repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
rs2/pandas
pandas/tests/test_take.py
3
16875
from datetime import datetime import re import numpy as np import pytest from pandas._libs import iNaT import pandas._testing as tm import pandas.core.algorithms as algos @pytest.fixture(params=[True, False]) def writeable(request): return request.param # Check that take_nd works both with writeable arrays # (in which case fast typed memory-views implementation) # and read-only arrays alike. @pytest.fixture( params=[ (np.float64, True), (np.float32, True), (np.uint64, False), (np.uint32, False), (np.uint16, False), (np.uint8, False), (np.int64, False), (np.int32, False), (np.int16, False), (np.int8, False), (np.object_, True), (np.bool_, False), ] ) def dtype_can_hold_na(request): return request.param @pytest.fixture( params=[ (np.int8, np.int16(127), np.int8), (np.int8, np.int16(128), np.int16), (np.int32, 1, np.int32), (np.int32, 2.0, np.float64), (np.int32, 3.0 + 4.0j, np.complex128), (np.int32, True, np.object_), (np.int32, "", np.object_), (np.float64, 1, np.float64), (np.float64, 2.0, np.float64), (np.float64, 3.0 + 4.0j, np.complex128), (np.float64, True, np.object_), (np.float64, "", np.object_), (np.complex128, 1, np.complex128), (np.complex128, 2.0, np.complex128), (np.complex128, 3.0 + 4.0j, np.complex128), (np.complex128, True, np.object_), (np.complex128, "", np.object_), (np.bool_, 1, np.object_), (np.bool_, 2.0, np.object_), (np.bool_, 3.0 + 4.0j, np.object_), (np.bool_, True, np.bool_), (np.bool_, "", np.object_), ] ) def dtype_fill_out_dtype(request): return request.param class TestTake: # Standard incompatible fill error. fill_error = re.compile("Incompatible type for fill_value") def test_1d_with_out(self, dtype_can_hold_na, writeable): dtype, can_hold_na = dtype_can_hold_na data = np.random.randint(0, 2, 4).astype(dtype) data.flags.writeable = writeable indexer = [2, 1, 0, 1] out = np.empty(4, dtype=dtype) algos.take_1d(data, indexer, out=out) expected = data.take(indexer) tm.assert_almost_equal(out, expected) indexer = [2, 1, 0, -1] out = np.empty(4, dtype=dtype) if can_hold_na: algos.take_1d(data, indexer, out=out) expected = data.take(indexer) expected[3] = np.nan tm.assert_almost_equal(out, expected) else: with pytest.raises(TypeError, match=self.fill_error): algos.take_1d(data, indexer, out=out) # No Exception otherwise. data.take(indexer, out=out) def test_1d_fill_nonna(self, dtype_fill_out_dtype): dtype, fill_value, out_dtype = dtype_fill_out_dtype data = np.random.randint(0, 2, 4).astype(dtype) indexer = [2, 1, 0, -1] result = algos.take_1d(data, indexer, fill_value=fill_value) assert (result[[0, 1, 2]] == data[[2, 1, 0]]).all() assert result[3] == fill_value assert result.dtype == out_dtype indexer = [2, 1, 0, 1] result = algos.take_1d(data, indexer, fill_value=fill_value) assert (result[[0, 1, 2, 3]] == data[indexer]).all() assert result.dtype == dtype def test_2d_with_out(self, dtype_can_hold_na, writeable): dtype, can_hold_na = dtype_can_hold_na data = np.random.randint(0, 2, (5, 3)).astype(dtype) data.flags.writeable = writeable indexer = [2, 1, 0, 1] out0 = np.empty((4, 3), dtype=dtype) out1 = np.empty((5, 4), dtype=dtype) algos.take_nd(data, indexer, out=out0, axis=0) algos.take_nd(data, indexer, out=out1, axis=1) expected0 = data.take(indexer, axis=0) expected1 = data.take(indexer, axis=1) tm.assert_almost_equal(out0, expected0) tm.assert_almost_equal(out1, expected1) indexer = [2, 1, 0, -1] out0 = np.empty((4, 3), dtype=dtype) out1 = np.empty((5, 4), dtype=dtype) if can_hold_na: algos.take_nd(data, indexer, out=out0, axis=0) algos.take_nd(data, indexer, out=out1, axis=1) expected0 = data.take(indexer, axis=0) expected1 = data.take(indexer, axis=1) expected0[3, :] = np.nan expected1[:, 3] = np.nan tm.assert_almost_equal(out0, expected0) tm.assert_almost_equal(out1, expected1) else: for i, out in enumerate([out0, out1]): with pytest.raises(TypeError, match=self.fill_error): algos.take_nd(data, indexer, out=out, axis=i) # No Exception otherwise. data.take(indexer, out=out, axis=i) def test_2d_fill_nonna(self, dtype_fill_out_dtype): dtype, fill_value, out_dtype = dtype_fill_out_dtype data = np.random.randint(0, 2, (5, 3)).astype(dtype) indexer = [2, 1, 0, -1] result = algos.take_nd(data, indexer, axis=0, fill_value=fill_value) assert (result[[0, 1, 2], :] == data[[2, 1, 0], :]).all() assert (result[3, :] == fill_value).all() assert result.dtype == out_dtype result = algos.take_nd(data, indexer, axis=1, fill_value=fill_value) assert (result[:, [0, 1, 2]] == data[:, [2, 1, 0]]).all() assert (result[:, 3] == fill_value).all() assert result.dtype == out_dtype indexer = [2, 1, 0, 1] result = algos.take_nd(data, indexer, axis=0, fill_value=fill_value) assert (result[[0, 1, 2, 3], :] == data[indexer, :]).all() assert result.dtype == dtype result = algos.take_nd(data, indexer, axis=1, fill_value=fill_value) assert (result[:, [0, 1, 2, 3]] == data[:, indexer]).all() assert result.dtype == dtype def test_3d_with_out(self, dtype_can_hold_na): dtype, can_hold_na = dtype_can_hold_na data = np.random.randint(0, 2, (5, 4, 3)).astype(dtype) indexer = [2, 1, 0, 1] out0 = np.empty((4, 4, 3), dtype=dtype) out1 = np.empty((5, 4, 3), dtype=dtype) out2 = np.empty((5, 4, 4), dtype=dtype) algos.take_nd(data, indexer, out=out0, axis=0) algos.take_nd(data, indexer, out=out1, axis=1) algos.take_nd(data, indexer, out=out2, axis=2) expected0 = data.take(indexer, axis=0) expected1 = data.take(indexer, axis=1) expected2 = data.take(indexer, axis=2) tm.assert_almost_equal(out0, expected0) tm.assert_almost_equal(out1, expected1) tm.assert_almost_equal(out2, expected2) indexer = [2, 1, 0, -1] out0 = np.empty((4, 4, 3), dtype=dtype) out1 = np.empty((5, 4, 3), dtype=dtype) out2 = np.empty((5, 4, 4), dtype=dtype) if can_hold_na: algos.take_nd(data, indexer, out=out0, axis=0) algos.take_nd(data, indexer, out=out1, axis=1) algos.take_nd(data, indexer, out=out2, axis=2) expected0 = data.take(indexer, axis=0) expected1 = data.take(indexer, axis=1) expected2 = data.take(indexer, axis=2) expected0[3, :, :] = np.nan expected1[:, 3, :] = np.nan expected2[:, :, 3] = np.nan tm.assert_almost_equal(out0, expected0) tm.assert_almost_equal(out1, expected1) tm.assert_almost_equal(out2, expected2) else: for i, out in enumerate([out0, out1, out2]): with pytest.raises(TypeError, match=self.fill_error): algos.take_nd(data, indexer, out=out, axis=i) # No Exception otherwise. data.take(indexer, out=out, axis=i) def test_3d_fill_nonna(self, dtype_fill_out_dtype): dtype, fill_value, out_dtype = dtype_fill_out_dtype data = np.random.randint(0, 2, (5, 4, 3)).astype(dtype) indexer = [2, 1, 0, -1] result = algos.take_nd(data, indexer, axis=0, fill_value=fill_value) assert (result[[0, 1, 2], :, :] == data[[2, 1, 0], :, :]).all() assert (result[3, :, :] == fill_value).all() assert result.dtype == out_dtype result = algos.take_nd(data, indexer, axis=1, fill_value=fill_value) assert (result[:, [0, 1, 2], :] == data[:, [2, 1, 0], :]).all() assert (result[:, 3, :] == fill_value).all() assert result.dtype == out_dtype result = algos.take_nd(data, indexer, axis=2, fill_value=fill_value) assert (result[:, :, [0, 1, 2]] == data[:, :, [2, 1, 0]]).all() assert (result[:, :, 3] == fill_value).all() assert result.dtype == out_dtype indexer = [2, 1, 0, 1] result = algos.take_nd(data, indexer, axis=0, fill_value=fill_value) assert (result[[0, 1, 2, 3], :, :] == data[indexer, :, :]).all() assert result.dtype == dtype result = algos.take_nd(data, indexer, axis=1, fill_value=fill_value) assert (result[:, [0, 1, 2, 3], :] == data[:, indexer, :]).all() assert result.dtype == dtype result = algos.take_nd(data, indexer, axis=2, fill_value=fill_value) assert (result[:, :, [0, 1, 2, 3]] == data[:, :, indexer]).all() assert result.dtype == dtype def test_1d_other_dtypes(self): arr = np.random.randn(10).astype(np.float32) indexer = [1, 2, 3, -1] result = algos.take_1d(arr, indexer) expected = arr.take(indexer) expected[-1] = np.nan tm.assert_almost_equal(result, expected) def test_2d_other_dtypes(self): arr = np.random.randn(10, 5).astype(np.float32) indexer = [1, 2, 3, -1] # axis=0 result = algos.take_nd(arr, indexer, axis=0) expected = arr.take(indexer, axis=0) expected[-1] = np.nan tm.assert_almost_equal(result, expected) # axis=1 result = algos.take_nd(arr, indexer, axis=1) expected = arr.take(indexer, axis=1) expected[:, -1] = np.nan tm.assert_almost_equal(result, expected) def test_1d_bool(self): arr = np.array([0, 1, 0], dtype=bool) result = algos.take_1d(arr, [0, 2, 2, 1]) expected = arr.take([0, 2, 2, 1]) tm.assert_numpy_array_equal(result, expected) result = algos.take_1d(arr, [0, 2, -1]) assert result.dtype == np.object_ def test_2d_bool(self): arr = np.array([[0, 1, 0], [1, 0, 1], [0, 1, 1]], dtype=bool) result = algos.take_nd(arr, [0, 2, 2, 1]) expected = arr.take([0, 2, 2, 1], axis=0) tm.assert_numpy_array_equal(result, expected) result = algos.take_nd(arr, [0, 2, 2, 1], axis=1) expected = arr.take([0, 2, 2, 1], axis=1) tm.assert_numpy_array_equal(result, expected) result = algos.take_nd(arr, [0, 2, -1]) assert result.dtype == np.object_ def test_2d_float32(self): arr = np.random.randn(4, 3).astype(np.float32) indexer = [0, 2, -1, 1, -1] # axis=0 result = algos.take_nd(arr, indexer, axis=0) result2 = np.empty_like(result) algos.take_nd(arr, indexer, axis=0, out=result2) tm.assert_almost_equal(result, result2) expected = arr.take(indexer, axis=0) expected[[2, 4], :] = np.nan tm.assert_almost_equal(result, expected) # this now accepts a float32! # test with float64 out buffer out = np.empty((len(indexer), arr.shape[1]), dtype="float32") algos.take_nd(arr, indexer, out=out) # it works! # axis=1 result = algos.take_nd(arr, indexer, axis=1) result2 = np.empty_like(result) algos.take_nd(arr, indexer, axis=1, out=result2) tm.assert_almost_equal(result, result2) expected = arr.take(indexer, axis=1) expected[:, [2, 4]] = np.nan tm.assert_almost_equal(result, expected) def test_2d_datetime64(self): # 2005/01/01 - 2006/01/01 arr = np.random.randint(11_045_376, 11_360_736, (5, 3)) * 100_000_000_000 arr = arr.view(dtype="datetime64[ns]") indexer = [0, 2, -1, 1, -1] # axis=0 result = algos.take_nd(arr, indexer, axis=0) result2 = np.empty_like(result) algos.take_nd(arr, indexer, axis=0, out=result2) tm.assert_almost_equal(result, result2) expected = arr.take(indexer, axis=0) expected.view(np.int64)[[2, 4], :] = iNaT tm.assert_almost_equal(result, expected) result = algos.take_nd(arr, indexer, axis=0, fill_value=datetime(2007, 1, 1)) result2 = np.empty_like(result) algos.take_nd( arr, indexer, out=result2, axis=0, fill_value=datetime(2007, 1, 1) ) tm.assert_almost_equal(result, result2) expected = arr.take(indexer, axis=0) expected[[2, 4], :] = datetime(2007, 1, 1) tm.assert_almost_equal(result, expected) # axis=1 result = algos.take_nd(arr, indexer, axis=1) result2 = np.empty_like(result) algos.take_nd(arr, indexer, axis=1, out=result2) tm.assert_almost_equal(result, result2) expected = arr.take(indexer, axis=1) expected.view(np.int64)[:, [2, 4]] = iNaT tm.assert_almost_equal(result, expected) result = algos.take_nd(arr, indexer, axis=1, fill_value=datetime(2007, 1, 1)) result2 = np.empty_like(result) algos.take_nd( arr, indexer, out=result2, axis=1, fill_value=datetime(2007, 1, 1) ) tm.assert_almost_equal(result, result2) expected = arr.take(indexer, axis=1) expected[:, [2, 4]] = datetime(2007, 1, 1) tm.assert_almost_equal(result, expected) def test_take_axis_0(self): arr = np.arange(12).reshape(4, 3) result = algos.take(arr, [0, -1]) expected = np.array([[0, 1, 2], [9, 10, 11]]) tm.assert_numpy_array_equal(result, expected) # allow_fill=True result = algos.take(arr, [0, -1], allow_fill=True, fill_value=0) expected = np.array([[0, 1, 2], [0, 0, 0]]) tm.assert_numpy_array_equal(result, expected) def test_take_axis_1(self): arr = np.arange(12).reshape(4, 3) result = algos.take(arr, [0, -1], axis=1) expected = np.array([[0, 2], [3, 5], [6, 8], [9, 11]]) tm.assert_numpy_array_equal(result, expected) # allow_fill=True result = algos.take(arr, [0, -1], axis=1, allow_fill=True, fill_value=0) expected = np.array([[0, 0], [3, 0], [6, 0], [9, 0]]) tm.assert_numpy_array_equal(result, expected) # GH#26976 make sure we validate along the correct axis with pytest.raises(IndexError, match="indices are out-of-bounds"): algos.take(arr, [0, 3], axis=1, allow_fill=True, fill_value=0) class TestExtensionTake: # The take method found in pd.api.extensions def test_bounds_check_large(self): arr = np.array([1, 2]) msg = "indices are out-of-bounds" with pytest.raises(IndexError, match=msg): algos.take(arr, [2, 3], allow_fill=True) msg = "index 2 is out of bounds for( axis 0 with)? size 2" with pytest.raises(IndexError, match=msg): algos.take(arr, [2, 3], allow_fill=False) def test_bounds_check_small(self): arr = np.array([1, 2, 3], dtype=np.int64) indexer = [0, -1, -2] msg = r"'indices' contains values less than allowed \(-2 < -1\)" with pytest.raises(ValueError, match=msg): algos.take(arr, indexer, allow_fill=True) result = algos.take(arr, indexer) expected = np.array([1, 3, 2], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("allow_fill", [True, False]) def test_take_empty(self, allow_fill): arr = np.array([], dtype=np.int64) # empty take is ok result = algos.take(arr, [], allow_fill=allow_fill) tm.assert_numpy_array_equal(arr, result) msg = ( "cannot do a non-empty take from an empty axes.|" "indices are out-of-bounds" ) with pytest.raises(IndexError, match=msg): algos.take(arr, [0], allow_fill=allow_fill) def test_take_na_empty(self): result = algos.take(np.array([]), [-1, -1], allow_fill=True, fill_value=0.0) expected = np.array([0.0, 0.0]) tm.assert_numpy_array_equal(result, expected) def test_take_coerces_list(self): arr = [1, 2, 3] result = algos.take(arr, [0, 0]) expected = np.array([1, 1]) tm.assert_numpy_array_equal(result, expected)
bsd-3-clause
toastedcornflakes/scikit-learn
examples/exercises/plot_iris_exercise.py
323
1602
""" ================================ SVM Exercise ================================ A tutorial exercise for using different SVM kernels. This exercise is used in the :ref:`using_kernels_tut` part of the :ref:`supervised_learning_tut` section of the :ref:`stat_learn_tut_index`. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, svm iris = datasets.load_iris() X = iris.data y = iris.target X = X[y != 0, :2] y = y[y != 0] n_sample = len(X) np.random.seed(0) order = np.random.permutation(n_sample) X = X[order] y = y[order].astype(np.float) X_train = X[:.9 * n_sample] y_train = y[:.9 * n_sample] X_test = X[.9 * n_sample:] y_test = y[.9 * n_sample:] # fit the model for fig_num, kernel in enumerate(('linear', 'rbf', 'poly')): clf = svm.SVC(kernel=kernel, gamma=10) clf.fit(X_train, y_train) plt.figure(fig_num) plt.clf() plt.scatter(X[:, 0], X[:, 1], c=y, zorder=10, cmap=plt.cm.Paired) # Circle out the test data plt.scatter(X_test[:, 0], X_test[:, 1], s=80, facecolors='none', zorder=10) plt.axis('tight') x_min = X[:, 0].min() x_max = X[:, 0].max() y_min = X[:, 1].min() y_max = X[:, 1].max() XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j] Z = clf.decision_function(np.c_[XX.ravel(), YY.ravel()]) # Put the result into a color plot Z = Z.reshape(XX.shape) plt.pcolormesh(XX, YY, Z > 0, cmap=plt.cm.Paired) plt.contour(XX, YY, Z, colors=['k', 'k', 'k'], linestyles=['--', '-', '--'], levels=[-.5, 0, .5]) plt.title(kernel) plt.show()
bsd-3-clause
miltonsarria/dsp-python
filters/examen3.py
1
4408
#Examen 2 #Octubre 11 - 2017 #procesamiento digital de senales #universidad santiago de cali #Nombre: #ID: from scipy import signal import matplotlib.pyplot as plt import numpy as np from fourierFunc import fourierAn from wav_rw import wavread #definir archivo de audio archivo='/home/sarria/Documents/2017B/dsp-python/audio/sound/prueba_exam.wav' ###################### # modificar el rango de frecuencias para ver una banda especifica rango =[0.0, 8000.0] (fs,x)=wavread(archivo) #normalizar x=x/np.max(np.abs(x)) print('frecuencia de muestreo: ' + str(fs) + ', numero de muestras: ' + str(x.size)) window = 'hamming' long_ventana = 0.025 #en segundos incremento = 0.01#en segundos #en muestras M = int(fs * long_ventana) H = int(fs * incremento) #generar ventana y normalizarla w = get_window(window, M) #obtener la transformada de fourier del archivo de audio (magnitud y la fase) mX, pX = wp.stftAnal(x, w, N, H) # graficar el archivo de audio plt.subplot(2,1,1) plt.plot(np.arange(x.size)/float(fs), x) plt.axis([0, x.size/float(fs), min(x), max(x)]) plt.ylabel('amplitude') plt.title('input sound: x') # graficar la magnitud del espectro en decibeles plt.subplot(2,1,2) numFrames = int(X[:,0].size) frmTime = H*np.arange(numFrames)/float(fs) binFreq=np.linspace(0,fs/2,mX.shape[1]) bins=(binFreq>rango[0]) & (binFreq<rango[1]) Sxx=np.transpose(mX[:,bins]) binFreq=binFreq[bins] plt.pcolormesh(frmTime,binFreq,Sxx) plt.ylabel('Frequency [Hz]') plt.xlabel('Time [sec]') plt.autoscale(tight=True) #graficar el espectro de todo el archivo de audio sin ventanear M = x.size w = get_window(window, M) w = w / sum(w) xw = x*w mX,pX = wp.magFourier(xw,xw.size) binFreq=np.linspace(0,fs/2,mX.size) bins=(binFreq>rango[0]) & (binFreq<rango[1]) plt.figure(2) plt.plot(binFreq[bins],mX[bins]) plt.xlabel('Frequency [Hz]') plt.ylabel('Magnitud en dB') plt.show() ''' ########################################## #BLOQUE 1 #definir la frecuencia de muestreo Fs=1 tf=5 #tiempo final #definir la secuencia de tiempo hasta 5 segundos nT=np.linspace(1./Fs,tf,Fs*tf); #generar secuencia discreta x[n] x=2*np.sin(12*np.pi*nT)+3*np.cos(40*np.pi*nT) #usar fourier para identificar las componentes frecuenciales absX,Xdb,pX=fourierAn(x) f=np.linspace(-Fs/2,Fs/2,Xdb.size) #visualizar los resultados del analisis hecho con transformada de fourier plt.ion() plt.subplot(211) plt.plot(nT,x) plt.ylabel('x[n]') plt.xlabel('tiempo - s') plt.subplot(212) plt.plot(f,Xdb) plt.ylabel('|X| en dB') plt.xlabel('Frecuencia - Hz') plt.draw() ''' ########################################## #BLOQUE 2 ''' #disenar filtro que permita pasar unicamente la componente de frecuencia mas baja #modificar los parametros que sean necesarios b1 = signal.firwin(3, 0.5, window='hamming', pass_zero=True) #obtener la respuesta en frecuencia w, h = signal.freqz(b1) #filtrar la onda con el filtro numero 1 x1=signal.lfilter(b1, [1.0],x) #usar fourier para ilustrar el resultado del filtro absX1,X1db,pX1=fourierAn(x1) # plt.figure(2) #ilustrar la respuesta en frecuencia del filtro plt.subplot(311) plt.title('Respuesta en frecuencia de filtro digital numero 1') plt.plot(w, 20 * np.log10(abs(h)), 'b') plt.ylabel('Amplitud [dB]', color='b') #ilustrar los resultados plt.subplot(312) plt.plot(nT,x1) plt.ylabel('x1[n] - filtrada') plt.xlabel('tiempo - s') plt.subplot(313) plt.plot(f,X1db) plt.ylabel('|X1| en dB') plt.xlabel('Frecuencia - Hz') plt.draw() ''' ########################################## #BLOQUE 3 ''' #disenar filtro que permita pasar unicamente la componente de frecuencia mas baja #modificar los parametros que sean necesarios b2 = signal.firwin(3, 0.5, window='hamming', pass_zero=False) #obtener la respuesta en frecuencia w, h = signal.freqz(b2) #filtrar la onda con el filtro numero 1 x2=signal.lfilter(b2, [1.0],x) #usar fourier para ilustrar el resultado del filtro absX2,X2db,pX2=fourierAn(x2) # plt.figure(3) #ilustrar la respuesta en frecuencia del filtro plt.subplot(311) plt.title('Respuesta en frecuencia de filtro digital numero 2') plt.plot(w, 20 * np.log10(abs(h)), 'b') plt.ylabel('Amplitud [dB]', color='b') #ilustrar los resultados plt.subplot(312) plt.plot(nT,x2) plt.ylabel('x2[n] - filtrada') plt.xlabel('tiempo - s') plt.subplot(313) plt.plot(f,X2db) plt.ylabel('|X2| en dB') plt.xlabel('Frecuencia - Hz') plt.draw() '''
mit
robertlayton/authorship_tutorials
pyconau2014/get_twitter.py
1
1082
"""Gets data from twitter. Collects tweets, usually English, by searching for random stop words (i.e. normal everyday words like "that", "which", "and"). You'll need a Twitter API key for that. This isn't currently a command line program -- you'll need to change variables in the code itself. """ from TwitterAPI import TwitterAPI from getpass import getpass from sklearn.feature_extraction.stop_words import ENGLISH_STOP_WORDS as stop_words from random import choice num_to_get = 10000 stop_words = list(stop_words) access_key = # Put your Twitter API information here access_secret = # And here consumer_key = # and here consumer_secret = # and here! api = TwitterAPI(consumer_key=consumer_key, consumer_secret=consumer_secret, access_token_key=access_key, access_token_secret=access_secret) c = 0 for i in range(int(num_to_get / 10)): word = choice(stop_words) r = api.request('search/tweets', {'q': word}) for item in r.get_iterator(): c += 1 if c > num_to_get: break try: print(repr(item['text'])) except: pass
bsd-3-clause
briandrawert/pyurdme
examples/hes1/hes1_label.py
5
3775
import matplotlib.pyplot as plt import os.path import pyurdme import dolfin import numpy class MeshSize(pyurdme.URDMEDataFunction): def __init__(self,mesh): pyurdme.URDMEDataFunction.__init__(self,name="MeshSize") self.mesh = mesh self.h = mesh.get_mesh_size() def map(self,x): ret = self.h[self.mesh.closest_vertex(x)] return ret class hes1(pyurdme.URDMEModel): def __init__(self,model_name="hes1"): pyurdme.URDMEModel.__init__(self, model_name) #Species Pf = pyurdme.Species(name="Pf",diffusion_constant=0.,dimension=3) Po = pyurdme.Species(name="Po",diffusion_constant=0.,dimension=3) mRNA = pyurdme.Species(name="mRNA",diffusion_constant=6.e-1,dimension=3) protein = pyurdme.Species(name="protein",diffusion_constant=6.e-1,dimension=3) self.add_species([Pf,Po,mRNA,protein]) #Domains basedir = os.path.dirname(os.path.abspath(__file__)) self.mesh = pyurdme.URDMEMesh.read_mesh(basedir+"/mesh/cell.msh") volumes = dolfin.MeshFunction("size_t",self.mesh,basedir+"/mesh/cell_physical_region.xml") self.add_subdomain(volumes) h = self.mesh.get_mesh_size() self.add_data_function(MeshSize(self.mesh)) #Parameters k1 = pyurdme.Parameter(name="k1",expression=1.e9) k2 = pyurdme.Parameter(name="k2",expression=0.1) alpha_m = pyurdme.Parameter(name="alpha_m",expression=3.) alpha_m_gamma = pyurdme.Parameter(name="alpha_m_gamma",expression=3./30.) alpha_p = pyurdme.Parameter(name="alpha_p",expression=1.) mu_m = pyurdme.Parameter(name="mu_m",expression=0.015) mu_p = pyurdme.Parameter(name="mu_p",expression=0.043) self.add_parameter([k1,k2,alpha_m,alpha_m_gamma,alpha_p,mu_m,mu_p]) #Domains markers nucleus = [1] cytoplasm = [2] promoter_site = [1] #Reactions R1 = pyurdme.Reaction(name="R1",reactants={Pf:1,protein:1},products={Po:1},massaction=True,rate=k1,restrict_to=promoter_site) R2 = pyurdme.Reaction(name="R2",reactants={Po:1},products={Pf:1,protein:1},massaction=True,rate=k2,restrict_to=promoter_site) R3 = pyurdme.Reaction(name="R3",reactants={Pf:1},products={Pf:1,mRNA:1},massaction=True,rate=alpha_m,restrict_to=promoter_site) R4 = pyurdme.Reaction(name="R4",reactants={Po:1},products={Po:1,mRNA:1},massaction=True,rate=alpha_m_gamma,restrict_to=promoter_site) R5 = pyurdme.Reaction(name="R5",reactants={mRNA:1},products={mRNA:1,protein:1},massaction=True,rate=alpha_p,restrict_to=cytoplasm) R6 = pyurdme.Reaction(name="R6",reactants={mRNA:1},products={},massaction=True,rate=mu_m) R7 = pyurdme.Reaction(name="R7",reactants={protein:1},products={},massaction=True,rate=mu_p) self.add_reaction([R1,R2,R3,R4,R5,R6,R7]) #Restrict to promoter_site self.restrict(Po,promoter_site) self.restrict(Pf,promoter_site) #Distribute molecules over the mesh self.set_initial_condition_place_near({Pf:1},[0,0,0]) self.set_initial_condition_scatter({protein:60},cytoplasm) self.set_initial_condition_scatter({mRNA:10},nucleus) self.timespan(range(1200)) if __name__=="__main__": model = hes1(model_name="hes1") result = model.run(report_level=1) protein = result.get_species("protein") proteinsum = numpy.sum(protein,axis=1) plt.plot(model.tspan,proteinsum,'r') mRNA = result.get_species("mRNA") mRNAsum=numpy.sum(mRNA[:],axis=1) plt.plot(model.tspan,mRNAsum,'b') plt.show() #print 'Writing species "protein" to folder "proteinOut"' #result.export_to_vtk(species='protein',folder_name='proteinOut')
gpl-3.0
IgowWang/MyKaggle
BagOfWordsMeetsBagsOfPopcorn/loadData.py
1
1453
__author__ = 'Igor' import pandas as pd import nltk from nltk.corpus import stopwords import re from bs4 import BeautifulSoup TRAIN_FILE_PATH = "data/labeledTrainData.tsv" TEST_FILE_PATH = "data/testData.tsv" def load(test=False, remove_stopwords=False): if test: path = TEST_FILE_PATH else: path = TRAIN_FILE_PATH data = pd.read_csv(path, header=0, delimiter="\t", quoting=3) num_reviews = data["review"].size clean_train_reviews = [] for i in range(num_reviews): if ((i + 1) % 1000 == 0): print("Review %d of %d" % (i + 1, num_reviews)) clean_train_reviews.append(review_to_words(data["review"][i], remove_stopwords)) return data, clean_train_reviews def review_to_words(raw_review, remove_stopwords=False): ''' 将影评转换为词 :param raw_review: :return: ''' # 去除HTML标记 review_text = BeautifulSoup(raw_review,"lxml").get_text() # 去除非文字信息 letters_only = re.sub(r"[^a-zA-Z]", " ", review_text) # 转换成小写且按空格分隔 words = letters_only.lower().split() # 在Python中查找集合的速度比查找列表的速度更快 if remove_stopwords: stops = set(stopwords.words("english")) # 去除停用词 words = [w for w in words if not w in stops] # 用空格连接单词,返回一个字符串 return words
apache-2.0
montilab/Hydra
build/scripts-2.7/run_bamqc.py
2
16391
#Copyright 2015 Daniel Gusenleitner, Stefano Monti #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. """ Usage: python2.7 bam_qc.py -i input_file.bam -o outdir -h help -o output_dir -i input_file.bam *[No default value] """ def extract_stats(input_file): #open bam file bam_file = pysam.Samfile(input_file, "rb") #counters total_aligned_reads = 0 unique_aligned_reads = 0 is_singleton = 0 is_paired = 0 is_proper_pair = 0 is_unmapped = 0 num_unique_mismatches = [0]*5 num_multiple_mismatches = [0.0]*5 num_multiread = [0.0]*20 delet = False insert = False spliced = False reads_with_deletions = 0 spliced_reads = 0 reads_with_inserts = 0 non_spliced_reads = 0 unique_reads_with_deletions = 0 unique_spliced_reads = 0 unique_reads_with_inserts = 0 unique_non_spliced_reads = 0 #tag variables NH = 0 NM = 0 XS = 0 idx = 0 for read in bam_file: if read.cigarstring != None: #get all the relevant tags for tag in read.tags: if tag[0] == 'NH': NH = tag[1] if tag[0] == 'NM': NM = tag[1] if NH == 0: NH = 1 #number of aligned reads total_aligned_reads += 1 unique_aligned_reads += 1/NH #number of mismatches if NH == 1: if NM >= 4: num_unique_mismatches[4] = num_unique_mismatches[4]+1 else: num_unique_mismatches[NM] = num_unique_mismatches[NM]+1 else: if NM >= 4: num_multiple_mismatches[4] = num_multiple_mismatches[4]+(1.0/float(NH)) else: num_multiple_mismatches[NM] = num_multiple_mismatches[NM]+(1.0/float(NH)) #number of multiple reads if NH >= 20: num_multiread[19] = num_multiread[19]+(1.0/float(NH)) else: num_multiread[NH-1] = num_multiread[NH-1]+(1.0/float(NH)) #singletons, paired, proper paired, unmapped is_singleton += int(not read.is_paired) is_paired += int(read.is_paired) is_proper_pair += int(read.is_proper_pair) is_unmapped += int(read.is_unmapped) #splicing, deletions, inserts spliced = 'N' in read.cigarstring insert = 'I' in read.cigarstring delet = 'D' in read.cigarstring #actual count spliced_reads += int(spliced) spliced_reads += int(spliced) non_spliced_reads += int(not spliced) reads_with_deletions += int(insert) reads_with_inserts += int(delet) #counting reads that are aligned multiple times only once unique_spliced_reads += int(spliced)/NH unique_non_spliced_reads += int(not spliced)/NH unique_reads_with_deletions += int(insert)/NH unique_reads_with_inserts += int(delet)/NH if idx % 1000000 == 0: print str(idx)+' reads done' idx += 1 bam_file.close() statistics = dict() statistics['total_aligned_reads'] = total_aligned_reads statistics['unique_aligned_reads'] = unique_aligned_reads statistics['is_singleton'] = is_singleton statistics['is_paired'] = is_paired statistics['is_proper_pair'] = is_proper_pair statistics['is_unmapped'] = is_unmapped statistics['num_unique_mismatches'] = num_unique_mismatches statistics['num_multiple_mismatches'] = num_multiple_mismatches statistics['num_multiread'] = num_multiread statistics['spliced_reads'] = spliced_reads statistics['non_spliced_reads'] = non_spliced_reads statistics['reads_with_inserts'] = reads_with_inserts statistics['reads_with_deletions'] = reads_with_deletions statistics['unique_spliced_reads'] = unique_spliced_reads statistics['unique_non_spliced_reads'] = unique_non_spliced_reads statistics['unique_reads_with_inserts'] = unique_reads_with_inserts statistics['unique_reads_with_deletions'] = unique_reads_with_deletions return statistics def output_stats(stat, output_dir): #write all stats into a file handle = open(output_dir+'output.txt', 'w') handle.write('total_aligned_reads \t'+str(stat['total_aligned_reads'])+'\n') handle.write('unique_aligned_reads \t'+str(stat['unique_aligned_reads'])+'\n') handle.write('is_singleton \t'+str(stat['is_singleton'])+'\n') handle.write('is_paired \t'+str(stat['is_paired'])+'\n') handle.write('is_proper_pair \t'+str(stat['is_proper_pair'])+'\n') handle.write('is_unmapped \t'+str(stat['is_unmapped'])+'\n') for i in range(len(stat['num_unique_mismatches'])): handle.write('num_unique_mismatches '+str(i)+ \ '\t'+str(stat['num_unique_mismatches'][i])+'\n') for i in range(len(stat['num_multiple_mismatches'])): handle.write('num_multiple_mismatches '+str(i)+'\t'+ \ str(stat['num_multiple_mismatches'][i])+'\n') for i in range(len(stat['num_multiread'])): handle.write('num_multiread '+str(i+1)+'\t'+str(stat['num_multiread'][i])+'\n') handle.write('spliced_reads \t'+str(stat['spliced_reads'])+'\n') handle.write('non_spliced_reads \t'+str(stat['non_spliced_reads'])+'\n') handle.write('reads_with_inserts \t'+str(stat['reads_with_inserts'])+'\n') handle.write('reads_with_deletions \t'+str(stat['reads_with_deletions'])+'\n') handle.write('unique_spliced_reads \t'+str(stat['unique_spliced_reads'])+'\n') handle.write('unique_non_spliced_reads \t'+ \ str(stat['unique_non_spliced_reads'])+'\n') handle.write('unique_reads_with_inserts \t'+ \ str(stat['unique_reads_with_inserts'])+'\n') handle.write('unique_reads_with_deletions \t'+ \ str(stat['unique_reads_with_deletions'])+'\n') handle.close() def plot_mul_alignments(stat, output_dir): _, _ = plt.subplots() index = np.arange(len(stat['num_multiread'])) bar_width = 0.8 opacity = 0.4 val = [math.log(sta+1, 10) for sta in stat['num_multiread']] _ = plt.bar(index, val, bar_width, alpha=opacity, color='b', label='Number of alignements ') plt.xlabel('Number of alignments') plt.ylabel('Counts (log10)') plt.title('Distribution of reads with multiple alignments') ticks = [str(i+1) for i in range(len(stat['num_multiread']))] ticks[len(ticks)-1] = ticks[len(ticks)-1]+'+' plt.xticks(index + bar_width, ticks) plt.tight_layout() pylab.savefig(output_dir+'multiple_alignments.png') def plot_num_unique_mismatches(stat, output_dir): _, _ = plt.subplots() index = np.arange(len(stat['num_unique_mismatches'])) bar_width = 0.8 opacity = 0.4 val = [math.log(sta+1, 10) for sta in stat['num_unique_mismatches']] _ = plt.bar(index, val, bar_width, alpha=opacity, color='b') plt.xlabel('Number of mismatches in uniquely aligned samples') plt.ylabel('Counts (log10)') plt.title('Distribution of mismatches in reads with unique alignments') ticks = [str(i) for i in range(len(stat['num_unique_mismatches']))] ticks[len(ticks)-1] = ticks[len(ticks)-1]+'+' plt.xticks(index + bar_width, ticks) plt.tight_layout() pylab.savefig(output_dir+'num_unique_mismatches.png') def number_of_multiple_mismatches(stat, output_dir): _, _ = plt.subplots() index = np.arange(len(stat['num_multiple_mismatches'])) bar_width = 0.8 opacity = 0.4 val = [math.log(sta+1, 10) for sta in stat['num_multiple_mismatches']] _ = plt.bar(index, val, bar_width, alpha=opacity, color='b') plt.xlabel('Number of mismatches in multiple aligned samples') plt.ylabel('Counts (log10)') plt.title('Distribution of mismatches in reads with multiple alignments') ticks = [str(i) for i in range(len(stat['num_multiple_mismatches']))] ticks[len(ticks)-1] = ticks[len(ticks)-1]+'+' plt.xticks(index + bar_width, ticks) plt.tight_layout() pylab.savefig(output_dir+'num_multiple_mismatches.png') def create_html(stat, output_dir): handle = open(output_dir+'sample_stats.html', 'w') #output a table with all the counts handle.write('<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" '+ \ '"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> +\ <head><title></title></head><body>\n') handle.write('<center><br><h1>Sample overview</h1>') #table handle.write('<table id="one-column-emphasis">\n') handle.write('<thead><tr><th> </th><th>Count</th><th>Percentage</th></tr></thead>\n') #total number + unique / multiple aligned handle.write('<tr><td>Total number of aligned reads</td><td>'+ \ str(int(stat['total_aligned_reads']))+'</td><td>'+ \ str(100*round(float(stat['total_aligned_reads'])/ + \ float(stat['total_aligned_reads']), 3))+'% </td></tr>\n') handle.write('<tr><td>Number of uniquely aligned reads</td><td>'+ \ str(int(stat['num_multiread'][0]))+'</td><td>'+ \ str(100*round(float(stat['num_multiread'][0])/ +\ float(stat['total_aligned_reads']), 3))+'% </td></tr>\n') multi_read = stat['total_aligned_reads']-stat['num_multiread'][0] handle.write('<tr><td>Number of multiple aligned reads</td><td>'+ \ str(int(multi_read))+'</td><td>'+str(100*round(float(multi_read)\ /float(stat['total_aligned_reads']), 3))+'% </td></tr>\n') handle.write('<tr> <td></td><td> </td><td> </td></tr>\n') #mismatches within uniquely aligned handle.write('<tr><td>Number of perfect matches within uniquely aligned reads</td><td>'+ \ str(int(stat['num_unique_mismatches'][0]))+'</td><td>'+ \ str(100*round(float(stat['num_unique_mismatches'][0])/ \ float(stat['total_aligned_reads']), 3))+'% </td></tr>\n') uniq_read_multi_mm = stat['num_multiread'][0]-stat['num_unique_mismatches'][0] handle.write('<tr><td>Number of uniquely aligned reads with mismatches</td><td>'+\ str(int(uniq_read_multi_mm))+'</td><td>'+ \ str(100*round(float(uniq_read_multi_mm)/ \ float(stat['total_aligned_reads']), 3))+'% </td></tr>\n') handle.write('<tr> <td></td><td> </td> <td> </td></tr>\n') #mismatches within uniquely aligned handle.write('<tr><td>Number of perfect matches within multiple aligned '+ \ 'reads</td><td>'+str(int(stat['num_multiple_mismatches'][0]))+ \ '</td><td>'+str(100*round(float(stat['num_multiple_mismatches'][0])/ \ float(stat['total_aligned_reads']), 3))+'% </td></tr>\n') mul_read_multi_mm = multi_read-stat['num_multiple_mismatches'][0] handle.write('<tr><td>Number of multiple aligned reads with mismatches</td><td>'+ \ str(int(mul_read_multi_mm))+'</td><td>'+ \ str(100*round(float(mul_read_multi_mm)/ \ float(stat['total_aligned_reads']), 3))+'% </td></tr>\n') handle.write('<tr><td> </td><td> </td><td> </td></tr>\n') #paired / singleton / ... handle.write('<tr><td>Number of singleton reads</td><td>'+ \ str(stat['is_singleton'])+'</td><td>'+ \ str(100*round(float(stat['is_singleton'])/ \ float(stat['total_aligned_reads']), 3))+'% </td></tr>\n') handle.write('<tr><td>Number of paired reads</td><td>'+str(stat['is_paired'])+ \ '</td><td>'+str(100*round(float(stat['is_paired'])/ \ float(stat['total_aligned_reads']), 3))+'% </td></tr>\n') handle.write('<tr><td>Number of proper paired reads</td><td>'+ \ str(stat['is_proper_pair'])+'</td><td>'+ \ str(100*round(float(stat['is_proper_pair'])/ \ float(stat['total_aligned_reads']), 3))+'% </td></tr>\n') handle.write('<tr><td>Number of unmapped reads</td><td>'+ \ str(stat['is_unmapped'])+'</td><td>'+ \ str(100*round(float(stat['is_unmapped'])/ \ float(stat['total_aligned_reads']), 3))+'% </td></tr>\n') handle.write('<tr><td> </td><td> </td><td> </td></tr>\n') #spliced / inserts / deletions handle.write('<tr><td>Number of spliced reads</td><td>'+ \ str(stat['spliced_reads'])+'</td><td>'+ \ str(100*round(float(stat['spliced_reads'])/ \ float(stat['total_aligned_reads']), 3))+'% </td></tr>\n') handle.write('<tr><td>Number of reads with inserts</td><td>'+ \ str(stat['reads_with_inserts'])+'</td><td>'+ \ str(100*round(float(stat['reads_with_inserts'])/ \ float(stat['total_aligned_reads']), 3))+'% </td></tr>\n') handle.write('<tr><td>Number of reads with deletions</td><td>'+ \ str(stat['reads_with_deletions'])+'</td><td>'+ \ str(100*round(float(stat['reads_with_deletions'])/ \ float(stat['total_aligned_reads']), 3))+'% </td></tr>\n') handle.write('</table><br><br><br><br>\n') #add figures handle.write('<img src="multiple_alignments.png" '+ \ 'alt="multiple_alignments"><br><br><br><br>\n') handle.write('<img src="num_unique_mismatches.png" '+ \ 'alt="num_unique_mismatches"><br><br><br><br>\n') handle.write('<img src="num_multiple_mismatches.png" a'+ \ 'lt="num_multiple_mismatches"><center><br><br><br><br>\n\n\n') handle.write('<style>#one-column-emphasis{font-family:"Lucida Sans Unicode",'+ \ ' "Lucida Grande", Sans-Serif;font-size:12px;width:480px;'+ \ 'text-align:left;border-collapse:collapse;margin:20px;}'+ \ '#one-column-emphasis th{font-size:14px;font-weight:normal;'+ \ 'color:#039;padding:12px 15px;}#one-column-emphasis '+ \ 'td{color:#669;border-top:1px solid #e8edff;padding:10px 15px;}'+\ '.oce-first{background:#d0dafd;border-right:10px solid '+ \ 'transparent;border-left:10px solid transparent;}'+ \ '#one-column-emphasis tr:hover td{color:#339;'+ \ 'background:#eff2ff;}</style></body>\n') handle.close() def make_report(stat, output_dir): plot_mul_alignments(stat, output_dir) plot_num_unique_mismatches(stat, output_dir) number_of_multiple_mismatches(stat, output_dir) create_html(stat, output_dir) if __name__ == "__main__": ## Import modules import pysam import sys import getopt import json import numpy as np import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import math import pylab ## Check arguments if len(sys.argv) < 5: print __doc__ sys.exit(0) optlist, cmdlist = getopt.getopt(sys.argv[1:], 'hi:o:') for opt in optlist: if opt[0] == '-h': print __doc__; sys.exit(0) if opt[0] == '-i': input_filename = opt[1] if opt[0] == '-o': output_directory = opt[1] #extract stats from bam file stats = extract_stats(input_filename) #dump stats into a text file output_stats(stats, output_directory) #create a report for a single sample make_report(stats, output_directory) #dump stats into a json file with open(output_directory+'stats.json', 'w') as f: json.dump(stats, f)
apache-2.0
GuessWhoSamFoo/pandas
pandas/tests/internals/test_internals.py
1
48902
# -*- coding: utf-8 -*- # pylint: disable=W0102 from datetime import date, datetime from distutils.version import LooseVersion import itertools import operator import re import sys import numpy as np import pytest from pandas._libs.internals import BlockPlacement from pandas.compat import OrderedDict, lrange, u, zip import pandas as pd from pandas import ( Categorical, DataFrame, DatetimeIndex, Index, MultiIndex, Series, SparseArray) import pandas.core.algorithms as algos from pandas.core.arrays import DatetimeArray, TimedeltaArray from pandas.core.internals import BlockManager, SingleBlockManager, make_block import pandas.util.testing as tm from pandas.util.testing import ( assert_almost_equal, assert_frame_equal, assert_series_equal, randn) # in 3.6.1 a c-api slicing function changed, see src/compat_helper.h PY361 = LooseVersion(sys.version) >= LooseVersion('3.6.1') @pytest.fixture def mgr(): return create_mgr( 'a: f8; b: object; c: f8; d: object; e: f8;' 'f: bool; g: i8; h: complex; i: datetime-1; j: datetime-2;' 'k: M8[ns, US/Eastern]; l: M8[ns, CET];') def assert_block_equal(left, right): tm.assert_numpy_array_equal(left.values, right.values) assert left.dtype == right.dtype assert isinstance(left.mgr_locs, BlockPlacement) assert isinstance(right.mgr_locs, BlockPlacement) tm.assert_numpy_array_equal(left.mgr_locs.as_array, right.mgr_locs.as_array) def get_numeric_mat(shape): arr = np.arange(shape[0]) return np.lib.stride_tricks.as_strided(x=arr, shape=shape, strides=( arr.itemsize, ) + (0, ) * (len(shape) - 1)).copy() N = 10 def create_block(typestr, placement, item_shape=None, num_offset=0): """ Supported typestr: * float, f8, f4, f2 * int, i8, i4, i2, i1 * uint, u8, u4, u2, u1 * complex, c16, c8 * bool * object, string, O * datetime, dt, M8[ns], M8[ns, tz] * timedelta, td, m8[ns] * sparse (SparseArray with fill_value=0.0) * sparse_na (SparseArray with fill_value=np.nan) * category, category2 """ placement = BlockPlacement(placement) num_items = len(placement) if item_shape is None: item_shape = (N, ) shape = (num_items, ) + item_shape mat = get_numeric_mat(shape) if typestr in ('float', 'f8', 'f4', 'f2', 'int', 'i8', 'i4', 'i2', 'i1', 'uint', 'u8', 'u4', 'u2', 'u1'): values = mat.astype(typestr) + num_offset elif typestr in ('complex', 'c16', 'c8'): values = 1.j * (mat.astype(typestr) + num_offset) elif typestr in ('object', 'string', 'O'): values = np.reshape(['A%d' % i for i in mat.ravel() + num_offset], shape) elif typestr in ('b', 'bool', ): values = np.ones(shape, dtype=np.bool_) elif typestr in ('datetime', 'dt', 'M8[ns]'): values = (mat * 1e9).astype('M8[ns]') elif typestr.startswith('M8[ns'): # datetime with tz m = re.search(r'M8\[ns,\s*(\w+\/?\w*)\]', typestr) assert m is not None, "incompatible typestr -> {0}".format(typestr) tz = m.groups()[0] assert num_items == 1, "must have only 1 num items for a tz-aware" values = DatetimeIndex(np.arange(N) * 1e9, tz=tz) elif typestr in ('timedelta', 'td', 'm8[ns]'): values = (mat * 1).astype('m8[ns]') elif typestr in ('category', ): values = Categorical([1, 1, 2, 2, 3, 3, 3, 3, 4, 4]) elif typestr in ('category2', ): values = Categorical(['a', 'a', 'a', 'a', 'b', 'b', 'c', 'c', 'c', 'd' ]) elif typestr in ('sparse', 'sparse_na'): # FIXME: doesn't support num_rows != 10 assert shape[-1] == 10 assert all(s == 1 for s in shape[:-1]) if typestr.endswith('_na'): fill_value = np.nan else: fill_value = 0.0 values = SparseArray([fill_value, fill_value, 1, 2, 3, fill_value, 4, 5, fill_value, 6], fill_value=fill_value) arr = values.sp_values.view() arr += (num_offset - 1) else: raise ValueError('Unsupported typestr: "%s"' % typestr) return make_block(values, placement=placement, ndim=len(shape)) def create_single_mgr(typestr, num_rows=None): if num_rows is None: num_rows = N return SingleBlockManager( create_block(typestr, placement=slice(0, num_rows), item_shape=()), np.arange(num_rows)) def create_mgr(descr, item_shape=None): """ Construct BlockManager from string description. String description syntax looks similar to np.matrix initializer. It looks like this:: a,b,c: f8; d,e,f: i8 Rules are rather simple: * see list of supported datatypes in `create_block` method * components are semicolon-separated * each component is `NAME,NAME,NAME: DTYPE_ID` * whitespace around colons & semicolons are removed * components with same DTYPE_ID are combined into single block * to force multiple blocks with same dtype, use '-SUFFIX':: 'a:f8-1; b:f8-2; c:f8-foobar' """ if item_shape is None: item_shape = (N, ) offset = 0 mgr_items = [] block_placements = OrderedDict() for d in descr.split(';'): d = d.strip() if not len(d): continue names, blockstr = d.partition(':')[::2] blockstr = blockstr.strip() names = names.strip().split(',') mgr_items.extend(names) placement = list(np.arange(len(names)) + offset) try: block_placements[blockstr].extend(placement) except KeyError: block_placements[blockstr] = placement offset += len(names) mgr_items = Index(mgr_items) blocks = [] num_offset = 0 for blockstr, placement in block_placements.items(): typestr = blockstr.split('-')[0] blocks.append(create_block(typestr, placement, item_shape=item_shape, num_offset=num_offset, )) num_offset += len(placement) return BlockManager(sorted(blocks, key=lambda b: b.mgr_locs[0]), [mgr_items] + [np.arange(n) for n in item_shape]) class TestBlock(object): def setup_method(self, method): # self.fblock = get_float_ex() # a,c,e # self.cblock = get_complex_ex() # # self.oblock = get_obj_ex() # self.bool_block = get_bool_ex() # self.int_block = get_int_ex() self.fblock = create_block('float', [0, 2, 4]) self.cblock = create_block('complex', [7]) self.oblock = create_block('object', [1, 3]) self.bool_block = create_block('bool', [5]) self.int_block = create_block('int', [6]) def test_constructor(self): int32block = create_block('i4', [0]) assert int32block.dtype == np.int32 def test_pickle(self): def _check(blk): assert_block_equal(tm.round_trip_pickle(blk), blk) _check(self.fblock) _check(self.cblock) _check(self.oblock) _check(self.bool_block) def test_mgr_locs(self): assert isinstance(self.fblock.mgr_locs, BlockPlacement) tm.assert_numpy_array_equal(self.fblock.mgr_locs.as_array, np.array([0, 2, 4], dtype=np.int64)) def test_attrs(self): assert self.fblock.shape == self.fblock.values.shape assert self.fblock.dtype == self.fblock.values.dtype assert len(self.fblock) == len(self.fblock.values) def test_merge(self): avals = randn(2, 10) bvals = randn(2, 10) ref_cols = Index(['e', 'a', 'b', 'd', 'f']) ablock = make_block(avals, ref_cols.get_indexer(['e', 'b'])) bblock = make_block(bvals, ref_cols.get_indexer(['a', 'd'])) merged = ablock.merge(bblock) tm.assert_numpy_array_equal(merged.mgr_locs.as_array, np.array([0, 1, 2, 3], dtype=np.int64)) tm.assert_numpy_array_equal(merged.values[[0, 2]], np.array(avals)) tm.assert_numpy_array_equal(merged.values[[1, 3]], np.array(bvals)) # TODO: merge with mixed type? def test_copy(self): cop = self.fblock.copy() assert cop is not self.fblock assert_block_equal(self.fblock, cop) def test_reindex_index(self): pass def test_reindex_cast(self): pass def test_insert(self): pass def test_delete(self): newb = self.fblock.copy() newb.delete(0) assert isinstance(newb.mgr_locs, BlockPlacement) tm.assert_numpy_array_equal(newb.mgr_locs.as_array, np.array([2, 4], dtype=np.int64)) assert (newb.values[0] == 1).all() newb = self.fblock.copy() newb.delete(1) assert isinstance(newb.mgr_locs, BlockPlacement) tm.assert_numpy_array_equal(newb.mgr_locs.as_array, np.array([0, 4], dtype=np.int64)) assert (newb.values[1] == 2).all() newb = self.fblock.copy() newb.delete(2) tm.assert_numpy_array_equal(newb.mgr_locs.as_array, np.array([0, 2], dtype=np.int64)) assert (newb.values[1] == 1).all() newb = self.fblock.copy() with pytest.raises(Exception): newb.delete(3) def test_make_block_same_class(self): # issue 19431 block = create_block('M8[ns, US/Eastern]', [3]) with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): block.make_block_same_class(block.values, dtype=block.values.dtype) class TestDatetimeBlock(object): def test_try_coerce_arg(self): block = create_block('datetime', [0]) # coerce None none_coerced = block._try_coerce_args(block.values, None)[1] assert pd.Timestamp(none_coerced) is pd.NaT # coerce different types of date bojects vals = (np.datetime64('2010-10-10'), datetime(2010, 10, 10), date(2010, 10, 10)) for val in vals: coerced = block._try_coerce_args(block.values, val)[1] assert np.int64 == type(coerced) assert pd.Timestamp('2010-10-10') == pd.Timestamp(coerced) class TestBlockManager(object): def test_constructor_corner(self): pass def test_attrs(self): mgr = create_mgr('a,b,c: f8-1; d,e,f: f8-2') assert mgr.nblocks == 2 assert len(mgr) == 6 def test_is_mixed_dtype(self): assert not create_mgr('a,b:f8').is_mixed_type assert not create_mgr('a:f8-1; b:f8-2').is_mixed_type assert create_mgr('a,b:f8; c,d: f4').is_mixed_type assert create_mgr('a,b:f8; c,d: object').is_mixed_type def test_duplicate_ref_loc_failure(self): tmp_mgr = create_mgr('a:bool; a: f8') axes, blocks = tmp_mgr.axes, tmp_mgr.blocks blocks[0].mgr_locs = np.array([0]) blocks[1].mgr_locs = np.array([0]) # test trying to create block manager with overlapping ref locs with pytest.raises(AssertionError): BlockManager(blocks, axes) blocks[0].mgr_locs = np.array([0]) blocks[1].mgr_locs = np.array([1]) mgr = BlockManager(blocks, axes) mgr.iget(1) def test_contains(self, mgr): assert 'a' in mgr assert 'baz' not in mgr def test_pickle(self, mgr): mgr2 = tm.round_trip_pickle(mgr) assert_frame_equal(DataFrame(mgr), DataFrame(mgr2)) # share ref_items # assert mgr2.blocks[0].ref_items is mgr2.blocks[1].ref_items # GH2431 assert hasattr(mgr2, "_is_consolidated") assert hasattr(mgr2, "_known_consolidated") # reset to False on load assert not mgr2._is_consolidated assert not mgr2._known_consolidated def test_non_unique_pickle(self): mgr = create_mgr('a,a,a:f8') mgr2 = tm.round_trip_pickle(mgr) assert_frame_equal(DataFrame(mgr), DataFrame(mgr2)) mgr = create_mgr('a: f8; a: i8') mgr2 = tm.round_trip_pickle(mgr) assert_frame_equal(DataFrame(mgr), DataFrame(mgr2)) def test_categorical_block_pickle(self): mgr = create_mgr('a: category') mgr2 = tm.round_trip_pickle(mgr) assert_frame_equal(DataFrame(mgr), DataFrame(mgr2)) smgr = create_single_mgr('category') smgr2 = tm.round_trip_pickle(smgr) assert_series_equal(Series(smgr), Series(smgr2)) def test_get(self): cols = Index(list('abc')) values = np.random.rand(3, 3) block = make_block(values=values.copy(), placement=np.arange(3)) mgr = BlockManager(blocks=[block], axes=[cols, np.arange(3)]) assert_almost_equal(mgr.get('a', fastpath=False), values[0]) assert_almost_equal(mgr.get('b', fastpath=False), values[1]) assert_almost_equal(mgr.get('c', fastpath=False), values[2]) assert_almost_equal(mgr.get('a').internal_values(), values[0]) assert_almost_equal(mgr.get('b').internal_values(), values[1]) assert_almost_equal(mgr.get('c').internal_values(), values[2]) def test_set(self): mgr = create_mgr('a,b,c: int', item_shape=(3, )) mgr.set('d', np.array(['foo'] * 3)) mgr.set('b', np.array(['bar'] * 3)) tm.assert_numpy_array_equal(mgr.get('a').internal_values(), np.array([0] * 3)) tm.assert_numpy_array_equal(mgr.get('b').internal_values(), np.array(['bar'] * 3, dtype=np.object_)) tm.assert_numpy_array_equal(mgr.get('c').internal_values(), np.array([2] * 3)) tm.assert_numpy_array_equal(mgr.get('d').internal_values(), np.array(['foo'] * 3, dtype=np.object_)) def test_set_change_dtype(self, mgr): mgr.set('baz', np.zeros(N, dtype=bool)) mgr.set('baz', np.repeat('foo', N)) assert mgr.get('baz').dtype == np.object_ mgr2 = mgr.consolidate() mgr2.set('baz', np.repeat('foo', N)) assert mgr2.get('baz').dtype == np.object_ mgr2.set('quux', randn(N).astype(int)) assert mgr2.get('quux').dtype == np.int_ mgr2.set('quux', randn(N)) assert mgr2.get('quux').dtype == np.float_ def test_set_change_dtype_slice(self): # GH8850 cols = MultiIndex.from_tuples([('1st', 'a'), ('2nd', 'b'), ('3rd', 'c') ]) df = DataFrame([[1.0, 2, 3], [4.0, 5, 6]], columns=cols) df['2nd'] = df['2nd'] * 2.0 blocks = df._to_dict_of_blocks() assert sorted(blocks.keys()) == ['float64', 'int64'] assert_frame_equal(blocks['float64'], DataFrame( [[1.0, 4.0], [4.0, 10.0]], columns=cols[:2])) assert_frame_equal(blocks['int64'], DataFrame( [[3], [6]], columns=cols[2:])) def test_copy(self, mgr): cp = mgr.copy(deep=False) for blk, cp_blk in zip(mgr.blocks, cp.blocks): # view assertion assert cp_blk.equals(blk) if isinstance(blk.values, np.ndarray): assert cp_blk.values.base is blk.values.base else: # DatetimeTZBlock has DatetimeIndex values assert cp_blk.values._data.base is blk.values._data.base cp = mgr.copy(deep=True) for blk, cp_blk in zip(mgr.blocks, cp.blocks): # copy assertion we either have a None for a base or in case of # some blocks it is an array (e.g. datetimetz), but was copied assert cp_blk.equals(blk) if not isinstance(cp_blk.values, np.ndarray): assert cp_blk.values._data.base is not blk.values._data.base else: assert cp_blk.values.base is None and blk.values.base is None def test_sparse(self): mgr = create_mgr('a: sparse-1; b: sparse-2') # what to test here? assert mgr.as_array().dtype == np.float64 def test_sparse_mixed(self): mgr = create_mgr('a: sparse-1; b: sparse-2; c: f8') assert len(mgr.blocks) == 3 assert isinstance(mgr, BlockManager) # what to test here? def test_as_array_float(self): mgr = create_mgr('c: f4; d: f2; e: f8') assert mgr.as_array().dtype == np.float64 mgr = create_mgr('c: f4; d: f2') assert mgr.as_array().dtype == np.float32 def test_as_array_int_bool(self): mgr = create_mgr('a: bool-1; b: bool-2') assert mgr.as_array().dtype == np.bool_ mgr = create_mgr('a: i8-1; b: i8-2; c: i4; d: i2; e: u1') assert mgr.as_array().dtype == np.int64 mgr = create_mgr('c: i4; d: i2; e: u1') assert mgr.as_array().dtype == np.int32 def test_as_array_datetime(self): mgr = create_mgr('h: datetime-1; g: datetime-2') assert mgr.as_array().dtype == 'M8[ns]' def test_as_array_datetime_tz(self): mgr = create_mgr('h: M8[ns, US/Eastern]; g: M8[ns, CET]') assert mgr.get('h').dtype == 'datetime64[ns, US/Eastern]' assert mgr.get('g').dtype == 'datetime64[ns, CET]' assert mgr.as_array().dtype == 'object' def test_astype(self): # coerce all mgr = create_mgr('c: f4; d: f2; e: f8') for t in ['float16', 'float32', 'float64', 'int32', 'int64']: t = np.dtype(t) tmgr = mgr.astype(t) assert tmgr.get('c').dtype.type == t assert tmgr.get('d').dtype.type == t assert tmgr.get('e').dtype.type == t # mixed mgr = create_mgr('a,b: object; c: bool; d: datetime;' 'e: f4; f: f2; g: f8') for t in ['float16', 'float32', 'float64', 'int32', 'int64']: t = np.dtype(t) tmgr = mgr.astype(t, errors='ignore') assert tmgr.get('c').dtype.type == t assert tmgr.get('e').dtype.type == t assert tmgr.get('f').dtype.type == t assert tmgr.get('g').dtype.type == t assert tmgr.get('a').dtype.type == np.object_ assert tmgr.get('b').dtype.type == np.object_ if t != np.int64: assert tmgr.get('d').dtype.type == np.datetime64 else: assert tmgr.get('d').dtype.type == t def test_convert(self): def _compare(old_mgr, new_mgr): """ compare the blocks, numeric compare ==, object don't """ old_blocks = set(old_mgr.blocks) new_blocks = set(new_mgr.blocks) assert len(old_blocks) == len(new_blocks) # compare non-numeric for b in old_blocks: found = False for nb in new_blocks: if (b.values == nb.values).all(): found = True break assert found for b in new_blocks: found = False for ob in old_blocks: if (b.values == ob.values).all(): found = True break assert found # noops mgr = create_mgr('f: i8; g: f8') new_mgr = mgr.convert() _compare(mgr, new_mgr) mgr = create_mgr('a, b: object; f: i8; g: f8') new_mgr = mgr.convert() _compare(mgr, new_mgr) # convert mgr = create_mgr('a,b,foo: object; f: i8; g: f8') mgr.set('a', np.array(['1'] * N, dtype=np.object_)) mgr.set('b', np.array(['2.'] * N, dtype=np.object_)) mgr.set('foo', np.array(['foo.'] * N, dtype=np.object_)) new_mgr = mgr.convert(numeric=True) assert new_mgr.get('a').dtype == np.int64 assert new_mgr.get('b').dtype == np.float64 assert new_mgr.get('foo').dtype == np.object_ assert new_mgr.get('f').dtype == np.int64 assert new_mgr.get('g').dtype == np.float64 mgr = create_mgr('a,b,foo: object; f: i4; bool: bool; dt: datetime;' 'i: i8; g: f8; h: f2') mgr.set('a', np.array(['1'] * N, dtype=np.object_)) mgr.set('b', np.array(['2.'] * N, dtype=np.object_)) mgr.set('foo', np.array(['foo.'] * N, dtype=np.object_)) new_mgr = mgr.convert(numeric=True) assert new_mgr.get('a').dtype == np.int64 assert new_mgr.get('b').dtype == np.float64 assert new_mgr.get('foo').dtype == np.object_ assert new_mgr.get('f').dtype == np.int32 assert new_mgr.get('bool').dtype == np.bool_ assert new_mgr.get('dt').dtype.type, np.datetime64 assert new_mgr.get('i').dtype == np.int64 assert new_mgr.get('g').dtype == np.float64 assert new_mgr.get('h').dtype == np.float16 def test_interleave(self): # self for dtype in ['f8', 'i8', 'object', 'bool', 'complex', 'M8[ns]', 'm8[ns]']: mgr = create_mgr('a: {0}'.format(dtype)) assert mgr.as_array().dtype == dtype mgr = create_mgr('a: {0}; b: {0}'.format(dtype)) assert mgr.as_array().dtype == dtype # will be converted according the actual dtype of the underlying mgr = create_mgr('a: category') assert mgr.as_array().dtype == 'i8' mgr = create_mgr('a: category; b: category') assert mgr.as_array().dtype == 'i8' mgr = create_mgr('a: category; b: category2') assert mgr.as_array().dtype == 'object' mgr = create_mgr('a: category2') assert mgr.as_array().dtype == 'object' mgr = create_mgr('a: category2; b: category2') assert mgr.as_array().dtype == 'object' # combinations mgr = create_mgr('a: f8') assert mgr.as_array().dtype == 'f8' mgr = create_mgr('a: f8; b: i8') assert mgr.as_array().dtype == 'f8' mgr = create_mgr('a: f4; b: i8') assert mgr.as_array().dtype == 'f8' mgr = create_mgr('a: f4; b: i8; d: object') assert mgr.as_array().dtype == 'object' mgr = create_mgr('a: bool; b: i8') assert mgr.as_array().dtype == 'object' mgr = create_mgr('a: complex') assert mgr.as_array().dtype == 'complex' mgr = create_mgr('a: f8; b: category') assert mgr.as_array().dtype == 'object' mgr = create_mgr('a: M8[ns]; b: category') assert mgr.as_array().dtype == 'object' mgr = create_mgr('a: M8[ns]; b: bool') assert mgr.as_array().dtype == 'object' mgr = create_mgr('a: M8[ns]; b: i8') assert mgr.as_array().dtype == 'object' mgr = create_mgr('a: m8[ns]; b: bool') assert mgr.as_array().dtype == 'object' mgr = create_mgr('a: m8[ns]; b: i8') assert mgr.as_array().dtype == 'object' mgr = create_mgr('a: M8[ns]; b: m8[ns]') assert mgr.as_array().dtype == 'object' def test_interleave_non_unique_cols(self): df = DataFrame([ [pd.Timestamp('20130101'), 3.5], [pd.Timestamp('20130102'), 4.5]], columns=['x', 'x'], index=[1, 2]) df_unique = df.copy() df_unique.columns = ['x', 'y'] assert df_unique.values.shape == df.values.shape tm.assert_numpy_array_equal(df_unique.values[0], df.values[0]) tm.assert_numpy_array_equal(df_unique.values[1], df.values[1]) def test_consolidate(self): pass def test_consolidate_ordering_issues(self, mgr): mgr.set('f', randn(N)) mgr.set('d', randn(N)) mgr.set('b', randn(N)) mgr.set('g', randn(N)) mgr.set('h', randn(N)) # we have datetime/tz blocks in mgr cons = mgr.consolidate() assert cons.nblocks == 4 cons = mgr.consolidate().get_numeric_data() assert cons.nblocks == 1 assert isinstance(cons.blocks[0].mgr_locs, BlockPlacement) tm.assert_numpy_array_equal(cons.blocks[0].mgr_locs.as_array, np.arange(len(cons.items), dtype=np.int64)) def test_reindex_index(self): pass def test_reindex_items(self): # mgr is not consolidated, f8 & f8-2 blocks mgr = create_mgr('a: f8; b: i8; c: f8; d: i8; e: f8;' 'f: bool; g: f8-2') reindexed = mgr.reindex_axis(['g', 'c', 'a', 'd'], axis=0) assert reindexed.nblocks == 2 tm.assert_index_equal(reindexed.items, pd.Index(['g', 'c', 'a', 'd'])) assert_almost_equal( mgr.get('g', fastpath=False), reindexed.get('g', fastpath=False)) assert_almost_equal( mgr.get('c', fastpath=False), reindexed.get('c', fastpath=False)) assert_almost_equal( mgr.get('a', fastpath=False), reindexed.get('a', fastpath=False)) assert_almost_equal( mgr.get('d', fastpath=False), reindexed.get('d', fastpath=False)) assert_almost_equal( mgr.get('g').internal_values(), reindexed.get('g').internal_values()) assert_almost_equal( mgr.get('c').internal_values(), reindexed.get('c').internal_values()) assert_almost_equal( mgr.get('a').internal_values(), reindexed.get('a').internal_values()) assert_almost_equal( mgr.get('d').internal_values(), reindexed.get('d').internal_values()) def test_multiindex_xs(self): mgr = create_mgr('a,b,c: f8; d,e,f: i8') index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'], ['one', 'two', 'three']], codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=['first', 'second']) mgr.set_axis(1, index) result = mgr.xs('bar', axis=1) assert result.shape == (6, 2) assert result.axes[1][0] == ('bar', 'one') assert result.axes[1][1] == ('bar', 'two') def test_get_numeric_data(self): mgr = create_mgr('int: int; float: float; complex: complex;' 'str: object; bool: bool; obj: object; dt: datetime', item_shape=(3, )) mgr.set('obj', np.array([1, 2, 3], dtype=np.object_)) numeric = mgr.get_numeric_data() tm.assert_index_equal(numeric.items, pd.Index(['int', 'float', 'complex', 'bool'])) assert_almost_equal( mgr.get('float', fastpath=False), numeric.get('float', fastpath=False)) assert_almost_equal( mgr.get('float').internal_values(), numeric.get('float').internal_values()) # Check sharing numeric.set('float', np.array([100., 200., 300.])) assert_almost_equal( mgr.get('float', fastpath=False), np.array([100., 200., 300.])) assert_almost_equal( mgr.get('float').internal_values(), np.array([100., 200., 300.])) numeric2 = mgr.get_numeric_data(copy=True) tm.assert_index_equal(numeric.items, pd.Index(['int', 'float', 'complex', 'bool'])) numeric2.set('float', np.array([1000., 2000., 3000.])) assert_almost_equal( mgr.get('float', fastpath=False), np.array([100., 200., 300.])) assert_almost_equal( mgr.get('float').internal_values(), np.array([100., 200., 300.])) def test_get_bool_data(self): mgr = create_mgr('int: int; float: float; complex: complex;' 'str: object; bool: bool; obj: object; dt: datetime', item_shape=(3, )) mgr.set('obj', np.array([True, False, True], dtype=np.object_)) bools = mgr.get_bool_data() tm.assert_index_equal(bools.items, pd.Index(['bool'])) assert_almost_equal(mgr.get('bool', fastpath=False), bools.get('bool', fastpath=False)) assert_almost_equal( mgr.get('bool').internal_values(), bools.get('bool').internal_values()) bools.set('bool', np.array([True, False, True])) tm.assert_numpy_array_equal(mgr.get('bool', fastpath=False), np.array([True, False, True])) tm.assert_numpy_array_equal(mgr.get('bool').internal_values(), np.array([True, False, True])) # Check sharing bools2 = mgr.get_bool_data(copy=True) bools2.set('bool', np.array([False, True, False])) tm.assert_numpy_array_equal(mgr.get('bool', fastpath=False), np.array([True, False, True])) tm.assert_numpy_array_equal(mgr.get('bool').internal_values(), np.array([True, False, True])) def test_unicode_repr_doesnt_raise(self): repr(create_mgr(u('b,\u05d0: object'))) def test_missing_unicode_key(self): df = DataFrame({"a": [1]}) try: df.loc[:, u("\u05d0")] # should not raise UnicodeEncodeError except KeyError: pass # this is the expected exception def test_equals(self): # unique items bm1 = create_mgr('a,b,c: i8-1; d,e,f: i8-2') bm2 = BlockManager(bm1.blocks[::-1], bm1.axes) assert bm1.equals(bm2) bm1 = create_mgr('a,a,a: i8-1; b,b,b: i8-2') bm2 = BlockManager(bm1.blocks[::-1], bm1.axes) assert bm1.equals(bm2) def test_equals_block_order_different_dtypes(self): # GH 9330 mgr_strings = [ "a:i8;b:f8", # basic case "a:i8;b:f8;c:c8;d:b", # many types "a:i8;e:dt;f:td;g:string", # more types "a:i8;b:category;c:category2;d:category2", # categories "c:sparse;d:sparse_na;b:f8", # sparse ] for mgr_string in mgr_strings: bm = create_mgr(mgr_string) block_perms = itertools.permutations(bm.blocks) for bm_perm in block_perms: bm_this = BlockManager(bm_perm, bm.axes) assert bm.equals(bm_this) assert bm_this.equals(bm) def test_single_mgr_ctor(self): mgr = create_single_mgr('f8', num_rows=5) assert mgr.as_array().tolist() == [0., 1., 2., 3., 4.] def test_validate_bool_args(self): invalid_values = [1, "True", [1, 2, 3], 5.0] bm1 = create_mgr('a,b,c: i8-1; d,e,f: i8-2') for value in invalid_values: with pytest.raises(ValueError): bm1.replace_list([1], [2], inplace=value) class TestIndexing(object): # Nosetests-style data-driven tests. # # This test applies different indexing routines to block managers and # compares the outcome to the result of same operations on np.ndarray. # # NOTE: sparse (SparseBlock with fill_value != np.nan) fail a lot of tests # and are disabled. MANAGERS = [ create_single_mgr('f8', N), create_single_mgr('i8', N), # 2-dim create_mgr('a,b,c,d,e,f: f8', item_shape=(N,)), create_mgr('a,b,c,d,e,f: i8', item_shape=(N,)), create_mgr('a,b: f8; c,d: i8; e,f: string', item_shape=(N,)), create_mgr('a,b: f8; c,d: i8; e,f: f8', item_shape=(N,)), # 3-dim create_mgr('a,b,c,d,e,f: f8', item_shape=(N, N)), create_mgr('a,b,c,d,e,f: i8', item_shape=(N, N)), create_mgr('a,b: f8; c,d: i8; e,f: string', item_shape=(N, N)), create_mgr('a,b: f8; c,d: i8; e,f: f8', item_shape=(N, N)), ] # MANAGERS = [MANAGERS[6]] def test_get_slice(self): def assert_slice_ok(mgr, axis, slobj): # import pudb; pudb.set_trace() mat = mgr.as_array() # we maybe using an ndarray to test slicing and # might not be the full length of the axis if isinstance(slobj, np.ndarray): ax = mgr.axes[axis] if len(ax) and len(slobj) and len(slobj) != len(ax): slobj = np.concatenate([slobj, np.zeros( len(ax) - len(slobj), dtype=bool)]) sliced = mgr.get_slice(slobj, axis=axis) mat_slobj = (slice(None), ) * axis + (slobj, ) tm.assert_numpy_array_equal(mat[mat_slobj], sliced.as_array(), check_dtype=False) tm.assert_index_equal(mgr.axes[axis][slobj], sliced.axes[axis]) for mgr in self.MANAGERS: for ax in range(mgr.ndim): # slice assert_slice_ok(mgr, ax, slice(None)) assert_slice_ok(mgr, ax, slice(3)) assert_slice_ok(mgr, ax, slice(100)) assert_slice_ok(mgr, ax, slice(1, 4)) assert_slice_ok(mgr, ax, slice(3, 0, -2)) # boolean mask assert_slice_ok( mgr, ax, np.array([], dtype=np.bool_)) assert_slice_ok( mgr, ax, np.ones(mgr.shape[ax], dtype=np.bool_)) assert_slice_ok( mgr, ax, np.zeros(mgr.shape[ax], dtype=np.bool_)) if mgr.shape[ax] >= 3: assert_slice_ok( mgr, ax, np.arange(mgr.shape[ax]) % 3 == 0) assert_slice_ok( mgr, ax, np.array( [True, True, False], dtype=np.bool_)) # fancy indexer assert_slice_ok(mgr, ax, []) assert_slice_ok(mgr, ax, lrange(mgr.shape[ax])) if mgr.shape[ax] >= 3: assert_slice_ok(mgr, ax, [0, 1, 2]) assert_slice_ok(mgr, ax, [-1, -2, -3]) def test_take(self): def assert_take_ok(mgr, axis, indexer): mat = mgr.as_array() taken = mgr.take(indexer, axis) tm.assert_numpy_array_equal(np.take(mat, indexer, axis), taken.as_array(), check_dtype=False) tm.assert_index_equal(mgr.axes[axis].take(indexer), taken.axes[axis]) for mgr in self.MANAGERS: for ax in range(mgr.ndim): # take/fancy indexer assert_take_ok(mgr, ax, []) assert_take_ok(mgr, ax, [0, 0, 0]) assert_take_ok(mgr, ax, lrange(mgr.shape[ax])) if mgr.shape[ax] >= 3: assert_take_ok(mgr, ax, [0, 1, 2]) assert_take_ok(mgr, ax, [-1, -2, -3]) def test_reindex_axis(self): def assert_reindex_axis_is_ok(mgr, axis, new_labels, fill_value): mat = mgr.as_array() indexer = mgr.axes[axis].get_indexer_for(new_labels) reindexed = mgr.reindex_axis(new_labels, axis, fill_value=fill_value) tm.assert_numpy_array_equal(algos.take_nd(mat, indexer, axis, fill_value=fill_value), reindexed.as_array(), check_dtype=False) tm.assert_index_equal(reindexed.axes[axis], new_labels) for mgr in self.MANAGERS: for ax in range(mgr.ndim): for fill_value in (None, np.nan, 100.): assert_reindex_axis_is_ok( mgr, ax, pd.Index([]), fill_value) assert_reindex_axis_is_ok( mgr, ax, mgr.axes[ax], fill_value) assert_reindex_axis_is_ok( mgr, ax, mgr.axes[ax][[0, 0, 0]], fill_value) assert_reindex_axis_is_ok( mgr, ax, pd.Index(['foo', 'bar', 'baz']), fill_value) assert_reindex_axis_is_ok( mgr, ax, pd.Index(['foo', mgr.axes[ax][0], 'baz']), fill_value) if mgr.shape[ax] >= 3: assert_reindex_axis_is_ok( mgr, ax, mgr.axes[ax][:-3], fill_value) assert_reindex_axis_is_ok( mgr, ax, mgr.axes[ax][-3::-1], fill_value) assert_reindex_axis_is_ok( mgr, ax, mgr.axes[ax][[0, 1, 2, 0, 1, 2]], fill_value) def test_reindex_indexer(self): def assert_reindex_indexer_is_ok(mgr, axis, new_labels, indexer, fill_value): mat = mgr.as_array() reindexed_mat = algos.take_nd(mat, indexer, axis, fill_value=fill_value) reindexed = mgr.reindex_indexer(new_labels, indexer, axis, fill_value=fill_value) tm.assert_numpy_array_equal(reindexed_mat, reindexed.as_array(), check_dtype=False) tm.assert_index_equal(reindexed.axes[axis], new_labels) for mgr in self.MANAGERS: for ax in range(mgr.ndim): for fill_value in (None, np.nan, 100.): assert_reindex_indexer_is_ok( mgr, ax, pd.Index([]), [], fill_value) assert_reindex_indexer_is_ok( mgr, ax, mgr.axes[ax], np.arange(mgr.shape[ax]), fill_value) assert_reindex_indexer_is_ok( mgr, ax, pd.Index(['foo'] * mgr.shape[ax]), np.arange(mgr.shape[ax]), fill_value) assert_reindex_indexer_is_ok( mgr, ax, mgr.axes[ax][::-1], np.arange(mgr.shape[ax]), fill_value) assert_reindex_indexer_is_ok( mgr, ax, mgr.axes[ax], np.arange(mgr.shape[ax])[::-1], fill_value) assert_reindex_indexer_is_ok( mgr, ax, pd.Index(['foo', 'bar', 'baz']), [0, 0, 0], fill_value) assert_reindex_indexer_is_ok( mgr, ax, pd.Index(['foo', 'bar', 'baz']), [-1, 0, -1], fill_value) assert_reindex_indexer_is_ok( mgr, ax, pd.Index(['foo', mgr.axes[ax][0], 'baz']), [-1, -1, -1], fill_value) if mgr.shape[ax] >= 3: assert_reindex_indexer_is_ok( mgr, ax, pd.Index(['foo', 'bar', 'baz']), [0, 1, 2], fill_value) # test_get_slice(slice_like, axis) # take(indexer, axis) # reindex_axis(new_labels, axis) # reindex_indexer(new_labels, indexer, axis) class TestBlockPlacement(object): def test_slice_len(self): assert len(BlockPlacement(slice(0, 4))) == 4 assert len(BlockPlacement(slice(0, 4, 2))) == 2 assert len(BlockPlacement(slice(0, 3, 2))) == 2 assert len(BlockPlacement(slice(0, 1, 2))) == 1 assert len(BlockPlacement(slice(1, 0, -1))) == 1 def test_zero_step_raises(self): with pytest.raises(ValueError): BlockPlacement(slice(1, 1, 0)) with pytest.raises(ValueError): BlockPlacement(slice(1, 2, 0)) def test_unbounded_slice_raises(self): def assert_unbounded_slice_error(slc): with pytest.raises(ValueError, match="unbounded slice"): BlockPlacement(slc) assert_unbounded_slice_error(slice(None, None)) assert_unbounded_slice_error(slice(10, None)) assert_unbounded_slice_error(slice(None, None, -1)) assert_unbounded_slice_error(slice(None, 10, -1)) # These are "unbounded" because negative index will change depending on # container shape. assert_unbounded_slice_error(slice(-1, None)) assert_unbounded_slice_error(slice(None, -1)) assert_unbounded_slice_error(slice(-1, -1)) assert_unbounded_slice_error(slice(-1, None, -1)) assert_unbounded_slice_error(slice(None, -1, -1)) assert_unbounded_slice_error(slice(-1, -1, -1)) def test_not_slice_like_slices(self): def assert_not_slice_like(slc): assert not BlockPlacement(slc).is_slice_like assert_not_slice_like(slice(0, 0)) assert_not_slice_like(slice(100, 0)) assert_not_slice_like(slice(100, 100, -1)) assert_not_slice_like(slice(0, 100, -1)) assert not BlockPlacement(slice(0, 0)).is_slice_like assert not BlockPlacement(slice(100, 100)).is_slice_like def test_array_to_slice_conversion(self): def assert_as_slice_equals(arr, slc): assert BlockPlacement(arr).as_slice == slc assert_as_slice_equals([0], slice(0, 1, 1)) assert_as_slice_equals([100], slice(100, 101, 1)) assert_as_slice_equals([0, 1, 2], slice(0, 3, 1)) assert_as_slice_equals([0, 5, 10], slice(0, 15, 5)) assert_as_slice_equals([0, 100], slice(0, 200, 100)) assert_as_slice_equals([2, 1], slice(2, 0, -1)) if not PY361: assert_as_slice_equals([2, 1, 0], slice(2, None, -1)) assert_as_slice_equals([100, 0], slice(100, None, -100)) def test_not_slice_like_arrays(self): def assert_not_slice_like(arr): assert not BlockPlacement(arr).is_slice_like assert_not_slice_like([]) assert_not_slice_like([-1]) assert_not_slice_like([-1, -2, -3]) assert_not_slice_like([-10]) assert_not_slice_like([-1]) assert_not_slice_like([-1, 0, 1, 2]) assert_not_slice_like([-2, 0, 2, 4]) assert_not_slice_like([1, 0, -1]) assert_not_slice_like([1, 1, 1]) def test_slice_iter(self): assert list(BlockPlacement(slice(0, 3))) == [0, 1, 2] assert list(BlockPlacement(slice(0, 0))) == [] assert list(BlockPlacement(slice(3, 0))) == [] if not PY361: assert list(BlockPlacement(slice(3, 0, -1))) == [3, 2, 1] assert list(BlockPlacement(slice(3, None, -1))) == [3, 2, 1, 0] def test_slice_to_array_conversion(self): def assert_as_array_equals(slc, asarray): tm.assert_numpy_array_equal( BlockPlacement(slc).as_array, np.asarray(asarray, dtype=np.int64)) assert_as_array_equals(slice(0, 3), [0, 1, 2]) assert_as_array_equals(slice(0, 0), []) assert_as_array_equals(slice(3, 0), []) assert_as_array_equals(slice(3, 0, -1), [3, 2, 1]) if not PY361: assert_as_array_equals(slice(3, None, -1), [3, 2, 1, 0]) assert_as_array_equals(slice(31, None, -10), [31, 21, 11, 1]) def test_blockplacement_add(self): bpl = BlockPlacement(slice(0, 5)) assert bpl.add(1).as_slice == slice(1, 6, 1) assert bpl.add(np.arange(5)).as_slice == slice(0, 10, 2) assert list(bpl.add(np.arange(5, 0, -1))) == [5, 5, 5, 5, 5] def test_blockplacement_add_int(self): def assert_add_equals(val, inc, result): assert list(BlockPlacement(val).add(inc)) == result assert_add_equals(slice(0, 0), 0, []) assert_add_equals(slice(1, 4), 0, [1, 2, 3]) assert_add_equals(slice(3, 0, -1), 0, [3, 2, 1]) assert_add_equals([1, 2, 4], 0, [1, 2, 4]) assert_add_equals(slice(0, 0), 10, []) assert_add_equals(slice(1, 4), 10, [11, 12, 13]) assert_add_equals(slice(3, 0, -1), 10, [13, 12, 11]) assert_add_equals([1, 2, 4], 10, [11, 12, 14]) assert_add_equals(slice(0, 0), -1, []) assert_add_equals(slice(1, 4), -1, [0, 1, 2]) assert_add_equals([1, 2, 4], -1, [0, 1, 3]) with pytest.raises(ValueError): BlockPlacement(slice(1, 4)).add(-10) with pytest.raises(ValueError): BlockPlacement([1, 2, 4]).add(-10) if not PY361: assert_add_equals(slice(3, 0, -1), -1, [2, 1, 0]) assert_add_equals(slice(2, None, -1), 0, [2, 1, 0]) assert_add_equals(slice(2, None, -1), 10, [12, 11, 10]) with pytest.raises(ValueError): BlockPlacement(slice(2, None, -1)).add(-1) class DummyElement(object): def __init__(self, value, dtype): self.value = value self.dtype = np.dtype(dtype) def __array__(self): return np.array(self.value, dtype=self.dtype) def __str__(self): return "DummyElement({}, {})".format(self.value, self.dtype) def __repr__(self): return str(self) def astype(self, dtype, copy=False): self.dtype = dtype return self def view(self, dtype): return type(self)(self.value.view(dtype), dtype) def any(self, axis=None): return bool(self.value) class TestCanHoldElement(object): @pytest.mark.parametrize('value, dtype', [ (1, 'i8'), (1.0, 'f8'), (2**63, 'f8'), (1j, 'complex128'), (2**63, 'complex128'), (True, 'bool'), (np.timedelta64(20, 'ns'), '<m8[ns]'), (np.datetime64(20, 'ns'), '<M8[ns]'), ]) @pytest.mark.parametrize('op', [ operator.add, operator.sub, operator.mul, operator.truediv, operator.mod, operator.pow, ], ids=lambda x: x.__name__) def test_binop_other(self, op, value, dtype): skip = {(operator.add, 'bool'), (operator.sub, 'bool'), (operator.mul, 'bool'), (operator.truediv, 'bool'), (operator.mod, 'i8'), (operator.mod, 'complex128'), (operator.pow, 'bool')} if (op, dtype) in skip: pytest.skip("Invalid combination {},{}".format(op, dtype)) e = DummyElement(value, dtype) s = pd.DataFrame({"A": [e.value, e.value]}, dtype=e.dtype) invalid = {(operator.pow, '<M8[ns]'), (operator.mod, '<M8[ns]'), (operator.truediv, '<M8[ns]'), (operator.mul, '<M8[ns]'), (operator.add, '<M8[ns]'), (operator.pow, '<m8[ns]'), (operator.mul, '<m8[ns]')} if (op, dtype) in invalid: with pytest.raises(TypeError): op(s, e.value) else: # FIXME: Since dispatching to Series, this test no longer # asserts anything meaningful result = op(s, e.value).dtypes expected = op(s, value).dtypes assert_series_equal(result, expected) @pytest.mark.parametrize('typestr, holder', [ ('category', Categorical), ('M8[ns]', DatetimeArray), ('M8[ns, US/Central]', DatetimeArray), ('m8[ns]', TimedeltaArray), ('sparse', SparseArray), ]) def test_holder(typestr, holder): blk = create_block(typestr, [1]) assert blk._holder is holder def test_deprecated_fastpath(): # GH#19265 values = np.random.rand(3, 3) with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): make_block(values, placement=np.arange(3), fastpath=True) def test_validate_ndim(): values = np.array([1.0, 2.0]) placement = slice(2) msg = r"Wrong number of dimensions. values.ndim != ndim \[1 != 2\]" with pytest.raises(ValueError, match=msg): make_block(values, placement, ndim=2) def test_block_shape(): idx = pd.Index([0, 1, 2, 3, 4]) a = pd.Series([1, 2, 3]).reindex(idx) b = pd.Series(pd.Categorical([1, 2, 3])).reindex(idx) assert (a._data.blocks[0].mgr_locs.indexer == b._data.blocks[0].mgr_locs.indexer)
bsd-3-clause
fierval/retina
DiabeticRetinopathy/Learning/learning.py
1
1369
import pandas as pd from sklearn.ensemble import RandomForestClassifier from sklearn.svm import SVC from sklearn.cross_validation import train_test_split from kobra import SKSupervisedLearning from kobra.tr_utils import time_now_str import numpy as np sample_file = '/kaggle/retina/reduced/features/sample/features.csv' df = pd.read_csv(sample_file) n_bins = 100 feats = df.ix[:, :n_bins * 2].values.astype(np.float) levels = df['level'].values names = df['name'].values X_train, X_test, Y_train, Y_test = train_test_split(feats, levels, test_size = 0.2) print "Read, train: {:d}, test: {:d}".format(X_train.shape[0], X_test.shape[0]) rf = SKSupervisedLearning(SVC, X_train, Y_train, X_test, Y_test) #rf.estimation_params = {'max_depth' : [4, 10, 100], 'min_samples_leaf': [3, 5, 20], # 'max_features': [1.0, 0.3, 0.1]} # parameters tuned from the above #rf.train_params = {'n_estimators' : 1000, 'max_features': 'sqrt'} rf.train_params = {'C': 100, 'gamma' : 0.001, 'probability' : True, 'class_weight': 'auto'} rf.scoring = "accuracy" print "Instantiated classifier" rf.fit_standard_scaler() #rf.grid_search_classifier() print "Starting: ", time_now_str() a_train, a_test = rf.fit_and_validate() print "Finished: ", time_now_str() print "Accuracy: \n\tTrain: {:2.5f}\n\tTest: {:2.5f}".format(a_train, a_test) rf.plot_confusion()
mit
apbard/scipy
scipy/signal/signaltools.py
1
115688
# Author: Travis Oliphant # 1999 -- 2002 from __future__ import division, print_function, absolute_import import warnings import threading import sys import timeit from . import sigtools, dlti from ._upfirdn import upfirdn, _output_len from scipy._lib.six import callable from scipy._lib._version import NumpyVersion from scipy import fftpack, linalg from numpy import (allclose, angle, arange, argsort, array, asarray, atleast_1d, atleast_2d, cast, dot, exp, expand_dims, iscomplexobj, mean, ndarray, newaxis, ones, pi, poly, polyadd, polyder, polydiv, polymul, polysub, polyval, product, r_, ravel, real_if_close, reshape, roots, sort, take, transpose, unique, where, zeros, zeros_like) import numpy as np import math from scipy.special import factorial from .windows import get_window from ._arraytools import axis_slice, axis_reverse, odd_ext, even_ext, const_ext from .filter_design import cheby1, _validate_sos from .fir_filter_design import firwin if sys.version_info.major >= 3 and sys.version_info.minor >= 5: from math import gcd else: from fractions import gcd __all__ = ['correlate', 'fftconvolve', 'convolve', 'convolve2d', 'correlate2d', 'order_filter', 'medfilt', 'medfilt2d', 'wiener', 'lfilter', 'lfiltic', 'sosfilt', 'deconvolve', 'hilbert', 'hilbert2', 'cmplx_sort', 'unique_roots', 'invres', 'invresz', 'residue', 'residuez', 'resample', 'resample_poly', 'detrend', 'lfilter_zi', 'sosfilt_zi', 'sosfiltfilt', 'choose_conv_method', 'filtfilt', 'decimate', 'vectorstrength'] _modedict = {'valid': 0, 'same': 1, 'full': 2} _boundarydict = {'fill': 0, 'pad': 0, 'wrap': 2, 'circular': 2, 'symm': 1, 'symmetric': 1, 'reflect': 4} _rfft_mt_safe = (NumpyVersion(np.__version__) >= '1.9.0.dev-e24486e') _rfft_lock = threading.Lock() def _valfrommode(mode): try: val = _modedict[mode] except KeyError: if mode not in [0, 1, 2]: raise ValueError("Acceptable mode flags are 'valid' (0)," " 'same' (1), or 'full' (2).") val = mode return val def _bvalfromboundary(boundary): try: val = _boundarydict[boundary] << 2 except KeyError: if val not in [0, 1, 2]: raise ValueError("Acceptable boundary flags are 'fill', 'wrap'" " (or 'circular'), \n and 'symm'" " (or 'symmetric').") val = boundary << 2 return val def _inputs_swap_needed(mode, shape1, shape2): """ If in 'valid' mode, returns whether or not the input arrays need to be swapped depending on whether `shape1` is at least as large as `shape2` in every dimension. This is important for some of the correlation and convolution implementations in this module, where the larger array input needs to come before the smaller array input when operating in this mode. Note that if the mode provided is not 'valid', False is immediately returned. """ if mode == 'valid': ok1, ok2 = True, True for d1, d2 in zip(shape1, shape2): if not d1 >= d2: ok1 = False if not d2 >= d1: ok2 = False if not (ok1 or ok2): raise ValueError("For 'valid' mode, one must be at least " "as large as the other in every dimension") return not ok1 return False def correlate(in1, in2, mode='full', method='auto'): r""" Cross-correlate two N-dimensional arrays. Cross-correlate `in1` and `in2`, with the output size determined by the `mode` argument. Parameters ---------- in1 : array_like First input. in2 : array_like Second input. Should have the same number of dimensions as `in1`. mode : str {'full', 'valid', 'same'}, optional A string indicating the size of the output: ``full`` The output is the full discrete linear cross-correlation of the inputs. (Default) ``valid`` The output consists only of those elements that do not rely on the zero-padding. In 'valid' mode, either `in1` or `in2` must be at least as large as the other in every dimension. ``same`` The output is the same size as `in1`, centered with respect to the 'full' output. method : str {'auto', 'direct', 'fft'}, optional A string indicating which method to use to calculate the correlation. ``direct`` The correlation is determined directly from sums, the definition of correlation. ``fft`` The Fast Fourier Transform is used to perform the correlation more quickly (only available for numerical arrays.) ``auto`` Automatically chooses direct or Fourier method based on an estimate of which is faster (default). See `convolve` Notes for more detail. .. versionadded:: 0.19.0 Returns ------- correlate : array An N-dimensional array containing a subset of the discrete linear cross-correlation of `in1` with `in2`. See Also -------- choose_conv_method : contains more documentation on `method`. Notes ----- The correlation z of two d-dimensional arrays x and y is defined as:: z[...,k,...] = sum[..., i_l, ...] x[..., i_l,...] * conj(y[..., i_l - k,...]) This way, if x and y are 1-D arrays and ``z = correlate(x, y, 'full')`` then .. math:: z[k] = (x * y)(k - N + 1) = \sum_{l=0}^{||x||-1}x_l y_{l-k+N-1}^{*} for :math:`k = 0, 1, ..., ||x|| + ||y|| - 2` where :math:`||x||` is the length of ``x``, :math:`N = \max(||x||,||y||)`, and :math:`y_m` is 0 when m is outside the range of y. ``method='fft'`` only works for numerical arrays as it relies on `fftconvolve`. In certain cases (i.e., arrays of objects or when rounding integers can lose precision), ``method='direct'`` is always used. Examples -------- Implement a matched filter using cross-correlation, to recover a signal that has passed through a noisy channel. >>> from scipy import signal >>> sig = np.repeat([0., 1., 1., 0., 1., 0., 0., 1.], 128) >>> sig_noise = sig + np.random.randn(len(sig)) >>> corr = signal.correlate(sig_noise, np.ones(128), mode='same') / 128 >>> import matplotlib.pyplot as plt >>> clock = np.arange(64, len(sig), 128) >>> fig, (ax_orig, ax_noise, ax_corr) = plt.subplots(3, 1, sharex=True) >>> ax_orig.plot(sig) >>> ax_orig.plot(clock, sig[clock], 'ro') >>> ax_orig.set_title('Original signal') >>> ax_noise.plot(sig_noise) >>> ax_noise.set_title('Signal with noise') >>> ax_corr.plot(corr) >>> ax_corr.plot(clock, corr[clock], 'ro') >>> ax_corr.axhline(0.5, ls=':') >>> ax_corr.set_title('Cross-correlated with rectangular pulse') >>> ax_orig.margins(0, 0.1) >>> fig.tight_layout() >>> fig.show() """ in1 = asarray(in1) in2 = asarray(in2) if in1.ndim == in2.ndim == 0: return in1 * in2 elif in1.ndim != in2.ndim: raise ValueError("in1 and in2 should have the same dimensionality") # Don't use _valfrommode, since correlate should not accept numeric modes try: val = _modedict[mode] except KeyError: raise ValueError("Acceptable mode flags are 'valid'," " 'same', or 'full'.") # this either calls fftconvolve or this function with method=='direct' if method in ('fft', 'auto'): return convolve(in1, _reverse_and_conj(in2), mode, method) # fastpath to faster numpy.correlate for 1d inputs when possible if _np_conv_ok(in1, in2, mode): return np.correlate(in1, in2, mode) # _correlateND is far slower when in2.size > in1.size, so swap them # and then undo the effect afterward if mode == 'full'. Also, it fails # with 'valid' mode if in2 is larger than in1, so swap those, too. # Don't swap inputs for 'same' mode, since shape of in1 matters. swapped_inputs = ((mode == 'full') and (in2.size > in1.size) or _inputs_swap_needed(mode, in1.shape, in2.shape)) if swapped_inputs: in1, in2 = in2, in1 if mode == 'valid': ps = [i - j + 1 for i, j in zip(in1.shape, in2.shape)] out = np.empty(ps, in1.dtype) z = sigtools._correlateND(in1, in2, out, val) else: ps = [i + j - 1 for i, j in zip(in1.shape, in2.shape)] # zero pad input in1zpadded = np.zeros(ps, in1.dtype) sc = [slice(0, i) for i in in1.shape] in1zpadded[sc] = in1.copy() if mode == 'full': out = np.empty(ps, in1.dtype) elif mode == 'same': out = np.empty(in1.shape, in1.dtype) z = sigtools._correlateND(in1zpadded, in2, out, val) if swapped_inputs: # Reverse and conjugate to undo the effect of swapping inputs z = _reverse_and_conj(z) return z def _centered(arr, newshape): # Return the center newshape portion of the array. newshape = asarray(newshape) currshape = array(arr.shape) startind = (currshape - newshape) // 2 endind = startind + newshape myslice = [slice(startind[k], endind[k]) for k in range(len(endind))] return arr[tuple(myslice)] def fftconvolve(in1, in2, mode="full"): """Convolve two N-dimensional arrays using FFT. Convolve `in1` and `in2` using the fast Fourier transform method, with the output size determined by the `mode` argument. This is generally much faster than `convolve` for large arrays (n > ~500), but can be slower when only a few output values are needed, and can only output float arrays (int or object array inputs will be cast to float). As of v0.19, `convolve` automatically chooses this method or the direct method based on an estimation of which is faster. Parameters ---------- in1 : array_like First input. in2 : array_like Second input. Should have the same number of dimensions as `in1`. If operating in 'valid' mode, either `in1` or `in2` must be at least as large as the other in every dimension. mode : str {'full', 'valid', 'same'}, optional A string indicating the size of the output: ``full`` The output is the full discrete linear convolution of the inputs. (Default) ``valid`` The output consists only of those elements that do not rely on the zero-padding. ``same`` The output is the same size as `in1`, centered with respect to the 'full' output. Returns ------- out : array An N-dimensional array containing a subset of the discrete linear convolution of `in1` with `in2`. Examples -------- Autocorrelation of white noise is an impulse. >>> from scipy import signal >>> sig = np.random.randn(1000) >>> autocorr = signal.fftconvolve(sig, sig[::-1], mode='full') >>> import matplotlib.pyplot as plt >>> fig, (ax_orig, ax_mag) = plt.subplots(2, 1) >>> ax_orig.plot(sig) >>> ax_orig.set_title('White noise') >>> ax_mag.plot(np.arange(-len(sig)+1,len(sig)), autocorr) >>> ax_mag.set_title('Autocorrelation') >>> fig.tight_layout() >>> fig.show() Gaussian blur implemented using FFT convolution. Notice the dark borders around the image, due to the zero-padding beyond its boundaries. The `convolve2d` function allows for other types of image boundaries, but is far slower. >>> from scipy import misc >>> face = misc.face(gray=True) >>> kernel = np.outer(signal.gaussian(70, 8), signal.gaussian(70, 8)) >>> blurred = signal.fftconvolve(face, kernel, mode='same') >>> fig, (ax_orig, ax_kernel, ax_blurred) = plt.subplots(3, 1, ... figsize=(6, 15)) >>> ax_orig.imshow(face, cmap='gray') >>> ax_orig.set_title('Original') >>> ax_orig.set_axis_off() >>> ax_kernel.imshow(kernel, cmap='gray') >>> ax_kernel.set_title('Gaussian kernel') >>> ax_kernel.set_axis_off() >>> ax_blurred.imshow(blurred, cmap='gray') >>> ax_blurred.set_title('Blurred') >>> ax_blurred.set_axis_off() >>> fig.show() """ in1 = asarray(in1) in2 = asarray(in2) if in1.ndim == in2.ndim == 0: # scalar inputs return in1 * in2 elif not in1.ndim == in2.ndim: raise ValueError("in1 and in2 should have the same dimensionality") elif in1.size == 0 or in2.size == 0: # empty arrays return array([]) s1 = array(in1.shape) s2 = array(in2.shape) complex_result = (np.issubdtype(in1.dtype, complex) or np.issubdtype(in2.dtype, complex)) shape = s1 + s2 - 1 # Check that input sizes are compatible with 'valid' mode if _inputs_swap_needed(mode, s1, s2): # Convolution is commutative; order doesn't have any effect on output in1, s1, in2, s2 = in2, s2, in1, s1 # Speed up FFT by padding to optimal size for FFTPACK fshape = [fftpack.helper.next_fast_len(int(d)) for d in shape] fslice = tuple([slice(0, int(sz)) for sz in shape]) # Pre-1.9 NumPy FFT routines are not threadsafe. For older NumPys, make # sure we only call rfftn/irfftn from one thread at a time. if not complex_result and (_rfft_mt_safe or _rfft_lock.acquire(False)): try: sp1 = np.fft.rfftn(in1, fshape) sp2 = np.fft.rfftn(in2, fshape) ret = (np.fft.irfftn(sp1 * sp2, fshape)[fslice].copy()) finally: if not _rfft_mt_safe: _rfft_lock.release() else: # If we're here, it's either because we need a complex result, or we # failed to acquire _rfft_lock (meaning rfftn isn't threadsafe and # is already in use by another thread). In either case, use the # (threadsafe but slower) SciPy complex-FFT routines instead. sp1 = fftpack.fftn(in1, fshape) sp2 = fftpack.fftn(in2, fshape) ret = fftpack.ifftn(sp1 * sp2)[fslice].copy() if not complex_result: ret = ret.real if mode == "full": return ret elif mode == "same": return _centered(ret, s1) elif mode == "valid": return _centered(ret, s1 - s2 + 1) else: raise ValueError("Acceptable mode flags are 'valid'," " 'same', or 'full'.") def _numeric_arrays(arrays, kinds='buifc'): """ See if a list of arrays are all numeric. Parameters ---------- ndarrays : array or list of arrays arrays to check if numeric. numeric_kinds : string-like The dtypes of the arrays to be checked. If the dtype.kind of the ndarrays are not in this string the function returns False and otherwise returns True. """ if type(arrays) == ndarray: return arrays.dtype.kind in kinds for array_ in arrays: if array_.dtype.kind not in kinds: return False return True def _prod(iterable): """ Product of a list of numbers. Faster than np.prod for short lists like array shapes. """ product = 1 for x in iterable: product *= x return product def _fftconv_faster(x, h, mode): """ See if using `fftconvolve` or `_correlateND` is faster. The boolean value returned depends on the sizes and shapes of the input values. The big O ratios were found to hold across different machines, which makes sense as it's the ratio that matters (the effective speed of the computer is found in both big O constants). Regardless, this had been tuned on an early 2015 MacBook Pro with 8GB RAM and an Intel i5 processor. """ if mode == 'full': out_shape = [n + k - 1 for n, k in zip(x.shape, h.shape)] big_O_constant = 10963.92823819 if x.ndim == 1 else 8899.1104874 elif mode == 'same': out_shape = x.shape if x.ndim == 1: if h.size <= x.size: big_O_constant = 7183.41306773 else: big_O_constant = 856.78174111 else: big_O_constant = 34519.21021589 elif mode == 'valid': out_shape = [n - k + 1 for n, k in zip(x.shape, h.shape)] big_O_constant = 41954.28006344 if x.ndim == 1 else 66453.24316434 else: raise ValueError('mode is invalid') # see whether the Fourier transform convolution method or the direct # convolution method is faster (discussed in scikit-image PR #1792) direct_time = (x.size * h.size * _prod(out_shape)) fft_time = sum(n * math.log(n) for n in (x.shape + h.shape + tuple(out_shape))) return big_O_constant * fft_time < direct_time def _reverse_and_conj(x): """ Reverse array `x` in all dimensions and perform the complex conjugate """ reverse = [slice(None, None, -1)] * x.ndim return x[reverse].conj() def _np_conv_ok(volume, kernel, mode): """ See if numpy supports convolution of `volume` and `kernel` (i.e. both are 1D ndarrays and of the appropriate shape). Numpy's 'same' mode uses the size of the larger input, while Scipy's uses the size of the first input. """ np_conv_ok = volume.ndim == kernel.ndim == 1 return np_conv_ok and (volume.size >= kernel.size or mode != 'same') def _timeit_fast(stmt="pass", setup="pass", repeat=3): """ Returns the time the statement/function took, in seconds. Faster, less precise version of IPython's timeit. `stmt` can be a statement written as a string or a callable. Will do only 1 loop (like IPython's timeit) with no repetitions (unlike IPython) for very slow functions. For fast functions, only does enough loops to take 5 ms, which seems to produce similar results (on Windows at least), and avoids doing an extraneous cycle that isn't measured. """ timer = timeit.Timer(stmt, setup) # determine number of calls per rep so total time for 1 rep >= 5 ms x = 0 for p in range(0, 10): number = 10**p x = timer.timeit(number) # seconds if x >= 5e-3 / 10: # 5 ms for final test, 1/10th that for this one break if x > 1: # second # If it's macroscopic, don't bother with repetitions best = x else: number *= 10 r = timer.repeat(repeat, number) best = min(r) sec = best / number return sec def choose_conv_method(in1, in2, mode='full', measure=False): """ Find the fastest convolution/correlation method. This primarily exists to be called during the ``method='auto'`` option in `convolve` and `correlate`, but can also be used when performing many convolutions of the same input shapes and dtypes, determining which method to use for all of them, either to avoid the overhead of the 'auto' option or to use accurate real-world measurements. Parameters ---------- in1 : array_like The first argument passed into the convolution function. in2 : array_like The second argument passed into the convolution function. mode : str {'full', 'valid', 'same'}, optional A string indicating the size of the output: ``full`` The output is the full discrete linear convolution of the inputs. (Default) ``valid`` The output consists only of those elements that do not rely on the zero-padding. ``same`` The output is the same size as `in1`, centered with respect to the 'full' output. measure : bool, optional If True, run and time the convolution of `in1` and `in2` with both methods and return the fastest. If False (default), predict the fastest method using precomputed values. Returns ------- method : str A string indicating which convolution method is fastest, either 'direct' or 'fft' times : dict, optional A dictionary containing the times (in seconds) needed for each method. This value is only returned if ``measure=True``. See Also -------- convolve correlate Notes ----- For large n, ``measure=False`` is accurate and can quickly determine the fastest method to perform the convolution. However, this is not as accurate for small n (when any dimension in the input or output is small). In practice, we found that this function estimates the faster method up to a multiplicative factor of 5 (i.e., the estimated method is *at most* 5 times slower than the fastest method). The estimation values were tuned on an early 2015 MacBook Pro with 8GB RAM but we found that the prediction held *fairly* accurately across different machines. If ``measure=True``, time the convolutions. Because this function uses `fftconvolve`, an error will be thrown if it does not support the inputs. There are cases when `fftconvolve` supports the inputs but this function returns `direct` (e.g., to protect against floating point integer precision). .. versionadded:: 0.19 Examples -------- Estimate the fastest method for a given input: >>> from scipy import signal >>> a = np.random.randn(1000) >>> b = np.random.randn(1000000) >>> method = signal.choose_conv_method(a, b, mode='same') >>> method 'fft' This can then be applied to other arrays of the same dtype and shape: >>> c = np.random.randn(1000) >>> d = np.random.randn(1000000) >>> # `method` works with correlate and convolve >>> corr1 = signal.correlate(a, b, mode='same', method=method) >>> corr2 = signal.correlate(c, d, mode='same', method=method) >>> conv1 = signal.convolve(a, b, mode='same', method=method) >>> conv2 = signal.convolve(c, d, mode='same', method=method) """ volume = asarray(in1) kernel = asarray(in2) if measure: times = {} for method in ['fft', 'direct']: times[method] = _timeit_fast(lambda: convolve(volume, kernel, mode=mode, method=method)) chosen_method = 'fft' if times['fft'] < times['direct'] else 'direct' return chosen_method, times # fftconvolve doesn't support complex256 fftconv_unsup = "complex256" if sys.maxsize > 2**32 else "complex192" if hasattr(np, fftconv_unsup): if volume.dtype == fftconv_unsup or kernel.dtype == fftconv_unsup: return 'direct' # for integer input, # catch when more precision required than float provides (representing an # integer as float can lose precision in fftconvolve if larger than 2**52) if any([_numeric_arrays([x], kinds='ui') for x in [volume, kernel]]): max_value = int(np.abs(volume).max()) * int(np.abs(kernel).max()) max_value *= int(min(volume.size, kernel.size)) if max_value > 2**np.finfo('float').nmant - 1: return 'direct' if _numeric_arrays([volume, kernel], kinds='b'): return 'direct' if _numeric_arrays([volume, kernel]): if _fftconv_faster(volume, kernel, mode): return 'fft' return 'direct' def convolve(in1, in2, mode='full', method='auto'): """ Convolve two N-dimensional arrays. Convolve `in1` and `in2`, with the output size determined by the `mode` argument. Parameters ---------- in1 : array_like First input. in2 : array_like Second input. Should have the same number of dimensions as `in1`. mode : str {'full', 'valid', 'same'}, optional A string indicating the size of the output: ``full`` The output is the full discrete linear convolution of the inputs. (Default) ``valid`` The output consists only of those elements that do not rely on the zero-padding. In 'valid' mode, either `in1` or `in2` must be at least as large as the other in every dimension. ``same`` The output is the same size as `in1`, centered with respect to the 'full' output. method : str {'auto', 'direct', 'fft'}, optional A string indicating which method to use to calculate the convolution. ``direct`` The convolution is determined directly from sums, the definition of convolution. ``fft`` The Fourier Transform is used to perform the convolution by calling `fftconvolve`. ``auto`` Automatically chooses direct or Fourier method based on an estimate of which is faster (default). See Notes for more detail. .. versionadded:: 0.19.0 Returns ------- convolve : array An N-dimensional array containing a subset of the discrete linear convolution of `in1` with `in2`. See Also -------- numpy.polymul : performs polynomial multiplication (same operation, but also accepts poly1d objects) choose_conv_method : chooses the fastest appropriate convolution method fftconvolve Notes ----- By default, `convolve` and `correlate` use ``method='auto'``, which calls `choose_conv_method` to choose the fastest method using pre-computed values (`choose_conv_method` can also measure real-world timing with a keyword argument). Because `fftconvolve` relies on floating point numbers, there are certain constraints that may force `method=direct` (more detail in `choose_conv_method` docstring). Examples -------- Smooth a square pulse using a Hann window: >>> from scipy import signal >>> sig = np.repeat([0., 1., 0.], 100) >>> win = signal.hann(50) >>> filtered = signal.convolve(sig, win, mode='same') / sum(win) >>> import matplotlib.pyplot as plt >>> fig, (ax_orig, ax_win, ax_filt) = plt.subplots(3, 1, sharex=True) >>> ax_orig.plot(sig) >>> ax_orig.set_title('Original pulse') >>> ax_orig.margins(0, 0.1) >>> ax_win.plot(win) >>> ax_win.set_title('Filter impulse response') >>> ax_win.margins(0, 0.1) >>> ax_filt.plot(filtered) >>> ax_filt.set_title('Filtered signal') >>> ax_filt.margins(0, 0.1) >>> fig.tight_layout() >>> fig.show() """ volume = asarray(in1) kernel = asarray(in2) if volume.ndim == kernel.ndim == 0: return volume * kernel if _inputs_swap_needed(mode, volume.shape, kernel.shape): # Convolution is commutative; order doesn't have any effect on output volume, kernel = kernel, volume if method == 'auto': method = choose_conv_method(volume, kernel, mode=mode) if method == 'fft': out = fftconvolve(volume, kernel, mode=mode) result_type = np.result_type(volume, kernel) if result_type.kind in {'u', 'i'}: out = np.around(out) return out.astype(result_type) # fastpath to faster numpy.convolve for 1d inputs when possible if _np_conv_ok(volume, kernel, mode): return np.convolve(volume, kernel, mode) return correlate(volume, _reverse_and_conj(kernel), mode, 'direct') def order_filter(a, domain, rank): """ Perform an order filter on an N-dimensional array. Perform an order filter on the array in. The domain argument acts as a mask centered over each pixel. The non-zero elements of domain are used to select elements surrounding each input pixel which are placed in a list. The list is sorted, and the output for that pixel is the element corresponding to rank in the sorted list. Parameters ---------- a : ndarray The N-dimensional input array. domain : array_like A mask array with the same number of dimensions as `a`. Each dimension should have an odd number of elements. rank : int A non-negative integer which selects the element from the sorted list (0 corresponds to the smallest element, 1 is the next smallest element, etc.). Returns ------- out : ndarray The results of the order filter in an array with the same shape as `a`. Examples -------- >>> from scipy import signal >>> x = np.arange(25).reshape(5, 5) >>> domain = np.identity(3) >>> x array([[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19], [20, 21, 22, 23, 24]]) >>> signal.order_filter(x, domain, 0) array([[ 0., 0., 0., 0., 0.], [ 0., 0., 1., 2., 0.], [ 0., 5., 6., 7., 0.], [ 0., 10., 11., 12., 0.], [ 0., 0., 0., 0., 0.]]) >>> signal.order_filter(x, domain, 2) array([[ 6., 7., 8., 9., 4.], [ 11., 12., 13., 14., 9.], [ 16., 17., 18., 19., 14.], [ 21., 22., 23., 24., 19.], [ 20., 21., 22., 23., 24.]]) """ domain = asarray(domain) size = domain.shape for k in range(len(size)): if (size[k] % 2) != 1: raise ValueError("Each dimension of domain argument " " should have an odd number of elements.") return sigtools._order_filterND(a, domain, rank) def medfilt(volume, kernel_size=None): """ Perform a median filter on an N-dimensional array. Apply a median filter to the input array using a local window-size given by `kernel_size`. Parameters ---------- volume : array_like An N-dimensional input array. kernel_size : array_like, optional A scalar or an N-length list giving the size of the median filter window in each dimension. Elements of `kernel_size` should be odd. If `kernel_size` is a scalar, then this scalar is used as the size in each dimension. Default size is 3 for each dimension. Returns ------- out : ndarray An array the same size as input containing the median filtered result. """ volume = atleast_1d(volume) if kernel_size is None: kernel_size = [3] * volume.ndim kernel_size = asarray(kernel_size) if kernel_size.shape == (): kernel_size = np.repeat(kernel_size.item(), volume.ndim) for k in range(volume.ndim): if (kernel_size[k] % 2) != 1: raise ValueError("Each element of kernel_size should be odd.") domain = ones(kernel_size) numels = product(kernel_size, axis=0) order = numels // 2 return sigtools._order_filterND(volume, domain, order) def wiener(im, mysize=None, noise=None): """ Perform a Wiener filter on an N-dimensional array. Apply a Wiener filter to the N-dimensional array `im`. Parameters ---------- im : ndarray An N-dimensional array. mysize : int or array_like, optional A scalar or an N-length list giving the size of the Wiener filter window in each dimension. Elements of mysize should be odd. If mysize is a scalar, then this scalar is used as the size in each dimension. noise : float, optional The noise-power to use. If None, then noise is estimated as the average of the local variance of the input. Returns ------- out : ndarray Wiener filtered result with the same shape as `im`. """ im = asarray(im) if mysize is None: mysize = [3] * im.ndim mysize = asarray(mysize) if mysize.shape == (): mysize = np.repeat(mysize.item(), im.ndim) # Estimate the local mean lMean = correlate(im, ones(mysize), 'same') / product(mysize, axis=0) # Estimate the local variance lVar = (correlate(im ** 2, ones(mysize), 'same') / product(mysize, axis=0) - lMean ** 2) # Estimate the noise power if needed. if noise is None: noise = mean(ravel(lVar), axis=0) res = (im - lMean) res *= (1 - noise / lVar) res += lMean out = where(lVar < noise, lMean, res) return out def convolve2d(in1, in2, mode='full', boundary='fill', fillvalue=0): """ Convolve two 2-dimensional arrays. Convolve `in1` and `in2` with output size determined by `mode`, and boundary conditions determined by `boundary` and `fillvalue`. Parameters ---------- in1 : array_like First input. in2 : array_like Second input. Should have the same number of dimensions as `in1`. If operating in 'valid' mode, either `in1` or `in2` must be at least as large as the other in every dimension. mode : str {'full', 'valid', 'same'}, optional A string indicating the size of the output: ``full`` The output is the full discrete linear convolution of the inputs. (Default) ``valid`` The output consists only of those elements that do not rely on the zero-padding. ``same`` The output is the same size as `in1`, centered with respect to the 'full' output. boundary : str {'fill', 'wrap', 'symm'}, optional A flag indicating how to handle boundaries: ``fill`` pad input arrays with fillvalue. (default) ``wrap`` circular boundary conditions. ``symm`` symmetrical boundary conditions. fillvalue : scalar, optional Value to fill pad input arrays with. Default is 0. Returns ------- out : ndarray A 2-dimensional array containing a subset of the discrete linear convolution of `in1` with `in2`. Examples -------- Compute the gradient of an image by 2D convolution with a complex Scharr operator. (Horizontal operator is real, vertical is imaginary.) Use symmetric boundary condition to avoid creating edges at the image boundaries. >>> from scipy import signal >>> from scipy import misc >>> ascent = misc.ascent() >>> scharr = np.array([[ -3-3j, 0-10j, +3 -3j], ... [-10+0j, 0+ 0j, +10 +0j], ... [ -3+3j, 0+10j, +3 +3j]]) # Gx + j*Gy >>> grad = signal.convolve2d(ascent, scharr, boundary='symm', mode='same') >>> import matplotlib.pyplot as plt >>> fig, (ax_orig, ax_mag, ax_ang) = plt.subplots(3, 1, figsize=(6, 15)) >>> ax_orig.imshow(ascent, cmap='gray') >>> ax_orig.set_title('Original') >>> ax_orig.set_axis_off() >>> ax_mag.imshow(np.absolute(grad), cmap='gray') >>> ax_mag.set_title('Gradient magnitude') >>> ax_mag.set_axis_off() >>> ax_ang.imshow(np.angle(grad), cmap='hsv') # hsv is cyclic, like angles >>> ax_ang.set_title('Gradient orientation') >>> ax_ang.set_axis_off() >>> fig.show() """ in1 = asarray(in1) in2 = asarray(in2) if not in1.ndim == in2.ndim == 2: raise ValueError('convolve2d inputs must both be 2D arrays') if _inputs_swap_needed(mode, in1.shape, in2.shape): in1, in2 = in2, in1 val = _valfrommode(mode) bval = _bvalfromboundary(boundary) out = sigtools._convolve2d(in1, in2, 1, val, bval, fillvalue) return out def correlate2d(in1, in2, mode='full', boundary='fill', fillvalue=0): """ Cross-correlate two 2-dimensional arrays. Cross correlate `in1` and `in2` with output size determined by `mode`, and boundary conditions determined by `boundary` and `fillvalue`. Parameters ---------- in1 : array_like First input. in2 : array_like Second input. Should have the same number of dimensions as `in1`. If operating in 'valid' mode, either `in1` or `in2` must be at least as large as the other in every dimension. mode : str {'full', 'valid', 'same'}, optional A string indicating the size of the output: ``full`` The output is the full discrete linear cross-correlation of the inputs. (Default) ``valid`` The output consists only of those elements that do not rely on the zero-padding. ``same`` The output is the same size as `in1`, centered with respect to the 'full' output. boundary : str {'fill', 'wrap', 'symm'}, optional A flag indicating how to handle boundaries: ``fill`` pad input arrays with fillvalue. (default) ``wrap`` circular boundary conditions. ``symm`` symmetrical boundary conditions. fillvalue : scalar, optional Value to fill pad input arrays with. Default is 0. Returns ------- correlate2d : ndarray A 2-dimensional array containing a subset of the discrete linear cross-correlation of `in1` with `in2`. Examples -------- Use 2D cross-correlation to find the location of a template in a noisy image: >>> from scipy import signal >>> from scipy import misc >>> face = misc.face(gray=True) - misc.face(gray=True).mean() >>> template = np.copy(face[300:365, 670:750]) # right eye >>> template -= template.mean() >>> face = face + np.random.randn(*face.shape) * 50 # add noise >>> corr = signal.correlate2d(face, template, boundary='symm', mode='same') >>> y, x = np.unravel_index(np.argmax(corr), corr.shape) # find the match >>> import matplotlib.pyplot as plt >>> fig, (ax_orig, ax_template, ax_corr) = plt.subplots(3, 1, ... figsize=(6, 15)) >>> ax_orig.imshow(face, cmap='gray') >>> ax_orig.set_title('Original') >>> ax_orig.set_axis_off() >>> ax_template.imshow(template, cmap='gray') >>> ax_template.set_title('Template') >>> ax_template.set_axis_off() >>> ax_corr.imshow(corr, cmap='gray') >>> ax_corr.set_title('Cross-correlation') >>> ax_corr.set_axis_off() >>> ax_orig.plot(x, y, 'ro') >>> fig.show() """ in1 = asarray(in1) in2 = asarray(in2) if not in1.ndim == in2.ndim == 2: raise ValueError('correlate2d inputs must both be 2D arrays') swapped_inputs = _inputs_swap_needed(mode, in1.shape, in2.shape) if swapped_inputs: in1, in2 = in2, in1 val = _valfrommode(mode) bval = _bvalfromboundary(boundary) out = sigtools._convolve2d(in1, in2, 0, val, bval, fillvalue) if swapped_inputs: out = out[::-1, ::-1] return out def medfilt2d(input, kernel_size=3): """ Median filter a 2-dimensional array. Apply a median filter to the `input` array using a local window-size given by `kernel_size` (must be odd). Parameters ---------- input : array_like A 2-dimensional input array. kernel_size : array_like, optional A scalar or a list of length 2, giving the size of the median filter window in each dimension. Elements of `kernel_size` should be odd. If `kernel_size` is a scalar, then this scalar is used as the size in each dimension. Default is a kernel of size (3, 3). Returns ------- out : ndarray An array the same size as input containing the median filtered result. """ image = asarray(input) if kernel_size is None: kernel_size = [3] * 2 kernel_size = asarray(kernel_size) if kernel_size.shape == (): kernel_size = np.repeat(kernel_size.item(), 2) for size in kernel_size: if (size % 2) != 1: raise ValueError("Each element of kernel_size should be odd.") return sigtools._medfilt2d(image, kernel_size) def lfilter(b, a, x, axis=-1, zi=None): """ Filter data along one-dimension with an IIR or FIR filter. Filter a data sequence, `x`, using a digital filter. This works for many fundamental data types (including Object type). The filter is a direct form II transposed implementation of the standard difference equation (see Notes). Parameters ---------- b : array_like The numerator coefficient vector in a 1-D sequence. a : array_like The denominator coefficient vector in a 1-D sequence. If ``a[0]`` is not 1, then both `a` and `b` are normalized by ``a[0]``. x : array_like An N-dimensional input array. axis : int, optional The axis of the input data array along which to apply the linear filter. The filter is applied to each subarray along this axis. Default is -1. zi : array_like, optional Initial conditions for the filter delays. It is a vector (or array of vectors for an N-dimensional input) of length ``max(len(a), len(b)) - 1``. If `zi` is None or is not given then initial rest is assumed. See `lfiltic` for more information. Returns ------- y : array The output of the digital filter. zf : array, optional If `zi` is None, this is not returned, otherwise, `zf` holds the final filter delay values. See Also -------- lfiltic : Construct initial conditions for `lfilter`. lfilter_zi : Compute initial state (steady state of step response) for `lfilter`. filtfilt : A forward-backward filter, to obtain a filter with linear phase. savgol_filter : A Savitzky-Golay filter. sosfilt: Filter data using cascaded second-order sections. sosfiltfilt: A forward-backward filter using second-order sections. Notes ----- The filter function is implemented as a direct II transposed structure. This means that the filter implements:: a[0]*y[n] = b[0]*x[n] + b[1]*x[n-1] + ... + b[M]*x[n-M] - a[1]*y[n-1] - ... - a[N]*y[n-N] where `M` is the degree of the numerator, `N` is the degree of the denominator, and `n` is the sample number. It is implemented using the following difference equations (assuming M = N):: a[0]*y[n] = b[0] * x[n] + d[0][n-1] d[0][n] = b[1] * x[n] - a[1] * y[n] + d[1][n-1] d[1][n] = b[2] * x[n] - a[2] * y[n] + d[2][n-1] ... d[N-2][n] = b[N-1]*x[n] - a[N-1]*y[n] + d[N-1][n-1] d[N-1][n] = b[N] * x[n] - a[N] * y[n] where `d` are the state variables. The rational transfer function describing this filter in the z-transform domain is:: -1 -M b[0] + b[1]z + ... + b[M] z Y(z) = -------------------------------- X(z) -1 -N a[0] + a[1]z + ... + a[N] z Examples -------- Generate a noisy signal to be filtered: >>> from scipy import signal >>> import matplotlib.pyplot as plt >>> t = np.linspace(-1, 1, 201) >>> x = (np.sin(2*np.pi*0.75*t*(1-t) + 2.1) + ... 0.1*np.sin(2*np.pi*1.25*t + 1) + ... 0.18*np.cos(2*np.pi*3.85*t)) >>> xn = x + np.random.randn(len(t)) * 0.08 Create an order 3 lowpass butterworth filter: >>> b, a = signal.butter(3, 0.05) Apply the filter to xn. Use lfilter_zi to choose the initial condition of the filter: >>> zi = signal.lfilter_zi(b, a) >>> z, _ = signal.lfilter(b, a, xn, zi=zi*xn[0]) Apply the filter again, to have a result filtered at an order the same as filtfilt: >>> z2, _ = signal.lfilter(b, a, z, zi=zi*z[0]) Use filtfilt to apply the filter: >>> y = signal.filtfilt(b, a, xn) Plot the original signal and the various filtered versions: >>> plt.figure >>> plt.plot(t, xn, 'b', alpha=0.75) >>> plt.plot(t, z, 'r--', t, z2, 'r', t, y, 'k') >>> plt.legend(('noisy signal', 'lfilter, once', 'lfilter, twice', ... 'filtfilt'), loc='best') >>> plt.grid(True) >>> plt.show() """ a = np.atleast_1d(a) if len(a) == 1: # This path only supports types fdgFDGO to mirror _linear_filter below. # Any of b, a, x, or zi can set the dtype, but there is no default # casting of other types; instead a NotImplementedError is raised. b = np.asarray(b) a = np.asarray(a) if b.ndim != 1 and a.ndim != 1: raise ValueError('object of too small depth for desired array') x = np.asarray(x) inputs = [b, a, x] if zi is not None: # _linear_filter does not broadcast zi, but does do expansion of # singleton dims. zi = np.asarray(zi) if zi.ndim != x.ndim: raise ValueError('object of too small depth for desired array') expected_shape = list(x.shape) expected_shape[axis] = b.shape[0] - 1 expected_shape = tuple(expected_shape) # check the trivial case where zi is the right shape first if zi.shape != expected_shape: strides = zi.ndim * [None] if axis < 0: axis += zi.ndim for k in range(zi.ndim): if k == axis and zi.shape[k] == expected_shape[k]: strides[k] = zi.strides[k] elif k != axis and zi.shape[k] == expected_shape[k]: strides[k] = zi.strides[k] elif k != axis and zi.shape[k] == 1: strides[k] = 0 else: raise ValueError('Unexpected shape for zi: expected ' '%s, found %s.' % (expected_shape, zi.shape)) zi = np.lib.stride_tricks.as_strided(zi, expected_shape, strides) inputs.append(zi) dtype = np.result_type(*inputs) if dtype.char not in 'fdgFDGO': raise NotImplementedError("input type '%s' not supported" % dtype) b = np.array(b, dtype=dtype) a = np.array(a, dtype=dtype, copy=False) b /= a[0] x = np.array(x, dtype=dtype, copy=False) out_full = np.apply_along_axis(lambda y: np.convolve(b, y), axis, x) ind = out_full.ndim * [slice(None)] if zi is not None: ind[axis] = slice(zi.shape[axis]) out_full[ind] += zi ind[axis] = slice(out_full.shape[axis] - len(b) + 1) out = out_full[ind] if zi is None: return out else: ind[axis] = slice(out_full.shape[axis] - len(b) + 1, None) zf = out_full[ind] return out, zf else: if zi is None: return sigtools._linear_filter(b, a, x, axis) else: return sigtools._linear_filter(b, a, x, axis, zi) def lfiltic(b, a, y, x=None): """ Construct initial conditions for lfilter given input and output vectors. Given a linear filter (b, a) and initial conditions on the output `y` and the input `x`, return the initial conditions on the state vector zi which is used by `lfilter` to generate the output given the input. Parameters ---------- b : array_like Linear filter term. a : array_like Linear filter term. y : array_like Initial conditions. If ``N = len(a) - 1``, then ``y = {y[-1], y[-2], ..., y[-N]}``. If `y` is too short, it is padded with zeros. x : array_like, optional Initial conditions. If ``M = len(b) - 1``, then ``x = {x[-1], x[-2], ..., x[-M]}``. If `x` is not given, its initial conditions are assumed zero. If `x` is too short, it is padded with zeros. Returns ------- zi : ndarray The state vector ``zi = {z_0[-1], z_1[-1], ..., z_K-1[-1]}``, where ``K = max(M, N)``. See Also -------- lfilter, lfilter_zi """ N = np.size(a) - 1 M = np.size(b) - 1 K = max(M, N) y = asarray(y) if y.dtype.kind in 'bui': # ensure calculations are floating point y = y.astype(np.float64) zi = zeros(K, y.dtype) if x is None: x = zeros(M, y.dtype) else: x = asarray(x) L = np.size(x) if L < M: x = r_[x, zeros(M - L)] L = np.size(y) if L < N: y = r_[y, zeros(N - L)] for m in range(M): zi[m] = np.sum(b[m + 1:] * x[:M - m], axis=0) for m in range(N): zi[m] -= np.sum(a[m + 1:] * y[:N - m], axis=0) return zi def deconvolve(signal, divisor): """Deconvolves ``divisor`` out of ``signal`` using inverse filtering. Returns the quotient and remainder such that ``signal = convolve(divisor, quotient) + remainder`` Parameters ---------- signal : array_like Signal data, typically a recorded signal divisor : array_like Divisor data, typically an impulse response or filter that was applied to the original signal Returns ------- quotient : ndarray Quotient, typically the recovered original signal remainder : ndarray Remainder Examples -------- Deconvolve a signal that's been filtered: >>> from scipy import signal >>> original = [0, 1, 0, 0, 1, 1, 0, 0] >>> impulse_response = [2, 1] >>> recorded = signal.convolve(impulse_response, original) >>> recorded array([0, 2, 1, 0, 2, 3, 1, 0, 0]) >>> recovered, remainder = signal.deconvolve(recorded, impulse_response) >>> recovered array([ 0., 1., 0., 0., 1., 1., 0., 0.]) See Also -------- numpy.polydiv : performs polynomial division (same operation, but also accepts poly1d objects) """ num = atleast_1d(signal) den = atleast_1d(divisor) N = len(num) D = len(den) if D > N: quot = [] rem = num else: input = zeros(N - D + 1, float) input[0] = 1 quot = lfilter(num, den, input) rem = num - convolve(den, quot, mode='full') return quot, rem def hilbert(x, N=None, axis=-1): """ Compute the analytic signal, using the Hilbert transform. The transformation is done along the last axis by default. Parameters ---------- x : array_like Signal data. Must be real. N : int, optional Number of Fourier components. Default: ``x.shape[axis]`` axis : int, optional Axis along which to do the transformation. Default: -1. Returns ------- xa : ndarray Analytic signal of `x`, of each 1-D array along `axis` See Also -------- scipy.fftpack.hilbert : Return Hilbert transform of a periodic sequence x. Notes ----- The analytic signal ``x_a(t)`` of signal ``x(t)`` is: .. math:: x_a = F^{-1}(F(x) 2U) = x + i y where `F` is the Fourier transform, `U` the unit step function, and `y` the Hilbert transform of `x`. [1]_ In other words, the negative half of the frequency spectrum is zeroed out, turning the real-valued signal into a complex signal. The Hilbert transformed signal can be obtained from ``np.imag(hilbert(x))``, and the original signal from ``np.real(hilbert(x))``. Examples --------- In this example we use the Hilbert transform to determine the amplitude envelope and instantaneous frequency of an amplitude-modulated signal. >>> import numpy as np >>> import matplotlib.pyplot as plt >>> from scipy.signal import hilbert, chirp >>> duration = 1.0 >>> fs = 400.0 >>> samples = int(fs*duration) >>> t = np.arange(samples) / fs We create a chirp of which the frequency increases from 20 Hz to 100 Hz and apply an amplitude modulation. >>> signal = chirp(t, 20.0, t[-1], 100.0) >>> signal *= (1.0 + 0.5 * np.sin(2.0*np.pi*3.0*t) ) The amplitude envelope is given by magnitude of the analytic signal. The instantaneous frequency can be obtained by differentiating the instantaneous phase in respect to time. The instantaneous phase corresponds to the phase angle of the analytic signal. >>> analytic_signal = hilbert(signal) >>> amplitude_envelope = np.abs(analytic_signal) >>> instantaneous_phase = np.unwrap(np.angle(analytic_signal)) >>> instantaneous_frequency = (np.diff(instantaneous_phase) / ... (2.0*np.pi) * fs) >>> fig = plt.figure() >>> ax0 = fig.add_subplot(211) >>> ax0.plot(t, signal, label='signal') >>> ax0.plot(t, amplitude_envelope, label='envelope') >>> ax0.set_xlabel("time in seconds") >>> ax0.legend() >>> ax1 = fig.add_subplot(212) >>> ax1.plot(t[1:], instantaneous_frequency) >>> ax1.set_xlabel("time in seconds") >>> ax1.set_ylim(0.0, 120.0) References ---------- .. [1] Wikipedia, "Analytic signal". http://en.wikipedia.org/wiki/Analytic_signal .. [2] Leon Cohen, "Time-Frequency Analysis", 1995. Chapter 2. .. [3] Alan V. Oppenheim, Ronald W. Schafer. Discrete-Time Signal Processing, Third Edition, 2009. Chapter 12. ISBN 13: 978-1292-02572-8 """ x = asarray(x) if iscomplexobj(x): raise ValueError("x must be real.") if N is None: N = x.shape[axis] if N <= 0: raise ValueError("N must be positive.") Xf = fftpack.fft(x, N, axis=axis) h = zeros(N) if N % 2 == 0: h[0] = h[N // 2] = 1 h[1:N // 2] = 2 else: h[0] = 1 h[1:(N + 1) // 2] = 2 if x.ndim > 1: ind = [newaxis] * x.ndim ind[axis] = slice(None) h = h[ind] x = fftpack.ifft(Xf * h, axis=axis) return x def hilbert2(x, N=None): """ Compute the '2-D' analytic signal of `x` Parameters ---------- x : array_like 2-D signal data. N : int or tuple of two ints, optional Number of Fourier components. Default is ``x.shape`` Returns ------- xa : ndarray Analytic signal of `x` taken along axes (0,1). References ---------- .. [1] Wikipedia, "Analytic signal", http://en.wikipedia.org/wiki/Analytic_signal """ x = atleast_2d(x) if x.ndim > 2: raise ValueError("x must be 2-D.") if iscomplexobj(x): raise ValueError("x must be real.") if N is None: N = x.shape elif isinstance(N, int): if N <= 0: raise ValueError("N must be positive.") N = (N, N) elif len(N) != 2 or np.any(np.asarray(N) <= 0): raise ValueError("When given as a tuple, N must hold exactly " "two positive integers") Xf = fftpack.fft2(x, N, axes=(0, 1)) h1 = zeros(N[0], 'd') h2 = zeros(N[1], 'd') for p in range(2): h = eval("h%d" % (p + 1)) N1 = N[p] if N1 % 2 == 0: h[0] = h[N1 // 2] = 1 h[1:N1 // 2] = 2 else: h[0] = 1 h[1:(N1 + 1) // 2] = 2 exec("h%d = h" % (p + 1), globals(), locals()) h = h1[:, newaxis] * h2[newaxis, :] k = x.ndim while k > 2: h = h[:, newaxis] k -= 1 x = fftpack.ifft2(Xf * h, axes=(0, 1)) return x def cmplx_sort(p): """Sort roots based on magnitude. Parameters ---------- p : array_like The roots to sort, as a 1-D array. Returns ------- p_sorted : ndarray Sorted roots. indx : ndarray Array of indices needed to sort the input `p`. """ p = asarray(p) if iscomplexobj(p): indx = argsort(abs(p)) else: indx = argsort(p) return take(p, indx, 0), indx def unique_roots(p, tol=1e-3, rtype='min'): """ Determine unique roots and their multiplicities from a list of roots. Parameters ---------- p : array_like The list of roots. tol : float, optional The tolerance for two roots to be considered equal. Default is 1e-3. rtype : {'max', 'min, 'avg'}, optional How to determine the returned root if multiple roots are within `tol` of each other. - 'max': pick the maximum of those roots. - 'min': pick the minimum of those roots. - 'avg': take the average of those roots. Returns ------- pout : ndarray The list of unique roots, sorted from low to high. mult : ndarray The multiplicity of each root. Notes ----- This utility function is not specific to roots but can be used for any sequence of values for which uniqueness and multiplicity has to be determined. For a more general routine, see `numpy.unique`. Examples -------- >>> from scipy import signal >>> vals = [0, 1.3, 1.31, 2.8, 1.25, 2.2, 10.3] >>> uniq, mult = signal.unique_roots(vals, tol=2e-2, rtype='avg') Check which roots have multiplicity larger than 1: >>> uniq[mult > 1] array([ 1.305]) """ if rtype in ['max', 'maximum']: comproot = np.max elif rtype in ['min', 'minimum']: comproot = np.min elif rtype in ['avg', 'mean']: comproot = np.mean else: raise ValueError("`rtype` must be one of " "{'max', 'maximum', 'min', 'minimum', 'avg', 'mean'}") p = asarray(p) * 1.0 tol = abs(tol) p, indx = cmplx_sort(p) pout = [] mult = [] indx = -1 curp = p[0] + 5 * tol sameroots = [] for k in range(len(p)): tr = p[k] if abs(tr - curp) < tol: sameroots.append(tr) curp = comproot(sameroots) pout[indx] = curp mult[indx] += 1 else: pout.append(tr) curp = tr sameroots = [tr] indx += 1 mult.append(1) return array(pout), array(mult) def invres(r, p, k, tol=1e-3, rtype='avg'): """ Compute b(s) and a(s) from partial fraction expansion. If `M` is the degree of numerator `b` and `N` the degree of denominator `a`:: b(s) b[0] s**(M) + b[1] s**(M-1) + ... + b[M] H(s) = ------ = ------------------------------------------ a(s) a[0] s**(N) + a[1] s**(N-1) + ... + a[N] then the partial-fraction expansion H(s) is defined as:: r[0] r[1] r[-1] = -------- + -------- + ... + --------- + k(s) (s-p[0]) (s-p[1]) (s-p[-1]) If there are any repeated roots (closer together than `tol`), then H(s) has terms like:: r[i] r[i+1] r[i+n-1] -------- + ----------- + ... + ----------- (s-p[i]) (s-p[i])**2 (s-p[i])**n This function is used for polynomials in positive powers of s or z, such as analog filters or digital filters in controls engineering. For negative powers of z (typical for digital filters in DSP), use `invresz`. Parameters ---------- r : array_like Residues. p : array_like Poles. k : array_like Coefficients of the direct polynomial term. tol : float, optional The tolerance for two roots to be considered equal. Default is 1e-3. rtype : {'max', 'min, 'avg'}, optional How to determine the returned root if multiple roots are within `tol` of each other. - 'max': pick the maximum of those roots. - 'min': pick the minimum of those roots. - 'avg': take the average of those roots. Returns ------- b : ndarray Numerator polynomial coefficients. a : ndarray Denominator polynomial coefficients. See Also -------- residue, invresz, unique_roots """ extra = k p, indx = cmplx_sort(p) r = take(r, indx, 0) pout, mult = unique_roots(p, tol=tol, rtype=rtype) p = [] for k in range(len(pout)): p.extend([pout[k]] * mult[k]) a = atleast_1d(poly(p)) if len(extra) > 0: b = polymul(extra, a) else: b = [0] indx = 0 for k in range(len(pout)): temp = [] for l in range(len(pout)): if l != k: temp.extend([pout[l]] * mult[l]) for m in range(mult[k]): t2 = temp[:] t2.extend([pout[k]] * (mult[k] - m - 1)) b = polyadd(b, r[indx] * atleast_1d(poly(t2))) indx += 1 b = real_if_close(b) while allclose(b[0], 0, rtol=1e-14) and (b.shape[-1] > 1): b = b[1:] return b, a def residue(b, a, tol=1e-3, rtype='avg'): """ Compute partial-fraction expansion of b(s) / a(s). If `M` is the degree of numerator `b` and `N` the degree of denominator `a`:: b(s) b[0] s**(M) + b[1] s**(M-1) + ... + b[M] H(s) = ------ = ------------------------------------------ a(s) a[0] s**(N) + a[1] s**(N-1) + ... + a[N] then the partial-fraction expansion H(s) is defined as:: r[0] r[1] r[-1] = -------- + -------- + ... + --------- + k(s) (s-p[0]) (s-p[1]) (s-p[-1]) If there are any repeated roots (closer together than `tol`), then H(s) has terms like:: r[i] r[i+1] r[i+n-1] -------- + ----------- + ... + ----------- (s-p[i]) (s-p[i])**2 (s-p[i])**n This function is used for polynomials in positive powers of s or z, such as analog filters or digital filters in controls engineering. For negative powers of z (typical for digital filters in DSP), use `residuez`. Parameters ---------- b : array_like Numerator polynomial coefficients. a : array_like Denominator polynomial coefficients. Returns ------- r : ndarray Residues. p : ndarray Poles. k : ndarray Coefficients of the direct polynomial term. See Also -------- invres, residuez, numpy.poly, unique_roots """ b, a = map(asarray, (b, a)) rscale = a[0] k, b = polydiv(b, a) p = roots(a) r = p * 0.0 pout, mult = unique_roots(p, tol=tol, rtype=rtype) p = [] for n in range(len(pout)): p.extend([pout[n]] * mult[n]) p = asarray(p) # Compute the residue from the general formula indx = 0 for n in range(len(pout)): bn = b.copy() pn = [] for l in range(len(pout)): if l != n: pn.extend([pout[l]] * mult[l]) an = atleast_1d(poly(pn)) # bn(s) / an(s) is (s-po[n])**Nn * b(s) / a(s) where Nn is # multiplicity of pole at po[n] sig = mult[n] for m in range(sig, 0, -1): if sig > m: # compute next derivative of bn(s) / an(s) term1 = polymul(polyder(bn, 1), an) term2 = polymul(bn, polyder(an, 1)) bn = polysub(term1, term2) an = polymul(an, an) r[indx + m - 1] = (polyval(bn, pout[n]) / polyval(an, pout[n]) / factorial(sig - m)) indx += sig return r / rscale, p, k def residuez(b, a, tol=1e-3, rtype='avg'): """ Compute partial-fraction expansion of b(z) / a(z). If `M` is the degree of numerator `b` and `N` the degree of denominator `a`:: b(z) b[0] + b[1] z**(-1) + ... + b[M] z**(-M) H(z) = ------ = ------------------------------------------ a(z) a[0] + a[1] z**(-1) + ... + a[N] z**(-N) then the partial-fraction expansion H(z) is defined as:: r[0] r[-1] = --------------- + ... + ---------------- + k[0] + k[1]z**(-1) ... (1-p[0]z**(-1)) (1-p[-1]z**(-1)) If there are any repeated roots (closer than `tol`), then the partial fraction expansion has terms like:: r[i] r[i+1] r[i+n-1] -------------- + ------------------ + ... + ------------------ (1-p[i]z**(-1)) (1-p[i]z**(-1))**2 (1-p[i]z**(-1))**n This function is used for polynomials in negative powers of z, such as digital filters in DSP. For positive powers, use `residue`. Parameters ---------- b : array_like Numerator polynomial coefficients. a : array_like Denominator polynomial coefficients. Returns ------- r : ndarray Residues. p : ndarray Poles. k : ndarray Coefficients of the direct polynomial term. See Also -------- invresz, residue, unique_roots """ b, a = map(asarray, (b, a)) gain = a[0] brev, arev = b[::-1], a[::-1] krev, brev = polydiv(brev, arev) if krev == []: k = [] else: k = krev[::-1] b = brev[::-1] p = roots(a) r = p * 0.0 pout, mult = unique_roots(p, tol=tol, rtype=rtype) p = [] for n in range(len(pout)): p.extend([pout[n]] * mult[n]) p = asarray(p) # Compute the residue from the general formula (for discrete-time) # the polynomial is in z**(-1) and the multiplication is by terms # like this (1-p[i] z**(-1))**mult[i]. After differentiation, # we must divide by (-p[i])**(m-k) as well as (m-k)! indx = 0 for n in range(len(pout)): bn = brev.copy() pn = [] for l in range(len(pout)): if l != n: pn.extend([pout[l]] * mult[l]) an = atleast_1d(poly(pn))[::-1] # bn(z) / an(z) is (1-po[n] z**(-1))**Nn * b(z) / a(z) where Nn is # multiplicity of pole at po[n] and b(z) and a(z) are polynomials. sig = mult[n] for m in range(sig, 0, -1): if sig > m: # compute next derivative of bn(s) / an(s) term1 = polymul(polyder(bn, 1), an) term2 = polymul(bn, polyder(an, 1)) bn = polysub(term1, term2) an = polymul(an, an) r[indx + m - 1] = (polyval(bn, 1.0 / pout[n]) / polyval(an, 1.0 / pout[n]) / factorial(sig - m) / (-pout[n]) ** (sig - m)) indx += sig return r / gain, p, k def invresz(r, p, k, tol=1e-3, rtype='avg'): """ Compute b(z) and a(z) from partial fraction expansion. If `M` is the degree of numerator `b` and `N` the degree of denominator `a`:: b(z) b[0] + b[1] z**(-1) + ... + b[M] z**(-M) H(z) = ------ = ------------------------------------------ a(z) a[0] + a[1] z**(-1) + ... + a[N] z**(-N) then the partial-fraction expansion H(z) is defined as:: r[0] r[-1] = --------------- + ... + ---------------- + k[0] + k[1]z**(-1) ... (1-p[0]z**(-1)) (1-p[-1]z**(-1)) If there are any repeated roots (closer than `tol`), then the partial fraction expansion has terms like:: r[i] r[i+1] r[i+n-1] -------------- + ------------------ + ... + ------------------ (1-p[i]z**(-1)) (1-p[i]z**(-1))**2 (1-p[i]z**(-1))**n This function is used for polynomials in negative powers of z, such as digital filters in DSP. For positive powers, use `invres`. Parameters ---------- r : array_like Residues. p : array_like Poles. k : array_like Coefficients of the direct polynomial term. tol : float, optional The tolerance for two roots to be considered equal. Default is 1e-3. rtype : {'max', 'min, 'avg'}, optional How to determine the returned root if multiple roots are within `tol` of each other. - 'max': pick the maximum of those roots. - 'min': pick the minimum of those roots. - 'avg': take the average of those roots. Returns ------- b : ndarray Numerator polynomial coefficients. a : ndarray Denominator polynomial coefficients. See Also -------- residuez, unique_roots, invres """ extra = asarray(k) p, indx = cmplx_sort(p) r = take(r, indx, 0) pout, mult = unique_roots(p, tol=tol, rtype=rtype) p = [] for k in range(len(pout)): p.extend([pout[k]] * mult[k]) a = atleast_1d(poly(p)) if len(extra) > 0: b = polymul(extra, a) else: b = [0] indx = 0 brev = asarray(b)[::-1] for k in range(len(pout)): temp = [] # Construct polynomial which does not include any of this root for l in range(len(pout)): if l != k: temp.extend([pout[l]] * mult[l]) for m in range(mult[k]): t2 = temp[:] t2.extend([pout[k]] * (mult[k] - m - 1)) brev = polyadd(brev, (r[indx] * atleast_1d(poly(t2)))[::-1]) indx += 1 b = real_if_close(brev[::-1]) return b, a def resample(x, num, t=None, axis=0, window=None): """ Resample `x` to `num` samples using Fourier method along the given axis. The resampled signal starts at the same value as `x` but is sampled with a spacing of ``len(x) / num * (spacing of x)``. Because a Fourier method is used, the signal is assumed to be periodic. Parameters ---------- x : array_like The data to be resampled. num : int The number of samples in the resampled signal. t : array_like, optional If `t` is given, it is assumed to be the sample positions associated with the signal data in `x`. axis : int, optional The axis of `x` that is resampled. Default is 0. window : array_like, callable, string, float, or tuple, optional Specifies the window applied to the signal in the Fourier domain. See below for details. Returns ------- resampled_x or (resampled_x, resampled_t) Either the resampled array, or, if `t` was given, a tuple containing the resampled array and the corresponding resampled positions. See Also -------- decimate : Downsample the signal after applying an FIR or IIR filter. resample_poly : Resample using polyphase filtering and an FIR filter. Notes ----- The argument `window` controls a Fourier-domain window that tapers the Fourier spectrum before zero-padding to alleviate ringing in the resampled values for sampled signals you didn't intend to be interpreted as band-limited. If `window` is a function, then it is called with a vector of inputs indicating the frequency bins (i.e. fftfreq(x.shape[axis]) ). If `window` is an array of the same length as `x.shape[axis]` it is assumed to be the window to be applied directly in the Fourier domain (with dc and low-frequency first). For any other type of `window`, the function `scipy.signal.get_window` is called to generate the window. The first sample of the returned vector is the same as the first sample of the input vector. The spacing between samples is changed from ``dx`` to ``dx * len(x) / num``. If `t` is not None, then it represents the old sample positions, and the new sample positions will be returned as well as the new samples. As noted, `resample` uses FFT transformations, which can be very slow if the number of input or output samples is large and prime; see `scipy.fftpack.fft`. Examples -------- Note that the end of the resampled data rises to meet the first sample of the next cycle: >>> from scipy import signal >>> x = np.linspace(0, 10, 20, endpoint=False) >>> y = np.cos(-x**2/6.0) >>> f = signal.resample(y, 100) >>> xnew = np.linspace(0, 10, 100, endpoint=False) >>> import matplotlib.pyplot as plt >>> plt.plot(x, y, 'go-', xnew, f, '.-', 10, y[0], 'ro') >>> plt.legend(['data', 'resampled'], loc='best') >>> plt.show() """ x = asarray(x) X = fftpack.fft(x, axis=axis) Nx = x.shape[axis] if window is not None: if callable(window): W = window(fftpack.fftfreq(Nx)) elif isinstance(window, ndarray): if window.shape != (Nx,): raise ValueError('window must have the same length as data') W = window else: W = fftpack.ifftshift(get_window(window, Nx)) newshape = [1] * x.ndim newshape[axis] = len(W) W.shape = newshape X = X * W W.shape = (Nx,) sl = [slice(None)] * x.ndim newshape = list(x.shape) newshape[axis] = num N = int(np.minimum(num, Nx)) Y = zeros(newshape, 'D') sl[axis] = slice(0, (N + 1) // 2) Y[sl] = X[sl] sl[axis] = slice(-(N - 1) // 2, None) Y[sl] = X[sl] if N % 2 == 0: # special treatment if low number of points is even. So far we have set Y[-N/2]=X[-N/2] if N < Nx: # if downsampling sl[axis] = slice(N//2,N//2+1,None) # select the component at frequency N/2 Y[sl] += X[sl] # add the component of X at N/2 elif N < num: # if upsampling sl[axis] = slice(num-N//2,num-N//2+1,None) # select the component at frequency -N/2 Y[sl] /= 2 # halve the component at -N/2 temp = Y[sl] sl[axis] = slice(N//2,N//2+1,None) # select the component at +N/2 Y[sl] = temp # set that equal to the component at -N/2 y = fftpack.ifft(Y, axis=axis) * (float(num) / float(Nx)) if x.dtype.char not in ['F', 'D']: y = y.real if t is None: return y else: new_t = arange(0, num) * (t[1] - t[0]) * Nx / float(num) + t[0] return y, new_t def resample_poly(x, up, down, axis=0, window=('kaiser', 5.0)): """ Resample `x` along the given axis using polyphase filtering. The signal `x` is upsampled by the factor `up`, a zero-phase low-pass FIR filter is applied, and then it is downsampled by the factor `down`. The resulting sample rate is ``up / down`` times the original sample rate. Values beyond the boundary of the signal are assumed to be zero during the filtering step. Parameters ---------- x : array_like The data to be resampled. up : int The upsampling factor. down : int The downsampling factor. axis : int, optional The axis of `x` that is resampled. Default is 0. window : string, tuple, or array_like, optional Desired window to use to design the low-pass filter, or the FIR filter coefficients to employ. See below for details. Returns ------- resampled_x : array The resampled array. See Also -------- decimate : Downsample the signal after applying an FIR or IIR filter. resample : Resample up or down using the FFT method. Notes ----- This polyphase method will likely be faster than the Fourier method in `scipy.signal.resample` when the number of samples is large and prime, or when the number of samples is large and `up` and `down` share a large greatest common denominator. The length of the FIR filter used will depend on ``max(up, down) // gcd(up, down)``, and the number of operations during polyphase filtering will depend on the filter length and `down` (see `scipy.signal.upfirdn` for details). The argument `window` specifies the FIR low-pass filter design. If `window` is an array_like it is assumed to be the FIR filter coefficients. Note that the FIR filter is applied after the upsampling step, so it should be designed to operate on a signal at a sampling frequency higher than the original by a factor of `up//gcd(up, down)`. This function's output will be centered with respect to this array, so it is best to pass a symmetric filter with an odd number of samples if, as is usually the case, a zero-phase filter is desired. For any other type of `window`, the functions `scipy.signal.get_window` and `scipy.signal.firwin` are called to generate the appropriate filter coefficients. The first sample of the returned vector is the same as the first sample of the input vector. The spacing between samples is changed from ``dx`` to ``dx * down / float(up)``. Examples -------- Note that the end of the resampled data rises to meet the first sample of the next cycle for the FFT method, and gets closer to zero for the polyphase method: >>> from scipy import signal >>> x = np.linspace(0, 10, 20, endpoint=False) >>> y = np.cos(-x**2/6.0) >>> f_fft = signal.resample(y, 100) >>> f_poly = signal.resample_poly(y, 100, 20) >>> xnew = np.linspace(0, 10, 100, endpoint=False) >>> import matplotlib.pyplot as plt >>> plt.plot(xnew, f_fft, 'b.-', xnew, f_poly, 'r.-') >>> plt.plot(x, y, 'ko-') >>> plt.plot(10, y[0], 'bo', 10, 0., 'ro') # boundaries >>> plt.legend(['resample', 'resamp_poly', 'data'], loc='best') >>> plt.show() """ x = asarray(x) up = int(up) down = int(down) if up < 1 or down < 1: raise ValueError('up and down must be >= 1') # Determine our up and down factors # Use a rational approimation to save computation time on really long # signals g_ = gcd(up, down) up //= g_ down //= g_ if up == down == 1: return x.copy() n_out = x.shape[axis] * up n_out = n_out // down + bool(n_out % down) if isinstance(window, (list, np.ndarray)): window = array(window) # use array to force a copy (we modify it) if window.ndim > 1: raise ValueError('window must be 1-D') half_len = (window.size - 1) // 2 h = window else: # Design a linear-phase low-pass FIR filter max_rate = max(up, down) f_c = 1. / max_rate # cutoff of FIR filter (rel. to Nyquist) half_len = 10 * max_rate # reasonable cutoff for our sinc-like function h = firwin(2 * half_len + 1, f_c, window=window) h *= up # Zero-pad our filter to put the output samples at the center n_pre_pad = (down - half_len % down) n_post_pad = 0 n_pre_remove = (half_len + n_pre_pad) // down # We should rarely need to do this given our filter lengths... while _output_len(len(h) + n_pre_pad + n_post_pad, x.shape[axis], up, down) < n_out + n_pre_remove: n_post_pad += 1 h = np.concatenate((np.zeros(n_pre_pad), h, np.zeros(n_post_pad))) n_pre_remove_end = n_pre_remove + n_out # filter then remove excess y = upfirdn(h, x, up, down, axis=axis) keep = [slice(None), ]*x.ndim keep[axis] = slice(n_pre_remove, n_pre_remove_end) return y[keep] def vectorstrength(events, period): ''' Determine the vector strength of the events corresponding to the given period. The vector strength is a measure of phase synchrony, how well the timing of the events is synchronized to a single period of a periodic signal. If multiple periods are used, calculate the vector strength of each. This is called the "resonating vector strength". Parameters ---------- events : 1D array_like An array of time points containing the timing of the events. period : float or array_like The period of the signal that the events should synchronize to. The period is in the same units as `events`. It can also be an array of periods, in which case the outputs are arrays of the same length. Returns ------- strength : float or 1D array The strength of the synchronization. 1.0 is perfect synchronization and 0.0 is no synchronization. If `period` is an array, this is also an array with each element containing the vector strength at the corresponding period. phase : float or array The phase that the events are most strongly synchronized to in radians. If `period` is an array, this is also an array with each element containing the phase for the corresponding period. References ---------- van Hemmen, JL, Longtin, A, and Vollmayr, AN. Testing resonating vector strength: Auditory system, electric fish, and noise. Chaos 21, 047508 (2011); :doi:`10.1063/1.3670512`. van Hemmen, JL. Vector strength after Goldberg, Brown, and von Mises: biological and mathematical perspectives. Biol Cybern. 2013 Aug;107(4):385-96. :doi:`10.1007/s00422-013-0561-7`. van Hemmen, JL and Vollmayr, AN. Resonating vector strength: what happens when we vary the "probing" frequency while keeping the spike times fixed. Biol Cybern. 2013 Aug;107(4):491-94. :doi:`10.1007/s00422-013-0560-8`. ''' events = asarray(events) period = asarray(period) if events.ndim > 1: raise ValueError('events cannot have dimensions more than 1') if period.ndim > 1: raise ValueError('period cannot have dimensions more than 1') # we need to know later if period was originally a scalar scalarperiod = not period.ndim events = atleast_2d(events) period = atleast_2d(period) if (period <= 0).any(): raise ValueError('periods must be positive') # this converts the times to vectors vectors = exp(dot(2j*pi/period.T, events)) # the vector strength is just the magnitude of the mean of the vectors # the vector phase is the angle of the mean of the vectors vectormean = mean(vectors, axis=1) strength = abs(vectormean) phase = angle(vectormean) # if the original period was a scalar, return scalars if scalarperiod: strength = strength[0] phase = phase[0] return strength, phase def detrend(data, axis=-1, type='linear', bp=0): """ Remove linear trend along axis from data. Parameters ---------- data : array_like The input data. axis : int, optional The axis along which to detrend the data. By default this is the last axis (-1). type : {'linear', 'constant'}, optional The type of detrending. If ``type == 'linear'`` (default), the result of a linear least-squares fit to `data` is subtracted from `data`. If ``type == 'constant'``, only the mean of `data` is subtracted. bp : array_like of ints, optional A sequence of break points. If given, an individual linear fit is performed for each part of `data` between two break points. Break points are specified as indices into `data`. Returns ------- ret : ndarray The detrended input data. Examples -------- >>> from scipy import signal >>> randgen = np.random.RandomState(9) >>> npoints = 1000 >>> noise = randgen.randn(npoints) >>> x = 3 + 2*np.linspace(0, 1, npoints) + noise >>> (signal.detrend(x) - noise).max() < 0.01 True """ if type not in ['linear', 'l', 'constant', 'c']: raise ValueError("Trend type must be 'linear' or 'constant'.") data = asarray(data) dtype = data.dtype.char if dtype not in 'dfDF': dtype = 'd' if type in ['constant', 'c']: ret = data - expand_dims(mean(data, axis), axis) return ret else: dshape = data.shape N = dshape[axis] bp = sort(unique(r_[0, bp, N])) if np.any(bp > N): raise ValueError("Breakpoints must be less than length " "of data along given axis.") Nreg = len(bp) - 1 # Restructure data so that axis is along first dimension and # all other dimensions are collapsed into second dimension rnk = len(dshape) if axis < 0: axis = axis + rnk newdims = r_[axis, 0:axis, axis + 1:rnk] newdata = reshape(transpose(data, tuple(newdims)), (N, _prod(dshape) // N)) newdata = newdata.copy() # make sure we have a copy if newdata.dtype.char not in 'dfDF': newdata = newdata.astype(dtype) # Find leastsq fit and remove it for each piece for m in range(Nreg): Npts = bp[m + 1] - bp[m] A = ones((Npts, 2), dtype) A[:, 0] = cast[dtype](arange(1, Npts + 1) * 1.0 / Npts) sl = slice(bp[m], bp[m + 1]) coef, resids, rank, s = linalg.lstsq(A, newdata[sl]) newdata[sl] = newdata[sl] - dot(A, coef) # Put data back in original shape. tdshape = take(dshape, newdims, 0) ret = reshape(newdata, tuple(tdshape)) vals = list(range(1, rnk)) olddims = vals[:axis] + [0] + vals[axis:] ret = transpose(ret, tuple(olddims)) return ret def lfilter_zi(b, a): """ Construct initial conditions for lfilter for step response steady-state. Compute an initial state `zi` for the `lfilter` function that corresponds to the steady state of the step response. A typical use of this function is to set the initial state so that the output of the filter starts at the same value as the first element of the signal to be filtered. Parameters ---------- b, a : array_like (1-D) The IIR filter coefficients. See `lfilter` for more information. Returns ------- zi : 1-D ndarray The initial state for the filter. See Also -------- lfilter, lfiltic, filtfilt Notes ----- A linear filter with order m has a state space representation (A, B, C, D), for which the output y of the filter can be expressed as:: z(n+1) = A*z(n) + B*x(n) y(n) = C*z(n) + D*x(n) where z(n) is a vector of length m, A has shape (m, m), B has shape (m, 1), C has shape (1, m) and D has shape (1, 1) (assuming x(n) is a scalar). lfilter_zi solves:: zi = A*zi + B In other words, it finds the initial condition for which the response to an input of all ones is a constant. Given the filter coefficients `a` and `b`, the state space matrices for the transposed direct form II implementation of the linear filter, which is the implementation used by scipy.signal.lfilter, are:: A = scipy.linalg.companion(a).T B = b[1:] - a[1:]*b[0] assuming `a[0]` is 1.0; if `a[0]` is not 1, `a` and `b` are first divided by a[0]. Examples -------- The following code creates a lowpass Butterworth filter. Then it applies that filter to an array whose values are all 1.0; the output is also all 1.0, as expected for a lowpass filter. If the `zi` argument of `lfilter` had not been given, the output would have shown the transient signal. >>> from numpy import array, ones >>> from scipy.signal import lfilter, lfilter_zi, butter >>> b, a = butter(5, 0.25) >>> zi = lfilter_zi(b, a) >>> y, zo = lfilter(b, a, ones(10), zi=zi) >>> y array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]) Another example: >>> x = array([0.5, 0.5, 0.5, 0.0, 0.0, 0.0, 0.0]) >>> y, zf = lfilter(b, a, x, zi=zi*x[0]) >>> y array([ 0.5 , 0.5 , 0.5 , 0.49836039, 0.48610528, 0.44399389, 0.35505241]) Note that the `zi` argument to `lfilter` was computed using `lfilter_zi` and scaled by `x[0]`. Then the output `y` has no transient until the input drops from 0.5 to 0.0. """ # FIXME: Can this function be replaced with an appropriate # use of lfiltic? For example, when b,a = butter(N,Wn), # lfiltic(b, a, y=numpy.ones_like(a), x=numpy.ones_like(b)). # # We could use scipy.signal.normalize, but it uses warnings in # cases where a ValueError is more appropriate, and it allows # b to be 2D. b = np.atleast_1d(b) if b.ndim != 1: raise ValueError("Numerator b must be 1-D.") a = np.atleast_1d(a) if a.ndim != 1: raise ValueError("Denominator a must be 1-D.") while len(a) > 1 and a[0] == 0.0: a = a[1:] if a.size < 1: raise ValueError("There must be at least one nonzero `a` coefficient.") if a[0] != 1.0: # Normalize the coefficients so a[0] == 1. b = b / a[0] a = a / a[0] n = max(len(a), len(b)) # Pad a or b with zeros so they are the same length. if len(a) < n: a = np.r_[a, np.zeros(n - len(a))] elif len(b) < n: b = np.r_[b, np.zeros(n - len(b))] IminusA = np.eye(n - 1) - linalg.companion(a).T B = b[1:] - a[1:] * b[0] # Solve zi = A*zi + B zi = np.linalg.solve(IminusA, B) # For future reference: we could also use the following # explicit formulas to solve the linear system: # # zi = np.zeros(n - 1) # zi[0] = B.sum() / IminusA[:,0].sum() # asum = 1.0 # csum = 0.0 # for k in range(1,n-1): # asum += a[k] # csum += b[k] - a[k]*b[0] # zi[k] = asum*zi[0] - csum return zi def sosfilt_zi(sos): """ Construct initial conditions for sosfilt for step response steady-state. Compute an initial state `zi` for the `sosfilt` function that corresponds to the steady state of the step response. A typical use of this function is to set the initial state so that the output of the filter starts at the same value as the first element of the signal to be filtered. Parameters ---------- sos : array_like Array of second-order filter coefficients, must have shape ``(n_sections, 6)``. See `sosfilt` for the SOS filter format specification. Returns ------- zi : ndarray Initial conditions suitable for use with ``sosfilt``, shape ``(n_sections, 2)``. See Also -------- sosfilt, zpk2sos Notes ----- .. versionadded:: 0.16.0 Examples -------- Filter a rectangular pulse that begins at time 0, with and without the use of the `zi` argument of `scipy.signal.sosfilt`. >>> from scipy import signal >>> import matplotlib.pyplot as plt >>> sos = signal.butter(9, 0.125, output='sos') >>> zi = signal.sosfilt_zi(sos) >>> x = (np.arange(250) < 100).astype(int) >>> f1 = signal.sosfilt(sos, x) >>> f2, zo = signal.sosfilt(sos, x, zi=zi) >>> plt.plot(x, 'k--', label='x') >>> plt.plot(f1, 'b', alpha=0.5, linewidth=2, label='filtered') >>> plt.plot(f2, 'g', alpha=0.25, linewidth=4, label='filtered with zi') >>> plt.legend(loc='best') >>> plt.show() """ sos = np.asarray(sos) if sos.ndim != 2 or sos.shape[1] != 6: raise ValueError('sos must be shape (n_sections, 6)') n_sections = sos.shape[0] zi = np.empty((n_sections, 2)) scale = 1.0 for section in range(n_sections): b = sos[section, :3] a = sos[section, 3:] zi[section] = scale * lfilter_zi(b, a) # If H(z) = B(z)/A(z) is this section's transfer function, then # b.sum()/a.sum() is H(1), the gain at omega=0. That's the steady # state value of this section's step response. scale *= b.sum() / a.sum() return zi def _filtfilt_gust(b, a, x, axis=-1, irlen=None): """Forward-backward IIR filter that uses Gustafsson's method. Apply the IIR filter defined by `(b,a)` to `x` twice, first forward then backward, using Gustafsson's initial conditions [1]_. Let ``y_fb`` be the result of filtering first forward and then backward, and let ``y_bf`` be the result of filtering first backward then forward. Gustafsson's method is to compute initial conditions for the forward pass and the backward pass such that ``y_fb == y_bf``. Parameters ---------- b : scalar or 1-D ndarray Numerator coefficients of the filter. a : scalar or 1-D ndarray Denominator coefficients of the filter. x : ndarray Data to be filtered. axis : int, optional Axis of `x` to be filtered. Default is -1. irlen : int or None, optional The length of the nonnegligible part of the impulse response. If `irlen` is None, or if the length of the signal is less than ``2 * irlen``, then no part of the impulse response is ignored. Returns ------- y : ndarray The filtered data. x0 : ndarray Initial condition for the forward filter. x1 : ndarray Initial condition for the backward filter. Notes ----- Typically the return values `x0` and `x1` are not needed by the caller. The intended use of these return values is in unit tests. References ---------- .. [1] F. Gustaffson. Determining the initial states in forward-backward filtering. Transactions on Signal Processing, 46(4):988-992, 1996. """ # In the comments, "Gustafsson's paper" and [1] refer to the # paper referenced in the docstring. b = np.atleast_1d(b) a = np.atleast_1d(a) order = max(len(b), len(a)) - 1 if order == 0: # The filter is just scalar multiplication, with no state. scale = (b[0] / a[0])**2 y = scale * x return y, np.array([]), np.array([]) if axis != -1 or axis != x.ndim - 1: # Move the axis containing the data to the end. x = np.swapaxes(x, axis, x.ndim - 1) # n is the number of samples in the data to be filtered. n = x.shape[-1] if irlen is None or n <= 2*irlen: m = n else: m = irlen # Create Obs, the observability matrix (called O in the paper). # This matrix can be interpreted as the operator that propagates # an arbitrary initial state to the output, assuming the input is # zero. # In Gustafsson's paper, the forward and backward filters are not # necessarily the same, so he has both O_f and O_b. We use the same # filter in both directions, so we only need O. The same comment # applies to S below. Obs = np.zeros((m, order)) zi = np.zeros(order) zi[0] = 1 Obs[:, 0] = lfilter(b, a, np.zeros(m), zi=zi)[0] for k in range(1, order): Obs[k:, k] = Obs[:-k, 0] # Obsr is O^R (Gustafsson's notation for row-reversed O) Obsr = Obs[::-1] # Create S. S is the matrix that applies the filter to the reversed # propagated initial conditions. That is, # out = S.dot(zi) # is the same as # tmp, _ = lfilter(b, a, zeros(), zi=zi) # Propagate ICs. # out = lfilter(b, a, tmp[::-1]) # Reverse and filter. # Equations (5) & (6) of [1] S = lfilter(b, a, Obs[::-1], axis=0) # Sr is S^R (row-reversed S) Sr = S[::-1] # M is [(S^R - O), (O^R - S)] if m == n: M = np.hstack((Sr - Obs, Obsr - S)) else: # Matrix described in section IV of [1]. M = np.zeros((2*m, 2*order)) M[:m, :order] = Sr - Obs M[m:, order:] = Obsr - S # Naive forward-backward and backward-forward filters. # These have large transients because the filters use zero initial # conditions. y_f = lfilter(b, a, x) y_fb = lfilter(b, a, y_f[..., ::-1])[..., ::-1] y_b = lfilter(b, a, x[..., ::-1])[..., ::-1] y_bf = lfilter(b, a, y_b) delta_y_bf_fb = y_bf - y_fb if m == n: delta = delta_y_bf_fb else: start_m = delta_y_bf_fb[..., :m] end_m = delta_y_bf_fb[..., -m:] delta = np.concatenate((start_m, end_m), axis=-1) # ic_opt holds the "optimal" initial conditions. # The following code computes the result shown in the formula # of the paper between equations (6) and (7). if delta.ndim == 1: ic_opt = linalg.lstsq(M, delta)[0] else: # Reshape delta so it can be used as an array of multiple # right-hand-sides in linalg.lstsq. delta2d = delta.reshape(-1, delta.shape[-1]).T ic_opt0 = linalg.lstsq(M, delta2d)[0].T ic_opt = ic_opt0.reshape(delta.shape[:-1] + (M.shape[-1],)) # Now compute the filtered signal using equation (7) of [1]. # First, form [S^R, O^R] and call it W. if m == n: W = np.hstack((Sr, Obsr)) else: W = np.zeros((2*m, 2*order)) W[:m, :order] = Sr W[m:, order:] = Obsr # Equation (7) of [1] says # Y_fb^opt = Y_fb^0 + W * [x_0^opt; x_{N-1}^opt] # `wic` is (almost) the product on the right. # W has shape (m, 2*order), and ic_opt has shape (..., 2*order), # so we can't use W.dot(ic_opt). Instead, we dot ic_opt with W.T, # so wic has shape (..., m). wic = ic_opt.dot(W.T) # `wic` is "almost" the product of W and the optimal ICs in equation # (7)--if we're using a truncated impulse response (m < n), `wic` # contains only the adjustments required for the ends of the signal. # Here we form y_opt, taking this into account if necessary. y_opt = y_fb if m == n: y_opt += wic else: y_opt[..., :m] += wic[..., :m] y_opt[..., -m:] += wic[..., -m:] x0 = ic_opt[..., :order] x1 = ic_opt[..., -order:] if axis != -1 or axis != x.ndim - 1: # Restore the data axis to its original position. x0 = np.swapaxes(x0, axis, x.ndim - 1) x1 = np.swapaxes(x1, axis, x.ndim - 1) y_opt = np.swapaxes(y_opt, axis, x.ndim - 1) return y_opt, x0, x1 def filtfilt(b, a, x, axis=-1, padtype='odd', padlen=None, method='pad', irlen=None): """ Apply a digital filter forward and backward to a signal. This function applies a linear digital filter twice, once forward and once backwards. The combined filter has zero phase and a filter order twice that of the original. The function provides options for handling the edges of the signal. Parameters ---------- b : (N,) array_like The numerator coefficient vector of the filter. a : (N,) array_like The denominator coefficient vector of the filter. If ``a[0]`` is not 1, then both `a` and `b` are normalized by ``a[0]``. x : array_like The array of data to be filtered. axis : int, optional The axis of `x` to which the filter is applied. Default is -1. padtype : str or None, optional Must be 'odd', 'even', 'constant', or None. This determines the type of extension to use for the padded signal to which the filter is applied. If `padtype` is None, no padding is used. The default is 'odd'. padlen : int or None, optional The number of elements by which to extend `x` at both ends of `axis` before applying the filter. This value must be less than ``x.shape[axis] - 1``. ``padlen=0`` implies no padding. The default value is ``3 * max(len(a), len(b))``. method : str, optional Determines the method for handling the edges of the signal, either "pad" or "gust". When `method` is "pad", the signal is padded; the type of padding is determined by `padtype` and `padlen`, and `irlen` is ignored. When `method` is "gust", Gustafsson's method is used, and `padtype` and `padlen` are ignored. irlen : int or None, optional When `method` is "gust", `irlen` specifies the length of the impulse response of the filter. If `irlen` is None, no part of the impulse response is ignored. For a long signal, specifying `irlen` can significantly improve the performance of the filter. Returns ------- y : ndarray The filtered output with the same shape as `x`. See Also -------- sosfiltfilt, lfilter_zi, lfilter, lfiltic, savgol_filter, sosfilt Notes ----- When `method` is "pad", the function pads the data along the given axis in one of three ways: odd, even or constant. The odd and even extensions have the corresponding symmetry about the end point of the data. The constant extension extends the data with the values at the end points. On both the forward and backward passes, the initial condition of the filter is found by using `lfilter_zi` and scaling it by the end point of the extended data. When `method` is "gust", Gustafsson's method [1]_ is used. Initial conditions are chosen for the forward and backward passes so that the forward-backward filter gives the same result as the backward-forward filter. The option to use Gustaffson's method was added in scipy version 0.16.0. References ---------- .. [1] F. Gustaffson, "Determining the initial states in forward-backward filtering", Transactions on Signal Processing, Vol. 46, pp. 988-992, 1996. Examples -------- The examples will use several functions from `scipy.signal`. >>> from scipy import signal >>> import matplotlib.pyplot as plt First we create a one second signal that is the sum of two pure sine waves, with frequencies 5 Hz and 250 Hz, sampled at 2000 Hz. >>> t = np.linspace(0, 1.0, 2001) >>> xlow = np.sin(2 * np.pi * 5 * t) >>> xhigh = np.sin(2 * np.pi * 250 * t) >>> x = xlow + xhigh Now create a lowpass Butterworth filter with a cutoff of 0.125 times the Nyquist rate, or 125 Hz, and apply it to ``x`` with `filtfilt`. The result should be approximately ``xlow``, with no phase shift. >>> b, a = signal.butter(8, 0.125) >>> y = signal.filtfilt(b, a, x, padlen=150) >>> np.abs(y - xlow).max() 9.1086182074789912e-06 We get a fairly clean result for this artificial example because the odd extension is exact, and with the moderately long padding, the filter's transients have dissipated by the time the actual data is reached. In general, transient effects at the edges are unavoidable. The following example demonstrates the option ``method="gust"``. First, create a filter. >>> b, a = signal.ellip(4, 0.01, 120, 0.125) # Filter to be applied. >>> np.random.seed(123456) `sig` is a random input signal to be filtered. >>> n = 60 >>> sig = np.random.randn(n)**3 + 3*np.random.randn(n).cumsum() Apply `filtfilt` to `sig`, once using the Gustafsson method, and once using padding, and plot the results for comparison. >>> fgust = signal.filtfilt(b, a, sig, method="gust") >>> fpad = signal.filtfilt(b, a, sig, padlen=50) >>> plt.plot(sig, 'k-', label='input') >>> plt.plot(fgust, 'b-', linewidth=4, label='gust') >>> plt.plot(fpad, 'c-', linewidth=1.5, label='pad') >>> plt.legend(loc='best') >>> plt.show() The `irlen` argument can be used to improve the performance of Gustafsson's method. Estimate the impulse response length of the filter. >>> z, p, k = signal.tf2zpk(b, a) >>> eps = 1e-9 >>> r = np.max(np.abs(p)) >>> approx_impulse_len = int(np.ceil(np.log(eps) / np.log(r))) >>> approx_impulse_len 137 Apply the filter to a longer signal, with and without the `irlen` argument. The difference between `y1` and `y2` is small. For long signals, using `irlen` gives a significant performance improvement. >>> x = np.random.randn(5000) >>> y1 = signal.filtfilt(b, a, x, method='gust') >>> y2 = signal.filtfilt(b, a, x, method='gust', irlen=approx_impulse_len) >>> print(np.max(np.abs(y1 - y2))) 1.80056858312e-10 """ b = np.atleast_1d(b) a = np.atleast_1d(a) x = np.asarray(x) if method not in ["pad", "gust"]: raise ValueError("method must be 'pad' or 'gust'.") if method == "gust": y, z1, z2 = _filtfilt_gust(b, a, x, axis=axis, irlen=irlen) return y # method == "pad" edge, ext = _validate_pad(padtype, padlen, x, axis, ntaps=max(len(a), len(b))) # Get the steady state of the filter's step response. zi = lfilter_zi(b, a) # Reshape zi and create x0 so that zi*x0 broadcasts # to the correct value for the 'zi' keyword argument # to lfilter. zi_shape = [1] * x.ndim zi_shape[axis] = zi.size zi = np.reshape(zi, zi_shape) x0 = axis_slice(ext, stop=1, axis=axis) # Forward filter. (y, zf) = lfilter(b, a, ext, axis=axis, zi=zi * x0) # Backward filter. # Create y0 so zi*y0 broadcasts appropriately. y0 = axis_slice(y, start=-1, axis=axis) (y, zf) = lfilter(b, a, axis_reverse(y, axis=axis), axis=axis, zi=zi * y0) # Reverse y. y = axis_reverse(y, axis=axis) if edge > 0: # Slice the actual signal from the extended signal. y = axis_slice(y, start=edge, stop=-edge, axis=axis) return y def _validate_pad(padtype, padlen, x, axis, ntaps): """Helper to validate padding for filtfilt""" if padtype not in ['even', 'odd', 'constant', None]: raise ValueError(("Unknown value '%s' given to padtype. padtype " "must be 'even', 'odd', 'constant', or None.") % padtype) if padtype is None: padlen = 0 if padlen is None: # Original padding; preserved for backwards compatibility. edge = ntaps * 3 else: edge = padlen # x's 'axis' dimension must be bigger than edge. if x.shape[axis] <= edge: raise ValueError("The length of the input vector x must be at least " "padlen, which is %d." % edge) if padtype is not None and edge > 0: # Make an extension of length `edge` at each # end of the input array. if padtype == 'even': ext = even_ext(x, edge, axis=axis) elif padtype == 'odd': ext = odd_ext(x, edge, axis=axis) else: ext = const_ext(x, edge, axis=axis) else: ext = x return edge, ext def sosfilt(sos, x, axis=-1, zi=None): """ Filter data along one dimension using cascaded second-order sections. Filter a data sequence, `x`, using a digital IIR filter defined by `sos`. This is implemented by performing `lfilter` for each second-order section. See `lfilter` for details. Parameters ---------- sos : array_like Array of second-order filter coefficients, must have shape ``(n_sections, 6)``. Each row corresponds to a second-order section, with the first three columns providing the numerator coefficients and the last three providing the denominator coefficients. x : array_like An N-dimensional input array. axis : int, optional The axis of the input data array along which to apply the linear filter. The filter is applied to each subarray along this axis. Default is -1. zi : array_like, optional Initial conditions for the cascaded filter delays. It is a (at least 2D) vector of shape ``(n_sections, ..., 2, ...)``, where ``..., 2, ...`` denotes the shape of `x`, but with ``x.shape[axis]`` replaced by 2. If `zi` is None or is not given then initial rest (i.e. all zeros) is assumed. Note that these initial conditions are *not* the same as the initial conditions given by `lfiltic` or `lfilter_zi`. Returns ------- y : ndarray The output of the digital filter. zf : ndarray, optional If `zi` is None, this is not returned, otherwise, `zf` holds the final filter delay values. See Also -------- zpk2sos, sos2zpk, sosfilt_zi, sosfiltfilt, sosfreqz Notes ----- The filter function is implemented as a series of second-order filters with direct-form II transposed structure. It is designed to minimize numerical precision errors for high-order filters. .. versionadded:: 0.16.0 Examples -------- Plot a 13th-order filter's impulse response using both `lfilter` and `sosfilt`, showing the instability that results from trying to do a 13th-order filter in a single stage (the numerical error pushes some poles outside of the unit circle): >>> import matplotlib.pyplot as plt >>> from scipy import signal >>> b, a = signal.ellip(13, 0.009, 80, 0.05, output='ba') >>> sos = signal.ellip(13, 0.009, 80, 0.05, output='sos') >>> x = signal.unit_impulse(700) >>> y_tf = signal.lfilter(b, a, x) >>> y_sos = signal.sosfilt(sos, x) >>> plt.plot(y_tf, 'r', label='TF') >>> plt.plot(y_sos, 'k', label='SOS') >>> plt.legend(loc='best') >>> plt.show() """ x = np.asarray(x) sos, n_sections = _validate_sos(sos) use_zi = zi is not None if use_zi: zi = np.asarray(zi) x_zi_shape = list(x.shape) x_zi_shape[axis] = 2 x_zi_shape = tuple([n_sections] + x_zi_shape) if zi.shape != x_zi_shape: raise ValueError('Invalid zi shape. With axis=%r, an input with ' 'shape %r, and an sos array with %d sections, zi ' 'must have shape %r, got %r.' % (axis, x.shape, n_sections, x_zi_shape, zi.shape)) zf = zeros_like(zi) for section in range(n_sections): if use_zi: x, zf[section] = lfilter(sos[section, :3], sos[section, 3:], x, axis, zi=zi[section]) else: x = lfilter(sos[section, :3], sos[section, 3:], x, axis) out = (x, zf) if use_zi else x return out def sosfiltfilt(sos, x, axis=-1, padtype='odd', padlen=None): """ A forward-backward digital filter using cascaded second-order sections. See `filtfilt` for more complete information about this method. Parameters ---------- sos : array_like Array of second-order filter coefficients, must have shape ``(n_sections, 6)``. Each row corresponds to a second-order section, with the first three columns providing the numerator coefficients and the last three providing the denominator coefficients. x : array_like The array of data to be filtered. axis : int, optional The axis of `x` to which the filter is applied. Default is -1. padtype : str or None, optional Must be 'odd', 'even', 'constant', or None. This determines the type of extension to use for the padded signal to which the filter is applied. If `padtype` is None, no padding is used. The default is 'odd'. padlen : int or None, optional The number of elements by which to extend `x` at both ends of `axis` before applying the filter. This value must be less than ``x.shape[axis] - 1``. ``padlen=0`` implies no padding. The default value is:: 3 * (2 * len(sos) + 1 - min((sos[:, 2] == 0).sum(), (sos[:, 5] == 0).sum())) The extra subtraction at the end attempts to compensate for poles and zeros at the origin (e.g. for odd-order filters) to yield equivalent estimates of `padlen` to those of `filtfilt` for second-order section filters built with `scipy.signal` functions. Returns ------- y : ndarray The filtered output with the same shape as `x`. See Also -------- filtfilt, sosfilt, sosfilt_zi, sosfreqz Notes ----- .. versionadded:: 0.18.0 """ sos, n_sections = _validate_sos(sos) # `method` is "pad"... ntaps = 2 * n_sections + 1 ntaps -= min((sos[:, 2] == 0).sum(), (sos[:, 5] == 0).sum()) edge, ext = _validate_pad(padtype, padlen, x, axis, ntaps=ntaps) # These steps follow the same form as filtfilt with modifications zi = sosfilt_zi(sos) # shape (n_sections, 2) --> (n_sections, ..., 2, ...) zi_shape = [1] * x.ndim zi_shape[axis] = 2 zi.shape = [n_sections] + zi_shape x_0 = axis_slice(ext, stop=1, axis=axis) (y, zf) = sosfilt(sos, ext, axis=axis, zi=zi * x_0) y_0 = axis_slice(y, start=-1, axis=axis) (y, zf) = sosfilt(sos, axis_reverse(y, axis=axis), axis=axis, zi=zi * y_0) y = axis_reverse(y, axis=axis) if edge > 0: y = axis_slice(y, start=edge, stop=-edge, axis=axis) return y def decimate(x, q, n=None, ftype='iir', axis=-1, zero_phase=True): """ Downsample the signal after applying an anti-aliasing filter. By default, an order 8 Chebyshev type I filter is used. A 30 point FIR filter with Hamming window is used if `ftype` is 'fir'. Parameters ---------- x : ndarray The signal to be downsampled, as an N-dimensional array. q : int The downsampling factor. For downsampling factors higher than 13, it is recommended to call `decimate` multiple times. n : int, optional The order of the filter (1 less than the length for 'fir'). Defaults to 8 for 'iir' and 30 for 'fir'. ftype : str {'iir', 'fir'} or ``dlti`` instance, optional If 'iir' or 'fir', specifies the type of lowpass filter. If an instance of an `dlti` object, uses that object to filter before downsampling. axis : int, optional The axis along which to decimate. zero_phase : bool, optional Prevent phase shift by filtering with `filtfilt` instead of `lfilter` when using an IIR filter, and shifting the outputs back by the filter's group delay when using an FIR filter. The default value of ``True`` is recommended, since a phase shift is generally not desired. .. versionadded:: 0.18.0 Returns ------- y : ndarray The down-sampled signal. See Also -------- resample : Resample up or down using the FFT method. resample_poly : Resample using polyphase filtering and an FIR filter. Notes ----- The ``zero_phase`` keyword was added in 0.18.0. The possibility to use instances of ``dlti`` as ``ftype`` was added in 0.18.0. """ if not isinstance(q, int): raise TypeError("q must be an integer") if n is not None and not isinstance(n, int): raise TypeError("n must be an integer") if ftype == 'fir': if n is None: n = 30 system = dlti(firwin(n+1, 1. / q, window='hamming'), 1.) elif ftype == 'iir': if n is None: n = 8 system = dlti(*cheby1(n, 0.05, 0.8 / q)) elif isinstance(ftype, dlti): system = ftype._as_tf() # Avoids copying if already in TF form n = np.max((system.num.size, system.den.size)) - 1 else: raise ValueError('invalid ftype') sl = [slice(None)] * x.ndim if len(system.den) == 1: # FIR case if zero_phase: y = resample_poly(x, 1, q, axis=axis, window=system.num) else: # upfirdn is generally faster than lfilter by a factor equal to the # downsampling factor, since it only calculates the needed outputs n_out = x.shape[axis] // q + bool(x.shape[axis] % q) y = upfirdn(system.num, x, up=1, down=q, axis=axis) sl[axis] = slice(None, n_out, None) else: # IIR case if zero_phase: y = filtfilt(system.num, system.den, x, axis=axis) else: y = lfilter(system.num, system.den, x, axis=axis) sl[axis] = slice(None, None, q) return y[sl]
bsd-3-clause
MartinDelzant/scikit-learn
sklearn/cluster/tests/test_hierarchical.py
230
19795
""" Several basic tests for hierarchical clustering procedures """ # Authors: Vincent Michel, 2010, Gael Varoquaux 2012, # Matteo Visconti di Oleggio Castello 2014 # License: BSD 3 clause from tempfile import mkdtemp import shutil from functools import partial import numpy as np from scipy import sparse from scipy.cluster import hierarchy from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import ignore_warnings from sklearn.cluster import ward_tree from sklearn.cluster import AgglomerativeClustering, FeatureAgglomeration from sklearn.cluster.hierarchical import (_hc_cut, _TREE_BUILDERS, linkage_tree) from sklearn.feature_extraction.image import grid_to_graph from sklearn.metrics.pairwise import PAIRED_DISTANCES, cosine_distances,\ manhattan_distances, pairwise_distances from sklearn.metrics.cluster import normalized_mutual_info_score from sklearn.neighbors.graph import kneighbors_graph from sklearn.cluster._hierarchical import average_merge, max_merge from sklearn.utils.fast_dict import IntFloatDict from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_warns def test_linkage_misc(): # Misc tests on linkage rng = np.random.RandomState(42) X = rng.normal(size=(5, 5)) assert_raises(ValueError, AgglomerativeClustering(linkage='foo').fit, X) assert_raises(ValueError, linkage_tree, X, linkage='foo') assert_raises(ValueError, linkage_tree, X, connectivity=np.ones((4, 4))) # Smoke test FeatureAgglomeration FeatureAgglomeration().fit(X) # test hiearchical clustering on a precomputed distances matrix dis = cosine_distances(X) res = linkage_tree(dis, affinity="precomputed") assert_array_equal(res[0], linkage_tree(X, affinity="cosine")[0]) # test hiearchical clustering on a precomputed distances matrix res = linkage_tree(X, affinity=manhattan_distances) assert_array_equal(res[0], linkage_tree(X, affinity="manhattan")[0]) def test_structured_linkage_tree(): # Check that we obtain the correct solution for structured linkage trees. rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) # Avoiding a mask with only 'True' entries mask[4:7, 4:7] = 0 X = rng.randn(50, 100) connectivity = grid_to_graph(*mask.shape) for tree_builder in _TREE_BUILDERS.values(): children, n_components, n_leaves, parent = \ tree_builder(X.T, connectivity) n_nodes = 2 * X.shape[1] - 1 assert_true(len(children) + n_leaves == n_nodes) # Check that ward_tree raises a ValueError with a connectivity matrix # of the wrong shape assert_raises(ValueError, tree_builder, X.T, np.ones((4, 4))) # Check that fitting with no samples raises an error assert_raises(ValueError, tree_builder, X.T[:0], connectivity) def test_unstructured_linkage_tree(): # Check that we obtain the correct solution for unstructured linkage trees. rng = np.random.RandomState(0) X = rng.randn(50, 100) for this_X in (X, X[0]): # With specified a number of clusters just for the sake of # raising a warning and testing the warning code with ignore_warnings(): children, n_nodes, n_leaves, parent = assert_warns( UserWarning, ward_tree, this_X.T, n_clusters=10) n_nodes = 2 * X.shape[1] - 1 assert_equal(len(children) + n_leaves, n_nodes) for tree_builder in _TREE_BUILDERS.values(): for this_X in (X, X[0]): with ignore_warnings(): children, n_nodes, n_leaves, parent = assert_warns( UserWarning, tree_builder, this_X.T, n_clusters=10) n_nodes = 2 * X.shape[1] - 1 assert_equal(len(children) + n_leaves, n_nodes) def test_height_linkage_tree(): # Check that the height of the results of linkage tree is sorted. rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) X = rng.randn(50, 100) connectivity = grid_to_graph(*mask.shape) for linkage_func in _TREE_BUILDERS.values(): children, n_nodes, n_leaves, parent = linkage_func(X.T, connectivity) n_nodes = 2 * X.shape[1] - 1 assert_true(len(children) + n_leaves == n_nodes) def test_agglomerative_clustering(): # Check that we obtain the correct number of clusters with # agglomerative clustering. rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) n_samples = 100 X = rng.randn(n_samples, 50) connectivity = grid_to_graph(*mask.shape) for linkage in ("ward", "complete", "average"): clustering = AgglomerativeClustering(n_clusters=10, connectivity=connectivity, linkage=linkage) clustering.fit(X) # test caching try: tempdir = mkdtemp() clustering = AgglomerativeClustering( n_clusters=10, connectivity=connectivity, memory=tempdir, linkage=linkage) clustering.fit(X) labels = clustering.labels_ assert_true(np.size(np.unique(labels)) == 10) finally: shutil.rmtree(tempdir) # Turn caching off now clustering = AgglomerativeClustering( n_clusters=10, connectivity=connectivity, linkage=linkage) # Check that we obtain the same solution with early-stopping of the # tree building clustering.compute_full_tree = False clustering.fit(X) assert_almost_equal(normalized_mutual_info_score(clustering.labels_, labels), 1) clustering.connectivity = None clustering.fit(X) assert_true(np.size(np.unique(clustering.labels_)) == 10) # Check that we raise a TypeError on dense matrices clustering = AgglomerativeClustering( n_clusters=10, connectivity=sparse.lil_matrix( connectivity.toarray()[:10, :10]), linkage=linkage) assert_raises(ValueError, clustering.fit, X) # Test that using ward with another metric than euclidean raises an # exception clustering = AgglomerativeClustering( n_clusters=10, connectivity=connectivity.toarray(), affinity="manhattan", linkage="ward") assert_raises(ValueError, clustering.fit, X) # Test using another metric than euclidean works with linkage complete for affinity in PAIRED_DISTANCES.keys(): # Compare our (structured) implementation to scipy clustering = AgglomerativeClustering( n_clusters=10, connectivity=np.ones((n_samples, n_samples)), affinity=affinity, linkage="complete") clustering.fit(X) clustering2 = AgglomerativeClustering( n_clusters=10, connectivity=None, affinity=affinity, linkage="complete") clustering2.fit(X) assert_almost_equal(normalized_mutual_info_score(clustering2.labels_, clustering.labels_), 1) # Test that using a distance matrix (affinity = 'precomputed') has same # results (with connectivity constraints) clustering = AgglomerativeClustering(n_clusters=10, connectivity=connectivity, linkage="complete") clustering.fit(X) X_dist = pairwise_distances(X) clustering2 = AgglomerativeClustering(n_clusters=10, connectivity=connectivity, affinity='precomputed', linkage="complete") clustering2.fit(X_dist) assert_array_equal(clustering.labels_, clustering2.labels_) def test_ward_agglomeration(): # Check that we obtain the correct solution in a simplistic case rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) X = rng.randn(50, 100) connectivity = grid_to_graph(*mask.shape) agglo = FeatureAgglomeration(n_clusters=5, connectivity=connectivity) agglo.fit(X) assert_true(np.size(np.unique(agglo.labels_)) == 5) X_red = agglo.transform(X) assert_true(X_red.shape[1] == 5) X_full = agglo.inverse_transform(X_red) assert_true(np.unique(X_full[0]).size == 5) assert_array_almost_equal(agglo.transform(X_full), X_red) # Check that fitting with no samples raises a ValueError assert_raises(ValueError, agglo.fit, X[:0]) def assess_same_labelling(cut1, cut2): """Util for comparison with scipy""" co_clust = [] for cut in [cut1, cut2]: n = len(cut) k = cut.max() + 1 ecut = np.zeros((n, k)) ecut[np.arange(n), cut] = 1 co_clust.append(np.dot(ecut, ecut.T)) assert_true((co_clust[0] == co_clust[1]).all()) def test_scikit_vs_scipy(): # Test scikit linkage with full connectivity (i.e. unstructured) vs scipy n, p, k = 10, 5, 3 rng = np.random.RandomState(0) # Not using a lil_matrix here, just to check that non sparse # matrices are well handled connectivity = np.ones((n, n)) for linkage in _TREE_BUILDERS.keys(): for i in range(5): X = .1 * rng.normal(size=(n, p)) X -= 4. * np.arange(n)[:, np.newaxis] X -= X.mean(axis=1)[:, np.newaxis] out = hierarchy.linkage(X, method=linkage) children_ = out[:, :2].astype(np.int) children, _, n_leaves, _ = _TREE_BUILDERS[linkage](X, connectivity) cut = _hc_cut(k, children, n_leaves) cut_ = _hc_cut(k, children_, n_leaves) assess_same_labelling(cut, cut_) # Test error management in _hc_cut assert_raises(ValueError, _hc_cut, n_leaves + 1, children, n_leaves) def test_connectivity_propagation(): # Check that connectivity in the ward tree is propagated correctly during # merging. X = np.array([(.014, .120), (.014, .099), (.014, .097), (.017, .153), (.017, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .152), (.018, .149), (.018, .144)]) connectivity = kneighbors_graph(X, 10, include_self=False) ward = AgglomerativeClustering( n_clusters=4, connectivity=connectivity, linkage='ward') # If changes are not propagated correctly, fit crashes with an # IndexError ward.fit(X) def test_ward_tree_children_order(): # Check that children are ordered in the same way for both structured and # unstructured versions of ward_tree. # test on five random datasets n, p = 10, 5 rng = np.random.RandomState(0) connectivity = np.ones((n, n)) for i in range(5): X = .1 * rng.normal(size=(n, p)) X -= 4. * np.arange(n)[:, np.newaxis] X -= X.mean(axis=1)[:, np.newaxis] out_unstructured = ward_tree(X) out_structured = ward_tree(X, connectivity=connectivity) assert_array_equal(out_unstructured[0], out_structured[0]) def test_ward_linkage_tree_return_distance(): # Test return_distance option on linkage and ward trees # test that return_distance when set true, gives same # output on both structured and unstructured clustering. n, p = 10, 5 rng = np.random.RandomState(0) connectivity = np.ones((n, n)) for i in range(5): X = .1 * rng.normal(size=(n, p)) X -= 4. * np.arange(n)[:, np.newaxis] X -= X.mean(axis=1)[:, np.newaxis] out_unstructured = ward_tree(X, return_distance=True) out_structured = ward_tree(X, connectivity=connectivity, return_distance=True) # get children children_unstructured = out_unstructured[0] children_structured = out_structured[0] # check if we got the same clusters assert_array_equal(children_unstructured, children_structured) # check if the distances are the same dist_unstructured = out_unstructured[-1] dist_structured = out_structured[-1] assert_array_almost_equal(dist_unstructured, dist_structured) for linkage in ['average', 'complete']: structured_items = linkage_tree( X, connectivity=connectivity, linkage=linkage, return_distance=True)[-1] unstructured_items = linkage_tree( X, linkage=linkage, return_distance=True)[-1] structured_dist = structured_items[-1] unstructured_dist = unstructured_items[-1] structured_children = structured_items[0] unstructured_children = unstructured_items[0] assert_array_almost_equal(structured_dist, unstructured_dist) assert_array_almost_equal( structured_children, unstructured_children) # test on the following dataset where we know the truth # taken from scipy/cluster/tests/hierarchy_test_data.py X = np.array([[1.43054825, -7.5693489], [6.95887839, 6.82293382], [2.87137846, -9.68248579], [7.87974764, -6.05485803], [8.24018364, -6.09495602], [7.39020262, 8.54004355]]) # truth linkage_X_ward = np.array([[3., 4., 0.36265956, 2.], [1., 5., 1.77045373, 2.], [0., 2., 2.55760419, 2.], [6., 8., 9.10208346, 4.], [7., 9., 24.7784379, 6.]]) linkage_X_complete = np.array( [[3., 4., 0.36265956, 2.], [1., 5., 1.77045373, 2.], [0., 2., 2.55760419, 2.], [6., 8., 6.96742194, 4.], [7., 9., 18.77445997, 6.]]) linkage_X_average = np.array( [[3., 4., 0.36265956, 2.], [1., 5., 1.77045373, 2.], [0., 2., 2.55760419, 2.], [6., 8., 6.55832839, 4.], [7., 9., 15.44089605, 6.]]) n_samples, n_features = np.shape(X) connectivity_X = np.ones((n_samples, n_samples)) out_X_unstructured = ward_tree(X, return_distance=True) out_X_structured = ward_tree(X, connectivity=connectivity_X, return_distance=True) # check that the labels are the same assert_array_equal(linkage_X_ward[:, :2], out_X_unstructured[0]) assert_array_equal(linkage_X_ward[:, :2], out_X_structured[0]) # check that the distances are correct assert_array_almost_equal(linkage_X_ward[:, 2], out_X_unstructured[4]) assert_array_almost_equal(linkage_X_ward[:, 2], out_X_structured[4]) linkage_options = ['complete', 'average'] X_linkage_truth = [linkage_X_complete, linkage_X_average] for (linkage, X_truth) in zip(linkage_options, X_linkage_truth): out_X_unstructured = linkage_tree( X, return_distance=True, linkage=linkage) out_X_structured = linkage_tree( X, connectivity=connectivity_X, linkage=linkage, return_distance=True) # check that the labels are the same assert_array_equal(X_truth[:, :2], out_X_unstructured[0]) assert_array_equal(X_truth[:, :2], out_X_structured[0]) # check that the distances are correct assert_array_almost_equal(X_truth[:, 2], out_X_unstructured[4]) assert_array_almost_equal(X_truth[:, 2], out_X_structured[4]) def test_connectivity_fixing_non_lil(): # Check non regression of a bug if a non item assignable connectivity is # provided with more than one component. # create dummy data x = np.array([[0, 0], [1, 1]]) # create a mask with several components to force connectivity fixing m = np.array([[True, False], [False, True]]) c = grid_to_graph(n_x=2, n_y=2, mask=m) w = AgglomerativeClustering(connectivity=c, linkage='ward') assert_warns(UserWarning, w.fit, x) def test_int_float_dict(): rng = np.random.RandomState(0) keys = np.unique(rng.randint(100, size=10).astype(np.intp)) values = rng.rand(len(keys)) d = IntFloatDict(keys, values) for key, value in zip(keys, values): assert d[key] == value other_keys = np.arange(50).astype(np.intp)[::2] other_values = 0.5 * np.ones(50)[::2] other = IntFloatDict(other_keys, other_values) # Complete smoke test max_merge(d, other, mask=np.ones(100, dtype=np.intp), n_a=1, n_b=1) average_merge(d, other, mask=np.ones(100, dtype=np.intp), n_a=1, n_b=1) def test_connectivity_callable(): rng = np.random.RandomState(0) X = rng.rand(20, 5) connectivity = kneighbors_graph(X, 3, include_self=False) aglc1 = AgglomerativeClustering(connectivity=connectivity) aglc2 = AgglomerativeClustering( connectivity=partial(kneighbors_graph, n_neighbors=3, include_self=False)) aglc1.fit(X) aglc2.fit(X) assert_array_equal(aglc1.labels_, aglc2.labels_) def test_connectivity_ignores_diagonal(): rng = np.random.RandomState(0) X = rng.rand(20, 5) connectivity = kneighbors_graph(X, 3, include_self=False) connectivity_include_self = kneighbors_graph(X, 3, include_self=True) aglc1 = AgglomerativeClustering(connectivity=connectivity) aglc2 = AgglomerativeClustering(connectivity=connectivity_include_self) aglc1.fit(X) aglc2.fit(X) assert_array_equal(aglc1.labels_, aglc2.labels_) def test_compute_full_tree(): # Test that the full tree is computed if n_clusters is small rng = np.random.RandomState(0) X = rng.randn(10, 2) connectivity = kneighbors_graph(X, 5, include_self=False) # When n_clusters is less, the full tree should be built # that is the number of merges should be n_samples - 1 agc = AgglomerativeClustering(n_clusters=2, connectivity=connectivity) agc.fit(X) n_samples = X.shape[0] n_nodes = agc.children_.shape[0] assert_equal(n_nodes, n_samples - 1) # When n_clusters is large, greater than max of 100 and 0.02 * n_samples. # we should stop when there are n_clusters. n_clusters = 101 X = rng.randn(200, 2) connectivity = kneighbors_graph(X, 10, include_self=False) agc = AgglomerativeClustering(n_clusters=n_clusters, connectivity=connectivity) agc.fit(X) n_samples = X.shape[0] n_nodes = agc.children_.shape[0] assert_equal(n_nodes, n_samples - n_clusters) def test_n_components(): # Test n_components returned by linkage, average and ward tree rng = np.random.RandomState(0) X = rng.rand(5, 5) # Connectivity matrix having five components. connectivity = np.eye(5) for linkage_func in _TREE_BUILDERS.values(): assert_equal(ignore_warnings(linkage_func)(X, connectivity)[1], 5) def test_agg_n_clusters(): # Test that an error is raised when n_clusters <= 0 rng = np.random.RandomState(0) X = rng.rand(20, 10) for n_clus in [-1, 0]: agc = AgglomerativeClustering(n_clusters=n_clus) msg = ("n_clusters should be an integer greater than 0." " %s was provided." % str(agc.n_clusters)) assert_raise_message(ValueError, msg, agc.fit, X)
bsd-3-clause
pprett/scikit-learn
sklearn/neighbors/tests/test_nearest_centroid.py
305
4121
""" Testing for the nearest centroid module. """ import numpy as np from scipy import sparse as sp from numpy.testing import assert_array_equal from numpy.testing import assert_equal from sklearn.neighbors import NearestCentroid from sklearn import datasets from sklearn.metrics.pairwise import pairwise_distances # toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] X_csr = sp.csr_matrix(X) # Sparse matrix y = [-1, -1, -1, 1, 1, 1] T = [[-1, -1], [2, 2], [3, 2]] T_csr = sp.csr_matrix(T) true_result = [-1, 1, 1] # also load the iris dataset # and randomly permute it iris = datasets.load_iris() rng = np.random.RandomState(1) perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] def test_classification_toy(): # Check classification on a toy dataset, including sparse versions. clf = NearestCentroid() clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) # Same test, but with a sparse matrix to fit and test. clf = NearestCentroid() clf.fit(X_csr, y) assert_array_equal(clf.predict(T_csr), true_result) # Fit with sparse, test with non-sparse clf = NearestCentroid() clf.fit(X_csr, y) assert_array_equal(clf.predict(T), true_result) # Fit with non-sparse, test with sparse clf = NearestCentroid() clf.fit(X, y) assert_array_equal(clf.predict(T_csr), true_result) # Fit and predict with non-CSR sparse matrices clf = NearestCentroid() clf.fit(X_csr.tocoo(), y) assert_array_equal(clf.predict(T_csr.tolil()), true_result) def test_precomputed(): clf = NearestCentroid(metric="precomputed") clf.fit(X, y) S = pairwise_distances(T, clf.centroids_) assert_array_equal(clf.predict(S), true_result) def test_iris(): # Check consistency on dataset iris. for metric in ('euclidean', 'cosine'): clf = NearestCentroid(metric=metric).fit(iris.data, iris.target) score = np.mean(clf.predict(iris.data) == iris.target) assert score > 0.9, "Failed with score = " + str(score) def test_iris_shrinkage(): # Check consistency on dataset iris, when using shrinkage. for metric in ('euclidean', 'cosine'): for shrink_threshold in [None, 0.1, 0.5]: clf = NearestCentroid(metric=metric, shrink_threshold=shrink_threshold) clf = clf.fit(iris.data, iris.target) score = np.mean(clf.predict(iris.data) == iris.target) assert score > 0.8, "Failed with score = " + str(score) def test_pickle(): import pickle # classification obj = NearestCentroid() obj.fit(iris.data, iris.target) score = obj.score(iris.data, iris.target) s = pickle.dumps(obj) obj2 = pickle.loads(s) assert_equal(type(obj2), obj.__class__) score2 = obj2.score(iris.data, iris.target) assert_array_equal(score, score2, "Failed to generate same score" " after pickling (classification).") def test_shrinkage_threshold_decoded_y(): clf = NearestCentroid(shrink_threshold=0.01) y_ind = np.asarray(y) y_ind[y_ind == -1] = 0 clf.fit(X, y_ind) centroid_encoded = clf.centroids_ clf.fit(X, y) assert_array_equal(centroid_encoded, clf.centroids_) def test_predict_translated_data(): # Test that NearestCentroid gives same results on translated data rng = np.random.RandomState(0) X = rng.rand(50, 50) y = rng.randint(0, 3, 50) noise = rng.rand(50) clf = NearestCentroid(shrink_threshold=0.1) clf.fit(X, y) y_init = clf.predict(X) clf = NearestCentroid(shrink_threshold=0.1) X_noise = X + noise clf.fit(X_noise, y) y_translate = clf.predict(X_noise) assert_array_equal(y_init, y_translate) def test_manhattan_metric(): # Test the manhattan metric. clf = NearestCentroid(metric='manhattan') clf.fit(X, y) dense_centroid = clf.centroids_ clf.fit(X_csr, y) assert_array_equal(clf.centroids_, dense_centroid) assert_array_equal(dense_centroid, [[-1, -1], [1, 1]])
bsd-3-clause
kevin-intel/scikit-learn
examples/decomposition/plot_kernel_pca.py
27
2290
""" ========== Kernel PCA ========== This example shows that Kernel PCA is able to find a projection of the data that makes data linearly separable. """ print(__doc__) # Authors: Mathieu Blondel # Andreas Mueller # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.decomposition import PCA, KernelPCA from sklearn.datasets import make_circles np.random.seed(0) X, y = make_circles(n_samples=400, factor=.3, noise=.05) kpca = KernelPCA(kernel="rbf", fit_inverse_transform=True, gamma=10) X_kpca = kpca.fit_transform(X) X_back = kpca.inverse_transform(X_kpca) pca = PCA() X_pca = pca.fit_transform(X) # Plot results plt.figure() plt.subplot(2, 2, 1, aspect='equal') plt.title("Original space") reds = y == 0 blues = y == 1 plt.scatter(X[reds, 0], X[reds, 1], c="red", s=20, edgecolor='k') plt.scatter(X[blues, 0], X[blues, 1], c="blue", s=20, edgecolor='k') plt.xlabel("$x_1$") plt.ylabel("$x_2$") X1, X2 = np.meshgrid(np.linspace(-1.5, 1.5, 50), np.linspace(-1.5, 1.5, 50)) X_grid = np.array([np.ravel(X1), np.ravel(X2)]).T # projection on the first principal component (in the phi space) Z_grid = kpca.transform(X_grid)[:, 0].reshape(X1.shape) plt.contour(X1, X2, Z_grid, colors='grey', linewidths=1, origin='lower') plt.subplot(2, 2, 2, aspect='equal') plt.scatter(X_pca[reds, 0], X_pca[reds, 1], c="red", s=20, edgecolor='k') plt.scatter(X_pca[blues, 0], X_pca[blues, 1], c="blue", s=20, edgecolor='k') plt.title("Projection by PCA") plt.xlabel("1st principal component") plt.ylabel("2nd component") plt.subplot(2, 2, 3, aspect='equal') plt.scatter(X_kpca[reds, 0], X_kpca[reds, 1], c="red", s=20, edgecolor='k') plt.scatter(X_kpca[blues, 0], X_kpca[blues, 1], c="blue", s=20, edgecolor='k') plt.title("Projection by KPCA") plt.xlabel(r"1st principal component in space induced by $\phi$") plt.ylabel("2nd component") plt.subplot(2, 2, 4, aspect='equal') plt.scatter(X_back[reds, 0], X_back[reds, 1], c="red", s=20, edgecolor='k') plt.scatter(X_back[blues, 0], X_back[blues, 1], c="blue", s=20, edgecolor='k') plt.title("Original space after inverse transform") plt.xlabel("$x_1$") plt.ylabel("$x_2$") plt.tight_layout() plt.show()
bsd-3-clause
lazywei/scikit-learn
benchmarks/bench_lasso.py
297
3305
""" Benchmarks of Lasso vs LassoLars First, we fix a training set and increase the number of samples. Then we plot the computation time as function of the number of samples. In the second benchmark, we increase the number of dimensions of the training set. Then we plot the computation time as function of the number of dimensions. In both cases, only 10% of the features are informative. """ import gc from time import time import numpy as np from sklearn.datasets.samples_generator import make_regression def compute_bench(alpha, n_samples, n_features, precompute): lasso_results = [] lars_lasso_results = [] it = 0 for ns in n_samples: for nf in n_features: it += 1 print('==================') print('Iteration %s of %s' % (it, max(len(n_samples), len(n_features)))) print('==================') n_informative = nf // 10 X, Y, coef_ = make_regression(n_samples=ns, n_features=nf, n_informative=n_informative, noise=0.1, coef=True) X /= np.sqrt(np.sum(X ** 2, axis=0)) # Normalize data gc.collect() print("- benchmarking Lasso") clf = Lasso(alpha=alpha, fit_intercept=False, precompute=precompute) tstart = time() clf.fit(X, Y) lasso_results.append(time() - tstart) gc.collect() print("- benchmarking LassoLars") clf = LassoLars(alpha=alpha, fit_intercept=False, normalize=False, precompute=precompute) tstart = time() clf.fit(X, Y) lars_lasso_results.append(time() - tstart) return lasso_results, lars_lasso_results if __name__ == '__main__': from sklearn.linear_model import Lasso, LassoLars import pylab as pl alpha = 0.01 # regularization parameter n_features = 10 list_n_samples = np.linspace(100, 1000000, 5).astype(np.int) lasso_results, lars_lasso_results = compute_bench(alpha, list_n_samples, [n_features], precompute=True) pl.figure('scikit-learn LASSO benchmark results') pl.subplot(211) pl.plot(list_n_samples, lasso_results, 'b-', label='Lasso') pl.plot(list_n_samples, lars_lasso_results, 'r-', label='LassoLars') pl.title('precomputed Gram matrix, %d features, alpha=%s' % (n_features, alpha)) pl.legend(loc='upper left') pl.xlabel('number of samples') pl.ylabel('Time (s)') pl.axis('tight') n_samples = 2000 list_n_features = np.linspace(500, 3000, 5).astype(np.int) lasso_results, lars_lasso_results = compute_bench(alpha, [n_samples], list_n_features, precompute=False) pl.subplot(212) pl.plot(list_n_features, lasso_results, 'b-', label='Lasso') pl.plot(list_n_features, lars_lasso_results, 'r-', label='LassoLars') pl.title('%d samples, alpha=%s' % (n_samples, alpha)) pl.legend(loc='upper left') pl.xlabel('number of features') pl.ylabel('Time (s)') pl.axis('tight') pl.show()
bsd-3-clause
HealthCatalyst/healthcareai-py
healthcareai/tests/test_dataframe_transformers.py
4
13176
import pandas as pd import numpy as np import unittest import healthcareai.common.transformers as transformers class TestDataframeImputer(unittest.TestCase): def test_imputation_false_returns_unmodified(self): df = pd.DataFrame([ ['a', 1, 2], ['b', 1, 1], ['b', 2, 2], ['a', None, None] ]) expected = pd.DataFrame([ ['a', 1, 2], ['b', 1, 1], ['b', 2, 2], ['a', None, None] ]) result = transformers.DataFrameImputer(impute=False).fit_transform(df) self.assertEqual(len(result), 4) # Assert column types remain identical self.assertTrue(list(result.dtypes) == list(df.dtypes)) self.assertTrue(expected.equals(result)) def test_imputation_removes_nans(self): df = pd.DataFrame([ ['a', 1, 2], ['b', 1, 1], ['b', 2, 2], [np.nan, np.nan, np.nan] ]) expected = pd.DataFrame([ ['a', 1, 2], ['b', 1, 1], ['b', 2, 2], ['b', 4 / 3.0, 5 / 3.0] ]) result = transformers.DataFrameImputer().fit_transform(df) self.assertEqual(len(result), 4) # Assert no NANs self.assertFalse(result.isnull().values.any()) # Assert column types remain identical self.assertTrue(list(result.dtypes) == list(df.dtypes)) self.assertTrue(expected.equals(result)) def test_imputation_removes_nones(self): df = pd.DataFrame([ ['a', 1, 2], ['b', 1, 1], ['b', 2, 2], [None, None, None] ]) expected = pd.DataFrame([ ['a', 1, 2], ['b', 1, 1], ['b', 2, 2], ['b', 4 / 3.0, 5 / 3.0] ]) result = transformers.DataFrameImputer().fit_transform(df) self.assertEqual(len(result), 4) self.assertFalse(result.isnull().values.any()) # Assert column types remain identical self.assertTrue(list(result.dtypes) == list(df.dtypes)) self.assertTrue(expected.equals(result)) def test_imputation_for_mean_of_numeric_and_mode_for_categorical(self): df = pd.DataFrame([ ['a', 1, 2], ['b', 1, 1], ['b', 2, 2], [None, None, None] ]) result = transformers.DataFrameImputer().fit_transform(df) expected = pd.DataFrame([ ['a', 1, 2], ['b', 1, 1], ['b', 2, 2], ['b', 4. / 3, 5. / 3] ]) self.assertEqual(len(result), 4) # Assert imputed values self.assertTrue(expected.equals(result)) # Assert column types remain identical self.assertTrue(list(result.dtypes) == list(df.dtypes)) class TestDataFrameConvertTargetToBinary(unittest.TestCase): def test_does_nothing_on_regression(self): df = pd.DataFrame({ 'category': ['a', 'b', 'c'], 'gender': ['F', 'M', 'F'], 'outcome': [1, 5, 4], 'string_outcome': ['Y', 'N', 'Y'] }) result = transformers.DataFrameConvertTargetToBinary('regression', 'string_outcome').fit_transform(df) self.assertTrue(df.equals(result)) def test_converts_y_n_for_classification(self): df = pd.DataFrame({ 'category': ['a', 'b', 'c'], 'gender': ['F', 'M', 'F'], 'outcome': [1, 5, 4], 'string_outcome': ['Y', 'N', 'Y'] }) expected = pd.DataFrame({ 'category': ['a', 'b', 'c'], 'gender': ['F', 'M', 'F'], 'outcome': [1, 5, 4], 'string_outcome': [1, 0, 1] }) result = transformers.DataFrameConvertTargetToBinary('classification', 'string_outcome').fit_transform(df) self.assertTrue(expected.equals(result)) class TestDataFrameCreateDummyVariables(unittest.TestCase): def test_dummies_for_binary_categorical(self): df = pd.DataFrame({ 'aa_outcome': [1, 5, 4], 'binary_category': ['a', 'b', 'a'], 'numeric': [1, 2, 1], }) expected = pd.DataFrame({ 'aa_outcome': [1, 5, 4], 'binary_category.b': [0, 1, 0], 'numeric': [1, 2, 1], }) # cast as uint8 which the pandas.get_dummies() outputs expected = expected.astype({'binary_category.b': 'uint8'}) result = transformers.DataFrameCreateDummyVariables('aa_outcome').fit_transform(df) # Sort each because column order matters for equality checks expected = expected.sort_index(axis=1) result = result.sort_index(axis=1) self.assertTrue(result.equals(expected)) def test_dummies_for_trinary_categorical(self): df = pd.DataFrame({ 'binary_category': ['a', 'b', 'c'], 'aa_outcome': [1, 5, 4] }) expected = pd.DataFrame({ 'aa_outcome': [1, 5, 4], 'binary_category.b': [0, 1, 0], 'binary_category.c': [0, 0, 1] }) # cast as uint8 which the pandas.get_dummies() outputs expected = expected.astype({'binary_category.b': 'uint8', 'binary_category.c': 'uint8'}) result = transformers.DataFrameCreateDummyVariables('aa_outcome').fit_transform(df) # Sort each because column order matters for equality checks expected = expected.sort_index(axis=1) result = result.sort_index(axis=1) self.assertTrue(result.equals(expected)) class TestDataFrameConvertColumnToNumeric(unittest.TestCase): def test_integer_strings(self): df = pd.DataFrame({ 'integer_strings': ['1', '2', '3'], 'binary_category': ['a', 'b', 'a'], 'numeric': [1, 2, 1], }) expected = pd.DataFrame({ 'integer_strings': [1, 2, 3], 'binary_category': ['a', 'b', 'a'], 'numeric': [1, 2, 1], }) result = transformers.DataFrameConvertColumnToNumeric('integer_strings').fit_transform(df) # Sort each because column order matters for equality checks expected = expected.sort_index(axis=1) result = result.sort_index(axis=1) self.assertTrue(result.equals(expected)) def test_integer(self): df = pd.DataFrame({ 'binary_category': ['a', 'b', 'a'], 'numeric': [1, 2, 1], }) expected = pd.DataFrame({ 'binary_category': ['a', 'b', 'a'], 'numeric': [1, 2, 1], }) result = transformers.DataFrameConvertColumnToNumeric('numeric').fit_transform(df) # Sort each because column order matters for equality checks expected = expected.sort_index(axis=1) result = result.sort_index(axis=1) self.assertTrue(result.equals(expected)) class TestDataframeUnderSampler(unittest.TestCase): def setUp(self): # Build an imbalanced dataframe (20% True at_risk) self.df = pd.DataFrame({'id': [1, 2, 3, 4, 5, 6, 7, 8], 'is_male': [1, 0, 1, 0, 0, 0, 1, 1], 'height': [100, 80, 70, 85, 100, 80, 70, 85], 'weight': [99, 46, 33, 44, 99, 46, 33, 44], 'at_risk': [True, False, False, False, True, False, False, False], }) self.result = transformers.DataFrameUnderSampling('at_risk', random_seed=42).fit_transform(self.df) print(self.result.head()) def test_returns_dataframe(self): self.assertTrue(isinstance(self.result, pd.DataFrame)) def test_returns_smaller_dataframe(self): self.assertLess(len(self.result), len(self.df)) def test_returns_balanced_classes(self): # For sanity, verify that the original classes were imbalanced original_value_counts = self.df['at_risk'].value_counts() original_true_count = original_value_counts[1] original_false_count = original_value_counts[0] self.assertNotEqual(original_true_count, original_false_count) # Verify that the new classes are balanced value_counts = self.result['at_risk'].value_counts() true_count = value_counts[1] false_count = value_counts[0] self.assertEqual(true_count, false_count) class TestDataframeOverSampler(unittest.TestCase): def setUp(self): # Build an imbalanced dataframe (20% True at_risk) self.df = pd.DataFrame({'id': [1, 2, 3, 4, 5, 6, 7, 8], 'is_male': [1, 0, 1, 0, 0, 0, 1, 1], 'height': [100, 80, 70, 85, 100, 80, 70, 85], 'weight': [99, 46, 33, 44, 99, 46, 33, 44], 'at_risk': [True, False, False, False, True, False, False, False], }) self.result = transformers.DataFrameOverSampling('at_risk', random_seed=42).fit_transform(self.df) # print(self.df.head(10)) # print(self.result.head(12)) def test_returns_dataframe(self): self.assertTrue(isinstance(self.result, pd.DataFrame)) def test_returns_larger_dataframe(self): self.assertGreater(len(self.result), len(self.df)) def test_returns_balanced_classes(self): # For sanity, verify that the original classes were imbalanced original_value_counts = self.df['at_risk'].value_counts() original_true_count = original_value_counts[1] original_false_count = original_value_counts[0] self.assertNotEqual(original_true_count, original_false_count) # Verify that the new classes are balanced value_counts = self.result['at_risk'].value_counts() true_count = value_counts[1] false_count = value_counts[0] # print('True Counts: {} --> {}, False Counts: {} --> {}'.format(original_true_count, true_count, # original_false_count, false_count)) self.assertEqual(true_count, false_count) class TestRemovesNANs(unittest.TestCase): def setUp(self): self.df = pd.DataFrame({'a': [1, None, 2, 3, None], 'b': ['m', 'f', None, 'f', None], 'c': [3, 4, 5, None, None], 'd': [None, 8, 1, 3, None], 'e': [None, None, None, None, None], 'label': ['Y', 'N', 'Y', 'N', None]}) def runTest(self): df_final = transformers.DataFrameDropNaN().fit_transform(self.df) self.assertTrue(df_final.equals(pd.DataFrame({'a': [1, None, 2, 3, None], 'b': ['m', 'f', None, 'f', None], 'c': [3, 4, 5, None, None], 'd': [None, 8, 1, 3, None], 'label': ['Y', 'N', 'Y', 'N', None]}))) def tearDown(self): del self.df class TestFeatureScaling(unittest.TestCase): def setUp(self): self.df = pd.DataFrame({'a': [1, 3, 2, 3], 'b': ['m', 'f', 'b', 'f'], 'c': [3, 4, 5, 5], 'd': [6, 8, 1, 3], 'label': ['Y', 'N', 'Y', 'N']}) self.df_repeat = pd.DataFrame({'a': [1, 3, 2, 3], 'b': ['m', 'f', 'b', 'f'], 'c': [3, 4, 5, 5], 'd': [6, 8, 1, 3], 'label': ['Y', 'N', 'Y', 'N']}) def runTest(self): feature_scaling = transformers.DataFrameFeatureScaling() df_final = feature_scaling.fit_transform(self.df).round(5) self.assertTrue(df_final.equals(pd.DataFrame({'a': [-1.507557, 0.904534, -0.301511, 0.904534], 'b': ['m', 'f', 'b', 'f'], 'c': [-1.507557, -0.301511, 0.904534, 0.904534], 'd': [0.557086, 1.299867, -1.299867, -0.557086], 'label': ['Y', 'N', 'Y', 'N']}).round(5))) df_reused = transformers.DataFrameFeatureScaling(reuse=feature_scaling).fit_transform(self.df_repeat).round(5) self.assertTrue(df_reused.equals(pd.DataFrame({'a': [-1.507557, 0.904534, -0.301511, 0.904534], 'b': ['m', 'f', 'b', 'f'], 'c': [-1.507557, -0.301511, 0.904534, 0.904534], 'd': [0.557086, 1.299867, -1.299867, -0.557086], 'label': ['Y', 'N', 'Y', 'N']}).round(5))) if __name__ == '__main__': unittest.main()
mit
spallavolu/scikit-learn
sklearn/preprocessing/data.py
68
57385
# Authors: Alexandre Gramfort <[email protected]> # Mathieu Blondel <[email protected]> # Olivier Grisel <[email protected]> # Andreas Mueller <[email protected]> # Eric Martin <[email protected]> # License: BSD 3 clause from itertools import chain, combinations import numbers import warnings import numpy as np from scipy import sparse from ..base import BaseEstimator, TransformerMixin from ..externals import six from ..utils import check_array from ..utils.extmath import row_norms from ..utils.fixes import combinations_with_replacement as combinations_w_r from ..utils.sparsefuncs_fast import (inplace_csr_row_normalize_l1, inplace_csr_row_normalize_l2) from ..utils.sparsefuncs import (inplace_column_scale, mean_variance_axis, min_max_axis, inplace_row_scale) from ..utils.validation import check_is_fitted, FLOAT_DTYPES zip = six.moves.zip map = six.moves.map range = six.moves.range __all__ = [ 'Binarizer', 'KernelCenterer', 'MinMaxScaler', 'MaxAbsScaler', 'Normalizer', 'OneHotEncoder', 'RobustScaler', 'StandardScaler', 'add_dummy_feature', 'binarize', 'normalize', 'scale', 'robust_scale', 'maxabs_scale', 'minmax_scale', ] DEPRECATION_MSG_1D = ( "Passing 1d arrays as data is deprecated in 0.17 and will " "raise ValueError in 0.19. Reshape your data either using " "X.reshape(-1, 1) if your data has a single feature or " "X.reshape(1, -1) if it contains a single sample." ) def _mean_and_std(X, axis=0, with_mean=True, with_std=True): """Compute mean and std deviation for centering, scaling. Zero valued std components are reset to 1.0 to avoid NaNs when scaling. """ X = np.asarray(X) Xr = np.rollaxis(X, axis) if with_mean: mean_ = Xr.mean(axis=0) else: mean_ = None if with_std: std_ = Xr.std(axis=0) std_ = _handle_zeros_in_scale(std_) else: std_ = None return mean_, std_ def _handle_zeros_in_scale(scale): ''' Makes sure that whenever scale is zero, we handle it correctly. This happens in most scalers when we have constant features.''' # if we are fitting on 1D arrays, scale might be a scalar if np.isscalar(scale): if scale == 0: scale = 1. elif isinstance(scale, np.ndarray): scale[scale == 0.0] = 1.0 scale[~np.isfinite(scale)] = 1.0 return scale def scale(X, axis=0, with_mean=True, with_std=True, copy=True): """Standardize a dataset along any axis Center to the mean and component wise scale to unit variance. Read more in the :ref:`User Guide <preprocessing_scaler>`. Parameters ---------- X : array-like or CSR matrix. The data to center and scale. axis : int (0 by default) axis used to compute the means and standard deviations along. If 0, independently standardize each feature, otherwise (if 1) standardize each sample. with_mean : boolean, True by default If True, center the data before scaling. with_std : boolean, True by default If True, scale the data to unit variance (or equivalently, unit standard deviation). copy : boolean, optional, default True set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR matrix and if axis is 1). Notes ----- This implementation will refuse to center scipy.sparse matrices since it would make them non-sparse and would potentially crash the program with memory exhaustion problems. Instead the caller is expected to either set explicitly `with_mean=False` (in that case, only variance scaling will be performed on the features of the CSR matrix) or to call `X.toarray()` if he/she expects the materialized dense array to fit in memory. To avoid memory copy the caller should pass a CSR matrix. See also -------- :class:`sklearn.preprocessing.StandardScaler` to perform centering and scaling using the ``Transformer`` API (e.g. as part of a preprocessing :class:`sklearn.pipeline.Pipeline`) """ X = check_array(X, accept_sparse='csr', copy=copy, ensure_2d=False, warn_on_dtype=True, estimator='the scale function', dtype=FLOAT_DTYPES) if sparse.issparse(X): if with_mean: raise ValueError( "Cannot center sparse matrices: pass `with_mean=False` instead" " See docstring for motivation and alternatives.") if axis != 0: raise ValueError("Can only scale sparse matrix on axis=0, " " got axis=%d" % axis) if not sparse.isspmatrix_csr(X): X = X.tocsr() copy = False if copy: X = X.copy() _, var = mean_variance_axis(X, axis=0) var = _handle_zeros_in_scale(var) inplace_column_scale(X, 1 / np.sqrt(var)) else: X = np.asarray(X) mean_, std_ = _mean_and_std( X, axis, with_mean=with_mean, with_std=with_std) if copy: X = X.copy() # Xr is a view on the original array that enables easy use of # broadcasting on the axis in which we are interested in Xr = np.rollaxis(X, axis) if with_mean: Xr -= mean_ mean_1 = Xr.mean(axis=0) # Verify that mean_1 is 'close to zero'. If X contains very # large values, mean_1 can also be very large, due to a lack of # precision of mean_. In this case, a pre-scaling of the # concerned feature is efficient, for instance by its mean or # maximum. if not np.allclose(mean_1, 0): warnings.warn("Numerical issues were encountered " "when centering the data " "and might not be solved. Dataset may " "contain too large values. You may need " "to prescale your features.") Xr -= mean_1 if with_std: Xr /= std_ if with_mean: mean_2 = Xr.mean(axis=0) # If mean_2 is not 'close to zero', it comes from the fact that # std_ is very small so that mean_2 = mean_1/std_ > 0, even if # mean_1 was close to zero. The problem is thus essentially due # to the lack of precision of mean_. A solution is then to # substract the mean again: if not np.allclose(mean_2, 0): warnings.warn("Numerical issues were encountered " "when scaling the data " "and might not be solved. The standard " "deviation of the data is probably " "very close to 0. ") Xr -= mean_2 return X class MinMaxScaler(BaseEstimator, TransformerMixin): """Transforms features by scaling each feature to a given range. This estimator scales and translates each feature individually such that it is in the given range on the training set, i.e. between zero and one. The transformation is given by:: X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0)) X_scaled = X_std * (max - min) + min where min, max = feature_range. This transformation is often used as an alternative to zero mean, unit variance scaling. Read more in the :ref:`User Guide <preprocessing_scaler>`. Parameters ---------- feature_range: tuple (min, max), default=(0, 1) Desired range of transformed data. copy : boolean, optional, default True Set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array). Attributes ---------- min_ : ndarray, shape (n_features,) Per feature adjustment for minimum. scale_ : ndarray, shape (n_features,) Per feature relative scaling of the data. """ def __init__(self, feature_range=(0, 1), copy=True): self.feature_range = feature_range self.copy = copy def fit(self, X, y=None): """Compute the minimum and maximum to be used for later scaling. Parameters ---------- X : array-like, shape [n_samples, n_features] The data used to compute the per-feature minimum and maximum used for later scaling along the features axis. """ X = check_array(X, copy=self.copy, ensure_2d=False, warn_on_dtype=True, estimator=self, dtype=FLOAT_DTYPES) feature_range = self.feature_range if feature_range[0] >= feature_range[1]: raise ValueError("Minimum of desired feature range must be smaller" " than maximum. Got %s." % str(feature_range)) data_min = np.min(X, axis=0) data_range = np.max(X, axis=0) - data_min data_range = _handle_zeros_in_scale(data_range) self.scale_ = (feature_range[1] - feature_range[0]) / data_range self.min_ = feature_range[0] - data_min * self.scale_ self.data_range = data_range self.data_min = data_min return self def transform(self, X): """Scaling features of X according to feature_range. Parameters ---------- X : array-like with shape [n_samples, n_features] Input data that will be transformed. """ check_is_fitted(self, 'scale_') X = check_array(X, copy=self.copy, ensure_2d=False) if X.ndim == 1: warnings.warn(DEPRECATION_MSG_1D, DeprecationWarning) X *= self.scale_ X += self.min_ return X def inverse_transform(self, X): """Undo the scaling of X according to feature_range. Parameters ---------- X : array-like with shape [n_samples, n_features] Input data that will be transformed. """ check_is_fitted(self, 'scale_') X = check_array(X, copy=self.copy, ensure_2d=False) X -= self.min_ X /= self.scale_ return X def minmax_scale(X, feature_range=(0, 1), axis=0, copy=True): """Transforms features by scaling each feature to a given range. This estimator scales and translates each feature individually such that it is in the given range on the training set, i.e. between zero and one. The transformation is given by:: X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0)) X_scaled = X_std * (max - min) + min where min, max = feature_range. This transformation is often used as an alternative to zero mean, unit variance scaling. Read more in the :ref:`User Guide <preprocessing_scaler>`. Parameters ---------- feature_range: tuple (min, max), default=(0, 1) Desired range of transformed data. axis : int (0 by default) axis used to scale along. If 0, independently scale each feature, otherwise (if 1) scale each sample. copy : boolean, optional, default is True Set to False to perform inplace scaling and avoid a copy (if the input is already a numpy array). """ s = MinMaxScaler(feature_range=feature_range, copy=copy) if axis == 0: return s.fit_transform(X) else: return s.fit_transform(X.T).T class StandardScaler(BaseEstimator, TransformerMixin): """Standardize features by removing the mean and scaling to unit variance Centering and scaling happen independently on each feature by computing the relevant statistics on the samples in the training set. Mean and standard deviation are then stored to be used on later data using the `transform` method. Standardization of a dataset is a common requirement for many machine learning estimators: they might behave badly if the individual feature do not more or less look like standard normally distributed data (e.g. Gaussian with 0 mean and unit variance). For instance many elements used in the objective function of a learning algorithm (such as the RBF kernel of Support Vector Machines or the L1 and L2 regularizers of linear models) assume that all features are centered around 0 and have variance in the same order. If a feature has a variance that is orders of magnitude larger that others, it might dominate the objective function and make the estimator unable to learn from other features correctly as expected. Read more in the :ref:`User Guide <preprocessing_scaler>`. Parameters ---------- with_mean : boolean, True by default If True, center the data before scaling. This does not work (and will raise an exception) when attempted on sparse matrices, because centering them entails building a dense matrix which in common use cases is likely to be too large to fit in memory. with_std : boolean, True by default If True, scale the data to unit variance (or equivalently, unit standard deviation). copy : boolean, optional, default True If False, try to avoid a copy and do inplace scaling instead. This is not guaranteed to always work inplace; e.g. if the data is not a NumPy array or scipy.sparse CSR matrix, a copy may still be returned. Attributes ---------- mean_ : array of floats with shape [n_features] The mean value for each feature in the training set. std_ : array of floats with shape [n_features] The standard deviation for each feature in the training set. Set to one if the standard deviation is zero for a given feature. See also -------- :func:`sklearn.preprocessing.scale` to perform centering and scaling without using the ``Transformer`` object oriented API :class:`sklearn.decomposition.RandomizedPCA` with `whiten=True` to further remove the linear correlation across features. """ def __init__(self, copy=True, with_mean=True, with_std=True): self.with_mean = with_mean self.with_std = with_std self.copy = copy def fit(self, X, y=None): """Compute the mean and std to be used for later scaling. Parameters ---------- X : array-like or CSR matrix with shape [n_samples, n_features] The data used to compute the mean and standard deviation used for later scaling along the features axis. """ X = check_array(X, accept_sparse='csr', copy=self.copy, ensure_2d=False, warn_on_dtype=True, estimator=self, dtype=FLOAT_DTYPES) if sparse.issparse(X): if self.with_mean: raise ValueError( "Cannot center sparse matrices: pass `with_mean=False` " "instead. See docstring for motivation and alternatives.") self.mean_ = None if self.with_std: var = mean_variance_axis(X, axis=0)[1] self.std_ = np.sqrt(var) self.std_ = _handle_zeros_in_scale(self.std_) else: self.std_ = None return self else: self.mean_, self.std_ = _mean_and_std( X, axis=0, with_mean=self.with_mean, with_std=self.with_std) return self def transform(self, X, y=None, copy=None): """Perform standardization by centering and scaling Parameters ---------- X : array-like with shape [n_samples, n_features] The data used to scale along the features axis. """ check_is_fitted(self, 'std_') copy = copy if copy is not None else self.copy X = check_array(X, accept_sparse='csr', copy=copy, ensure_2d=False, warn_on_dtype=True, estimator=self, dtype=FLOAT_DTYPES) if X.ndim == 1: warnings.warn(DEPRECATION_MSG_1D, DeprecationWarning) if sparse.issparse(X): if self.with_mean: raise ValueError( "Cannot center sparse matrices: pass `with_mean=False` " "instead. See docstring for motivation and alternatives.") if self.std_ is not None: inplace_column_scale(X, 1 / self.std_) else: if self.with_mean: X -= self.mean_ if self.with_std: X /= self.std_ return X def inverse_transform(self, X, copy=None): """Scale back the data to the original representation Parameters ---------- X : array-like with shape [n_samples, n_features] The data used to scale along the features axis. """ check_is_fitted(self, 'std_') copy = copy if copy is not None else self.copy if sparse.issparse(X): if self.with_mean: raise ValueError( "Cannot uncenter sparse matrices: pass `with_mean=False` " "instead See docstring for motivation and alternatives.") if not sparse.isspmatrix_csr(X): X = X.tocsr() copy = False if copy: X = X.copy() if self.std_ is not None: inplace_column_scale(X, self.std_) else: X = np.asarray(X) if copy: X = X.copy() if self.with_std: X *= self.std_ if self.with_mean: X += self.mean_ return X class MaxAbsScaler(BaseEstimator, TransformerMixin): """Scale each feature by its maximum absolute value. This estimator scales and translates each feature individually such that the maximal absolute value of each feature in the training set will be 1.0. It does not shift/center the data, and thus does not destroy any sparsity. This scaler can also be applied to sparse CSR or CSC matrices. Parameters ---------- copy : boolean, optional, default is True Set to False to perform inplace scaling and avoid a copy (if the input is already a numpy array). Attributes ---------- scale_ : ndarray, shape (n_features,) Per feature relative scaling of the data. """ def __init__(self, copy=True): self.copy = copy def fit(self, X, y=None): """Compute the minimum and maximum to be used for later scaling. Parameters ---------- X : array-like, shape [n_samples, n_features] The data used to compute the per-feature minimum and maximum used for later scaling along the features axis. """ X = check_array(X, accept_sparse=('csr', 'csc'), copy=self.copy, ensure_2d=False, estimator=self, dtype=FLOAT_DTYPES) if sparse.issparse(X): mins, maxs = min_max_axis(X, axis=0) scales = np.maximum(np.abs(mins), np.abs(maxs)) else: scales = np.abs(X).max(axis=0) scales = np.array(scales) scales = scales.reshape(-1) self.scale_ = _handle_zeros_in_scale(scales) return self def transform(self, X, y=None): """Scale the data Parameters ---------- X : array-like or CSR matrix. The data that should be scaled. """ check_is_fitted(self, 'scale_') X = check_array(X, accept_sparse=('csr', 'csc'), copy=self.copy, ensure_2d=False, estimator=self, dtype=FLOAT_DTYPES) if X.ndim == 1: warnings.warn(DEPRECATION_MSG_1D, DeprecationWarning) if sparse.issparse(X): if X.shape[0] == 1: inplace_row_scale(X, 1.0 / self.scale_) else: inplace_column_scale(X, 1.0 / self.scale_) else: X /= self.scale_ return X def inverse_transform(self, X): """Scale back the data to the original representation Parameters ---------- X : array-like or CSR matrix. The data that should be transformed back. """ check_is_fitted(self, 'scale_') X = check_array(X, accept_sparse=('csr', 'csc'), copy=self.copy, ensure_2d=False, estimator=self, dtype=FLOAT_DTYPES) if sparse.issparse(X): if X.shape[0] == 1: inplace_row_scale(X, self.scale_) else: inplace_column_scale(X, self.scale_) else: X *= self.scale_ return X def maxabs_scale(X, axis=0, copy=True): """Scale each feature to the [-1, 1] range without breaking the sparsity. This estimator scales each feature individually such that the maximal absolute value of each feature in the training set will be 1.0. This scaler can also be applied to sparse CSR or CSC matrices. Parameters ---------- axis : int (0 by default) axis used to scale along. If 0, independently scale each feature, otherwise (if 1) scale each sample. copy : boolean, optional, default is True Set to False to perform inplace scaling and avoid a copy (if the input is already a numpy array). """ s = MaxAbsScaler(copy=copy) if axis == 0: return s.fit_transform(X) else: return s.fit_transform(X.T).T class RobustScaler(BaseEstimator, TransformerMixin): """Scale features using statistics that are robust to outliers. This Scaler removes the median and scales the data according to the Interquartile Range (IQR). The IQR is the range between the 1st quartile (25th quantile) and the 3rd quartile (75th quantile). Centering and scaling happen independently on each feature (or each sample, depending on the `axis` argument) by computing the relevant statistics on the samples in the training set. Median and interquartile range are then stored to be used on later data using the `transform` method. Standardization of a dataset is a common requirement for many machine learning estimators. Typically this is done by removing the mean and scaling to unit variance. However, outliers can often influence the sample mean / variance in a negative way. In such cases, the median and the interquartile range often give better results. Read more in the :ref:`User Guide <preprocessing_scaler>`. Parameters ---------- with_centering : boolean, True by default If True, center the data before scaling. This does not work (and will raise an exception) when attempted on sparse matrices, because centering them entails building a dense matrix which in common use cases is likely to be too large to fit in memory. with_scaling : boolean, True by default If True, scale the data to interquartile range. copy : boolean, optional, default is True If False, try to avoid a copy and do inplace scaling instead. This is not guaranteed to always work inplace; e.g. if the data is not a NumPy array or scipy.sparse CSR matrix, a copy may still be returned. Attributes ---------- center_ : array of floats The median value for each feature in the training set. scale_ : array of floats The (scaled) interquartile range for each feature in the training set. See also -------- :class:`sklearn.preprocessing.StandardScaler` to perform centering and scaling using mean and variance. :class:`sklearn.decomposition.RandomizedPCA` with `whiten=True` to further remove the linear correlation across features. Notes ----- See examples/preprocessing/plot_robust_scaling.py for an example. http://en.wikipedia.org/wiki/Median_(statistics) http://en.wikipedia.org/wiki/Interquartile_range """ def __init__(self, with_centering=True, with_scaling=True, copy=True): self.with_centering = with_centering self.with_scaling = with_scaling self.copy = copy def _check_array(self, X, copy): """Makes sure centering is not enabled for sparse matrices.""" X = check_array(X, accept_sparse=('csr', 'csc'), copy=self.copy, ensure_2d=False, estimator=self, dtype=FLOAT_DTYPES) if X.ndim == 1: warnings.warn(DEPRECATION_MSG_1D, DeprecationWarning) if sparse.issparse(X): if self.with_centering: raise ValueError( "Cannot center sparse matrices: use `with_centering=False`" " instead. See docstring for motivation and alternatives.") return X def fit(self, X, y=None): """Compute the median and quantiles to be used for scaling. Parameters ---------- X : array-like with shape [n_samples, n_features] The data used to compute the median and quantiles used for later scaling along the features axis. """ if sparse.issparse(X): raise TypeError("RobustScaler cannot be fitted on sparse inputs") X = self._check_array(X, self.copy) if self.with_centering: self.center_ = np.median(X, axis=0) if self.with_scaling: q = np.percentile(X, (25, 75), axis=0) self.scale_ = (q[1] - q[0]) self.scale_ = _handle_zeros_in_scale(self.scale_) return self def transform(self, X, y=None): """Center and scale the data Parameters ---------- X : array-like or CSR matrix. The data used to scale along the specified axis. """ if self.with_centering: check_is_fitted(self, 'center_') if self.with_scaling: check_is_fitted(self, 'scale_') X = self._check_array(X, self.copy) if sparse.issparse(X): if self.with_scaling: if X.shape[0] == 1: inplace_row_scale(X, 1.0 / self.scale_) elif self.axis == 0: inplace_column_scale(X, 1.0 / self.scale_) else: if self.with_centering: X -= self.center_ if self.with_scaling: X /= self.scale_ return X def inverse_transform(self, X): """Scale back the data to the original representation Parameters ---------- X : array-like or CSR matrix. The data used to scale along the specified axis. """ if self.with_centering: check_is_fitted(self, 'center_') if self.with_scaling: check_is_fitted(self, 'scale_') X = self._check_array(X, self.copy) if sparse.issparse(X): if self.with_scaling: if X.shape[0] == 1: inplace_row_scale(X, self.scale_) else: inplace_column_scale(X, self.scale_) else: if self.with_scaling: X *= self.scale_ if self.with_centering: X += self.center_ return X def robust_scale(X, axis=0, with_centering=True, with_scaling=True, copy=True): """Standardize a dataset along any axis Center to the median and component wise scale according to the interquartile range. Read more in the :ref:`User Guide <preprocessing_scaler>`. Parameters ---------- X : array-like. The data to center and scale. axis : int (0 by default) axis used to compute the medians and IQR along. If 0, independently scale each feature, otherwise (if 1) scale each sample. with_centering : boolean, True by default If True, center the data before scaling. with_scaling : boolean, True by default If True, scale the data to unit variance (or equivalently, unit standard deviation). copy : boolean, optional, default is True set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR matrix and if axis is 1). Notes ----- This implementation will refuse to center scipy.sparse matrices since it would make them non-sparse and would potentially crash the program with memory exhaustion problems. Instead the caller is expected to either set explicitly `with_centering=False` (in that case, only variance scaling will be performed on the features of the CSR matrix) or to call `X.toarray()` if he/she expects the materialized dense array to fit in memory. To avoid memory copy the caller should pass a CSR matrix. See also -------- :class:`sklearn.preprocessing.RobustScaler` to perform centering and scaling using the ``Transformer`` API (e.g. as part of a preprocessing :class:`sklearn.pipeline.Pipeline`) """ s = RobustScaler(with_centering=with_centering, with_scaling=with_scaling, copy=copy) if axis == 0: return s.fit_transform(X) else: return s.fit_transform(X.T).T class PolynomialFeatures(BaseEstimator, TransformerMixin): """Generate polynomial and interaction features. Generate a new feature matrix consisting of all polynomial combinations of the features with degree less than or equal to the specified degree. For example, if an input sample is two dimensional and of the form [a, b], the degree-2 polynomial features are [1, a, b, a^2, ab, b^2]. Parameters ---------- degree : integer The degree of the polynomial features. Default = 2. interaction_only : boolean, default = False If true, only interaction features are produced: features that are products of at most ``degree`` *distinct* input features (so not ``x[1] ** 2``, ``x[0] * x[2] ** 3``, etc.). include_bias : boolean If True (default), then include a bias column, the feature in which all polynomial powers are zero (i.e. a column of ones - acts as an intercept term in a linear model). Examples -------- >>> X = np.arange(6).reshape(3, 2) >>> X array([[0, 1], [2, 3], [4, 5]]) >>> poly = PolynomialFeatures(2) >>> poly.fit_transform(X) array([[ 1, 0, 1, 0, 0, 1], [ 1, 2, 3, 4, 6, 9], [ 1, 4, 5, 16, 20, 25]]) >>> poly = PolynomialFeatures(interaction_only=True) >>> poly.fit_transform(X) array([[ 1, 0, 1, 0], [ 1, 2, 3, 6], [ 1, 4, 5, 20]]) Attributes ---------- powers_ : array, shape (n_input_features, n_output_features) powers_[i, j] is the exponent of the jth input in the ith output. n_input_features_ : int The total number of input features. n_output_features_ : int The total number of polynomial output features. The number of output features is computed by iterating over all suitably sized combinations of input features. Notes ----- Be aware that the number of features in the output array scales polynomially in the number of features of the input array, and exponentially in the degree. High degrees can cause overfitting. See :ref:`examples/linear_model/plot_polynomial_interpolation.py <example_linear_model_plot_polynomial_interpolation.py>` """ def __init__(self, degree=2, interaction_only=False, include_bias=True): self.degree = degree self.interaction_only = interaction_only self.include_bias = include_bias @staticmethod def _combinations(n_features, degree, interaction_only, include_bias): comb = (combinations if interaction_only else combinations_w_r) start = int(not include_bias) return chain.from_iterable(comb(range(n_features), i) for i in range(start, degree + 1)) @property def powers_(self): check_is_fitted(self, 'n_input_features_') combinations = self._combinations(self.n_input_features_, self.degree, self.interaction_only, self.include_bias) return np.vstack(np.bincount(c, minlength=self.n_input_features_) for c in combinations) def fit(self, X, y=None): """ Compute number of output features. """ n_samples, n_features = check_array(X).shape combinations = self._combinations(n_features, self.degree, self.interaction_only, self.include_bias) self.n_input_features_ = n_features self.n_output_features_ = sum(1 for _ in combinations) return self def transform(self, X, y=None): """Transform data to polynomial features Parameters ---------- X : array with shape [n_samples, n_features] The data to transform, row by row. Returns ------- XP : np.ndarray shape [n_samples, NP] The matrix of features, where NP is the number of polynomial features generated from the combination of inputs. """ check_is_fitted(self, ['n_input_features_', 'n_output_features_']) X = check_array(X) n_samples, n_features = X.shape if n_features != self.n_input_features_: raise ValueError("X shape does not match training shape") # allocate output data XP = np.empty((n_samples, self.n_output_features_), dtype=X.dtype) combinations = self._combinations(n_features, self.degree, self.interaction_only, self.include_bias) for i, c in enumerate(combinations): XP[:, i] = X[:, c].prod(1) return XP def normalize(X, norm='l2', axis=1, copy=True): """Scale input vectors individually to unit norm (vector length). Read more in the :ref:`User Guide <preprocessing_normalization>`. Parameters ---------- X : array or scipy.sparse matrix with shape [n_samples, n_features] The data to normalize, element by element. scipy.sparse matrices should be in CSR format to avoid an un-necessary copy. norm : 'l1', 'l2', or 'max', optional ('l2' by default) The norm to use to normalize each non zero sample (or each non-zero feature if axis is 0). axis : 0 or 1, optional (1 by default) axis used to normalize the data along. If 1, independently normalize each sample, otherwise (if 0) normalize each feature. copy : boolean, optional, default True set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR matrix and if axis is 1). See also -------- :class:`sklearn.preprocessing.Normalizer` to perform normalization using the ``Transformer`` API (e.g. as part of a preprocessing :class:`sklearn.pipeline.Pipeline`) """ if norm not in ('l1', 'l2', 'max'): raise ValueError("'%s' is not a supported norm" % norm) if axis == 0: sparse_format = 'csc' elif axis == 1: sparse_format = 'csr' else: raise ValueError("'%d' is not a supported axis" % axis) X = check_array(X, sparse_format, copy=copy, warn_on_dtype=True, estimator='the normalize function', dtype=FLOAT_DTYPES) if axis == 0: X = X.T if sparse.issparse(X): if norm == 'l1': inplace_csr_row_normalize_l1(X) elif norm == 'l2': inplace_csr_row_normalize_l2(X) elif norm == 'max': _, norms = min_max_axis(X, 1) norms = norms.repeat(np.diff(X.indptr)) mask = norms != 0 X.data[mask] /= norms[mask] else: if norm == 'l1': norms = np.abs(X).sum(axis=1) elif norm == 'l2': norms = row_norms(X) elif norm == 'max': norms = np.max(X, axis=1) norms = _handle_zeros_in_scale(norms) X /= norms[:, np.newaxis] if axis == 0: X = X.T return X class Normalizer(BaseEstimator, TransformerMixin): """Normalize samples individually to unit norm. Each sample (i.e. each row of the data matrix) with at least one non zero component is rescaled independently of other samples so that its norm (l1 or l2) equals one. This transformer is able to work both with dense numpy arrays and scipy.sparse matrix (use CSR format if you want to avoid the burden of a copy / conversion). Scaling inputs to unit norms is a common operation for text classification or clustering for instance. For instance the dot product of two l2-normalized TF-IDF vectors is the cosine similarity of the vectors and is the base similarity metric for the Vector Space Model commonly used by the Information Retrieval community. Read more in the :ref:`User Guide <preprocessing_normalization>`. Parameters ---------- norm : 'l1', 'l2', or 'max', optional ('l2' by default) The norm to use to normalize each non zero sample. copy : boolean, optional, default True set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR matrix). Notes ----- This estimator is stateless (besides constructor parameters), the fit method does nothing but is useful when used in a pipeline. See also -------- :func:`sklearn.preprocessing.normalize` equivalent function without the object oriented API """ def __init__(self, norm='l2', copy=True): self.norm = norm self.copy = copy def fit(self, X, y=None): """Do nothing and return the estimator unchanged This method is just there to implement the usual API and hence work in pipelines. """ X = check_array(X, accept_sparse='csr') return self def transform(self, X, y=None, copy=None): """Scale each non zero row of X to unit norm Parameters ---------- X : array or scipy.sparse matrix with shape [n_samples, n_features] The data to normalize, row by row. scipy.sparse matrices should be in CSR format to avoid an un-necessary copy. """ copy = copy if copy is not None else self.copy X = check_array(X, accept_sparse='csr') return normalize(X, norm=self.norm, axis=1, copy=copy) def binarize(X, threshold=0.0, copy=True): """Boolean thresholding of array-like or scipy.sparse matrix Read more in the :ref:`User Guide <preprocessing_binarization>`. Parameters ---------- X : array or scipy.sparse matrix with shape [n_samples, n_features] The data to binarize, element by element. scipy.sparse matrices should be in CSR or CSC format to avoid an un-necessary copy. threshold : float, optional (0.0 by default) Feature values below or equal to this are replaced by 0, above it by 1. Threshold may not be less than 0 for operations on sparse matrices. copy : boolean, optional, default True set to False to perform inplace binarization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR / CSC matrix and if axis is 1). See also -------- :class:`sklearn.preprocessing.Binarizer` to perform binarization using the ``Transformer`` API (e.g. as part of a preprocessing :class:`sklearn.pipeline.Pipeline`) """ X = check_array(X, accept_sparse=['csr', 'csc'], copy=copy) if sparse.issparse(X): if threshold < 0: raise ValueError('Cannot binarize a sparse matrix with threshold ' '< 0') cond = X.data > threshold not_cond = np.logical_not(cond) X.data[cond] = 1 X.data[not_cond] = 0 X.eliminate_zeros() else: cond = X > threshold not_cond = np.logical_not(cond) X[cond] = 1 X[not_cond] = 0 return X class Binarizer(BaseEstimator, TransformerMixin): """Binarize data (set feature values to 0 or 1) according to a threshold Values greater than the threshold map to 1, while values less than or equal to the threshold map to 0. With the default threshold of 0, only positive values map to 1. Binarization is a common operation on text count data where the analyst can decide to only consider the presence or absence of a feature rather than a quantified number of occurrences for instance. It can also be used as a pre-processing step for estimators that consider boolean random variables (e.g. modelled using the Bernoulli distribution in a Bayesian setting). Read more in the :ref:`User Guide <preprocessing_binarization>`. Parameters ---------- threshold : float, optional (0.0 by default) Feature values below or equal to this are replaced by 0, above it by 1. Threshold may not be less than 0 for operations on sparse matrices. copy : boolean, optional, default True set to False to perform inplace binarization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR matrix). Notes ----- If the input is a sparse matrix, only the non-zero values are subject to update by the Binarizer class. This estimator is stateless (besides constructor parameters), the fit method does nothing but is useful when used in a pipeline. """ def __init__(self, threshold=0.0, copy=True): self.threshold = threshold self.copy = copy def fit(self, X, y=None): """Do nothing and return the estimator unchanged This method is just there to implement the usual API and hence work in pipelines. """ check_array(X, accept_sparse='csr') return self def transform(self, X, y=None, copy=None): """Binarize each element of X Parameters ---------- X : array or scipy.sparse matrix with shape [n_samples, n_features] The data to binarize, element by element. scipy.sparse matrices should be in CSR format to avoid an un-necessary copy. """ copy = copy if copy is not None else self.copy return binarize(X, threshold=self.threshold, copy=copy) class KernelCenterer(BaseEstimator, TransformerMixin): """Center a kernel matrix Let K(x, z) be a kernel defined by phi(x)^T phi(z), where phi is a function mapping x to a Hilbert space. KernelCenterer centers (i.e., normalize to have zero mean) the data without explicitly computing phi(x). It is equivalent to centering phi(x) with sklearn.preprocessing.StandardScaler(with_std=False). Read more in the :ref:`User Guide <kernel_centering>`. """ def fit(self, K, y=None): """Fit KernelCenterer Parameters ---------- K : numpy array of shape [n_samples, n_samples] Kernel matrix. Returns ------- self : returns an instance of self. """ K = check_array(K) n_samples = K.shape[0] self.K_fit_rows_ = np.sum(K, axis=0) / n_samples self.K_fit_all_ = self.K_fit_rows_.sum() / n_samples return self def transform(self, K, y=None, copy=True): """Center kernel matrix. Parameters ---------- K : numpy array of shape [n_samples1, n_samples2] Kernel matrix. copy : boolean, optional, default True Set to False to perform inplace computation. Returns ------- K_new : numpy array of shape [n_samples1, n_samples2] """ check_is_fitted(self, 'K_fit_all_') K = check_array(K) if copy: K = K.copy() K_pred_cols = (np.sum(K, axis=1) / self.K_fit_rows_.shape[0])[:, np.newaxis] K -= self.K_fit_rows_ K -= K_pred_cols K += self.K_fit_all_ return K def add_dummy_feature(X, value=1.0): """Augment dataset with an additional dummy feature. This is useful for fitting an intercept term with implementations which cannot otherwise fit it directly. Parameters ---------- X : array or scipy.sparse matrix with shape [n_samples, n_features] Data. value : float Value to use for the dummy feature. Returns ------- X : array or scipy.sparse matrix with shape [n_samples, n_features + 1] Same data with dummy feature added as first column. Examples -------- >>> from sklearn.preprocessing import add_dummy_feature >>> add_dummy_feature([[0, 1], [1, 0]]) array([[ 1., 0., 1.], [ 1., 1., 0.]]) """ X = check_array(X, accept_sparse=['csc', 'csr', 'coo']) n_samples, n_features = X.shape shape = (n_samples, n_features + 1) if sparse.issparse(X): if sparse.isspmatrix_coo(X): # Shift columns to the right. col = X.col + 1 # Column indices of dummy feature are 0 everywhere. col = np.concatenate((np.zeros(n_samples), col)) # Row indices of dummy feature are 0, ..., n_samples-1. row = np.concatenate((np.arange(n_samples), X.row)) # Prepend the dummy feature n_samples times. data = np.concatenate((np.ones(n_samples) * value, X.data)) return sparse.coo_matrix((data, (row, col)), shape) elif sparse.isspmatrix_csc(X): # Shift index pointers since we need to add n_samples elements. indptr = X.indptr + n_samples # indptr[0] must be 0. indptr = np.concatenate((np.array([0]), indptr)) # Row indices of dummy feature are 0, ..., n_samples-1. indices = np.concatenate((np.arange(n_samples), X.indices)) # Prepend the dummy feature n_samples times. data = np.concatenate((np.ones(n_samples) * value, X.data)) return sparse.csc_matrix((data, indices, indptr), shape) else: klass = X.__class__ return klass(add_dummy_feature(X.tocoo(), value)) else: return np.hstack((np.ones((n_samples, 1)) * value, X)) def _transform_selected(X, transform, selected="all", copy=True): """Apply a transform function to portion of selected features Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) Dense array or sparse matrix. transform : callable A callable transform(X) -> X_transformed copy : boolean, optional Copy X even if it could be avoided. selected: "all" or array of indices or mask Specify which features to apply the transform to. Returns ------- X : array or sparse matrix, shape=(n_samples, n_features_new) """ if selected == "all": return transform(X) X = check_array(X, accept_sparse='csc', copy=copy) if len(selected) == 0: return X n_features = X.shape[1] ind = np.arange(n_features) sel = np.zeros(n_features, dtype=bool) sel[np.asarray(selected)] = True not_sel = np.logical_not(sel) n_selected = np.sum(sel) if n_selected == 0: # No features selected. return X elif n_selected == n_features: # All features selected. return transform(X) else: X_sel = transform(X[:, ind[sel]]) X_not_sel = X[:, ind[not_sel]] if sparse.issparse(X_sel) or sparse.issparse(X_not_sel): return sparse.hstack((X_sel, X_not_sel)) else: return np.hstack((X_sel, X_not_sel)) class OneHotEncoder(BaseEstimator, TransformerMixin): """Encode categorical integer features using a one-hot aka one-of-K scheme. The input to this transformer should be a matrix of integers, denoting the values taken on by categorical (discrete) features. The output will be a sparse matrix where each column corresponds to one possible value of one feature. It is assumed that input features take on values in the range [0, n_values). This encoding is needed for feeding categorical data to many scikit-learn estimators, notably linear models and SVMs with the standard kernels. Read more in the :ref:`User Guide <preprocessing_categorical_features>`. Parameters ---------- n_values : 'auto', int or array of ints Number of values per feature. - 'auto' : determine value range from training data. - int : maximum value for all features. - array : maximum value per feature. categorical_features: "all" or array of indices or mask Specify what features are treated as categorical. - 'all' (default): All features are treated as categorical. - array of indices: Array of categorical feature indices. - mask: Array of length n_features and with dtype=bool. Non-categorical features are always stacked to the right of the matrix. dtype : number type, default=np.float Desired dtype of output. sparse : boolean, default=True Will return sparse matrix if set True else will return an array. handle_unknown : str, 'error' or 'ignore' Whether to raise an error or ignore if a unknown categorical feature is present during transform. Attributes ---------- active_features_ : array Indices for active features, meaning values that actually occur in the training set. Only available when n_values is ``'auto'``. feature_indices_ : array of shape (n_features,) Indices to feature ranges. Feature ``i`` in the original data is mapped to features from ``feature_indices_[i]`` to ``feature_indices_[i+1]`` (and then potentially masked by `active_features_` afterwards) n_values_ : array of shape (n_features,) Maximum number of values per feature. Examples -------- Given a dataset with three features and two samples, we let the encoder find the maximum value per feature and transform the data to a binary one-hot encoding. >>> from sklearn.preprocessing import OneHotEncoder >>> enc = OneHotEncoder() >>> enc.fit([[0, 0, 3], [1, 1, 0], [0, 2, 1], \ [1, 0, 2]]) # doctest: +ELLIPSIS OneHotEncoder(categorical_features='all', dtype=<... 'float'>, handle_unknown='error', n_values='auto', sparse=True) >>> enc.n_values_ array([2, 3, 4]) >>> enc.feature_indices_ array([0, 2, 5, 9]) >>> enc.transform([[0, 1, 1]]).toarray() array([[ 1., 0., 0., 1., 0., 0., 1., 0., 0.]]) See also -------- sklearn.feature_extraction.DictVectorizer : performs a one-hot encoding of dictionary items (also handles string-valued features). sklearn.feature_extraction.FeatureHasher : performs an approximate one-hot encoding of dictionary items or strings. """ def __init__(self, n_values="auto", categorical_features="all", dtype=np.float, sparse=True, handle_unknown='error'): self.n_values = n_values self.categorical_features = categorical_features self.dtype = dtype self.sparse = sparse self.handle_unknown = handle_unknown def fit(self, X, y=None): """Fit OneHotEncoder to X. Parameters ---------- X : array-like, shape=(n_samples, n_feature) Input array of type int. Returns ------- self """ self.fit_transform(X) return self def _fit_transform(self, X): """Assumes X contains only categorical features.""" X = check_array(X, dtype=np.int) if np.any(X < 0): raise ValueError("X needs to contain only non-negative integers.") n_samples, n_features = X.shape if self.n_values == 'auto': n_values = np.max(X, axis=0) + 1 elif isinstance(self.n_values, numbers.Integral): if (np.max(X, axis=0) >= self.n_values).any(): raise ValueError("Feature out of bounds for n_values=%d" % self.n_values) n_values = np.empty(n_features, dtype=np.int) n_values.fill(self.n_values) else: try: n_values = np.asarray(self.n_values, dtype=int) except (ValueError, TypeError): raise TypeError("Wrong type for parameter `n_values`. Expected" " 'auto', int or array of ints, got %r" % type(X)) if n_values.ndim < 1 or n_values.shape[0] != X.shape[1]: raise ValueError("Shape mismatch: if n_values is an array," " it has to be of shape (n_features,).") self.n_values_ = n_values n_values = np.hstack([[0], n_values]) indices = np.cumsum(n_values) self.feature_indices_ = indices column_indices = (X + indices[:-1]).ravel() row_indices = np.repeat(np.arange(n_samples, dtype=np.int32), n_features) data = np.ones(n_samples * n_features) out = sparse.coo_matrix((data, (row_indices, column_indices)), shape=(n_samples, indices[-1]), dtype=self.dtype).tocsr() if self.n_values == 'auto': mask = np.array(out.sum(axis=0)).ravel() != 0 active_features = np.where(mask)[0] out = out[:, active_features] self.active_features_ = active_features return out if self.sparse else out.toarray() def fit_transform(self, X, y=None): """Fit OneHotEncoder to X, then transform X. Equivalent to self.fit(X).transform(X), but more convenient and more efficient. See fit for the parameters, transform for the return value. """ return _transform_selected(X, self._fit_transform, self.categorical_features, copy=True) def _transform(self, X): """Assumes X contains only categorical features.""" X = check_array(X, dtype=np.int) if np.any(X < 0): raise ValueError("X needs to contain only non-negative integers.") n_samples, n_features = X.shape indices = self.feature_indices_ if n_features != indices.shape[0] - 1: raise ValueError("X has different shape than during fitting." " Expected %d, got %d." % (indices.shape[0] - 1, n_features)) # We use only those catgorical features of X that are known using fit. # i.e lesser than n_values_ using mask. # This means, if self.handle_unknown is "ignore", the row_indices and # col_indices corresponding to the unknown categorical feature are # ignored. mask = (X < self.n_values_).ravel() if np.any(~mask): if self.handle_unknown not in ['error', 'ignore']: raise ValueError("handle_unknown should be either error or " "unknown got %s" % self.handle_unknown) if self.handle_unknown == 'error': raise ValueError("unknown categorical feature present %s " "during transform." % X[~mask]) column_indices = (X + indices[:-1]).ravel()[mask] row_indices = np.repeat(np.arange(n_samples, dtype=np.int32), n_features)[mask] data = np.ones(np.sum(mask)) out = sparse.coo_matrix((data, (row_indices, column_indices)), shape=(n_samples, indices[-1]), dtype=self.dtype).tocsr() if self.n_values == 'auto': out = out[:, self.active_features_] return out if self.sparse else out.toarray() def transform(self, X): """Transform X using one-hot encoding. Parameters ---------- X : array-like, shape=(n_samples, n_features) Input array of type int. Returns ------- X_out : sparse matrix if sparse=True else a 2-d array, dtype=int Transformed input. """ return _transform_selected(X, self._transform, self.categorical_features, copy=True)
bsd-3-clause
RomelTorres/alpha_vantage
test_alpha_vantage/test_alphavantage_async.py
1
10226
#!/usr/bin/env python from ..alpha_vantage.async_support.alphavantage import AlphaVantage from ..alpha_vantage.async_support.timeseries import TimeSeries from ..alpha_vantage.async_support.techindicators import TechIndicators from ..alpha_vantage.async_support.sectorperformance import SectorPerformances from ..alpha_vantage.async_support.foreignexchange import ForeignExchange from pandas import DataFrame as df, Timestamp import asyncio from aioresponses import aioresponses from functools import wraps import json from os import path import unittest def make_async(f): @wraps(f) def test_wrapper(*args, **kwargs): coro = asyncio.coroutine(f) future = coro(*args, **kwargs) asyncio.get_event_loop().run_until_complete(future) return test_wrapper class TestAlphaVantageAsync(unittest.TestCase): """ Async local tests for AlphaVantage components """ _API_KEY_TEST = "test" _API_EQ_NAME_TEST = 'MSFT' @staticmethod def get_file_from_url(url): """ Return the file name used for testing, found in the test data folder formed using the original url """ tmp = url for ch in [':', '/', '.', '?', '=', '&', ',']: if ch in tmp: tmp = tmp.replace(ch, '_') path_dir = path.join(path.dirname( path.abspath(__file__)), 'test_data/') return path.join(path.join(path_dir, tmp)) def test_key_none(self): """ Raise an error when a key has not been given """ try: AlphaVantage() self.fail(msg='A None api key must raise an error') except ValueError: self.assertTrue(True) @make_async async def test_handle_api_call(self): """ Test that api call returns a json file as requested """ av = AlphaVantage(key=TestAlphaVantageAsync._API_KEY_TEST) url = "https://www.alphavantage.co/query?function=TIME_SERIES_INTRADAY&symbol=MSFT&interval=1min&apikey=test" path_file = self.get_file_from_url("mock_time_series") with open(path_file) as f, aioresponses() as m: m.get(url, payload=json.loads(f.read())) data = await av._handle_api_call(url) self.assertIsInstance( data, dict, 'Result Data must be a dictionary') await av.close() @make_async async def test_rapidapi_key(self): """ Test that the rapidAPI key calls the rapidAPI endpoint """ ts = TimeSeries(key=TestAlphaVantageAsync._API_KEY_TEST, rapidapi=True) url = "https://alpha-vantage.p.rapidapi.com/query?function=TIME_SERIES_INTRADAY&symbol=MSFT&interval=1min&outputsize=full&datatype=json" path_file = self.get_file_from_url("mock_time_series") with open(path_file) as f, aioresponses() as m: m.get(url, payload=json.loads(f.read())) data, _ = await ts.get_intraday( "MSFT", interval='1min', outputsize='full') self.assertIsInstance( data, dict, 'Result Data must be a dictionary') await ts.close() @make_async async def test_time_series_intraday(self): """ Test that api call returns a json file as requested """ ts = TimeSeries(key=TestAlphaVantageAsync._API_KEY_TEST) url = "https://www.alphavantage.co/query?function=TIME_SERIES_INTRADAY&symbol=MSFT&interval=1min&outputsize=full&apikey=test&datatype=json" path_file = self.get_file_from_url("mock_time_series") with open(path_file) as f, aioresponses() as m: m.get(url, payload=json.loads(f.read())) data, _ = await ts.get_intraday( "MSFT", interval='1min', outputsize='full') self.assertIsInstance( data, dict, 'Result Data must be a dictionary') await ts.close() @make_async async def test_time_series_intraday_pandas(self): """ Test that api call returns a json file as requested """ ts = TimeSeries(key=TestAlphaVantageAsync._API_KEY_TEST, output_format='pandas') url = "https://www.alphavantage.co/query?function=TIME_SERIES_INTRADAY&symbol=MSFT&interval=1min&outputsize=full&apikey=test&datatype=json" path_file = self.get_file_from_url("mock_time_series") with open(path_file) as f, aioresponses() as m: m.get(url, payload=json.loads(f.read())) data, _ = await ts.get_intraday( "MSFT", interval='1min', outputsize='full') self.assertIsInstance( data, df, 'Result Data must be a pandas data frame') await ts.close() @make_async async def test_time_series_intraday_date_indexing(self): """ Test that api call returns a pandas data frame with a date as index """ ts = TimeSeries(key=TestAlphaVantageAsync._API_KEY_TEST, output_format='pandas', indexing_type='date') url = "https://www.alphavantage.co/query?function=TIME_SERIES_INTRADAY&symbol=MSFT&interval=1min&outputsize=full&apikey=test&datatype=json" path_file = self.get_file_from_url("mock_time_series") with open(path_file) as f, aioresponses() as m: m.get(url, payload=json.loads(f.read())) data, _ = await ts.get_intraday( "MSFT", interval='1min', outputsize='full') if ts.indexing_type == 'date': assert isinstance(data.index[0], Timestamp) else: assert isinstance(data.index[0], str) await ts.close() @make_async async def test_time_series_intraday_date_integer(self): """ Test that api call returns a pandas data frame with an integer as index """ ts = TimeSeries(key=TestAlphaVantageAsync._API_KEY_TEST, output_format='pandas', indexing_type='integer') url = "https://www.alphavantage.co/query?function=TIME_SERIES_INTRADAY&symbol=MSFT&interval=1min&outputsize=full&apikey=test&datatype=json" path_file = self.get_file_from_url("mock_time_series") with open(path_file) as f, aioresponses() as m: m.get(url, payload=json.loads(f.read())) data, _ = await ts.get_intraday( "MSFT", interval='1min', outputsize='full') assert type(data.index[0]) == int await ts.close() @make_async async def test_technical_indicator_sma_python3(self): """ Test that api call returns a json file as requested """ ti = TechIndicators(key=TestAlphaVantageAsync._API_KEY_TEST) url = "https://www.alphavantage.co/query?function=SMA&symbol=MSFT&interval=15min&time_period=10&series_type=close&apikey=test" path_file = self.get_file_from_url("mock_technical_indicator") with open(path_file) as f, aioresponses() as m: m.get(url, payload=json.loads(f.read())) data, _ = await ti.get_sma("MSFT", interval='15min', time_period=10, series_type='close') self.assertIsInstance( data, dict, 'Result Data must be a dictionary') await ti.close() @make_async async def test_technical_indicator_sma_pandas(self): """ Test that api call returns a json file as requested """ ti = TechIndicators( key=TestAlphaVantageAsync._API_KEY_TEST, output_format='pandas') url = "https://www.alphavantage.co/query?function=SMA&symbol=MSFT&interval=15min&time_period=10&series_type=close&apikey=test" path_file = self.get_file_from_url("mock_technical_indicator") with open(path_file) as f, aioresponses() as m: m.get(url, payload=json.loads(f.read())) data, _ = await ti.get_sma("MSFT", interval='15min', time_period=10, series_type='close') self.assertIsInstance( data, df, 'Result Data must be a pandas data frame') await ti.close() @make_async async def test_sector_perfomance_python3(self): """ Test that api call returns a json file as requested """ sp = SectorPerformances(key=TestAlphaVantageAsync._API_KEY_TEST) url = "https://www.alphavantage.co/query?function=SECTOR&apikey=test" path_file = self.get_file_from_url("mock_sector") with open(path_file) as f, aioresponses() as m: m.get(url, payload=json.loads(f.read())) data, _ = await sp.get_sector() self.assertIsInstance( data, dict, 'Result Data must be a dictionary') await sp.close() @make_async async def test_sector_perfomance_pandas(self): """ Test that api call returns a json file as requested """ sp = SectorPerformances( key=TestAlphaVantageAsync._API_KEY_TEST, output_format='pandas') url = "https://www.alphavantage.co/query?function=SECTOR&apikey=test" path_file = self.get_file_from_url("mock_sector") with open(path_file) as f, aioresponses() as m: m.get(url, payload=json.loads(f.read())) data, _ = await sp.get_sector() self.assertIsInstance( data, df, 'Result Data must be a pandas data frame') await sp.close() @make_async async def test_foreign_exchange(self): """ Test that api call returns a json file as requested """ fe = ForeignExchange(key=TestAlphaVantageAsync._API_KEY_TEST) url = "https://www.alphavantage.co/query?function=CURRENCY_EXCHANGE_RATE&from_currency=BTC&to_currency=CNY&apikey=test" path_file = self.get_file_from_url("mock_foreign_exchange") with open(path_file) as f, aioresponses() as m: m.get(url, payload=json.loads(f.read())) data, _ = await fe.get_currency_exchange_rate( from_currency='BTC', to_currency='CNY') self.assertIsInstance( data, dict, 'Result Data must be a dictionary') await fe.close()
mit
rbalda/neural_ocr
env/lib/python2.7/site-packages/numpy/core/tests/test_multiarray.py
12
221093
from __future__ import division, absolute_import, print_function import collections import tempfile import sys import shutil import warnings import operator import io import itertools if sys.version_info[0] >= 3: import builtins else: import __builtin__ as builtins from decimal import Decimal import numpy as np from nose import SkipTest from numpy.compat import asbytes, getexception, strchar, unicode, sixu from test_print import in_foreign_locale from numpy.core.multiarray_tests import ( test_neighborhood_iterator, test_neighborhood_iterator_oob, test_pydatamem_seteventhook_start, test_pydatamem_seteventhook_end, test_inplace_increment, get_buffer_info, test_as_c_array ) from numpy.testing import ( TestCase, run_module_suite, assert_, assert_raises, assert_equal, assert_almost_equal, assert_array_equal, assert_array_almost_equal, assert_allclose, assert_array_less, runstring, dec ) # Need to test an object that does not fully implement math interface from datetime import timedelta if sys.version_info[:2] > (3, 2): # In Python 3.3 the representation of empty shape, strides and suboffsets # is an empty tuple instead of None. # http://docs.python.org/dev/whatsnew/3.3.html#api-changes EMPTY = () else: EMPTY = None class TestFlags(TestCase): def setUp(self): self.a = np.arange(10) def test_writeable(self): mydict = locals() self.a.flags.writeable = False self.assertRaises(ValueError, runstring, 'self.a[0] = 3', mydict) self.assertRaises(ValueError, runstring, 'self.a[0:1].itemset(3)', mydict) self.a.flags.writeable = True self.a[0] = 5 self.a[0] = 0 def test_otherflags(self): assert_equal(self.a.flags.carray, True) assert_equal(self.a.flags.farray, False) assert_equal(self.a.flags.behaved, True) assert_equal(self.a.flags.fnc, False) assert_equal(self.a.flags.forc, True) assert_equal(self.a.flags.owndata, True) assert_equal(self.a.flags.writeable, True) assert_equal(self.a.flags.aligned, True) assert_equal(self.a.flags.updateifcopy, False) def test_string_align(self): a = np.zeros(4, dtype=np.dtype('|S4')) assert_(a.flags.aligned) # not power of two are accessed bytewise and thus considered aligned a = np.zeros(5, dtype=np.dtype('|S4')) assert_(a.flags.aligned) def test_void_align(self): a = np.zeros(4, dtype=np.dtype([("a", "i4"), ("b", "i4")])) assert_(a.flags.aligned) class TestHash(TestCase): # see #3793 def test_int(self): for st, ut, s in [(np.int8, np.uint8, 8), (np.int16, np.uint16, 16), (np.int32, np.uint32, 32), (np.int64, np.uint64, 64)]: for i in range(1, s): assert_equal(hash(st(-2**i)), hash(-2**i), err_msg="%r: -2**%d" % (st, i)) assert_equal(hash(st(2**(i - 1))), hash(2**(i - 1)), err_msg="%r: 2**%d" % (st, i - 1)) assert_equal(hash(st(2**i - 1)), hash(2**i - 1), err_msg="%r: 2**%d - 1" % (st, i)) i = max(i - 1, 1) assert_equal(hash(ut(2**(i - 1))), hash(2**(i - 1)), err_msg="%r: 2**%d" % (ut, i - 1)) assert_equal(hash(ut(2**i - 1)), hash(2**i - 1), err_msg="%r: 2**%d - 1" % (ut, i)) class TestAttributes(TestCase): def setUp(self): self.one = np.arange(10) self.two = np.arange(20).reshape(4, 5) self.three = np.arange(60, dtype=np.float64).reshape(2, 5, 6) def test_attributes(self): assert_equal(self.one.shape, (10,)) assert_equal(self.two.shape, (4, 5)) assert_equal(self.three.shape, (2, 5, 6)) self.three.shape = (10, 3, 2) assert_equal(self.three.shape, (10, 3, 2)) self.three.shape = (2, 5, 6) assert_equal(self.one.strides, (self.one.itemsize,)) num = self.two.itemsize assert_equal(self.two.strides, (5*num, num)) num = self.three.itemsize assert_equal(self.three.strides, (30*num, 6*num, num)) assert_equal(self.one.ndim, 1) assert_equal(self.two.ndim, 2) assert_equal(self.three.ndim, 3) num = self.two.itemsize assert_equal(self.two.size, 20) assert_equal(self.two.nbytes, 20*num) assert_equal(self.two.itemsize, self.two.dtype.itemsize) assert_equal(self.two.base, np.arange(20)) def test_dtypeattr(self): assert_equal(self.one.dtype, np.dtype(np.int_)) assert_equal(self.three.dtype, np.dtype(np.float_)) assert_equal(self.one.dtype.char, 'l') assert_equal(self.three.dtype.char, 'd') self.assertTrue(self.three.dtype.str[0] in '<>') assert_equal(self.one.dtype.str[1], 'i') assert_equal(self.three.dtype.str[1], 'f') def test_int_subclassing(self): # Regression test for https://github.com/numpy/numpy/pull/3526 numpy_int = np.int_(0) if sys.version_info[0] >= 3: # On Py3k int_ should not inherit from int, because it's not fixed-width anymore assert_equal(isinstance(numpy_int, int), False) else: # Otherwise, it should inherit from int... assert_equal(isinstance(numpy_int, int), True) # ... and fast-path checks on C-API level should also work from numpy.core.multiarray_tests import test_int_subclass assert_equal(test_int_subclass(numpy_int), True) def test_stridesattr(self): x = self.one def make_array(size, offset, strides): return np.ndarray(size, buffer=x, dtype=int, offset=offset*x.itemsize, strides=strides*x.itemsize) assert_equal(make_array(4, 4, -1), np.array([4, 3, 2, 1])) self.assertRaises(ValueError, make_array, 4, 4, -2) self.assertRaises(ValueError, make_array, 4, 2, -1) self.assertRaises(ValueError, make_array, 8, 3, 1) assert_equal(make_array(8, 3, 0), np.array([3]*8)) # Check behavior reported in gh-2503: self.assertRaises(ValueError, make_array, (2, 3), 5, np.array([-2, -3])) make_array(0, 0, 10) def test_set_stridesattr(self): x = self.one def make_array(size, offset, strides): try: r = np.ndarray([size], dtype=int, buffer=x, offset=offset*x.itemsize) except: raise RuntimeError(getexception()) r.strides = strides = strides*x.itemsize return r assert_equal(make_array(4, 4, -1), np.array([4, 3, 2, 1])) assert_equal(make_array(7, 3, 1), np.array([3, 4, 5, 6, 7, 8, 9])) self.assertRaises(ValueError, make_array, 4, 4, -2) self.assertRaises(ValueError, make_array, 4, 2, -1) self.assertRaises(RuntimeError, make_array, 8, 3, 1) # Check that the true extent of the array is used. # Test relies on as_strided base not exposing a buffer. x = np.lib.stride_tricks.as_strided(np.arange(1), (10, 10), (0, 0)) def set_strides(arr, strides): arr.strides = strides self.assertRaises(ValueError, set_strides, x, (10*x.itemsize, x.itemsize)) # Test for offset calculations: x = np.lib.stride_tricks.as_strided(np.arange(10, dtype=np.int8)[-1], shape=(10,), strides=(-1,)) self.assertRaises(ValueError, set_strides, x[::-1], -1) a = x[::-1] a.strides = 1 a[::2].strides = 2 def test_fill(self): for t in "?bhilqpBHILQPfdgFDGO": x = np.empty((3, 2, 1), t) y = np.empty((3, 2, 1), t) x.fill(1) y[...] = 1 assert_equal(x, y) def test_fill_max_uint64(self): x = np.empty((3, 2, 1), dtype=np.uint64) y = np.empty((3, 2, 1), dtype=np.uint64) value = 2**64 - 1 y[...] = value x.fill(value) assert_array_equal(x, y) def test_fill_struct_array(self): # Filling from a scalar x = np.array([(0, 0.0), (1, 1.0)], dtype='i4,f8') x.fill(x[0]) assert_equal(x['f1'][1], x['f1'][0]) # Filling from a tuple that can be converted # to a scalar x = np.zeros(2, dtype=[('a', 'f8'), ('b', 'i4')]) x.fill((3.5, -2)) assert_array_equal(x['a'], [3.5, 3.5]) assert_array_equal(x['b'], [-2, -2]) class TestArrayConstruction(TestCase): def test_array(self): d = np.ones(6) r = np.array([d, d]) assert_equal(r, np.ones((2, 6))) d = np.ones(6) tgt = np.ones((2, 6)) r = np.array([d, d]) assert_equal(r, tgt) tgt[1] = 2 r = np.array([d, d + 1]) assert_equal(r, tgt) d = np.ones(6) r = np.array([[d, d]]) assert_equal(r, np.ones((1, 2, 6))) d = np.ones(6) r = np.array([[d, d], [d, d]]) assert_equal(r, np.ones((2, 2, 6))) d = np.ones((6, 6)) r = np.array([d, d]) assert_equal(r, np.ones((2, 6, 6))) d = np.ones((6, )) r = np.array([[d, d + 1], d + 2]) assert_equal(len(r), 2) assert_equal(r[0], [d, d + 1]) assert_equal(r[1], d + 2) tgt = np.ones((2, 3), dtype=np.bool) tgt[0, 2] = False tgt[1, 0:2] = False r = np.array([[True, True, False], [False, False, True]]) assert_equal(r, tgt) r = np.array([[True, False], [True, False], [False, True]]) assert_equal(r, tgt.T) def test_array_empty(self): assert_raises(TypeError, np.array) def test_array_copy_false(self): d = np.array([1, 2, 3]) e = np.array(d, copy=False) d[1] = 3 assert_array_equal(e, [1, 3, 3]) e = np.array(d, copy=False, order='F') d[1] = 4 assert_array_equal(e, [1, 4, 3]) e[2] = 7 assert_array_equal(d, [1, 4, 7]) def test_array_copy_true(self): d = np.array([[1,2,3], [1, 2, 3]]) e = np.array(d, copy=True) d[0, 1] = 3 e[0, 2] = -7 assert_array_equal(e, [[1, 2, -7], [1, 2, 3]]) assert_array_equal(d, [[1, 3, 3], [1, 2, 3]]) e = np.array(d, copy=True, order='F') d[0, 1] = 5 e[0, 2] = 7 assert_array_equal(e, [[1, 3, 7], [1, 2, 3]]) assert_array_equal(d, [[1, 5, 3], [1,2,3]]) def test_array_cont(self): d = np.ones(10)[::2] assert_(np.ascontiguousarray(d).flags.c_contiguous) assert_(np.ascontiguousarray(d).flags.f_contiguous) assert_(np.asfortranarray(d).flags.c_contiguous) assert_(np.asfortranarray(d).flags.f_contiguous) d = np.ones((10, 10))[::2,::2] assert_(np.ascontiguousarray(d).flags.c_contiguous) assert_(np.asfortranarray(d).flags.f_contiguous) class TestAssignment(TestCase): def test_assignment_broadcasting(self): a = np.arange(6).reshape(2, 3) # Broadcasting the input to the output a[...] = np.arange(3) assert_equal(a, [[0, 1, 2], [0, 1, 2]]) a[...] = np.arange(2).reshape(2, 1) assert_equal(a, [[0, 0, 0], [1, 1, 1]]) # For compatibility with <= 1.5, a limited version of broadcasting # the output to the input. # # This behavior is inconsistent with NumPy broadcasting # in general, because it only uses one of the two broadcasting # rules (adding a new "1" dimension to the left of the shape), # applied to the output instead of an input. In NumPy 2.0, this kind # of broadcasting assignment will likely be disallowed. a[...] = np.arange(6)[::-1].reshape(1, 2, 3) assert_equal(a, [[5, 4, 3], [2, 1, 0]]) # The other type of broadcasting would require a reduction operation. def assign(a, b): a[...] = b assert_raises(ValueError, assign, a, np.arange(12).reshape(2, 2, 3)) def test_assignment_errors(self): # Address issue #2276 class C: pass a = np.zeros(1) def assign(v): a[0] = v assert_raises((AttributeError, TypeError), assign, C()) assert_raises(ValueError, assign, [1]) class TestDtypedescr(TestCase): def test_construction(self): d1 = np.dtype('i4') assert_equal(d1, np.dtype(np.int32)) d2 = np.dtype('f8') assert_equal(d2, np.dtype(np.float64)) def test_byteorders(self): self.assertNotEqual(np.dtype('<i4'), np.dtype('>i4')) self.assertNotEqual(np.dtype([('a', '<i4')]), np.dtype([('a', '>i4')])) class TestZeroRank(TestCase): def setUp(self): self.d = np.array(0), np.array('x', object) def test_ellipsis_subscript(self): a, b = self.d self.assertEqual(a[...], 0) self.assertEqual(b[...], 'x') self.assertTrue(a[...].base is a) # `a[...] is a` in numpy <1.9. self.assertTrue(b[...].base is b) # `b[...] is b` in numpy <1.9. def test_empty_subscript(self): a, b = self.d self.assertEqual(a[()], 0) self.assertEqual(b[()], 'x') self.assertTrue(type(a[()]) is a.dtype.type) self.assertTrue(type(b[()]) is str) def test_invalid_subscript(self): a, b = self.d self.assertRaises(IndexError, lambda x: x[0], a) self.assertRaises(IndexError, lambda x: x[0], b) self.assertRaises(IndexError, lambda x: x[np.array([], int)], a) self.assertRaises(IndexError, lambda x: x[np.array([], int)], b) def test_ellipsis_subscript_assignment(self): a, b = self.d a[...] = 42 self.assertEqual(a, 42) b[...] = '' self.assertEqual(b.item(), '') def test_empty_subscript_assignment(self): a, b = self.d a[()] = 42 self.assertEqual(a, 42) b[()] = '' self.assertEqual(b.item(), '') def test_invalid_subscript_assignment(self): a, b = self.d def assign(x, i, v): x[i] = v self.assertRaises(IndexError, assign, a, 0, 42) self.assertRaises(IndexError, assign, b, 0, '') self.assertRaises(ValueError, assign, a, (), '') def test_newaxis(self): a, b = self.d self.assertEqual(a[np.newaxis].shape, (1,)) self.assertEqual(a[..., np.newaxis].shape, (1,)) self.assertEqual(a[np.newaxis, ...].shape, (1,)) self.assertEqual(a[..., np.newaxis].shape, (1,)) self.assertEqual(a[np.newaxis, ..., np.newaxis].shape, (1, 1)) self.assertEqual(a[..., np.newaxis, np.newaxis].shape, (1, 1)) self.assertEqual(a[np.newaxis, np.newaxis, ...].shape, (1, 1)) self.assertEqual(a[(np.newaxis,)*10].shape, (1,)*10) def test_invalid_newaxis(self): a, b = self.d def subscript(x, i): x[i] self.assertRaises(IndexError, subscript, a, (np.newaxis, 0)) self.assertRaises(IndexError, subscript, a, (np.newaxis,)*50) def test_constructor(self): x = np.ndarray(()) x[()] = 5 self.assertEqual(x[()], 5) y = np.ndarray((), buffer=x) y[()] = 6 self.assertEqual(x[()], 6) def test_output(self): x = np.array(2) self.assertRaises(ValueError, np.add, x, [1], x) class TestScalarIndexing(TestCase): def setUp(self): self.d = np.array([0, 1])[0] def test_ellipsis_subscript(self): a = self.d self.assertEqual(a[...], 0) self.assertEqual(a[...].shape, ()) def test_empty_subscript(self): a = self.d self.assertEqual(a[()], 0) self.assertEqual(a[()].shape, ()) def test_invalid_subscript(self): a = self.d self.assertRaises(IndexError, lambda x: x[0], a) self.assertRaises(IndexError, lambda x: x[np.array([], int)], a) def test_invalid_subscript_assignment(self): a = self.d def assign(x, i, v): x[i] = v self.assertRaises(TypeError, assign, a, 0, 42) def test_newaxis(self): a = self.d self.assertEqual(a[np.newaxis].shape, (1,)) self.assertEqual(a[..., np.newaxis].shape, (1,)) self.assertEqual(a[np.newaxis, ...].shape, (1,)) self.assertEqual(a[..., np.newaxis].shape, (1,)) self.assertEqual(a[np.newaxis, ..., np.newaxis].shape, (1, 1)) self.assertEqual(a[..., np.newaxis, np.newaxis].shape, (1, 1)) self.assertEqual(a[np.newaxis, np.newaxis, ...].shape, (1, 1)) self.assertEqual(a[(np.newaxis,)*10].shape, (1,)*10) def test_invalid_newaxis(self): a = self.d def subscript(x, i): x[i] self.assertRaises(IndexError, subscript, a, (np.newaxis, 0)) self.assertRaises(IndexError, subscript, a, (np.newaxis,)*50) def test_overlapping_assignment(self): # With positive strides a = np.arange(4) a[:-1] = a[1:] assert_equal(a, [1, 2, 3, 3]) a = np.arange(4) a[1:] = a[:-1] assert_equal(a, [0, 0, 1, 2]) # With positive and negative strides a = np.arange(4) a[:] = a[::-1] assert_equal(a, [3, 2, 1, 0]) a = np.arange(6).reshape(2, 3) a[::-1,:] = a[:, ::-1] assert_equal(a, [[5, 4, 3], [2, 1, 0]]) a = np.arange(6).reshape(2, 3) a[::-1, ::-1] = a[:, ::-1] assert_equal(a, [[3, 4, 5], [0, 1, 2]]) # With just one element overlapping a = np.arange(5) a[:3] = a[2:] assert_equal(a, [2, 3, 4, 3, 4]) a = np.arange(5) a[2:] = a[:3] assert_equal(a, [0, 1, 0, 1, 2]) a = np.arange(5) a[2::-1] = a[2:] assert_equal(a, [4, 3, 2, 3, 4]) a = np.arange(5) a[2:] = a[2::-1] assert_equal(a, [0, 1, 2, 1, 0]) a = np.arange(5) a[2::-1] = a[:1:-1] assert_equal(a, [2, 3, 4, 3, 4]) a = np.arange(5) a[:1:-1] = a[2::-1] assert_equal(a, [0, 1, 0, 1, 2]) class TestCreation(TestCase): def test_from_attribute(self): class x(object): def __array__(self, dtype=None): pass self.assertRaises(ValueError, np.array, x()) def test_from_string(self): types = np.typecodes['AllInteger'] + np.typecodes['Float'] nstr = ['123', '123'] result = np.array([123, 123], dtype=int) for type in types: msg = 'String conversion for %s' % type assert_equal(np.array(nstr, dtype=type), result, err_msg=msg) def test_void(self): arr = np.array([], dtype='V') assert_equal(arr.dtype.kind, 'V') def test_zeros(self): types = np.typecodes['AllInteger'] + np.typecodes['AllFloat'] for dt in types: d = np.zeros((13,), dtype=dt) assert_equal(np.count_nonzero(d), 0) # true for ieee floats assert_equal(d.sum(), 0) assert_(not d.any()) d = np.zeros(2, dtype='(2,4)i4') assert_equal(np.count_nonzero(d), 0) assert_equal(d.sum(), 0) assert_(not d.any()) d = np.zeros(2, dtype='4i4') assert_equal(np.count_nonzero(d), 0) assert_equal(d.sum(), 0) assert_(not d.any()) d = np.zeros(2, dtype='(2,4)i4, (2,4)i4') assert_equal(np.count_nonzero(d), 0) @dec.slow def test_zeros_big(self): # test big array as they might be allocated different by the sytem types = np.typecodes['AllInteger'] + np.typecodes['AllFloat'] for dt in types: d = np.zeros((30 * 1024**2,), dtype=dt) assert_(not d.any()) def test_zeros_obj(self): # test initialization from PyLong(0) d = np.zeros((13,), dtype=object) assert_array_equal(d, [0] * 13) assert_equal(np.count_nonzero(d), 0) def test_zeros_obj_obj(self): d = np.zeros(10, dtype=[('k', object, 2)]) assert_array_equal(d['k'], 0) def test_zeros_like_like_zeros(self): # test zeros_like returns the same as zeros for c in np.typecodes['All']: if c == 'V': continue d = np.zeros((3,3), dtype=c) assert_array_equal(np.zeros_like(d), d) assert_equal(np.zeros_like(d).dtype, d.dtype) # explicitly check some special cases d = np.zeros((3,3), dtype='S5') assert_array_equal(np.zeros_like(d), d) assert_equal(np.zeros_like(d).dtype, d.dtype) d = np.zeros((3,3), dtype='U5') assert_array_equal(np.zeros_like(d), d) assert_equal(np.zeros_like(d).dtype, d.dtype) d = np.zeros((3,3), dtype='<i4') assert_array_equal(np.zeros_like(d), d) assert_equal(np.zeros_like(d).dtype, d.dtype) d = np.zeros((3,3), dtype='>i4') assert_array_equal(np.zeros_like(d), d) assert_equal(np.zeros_like(d).dtype, d.dtype) d = np.zeros((3,3), dtype='<M8[s]') assert_array_equal(np.zeros_like(d), d) assert_equal(np.zeros_like(d).dtype, d.dtype) d = np.zeros((3,3), dtype='>M8[s]') assert_array_equal(np.zeros_like(d), d) assert_equal(np.zeros_like(d).dtype, d.dtype) d = np.zeros((3,3), dtype='f4,f4') assert_array_equal(np.zeros_like(d), d) assert_equal(np.zeros_like(d).dtype, d.dtype) def test_empty_unicode(self): # don't throw decode errors on garbage memory for i in range(5, 100, 5): d = np.empty(i, dtype='U') str(d) def test_sequence_non_homogenous(self): assert_equal(np.array([4, 2**80]).dtype, np.object) assert_equal(np.array([4, 2**80, 4]).dtype, np.object) assert_equal(np.array([2**80, 4]).dtype, np.object) assert_equal(np.array([2**80] * 3).dtype, np.object) assert_equal(np.array([[1, 1],[1j, 1j]]).dtype, np.complex) assert_equal(np.array([[1j, 1j],[1, 1]]).dtype, np.complex) assert_equal(np.array([[1, 1, 1],[1, 1j, 1.], [1, 1, 1]]).dtype, np.complex) @dec.skipif(sys.version_info[0] >= 3) def test_sequence_long(self): assert_equal(np.array([long(4), long(4)]).dtype, np.long) assert_equal(np.array([long(4), 2**80]).dtype, np.object) assert_equal(np.array([long(4), 2**80, long(4)]).dtype, np.object) assert_equal(np.array([2**80, long(4)]).dtype, np.object) def test_non_sequence_sequence(self): """Should not segfault. Class Fail breaks the sequence protocol for new style classes, i.e., those derived from object. Class Map is a mapping type indicated by raising a ValueError. At some point we may raise a warning instead of an error in the Fail case. """ class Fail(object): def __len__(self): return 1 def __getitem__(self, index): raise ValueError() class Map(object): def __len__(self): return 1 def __getitem__(self, index): raise KeyError() a = np.array([Map()]) assert_(a.shape == (1,)) assert_(a.dtype == np.dtype(object)) assert_raises(ValueError, np.array, [Fail()]) def test_no_len_object_type(self): # gh-5100, want object array from iterable object without len() class Point2: def __init__(self): pass def __getitem__(self, ind): if ind in [0, 1]: return ind else: raise IndexError() d = np.array([Point2(), Point2(), Point2()]) assert_equal(d.dtype, np.dtype(object)) class TestStructured(TestCase): def test_subarray_field_access(self): a = np.zeros((3, 5), dtype=[('a', ('i4', (2, 2)))]) a['a'] = np.arange(60).reshape(3, 5, 2, 2) # Since the subarray is always in C-order, a transpose # does not swap the subarray: assert_array_equal(a.T['a'], a['a'].transpose(1, 0, 2, 3)) # In Fortran order, the subarray gets appended # like in all other cases, not prepended as a special case b = a.copy(order='F') assert_equal(a['a'].shape, b['a'].shape) assert_equal(a.T['a'].shape, a.T.copy()['a'].shape) def test_subarray_comparison(self): # Check that comparisons between record arrays with # multi-dimensional field types work properly a = np.rec.fromrecords( [([1, 2, 3], 'a', [[1, 2], [3, 4]]), ([3, 3, 3], 'b', [[0, 0], [0, 0]])], dtype=[('a', ('f4', 3)), ('b', np.object), ('c', ('i4', (2, 2)))]) b = a.copy() assert_equal(a == b, [True, True]) assert_equal(a != b, [False, False]) b[1].b = 'c' assert_equal(a == b, [True, False]) assert_equal(a != b, [False, True]) for i in range(3): b[0].a = a[0].a b[0].a[i] = 5 assert_equal(a == b, [False, False]) assert_equal(a != b, [True, True]) for i in range(2): for j in range(2): b = a.copy() b[0].c[i, j] = 10 assert_equal(a == b, [False, True]) assert_equal(a != b, [True, False]) # Check that broadcasting with a subarray works a = np.array([[(0,)], [(1,)]], dtype=[('a', 'f8')]) b = np.array([(0,), (0,), (1,)], dtype=[('a', 'f8')]) assert_equal(a == b, [[True, True, False], [False, False, True]]) assert_equal(b == a, [[True, True, False], [False, False, True]]) a = np.array([[(0,)], [(1,)]], dtype=[('a', 'f8', (1,))]) b = np.array([(0,), (0,), (1,)], dtype=[('a', 'f8', (1,))]) assert_equal(a == b, [[True, True, False], [False, False, True]]) assert_equal(b == a, [[True, True, False], [False, False, True]]) a = np.array([[([0, 0],)], [([1, 1],)]], dtype=[('a', 'f8', (2,))]) b = np.array([([0, 0],), ([0, 1],), ([1, 1],)], dtype=[('a', 'f8', (2,))]) assert_equal(a == b, [[True, False, False], [False, False, True]]) assert_equal(b == a, [[True, False, False], [False, False, True]]) # Check that broadcasting Fortran-style arrays with a subarray work a = np.array([[([0, 0],)], [([1, 1],)]], dtype=[('a', 'f8', (2,))], order='F') b = np.array([([0, 0],), ([0, 1],), ([1, 1],)], dtype=[('a', 'f8', (2,))]) assert_equal(a == b, [[True, False, False], [False, False, True]]) assert_equal(b == a, [[True, False, False], [False, False, True]]) # Check that incompatible sub-array shapes don't result to broadcasting x = np.zeros((1,), dtype=[('a', ('f4', (1, 2))), ('b', 'i1')]) y = np.zeros((1,), dtype=[('a', ('f4', (2,))), ('b', 'i1')]) # This comparison invokes deprecated behaviour, and will probably # start raising an error eventually. What we really care about in this # test is just that it doesn't return True. with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=DeprecationWarning) assert_equal(x == y, False) x = np.zeros((1,), dtype=[('a', ('f4', (2, 1))), ('b', 'i1')]) y = np.zeros((1,), dtype=[('a', ('f4', (2,))), ('b', 'i1')]) # This comparison invokes deprecated behaviour, and will probably # start raising an error eventually. What we really care about in this # test is just that it doesn't return True. with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=DeprecationWarning) assert_equal(x == y, False) # Check that structured arrays that are different only in # byte-order work a = np.array([(5, 42), (10, 1)], dtype=[('a', '>i8'), ('b', '<f8')]) b = np.array([(5, 43), (10, 1)], dtype=[('a', '<i8'), ('b', '>f8')]) assert_equal(a == b, [False, True]) def test_casting(self): # Check that casting a structured array to change its byte order # works a = np.array([(1,)], dtype=[('a', '<i4')]) assert_(np.can_cast(a.dtype, [('a', '>i4')], casting='unsafe')) b = a.astype([('a', '>i4')]) assert_equal(b, a.byteswap().newbyteorder()) assert_equal(a['a'][0], b['a'][0]) # Check that equality comparison works on structured arrays if # they are 'equiv'-castable a = np.array([(5, 42), (10, 1)], dtype=[('a', '>i4'), ('b', '<f8')]) b = np.array([(42, 5), (1, 10)], dtype=[('b', '>f8'), ('a', '<i4')]) assert_(np.can_cast(a.dtype, b.dtype, casting='equiv')) assert_equal(a == b, [True, True]) # Check that 'equiv' casting can reorder fields and change byte # order assert_(np.can_cast(a.dtype, b.dtype, casting='equiv')) c = a.astype(b.dtype, casting='equiv') assert_equal(a == c, [True, True]) # Check that 'safe' casting can change byte order and up-cast # fields t = [('a', '<i8'), ('b', '>f8')] assert_(np.can_cast(a.dtype, t, casting='safe')) c = a.astype(t, casting='safe') assert_equal((c == np.array([(5, 42), (10, 1)], dtype=t)), [True, True]) # Check that 'same_kind' casting can change byte order and # change field widths within a "kind" t = [('a', '<i4'), ('b', '>f4')] assert_(np.can_cast(a.dtype, t, casting='same_kind')) c = a.astype(t, casting='same_kind') assert_equal((c == np.array([(5, 42), (10, 1)], dtype=t)), [True, True]) # Check that casting fails if the casting rule should fail on # any of the fields t = [('a', '>i8'), ('b', '<f4')] assert_(not np.can_cast(a.dtype, t, casting='safe')) assert_raises(TypeError, a.astype, t, casting='safe') t = [('a', '>i2'), ('b', '<f8')] assert_(not np.can_cast(a.dtype, t, casting='equiv')) assert_raises(TypeError, a.astype, t, casting='equiv') t = [('a', '>i8'), ('b', '<i2')] assert_(not np.can_cast(a.dtype, t, casting='same_kind')) assert_raises(TypeError, a.astype, t, casting='same_kind') assert_(not np.can_cast(a.dtype, b.dtype, casting='no')) assert_raises(TypeError, a.astype, b.dtype, casting='no') # Check that non-'unsafe' casting can't change the set of field names for casting in ['no', 'safe', 'equiv', 'same_kind']: t = [('a', '>i4')] assert_(not np.can_cast(a.dtype, t, casting=casting)) t = [('a', '>i4'), ('b', '<f8'), ('c', 'i4')] assert_(not np.can_cast(a.dtype, t, casting=casting)) def test_objview(self): # https://github.com/numpy/numpy/issues/3286 a = np.array([], dtype=[('a', 'f'), ('b', 'f'), ('c', 'O')]) a[['a', 'b']] # TypeError? # https://github.com/numpy/numpy/issues/3253 dat2 = np.zeros(3, [('A', 'i'), ('B', '|O')]) dat2[['B', 'A']] # TypeError? def test_setfield(self): # https://github.com/numpy/numpy/issues/3126 struct_dt = np.dtype([('elem', 'i4', 5),]) dt = np.dtype([('field', 'i4', 10),('struct', struct_dt)]) x = np.zeros(1, dt) x[0]['field'] = np.ones(10, dtype='i4') x[0]['struct'] = np.ones(1, dtype=struct_dt) assert_equal(x[0]['field'], np.ones(10, dtype='i4')) def test_setfield_object(self): # make sure object field assignment with ndarray value # on void scalar mimics setitem behavior b = np.zeros(1, dtype=[('x', 'O')]) # next line should work identically to b['x'][0] = np.arange(3) b[0]['x'] = np.arange(3) assert_equal(b[0]['x'], np.arange(3)) #check that broadcasting check still works c = np.zeros(1, dtype=[('x', 'O', 5)]) def testassign(): c[0]['x'] = np.arange(3) assert_raises(ValueError, testassign) class TestBool(TestCase): def test_test_interning(self): a0 = np.bool_(0) b0 = np.bool_(False) self.assertTrue(a0 is b0) a1 = np.bool_(1) b1 = np.bool_(True) self.assertTrue(a1 is b1) self.assertTrue(np.array([True])[0] is a1) self.assertTrue(np.array(True)[()] is a1) def test_sum(self): d = np.ones(101, dtype=np.bool) assert_equal(d.sum(), d.size) assert_equal(d[::2].sum(), d[::2].size) assert_equal(d[::-2].sum(), d[::-2].size) d = np.frombuffer(b'\xff\xff' * 100, dtype=bool) assert_equal(d.sum(), d.size) assert_equal(d[::2].sum(), d[::2].size) assert_equal(d[::-2].sum(), d[::-2].size) def check_count_nonzero(self, power, length): powers = [2 ** i for i in range(length)] for i in range(2**power): l = [(i & x) != 0 for x in powers] a = np.array(l, dtype=np.bool) c = builtins.sum(l) self.assertEqual(np.count_nonzero(a), c) av = a.view(np.uint8) av *= 3 self.assertEqual(np.count_nonzero(a), c) av *= 4 self.assertEqual(np.count_nonzero(a), c) av[av != 0] = 0xFF self.assertEqual(np.count_nonzero(a), c) def test_count_nonzero(self): # check all 12 bit combinations in a length 17 array # covers most cases of the 16 byte unrolled code self.check_count_nonzero(12, 17) @dec.slow def test_count_nonzero_all(self): # check all combinations in a length 17 array # covers all cases of the 16 byte unrolled code self.check_count_nonzero(17, 17) def test_count_nonzero_unaligned(self): # prevent mistakes as e.g. gh-4060 for o in range(7): a = np.zeros((18,), dtype=np.bool)[o+1:] a[:o] = True self.assertEqual(np.count_nonzero(a), builtins.sum(a.tolist())) a = np.ones((18,), dtype=np.bool)[o+1:] a[:o] = False self.assertEqual(np.count_nonzero(a), builtins.sum(a.tolist())) class TestMethods(TestCase): def test_round(self): def check_round(arr, expected, *round_args): assert_equal(arr.round(*round_args), expected) # With output array out = np.zeros_like(arr) res = arr.round(*round_args, out=out) assert_equal(out, expected) assert_equal(out, res) check_round(np.array([1.2, 1.5]), [1, 2]) check_round(np.array(1.5), 2) check_round(np.array([12.2, 15.5]), [10, 20], -1) check_round(np.array([12.15, 15.51]), [12.2, 15.5], 1) # Complex rounding check_round(np.array([4.5 + 1.5j]), [4 + 2j]) check_round(np.array([12.5 + 15.5j]), [10 + 20j], -1) def test_transpose(self): a = np.array([[1, 2], [3, 4]]) assert_equal(a.transpose(), [[1, 3], [2, 4]]) self.assertRaises(ValueError, lambda: a.transpose(0)) self.assertRaises(ValueError, lambda: a.transpose(0, 0)) self.assertRaises(ValueError, lambda: a.transpose(0, 1, 2)) def test_sort(self): # test ordering for floats and complex containing nans. It is only # necessary to check the lessthan comparison, so sorts that # only follow the insertion sort path are sufficient. We only # test doubles and complex doubles as the logic is the same. # check doubles msg = "Test real sort order with nans" a = np.array([np.nan, 1, 0]) b = np.sort(a) assert_equal(b, a[::-1], msg) # check complex msg = "Test complex sort order with nans" a = np.zeros(9, dtype=np.complex128) a.real += [np.nan, np.nan, np.nan, 1, 0, 1, 1, 0, 0] a.imag += [np.nan, 1, 0, np.nan, np.nan, 1, 0, 1, 0] b = np.sort(a) assert_equal(b, a[::-1], msg) # all c scalar sorts use the same code with different types # so it suffices to run a quick check with one type. The number # of sorted items must be greater than ~50 to check the actual # algorithm because quick and merge sort fall over to insertion # sort for small arrays. a = np.arange(101) b = a[::-1].copy() for kind in ['q', 'm', 'h']: msg = "scalar sort, kind=%s" % kind c = a.copy() c.sort(kind=kind) assert_equal(c, a, msg) c = b.copy() c.sort(kind=kind) assert_equal(c, a, msg) # test complex sorts. These use the same code as the scalars # but the compare function differs. ai = a*1j + 1 bi = b*1j + 1 for kind in ['q', 'm', 'h']: msg = "complex sort, real part == 1, kind=%s" % kind c = ai.copy() c.sort(kind=kind) assert_equal(c, ai, msg) c = bi.copy() c.sort(kind=kind) assert_equal(c, ai, msg) ai = a + 1j bi = b + 1j for kind in ['q', 'm', 'h']: msg = "complex sort, imag part == 1, kind=%s" % kind c = ai.copy() c.sort(kind=kind) assert_equal(c, ai, msg) c = bi.copy() c.sort(kind=kind) assert_equal(c, ai, msg) # test sorting of complex arrays requiring byte-swapping, gh-5441 for endianess in '<>': for dt in np.typecodes['Complex']: arr = np.array([1+3.j, 2+2.j, 3+1.j], dtype=endianess + dt) c = arr.copy() c.sort() msg = 'byte-swapped complex sort, dtype={0}'.format(dt) assert_equal(c, arr, msg) # test string sorts. s = 'aaaaaaaa' a = np.array([s + chr(i) for i in range(101)]) b = a[::-1].copy() for kind in ['q', 'm', 'h']: msg = "string sort, kind=%s" % kind c = a.copy() c.sort(kind=kind) assert_equal(c, a, msg) c = b.copy() c.sort(kind=kind) assert_equal(c, a, msg) # test unicode sorts. s = 'aaaaaaaa' a = np.array([s + chr(i) for i in range(101)], dtype=np.unicode) b = a[::-1].copy() for kind in ['q', 'm', 'h']: msg = "unicode sort, kind=%s" % kind c = a.copy() c.sort(kind=kind) assert_equal(c, a, msg) c = b.copy() c.sort(kind=kind) assert_equal(c, a, msg) # test object array sorts. a = np.empty((101,), dtype=np.object) a[:] = list(range(101)) b = a[::-1] for kind in ['q', 'h', 'm']: msg = "object sort, kind=%s" % kind c = a.copy() c.sort(kind=kind) assert_equal(c, a, msg) c = b.copy() c.sort(kind=kind) assert_equal(c, a, msg) # test record array sorts. dt = np.dtype([('f', float), ('i', int)]) a = np.array([(i, i) for i in range(101)], dtype=dt) b = a[::-1] for kind in ['q', 'h', 'm']: msg = "object sort, kind=%s" % kind c = a.copy() c.sort(kind=kind) assert_equal(c, a, msg) c = b.copy() c.sort(kind=kind) assert_equal(c, a, msg) # test datetime64 sorts. a = np.arange(0, 101, dtype='datetime64[D]') b = a[::-1] for kind in ['q', 'h', 'm']: msg = "datetime64 sort, kind=%s" % kind c = a.copy() c.sort(kind=kind) assert_equal(c, a, msg) c = b.copy() c.sort(kind=kind) assert_equal(c, a, msg) # test timedelta64 sorts. a = np.arange(0, 101, dtype='timedelta64[D]') b = a[::-1] for kind in ['q', 'h', 'm']: msg = "timedelta64 sort, kind=%s" % kind c = a.copy() c.sort(kind=kind) assert_equal(c, a, msg) c = b.copy() c.sort(kind=kind) assert_equal(c, a, msg) # check axis handling. This should be the same for all type # specific sorts, so we only check it for one type and one kind a = np.array([[3, 2], [1, 0]]) b = np.array([[1, 0], [3, 2]]) c = np.array([[2, 3], [0, 1]]) d = a.copy() d.sort(axis=0) assert_equal(d, b, "test sort with axis=0") d = a.copy() d.sort(axis=1) assert_equal(d, c, "test sort with axis=1") d = a.copy() d.sort() assert_equal(d, c, "test sort with default axis") # check axis handling for multidimensional empty arrays a = np.array([]) a.shape = (3, 2, 1, 0) for axis in range(-a.ndim, a.ndim): msg = 'test empty array sort with axis={0}'.format(axis) assert_equal(np.sort(a, axis=axis), a, msg) msg = 'test empty array sort with axis=None' assert_equal(np.sort(a, axis=None), a.ravel(), msg) def test_copy(self): def assert_fortran(arr): assert_(arr.flags.fortran) assert_(arr.flags.f_contiguous) assert_(not arr.flags.c_contiguous) def assert_c(arr): assert_(not arr.flags.fortran) assert_(not arr.flags.f_contiguous) assert_(arr.flags.c_contiguous) a = np.empty((2, 2), order='F') # Test copying a Fortran array assert_c(a.copy()) assert_c(a.copy('C')) assert_fortran(a.copy('F')) assert_fortran(a.copy('A')) # Now test starting with a C array. a = np.empty((2, 2), order='C') assert_c(a.copy()) assert_c(a.copy('C')) assert_fortran(a.copy('F')) assert_c(a.copy('A')) def test_sort_order(self): # Test sorting an array with fields x1 = np.array([21, 32, 14]) x2 = np.array(['my', 'first', 'name']) x3 = np.array([3.1, 4.5, 6.2]) r = np.rec.fromarrays([x1, x2, x3], names='id,word,number') r.sort(order=['id']) assert_equal(r.id, np.array([14, 21, 32])) assert_equal(r.word, np.array(['name', 'my', 'first'])) assert_equal(r.number, np.array([6.2, 3.1, 4.5])) r.sort(order=['word']) assert_equal(r.id, np.array([32, 21, 14])) assert_equal(r.word, np.array(['first', 'my', 'name'])) assert_equal(r.number, np.array([4.5, 3.1, 6.2])) r.sort(order=['number']) assert_equal(r.id, np.array([21, 32, 14])) assert_equal(r.word, np.array(['my', 'first', 'name'])) assert_equal(r.number, np.array([3.1, 4.5, 6.2])) if sys.byteorder == 'little': strtype = '>i2' else: strtype = '<i2' mydtype = [('name', strchar + '5'), ('col2', strtype)] r = np.array([('a', 1), ('b', 255), ('c', 3), ('d', 258)], dtype=mydtype) r.sort(order='col2') assert_equal(r['col2'], [1, 3, 255, 258]) assert_equal(r, np.array([('a', 1), ('c', 3), ('b', 255), ('d', 258)], dtype=mydtype)) def test_argsort(self): # all c scalar argsorts use the same code with different types # so it suffices to run a quick check with one type. The number # of sorted items must be greater than ~50 to check the actual # algorithm because quick and merge sort fall over to insertion # sort for small arrays. a = np.arange(101) b = a[::-1].copy() for kind in ['q', 'm', 'h']: msg = "scalar argsort, kind=%s" % kind assert_equal(a.copy().argsort(kind=kind), a, msg) assert_equal(b.copy().argsort(kind=kind), b, msg) # test complex argsorts. These use the same code as the scalars # but the compare fuction differs. ai = a*1j + 1 bi = b*1j + 1 for kind in ['q', 'm', 'h']: msg = "complex argsort, kind=%s" % kind assert_equal(ai.copy().argsort(kind=kind), a, msg) assert_equal(bi.copy().argsort(kind=kind), b, msg) ai = a + 1j bi = b + 1j for kind in ['q', 'm', 'h']: msg = "complex argsort, kind=%s" % kind assert_equal(ai.copy().argsort(kind=kind), a, msg) assert_equal(bi.copy().argsort(kind=kind), b, msg) # test argsort of complex arrays requiring byte-swapping, gh-5441 for endianess in '<>': for dt in np.typecodes['Complex']: arr = np.array([1+3.j, 2+2.j, 3+1.j], dtype=endianess + dt) msg = 'byte-swapped complex argsort, dtype={0}'.format(dt) assert_equal(arr.argsort(), np.arange(len(arr), dtype=np.intp), msg) # test string argsorts. s = 'aaaaaaaa' a = np.array([s + chr(i) for i in range(101)]) b = a[::-1].copy() r = np.arange(101) rr = r[::-1] for kind in ['q', 'm', 'h']: msg = "string argsort, kind=%s" % kind assert_equal(a.copy().argsort(kind=kind), r, msg) assert_equal(b.copy().argsort(kind=kind), rr, msg) # test unicode argsorts. s = 'aaaaaaaa' a = np.array([s + chr(i) for i in range(101)], dtype=np.unicode) b = a[::-1] r = np.arange(101) rr = r[::-1] for kind in ['q', 'm', 'h']: msg = "unicode argsort, kind=%s" % kind assert_equal(a.copy().argsort(kind=kind), r, msg) assert_equal(b.copy().argsort(kind=kind), rr, msg) # test object array argsorts. a = np.empty((101,), dtype=np.object) a[:] = list(range(101)) b = a[::-1] r = np.arange(101) rr = r[::-1] for kind in ['q', 'm', 'h']: msg = "object argsort, kind=%s" % kind assert_equal(a.copy().argsort(kind=kind), r, msg) assert_equal(b.copy().argsort(kind=kind), rr, msg) # test structured array argsorts. dt = np.dtype([('f', float), ('i', int)]) a = np.array([(i, i) for i in range(101)], dtype=dt) b = a[::-1] r = np.arange(101) rr = r[::-1] for kind in ['q', 'm', 'h']: msg = "structured array argsort, kind=%s" % kind assert_equal(a.copy().argsort(kind=kind), r, msg) assert_equal(b.copy().argsort(kind=kind), rr, msg) # test datetime64 argsorts. a = np.arange(0, 101, dtype='datetime64[D]') b = a[::-1] r = np.arange(101) rr = r[::-1] for kind in ['q', 'h', 'm']: msg = "datetime64 argsort, kind=%s" % kind assert_equal(a.copy().argsort(kind=kind), r, msg) assert_equal(b.copy().argsort(kind=kind), rr, msg) # test timedelta64 argsorts. a = np.arange(0, 101, dtype='timedelta64[D]') b = a[::-1] r = np.arange(101) rr = r[::-1] for kind in ['q', 'h', 'm']: msg = "timedelta64 argsort, kind=%s" % kind assert_equal(a.copy().argsort(kind=kind), r, msg) assert_equal(b.copy().argsort(kind=kind), rr, msg) # check axis handling. This should be the same for all type # specific argsorts, so we only check it for one type and one kind a = np.array([[3, 2], [1, 0]]) b = np.array([[1, 1], [0, 0]]) c = np.array([[1, 0], [1, 0]]) assert_equal(a.copy().argsort(axis=0), b) assert_equal(a.copy().argsort(axis=1), c) assert_equal(a.copy().argsort(), c) # using None is known fail at this point #assert_equal(a.copy().argsort(axis=None, c) # check axis handling for multidimensional empty arrays a = np.array([]) a.shape = (3, 2, 1, 0) for axis in range(-a.ndim, a.ndim): msg = 'test empty array argsort with axis={0}'.format(axis) assert_equal(np.argsort(a, axis=axis), np.zeros_like(a, dtype=np.intp), msg) msg = 'test empty array argsort with axis=None' assert_equal(np.argsort(a, axis=None), np.zeros_like(a.ravel(), dtype=np.intp), msg) # check that stable argsorts are stable r = np.arange(100) # scalars a = np.zeros(100) assert_equal(a.argsort(kind='m'), r) # complex a = np.zeros(100, dtype=np.complex) assert_equal(a.argsort(kind='m'), r) # string a = np.array(['aaaaaaaaa' for i in range(100)]) assert_equal(a.argsort(kind='m'), r) # unicode a = np.array(['aaaaaaaaa' for i in range(100)], dtype=np.unicode) assert_equal(a.argsort(kind='m'), r) def test_sort_unicode_kind(self): d = np.arange(10) k = b'\xc3\xa4'.decode("UTF8") assert_raises(ValueError, d.sort, kind=k) assert_raises(ValueError, d.argsort, kind=k) def test_searchsorted(self): # test for floats and complex containing nans. The logic is the # same for all float types so only test double types for now. # The search sorted routines use the compare functions for the # array type, so this checks if that is consistent with the sort # order. # check double a = np.array([0, 1, np.nan]) msg = "Test real searchsorted with nans, side='l'" b = a.searchsorted(a, side='l') assert_equal(b, np.arange(3), msg) msg = "Test real searchsorted with nans, side='r'" b = a.searchsorted(a, side='r') assert_equal(b, np.arange(1, 4), msg) # check double complex a = np.zeros(9, dtype=np.complex128) a.real += [0, 0, 1, 1, 0, 1, np.nan, np.nan, np.nan] a.imag += [0, 1, 0, 1, np.nan, np.nan, 0, 1, np.nan] msg = "Test complex searchsorted with nans, side='l'" b = a.searchsorted(a, side='l') assert_equal(b, np.arange(9), msg) msg = "Test complex searchsorted with nans, side='r'" b = a.searchsorted(a, side='r') assert_equal(b, np.arange(1, 10), msg) msg = "Test searchsorted with little endian, side='l'" a = np.array([0, 128], dtype='<i4') b = a.searchsorted(np.array(128, dtype='<i4')) assert_equal(b, 1, msg) msg = "Test searchsorted with big endian, side='l'" a = np.array([0, 128], dtype='>i4') b = a.searchsorted(np.array(128, dtype='>i4')) assert_equal(b, 1, msg) # Check 0 elements a = np.ones(0) b = a.searchsorted([0, 1, 2], 'l') assert_equal(b, [0, 0, 0]) b = a.searchsorted([0, 1, 2], 'r') assert_equal(b, [0, 0, 0]) a = np.ones(1) # Check 1 element b = a.searchsorted([0, 1, 2], 'l') assert_equal(b, [0, 0, 1]) b = a.searchsorted([0, 1, 2], 'r') assert_equal(b, [0, 1, 1]) # Check all elements equal a = np.ones(2) b = a.searchsorted([0, 1, 2], 'l') assert_equal(b, [0, 0, 2]) b = a.searchsorted([0, 1, 2], 'r') assert_equal(b, [0, 2, 2]) # Test searching unaligned array a = np.arange(10) aligned = np.empty(a.itemsize * a.size + 1, 'uint8') unaligned = aligned[1:].view(a.dtype) unaligned[:] = a # Test searching unaligned array b = unaligned.searchsorted(a, 'l') assert_equal(b, a) b = unaligned.searchsorted(a, 'r') assert_equal(b, a + 1) # Test searching for unaligned keys b = a.searchsorted(unaligned, 'l') assert_equal(b, a) b = a.searchsorted(unaligned, 'r') assert_equal(b, a + 1) # Test smart resetting of binsearch indices a = np.arange(5) b = a.searchsorted([6, 5, 4], 'l') assert_equal(b, [5, 5, 4]) b = a.searchsorted([6, 5, 4], 'r') assert_equal(b, [5, 5, 5]) # Test all type specific binary search functions types = ''.join((np.typecodes['AllInteger'], np.typecodes['AllFloat'], np.typecodes['Datetime'], '?O')) for dt in types: if dt == 'M': dt = 'M8[D]' if dt == '?': a = np.arange(2, dtype=dt) out = np.arange(2) else: a = np.arange(0, 5, dtype=dt) out = np.arange(5) b = a.searchsorted(a, 'l') assert_equal(b, out) b = a.searchsorted(a, 'r') assert_equal(b, out + 1) def test_searchsorted_unicode(self): # Test searchsorted on unicode strings. # 1.6.1 contained a string length miscalculation in # arraytypes.c.src:UNICODE_compare() which manifested as # incorrect/inconsistent results from searchsorted. a = np.array(['P:\\20x_dapi_cy3\\20x_dapi_cy3_20100185_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100186_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100187_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100189_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100190_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100191_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100192_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100193_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100194_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100195_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100196_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100197_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100198_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100199_1'], dtype=np.unicode) ind = np.arange(len(a)) assert_equal([a.searchsorted(v, 'left') for v in a], ind) assert_equal([a.searchsorted(v, 'right') for v in a], ind + 1) assert_equal([a.searchsorted(a[i], 'left') for i in ind], ind) assert_equal([a.searchsorted(a[i], 'right') for i in ind], ind + 1) def test_searchsorted_with_sorter(self): a = np.array([5, 2, 1, 3, 4]) s = np.argsort(a) assert_raises(TypeError, np.searchsorted, a, 0, sorter=(1, (2, 3))) assert_raises(TypeError, np.searchsorted, a, 0, sorter=[1.1]) assert_raises(ValueError, np.searchsorted, a, 0, sorter=[1, 2, 3, 4]) assert_raises(ValueError, np.searchsorted, a, 0, sorter=[1, 2, 3, 4, 5, 6]) # bounds check assert_raises(ValueError, np.searchsorted, a, 4, sorter=[0, 1, 2, 3, 5]) assert_raises(ValueError, np.searchsorted, a, 0, sorter=[-1, 0, 1, 2, 3]) assert_raises(ValueError, np.searchsorted, a, 0, sorter=[4, 0, -1, 2, 3]) a = np.random.rand(300) s = a.argsort() b = np.sort(a) k = np.linspace(0, 1, 20) assert_equal(b.searchsorted(k), a.searchsorted(k, sorter=s)) a = np.array([0, 1, 2, 3, 5]*20) s = a.argsort() k = [0, 1, 2, 3, 5] expected = [0, 20, 40, 60, 80] assert_equal(a.searchsorted(k, side='l', sorter=s), expected) expected = [20, 40, 60, 80, 100] assert_equal(a.searchsorted(k, side='r', sorter=s), expected) # Test searching unaligned array keys = np.arange(10) a = keys.copy() np.random.shuffle(s) s = a.argsort() aligned = np.empty(a.itemsize * a.size + 1, 'uint8') unaligned = aligned[1:].view(a.dtype) # Test searching unaligned array unaligned[:] = a b = unaligned.searchsorted(keys, 'l', s) assert_equal(b, keys) b = unaligned.searchsorted(keys, 'r', s) assert_equal(b, keys + 1) # Test searching for unaligned keys unaligned[:] = keys b = a.searchsorted(unaligned, 'l', s) assert_equal(b, keys) b = a.searchsorted(unaligned, 'r', s) assert_equal(b, keys + 1) # Test all type specific indirect binary search functions types = ''.join((np.typecodes['AllInteger'], np.typecodes['AllFloat'], np.typecodes['Datetime'], '?O')) for dt in types: if dt == 'M': dt = 'M8[D]' if dt == '?': a = np.array([1, 0], dtype=dt) # We want the sorter array to be of a type that is different # from np.intp in all platforms, to check for #4698 s = np.array([1, 0], dtype=np.int16) out = np.array([1, 0]) else: a = np.array([3, 4, 1, 2, 0], dtype=dt) # We want the sorter array to be of a type that is different # from np.intp in all platforms, to check for #4698 s = np.array([4, 2, 3, 0, 1], dtype=np.int16) out = np.array([3, 4, 1, 2, 0], dtype=np.intp) b = a.searchsorted(a, 'l', s) assert_equal(b, out) b = a.searchsorted(a, 'r', s) assert_equal(b, out + 1) # Test non-contiguous sorter array a = np.array([3, 4, 1, 2, 0]) srt = np.empty((10,), dtype=np.intp) srt[1::2] = -1 srt[::2] = [4, 2, 3, 0, 1] s = srt[::2] out = np.array([3, 4, 1, 2, 0], dtype=np.intp) b = a.searchsorted(a, 'l', s) assert_equal(b, out) b = a.searchsorted(a, 'r', s) assert_equal(b, out + 1) def test_searchsorted_return_type(self): # Functions returning indices should always return base ndarrays class A(np.ndarray): pass a = np.arange(5).view(A) b = np.arange(1, 3).view(A) s = np.arange(5).view(A) assert_(not isinstance(a.searchsorted(b, 'l'), A)) assert_(not isinstance(a.searchsorted(b, 'r'), A)) assert_(not isinstance(a.searchsorted(b, 'l', s), A)) assert_(not isinstance(a.searchsorted(b, 'r', s), A)) def test_argpartition_out_of_range(self): # Test out of range values in kth raise an error, gh-5469 d = np.arange(10) assert_raises(ValueError, d.argpartition, 10) assert_raises(ValueError, d.argpartition, -11) # Test also for generic type argpartition, which uses sorting # and used to not bound check kth d_obj = np.arange(10, dtype=object) assert_raises(ValueError, d_obj.argpartition, 10) assert_raises(ValueError, d_obj.argpartition, -11) def test_partition_out_of_range(self): # Test out of range values in kth raise an error, gh-5469 d = np.arange(10) assert_raises(ValueError, d.partition, 10) assert_raises(ValueError, d.partition, -11) # Test also for generic type partition, which uses sorting # and used to not bound check kth d_obj = np.arange(10, dtype=object) assert_raises(ValueError, d_obj.partition, 10) assert_raises(ValueError, d_obj.partition, -11) def test_partition_empty_array(self): # check axis handling for multidimensional empty arrays a = np.array([]) a.shape = (3, 2, 1, 0) for axis in range(-a.ndim, a.ndim): msg = 'test empty array partition with axis={0}'.format(axis) assert_equal(np.partition(a, 0, axis=axis), a, msg) msg = 'test empty array partition with axis=None' assert_equal(np.partition(a, 0, axis=None), a.ravel(), msg) def test_argpartition_empty_array(self): # check axis handling for multidimensional empty arrays a = np.array([]) a.shape = (3, 2, 1, 0) for axis in range(-a.ndim, a.ndim): msg = 'test empty array argpartition with axis={0}'.format(axis) assert_equal(np.partition(a, 0, axis=axis), np.zeros_like(a, dtype=np.intp), msg) msg = 'test empty array argpartition with axis=None' assert_equal(np.partition(a, 0, axis=None), np.zeros_like(a.ravel(), dtype=np.intp), msg) def test_partition(self): d = np.arange(10) assert_raises(TypeError, np.partition, d, 2, kind=1) assert_raises(ValueError, np.partition, d, 2, kind="nonsense") assert_raises(ValueError, np.argpartition, d, 2, kind="nonsense") assert_raises(ValueError, d.partition, 2, axis=0, kind="nonsense") assert_raises(ValueError, d.argpartition, 2, axis=0, kind="nonsense") for k in ("introselect",): d = np.array([]) assert_array_equal(np.partition(d, 0, kind=k), d) assert_array_equal(np.argpartition(d, 0, kind=k), d) d = np.ones((1)) assert_array_equal(np.partition(d, 0, kind=k)[0], d) assert_array_equal(d[np.argpartition(d, 0, kind=k)], np.partition(d, 0, kind=k)) # kth not modified kth = np.array([30, 15, 5]) okth = kth.copy() np.partition(np.arange(40), kth) assert_array_equal(kth, okth) for r in ([2, 1], [1, 2], [1, 1]): d = np.array(r) tgt = np.sort(d) assert_array_equal(np.partition(d, 0, kind=k)[0], tgt[0]) assert_array_equal(np.partition(d, 1, kind=k)[1], tgt[1]) assert_array_equal(d[np.argpartition(d, 0, kind=k)], np.partition(d, 0, kind=k)) assert_array_equal(d[np.argpartition(d, 1, kind=k)], np.partition(d, 1, kind=k)) for i in range(d.size): d[i:].partition(0, kind=k) assert_array_equal(d, tgt) for r in ([3, 2, 1], [1, 2, 3], [2, 1, 3], [2, 3, 1], [1, 1, 1], [1, 2, 2], [2, 2, 1], [1, 2, 1]): d = np.array(r) tgt = np.sort(d) assert_array_equal(np.partition(d, 0, kind=k)[0], tgt[0]) assert_array_equal(np.partition(d, 1, kind=k)[1], tgt[1]) assert_array_equal(np.partition(d, 2, kind=k)[2], tgt[2]) assert_array_equal(d[np.argpartition(d, 0, kind=k)], np.partition(d, 0, kind=k)) assert_array_equal(d[np.argpartition(d, 1, kind=k)], np.partition(d, 1, kind=k)) assert_array_equal(d[np.argpartition(d, 2, kind=k)], np.partition(d, 2, kind=k)) for i in range(d.size): d[i:].partition(0, kind=k) assert_array_equal(d, tgt) d = np.ones((50)) assert_array_equal(np.partition(d, 0, kind=k), d) assert_array_equal(d[np.argpartition(d, 0, kind=k)], np.partition(d, 0, kind=k)) # sorted d = np.arange((49)) self.assertEqual(np.partition(d, 5, kind=k)[5], 5) self.assertEqual(np.partition(d, 15, kind=k)[15], 15) assert_array_equal(d[np.argpartition(d, 5, kind=k)], np.partition(d, 5, kind=k)) assert_array_equal(d[np.argpartition(d, 15, kind=k)], np.partition(d, 15, kind=k)) # rsorted d = np.arange((47))[::-1] self.assertEqual(np.partition(d, 6, kind=k)[6], 6) self.assertEqual(np.partition(d, 16, kind=k)[16], 16) assert_array_equal(d[np.argpartition(d, 6, kind=k)], np.partition(d, 6, kind=k)) assert_array_equal(d[np.argpartition(d, 16, kind=k)], np.partition(d, 16, kind=k)) assert_array_equal(np.partition(d, -6, kind=k), np.partition(d, 41, kind=k)) assert_array_equal(np.partition(d, -16, kind=k), np.partition(d, 31, kind=k)) assert_array_equal(d[np.argpartition(d, -6, kind=k)], np.partition(d, 41, kind=k)) # median of 3 killer, O(n^2) on pure median 3 pivot quickselect # exercises the median of median of 5 code used to keep O(n) d = np.arange(1000000) x = np.roll(d, d.size // 2) mid = x.size // 2 + 1 assert_equal(np.partition(x, mid)[mid], mid) d = np.arange(1000001) x = np.roll(d, d.size // 2 + 1) mid = x.size // 2 + 1 assert_equal(np.partition(x, mid)[mid], mid) # max d = np.ones(10) d[1] = 4 assert_equal(np.partition(d, (2, -1))[-1], 4) assert_equal(np.partition(d, (2, -1))[2], 1) assert_equal(d[np.argpartition(d, (2, -1))][-1], 4) assert_equal(d[np.argpartition(d, (2, -1))][2], 1) d[1] = np.nan assert_(np.isnan(d[np.argpartition(d, (2, -1))][-1])) assert_(np.isnan(np.partition(d, (2, -1))[-1])) # equal elements d = np.arange((47)) % 7 tgt = np.sort(np.arange((47)) % 7) np.random.shuffle(d) for i in range(d.size): self.assertEqual(np.partition(d, i, kind=k)[i], tgt[i]) assert_array_equal(d[np.argpartition(d, 6, kind=k)], np.partition(d, 6, kind=k)) assert_array_equal(d[np.argpartition(d, 16, kind=k)], np.partition(d, 16, kind=k)) for i in range(d.size): d[i:].partition(0, kind=k) assert_array_equal(d, tgt) d = np.array([0, 1, 2, 3, 4, 5, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 9]) kth = [0, 3, 19, 20] assert_equal(np.partition(d, kth, kind=k)[kth], (0, 3, 7, 7)) assert_equal(d[np.argpartition(d, kth, kind=k)][kth], (0, 3, 7, 7)) d = np.array([2, 1]) d.partition(0, kind=k) assert_raises(ValueError, d.partition, 2) assert_raises(ValueError, d.partition, 3, axis=1) assert_raises(ValueError, np.partition, d, 2) assert_raises(ValueError, np.partition, d, 2, axis=1) assert_raises(ValueError, d.argpartition, 2) assert_raises(ValueError, d.argpartition, 3, axis=1) assert_raises(ValueError, np.argpartition, d, 2) assert_raises(ValueError, np.argpartition, d, 2, axis=1) d = np.arange(10).reshape((2, 5)) d.partition(1, axis=0, kind=k) d.partition(4, axis=1, kind=k) np.partition(d, 1, axis=0, kind=k) np.partition(d, 4, axis=1, kind=k) np.partition(d, 1, axis=None, kind=k) np.partition(d, 9, axis=None, kind=k) d.argpartition(1, axis=0, kind=k) d.argpartition(4, axis=1, kind=k) np.argpartition(d, 1, axis=0, kind=k) np.argpartition(d, 4, axis=1, kind=k) np.argpartition(d, 1, axis=None, kind=k) np.argpartition(d, 9, axis=None, kind=k) assert_raises(ValueError, d.partition, 2, axis=0) assert_raises(ValueError, d.partition, 11, axis=1) assert_raises(TypeError, d.partition, 2, axis=None) assert_raises(ValueError, np.partition, d, 9, axis=1) assert_raises(ValueError, np.partition, d, 11, axis=None) assert_raises(ValueError, d.argpartition, 2, axis=0) assert_raises(ValueError, d.argpartition, 11, axis=1) assert_raises(ValueError, np.argpartition, d, 9, axis=1) assert_raises(ValueError, np.argpartition, d, 11, axis=None) td = [(dt, s) for dt in [np.int32, np.float32, np.complex64] for s in (9, 16)] for dt, s in td: aae = assert_array_equal at = self.assertTrue d = np.arange(s, dtype=dt) np.random.shuffle(d) d1 = np.tile(np.arange(s, dtype=dt), (4, 1)) map(np.random.shuffle, d1) d0 = np.transpose(d1) for i in range(d.size): p = np.partition(d, i, kind=k) self.assertEqual(p[i], i) # all before are smaller assert_array_less(p[:i], p[i]) # all after are larger assert_array_less(p[i], p[i + 1:]) aae(p, d[np.argpartition(d, i, kind=k)]) p = np.partition(d1, i, axis=1, kind=k) aae(p[:, i], np.array([i] * d1.shape[0], dtype=dt)) # array_less does not seem to work right at((p[:, :i].T <= p[:, i]).all(), msg="%d: %r <= %r" % (i, p[:, i], p[:, :i].T)) at((p[:, i + 1:].T > p[:, i]).all(), msg="%d: %r < %r" % (i, p[:, i], p[:, i + 1:].T)) aae(p, d1[np.arange(d1.shape[0])[:, None], np.argpartition(d1, i, axis=1, kind=k)]) p = np.partition(d0, i, axis=0, kind=k) aae(p[i,:], np.array([i] * d1.shape[0], dtype=dt)) # array_less does not seem to work right at((p[:i,:] <= p[i,:]).all(), msg="%d: %r <= %r" % (i, p[i,:], p[:i,:])) at((p[i + 1:,:] > p[i,:]).all(), msg="%d: %r < %r" % (i, p[i,:], p[:, i + 1:])) aae(p, d0[np.argpartition(d0, i, axis=0, kind=k), np.arange(d0.shape[1])[None,:]]) # check inplace dc = d.copy() dc.partition(i, kind=k) assert_equal(dc, np.partition(d, i, kind=k)) dc = d0.copy() dc.partition(i, axis=0, kind=k) assert_equal(dc, np.partition(d0, i, axis=0, kind=k)) dc = d1.copy() dc.partition(i, axis=1, kind=k) assert_equal(dc, np.partition(d1, i, axis=1, kind=k)) def assert_partitioned(self, d, kth): prev = 0 for k in np.sort(kth): assert_array_less(d[prev:k], d[k], err_msg='kth %d' % k) assert_((d[k:] >= d[k]).all(), msg="kth %d, %r not greater equal %d" % (k, d[k:], d[k])) prev = k + 1 def test_partition_iterative(self): d = np.arange(17) kth = (0, 1, 2, 429, 231) assert_raises(ValueError, d.partition, kth) assert_raises(ValueError, d.argpartition, kth) d = np.arange(10).reshape((2, 5)) assert_raises(ValueError, d.partition, kth, axis=0) assert_raises(ValueError, d.partition, kth, axis=1) assert_raises(ValueError, np.partition, d, kth, axis=1) assert_raises(ValueError, np.partition, d, kth, axis=None) d = np.array([3, 4, 2, 1]) p = np.partition(d, (0, 3)) self.assert_partitioned(p, (0, 3)) self.assert_partitioned(d[np.argpartition(d, (0, 3))], (0, 3)) assert_array_equal(p, np.partition(d, (-3, -1))) assert_array_equal(p, d[np.argpartition(d, (-3, -1))]) d = np.arange(17) np.random.shuffle(d) d.partition(range(d.size)) assert_array_equal(np.arange(17), d) np.random.shuffle(d) assert_array_equal(np.arange(17), d[d.argpartition(range(d.size))]) # test unsorted kth d = np.arange(17) np.random.shuffle(d) keys = np.array([1, 3, 8, -2]) np.random.shuffle(d) p = np.partition(d, keys) self.assert_partitioned(p, keys) p = d[np.argpartition(d, keys)] self.assert_partitioned(p, keys) np.random.shuffle(keys) assert_array_equal(np.partition(d, keys), p) assert_array_equal(d[np.argpartition(d, keys)], p) # equal kth d = np.arange(20)[::-1] self.assert_partitioned(np.partition(d, [5]*4), [5]) self.assert_partitioned(np.partition(d, [5]*4 + [6, 13]), [5]*4 + [6, 13]) self.assert_partitioned(d[np.argpartition(d, [5]*4)], [5]) self.assert_partitioned(d[np.argpartition(d, [5]*4 + [6, 13])], [5]*4 + [6, 13]) d = np.arange(12) np.random.shuffle(d) d1 = np.tile(np.arange(12), (4, 1)) map(np.random.shuffle, d1) d0 = np.transpose(d1) kth = (1, 6, 7, -1) p = np.partition(d1, kth, axis=1) pa = d1[np.arange(d1.shape[0])[:, None], d1.argpartition(kth, axis=1)] assert_array_equal(p, pa) for i in range(d1.shape[0]): self.assert_partitioned(p[i,:], kth) p = np.partition(d0, kth, axis=0) pa = d0[np.argpartition(d0, kth, axis=0), np.arange(d0.shape[1])[None,:]] assert_array_equal(p, pa) for i in range(d0.shape[1]): self.assert_partitioned(p[:, i], kth) def test_partition_cdtype(self): d = np.array([('Galahad', 1.7, 38), ('Arthur', 1.8, 41), ('Lancelot', 1.9, 38)], dtype=[('name', '|S10'), ('height', '<f8'), ('age', '<i4')]) tgt = np.sort(d, order=['age', 'height']) assert_array_equal(np.partition(d, range(d.size), order=['age', 'height']), tgt) assert_array_equal(d[np.argpartition(d, range(d.size), order=['age', 'height'])], tgt) for k in range(d.size): assert_equal(np.partition(d, k, order=['age', 'height'])[k], tgt[k]) assert_equal(d[np.argpartition(d, k, order=['age', 'height'])][k], tgt[k]) d = np.array(['Galahad', 'Arthur', 'zebra', 'Lancelot']) tgt = np.sort(d) assert_array_equal(np.partition(d, range(d.size)), tgt) for k in range(d.size): assert_equal(np.partition(d, k)[k], tgt[k]) assert_equal(d[np.argpartition(d, k)][k], tgt[k]) def test_partition_unicode_kind(self): d = np.arange(10) k = b'\xc3\xa4'.decode("UTF8") assert_raises(ValueError, d.partition, 2, kind=k) assert_raises(ValueError, d.argpartition, 2, kind=k) def test_partition_fuzz(self): # a few rounds of random data testing for j in range(10, 30): for i in range(1, j - 2): d = np.arange(j) np.random.shuffle(d) d = d % np.random.randint(2, 30) idx = np.random.randint(d.size) kth = [0, idx, i, i + 1] tgt = np.sort(d)[kth] assert_array_equal(np.partition(d, kth)[kth], tgt, err_msg="data: %r\n kth: %r" % (d, kth)) def test_argpartition_gh5524(self): # A test for functionality of argpartition on lists. d = [6,7,3,2,9,0] p = np.argpartition(d,1) self.assert_partitioned(np.array(d)[p],[1]) def test_flatten(self): x0 = np.array([[1, 2, 3], [4, 5, 6]], np.int32) x1 = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]], np.int32) y0 = np.array([1, 2, 3, 4, 5, 6], np.int32) y0f = np.array([1, 4, 2, 5, 3, 6], np.int32) y1 = np.array([1, 2, 3, 4, 5, 6, 7, 8], np.int32) y1f = np.array([1, 5, 3, 7, 2, 6, 4, 8], np.int32) assert_equal(x0.flatten(), y0) assert_equal(x0.flatten('F'), y0f) assert_equal(x0.flatten('F'), x0.T.flatten()) assert_equal(x1.flatten(), y1) assert_equal(x1.flatten('F'), y1f) assert_equal(x1.flatten('F'), x1.T.flatten()) def test_dot(self): a = np.array([[1, 0], [0, 1]]) b = np.array([[0, 1], [1, 0]]) c = np.array([[9, 1], [1, -9]]) assert_equal(np.dot(a, b), a.dot(b)) assert_equal(np.dot(np.dot(a, b), c), a.dot(b).dot(c)) # test passing in an output array c = np.zeros_like(a) a.dot(b, c) assert_equal(c, np.dot(a, b)) # test keyword args c = np.zeros_like(a) a.dot(b=b, out=c) assert_equal(c, np.dot(a, b)) def test_dot_override(self): # Temporarily disable __numpy_ufunc__ for 1.10; see gh-5844 return class A(object): def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs): return "A" class B(object): def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs): return NotImplemented a = A() b = B() c = np.array([[1]]) assert_equal(np.dot(a, b), "A") assert_equal(c.dot(a), "A") assert_raises(TypeError, np.dot, b, c) assert_raises(TypeError, c.dot, b) def test_diagonal(self): a = np.arange(12).reshape((3, 4)) assert_equal(a.diagonal(), [0, 5, 10]) assert_equal(a.diagonal(0), [0, 5, 10]) assert_equal(a.diagonal(1), [1, 6, 11]) assert_equal(a.diagonal(-1), [4, 9]) b = np.arange(8).reshape((2, 2, 2)) assert_equal(b.diagonal(), [[0, 6], [1, 7]]) assert_equal(b.diagonal(0), [[0, 6], [1, 7]]) assert_equal(b.diagonal(1), [[2], [3]]) assert_equal(b.diagonal(-1), [[4], [5]]) assert_raises(ValueError, b.diagonal, axis1=0, axis2=0) assert_equal(b.diagonal(0, 1, 2), [[0, 3], [4, 7]]) assert_equal(b.diagonal(0, 0, 1), [[0, 6], [1, 7]]) assert_equal(b.diagonal(offset=1, axis1=0, axis2=2), [[1], [3]]) # Order of axis argument doesn't matter: assert_equal(b.diagonal(0, 2, 1), [[0, 3], [4, 7]]) def test_diagonal_view_notwriteable(self): # this test is only for 1.9, the diagonal view will be # writeable in 1.10. a = np.eye(3).diagonal() assert_(not a.flags.writeable) assert_(not a.flags.owndata) a = np.diagonal(np.eye(3)) assert_(not a.flags.writeable) assert_(not a.flags.owndata) a = np.diag(np.eye(3)) assert_(not a.flags.writeable) assert_(not a.flags.owndata) def test_diagonal_memleak(self): # Regression test for a bug that crept in at one point a = np.zeros((100, 100)) assert_(sys.getrefcount(a) < 50) for i in range(100): a.diagonal() assert_(sys.getrefcount(a) < 50) def test_trace(self): a = np.arange(12).reshape((3, 4)) assert_equal(a.trace(), 15) assert_equal(a.trace(0), 15) assert_equal(a.trace(1), 18) assert_equal(a.trace(-1), 13) b = np.arange(8).reshape((2, 2, 2)) assert_equal(b.trace(), [6, 8]) assert_equal(b.trace(0), [6, 8]) assert_equal(b.trace(1), [2, 3]) assert_equal(b.trace(-1), [4, 5]) assert_equal(b.trace(0, 0, 1), [6, 8]) assert_equal(b.trace(0, 0, 2), [5, 9]) assert_equal(b.trace(0, 1, 2), [3, 11]) assert_equal(b.trace(offset=1, axis1=0, axis2=2), [1, 3]) def test_trace_subclass(self): # The class would need to overwrite trace to ensure single-element # output also has the right subclass. class MyArray(np.ndarray): pass b = np.arange(8).reshape((2, 2, 2)).view(MyArray) t = b.trace() assert isinstance(t, MyArray) def test_put(self): icodes = np.typecodes['AllInteger'] fcodes = np.typecodes['AllFloat'] for dt in icodes + fcodes + 'O': tgt = np.array([0, 1, 0, 3, 0, 5], dtype=dt) # test 1-d a = np.zeros(6, dtype=dt) a.put([1, 3, 5], [1, 3, 5]) assert_equal(a, tgt) # test 2-d a = np.zeros((2, 3), dtype=dt) a.put([1, 3, 5], [1, 3, 5]) assert_equal(a, tgt.reshape(2, 3)) for dt in '?': tgt = np.array([False, True, False, True, False, True], dtype=dt) # test 1-d a = np.zeros(6, dtype=dt) a.put([1, 3, 5], [True]*3) assert_equal(a, tgt) # test 2-d a = np.zeros((2, 3), dtype=dt) a.put([1, 3, 5], [True]*3) assert_equal(a, tgt.reshape(2, 3)) # check must be writeable a = np.zeros(6) a.flags.writeable = False assert_raises(ValueError, a.put, [1, 3, 5], [1, 3, 5]) def test_ravel(self): a = np.array([[0, 1], [2, 3]]) assert_equal(a.ravel(), [0, 1, 2, 3]) assert_(not a.ravel().flags.owndata) assert_equal(a.ravel('F'), [0, 2, 1, 3]) assert_equal(a.ravel(order='C'), [0, 1, 2, 3]) assert_equal(a.ravel(order='F'), [0, 2, 1, 3]) assert_equal(a.ravel(order='A'), [0, 1, 2, 3]) assert_(not a.ravel(order='A').flags.owndata) assert_equal(a.ravel(order='K'), [0, 1, 2, 3]) assert_(not a.ravel(order='K').flags.owndata) assert_equal(a.ravel(), a.reshape(-1)) a = np.array([[0, 1], [2, 3]], order='F') assert_equal(a.ravel(), [0, 1, 2, 3]) assert_equal(a.ravel(order='A'), [0, 2, 1, 3]) assert_equal(a.ravel(order='K'), [0, 2, 1, 3]) assert_(not a.ravel(order='A').flags.owndata) assert_(not a.ravel(order='K').flags.owndata) assert_equal(a.ravel(), a.reshape(-1)) assert_equal(a.ravel(order='A'), a.reshape(-1, order='A')) a = np.array([[0, 1], [2, 3]])[::-1, :] assert_equal(a.ravel(), [2, 3, 0, 1]) assert_equal(a.ravel(order='C'), [2, 3, 0, 1]) assert_equal(a.ravel(order='F'), [2, 0, 3, 1]) assert_equal(a.ravel(order='A'), [2, 3, 0, 1]) # 'K' doesn't reverse the axes of negative strides assert_equal(a.ravel(order='K'), [2, 3, 0, 1]) assert_(a.ravel(order='K').flags.owndata) # Test simple 1-d copy behaviour: a = np.arange(10)[::2] assert_(a.ravel('K').flags.owndata) assert_(a.ravel('C').flags.owndata) assert_(a.ravel('F').flags.owndata) # Not contiguous and 1-sized axis with non matching stride a = np.arange(2**3 * 2)[::2] a = a.reshape(2, 1, 2, 2).swapaxes(-1, -2) strides = list(a.strides) strides[1] = 123 a.strides = strides assert_(a.ravel(order='K').flags.owndata) assert_equal(a.ravel('K'), np.arange(0, 15, 2)) # contiguous and 1-sized axis with non matching stride works: a = np.arange(2**3) a = a.reshape(2, 1, 2, 2).swapaxes(-1, -2) strides = list(a.strides) strides[1] = 123 a.strides = strides assert_(np.may_share_memory(a.ravel(order='K'), a)) assert_equal(a.ravel(order='K'), np.arange(2**3)) # Test negative strides (not very interesting since non-contiguous): a = np.arange(4)[::-1].reshape(2, 2) assert_(a.ravel(order='C').flags.owndata) assert_(a.ravel(order='K').flags.owndata) assert_equal(a.ravel('C'), [3, 2, 1, 0]) assert_equal(a.ravel('K'), [3, 2, 1, 0]) # 1-element tidy strides test (NPY_RELAXED_STRIDES_CHECKING): a = np.array([[1]]) a.strides = (123, 432) # If the stride is not 8, NPY_RELAXED_STRIDES_CHECKING is messing # them up on purpose: if np.ones(1).strides == (8,): assert_(np.may_share_memory(a.ravel('K'), a)) assert_equal(a.ravel('K').strides, (a.dtype.itemsize,)) for order in ('C', 'F', 'A', 'K'): # 0-d corner case: a = np.array(0) assert_equal(a.ravel(order), [0]) assert_(np.may_share_memory(a.ravel(order), a)) # Test that certain non-inplace ravels work right (mostly) for 'K': b = np.arange(2**4 * 2)[::2].reshape(2, 2, 2, 2) a = b[..., ::2] assert_equal(a.ravel('K'), [0, 4, 8, 12, 16, 20, 24, 28]) assert_equal(a.ravel('C'), [0, 4, 8, 12, 16, 20, 24, 28]) assert_equal(a.ravel('A'), [0, 4, 8, 12, 16, 20, 24, 28]) assert_equal(a.ravel('F'), [0, 16, 8, 24, 4, 20, 12, 28]) a = b[::2, ...] assert_equal(a.ravel('K'), [0, 2, 4, 6, 8, 10, 12, 14]) assert_equal(a.ravel('C'), [0, 2, 4, 6, 8, 10, 12, 14]) assert_equal(a.ravel('A'), [0, 2, 4, 6, 8, 10, 12, 14]) assert_equal(a.ravel('F'), [0, 8, 4, 12, 2, 10, 6, 14]) def test_ravel_subclass(self): class ArraySubclass(np.ndarray): pass a = np.arange(10).view(ArraySubclass) assert_(isinstance(a.ravel('C'), ArraySubclass)) assert_(isinstance(a.ravel('F'), ArraySubclass)) assert_(isinstance(a.ravel('A'), ArraySubclass)) assert_(isinstance(a.ravel('K'), ArraySubclass)) a = np.arange(10)[::2].view(ArraySubclass) assert_(isinstance(a.ravel('C'), ArraySubclass)) assert_(isinstance(a.ravel('F'), ArraySubclass)) assert_(isinstance(a.ravel('A'), ArraySubclass)) assert_(isinstance(a.ravel('K'), ArraySubclass)) def test_swapaxes(self): a = np.arange(1*2*3*4).reshape(1, 2, 3, 4).copy() idx = np.indices(a.shape) assert_(a.flags['OWNDATA']) b = a.copy() # check exceptions assert_raises(ValueError, a.swapaxes, -5, 0) assert_raises(ValueError, a.swapaxes, 4, 0) assert_raises(ValueError, a.swapaxes, 0, -5) assert_raises(ValueError, a.swapaxes, 0, 4) for i in range(-4, 4): for j in range(-4, 4): for k, src in enumerate((a, b)): c = src.swapaxes(i, j) # check shape shape = list(src.shape) shape[i] = src.shape[j] shape[j] = src.shape[i] assert_equal(c.shape, shape, str((i, j, k))) # check array contents i0, i1, i2, i3 = [dim-1 for dim in c.shape] j0, j1, j2, j3 = [dim-1 for dim in src.shape] assert_equal(src[idx[j0], idx[j1], idx[j2], idx[j3]], c[idx[i0], idx[i1], idx[i2], idx[i3]], str((i, j, k))) # check a view is always returned, gh-5260 assert_(not c.flags['OWNDATA'], str((i, j, k))) # check on non-contiguous input array if k == 1: b = c def test_conjugate(self): a = np.array([1-1j, 1+1j, 23+23.0j]) ac = a.conj() assert_equal(a.real, ac.real) assert_equal(a.imag, -ac.imag) assert_equal(ac, a.conjugate()) assert_equal(ac, np.conjugate(a)) a = np.array([1-1j, 1+1j, 23+23.0j], 'F') ac = a.conj() assert_equal(a.real, ac.real) assert_equal(a.imag, -ac.imag) assert_equal(ac, a.conjugate()) assert_equal(ac, np.conjugate(a)) a = np.array([1, 2, 3]) ac = a.conj() assert_equal(a, ac) assert_equal(ac, a.conjugate()) assert_equal(ac, np.conjugate(a)) a = np.array([1.0, 2.0, 3.0]) ac = a.conj() assert_equal(a, ac) assert_equal(ac, a.conjugate()) assert_equal(ac, np.conjugate(a)) a = np.array([1-1j, 1+1j, 1, 2.0], object) ac = a.conj() assert_equal(ac, [k.conjugate() for k in a]) assert_equal(ac, a.conjugate()) assert_equal(ac, np.conjugate(a)) a = np.array([1-1j, 1, 2.0, 'f'], object) assert_raises(AttributeError, lambda: a.conj()) assert_raises(AttributeError, lambda: a.conjugate()) class TestBinop(object): def test_inplace(self): # test refcount 1 inplace conversion assert_array_almost_equal(np.array([0.5]) * np.array([1.0, 2.0]), [0.5, 1.0]) d = np.array([0.5, 0.5])[::2] assert_array_almost_equal(d * (d * np.array([1.0, 2.0])), [0.25, 0.5]) a = np.array([0.5]) b = np.array([0.5]) c = a + b c = a - b c = a * b c = a / b assert_equal(a, b) assert_almost_equal(c, 1.) c = a + b * 2. / b * a - a / b assert_equal(a, b) assert_equal(c, 0.5) # true divide a = np.array([5]) b = np.array([3]) c = (a * a) / b assert_almost_equal(c, 25 / 3) assert_equal(a, 5) assert_equal(b, 3) def test_extension_incref_elide(self): # test extension (e.g. cython) calling PyNumber_* slots without # increasing the reference counts # # def incref_elide(a): # d = input.copy() # refcount 1 # return d, d + d # PyNumber_Add without increasing refcount from numpy.core.multiarray_tests import incref_elide d = np.ones(5) orig, res = incref_elide(d) # the return original should not be changed to an inplace operation assert_array_equal(orig, d) assert_array_equal(res, d + d) def test_extension_incref_elide_stack(self): # scanning if the refcount == 1 object is on the python stack to check # that we are called directly from python is flawed as object may still # be above the stack pointer and we have no access to the top of it # # def incref_elide_l(d): # return l[4] + l[4] # PyNumber_Add without increasing refcount from numpy.core.multiarray_tests import incref_elide_l # padding with 1 makes sure the object on the stack is not overwriten l = [1, 1, 1, 1, np.ones(5)] res = incref_elide_l(l) # the return original should not be changed to an inplace operation assert_array_equal(l[4], np.ones(5)) assert_array_equal(res, l[4] + l[4]) def test_ufunc_override_rop_precedence(self): # Check that __rmul__ and other right-hand operations have # precedence over __numpy_ufunc__ # Temporarily disable __numpy_ufunc__ for 1.10; see gh-5844 return ops = { '__add__': ('__radd__', np.add, True), '__sub__': ('__rsub__', np.subtract, True), '__mul__': ('__rmul__', np.multiply, True), '__truediv__': ('__rtruediv__', np.true_divide, True), '__floordiv__': ('__rfloordiv__', np.floor_divide, True), '__mod__': ('__rmod__', np.remainder, True), '__divmod__': ('__rdivmod__', None, False), '__pow__': ('__rpow__', np.power, True), '__lshift__': ('__rlshift__', np.left_shift, True), '__rshift__': ('__rrshift__', np.right_shift, True), '__and__': ('__rand__', np.bitwise_and, True), '__xor__': ('__rxor__', np.bitwise_xor, True), '__or__': ('__ror__', np.bitwise_or, True), '__ge__': ('__le__', np.less_equal, False), '__gt__': ('__lt__', np.less, False), '__le__': ('__ge__', np.greater_equal, False), '__lt__': ('__gt__', np.greater, False), '__eq__': ('__eq__', np.equal, False), '__ne__': ('__ne__', np.not_equal, False), } class OtherNdarraySubclass(np.ndarray): pass class OtherNdarraySubclassWithOverride(np.ndarray): def __numpy_ufunc__(self, *a, **kw): raise AssertionError(("__numpy_ufunc__ %r %r shouldn't have " "been called!") % (a, kw)) def check(op_name, ndsubclass): rop_name, np_op, has_iop = ops[op_name] if has_iop: iop_name = '__i' + op_name[2:] iop = getattr(operator, iop_name) if op_name == "__divmod__": op = divmod else: op = getattr(operator, op_name) # Dummy class def __init__(self, *a, **kw): pass def __numpy_ufunc__(self, *a, **kw): raise AssertionError(("__numpy_ufunc__ %r %r shouldn't have " "been called!") % (a, kw)) def __op__(self, *other): return "op" def __rop__(self, *other): return "rop" if ndsubclass: bases = (np.ndarray,) else: bases = (object,) dct = {'__init__': __init__, '__numpy_ufunc__': __numpy_ufunc__, op_name: __op__} if op_name != rop_name: dct[rop_name] = __rop__ cls = type("Rop" + rop_name, bases, dct) # Check behavior against both bare ndarray objects and a # ndarray subclasses with and without their own override obj = cls((1,), buffer=np.ones(1,)) arr_objs = [np.array([1]), np.array([2]).view(OtherNdarraySubclass), np.array([3]).view(OtherNdarraySubclassWithOverride), ] for arr in arr_objs: err_msg = "%r %r" % (op_name, arr,) # Check that ndarray op gives up if it sees a non-subclass if not isinstance(obj, arr.__class__): assert_equal(getattr(arr, op_name)(obj), NotImplemented, err_msg=err_msg) # Check that the Python binops have priority assert_equal(op(obj, arr), "op", err_msg=err_msg) if op_name == rop_name: assert_equal(op(arr, obj), "op", err_msg=err_msg) else: assert_equal(op(arr, obj), "rop", err_msg=err_msg) # Check that Python binops have priority also for in-place ops if has_iop: assert_equal(getattr(arr, iop_name)(obj), NotImplemented, err_msg=err_msg) if op_name != "__pow__": # inplace pow requires the other object to be # integer-like? assert_equal(iop(arr, obj), "rop", err_msg=err_msg) # Check that ufunc call __numpy_ufunc__ normally if np_op is not None: assert_raises(AssertionError, np_op, arr, obj, err_msg=err_msg) assert_raises(AssertionError, np_op, obj, arr, err_msg=err_msg) # Check all binary operations for op_name in sorted(ops.keys()): yield check, op_name, True yield check, op_name, False def test_ufunc_override_rop_simple(self): # Temporarily disable __numpy_ufunc__ for 1.10; see gh-5864 return # Check parts of the binary op overriding behavior in an # explicit test case that is easier to understand. class SomeClass(object): def __numpy_ufunc__(self, *a, **kw): return "ufunc" def __mul__(self, other): return 123 def __rmul__(self, other): return 321 def __rsub__(self, other): return "no subs for me" def __gt__(self, other): return "yep" def __lt__(self, other): return "nope" class SomeClass2(SomeClass, np.ndarray): def __numpy_ufunc__(self, ufunc, method, i, inputs, **kw): if ufunc is np.multiply or ufunc is np.bitwise_and: return "ufunc" else: inputs = list(inputs) inputs[i] = np.asarray(self) func = getattr(ufunc, method) r = func(*inputs, **kw) if 'out' in kw: return r else: x = self.__class__(r.shape, dtype=r.dtype) x[...] = r return x class SomeClass3(SomeClass2): def __rsub__(self, other): return "sub for me" arr = np.array([0]) obj = SomeClass() obj2 = SomeClass2((1,), dtype=np.int_) obj2[0] = 9 obj3 = SomeClass3((1,), dtype=np.int_) obj3[0] = 4 # obj is first, so should get to define outcome. assert_equal(obj * arr, 123) # obj is second, but has __numpy_ufunc__ and defines __rmul__. assert_equal(arr * obj, 321) # obj is second, but has __numpy_ufunc__ and defines __rsub__. assert_equal(arr - obj, "no subs for me") # obj is second, but has __numpy_ufunc__ and defines __lt__. assert_equal(arr > obj, "nope") # obj is second, but has __numpy_ufunc__ and defines __gt__. assert_equal(arr < obj, "yep") # Called as a ufunc, obj.__numpy_ufunc__ is used. assert_equal(np.multiply(arr, obj), "ufunc") # obj is second, but has __numpy_ufunc__ and defines __rmul__. arr *= obj assert_equal(arr, 321) # obj2 is an ndarray subclass, so CPython takes care of the same rules. assert_equal(obj2 * arr, 123) assert_equal(arr * obj2, 321) assert_equal(arr - obj2, "no subs for me") assert_equal(arr > obj2, "nope") assert_equal(arr < obj2, "yep") # Called as a ufunc, obj2.__numpy_ufunc__ is called. assert_equal(np.multiply(arr, obj2), "ufunc") # Also when the method is not overridden. assert_equal(arr & obj2, "ufunc") arr *= obj2 assert_equal(arr, 321) obj2 += 33 assert_equal(obj2[0], 42) assert_equal(obj2.sum(), 42) assert_(isinstance(obj2, SomeClass2)) # Obj3 is subclass that defines __rsub__. CPython calls it. assert_equal(arr - obj3, "sub for me") assert_equal(obj2 - obj3, "sub for me") # obj3 is a subclass that defines __rmul__. CPython calls it. assert_equal(arr * obj3, 321) # But not here, since obj3.__rmul__ is obj2.__rmul__. assert_equal(obj2 * obj3, 123) # And of course, here obj3.__mul__ should be called. assert_equal(obj3 * obj2, 123) # obj3 defines __numpy_ufunc__ but obj3.__radd__ is obj2.__radd__. # (and both are just ndarray.__radd__); see #4815. res = obj2 + obj3 assert_equal(res, 46) assert_(isinstance(res, SomeClass2)) # Since obj3 is a subclass, it should have precedence, like CPython # would give, even though obj2 has __numpy_ufunc__ and __radd__. # See gh-4815 and gh-5747. res = obj3 + obj2 assert_equal(res, 46) assert_(isinstance(res, SomeClass3)) def test_ufunc_override_normalize_signature(self): # Temporarily disable __numpy_ufunc__ for 1.10; see gh-5844 return # gh-5674 class SomeClass(object): def __numpy_ufunc__(self, ufunc, method, i, inputs, **kw): return kw a = SomeClass() kw = np.add(a, [1]) assert_('sig' not in kw and 'signature' not in kw) kw = np.add(a, [1], sig='ii->i') assert_('sig' not in kw and 'signature' in kw) assert_equal(kw['signature'], 'ii->i') kw = np.add(a, [1], signature='ii->i') assert_('sig' not in kw and 'signature' in kw) assert_equal(kw['signature'], 'ii->i') class TestCAPI(TestCase): def test_IsPythonScalar(self): from numpy.core.multiarray_tests import IsPythonScalar assert_(IsPythonScalar(b'foobar')) assert_(IsPythonScalar(1)) assert_(IsPythonScalar(2**80)) assert_(IsPythonScalar(2.)) assert_(IsPythonScalar("a")) class TestSubscripting(TestCase): def test_test_zero_rank(self): x = np.array([1, 2, 3]) self.assertTrue(isinstance(x[0], np.int_)) if sys.version_info[0] < 3: self.assertTrue(isinstance(x[0], int)) self.assertTrue(type(x[0, ...]) is np.ndarray) class TestPickling(TestCase): def test_roundtrip(self): import pickle carray = np.array([[2, 9], [7, 0], [3, 8]]) DATA = [ carray, np.transpose(carray), np.array([('xxx', 1, 2.0)], dtype=[('a', (str, 3)), ('b', int), ('c', float)]) ] for a in DATA: assert_equal(a, pickle.loads(a.dumps()), err_msg="%r" % a) def _loads(self, obj): if sys.version_info[0] >= 3: return np.loads(obj, encoding='latin1') else: return np.loads(obj) # version 0 pickles, using protocol=2 to pickle # version 0 doesn't have a version field def test_version0_int8(self): s = '\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x04\x85cnumpy\ndtype\nq\x04U\x02i1K\x00K\x01\x87Rq\x05(U\x01|NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89U\x04\x01\x02\x03\x04tb.' a = np.array([1, 2, 3, 4], dtype=np.int8) p = self._loads(asbytes(s)) assert_equal(a, p) def test_version0_float32(self): s = '\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x04\x85cnumpy\ndtype\nq\x04U\x02f4K\x00K\x01\x87Rq\x05(U\x01<NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89U\x10\x00\x00\x80?\x00\x00\x00@\x00\x00@@\x00\x00\x80@tb.' a = np.array([1.0, 2.0, 3.0, 4.0], dtype=np.float32) p = self._loads(asbytes(s)) assert_equal(a, p) def test_version0_object(self): s = '\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x02\x85cnumpy\ndtype\nq\x04U\x02O8K\x00K\x01\x87Rq\x05(U\x01|NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89]q\x06(}q\x07U\x01aK\x01s}q\x08U\x01bK\x02setb.' a = np.array([{'a':1}, {'b':2}]) p = self._loads(asbytes(s)) assert_equal(a, p) # version 1 pickles, using protocol=2 to pickle def test_version1_int8(self): s = '\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x01K\x04\x85cnumpy\ndtype\nq\x04U\x02i1K\x00K\x01\x87Rq\x05(K\x01U\x01|NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89U\x04\x01\x02\x03\x04tb.' a = np.array([1, 2, 3, 4], dtype=np.int8) p = self._loads(asbytes(s)) assert_equal(a, p) def test_version1_float32(self): s = '\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x01K\x04\x85cnumpy\ndtype\nq\x04U\x02f4K\x00K\x01\x87Rq\x05(K\x01U\x01<NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89U\x10\x00\x00\x80?\x00\x00\x00@\x00\x00@@\x00\x00\x80@tb.' a = np.array([1.0, 2.0, 3.0, 4.0], dtype=np.float32) p = self._loads(asbytes(s)) assert_equal(a, p) def test_version1_object(self): s = '\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x01K\x02\x85cnumpy\ndtype\nq\x04U\x02O8K\x00K\x01\x87Rq\x05(K\x01U\x01|NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89]q\x06(}q\x07U\x01aK\x01s}q\x08U\x01bK\x02setb.' a = np.array([{'a':1}, {'b':2}]) p = self._loads(asbytes(s)) assert_equal(a, p) def test_subarray_int_shape(self): s = "cnumpy.core.multiarray\n_reconstruct\np0\n(cnumpy\nndarray\np1\n(I0\ntp2\nS'b'\np3\ntp4\nRp5\n(I1\n(I1\ntp6\ncnumpy\ndtype\np7\n(S'V6'\np8\nI0\nI1\ntp9\nRp10\n(I3\nS'|'\np11\nN(S'a'\np12\ng3\ntp13\n(dp14\ng12\n(g7\n(S'V4'\np15\nI0\nI1\ntp16\nRp17\n(I3\nS'|'\np18\n(g7\n(S'i1'\np19\nI0\nI1\ntp20\nRp21\n(I3\nS'|'\np22\nNNNI-1\nI-1\nI0\ntp23\nb(I2\nI2\ntp24\ntp25\nNNI4\nI1\nI0\ntp26\nbI0\ntp27\nsg3\n(g7\n(S'V2'\np28\nI0\nI1\ntp29\nRp30\n(I3\nS'|'\np31\n(g21\nI2\ntp32\nNNI2\nI1\nI0\ntp33\nbI4\ntp34\nsI6\nI1\nI0\ntp35\nbI00\nS'\\x01\\x01\\x01\\x01\\x01\\x02'\np36\ntp37\nb." a = np.array([(1, (1, 2))], dtype=[('a', 'i1', (2, 2)), ('b', 'i1', 2)]) p = self._loads(asbytes(s)) assert_equal(a, p) class TestFancyIndexing(TestCase): def test_list(self): x = np.ones((1, 1)) x[:, [0]] = 2.0 assert_array_equal(x, np.array([[2.0]])) x = np.ones((1, 1, 1)) x[:,:, [0]] = 2.0 assert_array_equal(x, np.array([[[2.0]]])) def test_tuple(self): x = np.ones((1, 1)) x[:, (0,)] = 2.0 assert_array_equal(x, np.array([[2.0]])) x = np.ones((1, 1, 1)) x[:,:, (0,)] = 2.0 assert_array_equal(x, np.array([[[2.0]]])) def test_mask(self): x = np.array([1, 2, 3, 4]) m = np.array([0, 1, 0, 0], bool) assert_array_equal(x[m], np.array([2])) def test_mask2(self): x = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]) m = np.array([0, 1], bool) m2 = np.array([[0, 1, 0, 0], [1, 0, 0, 0]], bool) m3 = np.array([[0, 1, 0, 0], [0, 0, 0, 0]], bool) assert_array_equal(x[m], np.array([[5, 6, 7, 8]])) assert_array_equal(x[m2], np.array([2, 5])) assert_array_equal(x[m3], np.array([2])) def test_assign_mask(self): x = np.array([1, 2, 3, 4]) m = np.array([0, 1, 0, 0], bool) x[m] = 5 assert_array_equal(x, np.array([1, 5, 3, 4])) def test_assign_mask2(self): xorig = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]) m = np.array([0, 1], bool) m2 = np.array([[0, 1, 0, 0], [1, 0, 0, 0]], bool) m3 = np.array([[0, 1, 0, 0], [0, 0, 0, 0]], bool) x = xorig.copy() x[m] = 10 assert_array_equal(x, np.array([[1, 2, 3, 4], [10, 10, 10, 10]])) x = xorig.copy() x[m2] = 10 assert_array_equal(x, np.array([[1, 10, 3, 4], [10, 6, 7, 8]])) x = xorig.copy() x[m3] = 10 assert_array_equal(x, np.array([[1, 10, 3, 4], [5, 6, 7, 8]])) class TestStringCompare(TestCase): def test_string(self): g1 = np.array(["This", "is", "example"]) g2 = np.array(["This", "was", "example"]) assert_array_equal(g1 == g2, [g1[i] == g2[i] for i in [0, 1, 2]]) assert_array_equal(g1 != g2, [g1[i] != g2[i] for i in [0, 1, 2]]) assert_array_equal(g1 <= g2, [g1[i] <= g2[i] for i in [0, 1, 2]]) assert_array_equal(g1 >= g2, [g1[i] >= g2[i] for i in [0, 1, 2]]) assert_array_equal(g1 < g2, [g1[i] < g2[i] for i in [0, 1, 2]]) assert_array_equal(g1 > g2, [g1[i] > g2[i] for i in [0, 1, 2]]) def test_mixed(self): g1 = np.array(["spam", "spa", "spammer", "and eggs"]) g2 = "spam" assert_array_equal(g1 == g2, [x == g2 for x in g1]) assert_array_equal(g1 != g2, [x != g2 for x in g1]) assert_array_equal(g1 < g2, [x < g2 for x in g1]) assert_array_equal(g1 > g2, [x > g2 for x in g1]) assert_array_equal(g1 <= g2, [x <= g2 for x in g1]) assert_array_equal(g1 >= g2, [x >= g2 for x in g1]) def test_unicode(self): g1 = np.array([sixu("This"), sixu("is"), sixu("example")]) g2 = np.array([sixu("This"), sixu("was"), sixu("example")]) assert_array_equal(g1 == g2, [g1[i] == g2[i] for i in [0, 1, 2]]) assert_array_equal(g1 != g2, [g1[i] != g2[i] for i in [0, 1, 2]]) assert_array_equal(g1 <= g2, [g1[i] <= g2[i] for i in [0, 1, 2]]) assert_array_equal(g1 >= g2, [g1[i] >= g2[i] for i in [0, 1, 2]]) assert_array_equal(g1 < g2, [g1[i] < g2[i] for i in [0, 1, 2]]) assert_array_equal(g1 > g2, [g1[i] > g2[i] for i in [0, 1, 2]]) class TestArgmax(TestCase): nan_arr = [ ([0, 1, 2, 3, np.nan], 4), ([0, 1, 2, np.nan, 3], 3), ([np.nan, 0, 1, 2, 3], 0), ([np.nan, 0, np.nan, 2, 3], 0), ([0, 1, 2, 3, complex(0, np.nan)], 4), ([0, 1, 2, 3, complex(np.nan, 0)], 4), ([0, 1, 2, complex(np.nan, 0), 3], 3), ([0, 1, 2, complex(0, np.nan), 3], 3), ([complex(0, np.nan), 0, 1, 2, 3], 0), ([complex(np.nan, np.nan), 0, 1, 2, 3], 0), ([complex(np.nan, 0), complex(np.nan, 2), complex(np.nan, 1)], 0), ([complex(np.nan, np.nan), complex(np.nan, 2), complex(np.nan, 1)], 0), ([complex(np.nan, 0), complex(np.nan, 2), complex(np.nan, np.nan)], 0), ([complex(0, 0), complex(0, 2), complex(0, 1)], 1), ([complex(1, 0), complex(0, 2), complex(0, 1)], 0), ([complex(1, 0), complex(0, 2), complex(1, 1)], 2), ([np.datetime64('1923-04-14T12:43:12'), np.datetime64('1994-06-21T14:43:15'), np.datetime64('2001-10-15T04:10:32'), np.datetime64('1995-11-25T16:02:16'), np.datetime64('2005-01-04T03:14:12'), np.datetime64('2041-12-03T14:05:03')], 5), ([np.datetime64('1935-09-14T04:40:11'), np.datetime64('1949-10-12T12:32:11'), np.datetime64('2010-01-03T05:14:12'), np.datetime64('2015-11-20T12:20:59'), np.datetime64('1932-09-23T10:10:13'), np.datetime64('2014-10-10T03:50:30')], 3), # Assorted tests with NaTs ([np.datetime64('NaT'), np.datetime64('NaT'), np.datetime64('2010-01-03T05:14:12'), np.datetime64('NaT'), np.datetime64('2015-09-23T10:10:13'), np.datetime64('1932-10-10T03:50:30')], 4), ([np.datetime64('2059-03-14T12:43:12'), np.datetime64('1996-09-21T14:43:15'), np.datetime64('NaT'), np.datetime64('2022-12-25T16:02:16'), np.datetime64('1963-10-04T03:14:12'), np.datetime64('2013-05-08T18:15:23')], 0), ([np.timedelta64(2, 's'), np.timedelta64(1, 's'), np.timedelta64('NaT', 's'), np.timedelta64(3, 's')], 3), ([np.timedelta64('NaT', 's')] * 3, 0), ([timedelta(days=5, seconds=14), timedelta(days=2, seconds=35), timedelta(days=-1, seconds=23)], 0), ([timedelta(days=1, seconds=43), timedelta(days=10, seconds=5), timedelta(days=5, seconds=14)], 1), ([timedelta(days=10, seconds=24), timedelta(days=10, seconds=5), timedelta(days=10, seconds=43)], 2), ([False, False, False, False, True], 4), ([False, False, False, True, False], 3), ([True, False, False, False, False], 0), ([True, False, True, False, False], 0), # Can't reduce a "flexible type" #(['a', 'z', 'aa', 'zz'], 3), #(['zz', 'a', 'aa', 'a'], 0), #(['aa', 'z', 'zz', 'a'], 2), ] def test_all(self): a = np.random.normal(0, 1, (4, 5, 6, 7, 8)) for i in range(a.ndim): amax = a.max(i) aargmax = a.argmax(i) axes = list(range(a.ndim)) axes.remove(i) assert_(np.all(amax == aargmax.choose(*a.transpose(i,*axes)))) def test_combinations(self): for arr, pos in self.nan_arr: assert_equal(np.argmax(arr), pos, err_msg="%r" % arr) assert_equal(arr[np.argmax(arr)], np.max(arr), err_msg="%r" % arr) def test_output_shape(self): # see also gh-616 a = np.ones((10, 5)) # Check some simple shape mismatches out = np.ones(11, dtype=np.int_) assert_raises(ValueError, a.argmax, -1, out) out = np.ones((2, 5), dtype=np.int_) assert_raises(ValueError, a.argmax, -1, out) # these could be relaxed possibly (used to allow even the previous) out = np.ones((1, 10), dtype=np.int_) assert_raises(ValueError, a.argmax, -1, np.ones((1, 10))) out = np.ones(10, dtype=np.int_) a.argmax(-1, out=out) assert_equal(out, a.argmax(-1)) def test_argmax_unicode(self): d = np.zeros(6031, dtype='<U9') d[5942] = "as" assert_equal(d.argmax(), 5942) def test_np_vs_ndarray(self): # make sure both ndarray.argmax and numpy.argmax support out/axis args a = np.random.normal(size=(2,3)) #check positional args out1 = np.zeros(2, dtype=int) out2 = np.zeros(2, dtype=int) assert_equal(a.argmax(1, out1), np.argmax(a, 1, out2)) assert_equal(out1, out2) #check keyword args out1 = np.zeros(3, dtype=int) out2 = np.zeros(3, dtype=int) assert_equal(a.argmax(out=out1, axis=0), np.argmax(a, out=out2, axis=0)) assert_equal(out1, out2) class TestArgmin(TestCase): nan_arr = [ ([0, 1, 2, 3, np.nan], 4), ([0, 1, 2, np.nan, 3], 3), ([np.nan, 0, 1, 2, 3], 0), ([np.nan, 0, np.nan, 2, 3], 0), ([0, 1, 2, 3, complex(0, np.nan)], 4), ([0, 1, 2, 3, complex(np.nan, 0)], 4), ([0, 1, 2, complex(np.nan, 0), 3], 3), ([0, 1, 2, complex(0, np.nan), 3], 3), ([complex(0, np.nan), 0, 1, 2, 3], 0), ([complex(np.nan, np.nan), 0, 1, 2, 3], 0), ([complex(np.nan, 0), complex(np.nan, 2), complex(np.nan, 1)], 0), ([complex(np.nan, np.nan), complex(np.nan, 2), complex(np.nan, 1)], 0), ([complex(np.nan, 0), complex(np.nan, 2), complex(np.nan, np.nan)], 0), ([complex(0, 0), complex(0, 2), complex(0, 1)], 0), ([complex(1, 0), complex(0, 2), complex(0, 1)], 2), ([complex(1, 0), complex(0, 2), complex(1, 1)], 1), ([np.datetime64('1923-04-14T12:43:12'), np.datetime64('1994-06-21T14:43:15'), np.datetime64('2001-10-15T04:10:32'), np.datetime64('1995-11-25T16:02:16'), np.datetime64('2005-01-04T03:14:12'), np.datetime64('2041-12-03T14:05:03')], 0), ([np.datetime64('1935-09-14T04:40:11'), np.datetime64('1949-10-12T12:32:11'), np.datetime64('2010-01-03T05:14:12'), np.datetime64('2014-11-20T12:20:59'), np.datetime64('2015-09-23T10:10:13'), np.datetime64('1932-10-10T03:50:30')], 5), # Assorted tests with NaTs ([np.datetime64('NaT'), np.datetime64('NaT'), np.datetime64('2010-01-03T05:14:12'), np.datetime64('NaT'), np.datetime64('2015-09-23T10:10:13'), np.datetime64('1932-10-10T03:50:30')], 5), ([np.datetime64('2059-03-14T12:43:12'), np.datetime64('1996-09-21T14:43:15'), np.datetime64('NaT'), np.datetime64('2022-12-25T16:02:16'), np.datetime64('1963-10-04T03:14:12'), np.datetime64('2013-05-08T18:15:23')], 4), ([np.timedelta64(2, 's'), np.timedelta64(1, 's'), np.timedelta64('NaT', 's'), np.timedelta64(3, 's')], 1), ([np.timedelta64('NaT', 's')] * 3, 0), ([timedelta(days=5, seconds=14), timedelta(days=2, seconds=35), timedelta(days=-1, seconds=23)], 2), ([timedelta(days=1, seconds=43), timedelta(days=10, seconds=5), timedelta(days=5, seconds=14)], 0), ([timedelta(days=10, seconds=24), timedelta(days=10, seconds=5), timedelta(days=10, seconds=43)], 1), ([True, True, True, True, False], 4), ([True, True, True, False, True], 3), ([False, True, True, True, True], 0), ([False, True, False, True, True], 0), # Can't reduce a "flexible type" #(['a', 'z', 'aa', 'zz'], 0), #(['zz', 'a', 'aa', 'a'], 1), #(['aa', 'z', 'zz', 'a'], 3), ] def test_all(self): a = np.random.normal(0, 1, (4, 5, 6, 7, 8)) for i in range(a.ndim): amin = a.min(i) aargmin = a.argmin(i) axes = list(range(a.ndim)) axes.remove(i) assert_(np.all(amin == aargmin.choose(*a.transpose(i,*axes)))) def test_combinations(self): for arr, pos in self.nan_arr: assert_equal(np.argmin(arr), pos, err_msg="%r" % arr) assert_equal(arr[np.argmin(arr)], np.min(arr), err_msg="%r" % arr) def test_minimum_signed_integers(self): a = np.array([1, -2**7, -2**7 + 1], dtype=np.int8) assert_equal(np.argmin(a), 1) a = np.array([1, -2**15, -2**15 + 1], dtype=np.int16) assert_equal(np.argmin(a), 1) a = np.array([1, -2**31, -2**31 + 1], dtype=np.int32) assert_equal(np.argmin(a), 1) a = np.array([1, -2**63, -2**63 + 1], dtype=np.int64) assert_equal(np.argmin(a), 1) def test_output_shape(self): # see also gh-616 a = np.ones((10, 5)) # Check some simple shape mismatches out = np.ones(11, dtype=np.int_) assert_raises(ValueError, a.argmin, -1, out) out = np.ones((2, 5), dtype=np.int_) assert_raises(ValueError, a.argmin, -1, out) # these could be relaxed possibly (used to allow even the previous) out = np.ones((1, 10), dtype=np.int_) assert_raises(ValueError, a.argmin, -1, np.ones((1, 10))) out = np.ones(10, dtype=np.int_) a.argmin(-1, out=out) assert_equal(out, a.argmin(-1)) def test_argmin_unicode(self): d = np.ones(6031, dtype='<U9') d[6001] = "0" assert_equal(d.argmin(), 6001) def test_np_vs_ndarray(self): # make sure both ndarray.argmin and numpy.argmin support out/axis args a = np.random.normal(size=(2,3)) #check positional args out1 = np.zeros(2, dtype=int) out2 = np.ones(2, dtype=int) assert_equal(a.argmin(1, out1), np.argmin(a, 1, out2)) assert_equal(out1, out2) #check keyword args out1 = np.zeros(3, dtype=int) out2 = np.ones(3, dtype=int) assert_equal(a.argmin(out=out1, axis=0), np.argmin(a, out=out2, axis=0)) assert_equal(out1, out2) class TestMinMax(TestCase): def test_scalar(self): assert_raises(ValueError, np.amax, 1, 1) assert_raises(ValueError, np.amin, 1, 1) assert_equal(np.amax(1, axis=0), 1) assert_equal(np.amin(1, axis=0), 1) assert_equal(np.amax(1, axis=None), 1) assert_equal(np.amin(1, axis=None), 1) def test_axis(self): assert_raises(ValueError, np.amax, [1, 2, 3], 1000) assert_equal(np.amax([[1, 2, 3]], axis=1), 3) def test_datetime(self): # NaTs are ignored for dtype in ('m8[s]', 'm8[Y]'): a = np.arange(10).astype(dtype) a[3] = 'NaT' assert_equal(np.amin(a), a[0]) assert_equal(np.amax(a), a[9]) a[0] = 'NaT' assert_equal(np.amin(a), a[1]) assert_equal(np.amax(a), a[9]) a.fill('NaT') assert_equal(np.amin(a), a[0]) assert_equal(np.amax(a), a[0]) class TestNewaxis(TestCase): def test_basic(self): sk = np.array([0, -0.1, 0.1]) res = 250*sk[:, np.newaxis] assert_almost_equal(res.ravel(), 250*sk) class TestClip(TestCase): def _check_range(self, x, cmin, cmax): assert_(np.all(x >= cmin)) assert_(np.all(x <= cmax)) def _clip_type(self, type_group, array_max, clip_min, clip_max, inplace=False, expected_min=None, expected_max=None): if expected_min is None: expected_min = clip_min if expected_max is None: expected_max = clip_max for T in np.sctypes[type_group]: if sys.byteorder == 'little': byte_orders = ['=', '>'] else: byte_orders = ['<', '='] for byteorder in byte_orders: dtype = np.dtype(T).newbyteorder(byteorder) x = (np.random.random(1000) * array_max).astype(dtype) if inplace: x.clip(clip_min, clip_max, x) else: x = x.clip(clip_min, clip_max) byteorder = '=' if x.dtype.byteorder == '|': byteorder = '|' assert_equal(x.dtype.byteorder, byteorder) self._check_range(x, expected_min, expected_max) return x def test_basic(self): for inplace in [False, True]: self._clip_type( 'float', 1024, -12.8, 100.2, inplace=inplace) self._clip_type( 'float', 1024, 0, 0, inplace=inplace) self._clip_type( 'int', 1024, -120, 100.5, inplace=inplace) self._clip_type( 'int', 1024, 0, 0, inplace=inplace) self._clip_type( 'uint', 1024, 0, 0, inplace=inplace) self._clip_type( 'uint', 1024, -120, 100, inplace=inplace, expected_min=0) def test_record_array(self): rec = np.array([(-5, 2.0, 3.0), (5.0, 4.0, 3.0)], dtype=[('x', '<f8'), ('y', '<f8'), ('z', '<f8')]) y = rec['x'].clip(-0.3, 0.5) self._check_range(y, -0.3, 0.5) def test_max_or_min(self): val = np.array([0, 1, 2, 3, 4, 5, 6, 7]) x = val.clip(3) assert_(np.all(x >= 3)) x = val.clip(min=3) assert_(np.all(x >= 3)) x = val.clip(max=4) assert_(np.all(x <= 4)) class TestPutmask(object): def tst_basic(self, x, T, mask, val): np.putmask(x, mask, val) assert_(np.all(x[mask] == T(val))) assert_(x.dtype == T) def test_ip_types(self): unchecked_types = [str, unicode, np.void, object] x = np.random.random(1000)*100 mask = x < 40 for val in [-100, 0, 15]: for types in np.sctypes.values(): for T in types: if T not in unchecked_types: yield self.tst_basic, x.copy().astype(T), T, mask, val def test_mask_size(self): assert_raises(ValueError, np.putmask, np.array([1, 2, 3]), [True], 5) def tst_byteorder(self, dtype): x = np.array([1, 2, 3], dtype) np.putmask(x, [True, False, True], -1) assert_array_equal(x, [-1, 2, -1]) def test_ip_byteorder(self): for dtype in ('>i4', '<i4'): yield self.tst_byteorder, dtype def test_record_array(self): # Note mixed byteorder. rec = np.array([(-5, 2.0, 3.0), (5.0, 4.0, 3.0)], dtype=[('x', '<f8'), ('y', '>f8'), ('z', '<f8')]) np.putmask(rec['x'], [True, False], 10) assert_array_equal(rec['x'], [10, 5]) assert_array_equal(rec['y'], [2, 4]) assert_array_equal(rec['z'], [3, 3]) np.putmask(rec['y'], [True, False], 11) assert_array_equal(rec['x'], [10, 5]) assert_array_equal(rec['y'], [11, 4]) assert_array_equal(rec['z'], [3, 3]) def test_masked_array(self): ## x = np.array([1,2,3]) ## z = np.ma.array(x,mask=[True,False,False]) ## np.putmask(z,[True,True,True],3) pass class TestTake(object): def tst_basic(self, x): ind = list(range(x.shape[0])) assert_array_equal(x.take(ind, axis=0), x) def test_ip_types(self): unchecked_types = [str, unicode, np.void, object] x = np.random.random(24)*100 x.shape = 2, 3, 4 for types in np.sctypes.values(): for T in types: if T not in unchecked_types: yield self.tst_basic, x.copy().astype(T) def test_raise(self): x = np.random.random(24)*100 x.shape = 2, 3, 4 assert_raises(IndexError, x.take, [0, 1, 2], axis=0) assert_raises(IndexError, x.take, [-3], axis=0) assert_array_equal(x.take([-1], axis=0)[0], x[1]) def test_clip(self): x = np.random.random(24)*100 x.shape = 2, 3, 4 assert_array_equal(x.take([-1], axis=0, mode='clip')[0], x[0]) assert_array_equal(x.take([2], axis=0, mode='clip')[0], x[1]) def test_wrap(self): x = np.random.random(24)*100 x.shape = 2, 3, 4 assert_array_equal(x.take([-1], axis=0, mode='wrap')[0], x[1]) assert_array_equal(x.take([2], axis=0, mode='wrap')[0], x[0]) assert_array_equal(x.take([3], axis=0, mode='wrap')[0], x[1]) def tst_byteorder(self, dtype): x = np.array([1, 2, 3], dtype) assert_array_equal(x.take([0, 2, 1]), [1, 3, 2]) def test_ip_byteorder(self): for dtype in ('>i4', '<i4'): yield self.tst_byteorder, dtype def test_record_array(self): # Note mixed byteorder. rec = np.array([(-5, 2.0, 3.0), (5.0, 4.0, 3.0)], dtype=[('x', '<f8'), ('y', '>f8'), ('z', '<f8')]) rec1 = rec.take([1]) assert_(rec1['x'] == 5.0 and rec1['y'] == 4.0) class TestLexsort(TestCase): def test_basic(self): a = [1, 2, 1, 3, 1, 5] b = [0, 4, 5, 6, 2, 3] idx = np.lexsort((b, a)) expected_idx = np.array([0, 4, 2, 1, 3, 5]) assert_array_equal(idx, expected_idx) x = np.vstack((b, a)) idx = np.lexsort(x) assert_array_equal(idx, expected_idx) assert_array_equal(x[1][idx], np.sort(x[1])) def test_datetime(self): a = np.array([0,0,0], dtype='datetime64[D]') b = np.array([2,1,0], dtype='datetime64[D]') idx = np.lexsort((b, a)) expected_idx = np.array([2, 1, 0]) assert_array_equal(idx, expected_idx) a = np.array([0,0,0], dtype='timedelta64[D]') b = np.array([2,1,0], dtype='timedelta64[D]') idx = np.lexsort((b, a)) expected_idx = np.array([2, 1, 0]) assert_array_equal(idx, expected_idx) class TestIO(object): """Test tofile, fromfile, tobytes, and fromstring""" def setUp(self): shape = (2, 4, 3) rand = np.random.random self.x = rand(shape) + rand(shape).astype(np.complex)*1j self.x[0,:, 1] = [np.nan, np.inf, -np.inf, np.nan] self.dtype = self.x.dtype self.tempdir = tempfile.mkdtemp() self.filename = tempfile.mktemp(dir=self.tempdir) def tearDown(self): shutil.rmtree(self.tempdir) def test_bool_fromstring(self): v = np.array([True, False, True, False], dtype=np.bool_) y = np.fromstring('1 0 -2.3 0.0', sep=' ', dtype=np.bool_) assert_array_equal(v, y) def test_uint64_fromstring(self): d = np.fromstring("9923372036854775807 104783749223640", dtype=np.uint64, sep=' ') e = np.array([9923372036854775807, 104783749223640], dtype=np.uint64) assert_array_equal(d, e) def test_int64_fromstring(self): d = np.fromstring("-25041670086757 104783749223640", dtype=np.int64, sep=' ') e = np.array([-25041670086757, 104783749223640], dtype=np.int64) assert_array_equal(d, e) def test_empty_files_binary(self): f = open(self.filename, 'w') f.close() y = np.fromfile(self.filename) assert_(y.size == 0, "Array not empty") def test_empty_files_text(self): f = open(self.filename, 'w') f.close() y = np.fromfile(self.filename, sep=" ") assert_(y.size == 0, "Array not empty") def test_roundtrip_file(self): f = open(self.filename, 'wb') self.x.tofile(f) f.close() # NB. doesn't work with flush+seek, due to use of C stdio f = open(self.filename, 'rb') y = np.fromfile(f, dtype=self.dtype) f.close() assert_array_equal(y, self.x.flat) def test_roundtrip_filename(self): self.x.tofile(self.filename) y = np.fromfile(self.filename, dtype=self.dtype) assert_array_equal(y, self.x.flat) def test_roundtrip_binary_str(self): s = self.x.tobytes() y = np.fromstring(s, dtype=self.dtype) assert_array_equal(y, self.x.flat) s = self.x.tobytes('F') y = np.fromstring(s, dtype=self.dtype) assert_array_equal(y, self.x.flatten('F')) def test_roundtrip_str(self): x = self.x.real.ravel() s = "@".join(map(str, x)) y = np.fromstring(s, sep="@") # NB. str imbues less precision nan_mask = ~np.isfinite(x) assert_array_equal(x[nan_mask], y[nan_mask]) assert_array_almost_equal(x[~nan_mask], y[~nan_mask], decimal=5) def test_roundtrip_repr(self): x = self.x.real.ravel() s = "@".join(map(repr, x)) y = np.fromstring(s, sep="@") assert_array_equal(x, y) def test_file_position_after_fromfile(self): # gh-4118 sizes = [io.DEFAULT_BUFFER_SIZE//8, io.DEFAULT_BUFFER_SIZE, io.DEFAULT_BUFFER_SIZE*8] for size in sizes: f = open(self.filename, 'wb') f.seek(size-1) f.write(b'\0') f.close() for mode in ['rb', 'r+b']: err_msg = "%d %s" % (size, mode) f = open(self.filename, mode) f.read(2) np.fromfile(f, dtype=np.float64, count=1) pos = f.tell() f.close() assert_equal(pos, 10, err_msg=err_msg) def test_file_position_after_tofile(self): # gh-4118 sizes = [io.DEFAULT_BUFFER_SIZE//8, io.DEFAULT_BUFFER_SIZE, io.DEFAULT_BUFFER_SIZE*8] for size in sizes: err_msg = "%d" % (size,) f = open(self.filename, 'wb') f.seek(size-1) f.write(b'\0') f.seek(10) f.write(b'12') np.array([0], dtype=np.float64).tofile(f) pos = f.tell() f.close() assert_equal(pos, 10 + 2 + 8, err_msg=err_msg) f = open(self.filename, 'r+b') f.read(2) f.seek(0, 1) # seek between read&write required by ANSI C np.array([0], dtype=np.float64).tofile(f) pos = f.tell() f.close() assert_equal(pos, 10, err_msg=err_msg) def _check_from(self, s, value, **kw): y = np.fromstring(asbytes(s), **kw) assert_array_equal(y, value) f = open(self.filename, 'wb') f.write(asbytes(s)) f.close() y = np.fromfile(self.filename, **kw) assert_array_equal(y, value) def test_nan(self): self._check_from( "nan +nan -nan NaN nan(foo) +NaN(BAR) -NAN(q_u_u_x_)", [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan], sep=' ') def test_inf(self): self._check_from( "inf +inf -inf infinity -Infinity iNfInItY -inF", [np.inf, np.inf, -np.inf, np.inf, -np.inf, np.inf, -np.inf], sep=' ') def test_numbers(self): self._check_from("1.234 -1.234 .3 .3e55 -123133.1231e+133", [1.234, -1.234, .3, .3e55, -123133.1231e+133], sep=' ') def test_binary(self): self._check_from('\x00\x00\x80?\x00\x00\x00@\x00\x00@@\x00\x00\x80@', np.array([1, 2, 3, 4]), dtype='<f4') @dec.slow # takes > 1 minute on mechanical hard drive def test_big_binary(self): """Test workarounds for 32-bit limited fwrite, fseek, and ftell calls in windows. These normally would hang doing something like this. See http://projects.scipy.org/numpy/ticket/1660""" if sys.platform != 'win32': return try: # before workarounds, only up to 2**32-1 worked fourgbplus = 2**32 + 2**16 testbytes = np.arange(8, dtype=np.int8) n = len(testbytes) flike = tempfile.NamedTemporaryFile() f = flike.file np.tile(testbytes, fourgbplus // testbytes.nbytes).tofile(f) flike.seek(0) a = np.fromfile(f, dtype=np.int8) flike.close() assert_(len(a) == fourgbplus) # check only start and end for speed: assert_((a[:n] == testbytes).all()) assert_((a[-n:] == testbytes).all()) except (MemoryError, ValueError): pass def test_string(self): self._check_from('1,2,3,4', [1., 2., 3., 4.], sep=',') def test_counted_string(self): self._check_from('1,2,3,4', [1., 2., 3., 4.], count=4, sep=',') self._check_from('1,2,3,4', [1., 2., 3.], count=3, sep=',') self._check_from('1,2,3,4', [1., 2., 3., 4.], count=-1, sep=',') def test_string_with_ws(self): self._check_from('1 2 3 4 ', [1, 2, 3, 4], dtype=int, sep=' ') def test_counted_string_with_ws(self): self._check_from('1 2 3 4 ', [1, 2, 3], count=3, dtype=int, sep=' ') def test_ascii(self): self._check_from('1 , 2 , 3 , 4', [1., 2., 3., 4.], sep=',') self._check_from('1,2,3,4', [1., 2., 3., 4.], dtype=float, sep=',') def test_malformed(self): self._check_from('1.234 1,234', [1.234, 1.], sep=' ') def test_long_sep(self): self._check_from('1_x_3_x_4_x_5', [1, 3, 4, 5], sep='_x_') def test_dtype(self): v = np.array([1, 2, 3, 4], dtype=np.int_) self._check_from('1,2,3,4', v, sep=',', dtype=np.int_) def test_dtype_bool(self): # can't use _check_from because fromstring can't handle True/False v = np.array([True, False, True, False], dtype=np.bool_) s = '1,0,-2.3,0' f = open(self.filename, 'wb') f.write(asbytes(s)) f.close() y = np.fromfile(self.filename, sep=',', dtype=np.bool_) assert_(y.dtype == '?') assert_array_equal(y, v) def test_tofile_sep(self): x = np.array([1.51, 2, 3.51, 4], dtype=float) f = open(self.filename, 'w') x.tofile(f, sep=',') f.close() f = open(self.filename, 'r') s = f.read() f.close() assert_equal(s, '1.51,2.0,3.51,4.0') def test_tofile_format(self): x = np.array([1.51, 2, 3.51, 4], dtype=float) f = open(self.filename, 'w') x.tofile(f, sep=',', format='%.2f') f.close() f = open(self.filename, 'r') s = f.read() f.close() assert_equal(s, '1.51,2.00,3.51,4.00') def test_locale(self): in_foreign_locale(self.test_numbers)() in_foreign_locale(self.test_nan)() in_foreign_locale(self.test_inf)() in_foreign_locale(self.test_counted_string)() in_foreign_locale(self.test_ascii)() in_foreign_locale(self.test_malformed)() in_foreign_locale(self.test_tofile_sep)() in_foreign_locale(self.test_tofile_format)() class TestFromBuffer(object): def tst_basic(self, buffer, expected, kwargs): assert_array_equal(np.frombuffer(buffer,**kwargs), expected) def test_ip_basic(self): for byteorder in ['<', '>']: for dtype in [float, int, np.complex]: dt = np.dtype(dtype).newbyteorder(byteorder) x = (np.random.random((4, 7))*5).astype(dt) buf = x.tobytes() yield self.tst_basic, buf, x.flat, {'dtype':dt} def test_empty(self): yield self.tst_basic, asbytes(''), np.array([]), {} class TestFlat(TestCase): def setUp(self): a0 = np.arange(20.0) a = a0.reshape(4, 5) a0.shape = (4, 5) a.flags.writeable = False self.a = a self.b = a[::2, ::2] self.a0 = a0 self.b0 = a0[::2, ::2] def test_contiguous(self): testpassed = False try: self.a.flat[12] = 100.0 except ValueError: testpassed = True assert testpassed assert self.a.flat[12] == 12.0 def test_discontiguous(self): testpassed = False try: self.b.flat[4] = 100.0 except ValueError: testpassed = True assert testpassed assert self.b.flat[4] == 12.0 def test___array__(self): c = self.a.flat.__array__() d = self.b.flat.__array__() e = self.a0.flat.__array__() f = self.b0.flat.__array__() assert c.flags.writeable is False assert d.flags.writeable is False assert e.flags.writeable is True assert f.flags.writeable is True assert c.flags.updateifcopy is False assert d.flags.updateifcopy is False assert e.flags.updateifcopy is False assert f.flags.updateifcopy is True assert f.base is self.b0 class TestResize(TestCase): def test_basic(self): x = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) x.resize((5, 5)) assert_array_equal(x.flat[:9], np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]).flat) assert_array_equal(x[9:].flat, 0) def test_check_reference(self): x = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) y = x self.assertRaises(ValueError, x.resize, (5, 1)) del y # avoid pyflakes unused variable warning. def test_int_shape(self): x = np.eye(3) x.resize(3) assert_array_equal(x, np.eye(3)[0,:]) def test_none_shape(self): x = np.eye(3) x.resize(None) assert_array_equal(x, np.eye(3)) x.resize() assert_array_equal(x, np.eye(3)) def test_invalid_arguements(self): self.assertRaises(TypeError, np.eye(3).resize, 'hi') self.assertRaises(ValueError, np.eye(3).resize, -1) self.assertRaises(TypeError, np.eye(3).resize, order=1) self.assertRaises(TypeError, np.eye(3).resize, refcheck='hi') def test_freeform_shape(self): x = np.eye(3) x.resize(3, 2, 1) assert_(x.shape == (3, 2, 1)) def test_zeros_appended(self): x = np.eye(3) x.resize(2, 3, 3) assert_array_equal(x[0], np.eye(3)) assert_array_equal(x[1], np.zeros((3, 3))) def test_obj_obj(self): # check memory is initialized on resize, gh-4857 a = np.ones(10, dtype=[('k', object, 2)]) a.resize(15,) assert_equal(a.shape, (15,)) assert_array_equal(a['k'][-5:], 0) assert_array_equal(a['k'][:-5], 1) class TestRecord(TestCase): def test_field_rename(self): dt = np.dtype([('f', float), ('i', int)]) dt.names = ['p', 'q'] assert_equal(dt.names, ['p', 'q']) if sys.version_info[0] >= 3: def test_bytes_fields(self): # Bytes are not allowed in field names and not recognized in titles # on Py3 assert_raises(TypeError, np.dtype, [(asbytes('a'), int)]) assert_raises(TypeError, np.dtype, [(('b', asbytes('a')), int)]) dt = np.dtype([((asbytes('a'), 'b'), int)]) assert_raises(ValueError, dt.__getitem__, asbytes('a')) x = np.array([(1,), (2,), (3,)], dtype=dt) assert_raises(IndexError, x.__getitem__, asbytes('a')) y = x[0] assert_raises(IndexError, y.__getitem__, asbytes('a')) else: def test_unicode_field_titles(self): # Unicode field titles are added to field dict on Py2 title = unicode('b') dt = np.dtype([((title, 'a'), int)]) dt[title] dt['a'] x = np.array([(1,), (2,), (3,)], dtype=dt) x[title] x['a'] y = x[0] y[title] y['a'] def test_unicode_field_names(self): # Unicode field names are not allowed on Py2 title = unicode('b') assert_raises(TypeError, np.dtype, [(title, int)]) assert_raises(TypeError, np.dtype, [(('a', title), int)]) def test_field_names(self): # Test unicode and 8-bit / byte strings can be used a = np.zeros((1,), dtype=[('f1', 'i4'), ('f2', 'i4'), ('f3', [('sf1', 'i4')])]) is_py3 = sys.version_info[0] >= 3 if is_py3: funcs = (str,) # byte string indexing fails gracefully assert_raises(IndexError, a.__setitem__, asbytes('f1'), 1) assert_raises(IndexError, a.__getitem__, asbytes('f1')) assert_raises(IndexError, a['f1'].__setitem__, asbytes('sf1'), 1) assert_raises(IndexError, a['f1'].__getitem__, asbytes('sf1')) else: funcs = (str, unicode) for func in funcs: b = a.copy() fn1 = func('f1') b[fn1] = 1 assert_equal(b[fn1], 1) fnn = func('not at all') assert_raises(ValueError, b.__setitem__, fnn, 1) assert_raises(ValueError, b.__getitem__, fnn) b[0][fn1] = 2 assert_equal(b[fn1], 2) # Subfield assert_raises(ValueError, b[0].__setitem__, fnn, 1) assert_raises(ValueError, b[0].__getitem__, fnn) # Subfield fn3 = func('f3') sfn1 = func('sf1') b[fn3][sfn1] = 1 assert_equal(b[fn3][sfn1], 1) assert_raises(ValueError, b[fn3].__setitem__, fnn, 1) assert_raises(ValueError, b[fn3].__getitem__, fnn) # multiple Subfields fn2 = func('f2') b[fn2] = 3 assert_equal(b[['f1', 'f2']][0].tolist(), (2, 3)) assert_equal(b[['f2', 'f1']][0].tolist(), (3, 2)) assert_equal(b[['f1', 'f3']][0].tolist(), (2, (1,))) # view of subfield view/copy assert_equal(b[['f1', 'f2']][0].view(('i4', 2)).tolist(), (2, 3)) assert_equal(b[['f2', 'f1']][0].view(('i4', 2)).tolist(), (3, 2)) view_dtype = [('f1', 'i4'), ('f3', [('', 'i4')])] assert_equal(b[['f1', 'f3']][0].view(view_dtype).tolist(), (2, (1,))) # non-ascii unicode field indexing is well behaved if not is_py3: raise SkipTest('non ascii unicode field indexing skipped; ' 'raises segfault on python 2.x') else: assert_raises(ValueError, a.__setitem__, sixu('\u03e0'), 1) assert_raises(ValueError, a.__getitem__, sixu('\u03e0')) def test_field_names_deprecation(self): def collect_warnings(f, *args, **kwargs): with warnings.catch_warnings(record=True) as log: warnings.simplefilter("always") f(*args, **kwargs) return [w.category for w in log] a = np.zeros((1,), dtype=[('f1', 'i4'), ('f2', 'i4'), ('f3', [('sf1', 'i4')])]) a['f1'][0] = 1 a['f2'][0] = 2 a['f3'][0] = (3,) b = np.zeros((1,), dtype=[('f1', 'i4'), ('f2', 'i4'), ('f3', [('sf1', 'i4')])]) b['f1'][0] = 1 b['f2'][0] = 2 b['f3'][0] = (3,) # All the different functions raise a warning, but not an error, and # 'a' is not modified: assert_equal(collect_warnings(a[['f1', 'f2']].__setitem__, 0, (10, 20)), [FutureWarning]) assert_equal(a, b) # Views also warn subset = a[['f1', 'f2']] subset_view = subset.view() assert_equal(collect_warnings(subset_view['f1'].__setitem__, 0, 10), [FutureWarning]) # But the write goes through: assert_equal(subset['f1'][0], 10) # Only one warning per multiple field indexing, though (even if there # are multiple views involved): assert_equal(collect_warnings(subset['f1'].__setitem__, 0, 10), []) def test_record_hash(self): a = np.array([(1, 2), (1, 2)], dtype='i1,i2') a.flags.writeable = False b = np.array([(1, 2), (3, 4)], dtype=[('num1', 'i1'), ('num2', 'i2')]) b.flags.writeable = False c = np.array([(1, 2), (3, 4)], dtype='i1,i2') c.flags.writeable = False self.assertTrue(hash(a[0]) == hash(a[1])) self.assertTrue(hash(a[0]) == hash(b[0])) self.assertTrue(hash(a[0]) != hash(b[1])) self.assertTrue(hash(c[0]) == hash(a[0]) and c[0] == a[0]) def test_record_no_hash(self): a = np.array([(1, 2), (1, 2)], dtype='i1,i2') self.assertRaises(TypeError, hash, a[0]) def test_empty_structure_creation(self): # make sure these do not raise errors (gh-5631) np.array([()], dtype={'names': [], 'formats': [], 'offsets': [], 'itemsize': 12}) np.array([(), (), (), (), ()], dtype={'names': [], 'formats': [], 'offsets': [], 'itemsize': 12}) class TestView(TestCase): def test_basic(self): x = np.array([(1, 2, 3, 4), (5, 6, 7, 8)], dtype=[('r', np.int8), ('g', np.int8), ('b', np.int8), ('a', np.int8)]) # We must be specific about the endianness here: y = x.view(dtype='<i4') # ... and again without the keyword. z = x.view('<i4') assert_array_equal(y, z) assert_array_equal(y, [67305985, 134678021]) def _mean(a, **args): return a.mean(**args) def _var(a, **args): return a.var(**args) def _std(a, **args): return a.std(**args) class TestStats(TestCase): funcs = [_mean, _var, _std] def setUp(self): np.random.seed(range(3)) self.rmat = np.random.random((4, 5)) self.cmat = self.rmat + 1j * self.rmat self.omat = np.array([Decimal(repr(r)) for r in self.rmat.flat]) self.omat = self.omat.reshape(4, 5) def test_keepdims(self): mat = np.eye(3) for f in self.funcs: for axis in [0, 1]: res = f(mat, axis=axis, keepdims=True) assert_(res.ndim == mat.ndim) assert_(res.shape[axis] == 1) for axis in [None]: res = f(mat, axis=axis, keepdims=True) assert_(res.shape == (1, 1)) def test_out(self): mat = np.eye(3) for f in self.funcs: out = np.zeros(3) tgt = f(mat, axis=1) res = f(mat, axis=1, out=out) assert_almost_equal(res, out) assert_almost_equal(res, tgt) out = np.empty(2) assert_raises(ValueError, f, mat, axis=1, out=out) out = np.empty((2, 2)) assert_raises(ValueError, f, mat, axis=1, out=out) def test_dtype_from_input(self): icodes = np.typecodes['AllInteger'] fcodes = np.typecodes['AllFloat'] # object type for f in self.funcs: mat = np.array([[Decimal(1)]*3]*3) tgt = mat.dtype.type res = f(mat, axis=1).dtype.type assert_(res is tgt) # scalar case res = type(f(mat, axis=None)) assert_(res is Decimal) # integer types for f in self.funcs: for c in icodes: mat = np.eye(3, dtype=c) tgt = np.float64 res = f(mat, axis=1).dtype.type assert_(res is tgt) # scalar case res = f(mat, axis=None).dtype.type assert_(res is tgt) # mean for float types for f in [_mean]: for c in fcodes: mat = np.eye(3, dtype=c) tgt = mat.dtype.type res = f(mat, axis=1).dtype.type assert_(res is tgt) # scalar case res = f(mat, axis=None).dtype.type assert_(res is tgt) # var, std for float types for f in [_var, _std]: for c in fcodes: mat = np.eye(3, dtype=c) # deal with complex types tgt = mat.real.dtype.type res = f(mat, axis=1).dtype.type assert_(res is tgt) # scalar case res = f(mat, axis=None).dtype.type assert_(res is tgt) def test_dtype_from_dtype(self): mat = np.eye(3) # stats for integer types # FIXME: # this needs definition as there are lots places along the line # where type casting may take place. #for f in self.funcs: # for c in np.typecodes['AllInteger']: # tgt = np.dtype(c).type # res = f(mat, axis=1, dtype=c).dtype.type # assert_(res is tgt) # # scalar case # res = f(mat, axis=None, dtype=c).dtype.type # assert_(res is tgt) # stats for float types for f in self.funcs: for c in np.typecodes['AllFloat']: tgt = np.dtype(c).type res = f(mat, axis=1, dtype=c).dtype.type assert_(res is tgt) # scalar case res = f(mat, axis=None, dtype=c).dtype.type assert_(res is tgt) def test_ddof(self): for f in [_var]: for ddof in range(3): dim = self.rmat.shape[1] tgt = f(self.rmat, axis=1) * dim res = f(self.rmat, axis=1, ddof=ddof) * (dim - ddof) for f in [_std]: for ddof in range(3): dim = self.rmat.shape[1] tgt = f(self.rmat, axis=1) * np.sqrt(dim) res = f(self.rmat, axis=1, ddof=ddof) * np.sqrt(dim - ddof) assert_almost_equal(res, tgt) assert_almost_equal(res, tgt) def test_ddof_too_big(self): dim = self.rmat.shape[1] for f in [_var, _std]: for ddof in range(dim, dim + 2): with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') res = f(self.rmat, axis=1, ddof=ddof) assert_(not (res < 0).any()) assert_(len(w) > 0) assert_(issubclass(w[0].category, RuntimeWarning)) def test_empty(self): A = np.zeros((0, 3)) for f in self.funcs: for axis in [0, None]: with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') assert_(np.isnan(f(A, axis=axis)).all()) assert_(len(w) > 0) assert_(issubclass(w[0].category, RuntimeWarning)) for axis in [1]: with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') assert_equal(f(A, axis=axis), np.zeros([])) def test_mean_values(self): for mat in [self.rmat, self.cmat, self.omat]: for axis in [0, 1]: tgt = mat.sum(axis=axis) res = _mean(mat, axis=axis) * mat.shape[axis] assert_almost_equal(res, tgt) for axis in [None]: tgt = mat.sum(axis=axis) res = _mean(mat, axis=axis) * np.prod(mat.shape) assert_almost_equal(res, tgt) def test_var_values(self): for mat in [self.rmat, self.cmat, self.omat]: for axis in [0, 1, None]: msqr = _mean(mat * mat.conj(), axis=axis) mean = _mean(mat, axis=axis) tgt = msqr - mean * mean.conjugate() res = _var(mat, axis=axis) assert_almost_equal(res, tgt) def test_std_values(self): for mat in [self.rmat, self.cmat, self.omat]: for axis in [0, 1, None]: tgt = np.sqrt(_var(mat, axis=axis)) res = _std(mat, axis=axis) assert_almost_equal(res, tgt) def test_subclass(self): class TestArray(np.ndarray): def __new__(cls, data, info): result = np.array(data) result = result.view(cls) result.info = info return result def __array_finalize__(self, obj): self.info = getattr(obj, "info", '') dat = TestArray([[1, 2, 3, 4], [5, 6, 7, 8]], 'jubba') res = dat.mean(1) assert_(res.info == dat.info) res = dat.std(1) assert_(res.info == dat.info) res = dat.var(1) assert_(res.info == dat.info) class TestVdot(TestCase): def test_basic(self): dt_numeric = np.typecodes['AllFloat'] + np.typecodes['AllInteger'] dt_complex = np.typecodes['Complex'] # test real a = np.eye(3) for dt in dt_numeric + 'O': b = a.astype(dt) res = np.vdot(b, b) assert_(np.isscalar(res)) assert_equal(np.vdot(b, b), 3) # test complex a = np.eye(3) * 1j for dt in dt_complex + 'O': b = a.astype(dt) res = np.vdot(b, b) assert_(np.isscalar(res)) assert_equal(np.vdot(b, b), 3) # test boolean b = np.eye(3, dtype=np.bool) res = np.vdot(b, b) assert_(np.isscalar(res)) assert_equal(np.vdot(b, b), True) def test_vdot_array_order(self): a = np.array([[1, 2], [3, 4]], order='C') b = np.array([[1, 2], [3, 4]], order='F') res = np.vdot(a, a) # integer arrays are exact assert_equal(np.vdot(a, b), res) assert_equal(np.vdot(b, a), res) assert_equal(np.vdot(b, b), res) def test_vdot_uncontiguous(self): for size in [2, 1000]: # Different sizes match different branches in vdot. a = np.zeros((size, 2, 2)) b = np.zeros((size, 2, 2)) a[:, 0, 0] = np.arange(size) b[:, 0, 0] = np.arange(size) + 1 # Make a and b uncontiguous: a = a[..., 0] b = b[..., 0] assert_equal(np.vdot(a, b), np.vdot(a.flatten(), b.flatten())) assert_equal(np.vdot(a, b.copy()), np.vdot(a.flatten(), b.flatten())) assert_equal(np.vdot(a.copy(), b), np.vdot(a.flatten(), b.flatten())) assert_equal(np.vdot(a.copy('F'), b), np.vdot(a.flatten(), b.flatten())) assert_equal(np.vdot(a, b.copy('F')), np.vdot(a.flatten(), b.flatten())) class TestDot(TestCase): def setUp(self): np.random.seed(128) self.A = np.random.rand(4, 2) self.b1 = np.random.rand(2, 1) self.b2 = np.random.rand(2) self.b3 = np.random.rand(1, 2) self.b4 = np.random.rand(4) self.N = 7 def test_dotmatmat(self): A = self.A res = np.dot(A.transpose(), A) tgt = np.array([[1.45046013, 0.86323640], [0.86323640, 0.84934569]]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotmatvec(self): A, b1 = self.A, self.b1 res = np.dot(A, b1) tgt = np.array([[0.32114320], [0.04889721], [0.15696029], [0.33612621]]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotmatvec2(self): A, b2 = self.A, self.b2 res = np.dot(A, b2) tgt = np.array([0.29677940, 0.04518649, 0.14468333, 0.31039293]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotvecmat(self): A, b4 = self.A, self.b4 res = np.dot(b4, A) tgt = np.array([1.23495091, 1.12222648]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotvecmat2(self): b3, A = self.b3, self.A res = np.dot(b3, A.transpose()) tgt = np.array([[0.58793804, 0.08957460, 0.30605758, 0.62716383]]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotvecmat3(self): A, b4 = self.A, self.b4 res = np.dot(A.transpose(), b4) tgt = np.array([1.23495091, 1.12222648]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotvecvecouter(self): b1, b3 = self.b1, self.b3 res = np.dot(b1, b3) tgt = np.array([[0.20128610, 0.08400440], [0.07190947, 0.03001058]]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotvecvecinner(self): b1, b3 = self.b1, self.b3 res = np.dot(b3, b1) tgt = np.array([[ 0.23129668]]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotcolumnvect1(self): b1 = np.ones((3, 1)) b2 = [5.3] res = np.dot(b1, b2) tgt = np.array([5.3, 5.3, 5.3]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotcolumnvect2(self): b1 = np.ones((3, 1)).transpose() b2 = [6.2] res = np.dot(b2, b1) tgt = np.array([6.2, 6.2, 6.2]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotvecscalar(self): np.random.seed(100) b1 = np.random.rand(1, 1) b2 = np.random.rand(1, 4) res = np.dot(b1, b2) tgt = np.array([[0.15126730, 0.23068496, 0.45905553, 0.00256425]]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotvecscalar2(self): np.random.seed(100) b1 = np.random.rand(4, 1) b2 = np.random.rand(1, 1) res = np.dot(b1, b2) tgt = np.array([[0.00256425],[0.00131359],[0.00200324],[ 0.00398638]]) assert_almost_equal(res, tgt, decimal=self.N) def test_all(self): dims = [(), (1,), (1, 1)] dout = [(), (1,), (1, 1), (1,), (), (1,), (1, 1), (1,), (1, 1)] for dim, (dim1, dim2) in zip(dout, itertools.product(dims, dims)): b1 = np.zeros(dim1) b2 = np.zeros(dim2) res = np.dot(b1, b2) tgt = np.zeros(dim) assert_(res.shape == tgt.shape) assert_almost_equal(res, tgt, decimal=self.N) def test_vecobject(self): class Vec(object): def __init__(self, sequence=None): if sequence is None: sequence = [] self.array = np.array(sequence) def __add__(self, other): out = Vec() out.array = self.array + other.array return out def __sub__(self, other): out = Vec() out.array = self.array - other.array return out def __mul__(self, other): # with scalar out = Vec(self.array.copy()) out.array *= other return out def __rmul__(self, other): return self*other U_non_cont = np.transpose([[1., 1.], [1., 2.]]) U_cont = np.ascontiguousarray(U_non_cont) x = np.array([Vec([1., 0.]), Vec([0., 1.])]) zeros = np.array([Vec([0., 0.]), Vec([0., 0.])]) zeros_test = np.dot(U_cont, x) - np.dot(U_non_cont, x) assert_equal(zeros[0].array, zeros_test[0].array) assert_equal(zeros[1].array, zeros_test[1].array) def test_dot_2args(self): from numpy.core.multiarray import dot a = np.array([[1, 2], [3, 4]], dtype=float) b = np.array([[1, 0], [1, 1]], dtype=float) c = np.array([[3, 2], [7, 4]], dtype=float) d = dot(a, b) assert_allclose(c, d) def test_dot_3args(self): from numpy.core.multiarray import dot np.random.seed(22) f = np.random.random_sample((1024, 16)) v = np.random.random_sample((16, 32)) r = np.empty((1024, 32)) for i in range(12): dot(f, v, r) assert_equal(sys.getrefcount(r), 2) r2 = dot(f, v, out=None) assert_array_equal(r2, r) assert_(r is dot(f, v, out=r)) v = v[:, 0].copy() # v.shape == (16,) r = r[:, 0].copy() # r.shape == (1024,) r2 = dot(f, v) assert_(r is dot(f, v, r)) assert_array_equal(r2, r) def test_dot_3args_errors(self): from numpy.core.multiarray import dot np.random.seed(22) f = np.random.random_sample((1024, 16)) v = np.random.random_sample((16, 32)) r = np.empty((1024, 31)) assert_raises(ValueError, dot, f, v, r) r = np.empty((1024,)) assert_raises(ValueError, dot, f, v, r) r = np.empty((32,)) assert_raises(ValueError, dot, f, v, r) r = np.empty((32, 1024)) assert_raises(ValueError, dot, f, v, r) assert_raises(ValueError, dot, f, v, r.T) r = np.empty((1024, 64)) assert_raises(ValueError, dot, f, v, r[:, ::2]) assert_raises(ValueError, dot, f, v, r[:, :32]) r = np.empty((1024, 32), dtype=np.float32) assert_raises(ValueError, dot, f, v, r) r = np.empty((1024, 32), dtype=int) assert_raises(ValueError, dot, f, v, r) def test_dot_array_order(self): a = np.array([[1, 2], [3, 4]], order='C') b = np.array([[1, 2], [3, 4]], order='F') res = np.dot(a, a) # integer arrays are exact assert_equal(np.dot(a, b), res) assert_equal(np.dot(b, a), res) assert_equal(np.dot(b, b), res) def test_dot_scalar_and_matrix_of_objects(self): # Ticket #2469 arr = np.matrix([1, 2], dtype=object) desired = np.matrix([[3, 6]], dtype=object) assert_equal(np.dot(arr, 3), desired) assert_equal(np.dot(3, arr), desired) def test_dot_override(self): # Temporarily disable __numpy_ufunc__ for 1.10; see gh-5844 return class A(object): def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs): return "A" class B(object): def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs): return NotImplemented a = A() b = B() c = np.array([[1]]) assert_equal(np.dot(a, b), "A") assert_equal(c.dot(a), "A") assert_raises(TypeError, np.dot, b, c) assert_raises(TypeError, c.dot, b) def test_accelerate_framework_sgemv_fix(self): def aligned_array(shape, align, dtype, order='C'): d = dtype(0) N = np.prod(shape) tmp = np.zeros(N * d.nbytes + align, dtype=np.uint8) address = tmp.__array_interface__["data"][0] for offset in range(align): if (address + offset) % align == 0: break tmp = tmp[offset:offset+N*d.nbytes].view(dtype=dtype) return tmp.reshape(shape, order=order) def as_aligned(arr, align, dtype, order='C'): aligned = aligned_array(arr.shape, align, dtype, order) aligned[:] = arr[:] return aligned def assert_dot_close(A, X, desired): assert_allclose(np.dot(A, X), desired, rtol=1e-5, atol=1e-7) m = aligned_array(100, 15, np.float32) s = aligned_array((100, 100), 15, np.float32) np.dot(s, m) # this will always segfault if the bug is present testdata = itertools.product((15,32), (10000,), (200,89), ('C','F')) for align, m, n, a_order in testdata: # Calculation in double precision A_d = np.random.rand(m, n) X_d = np.random.rand(n) desired = np.dot(A_d, X_d) # Calculation with aligned single precision A_f = as_aligned(A_d, align, np.float32, order=a_order) X_f = as_aligned(X_d, align, np.float32) assert_dot_close(A_f, X_f, desired) # Strided A rows A_d_2 = A_d[::2] desired = np.dot(A_d_2, X_d) A_f_2 = A_f[::2] assert_dot_close(A_f_2, X_f, desired) # Strided A columns, strided X vector A_d_22 = A_d_2[:, ::2] X_d_2 = X_d[::2] desired = np.dot(A_d_22, X_d_2) A_f_22 = A_f_2[:, ::2] X_f_2 = X_f[::2] assert_dot_close(A_f_22, X_f_2, desired) # Check the strides are as expected if a_order == 'F': assert_equal(A_f_22.strides, (8, 8 * m)) else: assert_equal(A_f_22.strides, (8 * n, 8)) assert_equal(X_f_2.strides, (8,)) # Strides in A rows + cols only X_f_2c = as_aligned(X_f_2, align, np.float32) assert_dot_close(A_f_22, X_f_2c, desired) # Strides just in A cols A_d_12 = A_d[:, ::2] desired = np.dot(A_d_12, X_d_2) A_f_12 = A_f[:, ::2] assert_dot_close(A_f_12, X_f_2c, desired) # Strides in A cols and X assert_dot_close(A_f_12, X_f_2, desired) class MatmulCommon(): """Common tests for '@' operator and numpy.matmul. Do not derive from TestCase to avoid nose running it. """ # Should work with these types. Will want to add # "O" at some point types = "?bhilqBHILQefdgFDG" def test_exceptions(self): dims = [ ((1,), (2,)), # mismatched vector vector ((2, 1,), (2,)), # mismatched matrix vector ((2,), (1, 2)), # mismatched vector matrix ((1, 2), (3, 1)), # mismatched matrix matrix ((1,), ()), # vector scalar ((), (1)), # scalar vector ((1, 1), ()), # matrix scalar ((), (1, 1)), # scalar matrix ((2, 2, 1), (3, 1, 2)), # cannot broadcast ] for dt, (dm1, dm2) in itertools.product(self.types, dims): a = np.ones(dm1, dtype=dt) b = np.ones(dm2, dtype=dt) assert_raises(ValueError, self.matmul, a, b) def test_shapes(self): dims = [ ((1, 1), (2, 1, 1)), # broadcast first argument ((2, 1, 1), (1, 1)), # broadcast second argument ((2, 1, 1), (2, 1, 1)), # matrix stack sizes match ] for dt, (dm1, dm2) in itertools.product(self.types, dims): a = np.ones(dm1, dtype=dt) b = np.ones(dm2, dtype=dt) res = self.matmul(a, b) assert_(res.shape == (2, 1, 1)) # vector vector returns scalars. for dt in self.types: a = np.ones((2,), dtype=dt) b = np.ones((2,), dtype=dt) c = self.matmul(a, b) assert_(np.array(c).shape == ()) def test_result_types(self): mat = np.ones((1,1)) vec = np.ones((1,)) for dt in self.types: m = mat.astype(dt) v = vec.astype(dt) for arg in [(m, v), (v, m), (m, m)]: res = self.matmul(*arg) assert_(res.dtype == dt) # vector vector returns scalars res = self.matmul(v, v) assert_(type(res) is np.dtype(dt).type) def test_vector_vector_values(self): vec = np.array([1, 2]) tgt = 5 for dt in self.types[1:]: v1 = vec.astype(dt) res = self.matmul(v1, v1) assert_equal(res, tgt) # boolean type vec = np.array([True, True], dtype='?') res = self.matmul(vec, vec) assert_equal(res, True) def test_vector_matrix_values(self): vec = np.array([1, 2]) mat1 = np.array([[1, 2], [3, 4]]) mat2 = np.stack([mat1]*2, axis=0) tgt1 = np.array([7, 10]) tgt2 = np.stack([tgt1]*2, axis=0) for dt in self.types[1:]: v = vec.astype(dt) m1 = mat1.astype(dt) m2 = mat2.astype(dt) res = self.matmul(v, m1) assert_equal(res, tgt1) res = self.matmul(v, m2) assert_equal(res, tgt2) # boolean type vec = np.array([True, False]) mat1 = np.array([[True, False], [False, True]]) mat2 = np.stack([mat1]*2, axis=0) tgt1 = np.array([True, False]) tgt2 = np.stack([tgt1]*2, axis=0) res = self.matmul(vec, mat1) assert_equal(res, tgt1) res = self.matmul(vec, mat2) assert_equal(res, tgt2) def test_matrix_vector_values(self): vec = np.array([1, 2]) mat1 = np.array([[1, 2], [3, 4]]) mat2 = np.stack([mat1]*2, axis=0) tgt1 = np.array([5, 11]) tgt2 = np.stack([tgt1]*2, axis=0) for dt in self.types[1:]: v = vec.astype(dt) m1 = mat1.astype(dt) m2 = mat2.astype(dt) res = self.matmul(m1, v) assert_equal(res, tgt1) res = self.matmul(m2, v) assert_equal(res, tgt2) # boolean type vec = np.array([True, False]) mat1 = np.array([[True, False], [False, True]]) mat2 = np.stack([mat1]*2, axis=0) tgt1 = np.array([True, False]) tgt2 = np.stack([tgt1]*2, axis=0) res = self.matmul(vec, mat1) assert_equal(res, tgt1) res = self.matmul(vec, mat2) assert_equal(res, tgt2) def test_matrix_matrix_values(self): mat1 = np.array([[1, 2], [3, 4]]) mat2 = np.array([[1, 0], [1, 1]]) mat12 = np.stack([mat1, mat2], axis=0) mat21 = np.stack([mat2, mat1], axis=0) tgt11 = np.array([[7, 10], [15, 22]]) tgt12 = np.array([[3, 2], [7, 4]]) tgt21 = np.array([[1, 2], [4, 6]]) tgt12_21 = np.stack([tgt12, tgt21], axis=0) tgt11_12 = np.stack((tgt11, tgt12), axis=0) tgt11_21 = np.stack((tgt11, tgt21), axis=0) for dt in self.types[1:]: m1 = mat1.astype(dt) m2 = mat2.astype(dt) m12 = mat12.astype(dt) m21 = mat21.astype(dt) # matrix @ matrix res = self.matmul(m1, m2) assert_equal(res, tgt12) res = self.matmul(m2, m1) assert_equal(res, tgt21) # stacked @ matrix res = self.matmul(m12, m1) assert_equal(res, tgt11_21) # matrix @ stacked res = self.matmul(m1, m12) assert_equal(res, tgt11_12) # stacked @ stacked res = self.matmul(m12, m21) assert_equal(res, tgt12_21) # boolean type m1 = np.array([[1, 1], [0, 0]], dtype=np.bool_) m2 = np.array([[1, 0], [1, 1]], dtype=np.bool_) m12 = np.stack([m1, m2], axis=0) m21 = np.stack([m2, m1], axis=0) tgt11 = m1 tgt12 = m1 tgt21 = np.array([[1, 1], [1, 1]], dtype=np.bool_) tgt12_21 = np.stack([tgt12, tgt21], axis=0) tgt11_12 = np.stack((tgt11, tgt12), axis=0) tgt11_21 = np.stack((tgt11, tgt21), axis=0) # matrix @ matrix res = self.matmul(m1, m2) assert_equal(res, tgt12) res = self.matmul(m2, m1) assert_equal(res, tgt21) # stacked @ matrix res = self.matmul(m12, m1) assert_equal(res, tgt11_21) # matrix @ stacked res = self.matmul(m1, m12) assert_equal(res, tgt11_12) # stacked @ stacked res = self.matmul(m12, m21) assert_equal(res, tgt12_21) def test_numpy_ufunc_override(self): # Temporarily disable __numpy_ufunc__ for 1.10; see gh-5844 return class A(np.ndarray): def __new__(cls, *args, **kwargs): return np.array(*args, **kwargs).view(cls) def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs): return "A" class B(np.ndarray): def __new__(cls, *args, **kwargs): return np.array(*args, **kwargs).view(cls) def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs): return NotImplemented a = A([1, 2]) b = B([1, 2]) c = np.ones(2) assert_equal(self.matmul(a, b), "A") assert_equal(self.matmul(b, a), "A") assert_raises(TypeError, self.matmul, b, c) class TestMatmul(MatmulCommon, TestCase): matmul = np.matmul def test_out_arg(self): a = np.ones((2, 2), dtype=np.float) b = np.ones((2, 2), dtype=np.float) tgt = np.full((2,2), 2, dtype=np.float) # test as positional argument msg = "out positional argument" out = np.zeros((2, 2), dtype=np.float) self.matmul(a, b, out) assert_array_equal(out, tgt, err_msg=msg) # test as keyword argument msg = "out keyword argument" out = np.zeros((2, 2), dtype=np.float) self.matmul(a, b, out=out) assert_array_equal(out, tgt, err_msg=msg) # test out with not allowed type cast (safe casting) # einsum and cblas raise different error types, so # use Exception. msg = "out argument with illegal cast" out = np.zeros((2, 2), dtype=np.int32) assert_raises(Exception, self.matmul, a, b, out=out) # skip following tests for now, cblas does not allow non-contiguous # outputs and consistency with dot would require same type, # dimensions, subtype, and c_contiguous. # test out with allowed type cast # msg = "out argument with allowed cast" # out = np.zeros((2, 2), dtype=np.complex128) # self.matmul(a, b, out=out) # assert_array_equal(out, tgt, err_msg=msg) # test out non-contiguous # msg = "out argument with non-contiguous layout" # c = np.zeros((2, 2, 2), dtype=np.float) # self.matmul(a, b, out=c[..., 0]) # assert_array_equal(c, tgt, err_msg=msg) if sys.version_info[:2] >= (3, 5): class TestMatmulOperator(MatmulCommon, TestCase): import operator matmul = operator.matmul def test_array_priority_override(self): class A(object): __array_priority__ = 1000 def __matmul__(self, other): return "A" def __rmatmul__(self, other): return "A" a = A() b = np.ones(2) assert_equal(self.matmul(a, b), "A") assert_equal(self.matmul(b, a), "A") def test_matmul_inplace(): # It would be nice to support in-place matmul eventually, but for now # we don't have a working implementation, so better just to error out # and nudge people to writing "a = a @ b". a = np.eye(3) b = np.eye(3) assert_raises(TypeError, a.__imatmul__, b) import operator assert_raises(TypeError, operator.imatmul, a, b) # we avoid writing the token `exec` so as not to crash python 2's # parser exec_ = getattr(builtins, "exec") assert_raises(TypeError, exec_, "a @= b", globals(), locals()) class TestInner(TestCase): def test_inner_scalar_and_matrix_of_objects(self): # Ticket #4482 arr = np.matrix([1, 2], dtype=object) desired = np.matrix([[3, 6]], dtype=object) assert_equal(np.inner(arr, 3), desired) assert_equal(np.inner(3, arr), desired) def test_vecself(self): # Ticket 844. # Inner product of a vector with itself segfaults or give # meaningless result a = np.zeros(shape=(1, 80), dtype=np.float64) p = np.inner(a, a) assert_almost_equal(p, 0, decimal=14) def test_inner_product_with_various_contiguities(self): # github issue 6532 for dt in np.typecodes['AllInteger'] + np.typecodes['AllFloat'] + '?': # check an inner product involving a matrix transpose A = np.array([[1, 2], [3, 4]], dtype=dt) B = np.array([[1, 3], [2, 4]], dtype=dt) C = np.array([1, 1], dtype=dt) desired = np.array([4, 6], dtype=dt) assert_equal(np.inner(A.T, C), desired) assert_equal(np.inner(B, C), desired) # check an inner product involving an aliased and reversed view a = np.arange(5).astype(dt) b = a[::-1] desired = np.array(10, dtype=dt).item() assert_equal(np.inner(b, a), desired) class TestSummarization(TestCase): def test_1d(self): A = np.arange(1001) strA = '[ 0 1 2 ..., 998 999 1000]' assert_(str(A) == strA) reprA = 'array([ 0, 1, 2, ..., 998, 999, 1000])' assert_(repr(A) == reprA) def test_2d(self): A = np.arange(1002).reshape(2, 501) strA = '[[ 0 1 2 ..., 498 499 500]\n' \ ' [ 501 502 503 ..., 999 1000 1001]]' assert_(str(A) == strA) reprA = 'array([[ 0, 1, 2, ..., 498, 499, 500],\n' \ ' [ 501, 502, 503, ..., 999, 1000, 1001]])' assert_(repr(A) == reprA) class TestChoose(TestCase): def setUp(self): self.x = 2*np.ones((3,), dtype=int) self.y = 3*np.ones((3,), dtype=int) self.x2 = 2*np.ones((2, 3), dtype=int) self.y2 = 3*np.ones((2, 3), dtype=int) self.ind = [0, 0, 1] def test_basic(self): A = np.choose(self.ind, (self.x, self.y)) assert_equal(A, [2, 2, 3]) def test_broadcast1(self): A = np.choose(self.ind, (self.x2, self.y2)) assert_equal(A, [[2, 2, 3], [2, 2, 3]]) def test_broadcast2(self): A = np.choose(self.ind, (self.x, self.y2)) assert_equal(A, [[2, 2, 3], [2, 2, 3]]) # TODO: test for multidimensional NEIGH_MODE = {'zero': 0, 'one': 1, 'constant': 2, 'circular': 3, 'mirror': 4} class TestNeighborhoodIter(TestCase): # Simple, 2d tests def _test_simple2d(self, dt): # Test zero and one padding for simple data type x = np.array([[0, 1], [2, 3]], dtype=dt) r = [np.array([[0, 0, 0], [0, 0, 1]], dtype=dt), np.array([[0, 0, 0], [0, 1, 0]], dtype=dt), np.array([[0, 0, 1], [0, 2, 3]], dtype=dt), np.array([[0, 1, 0], [2, 3, 0]], dtype=dt)] l = test_neighborhood_iterator(x, [-1, 0, -1, 1], x[0], NEIGH_MODE['zero']) assert_array_equal(l, r) r = [np.array([[1, 1, 1], [1, 0, 1]], dtype=dt), np.array([[1, 1, 1], [0, 1, 1]], dtype=dt), np.array([[1, 0, 1], [1, 2, 3]], dtype=dt), np.array([[0, 1, 1], [2, 3, 1]], dtype=dt)] l = test_neighborhood_iterator(x, [-1, 0, -1, 1], x[0], NEIGH_MODE['one']) assert_array_equal(l, r) r = [np.array([[4, 4, 4], [4, 0, 1]], dtype=dt), np.array([[4, 4, 4], [0, 1, 4]], dtype=dt), np.array([[4, 0, 1], [4, 2, 3]], dtype=dt), np.array([[0, 1, 4], [2, 3, 4]], dtype=dt)] l = test_neighborhood_iterator(x, [-1, 0, -1, 1], 4, NEIGH_MODE['constant']) assert_array_equal(l, r) def test_simple2d(self): self._test_simple2d(np.float) def test_simple2d_object(self): self._test_simple2d(Decimal) def _test_mirror2d(self, dt): x = np.array([[0, 1], [2, 3]], dtype=dt) r = [np.array([[0, 0, 1], [0, 0, 1]], dtype=dt), np.array([[0, 1, 1], [0, 1, 1]], dtype=dt), np.array([[0, 0, 1], [2, 2, 3]], dtype=dt), np.array([[0, 1, 1], [2, 3, 3]], dtype=dt)] l = test_neighborhood_iterator(x, [-1, 0, -1, 1], x[0], NEIGH_MODE['mirror']) assert_array_equal(l, r) def test_mirror2d(self): self._test_mirror2d(np.float) def test_mirror2d_object(self): self._test_mirror2d(Decimal) # Simple, 1d tests def _test_simple(self, dt): # Test padding with constant values x = np.linspace(1, 5, 5).astype(dt) r = [[0, 1, 2], [1, 2, 3], [2, 3, 4], [3, 4, 5], [4, 5, 0]] l = test_neighborhood_iterator(x, [-1, 1], x[0], NEIGH_MODE['zero']) assert_array_equal(l, r) r = [[1, 1, 2], [1, 2, 3], [2, 3, 4], [3, 4, 5], [4, 5, 1]] l = test_neighborhood_iterator(x, [-1, 1], x[0], NEIGH_MODE['one']) assert_array_equal(l, r) r = [[x[4], 1, 2], [1, 2, 3], [2, 3, 4], [3, 4, 5], [4, 5, x[4]]] l = test_neighborhood_iterator(x, [-1, 1], x[4], NEIGH_MODE['constant']) assert_array_equal(l, r) def test_simple_float(self): self._test_simple(np.float) def test_simple_object(self): self._test_simple(Decimal) # Test mirror modes def _test_mirror(self, dt): x = np.linspace(1, 5, 5).astype(dt) r = np.array([[2, 1, 1, 2, 3], [1, 1, 2, 3, 4], [1, 2, 3, 4, 5], [2, 3, 4, 5, 5], [3, 4, 5, 5, 4]], dtype=dt) l = test_neighborhood_iterator(x, [-2, 2], x[1], NEIGH_MODE['mirror']) self.assertTrue([i.dtype == dt for i in l]) assert_array_equal(l, r) def test_mirror(self): self._test_mirror(np.float) def test_mirror_object(self): self._test_mirror(Decimal) # Circular mode def _test_circular(self, dt): x = np.linspace(1, 5, 5).astype(dt) r = np.array([[4, 5, 1, 2, 3], [5, 1, 2, 3, 4], [1, 2, 3, 4, 5], [2, 3, 4, 5, 1], [3, 4, 5, 1, 2]], dtype=dt) l = test_neighborhood_iterator(x, [-2, 2], x[0], NEIGH_MODE['circular']) assert_array_equal(l, r) def test_circular(self): self._test_circular(np.float) def test_circular_object(self): self._test_circular(Decimal) # Test stacking neighborhood iterators class TestStackedNeighborhoodIter(TestCase): # Simple, 1d test: stacking 2 constant-padded neigh iterators def test_simple_const(self): dt = np.float64 # Test zero and one padding for simple data type x = np.array([1, 2, 3], dtype=dt) r = [np.array([0], dtype=dt), np.array([0], dtype=dt), np.array([1], dtype=dt), np.array([2], dtype=dt), np.array([3], dtype=dt), np.array([0], dtype=dt), np.array([0], dtype=dt)] l = test_neighborhood_iterator_oob(x, [-2, 4], NEIGH_MODE['zero'], [0, 0], NEIGH_MODE['zero']) assert_array_equal(l, r) r = [np.array([1, 0, 1], dtype=dt), np.array([0, 1, 2], dtype=dt), np.array([1, 2, 3], dtype=dt), np.array([2, 3, 0], dtype=dt), np.array([3, 0, 1], dtype=dt)] l = test_neighborhood_iterator_oob(x, [-1, 3], NEIGH_MODE['zero'], [-1, 1], NEIGH_MODE['one']) assert_array_equal(l, r) # 2nd simple, 1d test: stacking 2 neigh iterators, mixing const padding and # mirror padding def test_simple_mirror(self): dt = np.float64 # Stacking zero on top of mirror x = np.array([1, 2, 3], dtype=dt) r = [np.array([0, 1, 1], dtype=dt), np.array([1, 1, 2], dtype=dt), np.array([1, 2, 3], dtype=dt), np.array([2, 3, 3], dtype=dt), np.array([3, 3, 0], dtype=dt)] l = test_neighborhood_iterator_oob(x, [-1, 3], NEIGH_MODE['mirror'], [-1, 1], NEIGH_MODE['zero']) assert_array_equal(l, r) # Stacking mirror on top of zero x = np.array([1, 2, 3], dtype=dt) r = [np.array([1, 0, 0], dtype=dt), np.array([0, 0, 1], dtype=dt), np.array([0, 1, 2], dtype=dt), np.array([1, 2, 3], dtype=dt), np.array([2, 3, 0], dtype=dt)] l = test_neighborhood_iterator_oob(x, [-1, 3], NEIGH_MODE['zero'], [-2, 0], NEIGH_MODE['mirror']) assert_array_equal(l, r) # Stacking mirror on top of zero: 2nd x = np.array([1, 2, 3], dtype=dt) r = [np.array([0, 1, 2], dtype=dt), np.array([1, 2, 3], dtype=dt), np.array([2, 3, 0], dtype=dt), np.array([3, 0, 0], dtype=dt), np.array([0, 0, 3], dtype=dt)] l = test_neighborhood_iterator_oob(x, [-1, 3], NEIGH_MODE['zero'], [0, 2], NEIGH_MODE['mirror']) assert_array_equal(l, r) # Stacking mirror on top of zero: 3rd x = np.array([1, 2, 3], dtype=dt) r = [np.array([1, 0, 0, 1, 2], dtype=dt), np.array([0, 0, 1, 2, 3], dtype=dt), np.array([0, 1, 2, 3, 0], dtype=dt), np.array([1, 2, 3, 0, 0], dtype=dt), np.array([2, 3, 0, 0, 3], dtype=dt)] l = test_neighborhood_iterator_oob(x, [-1, 3], NEIGH_MODE['zero'], [-2, 2], NEIGH_MODE['mirror']) assert_array_equal(l, r) # 3rd simple, 1d test: stacking 2 neigh iterators, mixing const padding and # circular padding def test_simple_circular(self): dt = np.float64 # Stacking zero on top of mirror x = np.array([1, 2, 3], dtype=dt) r = [np.array([0, 3, 1], dtype=dt), np.array([3, 1, 2], dtype=dt), np.array([1, 2, 3], dtype=dt), np.array([2, 3, 1], dtype=dt), np.array([3, 1, 0], dtype=dt)] l = test_neighborhood_iterator_oob(x, [-1, 3], NEIGH_MODE['circular'], [-1, 1], NEIGH_MODE['zero']) assert_array_equal(l, r) # Stacking mirror on top of zero x = np.array([1, 2, 3], dtype=dt) r = [np.array([3, 0, 0], dtype=dt), np.array([0, 0, 1], dtype=dt), np.array([0, 1, 2], dtype=dt), np.array([1, 2, 3], dtype=dt), np.array([2, 3, 0], dtype=dt)] l = test_neighborhood_iterator_oob(x, [-1, 3], NEIGH_MODE['zero'], [-2, 0], NEIGH_MODE['circular']) assert_array_equal(l, r) # Stacking mirror on top of zero: 2nd x = np.array([1, 2, 3], dtype=dt) r = [np.array([0, 1, 2], dtype=dt), np.array([1, 2, 3], dtype=dt), np.array([2, 3, 0], dtype=dt), np.array([3, 0, 0], dtype=dt), np.array([0, 0, 1], dtype=dt)] l = test_neighborhood_iterator_oob(x, [-1, 3], NEIGH_MODE['zero'], [0, 2], NEIGH_MODE['circular']) assert_array_equal(l, r) # Stacking mirror on top of zero: 3rd x = np.array([1, 2, 3], dtype=dt) r = [np.array([3, 0, 0, 1, 2], dtype=dt), np.array([0, 0, 1, 2, 3], dtype=dt), np.array([0, 1, 2, 3, 0], dtype=dt), np.array([1, 2, 3, 0, 0], dtype=dt), np.array([2, 3, 0, 0, 1], dtype=dt)] l = test_neighborhood_iterator_oob(x, [-1, 3], NEIGH_MODE['zero'], [-2, 2], NEIGH_MODE['circular']) assert_array_equal(l, r) # 4th simple, 1d test: stacking 2 neigh iterators, but with lower iterator # being strictly within the array def test_simple_strict_within(self): dt = np.float64 # Stacking zero on top of zero, first neighborhood strictly inside the # array x = np.array([1, 2, 3], dtype=dt) r = [np.array([1, 2, 3, 0], dtype=dt)] l = test_neighborhood_iterator_oob(x, [1, 1], NEIGH_MODE['zero'], [-1, 2], NEIGH_MODE['zero']) assert_array_equal(l, r) # Stacking mirror on top of zero, first neighborhood strictly inside the # array x = np.array([1, 2, 3], dtype=dt) r = [np.array([1, 2, 3, 3], dtype=dt)] l = test_neighborhood_iterator_oob(x, [1, 1], NEIGH_MODE['zero'], [-1, 2], NEIGH_MODE['mirror']) assert_array_equal(l, r) # Stacking mirror on top of zero, first neighborhood strictly inside the # array x = np.array([1, 2, 3], dtype=dt) r = [np.array([1, 2, 3, 1], dtype=dt)] l = test_neighborhood_iterator_oob(x, [1, 1], NEIGH_MODE['zero'], [-1, 2], NEIGH_MODE['circular']) assert_array_equal(l, r) class TestWarnings(object): def test_complex_warning(self): x = np.array([1, 2]) y = np.array([1-2j, 1+2j]) with warnings.catch_warnings(): warnings.simplefilter("error", np.ComplexWarning) assert_raises(np.ComplexWarning, x.__setitem__, slice(None), y) assert_equal(x, [1, 2]) class TestMinScalarType(object): def test_usigned_shortshort(self): dt = np.min_scalar_type(2**8-1) wanted = np.dtype('uint8') assert_equal(wanted, dt) def test_usigned_short(self): dt = np.min_scalar_type(2**16-1) wanted = np.dtype('uint16') assert_equal(wanted, dt) def test_usigned_int(self): dt = np.min_scalar_type(2**32-1) wanted = np.dtype('uint32') assert_equal(wanted, dt) def test_usigned_longlong(self): dt = np.min_scalar_type(2**63-1) wanted = np.dtype('uint64') assert_equal(wanted, dt) def test_object(self): dt = np.min_scalar_type(2**64) wanted = np.dtype('O') assert_equal(wanted, dt) if sys.version_info[:2] == (2, 6): from numpy.core.multiarray import memorysimpleview as memoryview from numpy.core._internal import _dtype_from_pep3118 class TestPEP3118Dtype(object): def _check(self, spec, wanted): dt = np.dtype(wanted) if isinstance(wanted, list) and isinstance(wanted[-1], tuple): if wanted[-1][0] == '': names = list(dt.names) names[-1] = '' dt.names = tuple(names) assert_equal(_dtype_from_pep3118(spec), dt, err_msg="spec %r != dtype %r" % (spec, wanted)) def test_native_padding(self): align = np.dtype('i').alignment for j in range(8): if j == 0: s = 'bi' else: s = 'b%dxi' % j self._check('@'+s, {'f0': ('i1', 0), 'f1': ('i', align*(1 + j//align))}) self._check('='+s, {'f0': ('i1', 0), 'f1': ('i', 1+j)}) def test_native_padding_2(self): # Native padding should work also for structs and sub-arrays self._check('x3T{xi}', {'f0': (({'f0': ('i', 4)}, (3,)), 4)}) self._check('^x3T{xi}', {'f0': (({'f0': ('i', 1)}, (3,)), 1)}) def test_trailing_padding(self): # Trailing padding should be included, *and*, the item size # should match the alignment if in aligned mode align = np.dtype('i').alignment def VV(n): return 'V%d' % (align*(1 + (n-1)//align)) self._check('ix', [('f0', 'i'), ('', VV(1))]) self._check('ixx', [('f0', 'i'), ('', VV(2))]) self._check('ixxx', [('f0', 'i'), ('', VV(3))]) self._check('ixxxx', [('f0', 'i'), ('', VV(4))]) self._check('i7x', [('f0', 'i'), ('', VV(7))]) self._check('^ix', [('f0', 'i'), ('', 'V1')]) self._check('^ixx', [('f0', 'i'), ('', 'V2')]) self._check('^ixxx', [('f0', 'i'), ('', 'V3')]) self._check('^ixxxx', [('f0', 'i'), ('', 'V4')]) self._check('^i7x', [('f0', 'i'), ('', 'V7')]) def test_native_padding_3(self): dt = np.dtype( [('a', 'b'), ('b', 'i'), ('sub', np.dtype('b,i')), ('c', 'i')], align=True) self._check("T{b:a:xxxi:b:T{b:f0:=i:f1:}:sub:xxxi:c:}", dt) dt = np.dtype( [('a', 'b'), ('b', 'i'), ('c', 'b'), ('d', 'b'), ('e', 'b'), ('sub', np.dtype('b,i', align=True))]) self._check("T{b:a:=i:b:b:c:b:d:b:e:T{b:f0:xxxi:f1:}:sub:}", dt) def test_padding_with_array_inside_struct(self): dt = np.dtype( [('a', 'b'), ('b', 'i'), ('c', 'b', (3,)), ('d', 'i')], align=True) self._check("T{b:a:xxxi:b:3b:c:xi:d:}", dt) def test_byteorder_inside_struct(self): # The byte order after @T{=i} should be '=', not '@'. # Check this by noting the absence of native alignment. self._check('@T{^i}xi', {'f0': ({'f0': ('i', 0)}, 0), 'f1': ('i', 5)}) def test_intra_padding(self): # Natively aligned sub-arrays may require some internal padding align = np.dtype('i').alignment def VV(n): return 'V%d' % (align*(1 + (n-1)//align)) self._check('(3)T{ix}', ({'f0': ('i', 0), '': (VV(1), 4)}, (3,))) class TestNewBufferProtocol(object): def _check_roundtrip(self, obj): obj = np.asarray(obj) x = memoryview(obj) y = np.asarray(x) y2 = np.array(x) assert_(not y.flags.owndata) assert_(y2.flags.owndata) assert_equal(y.dtype, obj.dtype) assert_equal(y.shape, obj.shape) assert_array_equal(obj, y) assert_equal(y2.dtype, obj.dtype) assert_equal(y2.shape, obj.shape) assert_array_equal(obj, y2) def test_roundtrip(self): x = np.array([1, 2, 3, 4, 5], dtype='i4') self._check_roundtrip(x) x = np.array([[1, 2], [3, 4]], dtype=np.float64) self._check_roundtrip(x) x = np.zeros((3, 3, 3), dtype=np.float32)[:, 0,:] self._check_roundtrip(x) dt = [('a', 'b'), ('b', 'h'), ('c', 'i'), ('d', 'l'), ('dx', 'q'), ('e', 'B'), ('f', 'H'), ('g', 'I'), ('h', 'L'), ('hx', 'Q'), ('i', np.single), ('j', np.double), ('k', np.longdouble), ('ix', np.csingle), ('jx', np.cdouble), ('kx', np.clongdouble), ('l', 'S4'), ('m', 'U4'), ('n', 'V3'), ('o', '?'), ('p', np.half), ] x = np.array( [(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, asbytes('aaaa'), 'bbbb', asbytes('xxx'), True, 1.0)], dtype=dt) self._check_roundtrip(x) x = np.array(([[1, 2], [3, 4]],), dtype=[('a', (int, (2, 2)))]) self._check_roundtrip(x) x = np.array([1, 2, 3], dtype='>i2') self._check_roundtrip(x) x = np.array([1, 2, 3], dtype='<i2') self._check_roundtrip(x) x = np.array([1, 2, 3], dtype='>i4') self._check_roundtrip(x) x = np.array([1, 2, 3], dtype='<i4') self._check_roundtrip(x) # check long long can be represented as non-native x = np.array([1, 2, 3], dtype='>q') self._check_roundtrip(x) # Native-only data types can be passed through the buffer interface # only in native byte order if sys.byteorder == 'little': x = np.array([1, 2, 3], dtype='>g') assert_raises(ValueError, self._check_roundtrip, x) x = np.array([1, 2, 3], dtype='<g') self._check_roundtrip(x) else: x = np.array([1, 2, 3], dtype='>g') self._check_roundtrip(x) x = np.array([1, 2, 3], dtype='<g') assert_raises(ValueError, self._check_roundtrip, x) def test_roundtrip_half(self): half_list = [ 1.0, -2.0, 6.5504 * 10**4, # (max half precision) 2**-14, # ~= 6.10352 * 10**-5 (minimum positive normal) 2**-24, # ~= 5.96046 * 10**-8 (minimum strictly positive subnormal) 0.0, -0.0, float('+inf'), float('-inf'), 0.333251953125, # ~= 1/3 ] x = np.array(half_list, dtype='>e') self._check_roundtrip(x) x = np.array(half_list, dtype='<e') self._check_roundtrip(x) def test_roundtrip_single_types(self): for typ in np.typeDict.values(): dtype = np.dtype(typ) if dtype.char in 'Mm': # datetimes cannot be used in buffers continue if dtype.char == 'V': # skip void continue x = np.zeros(4, dtype=dtype) self._check_roundtrip(x) if dtype.char not in 'qQgG': dt = dtype.newbyteorder('<') x = np.zeros(4, dtype=dt) self._check_roundtrip(x) dt = dtype.newbyteorder('>') x = np.zeros(4, dtype=dt) self._check_roundtrip(x) def test_roundtrip_scalar(self): # Issue #4015. self._check_roundtrip(0) def test_export_simple_1d(self): x = np.array([1, 2, 3, 4, 5], dtype='i') y = memoryview(x) assert_equal(y.format, 'i') assert_equal(y.shape, (5,)) assert_equal(y.ndim, 1) assert_equal(y.strides, (4,)) assert_equal(y.suboffsets, EMPTY) assert_equal(y.itemsize, 4) def test_export_simple_nd(self): x = np.array([[1, 2], [3, 4]], dtype=np.float64) y = memoryview(x) assert_equal(y.format, 'd') assert_equal(y.shape, (2, 2)) assert_equal(y.ndim, 2) assert_equal(y.strides, (16, 8)) assert_equal(y.suboffsets, EMPTY) assert_equal(y.itemsize, 8) def test_export_discontiguous(self): x = np.zeros((3, 3, 3), dtype=np.float32)[:, 0,:] y = memoryview(x) assert_equal(y.format, 'f') assert_equal(y.shape, (3, 3)) assert_equal(y.ndim, 2) assert_equal(y.strides, (36, 4)) assert_equal(y.suboffsets, EMPTY) assert_equal(y.itemsize, 4) def test_export_record(self): dt = [('a', 'b'), ('b', 'h'), ('c', 'i'), ('d', 'l'), ('dx', 'q'), ('e', 'B'), ('f', 'H'), ('g', 'I'), ('h', 'L'), ('hx', 'Q'), ('i', np.single), ('j', np.double), ('k', np.longdouble), ('ix', np.csingle), ('jx', np.cdouble), ('kx', np.clongdouble), ('l', 'S4'), ('m', 'U4'), ('n', 'V3'), ('o', '?'), ('p', np.half), ] x = np.array( [(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, asbytes('aaaa'), 'bbbb', asbytes(' '), True, 1.0)], dtype=dt) y = memoryview(x) assert_equal(y.shape, (1,)) assert_equal(y.ndim, 1) assert_equal(y.suboffsets, EMPTY) sz = sum([np.dtype(b).itemsize for a, b in dt]) if np.dtype('l').itemsize == 4: assert_equal(y.format, 'T{b:a:=h:b:i:c:l:d:q:dx:B:e:@H:f:=I:g:L:h:Q:hx:f:i:d:j:^g:k:=Zf:ix:Zd:jx:^Zg:kx:4s:l:=4w:m:3x:n:?:o:@e:p:}') else: assert_equal(y.format, 'T{b:a:=h:b:i:c:q:d:q:dx:B:e:@H:f:=I:g:Q:h:Q:hx:f:i:d:j:^g:k:=Zf:ix:Zd:jx:^Zg:kx:4s:l:=4w:m:3x:n:?:o:@e:p:}') # Cannot test if NPY_RELAXED_STRIDES_CHECKING changes the strides if not (np.ones(1).strides[0] == np.iinfo(np.intp).max): assert_equal(y.strides, (sz,)) assert_equal(y.itemsize, sz) def test_export_subarray(self): x = np.array(([[1, 2], [3, 4]],), dtype=[('a', ('i', (2, 2)))]) y = memoryview(x) assert_equal(y.format, 'T{(2,2)i:a:}') assert_equal(y.shape, EMPTY) assert_equal(y.ndim, 0) assert_equal(y.strides, EMPTY) assert_equal(y.suboffsets, EMPTY) assert_equal(y.itemsize, 16) def test_export_endian(self): x = np.array([1, 2, 3], dtype='>i') y = memoryview(x) if sys.byteorder == 'little': assert_equal(y.format, '>i') else: assert_equal(y.format, 'i') x = np.array([1, 2, 3], dtype='<i') y = memoryview(x) if sys.byteorder == 'little': assert_equal(y.format, 'i') else: assert_equal(y.format, '<i') def test_export_flags(self): # Check SIMPLE flag, see also gh-3613 (exception should be BufferError) assert_raises(ValueError, get_buffer_info, np.arange(5)[::2], ('SIMPLE',)) def test_padding(self): for j in range(8): x = np.array([(1,), (2,)], dtype={'f0': (int, j)}) self._check_roundtrip(x) def test_reference_leak(self): count_1 = sys.getrefcount(np.core._internal) a = np.zeros(4) b = memoryview(a) c = np.asarray(b) count_2 = sys.getrefcount(np.core._internal) assert_equal(count_1, count_2) del c # avoid pyflakes unused variable warning. def test_padded_struct_array(self): dt1 = np.dtype( [('a', 'b'), ('b', 'i'), ('sub', np.dtype('b,i')), ('c', 'i')], align=True) x1 = np.arange(dt1.itemsize, dtype=np.int8).view(dt1) self._check_roundtrip(x1) dt2 = np.dtype( [('a', 'b'), ('b', 'i'), ('c', 'b', (3,)), ('d', 'i')], align=True) x2 = np.arange(dt2.itemsize, dtype=np.int8).view(dt2) self._check_roundtrip(x2) dt3 = np.dtype( [('a', 'b'), ('b', 'i'), ('c', 'b'), ('d', 'b'), ('e', 'b'), ('sub', np.dtype('b,i', align=True))]) x3 = np.arange(dt3.itemsize, dtype=np.int8).view(dt3) self._check_roundtrip(x3) def test_relaxed_strides(self): # Test that relaxed strides are converted to non-relaxed c = np.ones((1, 10, 10), dtype='i8') # Check for NPY_RELAXED_STRIDES_CHECKING: if np.ones((10, 1), order="C").flags.f_contiguous: c.strides = (-1, 80, 8) assert memoryview(c).strides == (800, 80, 8) # Writing C-contiguous data to a BytesIO buffer should work fd = io.BytesIO() fd.write(c.data) fortran = c.T assert memoryview(fortran).strides == (8, 80, 800) arr = np.ones((1, 10)) if arr.flags.f_contiguous: shape, strides = get_buffer_info(arr, ['F_CONTIGUOUS']) assert_(strides[0] == 8) arr = np.ones((10, 1), order='F') shape, strides = get_buffer_info(arr, ['C_CONTIGUOUS']) assert_(strides[-1] == 8) class TestArrayAttributeDeletion(object): def test_multiarray_writable_attributes_deletion(self): """ticket #2046, should not seqfault, raise AttributeError""" a = np.ones(2) attr = ['shape', 'strides', 'data', 'dtype', 'real', 'imag', 'flat'] for s in attr: assert_raises(AttributeError, delattr, a, s) def test_multiarray_not_writable_attributes_deletion(self): a = np.ones(2) attr = ["ndim", "flags", "itemsize", "size", "nbytes", "base", "ctypes", "T", "__array_interface__", "__array_struct__", "__array_priority__", "__array_finalize__"] for s in attr: assert_raises(AttributeError, delattr, a, s) def test_multiarray_flags_writable_attribute_deletion(self): a = np.ones(2).flags attr = ['updateifcopy', 'aligned', 'writeable'] for s in attr: assert_raises(AttributeError, delattr, a, s) def test_multiarray_flags_not_writable_attribute_deletion(self): a = np.ones(2).flags attr = ["contiguous", "c_contiguous", "f_contiguous", "fortran", "owndata", "fnc", "forc", "behaved", "carray", "farray", "num"] for s in attr: assert_raises(AttributeError, delattr, a, s) def test_array_interface(): # Test scalar coercion within the array interface class Foo(object): def __init__(self, value): self.value = value self.iface = {'typestr': '=f8'} def __float__(self): return float(self.value) @property def __array_interface__(self): return self.iface f = Foo(0.5) assert_equal(np.array(f), 0.5) assert_equal(np.array([f]), [0.5]) assert_equal(np.array([f, f]), [0.5, 0.5]) assert_equal(np.array(f).dtype, np.dtype('=f8')) # Test various shape definitions f.iface['shape'] = () assert_equal(np.array(f), 0.5) f.iface['shape'] = None assert_raises(TypeError, np.array, f) f.iface['shape'] = (1, 1) assert_equal(np.array(f), [[0.5]]) f.iface['shape'] = (2,) assert_raises(ValueError, np.array, f) # test scalar with no shape class ArrayLike(object): array = np.array(1) __array_interface__ = array.__array_interface__ assert_equal(np.array(ArrayLike()), 1) def test_flat_element_deletion(): it = np.ones(3).flat try: del it[1] del it[1:2] except TypeError: pass except: raise AssertionError def test_scalar_element_deletion(): a = np.zeros(2, dtype=[('x', 'int'), ('y', 'int')]) assert_raises(ValueError, a[0].__delitem__, 'x') class TestMemEventHook(TestCase): def test_mem_seteventhook(self): # The actual tests are within the C code in # multiarray/multiarray_tests.c.src test_pydatamem_seteventhook_start() # force an allocation and free of a numpy array # needs to be larger then limit of small memory cacher in ctors.c a = np.zeros(1000) del a test_pydatamem_seteventhook_end() class TestMapIter(TestCase): def test_mapiter(self): # The actual tests are within the C code in # multiarray/multiarray_tests.c.src a = np.arange(12).reshape((3, 4)).astype(float) index = ([1, 1, 2, 0], [0, 0, 2, 3]) vals = [50, 50, 30, 16] test_inplace_increment(a, index, vals) assert_equal(a, [[0.00, 1., 2.0, 19.], [104., 5., 6.0, 7.0], [8.00, 9., 40., 11.]]) b = np.arange(6).astype(float) index = (np.array([1, 2, 0]),) vals = [50, 4, 100.1] test_inplace_increment(b, index, vals) assert_equal(b, [100.1, 51., 6., 3., 4., 5.]) class TestAsCArray(TestCase): def test_1darray(self): array = np.arange(24, dtype=np.double) from_c = test_as_c_array(array, 3) assert_equal(array[3], from_c) def test_2darray(self): array = np.arange(24, dtype=np.double).reshape(3, 8) from_c = test_as_c_array(array, 2, 4) assert_equal(array[2, 4], from_c) def test_3darray(self): array = np.arange(24, dtype=np.double).reshape(2, 3, 4) from_c = test_as_c_array(array, 1, 2, 3) assert_equal(array[1, 2, 3], from_c) class TestConversion(TestCase): def test_array_scalar_relational_operation(self): #All integer for dt1 in np.typecodes['AllInteger']: assert_(1 > np.array(0, dtype=dt1), "type %s failed" % (dt1,)) assert_(not 1 < np.array(0, dtype=dt1), "type %s failed" % (dt1,)) for dt2 in np.typecodes['AllInteger']: assert_(np.array(1, dtype=dt1) > np.array(0, dtype=dt2), "type %s and %s failed" % (dt1, dt2)) assert_(not np.array(1, dtype=dt1) < np.array(0, dtype=dt2), "type %s and %s failed" % (dt1, dt2)) #Unsigned integers for dt1 in 'BHILQP': assert_(-1 < np.array(1, dtype=dt1), "type %s failed" % (dt1,)) assert_(not -1 > np.array(1, dtype=dt1), "type %s failed" % (dt1,)) assert_(-1 != np.array(1, dtype=dt1), "type %s failed" % (dt1,)) #unsigned vs signed for dt2 in 'bhilqp': assert_(np.array(1, dtype=dt1) > np.array(-1, dtype=dt2), "type %s and %s failed" % (dt1, dt2)) assert_(not np.array(1, dtype=dt1) < np.array(-1, dtype=dt2), "type %s and %s failed" % (dt1, dt2)) assert_(np.array(1, dtype=dt1) != np.array(-1, dtype=dt2), "type %s and %s failed" % (dt1, dt2)) #Signed integers and floats for dt1 in 'bhlqp' + np.typecodes['Float']: assert_(1 > np.array(-1, dtype=dt1), "type %s failed" % (dt1,)) assert_(not 1 < np.array(-1, dtype=dt1), "type %s failed" % (dt1,)) assert_(-1 == np.array(-1, dtype=dt1), "type %s failed" % (dt1,)) for dt2 in 'bhlqp' + np.typecodes['Float']: assert_(np.array(1, dtype=dt1) > np.array(-1, dtype=dt2), "type %s and %s failed" % (dt1, dt2)) assert_(not np.array(1, dtype=dt1) < np.array(-1, dtype=dt2), "type %s and %s failed" % (dt1, dt2)) assert_(np.array(-1, dtype=dt1) == np.array(-1, dtype=dt2), "type %s and %s failed" % (dt1, dt2)) class TestWhere(TestCase): def test_basic(self): dts = [np.bool, np.int16, np.int32, np.int64, np.double, np.complex128, np.longdouble, np.clongdouble] for dt in dts: c = np.ones(53, dtype=np.bool) assert_equal(np.where( c, dt(0), dt(1)), dt(0)) assert_equal(np.where(~c, dt(0), dt(1)), dt(1)) assert_equal(np.where(True, dt(0), dt(1)), dt(0)) assert_equal(np.where(False, dt(0), dt(1)), dt(1)) d = np.ones_like(c).astype(dt) e = np.zeros_like(d) r = d.astype(dt) c[7] = False r[7] = e[7] assert_equal(np.where(c, e, e), e) assert_equal(np.where(c, d, e), r) assert_equal(np.where(c, d, e[0]), r) assert_equal(np.where(c, d[0], e), r) assert_equal(np.where(c[::2], d[::2], e[::2]), r[::2]) assert_equal(np.where(c[1::2], d[1::2], e[1::2]), r[1::2]) assert_equal(np.where(c[::3], d[::3], e[::3]), r[::3]) assert_equal(np.where(c[1::3], d[1::3], e[1::3]), r[1::3]) assert_equal(np.where(c[::-2], d[::-2], e[::-2]), r[::-2]) assert_equal(np.where(c[::-3], d[::-3], e[::-3]), r[::-3]) assert_equal(np.where(c[1::-3], d[1::-3], e[1::-3]), r[1::-3]) def test_exotic(self): # object assert_array_equal(np.where(True, None, None), np.array(None)) # zero sized m = np.array([], dtype=bool).reshape(0, 3) b = np.array([], dtype=np.float64).reshape(0, 3) assert_array_equal(np.where(m, 0, b), np.array([]).reshape(0, 3)) # object cast d = np.array([-1.34, -0.16, -0.54, -0.31, -0.08, -0.95, 0.000, 0.313, 0.547, -0.18, 0.876, 0.236, 1.969, 0.310, 0.699, 1.013, 1.267, 0.229, -1.39, 0.487]) nan = float('NaN') e = np.array(['5z', '0l', nan, 'Wz', nan, nan, 'Xq', 'cs', nan, nan, 'QN', nan, nan, 'Fd', nan, nan, 'kp', nan, '36', 'i1'], dtype=object) m = np.array([0,0,1,0,1,1,0,0,1,1,0,1,1,0,1,1,0,1,0,0], dtype=bool) r = e[:] r[np.where(m)] = d[np.where(m)] assert_array_equal(np.where(m, d, e), r) r = e[:] r[np.where(~m)] = d[np.where(~m)] assert_array_equal(np.where(m, e, d), r) assert_array_equal(np.where(m, e, e), e) # minimal dtype result with NaN scalar (e.g required by pandas) d = np.array([1., 2.], dtype=np.float32) e = float('NaN') assert_equal(np.where(True, d, e).dtype, np.float32) e = float('Infinity') assert_equal(np.where(True, d, e).dtype, np.float32) e = float('-Infinity') assert_equal(np.where(True, d, e).dtype, np.float32) # also check upcast e = float(1e150) assert_equal(np.where(True, d, e).dtype, np.float64) def test_ndim(self): c = [True, False] a = np.zeros((2, 25)) b = np.ones((2, 25)) r = np.where(np.array(c)[:,np.newaxis], a, b) assert_array_equal(r[0], a[0]) assert_array_equal(r[1], b[0]) a = a.T b = b.T r = np.where(c, a, b) assert_array_equal(r[:,0], a[:,0]) assert_array_equal(r[:,1], b[:,0]) def test_dtype_mix(self): c = np.array([False, True, False, False, False, False, True, False, False, False, True, False]) a = np.uint32(1) b = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.], dtype=np.float64) r = np.array([5., 1., 3., 2., -1., -4., 1., -10., 10., 1., 1., 3.], dtype=np.float64) assert_equal(np.where(c, a, b), r) a = a.astype(np.float32) b = b.astype(np.int64) assert_equal(np.where(c, a, b), r) # non bool mask c = c.astype(np.int) c[c != 0] = 34242324 assert_equal(np.where(c, a, b), r) # invert tmpmask = c != 0 c[c == 0] = 41247212 c[tmpmask] = 0 assert_equal(np.where(c, b, a), r) def test_foreign(self): c = np.array([False, True, False, False, False, False, True, False, False, False, True, False]) r = np.array([5., 1., 3., 2., -1., -4., 1., -10., 10., 1., 1., 3.], dtype=np.float64) a = np.ones(1, dtype='>i4') b = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.], dtype=np.float64) assert_equal(np.where(c, a, b), r) b = b.astype('>f8') assert_equal(np.where(c, a, b), r) a = a.astype('<i4') assert_equal(np.where(c, a, b), r) c = c.astype('>i4') assert_equal(np.where(c, a, b), r) def test_error(self): c = [True, True] a = np.ones((4, 5)) b = np.ones((5, 5)) assert_raises(ValueError, np.where, c, a, a) assert_raises(ValueError, np.where, c[0], a, b) def test_string(self): # gh-4778 check strings are properly filled with nulls a = np.array("abc") b = np.array("x" * 753) assert_equal(np.where(True, a, b), "abc") assert_equal(np.where(False, b, a), "abc") # check native datatype sized strings a = np.array("abcd") b = np.array("x" * 8) assert_equal(np.where(True, a, b), "abcd") assert_equal(np.where(False, b, a), "abcd") class TestSizeOf(TestCase): def test_empty_array(self): x = np.array([]) assert_(sys.getsizeof(x) > 0) def check_array(self, dtype): elem_size = dtype(0).itemsize for length in [10, 50, 100, 500]: x = np.arange(length, dtype=dtype) assert_(sys.getsizeof(x) > length * elem_size) def test_array_int32(self): self.check_array(np.int32) def test_array_int64(self): self.check_array(np.int64) def test_array_float32(self): self.check_array(np.float32) def test_array_float64(self): self.check_array(np.float64) def test_view(self): d = np.ones(100) assert_(sys.getsizeof(d[...]) < sys.getsizeof(d)) def test_reshape(self): d = np.ones(100) assert_(sys.getsizeof(d) < sys.getsizeof(d.reshape(100, 1, 1).copy())) def test_resize(self): d = np.ones(100) old = sys.getsizeof(d) d.resize(50) assert_(old > sys.getsizeof(d)) d.resize(150) assert_(old < sys.getsizeof(d)) def test_error(self): d = np.ones(100) assert_raises(TypeError, d.__sizeof__, "a") class TestHashing(TestCase): def test_arrays_not_hashable(self): x = np.ones(3) assert_raises(TypeError, hash, x) def test_collections_hashable(self): x = np.array([]) self.assertFalse(isinstance(x, collections.Hashable)) class TestArrayPriority(TestCase): # This will go away when __array_priority__ is settled, meanwhile # it serves to check unintended changes. op = operator binary_ops = [ op.pow, op.add, op.sub, op.mul, op.floordiv, op.truediv, op.mod, op.and_, op.or_, op.xor, op.lshift, op.rshift, op.mod, op.gt, op.ge, op.lt, op.le, op.ne, op.eq ] if sys.version_info[0] < 3: binary_ops.append(op.div) class Foo(np.ndarray): __array_priority__ = 100. def __new__(cls, *args, **kwargs): return np.array(*args, **kwargs).view(cls) class Bar(np.ndarray): __array_priority__ = 101. def __new__(cls, *args, **kwargs): return np.array(*args, **kwargs).view(cls) class Other(object): __array_priority__ = 1000. def _all(self, other): return self.__class__() __add__ = __radd__ = _all __sub__ = __rsub__ = _all __mul__ = __rmul__ = _all __pow__ = __rpow__ = _all __div__ = __rdiv__ = _all __mod__ = __rmod__ = _all __truediv__ = __rtruediv__ = _all __floordiv__ = __rfloordiv__ = _all __and__ = __rand__ = _all __xor__ = __rxor__ = _all __or__ = __ror__ = _all __lshift__ = __rlshift__ = _all __rshift__ = __rrshift__ = _all __eq__ = _all __ne__ = _all __gt__ = _all __ge__ = _all __lt__ = _all __le__ = _all def test_ndarray_subclass(self): a = np.array([1, 2]) b = self.Bar([1, 2]) for f in self.binary_ops: msg = repr(f) assert_(isinstance(f(a, b), self.Bar), msg) assert_(isinstance(f(b, a), self.Bar), msg) def test_ndarray_other(self): a = np.array([1, 2]) b = self.Other() for f in self.binary_ops: msg = repr(f) assert_(isinstance(f(a, b), self.Other), msg) assert_(isinstance(f(b, a), self.Other), msg) def test_subclass_subclass(self): a = self.Foo([1, 2]) b = self.Bar([1, 2]) for f in self.binary_ops: msg = repr(f) assert_(isinstance(f(a, b), self.Bar), msg) assert_(isinstance(f(b, a), self.Bar), msg) def test_subclass_other(self): a = self.Foo([1, 2]) b = self.Other() for f in self.binary_ops: msg = repr(f) assert_(isinstance(f(a, b), self.Other), msg) assert_(isinstance(f(b, a), self.Other), msg) class TestBytestringArrayNonzero(TestCase): def test_empty_bstring_array_is_falsey(self): self.assertFalse(np.array([''], dtype=np.str)) def test_whitespace_bstring_array_is_falsey(self): a = np.array(['spam'], dtype=np.str) a[0] = ' \0\0' self.assertFalse(a) def test_all_null_bstring_array_is_falsey(self): a = np.array(['spam'], dtype=np.str) a[0] = '\0\0\0\0' self.assertFalse(a) def test_null_inside_bstring_array_is_truthy(self): a = np.array(['spam'], dtype=np.str) a[0] = ' \0 \0' self.assertTrue(a) class TestUnicodeArrayNonzero(TestCase): def test_empty_ustring_array_is_falsey(self): self.assertFalse(np.array([''], dtype=np.unicode)) def test_whitespace_ustring_array_is_falsey(self): a = np.array(['eggs'], dtype=np.unicode) a[0] = ' \0\0' self.assertFalse(a) def test_all_null_ustring_array_is_falsey(self): a = np.array(['eggs'], dtype=np.unicode) a[0] = '\0\0\0\0' self.assertFalse(a) def test_null_inside_ustring_array_is_truthy(self): a = np.array(['eggs'], dtype=np.unicode) a[0] = ' \0 \0' self.assertTrue(a) if __name__ == "__main__": run_module_suite()
mit
anntzer/scikit-learn
sklearn/metrics/_ranking.py
7
66752
"""Metrics to assess performance on classification task given scores. Functions named as ``*_score`` return a scalar value to maximize: the higher the better. Function named as ``*_error`` or ``*_loss`` return a scalar value to minimize: the lower the better. """ # Authors: Alexandre Gramfort <[email protected]> # Mathieu Blondel <[email protected]> # Olivier Grisel <[email protected]> # Arnaud Joly <[email protected]> # Jochen Wersdorfer <[email protected]> # Lars Buitinck # Joel Nothman <[email protected]> # Noel Dawe <[email protected]> # License: BSD 3 clause import warnings from functools import partial import numpy as np from scipy.sparse import csr_matrix from scipy.stats import rankdata from ..utils import assert_all_finite from ..utils import check_consistent_length from ..utils import column_or_1d, check_array from ..utils.multiclass import type_of_target from ..utils.extmath import stable_cumsum from ..utils.sparsefuncs import count_nonzero from ..utils.validation import _deprecate_positional_args from ..exceptions import UndefinedMetricWarning from ..preprocessing import label_binarize from ..utils._encode import _encode, _unique from ._base import ( _average_binary_score, _average_multiclass_ovo_score, _check_pos_label_consistency, ) def auc(x, y): """Compute Area Under the Curve (AUC) using the trapezoidal rule. This is a general function, given points on a curve. For computing the area under the ROC-curve, see :func:`roc_auc_score`. For an alternative way to summarize a precision-recall curve, see :func:`average_precision_score`. Parameters ---------- x : ndarray of shape (n,) x coordinates. These must be either monotonic increasing or monotonic decreasing. y : ndarray of shape, (n,) y coordinates. Returns ------- auc : float See Also -------- roc_auc_score : Compute the area under the ROC curve. average_precision_score : Compute average precision from prediction scores. precision_recall_curve : Compute precision-recall pairs for different probability thresholds. Examples -------- >>> import numpy as np >>> from sklearn import metrics >>> y = np.array([1, 1, 2, 2]) >>> pred = np.array([0.1, 0.4, 0.35, 0.8]) >>> fpr, tpr, thresholds = metrics.roc_curve(y, pred, pos_label=2) >>> metrics.auc(fpr, tpr) 0.75 """ check_consistent_length(x, y) x = column_or_1d(x) y = column_or_1d(y) if x.shape[0] < 2: raise ValueError('At least 2 points are needed to compute' ' area under curve, but x.shape = %s' % x.shape) direction = 1 dx = np.diff(x) if np.any(dx < 0): if np.all(dx <= 0): direction = -1 else: raise ValueError("x is neither increasing nor decreasing " ": {}.".format(x)) area = direction * np.trapz(y, x) if isinstance(area, np.memmap): # Reductions such as .sum used internally in np.trapz do not return a # scalar by default for numpy.memmap instances contrary to # regular numpy.ndarray instances. area = area.dtype.type(area) return area @_deprecate_positional_args def average_precision_score(y_true, y_score, *, average="macro", pos_label=1, sample_weight=None): """Compute average precision (AP) from prediction scores. AP summarizes a precision-recall curve as the weighted mean of precisions achieved at each threshold, with the increase in recall from the previous threshold used as the weight: .. math:: \\text{AP} = \\sum_n (R_n - R_{n-1}) P_n where :math:`P_n` and :math:`R_n` are the precision and recall at the nth threshold [1]_. This implementation is not interpolated and is different from computing the area under the precision-recall curve with the trapezoidal rule, which uses linear interpolation and can be too optimistic. Note: this implementation is restricted to the binary classification task or multilabel classification task. Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`. Parameters ---------- y_true : ndarray of shape (n_samples,) or (n_samples, n_classes) True binary labels or binary label indicators. y_score : ndarray of shape (n_samples,) or (n_samples, n_classes) Target scores, can either be probability estimates of the positive class, confidence values, or non-thresholded measure of decisions (as returned by :term:`decision_function` on some classifiers). average : {'micro', 'samples', 'weighted', 'macro'} or None, \ default='macro' If ``None``, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data: ``'micro'``: Calculate metrics globally by considering each element of the label indicator matrix as a label. ``'macro'``: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. ``'weighted'``: Calculate metrics for each label, and find their average, weighted by support (the number of true instances for each label). ``'samples'``: Calculate metrics for each instance, and find their average. Will be ignored when ``y_true`` is binary. pos_label : int or str, default=1 The label of the positive class. Only applied to binary ``y_true``. For multilabel-indicator ``y_true``, ``pos_label`` is fixed to 1. sample_weight : array-like of shape (n_samples,), default=None Sample weights. Returns ------- average_precision : float See Also -------- roc_auc_score : Compute the area under the ROC curve. precision_recall_curve : Compute precision-recall pairs for different probability thresholds. Notes ----- .. versionchanged:: 0.19 Instead of linearly interpolating between operating points, precisions are weighted by the change in recall since the last operating point. References ---------- .. [1] `Wikipedia entry for the Average precision <https://en.wikipedia.org/w/index.php?title=Information_retrieval& oldid=793358396#Average_precision>`_ Examples -------- >>> import numpy as np >>> from sklearn.metrics import average_precision_score >>> y_true = np.array([0, 0, 1, 1]) >>> y_scores = np.array([0.1, 0.4, 0.35, 0.8]) >>> average_precision_score(y_true, y_scores) 0.83... """ def _binary_uninterpolated_average_precision( y_true, y_score, pos_label=1, sample_weight=None): precision, recall, _ = precision_recall_curve( y_true, y_score, pos_label=pos_label, sample_weight=sample_weight) # Return the step function integral # The following works because the last entry of precision is # guaranteed to be 1, as returned by precision_recall_curve return -np.sum(np.diff(recall) * np.array(precision)[:-1]) y_type = type_of_target(y_true) if y_type == "multilabel-indicator" and pos_label != 1: raise ValueError("Parameter pos_label is fixed to 1 for " "multilabel-indicator y_true. Do not set " "pos_label or set pos_label to 1.") elif y_type == "binary": # Convert to Python primitive type to avoid NumPy type / Python str # comparison. See https://github.com/numpy/numpy/issues/6784 present_labels = np.unique(y_true).tolist() if len(present_labels) == 2 and pos_label not in present_labels: raise ValueError( f"pos_label={pos_label} is not a valid label. It should be " f"one of {present_labels}" ) average_precision = partial(_binary_uninterpolated_average_precision, pos_label=pos_label) return _average_binary_score(average_precision, y_true, y_score, average, sample_weight=sample_weight) def det_curve(y_true, y_score, pos_label=None, sample_weight=None): """Compute error rates for different probability thresholds. .. note:: This metric is used for evaluation of ranking and error tradeoffs of a binary classification task. Read more in the :ref:`User Guide <det_curve>`. .. versionadded:: 0.24 Parameters ---------- y_true : ndarray of shape (n_samples,) True binary labels. If labels are not either {-1, 1} or {0, 1}, then pos_label should be explicitly given. y_score : ndarray of shape of (n_samples,) Target scores, can either be probability estimates of the positive class, confidence values, or non-thresholded measure of decisions (as returned by "decision_function" on some classifiers). pos_label : int or str, default=None The label of the positive class. When ``pos_label=None``, if `y_true` is in {-1, 1} or {0, 1}, ``pos_label`` is set to 1, otherwise an error will be raised. sample_weight : array-like of shape (n_samples,), default=None Sample weights. Returns ------- fpr : ndarray of shape (n_thresholds,) False positive rate (FPR) such that element i is the false positive rate of predictions with score >= thresholds[i]. This is occasionally referred to as false acceptance propability or fall-out. fnr : ndarray of shape (n_thresholds,) False negative rate (FNR) such that element i is the false negative rate of predictions with score >= thresholds[i]. This is occasionally referred to as false rejection or miss rate. thresholds : ndarray of shape (n_thresholds,) Decreasing score values. See Also -------- plot_det_curve : Plot detection error tradeoff (DET) curve. DetCurveDisplay : DET curve visualization. roc_curve : Compute Receiver operating characteristic (ROC) curve. precision_recall_curve : Compute precision-recall curve. Examples -------- >>> import numpy as np >>> from sklearn.metrics import det_curve >>> y_true = np.array([0, 0, 1, 1]) >>> y_scores = np.array([0.1, 0.4, 0.35, 0.8]) >>> fpr, fnr, thresholds = det_curve(y_true, y_scores) >>> fpr array([0.5, 0.5, 0. ]) >>> fnr array([0. , 0.5, 0.5]) >>> thresholds array([0.35, 0.4 , 0.8 ]) """ if len(np.unique(y_true)) != 2: raise ValueError("Only one class present in y_true. Detection error " "tradeoff curve is not defined in that case.") fps, tps, thresholds = _binary_clf_curve( y_true, y_score, pos_label=pos_label, sample_weight=sample_weight ) fns = tps[-1] - tps p_count = tps[-1] n_count = fps[-1] # start with false positives zero first_ind = ( fps.searchsorted(fps[0], side='right') - 1 if fps.searchsorted(fps[0], side='right') > 0 else None ) # stop with false negatives zero last_ind = tps.searchsorted(tps[-1]) + 1 sl = slice(first_ind, last_ind) # reverse the output such that list of false positives is decreasing return ( fps[sl][::-1] / n_count, fns[sl][::-1] / p_count, thresholds[sl][::-1] ) def _binary_roc_auc_score(y_true, y_score, sample_weight=None, max_fpr=None): """Binary roc auc score.""" if len(np.unique(y_true)) != 2: raise ValueError("Only one class present in y_true. ROC AUC score " "is not defined in that case.") fpr, tpr, _ = roc_curve(y_true, y_score, sample_weight=sample_weight) if max_fpr is None or max_fpr == 1: return auc(fpr, tpr) if max_fpr <= 0 or max_fpr > 1: raise ValueError("Expected max_fpr in range (0, 1], got: %r" % max_fpr) # Add a single point at max_fpr by linear interpolation stop = np.searchsorted(fpr, max_fpr, 'right') x_interp = [fpr[stop - 1], fpr[stop]] y_interp = [tpr[stop - 1], tpr[stop]] tpr = np.append(tpr[:stop], np.interp(max_fpr, x_interp, y_interp)) fpr = np.append(fpr[:stop], max_fpr) partial_auc = auc(fpr, tpr) # McClish correction: standardize result to be 0.5 if non-discriminant # and 1 if maximal min_area = 0.5 * max_fpr**2 max_area = max_fpr return 0.5 * (1 + (partial_auc - min_area) / (max_area - min_area)) @_deprecate_positional_args def roc_auc_score(y_true, y_score, *, average="macro", sample_weight=None, max_fpr=None, multi_class="raise", labels=None): """Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC) from prediction scores. Note: this implementation can be used with binary, multiclass and multilabel classification, but some restrictions apply (see Parameters). Read more in the :ref:`User Guide <roc_metrics>`. Parameters ---------- y_true : array-like of shape (n_samples,) or (n_samples, n_classes) True labels or binary label indicators. The binary and multiclass cases expect labels with shape (n_samples,) while the multilabel case expects binary label indicators with shape (n_samples, n_classes). y_score : array-like of shape (n_samples,) or (n_samples, n_classes) Target scores. * In the binary case, it corresponds to an array of shape `(n_samples,)`. Both probability estimates and non-thresholded decision values can be provided. The probability estimates correspond to the **probability of the class with the greater label**, i.e. `estimator.classes_[1]` and thus `estimator.predict_proba(X, y)[:, 1]`. The decision values corresponds to the output of `estimator.decision_function(X, y)`. See more information in the :ref:`User guide <roc_auc_binary>`; * In the multiclass case, it corresponds to an array of shape `(n_samples, n_classes)` of probability estimates provided by the `predict_proba` method. The probability estimates **must** sum to 1 across the possible classes. In addition, the order of the class scores must correspond to the order of ``labels``, if provided, or else to the numerical or lexicographical order of the labels in ``y_true``. See more information in the :ref:`User guide <roc_auc_multiclass>`; * In the multilabel case, it corresponds to an array of shape `(n_samples, n_classes)`. Probability estimates are provided by the `predict_proba` method and the non-thresholded decision values by the `decision_function` method. The probability estimates correspond to the **probability of the class with the greater label for each output** of the classifier. See more information in the :ref:`User guide <roc_auc_multilabel>`. average : {'micro', 'macro', 'samples', 'weighted'} or None, \ default='macro' If ``None``, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data: Note: multiclass ROC AUC currently only handles the 'macro' and 'weighted' averages. ``'micro'``: Calculate metrics globally by considering each element of the label indicator matrix as a label. ``'macro'``: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. ``'weighted'``: Calculate metrics for each label, and find their average, weighted by support (the number of true instances for each label). ``'samples'``: Calculate metrics for each instance, and find their average. Will be ignored when ``y_true`` is binary. sample_weight : array-like of shape (n_samples,), default=None Sample weights. max_fpr : float > 0 and <= 1, default=None If not ``None``, the standardized partial AUC [2]_ over the range [0, max_fpr] is returned. For the multiclass case, ``max_fpr``, should be either equal to ``None`` or ``1.0`` as AUC ROC partial computation currently is not supported for multiclass. multi_class : {'raise', 'ovr', 'ovo'}, default='raise' Only used for multiclass targets. Determines the type of configuration to use. The default value raises an error, so either ``'ovr'`` or ``'ovo'`` must be passed explicitly. ``'ovr'``: Stands for One-vs-rest. Computes the AUC of each class against the rest [3]_ [4]_. This treats the multiclass case in the same way as the multilabel case. Sensitive to class imbalance even when ``average == 'macro'``, because class imbalance affects the composition of each of the 'rest' groupings. ``'ovo'``: Stands for One-vs-one. Computes the average AUC of all possible pairwise combinations of classes [5]_. Insensitive to class imbalance when ``average == 'macro'``. labels : array-like of shape (n_classes,), default=None Only used for multiclass targets. List of labels that index the classes in ``y_score``. If ``None``, the numerical or lexicographical order of the labels in ``y_true`` is used. Returns ------- auc : float References ---------- .. [1] `Wikipedia entry for the Receiver operating characteristic <https://en.wikipedia.org/wiki/Receiver_operating_characteristic>`_ .. [2] `Analyzing a portion of the ROC curve. McClish, 1989 <https://www.ncbi.nlm.nih.gov/pubmed/2668680>`_ .. [3] Provost, F., Domingos, P. (2000). Well-trained PETs: Improving probability estimation trees (Section 6.2), CeDER Working Paper #IS-00-04, Stern School of Business, New York University. .. [4] `Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861-874. <https://www.sciencedirect.com/science/article/pii/S016786550500303X>`_ .. [5] `Hand, D.J., Till, R.J. (2001). A Simple Generalisation of the Area Under the ROC Curve for Multiple Class Classification Problems. Machine Learning, 45(2), 171-186. <http://link.springer.com/article/10.1023/A:1010920819831>`_ See Also -------- average_precision_score : Area under the precision-recall curve. roc_curve : Compute Receiver operating characteristic (ROC) curve. plot_roc_curve : Plot Receiver operating characteristic (ROC) curve. Examples -------- Binary case: >>> from sklearn.datasets import load_breast_cancer >>> from sklearn.linear_model import LogisticRegression >>> from sklearn.metrics import roc_auc_score >>> X, y = load_breast_cancer(return_X_y=True) >>> clf = LogisticRegression(solver="liblinear", random_state=0).fit(X, y) >>> roc_auc_score(y, clf.predict_proba(X)[:, 1]) 0.99... >>> roc_auc_score(y, clf.decision_function(X)) 0.99... Multiclass case: >>> from sklearn.datasets import load_iris >>> X, y = load_iris(return_X_y=True) >>> clf = LogisticRegression(solver="liblinear").fit(X, y) >>> roc_auc_score(y, clf.predict_proba(X), multi_class='ovr') 0.99... Multilabel case: >>> from sklearn.datasets import make_multilabel_classification >>> from sklearn.multioutput import MultiOutputClassifier >>> X, y = make_multilabel_classification(random_state=0) >>> clf = MultiOutputClassifier(clf).fit(X, y) >>> # get a list of n_output containing probability arrays of shape >>> # (n_samples, n_classes) >>> y_pred = clf.predict_proba(X) >>> # extract the positive columns for each output >>> y_pred = np.transpose([pred[:, 1] for pred in y_pred]) >>> roc_auc_score(y, y_pred, average=None) array([0.82..., 0.86..., 0.94..., 0.85... , 0.94...]) >>> from sklearn.linear_model import RidgeClassifierCV >>> clf = RidgeClassifierCV().fit(X, y) >>> roc_auc_score(y, clf.decision_function(X), average=None) array([0.81..., 0.84... , 0.93..., 0.87..., 0.94...]) """ y_type = type_of_target(y_true) y_true = check_array(y_true, ensure_2d=False, dtype=None) y_score = check_array(y_score, ensure_2d=False) if y_type == "multiclass" or (y_type == "binary" and y_score.ndim == 2 and y_score.shape[1] > 2): # do not support partial ROC computation for multiclass if max_fpr is not None and max_fpr != 1.: raise ValueError("Partial AUC computation not available in " "multiclass setting, 'max_fpr' must be" " set to `None`, received `max_fpr={0}` " "instead".format(max_fpr)) if multi_class == 'raise': raise ValueError("multi_class must be in ('ovo', 'ovr')") return _multiclass_roc_auc_score(y_true, y_score, labels, multi_class, average, sample_weight) elif y_type == "binary": labels = np.unique(y_true) y_true = label_binarize(y_true, classes=labels)[:, 0] return _average_binary_score(partial(_binary_roc_auc_score, max_fpr=max_fpr), y_true, y_score, average, sample_weight=sample_weight) else: # multilabel-indicator return _average_binary_score(partial(_binary_roc_auc_score, max_fpr=max_fpr), y_true, y_score, average, sample_weight=sample_weight) def _multiclass_roc_auc_score(y_true, y_score, labels, multi_class, average, sample_weight): """Multiclass roc auc score. Parameters ---------- y_true : array-like of shape (n_samples,) True multiclass labels. y_score : array-like of shape (n_samples, n_classes) Target scores corresponding to probability estimates of a sample belonging to a particular class labels : array-like of shape (n_classes,) or None List of labels to index ``y_score`` used for multiclass. If ``None``, the lexical order of ``y_true`` is used to index ``y_score``. multi_class : {'ovr', 'ovo'} Determines the type of multiclass configuration to use. ``'ovr'``: Calculate metrics for the multiclass case using the one-vs-rest approach. ``'ovo'``: Calculate metrics for the multiclass case using the one-vs-one approach. average : {'macro', 'weighted'} Determines the type of averaging performed on the pairwise binary metric scores ``'macro'``: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. Classes are assumed to be uniformly distributed. ``'weighted'``: Calculate metrics for each label, taking into account the prevalence of the classes. sample_weight : array-like of shape (n_samples,) or None Sample weights. """ # validation of the input y_score if not np.allclose(1, y_score.sum(axis=1)): raise ValueError( "Target scores need to be probabilities for multiclass " "roc_auc, i.e. they should sum up to 1.0 over classes") # validation for multiclass parameter specifications average_options = ("macro", "weighted") if average not in average_options: raise ValueError("average must be one of {0} for " "multiclass problems".format(average_options)) multiclass_options = ("ovo", "ovr") if multi_class not in multiclass_options: raise ValueError("multi_class='{0}' is not supported " "for multiclass ROC AUC, multi_class must be " "in {1}".format( multi_class, multiclass_options)) if labels is not None: labels = column_or_1d(labels) classes = _unique(labels) if len(classes) != len(labels): raise ValueError("Parameter 'labels' must be unique") if not np.array_equal(classes, labels): raise ValueError("Parameter 'labels' must be ordered") if len(classes) != y_score.shape[1]: raise ValueError( "Number of given labels, {0}, not equal to the number " "of columns in 'y_score', {1}".format( len(classes), y_score.shape[1])) if len(np.setdiff1d(y_true, classes)): raise ValueError( "'y_true' contains labels not in parameter 'labels'") else: classes = _unique(y_true) if len(classes) != y_score.shape[1]: raise ValueError( "Number of classes in y_true not equal to the number of " "columns in 'y_score'") if multi_class == "ovo": if sample_weight is not None: raise ValueError("sample_weight is not supported " "for multiclass one-vs-one ROC AUC, " "'sample_weight' must be None in this case.") y_true_encoded = _encode(y_true, uniques=classes) # Hand & Till (2001) implementation (ovo) return _average_multiclass_ovo_score(_binary_roc_auc_score, y_true_encoded, y_score, average=average) else: # ovr is same as multi-label y_true_multilabel = label_binarize(y_true, classes=classes) return _average_binary_score(_binary_roc_auc_score, y_true_multilabel, y_score, average, sample_weight=sample_weight) def _binary_clf_curve(y_true, y_score, pos_label=None, sample_weight=None): """Calculate true and false positives per binary classification threshold. Parameters ---------- y_true : ndarray of shape (n_samples,) True targets of binary classification. y_score : ndarray of shape (n_samples,) Estimated probabilities or output of a decision function. pos_label : int or str, default=None The label of the positive class. sample_weight : array-like of shape (n_samples,), default=None Sample weights. Returns ------- fps : ndarray of shape (n_thresholds,) A count of false positives, at index i being the number of negative samples assigned a score >= thresholds[i]. The total number of negative samples is equal to fps[-1] (thus true negatives are given by fps[-1] - fps). tps : ndarray of shape (n_thresholds,) An increasing count of true positives, at index i being the number of positive samples assigned a score >= thresholds[i]. The total number of positive samples is equal to tps[-1] (thus false negatives are given by tps[-1] - tps). thresholds : ndarray of shape (n_thresholds,) Decreasing score values. """ # Check to make sure y_true is valid y_type = type_of_target(y_true) if not (y_type == "binary" or (y_type == "multiclass" and pos_label is not None)): raise ValueError("{0} format is not supported".format(y_type)) check_consistent_length(y_true, y_score, sample_weight) y_true = column_or_1d(y_true) y_score = column_or_1d(y_score) assert_all_finite(y_true) assert_all_finite(y_score) if sample_weight is not None: sample_weight = column_or_1d(sample_weight) pos_label = _check_pos_label_consistency(pos_label, y_true) # make y_true a boolean vector y_true = (y_true == pos_label) # sort scores and corresponding truth values desc_score_indices = np.argsort(y_score, kind="mergesort")[::-1] y_score = y_score[desc_score_indices] y_true = y_true[desc_score_indices] if sample_weight is not None: weight = sample_weight[desc_score_indices] else: weight = 1. # y_score typically has many tied values. Here we extract # the indices associated with the distinct values. We also # concatenate a value for the end of the curve. distinct_value_indices = np.where(np.diff(y_score))[0] threshold_idxs = np.r_[distinct_value_indices, y_true.size - 1] # accumulate the true positives with decreasing threshold tps = stable_cumsum(y_true * weight)[threshold_idxs] if sample_weight is not None: # express fps as a cumsum to ensure fps is increasing even in # the presence of floating point errors fps = stable_cumsum((1 - y_true) * weight)[threshold_idxs] else: fps = 1 + threshold_idxs - tps return fps, tps, y_score[threshold_idxs] @_deprecate_positional_args def precision_recall_curve(y_true, probas_pred, *, pos_label=None, sample_weight=None): """Compute precision-recall pairs for different probability thresholds. Note: this implementation is restricted to the binary classification task. The precision is the ratio ``tp / (tp + fp)`` where ``tp`` is the number of true positives and ``fp`` the number of false positives. The precision is intuitively the ability of the classifier not to label as positive a sample that is negative. The recall is the ratio ``tp / (tp + fn)`` where ``tp`` is the number of true positives and ``fn`` the number of false negatives. The recall is intuitively the ability of the classifier to find all the positive samples. The last precision and recall values are 1. and 0. respectively and do not have a corresponding threshold. This ensures that the graph starts on the y axis. Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`. Parameters ---------- y_true : ndarray of shape (n_samples,) True binary labels. If labels are not either {-1, 1} or {0, 1}, then pos_label should be explicitly given. probas_pred : ndarray of shape (n_samples,) Estimated probabilities or output of a decision function. pos_label : int or str, default=None The label of the positive class. When ``pos_label=None``, if y_true is in {-1, 1} or {0, 1}, ``pos_label`` is set to 1, otherwise an error will be raised. sample_weight : array-like of shape (n_samples,), default=None Sample weights. Returns ------- precision : ndarray of shape (n_thresholds + 1,) Precision values such that element i is the precision of predictions with score >= thresholds[i] and the last element is 1. recall : ndarray of shape (n_thresholds + 1,) Decreasing recall values such that element i is the recall of predictions with score >= thresholds[i] and the last element is 0. thresholds : ndarray of shape (n_thresholds,) Increasing thresholds on the decision function used to compute precision and recall. n_thresholds <= len(np.unique(probas_pred)). See Also -------- plot_precision_recall_curve : Plot Precision Recall Curve for binary classifiers. PrecisionRecallDisplay : Precision Recall visualization. average_precision_score : Compute average precision from prediction scores. det_curve: Compute error rates for different probability thresholds. roc_curve : Compute Receiver operating characteristic (ROC) curve. Examples -------- >>> import numpy as np >>> from sklearn.metrics import precision_recall_curve >>> y_true = np.array([0, 0, 1, 1]) >>> y_scores = np.array([0.1, 0.4, 0.35, 0.8]) >>> precision, recall, thresholds = precision_recall_curve( ... y_true, y_scores) >>> precision array([0.66666667, 0.5 , 1. , 1. ]) >>> recall array([1. , 0.5, 0.5, 0. ]) >>> thresholds array([0.35, 0.4 , 0.8 ]) """ fps, tps, thresholds = _binary_clf_curve(y_true, probas_pred, pos_label=pos_label, sample_weight=sample_weight) precision = tps / (tps + fps) precision[np.isnan(precision)] = 0 recall = tps / tps[-1] # stop when full recall attained # and reverse the outputs so recall is decreasing last_ind = tps.searchsorted(tps[-1]) sl = slice(last_ind, None, -1) return np.r_[precision[sl], 1], np.r_[recall[sl], 0], thresholds[sl] @_deprecate_positional_args def roc_curve(y_true, y_score, *, pos_label=None, sample_weight=None, drop_intermediate=True): """Compute Receiver operating characteristic (ROC). Note: this implementation is restricted to the binary classification task. Read more in the :ref:`User Guide <roc_metrics>`. Parameters ---------- y_true : ndarray of shape (n_samples,) True binary labels. If labels are not either {-1, 1} or {0, 1}, then pos_label should be explicitly given. y_score : ndarray of shape (n_samples,) Target scores, can either be probability estimates of the positive class, confidence values, or non-thresholded measure of decisions (as returned by "decision_function" on some classifiers). pos_label : int or str, default=None The label of the positive class. When ``pos_label=None``, if `y_true` is in {-1, 1} or {0, 1}, ``pos_label`` is set to 1, otherwise an error will be raised. sample_weight : array-like of shape (n_samples,), default=None Sample weights. drop_intermediate : bool, default=True Whether to drop some suboptimal thresholds which would not appear on a plotted ROC curve. This is useful in order to create lighter ROC curves. .. versionadded:: 0.17 parameter *drop_intermediate*. Returns ------- fpr : ndarray of shape (>2,) Increasing false positive rates such that element i is the false positive rate of predictions with score >= `thresholds[i]`. tpr : ndarray of shape (>2,) Increasing true positive rates such that element `i` is the true positive rate of predictions with score >= `thresholds[i]`. thresholds : ndarray of shape = (n_thresholds,) Decreasing thresholds on the decision function used to compute fpr and tpr. `thresholds[0]` represents no instances being predicted and is arbitrarily set to `max(y_score) + 1`. See Also -------- plot_roc_curve : Plot Receiver operating characteristic (ROC) curve. RocCurveDisplay : ROC Curve visualization. det_curve: Compute error rates for different probability thresholds. roc_auc_score : Compute the area under the ROC curve. Notes ----- Since the thresholds are sorted from low to high values, they are reversed upon returning them to ensure they correspond to both ``fpr`` and ``tpr``, which are sorted in reversed order during their calculation. References ---------- .. [1] `Wikipedia entry for the Receiver operating characteristic <https://en.wikipedia.org/wiki/Receiver_operating_characteristic>`_ .. [2] Fawcett T. An introduction to ROC analysis[J]. Pattern Recognition Letters, 2006, 27(8):861-874. Examples -------- >>> import numpy as np >>> from sklearn import metrics >>> y = np.array([1, 1, 2, 2]) >>> scores = np.array([0.1, 0.4, 0.35, 0.8]) >>> fpr, tpr, thresholds = metrics.roc_curve(y, scores, pos_label=2) >>> fpr array([0. , 0. , 0.5, 0.5, 1. ]) >>> tpr array([0. , 0.5, 0.5, 1. , 1. ]) >>> thresholds array([1.8 , 0.8 , 0.4 , 0.35, 0.1 ]) """ fps, tps, thresholds = _binary_clf_curve( y_true, y_score, pos_label=pos_label, sample_weight=sample_weight) # Attempt to drop thresholds corresponding to points in between and # collinear with other points. These are always suboptimal and do not # appear on a plotted ROC curve (and thus do not affect the AUC). # Here np.diff(_, 2) is used as a "second derivative" to tell if there # is a corner at the point. Both fps and tps must be tested to handle # thresholds with multiple data points (which are combined in # _binary_clf_curve). This keeps all cases where the point should be kept, # but does not drop more complicated cases like fps = [1, 3, 7], # tps = [1, 2, 4]; there is no harm in keeping too many thresholds. if drop_intermediate and len(fps) > 2: optimal_idxs = np.where(np.r_[True, np.logical_or(np.diff(fps, 2), np.diff(tps, 2)), True])[0] fps = fps[optimal_idxs] tps = tps[optimal_idxs] thresholds = thresholds[optimal_idxs] # Add an extra threshold position # to make sure that the curve starts at (0, 0) tps = np.r_[0, tps] fps = np.r_[0, fps] thresholds = np.r_[thresholds[0] + 1, thresholds] if fps[-1] <= 0: warnings.warn("No negative samples in y_true, " "false positive value should be meaningless", UndefinedMetricWarning) fpr = np.repeat(np.nan, fps.shape) else: fpr = fps / fps[-1] if tps[-1] <= 0: warnings.warn("No positive samples in y_true, " "true positive value should be meaningless", UndefinedMetricWarning) tpr = np.repeat(np.nan, tps.shape) else: tpr = tps / tps[-1] return fpr, tpr, thresholds @_deprecate_positional_args def label_ranking_average_precision_score(y_true, y_score, *, sample_weight=None): """Compute ranking-based average precision. Label ranking average precision (LRAP) is the average over each ground truth label assigned to each sample, of the ratio of true vs. total labels with lower score. This metric is used in multilabel ranking problem, where the goal is to give better rank to the labels associated to each sample. The obtained score is always strictly greater than 0 and the best value is 1. Read more in the :ref:`User Guide <label_ranking_average_precision>`. Parameters ---------- y_true : {ndarray, sparse matrix} of shape (n_samples, n_labels) True binary labels in binary indicator format. y_score : ndarray of shape (n_samples, n_labels) Target scores, can either be probability estimates of the positive class, confidence values, or non-thresholded measure of decisions (as returned by "decision_function" on some classifiers). sample_weight : array-like of shape (n_samples,), default=None Sample weights. .. versionadded:: 0.20 Returns ------- score : float Examples -------- >>> import numpy as np >>> from sklearn.metrics import label_ranking_average_precision_score >>> y_true = np.array([[1, 0, 0], [0, 0, 1]]) >>> y_score = np.array([[0.75, 0.5, 1], [1, 0.2, 0.1]]) >>> label_ranking_average_precision_score(y_true, y_score) 0.416... """ check_consistent_length(y_true, y_score, sample_weight) y_true = check_array(y_true, ensure_2d=False) y_score = check_array(y_score, ensure_2d=False) if y_true.shape != y_score.shape: raise ValueError("y_true and y_score have different shape") # Handle badly formatted array and the degenerate case with one label y_type = type_of_target(y_true) if (y_type != "multilabel-indicator" and not (y_type == "binary" and y_true.ndim == 2)): raise ValueError("{0} format is not supported".format(y_type)) y_true = csr_matrix(y_true) y_score = -y_score n_samples, n_labels = y_true.shape out = 0. for i, (start, stop) in enumerate(zip(y_true.indptr, y_true.indptr[1:])): relevant = y_true.indices[start:stop] if (relevant.size == 0 or relevant.size == n_labels): # If all labels are relevant or unrelevant, the score is also # equal to 1. The label ranking has no meaning. aux = 1. else: scores_i = y_score[i] rank = rankdata(scores_i, 'max')[relevant] L = rankdata(scores_i[relevant], 'max') aux = (L / rank).mean() if sample_weight is not None: aux = aux * sample_weight[i] out += aux if sample_weight is None: out /= n_samples else: out /= np.sum(sample_weight) return out @_deprecate_positional_args def coverage_error(y_true, y_score, *, sample_weight=None): """Coverage error measure. Compute how far we need to go through the ranked scores to cover all true labels. The best value is equal to the average number of labels in ``y_true`` per sample. Ties in ``y_scores`` are broken by giving maximal rank that would have been assigned to all tied values. Note: Our implementation's score is 1 greater than the one given in Tsoumakas et al., 2010. This extends it to handle the degenerate case in which an instance has 0 true labels. Read more in the :ref:`User Guide <coverage_error>`. Parameters ---------- y_true : ndarray of shape (n_samples, n_labels) True binary labels in binary indicator format. y_score : ndarray of shape (n_samples, n_labels) Target scores, can either be probability estimates of the positive class, confidence values, or non-thresholded measure of decisions (as returned by "decision_function" on some classifiers). sample_weight : array-like of shape (n_samples,), default=None Sample weights. Returns ------- coverage_error : float References ---------- .. [1] Tsoumakas, G., Katakis, I., & Vlahavas, I. (2010). Mining multi-label data. In Data mining and knowledge discovery handbook (pp. 667-685). Springer US. """ y_true = check_array(y_true, ensure_2d=False) y_score = check_array(y_score, ensure_2d=False) check_consistent_length(y_true, y_score, sample_weight) y_type = type_of_target(y_true) if y_type != "multilabel-indicator": raise ValueError("{0} format is not supported".format(y_type)) if y_true.shape != y_score.shape: raise ValueError("y_true and y_score have different shape") y_score_mask = np.ma.masked_array(y_score, mask=np.logical_not(y_true)) y_min_relevant = y_score_mask.min(axis=1).reshape((-1, 1)) coverage = (y_score >= y_min_relevant).sum(axis=1) coverage = coverage.filled(0) return np.average(coverage, weights=sample_weight) @_deprecate_positional_args def label_ranking_loss(y_true, y_score, *, sample_weight=None): """Compute Ranking loss measure. Compute the average number of label pairs that are incorrectly ordered given y_score weighted by the size of the label set and the number of labels not in the label set. This is similar to the error set size, but weighted by the number of relevant and irrelevant labels. The best performance is achieved with a ranking loss of zero. Read more in the :ref:`User Guide <label_ranking_loss>`. .. versionadded:: 0.17 A function *label_ranking_loss* Parameters ---------- y_true : {ndarray, sparse matrix} of shape (n_samples, n_labels) True binary labels in binary indicator format. y_score : ndarray of shape (n_samples, n_labels) Target scores, can either be probability estimates of the positive class, confidence values, or non-thresholded measure of decisions (as returned by "decision_function" on some classifiers). sample_weight : array-like of shape (n_samples,), default=None Sample weights. Returns ------- loss : float References ---------- .. [1] Tsoumakas, G., Katakis, I., & Vlahavas, I. (2010). Mining multi-label data. In Data mining and knowledge discovery handbook (pp. 667-685). Springer US. """ y_true = check_array(y_true, ensure_2d=False, accept_sparse='csr') y_score = check_array(y_score, ensure_2d=False) check_consistent_length(y_true, y_score, sample_weight) y_type = type_of_target(y_true) if y_type not in ("multilabel-indicator",): raise ValueError("{0} format is not supported".format(y_type)) if y_true.shape != y_score.shape: raise ValueError("y_true and y_score have different shape") n_samples, n_labels = y_true.shape y_true = csr_matrix(y_true) loss = np.zeros(n_samples) for i, (start, stop) in enumerate(zip(y_true.indptr, y_true.indptr[1:])): # Sort and bin the label scores unique_scores, unique_inverse = np.unique(y_score[i], return_inverse=True) true_at_reversed_rank = np.bincount( unique_inverse[y_true.indices[start:stop]], minlength=len(unique_scores)) all_at_reversed_rank = np.bincount(unique_inverse, minlength=len(unique_scores)) false_at_reversed_rank = all_at_reversed_rank - true_at_reversed_rank # if the scores are ordered, it's possible to count the number of # incorrectly ordered paires in linear time by cumulatively counting # how many false labels of a given score have a score higher than the # accumulated true labels with lower score. loss[i] = np.dot(true_at_reversed_rank.cumsum(), false_at_reversed_rank) n_positives = count_nonzero(y_true, axis=1) with np.errstate(divide="ignore", invalid="ignore"): loss /= ((n_labels - n_positives) * n_positives) # When there is no positive or no negative labels, those values should # be consider as correct, i.e. the ranking doesn't matter. loss[np.logical_or(n_positives == 0, n_positives == n_labels)] = 0. return np.average(loss, weights=sample_weight) def _dcg_sample_scores(y_true, y_score, k=None, log_base=2, ignore_ties=False): """Compute Discounted Cumulative Gain. Sum the true scores ranked in the order induced by the predicted scores, after applying a logarithmic discount. This ranking metric yields a high value if true labels are ranked high by ``y_score``. Parameters ---------- y_true : ndarray of shape (n_samples, n_labels) True targets of multilabel classification, or true scores of entities to be ranked. y_score : ndarray of shape (n_samples, n_labels) Target scores, can either be probability estimates, confidence values, or non-thresholded measure of decisions (as returned by "decision_function" on some classifiers). k : int, default=None Only consider the highest k scores in the ranking. If None, use all outputs. log_base : float, default=2 Base of the logarithm used for the discount. A low value means a sharper discount (top results are more important). ignore_ties : bool, default=False Assume that there are no ties in y_score (which is likely to be the case if y_score is continuous) for efficiency gains. Returns ------- discounted_cumulative_gain : ndarray of shape (n_samples,) The DCG score for each sample. See Also -------- ndcg_score : The Discounted Cumulative Gain divided by the Ideal Discounted Cumulative Gain (the DCG obtained for a perfect ranking), in order to have a score between 0 and 1. """ discount = 1 / (np.log(np.arange(y_true.shape[1]) + 2) / np.log(log_base)) if k is not None: discount[k:] = 0 if ignore_ties: ranking = np.argsort(y_score)[:, ::-1] ranked = y_true[np.arange(ranking.shape[0])[:, np.newaxis], ranking] cumulative_gains = discount.dot(ranked.T) else: discount_cumsum = np.cumsum(discount) cumulative_gains = [_tie_averaged_dcg(y_t, y_s, discount_cumsum) for y_t, y_s in zip(y_true, y_score)] cumulative_gains = np.asarray(cumulative_gains) return cumulative_gains def _tie_averaged_dcg(y_true, y_score, discount_cumsum): """ Compute DCG by averaging over possible permutations of ties. The gain (`y_true`) of an index falling inside a tied group (in the order induced by `y_score`) is replaced by the average gain within this group. The discounted gain for a tied group is then the average `y_true` within this group times the sum of discounts of the corresponding ranks. This amounts to averaging scores for all possible orderings of the tied groups. (note in the case of dcg@k the discount is 0 after index k) Parameters ---------- y_true : ndarray The true relevance scores. y_score : ndarray Predicted scores. discount_cumsum : ndarray Precomputed cumulative sum of the discounts. Returns ------- discounted_cumulative_gain : float The discounted cumulative gain. References ---------- McSherry, F., & Najork, M. (2008, March). Computing information retrieval performance measures efficiently in the presence of tied scores. In European conference on information retrieval (pp. 414-421). Springer, Berlin, Heidelberg. """ _, inv, counts = np.unique( - y_score, return_inverse=True, return_counts=True) ranked = np.zeros(len(counts)) np.add.at(ranked, inv, y_true) ranked /= counts groups = np.cumsum(counts) - 1 discount_sums = np.empty(len(counts)) discount_sums[0] = discount_cumsum[groups[0]] discount_sums[1:] = np.diff(discount_cumsum[groups]) return (ranked * discount_sums).sum() def _check_dcg_target_type(y_true): y_type = type_of_target(y_true) supported_fmt = ("multilabel-indicator", "continuous-multioutput", "multiclass-multioutput") if y_type not in supported_fmt: raise ValueError( "Only {} formats are supported. Got {} instead".format( supported_fmt, y_type)) @_deprecate_positional_args def dcg_score(y_true, y_score, *, k=None, log_base=2, sample_weight=None, ignore_ties=False): """Compute Discounted Cumulative Gain. Sum the true scores ranked in the order induced by the predicted scores, after applying a logarithmic discount. This ranking metric yields a high value if true labels are ranked high by ``y_score``. Usually the Normalized Discounted Cumulative Gain (NDCG, computed by ndcg_score) is preferred. Parameters ---------- y_true : ndarray of shape (n_samples, n_labels) True targets of multilabel classification, or true scores of entities to be ranked. y_score : ndarray of shape (n_samples, n_labels) Target scores, can either be probability estimates, confidence values, or non-thresholded measure of decisions (as returned by "decision_function" on some classifiers). k : int, default=None Only consider the highest k scores in the ranking. If None, use all outputs. log_base : float, default=2 Base of the logarithm used for the discount. A low value means a sharper discount (top results are more important). sample_weight : ndarray of shape (n_samples,), default=None Sample weights. If None, all samples are given the same weight. ignore_ties : bool, default=False Assume that there are no ties in y_score (which is likely to be the case if y_score is continuous) for efficiency gains. Returns ------- discounted_cumulative_gain : float The averaged sample DCG scores. See Also -------- ndcg_score : The Discounted Cumulative Gain divided by the Ideal Discounted Cumulative Gain (the DCG obtained for a perfect ranking), in order to have a score between 0 and 1. References ---------- `Wikipedia entry for Discounted Cumulative Gain <https://en.wikipedia.org/wiki/Discounted_cumulative_gain>`_. Jarvelin, K., & Kekalainen, J. (2002). Cumulated gain-based evaluation of IR techniques. ACM Transactions on Information Systems (TOIS), 20(4), 422-446. Wang, Y., Wang, L., Li, Y., He, D., Chen, W., & Liu, T. Y. (2013, May). A theoretical analysis of NDCG ranking measures. In Proceedings of the 26th Annual Conference on Learning Theory (COLT 2013). McSherry, F., & Najork, M. (2008, March). Computing information retrieval performance measures efficiently in the presence of tied scores. In European conference on information retrieval (pp. 414-421). Springer, Berlin, Heidelberg. Examples -------- >>> from sklearn.metrics import dcg_score >>> # we have groud-truth relevance of some answers to a query: >>> true_relevance = np.asarray([[10, 0, 0, 1, 5]]) >>> # we predict scores for the answers >>> scores = np.asarray([[.1, .2, .3, 4, 70]]) >>> dcg_score(true_relevance, scores) 9.49... >>> # we can set k to truncate the sum; only top k answers contribute >>> dcg_score(true_relevance, scores, k=2) 5.63... >>> # now we have some ties in our prediction >>> scores = np.asarray([[1, 0, 0, 0, 1]]) >>> # by default ties are averaged, so here we get the average true >>> # relevance of our top predictions: (10 + 5) / 2 = 7.5 >>> dcg_score(true_relevance, scores, k=1) 7.5 >>> # we can choose to ignore ties for faster results, but only >>> # if we know there aren't ties in our scores, otherwise we get >>> # wrong results: >>> dcg_score(true_relevance, ... scores, k=1, ignore_ties=True) 5.0 """ y_true = check_array(y_true, ensure_2d=False) y_score = check_array(y_score, ensure_2d=False) check_consistent_length(y_true, y_score, sample_weight) _check_dcg_target_type(y_true) return np.average( _dcg_sample_scores( y_true, y_score, k=k, log_base=log_base, ignore_ties=ignore_ties), weights=sample_weight) def _ndcg_sample_scores(y_true, y_score, k=None, ignore_ties=False): """Compute Normalized Discounted Cumulative Gain. Sum the true scores ranked in the order induced by the predicted scores, after applying a logarithmic discount. Then divide by the best possible score (Ideal DCG, obtained for a perfect ranking) to obtain a score between 0 and 1. This ranking metric yields a high value if true labels are ranked high by ``y_score``. Parameters ---------- y_true : ndarray of shape (n_samples, n_labels) True targets of multilabel classification, or true scores of entities to be ranked. y_score : ndarray of shape (n_samples, n_labels) Target scores, can either be probability estimates, confidence values, or non-thresholded measure of decisions (as returned by "decision_function" on some classifiers). k : int, default=None Only consider the highest k scores in the ranking. If None, use all outputs. ignore_ties : bool, default=False Assume that there are no ties in y_score (which is likely to be the case if y_score is continuous) for efficiency gains. Returns ------- normalized_discounted_cumulative_gain : ndarray of shape (n_samples,) The NDCG score for each sample (float in [0., 1.]). See Also -------- dcg_score : Discounted Cumulative Gain (not normalized). """ gain = _dcg_sample_scores(y_true, y_score, k, ignore_ties=ignore_ties) # Here we use the order induced by y_true so we can ignore ties since # the gain associated to tied indices is the same (permuting ties doesn't # change the value of the re-ordered y_true) normalizing_gain = _dcg_sample_scores(y_true, y_true, k, ignore_ties=True) all_irrelevant = normalizing_gain == 0 gain[all_irrelevant] = 0 gain[~all_irrelevant] /= normalizing_gain[~all_irrelevant] return gain @_deprecate_positional_args def ndcg_score(y_true, y_score, *, k=None, sample_weight=None, ignore_ties=False): """Compute Normalized Discounted Cumulative Gain. Sum the true scores ranked in the order induced by the predicted scores, after applying a logarithmic discount. Then divide by the best possible score (Ideal DCG, obtained for a perfect ranking) to obtain a score between 0 and 1. This ranking metric yields a high value if true labels are ranked high by ``y_score``. Parameters ---------- y_true : ndarray of shape (n_samples, n_labels) True targets of multilabel classification, or true scores of entities to be ranked. y_score : ndarray of shape (n_samples, n_labels) Target scores, can either be probability estimates, confidence values, or non-thresholded measure of decisions (as returned by "decision_function" on some classifiers). k : int, default=None Only consider the highest k scores in the ranking. If None, use all outputs. sample_weight : ndarray of shape (n_samples,), default=None Sample weights. If None, all samples are given the same weight. ignore_ties : bool, default=False Assume that there are no ties in y_score (which is likely to be the case if y_score is continuous) for efficiency gains. Returns ------- normalized_discounted_cumulative_gain : float in [0., 1.] The averaged NDCG scores for all samples. See Also -------- dcg_score : Discounted Cumulative Gain (not normalized). References ---------- `Wikipedia entry for Discounted Cumulative Gain <https://en.wikipedia.org/wiki/Discounted_cumulative_gain>`_ Jarvelin, K., & Kekalainen, J. (2002). Cumulated gain-based evaluation of IR techniques. ACM Transactions on Information Systems (TOIS), 20(4), 422-446. Wang, Y., Wang, L., Li, Y., He, D., Chen, W., & Liu, T. Y. (2013, May). A theoretical analysis of NDCG ranking measures. In Proceedings of the 26th Annual Conference on Learning Theory (COLT 2013) McSherry, F., & Najork, M. (2008, March). Computing information retrieval performance measures efficiently in the presence of tied scores. In European conference on information retrieval (pp. 414-421). Springer, Berlin, Heidelberg. Examples -------- >>> from sklearn.metrics import ndcg_score >>> # we have groud-truth relevance of some answers to a query: >>> true_relevance = np.asarray([[10, 0, 0, 1, 5]]) >>> # we predict some scores (relevance) for the answers >>> scores = np.asarray([[.1, .2, .3, 4, 70]]) >>> ndcg_score(true_relevance, scores) 0.69... >>> scores = np.asarray([[.05, 1.1, 1., .5, .0]]) >>> ndcg_score(true_relevance, scores) 0.49... >>> # we can set k to truncate the sum; only top k answers contribute. >>> ndcg_score(true_relevance, scores, k=4) 0.35... >>> # the normalization takes k into account so a perfect answer >>> # would still get 1.0 >>> ndcg_score(true_relevance, true_relevance, k=4) 1.0 >>> # now we have some ties in our prediction >>> scores = np.asarray([[1, 0, 0, 0, 1]]) >>> # by default ties are averaged, so here we get the average (normalized) >>> # true relevance of our top predictions: (10 / 10 + 5 / 10) / 2 = .75 >>> ndcg_score(true_relevance, scores, k=1) 0.75 >>> # we can choose to ignore ties for faster results, but only >>> # if we know there aren't ties in our scores, otherwise we get >>> # wrong results: >>> ndcg_score(true_relevance, ... scores, k=1, ignore_ties=True) 0.5 """ y_true = check_array(y_true, ensure_2d=False) y_score = check_array(y_score, ensure_2d=False) check_consistent_length(y_true, y_score, sample_weight) _check_dcg_target_type(y_true) gain = _ndcg_sample_scores(y_true, y_score, k=k, ignore_ties=ignore_ties) return np.average(gain, weights=sample_weight) def top_k_accuracy_score(y_true, y_score, *, k=2, normalize=True, sample_weight=None, labels=None): """Top-k Accuracy classification score. This metric computes the number of times where the correct label is among the top `k` labels predicted (ranked by predicted scores). Note that the multilabel case isn't covered here. Read more in the :ref:`User Guide <top_k_accuracy_score>` Parameters ---------- y_true : array-like of shape (n_samples,) True labels. y_score : array-like of shape (n_samples,) or (n_samples, n_classes) Target scores. These can be either probability estimates or non-thresholded decision values (as returned by :term:`decision_function` on some classifiers). The binary case expects scores with shape (n_samples,) while the multiclass case expects scores with shape (n_samples, n_classes). In the nulticlass case, the order of the class scores must correspond to the order of ``labels``, if provided, or else to the numerical or lexicographical order of the labels in ``y_true``. k : int, default=2 Number of most likely outcomes considered to find the correct label. normalize : bool, default=True If `True`, return the fraction of correctly classified samples. Otherwise, return the number of correctly classified samples. sample_weight : array-like of shape (n_samples,), default=None Sample weights. If `None`, all samples are given the same weight. labels : array-like of shape (n_classes,), default=None Multiclass only. List of labels that index the classes in ``y_score``. If ``None``, the numerical or lexicographical order of the labels in ``y_true`` is used. Returns ------- score : float The top-k accuracy score. The best performance is 1 with `normalize == True` and the number of samples with `normalize == False`. See also -------- accuracy_score Notes ----- In cases where two or more labels are assigned equal predicted scores, the labels with the highest indices will be chosen first. This might impact the result if the correct label falls after the threshold because of that. Examples -------- >>> import numpy as np >>> from sklearn.metrics import top_k_accuracy_score >>> y_true = np.array([0, 1, 2, 2]) >>> y_score = np.array([[0.5, 0.2, 0.2], # 0 is in top 2 ... [0.3, 0.4, 0.2], # 1 is in top 2 ... [0.2, 0.4, 0.3], # 2 is in top 2 ... [0.7, 0.2, 0.1]]) # 2 isn't in top 2 >>> top_k_accuracy_score(y_true, y_score, k=2) 0.75 >>> # Not normalizing gives the number of "correctly" classified samples >>> top_k_accuracy_score(y_true, y_score, k=2, normalize=False) 3 """ y_true = check_array(y_true, ensure_2d=False, dtype=None) y_true = column_or_1d(y_true) y_type = type_of_target(y_true) y_score = check_array(y_score, ensure_2d=False) y_score = column_or_1d(y_score) if y_type == 'binary' else y_score check_consistent_length(y_true, y_score, sample_weight) if y_type not in {'binary', 'multiclass'}: raise ValueError( f"y type must be 'binary' or 'multiclass', got '{y_type}' instead." ) y_score_n_classes = y_score.shape[1] if y_score.ndim == 2 else 2 if labels is None: classes = _unique(y_true) n_classes = len(classes) if n_classes != y_score_n_classes: raise ValueError( f"Number of classes in 'y_true' ({n_classes}) not equal " f"to the number of classes in 'y_score' ({y_score_n_classes})." ) else: labels = column_or_1d(labels) classes = _unique(labels) n_labels = len(labels) n_classes = len(classes) if n_classes != n_labels: raise ValueError("Parameter 'labels' must be unique.") if not np.array_equal(classes, labels): raise ValueError("Parameter 'labels' must be ordered.") if n_classes != y_score_n_classes: raise ValueError( f"Number of given labels ({n_classes}) not equal to the " f"number of classes in 'y_score' ({y_score_n_classes})." ) if len(np.setdiff1d(y_true, classes)): raise ValueError( "'y_true' contains labels not in parameter 'labels'." ) if k >= n_classes: warnings.warn( f"'k' ({k}) greater than or equal to 'n_classes' ({n_classes}) " "will result in a perfect score and is therefore meaningless.", UndefinedMetricWarning ) y_true_encoded = _encode(y_true, uniques=classes) if y_type == 'binary': if k == 1: threshold = .5 if y_score.min() >= 0 and y_score.max() <= 1 else 0 y_pred = (y_score > threshold).astype(np.int64) hits = y_pred == y_true_encoded else: hits = np.ones_like(y_score, dtype=np.bool_) elif y_type == 'multiclass': sorted_pred = np.argsort(y_score, axis=1, kind='mergesort')[:, ::-1] hits = (y_true_encoded == sorted_pred[:, :k].T).any(axis=0) if normalize: return np.average(hits, weights=sample_weight) elif sample_weight is None: return np.sum(hits) else: return np.dot(hits, sample_weight)
bsd-3-clause
jiangzhonglian/MachineLearning
src/py3.x/ml/9.RegTrees/sklearn-regressTree-demo.py
1
1681
#!/usr/bin/python # coding:utf8 """ Created on 2017-07-13 Updated on 2017-07-13 RegressionTree:树回归 Author: 小瑶 GitHub: https://github.com/apachecn/AiLearning """ print(__doc__) # 引入必要的模型和库 import numpy as np from sklearn.tree import DecisionTreeRegressor import matplotlib.pyplot as plt # 创建一个随机的数据集 # 参考 https://docs.scipy.org/doc/numpy-1.6.0/reference/generated/numpy.random.mtrand.RandomState.html rng = np.random.RandomState(1) # print 'lalalalala===', rng # rand() 是给定形状的随机值,rng.rand(80, 1)即矩阵的形状是 80行,1列 # sort() X = np.sort(5 * rng.rand(80, 1), axis=0) # print 'X=', X y = np.sin(X).ravel() # print 'y=', y y[::5] += 3 * (0.5 - rng.rand(16)) # print 'yyy=', y # 拟合回归模型 # regr_1 = DecisionTreeRegressor(max_depth=2) # 保持 max_depth=5 不变,增加 min_samples_leaf=6 的参数,效果进一步提升了 regr_2 = DecisionTreeRegressor(max_depth=5) regr_2 = DecisionTreeRegressor(min_samples_leaf=6) # regr_3 = DecisionTreeRegressor(max_depth=4) # regr_1.fit(X, y) regr_2.fit(X, y) # regr_3.fit(X, y) # 预测 X_test = np.arange(0.0, 5.0, 0.01)[:, np.newaxis] # y_1 = regr_1.predict(X_test) y_2 = regr_2.predict(X_test) # y_3 = regr_3.predict(X_test) # 绘制结果 plt.figure() plt.scatter(X, y, c="darkorange", label="data") # plt.plot(X_test, y_1, color="cornflowerblue", label="max_depth=2", linewidth=2) plt.plot(X_test, y_2, color="yellowgreen", label="max_depth=5", linewidth=2) # plt.plot(X_test, y_3, color="red", label="max_depth=3", linewidth=2) plt.xlabel("data") plt.ylabel("target") plt.title("Decision Tree Regression") plt.legend() plt.show()
gpl-3.0
myuuuuun/ThinkStats2-Notebook
code/density.py
67
2934
"""This file contains code used in "Think Stats", by Allen B. Downey, available from greenteapress.com Copyright 2014 Allen B. Downey License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html """ from __future__ import print_function import math import random import brfss import first import thinkstats2 import thinkplot def Summarize(data): """Prints summary statistics. data: pandas Series """ mean = data.mean() std = data.std() median = thinkstats2.Median(data) print('mean', mean) print('std', std) print('median', median) print('skewness', thinkstats2.Skewness(data)) print('pearson skewness', thinkstats2.PearsonMedianSkewness(data)) return mean, median def ComputeSkewnesses(): """Plots KDE of birthweight and adult weight. """ def VertLine(x, y): thinkplot.Plot([x, x], [0, y], color='0.6', linewidth=1) live, firsts, others = first.MakeFrames() data = live.totalwgt_lb.dropna() print('Birth weight') mean, median = Summarize(data) y = 0.35 VertLine(mean, y) thinkplot.Text(mean-0.15, 0.1*y, 'mean', horizontalalignment='right') VertLine(median, y) thinkplot.Text(median+0.1, 0.1*y, 'median', horizontalalignment='left') pdf = thinkstats2.EstimatedPdf(data) thinkplot.Pdf(pdf, label='birth weight') thinkplot.Save(root='density_totalwgt_kde', xlabel='lbs', ylabel='PDF') df = brfss.ReadBrfss(nrows=None) data = df.wtkg2.dropna() print('Adult weight') mean, median = Summarize(data) y = 0.02499 VertLine(mean, y) thinkplot.Text(mean+1, 0.1*y, 'mean', horizontalalignment='left') VertLine(median, y) thinkplot.Text(median-1.5, 0.1*y, 'median', horizontalalignment='right') pdf = thinkstats2.EstimatedPdf(data) thinkplot.Pdf(pdf, label='adult weight') thinkplot.Save(root='density_wtkg2_kde', xlabel='kg', ylabel='PDF', xlim=[0, 200]) def MakePdfExample(n=500): """Plots a normal density function and a KDE estimate. n: sample size """ # mean and var of women's heights in cm, from the BRFSS mean, var = 163, 52.8 std = math.sqrt(var) # make a PDF and compute a density, FWIW pdf = thinkstats2.NormalPdf(mean, std) print(pdf.Density(mean + std)) # make a PMF and plot it thinkplot.PrePlot(2) thinkplot.Pdf(pdf, label='normal') # make a sample, make an estimated PDF, and plot it sample = [random.gauss(mean, std) for _ in range(n)] sample_pdf = thinkstats2.EstimatedPdf(sample) thinkplot.Pdf(sample_pdf, label='sample KDE') thinkplot.Save(root='pdf_example', xlabel='Height (cm)', ylabel='Density') def main(): thinkstats2.RandomSeed(17) MakePdfExample() ComputeSkewnesses() if __name__ == '__main__': main()
gpl-2.0
jereze/scikit-learn
examples/bicluster/plot_spectral_biclustering.py
403
2011
""" ============================================= A demo of the Spectral Biclustering algorithm ============================================= This example demonstrates how to generate a checkerboard dataset and bicluster it using the Spectral Biclustering algorithm. The data is generated with the ``make_checkerboard`` function, then shuffled and passed to the Spectral Biclustering algorithm. The rows and columns of the shuffled matrix are rearranged to show the biclusters found by the algorithm. The outer product of the row and column label vectors shows a representation of the checkerboard structure. """ print(__doc__) # Author: Kemal Eren <[email protected]> # License: BSD 3 clause import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import make_checkerboard from sklearn.datasets import samples_generator as sg from sklearn.cluster.bicluster import SpectralBiclustering from sklearn.metrics import consensus_score n_clusters = (4, 3) data, rows, columns = make_checkerboard( shape=(300, 300), n_clusters=n_clusters, noise=10, shuffle=False, random_state=0) plt.matshow(data, cmap=plt.cm.Blues) plt.title("Original dataset") data, row_idx, col_idx = sg._shuffle(data, random_state=0) plt.matshow(data, cmap=plt.cm.Blues) plt.title("Shuffled dataset") model = SpectralBiclustering(n_clusters=n_clusters, method='log', random_state=0) model.fit(data) score = consensus_score(model.biclusters_, (rows[:, row_idx], columns[:, col_idx])) print("consensus score: {:.1f}".format(score)) fit_data = data[np.argsort(model.row_labels_)] fit_data = fit_data[:, np.argsort(model.column_labels_)] plt.matshow(fit_data, cmap=plt.cm.Blues) plt.title("After biclustering; rearranged to show biclusters") plt.matshow(np.outer(np.sort(model.row_labels_) + 1, np.sort(model.column_labels_) + 1), cmap=plt.cm.Blues) plt.title("Checkerboard structure of rearranged data") plt.show()
bsd-3-clause
ashhher3/scikit-learn
sklearn/linear_model/tests/test_bayes.py
30
1812
# Author: Alexandre Gramfort <[email protected]> # Fabian Pedregosa <[email protected]> # # License: BSD 3 clause import numpy as np from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import SkipTest from sklearn.linear_model.bayes import BayesianRidge, ARDRegression from sklearn import datasets from sklearn.utils.testing import assert_array_almost_equal def test_bayesian_on_diabetes(): """ Test BayesianRidge on diabetes """ raise SkipTest("XFailed Test") diabetes = datasets.load_diabetes() X, y = diabetes.data, diabetes.target clf = BayesianRidge(compute_score=True) # Test with more samples than features clf.fit(X, y) # Test that scores are increasing at each iteration assert_array_equal(np.diff(clf.scores_) > 0, True) # Test with more features than samples X = X[:5, :] y = y[:5] clf.fit(X, y) # Test that scores are increasing at each iteration assert_array_equal(np.diff(clf.scores_) > 0, True) def test_toy_bayesian_ridge_object(): """ Test BayesianRidge on toy """ X = np.array([[1], [2], [6], [8], [10]]) Y = np.array([1, 2, 6, 8, 10]) clf = BayesianRidge(compute_score=True) clf.fit(X, Y) # Check that the model could approximately learn the identity function test = [[1], [3], [4]] assert_array_almost_equal(clf.predict(test), [1, 3, 4], 2) def test_toy_ard_object(): """ Test BayesianRegression ARD classifier """ X = np.array([[1], [2], [3]]) Y = np.array([1, 2, 3]) clf = ARDRegression(compute_score=True) clf.fit(X, Y) # Check that the model could approximately learn the identity function test = [[1], [3], [4]] assert_array_almost_equal(clf.predict(test), [1, 3, 4], 2)
bsd-3-clause
kviebahn/beam-cam
GaussBeamSimulation.py
1
4694
# -*- coding: utf-8 -*- """ Created on Thu Jul 30 15:57:43 2015 @author: Michael This file is part of beam-cam, a camera project to monitor and characterise laser beams. Copyright (C) 2015 Christian Gross <[email protected]>, Timon Hilker <[email protected]>, Michael Hoese <[email protected]>, and Konrad Viebahn <[email protected]> This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 3 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. Please see the README.md file for a copy of the GNU General Public License, or otherwise find it on <http://www.gnu.org/licenses/>. """ import numpy as np import matplotlib.pyplot as plt import matplotlib.cm as cm def rotmatrix(alpha): return np.array([[np.cos(alpha), -np.sin(alpha)], [np.sin(alpha), np.cos(alpha)]]) def gaussian2(xy, *p): '''returns gaussfunction for arbitrarily positioned and rotated 2d gauss''' A, sx, x0, y0, sy,alpha,off = p # M = np.array([[Bx,Bxy],[Bxy,By]]) R = rotmatrix(alpha) M = np.dot(R,np.dot(np.array([[1./sx**2,0],[0,1./sy**2]]),R.T)) r = np.array([xy[:,0]-x0,xy[:,1]-y0]) g = A*np.exp(-2*np.sum(np.dot(M,r)*r,axis=0)) + off # print g return g class GaussBeamSimulation: '''Class allows to simulate a gauss beam profile image captured by a camera''' def __init__(self): self.width = 754 self.height = 480 def NewImage(self): self.image = np.zeros((self.height,self.width)) def AddWhiteNoise(self,expectation=150): noise = np.random.poisson(expectation,self.image.shape).astype(int) self.image += noise def AddRandomGauss(self,meanamplitude=200,meansigmax=30,meansigmay=30,meanposition=[376,239]): amplitude = np.random.poisson(meanamplitude) sigmax = np.random.poisson(meansigmax) sigmay = np.random.poisson(meansigmay) position = [0,0] position[0] = np.random.poisson(meanposition[0]) position[1] = np.random.poisson(meanposition[1]) rotationangle = np.random.choice([0,np.pi/2.]) # rotationangle = 0 offset = 0. ny,nx = self.image.shape x = np.arange(self.width) y = np.arange(self.height) XY = np.meshgrid(x,y) XYflat = np.array(XY).reshape(2,nx*ny).T params = [amplitude,sigmax,position[0],position[1],sigmay,rotationangle,offset] gaussflat = gaussian2(XYflat,*params) gauss = np.array(gaussflat).reshape(ny,nx) self.image +=gauss def SimulateTotalImage(self,expectation=150,meanamplitude=200,meansigmax=20,meansigmay=20,meanposition=[376,239]): self.image = np.zeros((self.height,self.width)) noise = np.random.poisson(expectation,self.image.shape).astype(int) amplitude = np.random.poisson(meanamplitude) sigmax = np.random.poisson(meansigmax) sigmay = np.random.poisson(meansigmay) position = [0,0] position[0] = np.random.poisson(meanposition[0]) position[1] = np.random.poisson(meanposition[1]) # rotationangle = np.random.uniform(0,np.pi) rotationangle = np.random.choice([0,np.pi/2.]) offset = 0. ny,nx = self.image.shape x = np.arange(self.width) y = np.arange(self.height) XY = np.meshgrid(x,y) XYflat = np.array(XY).reshape(2,nx*ny).T params = [amplitude,sigmax,position[0],position[1],sigmay,rotationangle,offset] gaussflat = gaussian2(XYflat,*params) gauss = np.array(gaussflat).reshape(ny,nx) self.image = (self.image + noise + gauss).astype(int) #image saturation self.image[np.where(self.image>2**14)]=2**14 def CreateImages(self,number=10): i = 0 self.imageslist = [] for i in range(number): self.SimulateTotalImage() self.imageslist.append(self.image) i += 1 def ChooseImage(self,number=10): i = np.random.randint(0,number-1) # print i, 'i' self.image = self.imageslist[i] def ShowImage(self): plt.figure() plt.imshow(self.image, cmap = cm.Greys_r) plt.colorbar() plt.show() if __name__=="__main__": test = GaussBeamSimulation() test.NewImage() test.AddWhiteNoise() test.AddRandomGauss() test.ShowImage()
gpl-3.0
bmmalone/pymisc-utils
pyllars/nlp_utils.py
1
1790
""" This module contains helpers for performing natural language processing tasks. Often, it wraps operations from nltk: http://www.nltk.org/ """ # grab some sample text import nltk import nltk.stem import nltk.corpus import string PUNCTUATION_TABLE = str.maketrans('', '', string.punctuation) ENGLISH_STOP_WORDS = set(nltk.corpus.stopwords.words('english')) SNOWBALL_STEMMER = nltk.stem.snowball.SnowballStemmer("english") def clean_doc(doc): """ Clean the given string using a standard pipeline In particular, this function performs the following steps: 1. Tokenize the text 2. Convert to lower case 3. Remove `string.punctuation` characters from all words 4. Remove words which contain non-alphanumeric characters 5. Remove stop words (`nltk.corpus.stopwords.words('english')`) 6. Stem all remaining words (`nltk.stem.snowball.SnowballStemmer("english")`) 7. Join the stemmed words back with spaces After this operation, the text is ready for downstream with, for example, the CountVectorizer from sklearn. Parameters ---------- doc: str The string to clean up Returns ------- cleaned_doc: str The cleaned up string, using the pipeline described above """ # tokenize into words words = nltk.word_tokenize(doc) # convert to lower case words = [w.lower() for w in words] # remove punctuation from each word words = [w.translate(PUNCTUATION_TABLE) for w in words] # remove non-alphabetic words words = [w for w in words if w.isalpha()] # filter stopwords words = [w for w in words if not w in ENGLISH_STOP_WORDS] # stem words = [SNOWBALL_STEMMER.stem(w) for w in words] # join back words = ' '.join(words) return words
mit
olologin/scikit-learn
benchmarks/bench_glm.py
297
1493
""" A comparison of different methods in GLM Data comes from a random square matrix. """ from datetime import datetime import numpy as np from sklearn import linear_model from sklearn.utils.bench import total_seconds if __name__ == '__main__': import pylab as pl n_iter = 40 time_ridge = np.empty(n_iter) time_ols = np.empty(n_iter) time_lasso = np.empty(n_iter) dimensions = 500 * np.arange(1, n_iter + 1) for i in range(n_iter): print('Iteration %s of %s' % (i, n_iter)) n_samples, n_features = 10 * i + 3, 10 * i + 3 X = np.random.randn(n_samples, n_features) Y = np.random.randn(n_samples) start = datetime.now() ridge = linear_model.Ridge(alpha=1.) ridge.fit(X, Y) time_ridge[i] = total_seconds(datetime.now() - start) start = datetime.now() ols = linear_model.LinearRegression() ols.fit(X, Y) time_ols[i] = total_seconds(datetime.now() - start) start = datetime.now() lasso = linear_model.LassoLars() lasso.fit(X, Y) time_lasso[i] = total_seconds(datetime.now() - start) pl.figure('scikit-learn GLM benchmark results') pl.xlabel('Dimensions') pl.ylabel('Time (s)') pl.plot(dimensions, time_ridge, color='r') pl.plot(dimensions, time_ols, color='g') pl.plot(dimensions, time_lasso, color='b') pl.legend(['Ridge', 'OLS', 'LassoLars'], loc='upper left') pl.axis('tight') pl.show()
bsd-3-clause
lthurlow/Network-Grapher
proj/external/matplotlib-1.2.1/build/lib.linux-i686-2.7/matplotlib/testing/decorators.py
2
10495
from __future__ import print_function from matplotlib.testing.noseclasses import KnownFailureTest, \ KnownFailureDidNotFailTest, ImageComparisonFailure import os, sys, shutil import nose import matplotlib import matplotlib.tests import matplotlib.units from matplotlib import ticker from matplotlib import pyplot as plt from matplotlib import ft2font import numpy as np from matplotlib.testing.compare import comparable_formats, compare_images, \ make_test_filename import warnings def knownfailureif(fail_condition, msg=None, known_exception_class=None ): """ Assume a will fail if *fail_condition* is True. *fail_condition* may also be False or the string 'indeterminate'. *msg* is the error message displayed for the test. If *known_exception_class* is not None, the failure is only known if the exception is an instance of this class. (Default = None) """ # based on numpy.testing.dec.knownfailureif if msg is None: msg = 'Test known to fail' def known_fail_decorator(f): # Local import to avoid a hard nose dependency and only incur the # import time overhead at actual test-time. import nose def failer(*args, **kwargs): try: # Always run the test (to generate images). result = f(*args, **kwargs) except Exception as err: if fail_condition: if known_exception_class is not None: if not isinstance(err,known_exception_class): # This is not the expected exception raise # (Keep the next ultra-long comment so in shows in console.) raise KnownFailureTest(msg) # An error here when running nose means that you don't have the matplotlib.testing.noseclasses:KnownFailure plugin in use. else: raise if fail_condition and fail_condition != 'indeterminate': raise KnownFailureDidNotFailTest(msg) return result return nose.tools.make_decorator(f)(failer) return known_fail_decorator class CleanupTest(object): @classmethod def setup_class(cls): cls.original_units_registry = matplotlib.units.registry.copy() @classmethod def teardown_class(cls): plt.close('all') matplotlib.tests.setup() matplotlib.units.registry.clear() matplotlib.units.registry.update(cls.original_units_registry) warnings.resetwarnings() #reset any warning filters set in tests def test(self): self._func() def cleanup(func): name = func.__name__ func = staticmethod(func) func.__get__(1).__name__ = '_private' new_class = type( name, (CleanupTest,), {'_func': func}) return new_class def check_freetype_version(ver): if ver is None: return True from distutils import version if isinstance(ver, str): ver = (ver, ver) ver = [version.StrictVersion(x) for x in ver] found = version.StrictVersion(ft2font.__freetype_version__) return found >= ver[0] and found <= ver[1] class ImageComparisonTest(CleanupTest): @classmethod def setup_class(cls): CleanupTest.setup_class() cls._func() @staticmethod def remove_text(figure): figure.suptitle("") for ax in figure.get_axes(): ax.set_title("") ax.xaxis.set_major_formatter(ticker.NullFormatter()) ax.xaxis.set_minor_formatter(ticker.NullFormatter()) ax.yaxis.set_major_formatter(ticker.NullFormatter()) ax.yaxis.set_minor_formatter(ticker.NullFormatter()) def test(self): baseline_dir, result_dir = _image_directories(self._func) for fignum, baseline in zip(plt.get_fignums(), self._baseline_images): figure = plt.figure(fignum) for extension in self._extensions: will_fail = not extension in comparable_formats() if will_fail: fail_msg = 'Cannot compare %s files on this system' % extension else: fail_msg = 'No failure expected' orig_expected_fname = os.path.join(baseline_dir, baseline) + '.' + extension if extension == 'eps' and not os.path.exists(orig_expected_fname): orig_expected_fname = os.path.join(baseline_dir, baseline) + '.pdf' expected_fname = make_test_filename(os.path.join( result_dir, os.path.basename(orig_expected_fname)), 'expected') actual_fname = os.path.join(result_dir, baseline) + '.' + extension if os.path.exists(orig_expected_fname): shutil.copyfile(orig_expected_fname, expected_fname) else: will_fail = True fail_msg = 'Do not have baseline image %s' % expected_fname @knownfailureif( will_fail, fail_msg, known_exception_class=ImageComparisonFailure) def do_test(): if self._remove_text: self.remove_text(figure) figure.savefig(actual_fname) err = compare_images(expected_fname, actual_fname, self._tol, in_decorator=True) try: if not os.path.exists(expected_fname): raise ImageComparisonFailure( 'image does not exist: %s' % expected_fname) if err: raise ImageComparisonFailure( 'images not close: %(actual)s vs. %(expected)s ' '(RMS %(rms).3f)'%err) except ImageComparisonFailure: if not check_freetype_version(self._freetype_version): raise KnownFailureTest( "Mismatched version of freetype. Test requires '%s', you have '%s'" % (self._freetype_version, ft2font.__freetype_version__)) raise yield (do_test,) def image_comparison(baseline_images=None, extensions=None, tol=1e-3, freetype_version=None, remove_text=False): """ call signature:: image_comparison(baseline_images=['my_figure'], extensions=None) Compare images generated by the test with those specified in *baseline_images*, which must correspond else an ImageComparisonFailure exception will be raised. Keyword arguments: *baseline_images*: list A list of strings specifying the names of the images generated by calls to :meth:`matplotlib.figure.savefig`. *extensions*: [ None | list ] If *None*, default to all supported extensions. Otherwise, a list of extensions to test. For example ['png','pdf']. *tol*: (default 1e-3) The RMS threshold above which the test is considered failed. *freetype_version*: str or tuple The expected freetype version or range of versions for this test to pass. *remove_text*: bool Remove the title and tick text from the figure before comparison. This does not remove other, more deliberate, text, such as legends and annotations. """ if baseline_images is None: raise ValueError('baseline_images must be specified') if extensions is None: # default extensions to test extensions = ['png', 'pdf', 'svg'] def compare_images_decorator(func): # We want to run the setup function (the actual test function # that generates the figure objects) only once for each type # of output file. The only way to achieve this with nose # appears to be to create a test class with "setup_class" and # "teardown_class" methods. Creating a class instance doesn't # work, so we use type() to actually create a class and fill # it with the appropriate methods. name = func.__name__ # For nose 1.0, we need to rename the test function to # something without the word "test", or it will be run as # well, outside of the context of our image comparison test # generator. func = staticmethod(func) func.__get__(1).__name__ = '_private' new_class = type( name, (ImageComparisonTest,), {'_func': func, '_baseline_images': baseline_images, '_extensions': extensions, '_tol': tol, '_freetype_version': freetype_version, '_remove_text': remove_text}) return new_class return compare_images_decorator def _image_directories(func): """ Compute the baseline and result image directories for testing *func*. Create the result directory if it doesn't exist. """ module_name = func.__module__ if module_name == '__main__': # FIXME: this won't work for nested packages in matplotlib.tests warnings.warn('test module run as script. guessing baseline image locations') script_name = sys.argv[0] basedir = os.path.abspath(os.path.dirname(script_name)) subdir = os.path.splitext(os.path.split(script_name)[1])[0] else: mods = module_name.split('.') mods.pop(0) # <- will be the name of the package being tested (in # most cases "matplotlib") assert mods.pop(0) == 'tests' subdir = os.path.join(*mods) import imp def find_dotted_module(module_name, path=None): """A version of imp which can handle dots in the module name""" res = None for sub_mod in module_name.split('.'): res = _, path, _ = imp.find_module(sub_mod, path) path = [path] return res mod_file = find_dotted_module(func.__module__)[1] basedir = os.path.dirname(mod_file) baseline_dir = os.path.join(basedir, 'baseline_images', subdir) result_dir = os.path.abspath(os.path.join('result_images', subdir)) if not os.path.exists(result_dir): os.makedirs(result_dir) return baseline_dir, result_dir
mit
mattgiguere/scikit-learn
sklearn/utils/fixes.py
29
12072
"""Compatibility fixes for older version of python, numpy and scipy If you add content to this file, please give the version of the package at which the fixe is no longer needed. """ # Authors: Emmanuelle Gouillart <[email protected]> # Gael Varoquaux <[email protected]> # Fabian Pedregosa <[email protected]> # Lars Buitinck # # License: BSD 3 clause import inspect import warnings import sys import functools import numpy as np import scipy.sparse as sp import scipy def _parse_version(version_string): version = [] for x in version_string.split('.'): try: version.append(int(x)) except ValueError: # x may be of the form dev-1ea1592 version.append(x) return tuple(version) np_version = _parse_version(np.__version__) sp_version = _parse_version(scipy.__version__) try: from scipy.special import expit # SciPy >= 0.10 with np.errstate(invalid='ignore', over='ignore'): if np.isnan(expit(1000)): # SciPy < 0.14 raise ImportError("no stable expit in scipy.special") except ImportError: def expit(x, out=None): """Logistic sigmoid function, ``1 / (1 + exp(-x))``. See sklearn.utils.extmath.log_logistic for the log of this function. """ if out is None: out = np.empty(np.atleast_1d(x).shape, dtype=np.float64) out[:] = x # 1 / (1 + exp(-x)) = (1 + tanh(x / 2)) / 2 # This way of computing the logistic is both fast and stable. out *= .5 np.tanh(out, out) out += 1 out *= .5 return out.reshape(np.shape(x)) # little danse to see if np.copy has an 'order' keyword argument if 'order' in inspect.getargspec(np.copy)[0]: def safe_copy(X): # Copy, but keep the order return np.copy(X, order='K') else: # Before an 'order' argument was introduced, numpy wouldn't muck with # the ordering safe_copy = np.copy try: if (not np.allclose(np.divide(.4, 1, casting="unsafe"), np.divide(.4, 1, casting="unsafe", dtype=np.float)) or not np.allclose(np.divide(.4, 1), .4)): raise TypeError('Divide not working with dtype: ' 'https://github.com/numpy/numpy/issues/3484') divide = np.divide except TypeError: # Compat for old versions of np.divide that do not provide support for # the dtype args def divide(x1, x2, out=None, dtype=None): out_orig = out if out is None: out = np.asarray(x1, dtype=dtype) if out is x1: out = x1.copy() else: if out is not x1: out[:] = x1 if dtype is not None and out.dtype != dtype: out = out.astype(dtype) out /= x2 if out_orig is None and np.isscalar(x1): out = np.asscalar(out) return out try: np.array(5).astype(float, copy=False) except TypeError: # Compat where astype accepted no copy argument def astype(array, dtype, copy=True): if not copy and array.dtype == dtype: return array return array.astype(dtype) else: astype = np.ndarray.astype try: with warnings.catch_warnings(record=True): # Don't raise the numpy deprecation warnings that appear in # 1.9, but avoid Python bug due to simplefilter('ignore') warnings.simplefilter('always') sp.csr_matrix([1.0, 2.0, 3.0]).max(axis=0) except (TypeError, AttributeError): # in scipy < 14.0, sparse matrix min/max doesn't accept an `axis` argument # the following code is taken from the scipy 0.14 codebase def _minor_reduce(X, ufunc): major_index = np.flatnonzero(np.diff(X.indptr)) if X.data.size == 0 and major_index.size == 0: # Numpy < 1.8.0 don't handle empty arrays in reduceat value = np.zeros_like(X.data) else: value = ufunc.reduceat(X.data, X.indptr[major_index]) return major_index, value def _min_or_max_axis(X, axis, min_or_max): N = X.shape[axis] if N == 0: raise ValueError("zero-size array to reduction operation") M = X.shape[1 - axis] mat = X.tocsc() if axis == 0 else X.tocsr() mat.sum_duplicates() major_index, value = _minor_reduce(mat, min_or_max) not_full = np.diff(mat.indptr)[major_index] < N value[not_full] = min_or_max(value[not_full], 0) mask = value != 0 major_index = np.compress(mask, major_index) value = np.compress(mask, value) from scipy.sparse import coo_matrix if axis == 0: res = coo_matrix((value, (np.zeros(len(value)), major_index)), dtype=X.dtype, shape=(1, M)) else: res = coo_matrix((value, (major_index, np.zeros(len(value)))), dtype=X.dtype, shape=(M, 1)) return res.A.ravel() def _sparse_min_or_max(X, axis, min_or_max): if axis is None: if 0 in X.shape: raise ValueError("zero-size array to reduction operation") zero = X.dtype.type(0) if X.nnz == 0: return zero m = min_or_max.reduce(X.data.ravel()) if X.nnz != np.product(X.shape): m = min_or_max(zero, m) return m if axis < 0: axis += 2 if (axis == 0) or (axis == 1): return _min_or_max_axis(X, axis, min_or_max) else: raise ValueError("invalid axis, use 0 for rows, or 1 for columns") def sparse_min_max(X, axis): return (_sparse_min_or_max(X, axis, np.minimum), _sparse_min_or_max(X, axis, np.maximum)) else: def sparse_min_max(X, axis): return (X.min(axis=axis).toarray().ravel(), X.max(axis=axis).toarray().ravel()) try: from numpy import argpartition except ImportError: # numpy.argpartition was introduced in v 1.8.0 def argpartition(a, kth, axis=-1, kind='introselect', order=None): return np.argsort(a, axis=axis, order=order) try: from itertools import combinations_with_replacement except ImportError: # Backport of itertools.combinations_with_replacement for Python 2.6, # from Python 3.4 documentation (http://tinyurl.com/comb-w-r), copyright # Python Software Foundation (https://docs.python.org/3/license.html) def combinations_with_replacement(iterable, r): # combinations_with_replacement('ABC', 2) --> AA AB AC BB BC CC pool = tuple(iterable) n = len(pool) if not n and r: return indices = [0] * r yield tuple(pool[i] for i in indices) while True: for i in reversed(range(r)): if indices[i] != n - 1: break else: return indices[i:] = [indices[i] + 1] * (r - i) yield tuple(pool[i] for i in indices) try: from numpy import isclose except ImportError: def isclose(a, b, rtol=1.e-5, atol=1.e-8, equal_nan=False): """ Returns a boolean array where two arrays are element-wise equal within a tolerance. This function was added to numpy v1.7.0, and the version you are running has been backported from numpy v1.8.1. See its documentation for more details. """ def within_tol(x, y, atol, rtol): with np.errstate(invalid='ignore'): result = np.less_equal(abs(x - y), atol + rtol * abs(y)) if np.isscalar(a) and np.isscalar(b): result = bool(result) return result x = np.array(a, copy=False, subok=True, ndmin=1) y = np.array(b, copy=False, subok=True, ndmin=1) xfin = np.isfinite(x) yfin = np.isfinite(y) if all(xfin) and all(yfin): return within_tol(x, y, atol, rtol) else: finite = xfin & yfin cond = np.zeros_like(finite, subok=True) # Since we're using boolean indexing, x & y must be the same shape. # Ideally, we'd just do x, y = broadcast_arrays(x, y). It's in # lib.stride_tricks, though, so we can't import it here. x = x * np.ones_like(cond) y = y * np.ones_like(cond) # Avoid subtraction with infinite/nan values... cond[finite] = within_tol(x[finite], y[finite], atol, rtol) # Check for equality of infinite values... cond[~finite] = (x[~finite] == y[~finite]) if equal_nan: # Make NaN == NaN cond[np.isnan(x) & np.isnan(y)] = True return cond if np_version < (1, 7): # Prior to 1.7.0, np.frombuffer wouldn't work for empty first arg. def frombuffer_empty(buf, dtype): if len(buf) == 0: return np.empty(0, dtype=dtype) else: return np.frombuffer(buf, dtype=dtype) else: frombuffer_empty = np.frombuffer if np_version < (1, 8): def in1d(ar1, ar2, assume_unique=False, invert=False): # Backport of numpy function in1d 1.8.1 to support numpy 1.6.2 # Ravel both arrays, behavior for the first array could be different ar1 = np.asarray(ar1).ravel() ar2 = np.asarray(ar2).ravel() # This code is significantly faster when the condition is satisfied. if len(ar2) < 10 * len(ar1) ** 0.145: if invert: mask = np.ones(len(ar1), dtype=np.bool) for a in ar2: mask &= (ar1 != a) else: mask = np.zeros(len(ar1), dtype=np.bool) for a in ar2: mask |= (ar1 == a) return mask # Otherwise use sorting if not assume_unique: ar1, rev_idx = np.unique(ar1, return_inverse=True) ar2 = np.unique(ar2) ar = np.concatenate((ar1, ar2)) # We need this to be a stable sort, so always use 'mergesort' # here. The values from the first array should always come before # the values from the second array. order = ar.argsort(kind='mergesort') sar = ar[order] if invert: bool_ar = (sar[1:] != sar[:-1]) else: bool_ar = (sar[1:] == sar[:-1]) flag = np.concatenate((bool_ar, [invert])) indx = order.argsort(kind='mergesort')[:len(ar1)] if assume_unique: return flag[indx] else: return flag[indx][rev_idx] else: from numpy import in1d if sp_version < (0, 15): # Backport fix for scikit-learn/scikit-learn#2986 / scipy/scipy#4142 from ._scipy_sparse_lsqr_backport import lsqr as sparse_lsqr else: from scipy.sparse.linalg import lsqr as sparse_lsqr if sys.version_info < (2, 7, 0): # partial cannot be pickled in Python 2.6 # http://bugs.python.org/issue1398 class partial(object): def __init__(self, func, *args, **keywords): functools.update_wrapper(self, func) self.func = func self.args = args self.keywords = keywords def __call__(self, *args, **keywords): args = self.args + args kwargs = self.keywords.copy() kwargs.update(keywords) return self.func(*args, **kwargs) else: from functools import partial if np_version < (1, 6, 2): # Allow bincount to accept empty arrays # https://github.com/numpy/numpy/commit/40f0844846a9d7665616b142407a3d74cb65a040 def bincount(x, weights=None, minlength=None): if len(x) > 0: return np.bincount(x, weights, minlength) else: if minlength is None: minlength = 0 minlength = np.asscalar(np.asarray(minlength, dtype=np.intp)) return np.zeros(minlength, dtype=np.intp) else: from numpy import bincount
bsd-3-clause
jmetzen/scikit-learn
sklearn/tests/test_isotonic.py
230
11087
import numpy as np import pickle from sklearn.isotonic import (check_increasing, isotonic_regression, IsotonicRegression) from sklearn.utils.testing import (assert_raises, assert_array_equal, assert_true, assert_false, assert_equal, assert_array_almost_equal, assert_warns_message, assert_no_warnings) from sklearn.utils import shuffle def test_permutation_invariance(): # check that fit is permuation invariant. # regression test of missing sorting of sample-weights ir = IsotonicRegression() x = [1, 2, 3, 4, 5, 6, 7] y = [1, 41, 51, 1, 2, 5, 24] sample_weight = [1, 2, 3, 4, 5, 6, 7] x_s, y_s, sample_weight_s = shuffle(x, y, sample_weight, random_state=0) y_transformed = ir.fit_transform(x, y, sample_weight=sample_weight) y_transformed_s = ir.fit(x_s, y_s, sample_weight=sample_weight_s).transform(x) assert_array_equal(y_transformed, y_transformed_s) def test_check_increasing_up(): x = [0, 1, 2, 3, 4, 5] y = [0, 1.5, 2.77, 8.99, 8.99, 50] # Check that we got increasing=True and no warnings is_increasing = assert_no_warnings(check_increasing, x, y) assert_true(is_increasing) def test_check_increasing_up_extreme(): x = [0, 1, 2, 3, 4, 5] y = [0, 1, 2, 3, 4, 5] # Check that we got increasing=True and no warnings is_increasing = assert_no_warnings(check_increasing, x, y) assert_true(is_increasing) def test_check_increasing_down(): x = [0, 1, 2, 3, 4, 5] y = [0, -1.5, -2.77, -8.99, -8.99, -50] # Check that we got increasing=False and no warnings is_increasing = assert_no_warnings(check_increasing, x, y) assert_false(is_increasing) def test_check_increasing_down_extreme(): x = [0, 1, 2, 3, 4, 5] y = [0, -1, -2, -3, -4, -5] # Check that we got increasing=False and no warnings is_increasing = assert_no_warnings(check_increasing, x, y) assert_false(is_increasing) def test_check_ci_warn(): x = [0, 1, 2, 3, 4, 5] y = [0, -1, 2, -3, 4, -5] # Check that we got increasing=False and CI interval warning is_increasing = assert_warns_message(UserWarning, "interval", check_increasing, x, y) assert_false(is_increasing) def test_isotonic_regression(): y = np.array([3, 7, 5, 9, 8, 7, 10]) y_ = np.array([3, 6, 6, 8, 8, 8, 10]) assert_array_equal(y_, isotonic_regression(y)) x = np.arange(len(y)) ir = IsotonicRegression(y_min=0., y_max=1.) ir.fit(x, y) assert_array_equal(ir.fit(x, y).transform(x), ir.fit_transform(x, y)) assert_array_equal(ir.transform(x), ir.predict(x)) # check that it is immune to permutation perm = np.random.permutation(len(y)) ir = IsotonicRegression(y_min=0., y_max=1.) assert_array_equal(ir.fit_transform(x[perm], y[perm]), ir.fit_transform(x, y)[perm]) assert_array_equal(ir.transform(x[perm]), ir.transform(x)[perm]) # check we don't crash when all x are equal: ir = IsotonicRegression() assert_array_equal(ir.fit_transform(np.ones(len(x)), y), np.mean(y)) def test_isotonic_regression_ties_min(): # Setup examples with ties on minimum x = [0, 1, 1, 2, 3, 4, 5] y = [0, 1, 2, 3, 4, 5, 6] y_true = [0, 1.5, 1.5, 3, 4, 5, 6] # Check that we get identical results for fit/transform and fit_transform ir = IsotonicRegression() ir.fit(x, y) assert_array_equal(ir.fit(x, y).transform(x), ir.fit_transform(x, y)) assert_array_equal(y_true, ir.fit_transform(x, y)) def test_isotonic_regression_ties_max(): # Setup examples with ties on maximum x = [1, 2, 3, 4, 5, 5] y = [1, 2, 3, 4, 5, 6] y_true = [1, 2, 3, 4, 5.5, 5.5] # Check that we get identical results for fit/transform and fit_transform ir = IsotonicRegression() ir.fit(x, y) assert_array_equal(ir.fit(x, y).transform(x), ir.fit_transform(x, y)) assert_array_equal(y_true, ir.fit_transform(x, y)) def test_isotonic_regression_ties_secondary_(): """ Test isotonic regression fit, transform and fit_transform against the "secondary" ties method and "pituitary" data from R "isotone" package, as detailed in: J. d. Leeuw, K. Hornik, P. Mair, Isotone Optimization in R: Pool-Adjacent-Violators Algorithm (PAVA) and Active Set Methods Set values based on pituitary example and the following R command detailed in the paper above: > library("isotone") > data("pituitary") > res1 <- gpava(pituitary$age, pituitary$size, ties="secondary") > res1$x `isotone` version: 1.0-2, 2014-09-07 R version: R version 3.1.1 (2014-07-10) """ x = [8, 8, 8, 10, 10, 10, 12, 12, 12, 14, 14] y = [21, 23.5, 23, 24, 21, 25, 21.5, 22, 19, 23.5, 25] y_true = [22.22222, 22.22222, 22.22222, 22.22222, 22.22222, 22.22222, 22.22222, 22.22222, 22.22222, 24.25, 24.25] # Check fit, transform and fit_transform ir = IsotonicRegression() ir.fit(x, y) assert_array_almost_equal(ir.transform(x), y_true, 4) assert_array_almost_equal(ir.fit_transform(x, y), y_true, 4) def test_isotonic_regression_reversed(): y = np.array([10, 9, 10, 7, 6, 6.1, 5]) y_ = IsotonicRegression(increasing=False).fit_transform( np.arange(len(y)), y) assert_array_equal(np.ones(y_[:-1].shape), ((y_[:-1] - y_[1:]) >= 0)) def test_isotonic_regression_auto_decreasing(): # Set y and x for decreasing y = np.array([10, 9, 10, 7, 6, 6.1, 5]) x = np.arange(len(y)) # Create model and fit_transform ir = IsotonicRegression(increasing='auto') y_ = assert_no_warnings(ir.fit_transform, x, y) # Check that relationship decreases is_increasing = y_[0] < y_[-1] assert_false(is_increasing) def test_isotonic_regression_auto_increasing(): # Set y and x for decreasing y = np.array([5, 6.1, 6, 7, 10, 9, 10]) x = np.arange(len(y)) # Create model and fit_transform ir = IsotonicRegression(increasing='auto') y_ = assert_no_warnings(ir.fit_transform, x, y) # Check that relationship increases is_increasing = y_[0] < y_[-1] assert_true(is_increasing) def test_assert_raises_exceptions(): ir = IsotonicRegression() rng = np.random.RandomState(42) assert_raises(ValueError, ir.fit, [0, 1, 2], [5, 7, 3], [0.1, 0.6]) assert_raises(ValueError, ir.fit, [0, 1, 2], [5, 7]) assert_raises(ValueError, ir.fit, rng.randn(3, 10), [0, 1, 2]) assert_raises(ValueError, ir.transform, rng.randn(3, 10)) def test_isotonic_sample_weight_parameter_default_value(): # check if default value of sample_weight parameter is one ir = IsotonicRegression() # random test data rng = np.random.RandomState(42) n = 100 x = np.arange(n) y = rng.randint(-50, 50, size=(n,)) + 50. * np.log(1 + np.arange(n)) # check if value is correctly used weights = np.ones(n) y_set_value = ir.fit_transform(x, y, sample_weight=weights) y_default_value = ir.fit_transform(x, y) assert_array_equal(y_set_value, y_default_value) def test_isotonic_min_max_boundaries(): # check if min value is used correctly ir = IsotonicRegression(y_min=2, y_max=4) n = 6 x = np.arange(n) y = np.arange(n) y_test = [2, 2, 2, 3, 4, 4] y_result = np.round(ir.fit_transform(x, y)) assert_array_equal(y_result, y_test) def test_isotonic_sample_weight(): ir = IsotonicRegression() x = [1, 2, 3, 4, 5, 6, 7] y = [1, 41, 51, 1, 2, 5, 24] sample_weight = [1, 2, 3, 4, 5, 6, 7] expected_y = [1, 13.95, 13.95, 13.95, 13.95, 13.95, 24] received_y = ir.fit_transform(x, y, sample_weight=sample_weight) assert_array_equal(expected_y, received_y) def test_isotonic_regression_oob_raise(): # Set y and x y = np.array([3, 7, 5, 9, 8, 7, 10]) x = np.arange(len(y)) # Create model and fit ir = IsotonicRegression(increasing='auto', out_of_bounds="raise") ir.fit(x, y) # Check that an exception is thrown assert_raises(ValueError, ir.predict, [min(x) - 10, max(x) + 10]) def test_isotonic_regression_oob_clip(): # Set y and x y = np.array([3, 7, 5, 9, 8, 7, 10]) x = np.arange(len(y)) # Create model and fit ir = IsotonicRegression(increasing='auto', out_of_bounds="clip") ir.fit(x, y) # Predict from training and test x and check that min/max match. y1 = ir.predict([min(x) - 10, max(x) + 10]) y2 = ir.predict(x) assert_equal(max(y1), max(y2)) assert_equal(min(y1), min(y2)) def test_isotonic_regression_oob_nan(): # Set y and x y = np.array([3, 7, 5, 9, 8, 7, 10]) x = np.arange(len(y)) # Create model and fit ir = IsotonicRegression(increasing='auto', out_of_bounds="nan") ir.fit(x, y) # Predict from training and test x and check that we have two NaNs. y1 = ir.predict([min(x) - 10, max(x) + 10]) assert_equal(sum(np.isnan(y1)), 2) def test_isotonic_regression_oob_bad(): # Set y and x y = np.array([3, 7, 5, 9, 8, 7, 10]) x = np.arange(len(y)) # Create model and fit ir = IsotonicRegression(increasing='auto', out_of_bounds="xyz") # Make sure that we throw an error for bad out_of_bounds value assert_raises(ValueError, ir.fit, x, y) def test_isotonic_regression_oob_bad_after(): # Set y and x y = np.array([3, 7, 5, 9, 8, 7, 10]) x = np.arange(len(y)) # Create model and fit ir = IsotonicRegression(increasing='auto', out_of_bounds="raise") # Make sure that we throw an error for bad out_of_bounds value in transform ir.fit(x, y) ir.out_of_bounds = "xyz" assert_raises(ValueError, ir.transform, x) def test_isotonic_regression_pickle(): y = np.array([3, 7, 5, 9, 8, 7, 10]) x = np.arange(len(y)) # Create model and fit ir = IsotonicRegression(increasing='auto', out_of_bounds="clip") ir.fit(x, y) ir_ser = pickle.dumps(ir, pickle.HIGHEST_PROTOCOL) ir2 = pickle.loads(ir_ser) np.testing.assert_array_equal(ir.predict(x), ir2.predict(x)) def test_isotonic_duplicate_min_entry(): x = [0, 0, 1] y = [0, 0, 1] ir = IsotonicRegression(increasing=True, out_of_bounds="clip") ir.fit(x, y) all_predictions_finite = np.all(np.isfinite(ir.predict(x))) assert_true(all_predictions_finite) def test_isotonic_zero_weight_loop(): # Test from @ogrisel's issue: # https://github.com/scikit-learn/scikit-learn/issues/4297 # Get deterministic RNG with seed rng = np.random.RandomState(42) # Create regression and samples regression = IsotonicRegression() n_samples = 50 x = np.linspace(-3, 3, n_samples) y = x + rng.uniform(size=n_samples) # Get some random weights and zero out w = rng.uniform(size=n_samples) w[5:8] = 0 regression.fit(x, y, sample_weight=w) # This will hang in failure case. regression.fit(x, y, sample_weight=w)
bsd-3-clause
Suraj1006/Pifm
src/generate_waveforms.py
15
2403
#!/usr/bin/python # PiFmRds - FM/RDS transmitter for the Raspberry Pi # Copyright (C) 2014 Christophe Jacquet, F8FTK # # See https://github.com/ChristopheJacquet/PiFmRds # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # This program generates the waveform of a single biphase symbol # # This program uses Pydemod, see https://github.com/ChristopheJacquet/Pydemod import pydemod.app.rds as rds import numpy import scipy.io.wavfile as wavfile import io import matplotlib.pyplot as plt sample_rate = 228000 outc = io.open("waveforms.c", mode="w", encoding="utf8") outh = io.open("waveforms.h", mode="w", encoding="utf8") header = u""" /* This file was automatically generated by "generate_waveforms.py". (C) 2014 Christophe Jacquet. Released under the GNU GPL v3 license. */ """ outc.write(header) outh.write(header) def generate_bit(name): offset = 240 l = 96 count = 2 sample = numpy.zeros(3*l) sample[l] = 1 sample[2*l] = -1 # Apply the data-shaping filter sf = rds.pulse_shaping_filter(96*8, 228000) shapedSamples = numpy.convolve(sample, sf) out = shapedSamples[528-288:528+288] #[offset:offset+l*count] #plt.plot(sf) #plt.plot(out) #plt.show() iout = (out * 20000./max(abs(out)) ).astype(numpy.dtype('>i2')) wavfile.write(u"waveform_{}.wav".format(name), sample_rate, iout) outc.write(u"float waveform_{name}[] = {{{values}}};\n\n".format( name = name, values = u", ".join(map(unicode, out/2.5)))) # note: need to limit the amplitude so as not to saturate when the biphase # waveforms are summed outh.write(u"extern float waveform_{name}[{size}];\n".format(name=name, size=len(out))) generate_bit("biphase") outc.close() outh.close()
gpl-3.0
ric2b/Vivaldi-browser
chromium/tools/perf/cli_tools/flakiness_cli/main.py
10
2182
# Copyright 2018 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """This tool provides a command line interface for the flakiness dashboard.""" from __future__ import print_function import argparse from cli_tools.flakiness_cli import analysis from cli_tools.flakiness_cli import cached_api def Main(): parser = argparse.ArgumentParser() parser.add_argument( '--master', help='include results for this master only, can use' ' shell-style wildcards to match multiple masters.') parser.add_argument( '--builder', help='include results for this builder only, can use' ' shell-style wildcards to match multiple builders.') parser.add_argument( '--test-type', help='include results for this test type only, can use' ' shell-style wildcards to match multiple test types.') parser.add_argument( '--test-suite', help='include results for this test suite only, can use' ' shell-style wildcards to match multiple test types.') parser.add_argument( '--half-life', default=7, type=int, help='test failures this many days' ' ago are half as important as failures today.') parser.add_argument( '--threshold', default=5.0, type=float, help='only show test ' ' with flakiness above this level.') args = parser.parse_args() configs = cached_api.GetBuilders() configs = analysis.FilterBy(configs, master=args.master, builder=args.builder, test_type=args.test_type) if configs.empty: return 'Your query selected no test configurations' dfs = [] for row in configs.itertuples(): df = cached_api.GetTestResults(row.master, row.builder, row.test_type) df = analysis.FilterBy(df, test_suite=args.test_suite) if df.empty: continue df = analysis.AggregateBuilds(df, args.half_life) df = df[df['flakiness'] > args.threshold] if df.empty: continue dfs.append(df) if not dfs: return 'Your query selected no test configurations' df = analysis.pandas.concat(dfs) df = df.sort_values('flakiness', ascending=False) print(df)
bsd-3-clause
jtamir/mri-sim-py
TODO/cpmg-prop_2spin.py
1
8206
#!/usr/bin/python import numpy as np from numpy import pi, cos, sin, exp, conj from warnings import warn import epgcpmg as epg import time import sys import scipy.io class PulseTrain: def __init__(self, state_file, T, TE, TR, loss_fun, loss_fun_prime, angles_rad=None, verbose=False, step=.01, max_iter=100): self.state_file = state_file self.T = T self.TE = TE self.TR = TR self.loss_fun = loss_fun self.loss_fun_prime = loss_fun_prime self.max_iter = max_iter self.step = step self.verbose = verbose self.reset() if angles_rad is not None: self.set_angles_rad(angles_rad) def set_angles_rad(self, angles_rad): T = len(angles_rad) if T < self.T: self.angles_rad = np.hstack((angles_rad, np.zeros((self.T-T)))) else: self.angles_rad = angles_rad[:self.T] def reset(self): self.angles_rad = DEG2RAD(50 + (120 - 50) * np.random.rand(self.T)) self.loss = [] def save_state(self, filename=None): state = { 'angles_rad': self.angles_rad, 'loss': self.loss, 'max_iter': self.max_iter, 'step': self.step, 'T': self.T, 'TE': self.TE, 'verbose': self.verbose, } if filename is None: scipy.io.savemat(self.state_file, state, appendmat=False) else: scipy.io.savemat(filename, state, appendmat=False) def load_state(self, filename=None): if filename is None: state = scipy.io.loadmat(self.state_file) else: state = scipy.io.loadmat(filename) self.angles_rad = state['angles_rad'].ravel() self.loss = list(state['loss'].ravel()) self.max_iter = state['max_iter'].ravel()[0] self.step = state['step'].ravel()[0] self.T = state['T'].ravel()[0] self.TE = state['TE'].ravel()[0] self.verbose = state['verbose'].ravel()[0] def train(self, theta1, theta2): for i in range(self.max_iter): angles_prime = self.loss_fun_prime(theta1, theta2, self.angles_rad, self.TE, self.TR) self.angles_rad = self.angles_rad + self.step * angles_prime self.loss.append(self.loss_fun(theta1, theta2, self.angles_rad, self.TE, self.TR)) str = '%d\t%3.3f' % (i, self.loss[-1]) self.print_verbose(str) def print_verbose(self, str): if self.verbose: print str, RAD2DEG(self.angles_rad) def plot_vals(self, thetas): plt.subplot(2,1,1) plt.plot(range(self.T), RAD2DEG(self.angles_rad), 'o-') plt.xlim((0,self.T)) plt.subplot(2,1,2) for theta in thetas: plt.plot(range(self.T), epg.FSE_signal(self.angles_rad, self.TE, theta['T1'], theta['T2'])) plt.xlim((0,self.T)) plt.ylim((0,1)) def forward(self, theta): return epg.FSE_signal(self.angles_rad, TE, theta['T1'], theta['T2']).ravel() def loss(theta1, theta2, angles_rad, TE, TR): T = len(angles_rad) x1 = epg.FSE_signal(angles_rad, TE, theta1['T1'], theta1['T2']) * (1 - exp(-(TR - T * TE)/theta1['T1'])) x2 = epg.FSE_signal(angles_rad, TE, theta2['T1'], theta2['T2']) * (1 - exp(-(TR - T * TE)/theta2['T1'])) return 0.5 * np.linalg.norm(x1, ord=2)**2 + 0.5 * np.linalg.norm(x2, ord=2)**2 - np.dot(x1.ravel(), x2.ravel()) def normalized_loss(theta1, theta2, angles_rad, TE, TR): T = len(angles_rad) x1 = epg.FSE_signal(angles_rad, TE, theta1['T1'], theta1['T2']) * (1 - exp(-(TR - T * TE)/theta1['T1'])) x2 = epg.FSE_signal(angles_rad, TE, theta2['T1'], theta2['T2']) * (1 - exp(-(TR - T * TE)/theta2['T1'])) x1 = x1 / np.linalg.norm(x1, ord=2) x2 = x2 / np.linalg.norm(x2, ord=2) return - np.dot(x1.ravel(), x2.ravel()) def loss_prime(theta1, theta2, angles_rad, TE, TR): T = len(angles_rad) x1 = epg.FSE_signal(angles_rad, TE, theta1['T1'], theta1['T2']).ravel() * (1 - exp(-(TR - T * TE)/theta1['T1'])) x2 = epg.FSE_signal(angles_rad, TE, theta2['T1'], theta2['T2']).ravel() * (1 - exp(-(TR - T * TE)/theta2['T1'])) T = len(angles_rad) alpha_prime = np.zeros((T,)) for i in range(T): x1_prime = epg.FSE_signal_prime_alpha_idx(angles_rad, TE, theta1['T1'], theta1['T2'], i).ravel() * (1 - exp(-(TR - T * TE)/theta1['T1'])) x2_prime = epg.FSE_signal_prime_alpha_idx(angles_rad, TE, theta2['T1'], theta2['T2'], i).ravel() * (1 - exp(-(TR - T * TE)/theta2['T1'])) M1 = np.dot(x1, x1_prime) M2 = np.dot(x2, x2_prime) M3 = np.dot(x1, x2_prime) M4 = np.dot(x2, x1_prime) alpha_prime[i] = M1 + M2 - M3 - M4 return alpha_prime def get_params(theta): return theta['T1'], theta['T2'] def numerical_gradient(theta1, theta2, angles_rad, TE, TR): initial_params = angles_rad num_grad = np.zeros(initial_params.shape) perturb = np.zeros(initial_params.shape) e = 1e-5 for p in range(len(initial_params)): perturb[p] = e loss2 = loss(theta1, theta2, angles_rad + perturb, TE, TR) loss1 = loss(theta1, theta2, angles_rad - perturb, TE, TR) num_grad[p] = (loss2 - loss1) / (2 * e) perturb[p] = 0 return num_grad def DEG2RAD(angle): return np.pi * angle / 180 def RAD2DEG(angle_rad): return 180 * angle_rad / np.pi def read_angles(fliptable): f = open(fliptable, 'r') angles = [] for line in f.readlines(): angles.append(float(line)) f.close() return np.array(angles) def print_table(P1, P2, P3): print print '\tP1\tP2\tP3\nloss\t%3.3f\t%3.3f\t%3.3f\nnloss\t%3.3f\t%3.3f\t%3.3f\n' % ( loss(theta1, theta2, P1.angles_rad, TE, TR), loss(theta1, theta2, P2.angles_rad, TE, TR), loss(theta1, theta2, P3.angles_rad, TE, TR), normalized_loss(theta1, theta2, P1.angles_rad, TE, TR), normalized_loss(theta1, theta2, P2.angles_rad, TE, TR), normalized_loss(theta1, theta2, P3.angles_rad, TE, TR) ) if __name__ == "__main__": import matplotlib.pyplot as plt np.set_printoptions(suppress=True, precision=3) T1 = 1000e-3 T2 = 200e-3 TE = 50e-3 TR = 1.4 if len(sys.argv) > 1: T = int(sys.argv[1]) else: T = 10 angles = 150 * np.ones((T,)) angles = read_angles('../data/flipangles.txt.408183520') TT = len(angles) if TT < T: T = TT else: angles = angles[:T] angles_rad = DEG2RAD(angles) S = epg.FSE_signal(angles_rad, TE, T1, T2) S2 = abs(S) theta1 = {'T1': 1000e-3, 'T2': 20e-3} theta2 = {'T1': 1000e-3, 'T2': 100e-3} t1 = time.time() NG = numerical_gradient(theta1, theta2, angles_rad, TE, TR) t2 = time.time() LP = loss_prime(theta1, theta2, angles_rad, TE, TR) t3 = time.time() NG_time = t2 - t1 LP_time = t3 - t2 print 'Numerical Gradient\t(%03.3f s)\t' % NG_time, NG print print 'Analytical Gradient\t(%03.3f s)\t' % LP_time, LP print print 'Error:', np.linalg.norm(NG - LP) / np.linalg.norm(NG) #plt.plot(TE*1000*np.arange(1, T+1), S2) #plt.xlabel('time (ms)') #plt.ylabel('signal') #plt.title('T1 = %.2f ms, T2 = %.2f ms' % (T1 * 1000, T2 * 1000)) #plt.show() a = angles_rad #a = np.pi * np.ones((T,)) a = None P1 = PulseTrain('angles_rand.mat', T, TE, TR, loss, loss_prime, angles_rad=a, verbose=True) #P1.load_state() P2 = PulseTrain('angles_180.mat', T, TE, TR, loss, loss_prime, angles_rad=np.pi * np.ones((T,)), verbose=True) P3 = PulseTrain('angles_vfa.mat', T, TE, TR, loss, loss_prime, angles_rad=angles_rad, verbose=True) print_table(P1, P2, P3) P1.train(theta1, theta2) print_table(P1, P2, P3) plt.figure(1) plt.clf() P1.plot_vals((theta1, theta2)) plt.figure(2) plt.clf() P2.plot_vals((theta1, theta2)) plt.figure(3) plt.clf() P3.plot_vals((theta1, theta2)) plt.show() MAX_ANGLE = DEG2RAD(120) MIN_ANGLE = DEG2RAD(50)
mit
blackball/an-test6
util/sip_plot_distortion.py
1
2423
import matplotlib matplotlib.use('Agg') import sys from optparse import * import numpy as np from pylab import * from numpy import * #from astrometry.util.sip import * from astrometry.util.util import * def plot_distortions(wcsfn, ex=1, ngridx=10, ngridy=10, stepx=10, stepy=10): wcs = Sip(wcsfn) W,H = wcs.wcstan.imagew, wcs.wcstan.imageh xgrid = np.linspace(0, W, ngridx) ygrid = np.linspace(0, H, ngridy) X = np.linspace(0, W, int(ceil(W/stepx))) Y = np.linspace(0, H, int(ceil(H/stepy))) xlo,xhi,ylo,yhi = 0,W,0,H for x in xgrid: DX,DY = [],[] xx,yy = [],[] for y in Y: dx,dy = wcs.get_distortion(x, y) xx.append(x) yy.append(y) DX.append(dx) DY.append(dy) DX = array(DX) DY = array(DY) xx = array(xx) yy = array(yy) EX = DX + ex * (DX - xx) EY = DY + ex * (DY - yy) plot(xx, yy, 'k-', alpha=0.5) plot(EX, EY, 'r-') xlo = min(xlo, min(EX)) xhi = max(xhi, max(EX)) ylo = min(ylo, min(EY)) yhi = max(yhi, max(EY)) for y in ygrid: DX,DY = [],[] xx,yy = [],[] for x in X: dx,dy = wcs.get_distortion(x, y) DX.append(dx) DY.append(dy) xx.append(x) yy.append(y) DX = array(DX) DY = array(DY) xx = array(xx) yy = array(yy) EX = DX + ex * (DX - xx) EY = DY + ex * (DY - yy) plot(xx, yy, 'k-', alpha=0.5) plot(EX, EY, 'r-') xlo = min(xlo, min(EX)) xhi = max(xhi, max(EX)) ylo = min(ylo, min(EY)) yhi = max(yhi, max(EY)) plot([wcs.wcstan.crpix[0]], [wcs.wcstan.crpix[1]], 'rx') #axis([0, W, 0, H]) axis('scaled') axis([xlo,xhi,ylo,yhi]) #axis('tight') if __name__ == '__main__': parser = OptionParser(usage='%prog [options] <wcs-filename> <plot-filename>') parser.add_option('-e', '--ex', '--exaggerate', dest='ex', type='float', help='Exaggerate the distortion by this factor') #parser.add_option('-s', '--scale', dest='scale', type='float', help='Scale the parser.add_option('-n', dest='nsteps', type='int', help='Number of grid lines to plot') parser.set_defaults(ex=1.) opt,args = parser.parse_args() if len(args) != 2: parser.print_help() sys.exit(-1) wcsfn = args[0] outfn = args[1] args = {} if opt.ex is not None: args['ex'] = opt.ex if opt.nsteps is not None: args['ngridx'] = opt.nsteps args['ngridy'] = opt.nsteps clf() plot_distortions(wcsfn, **args) tt = 'SIP distortions: %s' % wcsfn if opt.ex != 1: tt += ' (exaggerated by %g)' % opt.ex title(tt) savefig(outfn)
gpl-2.0
ISS-Mimic/Mimic
Pi/GUI.py
1
164864
#!/usr/bin/python from datetime import datetime, timedelta #used for time conversions and logging timestamps import datetime as dtime #this is different from above for... reasons? import os # used to remove database on program exit; also used for importing config.json from subprocess import Popen #, PIPE, STDOUT #used to start/stop Javascript telemetry program and TDRS script and orbitmap import time #used for time import math #used for math import glob #used to parse serial port names import sqlite3 #used to access ISS telemetry database import pytz #used for timezone conversion in orbit pass predictions from bs4 import BeautifulSoup #used to parse webpages for data (EVA stats, ISS TLE) import numpy as np import ephem #used for TLE orbit information on orbit screen import serial #used to send data over serial to arduino import json # used for serial port config from pyudev import Context, Devices, Monitor, MonitorObserver # for automatically detecting Arduinos import argparse import sys import os.path as op #use for getting mimic directory # This is here because Kivy gets upset if you pass in your own non-Kivy args CONFIG_FILE_PATH = os.path.join(os.path.dirname(__file__), "config.json") parser = argparse.ArgumentParser(description='ISS Mimic GUI. Arguments listed below are non-Kivy arguments.') parser.add_argument( '--config', action='store_true', help='use config.json to manually specify serial ports to use', default=False) args, kivy_args = parser.parse_known_args() sys.argv[1:] = kivy_args USE_CONFIG_JSON = args.config from kivy.app import App from kivy.lang import Builder from kivy.network.urlrequest import UrlRequest #using this to request webpages from kivy.clock import Clock from kivy.event import EventDispatcher from kivy.properties import ObjectProperty from kivy.uix.screenmanager import ScreenManager, Screen, SwapTransition from kivy.uix.popup import Popup from kivy.uix.label import Label import database_initialize # create and populate database script """ Unused imports import kivy from kivy.core.window import Window import threading #trying to send serial write to other thread matplotlib for plotting day/night time import matplotlib.pyplot as plt from matplotlib import path from mpl_toolkits.basemap import Basemap """ mimic_directory = op.abspath(op.join(__file__, op.pardir, op.pardir, op.pardir)) print("Mimic Directory: " + mimic_directory) # Constants SERIAL_SPEED = 9600 os.environ['KIVY_GL_BACKEND'] = 'gl' #need this to fix a kivy segfault that occurs with python3 for some reason # Create Program Logs mimiclog = open(mimic_directory + '/Mimic/Pi/Logs/mimiclog.txt', 'w') def logWrite(*args): mimiclog.write(str(datetime.utcnow())) mimiclog.write(' ') mimiclog.write(str(args[0])) mimiclog.write('\n') mimiclog.flush() logWrite("Initialized Mimic Program Log") #-------------------------Look for a connected arduino----------------------------------- def remove_tty_device(name_to_remove): """ Removes tty device from list of serial ports. """ global SERIAL_PORTS, OPEN_SERIAL_PORTS try: SERIAL_PORTS.remove(name_to_remove) idx_to_remove = -1 for x in range(len(OPEN_SERIAL_PORTS)): if name_to_remove in str(OPEN_SERIAL_PORTS[x]): idx_to_remove = x if idx_to_remove != -1: del OPEN_SERIAL_PORTS[idx_to_remove] log_str = "Removed %s." % name_to_remove logWrite(log_str) print(log_str) except ValueError: # Not printing anything because it sometimes tries too many times and is irrelevant pass def add_tty_device(name_to_add): """ Adds tty device to list of serial ports after it successfully opens. """ global SERIAL_PORTS, OPEN_SERIAL_PORTS if name_to_add not in SERIAL_PORTS: try: SERIAL_PORTS.append(name_to_add) OPEN_SERIAL_PORTS.append(serial.Serial(SERIAL_PORTS[-1], SERIAL_SPEED, write_timeout=0, timeout=0)) log_str = "Added and opened %s." % name_to_add logWrite(log_str) print(log_str) except IOError as e: # Not printing anything because sometimes it successfully opens soon after remove_tty_device(name_to_add) # don't leave it in the list if it didn't open def detect_device_event(device): """ Callback for MonitorObserver to detect tty device and add or remove it. """ if 'tty' in device.device_path: name = '/dev/' + (device.device_path).split('/')[-1:][0] if device.action == 'remove': remove_tty_device(name) if device.action == 'add': add_tty_device(name) def is_arduino_id_vendor_string(text): """ It's not ideal to have to include FTDI because that's somewhat generic, but if we want to use something like the Arduino Nano, that's what it shows up as. If it causes a problem, we can change it -- or the user can specify to use the config.json file instead. """ if "Arduino" in text or "Adafruit" in text or "FTDI" in text: return True return False def parse_tty_name(device, val): """ Parses tty name from ID_VENDOR string. Example of device as a string: Device('/sys/devices/platform/scb/fd500000.pcie/pci0000:00/0000:00:00.0/0000:01:00.0/usb1/1-1/1-1.1/1-1.1.1/1-1.1.1:1.0/tty/ttyACM0') """ if is_arduino_id_vendor_string(val): name = str(device).split('/')[-1:][0][:-2] # to get ttyACM0, etc. return '/dev/' + name logWrite("Skipping serial device:\n%s" % str(device)) def get_tty_dev_names(context): """ Checks ID_VENDOR string of tty devices to identify Arduinos. """ names = [] devices = context.list_devices(subsystem='tty') for d in devices: for k, v in d.items(): if k is not None and k == 'ID_VENDOR': names.append(parse_tty_name(d, v)) return names def get_config_data(): """ Get the JSON config data. """ data = {} with open (CONFIG_FILE_PATH, 'r') as f: data = json.load(f) return data def get_serial_ports(context, using_config_file=False): """ Gets the serial ports either from a config file or pyudev """ serial_ports = [] if using_config_file: data = get_config_data() serial_ports = data['arduino']['serial_ports'] else: serial_ports = get_tty_dev_names(context) return serial_ports def open_serial_ports(serial_ports): """ Open all the serial ports in the list. Used when the GUI is first opened. """ global OPEN_SERIAL_PORTS try: for s in serial_ports: OPEN_SERIAL_PORTS.append(serial.Serial(s, SERIAL_SPEED, write_timeout=0, timeout=0)) except (OSError, serial.SerialException) as e: if USE_CONFIG_JSON: print("\nNot all serial ports were detected. Check config.json for accuracy.\n\n%s" % e) raise Exception(e) def serialWrite(*args): """ Writes to serial ports in list. """ logWrite("Function call - serial write: " + str(*args)) for s in OPEN_SERIAL_PORTS: try: s.write(str.encode(*args)) except (OSError, serial.SerialException) as e: logWrite(e) context = Context() if not USE_CONFIG_JSON: MONITOR = Monitor.from_netlink(context) TTY_OBSERVER = MonitorObserver(MONITOR, callback=detect_device_event, name='monitor-observer') TTY_OBSERVER.daemon = False SERIAL_PORTS = get_serial_ports(context, USE_CONFIG_JSON) OPEN_SERIAL_PORTS = [] open_serial_ports(SERIAL_PORTS) log_str = "Serial ports opened: %s" % str(SERIAL_PORTS) logWrite(log_str) print(log_str) if not USE_CONFIG_JSON: TTY_OBSERVER.start() log_str = "Started monitoring serial ports." print(log_str) logWrite(log_str) #-------------------------TDRS Checking Database----------------------------------------- TDRSconn = sqlite3.connect('/dev/shm/tdrs.db') TDRSconn.isolation_level = None TDRScursor = TDRSconn.cursor() conn = sqlite3.connect('/dev/shm/iss_telemetry.db') conn.isolation_level = None c = conn.cursor() def staleTelemetry(): c.execute("UPDATE telemetry SET Value = 'Unsubscribed' where Label = 'Lightstreamer'") #----------------------------------Variables--------------------------------------------- LS_Subscription = False isslocationsuccess = False testfactor = -1 crew_mention= False mimicbutton = False fakeorbitboolean = False demoboolean = False switchtofake = False manualcontrol = False startup = True isscrew = 0 val = "" tdrs1 = 0 tdrs2 = 0 tdrs_timestamp = 0 lastsignal = 0 testvalue = 0 obtained_EVA_crew = False unixconvert = time.gmtime(time.time()) EVAstartTime = float(unixconvert[7])*24+unixconvert[3]+float(unixconvert[4])/60+float(unixconvert[5])/3600 alternate = True Beta4Bcontrol = False Beta3Bcontrol = False Beta2Bcontrol = False Beta1Bcontrol = False Beta4Acontrol = False Beta3Acontrol = False Beta2Acontrol = False Beta1Acontrol = False PSARJcontrol = False SSARJcontrol = False PTRRJcontrol = False STRRJcontrol = False stopAnimation = True startingAnim = True oldtdrs = "n/a" runningDemo = False Disco = False logged = False mt_speed = 0.00 #-----------EPS Variables---------------------- EPSstorageindex = 0 channel1A_voltage = [154.1, 154.1, 154.1, 154.1, 154.1, 154.1, 154.1, 154.1, 154.1, 154.1] channel1B_voltage = [154.1, 154.1, 154.1, 154.1, 154.1, 154.1, 154.1, 154.1, 154.1, 154.1] channel2A_voltage = [154.1, 154.1, 154.1, 154.1, 154.1, 154.1, 154.1, 154.1, 154.1, 154.1] channel2B_voltage = [154.1, 154.1, 154.1, 154.1, 154.1, 154.1, 154.1, 154.1, 154.1, 154.1] channel3A_voltage = [154.1, 154.1, 154.1, 154.1, 154.1, 154.1, 154.1, 154.1, 154.1, 154.1] channel3B_voltage = [154.1, 154.1, 154.1, 154.1, 154.1, 154.1, 154.1, 154.1, 154.1, 154.1] channel4A_voltage = [154.1, 154.1, 154.1, 154.1, 154.1, 154.1, 154.1, 154.1, 154.1, 154.1] channel4B_voltage = [154.1, 154.1, 154.1, 154.1, 154.1, 154.1, 154.1, 154.1, 154.1, 154.1] sizeX = 0.00 sizeY = 0.00 psarj2 = 1.0 ssarj2 = 1.0 new_x = 0 new_y = 0 new_x2 = 0 new_y2 = 0 aos = 0.00 los = 0.00 sgant_elevation = 0.00 sgant_xelevation = 0.00 sgant_elevation_old = -110.00 seconds2 = 260 oldLOS = 0.00 psarjmc = 0.00 ssarjmc = 0.00 ptrrjmc = 0.00 strrjmc = 0.00 beta1bmc = 0.00 beta1amc = 0.00 beta2bmc = 0.00 beta2amc = 0.00 beta3bmc = 0.00 beta3amc = 0.00 beta4bmc = 0.00 beta4amc = 0.00 US_EVAinProgress = False leak_hold = False firstcrossing = True oldAirlockPump = 0.00 position_x = 0.00 position_y = 0.00 position_z = 0.00 velocity_x = 0.00 velocity_y = 0.00 velocity_z = 0.00 velocity = 0.00 altitude = 0.00 mass = 0.00 crewlockpres = 758 EVA_activities = False repress = False depress = False seconds = 0 minutes = 0 hours = 0 leak_hold = False EV1 = "" EV2 = "" numEVAs1 = "" EVAtime_hours1 = "" EVAtime_minutes1 = "" numEVAs2 = "" EVAtime_hours2 = "" EVAtime_minutes2 = "" holdstartTime = float(unixconvert[7])*24+unixconvert[3]+float(unixconvert[4])/60+float(unixconvert[5])/3600 eva = False standby = False prebreath1 = False prebreath2 = False depress1 = False depress2 = False leakhold = False repress = False ISS_TLE_Acquired = False stationmode = 0.00 tdrs = "" EVA_picture_urls = [] urlindex = 0 module = "" internet = False old_mt_timestamp = 0.00 old_mt_position = 0.00 class MainScreen(Screen): def changeManualControlBoolean(self, *args): global manualcontrol manualcontrol = args[0] def killproc(*args): global p,p2 if not USE_CONFIG_JSON: TTY_OBSERVER.stop() log_str = "Stopped monitoring serial ports." logWrite(log_str) print(log_str) try: p.kill() p2.kill() except Exception: pass os.system('rm /dev/shm/*') #delete sqlite database on exit, db is recreated each time to avoid concurrency issues staleTelemetry() logWrite("Successfully stopped ISS telemetry javascript and removed database") class ManualControlScreen(Screen): def on_pre_enter(self): #call the callback funcion when activating this screen, to update all angles self.callback() def callback(self): global psarjmc,ssarjmc,ptrrjmc,strrjmc,beta1amc,beta1bmc,beta2amc,beta2bmc,beta3amc,beta3bmc,beta4amc,beta4bmc self.ids.Beta4B_Button.text = "4B\n" + str(math.trunc(beta4bmc)) self.ids.Beta4A_Button.text = "4A\n" + str(math.trunc(beta4amc)) self.ids.Beta3B_Button.text = "3B\n" + str(math.trunc(beta3bmc)) self.ids.Beta3A_Button.text = "3A\n" + str(math.trunc(beta3amc)) self.ids.Beta2B_Button.text = "2B\n" + str(math.trunc(beta2bmc)) self.ids.Beta2A_Button.text = "2A\n" + str(math.trunc(beta2amc)) self.ids.Beta1B_Button.text = "1B\n" + str(math.trunc(beta1bmc)) self.ids.Beta1A_Button.text = "1A\n" + str(math.trunc(beta1amc)) self.ids.PSARJ_Button.text = "PSARJ " + str(math.trunc(psarjmc)) self.ids.SSARJ_Button.text = "SSARJ " + str(math.trunc(ssarjmc)) self.ids.PTRRJ_Button.text = "PTRRJ\n" + str(math.trunc(ptrrjmc)) self.ids.STRRJ_Button.text = "STRRJ\n" + str(math.trunc(strrjmc)) def zeroJoints(self): global psarjmc,ssarjmc,ptrrjmc,strrjmc,beta1amc,beta1bmc,beta2amc,beta2bmc,beta3amc,beta3bmc,beta4amc,beta4bmc serialWrite("NULLIFY=1 ") c.execute("UPDATE telemetry SET Value = '0' WHERE Label = 'beta1a'") beta1amc = 0.00 c.execute("UPDATE telemetry SET Value = '0' WHERE Label = 'beta1b'") beta1bmc = 0.00 c.execute("UPDATE telemetry SET Value = '0' WHERE Label = 'beta2a'") beta2amc = 0.00 c.execute("UPDATE telemetry SET Value = '0' WHERE Label = 'beta2b'") beta2bmc = 0.00 c.execute("UPDATE telemetry SET Value = '0' WHERE Label = 'beta3a'") beta3amc = 0.00 c.execute("UPDATE telemetry SET Value = '0' WHERE Label = 'beta3b'") beta3bmc = 0.00 c.execute("UPDATE telemetry SET Value = '0' WHERE Label = 'beta4a'") beta4amc = 0.00 c.execute("UPDATE telemetry SET Value = '0' WHERE Label = 'beta4b'") beta4bmc = 0.00 c.execute("UPDATE telemetry SET Value = '0' WHERE Label = 'psarj'") psarjmc = 0.00 c.execute("UPDATE telemetry SET Value = '0' WHERE Label = 'ssarj'") ssarjmc = 0.00 self.callback() def setActive(self, *args): global Beta4Bcontrol, Beta3Bcontrol, Beta2Bcontrol, Beta1Bcontrol, Beta4Acontrol, Beta3Acontrol, Beta2Acontrol, Beta1Acontrol, PSARJcontrol, SSARJcontrol, PTRRJcontrol, STRRJcontrol if str(args[0])=="Beta4B": Beta4Bcontrol = True Beta4Acontrol = False Beta3Bcontrol = False Beta3Acontrol = False Beta2Bcontrol = False Beta2Acontrol = False Beta1Bcontrol = False Beta1Acontrol = False PSARJcontrol = False SSARJcontrol = False PTRRJcontrol = False STRRJcontrol = False self.ids.Beta4B_Button.background_color = (0, 0, 1, 1) self.ids.Beta4A_Button.background_color = (1, 1, 1, 1) self.ids.Beta3B_Button.background_color = (1, 1, 1, 1) self.ids.Beta3A_Button.background_color = (1, 1, 1, 1) self.ids.Beta2B_Button.background_color = (1, 1, 1, 1) self.ids.Beta2A_Button.background_color = (1, 1, 1, 1) self.ids.Beta1B_Button.background_color = (1, 1, 1, 1) self.ids.Beta1A_Button.background_color = (1, 1, 1, 1) self.ids.PSARJ_Button.background_color = (1, 1, 1, 1) self.ids.SSARJ_Button.background_color = (1, 1, 1, 1) self.ids.PTRRJ_Button.background_color = (1, 1, 1, 1) self.ids.STRRJ_Button.background_color = (1, 1, 1, 1) if str(args[0])=="Beta3B": Beta3Bcontrol = True Beta4Bcontrol = False Beta4Acontrol = False Beta3Acontrol = False Beta2Bcontrol = False Beta2Acontrol = False Beta1Bcontrol = False Beta1Acontrol = False PSARJcontrol = False SSARJcontrol = False PTRRJcontrol = False STRRJcontrol = False self.ids.Beta4B_Button.background_color = (1, 1, 1, 1) self.ids.Beta4A_Button.background_color = (1, 1, 1, 1) self.ids.Beta3B_Button.background_color = (0, 0, 1, 1) self.ids.Beta3A_Button.background_color = (1, 1, 1, 1) self.ids.Beta2B_Button.background_color = (1, 1, 1, 1) self.ids.Beta2A_Button.background_color = (1, 1, 1, 1) self.ids.Beta1B_Button.background_color = (1, 1, 1, 1) self.ids.Beta1A_Button.background_color = (1, 1, 1, 1) self.ids.PSARJ_Button.background_color = (1, 1, 1, 1) self.ids.SSARJ_Button.background_color = (1, 1, 1, 1) self.ids.PTRRJ_Button.background_color = (1, 1, 1, 1) self.ids.STRRJ_Button.background_color = (1, 1, 1, 1) if str(args[0])=="Beta2B": Beta2Bcontrol = True Beta4Bcontrol = False Beta4Acontrol = False Beta3Bcontrol = False Beta3Acontrol = False Beta2Acontrol = False Beta1Bcontrol = False Beta1Acontrol = False PSARJcontrol = False SSARJcontrol = False PTRRJcontrol = False STRRJcontrol = False self.ids.Beta4B_Button.background_color = (1, 1, 1, 1) self.ids.Beta4A_Button.background_color = (1, 1, 1, 1) self.ids.Beta3B_Button.background_color = (1, 1, 1, 1) self.ids.Beta3A_Button.background_color = (1, 1, 1, 1) self.ids.Beta2B_Button.background_color = (0, 0, 1, 1) self.ids.Beta2A_Button.background_color = (1, 1, 1, 1) self.ids.Beta1B_Button.background_color = (1, 1, 1, 1) self.ids.Beta1A_Button.background_color = (1, 1, 1, 1) self.ids.PSARJ_Button.background_color = (1, 1, 1, 1) self.ids.SSARJ_Button.background_color = (1, 1, 1, 1) self.ids.PTRRJ_Button.background_color = (1, 1, 1, 1) self.ids.STRRJ_Button.background_color = (1, 1, 1, 1) if str(args[0])=="Beta1B": Beta1Bcontrol = True Beta4Bcontrol = False Beta4Acontrol = False Beta3Bcontrol = False Beta3Acontrol = False Beta2Bcontrol = False Beta2Acontrol = False Beta1Acontrol = False PSARJcontrol = False SSARJcontrol = False PTRRJcontrol = False STRRJcontrol = False self.ids.Beta4B_Button.background_color = (1, 1, 1, 1) self.ids.Beta4A_Button.background_color = (1, 1, 1, 1) self.ids.Beta3B_Button.background_color = (1, 1, 1, 1) self.ids.Beta3A_Button.background_color = (1, 1, 1, 1) self.ids.Beta2B_Button.background_color = (1, 1, 1, 1) self.ids.Beta2A_Button.background_color = (1, 1, 1, 1) self.ids.Beta1B_Button.background_color = (0, 0, 1, 1) self.ids.Beta1A_Button.background_color = (1, 1, 1, 1) self.ids.PSARJ_Button.background_color = (1, 1, 1, 1) self.ids.SSARJ_Button.background_color = (1, 1, 1, 1) self.ids.PTRRJ_Button.background_color = (1, 1, 1, 1) self.ids.STRRJ_Button.background_color = (1, 1, 1, 1) if str(args[0])=="Beta4A": Beta4Acontrol = True Beta4Bcontrol = False Beta3Bcontrol = False Beta3Acontrol = False Beta2Bcontrol = False Beta2Acontrol = False Beta1Bcontrol = False Beta1Acontrol = False PSARJcontrol = False SSARJcontrol = False PTRRJcontrol = False STRRJcontrol = False self.ids.Beta4B_Button.background_color = (1, 1, 1, 1) self.ids.Beta4A_Button.background_color = (0, 0, 1, 1) self.ids.Beta3B_Button.background_color = (1, 1, 1, 1) self.ids.Beta3A_Button.background_color = (1, 1, 1, 1) self.ids.Beta2B_Button.background_color = (1, 1, 1, 1) self.ids.Beta2A_Button.background_color = (1, 1, 1, 1) self.ids.Beta1B_Button.background_color = (1, 1, 1, 1) self.ids.Beta1A_Button.background_color = (1, 1, 1, 1) self.ids.PSARJ_Button.background_color = (1, 1, 1, 1) self.ids.SSARJ_Button.background_color = (1, 1, 1, 1) self.ids.PTRRJ_Button.background_color = (1, 1, 1, 1) self.ids.STRRJ_Button.background_color = (1, 1, 1, 1) if str(args[0])=="Beta3A": Beta3Acontrol = True Beta4Bcontrol = False Beta4Acontrol = False Beta3Bcontrol = False Beta2Bcontrol = False Beta2Acontrol = False Beta1Bcontrol = False Beta1Acontrol = False PSARJcontrol = False SSARJcontrol = False PTRRJcontrol = False STRRJcontrol = False self.ids.Beta4B_Button.background_color = (1, 1, 1, 1) self.ids.Beta4A_Button.background_color = (1, 1, 1, 1) self.ids.Beta3B_Button.background_color = (1, 1, 1, 1) self.ids.Beta3A_Button.background_color = (0, 0, 1, 1) self.ids.Beta2B_Button.background_color = (1, 1, 1, 1) self.ids.Beta2A_Button.background_color = (1, 1, 1, 1) self.ids.Beta1B_Button.background_color = (1, 1, 1, 1) self.ids.Beta1A_Button.background_color = (1, 1, 1, 1) self.ids.PSARJ_Button.background_color = (1, 1, 1, 1) self.ids.SSARJ_Button.background_color = (1, 1, 1, 1) self.ids.PTRRJ_Button.background_color = (1, 1, 1, 1) self.ids.STRRJ_Button.background_color = (1, 1, 1, 1) if str(args[0])=="Beta2A": Beta2Acontrol = True Beta4Bcontrol = False Beta4Acontrol = False Beta3Bcontrol = False Beta3Acontrol = False Beta2Bcontrol = False Beta1Bcontrol = False Beta1Acontrol = False PSARJcontrol = False SSARJcontrol = False PTRRJcontrol = False STRRJcontrol = False self.ids.Beta4B_Button.background_color = (1, 1, 1, 1) self.ids.Beta4A_Button.background_color = (1, 1, 1, 1) self.ids.Beta3B_Button.background_color = (1, 1, 1, 1) self.ids.Beta3A_Button.background_color = (1, 1, 1, 1) self.ids.Beta2B_Button.background_color = (1, 1, 1, 1) self.ids.Beta2A_Button.background_color = (0, 0, 1, 1) self.ids.Beta1B_Button.background_color = (1, 1, 1, 1) self.ids.Beta1A_Button.background_color = (1, 1, 1, 1) self.ids.PSARJ_Button.background_color = (1, 1, 1, 1) self.ids.SSARJ_Button.background_color = (1, 1, 1, 1) self.ids.PTRRJ_Button.background_color = (1, 1, 1, 1) self.ids.STRRJ_Button.background_color = (1, 1, 1, 1) if str(args[0])=="Beta1A": Beta1Acontrol = True Beta4Bcontrol = False Beta4Acontrol = False Beta3Bcontrol = False Beta3Acontrol = False Beta2Bcontrol = False Beta2Acontrol = False Beta1Bcontrol = False PSARJcontrol = False SSARJcontrol = False PTRRJcontrol = False STRRJcontrol = False self.ids.Beta4B_Button.background_color = (1, 1, 1, 1) self.ids.Beta4A_Button.background_color = (1, 1, 1, 1) self.ids.Beta3B_Button.background_color = (1, 1, 1, 1) self.ids.Beta3A_Button.background_color = (1, 1, 1, 1) self.ids.Beta2B_Button.background_color = (1, 1, 1, 1) self.ids.Beta2A_Button.background_color = (1, 1, 1, 1) self.ids.Beta1B_Button.background_color = (1, 1, 1, 1) self.ids.Beta1A_Button.background_color = (0, 0, 1, 1) self.ids.PSARJ_Button.background_color = (1, 1, 1, 1) self.ids.SSARJ_Button.background_color = (1, 1, 1, 1) self.ids.PTRRJ_Button.background_color = (1, 1, 1, 1) self.ids.STRRJ_Button.background_color = (1, 1, 1, 1) if str(args[0])=="PTRRJ": PTRRJcontrol = True Beta4Bcontrol = False Beta4Acontrol = False Beta3Bcontrol = False Beta3Acontrol = False Beta2Bcontrol = False Beta2Acontrol = False Beta1Bcontrol = False Beta1Acontrol = False PSARJcontrol = False SSARJcontrol = False STRRJcontrol = False self.ids.Beta4B_Button.background_color = (1, 1, 1, 1) self.ids.Beta4A_Button.background_color = (1, 1, 1, 1) self.ids.Beta3B_Button.background_color = (1, 1, 1, 1) self.ids.Beta3A_Button.background_color = (1, 1, 1, 1) self.ids.Beta2B_Button.background_color = (1, 1, 1, 1) self.ids.Beta2A_Button.background_color = (1, 1, 1, 1) self.ids.Beta1B_Button.background_color = (1, 1, 1, 1) self.ids.Beta1A_Button.background_color = (1, 1, 1, 1) self.ids.PSARJ_Button.background_color = (1, 1, 1, 1) self.ids.SSARJ_Button.background_color = (1, 1, 1, 1) self.ids.PTRRJ_Button.background_color = (0, 0, 1, 1) self.ids.STRRJ_Button.background_color = (1, 1, 1, 1) if str(args[0])=="STRRJ": STRRJcontrol = True Beta4Bcontrol = False Beta4Acontrol = False Beta3Bcontrol = False Beta3Acontrol = False Beta2Bcontrol = False Beta2Acontrol = False Beta1Bcontrol = False Beta1Acontrol = False PSARJcontrol = False SSARJcontrol = False PTRRJcontrol = False self.ids.Beta4B_Button.background_color = (1, 1, 1, 1) self.ids.Beta4A_Button.background_color = (1, 1, 1, 1) self.ids.Beta3B_Button.background_color = (1, 1, 1, 1) self.ids.Beta3A_Button.background_color = (1, 1, 1, 1) self.ids.Beta2B_Button.background_color = (1, 1, 1, 1) self.ids.Beta2A_Button.background_color = (1, 1, 1, 1) self.ids.Beta1B_Button.background_color = (1, 1, 1, 1) self.ids.Beta1A_Button.background_color = (1, 1, 1, 1) self.ids.PSARJ_Button.background_color = (1, 1, 1, 1) self.ids.SSARJ_Button.background_color = (1, 1, 1, 1) self.ids.PTRRJ_Button.background_color = (1, 1, 1, 1) self.ids.STRRJ_Button.background_color = (0, 0, 1, 1) if str(args[0])=="PSARJ": PSARJcontrol = True Beta4Bcontrol = False Beta4Acontrol = False Beta3Bcontrol = False Beta3Acontrol = False Beta2Bcontrol = False Beta2Acontrol = False Beta1Bcontrol = False Beta1Acontrol = False SSARJcontrol = False PTRRJcontrol = False STRRJcontrol = False self.ids.Beta4B_Button.background_color = (1, 1, 1, 1) self.ids.Beta4A_Button.background_color = (1, 1, 1, 1) self.ids.Beta3B_Button.background_color = (1, 1, 1, 1) self.ids.Beta3A_Button.background_color = (1, 1, 1, 1) self.ids.Beta2B_Button.background_color = (1, 1, 1, 1) self.ids.Beta2A_Button.background_color = (1, 1, 1, 1) self.ids.Beta1B_Button.background_color = (1, 1, 1, 1) self.ids.Beta1A_Button.background_color = (1, 1, 1, 1) self.ids.PSARJ_Button.background_color = (0, 0, 1, 1) self.ids.SSARJ_Button.background_color = (1, 1, 1, 1) self.ids.PTRRJ_Button.background_color = (1, 1, 1, 1) self.ids.STRRJ_Button.background_color = (1, 1, 1, 1) if str(args[0])=="SSARJ": SSARJcontrol = True Beta4Bcontrol = False Beta4Acontrol = False Beta3Bcontrol = False Beta3Acontrol = False Beta2Bcontrol = False Beta2Acontrol = False Beta1Bcontrol = False Beta1Acontrol = False PSARJcontrol = False PTRRJcontrol = False STRRJcontrol = False self.ids.Beta4B_Button.background_color = (1, 1, 1, 1) self.ids.Beta4A_Button.background_color = (1, 1, 1, 1) self.ids.Beta3B_Button.background_color = (1, 1, 1, 1) self.ids.Beta3A_Button.background_color = (1, 1, 1, 1) self.ids.Beta2B_Button.background_color = (1, 1, 1, 1) self.ids.Beta2A_Button.background_color = (1, 1, 1, 1) self.ids.Beta1B_Button.background_color = (1, 1, 1, 1) self.ids.Beta1A_Button.background_color = (1, 1, 1, 1) self.ids.PSARJ_Button.background_color = (1, 1, 1, 1) self.ids.SSARJ_Button.background_color = (0, 0, 1, 1) self.ids.PTRRJ_Button.background_color = (1, 1, 1, 1) self.ids.STRRJ_Button.background_color = (1, 1, 1, 1) def incrementActive(self, *args): global Beta4Bcontrol, Beta3Bcontrol, Beta2Bcontrol, Beta1Bcontrol, Beta4Acontrol, Beta3Acontrol, Beta2Acontrol, Beta1Acontrol, PSARJcontrol, SSARJcontrol, PTRRJcontrol, STRRJcontrol if Beta4Bcontrol: self.incrementBeta4B(float(args[0])) if Beta3Bcontrol: self.incrementBeta3B(float(args[0])) if Beta2Bcontrol: self.incrementBeta2B(float(args[0])) if Beta1Bcontrol: self.incrementBeta1B(float(args[0])) if Beta4Acontrol: self.incrementBeta4A(float(args[0])) if Beta3Acontrol: self.incrementBeta3A(float(args[0])) if Beta2Acontrol: self.incrementBeta2A(float(args[0])) if Beta1Acontrol: self.incrementBeta1A(float(args[0])) if PTRRJcontrol: self.incrementPTRRJ(float(args[0])) if STRRJcontrol: self.incrementSTRRJ(float(args[0])) if PSARJcontrol: self.incrementPSARJ(float(args[0])) if SSARJcontrol: self.incrementSSARJ(float(args[0])) self.callback() def incrementPSARJ(self, *args): global psarjmc psarjmc += args[0] serialWrite("PSARJ=" + str(psarjmc) + " ") c.execute("UPDATE telemetry SET Value = ? WHERE Label = 'psarj'",(psarjmc,)) self.ids.statusbar.text = "PSARJ Value Sent: " + str(psarjmc) def incrementSSARJ(self, *args): global ssarjmc ssarjmc += args[0] serialWrite("SSARJ=" + str(ssarjmc) + " ") c.execute("UPDATE telemetry SET Value = ? WHERE Label = 'ssarj'",(ssarjmc,)) self.ids.statusbar.text = "SSARJ Value Sent: " + str(ssarjmc) def incrementPTRRJ(self, *args): global ptrrjmc ptrrjmc += args[0] serialWrite("PTRRJ=" + str(ptrrjmc) + " ") c.execute("UPDATE telemetry SET Value = ? WHERE Label = 'ptrrj'",(ptrrjmc,)) self.ids.statusbar.text = "PTRRJ Value Sent: " + str(ptrrjmc) def incrementSTRRJ(self, *args): global strrjmc strrjmc += args[0] serialWrite("STRRJ=" + str(strrjmc) + " ") c.execute("UPDATE telemetry SET Value = ? WHERE Label = 'strrj'",(strrjmc,)) self.ids.statusbar.text = "STRRJ Value Sent: " + str(strrjmc) def incrementBeta1B(self, *args): global beta1bmc beta1bmc += args[0] serialWrite("B1B=" + str(beta1bmc) + " ") c.execute("UPDATE telemetry SET Value = ? WHERE Label = 'beta1b'",(beta1bmc,)) self.ids.statusbar.text = "Beta1B Value Sent: " + str(beta1bmc) def incrementBeta1A(self, *args): global beta1amc beta1amc += args[0] serialWrite("B1A=" + str(beta1amc) + " ") c.execute("UPDATE telemetry SET Value = ? WHERE Label = 'beta1a'",(beta1amc,)) self.ids.statusbar.text = "Beta1A Value Sent: " + str(beta1amc) def incrementBeta2B(self, *args): global beta2bmc beta2bmc += args[0] serialWrite("B2B=" + str(beta2bmc) + " ") c.execute("UPDATE telemetry SET Value = ? WHERE Label = 'beta2b'",(beta2bmc,)) self.ids.statusbar.text = "Beta2B Value Sent: " + str(beta2bmc) def incrementBeta2A(self, *args): global beta2amc beta2amc += args[0] serialWrite("B2A=" + str(beta2amc) + " ") c.execute("UPDATE telemetry SET Value = ? WHERE Label = 'beta2a'",(beta2amc,)) self.ids.statusbar.text = "Beta2A Value Sent: " + str(beta2amc) def incrementBeta3B(self, *args): global beta3bmc beta3bmc += args[0] serialWrite("B3B=" + str(beta3bmc) + " ") c.execute("UPDATE telemetry SET Value = ? WHERE Label = 'beta3b'",(beta3bmc,)) self.ids.statusbar.text = "Beta3B Value Sent: " + str(beta3bmc) def incrementBeta3A(self, *args): global beta3amc beta3amc += args[0] serialWrite("B3A=" + str(beta3amc) + " ") c.execute("UPDATE telemetry SET Value = ? WHERE Label = 'beta3a'",(beta3amc,)) self.ids.statusbar.text = "Beta3A Value Sent: " + str(beta3amc) def incrementBeta4B(self, *args): global beta4bmc beta4bmc += args[0] serialWrite("B4B=" + str(beta4bmc) + " ") c.execute("UPDATE telemetry SET Value = ? WHERE Label = 'beta4b'",(beta4bmc,)) self.ids.statusbar.text = "Beta4B Value Sent: " + str(beta4bmc) def incrementBeta4A(self, *args): global beta4amc beta4amc += args[0] serialWrite("B4A=" + str(beta4amc) + " ") c.execute("UPDATE telemetry SET Value = ? WHERE Label = 'beta4a'",(beta4amc,)) self.ids.statusbar.text = "Beta4A Value Sent: " + str(beta4amc) def changeBoolean(self, *args): global manualcontrol manualcontrol = args[0] def sendActive(self, *args): if Beta4Bcontrol: self.sendBeta4B(float(args[0])) if Beta3Bcontrol: self.sendBeta3B(float(args[0])) if Beta2Bcontrol: self.sendBeta2B(float(args[0])) if Beta1Bcontrol: self.sendBeta1B(float(args[0])) if Beta4Acontrol: self.sendBeta4A(float(args[0])) if Beta3Acontrol: self.sendBeta3A(float(args[0])) if Beta2Acontrol: self.sendBeta2A(float(args[0])) if Beta1Acontrol: self.sendBeta1A(float(args[0])) if PTRRJcontrol: self.sendPTRRJ(float(args[0])) if STRRJcontrol: self.sendSTRRJ(float(args[0])) if PSARJcontrol: self.sendPSARJ(float(args[0])) if SSARJcontrol: self.sendSSARJ(float(args[0])) def sendPSARJ(self, *args): global psarjmc psarjmc = args[0] serialWrite("PSARJ=" + str(args[0]) + " ") c.execute("UPDATE telemetry SET Value = ? WHERE Label = 'psarj'",(args[0],)) self.ids.statusbar.text = "PSARJ Value Sent: " + str(args[0]) def sendSSARJ(self, *args): global ssarjmc ssarjmc = args[0] serialWrite("SSARJ=" + str(args[0]) + " ") c.execute("UPDATE telemetry SET Value = ? WHERE Label = 'ssarj'",(args[0],)) self.ids.statusbar.text = "SSARJ Value Sent: " + str(args[0]) def sendPTRRJ(self, *args): global ptrrjmc ptrrjmc = args[0] serialWrite("PTRRJ=" + str(args[0]) + " ") c.execute("UPDATE telemetry SET Value = ? WHERE Label = 'ptrrj'",(args[0],)) self.ids.statusbar.text = "PTRRJ Value Sent: " + str(args[0]) def sendSTRRJ(self, *args): global strrjmc strrjmc = args[0] serialWrite("STRRJ=" + str(args[0]) + " ") c.execute("UPDATE telemetry SET Value = ? WHERE Label = 'strrj'",(args[0],)) self.ids.statusbar.text = "STRRJ Value Sent: " + str(args[0]) def sendBeta1B(self, *args): global beta1bmc beta1bmc = args[0] serialWrite("B1B=" + str(args[0]) + " ") c.execute("UPDATE telemetry SET Value = ? WHERE Label = 'beta1b'",(args[0],)) self.ids.statusbar.text = "Beta1B Value Sent: " + str(args[0]) def sendBeta1A(self, *args): global beta1amc beta1amc = args[0] serialWrite("B1A=" + str(args[0]) + " ") c.execute("UPDATE telemetry SET Value = ? WHERE Label = 'beta1a'",(args[0],)) self.ids.statusbar.text = "Beta1A Value Sent: " + str(args[0]) def sendBeta2B(self, *args): global beta2bmc beta2bmc = args[0] serialWrite("B2B=" + str(args[0]) + " ") c.execute("UPDATE telemetry SET Value = ? WHERE Label = 'beta2b'",(args[0],)) self.ids.statusbar.text = "Beta2B Value Sent: " + str(args[0]) def sendBeta2A(self, *args): global beta2amc beta2amc = args[0] serialWrite("B2A=" + str(args[0]) + " ") c.execute("UPDATE telemetry SET Value = ? WHERE Label = 'beta2a'",(args[0],)) self.ids.statusbar.text = "Beta2A Value Sent: " + str(args[0]) def sendBeta3B(self, *args): global beta3bmc beta3bmc = args[0] serialWrite("B3B=" + str(args[0]) + " ") c.execute("UPDATE telemetry SET Value = ? WHERE Label = 'beta3b'",(args[0],)) self.ids.statusbar.text = "Beta3B Value Sent: " + str(args[0]) def sendBeta3A(self, *args): global beta3amc beta3amc = args[0] serialWrite("B3A=" + str(args[0]) + " ") c.execute("UPDATE telemetry SET Value = ? WHERE Label = 'beta3a'",(args[0],)) self.ids.statusbar.text = "Beta3A Value Sent: " + str(args[0]) def sendBeta4B(self, *args): global beta4bmc beta4bmc = args[0] serialWrite("B4B=" + str(args[0]) + " ") c.execute("UPDATE telemetry SET Value = ? WHERE Label = 'beta4b'",(args[0],)) self.ids.statusbar.text = "Beta4B Value Sent: " + str(args[0]) def sendBeta4A(self, *args): global beta4amc beta4amc = args[0] serialWrite("B4A=" + str(args[0]) + " ") c.execute("UPDATE telemetry SET Value = ? WHERE Label = 'beta4a'",(args[0],)) self.ids.statusbar.text = "Beta4A Value Sent: " + str(args[0]) def send0(self, *args): global psarjmc,ssarjmc,ptrrjmc,strrjmc,beta1amc,beta1bmc,beta2amc,beta2bmc,beta3amc,beta3bmc,beta4amc,beta4bmc c.execute("UPDATE telemetry SET Value = '0' WHERE Label = 'beta1a'") c.execute("UPDATE telemetry SET Value = '0' WHERE Label = 'beta1b'") c.execute("UPDATE telemetry SET Value = '0' WHERE Label = 'beta2a'") c.execute("UPDATE telemetry SET Value = '0' WHERE Label = 'beta2b'") c.execute("UPDATE telemetry SET Value = '0' WHERE Label = 'beta3a'") c.execute("UPDATE telemetry SET Value = '0' WHERE Label = 'beta3b'") c.execute("UPDATE telemetry SET Value = '0' WHERE Label = 'beta4a'") c.execute("UPDATE telemetry SET Value = '0' WHERE Label = 'beta4b'") c.execute("UPDATE telemetry SET Value = '0' WHERE Label = 'psarj'") c.execute("UPDATE telemetry SET Value = '0' WHERE Label = 'ssarj'") c.execute("UPDATE telemetry SET Value = '0' WHERE Label = 'ptrrj'") c.execute("UPDATE telemetry SET Value = '0' WHERE Label = 'strrj'") strrjmc = 0 ptrrjmc = 0 ssarjmc = 0 psarjmc = 0 beta1bmc = 0 beta1amc = 0 beta2bmc = 0 beta2amc = 0 beta3bmc = 0 beta3amc = 0 beta4bmc = 0 beta4amc = 0 self.ids.statusbar.text = "0 sent to all" serialWrite("B1A=0 ") serialWrite("B1B=0 ") serialWrite("B2A=0 ") serialWrite("B2B=0 ") serialWrite("B3A=0 ") serialWrite("B3B=0 ") serialWrite("B4A=0 ") serialWrite("B4B=0 ") serialWrite("PSARJ=0 ") serialWrite("SSARJ=0 ") serialWrite("PTRRJ=0 ") serialWrite("STRRJ=0 ") def send90(self, *args): global psarjmc,ssarjmc,ptrrjmc,strrjmc,beta1amc,beta1bmc,beta2amc,beta2bmc,beta3amc,beta3bmc,beta4amc,beta4bmc c.execute("UPDATE telemetry SET Value = '90' WHERE Label = 'beta1a'") c.execute("UPDATE telemetry SET Value = '90' WHERE Label = 'beta1b'") c.execute("UPDATE telemetry SET Value = '90' WHERE Label = 'beta2a'") c.execute("UPDATE telemetry SET Value = '90' WHERE Label = 'beta2b'") c.execute("UPDATE telemetry SET Value = '90' WHERE Label = 'beta3a'") c.execute("UPDATE telemetry SET Value = '90' WHERE Label = 'beta3b'") c.execute("UPDATE telemetry SET Value = '90' WHERE Label = 'beta4a'") c.execute("UPDATE telemetry SET Value = '90' WHERE Label = 'beta4b'") c.execute("UPDATE telemetry SET Value = '90' WHERE Label = 'psarj'") c.execute("UPDATE telemetry SET Value = '90' WHERE Label = 'ssarj'") c.execute("UPDATE telemetry SET Value = '90' WHERE Label = 'ptrrj'") c.execute("UPDATE telemetry SET Value = '90' WHERE Label = 'strrj'") strrjmc = 90 ptrrjmc = 90 ssarjmc = 90 psarjmc = 90 beta1bmc = 90 beta1amc = 90 beta2bmc = 90 beta2amc = 90 beta3bmc = 90 beta3amc = 90 beta4bmc = 90 beta4amc = 90 self.ids.statusbar.text = "90 sent to all" serialWrite("B1A=90 ") serialWrite("B1B=90 ") serialWrite("B2A=90 ") serialWrite("B2B=90 ") serialWrite("B3A=90 ") serialWrite("B3B=90 ") serialWrite("B4A=90 ") serialWrite("B4B=90 ") serialWrite("PSARJ=90 ") serialWrite("SSARJ=90 ") serialWrite("PTRRJ=90 ") serialWrite("STRRJ=90 ") class FakeOrbitScreen(Screen): def changeDemoBoolean(self, *args): global demoboolean demoboolean = args[0] def HTVpopup(self, *args): #not fully working HTVpopup = Popup(title='HTV Berthing Orbit', content=Label(text='This will playback recorded data from when the Japanese HTV spacecraft berthed to the ISS. During berthing, the SARJs and nadir BGAs lock but the zenith BGAs autotrack'), text_size=self.size, size_hint=(0.5, 0.3), auto_dismiss=True) HTVpopup.text_size = self.size HTVpopup.open() def startDisco(*args): global p2, runningDemo, Disco if not runningDemo: p2 = Popen(mimic_directory + "/Mimic/Pi/disco.sh") runningDemo = True Disco = True logWrite("Successfully started Disco script") def startDemo(*args): global p2, runningDemo if not runningDemo: p2 = Popen(mimic_directory + "/Mimic/Pi/demoOrbit.sh") runningDemo = True logWrite("Successfully started Demo Orbit script") def stopDemo(*args): global p2, runningDemo try: p2.kill() except Exception: pass else: runningDemo = False def startHTVDemo(*args): global p2, runningDemo if not runningDemo: p2 = Popen(mimic_directory + "/Mimic/Pi/demoHTVOrbit.sh") runningDemo = True logWrite("Successfully started Demo HTV Orbit script") def stopHTVDemo(*args): global p2, runningDemo try: p2.kill() except Exception: pass else: logWrite("Successfully stopped Demo HTV Orbit script") runningDemo = False class Settings_Screen(Screen, EventDispatcher): def checkbox_clicked(*args): if args[2]: serialWrite("SmartRolloverBGA=1 ") else: serialWrite("SmartRolloverBGA=0 ") class Orbit_Screen(Screen, EventDispatcher): signalcolor = ObjectProperty([1, 1, 1]) class Orbit_Pass(Screen, EventDispatcher): signalcolor = ObjectProperty([1, 1, 1]) class Orbit_Data(Screen, EventDispatcher): signalcolor = ObjectProperty([1, 1, 1]) class ISS_Screen(Screen, EventDispatcher): signalcolor = ObjectProperty([1, 1, 1]) def selectModule(*args): #used for choosing a module on screen to light up global module module = str(args[1]) class ECLSS_Screen(Screen, EventDispatcher): signalcolor = ObjectProperty([1, 1, 1]) class EPS_Screen(Screen, EventDispatcher): signalcolor = ObjectProperty([1, 1, 1]) class CT_Screen(Screen, EventDispatcher): signalcolor = ObjectProperty([1, 1, 1]) class CT_SASA_Screen(Screen, EventDispatcher): signalcolor = ObjectProperty([1, 1, 1]) class CT_Camera_Screen(Screen, EventDispatcher): signalcolor = ObjectProperty([1, 1, 1]) class CT_UHF_Screen(Screen, EventDispatcher): signalcolor = ObjectProperty([1, 1, 1]) class CT_SGANT_Screen(Screen, EventDispatcher): signalcolor = ObjectProperty([1, 1, 1]) class GNC_Screen(Screen, EventDispatcher): signalcolor = ObjectProperty([1, 1, 1]) class EVA_Main_Screen(Screen, EventDispatcher): signalcolor = ObjectProperty([1, 1, 1]) class EVA_US_Screen(Screen, EventDispatcher): signalcolor = ObjectProperty([1, 1, 1]) class EVA_RS_Screen(Screen, EventDispatcher): signalcolor = ObjectProperty([1, 1, 1]) class EVA_Pictures(Screen, EventDispatcher): pass class TCS_Screen(Screen, EventDispatcher): signalcolor = ObjectProperty([1, 1, 1]) class RS_Screen(Screen, EventDispatcher): signalcolor = ObjectProperty([1, 1, 1]) class Crew_Screen(Screen, EventDispatcher): pass class MSS_MT_Screen(Screen, EventDispatcher): signalcolor = ObjectProperty([1, 1, 1]) class MimicScreen(Screen, EventDispatcher): signalcolor = ObjectProperty([1, 1, 1]) def changeMimicBoolean(self, *args): global mimicbutton mimicbutton = args[0] def startproc(*args): global p,TDRSproc logWrite("Telemetry Subprocess start") p = Popen(["node", mimic_directory + "/Mimic/Pi/ISS_Telemetry.js"]) #uncomment if live data comes back :D :D :D :D WE SAVED ISSLIVE TDRSproc = Popen(["python3", mimic_directory + "/Mimic/Pi/TDRScheck.py"]) #uncomment if live data comes back :D :D :D :D WE SAVED ISSLIVE #p = Popen([mimic_directory + "/Mimic/Pi/RecordedData/playback.out",mimic_directory + "/Mimic/Pi/RecordedData/Data"]) def killproc(*args): global p,p2,c c.execute("INSERT OR IGNORE INTO telemetry VALUES('Lightstreamer', '0', 'Unsubscribed', '0', 0)") try: p.kill() p2.kill() TDRSproc.kill() except Exception: pass class MainScreenManager(ScreenManager): pass class MainApp(App): def build(self): global startup, ScreenList, stopAnimation self.main_screen = MainScreen(name = 'main') self.mimic_screen = MimicScreen(name = 'mimic') self.iss_screen = ISS_Screen(name = 'iss') self.eclss_screen = ECLSS_Screen(name = 'eclss') self.control_screen = ManualControlScreen(name = 'manualcontrol') self.orbit_screen = Orbit_Screen(name = 'orbit') self.orbit_pass = Orbit_Pass(name = 'orbit_pass') self.orbit_data = Orbit_Data(name = 'orbit_data') self.fakeorbit_screen = FakeOrbitScreen(name = 'fakeorbit') self.eps_screen = EPS_Screen(name = 'eps') self.ct_screen = CT_Screen(name = 'ct') self.ct_sasa_screen = CT_SASA_Screen(name = 'ct_sasa') self.ct_uhf_screen = CT_UHF_Screen(name = 'ct_uhf') self.ct_camera_screen = CT_Camera_Screen(name = 'ct_camera') self.ct_sgant_screen = CT_SGANT_Screen(name = 'ct_sgant') self.gnc_screen = GNC_Screen(name = 'gnc') self.tcs_screen = TCS_Screen(name = 'tcs') self.crew_screen = Crew_Screen(name = 'crew') self.settings_screen = Settings_Screen(name = 'settings') self.us_eva = EVA_US_Screen(name='us_eva') self.rs_eva = EVA_RS_Screen(name='rs_eva') self.rs_screen = RS_Screen(name='rs') self.mss_mt_screen = MSS_MT_Screen(name='mt') self.eva_main = EVA_Main_Screen(name='eva_main') self.eva_pictures = EVA_Pictures(name='eva_pictures') #Add all new telemetry screens to this list, this is used for the signal status icon and telemetry value colors ScreenList = ['tcs_screen', 'eps_screen', 'iss_screen', 'eclss_screen', 'ct_screen', 'ct_sasa_screen', 'ct_sgant_screen', 'ct_uhf_screen', 'ct_camera_screen', 'gnc_screen', 'orbit_screen', 'us_eva', 'rs_eva', 'eva_main', 'mimic_screen', 'mss_mt_screen','orbit_pass','orbit_data'] root = MainScreenManager(transition=SwapTransition()) root.add_widget(self.main_screen) root.add_widget(self.control_screen) root.add_widget(self.mimic_screen) root.add_widget(self.fakeorbit_screen) root.add_widget(self.orbit_screen) root.add_widget(self.orbit_pass) root.add_widget(self.orbit_data) root.add_widget(self.iss_screen) root.add_widget(self.eclss_screen) root.add_widget(self.eps_screen) root.add_widget(self.ct_screen) root.add_widget(self.ct_sasa_screen) root.add_widget(self.ct_uhf_screen) root.add_widget(self.ct_camera_screen) root.add_widget(self.ct_sgant_screen) root.add_widget(self.gnc_screen) root.add_widget(self.us_eva) root.add_widget(self.rs_eva) root.add_widget(self.rs_screen) root.add_widget(self.mss_mt_screen) root.add_widget(self.eva_main) root.add_widget(self.eva_pictures) root.add_widget(self.tcs_screen) root.add_widget(self.crew_screen) root.add_widget(self.settings_screen) root.current = 'main' #change this back to main when done with eva setup Clock.schedule_interval(self.update_labels, 1) #all telemetry wil refresh and get pushed to arduinos every half second! Clock.schedule_interval(self.animate3, 0.1) Clock.schedule_interval(self.orbitUpdate, 1) Clock.schedule_interval(self.checkCrew, 600) if startup: startup = False Clock.schedule_once(self.checkCrew, 30) Clock.schedule_once(self.checkBlogforEVA, 30) Clock.schedule_once(self.getTLE, 15) #uncomment when internet works again Clock.schedule_once(self.TDRSupdate, 30) #uncomment when internet works again Clock.schedule_interval(self.getTLE, 300) Clock.schedule_interval(self.TDRSupdate, 600) Clock.schedule_interval(self.check_internet, 1) #schedule the orbitmap to update with shadow every 5 mins Clock.schedule_interval(self.updateNightShade, 120) Clock.schedule_interval(self.updateOrbitMap, 10) Clock.schedule_interval(self.checkTDRS, 5) return root def check_internet(self, dt): global internet def on_success(req, result): global internet internet = True def on_redirect(req, result): global internet internet = True def on_failure(req, result): global internet internet = False def on_error(req, result): global internet internet = False req = UrlRequest("http://google.com", on_success, on_redirect, on_failure, on_error, timeout=1) def deleteURLPictures(self, dt): logWrite("Function call - deleteURLPictures") global EVA_picture_urls del EVA_picture_urls[:] EVA_picture_urls[:] = [] def changePictures(self, dt): logWrite("Function call - changeURLPictures") global EVA_picture_urls global urlindex urlsize = len(EVA_picture_urls) if urlsize > 0: self.us_eva.ids.EVAimage.source = EVA_picture_urls[urlindex] self.eva_pictures.ids.EVAimage.source = EVA_picture_urls[urlindex] urlindex = urlindex + 1 if urlindex > urlsize-1: urlindex = 0 def updateOrbitMap(self, dt): self.orbit_screen.ids.OrbitMap.source = mimic_directory + '/Mimic/Pi/imgs/orbit/map.jpg' self.orbit_screen.ids.OrbitMap.reload() def updateNightShade(self, dt): proc = Popen(["python3", mimic_directory + "/Mimic/Pi/NightShade.py"]) def checkTDRS(self, dt): global activeTDRS1 global activeTDRS2 def check_EVA_stats(self, lastname1, firstname1, lastname2, firstname2): global numEVAs1, EVAtime_hours1, EVAtime_minutes1, numEVAs2, EVAtime_hours2, EVAtime_minutes2 logWrite("Function call - check EVA stats") eva_url = 'http://www.spacefacts.de/eva/e_eva_az.htm' def on_success(req, result): logWrite("Check EVA Stats - Successs") soup = BeautifulSoup(result, 'html.parser') #using bs4 to parse website numEVAs1 = 0 EVAtime_hours1 = 0 EVAtime_minutes1 = 0 numEVAs2 = 0 EVAtime_hours2 = 0 EVAtime_minutes2 = 0 tabletags = soup.find_all("td") for tag in tabletags: if lastname1 in tag.text: if firstname1 in tag.find_next_sibling("td").text: numEVAs1 = tag.find_next_sibling("td").find_next_sibling("td").find_next_sibling("td").text EVAtime_hours1 = int(tag.find_next_sibling("td").find_next_sibling("td").find_next_sibling("td").find_next_sibling("td").text) EVAtime_minutes1 = int(tag.find_next_sibling("td").find_next_sibling("td").find_next_sibling("td").find_next_sibling("td").find_next_sibling("td").text) EVAtime_minutes1 += (EVAtime_hours1 * 60) for tag in tabletags: if lastname2 in tag.text: if firstname2 in tag.find_next_sibling("td").text: numEVAs2 = tag.find_next_sibling("td").find_next_sibling("td").find_next_sibling("td").text EVAtime_hours2 = int(tag.find_next_sibling("td").find_next_sibling("td").find_next_sibling("td").find_next_sibling("td").text) EVAtime_minutes2 = int(tag.find_next_sibling("td").find_next_sibling("td").find_next_sibling("td").find_next_sibling("td").find_next_sibling("td").text) EVAtime_minutes2 += (EVAtime_hours2 * 60) EV1_EVA_number = numEVAs1 EV1_EVA_time = EVAtime_minutes1 EV2_EVA_number = numEVAs2 EV2_EVA_time = EVAtime_minutes2 EV1_minutes = str(EV1_EVA_time%60).zfill(2) EV2_minutes = str(EV2_EVA_time%60).zfill(2) EV1_hours = int(EV1_EVA_time/60) EV2_hours = int(EV2_EVA_time/60) self.us_eva.ids.EV1.text = " (EV): " + str(firstname1) + " " + str(lastname1) self.us_eva.ids.EV2.text = " (EV): " + str(firstname2) + " " + str(lastname2) self.us_eva.ids.EV1_EVAnum.text = "Number of EVAs = " + str(EV1_EVA_number) self.us_eva.ids.EV2_EVAnum.text = "Number of EVAs = " + str(EV2_EVA_number) self.us_eva.ids.EV1_EVAtime.text = "Total EVA Time = " + str(EV1_hours) + "h " + str(EV1_minutes) + "m" self.us_eva.ids.EV2_EVAtime.text = "Total EVA Time = " + str(EV2_hours) + "h " + str(EV2_minutes) + "m" def on_redirect(req, result): logWrite("Warning - EVA stats failure (redirect)") def on_failure(req, result): logWrite("Warning - EVA stats failure (url failure)") def on_error(req, result): logWrite("Warning - EVA stats failure (url error)") #obtain eva statistics web page for parsing req = UrlRequest(eva_url, on_success, on_redirect, on_failure, on_error, timeout=1) def checkBlogforEVA(self, dt): iss_blog_url = 'https://blogs.nasa.gov/spacestation/tag/spacewalk/' def on_success(req, data): #if blog data is successfully received, it is processed here logWrite("Blog Success") soup = BeautifulSoup(data, "lxml") blog_entries = soup.find("div", {"class": "entry-content"}) blog_text = blog_entries.get_text() iss_EVcrew_url = 'https://www.howmanypeopleareinspacerightnow.com/peopleinspace.json' def on_success2(req2, data2): logWrite("Successfully fetched EV crew JSON") number_of_space = int(data2['number']) names = [] for num in range(0, number_of_space): names.append(str(data2['people'][num]['name'])) try: self.checkBlog(names,blog_text) except Exception as e: logWrite("Error checking blog: " + str(e)) def on_redirect2(req, result): logWrite("Warning - Get EVA crew failure (redirect)") logWrite(result) def on_failure2(req, result): logWrite("Warning - Get EVA crew failure (url failure)") def on_error2(req, result): logWrite("Warning - Get EVA crew failure (url error)") req2 = UrlRequest(iss_EVcrew_url, on_success2, on_redirect2, on_failure2, on_error2, timeout=1) def on_redirect(req, result): logWrite("Warning - Get nasa blog failure (redirect)") def on_failure(req, result): logWrite("Warning - Get nasa blog failure (url failure)") def on_error(req, result): logWrite("Warning - Get nasa blog failure (url error)") req = UrlRequest(iss_blog_url, on_success, on_redirect, on_failure, on_error, timeout=1) def checkBlog(self, names, blog_text): #takes the nasa blog and compares it to people in space ev1_surname = '' ev1_firstname = '' ev2_surname = '' ev2_firstname = '' ev1name = '' ev2name = '' name_position = 1000000 for name in names: #search for text in blog that matchs people in space list, choose 1st result as likely EV1 if name in blog_text: if blog_text.find(name) < name_position: name_position = blog_text.find(name) ev1name = name name_position = 1000000 for name in names: #search for text in blog that matchs people in space list, choose 2nd result as likely EV2 if name in blog_text and name != ev1name: if blog_text.find(name) < name_position: name_position = blog_text.find(name) ev2name = name logWrite("Likely EV1: "+ev1name) logWrite("Likely EV2: "+ev2name) ev1_surname = ev1name.split()[-1] ev1_firstname = ev1name.split()[0] ev2_surname = ev2name.split()[-1] ev2_firstname = ev2name.split()[0] try: self.check_EVA_stats(ev1_surname,ev1_firstname,ev2_surname,ev2_firstname) except Exception as e: logWrite("Error retrieving EVA stats: " + str(e)) def flashUS_EVAbutton(self, instance): logWrite("Function call - flashUS_EVA") self.eva_main.ids.US_EVA_Button.background_color = (0, 0, 1, 1) def reset_color(*args): self.eva_main.ids.US_EVA_Button.background_color = (1, 1, 1, 1) Clock.schedule_once(reset_color, 0.5) def flashRS_EVAbutton(self, instance): logWrite("Function call - flashRS_EVA") self.eva_main.ids.RS_EVA_Button.background_color = (0, 0, 1, 1) def reset_color(*args): self.eva_main.ids.RS_EVA_Button.background_color = (1, 1, 1, 1) Clock.schedule_once(reset_color, 0.5) def flashEVAbutton(self, instance): logWrite("Function call - flashEVA") self.mimic_screen.ids.EVA_button.background_color = (0, 0, 1, 1) def reset_color(*args): self.mimic_screen.ids.EVA_button.background_color = (1, 1, 1, 1) Clock.schedule_once(reset_color, 0.5) def EVA_clock(self, dt): global seconds, minutes, hours, EVAstartTime unixconvert = time.gmtime(time.time()) currenthours = float(unixconvert[7])*24+unixconvert[3]+float(unixconvert[4])/60+float(unixconvert[5])/3600 difference = (currenthours-EVAstartTime)*3600 minutes, seconds = divmod(difference, 60) hours, minutes = divmod(minutes, 60) hours = int(hours) minutes = int(minutes) seconds = int(seconds) self.us_eva.ids.EVA_clock.text =(str(hours) + ":" + str(minutes).zfill(2) + ":" + str(int(seconds)).zfill(2)) self.us_eva.ids.EVA_clock.color = 0.33, 0.7, 0.18 def animate(self, instance): global new_x2, new_y2 self.main_screen.ids.ISStiny2.size_hint = 0.07, 0.07 new_x2 = new_x2+0.007 new_y2 = (math.sin(new_x2*30)/18)+0.75 if new_x2 > 1: new_x2 = new_x2-1.0 self.main_screen.ids.ISStiny2.pos_hint = {"center_x": new_x2, "center_y": new_y2} def animate3(self, instance): global new_x, new_y, sizeX, sizeY, startingAnim if new_x<0.886: new_x = new_x+0.007 new_y = (math.sin(new_x*30)/18)+0.75 self.main_screen.ids.ISStiny.pos_hint = {"center_x": new_x, "center_y": new_y} else: if sizeX <= 0.15: sizeX = sizeX + 0.01 sizeY = sizeY + 0.01 self.main_screen.ids.ISStiny.size_hint = sizeX, sizeY else: if startingAnim: Clock.schedule_interval(self.animate, 0.1) startingAnim = False def changeColors(self, *args): #this function sets all labels on mimic screen to a certain color based on signal status #the signalcolor is a kv property that will update all signal status dependant values to whatever color is received by this function global ScreenList for x in ScreenList: getattr(self, x).signalcolor = args[0], args[1], args[2] def changeManualControlBoolean(self, *args): global manualcontrol manualcontrol = args[0] def TDRSupdate(self, dt): global TDRS12_TLE, TDRS6_TLE, TDRS10_TLE, TDRS11_TLE, TDRS7_TLE normalizedX = self.orbit_screen.ids.OrbitMap.norm_image_size[0] / self.orbit_screen.ids.OrbitMap.texture_size[0] normalizedY = self.orbit_screen.ids.OrbitMap.norm_image_size[1] / self.orbit_screen.ids.OrbitMap.texture_size[1] def scaleLatLon(latitude, longitude): #converting lat lon to x, y for orbit map fromLatSpan = 180.0 fromLonSpan = 360.0 toLatSpan = 0.598 toLonSpan = 0.716 valueLatScaled = (float(latitude)+90.0)/float(fromLatSpan) valueLonScaled = (float(longitude)+180.0)/float(fromLonSpan) newLat = (0.265) + (valueLatScaled * toLatSpan) newLon = (0.14) + (valueLonScaled * toLonSpan) return {'newLat': newLat, 'newLon': newLon} def scaleLatLon2(in_latitude,in_longitude): MAP_HEIGHT = self.orbit_screen.ids.OrbitMap.texture_size[1] MAP_WIDTH = self.orbit_screen.ids.OrbitMap.texture_size[0] new_x = ((MAP_WIDTH / 360.0) * (180 + in_longitude)) new_y = ((MAP_HEIGHT / 180.0) * (90 + in_latitude)) return {'new_y': new_y, 'new_x': new_x} #TDRS East 2 sats try: TDRS12_TLE.compute(datetime.utcnow()) #41 West except NameError: TDRS12lon = -41 TDRS12lat = 0 else: TDRS12lon = float(str(TDRS12_TLE.sublong).split(':')[0]) + float(str(TDRS12_TLE.sublong).split(':')[1])/60 + float(str(TDRS12_TLE.sublong).split(':')[2])/3600 TDRS12lat = float(str(TDRS12_TLE.sublat).split(':')[0]) + float(str(TDRS12_TLE.sublat).split(':')[1])/60 + float(str(TDRS12_TLE.sublat).split(':')[2])/3600 TDRS12_groundtrack = [] date_i = datetime.utcnow() groundtrackdate = datetime.utcnow() while date_i < groundtrackdate + timedelta(days=1): TDRS12_TLE.compute(date_i) TDRS12lon_gt = float(str(TDRS12_TLE.sublong).split(':')[0]) + float( str(TDRS12_TLE.sublong).split(':')[1]) / 60 + float(str(TDRS12_TLE.sublong).split(':')[2]) / 3600 TDRS12lat_gt = float(str(TDRS12_TLE.sublat).split(':')[0]) + float( str(TDRS12_TLE.sublat).split(':')[1]) / 60 + float(str(TDRS12_TLE.sublat).split(':')[2]) / 3600 TDRS12_groundtrack.append(scaleLatLon2(TDRS12lat_gt, TDRS12lon_gt)['new_x']) TDRS12_groundtrack.append(scaleLatLon2(TDRS12lat_gt, TDRS12lon_gt)['new_y']) date_i += timedelta(minutes=10) self.orbit_screen.ids.TDRS12groundtrack.width = 1 self.orbit_screen.ids.TDRS12groundtrack.col = (0,0,1,1) self.orbit_screen.ids.TDRS12groundtrack.points = TDRS12_groundtrack try: TDRS6_TLE.compute(datetime.utcnow()) #46 West except NameError: TDRS6lon = -46 TDRS6lat = 0 else: TDRS6lon = float(str(TDRS6_TLE.sublong).split(':')[0]) + float(str(TDRS6_TLE.sublong).split(':')[1])/60 + float(str(TDRS6_TLE.sublong).split(':')[2])/3600 TDRS6lat = float(str(TDRS6_TLE.sublat).split(':')[0]) + float(str(TDRS6_TLE.sublat).split(':')[1])/60 + float(str(TDRS6_TLE.sublat).split(':')[2])/3600 TDRS6_groundtrack = [] date_i = datetime.utcnow() groundtrackdate = datetime.utcnow() while date_i < groundtrackdate + timedelta(days=1): TDRS6_TLE.compute(date_i) TDRS6lon_gt = float(str(TDRS6_TLE.sublong).split(':')[0]) + float( str(TDRS6_TLE.sublong).split(':')[1]) / 60 + float(str(TDRS6_TLE.sublong).split(':')[2]) / 3600 TDRS6lat_gt = float(str(TDRS6_TLE.sublat).split(':')[0]) + float( str(TDRS6_TLE.sublat).split(':')[1]) / 60 + float(str(TDRS6_TLE.sublat).split(':')[2]) / 3600 TDRS6_groundtrack.append(scaleLatLon2(TDRS6lat_gt, TDRS6lon_gt)['new_x']) TDRS6_groundtrack.append(scaleLatLon2(TDRS6lat_gt, TDRS6lon_gt)['new_y']) date_i += timedelta(minutes=10) self.orbit_screen.ids.TDRS6groundtrack.width = 1 self.orbit_screen.ids.TDRS6groundtrack.col = (0,0,1,1) self.orbit_screen.ids.TDRS6groundtrack.points = TDRS6_groundtrack #TDRS West 2 sats try: TDRS11_TLE.compute(datetime.utcnow()) #171 West except NameError: TDRS11lon = -171 TDRS11lat = 0 else: TDRS11lon = float(str(TDRS11_TLE.sublong).split(':')[0]) + float(str(TDRS11_TLE.sublong).split(':')[1])/60 + float(str(TDRS11_TLE.sublong).split(':')[2])/3600 TDRS11lat = float(str(TDRS11_TLE.sublat).split(':')[0]) + float(str(TDRS11_TLE.sublat).split(':')[1])/60 + float(str(TDRS11_TLE.sublat).split(':')[2])/3600 TDRS11_groundtrack = [] date_i = datetime.utcnow() groundtrackdate = datetime.utcnow() while date_i < groundtrackdate + timedelta(days=1): TDRS11_TLE.compute(date_i) TDRS11lon_gt = float(str(TDRS11_TLE.sublong).split(':')[0]) + float( str(TDRS11_TLE.sublong).split(':')[1]) / 60 + float(str(TDRS11_TLE.sublong).split(':')[2]) / 3600 TDRS11lat_gt = float(str(TDRS11_TLE.sublat).split(':')[0]) + float( str(TDRS11_TLE.sublat).split(':')[1]) / 60 + float(str(TDRS11_TLE.sublat).split(':')[2]) / 3600 TDRS11_groundtrack.append(scaleLatLon2(TDRS11lat_gt, TDRS11lon_gt)['new_x']) TDRS11_groundtrack.append(scaleLatLon2(TDRS11lat_gt, TDRS11lon_gt)['new_y']) date_i += timedelta(minutes=10) self.orbit_screen.ids.TDRS11groundtrack.width = 1 self.orbit_screen.ids.TDRS11groundtrack.col = (0,0,1,1) self.orbit_screen.ids.TDRS11groundtrack.points = TDRS11_groundtrack try: TDRS10_TLE.compute(datetime.utcnow()) #174 West except NameError: TDRS10lon = -174 TDRS10lat = 0 else: TDRS10lon = float(str(TDRS10_TLE.sublong).split(':')[0]) + float(str(TDRS10_TLE.sublong).split(':')[1])/60 + float(str(TDRS10_TLE.sublong).split(':')[2])/3600 TDRS10lat = float(str(TDRS10_TLE.sublat).split(':')[0]) + float(str(TDRS10_TLE.sublat).split(':')[1])/60 + float(str(TDRS10_TLE.sublat).split(':')[2])/3600 TDRS10_groundtrack = [] date_i = datetime.utcnow() groundtrackdate = datetime.utcnow() while date_i < groundtrackdate + timedelta(days=1): TDRS10_TLE.compute(date_i) TDRS10lon_gt = float(str(TDRS10_TLE.sublong).split(':')[0]) + float( str(TDRS10_TLE.sublong).split(':')[1]) / 60 + float(str(TDRS10_TLE.sublong).split(':')[2]) / 3600 TDRS10lat_gt = float(str(TDRS10_TLE.sublat).split(':')[0]) + float( str(TDRS10_TLE.sublat).split(':')[1]) / 60 + float(str(TDRS10_TLE.sublat).split(':')[2]) / 3600 TDRS10_groundtrack.append(scaleLatLon2(TDRS10lat_gt, TDRS10lon_gt)['new_x']) TDRS10_groundtrack.append(scaleLatLon2(TDRS10lat_gt, TDRS10lon_gt)['new_y']) date_i += timedelta(minutes=10) self.orbit_screen.ids.TDRS10groundtrack.width = 1 self.orbit_screen.ids.TDRS10groundtrack.col = (0,0,1,1) self.orbit_screen.ids.TDRS10groundtrack.points = TDRS10_groundtrack #ZOE TDRS-Z try: TDRS7_TLE.compute(datetime.utcnow()) #275 West except NameError: TDRS7lon = 85 TDRS7lat = 0 else: TDRS7lon = float(str(TDRS7_TLE.sublong).split(':')[0]) + float(str(TDRS7_TLE.sublong).split(':')[1])/60 + float(str(TDRS7_TLE.sublong).split(':')[2])/3600 TDRS7lat = float(str(TDRS7_TLE.sublat).split(':')[0]) + float(str(TDRS7_TLE.sublat).split(':')[1])/60 + float(str(TDRS7_TLE.sublat).split(':')[2])/3600 TDRS7_groundtrack = [] date_i = datetime.utcnow() groundtrackdate = datetime.utcnow() while date_i < groundtrackdate + timedelta(days=1): TDRS7_TLE.compute(date_i) TDRS7lon_gt = float(str(TDRS7_TLE.sublong).split(':')[0]) + float( str(TDRS7_TLE.sublong).split(':')[1]) / 60 + float(str(TDRS7_TLE.sublong).split(':')[2]) / 3600 TDRS7lat_gt = float(str(TDRS7_TLE.sublat).split(':')[0]) + float( str(TDRS7_TLE.sublat).split(':')[1]) / 60 + float(str(TDRS7_TLE.sublat).split(':')[2]) / 3600 TDRS7_groundtrack.append(scaleLatLon2(TDRS7lat_gt, TDRS7lon_gt)['new_x']) TDRS7_groundtrack.append(scaleLatLon2(TDRS7lat_gt, TDRS7lon_gt)['new_y']) date_i += timedelta(minutes=10) self.orbit_screen.ids.TDRS7groundtrack.width = 1 self.orbit_screen.ids.TDRS7groundtrack.col = (0,0,1,1) self.orbit_screen.ids.TDRS7groundtrack.points = TDRS7_groundtrack #draw the TDRS satellite locations self.orbit_screen.ids.TDRS12.pos = (scaleLatLon2(TDRS12lat, TDRS12lon)['new_x']-((self.orbit_screen.ids.TDRS12.width/2)*normalizedX),scaleLatLon2(TDRS12lat, TDRS12lon)['new_y']-((self.orbit_screen.ids.TDRS12.height/2)*normalizedY)) self.orbit_screen.ids.TDRS6.pos = (scaleLatLon2(TDRS6lat, TDRS6lon)['new_x']-((self.orbit_screen.ids.TDRS6.width/2)*normalizedX),scaleLatLon2(TDRS6lat, TDRS6lon)['new_y']-((self.orbit_screen.ids.TDRS6.height/2)*normalizedY)) self.orbit_screen.ids.TDRS11.pos = (scaleLatLon2(TDRS11lat, TDRS11lon)['new_x']-((self.orbit_screen.ids.TDRS11.width/2)*normalizedX),scaleLatLon2(TDRS11lat, TDRS11lon)['new_y']-((self.orbit_screen.ids.TDRS11.height/2)*normalizedY)) self.orbit_screen.ids.TDRS10.pos = (scaleLatLon2(TDRS10lat, TDRS10lon)['new_x']-((self.orbit_screen.ids.TDRS10.width/2)*normalizedX),scaleLatLon2(TDRS10lat, TDRS10lon)['new_y']-((self.orbit_screen.ids.TDRS10.height/2)*normalizedY)) self.orbit_screen.ids.TDRS7.pos = (scaleLatLon2(TDRS7lat, TDRS7lon)['new_x']-((self.orbit_screen.ids.TDRS7.width/2)*normalizedX),scaleLatLon2(TDRS7lat, TDRS7lon)['new_y']-((self.orbit_screen.ids.TDRS7.height/2)*normalizedY)) #add labels and ZOE self.orbit_screen.ids.TDRSeLabel.pos_hint = {"center_x": scaleLatLon(0, -41)['newLon']+0.06, "center_y": scaleLatLon(0, -41)['newLat']} self.orbit_screen.ids.TDRSwLabel.pos_hint = {"center_x": scaleLatLon(0, -174)['newLon']+0.06, "center_y": scaleLatLon(0, -174)['newLat']} self.orbit_screen.ids.TDRSzLabel.pos_hint = {"center_x": scaleLatLon(0, 85)['newLon']+0.05, "center_y": scaleLatLon(0, 85)['newLat']} self.orbit_screen.ids.ZOE.pos_hint = {"center_x": scaleLatLon(0, 77)['newLon'], "center_y": scaleLatLon(0, 77)['newLat']} self.orbit_screen.ids.ZOElabel.pos_hint = {"center_x": scaleLatLon(0, 77)['newLon'], "center_y": scaleLatLon(0, 77)['newLat']+0.1} def orbitUpdate(self, dt): global overcountry, ISS_TLE, ISS_TLE_Line1, ISS_TLE_Line2, ISS_TLE_Acquired, sgant_elevation, sgant_elevation_old, sgant_xelevation, aos, oldtdrs, tdrs, logged global TDRS12_TLE, TDRS6_TLE, TDRS7_TLE, TDRS10_TLE, TDRS11_TLE, tdrs1, tdrs2, tdrs_timestamp def scaleLatLon(latitude, longitude): #converting lat lon to x, y for orbit map fromLatSpan = 180.0 fromLonSpan = 360.0 toLatSpan = 0.598 toLonSpan = 0.716 valueLatScaled = (float(latitude)+90.0)/float(fromLatSpan) valueLonScaled = (float(longitude)+180.0)/float(fromLonSpan) newLat = (0.265) + (valueLatScaled * toLatSpan) newLon = (0.14) + (valueLonScaled * toLonSpan) return {'newLat': newLat, 'newLon': newLon} def scaleLatLon2(in_latitude,in_longitude): MAP_HEIGHT = self.orbit_screen.ids.OrbitMap.texture_size[1] MAP_WIDTH = self.orbit_screen.ids.OrbitMap.texture_size[0] new_x = ((MAP_WIDTH / 360.0) * (180 + in_longitude)) new_y = ((MAP_HEIGHT / 180.0) * (90 + in_latitude)) return {'new_y': new_y, 'new_x': new_x} #copied from apexpy - copyright 2015 Christer van der Meeren MIT license def subsolar(datetime): year = datetime.year doy = datetime.timetuple().tm_yday ut = datetime.hour * 3600 + datetime.minute * 60 + datetime.second if not 1601 <= year <= 2100: raise ValueError('Year must be in [1601, 2100]') yr = year - 2000 nleap = int(np.floor((year - 1601.0) / 4.0)) nleap -= 99 if year <= 1900: ncent = int(np.floor((year - 1601.0) / 100.0)) ncent = 3 - ncent nleap = nleap + ncent l0 = -79.549 + (-0.238699 * (yr - 4.0 * nleap) + 3.08514e-2 * nleap) g0 = -2.472 + (-0.2558905 * (yr - 4.0 * nleap) - 3.79617e-2 * nleap) # Days (including fraction) since 12 UT on January 1 of IYR: df = (ut / 86400.0 - 1.5) + doy # Mean longitude of Sun: lmean = l0 + 0.9856474 * df # Mean anomaly in radians: grad = np.radians(g0 + 0.9856003 * df) # Ecliptic longitude: lmrad = np.radians(lmean + 1.915 * np.sin(grad) + 0.020 * np.sin(2.0 * grad)) sinlm = np.sin(lmrad) # Obliquity of ecliptic in radians: epsrad = np.radians(23.439 - 4e-7 * (df + 365 * yr + nleap)) # Right ascension: alpha = np.degrees(np.arctan2(np.cos(epsrad) * sinlm, np.cos(lmrad))) # Declination, which is also the subsolar latitude: sslat = np.degrees(np.arcsin(np.sin(epsrad) * sinlm)) # Equation of time (degrees): etdeg = lmean - alpha nrot = round(etdeg / 360.0) etdeg = etdeg - 360.0 * nrot # Subsolar longitude: sslon = 180.0 - (ut / 240.0 + etdeg) # Earth rotates one degree every 240 s. nrot = round(sslon / 360.0) sslon = sslon - 360.0 * nrot return sslat, sslon if ISS_TLE_Acquired: ISS_TLE.compute(datetime.utcnow()) #------------------Latitude/Longitude Stuff--------------------------- latitude = float(str(ISS_TLE.sublat).split(':')[0]) + float(str(ISS_TLE.sublat).split(':')[1])/60 + float(str(ISS_TLE.sublat).split(':')[2])/3600 longitude = float(str(ISS_TLE.sublong).split(':')[0]) + float(str(ISS_TLE.sublong).split(':')[1])/60 + float(str(ISS_TLE.sublong).split(':')[2])/3600 #inclination = ISS_TLE.inc normalizedX = self.orbit_screen.ids.OrbitMap.norm_image_size[0] / self.orbit_screen.ids.OrbitMap.texture_size[0] normalizedY = self.orbit_screen.ids.OrbitMap.norm_image_size[1] / self.orbit_screen.ids.OrbitMap.texture_size[1] self.orbit_screen.ids.OrbitISStiny.pos = ( scaleLatLon2(latitude, longitude)['new_x'] - ((self.orbit_screen.ids.OrbitISStiny.width / 2) * normalizedX * 2), #had to fudge a little not sure why scaleLatLon2(latitude, longitude)['new_y'] - ((self.orbit_screen.ids.OrbitISStiny.height / 2) * normalizedY * 2)) #had to fudge a little not sure why #get the position of the sub solar point to add the sun icon to the map sunlatitude, sunlongitude = subsolar(datetime.utcnow()) self.orbit_screen.ids.OrbitSun.pos = ( scaleLatLon2(int(sunlatitude), int(sunlongitude))['new_x'] - ((self.orbit_screen.ids.OrbitSun.width / 2) * normalizedX * 2), #had to fudge a little not sure why scaleLatLon2(int(sunlatitude), int(sunlongitude))['new_y'] - ((self.orbit_screen.ids.OrbitSun.height / 2) * normalizedY * 2)) #had to fudge a little not sure why #draw the ISS groundtrack behind and ahead of the 180 longitude cutoff ISS_groundtrack = [] ISS_groundtrack2 = [] date_i = datetime.utcnow() groundtrackdate = datetime.utcnow() while date_i < groundtrackdate + timedelta(minutes=95): ISS_TLE.compute(date_i) ISSlon_gt = float(str(ISS_TLE.sublong).split(':')[0]) + float( str(ISS_TLE.sublong).split(':')[1]) / 60 + float(str(ISS_TLE.sublong).split(':')[2]) / 3600 ISSlat_gt = float(str(ISS_TLE.sublat).split(':')[0]) + float( str(ISS_TLE.sublat).split(':')[1]) / 60 + float(str(ISS_TLE.sublat).split(':')[2]) / 3600 if ISSlon_gt < longitude-1: #if the propagated groundtrack is behind the iss (i.e. wraps around the screen) add to new groundtrack line ISS_groundtrack2.append(scaleLatLon2(ISSlat_gt, ISSlon_gt)['new_x']) ISS_groundtrack2.append(scaleLatLon2(ISSlat_gt, ISSlon_gt)['new_y']) else: ISS_groundtrack.append(scaleLatLon2(ISSlat_gt, ISSlon_gt)['new_x']) ISS_groundtrack.append(scaleLatLon2(ISSlat_gt, ISSlon_gt)['new_y']) date_i += timedelta(seconds=60) self.orbit_screen.ids.ISSgroundtrack.width = 1 self.orbit_screen.ids.ISSgroundtrack.col = (1, 0, 0, 1) self.orbit_screen.ids.ISSgroundtrack.points = ISS_groundtrack self.orbit_screen.ids.ISSgroundtrack2.width = 1 self.orbit_screen.ids.ISSgroundtrack2.col = (1, 0, 0, 1) self.orbit_screen.ids.ISSgroundtrack2.points = ISS_groundtrack2 self.orbit_screen.ids.latitude.text = str("{:.2f}".format(latitude)) self.orbit_screen.ids.longitude.text = str("{:.2f}".format(longitude)) TDRScursor.execute('select TDRS1 from tdrs') tdrs1 = int(TDRScursor.fetchone()[0]) TDRScursor.execute('select TDRS2 from tdrs') tdrs2 = int(TDRScursor.fetchone()[0]) TDRScursor.execute('select Timestamp from tdrs') tdrs_timestamp = TDRScursor.fetchone()[0] # THIS SECTION NEEDS IMPROVEMENT tdrs = "n/a" self.ct_sgant_screen.ids.tdrs_east12.angle = (-1*longitude)-41 self.ct_sgant_screen.ids.tdrs_east6.angle = (-1*longitude)-46 self.ct_sgant_screen.ids.tdrs_z7.angle = ((-1*longitude)-41)+126 self.ct_sgant_screen.ids.tdrs_west11.angle = ((-1*longitude)-41)-133 self.ct_sgant_screen.ids.tdrs_west10.angle = ((-1*longitude)-41)-130 if ((tdrs1 or tdrs2) == 12) and float(aos) == 1.0: tdrs = "east-12" self.ct_sgant_screen.ids.tdrs_label.text = "TDRS-East-12" if ((tdrs1 or tdrs2) == 6) and float(aos) == 1.0: tdrs = "east-6" self.ct_sgant_screen.ids.tdrs_label.text = "TDRS-East-6" if ((tdrs1 or tdrs2) == 10) and float(aos) == 1.0: tdrs = "west-10" self.ct_sgant_screen.ids.tdrs_label.text = "TDRS-West-10" if ((tdrs1 or tdrs2) == 11) and float(aos) == 1.0: tdrs = "west-11" self.ct_sgant_screen.ids.tdrs_label.text = "TDRS-West-11" if ((tdrs1 or tdrs2) == 7) and float(aos) == 1.0: tdrs = "z-7" self.ct_sgant_screen.ids.tdrs_label.text = "TDRS-Z-7" elif tdrs1 == 0 and tdrs2 == 0: self.ct_sgant_screen.ids.tdrs_label.text = "-" tdrs = "----" self.ct_sgant_screen.ids.tdrs_z7.color = 1, 1, 1, 1 self.orbit_screen.ids.TDRSwLabel.color = (1,1,1,1) self.orbit_screen.ids.TDRSeLabel.color = (1,1,1,1) self.orbit_screen.ids.TDRSzLabel.color = (1,1,1,1) self.orbit_screen.ids.TDRS11.col = (1,1,1,1) self.orbit_screen.ids.TDRS10.col = (1,1,1,1) self.orbit_screen.ids.TDRS12.col = (1,1,1,1) self.orbit_screen.ids.TDRS6.col = (1,1,1,1) self.orbit_screen.ids.TDRS7.col = (1,1,1,1) self.orbit_screen.ids.ZOElabel.color = (1,1,1,1) self.orbit_screen.ids.ZOE.col = (1,0.5,0,0.5) if "10" in tdrs: #tdrs10 and 11 west self.orbit_screen.ids.TDRSwLabel.color = (1,0,1,1) self.orbit_screen.ids.TDRS10.col = (1,0,1,1) if "11" in tdrs: #tdrs10 and 11 west self.orbit_screen.ids.TDRSwLabel.color = (1,0,1,1) self.orbit_screen.ids.TDRS11.col = (1,0,1,1) self.orbit_screen.ids.TDRS10.col = (1,1,1,1) if "6" in tdrs: #tdrs6 and 12 east self.orbit_screen.ids.TDRSeLabel.color = (1,0,1,1) self.orbit_screen.ids.TDRS6.col = (1,0,1,1) if "12" in tdrs: #tdrs6 and 12 east self.orbit_screen.ids.TDRSeLabel.color = (1,0,1,1) self.orbit_screen.ids.TDRS12.col = (1,0,1,1) if "7" in tdrs: #tdrs7 z self.ct_sgant_screen.ids.tdrs_z7.color = 1, 1, 1, 1 self.orbit_screen.ids.TDRSzLabel.color = (1,0,1,1) self.orbit_screen.ids.TDRS7.col = (1,0,1,1) self.orbit_screen.ids.ZOElabel.color = 0, 0, 0, 0 self.orbit_screen.ids.ZOE.col = (0,0,0,0) #------------------Orbit Stuff--------------------------- now = datetime.utcnow() mins = (now - now.replace(hour=0,minute=0,second=0,microsecond=0)).total_seconds() orbits_today = math.floor((float(mins)/60)/90) self.orbit_screen.ids.dailyorbit.text = str(int(orbits_today)) #display number of orbits since utc midnight year = int('20' + str(ISS_TLE_Line1[18:20])) decimal_days = float(ISS_TLE_Line1[20:32]) converted_time = datetime(year, 1 ,1) + timedelta(decimal_days - 1) time_since_epoch = ((now - converted_time).total_seconds()) #convert time difference to hours totalorbits = int(ISS_TLE_Line2[63:68]) + 100000 + int(float(time_since_epoch)/(90*60)) #add number of orbits since the tle was generated self.orbit_screen.ids.totalorbits.text = str(totalorbits) #display number of orbits since utc midnight #------------------ISS Pass Detection--------------------------- location = ephem.Observer() location.lon = '-95:21:59' #will next to make these an input option location.lat = '29:45:43' location.elevation = 10 location.name = 'location' location.horizon = '10' location.pressure = 0 location.date = datetime.utcnow() #use location to draw dot on orbit map mylatitude = float(str(location.lat).split(':')[0]) + float(str(location.lat).split(':')[1])/60 + float(str(location.lat).split(':')[2])/3600 mylongitude = float(str(location.lon).split(':')[0]) + float(str(location.lon).split(':')[1])/60 + float(str(location.lon).split(':')[2])/3600 self.orbit_screen.ids.mylocation.col = (0,0,1,1) self.orbit_screen.ids.mylocation.pos = (scaleLatLon2(mylatitude, mylongitude)['new_x']-((self.orbit_screen.ids.mylocation.width/2)*normalizedX),scaleLatLon2(mylatitude, mylongitude)['new_y']-((self.orbit_screen.ids.mylocation.height/2)*normalizedY)) def isVisible(pass_info): def seconds_between(d1, d2): return abs((d2 - d1).seconds) def datetime_from_time(tr): year, month, day, hour, minute, second = tr.tuple() dt = dtime.datetime(year, month, day, hour, minute, int(second)) return dt tr, azr, tt, altt, ts, azs = pass_info max_time = datetime_from_time(tt) location.date = max_time sun = ephem.Sun() sun.compute(location) ISS_TLE.compute(location) sun_alt = float(str(sun.alt).split(':')[0]) + float(str(sun.alt).split(':')[1])/60 + float(str(sun.alt).split(':')[2])/3600 visible = False if ISS_TLE.eclipsed is False and -18 < sun_alt < -6: visible = True #on the pass screen add info for why not visible return visible ISS_TLE.compute(location) #compute tle propagation based on provided location nextpassinfo = location.next_pass(ISS_TLE) if nextpassinfo[0] is None: self.orbit_screen.ids.iss_next_pass1.text = "n/a" self.orbit_screen.ids.iss_next_pass2.text = "n/a" self.orbit_screen.ids.countdown.text = "n/a" else: nextpassdatetime = datetime.strptime(str(nextpassinfo[0]), '%Y/%m/%d %H:%M:%S') #convert to datetime object for timezone conversion nextpassinfo_format = nextpassdatetime.replace(tzinfo=pytz.utc) localtimezone = pytz.timezone('America/Chicago') localnextpass = nextpassinfo_format.astimezone(localtimezone) self.orbit_screen.ids.iss_next_pass1.text = str(localnextpass).split()[0] #display next pass time self.orbit_screen.ids.iss_next_pass2.text = str(localnextpass).split()[1].split('-')[0] #display next pass time timeuntilnextpass = nextpassinfo[0] - location.date nextpasshours = timeuntilnextpass*24.0 nextpassmins = (nextpasshours-math.floor(nextpasshours))*60 nextpassseconds = (nextpassmins-math.floor(nextpassmins))*60 if isVisible(nextpassinfo): self.orbit_screen.ids.ISSvisible.text = "Visible Pass!" else: self.orbit_screen.ids.ISSvisible.text = "Not Visible" self.orbit_screen.ids.countdown.text = str("{:.0f}".format(math.floor(nextpasshours))) + ":" + str("{:.0f}".format(math.floor(nextpassmins))) + ":" + str("{:.0f}".format(math.floor(nextpassseconds))) #display time until next pass def getTLE(self, *args): global ISS_TLE, ISS_TLE_Line1, ISS_TLE_Line2, ISS_TLE_Acquired #iss_tle_url = 'https://spaceflight.nasa.gov/realdata/sightings/SSapplications/Post/JavaSSOP/orbit/ISS/SVPOST.html' #the rev counter on this page is wrong iss_tle_url = 'https://www.celestrak.com/NORAD/elements/stations.txt' tdrs_tle_url = 'https://www.celestrak.com/NORAD/elements/tdrss.txt' def on_success(req, data): #if TLE data is successfully received, it is processed here global ISS_TLE, ISS_TLE_Line1, ISS_TLE_Line2, ISS_TLE_Acquired soup = BeautifulSoup(data, "lxml") body = iter(soup.get_text().split('\n')) results = [] for line in body: if "ISS (ZARYA)" in line: results.append(line) results.append(next(body)) results.append(next(body)) break results = [i.strip() for i in results] if len(results) > 0: ISS_TLE_Line1 = results[1] ISS_TLE_Line2 = results[2] ISS_TLE = ephem.readtle("ISS (ZARYA)", str(ISS_TLE_Line1), str(ISS_TLE_Line2)) ISS_TLE_Acquired = True logWrite("ISS TLE Acquired!") else: logWrite("ISS TLE Not Acquired") ISS_TLE_Acquired = False def on_redirect(req, result): logWrite("Warning - Get ISS TLE failure (redirect)") logWrite(result) def on_failure(req, result): logWrite("Warning - Get ISS TLE failure (url failure)") logWrite(result) def on_error(req, result): logWrite("Warning - Get ISS TLE failure (url error)") logWrite(result) def on_success2(req2, data2): #if TLE data is successfully received, it is processed here #retrieve the TLEs for every TDRS that ISS talks too global TDRS12_TLE,TDRS6_TLE,TDRS11_TLE,TDRS10_TLE,TDRS7_TLE soup = BeautifulSoup(data2, "lxml") body = iter(soup.get_text().split('\n')) results = ['','',''] #TDRS 12 TLE for line in body: if "TDRS 12" in line: results[0] = line results[1] = next(body) results[2] = next(body) break if len(results[1]) > 0: TDRS12_TLE = ephem.readtle("TDRS 12", str(results[1]), str(results[2])) logWrite("TDRS 12 TLE Success!") else: logWrite("TDRS 12 TLE not acquired") results = ['','',''] body = iter(soup.get_text().split('\n')) #TDRS 6 TLE for line in body: if "TDRS 6" in line: results[0] = line results[1] = next(body) results[2] = next(body) break if len(results[1]) > 0: TDRS6_TLE = ephem.readtle("TDRS 6", str(results[1]), str(results[2])) logWrite("TDRS 6 TLE Success!") else: logWrite("TDRS 6 TLE not acquired") results = ['','',''] body = iter(soup.get_text().split('\n')) #TDRS 11 TLE for line in body: if "TDRS 11" in line: results[0] = line results[1] = next(body) results[2] = next(body) break if len(results[1]) > 0: TDRS11_TLE = ephem.readtle("TDRS 11", str(results[1]), str(results[2])) logWrite("TDRS 11 TLE Success!") else: logWrite("TDRS 11 TLE not acquired") results = ['','',''] body = iter(soup.get_text().split('\n')) #TDRS 10 TLE for line in body: if "TDRS 10" in line: results[0] = line results[1] = next(body) results[2] = next(body) break if len(results[1]) > 0: TDRS10_TLE = ephem.readtle("TDRS 10", str(results[1]), str(results[2])) logWrite("TDRS 10 TLE Success!") else: logWrite("TDRS 10 TLE not acquired") results = ['','',''] body = iter(soup.get_text().split('\n')) #TDRS 7 TLE for line in body: if "TDRS 7" in line: results[0] = line results[1] = next(body) results[2] = next(body) break if len(results[1]) > 0: TDRS7_TLE = ephem.readtle("TDRS 7", str(results[1]), str(results[2])) logWrite("TDRS 7 TLE Success!") else: logWrite("TDRS 7 TLE not acquired") def on_redirect2(req2, result): logWrite("Warning - Get TDRS TLE failure (redirect)") logWrite(result) def on_failure2(req2, result): logWrite("Warning - Get TDRS TLE failure (url failure)") logWrite(result) def on_error2(req2, result): logWrite("Warning - Get TDRS TLE failure (url error)") logWrite(result) req = UrlRequest(iss_tle_url, on_success, on_redirect, on_failure, on_error, timeout=1) req2 = UrlRequest(tdrs_tle_url, on_success2, on_redirect2, on_failure2, on_error2, timeout=1) def checkCrew(self, dt): iss_crew_url = 'https://www.howmanypeopleareinspacerightnow.com/peopleinspace.json' urlsuccess = False def on_success(req, data): logWrite("Successfully fetched crew JSON") isscrew = 0 crewmember = ['', '', '', '', '', '', '', '', '', '', '', ''] crewmemberbio = ['', '', '', '', '', '', '', '', '', '', '', ''] crewmembertitle = ['', '', '', '', '', '', '', '', '', '', '', ''] crewmemberdays = ['', '', '', '', '', '', '', '', '', '', '', ''] crewmemberpicture = ['', '', '', '', '', '', '', '', '', '', '', ''] crewmembercountry = ['', '', '', '', '', '', '', '', '', '', '', ''] now = datetime.utcnow() number_of_space = int(data['number']) for num in range(1, number_of_space+1): if str(data['people'][num-1]['location']) == str("International Space Station"): crewmember[isscrew] = str(data['people'][num-1]['name']) #.encode('utf-8') crewmemberbio[isscrew] = str(data['people'][num-1]['bio']) crewmembertitle[isscrew] = str(data['people'][num-1]['title']) datetime_object = datetime.strptime(str(data['people'][num-1]['launchdate']), '%Y-%m-%d') previousdays = int(data['people'][num-1]['careerdays']) totaldaysinspace = str(now-datetime_object) d_index = totaldaysinspace.index('d') crewmemberdays[isscrew] = str(int(totaldaysinspace[:d_index])+previousdays)+" days in space" crewmemberpicture[isscrew] = str(data['people'][num-1]['biophoto']) crewmembercountry[isscrew] = str(data['people'][num-1]['country']).title() if str(data['people'][num-1]['country'])==str('usa'): crewmembercountry[isscrew] = str('USA') isscrew = isscrew+1 self.crew_screen.ids.crew1.text = str(crewmember[0]) self.crew_screen.ids.crew1title.text = str(crewmembertitle[0]) self.crew_screen.ids.crew1country.text = str(crewmembercountry[0]) self.crew_screen.ids.crew1daysonISS.text = str(crewmemberdays[0]) #self.crew_screen.ids.crew1image.source = str(crewmemberpicture[0]) self.crew_screen.ids.crew2.text = str(crewmember[1]) self.crew_screen.ids.crew2title.text = str(crewmembertitle[1]) self.crew_screen.ids.crew2country.text = str(crewmembercountry[1]) self.crew_screen.ids.crew2daysonISS.text = str(crewmemberdays[1]) #self.crew_screen.ids.crew2image.source = str(crewmemberpicture[1]) self.crew_screen.ids.crew3.text = str(crewmember[2]) self.crew_screen.ids.crew3title.text = str(crewmembertitle[2]) self.crew_screen.ids.crew3country.text = str(crewmembercountry[2]) self.crew_screen.ids.crew3daysonISS.text = str(crewmemberdays[2]) #self.crew_screen.ids.crew3image.source = str(crewmemberpicture[2]) self.crew_screen.ids.crew4.text = str(crewmember[3]) self.crew_screen.ids.crew4title.text = str(crewmembertitle[3]) self.crew_screen.ids.crew4country.text = str(crewmembercountry[3]) self.crew_screen.ids.crew4daysonISS.text = str(crewmemberdays[3]) #self.crew_screen.ids.crew4image.source = str(crewmemberpicture[3]) self.crew_screen.ids.crew5.text = str(crewmember[4]) self.crew_screen.ids.crew5title.text = str(crewmembertitle[4]) self.crew_screen.ids.crew5country.text = str(crewmembercountry[4]) self.crew_screen.ids.crew5daysonISS.text = str(crewmemberdays[4]) #self.crew_screen.ids.crew5image.source = str(crewmemberpicture[4]) self.crew_screen.ids.crew6.text = str(crewmember[5]) self.crew_screen.ids.crew6title.text = str(crewmembertitle[5]) self.crew_screen.ids.crew6country.text = str(crewmembercountry[5]) self.crew_screen.ids.crew6daysonISS.text = str(crewmemberdays[5]) #self.crew_screen.ids.crew6image.source = str(crewmemberpicture[5]) #self.crew_screen.ids.crew7.text = str(crewmember[6]) #self.crew_screen.ids.crew7title.text = str(crewmembertitle[6]) #self.crew_screen.ids.crew7country.text = str(crewmembercountry[6]) #self.crew_screen.ids.crew7daysonISS.text = str(crewmemberdays[6]) #self.crew_screen.ids.crew7image.source = str(crewmemberpicture[6]) #self.crew_screen.ids.crew8.text = str(crewmember[7]) #self.crew_screen.ids.crew8title.text = str(crewmembertitle[7]) #self.crew_screen.ids.crew8country.text = str(crewmembercountry[7]) #self.crew_screen.ids.crew8daysonISS.text = str(crewmemberdays[7]) #self.crew_screen.ids.crew8image.source = str(crewmemberpicture[7])) #self.crew_screen.ids.crew9.text = str(crewmember[8]) #self.crew_screen.ids.crew9title.text = str(crewmembertitle[8]) #self.crew_screen.ids.crew9country.text = str(crewmembercountry[8]) #self.crew_screen.ids.crew9daysonISS.text = str(crewmemberdays[8]) #self.crew_screen.ids.crew9image.source = str(crewmemberpicture[8]) #self.crew_screen.ids.crew10.text = str(crewmember[9]) #self.crew_screen.ids.crew10title.text = str(crewmembertitle[9]) #self.crew_screen.ids.crew10country.text = str(crewmembercountry[9]) #self.crew_screen.ids.crew10daysonISS.text = str(crewmemberdays[9]) #self.crew_screen.ids.crew10image.source = str(crewmemberpicture[9]) #self.crew_screen.ids.crew11.text = str(crewmember[10]) #self.crew_screen.ids.crew11title.text = str(crewmembertitle[10]) #self.crew_screen.ids.crew11country.text = str(crewmembercountry[10]) #self.crew_screen.ids.crew11daysonISS.text = str(crewmemberdays[10]) #self.crew_screen.ids.crew11image.source = str(crewmemberpicture[10]) #self.crew_screen.ids.crew12.text = str(crewmember[11]) #self.crew_screen.ids.crew12title.text = str(crewmembertitle[11]) #self.crew_screen.ids.crew12country.text = str(crewmembercountry[11]) #self.crew_screen.ids.crew12daysonISS.text = str(crewmemberdays[11]) #self.crew_screen.ids.crew12image.source = str(crewmemberpicture[11]) def on_redirect(req, result): logWrite("Warning - checkCrew JSON failure (redirect)") logWrite(result) print(result) def on_failure(req, result): logWrite("Warning - checkCrew JSON failure (url failure)") def on_error(req, result): logWrite("Warning - checkCrew JSON failure (url error)") req = UrlRequest(iss_crew_url, on_success, on_redirect, on_failure, on_error, timeout=1) def map_rotation(self, args): scalefactor = 0.083333 scaledValue = float(args)/scalefactor return scaledValue def map_psi_bar(self, args): scalefactor = 0.015 scaledValue = (float(args)*scalefactor)+0.72 return scaledValue def map_hold_bar(self, args): scalefactor = 0.0015 scaledValue = (float(args)*scalefactor)+0.71 return scaledValue def hold_timer(self, dt): global seconds2, holdstartTime logWrite("Function Call - hold timer") unixconvert = time.gmtime(time.time()) currenthours = float(unixconvert[7])*24+unixconvert[3]+float(unixconvert[4])/60+float(unixconvert[5])/3600 seconds2 = (currenthours-EVAstartTime)*3600 seconds2 = int(seconds2) new_bar_x = self.map_hold_bar(260-seconds2) self.us_eva.ids.leak_timer.text = "~"+ str(int(seconds2)) + "s" self.us_eva.ids.Hold_bar.pos_hint = {"center_x": new_bar_x, "center_y": 0.49} self.us_eva.ids.Crewlock_Status_image.source = mimic_directory + '/Mimic/Pi/imgs/eva/LeakCheckLights.png' def signal_unsubscribed(self): #change images, used stale signal image global internet, ScreenList if not internet: for x in ScreenList: getattr(self, x).ids.signal.source = mimic_directory + '/Mimic/Pi/imgs/signal/offline.png' self.changeColors(0.5, 0.5, 0.5) else: for x in ScreenList: getattr(self, x).ids.signal.source = mimic_directory + '/Mimic/Pi/imgs/signal/SignalClientLost.png' self.changeColors(1, 0.5, 0) for x in ScreenList: getattr(self, x).ids.signal.size_hint_y = 0.112 def signal_lost(self): global internet, ScreenList if not internet: for x in ScreenList: getattr(self, x).ids.signal.source = mimic_directory + '/Mimic/Pi/imgs/signal/offline.png' self.changeColors(0.5, 0.5, 0.5) else: for x in ScreenList: getattr(self, x).ids.signal.source = mimic_directory + '/Mimic/Pi/imgs/signal/signalred.zip' self.changeColors(1, 0, 0) for x in ScreenList: getattr(self, x).ids.signal.anim_delay = 0.4 for x in ScreenList: getattr(self, x).ids.signal.size_hint_y = 0.112 def signal_acquired(self): global internet, ScreenList if not internet: for x in ScreenList: getattr(self, x).ids.signal.source = mimic_directory + '/Mimic/Pi/imgs/signal/offline.png' self.changeColors(0.5, 0.5, 0.5) else: for x in ScreenList: getattr(self, x).ids.signal.source = mimic_directory + '/Mimic/Pi/imgs/signal/pulse-transparent.zip' self.changeColors(0, 1, 0) for x in ScreenList: getattr(self, x).ids.signal.anim_delay = 0.05 for x in ScreenList: getattr(self, x).ids.signal.size_hint_y = 0.15 def signal_stale(self): global internet, ScreenList if not internet: for x in ScreenList: getattr(self, x).ids.signal.source = mimic_directory + '/Mimic/Pi/imgs/signal/offline.png' self.changeColors(0.5, 0.5, 0.5) else: for x in ScreenList: getattr(self, x).ids.signal.source = mimic_directory + '/Mimic/Pi/imgs/signal/SignalOrangeGray.png' self.changeColors(1, 0.5, 0) for x in ScreenList: getattr(self, x).ids.signal.anim_delay = 0.12 for x in ScreenList: getattr(self, x).ids.signal.size_hint_y = 0.112 def signal_client_offline(self): global internet, ScreenList if not internet: for x in ScreenList: getattr(self, x).ids.signal.source = mimic_directory + '/Mimic/Pi/imgs/signal/offline.png' self.changeColors(0.5, 0.5, 0.5) else: for x in ScreenList: getattr(self, x).ids.signal.source = mimic_directory + '/Mimic/Pi/imgs/signal/SignalClientLost.png' self.changeColors(1, 0.5, 0) for x in ScreenList: getattr(self, x).ids.signal.anim_delay = 0.12 for x in ScreenList: getattr(self, x).ids.signal.size_hint_y = 0.112 def update_labels(self, dt): #THIS IS THE IMPORTANT FUNCTION global mimicbutton, switchtofake, demoboolean, runningDemo, fakeorbitboolean, psarj2, ssarj2, manualcontrol, aos, los, oldLOS, psarjmc, ssarjmc, ptrrjmc, strrjmc, beta1bmc, beta1amc, beta2bmc, beta2amc, beta3bmc, beta3amc, beta4bmc, beta4amc, US_EVAinProgress, position_x, position_y, position_z, velocity_x, velocity_y, velocity_z, altitude, velocity, iss_mass, testvalue, testfactor, airlock_pump, crewlockpres, leak_hold, firstcrossing, EVA_activities, repress, depress, oldAirlockPump, obtained_EVA_crew, EVAstartTime global holdstartTime, LS_Subscription global Disco, eva, standby, prebreath1, prebreath2, depress1, depress2, leakhold, repress global EPSstorageindex, channel1A_voltage, channel1B_voltage, channel2A_voltage, channel2B_voltage, channel3A_voltage, channel3B_voltage, channel4A_voltage, channel4B_voltage, USOS_Power global stationmode, sgant_elevation, sgant_xelevation global tdrs, module global old_mt_timestamp, old_mt_position, mt_speed arduino_count = len(SERIAL_PORTS) if arduino_count > 0: self.mimic_screen.ids.arduino_count.text = str(arduino_count) self.mimic_screen.ids.arduino.source = mimic_directory + "/Mimic/Pi/imgs/signal/arduino_notransmit.png" self.fakeorbit_screen.ids.arduino.source = mimic_directory + "/Mimic/Pi/imgs/signal/arduino_notransmit.png" self.fakeorbit_screen.ids.arduino_count.text = str(arduino_count) else: self.mimic_screen.ids.arduino_count.text = "" self.fakeorbit_screen.ids.arduino_count.text = "" self.mimic_screen.ids.arduino.source = mimic_directory + "/Mimic/Pi/imgs/signal/arduino_offline.png" self.fakeorbit_screen.ids.arduino.source = mimic_directory + "/Mimic/Pi/imgs/signal/arduino_offline.png" runningDemo = False if arduino_count > 0: self.mimic_screen.ids.mimicstartbutton.disabled = False self.fakeorbit_screen.ids.DemoStart.disabled = False self.fakeorbit_screen.ids.HTVDemoStart.disabled = False self.control_screen.ids.set90.disabled = False self.control_screen.ids.set0.disabled = False if mimicbutton: self.mimic_screen.ids.mimicstartbutton.disabled = True self.mimic_screen.ids.arduino.source = mimic_directory + "/Mimic/Pi/imgs/signal/Arduino_Transmit.zip" else: self.mimic_screen.ids.mimicstartbutton.disabled = False else: self.mimic_screen.ids.mimicstartbutton.disabled = True self.mimic_screen.ids.mimicstartbutton.text = "Transmit" self.fakeorbit_screen.ids.DemoStart.disabled = True self.fakeorbit_screen.ids.HTVDemoStart.disabled = True self.control_screen.ids.set90.disabled = True self.control_screen.ids.set0.disabled = True if runningDemo: self.fakeorbit_screen.ids.DemoStart.disabled = True self.fakeorbit_screen.ids.HTVDemoStart.disabled = True self.fakeorbit_screen.ids.DemoStop.disabled = False self.fakeorbit_screen.ids.HTVDemoStop.disabled = False self.fakeorbit_screen.ids.arduino.source = mimic_directory + "/Mimic/Pi/imgs/signal/Arduino_Transmit.zip" c.execute('select Value from telemetry') values = c.fetchall() c.execute('select Timestamp from telemetry') timestamps = c.fetchall() sub_status = str((values[255])[0]) #lightstreamer subscript checker client_status = str((values[256])[0]) #lightstreamer client checker psarj = "{:.2f}".format(float((values[0])[0])) if not switchtofake: psarj2 = float(psarj) if not manualcontrol: psarjmc = float(psarj) ssarj = "{:.2f}".format(float((values[1])[0])) if not switchtofake: ssarj2 = float(ssarj) if not manualcontrol: ssarjmc = float(ssarj) ptrrj = "{:.2f}".format(float((values[2])[0])) if not manualcontrol: ptrrjmc = float(ptrrj) strrj = "{:.2f}".format(float((values[3])[0])) if not manualcontrol: strrjmc = float(strrj) beta1b = "{:.2f}".format(float((values[4])[0])) if not switchtofake: beta1b2 = float(beta1b) if not manualcontrol: beta1bmc = float(beta1b) beta1a = "{:.2f}".format(float((values[5])[0])) if not switchtofake: beta1a2 = float(beta1a) if not manualcontrol: beta1amc = float(beta1a) beta2b = "{:.2f}".format(float((values[6])[0])) if not switchtofake: beta2b2 = float(beta2b) #+ 20.00 if not manualcontrol: beta2bmc = float(beta2b) beta2a = "{:.2f}".format(float((values[7])[0])) if not switchtofake: beta2a2 = float(beta2a) if not manualcontrol: beta2amc = float(beta2a) beta3b = "{:.2f}".format(float((values[8])[0])) if not switchtofake: beta3b2 = float(beta3b) if not manualcontrol: beta3bmc = float(beta3b) beta3a = "{:.2f}".format(float((values[9])[0])) if not switchtofake: beta3a2 = float(beta3a) if not manualcontrol: beta3amc = float(beta3a) beta4b = "{:.2f}".format(float((values[10])[0])) if not switchtofake: beta4b2 = float(beta4b) if not manualcontrol: beta4bmc = float(beta4b) beta4a = "{:.2f}".format(float((values[11])[0])) if not switchtofake: beta4a2 = float(beta4a) #+ 20.00 if not manualcontrol: beta4amc = float(beta4a) aos = "{:.2f}".format(int((values[12])[0])) los = "{:.2f}".format(int((values[13])[0])) sasa_el = "{:.2f}".format(float((values[14])[0])) sasa_az = "{:.2f}".format(float((values[18])[0])) active_sasa = int((values[54])[0]) sasa1_active = int((values[53])[0]) sasa2_active = int((values[52])[0]) if sasa1_active or sasa2_active: sasa_xmit = True else: sasa_xmit = False sgant_elevation = float((values[15])[0]) sgant_xelevation = float((values[17])[0]) sgant_transmit = float((values[41])[0]) uhf1_power = int((values[233])[0]) #0 = off, 1 = on, 3 = failed uhf2_power = int((values[234])[0]) #0 = off, 1 = on, 3 = failed uhf_framesync = int((values[235])[0]) #1 or 0 v1a = "{:.2f}".format(float((values[25])[0])) channel1A_voltage[EPSstorageindex] = float(v1a) v1b = "{:.2f}".format(float((values[26])[0])) channel1B_voltage[EPSstorageindex] = float(v1b) v2a = "{:.2f}".format(float((values[27])[0])) channel2A_voltage[EPSstorageindex] = float(v2a) v2b = "{:.2f}".format(float((values[28])[0])) channel2B_voltage[EPSstorageindex] = float(v2b) v3a = "{:.2f}".format(float((values[29])[0])) channel3A_voltage[EPSstorageindex] = float(v3a) v3b = "{:.2f}".format(float((values[30])[0])) channel3B_voltage[EPSstorageindex] = float(v3b) v4a = "{:.2f}".format(float((values[31])[0])) channel4A_voltage[EPSstorageindex] = float(v4a) v4b = "{:.2f}".format(float((values[32])[0])) channel4B_voltage[EPSstorageindex] = float(v4b) c1a = "{:.2f}".format(float((values[33])[0])) c1b = "{:.2f}".format(float((values[34])[0])) c2a = "{:.2f}".format(float((values[35])[0])) c2b = "{:.2f}".format(float((values[36])[0])) c3a = "{:.2f}".format(float((values[37])[0])) c3b = "{:.2f}".format(float((values[38])[0])) c4a = "{:.2f}".format(float((values[39])[0])) c4b = "{:.2f}".format(float((values[40])[0])) stationmode = float((values[46])[0]) #russian segment mode same as usos mode #GNC Telemetry rollerror = float((values[165])[0]) pitcherror = float((values[166])[0]) yawerror = float((values[167])[0]) quaternion0 = float((values[171])[0]) quaternion1 = float((values[172])[0]) quaternion2 = float((values[173])[0]) quaternion3 = float((values[174])[0]) def dot(a,b): c = (a[0]*b[0])+(a[1]*b[1])+(a[2]*b[2]) return c def cross(a,b): c = [a[1]*b[2] - a[2]*b[1], a[2]*b[0] - a[0]*b[2], a[0]*b[1] - a[1]*b[0]] return c iss_mass = "{:.2f}".format(float((values[48])[0])) #ISS state vectors position_x = float((values[55])[0]) #km position_y = float((values[56])[0]) #km position_z = float((values[57])[0]) #km velocity_x = float((values[58])[0])/1000.00 #convert to km/s velocity_y = float((values[59])[0])/1000.00 #convert to km/s velocity_z = float((values[60])[0])/1000.00 #convert to km/s #test values from orbital mechanics book #position_x = (-6045.00) #position_y = (-3490.00) #position_z = (2500.00) #velocity_x = (-3.457) #velocity_y = (6.618) #velocity_z = (2.533) pos_vec = [position_x, position_y, position_z] vel_vec = [velocity_x, velocity_y, velocity_z] altitude = "{:.2f}".format(math.sqrt(dot(pos_vec,pos_vec))-6371.00) velocity = "{:.2f}".format(math.sqrt(dot(vel_vec,vel_vec))) mu = 398600 if float(altitude) > 0: pos_mag = math.sqrt(dot(pos_vec,pos_vec)) vel_mag = math.sqrt(dot(vel_vec,vel_vec)) v_radial = dot(vel_vec, pos_vec)/pos_mag h_mom = cross(pos_vec,vel_vec) h_mom_mag = math.sqrt(dot(h_mom,h_mom)) inc = math.acos(h_mom[2]/h_mom_mag) self.orbit_data.ids.inc.text = "{:.2f}".format(math.degrees(inc)) node_vec = cross([0,0,1],h_mom) node_mag = math.sqrt(dot(node_vec,node_vec)) raan = math.acos(node_vec[0]/node_mag) if node_vec[1] < 0: raan = math.radians(360) - raan self.orbit_data.ids.raan.text = "{:.2f}".format(math.degrees(raan)) pvnew = [x * (math.pow(vel_mag,2)-(mu/pos_mag)) for x in pos_vec] vvnew = [x * (pos_mag*v_radial) for x in vel_vec] e_vec1 = [(1/mu) * x for x in pvnew] e_vec2 = [(1/mu) * x for x in vvnew] e_vec = [e_vec1[0] - e_vec2[0],e_vec1[1] - e_vec2[1],e_vec1[2] - e_vec2[2] ] e_mag = math.sqrt(dot(e_vec,e_vec)) self.orbit_data.ids.e.text = "{:.4f}".format(e_mag) arg_per = math.acos(dot(node_vec,e_vec)/(node_mag*e_mag)) if e_vec[2] <= 0: arg_per = math.radians(360) - arg_per self.orbit_data.ids.arg_per.text = "{:.2f}".format(math.degrees(arg_per)) ta = math.acos(dot(e_vec,pos_vec)/(e_mag*pos_mag)) if v_radial <= 0: ta = math.radians(360) - ta self.orbit_data.ids.true_anomaly.text = "{:.2f}".format(math.degrees(ta)) apogee = (math.pow(h_mom_mag,2)/mu)*(1/(1+e_mag*math.cos(math.radians(180)))) perigee = (math.pow(h_mom_mag,2)/mu)*(1/(1+e_mag*math.cos(0))) apogee_height = apogee - 6371.00 perigee_height = perigee - 6371.00 sma = 0.5*(apogee+perigee) #km period = (2*math.pi/math.sqrt(mu))*math.pow(sma,3/2) #seconds cmg1_active = int((values[145])[0]) cmg2_active = int((values[146])[0]) cmg3_active = int((values[147])[0]) cmg4_active = int((values[148])[0]) numCMGs = int((values[149])[0]) CMGtorqueRoll = float((values[150])[0]) CMGtorquePitch = float((values[151])[0]) CMGtorqueYaw = float((values[152])[0]) CMGmomentum = float((values[153])[0]) CMGmompercent = float((values[154])[0]) CMGmomcapacity = float((values[175])[0]) cmg1_spintemp = float((values[181])[0]) cmg2_spintemp = float((values[182])[0]) cmg3_spintemp = float((values[183])[0]) cmg4_spintemp = float((values[184])[0]) cmg1_halltemp = float((values[185])[0]) cmg2_halltemp = float((values[186])[0]) cmg3_halltemp = float((values[187])[0]) cmg4_halltemp = float((values[188])[0]) cmg1_vibration = float((values[237])[0]) cmg2_vibration = float((values[238])[0]) cmg3_vibration = float((values[239])[0]) cmg4_vibration = float((values[240])[0]) cmg1_motorcurrent = float((values[241])[0]) cmg2_motorcurrent = float((values[242])[0]) cmg3_motorcurrent = float((values[243])[0]) cmg4_motorcurrent = float((values[244])[0]) cmg1_wheelspeed = float((values[245])[0]) cmg2_wheelspeed = float((values[246])[0]) cmg3_wheelspeed = float((values[247])[0]) cmg4_wheelspeed = float((values[248])[0]) #EVA Telemetry airlock_pump_voltage = int((values[71])[0]) airlock_pump_voltage_timestamp = float((timestamps[71])[0]) airlock_pump_switch = int((values[72])[0]) crewlockpres = float((values[16])[0]) airlockpres = float((values[77])[0]) #MSS Robotics Stuff mt_worksite = int((values[258])[0]) self.mss_mt_screen.ids.mt_ws_value.text = str(mt_worksite) mt_position = float((values[257])[0]) mt_position_timestamp = float((timestamps[257])[0]) self.mss_mt_screen.ids.mt_position_value.text = str(mt_position) if (mt_position_timestamp - old_mt_timestamp) > 0: mt_speed = (mt_position - old_mt_position) / ((mt_position_timestamp - old_mt_timestamp)*3600) old_mt_timestamp = mt_position_timestamp old_mt_position = mt_position self.mss_mt_screen.ids.mt_speed_value.text = "{:2.2f}".format(float(mt_speed)) + " cm/s" ##US EPS Stuff---------------------------## solarbeta = "{:.2f}".format(float((values[176])[0])) power_1a = float(v1a) * float(c1a) power_1b = float(v1b) * float(c1b) power_2a = float(v2a) * float(c2a) power_2b = float(v2b) * float(c2b) power_3a = float(v3a) * float(c3a) power_3b = float(v3b) * float(c3b) power_4a = float(v4a) * float(c4a) power_4b = float(v4b) * float(c4b) USOS_Power = power_1a + power_1b + power_2a + power_2b + power_3a + power_3b + power_4a + power_4b self.eps_screen.ids.usos_power.text = str("{:.0f}".format(USOS_Power*-1.0)) + " W" self.eps_screen.ids.solarbeta.text = str(solarbeta) avg_total_voltage = (float(v1a)+float(v1b)+float(v2a)+float(v2b)+float(v3a)+float(v3b)+float(v4a)+float(v4b))/8.0 avg_1a = (channel1A_voltage[0]+channel1A_voltage[1]+channel1A_voltage[2]+channel1A_voltage[3]+channel1A_voltage[4]+channel1A_voltage[5]+channel1A_voltage[6]+channel1A_voltage[7]+channel1A_voltage[8]+channel1A_voltage[9])/10 avg_1b = (channel1B_voltage[0]+channel1B_voltage[1]+channel1B_voltage[2]+channel1B_voltage[3]+channel1B_voltage[4]+channel1B_voltage[5]+channel1B_voltage[6]+channel1B_voltage[7]+channel1B_voltage[8]+channel1B_voltage[9])/10 avg_2a = (channel2A_voltage[0]+channel2A_voltage[1]+channel2A_voltage[2]+channel2A_voltage[3]+channel2A_voltage[4]+channel2A_voltage[5]+channel2A_voltage[6]+channel2A_voltage[7]+channel2A_voltage[8]+channel2A_voltage[9])/10 avg_2b = (channel2B_voltage[0]+channel2B_voltage[1]+channel2B_voltage[2]+channel2B_voltage[3]+channel2B_voltage[4]+channel2B_voltage[5]+channel2B_voltage[6]+channel2B_voltage[7]+channel2B_voltage[8]+channel2B_voltage[9])/10 avg_3a = (channel3A_voltage[0]+channel3A_voltage[1]+channel3A_voltage[2]+channel3A_voltage[3]+channel3A_voltage[4]+channel3A_voltage[5]+channel3A_voltage[6]+channel3A_voltage[7]+channel3A_voltage[8]+channel3A_voltage[9])/10 avg_3b = (channel3B_voltage[0]+channel3B_voltage[1]+channel3B_voltage[2]+channel3B_voltage[3]+channel3B_voltage[4]+channel3B_voltage[5]+channel3B_voltage[6]+channel3B_voltage[7]+channel3B_voltage[8]+channel3B_voltage[9])/10 avg_4a = (channel4A_voltage[0]+channel4A_voltage[1]+channel4A_voltage[2]+channel4A_voltage[3]+channel4A_voltage[4]+channel4A_voltage[5]+channel4A_voltage[6]+channel4A_voltage[7]+channel4A_voltage[8]+channel4A_voltage[9])/10 avg_4b = (channel4B_voltage[0]+channel4B_voltage[1]+channel4B_voltage[2]+channel4B_voltage[3]+channel4B_voltage[4]+channel4B_voltage[5]+channel4B_voltage[6]+channel4B_voltage[7]+channel4B_voltage[8]+channel4B_voltage[9])/10 halfavg_1a = (channel1A_voltage[0]+channel1A_voltage[1]+channel1A_voltage[2]+channel1A_voltage[3]+channel1A_voltage[4])/5 halfavg_1b = (channel1B_voltage[0]+channel1B_voltage[1]+channel1B_voltage[2]+channel1B_voltage[3]+channel1B_voltage[4])/5 halfavg_2a = (channel2A_voltage[0]+channel2A_voltage[1]+channel2A_voltage[2]+channel2A_voltage[3]+channel2A_voltage[4])/5 halfavg_2b = (channel2B_voltage[0]+channel2B_voltage[1]+channel2B_voltage[2]+channel2B_voltage[3]+channel2B_voltage[4])/5 halfavg_3a = (channel3A_voltage[0]+channel3A_voltage[1]+channel3A_voltage[2]+channel3A_voltage[3]+channel3A_voltage[4])/5 halfavg_3b = (channel3B_voltage[0]+channel3B_voltage[1]+channel3B_voltage[2]+channel3B_voltage[3]+channel3B_voltage[4])/5 halfavg_4a = (channel4A_voltage[0]+channel4A_voltage[1]+channel4A_voltage[2]+channel4A_voltage[3]+channel4A_voltage[4])/5 halfavg_4b = (channel4B_voltage[0]+channel4B_voltage[1]+channel4B_voltage[2]+channel4B_voltage[3]+channel4B_voltage[4])/5 EPSstorageindex += 1 if EPSstorageindex > 9: EPSstorageindex = 0 ## Station Mode ## if stationmode == 1.0: self.iss_screen.ids.stationmode_value.text = "Crew Rescue" elif stationmode == 2.0: self.iss_screen.ids.stationmode_value.text = "Survival" elif stationmode == 3.0: self.iss_screen.ids.stationmode_value.text = "Reboost" elif stationmode == 4.0: self.iss_screen.ids.stationmode_value.text = "Proximity Operations" elif stationmode == 5.0: self.iss_screen.ids.stationmode_value.text = "EVA" elif stationmode == 6.0: self.iss_screen.ids.stationmode_value.text = "Microgravity" elif stationmode == 7.0: self.iss_screen.ids.stationmode_value.text = "Standard" else: self.iss_screen.ids.stationmode_value.text = "n/a" ## ISS Potential Problems ## #ISS Leak - Check Pressure Levels #Number of CMGs online could reveal CMG failure #CMG speed less than 6600rpm #Solar arrays offline #Loss of attitude control, loss of cmg control #ISS altitude too low #Russion hook status - make sure all modules remain docked ##-------------------GNC Stuff---------------------------## roll = math.degrees(math.atan2(2.0 * (quaternion0 * quaternion1 + quaternion2 * quaternion3), 1.0 - 2.0 * (quaternion1 * quaternion1 + quaternion2 * quaternion2))) + rollerror pitch = math.degrees(math.asin(max(-1.0, min(1.0, 2.0 * (quaternion0 * quaternion2 - quaternion3 * quaternion1))))) + pitcherror yaw = math.degrees(math.atan2(2.0 * (quaternion0 * quaternion3 + quaternion1 * quaternion2), 1.0 - 2.0 * (quaternion2 * quaternion2 + quaternion3 * quaternion3))) + yawerror self.gnc_screen.ids.yaw.text = str("{:.2f}".format(yaw)) self.gnc_screen.ids.pitch.text = str("{:.2f}".format(pitch)) self.gnc_screen.ids.roll.text = str("{:.2f}".format(roll)) self.gnc_screen.ids.cmgsaturation.value = CMGmompercent self.gnc_screen.ids.cmgsaturation_value.text = "CMG Saturation " + str("{:.1f}".format(CMGmompercent)) + "%" if cmg1_active == 1: self.gnc_screen.ids.cmg1.source = mimic_directory + "/Mimic/Pi/imgs/gnc/cmg.png" else: self.gnc_screen.ids.cmg1.source = mimic_directory + "/Mimic/Pi/imgs/gnc/cmg_offline.png" if cmg2_active == 1: self.gnc_screen.ids.cmg2.source = mimic_directory + "/Mimic/Pi/imgs/gnc/cmg.png" else: self.gnc_screen.ids.cmg2.source = mimic_directory + "/Mimic/Pi/imgs/gnc/cmg_offline.png" if cmg3_active == 1: self.gnc_screen.ids.cmg3.source = mimic_directory + "/Mimic/Pi/imgs/gnc/cmg.png" else: self.gnc_screen.ids.cmg3.source = mimic_directory + "/Mimic/Pi/imgs/gnc/cmg_offline.png" if cmg4_active == 1: self.gnc_screen.ids.cmg4.source = mimic_directory + "/Mimic/Pi/imgs/gnc/cmg.png" else: self.gnc_screen.ids.cmg4.source = mimic_directory + "/Mimic/Pi/imgs/gnc/cmg_offline.png" self.gnc_screen.ids.cmg1spintemp.text = "Spin Temp " + str("{:.1f}".format(cmg1_spintemp)) self.gnc_screen.ids.cmg1halltemp.text = "Hall Temp " + str("{:.1f}".format(cmg1_halltemp)) self.gnc_screen.ids.cmg1vibration.text = "Vibration " + str("{:.4f}".format(cmg1_vibration)) self.gnc_screen.ids.cmg1current.text = "Current " + str("{:.1f}".format(cmg1_motorcurrent)) self.gnc_screen.ids.cmg1speed.text = "Speed " + str("{:.1f}".format(cmg1_wheelspeed)) self.gnc_screen.ids.cmg2spintemp.text = "Spin Temp " + str("{:.1f}".format(cmg2_spintemp)) self.gnc_screen.ids.cmg2halltemp.text = "Hall Temp " + str("{:.1f}".format(cmg2_halltemp)) self.gnc_screen.ids.cmg2vibration.text = "Vibration " + str("{:.4f}".format(cmg2_vibration)) self.gnc_screen.ids.cmg2current.text = "Current " + str("{:.1f}".format(cmg2_motorcurrent)) self.gnc_screen.ids.cmg2speed.text = "Speed " + str("{:.1f}".format(cmg2_wheelspeed)) self.gnc_screen.ids.cmg3spintemp.text = "Spin Temp " + str("{:.1f}".format(cmg3_spintemp)) self.gnc_screen.ids.cmg3halltemp.text = "Hall Temp " + str("{:.1f}".format(cmg3_halltemp)) self.gnc_screen.ids.cmg3vibration.text = "Vibration " + str("{:.4f}".format(cmg3_vibration)) self.gnc_screen.ids.cmg3current.text = "Current " + str("{:.1f}".format(cmg3_motorcurrent)) self.gnc_screen.ids.cmg3speed.text = "Speed " + str("{:.1f}".format(cmg3_wheelspeed)) self.gnc_screen.ids.cmg4spintemp.text = "Spin Temp " + str("{:.1f}".format(cmg4_spintemp)) self.gnc_screen.ids.cmg4halltemp.text = "Hall Temp " + str("{:.1f}".format(cmg4_halltemp)) self.gnc_screen.ids.cmg4vibration.text = "Vibration " + str("{:.4f}".format(cmg4_vibration)) self.gnc_screen.ids.cmg4current.text = "Current " + str("{:.1f}".format(cmg4_motorcurrent)) self.gnc_screen.ids.cmg4speed.text = "Speed " + str("{:.1f}".format(cmg4_wheelspeed)) ##-------------------EPS Stuff---------------------------## #if halfavg_1a < 151.5: #discharging # self.eps_screen.ids.array_1a.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-discharging.zip" # #self.eps_screen.ids.array_1a.color = 1, 1, 1, 0.8 #elif avg_1a > 160.0: #charged # self.eps_screen.ids.array_1a.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-charged.zip" #elif halfavg_1a >= 151.5: #charging # self.eps_screen.ids.array_1a.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-charging.zip" # self.eps_screen.ids.array_1a.color = 1, 1, 1, 1.0 #if float(c1a) > 0.0: #power channel offline! # self.eps_screen.ids.array_1a.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-offline.png" #if halfavg_1b < 151.5: #discharging # self.eps_screen.ids.array_1b.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-discharging.zip" # #self.eps_screen.ids.array_1b.color = 1, 1, 1, 0.8 #elif avg_1b > 160.0: #charged # self.eps_screen.ids.array_1b.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-charged.zip" #elif halfavg_1b >= 151.5: #charging # self.eps_screen.ids.array_1b.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-charging.zip" # self.eps_screen.ids.array_1b.color = 1, 1, 1, 1.0 #if float(c1b) > 0.0: #power channel offline! # self.eps_screen.ids.array_1b.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-offline.png" #if halfavg_2a < 151.5: #discharging # self.eps_screen.ids.array_2a.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-discharging.zip" # #self.eps_screen.ids.array_2a.color = 1, 1, 1, 0.8 #elif avg_2a > 160.0: #charged # self.eps_screen.ids.array_2a.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-charged.zip" #elif halfavg_2a >= 151.5: #charging # self.eps_screen.ids.array_2a.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-charging.zip" # self.eps_screen.ids.array_2a.color = 1, 1, 1, 1.0 #if float(c2a) > 0.0: #power channel offline! # self.eps_screen.ids.array_2a.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-offline.png" #if halfavg_2b < 151.5: #discharging # self.eps_screen.ids.array_2b.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-discharging.zip" # #self.eps_screen.ids.array_2b.color = 1, 1, 1, 0.8 #elif avg_2b > 160.0: #charged # self.eps_screen.ids.array_2b.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-charged.zip" #elif halfavg_2b >= 151.5: #charging # self.eps_screen.ids.array_2b.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-charging.zip" # self.eps_screen.ids.array_2b.color = 1, 1, 1, 1.0 #if float(c2b) > 0.0: #power channel offline! # self.eps_screen.ids.array_2b.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-offline.png" #if halfavg_3a < 151.5: #discharging # self.eps_screen.ids.array_3a.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-discharging.zip" #self.eps_screen.ids.array_3a.color = 1, 1, 1, 0.8 #elif avg_3a > 160.0: #charged # self.eps_screen.ids.array_3a.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-charged.zip" #elif halfavg_3a >= 151.5: #charging # self.eps_screen.ids.array_3a.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-charging.zip" # self.eps_screen.ids.array_3a.color = 1, 1, 1, 1.0 #if float(c3a) > 0.0: #power channel offline! # self.eps_screen.ids.array_3a.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-offline.png" #if halfavg_3b < 151.5: #discharging # self.eps_screen.ids.array_3b.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-discharging.zip" #self.eps_screen.ids.array_3b.color = 1, 1, 1, 0.8 #elif avg_3b > 160.0: #charged # self.eps_screen.ids.array_3b.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-charged.zip" #elif halfavg_3b >= 151.5: #charging # self.eps_screen.ids.array_3b.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-charging.zip" # self.eps_screen.ids.array_3b.color = 1, 1, 1, 1.0 #if float(c3b) > 0.0: #power channel offline! # self.eps_screen.ids.array_3b.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-offline.png" #if halfavg_4a < 151.5: #discharging # self.eps_screen.ids.array_4a.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-discharging.zip" # #self.eps_screen.ids.array_4a.color = 1, 1, 1, 0.8 #elif avg_4a > 160.0: #charged # self.eps_screen.ids.array_4a.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-charged.zip" #elif halfavg_4a >= 151.5: #charging # self.eps_screen.ids.array_4a.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-charging.zip" # self.eps_screen.ids.array_4a.color = 1, 1, 1, 1.0 #if float(c4a) > 0.0: #power channel offline! # self.eps_screen.ids.array_4a.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-offline.png" #if halfavg_4b < 151.5: #discharging # self.eps_screen.ids.array_4b.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-discharging.zip" # #self.eps_screen.ids.array_4b.color = 1, 1, 1, 0.8 #elif avg_4b > 160.0: #charged # self.eps_screen.ids.array_4b.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-charged.zip" #elif halfavg_4b >= 151.5: #charging # self.eps_screen.ids.array_4b.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-charging.zip" # self.eps_screen.ids.array_4b.color = 1, 1, 1, 1.0 #if float(c4b) > 0.0: #power channel offline! # self.eps_screen.ids.array_4b.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-offline.png" #if avg_total_voltage > 151.5: #else: if float(v1a) >= 151.5 or float(v1b) >= 151.5 or float(v2a) >= 151.5 or float(v2b) >= 151.5 or float(v3a) >= 151.5 or float(v3b) >= 151.5 or float(v4a) >= 151.5 or float(v4b) >= 151.5: self.eps_screen.ids.eps_sun.color = 1, 1, 1, 1 else: self.eps_screen.ids.eps_sun.color = 1, 1, 1, 0.1 if float(v1a) < 151.5: #discharging self.eps_screen.ids.array_1a.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-discharging.zip" #self.eps_screen.ids.array_1a.color = 1, 1, 1, 0.8 elif float(v1a) > 160.0: #charged self.eps_screen.ids.array_1a.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-charged.zip" elif float(v1a) >= 151.5: #charging self.eps_screen.ids.array_1a.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-charging.zip" self.eps_screen.ids.array_1a.color = 1, 1, 1, 1.0 if float(c1a) > 0.0: #power channel offline! self.eps_screen.ids.array_1a.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-offline.png" if float(v1b) < 151.5: #discharging self.eps_screen.ids.array_1b.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-discharging.zip" #self.eps_screen.ids.array_1b.color = 1, 1, 1, 0.8 elif float(v1b) > 160.0: #charged self.eps_screen.ids.array_1b.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-charged.zip" elif float(v1b) >= 151.5: #charging self.eps_screen.ids.array_1b.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-charging.zip" self.eps_screen.ids.array_1b.color = 1, 1, 1, 1.0 if float(c1b) > 0.0: #power channel offline! self.eps_screen.ids.array_1b.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-offline.png" if float(v2a) < 151.5: #discharging self.eps_screen.ids.array_2a.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-discharging.zip" #self.eps_screen.ids.array_2a.color = 1, 1, 1, 0.8 elif float(v2a) > 160.0: #charged self.eps_screen.ids.array_2a.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-charged.zip" elif float(v2a) >= 151.5: #charging self.eps_screen.ids.array_2a.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-charging.zip" self.eps_screen.ids.array_2a.color = 1, 1, 1, 1.0 if float(c2a) > 0.0: #power channel offline! self.eps_screen.ids.array_2a.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-offline.png" if float(v2b) < 151.5: #discharging self.eps_screen.ids.array_2b.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-discharging.zip" #self.eps_screen.ids.array_2b.color = 1, 1, 1, 0.8 elif float(v2b) > 160.0: #charged self.eps_screen.ids.array_2b.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-charged.zip" elif float(v2b) >= 151.5: #charging self.eps_screen.ids.array_2b.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-charging.zip" self.eps_screen.ids.array_2b.color = 1, 1, 1, 1.0 if float(c2b) > 0.0: #power channel offline! self.eps_screen.ids.array_2b.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-offline.png" if float(v3a) < 151.5: #discharging self.eps_screen.ids.array_3a.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-discharging.zip" #self.eps_screen.ids.array_3a.color = 1, 1, 1, 0.8 elif float(v3a) > 160.0: #charged self.eps_screen.ids.array_3a.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-charged.zip" elif float(v3a) >= 151.5: #charging self.eps_screen.ids.array_3a.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-charging.zip" self.eps_screen.ids.array_3a.color = 1, 1, 1, 1.0 if float(c3a) > 0.0: #power channel offline! self.eps_screen.ids.array_3a.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-offline.png" if float(v3b) < 151.5: #discharging self.eps_screen.ids.array_3b.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-discharging.zip" #self.eps_screen.ids.array_3b.color = 1, 1, 1, 0.8 elif float(v3b) > 160.0: #charged self.eps_screen.ids.array_3b.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-charged.zip" elif float(v3b) >= 151.5: #charging self.eps_screen.ids.array_3b.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-charging.zip" self.eps_screen.ids.array_3b.color = 1, 1, 1, 1.0 if float(c3b) > 0.0: #power channel offline! self.eps_screen.ids.array_3b.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-offline.png" if float(v4a) < 151.5: #discharging self.eps_screen.ids.array_4a.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-discharging.zip" #self.eps_screen.ids.array_4a.color = 1, 1, 1, 0.8 elif float(v4a) > 160.0: #charged self.eps_screen.ids.array_4a.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-charged.zip" elif float(v4a) >= 151.5: #charging self.eps_screen.ids.array_4a.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-charging.zip" self.eps_screen.ids.array_4a.color = 1, 1, 1, 1.0 if float(c4a) > 0.0: #power channel offline! self.eps_screen.ids.array_4a.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-offline.png" #4b has a lower setpoint voltage for now - reverted back as of US EVA 63 if float(v4b) < 141.5: #discharging self.eps_screen.ids.array_4b.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-discharging.zip" #self.eps_screen.ids.array_4b.color = 1, 1, 1, 0.8 elif float(v4b) > 150.0: #charged self.eps_screen.ids.array_4b.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-charged.zip" elif float(v4b) >= 141.5: #charging self.eps_screen.ids.array_4b.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-charging.zip" self.eps_screen.ids.array_4b.color = 1, 1, 1, 1.0 if float(c4b) > 0.0: #power channel offline! self.eps_screen.ids.array_4b.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-offline.png" ##-------------------C&T Functionality-------------------## self.ct_sgant_screen.ids.sgant_dish.angle = float(sgant_elevation) self.ct_sgant_screen.ids.sgant_elevation.text = "{:.2f}".format(float(sgant_elevation)) #make sure radio animations turn off when no signal or no transmit if float(sgant_transmit) == 1.0 and float(aos) == 1.0: self.ct_sgant_screen.ids.radio_up.color = 1, 1, 1, 1 if "10" in tdrs: self.ct_sgant_screen.ids.tdrs_west10.source = mimic_directory + "/Mimic/Pi/imgs/ct/TDRS.zip" self.ct_sgant_screen.ids.tdrs_west11.source = mimic_directory + "/Mimic/Pi/imgs/ct/TDRS.png" self.ct_sgant_screen.ids.tdrs_east12.source = mimic_directory + "/Mimic/Pi/imgs/ct/TDRS.png" self.ct_sgant_screen.ids.tdrs_east6.source = mimic_directory + "/Mimic/Pi/imgs/ct/TDRS.png" self.ct_sgant_screen.ids.tdrs_z7.source = mimic_directory + "/Mimic/Pi/imgs/ct/TDRS.png" if "11" in tdrs: self.ct_sgant_screen.ids.tdrs_west11.source = mimic_directory + "/Mimic/Pi/imgs/ct/TDRS.zip" self.ct_sgant_screen.ids.tdrs_west10.source = mimic_directory + "/Mimic/Pi/imgs/ct/TDRS.png" self.ct_sgant_screen.ids.tdrs_east12.source = mimic_directory + "/Mimic/Pi/imgs/ct/TDRS.png" self.ct_sgant_screen.ids.tdrs_east6.source = mimic_directory + "/Mimic/Pi/imgs/ct/TDRS.png" self.ct_sgant_screen.ids.tdrs_z7.source = mimic_directory + "/Mimic/Pi/imgs/ct/TDRS.png" if "12" in tdrs: self.ct_sgant_screen.ids.tdrs_west11.source = mimic_directory + "/Mimic/Pi/imgs/ct/TDRS.png" self.ct_sgant_screen.ids.tdrs_west10.source = mimic_directory + "/Mimic/Pi/imgs/ct/TDRS.png" self.ct_sgant_screen.ids.tdrs_east12.source = mimic_directory + "/Mimic/Pi/imgs/ct/TDRS.zip" self.ct_sgant_screen.ids.tdrs_east6.source = mimic_directory + "/Mimic/Pi/imgs/ct/TDRS.png" self.ct_sgant_screen.ids.tdrs_z7.source = mimic_directory + "/Mimic/Pi/imgs/ct/TDRS.png" if "6" in tdrs: self.ct_sgant_screen.ids.tdrs_west11.source = mimic_directory + "/Mimic/Pi/imgs/ct/TDRS.png" self.ct_sgant_screen.ids.tdrs_west10.source = mimic_directory + "/Mimic/Pi/imgs/ct/TDRS.png" self.ct_sgant_screen.ids.tdrs_east6.source = mimic_directory + "/Mimic/Pi/imgs/ct/TDRS.zip" self.ct_sgant_screen.ids.tdrs_east12.source = mimic_directory + "/Mimic/Pi/imgs/ct/TDRS.png" self.ct_sgant_screen.ids.tdrs_z7.source = mimic_directory + "/Mimic/Pi/imgs/ct/TDRS.png" if "7" in tdrs: self.ct_sgant_screen.ids.tdrs_west11.source = mimic_directory + "/Mimic/Pi/imgs/ct/TDRS.png" self.ct_sgant_screen.ids.tdrs_west10.source = mimic_directory + "/Mimic/Pi/imgs/ct/TDRS.png" self.ct_sgant_screen.ids.tdrs_east6.source = mimic_directory + "/Mimic/Pi/imgs/ct/TDRS.png" self.ct_sgant_screen.ids.tdrs_east12.source = mimic_directory + "/Mimic/Pi/imgs/ct/TDRS.png" self.ct_sgant_screen.ids.tdrs_z7.source = mimic_directory + "/Mimic/Pi/imgs/ct/TDRS.zip" elif float(aos) == 0.0 and (float(sgant_transmit) == 0.0 or float(sgant_transmit) == 1.0): self.ct_sgant_screen.ids.radio_up.color = 0, 0, 0, 0 self.ct_sgant_screen.ids.tdrs_east12.source = mimic_directory + "/Mimic/Pi/imgs/ct/TDRS.png" self.ct_sgant_screen.ids.tdrs_east6.source = mimic_directory + "/Mimic/Pi/imgs/ct/TDRS.png" self.ct_sgant_screen.ids.tdrs_west11.source = mimic_directory + "/Mimic/Pi/imgs/ct/TDRS.png" self.ct_sgant_screen.ids.tdrs_west10.source = mimic_directory + "/Mimic/Pi/imgs/ct/TDRS.png" self.ct_sgant_screen.ids.tdrs_z7.source = mimic_directory + "/Mimic/Pi/imgs/ct/TDRS.png" #now check main CT screen radio signal if float(sgant_transmit) == 1.0 and float(aos) == 1.0: self.ct_screen.ids.sgant1_radio.color = 1, 1, 1, 1 self.ct_screen.ids.sgant2_radio.color = 1, 1, 1, 1 elif float(sgant_transmit) == 1.0 and float(aos) == 0.0: self.ct_screen.ids.sgant1_radio.color = 0, 0, 0, 0 self.ct_screen.ids.sgant2_radio.color = 0, 0, 0, 0 elif float(sgant_transmit) == 0.0: self.ct_screen.ids.sgant1_radio.color = 0, 0, 0, 0 self.ct_screen.ids.sgant2_radio.color = 0, 0, 0, 0 elif float(aos) == 0.0: self.ct_screen.ids.sgant1_radio.color = 0, 0, 0, 0 self.ct_screen.ids.sgant2_radio.color = 0, 0, 0, 0 if float(sasa1_active) == 1.0 and float(aos) == 1.0: self.ct_screen.ids.sasa1_radio.color = 1, 1, 1, 1 elif float(sasa1_active) == 1.0 and float(aos) == 0.0: self.ct_screen.ids.sasa1_radio.color = 0, 0, 0, 0 elif float(sasa1_active) == 0.0: self.ct_screen.ids.sasa1_radio.color = 0, 0, 0, 0 elif float(aos) == 0.0: self.ct_screen.ids.sasa1_radio.color = 0, 0, 0, 0 if float(sasa2_active) == 1.0 and float(aos) == 1.0: self.ct_screen.ids.sasa2_radio.color = 1, 1, 1, 1 elif float(sasa2_active) == 1.0 and float(aos) == 0.0: self.ct_screen.ids.sasa2_radio.color = 0, 0, 0, 0 elif float(sasa2_active) == 0.0: self.ct_screen.ids.sasa2_radio.color = 0, 0, 0, 0 elif float(aos) == 0.0: self.ct_screen.ids.sasa2_radio.color = 0, 0, 0, 0 if float(uhf1_power) == 1.0 and float(aos) == 1.0: self.ct_screen.ids.uhf1_radio.color = 1, 1, 1, 1 elif float(uhf1_power) == 1.0 and float(aos) == 0.0: self.ct_screen.ids.uhf1_radio.color = 1, 0, 0, 1 elif float(uhf1_power) == 0.0: self.ct_screen.ids.uhf1_radio.color = 0, 0, 0, 0 if float(uhf2_power) == 1.0 and float(aos) == 1.0: self.ct_screen.ids.uhf2_radio.color = 1, 1, 1, 1 elif float(uhf2_power) == 1.0 and float(aos) == 0.0: self.ct_screen.ids.uhf2_radio.color = 1, 0, 0, 1 elif float(uhf2_power) == 0.0: self.ct_screen.ids.uhf2_radio.color = 0, 0, 0, 0 ##-------------------EVA Functionality-------------------## if stationmode == 5: evaflashevent = Clock.schedule_once(self.flashEVAbutton, 1) ##-------------------US EVA Functionality-------------------## if airlock_pump_voltage == 1: self.us_eva.ids.pumpvoltage.text = "Airlock Pump Power On!" self.us_eva.ids.pumpvoltage.color = 0.33, 0.7, 0.18 else: self.us_eva.ids.pumpvoltage.text = "Airlock Pump Power Off" self.us_eva.ids.pumpvoltage.color = 0, 0, 0 if airlock_pump_switch == 1: self.us_eva.ids.pumpswitch.text = "Airlock Pump Active!" self.us_eva.ids.pumpswitch.color = 0.33, 0.7, 0.18 else: self.us_eva.ids.pumpswitch.text = "Airlock Pump Inactive" self.us_eva.ids.pumpswitch.color = 0, 0, 0 ##activate EVA button flash if (airlock_pump_voltage == 1 or crewlockpres < 734) and int(stationmode) == 5: usevaflashevent = Clock.schedule_once(self.flashUS_EVAbutton, 1) ##No EVA Currently if airlock_pump_voltage == 0 and airlock_pump_switch == 0 and crewlockpres > 740 and airlockpres > 740: eva = False self.us_eva.ids.leak_timer.text = "" self.us_eva.ids.Crewlock_Status_image.source = mimic_directory + '/Mimic/Pi/imgs/eva/BlankLights.png' self.us_eva.ids.EVA_occuring.color = 1, 0, 0 self.us_eva.ids.EVA_occuring.text = "Currently No EVA" ##EVA Standby - NOT UNIQUE if airlock_pump_voltage == 1 and airlock_pump_switch == 1 and crewlockpres > 740 and airlockpres > 740 and int(stationmode) == 5: standby = True self.us_eva.ids.leak_timer.text = "~160s Leak Check" self.us_eva.ids.Crewlock_Status_image.source = mimic_directory + '/Mimic/Pi/imgs/eva/StandbyLights.png' self.us_eva.ids.EVA_occuring.color = 0, 0, 1 self.us_eva.ids.EVA_occuring.text = "EVA Standby" else: standby = False ##EVA Prebreath Pressure if airlock_pump_voltage == 1 and crewlockpres > 740 and airlockpres > 740 and int(stationmode) == 5: prebreath1 = True self.us_eva.ids.Crewlock_Status_image.source = mimic_directory + '/Mimic/Pi/imgs/eva/PreBreatheLights.png' self.us_eva.ids.leak_timer.text = "~160s Leak Check" self.us_eva.ids.EVA_occuring.color = 0, 0, 1 self.us_eva.ids.EVA_occuring.text = "Pre-EVA Nitrogen Purge" ##EVA Depress1 if airlock_pump_voltage == 1 and airlock_pump_switch == 1 and crewlockpres < 740 and airlockpres > 740 and int(stationmode) == 5: depress1 = True self.us_eva.ids.leak_timer.text = "~160s Leak Check" self.us_eva.ids.EVA_occuring.text = "Crewlock Depressurizing" self.us_eva.ids.EVA_occuring.color = 0, 0, 1 self.us_eva.ids.Crewlock_Status_image.source = mimic_directory + '/Mimic/Pi/imgs/eva/DepressLights.png' ##EVA Leakcheck if airlock_pump_voltage == 1 and crewlockpres < 260 and crewlockpres > 250 and (depress1 or leakhold) and int(stationmode) == 5: if depress1: holdstartTime = float(unixconvert[7])*24+unixconvert[3]+float(unixconvert[4])/60+float(unixconvert[5])/3600 leakhold = True depress1 = False self.us_eva.ids.EVA_occuring.text = "Leak Check in Progress!" self.us_eva.ids.EVA_occuring.color = 0, 0, 1 Clock.schedule_once(self.hold_timer, 1) self.us_eva.ids.Crewlock_Status_image.source = mimic_directory + '/Mimic/Pi/imgs/eva/LeakCheckLights.png' else: leakhold = False ##EVA Depress2 if airlock_pump_voltage == 1 and crewlockpres <= 250 and crewlockpres > 3 and int(stationmode) == 5: leakhold = False self.us_eva.ids.leak_timer.text = "Complete" self.us_eva.ids.EVA_occuring.text = "Crewlock Depressurizing" self.us_eva.ids.EVA_occuring.color = 0, 0, 1 self.us_eva.ids.Crewlock_Status_image.source = mimic_directory + '/Mimic/Pi/imgs/eva/DepressLights.png' ##EVA in progress if crewlockpres < 2.5 and int(stationmode) == 5: eva = True self.us_eva.ids.EVA_occuring.text = "EVA In Progress!!!" self.us_eva.ids.EVA_occuring.color = 0.33, 0.7, 0.18 self.us_eva.ids.leak_timer.text = "Complete" self.us_eva.ids.Crewlock_Status_image.source = mimic_directory + '/Mimic/Pi/imgs/eva/InProgressLights.png' evatimerevent = Clock.schedule_once(self.EVA_clock, 1) ##Repress if airlock_pump_voltage == 0 and airlock_pump_switch == 0 and crewlockpres >= 3 and crewlockpres < 734 and int(stationmode) == 5: eva = False self.us_eva.ids.EVA_occuring.color = 0, 0, 1 self.us_eva.ids.EVA_occuring.text = "Crewlock Repressurizing" self.us_eva.ids.Crewlock_Status_image.source = mimic_directory + '/Mimic/Pi/imgs/eva/RepressLights.png' ##-------------------RS EVA Functionality-------------------## ##if eva station mode and not us eva if airlock_pump_voltage == 0 and crewlockpres >= 734 and stationmode == 5: rsevaflashevent = Clock.schedule_once(self.flashRS_EVAbutton, 1) ##-------------------EVA Functionality End-------------------## # if (difference > -10) and (isinstance(App.get_running_app().root_window.children[0], Popup)==False): # LOSpopup = Popup(title='Loss of Signal', content=Label(text='Possible LOS Soon'), size_hint=(0.3, 0.2), auto_dismiss=True) # LOSpopup.open() ##-------------------Fake Orbit Simulator-------------------## self.fakeorbit_screen.ids.psarj.text = str(psarj) self.fakeorbit_screen.ids.ssarj.text = str(ssarj) self.fakeorbit_screen.ids.beta1a.text = str(beta1a) self.fakeorbit_screen.ids.beta1b.text = str(beta1b) self.fakeorbit_screen.ids.beta2a.text = str(beta2a) self.fakeorbit_screen.ids.beta2b.text = str(beta2b) self.fakeorbit_screen.ids.beta3a.text = str(beta3a) self.fakeorbit_screen.ids.beta3b.text = str(beta3b) self.fakeorbit_screen.ids.beta4a.text = str(beta4a) self.fakeorbit_screen.ids.beta4b.text = str(beta4b) if demoboolean: if Disco: serialWrite("Disco ") Disco = False serialWrite("PSARJ=" + psarj + " " + "SSARJ=" + ssarj + " " + "PTRRJ=" + ptrrj + " " + "STRRJ=" + strrj + " " + "B1B=" + beta1b + " " + "B1A=" + beta1a + " " + "B2B=" + beta2b + " " + "B2A=" + beta2a + " " + "B3B=" + beta3b + " " + "B3A=" + beta3a + " " + "B4B=" + beta4b + " " + "B4A=" + beta4a + " " + "V1A=" + v1a + " " + "V2A=" + v2a + " " + "V3A=" + v3a + " " + "V4A=" + v4a + " " + "V1B=" + v1b + " " + "V2B=" + v2b + " " + "V3B=" + v3b + " " + "V4B=" + v4b + " ") self.eps_screen.ids.psarj_value.text = psarj + "deg" self.eps_screen.ids.ssarj_value.text = ssarj + "deg" self.tcs_screen.ids.ptrrj_value.text = ptrrj + "deg" self.tcs_screen.ids.strrj_value.text = strrj + "deg" self.eps_screen.ids.beta1b_value.text = beta1b self.eps_screen.ids.beta1a_value.text = beta1a self.eps_screen.ids.beta2b_value.text = beta2b self.eps_screen.ids.beta2a_value.text = beta2a self.eps_screen.ids.beta3b_value.text = beta3b self.eps_screen.ids.beta3a_value.text = beta3a self.eps_screen.ids.beta4b_value.text = beta4b self.eps_screen.ids.beta4a_value.text = beta4a self.eps_screen.ids.c1a_value.text = c1a + "A" self.eps_screen.ids.v1a_value.text = v1a + "V" self.eps_screen.ids.c1b_value.text = c1b + "A" self.eps_screen.ids.v1b_value.text = v1b + "V" self.eps_screen.ids.c2a_value.text = c2a + "A" self.eps_screen.ids.v2a_value.text = v2a + "V" self.eps_screen.ids.c2b_value.text = c2b + "A" self.eps_screen.ids.v2b_value.text = v2b + "V" self.eps_screen.ids.c3a_value.text = c3a + "A" self.eps_screen.ids.v3a_value.text = v3a + "V" self.eps_screen.ids.c3b_value.text = c3b + "A" self.eps_screen.ids.v3b_value.text = v3b + "V" self.eps_screen.ids.c4a_value.text = c4a + "A" self.eps_screen.ids.v4a_value.text = v4a + "V" self.eps_screen.ids.c4b_value.text = c4b + "A" self.eps_screen.ids.v4b_value.text = v4b + "V" self.iss_screen.ids.altitude_value.text = str(altitude) + " km" self.iss_screen.ids.velocity_value.text = str(velocity) + " m/s" self.iss_screen.ids.stationmass_value.text = str(iss_mass) + " kg" self.us_eva.ids.EVA_needle.angle = float(self.map_rotation(0.0193368*float(crewlockpres))) self.us_eva.ids.crewlockpressure_value.text = "{:.2f}".format(0.0193368*float(crewlockpres)) psi_bar_x = self.map_psi_bar(0.0193368*float(crewlockpres)) #convert to torr self.us_eva.ids.EVA_psi_bar.pos_hint = {"center_x": psi_bar_x, "center_y": 0.56} ##-------------------Signal Status Check-------------------## if client_status.split(":")[0] == "CONNECTED": if sub_status == "Subscribed": #client connected and subscibed to ISS telemetry if float(aos) == 1.00: self.signal_acquired() #signal status 1 means acquired sasa_xmit = 1 elif float(aos) == 0.00: self.signal_lost() #signal status 0 means loss of signal sasa_xmit = 0 elif float(aos) == 2.00: self.signal_stale() #signal status 2 means data is not being updated from server sasa_xmit = 0 else: self.signal_unsubscribed() else: self.signal_unsubscribed() if mimicbutton: # and float(aos) == 1.00): serialWrite("PSARJ=" + psarj + " " + "SSARJ=" + ssarj + " " + "PTRRJ=" + ptrrj + " " + "STRRJ=" + strrj + " " + "B1B=" + beta1b + " " + "B1A=" + beta1a + " " + "B2B=" + beta2b + " " + "B2A=" + beta2a + " " + "B3B=" + beta3b + " " + "B3A=" + beta3a + " " + "B4B=" + beta4b + " " + "B4A=" + beta4a + " " + "AOS=" + aos + " " + "V1A=" + v1a + " " + "V2A=" + v2a + " " + "V3A=" + v3a + " " + "V4A=" + v4a + " " + "V1B=" + v1b + " " + "V2B=" + v2b + " " + "V3B=" + v3b + " " + "V4B=" + v4b + " " + "ISS=" + module + " " + "Sgnt_el=" + str(int(sgant_elevation)) + " " + "Sgnt_xel=" + str(int(sgant_xelevation)) + " " + "Sgnt_xmit=" + str(int(sgant_transmit)) + " " + "SASA_Xmit=" + str(int(sasa_xmit)) + " SASA_AZ=" + str(float(sasa_az)) + " SASA_EL=" + str(float(sasa_el)) + " ") #All GUI Screens are on separate kv files Builder.load_file(mimic_directory + '/Mimic/Pi/Screens/Settings_Screen.kv') Builder.load_file(mimic_directory + '/Mimic/Pi/Screens/FakeOrbitScreen.kv') Builder.load_file(mimic_directory + '/Mimic/Pi/Screens/Orbit_Screen.kv') Builder.load_file(mimic_directory + '/Mimic/Pi/Screens/Orbit_Pass.kv') Builder.load_file(mimic_directory + '/Mimic/Pi/Screens/Orbit_Data.kv') Builder.load_file(mimic_directory + '/Mimic/Pi/Screens/ISS_Screen.kv') Builder.load_file(mimic_directory + '/Mimic/Pi/Screens/ECLSS_Screen.kv') Builder.load_file(mimic_directory + '/Mimic/Pi/Screens/EPS_Screen.kv') Builder.load_file(mimic_directory + '/Mimic/Pi/Screens/CT_Screen.kv') Builder.load_file(mimic_directory + '/Mimic/Pi/Screens/CT_SGANT_Screen.kv') Builder.load_file(mimic_directory + '/Mimic/Pi/Screens/CT_SASA_Screen.kv') Builder.load_file(mimic_directory + '/Mimic/Pi/Screens/CT_UHF_Screen.kv') Builder.load_file(mimic_directory + '/Mimic/Pi/Screens/CT_Camera_Screen.kv') Builder.load_file(mimic_directory + '/Mimic/Pi/Screens/GNC_Screen.kv') Builder.load_file(mimic_directory + '/Mimic/Pi/Screens/TCS_Screen.kv') Builder.load_file(mimic_directory + '/Mimic/Pi/Screens/EVA_US_Screen.kv') Builder.load_file(mimic_directory + '/Mimic/Pi/Screens/EVA_RS_Screen.kv') Builder.load_file(mimic_directory + '/Mimic/Pi/Screens/EVA_Main_Screen.kv') Builder.load_file(mimic_directory + '/Mimic/Pi/Screens/EVA_Pictures.kv') Builder.load_file(mimic_directory + '/Mimic/Pi/Screens/Crew_Screen.kv') Builder.load_file(mimic_directory + '/Mimic/Pi/Screens/RS_Screen.kv') Builder.load_file(mimic_directory + '/Mimic/Pi/Screens/ManualControlScreen.kv') Builder.load_file(mimic_directory + '/Mimic/Pi/Screens/MSS_MT_Screen.kv') Builder.load_file(mimic_directory + '/Mimic/Pi/Screens/MimicScreen.kv') Builder.load_file(mimic_directory + '/Mimic/Pi/Screens/MainScreen.kv') Builder.load_string(''' #:kivy 1.8 #:import kivy kivy #:import win kivy.core.window ScreenManager: Settings_Screen: FakeOrbitScreen: Orbit_Screen: Orbit_Pass: Orbit_Data: EPS_Screen: CT_Screen: CT_SASA_Screen: CT_UHF_Screen: CT_Camera_Screen: CT_SGANT_Screen: ISS_Screen: ECLSS_Screen: GNC_Screen: TCS_Screen: EVA_US_Screen: EVA_RS_Screen: EVA_Main_Screen: EVA_Pictures: RS_Screen: Crew_Screen: ManualControlScreen: MSS_MT_Screen: MimicScreen: MainScreen: ''') if __name__ == '__main__': MainApp().run()
mit
subhadram/insilico
examples/NeuronSAHPVGCCNetwork/multiplot.py
1
1421
from mpl_toolkits.axes_grid1 import host_subplot import mpl_toolkits.axisartist as AA import matplotlib.pyplot as plt import numpy as np import matplotlib.pyplot as plt import matplotlib data = np.genfromtxt('switch.dat') #data1 = np.genfromtxt('np10.dat') matplotlib.rcParams.update({'font.size': 24}) if 1: host = host_subplot(111, axes_class=AA.Axes) plt.subplots_adjust(right=0.75) par1 = host.twinx() host.set_xlim(4000,4040) #host.set_ylim(0, 2) host.locator_params(axis='y', nbins=4) host.locator_params(axis='x', nbins=2) par1.locator_params(axis='y', nbins=2) host.set_xlabel("Time") host.set_ylabel("Voltage (mV)") par1.set_ylabel("Calcium current (muA/cm^2)") #par2.set_ylabel("isyn1") par1.locator_params(axis='y', nbins=4) par1.locator_params(axis='x', nbins=2) p1, = host.plot(data[:,0], data[:,2],) p2, = par1.plot(data[:,0], -1.0*data[:,4],linewidth = 2.0) #p2, = par1.plot(data[:,0], data[:,3],linewidth = 1.5,label = "h") #p2, = par1.plot(data[:,0], data[:,4],linewidth = 1.5,label = "n") #p3, = par2.plot(data[:,0], data[:,5], label="m") #par1.set_ylim(-100, 10) #par2.set_ylim(1, 65) host.legend(loc ="best") host.axis["left"].label.set_color(p1.get_color()) par1.axis["right"].label.set_color(p2.get_color()) #par2.axis["right"].label.set_color(p3.get_color()) plt.draw() plt.show()
gpl-3.0
maweigert/spimagine
tests/test_utils/test_alpha_shape.py
1
2067
""" [email protected] """ from __future__ import absolute_import import numpy as np from spimagine import volfig, Mesh, qt_exec from spimagine.utils import alpha_shape import matplotlib matplotlib.use("Qt5Agg") def test_2d(): import matplotlib.pyplot as plt plt.ion() np.random.seed(0) N = 500 phi = np.random.uniform(0, 2*np.pi, N) points = np.stack([np.cos(phi), np.sin(phi)*np.cos(phi)]).T #points += .1*np.random.uniform(-1, 1, (N, 2)) #points = np.concatenate([points,.9*points]) points, normals, indices = alpha_shape(points, .1) plt.clf() _x = points[indices].reshape(len(indices)*2,2) _n = normals[indices].reshape(len(indices)*2,2) plt.quiver(_x[:,0],_x[:,1],_n[:,0],_n[:,1], color = (.5,)*3) plt.plot(points[:,0],points[:,1],".") for edge in indices: plt.plot(points[edge, 0], points[edge, 1], "k", lw=2) plt.axis("equal") plt.pause(0.1) plt.close() return points, normals, indices def test_3d(): N = 1000 # generate a concave shape phi = np.random.uniform(0, 2*np.pi, N) theta = np.arccos(np.random.uniform(-1,1, N)) points = np.stack([np.cos(phi)*np.sin(theta)*np.cos(theta), np.sin(phi)*np.sin(theta)*np.cos(theta), np.cos(theta)]).T #points += .1*np.random.uniform(-1, 1, (N,3)) #points = np.concatenate([points,.9*points]) #get the alpha shape indices and normals (set alpha = -1 for the convex hull) points, normals, indices = alpha_shape(points, alpha = .2) m = Mesh(vertices = points.flatten(), normals = normals.flatten(), indices = indices.flatten(), facecolor = (1.,1.,.3)) w = volfig(1) w.glWidget.add_mesh(m) w.transform.setRotation(0.4,0,1,0) w.show() # add this when run from command line from PyQt5 import QtCore QtCore.QTimer.singleShot(1000,w.closeMe) qt_exec() return points, normals, indices if __name__ == '__main__': #points, normals, indices = test_2d() points, normals, indices = test_3d()
bsd-3-clause
mjgrav2001/scikit-learn
examples/linear_model/plot_ols_3d.py
350
2040
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Sparsity Example: Fitting only features 1 and 2 ========================================================= Features 1 and 2 of the diabetes-dataset are fitted and plotted below. It illustrates that although feature 2 has a strong coefficient on the full model, it does not give us much regarding `y` when compared to just feature 1 """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import matplotlib.pyplot as plt import numpy as np from mpl_toolkits.mplot3d import Axes3D from sklearn import datasets, linear_model diabetes = datasets.load_diabetes() indices = (0, 1) X_train = diabetes.data[:-20, indices] X_test = diabetes.data[-20:, indices] y_train = diabetes.target[:-20] y_test = diabetes.target[-20:] ols = linear_model.LinearRegression() ols.fit(X_train, y_train) ############################################################################### # Plot the figure def plot_figs(fig_num, elev, azim, X_train, clf): fig = plt.figure(fig_num, figsize=(4, 3)) plt.clf() ax = Axes3D(fig, elev=elev, azim=azim) ax.scatter(X_train[:, 0], X_train[:, 1], y_train, c='k', marker='+') ax.plot_surface(np.array([[-.1, -.1], [.15, .15]]), np.array([[-.1, .15], [-.1, .15]]), clf.predict(np.array([[-.1, -.1, .15, .15], [-.1, .15, -.1, .15]]).T ).reshape((2, 2)), alpha=.5) ax.set_xlabel('X_1') ax.set_ylabel('X_2') ax.set_zlabel('Y') ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) #Generate the three different figures from different views elev = 43.5 azim = -110 plot_figs(1, elev, azim, X_train, ols) elev = -.5 azim = 0 plot_figs(2, elev, azim, X_train, ols) elev = -.5 azim = 90 plot_figs(3, elev, azim, X_train, ols) plt.show()
bsd-3-clause
skggm/skggm
doc/conf.py
1
10495
# -*- coding: utf-8 -*- # # skggm documentation build configuration file, created by # sphinx-quickstart on Mon Jan 18 14:44:12 2016. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os import sphinx_rtd_theme # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. sys.path.insert(0, os.path.abspath("../")) sys.path.insert(1,os.path.abspath("../inverse_covariance/")) # -- General configuration --------------------------------------------------- # Try to override the matplotlib configuration as early as possible try: import gen_rst except: pass # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.autosummary', 'sphinx.ext.doctest', 'sphinx.ext.intersphinx', 'sphinx.ext.todo', 'numpydoc', 'sphinx.ext.ifconfig', 'sphinx.ext.viewcode', 'sphinx_gallery.gen_gallery' ] # pngmath / imgmath compatibility layer for different sphinx versions import sphinx from distutils.version import LooseVersion if LooseVersion(sphinx.__version__) < LooseVersion('1.4'): extensions.append('sphinx.ext.pngmath') else: extensions.append('sphinx.ext.imgmath') sphinx_gallery_conf = { # path to your examples scripts 'examples_dirs' : '../examples', # Suggested by readthedocs to prevent build failure 'backreferences_dir' : False, 'filename_pattern' : '../examples/convergence_', # Uncomment below if examples fail 'expected_failing_examples': ['../examples/convergence_comparison.py'], # path where to save gallery generated examples 'gallery_dirs' : 'auto_examples'} # After python 3.3 # from unittest.mock import MagicMock from mock import Mock as MagicMock class Mock(MagicMock): @classmethod def __getattr__(cls, name): return MagicMock() MOCK_MODULES = ['pyquic', 'quic_graph_lasso'] sys.modules.update((mod_name, Mock()) for mod_name in MOCK_MODULES) # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # Generate the plots for the gallery plot_gallery = True # The master toctree document. master_doc = 'index' # General information about the project. project = u'skggm' copyright = u'2017, Manjari Narayan and Jason Laska' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '0.2' # The full version, including alpha/beta/rc tags. release = '0.2.7' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. #keep_warnings = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'sphinx_rtd_theme' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. #html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'skggmdoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ ('index', 'skggm.tex', u'skggm Documentation', u'Manjari Narayan', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'skggm', u'skggm Documentation', [u'Manjari Narayan'], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'skggm', u'skggm Documentation', u'Manjari Narayan', 'skggm', 'One line description of project.', 'Miscellaneous'), ] # Commenting out generate_example_rst, setup def generate_example_rst(app, what, name, obj, options, lines): # generate empty examples files, so that we don't get # inclusion errors if there are no examples for a class / module examples_path = os.path.join(app.srcdir, "modules", "generated", "%s.examples" % name) if not os.path.exists(examples_path): # touch file open(examples_path, 'w').close() def setup(app): app.connect('autodoc-process-docstring', generate_example_rst) # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = {'http://docs.python.org/': None}
mit
hobson/pug-nlp
pug/nlp/plot.py
1
13140
import seaborn as sb import pandas np = pandas.np import bisect from matplotlib import pyplot as plt # from pylab import figure, savefig, imshow, axes, axis, cm, show ##################################################################################### ######## Based on the statistics plotting wrapper from Udacity ST-101 ######## https://www.udacity.com/wiki/plotting_graphs_with_python def scatterplot(x, y): plt.ion() plt.plot(x, y, 'b.') plt.xlim(min(x) - 1, max(x) + 1) plt.ylim(min(y) - 1, max(y) + 1) plt.draw() def barplot(labels, data): pos = np.arange(len(data)) plt.ion() plt.xticks(pos + 0.4, labels) plt.bar(pos, data) plt.grid('on') #plt.draw() def histplot(data, bins=None, nbins=5): if not bins: minx, maxx = min(data), max(data) space = (maxx - minx) / float(nbins) bins = np.arange(minx, maxx, space) binned = [bisect.bisect(bins, x) for x in data] l = ['%.1g' % x for x in list(bins) + [maxx]] if space < 1 or space > 1000 else [str(int(x)) for x in list(bins) + [maxx]] print l if len(str(l[1]) + '-' + l[2]) > 10: displab = l[:-1] else: displab = [x + '-\n ' + y for x, y in zip(l[:-1], l[1:])] barplot(displab, [binned.count(x + 1) for x in range(len(bins))]) def barchart(x, y, numbins=None): if numbins is None: numbins = int(len(x) ** 0.75) + 1 datarange = max(x) - min(x) bin_width = float(datarange) / numbins pos = min(x) bins = [0 for i in range(numbins + 1)] for i in range(numbins): bins[i] = pos pos += bin_width bins[numbins] = max(x) + 1 binsum = [0 for i in range(numbins)] bincount = [0 for i in range(numbins)] binaverage = [0 for i in range(numbins)] for i in range(numbins): for j in range(len(x)): if x[j] >= bins[i] and x[j] < bins[i + 1]: bincount[i] += 1 binsum[i] += y[j] for i in range(numbins): binaverage[i] = float(binsum[i]) / bincount[i] barplot(range(numbins), binaverage) return x, y def piechart(labels, data): plt.ion() fig = plt.figure(figsize=(7, 7)) plt.pie(data, labels=labels, autopct='%1.2f%%') plt.draw() return fig def regression_and_plot(x, y=None): """ Fit a line to the x, y data supplied and plot it along with teh raw samples >>> age=[25, 26, 33, 29, 27, 21, 26, 35, 21, 37, 21, 38, 18, 19, 36, 30, 29, 24, 24, 36, 36, 27, 33, 23, 21, 26, 27, 27, 24, 26, 25, 24, 22, 25, 40, 39, 19, 31, 33, 30, 33, 27, 40, 32, 31, 35, 26, 34, 27, 34, 33, 20, 19, 40, 39, 39, 37, 18, 35, 20, 28, 31, 30, 29, 31, 18, 40, 20, 32, 20, 34, 34, 25, 29, 40, 40, 39, 36, 39, 34, 34, 35, 39, 38, 33, 32, 21, 29, 36, 33, 30, 39, 21, 19, 38, 30, 40, 36, 34, 28, 37, 29, 39, 25, 36, 33, 37, 19, 28, 26, 18, 22, 40, 20, 40, 20, 39, 29, 26, 26, 22, 37, 34, 29, 24, 23, 21, 19, 29, 30, 23, 40, 30, 30, 19, 39, 39, 25, 36, 38, 24, 32, 34, 33, 36, 30, 35, 26, 28, 23, 25, 23, 40, 20, 26, 26, 22, 23, 18, 36, 34, 36, 35, 40, 39, 39, 33, 22, 37, 20, 37, 35, 20, 23, 37, 32, 25, 35, 35, 22, 21, 31, 40, 26, 24, 29, 37, 19, 33, 31, 29, 27, 21, 19, 39, 34, 34, 40, 26, 39, 35, 31, 35, 24, 19, 27, 27, 20, 28, 30, 23, 21, 20, 26, 31, 24, 25, 25, 22, 32, 28, 36, 21, 38, 18, 25, 21, 33, 40, 19, 38, 33, 37, 32, 31, 31, 38, 19, 37, 37, 32, 36, 34, 35, 35, 35, 37, 35, 39, 34, 24, 25, 18, 40, 33, 32, 23, 25, 19, 39, 38, 36, 32, 27, 22, 40, 28, 29, 25, 36, 26, 28, 32, 34, 34, 21, 21, 32, 19, 35, 30, 35, 26, 31, 38, 34, 33, 35, 37, 38, 36, 40, 22, 30, 28, 28, 29, 36, 24, 28, 28, 28, 26, 21, 35, 22, 32, 28, 19, 33, 18, 22, 36, 26, 19, 26, 30, 27, 28, 24, 36, 37, 20, 32, 38, 39, 38, 30, 32, 30, 26, 23, 19, 29, 33, 34, 23, 30, 32, 40, 36, 29, 39, 34, 34, 22, 22, 22, 36, 38, 38, 30, 26, 40, 34, 21, 34, 38, 32, 35, 35, 26, 28, 20, 40, 23, 24, 26, 24, 39, 21, 33, 31, 39, 39, 20, 22, 18, 23, 36, 32, 37, 36, 26, 30, 30, 30, 21, 22, 40, 38, 22, 27, 23, 21, 22, 20, 30, 31, 40, 19, 32, 24, 21, 27, 32, 30, 34, 18, 25, 22, 40, 23, 19, 24, 24, 25, 40, 27, 29, 22, 39, 38, 34, 39, 30, 31, 33, 34, 25, 20, 20, 20, 20, 24, 19, 21, 31, 31, 29, 38, 39, 33, 40, 24, 38, 37, 18, 24, 38, 38, 22, 40, 21, 36, 30, 21, 30, 35, 20, 25, 25, 29, 30, 20, 29, 29, 31, 20, 26, 26, 38, 37, 39, 31, 35, 36, 30, 38, 36, 23, 39, 39, 20, 30, 34, 21, 23, 21, 33, 30, 33, 32, 36, 18, 31, 32, 25, 23, 23, 21, 34, 18, 40, 21, 29, 29, 21, 38, 35, 38, 32, 38, 27, 23, 33, 29, 19, 20, 35, 29, 27, 28, 20, 40, 35, 40, 40, 20, 36, 38, 28, 30, 30, 36, 29, 27, 25, 33, 19, 27, 28, 34, 36, 27, 40, 38, 37, 31, 33, 38, 36, 25, 23, 22, 23, 34, 26, 24, 28, 32, 22, 18, 29, 19, 21, 27, 28, 35, 30, 40, 28, 37, 34, 24, 40, 33, 29, 30, 36, 25, 26, 26, 28, 34, 39, 34, 26, 24, 33, 38, 37, 36, 34, 37, 33, 25, 27, 30, 26, 21, 40, 26, 25, 25, 40, 28, 35, 36, 39, 33, 36, 40, 32, 36, 26, 24, 36, 27, 28, 26, 37, 36, 37, 36, 20, 34, 30, 32, 40, 20, 31, 23, 27, 19, 24, 23, 24, 25, 36, 26, 33, 30, 27, 26, 28, 28, 21, 31, 24, 27, 24, 29, 29, 28, 22, 20, 23, 35, 30, 37, 31, 31, 21, 32, 29, 27, 27, 30, 39, 34, 23, 35, 39, 27, 40, 28, 36, 35, 38, 21, 18, 21, 38, 37, 24, 21, 25, 35, 27, 35, 24, 36, 32, 20] >>> wage=[17000, 13000, 28000, 45000, 28000, 1200, 15500, 26400, 14000, 35000, 16400, 50000, 2600, 9000, 27000, 150000, 32000, 22000, 65000, 56000, 6500, 30000, 70000, 9000, 6000, 34000, 40000, 30000, 6400, 87000, 20000, 45000, 4800, 34000, 75000, 26000, 4000, 50000, 63000, 14700, 45000, 42000, 10000, 40000, 70000, 14000, 54000, 14000, 23000, 24400, 27900, 4700, 8000, 19000, 17300, 45000, 3900, 2900, 138000, 2100, 60000, 55000, 45000, 40000, 45700, 90000, 40000, 13000, 30000, 2000, 75000, 60000, 70000, 41000, 42000, 31000, 39000, 104000, 52000, 20000, 59000, 66000, 63000, 32000, 11000, 16000, 6400, 17000, 47700, 5000, 25000, 35000, 20000, 14000, 29000, 267000, 31000, 27000, 64000, 39600, 267000, 7100, 33000, 31500, 40000, 23000, 3000, 14000, 44000, 15100, 2600, 6200, 50000, 3000, 25000, 2000, 38000, 22000, 20000, 2500, 1500, 42000, 30000, 27000, 7000, 11900, 27000, 24000, 4300, 30200, 2500, 30000, 70000, 38700, 8000, 36000, 66000, 24000, 95000, 39000, 20000, 23000, 56000, 25200, 62000, 12000, 13000, 35000, 35000, 14000, 24000, 12000, 14000, 31000, 40000, 22900, 12000, 14000, 1600, 12000, 80000, 90000, 126000, 1600, 100000, 8000, 71000, 40000, 42000, 40000, 120000, 35000, 1200, 4000, 32000, 8000, 14500, 65000, 15000, 3000, 2000, 23900, 1000, 22000, 18200, 8000, 30000, 23000, 30000, 27000, 70000, 40000, 18000, 3100, 57000, 25000, 32000, 10000, 4000, 49000, 93000, 35000, 49000, 40000, 5500, 30000, 25000, 5700, 6000, 30000, 42900, 8000, 5300, 90000, 85000, 15000, 17000, 5600, 11500, 52000, 1000, 42000, 2100, 50000, 1500, 40000, 28000, 5300, 149000, 3200, 12000, 83000, 45000, 31200, 25000, 72000, 70000, 7000, 23000, 40000, 40000, 28000, 10000, 48000, 20000, 60000, 19000, 25000, 39000, 68000, 2300, 23900, 5000, 16300, 80000, 45000, 12000, 9000, 1300, 35000, 35000, 47000, 32000, 18000, 20000, 20000, 23400, 48000, 8000, 5200, 33500, 22000, 22000, 52000, 104000, 28000, 13000, 12000, 15000, 53000, 27000, 50000, 13900, 23000, 28100, 23000, 12000, 55000, 83000, 31000, 33200, 45000, 3000, 18000, 11000, 41000, 36000, 33600, 38000, 45000, 53000, 24000, 3000, 37500, 7700, 4800, 29000, 6600, 12400, 20000, 2000, 1100, 55000, 13400, 10000, 6000, 6000, 16000, 19000, 8300, 52000, 58000, 27000, 25000, 80000, 10000, 22000, 18000, 21000, 8000, 15200, 15000, 5000, 50000, 89000, 7000, 65000, 58000, 42000, 55000, 40000, 14000, 36000, 30000, 7900, 6000, 1200, 10000, 54000, 12800, 35000, 34000, 40000, 45000, 9600, 3300, 39000, 22000, 40000, 68000, 24400, 1000, 10800, 8400, 50000, 22000, 20000, 20000, 1300, 9000, 14200, 32000, 65000, 18000, 18000, 3000, 16700, 1500, 1400, 15000, 55000, 42000, 70000, 35000, 21600, 5800, 35000, 5700, 1700, 40000, 40000, 45000, 25000, 13000, 6400, 11000, 4200, 30000, 32000, 120000, 10000, 19000, 12000, 13000, 37000, 40000, 38000, 60000, 3100, 16000, 18000, 130000, 5000, 5000, 35000, 1000, 14300, 100000, 20000, 33000, 8000, 9400, 87000, 2500, 12000, 12000, 33000, 16500, 25500, 7200, 2300, 3100, 2100, 3200, 45000, 40000, 3800, 30000, 12000, 62000, 45000, 46000, 50000, 40000, 13000, 50000, 23000, 4000, 40000, 25000, 16000, 3000, 80000, 27000, 68000, 3500, 1300, 10000, 46000, 5800, 24000, 12500, 50000, 48000, 29000, 19000, 26000, 30000, 10000, 10000, 20000, 43000, 105000, 55000, 5000, 65000, 68000, 38000, 47000, 48700, 6100, 55000, 30000, 5000, 3500, 23400, 11400, 7000, 1300, 80000, 65000, 45000, 19000, 3000, 17100, 22900, 31200, 35000, 3000, 5000, 1000, 36000, 4800, 60000, 9800, 30000, 85000, 18000, 24000, 60000, 30000, 2000, 39000, 12000, 10500, 60000, 36000, 10500, 3600, 1200, 28600, 48000, 20800, 5400, 9600, 30000, 30000, 20000, 6700, 30000, 3200, 42000, 37000, 5000, 18000, 20000, 14000, 12000, 18000, 3000, 13500, 35000, 38000, 30000, 36000, 66000, 45000, 32000, 46000, 80000, 27000, 4000, 21000, 7600, 16000, 10300, 27000, 19000, 14000, 19000, 3100, 20000, 2700, 27000, 7000, 13600, 75000, 35000, 36000, 25000, 6000, 36000, 50000, 46000, 3000, 37000, 40000, 30000, 48800, 19700, 16000, 14000, 12000, 25000, 25000, 28600, 17000, 31200, 57000, 23000, 23500, 46000, 18700, 26700, 9900, 16000, 3000, 52000, 51000, 14000, 14400, 27000, 26000, 60000, 25000, 6000, 20000, 3000, 69000, 24800, 12000, 3100, 18000, 20000, 267000, 28000, 9800, 18200, 80000, 6800, 21100, 20000, 68000, 20000, 45000, 8000, 40000, 31900, 28000, 24000, 2000, 32000, 11000, 20000, 5900, 16100, 23900, 40000, 37500, 11000, 55000, 37500, 60000, 23000, 9500, 34500, 4000, 9000, 11200, 35200, 30000, 18000, 21800, 19700, 16700, 12500, 11300, 4000, 39000, 32000, 14000, 65000, 50000, 2000, 30400, 22000, 1600, 56000, 40000, 85000, 9000, 10000, 19000, 5300, 5200, 43000, 60000, 50000, 38000, 267000, 15600, 1800, 17000, 45000, 31000, 5000, 8000, 43000, 103000, 45000, 8800, 26000, 47000, 40000, 8000] >>> # udacity class data shows that people earn on average $1.8K more for each year of age and start with a $21K deficit >>> regressionplot(age, wage) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE (1768.275..., -21991.9...) >>> # Gainseville, FL census data shows 14 more new homes are built each year, starting with 517 completed in 1991 >>> regression_and_plot([483, 576, 529, 551, 529, 551, 663, 639, 704, 675, 601, 621, 630, 778, 831, 610]) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE (14.213..., 516.588...) """ if y is None: y = x x = range(len(x)) if not isinstance(x[0], (float, int, np.float64, np.float32)): x = [row[0] for row in x] A = np.vstack([np.array(x), np.ones(len(x))]).T fit = np.linalg.lstsq(A, y) poly = regressionplot(x, y, fit) return poly def regressionplot(x, y, fit=None): """ Plot a 2-D linear regression (y = slope * x + offset) overlayed over the raw data samples """ if fit is None: fit = [(1, 0), None, None, None] if not isinstance(x[0], (float, int, np.float64, np.float32)): x = [row[0] for row in x] poly = fit[0][0], fit[0][-1] plt.ion() fig = plt.figure() ax = fig.add_subplot(111) plt.plot(x, poly[0] * np.array(x) + poly[-1], 'r-', x, y, 'o', markersize=5) plt.legend(['%+.2g * x + %.2g' % poly, 'Samples']) ax.grid(True) plt.draw() return poly class ColorMap(object): def __init__(self, mat, **kwargs): """Render a color map (image) of a matrix or sequence of Matrix objects A color map is like a contour map except the "height" or "value" of each matrix element is used to select a color from a continuous spectrum of colors (for heatmap white is max and red is medium) Arguments: mat (np.matrix or np.array or list of list): the matrix to be rendered as a color map """ # try: # self.colormaps = [ColorMap(m, cmap=cmap, pixelspervalue=pixelspervalue, minvalue=minvalue, maxvalue=maxvalue) for m in mat] # except: # pass # # raise ValueError("Don't know how to display ColorMaps for a sequence of type {}".format(type(mat))) try: mat = np.array(mat.values) except: try: mat = np.array(mat) except: pass if not isinstance(mat, np.ndarray): raise ValueError("Don't know how to display a ColorMap for a matrix of type {}".format(type(mat))) kwargs['vmin'] = kwargs.get('vmin', np.amin(mat)) kwargs['vmax'] = kwargs.get('vmax', np.amax(mat)) kwargs['cmap'] = kwargs.get('cmap', 'bone') # 'hot', 'greens', 'blues' kwargs['linewidths'] = kwargs.get('linewidths', 0.25) kwargs['square'] = kwargs.get('square', True) sb.heatmap(mat, **kwargs) def show(self, block=False): """ Display the last image drawn """ try: plt.show(block=block) except: plt.show() def save(self, filename): """ save colormap to file""" plt.savefig(filename, fig=self.fig, facecolor='black', edgecolor='black')
mit
lwcook/hypersonic-simulation
validate_CCY.py
1
2063
import json import pdb import numpy as hp import matplotlib.pyplot as plt import hypersonicsimulation.aerodynamics as aero import hypersonicsimulation.geometry as geom import hypersonicsimulation.vehicle as veh import hypersonicsimulation.plotting as hsplot def main(): with open('validation/CCY_validation_data.txt', 'r') as f: lines = f.readlines() jstring = '' for line in lines: first_char = line.split()[0].lower() if first_char != '%': jstring += line.strip('\r').strip('\n').strip('\r') jdict = json.loads(jstring) ccy = veh.ConeCylinder(Nstrips=30, Npanels=30) fig, (ax1, ax2) = plt.subplots(1, 2) Ms = [6, 7, 8, 9] colors = [hsplot.blue, hsplot.red, hsplot.green, hsplot.grey] for iM, M in enumerate(Ms): print('M: ', M) lkey = 'M_' + str(M) + '_Lift' data = jdict[lkey] lalphas = [d[0] for d in data] Lifts_vlid = [d[1] for d in data] Lifts_pred = [] for alpha in lalphas: adyn = aero.AeroModel(M=M, alpha=alpha, dynamic_pressure=50000) Cl, Cd = adyn.analyze_geometry(ccy.geometry, coeffs=True) Lifts_pred.append(Cl) dkey = 'M_' + str(M) + '_Drag' data = jdict[dkey] dalphas = [d[0] for d in data] Drags_vlid = [d[1] for d in data] Drags_pred = [] for alpha in dalphas: adyn = aero.AeroModel(M=M, alpha=alpha, dynamic_pressure=50000) Cl, Cd = adyn.analyze_geometry(ccy.geometry, coeffs=True) Drags_pred.append(Cd) ax1.plot(lalphas, Lifts_vlid, c=colors[iM], linestyle='dashed', label='M'+str(M)) ax1.plot(lalphas, Lifts_pred, c=colors[iM], linestyle='solid') ax2.plot(dalphas, Drags_vlid, c=colors[iM], linestyle='dashed', label='M'+str(M)) ax2.plot(dalphas, Drags_pred, c=colors[iM], linestyle='solid') plt.show() hsplot.plot_geometry(ccy.geometry) plt.show() if __name__ == "__main__": main()
mit
kgorman/WMG_speed
app/app.py
1
5559
#!/usr/bin/env python from flask import Flask from flask import render_template import pandas as pd import numpy as np import datetime as datetime app = Flask(__name__) if not app.debug: import logging file_handler = logging.FileHandler('error.log') file_handler.setLevel(logging.WARNING) app.logger.addHandler(file_handler) def int_to_dow(dayno): """ convert an integer into a day of week string """ days = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday'] return days[int(dayno)] def create_graph_strings(input_list): return None def get_raw_data(): file_name = "static/files/all_data.csv" dataframe = pd.read_csv(file_name, header=0) dataframe['date'] = pd.to_datetime(dataframe['date']) return dataframe def get_max_speed(df): return float(max(df['peak_speed'])) def get_vehicle_count(df): return float(sum(df['vehicle_count'])) def get_violator_count(df): return float(sum(df['violator_count'])) def get_avg_speed(df): theavg = np.mean(df['peak_speed']) return round(theavg, 2) def get_over_limit(df): theavg = get_avg_speed(df) return (30-theavg)*-1 def get_timeseries_by_year(df): ''' group by keys, then return strings suitable for graphing ''' df['year'] = df.date.map(lambda x: '{year}'.format(year=x.year)) grouped = df.sort(['year'], ascending=1).groupby(['year']) vehicle_count_by_month = grouped.aggregate(np.sum)['vehicle_count'] violator_count_by_month = grouped.aggregate(np.sum)['violator_count'] keys = vehicle_count_by_month.index.get_values() # convert to specially formatted strings vehicle_count_by_month_l = [str(i) for i in list(vehicle_count_by_month.get_values())] violator_count_by_month_l = [str(i) for i in list(violator_count_by_month.get_values())] keys_l = [str(i) for i in list(keys)] vehicle_count_by_month_str = ','.join(vehicle_count_by_month_l) violator_count_by_month_str = ','.join(violator_count_by_month_l) keys_str = ",".join(keys_l) return [keys_str, vehicle_count_by_month_str, violator_count_by_month_str] def get_speed_by_hour(df): grouped = df.sort(['hour_of_day'], ascending=1).groupby(['hour_of_day']) mean_speed = grouped.aggregate(np.mean)['peak_speed'] max_speed = grouped.aggregate(np.max)['peak_speed'] keys = mean_speed.index.get_values() mean_speed_l = [str(i) for i in list(mean_speed.get_values())] max_speed_l = [str(i) for i in list(max_speed.get_values())] keys_l = [str(i) for i in list(keys)] mean_speed_str = ','.join(mean_speed_l) max_speed_str = ','.join(max_speed_l) keys_str = ",".join(keys_l) return [keys_str, mean_speed_str, max_speed_str] def get_speed_by_day(df): grouped = df.sort(['weekday'], ascending=0).groupby(['weekday']) mean_speed = grouped.aggregate(np.mean)['peak_speed'] max_speed = grouped.aggregate(np.max)['peak_speed'] keys = mean_speed.index.get_values() mean_dow_l = [str(i) for i in list(mean_speed.get_values())] max_dow_l = [str(i) for i in list(max_speed.get_values())] dow_keys_l = [int_to_dow(i) for i in list(keys)] mean_speed_str = ','.join(mean_dow_l) max_speed_str = ','.join(max_dow_l) keys_str = "','".join(dow_keys_l) keys_str = "'"+keys_str+"'" return [keys_str, mean_speed_str, max_speed_str] def car_count_by_hour(df): grouped = df.sort(['date'], ascending=0).groupby(['hour_of_day']) car_count = grouped.aggregate(np.mean)['vehicle_count'] violator_count = grouped.aggregate(np.max)['violator_count'] keys = car_count.index.get_values() car_count_l = [str(i) for i in list(car_count.get_values())] violator_count_l = [str(i) for i in list(violator_count.get_values())] keys_l = [str(i) for i in list(keys)] car_count_str = ','.join(car_count_l) violator_count_str = ','.join(violator_count_l) keys_str = ",".join(keys_l) return [keys_str, car_count_str, violator_count_str] @app.route("/") def dashboard(): df = get_raw_data() violator_pct = round((get_violator_count(df)/get_vehicle_count(df)*100), 2) violator_graph = get_timeseries_by_year(df) speed_graph = get_speed_by_hour(df) dow_graph = get_speed_by_day(df) car_count_graph = car_count_by_hour(df) return render_template('index.html', car_count=get_vehicle_count(df), violator_count=get_violator_count(df), violator_pct=violator_pct, max_speed=get_max_speed(df), avg_speed=get_avg_speed(df), over_limit=get_over_limit(df), ts_labels=violator_graph[0], ts_vehicle=violator_graph[1], ts_violator=violator_graph[2], ts_speed_labels=speed_graph[0], ts_mean_speed_data=speed_graph[1], ts_max_speed_data=speed_graph[2], ts_dow_labels=dow_graph[0], ts_dow_mean=dow_graph[1], ts_dow_max=dow_graph[2], ts_car_count_labels=car_count_graph[0], ts_car_count_count=car_count_graph[1], ts_car_count_violators=car_count_graph[2] ) @app.route("/about") def about(): return render_template('about.html') @app.route("/contact") def contact(): return render_template('contact.html') if __name__ == "__main__": app.run(host='0.0.0.0')
mit
warmspringwinds/scikit-image
skimage/io/tests/test_mpl_imshow.py
1
2822
from __future__ import division import numpy as np from skimage import io from skimage._shared._warnings import expected_warnings import matplotlib.pyplot as plt def setup(): io.reset_plugins() # test images. Note that they don't have their full range for their dtype, # but we still expect the display range to equal the full dtype range. im8 = np.array([[0, 64], [128, 240]], np.uint8) im16 = im8.astype(np.uint16) * 256 im64 = im8.astype(np.uint64) imf = im8 / 255 im_lo = imf / 1000 im_hi = imf + 10 def n_subplots(ax_im): """Return the number of subplots in the figure containing an ``AxesImage``. Parameters ---------- ax_im : matplotlib.pyplot.AxesImage object The input ``AxesImage``. Returns ------- n : int The number of subplots in the corresponding figure. Notes ----- This function is intended to check whether a colorbar was drawn, in which case two subplots are expected. For standard imshows, one subplot is expected. """ return len(ax_im.get_figure().get_axes()) def test_uint8(): ax_im = io.imshow(im8) assert ax_im.cmap.name == 'gray' assert ax_im.get_clim() == (0, 255) # check that no colorbar was created assert n_subplots(ax_im) == 1 assert ax_im.colorbar is None def test_uint16(): ax_im = io.imshow(im16) assert ax_im.cmap.name == 'gray' assert ax_im.get_clim() == (0, 65535) assert n_subplots(ax_im) == 1 assert ax_im.colorbar is None def test_float(): ax_im = io.imshow(imf) assert ax_im.cmap.name == 'gray' assert ax_im.get_clim() == (0, 1) assert n_subplots(ax_im) == 1 assert ax_im.colorbar is None def test_low_dynamic_range(): with expected_warnings(["Low image dynamic range"]): ax_im = io.imshow(im_lo) assert ax_im.get_clim() == (im_lo.min(), im_lo.max()) # check that a colorbar was created assert n_subplots(ax_im) == 2 assert ax_im.colorbar is not None def test_outside_standard_range(): plt.figure() with expected_warnings(["out of standard range"]): ax_im = io.imshow(im_hi) assert ax_im.get_clim() == (im_hi.min(), im_hi.max()) assert n_subplots(ax_im) == 2 assert ax_im.colorbar is not None def test_nonstandard_type(): plt.figure() with expected_warnings(["Non-standard image type"]): ax_im = io.imshow(im64) assert ax_im.get_clim() == (im64.min(), im64.max()) assert n_subplots(ax_im) == 2 assert ax_im.colorbar is not None def test_signed_image(): plt.figure() im_signed = np.array([[-0.5, -0.2], [0.1, 0.4]]) ax_im = io.imshow(im_signed) assert ax_im.get_clim() == (-0.5, 0.5) assert n_subplots(ax_im) == 2 assert ax_im.colorbar is not None if __name__ == '__main__': np.testing.run_module_suite()
bsd-3-clause
biocore/qiime
tests/test_compare_trajectories.py
15
14266
#!/usr/bin/env python from __future__ import division __author__ = "Jose Antonio Navas Molina" __copyright__ = "Copyright 2011, The QIIME project" __credits__ = ["Jose Antonio Navas Molina", "Antonio Gonzalez Pena", "Yoshiki Vazquez Baeza", "Jai Ram Rideout"] __license__ = "GPL" __version__ = "1.9.1-dev" __maintainer__ = "Jose Antonio Navas Molina" __email__ = "[email protected]" from operator import attrgetter from unittest import TestCase, main import numpy as np import numpy.testing as npt import pandas as pd from skbio.stats.ordination import OrdinationResults from skbio.stats.gradient import (GroupResults, CategoryResults, GradientANOVAResults) from qiime.compare_trajectories import run_trajectory_analysis class CompareTrajectoriesTests(TestCase): def setUp(self): eigvals = np.array([0.512367260461, 0.300719094427, 0.267912066004, 0.208988681078, 0.19169895326, 0.16054234528, 0.15017695712, 0.122457748167, 0.0]) site = np.array([[-0.212230626531, 0.216034194368, 0.03532727349, -0.254450494129, -0.0687468542543, 0.231895596562, 0.00496549154314, -0.0026246871695, 9.73837390723e-10], [-0.277487312135, -0.0295483215975, -0.0744173437992, 0.0957182357964, 0.204714844022, -0.0055407341857, -0.190287966833, 0.16307126638, 9.73837390723e-10], [0.220886492631, 0.0874848360559, -0.351990132198, -0.00316535032886, 0.114635191853, -0.00019194106125, 0.188557853937, 0.030002427212, 9.73837390723e-10], [0.0308923744062, -0.0446295973489, 0.133996451689, 0.29318228566, -0.167812539312, 0.130996149793, 0.113551017379, 0.109987942454, 9.73837390723e-10], [0.27616778138, -0.0341866951102, 0.0633000238256, 0.100446653327, 0.123802521199, 0.1285839664, -0.132852841046, -0.217514322505, 9.73837390723e-10], [0.202458130052, -0.115216120518, 0.301820871723, -0.18300251046, 0.136208248567, -0.0989435556722, 0.0927738484879, 0.0909429797672, 9.73837390723e-10], [0.236467470907, 0.21863434374, -0.0301637746424, -0.0225473129718, -0.205287183891, -0.180224615141, -0.165277751908, 0.0411933458557, 9.73837390723e-10], [-0.105517545144, -0.41405687433, -0.150073017617, -0.116066751485, -0.158763393475, -0.0223918378516, -0.0263068046112, -0.0501209518091, 9.73837390723e-10], [-0.371636765565, 0.115484234741, 0.0721996475289, 0.0898852445906, 0.0212491652909, -0.184183028843, 0.114877153051, -0.164938000185, 9.73837390723e-10]]) prop_expl = np.array([25.6216900347, 15.7715955926, 14.1215046787, 11.6913885817, 9.83044890697, 8.51253468595, 7.88775505332, 6.56308246609, 4.42499350906e-16]) site_ids = ['PC.636', 'PC.635', 'PC.356', 'PC.481', 'PC.354', 'PC.593', 'PC.355', 'PC.607', 'PC.634'] self.ord_res = OrdinationResults(eigvals=eigvals, site=site, proportion_explained=prop_expl, site_ids=site_ids) metadata_map = {'PC.354': {'Treatment': 'Control', 'DOB': '20061218', 'Weight': '60', 'Description': 'Control_mouse_I.D._354'}, 'PC.355': {'Treatment': 'Control', 'DOB': '20061218', 'Weight': '55', 'Description': 'Control_mouse_I.D._355'}, 'PC.356': {'Treatment': 'Control', 'DOB': '20061126', 'Weight': '50', 'Description': 'Control_mouse_I.D._356'}, 'PC.481': {'Treatment': 'Control', 'DOB': '20070314', 'Weight': '52', 'Description': 'Control_mouse_I.D._481'}, 'PC.593': {'Treatment': 'Control', 'DOB': '20071210', 'Weight': '57', 'Description': 'Control_mouse_I.D._593'}, 'PC.607': {'Treatment': 'Fast', 'DOB': '20071112', 'Weight': '65', 'Description': 'Fasting_mouse_I.D._607'}, 'PC.634': {'Treatment': 'Fast', 'DOB': '20080116', 'Weight': '68', 'Description': 'Fasting_mouse_I.D._634'}, 'PC.635': {'Treatment': 'Fast', 'DOB': '20080116', 'Weight': '70', 'Description': 'Fasting_mouse_I.D._635'}, 'PC.636': {'Treatment': 'Fast', 'DOB': '20080116', 'Weight': '72', 'Description': 'Fasting_mouse_I.D._636'}} self.metadata_map = pd.DataFrame.from_dict(metadata_map, orient='index') self.categories = ['Treatment'] self.sort_by = 'Weight' # This function makes the comparisons between the results classes easier def assert_group_results_almost_equal(self, obs, exp): """Tests that obs and exp are almost equal""" self.assertEqual(obs.name, exp.name) npt.assert_almost_equal(obs.trajectory, exp.trajectory) npt.assert_almost_equal(obs.mean, exp.mean) self.assertEqual(obs.info.keys(), exp.info.keys()) for key in obs.info: npt.assert_almost_equal(obs.info[key], exp.info[key]) self.assertEqual(obs.message, exp.message) def assert_category_results_almost_equal(self, obs, exp): """Tests that obs and exp are almost equal""" self.assertEqual(obs.category, exp.category) if exp.probability is None: self.assertTrue(obs.probability is None) self.assertTrue(obs.groups is None) else: npt.assert_almost_equal(obs.probability, exp.probability) for o, e in zip(sorted(obs.groups, key=attrgetter('name')), sorted(exp.groups, key=attrgetter('name'))): self.assert_group_results_almost_equal(o, e) def assert_gradientANOVA_results_almost_equal(self, obs, exp): """Tests that obs and exp are almost equal""" self.assertEqual(obs.algorithm, exp.algorithm) self.assertEqual(obs.weighted, exp.weighted) for o, e in zip(sorted(obs.categories, key=attrgetter('category')), sorted(exp.categories, key=attrgetter('category'))): self.assert_category_results_almost_equal(o, e) def test_run_trajectory_analysis_avg(self): """Correctly computes the avg method""" obs = run_trajectory_analysis(self.ord_res, self.metadata_map, trajectory_categories=self.categories) exp_control_group = GroupResults('Control', np.array([2.3694943596755276, 3.3716388181385781, 5.4452089176253367, 4.5704258453173559, 4.4972603724478377]), 4.05080566264, {'avg': 4.0508056626409275}, None) exp_fast_group = GroupResults('Fast', np.array([7.2220488239279126, 4.2726021564374372, 1.1169097274372082, 4.02717600030876]), 4.15968417703, {'avg': 4.1596841770278292}, None) exp_treatment = CategoryResults('Treatment', 0.93311555, [exp_control_group, exp_fast_group], None) exp = GradientANOVAResults('avg', False, [exp_treatment]) self.assert_gradientANOVA_results_almost_equal(obs, exp) def test_run_trajectory_analysis_trajectory(self): """Correctly computes the trajectory method""" obs = run_trajectory_analysis(self.ord_res, self.metadata_map, trajectory_categories=self.categories, sort_category=self.sort_by, algorithm='trajectory') exp_control_group = GroupResults('Control', np.array([8.6681963576, 7.0962717982, 7.1036434615, 4.0675712674]), 6.73392072123, {'2-norm': 13.874494152}, None) exp_fast_group = GroupResults('Fast', np.array([11.2291654905, 3.9163741156, 4.4943507388]), 6.5466301150, {'2-norm': 12.713431181}, None) exp_treatment = CategoryResults('Treatment', 0.9374500147, [exp_control_group, exp_fast_group], None) exp = GradientANOVAResults('trajectory', False, [exp_treatment]) self.assert_gradientANOVA_results_almost_equal(obs, exp) def test_run_trajectory_analysis_diff(self): """Correctly computes the first difference method""" obs = run_trajectory_analysis(self.ord_res, self.metadata_map, trajectory_categories=self.categories, sort_category=self.sort_by, algorithm='diff') exp_control_group = GroupResults('Control', np.array([-1.5719245594, 0.0073716633, -3.0360721941]), -1.5335416967, {'mean': -1.5335416967, 'std': 1.2427771485}, None) exp_fast_group = GroupResults('Fast', np.array([-7.3127913749, 0.5779766231]), -3.3674073758, {'mean': -3.3674073758, 'std': 3.9453839990}, None) exp_treatment = CategoryResults('Treatment', 0.6015260608, [exp_control_group, exp_fast_group], None) exp = GradientANOVAResults('diff', False, [exp_treatment]) self.assert_gradientANOVA_results_almost_equal(obs, exp) def test_run_trajectory_analysis_wdiff(self): """Correctly computes the window difference method""" obs = run_trajectory_analysis(self.ord_res, self.metadata_map, trajectory_categories=self.categories, sort_category=self.sort_by, algorithm='wdiff', window_size=3) exp_control_group = GroupResults('Control', np.array([-2.5790341819, -2.0166764661, -3.0360721941, 0.]), -1.9079457105, {'mean': -1.9079457105, 'std': 1.1592139913}, None) exp_fast_group = GroupResults('Fast', np.array([11.2291654905, 3.9163741156, 4.4943507388]), 6.5466301150, {'mean': 6.5466301150, 'std': 3.3194494926}, "Cannot calculate the first difference " "with a window of size (3).") exp_treatment = CategoryResults('Treatment', 0.0103976830, [exp_control_group, exp_fast_group], None) exp = GradientANOVAResults('wdiff', False, [exp_treatment]) self.assert_gradientANOVA_results_almost_equal(obs, exp) def test_run_trajectory_analysis_error(self): """Raises an error if the algorithm is not recognized""" with self.assertRaises(ValueError): run_trajectory_analysis(self.ord_res, self.metadata_map, algorithm='foo') if __name__ == '__main__': main()
gpl-2.0
OzFlux/OzFluxQC
OzFluxQC.py
1
51206
import ast import copy import datetime import logging import matplotlib matplotlib.use('TkAgg') #matplotlib.use('Qt4Agg') import numpy import ntpath import time import Tkinter as tk import tkMessageBox import os import sys # The Lindsay Trap: check the scripts directory is present if not os.path.exists("./scripts/"): print "OzFluxQC: the scripts directory is missing" sys.exit() # since the scripts directory is there, try importing the modules sys.path.append('scripts') import cfg import qcclim import qccpd import qcgf import qcio import qcls import qcplot import qcrp import qcts import qcutils # now check the logfiles and plots directories are present dir_list = ["./logfiles/","./plots/"] for item in dir_list: if not os.path.exists(item): os.makedirs(item) # now check the solo/inf, solo/input, solo/log and solo/output directories are present dir_list = ["./solo/inf","./solo/input","./solo/log","./solo/output"] for item in dir_list: if not os.path.exists(item): os.makedirs(item) logging.basicConfig(filename='logfiles/OzFluxQC.log',level=logging.DEBUG) console = logging.StreamHandler() formatter = logging.Formatter('%(asctime)s %(levelname)s %(message)s', '%H:%M:%S') console.setFormatter(formatter) console.setLevel(logging.INFO) logging.getLogger('').addHandler(console) class qcgui(tk.Tk): """ QC Data Main GUI Used to access read, save, and data processing (qcls) prodecures Columns: Data levels: 1: L1 Raw Data (read excel into NetCDF) 2: L2 QA/QC (general QA/QC algorithms, site independent) 3: L3 Corrections (Flux data corrections, site dependent based on ancillary measurements available and technical issues) 4: L4 Gap Filling (Used for fill met data gaps and ingesting SOLO-ANN Gap Filled fluxes from external processes) Rows: function access 1: Ingest excel dataset into NetCDF files 2: Process data from previous level and generate NetCDF file(s) at current level 3-6: Show Timestamp range of dataset and accept date range for graphical plots 7: Export excel dataset from NetCDF file """ def __init__(self, parent): tk.Tk.__init__(self,parent) self.parent = parent self.initialise() def option_not_implemented(self): self.do_progress(text='Option not implemented yet ...') logging.info(' Option not implemented yet ...') def initialise(self): self.org_frame = tk.Frame(self) self.org_frame.grid() # things in the first row of the GUI L1Label = tk.Label(self.org_frame,text='L1: Raw data') L1Label.grid(row=0,column=0,columnspan=2) L2Label = tk.Label(self.org_frame,text='L2: QA/QC') L2Label.grid(row=0,column=2,columnspan=2) L3Label = tk.Label(self.org_frame,text='L3: Process') L3Label.grid(row=0,column=4,columnspan=2) # things in the second row of the GUI doL1Button = tk.Button (self.org_frame, text="Read L1 file", command=self.do_l1qc ) doL1Button.grid(row=1,column=0,columnspan=2) doL2Button = tk.Button (self.org_frame, text="Do L2 QA/QC", command=self.do_l2qc ) doL2Button.grid(row=1,column=2,columnspan=2) doL3Button = tk.Button (self.org_frame, text="Do L3 processing", command=self.do_l3qc ) doL3Button.grid(row=1,column=4,columnspan=2) # things in the third row of the GUI filestartLabel = tk.Label(self.org_frame,text='File start date') filestartLabel.grid(row=2,column=0,columnspan=3) fileendLabel = tk.Label(self.org_frame,text='File end date') fileendLabel.grid(row=2,column=3,columnspan=3) # things in the fourth row of the GUI self.filestartValue = tk.Label(self.org_frame,text='No file loaded ...') self.filestartValue.grid(row=3,column=0,columnspan=3) self.fileendValue = tk.Label(self.org_frame,text='No file loaded ...') self.fileendValue.grid(row=3,column=3,columnspan=3) # things in the fifth row of the GUI plotstartLabel = tk.Label(self.org_frame, text='Start date (YYYY-MM-DD)') plotstartLabel.grid(row=4,column=0,columnspan=3) self.plotstartEntry = tk.Entry(self.org_frame) self.plotstartEntry.grid(row=4,column=3,columnspan=3) # things in row sixth of the GUI plotendLabel = tk.Label(self.org_frame, text='End date (YYYY-MM-DD)') plotendLabel.grid(row=5,column=0,columnspan=3) self.plotendEntry = tk.Entry(self.org_frame) self.plotendEntry.grid(row=5,column=3,columnspan=3) # things in the seventh row of the GUI closeplotwindowsButton = tk.Button (self.org_frame, text="Close plot windows", command=self.do_closeplotwindows ) closeplotwindowsButton.grid(row=6,column=0,columnspan=2) plotL1L2Button = tk.Button (self.org_frame, text="Plot L1 & L2 Data", command=self.do_plotL1L2 ) plotL1L2Button.grid(row=6,column=2,columnspan=2) plotL3L3Button = tk.Button (self.org_frame, text="Plot L3 Data", command=self.do_plotL3L3 ) plotL3L3Button.grid(row=6,column=4,columnspan=2) # things in the eigth row of the GUI quitButton = tk.Button (self.org_frame, text='Quit', command=self.do_quit ) quitButton.grid(row=7,column=0,columnspan=2) savexL2Button = tk.Button (self.org_frame, text='Write L2 Excel file', command=self.do_savexL2 ) savexL2Button.grid(row=7,column=2,columnspan=2) savexL3Button = tk.Button (self.org_frame, text='Write L3 Excel file', command=self.do_savexL3 ) savexL3Button.grid(row=7,column=4,columnspan=2) # other things in the GUI self.progress = tk.Label(self.org_frame, text='Waiting for input ...') self.progress.grid(row=8,column=0,columnspan=6,sticky="W") # now we put together the menu, "File" first menubar = tk.Menu(self) filemenu = tk.Menu(menubar,tearoff=0) filemenu.add_command(label="Concatenate netCDF",command=self.do_ncconcat) filemenu.add_command(label="Split netCDF",command=self.do_ncsplit) filemenu.add_command(label="List netCDF contents",command=self.option_not_implemented) fileconvertmenu = tk.Menu(menubar,tearoff=0) #fileconvertmenu.add_command(label="V2.7 to V2.8",command=self.do_v27tov28) fileconvertmenu.add_command(label="nc to EddyPro (biomet)",command=self.do_nc2ep_biomet) fileconvertmenu.add_command(label="nc to FluxNet",command=self.do_nc2fn) fileconvertmenu.add_command(label="nc to REddyProc",command=self.do_nc2reddyproc) fileconvertmenu.add_command(label="nc to SMAP",command=self.do_nc2smap) fileconvertmenu.add_command(label="nc to xls",command=self.do_nc2xls) fileconvertmenu.add_command(label="xls to nc",command=self.option_not_implemented) filemenu.add_cascade(label="Convert",menu=fileconvertmenu) filemenu.add_separator() filemenu.add_command(label="Quit",command=self.do_quit) menubar.add_cascade(label="File",menu=filemenu) # now the "Run" menu runmenu = tk.Menu(menubar,tearoff=0) runmenu.add_command(label="Read L1 file",command=self.do_l1qc) runmenu.add_command(label="Do L2 QA/QC",command=self.do_l2qc) runmenu.add_command(label="Do L3 processing",command=self.do_l3qc) runmenu.add_command(label="Do L4 gap fill (drivers)",command=self.do_l4qc) runmenu.add_command(label="Do L5 gap fill (fluxes)",command=self.do_l5qc) runmenu.add_command(label="Do L6 partitioning",command=self.do_l6qc) menubar.add_cascade(label="Run",menu=runmenu) # then the "Plot" menu plotmenu = tk.Menu(menubar,tearoff=0) plotmenu.add_command(label="Plot L1 & L2",command=self.do_plotL1L2) plotmenu.add_command(label="Plot L3",command=self.do_plotL3L3) plotmenu.add_command(label="Plot L4",command=self.do_plotL3L4) plotmenu.add_command(label="Plot L5",command=self.option_not_implemented) plotmenu.add_command(label="Plot L6 summary",command=self.do_plotL6_summary) fnmenu = tk.Menu(menubar,tearoff=0) fnmenu.add_command(label="Standard",command=lambda:self.do_plotfluxnet(mode="standard")) fnmenu.add_command(label="Custom",command=lambda:self.do_plotfluxnet(mode="custom")) plotmenu.add_cascade(label="30 minute",menu=fnmenu) #plotmenu.add_command(label="FluxNet",command=self.do_plotfluxnet) fpmenu = tk.Menu(menubar,tearoff=0) fpmenu.add_command(label="Standard",command=lambda:self.do_plotfingerprint(mode="standard")) fpmenu.add_command(label="Custom",command=lambda:self.do_plotfingerprint(mode="custom")) plotmenu.add_cascade(label="Fingerprint",menu=fpmenu) plotmenu.add_command(label="Quick check",command=self.do_plotquickcheck) plotmenu.add_command(label="Years check",command=self.option_not_implemented) plotmenu.add_separator() plotmenu.add_command(label="Close plots",command=self.do_closeplotwindows) menubar.add_cascade(label="Plot",menu=plotmenu) # and the "Utilities" menu utilsmenu = tk.Menu(menubar,tearoff=0) climatologymenu = tk.Menu(menubar,tearoff=0) climatologymenu.add_command(label="Standard",command=lambda:self.do_climatology(mode="standard")) climatologymenu.add_command(label="Custom",command=lambda:self.do_climatology(mode="custom")) utilsmenu.add_cascade(label="Climatology",menu=climatologymenu) utilsmenu.add_command(label="Compare Ah",command=self.option_not_implemented) utilsmenu.add_command(label="Compare EP",command=self.do_compare_eddypro) ustarmenu = tk.Menu(menubar,tearoff=0) ustarmenu.add_command(label="Reichstein",command=self.option_not_implemented) ustarmenu.add_command(label="Change Point Detection",command=self.do_cpd) utilsmenu.add_cascade(label="u* threshold",menu=ustarmenu) menubar.add_cascade(label="Utilities",menu=utilsmenu) # and the "Help" menu helpmenu = tk.Menu(menubar,tearoff=0) helpmenu.add_command(label="Contents",command=self.do_helpcontents) helpmenu.add_command(label="About",command=self.option_not_implemented) menubar.add_cascade(label="Help",menu=helpmenu) self.config(menu=menubar) def do_climatology(self,mode="standard"): """ Calls qcclim.climatology """ logging.info(' Starting climatology') self.do_progress(text='Doing climatology ...') if mode=="standard": stdname = "controlfiles/standard/climatology.txt" if os.path.exists(stdname): cf = qcio.get_controlfilecontents(stdname) self.do_progress(text='Opening input file ...') filename = qcio.get_filename_dialog(path='../Sites',title='Choose a netCDF file') if len(filename)==0: logging.info( " Climatology: no input file chosen") self.do_progress(text='Waiting for input ...') return if "Files" not in dir(cf): cf["Files"] = {} cf["Files"]["file_path"] = ntpath.split(filename)[0]+"/" cf["Files"]["in_filename"] = ntpath.split(filename)[1] else: self.do_progress(text='Loading control file ...') cf = qcio.load_controlfile(path='controlfiles') if len(cf)==0: self.do_progress(text='Waiting for input ...'); return else: self.do_progress(text='Loading control file ...') cf = qcio.load_controlfile(path='controlfiles') if len(cf)==0: self.do_progress(text='Waiting for input ...'); return self.do_progress(text='Doing the climatology') qcclim.climatology(cf) self.do_progress(text='Finished climatology') logging.info(' Finished climatology') logging.info("") def do_closeplotwindows(self): """ Close plot windows """ self.do_progress(text='Closing plot windows ...') # tell the user what we're doing logging.info(' Closing plot windows ...') matplotlib.pyplot.close('all') #fig_numbers = [n.num for n in matplotlib._pylab_helpers.Gcf.get_all_fig_managers()] ##logging.info(' Closing plot windows: '+str(fig_numbers)) #for n in fig_numbers: #matplotlib.pyplot.close(n) self.do_progress(text='Waiting for input ...') # tell the user what we're doing logging.info(' Waiting for input ...') def do_compare_eddypro(self): """ Calls qcclim.compare_ep Compares the results OzFluxQC (L3) with those from EddyPro (full output). """ self.do_progress(text='Comparing EddyPro and OzFlux results ...') qcclim.compare_eddypro() self.do_progress(text='Finished comparing EddyPro and OzFlux') logging.info(' Finished comparing EddyPro and OzFlux') def do_cpd(self): """ Calls qccpd.cpd_main Compares the results OzFluxQC (L3) with those from EddyPro (full output). """ logging.info(' Starting estimation u* threshold using CPD') self.do_progress(text='Estimating u* threshold using CPD ...') stdname = "controlfiles/standard/cpd.txt" if os.path.exists(stdname): cf = qcio.get_controlfilecontents(stdname) filename = qcio.get_filename_dialog(path='../Sites',title='Choose an input nc file') if len(filename)==0: self.do_progress(text='Waiting for input ...'); return if "Files" not in dir(cf): cf["Files"] = {} cf["Files"]["file_path"] = ntpath.split(filename)[0]+"/" cf["Files"]["in_filename"] = ntpath.split(filename)[1] else: cf = qcio.load_controlfile(path='controlfiles') if len(cf)==0: self.do_progress(text='Waiting for input ...'); return if "Options" not in cf: cf["Options"]={} cf["Options"]["call_mode"] = "interactive" qccpd.cpd_main(cf) self.do_progress(text='Finished estimating u* threshold') logging.info(' Finished estimating u* threshold') logging.info("") def do_helpcontents(self): tkMessageBox.showinfo("Obi Wan says ...","Read the source, Luke!") def do_l1qc(self): """ Calls qcls.l1qc """ logging.info(" Starting L1 processing ...") self.do_progress(text='Load L1 Control File ...') cf = qcio.load_controlfile(path='controlfiles') if len(cf)==0: logging.info( " L1: no control file chosen") self.do_progress(text='Waiting for input ...') return self.do_progress(text='Doing L1 ...') ds1 = qcls.l1qc(cf) if ds1.returncodes["value"] == 0: outfilename = qcio.get_outfilenamefromcf(cf) ncFile = qcio.nc_open_write(outfilename) qcio.nc_write_series(ncFile,ds1) self.do_progress(text='Finished L1') logging.info(' Finished L1') logging.info("") else: msg = 'An error occurred, check the console ...' self.do_progress(text=msg) def do_l2qc(self): """ Call qcls.l2qc function Performs L2 QA/QC processing on raw data Outputs L2 netCDF file to ncData folder ControlFiles: L2_year.txt or L2.txt ControlFile contents (see ControlFile/Templates/L2.txt for example): [General]: Enter list of functions to be performed [Files]: L1 input file name and path L2 output file name and path [Variables]: Variable names and parameters for: Range check to set upper and lower rejection limits Diurnal check to reject observations by time of day that are outside specified standard deviation limits Timestamps for excluded dates Timestamps for excluded hours [Plots]: Variable lists for plot generation """ logging.info(" Starting L2 processing ...") self.do_progress(text='Load L2 Control File ...') self.cf = qcio.load_controlfile(path='controlfiles') if len(self.cf)==0: logging.info( " L2: no control file chosen") self.do_progress(text='Waiting for input ...') return infilename = qcio.get_infilenamefromcf(self.cf) if not qcutils.file_exists(infilename): self.do_progress(text='An error occurred, check the console ...'); return self.do_progress(text='Doing L2 QC ...') self.ds1 = qcio.nc_read_series(infilename) if len(self.ds1.series.keys())==0: self.do_progress(text='An error occurred, check the console ...'); del self.ds1; return self.update_startenddate(str(self.ds1.series['DateTime']['Data'][0]), str(self.ds1.series['DateTime']['Data'][-1])) self.ds2 = qcls.l2qc(self.cf,self.ds1) logging.info(' Finished L2 QC process') self.do_progress(text='Finished L2 QC process') self.do_progress(text='Saving L2 QC ...') # put up the progress message outfilename = qcio.get_outfilenamefromcf(self.cf) if len(outfilename)==0: self.do_progress(text='An error occurred, check the console ...'); return ncFile = qcio.nc_open_write(outfilename) qcio.nc_write_series(ncFile,self.ds2) # save the L2 data self.do_progress(text='Finished saving L2 QC data') # tdo_progressell the user we are done logging.info(' Finished saving L2 QC data') logging.info("") def do_l3qc(self): """ Call qcls.l3qc_sitename function Performs L3 Corrections and QA/QC processing on L2 data Outputs L3 netCDF file to ncData folder Outputs L3 netCDF file to OzFlux folder Available corrections: * corrections requiring ancillary measurements or samples marked with an asterisk Linear correction fixed slope linearly shifting slope Conversion of virtual temperature to actual temperature 2D Coordinate rotation Massman correction for frequency attenuation* Webb, Pearman and Leuning correction for flux effects on density measurements Conversion of virtual heat flux to actual heat flux Correction of soil moisture content to empirical calibration curve* Addition of soil heat storage to ground ground heat flux* ControlFiles: L3_year.txt or L3a.txt ControlFile contents (see ControlFile/Templates/L3.txt for example): [General]: Python control parameters [Files]: L2 input file name and path L3 output file name and ncData folder path L3 OzFlux output file name and OzFlux folder path [Massman] (where available): Constants used in frequency attenuation correction zmd: instrument height (z) less zero-plane displacement height (d), m z0: aerodynamic roughness length, m angle: angle from CSAT mounting point between CSAT and IRGA mid-path, degrees CSATarm: distance from CSAT mounting point to CSAT mid-path, m IRGAarm: distance from CSAT mounting point to IRGA mid-path, m [Soil]: Constants used in correcting Fg for storage and in empirical corrections of soil water content FgDepth: Heat flux plate depth, m BulkDensity: Soil bulk density, kg/m3 OrganicContent: Soil organic content, fraction SwsDefault Constants for empirical corrections using log(sensor) and exp(sensor) functions (SWC_a0, SWC_a1, SWC_b0, SWC_b1, SWC_t, TDR_a0, TDR_a1, TDR_b0, TDR_b1, TDR_t) Variable and attributes lists (empSWCin, empSWCout, empTDRin, empTDRout, linTDRin, SWCattr, TDRattr) [Output]: Variable subset list for OzFlux output file [Variables]: Variable names and parameters for: Range check to set upper and lower rejection limits Diurnal check to reject observations by time of day that are outside specified standard deviation limits Timestamps, slope, and offset for Linear correction [Plots]: Variable lists for plot generation """ logging.info(" Starting L3 processing ...") self.cf = qcio.load_controlfile(path='controlfiles') if len(self.cf)==0: logging.info( " L3: no control file chosen") self.do_progress(text='Waiting for input ...') return infilename = qcio.get_infilenamefromcf(self.cf) if not qcutils.file_exists(infilename): self.do_progress(text='An error occurred, check the console ...'); return self.ds2 = qcio.nc_read_series(infilename) if len(self.ds2.series.keys())==0: self.do_progress(text='An error occurred, check the console ...'); del self.ds2; return self.update_startenddate(str(self.ds2.series['DateTime']['Data'][0]), str(self.ds2.series['DateTime']['Data'][-1])) self.do_progress(text='Doing L3 QC & Corrections ...') self.ds3 = qcls.l3qc(self.cf,self.ds2) self.do_progress(text='Finished L3') txtstr = ' Finished L3: Standard processing for site: ' txtstr = txtstr+self.ds3.globalattributes['site_name'].replace(' ','') logging.info(txtstr) self.do_progress(text='Saving L3 QC & Corrected NetCDF data ...') # put up the progress message outfilename = qcio.get_outfilenamefromcf(self.cf) if len(outfilename)==0: self.do_progress(text='An error occurred, check the console ...'); return ncFile = qcio.nc_open_write(outfilename) outputlist = qcio.get_outputlistfromcf(self.cf,'nc') qcio.nc_write_series(ncFile,self.ds3,outputlist=outputlist) # save the L3 data self.do_progress(text='Finished saving L3 QC & Corrected NetCDF data') # tell the user we are done logging.info(' Finished saving L3 QC & Corrected NetCDF data') logging.info("") def do_l4qc(self): """ Call qcls.l4qc_gapfill function Performs L4 gap filling on L3 met data or Ingests L4 gap filled fluxes performed in external SOLO-ANN and c omputes daily sums Outputs L4 netCDF file to ncData folder Outputs L4 netCDF file to OzFlux folder ControlFiles: L4_year.txt or L4b.txt ControlFile contents (see ControlFile/Templates/L4.txt and ControlFile/Templates/L4b.txt for examples): [General]: Python control parameters (SOLO) Site characteristics parameters (Gap filling) [Files]: L3 input file name and path (Gap filling) L4 input file name and path (SOLO) L4 output file name and ncData folder path (both) L4 OzFlux output file name and OzFlux folder path [Variables]: Variable subset list for OzFlux output file (where available) """ logging.info(" Starting L4 processing ...") cf = qcio.load_controlfile(path='controlfiles') if len(cf)==0: self.do_progress(text='Waiting for input ...'); return infilename = qcio.get_infilenamefromcf(cf) if len(infilename)==0: self.do_progress(text='An error occurred, check the console ...'); return if not qcutils.file_exists(infilename): self.do_progress(text='An error occurred, check the console ...'); return ds3 = qcio.nc_read_series(infilename) if len(ds3.series.keys())==0: self.do_progress(text='An error occurred, check the console ...'); del ds3; return ds3.globalattributes['controlfile_name'] = cf['controlfile_name'] self.update_startenddate(str(ds3.series['DateTime']['Data'][0]), str(ds3.series['DateTime']['Data'][-1])) sitename = ds3.globalattributes['site_name'] self.do_progress(text='Doing L4 gap filling drivers: '+sitename+' ...') if "Options" not in cf: cf["Options"]={} cf["Options"]["call_mode"] = "interactive" ds4 = qcls.l4qc(cf,ds3) if ds4.returncodes["alternate"]=="quit" or ds4.returncodes["solo"]=="quit": self.do_progress(text='Quitting L4: '+sitename) logging.info(' Quitting L4: '+sitename) else: self.do_progress(text='Finished L4: '+sitename) logging.info(' Finished L4: '+sitename) self.do_progress(text='Saving L4 gap filled data ...') # put up the progress message outfilename = qcio.get_outfilenamefromcf(cf) if len(outfilename)==0: self.do_progress(text='An error occurred, check the console ...'); return ncFile = qcio.nc_open_write(outfilename) outputlist = qcio.get_outputlistfromcf(cf,'nc') qcio.nc_write_series(ncFile,ds4,outputlist=outputlist) # save the L4 data self.do_progress(text='Finished saving L4 gap filled data') # tell the user we are done logging.info(' Finished saving L4 gap filled data') logging.info("") def do_l5qc(self): """ Call qcls.l5qc function to gap fill the fluxes. """ logging.info(" Starting L5 processing ...") cf = qcio.load_controlfile(path='controlfiles') if len(cf)==0: self.do_progress(text='Waiting for input ...'); return infilename = qcio.get_infilenamefromcf(cf) if len(infilename)==0: self.do_progress(text='An error occurred, check the console ...'); return if not qcutils.file_exists(infilename): self.do_progress(text='An error occurred, check the console ...'); return ds4 = qcio.nc_read_series(infilename) if len(ds4.series.keys())==0: self.do_progress(text='An error occurred, check the console ...'); del ds4; return ds4.globalattributes['controlfile_name'] = cf['controlfile_name'] self.update_startenddate(str(ds4.series['DateTime']['Data'][0]), str(ds4.series['DateTime']['Data'][-1])) sitename = ds4.globalattributes['site_name'] self.do_progress(text='Doing L5 gap filling fluxes: '+sitename+' ...') if "Options" not in cf: cf["Options"]={} cf["Options"]["call_mode"] = "interactive" ds5 = qcls.l5qc(cf,ds4) if ds5.returncodes["solo"]=="quit": self.do_progress(text='Quitting L5: '+sitename) logging.info(' Quitting L5: '+sitename) else: self.do_progress(text='Finished L5: '+sitename) logging.info(' Finished L5: '+sitename) self.do_progress(text='Saving L5 gap filled data ...') # put up the progress message outfilename = qcio.get_outfilenamefromcf(cf) if len(outfilename)==0: self.do_progress(text='An error occurred, check the console ...'); return ncFile = qcio.nc_open_write(outfilename) outputlist = qcio.get_outputlistfromcf(cf,'nc') qcio.nc_write_series(ncFile,ds5,outputlist=outputlist) # save the L5 data self.do_progress(text='Finished saving L5 gap filled data') # tell the user we are done logging.info(' Finished saving L5 gap filled data') logging.info("") def do_l6qc(self): """ Call qcls.l6qc function to partition NEE into GPP and ER. """ logging.info(" Starting L6 processing ...") cf = qcio.load_controlfile(path='controlfiles') if len(cf)==0: self.do_progress(text='Waiting for input ...'); return infilename = qcio.get_infilenamefromcf(cf) if len(infilename)==0: self.do_progress(text='An error occurred, check the console ...'); return if not qcutils.file_exists(infilename): self.do_progress(text='An error occurred, check the console ...'); return ds5 = qcio.nc_read_series(infilename) if len(ds5.series.keys())==0: self.do_progress(text='An error occurred, check the console ...'); del ds5; return ds5.globalattributes['controlfile_name'] = cf['controlfile_name'] self.update_startenddate(str(ds5.series['DateTime']['Data'][0]), str(ds5.series['DateTime']['Data'][-1])) sitename = ds5.globalattributes['site_name'] self.do_progress(text='Doing L6 partitioning: '+sitename+' ...') if "Options" not in cf: cf["Options"]={} cf["Options"]["call_mode"] = "interactive" ds6 = qcls.l6qc(cf,ds5) self.do_progress(text='Finished L6: '+sitename) logging.info(' Finished L6: '+sitename) self.do_progress(text='Saving L6 partitioned data ...') # put up the progress message outfilename = qcio.get_outfilenamefromcf(cf) if len(outfilename)==0: self.do_progress(text='An error occurred, check the console ...'); return ncFile = qcio.nc_open_write(outfilename) outputlist = qcio.get_outputlistfromcf(cf,'nc') qcio.nc_write_series(ncFile,ds6,outputlist=outputlist) # save the L6 data self.do_progress(text='Finished saving L6 partitioned data') # tell the user we are done logging.info(' Finished saving L6 partitioned data') logging.info("") def do_nc2ep_biomet(self): """ Calls qcio.ep_biomet_write_csv. """ logging.info(' Starting conversion to EddyPro biomet file') self.do_progress(text='Load control file ...') self.cf = qcio.load_controlfile(path='controlfiles') if len(self.cf)==0: self.do_progress(text='Waiting for input ...'); return self.do_progress(text='Converting nc to EddyPro biomet CSV ...') return_code = qcio.ep_biomet_write_csv(self.cf) if return_code==0: self.do_progress(text='An error occurred, check the console ...'); return else: logging.info(' Finished conversion to EddyPro biomet format') self.do_progress(text='Finished conversion to EddyPro biomet format') logging.info("") def do_nc2fn(self): """ Calls qcio.fn_write_csv. """ logging.info(' Starting conversion to FluxNet CSV file') self.do_progress(text='Load control file ...') self.cf = qcio.load_controlfile(path='controlfiles') if len(self.cf)==0: self.do_progress(text='Waiting for input ...'); return self.do_progress(text='Converting nc to FluxNet CSV ...') qcio.fn_write_csv(self.cf) logging.info(' Finished conversion') self.do_progress(text='Finished conversion') logging.info("") def do_nc2reddyproc(self): """ Calls qcio.reddyproc_write_csv.""" logging.info(' Starting conversion to REddyProc CSV file') self.do_progress(text="Choosing netCDF file ...") ncfilename = qcio.get_filename_dialog(path="../Sites",title="Choose a netCDF file") if len(ncfilename)==0 or not os.path.exists(ncfilename): self.do_progress(text="Waiting for input ..."); return self.do_progress(text='Converting nc to REddyProc CSV ...') qcio.reddyproc_write_csv(ncfilename) logging.info(' Finished conversion') self.do_progress(text='Finished conversion') logging.info("") def do_nc2smap(self): """ Calls qcio.smap_write_csv. """ logging.info(' Starting conversion to SMAP CSV file') self.do_progress(text='Load control file ...') self.cf = qcio.load_controlfile(path='controlfiles') if len(self.cf)==0: self.do_progress(text='Waiting for input ...'); return self.do_progress(text='Converting nc to SMAP CSV ...') qcio.smap_write_csv(self.cf) logging.info(' Finished conversion') self.do_progress(text='Finished conversion') logging.info("") def do_nc2xls(self): """ Calls qcio.nc_2xls. """ logging.info(" Starting conversion to Excel file") self.do_progress(text="Choosing netCDF file ...") ncfilename = qcio.get_filename_dialog(path="../Sites",title="Choose a netCDF file") if len(ncfilename)==0: self.do_progress(text="Waiting for input ..."); return self.do_progress(text="Converting netCDF file to Excel file") qcio.nc_2xls(ncfilename,outputlist=None) self.do_progress(text="Finished converting netCDF file") logging.info(" Finished converting netCDF file") logging.info("") def do_ncconcat(self): """ Calls qcio.nc_concatenate """ logging.info(' Starting concatenation of netCDF files') self.do_progress(text='Loading control file ...') cf = qcio.load_controlfile(path='controlfiles') if len(cf)==0: self.do_progress(text='Waiting for input ...'); return self.do_progress(text='Concatenating files') qcio.nc_concatenate(cf) self.do_progress(text='Finished concatenating files') logging.info(' Finished concatenating files') logging.info("") def do_ncsplit(self): """ Calls qcio.nc_split """ logging.info(' Starting split of netCDF file') self.do_progress(text='Splitting file') qcio.nc_split() self.do_progress(text='Finished splitting file') logging.info(' Finished splitting file') logging.info("") def do_plotfingerprint(self,mode="standard"): """ Plot fingerprint""" logging.info(' Starting fingerprint plot') self.do_progress(text='Doing fingerprint plot ...') if mode=="standard": stdname = "controlfiles/standard/fingerprint.txt" if os.path.exists(stdname): cf = qcio.get_controlfilecontents(stdname) filename = qcio.get_filename_dialog(path='../Sites',title='Choose a netCDF file') if len(filename)==0 or not os.path.exists(filename): self.do_progress(text='Waiting for input ...'); return if "Files" not in dir(cf): cf["Files"] = {} cf["Files"]["file_path"] = ntpath.split(filename)[0]+"/" cf["Files"]["in_filename"] = ntpath.split(filename)[1] else: self.do_progress(text='Loading control file ...') cf = qcio.load_controlfile(path='controlfiles') if len(cf)==0: self.do_progress(text='Waiting for input ...'); return else: self.do_progress(text='Loading control file ...') cf = qcio.load_controlfile(path='controlfiles') if len(cf)==0: self.do_progress(text='Waiting for input ...'); return if "Options" not in cf: cf["Options"]={} cf["Options"]["call_mode"] = "interactive" self.do_progress(text='Plotting fingerprint ...') qcplot.plot_fingerprint(cf) self.do_progress(text='Finished plotting fingerprint') logging.info(' Finished plotting fingerprint') logging.info("") def do_plotfluxnet(self,mode="standard"): """ Plot FluxNet style time series of data.""" self.do_progress(text='Doing FluxNet plots ...') if mode=="standard": stdname = "controlfiles/standard/fluxnet.txt" if os.path.exists(stdname): cf = qcio.get_controlfilecontents(stdname) filename = qcio.get_filename_dialog(path='../Sites',title='Choose a netCDF file') if len(filename)==0 or not os.path.exists(filename): self.do_progress(text='Waiting for input ...'); return if "Files" not in dir(cf): cf["Files"] = {} cf["Files"]["file_path"] = ntpath.split(filename)[0]+"/" cf["Files"]["in_filename"] = ntpath.split(filename)[1] else: self.do_progress(text='Loading control file ...') cf = qcio.load_controlfile(path='controlfiles') if len(cf)==0: self.do_progress(text='Waiting for input ...'); return else: self.do_progress(text='Loading control file ...') cf = qcio.load_controlfile(path='controlfiles') if len(cf)==0: self.do_progress(text='Waiting for input ...'); return self.do_progress(text='Plotting FluxNet style plots ...') qcplot.plot_fluxnet(cf) self.do_progress(text='Finished FluxNet plotting') logging.info(' Finished FluxNet plotting') def do_plotquickcheck(self): """ Plot quickcheck""" self.do_progress(text='Loading control file ...') stdname = "controlfiles/standard/quickcheck.txt" if os.path.exists(stdname): cf = qcio.get_controlfilecontents(stdname) filename = qcio.get_filename_dialog(path='../Sites',title='Choose an input file') if len(filename)==0: self.do_progress(text='Waiting for input ...'); return if "Files" not in dir(cf): cf["Files"] = {} cf["Files"]["file_path"] = ntpath.split(filename)[0]+"/" cf["Files"]["in_filename"] = ntpath.split(filename)[1] else: cf = qcio.load_controlfile(path='controlfiles') if len(cf)==0: self.do_progress(text='Waiting for input ...'); return self.do_progress(text='Plotting quickcheck ...') qcplot.plot_quickcheck(cf) self.do_progress(text='Finished plotting quickcheck') logging.info(' Finished plotting quickcheck') def do_plotL1L2(self): """ Plot L1 (raw) and L2 (QA/QC) data in blue and red, respectively Control File for do_l2qc function used. If L2 Control File not loaded, requires control file selection. """ if 'ds1' not in dir(self) or 'ds2' not in dir(self): self.cf = qcio.load_controlfile(path='controlfiles') if len(self.cf)==0: self.do_progress(text='Waiting for input ...'); return l1filename = qcio.get_infilenamefromcf(self.cf) if not qcutils.file_exists(l1filename): self.do_progress(text='An error occurred, check the console ...'); return self.ds1 = qcio.nc_read_series(l1filename) if len(self.ds1.series.keys())==0: self.do_progress(text='An error occurred, check the console ...'); del self.ds1; return l2filename = qcio.get_outfilenamefromcf(self.cf) self.ds2 = qcio.nc_read_series(l2filename) if len(self.ds2.series.keys())==0: self.do_progress(text='An error occurred, check the console ...'); del self.ds2; return self.update_startenddate(str(self.ds1.series['DateTime']['Data'][0]), str(self.ds1.series['DateTime']['Data'][-1])) self.do_progress(text='Plotting L1 & L2 QC ...') cfname = self.ds2.globalattributes['controlfile_name'] self.cf = qcio.get_controlfilecontents(cfname) for nFig in self.cf['Plots'].keys(): si = qcutils.GetDateIndex(self.ds1.series['DateTime']['Data'],self.plotstartEntry.get(), ts=self.ds1.globalattributes['time_step'],default=0,match='exact') ei = qcutils.GetDateIndex(self.ds1.series['DateTime']['Data'],self.plotendEntry.get(), ts=self.ds1.globalattributes['time_step'],default=-1,match='exact') plt_cf = self.cf['Plots'][str(nFig)] if 'Type' in plt_cf.keys(): if str(plt_cf['Type']).lower() =='xy': self.do_progress(text='Plotting L1 and L2 XY ...') qcplot.plotxy(self.cf,nFig,plt_cf,self.ds1,self.ds2,si,ei) else: self.do_progress(text='Plotting L1 and L2 QC ...') qcplot.plottimeseries(self.cf,nFig,self.ds1,self.ds2,si,ei) else: self.do_progress(text='Plotting L1 and L2 QC ...') qcplot.plottimeseries(self.cf,nFig,self.ds1,self.ds2,si,ei) self.do_progress(text='Finished plotting L1 and L2') logging.info(' Finished plotting L1 and L2, check the GUI') def do_plotL3L3(self): """ Plot L3 (QA/QC and Corrected) data Control File for do_l3qc function used. If L3 Control File not loaded, requires control file selection. """ if 'ds3' not in dir(self): self.cf = qcio.load_controlfile(path='controlfiles') if len(self.cf)==0: self.do_progress(text='Waiting for input ...'); return l3filename = qcio.get_outfilenamefromcf(self.cf) self.ds3 = qcio.nc_read_series(l3filename) if len(self.ds3.series.keys())==0: self.do_progress(text='An error occurred, check the console ...'); del self.ds3; return self.update_startenddate(str(self.ds3.series['DateTime']['Data'][0]), str(self.ds3.series['DateTime']['Data'][-1])) self.do_progress(text='Plotting L3 QC ...') cfname = self.ds3.globalattributes['controlfile_name'] self.cf = qcio.get_controlfilecontents(cfname) for nFig in self.cf['Plots'].keys(): si = qcutils.GetDateIndex(self.ds3.series['DateTime']['Data'],self.plotstartEntry.get(), ts=self.ds3.globalattributes['time_step'],default=0,match='exact') ei = qcutils.GetDateIndex(self.ds3.series['DateTime']['Data'],self.plotendEntry.get(), ts=self.ds3.globalattributes['time_step'],default=-1,match='exact') plt_cf = self.cf['Plots'][str(nFig)] if 'Type' in plt_cf.keys(): if str(plt_cf['Type']).lower() =='xy': self.do_progress(text='Plotting L3 XY ...') qcplot.plotxy(self.cf,nFig,plt_cf,self.ds3,self.ds3,si,ei) else: self.do_progress(text='Plotting L3 QC ...') SeriesList = ast.literal_eval(plt_cf['Variables']) qcplot.plottimeseries(self.cf,nFig,self.ds3,self.ds3,si,ei) else: self.do_progress(text='Plotting L3 QC ...') qcplot.plottimeseries(self.cf,nFig,self.ds3,self.ds3,si,ei) self.do_progress(text='Finished plotting L3') logging.info(' Finished plotting L3, check the GUI') def do_plotL3L4(self): """ Plot L3 (QA/QC and Corrected) and L4 (Gap Filled) data in blue and red, respectively Control File for do_l4qc function used. If L4 Control File not loaded, requires control file selection. """ if 'ds3' not in dir(self) or 'ds4' not in dir(self): self.cf = qcio.load_controlfile(path='controlfiles') if len(self.cf)==0: self.do_progress(text='Waiting for input ...') return l3filename = qcio.get_infilenamefromcf(self.cf) if not qcutils.file_exists(l3filename): self.do_progress(text='An error occurred, check the console ...'); return self.ds3 = qcio.nc_read_series(l3filename) if len(self.ds3.series.keys())==0: self.do_progress(text='An error occurred, check the console ...'); del self.ds3; return l4filename = qcio.get_outfilenamefromcf(self.cf) self.ds4 = qcio.nc_read_series(l4filename) if len(self.ds4.series.keys())==0: self.do_progress(text='An error occurred, check the console ...'); del self.ds4; return self.update_startenddate(str(self.ds3.series['DateTime']['Data'][0]), str(self.ds3.series['DateTime']['Data'][-1])) self.do_progress(text='Plotting L3 and L4 QC ...') cfname = self.ds4.globalattributes['controlfile_name'] self.cf = qcio.get_controlfilecontents(cfname) for nFig in self.cf['Plots'].keys(): si = qcutils.GetDateIndex(self.ds3.series['DateTime']['Data'],self.plotstartEntry.get(), ts=self.ds3.globalattributes['time_step'],default=0,match='exact') ei = qcutils.GetDateIndex(self.ds3.series['DateTime']['Data'],self.plotendEntry.get(), ts=self.ds3.globalattributes['time_step'],default=-1,match='exact') qcplot.plottimeseries(self.cf,nFig,self.ds3,self.ds4,si,ei) self.do_progress(text='Finished plotting L4') logging.info(' Finished plotting L4, check the GUI') def do_plotL4L5(self): """ Plot L4 (Gap filled) and L5 (Partitioned) data. """ pass def do_plotL6_summary(self): """ Plot L6 summary. """ cf = qcio.load_controlfile(path='controlfiles') if len(cf)==0: self.do_progress(text='Waiting for input ...') return if "Options" not in cf: cf["Options"]={} cf["Options"]["call_mode"] = "interactive" l6filename = qcio.get_outfilenamefromcf(cf) if not qcutils.file_exists(l6filename): self.do_progress(text='An error occurred, check the console ...'); return ds6 = qcio.nc_read_series(l6filename) if len(ds6.series.keys())==0: self.do_progress(text='An error occurred, check the console ...'); del ds6; return self.update_startenddate(str(ds6.series['DateTime']['Data'][0]), str(ds6.series['DateTime']['Data'][-1])) self.do_progress(text='Plotting L6 summary ...') qcgf.ImportSeries(cf,ds6) qcrp.L6_summary(cf,ds6) self.do_progress(text='Finished plotting L6 summary') logging.info(' Finished plotting L6 summary, check the GUI') def do_progress(self,text): """ Update progress message in QC Data GUI """ self.progress.destroy() self.progress = tk.Label(self.org_frame, text=text) self.progress.grid(row=8,column=0,columnspan=6,sticky="W") self.update() def do_quit(self): """ Close plot windows and quit QC Data GUI """ self.do_progress(text='Closing plot windows ...') # tell the user what we're doing logging.info(' Closing plot windows ...') matplotlib.pyplot.close('all') self.do_progress(text='Quitting ...') # tell the user what we're doing logging.info(' Quitting ...') self.quit() def do_savexL2(self): """ Call nc2xl function Exports excel data from NetCDF file Outputs L2 Excel file containing Data and Flag worksheets """ self.do_progress(text='Exporting L2 NetCDF -> Xcel ...') # put up the progress message # get the output filename outfilename = qcio.get_outfilenamefromcf(self.cf) # get the output list outputlist = qcio.get_outputlistfromcf(self.cf,'xl') qcio.nc_2xls(outfilename,outputlist=outputlist) self.do_progress(text='Finished L2 Data Export') # tell the user we are done logging.info(' Finished saving L2 data') def do_savexL3(self): """ Call nc2xl function Exports excel data from NetCDF file Outputs L3 Excel file containing Data and Flag worksheets """ self.do_progress(text='Exporting L3 NetCDF -> Xcel ...') # put up the progress message # get the output filename outfilename = qcio.get_outfilenamefromcf(self.cf) # get the output list outputlist = qcio.get_outputlistfromcf(self.cf,'xl') qcio.nc_2xls(outfilename,outputlist=outputlist) self.do_progress(text='Finished L3 Data Export') # tell the user we are done logging.info(' Finished saving L3 data') def do_xl2nc(self): """ Calls qcio.xl2nc """ logging.info(" Starting L1 processing ...") self.do_progress(text='Loading control file ...') self.cf = qcio.load_controlfile(path='controlfiles') if len(self.cf)==0: self.do_progress(text='Waiting for input ...'); return self.do_progress(text='Reading Excel file & writing to netCDF') rcode = qcio.xl2nc(self.cf,"L1") if rcode==1: self.do_progress(text='Finished writing to netCDF ...') logging.info(' Finished writing to netCDF ...') else: self.do_progress(text='An error occurred, check the console ...') def update_startenddate(self,startstr,endstr): """ Read start and end timestamps from data and report in QC Data GUI """ self.filestartValue.destroy() self.fileendValue.destroy() self.filestartValue = tk.Label(self.org_frame,text=startstr) self.filestartValue.grid(row=3,column=0,columnspan=3) self.fileendValue = tk.Label(self.org_frame,text=endstr) self.fileendValue.grid(row=3,column=3,columnspan=3) self.update() if __name__ == "__main__": #log = qcutils.startlog('qc','logfiles/qc.log') qcGUI = qcgui(None) main_title = cfg.version_name+' Main GUI '+cfg.version_number qcGUI.title(main_title) qcGUI.mainloop() qcGUI.destroy() logging.info('QC: All done')
gpl-3.0
kdebrab/pandas
pandas/core/reshape/util.py
20
1915
import numpy as np from pandas.core.dtypes.common import is_list_like from pandas.compat import reduce from pandas.core.index import Index from pandas.core import common as com def match(needles, haystack): haystack = Index(haystack) needles = Index(needles) return haystack.get_indexer(needles) def cartesian_product(X): """ Numpy version of itertools.product or pandas.compat.product. Sometimes faster (for large inputs)... Parameters ---------- X : list-like of list-likes Returns ------- product : list of ndarrays Examples -------- >>> cartesian_product([list('ABC'), [1, 2]]) [array(['A', 'A', 'B', 'B', 'C', 'C'], dtype='|S1'), array([1, 2, 1, 2, 1, 2])] See also -------- itertools.product : Cartesian product of input iterables. Equivalent to nested for-loops. pandas.compat.product : An alias for itertools.product. """ msg = "Input must be a list-like of list-likes" if not is_list_like(X): raise TypeError(msg) for x in X: if not is_list_like(x): raise TypeError(msg) if len(X) == 0: return [] lenX = np.fromiter((len(x) for x in X), dtype=np.intp) cumprodX = np.cumproduct(lenX) a = np.roll(cumprodX, 1) a[0] = 1 if cumprodX[-1] != 0: b = cumprodX[-1] / cumprodX else: # if any factor is empty, the cartesian product is empty b = np.zeros_like(cumprodX) return [np.tile(np.repeat(np.asarray(com._values_from_object(x)), b[i]), np.product(a[i])) for i, x in enumerate(X)] def _compose2(f, g): """Compose 2 callables""" return lambda *args, **kwargs: f(g(*args, **kwargs)) def compose(*funcs): """Compose 2 or more callables""" assert len(funcs) > 1, 'At least 2 callables must be passed to compose' return reduce(_compose2, funcs)
bsd-3-clause
fergalbyrne/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/backends/backend_qt4agg.py
70
4985
""" Render to qt from agg """ from __future__ import division import os, sys import matplotlib from matplotlib.figure import Figure from backend_agg import FigureCanvasAgg from backend_qt4 import QtCore, QtGui, FigureManagerQT, FigureCanvasQT,\ show, draw_if_interactive, backend_version, \ NavigationToolbar2QT DEBUG = False def new_figure_manager( num, *args, **kwargs ): """ Create a new figure manager instance """ if DEBUG: print 'backend_qtagg.new_figure_manager' FigureClass = kwargs.pop('FigureClass', Figure) thisFig = FigureClass( *args, **kwargs ) canvas = FigureCanvasQTAgg( thisFig ) return FigureManagerQT( canvas, num ) class NavigationToolbar2QTAgg(NavigationToolbar2QT): def _get_canvas(self, fig): return FigureCanvasQTAgg(fig) class FigureManagerQTAgg(FigureManagerQT): def _get_toolbar(self, canvas, parent): # must be inited after the window, drawingArea and figure # attrs are set if matplotlib.rcParams['toolbar']=='classic': print "Classic toolbar is not supported" elif matplotlib.rcParams['toolbar']=='toolbar2': toolbar = NavigationToolbar2QTAgg(canvas, parent) else: toolbar = None return toolbar class FigureCanvasQTAgg( FigureCanvasQT, FigureCanvasAgg ): """ The canvas the figure renders into. Calls the draw and print fig methods, creates the renderers, etc... Public attribute figure - A Figure instance """ def __init__( self, figure ): if DEBUG: print 'FigureCanvasQtAgg: ', figure FigureCanvasQT.__init__( self, figure ) FigureCanvasAgg.__init__( self, figure ) self.drawRect = False self.rect = [] self.replot = True self.setAttribute(QtCore.Qt.WA_OpaquePaintEvent) def resizeEvent( self, e ): FigureCanvasQT.resizeEvent( self, e ) def drawRectangle( self, rect ): self.rect = rect self.drawRect = True self.repaint( ) def paintEvent( self, e ): """ Draw to the Agg backend and then copy the image to the qt.drawable. In Qt, all drawing should be done inside of here when a widget is shown onscreen. """ #FigureCanvasQT.paintEvent( self, e ) if DEBUG: print 'FigureCanvasQtAgg.paintEvent: ', self, \ self.get_width_height() # only replot data when needed if type(self.replot) is bool: # might be a bbox for blitting if self.replot: FigureCanvasAgg.draw(self) # matplotlib is in rgba byte order. QImage wants to put the bytes # into argb format and is in a 4 byte unsigned int. Little endian # system is LSB first and expects the bytes in reverse order # (bgra). if QtCore.QSysInfo.ByteOrder == QtCore.QSysInfo.LittleEndian: stringBuffer = self.renderer._renderer.tostring_bgra() else: stringBuffer = self.renderer._renderer.tostring_argb() qImage = QtGui.QImage(stringBuffer, self.renderer.width, self.renderer.height, QtGui.QImage.Format_ARGB32) p = QtGui.QPainter(self) p.drawPixmap(QtCore.QPoint(0, 0), QtGui.QPixmap.fromImage(qImage)) # draw the zoom rectangle to the QPainter if self.drawRect: p.setPen( QtGui.QPen( QtCore.Qt.black, 1, QtCore.Qt.DotLine ) ) p.drawRect( self.rect[0], self.rect[1], self.rect[2], self.rect[3] ) p.end() # we are blitting here else: bbox = self.replot l, b, r, t = bbox.extents w = int(r) - int(l) h = int(t) - int(b) t = int(b) + h reg = self.copy_from_bbox(bbox) stringBuffer = reg.to_string_argb() qImage = QtGui.QImage(stringBuffer, w, h, QtGui.QImage.Format_ARGB32) pixmap = QtGui.QPixmap.fromImage(qImage) p = QtGui.QPainter( self ) p.drawPixmap(QtCore.QPoint(l, self.renderer.height-t), pixmap) p.end() self.replot = False self.drawRect = False def draw( self ): """ Draw the figure when xwindows is ready for the update """ if DEBUG: print "FigureCanvasQtAgg.draw", self self.replot = True FigureCanvasAgg.draw(self) self.update() # Added following line to improve realtime pan/zoom on windows: QtGui.qApp.processEvents() def blit(self, bbox=None): """ Blit the region in bbox """ self.replot = bbox l, b, w, h = bbox.bounds t = b + h self.update(l, self.renderer.height-t, w, h) def print_figure(self, *args, **kwargs): FigureCanvasAgg.print_figure(self, *args, **kwargs) self.draw()
agpl-3.0
xuewei4d/scikit-learn
conftest.py
4
4011
# Even if empty this file is useful so that when running from the root folder # ./sklearn is added to sys.path by pytest. See # https://docs.pytest.org/en/latest/pythonpath.html for more details. For # example, this allows to build extensions in place and run pytest # doc/modules/clustering.rst and use sklearn from the local folder rather than # the one from site-packages. import os import platform import sys import pytest from _pytest.doctest import DoctestItem from sklearn.utils import _IS_32BIT from sklearn.externals import _pilutil from sklearn._min_dependencies import PYTEST_MIN_VERSION from sklearn.utils.fixes import np_version, parse_version if parse_version(pytest.__version__) < parse_version(PYTEST_MIN_VERSION): raise ImportError('Your version of pytest is too old, you should have ' 'at least pytest >= {} installed.' .format(PYTEST_MIN_VERSION)) def pytest_addoption(parser): parser.addoption("--skip-network", action="store_true", default=False, help="skip network tests") def pytest_collection_modifyitems(config, items): for item in items: # FeatureHasher is not compatible with PyPy if (item.name.endswith(('_hash.FeatureHasher', 'text.HashingVectorizer')) and platform.python_implementation() == 'PyPy'): marker = pytest.mark.skip( reason='FeatureHasher is not compatible with PyPy') item.add_marker(marker) # Known failure on with GradientBoostingClassifier on ARM64 elif (item.name.endswith('GradientBoostingClassifier') and platform.machine() == 'aarch64'): marker = pytest.mark.xfail( reason=( 'know failure. See ' 'https://github.com/scikit-learn/scikit-learn/issues/17797' # noqa ) ) item.add_marker(marker) # Skip tests which require internet if the flag is provided if (config.getoption("--skip-network") or int(os.environ.get("SKLEARN_SKIP_NETWORK_TESTS", "0"))): skip_network = pytest.mark.skip( reason="test requires internet connectivity") for item in items: if "network" in item.keywords: item.add_marker(skip_network) # numpy changed the str/repr formatting of numpy arrays in 1.14. We want to # run doctests only for numpy >= 1.14. skip_doctests = False try: if np_version < parse_version('1.14'): reason = 'doctests are only run for numpy >= 1.14' skip_doctests = True elif _IS_32BIT: reason = ('doctest are only run when the default numpy int is ' '64 bits.') skip_doctests = True elif sys.platform.startswith("win32"): reason = ("doctests are not run for Windows because numpy arrays " "repr is inconsistent across platforms.") skip_doctests = True except ImportError: pass if skip_doctests: skip_marker = pytest.mark.skip(reason=reason) for item in items: if isinstance(item, DoctestItem): item.add_marker(skip_marker) elif not _pilutil.pillow_installed: skip_marker = pytest.mark.skip(reason="pillow (or PIL) not installed!") for item in items: if item.name in [ "sklearn.feature_extraction.image.PatchExtractor", "sklearn.feature_extraction.image.extract_patches_2d"]: item.add_marker(skip_marker) def pytest_configure(config): import sys sys._is_pytest_session = True # declare our custom markers to avoid PytestUnknownMarkWarning config.addinivalue_line( "markers", "network: mark a test for execution if network available." ) def pytest_unconfigure(config): import sys del sys._is_pytest_session
bsd-3-clause
buckiracer/data-science-from-scratch
RefMaterials/code-python3/recommender_systems.py
12
6248
import math, random from collections import defaultdict, Counter from linear_algebra import dot users_interests = [ ["Hadoop", "Big Data", "HBase", "Java", "Spark", "Storm", "Cassandra"], ["NoSQL", "MongoDB", "Cassandra", "HBase", "Postgres"], ["Python", "scikit-learn", "scipy", "numpy", "statsmodels", "pandas"], ["R", "Python", "statistics", "regression", "probability"], ["machine learning", "regression", "decision trees", "libsvm"], ["Python", "R", "Java", "C++", "Haskell", "programming languages"], ["statistics", "probability", "mathematics", "theory"], ["machine learning", "scikit-learn", "Mahout", "neural networks"], ["neural networks", "deep learning", "Big Data", "artificial intelligence"], ["Hadoop", "Java", "MapReduce", "Big Data"], ["statistics", "R", "statsmodels"], ["C++", "deep learning", "artificial intelligence", "probability"], ["pandas", "R", "Python"], ["databases", "HBase", "Postgres", "MySQL", "MongoDB"], ["libsvm", "regression", "support vector machines"] ] popular_interests = Counter(interest for user_interests in users_interests for interest in user_interests).most_common() def most_popular_new_interests(user_interests, max_results=5): suggestions = [(interest, frequency) for interest, frequency in popular_interests if interest not in user_interests] return suggestions[:max_results] # # user-based filtering # def cosine_similarity(v, w): return dot(v, w) / math.sqrt(dot(v, v) * dot(w, w)) unique_interests = sorted(list({ interest for user_interests in users_interests for interest in user_interests })) def make_user_interest_vector(user_interests): """given a list of interests, produce a vector whose i-th element is 1 if unique_interests[i] is in the list, 0 otherwise""" return [1 if interest in user_interests else 0 for interest in unique_interests] user_interest_matrix = list(map(make_user_interest_vector, users_interests)) user_similarities = [[cosine_similarity(interest_vector_i, interest_vector_j) for interest_vector_j in user_interest_matrix] for interest_vector_i in user_interest_matrix] def most_similar_users_to(user_id): pairs = [(other_user_id, similarity) # find other for other_user_id, similarity in # users with enumerate(user_similarities[user_id]) # nonzero if user_id != other_user_id and similarity > 0] # similarity return sorted(pairs, # sort them key=lambda pair: pair[1], # most similar reverse=True) # first def user_based_suggestions(user_id, include_current_interests=False): # sum up the similarities suggestions = defaultdict(float) for other_user_id, similarity in most_similar_users_to(user_id): for interest in users_interests[other_user_id]: suggestions[interest] += similarity # convert them to a sorted list suggestions = sorted(suggestions.items(), key=lambda pair: pair[1], reverse=True) # and (maybe) exclude already-interests if include_current_interests: return suggestions else: return [(suggestion, weight) for suggestion, weight in suggestions if suggestion not in users_interests[user_id]] # # Item-Based Collaborative Filtering # interest_user_matrix = [[user_interest_vector[j] for user_interest_vector in user_interest_matrix] for j, _ in enumerate(unique_interests)] interest_similarities = [[cosine_similarity(user_vector_i, user_vector_j) for user_vector_j in interest_user_matrix] for user_vector_i in interest_user_matrix] def most_similar_interests_to(interest_id): similarities = interest_similarities[interest_id] pairs = [(unique_interests[other_interest_id], similarity) for other_interest_id, similarity in enumerate(similarities) if interest_id != other_interest_id and similarity > 0] return sorted(pairs, key=lambda pair: pair[1], reverse=True) def item_based_suggestions(user_id, include_current_interests=False): suggestions = defaultdict(float) user_interest_vector = user_interest_matrix[user_id] for interest_id, is_interested in enumerate(user_interest_vector): if is_interested == 1: similar_interests = most_similar_interests_to(interest_id) for interest, similarity in similar_interests: suggestions[interest] += similarity suggestions = sorted(suggestions.items(), key=lambda pair: pair[1], reverse=True) if include_current_interests: return suggestions else: return [(suggestion, weight) for suggestion, weight in suggestions if suggestion not in users_interests[user_id]] if __name__ == "__main__": print("Popular Interests") print(popular_interests) print() print("Most Popular New Interests") print("already like:", ["NoSQL", "MongoDB", "Cassandra", "HBase", "Postgres"]) print(most_popular_new_interests(["NoSQL", "MongoDB", "Cassandra", "HBase", "Postgres"])) print() print("already like:", ["R", "Python", "statistics", "regression", "probability"]) print(most_popular_new_interests(["R", "Python", "statistics", "regression", "probability"])) print() print("User based similarity") print("most similar to 0") print(most_similar_users_to(0)) print("Suggestions for 0") print(user_based_suggestions(0)) print() print("Item based similarity") print("most similar to 'Big Data'") print(most_similar_interests_to(0)) print() print("suggestions for user 0") print(item_based_suggestions(0))
unlicense
zorroblue/scikit-learn
examples/applications/plot_model_complexity_influence.py
40
6385
""" ========================== Model Complexity Influence ========================== Demonstrate how model complexity influences both prediction accuracy and computational performance. The dataset is the Boston Housing dataset (resp. 20 Newsgroups) for regression (resp. classification). For each class of models we make the model complexity vary through the choice of relevant model parameters and measure the influence on both computational performance (latency) and predictive power (MSE or Hamming Loss). """ print(__doc__) # Author: Eustache Diemert <[email protected]> # License: BSD 3 clause import time import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1.parasite_axes import host_subplot from mpl_toolkits.axisartist.axislines import Axes from scipy.sparse.csr import csr_matrix from sklearn import datasets from sklearn.utils import shuffle from sklearn.metrics import mean_squared_error from sklearn.svm.classes import NuSVR from sklearn.ensemble.gradient_boosting import GradientBoostingRegressor from sklearn.linear_model.stochastic_gradient import SGDClassifier from sklearn.metrics import hamming_loss # ############################################################################# # Routines # Initialize random generator np.random.seed(0) def generate_data(case, sparse=False): """Generate regression/classification data.""" bunch = None if case == 'regression': bunch = datasets.load_boston() elif case == 'classification': bunch = datasets.fetch_20newsgroups_vectorized(subset='all') X, y = shuffle(bunch.data, bunch.target) offset = int(X.shape[0] * 0.8) X_train, y_train = X[:offset], y[:offset] X_test, y_test = X[offset:], y[offset:] if sparse: X_train = csr_matrix(X_train) X_test = csr_matrix(X_test) else: X_train = np.array(X_train) X_test = np.array(X_test) y_test = np.array(y_test) y_train = np.array(y_train) data = {'X_train': X_train, 'X_test': X_test, 'y_train': y_train, 'y_test': y_test} return data def benchmark_influence(conf): """ Benchmark influence of :changing_param: on both MSE and latency. """ prediction_times = [] prediction_powers = [] complexities = [] for param_value in conf['changing_param_values']: conf['tuned_params'][conf['changing_param']] = param_value estimator = conf['estimator'](**conf['tuned_params']) print("Benchmarking %s" % estimator) estimator.fit(conf['data']['X_train'], conf['data']['y_train']) conf['postfit_hook'](estimator) complexity = conf['complexity_computer'](estimator) complexities.append(complexity) start_time = time.time() for _ in range(conf['n_samples']): y_pred = estimator.predict(conf['data']['X_test']) elapsed_time = (time.time() - start_time) / float(conf['n_samples']) prediction_times.append(elapsed_time) pred_score = conf['prediction_performance_computer']( conf['data']['y_test'], y_pred) prediction_powers.append(pred_score) print("Complexity: %d | %s: %.4f | Pred. Time: %fs\n" % ( complexity, conf['prediction_performance_label'], pred_score, elapsed_time)) return prediction_powers, prediction_times, complexities def plot_influence(conf, mse_values, prediction_times, complexities): """ Plot influence of model complexity on both accuracy and latency. """ plt.figure(figsize=(12, 6)) host = host_subplot(111, axes_class=Axes) plt.subplots_adjust(right=0.75) par1 = host.twinx() host.set_xlabel('Model Complexity (%s)' % conf['complexity_label']) y1_label = conf['prediction_performance_label'] y2_label = "Time (s)" host.set_ylabel(y1_label) par1.set_ylabel(y2_label) p1, = host.plot(complexities, mse_values, 'b-', label="prediction error") p2, = par1.plot(complexities, prediction_times, 'r-', label="latency") host.legend(loc='upper right') host.axis["left"].label.set_color(p1.get_color()) par1.axis["right"].label.set_color(p2.get_color()) plt.title('Influence of Model Complexity - %s' % conf['estimator'].__name__) plt.show() def _count_nonzero_coefficients(estimator): a = estimator.coef_.toarray() return np.count_nonzero(a) # ############################################################################# # Main code regression_data = generate_data('regression') classification_data = generate_data('classification', sparse=True) configurations = [ {'estimator': SGDClassifier, 'tuned_params': {'penalty': 'elasticnet', 'alpha': 0.001, 'loss': 'modified_huber', 'fit_intercept': True, 'tol': 1e-3}, 'changing_param': 'l1_ratio', 'changing_param_values': [0.25, 0.5, 0.75, 0.9], 'complexity_label': 'non_zero coefficients', 'complexity_computer': _count_nonzero_coefficients, 'prediction_performance_computer': hamming_loss, 'prediction_performance_label': 'Hamming Loss (Misclassification Ratio)', 'postfit_hook': lambda x: x.sparsify(), 'data': classification_data, 'n_samples': 30}, {'estimator': NuSVR, 'tuned_params': {'C': 1e3, 'gamma': 2 ** -15}, 'changing_param': 'nu', 'changing_param_values': [0.1, 0.25, 0.5, 0.75, 0.9], 'complexity_label': 'n_support_vectors', 'complexity_computer': lambda x: len(x.support_vectors_), 'data': regression_data, 'postfit_hook': lambda x: x, 'prediction_performance_computer': mean_squared_error, 'prediction_performance_label': 'MSE', 'n_samples': 30}, {'estimator': GradientBoostingRegressor, 'tuned_params': {'loss': 'ls'}, 'changing_param': 'n_estimators', 'changing_param_values': [10, 50, 100, 200, 500], 'complexity_label': 'n_trees', 'complexity_computer': lambda x: x.n_estimators, 'data': regression_data, 'postfit_hook': lambda x: x, 'prediction_performance_computer': mean_squared_error, 'prediction_performance_label': 'MSE', 'n_samples': 30}, ] for conf in configurations: prediction_performances, prediction_times, complexities = \ benchmark_influence(conf) plot_influence(conf, prediction_performances, prediction_times, complexities)
bsd-3-clause
rxl194/18-327-wavelets-filter-banks
tools/Handout_examples.py
2
7554
## Handout_examples.py ## This is my implementation of the Handout and Slide examples for the Lecture Notes of ## using Python libraries numpy, scipy ## ## The main reference that I'll use is ## Gilbert Strang, and Kevin Amaratunga. 18.327 Wavelets, Filter Banks and Applications, Spring 2003. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed 19 Jun, 2015). License: Creative Commons BY-NC-SA ## ## ## ##################################################################################### ## Copyleft 2015, Ernest Yeung <[email protected]> ## ## 20150619 ## ## This program, along with all its code, is free software; ## you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You can have received a copy of the GNU General Public License ## along with this program; if not, write to the Free Software Foundation, Inc., ## S1 Franklin Street, Fifth Floor, Boston, MA ## 02110-1301, USA ## ## Governing the ethics of using this program, I default to the Caltech Honor Code: ## ``No member of the Caltech community shall take unfair advantage of ## any other member of the Caltech community.'' ## ## If you like what I'm doing and would like to help and contribute support, ## please take a look at my crowdfunding campaign at ernestyalumni.tilt.com ## and subscription-based Patreon ## read my mission statement and give your financial support, ## no matter how small or large, ## if you can ## and to keep checking my ernestyalumni.wordpress.com blog and ## various social media channels ## for updates as I try to keep putting out great stuff. ## ## Fund Science! Help my physics education outreach and research efforts at ## Open/Tilt or subscription Patreon - Ernest Yeung ## ## ernestyalumni.tilt.com ## ## Facebook : ernestyalumni ## gmail : ernestyalumni ## google : ernestyalumni ## linkedin : ernestyalumni ## Patreon : ernestyalumni ## Tilt/Open : ernestyalumni ## tumblr : ernestyalumni ## twitter : ernestyalumni ## youtube : ernestyalumni ## wordpress : ernestyalumni ## ## ################################################################################ ## ## ## ## #################### ## MIT OCW 18.327 #################### ############### # Handout 1 ############### import numpy as np import matplotlib.pyplot as plt # Shout outs to ESCI 386 - Scientific Programming, Analysis and Visualization with Python # LEsson 17 - Fourier Transforms, the lecture slides are good for espousing on the examples with Python # http://snowball.millersville.edu/~adecaria/ESCI386P/esci386-lesson17-Fourier-Transforms.pdf N = 100 # Number of data points dt = 1.0 # Sampling period (in seconds) time = dt*np.arange(0,N) # time coordinates ht = np.zeros(N) ht[0] = 0.5 ht[1] = 0.5 hhatf = np.fft.fft(ht) freqs = np.fft.fftfreq(N,dt) hhatf = np.fft.fftshift(hhatf) # Shift zero frequency to center freqs = np.fft.fftshift(freqs) # Shift zero frequence to center Fig0101, ax0101 = plt.subplots(3,1,sharex=True) ax0101[0].plot( freqs, np.real( hhatf) ) # Plot Cosine terms ax0101[0].set_ylabel(r'$Re[\widehat{h}(2\pi f)]$', size='x-large') ax0101[1].plot( freqs, np.imag( hhatf) ) # Plot Sine terms ax0101[1].set_ylabel(r'$Im[\widehat{h}(2\pi f)]$', size='x-large') ax0101[2].plot( freqs, np.absolute( hhatf)**2 ) # Plot spectral power ax0101[2].set_ylabel(r'$|\widehat{h}(2\pi f)|^2$', size='x-large') ax0101[2].set_xlabel(r'$f$', size='x-large') # plt.show() # if you want this in radians (as I do) T = 2.0*np.pi # Sampling period (in seconds) omegas = np.fft.fftfreq(N,1./T) # rad./sec omegas = np.fft.fftshift(omegas) # Shift zero frequence to center Fig0101b, ax0101b = plt.subplots(3,1,sharex=True) ax0101b[0].plot( omegas, np.real( hhatf) ) # Plot Cosine terms ax0101b[0].set_ylabel(r'$Re[\widehat{h}(\omega)]$', size='x-large') ax0101b[1].plot( omegas, np.imag( hhatf) ) # Plot Sine terms ax0101b[1].set_ylabel(r'$Im[\widehat{h}(\omega)]$', size='x-large') ax0101b[2].plot( omegas, np.absolute( hhatf)**2 ) # Plot spectral power ax0101b[2].set_ylabel(r'$|\widehat{h}(\omega)|^2$', size='x-large') ax0101b[2].set_xlabel(r'$\omega \, (rad/sec)$', size='x-large') #Fig0101b.suptitle("Low pass Filter example", fontsize=10) # add a centered title to the figure # plt.show() Fig0101ba, axba = plt.subplots(1,1) # axba.plot( omegas, np.arccos( np.real( hhatf)/np.absolute(hhatf) ) ) axba.plot( omegas, np.arctan2( np.imag( hhatf), np.real(hhatf)) ) axba.set_ylabel(r'$\phi(\omega)$',size='x-large') axba.set_xlabel(r'$\omega \, (rad/sec)$', size='x-large') # axba.title(0,0,"Low-pass filter phase") ##### ## High-pass filter example ##### ht[1]=-0.5 hhatf = np.fft.fft(ht) hhatf = np.fft.fftshift(hhatf) # Shift zero frequency to center Fig0101c, ax0101c = plt.subplots(3,1,sharex=True) ax0101c[0].plot( omegas, np.real( hhatf) ) # Plot Cosine terms ax0101c[0].set_ylabel(r'$Re[\widehat{h}(\omega)]$', size='x-large') ax0101c[1].plot( omegas, np.imag( hhatf) ) # Plot Sine terms ax0101c[1].set_ylabel(r'$Im[\widehat{h}(\omega)]$', size='x-large') ax0101c[2].plot( omegas, np.absolute( hhatf)**2 ) # Plot spectral power ax0101c[2].set_ylabel(r'$|\widehat{h}(\omega)|^2$', size='x-large') ax0101c[2].set_xlabel(r'$\omega \, (rad/sec)$', size='x-large') #Fig0101c.suptitle("Low pass Filter example", fontsize=10) # add a centered title to the figure # plt.show() Fig0101ca, axca = plt.subplots(1,1) axca.plot( omegas, np.arctan2( np.imag( hhatf), np.real( hhatf))) axca.set_ylabel(r'$\phi(\omega)$',size='x-large') axca.set_xlabel(r'$\omega \, (rad/sec)$', size='x-large')
mit
youngmp/park_and_ermentrout_2016
generate_figures.py
1
45864
""" Run to generate figures Requires TeX; may need to install texlive-extra-utils on linux the main() function at the end calls the preceding individual figure functions. figures are saved as both png and pdf. Copyright (c) 2016, Youngmin Park, Bard Ermentrout All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ import matplotlib from matplotlib.ticker import MultipleLocator import matplotlib.ticker as mticker import matplotlib.pylab as mp import matplotlib.gridspec as gridspec from matplotlib import rc rc('text', usetex=True) rc('font', family='serif', serif=['Computer Modern Roman']) #from matplotlib import rcParams #matplotlib.rcParams['text.latex.preamble']=[r"\usepackage{amsmath}"] #matplotlib.rcParams['text.latex.preamble']=[r"\usepackage{bm}"] matplotlib.rcParams['text.latex.preamble'] = [r'\boldmath \usepackage{bm}'] matplotlib.rcParams.update({'figure.autolayout': True}) sizeOfFont = 20 fontProperties = {'weight' : 'bold', 'size' : sizeOfFont} lamomfsize=40 #lambda omega figure size import phase_model import lambda_omega import euler import numpy as np import matplotlib.pyplot as plt #from matplotlib import pyplot as plt from scipy.integrate import odeint # modified specgram (use my_specgram) from specgram_mod import * # default parms (trb2) default_gm0=.3;default_gm1=.5; default_eps=.0025;default_f=.5 # default parms (lamom2) default_eps_lamom=0.0025;default_f_lamom=1. default_a=1.;default_alpha=1. default_beta=1. def trb2_p_fig(gm0=default_gm0,gm1=default_gm1,eps=default_eps,f=default_f,partype='p'): """ two weakly coupled trab models, periodic slowly varying parameter figure data files created using trb2simple.ode and trb2simple_just1.ode """ # initialize #filename = "trb2_psi_maxn_qp"+str(filenum) #filename = "trb2_psi_maxn_p1_ref.dat" filename = "trb2_psi_maxn_p1_ref2.dat" # with reviewer's fix #filename = "trb2_psi_maxn_p1_refined_2tables.dat" dat = np.loadtxt(filename) psi0=np.mean(dat[:,1][:int(5/.05)]) T=dat[:,0][-1] N = len(dat[:,0]) t = np.linspace(0,T,N) noisefile = None # generate data for plots sol = euler.ESolve(phase_model.happrox,psi0,t,args=(gm0,gm1,f,eps,partype,noisefile)) full_model = np.abs(np.mod(dat[:,1]+.5,1)-.5) # [0] to make regular row array slow_phs_model = np.abs(np.mod(sol+.5,1)-.5)[:,0] # create plot object fig, ax1 = plt.subplots() fig.set_size_inches(10,5) ## plot data+theory ax1.scatter(dat[:,0]/1000.,full_model*2*np.pi,s=.5,facecolor="gray") ax1.plot(np.linspace(0,dat[:,0][-1]/1000.,N),slow_phs_model*2*np.pi,lw=5,color="#3399ff") ax1.set_ylabel(r'$\bm{|\phi(t)|}$',fontsize=20) ax1.set_xlabel(r'$\bm{t (s)}$',fontsize=20) # set tick intervals myLocatorx = mticker.MultipleLocator(2000/1000.) #myLocatory = mticker.MultipleLocator(.5) ax1.xaxis.set_major_locator(myLocatorx) #ax1.yaxis.set_major_locator(myLocatory) # make plot fit window ax1.set_yticks(np.arange(0,0.5,.125)*2*np.pi) x_label = [r"$0$", r"$\pi/4$", r"$\pi/2$", r"$3\pi/4$"] #x_label = [r"$0$", r"$\frac{\pi}{4}$", r"$\frac{\pi}{2}$", r"$\frac{3\pi}{4}$", r"$\pi$"] ax1.set_yticklabels(x_label, fontsize=lamomfsize) ax1.set_ylim(np.amin([full_model])*2*np.pi,np.amax([full_model])*2*np.pi) ax1.set_xlim(dat[:,0][0]/1000.,dat[:,0][-1]/1000.) ## plot P param ax2 = ax1.twinx() ax2.set_ylabel(r'$\bm{q(t)}$',fontsize=20,color='red') # slowly varying parameter gm = gm0+(gm1-gm0)*np.cos(eps*f*t) # set tick intervals myLocatory2 = mticker.MultipleLocator(.1) ax2.yaxis.set_major_locator(myLocatory2) # make param plot fit window ax2.set_xlim(dat[:,0][0]/1000.,dat[:,0][-1]/1000.) ax2.set_ylim(np.amin(gm),np.amax(gm)) # plot param + stability line ax2.plot(t/1000.,gm,lw=4,color="red",linestyle='--',dashes=(10,2)) ax2.plot([dat[:,0][0]/1000.,dat[:,0][-1]/1000.],[0.3,0.3],lw=2,color='red') # set ticks to red for tl in ax2.get_yticklabels(): tl.set_color('r') # beautify ax1.tick_params(labelsize=20,top='off') ax1.tick_params(axis='x',pad=8) ax2.tick_params(labelsize=20,top='off') plt.gcf().subplots_adjust(bottom=0.15) return fig def trb2newpar_p_fig(gm0=default_gm0,gm1=default_gm1,eps=default_eps,f=default_f,partype='p'): """ two weakly coupled trab models, periodic slowly varying parameter figure, with parameters in interval [0.05,0.3] data files created using trb2_new_params/trb2simple_newpar.ode """ # initialize # no more switch from stable/unstable. There always exists a stable point #filename = "trb2_new_params/trb2newpar_psi_p.dat" # no normalization by variance filename = "trb2_new_params/trb2newpar_psi_p2.dat" # includes normalization by variance dat = np.loadtxt(filename) psi0=np.mean(dat[:,1][:int(5/.05)]) T=dat[:,0][-1] N = len(dat[:,0]) dt = T/(1.*N) t = np.linspace(0,T,N) noisefile = None # generate data for plots sol = euler.ESolve(phase_model.happrox_newpar,psi0,t,args=(gm0,gm1,f,eps,partype,noisefile)) full_model = np.abs(np.mod(dat[:,1]+.5,1)-.5) # [0] to make regular row array slow_phs_model = np.abs(np.mod(sol+.5,1)-.5)[:,0] # create plot object fig, ax1 = plt.subplots() fig.set_size_inches(10,5) #axes = fig.add_axes([0.1, 0.1, 0.8, 0.8]) ## plot data+theory ax1.scatter(dat[:,0]/1000.,full_model*2*np.pi,s=.5,facecolor="gray") ax1.plot(np.linspace(0,dat[:,0][-1]/1000.,N),slow_phs_model*2*np.pi,lw=5,color="#3399ff") myLocatorx = mticker.MultipleLocator(2000/1000.) #myLocatory = mticker.MultipleLocator(.5) ax1.xaxis.set_major_locator(myLocatorx) #ax1.yaxis.set_major_locator(myLocatory) ax1.set_yticks(np.arange(0,0.5+.125,.125)*2*np.pi) x_label = [r"$0$", r"$\pi/4$", r"$\pi/2$", r"$3\pi/4$", r"$\pi"] #x_label = [r"$0$", r"$\frac{\pi}{4}$", r"$\frac{\pi}{2}$", r"$\frac{3\pi}{4}$", r"$\pi$"] ax1.set_yticklabels(x_label, fontsize=lamomfsize) ax1.set_ylabel(r'$\bm{|\phi(t)|}$',fontsize=20) ax1.set_xlabel(r'$\bm{t (s)}$',fontsize=20) # make plot fit window ax1.set_ylim(np.amin([full_model])*2*np.pi,np.amax(full_model)*2*np.pi) ax1.set_xlim(dat[:,0][0]/1000.,dat[:,0][-1]/1000.) ## plot P param ax2 = ax1.twinx() gm = gm0+(gm1-gm0)*np.cos(eps*f*t) ax2.set_xlim(dat[:,0][0]/1000.,dat[:,0][-1]/1000.) ax2.set_ylabel(r'$\bm{q(t)}$',fontsize=20,color='red') ax2.plot(t/1000.,gm,lw=4,color="red",linestyle='--',dashes=(10,2)) myLocatory2 = mticker.MultipleLocator(.05) ax2.yaxis.set_major_locator(myLocatory2) #ax2.plot([dat[:,0][0],dat[:,0][-1]],[0.3,0.3],lw=2,color='red') for tl in ax2.get_yticklabels(): tl.set_color('r') # beautify ax1.tick_params(labelsize=20,top='off') ax1.tick_params(axis='x',pad=8) ax2.tick_params(labelsize=20,top='off') plt.gcf().subplots_adjust(bottom=0.15) return fig def trb2_qp_fig(gm0=default_gm0,gm1=default_gm1,eps=default_eps,f=default_f,partype='qp'): """ two weakly coupled trab models, quasi-periodic slowly varying parameter figure data files created using trb2simple.ode and trb2simple_just1.ode """ # initialize #filename = "trb2_psi_maxn_qp"+str(filenum) #filename = "trb2_psi_maxn_qp_ref.dat" filename = "trb2_psi_maxn_qp_ref2.dat" # with reviewer fix dat = np.loadtxt(filename) psi0=np.mean(dat[:,1][:int(5/.05)]) T=dat[:,0][-1] N = len(dat[:,0]) t = np.linspace(0,T,N) noisefile = None # generate data for plots sol = euler.ESolve(phase_model.happrox,psi0,t,args=(gm0,gm1,f,eps,partype,noisefile)) full_model = np.abs(np.mod(dat[:,1]+.5,1)-.5) # [0] to make regular row array slow_phs_model = np.abs(np.mod(sol+.5,1)-.5)[:,0] # create plot object rc('font', weight='bold') fig, ax1 = plt.subplots() fig.set_size_inches(10,5) # plot data+theory ax1.scatter(dat[:,0]/1000.,full_model*2*np.pi,s=.5,facecolor="gray") ax1.plot(np.linspace(0,dat[:,0][-1]/1000.,N),slow_phs_model*2*np.pi,lw=5,color="#3399ff") ax1.set_ylabel(r'$\bm{|\phi(t)|}$',fontsize=20) ax1.set_xlabel(r'$\bm{t (s)}$',fontsize=20) #myLocatorx = mticker.MultipleLocator(5000/1000.) myLocatory = mticker.MultipleLocator(.5) #ax1.xaxis.set_major_locator(myLocatorx) ax1.yaxis.set_major_locator(myLocatory) ax1.set_yticks(np.arange(0,0.5+.125,.125)*2*np.pi) x_label = [r"$0$", r"$\pi/4$", r"$\pi/2$", r"$3\pi/4$", r"$\pi"] #x_label = [r"$0$", r"$\frac{\pi}{4}$", r"$\frac{\pi}{2}$", r"$\frac{3\pi}{4}$", r"$\pi$"] ax1.set_yticklabels(x_label, fontsize=lamomfsize) # make plot fit window ax1.set_ylim(np.amin([full_model])*2*np.pi,np.amax(full_model)*2*np.pi) ax1.set_xlim(dat[:,0][0]/1000.,dat[:,0][-1]/1000.) ## plot QP param ax2 = ax1.twinx() gm = gm0+((gm1-gm0)/2)*(np.cos(eps*f*t)+np.cos(np.sqrt(2)*eps*f*t)) ax2.plot(t/1000.,gm,lw=4,color="red",linestyle='--',dashes=(10,2)) ax2.plot([dat[:,0][0]/1000.,dat[:,0][-1]/1000.],[0.3,0.3],lw=2,color='red') myLocatory2 = mticker.MultipleLocator(.1) ax2.yaxis.set_major_locator(myLocatory2) ax2.set_xlim(dat[:,0][0]/1000.,dat[:,0][-1]/1000.) ax2.set_ylabel(r'$\bm{q(t)}$',fontsize=20,color='red') for tl in ax2.get_yticklabels(): tl.set_color('r') # beautify ax1.tick_params(labelsize=20,top='off') ax1.tick_params(axis='x',pad=8) ax2.tick_params(labelsize=20,top='off') plt.gcf().subplots_adjust(bottom=0.15) return fig def trb2_s_fig(filenum=4,gm0=default_gm0,gm1=default_gm1,eps=default_eps,f=default_f,partype='s'): """ two weakly coupled trab models, stochastic "slowly" varying parameter figure data files created using trb2simple.ode trb2simple_just1.ode generateou.ode """ # initialize #filename = "trb2_psi_maxn_s"+str(filenum)+".dat" #filename = "trb2_psi_maxn_s1.dat" #filename = "trb2_psi_maxn_s"+str(filenum)+"_mu1k.dat" filename = "trb2_psi_maxn_s"+str(filenum)+"_mu1k2.dat" # with reviewer edit dat = np.loadtxt(filename) psi0=np.mean(dat[:,1][:int(5/.05)]) T=dat[:,0][-1] N = len(dat[:,0]) dt = T/(1.*N) t = np.linspace(0,T,N) #noisefile = np.loadtxt("ounormed"+str(filenum)+".tab") noisefile = np.loadtxt("ounormed"+str(filenum)+"_mu1k.tab") # generate data for plots sol = euler.ESolve(phase_model.happrox,psi0,t,args=(gm0,gm1,f,eps,partype,noisefile)) full_model = np.abs(np.mod(dat[:,1]+.5,1)-.5) # [0] to make regular row array slow_phs_model = np.abs(np.mod(sol+.5,1)-.5)[:,0] # create plot object fig = plt.figure() fig.set_size_inches(10,7.5) gs = gridspec.GridSpec(2,3) ax1 = plt.subplot(gs[:1,:]) # plot data+theory ax1.scatter(dat[:,0]/1000.,full_model*2*np.pi,s=.5,facecolor="gray") ax1.plot(np.linspace(0,dat[:,0][-1]/1000.,N),slow_phs_model*2*np.pi,lw=4,color="#3399ff") ax1.set_ylabel(r'$\bm{|\phi(t)|}$',fontsize=20) ax1.set_yticks(np.arange(0,0.5+.125,.125)*2*np.pi) x_label = [r"$0$", r"$\pi/4$", r"$\pi/2$", r"$3\pi/4$", r"$\pi$"] #x_label = [r"$0$", r"$\frac{\pi}{4}$", r"$\frac{\pi}{2}$", r"$\frac{3\pi}{4}$", r"$\pi$"] ax1.set_yticklabels(x_label, fontsize=lamomfsize) # make plot fit window ax1.set_ylim(np.amin(full_model)*2*np.pi,np.amax(full_model)*2*np.pi)#np.amax(full_model)) ax1.set_xlim(dat[:,0][0]/1000.,dat[:,0][-1]/1000.) #myLocatory = mticker.MultipleLocator(.5) #ax1.yaxis.set_major_locator(myLocatory) ## plot s param ax2 = plt.subplot(gs[1,:]) s_N = len(noisefile[3:]) ax2.plot(np.linspace(0,dat[:,0][-1]/1000.,s_N),(gm0+(gm1-gm0)*noisefile[3:]),lw=1,color="red") ax2.plot([dat[:,0][0]/1000.,dat[:,0][-1]/1000.],[0.3,0.3],lw=3,color='red',linestyle='--',dashes=(10,2)) myLocatorx = mticker.MultipleLocator(2000/1000.) ax2.xaxis.set_major_locator(myLocatorx) ax2.set_xlim(dat[:,0][0]/1000.,dat[:,0][-1]/1000.) ax2.set_ylabel(r'$\bm{q(t)}$',fontsize=20,color='red') myLocatory2 = mticker.MultipleLocator(.1) ax2.yaxis.set_major_locator(myLocatory2) ax2.set_xlabel(r'$\bm{t (s)}$',fontsize=20) for tl in ax2.get_yticklabels(): tl.set_color('r') ax1.tick_params(labelsize=20, top='off', right='off') ax1.xaxis.set_ticklabels([]) #ax2.set_xticks([]) #ax2.set_yticks([]) ax2.tick_params(labelsize=20, top='off', right='off') ax2.tick_params(axis='x',pad=8) ax2.set_frame_on(False) return fig def lamom2_p_fig(q0,q1,eps=default_eps_lamom, f=default_f_lamom,a=default_a,alpha=default_alpha, beta=default_beta,partype='p'): """ two weakly coupled lambda-omega models, periodic slowly varying parameter figure the model is simulated in this function. calls functions from lambda_omega.py """ # initialize #filename = "trb2_psi_maxn_qp"+str(filenum) trueperiod = 2*np.pi T = trueperiod*2000 dt = 0.05 N = int(T/dt) t = np.linspace(0,T,N) noisefile = None initc = [2/np.sqrt(2),2/np.sqrt(2),-2/np.sqrt(2),2/np.sqrt(2)] # generate data for plots lcsolcoupled = odeint(lambda_omega.lamom_coupled,initc,t,args=(a,alpha,beta,eps,q0,q1,f,dt,partype,noisefile)) phi1init = np.arctan2(initc[1],initc[0]) phi2init = np.arctan2(initc[3],initc[2]) # compute hodd # get theory phase phi_theory = odeint(lambda_omega.Hodd, phi2init-phi1init,t,args=(a,alpha,beta,eps,q0,q1,f,dt,partype,noisefile)) theta1 = np.arctan2(lcsolcoupled[:,1],lcsolcoupled[:,0]) theta2 = np.arctan2(lcsolcoupled[:,3],lcsolcoupled[:,2]) phi_exp = np.mod(theta2-theta1+np.pi,2*np.pi)-np.pi phi_theory = np.mod(phi_theory+np.pi,2*np.pi)-np.pi # create plot object fig, ax1 = plt.subplots() fig.set_size_inches(10,5) #axes = fig.add_axes([0.1, 0.1, 0.8, 0.8]) ## plot data+theory ax1.plot(t,phi_exp,lw=5,color='black') ax1.plot(t,phi_theory,lw=5,color="#3399ff",ls='dashdot',dashes=(10,5)) if q0 == 0.9: ax1.set_ylabel(r'$\bm{\phi(t)}$',fontsize=lamomfsize) ax1.set_yticks(np.arange(0,0.5+.125,.125)*2*np.pi) x_label = [r"$0$", r"$\pi/4$", r"$\pi/2$", r"$3\pi/4$", r"$\pi$"] #x_label = [r"$0$", r"$\frac{\pi}{4}$", r"$\frac{\pi}{2}$", r"$\frac{3\pi}{4}$", r"$\pi$"] ax1.set_yticklabels(x_label, fontsize=lamomfsize) padding = 0.1 ax1.set_ylim(-0.1,np.pi+0.1) #ax1.set_xlabel(r'$\bm{t}$',fontsize=20) #xtick_locs = np.arange(0,T+2000,2000,dtype='int') #ytick_locs = np.arange(0,np.pi+0.5,0.5) #plt.xticks(xtick_locs, [r"$\mathbf{%s}$" % x for x in xtick_locs]) #plt.xticks(xtick_locs, [r"" % x for x in xtick_locs]) #plt.yticks(ytick_locs, [r"$\mathbf{%s}$" % x for x in ytick_locs]) #fig = plt.figure(figsize=(15,7.5)) #axes = fig.add_axes([0.1, 0.1, 0.8, 0.8]) # make plot fit window #ax1.set_ylim(np.amin([full_model]),np.amax(full_model)) #ax1.set_xlim(dat[:,0][0],dat[:,0][-1]) ## plot P param ax2 = ax1.twinx() q = q0+q1*np.cos(eps*f*t) # dumb hack to get bold right-side axis labels # used boldmath instead #minval=np.amin(q);maxval=np.amax(q);increment=(maxval-minval)/8. #ytick_loc2 = np.arange(minval,maxval+increment,increment) #ytick_lab2 = [] # http://stackoverflow.com/questions/6649597/python-decimal-places-putting-floats-into-a-string #for val in ytick_loc2: # ytick_lab2.append(r'\boldmath ${0:.2f}$'.format(val)) #ax2.set_yticks(ytick_loc2) #ax2.set_yticklabels(ytick_lab2) ax2.set_xlim(0,T) ax2.set_ylim(np.amin(q),np.amax(q)) if q0 == 1.1: ax2.set_ylabel(r'$\bm{q(t)}$',fontsize=lamomfsize,color='red') ax2.plot(t,q,lw=4,color="red",linestyle='--',dashes=(10,2)) ax2.plot([t[0],t[-1]],[1,1],lw=2,color='red') for tl in ax2.get_yticklabels(): tl.set_color('r') # beautify ax1.tick_params(labelsize=lamomfsize,top='off') ax2.tick_params(labelsize=lamomfsize,top='off') plt.gcf().subplots_adjust(bottom=0.15) #axes.set_xticks([]) #axes.set_yticks([]) #axes.set_frame_on(False) ax1.set_xticks([]) #ax1.set_yticks([]) #ax1.set_frame_on(False) #ax1.tick_params(labelsize=16) #ax2.set_xticks([]) #ax2.set_yticks([]) #ax2.set_frame_on(False) #ax2.tick_params(labelsize=16) return fig def lamom2_qp_fig(q0,q1,eps=default_eps_lamom, f=default_f_lamom,a=default_a,alpha=default_alpha, beta=default_beta,partype='qp'): """ two weakly coupled lambda-omega models, quasi-periodic slowly varying parameter figure the model is simulated in this function. calls functions from lambda_omega.py """ # initialize #filename = "trb2_psi_maxn_qp"+str(filenum) trueperiod = 2*np.pi T = trueperiod*2000 dt = 0.05 N = int(T/dt) t = np.linspace(0,T,N) noisefile = None initc = [2/np.sqrt(2),2/np.sqrt(2),-2/np.sqrt(2),2/np.sqrt(2)] # generate data for plots lcsolcoupled = odeint(lambda_omega.lamom_coupled,initc,t,args=(a,alpha,beta,eps,q0,q1,f,dt,partype,noisefile)) phi1init = np.arctan2(initc[1],initc[0]) phi2init = np.arctan2(initc[3],initc[2]) # compute hodd # get theory phase phi_theory = odeint(lambda_omega.Hodd, phi2init-phi1init,t,args=(a,alpha,beta,eps,q0,q1,f,dt,partype,noisefile)) theta1 = np.arctan2(lcsolcoupled[:,1],lcsolcoupled[:,0]) theta2 = np.arctan2(lcsolcoupled[:,3],lcsolcoupled[:,2]) phi_exp = np.mod(theta2-theta1+np.pi,2*np.pi)-np.pi phi_theory = np.mod(phi_theory+np.pi,2*np.pi)-np.pi # create plot object fig, ax1 = plt.subplots() fig.set_size_inches(10,5) #axes = fig.add_axes([0.1, 0.1, 0.8, 0.8]) ## plot data+theory ax1.plot(t,phi_exp,lw=5,color='black') ax1.plot(t,phi_theory,lw=5,color="#3399ff",ls='dashdot',dashes=(10,5)) if q0 == 0.9: ax1.set_ylabel(r'$\bm{\phi(t)}$',fontsize=lamomfsize) ax1.set_xlabel(r'$\bm{t}$',fontsize=lamomfsize) ax1.xaxis.set_major_locator(MultipleLocator(4000)) ax1.set_yticks(np.arange(0,0.5+.125,.125)*2*np.pi) x_label = [r"$0$", r"$\pi/4$", r"$\pi/2$", r"$3\pi/4$", r"$\pi$"] #x_label = [r"$0$", r"$\frac{\pi}{4}$", r"$\frac{\pi}{2}$", r"$\frac{3\pi}{4}$", r"$\pi$"] ax1.set_yticklabels(x_label, fontsize=lamomfsize) ax1.set_ylim(-0.1,np.pi+0.1) #xtick_locs = np.arange(0,T+2000,2000,dtype='int') #ytick_locs = np.arange(0,np.pi+0.5,0.5) #plt.xticks(xtick_locs, [r"$\mathbf{%s}$" % x for x in xtick_locs]) #plt.xticks(xtick_locs, [r"" % x for x in xtick_locs]) #plt.yticks(ytick_locs, [r"$\mathbf{%s}$" % x for x in ytick_locs]) #fig = plt.figure(figsize=(15,7.5)) #axes = fig.add_axes([0.1, 0.1, 0.8, 0.8]) # make plot fit window #ax1.set_ylim(np.amin([full_model]),np.amax(full_model)) #ax1.set_xlim(dat[:,0][0],dat[:,0][-1]) ## plot P param ax2 = ax1.twinx() q = q0+(q1/2.)*(np.cos(eps*f*t)+np.cos(np.sqrt(2)*eps*f*t)) # dumb hack to get bold right-side axis labels #minval=np.amin(q);maxval=np.amax(q);increment=(maxval-minval)/8. #ytick_loc2 = np.arange(minval,maxval+increment,increment) #ytick_lab2 = [] # http://stackoverflow.com/questions/6649597/python-decimal-places-putting-floats-into-a-string #for val in ytick_loc2: # ytick_lab2.append(r'\boldmath ${0:.2f}$'.format(val)) #ax2.set_yticks(ytick_loc2) #ax2.set_yticklabels(ytick_lab2) ax2.set_xlim(0,T) ax2.set_ylim(np.amin(q),np.amax(q)) if q0 == 1.1: ax2.set_ylabel(r'$\bm{q(t)}$',fontsize=lamomfsize,color='red') ax2.plot(t,q,lw=4,color="red",linestyle='--',dashes=(10,2)) ax2.plot([t[0],t[-1]],[1,1],lw=2,color='red') for tl in ax2.get_yticklabels(): tl.set_color('r') # beautify ax1.tick_params(labelsize=lamomfsize,top='off') ax2.tick_params(labelsize=lamomfsize,top='off') plt.gcf().subplots_adjust(bottom=0.15) #axes.set_xticks([]) #axes.set_yticks([]) #axes.set_frame_on(False) #ax1.set_xticks([]) #ax1.set_yticks([]) #ax1.set_frame_on(False) #ax1.tick_params(labelsize=16) #ax2.set_xticks([]) #ax2.set_yticks([]) #ax2.set_frame_on(False) #ax2.tick_params(labelsize=16) return fig def lamom2_s_fig(q0,q1,filenum,eps=default_eps_lamom, f=default_f_lamom,a=default_a,alpha=default_alpha, beta=default_beta,partype='s'): """ two weakly coupled lambda-omega models, stochastic "slowly" varying parameter figure the model is simulated in this function. calls functions from lambda_omega.py filenum: seed """ # initialize #filename = "trb2_psi_maxn_s"+str(filenum)+".dat" #filename = "trb2_psi_maxn_s1.dat" dt=.05 noisefile = np.loadtxt("ounormed"+str(filenum)+"_mu1k.tab") total = noisefile[2] t = np.linspace(0,total,total/dt) initc = [2/np.sqrt(2),2/np.sqrt(2),-2/np.sqrt(2),2/np.sqrt(2)] # generate data for plots lcsolcoupled = euler.ESolve(lambda_omega.lamom_coupled,initc,t,args=(a,alpha,beta,eps,q0,q1,f,dt,partype,noisefile)) phi1init = np.arctan2(initc[1],initc[0]) phi2init = np.arctan2(initc[3],initc[2]) # compute Hodd # get theory phase phi_theory = euler.ESolve(lambda_omega.Hodd, phi2init-phi1init,t,args=(a,alpha,beta,eps,q0,q1,f,dt,partype,noisefile)) theta1 = np.arctan2(lcsolcoupled[:,1],lcsolcoupled[:,0]) theta2 = np.arctan2(lcsolcoupled[:,3],lcsolcoupled[:,2]) phi_exp = np.mod(theta2-theta1+np.pi,2*np.pi)-np.pi phi_theory = np.mod(phi_theory+np.pi,2*np.pi)-np.pi # create plot object fig = plt.figure() gs = gridspec.GridSpec(2,3) #ax1 = plt.subplot2grid((3,3),(0,0),colspan=3,rowspan=2) #ax2 = plt.subplot2grid((3,3),(2,0),colspan=3) ax1 = plt.subplot(gs[:1,:]) # bold tick labels ax1.set_yticks(np.arange(0,0.5+.125,.125)*2*np.pi) x_label = [r"$0$", r"$\pi/4$", r"$\pi/2$", r"$3\pi/4$", r"$\pi$"] ax1.set_yticklabels(x_label, fontsize=lamomfsize) #ytick_locs = np.arange(np.amin(phi_theory),np.amax(phi_theory), # (np.amax(phi_theory)-np.amin(phi_theory))/8.) #plt.yticks(ytick_locs, [r"$\mathbf{%1.1f}$" % x for x in ytick_locs]) ax2 = plt.subplot(gs[1,:]) #fig, axarr = plt.subplots(2, sharex=True) #axarr[0] = plt.subplot2grid( fig.set_size_inches(10,7.5) #axes = fig.add_axes([0.1, 0.1, 0.8, 0.8]) # plot data+theory ax1.plot(t,phi_exp,lw=5,color="black") ax1.plot(t,phi_theory,lw=5,color="#3399ff",ls='dashdot',dashes=(10,5)) if q0 == .9: ax1.set_ylabel(r'$\bm{\phi(t)}$',fontsize=lamomfsize) #ax1.yaxis.set_major_locator(MultipleLocator(0.4)) # make plot fit window #ax1.set_ylim(np.amin(full_model),0.3)#np.amax(full_model)) #ax1.set_xlim(dat[:,0][0],dat[:,0][-1]) ax1.set_xlim(0,total) ax1.set_ylim(-0.1,np.pi+0.1) # plot s param q = q0+(q1)*noisefile[3:] print 'mean =',np.mean(q),'for seed='+str(filenum) #ax2 = plt.subplots(2,1,1) #ax2 = ax1.twinx() s_N = len(noisefile[3:]) s_N_half = s_N#int(s_N/2.) ax2.plot(np.linspace(0,t[-1],s_N),q,lw=1,color="red") ax2.plot([t[0],t[-1]],[1,1],lw=3,color='red',linestyle='--',dashes=(10,2)) #ax2.set_xlim(dat[:,0][0],dat[:,0][-1]) if q0 == .9: ax2.set_ylabel(r'$\bm{q(t)}$',fontsize=lamomfsize,color='red') for tl in ax2.get_yticklabels(): tl.set_color('r') ax2.set_xlabel(r'$\bm{t}$',fontsize=lamomfsize) for tl in ax2.get_yticklabels(): tl.set_color('r') ax2.yaxis.set_major_locator(MultipleLocator(0.4)) ax2.xaxis.set_major_locator(MultipleLocator(4000)) ax2.set_xlim(0,total) #xtick_locs = np.arange(t[0], t[-1], 2000,dtype='int') #minval=np.amin(q);maxval=np.amax(q) #ytick_locs = np.arange(minval,maxval,(maxval-minval)/8.) #plt.xticks(xtick_locs, [r"$\mathbf{%s}$" % x for x in xtick_locs]) #plt.yticks(ytick_locs, [r"$\mathbf{%1.1f}$" % x for x in ytick_locs]) #axes.set_xticks([]) #axes.set_yticks([]) #axes.set_frame_on(False) ax1.set_xticks([]) #ax1.set_yticks([]) #ax1.set_frame_on(False) ax1.tick_params(labelsize=lamomfsize, top='off', right='off') #ax2.set_xticks([]) #ax2.set_yticks([]) ax2.tick_params(labelsize=lamomfsize, top='off', right='off') ax2.set_frame_on(False) return fig def lo_inhom(): """ weakly coupled lambda-omega with slight frequency difference data generated in XPP """ phi_full_0025=np.loadtxt('phi-full-0025.dat') phi_reduce_0025=np.loadtxt('phi-reduce-0025.dat') phi_full_025=np.loadtxt('phi-full-025.dat') phi_reduce_025=np.loadtxt('phi-reduce-025.dat') # create plot object fig = plt.figure() fig.set_size_inches(10,7.5) gs = gridspec.GridSpec(2,3) ax1 = plt.subplot(gs[:1,:]) # plot data+theory for eps=.025 ax1.plot([0,phi_full_025[-1,0]],[np.pi,np.pi],color='gray',lw=1.7) ax1.plot([0,phi_full_025[-1,0]],[0,0],color='gray',lw=1.7) ax1.plot([0,phi_full_025[-1,0]],[2*np.pi,2*np.pi],color='gray',lw=1.7) ax1.plot(phi_full_025[:,0],phi_full_025[:,1],lw=3,color="black") ax1.plot(phi_reduce_025[:,0],phi_reduce_025[:,1],lw=2,color="#3399ff",ls='dashdot',dashes=(10,1)) # bold axis labels min1=np.amin(phi_full_025[:,1]);max1=np.amax(phi_full_025[:,1]) padding1 = (max1-min1)/16. xtick_locs1 = np.arange(phi_full_025[0,0],phi_full_025[-1,0], 2000,dtype='int') #ytick_locs1 = np.arange(min1,max1,np.pi/2)#padding1*2) ax1.set_yticks(np.arange(0,1+.25,.25)*2*np.pi) x_label = [r"$0$", r"$\frac{\pi}{2}$", r"$\pi$", r"$\frac{3\pi}{2}$", r"$2\pi$"] ax1.set_yticklabels(x_label, fontsize=20) plt.xticks(xtick_locs1, [r"$\mathbf{%s}$" % x for x in xtick_locs1]) #plt.yticks(ytick_locs1, [r"$\mathbf{%1.1f}$" % x for x in ytick_locs1]) # make plot fit window ax1.set_ylim(min1-padding1,max1+padding1)#np.amax(full_model)) # axis labels ax1.set_ylabel(r'$\bm{\phi(t)}$',fontsize=20) ax1.set_xlabel(r'$\bm{t}$',fontsize=20) ax2 = plt.subplot(gs[1,:]) # plot data+theory for eps=.0025 ax2.plot([0,phi_full_0025[-1,0]],[np.pi,np.pi],color='gray',lw=1.7) ax2.plot([0,phi_full_0025[-1,0]],[0,0],color='gray',lw=1.7) ax2.plot([0,phi_full_0025[-1,0]],[2*np.pi,2*np.pi],color='gray',lw=1.7) ax2.plot(phi_full_0025[:,0],phi_full_0025[:,1],lw=3,color="black") ax2.plot(phi_reduce_0025[:,0],phi_reduce_0025[:,1],lw=2,color="#3399ff",ls='dashdot',dashes=(10,2)) # bold tick labels min2=np.amin(phi_full_0025[:,1]);max2=np.amax(phi_full_0025[:,1]) padding2 = (max2-min2)/16. xtick_locs2 = np.arange(phi_full_0025[0,0],phi_full_0025[-1,0], 20000,dtype='int') #ytick_locs2 = np.arange(min2,max2,2*padding2) ax2.set_yticks(np.arange(0,1+.25,.25)*2*np.pi) x_label = [r"$0$", r"$\frac{\pi}{2}$", r"$\pi$", r"$\frac{3\pi}{2}$", r"$2\pi$"] ax2.set_yticklabels(x_label, fontsize=20) plt.xticks(xtick_locs2, [r"$\mathbf{%s}$" % x for x in xtick_locs2]) #plt.yticks(ytick_locs2, [r"$\mathbf{%1.1f}$" % x for x in ytick_locs2]) # make plot fit window ax2.set_ylim(min2-padding2,max2+padding2)#np.amax(full_model)) # axis labels ax2.set_ylabel(r'$\bm{\phi(t)}$',fontsize=20) ax2.set_xlabel(r'$\bm{t}$',fontsize=20) #axes.set_xticks([]) #axes.set_yticks([]) #axes.set_frame_on(False) #ax1.set_xticks([]) #ax1.set_yticks([]) #ax1.set_frame_on(False) ax1.tick_params(labelsize=20, top='off', right='off') #ax2.set_xticks([]) #ax2.set_yticks([]) ax2.tick_params(labelsize=20, top='off', right='off') #ax2.set_frame_on(False) return fig def trb2_prc_hodd(): """ comparison of traub model PRCs for different parameter values + Fourier approximation at gm=0.1 and gm=0.5 """ adj1 = np.loadtxt('trb2_adjoint.gm_0.1.dat') adj5 = np.loadtxt('trb2_adjoint.gm_0.5.dat') hfun1 = np.loadtxt('trb2_hfun.gm_0.1.dat') hfun5 = np.loadtxt('trb2_hfun.gm_0.5.dat') # create plot object fig = plt.figure() fig.set_size_inches(10,7.5) gs = gridspec.GridSpec(2,3) ax1 = plt.subplot(gs[:1,:]) # plot adjoint gm=.1,gm=.5 ax1.plot(np.linspace(0,2*np.pi,len(adj1[:,1])),adj1[:,1],lw=6,color="blue") ax1.plot(np.linspace(0,2*np.pi,len(adj5[:,1])),adj5[:,1],lw=6,color="red")#,ls='dashdot',dashes=(10,3)) ax1.text(.55*2*np.pi,1.2,r'$\bm{q=0.5}$',fontsize=24) ax1.text(.18*2*np.pi,.25,r'$\bm{q=0.1}$',fontsize=24) # text label for gm #ax1.text() # bold axis labels min1=np.round(np.amin(adj5[:,1]),1);max1=np.round(np.amax(adj5[:,1]),1) padding1 = (max1-min1)/16. #padding_alt = np.round((max1-min1)/5.,decimals=1) #xtick_locs1 = np.linspace(0,1,6)#,dtype='int') #ytick_locs1 = np.arange(min1,max1+padding1,padding1*4) #ytick_locs1 = np.arange(min1,max1+padding_alt,padding_alt) #plt.xticks(xtick_locs1, [r"$\mathbf{%s}$" % x for x in xtick_locs1]) #plt.yticks(ytick_locs1, [r"$\mathbf{%1.1f}$" % x for x in ytick_locs1]) #plt.yticks(ytick_locs1, [r"$\mathbf{%1.1f}$" % x for x in ytick_locs1]) # make plot fit window ax1.set_ylim(min1-padding1,max1+padding1)#np.amax(full_model)) ax1.set_xlim(0,2*np.pi) # axis labels ax1.set_ylabel(r'$\bm{Z}$',fontsize=20) ax1.set_xlabel(r'$\bm{\phi}$',fontsize=20) ax1.set_xticks(np.arange(0,1+.25,.25)*2*np.pi) x_label = [r"$0$", r"$\frac{\pi}{2}$", r"$\pi$", r"$\frac{3\pi}{2}$", r"$2\pi$"] ax1.set_xticklabels(x_label, fontsize=20) ax2 = plt.subplot(gs[1,:]) # actual hfunctions hodd1 = -(np.flipud(hfun1[:,1])-hfun1[:,1])/2. hodd5 = -(np.flipud(hfun5[:,1])-hfun5[:,1])/2. # approx. hfunctions # call from phase model b11=.7213877067760438022;b15=-6.24915908247 b21=0.738313204983;b25=1.43126232962 phi = np.linspace(0,2*np.pi,30) happroxgm1=2*(b11*np.sin(phi)+b21*np.sin(2*phi)) happroxgm5=2*(b15*np.sin(phi)+b25*np.sin(2*phi)) # gm1 ax2.plot(np.linspace(0,2*np.pi,len(hfun1[:,1])),hodd1,lw=7,color="blue") ax2.plot(phi,-happroxgm1,lw=5,color='black',ls='dashed',dashes=(5,2)) ax2.plot(phi,-happroxgm1,lw=3,color='cyan',ls='dashed',dashes=(5,2)) ax2.text(.1*2*np.pi,-6,r'$\bm{q=0.1}$',fontsize=24) #gm 5 #ax2.plot(np.linspace(0,1,len(hfun5[:,1])),hodd5,lw=7,color="red",ls='dashdot',dashes=(10,3)) ax2.plot(np.linspace(0,2*np.pi,len(hfun5[:,1])),hodd5,lw=7,color="red") ax2.plot(phi,-happroxgm5,lw=5,color='black',ls='dashed',dashes=(5,2)) ax2.plot(phi,-happroxgm5,lw=3,color='#ffd80a',ls='dashed',dashes=(5,2)) ax2.text(.4*2*np.pi,11,r'$\bm{q=0.5}$',fontsize=24) #ax2.plot(phi,-happroxgm1,lw=3,color='#3399ff',marker='s',markersize=10) #ax2.plot(phi,-happroxgm5,lw=3,color='#ff9999',marker='D',markersize=10) """ plot horizontal zero line + zero intersections """ # get idx of zero crossings of Hodd for q=0.1: zero_crossings = np.where(np.diff(np.sign(hodd1)))[0] # horizontal line at Hodd=0 ax2.plot([0,2*np.pi],[0,0],color='gray',zorder=-3,lw=3) xx = np.linspace(0,2*pi,len(hfun1[:,1])) if len(zero_crossings) > 0: for idx in zero_crossings: # plot zero crossings (above horizontal line in zorder) ax2.scatter(xx[idx],hodd1[idx],s=300,zorder=-2,facecolor='black',edgecolor='black') # bold tick labels min2=np.round(np.amin(hodd5));max2=np.round(np.amax(hodd5)) padding2 = (max2-min2)/16. #padding2_alt = (max2-min2)/5. #xtick_locs2 = np.linspace(0,1,6)#,dtype='int') #ytick_locs2 = np.arange(min2,max2+padding2_alt,padding2_alt) #plt.xticks(xtick_locs2, [r"$\mathbf{%s}$" % x for x in xtick_locs2]) #plt.yticks(ytick_locs2, [r"$\mathbf{%1.1f}$" % x for x in ytick_locs2]) # make plot fit window ax2.set_ylim(min2-padding2,max2+padding2)#np.amax(full_model)) ax2.set_xlim(0,2*np.pi) # axis labels ax2.set_ylabel(r'$\bm{H_{odd}(\phi)}$',fontsize=20) ax2.set_xlabel(r'$\bm{\phi}$',fontsize=20) ax2.set_xticks(np.arange(0,1+.25,.25)*2*np.pi) ax2.set_xticklabels(x_label, fontsize=20) #axes.set_xticks([]) #axes.set_yticks([]) #axes.set_frame_on(False) #ax1.set_xticks([]) #ax1.set_yticks([]) #ax1.set_frame_on(False) ax1.tick_params(labelsize=20, axis='x',pad=10) ax1.tick_params(labelsize=20, top='off', right='off', axis='both') #ax2.set_xticks([]) #ax2.set_yticks([]) ax2.tick_params(labelsize=20, axis='x',pad=10) ax2.tick_params(labelsize=20, top='off', right='off', axis='both') #ax2.set_frame_on(False) return fig def trb50_specgram(): """ spectrogram of 50 weakly coupled traub models. """ dt = 0.1 #x = np.loadtxt('vtot-stot-gmod-v25.dat') # all signals x = np.loadtxt('gooddata50.dat') # all signals t = x[:,0]/1000-2 # convert to units of s vtot = x[:,1] # total voltage signal stot = x[:,2] # total syn signal g = x[:,3] # param #t = np.linspace(0,100,100/dt) #vtot = sin(t*20*np.pi*dt) NFFT = 4096 # the length of the windowing segments (units of ms/dt) no = 4000 Fs = int(1000.0/dt) # the sampling frequency in Hz? #fig = plt.figure(figsize=(15,7.5)) #axes = fig.add_axes([0.1, 0.1, 0.8, 0.8]) fig = mp.figure() fig.set_size_inches(10,7.5) # plot Vtot ax1 = mp.subplot(211) ax1.set_title('') ax1.set_ylabel(r'$\textbf{Membrane Potential}$',fontsize=20) #ax1.set_xticks([]) mp.plot(t,vtot) #xtick_locs = range(5000, 20000, 2000) ytick_locs = np.arange(-85,-40,5) #plt.xticks(xtick_locs, [r"$\mathbf{%s}$" % x for x in xtick_locs]) plt.yticks(ytick_locs, [r"$\mathbf{%s}$" % x for x in ytick_locs]) # plot param ax2 = ax1.twinx() #ax3 = mp.subplot(313) ax2.set_ylabel(r'$\bm{q(t)}$',fontsize=20,color='red') #ax2.set_xlabel(r'\textbf{t (s)}') for tl in ax2.get_yticklabels(): tl.set_color('r') ax2.plot(t,g,lw=5,color='red') # dumb hack to get bold right-side axis labels #minval=np.amin(g);maxval=np.amax(g);increment=(maxval-minval)/8. ytick_loc2 = np.arange(0,.6,.1)#np.arange(minval,maxval+increment,increment) ytick_lab2 = [] # http://stackoverflow.com/questions/6649597/python-decimal-places-putting-floats-into-a-string for val in ytick_loc2: ytick_lab2.append(r'\boldmath ${0:.1f}$'.format(val)) ax2.set_yticks(ytick_loc2) ax2.set_yticklabels(ytick_lab2) # plot spectrogram ax3 = mp.subplot(212, sharex=ax1) minfreq=15;maxfreq=120 Pxx, freqs, bins, im = my_specgram(vtot, NFFT=NFFT, Fs=Fs, noverlap=no,minfreq=minfreq,maxfreq=maxfreq)#, #cmap=cm.gist_heat) #ax2.specgram(vtot, NFFT=NFFT, Fs=Fs, noverlap=no)#, ax3.set_ylabel(r'$\textbf{Frequency}$', fontsize=20) ax3.set_ylim(minfreq,maxfreq) # colorbar cbar = fig.colorbar(im, orientation='horizontal',shrink=.8,pad=.25) cbar.set_label(r'$\textbf{Intensity}$') # bold x,y-ticks xtick_locs3 = np.arange(0,14,2) ytick_locs3 = np.arange(20,140,20) #plt.xticks(xtick_locs, [r"$\mathbf{%s}$" % x for x in xtick_locs]) plt.xticks(xtick_locs3, [r"$\mathbf{%s}$" % x for x in xtick_locs3]) plt.yticks(ytick_locs3, [r"$\mathbf{%s}$" % x for x in ytick_locs3]) ax3.set_xlabel(r'$\textbf{Time (Seconds)}$',fontsize=20) # beautify ax1.tick_params(labelsize=20,top='off',labelbottom='off') ax2.tick_params(labelsize=20,top='off') ax3.tick_params(labelsize=20,top='off') return fig def trb50_op(): """ order parameter of 50 weakly coupled traub models """ fig = mp.figure() fig.set_size_inches(10,5) dat = np.loadtxt('gm-op.dat') t=dat[:,0];op=dat[:,1];gm=dat[:,2] mp.plot(t,op,color='black',lw=3) mp.plot(t,gm,color='red',lw=3) mp.text(25,.53,'$\mathbf{q(t)}$',color='red',fontsize=20) mp.xlim(t[0],t[-1]) mp.xlabel(r'\textbf{Time (Seconds)}',fontsize=20) mp.ylabel(r'\textbf{Order Parameter}',fontsize=20) xtick_locs = np.arange(20,75,10) ytick_locs = np.arange(0,1.02,0.2) #plt.xticks(xtick_locs, [r"$\mathbf{%s}$" % x for x in xtick_locs]) plt.xticks(xtick_locs, [r"$\mathbf{%s}$" % x for x in xtick_locs]) plt.yticks(ytick_locs, [r"$\mathbf{%s}$" % x for x in ytick_locs]) mp.tick_params(labelsize=20,top='off') #ax1 = mp.subplot(111) #ax1.plot(t,op) #ax2 = ax1.twinx() #ax2.plot(t,gm,color='red') return fig def trb50_specgram_op(): """ Combined specgram, order parameter fig """ dt = 0.1 #x = np.loadtxt('vtot-stot-gmod-v25.dat') # all signals x = np.loadtxt('gooddata50.dat') # all signals t = x[:,0]/1000-2 # convert to units of s vtot = x[:,1] # total voltage signal stot = x[:,2] # total syn signal g = x[:,3] # param #t = np.linspace(0,100,100/dt) #vtot = sin(t*20*np.pi*dt) NFFT = 4096 # the length of the windowing segments (units of ms/dt) no = 4000 Fs = int(1000.0/dt) # the sampling frequency in Hz? #fig = plt.figure(figsize=(15,7.5)) #axes = fig.add_axes([0.1, 0.1, 0.8, 0.8]) fig = plt.figure() fig.set_size_inches(10,12.5) # plot Vtot ax1 = fig.add_subplot(311) ax1.set_title('') ax1.set_ylabel(r'$\textbf{Membrane Potential}$',fontsize=20) #ax1.set_xticks([]) ax1.plot(t,vtot) #xtick_locs = range(5000, 20000, 2000) #ytick_locs = np.arange(-85,-40,5) #plt.xticks(xtick_locs, [r"$\mathbf{%s}$" % x for x in xtick_locs]) #plt.yticks(ytick_locs, [r"$\mathbf{%s}$" % x for x in ytick_locs]) sublabelsize=25 # subfigure label (a),(b),(c) font size #from matplotlib.font_manager import FontProperties ax1.text(-1.7,-40,r'$\textbf{(a)}$',fontsize=sublabelsize) # plot param ax2 = ax1.twinx() #ax3 = mp.subplot(313) ax2.set_ylabel(r'$\bm{q(t)}$',fontsize=20,color='red') #ax2.set_xlabel(r'\textbf{t (s)}') for tl in ax2.get_yticklabels(): tl.set_color('r') ax2.plot(t,g,lw=5,color='red') # dumb hack to get bold right-side axis labels #minval=np.amin(g);maxval=np.amax(g);increment=(maxval-minval)/8. #ytick_loc2 = np.arange(0,.6,.1)#np.arange(minval,maxval+increment,increment) #ytick_lab2 = [] # http://stackoverflow.com/questions/6649597/python-decimal-places-putting-floats-into-a-string #for val in ytick_loc2: # ytick_lab2.append(r'\boldmath ${0:.1f}$'.format(val)) #ax2.set_yticks(ytick_loc2) #ax2.set_yticklabels(ytick_lab2) # plot spectrogram ax3 = fig.add_subplot(312, sharex=ax1) minfreq=15;maxfreq=120 Pxx, freqs, bins, im = my_specgram(vtot, NFFT=NFFT, Fs=Fs, noverlap=no,minfreq=minfreq,maxfreq=maxfreq)#, #cmap=cm.gist_heat) #ax2.specgram(vtot, NFFT=NFFT, Fs=Fs, noverlap=no)#, ax3.set_ylabel(r'$\textbf{Frequency}$', fontsize=20) ax3.set_ylim(minfreq,maxfreq) # colorbar cbar = fig.colorbar(im, orientation='horizontal',shrink=.8,pad=.25) cbar.set_label(r'$\textbf{Intensity}$',size=15) #print dir(cbar) cbar.ax.tick_params(labelsize=20) # bold x,y-ticks #xtick_locs3 = np.arange(0,14,2) #ytick_locs3 = np.arange(20,140,20) #plt.xticks(xtick_locs, [r"$\mathbf{%s}$" % x for x in xtick_locs]) #plt.xticks(xtick_locs3, [r"$\mathbf{%s}$" % x for x in xtick_locs3]) #plt.yticks(ytick_locs3, [r"$\mathbf{%s}$" % x for x in ytick_locs3]) ax3.set_xlabel(r'$\textbf{Time (Seconds)}$',fontsize=20) ax3.text(-1.7,120,r'$\textbf{(b)}$',fontsize=sublabelsize) ## plot OP ax4 = fig.add_subplot(313) dat = np.loadtxt('gm-op.dat') # convert units of ms/eps to Seconds t=dat[:,0]*1./(0.0025*1000) op=dat[:,1];gm=dat[:,2] ax4.plot(t,op,color='black',lw=3) ax4.plot(t,gm,color='red',lw=3) ax4.text(9.7,.53,r'$\bm{q(t)}$',color='red',fontsize=20) ax4.set_xlim(t[0],t[-1]) ax4.set_xlabel(r'\textbf{Time (Seconds)}',fontsize=20) ax4.set_ylabel(r'\textbf{Order Parameter}',fontsize=20) ax4.text(5,1,r'$\textbf{(c)}$',fontsize=sublabelsize) #xtick_locs = np.arange(20,75,10) #ytick_locs = np.arange(0,1.02,0.2) #plt.xticks(xtick_locs, [r"$\mathbf{%s}$" % x for x in xtick_locs]) #plt.yticks(ytick_locs, [r"$\mathbf{%s}$" % x for x in ytick_locs]) #ax1 = mp.subplot(111) #ax1.plot(t,op) #ax2 = ax1.twinx() #ax2.plot(t,gm,color='red') # beautify ax1.tick_params(labelsize=20,top='off',labelbottom='off') ax2.tick_params(labelsize=20,top='off') ax3.tick_params(labelsize=20,top='off') ax4.tick_params(labelsize=20,top='off') return fig def fd_diagram(): """ f-d parameter space. """ fd_wn0 = np.loadtxt('fd_wn0.dat') fd_wn1 = np.loadtxt('fd_wn1.dat') fig = plt.figure() fig.set_size_inches(10,7.5) # plot Vtot ax1 = fig.add_subplot(111) #ax1.set_title(r'\textbf{(a)}',x=-.1,y=1.08) ax1.set_xlabel(r'$\textbf{d}$',fontsize=20) ax1.set_ylabel(r'$\textbf{f}$',fontsize=20) #ax1.set_xticks([]) ax1.scatter(fd_wn0[:,0],fd_wn0[:,1],marker='+',color='red') ax1.scatter(fd_wn1[:,0],fd_wn1[:,1],marker='x',color='green') ax1.set_xlim(0,.15) ax1.set_ylim(0,2) #xtick_locs = range(5000, 20000, 2000) #ytick_locs = np.arange(-85,-40,5) #plt.xticks(xtick_locs, [r"$\mathbf{%s}$" % x for x in xtick_locs]) #plt.yticks(ytick_locs, [r"$\mathbf{%s}$" % x for x in ytick_locs]) sublabelsize=25 # subfigure label (a),(b),(c) font size #from matplotlib.font_manager import FontProperties #ax1.text(-1.7,-40,r'$\textbf{(a)}$',fontsize=sublabelsize) #ax1.tick_params(labelsize=20,top='off',labelbottom='off') return fig def generate_figure(function, args, filenames, title="", title_pos=(0.5,0.95)): # workaround for python bug where forked processes use the same random # filename. #tempfile._name_sequence = None; fig = function(*args) #fig.text(title_pos[0], title_pos[1], title, ha='center') if type(filenames) == list: for name in filenames: if name.split('.')[-1] == 'ps': fig.savefig(name, orientation='landscape') else: fig.savefig(name) else: if name.split('.')[-1] == 'ps': fig.savefig(filenames,orientation='landscape') else: fig.savefig(filenames) def main(): figures = [ #(trb2newpar_p_fig, [.175,.3,default_eps,default_f,'p'], ['trb2newpar_p.png']), #(trb2_p_fig, [], ['trb2_p_fig.png']), #(trb2_qp_fig, [], ['trb2_qp_fig.png']), #(trb2_s_fig, [], ['trb2_s4_fig.png']), #(lamom2_p_fig, [0.9,1.], ['lamom2_p_fig1.pdf','lamom2_p_fig1.eps']), #(lamom2_p_fig, [1.1,1.], ['lamom2_p_fig2.pdf','lamom2_p_fig2.eps']), #(lamom2_qp_fig, [0.9,1.], ['lamom2_qp_fig1.pdf','lamom2_qp_fig1.eps']), #(lamom2_qp_fig, [1.1,1.], ['lamom2_qp_fig2.pdf','lamom2_qp_fig2.eps']), #(lamom2_s_fig, [0.9,1.,1], ['lamom2_s1_fig1.pdf','lamom2_s1_fig1.eps']), #(lamom2_s_fig, [0.85,1.,2], ['lamom2_s2_fig1.pdf','lamom2_s2_fig1.eps']), #(lo_inhom,[],['lo-inhom.pdf']), #(trb2_prc_hodd,[],['trb2_prc_hodd.pdf']), #(trb50_specgram,[],['trb50_specgram.pdf']), #(trb50_op,[],['trb50_op.pdf']), #(trb50_specgram_op,[],['network3_ymp.pdf']), #(fd_diagram,[],['fd_diagram.pdf','fd_diagram.eps']), ] for fig in figures: generate_figure(*fig) if __name__ == "__main__": main()
bsd-2-clause
lukeiwanski/tensorflow
tensorflow/contrib/learn/python/learn/estimators/linear_test.py
23
77821
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for estimators.linear.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import json import tempfile import numpy as np from tensorflow.contrib.layers.python.layers import feature_column as feature_column_lib from tensorflow.contrib.learn.python.learn import experiment from tensorflow.contrib.learn.python.learn.datasets import base from tensorflow.contrib.learn.python.learn.estimators import _sklearn from tensorflow.contrib.learn.python.learn.estimators import estimator from tensorflow.contrib.learn.python.learn.estimators import estimator_test_utils from tensorflow.contrib.learn.python.learn.estimators import head as head_lib from tensorflow.contrib.learn.python.learn.estimators import linear from tensorflow.contrib.learn.python.learn.estimators import run_config from tensorflow.contrib.learn.python.learn.estimators import test_data from tensorflow.contrib.learn.python.learn.metric_spec import MetricSpec from tensorflow.contrib.linear_optimizer.python import sdca_optimizer as sdca_optimizer_lib from tensorflow.contrib.metrics.python.ops import metric_ops from tensorflow.python.feature_column import feature_column as fc_core from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import sparse_tensor from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import partitioned_variables from tensorflow.python.platform import test from tensorflow.python.training import ftrl from tensorflow.python.training import input as input_lib from tensorflow.python.training import server_lib def _prepare_iris_data_for_logistic_regression(): # Converts iris data to a logistic regression problem. iris = base.load_iris() ids = np.where((iris.target == 0) | (iris.target == 1)) iris = base.Dataset(data=iris.data[ids], target=iris.target[ids]) return iris class LinearClassifierTest(test.TestCase): def testExperimentIntegration(self): cont_features = [ feature_column_lib.real_valued_column( 'feature', dimension=4) ] exp = experiment.Experiment( estimator=linear.LinearClassifier( n_classes=3, feature_columns=cont_features), train_input_fn=test_data.iris_input_multiclass_fn, eval_input_fn=test_data.iris_input_multiclass_fn) exp.test() def testEstimatorContract(self): estimator_test_utils.assert_estimator_contract(self, linear.LinearClassifier) def testTrain(self): """Tests that loss goes down with training.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column_lib.sparse_column_with_hash_bucket('language', 100) age = feature_column_lib.real_valued_column('age') classifier = linear.LinearClassifier(feature_columns=[age, language]) classifier.fit(input_fn=input_fn, steps=100) loss1 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] classifier.fit(input_fn=input_fn, steps=200) loss2 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss2, loss1) self.assertLess(loss2, 0.01) def testJointTrain(self): """Tests that loss goes down with training with joint weights.""" def input_fn(): return { 'age': sparse_tensor.SparseTensor( values=['1'], indices=[[0, 0]], dense_shape=[1, 1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column_lib.sparse_column_with_hash_bucket('language', 100) age = feature_column_lib.sparse_column_with_hash_bucket('age', 2) classifier = linear.LinearClassifier( _joint_weight=True, feature_columns=[age, language]) classifier.fit(input_fn=input_fn, steps=100) loss1 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] classifier.fit(input_fn=input_fn, steps=200) loss2 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss2, loss1) self.assertLess(loss2, 0.01) def testMultiClass_MatrixData(self): """Tests multi-class classification using matrix data as input.""" feature_column = feature_column_lib.real_valued_column( 'feature', dimension=4) classifier = linear.LinearClassifier( n_classes=3, feature_columns=[feature_column]) classifier.fit(input_fn=test_data.iris_input_multiclass_fn, steps=100) scores = classifier.evaluate( input_fn=test_data.iris_input_multiclass_fn, steps=100) self.assertGreater(scores['accuracy'], 0.9) def testMultiClass_MatrixData_Labels1D(self): """Same as the last test, but labels shape is [150] instead of [150, 1].""" def _input_fn(): iris = base.load_iris() return { 'feature': constant_op.constant( iris.data, dtype=dtypes.float32) }, constant_op.constant( iris.target, shape=[150], dtype=dtypes.int32) feature_column = feature_column_lib.real_valued_column( 'feature', dimension=4) classifier = linear.LinearClassifier( n_classes=3, feature_columns=[feature_column]) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testMultiClass_NpMatrixData(self): """Tests multi-class classification using numpy matrix data as input.""" iris = base.load_iris() train_x = iris.data train_y = iris.target feature_column = feature_column_lib.real_valued_column('', dimension=4) classifier = linear.LinearClassifier( n_classes=3, feature_columns=[feature_column]) classifier.fit(x=train_x, y=train_y, steps=100) scores = classifier.evaluate(x=train_x, y=train_y, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testMultiClassLabelKeys(self): """Tests n_classes > 2 with label_keys vocabulary for labels.""" # Byte literals needed for python3 test to pass. label_keys = [b'label0', b'label1', b'label2'] def _input_fn(num_epochs=None): features = { 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } labels = constant_op.constant( [[label_keys[1]], [label_keys[0]], [label_keys[0]]], dtype=dtypes.string) return features, labels language_column = feature_column_lib.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) classifier = linear.LinearClassifier( n_classes=3, feature_columns=[language_column], label_keys=label_keys) classifier.fit(input_fn=_input_fn, steps=50) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) self.assertIn('loss', scores) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predicted_classes = list( classifier.predict_classes( input_fn=predict_input_fn, as_iterable=True)) self.assertEqual(3, len(predicted_classes)) for pred in predicted_classes: self.assertIn(pred, label_keys) predictions = list( classifier.predict(input_fn=predict_input_fn, as_iterable=True)) self.assertAllEqual(predicted_classes, predictions) def testLogisticRegression_MatrixData(self): """Tests binary classification using matrix data as input.""" def _input_fn(): iris = _prepare_iris_data_for_logistic_regression() return { 'feature': constant_op.constant( iris.data, dtype=dtypes.float32) }, constant_op.constant( iris.target, shape=[100, 1], dtype=dtypes.int32) feature_column = feature_column_lib.real_valued_column( 'feature', dimension=4) classifier = linear.LinearClassifier(feature_columns=[feature_column]) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testEstimatorWithCoreFeatureColumns(self): def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [0.2], [.1]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([[1], [0], [0]], dtype=dtypes.int32) language_column = fc_core.categorical_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [language_column, fc_core.numeric_column('age')] classifier = linear.LinearClassifier(feature_columns=feature_columns) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testLogisticRegression_MatrixData_Labels1D(self): """Same as the last test, but labels shape is [100] instead of [100, 1].""" def _input_fn(): iris = _prepare_iris_data_for_logistic_regression() return { 'feature': constant_op.constant( iris.data, dtype=dtypes.float32) }, constant_op.constant( iris.target, shape=[100], dtype=dtypes.int32) feature_column = feature_column_lib.real_valued_column( 'feature', dimension=4) classifier = linear.LinearClassifier(feature_columns=[feature_column]) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testLogisticRegression_NpMatrixData(self): """Tests binary classification using numpy matrix data as input.""" iris = _prepare_iris_data_for_logistic_regression() train_x = iris.data train_y = iris.target feature_columns = [feature_column_lib.real_valued_column('', dimension=4)] classifier = linear.LinearClassifier(feature_columns=feature_columns) classifier.fit(x=train_x, y=train_y, steps=100) scores = classifier.evaluate(x=train_x, y=train_y, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testWeightAndBiasNames(self): """Tests that weight and bias names haven't changed.""" feature_column = feature_column_lib.real_valued_column( 'feature', dimension=4) classifier = linear.LinearClassifier( n_classes=3, feature_columns=[feature_column]) classifier.fit(input_fn=test_data.iris_input_multiclass_fn, steps=100) variable_names = classifier.get_variable_names() self.assertIn('linear/feature/weight', variable_names) self.assertIn('linear/bias_weight', variable_names) self.assertEqual( 4, len(classifier.get_variable_value('linear/feature/weight'))) self.assertEqual( 3, len(classifier.get_variable_value('linear/bias_weight'))) def testCustomOptimizerByObject(self): """Tests multi-class classification using matrix data as input.""" feature_column = feature_column_lib.real_valued_column( 'feature', dimension=4) classifier = linear.LinearClassifier( n_classes=3, optimizer=ftrl.FtrlOptimizer(learning_rate=0.1), feature_columns=[feature_column]) classifier.fit(input_fn=test_data.iris_input_multiclass_fn, steps=100) scores = classifier.evaluate( input_fn=test_data.iris_input_multiclass_fn, steps=100) self.assertGreater(scores['accuracy'], 0.9) def testCustomOptimizerByString(self): """Tests multi-class classification using matrix data as input.""" feature_column = feature_column_lib.real_valued_column( 'feature', dimension=4) def _optimizer(): return ftrl.FtrlOptimizer(learning_rate=0.1) classifier = linear.LinearClassifier( n_classes=3, optimizer=_optimizer, feature_columns=[feature_column]) classifier.fit(input_fn=test_data.iris_input_multiclass_fn, steps=100) scores = classifier.evaluate( input_fn=test_data.iris_input_multiclass_fn, steps=100) self.assertGreater(scores['accuracy'], 0.9) def testCustomOptimizerByFunction(self): """Tests multi-class classification using matrix data as input.""" feature_column = feature_column_lib.real_valued_column( 'feature', dimension=4) classifier = linear.LinearClassifier( n_classes=3, optimizer='Ftrl', feature_columns=[feature_column]) classifier.fit(input_fn=test_data.iris_input_multiclass_fn, steps=100) scores = classifier.evaluate( input_fn=test_data.iris_input_multiclass_fn, steps=100) self.assertGreater(scores['accuracy'], 0.9) def testCustomMetrics(self): """Tests custom evaluation metrics.""" def _input_fn(num_epochs=None): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) labels = constant_op.constant([[1], [0], [0], [0]], dtype=dtypes.float32) features = { 'x': input_lib.limit_epochs( array_ops.ones( shape=[4, 1], dtype=dtypes.float32), num_epochs=num_epochs) } return features, labels def _my_metric_op(predictions, labels): # For the case of binary classification, the 2nd column of "predictions" # denotes the model predictions. predictions = array_ops.strided_slice( predictions, [0, 1], [-1, 2], end_mask=1) return math_ops.reduce_sum(math_ops.multiply(predictions, labels)) classifier = linear.LinearClassifier( feature_columns=[feature_column_lib.real_valued_column('x')]) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate( input_fn=_input_fn, steps=100, metrics={ 'my_accuracy': MetricSpec( metric_fn=metric_ops.streaming_accuracy, prediction_key='classes'), 'my_precision': MetricSpec( metric_fn=metric_ops.streaming_precision, prediction_key='classes'), 'my_metric': MetricSpec( metric_fn=_my_metric_op, prediction_key='probabilities') }) self.assertTrue( set(['loss', 'my_accuracy', 'my_precision', 'my_metric']).issubset( set(scores.keys()))) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = np.array(list(classifier.predict_classes( input_fn=predict_input_fn))) self.assertEqual( _sklearn.accuracy_score([1, 0, 0, 0], predictions), scores['my_accuracy']) # Tests the case where the prediction_key is neither "classes" nor # "probabilities". with self.assertRaisesRegexp(KeyError, 'bad_type'): classifier.evaluate( input_fn=_input_fn, steps=100, metrics={ 'bad_name': MetricSpec( metric_fn=metric_ops.streaming_auc, prediction_key='bad_type') }) # Tests the case where the 2nd element of the key is neither "classes" nor # "probabilities". with self.assertRaises(KeyError): classifier.evaluate( input_fn=_input_fn, steps=100, metrics={('bad_name', 'bad_type'): metric_ops.streaming_auc}) # Tests the case where the tuple of the key doesn't have 2 elements. with self.assertRaises(ValueError): classifier.evaluate( input_fn=_input_fn, steps=100, metrics={ ('bad_length_name', 'classes', 'bad_length'): metric_ops.streaming_accuracy }) def testLogisticFractionalLabels(self): """Tests logistic training with fractional labels.""" def input_fn(num_epochs=None): return { 'age': input_lib.limit_epochs( constant_op.constant([[1], [2]]), num_epochs=num_epochs), }, constant_op.constant( [[.7], [0]], dtype=dtypes.float32) age = feature_column_lib.real_valued_column('age') classifier = linear.LinearClassifier( feature_columns=[age], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=input_fn, steps=500) predict_input_fn = functools.partial(input_fn, num_epochs=1) predictions_proba = list( classifier.predict_proba(input_fn=predict_input_fn)) # Prediction probabilities mirror the labels column, which proves that the # classifier learns from float input. self.assertAllClose([[.3, .7], [1., 0.]], predictions_proba, atol=.1) def testTrainWithPartitionedVariables(self): """Tests training with partitioned variables.""" def _input_fn(): features = { 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } labels = constant_op.constant([[1], [0], [0]]) return features, labels sparse_features = [ # The given hash_bucket_size results in variables larger than the # default min_slice_size attribute, so the variables are partitioned. feature_column_lib.sparse_column_with_hash_bucket( 'language', hash_bucket_size=2e7) ] tf_config = { 'cluster': { run_config.TaskType.PS: ['fake_ps_0', 'fake_ps_1'] } } with test.mock.patch.dict('os.environ', {'TF_CONFIG': json.dumps(tf_config)}): config = run_config.RunConfig() # Because we did not start a distributed cluster, we need to pass an # empty ClusterSpec, otherwise the device_setter will look for # distributed jobs, such as "/job:ps" which are not present. config._cluster_spec = server_lib.ClusterSpec({}) classifier = linear.LinearClassifier( feature_columns=sparse_features, config=config) classifier.fit(input_fn=_input_fn, steps=200) loss = classifier.evaluate(input_fn=_input_fn, steps=1)['loss'] self.assertLess(loss, 0.07) def testTrainSaveLoad(self): """Tests that insures you can save and reload a trained model.""" def input_fn(num_epochs=None): return { 'age': input_lib.limit_epochs( constant_op.constant([1]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]), }, constant_op.constant([[1]]) language = feature_column_lib.sparse_column_with_hash_bucket('language', 100) age = feature_column_lib.real_valued_column('age') model_dir = tempfile.mkdtemp() classifier = linear.LinearClassifier( model_dir=model_dir, feature_columns=[age, language]) classifier.fit(input_fn=input_fn, steps=30) predict_input_fn = functools.partial(input_fn, num_epochs=1) out1_class = list( classifier.predict_classes( input_fn=predict_input_fn, as_iterable=True)) out1_proba = list( classifier.predict_proba( input_fn=predict_input_fn, as_iterable=True)) del classifier classifier2 = linear.LinearClassifier( model_dir=model_dir, feature_columns=[age, language]) out2_class = list( classifier2.predict_classes( input_fn=predict_input_fn, as_iterable=True)) out2_proba = list( classifier2.predict_proba( input_fn=predict_input_fn, as_iterable=True)) self.assertTrue(np.array_equal(out1_class, out2_class)) self.assertTrue(np.array_equal(out1_proba, out2_proba)) def testWeightColumn(self): """Tests training with given weight column.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # First row has more weight than others. Model should fit (y=x) better # than (y=Not(x)) due to the relative higher weight of the first row. labels = constant_op.constant([[1], [0], [0], [0]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[100.], [3.], [2.], [2.]]) } return features, labels def _input_fn_eval(): # Create 4 rows (y = x) labels = constant_op.constant([[1], [1], [1], [1]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels classifier = linear.LinearClassifier( weight_column_name='w', feature_columns=[feature_column_lib.real_valued_column('x')], config=run_config.RunConfig(tf_random_seed=3)) classifier.fit(input_fn=_input_fn_train, steps=100) scores = classifier.evaluate(input_fn=_input_fn_eval, steps=1) # All examples in eval data set are y=x. self.assertGreater(scores['labels/actual_label_mean'], 0.9) # If there were no weight column, model would learn y=Not(x). Because of # weights, it learns y=x. self.assertGreater(scores['labels/prediction_mean'], 0.9) # All examples in eval data set are y=x. So if weight column were ignored, # then accuracy would be zero. Because of weights, accuracy should be close # to 1.0. self.assertGreater(scores['accuracy'], 0.9) scores_train_set = classifier.evaluate(input_fn=_input_fn_train, steps=1) # Considering weights, the mean label should be close to 1.0. # If weights were ignored, it would be 0.25. self.assertGreater(scores_train_set['labels/actual_label_mean'], 0.9) # The classifier has learned y=x. If weight column were ignored in # evaluation, then accuracy for the train set would be 0.25. # Because weight is not ignored, accuracy is greater than 0.6. self.assertGreater(scores_train_set['accuracy'], 0.6) def testWeightColumnLoss(self): """Test ensures that you can specify per-example weights for loss.""" def _input_fn(): features = { 'age': constant_op.constant([[20], [20], [20]]), 'weights': constant_op.constant([[100], [1], [1]]), } labels = constant_op.constant([[1], [0], [0]]) return features, labels age = feature_column_lib.real_valued_column('age') classifier = linear.LinearClassifier(feature_columns=[age]) classifier.fit(input_fn=_input_fn, steps=100) loss_unweighted = classifier.evaluate(input_fn=_input_fn, steps=1)['loss'] classifier = linear.LinearClassifier( feature_columns=[age], weight_column_name='weights') classifier.fit(input_fn=_input_fn, steps=100) loss_weighted = classifier.evaluate(input_fn=_input_fn, steps=1)['loss'] self.assertLess(loss_weighted, loss_unweighted) def testExport(self): """Tests that export model for servo works.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column_lib.sparse_column_with_hash_bucket('language', 100) age = feature_column_lib.real_valued_column('age') classifier = linear.LinearClassifier(feature_columns=[age, language]) classifier.fit(input_fn=input_fn, steps=100) export_dir = tempfile.mkdtemp() classifier.export(export_dir) def testDisableCenteredBias(self): """Tests that we can disable centered bias.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column_lib.sparse_column_with_hash_bucket('language', 100) age = feature_column_lib.real_valued_column('age') classifier = linear.LinearClassifier( feature_columns=[age, language], enable_centered_bias=False) classifier.fit(input_fn=input_fn, steps=100) self.assertNotIn('centered_bias_weight', classifier.get_variable_names()) def testEnableCenteredBias(self): """Tests that we can enable centered bias.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column_lib.sparse_column_with_hash_bucket('language', 100) age = feature_column_lib.real_valued_column('age') classifier = linear.LinearClassifier( feature_columns=[age, language], enable_centered_bias=True) classifier.fit(input_fn=input_fn, steps=100) self.assertIn('linear/binary_logistic_head/centered_bias_weight', classifier.get_variable_names()) def testTrainOptimizerWithL1Reg(self): """Tests l1 regularized model has higher loss.""" def input_fn(): return { 'language': sparse_tensor.SparseTensor( values=['hindi'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column_lib.sparse_column_with_hash_bucket('language', 100) classifier_no_reg = linear.LinearClassifier(feature_columns=[language]) classifier_with_reg = linear.LinearClassifier( feature_columns=[language], optimizer=ftrl.FtrlOptimizer( learning_rate=1.0, l1_regularization_strength=100.)) loss_no_reg = classifier_no_reg.fit(input_fn=input_fn, steps=100).evaluate( input_fn=input_fn, steps=1)['loss'] loss_with_reg = classifier_with_reg.fit(input_fn=input_fn, steps=100).evaluate( input_fn=input_fn, steps=1)['loss'] self.assertLess(loss_no_reg, loss_with_reg) def testTrainWithMissingFeature(self): """Tests that training works with missing features.""" def input_fn(): return { 'language': sparse_tensor.SparseTensor( values=['Swahili', 'turkish'], indices=[[0, 0], [2, 0]], dense_shape=[3, 1]) }, constant_op.constant([[1], [1], [1]]) language = feature_column_lib.sparse_column_with_hash_bucket('language', 100) classifier = linear.LinearClassifier(feature_columns=[language]) classifier.fit(input_fn=input_fn, steps=100) loss = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss, 0.07) def testSdcaOptimizerRealValuedFeatures(self): """Tests LinearClassifier with SDCAOptimizer and real valued features.""" def input_fn(): return { 'example_id': constant_op.constant(['1', '2']), 'maintenance_cost': constant_op.constant([[500.0], [200.0]]), 'sq_footage': constant_op.constant([[800.0], [600.0]]), 'weights': constant_op.constant([[1.0], [1.0]]) }, constant_op.constant([[0], [1]]) maintenance_cost = feature_column_lib.real_valued_column('maintenance_cost') sq_footage = feature_column_lib.real_valued_column('sq_footage') sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id') classifier = linear.LinearClassifier( feature_columns=[maintenance_cost, sq_footage], weight_column_name='weights', optimizer=sdca_optimizer) classifier.fit(input_fn=input_fn, steps=100) loss = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss, 0.05) def testSdcaOptimizerRealValuedFeatureWithHigherDimension(self): """Tests SDCAOptimizer with real valued features of higher dimension.""" # input_fn is identical to the one in testSdcaOptimizerRealValuedFeatures # where 2 1-dimensional dense features have been replaced by 1 2-dimensional # feature. def input_fn(): return { 'example_id': constant_op.constant(['1', '2']), 'dense_feature': constant_op.constant([[500.0, 800.0], [200.0, 600.0]]) }, constant_op.constant([[0], [1]]) dense_feature = feature_column_lib.real_valued_column( 'dense_feature', dimension=2) sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id') classifier = linear.LinearClassifier( feature_columns=[dense_feature], optimizer=sdca_optimizer) classifier.fit(input_fn=input_fn, steps=100) loss = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss, 0.05) def testSdcaOptimizerBucketizedFeatures(self): """Tests LinearClassifier with SDCAOptimizer and bucketized features.""" def input_fn(): return { 'example_id': constant_op.constant(['1', '2', '3']), 'price': constant_op.constant([[600.0], [1000.0], [400.0]]), 'sq_footage': constant_op.constant([[1000.0], [600.0], [700.0]]), 'weights': constant_op.constant([[1.0], [1.0], [1.0]]) }, constant_op.constant([[1], [0], [1]]) price_bucket = feature_column_lib.bucketized_column( feature_column_lib.real_valued_column('price'), boundaries=[500.0, 700.0]) sq_footage_bucket = feature_column_lib.bucketized_column( feature_column_lib.real_valued_column('sq_footage'), boundaries=[650.0]) sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id', symmetric_l2_regularization=1.0) classifier = linear.LinearClassifier( feature_columns=[price_bucket, sq_footage_bucket], weight_column_name='weights', optimizer=sdca_optimizer) classifier.fit(input_fn=input_fn, steps=50) scores = classifier.evaluate(input_fn=input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testSdcaOptimizerSparseFeatures(self): """Tests LinearClassifier with SDCAOptimizer and sparse features.""" def input_fn(): return { 'example_id': constant_op.constant(['1', '2', '3']), 'price': constant_op.constant([0.4, 0.6, 0.3]), 'country': sparse_tensor.SparseTensor( values=['IT', 'US', 'GB'], indices=[[0, 0], [1, 3], [2, 1]], dense_shape=[3, 5]), 'weights': constant_op.constant([[1.0], [1.0], [1.0]]) }, constant_op.constant([[1], [0], [1]]) price = feature_column_lib.real_valued_column('price') country = feature_column_lib.sparse_column_with_hash_bucket( 'country', hash_bucket_size=5) sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id') classifier = linear.LinearClassifier( feature_columns=[price, country], weight_column_name='weights', optimizer=sdca_optimizer) classifier.fit(input_fn=input_fn, steps=50) scores = classifier.evaluate(input_fn=input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testSdcaOptimizerWeightedSparseFeatures(self): """LinearClassifier with SDCAOptimizer and weighted sparse features.""" def input_fn(): return { 'example_id': constant_op.constant(['1', '2', '3']), 'price': sparse_tensor.SparseTensor( values=[2., 3., 1.], indices=[[0, 0], [1, 0], [2, 0]], dense_shape=[3, 5]), 'country': sparse_tensor.SparseTensor( values=['IT', 'US', 'GB'], indices=[[0, 0], [1, 0], [2, 0]], dense_shape=[3, 5]) }, constant_op.constant([[1], [0], [1]]) country = feature_column_lib.sparse_column_with_hash_bucket( 'country', hash_bucket_size=5) country_weighted_by_price = feature_column_lib.weighted_sparse_column( country, 'price') sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id') classifier = linear.LinearClassifier( feature_columns=[country_weighted_by_price], optimizer=sdca_optimizer) classifier.fit(input_fn=input_fn, steps=50) scores = classifier.evaluate(input_fn=input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testSdcaOptimizerWeightedSparseFeaturesOOVWithNoOOVBuckets(self): """LinearClassifier with SDCAOptimizer with OOV features (-1 IDs).""" def input_fn(): return { 'example_id': constant_op.constant(['1', '2', '3']), 'price': sparse_tensor.SparseTensor( values=[2., 3., 1.], indices=[[0, 0], [1, 0], [2, 0]], dense_shape=[3, 5]), 'country': sparse_tensor.SparseTensor( # 'GB' is out of the vocabulary. values=['IT', 'US', 'GB'], indices=[[0, 0], [1, 0], [2, 0]], dense_shape=[3, 5]) }, constant_op.constant([[1], [0], [1]]) country = feature_column_lib.sparse_column_with_keys( 'country', keys=['US', 'CA', 'MK', 'IT', 'CN']) country_weighted_by_price = feature_column_lib.weighted_sparse_column( country, 'price') sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id') classifier = linear.LinearClassifier( feature_columns=[country_weighted_by_price], optimizer=sdca_optimizer) classifier.fit(input_fn=input_fn, steps=50) scores = classifier.evaluate(input_fn=input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testSdcaOptimizerCrossedFeatures(self): """Tests LinearClassifier with SDCAOptimizer and crossed features.""" def input_fn(): return { 'example_id': constant_op.constant(['1', '2', '3']), 'language': sparse_tensor.SparseTensor( values=['english', 'italian', 'spanish'], indices=[[0, 0], [1, 0], [2, 0]], dense_shape=[3, 1]), 'country': sparse_tensor.SparseTensor( values=['US', 'IT', 'MX'], indices=[[0, 0], [1, 0], [2, 0]], dense_shape=[3, 1]) }, constant_op.constant([[0], [0], [1]]) language = feature_column_lib.sparse_column_with_hash_bucket( 'language', hash_bucket_size=5) country = feature_column_lib.sparse_column_with_hash_bucket( 'country', hash_bucket_size=5) country_language = feature_column_lib.crossed_column( [language, country], hash_bucket_size=10) sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id') classifier = linear.LinearClassifier( feature_columns=[country_language], optimizer=sdca_optimizer) classifier.fit(input_fn=input_fn, steps=10) scores = classifier.evaluate(input_fn=input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testSdcaOptimizerMixedFeatures(self): """Tests LinearClassifier with SDCAOptimizer and a mix of features.""" def input_fn(): return { 'example_id': constant_op.constant(['1', '2', '3']), 'price': constant_op.constant([[0.6], [0.8], [0.3]]), 'sq_footage': constant_op.constant([[900.0], [700.0], [600.0]]), 'country': sparse_tensor.SparseTensor( values=['IT', 'US', 'GB'], indices=[[0, 0], [1, 3], [2, 1]], dense_shape=[3, 5]), 'weights': constant_op.constant([[3.0], [1.0], [1.0]]) }, constant_op.constant([[1], [0], [1]]) price = feature_column_lib.real_valued_column('price') sq_footage_bucket = feature_column_lib.bucketized_column( feature_column_lib.real_valued_column('sq_footage'), boundaries=[650.0, 800.0]) country = feature_column_lib.sparse_column_with_hash_bucket( 'country', hash_bucket_size=5) sq_footage_country = feature_column_lib.crossed_column( [sq_footage_bucket, country], hash_bucket_size=10) sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id') classifier = linear.LinearClassifier( feature_columns=[price, sq_footage_bucket, country, sq_footage_country], weight_column_name='weights', optimizer=sdca_optimizer) classifier.fit(input_fn=input_fn, steps=50) scores = classifier.evaluate(input_fn=input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testSdcaOptimizerPartitionedVariables(self): """Tests LinearClassifier with SDCAOptimizer with partitioned variables.""" def input_fn(): return { 'example_id': constant_op.constant(['1', '2', '3']), 'price': constant_op.constant([[0.6], [0.8], [0.3]]), 'sq_footage': constant_op.constant([[900.0], [700.0], [600.0]]), 'country': sparse_tensor.SparseTensor( values=['IT', 'US', 'GB'], indices=[[0, 0], [1, 3], [2, 1]], dense_shape=[3, 5]), 'weights': constant_op.constant([[3.0], [1.0], [1.0]]) }, constant_op.constant([[1], [0], [1]]) price = feature_column_lib.real_valued_column('price') sq_footage_bucket = feature_column_lib.bucketized_column( feature_column_lib.real_valued_column('sq_footage'), boundaries=[650.0, 800.0]) country = feature_column_lib.sparse_column_with_hash_bucket( 'country', hash_bucket_size=5) sq_footage_country = feature_column_lib.crossed_column( [sq_footage_bucket, country], hash_bucket_size=10) sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id', partitioner=partitioned_variables.fixed_size_partitioner( num_shards=2, axis=0)) tf_config = { 'cluster': { run_config.TaskType.PS: ['fake_ps_0', 'fake_ps_1'] } } with test.mock.patch.dict('os.environ', {'TF_CONFIG': json.dumps(tf_config)}): config = run_config.RunConfig() # Because we did not start a distributed cluster, we need to pass an # empty ClusterSpec, otherwise the device_setter will look for # distributed jobs, such as "/job:ps" which are not present. config._cluster_spec = server_lib.ClusterSpec({}) classifier = linear.LinearClassifier( feature_columns=[price, sq_footage_bucket, country, sq_footage_country], weight_column_name='weights', optimizer=sdca_optimizer, config=config) classifier.fit(input_fn=input_fn, steps=50) scores = classifier.evaluate(input_fn=input_fn, steps=1) print('all scores = {}'.format(scores)) self.assertGreater(scores['accuracy'], 0.9) def testEval(self): """Tests that eval produces correct metrics. """ def input_fn(): return { 'age': constant_op.constant([[1], [2]]), 'language': sparse_tensor.SparseTensor( values=['greek', 'chinese'], indices=[[0, 0], [1, 0]], dense_shape=[2, 1]), }, constant_op.constant([[1], [0]]) language = feature_column_lib.sparse_column_with_hash_bucket('language', 100) age = feature_column_lib.real_valued_column('age') classifier = linear.LinearClassifier(feature_columns=[age, language]) # Evaluate on trained model classifier.fit(input_fn=input_fn, steps=100) classifier.evaluate(input_fn=input_fn, steps=1) # TODO(ispir): Enable accuracy check after resolving the randomness issue. # self.assertLess(evaluated_values['loss/mean'], 0.3) # self.assertGreater(evaluated_values['accuracy/mean'], .95) class LinearRegressorTest(test.TestCase): def testExperimentIntegration(self): cont_features = [ feature_column_lib.real_valued_column( 'feature', dimension=4) ] exp = experiment.Experiment( estimator=linear.LinearRegressor(feature_columns=cont_features), train_input_fn=test_data.iris_input_logistic_fn, eval_input_fn=test_data.iris_input_logistic_fn) exp.test() def testEstimatorContract(self): estimator_test_utils.assert_estimator_contract(self, linear.LinearRegressor) def testRegression(self): """Tests that loss goes down with training.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[10.]]) language = feature_column_lib.sparse_column_with_hash_bucket('language', 100) age = feature_column_lib.real_valued_column('age') classifier = linear.LinearRegressor(feature_columns=[age, language]) classifier.fit(input_fn=input_fn, steps=100) loss1 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] classifier.fit(input_fn=input_fn, steps=200) loss2 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss2, loss1) self.assertLess(loss2, 0.5) def testRegression_MatrixData(self): """Tests regression using matrix data as input.""" cont_features = [ feature_column_lib.real_valued_column( 'feature', dimension=4) ] regressor = linear.LinearRegressor( feature_columns=cont_features, config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=test_data.iris_input_multiclass_fn, steps=100) scores = regressor.evaluate( input_fn=test_data.iris_input_multiclass_fn, steps=1) self.assertLess(scores['loss'], 0.2) def testRegression_TensorData(self): """Tests regression using tensor data as input.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant( [1.0, 0., 0.2], dtype=dtypes.float32) feature_columns = [ feature_column_lib.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20), feature_column_lib.real_valued_column('age') ] regressor = linear.LinearRegressor( feature_columns=feature_columns, config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertLess(scores['loss'], 0.2) def testLoss(self): """Tests loss calculation.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # The algorithm should learn (y = 0.25). labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = {'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32),} return features, labels regressor = linear.LinearRegressor( feature_columns=[feature_column_lib.real_valued_column('x')], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=100) scores = regressor.evaluate(input_fn=_input_fn_train, steps=1) # Average square loss = (0.75^2 + 3*0.25^2) / 4 = 0.1875 self.assertAlmostEqual(0.1875, scores['loss'], delta=0.1) def testLossWithWeights(self): """Tests loss calculation with weights.""" def _input_fn_train(): # 4 rows with equal weight, one of them (y = x), three of them (y=Not(x)) # The algorithm should learn (y = 0.25). labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels def _input_fn_eval(): # 4 rows, with different weights. labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[7.], [1.], [1.], [1.]]) } return features, labels regressor = linear.LinearRegressor( weight_column_name='w', feature_columns=[feature_column_lib.real_valued_column('x')], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=100) scores = regressor.evaluate(input_fn=_input_fn_eval, steps=1) # Weighted average square loss = (7*0.75^2 + 3*0.25^2) / 10 = 0.4125 self.assertAlmostEqual(0.4125, scores['loss'], delta=0.1) def testTrainWithWeights(self): """Tests training with given weight column.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # First row has more weight than others. Model should fit (y=x) better # than (y=Not(x)) due to the relative higher weight of the first row. labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[100.], [3.], [2.], [2.]]) } return features, labels def _input_fn_eval(): # Create 4 rows (y = x) labels = constant_op.constant([[1.], [1.], [1.], [1.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels regressor = linear.LinearRegressor( weight_column_name='w', feature_columns=[feature_column_lib.real_valued_column('x')], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=100) scores = regressor.evaluate(input_fn=_input_fn_eval, steps=1) # The model should learn (y = x) because of the weights, so the loss should # be close to zero. self.assertLess(scores['loss'], 0.1) def testPredict_AsIterableFalse(self): """Tests predict method with as_iterable=False.""" labels = [1.0, 0., 0.2] def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant(labels, dtype=dtypes.float32) feature_columns = [ feature_column_lib.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20), feature_column_lib.real_valued_column('age') ] regressor = linear.LinearRegressor( feature_columns=feature_columns, config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertLess(scores['loss'], 0.1) predicted_scores = regressor.predict_scores( input_fn=_input_fn, as_iterable=False) self.assertAllClose(labels, predicted_scores, atol=0.1) predictions = regressor.predict(input_fn=_input_fn, as_iterable=False) self.assertAllClose(predicted_scores, predictions) def testPredict_AsIterable(self): """Tests predict method with as_iterable=True.""" labels = [1.0, 0., 0.2] def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant(labels, dtype=dtypes.float32) feature_columns = [ feature_column_lib.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20), feature_column_lib.real_valued_column('age') ] regressor = linear.LinearRegressor( feature_columns=feature_columns, config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertLess(scores['loss'], 0.1) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predicted_scores = list( regressor.predict_scores( input_fn=predict_input_fn, as_iterable=True)) self.assertAllClose(labels, predicted_scores, atol=0.1) predictions = list( regressor.predict( input_fn=predict_input_fn, as_iterable=True)) self.assertAllClose(predicted_scores, predictions) def testCustomMetrics(self): """Tests custom evaluation metrics.""" def _input_fn(num_epochs=None): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': input_lib.limit_epochs( array_ops.ones( shape=[4, 1], dtype=dtypes.float32), num_epochs=num_epochs) } return features, labels def _my_metric_op(predictions, labels): return math_ops.reduce_sum(math_ops.multiply(predictions, labels)) regressor = linear.LinearRegressor( feature_columns=[feature_column_lib.real_valued_column('x')], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ 'my_error': MetricSpec( metric_fn=metric_ops.streaming_mean_squared_error, prediction_key='scores'), 'my_metric': MetricSpec( metric_fn=_my_metric_op, prediction_key='scores') }) self.assertIn('loss', set(scores.keys())) self.assertIn('my_error', set(scores.keys())) self.assertIn('my_metric', set(scores.keys())) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = np.array(list( regressor.predict_scores(input_fn=predict_input_fn))) self.assertAlmostEqual( _sklearn.mean_squared_error(np.array([1, 0, 0, 0]), predictions), scores['my_error']) # Tests the case where the prediction_key is not "scores". with self.assertRaisesRegexp(KeyError, 'bad_type'): regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ 'bad_name': MetricSpec( metric_fn=metric_ops.streaming_auc, prediction_key='bad_type') }) # Tests the case where the 2nd element of the key is not "scores". with self.assertRaises(KeyError): regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ ('my_error', 'predictions'): metric_ops.streaming_mean_squared_error }) # Tests the case where the tuple of the key doesn't have 2 elements. with self.assertRaises(ValueError): regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ ('bad_length_name', 'scores', 'bad_length'): metric_ops.streaming_mean_squared_error }) def testTrainSaveLoad(self): """Tests that insures you can save and reload a trained model.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant( [1.0, 0., 0.2], dtype=dtypes.float32) feature_columns = [ feature_column_lib.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20), feature_column_lib.real_valued_column('age') ] model_dir = tempfile.mkdtemp() regressor = linear.LinearRegressor( model_dir=model_dir, feature_columns=feature_columns, config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = list(regressor.predict_scores(input_fn=predict_input_fn)) del regressor regressor2 = linear.LinearRegressor( model_dir=model_dir, feature_columns=feature_columns) predictions2 = list(regressor2.predict_scores(input_fn=predict_input_fn)) self.assertAllClose(predictions, predictions2) def testTrainWithPartitionedVariables(self): """Tests training with partitioned variables.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant( [1.0, 0., 0.2], dtype=dtypes.float32) feature_columns = [ # The given hash_bucket_size results in variables larger than the # default min_slice_size attribute, so the variables are partitioned. feature_column_lib.sparse_column_with_hash_bucket( 'language', hash_bucket_size=2e7), feature_column_lib.real_valued_column('age') ] tf_config = { 'cluster': { run_config.TaskType.PS: ['fake_ps_0', 'fake_ps_1'] } } with test.mock.patch.dict('os.environ', {'TF_CONFIG': json.dumps(tf_config)}): config = run_config.RunConfig(tf_random_seed=1) # Because we did not start a distributed cluster, we need to pass an # empty ClusterSpec, otherwise the device_setter will look for # distributed jobs, such as "/job:ps" which are not present. config._cluster_spec = server_lib.ClusterSpec({}) regressor = linear.LinearRegressor( feature_columns=feature_columns, config=config) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertLess(scores['loss'], 0.1) def testDisableCenteredBias(self): """Tests that we can disable centered bias.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant( [1.0, 0., 0.2], dtype=dtypes.float32) feature_columns = [ feature_column_lib.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20), feature_column_lib.real_valued_column('age') ] regressor = linear.LinearRegressor( feature_columns=feature_columns, enable_centered_bias=False, config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertLess(scores['loss'], 0.1) def testRecoverWeights(self): rng = np.random.RandomState(67) n = 1000 n_weights = 10 bias = 2 x = rng.uniform(-1, 1, (n, n_weights)) weights = 10 * rng.randn(n_weights) y = np.dot(x, weights) y += rng.randn(len(x)) * 0.05 + rng.normal(bias, 0.01) feature_columns = estimator.infer_real_valued_columns_from_input(x) regressor = linear.LinearRegressor( feature_columns=feature_columns, optimizer=ftrl.FtrlOptimizer(learning_rate=0.8)) regressor.fit(x, y, batch_size=64, steps=2000) self.assertIn('linear//weight', regressor.get_variable_names()) regressor_weights = regressor.get_variable_value('linear//weight') # Have to flatten weights since they come in (x, 1) shape. self.assertAllClose(weights, regressor_weights.flatten(), rtol=1) # TODO(ispir): Disable centered_bias. # assert abs(bias - regressor.bias_) < 0.1 def testSdcaOptimizerRealValuedLinearFeatures(self): """Tests LinearRegressor with SDCAOptimizer and real valued features.""" x = [[1.2, 2.0, -1.5], [-2.0, 3.0, -0.5], [1.0, -0.5, 4.0]] weights = [[3.0], [-1.2], [0.5]] y = np.dot(x, weights) def input_fn(): return { 'example_id': constant_op.constant(['1', '2', '3']), 'x': constant_op.constant(x), 'weights': constant_op.constant([[10.0], [10.0], [10.0]]) }, constant_op.constant(y) x_column = feature_column_lib.real_valued_column('x', dimension=3) sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id') regressor = linear.LinearRegressor( feature_columns=[x_column], weight_column_name='weights', optimizer=sdca_optimizer) regressor.fit(input_fn=input_fn, steps=20) loss = regressor.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss, 0.01) self.assertIn('linear/x/weight', regressor.get_variable_names()) regressor_weights = regressor.get_variable_value('linear/x/weight') self.assertAllClose( [w[0] for w in weights], regressor_weights.flatten(), rtol=0.1) def testSdcaOptimizerMixedFeaturesArbitraryWeights(self): """Tests LinearRegressor with SDCAOptimizer and a mix of features.""" def input_fn(): return { 'example_id': constant_op.constant(['1', '2', '3']), 'price': constant_op.constant([0.6, 0.8, 0.3]), 'sq_footage': constant_op.constant([[900.0], [700.0], [600.0]]), 'country': sparse_tensor.SparseTensor( values=['IT', 'US', 'GB'], indices=[[0, 0], [1, 3], [2, 1]], dense_shape=[3, 5]), 'weights': constant_op.constant([[3.0], [5.0], [7.0]]) }, constant_op.constant([[1.55], [-1.25], [-3.0]]) price = feature_column_lib.real_valued_column('price') sq_footage_bucket = feature_column_lib.bucketized_column( feature_column_lib.real_valued_column('sq_footage'), boundaries=[650.0, 800.0]) country = feature_column_lib.sparse_column_with_hash_bucket( 'country', hash_bucket_size=5) sq_footage_country = feature_column_lib.crossed_column( [sq_footage_bucket, country], hash_bucket_size=10) sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id', symmetric_l2_regularization=1.0) regressor = linear.LinearRegressor( feature_columns=[price, sq_footage_bucket, country, sq_footage_country], weight_column_name='weights', optimizer=sdca_optimizer) regressor.fit(input_fn=input_fn, steps=20) loss = regressor.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss, 0.05) def testSdcaOptimizerPartitionedVariables(self): """Tests LinearRegressor with SDCAOptimizer with partitioned variables.""" def input_fn(): return { 'example_id': constant_op.constant(['1', '2', '3']), 'price': constant_op.constant([0.6, 0.8, 0.3]), 'sq_footage': constant_op.constant([[900.0], [700.0], [600.0]]), 'country': sparse_tensor.SparseTensor( values=['IT', 'US', 'GB'], indices=[[0, 0], [1, 3], [2, 1]], dense_shape=[3, 5]), 'weights': constant_op.constant([[3.0], [5.0], [7.0]]) }, constant_op.constant([[1.55], [-1.25], [-3.0]]) price = feature_column_lib.real_valued_column('price') sq_footage_bucket = feature_column_lib.bucketized_column( feature_column_lib.real_valued_column('sq_footage'), boundaries=[650.0, 800.0]) country = feature_column_lib.sparse_column_with_hash_bucket( 'country', hash_bucket_size=5) sq_footage_country = feature_column_lib.crossed_column( [sq_footage_bucket, country], hash_bucket_size=10) sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id', symmetric_l2_regularization=1.0, partitioner=partitioned_variables.fixed_size_partitioner( num_shards=2, axis=0)) tf_config = { 'cluster': { run_config.TaskType.PS: ['fake_ps_0', 'fake_ps_1'] } } with test.mock.patch.dict('os.environ', {'TF_CONFIG': json.dumps(tf_config)}): config = run_config.RunConfig() # Because we did not start a distributed cluster, we need to pass an # empty ClusterSpec, otherwise the device_setter will look for # distributed jobs, such as "/job:ps" which are not present. config._cluster_spec = server_lib.ClusterSpec({}) regressor = linear.LinearRegressor( feature_columns=[price, sq_footage_bucket, country, sq_footage_country], weight_column_name='weights', optimizer=sdca_optimizer, config=config) regressor.fit(input_fn=input_fn, steps=20) loss = regressor.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss, 0.05) def testSdcaOptimizerSparseFeaturesWithL1Reg(self): """Tests LinearClassifier with SDCAOptimizer and sparse features.""" def input_fn(): return { 'example_id': constant_op.constant(['1', '2', '3']), 'price': constant_op.constant([[0.4], [0.6], [0.3]]), 'country': sparse_tensor.SparseTensor( values=['IT', 'US', 'GB'], indices=[[0, 0], [1, 3], [2, 1]], dense_shape=[3, 5]), 'weights': constant_op.constant([[10.0], [10.0], [10.0]]) }, constant_op.constant([[1.4], [-0.8], [2.6]]) price = feature_column_lib.real_valued_column('price') country = feature_column_lib.sparse_column_with_hash_bucket( 'country', hash_bucket_size=5) # Regressor with no L1 regularization. sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id') regressor = linear.LinearRegressor( feature_columns=[price, country], weight_column_name='weights', optimizer=sdca_optimizer) regressor.fit(input_fn=input_fn, steps=20) no_l1_reg_loss = regressor.evaluate(input_fn=input_fn, steps=1)['loss'] variable_names = regressor.get_variable_names() self.assertIn('linear/price/weight', variable_names) self.assertIn('linear/country/weights', variable_names) no_l1_reg_weights = { 'linear/price/weight': regressor.get_variable_value( 'linear/price/weight'), 'linear/country/weights': regressor.get_variable_value( 'linear/country/weights'), } # Regressor with L1 regularization. sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id', symmetric_l1_regularization=1.0) regressor = linear.LinearRegressor( feature_columns=[price, country], weight_column_name='weights', optimizer=sdca_optimizer) regressor.fit(input_fn=input_fn, steps=20) l1_reg_loss = regressor.evaluate(input_fn=input_fn, steps=1)['loss'] l1_reg_weights = { 'linear/price/weight': regressor.get_variable_value( 'linear/price/weight'), 'linear/country/weights': regressor.get_variable_value( 'linear/country/weights'), } # Unregularized loss is lower when there is no L1 regularization. self.assertLess(no_l1_reg_loss, l1_reg_loss) self.assertLess(no_l1_reg_loss, 0.05) # But weights returned by the regressor with L1 regularization have smaller # L1 norm. l1_reg_weights_norm, no_l1_reg_weights_norm = 0.0, 0.0 for var_name in sorted(l1_reg_weights): l1_reg_weights_norm += sum( np.absolute(l1_reg_weights[var_name].flatten())) no_l1_reg_weights_norm += sum( np.absolute(no_l1_reg_weights[var_name].flatten())) print('Var name: %s, value: %s' % (var_name, no_l1_reg_weights[var_name].flatten())) self.assertLess(l1_reg_weights_norm, no_l1_reg_weights_norm) def testSdcaOptimizerBiasOnly(self): """Tests LinearClassifier with SDCAOptimizer and validates bias weight.""" def input_fn(): """Testing the bias weight when it's the only feature present. All of the instances in this input only have the bias feature, and a 1/4 of the labels are positive. This means that the expected weight for the bias should be close to the average prediction, i.e 0.25. Returns: Training data for the test. """ num_examples = 40 return { 'example_id': constant_op.constant([str(x + 1) for x in range(num_examples)]), # place_holder is an empty column which is always 0 (absent), because # LinearClassifier requires at least one column. 'place_holder': constant_op.constant([[0.0]] * num_examples), }, constant_op.constant( [[1 if i % 4 is 0 else 0] for i in range(num_examples)]) place_holder = feature_column_lib.real_valued_column('place_holder') sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id') regressor = linear.LinearRegressor( feature_columns=[place_holder], optimizer=sdca_optimizer) regressor.fit(input_fn=input_fn, steps=100) self.assertNear( regressor.get_variable_value('linear/bias_weight')[0], 0.25, err=0.1) def testSdcaOptimizerBiasAndOtherColumns(self): """Tests LinearClassifier with SDCAOptimizer and validates bias weight.""" def input_fn(): """Testing the bias weight when there are other features present. 1/2 of the instances in this input have feature 'a', the rest have feature 'b', and we expect the bias to be added to each instance as well. 0.4 of all instances that have feature 'a' are positive, and 0.2 of all instances that have feature 'b' are positive. The labels in the dataset are ordered to appear shuffled since SDCA expects shuffled data, and converges faster with this pseudo-random ordering. If the bias was centered we would expect the weights to be: bias: 0.3 a: 0.1 b: -0.1 Until b/29339026 is resolved, the bias gets regularized with the same global value for the other columns, and so the expected weights get shifted and are: bias: 0.2 a: 0.2 b: 0.0 Returns: The test dataset. """ num_examples = 200 half = int(num_examples / 2) return { 'example_id': constant_op.constant([str(x + 1) for x in range(num_examples)]), 'a': constant_op.constant([[1]] * int(half) + [[0]] * int(half)), 'b': constant_op.constant([[0]] * int(half) + [[1]] * int(half)), }, constant_op.constant( [[x] for x in [1, 0, 0, 1, 1, 0, 0, 0, 1, 0] * int(half / 10) + [0, 1, 0, 0, 0, 0, 0, 0, 1, 0] * int(half / 10)]) sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id') regressor = linear.LinearRegressor( feature_columns=[ feature_column_lib.real_valued_column('a'), feature_column_lib.real_valued_column('b') ], optimizer=sdca_optimizer) regressor.fit(input_fn=input_fn, steps=200) variable_names = regressor.get_variable_names() self.assertIn('linear/bias_weight', variable_names) self.assertIn('linear/a/weight', variable_names) self.assertIn('linear/b/weight', variable_names) # TODO(b/29339026): Change the expected results to expect a centered bias. self.assertNear( regressor.get_variable_value('linear/bias_weight')[0], 0.2, err=0.05) self.assertNear( regressor.get_variable_value('linear/a/weight')[0], 0.2, err=0.05) self.assertNear( regressor.get_variable_value('linear/b/weight')[0], 0.0, err=0.05) def testSdcaOptimizerBiasAndOtherColumnsFabricatedCentered(self): """Tests LinearClassifier with SDCAOptimizer and validates bias weight.""" def input_fn(): """Testing the bias weight when there are other features present. 1/2 of the instances in this input have feature 'a', the rest have feature 'b', and we expect the bias to be added to each instance as well. 0.1 of all instances that have feature 'a' have a label of 1, and 0.1 of all instances that have feature 'b' have a label of -1. We can expect the weights to be: bias: 0.0 a: 0.1 b: -0.1 Returns: The test dataset. """ num_examples = 200 half = int(num_examples / 2) return { 'example_id': constant_op.constant([str(x + 1) for x in range(num_examples)]), 'a': constant_op.constant([[1]] * int(half) + [[0]] * int(half)), 'b': constant_op.constant([[0]] * int(half) + [[1]] * int(half)), }, constant_op.constant([[1 if x % 10 == 0 else 0] for x in range(half)] + [[-1 if x % 10 == 0 else 0] for x in range(half)]) sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id') regressor = linear.LinearRegressor( feature_columns=[ feature_column_lib.real_valued_column('a'), feature_column_lib.real_valued_column('b') ], optimizer=sdca_optimizer) regressor.fit(input_fn=input_fn, steps=100) variable_names = regressor.get_variable_names() self.assertIn('linear/bias_weight', variable_names) self.assertIn('linear/a/weight', variable_names) self.assertIn('linear/b/weight', variable_names) self.assertNear( regressor.get_variable_value('linear/bias_weight')[0], 0.0, err=0.05) self.assertNear( regressor.get_variable_value('linear/a/weight')[0], 0.1, err=0.05) self.assertNear( regressor.get_variable_value('linear/b/weight')[0], -0.1, err=0.05) class LinearEstimatorTest(test.TestCase): def testExperimentIntegration(self): cont_features = [ feature_column_lib.real_valued_column( 'feature', dimension=4) ] exp = experiment.Experiment( estimator=linear.LinearEstimator(feature_columns=cont_features, head=head_lib.regression_head()), train_input_fn=test_data.iris_input_logistic_fn, eval_input_fn=test_data.iris_input_logistic_fn) exp.test() def testEstimatorContract(self): estimator_test_utils.assert_estimator_contract(self, linear.LinearEstimator) def testLinearRegression(self): """Tests that loss goes down with training.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[10.]]) language = feature_column_lib.sparse_column_with_hash_bucket('language', 100) age = feature_column_lib.real_valued_column('age') linear_estimator = linear.LinearEstimator(feature_columns=[age, language], head=head_lib.regression_head()) linear_estimator.fit(input_fn=input_fn, steps=100) loss1 = linear_estimator.evaluate(input_fn=input_fn, steps=1)['loss'] linear_estimator.fit(input_fn=input_fn, steps=400) loss2 = linear_estimator.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss2, loss1) self.assertLess(loss2, 0.5) def testPoissonRegression(self): """Tests that loss goes down with training.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[10.]]) language = feature_column_lib.sparse_column_with_hash_bucket('language', 100) age = feature_column_lib.real_valued_column('age') linear_estimator = linear.LinearEstimator( feature_columns=[age, language], head=head_lib.poisson_regression_head()) linear_estimator.fit(input_fn=input_fn, steps=10) loss1 = linear_estimator.evaluate(input_fn=input_fn, steps=1)['loss'] linear_estimator.fit(input_fn=input_fn, steps=100) loss2 = linear_estimator.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss2, loss1) # Here loss of 2.1 implies a prediction of ~9.9998 self.assertLess(loss2, 2.1) def testSDCANotSupported(self): """Tests that we detect error for SDCA.""" maintenance_cost = feature_column_lib.real_valued_column('maintenance_cost') sq_footage = feature_column_lib.real_valued_column('sq_footage') sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id') with self.assertRaises(ValueError): linear.LinearEstimator( head=head_lib.regression_head(label_dimension=1), feature_columns=[maintenance_cost, sq_footage], optimizer=sdca_optimizer, _joint_weights=True) def boston_input_fn(): boston = base.load_boston() features = math_ops.cast( array_ops.reshape(constant_op.constant(boston.data), [-1, 13]), dtypes.float32) labels = math_ops.cast( array_ops.reshape(constant_op.constant(boston.target), [-1, 1]), dtypes.float32) return features, labels class FeatureColumnTest(test.TestCase): def testTrain(self): feature_columns = estimator.infer_real_valued_columns_from_input_fn( boston_input_fn) est = linear.LinearRegressor(feature_columns=feature_columns) est.fit(input_fn=boston_input_fn, steps=1) _ = est.evaluate(input_fn=boston_input_fn, steps=1) if __name__ == '__main__': test.main()
apache-2.0
ferdinandvanwyk/gs2_analysis
films.py
2
16388
import os import sys import gc # Third Party import numpy as np from netCDF4 import Dataset import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import make_axes_locatable import seaborn as sns import pyfilm as pf plt.rcParams.update({'figure.autolayout': True}) mpl.rcParams['axes.unicode_minus'] = False # Local from run import Run import plot_style import field_helper as field plot_style.white() def phi_film(run, should_normalize): """ Create film of electrostatic potential. Parameters ---------- run : object Instance of the Run class describing a given simulation """ run.read_phi() if should_normalize: field.normalize(run.phi) contours = field.calculate_contours(run.phi) plot_options = {'levels':contours, 'cmap':'seismic'} options = {'file_name':'phi', 'film_dir':run.run_dir + 'analysis/moments', 'frame_dir':run.run_dir + 'analysis/moments/film_frames', 'aspect':'equal', 'xlabel':r'$R (m)$', 'ylabel':r'$Z (m)$', 'cbar_ticks':5, 'cbar_label':r'$\varphi$', 'bbox_inches':'tight', 'fps':30} options['title'] = [] for it in range(run.nt): options['title'].append(r'Time = {0:04d} $\mu s$'.format( int(np.round((run.t[it]-run.t[0])*1e6)))) pf.make_film_2d(run.r, run.z, run.phi, plot_options=plot_options, options=options) run.phi = None gc.collect() def ntot_film(run, should_normalize): """ Create film of density fluctuations. """ run.read_ntot() if should_normalize: field.normalize(run.ntot_i) field.normalize(run.ntot_e) # Ion density film contours = field.calculate_contours(run.ntot_i) plot_options = {'levels':contours, 'cmap':'seismic'} options = {'file_name':'ntot_i', 'film_dir':run.run_dir + 'analysis/moments', 'frame_dir':run.run_dir + 'analysis/moments/film_frames', 'aspect':'equal', 'xlabel':r'$R (m)$', 'ylabel':r'$Z (m)$', 'cbar_ticks':5, 'cbar_label':r'$\delta n_i / n_r$', 'bbox_inches':'tight', 'fps':30} options['title'] = [] for it in range(run.nt): options['title'].append(r'Time = {0:04d} $\mu s$'.format( int(np.round((run.t[it]-run.t[0])*1e6)))) pf.make_film_2d(run.r, run.z, run.ntot_i, plot_options=plot_options, options=options) run.ntot_i = None gc.collect() # Electron density film contours = field.calculate_contours(run.ntot_e) plot_options = {'levels':contours, 'cmap':'seismic'} options = {'file_name':'ntot_e', 'film_dir':run.run_dir + 'analysis/moments', 'frame_dir':run.run_dir + 'analysis/moments/film_frames', 'aspect':'equal', 'xlabel':r'$R (m)$', 'ylabel':r'$Z (m)$', 'cbar_ticks':5, 'cbar_label':r'$\delta n_e / n_r$', 'bbox_inches':'tight', 'fps':30} options['title'] = [] for it in range(run.nt): options['title'].append(r'Time = {0:04d} $\mu s$'.format( int(np.round((run.t[it]-run.t[0])*1e6)))) pf.make_film_2d(run.r, run.z, run.ntot_e, plot_options=plot_options, options=options) run.ntot_e = None gc.collect() def upar_film(run, should_normalize): """ Make film of parallel velocity. """ run.read_upar() if should_normalize: field.normalize(run.upar_i) field.normalize(run.upar_e) # Ion upar film contours = field.calculate_contours(run.upar_i) plot_options = {'levels':contours, 'cmap':'seismic'} options = {'file_name':'upar_i', 'film_dir':run.run_dir + 'analysis/moments', 'frame_dir':run.run_dir + 'analysis/moments/film_frames', 'aspect':'equal', 'xlabel':r'$R (m)$', 'ylabel':r'$Z (m)$', 'cbar_ticks':5, 'cbar_label':r'$u_{i, \parallel}$', 'bbox_inches':'tight', 'fps':30} options['title'] = [] for it in range(run.nt): options['title'].append(r'Time = {0:04d} $\mu s$'.format( int(np.round((run.t[it]-run.t[0])*1e6)))) pf.make_film_2d(run.r, run.z, run.upar_i, plot_options=plot_options, options=options) run.upar_i = None gc.collect() # Electron upar film contours = field.calculate_contours(run.upar_e) plot_options = {'levels':contours, 'cmap':'seismic'} options = {'file_name':'upar_e', 'film_dir':run.run_dir + 'analysis/moments', 'frame_dir':run.run_dir + 'analysis/moments/film_frames', 'aspect':'equal', 'xlabel':r'$R (m)$', 'ylabel':r'$Z (m)$', 'cbar_ticks':5, 'cbar_label':r'$u_{e, \parallel}$', 'bbox_inches':'tight', 'fps':30} options['title'] = [] for it in range(run.nt): options['title'].append(r'Time = {0:04d} $\mu s$'.format( int(np.round((run.t[it]-run.t[0])*1e6)))) pf.make_film_2d(run.r, run.z, run.upar_e, plot_options=plot_options, options=options) run.upar_e = None gc.collect() def v_exb_film(run, should_normalize): """ Make film of parallel velocity. """ run.calculate_v_exb() if should_normalize: field.normalize(run.v_exb) # Ion upar film contours = field.calculate_contours(run.v_exb) plot_options = {'levels':contours, 'cmap':'seismic'} options = {'file_name':'v_exb', 'film_dir':run.run_dir + 'analysis/moments', 'frame_dir':run.run_dir + 'analysis/moments/film_frames', 'aspect':'equal', 'xlabel':r'$R (m)$', 'ylabel':r'$Z (m)$', 'cbar_ticks':5, 'cbar_label':r'$v_{E \times B}$ (m/s)', 'bbox_inches':'tight', 'fps':30} options['title'] = [] for it in range(run.nt): options['title'].append(r'Time = {0:04d} $\mu s$'.format( int(np.round((run.t[it]-run.t[0])*1e6)))) pf.make_film_2d(run.r, run.z, run.v_exb, plot_options=plot_options, options=options) run.v_exb = None gc.collect() def tpar_film(run, should_normalize): """ Make film of parallel temperature. """ run.read_tpar() if should_normalize: field.normalize(run.tpar_i) field.normalize(run.tpar_e) contours = field.calculate_contours(run.tpar_i) plot_options = {'levels':contours, 'cmap':'seismic'} options = {'file_name':'tpar_i', 'film_dir':run.run_dir + 'analysis/moments', 'frame_dir':run.run_dir + 'analysis/moments/film_frames', 'aspect':'equal', 'xlabel':r'$R (m)$', 'ylabel':r'$Z (m)$', 'cbar_ticks':5, 'cbar_label':r'$\delta T_{i, \parallel} / T_r$', 'bbox_inches':'tight', 'fps':30} options['title'] = [] for it in range(run.nt): options['title'].append(r'Time = {0:04d} $\mu s$'.format( int(np.round((run.t[it]-run.t[0])*1e6)))) pf.make_film_2d(run.r, run.z, run.tpar_i, plot_options=plot_options, options=options) run.tpar_i = None gc.collect() contours = field.calculate_contours(run.tpar_e) plot_options = {'levels':contours, 'cmap':'seismic'} options = {'file_name':'tpar_e', 'film_dir':run.run_dir + 'analysis/moments', 'frame_dir':run.run_dir + 'analysis/moments/film_frames', 'aspect':'equal', 'xlabel':r'$R (m)$', 'ylabel':r'$Z (m)$', 'cbar_ticks':5, 'cbar_label':r'$\delta T_{e, \parallel} / T_r$', 'bbox_inches':'tight', 'fps':30} options['title'] = [] for it in range(run.nt): options['title'].append(r'Time = {0:04d} $\mu s$'.format( int(np.round((run.t[it]-run.t[0])*1e6)))) pf.make_film_2d(run.r, run.z, run.tpar_e, plot_options=plot_options, options=options) run.tpar_e = None gc.collect() def tperp_film(run, should_normalize): """ Make film of perpendicular temperature. """ run.read_tperp() if should_normalize: field.normalize(run.tperp_i) field.normalize(run.tperp_e) contours = field.calculate_contours(run.tperp_i) plot_options = {'levels':contours, 'cmap':'seismic'} options = {'file_name':'tperp_i', 'film_dir':run.run_dir + 'analysis/moments', 'frame_dir':run.run_dir + 'analysis/moments/film_frames', 'aspect':'equal', 'xlabel':r'$R (m)$', 'ylabel':r'$Z (m)$', 'cbar_ticks':5, 'cbar_label':r'$\delta T_{i, \perp} / T_r$', 'bbox_inches':'tight', 'fps':30} options['title'] = [] for it in range(run.nt): options['title'].append(r'Time = {0:04d} $\mu s$'.format( int(np.round((run.t[it]-run.t[0])*1e6)))) pf.make_film_2d(run.r, run.z, run.tperp_i, plot_options=plot_options, options=options) run.tperp_i = None gc.collect() contours = field.calculate_contours(run.tperp_e) plot_options = {'levels':contours, 'cmap':'seismic'} options = {'file_name':'tperp_e', 'film_dir':run.run_dir + 'analysis/moments', 'frame_dir':run.run_dir + 'analysis/moments/film_frames', 'aspect':'equal', 'xlabel':r'$R (m)$', 'ylabel':r'$Z (m)$', 'cbar_ticks':5, 'cbar_label':r'$\delta T_{e, \perp} / T_r$', 'bbox_inches':'tight', 'fps':30} options['title'] = [] for it in range(run.nt): options['title'].append(r'Time = {0:04d} $\mu s$'.format( int(np.round((run.t[it]-run.t[0])*1e6)))) pf.make_film_2d(run.r, run.z, run.tperp_e, plot_options=plot_options, options=options) run.tperp_e = None gc.collect() def heat_flux_film(run, should_normalize): """ Make film of local heat flux as a function of x and y. """ run.calculate_q() if should_normalize: field.normalize(run.q) contours = field.calculate_contours(run.q) plot_options = {'levels':contours, 'cmap':'seismic'} options = {'file_name':'q_i', 'film_dir':run.run_dir + 'analysis/moments', 'frame_dir':run.run_dir + 'analysis/moments/film_frames', 'aspect':'equal', 'xlabel':r'$R (m)$', 'ylabel':r'$Z (m)$', 'cbar_ticks':5, 'cbar_label':r'$Q_{i}(x, y) / Q_{gB}$', 'bbox_inches':'tight', 'fps':30} options['title'] = [] for it in range(run.nt): options['title'].append(r'Time = {0:04d} $\mu s$'.format( int(np.round((run.t[it]-run.t[0])*1e6)))) pf.make_film_2d(run.r, run.z, run.q, plot_options=plot_options, options=options) run.q = None gc.collect() def radial_heat_flux_film(run, should_normalize): """ Make film of the radial heat flux. """ run.calculate_q() run.q_rad = np.mean(run.q, axis=2) plot_options = {} options = {'file_name':'q_i_rad', 'film_dir':run.run_dir + 'analysis/moments', 'frame_dir':run.run_dir + 'analysis/moments/film_frames', 'xlabel':r'$R (m)$', 'ylabel':r'$\left<Q_{i}(x)\right>_y / Q_{gB}$', 'ylim':0, 'bbox_inches':'tight', 'fps':30} options['title'] = [] for it in range(run.nt): options['title'].append(r'Time = {0:04d} $\mu s$'.format( int(np.round((run.t[it]-run.t[0])*1e6)))) pf.make_film_1d(run.r, run.q_rad, plot_options=plot_options, options=options) run.q = None run.q_rad = None gc.collect() def v_zf_film(run, should_normalize): """ Make film of zonal flow velocity as a function of x and t. """ run.calculate_v_zf() plot_options = {} options = {'file_name':'v_zf', 'film_dir':run.run_dir + 'analysis/moments', 'frame_dir':run.run_dir + 'analysis/moments/film_frames', 'xlabel':r'$R (m)$', 'ylabel':r'$v_{ZF} / v_{th,i}$', 'bbox_inches':'tight', 'fps':30} options['title'] = [] for it in range(run.nt): options['title'].append(r'Time = {0:04d} $\mu s$'.format( int(np.round((run.t[it]-run.t[0])*1e6)))) pf.make_film_1d(run.r, run.v_zf, plot_options=plot_options, options=options) run.v_zf = None gc.collect() def zf_shear_film(run, should_normalize): """ Make film of zonal flow velocity as a function of x and t. """ run.calculate_zf_shear() plot_options = {} options = {'file_name':'zf_shear', 'film_dir':run.run_dir + 'analysis/moments', 'frame_dir':run.run_dir + 'analysis/moments/film_frames', 'xlabel':r'$R (m)$', 'ylabel':r"$v'_{ZF} / v_{th,i}$", 'bbox_inches':'tight', 'fps':30} options['title'] = [] for it in range(run.nt): options['title'].append(r'Time = {0:04d} $\mu s$'.format( int(np.round((run.t[it]-run.t[0])*1e6)))) pf.make_film_1d(run.r, run.zf_shear, plot_options=plot_options, options=options) run.v_zf = None gc.collect() if __name__ == '__main__': run = Run(sys.argv[1]) try: case_id = str(sys.argv[2]) except IndexError: print('Which field do you want to make a film of?') print('1 : phi') print('2 : ntot') print('3 : upar') print('4 : v_exb') print('5 : zonal flow velocity') print('6 : zf velocity shear') print('7 : tpar') print('8 : tperp') print('9 : heat flux') print('10 : radial heat flux') print('all : all moments') case_id = str(input()) try: user_answer = str(sys.argv[3]) except IndexError: print('Normalize field? y/n') user_answer = str(input()) if user_answer == 'y' or user_answer == 'Y': should_normalize = True elif user_answer == 'n' or user_answer == 'N': should_normalize = False else: sys.exit('Wrong option.') if case_id == '1': phi_film(run, should_normalize) elif case_id == '2': ntot_film(run, should_normalize) elif case_id == '3': upar_film(run, should_normalize) elif case_id == '4': v_exb_film(run, should_normalize) elif case_id == '5': v_zf_film(run, should_normalize) elif case_id == '6': zf_shear_film(run, should_normalize) elif case_id == '7': tpar_film(run, should_normalize) elif case_id == '8': tperp_film(run, should_normalize) elif case_id == '9': heat_flux_film(run, should_normalize) elif case_id == '10': radial_heat_flux_film(run, should_normalize) elif case_id == 'all': phi_film(run, should_normalize) ntot_film(run, should_normalize) upar_film(run, should_normalize) v_exb_film(run, should_normalize) v_zf_film(run, should_normalize) zf_shear_film(run, should_normalize) tpar_film(run, should_normalize) tperp_film(run, should_normalize) heat_flux_film(run, should_normalize) radial_heat_flux_film(run, should_normalize)
gpl-2.0
evgchz/scikit-learn
sklearn/utils/tests/test_utils.py
23
6045
import warnings import numpy as np import scipy.sparse as sp from scipy.linalg import pinv2 from sklearn.utils.testing import (assert_equal, assert_raises, assert_true, assert_almost_equal, assert_array_equal, SkipTest) from sklearn.utils import check_random_state from sklearn.utils import deprecated from sklearn.utils import resample from sklearn.utils import safe_mask from sklearn.utils import column_or_1d from sklearn.utils import safe_indexing from sklearn.utils import shuffle from sklearn.utils.extmath import pinvh from sklearn.utils.mocking import MockDataFrame def test_make_rng(): """Check the check_random_state utility function behavior""" assert_true(check_random_state(None) is np.random.mtrand._rand) assert_true(check_random_state(np.random) is np.random.mtrand._rand) rng_42 = np.random.RandomState(42) assert_true(check_random_state(42).randint(100) == rng_42.randint(100)) rng_42 = np.random.RandomState(42) assert_true(check_random_state(rng_42) is rng_42) rng_42 = np.random.RandomState(42) assert_true(check_random_state(43).randint(100) != rng_42.randint(100)) assert_raises(ValueError, check_random_state, "some invalid seed") def test_resample_noarg(): """Border case not worth mentioning in doctests""" assert_true(resample() is None) def test_deprecated(): """Test whether the deprecated decorator issues appropriate warnings""" # Copied almost verbatim from http://docs.python.org/library/warnings.html # First a function... with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") @deprecated() def ham(): return "spam" spam = ham() assert_equal(spam, "spam") # function must remain usable assert_equal(len(w), 1) assert_true(issubclass(w[0].category, DeprecationWarning)) assert_true("deprecated" in str(w[0].message).lower()) # ... then a class. with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") @deprecated("don't use this") class Ham(object): SPAM = 1 ham = Ham() assert_true(hasattr(ham, "SPAM")) assert_equal(len(w), 1) assert_true(issubclass(w[0].category, DeprecationWarning)) assert_true("deprecated" in str(w[0].message).lower()) def test_resample_value_errors(): """Check that invalid arguments yield ValueError""" assert_raises(ValueError, resample, [0], [0, 1]) assert_raises(ValueError, resample, [0, 1], [0, 1], n_samples=3) assert_raises(ValueError, resample, [0, 1], [0, 1], meaning_of_life=42) def test_safe_mask(): random_state = check_random_state(0) X = random_state.rand(5, 4) X_csr = sp.csr_matrix(X) mask = [False, False, True, True, True] mask = safe_mask(X, mask) assert_equal(X[mask].shape[0], 3) mask = safe_mask(X_csr, mask) assert_equal(X_csr[mask].shape[0], 3) def test_pinvh_simple_real(): a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 10]], dtype=np.float64) a = np.dot(a, a.T) a_pinv = pinvh(a) assert_almost_equal(np.dot(a, a_pinv), np.eye(3)) def test_pinvh_nonpositive(): a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.float64) a = np.dot(a, a.T) u, s, vt = np.linalg.svd(a) s[0] *= -1 a = np.dot(u * s, vt) # a is now symmetric non-positive and singular a_pinv = pinv2(a) a_pinvh = pinvh(a) assert_almost_equal(a_pinv, a_pinvh) def test_pinvh_simple_complex(): a = (np.array([[1, 2, 3], [4, 5, 6], [7, 8, 10]]) + 1j * np.array([[10, 8, 7], [6, 5, 4], [3, 2, 1]])) a = np.dot(a, a.conj().T) a_pinv = pinvh(a) assert_almost_equal(np.dot(a, a_pinv), np.eye(3)) def test_column_or_1d(): EXAMPLES = [ ("binary", ["spam", "egg", "spam"]), ("binary", [0, 1, 0, 1]), ("continuous", np.arange(10) / 20.), ("multiclass", [1, 2, 3]), ("multiclass", [0, 1, 2, 2, 0]), ("multiclass", [[1], [2], [3]]), ("multilabel-indicator", [[0, 1, 0], [0, 0, 1]]), ("multiclass-multioutput", [[1, 2, 3]]), ("multiclass-multioutput", [[1, 1], [2, 2], [3, 1]]), ("multiclass-multioutput", [[5, 1], [4, 2], [3, 1]]), ("multiclass-multioutput", [[1, 2, 3]]), ("continuous-multioutput", np.arange(30).reshape((-1, 3))), ] for y_type, y in EXAMPLES: if y_type in ["binary", 'multiclass', "continuous"]: assert_array_equal(column_or_1d(y), np.ravel(y)) else: assert_raises(ValueError, column_or_1d, y) def test_safe_indexing(): X = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] inds = np.array([1, 2]) X_inds = safe_indexing(X, inds) X_arrays = safe_indexing(np.array(X), inds) assert_array_equal(np.array(X_inds), X_arrays) assert_array_equal(np.array(X_inds), np.array(X)[inds]) def test_safe_indexing_pandas(): try: import pandas as pd except ImportError: raise SkipTest("Pandas not found") X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) X_df = pd.DataFrame(X) inds = np.array([1, 2]) X_df_indexed = safe_indexing(X_df, inds) X_indexed = safe_indexing(X_df, inds) assert_array_equal(np.array(X_df_indexed), X_indexed) def test_safe_indexing_mock_pandas(): X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) X_df = MockDataFrame(X) inds = np.array([1, 2]) X_df_indexed = safe_indexing(X_df, inds) X_indexed = safe_indexing(X_df, inds) assert_array_equal(np.array(X_df_indexed), X_indexed) def test_shuffle_on_ndim_equals_three(): def to_tuple(A): # to make the inner arrays hashable return tuple(tuple(tuple(C) for C in B) for B in A) A = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]) # A.shape = (2,2,2) S = set(to_tuple(A)) shuffle(A) # shouldn't raise a ValueError for dim = 3 assert_equal(set(to_tuple(A)), S)
bsd-3-clause
aleksandr-bakanov/astropy
astropy/wcs/wcsapi/low_level_api.py
3
14978
import os import abc import numpy as np __all__ = ['BaseLowLevelWCS', 'validate_physical_types'] class BaseLowLevelWCS(metaclass=abc.ABCMeta): """ Abstract base class for the low-level WCS interface. This is described in `APE 14: A shared Python interface for World Coordinate Systems <https://doi.org/10.5281/zenodo.1188875>`_. """ @property @abc.abstractmethod def pixel_n_dim(self): """ The number of axes in the pixel coordinate system. """ @property @abc.abstractmethod def world_n_dim(self): """ The number of axes in the world coordinate system. """ @property @abc.abstractmethod def world_axis_physical_types(self): """ An iterable of strings describing the physical type for each world axis. These should be names from the VO UCD1+ controlled Vocabulary (http://www.ivoa.net/documents/latest/UCDlist.html). If no matching UCD type exists, this can instead be ``"custom:xxx"``, where ``xxx`` is an arbitrary string. Alternatively, if the physical type is unknown/undefined, an element can be `None`. """ @property @abc.abstractmethod def world_axis_units(self): """ An iterable of strings given the units of the world coordinates for each axis. The strings should follow the `IVOA VOUnit standard <http://ivoa.net/documents/VOUnits/>`_ (though as noted in the VOUnit specification document, units that do not follow this standard are still allowed, but just not recommended). """ @abc.abstractmethod def pixel_to_world_values(self, *pixel_arrays): """ Convert pixel coordinates to world coordinates. This method takes `~astropy.wcs.wcsapi.BaseLowLevelWCS.pixel_n_dim` scalars or arrays as input, and pixel coordinates should be zero-based. Returns `~astropy.wcs.wcsapi.BaseLowLevelWCS.world_n_dim` scalars or arrays in units given by `~astropy.wcs.wcsapi.BaseLowLevelWCS.world_axis_units`. Note that pixel coordinates are assumed to be 0 at the center of the first pixel in each dimension. If a pixel is in a region where the WCS is not defined, NaN can be returned. The coordinates should be specified in the ``(x, y)`` order, where for an image, ``x`` is the horizontal coordinate and ``y`` is the vertical coordinate. If `~astropy.wcs.wcsapi.BaseLowLevelWCS.world_n_dim` is ``1``, this method returns a single scalar or array, otherwise a tuple of scalars or arrays is returned. """ @abc.abstractmethod def array_index_to_world_values(self, *index_arrays): """ Convert array indices to world coordinates. This is the same as `~astropy.wcs.wcsapi.BaseLowLevelWCS.pixel_to_world_values` except that the indices should be given in ``(i, j)`` order, where for an image ``i`` is the row and ``j`` is the column (i.e. the opposite order to `~astropy.wcs.wcsapi.BaseLowLevelWCS.pixel_to_world_values`). If `~astropy.wcs.wcsapi.BaseLowLevelWCS.world_n_dim` is ``1``, this method returns a single scalar or array, otherwise a tuple of scalars or arrays is returned. """ @abc.abstractmethod def world_to_pixel_values(self, *world_arrays): """ Convert world coordinates to pixel coordinates. This method takes `~astropy.wcs.wcsapi.BaseLowLevelWCS.world_n_dim` scalars or arrays as input in units given by `~astropy.wcs.wcsapi.BaseLowLevelWCS.world_axis_units`. Returns `~astropy.wcs.wcsapi.BaseLowLevelWCS.pixel_n_dim` scalars or arrays. Note that pixel coordinates are assumed to be 0 at the center of the first pixel in each dimension. If a world coordinate does not have a matching pixel coordinate, NaN can be returned. The coordinates should be returned in the ``(x, y)`` order, where for an image, ``x`` is the horizontal coordinate and ``y`` is the vertical coordinate. If `~astropy.wcs.wcsapi.BaseLowLevelWCS.pixel_n_dim` is ``1``, this method returns a single scalar or array, otherwise a tuple of scalars or arrays is returned. """ @abc.abstractmethod def world_to_array_index_values(self, *world_arrays): """ Convert world coordinates to array indices. This is the same as `~astropy.wcs.wcsapi.BaseLowLevelWCS.world_to_pixel_values` except that the indices should be returned in ``(i, j)`` order, where for an image ``i`` is the row and ``j`` is the column (i.e. the opposite order to `~astropy.wcs.wcsapi.BaseLowLevelWCS.pixel_to_world_values`). The indices should be returned as rounded integers. If `~astropy.wcs.wcsapi.BaseLowLevelWCS.pixel_n_dim` is ``1``, this method returns a single scalar or array, otherwise a tuple of scalars or arrays is returned. """ @property @abc.abstractmethod def world_axis_object_components(self): """ A list with `~astropy.wcs.wcsapi.BaseLowLevelWCS.world_n_dim` elements giving information on constructing high-level objects for the world coordinates. Each element of the list is a tuple with three items: * The first is a name for the world object this world array corresponds to, which *must* match the string names used in `~astropy.wcs.wcsapi.BaseLowLevelWCS.world_axis_object_classes`. Note that names might appear twice because two world arrays might correspond to a single world object (e.g. a celestial coordinate might have both “ra” and “dec” arrays, which correspond to a single sky coordinate object). * The second element is either a string keyword argument name or a positional index for the corresponding class from `~astropy.wcs.wcsapi.BaseLowLevelWCS.world_axis_object_classes`. * The third argument is a string giving the name of the property to access on the corresponding class from `~astropy.wcs.wcsapi.BaseLowLevelWCS.world_axis_object_classes` in order to get numerical values. Alternatively, this argument can be a callable Python object that taks a high-level coordinate object and returns the numerical values suitable for passing to the low-level WCS transformation methods. See the document `APE 14: A shared Python interface for World Coordinate Systems <https://doi.org/10.5281/zenodo.1188875>`_ for examples. """ @property @abc.abstractmethod def world_axis_object_classes(self): """ A dictionary giving information on constructing high-level objects for the world coordinates. Each key of the dictionary is a string key from `~astropy.wcs.wcsapi.BaseLowLevelWCS.world_axis_object_components`, and each value is a tuple with three elements or four elements: * The first element of the tuple must be a class or a string specifying the fully-qualified name of a class, which will specify the actual Python object to be created. * The second element, should be a tuple specifying the positional arguments required to initialize the class. If `~astropy.wcs.wcsapi.BaseLowLevelWCS.world_axis_object_components` specifies that the world coordinates should be passed as a positional argument, this this tuple should include `None` placeholders for the world coordinates. * The third tuple element must be a dictionary with the keyword arguments required to initialize the class. * Optionally, for advanced use cases, the fourth element (if present) should be a callable Python object that gets called instead of the class and gets passed the positional and keyword arguments. It should return an object of the type of the first element in the tuple. Note that we don't require the classes to be Astropy classes since there is no guarantee that Astropy will have all the classes to represent all kinds of world coordinates. Furthermore, we recommend that the output be kept as human-readable as possible. The classes used here should have the ability to do conversions by passing an instance as the first argument to the same class with different arguments (e.g. ``Time(Time(...), scale='tai')``). This is a requirement for the implementation of the high-level interface. The second and third tuple elements for each value of this dictionary can in turn contain either instances of classes, or if necessary can contain serialized versions that should take the same form as the main classes described above (a tuple with three elements with the fully qualified name of the class, then the positional arguments and the keyword arguments). For low-level API objects implemented in Python, we recommend simply returning the actual objects (not the serialized form) for optimal performance. Implementations should either always or never use serialized classes to represent Python objects, and should indicate which of these they follow using the `~astropy.wcs.wcsapi.BaseLowLevelWCS.serialized_classes` attribute. See the document `APE 14: A shared Python interface for World Coordinate Systems <https://doi.org/10.5281/zenodo.1188875>`_ for examples . """ # The following three properties have default fallback implementations, so # they are not abstract. @property def array_shape(self): """ The shape of the data that the WCS applies to as a tuple of length `~astropy.wcs.wcsapi.BaseLowLevelWCS.pixel_n_dim` in ``(row, column)`` order (the convention for arrays in Python). If the WCS is valid in the context of a dataset with a particular shape, then this property can be used to store the shape of the data. This can be used for example if implementing slicing of WCS objects. This is an optional property, and it should return `None` if a shape is not known or relevant. """ return None @property def pixel_shape(self): """ The shape of the data that the WCS applies to as a tuple of length `~astropy.wcs.wcsapi.BaseLowLevelWCS.pixel_n_dim` in ``(x, y)`` order (where for an image, ``x`` is the horizontal coordinate and ``y`` is the vertical coordinate). If the WCS is valid in the context of a dataset with a particular shape, then this property can be used to store the shape of the data. This can be used for example if implementing slicing of WCS objects. This is an optional property, and it should return `None` if a shape is not known or relevant. If you are interested in getting a shape that is comparable to that of a Numpy array, you should use `~astropy.wcs.wcsapi.BaseLowLevelWCS.array_shape` instead. """ return None @property def pixel_bounds(self): """ The bounds (in pixel coordinates) inside which the WCS is defined, as a list with `~astropy.wcs.wcsapi.BaseLowLevelWCS.pixel_n_dim` ``(min, max)`` tuples. The bounds should be given in ``[(xmin, xmax), (ymin, ymax)]`` order. WCS solutions are sometimes only guaranteed to be accurate within a certain range of pixel values, for example when defining a WCS that includes fitted distortions. This is an optional property, and it should return `None` if a shape is not known or relevant. """ return None @property def pixel_axis_names(self): """ An iterable of strings describing the name for each pixel axis. If an axis does not have a name, an empty string should be returned (this is the default behavior for all axes if a subclass does not override this property). Note that these names are just for display purposes and are not standardized. """ return [''] * self.pixel_n_dim @property def world_axis_names(self): """ An iterable of strings describing the name for each world axis. If an axis does not have a name, an empty string should be returned (this is the default behavior for all axes if a subclass does not override this property). Note that these names are just for display purposes and are not standardized. For standardized axis types, see `~astropy.wcs.wcsapi.BaseLowLevelWCS.world_axis_physical_types`. """ return [''] * self.world_n_dim @property def axis_correlation_matrix(self): """ Returns an (`~astropy.wcs.wcsapi.BaseLowLevelWCS.world_n_dim`, `~astropy.wcs.wcsapi.BaseLowLevelWCS.pixel_n_dim`) matrix that indicates using booleans whether a given world coordinate depends on a given pixel coordinate. This defaults to a matrix where all elements are `True` in the absence of any further information. For completely independent axes, the diagonal would be `True` and all other entries `False`. """ return np.ones((self.world_n_dim, self.pixel_n_dim), dtype=bool) @property def serialized_classes(self): """ Indicates whether Python objects are given in serialized form or as actual Python objects. """ return False def _as_mpl_axes(self): """ Compatibility hook for Matplotlib and WCSAxes. With this method, one can do:: from astropy.wcs import WCS import matplotlib.pyplot as plt wcs = WCS('filename.fits') fig = plt.figure() ax = fig.add_axes([0.15, 0.1, 0.8, 0.8], projection=wcs) ... and this will generate a plot with the correct WCS coordinates on the axes. """ from astropy.visualization.wcsaxes import WCSAxes return WCSAxes, {'wcs': self} UCDS_FILE = os.path.join(os.path.dirname(__file__), 'data', 'ucds.txt') with open(UCDS_FILE) as f: VALID_UCDS = set([x.strip() for x in f.read().splitlines()[1:]]) def validate_physical_types(physical_types): """ Validate a list of physical types against the UCD1+ standard """ for physical_type in physical_types: if (physical_type is not None and physical_type not in VALID_UCDS and not physical_type.startswith('custom:')): raise ValueError(f"Invalid physical type: {physical_type}")
bsd-3-clause
Garrett-R/scikit-learn
sklearn/cluster/tests/test_k_means.py
8
25170
"""Testing for K-means""" import sys import numpy as np from scipy import sparse as sp from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import SkipTest from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_warns from sklearn.utils.testing import if_not_mac_os from sklearn.utils.extmath import row_norms from sklearn.metrics.cluster import v_measure_score from sklearn.cluster import KMeans, k_means from sklearn.cluster import MiniBatchKMeans from sklearn.cluster.k_means_ import _labels_inertia from sklearn.cluster.k_means_ import _mini_batch_step from sklearn.datasets.samples_generator import make_blobs from sklearn.externals.six.moves import cStringIO as StringIO # non centered, sparse centers to check the centers = np.array([ [0.0, 5.0, 0.0, 0.0, 0.0], [1.0, 1.0, 4.0, 0.0, 0.0], [1.0, 0.0, 0.0, 5.0, 1.0], ]) n_samples = 100 n_clusters, n_features = centers.shape X, true_labels = make_blobs(n_samples=n_samples, centers=centers, cluster_std=1., random_state=42) X_csr = sp.csr_matrix(X) def test_kmeans_dtype(): rnd = np.random.RandomState(0) X = rnd.normal(size=(40, 2)) X = (X * 10).astype(np.uint8) km = KMeans(n_init=1).fit(X) pred_x = assert_warns(RuntimeWarning, km.predict, X) assert_array_equal(km.labels_, pred_x) def test_labels_assignment_and_inertia(): # pure numpy implementation as easily auditable reference gold # implementation rng = np.random.RandomState(42) noisy_centers = centers + rng.normal(size=centers.shape) labels_gold = - np.ones(n_samples, dtype=np.int) mindist = np.empty(n_samples) mindist.fill(np.infty) for center_id in range(n_clusters): dist = np.sum((X - noisy_centers[center_id]) ** 2, axis=1) labels_gold[dist < mindist] = center_id mindist = np.minimum(dist, mindist) inertia_gold = mindist.sum() assert_true((mindist >= 0.0).all()) assert_true((labels_gold != -1).all()) # perform label assignment using the dense array input x_squared_norms = (X ** 2).sum(axis=1) labels_array, inertia_array = _labels_inertia( X, x_squared_norms, noisy_centers) assert_array_almost_equal(inertia_array, inertia_gold) assert_array_equal(labels_array, labels_gold) # perform label assignment using the sparse CSR input x_squared_norms_from_csr = row_norms(X_csr, squared=True) labels_csr, inertia_csr = _labels_inertia( X_csr, x_squared_norms_from_csr, noisy_centers) assert_array_almost_equal(inertia_csr, inertia_gold) assert_array_equal(labels_csr, labels_gold) def test_minibatch_update_consistency(): """Check that dense and sparse minibatch update give the same results""" rng = np.random.RandomState(42) old_centers = centers + rng.normal(size=centers.shape) new_centers = old_centers.copy() new_centers_csr = old_centers.copy() counts = np.zeros(new_centers.shape[0], dtype=np.int32) counts_csr = np.zeros(new_centers.shape[0], dtype=np.int32) x_squared_norms = (X ** 2).sum(axis=1) x_squared_norms_csr = row_norms(X_csr, squared=True) buffer = np.zeros(centers.shape[1], dtype=np.double) buffer_csr = np.zeros(centers.shape[1], dtype=np.double) # extract a small minibatch X_mb = X[:10] X_mb_csr = X_csr[:10] x_mb_squared_norms = x_squared_norms[:10] x_mb_squared_norms_csr = x_squared_norms_csr[:10] # step 1: compute the dense minibatch update old_inertia, incremental_diff = _mini_batch_step( X_mb, x_mb_squared_norms, new_centers, counts, buffer, 1, None, random_reassign=False) assert_greater(old_inertia, 0.0) # compute the new inertia on the same batch to check that it decreased labels, new_inertia = _labels_inertia( X_mb, x_mb_squared_norms, new_centers) assert_greater(new_inertia, 0.0) assert_less(new_inertia, old_inertia) # check that the incremental difference computation is matching the # final observed value effective_diff = np.sum((new_centers - old_centers) ** 2) assert_almost_equal(incremental_diff, effective_diff) # step 2: compute the sparse minibatch update old_inertia_csr, incremental_diff_csr = _mini_batch_step( X_mb_csr, x_mb_squared_norms_csr, new_centers_csr, counts_csr, buffer_csr, 1, None, random_reassign=False) assert_greater(old_inertia_csr, 0.0) # compute the new inertia on the same batch to check that it decreased labels_csr, new_inertia_csr = _labels_inertia( X_mb_csr, x_mb_squared_norms_csr, new_centers_csr) assert_greater(new_inertia_csr, 0.0) assert_less(new_inertia_csr, old_inertia_csr) # check that the incremental difference computation is matching the # final observed value effective_diff = np.sum((new_centers_csr - old_centers) ** 2) assert_almost_equal(incremental_diff_csr, effective_diff) # step 3: check that sparse and dense updates lead to the same results assert_array_equal(labels, labels_csr) assert_array_almost_equal(new_centers, new_centers_csr) assert_almost_equal(incremental_diff, incremental_diff_csr) assert_almost_equal(old_inertia, old_inertia_csr) assert_almost_equal(new_inertia, new_inertia_csr) def _check_fitted_model(km): # check that the number of clusters centers and distinct labels match # the expectation centers = km.cluster_centers_ assert_equal(centers.shape, (n_clusters, n_features)) labels = km.labels_ assert_equal(np.unique(labels).shape[0], n_clusters) # check that the labels assignment are perfect (up to a permutation) assert_equal(v_measure_score(true_labels, labels), 1.0) assert_greater(km.inertia_, 0.0) # check error on dataset being too small assert_raises(ValueError, km.fit, [[0., 1.]]) def test_k_means_plus_plus_init(): km = KMeans(init="k-means++", n_clusters=n_clusters, random_state=42).fit(X) _check_fitted_model(km) def test_k_means_check_fitted(): km = KMeans(n_clusters=n_clusters, random_state=42) assert_raises(AttributeError, km._check_fitted) def test_k_means_new_centers(): # Explore the part of the code where a new center is reassigned X = np.array([[0, 0, 1, 1], [0, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 1, 0, 0]]) labels = [0, 1, 2, 1, 1, 2] bad_centers = np.array([[+0, 1, 0, 0], [.2, 0, .2, .2], [+0, 0, 0, 0]]) km = KMeans(n_clusters=3, init=bad_centers, n_init=1, max_iter=10, random_state=1) for this_X in (X, sp.coo_matrix(X)): km.fit(this_X) this_labels = km.labels_ # Reorder the labels so that the first instance is in cluster 0, # the second in cluster 1, ... this_labels = np.unique(this_labels, return_index=True)[1][this_labels] np.testing.assert_array_equal(this_labels, labels) def _has_blas_lib(libname): from numpy.distutils.system_info import get_info return libname in get_info('blas_opt').get('libraries', []) @if_not_mac_os() def test_k_means_plus_plus_init_2_jobs(): if _has_blas_lib('openblas'): raise SkipTest('Multi-process bug with OpenBLAS (see issue #636)') km = KMeans(init="k-means++", n_clusters=n_clusters, n_jobs=2, random_state=42).fit(X) _check_fitted_model(km) def test_k_means_precompute_distances_flag(): # check that a warning is raised if the precompute_distances flag is not # supported km = KMeans(precompute_distances="wrong") assert_raises(ValueError, km.fit, X) def test_k_means_plus_plus_init_sparse(): km = KMeans(init="k-means++", n_clusters=n_clusters, random_state=42) km.fit(X_csr) _check_fitted_model(km) def test_k_means_random_init(): km = KMeans(init="random", n_clusters=n_clusters, random_state=42) km.fit(X) _check_fitted_model(km) def test_k_means_random_init_sparse(): km = KMeans(init="random", n_clusters=n_clusters, random_state=42) km.fit(X_csr) _check_fitted_model(km) def test_k_means_plus_plus_init_not_precomputed(): km = KMeans(init="k-means++", n_clusters=n_clusters, random_state=42, precompute_distances=False).fit(X) _check_fitted_model(km) def test_k_means_random_init_not_precomputed(): km = KMeans(init="random", n_clusters=n_clusters, random_state=42, precompute_distances=False).fit(X) _check_fitted_model(km) def test_k_means_perfect_init(): km = KMeans(init=centers.copy(), n_clusters=n_clusters, random_state=42, n_init=1) km.fit(X) _check_fitted_model(km) def test_mb_k_means_plus_plus_init_dense_array(): mb_k_means = MiniBatchKMeans(init="k-means++", n_clusters=n_clusters, random_state=42) mb_k_means.fit(X) _check_fitted_model(mb_k_means) def test_mb_kmeans_verbose(): mb_k_means = MiniBatchKMeans(init="k-means++", n_clusters=n_clusters, random_state=42, verbose=1) old_stdout = sys.stdout sys.stdout = StringIO() try: mb_k_means.fit(X) finally: sys.stdout = old_stdout def test_mb_k_means_plus_plus_init_sparse_matrix(): mb_k_means = MiniBatchKMeans(init="k-means++", n_clusters=n_clusters, random_state=42) mb_k_means.fit(X_csr) _check_fitted_model(mb_k_means) def test_minibatch_init_with_large_k(): mb_k_means = MiniBatchKMeans(init='k-means++', init_size=10, n_clusters=20) # Check that a warning is raised, as the number clusters is larger # than the init_size assert_warns(RuntimeWarning, mb_k_means.fit, X) def test_minibatch_k_means_random_init_dense_array(): # increase n_init to make random init stable enough mb_k_means = MiniBatchKMeans(init="random", n_clusters=n_clusters, random_state=42, n_init=10).fit(X) _check_fitted_model(mb_k_means) def test_minibatch_k_means_random_init_sparse_csr(): # increase n_init to make random init stable enough mb_k_means = MiniBatchKMeans(init="random", n_clusters=n_clusters, random_state=42, n_init=10).fit(X_csr) _check_fitted_model(mb_k_means) def test_minibatch_k_means_perfect_init_dense_array(): mb_k_means = MiniBatchKMeans(init=centers.copy(), n_clusters=n_clusters, random_state=42, n_init=1).fit(X) _check_fitted_model(mb_k_means) def test_minibatch_k_means_init_multiple_runs_with_explicit_centers(): mb_k_means = MiniBatchKMeans(init=centers.copy(), n_clusters=n_clusters, random_state=42, n_init=10) assert_warns(RuntimeWarning, mb_k_means.fit, X) def test_minibatch_k_means_perfect_init_sparse_csr(): mb_k_means = MiniBatchKMeans(init=centers.copy(), n_clusters=n_clusters, random_state=42, n_init=1).fit(X_csr) _check_fitted_model(mb_k_means) def test_minibatch_sensible_reassign_fit(): # check if identical initial clusters are reassigned # also a regression test for when there are more desired reassignments than # samples. zeroed_X, true_labels = make_blobs(n_samples=100, centers=5, cluster_std=1., random_state=42) zeroed_X[::2, :] = 0 mb_k_means = MiniBatchKMeans(n_clusters=20, batch_size=10, random_state=42, verbose=10, init="random") mb_k_means.fit(zeroed_X) # there should not be too many exact zero cluster centers assert_greater(mb_k_means.cluster_centers_.any(axis=1).sum(), 10) # do the same with batch-size > X.shape[0] (regression test) mb_k_means = MiniBatchKMeans(n_clusters=20, batch_size=201, random_state=42, verbose=10, init="random") mb_k_means.fit(zeroed_X) # there should not be too many exact zero cluster centers assert_greater(mb_k_means.cluster_centers_.any(axis=1).sum(), 10) def test_minibatch_sensible_reassign_partial_fit(): zeroed_X, true_labels = make_blobs(n_samples=n_samples, centers=5, cluster_std=1., random_state=42) zeroed_X[::2, :] = 0 mb_k_means = MiniBatchKMeans(n_clusters=20, random_state=42, verbose=10, init="random") for i in range(100): mb_k_means.partial_fit(zeroed_X) # there should not be too many exact zero cluster centers assert_greater(mb_k_means.cluster_centers_.any(axis=1).sum(), 10) def test_minibatch_reassign(): # Give a perfect initialization, but a large reassignment_ratio, # as a result all the centers should be reassigned and the model # should not longer be good for this_X in (X, X_csr): mb_k_means = MiniBatchKMeans(n_clusters=n_clusters, batch_size=100, random_state=42) mb_k_means.fit(this_X) score_before = mb_k_means.score(this_X) try: old_stdout = sys.stdout sys.stdout = StringIO() # Turn on verbosity to smoke test the display code _mini_batch_step(this_X, (X ** 2).sum(axis=1), mb_k_means.cluster_centers_, mb_k_means.counts_, np.zeros(X.shape[1], np.double), False, distances=np.zeros(X.shape[0]), random_reassign=True, random_state=42, reassignment_ratio=1, verbose=True) finally: sys.stdout = old_stdout assert_greater(score_before, mb_k_means.score(this_X)) # Give a perfect initialization, with a small reassignment_ratio, # no center should be reassigned for this_X in (X, X_csr): mb_k_means = MiniBatchKMeans(n_clusters=n_clusters, batch_size=100, init=centers.copy(), random_state=42, n_init=1) mb_k_means.fit(this_X) clusters_before = mb_k_means.cluster_centers_ # Turn on verbosity to smoke test the display code _mini_batch_step(this_X, (X ** 2).sum(axis=1), mb_k_means.cluster_centers_, mb_k_means.counts_, np.zeros(X.shape[1], np.double), False, distances=np.zeros(X.shape[0]), random_reassign=True, random_state=42, reassignment_ratio=1e-15) assert_array_almost_equal(clusters_before, mb_k_means.cluster_centers_) def test_minibatch_with_many_reassignments(): # Test for the case that the number of clusters to reassign is bigger # than the batch_size n_samples = 550 rnd = np.random.RandomState(42) X = rnd.uniform(size=(n_samples, 10)) # Check that the fit works if n_clusters is bigger than the batch_size. # Run the test with 550 clusters and 550 samples, because it turned out # that this values ensure that the number of clusters to reassign # is always bigger than the batch_size n_clusters = 550 MiniBatchKMeans(n_clusters=n_clusters, batch_size=100, init_size=n_samples, random_state=42).fit(X) def test_sparse_mb_k_means_callable_init(): def test_init(X, k, random_state): return centers # Small test to check that giving the wrong number of centers # raises a meaningful error assert_raises(ValueError, MiniBatchKMeans(init=test_init, random_state=42).fit, X_csr) # Now check that the fit actually works mb_k_means = MiniBatchKMeans(n_clusters=3, init=test_init, random_state=42).fit(X_csr) _check_fitted_model(mb_k_means) def test_mini_batch_k_means_random_init_partial_fit(): km = MiniBatchKMeans(n_clusters=n_clusters, init="random", random_state=42) # use the partial_fit API for online learning for X_minibatch in np.array_split(X, 10): km.partial_fit(X_minibatch) # compute the labeling on the complete dataset labels = km.predict(X) assert_equal(v_measure_score(true_labels, labels), 1.0) def test_minibatch_default_init_size(): mb_k_means = MiniBatchKMeans(init=centers.copy(), n_clusters=n_clusters, batch_size=10, random_state=42, n_init=1).fit(X) assert_equal(mb_k_means.init_size_, 3 * mb_k_means.batch_size) _check_fitted_model(mb_k_means) def test_minibatch_tol(): mb_k_means = MiniBatchKMeans(n_clusters=n_clusters, batch_size=10, random_state=42, tol=.01).fit(X) _check_fitted_model(mb_k_means) def test_minibatch_set_init_size(): mb_k_means = MiniBatchKMeans(init=centers.copy(), n_clusters=n_clusters, init_size=666, random_state=42, n_init=1).fit(X) assert_equal(mb_k_means.init_size, 666) assert_equal(mb_k_means.init_size_, n_samples) _check_fitted_model(mb_k_means) def test_k_means_invalid_init(): km = KMeans(init="invalid", n_init=1, n_clusters=n_clusters) assert_raises(ValueError, km.fit, X) def test_mini_match_k_means_invalid_init(): km = MiniBatchKMeans(init="invalid", n_init=1, n_clusters=n_clusters) assert_raises(ValueError, km.fit, X) def test_k_means_copyx(): """Check if copy_x=False returns nearly equal X after de-centering.""" my_X = X.copy() km = KMeans(copy_x=False, n_clusters=n_clusters, random_state=42) km.fit(my_X) _check_fitted_model(km) # check if my_X is centered assert_array_almost_equal(my_X, X) def test_k_means_non_collapsed(): """Check k_means with a bad initialization does not yield a singleton Starting with bad centers that are quickly ignored should not result in a repositioning of the centers to the center of mass that would lead to collapsed centers which in turns make the clustering dependent of the numerical unstabilities. """ my_X = np.array([[1.1, 1.1], [0.9, 1.1], [1.1, 0.9], [0.9, 1.1]]) array_init = np.array([[1.0, 1.0], [5.0, 5.0], [-5.0, -5.0]]) km = KMeans(init=array_init, n_clusters=3, random_state=42, n_init=1) km.fit(my_X) # centers must not been collapsed assert_equal(len(np.unique(km.labels_)), 3) centers = km.cluster_centers_ assert_true(np.linalg.norm(centers[0] - centers[1]) >= 0.1) assert_true(np.linalg.norm(centers[0] - centers[2]) >= 0.1) assert_true(np.linalg.norm(centers[1] - centers[2]) >= 0.1) def test_predict(): km = KMeans(n_clusters=n_clusters, random_state=42) km.fit(X) # sanity check: predict centroid labels pred = km.predict(km.cluster_centers_) assert_array_equal(pred, np.arange(n_clusters)) # sanity check: re-predict labeling for training set samples pred = km.predict(X) assert_array_equal(pred, km.labels_) # re-predict labels for training set using fit_predict pred = km.fit_predict(X) assert_array_equal(pred, km.labels_) def test_score(): km1 = KMeans(n_clusters=n_clusters, max_iter=1, random_state=42) s1 = km1.fit(X).score(X) km2 = KMeans(n_clusters=n_clusters, max_iter=10, random_state=42) s2 = km2.fit(X).score(X) assert_greater(s2, s1) def test_predict_minibatch_dense_input(): mb_k_means = MiniBatchKMeans(n_clusters=n_clusters, random_state=40).fit(X) # sanity check: predict centroid labels pred = mb_k_means.predict(mb_k_means.cluster_centers_) assert_array_equal(pred, np.arange(n_clusters)) # sanity check: re-predict labeling for training set samples pred = mb_k_means.predict(X) assert_array_equal(mb_k_means.predict(X), mb_k_means.labels_) def test_predict_minibatch_kmeanspp_init_sparse_input(): mb_k_means = MiniBatchKMeans(n_clusters=n_clusters, init='k-means++', n_init=10).fit(X_csr) # sanity check: re-predict labeling for training set samples assert_array_equal(mb_k_means.predict(X_csr), mb_k_means.labels_) # sanity check: predict centroid labels pred = mb_k_means.predict(mb_k_means.cluster_centers_) assert_array_equal(pred, np.arange(n_clusters)) # check that models trained on sparse input also works for dense input at # predict time assert_array_equal(mb_k_means.predict(X), mb_k_means.labels_) def test_predict_minibatch_random_init_sparse_input(): mb_k_means = MiniBatchKMeans(n_clusters=n_clusters, init='random', n_init=10).fit(X_csr) # sanity check: re-predict labeling for training set samples assert_array_equal(mb_k_means.predict(X_csr), mb_k_means.labels_) # sanity check: predict centroid labels pred = mb_k_means.predict(mb_k_means.cluster_centers_) assert_array_equal(pred, np.arange(n_clusters)) # check that models trained on sparse input also works for dense input at # predict time assert_array_equal(mb_k_means.predict(X), mb_k_means.labels_) def test_input_dtypes(): X_list = [[0, 0], [10, 10], [12, 9], [-1, 1], [2, 0], [8, 10]] X_int = np.array(X_list, dtype=np.int32) X_int_csr = sp.csr_matrix(X_int) init_int = X_int[:2] fitted_models = [ KMeans(n_clusters=2).fit(X_list), KMeans(n_clusters=2).fit(X_int), KMeans(n_clusters=2, init=init_int, n_init=1).fit(X_list), KMeans(n_clusters=2, init=init_int, n_init=1).fit(X_int), # mini batch kmeans is very unstable on such a small dataset hence # we use many inits MiniBatchKMeans(n_clusters=2, n_init=10, batch_size=2).fit(X_list), MiniBatchKMeans(n_clusters=2, n_init=10, batch_size=2).fit(X_int), MiniBatchKMeans(n_clusters=2, n_init=10, batch_size=2).fit(X_int_csr), MiniBatchKMeans(n_clusters=2, batch_size=2, init=init_int, n_init=1).fit(X_list), MiniBatchKMeans(n_clusters=2, batch_size=2, init=init_int, n_init=1).fit(X_int), MiniBatchKMeans(n_clusters=2, batch_size=2, init=init_int, n_init=1).fit(X_int_csr), ] expected_labels = [0, 1, 1, 0, 0, 1] scores = np.array([v_measure_score(expected_labels, km.labels_) for km in fitted_models]) assert_array_equal(scores, np.ones(scores.shape[0])) def test_transform(): km = KMeans(n_clusters=n_clusters) km.fit(X) X_new = km.transform(km.cluster_centers_) for c in range(n_clusters): assert_equal(X_new[c, c], 0) for c2 in range(n_clusters): if c != c2: assert_greater(X_new[c, c2], 0) def test_fit_transform(): X1 = KMeans(n_clusters=3, random_state=51).fit(X).transform(X) X2 = KMeans(n_clusters=3, random_state=51).fit_transform(X) assert_array_equal(X1, X2) def test_n_init(): """Check that increasing the number of init increases the quality""" n_runs = 5 n_init_range = [1, 5, 10] inertia = np.zeros((len(n_init_range), n_runs)) for i, n_init in enumerate(n_init_range): for j in range(n_runs): km = KMeans(n_clusters=n_clusters, init="random", n_init=n_init, random_state=j).fit(X) inertia[i, j] = km.inertia_ inertia = inertia.mean(axis=1) failure_msg = ("Inertia %r should be decreasing" " when n_init is increasing.") % list(inertia) for i in range(len(n_init_range) - 1): assert_true(inertia[i] >= inertia[i + 1], failure_msg) def test_k_means_function(): # test calling the k_means function directly # catch output old_stdout = sys.stdout sys.stdout = StringIO() try: cluster_centers, labels, inertia = k_means(X, n_clusters=n_clusters, verbose=True) finally: sys.stdout = old_stdout centers = cluster_centers assert_equal(centers.shape, (n_clusters, n_features)) labels = labels assert_equal(np.unique(labels).shape[0], n_clusters) # check that the labels assignment are perfect (up to a permutation) assert_equal(v_measure_score(true_labels, labels), 1.0) assert_greater(inertia, 0.0) # check warning when centers are passed assert_warns(RuntimeWarning, k_means, X, n_clusters=n_clusters, init=centers) # to many clusters desired assert_raises(ValueError, k_means, X, n_clusters=X.shape[0] + 1)
bsd-3-clause
RLPAgroScience/ROIseries
tests/test_ROIseries.py
1
8862
import io import ROIseries as rs import pandas as pd import pytest from pandas.util.testing import assert_frame_equal from sklearn.pipeline import make_pipeline from sklearn.metrics import confusion_matrix import numpy as np # ---------------------------------------------------------------------------------------------------------------------- # Fixtures # note: as DataFrames are mutable do not use scope="module" to prevent interactions between tests @pytest.fixture() def df(): df1 = pd.DataFrame([[10, 11, 12, 13, 14], [70, 71, 72, 73, 74], [50, 51, 52, 53, 54]], ["ID_1", "ID_7", "ID_5"], ["Feature_1_2457350.0000000000", "Feature_1_2457362.0000000000", "Feature_1_2457374.0000000000", "Feature_1_2457386.0000000000", "Feature_1_2457398.0000000000"]) df2 = pd.DataFrame([[15, 16, 17, 18, 19], [75, 76, 77, 78, 79], [55, 56, 57, 58, 59]], ["ID_1", "ID_7", "ID_5"], ["Feature_2_2457350.0000000000", "Feature_2_2457362.0000000000", "Feature_2_2457374.0000000000", "Feature_2_2457386.0000000000", "Feature_2_2457398.0000000000"]) df = pd.concat([df1, df2], axis=1) df.index.names = ['ID'] df.columns.names = ['Feature_Time'] return df @pytest.fixture() def time(df): df_time = rs.feature_transformers.timeindex_from_colsuffix(df) time = df_time.index.get_level_values('time') return time @pytest.fixture() def df_trf(): csv = """,ID_1,ID_1,ID_1,ID_1,ID_1,ID_1,ID_7,ID_7,ID_7,ID_7,ID_7,ID_7,ID_5,ID_5,ID_5,ID_5,ID_5,ID_5 ,Feature_1,Feature_1,Feature_1,Feature_2,Feature_2,Feature_2,Feature_1,Feature_1,Feature_1,Feature_2,Feature_2,Feature_2,Feature_1,Feature_1,Feature_1,Feature_2,Feature_2,Feature_2 ,m1,m2,p1,m1,m2,p1,m1,m2,p1,m1,m2,p1,m1,m2,p1,m1,m2,p1 2015-11-23,10,NA,11,15,NA,16,70,NA,71,75,NA,76,50,NA,51,55,NA,56 2015-12-05,11,10,12,16,15,17,71,70,72,76,75,77,51,50,52,56,55,57 2015-12-17,12,11,13,17,16,18,72,71,73,77,76,78,52,51,53,57,56,58 2015-12-29,13,12,14,18,17,19,73,72,74,78,77,79,53,52,54,58,57,59 2016-01-10,14,13,NA,19,18,NA,74,73,NA,79,78,NA,54,53,NA,59,58,NA """ df_trf = pd.read_csv(io.StringIO(csv), index_col=[0], header=[0, 1, 2]) df_trf.index = pd.DatetimeIndex(df_trf.index, name='time', freq='12D') df_trf.columns.names = ['ID', 'feature', 'trf_label'] rs.sub_routines.sort_index_columns_inplace(df_trf) df_trf = df_trf.stack('ID') return df_trf @pytest.fixture() def metrics(): s_1_true = [True, True, False, False, False, False, False, False, False, True, True, True, True, True] s_1_pred = [True, True, False, False, False, False, False, False, True, False, False, False, False, False] s_1_tn, s_1_fp, s_1_fn, s_1_tp = confusion_matrix(s_1_true, s_1_pred).ravel() s_1_n = len(s_1_true) s_2_true = [True, True, True, True, False, False, False, False, False, False, False, False, False, False, False, True, True, True, True, True, True, True] s_2_pred = [True, True, True, True, False, False, False, False, False, False, False, False, True, True, True, False, False, False, False, False, False, False] s_2_tn, s_2_fp, s_2_fn, s_2_tp = confusion_matrix(s_2_true, s_2_pred).ravel() s_2_n = len(s_2_true) y_true = pd.Series(np.array(s_1_true + s_2_true), index=pd.Index(np.array(['s_1'] * len(s_1_true) + ['s_2'] * len(s_2_true)), name='strata')) y_pred = np.array(s_1_pred + s_2_pred) metrics = {'y_true':y_true, 'y_pred':y_pred, "s_1_tn":s_1_tn, "s_1_fp":s_1_fp, "s_1_fn":s_1_fn, "s_1_tp":s_1_tp, "s_1_n":s_1_n, "s_2_tn":s_2_tn, "s_2_fp":s_2_fp, "s_2_fn":s_2_fn, "s_2_tp":s_2_tp, "s_2_n":s_2_n} return metrics # ---------------------------------------------------------------------------------------------------------------------- # Tests def test_timeindex_from_colsuffix_SideEffects(df): df_copy = df.copy() _ = rs.feature_transformers.timeindex_from_colsuffix(df) assert_frame_equal(df, df_copy) def test_timeindex_from_colsuffix_datetime(df): result = rs.feature_transformers.timeindex_from_colsuffix(df) assert type(result.index) == pd.core.indexes.datetimes.DatetimeIndex def test_reltime_from_absdate_freq(time): reltime, freq = rs.feature_transformers.reltime_from_absdate(time) assert freq == '12D' def test_reltime_from_absdate_reltime(time): reltime, freq = rs.feature_transformers.reltime_from_absdate(time) assert reltime.equals(pd.Index([0.0, 1.0, 2.0, 3.0, 4.0], dtype='float64', name='reltime')) def test_trf_SideEffects(df, df_trf): df_copy = df.copy() df_time = rs.feature_transformers.timeindex_from_colsuffix(df).stack('ID') shift_dict = dict(zip(["m2", "m1", "p1"], [-1, 0, 1])) t1 = rs.feature_transformers.TAFtoTRF(shift_dict, "ID") p1 = make_pipeline(t1) result = p1.fit_transform(df_time) assert_frame_equal(df, df_copy) def test_trf_result(df, df_trf): df_time = rs.feature_transformers.timeindex_from_colsuffix(df) rs.sub_routines.sort_index_columns_inplace(df_time) df_time = df_time.stack('ID') shift_dict = dict(zip(["m2", "m1", "p1"], [-1, 0, 1])) t1 = rs.feature_transformers.TAFtoTRF(shift_dict, 'ID') p1 = make_pipeline(t1) result = p1.fit_transform(df_time) # integers are converted to float during shifting to allow NaN values, which is expected behaviour assert_frame_equal(result, df_trf, check_dtype=False) def test_doy_circular(): """ doy_circular should return evenly distributed euclidean 2D distances across (leap) years """ doy_circular = rs.feature_transformers.doy_circular(pd.date_range('2015-01-01', '2016-12-31')) doy_sin_diff = np.diff(doy_circular['doy_sin']) ** 2 doy_cos_diff = np.diff(doy_circular['doy_cos']) ** 2 distance = np.sqrt(doy_sin_diff + doy_cos_diff) # leap / no leap years have a slightly different distance between days, which is expected: leap_diff = ((1 / 365) - (1 / 366)) * np.pi # figure out the significant number of digits: position of the first decimal place where leap_diff is not 0 sign_digit = (np.where(np.array([int((10 ** i) * leap_diff) for i in range(1, 10)])))[0][0] # assert that there is only one unique distances (considering the sign_digits) assert len(np.unique(np.round(distance, sign_digit))) == 1 def test_errors_per_stratum_count(metrics): m = metrics # n_errors, n_samples = ([s_1_fp + s_1_fn, s_2_fp + s_2_fn], [len(s_1_true), len(s_2_true)]) n_errors = rs.scoring_metrics.errors_per_stratum_count(m["y_true"], m["y_pred"], "strata") assert n_errors == np.mean([m["s_1_fp"] + m["s_1_fn"], m["s_2_fp"] + m["s_2_fn"]]) def test_errors_per_stratum_count_normalize(metrics): m = metrics normalize_denominator = 7 # e.g. days/week fraction_s_1 = m['s_1_n'] / normalize_denominator fraction_s_2 = m['s_2_n'] / normalize_denominator normalized_errors = np.mean([(m["s_1_fp"] + m["s_1_fn"]) / fraction_s_1, (m["s_2_fp"] + m["s_2_fn"]) / fraction_s_2]) n_errors = rs.scoring_metrics.errors_per_stratum_count(m["y_true"], m["y_pred"], "strata", normalize_denominator=normalize_denominator) assert n_errors == normalized_errors def test_idx_corners(): size = 3 arr = np.zeros((size, size)) directions_results = { 'up_right': np.array([ [1, 1, 1], [0, 1, 1], [0, 0, 1]]), 'down_right': np.array([ [0, 0, 1], [0, 1, 1], [1, 1, 1]]), 'down_left': np.array([ [1, 0, 0], [1, 1, 0], [1, 1, 1]]), 'up_left': np.array([ [1, 1, 1], [1, 1, 0], [1, 0, 0]]) } for direction, result in directions_results.items(): temp = arr.copy() temp[rs.sub_routines.idx_corners(size, direction)] = 1 np.testing.assert_array_equal(temp, result) def test_drop_correlated(): ten = np.arange(10) ten_reverse = ten[::-1] ten_drop = ten.copy() ten_drop[3:6] = [5, 4, 3] arr = (np.array([ten, ten_reverse, ten_drop])).transpose() df = pd.DataFrame(np.concatenate([arr, arr], axis=1)) transformer = rs.feature_transformers.DropCorrelated(df.corr(), 0.9, absolute_correlation=False) result = transformer.fit_transform(df) pd.testing.assert_frame_equal(result, pd.DataFrame(np.array([ten, ten_reverse]).transpose())) transformer = rs.feature_transformers.DropCorrelated(df.corr(), 0.9, absolute_correlation=True) result = transformer.fit_transform(df) pd.testing.assert_frame_equal(result, pd.DataFrame(np.array([ten]).transpose()))
agpl-3.0
asurve/incubator-systemml
scripts/perftest/python/google_docs/stats.py
15
3540
#!/usr/bin/env python3 # ------------------------------------------------------------- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # # ------------------------------------------------------------- import argparse import os import pprint from os.path import join import matplotlib.pyplot as plt from gdocs_utils import auth # Dict # {algo_name : [algo_1.0': t1, 'algo_2.0': t2]} def get_formatted_data(sheet_data): """ Read all the data from google sheets and transforms it into a dictionary that can be use for plotting later """ algo_dict = {} for i in sheet_data: inn_count = 0 data = [] for key, val in i.items(): inn_count += 1 if inn_count < 3: data.append(key) data.append(val) if inn_count == 2: t1, v1, _, v2 = data if len(str(v2)) > 0: if v1 not in algo_dict: algo_dict[v1] = [{t1: v2}] else: algo_dict[v1].append({t1: v2}) inn_count = 0 data = [] return algo_dict def plot(x, y, xlab, ylab, title): """ Save plots to the current folder based on the arguments """ CWD = os.getcwd() PATH = join(CWD, title) width = .35 plt.bar(x, y, color="red", width=width) plt.xticks(x) plt.xlabel(xlab) plt.ylabel(ylab) plt.title(title) plt.savefig(PATH + '.png') print('Plot {} generated'.format(title)) return plt # Example Usage # ./stats.py --auth ../key/client_json.json --exec-mode singlenode if __name__ == '__main__': execution_mode = ['hybrid_spark', 'singlenode'] cparser = argparse.ArgumentParser(description='System-ML Statistics Script') cparser.add_argument('--auth', help='Location to read auth file', required=True, metavar='') cparser.add_argument('--exec-type', help='Execution mode', choices=execution_mode, required=True, metavar='') cparser.add_argument('--plot', help='Algorithm to plot', metavar='') args = cparser.parse_args() sheet = auth(args.auth, args.exec_type) all_data = sheet.get_all_records() plot_data = get_formatted_data(all_data) if args.plot is not None: print(plot_data[args.plot]) title = args.plot ylab = 'Time in sec' xlab = 'Version' x = [] y = [] for i in plot_data[args.plot]: version = list(i.keys())[0] time = list(i.values())[0] y.append(time) x.append(version) x = list(map(lambda x: float(x.split('_')[1]), x)) plot(x, y, xlab, ylab, title) else: pprint.pprint(plot_data, width=1)
apache-2.0
xyguo/scikit-learn
examples/neural_networks/plot_mnist_filters.py
57
2195
""" ===================================== Visualization of MLP weights on MNIST ===================================== Sometimes looking at the learned coefficients of a neural network can provide insight into the learning behavior. For example if weights look unstructured, maybe some were not used at all, or if very large coefficients exist, maybe regularization was too low or the learning rate too high. This example shows how to plot some of the first layer weights in a MLPClassifier trained on the MNIST dataset. The input data consists of 28x28 pixel handwritten digits, leading to 784 features in the dataset. Therefore the first layer weight matrix have the shape (784, hidden_layer_sizes[0]). We can therefore visualize a single column of the weight matrix as a 28x28 pixel image. To make the example run faster, we use very few hidden units, and train only for a very short time. Training longer would result in weights with a much smoother spatial appearance. """ print(__doc__) import matplotlib.pyplot as plt from sklearn.datasets import fetch_mldata from sklearn.neural_network import MLPClassifier mnist = fetch_mldata("MNIST original") # rescale the data, use the traditional train/test split X, y = mnist.data / 255., mnist.target X_train, X_test = X[:60000], X[60000:] y_train, y_test = y[:60000], y[60000:] # mlp = MLPClassifier(hidden_layer_sizes=(100, 100), max_iter=400, alpha=1e-4, # algorithm='sgd', verbose=10, tol=1e-4, random_state=1) mlp = MLPClassifier(hidden_layer_sizes=(50,), max_iter=10, alpha=1e-4, algorithm='sgd', verbose=10, tol=1e-4, random_state=1, learning_rate_init=.1) mlp.fit(X_train, y_train) print("Training set score: %f" % mlp.score(X_train, y_train)) print("Test set score: %f" % mlp.score(X_test, y_test)) fig, axes = plt.subplots(4, 4) # use global min / max to ensure all weights are shown on the same scale vmin, vmax = mlp.coefs_[0].min(), mlp.coefs_[0].max() for coef, ax in zip(mlp.coefs_[0].T, axes.ravel()): ax.matshow(coef.reshape(28, 28), cmap=plt.cm.gray, vmin=.5 * vmin, vmax=.5 * vmax) ax.set_xticks(()) ax.set_yticks(()) plt.show()
bsd-3-clause
mne-tools/mne-tools.github.io
0.15/_downloads/make_report.py
5
1576
""" ================================ Make an MNE-Report with a Slider ================================ In this example, MEG evoked data are plotted in an html slider. """ # Authors: Teon Brooks <[email protected]> # Eric Larson <[email protected]> # # License: BSD (3-clause) from mne.report import Report from mne.datasets import sample from mne import read_evokeds from matplotlib import pyplot as plt data_path = sample.data_path() meg_path = data_path + '/MEG/sample' subjects_dir = data_path + '/subjects' evoked_fname = meg_path + '/sample_audvis-ave.fif' ############################################################################### # Do standard folder parsing (this can take a couple of minutes): report = Report(image_format='png', subjects_dir=subjects_dir, info_fname=evoked_fname, subject='sample') report.parse_folder(meg_path) ############################################################################### # Add a custom section with an evoked slider: # Load the evoked data evoked = read_evokeds(evoked_fname, condition='Left Auditory', baseline=(None, 0), verbose=False) evoked.crop(0, .2) times = evoked.times[::4] # Create a list of figs for the slider figs = list() for t in times: figs.append(evoked.plot_topomap(t, vmin=-300, vmax=300, res=100, show=False)) plt.close(figs[-1]) report.add_slider_to_section(figs, times, 'Evoked Response', image_format='svg') # to save report # report.save('foobar.html', True)
bsd-3-clause
bert9bert/statsmodels
statsmodels/tsa/base/tests/test_datetools.py
4
3286
from datetime import datetime from pandas import DatetimeIndex import numpy.testing as npt from statsmodels.tsa.base.datetools import ( date_parser, date_range_str, dates_from_str, dates_from_range) from pandas import DatetimeIndex, PeriodIndex def test_regex_matching_month(): t1 = "1999m4" t2 = "1999:m4" t3 = "1999:mIV" t4 = "1999mIV" result = datetime(1999, 4, 30) npt.assert_equal(date_parser(t1), result) npt.assert_equal(date_parser(t2), result) npt.assert_equal(date_parser(t3), result) npt.assert_equal(date_parser(t4), result) def test_regex_matching_quarter(): t1 = "1999q4" t2 = "1999:q4" t3 = "1999:qIV" t4 = "1999qIV" result = datetime(1999, 12, 31) npt.assert_equal(date_parser(t1), result) npt.assert_equal(date_parser(t2), result) npt.assert_equal(date_parser(t3), result) npt.assert_equal(date_parser(t4), result) def test_dates_from_range(): results = [datetime(1959, 3, 31, 0, 0), datetime(1959, 6, 30, 0, 0), datetime(1959, 9, 30, 0, 0), datetime(1959, 12, 31, 0, 0), datetime(1960, 3, 31, 0, 0), datetime(1960, 6, 30, 0, 0), datetime(1960, 9, 30, 0, 0), datetime(1960, 12, 31, 0, 0), datetime(1961, 3, 31, 0, 0), datetime(1961, 6, 30, 0, 0), datetime(1961, 9, 30, 0, 0), datetime(1961, 12, 31, 0, 0), datetime(1962, 3, 31, 0, 0), datetime(1962, 6, 30, 0, 0)] dt_range = dates_from_range('1959q1', '1962q2') npt.assert_(results == dt_range) # test with starting period not the first with length results = results[2:] dt_range = dates_from_range('1959q3', length=len(results)) npt.assert_(results == dt_range) # check month results = [datetime(1959, 3, 31, 0, 0), datetime(1959, 4, 30, 0, 0), datetime(1959, 5, 31, 0, 0), datetime(1959, 6, 30, 0, 0), datetime(1959, 7, 31, 0, 0), datetime(1959, 8, 31, 0, 0), datetime(1959, 9, 30, 0, 0), datetime(1959, 10, 31, 0, 0), datetime(1959, 11, 30, 0, 0), datetime(1959, 12, 31, 0, 0), datetime(1960, 1, 31, 0, 0), datetime(1960, 2, 28, 0, 0), datetime(1960, 3, 31, 0, 0), datetime(1960, 4, 30, 0, 0), datetime(1960, 5, 31, 0, 0), datetime(1960, 6, 30, 0, 0), datetime(1960, 7, 31, 0, 0), datetime(1960, 8, 31, 0, 0), datetime(1960, 9, 30, 0, 0), datetime(1960, 10, 31, 0, 0), datetime(1960, 12, 31, 0, 0), datetime(1961, 1, 31, 0, 0), datetime(1961, 2, 28, 0, 0), datetime(1961, 3, 31, 0, 0), datetime(1961, 4, 30, 0, 0), datetime(1961, 5, 31, 0, 0), datetime(1961, 6, 30, 0, 0), datetime(1961, 7, 31, 0, 0), datetime(1961, 8, 31, 0, 0), datetime(1961, 9, 30, 0, 0), datetime(1961, 10, 31, 0, 0)] dt_range = dates_from_range("1959m3", length=len(results))
bsd-3-clause
deepfield/ibis
ibis/clickhouse/client.py
1
12156
import re import numpy as np import pandas as pd from collections import OrderedDict import ibis.common as com import ibis.expr.types as ir import ibis.expr.schema as sch import ibis.expr.datatypes as dt import ibis.expr.operations as ops from ibis.config import options from ibis.compat import zip as czip, parse_version from ibis.client import Query, Database, DatabaseEntity, SQLClient from ibis.clickhouse.compiler import ClickhouseDialect, build_ast from ibis.util import log from ibis.sql.compiler import DDL from clickhouse_driver.client import Client as _DriverClient fully_qualified_re = re.compile(r"(.*)\.(?:`(.*)`|(.*))") base_typename_re = re.compile(r"(\w+)") _clickhouse_dtypes = { 'Null': dt.Null, 'Nothing': dt.Null, 'UInt8': dt.UInt8, 'UInt16': dt.UInt16, 'UInt32': dt.UInt32, 'UInt64': dt.UInt64, 'Int8': dt.Int8, 'Int16': dt.Int16, 'Int32': dt.Int32, 'Int64': dt.Int64, 'Float32': dt.Float32, 'Float64': dt.Float64, 'String': dt.String, 'FixedString': dt.String, 'Date': dt.Date, 'DateTime': dt.Timestamp } _ibis_dtypes = {v: k for k, v in _clickhouse_dtypes.items()} _ibis_dtypes[dt.String] = 'String' class ClickhouseDataType(object): __slots__ = 'typename', 'nullable' def __init__(self, typename, nullable=False): m = base_typename_re.match(typename) base_typename = m.groups()[0] if base_typename not in _clickhouse_dtypes: raise com.UnsupportedBackendType(typename) self.typename = base_typename self.nullable = nullable def __str__(self): if self.nullable: return 'Nullable({})'.format(self.typename) else: return self.typename def __repr__(self): return '<Clickhouse {}>'.format(str(self)) @classmethod def parse(cls, spec): # TODO(kszucs): spare parsing, depends on clickhouse-driver#22 if spec.startswith('Nullable'): return cls(spec[9:-1], nullable=True) else: return cls(spec) def to_ibis(self): return _clickhouse_dtypes[self.typename](nullable=self.nullable) @classmethod def from_ibis(cls, dtype, nullable=None): typename = _ibis_dtypes[type(dtype)] if nullable is None: nullable = dtype.nullable return cls(typename, nullable=nullable) @dt.dtype.register(ClickhouseDataType) def clickhouse_to_ibis_dtype(clickhouse_dtype): return clickhouse_dtype.to_ibis() class ClickhouseDatabase(Database): pass class ClickhouseQuery(Query): def _external_tables(self): tables = [] for name, df in self.extra_options.get('external_tables', {}).items(): if not isinstance(df, pd.DataFrame): raise TypeError('External table is not an instance of pandas ' 'dataframe') schema = sch.infer(df) chtypes = map(ClickhouseDataType.from_ibis, schema.types) structure = list(zip(schema.names, map(str, chtypes))) tables.append(dict(name=name, data=df.to_dict('records'), structure=structure)) return tables def execute(self): cursor = self.client._execute( self.compiled_sql, external_tables=self._external_tables() ) result = self._fetch(cursor) return self._wrap_result(result) def _fetch(self, cursor): data, colnames, _ = cursor if not len(data): # handle empty resultset return pd.DataFrame([], columns=colnames) df = pd.DataFrame.from_dict( OrderedDict(zip(colnames, data)) ) return self.schema().apply_to(df) class ClickhouseTable(ir.TableExpr, DatabaseEntity): """References a physical table in Clickhouse""" @property def _qualified_name(self): return self.op().args[0] @property def _unqualified_name(self): return self._match_name()[1] @property def _client(self): return self.op().args[2] def _match_name(self): m = fully_qualified_re.match(self._qualified_name) if not m: raise com.IbisError('Cannot determine database name from {0}' .format(self._qualified_name)) db, quoted, unquoted = m.groups() return db, quoted or unquoted @property def _database(self): return self._match_name()[0] def invalidate_metadata(self): self._client.invalidate_metadata(self._qualified_name) def metadata(self): """ Return parsed results of DESCRIBE FORMATTED statement Returns ------- meta : TableMetadata """ return self._client.describe_formatted(self._qualified_name) describe_formatted = metadata @property def name(self): return self.op().name def _execute(self, stmt): return self._client._execute(stmt) def insert(self, obj, **kwargs): from .identifiers import quote_identifier schema = self.schema() assert isinstance(obj, pd.DataFrame) assert set(schema.names) >= set(obj.columns) columns = ', '.join(map(quote_identifier, obj.columns)) query = 'INSERT INTO {table} ({columns}) VALUES'.format( table=self._qualified_name, columns=columns) # convert data columns with datetime64 pandas dtype to native date # because clickhouse-driver 0.0.10 does arithmetic operations on it obj = obj.copy() for col in obj.select_dtypes(include=[np.datetime64]): if isinstance(schema[col], dt.Date): obj[col] = obj[col].dt.date data = obj.to_dict('records') return self._client.con.process_insert_query(query, data, **kwargs) class ClickhouseDatabaseTable(ops.DatabaseTable): pass class ClickhouseClient(SQLClient): """An Ibis client interface that uses Clickhouse""" database_class = ClickhouseDatabase query_class = ClickhouseQuery dialect = ClickhouseDialect table_class = ClickhouseDatabaseTable table_expr_class = ClickhouseTable def __init__(self, *args, **kwargs): self.con = _DriverClient(*args, **kwargs) def _build_ast(self, expr, context): return build_ast(expr, context) @property def current_database(self): # might be better to use driver.Connection instead of Client return self.con.connection.database def log(self, msg): log(msg) def close(self): """Close Clickhouse connection and drop any temporary objects""" self.con.disconnect() def _execute(self, query, external_tables=(), results=True): if isinstance(query, DDL): query = query.compile() self.log(query) response = self.con.process_ordinary_query( query, columnar=True, with_column_types=True, external_tables=external_tables ) if not results: return response data, columns = response colnames, typenames = czip(*columns) coltypes = list(map(ClickhouseDataType.parse, typenames)) return data, colnames, coltypes def _fully_qualified_name(self, name, database): if bool(fully_qualified_re.search(name)): return name database = database or self.current_database return '{0}.`{1}`'.format(database, name) def list_tables(self, like=None, database=None): """ List tables in the current (or indicated) database. Like the SHOW TABLES command in the clickhouse-shell. Parameters ---------- like : string, default None e.g. 'foo*' to match all tables starting with 'foo' database : string, default None If not passed, uses the current/default database Returns ------- tables : list of strings """ statement = 'SHOW TABLES' if database: statement += " FROM `{0}`".format(database) if like: m = fully_qualified_re.match(like) if m: database, quoted, unquoted = m.groups() like = quoted or unquoted return self.list_tables(like=like, database=database) statement += " LIKE '{0}'".format(like) data, _, _ = self.raw_sql(statement, results=True) return data[0] def set_database(self, name): """ Set the default database scope for client """ self.con.database = name def exists_database(self, name): """ Checks if a given database exists Parameters ---------- name : string Database name Returns ------- if_exists : boolean """ return len(self.list_databases(like=name)) > 0 def list_databases(self, like=None): """ List databases in the Clickhouse cluster. Like the SHOW DATABASES command in the clickhouse-shell. Parameters ---------- like : string, default None e.g. 'foo*' to match all tables starting with 'foo' Returns ------- databases : list of strings """ statement = 'SELECT name FROM system.databases' if like: statement += " WHERE name LIKE '{0}'".format(like) data, _, _ = self.raw_sql(statement, results=True) return data[0] def get_schema(self, table_name, database=None): """ Return a Schema object for the indicated table and database Parameters ---------- table_name : string May be fully qualified database : string, default None Returns ------- schema : ibis Schema """ qualified_name = self._fully_qualified_name(table_name, database) query = 'DESC {0}'.format(qualified_name) data, _, _ = self.raw_sql(query, results=True) colnames, coltypes = data[:2] coltypes = list(map(ClickhouseDataType.parse, coltypes)) return sch.schema(colnames, coltypes) @property def client_options(self): return self.con.options def set_options(self, options): self.con.set_options(options) def reset_options(self): # Must nuke all cursors raise NotImplementedError def exists_table(self, name, database=None): """ Determine if the indicated table or view exists Parameters ---------- name : string database : string, default None Returns ------- if_exists : boolean """ return len(self.list_tables(like=name, database=database)) > 0 def _ensure_temp_db_exists(self): name = options.clickhouse.temp_db, if not self.exists_database(name): self.create_database(name, force=True) def _get_table_schema(self, tname): return self.get_schema(tname) def _get_schema_using_query(self, query): _, colnames, coltypes = self._execute(query) return sch.schema(colnames, coltypes) def _exec_statement(self, stmt, adapter=None): query = ClickhouseQuery(self, stmt) result = query.execute() if adapter is not None: result = adapter(result) return result def _table_command(self, cmd, name, database=None): qualified_name = self._fully_qualified_name(name, database) return '{0} {1}'.format(cmd, qualified_name) @property def version(self): self.con.connection.force_connect() try: server = self.con.connection.server_info vstring = '{}.{}.{}'.format(server.version_major, server.version_minor, server.revision) except Exception: self.con.connection.disconnect() raise else: return parse_version(vstring)
apache-2.0
massmutual/scikit-learn
sklearn/neighbors/graph.py
208
7031
"""Nearest Neighbors graph functions""" # Author: Jake Vanderplas <[email protected]> # # License: BSD 3 clause (C) INRIA, University of Amsterdam import warnings from .base import KNeighborsMixin, RadiusNeighborsMixin from .unsupervised import NearestNeighbors def _check_params(X, metric, p, metric_params): """Check the validity of the input parameters""" params = zip(['metric', 'p', 'metric_params'], [metric, p, metric_params]) est_params = X.get_params() for param_name, func_param in params: if func_param != est_params[param_name]: raise ValueError( "Got %s for %s, while the estimator has %s for " "the same parameter." % ( func_param, param_name, est_params[param_name])) def _query_include_self(X, include_self, mode): """Return the query based on include_self param""" # Done to preserve backward compatibility. if include_self is None: if mode == "connectivity": warnings.warn( "The behavior of 'kneighbors_graph' when mode='connectivity' " "will change in version 0.18. Presently, the nearest neighbor " "of each sample is the sample itself. Beginning in version " "0.18, the default behavior will be to exclude each sample " "from being its own nearest neighbor. To maintain the current " "behavior, set include_self=True.", DeprecationWarning) include_self = True else: include_self = False if include_self: query = X._fit_X else: query = None return query def kneighbors_graph(X, n_neighbors, mode='connectivity', metric='minkowski', p=2, metric_params=None, include_self=None): """Computes the (weighted) graph of k-Neighbors for points in X Read more in the :ref:`User Guide <unsupervised_neighbors>`. Parameters ---------- X : array-like or BallTree, shape = [n_samples, n_features] Sample data, in the form of a numpy array or a precomputed :class:`BallTree`. n_neighbors : int Number of neighbors for each sample. mode : {'connectivity', 'distance'}, optional Type of returned matrix: 'connectivity' will return the connectivity matrix with ones and zeros, in 'distance' the edges are Euclidean distance between points. metric : string, default 'minkowski' The distance metric used to calculate the k-Neighbors for each sample point. The DistanceMetric class gives a list of available metrics. The default distance is 'euclidean' ('minkowski' metric with the p param equal to 2.) include_self: bool, default backward-compatible. Whether or not to mark each sample as the first nearest neighbor to itself. If `None`, then True is used for mode='connectivity' and False for mode='distance' as this will preserve backwards compatibilty. From version 0.18, the default value will be False, irrespective of the value of `mode`. p : int, default 2 Power parameter for the Minkowski metric. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. metric_params: dict, optional additional keyword arguments for the metric function. Returns ------- A : sparse matrix in CSR format, shape = [n_samples, n_samples] A[i, j] is assigned the weight of edge that connects i to j. Examples -------- >>> X = [[0], [3], [1]] >>> from sklearn.neighbors import kneighbors_graph >>> A = kneighbors_graph(X, 2) >>> A.toarray() array([[ 1., 0., 1.], [ 0., 1., 1.], [ 1., 0., 1.]]) See also -------- radius_neighbors_graph """ if not isinstance(X, KNeighborsMixin): X = NearestNeighbors(n_neighbors, metric=metric, p=p, metric_params=metric_params).fit(X) else: _check_params(X, metric, p, metric_params) query = _query_include_self(X, include_self, mode) return X.kneighbors_graph(X=query, n_neighbors=n_neighbors, mode=mode) def radius_neighbors_graph(X, radius, mode='connectivity', metric='minkowski', p=2, metric_params=None, include_self=None): """Computes the (weighted) graph of Neighbors for points in X Neighborhoods are restricted the points at a distance lower than radius. Read more in the :ref:`User Guide <unsupervised_neighbors>`. Parameters ---------- X : array-like or BallTree, shape = [n_samples, n_features] Sample data, in the form of a numpy array or a precomputed :class:`BallTree`. radius : float Radius of neighborhoods. mode : {'connectivity', 'distance'}, optional Type of returned matrix: 'connectivity' will return the connectivity matrix with ones and zeros, in 'distance' the edges are Euclidean distance between points. metric : string, default 'minkowski' The distance metric used to calculate the neighbors within a given radius for each sample point. The DistanceMetric class gives a list of available metrics. The default distance is 'euclidean' ('minkowski' metric with the param equal to 2.) include_self: bool, default None Whether or not to mark each sample as the first nearest neighbor to itself. If `None`, then True is used for mode='connectivity' and False for mode='distance' as this will preserve backwards compatibilty. From version 0.18, the default value will be False, irrespective of the value of `mode`. p : int, default 2 Power parameter for the Minkowski metric. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. metric_params: dict, optional additional keyword arguments for the metric function. Returns ------- A : sparse matrix in CSR format, shape = [n_samples, n_samples] A[i, j] is assigned the weight of edge that connects i to j. Examples -------- >>> X = [[0], [3], [1]] >>> from sklearn.neighbors import radius_neighbors_graph >>> A = radius_neighbors_graph(X, 1.5) >>> A.toarray() array([[ 1., 0., 1.], [ 0., 1., 0.], [ 1., 0., 1.]]) See also -------- kneighbors_graph """ if not isinstance(X, RadiusNeighborsMixin): X = NearestNeighbors(radius=radius, metric=metric, p=p, metric_params=metric_params).fit(X) else: _check_params(X, metric, p, metric_params) query = _query_include_self(X, include_self, mode) return X.radius_neighbors_graph(query, radius, mode)
bsd-3-clause
dgies/incubator-airflow
airflow/contrib/plugins/metastore_browser/main.py
62
5773
# -*- coding: utf-8 -*- # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from datetime import datetime import json from flask import Blueprint, request from flask_admin import BaseView, expose import pandas as pd from airflow.hooks.hive_hooks import HiveMetastoreHook, HiveCliHook from airflow.hooks.mysql_hook import MySqlHook from airflow.hooks.presto_hook import PrestoHook from airflow.plugins_manager import AirflowPlugin from airflow.www import utils as wwwutils METASTORE_CONN_ID = 'metastore_default' METASTORE_MYSQL_CONN_ID = 'metastore_mysql' PRESTO_CONN_ID = 'presto_default' HIVE_CLI_CONN_ID = 'hive_default' DEFAULT_DB = 'default' DB_WHITELIST = None DB_BLACKLIST = ['tmp'] TABLE_SELECTOR_LIMIT = 2000 # Keeping pandas from truncating long strings pd.set_option('display.max_colwidth', -1) # Creating a flask admin BaseView class MetastoreBrowserView(BaseView, wwwutils.DataProfilingMixin): @expose('/') def index(self): sql = """ SELECT a.name as db, db_location_uri as location, count(1) as object_count, a.desc as description FROM DBS a JOIN TBLS b ON a.DB_ID = b.DB_ID GROUP BY a.name, db_location_uri, a.desc """.format(**locals()) h = MySqlHook(METASTORE_MYSQL_CONN_ID) df = h.get_pandas_df(sql) df.db = ( '<a href="/admin/metastorebrowserview/db/?db=' + df.db + '">' + df.db + '</a>') table = df.to_html( classes="table table-striped table-bordered table-hover", index=False, escape=False, na_rep='',) return self.render( "metastore_browser/dbs.html", table=table) @expose('/table/') def table(self): table_name = request.args.get("table") m = HiveMetastoreHook(METASTORE_CONN_ID) table = m.get_table(table_name) return self.render( "metastore_browser/table.html", table=table, table_name=table_name, datetime=datetime, int=int) @expose('/db/') def db(self): db = request.args.get("db") m = HiveMetastoreHook(METASTORE_CONN_ID) tables = sorted(m.get_tables(db=db), key=lambda x: x.tableName) return self.render( "metastore_browser/db.html", tables=tables, db=db) @wwwutils.gzipped @expose('/partitions/') def partitions(self): schema, table = request.args.get("table").split('.') sql = """ SELECT a.PART_NAME, a.CREATE_TIME, c.LOCATION, c.IS_COMPRESSED, c.INPUT_FORMAT, c.OUTPUT_FORMAT FROM PARTITIONS a JOIN TBLS b ON a.TBL_ID = b.TBL_ID JOIN DBS d ON b.DB_ID = d.DB_ID JOIN SDS c ON a.SD_ID = c.SD_ID WHERE b.TBL_NAME like '{table}' AND d.NAME like '{schema}' ORDER BY PART_NAME DESC """.format(**locals()) h = MySqlHook(METASTORE_MYSQL_CONN_ID) df = h.get_pandas_df(sql) return df.to_html( classes="table table-striped table-bordered table-hover", index=False, na_rep='',) @wwwutils.gzipped @expose('/objects/') def objects(self): where_clause = '' if DB_WHITELIST: dbs = ",".join(["'" + db + "'" for db in DB_WHITELIST]) where_clause = "AND b.name IN ({})".format(dbs) if DB_BLACKLIST: dbs = ",".join(["'" + db + "'" for db in DB_BLACKLIST]) where_clause = "AND b.name NOT IN ({})".format(dbs) sql = """ SELECT CONCAT(b.NAME, '.', a.TBL_NAME), TBL_TYPE FROM TBLS a JOIN DBS b ON a.DB_ID = b.DB_ID WHERE a.TBL_NAME NOT LIKE '%tmp%' AND a.TBL_NAME NOT LIKE '%temp%' AND b.NAME NOT LIKE '%tmp%' AND b.NAME NOT LIKE '%temp%' {where_clause} LIMIT {LIMIT}; """.format(where_clause=where_clause, LIMIT=TABLE_SELECTOR_LIMIT) h = MySqlHook(METASTORE_MYSQL_CONN_ID) d = [ {'id': row[0], 'text': row[0]} for row in h.get_records(sql)] return json.dumps(d) @wwwutils.gzipped @expose('/data/') def data(self): table = request.args.get("table") sql = "SELECT * FROM {table} LIMIT 1000;".format(table=table) h = PrestoHook(PRESTO_CONN_ID) df = h.get_pandas_df(sql) return df.to_html( classes="table table-striped table-bordered table-hover", index=False, na_rep='',) @expose('/ddl/') def ddl(self): table = request.args.get("table") sql = "SHOW CREATE TABLE {table};".format(table=table) h = HiveCliHook(HIVE_CLI_CONN_ID) return h.run_cli(sql) v = MetastoreBrowserView(category="Plugins", name="Hive Metadata Browser") # Creating a flask blueprint to intergrate the templates and static folder bp = Blueprint( "metastore_browser", __name__, template_folder='templates', static_folder='static', static_url_path='/static/metastore_browser') # Defining the plugin class class MetastoreBrowserPlugin(AirflowPlugin): name = "metastore_browser" flask_blueprints = [bp] admin_views = [v]
apache-2.0
hanteng/country-groups
scripts/_construct_data_CPLP.py
1
4047
# -*- coding: utf-8 -*- #歧視無邊,回頭是岸。鍵起鍵落,情真情幻。 # Correction: 0->ASEAN, 49-> GB, 52 ->KR import os.path, glob import requests from lxml.html import fromstring, tostring, parse from io import StringIO, BytesIO import codecs import pandas as pd import json XML_encoding="utf-8" # Data source URL_ = "http://www.cplp.org/id-2597.aspx" URL_country_names_template = "https://raw.githubusercontent.com/hanteng/country-names/master/data/CLDR_country_name_{locale}.tsv" URL_country_names = URL_country_names_template.format(locale= 'en') # Xpath extraction _xpath='//*[@id="subPageMenu"]/li/a/img/@alt' ## Outpuing Lists PE = 'CPLP' path_data = u'../data' outputfn1 = os.path.join(path_data, "PE_org.json") outputfn2 = os.path.join(path_data, "CLDR_UN_region.tsv") def url_request (url): r = requests.get(url) if r.status_code == 200: #r.raw.decode_content = True return r else: print ("Downloading the data from {0} failed. Plese check Internet connections.".format(XML_src_url)) return None def url_local_request (url): fn_local = os.path.join(path_data, PE+ ".htm") print (fn_local) #debug try: tree = parse(fn_local) except: r = url_request (url) XML_src=r.content with codecs.open(fn_local, "w", XML_encoding) as file: file.write(XML_src.decode(XML_encoding)) #from lxml.html.clean import clean_html #XML_src = clean_html(XML_src) tree = fromstring(XML_src) return tree t = url_local_request(URL_) list_country_names_Web = t.xpath(_xpath) print (list_country_names_Web) ## Retrive data directly from unicode-cldr project hosted at github print ("Retrieve country names data now ...") locale = "en" url = URL_country_names_template.format(locale=locale) df_results = pd.read_csv(url, sep='\t', encoding='utf-8', na_values=[], keep_default_na = False, names = ['c','n'] , index_col='c', ) ## Construct dictionary for country/region names c_names = df_results.to_dict()['n'] #http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_dict.html c_names_inv = {v: k for k, v in c_names.items()} ## Country names fuzzy match from fuzzywuzzy import process choice=[] for i, c_name_Web in enumerate(list_country_names_Web): #found_candidates = [x for x in c_names_inv.keys() if fuzzy_match(x,c_name_Web)==True] found_candidate = process.extract(c_name_Web, c_names_inv.keys(), limit=1) found_candidate_c = c_names_inv[found_candidate[0][0]] choice_item = [i, c_name_Web, found_candidate, found_candidate_c] #print (choice_item) choice.append(choice_item) import ast done = False while not(done): try: # Note: Python 2.x users should use raw_input, the equivalent of 3.x's input prn= [repr(x) for x in choice] print ("\n\r".join(prn)) i = int(input("Please enter your corrections: Serial no (-1:None): ")) if i==-1: print ("Done!") done==True break else: if i in range(len(choice)): c = input("Please enter your corrections: Country code (ISO-alpha2): ") choice[i][3] = c else: print("Sorry, Please revise your input.") except ValueError: print("Sorry, I didn't understand that.") #better try again... Return to the start of the loop continue list_country_codes_Web = [x[3] for x in choice] print (list_country_codes_Web) print (list_country_names_Web) print ("==========") PE_org = dict() with codecs.open(outputfn1, encoding='utf-8', mode='r+') as fp: lines=fp.readlines() PE_org = json.loads(u"".join(lines)) print ("Before:", PE_org.keys()) d={PE: list_country_codes_Web} print("Adding:",d) PE_org.update(d) print ("After:", PE_org.keys()) with codecs.open(outputfn1, encoding='utf-8', mode='w') as fp: json.dump(PE_org, fp)
gpl-3.0
GiggleLiu/nrg_mapping
nrgmap/tests/test_tick.py
1
1796
''' Tests for tickers. ''' from numpy import * from numpy.testing import dec,assert_,assert_raises,assert_almost_equal,assert_allclose from matplotlib.pyplot import * from scipy import sparse as sps from scipy.linalg import qr,eigvalsh,norm import time,pdb,sys from ..ticklib import * from ..discretization import * def random_function(k=5): ''' Generate a random 1d function. Parameters: :k: int, the order of function, as the `fluctuation`. Return: function, ''' return poly1d(random.random(k)*10-5) def test_tick(): '''test for ticks.''' tick_types=['log','sclog','adaptive','linear','adaptive_linear','ed'] Lambda=1.7 N=20 wlist=get_wlist(w0=1e-8,Nw=2000,mesh_type='log',Gap=0,D=[-0.5,1]) pmask=wlist>0 ion() rholist=abs(random_function()(wlist)) if ndim(rholist)>1: rholist=sqrt((rholist*swapaxes(rholist,1,2)).sum(axis=(1,2))) colors=['r','g','b','k','y','c'] plts=[] for i,tick_type in enumerate(tick_types): offset_y=i ticker=get_ticker(tick_type,D=wlist[-1],N=N,Lambda=Lambda,Gap=0,wlist=wlist[pmask],rholist=rholist[pmask]) plt=scatter(ticker(arange(2,2+N+1)),offset_y*ones(N+1),edgecolor='none',color=colors[i],label=tick_type) plts.append(plt) #for negative branch ticker_=get_ticker(tick_type,D=-wlist[0],N=N,Lambda=Lambda,Gap=0,wlist=-wlist[~pmask][::-1],rholist=rholist[~pmask][::-1]) plt=scatter(-ticker_(arange(2,2+N+1)),offset_y*ones(N+1),edgecolor='none',color=colors[i],label=tick_type) #consistancy check assert_allclose(ticker(arange(1,N+2)),[ticker(i) for i in range(1,N+2)]) legend(plts,tick_types,loc=2) plot(wlist,rholist) pdb.set_trace() if __name__=='__main__': test_tick()
mit
Cassianokunsch/MonitorTemperature
Codigo/setup.py
2
1184
import sys from cx_Freeze import setup, Executable shortcut_table = [ ("DesktopShortcut", # Shortcut "DesktopFolder", # Directory_ "Monitora Temperatura", # Name "TARGETDIR", # Component_ "[TARGETDIR]Monitora Temperatura.exe",# Target None, # Arguments None, # Description None, # Hotkey None, # Icon None, # IconIndex None, # ShowCmd 'TARGETDIR' # WkDir ) ] msi_data = {"Shortcut": shortcut_table} bdist_msi_options = {'data': msi_data} build_exe_options = {"packages": ["os", "pandas", "threading", "sys", "serial", "subprocess", "pyqtgraph"], "include_files": ["View\\", "Controle\\", "Util\\", "Model\\"]} base = None if sys.platform == "win32": base = "Win32GUI" setup( name = "Monitora Temperatura", version = "0.1", description = "Monitora a temperatura da caixa.", options = {"build_exe": build_exe_options,"bdist_msi": bdist_msi_options}, executables = [Executable("main_app.py", base=base)])
gpl-3.0
mayblue9/scikit-learn
sklearn/decomposition/tests/test_incremental_pca.py
297
8265
"""Tests for Incremental PCA.""" import numpy as np from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_raises from sklearn import datasets from sklearn.decomposition import PCA, IncrementalPCA iris = datasets.load_iris() def test_incremental_pca(): # Incremental PCA on dense arrays. X = iris.data batch_size = X.shape[0] // 3 ipca = IncrementalPCA(n_components=2, batch_size=batch_size) pca = PCA(n_components=2) pca.fit_transform(X) X_transformed = ipca.fit_transform(X) np.testing.assert_equal(X_transformed.shape, (X.shape[0], 2)) assert_almost_equal(ipca.explained_variance_ratio_.sum(), pca.explained_variance_ratio_.sum(), 1) for n_components in [1, 2, X.shape[1]]: ipca = IncrementalPCA(n_components, batch_size=batch_size) ipca.fit(X) cov = ipca.get_covariance() precision = ipca.get_precision() assert_array_almost_equal(np.dot(cov, precision), np.eye(X.shape[1])) def test_incremental_pca_check_projection(): # Test that the projection of data is correct. rng = np.random.RandomState(1999) n, p = 100, 3 X = rng.randn(n, p) * .1 X[:10] += np.array([3, 4, 5]) Xt = 0.1 * rng.randn(1, p) + np.array([3, 4, 5]) # Get the reconstruction of the generated data X # Note that Xt has the same "components" as X, just separated # This is what we want to ensure is recreated correctly Yt = IncrementalPCA(n_components=2).fit(X).transform(Xt) # Normalize Yt /= np.sqrt((Yt ** 2).sum()) # Make sure that the first element of Yt is ~1, this means # the reconstruction worked as expected assert_almost_equal(np.abs(Yt[0][0]), 1., 1) def test_incremental_pca_inverse(): # Test that the projection of data can be inverted. rng = np.random.RandomState(1999) n, p = 50, 3 X = rng.randn(n, p) # spherical data X[:, 1] *= .00001 # make middle component relatively small X += [5, 4, 3] # make a large mean # same check that we can find the original data from the transformed # signal (since the data is almost of rank n_components) ipca = IncrementalPCA(n_components=2, batch_size=10).fit(X) Y = ipca.transform(X) Y_inverse = ipca.inverse_transform(Y) assert_almost_equal(X, Y_inverse, decimal=3) def test_incremental_pca_validation(): # Test that n_components is >=1 and <= n_features. X = [[0, 1], [1, 0]] for n_components in [-1, 0, .99, 3]: assert_raises(ValueError, IncrementalPCA(n_components, batch_size=10).fit, X) def test_incremental_pca_set_params(): # Test that components_ sign is stable over batch sizes. rng = np.random.RandomState(1999) n_samples = 100 n_features = 20 X = rng.randn(n_samples, n_features) X2 = rng.randn(n_samples, n_features) X3 = rng.randn(n_samples, n_features) ipca = IncrementalPCA(n_components=20) ipca.fit(X) # Decreasing number of components ipca.set_params(n_components=10) assert_raises(ValueError, ipca.partial_fit, X2) # Increasing number of components ipca.set_params(n_components=15) assert_raises(ValueError, ipca.partial_fit, X3) # Returning to original setting ipca.set_params(n_components=20) ipca.partial_fit(X) def test_incremental_pca_num_features_change(): # Test that changing n_components will raise an error. rng = np.random.RandomState(1999) n_samples = 100 X = rng.randn(n_samples, 20) X2 = rng.randn(n_samples, 50) ipca = IncrementalPCA(n_components=None) ipca.fit(X) assert_raises(ValueError, ipca.partial_fit, X2) def test_incremental_pca_batch_signs(): # Test that components_ sign is stable over batch sizes. rng = np.random.RandomState(1999) n_samples = 100 n_features = 3 X = rng.randn(n_samples, n_features) all_components = [] batch_sizes = np.arange(10, 20) for batch_size in batch_sizes: ipca = IncrementalPCA(n_components=None, batch_size=batch_size).fit(X) all_components.append(ipca.components_) for i, j in zip(all_components[:-1], all_components[1:]): assert_almost_equal(np.sign(i), np.sign(j), decimal=6) def test_incremental_pca_batch_values(): # Test that components_ values are stable over batch sizes. rng = np.random.RandomState(1999) n_samples = 100 n_features = 3 X = rng.randn(n_samples, n_features) all_components = [] batch_sizes = np.arange(20, 40, 3) for batch_size in batch_sizes: ipca = IncrementalPCA(n_components=None, batch_size=batch_size).fit(X) all_components.append(ipca.components_) for i, j in zip(all_components[:-1], all_components[1:]): assert_almost_equal(i, j, decimal=1) def test_incremental_pca_partial_fit(): # Test that fit and partial_fit get equivalent results. rng = np.random.RandomState(1999) n, p = 50, 3 X = rng.randn(n, p) # spherical data X[:, 1] *= .00001 # make middle component relatively small X += [5, 4, 3] # make a large mean # same check that we can find the original data from the transformed # signal (since the data is almost of rank n_components) batch_size = 10 ipca = IncrementalPCA(n_components=2, batch_size=batch_size).fit(X) pipca = IncrementalPCA(n_components=2, batch_size=batch_size) # Add one to make sure endpoint is included batch_itr = np.arange(0, n + 1, batch_size) for i, j in zip(batch_itr[:-1], batch_itr[1:]): pipca.partial_fit(X[i:j, :]) assert_almost_equal(ipca.components_, pipca.components_, decimal=3) def test_incremental_pca_against_pca_iris(): # Test that IncrementalPCA and PCA are approximate (to a sign flip). X = iris.data Y_pca = PCA(n_components=2).fit_transform(X) Y_ipca = IncrementalPCA(n_components=2, batch_size=25).fit_transform(X) assert_almost_equal(np.abs(Y_pca), np.abs(Y_ipca), 1) def test_incremental_pca_against_pca_random_data(): # Test that IncrementalPCA and PCA are approximate (to a sign flip). rng = np.random.RandomState(1999) n_samples = 100 n_features = 3 X = rng.randn(n_samples, n_features) + 5 * rng.rand(1, n_features) Y_pca = PCA(n_components=3).fit_transform(X) Y_ipca = IncrementalPCA(n_components=3, batch_size=25).fit_transform(X) assert_almost_equal(np.abs(Y_pca), np.abs(Y_ipca), 1) def test_explained_variances(): # Test that PCA and IncrementalPCA calculations match X = datasets.make_low_rank_matrix(1000, 100, tail_strength=0., effective_rank=10, random_state=1999) prec = 3 n_samples, n_features = X.shape for nc in [None, 99]: pca = PCA(n_components=nc).fit(X) ipca = IncrementalPCA(n_components=nc, batch_size=100).fit(X) assert_almost_equal(pca.explained_variance_, ipca.explained_variance_, decimal=prec) assert_almost_equal(pca.explained_variance_ratio_, ipca.explained_variance_ratio_, decimal=prec) assert_almost_equal(pca.noise_variance_, ipca.noise_variance_, decimal=prec) def test_whitening(): # Test that PCA and IncrementalPCA transforms match to sign flip. X = datasets.make_low_rank_matrix(1000, 10, tail_strength=0., effective_rank=2, random_state=1999) prec = 3 n_samples, n_features = X.shape for nc in [None, 9]: pca = PCA(whiten=True, n_components=nc).fit(X) ipca = IncrementalPCA(whiten=True, n_components=nc, batch_size=250).fit(X) Xt_pca = pca.transform(X) Xt_ipca = ipca.transform(X) assert_almost_equal(np.abs(Xt_pca), np.abs(Xt_ipca), decimal=prec) Xinv_ipca = ipca.inverse_transform(Xt_ipca) Xinv_pca = pca.inverse_transform(Xt_pca) assert_almost_equal(X, Xinv_ipca, decimal=prec) assert_almost_equal(X, Xinv_pca, decimal=prec) assert_almost_equal(Xinv_pca, Xinv_ipca, decimal=prec)
bsd-3-clause
ibm-watson-iot/blockchain-samples
contracts/industry/carbon_trading.0.6/pyServer.py
2
5380
import sys #for arguments from flask import Flask from flask_cors import CORS, cross_origin import pandas as pd #for creating DataFrame import requests #querying for information import json #for posting to get all the information from blockchain from sklearn.ensemble import RandomForestRegressor #the regression model import numpy as np #standard library to convert 1d array to 2d arra import json app = Flask(__name__) prediction = 0 @app.route("/", methods=['GET','OPTIONS']) @cross_origin(origin='*') def hello(): #sys.argv = ['analysis.py', 'Will'] #exec(open("analysis.py").read()) #bring in all the information #getting request from the URL url = 'https://bb01c9bc-8a22-4329-94cb-fa722fd3bdce_vp0.us.blockchain.ibm.com:443/chaincode' body = { "jsonrpc": "2.0", "method": "query", "params": { "type": 1, "chaincodeID":{ "name":"89684ecf448f90c8fcbf0232aab899aec47e9ac5530db4d6956fc0033a775c48aa73572253ebddfee29d449536fda6f8353570e81e026dee777832d002702521" }, "ctorMsg": { "function":"readAsset", "args":["{\"assetID\":\""+"Will"+"\"}"] }, "secureContext": "user_type1_fc806186e6" }, "id":1234 } bodyStr = json.dumps(body) headerReq = {'Content-Type': 'application/json', 'Accept':'application/json'} res = requests.post(url, bodyStr, headers=headerReq) columns = ["Temperature Celsius", "Temperature Fahrenheit", "Wind Speed", "Wind Gust Speed", "Wind Degrees", "Precipitation", "Carbon Reading"] #column title #DATAFRAME df = pd.DataFrame(columns=columns) df.fillna(0) # with 0s rather than NaNs if "result" in res.json() and res.json()["result"]["status"] == "OK": JsonResponse = json.loads(res.json()["result"]["message"]) #check if the fields exists in the response given back if "reading" in JsonResponse: #add all the fields to dataframe sensorReading = JsonResponse["sensorWeatherHistory"]["sensorReading"] precipitation = JsonResponse["sensorWeatherHistory"]["precipitation"] tempCel = JsonResponse["sensorWeatherHistory"]["temperatureCelcius"] tempFah = JsonResponse["sensorWeatherHistory"]["temperatureFahrenheit"] windDegrees = JsonResponse["sensorWeatherHistory"]["windDegrees"] windGustSp = JsonResponse["sensorWeatherHistory"]["windGustSpeed"] windSp = JsonResponse["sensorWeatherHistory"]["windSpeed"] #adding rows to dataframe for i in range(len(sensorReading)): df.loc[len(df)] = [tempCel[i],tempFah[i],windSp[i],windGustSp[i],windDegrees[i],precipitation[i],sensorReading[i]] #convert dataframe to csv df.to_csv("output.csv", sep=',', encoding='utf-8') #trying to make an expected maximum likehood model columnsPredict = [c for c in columns if c not in ["Carbon Reading"]] #what are we trying to predict target = "Carbon Reading" # Initialize the model with some parameters. model = RandomForestRegressor(n_estimators=100, min_samples_leaf=1, random_state=1) # Fit the model to the data. model.fit(df[columnsPredict], df[target]) # Make predictions. #test = df.loc[len(df)-1][columnsPredict] WeatherURL = 'http://api.wunderground.com/api/62493c160d2ce863/forecast10day/q/TX/Austin.json' weatherRes = requests.get(WeatherURL) try: weather_res = weatherRes.json() #make an dataFrame testCol = ["Temperature Celsius", "Temperature Fahrenheit", "Wind Speed", "Wind Gust Speed", "Wind Degrees", "Precipitation"] #column title #DATAFRAME weatherDF = pd.DataFrame(columns=testCol) weatherDF.fillna(0) # with 0s rather than NaNs for i in weather_res["forecast"]["simpleforecast"]["forecastday"]: cH = i["high"]["celsius"] cL = i["low"]["celsius"] fH = i["high"]["fahrenheit"] fL = i["low"]["fahrenheit"] if type(i["high"]["celsius"]) is str: cH = float(cH) cL = float(cL) if type(i["high"]["fahrenheit"]) is str: fH = float(fH) fL = float(fL) weatherDF.loc[len(weatherDF)] = [(cH + cL)/2, (fL + fH)/2, i["avewind"]["kph"], i["maxwind"]["kph"], (i["avewind"]["degrees"] + i["maxwind"]["degrees"])/2, i["qpf_allday"]["mm"]] #test = np.array(df.loc[len(df)-1][columnsPredict]).reshape((1, -1)) predictions = model.predict(weatherDF) #add all 10 day forecast values totalValue = 0 for val in predictions: totalValue = totalValue + val print(totalValue) prediction = totalValue except ValueError: print('error') # data = request.get_json(force=True) return json.dumps({"prediction": str(prediction)}) if __name__ == "__main__": app.run(port=2000)
apache-2.0
ntbrewer/Pyspectr
build/lib/Pyspectr/plotter.py
1
7546
#!/usr/bin/env python3 """K. Miernik 2012 [email protected] Distributed under GNU General Public Licence v3 This module provides simple front-end to matplotlib """ import math import numpy import matplotlib.pyplot as plt from matplotlib import cm, ticker from Pyspectr.exceptions import GeneralError as GeneralError class Plotter: """ This class communicates with the matplotlib library and plot the data """ def __init__(self, size): """Initialize the plot window, size defines the shape and size of the figure 0 - None, 1 - 8x6, 11 (default) - 12x8, 2 - 2 figs 8x8, 12 - 2 figs 12x8 """ # Max bins in 2d histogram self.max_2d_bin = 1024 # Font size of labels and ticks self.font_size = 20 # Set this variable to False if you want to disable the legend self.legend = True # Change this variable to another cmap if you need different colors self.cmap = cm.RdYlGn_r # Some selected color maps, you can toggle with toggle_color_map self.color_maps = [cm.RdYlGn_r, cm.binary, cm.hot, cm.nipy_spectral] #cm.spectral] dvm20180508 if size == 0: pass if size == 1: plt.figure(1, (8, 6)) elif size == 11: plt.figure(1, (12, 8)) elif size == 2: plt.figure(1, (8, 6)) plt.figure(2, (8, 6)) elif size == 12: plt.figure(1, (12, 8)) plt.figure(2, (12, 8)) else: plt.figure(1, (8, 6)) if size != 0: plt.tick_params(axis='both', labelsize=self.font_size) plt.grid() plt.ion() plt.show() def clear(self): """Clear current plotting area""" plt.clf() plt.tick_params(axis='both', labelsize=self.font_size) plt.grid() def xlim(self, x_range): """Change X range of a current plot""" plt.xlim(x_range) def ylim(self, y_range): """Change Y range of a current plot""" plt.ylim(y_range) def ylog(self): """Change y scale to log""" plt.yscale('log') def ylin(self): """Change y scale to linear""" plt.yscale('linear') def plot1d(self, plot, xlim=None, ylim=None): """ Plot 1D histogram The mode defines the way the data are presented, 'histogram' is displayed with steps 'function' with continuus line 'errorbar' with yerrorbars The norm (normalization factor) and bin_size are given for the display purposes only. The histogram is not altered. """ histo = plot.histogram if plot.mode == 'histogram': plt.plot(histo.x_axis, histo.weights, ls='steps-mid', label=histo.title) elif plot.mode == 'function': plt.plot(histo.x_axis, histo.weights, ls='-', label=histo.title) elif plot.mode == 'errorbar': plt.errorbar(histo.x_axis, histo.weights, yerr=histo.errors, marker='o', ls='None', label=histo.title) else: raise GeneralError('Unknown plot mode {}'.format(plot.mode)) if xlim is not None: plt.xlim(xlim) if ylim is not None: plt.ylim(ylim) if self.legend: plt.legend(loc=0, numpoints=1, fontsize='small') def plot1d_4panel(self, plot, ranges): """ Special 1D histogram plot. The plot is broken into 4 panels (stacked verically) the ranges variable should be given in a (x0, x1, x2, x3, x4) format, where xi defines the ranges of the subplots (x0-x1, x1-x2, x2-x3, x3-x4) """ for i, r in enumerate(ranges[:-1]): x0 = r // plot.bin_size x1 = ranges[i + 1] // plot.bin_size + 1 ax = plt.subplot(4, 1, i + 1) ax.plot(plot.histogram.x_axis[x0:x1], plot.histogram.weights[x0:x1], ls='steps-mid') ax.set_xlim((r, ranges[i + 1])) ax.set_xlabel('E (keV)') plt.tight_layout() def plot2d(self, plot, xc=None, yc=None, logz=False): """Plot 2D histogram xc is x range, yc is y range """ if plot.histogram.dim != 2: raise GeneralError('plot2d function needs a 2D histogram!') x = plot.histogram.x_axis y = plot.histogram.y_axis w = plot.histogram.weights # x = plot.histogram.weights.nonzero()[0] # y = plot.histogram.weights.nonzero()[1] # w = plot.histogram.weights[x,y] # xnz=plot.histogram.x_axis.nonzero() # ynz=plot.histogram.y_axis.nonzero() # wnz=plot.histogram.weights # print(xnz,ynz,wnz) if xc is not None: x = x[xc[0]:xc[1]] w = w[xc[0]:xc[1],:] if yc is not None: y = y[yc[0]:yc[1]] w = w[:, yc[0]:yc[1]] initial_nx = len(x) initial_ny = len(y) nx = len(x) ny = len(y) binx = 1 biny = 1 # Rebin data if larger than defined number of bins (max_2d_bin) # This is needed due to the performance of matplotlib with large arrays if nx > self.max_2d_bin: binx = math.ceil(nx / self.max_2d_bin) missing = binx * self.max_2d_bin - nx if missing > 0: addx = numpy.arange(plot.histogram.x_axis[-1] + 1, plot.histogram.x_axis[-1] + missing + 1) x = numpy.concatenate((x, addx)) nx = len(x) z = numpy.zeros((missing, ny)) w = numpy.concatenate((w, z), axis=0) x = numpy.reshape(x, (-1, binx)) x = x.mean(axis=1) if ny > self.max_2d_bin: biny = math.ceil(ny / self.max_2d_bin) missing = biny * self.max_2d_bin - ny if missing > 0: addy = numpy.arange(plot.histogram.y_axis[-1] + 1, plot.histogram.y_axis[-1] + missing + 1) y = numpy.concatenate((y, addy)) z = numpy.zeros((nx, missing)) w = numpy.concatenate((w, z), axis=1) y = numpy.reshape(y, (-1, biny)) y = y.mean(axis=1) nx = len(x) ny = len(y) if nx != initial_nx or ny != initial_ny: w = numpy.reshape(w, (nx, binx, ny, biny)).mean(3).mean(1) w = numpy.transpose(w) title = plot.histogram.title # If logaritmic scale is used, mask values <= 0 if logz: w = numpy.ma.masked_where(w <= 0, numpy.log10(w)) title += ' (log10)' plt.title(title) CS = plt.pcolormesh(x, y, w, cmap=self.cmap) plt.xlim(xc) plt.ylim(yc) plt.colorbar() def color_map(self, cmap=None): """ Change the color map to the cmap object, or toggle to the next one from the preselected set, """ if cmap is None: try: self.cmap = self.color_maps[(self.color_maps.\ index(self.cmap) + 1) % len(self.color_maps)] except ValueError: self.cmap = self.color_maps[0] else: self.cmap = cmap
gpl-3.0
ishanic/scikit-learn
sklearn/ensemble/tests/test_bagging.py
72
25573
""" Testing for the bagging ensemble module (sklearn.ensemble.bagging). """ # Author: Gilles Louppe # License: BSD 3 clause import numpy as np from sklearn.base import BaseEstimator from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_warns from sklearn.utils.testing import assert_warns_message from sklearn.dummy import DummyClassifier, DummyRegressor from sklearn.grid_search import GridSearchCV, ParameterGrid from sklearn.ensemble import BaggingClassifier, BaggingRegressor from sklearn.linear_model import Perceptron, LogisticRegression from sklearn.neighbors import KNeighborsClassifier, KNeighborsRegressor from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor from sklearn.svm import SVC, SVR from sklearn.pipeline import make_pipeline from sklearn.feature_selection import SelectKBest from sklearn.cross_validation import train_test_split from sklearn.datasets import load_boston, load_iris, make_hastie_10_2 from sklearn.utils import check_random_state from scipy.sparse import csc_matrix, csr_matrix rng = check_random_state(0) # also load the iris dataset # and randomly permute it iris = load_iris() perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] # also load the boston dataset # and randomly permute it boston = load_boston() perm = rng.permutation(boston.target.size) boston.data = boston.data[perm] boston.target = boston.target[perm] def test_classification(): # Check classification for various parameter settings. rng = check_random_state(0) X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=rng) grid = ParameterGrid({"max_samples": [0.5, 1.0], "max_features": [1, 2, 4], "bootstrap": [True, False], "bootstrap_features": [True, False]}) for base_estimator in [None, DummyClassifier(), Perceptron(), DecisionTreeClassifier(), KNeighborsClassifier(), SVC()]: for params in grid: BaggingClassifier(base_estimator=base_estimator, random_state=rng, **params).fit(X_train, y_train).predict(X_test) def test_sparse_classification(): # Check classification for various parameter settings on sparse input. class CustomSVC(SVC): """SVC variant that records the nature of the training set""" def fit(self, X, y): super(CustomSVC, self).fit(X, y) self.data_type_ = type(X) return self rng = check_random_state(0) X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=rng) parameter_sets = [ {"max_samples": 0.5, "max_features": 2, "bootstrap": True, "bootstrap_features": True}, {"max_samples": 1.0, "max_features": 4, "bootstrap": True, "bootstrap_features": True}, {"max_features": 2, "bootstrap": False, "bootstrap_features": True}, {"max_samples": 0.5, "bootstrap": True, "bootstrap_features": False}, ] for sparse_format in [csc_matrix, csr_matrix]: X_train_sparse = sparse_format(X_train) X_test_sparse = sparse_format(X_test) for params in parameter_sets: for f in ['predict', 'predict_proba', 'predict_log_proba', 'decision_function']: # Trained on sparse format sparse_classifier = BaggingClassifier( base_estimator=CustomSVC(), random_state=1, **params ).fit(X_train_sparse, y_train) sparse_results = getattr(sparse_classifier, f)(X_test_sparse) # Trained on dense format dense_classifier = BaggingClassifier( base_estimator=CustomSVC(), random_state=1, **params ).fit(X_train, y_train) dense_results = getattr(dense_classifier, f)(X_test) assert_array_equal(sparse_results, dense_results) sparse_type = type(X_train_sparse) types = [i.data_type_ for i in sparse_classifier.estimators_] assert all([t == sparse_type for t in types]) def test_regression(): # Check regression for various parameter settings. rng = check_random_state(0) X_train, X_test, y_train, y_test = train_test_split(boston.data[:50], boston.target[:50], random_state=rng) grid = ParameterGrid({"max_samples": [0.5, 1.0], "max_features": [0.5, 1.0], "bootstrap": [True, False], "bootstrap_features": [True, False]}) for base_estimator in [None, DummyRegressor(), DecisionTreeRegressor(), KNeighborsRegressor(), SVR()]: for params in grid: BaggingRegressor(base_estimator=base_estimator, random_state=rng, **params).fit(X_train, y_train).predict(X_test) def test_sparse_regression(): # Check regression for various parameter settings on sparse input. rng = check_random_state(0) X_train, X_test, y_train, y_test = train_test_split(boston.data[:50], boston.target[:50], random_state=rng) class CustomSVR(SVR): """SVC variant that records the nature of the training set""" def fit(self, X, y): super(CustomSVR, self).fit(X, y) self.data_type_ = type(X) return self parameter_sets = [ {"max_samples": 0.5, "max_features": 2, "bootstrap": True, "bootstrap_features": True}, {"max_samples": 1.0, "max_features": 4, "bootstrap": True, "bootstrap_features": True}, {"max_features": 2, "bootstrap": False, "bootstrap_features": True}, {"max_samples": 0.5, "bootstrap": True, "bootstrap_features": False}, ] for sparse_format in [csc_matrix, csr_matrix]: X_train_sparse = sparse_format(X_train) X_test_sparse = sparse_format(X_test) for params in parameter_sets: # Trained on sparse format sparse_classifier = BaggingRegressor( base_estimator=CustomSVR(), random_state=1, **params ).fit(X_train_sparse, y_train) sparse_results = sparse_classifier.predict(X_test_sparse) # Trained on dense format dense_results = BaggingRegressor( base_estimator=CustomSVR(), random_state=1, **params ).fit(X_train, y_train).predict(X_test) sparse_type = type(X_train_sparse) types = [i.data_type_ for i in sparse_classifier.estimators_] assert_array_equal(sparse_results, dense_results) assert all([t == sparse_type for t in types]) assert_array_equal(sparse_results, dense_results) def test_bootstrap_samples(): # Test that bootstraping samples generate non-perfect base estimators. rng = check_random_state(0) X_train, X_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=rng) base_estimator = DecisionTreeRegressor().fit(X_train, y_train) # without bootstrap, all trees are perfect on the training set ensemble = BaggingRegressor(base_estimator=DecisionTreeRegressor(), max_samples=1.0, bootstrap=False, random_state=rng).fit(X_train, y_train) assert_equal(base_estimator.score(X_train, y_train), ensemble.score(X_train, y_train)) # with bootstrap, trees are no longer perfect on the training set ensemble = BaggingRegressor(base_estimator=DecisionTreeRegressor(), max_samples=1.0, bootstrap=True, random_state=rng).fit(X_train, y_train) assert_greater(base_estimator.score(X_train, y_train), ensemble.score(X_train, y_train)) def test_bootstrap_features(): # Test that bootstraping features may generate dupplicate features. rng = check_random_state(0) X_train, X_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=rng) ensemble = BaggingRegressor(base_estimator=DecisionTreeRegressor(), max_features=1.0, bootstrap_features=False, random_state=rng).fit(X_train, y_train) for features in ensemble.estimators_features_: assert_equal(boston.data.shape[1], np.unique(features).shape[0]) ensemble = BaggingRegressor(base_estimator=DecisionTreeRegressor(), max_features=1.0, bootstrap_features=True, random_state=rng).fit(X_train, y_train) for features in ensemble.estimators_features_: assert_greater(boston.data.shape[1], np.unique(features).shape[0]) def test_probability(): # Predict probabilities. rng = check_random_state(0) X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=rng) with np.errstate(divide="ignore", invalid="ignore"): # Normal case ensemble = BaggingClassifier(base_estimator=DecisionTreeClassifier(), random_state=rng).fit(X_train, y_train) assert_array_almost_equal(np.sum(ensemble.predict_proba(X_test), axis=1), np.ones(len(X_test))) assert_array_almost_equal(ensemble.predict_proba(X_test), np.exp(ensemble.predict_log_proba(X_test))) # Degenerate case, where some classes are missing ensemble = BaggingClassifier(base_estimator=LogisticRegression(), random_state=rng, max_samples=5).fit(X_train, y_train) assert_array_almost_equal(np.sum(ensemble.predict_proba(X_test), axis=1), np.ones(len(X_test))) assert_array_almost_equal(ensemble.predict_proba(X_test), np.exp(ensemble.predict_log_proba(X_test))) def test_oob_score_classification(): # Check that oob prediction is a good estimation of the generalization # error. rng = check_random_state(0) X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=rng) for base_estimator in [DecisionTreeClassifier(), SVC()]: clf = BaggingClassifier(base_estimator=base_estimator, n_estimators=100, bootstrap=True, oob_score=True, random_state=rng).fit(X_train, y_train) test_score = clf.score(X_test, y_test) assert_less(abs(test_score - clf.oob_score_), 0.1) # Test with few estimators assert_warns(UserWarning, BaggingClassifier(base_estimator=base_estimator, n_estimators=1, bootstrap=True, oob_score=True, random_state=rng).fit, X_train, y_train) def test_oob_score_regression(): # Check that oob prediction is a good estimation of the generalization # error. rng = check_random_state(0) X_train, X_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=rng) clf = BaggingRegressor(base_estimator=DecisionTreeRegressor(), n_estimators=50, bootstrap=True, oob_score=True, random_state=rng).fit(X_train, y_train) test_score = clf.score(X_test, y_test) assert_less(abs(test_score - clf.oob_score_), 0.1) # Test with few estimators assert_warns(UserWarning, BaggingRegressor(base_estimator=DecisionTreeRegressor(), n_estimators=1, bootstrap=True, oob_score=True, random_state=rng).fit, X_train, y_train) def test_single_estimator(): # Check singleton ensembles. rng = check_random_state(0) X_train, X_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=rng) clf1 = BaggingRegressor(base_estimator=KNeighborsRegressor(), n_estimators=1, bootstrap=False, bootstrap_features=False, random_state=rng).fit(X_train, y_train) clf2 = KNeighborsRegressor().fit(X_train, y_train) assert_array_equal(clf1.predict(X_test), clf2.predict(X_test)) def test_error(): # Test that it gives proper exception on deficient input. X, y = iris.data, iris.target base = DecisionTreeClassifier() # Test max_samples assert_raises(ValueError, BaggingClassifier(base, max_samples=-1).fit, X, y) assert_raises(ValueError, BaggingClassifier(base, max_samples=0.0).fit, X, y) assert_raises(ValueError, BaggingClassifier(base, max_samples=2.0).fit, X, y) assert_raises(ValueError, BaggingClassifier(base, max_samples=1000).fit, X, y) assert_raises(ValueError, BaggingClassifier(base, max_samples="foobar").fit, X, y) # Test max_features assert_raises(ValueError, BaggingClassifier(base, max_features=-1).fit, X, y) assert_raises(ValueError, BaggingClassifier(base, max_features=0.0).fit, X, y) assert_raises(ValueError, BaggingClassifier(base, max_features=2.0).fit, X, y) assert_raises(ValueError, BaggingClassifier(base, max_features=5).fit, X, y) assert_raises(ValueError, BaggingClassifier(base, max_features="foobar").fit, X, y) # Test support of decision_function assert_false(hasattr(BaggingClassifier(base).fit(X, y), 'decision_function')) def test_parallel_classification(): # Check parallel classification. rng = check_random_state(0) # Classification X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=rng) ensemble = BaggingClassifier(DecisionTreeClassifier(), n_jobs=3, random_state=0).fit(X_train, y_train) # predict_proba ensemble.set_params(n_jobs=1) y1 = ensemble.predict_proba(X_test) ensemble.set_params(n_jobs=2) y2 = ensemble.predict_proba(X_test) assert_array_almost_equal(y1, y2) ensemble = BaggingClassifier(DecisionTreeClassifier(), n_jobs=1, random_state=0).fit(X_train, y_train) y3 = ensemble.predict_proba(X_test) assert_array_almost_equal(y1, y3) # decision_function ensemble = BaggingClassifier(SVC(), n_jobs=3, random_state=0).fit(X_train, y_train) ensemble.set_params(n_jobs=1) decisions1 = ensemble.decision_function(X_test) ensemble.set_params(n_jobs=2) decisions2 = ensemble.decision_function(X_test) assert_array_almost_equal(decisions1, decisions2) ensemble = BaggingClassifier(SVC(), n_jobs=1, random_state=0).fit(X_train, y_train) decisions3 = ensemble.decision_function(X_test) assert_array_almost_equal(decisions1, decisions3) def test_parallel_regression(): # Check parallel regression. rng = check_random_state(0) X_train, X_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=rng) ensemble = BaggingRegressor(DecisionTreeRegressor(), n_jobs=3, random_state=0).fit(X_train, y_train) ensemble.set_params(n_jobs=1) y1 = ensemble.predict(X_test) ensemble.set_params(n_jobs=2) y2 = ensemble.predict(X_test) assert_array_almost_equal(y1, y2) ensemble = BaggingRegressor(DecisionTreeRegressor(), n_jobs=1, random_state=0).fit(X_train, y_train) y3 = ensemble.predict(X_test) assert_array_almost_equal(y1, y3) def test_gridsearch(): # Check that bagging ensembles can be grid-searched. # Transform iris into a binary classification task X, y = iris.data, iris.target y[y == 2] = 1 # Grid search with scoring based on decision_function parameters = {'n_estimators': (1, 2), 'base_estimator__C': (1, 2)} GridSearchCV(BaggingClassifier(SVC()), parameters, scoring="roc_auc").fit(X, y) def test_base_estimator(): # Check base_estimator and its default values. rng = check_random_state(0) # Classification X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=rng) ensemble = BaggingClassifier(None, n_jobs=3, random_state=0).fit(X_train, y_train) assert_true(isinstance(ensemble.base_estimator_, DecisionTreeClassifier)) ensemble = BaggingClassifier(DecisionTreeClassifier(), n_jobs=3, random_state=0).fit(X_train, y_train) assert_true(isinstance(ensemble.base_estimator_, DecisionTreeClassifier)) ensemble = BaggingClassifier(Perceptron(), n_jobs=3, random_state=0).fit(X_train, y_train) assert_true(isinstance(ensemble.base_estimator_, Perceptron)) # Regression X_train, X_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=rng) ensemble = BaggingRegressor(None, n_jobs=3, random_state=0).fit(X_train, y_train) assert_true(isinstance(ensemble.base_estimator_, DecisionTreeRegressor)) ensemble = BaggingRegressor(DecisionTreeRegressor(), n_jobs=3, random_state=0).fit(X_train, y_train) assert_true(isinstance(ensemble.base_estimator_, DecisionTreeRegressor)) ensemble = BaggingRegressor(SVR(), n_jobs=3, random_state=0).fit(X_train, y_train) assert_true(isinstance(ensemble.base_estimator_, SVR)) def test_bagging_with_pipeline(): estimator = BaggingClassifier(make_pipeline(SelectKBest(k=1), DecisionTreeClassifier()), max_features=2) estimator.fit(iris.data, iris.target) class DummyZeroEstimator(BaseEstimator): def fit(self, X, y): self.classes_ = np.unique(y) return self def predict(self, X): return self.classes_[np.zeros(X.shape[0], dtype=int)] def test_bagging_sample_weight_unsupported_but_passed(): estimator = BaggingClassifier(DummyZeroEstimator()) rng = check_random_state(0) estimator.fit(iris.data, iris.target).predict(iris.data) assert_raises(ValueError, estimator.fit, iris.data, iris.target, sample_weight=rng.randint(10, size=(iris.data.shape[0]))) def test_warm_start(random_state=42): # Test if fitting incrementally with warm start gives a forest of the # right size and the same results as a normal fit. X, y = make_hastie_10_2(n_samples=20, random_state=1) clf_ws = None for n_estimators in [5, 10]: if clf_ws is None: clf_ws = BaggingClassifier(n_estimators=n_estimators, random_state=random_state, warm_start=True) else: clf_ws.set_params(n_estimators=n_estimators) clf_ws.fit(X, y) assert_equal(len(clf_ws), n_estimators) clf_no_ws = BaggingClassifier(n_estimators=10, random_state=random_state, warm_start=False) clf_no_ws.fit(X, y) assert_equal(set([tree.random_state for tree in clf_ws]), set([tree.random_state for tree in clf_no_ws])) def test_warm_start_smaller_n_estimators(): # Test if warm start'ed second fit with smaller n_estimators raises error. X, y = make_hastie_10_2(n_samples=20, random_state=1) clf = BaggingClassifier(n_estimators=5, warm_start=True) clf.fit(X, y) clf.set_params(n_estimators=4) assert_raises(ValueError, clf.fit, X, y) def test_warm_start_equal_n_estimators(): # Test that nothing happens when fitting without increasing n_estimators X, y = make_hastie_10_2(n_samples=20, random_state=1) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=43) clf = BaggingClassifier(n_estimators=5, warm_start=True, random_state=83) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) # modify X to nonsense values, this should not change anything X_train += 1. assert_warns_message(UserWarning, "Warm-start fitting without increasing n_estimators does not", clf.fit, X_train, y_train) assert_array_equal(y_pred, clf.predict(X_test)) def test_warm_start_equivalence(): # warm started classifier with 5+5 estimators should be equivalent to # one classifier with 10 estimators X, y = make_hastie_10_2(n_samples=20, random_state=1) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=43) clf_ws = BaggingClassifier(n_estimators=5, warm_start=True, random_state=3141) clf_ws.fit(X_train, y_train) clf_ws.set_params(n_estimators=10) clf_ws.fit(X_train, y_train) y1 = clf_ws.predict(X_test) clf = BaggingClassifier(n_estimators=10, warm_start=False, random_state=3141) clf.fit(X_train, y_train) y2 = clf.predict(X_test) assert_array_almost_equal(y1, y2) def test_warm_start_with_oob_score_fails(): # Check using oob_score and warm_start simultaneously fails X, y = make_hastie_10_2(n_samples=20, random_state=1) clf = BaggingClassifier(n_estimators=5, warm_start=True, oob_score=True) assert_raises(ValueError, clf.fit, X, y) def test_oob_score_removed_on_warm_start(): X, y = make_hastie_10_2(n_samples=2000, random_state=1) clf = BaggingClassifier(n_estimators=50, oob_score=True) clf.fit(X, y) clf.set_params(warm_start=True, oob_score=False, n_estimators=100) clf.fit(X, y) assert_raises(AttributeError, getattr, clf, "oob_score_")
bsd-3-clause
ClinicalGraphics/scikit-image
doc/examples/edges/plot_medial_transform.py
11
2257
""" =========================== Medial axis skeletonization =========================== The medial axis of an object is the set of all points having more than one closest point on the object's boundary. It is often called the **topological skeleton**, because it is a 1-pixel wide skeleton of the object, with the same connectivity as the original object. Here, we use the medial axis transform to compute the width of the foreground objects. As the function ``medial_axis`` (``skimage.morphology.medial_axis``) returns the distance transform in addition to the medial axis (with the keyword argument ``return_distance=True``), it is possible to compute the distance to the background for all points of the medial axis with this function. This gives an estimate of the local width of the objects. For a skeleton with fewer branches, there exists another skeletonization algorithm in ``skimage``: ``skimage.morphology.skeletonize``, that computes a skeleton by iterative morphological thinnings. """ import numpy as np from scipy import ndimage as ndi from skimage.morphology import medial_axis import matplotlib.pyplot as plt def microstructure(l=256): """ Synthetic binary data: binary microstructure with blobs. Parameters ---------- l: int, optional linear size of the returned image """ n = 5 x, y = np.ogrid[0:l, 0:l] mask = np.zeros((l, l)) generator = np.random.RandomState(1) points = l * generator.rand(2, n**2) mask[(points[0]).astype(np.int), (points[1]).astype(np.int)] = 1 mask = ndi.gaussian_filter(mask, sigma=l/(4.*n)) return mask > mask.mean() data = microstructure(l=64) # Compute the medial axis (skeleton) and the distance transform skel, distance = medial_axis(data, return_distance=True) # Distance to the background for pixels of the skeleton dist_on_skel = distance * skel fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4), sharex=True, sharey=True, subplot_kw={'adjustable': 'box-forced'}) ax1.imshow(data, cmap=plt.cm.gray, interpolation='nearest') ax1.axis('off') ax2.imshow(dist_on_skel, cmap=plt.cm.spectral, interpolation='nearest') ax2.contour(data, [0.5], colors='w') ax2.axis('off') fig.tight_layout() plt.show()
bsd-3-clause
r9y9/librosa
docs/examples/plot_vocal_separation.py
3
4303
# -*- coding: utf-8 -*- """ ================ Vocal separation ================ This notebook demonstrates a simple technique for separating vocals (and other sporadic foreground signals) from accompanying instrumentation. This is based on the "REPET-SIM" method of `Rafii and Pardo, 2012 <http://www.cs.northwestern.edu/~zra446/doc/Rafii-Pardo%20-%20Music-Voice%20Separation%20using%20the%20Similarity%20Matrix%20-%20ISMIR%202012.pdf>`_, but includes a couple of modifications and extensions: - FFT windows overlap by 1/4, instead of 1/2 - Non-local filtering is converted into a soft mask by Wiener filtering. This is similar in spirit to the soft-masking method used by `Fitzgerald, 2012 <http://arrow.dit.ie/cgi/viewcontent.cgi?article=1086&context=argcon>`_, but is a bit more numerically stable in practice. """ # Code source: Brian McFee # License: ISC ################## # Standard imports from __future__ import print_function import numpy as np import matplotlib.pyplot as plt import librosa import librosa.display ############################################# # Load an example with vocals. y, sr = librosa.load('audio/Cheese_N_Pot-C_-_16_-_The_Raps_Well_Clean_Album_Version.mp3', duration=120) # And compute the spectrogram magnitude and phase S_full, phase = librosa.magphase(librosa.stft(y)) ####################################### # Plot a 5-second slice of the spectrum idx = slice(*librosa.time_to_frames([30, 35], sr=sr)) plt.figure(figsize=(12, 4)) librosa.display.specshow(librosa.amplitude_to_db(S_full[:, idx], ref=np.max), y_axis='log', x_axis='time', sr=sr) plt.colorbar() plt.tight_layout() ########################################################### # The wiggly lines above are due to the vocal component. # Our goal is to separate them from the accompanying # instrumentation. # # We'll compare frames using cosine similarity, and aggregate similar frames # by taking their (per-frequency) median value. # # To avoid being biased by local continuity, we constrain similar frames to be # separated by at least 2 seconds. # # This suppresses sparse/non-repetetitive deviations from the average spectrum, # and works well to discard vocal elements. S_filter = librosa.decompose.nn_filter(S_full, aggregate=np.median, metric='cosine', width=int(librosa.time_to_frames(2, sr=sr))) # The output of the filter shouldn't be greater than the input # if we assume signals are additive. Taking the pointwise minimium # with the input spectrum forces this. S_filter = np.minimum(S_full, S_filter) ############################################## # The raw filter output can be used as a mask, # but it sounds better if we use soft-masking. # We can also use a margin to reduce bleed between the vocals and instrumentation masks. # Note: the margins need not be equal for foreground and background separation margin_i, margin_v = 2, 10 power = 2 mask_i = librosa.util.softmask(S_filter, margin_i * (S_full - S_filter), power=power) mask_v = librosa.util.softmask(S_full - S_filter, margin_v * S_filter, power=power) # Once we have the masks, simply multiply them with the input spectrum # to separate the components S_foreground = mask_v * S_full S_background = mask_i * S_full ########################################## # Plot the same slice, but separated into its foreground and background # sphinx_gallery_thumbnail_number = 2 plt.figure(figsize=(12, 8)) plt.subplot(3, 1, 1) librosa.display.specshow(librosa.amplitude_to_db(S_full[:, idx], ref=np.max), y_axis='log', sr=sr) plt.title('Full spectrum') plt.colorbar() plt.subplot(3, 1, 2) librosa.display.specshow(librosa.amplitude_to_db(S_background[:, idx], ref=np.max), y_axis='log', sr=sr) plt.title('Background') plt.colorbar() plt.subplot(3, 1, 3) librosa.display.specshow(librosa.amplitude_to_db(S_foreground[:, idx], ref=np.max), y_axis='log', x_axis='time', sr=sr) plt.title('Foreground') plt.colorbar() plt.tight_layout() plt.show()
isc
kevin-intel/scikit-learn
examples/tree/plot_cost_complexity_pruning.py
17
4620
""" ======================================================== Post pruning decision trees with cost complexity pruning ======================================================== .. currentmodule:: sklearn.tree The :class:`DecisionTreeClassifier` provides parameters such as ``min_samples_leaf`` and ``max_depth`` to prevent a tree from overfiting. Cost complexity pruning provides another option to control the size of a tree. In :class:`DecisionTreeClassifier`, this pruning technique is parameterized by the cost complexity parameter, ``ccp_alpha``. Greater values of ``ccp_alpha`` increase the number of nodes pruned. Here we only show the effect of ``ccp_alpha`` on regularizing the trees and how to choose a ``ccp_alpha`` based on validation scores. See also :ref:`minimal_cost_complexity_pruning` for details on pruning. """ print(__doc__) import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.datasets import load_breast_cancer from sklearn.tree import DecisionTreeClassifier # %% # Total impurity of leaves vs effective alphas of pruned tree # --------------------------------------------------------------- # Minimal cost complexity pruning recursively finds the node with the "weakest # link". The weakest link is characterized by an effective alpha, where the # nodes with the smallest effective alpha are pruned first. To get an idea of # what values of ``ccp_alpha`` could be appropriate, scikit-learn provides # :func:`DecisionTreeClassifier.cost_complexity_pruning_path` that returns the # effective alphas and the corresponding total leaf impurities at each step of # the pruning process. As alpha increases, more of the tree is pruned, which # increases the total impurity of its leaves. X, y = load_breast_cancer(return_X_y=True) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) clf = DecisionTreeClassifier(random_state=0) path = clf.cost_complexity_pruning_path(X_train, y_train) ccp_alphas, impurities = path.ccp_alphas, path.impurities # %% # In the following plot, the maximum effective alpha value is removed, because # it is the trivial tree with only one node. fig, ax = plt.subplots() ax.plot(ccp_alphas[:-1], impurities[:-1], marker='o', drawstyle="steps-post") ax.set_xlabel("effective alpha") ax.set_ylabel("total impurity of leaves") ax.set_title("Total Impurity vs effective alpha for training set") # %% # Next, we train a decision tree using the effective alphas. The last value # in ``ccp_alphas`` is the alpha value that prunes the whole tree, # leaving the tree, ``clfs[-1]``, with one node. clfs = [] for ccp_alpha in ccp_alphas: clf = DecisionTreeClassifier(random_state=0, ccp_alpha=ccp_alpha) clf.fit(X_train, y_train) clfs.append(clf) print("Number of nodes in the last tree is: {} with ccp_alpha: {}".format( clfs[-1].tree_.node_count, ccp_alphas[-1])) # %% # For the remainder of this example, we remove the last element in # ``clfs`` and ``ccp_alphas``, because it is the trivial tree with only one # node. Here we show that the number of nodes and tree depth decreases as alpha # increases. clfs = clfs[:-1] ccp_alphas = ccp_alphas[:-1] node_counts = [clf.tree_.node_count for clf in clfs] depth = [clf.tree_.max_depth for clf in clfs] fig, ax = plt.subplots(2, 1) ax[0].plot(ccp_alphas, node_counts, marker='o', drawstyle="steps-post") ax[0].set_xlabel("alpha") ax[0].set_ylabel("number of nodes") ax[0].set_title("Number of nodes vs alpha") ax[1].plot(ccp_alphas, depth, marker='o', drawstyle="steps-post") ax[1].set_xlabel("alpha") ax[1].set_ylabel("depth of tree") ax[1].set_title("Depth vs alpha") fig.tight_layout() # %% # Accuracy vs alpha for training and testing sets # ---------------------------------------------------- # When ``ccp_alpha`` is set to zero and keeping the other default parameters # of :class:`DecisionTreeClassifier`, the tree overfits, leading to # a 100% training accuracy and 88% testing accuracy. As alpha increases, more # of the tree is pruned, thus creating a decision tree that generalizes better. # In this example, setting ``ccp_alpha=0.015`` maximizes the testing accuracy. train_scores = [clf.score(X_train, y_train) for clf in clfs] test_scores = [clf.score(X_test, y_test) for clf in clfs] fig, ax = plt.subplots() ax.set_xlabel("alpha") ax.set_ylabel("accuracy") ax.set_title("Accuracy vs alpha for training and testing sets") ax.plot(ccp_alphas, train_scores, marker='o', label="train", drawstyle="steps-post") ax.plot(ccp_alphas, test_scores, marker='o', label="test", drawstyle="steps-post") ax.legend() plt.show()
bsd-3-clause
rahuldan/sympy
sympy/physics/quantum/tests/test_circuitplot.py
93
2065
from sympy.physics.quantum.circuitplot import labeller, render_label, Mz, CreateOneQubitGate,\ CreateCGate from sympy.physics.quantum.gate import CNOT, H, SWAP, CGate, S, T from sympy.external import import_module from sympy.utilities.pytest import skip mpl = import_module('matplotlib') def test_render_label(): assert render_label('q0') == r'$|q0\rangle$' assert render_label('q0', {'q0': '0'}) == r'$|q0\rangle=|0\rangle$' def test_Mz(): assert str(Mz(0)) == 'Mz(0)' def test_create1(): Qgate = CreateOneQubitGate('Q') assert str(Qgate(0)) == 'Q(0)' def test_createc(): Qgate = CreateCGate('Q') assert str(Qgate([1],0)) == 'C((1),Q(0))' def test_labeller(): """Test the labeller utility""" assert labeller(2) == ['q_1', 'q_0'] assert labeller(3,'j') == ['j_2', 'j_1', 'j_0'] def test_cnot(): """Test a simple cnot circuit. Right now this only makes sure the code doesn't raise an exception, and some simple properties """ if not mpl: skip("matplotlib not installed") else: from sympy.physics.quantum.circuitplot import CircuitPlot c = CircuitPlot(CNOT(1,0),2,labels=labeller(2)) assert c.ngates == 2 assert c.nqubits == 2 assert c.labels == ['q_1', 'q_0'] c = CircuitPlot(CNOT(1,0),2) assert c.ngates == 2 assert c.nqubits == 2 assert c.labels == [] def test_ex1(): if not mpl: skip("matplotlib not installed") else: from sympy.physics.quantum.circuitplot import CircuitPlot c = CircuitPlot(CNOT(1,0)*H(1),2,labels=labeller(2)) assert c.ngates == 2 assert c.nqubits == 2 assert c.labels == ['q_1', 'q_0'] def test_ex4(): if not mpl: skip("matplotlib not installed") else: from sympy.physics.quantum.circuitplot import CircuitPlot c = CircuitPlot(SWAP(0,2)*H(0)* CGate((0,),S(1)) *H(1)*CGate((0,),T(2))\ *CGate((1,),S(2))*H(2),3,labels=labeller(3,'j')) assert c.ngates == 7 assert c.nqubits == 3 assert c.labels == ['j_2', 'j_1', 'j_0']
bsd-3-clause
zasdfgbnm/tensorflow
tensorflow/examples/learn/iris_custom_decay_dnn.py
43
3572
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Example of DNNClassifier for Iris plant dataset, with exponential decay.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from sklearn import datasets from sklearn import metrics from sklearn import model_selection import tensorflow as tf X_FEATURE = 'x' # Name of the input feature. def my_model(features, labels, mode): """DNN with three hidden layers.""" # Create three fully connected layers respectively of size 10, 20, and 10. net = features[X_FEATURE] for units in [10, 20, 10]: net = tf.layers.dense(net, units=units, activation=tf.nn.relu) # Compute logits (1 per class). logits = tf.layers.dense(net, 3, activation=None) # Compute predictions. predicted_classes = tf.argmax(logits, 1) if mode == tf.estimator.ModeKeys.PREDICT: predictions = { 'class': predicted_classes, 'prob': tf.nn.softmax(logits) } return tf.estimator.EstimatorSpec(mode, predictions=predictions) # Compute loss. loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits) # Create training op with exponentially decaying learning rate. if mode == tf.estimator.ModeKeys.TRAIN: global_step = tf.train.get_global_step() learning_rate = tf.train.exponential_decay( learning_rate=0.1, global_step=global_step, decay_steps=100, decay_rate=0.001) optimizer = tf.train.AdagradOptimizer(learning_rate=learning_rate) train_op = optimizer.minimize(loss, global_step=global_step) return tf.estimator.EstimatorSpec(mode, loss=loss, train_op=train_op) # Compute evaluation metrics. eval_metric_ops = { 'accuracy': tf.metrics.accuracy( labels=labels, predictions=predicted_classes) } return tf.estimator.EstimatorSpec( mode, loss=loss, eval_metric_ops=eval_metric_ops) def main(unused_argv): iris = datasets.load_iris() x_train, x_test, y_train, y_test = model_selection.train_test_split( iris.data, iris.target, test_size=0.2, random_state=42) classifier = tf.estimator.Estimator(model_fn=my_model) # Train. train_input_fn = tf.estimator.inputs.numpy_input_fn( x={X_FEATURE: x_train}, y=y_train, num_epochs=None, shuffle=True) classifier.train(input_fn=train_input_fn, steps=1000) # Predict. test_input_fn = tf.estimator.inputs.numpy_input_fn( x={X_FEATURE: x_test}, y=y_test, num_epochs=1, shuffle=False) predictions = classifier.predict(input_fn=test_input_fn) y_predicted = np.array(list(p['class'] for p in predictions)) y_predicted = y_predicted.reshape(np.array(y_test).shape) # Score with sklearn. score = metrics.accuracy_score(y_test, y_predicted) print('Accuracy (sklearn): {0:f}'.format(score)) # Score with tensorflow. scores = classifier.evaluate(input_fn=test_input_fn) print('Accuracy (tensorflow): {0:f}'.format(scores['accuracy'])) if __name__ == '__main__': tf.app.run()
apache-2.0
jakevdp/bokeh
bokeh/sampledata/daylight.py
4
2482
"""Daylight hours from http://www.sunrisesunset.com """ import re import datetime import requests from six.moves import xrange from os.path import join, abspath, dirname import pandas as pd url = "http://sunrisesunset.com/calendar.asp" r0 = re.compile("<[^>]+>|&nbsp;|[\r\n\t]") r1 = re.compile(r"(\d+)(DST Begins|DST Ends)?Sunrise: (\d+):(\d\d)Sunset: (\d+):(\d\d)") def fetch_daylight_hours(lat, lon, tz, dst, year): """Fetch daylight hours from sunrisesunset.com for a given location. Parameters ---------- lat : float Location's latitude. lon : float Location's longitude. tz : int or float Time zone offset from UTC. Use floats for half-hour time zones. dst : int Daylight saving type, e.g. 0 -> none, 1 -> North America, 2 -> Europe. See sunrisesunset.com/custom.asp for other possible values. year : int Year (1901..2099). """ daylight = [] summer = 0 if lat >= 0 else 1 for month in xrange(1, 12+1): args = dict(url=url, lat=lat, lon=lon, tz=tz, dst=dst, year=year, month=month) response = requests.get("%(url)s?comb_city_info=_;%(lon)s;%(lat)s;%(tz)s;%(dst)s&month=%(month)s&year=%(year)s&time_type=1&wadj=1" % args) entries = r1.findall(r0.sub("", response.text)) for day, note, sunrise_hour, sunrise_minute, sunset_hour, sunset_minute in entries: if note == "DST Begins": summer = 1 elif note == "DST Ends": summer = 0 date = datetime.date(year, month, int(day)) sunrise = datetime.time(int(sunrise_hour), int(sunrise_minute)) sunset = datetime.time(int(sunset_hour), int(sunset_minute)) daylight.append([date, sunrise, sunset, summer]) return pd.DataFrame(daylight, columns=["Date", "Sunrise", "Sunset", "Summer"]) # daylight_warsaw_2013 = fetch_daylight_hours(52.2297, -21.0122, 1, 2, 2013) # daylight_warsaw_2013.to_csv("bokeh/sampledata/daylight_warsaw_2013.csv", index=False) def load_daylight_hours(file): path = join(dirname(abspath(__file__)), file) df = pd.read_csv(path, parse_dates=["Date", "Sunrise", "Sunset"]) df["Date"] = df.Date.map(lambda x: x.date()) df["Sunrise"] = df.Sunrise.map(lambda x: x.time()) df["Sunset"] = df.Sunset.map(lambda x: x.time()) return df daylight_warsaw_2013 = load_daylight_hours("daylight_warsaw_2013.csv")
bsd-3-clause
gnina/scripts
affinity_search/ga_addrequests.py
1
8462
#!/usr/bin/env python '''Train a random forest on model performance from an sql database and then run a genetic algorithm to propose new, better models to run. ''' import sys, re, MySQLdb, argparse, os, json, subprocess import pandas as pd import makemodel import numpy as np from MySQLdb.cursors import DictCursor from outputjson import makejson from MySQLdb.cursors import DictCursor from frozendict import frozendict import sklearn from sklearn.ensemble import * from sklearn.preprocessing import * from sklearn.feature_extraction import * import deap from deap import base, creator, gp, tools from deap import algorithms from deap import * import multiprocessing def getcursor(host,passwd,db): '''create a connection and return a cursor; doing this guards against dropped connections''' conn = MySQLdb.connect (host = host,user = "opter",passwd=passwd,db=db) conn.autocommit(True) cursor = conn.cursor(DictCursor) return cursor def cleanparams(p): '''standardize params that do not matter''' modeldefaults = makemodel.getdefaults() for i in range(1,6): if p['conv%d_width'%i] == 0: for suffix in ['func', 'init', 'norm', 'size', 'stride', 'width']: name = 'conv%d_%s'%(i,suffix) p[name] = modeldefaults[name] if p['pool%d_size'%i] == 0: name = 'pool%d_type'%i p[name] = modeldefaults[name] if p['fc_pose_hidden'] == 0: p['fc_pose_func'] = modeldefaults['fc_pose_func'] p['fc_pose_hidden2'] = modeldefaults['fc_pose_hidden2'] p['fc_pose_func2'] = modeldefaults['fc_pose_func2'] p['fc_pose_init'] = modeldefaults['fc_pose_init'] elif p['fc_pose_hidden2'] == 0: p['fc_pose_hidden2'] = modeldefaults['fc_pose_hidden2'] p['fc_pose_func2'] = modeldefaults['fc_pose_func2'] if p['fc_affinity_hidden'] == 0: p['fc_affinity_func'] = modeldefaults['fc_affinity_func'] p['fc_affinity_hidden2'] = modeldefaults['fc_affinity_hidden2'] p['fc_affinity_func2'] = modeldefaults['fc_affinity_func2'] p['fc_affinity_init'] = modeldefaults['fc_affinity_init'] elif p['fc_affinity_hidden2'] == 0: p['fc_affinity_hidden2'] = modeldefaults['fc_affinity_hidden2'] p['fc_affinity_func2'] = modeldefaults['fc_affinity_func2'] return p def randParam(param, choices): '''randomly select a choice for param''' if isinstance(choices, makemodel.Range): #discretize choices = np.linspace(choices.min,choices.max, 9) return np.asscalar(np.random.choice(choices)) def randomIndividual(): ret = dict() options = makemodel.getoptions() for (param,choices) in options.items(): ret[param] = randParam(param, choices) return cleanparams(ret) def evaluateIndividual(ind): x = dictvec.transform(ind) return [rf.predict(x)[0]] def mutateIndividual(ind, indpb=0.05): '''for each param, with prob indpb randomly sample another choice''' options = makemodel.getoptions() for (param,choices) in options.items(): if np.random.rand() < indpb: ind[param] = randParam(param, choices) return (ind,) def crossover(ind1, ind2, indpdb=0.5): '''swap choices with probability indpb''' options = makemodel.getoptions() for (param,choices) in options.items(): if np.random.rand() < indpdb: tmp = ind1[param] ind1[param] = ind2[param] ind2[param] = tmp return (ind1,ind2) def runGA(pop): '''run GA with early stopping if not improving''' hof = tools.HallOfFame(10) stats = tools.Statistics(lambda ind: ind.fitness.values) stats.register("avg", np.mean) stats.register("std", np.std) stats.register("min", np.min) stats.register("max", np.max) best = 0 pop = toolbox.clone(pop) for i in range(40): pop, log = algorithms.eaMuPlusLambda(pop, toolbox, mu=300, lambda_=300, cxpb=0.5, mutpb=0.2, ngen=25, stats=stats, halloffame=hof, verbose=True) newmax = log[-1]['max'] if best == newmax: break best = newmax return pop def addrows(config,host,db,password): '''add rows from fname into database, starting at row start''' conn = MySQLdb.connect (host = host,user = "opter",passwd=password,db=db) cursor = conn.cursor() items = list(config.items()) names = ','.join([str(n) for (n,v) in items]) values = ','.join(['%s' for (n,v) in items]) names += ',id' values += ',"REQUESTED"' #do five variations for split in range(5): seed = np.random.randint(0,100000) n = names + ',split,seed' v = values + ',%d,%d' % (split,seed) insert = 'INSERT INTO params (%s) VALUES (%s)' % (n,v) cursor.execute(insert,[v for (n,v) in items]) conn.commit() parser = argparse.ArgumentParser(description='Generate more configurations with random forest and genetic algorithms') parser.add_argument('--host',type=str,help='Database host',required=True) parser.add_argument('-p','--password',type=str,help='Database password',required=True) parser.add_argument('--db',type=str,help='Database name',default='database') parser.add_argument('--pending_threshold',type=int,default=0,help='Number of pending jobs that triggers an update') parser.add_argument('-n','--num_configs',type=int,default=1,help='Number of configs to generate - will add a multiple as many jobs') args = parser.parse_args() # first see how many id=REQUESTED jobs there are cursor = getcursor(args.host,args.password,args.db) cursor.execute('SELECT COUNT(*) FROM params WHERE id = "REQUESTED"') rows = cursor.fetchone() pending = list(rows.values())[0] #print "Pending jobs:",pending sys.stdout.write('%d '%pending) sys.stdout.flush() #if more than pending_threshold, quit if pending > args.pending_threshold: sys.exit(0) cursor = getcursor(args.host,args.password,args.db) cursor.execute('SELECT * FROM params WHERE id != "REQUESTED"') rows = cursor.fetchall() data = pd.DataFrame(list(rows)) #make errors zero - appropriate if error is due to parameters data.loc[data.id == 'ERROR','R'] = 0 data.loc[data.id == 'ERROR','rmse'] = 0 data.loc[data.id == 'ERROR','top'] = 0 data.loc[data.id == 'ERROR','auc'] = 0 data['Rtop'] = data.R*data.top data = data.dropna('index').apply(pd.to_numeric, errors='ignore') #convert data to be useful for sklearn notparams = ['R','auc','Rtop','id','msg','rmse','seed','serial','time','top','split'] X = data.drop(notparams,axis=1) y = data.Rtop dictvec = DictVectorizer() #standardize meaningless params Xv = dictvec.fit_transform(list(map(cleanparams,X.to_dict(orient='records')))) print("\nTraining %d\n"%Xv.shape[0]) #train model rf = RandomForestRegressor(n_estimators=20) rf.fit(Xv,y) #set up GA creator.create("FitnessMax", base.Fitness, weights=(1.0,)) creator.create("Individual", dict, fitness=creator.FitnessMax) toolbox = base.Toolbox() toolbox.register("individual", tools.initIterate, creator.Individual, randomIndividual) toolbox.register("population", tools.initRepeat, list, toolbox.individual) toolbox.register("mutate",mutateIndividual) toolbox.register("mate",crossover) toolbox.register("select", tools.selTournament, tournsize=3) toolbox.register("evaluate", evaluateIndividual) pool = multiprocessing.Pool() toolbox.register("map", pool.map) #setup initial population initpop = [ creator.Individual(cleanparams(x)) for x in X.to_dict('records')] evals = pool.map(toolbox.evaluate, initpop) top = sorted([l[0] for l in evals],reverse=True)[0] print("Best in training set: %f"%top) seen = set(map(frozendict,initpop)) #include some random individuals randpop = toolbox.population(n=len(initpop)) pop = runGA(initpop+randpop) #make sure sorted pop = sorted(pop,key=lambda x: -x.fitness.values[0]) #remove already evaluated configs pop = [p for p in pop if frozendict(p) not in seen] print("Best recommended: %f"%pop[0].fitness.values[0]) uniquified = [] for config in pop: config = cleanparams(config) fr = frozendict(config) if fr not in seen: seen.add(fr) uniquified.append(config) print(len(uniquified),len(pop)) for config in uniquified[:args.num_configs]: addrows(config, args.host,args.db,args.password)
bsd-3-clause
victorbergelin/scikit-learn
examples/svm/plot_svm_margin.py
318
2328
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= SVM Margins Example ========================================================= The plots below illustrate the effect the parameter `C` has on the separation line. A large value of `C` basically tells our model that we do not have that much faith in our data's distribution, and will only consider points close to line of separation. A small value of `C` includes more/all the observations, allowing the margins to be calculated using all the data in the area. """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import svm # we create 40 separable points np.random.seed(0) X = np.r_[np.random.randn(20, 2) - [2, 2], np.random.randn(20, 2) + [2, 2]] Y = [0] * 20 + [1] * 20 # figure number fignum = 1 # fit the model for name, penalty in (('unreg', 1), ('reg', 0.05)): clf = svm.SVC(kernel='linear', C=penalty) clf.fit(X, Y) # get the separating hyperplane w = clf.coef_[0] a = -w[0] / w[1] xx = np.linspace(-5, 5) yy = a * xx - (clf.intercept_[0]) / w[1] # plot the parallels to the separating hyperplane that pass through the # support vectors margin = 1 / np.sqrt(np.sum(clf.coef_ ** 2)) yy_down = yy + a * margin yy_up = yy - a * margin # plot the line, the points, and the nearest vectors to the plane plt.figure(fignum, figsize=(4, 3)) plt.clf() plt.plot(xx, yy, 'k-') plt.plot(xx, yy_down, 'k--') plt.plot(xx, yy_up, 'k--') plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=80, facecolors='none', zorder=10) plt.scatter(X[:, 0], X[:, 1], c=Y, zorder=10, cmap=plt.cm.Paired) plt.axis('tight') x_min = -4.8 x_max = 4.2 y_min = -6 y_max = 6 XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j] Z = clf.predict(np.c_[XX.ravel(), YY.ravel()]) # Put the result into a color plot Z = Z.reshape(XX.shape) plt.figure(fignum, figsize=(4, 3)) plt.pcolormesh(XX, YY, Z, cmap=plt.cm.Paired) plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.xticks(()) plt.yticks(()) fignum = fignum + 1 plt.show()
bsd-3-clause
anhaidgroup/py_stringsimjoin
py_stringsimjoin/tests/test_converter_utils.py
1
18049
import random import string import unittest from nose.tools import assert_equal, assert_list_equal, raises import numpy as np import pandas as pd from py_stringsimjoin.utils.converter import dataframe_column_to_str, \ series_to_str class DataframeColumnToStrTestCases(unittest.TestCase): def setUp(self): float_col = pd.Series(np.random.randn(10)).append( pd.Series([np.NaN for _ in range(10)], index=range(10, 20))) float_col_with_int_val = pd.Series( np.random.randint(1, 100, 10)).append( pd.Series([np.NaN for _ in range(10)], index=range(10, 20))) str_col = pd.Series([random.choice(string.ascii_lowercase) for _ in range(10)]).append( pd.Series([np.NaN for _ in range(10)], index=range(10, 20))) int_col = pd.Series(np.random.randint(1, 100, 20)) nan_col = pd.Series([np.NaN for _ in range(20)]) self.dataframe = pd.DataFrame({'float_col': float_col, 'float_col_with_int_val': float_col_with_int_val, 'int_col': int_col, 'str_col': str_col, 'nan_col': nan_col}) def test_str_col(self): assert_equal(self.dataframe['str_col'].dtype, object) out_df = dataframe_column_to_str(self.dataframe, 'str_col', inplace=False, return_col=False) assert_equal(type(out_df), pd.DataFrame) assert_equal(out_df['str_col'].dtype, object) assert_equal(self.dataframe['str_col'].dtype, object) assert_equal(sum(pd.isnull(self.dataframe['str_col'])), sum(pd.isnull(out_df['str_col']))) def test_int_col(self): assert_equal(self.dataframe['int_col'].dtype, int) out_df = dataframe_column_to_str(self.dataframe, 'int_col', inplace=False, return_col=False) assert_equal(type(out_df), pd.DataFrame) assert_equal(out_df['int_col'].dtype, object) assert_equal(self.dataframe['int_col'].dtype, int) assert_equal(sum(pd.isnull(out_df['int_col'])), 0) def test_float_col(self): assert_equal(self.dataframe['float_col'].dtype, float) out_df = dataframe_column_to_str(self.dataframe, 'float_col', inplace=False, return_col=False) assert_equal(type(out_df), pd.DataFrame) assert_equal(out_df['float_col'].dtype, object) assert_equal(self.dataframe['float_col'].dtype, float) assert_equal(sum(pd.isnull(self.dataframe['float_col'])), sum(pd.isnull(out_df['float_col']))) def test_float_col_with_int_val(self): assert_equal(self.dataframe['float_col_with_int_val'].dtype, float) out_df = dataframe_column_to_str( self.dataframe, 'float_col_with_int_val', inplace=False, return_col=False) assert_equal(type(out_df), pd.DataFrame) assert_equal(out_df['float_col_with_int_val'].dtype, object) assert_equal(self.dataframe['float_col_with_int_val'].dtype, float) assert_equal(sum(pd.isnull(self.dataframe['float_col_with_int_val'])), sum(pd.isnull(out_df['float_col_with_int_val']))) for idx, row in self.dataframe.iterrows(): if pd.isnull(row['float_col_with_int_val']): continue assert_equal(str(int(row['float_col_with_int_val'])), out_df.loc[idx]['float_col_with_int_val']) def test_str_col_with_inplace(self): assert_equal(self.dataframe['str_col'].dtype, object) nan_cnt_before = sum(pd.isnull(self.dataframe['str_col'])) flag = dataframe_column_to_str(self.dataframe, 'str_col', inplace=True, return_col=False) assert_equal(flag, True) assert_equal(self.dataframe['str_col'].dtype, object) nan_cnt_after = sum(pd.isnull(self.dataframe['str_col'])) assert_equal(nan_cnt_before, nan_cnt_after) def test_str_col_with_return_col(self): assert_equal(self.dataframe['str_col'].dtype, object) nan_cnt_before = sum(pd.isnull(self.dataframe['str_col'])) out_series = dataframe_column_to_str(self.dataframe, 'str_col', inplace=False, return_col=True) assert_equal(type(out_series), pd.Series) assert_equal(out_series.dtype, object) assert_equal(self.dataframe['str_col'].dtype, object) nan_cnt_after = sum(pd.isnull(out_series)) assert_equal(nan_cnt_before, nan_cnt_after) def test_int_col_with_inplace(self): assert_equal(self.dataframe['int_col'].dtype, int) flag = dataframe_column_to_str(self.dataframe, 'int_col', inplace=True, return_col=False) assert_equal(flag, True) assert_equal(self.dataframe['int_col'].dtype, object) assert_equal(sum(pd.isnull(self.dataframe['int_col'])), 0) def test_int_col_with_return_col(self): assert_equal(self.dataframe['int_col'].dtype, int) out_series = dataframe_column_to_str(self.dataframe, 'int_col', inplace=False, return_col=True) assert_equal(type(out_series), pd.Series) assert_equal(out_series.dtype, object) assert_equal(self.dataframe['int_col'].dtype, int) assert_equal(sum(pd.isnull(out_series)), 0) def test_float_col_with_inplace(self): assert_equal(self.dataframe['float_col'].dtype, float) nan_cnt_before = sum(pd.isnull(self.dataframe['float_col'])) flag = dataframe_column_to_str(self.dataframe, 'float_col', inplace=True, return_col=False) assert_equal(flag, True) assert_equal(self.dataframe['float_col'].dtype, object) nan_cnt_after = sum(pd.isnull(self.dataframe['float_col'])) assert_equal(nan_cnt_before, nan_cnt_after) def test_float_col_with_return_col(self): assert_equal(self.dataframe['float_col'].dtype, float) nan_cnt_before = sum(pd.isnull(self.dataframe['float_col'])) out_series = dataframe_column_to_str(self.dataframe, 'float_col', inplace=False, return_col=True) assert_equal(type(out_series), pd.Series) assert_equal(out_series.dtype, object) assert_equal(self.dataframe['float_col'].dtype, float) nan_cnt_after = sum(pd.isnull(out_series)) assert_equal(nan_cnt_before, nan_cnt_after) def test_nan_col_with_inplace(self): assert_equal(self.dataframe['nan_col'].dtype, float) nan_cnt_before = sum(pd.isnull(self.dataframe['nan_col'])) flag = dataframe_column_to_str(self.dataframe, 'nan_col', inplace=True, return_col=False) assert_equal(flag, True) assert_equal(self.dataframe['nan_col'].dtype, object) nan_cnt_after = sum(pd.isnull(self.dataframe['nan_col'])) assert_equal(nan_cnt_before, nan_cnt_after) @raises(AssertionError) def test_invalid_dataframe(self): dataframe_column_to_str([], 'test_col') @raises(AssertionError) def test_invalid_col_name(self): dataframe_column_to_str(self.dataframe, 'invalid_col') @raises(AssertionError) def test_invalid_inplace_flag(self): dataframe_column_to_str(self.dataframe, 'str_col', inplace=None) @raises(AssertionError) def test_invalid_return_col_flag(self): dataframe_column_to_str(self.dataframe, 'str_col', inplace=True, return_col=None) @raises(AssertionError) def test_invalid_flag_combination(self): dataframe_column_to_str(self.dataframe, 'str_col', inplace=True, return_col=True) class SeriesToStrTestCases(unittest.TestCase): def setUp(self): self.float_col = pd.Series(np.random.randn(10)).append( pd.Series([np.NaN for _ in range(10)], index=range(10, 20))) self.float_col_with_int_val = pd.Series( np.random.randint(1, 100, 10)).append( pd.Series([np.NaN for _ in range(10)], index=range(10, 20))) self.str_col = pd.Series([random.choice(string.ascii_lowercase) for _ in range(10)]).append( pd.Series([np.NaN for _ in range(10)], index=range(10, 20))) self.int_col = pd.Series(np.random.randint(1, 100, 20)) self.nan_col = pd.Series([np.NaN for _ in range(20)]) def test_str_col(self): assert_equal(self.str_col.dtype, object) out_series = series_to_str(self.str_col, inplace=False) assert_equal(type(out_series), pd.Series) assert_equal(out_series.dtype, object) assert_equal(self.str_col.dtype, object) assert_equal(sum(pd.isnull(self.str_col)), sum(pd.isnull(out_series))) def test_int_col(self): assert_equal(self.int_col.dtype, int) out_series = series_to_str(self.int_col, inplace=False) assert_equal(type(out_series), pd.Series) assert_equal(out_series.dtype, object) assert_equal(self.int_col.dtype, int) assert_equal(sum(pd.isnull(out_series)), 0) def test_float_col(self): assert_equal(self.float_col.dtype, float) out_series = series_to_str(self.float_col, inplace=False) assert_equal(type(out_series), pd.Series) assert_equal(out_series.dtype, object) assert_equal(self.float_col.dtype, float) assert_equal(sum(pd.isnull(self.float_col)), sum(pd.isnull(out_series))) def test_float_col_with_int_val(self): assert_equal(self.float_col_with_int_val.dtype, float) out_series = series_to_str(self.float_col_with_int_val, inplace=False) assert_equal(type(out_series), pd.Series) assert_equal(out_series.dtype, object) assert_equal(self.float_col_with_int_val.dtype, float) assert_equal(sum(pd.isnull(self.float_col_with_int_val)), sum(pd.isnull(out_series))) for idx, val in self.float_col_with_int_val.iteritems(): if pd.isnull(val): continue assert_equal(str(int(val)), out_series.loc[idx]) def test_str_col_with_inplace(self): assert_equal(self.str_col.dtype, object) nan_cnt_before = sum(pd.isnull(self.str_col)) flag = series_to_str(self.str_col, inplace=True) assert_equal(flag, True) assert_equal(self.str_col.dtype, object) nan_cnt_after = sum(pd.isnull(self.str_col)) assert_equal(nan_cnt_before, nan_cnt_after) def test_int_col_with_inplace(self): assert_equal(self.int_col.dtype, int) flag = series_to_str(self.int_col, inplace=True) assert_equal(flag, True) assert_equal(self.int_col.dtype, object) assert_equal(sum(pd.isnull(self.int_col)), 0) def test_float_col_with_inplace(self): assert_equal(self.float_col.dtype, float) nan_cnt_before = sum(pd.isnull(self.float_col)) flag = series_to_str(self.float_col, inplace=True) assert_equal(flag, True) assert_equal(self.float_col.dtype, object) nan_cnt_after = sum(pd.isnull(self.float_col)) assert_equal(nan_cnt_before, nan_cnt_after) # test the case with a series containing only NaN values. In this case, # inplace flag will be ignored. def test_nan_col_with_inplace(self): assert_equal(self.nan_col.dtype, float) nan_cnt_before = sum(pd.isnull(self.nan_col)) out_series = series_to_str(self.nan_col, inplace=True) assert_equal(out_series.dtype, object) assert_equal(self.nan_col.dtype, float) nan_cnt_after = sum(pd.isnull(out_series)) assert_equal(nan_cnt_before, nan_cnt_after) def test_empty_series_with_inplace(self): empty_series = pd.Series(dtype=int) assert_equal(empty_series.dtype, int) out_series = series_to_str(empty_series, inplace=True) assert_equal(out_series.dtype, object) assert_equal(empty_series.dtype, int) assert_equal(len(out_series), 0) @raises(AssertionError) def test_invalid_series(self): series_to_str([]) @raises(AssertionError) def test_invalid_inplace_flag(self): series_to_str(self.int_col, inplace=None)
bsd-3-clause
rmcgibbo/msmbuilder
msmbuilder/cluster/agglomerative.py
3
8584
# Author: Robert McGibbon <[email protected]> # Contributors: # Copyright (c) 2014, Stanford University # All rights reserved. #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- from __future__ import absolute_import, print_function, division import numpy as np import six import scipy.spatial.distance from scipy.cluster.hierarchy import fcluster from sklearn.externals.joblib import Memory from sklearn.utils import check_random_state from sklearn.base import ClusterMixin, TransformerMixin from . import MultiSequenceClusterMixin from ..base import BaseEstimator try: from fastcluster import linkage except ImportError: from scipy.cluster.hierarchy import linkage #----------------------------------------------------------------------------- # Globals #----------------------------------------------------------------------------- __all__ = ['_LandmarkAgglomerative'] POOLING_FUNCTIONS = { 'average': lambda x: np.mean(x, axis=1), 'complete': lambda x: np.max(x, axis=1), 'single': lambda x: np.min(x, axis=1), } #----------------------------------------------------------------------------- # Utilities #----------------------------------------------------------------------------- def pdist(X, metric='euclidean'): if isinstance(metric, six.string_types): return scipy.spatial.distance.pdist(X, metric) n = len(X) d = np.empty((n, n)) for i in range(n): d[i, :] = metric(X, X, i) return scipy.spatial.distance.squareform(d, checks=False) def cdist(XA, XB, metric='euclidean'): if isinstance(metric, six.string_types): return scipy.spatial.distance.cdist(XA, XB, metric) nA, nB = len(XA), len(XB) d = np.empty((nA, nB)) for i in range(nA): d[i, :] = metric(XB, XA, i) return d #----------------------------------------------------------------------------- # Main Code #----------------------------------------------------------------------------- class _LandmarkAgglomerative(ClusterMixin, TransformerMixin): """Landmark-based agglomerative hierarchical clustering Landmark-based agglomerative clustering is a simple scalable version of "standard" hierarchical clustering which doesn't require computing the full matrix of pairwise distances between all data points. The idea is basically to subsample only ``n_landmarks`` "landmark" data points, cluster them, and then assign labels to the remaining data points based on their distances to (and the labels of) the landmarks. Parameters ---------- n_clusters : int The number of clusters to find. n_landmarks : int, optional Memory-saving approximation. Instead of actually clustering every point, we instead select n_landmark points either randomly or by striding the data matrix (see ``landmark_strategy``). Then we cluster the only the landmarks, and then assign the remaining dataset based on distances to the landmarks. Note that n_landmarks=None is equivalent to using every point in the dataset as a landmark. linkage : {'single', 'complete', 'average'}, default='average' Which linkage criterion to use. The linkage criterion determines which distance to use between sets of observation. The algorithm will merge the pairs of cluster that minimize this criterion. - average uses the average of the distances of each observation of the two sets. - complete or maximum linkage uses the maximum distances between all observations of the two sets. - single uses the minimum distance between all observations of the two sets. The linkage also effects the predict() method and the use of landmarks. After computing the distance from each new data point to the landmarks, the new data point will be assigned to the cluster that minimizes the linkage function between the new data point and each of the landmarks. (i.e with ``single``, new data points will be assigned the label of the closest landmark, with ``average``, it will be assigned the label of the landmark s.t. the mean distance from the test point to all the landmarks with that label is minimized, etc.) memory : Instance of joblib.Memory or string (optional) Used to cache the output of the computation of the distance matrix. metric : string or callable, default= "euclidean" Metric used to compute the distance between samples. landmark_strategy : {'stride', 'random'}, default='stride' Method for determining landmark points. Only matters when n_landmarks is not None. "stride" takes landmarks every n-th data point in X, and random selects them uniformly at random. random_state : integer or numpy.RandomState, optional The generator used to select random landmarks. Only used if landmark_strategy=='random'. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. References ---------- .. [1] Mullner, D. "Modern hierarchical, agglomerative clustering algorithms." arXiv:1109.2378 (2011). Attributes ---------- landmark_labels_ landmarks_ """ def __init__(self, n_clusters, n_landmarks=None, linkage='average', memory=Memory(cachedir=None, verbose=0), metric='euclidean', landmark_strategy='stride', random_state=None): self.n_clusters = n_clusters self.n_landmarks = n_landmarks self.memory = memory self.metric = metric self.landmark_strategy = landmark_strategy self.random_state = random_state self.linkage = linkage self.landmark_labels_ = None self.landmarks_ = None def fit(self, X, y=None): """ Compute agglomerative clustering. Parameters ---------- X : array-like, shape=(n_samples, n_features) Returns ------- self """ memory = self.memory if isinstance(memory, six.string_types): memory = Memory(cachedir=memory, verbose=0) if self.n_landmarks is None: distances = memory.cache(pdist)(X, self.metric) else: if self.landmark_strategy == 'random': land_indices = check_random_state(self.random_state).randint(len(X), size=self.n_landmarks) else: land_indices = np.arange(len(X))[::(len(X) // self.n_landmarks)][:self.n_landmarks] distances = memory.cache(pdist)(X[land_indices], self.metric) tree = memory.cache(linkage)(distances, method=self.linkage) self.landmark_labels_ = fcluster(tree, criterion='maxclust', t=self.n_clusters) - 1 if self.n_landmarks is None: self.landmarks_ = X else: self.landmarks_ = X[land_indices] return self def predict(self, X): """Predict the closest cluster each sample in X belongs to. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] New data to predict. Returns ------- labels : array, shape [n_samples,] Index of the cluster each sample belongs to. """ dists = cdist(X, self.landmarks_, self.metric) try: pooling_func = POOLING_FUNCTIONS[self.linkage] except KeyError: raise ValueError('linkage=%s is not supported' % self.linkage) pooled_distances = np.empty(len(X)) pooled_distances.fill(np.infty) labels = np.zeros(len(X), dtype=int) for i in range(self.n_clusters): if np.any(self.landmark_labels_ == i): d = pooling_func(dists[:, self.landmark_labels_ == i]) mask = (d < pooled_distances) pooled_distances[mask] = d[mask] labels[mask] = i return labels def fit_predict(self, X): """Compute cluster centers and predict cluster index for each sample. Convenience method; equivalent to calling fit(X) followed by predict(X). """ self.fit(X) return self.predict(X) class LandmarkAgglomerative(MultiSequenceClusterMixin, _LandmarkAgglomerative, BaseEstimator): __doc__ = _LandmarkAgglomerative.__doc__
lgpl-2.1
r-mart/scikit-learn
sklearn/tests/test_base.py
216
7045
# Author: Gael Varoquaux # License: BSD 3 clause import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_raises from sklearn.base import BaseEstimator, clone, is_classifier from sklearn.svm import SVC from sklearn.pipeline import Pipeline from sklearn.grid_search import GridSearchCV from sklearn.utils import deprecated ############################################################################# # A few test classes class MyEstimator(BaseEstimator): def __init__(self, l1=0, empty=None): self.l1 = l1 self.empty = empty class K(BaseEstimator): def __init__(self, c=None, d=None): self.c = c self.d = d class T(BaseEstimator): def __init__(self, a=None, b=None): self.a = a self.b = b class DeprecatedAttributeEstimator(BaseEstimator): def __init__(self, a=None, b=None): self.a = a if b is not None: DeprecationWarning("b is deprecated and renamed 'a'") self.a = b @property @deprecated("Parameter 'b' is deprecated and renamed to 'a'") def b(self): return self._b class Buggy(BaseEstimator): " A buggy estimator that does not set its parameters right. " def __init__(self, a=None): self.a = 1 class NoEstimator(object): def __init__(self): pass def fit(self, X=None, y=None): return self def predict(self, X=None): return None class VargEstimator(BaseEstimator): """Sklearn estimators shouldn't have vargs.""" def __init__(self, *vargs): pass ############################################################################# # The tests def test_clone(): # Tests that clone creates a correct deep copy. # We create an estimator, make a copy of its original state # (which, in this case, is the current state of the estimator), # and check that the obtained copy is a correct deep copy. from sklearn.feature_selection import SelectFpr, f_classif selector = SelectFpr(f_classif, alpha=0.1) new_selector = clone(selector) assert_true(selector is not new_selector) assert_equal(selector.get_params(), new_selector.get_params()) selector = SelectFpr(f_classif, alpha=np.zeros((10, 2))) new_selector = clone(selector) assert_true(selector is not new_selector) def test_clone_2(): # Tests that clone doesn't copy everything. # We first create an estimator, give it an own attribute, and # make a copy of its original state. Then we check that the copy doesn't # have the specific attribute we manually added to the initial estimator. from sklearn.feature_selection import SelectFpr, f_classif selector = SelectFpr(f_classif, alpha=0.1) selector.own_attribute = "test" new_selector = clone(selector) assert_false(hasattr(new_selector, "own_attribute")) def test_clone_buggy(): # Check that clone raises an error on buggy estimators. buggy = Buggy() buggy.a = 2 assert_raises(RuntimeError, clone, buggy) no_estimator = NoEstimator() assert_raises(TypeError, clone, no_estimator) varg_est = VargEstimator() assert_raises(RuntimeError, clone, varg_est) def test_clone_empty_array(): # Regression test for cloning estimators with empty arrays clf = MyEstimator(empty=np.array([])) clf2 = clone(clf) assert_array_equal(clf.empty, clf2.empty) clf = MyEstimator(empty=sp.csr_matrix(np.array([[0]]))) clf2 = clone(clf) assert_array_equal(clf.empty.data, clf2.empty.data) def test_clone_nan(): # Regression test for cloning estimators with default parameter as np.nan clf = MyEstimator(empty=np.nan) clf2 = clone(clf) assert_true(clf.empty is clf2.empty) def test_repr(): # Smoke test the repr of the base estimator. my_estimator = MyEstimator() repr(my_estimator) test = T(K(), K()) assert_equal( repr(test), "T(a=K(c=None, d=None), b=K(c=None, d=None))" ) some_est = T(a=["long_params"] * 1000) assert_equal(len(repr(some_est)), 415) def test_str(): # Smoke test the str of the base estimator my_estimator = MyEstimator() str(my_estimator) def test_get_params(): test = T(K(), K()) assert_true('a__d' in test.get_params(deep=True)) assert_true('a__d' not in test.get_params(deep=False)) test.set_params(a__d=2) assert_true(test.a.d == 2) assert_raises(ValueError, test.set_params, a__a=2) def test_get_params_deprecated(): # deprecated attribute should not show up as params est = DeprecatedAttributeEstimator(a=1) assert_true('a' in est.get_params()) assert_true('a' in est.get_params(deep=True)) assert_true('a' in est.get_params(deep=False)) assert_true('b' not in est.get_params()) assert_true('b' not in est.get_params(deep=True)) assert_true('b' not in est.get_params(deep=False)) def test_is_classifier(): svc = SVC() assert_true(is_classifier(svc)) assert_true(is_classifier(GridSearchCV(svc, {'C': [0.1, 1]}))) assert_true(is_classifier(Pipeline([('svc', svc)]))) assert_true(is_classifier(Pipeline([('svc_cv', GridSearchCV(svc, {'C': [0.1, 1]}))]))) def test_set_params(): # test nested estimator parameter setting clf = Pipeline([("svc", SVC())]) # non-existing parameter in svc assert_raises(ValueError, clf.set_params, svc__stupid_param=True) # non-existing parameter of pipeline assert_raises(ValueError, clf.set_params, svm__stupid_param=True) # we don't currently catch if the things in pipeline are estimators # bad_pipeline = Pipeline([("bad", NoEstimator())]) # assert_raises(AttributeError, bad_pipeline.set_params, # bad__stupid_param=True) def test_score_sample_weight(): from sklearn.tree import DecisionTreeClassifier from sklearn.tree import DecisionTreeRegressor from sklearn import datasets rng = np.random.RandomState(0) # test both ClassifierMixin and RegressorMixin estimators = [DecisionTreeClassifier(max_depth=2), DecisionTreeRegressor(max_depth=2)] sets = [datasets.load_iris(), datasets.load_boston()] for est, ds in zip(estimators, sets): est.fit(ds.data, ds.target) # generate random sample weights sample_weight = rng.randint(1, 10, size=len(ds.target)) # check that the score with and without sample weights are different assert_not_equal(est.score(ds.data, ds.target), est.score(ds.data, ds.target, sample_weight=sample_weight), msg="Unweighted and weighted scores " "are unexpectedly equal")
bsd-3-clause
jacksarick/My-Code
Python/pi/piguess.py
1
1059
#!/usr/bin/python from __future__ import division import matplotlib.pyplot as plt from pylab import savefig from random import randint from time import time import sys filelocation = "/Users/jack.sarick/Desktop/Program/Python/pi/" filename = filelocation+"pianswer.txt" temppoint = [] loopcounter = 0 k50, k10, k5 = 50000, 10000, 5000 looptime = sys.argv[1] def makepi(loop): global filelocation global filename counter = 0 #Starts timer for loop looptime = time() #Generates points for i in range(k50): temppoint = [randint(0, k10), randint(0, k10)] if ((((temppoint[0]-k5)**2) + ((temppoint[1]-k5)**2)) <= k5**2): plt.plot(temppoint[0], temppoint[1], 'bo') counter += 1 else: plt.plot(temppoint[0], temppoint[1], 'ro') #Draws and saves file plt.axis([0, k10, 0, k10]) savefig(filelocation + 'pi' + str(loop) + '.png', bbox_inches='tight') #writes estimation and loop time to file with open(filename,'ab') as f: f.write(str((counter/k50)*4) + "," + str(time()-looptime) + "\n") f.close() #Runs makepi() makepi(looptime)
mit
agartland/pysieve
io.py
1
4231
""" Save and load data, analyses and meta-analyses to and from files (db?) Not sure how I should organize these functions. Should support both file and db backends Since I'm just going to pickle both should be easy to implement later Better to have these external functions that can load data and then instantiate neccessary classes Confusing though because meta.py has its own load/save functions for loading and saving sets of data/analyses, but these are only for the simulations i think """ __all__ = ['loadSieve', 'saveSieve'] import pickle import os import pandas as pd import os.path as op def saveSieve(dataPath, obj, dataFn = None, analysisFn = None): """Save sieve analysis results and/or data to a file that can be loaded later Results and data will be kept in separate files for efficiency if needed. Returns the data and results filenames if successful""" if dataFn is None: dataFn = _getFilename(dataPath, obj.data, 'pkl') if analysisFn is None: analysisFn = _getFilename(dataPath, obj, 'pkl') """If its an analysis object""" if hasattr(obj, 'methodName'): isAnalysisObj = True else: isAnalysisObj = False if isAnalysisObj: analysisClassName = str(obj.__class__).split('.')[-1].replace("'","").replace('>','') out = {'methodName':obj.methodName,'analysisClassName':analysisClassName,'results':obj.results} with open(analysisFn, 'wb') as fh: pickle.dump(out, fh) """Now save the data""" out = {'data':obj.data} with open(dataFn, 'wb') as fh: pickle.dump(out, fh) return dataFn, analysisFn def loadSieve(dataPath, fn, data = None): """Load sieve data OR analysis results from a file To load data, specify only fn of the data file, To load results, specify the pre-loaded data object as data: analysisClassObj = loadSieve(DATA_PATH + analysisFn, loadSieve(DATA_PATH + dataFn)) Parameters ---------- fn : str Full path to file data : sub-class of pysieve.sieveData Specify the data object when loading an analysis object, Returns ------- out : sub-class of pysieve.sieveData or pysieve.sieveAnalysis""" """Method is compatible across pandas versions and with binary files.""" out = pd.read_pickle(fn) """If its an analysis object and we have the data object passed""" if 'methodName' in out.keys() and not data is None: out['data'] = data obj = eval('%s(sievedata = data, sieveresults = results)' % (out['analysisClassName']),globals(),out) else: obj = out['data'] return obj def _getFilename(dataPath, obj, ext): """Try to make a filename from as much info is available in the object (data or results) Returns the filename""" """Assume that its an analysis object first""" if hasattr(obj,'data') and hasattr(obj.data,'N'): isDataObj = False else: isDataObj = True if not isDataObj: if obj.data.regionInds is None: regStr = 'whole' else: regStr = '%d_%d' % (obj.data.regionInds[0], obj.data.regionInds[-1]) if obj.results.hlaMethod is None: filePart = '%s/pyresults/%s.%s.%s.%s.%s' % (obj.data.studyName,obj.methodName,obj.data.proteinName,obj.data.insertName,regStr,ext) else: filePart = '%s/pyresults/%s.%s.%s.%s.%s.%s' % (obj.data.studyName,obj.methodName,obj.data.proteinName,obj.data.insertName,regStr,obj.results.hlaMethod,ext) fn = op.join(dataPath,filePart) else: """Then its a data object""" if obj.regionInds is None: regStr = 'whole' else: regStr = '%d_%d' % (obj.regionInds[0], obj.regionInds[-1]) if obj.HLAsubset: filePart = '%s/pyresults/data.HLAsubset.%s.%s.%s.%s' % (obj.studyName,obj.proteinName,obj.insertName,regStr,ext) else: filePart = '%s/pyresults/data.%s.%s.%s.%s' % (obj.studyName,obj.proteinName,obj.insertName,regStr,ext) fn = op.join(dataPath,filePart) folder,f = os.path.split(fn) if not os.path.exists(folder): os.makedirs(folder) return fn
mit
capaulson/pyKriging
pyKriging/CrossValidation.py
1
10122
""" @author: Giorgos """ import numpy as np from matplotlib import pyplot as plt import pyKriging from pyKriging.krige import kriging from pyKriging.utilities import * import random import scipy.stats as stats class Cross_Validation(): def __init__(self, model, name=None): """ X- sampling plane y- Objective function evaluations name- the name of the model """ self.model = model self.X = self.model.X self.y = self.model.y self.n, self.k = np.shape(self.X) self.predict_list, self.predict_varr, self.scvr = [], [], [] self.name = name def calculate_RMSE_Rsquared(self, optimiser, nt): """ this function calculates the root mean squared error of the interpola- ted model for a sample of nt test data Input: optimiser- optimiser to be used nt- the size of the sample test data Output: RMSE- the root mean squared error of nt sampling points Rsquared- the correlation coefficient """ yi_p, yi, yi_dif, yiyi_p, yiyi, yi_pyi_p = [], [], [], [], [], [] Sample = random.sample([i for i in range(len(self.X))], nt) Model = kriging(self.X, self.y, name='%s' % self.name) Model.train(optimiser) for i, j in enumerate(Sample): yi_p.append(Model.predict(self.X[j])) yi.append(self.y[j]) yi_dif.append(yi[i] - yi_p[i]) yiyi_p.append(yi[i]*yi_p[i]) yiyi.append(yi[i]*yi[i]) yi_pyi_p.append(yi_p[i]*yi_p[i]) RMSE = np.sqrt((sum(yi_dif)**2.) / float(nt)) Rsquared = ((float(nt)*sum(yiyi_p) - sum(yi)*sum(yi_p)) / (np.sqrt((float(nt)*sum(yiyi) - sum(yi)**2.) * (float(nt)*sum(yi_pyi_p) - sum(yi_p)**2.))))**2. return ['RMSE = %f' % RMSE, 'Rsquared = %f' % Rsquared] def calculate_SCVR(self, optimiser='pso', plot=0): """ this function calculates the standardised cross-validated residual (SCVR) value for each sampling point. Return an nx1 array with the SCVR value of each sampling point. If plot is 1, then plot scvr vs doe and y_pred vs y. Input: optimiser- optimiser to be used plot- if 1 plots scvr vs doe and y_pred vs y Output: predict_list- list with different interpolated kriging models excluding each time one point of the sampling plan predict_varr- list with the square root of the posterior variance scvr- the scvr as proposed by Jones et al. (Journal of global optimisation, 13: 455-492, 1998) """ y_normalised = (self.y - np.min(self.y)) / (np.max(self.y) - np.min(self.y)) y_ = np.copy(self.y) Kriging_models_i, list_arrays, list_ys, train_list = [], [], [], [] for i in range(self.n): exclude_value = [i] idx = list(set(range(self.n)) - set(exclude_value)) list_arrays.append(self.X[idx]) list_ys.append(y_[idx]) Kriging_models_i.append(kriging(list_arrays[i], list_ys[i], name='%s' % self.name)) train_list.append(Kriging_models_i[i].train(optimizer=optimiser)) self.predict_list.append(Kriging_models_i[i].predict(self.X[i])) self.predict_varr.append(Kriging_models_i[i].predict_var( self.X[i])) self.scvr.append((y_normalised[i] - Kriging_models_i[i].normy( self.predict_list[i])) / self.predict_varr[i][0, 0]) if plot == 0: return self.predict_list, self.predict_varr, self.scvr elif plot == 1: fig = plt.figure(figsize=(12, 8), facecolor='w', edgecolor='k', linewidth= 2.0, frameon=True) ax1 = fig.add_subplot(1, 2, 1) ax1.scatter([i for i in range(1, self.n+1)], self.scvr, alpha=0.5, edgecolor='black', facecolor='b', linewidth=2.) ax1.plot([i for i in range(0, self.n+3)], [3]*(self.n+3), 'r') ax1.plot([i for i in range(0, self.n+3)], [-3]*(self.n+3), 'r') ax1.set_xlim(0, self.n+2) ax1.set_ylim(-4, 4) ax1.set_xlabel('DoE individual') ax1.set_ylabel('SCVR') ax2 = fig.add_subplot(1, 2, 2) ax2.scatter(self.predict_list, self.y, alpha=0.5, edgecolor='black', facecolor='b', linewidth=2.) if np.max(self.y) > 0: ax2.set_ylim(0, np.max(self.y) + 0.00001) ax2.set_xlim(0, max(self.predict_list) + 0.00001) else: ax2.set_ylim(0, np.min(self.y) - 0.00001) ax2.set_xlim(0, min(self.predict_list) - 0.00001) ax2.plot(ax2.get_xlim(), ax2.get_ylim(), ls="-", c=".3") ax2.set_xlabel('predicted y') ax2.set_ylabel('y') plt.show() return self.predict_list, self.predict_varr, self.scvr else: raise ValueError('value for plot should be either 0 or 1') def calculate_transformed_SCVR(self, transformation, optimiser='pso', plot=0): """ this function calculates the transformed standardised cross-validated residual (SCVR) value for each sampling point. This helps to improve the model. Return an nx1 array with the SCVR value of each sampling point. If plot is 1, then plot scvr vs doe and y_pred vs y. Input: optimiser- optimiser to be used plot- if 1 plots scvr vs doe and y_pred vs y transformation- the tranformation of the objective function (logarithmic or inverse) Output: predict_list- list with different interpolated kriging models excluding each time one point of the sampling plan predict_varr- list with the square root of the posterior variance scvr- the scvr as proposed by Jones et al. (Journal of global optimisation, 13: 455-492, 1998) """ y_ = np.copy(self.y) if transformation == 'logarithmic': y_ = np.log(y_) elif transformation == 'inverse': y_ = -(1.0/y_) y_normalised = (y_ - np.min(y_)) / (np.max(y_) - np.min(y_)) Kriging_models_i, list_arrays, list_ys, train_list = [], [], [], [] for i in range(self.n): exclude_value = [i] idx = list(set(range(self.n)) - set(exclude_value)) list_arrays.append(self.X[idx]) list_ys.append(y_[idx]) Kriging_models_i.append(kriging(list_arrays[i], list_ys[i], name='%s' % self.name)) train_list.append(Kriging_models_i[i].train(optimizer=optimiser)) self.predict_list.append(Kriging_models_i[i].predict(self.X[i])) self.predict_varr.append(Kriging_models_i[i].predict_var( self.X[i])) self.scvr.append((y_normalised[i] - Kriging_models_i[i].normy( self.predict_list[i])) / self.predict_varr[i][0, 0]) if plot == 0: return self.predict_list, self.predict_varr, self.scvr elif plot == 1: fig = plt.figure(figsize=(12, 8), facecolor='w', edgecolor='k', linewidth= 2.0, frameon=True) ax1 = fig.add_subplot(1, 2, 1) ax1.scatter([i for i in range(1, self.n+1)], self.scvr, alpha=0.5, edgecolor='black', facecolor='b', linewidth=2.) ax1.plot([i for i in range(0, self.n+3)], [3]*(self.n+3), 'r') ax1.plot([i for i in range(0, self.n+3)], [-3]*(self.n+3), 'r') ax1.set_xlim(0, self.n+2) ax1.set_ylim(-4, 4) ax1.set_xlabel('DoE individual') ax1.set_ylabel('SCVR') ax2 = fig.add_subplot(1, 2, 2) ax2.scatter(self.predict_list, y_, alpha=0.5, edgecolor='black', facecolor='b', linewidth=2.) if np.max(y_) > 0: ax2.set_ylim(0, np.max(y_) + 0.00001) ax2.set_xlim(0, max(self.predict_list) + 0.00001) else: ax2.set_ylim(0, np.min(y_) - 0.00001) ax2.set_xlim(0, min(self.predict_list) - 0.00001) ax2.plot(ax2.get_xlim(), ax2.get_ylim(), ls="-", c=".3") ax2.set_xlabel('predicted %s' % 'ln(y)' if transformation == 'logarithmic' else '-1/y') ax2.set_ylabel('predicted %s' % 'ln(y)' if transformation == 'logarithmic' else '-1/y') plt.show() return self.predict_list, self.predict_varr, self.scvr else: raise ValueError('value for plot should be either 0 or 1') def QQ_plot(self): """ returns the QQ-plot with normal distribution """ plt.figure(figsize=(12, 8), facecolor='w', edgecolor='k', linewidth= 2.0, frameon=True) stats.probplot(self.scvr, dist="norm", plot=plt) plt.xlabel('SCVR') plt.ylabel('Standard quantile') plt.show() def leave_n_out(self, q=5): ''' :param q: the numer of groups to split the model data inot :return: ''' mseArray = [] for i in splitArrays(self.model,5): testk = kriging( i[0], i[1] ) testk.train() for j in range(len(i[2])): mseArray.append(mse(i[3][j], testk.predict( i[2][j] ))) del(testk) return np.average(mseArray), np.std(mseArray) ## Example Use Case:
mit
glouppe/scikit-learn
sklearn/ensemble/tests/test_weight_boosting.py
58
17158
"""Testing for the boost module (sklearn.ensemble.boost).""" import numpy as np from sklearn.utils.testing import assert_array_equal, assert_array_less from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal, assert_true from sklearn.utils.testing import assert_raises, assert_raises_regexp from sklearn.base import BaseEstimator from sklearn.model_selection import train_test_split from sklearn.model_selection import GridSearchCV from sklearn.ensemble import AdaBoostClassifier from sklearn.ensemble import AdaBoostRegressor from sklearn.ensemble import weight_boosting from scipy.sparse import csc_matrix from scipy.sparse import csr_matrix from scipy.sparse import coo_matrix from scipy.sparse import dok_matrix from scipy.sparse import lil_matrix from sklearn.svm import SVC, SVR from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor from sklearn.utils import shuffle from sklearn import datasets # Common random state rng = np.random.RandomState(0) # Toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y_class = ["foo", "foo", "foo", 1, 1, 1] # test string class labels y_regr = [-1, -1, -1, 1, 1, 1] T = [[-1, -1], [2, 2], [3, 2]] y_t_class = ["foo", 1, 1] y_t_regr = [-1, 1, 1] # Load the iris dataset and randomly permute it iris = datasets.load_iris() perm = rng.permutation(iris.target.size) iris.data, iris.target = shuffle(iris.data, iris.target, random_state=rng) # Load the boston dataset and randomly permute it boston = datasets.load_boston() boston.data, boston.target = shuffle(boston.data, boston.target, random_state=rng) def test_samme_proba(): # Test the `_samme_proba` helper function. # Define some example (bad) `predict_proba` output. probs = np.array([[1, 1e-6, 0], [0.19, 0.6, 0.2], [-999, 0.51, 0.5], [1e-6, 1, 1e-9]]) probs /= np.abs(probs.sum(axis=1))[:, np.newaxis] # _samme_proba calls estimator.predict_proba. # Make a mock object so I can control what gets returned. class MockEstimator(object): def predict_proba(self, X): assert_array_equal(X.shape, probs.shape) return probs mock = MockEstimator() samme_proba = weight_boosting._samme_proba(mock, 3, np.ones_like(probs)) assert_array_equal(samme_proba.shape, probs.shape) assert_true(np.isfinite(samme_proba).all()) # Make sure that the correct elements come out as smallest -- # `_samme_proba` should preserve the ordering in each example. assert_array_equal(np.argmin(samme_proba, axis=1), [2, 0, 0, 2]) assert_array_equal(np.argmax(samme_proba, axis=1), [0, 1, 1, 1]) def test_classification_toy(): # Check classification on a toy dataset. for alg in ['SAMME', 'SAMME.R']: clf = AdaBoostClassifier(algorithm=alg, random_state=0) clf.fit(X, y_class) assert_array_equal(clf.predict(T), y_t_class) assert_array_equal(np.unique(np.asarray(y_t_class)), clf.classes_) assert_equal(clf.predict_proba(T).shape, (len(T), 2)) assert_equal(clf.decision_function(T).shape, (len(T),)) def test_regression_toy(): # Check classification on a toy dataset. clf = AdaBoostRegressor(random_state=0) clf.fit(X, y_regr) assert_array_equal(clf.predict(T), y_t_regr) def test_iris(): # Check consistency on dataset iris. classes = np.unique(iris.target) clf_samme = prob_samme = None for alg in ['SAMME', 'SAMME.R']: clf = AdaBoostClassifier(algorithm=alg) clf.fit(iris.data, iris.target) assert_array_equal(classes, clf.classes_) proba = clf.predict_proba(iris.data) if alg == "SAMME": clf_samme = clf prob_samme = proba assert_equal(proba.shape[1], len(classes)) assert_equal(clf.decision_function(iris.data).shape[1], len(classes)) score = clf.score(iris.data, iris.target) assert score > 0.9, "Failed with algorithm %s and score = %f" % \ (alg, score) # Somewhat hacky regression test: prior to # ae7adc880d624615a34bafdb1d75ef67051b8200, # predict_proba returned SAMME.R values for SAMME. clf_samme.algorithm = "SAMME.R" assert_array_less(0, np.abs(clf_samme.predict_proba(iris.data) - prob_samme)) def test_boston(): # Check consistency on dataset boston house prices. clf = AdaBoostRegressor(random_state=0) clf.fit(boston.data, boston.target) score = clf.score(boston.data, boston.target) assert score > 0.85 def test_staged_predict(): # Check staged predictions. rng = np.random.RandomState(0) iris_weights = rng.randint(10, size=iris.target.shape) boston_weights = rng.randint(10, size=boston.target.shape) # AdaBoost classification for alg in ['SAMME', 'SAMME.R']: clf = AdaBoostClassifier(algorithm=alg, n_estimators=10) clf.fit(iris.data, iris.target, sample_weight=iris_weights) predictions = clf.predict(iris.data) staged_predictions = [p for p in clf.staged_predict(iris.data)] proba = clf.predict_proba(iris.data) staged_probas = [p for p in clf.staged_predict_proba(iris.data)] score = clf.score(iris.data, iris.target, sample_weight=iris_weights) staged_scores = [ s for s in clf.staged_score( iris.data, iris.target, sample_weight=iris_weights)] assert_equal(len(staged_predictions), 10) assert_array_almost_equal(predictions, staged_predictions[-1]) assert_equal(len(staged_probas), 10) assert_array_almost_equal(proba, staged_probas[-1]) assert_equal(len(staged_scores), 10) assert_array_almost_equal(score, staged_scores[-1]) # AdaBoost regression clf = AdaBoostRegressor(n_estimators=10, random_state=0) clf.fit(boston.data, boston.target, sample_weight=boston_weights) predictions = clf.predict(boston.data) staged_predictions = [p for p in clf.staged_predict(boston.data)] score = clf.score(boston.data, boston.target, sample_weight=boston_weights) staged_scores = [ s for s in clf.staged_score( boston.data, boston.target, sample_weight=boston_weights)] assert_equal(len(staged_predictions), 10) assert_array_almost_equal(predictions, staged_predictions[-1]) assert_equal(len(staged_scores), 10) assert_array_almost_equal(score, staged_scores[-1]) def test_gridsearch(): # Check that base trees can be grid-searched. # AdaBoost classification boost = AdaBoostClassifier(base_estimator=DecisionTreeClassifier()) parameters = {'n_estimators': (1, 2), 'base_estimator__max_depth': (1, 2), 'algorithm': ('SAMME', 'SAMME.R')} clf = GridSearchCV(boost, parameters) clf.fit(iris.data, iris.target) # AdaBoost regression boost = AdaBoostRegressor(base_estimator=DecisionTreeRegressor(), random_state=0) parameters = {'n_estimators': (1, 2), 'base_estimator__max_depth': (1, 2)} clf = GridSearchCV(boost, parameters) clf.fit(boston.data, boston.target) def test_pickle(): # Check pickability. import pickle # Adaboost classifier for alg in ['SAMME', 'SAMME.R']: obj = AdaBoostClassifier(algorithm=alg) obj.fit(iris.data, iris.target) score = obj.score(iris.data, iris.target) s = pickle.dumps(obj) obj2 = pickle.loads(s) assert_equal(type(obj2), obj.__class__) score2 = obj2.score(iris.data, iris.target) assert_equal(score, score2) # Adaboost regressor obj = AdaBoostRegressor(random_state=0) obj.fit(boston.data, boston.target) score = obj.score(boston.data, boston.target) s = pickle.dumps(obj) obj2 = pickle.loads(s) assert_equal(type(obj2), obj.__class__) score2 = obj2.score(boston.data, boston.target) assert_equal(score, score2) def test_importances(): # Check variable importances. X, y = datasets.make_classification(n_samples=2000, n_features=10, n_informative=3, n_redundant=0, n_repeated=0, shuffle=False, random_state=1) for alg in ['SAMME', 'SAMME.R']: clf = AdaBoostClassifier(algorithm=alg) clf.fit(X, y) importances = clf.feature_importances_ assert_equal(importances.shape[0], 10) assert_equal((importances[:3, np.newaxis] >= importances[3:]).all(), True) def test_error(): # Test that it gives proper exception on deficient input. assert_raises(ValueError, AdaBoostClassifier(learning_rate=-1).fit, X, y_class) assert_raises(ValueError, AdaBoostClassifier(algorithm="foo").fit, X, y_class) assert_raises(ValueError, AdaBoostClassifier().fit, X, y_class, sample_weight=np.asarray([-1])) def test_base_estimator(): # Test different base estimators. from sklearn.ensemble import RandomForestClassifier from sklearn.svm import SVC # XXX doesn't work with y_class because RF doesn't support classes_ # Shouldn't AdaBoost run a LabelBinarizer? clf = AdaBoostClassifier(RandomForestClassifier()) clf.fit(X, y_regr) clf = AdaBoostClassifier(SVC(), algorithm="SAMME") clf.fit(X, y_class) from sklearn.ensemble import RandomForestRegressor from sklearn.svm import SVR clf = AdaBoostRegressor(RandomForestRegressor(), random_state=0) clf.fit(X, y_regr) clf = AdaBoostRegressor(SVR(), random_state=0) clf.fit(X, y_regr) # Check that an empty discrete ensemble fails in fit, not predict. X_fail = [[1, 1], [1, 1], [1, 1], [1, 1]] y_fail = ["foo", "bar", 1, 2] clf = AdaBoostClassifier(SVC(), algorithm="SAMME") assert_raises_regexp(ValueError, "worse than random", clf.fit, X_fail, y_fail) def test_sample_weight_missing(): from sklearn.linear_model import LogisticRegression from sklearn.cluster import KMeans clf = AdaBoostClassifier(KMeans(), algorithm="SAMME") assert_raises(ValueError, clf.fit, X, y_regr) clf = AdaBoostRegressor(KMeans()) assert_raises(ValueError, clf.fit, X, y_regr) def test_sparse_classification(): # Check classification with sparse input. class CustomSVC(SVC): """SVC variant that records the nature of the training set.""" def fit(self, X, y, sample_weight=None): """Modification on fit caries data type for later verification.""" super(CustomSVC, self).fit(X, y, sample_weight=sample_weight) self.data_type_ = type(X) return self X, y = datasets.make_multilabel_classification(n_classes=1, n_samples=15, n_features=5, random_state=42) # Flatten y to a 1d array y = np.ravel(y) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) for sparse_format in [csc_matrix, csr_matrix, lil_matrix, coo_matrix, dok_matrix]: X_train_sparse = sparse_format(X_train) X_test_sparse = sparse_format(X_test) # Trained on sparse format sparse_classifier = AdaBoostClassifier( base_estimator=CustomSVC(probability=True), random_state=1, algorithm="SAMME" ).fit(X_train_sparse, y_train) # Trained on dense format dense_classifier = AdaBoostClassifier( base_estimator=CustomSVC(probability=True), random_state=1, algorithm="SAMME" ).fit(X_train, y_train) # predict sparse_results = sparse_classifier.predict(X_test_sparse) dense_results = dense_classifier.predict(X_test) assert_array_equal(sparse_results, dense_results) # decision_function sparse_results = sparse_classifier.decision_function(X_test_sparse) dense_results = dense_classifier.decision_function(X_test) assert_array_equal(sparse_results, dense_results) # predict_log_proba sparse_results = sparse_classifier.predict_log_proba(X_test_sparse) dense_results = dense_classifier.predict_log_proba(X_test) assert_array_equal(sparse_results, dense_results) # predict_proba sparse_results = sparse_classifier.predict_proba(X_test_sparse) dense_results = dense_classifier.predict_proba(X_test) assert_array_equal(sparse_results, dense_results) # score sparse_results = sparse_classifier.score(X_test_sparse, y_test) dense_results = dense_classifier.score(X_test, y_test) assert_array_equal(sparse_results, dense_results) # staged_decision_function sparse_results = sparse_classifier.staged_decision_function( X_test_sparse) dense_results = dense_classifier.staged_decision_function(X_test) for sprase_res, dense_res in zip(sparse_results, dense_results): assert_array_equal(sprase_res, dense_res) # staged_predict sparse_results = sparse_classifier.staged_predict(X_test_sparse) dense_results = dense_classifier.staged_predict(X_test) for sprase_res, dense_res in zip(sparse_results, dense_results): assert_array_equal(sprase_res, dense_res) # staged_predict_proba sparse_results = sparse_classifier.staged_predict_proba(X_test_sparse) dense_results = dense_classifier.staged_predict_proba(X_test) for sprase_res, dense_res in zip(sparse_results, dense_results): assert_array_equal(sprase_res, dense_res) # staged_score sparse_results = sparse_classifier.staged_score(X_test_sparse, y_test) dense_results = dense_classifier.staged_score(X_test, y_test) for sprase_res, dense_res in zip(sparse_results, dense_results): assert_array_equal(sprase_res, dense_res) # Verify sparsity of data is maintained during training types = [i.data_type_ for i in sparse_classifier.estimators_] assert all([(t == csc_matrix or t == csr_matrix) for t in types]) def test_sparse_regression(): # Check regression with sparse input. class CustomSVR(SVR): """SVR variant that records the nature of the training set.""" def fit(self, X, y, sample_weight=None): """Modification on fit caries data type for later verification.""" super(CustomSVR, self).fit(X, y, sample_weight=sample_weight) self.data_type_ = type(X) return self X, y = datasets.make_regression(n_samples=15, n_features=50, n_targets=1, random_state=42) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) for sparse_format in [csc_matrix, csr_matrix, lil_matrix, coo_matrix, dok_matrix]: X_train_sparse = sparse_format(X_train) X_test_sparse = sparse_format(X_test) # Trained on sparse format sparse_classifier = AdaBoostRegressor( base_estimator=CustomSVR(), random_state=1 ).fit(X_train_sparse, y_train) # Trained on dense format dense_classifier = dense_results = AdaBoostRegressor( base_estimator=CustomSVR(), random_state=1 ).fit(X_train, y_train) # predict sparse_results = sparse_classifier.predict(X_test_sparse) dense_results = dense_classifier.predict(X_test) assert_array_equal(sparse_results, dense_results) # staged_predict sparse_results = sparse_classifier.staged_predict(X_test_sparse) dense_results = dense_classifier.staged_predict(X_test) for sprase_res, dense_res in zip(sparse_results, dense_results): assert_array_equal(sprase_res, dense_res) types = [i.data_type_ for i in sparse_classifier.estimators_] assert all([(t == csc_matrix or t == csr_matrix) for t in types]) def test_sample_weight_adaboost_regressor(): """ AdaBoostRegressor should work without sample_weights in the base estimator The random weighted sampling is done internally in the _boost method in AdaBoostRegressor. """ class DummyEstimator(BaseEstimator): def fit(self, X, y): pass def predict(self, X): return np.zeros(X.shape[0]) boost = AdaBoostRegressor(DummyEstimator(), n_estimators=3) boost.fit(X, y_regr) assert_equal(len(boost.estimator_weights_), len(boost.estimator_errors_))
bsd-3-clause
Kirubaharan/hydrology
ch_623/ch_623_stage_area.py
2
4587
__author__ = 'kiruba' import matplotlib.pyplot as plt import pandas as pd from matplotlib import rc from scipy.interpolate import griddata from matplotlib import cm from matplotlib.path import * from mpl_toolkits.mplot3d import axes3d, Axes3D import matplotlib as mpl import matplotlib.colors as mc import checkdam.checkdam as cd # latex parameters rc('font', **{'family': 'sans-serif', 'sans-serif': ['Helvetica']}) rc('text', usetex=True) plt.rc('text', usetex=True) plt.rc('font', family='serif', size=18) base_file = '/media/kiruba/New Volume/milli_watershed/stream_profile/623/base_profile_623.csv' df_base = pd.read_csv(base_file, header=-1, skiprows=1) # print df_base.head() # slope_file = '/media/kiruba/New Volume/milli_watershed/stream_profile/616/slope_616.csv' # df_slope = pd.read_csv(slope_file, header=0) # print df_slope df_base_trans = df_base.T df_base_trans.columns = df_base_trans.ix[0, 0:] # print df_base_trans df_base_trans = df_base_trans.ix[1:, 1500:] print df_base_trans # raise SystemExit(0) created_profile = df_base_trans # print created_profile.head() sorted_df = created_profile.iloc[0:, 1:] sorted_df = sorted_df[sorted(sorted_df.columns)] sorted_df = sorted_df.join(created_profile.iloc[0:, 0], how='right') created_profile = cd.set_column_sequence(sorted_df, [1500]) # print created_profile.head() # raise SystemExit(0) """ Create (x,y,z) point cloud """ z_array = created_profile.iloc[0:, 1:] columns = z_array.columns z_array = z_array.values index = created_profile.iloc[0:,0] df = pd.DataFrame(z_array, columns=columns).set_index(index) data_1 = [] for y, row in df.iteritems(): for x, z in row.iteritems(): data_1.append((x, y, z)) data_1_df = pd.DataFrame(data_1, columns=['x', 'y', 'z']) # print data_1_df.dtypes # raise SystemExit(0) X = data_1_df.x Y = data_1_df.y Z = data_1_df.z ## contour and 3d surface plotting fig = plt.figure(figsize=plt.figaspect(0.5)) ax = fig.gca(projection='3d') # ax = fig.add_subplot(1, 2, 1, projection='3d') xi = np.linspace(X.min(), X.max(), 100) yi = np.linspace(Y.min(), Y.max(), 100) # print len(xi) # print len(yi) # print len(Z) zi = griddata((X, Y), Z, (xi[None, :], yi[:, None]), method='linear') # create a uniform spaced grid xig, yig = np.meshgrid(xi, yi) surf = ax.plot_wireframe(X=xig, Y=yig, Z=zi, rstride=5, cstride=3, linewidth=1)#, cmap=cm.coolwarm, antialiased=False) # 3d plot # inter_1 = [] # inter_1.append((xi, yi, zi)) # inter = pd.DataFrame(inter_1, columns=['x', 'y', 'z']) # inter.to_csv('/media/kiruba/New Volume/r/r_dir/stream_profile/new_code/591/inter.csv') # interpolation data output # fig.colorbar(surf, shrink=0.5, aspect=5) rc('font', **{'family': 'sans-serif', 'sans-serif': ['Helvetica']}) rc('text', usetex=True) # plt.rc('text', usetex=True) # plt.rc('font', family='serif') # plt.xlabel(r'\textbf{X} (m)') # plt.ylabel(r'\textbf{Y} (m)') # plt.title(r"Profile for 591", fontsize=16) plt.gca().invert_xaxis() # reverses x axis # # ax = fig # plt.savefig('/media/kiruba/New Volume/r/r_dir/stream_profile/new_code/591/linear_interpolation') plt.show() # raise SystemExit(0) # ## trace contours # Refer: Nikolai Shokhirev http://www.numericalexpert.com/blog/area_calculation/ check_dam_height = 0.66 #metre levels = [0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.1,0.2, 0.3,0.4, 0.5, 0.6, 0.7, 0.8,0.9,1.1,1.2,1.3,1.4, 1.41,1.5 ] #, 3.93] cmap = cm.hot norm = mc.BoundaryNorm(levels, cmap.N ) plt.figure(figsize=(11.69, 8.27)) CS = plt.contourf(xi, yi, zi, len(levels), alpha=.75, norm=norm, levels=levels) C = plt.contour(xi, yi, zi, len(levels), colors='black', linewidth=.5, levels=levels) plt.clabel(C, inline=1, fontsize=10) plt.colorbar(CS, shrink=0.5, aspect=5) plt.yticks(np.arange(0,30, 5)) plt.xticks(np.arange(-6,6, 2)) plt.grid() plt.gca().invert_xaxis() plt.savefig('/media/kiruba/New Volume/ACCUWA_Data/python_plots/check_dam_623/cont_2d') plt.show() # contour_area(C) contour_a = cd.contour_area(CS) cont_area_df = pd.DataFrame(contour_a, columns=['Z', 'Area']) plt.plot(cont_area_df['Z'], cont_area_df['Area']) plt.rc('text', usetex=True) plt.rc('font', family='serif') plt.ylabel(r'\textbf{Area} ($m^2$)') plt.xlabel(r'\textbf{Stage} (m)') plt.savefig('/media/kiruba/New Volume/ACCUWA_Data/python_plots/check_dam_623/cont_area_623') # plt.show() cont_area_df.to_csv('/media/kiruba/New Volume/ACCUWA_Data/Checkdam_water_balance/ch_623/cont_area.csv') created_profile.iloc[0] = created_profile.columns # print created_profile created_profile.to_csv('/media/kiruba/New Volume/ACCUWA_Data/Checkdam_water_balance/ch_623/created_profile_623.csv')
gpl-3.0
nikitasingh981/scikit-learn
examples/plot_missing_values.py
35
3059
""" ====================================================== Imputing missing values before building an estimator ====================================================== This example shows that imputing the missing values can give better results than discarding the samples containing any missing value. Imputing does not always improve the predictions, so please check via cross-validation. Sometimes dropping rows or using marker values is more effective. Missing values can be replaced by the mean, the median or the most frequent value using the ``strategy`` hyper-parameter. The median is a more robust estimator for data with high magnitude variables which could dominate results (otherwise known as a 'long tail'). Script output:: Score with the entire dataset = 0.56 Score without the samples containing missing values = 0.48 Score after imputation of the missing values = 0.55 In this case, imputing helps the classifier get close to the original score. """ import numpy as np from sklearn.datasets import load_boston from sklearn.ensemble import RandomForestRegressor from sklearn.pipeline import Pipeline from sklearn.preprocessing import Imputer from sklearn.model_selection import cross_val_score rng = np.random.RandomState(0) dataset = load_boston() X_full, y_full = dataset.data, dataset.target n_samples = X_full.shape[0] n_features = X_full.shape[1] # Estimate the score on the entire dataset, with no missing values estimator = RandomForestRegressor(random_state=0, n_estimators=100) score = cross_val_score(estimator, X_full, y_full).mean() print("Score with the entire dataset = %.2f" % score) # Add missing values in 75% of the lines missing_rate = 0.75 n_missing_samples = int(np.floor(n_samples * missing_rate)) missing_samples = np.hstack((np.zeros(n_samples - n_missing_samples, dtype=np.bool), np.ones(n_missing_samples, dtype=np.bool))) rng.shuffle(missing_samples) missing_features = rng.randint(0, n_features, n_missing_samples) # Estimate the score without the lines containing missing values X_filtered = X_full[~missing_samples, :] y_filtered = y_full[~missing_samples] estimator = RandomForestRegressor(random_state=0, n_estimators=100) score = cross_val_score(estimator, X_filtered, y_filtered).mean() print("Score without the samples containing missing values = %.2f" % score) # Estimate the score after imputation of the missing values X_missing = X_full.copy() X_missing[np.where(missing_samples)[0], missing_features] = 0 y_missing = y_full.copy() estimator = Pipeline([("imputer", Imputer(missing_values=0, strategy="mean", axis=0)), ("forest", RandomForestRegressor(random_state=0, n_estimators=100))]) score = cross_val_score(estimator, X_missing, y_missing).mean() print("Score after imputation of the missing values = %.2f" % score)
bsd-3-clause
rknLA/sms-tools
lectures/06-Harmonic-model/plots-code/f0Yin.py
18
1718
import numpy as np import matplotlib.pyplot as plt from scipy.signal import hamming import sys, os import essentia.standard as ess sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../../../software/models/')) import utilFunctions as UF import stft as STFT def f0Yin(x, N, H, minf0, maxf0): # fundamental frequency detection using the Yin algorithm # x: input sound, N: window size, # minf0: minimum f0 frequency in Hz, maxf0: maximim f0 frequency in Hz, # returns f0 spectrum = ess.Spectrum(size=N) window = ess.Windowing(size=N, type='hann') pitchYin= ess.PitchYinFFT(minFrequency = minf0, maxFrequency = maxf0) pin = 0 pend = x.size-N f0 = [] while pin<pend: mX = spectrum(window(x[pin:pin+N])) f0t = pitchYin(mX) f0 = np.append(f0, f0t[0]) pin += H return f0 if __name__ == '__main__': (fs, x) = UF.wavread('../../../sounds/bendir.wav') plt.figure(1, figsize=(9, 7)) N = 2048 H = 256 w = hamming(2048) mX, pX = STFT.stftAnal(x, fs, w, N, H) maxplotfreq = 2000.0 frmTime = H*np.arange(mX[:,0].size)/float(fs) binFreq = fs*np.arange(N*maxplotfreq/fs)/N plt.pcolormesh(frmTime, binFreq, np.transpose(mX[:,:N*maxplotfreq/fs+1])) N = 2048 minf0 = 130 maxf0 = 300 H = 256 f0 = f0Yin(x, N, H, minf0, maxf0) yf0 = UF.sinewaveSynth(f0, .8, H, fs) frmTime = H*np.arange(f0.size)/float(fs) plt.plot(frmTime, f0, linewidth=2, color='k') plt.autoscale(tight=True) plt.title('mX + f0 (vignesh.wav), YIN: N=2048, H = 256 ') plt.tight_layout() plt.savefig('f0Yin.png') UF.wavwrite(yf0, fs, 'f0Yin.wav') plt.show()
agpl-3.0
jrbadiabo/Coursera-Stanford-ML-Class
Python_Version/Ex3.Multi-class_Classification_-_NN/displayData.py
3
1597
import numpy as np from matplotlib import use use('TkAgg') import matplotlib.pyplot as plt from show import show def displayData(X): """displays 2D data stored in X in a nice grid. It returns the figure handle h and the displayed array if requested.""" # Compute rows, cols m, n = X.shape example_width = round(np.sqrt(n)) example_height = (n / example_width) # Compute number of items to display display_rows = np.floor(np.sqrt(m)) display_cols = np.ceil(m / display_rows) # Between images padding pad = 1 # Setup blank display display_array = - np.ones((pad + display_rows * (example_height + pad), pad + display_cols * (example_width + pad))) # Copy each example into a patch on the display array curr_ex = 0 for j in np.arange(display_rows): for i in np.arange(display_cols): if curr_ex > m: break # Get the max value of the patch max_val = np.max(np.abs(X[curr_ex, : ])) rows = [pad + j * (example_height + pad) + x for x in np.arange(example_height+1)] cols = [pad + i * (example_width + pad) + x for x in np.arange(example_width+1)] display_array[min(rows):max(rows), min(cols):max(cols)] = X[curr_ex, :].reshape(example_height, example_width) / max_val curr_ex = curr_ex + 1 if curr_ex > m: break # Display Image display_array = display_array.astype('float32') plt.imshow(display_array.T) plt.set_cmap('gray') # Do not show axis plt.axis('off') show()
mit
poryfly/scikit-learn
sklearn/decomposition/tests/test_incremental_pca.py
297
8265
"""Tests for Incremental PCA.""" import numpy as np from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_raises from sklearn import datasets from sklearn.decomposition import PCA, IncrementalPCA iris = datasets.load_iris() def test_incremental_pca(): # Incremental PCA on dense arrays. X = iris.data batch_size = X.shape[0] // 3 ipca = IncrementalPCA(n_components=2, batch_size=batch_size) pca = PCA(n_components=2) pca.fit_transform(X) X_transformed = ipca.fit_transform(X) np.testing.assert_equal(X_transformed.shape, (X.shape[0], 2)) assert_almost_equal(ipca.explained_variance_ratio_.sum(), pca.explained_variance_ratio_.sum(), 1) for n_components in [1, 2, X.shape[1]]: ipca = IncrementalPCA(n_components, batch_size=batch_size) ipca.fit(X) cov = ipca.get_covariance() precision = ipca.get_precision() assert_array_almost_equal(np.dot(cov, precision), np.eye(X.shape[1])) def test_incremental_pca_check_projection(): # Test that the projection of data is correct. rng = np.random.RandomState(1999) n, p = 100, 3 X = rng.randn(n, p) * .1 X[:10] += np.array([3, 4, 5]) Xt = 0.1 * rng.randn(1, p) + np.array([3, 4, 5]) # Get the reconstruction of the generated data X # Note that Xt has the same "components" as X, just separated # This is what we want to ensure is recreated correctly Yt = IncrementalPCA(n_components=2).fit(X).transform(Xt) # Normalize Yt /= np.sqrt((Yt ** 2).sum()) # Make sure that the first element of Yt is ~1, this means # the reconstruction worked as expected assert_almost_equal(np.abs(Yt[0][0]), 1., 1) def test_incremental_pca_inverse(): # Test that the projection of data can be inverted. rng = np.random.RandomState(1999) n, p = 50, 3 X = rng.randn(n, p) # spherical data X[:, 1] *= .00001 # make middle component relatively small X += [5, 4, 3] # make a large mean # same check that we can find the original data from the transformed # signal (since the data is almost of rank n_components) ipca = IncrementalPCA(n_components=2, batch_size=10).fit(X) Y = ipca.transform(X) Y_inverse = ipca.inverse_transform(Y) assert_almost_equal(X, Y_inverse, decimal=3) def test_incremental_pca_validation(): # Test that n_components is >=1 and <= n_features. X = [[0, 1], [1, 0]] for n_components in [-1, 0, .99, 3]: assert_raises(ValueError, IncrementalPCA(n_components, batch_size=10).fit, X) def test_incremental_pca_set_params(): # Test that components_ sign is stable over batch sizes. rng = np.random.RandomState(1999) n_samples = 100 n_features = 20 X = rng.randn(n_samples, n_features) X2 = rng.randn(n_samples, n_features) X3 = rng.randn(n_samples, n_features) ipca = IncrementalPCA(n_components=20) ipca.fit(X) # Decreasing number of components ipca.set_params(n_components=10) assert_raises(ValueError, ipca.partial_fit, X2) # Increasing number of components ipca.set_params(n_components=15) assert_raises(ValueError, ipca.partial_fit, X3) # Returning to original setting ipca.set_params(n_components=20) ipca.partial_fit(X) def test_incremental_pca_num_features_change(): # Test that changing n_components will raise an error. rng = np.random.RandomState(1999) n_samples = 100 X = rng.randn(n_samples, 20) X2 = rng.randn(n_samples, 50) ipca = IncrementalPCA(n_components=None) ipca.fit(X) assert_raises(ValueError, ipca.partial_fit, X2) def test_incremental_pca_batch_signs(): # Test that components_ sign is stable over batch sizes. rng = np.random.RandomState(1999) n_samples = 100 n_features = 3 X = rng.randn(n_samples, n_features) all_components = [] batch_sizes = np.arange(10, 20) for batch_size in batch_sizes: ipca = IncrementalPCA(n_components=None, batch_size=batch_size).fit(X) all_components.append(ipca.components_) for i, j in zip(all_components[:-1], all_components[1:]): assert_almost_equal(np.sign(i), np.sign(j), decimal=6) def test_incremental_pca_batch_values(): # Test that components_ values are stable over batch sizes. rng = np.random.RandomState(1999) n_samples = 100 n_features = 3 X = rng.randn(n_samples, n_features) all_components = [] batch_sizes = np.arange(20, 40, 3) for batch_size in batch_sizes: ipca = IncrementalPCA(n_components=None, batch_size=batch_size).fit(X) all_components.append(ipca.components_) for i, j in zip(all_components[:-1], all_components[1:]): assert_almost_equal(i, j, decimal=1) def test_incremental_pca_partial_fit(): # Test that fit and partial_fit get equivalent results. rng = np.random.RandomState(1999) n, p = 50, 3 X = rng.randn(n, p) # spherical data X[:, 1] *= .00001 # make middle component relatively small X += [5, 4, 3] # make a large mean # same check that we can find the original data from the transformed # signal (since the data is almost of rank n_components) batch_size = 10 ipca = IncrementalPCA(n_components=2, batch_size=batch_size).fit(X) pipca = IncrementalPCA(n_components=2, batch_size=batch_size) # Add one to make sure endpoint is included batch_itr = np.arange(0, n + 1, batch_size) for i, j in zip(batch_itr[:-1], batch_itr[1:]): pipca.partial_fit(X[i:j, :]) assert_almost_equal(ipca.components_, pipca.components_, decimal=3) def test_incremental_pca_against_pca_iris(): # Test that IncrementalPCA and PCA are approximate (to a sign flip). X = iris.data Y_pca = PCA(n_components=2).fit_transform(X) Y_ipca = IncrementalPCA(n_components=2, batch_size=25).fit_transform(X) assert_almost_equal(np.abs(Y_pca), np.abs(Y_ipca), 1) def test_incremental_pca_against_pca_random_data(): # Test that IncrementalPCA and PCA are approximate (to a sign flip). rng = np.random.RandomState(1999) n_samples = 100 n_features = 3 X = rng.randn(n_samples, n_features) + 5 * rng.rand(1, n_features) Y_pca = PCA(n_components=3).fit_transform(X) Y_ipca = IncrementalPCA(n_components=3, batch_size=25).fit_transform(X) assert_almost_equal(np.abs(Y_pca), np.abs(Y_ipca), 1) def test_explained_variances(): # Test that PCA and IncrementalPCA calculations match X = datasets.make_low_rank_matrix(1000, 100, tail_strength=0., effective_rank=10, random_state=1999) prec = 3 n_samples, n_features = X.shape for nc in [None, 99]: pca = PCA(n_components=nc).fit(X) ipca = IncrementalPCA(n_components=nc, batch_size=100).fit(X) assert_almost_equal(pca.explained_variance_, ipca.explained_variance_, decimal=prec) assert_almost_equal(pca.explained_variance_ratio_, ipca.explained_variance_ratio_, decimal=prec) assert_almost_equal(pca.noise_variance_, ipca.noise_variance_, decimal=prec) def test_whitening(): # Test that PCA and IncrementalPCA transforms match to sign flip. X = datasets.make_low_rank_matrix(1000, 10, tail_strength=0., effective_rank=2, random_state=1999) prec = 3 n_samples, n_features = X.shape for nc in [None, 9]: pca = PCA(whiten=True, n_components=nc).fit(X) ipca = IncrementalPCA(whiten=True, n_components=nc, batch_size=250).fit(X) Xt_pca = pca.transform(X) Xt_ipca = ipca.transform(X) assert_almost_equal(np.abs(Xt_pca), np.abs(Xt_ipca), decimal=prec) Xinv_ipca = ipca.inverse_transform(Xt_ipca) Xinv_pca = pca.inverse_transform(Xt_pca) assert_almost_equal(X, Xinv_ipca, decimal=prec) assert_almost_equal(X, Xinv_pca, decimal=prec) assert_almost_equal(Xinv_pca, Xinv_ipca, decimal=prec)
bsd-3-clause
cbuntain/redditResponseExtractor
userCapture.py
1
2377
#!/usr/bin/python import praw from pprint import pprint import networkx as nx # try: # import matplotlib.pyplot as plt # except: # raise def recCommentGrab(graph, comment, parent, level, sub): if ( isinstance(comment, praw.objects.MoreComments) ): return if ( comment.author == None ): return # print "\t"*level, parent, "<- replies to -", comment.author graph.add_node(comment.author, seen=sub) if ( parent in graph.successors(comment.author) ): graph[comment.author][parent]['weight'] = graph[comment.author][parent]['weight'] + 1 else: graph.add_edge(comment.author, parent, weight=1) if ( len(comment.replies) > 0 ): for rep in comment.replies: recCommentGrab(graph, rep, comment.author, level+1, sub) def extractPosts(graph, redditObj, sub, l=10): submissions = redditObj.get_subreddit(sub).get_top_from_month(limit=l) for post in submissions: if ( post.author == None ): continue author = post.author authorComments = author.get_comments(sort="top",limit=500) print post.author commentCount = 0 for comment in authorComments: if ( comment.is_root ): submission = comment.submission print "\t", submission.author else: parent = redditObj.get_info(thing_id=comment.parent_id) print "\t", parent.author commentCount+=1 print "\tComment count:", commentCount replyGraph.add_node(post.author, seen=sub) # post.replace_more_comments(limit=10, threshold=0) # print "\tComment count: ", len(post.comments) # commentList = post.comments[:] # for comment in commentList: # if ( not isinstance(comment, praw.objects.MoreComments) ): # recCommentGrab(replyGraph, comment, post.author, 1, sub) # # else: # # moreComs = comment.comments() # # if ( moreComs != None ): # # commentList.extend(moreComs) replyGraph = nx.DiGraph() password = raw_input('Password:') r = praw.Reddit(user_agent='edu.umd.cs.inst633o.cbuntain') r.login('proteius',password) subList = [ 'machinelearning', 'compsci' # 'iama', # 'askscience', # # 'askreddit', # 'AskHistorians', # 'asksocialscience', # 'Ask_Politics', # 'askmen', # 'askwomen', ] try: for sub in subList: print "Checking on subreddit: /r/", sub extractPosts(replyGraph, r, sub, 25) except Exception, e: print "Failed during execution: ", e finally: nx.write_gexf(replyGraph, 'cs_users.gexf')
mit
dkesada/SocialBot
socialBot.py
1
17797
#! /usr/bin/python #-*. coding: utf-8 -*- #authors: David Quesada López y Mateo García Fuentes import sys import time import telepot import telepot.helper from telepot.delegate import ( per_chat_id, per_callback_query_origin, create_open, pave_event_space) import googlemaps from datetime import datetime import math import json import datetime import db import steps import keyboards import translate import matplotlib matplotlib.use('Cairo')#Use this backend to plot and create a png file import matplotlib.pyplot as plt from mpl_toolkits.basemap import Basemap """ Api para sacar los locales cercanos a la ubicación que te manden: https://github.com/googlemaps/google-maps-services-python Aquí está la documentación de las funciones que tiene: https://googlemaps.github.io/google-maps-services-python/docs/2.4.5/ Documentacion de telepot: http://telepot.readthedocs.io/en/latest/reference.html https://core.telegram.org/bots http://qingkaikong.blogspot.com.es/2016/02/plot-earthquake-heatmap-on-basemap-and.html """ # Readying the google maps client mapclient = googlemaps.Client(key='AIzaSyBGP8h2WjF8NOC4Covro2kDV2Iv5jT_-7Q') #Input the api places key as the first argument when launching geoClient = googlemaps.Client(key='AIzaSyC9kpWU3vzPLVIRFQtHCkp6uoIquXdHnYE') # One UserHandler created per chat_id. May be useful for sorting out users # Handles chat messages depending on its tipe class UserHandler(telepot.helper.ChatHandler): def __init__(self, *args, **kwargs): super(UserHandler, self).__init__(*args, **kwargs) def calculateBounds(self, kmeters, loc): R=6367.45 #media geometrica bearing = math.radians(45) #45º lat = math.radians(loc[0]) #lat of the user lon = math.radians(loc[1]) #lng of the user latup = math.asin(math.sin(lat)*math.cos(kmeters/R) + math.cos(lat)*math.sin(kmeters/R)*math.cos(bearing)) lonup = lon + math.atan2(math.sin(bearing)*math.sin(kmeters/R)*math.cos(lat), math.cos(kmeters/R)-math.sin(lat)*math.sin(latup)) dlat=latup-lat dlng=lonup-lon latdw = lat-dlat londw = lon-dlng latup = math.degrees(latup) lonup = math.degrees(lonup) latdw = math.degrees(latdw) londw = math.degrees(londw) return londw, latdw, lonup, latup def heatmap(self, allLoc, chat_id): ln = [] lt = [] for geo in allLoc: if geo != {}: ln.append(geo['location']['longitude']) lt.append(geo['location']['latitude']) loc = db.getLocation(chat_id) llcrnrlon, llcrnrlat, urcrnrlon, urcrnrlat= self.calculateBounds(2., loc) map = Basemap(llcrnrlon=llcrnrlon,llcrnrlat=llcrnrlat,urcrnrlon=urcrnrlon,urcrnrlat=urcrnrlat, epsg=4326) map.arcgisimage(service='World_Imagery', xpixels = 1500, verbose= True) x,y = map(ln, lt) map.plot(x, y, 'ro', markersize=5,markeredgecolor="none", alpha=0.5) x0, y0 = map(loc[1], loc[0]) x1, y1 = map(loc[1]-0.001, loc[0]+0.0017) plt.imshow(plt.imread('loc.png'), extent = (x0, x1, y0, y1)) plt.savefig("out.png") def on_chat_message(self, msg): content_type, chat_type, chat_id = telepot.glance(msg,flavor='chat') if content_type == 'text': if msg['text'] == "/start": steps.saveStep(chat_id, 1) lang = db.getLanguage(chat_id) bot.sendMessage(chat_id, translate.location(lang), reply_markup=keyboards.markupLocation(lang)) elif msg['text'] == "/settings": steps.saveStep(chat_id, 0) lang = db.getLanguage(chat_id) bot.sendMessage(chat_id, translate.settings(lang), reply_markup=keyboards.settings(lang)) elif msg['text'] == "/heatmap": locs = db.getAllLocations() lang = db.getLanguage(chat_id) bot.sendMessage(chat_id, translate.takesFew(lang), reply_markup=None) self.heatmap(locs, chat_id) bot.sendPhoto(chat_id, open('out.png', 'rb')) bot.sendMessage(chat_id, translate.afterMap(lang), reply_markup=keyboards.afterMap(lang)) elif msg['text'] == "Default" or msg['text'] == "Por defecto": db.storeLocation(chat_id, {u'latitude': 40.411085, u'longitude': -3.685014}, msg['date']) state = 1 steps.saveStep(chat_id, steps.nextStep(state)) lang = db.getLanguage(chat_id) bot.sendMessage(chat_id, translate.lookingFor(lang), reply_markup=keyboards.inlineEstablishment(lang)) elif msg['text'] == "/help": steps.saveStep(chat_id, 8) lang = db.getLanguage(chat_id) bot.sendMessage(chat_id, translate.help(lang), reply_markup=keyboards.inlineBack(lang)) elif msg['text'] == "/stats": steps.saveStep(chat_id, 9) lang = db.getLanguage(chat_id) user = db.getRole(chat_id) if user == "superuser": stats = db.getStats() bot.sendMessage(chat_id, translate.stats(lang, stats), reply_markup=keyboards.inlineBack(lang)) else: bot.sendMessage(chat_id, translate.noSuperuser(lang), reply_markup=keyboards.inlineBack(lang)) elif steps.getStep(chat_id) == 1: js = geoClient.geocode(address=msg['text'], components=None, bounds=None, region=None, language='es-ES') lang = db.getLanguage(chat_id) location = {u'latitude':js[0]['geometry']['location']['lat'], u'longitude':js[0]['geometry']['location']['lng']} bot.sendMessage(chat_id, translate.yourPosition(lang, js[0]['formatted_address']), reply_markup=None) db.storeLocation(chat_id, location, msg['date']) state = 1 steps.saveStep(chat_id, steps.nextStep(state)) bot.sendMessage(chat_id, translate.lookingFor(lang), reply_markup=keyboards.inlineEstablishment(lang)) else: lang = db.getLanguage(chat_id) bot.sendMessage(chat_id, translate.textNoProcces(lang), reply_markup=keyboards.markupLocation(lang)) elif content_type == 'location': db.storeLocation(chat_id, msg['location'], msg['date']) state = 1 steps.saveStep(chat_id, steps.nextStep(state)) lang = db.getLanguage(chat_id) bot.sendMessage(chat_id, translate.lookingFor(lang), reply_markup=keyboards.inlineEstablishment(lang)) elif content_type == 'photo': sending = db.getSending(chat_id)['sending'] if sending != None and sending['type'] == 'photo': index = len(msg['photo'])-1 db.storePlacePhoto(sending['location'], msg['photo'][index]['file_id']) lang = db.getLanguage(chat_id) bot.editMessageReplyMarkup(msg_identifier=(chat_id,sending['msg_id']), reply_markup=None) bot.sendMessage(chat_id, translate.photoRec(db.getLanguage(chat_id)), reply_markup=keyboards.optionsKeyboard(sending['location'], lang)) def on__idle(self, event): self.close() def on_close(self, event): self.close() # One ButtonHandler created per message that has a button pressed. # There should only be one message from the bot at a time in a chat, so that # you modify the same message over and over again. class ButtonHandler(telepot.helper.CallbackQueryOriginHandler): def __init__(self, *args, **kwargs): super(ButtonHandler, self).__init__(*args, **kwargs) self.state = None self.chat_id = None self.loc = None self.language = None self.msg = None self.lim = None self.pos = None self.list = None def placesNearBy(self, establishmentType, chat_id): data = db.getLocation(chat_id) latitude = data[0] longitude = data[1] settings = db.getSettings(chat_id) js = mapclient.places(None, location=(latitude, longitude), radius=settings['radius'], language='es-ES', min_price=None, max_price=None, open_now=settings['openE'], type=establishmentType) uLoc = db.getLocation(chat_id) message = translate.chooseOne(self.language) distanceL = {} rateL = {} resultList = {} if js["status"] != 'ZERO_RESULTS': resultList = js["results"] msg = translate.loading(self.language) while "next_page_token" in js: msg += "." self.editor.editMessageText(msg, reply_markup=None) time.sleep(2) page_token = js["next_page_token"] js = mapclient.places(None, location=(latitude, longitude), radius=settings['radius'], language='es-ES', min_price=None, max_price=None, open_now=settings['openE'], type=establishmentType, page_token=page_token) resultList += js["results"] lim = settings['numberE'] i = 0 while (i < lim) and (i < len(resultList)): lat = resultList[i]["geometry"]["location"]["lat"] lng = resultList[i]["geometry"]["location"]["lng"] location = str(lat) + " " + str(lng) distance = int((self.haversine(location, uLoc))) distanceL[distance] = resultList[i]['name'] rate = db.avgRatePlace([str(lng), str(lat)]) if rate != None: rateL[rate] = resultList[i]['name'] i += 1 self.lim = lim self.pos = 0 self.list = resultList rates = sorted(rateL, reverse=True) pos = sorted(distanceL, key=int) message += translate.prox(self.language, distanceL, pos) if rateL != {}: message += "\n" message += translate.rated(self.language, rateL, rates) self.msg = message db.storePos(chat_id, self.pos) self.editor.editMessageText(message, reply_markup=keyboards.resultsKeyboard(resultList, self.language, self.pos, lim)) else: self.editor.editMessageText(translate.noEstablish(self.language), reply_markup=keyboards.inlineBack(self.language)) def on_callback_query(self, msg): query_id, from_id, query_data = telepot.glance(msg, flavor='callback_query') answeredQuery = False if self.state == None: self.state = steps.getStep(from_id) self.chat_id = from_id sending = db.getSending(self.chat_id) self.language = db.getLanguage(self.chat_id) if sending != None and 'sending' in sending: self.loc = sending['sending']['location'] if query_data == "start": self.state = 1 self.editor.editMessageText(translate.location(self.language), reply_markup=None) elif query_data == "settings": self.state = 0 self.editor.editMessageText(translate.settings(self.language), reply_markup=keyboards.settings(self.language)) if query_data == "back": stp = steps.stepBack(self.state) if stp != False: self.state -= 1; if stp == "Init": self.state = 1 steps.saveStep(from_id, self.state) self.editor.editMessageText(translate.location(self.language), reply_markup=None) elif stp == "Choose Type": self.editor.editMessageText(translate.lookingFor(self.language), reply_markup=keyboards.inlineEstablishment(self.language)) elif stp == "Choose Establish": eType = db.getEType(from_id) self.placesNearBy(eType, from_id) elif stp == "Info Establish": self.state -= 1 steps.saveStep(from_id, self.state) self.editor.editMessageReplyMarkup(reply_markup=None) bot.sendMessage(self.chat_id, translate.whatWant(self.language), reply_markup=keyboards.optionsKeyboard(self.loc, self.language)) elif query_data == "more": self.lim = db.getSettings(self.chat_id)['numberE'] self.pos = db.getPos(self.chat_id) self.pos += self.lim db.storePos(self.chat_id, self.pos) self.editor.editMessageText(self.msg, reply_markup=keyboards.resultsKeyboard(self.list, self.language, self.pos, self.lim)) elif query_data == "previous": self.lim = db.getSettings(self.chat_id)['numberE'] self.pos = db.getPos(self.chat_id) self.pos -= self.lim db.storePos(self.chat_id, self.pos) self.editor.editMessageText(self.msg, reply_markup=keyboards.resultsKeyboard(self.list, self.language, self.pos, self.lim)) elif steps.step(self.state) == "Settings": if query_data == "language": self.editor.editMessageText(translate.chooseLang(self.language), reply_markup=keyboards.languages(self.language)) elif query_data == "parameters": self.editor.editMessageText(translate.choooseParam(self.language), reply_markup=keyboards.parameters(self.language)) elif query_data == "sback": self.editor.editMessageText(translate.settings(self.language), reply_markup=keyboards.settings(self.language)) elif query_data == "radius": self.editor.editMessageText(translate.choooseDistance(self.language), reply_markup=keyboards.radius(self.language)) elif query_data == "open": self.editor.editMessageText(translate.onlyOpen(self.language), reply_markup=keyboards.openE(self.language)) elif query_data == "numResults": self.editor.editMessageText(translate.howLocals(self.language), reply_markup=keyboards.numE(self.language)) elif query_data == "restart": self.state = 1; steps.saveStep(self.chat_id, self.state) self.editor.editMessageText(translate.location(self.language), reply_markup=None) else: option = query_data.split(" ") if option[0] == "meters": meters = option[1] db.storeRadius(from_id, meters) bot.answerCallbackQuery(query_id, translate.radiusChanged(self.language)) answeredQuery = True self.editor.editMessageText(translate.whatWant(self.language), reply_markup=keyboards.optionChanged(self.language)) elif option[0] == "bool": openE = option[1] db.storeOpen(from_id, openE) bot.answerCallbackQuery(query_id, translate.openChanged(self.language)) answeredQuery = True self.editor.editMessageText(translate.whatWant(self.language), reply_markup=keyboards.optionChanged(self.language)) elif option[0] == "language": self.language = option[1] db.storeLanguage(from_id, self.language) bot.answerCallbackQuery(query_id, translate.langChanged(self.language)) answeredQuery = True self.editor.editMessageText(translate.whatWant(self.language), reply_markup=keyboards.optionChanged(self.language)) elif option[0] == "num": num = option[1] db.storeNumberE(from_id, num) bot.answerCallbackQuery(query_id, translate.numberChanged(self.language)) answeredQuery = True self.editor.editMessageText(translate.whatWant(self.language), reply_markup=keyboards.optionChanged(self.language)) elif steps.step(self.state) == "Choose Type": self.state = steps.nextStep(self.state) db.storeEType(from_id, query_data) self.placesNearBy(query_data, from_id) elif steps.step(self.state) == "Choose Establish": self.state = steps.nextStep(self.state) steps.saveStep(self.chat_id, self.state) # After this point, the flow of options of the user can branch data = query_data.split(" ") lat = data[0] lng = data[1] self.loc = [lng, lat] self.editor.editMessageReplyMarkup(reply_markup=None) bot.sendLocation(self.chat_id,lat,lng) rate = db.avgRatePlace(self.loc) locat = str(lat)+ " " +str(lng) distance = self.haversine(locat, db.getLocation(self.chat_id)) bot.sendMessage(self.chat_id, translate.hereIts(self.language, rate, distance), reply_markup=keyboards.optionsKeyboard(self.loc, self.language)) elif steps.step(self.state) == "Info Establish": option = query_data.split(" ") if option[2] is None: print option self.loc = [option[1], option[2]] if option[0] == "rating": self.state = steps.nextStep(self.state) self.editor.editMessageText(translate.yourRate(self.language), reply_markup=keyboards.rating(self.language)) elif option[0] == "photo": db.preparePhotoSending(from_id, msg['message']['message_id'], self.loc) self.editor.editMessageText(translate.sendPhoto(self.language), reply_markup=keyboards.inlineBack(self.language)) elif option[0] == "show_photos": self.state = steps.nextStep(self.state) + 1 steps.saveStep(self.chat_id, self.state) info = db.getPlaceData(self.loc) db.preparePhotoSending(from_id, msg['message']['message_id'], self.loc) self.editor.editMessageReplyMarkup(reply_markup=None) bot.sendPhoto(from_id, info['photos'][0], reply_markup=keyboards.photos(info, 0, self.language)) elif steps.step(self.state) == "Rating": db.storeRating(self.loc, from_id, int(query_data)) self.state = steps.nextStep(self.state) star = u'\u2b50\ufe0f' text = '' for i in range(int(query_data)): text += star bot.answerCallbackQuery(query_id, text) answeredQuery = True self.editor.editMessageText(translate.whatWant(self.language), reply_markup=keyboards.optionsKeyboard(self.loc, self.language)) elif steps.step(self.state) == "Viewing Photos": self.editor.editMessageReplyMarkup(reply_markup=None) info = db.getPlaceData(self.loc) bot.sendPhoto(from_id, info['photos'][int(query_data)], reply_markup=keyboards.photos(info, int(query_data), self.language)) #self.state = steps.nextStep(self.state) elif steps.step(self.state) == "Come Back": if query_data == "init": self.state = 1 self.editor.editMessageText(translate.location(self.language), reply_markup=None) elif query_data == "type": self.state = 2 self.editor.editMessageText(translate.lookingFor(self.language), reply_markup=keyboards.inlineEstablishment(self.language)) elif query_data == "establishment": self.state = 3 eType = db.getEType(from_id) self.placesNearBy(eType, from_id) if answeredQuery == False: bot.answerCallbackQuery(query_id) def haversine(self, locat, uLoc): locat = locat.split(" ") lat2 = float(locat[0]) lng2 = float(locat[1]) lat1 = float(uLoc[0]) lng1 = float(uLoc[1]) rad=math.pi/180 dlat=lat2-lat1 dlng=lng2-lng1 R=6367.45 #media geometrica a=(math.sin(rad*dlat/2))**2 + math.cos(rad*lat1)*math.cos(rad*lat2)*(math.sin(rad*dlng/2))**2 distance=2*R*math.asin(math.sqrt(a))#kilometers return distance*1000#meters def on__idle(self, event): steps.saveStep(self.chat_id, self.state) self.close() def on_close(self, event): self.close() TOKEN = '366092875:AAFQUuXo7qz-oK1xdmGWQQEoporpGPunNSA' bot = telepot.DelegatorBot(TOKEN, [ pave_event_space()( per_chat_id(), create_open, UserHandler, timeout=180), pave_event_space()( per_callback_query_origin(), create_open, ButtonHandler, timeout=180), ]) bot.message_loop(run_forever='Listening')
mit
CforED/Machine-Learning
examples/plot_digits_pipe.py
70
1813
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Pipelining: chaining a PCA and a logistic regression ========================================================= The PCA does an unsupervised dimensionality reduction, while the logistic regression does the prediction. We use a GridSearchCV to set the dimensionality of the PCA """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model, decomposition, datasets from sklearn.pipeline import Pipeline from sklearn.model_selection import GridSearchCV logistic = linear_model.LogisticRegression() pca = decomposition.PCA() pipe = Pipeline(steps=[('pca', pca), ('logistic', logistic)]) digits = datasets.load_digits() X_digits = digits.data y_digits = digits.target ############################################################################### # Plot the PCA spectrum pca.fit(X_digits) plt.figure(1, figsize=(4, 3)) plt.clf() plt.axes([.2, .2, .7, .7]) plt.plot(pca.explained_variance_, linewidth=2) plt.axis('tight') plt.xlabel('n_components') plt.ylabel('explained_variance_') ############################################################################### # Prediction n_components = [20, 40, 64] Cs = np.logspace(-4, 4, 3) #Parameters of pipelines can be set using ‘__’ separated parameter names: estimator = GridSearchCV(pipe, dict(pca__n_components=n_components, logistic__C=Cs)) estimator.fit(X_digits, y_digits) plt.axvline(estimator.best_estimator_.named_steps['pca'].n_components, linestyle=':', label='n_components chosen') plt.legend(prop=dict(size=12)) plt.show()
bsd-3-clause
openpathsampling/openpathsampling
examples/alanine_dipeptide_mstis/alatools.py
4
7508
import matplotlib.pyplot as plt import openpathsampling as paths import numpy as np import math class CVSphere(paths.Volume): """ Defines a sphere in multi-CV space with center and distance """ def __init__(self, cvs, center, radius): self.cvs = cvs self.center = center self.radius = radius assert(len(cvs) == len(center) == len(radius)) def __call__(self, snapshot): return math.sqrt(sum( map( lambda cv : cv(snapshot)**2 ), self.cvs )) def __and__(self, other): if isinstance(other, paths.EmptyVolume): return self elif isinstance(other, paths.FullVolume): return other elif isinstance(other, CVSphere): dc = np.linalg.norm(np.array(self.center) - np.array(other.center)) # use triangle inequality if self.radius >= dc + other.radius: # other is completely in self return self elif other.radius >= dc + self.radius: # self is completely in other return other return paths.UnionVolume( self, other ) class TwoCVSpherePlot(object): def __init__( self, cvs, states, state_centers, interface_levels, ranges=None): self.cvs = cvs self.states = states self.state_centers = state_centers self.interface_levels = interface_levels self._ax1 = 0 self._ax2 = 1 self.figsize = (6, 6) self.periodic = [math.pi] * len(cvs) self.zoom = 180 / math.pi if ranges is None: self.ranges = ((-180, 180), (-180, 180)) else: self.ranges = ranges self.color_fnc = lambda x: (x, x, 0.6) self.color_fnc = lambda x: (x * 0.5 + 0.4, 0.5 * x + 0.4, 1 * x, 1.0) def select_axis(self, ax1, ax2): self._ax1 = ax1 self._ax2 = ax2 def new(self, figsize=None): if figsize is None: figsize = self.figsize plt.figure(figsize=figsize) def main(self): n_states = len(self.states) centers = self.state_centers levels = self.interface_levels labels = [state.name[0] for state in self.states] periodic = (self.periodic[self._ax1], self.periodic[self._ax2]) mirror = [ [-1, 0, 1] if p is not None else [0] for p in periodic ] # replace None with zero periodic = [p or 0 for p in periodic] plt.plot( [x[self._ax1] for x in centers], [x[self._ax2] for x in centers], 'ko') fig = plt.gcf() all_levels = sorted( list(set( sum(levels, []) )), reverse=True ) + [0] plt.xlabel(self.cvs[self._ax1].name) plt.ylabel(self.cvs[self._ax2].name) max_level = max(all_levels) zoom = self.zoom for level in all_levels: for colored in [True, False]: for state in range(n_states): center = centers[state] center = (center[self._ax1], center[self._ax2]) name = labels[state] if level == 0: plt.annotate( name, xy=center, xytext=(center[0]+10 + 1, center[1] - 1), fontsize=20, color='k' ) plt.annotate( name, xy=center, xytext=(center[0]+10, center[1]), fontsize=20, color='w' ) if level in levels[state]: for xp in mirror[0]: for yp in mirror[1]: if colored: circle = plt.Circle( (center[0] + xp * periodic[0] * zoom * 2, center[1] + yp * periodic[1] * zoom * 2), level, color='w' ) fig.gca().add_artist(circle) else: l = 1.0 * level / max_level circle = plt.Circle( (center[0] + xp * periodic[0] * zoom * 2, center[1] + yp * periodic[1] * zoom * 2), level - 1, color=self.color_fnc(l) ) fig.gca().add_artist(circle) # plt.axis((-180,180,-180,180)) plt.axis('equal') plt.xlim(*self.ranges[0]) plt.ylim(*self.ranges[1]) def _cvlines(self, snapshots): cvs = self.cvs all_points = [cv(snapshots) for cv in cvs] ret = [] first = 0 if len(snapshots) > 1: for d in range(1, len(snapshots)): flip = False for c in range(len(cvs)): if self.periodic[c] is not None and self._periodicflip( all_points[c][d], all_points[c][d-1], self.periodic[c] ): flip = True if flip: ret.append([all_points[c][first:d] for c in range(len(cvs))]) first = d ret.append([all_points[c][first:d+1] for c in range(len(cvs))]) return ret @staticmethod def _periodicflip(val1, val2, period): return (period**2 - (val1 - val2)**2) < (val1 - val2)**2 def add_trajectory(self, trajectory, line=True, points=True): angles = self._cvlines(trajectory) zoom = self.zoom for angle in angles: if points: plt.plot( zoom * np.array(angle[self._ax1])[:], zoom * np.array(angle[self._ax2])[:], 'ko', linewidth=0.5) if line: plt.plot( zoom * np.array(angle[self._ax1])[:], zoom * np.array(angle[self._ax2])[:], 'k-', linewidth=0.5) def add_snapshot(self, snapshot, label=None): zoom = self.zoom angle = [cv(snapshot) for cv in self.cvs] x = zoom * np.array(angle[self._ax1]) y = zoom * np.array(angle[self._ax2]) plt.plot( x, y, 'w+', mew=5, ms=14) plt.plot( x, y, 'k+', mew=3, ms=12) if label is not None: plt.annotate( label, xy=(x, y), xytext=(x + 6, y + 4), fontsize=12, color='w' ) plt.annotate( label, xy=(x, y), xytext=(x + 5, y + 5), fontsize=12, color='k' )
mit
jreback/pandas
pandas/tests/generic/test_to_xarray.py
2
4360
import numpy as np import pytest import pandas.util._test_decorators as td from pandas import Categorical, DataFrame, MultiIndex, Series, date_range import pandas._testing as tm class TestDataFrameToXArray: @pytest.fixture def df(self): return DataFrame( { "a": list("abc"), "b": list(range(1, 4)), "c": np.arange(3, 6).astype("u1"), "d": np.arange(4.0, 7.0, dtype="float64"), "e": [True, False, True], "f": Categorical(list("abc")), "g": date_range("20130101", periods=3), "h": date_range("20130101", periods=3, tz="US/Eastern"), } ) @td.skip_if_no("xarray", "0.10.0") def test_to_xarray_index_types(self, index, df): if isinstance(index, MultiIndex): pytest.skip("MultiIndex is tested separately") if len(index) == 0: pytest.skip("Test doesn't make sense for empty index") from xarray import Dataset df.index = index[:3] df.index.name = "foo" df.columns.name = "bar" result = df.to_xarray() assert result.dims["foo"] == 3 assert len(result.coords) == 1 assert len(result.data_vars) == 8 tm.assert_almost_equal(list(result.coords.keys()), ["foo"]) assert isinstance(result, Dataset) # idempotency # datetimes w/tz are preserved # column names are lost expected = df.copy() expected["f"] = expected["f"].astype(object) expected.columns.name = None tm.assert_frame_equal(result.to_dataframe(), expected) @td.skip_if_no("xarray", min_version="0.7.0") def test_to_xarray_empty(self, df): from xarray import Dataset df.index.name = "foo" result = df[0:0].to_xarray() assert result.dims["foo"] == 0 assert isinstance(result, Dataset) @td.skip_if_no("xarray", min_version="0.7.0") def test_to_xarray_with_multiindex(self, df): from xarray import Dataset # available in 0.7.1 # MultiIndex df.index = MultiIndex.from_product([["a"], range(3)], names=["one", "two"]) result = df.to_xarray() assert result.dims["one"] == 1 assert result.dims["two"] == 3 assert len(result.coords) == 2 assert len(result.data_vars) == 8 tm.assert_almost_equal(list(result.coords.keys()), ["one", "two"]) assert isinstance(result, Dataset) result = result.to_dataframe() expected = df.copy() expected["f"] = expected["f"].astype(object) expected.columns.name = None tm.assert_frame_equal(result, expected) class TestSeriesToXArray: @td.skip_if_no("xarray", "0.10.0") def test_to_xarray_index_types(self, index): if isinstance(index, MultiIndex): pytest.skip("MultiIndex is tested separately") from xarray import DataArray ser = Series(range(len(index)), index=index, dtype="int64") ser.index.name = "foo" result = ser.to_xarray() repr(result) assert len(result) == len(index) assert len(result.coords) == 1 tm.assert_almost_equal(list(result.coords.keys()), ["foo"]) assert isinstance(result, DataArray) # idempotency tm.assert_series_equal(result.to_series(), ser) @td.skip_if_no("xarray", min_version="0.7.0") def test_to_xarray_empty(self): from xarray import DataArray ser = Series([], dtype=object) ser.index.name = "foo" result = ser.to_xarray() assert len(result) == 0 assert len(result.coords) == 1 tm.assert_almost_equal(list(result.coords.keys()), ["foo"]) assert isinstance(result, DataArray) @td.skip_if_no("xarray", min_version="0.7.0") def test_to_xarray_with_multiindex(self): from xarray import DataArray mi = MultiIndex.from_product([["a", "b"], range(3)], names=["one", "two"]) ser = Series(range(6), dtype="int64", index=mi) result = ser.to_xarray() assert len(result) == 2 tm.assert_almost_equal(list(result.coords.keys()), ["one", "two"]) assert isinstance(result, DataArray) res = result.to_series() tm.assert_series_equal(res, ser)
bsd-3-clause
0todd0000/spm1d
spm1d/examples/stats0d/ex_ci_twosample.py
1
1434
import numpy as np from matplotlib import pyplot import spm1d #(0) Load dataset: dataset = spm1d.data.uv0d.ci2.AnimalsInResearch() yA,yB = dataset.get_data() print( dataset ) #(1) Compute confidence intervals: alpha = 0.05 mu = 0 ci0 = spm1d.stats.ci_twosample(yA, yB, alpha, datum='difference', mu=None) # datum: inter-group mean difference (explicit hypothesis test suppressed using "mu=None") ci1 = spm1d.stats.ci_twosample(yA, yB, alpha, datum='difference', mu=mu) # datum: inter-group mean difference (hypothesis test regarding a specific inter-group difference "mu=0") ci2 = spm1d.stats.ci_twosample(yA, yB, alpha, datum='meanA', mu='meanB') # datum: meanA, criterion: whether CI reaches meanB ci3 = spm1d.stats.ci_twosample(yA, yB, alpha, datum='meanA', mu='tailB') # datum: meanA,criterion:whether CI tails overlap print( ci0 ) print( ci1 ) print( ci2 ) print( ci3 ) #(2) Plot the CIs: pyplot.close('all') pyplot.figure(figsize=(8,8)) ax0 = pyplot.subplot(221); ci0.plot(ax0); ax0.set_title('datum="difference", mu=None', size=10) ax1 = pyplot.subplot(222); ci1.plot(ax1); ax1.set_title('datum="difference", mu=%.5f'%mu, size=10) ax2 = pyplot.subplot(223); ci2.plot(ax2); ax2.set_title('datum="meanA", mu="meanB"', size=10) ax3 = pyplot.subplot(224); ci3.plot(ax3); ax3.set_title('datum="meanA", mu="tailsAB"', size=10) pyplot.suptitle('Paired sample CIs') pyplot.show()
gpl-3.0
strint/tensorflow
tensorflow/examples/tutorials/input_fn/boston.py
51
2709
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """DNNRegressor with custom input_fn for Housing dataset.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import itertools import pandas as pd import tensorflow as tf tf.logging.set_verbosity(tf.logging.INFO) COLUMNS = ["crim", "zn", "indus", "nox", "rm", "age", "dis", "tax", "ptratio", "medv"] FEATURES = ["crim", "zn", "indus", "nox", "rm", "age", "dis", "tax", "ptratio"] LABEL = "medv" def input_fn(data_set): feature_cols = {k: tf.constant(data_set[k].values) for k in FEATURES} labels = tf.constant(data_set[LABEL].values) return feature_cols, labels def main(unused_argv): # Load datasets training_set = pd.read_csv("boston_train.csv", skipinitialspace=True, skiprows=1, names=COLUMNS) test_set = pd.read_csv("boston_test.csv", skipinitialspace=True, skiprows=1, names=COLUMNS) # Set of 6 examples for which to predict median house values prediction_set = pd.read_csv("boston_predict.csv", skipinitialspace=True, skiprows=1, names=COLUMNS) # Feature cols feature_cols = [tf.contrib.layers.real_valued_column(k) for k in FEATURES] # Build 2 layer fully connected DNN with 10, 10 units respectively. regressor = tf.contrib.learn.DNNRegressor(feature_columns=feature_cols, hidden_units=[10, 10], model_dir="/tmp/boston_model") # Fit regressor.fit(input_fn=lambda: input_fn(training_set), steps=5000) # Score accuracy ev = regressor.evaluate(input_fn=lambda: input_fn(test_set), steps=1) loss_score = ev["loss"] print("Loss: {0:f}".format(loss_score)) # Print out predictions y = regressor.predict(input_fn=lambda: input_fn(prediction_set)) # .predict() returns an iterator; convert to a list and print predictions predictions = list(itertools.islice(y, 6)) print("Predictions: {}".format(str(predictions))) if __name__ == "__main__": tf.app.run()
apache-2.0
napjon/moocs_solution
ml-udacity/pca/eigenfaces.py
1
5184
""" =================================================== Faces recognition example using eigenfaces and SVMs =================================================== The dataset used in this example is a preprocessed excerpt of the "Labeled Faces in the Wild", aka LFW_: http://vis-www.cs.umass.edu/lfw/lfw-funneled.tgz (233MB) .. _LFW: http://vis-www.cs.umass.edu/lfw/ original source: http://scikit-learn.org/stable/auto_examples/applications/face_recognition.html """ print __doc__ from time import time import logging import pylab as pl import numpy as np from sklearn.cross_validation import train_test_split from sklearn.datasets import fetch_lfw_people from sklearn.grid_search import GridSearchCV from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix from sklearn.decomposition import RandomizedPCA from sklearn.svm import SVC # Display progress logs on stdout logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s') ############################################################################### # Download the data, if not already on disk and load it as numpy arrays lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4) # introspect the images arrays to find the shapes (for plotting) n_samples, h, w = lfw_people.images.shape np.random.seed(42) # fot machine learning we use the 2 data directly (as relative pixel # positions info is ignored by this model) X = lfw_people.data n_features = X.shape[1] # the label to predict is the id of the person y = lfw_people.target target_names = lfw_people.target_names n_classes = target_names.shape[0] print "Total dataset size:" print "n_samples: %d" % n_samples print "n_features: %d" % n_features print "n_classes: %d" % n_classes ############################################################################### # Split into a training set and a test set using a stratified k fold # split into a training and testing set X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42) def pcaTrainAndPredict(n_components): ############################################################################### # Compute a PCA (eigenfaces) on the face dataset (treated as unlabeled # dataset): unsupervised feature extraction / dimensionality reduction # n_components = 150 print "Extracting the top %d eigenfaces from %d faces" % (n_components, X_train.shape[0]) t0 = time() pca = RandomizedPCA(n_components=n_components, whiten=True).fit(X_train) print "done in %0.3fs" % (time() - t0) eigenfaces = pca.components_.reshape((n_components, h, w)) print "Projecting the input data on the eigenfaces orthonormal basis" t0 = time() X_train_pca = pca.transform(X_train) X_test_pca = pca.transform(X_test) print "done in %0.3fs" % (time() - t0) ############################################################################### # Train a SVM classification model print "Fitting the classifier to the training set" t0 = time() param_grid = { 'C': [1e3, 5e3, 1e4, 5e4, 1e5], 'gamma': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.1], } clf = GridSearchCV(SVC(kernel='rbf', class_weight='auto'), param_grid) clf = clf.fit(X_train_pca, y_train) print "done in %0.3fs" % (time() - t0) print "Best estimator found by grid search:" print clf.best_estimator_ ############################################################################### # Quantitative evaluation of the model quality on the test set print "Predicting the people names on the testing set" t0 = time() y_pred = clf.predict(X_test_pca) print "done in %0.3fs" % (time() - t0) print classification_report(y_test, y_pred, target_names=target_names) print confusion_matrix(y_test, y_pred, labels=range(n_classes)) pcaTrainAndPredict(150) ############################################################################### # Qualitative evaluation of the predictions using matplotlib def plot_gallery(images, titles, h, w, n_row=3, n_col=4): """Helper function to plot a gallery of portraits""" pl.figure(figsize=(1.8 * n_col, 2.4 * n_row)) pl.subplots_adjust(bottom=0, left=.01, right=.99, top=.90, hspace=.35) for i in range(n_row * n_col): pl.subplot(n_row, n_col, i + 1) pl.imshow(images[i].reshape((h, w)), cmap=pl.cm.gray) pl.title(titles[i], size=12) pl.xticks(()) pl.yticks(()) # plot the result of the prediction on a portion of the test set def title(y_pred, y_test, target_names, i): pred_name = target_names[y_pred[i]].rsplit(' ', 1)[-1] true_name = target_names[y_test[i]].rsplit(' ', 1)[-1] return 'predicted: %s\ntrue: %s' % (pred_name, true_name) prediction_titles = [title(y_pred, y_test, target_names, i) for i in range(y_pred.shape[0])] plot_gallery(X_test, prediction_titles, h, w) # plot the gallery of the most significative eigenfaces eigenface_titles = ["eigenface %d" % i for i in range(eigenfaces.shape[0])] plot_gallery(eigenfaces, eigenface_titles, h, w) pl.show()
mit
herilalaina/scikit-learn
sklearn/gaussian_process/tests/test_gpr.py
22
13791
"""Testing for Gaussian process regression """ # Author: Jan Hendrik Metzen <[email protected]> # License: BSD 3 clause import numpy as np from scipy.optimize import approx_fprime from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.gaussian_process.kernels \ import RBF, ConstantKernel as C, WhiteKernel from sklearn.gaussian_process.kernels import DotProduct from sklearn.utils.testing \ import (assert_true, assert_greater, assert_array_less, assert_almost_equal, assert_equal, assert_raise_message, assert_array_almost_equal, assert_array_equal) def f(x): return x * np.sin(x) X = np.atleast_2d([1., 3., 5., 6., 7., 8.]).T X2 = np.atleast_2d([2., 4., 5.5, 6.5, 7.5]).T y = f(X).ravel() fixed_kernel = RBF(length_scale=1.0, length_scale_bounds="fixed") kernels = [RBF(length_scale=1.0), fixed_kernel, RBF(length_scale=1.0, length_scale_bounds=(1e-3, 1e3)), C(1.0, (1e-2, 1e2)) * RBF(length_scale=1.0, length_scale_bounds=(1e-3, 1e3)), C(1.0, (1e-2, 1e2)) * RBF(length_scale=1.0, length_scale_bounds=(1e-3, 1e3)) + C(1e-5, (1e-5, 1e2)), C(0.1, (1e-2, 1e2)) * RBF(length_scale=1.0, length_scale_bounds=(1e-3, 1e3)) + C(1e-5, (1e-5, 1e2))] def test_gpr_interpolation(): # Test the interpolating property for different kernels. for kernel in kernels: gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y) y_pred, y_cov = gpr.predict(X, return_cov=True) assert_almost_equal(y_pred, y) assert_almost_equal(np.diag(y_cov), 0.) def test_lml_improving(): # Test that hyperparameter-tuning improves log-marginal likelihood. for kernel in kernels: if kernel == fixed_kernel: continue gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y) assert_greater(gpr.log_marginal_likelihood(gpr.kernel_.theta), gpr.log_marginal_likelihood(kernel.theta)) def test_lml_precomputed(): # Test that lml of optimized kernel is stored correctly. for kernel in kernels: gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y) assert_equal(gpr.log_marginal_likelihood(gpr.kernel_.theta), gpr.log_marginal_likelihood()) def test_converged_to_local_maximum(): # Test that we are in local maximum after hyperparameter-optimization. for kernel in kernels: if kernel == fixed_kernel: continue gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y) lml, lml_gradient = \ gpr.log_marginal_likelihood(gpr.kernel_.theta, True) assert_true(np.all((np.abs(lml_gradient) < 1e-4) | (gpr.kernel_.theta == gpr.kernel_.bounds[:, 0]) | (gpr.kernel_.theta == gpr.kernel_.bounds[:, 1]))) def test_solution_inside_bounds(): # Test that hyperparameter-optimization remains in bounds# for kernel in kernels: if kernel == fixed_kernel: continue gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y) bounds = gpr.kernel_.bounds max_ = np.finfo(gpr.kernel_.theta.dtype).max tiny = 1e-10 bounds[~np.isfinite(bounds[:, 1]), 1] = max_ assert_array_less(bounds[:, 0], gpr.kernel_.theta + tiny) assert_array_less(gpr.kernel_.theta, bounds[:, 1] + tiny) def test_lml_gradient(): # Compare analytic and numeric gradient of log marginal likelihood. for kernel in kernels: gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y) lml, lml_gradient = gpr.log_marginal_likelihood(kernel.theta, True) lml_gradient_approx = \ approx_fprime(kernel.theta, lambda theta: gpr.log_marginal_likelihood(theta, False), 1e-10) assert_almost_equal(lml_gradient, lml_gradient_approx, 3) def test_prior(): # Test that GP prior has mean 0 and identical variances. for kernel in kernels: gpr = GaussianProcessRegressor(kernel=kernel) y_mean, y_cov = gpr.predict(X, return_cov=True) assert_almost_equal(y_mean, 0, 5) if len(gpr.kernel.theta) > 1: # XXX: quite hacky, works only for current kernels assert_almost_equal(np.diag(y_cov), np.exp(kernel.theta[0]), 5) else: assert_almost_equal(np.diag(y_cov), 1, 5) def test_sample_statistics(): # Test that statistics of samples drawn from GP are correct. for kernel in kernels: gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y) y_mean, y_cov = gpr.predict(X2, return_cov=True) samples = gpr.sample_y(X2, 300000) # More digits accuracy would require many more samples assert_almost_equal(y_mean, np.mean(samples, 1), 1) assert_almost_equal(np.diag(y_cov) / np.diag(y_cov).max(), np.var(samples, 1) / np.diag(y_cov).max(), 1) def test_no_optimizer(): # Test that kernel parameters are unmodified when optimizer is None. kernel = RBF(1.0) gpr = GaussianProcessRegressor(kernel=kernel, optimizer=None).fit(X, y) assert_equal(np.exp(gpr.kernel_.theta), 1.0) def test_predict_cov_vs_std(): # Test that predicted std.-dev. is consistent with cov's diagonal. for kernel in kernels: gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y) y_mean, y_cov = gpr.predict(X2, return_cov=True) y_mean, y_std = gpr.predict(X2, return_std=True) assert_almost_equal(np.sqrt(np.diag(y_cov)), y_std) def test_anisotropic_kernel(): # Test that GPR can identify meaningful anisotropic length-scales. # We learn a function which varies in one dimension ten-times slower # than in the other. The corresponding length-scales should differ by at # least a factor 5 rng = np.random.RandomState(0) X = rng.uniform(-1, 1, (50, 2)) y = X[:, 0] + 0.1 * X[:, 1] kernel = RBF([1.0, 1.0]) gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y) assert_greater(np.exp(gpr.kernel_.theta[1]), np.exp(gpr.kernel_.theta[0]) * 5) def test_random_starts(): # Test that an increasing number of random-starts of GP fitting only # increases the log marginal likelihood of the chosen theta. n_samples, n_features = 25, 2 rng = np.random.RandomState(0) X = rng.randn(n_samples, n_features) * 2 - 1 y = np.sin(X).sum(axis=1) + np.sin(3 * X).sum(axis=1) \ + rng.normal(scale=0.1, size=n_samples) kernel = C(1.0, (1e-2, 1e2)) \ * RBF(length_scale=[1.0] * n_features, length_scale_bounds=[(1e-4, 1e+2)] * n_features) \ + WhiteKernel(noise_level=1e-5, noise_level_bounds=(1e-5, 1e1)) last_lml = -np.inf for n_restarts_optimizer in range(5): gp = GaussianProcessRegressor( kernel=kernel, n_restarts_optimizer=n_restarts_optimizer, random_state=0,).fit(X, y) lml = gp.log_marginal_likelihood(gp.kernel_.theta) assert_greater(lml, last_lml - np.finfo(np.float32).eps) last_lml = lml def test_y_normalization(): # Test normalization of the target values in GP # Fitting non-normalizing GP on normalized y and fitting normalizing GP # on unnormalized y should yield identical results y_mean = y.mean(0) y_norm = y - y_mean for kernel in kernels: # Fit non-normalizing GP on normalized y gpr = GaussianProcessRegressor(kernel=kernel) gpr.fit(X, y_norm) # Fit normalizing GP on unnormalized y gpr_norm = GaussianProcessRegressor(kernel=kernel, normalize_y=True) gpr_norm.fit(X, y) # Compare predicted mean, std-devs and covariances y_pred, y_pred_std = gpr.predict(X2, return_std=True) y_pred = y_mean + y_pred y_pred_norm, y_pred_std_norm = gpr_norm.predict(X2, return_std=True) assert_almost_equal(y_pred, y_pred_norm) assert_almost_equal(y_pred_std, y_pred_std_norm) _, y_cov = gpr.predict(X2, return_cov=True) _, y_cov_norm = gpr_norm.predict(X2, return_cov=True) assert_almost_equal(y_cov, y_cov_norm) def test_y_multioutput(): # Test that GPR can deal with multi-dimensional target values y_2d = np.vstack((y, y * 2)).T # Test for fixed kernel that first dimension of 2d GP equals the output # of 1d GP and that second dimension is twice as large kernel = RBF(length_scale=1.0) gpr = GaussianProcessRegressor(kernel=kernel, optimizer=None, normalize_y=False) gpr.fit(X, y) gpr_2d = GaussianProcessRegressor(kernel=kernel, optimizer=None, normalize_y=False) gpr_2d.fit(X, y_2d) y_pred_1d, y_std_1d = gpr.predict(X2, return_std=True) y_pred_2d, y_std_2d = gpr_2d.predict(X2, return_std=True) _, y_cov_1d = gpr.predict(X2, return_cov=True) _, y_cov_2d = gpr_2d.predict(X2, return_cov=True) assert_almost_equal(y_pred_1d, y_pred_2d[:, 0]) assert_almost_equal(y_pred_1d, y_pred_2d[:, 1] / 2) # Standard deviation and covariance do not depend on output assert_almost_equal(y_std_1d, y_std_2d) assert_almost_equal(y_cov_1d, y_cov_2d) y_sample_1d = gpr.sample_y(X2, n_samples=10) y_sample_2d = gpr_2d.sample_y(X2, n_samples=10) assert_almost_equal(y_sample_1d, y_sample_2d[:, 0]) # Test hyperparameter optimization for kernel in kernels: gpr = GaussianProcessRegressor(kernel=kernel, normalize_y=True) gpr.fit(X, y) gpr_2d = GaussianProcessRegressor(kernel=kernel, normalize_y=True) gpr_2d.fit(X, np.vstack((y, y)).T) assert_almost_equal(gpr.kernel_.theta, gpr_2d.kernel_.theta, 4) def test_custom_optimizer(): # Test that GPR can use externally defined optimizers. # Define a dummy optimizer that simply tests 50 random hyperparameters def optimizer(obj_func, initial_theta, bounds): rng = np.random.RandomState(0) theta_opt, func_min = \ initial_theta, obj_func(initial_theta, eval_gradient=False) for _ in range(50): theta = np.atleast_1d(rng.uniform(np.maximum(-2, bounds[:, 0]), np.minimum(1, bounds[:, 1]))) f = obj_func(theta, eval_gradient=False) if f < func_min: theta_opt, func_min = theta, f return theta_opt, func_min for kernel in kernels: if kernel == fixed_kernel: continue gpr = GaussianProcessRegressor(kernel=kernel, optimizer=optimizer) gpr.fit(X, y) # Checks that optimizer improved marginal likelihood assert_greater(gpr.log_marginal_likelihood(gpr.kernel_.theta), gpr.log_marginal_likelihood(gpr.kernel.theta)) def test_gpr_correct_error_message(): X = np.arange(12).reshape(6, -1) y = np.ones(6) kernel = DotProduct() gpr = GaussianProcessRegressor(kernel=kernel, alpha=0.0) assert_raise_message(np.linalg.LinAlgError, "The kernel, %s, is not returning a " "positive definite matrix. Try gradually increasing " "the 'alpha' parameter of your " "GaussianProcessRegressor estimator." % kernel, gpr.fit, X, y) def test_duplicate_input(): # Test GPR can handle two different output-values for the same input. for kernel in kernels: gpr_equal_inputs = \ GaussianProcessRegressor(kernel=kernel, alpha=1e-2) gpr_similar_inputs = \ GaussianProcessRegressor(kernel=kernel, alpha=1e-2) X_ = np.vstack((X, X[0])) y_ = np.hstack((y, y[0] + 1)) gpr_equal_inputs.fit(X_, y_) X_ = np.vstack((X, X[0] + 1e-15)) y_ = np.hstack((y, y[0] + 1)) gpr_similar_inputs.fit(X_, y_) X_test = np.linspace(0, 10, 100)[:, None] y_pred_equal, y_std_equal = \ gpr_equal_inputs.predict(X_test, return_std=True) y_pred_similar, y_std_similar = \ gpr_similar_inputs.predict(X_test, return_std=True) assert_almost_equal(y_pred_equal, y_pred_similar) assert_almost_equal(y_std_equal, y_std_similar) def test_no_fit_default_predict(): # Test that GPR predictions without fit does not break by default. default_kernel = (C(1.0, constant_value_bounds="fixed") * RBF(1.0, length_scale_bounds="fixed")) gpr1 = GaussianProcessRegressor() _, y_std1 = gpr1.predict(X, return_std=True) _, y_cov1 = gpr1.predict(X, return_cov=True) gpr2 = GaussianProcessRegressor(kernel=default_kernel) _, y_std2 = gpr2.predict(X, return_std=True) _, y_cov2 = gpr2.predict(X, return_cov=True) assert_array_almost_equal(y_std1, y_std2) assert_array_almost_equal(y_cov1, y_cov2) def test_K_inv_reset(): y2 = f(X2).ravel() for kernel in kernels: # Test that self._K_inv is reset after a new fit gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y) assert_true(hasattr(gpr, '_K_inv')) assert_true(gpr._K_inv is None) gpr.predict(X, return_std=True) assert_true(gpr._K_inv is not None) gpr.fit(X2, y2) assert_true(gpr._K_inv is None) gpr.predict(X2, return_std=True) gpr2 = GaussianProcessRegressor(kernel=kernel).fit(X2, y2) gpr2.predict(X2, return_std=True) # the value of K_inv should be independent of the first fit assert_array_equal(gpr._K_inv, gpr2._K_inv)
bsd-3-clause