, tissue_threshold): """ Determine if a tile should be kept. This filters out tiles based on size and a tissue percentage threshold, using a custom algorithm. If a tile has height & width equal to (tile_size, tile_size), and contains greater than or equal to the given percentage, then it will be kept; otherwise it will be filtered out. Args: tile_tuple: A (slide_num, tile) tuple, where slide_num is an integer, and tile is a 3D NumPy array of shape (tile_size, tile_size, channels). tile_size: The width and height of a square tile to be generated. tissue_threshold: Tissue percentage threshold. Returns: A Boolean indicating whether or not a tile should be kept for future usage. """ slide_num, tile = tile_tuple if tile.shape[0:2] == (tile_size, tile_size): tile_orig = tile # Check 1 # Convert 3D RGB image to 2D grayscale image, from # 0 (dense tissue) to 1 (plain background). tile = rgb2gray(tile) # 8-bit depth complement, from 1 (dense tissue) # to 0 (plain background). tile = 1 - tile # Canny edge detection with hysteresis thresholding. # This returns a binary map of edges, with 1 equal to # an edge. The idea is that tissue would be full of # edges, while background would not. tile = canny(tile) # Binary closing, which is a dilation followed by # an erosion. This removes small dark spots, which # helps remove noise in the background. tile = binary_closing(tile, disk(10)) # Binary dilation, which enlarges bright areas, # and shrinks dark areas. This helps fill in holes # within regions of tissue. tile = binary_dilation(tile, disk(10)) # Fill remaining holes within regions of tissue. tile = binary_fill_holes(tile) # Calculate percentage of tissue coverage. percentage = tile.mean() check1 = percentage >= tissue_threshold # Check 2 # Convert to optical density values tile = optical_density(tile_orig) # Threshold at beta beta = 0.15 tile = np.min(tile, axis=2) >= beta # Apply morphology for same reasons as above. tile = binary_closing(tile, disk(2)) tile = binary_dilation(tile, disk(2)) tile = binary_fill_holes(tile) percentage = tile.mean() check2 = percentage >= tissue_threshold return check1 and check2 else: return False # Generate Samples From Tile def process_tile(tile_tuple, sample_size, grayscale): """ Process a tile into a group of smaller samples. Cut up a tile into smaller blocks of sample_size x sample_size pixels, change the shape of each sample from (H, W, channels) to (channels, H, W), then flatten each into a vector of length channels*H*W. Args: tile_tuple: A (slide_num, tile) tuple, where slide_num is an integer, and tile is a 3D NumPy array of shape (tile_size, tile_size, channels). sample_size: The new width and height of the square samples to be generated. grayscale: Whether or not to generate grayscale samples, rather than RGB. Returns: A list of (slide_num, sample) tuples representing cut up tiles, where each sample is a 3D NumPy array of shape (sample_size_x, sample_size_y, channels). """ slide_num, tile = tile_tuple if grayscale: tile = rgb2gray(tile)[:, :, np.newaxis] # Grayscale # Save disk space and future IO time by converting from [0,1] to [0,255], # at the expense of some minor loss of information. tile = np.round(tile * 255).astype("uint8") x, y, ch = tile.shape # 1. Reshape into a 5D array of (num_x, sample_size_x, num_y, sample_size_y, ch), where # num_x and num_y are the number of chopped tiles on the x and y axes, respectively. # 2. Swap sample_size_x and num_y axes to create # (num_x, num_y, sample_size_x, sample_size_y, ch). # 3. Combine num_x and num_y into single axis, returning # (num_samples, sample_size_x, sample_size_y, ch). samples = (tile.reshape((x // sample_size, sample_size, y // sample_size, sample_size, ch)) .swapaxes(1,2) .reshape((-1, sample_size, sample_size, ch))) samples = [(slide_num, sample) for sample in list(samples)] return samples # Normalize staining def normalize_staining(sample_tuple, beta=0.15, alpha=1, light_intensity=255): """ Normalize the staining of H&E histology slides. This function normalizes the staining of H&E histology slides. References: - Macenko, Marc, et al. "A method for normalizing histology slides for quantitative analysis." Biomedical Imaging: From Nano to Macro, 2009. ISBI'09. IEEE International Symposium on. IEEE, 2009. - http://wwwx.cs.unc.edu/~mn/sites/default/files/macenko2009.pdf - https://github.com/mitkovetta/staining-normalization Args: sample_tuple: A (slide_num, sample) tuple, where slide_num is an integer, and sample is a 3D NumPy array of shape (H,W,C). Returns: A (slide_num, sample) tuple, where the sample is a 3D NumPy array of shape (H,W,C) that has been stain normalized. """ # Setup. slide_num, sample = sample_tuple x = np.asarray(sample) h, w, c = x.shape x = x.reshape(-1, c).astype(np.float64) # shape (H*W, C) # Reference stain vectors and stain saturations. We will normalize all slides # to these references. To create these, grab the stain vectors and stain # saturations from a desirable slide. # Values in reference implementation for use with eigendecomposition approach, natural log, # and `light_intensity=240`. #stain_ref = np.array([0.5626, 0.2159, 0.7201, 0.8012, 0.4062, 0.5581]).reshape(3,2) #max_sat_ref = np.array([1.9705, 1.0308]).reshape(2,1) # SVD w/ log10, and `light_intensity=255`. stain_ref = (np.array([0.54598845, 0.322116, 0.72385198, 0.76419107, 0.42182333, 0.55879629]) .reshape(3,2)) max_sat_ref = np.array([0.82791151, 0.61137274]).reshape(2,1) # Convert RGB to OD. # Note: The original paper used log10, and the reference implementation used the natural log. #OD = -np.log((x+1)/light_intensity) # shape (H*W, C) OD = -np.log10(x/light_intensity + 1e-8) # Remove data with OD intensity less than beta. # I.e. remove transparent pixels. # Note: This needs to be checked per channel, rather than # taking an average over all channels for a given pixel. OD_thresh = OD[np.all(OD >= beta, 1), :] # shape (K, C) # Calculate eigenvectors. # Note: We can either use eigenvector decomposition, or SVD. #eigvals, eigvecs = np.linalg.eig(np.cov(OD_thresh.T)) # np.cov results in inf/nans U, s, V = np.linalg.svd(OD_thresh, full_matrices=False) # Extract two largest eigenvectors. # Note: We swap the sign of the eigvecs here to be consistent # with other implementations. Both +/- eigvecs are valid, with # the same eigenvalue, so this is okay. #top_eigvecs = eigvecs[:, np.argsort(eigvals)[-2:]] * -1 top_eigvecs = V[0:2, :].T * -1 # shape (C, 2) # Project thresholded optical density values onto plane spanned by # 2 largest eigenvectors. proj = np.dot(OD_thresh, top_eigvecs) # shape (K, 2) # Calculate angle of each point wrt the first plane direction. # Note: the parameters are `np.arctan2(y, x)` angles = np.arctan2(proj[:, 1], proj[:, 0]) # shape (K,) # Find robust extremes (a and 100-a percentiles) of the angle. min_angle = np.percentile(angles, alpha) max_angle = np.percentile(angles, 100-alpha) # Convert min/max vectors (extremes) back to optimal stains in OD space. # This computes a set of axes for each angle onto which we can project # the top eigenvectors. This assumes that the projected values have # been normalized to unit length. extreme_angles = np.array( [[np.cos(min_angle), np.cos(max_angle)], [np.sin(min_angle), np.sin(max_angle)]] ) # shape (2,2) stains = np.dot(top_eigvecs, extreme_angles) # shape (C, 2) # Merge vectors with hematoxylin first, and eosin second, as a heuristic. if stains[0, 0] < stains[0, 1]: stains[:, [0, 1]] = stains[:, [1, 0]] # swap columns # Calculate saturations of each stain. # Note: Here, we solve # OD = VS # S = V^{-1}OD # where `OD` is the matrix of optical density values of our image, # `V` is the matrix of stain vectors, and `S` is the matrix of stain # saturations. Since this is an overdetermined system, we use the # least squares solver, rather than a direct solve. sats, _, _, _ = np.linalg.lstsq(stains, OD.T) # Normalize stain saturations to have same pseudo-maximum based on # a reference max saturation. max_sat = np.percentile(sats, 99, axis=1, keepdims=True) sats = sats / max_sat * max_sat_ref # Compute optimal OD values. OD_norm = np.dot(stain_ref, sats) # Recreate image. # Note: If the image is immediately converted to uint8 with `.astype(np.uint8)`, it will # not return the correct values due to the initital values being outside of [0,255]. # To fix this, we round to the nearest integer, and then clip to [0,255], which is the # same behavior as Matlab. #x_norm = np.exp(OD_norm) * light_intensity # natural log approach x_norm = 10**(-OD_norm) * light_intensity - 1e-8 # log10 approach x_norm = np.clip(np.round(x_norm), 0, 255).astype(np.uint8) x_norm = x_norm.astype(np.uint8) x_norm = x_norm.T.reshape(h,w,c) return (slide_num, x_norm) def flatten_sample(sample_tuple): """ Flatten a (H,W,C) sample into a (C*H*W) row vector. Transpose each sample from (H, W, channels) to (channels, H, W), then flatten each into a vector of length channels*H*W. Args: sample_tuple: A (slide_num, sample) tuple, where slide_num is an integer, and sample is a 3D NumPy array of shape (H,W,C). Returns: A (slide_num, sample) tuple, where the sample has been transposed from (H,W,C) to (C,H,W), and flattened to a vector of length (C*H*W). """ slide_num, sample = sample_tuple # 1. Swap axes from (sample_size_x, sample_size_y, ch) to # (ch, sample_size_x, sample_size_y). # 2. Flatten sample into (ch*sample_size_x*sample_size_y). flattened_sample = sample.transpose(2,0,1).reshape(-1) return (slide_num, flattened_sample) # Get Ground Truth Labels def get_labels_df(folder, filename="training_ground_truth.csv"): """ Create a DataFrame with the ground truth labels for each slide. Args: folder: Directory containing a `training_ground_truth.csv` file containing the ground truth "tumor_score" and "molecular_score" labels for each slide. Returns: A Pandas DataFrame containing the ground truth labels for each slide. """ filepath = os.path.join(folder, filename) labels_df = pd.read_csv(filepath, names=["tumor_score", "molecular_score"], header=None) labels_df["slide_num"] = labels_df.index + 1 # slide numbering starts at 1 labels_df.set_index("slide_num", drop=False, inplace=True) # use the slide num as index return labels_df # Process All Slides Into A Spark DataFrame def preprocess(spark, slide_nums, folder="data", training=True, tile_size=1024, overlap=0, tissue_threshold=0.9, sample_size=256, grayscale=False, normalize_stains=True, num_partitions=20000): """ Preprocess a set of whole-slide images. Preprocess a set of whole-slide images as follows: 1. Tile the slides into tiles of size (tile_size, tile_size, 3). 2. Filter the tiles to remove unnecessary tissue. 3. Cut the remaining tiles into samples of size (sample_size, sample_size, ch), where `ch` is 1 if `grayscale` is true, or 3 otherwise. Args: spark: SparkSession. slide_nums: List of whole-slide numbers to process. folder: Local directory in which the slides folder and ground truth file is stored, as a string. This should contain a `training_image_data` folder with images in the format `TUPAC-TR-###.svs`, as well as a `training_ground_truth.csv` file containing the ground truth "tumor_score" and "molecular_score" labels for each slide. Alternatively, the folder should contain a `testing_image_data` folder with images in the format `TUPAC-TE-###.svs`. training: Boolean for training or testing datasets. tile_size: The width and height of a square tile to be generated. overlap: Number of pixels by which to overlap the tiles. tissue_threshold: Tissue percentage threshold for filtering. sample_size: The new width and height of the square samples to be generated. grayscale: Whether or not to generate grayscale samples, rather than RGB. normalize_stains: Whether or not to apply stain normalization. num_partitions: Number of partitions to use during processing. Returns: A Spark DataFrame in which each row contains the slide number, tumor score, molecular score, and the sample stretched out into a Vector. """ # Filter out broken slides # Note: "Broken" here is due to a "version of OpenJPEG with broken support for chroma-subsampled # images". slides = (spark.sparkContext .parallelize(slide_nums) .filter(lambda slide: open_slide(slide, folder, training) is not None)) # Create DataFrame of all tile locations and increase number of partitions # to avoid OOM during subsequent processing. tile_indices = (slides.flatMap( lambda slide: process_slide(slide, folder, training, tile_size, overlap))) # TODO: Explore computing the ideal paritition sizes based on projected number # of tiles after filtering. I.e. something like the following: #rows = tile_indices.count() #part_size = 128 #channels = 1 if grayscale else 3 #row_mb = tile_size * tile_size * channels * 8 / 1024 / 1024 # size of one row in MB #rows_per_part = round(part_size / row_mb) #num_parts = rows / rows_per_part tile_indices = tile_indices.repartition(num_partitions) tile_indices.cache() # Extract all tiles into an RDD, filter, cut into smaller samples, apply stain # normalization, and flatten. tiles = tile_indices.map(lambda tile_index: process_tile_index(tile_index, folder, training)) filtered_tiles = tiles.filter(lambda tile: keep_tile(tile, tile_size, tissue_threshold)) samples = filtered_tiles.flatMap(lambda tile: process_tile(tile, sample_size, grayscale)) if normalize_stains: samples = samples.map(lambda sample: normalize_staining(sample)) samples = samples.map(lambda sample: flatten_sample(sample)) # Convert to a DataFrame if training: # Append labels labels_df = get_labels_df(folder) samples_with_labels = (samples.map( lambda tup: (int(tup[0]), int(labels_df.at[tup[0],"tumor_score"]), float(labels_df.at[tup[0],"molecular_score"]), Vectors.dense(tup[1])))) df = samples_with_labels.toDF(["slide_num", "tumor_score", "molecular_score", "sample"]) df = df.select(df.slide_num.astype("int"), df.tumor_score.astype("int"), df.molecular_score, df["sample"]) else: # testing data -- no labels df = samples.toDF(["slide_num", "sample"]) df = df.select(df.slide_num.astype("int"), df["sample"]) return df # Save DataFrame def save(df, filepath, sample_size, grayscale, mode="error", format="parquet", file_size=128): """ Save a preprocessed DataFrame with a constraint on the file sizes. Args: df: A Spark DataFrame. filepath: Hadoop-supported path at which to save `df`. sample_size: The width and height of the square samples. grayscale: Whether or not to the samples are in grayscale format, rather than RGB. mode: Specifies the behavior of `df.write.mode` when the data already exists. Options include: * `append`: Append contents of this DataFrame to existing data. * `overwrite`: Overwrite existing data. * `error`: Throw an exception if data already exists. * `ignore`: Silently ignore this operation if data already exists. format: The format in which to save the DataFrame. file_size: Size in MB of each saved file. 128 MB is an empirically ideal size. """ channels = 1 if grayscale else 3 row_mb = sample_size * sample_size * channels * 8 / 1024 / 1024 # size of one row in MB rows_per_file = round(file_size / row_mb) df.write.option("maxRecordsPerFile", rows_per_file).mode(mode).save(filepath, format=format) # Utilities def add_row_indices(df, training=True): """ Add a row index column for faster data ingestion times with SystemML. Args: df: A Spark DataFrame in which each row contains the slide number, tumor score, molecular score, and the sample stretched out into a Vector. training: Boolean for training or testing datasets. Returns: The Spark DataFrame with a row index column called "__INDEX". """ rdd = (df.rdd .zipWithIndex() .map(lambda r: (r[1] + 1, *r[0]))) # flatten & convert index to 1-based indexing if training: df = rdd.toDF(['__INDEX', 'slide_num', 'tumor_score', 'molecular_score', 'sample']) df = df.select(df["__INDEX"].astype("int"), df.slide_num.astype("int"), df.tumor_score.astype("int"), df.molecular_score, df["sample"]) else: # testing data -- no labels df = rdd.toDF(["__INDEX", "slide_num", "sample"]) df = df.select(df["__INDEX"].astype("int"), df.slide_num.astype("int"), df["sample"]) return df def sample(df, frac, training=True, seed=None): """ Sample the DataFrame, stratified on the class. Args: df: A Spark DataFrame in which each row contains the slide number, tumor score, molecular score, and the sample stretched out into a Vector. frac: Fraction of rows to keep. training: Boolean for training or testing datasets. seed: Random seed used for the sampling. Returns: A stratified sample of the original Spark DataFrame. """ df_sample = df.sampleBy("tumor_score", fractions={1: frac, 2: frac, 3: frac}, seed=seed) return df_sample
apache-2.0
gustfrontar/LETKF_WRF
wrf/verification/python/plot_histogram.py
1
6461
# -*- coding: utf-8 -*- #Grafica el histograma de cada variable dentro de un determinado dominio para el #punto con el maximo kld. E indica la posicion de dicho punto. #Esto sirve para tener una idea visual de que significa un KLD grande para #diferentes variables y casos. """ Created on Tue Nov 1 18:45:15 2016 @author: """ import numpy as np import matplotlib.pyplot as plt import datetime as dt import binary_io as bio import histogram_tools as ht import bred_vector_functions as bvf import os basedir='/home/jruiz/share/EXPERIMENTS/experiments_large_ensemble/data/' expname = '/OsakaPAR_1km_control1000m_smallrandompert_new/' plotbasedir=basedir + expname + '/plots/' undef_in=1.0e20 nbins=30 thresholdmin=0.005 undef_out=np.nan filetype='analgp' buf_zone=20 buf_zone_z=4 #The following will be used to extract a particlar variable from the original data. #This variables should be especified according to the data that we have in the binary files. ctl_vars='U','V','W','T','QV','QHYD' #Complete list of variables in ctl file. ctl_inirecord=[0,12,24,36,48,60] #Starting record for each variable. From 0 to N ctl_endrecord=[11,23,35,47,59,71] #End record for each variable. From 0 to N. #Which variables and levels are we going to plot? plotlevels=np.array([3,7,9]) #Which levels will be plotted (this levels are equivalent to the BV plots) plotvars='U','V','W','T','QV','QHYD' #Which variables will be plotted. #Create the plotbasedir if not os.path.exists(plotbasedir): os.mkdir(plotbasedir) #Defini initial and end times using datetime module. itime = dt.datetime(2013,7,13,5,25,00) #Initial time. etime = dt.datetime(2013,7,13,5,39,00) #End time. #Define the delta. delta=dt.timedelta(seconds=60) nx=180 ny=180 nz=np.max(ctl_endrecord) + 1 #Total number of records in binary file. nlev=12 #Number of vertical levels for 3D variables. ntimes=1 + np.around((etime-itime).seconds / delta.seconds) #Total number of times. #Define regions my_hist=dict() ens_mean=dict() ens_std=dict() ens_skew=dict() ens_kurt=dict() ctime=itime #Get lat lon. lat=bio.read_data_direct(basedir + expname + '/latlon/lat.grd',nx,ny,1,'>f4')[:,:,0] lon=bio.read_data_direct(basedir + expname + '/latlon/lon.grd',nx,ny,1,'>f4')[:,:,0] int_liquid=np.zeros([nx,ny,nlev]) it=0 while ( ctime <= etime ): print( ctime ) print ( 'Reading the histogram ') hist_file=basedir + expname + ctime.strftime("%Y%m%d%H%M%S") + '/'+ filetype + '/' + '/histogram.grd' max_file =basedir + expname + ctime.strftime("%Y%m%d%H%M%S") + '/'+ filetype + '/' + '/maxvar.grd' min_file =basedir + expname + ctime.strftime("%Y%m%d%H%M%S") + '/'+ filetype + '/' + '/minvar.grd' hist=ht.read_histogram(hist_file,max_file,min_file,nx,ny,nbins,ctl_vars,ctl_inirecord,ctl_endrecord,dtypeinfloat='>f4',dtypeinint='>i2',undef_in=undef_in,undef_out=undef_out) kld_file =basedir + expname + ctime.strftime("%Y%m%d%H%M%S") + '/'+ filetype + '/' + '/kldistance.grd' kld=bio.read_data_scale_2(kld_file,nx,ny,nz,ctl_vars,ctl_inirecord,ctl_endrecord,dtypein='f4',undef_in=undef_in,undef_out=undef_out) # hist_properties=analyze_histogram_fun( my_hist , thresholdmin ) mean_file =basedir + expname + ctime.strftime("%Y%m%d%H%M%S") + '/'+ filetype + '/' + '/moment0001.grd' ens_mean=bio.read_data_scale_2(mean_file,nx,ny,nz,ctl_vars,ctl_inirecord,ctl_endrecord,dtypein='f4',undef_in=undef_in,undef_out=undef_out) std_file =basedir + expname + ctime.strftime("%Y%m%d%H%M%S") + '/'+ filetype + '/' + '/moment0002.grd' ens_std=bio.read_data_scale_2(std_file,nx,ny,nz,ctl_vars,ctl_inirecord,ctl_endrecord,dtypein='f4',undef_in=undef_in,undef_out=undef_out) skew_file =basedir + expname + ctime.strftime("%Y%m%d%H%M%S") + '/'+ filetype + '/' + '/moment0003.grd' ens_skew=bio.read_data_scale_2(skew_file,nx,ny,nz,ctl_vars,ctl_inirecord,ctl_endrecord,dtypein='f4',undef_in=undef_in,undef_out=undef_out) kurt_file =basedir + expname + ctime.strftime("%Y%m%d%H%M%S") + '/'+ filetype + '/' + '/moment0004.grd' ens_kurt=bio.read_data_scale_2(kurt_file,nx,ny,nz,ctl_vars,ctl_inirecord,ctl_endrecord,dtypein='f4',undef_in=undef_in,undef_out=undef_out) #Compute total integrated liquid (we will use this to identify areas associated with clouds and convection) tmp_int_liquid = np.nansum(ens_mean['QHYD'],2) for ilev in range(0,nlev) : #Create a fake 3D array for the vertically integrated liquid #This is because the plotting function expects a 3D array as input. int_liquid[:,:,ilev]=tmp_int_liquid for key in hist : my_kld=kld[key][buf_zone:-buf_zone,buf_zone:-buf_zone,:-buf_zone_z] my_std=ens_std[key] my_skew=ens_skew[key]/np.power(my_std,3/2) my_kurt=ens_kurt[key]/np.power(my_std,2) -3 my_hist=hist[key] #Busco el maximo del KLD max_loc=np.nanargmax( my_kld ) [tmpnx , tmpny , tmpnz ]=np.shape( my_kld ) [xmax,ymax,zmax]=np.unravel_index( max_loc,(tmpnx,tmpny,tmpnz) ) max_range=my_hist['maxval'][xmax,ymax,zmax] min_range=my_hist['minval'][xmax,ymax,zmax] my_delta=(max_range-min_range)/nbins my_range=min_range + my_delta / 2 + my_delta * np.arange(0,nbins,1) my_bars=my_hist['hist'][xmax,ymax,zmax,:] / np.sum( my_hist['hist'][xmax,ymax,zmax,:] ) smooth_range=2 my_bars_s=np.zeros(np.shape(my_bars)) for ii in range(0,my_bars.size) : mini=ii-smooth_range maxi=ii+smooth_range if( mini < 0 ) : mini=0 if( maxi > np.size(my_bars)-1 ) : maxi=np.size(my_bars)-1 my_bars_s[ii]=np.mean( my_bars[mini:maxi]) my_mean=ens_mean[key][xmax,ymax,zmax] my_sigma=ens_std[key][xmax,ymax,zmax] my_gauss_fit=my_delta*(1/(np.sqrt(2*np.pi*my_sigma)))*np.exp( -np.power( my_range-my_mean,2)/(2*my_sigma)) my_label= key + ' KLD=' + my_kld[xmax,ymax,zmax].astype('U4') the_bars=plt.bar( my_range , my_bars_s , width = my_delta ,color='r',label=my_label ) the_lines=plt.plot( my_range , my_gauss_fit , 'k--',linewidth=4) plt.legend(handles=[the_bars]) #plt.show() #Plot the increments. print( 'Generationg the following figure : ' + 'Figure_histogram_maxkld_' + key + '_' + ctime.strftime("%Y%m%d%H%M%S") + 'png' ) plt.savefig( basedir + expname + '/plots/Figure_histogram_maxkld_' + key + '_' + ctime.strftime("%Y%m%d%H%M%S") + 'png' ) plt.close() ctime = ctime + delta it = it + 1 print ( "Finish time loop" )
gpl-3.0
fabioticconi/scikit-learn
examples/linear_model/plot_iris_logistic.py
119
1679
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Logistic Regression 3-class Classifier ========================================================= Show below is a logistic-regression classifiers decision boundaries on the `iris <https://en.wikipedia.org/wiki/Iris_flower_data_set>`_ dataset. The datapoints are colored according to their labels. """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model, datasets # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. Y = iris.target h = .02 # step size in the mesh logreg = linear_model.LogisticRegression(C=1e5) # we create an instance of Neighbours Classifier and fit the data. logreg.fit(X, Y) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, x_max]x[y_min, y_max]. x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = logreg.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.figure(1, figsize=(4, 3)) plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired) # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=Y, edgecolors='k', cmap=plt.cm.Paired) plt.xlabel('Sepal length') plt.ylabel('Sepal width') plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) plt.xticks(()) plt.yticks(()) plt.show()
bsd-3-clause
yanlend/scikit-learn
sklearn/ensemble/forest.py
2
62656
"""Forest of trees-based ensemble methods Those methods include random forests and extremely randomized trees. The module structure is the following: - The ``BaseForest`` base class implements a common ``fit`` method for all the estimators in the module. The ``fit`` method of the base ``Forest`` class calls the ``fit`` method of each sub-estimator on random samples (with replacement, a.k.a. bootstrap) of the training set. The init of the sub-estimator is further delegated to the ``BaseEnsemble`` constructor. - The ``ForestClassifier`` and ``ForestRegressor`` base classes further implement the prediction logic by computing an average of the predicted outcomes of the sub-estimators. - The ``RandomForestClassifier`` and ``RandomForestRegressor`` derived classes provide the user with concrete implementations of the forest ensemble method using classical, deterministic ``DecisionTreeClassifier`` and ``DecisionTreeRegressor`` as sub-estimator implementations. - The ``ExtraTreesClassifier`` and ``ExtraTreesRegressor`` derived classes provide the user with concrete implementations of the forest ensemble method using the extremely randomized trees ``ExtraTreeClassifier`` and ``ExtraTreeRegressor`` as sub-estimator implementations. Single and multi-output problems are both handled. """ # Authors: Gilles Louppe <[email protected]> # Brian Holt <[email protected]> # Joly Arnaud <[email protected]> # Fares Hedayati <[email protected]> # # License: BSD 3 clause from __future__ import division import warnings from warnings import warn from abc import ABCMeta, abstractmethod import numpy as np from scipy.sparse import issparse from ..base import ClassifierMixin, RegressorMixin from ..externals.joblib import Parallel, delayed from ..externals import six from ..feature_selection.from_model import _LearntSelectorMixin from ..metrics import r2_score from ..preprocessing import OneHotEncoder from ..tree import (DecisionTreeClassifier, DecisionTreeRegressor, ExtraTreeClassifier, ExtraTreeRegressor) from ..tree._tree import DTYPE, DOUBLE from ..utils import check_random_state, check_array, compute_sample_weight from ..utils.validation import DataConversionWarning, NotFittedError from .base import BaseEnsemble, _partition_estimators from ..utils.fixes import bincount from ..utils.multiclass import check_classification_targets __all__ = ["RandomForestClassifier", "RandomForestRegressor", "ExtraTreesClassifier", "ExtraTreesRegressor", "RandomTreesEmbedding"] MAX_INT = np.iinfo(np.int32).max def _generate_sample_indices(random_state, n_samples): """Private function used to _parallel_build_trees function.""" random_instance = check_random_state(random_state) sample_indices = random_instance.randint(0, n_samples, n_samples) return sample_indices def _generate_unsampled_indices(random_state, n_samples): """Private function used to forest._set_oob_score fuction.""" sample_indices = _generate_sample_indices(random_state, n_samples) sample_counts = bincount(sample_indices, minlength=n_samples) unsampled_mask = sample_counts == 0 indices_range = np.arange(n_samples) unsampled_indices = indices_range[unsampled_mask] return unsampled_indices def _parallel_build_trees(tree, forest, X, y, sample_weight, tree_idx, n_trees, verbose=0, class_weight=None): """Private function used to fit a single tree in parallel.""" if verbose > 1: print("building tree %d of %d" % (tree_idx + 1, n_trees)) if forest.bootstrap: n_samples = X.shape[0] if sample_weight is None: curr_sample_weight = np.ones((n_samples,), dtype=np.float64) else: curr_sample_weight = sample_weight.copy() indices = _generate_sample_indices(tree.random_state, n_samples) sample_counts = bincount(indices, minlength=n_samples) curr_sample_weight *= sample_counts if class_weight == 'subsample': with warnings.catch_warnings(): warnings.simplefilter('ignore', DeprecationWarning) curr_sample_weight *= compute_sample_weight('auto', y, indices) elif class_weight == 'balanced_subsample': curr_sample_weight *= compute_sample_weight('balanced', y, indices) tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) else: tree.fit(X, y, sample_weight=sample_weight, check_input=False) return tree def _parallel_helper(obj, methodname, *args, **kwargs): """Private helper to workaround Python 2 pickle limitations""" return getattr(obj, methodname)(*args, **kwargs) class BaseForest(six.with_metaclass(ABCMeta, BaseEnsemble, _LearntSelectorMixin)): """Base class for forests of trees. Warning: This class should not be used directly. Use derived classes instead. """ @abstractmethod def __init__(self, base_estimator, n_estimators=10, estimator_params=tuple(), bootstrap=False, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False, class_weight=None): super(BaseForest, self).__init__( base_estimator=base_estimator, n_estimators=n_estimators, estimator_params=estimator_params) self.bootstrap = bootstrap self.oob_score = oob_score self.n_jobs = n_jobs self.random_state = random_state self.verbose = verbose self.warm_start = warm_start self.class_weight = class_weight def apply(self, X): """Apply trees in the forest to X, return leaf indices. Parameters ---------- X : array-like or sparse matrix, shape = [n_samples, n_features] The input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csr_matrix``. Returns ------- X_leaves : array_like, shape = [n_samples, n_estimators] For each datapoint x in X and for each tree in the forest, return the index of the leaf x ends up in. """ X = self._validate_X_predict(X) results = Parallel(n_jobs=self.n_jobs, verbose=self.verbose, backend="threading")( delayed(_parallel_helper)(tree, 'apply', X, check_input=False) for tree in self.estimators_) return np.array(results).T def fit(self, X, y, sample_weight=None): """Build a forest of trees from the training set (X, y). Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The training input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csc_matrix``. y : array-like, shape = [n_samples] or [n_samples, n_outputs] The target values (class labels in classification, real numbers in regression). sample_weight : array-like, shape = [n_samples] or None Sample weights. If None, then samples are equally weighted. Splits that would create child nodes with net zero or negative weight are ignored while searching for a split in each node. In the case of classification, splits are also ignored if they would result in any single class carrying a negative weight in either child node. Returns ------- self : object Returns self. """ # Validate or convert input data X = check_array(X, dtype=DTYPE, accept_sparse="csc") if issparse(X): # Pre-sort indices to avoid that each individual tree of the # ensemble sorts the indices. X.sort_indices() # Remap output n_samples, self.n_features_ = X.shape y = np.atleast_1d(y) if y.ndim == 2 and y.shape[1] == 1: warn("A column-vector y was passed when a 1d array was" " expected. Please change the shape of y to " "(n_samples,), for example using ravel().", DataConversionWarning, stacklevel=2) if y.ndim == 1: # reshape is necessary to preserve the data contiguity against vs # [:, np.newaxis] that does not. y = np.reshape(y, (-1, 1)) self.n_outputs_ = y.shape[1] y, expanded_class_weight = self._validate_y_class_weight(y) if getattr(y, "dtype", None) != DOUBLE or not y.flags.contiguous: y = np.ascontiguousarray(y, dtype=DOUBLE) if expanded_class_weight is not None: if sample_weight is not None: sample_weight = sample_weight * expanded_class_weight else: sample_weight = expanded_class_weight # Check parameters self._validate_estimator() if not self.bootstrap and self.oob_score: raise ValueError("Out of bag estimation only available" " if bootstrap=True") random_state = check_random_state(self.random_state) if not self.warm_start: # Free allocated memory, if any self.estimators_ = [] n_more_estimators = self.n_estimators - len(self.estimators_) if n_more_estimators < 0: raise ValueError('n_estimators=%d must be larger or equal to ' 'len(estimators_)=%d when warm_start==True' % (self.n_estimators, len(self.estimators_))) elif n_more_estimators == 0: warn("Warm-start fitting without increasing n_estimators does not " "fit new trees.") else: if self.warm_start and len(self.estimators_) > 0: # We draw from the random state to get the random state we # would have got if we hadn't used a warm_start. random_state.randint(MAX_INT, size=len(self.estimators_)) trees = [] for i in range(n_more_estimators): tree = self._make_estimator(append=False) tree.set_params(random_state=random_state.randint(MAX_INT)) trees.append(tree) # Parallel loop: we use the threading backend as the Cython code # for fitting the trees is internally releasing the Python GIL # making threading always more efficient than multiprocessing in # that case. trees = Parallel(n_jobs=self.n_jobs, verbose=self.verbose, backend="threading")( delayed(_parallel_build_trees)( t, self, X, y, sample_weight, i, len(trees), verbose=self.verbose, class_weight=self.class_weight) for i, t in enumerate(trees)) # Collect newly grown trees self.estimators_.extend(trees) if self.oob_score: self._set_oob_score(X, y) # Decapsulate classes_ attributes if hasattr(self, "classes_") and self.n_outputs_ == 1: self.n_classes_ = self.n_classes_[0] self.classes_ = self.classes_[0] return self @abstractmethod def _set_oob_score(self, X, y): """Calculate out of bag predictions and score.""" def _validate_y_class_weight(self, y): # Default implementation return y, None def _validate_X_predict(self, X): """Validate X whenever one tries to predict, apply, predict_proba""" if self.estimators_ is None or len(self.estimators_) == 0: raise NotFittedError("Estimator not fitted, " "call `fit` before exploiting the model.") return self.estimators_[0]._validate_X_predict(X, check_input=True) @property def feature_importances_(self): """Return the feature importances (the higher, the more important the feature). Returns ------- feature_importances_ : array, shape = [n_features] """ if self.estimators_ is None or len(self.estimators_) == 0: raise NotFittedError("Estimator not fitted, " "call `fit` before `feature_importances_`.") all_importances = Parallel(n_jobs=self.n_jobs, backend="threading")( delayed(getattr)(tree, 'feature_importances_') for tree in self.estimators_) return sum(all_importances) / len(self.estimators_) class ForestClassifier(six.with_metaclass(ABCMeta, BaseForest, ClassifierMixin)): """Base class for forest of trees-based classifiers. Warning: This class should not be used directly. Use derived classes instead. """ @abstractmethod def __init__(self, base_estimator, n_estimators=10, estimator_params=tuple(), bootstrap=False, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False, class_weight=None): super(ForestClassifier, self).__init__( base_estimator, n_estimators=n_estimators, estimator_params=estimator_params, bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start, class_weight=class_weight) def _set_oob_score(self, X, y): """Compute out-of-bag score""" X = check_array(X, dtype=DTYPE, accept_sparse='csr') n_classes_ = self.n_classes_ n_samples = y.shape[0] oob_decision_function = [] oob_score = 0.0 predictions = [] for k in range(self.n_outputs_): predictions.append(np.zeros((n_samples, n_classes_[k]))) for estimator in self.estimators_: unsampled_indices = _generate_unsampled_indices( estimator.random_state, n_samples) p_estimator = estimator.predict_proba(X[unsampled_indices, :], check_input=False) if self.n_outputs_ == 1: p_estimator = [p_estimator] for k in range(self.n_outputs_): predictions[k][unsampled_indices, :] += p_estimator[k] for k in range(self.n_outputs_): if (predictions[k].sum(axis=1) == 0).any(): warn("Some inputs do not have OOB scores. " "This probably means too few trees were used " "to compute any reliable oob estimates.") decision = (predictions[k] / predictions[k].sum(axis=1)[:, np.newaxis]) oob_decision_function.append(decision) oob_score += np.mean(y[:, k] == np.argmax(predictions[k], axis=1), axis=0) if self.n_outputs_ == 1: self.oob_decision_function_ = oob_decision_function[0] else: self.oob_decision_function_ = oob_decision_function self.oob_score_ = oob_score / self.n_outputs_ def _validate_y_class_weight(self, y): check_classification_targets(y) y = np.copy(y) expanded_class_weight = None if self.class_weight is not None: y_original = np.copy(y) self.classes_ = [] self.n_classes_ = [] y_store_unique_indices = np.zeros(y.shape, dtype=np.int) for k in range(self.n_outputs_): classes_k, y_store_unique_indices[:, k] = np.unique(y[:, k], return_inverse=True) self.classes_.append(classes_k) self.n_classes_.append(classes_k.shape[0]) y = y_store_unique_indices if self.class_weight is not None: valid_presets = ('auto', 'balanced', 'balanced_subsample', 'subsample', 'auto') if isinstance(self.class_weight, six.string_types): if self.class_weight not in valid_presets: raise ValueError('Valid presets for class_weight include ' '"balanced" and "balanced_subsample". Given "%s".' % self.class_weight) if self.class_weight == "subsample": warn("class_weight='subsample' is deprecated and will be removed in 0.18." " It was replaced by class_weight='balanced_subsample' " "using the balanced strategy.", DeprecationWarning) if self.warm_start: warn('class_weight presets "balanced" or "balanced_subsample" are ' 'not recommended for warm_start if the fitted data ' 'differs from the full dataset. In order to use ' '"balanced" weights, use compute_class_weight("balanced", ' 'classes, y). In place of y you can use a large ' 'enough sample of the full training set target to ' 'properly estimate the class frequency ' 'distributions. Pass the resulting weights as the ' 'class_weight parameter.') if (self.class_weight not in ['subsample', 'balanced_subsample'] or not self.bootstrap): if self.class_weight == 'subsample': class_weight = 'auto' elif self.class_weight == "balanced_subsample": class_weight = "balanced" else: class_weight = self.class_weight with warnings.catch_warnings(): if class_weight == "auto": warnings.simplefilter('ignore', DeprecationWarning) expanded_class_weight = compute_sample_weight(class_weight, y_original) return y, expanded_class_weight def predict(self, X): """Predict class for X. The predicted class of an input sample is a vote by the trees in the forest, weighted by their probability estimates. That is, the predicted class is the one with highest mean probability estimate across the trees. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csr_matrix``. Returns ------- y : array of shape = [n_samples] or [n_samples, n_outputs] The predicted classes. """ proba = self.predict_proba(X) if self.n_outputs_ == 1: return self.classes_.take(np.argmax(proba, axis=1), axis=0) else: n_samples = proba[0].shape[0] predictions = np.zeros((n_samples, self.n_outputs_)) for k in range(self.n_outputs_): predictions[:, k] = self.classes_[k].take(np.argmax(proba[k], axis=1), axis=0) return predictions def predict_proba(self, X): """Predict class probabilities for X. The predicted class probabilities of an input sample is computed as the mean predicted class probabilities of the trees in the forest. The class probability of a single tree is the fraction of samples of the same class in a leaf. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csr_matrix``. Returns ------- p : array of shape = [n_samples, n_classes], or a list of n_outputs such arrays if n_outputs > 1. The class probabilities of the input samples. The order of the classes corresponds to that in the attribute `classes_`. """ # Check data X = self._validate_X_predict(X) # Assign chunk of trees to jobs n_jobs, _, _ = _partition_estimators(self.n_estimators, self.n_jobs) # Parallel loop all_proba = Parallel(n_jobs=n_jobs, verbose=self.verbose, backend="threading")( delayed(_parallel_helper)(e, 'predict_proba', X, check_input=False) for e in self.estimators_) # Reduce proba = all_proba[0] if self.n_outputs_ == 1: for j in range(1, len(all_proba)): proba += all_proba[j] proba /= len(self.estimators_) else: for j in range(1, len(all_proba)): for k in range(self.n_outputs_): proba[k] += all_proba[j][k] for k in range(self.n_outputs_): proba[k] /= self.n_estimators return proba def predict_log_proba(self, X): """Predict class log-probabilities for X. The predicted class log-probabilities of an input sample is computed as the log of the mean predicted class probabilities of the trees in the forest. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csr_matrix``. Returns ------- p : array of shape = [n_samples, n_classes], or a list of n_outputs such arrays if n_outputs > 1. The class probabilities of the input samples. The order of the classes corresponds to that in the attribute `classes_`. """ proba = self.predict_proba(X) if self.n_outputs_ == 1: return np.log(proba) else: for k in range(self.n_outputs_): proba[k] = np.log(proba[k]) return proba class ForestRegressor(six.with_metaclass(ABCMeta, BaseForest, RegressorMixin)): """Base class for forest of trees-based regressors. Warning: This class should not be used directly. Use derived classes instead. """ @abstractmethod def __init__(self, base_estimator, n_estimators=10, estimator_params=tuple(), bootstrap=False, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False): super(ForestRegressor, self).__init__( base_estimator, n_estimators=n_estimators, estimator_params=estimator_params, bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start) def predict(self, X): """Predict regression target for X. The predicted regression target of an input sample is computed as the mean predicted regression targets of the trees in the forest. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csr_matrix``. Returns ------- y : array of shape = [n_samples] or [n_samples, n_outputs] The predicted values. """ # Check data X = self._validate_X_predict(X) # Assign chunk of trees to jobs n_jobs, _, _ = _partition_estimators(self.n_estimators, self.n_jobs) # Parallel loop all_y_hat = Parallel(n_jobs=n_jobs, verbose=self.verbose, backend="threading")( delayed(_parallel_helper)(e, 'predict', X, check_input=False) for e in self.estimators_) # Reduce y_hat = sum(all_y_hat) / len(self.estimators_) return y_hat def _set_oob_score(self, X, y): """Compute out-of-bag scores""" X = check_array(X, dtype=DTYPE, accept_sparse='csr') n_samples = y.shape[0] predictions = np.zeros((n_samples, self.n_outputs_)) n_predictions = np.zeros((n_samples, self.n_outputs_)) for estimator in self.estimators_: unsampled_indices = _generate_unsampled_indices( estimator.random_state, n_samples) p_estimator = estimator.predict( X[unsampled_indices, :], check_input=False) if self.n_outputs_ == 1: p_estimator = p_estimator[:, np.newaxis] predictions[unsampled_indices, :] += p_estimator n_predictions[unsampled_indices, :] += 1 if (n_predictions == 0).any(): warn("Some inputs do not have OOB scores. " "This probably means too few trees were used " "to compute any reliable oob estimates.") n_predictions[n_predictions == 0] = 1 predictions /= n_predictions self.oob_prediction_ = predictions if self.n_outputs_ == 1: self.oob_prediction_ = \ self.oob_prediction_.reshape((n_samples, )) self.oob_score_ = 0.0 for k in range(self.n_outputs_): self.oob_score_ += r2_score(y[:, k], predictions[:, k]) self.oob_score_ /= self.n_outputs_ class RandomForestClassifier(ForestClassifier): """A random forest classifier. A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is always the same as the original input sample size but the samples are drawn with replacement if `bootstrap=True` (default). Read more in the :ref:`User Guide <forest>`. Parameters ---------- n_estimators : integer, optional (default=10) The number of trees in the forest. criterion : string, optional (default="gini") The function to measure the quality of a split. Supported criteria are "gini" for the Gini impurity and "entropy" for the information gain. Note: this parameter is tree-specific. max_features : int, float, string or None, optional (default="auto") The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=sqrt(n_features)`. - If "sqrt", then `max_features=sqrt(n_features)` (same as "auto"). - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. Note: this parameter is tree-specific. max_depth : integer or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. Ignored if ``max_leaf_nodes`` is not None. Note: this parameter is tree-specific. min_samples_split : integer, optional (default=2) The minimum number of samples required to split an internal node. Note: this parameter is tree-specific. min_samples_leaf : integer, optional (default=1) The minimum number of samples in newly created leaves. A split is discarded if after the split, one of the leaves would contain less then ``min_samples_leaf`` samples. Note: this parameter is tree-specific. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the input samples required to be at a leaf node. Note: this parameter is tree-specific. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. If not None then ``max_depth`` will be ignored. Note: this parameter is tree-specific. bootstrap : boolean, optional (default=True) Whether bootstrap samples are used when building trees. oob_score : bool Whether to use out-of-bag samples to estimate the generalization error. n_jobs : integer, optional (default=1) The number of jobs to run in parallel for both `fit` and `predict`. If -1, then the number of jobs is set to the number of cores. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, optional (default=0) Controls the verbosity of the tree building process. warm_start : bool, optional (default=False) When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. class_weight : dict, list of dicts, "balanced", "balanced_subsample" or None, optional Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. For multi-output problems, a list of dicts can be provided in the same order as the columns of y. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` The "balanced_subsample" mode is the same as "balanced" except that weights are computed based on the bootstrap sample for every tree grown. For multi-output, the weights of each column of y will be multiplied. Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified. Attributes ---------- estimators_ : list of DecisionTreeClassifier The collection of fitted sub-estimators. classes_ : array of shape = [n_classes] or a list of such arrays The classes labels (single output problem), or a list of arrays of class labels (multi-output problem). n_classes_ : int or list The number of classes (single output problem), or a list containing the number of classes for each output (multi-output problem). n_features_ : int The number of features when ``fit`` is performed. n_outputs_ : int The number of outputs when ``fit`` is performed. feature_importances_ : array of shape = [n_features] The feature importances (the higher, the more important the feature). oob_score_ : float Score of the training dataset obtained using an out-of-bag estimate. oob_decision_function_ : array of shape = [n_samples, n_classes] Decision function computed with out-of-bag estimate on the training set. If n_estimators is small it might be possible that a data point was never left out during the bootstrap. In this case, `oob_decision_function_` might contain NaN. References ---------- .. [1] L. Breiman, "Random Forests", Machine Learning, 45(1), 5-32, 2001. See also -------- DecisionTreeClassifier, ExtraTreesClassifier """ def __init__(self, n_estimators=10, criterion="gini", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features="auto", max_leaf_nodes=None, bootstrap=True, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False, class_weight=None): super(RandomForestClassifier, self).__init__( base_estimator=DecisionTreeClassifier(), n_estimators=n_estimators, estimator_params=("criterion", "max_depth", "min_samples_split", "min_samples_leaf", "min_weight_fraction_leaf", "max_features", "max_leaf_nodes", "random_state"), bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start, class_weight=class_weight) self.criterion = criterion self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = max_features self.max_leaf_nodes = max_leaf_nodes class RandomForestRegressor(ForestRegressor): """A random forest regressor. A random forest is a meta estimator that fits a number of classifying decision trees on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is always the same as the original input sample size but the samples are drawn with replacement if `bootstrap=True` (default). Read more in the :ref:`User Guide <forest>`. Parameters ---------- n_estimators : integer, optional (default=10) The number of trees in the forest. criterion : string, optional (default="mse") The function to measure the quality of a split. The only supported criterion is "mse" for the mean squared error. Note: this parameter is tree-specific. max_features : int, float, string or None, optional (default="auto") The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=n_features`. - If "sqrt", then `max_features=sqrt(n_features)`. - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. Note: this parameter is tree-specific. max_depth : integer or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. Ignored if ``max_leaf_nodes`` is not None. Note: this parameter is tree-specific. min_samples_split : integer, optional (default=2) The minimum number of samples required to split an internal node. Note: this parameter is tree-specific. min_samples_leaf : integer, optional (default=1) The minimum number of samples in newly created leaves. A split is discarded if after the split, one of the leaves would contain less then ``min_samples_leaf`` samples. Note: this parameter is tree-specific. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the input samples required to be at a leaf node. Note: this parameter is tree-specific. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. If not None then ``max_depth`` will be ignored. Note: this parameter is tree-specific. bootstrap : boolean, optional (default=True) Whether bootstrap samples are used when building trees. oob_score : bool whether to use out-of-bag samples to estimate the generalization error. n_jobs : integer, optional (default=1) The number of jobs to run in parallel for both `fit` and `predict`. If -1, then the number of jobs is set to the number of cores. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, optional (default=0) Controls the verbosity of the tree building process. warm_start : bool, optional (default=False) When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. Attributes ---------- estimators_ : list of DecisionTreeRegressor The collection of fitted sub-estimators. feature_importances_ : array of shape = [n_features] The feature importances (the higher, the more important the feature). n_features_ : int The number of features when ``fit`` is performed. n_outputs_ : int The number of outputs when ``fit`` is performed. oob_score_ : float Score of the training dataset obtained using an out-of-bag estimate. oob_prediction_ : array of shape = [n_samples] Prediction computed with out-of-bag estimate on the training set. References ---------- .. [1] L. Breiman, "Random Forests", Machine Learning, 45(1), 5-32, 2001. See also -------- DecisionTreeRegressor, ExtraTreesRegressor """ def __init__(self, n_estimators=10, criterion="mse", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features="auto", max_leaf_nodes=None, bootstrap=True, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False): super(RandomForestRegressor, self).__init__( base_estimator=DecisionTreeRegressor(), n_estimators=n_estimators, estimator_params=("criterion", "max_depth", "min_samples_split", "min_samples_leaf", "min_weight_fraction_leaf", "max_features", "max_leaf_nodes", "random_state"), bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start) self.criterion = criterion self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = max_features self.max_leaf_nodes = max_leaf_nodes class ExtraTreesClassifier(ForestClassifier): """An extra-trees classifier. This class implements a meta estimator that fits a number of randomized decision trees (a.k.a. extra-trees) on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting. Read more in the :ref:`User Guide <forest>`. Parameters ---------- n_estimators : integer, optional (default=10) The number of trees in the forest. criterion : string, optional (default="gini") The function to measure the quality of a split. Supported criteria are "gini" for the Gini impurity and "entropy" for the information gain. Note: this parameter is tree-specific. max_features : int, float, string or None, optional (default="auto") The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=sqrt(n_features)`. - If "sqrt", then `max_features=sqrt(n_features)`. - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. Note: this parameter is tree-specific. max_depth : integer or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. Ignored if ``max_leaf_nodes`` is not None. Note: this parameter is tree-specific. min_samples_split : integer, optional (default=2) The minimum number of samples required to split an internal node. Note: this parameter is tree-specific. min_samples_leaf : integer, optional (default=1) The minimum number of samples in newly created leaves. A split is discarded if after the split, one of the leaves would contain less then ``min_samples_leaf`` samples. Note: this parameter is tree-specific. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the input samples required to be at a leaf node. Note: this parameter is tree-specific. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. If not None then ``max_depth`` will be ignored. Note: this parameter is tree-specific. bootstrap : boolean, optional (default=False) Whether bootstrap samples are used when building trees. oob_score : bool Whether to use out-of-bag samples to estimate the generalization error. n_jobs : integer, optional (default=1) The number of jobs to run in parallel for both `fit` and `predict`. If -1, then the number of jobs is set to the number of cores. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, optional (default=0) Controls the verbosity of the tree building process. warm_start : bool, optional (default=False) When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. class_weight : dict, list of dicts, "balanced", "balanced_subsample" or None, optional Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. For multi-output problems, a list of dicts can be provided in the same order as the columns of y. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` The "balanced_subsample" mode is the same as "balanced" except that weights are computed based on the bootstrap sample for every tree grown. For multi-output, the weights of each column of y will be multiplied. Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified. Attributes ---------- estimators_ : list of DecisionTreeClassifier The collection of fitted sub-estimators. classes_ : array of shape = [n_classes] or a list of such arrays The classes labels (single output problem), or a list of arrays of class labels (multi-output problem). n_classes_ : int or list The number of classes (single output problem), or a list containing the number of classes for each output (multi-output problem). feature_importances_ : array of shape = [n_features] The feature importances (the higher, the more important the feature). n_features_ : int The number of features when ``fit`` is performed. n_outputs_ : int The number of outputs when ``fit`` is performed. oob_score_ : float Score of the training dataset obtained using an out-of-bag estimate. oob_decision_function_ : array of shape = [n_samples, n_classes] Decision function computed with out-of-bag estimate on the training set. If n_estimators is small it might be possible that a data point was never left out during the bootstrap. In this case, `oob_decision_function_` might contain NaN. References ---------- .. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees", Machine Learning, 63(1), 3-42, 2006. See also -------- sklearn.tree.ExtraTreeClassifier : Base classifier for this ensemble. RandomForestClassifier : Ensemble Classifier based on trees with optimal splits. """ def __init__(self, n_estimators=10, criterion="gini", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features="auto", max_leaf_nodes=None, bootstrap=False, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False, class_weight=None): super(ExtraTreesClassifier, self).__init__( base_estimator=ExtraTreeClassifier(), n_estimators=n_estimators, estimator_params=("criterion", "max_depth", "min_samples_split", "min_samples_leaf", "min_weight_fraction_leaf", "max_features", "max_leaf_nodes", "random_state"), bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start, class_weight=class_weight) self.criterion = criterion self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = max_features self.max_leaf_nodes = max_leaf_nodes class ExtraTreesRegressor(ForestRegressor): """An extra-trees regressor. This class implements a meta estimator that fits a number of randomized decision trees (a.k.a. extra-trees) on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting. Read more in the :ref:`User Guide <forest>`. Parameters ---------- n_estimators : integer, optional (default=10) The number of trees in the forest. criterion : string, optional (default="mse") The function to measure the quality of a split. The only supported criterion is "mse" for the mean squared error. Note: this parameter is tree-specific. max_features : int, float, string or None, optional (default="auto") The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=n_features`. - If "sqrt", then `max_features=sqrt(n_features)`. - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. Note: this parameter is tree-specific. max_depth : integer or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. Ignored if ``max_leaf_nodes`` is not None. Note: this parameter is tree-specific. min_samples_split : integer, optional (default=2) The minimum number of samples required to split an internal node. Note: this parameter is tree-specific. min_samples_leaf : integer, optional (default=1) The minimum number of samples in newly created leaves. A split is discarded if after the split, one of the leaves would contain less then ``min_samples_leaf`` samples. Note: this parameter is tree-specific. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the input samples required to be at a leaf node. Note: this parameter is tree-specific. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. If not None then ``max_depth`` will be ignored. Note: this parameter is tree-specific. bootstrap : boolean, optional (default=False) Whether bootstrap samples are used when building trees. Note: this parameter is tree-specific. oob_score : bool Whether to use out-of-bag samples to estimate the generalization error. n_jobs : integer, optional (default=1) The number of jobs to run in parallel for both `fit` and `predict`. If -1, then the number of jobs is set to the number of cores. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, optional (default=0) Controls the verbosity of the tree building process. warm_start : bool, optional (default=False) When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. Attributes ---------- estimators_ : list of DecisionTreeRegressor The collection of fitted sub-estimators. feature_importances_ : array of shape = [n_features] The feature importances (the higher, the more important the feature). n_features_ : int The number of features. n_outputs_ : int The number of outputs. oob_score_ : float Score of the training dataset obtained using an out-of-bag estimate. oob_prediction_ : array of shape = [n_samples] Prediction computed with out-of-bag estimate on the training set. References ---------- .. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees", Machine Learning, 63(1), 3-42, 2006. See also -------- sklearn.tree.ExtraTreeRegressor: Base estimator for this ensemble. RandomForestRegressor: Ensemble regressor using trees with optimal splits. """ def __init__(self, n_estimators=10, criterion="mse", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features="auto", max_leaf_nodes=None, bootstrap=False, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False): super(ExtraTreesRegressor, self).__init__( base_estimator=ExtraTreeRegressor(), n_estimators=n_estimators, estimator_params=("criterion", "max_depth", "min_samples_split", "min_samples_leaf", "min_weight_fraction_leaf", "max_features", "max_leaf_nodes", "random_state"), bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start) self.criterion = criterion self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = max_features self.max_leaf_nodes = max_leaf_nodes class RandomTreesEmbedding(BaseForest): """An ensemble of totally random trees. An unsupervised transformation of a dataset to a high-dimensional sparse representation. A datapoint is coded according to which leaf of each tree it is sorted into. Using a one-hot encoding of the leaves, this leads to a binary coding with as many ones as there are trees in the forest. The dimensionality of the resulting representation is ``n_out <= n_estimators * max_leaf_nodes``. If ``max_leaf_nodes == None``, the number of leaf nodes is at most ``n_estimators * 2 ** max_depth``. Read more in the :ref:`User Guide <random_trees_embedding>`. Parameters ---------- n_estimators : int Number of trees in the forest. max_depth : int The maximum depth of each tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. Ignored if ``max_leaf_nodes`` is not None. min_samples_split : integer, optional (default=2) The minimum number of samples required to split an internal node. min_samples_leaf : integer, optional (default=1) The minimum number of samples in newly created leaves. A split is discarded if after the split, one of the leaves would contain less then ``min_samples_leaf`` samples. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the input samples required to be at a leaf node. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. If not None then ``max_depth`` will be ignored. sparse_output : bool, optional (default=True) Whether or not to return a sparse CSR matrix, as default behavior, or to return a dense array compatible with dense pipeline operators. n_jobs : integer, optional (default=1) The number of jobs to run in parallel for both `fit` and `predict`. If -1, then the number of jobs is set to the number of cores. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, optional (default=0) Controls the verbosity of the tree building process. warm_start : bool, optional (default=False) When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. Attributes ---------- estimators_ : list of DecisionTreeClassifier The collection of fitted sub-estimators. References ---------- .. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees", Machine Learning, 63(1), 3-42, 2006. .. [2] Moosmann, F. and Triggs, B. and Jurie, F. "Fast discriminative visual codebooks using randomized clustering forests" NIPS 2007 """ def __init__(self, n_estimators=10, max_depth=5, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_leaf_nodes=None, sparse_output=True, n_jobs=1, random_state=None, verbose=0, warm_start=False): super(RandomTreesEmbedding, self).__init__( base_estimator=ExtraTreeRegressor(), n_estimators=n_estimators, estimator_params=("criterion", "max_depth", "min_samples_split", "min_samples_leaf", "min_weight_fraction_leaf", "max_features", "max_leaf_nodes", "random_state"), bootstrap=False, oob_score=False, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start) self.criterion = 'mse' self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = 1 self.max_leaf_nodes = max_leaf_nodes self.sparse_output = sparse_output def _set_oob_score(self, X, y): raise NotImplementedError("OOB score not supported by tree embedding") def fit(self, X, y=None, sample_weight=None): """Fit estimator. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) The input samples. Use ``dtype=np.float32`` for maximum efficiency. Sparse matrices are also supported, use sparse ``csc_matrix`` for maximum efficiency. Returns ------- self : object Returns self. """ self.fit_transform(X, y, sample_weight=sample_weight) return self def fit_transform(self, X, y=None, sample_weight=None): """Fit estimator and transform dataset. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) Input data used to build forests. Use ``dtype=np.float32`` for maximum efficiency. Returns ------- X_transformed : sparse matrix, shape=(n_samples, n_out) Transformed dataset. """ # ensure_2d=False because there are actually unit test checking we fail # for 1d. X = check_array(X, accept_sparse=['csc'], ensure_2d=False) if issparse(X): # Pre-sort indices to avoid that each individual tree of the # ensemble sorts the indices. X.sort_indices() rnd = check_random_state(self.random_state) y = rnd.uniform(size=X.shape[0]) super(RandomTreesEmbedding, self).fit(X, y, sample_weight=sample_weight) self.one_hot_encoder_ = OneHotEncoder(sparse=self.sparse_output) return self.one_hot_encoder_.fit_transform(self.apply(X)) def transform(self, X): """Transform dataset. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) Input data to be transformed. Use ``dtype=np.float32`` for maximum efficiency. Sparse matrices are also supported, use sparse ``csr_matrix`` for maximum efficiency. Returns ------- X_transformed : sparse matrix, shape=(n_samples, n_out) Transformed dataset. """ return self.one_hot_encoder_.transform(self.apply(X))
bsd-3-clause
ammarkhann/FinalSeniorCode
lib/python2.7/site-packages/matplotlib/blocking_input.py
10
11766
""" This provides several classes used for blocking interaction with figure windows: :class:`BlockingInput` creates a callable object to retrieve events in a blocking way for interactive sessions :class:`BlockingKeyMouseInput` creates a callable object to retrieve key or mouse clicks in a blocking way for interactive sessions. Note: Subclass of BlockingInput. Used by waitforbuttonpress :class:`BlockingMouseInput` creates a callable object to retrieve mouse clicks in a blocking way for interactive sessions. Note: Subclass of BlockingInput. Used by ginput :class:`BlockingContourLabeler` creates a callable object to retrieve mouse clicks in a blocking way that will then be used to place labels on a ContourSet Note: Subclass of BlockingMouseInput. Used by clabel """ from __future__ import (absolute_import, division, print_function, unicode_literals) import six from matplotlib import verbose from matplotlib.cbook import is_sequence_of_strings import matplotlib.lines as mlines import warnings class BlockingInput(object): """ Class that creates a callable object to retrieve events in a blocking way. """ def __init__(self, fig, eventslist=()): self.fig = fig if not is_sequence_of_strings(eventslist): raise ValueError("Requires a sequence of event name strings") self.eventslist = eventslist def on_event(self, event): """ Event handler that will be passed to the current figure to retrieve events. """ # Add a new event to list - using a separate function is # overkill for the base class, but this is consistent with # subclasses self.add_event(event) verbose.report("Event %i" % len(self.events)) # This will extract info from events self.post_event() # Check if we have enough events already if len(self.events) >= self.n and self.n > 0: self.fig.canvas.stop_event_loop() def post_event(self): """For baseclass, do nothing but collect events""" pass def cleanup(self): """Disconnect all callbacks""" for cb in self.callbacks: self.fig.canvas.mpl_disconnect(cb) self.callbacks = [] def add_event(self, event): """For base class, this just appends an event to events.""" self.events.append(event) def pop_event(self, index=-1): """ This removes an event from the event list. Defaults to removing last event, but an index can be supplied. Note that this does not check that there are events, much like the normal pop method. If not events exist, this will throw an exception. """ self.events.pop(index) def pop(self, index=-1): self.pop_event(index) pop.__doc__ = pop_event.__doc__ def __call__(self, n=1, timeout=30): """ Blocking call to retrieve n events """ if not isinstance(n, int): raise ValueError("Requires an integer argument") self.n = n self.events = [] self.callbacks = [] # Ensure that the figure is shown self.fig.show() # connect the events to the on_event function call for n in self.eventslist: self.callbacks.append( self.fig.canvas.mpl_connect(n, self.on_event)) try: # Start event loop self.fig.canvas.start_event_loop(timeout=timeout) finally: # Run even on exception like ctrl-c # Disconnect the callbacks self.cleanup() # Return the events in this case return self.events class BlockingMouseInput(BlockingInput): """ Class that creates a callable object to retrieve mouse clicks in a blocking way. This class will also retrieve keyboard clicks and treat them like appropriate mouse clicks (delete and backspace are like mouse button 3, enter is like mouse button 2 and all others are like mouse button 1). """ button_add = 1 button_pop = 3 button_stop = 2 def __init__(self, fig, mouse_add=1, mouse_pop=3, mouse_stop=2): BlockingInput.__init__(self, fig=fig, eventslist=('button_press_event', 'key_press_event')) self.button_add = mouse_add self.button_pop = mouse_pop self.button_stop = mouse_stop def post_event(self): """ This will be called to process events """ if len(self.events) == 0: warnings.warn("No events yet") elif self.events[-1].name == 'key_press_event': self.key_event() else: self.mouse_event() def mouse_event(self): '''Process a mouse click event''' event = self.events[-1] button = event.button if button == self.button_pop: self.mouse_event_pop(event) elif button == self.button_stop: self.mouse_event_stop(event) else: self.mouse_event_add(event) def key_event(self): ''' Process a key click event. This maps certain keys to appropriate mouse click events. ''' event = self.events[-1] if event.key is None: # at least in mac os X gtk backend some key returns None. return key = event.key.lower() if key in ['backspace', 'delete']: self.mouse_event_pop(event) elif key in ['escape', 'enter']: # on windows XP and wxAgg, the enter key doesn't seem to register self.mouse_event_stop(event) else: self.mouse_event_add(event) def mouse_event_add(self, event): """ Will be called for any event involving a button other than button 2 or 3. This will add a click if it is inside axes. """ if event.inaxes: self.add_click(event) else: # If not a valid click, remove from event list BlockingInput.pop(self, -1) def mouse_event_stop(self, event): """ Will be called for any event involving button 2. Button 2 ends blocking input. """ # Remove last event just for cleanliness BlockingInput.pop(self, -1) # This will exit even if not in infinite mode. This is # consistent with MATLAB and sometimes quite useful, but will # require the user to test how many points were actually # returned before using data. self.fig.canvas.stop_event_loop() def mouse_event_pop(self, event): """ Will be called for any event involving button 3. Button 3 removes the last click. """ # Remove this last event BlockingInput.pop(self, -1) # Now remove any existing clicks if possible if len(self.events) > 0: self.pop(event, -1) def add_click(self, event): """ This add the coordinates of an event to the list of clicks """ self.clicks.append((event.xdata, event.ydata)) verbose.report("input %i: %f,%f" % (len(self.clicks), event.xdata, event.ydata)) # If desired plot up click if self.show_clicks: line = mlines.Line2D([event.xdata], [event.ydata], marker='+', color='r') event.inaxes.add_line(line) self.marks.append(line) self.fig.canvas.draw() def pop_click(self, event, index=-1): """ This removes a click from the list of clicks. Defaults to removing the last click. """ self.clicks.pop(index) if self.show_clicks: mark = self.marks.pop(index) mark.remove() self.fig.canvas.draw() # NOTE: I do NOT understand why the above 3 lines does not work # for the keyboard backspace event on windows XP wxAgg. # maybe event.inaxes here is a COPY of the actual axes? def pop(self, event, index=-1): """ This removes a click and the associated event from the object. Defaults to removing the last click, but any index can be supplied. """ self.pop_click(event, index) BlockingInput.pop(self, index) def cleanup(self, event=None): # clean the figure if self.show_clicks: for mark in self.marks: mark.remove() self.marks = [] self.fig.canvas.draw() # Call base class to remove callbacks BlockingInput.cleanup(self) def __call__(self, n=1, timeout=30, show_clicks=True): """ Blocking call to retrieve n coordinate pairs through mouse clicks. """ self.show_clicks = show_clicks self.clicks = [] self.marks = [] BlockingInput.__call__(self, n=n, timeout=timeout) return self.clicks class BlockingContourLabeler(BlockingMouseInput): """ Class that creates a callable object that uses mouse clicks or key clicks on a figure window to place contour labels. """ def __init__(self, cs): self.cs = cs BlockingMouseInput.__init__(self, fig=cs.ax.figure) def add_click(self, event): self.button1(event) def pop_click(self, event, index=-1): self.button3(event) def button1(self, event): """ This will be called if an event involving a button other than 2 or 3 occcurs. This will add a label to a contour. """ # Shorthand if event.inaxes == self.cs.ax: self.cs.add_label_near(event.x, event.y, self.inline, inline_spacing=self.inline_spacing, transform=False) self.fig.canvas.draw() else: # Remove event if not valid BlockingInput.pop(self) def button3(self, event): """ This will be called if button 3 is clicked. This will remove a label if not in inline mode. Unfortunately, if one is doing inline labels, then there is currently no way to fix the broken contour - once humpty-dumpty is broken, he can't be put back together. In inline mode, this does nothing. """ if self.inline: pass else: self.cs.pop_label() self.cs.ax.figure.canvas.draw() def __call__(self, inline, inline_spacing=5, n=-1, timeout=-1): self.inline = inline self.inline_spacing = inline_spacing BlockingMouseInput.__call__(self, n=n, timeout=timeout, show_clicks=False) class BlockingKeyMouseInput(BlockingInput): """ Class that creates a callable object to retrieve a single mouse or keyboard click """ def __init__(self, fig): BlockingInput.__init__(self, fig=fig, eventslist=( 'button_press_event', 'key_press_event')) def post_event(self): """ Determines if it is a key event """ if len(self.events) == 0: warnings.warn("No events yet") else: self.keyormouse = self.events[-1].name == 'key_press_event' def __call__(self, timeout=30): """ Blocking call to retrieve a single mouse or key click Returns True if key click, False if mouse, or None if timeout """ self.keyormouse = None BlockingInput.__call__(self, n=1, timeout=timeout) return self.keyormouse
mit
benhamner/GEFlightQuest
PythonModule/geflight/benchmark/estimated_arrival_benchmark.py
3
1935
from dateutil.parser import parse from geflight.transform import flighthistoryevents, utilities as tu from geflight.benchmark import utilities as bu from geflight.benchmark import process_test_set_scaffold import os import pandas as pd def process_day(day): day.df_test_flight_history["estimated_runway_arrival"] = "MISSING" day.df_test_flight_history["estimated_gate_arrival"] = "MISSING" df_fhe = pd.read_csv(os.path.join(day.test_day_path, "FlightHistory", "flighthistoryevents.csv"), converters={"date_time_recorded": tu.parse_datetime_format6}) df_fhe = df_fhe.sort("date_time_recorded") for i, row in df_fhe.iterrows(): f_id = row["flight_history_id"] if f_id not in day.df_test_flight_history.index: continue if type(row["data_updated"]) != str: continue offset = day.df_test_flight_history["arrival_airport_timezone_offset"][f_id] if offset>0: offset_str = "+" + str(offset) else: offset_str = str(offset) gate_str = flighthistoryevents.get_estimated_gate_arrival_string(row["data_updated"]) if gate_str: day.df_test_flight_history["estimated_gate_arrival"][f_id] = parse(gate_str+offset_str) runway_str = flighthistoryevents.get_estimated_runway_arrival_string(row["data_updated"]) if runway_str: day.df_test_flight_history["estimated_runway_arrival"][f_id] = parse(runway_str+offset_str) for i, row in day.df_test_flight_history.iterrows(): day.df_predictions["actual_runway_arrival"][i] = bu.get_estimated_arrival(row, "runway", day.cutoff_time) day.df_predictions["actual_gate_arrival"][i] = bu.get_estimated_arrival(row, "gate", day.cutoff_time) return day.df_predictions if __name__=="__main__": process_test_set_scaffold.process_test_set(process_day, "estimated_arrival_benchmark.csv")
bsd-2-clause
AtsushiSakai/jsk_visualization_packages
jsk_rqt_plugins/src/jsk_rqt_plugins/hist.py
1
7882
#!/usr/bin/env python from rqt_gui_py.plugin import Plugin from python_qt_binding import loadUi from python_qt_binding.QtCore import Qt, QTimer, qWarning, Slot from python_qt_binding.QtGui import QAction, QIcon, QMenu, QWidget from python_qt_binding.QtGui import QWidget, QVBoxLayout, QSizePolicy, QColor from rqt_py_common.topic_completer import TopicCompleter from matplotlib.colors import colorConverter from rqt_py_common.topic_helpers import is_slot_numeric from rqt_plot.rosplot import ROSData as _ROSData from rqt_plot.rosplot import RosPlotException from matplotlib.collections import (PolyCollection, PathCollection, LineCollection) import matplotlib import matplotlib.patches as mpatches import rospkg import rospy from cStringIO import StringIO import cv2 from cv_bridge import CvBridge from sensor_msgs.msg import Image from jsk_recognition_msgs.msg import HistogramWithRange, HistogramWithRangeBin import os, sys import argparse try: from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as FigureCanvas except ImportError: # work around bug in dateutil import sys import thread sys.modules['_thread'] = thread from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.backends.backend_qt4agg import NavigationToolbar2QTAgg as NavigationToolbar from matplotlib.figure import Figure import numpy as np import matplotlib.pyplot as plt class ROSData(_ROSData): def _get_data(self, msg): val = msg try: if not self.field_evals: return val for f in self.field_evals: val = f(val) return val except IndexError: self.error = RosPlotException("[%s] index error for: %s" % (self.name, str(val).replace('\n', ', '))) except TypeError: self.error = RosPlotException("[%s] value was not numeric: %s" % (self.name, val)) class HistogramPlot(Plugin): def __init__(self, context): super(HistogramPlot, self).__init__(context) self.setObjectName('HistogramPlot') self._args = self._parse_args(context.argv()) self._widget = HistogramPlotWidget(self._args.topics) context.add_widget(self._widget) def _parse_args(self, argv): parser = argparse.ArgumentParser(prog='rqt_histogram_plot', add_help=False) HistogramPlot.add_arguments(parser) args = parser.parse_args(argv) return args @staticmethod def add_arguments(parser): group = parser.add_argument_group('Options for rqt_histogram plugin') group.add_argument('topics', nargs='?', default=[], help='Topics to plot') class HistogramPlotWidget(QWidget): _redraw_interval = 40 def __init__(self, topics): super(HistogramPlotWidget, self).__init__() self.setObjectName('HistogramPlotWidget') rp = rospkg.RosPack() ui_file = os.path.join(rp.get_path('jsk_rqt_plugins'), 'resource', 'plot_histogram.ui') loadUi(ui_file, self) self.cv_bridge = CvBridge() self.subscribe_topic_button.setIcon(QIcon.fromTheme('add')) self.pause_button.setIcon(QIcon.fromTheme('media-playback-pause')) self.clear_button.setIcon(QIcon.fromTheme('edit-clear')) self.data_plot = MatHistogramPlot(self) self.data_plot_layout.addWidget(self.data_plot) self._topic_completer = TopicCompleter(self.topic_edit) self._topic_completer.update_topics() self.topic_edit.setCompleter(self._topic_completer) self.data_plot.dropEvent = self.dropEvent self.data_plot.dragEnterEvent = self.dragEnterEvent self._start_time = rospy.get_time() self._rosdata = None if len(topics) != 0: self.subscribe_topic(topics) self._update_plot_timer = QTimer(self) self._update_plot_timer.timeout.connect(self.update_plot) self._update_plot_timer.start(self._redraw_interval) @Slot('QDropEvent*') def dropEvent(self, event): if event.mimeData().hasText(): topic_name = str(event.mimeData().text()) else: droped_item = event.source().selectedItems()[0] topic_name = str(droped_item.data(0, Qt.UserRole)) self.subscribe_topic(topic_name) @Slot() def on_topic_edit_returnPressed(self): if self.subscribe_topic_button.isEnabled(): self.subscribe_topic(str(self.topic_edit.text())) @Slot() def on_subscribe_topic_button_clicked(self): self.subscribe_topic(str(self.topic_edit.text())) def subscribe_topic(self, topic_name): self.topic_with_field_name = topic_name self.pub_image = rospy.Publisher(topic_name + "/histogram_image", Image) if not self._rosdata: self._rosdata = ROSData(topic_name, self._start_time) else: if self._rosdata != topic_name: self._rosdata.close() self.data_plot.clear() self._rosdata = ROSData(topic_name, self._start_time) else: rospy.logwarn("%s is already subscribed", topic_name) def enable_timer(self, enabled=True): if enabled: self._update_plot_timer.start(self._redraw_interval) else: self._update_plot_timer.stop() @Slot() def on_clear_button_clicked(self): self.data_plot.clear() @Slot(bool) def on_pause_button_clicked(self, checked): self.enable_timer(not checked) def update_plot(self): if not self._rosdata: return data_x, data_y = self._rosdata.next() if len(data_y) == 0: return axes = self.data_plot._canvas.axes axes.cla() if self._rosdata.sub.data_class is HistogramWithRange: xs = [y.count for y in data_y[-1].bins] pos = [y.min_value for y in data_y[-1].bins] widths = [y.max_value - y.min_value for y in data_y[-1].bins] axes.set_xlim(xmin=pos[0], xmax=pos[-1] + widths[-1]) else: xs = data_y[-1] pos = np.arange(len(xs)) widths = [1] * len(xs) axes.set_xlim(xmin=0, xmax=len(xs)) #axes.xticks(range(5)) for p, x, w in zip(pos, xs, widths): axes.bar(p, x, color='r', align='center', width=w) axes.legend([self.topic_with_field_name], prop={'size': '8'}) self.data_plot._canvas.draw() buffer = StringIO() self.data_plot._canvas.figure.savefig(buffer, format="png") buffer.seek(0) img_array = np.asarray(bytearray(buffer.read()), dtype=np.uint8) img = cv2.imdecode(img_array, cv2.CV_LOAD_IMAGE_COLOR) self.pub_image.publish(self.cv_bridge.cv2_to_imgmsg(img, "bgr8")) class MatHistogramPlot(QWidget): class Canvas(FigureCanvas): def __init__(self, parent=None): super(MatHistogramPlot.Canvas, self).__init__(Figure()) self.axes = self.figure.add_subplot(111) self.figure.tight_layout() self.setSizePolicy(QSizePolicy.Expanding, QSizePolicy.Expanding) self.updateGeometry() def resizeEvent(self, event): super(MatHistogramPlot.Canvas, self).resizeEvent(event) self.figure.tight_layout() def __init__(self, parent=None): super(MatHistogramPlot, self).__init__(parent) self._canvas = MatHistogramPlot.Canvas() self._toolbar = NavigationToolbar(self._canvas, self._canvas) vbox = QVBoxLayout() vbox.addWidget(self._toolbar) vbox.addWidget(self._canvas) self.setLayout(vbox) def redraw(self): pass def clear(self): self._canvas.axes.cla() self._canvas.draw()
mit
nelson-liu/scikit-learn
examples/classification/plot_lda_qda.py
32
5381
""" ==================================================================== Linear and Quadratic Discriminant Analysis with covariance ellipsoid ==================================================================== This example plots the covariance ellipsoids of each class and decision boundary learned by LDA and QDA. The ellipsoids display the double standard deviation for each class. With LDA, the standard deviation is the same for all the classes, while each class has its own standard deviation with QDA. """ print(__doc__) from scipy import linalg import numpy as np import matplotlib.pyplot as plt import matplotlib as mpl from matplotlib import colors from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis ############################################################################### # colormap cmap = colors.LinearSegmentedColormap( 'red_blue_classes', {'red': [(0, 1, 1), (1, 0.7, 0.7)], 'green': [(0, 0.7, 0.7), (1, 0.7, 0.7)], 'blue': [(0, 0.7, 0.7), (1, 1, 1)]}) plt.cm.register_cmap(cmap=cmap) ############################################################################### # generate datasets def dataset_fixed_cov(): '''Generate 2 Gaussians samples with the same covariance matrix''' n, dim = 300, 2 np.random.seed(0) C = np.array([[0., -0.23], [0.83, .23]]) X = np.r_[np.dot(np.random.randn(n, dim), C), np.dot(np.random.randn(n, dim), C) + np.array([1, 1])] y = np.hstack((np.zeros(n), np.ones(n))) return X, y def dataset_cov(): '''Generate 2 Gaussians samples with different covariance matrices''' n, dim = 300, 2 np.random.seed(0) C = np.array([[0., -1.], [2.5, .7]]) * 2. X = np.r_[np.dot(np.random.randn(n, dim), C), np.dot(np.random.randn(n, dim), C.T) + np.array([1, 4])] y = np.hstack((np.zeros(n), np.ones(n))) return X, y ############################################################################### # plot functions def plot_data(lda, X, y, y_pred, fig_index): splot = plt.subplot(2, 2, fig_index) if fig_index == 1: plt.title('Linear Discriminant Analysis') plt.ylabel('Data with fixed covariance') elif fig_index == 2: plt.title('Quadratic Discriminant Analysis') elif fig_index == 3: plt.ylabel('Data with varying covariances') tp = (y == y_pred) # True Positive tp0, tp1 = tp[y == 0], tp[y == 1] X0, X1 = X[y == 0], X[y == 1] X0_tp, X0_fp = X0[tp0], X0[~tp0] X1_tp, X1_fp = X1[tp1], X1[~tp1] alpha = 0.5 # class 0: dots plt.plot(X0_tp[:, 0], X0_tp[:, 1], 'o', alpha=alpha, color='red') plt.plot(X0_fp[:, 0], X0_fp[:, 1], '*', alpha=alpha, color='#990000') # dark red # class 1: dots plt.plot(X1_tp[:, 0], X1_tp[:, 1], 'o', alpha=alpha, color='blue') plt.plot(X1_fp[:, 0], X1_fp[:, 1], '*', alpha=alpha, color='#000099') # dark blue # class 0 and 1 : areas nx, ny = 200, 100 x_min, x_max = plt.xlim() y_min, y_max = plt.ylim() xx, yy = np.meshgrid(np.linspace(x_min, x_max, nx), np.linspace(y_min, y_max, ny)) Z = lda.predict_proba(np.c_[xx.ravel(), yy.ravel()]) Z = Z[:, 1].reshape(xx.shape) plt.pcolormesh(xx, yy, Z, cmap='red_blue_classes', norm=colors.Normalize(0., 1.)) plt.contour(xx, yy, Z, [0.5], linewidths=2., colors='k') # means plt.plot(lda.means_[0][0], lda.means_[0][1], 'o', color='black', markersize=10) plt.plot(lda.means_[1][0], lda.means_[1][1], 'o', color='black', markersize=10) return splot def plot_ellipse(splot, mean, cov, color): v, w = linalg.eigh(cov) u = w[0] / linalg.norm(w[0]) angle = np.arctan(u[1] / u[0]) angle = 180 * angle / np.pi # convert to degrees # filled Gaussian at 2 standard deviation ell = mpl.patches.Ellipse(mean, 2 * v[0] ** 0.5, 2 * v[1] ** 0.5, 180 + angle, facecolor=color, edgecolor='yellow', linewidth=2, zorder=2) ell.set_clip_box(splot.bbox) ell.set_alpha(0.5) splot.add_artist(ell) splot.set_xticks(()) splot.set_yticks(()) def plot_lda_cov(lda, splot): plot_ellipse(splot, lda.means_[0], lda.covariance_, 'red') plot_ellipse(splot, lda.means_[1], lda.covariance_, 'blue') def plot_qda_cov(qda, splot): plot_ellipse(splot, qda.means_[0], qda.covariances_[0], 'red') plot_ellipse(splot, qda.means_[1], qda.covariances_[1], 'blue') ############################################################################### for i, (X, y) in enumerate([dataset_fixed_cov(), dataset_cov()]): # Linear Discriminant Analysis lda = LinearDiscriminantAnalysis(solver="svd", store_covariance=True) y_pred = lda.fit(X, y).predict(X) splot = plot_data(lda, X, y, y_pred, fig_index=2 * i + 1) plot_lda_cov(lda, splot) plt.axis('tight') # Quadratic Discriminant Analysis qda = QuadraticDiscriminantAnalysis(store_covariances=True) y_pred = qda.fit(X, y).predict(X) splot = plot_data(qda, X, y, y_pred, fig_index=2 * i + 2) plot_qda_cov(qda, splot) plt.axis('tight') plt.suptitle('Linear Discriminant Analysis vs Quadratic Discriminant Analysis') plt.show()
bsd-3-clause
glennq/scikit-learn
examples/model_selection/randomized_search.py
35
3287
""" ========================================================================= Comparing randomized search and grid search for hyperparameter estimation ========================================================================= Compare randomized search and grid search for optimizing hyperparameters of a random forest. All parameters that influence the learning are searched simultaneously (except for the number of estimators, which poses a time / quality tradeoff). The randomized search and the grid search explore exactly the same space of parameters. The result in parameter settings is quite similar, while the run time for randomized search is drastically lower. The performance is slightly worse for the randomized search, though this is most likely a noise effect and would not carry over to a held-out test set. Note that in practice, one would not search over this many different parameters simultaneously using grid search, but pick only the ones deemed most important. """ print(__doc__) import numpy as np from time import time from scipy.stats import randint as sp_randint from sklearn.model_selection import GridSearchCV from sklearn.model_selection import RandomizedSearchCV from sklearn.datasets import load_digits from sklearn.ensemble import RandomForestClassifier # get some data digits = load_digits() X, y = digits.data, digits.target # build a classifier clf = RandomForestClassifier(n_estimators=20) # Utility function to report best scores def report(results, n_top=3): for i in range(1, n_top + 1): candidates = np.flatnonzero(results['rank_test_score'] == i) for candidate in candidates: print("Model with rank: {0}".format(i)) print("Mean validation score: {0:.3f} (std: {1:.3f})".format( results['mean_test_score'][candidate], results['std_test_score'][candidate])) print("Parameters: {0}".format(results['params'][candidate])) print("") # specify parameters and distributions to sample from param_dist = {"max_depth": [3, None], "max_features": sp_randint(1, 11), "min_samples_split": sp_randint(1, 11), "min_samples_leaf": sp_randint(1, 11), "bootstrap": [True, False], "criterion": ["gini", "entropy"]} # run randomized search n_iter_search = 20 random_search = RandomizedSearchCV(clf, param_distributions=param_dist, n_iter=n_iter_search) start = time() random_search.fit(X, y) print("RandomizedSearchCV took %.2f seconds for %d candidates" " parameter settings." % ((time() - start), n_iter_search)) report(random_search.cv_results_) # use a full grid over all parameters param_grid = {"max_depth": [3, None], "max_features": [1, 3, 10], "min_samples_split": [1, 3, 10], "min_samples_leaf": [1, 3, 10], "bootstrap": [True, False], "criterion": ["gini", "entropy"]} # run grid search grid_search = GridSearchCV(clf, param_grid=param_grid) start = time() grid_search.fit(X, y) print("GridSearchCV took %.2f seconds for %d candidate parameter settings." % (time() - start, len(grid_search.cv_results_['params']))) report(grid_search.cv_results_)
bsd-3-clause
trankmichael/scikit-learn
sklearn/ensemble/tests/test_gradient_boosting.py
127
37672
""" Testing for the gradient boosting module (sklearn.ensemble.gradient_boosting). """ import warnings import numpy as np from sklearn import datasets from sklearn.base import clone from sklearn.ensemble import GradientBoostingClassifier from sklearn.ensemble import GradientBoostingRegressor from sklearn.ensemble.gradient_boosting import ZeroEstimator from sklearn.metrics import mean_squared_error from sklearn.utils import check_random_state, tosequence from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_warns from sklearn.utils.validation import DataConversionWarning from sklearn.utils.validation import NotFittedError # toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y = [-1, -1, -1, 1, 1, 1] T = [[-1, -1], [2, 2], [3, 2]] true_result = [-1, 1, 1] rng = np.random.RandomState(0) # also load the boston dataset # and randomly permute it boston = datasets.load_boston() perm = rng.permutation(boston.target.size) boston.data = boston.data[perm] boston.target = boston.target[perm] # also load the iris dataset # and randomly permute it iris = datasets.load_iris() perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] def test_classification_toy(): # Check classification on a toy dataset. for loss in ('deviance', 'exponential'): clf = GradientBoostingClassifier(loss=loss, n_estimators=10, random_state=1) assert_raises(ValueError, clf.predict, T) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) assert_equal(10, len(clf.estimators_)) deviance_decrease = (clf.train_score_[:-1] - clf.train_score_[1:]) assert np.any(deviance_decrease >= 0.0), \ "Train deviance does not monotonically decrease." def test_parameter_checks(): # Check input parameter validation. assert_raises(ValueError, GradientBoostingClassifier(n_estimators=0).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(n_estimators=-1).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(learning_rate=0.0).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(learning_rate=-1.0).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(loss='foobar').fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(min_samples_split=0.0).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(min_samples_split=-1.0).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(min_samples_leaf=0).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(min_samples_leaf=-1.).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(min_weight_fraction_leaf=-1.).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(min_weight_fraction_leaf=0.6).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(subsample=0.0).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(subsample=1.1).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(subsample=-0.1).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(max_depth=-0.1).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(max_depth=0).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(init={}).fit, X, y) # test fit before feature importance assert_raises(ValueError, lambda: GradientBoostingClassifier().feature_importances_) # deviance requires ``n_classes >= 2``. assert_raises(ValueError, lambda X, y: GradientBoostingClassifier( loss='deviance').fit(X, y), X, [0, 0, 0, 0]) def test_loss_function(): assert_raises(ValueError, GradientBoostingClassifier(loss='ls').fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(loss='lad').fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(loss='quantile').fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(loss='huber').fit, X, y) assert_raises(ValueError, GradientBoostingRegressor(loss='deviance').fit, X, y) assert_raises(ValueError, GradientBoostingRegressor(loss='exponential').fit, X, y) def test_classification_synthetic(): # Test GradientBoostingClassifier on synthetic dataset used by # Hastie et al. in ESLII Example 12.7. X, y = datasets.make_hastie_10_2(n_samples=12000, random_state=1) X_train, X_test = X[:2000], X[2000:] y_train, y_test = y[:2000], y[2000:] for loss in ('deviance', 'exponential'): gbrt = GradientBoostingClassifier(n_estimators=100, min_samples_split=1, max_depth=1, loss=loss, learning_rate=1.0, random_state=0) gbrt.fit(X_train, y_train) error_rate = (1.0 - gbrt.score(X_test, y_test)) assert error_rate < 0.09, \ "GB(loss={}) failed with error {}".format(loss, error_rate) gbrt = GradientBoostingClassifier(n_estimators=200, min_samples_split=1, max_depth=1, learning_rate=1.0, subsample=0.5, random_state=0) gbrt.fit(X_train, y_train) error_rate = (1.0 - gbrt.score(X_test, y_test)) assert error_rate < 0.08, ("Stochastic GradientBoostingClassifier(loss={}) " "failed with error {}".format(loss, error_rate)) def test_boston(): # Check consistency on dataset boston house prices with least squares # and least absolute deviation. for loss in ("ls", "lad", "huber"): for subsample in (1.0, 0.5): last_y_pred = None for i, sample_weight in enumerate( (None, np.ones(len(boston.target)), 2 * np.ones(len(boston.target)))): clf = GradientBoostingRegressor(n_estimators=100, loss=loss, max_depth=4, subsample=subsample, min_samples_split=1, random_state=1) assert_raises(ValueError, clf.predict, boston.data) clf.fit(boston.data, boston.target, sample_weight=sample_weight) y_pred = clf.predict(boston.data) mse = mean_squared_error(boston.target, y_pred) assert mse < 6.0, "Failed with loss %s and " \ "mse = %.4f" % (loss, mse) if last_y_pred is not None: np.testing.assert_array_almost_equal( last_y_pred, y_pred, err_msg='pred_%d doesnt match last pred_%d for loss %r and subsample %r. ' % (i, i - 1, loss, subsample)) last_y_pred = y_pred def test_iris(): # Check consistency on dataset iris. for subsample in (1.0, 0.5): for sample_weight in (None, np.ones(len(iris.target))): clf = GradientBoostingClassifier(n_estimators=100, loss='deviance', random_state=1, subsample=subsample) clf.fit(iris.data, iris.target, sample_weight=sample_weight) score = clf.score(iris.data, iris.target) assert score > 0.9, "Failed with subsample %.1f " \ "and score = %f" % (subsample, score) def test_regression_synthetic(): # Test on synthetic regression datasets used in Leo Breiman, # `Bagging Predictors?. Machine Learning 24(2): 123-140 (1996). random_state = check_random_state(1) regression_params = {'n_estimators': 100, 'max_depth': 4, 'min_samples_split': 1, 'learning_rate': 0.1, 'loss': 'ls'} # Friedman1 X, y = datasets.make_friedman1(n_samples=1200, random_state=random_state, noise=1.0) X_train, y_train = X[:200], y[:200] X_test, y_test = X[200:], y[200:] clf = GradientBoostingRegressor() clf.fit(X_train, y_train) mse = mean_squared_error(y_test, clf.predict(X_test)) assert mse < 5.0, "Failed on Friedman1 with mse = %.4f" % mse # Friedman2 X, y = datasets.make_friedman2(n_samples=1200, random_state=random_state) X_train, y_train = X[:200], y[:200] X_test, y_test = X[200:], y[200:] clf = GradientBoostingRegressor(**regression_params) clf.fit(X_train, y_train) mse = mean_squared_error(y_test, clf.predict(X_test)) assert mse < 1700.0, "Failed on Friedman2 with mse = %.4f" % mse # Friedman3 X, y = datasets.make_friedman3(n_samples=1200, random_state=random_state) X_train, y_train = X[:200], y[:200] X_test, y_test = X[200:], y[200:] clf = GradientBoostingRegressor(**regression_params) clf.fit(X_train, y_train) mse = mean_squared_error(y_test, clf.predict(X_test)) assert mse < 0.015, "Failed on Friedman3 with mse = %.4f" % mse def test_feature_importances(): X = np.array(boston.data, dtype=np.float32) y = np.array(boston.target, dtype=np.float32) clf = GradientBoostingRegressor(n_estimators=100, max_depth=5, min_samples_split=1, random_state=1) clf.fit(X, y) #feature_importances = clf.feature_importances_ assert_true(hasattr(clf, 'feature_importances_')) X_new = clf.transform(X, threshold="mean") assert_less(X_new.shape[1], X.shape[1]) feature_mask = clf.feature_importances_ > clf.feature_importances_.mean() assert_array_almost_equal(X_new, X[:, feature_mask]) # true feature importance ranking # true_ranking = np.array([3, 1, 8, 2, 10, 9, 4, 11, 0, 6, 7, 5, 12]) # assert_array_equal(true_ranking, feature_importances.argsort()) def test_probability_log(): # Predict probabilities. clf = GradientBoostingClassifier(n_estimators=100, random_state=1) assert_raises(ValueError, clf.predict_proba, T) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) # check if probabilities are in [0, 1]. y_proba = clf.predict_proba(T) assert np.all(y_proba >= 0.0) assert np.all(y_proba <= 1.0) # derive predictions from probabilities y_pred = clf.classes_.take(y_proba.argmax(axis=1), axis=0) assert_array_equal(y_pred, true_result) def test_check_inputs(): # Test input checks (shape and type of X and y). clf = GradientBoostingClassifier(n_estimators=100, random_state=1) assert_raises(ValueError, clf.fit, X, y + [0, 1]) from scipy import sparse X_sparse = sparse.csr_matrix(X) clf = GradientBoostingClassifier(n_estimators=100, random_state=1) assert_raises(TypeError, clf.fit, X_sparse, y) clf = GradientBoostingClassifier().fit(X, y) assert_raises(TypeError, clf.predict, X_sparse) clf = GradientBoostingClassifier(n_estimators=100, random_state=1) assert_raises(ValueError, clf.fit, X, y, sample_weight=([1] * len(y)) + [0, 1]) def test_check_inputs_predict(): # X has wrong shape clf = GradientBoostingClassifier(n_estimators=100, random_state=1) clf.fit(X, y) x = np.array([1.0, 2.0])[:, np.newaxis] assert_raises(ValueError, clf.predict, x) x = np.array([]) assert_raises(ValueError, clf.predict, x) x = np.array([1.0, 2.0, 3.0])[:, np.newaxis] assert_raises(ValueError, clf.predict, x) clf = GradientBoostingRegressor(n_estimators=100, random_state=1) clf.fit(X, rng.rand(len(X))) x = np.array([1.0, 2.0])[:, np.newaxis] assert_raises(ValueError, clf.predict, x) x = np.array([]) assert_raises(ValueError, clf.predict, x) x = np.array([1.0, 2.0, 3.0])[:, np.newaxis] assert_raises(ValueError, clf.predict, x) def test_check_max_features(): # test if max_features is valid. clf = GradientBoostingRegressor(n_estimators=100, random_state=1, max_features=0) assert_raises(ValueError, clf.fit, X, y) clf = GradientBoostingRegressor(n_estimators=100, random_state=1, max_features=(len(X[0]) + 1)) assert_raises(ValueError, clf.fit, X, y) clf = GradientBoostingRegressor(n_estimators=100, random_state=1, max_features=-0.1) assert_raises(ValueError, clf.fit, X, y) def test_max_feature_regression(): # Test to make sure random state is set properly. X, y = datasets.make_hastie_10_2(n_samples=12000, random_state=1) X_train, X_test = X[:2000], X[2000:] y_train, y_test = y[:2000], y[2000:] gbrt = GradientBoostingClassifier(n_estimators=100, min_samples_split=5, max_depth=2, learning_rate=.1, max_features=2, random_state=1) gbrt.fit(X_train, y_train) deviance = gbrt.loss_(y_test, gbrt.decision_function(X_test)) assert_true(deviance < 0.5, "GB failed with deviance %.4f" % deviance) def test_max_feature_auto(): # Test if max features is set properly for floats and str. X, y = datasets.make_hastie_10_2(n_samples=12000, random_state=1) _, n_features = X.shape X_train = X[:2000] y_train = y[:2000] gbrt = GradientBoostingClassifier(n_estimators=1, max_features='auto') gbrt.fit(X_train, y_train) assert_equal(gbrt.max_features_, int(np.sqrt(n_features))) gbrt = GradientBoostingRegressor(n_estimators=1, max_features='auto') gbrt.fit(X_train, y_train) assert_equal(gbrt.max_features_, n_features) gbrt = GradientBoostingRegressor(n_estimators=1, max_features=0.3) gbrt.fit(X_train, y_train) assert_equal(gbrt.max_features_, int(n_features * 0.3)) gbrt = GradientBoostingRegressor(n_estimators=1, max_features='sqrt') gbrt.fit(X_train, y_train) assert_equal(gbrt.max_features_, int(np.sqrt(n_features))) gbrt = GradientBoostingRegressor(n_estimators=1, max_features='log2') gbrt.fit(X_train, y_train) assert_equal(gbrt.max_features_, int(np.log2(n_features))) gbrt = GradientBoostingRegressor(n_estimators=1, max_features=0.01 / X.shape[1]) gbrt.fit(X_train, y_train) assert_equal(gbrt.max_features_, 1) def test_staged_predict(): # Test whether staged decision function eventually gives # the same prediction. X, y = datasets.make_friedman1(n_samples=1200, random_state=1, noise=1.0) X_train, y_train = X[:200], y[:200] X_test = X[200:] clf = GradientBoostingRegressor() # test raise ValueError if not fitted assert_raises(ValueError, lambda X: np.fromiter( clf.staged_predict(X), dtype=np.float64), X_test) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) # test if prediction for last stage equals ``predict`` for y in clf.staged_predict(X_test): assert_equal(y.shape, y_pred.shape) assert_array_equal(y_pred, y) def test_staged_predict_proba(): # Test whether staged predict proba eventually gives # the same prediction. X, y = datasets.make_hastie_10_2(n_samples=1200, random_state=1) X_train, y_train = X[:200], y[:200] X_test, y_test = X[200:], y[200:] clf = GradientBoostingClassifier(n_estimators=20) # test raise NotFittedError if not fitted assert_raises(NotFittedError, lambda X: np.fromiter( clf.staged_predict_proba(X), dtype=np.float64), X_test) clf.fit(X_train, y_train) # test if prediction for last stage equals ``predict`` for y_pred in clf.staged_predict(X_test): assert_equal(y_test.shape, y_pred.shape) assert_array_equal(clf.predict(X_test), y_pred) # test if prediction for last stage equals ``predict_proba`` for staged_proba in clf.staged_predict_proba(X_test): assert_equal(y_test.shape[0], staged_proba.shape[0]) assert_equal(2, staged_proba.shape[1]) assert_array_equal(clf.predict_proba(X_test), staged_proba) def test_staged_functions_defensive(): # test that staged_functions make defensive copies rng = np.random.RandomState(0) X = rng.uniform(size=(10, 3)) y = (4 * X[:, 0]).astype(np.int) + 1 # don't predict zeros for estimator in [GradientBoostingRegressor(), GradientBoostingClassifier()]: estimator.fit(X, y) for func in ['predict', 'decision_function', 'predict_proba']: staged_func = getattr(estimator, "staged_" + func, None) if staged_func is None: # regressor has no staged_predict_proba continue with warnings.catch_warnings(record=True): staged_result = list(staged_func(X)) staged_result[1][:] = 0 assert_true(np.all(staged_result[0] != 0)) def test_serialization(): # Check model serialization. clf = GradientBoostingClassifier(n_estimators=100, random_state=1) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) assert_equal(100, len(clf.estimators_)) try: import cPickle as pickle except ImportError: import pickle serialized_clf = pickle.dumps(clf, protocol=pickle.HIGHEST_PROTOCOL) clf = None clf = pickle.loads(serialized_clf) assert_array_equal(clf.predict(T), true_result) assert_equal(100, len(clf.estimators_)) def test_degenerate_targets(): # Check if we can fit even though all targets are equal. clf = GradientBoostingClassifier(n_estimators=100, random_state=1) # classifier should raise exception assert_raises(ValueError, clf.fit, X, np.ones(len(X))) clf = GradientBoostingRegressor(n_estimators=100, random_state=1) clf.fit(X, np.ones(len(X))) clf.predict(rng.rand(2)) assert_array_equal(np.ones((1,), dtype=np.float64), clf.predict(rng.rand(2))) def test_quantile_loss(): # Check if quantile loss with alpha=0.5 equals lad. clf_quantile = GradientBoostingRegressor(n_estimators=100, loss='quantile', max_depth=4, alpha=0.5, random_state=7) clf_quantile.fit(boston.data, boston.target) y_quantile = clf_quantile.predict(boston.data) clf_lad = GradientBoostingRegressor(n_estimators=100, loss='lad', max_depth=4, random_state=7) clf_lad.fit(boston.data, boston.target) y_lad = clf_lad.predict(boston.data) assert_array_almost_equal(y_quantile, y_lad, decimal=4) def test_symbol_labels(): # Test with non-integer class labels. clf = GradientBoostingClassifier(n_estimators=100, random_state=1) symbol_y = tosequence(map(str, y)) clf.fit(X, symbol_y) assert_array_equal(clf.predict(T), tosequence(map(str, true_result))) assert_equal(100, len(clf.estimators_)) def test_float_class_labels(): # Test with float class labels. clf = GradientBoostingClassifier(n_estimators=100, random_state=1) float_y = np.asarray(y, dtype=np.float32) clf.fit(X, float_y) assert_array_equal(clf.predict(T), np.asarray(true_result, dtype=np.float32)) assert_equal(100, len(clf.estimators_)) def test_shape_y(): # Test with float class labels. clf = GradientBoostingClassifier(n_estimators=100, random_state=1) y_ = np.asarray(y, dtype=np.int32) y_ = y_[:, np.newaxis] # This will raise a DataConversionWarning that we want to # "always" raise, elsewhere the warnings gets ignored in the # later tests, and the tests that check for this warning fail assert_warns(DataConversionWarning, clf.fit, X, y_) assert_array_equal(clf.predict(T), true_result) assert_equal(100, len(clf.estimators_)) def test_mem_layout(): # Test with different memory layouts of X and y X_ = np.asfortranarray(X) clf = GradientBoostingClassifier(n_estimators=100, random_state=1) clf.fit(X_, y) assert_array_equal(clf.predict(T), true_result) assert_equal(100, len(clf.estimators_)) X_ = np.ascontiguousarray(X) clf = GradientBoostingClassifier(n_estimators=100, random_state=1) clf.fit(X_, y) assert_array_equal(clf.predict(T), true_result) assert_equal(100, len(clf.estimators_)) y_ = np.asarray(y, dtype=np.int32) y_ = np.ascontiguousarray(y_) clf = GradientBoostingClassifier(n_estimators=100, random_state=1) clf.fit(X, y_) assert_array_equal(clf.predict(T), true_result) assert_equal(100, len(clf.estimators_)) y_ = np.asarray(y, dtype=np.int32) y_ = np.asfortranarray(y_) clf = GradientBoostingClassifier(n_estimators=100, random_state=1) clf.fit(X, y_) assert_array_equal(clf.predict(T), true_result) assert_equal(100, len(clf.estimators_)) def test_oob_improvement(): # Test if oob improvement has correct shape and regression test. clf = GradientBoostingClassifier(n_estimators=100, random_state=1, subsample=0.5) clf.fit(X, y) assert clf.oob_improvement_.shape[0] == 100 # hard-coded regression test - change if modification in OOB computation assert_array_almost_equal(clf.oob_improvement_[:5], np.array([0.19, 0.15, 0.12, -0.12, -0.11]), decimal=2) def test_oob_improvement_raise(): # Test if oob improvement has correct shape. clf = GradientBoostingClassifier(n_estimators=100, random_state=1, subsample=1.0) clf.fit(X, y) assert_raises(AttributeError, lambda: clf.oob_improvement_) def test_oob_multilcass_iris(): # Check OOB improvement on multi-class dataset. clf = GradientBoostingClassifier(n_estimators=100, loss='deviance', random_state=1, subsample=0.5) clf.fit(iris.data, iris.target) score = clf.score(iris.data, iris.target) assert score > 0.9, "Failed with subsample %.1f " \ "and score = %f" % (0.5, score) assert clf.oob_improvement_.shape[0] == clf.n_estimators # hard-coded regression test - change if modification in OOB computation # FIXME: the following snippet does not yield the same results on 32 bits # assert_array_almost_equal(clf.oob_improvement_[:5], # np.array([12.68, 10.45, 8.18, 6.43, 5.13]), # decimal=2) def test_verbose_output(): # Check verbose=1 does not cause error. from sklearn.externals.six.moves import cStringIO as StringIO import sys old_stdout = sys.stdout sys.stdout = StringIO() clf = GradientBoostingClassifier(n_estimators=100, random_state=1, verbose=1, subsample=0.8) clf.fit(X, y) verbose_output = sys.stdout sys.stdout = old_stdout # check output verbose_output.seek(0) header = verbose_output.readline().rstrip() # with OOB true_header = ' '.join(['%10s'] + ['%16s'] * 3) % ( 'Iter', 'Train Loss', 'OOB Improve', 'Remaining Time') assert_equal(true_header, header) n_lines = sum(1 for l in verbose_output.readlines()) # one for 1-10 and then 9 for 20-100 assert_equal(10 + 9, n_lines) def test_more_verbose_output(): # Check verbose=2 does not cause error. from sklearn.externals.six.moves import cStringIO as StringIO import sys old_stdout = sys.stdout sys.stdout = StringIO() clf = GradientBoostingClassifier(n_estimators=100, random_state=1, verbose=2) clf.fit(X, y) verbose_output = sys.stdout sys.stdout = old_stdout # check output verbose_output.seek(0) header = verbose_output.readline().rstrip() # no OOB true_header = ' '.join(['%10s'] + ['%16s'] * 2) % ( 'Iter', 'Train Loss', 'Remaining Time') assert_equal(true_header, header) n_lines = sum(1 for l in verbose_output.readlines()) # 100 lines for n_estimators==100 assert_equal(100, n_lines) def test_warm_start(): # Test if warm start equals fit. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=200, max_depth=1) est.fit(X, y) est_ws = Cls(n_estimators=100, max_depth=1, warm_start=True) est_ws.fit(X, y) est_ws.set_params(n_estimators=200) est_ws.fit(X, y) assert_array_almost_equal(est_ws.predict(X), est.predict(X)) def test_warm_start_n_estimators(): # Test if warm start equals fit - set n_estimators. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=300, max_depth=1) est.fit(X, y) est_ws = Cls(n_estimators=100, max_depth=1, warm_start=True) est_ws.fit(X, y) est_ws.set_params(n_estimators=300) est_ws.fit(X, y) assert_array_almost_equal(est_ws.predict(X), est.predict(X)) def test_warm_start_max_depth(): # Test if possible to fit trees of different depth in ensemble. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=100, max_depth=1, warm_start=True) est.fit(X, y) est.set_params(n_estimators=110, max_depth=2) est.fit(X, y) # last 10 trees have different depth assert est.estimators_[0, 0].max_depth == 1 for i in range(1, 11): assert est.estimators_[-i, 0].max_depth == 2 def test_warm_start_clear(): # Test if fit clears state. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=100, max_depth=1) est.fit(X, y) est_2 = Cls(n_estimators=100, max_depth=1, warm_start=True) est_2.fit(X, y) # inits state est_2.set_params(warm_start=False) est_2.fit(X, y) # clears old state and equals est assert_array_almost_equal(est_2.predict(X), est.predict(X)) def test_warm_start_zero_n_estimators(): # Test if warm start with zero n_estimators raises error X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=100, max_depth=1, warm_start=True) est.fit(X, y) est.set_params(n_estimators=0) assert_raises(ValueError, est.fit, X, y) def test_warm_start_smaller_n_estimators(): # Test if warm start with smaller n_estimators raises error X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=100, max_depth=1, warm_start=True) est.fit(X, y) est.set_params(n_estimators=99) assert_raises(ValueError, est.fit, X, y) def test_warm_start_equal_n_estimators(): # Test if warm start with equal n_estimators does nothing X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=100, max_depth=1) est.fit(X, y) est2 = clone(est) est2.set_params(n_estimators=est.n_estimators, warm_start=True) est2.fit(X, y) assert_array_almost_equal(est2.predict(X), est.predict(X)) def test_warm_start_oob_switch(): # Test if oob can be turned on during warm start. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=100, max_depth=1, warm_start=True) est.fit(X, y) est.set_params(n_estimators=110, subsample=0.5) est.fit(X, y) assert_array_equal(est.oob_improvement_[:100], np.zeros(100)) # the last 10 are not zeros assert_array_equal(est.oob_improvement_[-10:] == 0.0, np.zeros(10, dtype=np.bool)) def test_warm_start_oob(): # Test if warm start OOB equals fit. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=200, max_depth=1, subsample=0.5, random_state=1) est.fit(X, y) est_ws = Cls(n_estimators=100, max_depth=1, subsample=0.5, random_state=1, warm_start=True) est_ws.fit(X, y) est_ws.set_params(n_estimators=200) est_ws.fit(X, y) assert_array_almost_equal(est_ws.oob_improvement_[:100], est.oob_improvement_[:100]) def early_stopping_monitor(i, est, locals): """Returns True on the 10th iteration. """ if i == 9: return True else: return False def test_monitor_early_stopping(): # Test if monitor return value works. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=20, max_depth=1, random_state=1, subsample=0.5) est.fit(X, y, monitor=early_stopping_monitor) assert_equal(est.n_estimators, 20) # this is not altered assert_equal(est.estimators_.shape[0], 10) assert_equal(est.train_score_.shape[0], 10) assert_equal(est.oob_improvement_.shape[0], 10) # try refit est.set_params(n_estimators=30) est.fit(X, y) assert_equal(est.n_estimators, 30) assert_equal(est.estimators_.shape[0], 30) assert_equal(est.train_score_.shape[0], 30) est = Cls(n_estimators=20, max_depth=1, random_state=1, subsample=0.5, warm_start=True) est.fit(X, y, monitor=early_stopping_monitor) assert_equal(est.n_estimators, 20) assert_equal(est.estimators_.shape[0], 10) assert_equal(est.train_score_.shape[0], 10) assert_equal(est.oob_improvement_.shape[0], 10) # try refit est.set_params(n_estimators=30, warm_start=False) est.fit(X, y) assert_equal(est.n_estimators, 30) assert_equal(est.train_score_.shape[0], 30) assert_equal(est.estimators_.shape[0], 30) assert_equal(est.oob_improvement_.shape[0], 30) def test_complete_classification(): # Test greedy trees with max_depth + 1 leafs. from sklearn.tree._tree import TREE_LEAF X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) k = 4 est = GradientBoostingClassifier(n_estimators=20, max_depth=None, random_state=1, max_leaf_nodes=k + 1) est.fit(X, y) tree = est.estimators_[0, 0].tree_ assert_equal(tree.max_depth, k) assert_equal(tree.children_left[tree.children_left == TREE_LEAF].shape[0], k + 1) def test_complete_regression(): # Test greedy trees with max_depth + 1 leafs. from sklearn.tree._tree import TREE_LEAF k = 4 est = GradientBoostingRegressor(n_estimators=20, max_depth=None, random_state=1, max_leaf_nodes=k + 1) est.fit(boston.data, boston.target) tree = est.estimators_[-1, 0].tree_ assert_equal(tree.children_left[tree.children_left == TREE_LEAF].shape[0], k + 1) def test_zero_estimator_reg(): # Test if ZeroEstimator works for regression. est = GradientBoostingRegressor(n_estimators=20, max_depth=1, random_state=1, init=ZeroEstimator()) est.fit(boston.data, boston.target) y_pred = est.predict(boston.data) mse = mean_squared_error(boston.target, y_pred) assert_almost_equal(mse, 33.0, decimal=0) est = GradientBoostingRegressor(n_estimators=20, max_depth=1, random_state=1, init='zero') est.fit(boston.data, boston.target) y_pred = est.predict(boston.data) mse = mean_squared_error(boston.target, y_pred) assert_almost_equal(mse, 33.0, decimal=0) est = GradientBoostingRegressor(n_estimators=20, max_depth=1, random_state=1, init='foobar') assert_raises(ValueError, est.fit, boston.data, boston.target) def test_zero_estimator_clf(): # Test if ZeroEstimator works for classification. X = iris.data y = np.array(iris.target) est = GradientBoostingClassifier(n_estimators=20, max_depth=1, random_state=1, init=ZeroEstimator()) est.fit(X, y) assert est.score(X, y) > 0.96 est = GradientBoostingClassifier(n_estimators=20, max_depth=1, random_state=1, init='zero') est.fit(X, y) assert est.score(X, y) > 0.96 # binary clf mask = y != 0 y[mask] = 1 y[~mask] = 0 est = GradientBoostingClassifier(n_estimators=20, max_depth=1, random_state=1, init='zero') est.fit(X, y) assert est.score(X, y) > 0.96 est = GradientBoostingClassifier(n_estimators=20, max_depth=1, random_state=1, init='foobar') assert_raises(ValueError, est.fit, X, y) def test_max_leaf_nodes_max_depth(): # Test preceedence of max_leaf_nodes over max_depth. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) all_estimators = [GradientBoostingRegressor, GradientBoostingClassifier] k = 4 for GBEstimator in all_estimators: est = GBEstimator(max_depth=1, max_leaf_nodes=k).fit(X, y) tree = est.estimators_[0, 0].tree_ assert_greater(tree.max_depth, 1) est = GBEstimator(max_depth=1).fit(X, y) tree = est.estimators_[0, 0].tree_ assert_equal(tree.max_depth, 1) def test_warm_start_wo_nestimators_change(): # Test if warm_start does nothing if n_estimators is not changed. # Regression test for #3513. clf = GradientBoostingClassifier(n_estimators=10, warm_start=True) clf.fit([[0, 1], [2, 3]], [0, 1]) assert clf.estimators_.shape[0] == 10 clf.fit([[0, 1], [2, 3]], [0, 1]) assert clf.estimators_.shape[0] == 10 def test_probability_exponential(): # Predict probabilities. clf = GradientBoostingClassifier(loss='exponential', n_estimators=100, random_state=1) assert_raises(ValueError, clf.predict_proba, T) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) # check if probabilities are in [0, 1]. y_proba = clf.predict_proba(T) assert np.all(y_proba >= 0.0) assert np.all(y_proba <= 1.0) score = clf.decision_function(T).ravel() assert_array_almost_equal(y_proba[:, 1], 1.0 / (1.0 + np.exp(-2 * score))) # derive predictions from probabilities y_pred = clf.classes_.take(y_proba.argmax(axis=1), axis=0) assert_array_equal(y_pred, true_result) def test_non_uniform_weights_toy_edge_case_reg(): X = [[1, 0], [1, 0], [1, 0], [0, 1]] y = [0, 0, 1, 0] # ignore the first 2 training samples by setting their weight to 0 sample_weight = [0, 0, 1, 1] for loss in ('huber', 'ls', 'lad', 'quantile'): gb = GradientBoostingRegressor(learning_rate=1.0, n_estimators=2, loss=loss) gb.fit(X, y, sample_weight=sample_weight) assert_greater(gb.predict([[1, 0]])[0], 0.5) def test_non_uniform_weights_toy_min_weight_leaf(): # Regression test for issue #4447 X = [[1, 0], [1, 0], [1, 0], [0, 1], ] y = [0, 0, 1, 0] # ignore the first 2 training samples by setting their weight to 0 sample_weight = [0, 0, 1, 1] gb = GradientBoostingRegressor(n_estimators=5, min_weight_fraction_leaf=0.1) gb.fit(X, y, sample_weight=sample_weight) assert_true(gb.predict([[1, 0]])[0] > 0.5) assert_almost_equal(gb.estimators_[0, 0].splitter.min_weight_leaf, 0.2) def test_non_uniform_weights_toy_edge_case_clf(): X = [[1, 0], [1, 0], [1, 0], [0, 1]] y = [0, 0, 1, 0] # ignore the first 2 training samples by setting their weight to 0 sample_weight = [0, 0, 1, 1] for loss in ('deviance', 'exponential'): gb = GradientBoostingClassifier(n_estimators=5) gb.fit(X, y, sample_weight=sample_weight) assert_array_equal(gb.predict([[1, 0]]), [1])
bsd-3-clause
nmayorov/scikit-learn
examples/manifold/plot_lle_digits.py
138
8594
""" ============================================================================= Manifold learning on handwritten digits: Locally Linear Embedding, Isomap... ============================================================================= An illustration of various embeddings on the digits dataset. The RandomTreesEmbedding, from the :mod:`sklearn.ensemble` module, is not technically a manifold embedding method, as it learn a high-dimensional representation on which we apply a dimensionality reduction method. However, it is often useful to cast a dataset into a representation in which the classes are linearly-separable. t-SNE will be initialized with the embedding that is generated by PCA in this example, which is not the default setting. It ensures global stability of the embedding, i.e., the embedding does not depend on random initialization. """ # Authors: Fabian Pedregosa <[email protected]> # Olivier Grisel <[email protected]> # Mathieu Blondel <[email protected]> # Gael Varoquaux # License: BSD 3 clause (C) INRIA 2011 print(__doc__) from time import time import numpy as np import matplotlib.pyplot as plt from matplotlib import offsetbox from sklearn import (manifold, datasets, decomposition, ensemble, discriminant_analysis, random_projection) digits = datasets.load_digits(n_class=6) X = digits.data y = digits.target n_samples, n_features = X.shape n_neighbors = 30 #---------------------------------------------------------------------- # Scale and visualize the embedding vectors def plot_embedding(X, title=None): x_min, x_max = np.min(X, 0), np.max(X, 0) X = (X - x_min) / (x_max - x_min) plt.figure() ax = plt.subplot(111) for i in range(X.shape[0]): plt.text(X[i, 0], X[i, 1], str(digits.target[i]), color=plt.cm.Set1(y[i] / 10.), fontdict={'weight': 'bold', 'size': 9}) if hasattr(offsetbox, 'AnnotationBbox'): # only print thumbnails with matplotlib > 1.0 shown_images = np.array([[1., 1.]]) # just something big for i in range(digits.data.shape[0]): dist = np.sum((X[i] - shown_images) ** 2, 1) if np.min(dist) < 4e-3: # don't show points that are too close continue shown_images = np.r_[shown_images, [X[i]]] imagebox = offsetbox.AnnotationBbox( offsetbox.OffsetImage(digits.images[i], cmap=plt.cm.gray_r), X[i]) ax.add_artist(imagebox) plt.xticks([]), plt.yticks([]) if title is not None: plt.title(title) #---------------------------------------------------------------------- # Plot images of the digits n_img_per_row = 20 img = np.zeros((10 * n_img_per_row, 10 * n_img_per_row)) for i in range(n_img_per_row): ix = 10 * i + 1 for j in range(n_img_per_row): iy = 10 * j + 1 img[ix:ix + 8, iy:iy + 8] = X[i * n_img_per_row + j].reshape((8, 8)) plt.imshow(img, cmap=plt.cm.binary) plt.xticks([]) plt.yticks([]) plt.title('A selection from the 64-dimensional digits dataset') #---------------------------------------------------------------------- # Random 2D projection using a random unitary matrix print("Computing random projection") rp = random_projection.SparseRandomProjection(n_components=2, random_state=42) X_projected = rp.fit_transform(X) plot_embedding(X_projected, "Random Projection of the digits") #---------------------------------------------------------------------- # Projection on to the first 2 principal components print("Computing PCA projection") t0 = time() X_pca = decomposition.TruncatedSVD(n_components=2).fit_transform(X) plot_embedding(X_pca, "Principal Components projection of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # Projection on to the first 2 linear discriminant components print("Computing Linear Discriminant Analysis projection") X2 = X.copy() X2.flat[::X.shape[1] + 1] += 0.01 # Make X invertible t0 = time() X_lda = discriminant_analysis.LinearDiscriminantAnalysis(n_components=2).fit_transform(X2, y) plot_embedding(X_lda, "Linear Discriminant projection of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # Isomap projection of the digits dataset print("Computing Isomap embedding") t0 = time() X_iso = manifold.Isomap(n_neighbors, n_components=2).fit_transform(X) print("Done.") plot_embedding(X_iso, "Isomap projection of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # Locally linear embedding of the digits dataset print("Computing LLE embedding") clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2, method='standard') t0 = time() X_lle = clf.fit_transform(X) print("Done. Reconstruction error: %g" % clf.reconstruction_error_) plot_embedding(X_lle, "Locally Linear Embedding of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # Modified Locally linear embedding of the digits dataset print("Computing modified LLE embedding") clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2, method='modified') t0 = time() X_mlle = clf.fit_transform(X) print("Done. Reconstruction error: %g" % clf.reconstruction_error_) plot_embedding(X_mlle, "Modified Locally Linear Embedding of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # HLLE embedding of the digits dataset print("Computing Hessian LLE embedding") clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2, method='hessian') t0 = time() X_hlle = clf.fit_transform(X) print("Done. Reconstruction error: %g" % clf.reconstruction_error_) plot_embedding(X_hlle, "Hessian Locally Linear Embedding of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # LTSA embedding of the digits dataset print("Computing LTSA embedding") clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2, method='ltsa') t0 = time() X_ltsa = clf.fit_transform(X) print("Done. Reconstruction error: %g" % clf.reconstruction_error_) plot_embedding(X_ltsa, "Local Tangent Space Alignment of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # MDS embedding of the digits dataset print("Computing MDS embedding") clf = manifold.MDS(n_components=2, n_init=1, max_iter=100) t0 = time() X_mds = clf.fit_transform(X) print("Done. Stress: %f" % clf.stress_) plot_embedding(X_mds, "MDS embedding of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # Random Trees embedding of the digits dataset print("Computing Totally Random Trees embedding") hasher = ensemble.RandomTreesEmbedding(n_estimators=200, random_state=0, max_depth=5) t0 = time() X_transformed = hasher.fit_transform(X) pca = decomposition.TruncatedSVD(n_components=2) X_reduced = pca.fit_transform(X_transformed) plot_embedding(X_reduced, "Random forest embedding of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # Spectral embedding of the digits dataset print("Computing Spectral embedding") embedder = manifold.SpectralEmbedding(n_components=2, random_state=0, eigen_solver="arpack") t0 = time() X_se = embedder.fit_transform(X) plot_embedding(X_se, "Spectral embedding of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # t-SNE embedding of the digits dataset print("Computing t-SNE embedding") tsne = manifold.TSNE(n_components=2, init='pca', random_state=0) t0 = time() X_tsne = tsne.fit_transform(X) plot_embedding(X_tsne, "t-SNE embedding of the digits (time %.2fs)" % (time() - t0)) plt.show()
bsd-3-clause
dacoex/pvlib-python
pvlib/spa.py
3
42425
""" Calculate the solar position using the NREL SPA algorithm either using numpy arrays or compiling the code to machine language with numba. """ # Contributors: # Created by Tony Lorenzo (@alorenzo175), Univ. of Arizona, 2015 from __future__ import division import os import threading import warnings import logging pvl_logger = logging.getLogger('pvlib') import numpy as np # this block is a way to use an environment variable to switch between # compiling the functions with numba or just use numpy def nocompile(*args, **kwargs): return lambda func: func if os.getenv('PVLIB_USE_NUMBA', '0') != '0': try: from numba import jit, __version__ except ImportError: warnings.warn('Could not import numba, falling back to numpy ' + 'calculation') jcompile = nocompile USE_NUMBA = False else: major, minor = __version__.split('.')[:2] if int(major + minor) >= 17: # need at least numba >= 0.17.0 jcompile = jit USE_NUMBA = True else: warnings.warn('Numba version must be >= 0.17.0, falling back to ' + 'numpy') jcompile = nocompile USE_NUMBA = False else: jcompile = nocompile USE_NUMBA = False TABLE_1_DICT = { 'L0': np.array( [[175347046.0, 0.0, 0.0], [3341656.0, 4.6692568, 6283.07585], [34894.0, 4.6261, 12566.1517], [3497.0, 2.7441, 5753.3849], [3418.0, 2.8289, 3.5231], [3136.0, 3.6277, 77713.7715], [2676.0, 4.4181, 7860.4194], [2343.0, 6.1352, 3930.2097], [1324.0, 0.7425, 11506.7698], [1273.0, 2.0371, 529.691], [1199.0, 1.1096, 1577.3435], [990.0, 5.233, 5884.927], [902.0, 2.045, 26.298], [857.0, 3.508, 398.149], [780.0, 1.179, 5223.694], [753.0, 2.533, 5507.553], [505.0, 4.583, 18849.228], [492.0, 4.205, 775.523], [357.0, 2.92, 0.067], [317.0, 5.849, 11790.629], [284.0, 1.899, 796.298], [271.0, 0.315, 10977.079], [243.0, 0.345, 5486.778], [206.0, 4.806, 2544.314], [205.0, 1.869, 5573.143], [202.0, 2.458, 6069.777], [156.0, 0.833, 213.299], [132.0, 3.411, 2942.463], [126.0, 1.083, 20.775], [115.0, 0.645, 0.98], [103.0, 0.636, 4694.003], [102.0, 0.976, 15720.839], [102.0, 4.267, 7.114], [99.0, 6.21, 2146.17], [98.0, 0.68, 155.42], [86.0, 5.98, 161000.69], [85.0, 1.3, 6275.96], [85.0, 3.67, 71430.7], [80.0, 1.81, 17260.15], [79.0, 3.04, 12036.46], [75.0, 1.76, 5088.63], [74.0, 3.5, 3154.69], [74.0, 4.68, 801.82], [70.0, 0.83, 9437.76], [62.0, 3.98, 8827.39], [61.0, 1.82, 7084.9], [57.0, 2.78, 6286.6], [56.0, 4.39, 14143.5], [56.0, 3.47, 6279.55], [52.0, 0.19, 12139.55], [52.0, 1.33, 1748.02], [51.0, 0.28, 5856.48], [49.0, 0.49, 1194.45], [41.0, 5.37, 8429.24], [41.0, 2.4, 19651.05], [39.0, 6.17, 10447.39], [37.0, 6.04, 10213.29], [37.0, 2.57, 1059.38], [36.0, 1.71, 2352.87], [36.0, 1.78, 6812.77], [33.0, 0.59, 17789.85], [30.0, 0.44, 83996.85], [30.0, 2.74, 1349.87], [25.0, 3.16, 4690.48]]), 'L1': np.array( [[628331966747.0, 0.0, 0.0], [206059.0, 2.678235, 6283.07585], [4303.0, 2.6351, 12566.1517], [425.0, 1.59, 3.523], [119.0, 5.796, 26.298], [109.0, 2.966, 1577.344], [93.0, 2.59, 18849.23], [72.0, 1.14, 529.69], [68.0, 1.87, 398.15], [67.0, 4.41, 5507.55], [59.0, 2.89, 5223.69], [56.0, 2.17, 155.42], [45.0, 0.4, 796.3], [36.0, 0.47, 775.52], [29.0, 2.65, 7.11], [21.0, 5.34, 0.98], [19.0, 1.85, 5486.78], [19.0, 4.97, 213.3], [17.0, 2.99, 6275.96], [16.0, 0.03, 2544.31], [16.0, 1.43, 2146.17], [15.0, 1.21, 10977.08], [12.0, 2.83, 1748.02], [12.0, 3.26, 5088.63], [12.0, 5.27, 1194.45], [12.0, 2.08, 4694.0], [11.0, 0.77, 553.57], [10.0, 1.3, 6286.6], [10.0, 4.24, 1349.87], [9.0, 2.7, 242.73], [9.0, 5.64, 951.72], [8.0, 5.3, 2352.87], [6.0, 2.65, 9437.76], [6.0, 4.67, 4690.48]]), 'L2': np.array( [[52919.0, 0.0, 0.0], [8720.0, 1.0721, 6283.0758], [309.0, 0.867, 12566.152], [27.0, 0.05, 3.52], [16.0, 5.19, 26.3], [16.0, 3.68, 155.42], [10.0, 0.76, 18849.23], [9.0, 2.06, 77713.77], [7.0, 0.83, 775.52], [5.0, 4.66, 1577.34], [4.0, 1.03, 7.11], [4.0, 3.44, 5573.14], [3.0, 5.14, 796.3], [3.0, 6.05, 5507.55], [3.0, 1.19, 242.73], [3.0, 6.12, 529.69], [3.0, 0.31, 398.15], [3.0, 2.28, 553.57], [2.0, 4.38, 5223.69], [2.0, 3.75, 0.98]]), 'L3': np.array( [[289.0, 5.844, 6283.076], [35.0, 0.0, 0.0], [17.0, 5.49, 12566.15], [3.0, 5.2, 155.42], [1.0, 4.72, 3.52], [1.0, 5.3, 18849.23], [1.0, 5.97, 242.73]]), 'L4': np.array( [[114.0, 3.142, 0.0], [8.0, 4.13, 6283.08], [1.0, 3.84, 12566.15]]), 'L5': np.array( [[1.0, 3.14, 0.0]]), 'B0': np.array( [[280.0, 3.199, 84334.662], [102.0, 5.422, 5507.553], [80.0, 3.88, 5223.69], [44.0, 3.7, 2352.87], [32.0, 4.0, 1577.34]]), 'B1': np.array( [[9.0, 3.9, 5507.55], [6.0, 1.73, 5223.69]]), 'R0': np.array( [[100013989.0, 0.0, 0.0], [1670700.0, 3.0984635, 6283.07585], [13956.0, 3.05525, 12566.1517], [3084.0, 5.1985, 77713.7715], [1628.0, 1.1739, 5753.3849], [1576.0, 2.8469, 7860.4194], [925.0, 5.453, 11506.77], [542.0, 4.564, 3930.21], [472.0, 3.661, 5884.927], [346.0, 0.964, 5507.553], [329.0, 5.9, 5223.694], [307.0, 0.299, 5573.143], [243.0, 4.273, 11790.629], [212.0, 5.847, 1577.344], [186.0, 5.022, 10977.079], [175.0, 3.012, 18849.228], [110.0, 5.055, 5486.778], [98.0, 0.89, 6069.78], [86.0, 5.69, 15720.84], [86.0, 1.27, 161000.69], [65.0, 0.27, 17260.15], [63.0, 0.92, 529.69], [57.0, 2.01, 83996.85], [56.0, 5.24, 71430.7], [49.0, 3.25, 2544.31], [47.0, 2.58, 775.52], [45.0, 5.54, 9437.76], [43.0, 6.01, 6275.96], [39.0, 5.36, 4694.0], [38.0, 2.39, 8827.39], [37.0, 0.83, 19651.05], [37.0, 4.9, 12139.55], [36.0, 1.67, 12036.46], [35.0, 1.84, 2942.46], [33.0, 0.24, 7084.9], [32.0, 0.18, 5088.63], [32.0, 1.78, 398.15], [28.0, 1.21, 6286.6], [28.0, 1.9, 6279.55], [26.0, 4.59, 10447.39]]), 'R1': np.array( [[103019.0, 1.10749, 6283.07585], [1721.0, 1.0644, 12566.1517], [702.0, 3.142, 0.0], [32.0, 1.02, 18849.23], [31.0, 2.84, 5507.55], [25.0, 1.32, 5223.69], [18.0, 1.42, 1577.34], [10.0, 5.91, 10977.08], [9.0, 1.42, 6275.96], [9.0, 0.27, 5486.78]]), 'R2': np.array( [[4359.0, 5.7846, 6283.0758], [124.0, 5.579, 12566.152], [12.0, 3.14, 0.0], [9.0, 3.63, 77713.77], [6.0, 1.87, 5573.14], [3.0, 5.47, 18849.23]]), 'R3': np.array( [[145.0, 4.273, 6283.076], [7.0, 3.92, 12566.15]]), 'R4': np.array( [[4.0, 2.56, 6283.08]]) } TABLE_1_DICT['L1'].resize((64, 3)) TABLE_1_DICT['L2'].resize((64, 3)) TABLE_1_DICT['L3'].resize((64, 3)) TABLE_1_DICT['L4'].resize((64, 3)) TABLE_1_DICT['L5'].resize((64, 3)) TABLE_1_DICT['B1'].resize((5, 3)) TABLE_1_DICT['R1'].resize((40, 3)) TABLE_1_DICT['R2'].resize((40, 3)) TABLE_1_DICT['R3'].resize((40, 3)) TABLE_1_DICT['R4'].resize((40, 3)) HELIO_LONG_TABLE = np.array([TABLE_1_DICT['L0'], TABLE_1_DICT['L1'], TABLE_1_DICT['L2'], TABLE_1_DICT['L3'], TABLE_1_DICT['L4'], TABLE_1_DICT['L5']]) HELIO_LAT_TABLE = np.array([TABLE_1_DICT['B0'], TABLE_1_DICT['B1']]) HELIO_RADIUS_TABLE = np.array([TABLE_1_DICT['R0'], TABLE_1_DICT['R1'], TABLE_1_DICT['R2'], TABLE_1_DICT['R3'], TABLE_1_DICT['R4']]) NUTATION_ABCD_ARRAY = np.array([ [-171996, -174.2, 92025, 8.9], [-13187, -1.6, 5736, -3.1], [-2274, -0.2, 977, -0.5], [2062, 0.2, -895, 0.5], [1426, -3.4, 54, -0.1], [712, 0.1, -7, 0], [-517, 1.2, 224, -0.6], [-386, -0.4, 200, 0], [-301, 0, 129, -0.1], [217, -0.5, -95, 0.3], [-158, 0, 0, 0], [129, 0.1, -70, 0], [123, 0, -53, 0], [63, 0, 0, 0], [63, 0.1, -33, 0], [-59, 0, 26, 0], [-58, -0.1, 32, 0], [-51, 0, 27, 0], [48, 0, 0, 0], [46, 0, -24, 0], [-38, 0, 16, 0], [-31, 0, 13, 0], [29, 0, 0, 0], [29, 0, -12, 0], [26, 0, 0, 0], [-22, 0, 0, 0], [21, 0, -10, 0], [17, -0.1, 0, 0], [16, 0, -8, 0], [-16, 0.1, 7, 0], [-15, 0, 9, 0], [-13, 0, 7, 0], [-12, 0, 6, 0], [11, 0, 0, 0], [-10, 0, 5, 0], [-8, 0, 3, 0], [7, 0, -3, 0], [-7, 0, 0, 0], [-7, 0, 3, 0], [-7, 0, 3, 0], [6, 0, 0, 0], [6, 0, -3, 0], [6, 0, -3, 0], [-6, 0, 3, 0], [-6, 0, 3, 0], [5, 0, 0, 0], [-5, 0, 3, 0], [-5, 0, 3, 0], [-5, 0, 3, 0], [4, 0, 0, 0], [4, 0, 0, 0], [4, 0, 0, 0], [-4, 0, 0, 0], [-4, 0, 0, 0], [-4, 0, 0, 0], [3, 0, 0, 0], [-3, 0, 0, 0], [-3, 0, 0, 0], [-3, 0, 0, 0], [-3, 0, 0, 0], [-3, 0, 0, 0], [-3, 0, 0, 0], [-3, 0, 0, 0], ]) NUTATION_YTERM_ARRAY = np.array([ [0, 0, 0, 0, 1], [-2, 0, 0, 2, 2], [0, 0, 0, 2, 2], [0, 0, 0, 0, 2], [0, 1, 0, 0, 0], [0, 0, 1, 0, 0], [-2, 1, 0, 2, 2], [0, 0, 0, 2, 1], [0, 0, 1, 2, 2], [-2, -1, 0, 2, 2], [-2, 0, 1, 0, 0], [-2, 0, 0, 2, 1], [0, 0, -1, 2, 2], [2, 0, 0, 0, 0], [0, 0, 1, 0, 1], [2, 0, -1, 2, 2], [0, 0, -1, 0, 1], [0, 0, 1, 2, 1], [-2, 0, 2, 0, 0], [0, 0, -2, 2, 1], [2, 0, 0, 2, 2], [0, 0, 2, 2, 2], [0, 0, 2, 0, 0], [-2, 0, 1, 2, 2], [0, 0, 0, 2, 0], [-2, 0, 0, 2, 0], [0, 0, -1, 2, 1], [0, 2, 0, 0, 0], [2, 0, -1, 0, 1], [-2, 2, 0, 2, 2], [0, 1, 0, 0, 1], [-2, 0, 1, 0, 1], [0, -1, 0, 0, 1], [0, 0, 2, -2, 0], [2, 0, -1, 2, 1], [2, 0, 1, 2, 2], [0, 1, 0, 2, 2], [-2, 1, 1, 0, 0], [0, -1, 0, 2, 2], [2, 0, 0, 2, 1], [2, 0, 1, 0, 0], [-2, 0, 2, 2, 2], [-2, 0, 1, 2, 1], [2, 0, -2, 0, 1], [2, 0, 0, 0, 1], [0, -1, 1, 0, 0], [-2, -1, 0, 2, 1], [-2, 0, 0, 0, 1], [0, 0, 2, 2, 1], [-2, 0, 2, 0, 1], [-2, 1, 0, 2, 1], [0, 0, 1, -2, 0], [-1, 0, 1, 0, 0], [-2, 1, 0, 0, 0], [1, 0, 0, 0, 0], [0, 0, 1, 2, 0], [0, 0, -2, 2, 2], [-1, -1, 1, 0, 0], [0, 1, 1, 0, 0], [0, -1, 1, 2, 2], [2, -1, -1, 2, 2], [0, 0, 3, 2, 2], [2, -1, 0, 2, 2], ]) @jcompile('float64(int64, int64, int64, int64, int64, int64, int64)', nopython=True) def julian_day_dt(year, month, day, hour, minute, second, microsecond): """This is the original way to calculate the julian day from the NREL paper. However, it is much faster to convert to unix/epoch time and then convert to julian day. Note that the date must be UTC.""" if month <= 2: year = year-1 month = month+12 a = int(year/100) b = 2 - a + int(a * 0.25) frac_of_day = (microsecond + (second + minute * 60 + hour * 3600) ) * 1.0 / (3600*24) d = day + frac_of_day jd = (int(365.25 * (year + 4716)) + int(30.6001 * (month + 1)) + d + b - 1524.5) return jd @jcompile('float64(float64)', nopython=True) def julian_day(unixtime): jd = unixtime * 1.0 / 86400 + 2440587.5 return jd @jcompile('float64(float64, float64)', nopython=True) def julian_ephemeris_day(julian_day, delta_t): jde = julian_day + delta_t * 1.0 / 86400 return jde @jcompile('float64(float64)', nopython=True) def julian_century(julian_day): jc = (julian_day - 2451545) * 1.0 / 36525 return jc @jcompile('float64(float64)', nopython=True) def julian_ephemeris_century(julian_ephemeris_day): jce = (julian_ephemeris_day - 2451545) * 1.0 / 36525 return jce @jcompile('float64(float64)', nopython=True) def julian_ephemeris_millennium(julian_ephemeris_century): jme = julian_ephemeris_century * 1.0 / 10 return jme @jcompile('float64(float64)', nopython=True) def heliocentric_longitude(jme): l0 = 0.0 l1 = 0.0 l2 = 0.0 l3 = 0.0 l4 = 0.0 l5 = 0.0 for row in range(HELIO_LONG_TABLE.shape[1]): l0 += (HELIO_LONG_TABLE[0, row, 0] * np.cos(HELIO_LONG_TABLE[0, row, 1] + HELIO_LONG_TABLE[0, row, 2] * jme) ) l1 += (HELIO_LONG_TABLE[1, row, 0] * np.cos(HELIO_LONG_TABLE[1, row, 1] + HELIO_LONG_TABLE[1, row, 2] * jme) ) l2 += (HELIO_LONG_TABLE[2, row, 0] * np.cos(HELIO_LONG_TABLE[2, row, 1] + HELIO_LONG_TABLE[2, row, 2] * jme) ) l3 += (HELIO_LONG_TABLE[3, row, 0] * np.cos(HELIO_LONG_TABLE[3, row, 1] + HELIO_LONG_TABLE[3, row, 2] * jme) ) l4 += (HELIO_LONG_TABLE[4, row, 0] * np.cos(HELIO_LONG_TABLE[4, row, 1] + HELIO_LONG_TABLE[4, row, 2] * jme) ) l5 += (HELIO_LONG_TABLE[5, row, 0] * np.cos(HELIO_LONG_TABLE[5, row, 1] + HELIO_LONG_TABLE[5, row, 2] * jme) ) l_rad = (l0 + l1 * jme + l2 * jme**2 + l3 * jme**3 + l4 * jme**4 + l5 * jme**5)/10**8 l = np.rad2deg(l_rad) return l % 360 @jcompile('float64(float64)', nopython=True) def heliocentric_latitude(jme): b0 = 0.0 b1 = 0.0 for row in range(HELIO_LAT_TABLE.shape[1]): b0 += (HELIO_LAT_TABLE[0, row, 0] * np.cos(HELIO_LAT_TABLE[0, row, 1] + HELIO_LAT_TABLE[0, row, 2] * jme) ) b1 += (HELIO_LAT_TABLE[1, row, 0] * np.cos(HELIO_LAT_TABLE[1, row, 1] + HELIO_LAT_TABLE[1, row, 2] * jme) ) b_rad = (b0 + b1 * jme)/10**8 b = np.rad2deg(b_rad) return b @jcompile('float64(float64)', nopython=True) def heliocentric_radius_vector(jme): r0 = 0.0 r1 = 0.0 r2 = 0.0 r3 = 0.0 r4 = 0.0 for row in range(HELIO_RADIUS_TABLE.shape[1]): r0 += (HELIO_RADIUS_TABLE[0, row, 0] * np.cos(HELIO_RADIUS_TABLE[0, row, 1] + HELIO_RADIUS_TABLE[0, row, 2] * jme) ) r1 += (HELIO_RADIUS_TABLE[1, row, 0] * np.cos(HELIO_RADIUS_TABLE[1, row, 1] + HELIO_RADIUS_TABLE[1, row, 2] * jme) ) r2 += (HELIO_RADIUS_TABLE[2, row, 0] * np.cos(HELIO_RADIUS_TABLE[2, row, 1] + HELIO_RADIUS_TABLE[2, row, 2] * jme) ) r3 += (HELIO_RADIUS_TABLE[3, row, 0] * np.cos(HELIO_RADIUS_TABLE[3, row, 1] + HELIO_RADIUS_TABLE[3, row, 2] * jme) ) r4 += (HELIO_RADIUS_TABLE[4, row, 0] * np.cos(HELIO_RADIUS_TABLE[4, row, 1] + HELIO_RADIUS_TABLE[4, row, 2] * jme) ) r = (r0 + r1 * jme + r2 * jme**2 + r3 * jme**3 + r4 * jme**4)/10**8 return r @jcompile('float64(float64)', nopython=True) def geocentric_longitude(heliocentric_longitude): theta = heliocentric_longitude + 180.0 return theta % 360 @jcompile('float64(float64)', nopython=True) def geocentric_latitude(heliocentric_latitude): beta = -1.0*heliocentric_latitude return beta @jcompile('float64(float64)', nopython=True) def mean_elongation(julian_ephemeris_century): x0 = (297.85036 + 445267.111480 * julian_ephemeris_century - 0.0019142 * julian_ephemeris_century**2 + julian_ephemeris_century**3 / 189474) return x0 @jcompile('float64(float64)', nopython=True) def mean_anomaly_sun(julian_ephemeris_century): x1 = (357.52772 + 35999.050340 * julian_ephemeris_century - 0.0001603 * julian_ephemeris_century**2 - julian_ephemeris_century**3 / 300000) return x1 @jcompile('float64(float64)', nopython=True) def mean_anomaly_moon(julian_ephemeris_century): x2 = (134.96298 + 477198.867398 * julian_ephemeris_century + 0.0086972 * julian_ephemeris_century**2 + julian_ephemeris_century**3 / 56250) return x2 @jcompile('float64(float64)', nopython=True) def moon_argument_latitude(julian_ephemeris_century): x3 = (93.27191 + 483202.017538 * julian_ephemeris_century - 0.0036825 * julian_ephemeris_century**2 + julian_ephemeris_century**3 / 327270) return x3 @jcompile('float64(float64)', nopython=True) def moon_ascending_longitude(julian_ephemeris_century): x4 = (125.04452 - 1934.136261 * julian_ephemeris_century + 0.0020708 * julian_ephemeris_century**2 + julian_ephemeris_century**3 / 450000) return x4 @jcompile('float64(float64, float64, float64, float64, float64, float64)', nopython=True) def longitude_nutation(julian_ephemeris_century, x0, x1, x2, x3, x4): delta_psi_sum = 0 for row in range(NUTATION_YTERM_ARRAY.shape[0]): a = NUTATION_ABCD_ARRAY[row, 0] b = NUTATION_ABCD_ARRAY[row, 1] argsin = (NUTATION_YTERM_ARRAY[row, 0]*x0 + NUTATION_YTERM_ARRAY[row, 1]*x1 + NUTATION_YTERM_ARRAY[row, 2]*x2 + NUTATION_YTERM_ARRAY[row, 3]*x3 + NUTATION_YTERM_ARRAY[row, 4]*x4) term = (a + b * julian_ephemeris_century) * np.sin(np.radians(argsin)) delta_psi_sum += term delta_psi = delta_psi_sum*1.0/36000000 return delta_psi @jcompile('float64(float64, float64, float64, float64, float64, float64)', nopython=True) def obliquity_nutation(julian_ephemeris_century, x0, x1, x2, x3, x4): delta_eps_sum = 0.0 for row in range(NUTATION_YTERM_ARRAY.shape[0]): c = NUTATION_ABCD_ARRAY[row, 2] d = NUTATION_ABCD_ARRAY[row, 3] argcos = (NUTATION_YTERM_ARRAY[row, 0]*x0 + NUTATION_YTERM_ARRAY[row, 1]*x1 + NUTATION_YTERM_ARRAY[row, 2]*x2 + NUTATION_YTERM_ARRAY[row, 3]*x3 + NUTATION_YTERM_ARRAY[row, 4]*x4) term = (c + d * julian_ephemeris_century) * np.cos(np.radians(argcos)) delta_eps_sum += term delta_eps = delta_eps_sum*1.0/36000000 return delta_eps @jcompile('float64(float64)', nopython=True) def mean_ecliptic_obliquity(julian_ephemeris_millennium): U = 1.0*julian_ephemeris_millennium/10 e0 = (84381.448 - 4680.93 * U - 1.55 * U**2 + 1999.25 * U**3 - 51.38 * U**4 - 249.67 * U**5 - 39.05 * U**6 + 7.12 * U**7 + 27.87 * U**8 + 5.79 * U**9 + 2.45 * U**10) return e0 @jcompile('float64(float64, float64)', nopython=True) def true_ecliptic_obliquity(mean_ecliptic_obliquity, obliquity_nutation): e0 = mean_ecliptic_obliquity deleps = obliquity_nutation e = e0*1.0/3600 + deleps return e @jcompile('float64(float64)', nopython=True) def aberration_correction(earth_radius_vector): deltau = -20.4898 / (3600 * earth_radius_vector) return deltau @jcompile('float64(float64, float64, float64)', nopython=True) def apparent_sun_longitude(geocentric_longitude, longitude_nutation, aberration_correction): lamd = geocentric_longitude + longitude_nutation + aberration_correction return lamd @jcompile('float64(float64, float64)', nopython=True) def mean_sidereal_time(julian_day, julian_century): v0 = (280.46061837 + 360.98564736629 * (julian_day - 2451545) + 0.000387933 * julian_century**2 - julian_century**3 / 38710000) return v0 % 360.0 @jcompile('float64(float64, float64, float64)', nopython=True) def apparent_sidereal_time(mean_sidereal_time, longitude_nutation, true_ecliptic_obliquity): v = mean_sidereal_time + longitude_nutation * np.cos( np.radians(true_ecliptic_obliquity)) return v @jcompile('float64(float64, float64, float64)', nopython=True) def geocentric_sun_right_ascension(apparent_sun_longitude, true_ecliptic_obliquity, geocentric_latitude): num = (np.sin(np.radians(apparent_sun_longitude)) * np.cos(np.radians(true_ecliptic_obliquity)) - np.tan(np.radians(geocentric_latitude)) * np.sin(np.radians(true_ecliptic_obliquity))) alpha = np.degrees(np.arctan2(num, np.cos( np.radians(apparent_sun_longitude)))) return alpha % 360 @jcompile('float64(float64, float64, float64)', nopython=True) def geocentric_sun_declination(apparent_sun_longitude, true_ecliptic_obliquity, geocentric_latitude): delta = np.degrees(np.arcsin(np.sin(np.radians(geocentric_latitude)) * np.cos(np.radians(true_ecliptic_obliquity)) + np.cos(np.radians(geocentric_latitude)) * np.sin(np.radians(true_ecliptic_obliquity)) * np.sin(np.radians(apparent_sun_longitude)))) return delta @jcompile('float64(float64, float64, float64)', nopython=True) def local_hour_angle(apparent_sidereal_time, observer_longitude, sun_right_ascension): """Measured westward from south""" H = apparent_sidereal_time + observer_longitude - sun_right_ascension return H % 360 @jcompile('float64(float64)', nopython=True) def equatorial_horizontal_parallax(earth_radius_vector): xi = 8.794 / (3600 * earth_radius_vector) return xi @jcompile('float64(float64)', nopython=True) def uterm(observer_latitude): u = np.arctan(0.99664719 * np.tan(np.radians(observer_latitude))) return u @jcompile('float64(float64, float64, float64)', nopython=True) def xterm(u, observer_latitude, observer_elevation): x = (np.cos(u) + observer_elevation / 6378140 * np.cos(np.radians(observer_latitude))) return x @jcompile('float64(float64, float64, float64)', nopython=True) def yterm(u, observer_latitude, observer_elevation): y = (0.99664719 * np.sin(u) + observer_elevation / 6378140 * np.sin(np.radians(observer_latitude))) return y @jcompile('float64(float64, float64,float64, float64)', nopython=True) def parallax_sun_right_ascension(xterm, equatorial_horizontal_parallax, local_hour_angle, geocentric_sun_declination): num = (-xterm * np.sin(np.radians(equatorial_horizontal_parallax)) * np.sin(np.radians(local_hour_angle))) denom = (np.cos(np.radians(geocentric_sun_declination)) - xterm * np.sin(np.radians(equatorial_horizontal_parallax)) * np.cos(np.radians(local_hour_angle))) delta_alpha = np.degrees(np.arctan2(num, denom)) return delta_alpha @jcompile('float64(float64, float64)', nopython=True) def topocentric_sun_right_ascension(geocentric_sun_right_ascension, parallax_sun_right_ascension): alpha_prime = geocentric_sun_right_ascension + parallax_sun_right_ascension return alpha_prime @jcompile('float64(float64, float64, float64, float64, float64, float64)', nopython=True) def topocentric_sun_declination(geocentric_sun_declination, xterm, yterm, equatorial_horizontal_parallax, parallax_sun_right_ascension, local_hour_angle): num = ((np.sin(np.radians(geocentric_sun_declination)) - yterm * np.sin(np.radians(equatorial_horizontal_parallax))) * np.cos(np.radians(parallax_sun_right_ascension))) denom = (np.cos(np.radians(geocentric_sun_declination)) - xterm * np.sin(np.radians(equatorial_horizontal_parallax)) * np.cos(np.radians(local_hour_angle))) delta = np.degrees(np.arctan2(num, denom)) return delta @jcompile('float64(float64, float64)', nopython=True) def topocentric_local_hour_angle(local_hour_angle, parallax_sun_right_ascension): H_prime = local_hour_angle - parallax_sun_right_ascension return H_prime @jcompile('float64(float64, float64, float64)', nopython=True) def topocentric_elevation_angle_without_atmosphere(observer_latitude, topocentric_sun_declination, topocentric_local_hour_angle ): e0 = np.degrees(np.arcsin( np.sin(np.radians(observer_latitude)) * np.sin(np.radians(topocentric_sun_declination)) + np.cos(np.radians(observer_latitude)) * np.cos(np.radians(topocentric_sun_declination)) * np.cos(np.radians(topocentric_local_hour_angle)))) return e0 @jcompile('float64(float64, float64, float64, float64)', nopython=True) def atmospheric_refraction_correction(local_pressure, local_temp, topocentric_elevation_angle_wo_atmosphere, atmos_refract): # switch sets delta_e when the sun is below the horizon switch = topocentric_elevation_angle_wo_atmosphere >= -1.0 * ( 0.26667 + atmos_refract) delta_e = ((local_pressure / 1010.0) * (283.0 / (273 + local_temp)) * 1.02 / (60 * np.tan(np.radians( topocentric_elevation_angle_wo_atmosphere + 10.3 / (topocentric_elevation_angle_wo_atmosphere + 5.11))))) * switch return delta_e @jcompile('float64(float64, float64)', nopython=True) def topocentric_elevation_angle(topocentric_elevation_angle_without_atmosphere, atmospheric_refraction_correction): e = (topocentric_elevation_angle_without_atmosphere + atmospheric_refraction_correction) return e @jcompile('float64(float64)', nopython=True) def topocentric_zenith_angle(topocentric_elevation_angle): theta = 90 - topocentric_elevation_angle return theta @jcompile('float64(float64, float64, float64)', nopython=True) def topocentric_astronomers_azimuth(topocentric_local_hour_angle, topocentric_sun_declination, observer_latitude): num = np.sin(np.radians(topocentric_local_hour_angle)) denom = (np.cos(np.radians(topocentric_local_hour_angle)) * np.sin(np.radians(observer_latitude)) - np.tan(np.radians(topocentric_sun_declination)) * np.cos(np.radians(observer_latitude))) gamma = np.degrees(np.arctan2(num, denom)) return gamma % 360 @jcompile('float64(float64)', nopython=True) def topocentric_azimuth_angle(topocentric_astronomers_azimuth): phi = topocentric_astronomers_azimuth + 180 return phi % 360 @jcompile('float64(float64)', nopython=True) def sun_mean_longitude(julian_ephemeris_millennium): M = (280.4664567 + 360007.6982779 * julian_ephemeris_millennium + 0.03032028 * julian_ephemeris_millennium**2 + julian_ephemeris_millennium**3 / 49931 - julian_ephemeris_millennium**4 / 15300 - julian_ephemeris_millennium**5 / 2000000) return M @jcompile('float64(float64, float64, float64, float64)', nopython=True) def equation_of_time(sun_mean_longitude, geocentric_sun_right_ascension, longitude_nutation, true_ecliptic_obliquity): E = (sun_mean_longitude - 0.0057183 - geocentric_sun_right_ascension + longitude_nutation * np.cos(np.radians(true_ecliptic_obliquity))) # limit between 0 and 360 E = E % 360 # convert to minutes E *= 4 greater = E > 20 less = E < -20 other = (E <= 20) & (E >= -20) E = greater * (E - 1440) + less * (E + 1440) + other * E return E @jcompile('void(float64[:], float64[:], float64[:,:])', nopython=True, nogil=True) def solar_position_loop(unixtime, loc_args, out): """Loop through the time array and calculate the solar position""" lat = loc_args[0] lon = loc_args[1] elev = loc_args[2] pressure = loc_args[3] temp = loc_args[4] delta_t = loc_args[5] atmos_refract = loc_args[6] sst = loc_args[7] for i in range(unixtime.shape[0]): utime = unixtime[i] jd = julian_day(utime) jde = julian_ephemeris_day(jd, delta_t) jc = julian_century(jd) jce = julian_ephemeris_century(jde) jme = julian_ephemeris_millennium(jce) L = heliocentric_longitude(jme) B = heliocentric_latitude(jme) R = heliocentric_radius_vector(jme) Theta = geocentric_longitude(L) beta = geocentric_latitude(B) x0 = mean_elongation(jce) x1 = mean_anomaly_sun(jce) x2 = mean_anomaly_moon(jce) x3 = moon_argument_latitude(jce) x4 = moon_ascending_longitude(jce) delta_psi = longitude_nutation(jce, x0, x1, x2, x3, x4) delta_epsilon = obliquity_nutation(jce, x0, x1, x2, x3, x4) epsilon0 = mean_ecliptic_obliquity(jme) epsilon = true_ecliptic_obliquity(epsilon0, delta_epsilon) delta_tau = aberration_correction(R) lamd = apparent_sun_longitude(Theta, delta_psi, delta_tau) v0 = mean_sidereal_time(jd, jc) v = apparent_sidereal_time(v0, delta_psi, epsilon) alpha = geocentric_sun_right_ascension(lamd, epsilon, beta) delta = geocentric_sun_declination(lamd, epsilon, beta) if sst: out[0, i] = v out[1, i] = alpha out[2, i] = delta continue m = sun_mean_longitude(jme) eot = equation_of_time(m, alpha, delta_psi, epsilon) H = local_hour_angle(v, lon, alpha) xi = equatorial_horizontal_parallax(R) u = uterm(lat) x = xterm(u, lat, elev) y = yterm(u, lat, elev) delta_alpha = parallax_sun_right_ascension(x, xi, H, delta) alpha_prime = topocentric_sun_right_ascension(alpha, delta_alpha) delta_prime = topocentric_sun_declination(delta, x, y, xi, delta_alpha, H) H_prime = topocentric_local_hour_angle(H, delta_alpha) e0 = topocentric_elevation_angle_without_atmosphere(lat, delta_prime, H_prime) delta_e = atmospheric_refraction_correction(pressure, temp, e0, atmos_refract) e = topocentric_elevation_angle(e0, delta_e) theta = topocentric_zenith_angle(e) theta0 = topocentric_zenith_angle(e0) gamma = topocentric_astronomers_azimuth(H_prime, delta_prime, lat) phi = topocentric_azimuth_angle(gamma) out[0, i] = theta out[1, i] = theta0 out[2, i] = e out[3, i] = e0 out[4, i] = phi out[5, i] = eot def solar_position_numba(unixtime, lat, lon, elev, pressure, temp, delta_t, atmos_refract, numthreads, sst=False): """Calculate the solar position using the numba compiled functions and multiple threads. Very slow if functions are not numba compiled. """ loc_args = np.array([lat, lon, elev, pressure, temp, delta_t, atmos_refract, sst]) ulength = unixtime.shape[0] result = np.empty((6, ulength), dtype=np.float64) if unixtime.dtype != np.float64: unixtime = unixtime.astype(np.float64) if ulength < numthreads: pvl_logger.warning('The number of threads is more than the length of' + ' the time array. Only using %s threads.', ulength) numthreads = ulength if numthreads <= 1: pvl_logger.debug('Only using one thread for calculation') solar_position_loop(unixtime, loc_args, result) return result split0 = np.array_split(unixtime, numthreads) split2 = np.array_split(result, numthreads, axis=1) chunks = [[a0, loc_args, split2[i]] for i, a0 in enumerate(split0)] # Spawn one thread per chunk threads = [threading.Thread(target=solar_position_loop, args=chunk) for chunk in chunks] for thread in threads: thread.start() for thread in threads: thread.join() return result def solar_position_numpy(unixtime, lat, lon, elev, pressure, temp, delta_t, atmos_refract, numthreads, sst=False): """Calculate the solar position assuming unixtime is a numpy array. Note this function will not work if the solar position functions were compiled with numba. """ jd = julian_day(unixtime) jde = julian_ephemeris_day(jd, delta_t) jc = julian_century(jd) jce = julian_ephemeris_century(jde) jme = julian_ephemeris_millennium(jce) L = heliocentric_longitude(jme) B = heliocentric_latitude(jme) R = heliocentric_radius_vector(jme) Theta = geocentric_longitude(L) beta = geocentric_latitude(B) x0 = mean_elongation(jce) x1 = mean_anomaly_sun(jce) x2 = mean_anomaly_moon(jce) x3 = moon_argument_latitude(jce) x4 = moon_ascending_longitude(jce) delta_psi = longitude_nutation(jce, x0, x1, x2, x3, x4) delta_epsilon = obliquity_nutation(jce, x0, x1, x2, x3, x4) epsilon0 = mean_ecliptic_obliquity(jme) epsilon = true_ecliptic_obliquity(epsilon0, delta_epsilon) delta_tau = aberration_correction(R) lamd = apparent_sun_longitude(Theta, delta_psi, delta_tau) v0 = mean_sidereal_time(jd, jc) v = apparent_sidereal_time(v0, delta_psi, epsilon) alpha = geocentric_sun_right_ascension(lamd, epsilon, beta) delta = geocentric_sun_declination(lamd, epsilon, beta) if sst: return v, alpha, delta m = sun_mean_longitude(jme) eot = equation_of_time(m, alpha, delta_psi, epsilon) H = local_hour_angle(v, lon, alpha) xi = equatorial_horizontal_parallax(R) u = uterm(lat) x = xterm(u, lat, elev) y = yterm(u, lat, elev) delta_alpha = parallax_sun_right_ascension(x, xi, H, delta) alpha_prime = topocentric_sun_right_ascension(alpha, delta_alpha) delta_prime = topocentric_sun_declination(delta, x, y, xi, delta_alpha, H) H_prime = topocentric_local_hour_angle(H, delta_alpha) e0 = topocentric_elevation_angle_without_atmosphere(lat, delta_prime, H_prime) delta_e = atmospheric_refraction_correction(pressure, temp, e0, atmos_refract) e = topocentric_elevation_angle(e0, delta_e) theta = topocentric_zenith_angle(e) theta0 = topocentric_zenith_angle(e0) gamma = topocentric_astronomers_azimuth(H_prime, delta_prime, lat) phi = topocentric_azimuth_angle(gamma) return theta, theta0, e, e0, phi, eot def solar_position(unixtime, lat, lon, elev, pressure, temp, delta_t, atmos_refract, numthreads=8, sst=False): """ Calculate the solar position using the NREL SPA algorithm described in [1]. If numba is installed, the functions can be compiled and the code runs quickly. If not, the functions still evaluate but use numpy instead. Parameters ---------- unixtime : numpy array Array of unix/epoch timestamps to calculate solar position for. Unixtime is the number of seconds since Jan. 1, 1970 00:00:00 UTC. A pandas.DatetimeIndex is easily converted using .astype(np.int64)/10**9 lat : float Latitude to calculate solar position for lon : float Longitude to calculate solar position for elev : float Elevation of location in meters pressure : int or float avg. yearly pressure at location in Pascals; used for atmospheric correction temp : int or float avg. yearly temperature at location in degrees C; used for atmospheric correction delta_t : float, optional Difference between terrestrial time and UT1. By default, use USNO historical data and predictions atmos_refrac : float, optional The approximate atmospheric refraction (in degrees) at sunrise and sunset. numthreads: int, optional Number of threads to use for computation if numba>=0.17 is installed. Returns ------- Numpy Array with elements: apparent zenith, zenith, elevation, apparent_elevation, azimuth, equation_of_time References ---------- [1] I. Reda and A. Andreas, Solar position algorithm for solar radiation applications. Solar Energy, vol. 76, no. 5, pp. 577-589, 2004. [2] I. Reda and A. Andreas, Corrigendum to Solar position algorithm for solar radiation applications. Solar Energy, vol. 81, no. 6, p. 838, 2007. """ if USE_NUMBA: do_calc = solar_position_numba else: do_calc = solar_position_numpy result = do_calc(unixtime, lat, lon, elev, pressure, temp, delta_t, atmos_refract, numthreads, sst) if not isinstance(result, np.ndarray): try: result = np.array(result) except Exception: pass return result def transit_sunrise_sunset(dates, lat, lon, delta_t, numthreads): """ Calculate the sun transit, sunrise, and sunset for a set of dates at a given location. Parameters ---------- dates : array Numpy array of ints/floats corresponding to the Unix time for the dates of interest, must be midnight UTC (00:00+00:00) on the day of interest. lat : float Latitude of location to perform calculation for lon : float Longitude of location delta_t : float Difference between terrestrial time and UT. USNO has tables. numthreads : int Number to threads to use for calculation (if using numba) Returns ------- tuple : (transit, sunrise, sunset) localized to UTC """ if ((dates % 86400) != 0.0).any(): raise ValueError('Input dates must be at 00:00 UTC') utday = (dates // 86400) * 86400 ttday0 = utday - delta_t ttdayn1 = ttday0 - 86400 ttdayp1 = ttday0 + 86400 # index 0 is v, 1 is alpha, 2 is delta utday_res = solar_position(utday, 0, 0, 0, 0, 0, delta_t, 0, numthreads, sst=True) v = utday_res[0] ttday0_res = solar_position(ttday0, 0, 0, 0, 0, 0, delta_t, 0, numthreads, sst=True) ttdayn1_res = solar_position(ttdayn1, 0, 0, 0, 0, 0, delta_t, 0, numthreads, sst=True) ttdayp1_res = solar_position(ttdayp1, 0, 0, 0, 0, 0, delta_t, 0, numthreads, sst=True) m0 = (ttday0_res[1] - lon - v) / 360 cos_arg = ((np.sin(np.radians(-0.8333)) - np.sin(np.radians(lat)) * np.sin(np.radians(ttday0_res[2]))) / (np.cos(np.radians(lat)) * np.cos(np.radians(ttday0_res[2])))) cos_arg[abs(cos_arg) > 1] = np.nan H0 = np.degrees(np.arccos(cos_arg)) % 180 m = np.empty((3, len(utday))) m[0] = m0 % 1 m[1] = (m[0] - H0 / 360) m[2] = (m[0] + H0 / 360) # need to account for fractions of day that may be the next or previous # day in UTC add_a_day = m[2] >= 1 sub_a_day = m[1] < 0 m[1] = m[1] % 1 m[2] = m[2] % 1 vs = v + 360.985647 * m n = m + delta_t / 86400 a = ttday0_res[1] - ttdayn1_res[1] a[abs(a) > 2] = a[abs(a) > 2] % 1 ap = ttday0_res[2] - ttdayn1_res[2] ap[abs(ap) > 2] = ap[abs(ap) > 2] % 1 b = ttdayp1_res[1] - ttday0_res[1] b[abs(b) > 2] = b[abs(b) > 2] % 1 bp = ttdayp1_res[2] - ttday0_res[2] bp[abs(bp) > 2] = bp[abs(bp) > 2] % 1 c = b - a cp = bp - ap alpha_prime = ttday0_res[1] + (n * (a + b + c * n)) / 2 delta_prime = ttday0_res[2] + (n * (ap + bp + cp * n)) / 2 Hp = (vs + lon - alpha_prime) % 360 Hp[Hp >= 180] = Hp[Hp >= 180] - 360 h = np.degrees(np.arcsin(np.sin(np.radians(lat)) * np.sin(np.radians(delta_prime)) + np.cos(np.radians(lat)) * np.cos(np.radians(delta_prime)) * np.cos(np.radians(Hp)))) T = (m[0] - Hp[0] / 360) * 86400 R = (m[1] + (h[1] + 0.8333) / (360 * np.cos(np.radians(delta_prime[1])) * np.cos(np.radians(lat)) * np.sin(np.radians(Hp[1])))) * 86400 S = (m[2] + (h[2] + 0.8333) / (360 * np.cos(np.radians(delta_prime[2])) * np.cos(np.radians(lat)) * np.sin(np.radians(Hp[2])))) * 86400 S[add_a_day] += 86400 R[sub_a_day] -= 86400 transit = T + utday sunrise = R + utday sunset = S + utday return transit, sunrise, sunset
bsd-3-clause
jwlawson/tensorflow
tensorflow/contrib/factorization/python/ops/kmeans_test.py
12
20083
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for KMeans.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import time import numpy as np from sklearn.cluster import KMeans as SklearnKMeans # pylint: disable=g-import-not-at-top from tensorflow.contrib.factorization.python.ops import kmeans as kmeans_lib from tensorflow.python.estimator import run_config from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import data_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import random_ops from tensorflow.python.platform import benchmark from tensorflow.python.platform import flags from tensorflow.python.platform import test from tensorflow.python.training import input as input_lib from tensorflow.python.training import queue_runner FLAGS = flags.FLAGS def normalize(x): return x / np.sqrt(np.sum(x * x, axis=-1, keepdims=True)) def cosine_similarity(x, y): return np.dot(normalize(x), np.transpose(normalize(y))) def make_random_centers(num_centers, num_dims, center_norm=500): return np.round( np.random.rand(num_centers, num_dims).astype(np.float32) * center_norm) def make_random_points(centers, num_points, max_offset=20): num_centers, num_dims = centers.shape assignments = np.random.choice(num_centers, num_points) offsets = np.round( np.random.randn(num_points, num_dims).astype(np.float32) * max_offset) return (centers[assignments] + offsets, assignments, np.add.reduce( offsets * offsets, 1)) class KMeansTestBase(test.TestCase): def input_fn(self, batch_size=None, points=None, randomize=None, num_epochs=None): """Returns an input_fn that randomly selects batches from given points.""" batch_size = batch_size or self.batch_size points = points if points is not None else self.points num_points = points.shape[0] if randomize is None: randomize = (self.use_mini_batch and self.mini_batch_steps_per_iteration <= 1) def _fn(): x = constant_op.constant(points) if batch_size == num_points: return input_lib.limit_epochs(x, num_epochs=num_epochs), None if randomize: indices = random_ops.random_uniform( constant_op.constant([batch_size]), minval=0, maxval=num_points - 1, dtype=dtypes.int32, seed=10) else: # We need to cycle through the indices sequentially. We create a queue # to maintain the list of indices. q = data_flow_ops.FIFOQueue(num_points, dtypes.int32, ()) # Conditionally initialize the Queue. def _init_q(): with ops.control_dependencies( [q.enqueue_many(math_ops.range(num_points))]): return control_flow_ops.no_op() init_q = control_flow_ops.cond(q.size() <= 0, _init_q, control_flow_ops.no_op) with ops.control_dependencies([init_q]): offsets = q.dequeue_many(batch_size) with ops.control_dependencies([q.enqueue_many(offsets)]): indices = array_ops.identity(offsets) batch = array_ops.gather(x, indices) return (input_lib.limit_epochs(batch, num_epochs=num_epochs), None) return _fn @staticmethod def config(tf_random_seed): return run_config.RunConfig().replace(tf_random_seed=tf_random_seed) @property def initial_clusters(self): return kmeans_lib.KMeansClustering.KMEANS_PLUS_PLUS_INIT @property def batch_size(self): return self.num_points @property def use_mini_batch(self): return False @property def mini_batch_steps_per_iteration(self): return 1 class KMeansTest(KMeansTestBase): def setUp(self): np.random.seed(3) self.num_centers = 5 self.num_dims = 2 self.num_points = 1000 self.true_centers = make_random_centers(self.num_centers, self.num_dims) self.points, _, self.scores = make_random_points(self.true_centers, self.num_points) self.true_score = np.add.reduce(self.scores) def _kmeans(self, relative_tolerance=None): return kmeans_lib.KMeansClustering( self.num_centers, initial_clusters=self.initial_clusters, distance_metric=kmeans_lib.KMeansClustering.SQUARED_EUCLIDEAN_DISTANCE, use_mini_batch=self.use_mini_batch, mini_batch_steps_per_iteration=self.mini_batch_steps_per_iteration, random_seed=24, relative_tolerance=relative_tolerance) def test_clusters(self): kmeans = self._kmeans() kmeans.train(input_fn=self.input_fn(), steps=1) clusters = kmeans.cluster_centers() self.assertAllEqual(list(clusters.shape), [self.num_centers, self.num_dims]) def test_fit(self): kmeans = self._kmeans() kmeans.train(input_fn=self.input_fn(), steps=1) score1 = kmeans.score(input_fn=self.input_fn(batch_size=self.num_points)) steps = 10 * self.num_points // self.batch_size kmeans.train(input_fn=self.input_fn(), steps=steps) score2 = kmeans.score(input_fn=self.input_fn(batch_size=self.num_points)) self.assertTrue(score1 > score2) self.assertNear(self.true_score, score2, self.true_score * 0.05) def test_monitor(self): if self.use_mini_batch: # We don't test for use_mini_batch case since the loss value can be noisy. return kmeans = kmeans_lib.KMeansClustering( self.num_centers, initial_clusters=self.initial_clusters, distance_metric=kmeans_lib.KMeansClustering.SQUARED_EUCLIDEAN_DISTANCE, use_mini_batch=self.use_mini_batch, mini_batch_steps_per_iteration=self.mini_batch_steps_per_iteration, config=self.config(14), random_seed=12, relative_tolerance=1e-4) kmeans.train( input_fn=self.input_fn(), # Force it to train until the relative tolerance monitor stops it. steps=None) score = kmeans.score(input_fn=self.input_fn(batch_size=self.num_points)) self.assertNear(self.true_score, score, self.true_score * 0.01) def _infer_helper(self, kmeans, clusters, num_points): points, true_assignments, true_offsets = make_random_points( clusters, num_points) input_fn = self.input_fn(batch_size=num_points, points=points, num_epochs=1) # Test predict assignments = list(kmeans.predict_cluster_index(input_fn)) self.assertAllEqual(assignments, true_assignments) # Test score score = kmeans.score(input_fn=lambda: (constant_op.constant(points), None)) self.assertNear(score, np.sum(true_offsets), 0.01 * score) # Test transform transform = list(kmeans.transform(input_fn)) true_transform = np.maximum( 0, np.sum(np.square(points), axis=1, keepdims=True) - 2 * np.dot(points, np.transpose(clusters)) + np.transpose( np.sum(np.square(clusters), axis=1, keepdims=True))) self.assertAllClose(transform, true_transform, rtol=0.05, atol=10) def test_infer(self): kmeans = self._kmeans() # Make a call to fit to initialize the cluster centers. max_steps = 1 kmeans.train(input_fn=self.input_fn(), max_steps=max_steps) clusters = kmeans.cluster_centers() # Run inference on small datasets. self._infer_helper(kmeans, clusters, 10) self._infer_helper(kmeans, clusters, 1) class KMeansTestMultiStageInit(KMeansTestBase): def test_random(self): points = np.array( [[1, 2], [3, 4], [5, 6], [7, 8], [9, 0]], dtype=np.float32) kmeans = kmeans_lib.KMeansClustering( num_clusters=points.shape[0], initial_clusters=kmeans_lib.KMeansClustering.RANDOM_INIT, distance_metric=kmeans_lib.KMeansClustering.SQUARED_EUCLIDEAN_DISTANCE, use_mini_batch=True, mini_batch_steps_per_iteration=100, random_seed=24, relative_tolerance=None) kmeans.train( input_fn=self.input_fn(batch_size=1, points=points, randomize=False), steps=1) clusters = kmeans.cluster_centers() self.assertAllEqual(points, clusters) def test_kmeans_plus_plus_batch_just_right(self): points = np.array([[1, 2]], dtype=np.float32) kmeans = kmeans_lib.KMeansClustering( num_clusters=points.shape[0], initial_clusters=kmeans_lib.KMeansClustering.KMEANS_PLUS_PLUS_INIT, distance_metric=kmeans_lib.KMeansClustering.SQUARED_EUCLIDEAN_DISTANCE, use_mini_batch=True, mini_batch_steps_per_iteration=100, random_seed=24, relative_tolerance=None) kmeans.train( input_fn=self.input_fn(batch_size=1, points=points, randomize=False), steps=1) clusters = kmeans.cluster_centers() self.assertAllEqual(points, clusters) def test_kmeans_plus_plus_batch_too_small(self): points = np.array( [[1, 2], [3, 4], [5, 6], [7, 8], [9, 0]], dtype=np.float32) kmeans = kmeans_lib.KMeansClustering( num_clusters=points.shape[0], initial_clusters=kmeans_lib.KMeansClustering.KMEANS_PLUS_PLUS_INIT, distance_metric=kmeans_lib.KMeansClustering.SQUARED_EUCLIDEAN_DISTANCE, use_mini_batch=True, mini_batch_steps_per_iteration=100, random_seed=24, relative_tolerance=None) with self.assertRaisesOpError(AssertionError): kmeans.train( input_fn=self.input_fn(batch_size=4, points=points, randomize=False), steps=1) class MiniBatchKMeansTest(KMeansTest): @property def batch_size(self): return 50 @property def use_mini_batch(self): return True class FullBatchAsyncKMeansTest(KMeansTest): @property def batch_size(self): return 50 @property def use_mini_batch(self): return True @property def mini_batch_steps_per_iteration(self): return self.num_points // self.batch_size class KMeansCosineDistanceTest(KMeansTestBase): def setUp(self): self.points = np.array( [[2.5, 0.1], [2, 0.2], [3, 0.1], [4, 0.2], [0.1, 2.5], [0.2, 2], [0.1, 3], [0.2, 4]], dtype=np.float32) self.num_points = self.points.shape[0] self.true_centers = np.array( [ normalize( np.mean(normalize(self.points)[0:4, :], axis=0, keepdims=True))[0], normalize( np.mean(normalize(self.points)[4:, :], axis=0, keepdims=True))[0] ], dtype=np.float32) self.true_assignments = np.array([0] * 4 + [1] * 4) self.true_score = len(self.points) - np.tensordot( normalize(self.points), self.true_centers[self.true_assignments]) self.num_centers = 2 self.kmeans = kmeans_lib.KMeansClustering( self.num_centers, initial_clusters=kmeans_lib.KMeansClustering.RANDOM_INIT, distance_metric=kmeans_lib.KMeansClustering.COSINE_DISTANCE, use_mini_batch=self.use_mini_batch, mini_batch_steps_per_iteration=self.mini_batch_steps_per_iteration, config=self.config(3)) def test_fit(self): max_steps = 10 * self.num_points // self.batch_size self.kmeans.train(input_fn=self.input_fn(), max_steps=max_steps) centers = normalize(self.kmeans.cluster_centers()) centers = centers[centers[:, 0].argsort()] true_centers = self.true_centers[self.true_centers[:, 0].argsort()] self.assertAllClose(centers, true_centers, atol=0.04) def test_transform(self): self.kmeans.train(input_fn=self.input_fn(), steps=10) centers = normalize(self.kmeans.cluster_centers()) true_transform = 1 - cosine_similarity(self.points, centers) transform = list( self.kmeans.transform( input_fn=self.input_fn(batch_size=self.num_points, num_epochs=1))) self.assertAllClose(transform, true_transform, atol=1e-3) def test_predict(self): max_steps = 10 * self.num_points // self.batch_size self.kmeans.train(input_fn=self.input_fn(), max_steps=max_steps) centers = normalize(self.kmeans.cluster_centers()) assignments = list( self.kmeans.predict_cluster_index( input_fn=self.input_fn(num_epochs=1, batch_size=self.num_points))) self.assertAllClose( centers[assignments], self.true_centers[self.true_assignments], atol=1e-2) centers = centers[centers[:, 0].argsort()] true_centers = self.true_centers[self.true_centers[:, 0].argsort()] self.assertAllClose(centers, true_centers, atol=0.04) score = self.kmeans.score( input_fn=self.input_fn(batch_size=self.num_points)) self.assertAllClose(score, self.true_score, atol=1e-2) def test_predict_kmeans_plus_plus(self): # Most points are concetrated near one center. KMeans++ is likely to find # the less populated centers. points = np.array( [[2.5, 3.5], [2.5, 3.5], [-2, 3], [-2, 3], [-3, -3], [-3.1, -3.2], [-2.8, -3.], [-2.9, -3.1], [-3., -3.1], [-3., -3.1], [-3.2, -3.], [-3., -3.]], dtype=np.float32) true_centers = np.array( [ normalize( np.mean(normalize(points)[0:2, :], axis=0, keepdims=True))[0], normalize( np.mean(normalize(points)[2:4, :], axis=0, keepdims=True))[0], normalize(np.mean(normalize(points)[4:, :], axis=0, keepdims=True))[0] ], dtype=np.float32) true_assignments = [0] * 2 + [1] * 2 + [2] * 8 true_score = len(points) - np.tensordot( normalize(points), true_centers[true_assignments]) kmeans = kmeans_lib.KMeansClustering( 3, initial_clusters=self.initial_clusters, distance_metric=kmeans_lib.KMeansClustering.COSINE_DISTANCE, use_mini_batch=self.use_mini_batch, mini_batch_steps_per_iteration=self.mini_batch_steps_per_iteration, config=self.config(3)) kmeans.train( input_fn=lambda: (constant_op.constant(points), None), steps=30) centers = normalize(kmeans.cluster_centers()) self.assertAllClose( sorted(centers.tolist()), sorted(true_centers.tolist()), atol=1e-2) def _input_fn(): return (input_lib.limit_epochs( constant_op.constant(points), num_epochs=1), None) assignments = list(kmeans.predict_cluster_index(input_fn=_input_fn)) self.assertAllClose( centers[assignments], true_centers[true_assignments], atol=1e-2) score = kmeans.score(input_fn=lambda: (constant_op.constant(points), None)) self.assertAllClose(score, true_score, atol=1e-2) class MiniBatchKMeansCosineTest(KMeansCosineDistanceTest): @property def batch_size(self): return 2 @property def use_mini_batch(self): return True class FullBatchAsyncKMeansCosineTest(KMeansCosineDistanceTest): @property def batch_size(self): return 2 @property def use_mini_batch(self): return True @property def mini_batch_steps_per_iteration(self): return self.num_points // self.batch_size class KMeansBenchmark(benchmark.Benchmark): """Base class for benchmarks.""" def SetUp(self, dimension=50, num_clusters=50, points_per_cluster=10000, center_norm=500, cluster_width=20): np.random.seed(123456) self.num_clusters = num_clusters self.num_points = num_clusters * points_per_cluster self.centers = make_random_centers( self.num_clusters, dimension, center_norm=center_norm) self.points, _, scores = make_random_points( self.centers, self.num_points, max_offset=cluster_width) self.score = float(np.sum(scores)) def _report(self, num_iters, start, end, scores): print(scores) self.report_benchmark( iters=num_iters, wall_time=(end - start) / num_iters, extras={'true_sum_squared_distances': self.score, 'fit_scores': scores}) def _fit(self, num_iters=10): pass def benchmark_01_2dim_5center_500point(self): self.SetUp(dimension=2, num_clusters=5, points_per_cluster=100) self._fit() def benchmark_02_20dim_20center_10kpoint(self): self.SetUp(dimension=20, num_clusters=20, points_per_cluster=500) self._fit() def benchmark_03_100dim_50center_50kpoint(self): self.SetUp(dimension=100, num_clusters=50, points_per_cluster=1000) self._fit() def benchmark_03_100dim_50center_50kpoint_unseparated(self): self.SetUp( dimension=100, num_clusters=50, points_per_cluster=1000, cluster_width=250) self._fit() def benchmark_04_100dim_500center_500kpoint(self): self.SetUp(dimension=100, num_clusters=500, points_per_cluster=1000) self._fit(num_iters=4) def benchmark_05_100dim_500center_500kpoint_unseparated(self): self.SetUp( dimension=100, num_clusters=500, points_per_cluster=1000, cluster_width=250) self._fit(num_iters=4) class TensorflowKMeansBenchmark(KMeansBenchmark): def _fit(self, num_iters=10): scores = [] start = time.time() for i in range(num_iters): print('Starting tensorflow KMeans: %d' % i) tf_kmeans = kmeans_lib.KMeansClustering( self.num_clusters, initial_clusters=kmeans_lib.KMeansClustering.KMEANS_PLUS_PLUS_INIT, kmeans_plus_plus_num_retries=int(math.log(self.num_clusters) + 2), random_seed=i * 42, relative_tolerance=1e-6, config=self.config(3)) tf_kmeans.train( input_fn=lambda: (constant_op.constant(self.points), None), steps=50) _ = tf_kmeans.cluster_centers() scores.append( tf_kmeans.score( input_fn=lambda: (constant_op.constant(self.points), None))) self._report(num_iters, start, time.time(), scores) class SklearnKMeansBenchmark(KMeansBenchmark): def _fit(self, num_iters=10): scores = [] start = time.time() for i in range(num_iters): print('Starting sklearn KMeans: %d' % i) sklearn_kmeans = SklearnKMeans( n_clusters=self.num_clusters, init='k-means++', max_iter=50, n_init=1, tol=1e-4, random_state=i * 42) sklearn_kmeans.train(self.points) scores.append(sklearn_kmeans.inertia_) self._report(num_iters, start, time.time(), scores) class KMeansTestQueues(test.TestCase): def input_fn(self): def _fn(): queue = data_flow_ops.FIFOQueue( capacity=10, dtypes=dtypes.float32, shapes=[10, 3]) enqueue_op = queue.enqueue(array_ops.zeros([10, 3], dtype=dtypes.float32)) queue_runner.add_queue_runner( queue_runner.QueueRunner(queue, [enqueue_op])) return queue.dequeue(), None return _fn # This test makes sure that there are no deadlocks when using a QueueRunner. # Note that since cluster initialization is dependendent on inputs, if input # is generated using a QueueRunner, one has to make sure that these runners # are started before the initialization. def test_queues(self): kmeans = kmeans_lib.KMeansClustering(5) kmeans.train(input_fn=self.input_fn(), steps=1) if __name__ == '__main__': test.main()
apache-2.0
JeanKossaifi/scikit-learn
examples/text/mlcomp_sparse_document_classification.py
292
4498
""" ======================================================== Classification of text documents: using a MLComp dataset ======================================================== This is an example showing how the scikit-learn can be used to classify documents by topics using a bag-of-words approach. This example uses a scipy.sparse matrix to store the features instead of standard numpy arrays. The dataset used in this example is the 20 newsgroups dataset and should be downloaded from the http://mlcomp.org (free registration required): http://mlcomp.org/datasets/379 Once downloaded unzip the archive somewhere on your filesystem. For instance in:: % mkdir -p ~/data/mlcomp % cd ~/data/mlcomp % unzip /path/to/dataset-379-20news-18828_XXXXX.zip You should get a folder ``~/data/mlcomp/379`` with a file named ``metadata`` and subfolders ``raw``, ``train`` and ``test`` holding the text documents organized by newsgroups. Then set the ``MLCOMP_DATASETS_HOME`` environment variable pointing to the root folder holding the uncompressed archive:: % export MLCOMP_DATASETS_HOME="~/data/mlcomp" Then you are ready to run this example using your favorite python shell:: % ipython examples/mlcomp_sparse_document_classification.py """ # Author: Olivier Grisel <[email protected]> # License: BSD 3 clause from __future__ import print_function from time import time import sys import os import numpy as np import scipy.sparse as sp import pylab as pl from sklearn.datasets import load_mlcomp from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import SGDClassifier from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report from sklearn.naive_bayes import MultinomialNB print(__doc__) if 'MLCOMP_DATASETS_HOME' not in os.environ: print("MLCOMP_DATASETS_HOME not set; please follow the above instructions") sys.exit(0) # Load the training set print("Loading 20 newsgroups training set... ") news_train = load_mlcomp('20news-18828', 'train') print(news_train.DESCR) print("%d documents" % len(news_train.filenames)) print("%d categories" % len(news_train.target_names)) print("Extracting features from the dataset using a sparse vectorizer") t0 = time() vectorizer = TfidfVectorizer(encoding='latin1') X_train = vectorizer.fit_transform((open(f).read() for f in news_train.filenames)) print("done in %fs" % (time() - t0)) print("n_samples: %d, n_features: %d" % X_train.shape) assert sp.issparse(X_train) y_train = news_train.target print("Loading 20 newsgroups test set... ") news_test = load_mlcomp('20news-18828', 'test') t0 = time() print("done in %fs" % (time() - t0)) print("Predicting the labels of the test set...") print("%d documents" % len(news_test.filenames)) print("%d categories" % len(news_test.target_names)) print("Extracting features from the dataset using the same vectorizer") t0 = time() X_test = vectorizer.transform((open(f).read() for f in news_test.filenames)) y_test = news_test.target print("done in %fs" % (time() - t0)) print("n_samples: %d, n_features: %d" % X_test.shape) ############################################################################### # Benchmark classifiers def benchmark(clf_class, params, name): print("parameters:", params) t0 = time() clf = clf_class(**params).fit(X_train, y_train) print("done in %fs" % (time() - t0)) if hasattr(clf, 'coef_'): print("Percentage of non zeros coef: %f" % (np.mean(clf.coef_ != 0) * 100)) print("Predicting the outcomes of the testing set") t0 = time() pred = clf.predict(X_test) print("done in %fs" % (time() - t0)) print("Classification report on test set for classifier:") print(clf) print() print(classification_report(y_test, pred, target_names=news_test.target_names)) cm = confusion_matrix(y_test, pred) print("Confusion matrix:") print(cm) # Show confusion matrix pl.matshow(cm) pl.title('Confusion matrix of the %s classifier' % name) pl.colorbar() print("Testbenching a linear classifier...") parameters = { 'loss': 'hinge', 'penalty': 'l2', 'n_iter': 50, 'alpha': 0.00001, 'fit_intercept': True, } benchmark(SGDClassifier, parameters, 'SGD') print("Testbenching a MultinomialNB classifier...") parameters = {'alpha': 0.01} benchmark(MultinomialNB, parameters, 'MultinomialNB') pl.show()
bsd-3-clause
nickgentoo/scikit-learn-graph
scripts/ODDKernel_FeatureExtraction.py
1
2394
# -*- coding: utf-8 -*- """ Created on Fri Mar 13 13:02:41 2015 Copyright 2015 Nicolo' Navarin This file is part of scikit-learn-graph. scikit-learn-graph is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. scikit-learn-graph is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with scikit-learn-graph. If not, see <http://www.gnu.org/licenses/>. """ import sys import numpy as np import time from sklearn import cross_validation from skgraph.feature_extraction.graph import ODDSTVectorizer from sklearn.linear_model import SGDClassifier from sklearn.svm import LinearSVC if __name__=='__main__': if len(sys.argv)<0: sys.exit("python ODDKernel_FeatureExtraction.py") max_radius=4 la=1.4 #load bursi dataset from skgraph import datasets dat=datasets.load_graphs_bursi() g_it=dat.graphs print "Number of examples:",len(dat.graphs) y=dat.target ODDvec=ODDSTVectorizer.ODDSTVectorizer(r=max_radius,l=la) print "Computing features" start_time = time.time() X=ODDvec.transform(g_it) #instance-featues matrix elapsed_time = time.time() - start_time print "Took %d s" % (elapsed_time) print 'Instances: %d Features: %d with an avg of %d features per instance' % (X.shape[0], X.shape[1], X.getnnz()/X.shape[0]) print "Non zero different features %d" % (len(np.unique(X.nonzero()[1]))) #induce a predictive model predictor = LinearSVC(n_iter=150,shuffle=True) #predictor = SGDClassifier(n_iter=150,shuffle=True) print "Training SGD classifier optimizing accuracy" scores = cross_validation.cross_val_score(predictor, X, y,cv=10, scoring='accuracy') import numpy as np print('Accuracy: %.4f +- %.4f' % (np.mean(scores),np.std(scores))) print "Training SGD classifier optimizing AUROC" scores = cross_validation.cross_val_score(predictor, X, y,cv=10, scoring='roc_auc') print('AUC ROC: %.4f +- %.4f' % (np.mean(scores),np.std(scores)))
gpl-3.0
bamueh/dark-matter
dark/orfs.py
3
2745
import numpy as np START_CODONS = set(['ATG']) STOP_CODONS = set(['TAA', 'TAG', 'TGA']) def findCodons(seq, codons): """ Find all instances of the codons in 'codons' in the given sequence. seq: A Bio.Seq.Seq instance. codons: A set of codon strings. Return: a generator yielding matching codon offsets. """ seqLen = len(seq) start = 0 while start < seqLen: triplet = str(seq[start:start + 3]) if triplet in codons: yield start start = start + 3 def addORFs(fig, seq, minX, maxX, offsetAdjuster): """ fig is a matplotlib figure. seq is a Bio.Seq.Seq. minX: the smallest x coordinate. maxX: the largest x coordinate. featureEndpoints: an array of features as returned by addFeatures (may be empty). offsetAdjuster: a function to adjust feature X axis offsets for plotting. """ for frame in range(3): target = seq[frame:] for (codons, codonType, color) in ( (START_CODONS, 'start', 'green'), (STOP_CODONS, 'stop', 'red')): offsets = list(map(offsetAdjuster, findCodons(target, codons))) if offsets: fig.plot(offsets, np.tile(frame, len(offsets)), marker='.', markersize=4, color=color, linestyle='None') fig.axis([minX, maxX, -1, 3]) fig.set_yticks(np.arange(3)) fig.set_ylabel('Frame', fontsize=17) fig.set_title('Subject start (%s) and stop (%s) codons' % ( ', '.join(sorted(START_CODONS)), ', '.join(sorted(STOP_CODONS))), fontsize=20) def addReversedORFs(fig, seq, minX, maxX, offsetAdjuster): """ fig is a matplotlib figure. seq is a Bio.Seq.Seq (the reverse complement of the sequence we're plotting against). minX: the smallest x coordinate. maxX: the largest x coordinate. offsetAdjuster: a function to adjust feature X axis offsets for plotting. """ for frame in range(3): target = seq[frame:] for (codons, codonType, color) in ( (START_CODONS, 'start', 'green'), (STOP_CODONS, 'stop', 'red')): offsets = [maxX - offsetAdjuster(offset) for offset in findCodons(target, codons)] if offsets: fig.plot(offsets, np.tile(frame, len(offsets)), marker='.', markersize=4, color=color, linestyle='None') fig.axis([minX, maxX, -1, 3]) fig.set_yticks(np.arange(3)) fig.set_ylabel('Frame', fontsize=17) fig.set_title('Reversed subject start (%s) and stop (%s) codons' % (', '.join(sorted(START_CODONS)), ', '.join(sorted(STOP_CODONS))), fontsize=20)
mit
kmike/scikit-learn
examples/grid_search_text_feature_extraction.py
3
4167
""" ========================================================== Sample pipeline for text feature extraction and evaluation ========================================================== The dataset used in this example is the 20 newsgroups dataset which will be automatically downloaded and then cached and reused for the document classification example. You can adjust the number of categories by giving there name to the dataset loader or setting them to None to get the 20 of them. Here is a sample output of a run on a quad-core machine:: Loading 20 newsgroups dataset for categories: ['alt.atheism', 'talk.religion.misc'] 1427 documents 2 categories Performing grid search... pipeline: ['vect', 'tfidf', 'clf'] parameters: {'clf__alpha': (1.0000000000000001e-05, 9.9999999999999995e-07), 'clf__n_iter': (10, 50, 80), 'clf__penalty': ('l2', 'elasticnet'), 'tfidf__use_idf': (True, False), 'vect__max_n': (1, 2), 'vect__max_df': (0.5, 0.75, 1.0), 'vect__max_features': (None, 5000, 10000, 50000)} done in 1737.030s Best score: 0.940 Best parameters set: clf__alpha: 9.9999999999999995e-07 clf__n_iter: 50 clf__penalty: 'elasticnet' tfidf__use_idf: True vect__max_n: 2 vect__max_df: 0.75 vect__max_features: 50000 """ # Author: Olivier Grisel <[email protected]> # Peter Prettenhofer <[email protected]> # Mathieu Blondel <[email protected]> # License: Simplified BSD from __future__ import print_function from pprint import pprint from time import time import logging from sklearn.datasets import fetch_20newsgroups from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfTransformer from sklearn.linear_model import SGDClassifier from sklearn.grid_search import GridSearchCV from sklearn.pipeline import Pipeline print(__doc__) # Display progress logs on stdout logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s %(message)s') ############################################################################### # Load some categories from the training set categories = [ 'alt.atheism', 'talk.religion.misc', ] # Uncomment the following to do the analysis on all the categories #categories = None print("Loading 20 newsgroups dataset for categories:") print(categories) data = fetch_20newsgroups(subset='train', categories=categories) print("%d documents" % len(data.filenames)) print("%d categories" % len(data.target_names)) print() ############################################################################### # define a pipeline combining a text feature extractor with a simple # classifier pipeline = Pipeline([ ('vect', CountVectorizer()), ('tfidf', TfidfTransformer()), ('clf', SGDClassifier()), ]) parameters = { # uncommenting more parameters will give better exploring power but will # increase processing time in a combinatorial way 'vect__max_df': (0.5, 0.75, 1.0), #'vect__max_features': (None, 5000, 10000, 50000), 'vect__ngram_range': ((1, 1), (1, 2)), # unigrams or bigrams #'tfidf__use_idf': (True, False), #'tfidf__norm': ('l1', 'l2'), 'clf__alpha': (0.00001, 0.000001), 'clf__penalty': ('l2', 'elasticnet'), #'clf__n_iter': (10, 50, 80), } if __name__ == "__main__": # multiprocessing requires the fork to happen in a __main__ protected # block # find the best parameters for both the feature extraction and the # classifier grid_search = GridSearchCV(pipeline, parameters, n_jobs=-1, verbose=1) print("Performing grid search...") print("pipeline:", [name for name, _ in pipeline.steps]) print("parameters:") pprint(parameters) t0 = time() grid_search.fit(data.data, data.target) print("done in %0.3fs" % (time() - t0)) print() print("Best score: %0.3f" % grid_search.best_score_) print("Best parameters set:") best_parameters = grid_search.best_estimator_.get_params() for param_name in sorted(parameters.keys()): print("\t%s: %r" % (param_name, best_parameters[param_name]))
bsd-3-clause
piotroxp/scibibscan
scib/lib/python3.5/site-packages/numpy/lib/npyio.py
42
71218
from __future__ import division, absolute_import, print_function import sys import os import re import itertools import warnings import weakref from operator import itemgetter import numpy as np from . import format from ._datasource import DataSource from numpy.core.multiarray import packbits, unpackbits from ._iotools import ( LineSplitter, NameValidator, StringConverter, ConverterError, ConverterLockError, ConversionWarning, _is_string_like, has_nested_fields, flatten_dtype, easy_dtype, _bytes_to_name ) from numpy.compat import ( asbytes, asstr, asbytes_nested, bytes, basestring, unicode ) if sys.version_info[0] >= 3: import pickle else: import cPickle as pickle from future_builtins import map loads = pickle.loads __all__ = [ 'savetxt', 'loadtxt', 'genfromtxt', 'ndfromtxt', 'mafromtxt', 'recfromtxt', 'recfromcsv', 'load', 'loads', 'save', 'savez', 'savez_compressed', 'packbits', 'unpackbits', 'fromregex', 'DataSource' ] class BagObj(object): """ BagObj(obj) Convert attribute look-ups to getitems on the object passed in. Parameters ---------- obj : class instance Object on which attribute look-up is performed. Examples -------- >>> from numpy.lib.npyio import BagObj as BO >>> class BagDemo(object): ... def __getitem__(self, key): # An instance of BagObj(BagDemo) ... # will call this method when any ... # attribute look-up is required ... result = "Doesn't matter what you want, " ... return result + "you're gonna get this" ... >>> demo_obj = BagDemo() >>> bagobj = BO(demo_obj) >>> bagobj.hello_there "Doesn't matter what you want, you're gonna get this" >>> bagobj.I_can_be_anything "Doesn't matter what you want, you're gonna get this" """ def __init__(self, obj): # Use weakref to make NpzFile objects collectable by refcount self._obj = weakref.proxy(obj) def __getattribute__(self, key): try: return object.__getattribute__(self, '_obj')[key] except KeyError: raise AttributeError(key) def __dir__(self): """ Enables dir(bagobj) to list the files in an NpzFile. This also enables tab-completion in an interpreter or IPython. """ return object.__getattribute__(self, '_obj').keys() def zipfile_factory(*args, **kwargs): import zipfile kwargs['allowZip64'] = True return zipfile.ZipFile(*args, **kwargs) class NpzFile(object): """ NpzFile(fid) A dictionary-like object with lazy-loading of files in the zipped archive provided on construction. `NpzFile` is used to load files in the NumPy ``.npz`` data archive format. It assumes that files in the archive have a ``.npy`` extension, other files are ignored. The arrays and file strings are lazily loaded on either getitem access using ``obj['key']`` or attribute lookup using ``obj.f.key``. A list of all files (without ``.npy`` extensions) can be obtained with ``obj.files`` and the ZipFile object itself using ``obj.zip``. Attributes ---------- files : list of str List of all files in the archive with a ``.npy`` extension. zip : ZipFile instance The ZipFile object initialized with the zipped archive. f : BagObj instance An object on which attribute can be performed as an alternative to getitem access on the `NpzFile` instance itself. allow_pickle : bool, optional Allow loading pickled data. Default: True pickle_kwargs : dict, optional Additional keyword arguments to pass on to pickle.load. These are only useful when loading object arrays saved on Python 2 when using Python 3. Parameters ---------- fid : file or str The zipped archive to open. This is either a file-like object or a string containing the path to the archive. own_fid : bool, optional Whether NpzFile should close the file handle. Requires that `fid` is a file-like object. Examples -------- >>> from tempfile import TemporaryFile >>> outfile = TemporaryFile() >>> x = np.arange(10) >>> y = np.sin(x) >>> np.savez(outfile, x=x, y=y) >>> outfile.seek(0) >>> npz = np.load(outfile) >>> isinstance(npz, np.lib.io.NpzFile) True >>> npz.files ['y', 'x'] >>> npz['x'] # getitem access array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> npz.f.x # attribute lookup array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) """ def __init__(self, fid, own_fid=False, allow_pickle=True, pickle_kwargs=None): # Import is postponed to here since zipfile depends on gzip, an # optional component of the so-called standard library. _zip = zipfile_factory(fid) self._files = _zip.namelist() self.files = [] self.allow_pickle = allow_pickle self.pickle_kwargs = pickle_kwargs for x in self._files: if x.endswith('.npy'): self.files.append(x[:-4]) else: self.files.append(x) self.zip = _zip self.f = BagObj(self) if own_fid: self.fid = fid else: self.fid = None def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.close() def close(self): """ Close the file. """ if self.zip is not None: self.zip.close() self.zip = None if self.fid is not None: self.fid.close() self.fid = None self.f = None # break reference cycle def __del__(self): self.close() def __getitem__(self, key): # FIXME: This seems like it will copy strings around # more than is strictly necessary. The zipfile # will read the string and then # the format.read_array will copy the string # to another place in memory. # It would be better if the zipfile could read # (or at least uncompress) the data # directly into the array memory. member = 0 if key in self._files: member = 1 elif key in self.files: member = 1 key += '.npy' if member: bytes = self.zip.open(key) magic = bytes.read(len(format.MAGIC_PREFIX)) bytes.close() if magic == format.MAGIC_PREFIX: bytes = self.zip.open(key) return format.read_array(bytes, allow_pickle=self.allow_pickle, pickle_kwargs=self.pickle_kwargs) else: return self.zip.read(key) else: raise KeyError("%s is not a file in the archive" % key) def __iter__(self): return iter(self.files) def items(self): """ Return a list of tuples, with each tuple (filename, array in file). """ return [(f, self[f]) for f in self.files] def iteritems(self): """Generator that returns tuples (filename, array in file).""" for f in self.files: yield (f, self[f]) def keys(self): """Return files in the archive with a ``.npy`` extension.""" return self.files def iterkeys(self): """Return an iterator over the files in the archive.""" return self.__iter__() def __contains__(self, key): return self.files.__contains__(key) def load(file, mmap_mode=None, allow_pickle=True, fix_imports=True, encoding='ASCII'): """ Load arrays or pickled objects from ``.npy``, ``.npz`` or pickled files. Parameters ---------- file : file-like object or string The file to read. File-like objects must support the ``seek()`` and ``read()`` methods. Pickled files require that the file-like object support the ``readline()`` method as well. mmap_mode : {None, 'r+', 'r', 'w+', 'c'}, optional If not None, then memory-map the file, using the given mode (see `numpy.memmap` for a detailed description of the modes). A memory-mapped array is kept on disk. However, it can be accessed and sliced like any ndarray. Memory mapping is especially useful for accessing small fragments of large files without reading the entire file into memory. allow_pickle : bool, optional Allow loading pickled object arrays stored in npy files. Reasons for disallowing pickles include security, as loading pickled data can execute arbitrary code. If pickles are disallowed, loading object arrays will fail. Default: True fix_imports : bool, optional Only useful when loading Python 2 generated pickled files on Python 3, which includes npy/npz files containing object arrays. If `fix_imports` is True, pickle will try to map the old Python 2 names to the new names used in Python 3. encoding : str, optional What encoding to use when reading Python 2 strings. Only useful when loading Python 2 generated pickled files on Python 3, which includes npy/npz files containing object arrays. Values other than 'latin1', 'ASCII', and 'bytes' are not allowed, as they can corrupt numerical data. Default: 'ASCII' Returns ------- result : array, tuple, dict, etc. Data stored in the file. For ``.npz`` files, the returned instance of NpzFile class must be closed to avoid leaking file descriptors. Raises ------ IOError If the input file does not exist or cannot be read. ValueError The file contains an object array, but allow_pickle=False given. See Also -------- save, savez, savez_compressed, loadtxt memmap : Create a memory-map to an array stored in a file on disk. Notes ----- - If the file contains pickle data, then whatever object is stored in the pickle is returned. - If the file is a ``.npy`` file, then a single array is returned. - If the file is a ``.npz`` file, then a dictionary-like object is returned, containing ``{filename: array}`` key-value pairs, one for each file in the archive. - If the file is a ``.npz`` file, the returned value supports the context manager protocol in a similar fashion to the open function:: with load('foo.npz') as data: a = data['a'] The underlying file descriptor is closed when exiting the 'with' block. Examples -------- Store data to disk, and load it again: >>> np.save('/tmp/123', np.array([[1, 2, 3], [4, 5, 6]])) >>> np.load('/tmp/123.npy') array([[1, 2, 3], [4, 5, 6]]) Store compressed data to disk, and load it again: >>> a=np.array([[1, 2, 3], [4, 5, 6]]) >>> b=np.array([1, 2]) >>> np.savez('/tmp/123.npz', a=a, b=b) >>> data = np.load('/tmp/123.npz') >>> data['a'] array([[1, 2, 3], [4, 5, 6]]) >>> data['b'] array([1, 2]) >>> data.close() Mem-map the stored array, and then access the second row directly from disk: >>> X = np.load('/tmp/123.npy', mmap_mode='r') >>> X[1, :] memmap([4, 5, 6]) """ import gzip own_fid = False if isinstance(file, basestring): fid = open(file, "rb") own_fid = True else: fid = file if encoding not in ('ASCII', 'latin1', 'bytes'): # The 'encoding' value for pickle also affects what encoding # the serialized binary data of Numpy arrays is loaded # in. Pickle does not pass on the encoding information to # Numpy. The unpickling code in numpy.core.multiarray is # written to assume that unicode data appearing where binary # should be is in 'latin1'. 'bytes' is also safe, as is 'ASCII'. # # Other encoding values can corrupt binary data, and we # purposefully disallow them. For the same reason, the errors= # argument is not exposed, as values other than 'strict' # result can similarly silently corrupt numerical data. raise ValueError("encoding must be 'ASCII', 'latin1', or 'bytes'") if sys.version_info[0] >= 3: pickle_kwargs = dict(encoding=encoding, fix_imports=fix_imports) else: # Nothing to do on Python 2 pickle_kwargs = {} try: # Code to distinguish from NumPy binary files and pickles. _ZIP_PREFIX = asbytes('PK\x03\x04') N = len(format.MAGIC_PREFIX) magic = fid.read(N) fid.seek(-N, 1) # back-up if magic.startswith(_ZIP_PREFIX): # zip-file (assume .npz) # Transfer file ownership to NpzFile tmp = own_fid own_fid = False return NpzFile(fid, own_fid=tmp, allow_pickle=allow_pickle, pickle_kwargs=pickle_kwargs) elif magic == format.MAGIC_PREFIX: # .npy file if mmap_mode: return format.open_memmap(file, mode=mmap_mode) else: return format.read_array(fid, allow_pickle=allow_pickle, pickle_kwargs=pickle_kwargs) else: # Try a pickle if not allow_pickle: raise ValueError("allow_pickle=False, but file does not contain " "non-pickled data") try: return pickle.load(fid, **pickle_kwargs) except: raise IOError( "Failed to interpret file %s as a pickle" % repr(file)) finally: if own_fid: fid.close() def save(file, arr, allow_pickle=True, fix_imports=True): """ Save an array to a binary file in NumPy ``.npy`` format. Parameters ---------- file : file or str File or filename to which the data is saved. If file is a file-object, then the filename is unchanged. If file is a string, a ``.npy`` extension will be appended to the file name if it does not already have one. allow_pickle : bool, optional Allow saving object arrays using Python pickles. Reasons for disallowing pickles include security (loading pickled data can execute arbitrary code) and portability (pickled objects may not be loadable on different Python installations, for example if the stored objects require libraries that are not available, and not all pickled data is compatible between Python 2 and Python 3). Default: True fix_imports : bool, optional Only useful in forcing objects in object arrays on Python 3 to be pickled in a Python 2 compatible way. If `fix_imports` is True, pickle will try to map the new Python 3 names to the old module names used in Python 2, so that the pickle data stream is readable with Python 2. arr : array_like Array data to be saved. See Also -------- savez : Save several arrays into a ``.npz`` archive savetxt, load Notes ----- For a description of the ``.npy`` format, see the module docstring of `numpy.lib.format` or the Numpy Enhancement Proposal http://docs.scipy.org/doc/numpy/neps/npy-format.html Examples -------- >>> from tempfile import TemporaryFile >>> outfile = TemporaryFile() >>> x = np.arange(10) >>> np.save(outfile, x) >>> outfile.seek(0) # Only needed here to simulate closing & reopening file >>> np.load(outfile) array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) """ own_fid = False if isinstance(file, basestring): if not file.endswith('.npy'): file = file + '.npy' fid = open(file, "wb") own_fid = True else: fid = file if sys.version_info[0] >= 3: pickle_kwargs = dict(fix_imports=fix_imports) else: # Nothing to do on Python 2 pickle_kwargs = None try: arr = np.asanyarray(arr) format.write_array(fid, arr, allow_pickle=allow_pickle, pickle_kwargs=pickle_kwargs) finally: if own_fid: fid.close() def savez(file, *args, **kwds): """ Save several arrays into a single file in uncompressed ``.npz`` format. If arguments are passed in with no keywords, the corresponding variable names, in the ``.npz`` file, are 'arr_0', 'arr_1', etc. If keyword arguments are given, the corresponding variable names, in the ``.npz`` file will match the keyword names. Parameters ---------- file : str or file Either the file name (string) or an open file (file-like object) where the data will be saved. If file is a string, the ``.npz`` extension will be appended to the file name if it is not already there. args : Arguments, optional Arrays to save to the file. Since it is not possible for Python to know the names of the arrays outside `savez`, the arrays will be saved with names "arr_0", "arr_1", and so on. These arguments can be any expression. kwds : Keyword arguments, optional Arrays to save to the file. Arrays will be saved in the file with the keyword names. Returns ------- None See Also -------- save : Save a single array to a binary file in NumPy format. savetxt : Save an array to a file as plain text. savez_compressed : Save several arrays into a compressed ``.npz`` archive Notes ----- The ``.npz`` file format is a zipped archive of files named after the variables they contain. The archive is not compressed and each file in the archive contains one variable in ``.npy`` format. For a description of the ``.npy`` format, see `numpy.lib.format` or the Numpy Enhancement Proposal http://docs.scipy.org/doc/numpy/neps/npy-format.html When opening the saved ``.npz`` file with `load` a `NpzFile` object is returned. This is a dictionary-like object which can be queried for its list of arrays (with the ``.files`` attribute), and for the arrays themselves. Examples -------- >>> from tempfile import TemporaryFile >>> outfile = TemporaryFile() >>> x = np.arange(10) >>> y = np.sin(x) Using `savez` with \\*args, the arrays are saved with default names. >>> np.savez(outfile, x, y) >>> outfile.seek(0) # Only needed here to simulate closing & reopening file >>> npzfile = np.load(outfile) >>> npzfile.files ['arr_1', 'arr_0'] >>> npzfile['arr_0'] array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) Using `savez` with \\**kwds, the arrays are saved with the keyword names. >>> outfile = TemporaryFile() >>> np.savez(outfile, x=x, y=y) >>> outfile.seek(0) >>> npzfile = np.load(outfile) >>> npzfile.files ['y', 'x'] >>> npzfile['x'] array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) """ _savez(file, args, kwds, False) def savez_compressed(file, *args, **kwds): """ Save several arrays into a single file in compressed ``.npz`` format. If keyword arguments are given, then filenames are taken from the keywords. If arguments are passed in with no keywords, then stored file names are arr_0, arr_1, etc. Parameters ---------- file : str File name of ``.npz`` file. args : Arguments Function arguments. kwds : Keyword arguments Keywords. See Also -------- numpy.savez : Save several arrays into an uncompressed ``.npz`` file format numpy.load : Load the files created by savez_compressed. """ _savez(file, args, kwds, True) def _savez(file, args, kwds, compress, allow_pickle=True, pickle_kwargs=None): # Import is postponed to here since zipfile depends on gzip, an optional # component of the so-called standard library. import zipfile # Import deferred for startup time improvement import tempfile if isinstance(file, basestring): if not file.endswith('.npz'): file = file + '.npz' namedict = kwds for i, val in enumerate(args): key = 'arr_%d' % i if key in namedict.keys(): raise ValueError( "Cannot use un-named variables and keyword %s" % key) namedict[key] = val if compress: compression = zipfile.ZIP_DEFLATED else: compression = zipfile.ZIP_STORED zipf = zipfile_factory(file, mode="w", compression=compression) # Stage arrays in a temporary file on disk, before writing to zip. fd, tmpfile = tempfile.mkstemp(suffix='-numpy.npy') os.close(fd) try: for key, val in namedict.items(): fname = key + '.npy' fid = open(tmpfile, 'wb') try: format.write_array(fid, np.asanyarray(val), allow_pickle=allow_pickle, pickle_kwargs=pickle_kwargs) fid.close() fid = None zipf.write(tmpfile, arcname=fname) finally: if fid: fid.close() finally: os.remove(tmpfile) zipf.close() def _getconv(dtype): """ Find the correct dtype converter. Adapted from matplotlib """ def floatconv(x): x.lower() if b'0x' in x: return float.fromhex(asstr(x)) return float(x) typ = dtype.type if issubclass(typ, np.bool_): return lambda x: bool(int(x)) if issubclass(typ, np.uint64): return np.uint64 if issubclass(typ, np.int64): return np.int64 if issubclass(typ, np.integer): return lambda x: int(float(x)) elif issubclass(typ, np.floating): return floatconv elif issubclass(typ, np.complex): return lambda x: complex(asstr(x)) elif issubclass(typ, np.bytes_): return bytes else: return str def loadtxt(fname, dtype=float, comments='#', delimiter=None, converters=None, skiprows=0, usecols=None, unpack=False, ndmin=0): """ Load data from a text file. Each row in the text file must have the same number of values. Parameters ---------- fname : file or str File, filename, or generator to read. If the filename extension is ``.gz`` or ``.bz2``, the file is first decompressed. Note that generators should return byte strings for Python 3k. dtype : data-type, optional Data-type of the resulting array; default: float. If this is a structured data-type, the resulting array will be 1-dimensional, and each row will be interpreted as an element of the array. In this case, the number of columns used must match the number of fields in the data-type. comments : str or sequence, optional The characters or list of characters used to indicate the start of a comment; default: '#'. delimiter : str, optional The string used to separate values. By default, this is any whitespace. converters : dict, optional A dictionary mapping column number to a function that will convert that column to a float. E.g., if column 0 is a date string: ``converters = {0: datestr2num}``. Converters can also be used to provide a default value for missing data (but see also `genfromtxt`): ``converters = {3: lambda s: float(s.strip() or 0)}``. Default: None. skiprows : int, optional Skip the first `skiprows` lines; default: 0. usecols : sequence, optional Which columns to read, with 0 being the first. For example, ``usecols = (1,4,5)`` will extract the 2nd, 5th and 6th columns. The default, None, results in all columns being read. unpack : bool, optional If True, the returned array is transposed, so that arguments may be unpacked using ``x, y, z = loadtxt(...)``. When used with a structured data-type, arrays are returned for each field. Default is False. ndmin : int, optional The returned array will have at least `ndmin` dimensions. Otherwise mono-dimensional axes will be squeezed. Legal values: 0 (default), 1 or 2. .. versionadded:: 1.6.0 Returns ------- out : ndarray Data read from the text file. See Also -------- load, fromstring, fromregex genfromtxt : Load data with missing values handled as specified. scipy.io.loadmat : reads MATLAB data files Notes ----- This function aims to be a fast reader for simply formatted files. The `genfromtxt` function provides more sophisticated handling of, e.g., lines with missing values. .. versionadded:: 1.10.0 The strings produced by the Python float.hex method can be used as input for floats. Examples -------- >>> from io import StringIO # StringIO behaves like a file object >>> c = StringIO("0 1\\n2 3") >>> np.loadtxt(c) array([[ 0., 1.], [ 2., 3.]]) >>> d = StringIO("M 21 72\\nF 35 58") >>> np.loadtxt(d, dtype={'names': ('gender', 'age', 'weight'), ... 'formats': ('S1', 'i4', 'f4')}) array([('M', 21, 72.0), ('F', 35, 58.0)], dtype=[('gender', '|S1'), ('age', '<i4'), ('weight', '<f4')]) >>> c = StringIO("1,0,2\\n3,0,4") >>> x, y = np.loadtxt(c, delimiter=',', usecols=(0, 2), unpack=True) >>> x array([ 1., 3.]) >>> y array([ 2., 4.]) """ # Type conversions for Py3 convenience if comments is not None: if isinstance(comments, (basestring, bytes)): comments = [asbytes(comments)] else: comments = [asbytes(comment) for comment in comments] # Compile regex for comments beforehand comments = (re.escape(comment) for comment in comments) regex_comments = re.compile(asbytes('|').join(comments)) user_converters = converters if delimiter is not None: delimiter = asbytes(delimiter) if usecols is not None: usecols = list(usecols) fown = False try: if _is_string_like(fname): fown = True if fname.endswith('.gz'): import gzip fh = iter(gzip.GzipFile(fname)) elif fname.endswith('.bz2'): import bz2 fh = iter(bz2.BZ2File(fname)) elif sys.version_info[0] == 2: fh = iter(open(fname, 'U')) else: fh = iter(open(fname)) else: fh = iter(fname) except TypeError: raise ValueError('fname must be a string, file handle, or generator') X = [] def flatten_dtype(dt): """Unpack a structured data-type, and produce re-packing info.""" if dt.names is None: # If the dtype is flattened, return. # If the dtype has a shape, the dtype occurs # in the list more than once. shape = dt.shape if len(shape) == 0: return ([dt.base], None) else: packing = [(shape[-1], list)] if len(shape) > 1: for dim in dt.shape[-2::-1]: packing = [(dim*packing[0][0], packing*dim)] return ([dt.base] * int(np.prod(dt.shape)), packing) else: types = [] packing = [] for field in dt.names: tp, bytes = dt.fields[field] flat_dt, flat_packing = flatten_dtype(tp) types.extend(flat_dt) # Avoid extra nesting for subarrays if len(tp.shape) > 0: packing.extend(flat_packing) else: packing.append((len(flat_dt), flat_packing)) return (types, packing) def pack_items(items, packing): """Pack items into nested lists based on re-packing info.""" if packing is None: return items[0] elif packing is tuple: return tuple(items) elif packing is list: return list(items) else: start = 0 ret = [] for length, subpacking in packing: ret.append(pack_items(items[start:start+length], subpacking)) start += length return tuple(ret) def split_line(line): """Chop off comments, strip, and split at delimiter. Note that although the file is opened as text, this function returns bytes. """ line = asbytes(line) if comments is not None: line = regex_comments.split(asbytes(line), maxsplit=1)[0] line = line.strip(asbytes('\r\n')) if line: return line.split(delimiter) else: return [] try: # Make sure we're dealing with a proper dtype dtype = np.dtype(dtype) defconv = _getconv(dtype) # Skip the first `skiprows` lines for i in range(skiprows): next(fh) # Read until we find a line with some values, and use # it to estimate the number of columns, N. first_vals = None try: while not first_vals: first_line = next(fh) first_vals = split_line(first_line) except StopIteration: # End of lines reached first_line = '' first_vals = [] warnings.warn('loadtxt: Empty input file: "%s"' % fname) N = len(usecols or first_vals) dtype_types, packing = flatten_dtype(dtype) if len(dtype_types) > 1: # We're dealing with a structured array, each field of # the dtype matches a column converters = [_getconv(dt) for dt in dtype_types] else: # All fields have the same dtype converters = [defconv for i in range(N)] if N > 1: packing = [(N, tuple)] # By preference, use the converters specified by the user for i, conv in (user_converters or {}).items(): if usecols: try: i = usecols.index(i) except ValueError: # Unused converter specified continue converters[i] = conv # Parse each line, including the first for i, line in enumerate(itertools.chain([first_line], fh)): vals = split_line(line) if len(vals) == 0: continue if usecols: vals = [vals[i] for i in usecols] if len(vals) != N: line_num = i + skiprows + 1 raise ValueError("Wrong number of columns at line %d" % line_num) # Convert each value according to its column and store items = [conv(val) for (conv, val) in zip(converters, vals)] # Then pack it according to the dtype's nesting items = pack_items(items, packing) X.append(items) finally: if fown: fh.close() X = np.array(X, dtype) # Multicolumn data are returned with shape (1, N, M), i.e. # (1, 1, M) for a single row - remove the singleton dimension there if X.ndim == 3 and X.shape[:2] == (1, 1): X.shape = (1, -1) # Verify that the array has at least dimensions `ndmin`. # Check correctness of the values of `ndmin` if ndmin not in [0, 1, 2]: raise ValueError('Illegal value of ndmin keyword: %s' % ndmin) # Tweak the size and shape of the arrays - remove extraneous dimensions if X.ndim > ndmin: X = np.squeeze(X) # and ensure we have the minimum number of dimensions asked for # - has to be in this order for the odd case ndmin=1, X.squeeze().ndim=0 if X.ndim < ndmin: if ndmin == 1: X = np.atleast_1d(X) elif ndmin == 2: X = np.atleast_2d(X).T if unpack: if len(dtype_types) > 1: # For structured arrays, return an array for each field. return [X[field] for field in dtype.names] else: return X.T else: return X def savetxt(fname, X, fmt='%.18e', delimiter=' ', newline='\n', header='', footer='', comments='# '): """ Save an array to a text file. Parameters ---------- fname : filename or file handle If the filename ends in ``.gz``, the file is automatically saved in compressed gzip format. `loadtxt` understands gzipped files transparently. X : array_like Data to be saved to a text file. fmt : str or sequence of strs, optional A single format (%10.5f), a sequence of formats, or a multi-format string, e.g. 'Iteration %d -- %10.5f', in which case `delimiter` is ignored. For complex `X`, the legal options for `fmt` are: a) a single specifier, `fmt='%.4e'`, resulting in numbers formatted like `' (%s+%sj)' % (fmt, fmt)` b) a full string specifying every real and imaginary part, e.g. `' %.4e %+.4j %.4e %+.4j %.4e %+.4j'` for 3 columns c) a list of specifiers, one per column - in this case, the real and imaginary part must have separate specifiers, e.g. `['%.3e + %.3ej', '(%.15e%+.15ej)']` for 2 columns delimiter : str, optional String or character separating columns. newline : str, optional String or character separating lines. .. versionadded:: 1.5.0 header : str, optional String that will be written at the beginning of the file. .. versionadded:: 1.7.0 footer : str, optional String that will be written at the end of the file. .. versionadded:: 1.7.0 comments : str, optional String that will be prepended to the ``header`` and ``footer`` strings, to mark them as comments. Default: '# ', as expected by e.g. ``numpy.loadtxt``. .. versionadded:: 1.7.0 See Also -------- save : Save an array to a binary file in NumPy ``.npy`` format savez : Save several arrays into an uncompressed ``.npz`` archive savez_compressed : Save several arrays into a compressed ``.npz`` archive Notes ----- Further explanation of the `fmt` parameter (``%[flag]width[.precision]specifier``): flags: ``-`` : left justify ``+`` : Forces to precede result with + or -. ``0`` : Left pad the number with zeros instead of space (see width). width: Minimum number of characters to be printed. The value is not truncated if it has more characters. precision: - For integer specifiers (eg. ``d,i,o,x``), the minimum number of digits. - For ``e, E`` and ``f`` specifiers, the number of digits to print after the decimal point. - For ``g`` and ``G``, the maximum number of significant digits. - For ``s``, the maximum number of characters. specifiers: ``c`` : character ``d`` or ``i`` : signed decimal integer ``e`` or ``E`` : scientific notation with ``e`` or ``E``. ``f`` : decimal floating point ``g,G`` : use the shorter of ``e,E`` or ``f`` ``o`` : signed octal ``s`` : string of characters ``u`` : unsigned decimal integer ``x,X`` : unsigned hexadecimal integer This explanation of ``fmt`` is not complete, for an exhaustive specification see [1]_. References ---------- .. [1] `Format Specification Mini-Language <http://docs.python.org/library/string.html# format-specification-mini-language>`_, Python Documentation. Examples -------- >>> x = y = z = np.arange(0.0,5.0,1.0) >>> np.savetxt('test.out', x, delimiter=',') # X is an array >>> np.savetxt('test.out', (x,y,z)) # x,y,z equal sized 1D arrays >>> np.savetxt('test.out', x, fmt='%1.4e') # use exponential notation """ # Py3 conversions first if isinstance(fmt, bytes): fmt = asstr(fmt) delimiter = asstr(delimiter) own_fh = False if _is_string_like(fname): own_fh = True if fname.endswith('.gz'): import gzip fh = gzip.open(fname, 'wb') else: if sys.version_info[0] >= 3: fh = open(fname, 'wb') else: fh = open(fname, 'w') elif hasattr(fname, 'write'): fh = fname else: raise ValueError('fname must be a string or file handle') try: X = np.asarray(X) # Handle 1-dimensional arrays if X.ndim == 1: # Common case -- 1d array of numbers if X.dtype.names is None: X = np.atleast_2d(X).T ncol = 1 # Complex dtype -- each field indicates a separate column else: ncol = len(X.dtype.descr) else: ncol = X.shape[1] iscomplex_X = np.iscomplexobj(X) # `fmt` can be a string with multiple insertion points or a # list of formats. E.g. '%10.5f\t%10d' or ('%10.5f', '$10d') if type(fmt) in (list, tuple): if len(fmt) != ncol: raise AttributeError('fmt has wrong shape. %s' % str(fmt)) format = asstr(delimiter).join(map(asstr, fmt)) elif isinstance(fmt, str): n_fmt_chars = fmt.count('%') error = ValueError('fmt has wrong number of %% formats: %s' % fmt) if n_fmt_chars == 1: if iscomplex_X: fmt = [' (%s+%sj)' % (fmt, fmt), ] * ncol else: fmt = [fmt, ] * ncol format = delimiter.join(fmt) elif iscomplex_X and n_fmt_chars != (2 * ncol): raise error elif ((not iscomplex_X) and n_fmt_chars != ncol): raise error else: format = fmt else: raise ValueError('invalid fmt: %r' % (fmt,)) if len(header) > 0: header = header.replace('\n', '\n' + comments) fh.write(asbytes(comments + header + newline)) if iscomplex_X: for row in X: row2 = [] for number in row: row2.append(number.real) row2.append(number.imag) fh.write(asbytes(format % tuple(row2) + newline)) else: for row in X: try: fh.write(asbytes(format % tuple(row) + newline)) except TypeError: raise TypeError("Mismatch between array dtype ('%s') and " "format specifier ('%s')" % (str(X.dtype), format)) if len(footer) > 0: footer = footer.replace('\n', '\n' + comments) fh.write(asbytes(comments + footer + newline)) finally: if own_fh: fh.close() def fromregex(file, regexp, dtype): """ Construct an array from a text file, using regular expression parsing. The returned array is always a structured array, and is constructed from all matches of the regular expression in the file. Groups in the regular expression are converted to fields of the structured array. Parameters ---------- file : str or file File name or file object to read. regexp : str or regexp Regular expression used to parse the file. Groups in the regular expression correspond to fields in the dtype. dtype : dtype or list of dtypes Dtype for the structured array. Returns ------- output : ndarray The output array, containing the part of the content of `file` that was matched by `regexp`. `output` is always a structured array. Raises ------ TypeError When `dtype` is not a valid dtype for a structured array. See Also -------- fromstring, loadtxt Notes ----- Dtypes for structured arrays can be specified in several forms, but all forms specify at least the data type and field name. For details see `doc.structured_arrays`. Examples -------- >>> f = open('test.dat', 'w') >>> f.write("1312 foo\\n1534 bar\\n444 qux") >>> f.close() >>> regexp = r"(\\d+)\\s+(...)" # match [digits, whitespace, anything] >>> output = np.fromregex('test.dat', regexp, ... [('num', np.int64), ('key', 'S3')]) >>> output array([(1312L, 'foo'), (1534L, 'bar'), (444L, 'qux')], dtype=[('num', '<i8'), ('key', '|S3')]) >>> output['num'] array([1312, 1534, 444], dtype=int64) """ own_fh = False if not hasattr(file, "read"): file = open(file, 'rb') own_fh = True try: if not hasattr(regexp, 'match'): regexp = re.compile(asbytes(regexp)) if not isinstance(dtype, np.dtype): dtype = np.dtype(dtype) seq = regexp.findall(file.read()) if seq and not isinstance(seq[0], tuple): # Only one group is in the regexp. # Create the new array as a single data-type and then # re-interpret as a single-field structured array. newdtype = np.dtype(dtype[dtype.names[0]]) output = np.array(seq, dtype=newdtype) output.dtype = dtype else: output = np.array(seq, dtype=dtype) return output finally: if own_fh: file.close() #####-------------------------------------------------------------------------- #---- --- ASCII functions --- #####-------------------------------------------------------------------------- def genfromtxt(fname, dtype=float, comments='#', delimiter=None, skip_header=0, skip_footer=0, converters=None, missing_values=None, filling_values=None, usecols=None, names=None, excludelist=None, deletechars=None, replace_space='_', autostrip=False, case_sensitive=True, defaultfmt="f%i", unpack=None, usemask=False, loose=True, invalid_raise=True, max_rows=None): """ Load data from a text file, with missing values handled as specified. Each line past the first `skip_header` lines is split at the `delimiter` character, and characters following the `comments` character are discarded. Parameters ---------- fname : file or str File, filename, or generator to read. If the filename extension is `.gz` or `.bz2`, the file is first decompressed. Note that generators must return byte strings in Python 3k. dtype : dtype, optional Data type of the resulting array. If None, the dtypes will be determined by the contents of each column, individually. comments : str, optional The character used to indicate the start of a comment. All the characters occurring on a line after a comment are discarded delimiter : str, int, or sequence, optional The string used to separate values. By default, any consecutive whitespaces act as delimiter. An integer or sequence of integers can also be provided as width(s) of each field. skiprows : int, optional `skiprows` was removed in numpy 1.10. Please use `skip_header` instead. skip_header : int, optional The number of lines to skip at the beginning of the file. skip_footer : int, optional The number of lines to skip at the end of the file. converters : variable, optional The set of functions that convert the data of a column to a value. The converters can also be used to provide a default value for missing data: ``converters = {3: lambda s: float(s or 0)}``. missing : variable, optional `missing` was removed in numpy 1.10. Please use `missing_values` instead. missing_values : variable, optional The set of strings corresponding to missing data. filling_values : variable, optional The set of values to be used as default when the data are missing. usecols : sequence, optional Which columns to read, with 0 being the first. For example, ``usecols = (1, 4, 5)`` will extract the 2nd, 5th and 6th columns. names : {None, True, str, sequence}, optional If `names` is True, the field names are read from the first valid line after the first `skip_header` lines. If `names` is a sequence or a single-string of comma-separated names, the names will be used to define the field names in a structured dtype. If `names` is None, the names of the dtype fields will be used, if any. excludelist : sequence, optional A list of names to exclude. This list is appended to the default list ['return','file','print']. Excluded names are appended an underscore: for example, `file` would become `file_`. deletechars : str, optional A string combining invalid characters that must be deleted from the names. defaultfmt : str, optional A format used to define default field names, such as "f%i" or "f_%02i". autostrip : bool, optional Whether to automatically strip white spaces from the variables. replace_space : char, optional Character(s) used in replacement of white spaces in the variables names. By default, use a '_'. case_sensitive : {True, False, 'upper', 'lower'}, optional If True, field names are case sensitive. If False or 'upper', field names are converted to upper case. If 'lower', field names are converted to lower case. unpack : bool, optional If True, the returned array is transposed, so that arguments may be unpacked using ``x, y, z = loadtxt(...)`` usemask : bool, optional If True, return a masked array. If False, return a regular array. loose : bool, optional If True, do not raise errors for invalid values. invalid_raise : bool, optional If True, an exception is raised if an inconsistency is detected in the number of columns. If False, a warning is emitted and the offending lines are skipped. max_rows : int, optional The maximum number of rows to read. Must not be used with skip_footer at the same time. If given, the value must be at least 1. Default is to read the entire file. .. versionadded:: 1.10.0 Returns ------- out : ndarray Data read from the text file. If `usemask` is True, this is a masked array. See Also -------- numpy.loadtxt : equivalent function when no data is missing. Notes ----- * When spaces are used as delimiters, or when no delimiter has been given as input, there should not be any missing data between two fields. * When the variables are named (either by a flexible dtype or with `names`, there must not be any header in the file (else a ValueError exception is raised). * Individual values are not stripped of spaces by default. When using a custom converter, make sure the function does remove spaces. References ---------- .. [1] Numpy User Guide, section `I/O with Numpy <http://docs.scipy.org/doc/numpy/user/basics.io.genfromtxt.html>`_. Examples --------- >>> from io import StringIO >>> import numpy as np Comma delimited file with mixed dtype >>> s = StringIO("1,1.3,abcde") >>> data = np.genfromtxt(s, dtype=[('myint','i8'),('myfloat','f8'), ... ('mystring','S5')], delimiter=",") >>> data array((1, 1.3, 'abcde'), dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')]) Using dtype = None >>> s.seek(0) # needed for StringIO example only >>> data = np.genfromtxt(s, dtype=None, ... names = ['myint','myfloat','mystring'], delimiter=",") >>> data array((1, 1.3, 'abcde'), dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')]) Specifying dtype and names >>> s.seek(0) >>> data = np.genfromtxt(s, dtype="i8,f8,S5", ... names=['myint','myfloat','mystring'], delimiter=",") >>> data array((1, 1.3, 'abcde'), dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')]) An example with fixed-width columns >>> s = StringIO("11.3abcde") >>> data = np.genfromtxt(s, dtype=None, names=['intvar','fltvar','strvar'], ... delimiter=[1,3,5]) >>> data array((1, 1.3, 'abcde'), dtype=[('intvar', '<i8'), ('fltvar', '<f8'), ('strvar', '|S5')]) """ if max_rows is not None: if skip_footer: raise ValueError( "The keywords 'skip_footer' and 'max_rows' can not be " "specified at the same time.") if max_rows < 1: raise ValueError("'max_rows' must be at least 1.") # Py3 data conversions to bytes, for convenience if comments is not None: comments = asbytes(comments) if isinstance(delimiter, unicode): delimiter = asbytes(delimiter) if isinstance(missing_values, (unicode, list, tuple)): missing_values = asbytes_nested(missing_values) # if usemask: from numpy.ma import MaskedArray, make_mask_descr # Check the input dictionary of converters user_converters = converters or {} if not isinstance(user_converters, dict): raise TypeError( "The input argument 'converter' should be a valid dictionary " "(got '%s' instead)" % type(user_converters)) # Initialize the filehandle, the LineSplitter and the NameValidator own_fhd = False try: if isinstance(fname, basestring): if sys.version_info[0] == 2: fhd = iter(np.lib._datasource.open(fname, 'rbU')) else: fhd = iter(np.lib._datasource.open(fname, 'rb')) own_fhd = True else: fhd = iter(fname) except TypeError: raise TypeError( "fname must be a string, filehandle, or generator. " "(got %s instead)" % type(fname)) split_line = LineSplitter(delimiter=delimiter, comments=comments, autostrip=autostrip)._handyman validate_names = NameValidator(excludelist=excludelist, deletechars=deletechars, case_sensitive=case_sensitive, replace_space=replace_space) # Skip the first `skip_header` rows for i in range(skip_header): next(fhd) # Keep on until we find the first valid values first_values = None try: while not first_values: first_line = next(fhd) if names is True: if comments in first_line: first_line = ( asbytes('').join(first_line.split(comments)[1:])) first_values = split_line(first_line) except StopIteration: # return an empty array if the datafile is empty first_line = asbytes('') first_values = [] warnings.warn('genfromtxt: Empty input file: "%s"' % fname) # Should we take the first values as names ? if names is True: fval = first_values[0].strip() if fval in comments: del first_values[0] # Check the columns to use: make sure `usecols` is a list if usecols is not None: try: usecols = [_.strip() for _ in usecols.split(",")] except AttributeError: try: usecols = list(usecols) except TypeError: usecols = [usecols, ] nbcols = len(usecols or first_values) # Check the names and overwrite the dtype.names if needed if names is True: names = validate_names([_bytes_to_name(_.strip()) for _ in first_values]) first_line = asbytes('') elif _is_string_like(names): names = validate_names([_.strip() for _ in names.split(',')]) elif names: names = validate_names(names) # Get the dtype if dtype is not None: dtype = easy_dtype(dtype, defaultfmt=defaultfmt, names=names, excludelist=excludelist, deletechars=deletechars, case_sensitive=case_sensitive, replace_space=replace_space) # Make sure the names is a list (for 2.5) if names is not None: names = list(names) if usecols: for (i, current) in enumerate(usecols): # if usecols is a list of names, convert to a list of indices if _is_string_like(current): usecols[i] = names.index(current) elif current < 0: usecols[i] = current + len(first_values) # If the dtype is not None, make sure we update it if (dtype is not None) and (len(dtype) > nbcols): descr = dtype.descr dtype = np.dtype([descr[_] for _ in usecols]) names = list(dtype.names) # If `names` is not None, update the names elif (names is not None) and (len(names) > nbcols): names = [names[_] for _ in usecols] elif (names is not None) and (dtype is not None): names = list(dtype.names) # Process the missing values ............................... # Rename missing_values for convenience user_missing_values = missing_values or () # Define the list of missing_values (one column: one list) missing_values = [list([asbytes('')]) for _ in range(nbcols)] # We have a dictionary: process it field by field if isinstance(user_missing_values, dict): # Loop on the items for (key, val) in user_missing_values.items(): # Is the key a string ? if _is_string_like(key): try: # Transform it into an integer key = names.index(key) except ValueError: # We couldn't find it: the name must have been dropped continue # Redefine the key as needed if it's a column number if usecols: try: key = usecols.index(key) except ValueError: pass # Transform the value as a list of string if isinstance(val, (list, tuple)): val = [str(_) for _ in val] else: val = [str(val), ] # Add the value(s) to the current list of missing if key is None: # None acts as default for miss in missing_values: miss.extend(val) else: missing_values[key].extend(val) # We have a sequence : each item matches a column elif isinstance(user_missing_values, (list, tuple)): for (value, entry) in zip(user_missing_values, missing_values): value = str(value) if value not in entry: entry.append(value) # We have a string : apply it to all entries elif isinstance(user_missing_values, bytes): user_value = user_missing_values.split(asbytes(",")) for entry in missing_values: entry.extend(user_value) # We have something else: apply it to all entries else: for entry in missing_values: entry.extend([str(user_missing_values)]) # Process the filling_values ............................... # Rename the input for convenience user_filling_values = filling_values if user_filling_values is None: user_filling_values = [] # Define the default filling_values = [None] * nbcols # We have a dictionary : update each entry individually if isinstance(user_filling_values, dict): for (key, val) in user_filling_values.items(): if _is_string_like(key): try: # Transform it into an integer key = names.index(key) except ValueError: # We couldn't find it: the name must have been dropped, continue # Redefine the key if it's a column number and usecols is defined if usecols: try: key = usecols.index(key) except ValueError: pass # Add the value to the list filling_values[key] = val # We have a sequence : update on a one-to-one basis elif isinstance(user_filling_values, (list, tuple)): n = len(user_filling_values) if (n <= nbcols): filling_values[:n] = user_filling_values else: filling_values = user_filling_values[:nbcols] # We have something else : use it for all entries else: filling_values = [user_filling_values] * nbcols # Initialize the converters ................................ if dtype is None: # Note: we can't use a [...]*nbcols, as we would have 3 times the same # ... converter, instead of 3 different converters. converters = [StringConverter(None, missing_values=miss, default=fill) for (miss, fill) in zip(missing_values, filling_values)] else: dtype_flat = flatten_dtype(dtype, flatten_base=True) # Initialize the converters if len(dtype_flat) > 1: # Flexible type : get a converter from each dtype zipit = zip(dtype_flat, missing_values, filling_values) converters = [StringConverter(dt, locked=True, missing_values=miss, default=fill) for (dt, miss, fill) in zipit] else: # Set to a default converter (but w/ different missing values) zipit = zip(missing_values, filling_values) converters = [StringConverter(dtype, locked=True, missing_values=miss, default=fill) for (miss, fill) in zipit] # Update the converters to use the user-defined ones uc_update = [] for (j, conv) in user_converters.items(): # If the converter is specified by column names, use the index instead if _is_string_like(j): try: j = names.index(j) i = j except ValueError: continue elif usecols: try: i = usecols.index(j) except ValueError: # Unused converter specified continue else: i = j # Find the value to test - first_line is not filtered by usecols: if len(first_line): testing_value = first_values[j] else: testing_value = None converters[i].update(conv, locked=True, testing_value=testing_value, default=filling_values[i], missing_values=missing_values[i],) uc_update.append((i, conv)) # Make sure we have the corrected keys in user_converters... user_converters.update(uc_update) # Fixme: possible error as following variable never used. #miss_chars = [_.missing_values for _ in converters] # Initialize the output lists ... # ... rows rows = [] append_to_rows = rows.append # ... masks if usemask: masks = [] append_to_masks = masks.append # ... invalid invalid = [] append_to_invalid = invalid.append # Parse each line for (i, line) in enumerate(itertools.chain([first_line, ], fhd)): values = split_line(line) nbvalues = len(values) # Skip an empty line if nbvalues == 0: continue if usecols: # Select only the columns we need try: values = [values[_] for _ in usecols] except IndexError: append_to_invalid((i + skip_header + 1, nbvalues)) continue elif nbvalues != nbcols: append_to_invalid((i + skip_header + 1, nbvalues)) continue # Store the values append_to_rows(tuple(values)) if usemask: append_to_masks(tuple([v.strip() in m for (v, m) in zip(values, missing_values)])) if len(rows) == max_rows: break if own_fhd: fhd.close() # Upgrade the converters (if needed) if dtype is None: for (i, converter) in enumerate(converters): current_column = [itemgetter(i)(_m) for _m in rows] try: converter.iterupgrade(current_column) except ConverterLockError: errmsg = "Converter #%i is locked and cannot be upgraded: " % i current_column = map(itemgetter(i), rows) for (j, value) in enumerate(current_column): try: converter.upgrade(value) except (ConverterError, ValueError): errmsg += "(occurred line #%i for value '%s')" errmsg %= (j + 1 + skip_header, value) raise ConverterError(errmsg) # Check that we don't have invalid values nbinvalid = len(invalid) if nbinvalid > 0: nbrows = len(rows) + nbinvalid - skip_footer # Construct the error message template = " Line #%%i (got %%i columns instead of %i)" % nbcols if skip_footer > 0: nbinvalid_skipped = len([_ for _ in invalid if _[0] > nbrows + skip_header]) invalid = invalid[:nbinvalid - nbinvalid_skipped] skip_footer -= nbinvalid_skipped # # nbrows -= skip_footer # errmsg = [template % (i, nb) # for (i, nb) in invalid if i < nbrows] # else: errmsg = [template % (i, nb) for (i, nb) in invalid] if len(errmsg): errmsg.insert(0, "Some errors were detected !") errmsg = "\n".join(errmsg) # Raise an exception ? if invalid_raise: raise ValueError(errmsg) # Issue a warning ? else: warnings.warn(errmsg, ConversionWarning) # Strip the last skip_footer data if skip_footer > 0: rows = rows[:-skip_footer] if usemask: masks = masks[:-skip_footer] # Convert each value according to the converter: # We want to modify the list in place to avoid creating a new one... if loose: rows = list( zip(*[[conv._loose_call(_r) for _r in map(itemgetter(i), rows)] for (i, conv) in enumerate(converters)])) else: rows = list( zip(*[[conv._strict_call(_r) for _r in map(itemgetter(i), rows)] for (i, conv) in enumerate(converters)])) # Reset the dtype data = rows if dtype is None: # Get the dtypes from the types of the converters column_types = [conv.type for conv in converters] # Find the columns with strings... strcolidx = [i for (i, v) in enumerate(column_types) if v in (type('S'), np.string_)] # ... and take the largest number of chars. for i in strcolidx: column_types[i] = "|S%i" % max(len(row[i]) for row in data) # if names is None: # If the dtype is uniform, don't define names, else use '' base = set([c.type for c in converters if c._checked]) if len(base) == 1: (ddtype, mdtype) = (list(base)[0], np.bool) else: ddtype = [(defaultfmt % i, dt) for (i, dt) in enumerate(column_types)] if usemask: mdtype = [(defaultfmt % i, np.bool) for (i, dt) in enumerate(column_types)] else: ddtype = list(zip(names, column_types)) mdtype = list(zip(names, [np.bool] * len(column_types))) output = np.array(data, dtype=ddtype) if usemask: outputmask = np.array(masks, dtype=mdtype) else: # Overwrite the initial dtype names if needed if names and dtype.names: dtype.names = names # Case 1. We have a structured type if len(dtype_flat) > 1: # Nested dtype, eg [('a', int), ('b', [('b0', int), ('b1', 'f4')])] # First, create the array using a flattened dtype: # [('a', int), ('b1', int), ('b2', float)] # Then, view the array using the specified dtype. if 'O' in (_.char for _ in dtype_flat): if has_nested_fields(dtype): raise NotImplementedError( "Nested fields involving objects are not supported...") else: output = np.array(data, dtype=dtype) else: rows = np.array(data, dtype=[('', _) for _ in dtype_flat]) output = rows.view(dtype) # Now, process the rowmasks the same way if usemask: rowmasks = np.array( masks, dtype=np.dtype([('', np.bool) for t in dtype_flat])) # Construct the new dtype mdtype = make_mask_descr(dtype) outputmask = rowmasks.view(mdtype) # Case #2. We have a basic dtype else: # We used some user-defined converters if user_converters: ishomogeneous = True descr = [] for i, ttype in enumerate([conv.type for conv in converters]): # Keep the dtype of the current converter if i in user_converters: ishomogeneous &= (ttype == dtype.type) if ttype == np.string_: ttype = "|S%i" % max(len(row[i]) for row in data) descr.append(('', ttype)) else: descr.append(('', dtype)) # So we changed the dtype ? if not ishomogeneous: # We have more than one field if len(descr) > 1: dtype = np.dtype(descr) # We have only one field: drop the name if not needed. else: dtype = np.dtype(ttype) # output = np.array(data, dtype) if usemask: if dtype.names: mdtype = [(_, np.bool) for _ in dtype.names] else: mdtype = np.bool outputmask = np.array(masks, dtype=mdtype) # Try to take care of the missing data we missed names = output.dtype.names if usemask and names: for (name, conv) in zip(names or (), converters): missing_values = [conv(_) for _ in conv.missing_values if _ != asbytes('')] for mval in missing_values: outputmask[name] |= (output[name] == mval) # Construct the final array if usemask: output = output.view(MaskedArray) output._mask = outputmask if unpack: return output.squeeze().T return output.squeeze() def ndfromtxt(fname, **kwargs): """ Load ASCII data stored in a file and return it as a single array. Parameters ---------- fname, kwargs : For a description of input parameters, see `genfromtxt`. See Also -------- numpy.genfromtxt : generic function. """ kwargs['usemask'] = False return genfromtxt(fname, **kwargs) def mafromtxt(fname, **kwargs): """ Load ASCII data stored in a text file and return a masked array. Parameters ---------- fname, kwargs : For a description of input parameters, see `genfromtxt`. See Also -------- numpy.genfromtxt : generic function to load ASCII data. """ kwargs['usemask'] = True return genfromtxt(fname, **kwargs) def recfromtxt(fname, **kwargs): """ Load ASCII data from a file and return it in a record array. If ``usemask=False`` a standard `recarray` is returned, if ``usemask=True`` a MaskedRecords array is returned. Parameters ---------- fname, kwargs : For a description of input parameters, see `genfromtxt`. See Also -------- numpy.genfromtxt : generic function Notes ----- By default, `dtype` is None, which means that the data-type of the output array will be determined from the data. """ kwargs.setdefault("dtype", None) usemask = kwargs.get('usemask', False) output = genfromtxt(fname, **kwargs) if usemask: from numpy.ma.mrecords import MaskedRecords output = output.view(MaskedRecords) else: output = output.view(np.recarray) return output def recfromcsv(fname, **kwargs): """ Load ASCII data stored in a comma-separated file. The returned array is a record array (if ``usemask=False``, see `recarray`) or a masked record array (if ``usemask=True``, see `ma.mrecords.MaskedRecords`). Parameters ---------- fname, kwargs : For a description of input parameters, see `genfromtxt`. See Also -------- numpy.genfromtxt : generic function to load ASCII data. Notes ----- By default, `dtype` is None, which means that the data-type of the output array will be determined from the data. """ # Set default kwargs for genfromtxt as relevant to csv import. kwargs.setdefault("case_sensitive", "lower") kwargs.setdefault("names", True) kwargs.setdefault("delimiter", ",") kwargs.setdefault("dtype", None) output = genfromtxt(fname, **kwargs) usemask = kwargs.get("usemask", False) if usemask: from numpy.ma.mrecords import MaskedRecords output = output.view(MaskedRecords) else: output = output.view(np.recarray) return output
mit
Xeralux/tensorflow
tensorflow/contrib/losses/python/metric_learning/metric_loss_ops_test.py
41
20535
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for triplet_semihard_loss.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.losses.python import metric_learning as metric_loss_ops from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn from tensorflow.python.platform import test try: # pylint: disable=g-import-not-at-top from sklearn import datasets from sklearn import metrics HAS_SKLEARN = True except ImportError: HAS_SKLEARN = False def pairwise_distance_np(feature, squared=False): """Computes the pairwise distance matrix in numpy. Args: feature: 2-D numpy array of size [number of data, feature dimension] squared: Boolean. If true, output is the pairwise squared euclidean distance matrix; else, output is the pairwise euclidean distance matrix. Returns: pairwise_distances: 2-D numpy array of size [number of data, number of data]. """ triu = np.triu_indices(feature.shape[0], 1) upper_tri_pdists = np.linalg.norm(feature[triu[1]] - feature[triu[0]], axis=1) if squared: upper_tri_pdists **= 2. num_data = feature.shape[0] pairwise_distances = np.zeros((num_data, num_data)) pairwise_distances[np.triu_indices(num_data, 1)] = upper_tri_pdists # Make symmetrical. pairwise_distances = pairwise_distances + pairwise_distances.T - np.diag( pairwise_distances.diagonal()) return pairwise_distances class ContrastiveLossTest(test.TestCase): def testContrastive(self): with self.test_session(): num_data = 10 feat_dim = 6 margin = 1.0 embeddings_anchor = np.random.rand(num_data, feat_dim).astype(np.float32) embeddings_positive = np.random.rand(num_data, feat_dim).astype( np.float32) labels = np.random.randint(0, 2, size=(num_data,)).astype(np.float32) # Compute the loss in NP dist = np.sqrt( np.sum(np.square(embeddings_anchor - embeddings_positive), axis=1)) loss_np = np.mean( labels * np.square(dist) + (1.0 - labels) * np.square(np.maximum(margin - dist, 0.0))) # Compute the loss with TF loss_tf = metric_loss_ops.contrastive_loss( labels=ops.convert_to_tensor(labels), embeddings_anchor=ops.convert_to_tensor(embeddings_anchor), embeddings_positive=ops.convert_to_tensor(embeddings_positive), margin=margin) loss_tf = loss_tf.eval() self.assertAllClose(loss_np, loss_tf) class TripletSemiHardLossTest(test.TestCase): def testTripletSemiHard(self): with self.test_session(): num_data = 10 feat_dim = 6 margin = 1.0 num_classes = 4 embedding = np.random.rand(num_data, feat_dim).astype(np.float32) labels = np.random.randint( 0, num_classes, size=(num_data)).astype(np.float32) # Reshape labels to compute adjacency matrix. labels_reshaped = np.reshape(labels, (labels.shape[0], 1)) # Compute the loss in NP. adjacency = np.equal(labels_reshaped, labels_reshaped.T) pdist_matrix = pairwise_distance_np(embedding, squared=True) loss_np = 0.0 num_positives = 0.0 for i in range(num_data): for j in range(num_data): if adjacency[i][j] > 0.0 and i != j: num_positives += 1.0 pos_distance = pdist_matrix[i][j] neg_distances = [] for k in range(num_data): if adjacency[i][k] == 0: neg_distances.append(pdist_matrix[i][k]) # Sort by distance. neg_distances.sort() chosen_neg_distance = neg_distances[0] for l in range(len(neg_distances)): chosen_neg_distance = neg_distances[l] if chosen_neg_distance > pos_distance: break loss_np += np.maximum( 0.0, margin - chosen_neg_distance + pos_distance) loss_np /= num_positives # Compute the loss in TF. loss_tf = metric_loss_ops.triplet_semihard_loss( labels=ops.convert_to_tensor(labels), embeddings=ops.convert_to_tensor(embedding), margin=margin) loss_tf = loss_tf.eval() self.assertAllClose(loss_np, loss_tf) class LiftedStructLossTest(test.TestCase): def testLiftedStruct(self): with self.test_session(): num_data = 10 feat_dim = 6 margin = 1.0 num_classes = 4 embedding = np.random.rand(num_data, feat_dim).astype(np.float32) labels = np.random.randint( 0, num_classes, size=(num_data)).astype(np.float32) # Reshape labels to compute adjacency matrix. labels_reshaped = np.reshape(labels, (labels.shape[0], 1)) # Compute the loss in NP adjacency = np.equal(labels_reshaped, labels_reshaped.T) pdist_matrix = pairwise_distance_np(embedding) loss_np = 0.0 num_constraints = 0.0 for i in range(num_data): for j in range(num_data): if adjacency[i][j] > 0.0 and i != j: d_pos = pdist_matrix[i][j] negs = [] for k in range(num_data): if not adjacency[i][k]: negs.append(margin - pdist_matrix[i][k]) for l in range(num_data): if not adjacency[j][l]: negs.append(margin - pdist_matrix[j][l]) negs = np.array(negs) max_elem = np.max(negs) negs -= max_elem negs = np.exp(negs) soft_maximum = np.log(np.sum(negs)) + max_elem num_constraints += 1.0 this_loss = max(soft_maximum + d_pos, 0) loss_np += this_loss * this_loss loss_np = loss_np / num_constraints / 2.0 # Compute the loss in TF loss_tf = metric_loss_ops.lifted_struct_loss( labels=ops.convert_to_tensor(labels), embeddings=ops.convert_to_tensor(embedding), margin=margin) loss_tf = loss_tf.eval() self.assertAllClose(loss_np, loss_tf) def convert_to_list_of_sparse_tensor(np_matrix): list_of_sparse_tensors = [] nrows, ncols = np_matrix.shape for i in range(nrows): sp_indices = [] for j in range(ncols): if np_matrix[i][j] == 1: sp_indices.append([j]) num_non_zeros = len(sp_indices) list_of_sparse_tensors.append(sparse_tensor.SparseTensor( indices=np.array(sp_indices), values=np.ones((num_non_zeros,)), dense_shape=np.array([ncols,]))) return list_of_sparse_tensors class NpairsLossTest(test.TestCase): def testNpairs(self): with self.test_session(): num_data = 15 feat_dim = 6 num_classes = 5 reg_lambda = 0.02 embeddings_anchor = np.random.rand(num_data, feat_dim).astype(np.float32) embeddings_positive = np.random.rand(num_data, feat_dim).astype( np.float32) labels = np.random.randint( 0, num_classes, size=(num_data)).astype(np.float32) # Reshape labels to compute adjacency matrix. labels_reshaped = np.reshape(labels, (labels.shape[0], 1)) # Compute the loss in NP reg_term = np.mean(np.sum(np.square(embeddings_anchor), 1)) reg_term += np.mean(np.sum(np.square(embeddings_positive), 1)) reg_term *= 0.25 * reg_lambda similarity_matrix = np.matmul(embeddings_anchor, embeddings_positive.T) labels_remapped = np.equal( labels_reshaped, labels_reshaped.T).astype(np.float32) labels_remapped /= np.sum(labels_remapped, axis=1, keepdims=True) xent_loss = math_ops.reduce_mean(nn.softmax_cross_entropy_with_logits( logits=ops.convert_to_tensor(similarity_matrix), labels=ops.convert_to_tensor(labels_remapped))).eval() loss_np = xent_loss + reg_term # Compute the loss in TF loss_tf = metric_loss_ops.npairs_loss( labels=ops.convert_to_tensor(labels), embeddings_anchor=ops.convert_to_tensor(embeddings_anchor), embeddings_positive=ops.convert_to_tensor(embeddings_positive), reg_lambda=reg_lambda) loss_tf = loss_tf.eval() self.assertAllClose(loss_np, loss_tf) class NpairsLossMultiLabelTest(test.TestCase): def testNpairsMultiLabelLossWithSingleLabelEqualsNpairsLoss(self): with self.test_session(): num_data = 15 feat_dim = 6 reg_lambda = 0.02 embeddings_anchor = np.random.rand(num_data, feat_dim).astype(np.float32) embeddings_positive = np.random.rand(num_data, feat_dim).astype( np.float32) labels = np.arange(num_data) labels = np.reshape(labels, -1) # Compute vanila npairs loss. loss_npairs = metric_loss_ops.npairs_loss( labels=ops.convert_to_tensor(labels), embeddings_anchor=ops.convert_to_tensor(embeddings_anchor), embeddings_positive=ops.convert_to_tensor(embeddings_positive), reg_lambda=reg_lambda).eval() # Compute npairs multilabel loss. labels_one_hot = np.identity(num_data) loss_npairs_multilabel = metric_loss_ops.npairs_loss_multilabel( sparse_labels=convert_to_list_of_sparse_tensor(labels_one_hot), embeddings_anchor=ops.convert_to_tensor(embeddings_anchor), embeddings_positive=ops.convert_to_tensor(embeddings_positive), reg_lambda=reg_lambda).eval() self.assertAllClose(loss_npairs, loss_npairs_multilabel) def testNpairsMultiLabel(self): with self.test_session(): num_data = 15 feat_dim = 6 num_classes = 10 reg_lambda = 0.02 embeddings_anchor = np.random.rand(num_data, feat_dim).astype(np.float32) embeddings_positive = np.random.rand(num_data, feat_dim).astype( np.float32) labels = np.random.randint(0, 2, (num_data, num_classes)) # set entire column to one so that each row has at least one bit set. labels[:, -1] = 1 # Compute the loss in NP reg_term = np.mean(np.sum(np.square(embeddings_anchor), 1)) reg_term += np.mean(np.sum(np.square(embeddings_positive), 1)) reg_term *= 0.25 * reg_lambda similarity_matrix = np.matmul(embeddings_anchor, embeddings_positive.T) labels_remapped = np.dot(labels, labels.T).astype(np.float) labels_remapped /= np.sum(labels_remapped, 1, keepdims=True) xent_loss = math_ops.reduce_mean(nn.softmax_cross_entropy_with_logits( logits=ops.convert_to_tensor(similarity_matrix), labels=ops.convert_to_tensor(labels_remapped))).eval() loss_np = xent_loss + reg_term # Compute the loss in TF loss_tf = metric_loss_ops.npairs_loss_multilabel( sparse_labels=convert_to_list_of_sparse_tensor(labels), embeddings_anchor=ops.convert_to_tensor(embeddings_anchor), embeddings_positive=ops.convert_to_tensor(embeddings_positive), reg_lambda=reg_lambda) loss_tf = loss_tf.eval() self.assertAllClose(loss_np, loss_tf) def compute_ground_truth_cluster_score(feat, y): y_unique = np.unique(y) score_gt_np = 0.0 for c in y_unique: feat_subset = feat[y == c, :] pdist_subset = pairwise_distance_np(feat_subset) score_gt_np += -1.0 * np.min(np.sum(pdist_subset, axis=0)) score_gt_np = score_gt_np.astype(np.float32) return score_gt_np def compute_cluster_loss_numpy(feat, y, margin_multiplier=1.0, enable_pam_finetuning=True): if enable_pam_finetuning: facility = ForwardGreedyFacility( n_clusters=np.unique(y).size).pam_augmented_fit(feat, y, margin_multiplier) else: facility = ForwardGreedyFacility( n_clusters=np.unique(y).size).loss_augmented_fit(feat, y, margin_multiplier) score_augmented = facility.score_aug_ score_gt = compute_ground_truth_cluster_score(feat, y) return np.maximum(np.float32(0.0), score_augmented - score_gt) class ForwardGreedyFacility(object): def __init__(self, n_clusters=8): self.n_clusters = n_clusters self.center_ics_ = None def _check_init_args(self): # Check n_clusters. if (self.n_clusters is None or self.n_clusters <= 0 or not isinstance(self.n_clusters, int)): raise ValueError('n_clusters has to be nonnegative integer.') def loss_augmented_fit(self, feat, y, loss_mult): """Fit K-Medoids to the provided data.""" self._check_init_args() # Check that the array is good and attempt to convert it to # Numpy array if possible. feat = self._check_array(feat) # Apply distance metric to get the distance matrix. pdists = pairwise_distance_np(feat) num_data = feat.shape[0] candidate_ids = list(range(num_data)) candidate_scores = np.zeros(num_data,) subset = [] k = 0 while k < self.n_clusters: candidate_scores = [] for i in candidate_ids: # push i to subset. subset.append(i) marginal_cost = -1.0 * np.sum(np.min(pdists[:, subset], axis=1)) loss = 1.0 - metrics.normalized_mutual_info_score( y, self._get_cluster_ics(pdists, subset)) candidate_scores.append(marginal_cost + loss_mult * loss) # remove i from subset. subset.pop() # push i_star to subset. i_star = candidate_ids[np.argmax(candidate_scores)] subset.append(i_star) # remove i_star from candidate indices. candidate_ids.remove(i_star) k += 1 # Expose labels_ which are the assignments of # the training data to clusters. self.labels_ = self._get_cluster_ics(pdists, subset) # Expose cluster centers, i.e. medoids. self.cluster_centers_ = feat.take(subset, axis=0) # Expose indices of chosen cluster centers. self.center_ics_ = subset # Expose the score = -\sum_{i \in V} min_{j \in S} || x_i - x_j || self.score_ = np.float32(-1.0) * self._get_facility_distance(pdists, subset) self.score_aug_ = self.score_ + loss_mult * ( 1.0 - metrics.normalized_mutual_info_score( y, self._get_cluster_ics(pdists, subset))) self.score_aug_ = self.score_aug_.astype(np.float32) # Expose the chosen cluster indices. self.subset_ = subset return self def _augmented_update_medoid_ics_in_place(self, pdists, y_gt, cluster_ics, medoid_ics, loss_mult): for cluster_idx in range(self.n_clusters): # y_pred = self._get_cluster_ics(D, medoid_ics) # Don't prematurely do the assignment step. # Do this after we've updated all cluster medoids. y_pred = cluster_ics if sum(y_pred == cluster_idx) == 0: # Cluster is empty. continue curr_score = ( -1.0 * np.sum( pdists[medoid_ics[cluster_idx], y_pred == cluster_idx]) + loss_mult * (1.0 - metrics.normalized_mutual_info_score( y_gt, y_pred))) pdist_in = pdists[y_pred == cluster_idx, :] pdist_in = pdist_in[:, y_pred == cluster_idx] all_scores_fac = np.sum(-1.0 * pdist_in, axis=1) all_scores_loss = [] for i in range(y_pred.size): if y_pred[i] != cluster_idx: continue # remove this cluster's current centroid medoid_ics_i = medoid_ics[:cluster_idx] + medoid_ics[cluster_idx + 1:] # add this new candidate to the centroid list medoid_ics_i += [i] y_pred_i = self._get_cluster_ics(pdists, medoid_ics_i) all_scores_loss.append(loss_mult * ( 1.0 - metrics.normalized_mutual_info_score(y_gt, y_pred_i))) all_scores = all_scores_fac + all_scores_loss max_score_idx = np.argmax(all_scores) max_score = all_scores[max_score_idx] if max_score > curr_score: medoid_ics[cluster_idx] = np.where( y_pred == cluster_idx)[0][max_score_idx] def pam_augmented_fit(self, feat, y, loss_mult): pam_max_iter = 5 self._check_init_args() feat = self._check_array(feat) pdists = pairwise_distance_np(feat) self.loss_augmented_fit(feat, y, loss_mult) print('PAM -1 (before PAM): score: %f, score_aug: %f' % ( self.score_, self.score_aug_)) # Initialize from loss augmented facility location subset = self.center_ics_ for iter_ in range(pam_max_iter): # update the cluster assignment cluster_ics = self._get_cluster_ics(pdists, subset) # update the medoid for each clusters self._augmented_update_medoid_ics_in_place(pdists, y, cluster_ics, subset, loss_mult) self.score_ = np.float32(-1.0) * self._get_facility_distance( pdists, subset) self.score_aug_ = self.score_ + loss_mult * ( 1.0 - metrics.normalized_mutual_info_score( y, self._get_cluster_ics(pdists, subset))) self.score_aug_ = self.score_aug_.astype(np.float32) print('PAM iter: %d, score: %f, score_aug: %f' % (iter_, self.score_, self.score_aug_)) self.center_ics_ = subset self.labels_ = cluster_ics return self def _check_array(self, feat): # Check that the number of clusters is less than or equal to # the number of samples if self.n_clusters > feat.shape[0]: raise ValueError('The number of medoids ' + '({}) '.format( self.n_clusters) + 'must be larger than the number ' + 'of samples ({})'.format(feat.shape[0])) return feat def _get_cluster_ics(self, pdists, subset): """Returns cluster indices for pdist and current medoid indices.""" # Assign data points to clusters based on # which cluster assignment yields # the smallest distance` cluster_ics = np.argmin(pdists[subset, :], axis=0) return cluster_ics def _get_facility_distance(self, pdists, subset): return np.sum(np.min(pdists[subset, :], axis=0)) class ClusterLossTest(test.TestCase): def _genClusters(self, n_samples, n_clusters): blobs = datasets.make_blobs( n_samples=n_samples, centers=n_clusters) embedding, labels = blobs embedding = (embedding - embedding.mean(axis=0)) / embedding.std(axis=0) embedding = embedding.astype(np.float32) return embedding, labels def testClusteringLossPAMOff(self): if not HAS_SKLEARN: return with self.test_session(): margin_multiplier = 10.0 embeddings, labels = self._genClusters(n_samples=128, n_clusters=64) loss_np = compute_cluster_loss_numpy( embeddings, labels, margin_multiplier, enable_pam_finetuning=False) loss_tf = metric_loss_ops.cluster_loss( labels=ops.convert_to_tensor(labels), embeddings=ops.convert_to_tensor(embeddings), margin_multiplier=margin_multiplier, enable_pam_finetuning=False) loss_tf = loss_tf.eval() self.assertAllClose(loss_np, loss_tf) def testClusteringLossPAMOn(self): if not HAS_SKLEARN: return with self.test_session(): margin_multiplier = 10.0 embeddings, labels = self._genClusters(n_samples=128, n_clusters=64) loss_np = compute_cluster_loss_numpy( embeddings, labels, margin_multiplier, enable_pam_finetuning=True) loss_tf = metric_loss_ops.cluster_loss( labels=ops.convert_to_tensor(labels), embeddings=ops.convert_to_tensor(embeddings), margin_multiplier=margin_multiplier, enable_pam_finetuning=True) loss_tf = loss_tf.eval() self.assertAllClose(loss_np, loss_tf) if __name__ == '__main__': test.main()
apache-2.0
gweidner/incubator-systemml
src/main/python/tests/test_mllearn_df.py
12
5320
#!/usr/bin/python #------------------------------------------------------------- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # #------------------------------------------------------------- # To run: # - Python 2: `PYSPARK_PYTHON=python2 spark-submit --master local[*] --driver-class-path SystemML.jar test_mllearn_df.py` # - Python 3: `PYSPARK_PYTHON=python3 spark-submit --master local[*] --driver-class-path SystemML.jar test_mllearn_df.py` # Make the `systemml` package importable import os import sys path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "../") sys.path.insert(0, path) import unittest import numpy as np from pyspark.ml import Pipeline from pyspark.ml.feature import HashingTF, Tokenizer from pyspark.sql import SparkSession from sklearn import datasets, metrics, neighbors from sklearn.datasets import fetch_20newsgroups from sklearn.feature_extraction.text import TfidfVectorizer from sklearn import linear_model from sklearn.metrics import accuracy_score, r2_score from systemml.mllearn import LinearRegression, LogisticRegression, NaiveBayes, SVM sparkSession = SparkSession.builder.getOrCreate() # Currently not integrated with JUnit test # ~/spark-1.6.1-scala-2.11/bin/spark-submit --master local[*] --driver-class-path SystemML.jar test.py class TestMLLearn(unittest.TestCase): def test_logistic_sk2(self): digits = datasets.load_digits() X_digits = digits.data y_digits = digits.target n_samples = len(X_digits) X_train = X_digits[:int(.9 * n_samples)] y_train = y_digits[:int(.9 * n_samples)] X_test = X_digits[int(.9 * n_samples):] y_test = y_digits[int(.9 * n_samples):] # Convert to DataFrame for i/o: current way to transfer data logistic = LogisticRegression(sparkSession, transferUsingDF=True) logistic.fit(X_train, y_train) mllearn_predicted = logistic.predict(X_test) sklearn_logistic = linear_model.LogisticRegression() sklearn_logistic.fit(X_train, y_train) self.failUnless(accuracy_score(sklearn_logistic.predict(X_test), mllearn_predicted) > 0.95) # We are comparable to a similar algorithm in scikit learn def test_linear_regression(self): diabetes = datasets.load_diabetes() diabetes_X = diabetes.data[:, np.newaxis, 2] diabetes_X_train = diabetes_X[:-20] diabetes_X_test = diabetes_X[-20:] diabetes_y_train = diabetes.target[:-20] diabetes_y_test = diabetes.target[-20:] regr = LinearRegression(sparkSession, solver='direct-solve', transferUsingDF=True) regr.fit(diabetes_X_train, diabetes_y_train) mllearn_predicted = regr.predict(diabetes_X_test) sklearn_regr = linear_model.LinearRegression() sklearn_regr.fit(diabetes_X_train, diabetes_y_train) self.failUnless(r2_score(sklearn_regr.predict(diabetes_X_test), mllearn_predicted) > 0.95) # We are comparable to a similar algorithm in scikit learn def test_linear_regression_cg(self): diabetes = datasets.load_diabetes() diabetes_X = diabetes.data[:, np.newaxis, 2] diabetes_X_train = diabetes_X[:-20] diabetes_X_test = diabetes_X[-20:] diabetes_y_train = diabetes.target[:-20] diabetes_y_test = diabetes.target[-20:] regr = LinearRegression(sparkSession, solver='newton-cg', transferUsingDF=True) regr.fit(diabetes_X_train, diabetes_y_train) mllearn_predicted = regr.predict(diabetes_X_test) sklearn_regr = linear_model.LinearRegression() sklearn_regr.fit(diabetes_X_train, diabetes_y_train) self.failUnless(r2_score(sklearn_regr.predict(diabetes_X_test), mllearn_predicted) > 0.95) # We are comparable to a similar algorithm in scikit learn def test_svm_sk2(self): digits = datasets.load_digits() X_digits = digits.data y_digits = digits.target n_samples = len(X_digits) X_train = X_digits[:int(.9 * n_samples)] y_train = y_digits[:int(.9 * n_samples)] X_test = X_digits[int(.9 * n_samples):] y_test = y_digits[int(.9 * n_samples):] svm = SVM(sparkSession, is_multi_class=True, transferUsingDF=True) mllearn_predicted = svm.fit(X_train, y_train).predict(X_test) from sklearn import linear_model, svm clf = svm.LinearSVC() sklearn_predicted = clf.fit(X_train, y_train).predict(X_test) self.failUnless(accuracy_score(sklearn_predicted, mllearn_predicted) > 0.95 ) if __name__ == '__main__': unittest.main()
apache-2.0
BigUtrecht/BigUtrecht
analysis/distribution.py
1
1598
import matplotlib.pyplot as plt from constants.spark import Session from etl import parquet def createDistributionGraph(): """ Distribution analysis function Calculates the distribution of cyclists over the different measurement points Shows the results in a bar plot :return: None """ with Session() as spark: flow = parquet.readResults(spark, "flow") flow.registerTempTable("flow") locatie = parquet.readLocatie(spark) locatie.registerTempTable("locatie") meetpuntcodes = [str(i.MeetpuntCode) for i in spark.sql("SELECT MeetpuntCode FROM locatie GROUP BY MeetpuntCode").collect()] meetpuntcolumns = {} map(lambda code: meetpuntcolumns.update({code: "flow_%s" % code}), meetpuntcodes) avgflow = spark.sql("SELECT Tijd, MeetpuntCode, avg(Flow) Flow " "FROM flow GROUP BY Tijd, MeetpuntCode " "ORDER BY max(Timestamp)").toPandas() groups = avgflow.groupby("MeetpuntCode") grouplist = {} map(lambda code: grouplist.update( {code: groups.get_group(code).rename(index=str, columns={"Flow": meetpuntcolumns[code]})}), meetpuntcodes) tijden = spark.sql("SELECT Tijd FROM flow GROUP BY Tijd").toPandas() for code in meetpuntcodes: tijden = tijden.join(grouplist[code], on="Tijd", rsuffix="_%s" % code) tijden.plot(x="Tijd", y=meetpuntcolumns.values(), kind="bar", stacked=False) plt.show() if __name__ == '__main__': createDistributionGraph()
gpl-3.0
fossdevil/Assignments
Machine Learning/Assignment4/Assignment4.py
1
4267
from svmutil import * import matplotlib.pyplot as plt import numpy as np # remove 'q' from variable 'string' if you wish to see the details regarding iterations, etc. ''' PART I : Two Features ''' # TwoFeatures def twoFeature(): ytf,xtf = svm_read_problem('twofeature.txt'); x1 = []; x2 = []; colors = []; for i in range(0,len(xtf)): x1.append(xtf[i][1]); x2.append(xtf[i][2]); if (ytf[i] == -1.0): colors.append('g'); else: colors.append('r'); #Trying with various values of C cvalues = [1,5,10,20,50,100]; for i in range(0,len(cvalues)): # plotting points plt.scatter(x1,x2,c=colors); string = '-s 0 -t 0 -q -c '+ str(cvalues[i]); #remove -q for non-quiet mode param = svm_parameter(string); prob = svm_problem(ytf,xtf); model = svm_train(prob,param); plotTwoF(model,x1,x2,cvalues[i]); plt.show(); # Plotting graphs for various C values # 6 graphs will be opened for different C values. def plotTwoF(model,x1,x2,c): svc = model.get_sv_coef(); sv = model.get_SV(); x = []; y = []; alpha = [] for i in range(0,len(sv)): x.append(sv[i][1]); y.append(sv[i][2]); alpha.append(svc[i][0]); w1 = np.dot(x,alpha); w2 = np.dot(y,alpha); # w values w = [w1,w2]; maxneg = -100; minpos = 10000000; for i in range(0,len(svc)): if(svc[i][0] < 0): if(maxneg < np.dot(w,[x[i],y[i]])): maxneg = np.dot(w,[x[i],y[i]]); else: if(minpos > np.dot(w,[x[i],y[i]])): minpos = np.dot(w,[x[i],y[i]]); # b value b = -1 * (maxneg + minpos)/2.0; pltx = [] plty = [] minx = min(x1); maxx = max(x1); yval = 0;diff = (maxx-minx)/10.0; for i in range(0,11): pltx.append(minx + diff*i); yval = (-1*(w1*(minx+diff*i) + b-1))/w2; plty.append(yval); # line plot plt.plot(pltx,plty); plt.title("C value = " + str(c)); plt.xlabel("x1"); plt.ylabel("x2"); ''' PART II: Email Classification ''' # Email Classification def email_class(): y50,x50 = svm_read_problem('email_train-50.txt'); y100,x100 = svm_read_problem('email_train-100.txt'); y400,x400 = svm_read_problem('email_train-400.txt'); yall,xall = svm_read_problem('email_train-all.txt'); # c = 1 model50 = svm_train(y50,x50, '-s 0 -t 0 -q -c 1'); model100 = svm_train(y100,x100,'-s 0 -t 0 -q -c 1'); model400 = svm_train(y400,x400,'-s 0 -t 0 -q -c 1'); modelall = svm_train(yall,xall,'-s 0 -t 0 -q -c 1'); y,x = svm_read_problem('email_test.txt'); p_labs50, p_acc50, p_vals50 = svm_predict(y, x, model50); p_labs100, p_acc100, p_vals100 = svm_predict(y, x, model100); p_labs400, p_acc400, p_vals400 = svm_predict(y, x, model400); p_labsall, p_accall, p_valsall = svm_predict(y, x, modelall); return p_acc50[0], p_acc100[0], p_acc400[0], p_accall[0]; # Print solution to file def printAccuracy(p1,p2,p3,p4): print("The solution can be seen above. If you wish, you may open Solution.txt for solution"); filename = "Solution.txt"; target = open(filename,'w'); target.write("The following is the accuracy on the test data for the various training data: \n"); target.write("For 50 documents, Accuracy = " + str(p1) + "%\n"); target.write("For 100 documents, Accuracy = " + str(p2) + "%\n"); target.write("For 400 documents, Accuracy = " + str(p3) + "%\n"); target.write("For all documents, Accuracy = " + str(p4) + "%\n"); target.write("Please note that there was no previous assignment on Naive Bayes classification so printed just accuracy through SVM on test data"); target.close(); def main(): print("Two features:"); print("6 graphs will be opened for various values of C(mentioned in the title). Please check and close each graph.\n"); twoFeature(); print("Email Classification(Linear model):"); # to change model change the -t value in svm_train in email_class. 1 for polynomial, 2 for radial, etc. p1,p2,p3,p4 = email_class(); printAccuracy(p1,p2,p3,p4); if __name__ == "__main__": main();
mit
nukui-s/sscomdetection
generate_ge.py
1
1096
import igraph import os import numpy as np import pandas as pd from visualize import plot_degree_dist def generate_gn_graph(n_node, n_com, p_in, p_out): labels = np.zeros(n_node).astype(int) slice_ = n_node // n_com for c, i in enumerate(range(n_com)): start = i*slice_ stop = (i+1) * slice_ labels[start:stop] = c labels = list(labels) b_sizes = [labels.count(c) for c in range(n_com)] pref = np.zeros(shape=[n_com, n_com]) + p_out for c in range(n_com): pref[c,c] = p_in pref = pref.tolist() graph = igraph.GraphBase.SBM(n_node, pref, b_sizes) elist = graph.get_edgelist() return elist, labels if __name__=='__main__': n = 90 c = 3 p_in = 0.1 p_out = 0.001 name = "gn_%s_%s"%(str(n),str(c)) elist_path = os.path.join("data/", name + "_edge.pkl") label_path = os.path.join("data/", name + "_label.pkl") elist, labels = generate_gn_graph(n,c,p_in,p_out) pd.to_pickle(elist, elist_path) pd.to_pickle(labels, label_path) print(len(elist)) plot_degree_dist(elist)
apache-2.0
quadflor/Quadflor
Code/lucid_ml/classifying/kneighbour_l2r_classifier.py
1
14671
from sklearn.neighbors import NearestNeighbors, LSHForest from classifying.batch_kneighbors import BatchKNeighbors import numpy as np from sklearn.base import BaseEstimator import subprocess from scipy.sparse.csr import csr_matrix from nltk.translate import IBMModel1 from nltk.translate import AlignedSent import sys import scipy.sparse as sps from sklearn.externals.joblib import Parallel, delayed class KNeighborsL2RClassifier(BaseEstimator): """ This classifier first examines the labels that appear in the n-nearest documents and then generates features for each of the labels. Given these features, a list-wise ranking algorithm then ranks the labels. Finally, the k highest ranked labels are assigned as output. The features that are generated are the following: - the sum of the cosine similarities to all the documents in the n-neighborhood that the label is actually assigned to - the total count of appearances of the label in the document - the probability that the label translates to the document's title according to the IBM1-translation-model. - the count of how often the label directly appears in the title This algorithm uses the implementation from [RankLib] in the background. Therefore, it assumes a Java- installation to be available and the RankLib-2.5.jar file to be in the same folder as this file. The whole procedure's main idea was taken from [MLA]. However, as some of their techniques cannot be applied in the same way to our application, some of the implementation details differ. Note that, as opposed to the original paper, we need to decide which labels from the ranking to assign to the document. In our approach, we take the top k elements from each list where k equals the average number of labels assigned to a document in the training corpus rounded to an integer. References ---------- [MLA] Huang, Minlie, Aurélie Névéol, and Zhiyong Lu. "Recommending MeSH terms for annotating biomedical articles." Journal of the American Medical Informatics Association 18.5 (2011): 660-667. [RankLib] https://sourceforge.net/p/lemur/wiki/RankLib/ Parameters ---------- n_jobs: int, default=1 Number of jobs to use for extracting the training / test sets for l2r. n_neighbors: int, default=20 The size of the neighborhood, from which labels are considered as input to the ranking algorithm max_iterations: int, default=300 Given as input to the RankLib library. Determines the number of iterations to train the ranking classifier with. count_concepts: boolean, default=False Must indicate whether the feature vector of a document contains concepts or not. number_of_concepts: boolean, default=0 Must indicate the number of concepts contained in the document's feature vector. count_terms: terms, default=True Must indicate whether the feature vector of a document contains terms or not. training_validation_split: float, default = 1.0 Determines how much of the training data passed to fit() is used for training. Rest is used for validation. algorithm_id: string, default = '7' Specifies the id of the (list-wise) L2R algorithm to apply. Must be either '3' for AdaRank, '4' for Coordinate Ascent, '6' for LambdaMART, or '7' for ListNET. """ def __init__(self, use_lsh_forest=False, n_neighbors=20, max_iterations = 300, count_concepts = False, number_of_concepts = 0, count_terms = False, training_validation_split = 0.8, algorithm_id = '7', l2r_metric = "ERR@k", n_jobs = 1, translation_probability = False, **kwargs ): self.n_neighbors = n_neighbors nn = LSHForest(n_neighbors=n_neighbors, **kwargs) if use_lsh_forest else NearestNeighbors( n_neighbors=n_neighbors, **kwargs) self.knn = BatchKNeighbors(nn) self.y = None self.max_iterations = max_iterations self.count_concepts = count_concepts self.count_terms = count_terms self.number_of_concepts = number_of_concepts self.training_validation_split = training_validation_split self.algorithm_id = algorithm_id self.l2r_metric = l2r_metric self.n_jobs = n_jobs self.translation_probability = translation_probability def fit(self, X, y): self.y = y self.knn.fit(X) if sps.issparse(y): average_labels = int(np.round(np.mean(y.sum(axis = 1)), 0)) else: average_labels = int(np.round(np.mean(np.sum(y, axis = 1)), 0)) self.topk = average_labels # the neighbors contain the data point itself. need to search for one more neighbor remove the data point itself # we may assume it to be the nearest neighbor. if some other data point were at the same position and had different labels # this would affect the training negatively anyway distances_to_neighbors,neighbor_id_lists = self.knn.kneighbors(X, return_distance=True, n_neighbors=self.n_neighbors + 1) distances_to_neighbors = distances_to_neighbors[:, 1:] neighbor_id_lists = neighbor_id_lists[:, 1:] if self.translation_probability: self._train_translation_model(X,y) # create features for each label in a documents neighborhood and write them in a file self._extract_and_write(X, neighbor_id_lists, distances_to_neighbors, y = y) # use the RankLib library algorithm to create a ranking model subprocess.call(["java", "-jar", "RankLib-2.5.jar", "-train", "l2r_train", "-tvs", str(self.training_validation_split), "-save", "l2r_model", "-ranker" , self.algorithm_id, "-metric2t", self.l2r_metric, "-epoch", str(self.max_iterations), "-norm", "zscore"]) def _train_translation_model(self, X, y): translations = [] for row in range(0, X.shape[0]): title = _recompose_title(X, row) for label in _get_labels_of_row(row, y): translations.append(AlignedSent(title, [label])) ibm1 = IBMModel1(translations, 5) self.ibm1 = ibm1 def _extract_and_write(self, X, neighbor_id_lists, distances_to_neighbors, fileName = "l2r_train", y = None): labels_in_neighborhood = Parallel(n_jobs=self.n_jobs)( delayed(_create_training_samples)(cur_doc, neighbor_list, X, y, cur_doc + 1, distances_to_neighbors, self.count_concepts, self.count_terms, self.number_of_concepts, self.ibm1 if self.n_jobs == 1 and self.translation_probability else None) for cur_doc, neighbor_list in enumerate(neighbor_id_lists)) doc_to_neighborhood_dict = self._merge_dicts(labels_in_neighborhood) filenames = ["samples_" + str(qid + 1) + ".tmp" for qid in range(len(doc_to_neighborhood_dict))] with open(fileName, 'w') as outfile: for fname in filenames: with open(fname) as infile: for line in infile: outfile.write(line) outfile.write('\n') return doc_to_neighborhood_dict def _merge_dicts(self, labels_in_neighborhood): neighborhood_dict = {} for i, labels in enumerate(labels_in_neighborhood): neighborhood_dict[str(i + 1)] = labels return neighborhood_dict def _intersection_percent(self, all_labels, curr_labels): return len(all_labels.intersection(curr_labels)) / len(curr_labels) def _predict_scores(self, X): distances, neighbor_id_lists = self.knn.kneighbors(X, n_neighbors=self.n_neighbors, return_distance=True) doc_to_neighborhood_dict = self._extract_and_write(X, neighbor_id_lists, distances, fileName="l2r_test", y = self.y) # use the created ranking model to get a ranking subprocess.call(["java", "-jar", "RankLib-2.5.jar", "-rank", "l2r_test", "-score", "test_scores", "-load", "l2r_model", "-norm", "zscore"]) scoresFile = open("test_scores", "r") results = {} for line in scoresFile: qid, score = self._extract_score(line) if str(qid) in results: labels = results[str(qid)] labels.append(score) results[str(qid)] = labels else: results[str(qid)] = [score] return self._extract_topk_score(doc_to_neighborhood_dict, results) def predict_proba(self, X): """ we set the probability of all labels we do not observe in the neighborhood at all to 0 (or rather to the smallest float value possible to be safe, because we don't normalize). Otherwise, the probability of a label corresponds to the score assigned by the ranking algorithm. """ top_k_save = self.topk self.topk = self.y.shape[1] doc_to_neighborhood_dict = self._predict_scores(X) self.topk = top_k_save probabilities = np.zeros((X.shape[0], self.y.shape[1])) probabilities.fill(sys.float_info.min) for i in range(0,X.shape[0]): for label, score in doc_to_neighborhood_dict[str(i + 1)]: probabilities[i, label] = score return probabilities def predict(self, X): predictions = csr_matrix((X.shape[0], self.y.shape[1])) doc_to_neighborhood_dict = self._predict_scores(X) for i in range(0,X.shape[0]): for label, _ in doc_to_neighborhood_dict[str(i + 1)]: predictions[i, label] = 1 return predictions def _extract_score(self, line): entries = line.split() qid = entries[0] score = entries[2] return (qid, score) def _extract_topk_score(self, doc_to_neighborhood_dict, results): for key, value in results.items(): top_indices = self._get_top_indices(value) top_values = self._get_top_values(value) labels = doc_to_neighborhood_dict[key] toplabels = [(labels[index], top_value) for index, top_value in zip(top_indices, top_values)] doc_to_neighborhood_dict[key] = toplabels return doc_to_neighborhood_dict def _get_top_indices(self, array): return self._maxEntries(array, self.topk) def _get_top_values(self, array): return self._maxValues(array, self.topk) # this one was stolen here: http://stackoverflow.com/questions/12787650/finding-the-index-of-n-biggest-elements-in-python-array-list-efficiently def _maxEntries(self,a,N): return np.argsort(a)[::-1][:N] def _maxValues(self,a,N): return np.sort(a)[::-1][:N] def _create_training_samples(curr_doc, neighbor_list, X, y, qid, distances_to_neighbors, count_concepts, count_terms, number_of_concepts, ibm1): l2r_training_samples = open("samples_" + str(qid) + ".tmp", "w", encoding='utf-8') labels_in_neighborhood = y[neighbor_list] labels_per_neighbor = [] for i in range(0,labels_in_neighborhood.shape[0] - 1): cols = _get_labels_of_row(i,labels_in_neighborhood) labels_per_neighbor.append(cols) all_labels_in_neighborhood = [label for labels in labels_per_neighbor for label in labels] all_labels_in_neighborhood = list(set(all_labels_in_neighborhood)) for label in all_labels_in_neighborhood: l2r_training_samples.write(_generate_line_for_label(label, qid, X, y, curr_doc, labels_per_neighbor, neighbor_list, distances_to_neighbors[curr_doc], count_concepts, count_terms, number_of_concepts, ibm1)) return all_labels_in_neighborhood def _get_labels_of_row(i,matrix): labels_of_single_neighbor = matrix[i] rows, cols = labels_of_single_neighbor.nonzero() return cols # we are generating a line per label according to the notation given in http://www.cs.cornell.edu/People/tj/svm_light/svm_rank.html def _generate_line_for_label(label, qid, X, y, curr_doc, labels_per_neighbor, neighbor_list, distances_to_neighbor, count_concepts, count_terms, number_of_concepts, ibm1): # set the target value to 1 (i.e., the label is ranked high), if the label is actually assigned to the current document, 0 otherwise if(y != None): label_in_curr_doc = 1 if label in _get_labels_of_row(curr_doc, y) else 0 else: label_in_curr_doc = 0 features = _extract_features(label, curr_doc, labels_per_neighbor, neighbor_list, distances_to_neighbor, X, y, count_concepts, count_terms, number_of_concepts, ibm1) featureString = " ".join([str(i + 1) + ":" + str(val) for i,val in enumerate(features)]) #if y != None: line_for_label = str(label_in_curr_doc) + " " #else: line_for_label = line_for_label + "qid:" + str(qid) + " " + featureString + "\n" return line_for_label def _extract_features(label, curr_doc, labels_per_neighbor, neighbor_list, distances_to_neighbor, X, y, count_concepts, count_terms, number_of_concepts, ibm1): sum_similarities = 0 for i, neighbor_list in enumerate(labels_per_neighbor): if label in neighbor_list: sum_similarities += distances_to_neighbor[i] count_in_neighborhood = [some_label for labels in labels_per_neighbor for some_label in labels].count(label) title = _recompose_title(X, curr_doc) if not ibm1 is None: translation_probability = 0 for word in title: translation_probability += ibm1.translation_table[word][str(label)] features = [count_in_neighborhood, sum_similarities, translation_probability] else: features = [count_in_neighborhood, sum_similarities] if count_concepts and not count_terms: features.append(1 if X[curr_doc,label] > 0 else 0) elif count_concepts and count_terms: features.append(1 if X[curr_doc, X.shape[1] - number_of_concepts + label] > 0 else 0) return features def _recompose_title(X, row): title = [] for word in X[row].nonzero(): title.append(str(word)) return title
bsd-3-clause
RomainSabathe/kaggle_airbnb2015
Code/lab.py
1
10237
import pandas as pd import numpy as np import matplotlib.pyplot as plt import pickle import itertools as it from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier from sklearn.cross_validation import train_test_split, KFold from sklearn.metrics import confusion_matrix from score import calc_score from toolbox import transform_to_submission_format, get_feature_importances from random import choice import xgboost as xgb plt.style.use('ggplot') """ Recovering the data """ print 'Recovering the data' store = pd.HDFStore('../Data/enhanced_learning_restricted_data.h5') data = store['data_users'] data = data.fillna(0) store.close() # Deleting a part of the data #base_size = 30000 #data_country_7 = data[data['country_destination'] == 7] #_, rows_to_delete = train_test_split(data_country_7, train_size=base_size, random_state=1) #data = data.drop(rows_to_delete.index, axis=0) # #data_country_10 = data[data['country_destination'] == 10] #_, rows_to_delete = train_test_split(data_country_10, train_size=int(base_size/1.5), random_state=1) #data = data.drop(rows_to_delete.index, axis=0) # #data_country_11 = data[data['country_destination'] == 11] #_, rows_to_delete = train_test_split(data_country_11, train_size=base_size/8, random_state=1) #data = data.drop(rows_to_delete.index, axis=0) data_learn, data_test = train_test_split(data, test_size=0.3, random_state=2) data_learn, data_valid = train_test_split(data, test_size=0.7, random_state=2) X = data X = X.drop('country_destination', axis=1) y = data['country_destination'] X_learn = data_learn X_learn = X_learn.drop('country_destination', axis=1) y_learn = pd.DataFrame(index=X_learn.index) y_learn['country'] = data_learn['country_destination'] X_valid = data_valid X_valid = X_valid.drop('country_destination', axis=1) y_valid = pd.DataFrame(index=X_valid.index) y_valid['country'] = data_valid['country_destination'] X_test = data_test X_test = X_test.drop('country_destination', axis=1) y_test = pd.DataFrame(index=X_test.index) y_test['country'] = data_test['country_destination'] kf = KFold(len(data), n_folds=3, random_state=1) """ Learning """ print 'Learning' """ #### Test: model parameters #### """ #test_name='model_parameters' #criterion_choices = ['gini', 'entropy'] #n_estimators_choices = range(1, 750) #min_samples_split_choices = range(10, 5000) #max_depth_choices = range(2, 50) #min_samples_leaf_choices = range(10, 5000) # #n_experiments = 1000 # #criterion_exp = [] #n_estimators_exp = [] #min_samples_split_exp = [] #min_samples_leaf_exp = [] #max_depth_exp = [] #scores = [] # #for n_experiment in range(n_experiments): # criterion_exp.append(choice(criterion_choices)) # n_estimators_exp.append(choice(n_estimators_choices)) # min_samples_split_exp.append(choice(max_depth_choices)) # min_samples_leaf_exp.append(choice(min_samples_leaf_choices)) # max_depth_exp.append(choice(max_depth_choices)) # # classif = RandomForestClassifier(n_estimators=n_estimators_exp[-1], # criterion=criterion_exp[-1], # random_state=0, # min_samples_split=min_samples_split_exp[-1], # max_depth=max_depth_exp[-1], # min_samples_leaf=min_samples_leaf_exp[-1], # n_jobs=-1) # # classif.fit(X_learn, y_learn) # # """ Converting the proba into 5 best guesses """ # proba_countries = classif.predict_proba(X_valid) # find_5_best_countries = lambda x: x.argsort()[-5:][::-1] # best_guesses = np.apply_along_axis(find_5_best_countries, 1, proba_countries) # predictions = pd.DataFrame(best_guesses, index=y_valid.index) # # print '--------------------' # print 'criterion = %s' % criterion_exp[-1] # print 'min_samples_split = %s' % min_samples_split_exp[-1] # print 'max_depth = %s' % max_depth_exp[-1] # print 'min_samples_leaf = %s' % min_samples_leaf_exp[-1] # scores.append(calc_score(predictions, y_valid)) # print 'Score = %s' % scores[-1] # # if n_experiment % 20 == 0 and n_experiment > 0: # data_score = pd.DataFrame({'Criterion': criterion_exp, # 'n_estimators': n_estimators_exp, # 'min_samples_split': min_samples_split_exp, # 'max_depth': max_depth_exp, # 'min_samples_leaf': min_samples_leaf_exp, # 'score': scores}) # # data_score.to_csv('../Lab/%s.csv' % test_name) """ #### Test: number of features #### """ #test_name='number_features' #scores = [] # #classif_base = RandomForestClassifier(n_estimators=186, # criterion='entropy', # random_state=0, # min_samples_split=30, # max_depth=16, # min_samples_leaf=11, # n_jobs=-1) #classif_base.fit(X_learn, y_learn) # #fi = [(name, value) for (name,value) in zip(X_learn.columns.values.tolist(), # classif_base.feature_importances_)] #fi = sorted(fi, key=lambda x: x[1], reverse=True) #features = [f[0] for f in fi] #features_to_keep = features[:200] # #""" Plotting figure importances """ ##fi_ = [x[1] for x in fi] ##plt.bar(range(len(fi_)), fi_) ##print features[:10] ##plt.show() # #with open('../Data/features_to_keep.dt', 'w') as f: # pickle.dump(features_to_keep, f) # #for n_features in range(1, len(features)): # classif = RandomForestClassifier(**classif_base.get_params()) # # X_learn_ = X_learn[features[:n_features]] # X_valid_ = X_valid[features[:n_features]] # classif.fit(X_learn_, y_learn) # # """ Converting the proba into 5 best guesses """ # proba_countries = classif.predict_proba(X_valid_) # find_5_best_countries = lambda x: x.argsort()[-5:][::-1] # best_guesses = np.apply_along_axis(find_5_best_countries, 1, proba_countries) # predictions = pd.DataFrame(best_guesses, index=y_valid.index) # # print '--------------------' # print 'n_features = %s' % n_features # scores.append(calc_score(predictions, y_valid)) # print 'Score = %s' % scores[-1] # # if n_features % 5 == 0: # data_score = pd.DataFrame({'n_features': range(n_features), # 'score': scores}) # # data_score.to_csv('../Lab/%s.csv' % test_name) """ Test: simple test """ #with open('../Data/features_to_keep.dt', 'r') as f: # features_to_keep = pickle.load(f) scores = [] #for train,test in kf: for _ in range(1): #X_learn, X_valid, y_learn, y_valid = X.iloc[train], X.iloc[test], \ # y.iloc[train], y.iloc[test] #y_valid = pd.DataFrame({'country': y_valid}) #y_test = pd.DataFrame({'country': y_test}) """ RANDOM FOREST """ classif_base = RandomForestClassifier(n_estimators=300, criterion='entropy', random_state=0, min_samples_split=1000, max_depth=10, min_samples_leaf=100, n_jobs=-1) classif = RandomForestClassifier(**classif_base.get_params()) """ GRADIENT BOOSTING """ #classif_base = GradientBoostingClassifier(loss='deviance', # learning_rate=0.25, # n_estimators=20, # max_depth=5, # min_samples_split=50, # min_samples_leaf=100, # random_state=0, # verbose=True) #classif = GradientBoostingClassifier(**classif_base.get_params()) """ XGBOOST """ xg_train = xgb.DMatrix(X_learn, label=y_learn) xg_valid = xgb.DMatrix(X_valid, label=y_valid) xg_test = xgb.DMatrix(X_test, label=y_test) param = {} param['objective'] = 'multi:softprob' param['eta'] = 0.3 param['gamma'] = 5. param['max_depth'] = 6 param['learning_rate'] = 0.1 param['subsample'] = 1. param['colsample_bytree'] = 1. param['min_child_weight'] = 100 param['silent'] = 1 param['nthread'] = 4 param['num_class'] = 12 watchlist = [ (xg_train, 'train'), (xg_valid, 'test') ] num_boost_round = 20 early_stopping_rounds = 5 classif = xgb.train(param, xg_train, early_stopping_rounds=early_stopping_rounds, num_boost_round=num_boost_round, evals=watchlist) #proba_countries = classif.predict( xg_test, ntree_limit=classif.best_ntree_limit ) #classif.fit(X_learn, y_learn) """ Converting the proba into 5 best guesses """ #proba_countries = classif.predict_proba(X_valid_) def score(X, y): X = xgb.DMatrix(X, label=y) proba_countries = classif.predict( X, ntree_limit=classif.best_ntree_limit ) #proba_countries = classif.predict_proba(X) find_5_best_countries = lambda x: x.argsort()[-5:][::-1] best_guesses = np.apply_along_axis(find_5_best_countries, 1, proba_countries) predictions = pd.DataFrame(best_guesses, index=y.index) print calc_score(predictions, y) score(X_learn, y_learn) score(X_valid, y_valid) score(X_test, y_test) #print np.array(get_feature_importances(classif, X_learn_)[:20]) #import pdb; pdb.set_trace() #miss_rows = predictions[predictions[0] != y_valid['country']] #miss_rows = pd.concat([y_valid.loc[miss_rows.index], miss_rows], axis=1) #confmat = confusion_matrix(miss_rows.iloc[:,0], miss_rows.iloc[:,1]) #miss_rows_710 = miss_rows[(miss_rows['country']==10) & (miss_rows[0]==7)] #import pdb; pdb.set_trace() #print '----------------------' #print 'Mean score = %s' % np.mean(scores) #print 'Std score = %s' % np.std(scores)
mit
danking/hail
hail/python/hail/experimental/ldscsim.py
2
41334
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Simulation framework for testing LDSC Models for SNP effects: - Infinitesimal (can simulate n correlated traits) - Spike & slab (can simulate up to 2 correlated traits) - Annotation-informed Features: - Field aggregation tools for annotation-informed model and population stratification with many covariates. - Automatic adjustment of genetic correlation parameters to allow for the joint simulation of up to 100 randomly correlated phenotypes. - Methods for binarizing phenotypes to have a certain prevalence and for adding ascertainment bias to binarized phenotypes. @author: nbaya """ import hail as hl from hail.typecheck import typecheck, oneof, nullable from hail.expr.expressions import expr_float64, expr_int32, expr_array, expr_call from hail.matrixtable import MatrixTable from hail.table import Table from hail.utils.java import Env import numpy as np import pandas as pd import scipy.stats as stats @typecheck(mt=MatrixTable, genotype=oneof(expr_int32, expr_float64, expr_call), h2=(oneof(float, int, list, np.ndarray)), pi=nullable(oneof(float, int, list, np.ndarray)), rg=nullable(oneof(float, int, list, np.ndarray)), annot=nullable(oneof(expr_float64, expr_int32)), popstrat=nullable(oneof(expr_int32, expr_float64)), popstrat_var=nullable(oneof(float, int)), exact_h2=bool) def simulate_phenotypes(mt, genotype, h2, pi=None, rg=None, annot=None, popstrat=None, popstrat_var=None, exact_h2=False): r"""Simulate phenotypes for testing LD score regression. Simulates betas (SNP effects) under the infinitesimal, spike & slab, or annotation-informed models, depending on parameters passed. Optionally adds population stratification. Parameters ---------- mt : :class:`.MatrixTable` :class:`.MatrixTable` containing genotypes to be used. Also should contain variant annotations as row fields if running the annotation-informed model or covariates as column fields if adding population stratification. genotype : :class:`.Expression` or :class:`.CallExpression` Entry field containing genotypes of individuals to be used for the simulation. h2 : :obj:`float` or :obj:`int` or :obj:`list` or :class:`numpy.ndarray` SNP-based heritability of simulated trait. pi : :obj:`float` or :obj:`int` or :obj:`list` or :class:`numpy.ndarray`, optional Probability of SNP being causal when simulating under the spike & slab model. rg : :obj:`float` or :obj:`int` or :obj:`list` or :class:`numpy.ndarray`, optional Genetic correlation between traits. annot : :class:`.Expression`, optional Row field to use as our aggregated annotations. popstrat: :class:`.Expression`, optional Column field to use as our aggregated covariates for adding population stratification. exact_h2: :obj:`bool`, optional Whether to exactly simulate ratio of variance of genetic component of phenotype to variance of phenotype to be h2. If `False`, ratio will be h2 in expectation. Observed h2 in the simulation will be close to expected h2 for large-scale simulations. Returns ------- :class:`.MatrixTable` :class:`.MatrixTable` with simulated betas and phenotypes, simulated according to specified model. """ h2 = h2.tolist() if type(h2) is np.ndarray else ([h2] if type(h2) is not list else h2) pi = pi.tolist() if type(pi) is np.ndarray else pi uid = Env.get_uid(base=100) mt = annotate_all(mt=mt, row_exprs={} if annot is None else {'annot_' + uid: annot}, col_exprs={} if popstrat is None else {'popstrat_' + uid: popstrat}, entry_exprs={'gt_' + uid: genotype.n_alt_alleles() if genotype.dtype is hl.dtype('call') else genotype}) mt, pi, rg = make_betas(mt=mt, h2=h2, pi=pi, annot=None if annot is None else mt['annot_' + uid], rg=rg) mt = calculate_phenotypes(mt=mt, genotype=mt['gt_' + uid], beta=mt['beta'], h2=h2, popstrat=None if popstrat is None else mt['popstrat_' + uid], popstrat_var=popstrat_var, exact_h2=exact_h2) mt = annotate_all(mt=mt, global_exprs={'ldscsim': hl.struct(**{'h2': h2[0] if len(h2) == 1 else h2, **({} if pi == [None] else {'pi': pi}), **({} if rg == [None] else {'rg': rg[0] if len(rg) == 1 else rg}), **({} if annot is None else {'is_annot_inf': True}), **({} if popstrat is None else {'is_popstrat_inf': True}), **({} if popstrat_var is None else {'popstrat_var': popstrat_var}), 'exact_h2': exact_h2 })}) mt = _clean_fields(mt, uid) return mt @typecheck(mt=MatrixTable, h2=(oneof(float, int, list, np.ndarray)), pi=nullable(oneof(float, int, list, np.ndarray)), annot=nullable(oneof(expr_float64, expr_int32)), rg=nullable(oneof(float, int, list, np.ndarray))) def make_betas(mt, h2, pi=None, annot=None, rg=None): r"""Generates betas under different models. Simulates betas (SNP effects) under the infinitesimal, spike & slab, or annotation-informed models, depending on parameters passed. Parameters ---------- mt : :class:`.MatrixTable` MatrixTable containing genotypes to be used. Also should contain variant annotations as row fields if running the annotation-informed model or covariates as column fields if adding population stratification. h2 : :obj:`float` or :obj:`int` or :obj:`list` or :class:`numpy.ndarray` SNP-based heritability of simulated trait(s). pi : :obj:`float` or :obj:`int` or :obj:`list` or :class:`numpy.ndarray`, optional Probability of SNP being causal when simulating under the spike & slab model. If doing two-trait spike & slab `pi` is a list of probabilities for overlapping causal SNPs (see docstring of :func:`.multitrait_ss`) annot : :class:`.Expression`, optional Row field of aggregated annotations for annotation-informed model. rg : :obj:`float` or :obj:`int` or :obj:`list` or :class:`numpy.ndarray`, optional Genetic correlation between traits. Returns ------- mt : :class:`.MatrixTable` :class:`.MatrixTable` with betas as a row field, simulated according to specified model. pi : :obj:`list` Probability of a SNP being causal for different traits, possibly altered from input `pi` if covariance matrix for multitrait simulation was not positive semi-definite. rg : :obj:`list` Genetic correlation between traits, possibly altered from input `rg` if covariance matrix for multitrait simulation was not positive semi-definite. """ h2 = h2.tolist() if type(h2) is np.ndarray else ( [h2] if type(h2) is not list else h2) pi = pi.tolist() if type(pi) is np.ndarray else ( [pi] if type(pi) is not list else pi) rg = rg.tolist() if type(rg) is np.ndarray else ( [rg] if type(rg) is not list else rg) assert (all(x >= 0 and x <= 1 for x in h2) ), 'h2 values must be between 0 and 1' assert (pi is not [None]) or all( x >= 0 and x <= 1 for x in pi), 'pi values for spike & slab must be between 0 and 1' assert (rg == [None] or all(x >= -1 and x <= 1 for x in rg) ), 'rg values must be between -1 and 1 or None' if annot is not None: # multi-trait annotation-informed assert rg == [ None], 'Correlated traits not supported for annotation-informed model' h2 = h2 if type(h2) is list else [h2] annot_sum = mt.aggregate_rows(hl.agg.sum(annot)) mt = mt.annotate_rows(beta=hl.literal(h2).map( lambda x: hl.rand_norm(0, hl.sqrt(annot * x / (annot_sum * M))))) elif len(h2) > 1 and (pi == [None] or pi == [1]): # multi-trait correlated infinitesimal mt, rg = multitrait_inf(mt=mt, h2=h2, rg=rg) elif len(h2) == 2 and len(pi) > 1 and len(rg) == 1: # two trait correlated spike & slab print('multitrait ss') mt, pi, rg = multitrait_ss(mt=mt, h2=h2, rg=0 if rg is [None] else rg[0], pi=pi) elif len(h2) == 1 and len(pi) == 1: # single trait infinitesimal/spike & slab M = mt.count_rows() pi_temp = 1 if pi == [None] else pi[0] mt = mt.annotate_rows(beta=hl.rand_bool( pi_temp) * hl.rand_norm(0, hl.sqrt(h2[0] / (M * pi_temp)))) else: raise ValueError('Parameters passed do not match any models.') return mt, pi, rg @typecheck(mt=MatrixTable, h2=nullable(oneof(float, int, list, np.ndarray)), rg=nullable(oneof(float, int, list)), cov_matrix=nullable(np.ndarray), seed=nullable(int)) def multitrait_inf(mt, h2=None, rg=None, cov_matrix=None, seed=None): r"""Generates correlated betas for multi-trait infinitesimal simulations for any number of phenotypes. Parameters ---------- mt : :class:`.MatrixTable` MatrixTable for simulated phenotype. h2 : :obj:`float` or :obj:`int` or :obj:`list` or :class:`numpy.ndarray`, optional Desired SNP-based heritability (:math:`h^2`) of simulated traits. If `h2` is ``None``, :math:`h^2` is based on diagonal of `cov_matrix`. rg : :obj:`float` or :obj:`int` or :obj:`list` or :class:`numpy.ndarray`, optional Desired genetic correlation (:math:`r_g`) between simulated traits. If simulating more than two correlated traits, `rg` should be a list of :math:`rg` values corresponding to the upper right triangle of the covariance matrix. If `rg` is ``None`` and `cov_matrix` is ``None``, :math:`r_g` is assumed to be 0 between traits. If `rg` and `cov_matrix` are both not None, :math:`r_g` values from `cov_matrix` take precedence. cov_matrix : :class:`numpy.ndarray`, optional Covariance matrix for traits, **unscaled by :math:`M`**, the number of SNPs. Overrides `h2` and `rg` even when `h2` or `rg` are not ``None``. seed : :obj:`int`, optional Seed for random number generator. If `seed` is ``None``, `seed` is set randomly. Returns ------- mt : :class:`.MatrixTable` :class:`.MatrixTable` with simulated SNP effects as a row field of arrays. rg : :obj:`list` Genetic correlation between traits, possibly altered from input `rg` if covariance matrix was not positive semi-definite. """ uid = Env.get_uid(base=100) h2 = (h2.tolist() if type(h2) is np.ndarray else ([h2] if type(h2) is not list else h2)) rg = rg.tolist() if type(rg) is np.ndarray else ([rg] if type(rg) is not list else rg) assert (all(x >= 0 and x <= 1 for x in h2)), 'h2 values must be between 0 and 1' assert h2 is not [None] or cov_matrix is not None, 'h2 and cov_matrix cannot both be None' seed = seed if seed is not None else int(str(Env.next_seed())[:8]) M = mt.count_rows() if cov_matrix is not None: n_phens = cov_matrix.shape[0] else: n_phens = len(h2) if rg == [None]: print(f'Assuming rg=0 for all {n_phens} traits') rg = [0] * int((n_phens ** 2 - n_phens) / 2) assert (all(x >= -1 and x <= 1 for x in rg) ), 'rg values must be between 0 and 1' cov, rg = get_cov_matrix(h2, rg) cov = (1 / M) * cov # seed random state for replicability randstate = np.random.RandomState(int(seed)) betas = randstate.multivariate_normal( mean=np.zeros(n_phens), cov=cov, size=[M, ]) df = pd.DataFrame([0] * M, columns=['beta']) tb = hl.Table.from_pandas(df) tb = tb.add_index().key_by('idx') tb = tb.annotate(beta=hl.literal(betas.tolist())[hl.int32(tb.idx)]) mt = mt.add_row_index(name='row_idx' + uid) mt = mt.annotate_rows(beta=tb[mt['row_idx' + uid]]['beta']) mt = _clean_fields(mt, uid) return mt, rg @typecheck(mt=MatrixTable, h2=oneof(list, np.ndarray), pi=oneof(list, np.ndarray), rg=oneof(float, int), seed=nullable(int)) def multitrait_ss(mt, h2, pi, rg=0, seed=None): r"""Generates spike & slab betas for simulation of two correlated phenotypes. Parameters ---------- mt : :class:`.MatrixTable` :class:`.MatrixTable` for simulated phenotype. h2 : :obj:`list` or :class:`numpy.ndarray` Desired SNP-based heritability of simulated traits. pi : :obj:`list` or :class:`numpy.ndarray` List of proportion of SNPs: :math:`p_{TT}`, :math:`p_{TF}`, :math:`p_{FT}` :math:`p_{TT}` is the proportion of SNPs that are causal for both traits, :math:`p_{TF}` is the proportion of SNPs that are causal for trait 1 but not trait 2, :math:`p_{FT}` is the proportion of SNPs that are causal for trait 2 but not trait 1. rg : :obj:`float` or :obj:`int` Genetic correlation between traits. seed : :obj:`int`, optional Seed for random number generator. If `seed` is ``None``, `seed` is set randomly. Warning ------- May give inaccurate results if chosen parameters make the covariance matrix not positive semi-definite. Covariance matrix is likely to not be positive semi-definite when :math:`p_{TT}` is small and rg is large. Returns ------- mt : :class:`.MatrixTable` :class:`.MatrixTable` with simulated SNP effects as a row field of arrays. pi : :obj:`list` or :class:`numpy.ndarray` List of proportion of SNPs: :math:`p_{TT}`, :math:`p_{TF}`, :math:`p_{FT}`. Possibly altered if covariance matrix of traits was not positive semi-definite. rg : :obj:`list` Genetic correlation between traits, possibly altered from input `rg` if covariance matrix was not positive semi-definite. """ assert sum(pi) <= 1, "probabilities of being causal must sum to be less than 1" seed = seed if seed is not None else int(str(Env.next_seed())[:8]) ptt, ptf, pft, pff = pi[0], pi[1], pi[2], 1 - sum(pi) cov_matrix = np.asarray([[1 / (ptt + ptf), rg / ptt], [rg / ptt, 1 / (ptt + pft)]]) M = mt.count_rows() # seed random state for replicability randstate = np.random.RandomState(int(seed)) if np.any(np.linalg.eigvals(cov_matrix) < 0): print('adjusting parameters to make covariance matrix positive semidefinite') rg0, ptt0 = rg, ptt while np.any(np.linalg.eigvals(cov_matrix) < 0): # check positive semidefinite rg = round(0.99 * rg, 6) ptt = round(ptt + (pff) * 0.001, 6) cov_matrix = np.asarray( [[1 / (ptt + ptf), rg / ptt], [rg / ptt, 1 / (ptt + pft)]]) pff0, pff = pff, 1 - sum([ptt, ptf, pft]) print(f'rg: {rg0} -> {rg}\nptt: {ptt0} -> {ptt}\npff: {pff0} -> {pff}') pi = [ptt, ptf, pft, pff] beta = randstate.multivariate_normal(mean=np.zeros(2), cov=cov_matrix, size=[int(M), ]) zeros = np.zeros(shape=int(M)).T beta_matrix = np.stack((beta, np.asarray([beta[:, 0], zeros]).T, np.asarray([zeros, zeros]).T, np.asarray([zeros, beta[:, 1]]).T), axis=1) idx = np.random.choice(a=[0, 1, 2, 3], size=int(M), p=[ptt, ptf, pft, pff]) betas = beta_matrix[range(int(M)), idx, :] betas[:, 0] *= (h2[0] / M) ** (1 / 2) betas[:, 1] *= (h2[1] / M) ** (1 / 2) df = pd.DataFrame([0] * M, columns=['beta']) tb = hl.Table.from_pandas(df) tb = tb.add_index().key_by('idx') tb = tb.annotate(beta=hl.literal(betas.tolist())[hl.int32(tb.idx)]) mt = mt.add_row_index() mt = mt.annotate_rows(beta=tb[mt.row_idx]['beta']) return mt, pi, [rg] @typecheck(h2=oneof(list, np.ndarray), rg=oneof(list, np.ndarray), psd_rg=bool) def get_cov_matrix(h2, rg, psd_rg=False): r"""Creates covariance matrix for simulating correlated SNP effects. Given a list of heritabilities and a list of genetic correlations, :func:`.get_cov_matrix` constructs the covariance matrix necessary to draw from a multivariate normal distribution to generate correlated SNP effects. Examples -------- Suppose we have three traits enumerated as trait 1, trait 2, and trait 3. Each trait has a heritability: :math:`h^2_1`,:math:`h^2_2`,:math:`h^2_3` Traits have the following genetic correlations: :math:`r_{g, 12}`,:math:`r_{g, 13}`, :math:`r_{g, 23}` The ordering of indices in the subscript is arbitrary (e.g. :math:`r_{g, 12}` = :math:`r_{g, 21}`) as both values are the genetic correlation between trait 1 and trait 2. We can calculate :math:`\rho_{g,ab}`, the genetic covariance between two traits :math:`a` and :math:`b`, as :math:`\rho_{g,ab}=r_{g,ab}\sqrt{h^2_a\cdot h^2_b}`. The covariance matrix is thus: .. math:: \begin{pmatrix} h^2_1 & r_{g, 12}\sqrt{h^2_1\cdot h^2_2} & r_{g, 13}\sqrt{h^2_1\cdot h^2_3} \\ r_{g, 12}\sqrt{h^2_1\cdot h^2_2} & h^2_2 & r_{g, 23}\sqrt{h^2_2\cdot h^2_3} \\ r_{g, 13}\sqrt{h^2_1\cdot h^2_3} & r_{g, 23}*\sqrt{h^2_2\cdot h^2_3} & h^2_3 \end{pmatrix} Now suppose we have four traits with the following heritabilities (:math:`h^2`): 0.1, 0.3, 0.2, 0.6. That is, trait 1 has an :math:`h^2` of 0.1, trait 2 has an :math:`h^2` of 0.3 and so on. Suppose the genetic correlations (:math:`r_g`) between traits are the following: trait 1 & trait 2 :math:`r_g` = 0.4 trait 1 & trait 3 :math:`r_g` = 0.3 trait 1 & trait 4 :math:`r_g` = 0.1 trait 2 & trait 3 :math:`r_g` = 0.2 trait 2 & trait 4 :math:`r_g` = 0.15 trait 3 & trait 4 :math:`r_g` = 0.6 To obtain the covariance matrix corresponding to this scenario :math:`h^2` values are ordered according to user specification and :math:`r_g` values are ordered by the order in which the corresponding genetic covariance terms will appear in the covariance matrix, reading lines in the upper triangular matrix from left to right, top to bottom (read first row left to right, read second row left to right, etc.), exluding the diagonal. >>> cov_matrix, rg = get_cov_matrix(h2=[0.1, 0.3, 0.2, 0.6], rg=[0.4, 0.3, 0.1, 0.2, 0.15, 0.6]) >>> cov_matrix array([[0.1 , 0.06928203, 0.04242641, 0.0244949 ], [0.06928203, 0.3 , 0.04898979, 0.06363961], [0.04242641, 0.04898979, 0.2 , 0.2078461 ], [0.0244949 , 0.06363961, 0.2078461 , 0.6 ]]) The diagonal corresponds directly to `h2`, the list of h2 values for all traits. In the upper triangular matrix, excluding the diagonal, the entry :math:`(a, b)`, where :math:`a` and :math:`b` are in :math:`{1,2,3,4}`, is the genetic covariance (:math:`\rho_g`) between traits :math:`a` and :math:`b`. Genetic covariance is calculated as :math:`\rho_g= r_g*\sqrt{h^2_a*h^2_b}` where :math:`r_g` is the genetic correlation between traits :math:`a` and :math:`b` and :math:`h^2_a` and :math:`h^2_b` are heritabilities corresponding to traits :math:`a` and :math:`b`. Notes ----- Covariance matrix is not scaled by number of SNPs. If the h2 and rg parameters passed cause the resulting covariance matrix to not be positive semidefinite, this may cause the distribution of SNP effects generated by this covariance matrix to not have the properties specified by the h2 and rg parameters. To automatically adjust rg values so that the covariance matrix is positive semidefinite, set `psd_rg` = True. Parameters ---------- h2 : :obj:`list` or :class:`numpy.ndarray` :math:`h^2` values for traits. :math:`h^2` values in list should be ordered by their order in the diagonal of the covariance array, reading from top left to bottom right. rg : :obj:`list` or :class:`numpy.ndarray` :math:`r_g` values for traits. :math:`r_g` values should be ordered in the order they appear in the upper triangle of the covariance matrix, from left to right, top to bottom. psd_rg : :obj:`bool` Whether to automatically adjust rg values to get a positive semi-definite covariance matrix, which ensures that SNP effects simulated with that covariance matrix have the desired variance and correlation properties specified by the h2 and rg parameters. Returns ------- cov_matrix : :class:`numpy.ndarray` Covariance matrix calculated using `h2` and (possibly altered) `rg` values. rg : :obj:`list` Genetic correlation between traits, possibly altered from input `rg` if covariance matrix was not positive semi-definite. """ assert (all(x >= 0 and x <= 1 for x in h2) ), 'h2 values must be between 0 and 1' assert (all(x >= -1 and x <= 1 for x in rg) ), 'rg values must be between -1 and 1' rg = np.asarray(rg) if type(rg) is list else rg n_rg = len(rg) n_h2 = len(h2) # expected number of rg values, given number of traits exp_n_rg = int((n_h2 ** 2 - n_h2) / 2) assert n_rg == exp_n_rg, f'The number of rg values given is {n_rg}, expected {exp_n_rg}' cor = np.zeros(shape=(n_h2, n_h2)) # set upper triangle of correlation matrix to be rg cor[np.triu_indices(n=n_h2, k=1)] = rg cor += cor.T cor[np.diag_indices(n=n_h2)] = 1 if psd_rg: cor0 = cor cor = _nearpsd(cor) idx = np.triu_indices(n=n_h2, k=1) maxlines = 50 msg = ['Adjusting rg values to make covariance matrix positive semidefinite'] msg += ([(f'{cor0[idx[0][i],idx[1][i]]} -> {cor[idx[0][i],idx[1][i]]}') for i in range(n_rg)] if n_rg <= maxlines else [(f'{cor0[idx[0][i],idx[1][i]]} -> {cor[idx[0][i],idx[1][i]]}') for i in range(maxlines)] + [f'[ printed first {maxlines} rg changes -- omitted {n_rg - maxlines} ]']) print('\n'.join(msg)) rg = np.ravel(cor[idx]) S = np.diag(h2) ** (1 / 2) cov_matrix = S @ cor @ S # covariance matrix decomposition # check positive semidefinite if not np.all(np.linalg.eigvals(cov_matrix) >= 0) and not psd_rg: msg = 'WARNING: Covariance matrix is not positive semidefinite.\n' msg += 'Multivariate Gaussian distributions generated with this \n' msg += 'covariance matrix may not have the desired h2 and rg.\n' msg += 'To make the covariance matrix positive semidefinite,\n' msg += 'adjust h2 and rg values or set psd_rg=True.' print(msg) rg = rg.tolist() return cov_matrix, rg @typecheck(A=np.ndarray) def _nearpsd(A): r""" Obtain the "closest" positive semidefinite matrix to A.""" n = A.shape[0] eigval, eigvec = np.linalg.eig(A) val = np.matrix(np.maximum(eigval, 0)) vec = np.matrix(eigvec) T = 1 / (np.multiply(vec, vec) * val.T) T = np.matrix(np.sqrt(np.diag(np.array(T).reshape((n))))) B = T * vec * np.diag(np.array(np.sqrt(val)).reshape((n))) out = np.real(B * B.T) return out @typecheck(mt=MatrixTable, genotype=oneof(expr_int32, expr_float64, expr_call), beta=oneof(expr_float64, expr_array(expr_float64)), h2=oneof(float, int, list, np.ndarray), popstrat=nullable(oneof(expr_int32, expr_float64)), popstrat_var=nullable(oneof(float, int)), exact_h2=bool) def calculate_phenotypes(mt, genotype, beta, h2, popstrat=None, popstrat_var=None, exact_h2=False): r"""Calculates phenotypes by multiplying genotypes and betas. Parameters ---------- mt : :class:`.MatrixTable` :class:`.MatrixTable` with all relevant fields passed as parameters. genotype : :class:`.Expression` or :class:`.CallExpression` Entry field of genotypes. beta : :class:`.Expression` Row field of SNP effects. h2 : :obj:`float` or :obj:`int` or :obj:`list` or :class:`numpy.ndarray` SNP-based heritability (:math:`h^2`) of simulated trait. Can only be ``None`` if running annotation-informed model. popstrat : :class:`.Expression`, optional Column field containing population stratification term. popstrat_var : :obj:`float` or :obj:`int` Variance of population stratification term. exact_h2: :obj:`bool` Whether to exactly simulate ratio of variance of genetic component of phenotype to variance of phenotype to be h2. If `False`, ratio will be h2 in expectation. Observed h2 in the simulation will be close to expected h2 for large-scale simulations. Returns ------- :class:`.MatrixTable` :class:`.MatrixTable` with simulated phenotype as column field. """ print('calculating phenotype') h2 = h2.tolist() if type(h2) is np.ndarray else ( [h2] if type(h2) is not list else h2) assert popstrat_var is None or ( popstrat_var >= 0), 'popstrat_var must be non-negative' uid = Env.get_uid(base=100) mt = annotate_all(mt=mt, row_exprs={'beta_' + uid: beta}, col_exprs={} if popstrat is None else {'popstrat_' + uid: popstrat}, entry_exprs={'gt_' + uid: genotype.n_alt_alleles() if genotype.dtype is hl.dtype('call') else genotype}) mt = mt.filter_rows(hl.agg.stats(mt['gt_' + uid]).stdev > 0) mt = normalize_genotypes(mt['gt_' + uid]) if mt['beta_' + uid].dtype == hl.dtype('array<float64>'): # if >1 traits if exact_h2: raise ValueError('exact_h2=True not supported for multitrait simulations') else: mt = mt.annotate_cols(y_no_noise=hl.agg.array_agg( lambda beta: hl.agg.sum(beta * mt['norm_gt']), mt['beta_' + uid])) mt = mt.annotate_cols( y=mt.y_no_noise + hl.literal(h2).map(lambda x: hl.rand_norm(0, hl.sqrt(1 - x)))) else: if exact_h2 and min([h2[0], 1 - h2[0]]) != 0: print('exact h2') mt = mt.annotate_cols(**{'y_no_noise_' + uid: hl.agg.sum(mt['beta_' + uid] * mt['norm_gt'])}) y_no_noise_stdev = mt.aggregate_cols(hl.agg.stats(mt['y_no_noise_' + uid]).stdev) mt = mt.annotate_cols(y_no_noise=hl.sqrt(h2[0]) * mt['y_no_noise_' + uid] / y_no_noise_stdev) # normalize genetic component of phenotype to have variance of exactly h2 mt = mt.annotate_cols(**{'noise_' + uid: hl.rand_norm(0, hl.sqrt(1 - h2[0]))}) noise_stdev = mt.aggregate_cols(hl.agg.stats(mt['noise_' + uid]).stdev) mt = mt.annotate_cols(noise=hl.sqrt(1 - h2[0]) * mt['noise_' + uid] / noise_stdev) mt = mt.annotate_cols(y=mt.y_no_noise + hl.sqrt(1 - h2[0]) * mt['noise_' + uid] / noise_stdev) else: mt = mt.annotate_cols(y_no_noise=hl.agg.sum(mt['beta_' + uid] * mt['norm_gt'])) mt = mt.annotate_cols(y=mt.y_no_noise + hl.rand_norm(0, hl.sqrt(1 - h2[0]))) if popstrat is not None: var_factor = 1 if popstrat_var is None else ( popstrat_var ** (1 / 2)) / mt.aggregate_cols(hl.agg.stats(mt['popstrat_' + uid])).stdev mt = mt.rename({'y': 'y_no_popstrat'}) mt = mt.annotate_cols(y=mt.y_no_popstrat + mt['popstrat_' + uid] * var_factor) mt = _clean_fields(mt, uid) return mt @typecheck(genotype=oneof(expr_int32, expr_float64, expr_call)) def normalize_genotypes(genotype): r"""Normalizes genotypes to have mean 0 and variance 1 at each SNP Parameters ---------- genotype : :class:`.Expression` or :class:`.CallExpression` Entry field of genotypes. Returns ------- :class:`.MatrixTable` :class:`.MatrixTable` with normalized genotypes. """ uid = Env.get_uid(base=100) mt = genotype._indices.source mt = mt.annotate_entries( **{'gt_' + uid: genotype.n_alt_alleles() if genotype.dtype is hl.dtype('call') else genotype}) mt = mt.annotate_rows(**{'gt_stats_' + uid: hl.agg.stats(mt['gt_' + uid])}) # TODO: Add MAF filter to remove invariant SNPs? mt = mt.annotate_entries(norm_gt=(mt['gt_' + uid] - mt['gt_stats_' + uid].mean) / mt['gt_stats_' + uid].stdev) mt = _clean_fields(mt, uid) return mt @typecheck(mt=MatrixTable, str_expr=str) def _clean_fields(mt, str_expr): r"""Removes fields with names that have `str_expr` in them. Parameters ---------- mt : :class:`.MatrixTable` :class:`.MatrixTable` with fields to be removed. str_expr : :class:`str` string to filter names of fields to remove. Returns ------- :class:`.MatrixTable` :class:`.MatrixTable` with specified fields removed. """ all_fields = list(mt.col) + list(mt.row) + list(mt.entry) + list(mt.globals) return mt.drop(*(x for x in all_fields if str_expr in x)) @typecheck(mt=MatrixTable, row_exprs=dict, col_exprs=dict, entry_exprs=dict, global_exprs=dict) def annotate_all(mt, row_exprs={}, col_exprs={}, entry_exprs={}, global_exprs={}): r"""Equivalent of _annotate_all, but checks source MatrixTable of exprs""" exprs = {**row_exprs, **col_exprs, **entry_exprs, **global_exprs} for key, value in exprs.items(): if type(value) == expr_float64 or type(value) == expr_int32: assert value._indices.source == mt, 'Cannot combine expressions from different source objects.' return mt._annotate_all(row_exprs, col_exprs, entry_exprs, global_exprs) @typecheck(tb=oneof(MatrixTable, Table), coef_dict=nullable(dict), str_expr=nullable(str), axis=str) def agg_fields(tb, coef_dict=None, str_expr=None, axis='rows'): r"""Aggregates by linear combination fields matching either keys in `coef_dict` or `str_expr`. Outputs the aggregation in a :class:`.MatrixTable` or :class:`.Table` as a new row field "agg_annot" or a new column field "agg_cov". Parameters ---------- tb : :class:`.MatrixTable` or :class:`.Table` :class:`.MatrixTable` or :class:`.Table` containing fields to be aggregated. coef_dict : :obj:`dict`, optional Coefficients to multiply each field. The coefficients are specified by `coef_dict` value, the row (or col) field name is specified by `coef_dict` key. If not included, coefficients are assumed to be 1. str_expr : :class:`str`, optional String expression to match against row (or col) field names. axis : :class:`str` Either 'rows' or 'cols'. If 'rows', this aggregates across row fields. If 'cols', this aggregates across col fields. If tb is a Table, axis = 'rows'. Returns ------- :class:`.MatrixTable` or :class:`.Table` :class:`.MatrixTable` or :class:`.Table` containing aggregation field. """ assert (str_expr is not None or coef_dict is not None), "str_expr and coef_dict cannot both be None" assert axis == 'rows' or axis == 'cols', "axis must be 'rows' or 'cols'" coef_dict = get_coef_dict(tb=tb, str_expr=str_expr, ref_coef_dict=coef_dict, axis=axis) axis_field = 'annot' if axis == 'rows' else 'cov' annotate_fn = (MatrixTable.annotate_rows if axis == 'rows' else MatrixTable.annotate_cols) if type( tb) is MatrixTable else Table.annotate tb = annotate_fn(self=tb, **{'agg_' + axis_field: 0}) print( f'Fields and associated coefficients used in {axis_field} aggregation: {coef_dict}') for field, coef in coef_dict.items(): tb = annotate_fn( self=tb, **{'agg_' + axis_field: tb['agg_' + axis_field] + coef * tb[field]}) return tb @typecheck(tb=oneof(MatrixTable, Table), str_expr=nullable(str), ref_coef_dict=nullable(dict), axis=str) def get_coef_dict(tb, str_expr=None, ref_coef_dict=None, axis='rows'): r"""Gets either col or row fields matching `str_expr` and take intersection with keys in coefficient reference dict. Parameters ---------- tb : :class:`.MatrixTable` or :class:`.Table` :class:`.MatrixTable` or :class:`.Table` containing row (or col) for `coef_dict`. str_expr : :class:`str`, optional String expression pattern to match against row (or col) fields. If left unspecified, the intersection of field names is only between existing row (or col) fields in `mt` and keys of `ref_coef_dict`. ref_coef_dict : :obj:`dict`, optional Reference coefficient dictionary with keys that are row (or col) field names from which to subset. If not included, coefficients are assumed to be 1. axis : :class:`str` Field type in which to search for field names. Options: 'rows', 'cols' Returns ------- coef_dict : :obj:`dict` Coefficients to multiply each field. The coefficients are specified by `coef_dict` value, the row (or col) field name is specified by `coef_dict` key. """ assert (str_expr is not None or ref_coef_dict is not None), "str_expr and ref_coef_dict cannot both be None" assert axis == 'rows' or axis == 'cols', "axis must be 'rows' or 'cols'" fields_to_search = (tb.row if axis == 'rows' or type(tb) is Table else tb.col) # when axis='rows' we're searching for annotations, axis='cols' searching for covariates axis_field = 'annotation' if axis == 'rows' else 'covariate' if str_expr is None: # take all row (or col) fields in mt matching keys in coef_dict coef_dict = {k: ref_coef_dict[k] for k in ref_coef_dict.keys() if k in fields_to_search} # if intersect is empty: return error assert len( coef_dict) > 0, f'None of the keys in ref_coef_dict match any {axis[:-1]} fields' return coef_dict # return subset of ref_coef_dict else: # str_expr search in list of row (or col) fields fields = [rf for rf in list(fields_to_search) if str_expr in rf] assert len( fields) > 0, f'No {axis[:-1]} fields matched str_expr search: {str_expr}' if ref_coef_dict is None: print(f'Assuming coef = 1 for all {axis_field}s') return {k: 1 for k in fields} in_ref_coef_dict = set(fields).intersection( set(ref_coef_dict.keys())) # fields in ref_coef_dict # if >0 fields returned by search are not in ref_coef_dict if in_ref_coef_dict != set(fields): # if none of the fields returned by search are in ref_coef_dict assert len( in_ref_coef_dict) > 0, f'None of the {axis_field} fields in ref_coef_dict match search results' fields_to_ignore = set(fields).difference(in_ref_coef_dict) print( f'Ignored fields from {axis_field} search: {fields_to_ignore}') print('To include ignored fields, change str_expr to match desired fields') fields = list(in_ref_coef_dict) return {k: ref_coef_dict[k] for k in fields} @typecheck(mt=MatrixTable, y=expr_int32, P=oneof(int, float)) def ascertainment_bias(mt, y, P): r"""Adds ascertainment bias to a binary phenotype to give it a sample prevalence of `P` = cases/(cases+controls). Parameters ---------- mt : :class:`.MatrixTable` :class:`.MatrixTable` containing binary phenotype to be used. y : :class:`.Expression` Column field of binary phenotype. P : :obj:`int` or :obj:`float` Desired "sample prevalence" of phenotype. Returns ------- :class:`.MatrixTable` :class:`.MatrixTable` containing binary phenotype with prevalence of approx. P """ assert P >= 0 and P <= 1, 'P must be in [0,1]' uid = Env.get_uid(base=100) mt = mt.annotate_cols(y_w_asc_bias=y) y_stats = mt.aggregate_cols(hl.agg.stats(mt.y_w_asc_bias)) K = y_stats.mean n = y_stats.n assert abs( P - K) < 1, 'Specified sample prevalence is incompatible with population prevalence.' if P < K: p = (1 - K) * P / (K * (1 - P)) con = mt.filter_cols(mt.y_w_asc_bias == 0) cas = mt.filter_cols(mt.y_w_asc_bias == 1).add_col_index( name='col_idx_' + uid) keep = round(p * n * K) * [1] + round((1 - p) * n * K) * [0] cas = cas.annotate_cols( **{'keep_' + uid: hl.literal(keep)[hl.int32(cas['col_idx_' + uid])]}) cas = cas.filter_cols(cas['keep_' + uid] == 1) cas = _clean_fields(cas, uid) mt = cas.union_cols(con) elif P > K: p = K * (1 - P) / ((1 - K) * P) cas = mt.filter_cols(mt.y_w_asc_bias == 1) con = mt.filter_cols(mt.y_w_asc_bias == 0).add_col_index( name='col_idx_' + uid) keep = round(p * n * (1 - K)) * [1] + round((1 - p) * n * (1 - K)) * [0] con = con.annotate_cols( **{'keep_' + uid: hl.literal(keep)[hl.int32(con['col_idx_' + uid])]}) con = con.filter_cols(con['keep_' + uid] == 1) con = _clean_fields(con, uid) mt = con.union_cols(cas) return mt @typecheck(mt=MatrixTable, y=oneof(expr_int32, expr_float64), K=oneof(int, float), exact=bool) def binarize(mt, y, K, exact=False): r"""Binarize phenotype `y` such that it has prevalence `K` = cases/(cases+controls) Uses inverse CDF of Gaussian to set binarization threshold when `exact` = False, otherwise uses ranking to determine threshold. Parameters ---------- mt : :class:`.MatrixTable` :class:`.MatrixTable` containing phenotype to be binarized. y : :class:`.Expression` Column field of phenotype. K : :obj:`int` or :obj:`float` Desired "population prevalence" of phenotype. exact : :obj:`bool` Whether to get prevalence as close as possible to `K` (does not use inverse CDF) Returns ------- :class:`.MatrixTable` :class:`.MatrixTable` containing binary phenotype with prevalence of approx. `K` """ if exact: key = list(mt.col_key) uid = Env.get_uid(base=100) mt = mt.annotate_cols(**{'y_' + uid: y}) tb = mt.cols().order_by('y_' + uid) tb = tb.add_index('idx_' + uid) n = tb.count() # "+ 1" because of zero indexing tb = tb.annotate(y_binarized=tb['idx_' + uid] + 1 <= round(n * K)) tb, mt = tb.key_by('y_' + uid), mt.key_cols_by('y_' + uid) mt = mt.annotate_cols(y_binarized=tb[mt['y_' + uid]].y_binarized) mt = mt.key_cols_by(*map(lambda x: mt[x], key)) else: # use inverse CDF y_stats = mt.aggregate_cols(hl.agg.stats(y)) threshold = stats.norm.ppf(1 - K, loc=y_stats.mean, scale=y_stats.stdev) mt = mt.annotate_cols(y_binarized=y > threshold) return mt
mit
18praveenb/toil-rnaseq-sc
src/toil_rnaseq_sc/rnaseq_sc_cgl_plot_functions.py
1
14121
#!/usr/bin/env python2.7 # This is a modified version of a source file from the repository "scRNA-Seq-tcc-prep" by the Pachter Lab which can be found here: https://github.com/pachterlab/scRNA-Seq-TCC-prep/blob/201469940e138c2f09bcd058a6291b17794f7c88/notebooks/10xResults.ipynb # The citation for the paper with which this repository is associated is Ntranos, V., Kamath, G. M., Zhang, J. M., Pachter, L. & Tse, D. N. Fast and accurate single-cell RNA-seq analysis by clustering of transcript-compatibility counts. Genome Biology 17, 112 (2016). # The entire source of "scRNA-Seq-tcc prep" is also used in Dockerized form in this pipeline. # The original "scRNA-Seq-TCC-prep" repository was released under GPLv3, as is this repository (and thus this source file). For more details, see the 'README.md' of this repository which contains the full text of the GPL. from __future__ import print_function import os import pickle import sys from subprocess import CalledProcessError from urlparse import urlparse import numpy as np from bd2k.util.files import mkdir_p from sklearn import cluster,manifold from sklearn.decomposition import PCA from sklearn.preprocessing import normalize from toil.lib.docker import dockerCall from toil_lib.files import tarball_files, copy_files from toil_lib.urls import s3am_upload from string import lstrip # Matplotlib backend nonsense import matplotlib if sys.platform == 'darwin': matplotlib.use('TkAgg') else: matplotlib.use('Agg') import matplotlib.pyplot as plt SC3_OUTPUT_DIRECTORY = "SC3" MATRIX_TSV_FILENAME = "matrix.tsv" MATRIX_CELLS_FILENAME = "matrix.cells" DOCKER_WORK_DIR = "/data" # TODO: Refactor to use ids def run_data_analysis(job, config, tcc_matrix_id, pwise_dist_l1_id, nonzero_ec_id, kallisto_matrix_id, matrix_tsv_id, matrix_cells_id): """ Generates graphs and plots of results. Uploads images to savedir location. :param job: toil job :param config: toil job configuration :param tcc_matrix_id: jobstore location of TCC matrix (.dat) :param pwise_dist_l1_id: jobstore location of L1 pairwise distance (.dat) :param nonzero_ec_id: jobstore loation of nonzero ec (.dat) :param kallisto_matrix_id: id of kallisto output matrix (.ec) :param matrix_tsv_id: id of kallisto output matrix (.tsv) :param matrix_cells_id: id of kallisto output matrix (.cells) """ # source: https://github.com/pachterlab/scRNA-Seq-TCC-prep (/blob/master/notebooks/10xResults.ipynb) # extract output job.fileStore.logToMaster('Performing data analysis') # read files work_dir = job.fileStore.getLocalTempDir() tcc_matrix = job.fileStore.readGlobalFile(tcc_matrix_id, os.path.join(work_dir, "TCC_matrix.dat")) pwise_dist_l1 = job.fileStore.readGlobalFile(pwise_dist_l1_id, os.path.join(work_dir, "pwise_dist_L1.dat")) nonzero_ec = job.fileStore.readGlobalFile(nonzero_ec_id, os.path.join(work_dir, "nonzero_ec.dat")) kallisto_matrix = job.fileStore.readGlobalFile(kallisto_matrix_id, os.path.join(work_dir, 'kallisto_matrix.ec')) matrix_tsv = job.fileStore.readGlobalFile(matrix_tsv_id, os.path.join(work_dir, MATRIX_TSV_FILENAME)) matrix_cells = job.fileStore.readGlobalFile(matrix_cells_id, os.path.join(work_dir, MATRIX_CELLS_FILENAME)) ############################################################## # load dataset with open(os.path.join(work_dir, "TCC_matrix.dat"), 'rb') as f: tcc_matrix = pickle.load(f) with open(os.path.join(work_dir, "pwise_dist_L1.dat"), 'rb') as f: pwise_dist_l1 = pickle.load(f) with open(os.path.join(work_dir, "nonzero_ec.dat"), 'rb') as f: nonzero_ec = pickle.load(f) ecfile_dir = os.path.join(work_dir, 'kallisto_matrix.ec') eclist = np.loadtxt(ecfile_dir, dtype=str) tcc = tcc_matrix.T T_norm = normalize(tcc_matrix, norm='l1', axis=0) t_normt = T_norm.transpose() num_of_cells = np.shape(tcc_matrix)[1] print("NUM_OF_CELLS =", num_of_cells) print("NUM_OF_nonzero_EC =", np.shape(tcc_matrix)[0]) ################################# EC_dict = {} for i in range(np.shape(eclist)[0]): EC_dict[i] = [int(x) for x in eclist[i, 1].split(',')] union = set() for i in nonzero_ec: new = [tx for tx in EC_dict[i] if tx not in union] # filter out previously seen transcripts union.update(new) NUM_OF_TX_inTCC = len(union) print("NUM_OF_Transcripts =", NUM_OF_TX_inTCC) # number of distinct transcripts in nonzero eq. classes ############################################################## # inspect # sort eq. classes based on size size_of_ec = [len(EC_dict[i]) for i in nonzero_ec] ec_idx = [i[0] for i in sorted(enumerate(size_of_ec), key=lambda x: x[1])] index_ec = np.array(ec_idx) ec_sort_map = {} nonzero_ec_srt = [] # init for i in range(len(nonzero_ec)): nonzero_ec_srt += [nonzero_ec[index_ec[i]]] ec_sort_map[nonzero_ec[index_ec[i]]] = i sumi = np.array(tcc_matrix.sum(axis=1)) sumi_sorted = sumi[index_ec] total_num_of_umis = int(sumi_sorted.sum()) total_num_of_umis_per_cell = np.array(tcc_matrix.sum(axis=0))[0, :] print("Total number of UMIs =", total_num_of_umis) ################################# fig, ax1 = plt.subplots() ax1.plot(sorted(total_num_of_umis_per_cell)[::-1], 'b-', linewidth=2.0) ax1.set_title('UMI counts per cell') ax1.set_xlabel('cells (sorted by UMI counts)') ax1.set_ylabel('UMI counts') ax1.set_yscale("log", nonposy='clip') ax1.grid(True) ax1.grid(True, 'minor') umi_counts_per_cell = os.path.join(work_dir, "UMI_counts_per_cell.png") plt.savefig(umi_counts_per_cell, format='png') fig, ax1 = plt.subplots() ax1.plot(sorted(sumi.reshape(np.shape(sumi)[0]))[::-1], 'r-', linewidth=2.0) ax1.set_title('UMI counts per eq. class') ax1.set_xlabel('ECs (sorted by UMI counts)') ax1.set_ylabel('UMI counts') ax1.set_yscale("log", nonposy='clip') ax1.grid(True) ax1.grid(True, 'minor') umi_counts_per_class = os.path.join(work_dir, "UMI_counts_per_class.png") plt.savefig(umi_counts_per_class, format='png') cell_nonzeros = np.array(((T_norm != 0)).sum(axis=0))[0] fig, ax1 = plt.subplots() ax1.plot(total_num_of_umis_per_cell, cell_nonzeros, '.g', linewidth=2.0) ax1.set_title('UMI counts vs nonzero ECs') ax1.set_xlabel('total num of umis per cell') ax1.set_ylabel('total num of nonzero ecs per cell') ax1.set_yscale("log", nonposy='clip') ax1.set_xscale("log", nonposy='clip') ax1.grid(True) ax1.grid(True, 'minor') umi_counts_vs_nonzero_ecs = os.path.join(work_dir, "UMI_counts_vs_nonzero_ECs.png") plt.savefig(umi_counts_vs_nonzero_ecs, format='png') # TCC MEAN-VARIANCE #todo verify this works TCC_var=np.var(tcc.todense(),axis=0) TCC_mean=np.mean(tcc.todense(),axis=0) TCC_mean=np.array(TCC_mean)[0] TCC_var=np.array(TCC_var)[0] fig = plt.figure() N=tcc.sum() C=tcc.shape[0] ax = plt.gca() ax.plot(TCC_mean ,TCC_var,'.', c='blue', alpha=0.5, markeredgecolor='none') xlims=[0.0001,10*TCC_mean.max()] ax.set_xlim(xlims) ax.set_ylim([0.0001,10*TCC_var.max()]) ax.set_yscale('symlog') ax.set_xscale('symlog') ax.plot(xlims, [(C-1)*(xlims[0])**2, (C-1)*(xlims[1])**2], color='g', linestyle='-', linewidth=2) ax.plot(xlims, [(xlims[0]), (xlims[1])], color='k', linestyle='--', linewidth=1) ax.set_title("TCC Mean-Variance ["+str(tcc.shape[1])+" TCCs in "+str(C)+" Cells]") ax.set_xlabel("mean(TCC)") ax.set_ylabel("var(TCC)") tcc_mean_variance = os.path.join(work_dir, "TCC_mean_variance.png") plt.savefig(tcc_mean_variance, format='png') ############################################################## # clustering ################################# # t-SNE x_tsne = tSNE_pairwise(2, pwise_dist_l1) ################################# # spectral clustering n_clusters = config.n_clusters similarity_mat = pwise_dist_l1.max() - pwise_dist_l1 labels_spectral = spectral(n_clusters, similarity_mat) spectral_clustering = stain_plot(x_tsne, labels_spectral, [], "TCC -- tSNE, spectral clustering with " + str(n_clusters) + " n_clusters", work_dir=work_dir, filename="spectral_clustering_tSNE") ################################# # affinity propagation pref = -np.median(pwise_dist_l1) * np.ones(num_of_cells) labels_aff = AffinityProp(-pwise_dist_l1, pref, 0.5) np.unique(labels_aff) affinity_propagation_tsne = stain_plot(x_tsne, labels_aff, [], "TCC -- tSNE, affinity propagation", work_dir, "affinity_propagation_tSNE") ################################# # pca pca = PCA(n_components=2) x_pca = pca.fit_transform(t_normt.todense()) affinity_propagation_pca = stain_plot(x_pca, labels_aff, [], "TCC -- PCA, affinity propagation", work_dir, "affinity_propagation_PCA") # SC3 outfilePath = job.fileStore.getLocalTempFile() SC3OutputPath = os.path.join(work_dir, SC3_OUTPUT_DIRECTORY) os.mkdir(SC3OutputPath) shouldUseSC3Output = True with open(outfilePath, "r+") as outfile: def dockerPathTo(resource): return os.path.join(DOCKER_WORK_DIR, resource) def boolForR(aBool): return "TRUE" if aBool else "FALSE" try: dockerCall(job, tool='rscript', workDir=work_dir, parameters=map(str, [config.min_k, config.max_k, dockerPathTo(MATRIX_TSV_FILENAME), dockerPathTo(MATRIX_CELLS_FILENAME), dockerPathTo(SC3_OUTPUT_DIRECTORY), boolForR(config.use_estimated_k), boolForR(config.debug)]), outfile=outfile) pass except CalledProcessError: outfile.seek(0, 0) job.fileStore.logToMaster("Docker failed with the following log: " + str(outfile.read())) shouldUseSC3Output = False # build tarfile of output plots output_files = [umi_counts_per_cell, umi_counts_per_class, umi_counts_vs_nonzero_ecs, tcc_mean_variance, spectral_clustering, affinity_propagation_tsne, affinity_propagation_pca, outfilePath] + ([os.path.join(work_dir, SC3_OUTPUT_DIRECTORY, x) for x in os.listdir(SC3OutputPath)] if shouldUseSC3Output else []) tarball_files(tar_name='single_cell_plots.tar.gz', file_paths=output_files, output_dir=work_dir) # return file id for consolidation return job.fileStore.writeGlobalFile(os.path.join(work_dir, 'single_cell_plots.tar.gz')) def AffinityProp(D, pref, damp): """ Perform SKLearn affinity propagation (clustering) with specified data and parameters, returning labels. :param pref: preference parameter for the affinity propagation :param damp: damping parameter for the affinity propagation :return: labels """ aff = cluster.AffinityPropagation(affinity='precomputed', preference=pref, damping=damp, verbose=True) labels = aff.fit_predict(D) return labels def spectral(n, D): """ Perform spectral clustering on the distance matrix. :param n: Number of clusters (for some reason, this may not equal the number displayed on the stain plot?) :param D: Distance matrix to analyze :return: labels from the spectral clustering """ spectral = cluster.SpectralClustering(n_clusters=n, affinity='precomputed') spectral.fit(D) labels = spectral.labels_ return labels def tSNE_pairwise(n, D): """ Perform t-SNE dimensionality reduction on the distance matrix D, using n components. :param n: the number of components to use (passed as n_components to sklearn.manifold.TSNE.__init__) :param D: Distance matrix to be processed :return: t-SNE reduced version of D """ tsne = manifold.TSNE(n_components=n, random_state=213, metric='precomputed', n_iter=2000, verbose=1); X_tsne = tsne.fit_transform(D); return X_tsne def stain_plot(X, labels, stain, title, work_dir, filename, filetype='png', nc=2, ax_lim=0, marksize=46): """ Create a matplotlib plot from the specified parameters, including cluster labels and dimensionally reduced points to plot :param X: the reduced matrix returned by a dimensionality reduction routine e.g. tSNE or PCA :param labels: the labels to use to group the points into clusters :param stain: labels to stain :param title: plot title :param work_dir: working directory to create the file :param filename: name of the file to be saved to work_dir :param filetype: extension of the created file :param nc: number of columns in the legend :param ax_lim: limits of x- and y- axes (e.g. ax_lim = 3 -> [-3, 3] x [-3, 3] bounding box) :param marksize: size of the scatter-plot points that are NOT stained (stained are always 146 """ file_location = os.path.join(work_dir, filename + "." + filetype) unique_labels = np.unique(labels) N = len(unique_labels) max_value = 16581375 # 255**3 interval = int(max_value / N) colors = [hex(I)[2:].zfill(6) for I in range(0, max_value, interval)] color = [(int(i[:2], 16) / float(255), int(i[2:4], 16) / float(255), int(i[4:], 16) / float(255)) for i in colors] i = 0; plt.figure(figsize=(15, 10)) for label in unique_labels: ind = np.squeeze(labels == label) if label in stain: plt.scatter(X[ind, 0], X[ind, 1], c='red', s=146, edgecolor='black', lw=0.5, alpha=1, marker='*', label=label) else: plt.scatter(X[ind, 0], X[ind, 1], c=color[i], s=marksize, edgecolor='lightgray', lw=0.5, label=label) i += 1 plt.title(title) plt.gray() plt.legend(loc='upper right', bbox_to_anchor=(1.18, 1.01), ncol=nc) if ax_lim > 0: plt.xlim([-ax_lim, ax_lim]) plt.ylim([-ax_lim, ax_lim]) plt.axis('off') plt.savefig(file_location, format=filetype) return file_location
gpl-3.0
rgommers/statsmodels
statsmodels/regression/tests/test_robustcov.py
1
27218
# -*- coding: utf-8 -*- """Testing OLS robust covariance matrices against STATA Created on Mon Oct 28 15:25:14 2013 Author: Josef Perktold """ import numpy as np from scipy import stats from numpy.testing import assert_allclose, assert_equal, assert_warns from statsmodels.regression.linear_model import OLS, WLS import statsmodels.stats.sandwich_covariance as sw from statsmodels.tools.tools import add_constant from statsmodels.datasets import macrodata from statsmodels.tools.sm_exceptions import InvalidTestWarning from .results import results_macro_ols_robust as res from .results import results_grunfeld_ols_robust_cluster as res2 #test_hac_simple(): class CheckOLSRobust(object): def test_basic(self): res1 = self.res1 res2 = self.res2 rtol = getattr(self, 'rtol', 1e-10) assert_allclose(res1.params, res2.params, rtol=rtol) assert_allclose(self.bse_robust, res2.bse, rtol=rtol) assert_allclose(self.cov_robust, res2.cov, rtol=rtol) def test_tests(self): # Note: differences between small (t-distribution, ddof) and large (normal) # F statistic has no ddof correction in large, but uses F distribution (?) res1 = self.res1 res2 = self.res2 rtol = getattr(self, 'rtol', 1e-10) rtolh = getattr(self, 'rtolh', 1e-12) mat = np.eye(len(res1.params)) tt = res1.t_test(mat, cov_p=self.cov_robust) # has 'effect', 'pvalue', 'sd', 'tvalue' # TODO confint missing assert_allclose(tt.effect, res2.params, rtol=rtol) assert_allclose(tt.sd, res2.bse, rtol=rtol) assert_allclose(tt.tvalue, res2.tvalues, rtol=rtol) if self.small: assert_allclose(tt.pvalue, res2.pvalues, rtol=5 * rtol) else: pval = stats.norm.sf(np.abs(tt.tvalue)) * 2 assert_allclose(pval, res2.pvalues, rtol=5 * rtol, atol=1e-25) ft = res1.f_test(mat[:-1], cov_p=self.cov_robust) if self.small: #'df_denom', 'df_num', 'fvalue', 'pvalue' assert_allclose(ft.fvalue, res2.F, rtol=rtol) # f-pvalue is not directly available in Stata results, but is in ivreg2 if hasattr(res2, 'Fp'): assert_allclose(ft.pvalue, res2.Fp, rtol=rtol) else: if not getattr(self, 'skip_f', False): dof_corr = res1.df_resid * 1. / res1.nobs assert_allclose(ft.fvalue * dof_corr, res2.F, rtol=rtol) if hasattr(res2, 'df_r'): assert_equal(ft.df_num, res2.df_m) assert_equal(ft.df_denom, res2.df_r) else: # ivreg2 assert_equal(ft.df_num, res2.Fdf1) assert_equal(ft.df_denom, res2.Fdf2) # SMOKE tt.summary() ft.summary() tt.summary_frame() class TestOLSRobust1(CheckOLSRobust): # compare with regress robust def setup(self): res_ols = self.res1 self.bse_robust = res_ols.HC1_se self.cov_robust = res_ols.cov_HC1 self.small = True self.res2 = res.results_hc0 @classmethod def setup_class(cls): d2 = macrodata.load().data g_gdp = 400*np.diff(np.log(d2['realgdp'])) g_inv = 400*np.diff(np.log(d2['realinv'])) exogg = add_constant(np.c_[g_gdp, d2['realint'][:-1]], prepend=False) cls.res1 = res_ols = OLS(g_inv, exogg).fit() class TestOLSRobust2(TestOLSRobust1): # compare with ivreg robust small def setup(self): res_ols = self.res1 self.bse_robust = res_ols.HC1_se self.cov_robust = res_ols.cov_HC1 self.small = True self.res2 = res.results_ivhc0_small class TestOLSRobust3(TestOLSRobust1): # compare with ivreg robust (not small) def setup(self): res_ols = self.res1 self.bse_robust = res_ols.HC0_se self.cov_robust = res_ols.cov_HC0 self.small = False self.res2 = res.results_ivhc0_large class TestOLSRobustHacSmall(TestOLSRobust1): # compare with ivreg robust small def setup(self): res_ols = self.res1 cov1 = sw.cov_hac_simple(res_ols, nlags=4, use_correction=True) se1 = sw.se_cov(cov1) self.bse_robust = se1 self.cov_robust = cov1 self.small = True self.res2 = res.results_ivhac4_small class TestOLSRobustHacLarge(TestOLSRobust1): # compare with ivreg robust (not small) def setup(self): res_ols = self.res1 cov1 = sw.cov_hac_simple(res_ols, nlags=4, use_correction=False) se1 = sw.se_cov(cov1) self.bse_robust = se1 self.cov_robust = cov1 self.small = False self.res2 = res.results_ivhac4_large class CheckOLSRobustNewMixin(object): # This uses the robust covariance as default covariance def test_compare(self): rtol = getattr(self, 'rtol', 1e-10) assert_allclose(self.cov_robust, self.cov_robust2, rtol=rtol) assert_allclose(self.bse_robust, self.bse_robust2, rtol=rtol) def test_fvalue(self): if not getattr(self, 'skip_f', False): rtol = getattr(self, 'rtol', 1e-10) assert_allclose(self.res1.fvalue, self.res2.F, rtol=rtol) if hasattr(self.res2, 'Fp'): #only available with ivreg2 assert_allclose(self.res1.f_pvalue, self.res2.Fp, rtol=rtol) def test_confint(self): rtol = getattr(self, 'rtol', 1e-10) ci1 = self.res1.conf_int() ci2 = self.res2.params_table[:,4:6] assert_allclose(ci1, ci2, rtol=rtol) # check critical value crit1 = np.diff(ci1, 1).ravel() / 2 / self.res1.bse crit2 = np.diff(ci1, 1).ravel() / 2 / self.res1.bse assert_allclose(crit1, crit2, rtol=12) def test_ttest(self): res1 = self.res1 res2 = self.res2 rtol = getattr(self, 'rtol', 1e-10) rtolh = getattr(self, 'rtol', 1e-12) mat = np.eye(len(res1.params)) tt = res1.t_test(mat, cov_p=self.cov_robust) # has 'effect', 'pvalue', 'sd', 'tvalue' # TODO confint missing assert_allclose(tt.effect, res2.params, rtol=rtolh) assert_allclose(tt.sd, res2.bse, rtol=rtol) assert_allclose(tt.tvalue, res2.tvalues, rtol=rtolh) assert_allclose(tt.pvalue, res2.pvalues, rtol=5 * rtol) ci1 = tt.conf_int() ci2 = self.res2.params_table[:,4:6] assert_allclose(ci1, ci2, rtol=rtol) def test_scale(self): res1 = self.res1 res2 = self.res2 rtol = 1e-5 # Note we always use df_resid for scale # Stata uses nobs or df_resid for rmse, not always available in Stata #assert_allclose(res1.scale, res2.rmse**2 * res2.N / (res2.N - res2.df_m - 1), rtol=rtol) skip = False if hasattr(res2, 'rss'): scale = res2.rss / (res2.N - res2.df_m - 1) elif hasattr(res2, 'rmse'): scale = res2.rmse**2 else: skip = True if isinstance(res1.model, WLS): skip = True # Stata uses different scaling and using unweighted resid for rmse if not skip: assert_allclose(res1.scale, scale, rtol=rtol) if not res2.vcetype == 'Newey-West': # no rsquared in Stata r2 = res2.r2 if hasattr(res2, 'r2') else res2.r2c assert_allclose(res1.rsquared, r2, rtol=rtol, err_msg=str(skip)) # consistency checks, not against Stata df_resid = res1.nobs - res1.df_model - 1 assert_equal(res1.df_resid, df_resid) # variance of resid_pearson is 1, with ddof, and loc=0 psum = (res1.resid_pearson**2).sum() assert_allclose(psum, df_resid, rtol=1e-13) def test_smoke(self): self.res1.summary() class TestOLSRobust2SmallNew(TestOLSRobust1, CheckOLSRobustNewMixin): # compare with ivreg robust small def setup(self): res_ols = self.res1.get_robustcov_results('HC1', use_t=True) self.res3 = self.res1 self.res1 = res_ols self.bse_robust = res_ols.bse self.cov_robust = res_ols.cov_params() self.bse_robust2 = res_ols.HC1_se self.cov_robust2 = res_ols.cov_HC1 self.small = True self.res2 = res.results_ivhc0_small def test_compare(self): #check that we get a warning using the nested compare methods res1 = self.res1 endog = res1.model.endog exog = res1.model.exog[:, [0, 2]] # drop one variable res_ols2 = OLS(endog, exog).fit() # results from Stata r_pval = .0307306938402991 r_chi2 = 4.667944083588736 r_df = 1 assert_warns(InvalidTestWarning, res1.compare_lr_test, res_ols2) import warnings with warnings.catch_warnings(): warnings.simplefilter("ignore") chi2, pval, df = res1.compare_lr_test(res_ols2) assert_allclose(chi2, r_chi2, rtol=1e-11) assert_allclose(pval, r_pval, rtol=1e-11) assert_equal(df, r_df) assert_warns(InvalidTestWarning, res1.compare_f_test, res_ols2) #fva, pval, df = res1.compare_f_test(res_ols2) class TestOLSRobustHACSmallNew(TestOLSRobust1, CheckOLSRobustNewMixin): # compare with ivreg robust small def setup(self): res_ols = self.res1.get_robustcov_results('HAC', maxlags=4, use_correction=True, use_t=True) self.res3 = self.res1 self.res1 = res_ols self.bse_robust = res_ols.bse self.cov_robust = res_ols.cov_params() cov1 = sw.cov_hac_simple(res_ols, nlags=4, use_correction=True) se1 = sw.se_cov(cov1) self.bse_robust2 = se1 self.cov_robust2 = cov1 self.small = True self.res2 = res.results_ivhac4_small class TestOLSRobust2LargeNew(TestOLSRobust1, CheckOLSRobustNewMixin): # compare with ivreg robust small def setup(self): res_ols = self.res1.get_robustcov_results('HC0') res_ols.use_t = False self.res3 = self.res1 self.res1 = res_ols self.bse_robust = res_ols.bse self.cov_robust = res_ols.cov_params() self.bse_robust2 = res_ols.HC0_se self.cov_robust2 = res_ols.cov_HC0 self.small = False self.res2 = res.results_ivhc0_large # TODO: skipping next two for now, not refactored yet for `large` def test_fvalue(self): pass def test_confint(self): pass ####################################################### # cluster robust standard errors ####################################################### class CheckOLSRobustCluster(CheckOLSRobust): # compare with regress robust @classmethod def setup_class(cls): #import pandas as pa from statsmodels.datasets import grunfeld dtapa = grunfeld.data.load_pandas() #Stata example/data seems to miss last firm dtapa_endog = dtapa.endog[:200] dtapa_exog = dtapa.exog[:200] exog = add_constant(dtapa_exog[['value', 'capital']], prepend=False) #asserts don't work for pandas cls.res1 = OLS(dtapa_endog, exog).fit() firm_names, firm_id = np.unique(np.asarray(dtapa_exog[['firm']], 'S20'), return_inverse=True) cls.groups = firm_id #time indicator in range(max Ti) time = np.asarray(dtapa_exog[['year']]) time -= time.min() cls.time = np.squeeze(time).astype(int) # nw_panel function requires interval bounds cls.tidx = [(i*20, 20*(i+1)) for i in range(10)] class TestOLSRobustCluster2(CheckOLSRobustCluster, CheckOLSRobustNewMixin): # compare with `reg cluster` def setup(self): res_ols = self.res1.get_robustcov_results('cluster', groups=self.groups, use_correction=True, use_t=True) self.res3 = self.res1 self.res1 = res_ols self.bse_robust = res_ols.bse self.cov_robust = res_ols.cov_params() cov1 = sw.cov_cluster(self.res1, self.groups, use_correction=True) se1 = sw.se_cov(cov1) self.bse_robust2 = se1 self.cov_robust2 = cov1 self.small = True self.res2 = res2.results_cluster self.rtol = 1e-6 self.rtolh = 1e-10 class TestOLSRobustCluster2Fit(CheckOLSRobustCluster, CheckOLSRobustNewMixin): # copy, past uses fit method # compare with `reg cluster` def setup(self): res_ols = self.res1.model.fit(cov_type='cluster', cov_kwds=dict( groups=self.groups, use_correction=True, use_t=True)) self.res3 = self.res1 self.res1 = res_ols self.bse_robust = res_ols.bse self.cov_robust = res_ols.cov_params() cov1 = sw.cov_cluster(self.res1, self.groups, use_correction=True) se1 = sw.se_cov(cov1) self.bse_robust2 = se1 self.cov_robust2 = cov1 self.small = True self.res2 = res2.results_cluster self.rtol = 1e-6 self.rtolh = 1e-10 def test_basic_inference(self): res1 = self.res1 res2 = self.res2 rtol = 1e-7 assert_allclose(res1.params, res2.params, rtol=1e-8) assert_allclose(res1.bse, res2.bse, rtol=rtol) assert_allclose(res1.pvalues, res2.pvalues, rtol=rtol, atol=1e-20) ci = res2.params_table[:, 4:6] assert_allclose(res1.conf_int(), ci, rtol=5e-7, atol=1e-20) class TestOLSRobustCluster2Large(CheckOLSRobustCluster, CheckOLSRobustNewMixin): # compare with `reg cluster` def setup(self): res_ols = self.res1.get_robustcov_results('cluster', groups=self.groups, use_correction=False, use_t=False, df_correction=True) self.res3 = self.res1 self.res1 = res_ols self.bse_robust = res_ols.bse self.cov_robust = res_ols.cov_params() cov1 = sw.cov_cluster(self.res1, self.groups, use_correction=False) se1 = sw.se_cov(cov1) self.bse_robust2 = se1 self.cov_robust2 = cov1 self.small = False self.res2 = res2.results_cluster_large self.skip_f = True self.rtol = 1e-6 self.rtolh = 1e-10 # skipping see https://github.com/statsmodels/statsmodels/pull/1189#issuecomment-29141741 def test_f_value(self): pass class TestOLSRobustCluster2LargeFit(CheckOLSRobustCluster, CheckOLSRobustNewMixin): # compare with `reg cluster` def setup(self): model = OLS(self.res1.model.endog, self.res1.model.exog) #res_ols = self.res1.model.fit(cov_type='cluster', res_ols = model.fit(cov_type='cluster', cov_kwds=dict(groups=self.groups, use_correction=False, use_t=False, df_correction=True)) self.res3 = self.res1 self.res1 = res_ols self.bse_robust = res_ols.bse self.cov_robust = res_ols.cov_params() cov1 = sw.cov_cluster(self.res1, self.groups, use_correction=False) se1 = sw.se_cov(cov1) self.bse_robust2 = se1 self.cov_robust2 = cov1 self.small = False self.res2 = res2.results_cluster_large self.skip_f = True self.rtol = 1e-6 self.rtolh = 1e-10 # skipping see https://github.com/statsmodels/statsmodels/pull/1189#issuecomment-29141741 def t_est_fvalue(self): pass class TestOLSRobustClusterGS(CheckOLSRobustCluster, CheckOLSRobustNewMixin): # compare with `reg cluster` def setup(self): res_ols = self.res1.get_robustcov_results('nw-groupsum', time=self.time, maxlags=4, use_correction=False, use_t=True) self.res3 = self.res1 self.res1 = res_ols self.bse_robust = res_ols.bse self.cov_robust = res_ols.cov_params() cov1 = sw.cov_nw_groupsum(self.res1, 4, self.time, use_correction=False) se1 = sw.se_cov(cov1) self.bse_robust2 = se1 self.cov_robust2 = cov1 self.small = True self.res2 = res2.results_nw_groupsum4 self.skip_f = True self.rtol = 1e-6 self.rtolh = 1e-10 class TestOLSRobustClusterGSFit(CheckOLSRobustCluster, CheckOLSRobustNewMixin): # compare with `reg cluster` def setup(self): res_ols = self.res1.model.fit(cov_type='nw-groupsum', cov_kwds=dict(time=self.time, maxlags=4, use_correction=False, use_t=True)) self.res3 = self.res1 self.res1 = res_ols self.bse_robust = res_ols.bse self.cov_robust = res_ols.cov_params() cov1 = sw.cov_nw_groupsum(self.res1, 4, self.time, use_correction=False) se1 = sw.se_cov(cov1) self.bse_robust2 = se1 self.cov_robust2 = cov1 self.small = True self.res2 = res2.results_nw_groupsum4 self.skip_f = True self.rtol = 1e-6 self.rtolh = 1e-10 class TestOLSRobustClusterNWP(CheckOLSRobustCluster, CheckOLSRobustNewMixin): # compare with `reg cluster` def setup(self): res_ols = self.res1.get_robustcov_results('nw-panel', time=self.time, maxlags=4, use_correction='hac', use_t=True, df_correction=False) self.res3 = self.res1 self.res1 = res_ols self.bse_robust = res_ols.bse self.cov_robust = res_ols.cov_params() cov1 = sw.cov_nw_panel(self.res1, 4, self.tidx) se1 = sw.se_cov(cov1) self.bse_robust2 = se1 self.cov_robust2 = cov1 self.small = True self.res2 = res2.results_nw_panel4 self.skip_f = True self.rtol = 1e-6 self.rtolh = 1e-10 # TODO: low precision/agreement class TestOLSRobustCluster2G(CheckOLSRobustCluster, CheckOLSRobustNewMixin): # compare with `reg cluster` def setup(self): res_ols = self.res1.get_robustcov_results('cluster', groups=(self.groups, self.time), use_correction=True, use_t=True) self.res3 = self.res1 self.res1 = res_ols self.bse_robust = res_ols.bse self.cov_robust = res_ols.cov_params() cov1 = sw.cov_cluster_2groups(self.res1, self.groups, group2=self.time, use_correction=True)[0] se1 = sw.se_cov(cov1) self.bse_robust2 = se1 self.cov_robust2 = cov1 self.small = True self.res2 = res2.results_cluster_2groups_small self.rtol = 0.35 # only f_pvalue and confint for constant differ >rtol=0.05 self.rtolh = 1e-10 class TestOLSRobustCluster2GLarge(CheckOLSRobustCluster, CheckOLSRobustNewMixin): # compare with `reg cluster` def setup(self): res_ols = self.res1.get_robustcov_results('cluster', groups=(self.groups, self.time), use_correction=False, #True, use_t=False) self.res3 = self.res1 self.res1 = res_ols self.bse_robust = res_ols.bse self.cov_robust = res_ols.cov_params() cov1 = sw.cov_cluster_2groups(self.res1, self.groups, group2=self.time, use_correction=False)[0] se1 = sw.se_cov(cov1) self.bse_robust2 = se1 self.cov_robust2 = cov1 self.small = False self.res2 = res2.results_cluster_2groups_large self.skip_f = True self.rtol = 1e-7 self.rtolh = 1e-10 ###################################### # WLS ###################################### class CheckWLSRobustCluster(CheckOLSRobust): # compare with regress robust @classmethod def setup_class(cls): #import pandas as pa from statsmodels.datasets import grunfeld dtapa = grunfeld.data.load_pandas() #Stata example/data seems to miss last firm dtapa_endog = dtapa.endog[:200] dtapa_exog = dtapa.exog[:200] exog = add_constant(dtapa_exog[['value', 'capital']], prepend=False) #asserts don't work for pandas cls.res1 = WLS(dtapa_endog, exog, weights=1/dtapa_exog['value']).fit() firm_names, firm_id = np.unique(np.asarray(dtapa_exog[['firm']], 'S20'), return_inverse=True) cls.groups = firm_id #time indicator in range(max Ti) time = np.asarray(dtapa_exog[['year']]) time -= time.min() cls.time = np.squeeze(time).astype(int) # nw_panel function requires interval bounds cls.tidx = [(i*20, 20*(i+1)) for i in range(10)] # not available yet for WLS class T_estWLSRobustCluster2(CheckWLSRobustCluster, CheckOLSRobustNewMixin): # compare with `reg cluster` def setup(self): res_ols = self.res1.get_robustcov_results('cluster', groups=self.groups, use_correction=True, use_t=True) self.res3 = self.res1 self.res1 = res_ols self.bse_robust = res_ols.bse self.cov_robust = res_ols.cov_params() cov1 = sw.cov_cluster(self.res1, self.groups, use_correction=True) se1 = sw.se_cov(cov1) self.bse_robust2 = se1 self.cov_robust2 = cov1 self.small = True self.res2 = res2.results_cluster_wls_small self.rtol = 1e-6 self.rtolh = 1e-10 # not available yet for WLS class T_estWLSRobustCluster2Large(CheckWLSRobustCluster, CheckOLSRobustNewMixin): # compare with `reg cluster` def setup(self): res_ols = self.res1.get_robustcov_results('cluster', groups=self.groups, use_correction=False, use_t=False, df_correction=True) self.res3 = self.res1 self.res1 = res_ols self.bse_robust = res_ols.bse self.cov_robust = res_ols.cov_params() cov1 = sw.cov_cluster(self.res1, self.groups, use_correction=False) se1 = sw.se_cov(cov1) self.bse_robust2 = se1 self.cov_robust2 = cov1 self.small = False self.res2 = res2.results_cluster_wls_large self.skip_f = True self.rtol = 1e-6 self.rtolh = 1e-10 class TestWLSRobustSmall(CheckWLSRobustCluster, CheckOLSRobustNewMixin): # compare with `reg cluster` def setup(self): res_ols = self.res1.get_robustcov_results('HC1', use_t=True) self.res3 = self.res1 self.res1 = res_ols self.bse_robust = res_ols.bse self.cov_robust = res_ols.cov_params() #TODO: check standalone function #cov1 = sw.cov_cluster(self.res1, self.groups, use_correction=False) cov1 = res_ols.cov_HC1 se1 = sw.se_cov(cov1) self.bse_robust2 = se1 self.cov_robust2 = cov1 self.small = True self.res2 = res2.results_hc1_wls_small self.skip_f = True self.rtol = 1e-6 self.rtolh = 1e-10 class TestWLSOLSRobustSmall(object): @classmethod def setup_class(cls): #import pandas as pa from statsmodels.datasets import grunfeld dtapa = grunfeld.data.load_pandas() #Stata example/data seems to miss last firm dtapa_endog = dtapa.endog[:200] dtapa_exog = dtapa.exog[:200] exog = add_constant(dtapa_exog[['value', 'capital']], prepend=False) #asserts don't work for pandas cls.res_wls = WLS(dtapa_endog, exog, weights=1/dtapa_exog['value']).fit() w_sqrt = 1 / np.sqrt(np.asarray(dtapa_exog['value'])) cls.res_ols = OLS(dtapa_endog * w_sqrt, np.asarray(exog) * w_sqrt[:, None]).fit() # hasconst=True ? firm_names, firm_id = np.unique(np.asarray(dtapa_exog[['firm']], 'S20'), return_inverse=True) cls.groups = firm_id #time indicator in range(max Ti) time = np.asarray(dtapa_exog[['year']]) time -= time.min() cls.time = np.squeeze(time).astype(int) # nw_panel function requires interval bounds cls.tidx = [(i*20, 20*(i+1)) for i in range(10)] def test_all(self): all_cov = [('HC0', dict(use_t=True)), ('HC1', dict(use_t=True)), ('HC2', dict(use_t=True)), ('HC3', dict(use_t=True))] # fvalue are not the same #res_ols = self.res_ols #res_wls = self.res_wls #assert_allclose(res_ols.fvalue, res_wls.fvalue, rtol=1e-13) for cov_type, kwds in all_cov: res1 = self.res_ols.get_robustcov_results(cov_type, **kwds) res2 = self.res_wls.get_robustcov_results(cov_type, **kwds) assert_allclose(res1.params, res2.params, rtol=1e-13) assert_allclose(res1.cov_params(), res2.cov_params(), rtol=1e-13) assert_allclose(res1.bse, res2.bse, rtol=1e-13) assert_allclose(res1.pvalues, res2.pvalues, rtol=1e-13) #Note: Fvalue doesn't match up, difference in calculation ? # The only difference should be in the constant detection #assert_allclose(res1.fvalue, res2.fvalue, rtol=1e-13) #assert_allclose(res1.f_value, res2.f_pvalue, rtol=1e-13) mat = np.eye(len(res1.params)) ft1 = res1.f_test(mat) ft2 = res2.f_test(mat) assert_allclose(ft1.fvalue, ft2.fvalue, rtol=1e-13) assert_allclose(ft1.pvalue, ft2.pvalue, rtol=1e-12)
bsd-3-clause