repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
SANDAG/urbansim
urbansim/utils/tests/test_yamlio.py
5
3287
import os import tempfile from StringIO import StringIO import numpy as np import pandas as pd import pytest import yaml from pandas.util import testing as pdt from .. import yamlio @pytest.fixture def test_cfg(): return { 'name': 'test', 'ytransform': 'xyz', 'unordered': 'abc' } @pytest.fixture def expected_yaml(): return ( 'name: test{linesep}{linesep}' 'ytransform: xyz{linesep}{linesep}' 'unordered: abc{linesep}').format(linesep=os.linesep) @pytest.fixture def test_file(request): name = tempfile.NamedTemporaryFile(suffix='.yaml').name def cleanup(): if os.path.exists(name): os.remove(name) request.addfinalizer(cleanup) return name def test_ordered_yaml(test_cfg, expected_yaml): test_yaml = yamlio.ordered_yaml(test_cfg) assert test_yaml == expected_yaml def test_convert_to_yaml_str(test_cfg, expected_yaml): test_yaml = yamlio.convert_to_yaml(test_cfg, str_or_buffer=None) assert test_yaml == expected_yaml def test_convert_to_yaml_file(test_cfg, expected_yaml, test_file): yamlio.convert_to_yaml(test_cfg, test_file) with open(test_file) as f: assert f.read() == expected_yaml def test_convert_to_yaml_buffer(test_cfg, expected_yaml): test_buffer = StringIO() yamlio.convert_to_yaml(test_cfg, test_buffer) assert test_buffer.getvalue() == expected_yaml class Test_yaml_to_dict(object): @classmethod def setup_class(cls): cls.yaml_str = """ a: x: 1 y: 2 z: 3 b: x: 3 y: 4 z: 5 """ cls.expect_dict = { 'a': {'x': 1, 'y': 2, 'z': 3}, 'b': {'x': 3, 'y': 4, 'z': 5}} def test_str(self): assert yamlio.yaml_to_dict(yaml_str=self.yaml_str) == self.expect_dict def test_file(self, test_file): with open(test_file, 'w') as f: f.write(self.yaml_str) assert yamlio.yaml_to_dict(str_or_buffer=test_file) == self.expect_dict def test_buffer(self): buff = StringIO(self.yaml_str) buff.seek(0) assert yamlio.yaml_to_dict(str_or_buffer=buff) == self.expect_dict def test_raises(self): with pytest.raises(ValueError): yamlio.yaml_to_dict() def test_series_to_yaml_safe_int_index(): s = pd.Series(np.arange(100, 103), index=np.arange(3)) d = yamlio.series_to_yaml_safe(s) assert d == {0: 100, 1: 101, 2: 102} y = yaml.dump(d, default_flow_style=False) pdt.assert_series_equal(pd.Series(yaml.load(y)), s) def test_series_to_yaml_safe_str_index(): s = pd.Series( np.array(['a', 'b', 'c']), index=np.array(['x', 'y', 'z'])) d = yamlio.series_to_yaml_safe(s) assert d == {'x': 'a', 'y': 'b', 'z': 'c'} y = yaml.dump(d, default_flow_style=False) pdt.assert_series_equal(pd.Series(yaml.load(y)), s) def test_frame_to_yaml_safe(): df = pd.DataFrame( {'col1': np.array([100, 200, 300]), 'col2': np.array(['a', 'b', 'c'])}, index=np.arange(3)) d = yamlio.frame_to_yaml_safe(df) assert d == {'col1': {0: 100, 1: 200, 2: 300}, 'col2': {0: 'a', 1: 'b', 2: 'c'}} y = yaml.dump(d, default_flow_style=False) pdt.assert_frame_equal(pd.DataFrame(yaml.load(y)), df)
bsd-3-clause
quheng/scikit-learn
examples/cluster/plot_agglomerative_clustering_metrics.py
402
4492
""" Agglomerative clustering with different metrics =============================================== Demonstrates the effect of different metrics on the hierarchical clustering. The example is engineered to show the effect of the choice of different metrics. It is applied to waveforms, which can be seen as high-dimensional vector. Indeed, the difference between metrics is usually more pronounced in high dimension (in particular for euclidean and cityblock). We generate data from three groups of waveforms. Two of the waveforms (waveform 1 and waveform 2) are proportional one to the other. The cosine distance is invariant to a scaling of the data, as a result, it cannot distinguish these two waveforms. Thus even with no noise, clustering using this distance will not separate out waveform 1 and 2. We add observation noise to these waveforms. We generate very sparse noise: only 6% of the time points contain noise. As a result, the l1 norm of this noise (ie "cityblock" distance) is much smaller than it's l2 norm ("euclidean" distance). This can be seen on the inter-class distance matrices: the values on the diagonal, that characterize the spread of the class, are much bigger for the Euclidean distance than for the cityblock distance. When we apply clustering to the data, we find that the clustering reflects what was in the distance matrices. Indeed, for the Euclidean distance, the classes are ill-separated because of the noise, and thus the clustering does not separate the waveforms. For the cityblock distance, the separation is good and the waveform classes are recovered. Finally, the cosine distance does not separate at all waveform 1 and 2, thus the clustering puts them in the same cluster. """ # Author: Gael Varoquaux # License: BSD 3-Clause or CC-0 import matplotlib.pyplot as plt import numpy as np from sklearn.cluster import AgglomerativeClustering from sklearn.metrics import pairwise_distances np.random.seed(0) # Generate waveform data n_features = 2000 t = np.pi * np.linspace(0, 1, n_features) def sqr(x): return np.sign(np.cos(x)) X = list() y = list() for i, (phi, a) in enumerate([(.5, .15), (.5, .6), (.3, .2)]): for _ in range(30): phase_noise = .01 * np.random.normal() amplitude_noise = .04 * np.random.normal() additional_noise = 1 - 2 * np.random.rand(n_features) # Make the noise sparse additional_noise[np.abs(additional_noise) < .997] = 0 X.append(12 * ((a + amplitude_noise) * (sqr(6 * (t + phi + phase_noise))) + additional_noise)) y.append(i) X = np.array(X) y = np.array(y) n_clusters = 3 labels = ('Waveform 1', 'Waveform 2', 'Waveform 3') # Plot the ground-truth labelling plt.figure() plt.axes([0, 0, 1, 1]) for l, c, n in zip(range(n_clusters), 'rgb', labels): lines = plt.plot(X[y == l].T, c=c, alpha=.5) lines[0].set_label(n) plt.legend(loc='best') plt.axis('tight') plt.axis('off') plt.suptitle("Ground truth", size=20) # Plot the distances for index, metric in enumerate(["cosine", "euclidean", "cityblock"]): avg_dist = np.zeros((n_clusters, n_clusters)) plt.figure(figsize=(5, 4.5)) for i in range(n_clusters): for j in range(n_clusters): avg_dist[i, j] = pairwise_distances(X[y == i], X[y == j], metric=metric).mean() avg_dist /= avg_dist.max() for i in range(n_clusters): for j in range(n_clusters): plt.text(i, j, '%5.3f' % avg_dist[i, j], verticalalignment='center', horizontalalignment='center') plt.imshow(avg_dist, interpolation='nearest', cmap=plt.cm.gnuplot2, vmin=0) plt.xticks(range(n_clusters), labels, rotation=45) plt.yticks(range(n_clusters), labels) plt.colorbar() plt.suptitle("Interclass %s distances" % metric, size=18) plt.tight_layout() # Plot clustering results for index, metric in enumerate(["cosine", "euclidean", "cityblock"]): model = AgglomerativeClustering(n_clusters=n_clusters, linkage="average", affinity=metric) model.fit(X) plt.figure() plt.axes([0, 0, 1, 1]) for l, c in zip(np.arange(model.n_clusters), 'rgbk'): plt.plot(X[model.labels_ == l].T, c=c, alpha=.5) plt.axis('tight') plt.axis('off') plt.suptitle("AgglomerativeClustering(affinity=%s)" % metric, size=20) plt.show()
bsd-3-clause
mugizico/scikit-learn
examples/cluster/plot_agglomerative_clustering_metrics.py
402
4492
""" Agglomerative clustering with different metrics =============================================== Demonstrates the effect of different metrics on the hierarchical clustering. The example is engineered to show the effect of the choice of different metrics. It is applied to waveforms, which can be seen as high-dimensional vector. Indeed, the difference between metrics is usually more pronounced in high dimension (in particular for euclidean and cityblock). We generate data from three groups of waveforms. Two of the waveforms (waveform 1 and waveform 2) are proportional one to the other. The cosine distance is invariant to a scaling of the data, as a result, it cannot distinguish these two waveforms. Thus even with no noise, clustering using this distance will not separate out waveform 1 and 2. We add observation noise to these waveforms. We generate very sparse noise: only 6% of the time points contain noise. As a result, the l1 norm of this noise (ie "cityblock" distance) is much smaller than it's l2 norm ("euclidean" distance). This can be seen on the inter-class distance matrices: the values on the diagonal, that characterize the spread of the class, are much bigger for the Euclidean distance than for the cityblock distance. When we apply clustering to the data, we find that the clustering reflects what was in the distance matrices. Indeed, for the Euclidean distance, the classes are ill-separated because of the noise, and thus the clustering does not separate the waveforms. For the cityblock distance, the separation is good and the waveform classes are recovered. Finally, the cosine distance does not separate at all waveform 1 and 2, thus the clustering puts them in the same cluster. """ # Author: Gael Varoquaux # License: BSD 3-Clause or CC-0 import matplotlib.pyplot as plt import numpy as np from sklearn.cluster import AgglomerativeClustering from sklearn.metrics import pairwise_distances np.random.seed(0) # Generate waveform data n_features = 2000 t = np.pi * np.linspace(0, 1, n_features) def sqr(x): return np.sign(np.cos(x)) X = list() y = list() for i, (phi, a) in enumerate([(.5, .15), (.5, .6), (.3, .2)]): for _ in range(30): phase_noise = .01 * np.random.normal() amplitude_noise = .04 * np.random.normal() additional_noise = 1 - 2 * np.random.rand(n_features) # Make the noise sparse additional_noise[np.abs(additional_noise) < .997] = 0 X.append(12 * ((a + amplitude_noise) * (sqr(6 * (t + phi + phase_noise))) + additional_noise)) y.append(i) X = np.array(X) y = np.array(y) n_clusters = 3 labels = ('Waveform 1', 'Waveform 2', 'Waveform 3') # Plot the ground-truth labelling plt.figure() plt.axes([0, 0, 1, 1]) for l, c, n in zip(range(n_clusters), 'rgb', labels): lines = plt.plot(X[y == l].T, c=c, alpha=.5) lines[0].set_label(n) plt.legend(loc='best') plt.axis('tight') plt.axis('off') plt.suptitle("Ground truth", size=20) # Plot the distances for index, metric in enumerate(["cosine", "euclidean", "cityblock"]): avg_dist = np.zeros((n_clusters, n_clusters)) plt.figure(figsize=(5, 4.5)) for i in range(n_clusters): for j in range(n_clusters): avg_dist[i, j] = pairwise_distances(X[y == i], X[y == j], metric=metric).mean() avg_dist /= avg_dist.max() for i in range(n_clusters): for j in range(n_clusters): plt.text(i, j, '%5.3f' % avg_dist[i, j], verticalalignment='center', horizontalalignment='center') plt.imshow(avg_dist, interpolation='nearest', cmap=plt.cm.gnuplot2, vmin=0) plt.xticks(range(n_clusters), labels, rotation=45) plt.yticks(range(n_clusters), labels) plt.colorbar() plt.suptitle("Interclass %s distances" % metric, size=18) plt.tight_layout() # Plot clustering results for index, metric in enumerate(["cosine", "euclidean", "cityblock"]): model = AgglomerativeClustering(n_clusters=n_clusters, linkage="average", affinity=metric) model.fit(X) plt.figure() plt.axes([0, 0, 1, 1]) for l, c in zip(np.arange(model.n_clusters), 'rgbk'): plt.plot(X[model.labels_ == l].T, c=c, alpha=.5) plt.axis('tight') plt.axis('off') plt.suptitle("AgglomerativeClustering(affinity=%s)" % metric, size=20) plt.show()
bsd-3-clause
ishanic/scikit-learn
examples/model_selection/plot_learning_curve.py
250
4171
""" ======================== Plotting Learning Curves ======================== On the left side the learning curve of a naive Bayes classifier is shown for the digits dataset. Note that the training score and the cross-validation score are both not very good at the end. However, the shape of the curve can be found in more complex datasets very often: the training score is very high at the beginning and decreases and the cross-validation score is very low at the beginning and increases. On the right side we see the learning curve of an SVM with RBF kernel. We can see clearly that the training score is still around the maximum and the validation score could be increased with more training samples. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import cross_validation from sklearn.naive_bayes import GaussianNB from sklearn.svm import SVC from sklearn.datasets import load_digits from sklearn.learning_curve import learning_curve def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None, n_jobs=1, train_sizes=np.linspace(.1, 1.0, 5)): """ Generate a simple plot of the test and traning learning curve. Parameters ---------- estimator : object type that implements the "fit" and "predict" methods An object of that type which is cloned for each validation. title : string Title for the chart. X : array-like, shape (n_samples, n_features) Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples) or (n_samples, n_features), optional Target relative to X for classification or regression; None for unsupervised learning. ylim : tuple, shape (ymin, ymax), optional Defines minimum and maximum yvalues plotted. cv : integer, cross-validation generator, optional If an integer is passed, it is the number of folds (defaults to 3). Specific cross-validation objects can be passed, see sklearn.cross_validation module for the list of possible objects n_jobs : integer, optional Number of jobs to run in parallel (default 1). """ plt.figure() plt.title(title) if ylim is not None: plt.ylim(*ylim) plt.xlabel("Training examples") plt.ylabel("Score") train_sizes, train_scores, test_scores = learning_curve( estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_sizes) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) plt.grid() plt.fill_between(train_sizes, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.1, color="r") plt.fill_between(train_sizes, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.1, color="g") plt.plot(train_sizes, train_scores_mean, 'o-', color="r", label="Training score") plt.plot(train_sizes, test_scores_mean, 'o-', color="g", label="Cross-validation score") plt.legend(loc="best") return plt digits = load_digits() X, y = digits.data, digits.target title = "Learning Curves (Naive Bayes)" # Cross validation with 100 iterations to get smoother mean test and train # score curves, each time with 20% data randomly selected as a validation set. cv = cross_validation.ShuffleSplit(digits.data.shape[0], n_iter=100, test_size=0.2, random_state=0) estimator = GaussianNB() plot_learning_curve(estimator, title, X, y, ylim=(0.7, 1.01), cv=cv, n_jobs=4) title = "Learning Curves (SVM, RBF kernel, $\gamma=0.001$)" # SVC is more expensive so we do a lower number of CV iterations: cv = cross_validation.ShuffleSplit(digits.data.shape[0], n_iter=10, test_size=0.2, random_state=0) estimator = SVC(gamma=0.001) plot_learning_curve(estimator, title, X, y, (0.7, 1.01), cv=cv, n_jobs=4) plt.show()
bsd-3-clause
smrjan/seldon-server
docker/examples/US_stocks_fund/create_pipeline.py
2
17985
import pandas as pd import numpy as np import tensorflow as tf from sklearn import preprocessing from seldon.tensorflow_wrapper import TensorFlowWrapper from sklearn.pipeline import Pipeline import seldon.pipeline.util as sutl import argparse import logging logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) ch = logging.StreamHandler() ch.setLevel(logging.DEBUG) formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') ch.setFormatter(formatter) logger.addHandler(ch) df_Xy = pd.read_csv('home/seldon/data/indicators_nan_replaced.csv') #df_Xy = pd.read_csv('home/seldon/data/indicators_nan_replacedv2.csv') #df_Xy = pd.read_csv('home/seldon/data/indicators_nan_replacedv3.csv') logger.info('tf version: %s ' % tf.__version__) def get_data(split_train_test=False): cols_tokeep = df_Xy.columns.tolist() logger.debug('columns to keep: ') logger.debug(cols_tokeep) if 'company_id' in cols_tokeep: cols_tokeep.remove('company_id') Xy = df_Xy.as_matrix(columns=cols_tokeep) Xy_shuffled = np.random.permutation(Xy) (means,stds) = (np.mean(Xy_shuffled[:,:-1],axis=0).reshape((1,Xy_shuffled[:,:-1].shape[1])), np.std(Xy_shuffled[:,:-1],axis=0).reshape((1,Xy_shuffled[:,:-1].shape[1]))) for i,v in enumerate(means[0]): if i%2!=0: means[0,i]=0 stds[0,i]=1 if split_train_test: #split train-test split_ratio = int(0.7*(len(Xy))) Xy_train = Xy_shuffled[:split_ratio,:] Xy_test = Xy_shuffled[split_ratio:,:] dataset = {'train':Xy_train, 'test':Xy_test, 'means':means, 'stds':stds} else: #no splitting dataset = {'train':Xy_shuffled, 'test':Xy_shuffled, 'means':means, 'stds':stds} return dataset def get_data_v3(split_train_test=False): cols_tokeep = df_Xy.columns.tolist() logger.debug('columns to keep') logger.debug(cols_tokeep) if 'company_id' in cols_tokeep: cols_tokeep.remove('company_id') Xy = df_Xy.as_matrix(columns=cols_tokeep) Xy_shuffled = np.random.permutation(Xy) (means,stds) = (np.mean(Xy_shuffled[:,:-1],axis=0).reshape((1,Xy_shuffled[:,:-1].shape[1])), np.std(Xy_shuffled[:,:-1],axis=0).reshape((1,Xy_shuffled[:,:-1].shape[1]))) if split_train_test: #split train-test split_ratio = int(0.7*(len(Xy))) Xy_train = Xy_shuffled[:split_ratio,:] Xy_test = Xy_shuffled[split_ratio:,:] dataset = {'train':Xy_train, 'test':Xy_test, 'means':means, 'stds':stds} else: #no splitting dataset = {'train':Xy_shuffled, 'test':Xy_shuffled, 'means':means, 'stds':stds} return dataset def fill_feed_dict_train(in_pl, y_pl, dataset, iterator, batch_size=128): train = dataset['train'] if batch_size=='all': feed_dict_train = {in_pl : train[:,:-1], y_pl : train[:,-1].reshape((len(train),1))} else: nb_batches = int(dataset['train'].shape[0]/batch_size) j = iterator % nb_batches feed_dict_train = {in_pl : train[j*batch_size:(j+1)*batch_size,:-1], y_pl : train[j*batch_size:(j+1)*batch_size,-1].reshape((batch_size,1))} return feed_dict_train def fill_feed_dict_test(in_pl, y_pl, dataset): test = dataset['test'] feed_dict_test = {in_pl : test[:,:-1], y_pl : test[:,-1].reshape((len(test),1))} return feed_dict_test dataset = get_data() #dataset = get_data_v3() # model v1 def create_pipeline_v1(load=None): nb_features = 58 nb_hidden1 = 116 nb_hidden2 = 29 batch_size = 64 nb_iter = 30001 lamb = 0.0001 in_pl = tf.placeholder(dtype=tf.float32, shape=(None,nb_features), name='input_placeholder') means = tf.constant(dataset['means'], dtype=tf.float32, shape=(1,nb_features), name='features_means') stds = tf.constant(dataset['stds'], dtype=tf.float32, shape=(1,nb_features), name='features_stds_placeholder') means_tiled = tf.tile(means,[tf.shape(in_pl)[0],1]) stds_tiled = tf.tile(stds,[tf.shape(in_pl)[0],1]) #scaled inputs inp = (in_pl - means_tiled)/(stds_tiled+1e-10) y_pl = tf.placeholder(dtype=tf.float32, shape=(None,1), name='target_placeholder') W1 = tf.Variable(tf.truncated_normal([nb_features,nb_hidden1]), dtype=tf.float32, name='first_layer_weights') W1_L2reg = (1/2*batch_size)*tf.reduce_sum(tf.square(W1)) b1 = tf.Variable(tf.zeros(shape=[nb_hidden1])) #first hidden layer h1 = tf.nn.relu(tf.matmul(inp,W1) + b1, name='first_hidden_layer') W2 = tf.Variable(tf.truncated_normal([nb_hidden1,nb_hidden2]), dtype=tf.float32, name='second_layer_weights') W2_L2reg = (1/2*batch_size)*tf.reduce_sum(tf.square(W2)) b2 = tf.Variable(tf.zeros(shape=[nb_hidden2])) #second hidden layer h2 = tf.sigmoid(tf.matmul(h1,W2) + b2, name='second_hidden_layer') W3 = tf.Variable(tf.truncated_normal([nb_hidden2,1]), dtype=tf.float32, name='last_layer_weights') W3_L2reg = (1/2*batch_size)*tf.reduce_sum(tf.square(W3)) b3 = tf.Variable(tf.zeros(shape=[1])) #out layer out = tf.sigmoid(tf.matmul(h2,W3) + b3, name='output_layer') proba = tf.squeeze(tf.pack([1-out,out],2), squeeze_dims=[1]) L2reg = lamb*(W1_L2reg + W2_L2reg + W3_L2reg) cross_entropy = -(1/float(2))*tf.reduce_mean(y_pl * tf.log(out+1e-10) + (1-y_pl) * tf.log(1-out+1e-10), name='cost_function') cost = cross_entropy + L2reg train_step = tf.train.AdamOptimizer(1e-4).minimize(cost) init = tf.initialize_all_variables() sess = tf.Session() logger.info('Training model...') logger.info('model version: %i' % 1) sess.run(init) for i in range(nb_iter): if i % 1000 == 0: logger.info('iteration %i of %i' % (i,nb_iter)) feed_dict_train = fill_feed_dict_train(in_pl, y_pl, dataset, i, batch_size=batch_size) (_, W3_value, cost_value, out_value) = sess.run([train_step, W3, cost, out], feed_dict=feed_dict_train) if i % 10000 == 0: # feed_dict_test = fill_feed_dict_test(in_pl, # y_pl, # dataset) inp_values,proba_values = sess.run([inp,proba],feed_dict=feed_dict_train) logger.debug('scaled inputs:') logger.debug(inp_values) logger.debug('probabilities:') logger.debug(proba_values) logger.debug('proba out shape:') logger.debug(proba_values.shape) logger.debug('cost: %f' % cost_value) tfw = TensorFlowWrapper(sess,tf_input=in_pl,tf_output=proba, target="y",target_readable="class",excluded=['class']) return Pipeline([('deep_classifier',tfw)]) #model v2 def create_pipeline_v2(load=None): nb_features = 58 nb_hidden1 = 400 nb_hidden2 = 200 nb_hidden3 = 100 batch_size = 64 nb_iter = 30001 lamb = 0.0001 in_pl = tf.placeholder(dtype=tf.float32, shape=(None,nb_features), name='input_placeholder') means = tf.constant(dataset['means'], dtype=tf.float32, shape=(1,nb_features), name='features_means') stds = tf.constant(dataset['stds'], dtype=tf.float32, shape=(1,nb_features), name='features_stds_placeholder') means_tiled = tf.tile(means,[tf.shape(in_pl)[0],1]) stds_tiled = tf.tile(stds,[tf.shape(in_pl)[0],1]) #scaled inputs inp = (in_pl - means_tiled)/(stds_tiled+1e-10) y_pl = tf.placeholder(dtype=tf.float32, shape=(None,1), name='target_placeholder') #first hidden layer W1 = tf.Variable(tf.truncated_normal([nb_features,nb_hidden1]), dtype=tf.float32, name='first_layer_weights') W1_L2reg = (1/2*batch_size)*tf.reduce_sum(tf.square(W1)) b1 = tf.Variable(tf.zeros(shape=[nb_hidden1])) h1 = tf.sigmoid(tf.matmul(inp,W1) + b1, name='first_hidden_layer') #second hidden layer W2 = tf.Variable(tf.truncated_normal([nb_hidden1,nb_hidden2]), dtype=tf.float32, name='second_layer_weights') W2_L2reg = (1/2*batch_size)*tf.reduce_sum(tf.square(W2)) b2 = tf.Variable(tf.zeros(shape=[nb_hidden2])) h2 = tf.sigmoid(tf.matmul(h1,W2) + b2, name='second_hidden_layer') #third hidden layer W3 = tf.Variable(tf.truncated_normal([nb_hidden2,nb_hidden3]), dtype=tf.float32, name='third_layer_weights') W3_L2reg = (1/2*batch_size)*tf.reduce_sum(tf.square(W3)) b3 = tf.Variable(tf.zeros(shape=[nb_hidden3])) h3 = tf.sigmoid(tf.matmul(h2,W3) + b3, name='third_hidden_layer') #out layer W4 = tf.Variable(tf.truncated_normal([nb_hidden3,1]), dtype=tf.float32, name='last_layer_weights') W4_L2reg = (1/2*batch_size)*tf.reduce_sum(tf.square(W4)) b4 = tf.Variable(tf.zeros(shape=[1])) out = tf.sigmoid(tf.matmul(h3,W4) + b4, name='output_layer') proba = tf.squeeze(tf.pack([1-out,out],2), squeeze_dims=[1]) L2reg = lamb*(W1_L2reg + W2_L2reg + W3_L2reg + W4_L2reg) cross_entropy = -(1/float(2))*tf.reduce_mean(y_pl * tf.log(out+1e-10) + (1-y_pl) * tf.log(1-out+1e-10), name='cost_function') cost = cross_entropy + L2reg train_step = tf.train.AdamOptimizer(1e-4).minimize(cost) init = tf.initialize_all_variables() sess = tf.Session() logger.info('Training model...') logger.info('model version: %i' % 2) sess.run(init) for i in range(nb_iter): if i % 1000 == 0: logger.info('iteration %i of %i' % (i,nb_iter)) feed_dict_train = fill_feed_dict_train(in_pl, y_pl, dataset, i, batch_size=batch_size) (_, W3_value, cost_value, out_value) = sess.run([train_step, W3, cost, out], feed_dict=feed_dict_train) if i % 10000 == 0: # feed_dict_test = fill_feed_dict_test(in_pl, # y_pl, # dataset) inp_values,proba_values = sess.run([inp,proba],feed_dict=feed_dict_train) logger.debug('scaled inputs') logger.debug(inp_values) logger.debug('probabilities') logger.debug(proba_values) logger.debug('proba out shape') logger.debug(proba_values.shape) logger.debug('cost') logger.debug(cost_value) tfw = TensorFlowWrapper(sess,tf_input=in_pl,tf_output=proba, target="y",target_readable="class",excluded=['class']) return Pipeline([('deep_classifier',tfw)]) # model v3 def create_pipeline_v3(load=None): nb_features = 29 nb_hidden1 = 400 nb_hidden2 = 200 nb_hidden3 = 100 batch_size = 64 nb_iter = 30001 lamb = 0.0001 in_pl = tf.placeholder(dtype=tf.float32, shape=(None,nb_features), name='input_placeholder') means = tf.constant(dataset['means'], dtype=tf.float32, shape=(1,nb_features), name='features_means') stds = tf.constant(dataset['stds'], dtype=tf.float32, shape=(1,nb_features), name='features_stds_placeholder') means_tiled = tf.tile(means,[tf.shape(in_pl)[0],1]) stds_tiled = tf.tile(stds,[tf.shape(in_pl)[0],1]) #scaled inputs inp = (in_pl - means_tiled)/(stds_tiled+1e-10) y_pl = tf.placeholder(dtype=tf.float32, shape=(None,1), name='target_placeholder') #first hidden layer W1 = tf.Variable(tf.truncated_normal([nb_features,nb_hidden1]), dtype=tf.float32, name='first_layer_weights') W1_L2reg = (1/2*batch_size)*tf.reduce_sum(tf.square(W1)) b1 = tf.Variable(tf.zeros(shape=[nb_hidden1])) h1 = tf.sigmoid(tf.matmul(inp,W1) + b1, name='first_hidden_layer') #second hidden layer W2 = tf.Variable(tf.truncated_normal([nb_hidden1,nb_hidden2]), dtype=tf.float32, name='second_layer_weights') W2_L2reg = (1/2*batch_size)*tf.reduce_sum(tf.square(W2)) b2 = tf.Variable(tf.zeros(shape=[nb_hidden2])) h2 = tf.sigmoid(tf.matmul(h1,W2) + b2, name='second_hidden_layer') #third hidden layer W3 = tf.Variable(tf.truncated_normal([nb_hidden2,nb_hidden3]), dtype=tf.float32, name='third_layer_weights') W3_L2reg = (1/2*batch_size)*tf.reduce_sum(tf.square(W3)) b3 = tf.Variable(tf.zeros(shape=[nb_hidden3])) h3 = tf.sigmoid(tf.matmul(h2,W3) + b3, name='third_hidden_layer') #out layer W4 = tf.Variable(tf.truncated_normal([nb_hidden3,1]), dtype=tf.float32, name='last_layer_weights') W4_L2reg = (1/2*batch_size)*tf.reduce_sum(tf.square(W4)) b4 = tf.Variable(tf.zeros(shape=[1])) out = tf.sigmoid(tf.matmul(h3,W4) + b4, name='output_layer') proba = tf.squeeze(tf.pack([1-out,out],2), squeeze_dims=[1]) L2reg = lamb*(W1_L2reg + W2_L2reg + W3_L2reg + W4_L2reg) cross_entropy = -(1/float(2))*tf.reduce_mean(y_pl * tf.log(out+1e-10) + (1-y_pl) * tf.log(1-out+1e-10), name='cost_function') cost = cross_entropy + L2reg train_step = tf.train.AdamOptimizer(1e-4).minimize(cost) init = tf.initialize_all_variables() sess = tf.Session() logger.info('Training model...') logger.info('model version %i' % 3) sess.run(init) for i in range(nb_iter): if i % 1000 == 0: logger.info('iteration %i of %i' % (i,nb_iter)) feed_dict_train = fill_feed_dict_train(in_pl, y_pl, dataset, i, batch_size=batch_size) (_, W3_value, cost_value, out_value) = sess.run([train_step, W3, cost, out], feed_dict=feed_dict_train) if i % 10000 == 0: # feed_dict_test = fill_feed_dict_test(in_pl, # y_pl, # dataset) inp_values,proba_values = sess.run([inp,proba],feed_dict=feed_dict_train) logger.debug('scaled inputs') logger.debug(inp_values) logger.debug('probabilities') logger.debug(proba_values) logger.debug('proba out shape') logger.debug(proba_values.shape) logger.debug('cost') logger.debug(cost_value) tfw = TensorFlowWrapper(sess,tf_input=in_pl,tf_output=proba, target="y",target_readable="class",excluded=['class']) return Pipeline([('deep_classifier',tfw)]) if __name__ == '__main__': parser = argparse.ArgumentParser(prog='pipeline_example') parser.add_argument('-m','--model', help='model output folder', required=True) parser.add_argument('-l','--load',help='Load pretrained model from file') args = parser.parse_args() p = create_pipeline_v1(args.load) # p = create_pipeline_v2(args.load) # p = create_pipeline_v3(args.load) pw = sutl.PipelineWrapper() pw.save_pipeline(p,args.model) logger.info('tf version: %s' % tf.__version__) logger.info('pipeline saved in %s' % args.model)
apache-2.0
sinall/ShiPanE-Python-SDK
strategyease_sdk/client.py
1
11828
# -*- coding: utf-8 -*- import datetime import re from enum import Enum import lxml.html import pandas as pd import requests import six import tushare as ts from lxml import etree from requests import Request from requests.auth import HTTPBasicAuth from six import StringIO from six.moves.urllib.parse import urlencode class MediaType(Enum): DEFAULT = 'application/json' JOIN_QUANT = 'application/vnd.joinquant+json' class ConnectionMethod(Enum): DIRECT = 'DIRECT' PROXY = 'PROXY' class Client(object): VERSION = 'v1.0' KEY_REGEX = r'key=([^&]*)' def __init__(self, logger=None, **kwargs): if logger is not None: self._logger = logger else: import logging self._logger = logging.getLogger(__name__) self._connection_method = ConnectionMethod[kwargs.pop('connection_method', 'DIRECT')] if self._connection_method is ConnectionMethod.DIRECT: self._host = kwargs.pop('host', 'localhost') self._port = kwargs.pop('port', 8888) else: self._proxy_base_url = kwargs.pop('proxy_base_url') self._proxy_username = kwargs.pop('proxy_username') self._proxy_password = kwargs.pop('proxy_password') self._instance_id = kwargs.pop('instance_id') self._base_url = self.__create_base_url() self._key = kwargs.pop('key', '') self._client = kwargs.pop('client', '') self._timeout = kwargs.pop('timeout', (5.0, 10.0)) @property def host(self): return self._host @host.setter def host(self, value): self._host = value @property def port(self): return self._port @port.setter def port(self, value): self._port = value @property def key(self): return self._key @key.setter def key(self, value): self._key = value @property def timeout(self): return self._timeout @timeout.setter def timeout(self, value): self._timeout = value def get_statuses(self, timeout=None): request = Request('GET', self.__create_url(None, 'statuses')) response = self.__send_request(request, timeout) return response.json() def get_account(self, client=None, timeout=None): request = Request('GET', self.__create_url(client, 'accounts')) response = self.__send_request(request, timeout) return response.json() # You should use get_portfolio def get_positions(self, client=None, media_type=MediaType.DEFAULT, timeout=None): request = Request('GET', self.__create_url(client, 'positions')) request.headers['Accept'] = media_type.value response = self.__send_request(request, timeout) json = response.json() if media_type == MediaType.DEFAULT: sub_accounts = pd.DataFrame(json['subAccounts']).T positions = pd.DataFrame(json['dataTable']['rows'], columns=json['dataTable']['columns']) portfolio = {'sub_accounts': sub_accounts, 'positions': positions} return portfolio return json def get_portfolio(self, client=None, media_type=MediaType.DEFAULT, timeout=None): request = Request('GET', self.__create_url(client, 'portfolios')) request.headers['Accept'] = media_type.value response = self.__send_request(request, timeout) json = response.json() if media_type == MediaType.DEFAULT: sub_accounts = pd.DataFrame(json['subAccounts']).T positions = pd.DataFrame(json['dataTable']['rows'], columns=json['dataTable']['columns']) portfolio = {'sub_accounts': sub_accounts, 'positions': positions} return portfolio return json def get_orders(self, client=None, status="", timeout=None): request = Request('GET', self.__create_url(client, 'orders', status=status)) response = self.__send_request(request, timeout) json = response.json() df = pd.DataFrame(json['dataTable']['rows'], columns=json['dataTable']['columns']) return df def buy(self, client=None, timeout=None, **kwargs): kwargs['action'] = 'BUY' return self.__execute(client, timeout, **kwargs) def sell(self, client=None, timeout=None, **kwargs): kwargs['action'] = 'SELL' return self.__execute(client, timeout, **kwargs) def ipo(self, client=None, timeout=None, **kwargs): kwargs['action'] = 'IPO' return self.__execute(client, timeout, **kwargs) def execute(self, client=None, timeout=None, **kwargs): return self.__execute(client, timeout, **kwargs) def cancel(self, client=None, order_id=None, symbol=None, timeout=None): request = Request('DELETE', self.__create_order_url(client, order_id, symbol=symbol)) self.__send_request(request, timeout) def cancel_all(self, client=None, timeout=None): request = Request('DELETE', self.__create_order_url(client)) self.__send_request(request, timeout) def query(self, client=None, type=None, navigation=None, timeout=None): request = Request('GET', self.__create_url(client, 'reports', type=type, navigation=navigation)) response = self.__send_request(request, timeout) json = response.json() df = pd.DataFrame(json['dataTable']['rows'], columns=json['dataTable']['columns']) return df def query_new_stocks(self): return self.__query_new_stocks() def query_convertible_bonds(self): return self.__query_convertible_bonds() def purchase_new_stocks(self, client=None, timeout=None): today = datetime.datetime.strftime(datetime.datetime.today(), '%Y-%m-%d') df = self.query_new_stocks() df = df[(df.ipo_date == today)] self._logger.info('今日有[{}]支可申购新股'.format(len(df))) for index, row in df.iterrows(): try: order = { 'symbol': row['xcode'], 'price': row['price'], 'amountProportion': 'ALL' } self._logger.info('申购新股:{}'.format(order)) self.ipo(client, timeout, **order) except Exception as e: self._logger.error( '客户端[{}]申购新股[{}({})]失败\n{}'.format((client or self._client), row['name'], row['code'], e)) def purchase_convertible_bonds(self, client=None, timeout=None): today = datetime.datetime.strftime(datetime.datetime.today(), '%Y-%m-%d') df = self.query_convertible_bonds() df = df[(df.ipo_date == today)] self._logger.info('今日有[{}]支可申购转债'.format(len(df))) for index, row in df.iterrows(): try: order = { 'symbol': row['xcode'], 'price': 100, 'amountProportion': 'ALL' } self._logger.info('申购转债:{}'.format(order)) self.buy(client, timeout, **order) except Exception as e: self._logger.error( '客户端[{}]申购转债[{}({})]失败\n{}'.format((client or self._client), row['bname'], row['xcode'], e)) def create_adjustment(self, client=None, request_json=None, timeout=None): request = Request('POST', self.__create_url(client, 'adjustments'), json=request_json) request.headers['Content-Type'] = MediaType.JOIN_QUANT.value response = self.__send_request(request, timeout) json = response.json() return json def start_clients(self, timeout=None): self.__change_clients_status('LOGGED') def shutdown_clients(self, timeout=None): self.__change_clients_status('STOPPED') def __execute(self, client=None, timeout=None, **kwargs): if not kwargs.get('type'): kwargs['type'] = 'LIMIT' request = Request('POST', self.__create_order_url(client), json=kwargs) response = self.__send_request(request) return response.json() def __change_clients_status(self, status, timeout=None): request = Request('PATCH', self.__create_url(None, 'clients'), json={ 'status': status }) self.__send_request(request, timeout) def __query_new_stocks(self): DATA_URL = 'http://vip.stock.finance.sina.com.cn/corp/view/vRPD_NewStockIssue.php?page=1&cngem=0&orderBy=NetDate&orderType=desc' html = lxml.html.parse(DATA_URL) res = html.xpath('//table[@id=\"NewStockTable\"]/tr') if six.PY2: sarr = [etree.tostring(node) for node in res] else: sarr = [etree.tostring(node).decode('utf-8') for node in res] sarr = ''.join(sarr) sarr = sarr.replace('<font color="red">*</font>', '') sarr = '<table>%s</table>' % sarr df = pd.read_html(StringIO(sarr), skiprows=[0, 1])[0] df = df.select(lambda x: x in [0, 1, 2, 3, 7], axis=1) df.columns = ['code', 'xcode', 'name', 'ipo_date', 'price'] df['code'] = df['code'].map(lambda x: str(x).zfill(6)) df['xcode'] = df['xcode'].map(lambda x: str(x).zfill(6)) return df def __query_convertible_bonds(self): df = ts.new_cbonds() return df def __create_order_url(self, client=None, order_id=None, **params): return self.__create_url(client, 'orders', order_id, **params) def __create_url(self, client, resource, resource_id=None, **params): all_params = dict((k, v) for k, v in params.items() if v is not None) all_params.update(client=(client or self._client)) all_params.update(key=(self._key or '')) if resource_id is None: path = '/{}'.format(resource) else: path = '/{}/{}'.format(resource, resource_id) url = '{}/api/{}{}?{}'.format(self._base_url, self.VERSION, path, urlencode(all_params)) return url def __create_base_url(self): if self._connection_method is ConnectionMethod.DIRECT: return 'http://{}:{}'.format(self._host, self._port) else: return self._proxy_base_url def __send_request(self, request, timeout=None): if self._connection_method is ConnectionMethod.PROXY: request.auth = HTTPBasicAuth(self._proxy_username, self._proxy_password) request.headers['X-Instance-ID'] = self._instance_id prepared_request = request.prepare() self.__log_request(prepared_request) with requests.sessions.Session() as session: response = session.send(prepared_request, timeout=(timeout or self._timeout)) self.__log_response(response) response.raise_for_status() return response def __log_request(self, prepared_request): url = self.__eliminate_privacy(prepared_request.path_url) if prepared_request.body is None: self._logger.info('Request:\n{} {}'.format(prepared_request.method, url)) else: self._logger.info('Request:\n{} {}\n{}'.format(prepared_request.method, url, prepared_request.body)) def __log_response(self, response): message = u'Response:\n{} {}\n{}'.format(response.status_code, response.reason, response.text) if response.status_code == 200: self._logger.info(message) else: self._logger.error(message) @classmethod def __eliminate_privacy(cls, url): match = re.search(cls.KEY_REGEX, url) if match is None: return url key = match.group(1) masked_key = '*' * len(key) url = re.sub(cls.KEY_REGEX, "key={}".format(masked_key), url) return url
mit
cmorgan/zipline
zipline/utils/data_source_tables_gen.py
40
7380
# # Copyright 2014 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import getopt import traceback import numpy as np import pandas as pd import datetime import logging import tables import gzip import glob import os import random import csv import time from six import print_ FORMAT = "%(asctime)-15s -8s %(message)s" logging.basicConfig(format=FORMAT, level=logging.INFO) class Usage(Exception): def __init__(self, msg): self.msg = msg OHLCTableDescription = {'sid': tables.StringCol(14, pos=2), 'dt': tables.Int64Col(pos=1), 'open': tables.Float64Col(dflt=np.NaN, pos=3), 'high': tables.Float64Col(dflt=np.NaN, pos=4), 'low': tables.Float64Col(dflt=np.NaN, pos=5), 'close': tables.Float64Col(dflt=np.NaN, pos=6), "volume": tables.Int64Col(dflt=0, pos=7)} def process_line(line): dt = np.datetime64(line["dt"]).astype(np.int64) sid = line["sid"] open_p = float(line["open"]) high_p = float(line["high"]) low_p = float(line["low"]) close_p = float(line["close"]) volume = int(line["volume"]) return (dt, sid, open_p, high_p, low_p, close_p, volume) def parse_csv(csv_reader): previous_date = None data = [] dtype = [('dt', 'int64'), ('sid', '|S14'), ('open', float), ('high', float), ('low', float), ('close', float), ('volume', int)] for line in csv_reader: row = process_line(line) current_date = line["dt"][:10].replace("-", "") if previous_date and previous_date != current_date: rows = np.array(data, dtype=dtype).view(np.recarray) yield current_date, rows data = [] data.append(row) previous_date = current_date def merge_all_files_into_pytables(file_dir, file_out): """ process each file into pytables """ start = None start = datetime.datetime.now() out_h5 = tables.openFile(file_out, mode="w", title="bars", filters=tables.Filters(complevel=9, complib='zlib')) table = None for file_in in glob.glob(file_dir + "/*.gz"): gzip_file = gzip.open(file_in) expected_header = ["dt", "sid", "open", "high", "low", "close", "volume"] csv_reader = csv.DictReader(gzip_file) header = csv_reader.fieldnames if header != expected_header: logging.warn("expected header %s\n" % (expected_header)) logging.warn("header_found %s" % (header)) return for current_date, rows in parse_csv(csv_reader): table = out_h5.createTable("/TD", "date_" + current_date, OHLCTableDescription, expectedrows=len(rows), createparents=True) table.append(rows) table.flush() if table is not None: table.flush() end = datetime.datetime.now() diff = (end - start).seconds logging.debug("finished it took %d." % (diff)) def create_fake_csv(file_in): fields = ["dt", "sid", "open", "high", "low", "close", "volume"] gzip_file = gzip.open(file_in, "w") dict_writer = csv.DictWriter(gzip_file, fieldnames=fields) current_dt = datetime.date.today() - datetime.timedelta(days=2) current_dt = pd.Timestamp(current_dt).replace(hour=9) current_dt = current_dt.replace(minute=30) end_time = pd.Timestamp(datetime.date.today()) end_time = end_time.replace(hour=16) last_price = 10.0 while current_dt < end_time: row = {} row["dt"] = current_dt row["sid"] = "test" last_price += random.randint(-20, 100) / 10000.0 row["close"] = last_price row["open"] = last_price - 0.01 row["low"] = last_price - 0.02 row["high"] = last_price + 0.02 row["volume"] = random.randint(10, 1000) * 10 dict_writer.writerow(row) current_dt += datetime.timedelta(minutes=1) if current_dt.hour > 16: current_dt += datetime.timedelta(days=1) current_dt = current_dt.replace(hour=9) current_dt = current_dt.replace(minute=30) gzip_file.close() def main(argv=None): """ This script cleans minute bars into pytables file data_source_tables_gen.py [--tz_in] sets time zone of data only reasonably fast way to use time.tzset() [--dir_in] iterates through directory provided of csv files in gzip form in form: dt, sid, open, high, low, close, volume 2012-01-01T12:30:30,1234HT,1, 2,3,4.0 [--fake_csv] creates a fake sample csv to iterate through [--file_out] determines output file """ if argv is None: argv = sys.argv try: dir_in = None file_out = "./all.h5" fake_csv = None try: opts, args = getopt.getopt(argv[1:], "hdft", ["help", "dir_in=", "debug", "tz_in=", "fake_csv=", "file_out="]) except getopt.error as msg: raise Usage(msg) for opt, value in opts: if opt in ("--help", "-h"): print_(main.__doc__) if opt in ("-d", "--debug"): logging.basicConfig(format=FORMAT, level=logging.DEBUG) if opt in ("-d", "--dir_in"): dir_in = value if opt in ("-o", "--file_out"): file_out = value if opt in ("--fake_csv"): fake_csv = value if opt in ("--tz_in"): os.environ['TZ'] = value time.tzset() try: if dir_in: merge_all_files_into_pytables(dir_in, file_out) if fake_csv: create_fake_csv(fake_csv) except Exception: error = "An unhandled error occured in the" error += "data_source_tables_gen.py script." error += "\n\nTraceback:\n" error += '-' * 70 + "\n" error += "".join(traceback.format_tb(sys.exc_info()[2])) error += repr(sys.exc_info()[1]) + "\n" error += str(sys.exc_info()[1]) + "\n" error += '-' * 70 + "\n" print_(error) except Usage as err: print_(err.msg) print_("for help use --help") return 2 if __name__ == "__main__": sys.exit(main())
apache-2.0
dongsenfo/pymatgen
pymatgen/analysis/graphs.py
3
111497
# coding: utf-8 # Copyright (c) Pymatgen Development Team. # Distributed under the terms of the MIT License. import warnings import subprocess import numpy as np import os.path import copy from itertools import combinations from pymatgen.core import Structure, Lattice, PeriodicSite, Molecule from pymatgen.core.structure import FunctionalGroups from pymatgen.util.coord import lattice_points_in_supercell from pymatgen.vis.structure_vtk import EL_COLORS from monty.json import MSONable from monty.os.path import which from operator import itemgetter from collections import namedtuple, defaultdict from scipy.spatial import KDTree from scipy.stats import describe import networkx as nx import networkx.algorithms.isomorphism as iso from networkx.readwrite import json_graph from networkx.drawing.nx_agraph import write_dot import logging logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) __author__ = "Matthew Horton, Evan Spotte-Smith" __version__ = "0.1" __maintainer__ = "Matthew Horton" __email__ = "[email protected]" __status__ = "Beta" __date__ = "August 2017" ConnectedSite = namedtuple('ConnectedSite', 'site, jimage, index, weight, dist') class StructureGraph(MSONable): """ This is a class for annotating a Structure with bond information, stored in the form of a graph. A "bond" does not necessarily have to be a chemical bond, but can store any kind of information that connects two Sites. """ def __init__(self, structure, graph_data=None): """ If constructing this class manually, use the `with_empty_graph` method or `with_local_env_strategy` method (using an algorithm provided by the `local_env` module, such as O'Keeffe). This class that contains connection information: relationships between sites represented by a Graph structure, and an associated structure object. This class uses the NetworkX package to store and operate on the graph itself, but contains a lot of helper methods to make associating a graph with a given crystallographic structure easier. Use cases for this include storing bonding information, NMR J-couplings, Heisenberg exchange parameters, etc. For periodic graphs, class stores information on the graph edges of what lattice image the edge belongs to. :param structure: a Structure object :param graph_data: dict containing graph information in dict format (not intended to be constructed manually, see as_dict method for format) """ if isinstance(structure, StructureGraph): # just make a copy from input graph_data = structure.as_dict()['graphs'] self.structure = structure self.graph = nx.readwrite.json_graph.adjacency_graph(graph_data) # tidy up edge attr dicts, reading to/from json duplicates # information for u, v, k, d in self.graph.edges(keys=True, data=True): if 'id' in d: del d['id'] if 'key' in d: del d['key'] # ensure images are tuples (conversion to lists happens # when serializing back from json), it's important images # are hashable/immutable if 'to_jimage' in d: d['to_jimage'] = tuple(d['to_jimage']) if 'from_jimage' in d: d['from_jimage'] = tuple(d['from_jimage']) @classmethod def with_empty_graph(cls, structure, name="bonds", edge_weight_name=None, edge_weight_units=None): """ Constructor for StructureGraph, returns a StructureGraph object with an empty graph (no edges, only nodes defined that correspond to Sites in Structure). :param structure (Structure): :param name (str): name of graph, e.g. "bonds" :param edge_weight_name (str): name of edge weights, e.g. "bond_length" or "exchange_constant" :param edge_weight_units (str): name of edge weight units e.g. "Å" or "eV" :return (StructureGraph): """ if edge_weight_name and (edge_weight_units is None): raise ValueError("Please specify units associated " "with your edge weights. Can be " "empty string if arbitrary or " "dimensionless.") # construct graph with one node per site # graph attributes don't change behavior of graph, # they're just for book-keeping graph = nx.MultiDiGraph(edge_weight_name=edge_weight_name, edge_weight_units=edge_weight_units, name=name) graph.add_nodes_from(range(len(structure))) graph_data = json_graph.adjacency_data(graph) return cls(structure, graph_data=graph_data) @staticmethod def with_edges(structure, edges): """ Constructor for MoleculeGraph, using pre-existing or pre-defined edges with optional edge parameters. :param molecule: Molecule object :param edges: dict representing the bonds of the functional group (format: {(from_index, to_index, from_image, to_image): props}, where props is a dictionary of properties, including weight. Props should be None if no additional properties are to be specified. :return: sg, a StructureGraph """ sg = StructureGraph.with_empty_graph(structure, name="bonds", edge_weight_name="weight", edge_weight_units="") for edge, props in edges.items(): try: from_index = edge[0] to_index = edge[1] from_image = edge[2] to_image = edge[3] except TypeError: raise ValueError("Edges must be given as (from_index, to_index," " from_image, to_image) tuples") if props is not None: if "weight" in props.keys(): weight = props["weight"] del props["weight"] else: weight = None if len(props.items()) == 0: props = None else: weight = None nodes = sg.graph.nodes if not (from_index in nodes and to_index in nodes): raise ValueError("Edges cannot be added if nodes are not" " present in the graph. Please check your" " indices.") sg.add_edge(from_index, to_index, from_jimage=from_image, to_jimage=to_image, weight=weight, edge_properties=props) sg.set_node_attributes() return sg @staticmethod def with_local_env_strategy(structure, strategy): """ Constructor for StructureGraph, using a strategy from :Class: `pymatgen.analysis.local_env`. :param structure: Structure object :param strategy: an instance of a :Class: `pymatgen.analysis.local_env.NearNeighbors` object :return: """ sg = StructureGraph.with_empty_graph(structure, name="bonds", edge_weight_name="weight", edge_weight_units="") for n, neighbors in enumerate(strategy.get_all_nn_info(structure)): for neighbor in neighbors: # local_env will always try to add two edges # for any one bond, one from site u to site v # and another form site v to site u: this is # harmless, so warn_duplicates=False sg.add_edge(from_index=n, from_jimage=(0, 0, 0), to_index=neighbor['site_index'], to_jimage=neighbor['image'], weight=neighbor['weight'], warn_duplicates=False) return sg @property def name(self): """ :return: Name of graph """ return self.graph.graph['name'] @property def edge_weight_name(self): """ :return: Name of the edge weight property of graph """ return self.graph.graph['edge_weight_name'] @property def edge_weight_unit(self): """ :return: Units of the edge weight property of graph """ return self.graph.graph['edge_weight_units'] def add_edge(self, from_index, to_index, from_jimage=(0, 0, 0), to_jimage=None, weight=None, warn_duplicates=True, edge_properties=None): """ Add edge to graph. Since physically a 'bond' (or other connection between sites) doesn't have a direction, from_index, from_jimage can be swapped with to_index, to_jimage. However, images will always always be shifted so that from_index < to_index and from_jimage becomes (0, 0, 0). :param from_index: index of site connecting from :param to_index: index of site connecting to :param from_jimage (tuple of ints): lattice vector of periodic image, e.g. (1, 0, 0) for periodic image in +x direction :param to_jimage (tuple of ints): lattice vector of image :param weight (float): e.g. bond length :param warn_duplicates (bool): if True, will warn if trying to add duplicate edges (duplicate edges will not be added in either case) :param edge_properties (dict): any other information to store on graph edges, similar to Structure's site_properties :return: """ # this is not necessary for the class to work, but # just makes it neater if to_index < from_index: to_index, from_index = from_index, to_index to_jimage, from_jimage = from_jimage, to_jimage # constrain all from_jimages to be (0, 0, 0), # initial version of this class worked even if # from_jimage != (0, 0, 0), but making this # assumption simplifies logic later if not np.array_equal(from_jimage, (0, 0, 0)): shift = from_jimage from_jimage = np.subtract(from_jimage, shift) to_jimage = np.subtract(to_jimage, shift) # automatic detection of to_jimage if user doesn't specify # will try and detect all equivalent images and add multiple # edges if appropriate if to_jimage is None: # assume we want the closest site warnings.warn("Please specify to_jimage to be unambiguous, " "trying to automatically detect.") dist, to_jimage = self.structure[from_index]\ .distance_and_image(self.structure[to_index]) if dist == 0: # this will happen when from_index == to_index, # typically in primitive single-atom lattices images = [1, 0, 0], [0, 1, 0], [0, 0, 1] dists = [] for image in images: dists.append(self.structure[from_index] .distance_and_image(self.structure[from_index], jimage=image)[0]) dist = min(dists) equiv_sites = self.structure.get_neighbors_in_shell(self.structure[from_index].coords, dist, dist*0.01, include_index=True) for site, dist, to_index in equiv_sites: to_jimage = np.subtract(site.frac_coords, self.structure[from_index].frac_coords) to_jimage = to_jimage.astype(int) self.add_edge(from_index=from_index, from_jimage=(0, 0, 0), to_jimage=to_jimage, to_index=to_index) return # sanitize types from_jimage, to_jimage = tuple(map(int, from_jimage)), tuple(map(int, to_jimage)) from_index, to_index = int(from_index), int(to_index) # check we're not trying to add a duplicate edge # there should only ever be at most one edge # between a given (site, jimage) pair and another # (site, jimage) pair existing_edge_data = self.graph.get_edge_data(from_index, to_index) if existing_edge_data: for key, d in existing_edge_data.items(): if d["to_jimage"] == to_jimage: if warn_duplicates: warnings.warn("Trying to add an edge that already exists from " "site {} to site {} in {}.".format(from_index, to_index, to_jimage)) return # generic container for additional edge properties, # similar to site properties edge_properties = edge_properties or {} if weight: self.graph.add_edge(from_index, to_index, to_jimage=to_jimage, weight=weight, **edge_properties) else: self.graph.add_edge(from_index, to_index, to_jimage=to_jimage, **edge_properties) def insert_node(self, i, species, coords, coords_are_cartesian=False, validate_proximity=False, site_properties=None, edges=None): """ A wrapper around Molecule.insert(), which also incorporates the new site into the MoleculeGraph. :param i: Index at which to insert the new site :param species: Species for the new site :param coords: 3x1 array representing coordinates of the new site :param coords_are_cartesian: Whether coordinates are cartesian. Defaults to False. :param validate_proximity: For Molecule.insert(); if True (default False), distance will be checked to ensure that site can be safely added. :param site_properties: Site properties for Molecule :param edges: List of dicts representing edges to be added to the MoleculeGraph. These edges must include the index of the new site i, and all indices used for these edges should reflect the MoleculeGraph AFTER the insertion, NOT before. Each dict should at least have a "to_index" and "from_index" key, and can also have a "weight" and a "properties" key. :return: """ self.structure.insert(i, species, coords, coords_are_cartesian=coords_are_cartesian, validate_proximity=validate_proximity, properties=site_properties) mapping = {} for j in range(len(self.structure) - 1): if j < i: mapping[j] = j else: mapping[j] = j + 1 nx.relabel_nodes(self.graph, mapping, copy=False) self.graph.add_node(i) self.set_node_attributes() if edges is not None: for edge in edges: try: self.add_edge(edge["from_index"], edge["to_index"], from_jimage=(0, 0, 0), to_jimage=edge["to_jimage"], weight=edge.get("weight", None), edge_properties=edge.get("properties", None)) except KeyError: raise RuntimeError("Some edges are invalid.") def set_node_attributes(self): """ Gives each node a "specie" and a "coords" attribute, updated with the current species and coordinates. :return: """ species = {} coords = {} properties = {} for node in self.graph.nodes(): species[node] = self.structure[node].specie.symbol coords[node] = self.structure[node].coords properties[node] = self.structure[node].properties nx.set_node_attributes(self.graph, species, "specie") nx.set_node_attributes(self.graph, coords, "coords") nx.set_node_attributes(self.graph, properties, "properties") def alter_edge(self, from_index, to_index, to_jimage=None, new_weight=None, new_edge_properties=None): """ Alters either the weight or the edge_properties of an edge in the StructureGraph. :param from_index: int :param to_index: int :param to_jimage: tuple :param new_weight: alter_edge does not require that weight be altered. As such, by default, this is None. If weight is to be changed, it should be a float. :param new_edge_properties: alter_edge does not require that edge_properties be altered. As such, by default, this is None. If any edge properties are to be changed, it should be a dictionary of edge properties to be changed. :return: """ existing_edges = self.graph.get_edge_data(from_index, to_index) # ensure that edge exists before attempting to change it if not existing_edges: raise ValueError("Edge between {} and {} cannot be altered;\ no edge exists between those sites.".format( from_index, to_index )) if to_jimage is None: edge_index = 0 else: for i, properties in existing_edges.items(): if properties["to_jimage"] == to_jimage: edge_index = i if new_weight is not None: self.graph[from_index][to_index][edge_index]['weight'] = new_weight if new_edge_properties is not None: for prop in list(new_edge_properties.keys()): self.graph[from_index][to_index][edge_index][prop] = new_edge_properties[prop] def break_edge(self, from_index, to_index, to_jimage=None, allow_reverse=False): """ Remove an edge from the StructureGraph. If no image is given, this method will fail. :param from_index: int :param to_index: int :param to_jimage: tuple :param allow_reverse: If allow_reverse is True, then break_edge will attempt to break both (from_index, to_index) and, failing that, will attempt to break (to_index, from_index). :return: """ # ensure that edge exists before attempting to remove it existing_edges = self.graph.get_edge_data(from_index, to_index) existing_reverse = None if to_jimage is None: raise ValueError("Image must be supplied, to avoid ambiguity.") if existing_edges: for i, properties in existing_edges.items(): if properties["to_jimage"] == to_jimage: edge_index = i self.graph.remove_edge(from_index, to_index, edge_index) else: if allow_reverse: existing_reverse = self.graph.get_edge_data(to_index, from_index) if existing_reverse: for i, properties in existing_reverse.items(): if properties["to_jimage"] == to_jimage: edge_index = i self.graph.remove_edge(to_index, from_index, edge_index) else: raise ValueError("Edge cannot be broken between {} and {};\ no edge exists between those sites.".format( from_index, to_index )) def remove_nodes(self, indices): """ A wrapper for Molecule.remove_sites(). :param indices: list of indices in the current Molecule (and graph) to be removed. :return: """ self.structure.remove_sites(indices) self.graph.remove_nodes_from(indices) mapping = {} for correct, current in enumerate(sorted(self.graph.nodes)): mapping[current] = correct nx.relabel_nodes(self.graph, mapping, copy=False) self.set_node_attributes() def substitute_group(self, index, func_grp, strategy, bond_order=1, graph_dict=None, strategy_params=None): """ Builds off of Structure.substitute to replace an atom in self.structure with a functional group. This method also amends self.graph to incorporate the new functional group. NOTE: Care must be taken to ensure that the functional group that is substituted will not place atoms to close to each other, or violate the dimensions of the Lattice. :param index: Index of atom to substitute. :param func_grp: Substituent molecule. There are two options: 1. Providing an actual Molecule as the input. The first atom must be a DummySpecie X, indicating the position of nearest neighbor. The second atom must be the next nearest atom. For example, for a methyl group substitution, func_grp should be X-CH3, where X is the first site and C is the second site. What the code will do is to remove the index site, and connect the nearest neighbor to the C atom in CH3. The X-C bond indicates the directionality to connect the atoms. 2. A string name. The molecule will be obtained from the relevant template in func_groups.json. :param strategy: Class from pymatgen.analysis.local_env. :param bond_order: A specified bond order to calculate the bond length between the attached functional group and the nearest neighbor site. Defaults to 1. :param graph_dict: Dictionary representing the bonds of the functional group (format: {(u, v): props}, where props is a dictionary of properties, including weight. If None, then the algorithm will attempt to automatically determine bonds using one of a list of strategies defined in pymatgen.analysis.local_env. :param strategy_params: dictionary of keyword arguments for strategy. If None, default parameters will be used. :return: """ def map_indices(grp): grp_map = {} # Get indices now occupied by functional group # Subtracting 1 because the dummy atom X should not count atoms = len(grp) - 1 offset = len(self.structure) - atoms for i in range(atoms): grp_map[i] = i + offset return grp_map if isinstance(func_grp, Molecule): func_grp = copy.deepcopy(func_grp) else: try: func_grp = copy.deepcopy(FunctionalGroups[func_grp]) except: raise RuntimeError("Can't find functional group in list. " "Provide explicit coordinate instead") self.structure.substitute(index, func_grp, bond_order=bond_order) mapping = map_indices(func_grp) # Remove dummy atom "X" func_grp.remove_species("X") if graph_dict is not None: for (u, v) in graph_dict.keys(): edge_props = graph_dict[(u, v)] if "to_jimage" in edge_props.keys(): to_jimage = edge_props["to_jimage"] del edge_props["to_jimage"] else: # By default, assume that all edges should stay remain # inside the initial image to_jimage = (0, 0, 0) if "weight" in edge_props.keys(): weight = edge_props["weight"] del edge_props["weight"] self.add_edge(mapping[u], mapping[v], to_jimage=to_jimage, weight=weight, edge_properties=edge_props) else: if strategy_params is None: strategy_params = {} strat = strategy(**strategy_params) for site in mapping.values(): neighbors = strat.get_nn_info(self.structure, site) for neighbor in neighbors: self.add_edge(from_index=site, from_jimage=(0, 0, 0), to_index=neighbor['site_index'], to_jimage=neighbor['image'], weight=neighbor['weight'], warn_duplicates=False) def get_connected_sites(self, n, jimage=(0, 0, 0)): """ Returns a named tuple of neighbors of site n: periodic_site, jimage, index, weight. Index is the index of the corresponding site in the original structure, weight can be None if not defined. :param n: index of Site in Structure :param jimage: lattice vector of site :return: list of ConnectedSite tuples, sorted by closest first """ connected_sites = set() connected_site_images = set() out_edges = [(u, v, d, 'out') for u, v, d in self.graph.out_edges(n, data=True)] in_edges = [(u, v, d, 'in') for u, v, d in self.graph.in_edges(n, data=True)] for u, v, d, dir in out_edges + in_edges: to_jimage = d['to_jimage'] if dir == 'in': u, v = v, u to_jimage = np.multiply(-1, to_jimage) to_jimage = tuple(map(int, np.add(to_jimage, jimage))) site_d = self.structure[v].as_dict() site_d['abc'] = np.add(site_d['abc'], to_jimage).tolist() site = PeriodicSite.from_dict(site_d) # from_site if jimage arg != (0, 0, 0) relative_jimage = np.subtract(to_jimage, jimage) dist = self.structure[u].distance(self.structure[v], jimage=relative_jimage) weight = d.get('weight', None) if (v, to_jimage) not in connected_site_images: connected_site = ConnectedSite(site=site, jimage=to_jimage, index=v, weight=weight, dist=dist) connected_sites.add(connected_site) connected_site_images.add((v, to_jimage)) # return list sorted by closest sites first connected_sites = list(connected_sites) connected_sites.sort(key=lambda x: x.dist) return connected_sites def get_coordination_of_site(self, n): """ Returns the number of neighbors of site n. In graph terms, simply returns degree of node corresponding to site n. :param n: index of site :return (int): """ number_of_self_loops = sum([1 for n, v in self.graph.edges(n) if n == v]) return self.graph.degree(n) - number_of_self_loops def draw_graph_to_file(self, filename="graph", diff=None, hide_unconnected_nodes=False, hide_image_edges=True, edge_colors=False, node_labels=False, weight_labels=False, image_labels=False, color_scheme="VESTA", keep_dot=False, algo="fdp"): """ Draws graph using GraphViz. The networkx graph object itself can also be drawn with networkx's in-built graph drawing methods, but note that this might give misleading results for multigraphs (edges are super-imposed on each other). If visualization is difficult to interpret, `hide_image_edges` can help, especially in larger graphs. :param filename: filename to output, will detect filetype from extension (any graphviz filetype supported, such as pdf or png) :param diff (StructureGraph): an additional graph to compare with, will color edges red that do not exist in diff and edges green that are in diff graph but not in the reference graph :param hide_unconnected_nodes: if True, hide unconnected nodes :param hide_image_edges: if True, do not draw edges that go through periodic boundaries :param edge_colors (bool): if True, use node colors to color edges :param node_labels (bool): if True, label nodes with species and site index :param weight_labels (bool): if True, label edges with weights :param image_labels (bool): if True, label edges with their periodic images (usually only used for debugging, edges to periodic images always appear as dashed lines) :param color_scheme (str): "VESTA" or "JMOL" :param keep_dot (bool): keep GraphViz .dot file for later visualization :param algo: any graphviz algo, "neato" (for simple graphs) or "fdp" (for more crowded graphs) usually give good outputs :return: """ if not which(algo): raise RuntimeError("StructureGraph graph drawing requires " "GraphViz binaries to be in the path.") # Developer note: NetworkX also has methods for drawing # graphs using matplotlib, these also work here. However, # a dedicated tool like GraphViz allows for much easier # control over graph appearance and also correctly displays # mutli-graphs (matplotlib can superimpose multiple edges). g = self.graph.copy() g.graph = {'nodesep': 10.0, 'dpi': 300, 'overlap': "false"} # add display options for nodes for n in g.nodes(): # get label by species name label = "{}({})".format(str(self.structure[n].specie), n) if node_labels else "" # use standard color scheme for nodes c = EL_COLORS[color_scheme].get(str(self.structure[n].specie.symbol), [0, 0, 0]) # get contrasting font color # magic numbers account for perceived luminescence # https://stackoverflow.com/questions/1855884/determine-font-color-based-on-background-color fontcolor = '#000000' if 1 - (c[0] * 0.299 + c[1] * 0.587 + c[2] * 0.114) / 255 < 0.5 else '#ffffff' # convert color to hex string color = "#{:02x}{:02x}{:02x}".format(c[0], c[1], c[2]) g.add_node(n, fillcolor=color, fontcolor=fontcolor, label=label, fontname="Helvetica-bold", style="filled", shape="circle") edges_to_delete = [] # add display options for edges for u, v, k, d in g.edges(keys=True, data=True): # retrieve from/to images, set as origin if not defined to_image = d['to_jimage'] # set edge style d['style'] = "solid" if to_image != (0, 0, 0): d['style'] = "dashed" if hide_image_edges: edges_to_delete.append((u, v, k)) # don't show edge directions d['arrowhead'] = "none" # only add labels for images that are not the origin if image_labels: d['headlabel'] = "" if to_image == (0, 0, 0) else "to {}".format((to_image)) d['arrowhead'] = "normal" if d['headlabel'] else "none" # optionally color edges using node colors color_u = g.node[u]['fillcolor'] color_v = g.node[v]['fillcolor'] d['color_uv'] = "{};0.5:{};0.5".format(color_u, color_v) if edge_colors else "#000000" # optionally add weights to graph if weight_labels: units = g.graph.get('edge_weight_units', "") if d.get('weight'): d['label'] = "{:.2f} {}".format(d['weight'], units) # update edge with our new style attributes g.edges[u, v, k].update(d) # optionally remove periodic image edges, # these can be confusing due to periodic boundaries if hide_image_edges: for edge_to_delete in edges_to_delete: g.remove_edge(*edge_to_delete) # optionally hide unconnected nodes, # these can appear when removing periodic edges if hide_unconnected_nodes: g = g.subgraph([n for n in g.degree() if g.degree()[n] != 0]) # optionally highlight differences with another graph if diff: diff = self.diff(diff, strict=True) green_edges = [] red_edges = [] for u, v, k, d in g.edges(keys=True, data=True): if (u, v, d['to_jimage']) in diff['self']: # edge has been deleted red_edges.append((u, v, k)) elif (u, v, d['to_jimage']) in diff['other']: # edge has been added green_edges.append((u, v, k)) for u, v, k in green_edges: g.edges[u, v, k].update({'color_uv': '#00ff00'}) for u, v, k in red_edges: g.edges[u, v, k].update({'color_uv': '#ff0000'}) basename, extension = os.path.splitext(filename) extension = extension[1:] write_dot(g, basename+".dot") with open(filename, "w") as f: args = [algo, "-T", extension, basename+".dot"] rs = subprocess.Popen(args, stdout=f, stdin=subprocess.PIPE, close_fds=True) rs.communicate() if rs.returncode != 0: raise RuntimeError("{} exited with return code {}.".format(algo, rs.returncode)) if not keep_dot: os.remove(basename+".dot") @property def types_and_weights_of_connections(self): """ Extract a dictionary summarizing the types and weights of edges in the graph. :return: A dictionary with keys specifying the species involved in a connection in alphabetical order (e.g. string 'Fe-O') and values which are a list of weights for those connections (e.g. bond lengths). """ def get_label(u, v): u_label = self.structure[u].species_string v_label = self.structure[v].species_string return "-".join(sorted((u_label, v_label))) types = defaultdict(list) for u, v, d in self.graph.edges(data=True): label = get_label(u, v) types[label].append(d['weight']) return dict(types) @property def weight_statistics(self): """ Extract a statistical summary of edge weights present in the graph. :return: A dict with an 'all_weights' list, 'minimum', 'maximum', 'median', 'mean', 'std_dev' """ all_weights = [d.get('weight', None) for u, v, d in self.graph.edges(data=True)] stats = describe(all_weights, nan_policy='omit') return { 'all_weights': all_weights, 'min': stats.minmax[0], 'max': stats.minmax[1], 'mean': stats.mean, 'variance': stats.variance } def types_of_coordination_environments(self, anonymous=False): """ Extract information on the different co-ordination environments present in the graph. :param anonymous: if anonymous, will replace specie names with A, B, C, etc. :return: a list of co-ordination environments, e.g. ['Mo-S(6)', 'S-Mo(3)'] """ motifs = set() for idx, site in enumerate(self.structure): centre_sp = site.species_string connected_sites = self.get_connected_sites(idx) connected_species = [connected_site.site.species_string for connected_site in connected_sites] labels = [] for sp in set(connected_species): count = connected_species.count(sp) labels.append((count, sp)) labels = sorted(labels, reverse=True) if anonymous: mapping = {centre_sp: 'A'} available_letters = [chr(66+i) for i in range(25)] for label in labels: sp = label[1] if sp not in mapping: mapping[sp] = available_letters.pop(0) centre_sp = 'A' labels = [(label[0], mapping[label[1]]) for label in labels] labels = ["{}({})".format(label[1], label[0]) for label in labels] motif = '{}-{}'.format(centre_sp, ','.join(labels)) motifs.add(motif) return sorted(list(motifs)) def as_dict(self): """ As in :Class: `pymatgen.core.Structure` except with using `to_dict_of_dicts` from NetworkX to store graph information. """ d = {"@module": self.__class__.__module__, "@class": self.__class__.__name__, "structure": self.structure.as_dict(), "graphs": json_graph.adjacency_data(self.graph)} return d @classmethod def from_dict(cls, d): """ As in :Class: `pymatgen.core.Structure` except restoring graphs using `from_dict_of_dicts` from NetworkX to restore graph information. """ s = Structure.from_dict(d['structure']) return cls(s, d['graphs']) def __mul__(self, scaling_matrix): """ Replicates the graph, creating a supercell, intelligently joining together edges that lie on periodic boundaries. In principle, any operations on the expanded graph could also be done on the original graph, but a larger graph can be easier to visualize and reason about. :param scaling_matrix: same as Structure.__mul__ :return: """ # Developer note: a different approach was also trialed, using # a simple Graph (instead of MultiDiGraph), with node indices # representing both site index and periodic image. Here, the # number of nodes != number of sites in the Structure. This # approach has many benefits, but made it more difficult to # keep the graph in sync with its corresponding Structure. # Broadly, it would be easier to multiply the Structure # *before* generating the StructureGraph, but this isn't # possible when generating the graph using critic2 from # charge density. # Multiplication works by looking for the expected position # of an image node, and seeing if that node exists in the # supercell. If it does, the edge is updated. This is more # computationally expensive than just keeping track of the # which new lattice images present, but should hopefully be # easier to extend to a general 3x3 scaling matrix. # code adapted from Structure.__mul__ scale_matrix = np.array(scaling_matrix, np.int16) if scale_matrix.shape != (3, 3): scale_matrix = np.array(scale_matrix * np.eye(3), np.int16) else: # TODO: test __mul__ with full 3x3 scaling matrices raise NotImplementedError('Not tested with 3x3 scaling matrices yet.') new_lattice = Lattice(np.dot(scale_matrix, self.structure.lattice.matrix)) f_lat = lattice_points_in_supercell(scale_matrix) c_lat = new_lattice.get_cartesian_coords(f_lat) new_sites = [] new_graphs = [] for v in c_lat: # create a map of nodes from original graph to its image mapping = {n: n + len(new_sites) for n in range(len(self.structure))} for idx, site in enumerate(self.structure): s = PeriodicSite(site.species, site.coords + v, new_lattice, properties=site.properties, coords_are_cartesian=True, to_unit_cell=False) new_sites.append(s) new_graphs.append(nx.relabel_nodes(self.graph, mapping, copy=True)) new_structure = Structure.from_sites(new_sites) # merge all graphs into one big graph new_g = nx.MultiDiGraph() for new_graph in new_graphs: new_g = nx.union(new_g, new_graph) edges_to_remove = [] # tuple of (u, v, k) edges_to_add = [] # tuple of (u, v, attr_dict) # list of new edges inside supercell # for duplicate checking edges_inside_supercell = [{u, v} for u, v, d in new_g.edges(data=True) if d['to_jimage'] == (0, 0, 0)] new_periodic_images = [] orig_lattice = self.structure.lattice # use k-d tree to match given position to an # existing Site in Structure kd_tree = KDTree(new_structure.cart_coords) # tolerance in Å for sites to be considered equal # this could probably be a lot smaller tol = 0.05 for u, v, k, d in new_g.edges(keys=True, data=True): to_jimage = d['to_jimage'] # for node v # reduce unnecessary checking if to_jimage != (0, 0, 0): # get index in original site n_u = u % len(self.structure) n_v = v % len(self.structure) # get fractional co-ordinates of where atoms defined # by edge are expected to be, relative to original # lattice (keeping original lattice has # significant benefits) v_image_frac = np.add(self.structure[n_v].frac_coords, to_jimage) u_frac = self.structure[n_u].frac_coords # using the position of node u as a reference, # get relative Cartesian co-ordinates of where # atoms defined by edge are expected to be v_image_cart = orig_lattice.get_cartesian_coords(v_image_frac) u_cart = orig_lattice.get_cartesian_coords(u_frac) v_rel = np.subtract(v_image_cart, u_cart) # now retrieve position of node v in # new supercell, and get asgolute Cartesian # co-ordinates of where atoms defined by edge # are expected to be v_expec = new_structure[u].coords + v_rel # now search in new structure for these atoms # query returns (distance, index) v_present = kd_tree.query(v_expec) v_present = v_present[1] if v_present[0] <= tol else None # check if image sites now present in supercell # and if so, delete old edge that went through # periodic boundary if v_present is not None: new_u = u new_v = v_present new_d = d.copy() # node now inside supercell new_d['to_jimage'] = (0, 0, 0) edges_to_remove.append((u, v, k)) # make sure we don't try to add duplicate edges # will remove two edges for everyone one we add if {new_u, new_v} not in edges_inside_supercell: # normalize direction if new_v < new_u: new_u, new_v = new_v, new_u edges_inside_supercell.append({new_u, new_v}) edges_to_add.append((new_u, new_v, new_d)) else: # want to find new_v such that we have # full periodic boundary conditions # so that nodes on one side of supercell # are connected to nodes on opposite side v_expec_frac = new_structure.lattice.get_fractional_coords(v_expec) # find new to_jimage # use np.around to fix issues with finite precision leading to incorrect image v_expec_image = np.around(v_expec_frac, decimals=3) v_expec_image = v_expec_image - v_expec_image%1 v_expec_frac = np.subtract(v_expec_frac, v_expec_image) v_expec = new_structure.lattice.get_cartesian_coords(v_expec_frac) v_present = kd_tree.query(v_expec) v_present = v_present[1] if v_present[0] <= tol else None if v_present is not None: new_u = u new_v = v_present new_d = d.copy() new_to_jimage = tuple(map(int, v_expec_image)) # normalize direction if new_v < new_u: new_u, new_v = new_v, new_u new_to_jimage = tuple(np.multiply(-1, d['to_jimage']).astype(int)) new_d['to_jimage'] = new_to_jimage edges_to_remove.append((u, v, k)) if (new_u, new_v, new_to_jimage) not in new_periodic_images: edges_to_add.append((new_u, new_v, new_d)) new_periodic_images.append((new_u, new_v, new_to_jimage)) logger.debug("Removing {} edges, adding {} new edges.".format(len(edges_to_remove), len(edges_to_add))) # add/delete marked edges for edges_to_remove in edges_to_remove: new_g.remove_edge(*edges_to_remove) for (u, v, d) in edges_to_add: new_g.add_edge(u, v, **d) # return new instance of StructureGraph with supercell d = {"@module": self.__class__.__module__, "@class": self.__class__.__name__, "structure": new_structure.as_dict(), "graphs": json_graph.adjacency_data(new_g)} sg = StructureGraph.from_dict(d) return sg def __rmul__(self, other): return self.__mul__(other) def _edges_to_string(self, g): header = "from to to_image " header_line = "---- ---- ------------" edge_weight_name = g.graph["edge_weight_name"] if edge_weight_name: print_weights = ["weight"] edge_label = g.graph["edge_weight_name"] edge_weight_units = g.graph["edge_weight_units"] if edge_weight_units: edge_label += " ({})".format(edge_weight_units) header += " {}".format(edge_label) header_line += " {}".format("-"*max([18, len(edge_label)])) else: print_weights = False s = header + "\n" + header_line + "\n" edges = list(g.edges(data=True)) # sort edges for consistent ordering edges.sort(key=itemgetter(0,1)) if print_weights: for u, v, data in edges: s += "{:4} {:4} {:12} {:.3e}\n".format(u, v, str(data.get("to_jimage", (0, 0, 0))), data.get("weight", 0)) else: for u, v, data in edges: s += "{:4} {:4} {:12}\n".format(u, v, str(data.get("to_jimage", (0, 0, 0)))) return s def __str__(self): s = "Structure Graph" s += "\nStructure: \n{}".format(self.structure.__str__()) s += "\nGraph: {}\n".format(self.name) s += self._edges_to_string(self.graph) return s def __repr__(self): s = "Structure Graph" s += "\nStructure: \n{}".format(self.structure.__repr__()) s += "\nGraph: {}\n".format(self.name) s += self._edges_to_string(self.graph) return s def __len__(self): """ :return: length of Structure / number of nodes in graph """ return len(self.structure) def sort(self, key=None, reverse=False): """ Same as Structure.sort(), also remaps nodes in graph. :param key: :param reverse: :return: """ old_structure = self.structure.copy() # sort Structure self.structure._sites = sorted(self.structure._sites, key=key, reverse=reverse) # apply Structure ordering to graph mapping = {idx:self.structure.index(site) for idx, site in enumerate(old_structure)} self.graph = nx.relabel_nodes(self.graph, mapping, copy=True) # normalize directions of edges edges_to_remove = [] edges_to_add = [] for u, v, k, d in self.graph.edges(keys=True, data=True): if v < u: new_v, new_u, new_d = u, v, d.copy() new_d['to_jimage'] = tuple(np.multiply(-1, d['to_jimage']).astype(int)) edges_to_remove.append((u, v, k)) edges_to_add.append((new_u, new_v, new_d)) # add/delete marked edges for edges_to_remove in edges_to_remove: self.graph.remove_edge(*edges_to_remove) for (u, v, d) in edges_to_add: self.graph.add_edge(u, v, **d) def __copy__(self): return StructureGraph.from_dict(self.as_dict()) def __eq__(self, other): """ Two StructureGraphs are equal if they have equal Structures, and have the same edges between Sites. Edge weights can be different and StructureGraphs can still be considered equal. :param other: StructureGraph :return (bool): """ # sort for consistent node indices # PeriodicSite should have a proper __hash__() value, # using its frac_coords as a convenient key mapping = {tuple(site.frac_coords):self.structure.index(site) for site in other.structure} other_sorted = other.__copy__() other_sorted.sort(key=lambda site: mapping[tuple(site.frac_coords)]) edges = {(u, v, d['to_jimage']) for u, v, d in self.graph.edges(keys=False, data=True)} edges_other = {(u, v, d['to_jimage']) for u, v, d in other_sorted.graph.edges(keys=False, data=True)} return (edges == edges_other) and \ (self.structure == other_sorted.structure) def diff(self, other, strict=True): """ Compares two StructureGraphs. Returns dict with keys 'self', 'other', 'both' with edges that are present in only one StructureGraph ('self' and 'other'), and edges that are present in both. The Jaccard distance is a simple measure of the dissimilarity between two StructureGraphs (ignoring edge weights), and is defined by 1 - (size of the intersection / size of the union) of the sets of edges. This is returned with key 'dist'. Important note: all node indices are in terms of the StructureGraph this method is called from, not the 'other' StructureGraph: there is no guarantee the node indices will be the same if the underlying Structures are ordered differently. :param other: StructureGraph :param strict: if False, will compare bonds from different Structures, with node indices replaced by Specie strings, will not count number of occurrences of bonds :return: """ if self.structure != other.structure and strict: return ValueError("Meaningless to compare StructureGraphs if " "corresponding Structures are different.") if strict: # sort for consistent node indices # PeriodicSite should have a proper __hash__() value, # using its frac_coords as a convenient key mapping = {tuple(site.frac_coords):self.structure.index(site) for site in other.structure} other_sorted = other.__copy__() other_sorted.sort(key=lambda site: mapping[tuple(site.frac_coords)]) edges = {(u, v, d['to_jimage']) for u, v, d in self.graph.edges(keys=False, data=True)} edges_other = {(u, v, d['to_jimage']) for u, v, d in other_sorted.graph.edges(keys=False, data=True)} else: edges = {(str(self.structure[u].specie), str(self.structure[v].specie)) for u, v, d in self.graph.edges(keys=False, data=True)} edges_other = {(str(other.structure[u].specie), str(other.structure[v].specie)) for u, v, d in other.graph.edges(keys=False, data=True)} if len(edges) == 0 and len(edges_other) == 0: jaccard_dist = 0 # by definition else: jaccard_dist = 1 - len(edges.intersection(edges_other)) / len(edges.union(edges_other)) return { 'self': edges - edges_other, 'other': edges_other - edges, 'both': edges.intersection(edges_other), 'dist': jaccard_dist } def get_subgraphs_as_molecules(self, use_weights=False): """ Retrieve subgraphs as molecules, useful for extracting molecules from periodic crystals. Will only return unique molecules, not any duplicates present in the crystal (a duplicate defined as an isomorphic subgraph). :param use_weights (bool): If True, only treat subgraphs as isomorphic if edges have the same weights. Typically, this means molecules will need to have the same bond lengths to be defined as duplicates, otherwise bond lengths can differ. This is a fairly robust approach, but will treat e.g. enantiomers as being duplicates. :return: list of unique Molecules in Structure """ # creating a supercell is an easy way to extract # molecules (and not, e.g., layers of a 2D crystal) # without adding extra logic if getattr(self, '_supercell_sg', None) is None: self._supercell_sg = supercell_sg = self*(3,3,3) # make undirected to find connected subgraphs supercell_sg.graph = nx.Graph(supercell_sg.graph) # find subgraphs all_subgraphs = list(nx.connected_component_subgraphs(supercell_sg.graph)) # discount subgraphs that lie across *supercell* boundaries # these will subgraphs representing crystals molecule_subgraphs = [] for subgraph in all_subgraphs: intersects_boundary = any([d['to_jimage'] != (0, 0, 0) for u, v, d in subgraph.edges(data=True)]) if not intersects_boundary: molecule_subgraphs.append(subgraph) # add specie names to graph to be able to test for isomorphism for subgraph in molecule_subgraphs: for n in subgraph: subgraph.add_node(n, specie=str(supercell_sg.structure[n].specie)) # now define how we test for isomorphism def node_match(n1, n2): return n1['specie'] == n2['specie'] def edge_match(e1, e2): if use_weights: return e1['weight'] == e2['weight'] else: return True # prune duplicate subgraphs unique_subgraphs = [] for subgraph in molecule_subgraphs: already_present = [nx.is_isomorphic(subgraph, g, node_match=node_match, edge_match=edge_match) for g in unique_subgraphs] if not any(already_present): unique_subgraphs.append(subgraph) # get Molecule objects for each subgraph molecules = [] for subgraph in unique_subgraphs: coords = [supercell_sg.structure[n].coords for n in subgraph.nodes()] species = [supercell_sg.structure[n].specie for n in subgraph.nodes()] molecule = Molecule(species, coords) # shift so origin is at center of mass molecule = molecule.get_centered_molecule() molecules.append(molecule) return molecules class MolGraphSplitError(Exception): # Raised when a molecule graph is failed to split into two disconnected # subgraphs pass class MoleculeGraph(MSONable): """ This is a class for annotating a Molecule with bond information, stored in the form of a graph. A "bond" does not necessarily have to be a chemical bond, but can store any kind of information that connects two Sites. """ def __init__(self, molecule, graph_data=None): """ If constructing this class manually, use the `with_empty_graph` method or `with_local_env_strategy` method (using an algorithm provided by the `local_env` module, such as O'Keeffe). This class that contains connection information: relationships between sites represented by a Graph structure, and an associated structure object. This class uses the NetworkX package to store and operate on the graph itself, but contains a lot of helper methods to make associating a graph with a given molecule easier. Use cases for this include storing bonding information, NMR J-couplings, Heisenberg exchange parameters, etc. :param molecule: Molecule object :param graph_data: dict containing graph information in dict format (not intended to be constructed manually, see as_dict method for format) """ if isinstance(molecule, MoleculeGraph): # just make a copy from input graph_data = molecule.as_dict()['graphs'] self.molecule = molecule self.graph = nx.readwrite.json_graph.adjacency_graph(graph_data) # tidy up edge attr dicts, reading to/from json duplicates # information for u, v, k, d in self.graph.edges(keys=True, data=True): if 'id' in d: del d['id'] if 'key' in d: del d['key'] # ensure images are tuples (conversion to lists happens # when serializing back from json), it's important images # are hashable/immutable if 'to_jimage' in d: d['to_jimage'] = tuple(d['to_jimage']) if 'from_jimage' in d: d['from_jimage'] = tuple(d['from_jimage']) self.set_node_attributes() @classmethod def with_empty_graph(cls, molecule, name="bonds", edge_weight_name=None, edge_weight_units=None): """ Constructor for MoleculeGraph, returns a MoleculeGraph object with an empty graph (no edges, only nodes defined that correspond to Sites in Molecule). :param molecule (Molecule): :param name (str): name of graph, e.g. "bonds" :param edge_weight_name (str): name of edge weights, e.g. "bond_length" or "exchange_constant" :param edge_weight_units (str): name of edge weight units e.g. "Å" or "eV" :return (MoleculeGraph): """ if edge_weight_name and (edge_weight_units is None): raise ValueError("Please specify units associated " "with your edge weights. Can be " "empty string if arbitrary or " "dimensionless.") # construct graph with one node per site # graph attributes don't change behavior of graph, # they're just for book-keeping graph = nx.MultiDiGraph(edge_weight_name=edge_weight_name, edge_weight_units=edge_weight_units, name=name) graph.add_nodes_from(range(len(molecule))) graph_data = json_graph.adjacency_data(graph) return cls(molecule, graph_data=graph_data) @staticmethod def with_edges(molecule, edges): """ Constructor for MoleculeGraph, using pre-existing or pre-defined edges with optional edge parameters. :param molecule: Molecule object :param edges: dict representing the bonds of the functional group (format: {(u, v): props}, where props is a dictionary of properties, including weight. Props should be None if no additional properties are to be specified. :return: mg, a MoleculeGraph """ mg = MoleculeGraph.with_empty_graph(molecule, name="bonds", edge_weight_name="weight", edge_weight_units="") for edge, props in edges.items(): try: from_index = edge[0] to_index = edge[1] except TypeError: raise ValueError("Edges must be given as (from_index, to_index)" "tuples") if props is not None: if "weight" in props.keys(): weight = props["weight"] del props["weight"] else: weight = None if len(props.items()) == 0: props = None else: weight = None nodes = mg.graph.nodes if not (from_index in nodes and to_index in nodes): raise ValueError("Edges cannot be added if nodes are not" " present in the graph. Please check your" " indices.") mg.add_edge(from_index, to_index, weight=weight, edge_properties=props) mg.set_node_attributes() return mg @staticmethod def with_local_env_strategy(molecule, strategy, reorder=True, extend_structure=True): """ Constructor for MoleculeGraph, using a strategy from :Class: `pymatgen.analysis.local_env`. :param molecule: Molecule object :param strategy: an instance of a :Class: `pymatgen.analysis.local_env.NearNeighbors` object :param reorder: bool, representing if graph nodes need to be reordered following the application of the local_env strategy :param extend_structure: If True (default), then a large artificial box will be placed around the Molecule, because some strategies assume periodic boundary conditions. :return: mg, a MoleculeGraph """ mg = MoleculeGraph.with_empty_graph(molecule, name="bonds", edge_weight_name="weight", edge_weight_units="") # NearNeighbor classes only (generally) work with structures # molecules have to be boxed first coords = molecule.cart_coords if extend_structure: a = max(coords[:, 0]) - min(coords[:, 0]) + 100 b = max(coords[:, 1]) - min(coords[:, 1]) + 100 c = max(coords[:, 2]) - min(coords[:, 2]) + 100 molecule = molecule.get_boxed_structure(a, b, c, no_cross=True) for n in range(len(molecule)): neighbors = strategy.get_nn_info(molecule, n) for neighbor in neighbors: # all bonds in molecules should not cross # (artificial) periodic boundaries if not np.array_equal(neighbor['image'], [0, 0, 0]): continue # local_env will always try to add two edges # for any one bond, one from site u to site v # and another form site v to site u: this is # harmless, so warn_duplicates=False mg.add_edge(from_index=n, to_index=neighbor['site_index'], weight=neighbor['weight'], warn_duplicates=False) if reorder: # Reverse order of nodes to match with molecule n = len(mg.molecule) mapping = {i: (n-i) for i in range(n)} mapping = {i: (j-1) for i, j in mapping.items()} mg.graph = nx.relabel_nodes(mg.graph, mapping) duplicates = [] for edge in mg.graph.edges: if edge[2] != 0: duplicates.append(edge) for duplicate in duplicates: mg.graph.remove_edge(duplicate[0], duplicate[1], key=duplicate[2]) mg.set_node_attributes() return mg @property def name(self): """ :return: Name of graph """ return self.graph.graph['name'] @property def edge_weight_name(self): """ :return: Name of the edge weight property of graph """ return self.graph.graph['edge_weight_name'] @property def edge_weight_unit(self): """ :return: Units of the edge weight property of graph """ return self.graph.graph['edge_weight_units'] def add_edge(self, from_index, to_index, weight=None, warn_duplicates=True, edge_properties=None): """ Add edge to graph. Since physically a 'bond' (or other connection between sites) doesn't have a direction, from_index, from_jimage can be swapped with to_index, to_jimage. However, images will always always be shifted so that from_index < to_index and from_jimage becomes (0, 0, 0). :param from_index: index of site connecting from :param to_index: index of site connecting to :param weight (float): e.g. bond length :param warn_duplicates (bool): if True, will warn if trying to add duplicate edges (duplicate edges will not be added in either case) :param edge_properties (dict): any other information to store on graph edges, similar to Structure's site_properties :return: """ # this is not necessary for the class to work, but # just makes it neater if to_index < from_index: to_index, from_index = from_index, to_index # sanitize types from_index, to_index = int(from_index), int(to_index) # check we're not trying to add a duplicate edge # there should only ever be at most one edge # between two sites existing_edge_data = self.graph.get_edge_data(from_index, to_index) if existing_edge_data and warn_duplicates: warnings.warn("Trying to add an edge that already exists from " "site {} to site {}.".format(from_index, to_index)) return # generic container for additional edge properties, # similar to site properties edge_properties = edge_properties or {} if weight: self.graph.add_edge(from_index, to_index, weight=weight, **edge_properties) else: self.graph.add_edge(from_index, to_index, **edge_properties) def insert_node(self, i, species, coords, validate_proximity=False, site_properties=None, edges=None): """ A wrapper around Molecule.insert(), which also incorporates the new site into the MoleculeGraph. :param i: Index at which to insert the new site :param species: Species for the new site :param coords: 3x1 array representing coordinates of the new site :param validate_proximity: For Molecule.insert(); if True (default False), distance will be checked to ensure that site can be safely added. :param site_properties: Site properties for Molecule :param edges: List of dicts representing edges to be added to the MoleculeGraph. These edges must include the index of the new site i, and all indices used for these edges should reflect the MoleculeGraph AFTER the insertion, NOT before. Each dict should at least have a "to_index" and "from_index" key, and can also have a "weight" and a "properties" key. :return: """ self.molecule.insert(i, species, coords, validate_proximity=validate_proximity, properties=site_properties) mapping = {} for j in range(len(self.molecule) - 1): if j < i: mapping[j] = j else: mapping[j] = j + 1 nx.relabel_nodes(self.graph, mapping, copy=False) self.graph.add_node(i) self.set_node_attributes() if edges is not None: for edge in edges: try: self.add_edge(edge["from_index"], edge["to_index"], weight=edge.get("weight", None), edge_properties=edge.get("properties", None)) except KeyError: raise RuntimeError("Some edges are invalid.") def set_node_attributes(self): """ Replicates molecule site properties (specie, coords, etc.) in the MoleculeGraph. :return: """ species = {} coords = {} properties = {} for node in self.graph.nodes(): species[node] = self.molecule[node].specie.symbol coords[node] = self.molecule[node].coords properties[node] = self.molecule[node].properties nx.set_node_attributes(self.graph, species, "specie") nx.set_node_attributes(self.graph, coords, "coords") nx.set_node_attributes(self.graph, properties, "properties") def alter_edge(self, from_index, to_index, new_weight=None, new_edge_properties=None): """ Alters either the weight or the edge_properties of an edge in the MoleculeGraph. :param from_index: int :param to_index: int :param new_weight: alter_edge does not require that weight be altered. As such, by default, this is None. If weight is to be changed, it should be a float. :param new_edge_properties: alter_edge does not require that edge_properties be altered. As such, by default, this is None. If any edge properties are to be changed, it should be a dictionary of edge properties to be changed. :return: """ existing_edge = self.graph.get_edge_data(from_index, to_index) # ensure that edge exists before attempting to change it if not existing_edge: raise ValueError("Edge between {} and {} cannot be altered;\ no edge exists between those sites.".format( from_index, to_index )) # Third index should always be 0 because there should only be one edge between any two nodes if new_weight is not None: self.graph[from_index][to_index][0]['weight'] = new_weight if new_edge_properties is not None: for prop in list(new_edge_properties.keys()): self.graph[from_index][to_index][0][prop] = new_edge_properties[prop] def break_edge(self, from_index, to_index, allow_reverse=False): """ Remove an edge from the MoleculeGraph :param from_index: int :param to_index: int :param allow_reverse: If allow_reverse is True, then break_edge will attempt to break both (from_index, to_index) and, failing that, will attempt to break (to_index, from_index). :return: """ # ensure that edge exists before attempting to remove it existing_edge = self.graph.get_edge_data(from_index, to_index) existing_reverse = None if existing_edge: self.graph.remove_edge(from_index, to_index) else: if allow_reverse: existing_reverse = self.graph.get_edge_data(to_index, from_index) if existing_reverse: self.graph.remove_edge(to_index, from_index) else: raise ValueError("Edge cannot be broken between {} and {};\ no edge exists between those sites.".format( from_index, to_index )) def remove_nodes(self, indices): """ A wrapper for Molecule.remove_sites(). :param indices: list of indices in the current Molecule (and graph) to be removed. :return: """ self.molecule.remove_sites(indices) self.graph.remove_nodes_from(indices) mapping = {} for correct, current in enumerate(sorted(self.graph.nodes)): mapping[current] = correct nx.relabel_nodes(self.graph, mapping, copy=False) self.set_node_attributes() def split_molecule_subgraphs(self, bonds, allow_reverse=False, alterations=None): """ Split MoleculeGraph into two or more MoleculeGraphs by breaking a set of bonds. This function uses MoleculeGraph.break_edge repeatedly to create disjoint graphs (two or more separate molecules). This function does not only alter the graph information, but also changes the underlying Moledules. If the bonds parameter does not include sufficient bonds to separate two molecule fragments, then this function will fail. Currently, this function naively assigns the charge of the total molecule to a single submolecule. A later effort will be to actually accurately assign charge. NOTE: This function does not modify the original MoleculeGraph. It creates a copy, modifies that, and returns two or more new MoleculeGraph objects. :param bonds: list of tuples (from_index, to_index) representing bonds to be broken to split the MoleculeGraph. :param alterations: a dict {(from_index, to_index): alt}, where alt is a dictionary including weight and/or edge properties to be changed following the split. :param allow_reverse: If allow_reverse is True, then break_edge will attempt to break both (from_index, to_index) and, failing that, will attempt to break (to_index, from_index). :return: list of MoleculeGraphs """ self.set_node_attributes() original = copy.deepcopy(self) for bond in bonds: original.break_edge(bond[0], bond[1], allow_reverse=allow_reverse) if nx.is_weakly_connected(original.graph): raise MolGraphSplitError("Cannot split molecule; \ MoleculeGraph is still connected.") else: # alter any bonds before partition, to avoid remapping if alterations is not None: for (u, v) in alterations.keys(): if "weight" in alterations[(u, v)]: weight = alterations[(u, v)]["weight"] del alterations[(u, v)]["weight"] edge_properties = alterations[(u, v)] \ if len(alterations[(u, v)]) != 0 else None original.alter_edge(u, v, new_weight=weight, new_edge_properties=edge_properties) else: original.alter_edge(u, v, new_edge_properties=alterations[(u, v)]) sub_mols = [] # Had to use nx.weakly_connected_components because of deprecation # of nx.weakly_connected_component_subgraphs components = nx.weakly_connected_components(original.graph) subgraphs = [original.graph.subgraph(c) for c in components] for subg in subgraphs: nodes = sorted(list(subg.nodes)) # Molecule indices are essentially list-based, so node indices # must be remapped, incrementing from 0 mapping = {} for i in range(len(nodes)): mapping[nodes[i]] = i # just give charge to whatever subgraph has node with index 0 # TODO: actually figure out how to distribute charge if 0 in nodes: charge = self.molecule.charge else: charge = 0 # relabel nodes in graph to match mapping new_graph = nx.relabel_nodes(subg, mapping) species = nx.get_node_attributes(new_graph, "specie") coords = nx.get_node_attributes(new_graph, "coords") raw_props = nx.get_node_attributes(new_graph, "properties") properties = {} for prop_set in raw_props.values(): for prop in prop_set.keys(): if prop in properties: properties[prop].append(prop_set[prop]) else: properties[prop] = [prop_set[prop]] # Site properties must be present for all atoms in the molecule # in order to be used for Molecule instantiation for k, v in properties.items(): if len(v) != len(species): del properties[k] new_mol = Molecule(species, coords, charge=charge, site_properties=properties) graph_data = json_graph.adjacency_data(new_graph) # create new MoleculeGraph sub_mols.append(MoleculeGraph(new_mol, graph_data=graph_data)) return sub_mols def build_unique_fragments(self): """ Find all possible fragment combinations of the MoleculeGraphs (in other words, all connected induced subgraphs) :return: """ self.set_node_attributes() graph = self.graph.to_undirected() nm = iso.categorical_node_match("specie", "ERROR") # find all possible fragments, aka connected induced subgraphs all_fragments = [] for ii in range(1, len(self.molecule)): for combination in combinations(graph.nodes, ii): subgraph = nx.subgraph(graph, combination) if nx.is_connected(subgraph): all_fragments.append(subgraph) # narrow to all unique fragments using graph isomorphism unique_fragments = [] for fragment in all_fragments: if not [nx.is_isomorphic(fragment, f, node_match=nm) for f in unique_fragments].count(True) >= 1: unique_fragments.append(fragment) # convert back to molecule graphs unique_mol_graphs = [] for fragment in unique_fragments: mapping = {e: i for i, e in enumerate(sorted(fragment.nodes))} remapped = nx.relabel_nodes(fragment, mapping) species = nx.get_node_attributes(remapped, "specie") coords = nx.get_node_attributes(remapped, "coords") edges = {} for from_index, to_index, key in remapped.edges: edge_props = fragment.get_edge_data(from_index, to_index, key=key) edges[(from_index, to_index)] = edge_props unique_mol_graphs.append(self.with_edges(Molecule(species=species, coords=coords, charge=self.molecule.charge), edges)) return unique_mol_graphs def substitute_group(self, index, func_grp, strategy, bond_order=1, graph_dict=None, strategy_params=None, reorder=True, extend_structure=True): """ Builds off of Molecule.substitute to replace an atom in self.molecule with a functional group. This method also amends self.graph to incorporate the new functional group. NOTE: using a MoleculeGraph will generally produce a different graph compared with using a Molecule or str (when not using graph_dict). This is because of the reordering that occurs when using some of the local_env strategies. :param index: Index of atom to substitute. :param func_grp: Substituent molecule. There are three options: 1. Providing an actual molecule as the input. The first atom must be a DummySpecie X, indicating the position of nearest neighbor. The second atom must be the next nearest atom. For example, for a methyl group substitution, func_grp should be X-CH3, where X is the first site and C is the second site. What the code will do is to remove the index site, and connect the nearest neighbor to the C atom in CH3. The X-C bond indicates the directionality to connect the atoms. 2. A string name. The molecule will be obtained from the relevant template in func_groups.json. 3. A MoleculeGraph object. :param strategy: Class from pymatgen.analysis.local_env. :param bond_order: A specified bond order to calculate the bond length between the attached functional group and the nearest neighbor site. Defaults to 1. :param graph_dict: Dictionary representing the bonds of the functional group (format: {(u, v): props}, where props is a dictionary of properties, including weight. If None, then the algorithm will attempt to automatically determine bonds using one of a list of strategies defined in pymatgen.analysis.local_env. :param strategy_params: dictionary of keyword arguments for strategy. If None, default parameters will be used. :param reorder: bool, representing if graph nodes need to be reordered following the application of the local_env strategy :param extend_structure: If True (default), then a large artificial box will be placed around the Molecule, because some strategies assume periodic boundary conditions. :return: """ def map_indices(grp): grp_map = {} # Get indices now occupied by functional group # Subtracting 1 because the dummy atom X should not count atoms = len(grp) - 1 offset = len(self.molecule) - atoms for i in range(atoms): grp_map[i] = i + offset return grp_map # Work is simplified if a graph is already in place if isinstance(func_grp, MoleculeGraph): self.molecule.substitute(index, func_grp.molecule, bond_order=bond_order) mapping = map_indices(func_grp.molecule) for (u, v) in list(func_grp.graph.edges()): edge_props = func_grp.graph.get_edge_data(u, v)[0] weight = None if "weight" in edge_props.keys(): weight = edge_props["weight"] del edge_props["weight"] self.add_edge(mapping[u], mapping[v], weight=weight, edge_properties=edge_props) else: if isinstance(func_grp, Molecule): func_grp = copy.deepcopy(func_grp) else: try: func_grp = copy.deepcopy(FunctionalGroups[func_grp]) except: raise RuntimeError("Can't find functional group in list. " "Provide explicit coordinate instead") self.molecule.substitute(index, func_grp, bond_order=bond_order) mapping = map_indices(func_grp) # Remove dummy atom "X" func_grp.remove_species("X") if graph_dict is not None: for (u, v) in graph_dict.keys(): edge_props = graph_dict[(u, v)] if "weight" in edge_props.keys(): weight = edge_props["weight"] del edge_props["weight"] self.add_edge(mapping[u], mapping[v], weight=weight, edge_properties=edge_props) else: if strategy_params is None: strategy_params = {} strat = strategy(**strategy_params) graph = self.with_local_env_strategy(func_grp, strat, reorder=reorder, extend_structure=extend_structure) for (u, v) in list(graph.graph.edges()): edge_props = graph.graph.get_edge_data(u, v)[0] weight = None if "weight" in edge_props.keys(): weight = edge_props["weight"] del edge_props["weight"] if 0 not in list(graph.graph.nodes()): # If graph indices have different indexing u, v = (u-1), (v-1) self.add_edge(mapping[u], mapping[v], weight=weight, edge_properties=edge_props) def replace_group(self, index, func_grp, strategy, bond_order=1, graph_dict=None, strategy_params=None, reorder=True, extend_structure=True): """ Builds off of Molecule.substitute and MoleculeGraph.substitute_group to replace a functional group in self.molecule with a functional group. This method also amends self.graph to incorporate the new functional group. TODO: Figure out how to replace into a ring structure. :param index: Index of atom to substitute. :param func_grp: Substituent molecule. There are three options: 1. Providing an actual molecule as the input. The first atom must be a DummySpecie X, indicating the position of nearest neighbor. The second atom must be the next nearest atom. For example, for a methyl group substitution, func_grp should be X-CH3, where X is the first site and C is the second site. What the code will do is to remove the index site, and connect the nearest neighbor to the C atom in CH3. The X-C bond indicates the directionality to connect the atoms. 2. A string name. The molecule will be obtained from the relevant template in func_groups.json. 3. A MoleculeGraph object. :param strategy: Class from pymatgen.analysis.local_env. :param bond_order: A specified bond order to calculate the bond length between the attached functional group and the nearest neighbor site. Defaults to 1. :param graph_dict: Dictionary representing the bonds of the functional group (format: {(u, v): props}, where props is a dictionary of properties, including weight. If None, then the algorithm will attempt to automatically determine bonds using one of a list of strategies defined in pymatgen.analysis.local_env. :param strategy_params: dictionary of keyword arguments for strategy. If None, default parameters will be used. :param reorder: bool, representing if graph nodes need to be reordered following the application of the local_env strategy :param extend_structure: If True (default), then a large artificial box will be placed around the Molecule, because some strategies assume periodic boundary conditions. :return: """ self.set_node_attributes() neighbors = self.get_connected_sites(index) # If the atom at index is terminal if len(neighbors) == 1: self.substitute_group(index, func_grp, strategy, bond_order=bond_order, graph_dict=graph_dict, strategy_params=strategy_params, reorder=reorder, extend_structure=extend_structure) else: rings = self.find_rings(including=[index]) if len(rings) != 0: raise RuntimeError("Currently functional group replacement" "cannot occur at an atom within a ring" "structure.") to_remove = set() sizes = dict() disconnected = self.graph.to_undirected() disconnected.remove_node(index) for neighbor in neighbors: sizes[neighbor[2]] = len(nx.descendants(disconnected, neighbor[2])) keep = max(sizes, key=lambda x: sizes[x]) for i in sizes.keys(): if i != keep: to_remove.add(i) self.remove_nodes(list(to_remove)) self.substitute_group(index, func_grp, strategy, bond_order=bond_order, graph_dict=graph_dict, strategy_params=strategy_params, reorder=reorder, extend_structure=extend_structure) def find_rings(self, including=None): """ Find ring structures in the MoleculeGraph. :param including: list of site indices. If including is not None, then find_rings will only return those rings including the specified sites. By default, this parameter is None, and all rings will be returned. :return: dict {index:cycle}. Each entry will be a ring (cycle, in graph theory terms) including the index found in the Molecule. If there is no cycle including an index, the value will be an empty list. """ # Copies self.graph such that all edges (u, v) matched by edges (v, u) undirected = self.graph.to_undirected() directed = undirected.to_directed() cycles_nodes = [] cycles_edges = [] # Remove all two-edge cycles all_cycles = [c for c in nx.simple_cycles(directed) if len(c) > 2] # Using to_directed() will mean that each cycle always appears twice # So, we must also remove duplicates unique_sorted = [] unique_cycles = [] for cycle in all_cycles: if sorted(cycle) not in unique_sorted: unique_sorted.append(sorted(cycle)) unique_cycles.append(cycle) if including is None: cycles_nodes = unique_cycles else: for i in including: for cycle in unique_cycles: if i in cycle and cycle not in cycles_nodes: cycles_nodes.append(cycle) for cycle in cycles_nodes: edges = [] for i, e in enumerate(cycle): edges.append((cycle[i-1], e)) cycles_edges.append(edges) return cycles_edges def get_connected_sites(self, n): """ Returns a named tuple of neighbors of site n: periodic_site, jimage, index, weight. Index is the index of the corresponding site in the original structure, weight can be None if not defined. :param n: index of Site in Molecule :param jimage: lattice vector of site :return: list of ConnectedSite tuples, sorted by closest first """ connected_sites = set() out_edges = [(u, v, d) for u, v, d in self.graph.out_edges(n, data=True)] in_edges = [(u, v, d) for u, v, d in self.graph.in_edges(n, data=True)] for u, v, d in out_edges + in_edges: weight = d.get('weight', None) if v == n: site = self.molecule[u] dist = self.molecule[v].distance(self.molecule[u]) connected_site = ConnectedSite(site=site, jimage=(0, 0, 0), index=u, weight=weight, dist=dist) else: site = self.molecule[v] dist = self.molecule[u].distance(self.molecule[v]) connected_site = ConnectedSite(site=site, jimage=(0, 0, 0), index=v, weight=weight, dist=dist) connected_sites.add(connected_site) # return list sorted by closest sites first connected_sites = list(connected_sites) connected_sites.sort(key=lambda x: x.dist) return connected_sites def get_coordination_of_site(self, n): """ Returns the number of neighbors of site n. In graph terms, simply returns degree of node corresponding to site n. :param n: index of site :return (int): """ number_of_self_loops = sum([1 for n, v in self.graph.edges(n) if n == v]) return self.graph.degree(n) - number_of_self_loops def draw_graph_to_file(self, filename="graph", diff=None, hide_unconnected_nodes=False, hide_image_edges=True, edge_colors=False, node_labels=False, weight_labels=False, image_labels=False, color_scheme="VESTA", keep_dot=False, algo="fdp"): """ Draws graph using GraphViz. The networkx graph object itself can also be drawn with networkx's in-built graph drawing methods, but note that this might give misleading results for multigraphs (edges are super-imposed on each other). If visualization is difficult to interpret, `hide_image_edges` can help, especially in larger graphs. :param filename: filename to output, will detect filetype from extension (any graphviz filetype supported, such as pdf or png) :param diff (StructureGraph): an additional graph to compare with, will color edges red that do not exist in diff and edges green that are in diff graph but not in the reference graph :param hide_unconnected_nodes: if True, hide unconnected nodes :param hide_image_edges: if True, do not draw edges that go through periodic boundaries :param edge_colors (bool): if True, use node colors to color edges :param node_labels (bool): if True, label nodes with species and site index :param weight_labels (bool): if True, label edges with weights :param image_labels (bool): if True, label edges with their periodic images (usually only used for debugging, edges to periodic images always appear as dashed lines) :param color_scheme (str): "VESTA" or "JMOL" :param keep_dot (bool): keep GraphViz .dot file for later visualization :param algo: any graphviz algo, "neato" (for simple graphs) or "fdp" (for more crowded graphs) usually give good outputs :return: """ if not which(algo): raise RuntimeError("StructureGraph graph drawing requires " "GraphViz binaries to be in the path.") # Developer note: NetworkX also has methods for drawing # graphs using matplotlib, these also work here. However, # a dedicated tool like GraphViz allows for much easier # control over graph appearance and also correctly displays # mutli-graphs (matplotlib can superimpose multiple edges). g = self.graph.copy() g.graph = {'nodesep': 10.0, 'dpi': 300, 'overlap': "false"} # add display options for nodes for n in g.nodes(): # get label by species name label = "{}({})".format(str(self.molecule[n].specie), n) if node_labels else "" # use standard color scheme for nodes c = EL_COLORS[color_scheme].get(str(self.molecule[n].specie.symbol), [0, 0, 0]) # get contrasting font color # magic numbers account for perceived luminescence # https://stackoverflow.com/questions/1855884/determine-font-color-based-on-background-color fontcolor = '#000000' if 1 - (c[0] * 0.299 + c[1] * 0.587 + c[2] * 0.114) / 255 < 0.5 else '#ffffff' # convert color to hex string color = "#{:02x}{:02x}{:02x}".format(c[0], c[1], c[2]) g.add_node(n, fillcolor=color, fontcolor=fontcolor, label=label, fontname="Helvetica-bold", style="filled", shape="circle") edges_to_delete = [] # add display options for edges for u, v, k, d in g.edges(keys=True, data=True): # retrieve from/to images, set as origin if not defined if "to_image" in d: to_image = d['to_jimage'] else: to_image = (0, 0, 0) # set edge style d['style'] = "solid" if to_image != (0, 0, 0): d['style'] = "dashed" if hide_image_edges: edges_to_delete.append((u, v, k)) # don't show edge directions d['arrowhead'] = "none" # only add labels for images that are not the origin if image_labels: d['headlabel'] = "" if to_image == (0, 0, 0) else "to {}".format((to_image)) d['arrowhead'] = "normal" if d['headlabel'] else "none" # optionally color edges using node colors color_u = g.node[u]['fillcolor'] color_v = g.node[v]['fillcolor'] d['color_uv'] = "{};0.5:{};0.5".format(color_u, color_v) if edge_colors else "#000000" # optionally add weights to graph if weight_labels: units = g.graph.get('edge_weight_units', "") if d.get('weight'): d['label'] = "{:.2f} {}".format(d['weight'], units) # update edge with our new style attributes g.edges[u, v, k].update(d) # optionally remove periodic image edges, # these can be confusing due to periodic boundaries if hide_image_edges: for edge_to_delete in edges_to_delete: g.remove_edge(*edge_to_delete) # optionally hide unconnected nodes, # these can appear when removing periodic edges if hide_unconnected_nodes: g = g.subgraph([n for n in g.degree() if g.degree()[n] != 0]) # optionally highlight differences with another graph if diff: diff = self.diff(diff, strict=True) green_edges = [] red_edges = [] for u, v, k, d in g.edges(keys=True, data=True): if (u, v, d['to_jimage']) in diff['self']: # edge has been deleted red_edges.append((u, v, k)) elif (u, v, d['to_jimage']) in diff['other']: # edge has been added green_edges.append((u, v, k)) for u, v, k in green_edges: g.edges[u, v, k].update({'color_uv': '#00ff00'}) for u, v, k in red_edges: g.edges[u, v, k].update({'color_uv': '#ff0000'}) basename, extension = os.path.splitext(filename) extension = extension[1:] write_dot(g, basename+".dot") with open(filename, "w") as f: args = [algo, "-T", extension, basename+".dot"] rs = subprocess.Popen(args, stdout=f, stdin=subprocess.PIPE, close_fds=True) rs.communicate() if rs.returncode != 0: raise RuntimeError("{} exited with return code {}.".format(algo, rs.returncode)) if not keep_dot: os.remove(basename+".dot") def as_dict(self): """ As in :Class: `pymatgen.core.Molecule` except with using `to_dict_of_dicts` from NetworkX to store graph information. """ d = {"@module": self.__class__.__module__, "@class": self.__class__.__name__, "molecule": self.molecule.as_dict(), "graphs": json_graph.adjacency_data(self.graph)} return d @classmethod def from_dict(cls, d): """ As in :Class: `pymatgen.core.Molecule` except restoring graphs using `from_dict_of_dicts` from NetworkX to restore graph information. """ m = Molecule.from_dict(d['molecule']) return cls(m, d['graphs']) def _edges_to_string(self, g): header = "from to to_image " header_line = "---- ---- ------------" edge_weight_name = g.graph["edge_weight_name"] if edge_weight_name: print_weights = ["weight"] edge_label = g.graph["edge_weight_name"] edge_weight_units = g.graph["edge_weight_units"] if edge_weight_units: edge_label += " ({})".format(edge_weight_units) header += " {}".format(edge_label) header_line += " {}".format("-"*max([18, len(edge_label)])) else: print_weights = False s = header + "\n" + header_line + "\n" edges = list(g.edges(data=True)) # sort edges for consistent ordering edges.sort(key=itemgetter(0, 1)) if print_weights: for u, v, data in edges: s += "{:4} {:4} {:12} {:.3e}\n".format(u, v, str(data.get("to_jimage", (0, 0, 0))), data.get("weight", 0)) else: for u, v, data in edges: s += "{:4} {:4} {:12}\n".format(u, v, str(data.get("to_jimage", (0, 0, 0)))) return s def __str__(self): s = "Molecule Graph" s += "\nMolecule: \n{}".format(self.molecule.__str__()) s += "\nGraph: {}\n".format(self.name) s += self._edges_to_string(self.graph) return s def __repr__(self): s = "Molecule Graph" s += "\nMolecule: \n{}".format(self.molecule.__repr__()) s += "\nGraph: {}\n".format(self.name) s += self._edges_to_string(self.graph) return s def __len__(self): """ :return: length of Molecule / number of nodes in graph """ return len(self.molecule) def sort(self, key=None, reverse=False): """ Same as Molecule.sort(), also remaps nodes in graph. :param key: :param reverse: :return: """ old_molecule = self.molecule.copy() # sort Molecule self.molecule._sites = sorted(self.molecule._sites, key=key, reverse=reverse) # apply Molecule ordering to graph mapping = {idx: self.molecule.index(site) for idx, site in enumerate(old_molecule)} self.graph = nx.relabel_nodes(self.graph, mapping, copy=True) # normalize directions of edges edges_to_remove = [] edges_to_add = [] for u, v, k, d in self.graph.edges(keys=True, data=True): if v < u: new_v, new_u, new_d = u, v, d.copy() new_d['to_jimage'] = (0, 0, 0) edges_to_remove.append((u, v, k)) edges_to_add.append((new_u, new_v, new_d)) # add/delete marked edges for edges_to_remove in edges_to_remove: self.graph.remove_edge(*edges_to_remove) for (u, v, d) in edges_to_add: self.graph.add_edge(u, v, **d) def __copy__(self): return MoleculeGraph.from_dict(self.as_dict()) def __eq__(self, other): """ Two MoleculeGraphs are equal if they have equal Molecules, and have the same edges between Sites. Edge weights can be different and MoleculeGraphs can still be considered equal. :param other: MoleculeGraph :return (bool): """ # sort for consistent node indices # PeriodicSite should have a proper __hash__() value, # using its frac_coords as a convenient key try: mapping = {tuple(site.coords):self.molecule.index(site) for site in other.molecule} except ValueError: return False other_sorted = other.__copy__() other_sorted.sort(key=lambda site: mapping[tuple(site.coords)]) edges = {(u, v) for u, v, d in self.graph.edges(keys=False, data=True)} edges_other = {(u, v) for u, v, d in other_sorted.graph.edges(keys=False, data=True)} return (edges == edges_other) and \ (self.molecule == other_sorted.molecule) def isomorphic_to(self, other): """ Checks if the graphs of two MoleculeGraphs are isomorphic to one another. In order to prevent problems with misdirected edges, both graphs are converted into undirected nx.Graph objects. :param other: MoleculeGraph object to be compared. :return: bool """ if self.molecule.composition != other.molecule.composition: return False else: self_undir = self.graph.to_undirected() other_undir = other.graph.to_undirected() nm = iso.categorical_node_match("specie", "ERROR") isomorphic = nx.is_isomorphic(self_undir, other_undir, node_match=nm) return isomorphic def diff(self, other, strict=True): """ Compares two MoleculeGraphs. Returns dict with keys 'self', 'other', 'both' with edges that are present in only one MoleculeGraph ('self' and 'other'), and edges that are present in both. The Jaccard distance is a simple measure of the dissimilarity between two MoleculeGraphs (ignoring edge weights), and is defined by 1 - (size of the intersection / size of the union) of the sets of edges. This is returned with key 'dist'. Important note: all node indices are in terms of the MoleculeGraph this method is called from, not the 'other' MoleculeGraph: there is no guarantee the node indices will be the same if the underlying Molecules are ordered differently. :param other: MoleculeGraph :param strict: if False, will compare bonds from different Molecules, with node indices replaced by Specie strings, will not count number of occurrences of bonds :return: """ if self.molecule != other.molecule and strict: return ValueError("Meaningless to compare MoleculeGraphs if " "corresponding Molecules are different.") if strict: # sort for consistent node indices # PeriodicSite should have a proper __hash__() value, # using its frac_coords as a convenient key mapping = {tuple(site.frac_coords):self.molecule.index(site) for site in other.molecule} other_sorted = other.__copy__() other_sorted.sort(key=lambda site: mapping[tuple(site.frac_coords)]) edges = {(u, v, d.get('to_jimage', (0, 0, 0))) for u, v, d in self.graph.edges(keys=False, data=True)} edges_other = {(u, v, d.get('to_jimage', (0, 0, 0))) for u, v, d in other_sorted.graph.edges(keys=False, data=True)} else: edges = {(str(self.molecule[u].specie), str(self.molecule[v].specie)) for u, v, d in self.graph.edges(keys=False, data=True)} edges_other = {(str(other.structure[u].specie), str(other.structure[v].specie)) for u, v, d in other.graph.edges(keys=False, data=True)} if len(edges) == 0 and len(edges_other) == 0: jaccard_dist = 0 # by definition else: jaccard_dist = 1 - len(edges.intersection(edges_other)) / len(edges.union(edges_other)) return { 'self': edges - edges_other, 'other': edges_other - edges, 'both': edges.intersection(edges_other), 'dist': jaccard_dist }
mit
alshedivat/tensorflow
tensorflow/contrib/eager/python/examples/rnn_colorbot/rnn_colorbot.py
16
13781
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== r"""TensorFlow Eager Execution Example: RNN Colorbot. This example builds, trains, and evaluates a multi-layer RNN that can be run with eager execution enabled. The RNN is trained to map color names to their RGB values: it takes as input a one-hot encoded character sequence and outputs a three-tuple (R, G, B) (scaled by 1/255). For example, say we'd like the RNN Colorbot to generate the RGB values for the color white. To represent our query in a form that the Colorbot could understand, we would create a sequence of five 256-long vectors encoding the ASCII values of the characters in "white". The first vector in our sequence would be 0 everywhere except for the ord("w")-th position, where it would be 1, the second vector would be 0 everywhere except for the ord("h")-th position, where it would be 1, and similarly for the remaining three vectors. We refer to such indicator vectors as "one-hot encodings" of characters. After consuming these vectors, a well-trained Colorbot would output the three tuple (1, 1, 1), since the RGB values for white are (255, 255, 255). We are of course free to ask the colorbot to generate colors for any string we'd like, such as "steel gray," "tensorflow orange," or "green apple," though your mileage may vary as your queries increase in creativity. This example shows how to: 1. read, process, (one-hot) encode, and pad text data via the Datasets API; 2. build a trainable model; 3. implement a multi-layer RNN using Python control flow constructs (e.g., a for loop); 4. train a model using an iterative gradient-based method; and The data used in this example is licensed under the Creative Commons Attribution-ShareAlike License and is available at https://en.wikipedia.org/wiki/List_of_colors:_A-F https://en.wikipedia.org/wiki/List_of_colors:_G-M https://en.wikipedia.org/wiki/List_of_colors:_N-Z This example was adapted from https://github.com/random-forests/tensorflow-workshop/tree/master/extras/colorbot """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import functools import os import sys import time import urllib import six import tensorflow as tf from tensorflow.contrib.eager.python import tfe try: import matplotlib.pyplot as plt # pylint: disable=g-import-not-at-top HAS_MATPLOTLIB = True except ImportError: HAS_MATPLOTLIB = False layers = tf.keras.layers def parse(line): """Parse a line from the colors dataset.""" # Each line of the dataset is comma-separated and formatted as # color_name, r, g, b # so `items` is a list [color_name, r, g, b]. items = tf.string_split([line], ",").values rgb = tf.string_to_number(items[1:], out_type=tf.float32) / 255. # Represent the color name as a one-hot encoded character sequence. color_name = items[0] chars = tf.one_hot(tf.decode_raw(color_name, tf.uint8), depth=256) # The sequence length is needed by our RNN. length = tf.cast(tf.shape(chars)[0], dtype=tf.int64) return rgb, chars, length def maybe_download(filename, work_directory, source_url): """Download the data from source url, unless it's already here. Args: filename: string, name of the file in the directory. work_directory: string, path to working directory. source_url: url to download from if file doesn't exist. Returns: Path to resulting file. """ if not tf.gfile.Exists(work_directory): tf.gfile.MakeDirs(work_directory) filepath = os.path.join(work_directory, filename) if not tf.gfile.Exists(filepath): temp_file_name, _ = urllib.request.urlretrieve(source_url) tf.gfile.Copy(temp_file_name, filepath) with tf.gfile.GFile(filepath) as f: size = f.size() print("Successfully downloaded", filename, size, "bytes.") return filepath def load_dataset(data_dir, url, batch_size): """Loads the colors data at path into a PaddedDataset.""" # Downloads data at url into data_dir/basename(url). The dataset has a header # row (color_name, r, g, b) followed by comma-separated lines. path = maybe_download(os.path.basename(url), data_dir, url) # This chain of commands loads our data by: # 1. skipping the header; (.skip(1)) # 2. parsing the subsequent lines; (.map(parse)) # 3. shuffling the data; (.shuffle(...)) # 3. grouping the data into padded batches (.padded_batch(...)). dataset = tf.data.TextLineDataset(path).skip(1).map(parse).shuffle( buffer_size=10000).padded_batch( batch_size, padded_shapes=([None], [None, None], [])) return dataset # pylint: disable=not-callable class RNNColorbot(tf.keras.Model): """Multi-layer (LSTM) RNN that regresses on real-valued vector labels. """ def __init__(self, rnn_cell_sizes, label_dimension, keep_prob): """Constructs an RNNColorbot. Args: rnn_cell_sizes: list of integers denoting the size of each LSTM cell in the RNN; rnn_cell_sizes[i] is the size of the i-th layer cell label_dimension: the length of the labels on which to regress keep_prob: (1 - dropout probability); dropout is applied to the outputs of each LSTM layer """ super(RNNColorbot, self).__init__(name="") self.label_dimension = label_dimension self.keep_prob = keep_prob self.cells = tf.contrib.checkpoint.List( [tf.nn.rnn_cell.BasicLSTMCell(size) for size in rnn_cell_sizes]) self.relu = layers.Dense( label_dimension, activation=tf.nn.relu, name="relu") def call(self, inputs, training=False): """Implements the RNN logic and prediction generation. Args: inputs: A tuple (chars, sequence_length), where chars is a batch of one-hot encoded color names represented as a Tensor with dimensions [batch_size, time_steps, 256] and sequence_length holds the length of each character sequence (color name) as a Tensor with dimension [batch_size]. training: whether the invocation is happening during training Returns: A tensor of dimension [batch_size, label_dimension] that is produced by passing chars through a multi-layer RNN and applying a ReLU to the final hidden state. """ (chars, sequence_length) = inputs # Transpose the first and second dimensions so that chars is of shape # [time_steps, batch_size, dimension]. chars = tf.transpose(chars, [1, 0, 2]) # The outer loop cycles through the layers of the RNN; the inner loop # executes the time steps for a particular layer. batch_size = int(chars.shape[1]) for l in range(len(self.cells)): cell = self.cells[l] outputs = [] state = cell.zero_state(batch_size, tf.float32) # Unstack the inputs to obtain a list of batches, one for each time step. chars = tf.unstack(chars, axis=0) for ch in chars: output, state = cell(ch, state) outputs.append(output) # The outputs of this layer are the inputs of the subsequent layer. chars = tf.stack(outputs, axis=0) if training: chars = tf.nn.dropout(chars, self.keep_prob) # Extract the correct output (i.e., hidden state) for each example. All the # character sequences in this batch were padded to the same fixed length so # that they could be easily fed through the above RNN loop. The # `sequence_length` vector tells us the true lengths of the character # sequences, letting us obtain for each sequence the hidden state that was # generated by its non-padding characters. batch_range = [i for i in range(batch_size)] indices = tf.stack([sequence_length - 1, batch_range], axis=1) hidden_states = tf.gather_nd(chars, indices) return self.relu(hidden_states) def loss(labels, predictions): """Computes mean squared loss.""" return tf.reduce_mean(tf.square(predictions - labels)) def test(model, eval_data): """Computes the average loss on eval_data, which should be a Dataset.""" avg_loss = tfe.metrics.Mean("loss") for (labels, chars, sequence_length) in tfe.Iterator(eval_data): predictions = model((chars, sequence_length), training=False) avg_loss(loss(labels, predictions)) print("eval/loss: %.6f\n" % avg_loss.result()) with tf.contrib.summary.always_record_summaries(): tf.contrib.summary.scalar("loss", avg_loss.result()) def train_one_epoch(model, optimizer, train_data, log_interval=10): """Trains model on train_data using optimizer.""" tf.train.get_or_create_global_step() def model_loss(labels, chars, sequence_length): predictions = model((chars, sequence_length), training=True) loss_value = loss(labels, predictions) tf.contrib.summary.scalar("loss", loss_value) return loss_value for (batch, (labels, chars, sequence_length)) in enumerate( tfe.Iterator(train_data)): with tf.contrib.summary.record_summaries_every_n_global_steps(log_interval): batch_model_loss = functools.partial(model_loss, labels, chars, sequence_length) optimizer.minimize( batch_model_loss, global_step=tf.train.get_global_step()) if log_interval and batch % log_interval == 0: print("train/batch #%d\tloss: %.6f" % (batch, batch_model_loss())) SOURCE_TRAIN_URL = "https://raw.githubusercontent.com/random-forests/tensorflow-workshop/master/archive/extras/colorbot/data/train.csv" SOURCE_TEST_URL = "https://raw.githubusercontent.com/random-forests/tensorflow-workshop/master/archive/extras/colorbot/data/test.csv" def main(_): data_dir = os.path.join(FLAGS.dir, "data") train_data = load_dataset( data_dir=data_dir, url=SOURCE_TRAIN_URL, batch_size=FLAGS.batch_size) eval_data = load_dataset( data_dir=data_dir, url=SOURCE_TEST_URL, batch_size=FLAGS.batch_size) model = RNNColorbot( rnn_cell_sizes=FLAGS.rnn_cell_sizes, label_dimension=3, keep_prob=FLAGS.keep_probability) optimizer = tf.train.AdamOptimizer(learning_rate=FLAGS.learning_rate) if FLAGS.no_gpu or tfe.num_gpus() <= 0: print(tfe.num_gpus()) device = "/cpu:0" else: device = "/gpu:0" print("Using device %s." % device) log_dir = os.path.join(FLAGS.dir, "summaries") tf.gfile.MakeDirs(log_dir) train_summary_writer = tf.contrib.summary.create_file_writer( os.path.join(log_dir, "train"), flush_millis=10000) test_summary_writer = tf.contrib.summary.create_file_writer( os.path.join(log_dir, "eval"), flush_millis=10000, name="eval") with tf.device(device): for epoch in range(FLAGS.num_epochs): start = time.time() with train_summary_writer.as_default(): train_one_epoch(model, optimizer, train_data, FLAGS.log_interval) end = time.time() print("train/time for epoch #%d: %.2f" % (epoch, end - start)) with test_summary_writer.as_default(): test(model, eval_data) print("Colorbot is ready to generate colors!") while True: try: color_name = six.moves.input( "Give me a color name (or press enter to exit): ") except EOFError: return if not color_name: return _, chars, length = parse(color_name) with tf.device(device): (chars, length) = (tf.identity(chars), tf.identity(length)) chars = tf.expand_dims(chars, 0) length = tf.expand_dims(length, 0) preds = tf.unstack(model((chars, length), training=False)[0]) # Predictions cannot be negative, as they are generated by a ReLU layer; # they may, however, be greater than 1. clipped_preds = tuple(min(float(p), 1.0) for p in preds) rgb = tuple(int(p * 255) for p in clipped_preds) print("rgb:", rgb) data = [[clipped_preds]] if HAS_MATPLOTLIB: plt.imshow(data) plt.title(color_name) plt.show() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--dir", type=str, default="/tmp/rnn_colorbot/", help="Directory to download data files and save logs.") parser.add_argument( "--log_interval", type=int, default=10, metavar="N", help="Log training loss every log_interval batches.") parser.add_argument( "--num_epochs", type=int, default=20, help="Number of epochs to train.") parser.add_argument( "--rnn_cell_sizes", type=int, nargs="+", default=[256, 128], help="List of sizes for each layer of the RNN.") parser.add_argument( "--batch_size", type=int, default=64, help="Batch size for training and eval.") parser.add_argument( "--keep_probability", type=float, default=0.5, help="Keep probability for dropout between layers.") parser.add_argument( "--learning_rate", type=float, default=0.01, help="Learning rate to be used during training.") parser.add_argument( "--no_gpu", action="store_true", default=False, help="Disables GPU usage even if a GPU is available.") FLAGS, unparsed = parser.parse_known_args() tfe.run(main=main, argv=[sys.argv[0]] + unparsed)
apache-2.0
Team-T2-NMR/NMR-T2
readinput.py
1
1550
import numpy import scipy import sklearn #filename = 'input_data_1.txt' #matrix = [] #input_matrix = [] #---------------------------------------- #matrix[i] is the different spectrum | #matrix[i][0] is Spectrum ID | #matrix[i][1] is Database ID | #matrix[i][2] is InChi Key | #matrix[i][3] is Solvent Sample | #matrix[i][4] is pH | #matrix[i][5] is Frequency | #matrix[i][7] is Atom number | #matrix[i][8] is Shift | #---------------------------------------- def open_file_init(filename): matrix = [] f = open(filename,'r') text1 = f.readlines() filesize = len(text1) #print len(text1) for i in range(filesize): matrix.append(text1[i].split()) #print(matrix) proton_size = len(matrix[i]) for i in range(filesize): #print matrix[i] for k in range(proton_size): if (k+1 == proton_size): break #print matrix[i][k+1] matrix[i][k+1] = float(matrix[i][k+1]) #matrix[i][k+1] = format(matrix[i][k+1],'.8f') print matrix[i] #print matrix return matrix #open_file_init(filename) # for i in range(20): # temp = [] #print matrix[i][5] # temp.append(int(matrix[i][5])) # temp.append(int(matrix[i][7])) # train_matrix.append(temp) # #train_matrix.append(temp) # print train_matrix # print len(train_matrix) #def classify(): # k =1 #
gpl-2.0
GuessWhoSamFoo/pandas
pandas/tests/frame/test_nonunique_indexes.py
1
18506
# -*- coding: utf-8 -*- from __future__ import print_function import numpy as np import pytest from pandas.compat import lrange, u import pandas as pd from pandas import DataFrame, MultiIndex, Series, date_range from pandas.tests.frame.common import TestData import pandas.util.testing as tm from pandas.util.testing import assert_frame_equal, assert_series_equal class TestDataFrameNonuniqueIndexes(TestData): def test_column_dups_operations(self): def check(result, expected=None): if expected is not None: assert_frame_equal(result, expected) result.dtypes str(result) # assignment # GH 3687 arr = np.random.randn(3, 2) idx = lrange(2) df = DataFrame(arr, columns=['A', 'A']) df.columns = idx expected = DataFrame(arr, columns=idx) check(df, expected) idx = date_range('20130101', periods=4, freq='Q-NOV') df = DataFrame([[1, 1, 1, 5], [1, 1, 2, 5], [2, 1, 3, 5]], columns=['a', 'a', 'a', 'a']) df.columns = idx expected = DataFrame( [[1, 1, 1, 5], [1, 1, 2, 5], [2, 1, 3, 5]], columns=idx) check(df, expected) # insert df = DataFrame([[1, 1, 1, 5], [1, 1, 2, 5], [2, 1, 3, 5]], columns=['foo', 'bar', 'foo', 'hello']) df['string'] = 'bah' expected = DataFrame([[1, 1, 1, 5, 'bah'], [1, 1, 2, 5, 'bah'], [2, 1, 3, 5, 'bah']], columns=['foo', 'bar', 'foo', 'hello', 'string']) check(df, expected) with pytest.raises(ValueError, match='Length of value'): df.insert(0, 'AnotherColumn', range(len(df.index) - 1)) # insert same dtype df['foo2'] = 3 expected = DataFrame([[1, 1, 1, 5, 'bah', 3], [1, 1, 2, 5, 'bah', 3], [2, 1, 3, 5, 'bah', 3]], columns=['foo', 'bar', 'foo', 'hello', 'string', 'foo2']) check(df, expected) # set (non-dup) df['foo2'] = 4 expected = DataFrame([[1, 1, 1, 5, 'bah', 4], [1, 1, 2, 5, 'bah', 4], [2, 1, 3, 5, 'bah', 4]], columns=['foo', 'bar', 'foo', 'hello', 'string', 'foo2']) check(df, expected) df['foo2'] = 3 # delete (non dup) del df['bar'] expected = DataFrame([[1, 1, 5, 'bah', 3], [1, 2, 5, 'bah', 3], [2, 3, 5, 'bah', 3]], columns=['foo', 'foo', 'hello', 'string', 'foo2']) check(df, expected) # try to delete again (its not consolidated) del df['hello'] expected = DataFrame([[1, 1, 'bah', 3], [1, 2, 'bah', 3], [2, 3, 'bah', 3]], columns=['foo', 'foo', 'string', 'foo2']) check(df, expected) # consolidate df = df._consolidate() expected = DataFrame([[1, 1, 'bah', 3], [1, 2, 'bah', 3], [2, 3, 'bah', 3]], columns=['foo', 'foo', 'string', 'foo2']) check(df, expected) # insert df.insert(2, 'new_col', 5.) expected = DataFrame([[1, 1, 5., 'bah', 3], [1, 2, 5., 'bah', 3], [2, 3, 5., 'bah', 3]], columns=['foo', 'foo', 'new_col', 'string', 'foo2']) check(df, expected) # insert a dup with pytest.raises(ValueError, match='cannot insert'): df.insert(2, 'new_col', 4.) df.insert(2, 'new_col', 4., allow_duplicates=True) expected = DataFrame([[1, 1, 4., 5., 'bah', 3], [1, 2, 4., 5., 'bah', 3], [2, 3, 4., 5., 'bah', 3]], columns=['foo', 'foo', 'new_col', 'new_col', 'string', 'foo2']) check(df, expected) # delete (dup) del df['foo'] expected = DataFrame([[4., 5., 'bah', 3], [4., 5., 'bah', 3], [4., 5., 'bah', 3]], columns=['new_col', 'new_col', 'string', 'foo2']) assert_frame_equal(df, expected) # dup across dtypes df = DataFrame([[1, 1, 1., 5], [1, 1, 2., 5], [2, 1, 3., 5]], columns=['foo', 'bar', 'foo', 'hello']) check(df) df['foo2'] = 7. expected = DataFrame([[1, 1, 1., 5, 7.], [1, 1, 2., 5, 7.], [2, 1, 3., 5, 7.]], columns=['foo', 'bar', 'foo', 'hello', 'foo2']) check(df, expected) result = df['foo'] expected = DataFrame([[1, 1.], [1, 2.], [2, 3.]], columns=['foo', 'foo']) check(result, expected) # multiple replacements df['foo'] = 'string' expected = DataFrame([['string', 1, 'string', 5, 7.], ['string', 1, 'string', 5, 7.], ['string', 1, 'string', 5, 7.]], columns=['foo', 'bar', 'foo', 'hello', 'foo2']) check(df, expected) del df['foo'] expected = DataFrame([[1, 5, 7.], [1, 5, 7.], [1, 5, 7.]], columns=[ 'bar', 'hello', 'foo2']) check(df, expected) # values df = DataFrame([[1, 2.5], [3, 4.5]], index=[1, 2], columns=['x', 'x']) result = df.values expected = np.array([[1, 2.5], [3, 4.5]]) assert (result == expected).all().all() # rename, GH 4403 df4 = DataFrame( {'RT': [0.0454], 'TClose': [22.02], 'TExg': [0.0422]}, index=MultiIndex.from_tuples([(600809, 20130331)], names=['STK_ID', 'RPT_Date'])) df5 = DataFrame({'RPT_Date': [20120930, 20121231, 20130331], 'STK_ID': [600809] * 3, 'STK_Name': [u('饡驦'), u('饡驦'), u('饡驦')], 'TClose': [38.05, 41.66, 30.01]}, index=MultiIndex.from_tuples( [(600809, 20120930), (600809, 20121231), (600809, 20130331)], names=['STK_ID', 'RPT_Date'])) k = pd.merge(df4, df5, how='inner', left_index=True, right_index=True) result = k.rename( columns={'TClose_x': 'TClose', 'TClose_y': 'QT_Close'}) str(result) result.dtypes expected = (DataFrame([[0.0454, 22.02, 0.0422, 20130331, 600809, u('饡驦'), 30.01]], columns=['RT', 'TClose', 'TExg', 'RPT_Date', 'STK_ID', 'STK_Name', 'QT_Close']) .set_index(['STK_ID', 'RPT_Date'], drop=False)) assert_frame_equal(result, expected) # reindex is invalid! df = DataFrame([[1, 5, 7.], [1, 5, 7.], [1, 5, 7.]], columns=['bar', 'a', 'a']) pytest.raises(ValueError, df.reindex, columns=['bar']) pytest.raises(ValueError, df.reindex, columns=['bar', 'foo']) # drop df = DataFrame([[1, 5, 7.], [1, 5, 7.], [1, 5, 7.]], columns=['bar', 'a', 'a']) result = df.drop(['a'], axis=1) expected = DataFrame([[1], [1], [1]], columns=['bar']) check(result, expected) result = df.drop('a', axis=1) check(result, expected) # describe df = DataFrame([[1, 1, 1], [2, 2, 2], [3, 3, 3]], columns=['bar', 'a', 'a'], dtype='float64') result = df.describe() s = df.iloc[:, 0].describe() expected = pd.concat([s, s, s], keys=df.columns, axis=1) check(result, expected) # check column dups with index equal and not equal to df's index df = DataFrame(np.random.randn(5, 3), index=['a', 'b', 'c', 'd', 'e'], columns=['A', 'B', 'A']) for index in [df.index, pd.Index(list('edcba'))]: this_df = df.copy() expected_ser = pd.Series(index.values, index=this_df.index) expected_df = DataFrame({'A': expected_ser, 'B': this_df['B'], 'A': expected_ser}, columns=['A', 'B', 'A']) this_df['A'] = index check(this_df, expected_df) # operations for op in ['__add__', '__mul__', '__sub__', '__truediv__']: df = DataFrame(dict(A=np.arange(10), B=np.random.rand(10))) expected = getattr(df, op)(df) expected.columns = ['A', 'A'] df.columns = ['A', 'A'] result = getattr(df, op)(df) check(result, expected) # multiple assignments that change dtypes # the location indexer is a slice # GH 6120 df = DataFrame(np.random.randn(5, 2), columns=['that', 'that']) expected = DataFrame(1.0, index=range(5), columns=['that', 'that']) df['that'] = 1.0 check(df, expected) df = DataFrame(np.random.rand(5, 2), columns=['that', 'that']) expected = DataFrame(1, index=range(5), columns=['that', 'that']) df['that'] = 1 check(df, expected) def test_column_dups2(self): # drop buggy GH 6240 df = DataFrame({'A': np.random.randn(5), 'B': np.random.randn(5), 'C': np.random.randn(5), 'D': ['a', 'b', 'c', 'd', 'e']}) expected = df.take([0, 1, 1], axis=1) df2 = df.take([2, 0, 1, 2, 1], axis=1) result = df2.drop('C', axis=1) assert_frame_equal(result, expected) # dropna df = DataFrame({'A': np.random.randn(5), 'B': np.random.randn(5), 'C': np.random.randn(5), 'D': ['a', 'b', 'c', 'd', 'e']}) df.iloc[2, [0, 1, 2]] = np.nan df.iloc[0, 0] = np.nan df.iloc[1, 1] = np.nan df.iloc[:, 3] = np.nan expected = df.dropna(subset=['A', 'B', 'C'], how='all') expected.columns = ['A', 'A', 'B', 'C'] df.columns = ['A', 'A', 'B', 'C'] result = df.dropna(subset=['A', 'C'], how='all') assert_frame_equal(result, expected) def test_column_dups_indexing(self): def check(result, expected=None): if expected is not None: assert_frame_equal(result, expected) result.dtypes str(result) # boolean indexing # GH 4879 dups = ['A', 'A', 'C', 'D'] df = DataFrame(np.arange(12).reshape(3, 4), columns=[ 'A', 'B', 'C', 'D'], dtype='float64') expected = df[df.C > 6] expected.columns = dups df = DataFrame(np.arange(12).reshape(3, 4), columns=dups, dtype='float64') result = df[df.C > 6] check(result, expected) # where df = DataFrame(np.arange(12).reshape(3, 4), columns=[ 'A', 'B', 'C', 'D'], dtype='float64') expected = df[df > 6] expected.columns = dups df = DataFrame(np.arange(12).reshape(3, 4), columns=dups, dtype='float64') result = df[df > 6] check(result, expected) # boolean with the duplicate raises df = DataFrame(np.arange(12).reshape(3, 4), columns=dups, dtype='float64') pytest.raises(ValueError, lambda: df[df.A > 6]) # dup aligining operations should work # GH 5185 df1 = DataFrame([1, 2, 3, 4, 5], index=[1, 2, 1, 2, 3]) df2 = DataFrame([1, 2, 3], index=[1, 2, 3]) expected = DataFrame([0, 2, 0, 2, 2], index=[1, 1, 2, 2, 3]) result = df1.sub(df2) assert_frame_equal(result, expected) # equality df1 = DataFrame([[1, 2], [2, np.nan], [3, 4], [4, 4]], columns=['A', 'B']) df2 = DataFrame([[0, 1], [2, 4], [2, np.nan], [4, 5]], columns=['A', 'A']) # not-comparing like-labelled pytest.raises(ValueError, lambda: df1 == df2) df1r = df1.reindex_like(df2) result = df1r == df2 expected = DataFrame([[False, True], [True, False], [False, False], [ True, False]], columns=['A', 'A']) assert_frame_equal(result, expected) # mixed column selection # GH 5639 dfbool = DataFrame({'one': Series([True, True, False], index=['a', 'b', 'c']), 'two': Series([False, False, True, False], index=['a', 'b', 'c', 'd']), 'three': Series([False, True, True, True], index=['a', 'b', 'c', 'd'])}) expected = pd.concat( [dfbool['one'], dfbool['three'], dfbool['one']], axis=1) result = dfbool[['one', 'three', 'one']] check(result, expected) # multi-axis dups # GH 6121 df = DataFrame(np.arange(25.).reshape(5, 5), index=['a', 'b', 'c', 'd', 'e'], columns=['A', 'B', 'C', 'D', 'E']) z = df[['A', 'C', 'A']].copy() expected = z.loc[['a', 'c', 'a']] df = DataFrame(np.arange(25.).reshape(5, 5), index=['a', 'b', 'c', 'd', 'e'], columns=['A', 'B', 'C', 'D', 'E']) z = df[['A', 'C', 'A']] result = z.loc[['a', 'c', 'a']] check(result, expected) def test_column_dups_indexing2(self): # GH 8363 # datetime ops with a non-unique index df = DataFrame({'A': np.arange(5, dtype='int64'), 'B': np.arange(1, 6, dtype='int64')}, index=[2, 2, 3, 3, 4]) result = df.B - df.A expected = Series(1, index=[2, 2, 3, 3, 4]) assert_series_equal(result, expected) df = DataFrame({'A': date_range('20130101', periods=5), 'B': date_range('20130101 09:00:00', periods=5)}, index=[2, 2, 3, 3, 4]) result = df.B - df.A expected = Series(pd.Timedelta('9 hours'), index=[2, 2, 3, 3, 4]) assert_series_equal(result, expected) def test_columns_with_dups(self): # GH 3468 related # basic df = DataFrame([[1, 2]], columns=['a', 'a']) df.columns = ['a', 'a.1'] str(df) expected = DataFrame([[1, 2]], columns=['a', 'a.1']) assert_frame_equal(df, expected) df = DataFrame([[1, 2, 3]], columns=['b', 'a', 'a']) df.columns = ['b', 'a', 'a.1'] str(df) expected = DataFrame([[1, 2, 3]], columns=['b', 'a', 'a.1']) assert_frame_equal(df, expected) # with a dup index df = DataFrame([[1, 2]], columns=['a', 'a']) df.columns = ['b', 'b'] str(df) expected = DataFrame([[1, 2]], columns=['b', 'b']) assert_frame_equal(df, expected) # multi-dtype df = DataFrame([[1, 2, 1., 2., 3., 'foo', 'bar']], columns=['a', 'a', 'b', 'b', 'd', 'c', 'c']) df.columns = list('ABCDEFG') str(df) expected = DataFrame( [[1, 2, 1., 2., 3., 'foo', 'bar']], columns=list('ABCDEFG')) assert_frame_equal(df, expected) # this is an error because we cannot disambiguate the dup columns pytest.raises(Exception, lambda x: DataFrame( [[1, 2, 'foo', 'bar']], columns=['a', 'a', 'a', 'a'])) # dups across blocks df_float = DataFrame(np.random.randn(10, 3), dtype='float64') df_int = DataFrame(np.random.randn(10, 3), dtype='int64') df_bool = DataFrame(True, index=df_float.index, columns=df_float.columns) df_object = DataFrame('foo', index=df_float.index, columns=df_float.columns) df_dt = DataFrame(pd.Timestamp('20010101'), index=df_float.index, columns=df_float.columns) df = pd.concat([df_float, df_int, df_bool, df_object, df_dt], axis=1) assert len(df._data._blknos) == len(df.columns) assert len(df._data._blklocs) == len(df.columns) # testing iloc for i in range(len(df.columns)): df.iloc[:, i] # dup columns across dtype GH 2079/2194 vals = [[1, -1, 2.], [2, -2, 3.]] rs = DataFrame(vals, columns=['A', 'A', 'B']) xp = DataFrame(vals) xp.columns = ['A', 'A', 'B'] assert_frame_equal(rs, xp) def test_values_duplicates(self): df = DataFrame([[1, 2, 'a', 'b'], [1, 2, 'a', 'b']], columns=['one', 'one', 'two', 'two']) result = df.values expected = np.array([[1, 2, 'a', 'b'], [1, 2, 'a', 'b']], dtype=object) tm.assert_numpy_array_equal(result, expected) def test_set_value_by_index(self): # See gh-12344 df = DataFrame(np.arange(9).reshape(3, 3).T) df.columns = list('AAA') expected = df.iloc[:, 2] df.iloc[:, 0] = 3 assert_series_equal(df.iloc[:, 2], expected) df = DataFrame(np.arange(9).reshape(3, 3).T) df.columns = [2, float(2), str(2)] expected = df.iloc[:, 1] df.iloc[:, 0] = 3 assert_series_equal(df.iloc[:, 1], expected) def test_insert_with_columns_dups(self): # GH 14291 df = pd.DataFrame() df.insert(0, 'A', ['g', 'h', 'i'], allow_duplicates=True) df.insert(0, 'A', ['d', 'e', 'f'], allow_duplicates=True) df.insert(0, 'A', ['a', 'b', 'c'], allow_duplicates=True) exp = pd.DataFrame([['a', 'd', 'g'], ['b', 'e', 'h'], ['c', 'f', 'i']], columns=['A', 'A', 'A']) assert_frame_equal(df, exp)
bsd-3-clause
caseyclements/bokeh
examples/compat/mpl/listcollection.py
34
1602
from matplotlib.collections import LineCollection import matplotlib.pyplot as plt import numpy as np from bokeh import mpl from bokeh.plotting import output_file, show def make_segments(x, y): ''' Create list of line segments from x and y coordinates. ''' points = np.array([x, y]).T.reshape(-1, 1, 2) segments = np.concatenate([points[:-1], points[1:]], axis=1) return segments def colorline(x, y, colors=None, linewidth=3, alpha=1.0): ''' Plot a line with segments. Optionally, specify segments colors and segments widths. ''' # Make a list of colors cycling through the rgbcmyk series. # You have several ways to input the colors: # colors = ['r','g','b','c','y','m','k'] # colors = ['red','green','blue','cyan','yellow','magenta','black'] # colors = ['#ff0000', '#008000', '#0000ff', '#00bfbf', '#bfbf00', '#bf00bf', '#000000'] # colors = [(1.0, 0.0, 0.0, 1.0), (0.0, 0.5, 0.0, 1.0), (0.0, 0.0, 1.0, 1.0), (0.0, 0.75, 0.75, 1.0), # (0.75, 0.75, 0, 1.0), (0.75, 0, 0.75, 1.0), (0.0, 0.0, 0.0, 1.0)] colors = ['r', 'g', 'b', 'c', 'y', 'm', 'k'] widths = [5, 10, 20, 40, 20, 10, 5] segments = make_segments(x, y) lc = LineCollection(segments, colors=colors, linewidth=widths, alpha=alpha) ax = plt.gca() ax.add_collection(lc) return lc # Colored sine wave x = np.linspace(0, 4 * np.pi, 100) y = np.sin(x) colorline(x, y) plt.title("MPL support for ListCollection in Bokeh") plt.xlim(x.min(), x.max()) plt.ylim(-1.0, 1.0) output_file("listcollection.html") show(mpl.to_bokeh())
bsd-3-clause
cybernet14/scikit-learn
examples/covariance/plot_lw_vs_oas.py
248
2903
""" ============================= Ledoit-Wolf vs OAS estimation ============================= The usual covariance maximum likelihood estimate can be regularized using shrinkage. Ledoit and Wolf proposed a close formula to compute the asymptotically optimal shrinkage parameter (minimizing a MSE criterion), yielding the Ledoit-Wolf covariance estimate. Chen et al. proposed an improvement of the Ledoit-Wolf shrinkage parameter, the OAS coefficient, whose convergence is significantly better under the assumption that the data are Gaussian. This example, inspired from Chen's publication [1], shows a comparison of the estimated MSE of the LW and OAS methods, using Gaussian distributed data. [1] "Shrinkage Algorithms for MMSE Covariance Estimation" Chen et al., IEEE Trans. on Sign. Proc., Volume 58, Issue 10, October 2010. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from scipy.linalg import toeplitz, cholesky from sklearn.covariance import LedoitWolf, OAS np.random.seed(0) ############################################################################### n_features = 100 # simulation covariance matrix (AR(1) process) r = 0.1 real_cov = toeplitz(r ** np.arange(n_features)) coloring_matrix = cholesky(real_cov) n_samples_range = np.arange(6, 31, 1) repeat = 100 lw_mse = np.zeros((n_samples_range.size, repeat)) oa_mse = np.zeros((n_samples_range.size, repeat)) lw_shrinkage = np.zeros((n_samples_range.size, repeat)) oa_shrinkage = np.zeros((n_samples_range.size, repeat)) for i, n_samples in enumerate(n_samples_range): for j in range(repeat): X = np.dot( np.random.normal(size=(n_samples, n_features)), coloring_matrix.T) lw = LedoitWolf(store_precision=False, assume_centered=True) lw.fit(X) lw_mse[i, j] = lw.error_norm(real_cov, scaling=False) lw_shrinkage[i, j] = lw.shrinkage_ oa = OAS(store_precision=False, assume_centered=True) oa.fit(X) oa_mse[i, j] = oa.error_norm(real_cov, scaling=False) oa_shrinkage[i, j] = oa.shrinkage_ # plot MSE plt.subplot(2, 1, 1) plt.errorbar(n_samples_range, lw_mse.mean(1), yerr=lw_mse.std(1), label='Ledoit-Wolf', color='g') plt.errorbar(n_samples_range, oa_mse.mean(1), yerr=oa_mse.std(1), label='OAS', color='r') plt.ylabel("Squared error") plt.legend(loc="upper right") plt.title("Comparison of covariance estimators") plt.xlim(5, 31) # plot shrinkage coefficient plt.subplot(2, 1, 2) plt.errorbar(n_samples_range, lw_shrinkage.mean(1), yerr=lw_shrinkage.std(1), label='Ledoit-Wolf', color='g') plt.errorbar(n_samples_range, oa_shrinkage.mean(1), yerr=oa_shrinkage.std(1), label='OAS', color='r') plt.xlabel("n_samples") plt.ylabel("Shrinkage") plt.legend(loc="lower right") plt.ylim(plt.ylim()[0], 1. + (plt.ylim()[1] - plt.ylim()[0]) / 10.) plt.xlim(5, 31) plt.show()
bsd-3-clause
CVML/scikit-learn
sklearn/cluster/tests/test_bicluster.py
226
9457
"""Testing for Spectral Biclustering methods""" import numpy as np from scipy.sparse import csr_matrix, issparse from sklearn.grid_search import ParameterGrid from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_true from sklearn.utils.testing import SkipTest from sklearn.base import BaseEstimator, BiclusterMixin from sklearn.cluster.bicluster import SpectralCoclustering from sklearn.cluster.bicluster import SpectralBiclustering from sklearn.cluster.bicluster import _scale_normalize from sklearn.cluster.bicluster import _bistochastic_normalize from sklearn.cluster.bicluster import _log_normalize from sklearn.metrics import consensus_score from sklearn.datasets import make_biclusters, make_checkerboard class MockBiclustering(BaseEstimator, BiclusterMixin): # Mock object for testing get_submatrix. def __init__(self): pass def get_indices(self, i): # Overridden to reproduce old get_submatrix test. return (np.where([True, True, False, False, True])[0], np.where([False, False, True, True])[0]) def test_get_submatrix(): data = np.arange(20).reshape(5, 4) model = MockBiclustering() for X in (data, csr_matrix(data), data.tolist()): submatrix = model.get_submatrix(0, X) if issparse(submatrix): submatrix = submatrix.toarray() assert_array_equal(submatrix, [[2, 3], [6, 7], [18, 19]]) submatrix[:] = -1 if issparse(X): X = X.toarray() assert_true(np.all(X != -1)) def _test_shape_indices(model): # Test get_shape and get_indices on fitted model. for i in range(model.n_clusters): m, n = model.get_shape(i) i_ind, j_ind = model.get_indices(i) assert_equal(len(i_ind), m) assert_equal(len(j_ind), n) def test_spectral_coclustering(): # Test Dhillon's Spectral CoClustering on a simple problem. param_grid = {'svd_method': ['randomized', 'arpack'], 'n_svd_vecs': [None, 20], 'mini_batch': [False, True], 'init': ['k-means++'], 'n_init': [10], 'n_jobs': [1]} random_state = 0 S, rows, cols = make_biclusters((30, 30), 3, noise=0.5, random_state=random_state) S -= S.min() # needs to be nonnegative before making it sparse S = np.where(S < 1, 0, S) # threshold some values for mat in (S, csr_matrix(S)): for kwargs in ParameterGrid(param_grid): model = SpectralCoclustering(n_clusters=3, random_state=random_state, **kwargs) model.fit(mat) assert_equal(model.rows_.shape, (3, 30)) assert_array_equal(model.rows_.sum(axis=0), np.ones(30)) assert_array_equal(model.columns_.sum(axis=0), np.ones(30)) assert_equal(consensus_score(model.biclusters_, (rows, cols)), 1) _test_shape_indices(model) def test_spectral_biclustering(): # Test Kluger methods on a checkerboard dataset. S, rows, cols = make_checkerboard((30, 30), 3, noise=0.5, random_state=0) non_default_params = {'method': ['scale', 'log'], 'svd_method': ['arpack'], 'n_svd_vecs': [20], 'mini_batch': [True]} for mat in (S, csr_matrix(S)): for param_name, param_values in non_default_params.items(): for param_value in param_values: model = SpectralBiclustering( n_clusters=3, n_init=3, init='k-means++', random_state=0, ) model.set_params(**dict([(param_name, param_value)])) if issparse(mat) and model.get_params().get('method') == 'log': # cannot take log of sparse matrix assert_raises(ValueError, model.fit, mat) continue else: model.fit(mat) assert_equal(model.rows_.shape, (9, 30)) assert_equal(model.columns_.shape, (9, 30)) assert_array_equal(model.rows_.sum(axis=0), np.repeat(3, 30)) assert_array_equal(model.columns_.sum(axis=0), np.repeat(3, 30)) assert_equal(consensus_score(model.biclusters_, (rows, cols)), 1) _test_shape_indices(model) def _do_scale_test(scaled): """Check that rows sum to one constant, and columns to another.""" row_sum = scaled.sum(axis=1) col_sum = scaled.sum(axis=0) if issparse(scaled): row_sum = np.asarray(row_sum).squeeze() col_sum = np.asarray(col_sum).squeeze() assert_array_almost_equal(row_sum, np.tile(row_sum.mean(), 100), decimal=1) assert_array_almost_equal(col_sum, np.tile(col_sum.mean(), 100), decimal=1) def _do_bistochastic_test(scaled): """Check that rows and columns sum to the same constant.""" _do_scale_test(scaled) assert_almost_equal(scaled.sum(axis=0).mean(), scaled.sum(axis=1).mean(), decimal=1) def test_scale_normalize(): generator = np.random.RandomState(0) X = generator.rand(100, 100) for mat in (X, csr_matrix(X)): scaled, _, _ = _scale_normalize(mat) _do_scale_test(scaled) if issparse(mat): assert issparse(scaled) def test_bistochastic_normalize(): generator = np.random.RandomState(0) X = generator.rand(100, 100) for mat in (X, csr_matrix(X)): scaled = _bistochastic_normalize(mat) _do_bistochastic_test(scaled) if issparse(mat): assert issparse(scaled) def test_log_normalize(): # adding any constant to a log-scaled matrix should make it # bistochastic generator = np.random.RandomState(0) mat = generator.rand(100, 100) scaled = _log_normalize(mat) + 1 _do_bistochastic_test(scaled) def test_fit_best_piecewise(): model = SpectralBiclustering(random_state=0) vectors = np.array([[0, 0, 0, 1, 1, 1], [2, 2, 2, 3, 3, 3], [0, 1, 2, 3, 4, 5]]) best = model._fit_best_piecewise(vectors, n_best=2, n_clusters=2) assert_array_equal(best, vectors[:2]) def test_project_and_cluster(): model = SpectralBiclustering(random_state=0) data = np.array([[1, 1, 1], [1, 1, 1], [3, 6, 3], [3, 6, 3]]) vectors = np.array([[1, 0], [0, 1], [0, 0]]) for mat in (data, csr_matrix(data)): labels = model._project_and_cluster(data, vectors, n_clusters=2) assert_array_equal(labels, [0, 0, 1, 1]) def test_perfect_checkerboard(): raise SkipTest("This test is failing on the buildbot, but cannot" " reproduce. Temporarily disabling it until it can be" " reproduced and fixed.") model = SpectralBiclustering(3, svd_method="arpack", random_state=0) S, rows, cols = make_checkerboard((30, 30), 3, noise=0, random_state=0) model.fit(S) assert_equal(consensus_score(model.biclusters_, (rows, cols)), 1) S, rows, cols = make_checkerboard((40, 30), 3, noise=0, random_state=0) model.fit(S) assert_equal(consensus_score(model.biclusters_, (rows, cols)), 1) S, rows, cols = make_checkerboard((30, 40), 3, noise=0, random_state=0) model.fit(S) assert_equal(consensus_score(model.biclusters_, (rows, cols)), 1) def test_errors(): data = np.arange(25).reshape((5, 5)) model = SpectralBiclustering(n_clusters=(3, 3, 3)) assert_raises(ValueError, model.fit, data) model = SpectralBiclustering(n_clusters='abc') assert_raises(ValueError, model.fit, data) model = SpectralBiclustering(n_clusters=(3, 'abc')) assert_raises(ValueError, model.fit, data) model = SpectralBiclustering(method='unknown') assert_raises(ValueError, model.fit, data) model = SpectralBiclustering(svd_method='unknown') assert_raises(ValueError, model.fit, data) model = SpectralBiclustering(n_components=0) assert_raises(ValueError, model.fit, data) model = SpectralBiclustering(n_best=0) assert_raises(ValueError, model.fit, data) model = SpectralBiclustering(n_components=3, n_best=4) assert_raises(ValueError, model.fit, data) model = SpectralBiclustering() data = np.arange(27).reshape((3, 3, 3)) assert_raises(ValueError, model.fit, data)
bsd-3-clause
gfyoung/pandas
pandas/tests/series/methods/test_shift.py
3
13266
import numpy as np import pytest from pandas.errors import NullFrequencyError import pandas as pd from pandas import ( DatetimeIndex, Index, NaT, Series, TimedeltaIndex, date_range, offsets, ) import pandas._testing as tm from pandas.tseries.offsets import BDay class TestShift: @pytest.mark.parametrize( "ser", [ Series([np.arange(5)]), date_range("1/1/2011", periods=24, freq="H"), Series(range(5), index=date_range("2017", periods=5)), ], ) @pytest.mark.parametrize("shift_size", [0, 1, 2]) def test_shift_always_copy(self, ser, shift_size): # GH22397 assert ser.shift(shift_size) is not ser @pytest.mark.parametrize("move_by_freq", [pd.Timedelta("1D"), pd.Timedelta("1min")]) def test_datetime_shift_always_copy(self, move_by_freq): # GH#22397 ser = Series(range(5), index=date_range("2017", periods=5)) assert ser.shift(freq=move_by_freq) is not ser def test_shift(self, datetime_series): shifted = datetime_series.shift(1) unshifted = shifted.shift(-1) tm.assert_index_equal(shifted.index, datetime_series.index) tm.assert_index_equal(unshifted.index, datetime_series.index) tm.assert_numpy_array_equal( unshifted.dropna().values, datetime_series.values[:-1] ) offset = BDay() shifted = datetime_series.shift(1, freq=offset) unshifted = shifted.shift(-1, freq=offset) tm.assert_series_equal(unshifted, datetime_series) unshifted = datetime_series.shift(0, freq=offset) tm.assert_series_equal(unshifted, datetime_series) shifted = datetime_series.shift(1, freq="B") unshifted = shifted.shift(-1, freq="B") tm.assert_series_equal(unshifted, datetime_series) # corner case unshifted = datetime_series.shift(0) tm.assert_series_equal(unshifted, datetime_series) # Shifting with PeriodIndex ps = tm.makePeriodSeries() shifted = ps.shift(1) unshifted = shifted.shift(-1) tm.assert_index_equal(shifted.index, ps.index) tm.assert_index_equal(unshifted.index, ps.index) tm.assert_numpy_array_equal(unshifted.dropna().values, ps.values[:-1]) shifted2 = ps.shift(1, "B") shifted3 = ps.shift(1, BDay()) tm.assert_series_equal(shifted2, shifted3) tm.assert_series_equal(ps, shifted2.shift(-1, "B")) msg = "Given freq D does not match PeriodIndex freq B" with pytest.raises(ValueError, match=msg): ps.shift(freq="D") # legacy support shifted4 = ps.shift(1, freq="B") tm.assert_series_equal(shifted2, shifted4) shifted5 = ps.shift(1, freq=BDay()) tm.assert_series_equal(shifted5, shifted4) # 32-bit taking # GH#8129 index = date_range("2000-01-01", periods=5) for dtype in ["int32", "int64"]: s1 = Series(np.arange(5, dtype=dtype), index=index) p = s1.iloc[1] result = s1.shift(periods=p) expected = Series([np.nan, 0, 1, 2, 3], index=index) tm.assert_series_equal(result, expected) # GH#8260 # with tz s = Series( date_range("2000-01-01 09:00:00", periods=5, tz="US/Eastern"), name="foo" ) result = s - s.shift() exp = Series(TimedeltaIndex(["NaT"] + ["1 days"] * 4), name="foo") tm.assert_series_equal(result, exp) # incompat tz s2 = Series(date_range("2000-01-01 09:00:00", periods=5, tz="CET"), name="foo") msg = "DatetimeArray subtraction must have the same timezones or no timezones" with pytest.raises(TypeError, match=msg): s - s2 def test_shift2(self): ts = Series( np.random.randn(5), index=date_range("1/1/2000", periods=5, freq="H") ) result = ts.shift(1, freq="5T") exp_index = ts.index.shift(1, freq="5T") tm.assert_index_equal(result.index, exp_index) # GH#1063, multiple of same base result = ts.shift(1, freq="4H") exp_index = ts.index + offsets.Hour(4) tm.assert_index_equal(result.index, exp_index) idx = DatetimeIndex(["2000-01-01", "2000-01-02", "2000-01-04"]) msg = "Cannot shift with no freq" with pytest.raises(NullFrequencyError, match=msg): idx.shift(1) def test_shift_fill_value(self): # GH#24128 ts = Series( [1.0, 2.0, 3.0, 4.0, 5.0], index=date_range("1/1/2000", periods=5, freq="H") ) exp = Series( [0.0, 1.0, 2.0, 3.0, 4.0], index=date_range("1/1/2000", periods=5, freq="H") ) # check that fill value works result = ts.shift(1, fill_value=0.0) tm.assert_series_equal(result, exp) exp = Series( [0.0, 0.0, 1.0, 2.0, 3.0], index=date_range("1/1/2000", periods=5, freq="H") ) result = ts.shift(2, fill_value=0.0) tm.assert_series_equal(result, exp) ts = Series([1, 2, 3]) res = ts.shift(2, fill_value=0) assert res.dtype == ts.dtype def test_shift_categorical_fill_value(self): ts = Series(["a", "b", "c", "d"], dtype="category") res = ts.shift(1, fill_value="a") expected = Series( pd.Categorical( ["a", "a", "b", "c"], categories=["a", "b", "c", "d"], ordered=False ) ) tm.assert_equal(res, expected) # check for incorrect fill_value msg = "'fill_value=f' is not present in this Categorical's categories" with pytest.raises(TypeError, match=msg): ts.shift(1, fill_value="f") def test_shift_dst(self): # GH#13926 dates = date_range("2016-11-06", freq="H", periods=10, tz="US/Eastern") s = Series(dates) res = s.shift(0) tm.assert_series_equal(res, s) assert res.dtype == "datetime64[ns, US/Eastern]" res = s.shift(1) exp_vals = [NaT] + dates.astype(object).values.tolist()[:9] exp = Series(exp_vals) tm.assert_series_equal(res, exp) assert res.dtype == "datetime64[ns, US/Eastern]" res = s.shift(-2) exp_vals = dates.astype(object).values.tolist()[2:] + [NaT, NaT] exp = Series(exp_vals) tm.assert_series_equal(res, exp) assert res.dtype == "datetime64[ns, US/Eastern]" for ex in [10, -10, 20, -20]: res = s.shift(ex) exp = Series([NaT] * 10, dtype="datetime64[ns, US/Eastern]") tm.assert_series_equal(res, exp) assert res.dtype == "datetime64[ns, US/Eastern]" @pytest.mark.filterwarnings("ignore:tshift is deprecated:FutureWarning") def test_tshift(self, datetime_series): # TODO: remove this test when tshift deprecation is enforced # PeriodIndex ps = tm.makePeriodSeries() shifted = ps.tshift(1) unshifted = shifted.tshift(-1) tm.assert_series_equal(unshifted, ps) shifted2 = ps.tshift(freq="B") tm.assert_series_equal(shifted, shifted2) shifted3 = ps.tshift(freq=BDay()) tm.assert_series_equal(shifted, shifted3) msg = "Given freq M does not match PeriodIndex freq B" with pytest.raises(ValueError, match=msg): ps.tshift(freq="M") # DatetimeIndex shifted = datetime_series.tshift(1) unshifted = shifted.tshift(-1) tm.assert_series_equal(datetime_series, unshifted) shifted2 = datetime_series.tshift(freq=datetime_series.index.freq) tm.assert_series_equal(shifted, shifted2) inferred_ts = Series( datetime_series.values, Index(np.asarray(datetime_series.index)), name="ts" ) shifted = inferred_ts.tshift(1) expected = datetime_series.tshift(1) expected.index = expected.index._with_freq(None) tm.assert_series_equal(shifted, expected) unshifted = shifted.tshift(-1) tm.assert_series_equal(unshifted, inferred_ts) no_freq = datetime_series[[0, 5, 7]] msg = "Freq was not set in the index hence cannot be inferred" with pytest.raises(ValueError, match=msg): no_freq.tshift() def test_tshift_deprecated(self, datetime_series): # GH#11631 with tm.assert_produces_warning(FutureWarning): datetime_series.tshift() def test_period_index_series_shift_with_freq(self): ps = tm.makePeriodSeries() shifted = ps.shift(1, freq="infer") unshifted = shifted.shift(-1, freq="infer") tm.assert_series_equal(unshifted, ps) shifted2 = ps.shift(freq="B") tm.assert_series_equal(shifted, shifted2) shifted3 = ps.shift(freq=BDay()) tm.assert_series_equal(shifted, shifted3) def test_datetime_series_shift_with_freq(self, datetime_series): shifted = datetime_series.shift(1, freq="infer") unshifted = shifted.shift(-1, freq="infer") tm.assert_series_equal(datetime_series, unshifted) shifted2 = datetime_series.shift(freq=datetime_series.index.freq) tm.assert_series_equal(shifted, shifted2) inferred_ts = Series( datetime_series.values, Index(np.asarray(datetime_series.index)), name="ts" ) shifted = inferred_ts.shift(1, freq="infer") expected = datetime_series.shift(1, freq="infer") expected.index = expected.index._with_freq(None) tm.assert_series_equal(shifted, expected) unshifted = shifted.shift(-1, freq="infer") tm.assert_series_equal(unshifted, inferred_ts) def test_period_index_series_shift_with_freq_error(self): ps = tm.makePeriodSeries() msg = "Given freq M does not match PeriodIndex freq B" with pytest.raises(ValueError, match=msg): ps.shift(freq="M") def test_datetime_series_shift_with_freq_error(self, datetime_series): no_freq = datetime_series[[0, 5, 7]] msg = "Freq was not set in the index hence cannot be inferred" with pytest.raises(ValueError, match=msg): no_freq.shift(freq="infer") def test_shift_int(self, datetime_series): ts = datetime_series.astype(int) shifted = ts.shift(1) expected = ts.astype(float).shift(1) tm.assert_series_equal(shifted, expected) def test_shift_object_non_scalar_fill(self): # shift requires scalar fill_value except for object dtype ser = Series(range(3)) with pytest.raises(ValueError, match="fill_value must be a scalar"): ser.shift(1, fill_value=[]) df = ser.to_frame() with pytest.raises(ValueError, match="fill_value must be a scalar"): df.shift(1, fill_value=np.arange(3)) obj_ser = ser.astype(object) result = obj_ser.shift(1, fill_value={}) assert result[0] == {} obj_df = obj_ser.to_frame() result = obj_df.shift(1, fill_value={}) assert result.iloc[0, 0] == {} def test_shift_categorical(self): # GH#9416 s = Series(["a", "b", "c", "d"], dtype="category") tm.assert_series_equal(s.iloc[:-1], s.shift(1).shift(-1).dropna()) sp1 = s.shift(1) tm.assert_index_equal(s.index, sp1.index) assert np.all(sp1.values.codes[:1] == -1) assert np.all(s.values.codes[:-1] == sp1.values.codes[1:]) sn2 = s.shift(-2) tm.assert_index_equal(s.index, sn2.index) assert np.all(sn2.values.codes[-2:] == -1) assert np.all(s.values.codes[2:] == sn2.values.codes[:-2]) tm.assert_index_equal(s.values.categories, sp1.values.categories) tm.assert_index_equal(s.values.categories, sn2.values.categories) def test_shift_dt64values_int_fill_deprecated(self): # GH#31971 ser = Series([pd.Timestamp("2020-01-01"), pd.Timestamp("2020-01-02")]) with tm.assert_produces_warning(FutureWarning): result = ser.shift(1, fill_value=0) expected = Series([pd.Timestamp(0), ser[0]]) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("periods", [1, 2, 3, 4]) def test_shift_preserve_freqstr(self, periods): # GH#21275 ser = Series( range(periods), index=pd.date_range("2016-1-1 00:00:00", periods=periods, freq="H"), ) result = ser.shift(1, "2H") expected = Series( range(periods), index=pd.date_range("2016-1-1 02:00:00", periods=periods, freq="H"), ) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "input_data, output_data", [(np.empty(shape=(0,)), []), (np.ones(shape=(2,)), [np.nan, 1.0])], ) def test_shift_non_writable_array(self, input_data, output_data): # GH21049 Verify whether non writable numpy array is shiftable input_data.setflags(write=False) result = Series(input_data).shift(1) expected = Series(output_data, dtype="float64") tm.assert_series_equal(result, expected)
bsd-3-clause
kknox/rocBLAS
clients/benchmarks/perf_script/plotPerformance.py
3
1743
# ######################################################################## # Copyright 2016 Advanced Micro Devices, Inc. # # ######################################################################## # to use this script, you will need to download and install the 32-BIT VERSION of: # - Python 2.7 x86 (32-bit) - http://www.python.org/download/releases/2.7.1 # # you will also need the 32-BIT VERSIONS of the following packages as not all the packages are available in 64bit at the time of this writing # The ActiveState python distribution is recommended for windows # (make sure to get the python 2.7-compatible packages): # - NumPy 1.5.1 (32-bit, 64-bit unofficial, supports Python 2.4 - 2.7 and 3.1 - 3.2.) - http://sourceforge.net/projects/numpy/files/NumPy/ # - matplotlib 1.0.1 (32-bit & 64-bit, supports Python 2.4 - 2.7) - http://sourceforge.net/projects/matplotlib/files/matplotlib/ # # For ActiveState Python, all that one should need to type is 'pypm install matplotlib' import datetime import sys import argparse import subprocess import itertools import os import matplotlib.pyplot as plt import pylab from matplotlib.backends.backend_pdf import PdfPages os.system( "grep NT sgemm.txt > sgemm_NT.csv" ) input = open ('sgemm_NT.csv', 'r') x = [] y = [] shape = '' for line in input: line = line.replace("(", ",") line = line.replace(")", ",") value = line.split(',') x.append(value[1]) y.append(value[7]) shape = value[0] #print value f = plt.figure() plt.rcParams.update({'font.size':20}) plt.xlabel('M=N=K') plt.ylabel("Gflop/s") plt.title('rocBLAS SGEMM ' + shape) plt.yticks() plt.grid(True) plt.legend( loc = 2) plot1 = plt.plot(x, y) f.savefig("sgemm.pdf", bbox_inches='tight') input.close()
mit
soumyajitpaul/Soumyajit-Github-Byte-3
explore.py
10
6276
import httplib2 from apiclient.discovery import build import urllib import json import csv import matplotlib.pyplot as plt # This API key is provided by google as described in the tutorial API_KEY = '... add your own ...' # This is the table id for the fusion table TABLE_ID = '... add your own ...' # open the data stored in a file called "data.json" try: fp = open("data.json") response = json.load(fp) # but if that file does not exist, download the data from fusiontables except IOError: service = build('fusiontables', 'v1', developerKey=API_KEY) query = "SELECT * FROM " + TABLE_ID + " WHERE AnimalType = 'DOG'" response = service.query().sql(sql=query).execute() fp = open("data.json", "w+") json.dump(response, fp) # this will be our summary of the data. For each column name, it will store # a dictionary containing the number of occurences of each possible # value for that column in the data. For example, for gender, # the possible values are "MALE" and "FEMALE" and "UNKNOWN" # summary will contain {"MALE": 5199, "FEMALE": 4354, "UNKNOWN":82} # indicating that in the data, 5199 rows are marked as MALE, # 4354 rows are marked as FEMALE and 82 rows are marked as UNKNOWN summary = {} columns = response['columns'] # the names of all columns rows = response['rows'] # the actual data # how many rows are in the data we downloaded? # this should be the same as in the fusion table print len(rows) # we'll ignore some columns because they are # not useful for our analysis (such as AnimalID and Name which # are unique for every animal ignore = [u'AnimalID', u'AnimalType', u'Name', u'IconName', u'icon type'] # now we want to summarize the data to facilitate exploration. To do # so we will collect information about each *column* in the spreadsheet for i in range(0, len(columns)): # loops through each column # skip the rest of this loop if it's an ignore column if columns[i] in ignore: continue # will store unique values for this column column_values = {} # the name for this column column_name = columns[i] # loop through all of the rows of data for row in rows: # get the value stored for this column in this row value = row[i] # convert any string values to ascii, and any empty strings # to a string called 'EMPTY' we can use as a value if type(value) is unicode: value = row[i].encode('ascii','ignore') if value == '': value = 'EMPTY' if value == 'NaN' : value = 'EMPTY' # increase the count the value already exists try: column_values[value] = column_values[value] + 1 # or set it to 1 if it does not exist except KeyError: column_values[value] = 1 # to facilitate exploration we want to also write our summary # information for each column to disk in a csv file fc = open("{0}.csv".format(column_name), "w+") cwriter = csv.writer(fc) cwriter.writerow(["name", "amount"]) # store the result in summary summary[column_name] = column_values # we also want to write summary information for the whole data set # containing the name of each column, the max rows in any value for that column # the min rows, the number of rows without a value, and the number of # values only present in a single row ('unique') fp = open("summary.csv", "w+") headers = ["name", "max", "min", "empty", "unique"] writer = csv.writer(fp) dict_writer = csv.DictWriter(fp, headers) writer.writerow(headers) # to collect that data, we need to loop through the summary # data we just created for each column. column_name is the column name, # details is the dictionary containing {column_value: numrows, ...} for column_name, details in summary.iteritems(): # rowcounts is a list containing the numrows numbers, but # no column value names rowcounts = details.values() max_count = max(rowcounts) min_count = min(rowcounts) # we also want to know specifically how many rows had no # entry for this column try: emptyrowcounts = details["EMPTY"] # and that throws an error, we know that no rows were empty except KeyError: emptyrowcounts = 0 # for a sanity check we print this out to the screen print("column {0} has {1} different keys of which the 'EMPTY' key holds {2} values".format(column_name, len(details), emptyrowcounts)) # we can also calculate fun things like the number of # column values associated with only a single row unique = 0 for numrows in details.itervalues(): if numrows == 1: unique = unique + 1 # as a second sanity check, let's write this out to a csv summary file row = {"name": column_name, "max": max_count, "min": min_count, "empty": emptyrowcounts, "unique":unique} dict_writer.writerow(row) # now we will write this all to a csv file: # we loop through the different possible # column values, and write out how many rows # had that value. for column_value, numrows in details.iteritems(): # and write just the values for this out as a csv file fc = open("{0}.csv".format(column_name), "a+") kdict_writer = csv.DictWriter(fc, ["name", "amount"]) kdict_writer.writerow({"name":column_value, "amount":numrows}) # some of the data is numeric -- especially the latituted, longitude, # zipfound, and zipplaced. You might also explore the data # about, for example, month found/placed numerically (are some months # likely to have more strays or placements than others?). You could # even parse the date data and look at for example the impact of # day of week. The code below shows some ways of visualizing # latitude and longitude only. latitude = summary['Latitude'] # need to replace the "EMPTY" key with a numeric value for plotting latitude[0] = latitude['EMPTY'] del latitude['EMPTY'] latitude = dict((float(k), v) for k, v in latitude.iteritems()) # make a bar plot of all the latitudes we found plt.bar(latitude.keys(), latitude.values()) plt.show() # you may want to explore other visualizations # such as a histogram or other aspects of the data # including other columns
apache-2.0
MontrealCorpusTools/Montreal-Forced-Aligner
setup.py
1
3632
import sys from setuptools import setup from setuptools.command.test import test as TestCommand from setuptools.command.develop import develop from setuptools.command.install import install def readme(): with open('README.md') as f: return f.read() class PostDevelopCommand(develop): """Post-installation for development mode.""" def run(self): develop.run(self) from montreal_forced_aligner.thirdparty.download import download_binaries download_binaries() class PostInstallCommand(install): """Post-installation for installation mode.""" def run(self): install.run(self) from montreal_forced_aligner.thirdparty.download import download_binaries download_binaries() class PyTest(TestCommand): def finalize_options(self): TestCommand.finalize_options(self) self.test_args = ['--strict', '--verbose', '--tb=long', 'tests'] self.test_suite = True def run_tests(self): if __name__ == '__main__': # Fix for multiprocessing infinite recursion on Windows import pytest errcode = pytest.main(self.test_args) sys.exit(errcode) if __name__ == '__main__': from montreal_forced_aligner import __version__ setup(name='Montreal Forced Aligner', version=__version__, description='Montreal Forced Aligner is a package for aligning speech corpora through the use of ' 'acoustic models and dictionaries using Kaldi functionality.', long_description=readme(), long_description_content_type='text/markdown', classifiers=[ 'Development Status :: 3 - Alpha', 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'Operating System :: OS Independent', 'Topic :: Scientific/Engineering', 'Topic :: Text Processing :: Linguistic', ], keywords='phonology corpus phonetics alignment segmentation', url='https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner', author='Montreal Corpus Tools', author_email='[email protected]', packages=['montreal_forced_aligner', 'montreal_forced_aligner.aligner', 'montreal_forced_aligner.command_line', 'montreal_forced_aligner.config', 'montreal_forced_aligner.corpus', 'montreal_forced_aligner.features', 'montreal_forced_aligner.g2p', 'montreal_forced_aligner.gui', 'montreal_forced_aligner.lm', 'montreal_forced_aligner.multiprocessing', 'montreal_forced_aligner.thirdparty', 'montreal_forced_aligner.trainers'], install_requires=[ 'praatio', 'numpy', 'tqdm', 'pyyaml', 'librosa', 'pyqt5', 'pyqtgraph', 'requests', 'sklearn', 'joblib' ], python_requires='>=3.8', entry_points={ 'console_scripts': ['mfa=montreal_forced_aligner.command_line.mfa:main'] }, package_data={'montreal_forced_aligner.config': ['*.yaml']}, cmdclass={ 'test': PyTest, 'develop': PostDevelopCommand, 'install': PostInstallCommand, }, extras_require={ 'testing': ['pytest'], } )
mit
Newmu/stylize
example.py
2
2048
import sys import os from matplotlib import pyplot as plt from scipy.misc import imread,imsave from stylize import render def show_img(img,title): plt.clf() plt.imshow(img) plt.xticks([]) plt.yticks([]) plt.title(title) plt.show() if __name__ == "__main__": try: path = sys.argv[1] except: path = 'resources/iggy.jpg' print "Going to go through a few examples using the stylize.render" # Load an image into a numpy format and see it img = imread(path) plt.imshow(img) plt.xticks([]) plt.yticks([]) plt.title("Our source image, close to continue") plt.show() print "Please wait, rendering..." defaults = render(img,verbose=True) show_img(defaults,"Default stylization - polygonal") print "Please wait, rendering..." landmarks = render(img,features='landmarks',verbose=True) show_img(landmarks,"Landmark features for curved stylization") print "Please wait, rendering..." abstract = render(img,depth=4,verbose=True) show_img(abstract,"A depth of 4 results in an abstract representation") print "Please wait, rendering..." more_detail = render(img,ratio=0.00005,verbose=True) show_img(more_detail,"Ratio 0.00005 results greater detail") print "Please wait, rendering..." less_detail = render(img,ratio=0.001,verbose=True) show_img(less_detail,"Ratio 0.001 results in less detail") print "Please wait, rendering... this one's going to take a minute or so" smoother = render(img,iterations=25,verbose=True) show_img(smoother,"Averaging over 25 iterations to make it smoother") print "Please wait, rendering..." aa = render(img,anti_aliasing=True,verbose=True) show_img(aa,"Anti-aliasing to fight jaggies") print "Saved results are in the examples directory!" imsave('example_images/defaults.png',defaults) imsave('example_images/landmarks.png',landmarks) imsave('example_images/abstract.png',abstract) imsave('example_images/more_detail.png',more_detail) imsave('example_images/less_detail.png',less_detail) imsave('example_images/smoother.png',smoother) imsave('example_images/aa.png',aa)
mit
haochenuw/eigen-mpc
plots/phase2_scatter.py
1
3959
from matplotlib import rc, pyplot as plt import numpy as np import glob import os from itertools import cycle import random for bw in [32, 64]: if bw == 64: dirname = "experiments/results/phase2_accuracy_64_100/" else: dirname = "experiments/results/phase2_accuracy_32_100/" files_cgd = glob.glob(os.path.join(dirname, "*_cgd_*.out")) # if bw == 32: # only take half of the files # files_cgd = [files_cgd[i] for i in random.sample(xrange(len(files_cgd)), 100)] num_iterations = 20 # file x iteration -> (error_dist, error_objective) data_cgd = np.ndarray(shape=(len(files_cgd), num_iterations, 2)) data_cgd[:] = np.NAN # file -> condition number condition_numbers_cgd = np.ndarray(shape=(len(files_cgd))) condition_numbers_cgd[:] = np.NAN for i_f, filename in enumerate(files_cgd): lines = open(filename).read().splitlines() index_obj = lines.index("Objective function on solution:") + 1 objective_on_solution = lines[index_obj] condition_numbers_cgd[i_f] = lines[-1] for iteration in xrange(num_iterations): # This is to ignore files with wrong format try: error_dist, objective = lines[3+iteration].split()[1:3] error_objective = abs(float(objective) - float(objective_on_solution)) / float(objective_on_solution) data_cgd[i_f, iteration, 0:2] = error_dist, error_objective except Exception as e: print filename files_cholesky = glob.glob(os.path.join(dirname, "*_cholesky_*.out")) # file x iteration -> (error_dist, error_objective) data_cholesky = np.ndarray(shape=(len(files_cholesky))) data_cholesky[:] = np.NAN # file -> condition number condition_numbers_cholesky = np.ndarray(shape=(len(files_cholesky))) condition_numbers_cholesky[:] = np.NAN for i_f, filename in enumerate(files_cholesky): lines = open(filename).read().splitlines() index_obj = lines.index("Objective function on solution:") + 1 objective_on_solution = lines[index_obj] condition_numbers_cholesky[i_f] = lines[-1] index_result = lines.index("result:") + 2 result = np.array(map(float, lines[index_result].split())) error_dist = lines[1].split()[5] objective = None # We do not have the objective value on Cholesky instances #error_objective = abs(float(objective) - float(objective_on_solution)) data_cholesky[i_f] = error_dist # set pyplot look rc('text', usetex=True) rc('text.latex', preamble='\usepackage{lmodern}') rc('lines', linewidth=1) rc('patch', linewidth=1) rc('axes', linewidth=1) rc('figure', figsize=(4.5, 3)) #rc('errorbar', capsize=5) rc('savefig', format='pdf') ax = plt.gca() symbols = ["s", "*", "d", "v", "."] colours = ['#404096', '#529DB7', '#7DB874', '#E39C37', '#D92120', '#000000'] #colours = ['#57a3ad', '#dea73a', '#d92120'] colourcycler = cycle(colours) symbolcycler = cycle(symbols) #next(colourcycler) #next(symbolcycler) iters=[4,9,14,19] ax.scatter(condition_numbers_cholesky, data_cholesky, c=next(colourcycler), marker=next(symbolcycler), linewidth=0.1) for iteration in iters: ax.scatter(condition_numbers_cgd, data_cgd[:,iteration,0], c=next(colourcycler), marker=next(symbolcycler), linewidth=0.1) ax.set_yscale('log') #ax.set_xscale('log') #ax.set_xlim([1,11]) if bw == 64: ax.set_ylim([1e-18, 1]) else: ax.set_ylim([1e-6, 100]) plt.legend(["\small Cholesky"] + ["\small CGD {}".format(i+1) for i in iters], loc=3, ncol=3, mode="expand") #plt.legend(["CGD {}".format(i+1) for i in iters], loc=4) plt.ylabel(r"Error") plt.xlabel(r"Condition Number $\kappa$") plt.tight_layout() plt.savefig("plot_scatter_2_norm_{}.pdf".format(bw), transparent=True) plt.show()
gpl-3.0
boundarydevices/android_external_chromium_org
ppapi/native_client/tests/breakpad_crash_test/crash_dump_tester.py
154
8545
#!/usr/bin/python # Copyright (c) 2012 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import os import subprocess import sys import tempfile import time script_dir = os.path.dirname(__file__) sys.path.append(os.path.join(script_dir, '../../tools/browser_tester')) import browser_tester import browsertester.browserlauncher # This script extends browser_tester to check for the presence of # Breakpad crash dumps. # This reads a file of lines containing 'key:value' pairs. # The file contains entries like the following: # plat:Win32 # prod:Chromium # ptype:nacl-loader # rept:crash svc def ReadDumpTxtFile(filename): dump_info = {} fh = open(filename, 'r') for line in fh: if ':' in line: key, value = line.rstrip().split(':', 1) dump_info[key] = value fh.close() return dump_info def StartCrashService(browser_path, dumps_dir, windows_pipe_name, cleanup_funcs, crash_service_exe, skip_if_missing=False): # Find crash_service.exe relative to chrome.exe. This is a bit icky. browser_dir = os.path.dirname(browser_path) crash_service_path = os.path.join(browser_dir, crash_service_exe) if skip_if_missing and not os.path.exists(crash_service_path): return proc = subprocess.Popen([crash_service_path, '--v=1', # Verbose output for debugging failures '--dumps-dir=%s' % dumps_dir, '--pipe-name=%s' % windows_pipe_name]) def Cleanup(): # Note that if the process has already exited, this will raise # an 'Access is denied' WindowsError exception, but # crash_service.exe is not supposed to do this and such # behaviour should make the test fail. proc.terminate() status = proc.wait() sys.stdout.write('crash_dump_tester: %s exited with status %s\n' % (crash_service_exe, status)) cleanup_funcs.append(Cleanup) def ListPathsInDir(dir_path): if os.path.exists(dir_path): return [os.path.join(dir_path, name) for name in os.listdir(dir_path)] else: return [] def GetDumpFiles(dumps_dirs): all_files = [filename for dumps_dir in dumps_dirs for filename in ListPathsInDir(dumps_dir)] sys.stdout.write('crash_dump_tester: Found %i files\n' % len(all_files)) for dump_file in all_files: sys.stdout.write(' %s (size %i)\n' % (dump_file, os.stat(dump_file).st_size)) return [dump_file for dump_file in all_files if dump_file.endswith('.dmp')] def Main(cleanup_funcs): parser = browser_tester.BuildArgParser() parser.add_option('--expected_crash_dumps', dest='expected_crash_dumps', type=int, default=0, help='The number of crash dumps that we should expect') parser.add_option('--expected_process_type_for_crash', dest='expected_process_type_for_crash', type=str, default='nacl-loader', help='The type of Chromium process that we expect the ' 'crash dump to be for') # Ideally we would just query the OS here to find out whether we are # running x86-32 or x86-64 Windows, but Python's win32api module # does not contain a wrapper for GetNativeSystemInfo(), which is # what NaCl uses to check this, or for IsWow64Process(), which is # what Chromium uses. Instead, we just rely on the build system to # tell us. parser.add_option('--win64', dest='win64', action='store_true', help='Pass this if we are running tests for x86-64 Windows') options, args = parser.parse_args() temp_dir = tempfile.mkdtemp(prefix='nacl_crash_dump_tester_') def CleanUpTempDir(): browsertester.browserlauncher.RemoveDirectory(temp_dir) cleanup_funcs.append(CleanUpTempDir) # To get a guaranteed unique pipe name, use the base name of the # directory we just created. windows_pipe_name = r'\\.\pipe\%s_crash_service' % os.path.basename(temp_dir) # This environment variable enables Breakpad crash dumping in # non-official builds of Chromium. os.environ['CHROME_HEADLESS'] = '1' if sys.platform == 'win32': dumps_dir = temp_dir # Override the default (global) Windows pipe name that Chromium will # use for out-of-process crash reporting. os.environ['CHROME_BREAKPAD_PIPE_NAME'] = windows_pipe_name # Launch the x86-32 crash service so that we can handle crashes in # the browser process. StartCrashService(options.browser_path, dumps_dir, windows_pipe_name, cleanup_funcs, 'crash_service.exe') if options.win64: # Launch the x86-64 crash service so that we can handle crashes # in the NaCl loader process (nacl64.exe). # Skip if missing, since in win64 builds crash_service.exe is 64-bit # and crash_service64.exe does not exist. StartCrashService(options.browser_path, dumps_dir, windows_pipe_name, cleanup_funcs, 'crash_service64.exe', skip_if_missing=True) # We add a delay because there is probably a race condition: # crash_service.exe might not have finished doing # CreateNamedPipe() before NaCl does a crash dump and tries to # connect to that pipe. # TODO(mseaborn): We could change crash_service.exe to report when # it has successfully created the named pipe. time.sleep(1) elif sys.platform == 'darwin': dumps_dir = temp_dir os.environ['BREAKPAD_DUMP_LOCATION'] = dumps_dir elif sys.platform.startswith('linux'): # The "--user-data-dir" option is not effective for the Breakpad # setup in Linux Chromium, because Breakpad is initialized before # "--user-data-dir" is read. So we set HOME to redirect the crash # dumps to a temporary directory. home_dir = temp_dir os.environ['HOME'] = home_dir options.enable_crash_reporter = True result = browser_tester.Run(options.url, options) # Find crash dump results. if sys.platform.startswith('linux'): # Look in "~/.config/*/Crash Reports". This will find crash # reports under ~/.config/chromium or ~/.config/google-chrome, or # under other subdirectories in case the branding is changed. dumps_dirs = [os.path.join(path, 'Crash Reports') for path in ListPathsInDir(os.path.join(home_dir, '.config'))] else: dumps_dirs = [dumps_dir] dmp_files = GetDumpFiles(dumps_dirs) failed = False msg = ('crash_dump_tester: ERROR: Got %i crash dumps but expected %i\n' % (len(dmp_files), options.expected_crash_dumps)) if len(dmp_files) != options.expected_crash_dumps: sys.stdout.write(msg) failed = True for dump_file in dmp_files: # Sanity check: Make sure dumping did not fail after opening the file. msg = 'crash_dump_tester: ERROR: Dump file is empty\n' if os.stat(dump_file).st_size == 0: sys.stdout.write(msg) failed = True # On Windows, the crash dumps should come in pairs of a .dmp and # .txt file. if sys.platform == 'win32': second_file = dump_file[:-4] + '.txt' msg = ('crash_dump_tester: ERROR: File %r is missing a corresponding ' '%r file\n' % (dump_file, second_file)) if not os.path.exists(second_file): sys.stdout.write(msg) failed = True continue # Check that the crash dump comes from the NaCl process. dump_info = ReadDumpTxtFile(second_file) if 'ptype' in dump_info: msg = ('crash_dump_tester: ERROR: Unexpected ptype value: %r != %r\n' % (dump_info['ptype'], options.expected_process_type_for_crash)) if dump_info['ptype'] != options.expected_process_type_for_crash: sys.stdout.write(msg) failed = True else: sys.stdout.write('crash_dump_tester: ERROR: Missing ptype field\n') failed = True # TODO(mseaborn): Ideally we would also check that a backtrace # containing an expected function name can be extracted from the # crash dump. if failed: sys.stdout.write('crash_dump_tester: FAILED\n') result = 1 else: sys.stdout.write('crash_dump_tester: PASSED\n') return result def MainWrapper(): cleanup_funcs = [] try: return Main(cleanup_funcs) finally: for func in cleanup_funcs: func() if __name__ == '__main__': sys.exit(MainWrapper())
bsd-3-clause
rgommers/statsmodels
statsmodels/base/model.py
1
69364
from __future__ import print_function from statsmodels.compat.python import iterkeys, lzip, range, reduce import numpy as np from scipy import stats from statsmodels.base.data import handle_data from statsmodels.tools.tools import recipr, nan_dot from statsmodels.stats.contrast import ContrastResults from statsmodels.tools.decorators import resettable_cache, cache_readonly import statsmodels.base.wrapper as wrap from statsmodels.tools.numdiff import approx_fprime from statsmodels.formula import handle_formula_data from statsmodels.compat.numpy import np_matrix_rank from statsmodels.base.optimizer import Optimizer _model_params_doc = """ Parameters ---------- endog : array-like 1-d endogenous response variable. The dependent variable. exog : array-like A nobs x k array where `nobs` is the number of observations and `k` is the number of regressors. An intercept is not included by default and should be added by the user. See :func:`statsmodels.tools.add_constant`.""" _missing_param_doc = """\ missing : str Available options are 'none', 'drop', and 'raise'. If 'none', no nan checking is done. If 'drop', any observations with nans are dropped. If 'raise', an error is raised. Default is 'none.'""" _extra_param_doc = """ hasconst : None or bool Indicates whether the RHS includes a user-supplied constant. If True, a constant is not checked for and k_constant is set to 1 and all result statistics are calculated as if a constant is present. If False, a constant is not checked for and k_constant is set to 0. """ class Model(object): __doc__ = """ A (predictive) statistical model. Intended to be subclassed not used. %(params_doc)s %(extra_params_doc)s Notes ----- `endog` and `exog` are references to any data provided. So if the data is already stored in numpy arrays and it is changed then `endog` and `exog` will change as well. """ % {'params_doc' : _model_params_doc, 'extra_params_doc' : _missing_param_doc + _extra_param_doc} def __init__(self, endog, exog=None, **kwargs): missing = kwargs.pop('missing', 'none') hasconst = kwargs.pop('hasconst', None) self.data = self._handle_data(endog, exog, missing, hasconst, **kwargs) self.k_constant = self.data.k_constant self.exog = self.data.exog self.endog = self.data.endog self._data_attr = [] self._data_attr.extend(['exog', 'endog', 'data.exog', 'data.endog', 'data.orig_endog', 'data.orig_exog']) # store keys for extras if we need to recreate model instance # we don't need 'missing', maybe we need 'hasconst' self._init_keys = list(kwargs.keys()) if hasconst is not None: self._init_keys.append('hasconst') def _get_init_kwds(self): """return dictionary with extra keys used in model.__init__ """ kwds = dict(((key, getattr(self, key, None)) for key in self._init_keys)) return kwds def _handle_data(self, endog, exog, missing, hasconst, **kwargs): data = handle_data(endog, exog, missing, hasconst, **kwargs) # kwargs arrays could have changed, easier to just attach here for key in kwargs: # pop so we don't start keeping all these twice or references try: setattr(self, key, data.__dict__.pop(key)) except KeyError: # panel already pops keys in data handling pass return data @classmethod def from_formula(cls, formula, data, subset=None, *args, **kwargs): """ Create a Model from a formula and dataframe. Parameters ---------- formula : str or generic Formula object The formula specifying the model data : array-like The data for the model. See Notes. subset : array-like An array-like object of booleans, integers, or index values that indicate the subset of df to use in the model. Assumes df is a `pandas.DataFrame` args : extra arguments These are passed to the model kwargs : extra keyword arguments These are passed to the model. Returns ------- model : Model instance Notes ------ data must define __getitem__ with the keys in the formula terms args and kwargs are passed on to the model instantiation. E.g., a numpy structured or rec array, a dictionary, or a pandas DataFrame. """ #TODO: provide a docs template for args/kwargs from child models #TODO: subset could use syntax. issue #469. if subset is not None: data = data.ix[subset] endog, exog = handle_formula_data(data, None, formula) mod = cls(endog, exog, *args, **kwargs) mod.formula = formula # since we got a dataframe, attach the original mod.data.frame = data return mod @property def endog_names(self): return self.data.ynames @property def exog_names(self): return self.data.xnames def fit(self): """ Fit a model to data. """ raise NotImplementedError def predict(self, params, exog=None, *args, **kwargs): """ After a model has been fit predict returns the fitted values. This is a placeholder intended to be overwritten by individual models. """ raise NotImplementedError class LikelihoodModel(Model): """ Likelihood model is a subclass of Model. """ def __init__(self, endog, exog=None, **kwargs): super(LikelihoodModel, self).__init__(endog, exog, **kwargs) self.initialize() def initialize(self): """ Initialize (possibly re-initialize) a Model instance. For instance, the design matrix of a linear model may change and some things must be recomputed. """ pass # TODO: if the intent is to re-initialize the model with new data then this # method needs to take inputs... def loglike(self, params): """ Log-likelihood of model. """ raise NotImplementedError def score(self, params): """ Score vector of model. The gradient of logL with respect to each parameter. """ raise NotImplementedError def information(self, params): """ Fisher information matrix of model Returns -Hessian of loglike evaluated at params. """ raise NotImplementedError def hessian(self, params): """ The Hessian matrix of the model """ raise NotImplementedError def fit(self, start_params=None, method='newton', maxiter=100, full_output=True, disp=True, fargs=(), callback=None, retall=False, **kwargs): """ Fit method for likelihood based models Parameters ---------- start_params : array-like, optional Initial guess of the solution for the loglikelihood maximization. The default is an array of zeros. method : str, optional The `method` determines which solver from `scipy.optimize` is used, and it can be chosen from among the following strings: - 'newton' for Newton-Raphson, 'nm' for Nelder-Mead - 'bfgs' for Broyden-Fletcher-Goldfarb-Shanno (BFGS) - 'lbfgs' for limited-memory BFGS with optional box constraints - 'powell' for modified Powell's method - 'cg' for conjugate gradient - 'ncg' for Newton-conjugate gradient - 'basinhopping' for global basin-hopping solver The explicit arguments in `fit` are passed to the solver, with the exception of the basin-hopping solver. Each solver has several optional arguments that are not the same across solvers. See the notes section below (or scipy.optimize) for the available arguments and for the list of explicit arguments that the basin-hopping solver supports. maxiter : int, optional The maximum number of iterations to perform. full_output : bool, optional Set to True to have all available output in the Results object's mle_retvals attribute. The output is dependent on the solver. See LikelihoodModelResults notes section for more information. disp : bool, optional Set to True to print convergence messages. fargs : tuple, optional Extra arguments passed to the likelihood function, i.e., loglike(x,*args) callback : callable callback(xk), optional Called after each iteration, as callback(xk), where xk is the current parameter vector. retall : bool, optional Set to True to return list of solutions at each iteration. Available in Results object's mle_retvals attribute. Notes ----- The 'basinhopping' solver ignores `maxiter`, `retall`, `full_output` explicit arguments. Optional arguments for solvers (see returned Results.mle_settings):: 'newton' tol : float Relative error in params acceptable for convergence. 'nm' -- Nelder Mead xtol : float Relative error in params acceptable for convergence ftol : float Relative error in loglike(params) acceptable for convergence maxfun : int Maximum number of function evaluations to make. 'bfgs' gtol : float Stop when norm of gradient is less than gtol. norm : float Order of norm (np.Inf is max, -np.Inf is min) epsilon If fprime is approximated, use this value for the step size. Only relevant if LikelihoodModel.score is None. 'lbfgs' m : int This many terms are used for the Hessian approximation. factr : float A stop condition that is a variant of relative error. pgtol : float A stop condition that uses the projected gradient. epsilon If fprime is approximated, use this value for the step size. Only relevant if LikelihoodModel.score is None. maxfun : int Maximum number of function evaluations to make. bounds : sequence (min, max) pairs for each element in x, defining the bounds on that parameter. Use None for one of min or max when there is no bound in that direction. 'cg' gtol : float Stop when norm of gradient is less than gtol. norm : float Order of norm (np.Inf is max, -np.Inf is min) epsilon : float If fprime is approximated, use this value for the step size. Can be scalar or vector. Only relevant if Likelihoodmodel.score is None. 'ncg' fhess_p : callable f'(x,*args) Function which computes the Hessian of f times an arbitrary vector, p. Should only be supplied if LikelihoodModel.hessian is None. avextol : float Stop when the average relative error in the minimizer falls below this amount. epsilon : float or ndarray If fhess is approximated, use this value for the step size. Only relevant if Likelihoodmodel.hessian is None. 'powell' xtol : float Line-search error tolerance ftol : float Relative error in loglike(params) for acceptable for convergence. maxfun : int Maximum number of function evaluations to make. start_direc : ndarray Initial direction set. 'basinhopping' niter : integer The number of basin hopping iterations. niter_success : integer Stop the run if the global minimum candidate remains the same for this number of iterations. T : float The "temperature" parameter for the accept or reject criterion. Higher "temperatures" mean that larger jumps in function value will be accepted. For best results `T` should be comparable to the separation (in function value) between local minima. stepsize : float Initial step size for use in the random displacement. interval : integer The interval for how often to update the `stepsize`. minimizer : dict Extra keyword arguments to be passed to the minimizer `scipy.optimize.minimize()`, for example 'method' - the minimization method (e.g. 'L-BFGS-B'), or 'tol' - the tolerance for termination. Other arguments are mapped from explicit argument of `fit`: - `args` <- `fargs` - `jac` <- `score` - `hess` <- `hess` """ Hinv = None # JP error if full_output=0, Hinv not defined if start_params is None: if hasattr(self, 'start_params'): start_params = self.start_params elif self.exog is not None: # fails for shape (K,)? start_params = [0] * self.exog.shape[1] else: raise ValueError("If exog is None, then start_params should " "be specified") # TODO: separate args from nonarg taking score and hessian, ie., # user-supplied and numerically evaluated estimate frprime doesn't take # args in most (any?) of the optimize function nobs = self.endog.shape[0] f = lambda params, *args: -self.loglike(params, *args) / nobs score = lambda params: -self.score(params) / nobs try: hess = lambda params: -self.hessian(params) / nobs except: hess = None if method == 'newton': score = lambda params: self.score(params) / nobs hess = lambda params: self.hessian(params) / nobs #TODO: why are score and hess positive? optimizer = Optimizer() xopt, retvals, optim_settings = optimizer._fit(f, score, start_params, fargs, kwargs, hessian=hess, method=method, disp=disp, maxiter=maxiter, callback=callback, retall=retall, full_output=full_output) #NOTE: this is for fit_regularized and should be generalized cov_params_func = kwargs.setdefault('cov_params_func', None) if not full_output: # xopt should be None and retvals is argmin xopt = retvals elif cov_params_func: Hinv = cov_params_func(self, xopt, retvals) elif method == 'newton' and full_output: Hinv = np.linalg.inv(-retvals['Hessian']) / nobs else: try: Hinv = np.linalg.inv(-1 * self.hessian(xopt)) except: #might want custom warning ResultsWarning? NumericalWarning? from warnings import warn warndoc = ('Inverting hessian failed, no bse or ' 'cov_params available') warn(warndoc, RuntimeWarning) Hinv = None if 'cov_type' in kwargs: cov_kwds = kwargs.get('cov_kwds', {}) kwds = {'cov_type':kwargs['cov_type'], 'cov_kwds':cov_kwds} else: kwds = {} if 'use_t' in kwargs: kwds['use_t'] = kwargs['use_t'] #prints for debugging #print('kwargs inLikelihoodModel.fit', kwargs) #print('kwds inLikelihoodModel.fit', kwds) #TODO: add Hessian approximation and change the above if needed mlefit = LikelihoodModelResults(self, xopt, Hinv, scale=1., **kwds) #TODO: hardcode scale? if isinstance(retvals, dict): mlefit.mle_retvals = retvals mlefit.mle_settings = optim_settings return mlefit #TODO: the below is unfinished class GenericLikelihoodModel(LikelihoodModel): """ Allows the fitting of any likelihood function via maximum likelihood. A subclass needs to specify at least the log-likelihood If the log-likelihood is specified for each observation, then results that require the Jacobian will be available. (The other case is not tested yet.) Notes ----- Optimization methods that require only a likelihood function are 'nm' and 'powell' Optimization methods that require a likelihood function and a score/gradient are 'bfgs', 'cg', and 'ncg'. A function to compute the Hessian is optional for 'ncg'. Optimization method that require a likelihood function, a score/gradient, and a Hessian is 'newton' If they are not overwritten by a subclass, then numerical gradient, Jacobian and Hessian of the log-likelihood are caclulated by numerical forward differentiation. This might results in some cases in precision problems, and the Hessian might not be positive definite. Even if the Hessian is not positive definite the covariance matrix of the parameter estimates based on the outer product of the Jacobian might still be valid. Examples -------- see also subclasses in directory miscmodels import statsmodels.api as sm data = sm.datasets.spector.load() data.exog = sm.add_constant(data.exog) # in this dir from model import GenericLikelihoodModel probit_mod = sm.Probit(data.endog, data.exog) probit_res = probit_mod.fit() loglike = probit_mod.loglike score = probit_mod.score mod = GenericLikelihoodModel(data.endog, data.exog, loglike, score) res = mod.fit(method="nm", maxiter = 500) import numpy as np np.allclose(res.params, probit_res.params) """ def __init__(self, endog, exog=None, loglike=None, score=None, hessian=None, missing='none', extra_params_names=None, **kwds): # let them be none in case user wants to use inheritance if not loglike is None: self.loglike = loglike if not score is None: self.score = score if not hessian is None: self.hessian = hessian self.__dict__.update(kwds) # TODO: data structures? #TODO temporary solution, force approx normal #self.df_model = 9999 #somewhere: CacheWriteWarning: 'df_model' cannot be overwritten super(GenericLikelihoodModel, self).__init__(endog, exog, missing=missing) # this won't work for ru2nmnl, maybe np.ndim of a dict? if exog is not None: #try: self.nparams = (exog.shape[1] if np.ndim(exog) == 2 else 1) if extra_params_names is not None: self._set_extra_params_names(extra_params_names) def _set_extra_params_names(self, extra_params_names): # check param_names if extra_params_names is not None: if self.exog is not None: self.exog_names.extend(extra_params_names) else: self.data.xnames = extra_params_names self.nparams = len(self.exog_names) #this is redundant and not used when subclassing def initialize(self): if not self.score: # right now score is not optional self.score = approx_fprime if not self.hessian: pass else: # can use approx_hess_p if we have a gradient if not self.hessian: pass #Initialize is called by #statsmodels.model.LikelihoodModel.__init__ #and should contain any preprocessing that needs to be done for a model from statsmodels.tools import tools if self.exog is not None: # assume constant self.df_model = float(np_matrix_rank(self.exog) - 1) self.df_resid = (float(self.exog.shape[0] - np_matrix_rank(self.exog))) else: self.df_model = np.nan self.df_resid = np.nan super(GenericLikelihoodModel, self).initialize() def expandparams(self, params): ''' expand to full parameter array when some parameters are fixed Parameters ---------- params : array reduced parameter array Returns ------- paramsfull : array expanded parameter array where fixed parameters are included Notes ----- Calling this requires that self.fixed_params and self.fixed_paramsmask are defined. *developer notes:* This can be used in the log-likelihood to ... this could also be replaced by a more general parameter transformation. ''' paramsfull = self.fixed_params.copy() paramsfull[self.fixed_paramsmask] = params return paramsfull def reduceparams(self, params): return params[self.fixed_paramsmask] def loglike(self, params): return self.loglikeobs(params).sum(0) def nloglike(self, params): return -self.loglikeobs(params).sum(0) def loglikeobs(self, params): return -self.nloglikeobs(params) def score(self, params): ''' Gradient of log-likelihood evaluated at params ''' kwds = {} kwds.setdefault('centered', True) return approx_fprime(params, self.loglike, **kwds).ravel() def jac(self, params, **kwds): ''' Jacobian/Gradient of log-likelihood evaluated at params for each observation. ''' #kwds.setdefault('epsilon', 1e-4) kwds.setdefault('centered', True) return approx_fprime(params, self.loglikeobs, **kwds) def hessian(self, params): ''' Hessian of log-likelihood evaluated at params ''' from statsmodels.tools.numdiff import approx_hess # need options for hess (epsilon) return approx_hess(params, self.loglike) def fit(self, start_params=None, method='nm', maxiter=500, full_output=1, disp=1, callback=None, retall=0, **kwargs): """ Fit the model using maximum likelihood. The rest of the docstring is from statsmodels.LikelihoodModel.fit """ if start_params is None: if hasattr(self, 'start_params'): start_params = self.start_params else: start_params = 0.1 * np.ones(self.nparams) fit_method = super(GenericLikelihoodModel, self).fit mlefit = fit_method(start_params=start_params, method=method, maxiter=maxiter, full_output=full_output, disp=disp, callback=callback, **kwargs) genericmlefit = GenericLikelihoodModelResults(self, mlefit) #amend param names exog_names = [] if (self.exog_names is None) else self.exog_names k_miss = len(exog_names) - len(mlefit.params) if not k_miss == 0: if k_miss < 0: self._set_extra_params_names( ['par%d' % i for i in range(-k_miss)]) else: # I don't want to raise after we have already fit() import warnings warnings.warn('more exog_names than parameters', UserWarning) return genericmlefit #fit.__doc__ += LikelihoodModel.fit.__doc__ class Results(object): """ Class to contain model results Parameters ---------- model : class instance the previously specified model instance params : array parameter estimates from the fit model """ def __init__(self, model, params, **kwd): self.__dict__.update(kwd) self.initialize(model, params, **kwd) self._data_attr = [] def initialize(self, model, params, **kwd): self.params = params self.model = model if hasattr(model, 'k_constant'): self.k_constant = model.k_constant def predict(self, exog=None, transform=True, *args, **kwargs): """ Call self.model.predict with self.params as the first argument. Parameters ---------- exog : array-like, optional The values for which you want to predict. transform : bool, optional If the model was fit via a formula, do you want to pass exog through the formula. Default is True. E.g., if you fit a model y ~ log(x1) + log(x2), and transform is True, then you can pass a data structure that contains x1 and x2 in their original form. Otherwise, you'd need to log the data first. args, kwargs : Some models can take additional arguments or keywords, see the predict method of the model for the details. Returns ------- prediction : ndarray or pandas.Series See self.model.predict """ if transform and hasattr(self.model, 'formula') and exog is not None: from patsy import dmatrix exog = dmatrix(self.model.data.orig_exog.design_info.builder, exog) if exog is not None: exog = np.asarray(exog) if exog.ndim == 1 and (self.model.exog.ndim == 1 or self.model.exog.shape[1] == 1): exog = exog[:, None] exog = np.atleast_2d(exog) # needed in count model shape[1] return self.model.predict(self.params, exog, *args, **kwargs) #TODO: public method? class LikelihoodModelResults(Results): """ Class to contain results from likelihood models Parameters ----------- model : LikelihoodModel instance or subclass instance LikelihoodModelResults holds a reference to the model that is fit. params : 1d array_like parameter estimates from estimated model normalized_cov_params : 2d array Normalized (before scaling) covariance of params. (dot(X.T,X))**-1 scale : float For (some subset of models) scale will typically be the mean square error from the estimated model (sigma^2) Returns ------- **Attributes** mle_retvals : dict Contains the values returned from the chosen optimization method if full_output is True during the fit. Available only if the model is fit by maximum likelihood. See notes below for the output from the different methods. mle_settings : dict Contains the arguments passed to the chosen optimization method. Available if the model is fit by maximum likelihood. See LikelihoodModel.fit for more information. model : model instance LikelihoodResults contains a reference to the model that is fit. params : ndarray The parameters estimated for the model. scale : float The scaling factor of the model given during instantiation. tvalues : array The t-values of the standard errors. Notes ----- The covariance of params is given by scale times normalized_cov_params. Return values by solver if full_output is True during fit: 'newton' fopt : float The value of the (negative) loglikelihood at its minimum. iterations : int Number of iterations performed. score : ndarray The score vector at the optimum. Hessian : ndarray The Hessian at the optimum. warnflag : int 1 if maxiter is exceeded. 0 if successful convergence. converged : bool True: converged. False: did not converge. allvecs : list List of solutions at each iteration. 'nm' fopt : float The value of the (negative) loglikelihood at its minimum. iterations : int Number of iterations performed. warnflag : int 1: Maximum number of function evaluations made. 2: Maximum number of iterations reached. converged : bool True: converged. False: did not converge. allvecs : list List of solutions at each iteration. 'bfgs' fopt : float Value of the (negative) loglikelihood at its minimum. gopt : float Value of gradient at minimum, which should be near 0. Hinv : ndarray value of the inverse Hessian matrix at minimum. Note that this is just an approximation and will often be different from the value of the analytic Hessian. fcalls : int Number of calls to loglike. gcalls : int Number of calls to gradient/score. warnflag : int 1: Maximum number of iterations exceeded. 2: Gradient and/or function calls are not changing. converged : bool True: converged. False: did not converge. allvecs : list Results at each iteration. 'lbfgs' fopt : float Value of the (negative) loglikelihood at its minimum. gopt : float Value of gradient at minimum, which should be near 0. fcalls : int Number of calls to loglike. warnflag : int Warning flag: - 0 if converged - 1 if too many function evaluations or too many iterations - 2 if stopped for another reason converged : bool True: converged. False: did not converge. 'powell' fopt : float Value of the (negative) loglikelihood at its minimum. direc : ndarray Current direction set. iterations : int Number of iterations performed. fcalls : int Number of calls to loglike. warnflag : int 1: Maximum number of function evaluations. 2: Maximum number of iterations. converged : bool True : converged. False: did not converge. allvecs : list Results at each iteration. 'cg' fopt : float Value of the (negative) loglikelihood at its minimum. fcalls : int Number of calls to loglike. gcalls : int Number of calls to gradient/score. warnflag : int 1: Maximum number of iterations exceeded. 2: Gradient and/ or function calls not changing. converged : bool True: converged. False: did not converge. allvecs : list Results at each iteration. 'ncg' fopt : float Value of the (negative) loglikelihood at its minimum. fcalls : int Number of calls to loglike. gcalls : int Number of calls to gradient/score. hcalls : int Number of calls to hessian. warnflag : int 1: Maximum number of iterations exceeded. converged : bool True: converged. False: did not converge. allvecs : list Results at each iteration. """ # by default we use normal distribution # can be overwritten by instances or subclasses use_t = False def __init__(self, model, params, normalized_cov_params=None, scale=1., **kwargs): super(LikelihoodModelResults, self).__init__(model, params) self.normalized_cov_params = normalized_cov_params self.scale = scale # robust covariance # We put cov_type in kwargs so subclasses can decide in fit whether to # use this generic implementation if 'use_t' in kwargs: use_t = kwargs['use_t'] if use_t is not None: self.use_t = use_t if 'cov_type' in kwargs: cov_type = kwargs.get('cov_type', 'nonrobust') cov_kwds = kwargs.get('cov_kwds', {}) if cov_type == 'nonrobust': self.cov_type = 'nonrobust' self.cov_kwds = {'description' : 'Standard Errors assume that the ' + 'covariance matrix of the errors is correctly ' + 'specified.'} else: from statsmodels.base.covtype import get_robustcov_results if cov_kwds is None: cov_kwds = {} use_t = self.use_t # TODO: we shouldn't need use_t in get_robustcov_results get_robustcov_results(self, cov_type=cov_type, use_self=True, use_t=use_t, **cov_kwds) def normalized_cov_params(self): raise NotImplementedError def _get_robustcov_results(self, cov_type='nonrobust', use_self=True, use_t=None, **cov_kwds): from statsmodels.base.covtype import get_robustcov_results if cov_kwds is None: cov_kwds = {} if cov_type == 'nonrobust': self.cov_type = 'nonrobust' self.cov_kwds = {'description' : 'Standard Errors assume that the ' + 'covariance matrix of the errors is correctly ' + 'specified.'} else: # TODO: we shouldn't need use_t in get_robustcov_results get_robustcov_results(self, cov_type=cov_type, use_self=True, use_t=use_t, **cov_kwds) @cache_readonly def llf(self): return self.model.loglike(self.params) @cache_readonly def bse(self): return np.sqrt(np.diag(self.cov_params())) @cache_readonly def tvalues(self): """ Return the t-statistic for a given parameter estimate. """ return self.params / self.bse @cache_readonly def pvalues(self): if self.use_t: df_resid = getattr(self, 'df_resid_inference', self.df_resid) return stats.t.sf(np.abs(self.tvalues), df_resid)*2 else: return stats.norm.sf(np.abs(self.tvalues))*2 def cov_params(self, r_matrix=None, column=None, scale=None, cov_p=None, other=None): """ Returns the variance/covariance matrix. The variance/covariance matrix can be of a linear contrast of the estimates of params or all params multiplied by scale which will usually be an estimate of sigma^2. Scale is assumed to be a scalar. Parameters ---------- r_matrix : array-like Can be 1d, or 2d. Can be used alone or with other. column : array-like, optional Must be used on its own. Can be 0d or 1d see below. scale : float, optional Can be specified or not. Default is None, which means that the scale argument is taken from the model. other : array-like, optional Can be used when r_matrix is specified. Returns ------- cov : ndarray covariance matrix of the parameter estimates or of linear combination of parameter estimates. See Notes. Notes ----- (The below are assumed to be in matrix notation.) If no argument is specified returns the covariance matrix of a model ``(scale)*(X.T X)^(-1)`` If contrast is specified it pre and post-multiplies as follows ``(scale) * r_matrix (X.T X)^(-1) r_matrix.T`` If contrast and other are specified returns ``(scale) * r_matrix (X.T X)^(-1) other.T`` If column is specified returns ``(scale) * (X.T X)^(-1)[column,column]`` if column is 0d OR ``(scale) * (X.T X)^(-1)[column][:,column]`` if column is 1d """ if (hasattr(self, 'mle_settings') and self.mle_settings['optimizer'] in ['l1', 'l1_cvxopt_cp']): dot_fun = nan_dot else: dot_fun = np.dot if (cov_p is None and self.normalized_cov_params is None and not hasattr(self, 'cov_params_default')): raise ValueError('need covariance of parameters for computing ' '(unnormalized) covariances') if column is not None and (r_matrix is not None or other is not None): raise ValueError('Column should be specified without other ' 'arguments.') if other is not None and r_matrix is None: raise ValueError('other can only be specified with r_matrix') if cov_p is None: if hasattr(self, 'cov_params_default'): cov_p = self.cov_params_default else: if scale is None: scale = self.scale cov_p = self.normalized_cov_params * scale if column is not None: column = np.asarray(column) if column.shape == (): return cov_p[column, column] else: #return cov_p[column][:, column] return cov_p[column[:, None], column] elif r_matrix is not None: r_matrix = np.asarray(r_matrix) if r_matrix.shape == (): raise ValueError("r_matrix should be 1d or 2d") if other is None: other = r_matrix else: other = np.asarray(other) tmp = dot_fun(r_matrix, dot_fun(cov_p, np.transpose(other))) return tmp else: # if r_matrix is None and column is None: return cov_p #TODO: make sure this works as needed for GLMs def t_test(self, r_matrix, q_matrix=None, cov_p=None, scale=None, use_t=None): """ Compute a t-test for a each linear hypothesis of the form Rb = q Parameters ---------- r_matrix : array-like, str, tuple - array : If an array is given, a p x k 2d array or length k 1d array specifying the linear restrictions. - str : The full hypotheses to test can be given as a string. See the examples. - tuple : A tuple of arrays in the form (R, q), since q_matrix is deprecated. q_matrix : array-like or scalar, optional This is deprecated. See `r_matrix` and the examples for more information on new usage. Can be either a scalar or a length p row vector. If omitted and r_matrix is an array, `q_matrix` is assumed to be a conformable array of zeros. cov_p : array-like, optional An alternative estimate for the parameter covariance matrix. If None is given, self.normalized_cov_params is used. scale : float, optional An optional `scale` to use. Default is the scale specified by the model fit. use_t : bool, optional If use_t is None, then the default of the model is used. If use_t is True, then the p-values are based on the t distribution. If use_t is False, then the p-values are based on the normal distribution. Returns ------- res : ContrastResults instance The results for the test are attributes of this results instance. The available results have the same elements as the parameter table in `summary()`. Examples -------- >>> import numpy as np >>> import statsmodels.api as sm >>> data = sm.datasets.longley.load() >>> data.exog = sm.add_constant(data.exog) >>> results = sm.OLS(data.endog, data.exog).fit() >>> r = np.zeros_like(results.params) >>> r[5:] = [1,-1] >>> print(r) [ 0. 0. 0. 0. 0. 1. -1.] r tests that the coefficients on the 5th and 6th independent variable are the same. >>> T_test = results.t_test(r) >>> print(T_test) <T contrast: effect=-1829.2025687192481, sd=455.39079425193762, t=-4.0167754636411717, p=0.0015163772380899498, df_denom=9> >>> T_test.effect -1829.2025687192481 >>> T_test.sd 455.39079425193762 >>> T_test.tvalue -4.0167754636411717 >>> T_test.pvalue 0.0015163772380899498 Alternatively, you can specify the hypothesis tests using a string >>> from statsmodels.formula.api import ols >>> dta = sm.datasets.longley.load_pandas().data >>> formula = 'TOTEMP ~ GNPDEFL + GNP + UNEMP + ARMED + POP + YEAR' >>> results = ols(formula, dta).fit() >>> hypotheses = 'GNPDEFL = GNP, UNEMP = 2, YEAR/1829 = 1' >>> t_test = results.t_test(hypotheses) >>> print(t_test) See Also --------- tvalues : individual t statistics f_test : for F tests patsy.DesignInfo.linear_constraint """ from patsy import DesignInfo if q_matrix is not None: from warnings import warn warn("The `q_matrix` keyword is deprecated and will be removed " "in 0.6.0. See the documentation for the new API", FutureWarning) r_matrix = (r_matrix, q_matrix) LC = DesignInfo(self.model.exog_names).linear_constraint(r_matrix) r_matrix, q_matrix = LC.coefs, LC.constants num_ttests = r_matrix.shape[0] num_params = r_matrix.shape[1] if cov_p is None and self.normalized_cov_params is None: raise ValueError('Need covariance of parameters for computing ' 'T statistics') if num_params != self.params.shape[0]: raise ValueError('r_matrix and params are not aligned') if q_matrix is None: q_matrix = np.zeros(num_ttests) else: q_matrix = np.asarray(q_matrix) q_matrix = q_matrix.squeeze() if q_matrix.size > 1: if q_matrix.shape[0] != num_ttests: raise ValueError("r_matrix and q_matrix must have the same " "number of rows") if use_t is None: #switch to use_t false if undefined use_t = (hasattr(self, 'use_t') and self.use_t) _t = _sd = None _effect = np.dot(r_matrix, self.params) # nan_dot multiplies with the convention nan * 0 = 0 # Perform the test if num_ttests > 1: _sd = np.sqrt(np.diag(self.cov_params( r_matrix=r_matrix, cov_p=cov_p))) else: _sd = np.sqrt(self.cov_params(r_matrix=r_matrix, cov_p=cov_p)) _t = (_effect - q_matrix) * recipr(_sd) df_resid = getattr(self, 'df_resid_inference', self.df_resid) if use_t: return ContrastResults(effect=_effect, t=_t, sd=_sd, df_denom=df_resid) else: return ContrastResults(effect=_effect, statistic=_t, sd=_sd, df_denom=df_resid, distribution='norm') def f_test(self, r_matrix, q_matrix=None, cov_p=None, scale=1.0, invcov=None): """ Compute the F-test for a joint linear hypothesis. This is a special case of `wald_test` that always uses the F distribution. Parameters ---------- r_matrix : array-like, str, or tuple - array : An r x k array where r is the number of restrictions to test and k is the number of regressors. - str : The full hypotheses to test can be given as a string. See the examples. - tuple : A tuple of arrays in the form (R, q), since q_matrix is deprecated. q_matrix : array-like This is deprecated. See `r_matrix` and the examples for more information on new usage. Can be either a scalar or a length p row vector. If omitted and r_matrix is an array, `q_matrix` is assumed to be a conformable array of zeros. cov_p : array-like, optional An alternative estimate for the parameter covariance matrix. If None is given, self.normalized_cov_params is used. scale : float, optional Default is 1.0 for no scaling. invcov : array-like, optional A q x q array to specify an inverse covariance matrix based on a restrictions matrix. Returns ------- res : ContrastResults instance The results for the test are attributes of this results instance. Examples -------- >>> import numpy as np >>> import statsmodels.api as sm >>> data = sm.datasets.longley.load() >>> data.exog = sm.add_constant(data.exog) >>> results = sm.OLS(data.endog, data.exog).fit() >>> A = np.identity(len(results.params)) >>> A = A[1:,:] This tests that each coefficient is jointly statistically significantly different from zero. >>> print(results.f_test(A)) <F contrast: F=330.28533923463488, p=4.98403052872e-10, df_denom=9, df_num=6> Compare this to >>> results.fvalue 330.2853392346658 >>> results.f_pvalue 4.98403096572e-10 >>> B = np.array(([0,0,1,-1,0,0,0],[0,0,0,0,0,1,-1])) This tests that the coefficient on the 2nd and 3rd regressors are equal and jointly that the coefficient on the 5th and 6th regressors are equal. >>> print(results.f_test(B)) <F contrast: F=9.740461873303655, p=0.00560528853174, df_denom=9, df_num=2> Alternatively, you can specify the hypothesis tests using a string >>> from statsmodels.datasets import longley >>> from statsmodels.formula.api import ols >>> dta = longley.load_pandas().data >>> formula = 'TOTEMP ~ GNPDEFL + GNP + UNEMP + ARMED + POP + YEAR' >>> results = ols(formula, dta).fit() >>> hypotheses = '(GNPDEFL = GNP), (UNEMP = 2), (YEAR/1829 = 1)' >>> f_test = results.f_test(hypotheses) >>> print(f_test) See Also -------- statsmodels.stats.contrast.ContrastResults wald_test t_test patsy.DesignInfo.linear_constraint Notes ----- The matrix `r_matrix` is assumed to be non-singular. More precisely, r_matrix (pX pX.T) r_matrix.T is assumed invertible. Here, pX is the generalized inverse of the design matrix of the model. There can be problems in non-OLS models where the rank of the covariance of the noise is not full. """ res = self.wald_test(r_matrix, q_matrix=q_matrix, cov_p=cov_p, scale=scale, invcov=invcov, use_f=True) return res #TODO: untested for GLMs? def wald_test(self, r_matrix, q_matrix=None, cov_p=None, scale=1.0, invcov=None, use_f=None): """ Compute a Wald-test for a joint linear hypothesis. Parameters ---------- r_matrix : array-like, str, or tuple - array : An r x k array where r is the number of restrictions to test and k is the number of regressors. - str : The full hypotheses to test can be given as a string. See the examples. - tuple : A tuple of arrays in the form (R, q), since q_matrix is deprecated. q_matrix : array-like This is deprecated. See `r_matrix` and the examples for more information on new usage. Can be either a scalar or a length p row vector. If omitted and r_matrix is an array, `q_matrix` is assumed to be a conformable array of zeros. cov_p : array-like, optional An alternative estimate for the parameter covariance matrix. If None is given, self.normalized_cov_params is used. scale : float, optional Default is 1.0 for no scaling. invcov : array-like, optional A q x q array to specify an inverse covariance matrix based on a restrictions matrix. use_f : bool If True, then the F-distribution is used. If False, then the asymptotic distribution, chisquare is used. If use_f is None, then the F distribution is used if the model specifies that use_t is True. The test statistic is proportionally adjusted for the distribution by the number of constraints in the hypothesis. Returns ------- res : ContrastResults instance The results for the test are attributes of this results instance. See also -------- statsmodels.stats.contrast.ContrastResults f_test t_test patsy.DesignInfo.linear_constraint Notes ----- The matrix `r_matrix` is assumed to be non-singular. More precisely, r_matrix (pX pX.T) r_matrix.T is assumed invertible. Here, pX is the generalized inverse of the design matrix of the model. There can be problems in non-OLS models where the rank of the covariance of the noise is not full. """ if use_f is None: #switch to use_t false if undefined use_f = (hasattr(self, 'use_t') and self.use_t) from patsy import DesignInfo if q_matrix is not None: from warnings import warn warn("The `q_matrix` keyword is deprecated and will be removed " "in 0.6.0. See the documentation for the new API", FutureWarning) r_matrix = (r_matrix, q_matrix) LC = DesignInfo(self.model.exog_names).linear_constraint(r_matrix) r_matrix, q_matrix = LC.coefs, LC.constants if (self.normalized_cov_params is None and cov_p is None and invcov is None): raise ValueError('need covariance of parameters for computing ' 'F statistics') cparams = np.dot(r_matrix, self.params[:, None]) J = float(r_matrix.shape[0]) # number of restrictions if q_matrix is None: q_matrix = np.zeros(J) else: q_matrix = np.asarray(q_matrix) if q_matrix.ndim == 1: q_matrix = q_matrix[:, None] if q_matrix.shape[0] != J: raise ValueError("r_matrix and q_matrix must have the same " "number of rows") Rbq = cparams - q_matrix if invcov is None: cov_p = self.cov_params(r_matrix=r_matrix, cov_p=cov_p) if np.isnan(cov_p).max(): raise ValueError("r_matrix performs f_test for using " "dimensions that are asymptotically " "non-normal") invcov = np.linalg.inv(cov_p) if (hasattr(self, 'mle_settings') and self.mle_settings['optimizer'] in ['l1', 'l1_cvxopt_cp']): F = nan_dot(nan_dot(Rbq.T, invcov), Rbq) else: F = np.dot(np.dot(Rbq.T, invcov), Rbq) df_resid = getattr(self, 'df_resid_inference', self.df_resid) if use_f: F /= J return ContrastResults(F=F, df_denom=df_resid, df_num=invcov.shape[0]) else: return ContrastResults(chi2=F, df_denom=J, statistic=F, distribution='chi2', distargs=(J,)) def conf_int(self, alpha=.05, cols=None, method='default'): """ Returns the confidence interval of the fitted parameters. Parameters ---------- alpha : float, optional The significance level for the confidence interval. ie., The default `alpha` = .05 returns a 95% confidence interval. cols : array-like, optional `cols` specifies which confidence intervals to return method : string Not Implemented Yet Method to estimate the confidence_interval. "Default" : uses self.bse which is based on inverse Hessian for MLE "hjjh" : "jac" : "boot-bse" "boot_quant" "profile" Returns -------- conf_int : array Each row contains [lower, upper] limits of the confidence interval for the corresponding parameter. The first column contains all lower, the second column contains all upper limits. Examples -------- >>> import statsmodels.api as sm >>> data = sm.datasets.longley.load() >>> data.exog = sm.add_constant(data.exog) >>> results = sm.OLS(data.endog, data.exog).fit() >>> results.conf_int() array([[-5496529.48322745, -1467987.78596704], [ -177.02903529, 207.15277984], [ -0.1115811 , 0.03994274], [ -3.12506664, -0.91539297], [ -1.5179487 , -0.54850503], [ -0.56251721, 0.460309 ], [ 798.7875153 , 2859.51541392]]) >>> results.conf_int(cols=(2,3)) array([[-0.1115811 , 0.03994274], [-3.12506664, -0.91539297]]) Notes ----- The confidence interval is based on the standard normal distribution. Models wish to use a different distribution should overwrite this method. """ bse = self.bse if self.use_t: dist = stats.t df_resid = getattr(self, 'df_resid_inference', self.df_resid) q = dist.ppf(1 - alpha / 2, df_resid) else: dist = stats.norm q = dist.ppf(1 - alpha / 2) if cols is None: lower = self.params - q * bse upper = self.params + q * bse else: cols = np.asarray(cols) lower = self.params[cols] - q * bse[cols] upper = self.params[cols] + q * bse[cols] return np.asarray(lzip(lower, upper)) def save(self, fname, remove_data=False): ''' save a pickle of this instance Parameters ---------- fname : string or filehandle fname can be a string to a file path or filename, or a filehandle. remove_data : bool If False (default), then the instance is pickled without changes. If True, then all arrays with length nobs are set to None before pickling. See the remove_data method. In some cases not all arrays will be set to None. Notes ----- If remove_data is true and the model result does not implement a remove_data method then this will raise an exception. ''' from statsmodels.iolib.smpickle import save_pickle if remove_data: self.remove_data() save_pickle(self, fname) @classmethod def load(cls, fname): ''' load a pickle, (class method) Parameters ---------- fname : string or filehandle fname can be a string to a file path or filename, or a filehandle. Returns ------- unpickled instance ''' from statsmodels.iolib.smpickle import load_pickle return load_pickle(fname) def remove_data(self): '''remove data arrays, all nobs arrays from result and model This reduces the size of the instance, so it can be pickled with less memory. Currently tested for use with predict from an unpickled results and model instance. .. warning:: Since data and some intermediate results have been removed calculating new statistics that require them will raise exceptions. The exception will occur the first time an attribute is accessed that has been set to None. Not fully tested for time series models, tsa, and might delete too much for prediction or not all that would be possible. The list of arrays to delete is maintained as an attribute of the result and model instance, except for cached values. These lists could be changed before calling remove_data. ''' def wipe(obj, att): #get to last element in attribute path p = att.split('.') att_ = p.pop(-1) try: obj_ = reduce(getattr, [obj] + p) #print(repr(obj), repr(att)) #print(hasattr(obj_, att_)) if hasattr(obj_, att_): #print('removing3', att_) setattr(obj_, att_, None) except AttributeError: pass model_attr = ['model.' + i for i in self.model._data_attr] for att in self._data_attr + model_attr: #print('removing', att) wipe(self, att) data_in_cache = getattr(self, 'data_in_cache', []) data_in_cache += ['fittedvalues', 'resid', 'wresid'] for key in data_in_cache: try: self._cache[key] = None except (AttributeError, KeyError): pass class LikelihoodResultsWrapper(wrap.ResultsWrapper): _attrs = { 'params': 'columns', 'bse': 'columns', 'pvalues': 'columns', 'tvalues': 'columns', 'resid': 'rows', 'fittedvalues': 'rows', 'normalized_cov_params': 'cov', } _wrap_attrs = _attrs _wrap_methods = { 'cov_params': 'cov', 'conf_int': 'columns' } wrap.populate_wrapper(LikelihoodResultsWrapper, LikelihoodModelResults) class ResultMixin(object): @cache_readonly def df_modelwc(self): # collect different ways of defining the number of parameters, used for # aic, bic if hasattr(self, 'df_model'): if hasattr(self, 'hasconst'): hasconst = self.hasconst else: # default assumption hasconst = 1 return self.df_model + hasconst else: return self.params.size @cache_readonly def aic(self): return -2 * self.llf + 2 * (self.df_modelwc) @cache_readonly def bic(self): return -2 * self.llf + np.log(self.nobs) * (self.df_modelwc) @cache_readonly def jacv(self): '''cached Jacobian of log-likelihood ''' return self.model.jac(self.params) @cache_readonly def hessv(self): '''cached Hessian of log-likelihood ''' return self.model.hessian(self.params) @cache_readonly def covjac(self): ''' covariance of parameters based on outer product of jacobian of log-likelihood ''' ## if not hasattr(self, '_results'): ## raise ValueError('need to call fit first') ## #self.fit() ## self.jacv = jacv = self.jac(self._results.params) jacv = self.jacv return np.linalg.inv(np.dot(jacv.T, jacv)) @cache_readonly def covjhj(self): '''covariance of parameters based on HJJH dot product of Hessian, Jacobian, Jacobian, Hessian of likelihood name should be covhjh ''' jacv = self.jacv ## hessv = self.hessv ## hessinv = np.linalg.inv(hessv) ## self.hessinv = hessinv hessinv = self.cov_params() return np.dot(hessinv, np.dot(np.dot(jacv.T, jacv), hessinv)) @cache_readonly def bsejhj(self): '''standard deviation of parameter estimates based on covHJH ''' return np.sqrt(np.diag(self.covjhj)) @cache_readonly def bsejac(self): '''standard deviation of parameter estimates based on covjac ''' return np.sqrt(np.diag(self.covjac)) def bootstrap(self, nrep=100, method='nm', disp=0, store=1): """simple bootstrap to get mean and variance of estimator see notes Parameters ---------- nrep : int number of bootstrap replications method : str optimization method to use disp : bool If true, then optimization prints results store : bool If true, then parameter estimates for all bootstrap iterations are attached in self.bootstrap_results Returns ------- mean : array mean of parameter estimates over bootstrap replications std : array standard deviation of parameter estimates over bootstrap replications Notes ----- This was mainly written to compare estimators of the standard errors of the parameter estimates. It uses independent random sampling from the original endog and exog, and therefore is only correct if observations are independently distributed. This will be moved to apply only to models with independently distributed observations. """ results = [] print(self.model.__class__) hascloneattr = True if hasattr(self, 'cloneattr') else False for i in range(nrep): rvsind = np.random.randint(self.nobs - 1, size=self.nobs) #this needs to set startparam and get other defining attributes #need a clone method on model fitmod = self.model.__class__(self.endog[rvsind], self.exog[rvsind, :]) if hascloneattr: for attr in self.model.cloneattr: setattr(fitmod, attr, getattr(self.model, attr)) fitres = fitmod.fit(method=method, disp=disp) results.append(fitres.params) results = np.array(results) if store: self.bootstrap_results = results return results.mean(0), results.std(0), results def get_nlfun(self, fun): #I think this is supposed to get the delta method that is currently #in miscmodels count (as part of Poisson example) pass class GenericLikelihoodModelResults(LikelihoodModelResults, ResultMixin): """ A results class for the discrete dependent variable models. ..Warning : The following description has not been updated to this version/class. Where are AIC, BIC, ....? docstring looks like copy from discretemod Parameters ---------- model : A DiscreteModel instance mlefit : instance of LikelihoodResults This contains the numerical optimization results as returned by LikelihoodModel.fit(), in a superclass of GnericLikelihoodModels Returns ------- *Attributes* Warning most of these are not available yet aic : float Akaike information criterion. -2*(`llf` - p) where p is the number of regressors including the intercept. bic : float Bayesian information criterion. -2*`llf` + ln(`nobs`)*p where p is the number of regressors including the intercept. bse : array The standard errors of the coefficients. df_resid : float See model definition. df_model : float See model definition. fitted_values : array Linear predictor XB. llf : float Value of the loglikelihood llnull : float Value of the constant-only loglikelihood llr : float Likelihood ratio chi-squared statistic; -2*(`llnull` - `llf`) llr_pvalue : float The chi-squared probability of getting a log-likelihood ratio statistic greater than llr. llr has a chi-squared distribution with degrees of freedom `df_model`. prsquared : float McFadden's pseudo-R-squared. 1 - (`llf`/`llnull`) """ def __init__(self, model, mlefit): self.model = model self.endog = model.endog self.exog = model.exog self.nobs = model.endog.shape[0] # TODO: possibly move to model.fit() # and outsource together with patching names if hasattr(model, 'df_model'): self.df_model = model.df_model else: self.df_model = len(mlefit.params) # retrofitting the model, used in t_test TODO: check design self.model.df_model = self.df_model if hasattr(model, 'df_resid'): self.df_resid = model.df_resid else: self.df_resid = self.endog.shape[0] - self.df_model # retrofitting the model, used in t_test TODO: check design self.model.df_resid = self.df_resid self._cache = resettable_cache() self.__dict__.update(mlefit.__dict__) def summary(self, yname=None, xname=None, title=None, alpha=.05): """Summarize the Regression Results Parameters ----------- yname : string, optional Default is `y` xname : list of strings, optional Default is `var_##` for ## in p the number of regressors title : string, optional Title for the top table. If not None, then this replaces the default title alpha : float significance level for the confidence intervals Returns ------- smry : Summary instance this holds the summary tables and text, which can be printed or converted to various output formats. See Also -------- statsmodels.iolib.summary.Summary : class to hold summary results """ top_left = [('Dep. Variable:', None), ('Model:', None), ('Method:', ['Maximum Likelihood']), ('Date:', None), ('Time:', None), ('No. Observations:', None), ('Df Residuals:', None), # [self.df_resid]), ('Df Model:', None), # [self.df_model]) ] top_right = [ # ('R-squared:', ["%#8.3f" % self.rsquared]), # ('Adj. R-squared:', ["%#8.3f" % self.rsquared_adj]), # ('F-statistic:', ["%#8.4g" % self.fvalue] ), # ('Prob (F-statistic):', ["%#6.3g" % self.f_pvalue]), ('Log-Likelihood:', None), # ["%#6.4g" % self.llf]), ('AIC:', ["%#8.4g" % self.aic]), ('BIC:', ["%#8.4g" % self.bic]) ] if title is None: title = self.model.__class__.__name__ + ' ' + "Results" #create summary table instance from statsmodels.iolib.summary import Summary smry = Summary() smry.add_table_2cols(self, gleft=top_left, gright=top_right, yname=yname, xname=xname, title=title) smry.add_table_params(self, yname=yname, xname=xname, alpha=alpha, use_t=False) return smry
bsd-3-clause
Unidata/MetPy
dev/_downloads/de92980ba106a56ee23a09ae59eaeb1d/GINI_Water_Vapor.py
12
1765
# Copyright (c) 2015,2018 MetPy Developers. # Distributed under the terms of the BSD 3-Clause License. # SPDX-License-Identifier: BSD-3-Clause """ GINI Water Vapor Imagery ======================== Use MetPy's support for GINI files to read in a water vapor satellite image and plot the data using CartoPy. """ import cartopy.feature as cfeature import matplotlib.pyplot as plt import xarray as xr from metpy.cbook import get_test_data from metpy.io import GiniFile from metpy.plots import add_metpy_logo, add_timestamp, colortables ########################################### # Open the GINI file from the test data f = GiniFile(get_test_data('WEST-CONUS_4km_WV_20151208_2200.gini')) print(f) ########################################### # Get a Dataset view of the data (essentially a NetCDF-like interface to the # underlying data). Pull out the data and (x, y) coordinates. We use `metpy.parse_cf` to # handle parsing some netCDF Climate and Forecasting (CF) metadata to simplify working with # projections. ds = xr.open_dataset(f) x = ds.variables['x'][:] y = ds.variables['y'][:] dat = ds.metpy.parse_cf('WV') ########################################### # Plot the image. We use MetPy's xarray/cartopy integration to automatically handle parsing # the projection information. fig = plt.figure(figsize=(10, 12)) add_metpy_logo(fig, 125, 145) ax = fig.add_subplot(1, 1, 1, projection=dat.metpy.cartopy_crs) wv_norm, wv_cmap = colortables.get_with_range('WVCIMSS', 100, 260) wv_cmap.set_under('k') im = ax.imshow(dat[:], cmap=wv_cmap, norm=wv_norm, extent=(x.min(), x.max(), y.min(), y.max()), origin='upper') ax.add_feature(cfeature.COASTLINE.with_scale('50m')) add_timestamp(ax, f.prod_desc.datetime, y=0.02, high_contrast=True) plt.show()
bsd-3-clause
thilbern/scikit-learn
benchmarks/bench_plot_nmf.py
206
5890
""" Benchmarks of Non-Negative Matrix Factorization """ from __future__ import print_function from collections import defaultdict import gc from time import time import numpy as np from scipy.linalg import norm from sklearn.decomposition.nmf import NMF, _initialize_nmf from sklearn.datasets.samples_generator import make_low_rank_matrix from sklearn.externals.six.moves import xrange def alt_nnmf(V, r, max_iter=1000, tol=1e-3, R=None): ''' A, S = nnmf(X, r, tol=1e-3, R=None) Implement Lee & Seung's algorithm Parameters ---------- V : 2-ndarray, [n_samples, n_features] input matrix r : integer number of latent features max_iter : integer, optional maximum number of iterations (default: 1000) tol : double tolerance threshold for early exit (when the update factor is within tol of 1., the function exits) R : integer, optional random seed Returns ------- A : 2-ndarray, [n_samples, r] Component part of the factorization S : 2-ndarray, [r, n_features] Data part of the factorization Reference --------- "Algorithms for Non-negative Matrix Factorization" by Daniel D Lee, Sebastian H Seung (available at http://citeseer.ist.psu.edu/lee01algorithms.html) ''' # Nomenclature in the function follows Lee & Seung eps = 1e-5 n, m = V.shape if R == "svd": W, H = _initialize_nmf(V, r) elif R is None: R = np.random.mtrand._rand W = np.abs(R.standard_normal((n, r))) H = np.abs(R.standard_normal((r, m))) for i in xrange(max_iter): updateH = np.dot(W.T, V) / (np.dot(np.dot(W.T, W), H) + eps) H *= updateH updateW = np.dot(V, H.T) / (np.dot(W, np.dot(H, H.T)) + eps) W *= updateW if i % 10 == 0: max_update = max(updateW.max(), updateH.max()) if abs(1. - max_update) < tol: break return W, H def report(error, time): print("Frobenius loss: %.5f" % error) print("Took: %.2fs" % time) print() def benchmark(samples_range, features_range, rank=50, tolerance=1e-5): it = 0 timeset = defaultdict(lambda: []) err = defaultdict(lambda: []) max_it = len(samples_range) * len(features_range) for n_samples in samples_range: for n_features in features_range: print("%2d samples, %2d features" % (n_samples, n_features)) print('=======================') X = np.abs(make_low_rank_matrix(n_samples, n_features, effective_rank=rank, tail_strength=0.2)) gc.collect() print("benchmarking nndsvd-nmf: ") tstart = time() m = NMF(n_components=30, tol=tolerance, init='nndsvd').fit(X) tend = time() - tstart timeset['nndsvd-nmf'].append(tend) err['nndsvd-nmf'].append(m.reconstruction_err_) report(m.reconstruction_err_, tend) gc.collect() print("benchmarking nndsvda-nmf: ") tstart = time() m = NMF(n_components=30, init='nndsvda', tol=tolerance).fit(X) tend = time() - tstart timeset['nndsvda-nmf'].append(tend) err['nndsvda-nmf'].append(m.reconstruction_err_) report(m.reconstruction_err_, tend) gc.collect() print("benchmarking nndsvdar-nmf: ") tstart = time() m = NMF(n_components=30, init='nndsvdar', tol=tolerance).fit(X) tend = time() - tstart timeset['nndsvdar-nmf'].append(tend) err['nndsvdar-nmf'].append(m.reconstruction_err_) report(m.reconstruction_err_, tend) gc.collect() print("benchmarking random-nmf") tstart = time() m = NMF(n_components=30, init=None, max_iter=1000, tol=tolerance).fit(X) tend = time() - tstart timeset['random-nmf'].append(tend) err['random-nmf'].append(m.reconstruction_err_) report(m.reconstruction_err_, tend) gc.collect() print("benchmarking alt-random-nmf") tstart = time() W, H = alt_nnmf(X, r=30, R=None, tol=tolerance) tend = time() - tstart timeset['alt-random-nmf'].append(tend) err['alt-random-nmf'].append(np.linalg.norm(X - np.dot(W, H))) report(norm(X - np.dot(W, H)), tend) return timeset, err if __name__ == '__main__': from mpl_toolkits.mplot3d import axes3d # register the 3d projection axes3d import matplotlib.pyplot as plt samples_range = np.linspace(50, 500, 3).astype(np.int) features_range = np.linspace(50, 500, 3).astype(np.int) timeset, err = benchmark(samples_range, features_range) for i, results in enumerate((timeset, err)): fig = plt.figure('scikit-learn Non-Negative Matrix Factorization benchmark results') ax = fig.gca(projection='3d') for c, (label, timings) in zip('rbgcm', sorted(results.iteritems())): X, Y = np.meshgrid(samples_range, features_range) Z = np.asarray(timings).reshape(samples_range.shape[0], features_range.shape[0]) # plot the actual surface ax.plot_surface(X, Y, Z, rstride=8, cstride=8, alpha=0.3, color=c) # dummy point plot to stick the legend to since surface plot do not # support legends (yet?) ax.plot([1], [1], [1], color=c, label=label) ax.set_xlabel('n_samples') ax.set_ylabel('n_features') zlabel = 'Time (s)' if i == 0 else 'reconstruction error' ax.set_zlabel(zlabel) ax.legend() plt.show()
bsd-3-clause
xuleiboy1234/autoTitle
tensorflow/tensorflow/contrib/learn/python/learn/estimators/debug_test.py
46
32817
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Debug estimators.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import functools import operator import tempfile import numpy as np from tensorflow.contrib.layers.python.layers import feature_column from tensorflow.contrib.layers.python.layers import feature_column_ops from tensorflow.contrib.learn.python.learn import experiment from tensorflow.contrib.learn.python.learn.datasets import base from tensorflow.contrib.learn.python.learn.estimators import _sklearn from tensorflow.contrib.learn.python.learn.estimators import debug from tensorflow.contrib.learn.python.learn.estimators import estimator_test_utils from tensorflow.contrib.learn.python.learn.estimators import run_config from tensorflow.contrib.learn.python.learn.estimators import test_data from tensorflow.contrib.learn.python.learn.metric_spec import MetricSpec from tensorflow.contrib.metrics.python.ops import metric_ops from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import sparse_tensor from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.platform import test from tensorflow.python.training import input as input_lib NUM_EXAMPLES = 100 N_CLASSES = 5 # Cardinality of multiclass labels. LABEL_DIMENSION = 3 # Dimensionality of regression labels. def _train_test_split(features_and_labels): features, labels = features_and_labels train_set = (features[:int(len(features) / 2)], labels[:int(len(features) / 2)]) test_set = (features[int(len(features) / 2):], labels[int(len(features) / 2):]) return train_set, test_set def _input_fn_builder(features, labels): def input_fn(): feature_dict = {'features': constant_op.constant(features)} my_labels = labels if my_labels is not None: my_labels = constant_op.constant(my_labels) return feature_dict, my_labels return input_fn class DebugClassifierTest(test.TestCase): def setUp(self): np.random.seed(100) self.features = np.random.rand(NUM_EXAMPLES, 5) self.labels = np.random.choice( range(N_CLASSES), p=[0.1, 0.3, 0.4, 0.1, 0.1], size=NUM_EXAMPLES) self.binary_labels = np.random.choice( range(2), p=[0.2, 0.8], size=NUM_EXAMPLES) self.binary_float_labels = np.random.choice( range(2), p=[0.2, 0.8], size=NUM_EXAMPLES) def testPredict(self): """Tests that DebugClassifier outputs the majority class.""" (train_features, train_labels), (test_features, test_labels) = _train_test_split( [self.features, self.labels]) majority_class, _ = max(collections.Counter(train_labels).items(), key=operator.itemgetter(1)) expected_prediction = np.vstack( [[majority_class] for _ in range(test_labels.shape[0])]) classifier = debug.DebugClassifier(n_classes=N_CLASSES) classifier.fit(input_fn=_input_fn_builder(train_features, train_labels), steps=50) pred = classifier.predict_classes(input_fn=_input_fn_builder(test_features, None)) self.assertAllEqual(expected_prediction, np.vstack(pred)) def testPredictBinary(self): """Same as above for binary predictions.""" (train_features, train_labels), (test_features, test_labels) = _train_test_split( [self.features, self.binary_labels]) majority_class, _ = max(collections.Counter(train_labels).items(), key=operator.itemgetter(1)) expected_prediction = np.vstack( [[majority_class] for _ in range(test_labels.shape[0])]) classifier = debug.DebugClassifier(n_classes=2) classifier.fit(input_fn=_input_fn_builder(train_features, train_labels), steps=50) pred = classifier.predict_classes(input_fn=_input_fn_builder(test_features, None)) self.assertAllEqual(expected_prediction, np.vstack(pred)) (train_features, train_labels), ( test_features, test_labels) = _train_test_split( [self.features, self.binary_float_labels]) majority_class, _ = max(collections.Counter(train_labels).items(), key=operator.itemgetter(1)) expected_prediction = np.vstack( [[majority_class] for _ in range(test_labels.shape[0])]) classifier = debug.DebugClassifier(n_classes=2) classifier.fit(input_fn=_input_fn_builder(train_features, train_labels), steps=50) pred = classifier.predict_classes(input_fn=_input_fn_builder(test_features, None)) self.assertAllEqual(expected_prediction, np.vstack(pred)) def testPredictProba(self): """Tests that DebugClassifier outputs observed class distribution.""" (train_features, train_labels), (test_features, test_labels) = _train_test_split( [self.features, self.labels]) class_distribution = np.zeros((1, N_CLASSES)) for label in train_labels: class_distribution[0, label] += 1 class_distribution /= len(train_labels) expected_prediction = np.vstack( [class_distribution for _ in range(test_labels.shape[0])]) classifier = debug.DebugClassifier(n_classes=N_CLASSES) classifier.fit(input_fn=_input_fn_builder(train_features, train_labels), steps=50) pred = classifier.predict_proba( input_fn=_input_fn_builder(test_features, None)) self.assertAllClose(expected_prediction, np.vstack(pred), atol=0.1) def testPredictProbaBinary(self): """Same as above but for binary classification.""" (train_features, train_labels), (test_features, test_labels) = _train_test_split( [self.features, self.binary_labels]) class_distribution = np.zeros((1, 2)) for label in train_labels: class_distribution[0, label] += 1 class_distribution /= len(train_labels) expected_prediction = np.vstack( [class_distribution for _ in range(test_labels.shape[0])]) classifier = debug.DebugClassifier(n_classes=2) classifier.fit(input_fn=_input_fn_builder(train_features, train_labels), steps=50) pred = classifier.predict_proba( input_fn=_input_fn_builder(test_features, None)) self.assertAllClose(expected_prediction, np.vstack(pred), atol=0.1) (train_features, train_labels), ( test_features, test_labels) = _train_test_split( [self.features, self.binary_float_labels]) class_distribution = np.zeros((1, 2)) for label in train_labels: class_distribution[0, int(label)] += 1 class_distribution /= len(train_labels) expected_prediction = np.vstack( [class_distribution for _ in range(test_labels.shape[0])]) classifier = debug.DebugClassifier(n_classes=2) classifier.fit(input_fn=_input_fn_builder(train_features, train_labels), steps=50) pred = classifier.predict_proba( input_fn=_input_fn_builder(test_features, None)) self.assertAllClose(expected_prediction, np.vstack(pred), atol=0.1) def testExperimentIntegration(self): exp = experiment.Experiment( estimator=debug.DebugClassifier(n_classes=3), train_input_fn=test_data.iris_input_multiclass_fn, eval_input_fn=test_data.iris_input_multiclass_fn) exp.test() def _assertInRange(self, expected_min, expected_max, actual): self.assertLessEqual(expected_min, actual) self.assertGreaterEqual(expected_max, actual) def testEstimatorContract(self): estimator_test_utils.assert_estimator_contract(self, debug.DebugClassifier) def testLogisticRegression_MatrixData(self): """Tests binary classification using matrix data as input.""" classifier = debug.DebugClassifier( config=run_config.RunConfig(tf_random_seed=1)) input_fn = test_data.iris_input_logistic_fn classifier.fit(input_fn=input_fn, steps=5) scores = classifier.evaluate(input_fn=input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) def testLogisticRegression_MatrixData_Labels1D(self): """Same as the last test, but label shape is [100] instead of [100, 1].""" def _input_fn(): iris = test_data.prepare_iris_data_for_logistic_regression() return { 'feature': constant_op.constant( iris.data, dtype=dtypes.float32) }, constant_op.constant( iris.target, shape=[100], dtype=dtypes.int32) classifier = debug.DebugClassifier(config=run_config.RunConfig( tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=5) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores) def testLogisticRegression_NpMatrixData(self): """Tests binary classification using numpy matrix data as input.""" iris = test_data.prepare_iris_data_for_logistic_regression() train_x = iris.data train_y = iris.target classifier = debug.DebugClassifier( config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(x=train_x, y=train_y, steps=5) scores = classifier.evaluate(x=train_x, y=train_y, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) def _assertBinaryPredictions(self, expected_len, predictions): self.assertEqual(expected_len, len(predictions)) for prediction in predictions: self.assertIn(prediction, (0, 1)) def _assertProbabilities(self, expected_batch_size, expected_n_classes, probabilities): self.assertEqual(expected_batch_size, len(probabilities)) for b in range(expected_batch_size): self.assertEqual(expected_n_classes, len(probabilities[b])) for i in range(expected_n_classes): self._assertInRange(0.0, 1.0, probabilities[b][i]) def testLogisticRegression_TensorData(self): """Tests binary classification using tensor data as input.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [0.2], [.1]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([[1], [0], [0]], dtype=dtypes.int32) classifier = debug.DebugClassifier(n_classes=2) classifier.fit(input_fn=_input_fn, steps=50) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = list(classifier.predict_classes(input_fn=predict_input_fn)) self._assertBinaryPredictions(3, predictions) def testLogisticRegression_FloatLabel(self): """Tests binary classification with float labels.""" def _input_fn_float_label(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[50], [20], [10]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } labels = constant_op.constant([[0.8], [0.], [0.2]], dtype=dtypes.float32) return features, labels classifier = debug.DebugClassifier(n_classes=2) classifier.fit(input_fn=_input_fn_float_label, steps=50) predict_input_fn = functools.partial(_input_fn_float_label, num_epochs=1) predictions = list(classifier.predict_classes(input_fn=predict_input_fn)) self._assertBinaryPredictions(3, predictions) predictions_proba = list( classifier.predict_proba(input_fn=predict_input_fn)) self._assertProbabilities(3, 2, predictions_proba) def testMultiClass_MatrixData(self): """Tests multi-class classification using matrix data as input.""" classifier = debug.DebugClassifier(n_classes=3) input_fn = test_data.iris_input_multiclass_fn classifier.fit(input_fn=input_fn, steps=200) scores = classifier.evaluate(input_fn=input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) def testMultiClass_MatrixData_Labels1D(self): """Same as the last test, but label shape is [150] instead of [150, 1].""" def _input_fn(): iris = base.load_iris() return { 'feature': constant_op.constant( iris.data, dtype=dtypes.float32) }, constant_op.constant( iris.target, shape=[150], dtype=dtypes.int32) classifier = debug.DebugClassifier(n_classes=3) classifier.fit(input_fn=_input_fn, steps=200) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) def testMultiClass_NpMatrixData(self): """Tests multi-class classification using numpy matrix data as input.""" iris = base.load_iris() train_x = iris.data train_y = iris.target classifier = debug.DebugClassifier(n_classes=3) classifier.fit(x=train_x, y=train_y, steps=200) scores = classifier.evaluate(x=train_x, y=train_y, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) def testMultiClass_StringLabel(self): """Tests multi-class classification with string labels.""" def _input_fn_train(): labels = constant_op.constant([['foo'], ['bar'], ['baz'], ['bar']]) features = { 'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32), } return features, labels classifier = debug.DebugClassifier( n_classes=3, label_keys=['foo', 'bar', 'baz']) classifier.fit(input_fn=_input_fn_train, steps=5) scores = classifier.evaluate(input_fn=_input_fn_train, steps=1) self.assertIn('loss', scores) def testLoss(self): """Tests loss calculation.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # The logistic prediction should be (y = 0.25). labels = constant_op.constant([[1], [0], [0], [0]]) features = {'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32),} return features, labels classifier = debug.DebugClassifier(n_classes=2) classifier.fit(input_fn=_input_fn_train, steps=5) scores = classifier.evaluate(input_fn=_input_fn_train, steps=1) self.assertIn('loss', scores) def testLossWithWeights(self): """Tests loss calculation with weights.""" def _input_fn_train(): # 4 rows with equal weight, one of them (y = x), three of them (y=Not(x)) # The logistic prediction should be (y = 0.25). labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels def _input_fn_eval(): # 4 rows, with different weights. labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[7.], [1.], [1.], [1.]]) } return features, labels classifier = debug.DebugClassifier( weight_column_name='w', n_classes=2, config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn_train, steps=5) scores = classifier.evaluate(input_fn=_input_fn_eval, steps=1) self.assertIn('loss', scores) def testTrainWithWeights(self): """Tests training with given weight column.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # First row has more weight than others. Model should fit (y=x) better # than (y=Not(x)) due to the relative higher weight of the first row. labels = constant_op.constant([[1], [0], [0], [0]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[100.], [3.], [2.], [2.]]) } return features, labels def _input_fn_eval(): # Create 4 rows (y = x) labels = constant_op.constant([[1], [1], [1], [1]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels classifier = debug.DebugClassifier(weight_column_name='w') classifier.fit(input_fn=_input_fn_train, steps=5) scores = classifier.evaluate(input_fn=_input_fn_eval, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) def testCustomMetrics(self): """Tests custom evaluation metrics.""" def _input_fn(num_epochs=None): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) labels = constant_op.constant([[1], [0], [0], [0]]) features = { 'x': input_lib.limit_epochs( array_ops.ones( shape=[4, 1], dtype=dtypes.float32), num_epochs=num_epochs), } return features, labels def _my_metric_op(predictions, labels): # For the case of binary classification, the 2nd column of "predictions" # denotes the model predictions. labels = math_ops.to_float(labels) predictions = array_ops.strided_slice( predictions, [0, 1], [-1, 2], end_mask=1) labels = math_ops.cast(labels, predictions.dtype) return math_ops.reduce_sum(math_ops.multiply(predictions, labels)) classifier = debug.DebugClassifier( config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=5) scores = classifier.evaluate( input_fn=_input_fn, steps=5, metrics={ 'my_accuracy': MetricSpec( metric_fn=metric_ops.streaming_accuracy, prediction_key='classes'), 'my_precision': MetricSpec( metric_fn=metric_ops.streaming_precision, prediction_key='classes'), 'my_metric': MetricSpec( metric_fn=_my_metric_op, prediction_key='probabilities') }) self.assertTrue( set(['loss', 'my_accuracy', 'my_precision', 'my_metric']).issubset( set(scores.keys()))) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = np.array( list(classifier.predict_classes(input_fn=predict_input_fn))) self.assertEqual( _sklearn.accuracy_score([1, 0, 0, 0], predictions), scores['my_accuracy']) # Test the case where the 2nd element of the key is neither "classes" nor # "probabilities". with self.assertRaisesRegexp(KeyError, 'bad_type'): classifier.evaluate( input_fn=_input_fn, steps=5, metrics={ 'bad_name': MetricSpec( metric_fn=metric_ops.streaming_auc, prediction_key='bad_type') }) def testTrainSaveLoad(self): """Tests that insures you can save and reload a trained model.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [.2], [.1]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([[1], [0], [0]], dtype=dtypes.int32) model_dir = tempfile.mkdtemp() classifier = debug.DebugClassifier( model_dir=model_dir, n_classes=3, config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=5) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions1 = classifier.predict_classes(input_fn=predict_input_fn) del classifier classifier2 = debug.DebugClassifier( model_dir=model_dir, n_classes=3, config=run_config.RunConfig(tf_random_seed=1)) predictions2 = classifier2.predict_classes(input_fn=predict_input_fn) self.assertEqual(list(predictions1), list(predictions2)) def testExport(self): """Tests export model for servo.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column.sparse_column_with_hash_bucket('language', 100) feature_columns = [ feature_column.real_valued_column('age'), feature_column.embedding_column( language, dimension=1) ] classifier = debug.DebugClassifier(config=run_config.RunConfig( tf_random_seed=1)) classifier.fit(input_fn=input_fn, steps=5) def default_input_fn(unused_estimator, examples): return feature_column_ops.parse_feature_columns_from_examples( examples, feature_columns) export_dir = tempfile.mkdtemp() classifier.export(export_dir, input_fn=default_input_fn) class DebugRegressorTest(test.TestCase): def setUp(self): np.random.seed(100) self.features = np.random.rand(NUM_EXAMPLES, 5) self.targets = np.random.rand(NUM_EXAMPLES, LABEL_DIMENSION) def testPredictScores(self): """Tests that DebugRegressor outputs the mean target.""" (train_features, train_labels), (test_features, test_labels) = _train_test_split( [self.features, self.targets]) mean_target = np.mean(train_labels, 0) expected_prediction = np.vstack( [mean_target for _ in range(test_labels.shape[0])]) classifier = debug.DebugRegressor(label_dimension=LABEL_DIMENSION) classifier.fit( input_fn=_input_fn_builder(train_features, train_labels), steps=50) pred = classifier.predict_scores(input_fn=_input_fn_builder(test_features, None)) self.assertAllClose(expected_prediction, np.vstack(pred), atol=0.1) def testExperimentIntegration(self): exp = experiment.Experiment( estimator=debug.DebugRegressor(), train_input_fn=test_data.iris_input_logistic_fn, eval_input_fn=test_data.iris_input_logistic_fn) exp.test() def testEstimatorContract(self): estimator_test_utils.assert_estimator_contract(self, debug.DebugRegressor) def testRegression_MatrixData(self): """Tests regression using matrix data as input.""" regressor = debug.DebugRegressor( config=run_config.RunConfig(tf_random_seed=1)) input_fn = test_data.iris_input_logistic_fn regressor.fit(input_fn=input_fn, steps=200) scores = regressor.evaluate(input_fn=input_fn, steps=1) self.assertIn('loss', scores) def testRegression_MatrixData_Labels1D(self): """Same as the last test, but label shape is [100] instead of [100, 1].""" def _input_fn(): iris = test_data.prepare_iris_data_for_logistic_regression() return { 'feature': constant_op.constant(iris.data, dtype=dtypes.float32) }, constant_op.constant( iris.target, shape=[100], dtype=dtypes.int32) regressor = debug.DebugRegressor( config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=200) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores) def testRegression_NpMatrixData(self): """Tests binary classification using numpy matrix data as input.""" iris = test_data.prepare_iris_data_for_logistic_regression() train_x = iris.data train_y = iris.target regressor = debug.DebugRegressor( config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(x=train_x, y=train_y, steps=200) scores = regressor.evaluate(x=train_x, y=train_y, steps=1) self.assertIn('loss', scores) def testRegression_TensorData(self): """Tests regression using tensor data as input.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([1., 0., 0.2], dtype=dtypes.float32) regressor = debug.DebugRegressor( config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=200) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores) def testLoss(self): """Tests loss calculation.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # The algorithm should learn (y = 0.25). labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = {'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32),} return features, labels regressor = debug.DebugRegressor( config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=5) scores = regressor.evaluate(input_fn=_input_fn_train, steps=1) self.assertIn('loss', scores) def testLossWithWeights(self): """Tests loss calculation with weights.""" def _input_fn_train(): # 4 rows with equal weight, one of them (y = x), three of them (y=Not(x)) # The algorithm should learn (y = 0.25). labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels def _input_fn_eval(): # 4 rows, with different weights. labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[7.], [1.], [1.], [1.]]) } return features, labels regressor = debug.DebugRegressor( weight_column_name='w', config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=5) scores = regressor.evaluate(input_fn=_input_fn_eval, steps=1) self.assertIn('loss', scores) def testTrainWithWeights(self): """Tests training with given weight column.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # First row has more weight than others. Model should fit (y=x) better # than (y=Not(x)) due to the relative higher weight of the first row. labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[100.], [3.], [2.], [2.]]) } return features, labels def _input_fn_eval(): # Create 4 rows (y = x) labels = constant_op.constant([[1.], [1.], [1.], [1.]]) features = { 'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels regressor = debug.DebugRegressor( weight_column_name='w', config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=5) scores = regressor.evaluate(input_fn=_input_fn_eval, steps=1) self.assertIn('loss', scores) def testCustomMetrics(self): """Tests custom evaluation metrics.""" def _input_fn(num_epochs=None): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': input_lib.limit_epochs( array_ops.ones(shape=[4, 1], dtype=dtypes.float32), num_epochs=num_epochs), } return features, labels def _my_metric_op(predictions, labels): return math_ops.reduce_sum(math_ops.multiply(predictions, labels)) regressor = debug.DebugRegressor( config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=5) scores = regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ 'my_error': MetricSpec( metric_fn=metric_ops.streaming_mean_squared_error, prediction_key='scores'), 'my_metric': MetricSpec(metric_fn=_my_metric_op, prediction_key='scores') }) self.assertIn('loss', set(scores.keys())) self.assertIn('my_error', set(scores.keys())) self.assertIn('my_metric', set(scores.keys())) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = np.array( list(regressor.predict_scores(input_fn=predict_input_fn))) self.assertAlmostEqual( _sklearn.mean_squared_error(np.array([1, 0, 0, 0]), predictions), scores['my_error']) # Tests the case where the prediction_key is not "scores". with self.assertRaisesRegexp(KeyError, 'bad_type'): regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ 'bad_name': MetricSpec( metric_fn=metric_ops.streaming_auc, prediction_key='bad_type') }) def testTrainSaveLoad(self): """Tests that insures you can save and reload a trained model.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([1., 0., 0.2], dtype=dtypes.float32) model_dir = tempfile.mkdtemp() regressor = debug.DebugRegressor( model_dir=model_dir, config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=5) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = list(regressor.predict_scores(input_fn=predict_input_fn)) del regressor regressor2 = debug.DebugRegressor( model_dir=model_dir, config=run_config.RunConfig(tf_random_seed=1)) predictions2 = list(regressor2.predict_scores(input_fn=predict_input_fn)) self.assertAllClose(predictions, predictions2) if __name__ == '__main__': test.main()
mit
fdion/stemgraphic
stemgraphic/text.py
1
14774
import math import numpy as np from operator import itemgetter from warnings import warn from .helpers import * def quantize(df, column=None, display=750, leaf_order=1, random_state=None, scale=None, trim=None, zoom=None): """ quantize Converts a series into stem-and-leaf and back into decimal. This has the potential effect of decimating (or truncating) values in a lossy way. :param df: list, numpy array, time series, pandas or dask dataframe :param column: specify which column (string or number) of the dataframe to use, else the first numerical is selected :param display: maximum number of data points to display, forces sampling if smaller than len(df) :param leaf_order: how many leaf digits per data point to display, defaults to 1 :param random_state: initial random seed for the sampling process, for reproducible research :param scale: force a specific scale for building the plot. Defaults to None (automatic). :param trim: ranges from 0 to 0.5 (50%) to remove from each end of the data set, defaults to None :param zoom: zoom level, on top of calculated scale (+1, -1 etc) :return: decimated df """ x = df if column is None else df[column] scale, pair, rows, sorted_data, stems = stem_data(x, column=column, display=display, full=True, leaf_order=leaf_order, random_state=random_state, scale=scale, trim=trim, zoom=zoom) values = [(stem + leaf) * scale for stem, leaf in sorted_data] return values def stem_data(x, break_on=None, column=None, compact=False, display=300, full=False, leaf_order=1, omin=None, omax=None, outliers=False, persistence=None, random_state=None, scale=None, total_rows=None, trim=False, zoom=None): """ Returns scale factor, key label and list of rows. :param x: list, numpy array, time series, pandas or dask dataframe :param break_on: force a break of the leaves at x in (5, 10), defaults to 10 :param column: specify which column (string or number) of the dataframe to use, else the first numerical is selected :param compact: do not display empty stem rows (with no leaves), defaults to False :param display: maximum number of data points to display, forces sampling if smaller than len(df) :param full: bool, if True returns all interim results including sorted data and stems :param leaf_order: how many leaf digits per data point to display, defaults to 1 :param outliers: display outliers - these are from the full data set, not the sample. Defaults to Auto :param omin: float, if already calculated, helps speed up the process for large data sets :param omax: float, if already calculated, helps speed up the process for large data sets :param persistence: persist sampled dataframe :param random_state: initial random seed for the sampling process, for reproducible research :param scale: force a specific scale for building the plot. Defaults to None (automatic) :param total_rows: int, if already calculated, helps speed up the process for large data sets :param trim: ranges from 0 to 0.5 (50%) to remove from each end of the data set, defaults to None :param zoom: zoom level, on top of calculated scale (+1, -1 etc) """ rows = [] # Multivariate or not try: cols = len(x.columns) except AttributeError: # wasn't a multi column data frame, might be a list cols = 1 if cols > 1: if column is None: # We have to figure out the first numerical column on our own start_at = 1 if x.columns[0] == 'id' else 0 for i in range(start_at, len(x.columns)): if x.dtypes[i] in ('int64', 'float64'): column = i break #if dd: # x = x[x.columns.values[column]] #else: x = x.ix[:, column] # Sampling or not we need the absolute min/max if omin is None or omax is None or total_rows is None: omin, omax, total_rows = min_max_count(x, column) # very expensive if on disk, don't do it twice n = total_rows if n == 0: return None elif n > display: try: x = x.sample(n=display, random_state=random_state).values except TypeError: # We are here due to dask not supporting n=. We'll use less precise frac instead frac = display / n x = x.sample(frac=frac, random_state=random_state).compute().values if persistence is not None: if persistence[-4:] == '.pkl': pd.Dataframe(x).to_pickle(persistence) else: pd.Dataframe(x).to_csv(persistence) # TODO: add feather, hdf5 etc n = display if n <= 300: # Dixon lines = math.floor(10 * math.log(n, 10)) else: # Velleman lines = math.floor(2 * math.sqrt(n)) try: x = x[~np.isnan(x)] xmin = x.min() xmax = x.max() except AttributeError: xmin = min(x) xmax = max(x) try: spread = xmax - xmin except TypeError: warn("Column data appears to be non numerical. Specify a numeric column.") return None # we will trim on the sample, or the whole data set lowest, highest = percentile(x, trim) if trim else xmin, xmax # scale_factor = as small as possible but lines * S must be >= spread if lines == 0: lines = 1 r_value = spread / lines if scale: # we were passed a scale, use it scale_factor = scale else: # The bulk of the logic to figure out the best scaling and visualization try: scale_factor = pow(10, math.ceil(math.log(r_value, 10))) except ValueError: scale_factor = 1 check = math.floor(xmax / scale_factor - xmin / scale_factor + 1) if check > lines: scale_factor *= 10 elif (check < 7 and n >= 45) or check < 3: scale_factor /= 10 # 30 lines on avg, up to 60 some lines max by bumping the scale elif math.floor(check) * 2 <= lines + 1 and break_on is None: break_on = 5 if zoom == -1 and break_on == 5: break_on = None elif zoom == -1: break_on = 5 scale_factor /= 10 elif zoom == 1 and break_on == 5: scale_factor *= 10 elif zoom == 1: break_on = 5 scale_factor *= 10 if break_on is None: break_on = 10 truncate_factor = scale_factor / pow(10, leaf_order) # Now that we have a scale, we are going to round to it, trim outliers and split stem and leaf rounded_data = [int(np.round(item / truncate_factor)) * truncate_factor for item in x if lowest <= item <= highest] data = [] for val in rounded_data: frac_part, int_part = math.modf(val / scale_factor) round_frac = round(frac_part, 2) if round_frac == 1: round_frac = 0.0 int_part += 1.0 data.append((round_frac, int_part)) sorted_data = sorted(data, key=itemgetter(1, 0)) stems = list(set([s for l, s in sorted_data])) current_stem = None current_leaf = None previous_mod = 0 row = '' sign_transition = False if xmin < 0 < xmax: sign_transition = True if outliers: row = '{}\n ¡'.format(omin) for leaf, stem in sorted_data: #leaf = round(f_leaf, 1 + leaf_order) if stem == current_stem: ileaf = round(leaf * 10) if sign_transition and stem == 0 and abs(leaf) == leaf: sign_transition = False rows.append(row) row = '{:>3} | '.format(int(stem)) elif current_stem is not None and ileaf >= break_on == 5 and previous_mod > (ileaf % break_on): rows.append(row) row = ' | ' elif leaf_order > 1: row += ' ' previous_mod = (ileaf % break_on) row += str(round(abs(leaf), 1 + leaf_order))[2:leaf_order + 2] else: if row != '': rows.append(row) if current_stem is not None and not compact: if break_on == 5 and row[0:4] != ' ': row = ' | ' rows.append(row) for missing in range(int(current_stem) + 1, int(stem)): if int(current_stem) < 0 and missing == 0: neg_zero = '{:>3} |'.format("-0") rows.append(neg_zero) empty_row = '{:>3} |'.format(missing) rows.append(empty_row) if break_on == 5: rows.append(' | ') current_leaf = str(round(abs(leaf), 1 + leaf_order))[2:leaf_order + 2].zfill(leaf_order) if current_stem and int(current_leaf) >= break_on: row = '{:>3} | '.format(int(stem)) rows.append(row) stem_ind = ' ' else: stem_ind = int(stem) row = '{:>3} | {}'.format("-0" if stem == 0 and abs(leaf) != leaf else stem_ind, current_leaf) current_stem = stem # Potentially catching a last row rows.append(row) if outliers: rows.append(' !\n{}'.format(omax)) key_label = "{}|{}".format(int(current_stem), current_leaf) if full: return scale_factor, key_label, rows, sorted_data, stems else: return scale_factor, key_label, rows def stem_dot(df, asc=True, break_on=None, column=None, compact=False, display=300, leaf_order=1, legend_pos='best', marker=None, outliers=True, random_state=None, scale=None, trim=False, unit='', zoom=None): """ :param df: list, numpy array, time series, pandas or dask dataframe :param asc: stem sorted in ascending order, defaults to True :param break_on: force a break of the leaves at x in (5, 10), defaults to 10 :param column: specify which column (string or number) of the dataframe to use, else the first numerical is selected :param compact: do not display empty stem rows (with no leaves), defaults to False :param display: maximum number of data points to display, forces sampling if smaller than len(df) :param legend_pos: One of 'top', 'bottom', 'best' or None, defaults to 'best'. :param marker: char, symbol to use as marker. 'O' is default. Suggested alternatives: '*', '+', 'x', '.', 'o' :param outliers: display outliers - these are from the full data set, not the sample. Defaults to Auto :param random_state: initial random seed for the sampling process, for reproducible research :param scale: force a specific scale for building the plot. Defaults to None (automatic). :param trim: ranges from 0 to 0.5 (50%) to remove from each end of the data set, defaults to None :param unit: specify a string for the unit ('$', 'Kg'...). Used for outliers and for legend, defaults to '' :param zoom: zoom level, on top of calculated scale (+1, -1 etc) """ if marker is None: marker = 'O' # commonly used, but * could also be used x = df if column is None else df[column] scale, pair, rows = stem_data(x, break_on=break_on, column=column, compact=compact, display=display, leaf_order=leaf_order, outliers=outliers, random_state=random_state, scale=scale, trim=trim, zoom=zoom) if legend_pos == 'top': st, lf = pair.split('|') print('Key: \n{} => {}.{}x{} = {} {}'.format(pair, st, lf, scale, key_calc(st, lf, scale), unit)) ordered_rows = rows if asc else rows[::-1] for row in ordered_rows: try: st, lf = row.split('|') print("{}|{}".format(st, 'O' * len(lf))) except ValueError: # no pipe in row, print as is print(row) if legend_pos is not None and legend_pos != 'top': st, lf = pair.split('|') print('Scale: \n{} => {}.{}x{} = {} {}'.format(pair, st, lf, scale, key_calc(st, lf, scale), unit)) def stem_text(df, asc=True, break_on=None, column=None, compact=False, display=300, legend_pos='best', outliers=True, persistence=None, random_state=None, scale=None, trim=False, unit='', zoom=None): """ :param df: list, numpy array, time series, pandas or dask dataframe :param asc: stem sorted in ascending order, defaults to True :param break_on: force a break of the leaves at x in (5, 10), defaults to 10 :param column: specify which column (string or number) of the dataframe to use, else the first numerical is selected :param compact: do not display empty stem rows (with no leaves), defaults to False :param display: maximum number of data points to display, forces sampling if smaller than len(df) :param legend_pos: One of 'top', 'bottom', 'best' or None, defaults to 'best'. :param outliers: display outliers - these are from the full data set, not the sample. Defaults to Auto :param persistence: filename. save sampled data to disk, either as pickle (.pkl) or csv (any other extension) :param random_state: initial random seed for the sampling process, for reproducible research :param scale: force a specific scale for building the plot. Defaults to None (automatic). :param trim: ranges from 0 to 0.5 (50%) to remove from each end of the data set, defaults to None :param unit: specify a string for the unit ('$', 'Kg'...). Used for outliers and for legend, defaults to '' :param zoom: zoom level, on top of calculated scale (+1, -1 etc) """ x = df if column is None else df[column] scale, pair, rows = stem_data(x, break_on=break_on, column=column, compact=compact, display=display, outliers=outliers, persistence=persistence, random_state=random_state, scale=scale, trim=trim, zoom=zoom) if legend_pos == 'top': st, lf = pair.split('|') print('Key: \n{} => {}.{}x{} = {} {}'.format(pair, st, lf, scale, key_calc(st, lf, scale), unit)) ordered_rows = rows if asc else rows[::-1] for row in ordered_rows: print(row) if legend_pos is not None and legend_pos != 'top': st, lf = pair.split('|') print('Key: \n{} => {}.{}x{} = {} {}'.format(pair, st, lf, scale, key_calc(st, lf, scale), unit))
mit
lemiere/python-lecture
tp_aleatoire/correction/brownien.py
1
2434
#!/usr/bin/python3.5 # -*- coding: utf-8 -*- # Lemiere Yves # Juillet 2017 import matplotlib.pyplot as plt import random import math import numpy as np def distance(x1,y1,x2,y2): dx = (x2-x1) dy = (y2-y1) tmp_distance = math.sqrt(dx*dx+dy*dy) return tmp_distance def move(x,y,delta_x,delta_y): next_x = 0 next_y = 0 next_x = x + delta_x next_y = y + delta_y return next_x,next_y def choose_direction(): tmp_value = None list_of_direction = ['W','S','E','N'] tmp_value = random.choice(list_of_direction) return tmp_value def prepare_mouvement(a_direction): if a_direction == 'N': delta_x = 0 delta_y = +1 elif a_direction == 'S': delta_x = 0 delta_y = -1 elif a_direction == 'E': delta_x = 1 delta_y = 0 elif a_direction == 'W': delta_x = -1 delta_y = 0 else: delta_x = 0 delta_y = 0 return delta_x,delta_y def simulate(tmp_x, tmp_y,tmp_it): current_x = tmp_x current_y = tmp_y a_x = [] a_y = [] for it in range(tmp_it): the_direction = choose_direction() dx,dy = prepare_mouvement(the_direction) current_x,current_y = move(current_x,current_y,dx,dy) a_x.append(current_x) a_y.append(current_y) return a_x,a_y if __name__ == "__main__": debug = False if debug: print("************************") print("* Welcome in brownien *") print("************************\n") random.seed(None) x_init = 0 y_init = 0 current_x = x_init current_y = y_init nb_of_iteration = 2000 final_distance = [] nb_simulation = 1000 for it in range(nb_simulation): x = [] y = [] x,y = simulate(x_init,y_init,nb_of_iteration) final_distance.append(distance(x_init,y_init,x[-1],y[-1])) if debug : print("Distance from initial position is : {}".format(final_distance[-1])) plt.grid() plt.scatter(x,y,c= range(len(x)), marker = '.', s=200,zorder=1) plt.show() print("mean distance for {} iterations after {} simulations : {}".format(nb_of_iteration,nb_simulation,np.mean(final_distance))) plt.hist(final_distance) plt.show()
gpl-3.0
toobaz/pandas
pandas/tests/indexes/test_frozen.py
2
3768
import warnings import numpy as np import pytest from pandas.core.indexes.frozen import FrozenList, FrozenNDArray from pandas.tests.test_base import CheckImmutable, CheckStringMixin from pandas.util import testing as tm class TestFrozenList(CheckImmutable, CheckStringMixin): mutable_methods = ("extend", "pop", "remove", "insert") unicode_container = FrozenList(["\u05d0", "\u05d1", "c"]) def setup_method(self, _): self.lst = [1, 2, 3, 4, 5] self.container = FrozenList(self.lst) self.klass = FrozenList def test_add(self): result = self.container + (1, 2, 3) expected = FrozenList(self.lst + [1, 2, 3]) self.check_result(result, expected) result = (1, 2, 3) + self.container expected = FrozenList([1, 2, 3] + self.lst) self.check_result(result, expected) def test_iadd(self): q = r = self.container q += [5] self.check_result(q, self.lst + [5]) # Other shouldn't be mutated. self.check_result(r, self.lst) def test_union(self): result = self.container.union((1, 2, 3)) expected = FrozenList(self.lst + [1, 2, 3]) self.check_result(result, expected) def test_difference(self): result = self.container.difference([2]) expected = FrozenList([1, 3, 4, 5]) self.check_result(result, expected) def test_difference_dupe(self): result = FrozenList([1, 2, 3, 2]).difference([2]) expected = FrozenList([1, 3]) self.check_result(result, expected) def test_tricky_container_to_bytes_raises(self): # GH 26447 msg = "^'str' object cannot be interpreted as an integer$" with pytest.raises(TypeError, match=msg): bytes(self.unicode_container) class TestFrozenNDArray(CheckImmutable, CheckStringMixin): mutable_methods = ("put", "itemset", "fill") def setup_method(self, _): self.lst = [3, 5, 7, -2] self.klass = FrozenNDArray with warnings.catch_warnings(record=True): warnings.simplefilter("ignore", FutureWarning) self.container = FrozenNDArray(self.lst) self.unicode_container = FrozenNDArray(["\u05d0", "\u05d1", "c"]) def test_constructor_warns(self): # see gh-9031 with tm.assert_produces_warning(FutureWarning): FrozenNDArray([1, 2, 3]) def test_tricky_container_to_bytes(self): bytes(self.unicode_container) def test_shallow_copying(self): original = self.container.copy() assert isinstance(self.container.view(), FrozenNDArray) assert not isinstance(self.container.view(np.ndarray), FrozenNDArray) assert self.container.view() is not self.container tm.assert_numpy_array_equal(self.container, original) # Shallow copy should be the same too assert isinstance(self.container._shallow_copy(), FrozenNDArray) # setting should not be allowed def testit(container): container[0] = 16 self.check_mutable_error(testit, self.container) def test_values(self): original = self.container.view(np.ndarray).copy() n = original[0] + 15 vals = self.container.values() tm.assert_numpy_array_equal(original, vals) assert original is not vals vals[0] = n assert isinstance(self.container, FrozenNDArray) tm.assert_numpy_array_equal(self.container.values(), original) assert vals[0] == n def test_searchsorted(self): expected = 2 assert self.container.searchsorted(7) == expected with tm.assert_produces_warning(FutureWarning): assert self.container.searchsorted(v=7) == expected
bsd-3-clause
CCIce/Interesting-Project
简单单元有限元计算/任意三角形单元划分.py
1
7160
#!/usr/bin/python # -*- coding: utf-8 -*- from sympy import * import copy import matplotlib.pyplot as plt # from Tkinter import * import argparse h, u = 1, 0 E = Symbol('E') #节点荷载的列阵 Rx1, Rx2, Rx4,Ry4,Ry5,Ry6 = symbols('Rx1, Rx2, Rx4,Ry4,Ry5,Ry6') #节点位移的列阵 v1, v2, u3, v3, u5, u6 = symbols('v1 v2 u3 v3 u5 u6') s = [] def JiangWei(KK, n, Q): # l需要删除矩阵的行列(找出列表中为零的序号) #nn为划分的数 l = [] for i in xrange(n + 1): node = TTy(i) if i == n: l.append(2 * (node - 1)) for j in xrange(node, node + n + 1): l.append(2 * j - 1) else: l.append(2 * (node - 1)) # print l # print len(l) # 矩阵降维 p = 0 for i in l: KK.col_del(i - p) KK.row_del(i - p) p += 1 # pprint (KK/E) # print KK.shape for i in xrange(KK.shape[0]-1): Q = Q.row_insert(1, Matrix([[0]])) # 解方程、位移的解 # d为方程的解 # pprint (KK) KK = KK.col_insert(KK.shape[1], Q) d = KK.rref()[0].col(-1) # 有确定值的位移列阵(完整的) for i in l: d = d.row_insert(i,Matrix([[0]])) # print d return d class Plane2D(object): def __init__(self,xl,xm,xn,yl,ym,yn,l,m,n,KK): self.l = l self.m = m self.n = n self.xl = xl self.xm = xm self.xn = xn self.yl = yl self.ym = ym self.yn = yn self.KK = KK """坐标的矩阵""" self.A = Matrix([[1,xl,yl], [1, xm, ym], [1, xn,yn]]) self.Area = 0.5 * self.A.det() """A的代数余子式""" Al = [] for i in xrange(0, 3): for j in xrange(1, 3): Al.append(self.calCofactor(self.A, i, j)) self.B = 1 / (2 * self.Area) * Matrix([[Al[0], 0, Al[2], 0, Al[4], 0], [0, Al[1], 0, Al[3], 0, Al[5]], \ [Al[1], Al[0], Al[3], Al[2], Al[5], Al[4]]]) self.D = (E/(1-u**2)) * Matrix([[1, u, 0], [u, 1, 0], [0, 0, (1-u)*0.5]]) """计算代数余子式""" def calCofactor(self,A,i,j): b = copy.deepcopy(A) b.row_del(i) b.col_del(j) if (i+j)%2 == 0: return b.det() else: return -b.det() """计算总刚""" def krs(self): Area = self.Area A = self.A KK = self.KK B = self.B Bl = B[ : , 0 : 2] Bm = B[ : , 2 : 4] Bn = B[ : , 4 : 6] BList = {self.l:Bl, self.m:Bm, self.n:Bn} for r in BList: for s in BList: krs = BList[r].T * self.D * BList[s] * h * Area for i in xrange(2): for j in xrange(2): KK[2 * r + i - 2, 2 * s + j - 2] += krs[i, j] return KK def Stress(self,d): l, m, n = self.l, self.m, self.n A = Matrix([[1, self.xl, self.yl], [1, self.xm, self.ym], [1, self.xn, self.yn]]) B = self.B D = (E / (1 - u ** 2)) * Matrix([[1, u, 0], [u, 1, 0], [0, 0, (1 - u) * 0.5]]) #k单元的位移 k = Matrix([0]) for i in [l,m,n]: k = k.row_insert(-1,d.row(2*i-2)) k = k.row_insert(-1, d.row(2 * i - 1)) k.row_del(-1) # pprint(k) pprint (D*B*k) # t.insert(END,'sj') # return k # def printStress(self, k): # pprint (self.D*self.B*k) def TTy(n, b=1, c=0): if n == c: return b+n else: return TTy(n, b=b+c, c=c+1) def TTx(n, b=1, c=0): if n == c: return b+n else: return TTx(n, b=b+c+1, c=c+1) #def TTx(n): # if n == 0: # return 1 # else: # return n+1+TTx(n-1) def dividedUnit(n): """ num是点的节点号码 n是划分的单元数 d是一小块的边长 """ d = 2.0/n y, x = 2.0, 0.0 xylist = [0] #画点、点的注释 for i in xrange(n+1): y = 2 - i*d x = 0.0 for j in xrange(i+1): x = j * d xylist.append((x, y)) # print len(xylist) # print xylist #为单元划分 unitlist = [] jdhlist = [] for i in xrange(1, n + 1): xStart = TTy(i) xEnd = TTy(i)+i sStart = TTy(i - 1) flag = 1 while not xStart == xEnd: if flag % 2 == 0: unitlist.append([xylist[sStart], xylist[xStart], xylist[sStart + 1]]) jdhlist.append([sStart, xStart, sStart + 1]) sStart += 1 flag += 1 else: unitlist.append([xylist[sStart], xylist[xStart], xylist[xStart + 1]]) jdhlist.append([sStart, xStart, xStart + 1]) xStart += 1 flag += 1 return unitlist, jdhlist def drawingPlot(n, xy): num = 1 d = 2.0 / n # print 'd=%.2f' %d y, x = 2.0, 0.0 # 画点、点的注释 for i in xrange(n + 1): y = 2 - i * d x = 0.0 for j in xrange(i + 1): x = j * d plt.plot(x, y, 'ro') plt.text(x, y, num, color='blue', fontsize=10) num+=1 for i in xrange(0,n): plt.plot([0,2-i*d], [2-i*d,0],'r') plt.plot([i*d,i*d],[0,2-(i)*d],'r') plt.plot([0,d*(i+1)],[2-(i+1)*d,2-(i+1)*d],'r') # print len(xy) num=1 for i in xrange(len(xy)): x = (xy[i][0][0]+xy[i][1][0]+xy[i][2][0])/3.0 y = (xy[i][0][1]+xy[i][1][1]+xy[i][2][1])/3.0 plt.text(x,y,num,color='green', fontsize=15) num+=1 plt.axis([0, 2, 0, 2]) plt.grid(color='b', linewidth=0.5, linestyle='--') plt.show() def printStress(xy, jdh,d): for i in xrange(len(jdh)): Plane2D(xy[i][0][0],xy[i][1][0],xy[i][2][0],xy[i][0][1],xy[i][1][1],xy[i][2][1],\ jdh[i][0],jdh[i][1],jdh[i][2],KK).Stress(d) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("-n", action="store", help="Divided unit", dest='n', type=int ) parser.add_argument("-k",action="store_false", help="zong gang") parser.add_argument("-s", action="store_false", help="printing stress") parser.add_argument("-d", action="store_false", help="drawing picture") args = parser.parse_args() node = 2*(TTy(args.n)+args.n) KK = zeros(node, node) xy, jdh = dividedUnit(args.n) Q = Matrix([-10]) # xl,xm,xn,yl,ym,yn,l,m,n for i in xrange(len(jdh)): KK = Plane2D(xy[i][0][0],xy[i][1][0],xy[i][2][0],xy[i][0][1],xy[i][1][1],xy[i][2][1],\ jdh[i][0],jdh[i][1],jdh[i][2],KK).krs() if not args.k: # print "------------总刚------------" pprint (KK) d = JiangWei(KK, args.n, Q) if not args.s: # print "------------应力------------" printStress(xy,jdh,d) if not args.d: # d = JiangWei(KK, args.n, Q) drawingPlot(args.n,xy) # pprint (KK*1/E) # pprint (d*E) # print '----------------------------------------' # drawingPlot(n, xy)
mit
f3r/scikit-learn
sklearn/datasets/samples_generator.py
20
56502
""" Generate samples of synthetic data sets. """ # Authors: B. Thirion, G. Varoquaux, A. Gramfort, V. Michel, O. Grisel, # G. Louppe, J. Nothman # License: BSD 3 clause import numbers import array import numpy as np from scipy import linalg import scipy.sparse as sp from ..preprocessing import MultiLabelBinarizer from ..utils import check_array, check_random_state from ..utils import shuffle as util_shuffle from ..utils.fixes import astype from ..utils.random import sample_without_replacement from ..externals import six map = six.moves.map zip = six.moves.zip def _generate_hypercube(samples, dimensions, rng): """Returns distinct binary samples of length dimensions """ if dimensions > 30: return np.hstack([_generate_hypercube(samples, dimensions - 30, rng), _generate_hypercube(samples, 30, rng)]) out = astype(sample_without_replacement(2 ** dimensions, samples, random_state=rng), dtype='>u4', copy=False) out = np.unpackbits(out.view('>u1')).reshape((-1, 32))[:, -dimensions:] return out def make_classification(n_samples=100, n_features=20, n_informative=2, n_redundant=2, n_repeated=0, n_classes=2, n_clusters_per_class=2, weights=None, flip_y=0.01, class_sep=1.0, hypercube=True, shift=0.0, scale=1.0, shuffle=True, random_state=None): """Generate a random n-class classification problem. This initially creates clusters of points normally distributed (std=1) about vertices of a `2 * class_sep`-sided hypercube, and assigns an equal number of clusters to each class. It introduces interdependence between these features and adds various types of further noise to the data. Prior to shuffling, `X` stacks a number of these primary "informative" features, "redundant" linear combinations of these, "repeated" duplicates of sampled features, and arbitrary noise for and remaining features. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=20) The total number of features. These comprise `n_informative` informative features, `n_redundant` redundant features, `n_repeated` duplicated features and `n_features-n_informative-n_redundant- n_repeated` useless features drawn at random. n_informative : int, optional (default=2) The number of informative features. Each class is composed of a number of gaussian clusters each located around the vertices of a hypercube in a subspace of dimension `n_informative`. For each cluster, informative features are drawn independently from N(0, 1) and then randomly linearly combined within each cluster in order to add covariance. The clusters are then placed on the vertices of the hypercube. n_redundant : int, optional (default=2) The number of redundant features. These features are generated as random linear combinations of the informative features. n_repeated : int, optional (default=0) The number of duplicated features, drawn randomly from the informative and the redundant features. n_classes : int, optional (default=2) The number of classes (or labels) of the classification problem. n_clusters_per_class : int, optional (default=2) The number of clusters per class. weights : list of floats or None (default=None) The proportions of samples assigned to each class. If None, then classes are balanced. Note that if `len(weights) == n_classes - 1`, then the last class weight is automatically inferred. More than `n_samples` samples may be returned if the sum of `weights` exceeds 1. flip_y : float, optional (default=0.01) The fraction of samples whose class are randomly exchanged. class_sep : float, optional (default=1.0) The factor multiplying the hypercube dimension. hypercube : boolean, optional (default=True) If True, the clusters are put on the vertices of a hypercube. If False, the clusters are put on the vertices of a random polytope. shift : float, array of shape [n_features] or None, optional (default=0.0) Shift features by the specified value. If None, then features are shifted by a random value drawn in [-class_sep, class_sep]. scale : float, array of shape [n_features] or None, optional (default=1.0) Multiply features by the specified value. If None, then features are scaled by a random value drawn in [1, 100]. Note that scaling happens after shifting. shuffle : boolean, optional (default=True) Shuffle the samples and the features. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The generated samples. y : array of shape [n_samples] The integer labels for class membership of each sample. Notes ----- The algorithm is adapted from Guyon [1] and was designed to generate the "Madelon" dataset. References ---------- .. [1] I. Guyon, "Design of experiments for the NIPS 2003 variable selection benchmark", 2003. See also -------- make_blobs: simplified variant make_multilabel_classification: unrelated generator for multilabel tasks """ generator = check_random_state(random_state) # Count features, clusters and samples if n_informative + n_redundant + n_repeated > n_features: raise ValueError("Number of informative, redundant and repeated " "features must sum to less than the number of total" " features") if 2 ** n_informative < n_classes * n_clusters_per_class: raise ValueError("n_classes * n_clusters_per_class must" " be smaller or equal 2 ** n_informative") if weights and len(weights) not in [n_classes, n_classes - 1]: raise ValueError("Weights specified but incompatible with number " "of classes.") n_useless = n_features - n_informative - n_redundant - n_repeated n_clusters = n_classes * n_clusters_per_class if weights and len(weights) == (n_classes - 1): weights.append(1.0 - sum(weights)) if weights is None: weights = [1.0 / n_classes] * n_classes weights[-1] = 1.0 - sum(weights[:-1]) # Distribute samples among clusters by weight n_samples_per_cluster = [] for k in range(n_clusters): n_samples_per_cluster.append(int(n_samples * weights[k % n_classes] / n_clusters_per_class)) for i in range(n_samples - sum(n_samples_per_cluster)): n_samples_per_cluster[i % n_clusters] += 1 # Intialize X and y X = np.zeros((n_samples, n_features)) y = np.zeros(n_samples, dtype=np.int) # Build the polytope whose vertices become cluster centroids centroids = _generate_hypercube(n_clusters, n_informative, generator).astype(float) centroids *= 2 * class_sep centroids -= class_sep if not hypercube: centroids *= generator.rand(n_clusters, 1) centroids *= generator.rand(1, n_informative) # Initially draw informative features from the standard normal X[:, :n_informative] = generator.randn(n_samples, n_informative) # Create each cluster; a variant of make_blobs stop = 0 for k, centroid in enumerate(centroids): start, stop = stop, stop + n_samples_per_cluster[k] y[start:stop] = k % n_classes # assign labels X_k = X[start:stop, :n_informative] # slice a view of the cluster A = 2 * generator.rand(n_informative, n_informative) - 1 X_k[...] = np.dot(X_k, A) # introduce random covariance X_k += centroid # shift the cluster to a vertex # Create redundant features if n_redundant > 0: B = 2 * generator.rand(n_informative, n_redundant) - 1 X[:, n_informative:n_informative + n_redundant] = \ np.dot(X[:, :n_informative], B) # Repeat some features if n_repeated > 0: n = n_informative + n_redundant indices = ((n - 1) * generator.rand(n_repeated) + 0.5).astype(np.intp) X[:, n:n + n_repeated] = X[:, indices] # Fill useless features if n_useless > 0: X[:, -n_useless:] = generator.randn(n_samples, n_useless) # Randomly replace labels if flip_y >= 0.0: flip_mask = generator.rand(n_samples) < flip_y y[flip_mask] = generator.randint(n_classes, size=flip_mask.sum()) # Randomly shift and scale if shift is None: shift = (2 * generator.rand(n_features) - 1) * class_sep X += shift if scale is None: scale = 1 + 100 * generator.rand(n_features) X *= scale if shuffle: # Randomly permute samples X, y = util_shuffle(X, y, random_state=generator) # Randomly permute features indices = np.arange(n_features) generator.shuffle(indices) X[:, :] = X[:, indices] return X, y def make_multilabel_classification(n_samples=100, n_features=20, n_classes=5, n_labels=2, length=50, allow_unlabeled=True, sparse=False, return_indicator='dense', return_distributions=False, random_state=None): """Generate a random multilabel classification problem. For each sample, the generative process is: - pick the number of labels: n ~ Poisson(n_labels) - n times, choose a class c: c ~ Multinomial(theta) - pick the document length: k ~ Poisson(length) - k times, choose a word: w ~ Multinomial(theta_c) In the above process, rejection sampling is used to make sure that n is never zero or more than `n_classes`, and that the document length is never zero. Likewise, we reject classes which have already been chosen. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=20) The total number of features. n_classes : int, optional (default=5) The number of classes of the classification problem. n_labels : int, optional (default=2) The average number of labels per instance. More precisely, the number of labels per sample is drawn from a Poisson distribution with ``n_labels`` as its expected value, but samples are bounded (using rejection sampling) by ``n_classes``, and must be nonzero if ``allow_unlabeled`` is False. length : int, optional (default=50) The sum of the features (number of words if documents) is drawn from a Poisson distribution with this expected value. allow_unlabeled : bool, optional (default=True) If ``True``, some instances might not belong to any class. sparse : bool, optional (default=False) If ``True``, return a sparse feature matrix .. versionadded:: 0.17 parameter to allow *sparse* output. return_indicator : 'dense' (default) | 'sparse' | False If ``dense`` return ``Y`` in the dense binary indicator format. If ``'sparse'`` return ``Y`` in the sparse binary indicator format. ``False`` returns a list of lists of labels. return_distributions : bool, optional (default=False) If ``True``, return the prior class probability and conditional probabilities of features given classes, from which the data was drawn. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The generated samples. Y : array or sparse CSR matrix of shape [n_samples, n_classes] The label sets. p_c : array, shape [n_classes] The probability of each class being drawn. Only returned if ``return_distributions=True``. p_w_c : array, shape [n_features, n_classes] The probability of each feature being drawn given each class. Only returned if ``return_distributions=True``. """ generator = check_random_state(random_state) p_c = generator.rand(n_classes) p_c /= p_c.sum() cumulative_p_c = np.cumsum(p_c) p_w_c = generator.rand(n_features, n_classes) p_w_c /= np.sum(p_w_c, axis=0) def sample_example(): _, n_classes = p_w_c.shape # pick a nonzero number of labels per document by rejection sampling y_size = n_classes + 1 while (not allow_unlabeled and y_size == 0) or y_size > n_classes: y_size = generator.poisson(n_labels) # pick n classes y = set() while len(y) != y_size: # pick a class with probability P(c) c = np.searchsorted(cumulative_p_c, generator.rand(y_size - len(y))) y.update(c) y = list(y) # pick a non-zero document length by rejection sampling n_words = 0 while n_words == 0: n_words = generator.poisson(length) # generate a document of length n_words if len(y) == 0: # if sample does not belong to any class, generate noise word words = generator.randint(n_features, size=n_words) return words, y # sample words with replacement from selected classes cumulative_p_w_sample = p_w_c.take(y, axis=1).sum(axis=1).cumsum() cumulative_p_w_sample /= cumulative_p_w_sample[-1] words = np.searchsorted(cumulative_p_w_sample, generator.rand(n_words)) return words, y X_indices = array.array('i') X_indptr = array.array('i', [0]) Y = [] for i in range(n_samples): words, y = sample_example() X_indices.extend(words) X_indptr.append(len(X_indices)) Y.append(y) X_data = np.ones(len(X_indices), dtype=np.float64) X = sp.csr_matrix((X_data, X_indices, X_indptr), shape=(n_samples, n_features)) X.sum_duplicates() if not sparse: X = X.toarray() # return_indicator can be True due to backward compatibility if return_indicator in (True, 'sparse', 'dense'): lb = MultiLabelBinarizer(sparse_output=(return_indicator == 'sparse')) Y = lb.fit([range(n_classes)]).transform(Y) elif return_indicator is not False: raise ValueError("return_indicator must be either 'sparse', 'dense' " 'or False.') if return_distributions: return X, Y, p_c, p_w_c return X, Y def make_hastie_10_2(n_samples=12000, random_state=None): """Generates data for binary classification used in Hastie et al. 2009, Example 10.2. The ten features are standard independent Gaussian and the target ``y`` is defined by:: y[i] = 1 if np.sum(X[i] ** 2) > 9.34 else -1 Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=12000) The number of samples. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, 10] The input samples. y : array of shape [n_samples] The output values. References ---------- .. [1] T. Hastie, R. Tibshirani and J. Friedman, "Elements of Statistical Learning Ed. 2", Springer, 2009. See also -------- make_gaussian_quantiles: a generalization of this dataset approach """ rs = check_random_state(random_state) shape = (n_samples, 10) X = rs.normal(size=shape).reshape(shape) y = ((X ** 2.0).sum(axis=1) > 9.34).astype(np.float64) y[y == 0.0] = -1.0 return X, y def make_regression(n_samples=100, n_features=100, n_informative=10, n_targets=1, bias=0.0, effective_rank=None, tail_strength=0.5, noise=0.0, shuffle=True, coef=False, random_state=None): """Generate a random regression problem. The input set can either be well conditioned (by default) or have a low rank-fat tail singular profile. See :func:`make_low_rank_matrix` for more details. The output is generated by applying a (potentially biased) random linear regression model with `n_informative` nonzero regressors to the previously generated input and some gaussian centered noise with some adjustable scale. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=100) The number of features. n_informative : int, optional (default=10) The number of informative features, i.e., the number of features used to build the linear model used to generate the output. n_targets : int, optional (default=1) The number of regression targets, i.e., the dimension of the y output vector associated with a sample. By default, the output is a scalar. bias : float, optional (default=0.0) The bias term in the underlying linear model. effective_rank : int or None, optional (default=None) if not None: The approximate number of singular vectors required to explain most of the input data by linear combinations. Using this kind of singular spectrum in the input allows the generator to reproduce the correlations often observed in practice. if None: The input set is well conditioned, centered and gaussian with unit variance. tail_strength : float between 0.0 and 1.0, optional (default=0.5) The relative importance of the fat noisy tail of the singular values profile if `effective_rank` is not None. noise : float, optional (default=0.0) The standard deviation of the gaussian noise applied to the output. shuffle : boolean, optional (default=True) Shuffle the samples and the features. coef : boolean, optional (default=False) If True, the coefficients of the underlying linear model are returned. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The input samples. y : array of shape [n_samples] or [n_samples, n_targets] The output values. coef : array of shape [n_features] or [n_features, n_targets], optional The coefficient of the underlying linear model. It is returned only if coef is True. """ n_informative = min(n_features, n_informative) generator = check_random_state(random_state) if effective_rank is None: # Randomly generate a well conditioned input set X = generator.randn(n_samples, n_features) else: # Randomly generate a low rank, fat tail input set X = make_low_rank_matrix(n_samples=n_samples, n_features=n_features, effective_rank=effective_rank, tail_strength=tail_strength, random_state=generator) # Generate a ground truth model with only n_informative features being non # zeros (the other features are not correlated to y and should be ignored # by a sparsifying regularizers such as L1 or elastic net) ground_truth = np.zeros((n_features, n_targets)) ground_truth[:n_informative, :] = 100 * generator.rand(n_informative, n_targets) y = np.dot(X, ground_truth) + bias # Add noise if noise > 0.0: y += generator.normal(scale=noise, size=y.shape) # Randomly permute samples and features if shuffle: X, y = util_shuffle(X, y, random_state=generator) indices = np.arange(n_features) generator.shuffle(indices) X[:, :] = X[:, indices] ground_truth = ground_truth[indices] y = np.squeeze(y) if coef: return X, y, np.squeeze(ground_truth) else: return X, y def make_circles(n_samples=100, shuffle=True, noise=None, random_state=None, factor=.8): """Make a large circle containing a smaller circle in 2d. A simple toy dataset to visualize clustering and classification algorithms. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The total number of points generated. shuffle: bool, optional (default=True) Whether to shuffle the samples. noise : double or None (default=None) Standard deviation of Gaussian noise added to the data. factor : double < 1 (default=.8) Scale factor between inner and outer circle. Returns ------- X : array of shape [n_samples, 2] The generated samples. y : array of shape [n_samples] The integer labels (0 or 1) for class membership of each sample. """ if factor > 1 or factor < 0: raise ValueError("'factor' has to be between 0 and 1.") generator = check_random_state(random_state) # so as not to have the first point = last point, we add one and then # remove it. linspace = np.linspace(0, 2 * np.pi, n_samples // 2 + 1)[:-1] outer_circ_x = np.cos(linspace) outer_circ_y = np.sin(linspace) inner_circ_x = outer_circ_x * factor inner_circ_y = outer_circ_y * factor X = np.vstack((np.append(outer_circ_x, inner_circ_x), np.append(outer_circ_y, inner_circ_y))).T y = np.hstack([np.zeros(n_samples // 2, dtype=np.intp), np.ones(n_samples // 2, dtype=np.intp)]) if shuffle: X, y = util_shuffle(X, y, random_state=generator) if noise is not None: X += generator.normal(scale=noise, size=X.shape) return X, y def make_moons(n_samples=100, shuffle=True, noise=None, random_state=None): """Make two interleaving half circles A simple toy dataset to visualize clustering and classification algorithms. Parameters ---------- n_samples : int, optional (default=100) The total number of points generated. shuffle : bool, optional (default=True) Whether to shuffle the samples. noise : double or None (default=None) Standard deviation of Gaussian noise added to the data. Read more in the :ref:`User Guide <sample_generators>`. Returns ------- X : array of shape [n_samples, 2] The generated samples. y : array of shape [n_samples] The integer labels (0 or 1) for class membership of each sample. """ n_samples_out = n_samples // 2 n_samples_in = n_samples - n_samples_out generator = check_random_state(random_state) outer_circ_x = np.cos(np.linspace(0, np.pi, n_samples_out)) outer_circ_y = np.sin(np.linspace(0, np.pi, n_samples_out)) inner_circ_x = 1 - np.cos(np.linspace(0, np.pi, n_samples_in)) inner_circ_y = 1 - np.sin(np.linspace(0, np.pi, n_samples_in)) - .5 X = np.vstack((np.append(outer_circ_x, inner_circ_x), np.append(outer_circ_y, inner_circ_y))).T y = np.hstack([np.zeros(n_samples_in, dtype=np.intp), np.ones(n_samples_out, dtype=np.intp)]) if shuffle: X, y = util_shuffle(X, y, random_state=generator) if noise is not None: X += generator.normal(scale=noise, size=X.shape) return X, y def make_blobs(n_samples=100, n_features=2, centers=3, cluster_std=1.0, center_box=(-10.0, 10.0), shuffle=True, random_state=None): """Generate isotropic Gaussian blobs for clustering. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The total number of points equally divided among clusters. n_features : int, optional (default=2) The number of features for each sample. centers : int or array of shape [n_centers, n_features], optional (default=3) The number of centers to generate, or the fixed center locations. cluster_std: float or sequence of floats, optional (default=1.0) The standard deviation of the clusters. center_box: pair of floats (min, max), optional (default=(-10.0, 10.0)) The bounding box for each cluster center when centers are generated at random. shuffle : boolean, optional (default=True) Shuffle the samples. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The generated samples. y : array of shape [n_samples] The integer labels for cluster membership of each sample. Examples -------- >>> from sklearn.datasets.samples_generator import make_blobs >>> X, y = make_blobs(n_samples=10, centers=3, n_features=2, ... random_state=0) >>> print(X.shape) (10, 2) >>> y array([0, 0, 1, 0, 2, 2, 2, 1, 1, 0]) See also -------- make_classification: a more intricate variant """ generator = check_random_state(random_state) if isinstance(centers, numbers.Integral): centers = generator.uniform(center_box[0], center_box[1], size=(centers, n_features)) else: centers = check_array(centers) n_features = centers.shape[1] if isinstance(cluster_std, numbers.Real): cluster_std = np.ones(len(centers)) * cluster_std X = [] y = [] n_centers = centers.shape[0] n_samples_per_center = [int(n_samples // n_centers)] * n_centers for i in range(n_samples % n_centers): n_samples_per_center[i] += 1 for i, (n, std) in enumerate(zip(n_samples_per_center, cluster_std)): X.append(centers[i] + generator.normal(scale=std, size=(n, n_features))) y += [i] * n X = np.concatenate(X) y = np.array(y) if shuffle: indices = np.arange(n_samples) generator.shuffle(indices) X = X[indices] y = y[indices] return X, y def make_friedman1(n_samples=100, n_features=10, noise=0.0, random_state=None): """Generate the "Friedman \#1" regression problem This dataset is described in Friedman [1] and Breiman [2]. Inputs `X` are independent features uniformly distributed on the interval [0, 1]. The output `y` is created according to the formula:: y(X) = 10 * sin(pi * X[:, 0] * X[:, 1]) + 20 * (X[:, 2] - 0.5) ** 2 \ + 10 * X[:, 3] + 5 * X[:, 4] + noise * N(0, 1). Out of the `n_features` features, only 5 are actually used to compute `y`. The remaining features are independent of `y`. The number of features has to be >= 5. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=10) The number of features. Should be at least 5. noise : float, optional (default=0.0) The standard deviation of the gaussian noise applied to the output. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The input samples. y : array of shape [n_samples] The output values. References ---------- .. [1] J. Friedman, "Multivariate adaptive regression splines", The Annals of Statistics 19 (1), pages 1-67, 1991. .. [2] L. Breiman, "Bagging predictors", Machine Learning 24, pages 123-140, 1996. """ if n_features < 5: raise ValueError("n_features must be at least five.") generator = check_random_state(random_state) X = generator.rand(n_samples, n_features) y = 10 * np.sin(np.pi * X[:, 0] * X[:, 1]) + 20 * (X[:, 2] - 0.5) ** 2 \ + 10 * X[:, 3] + 5 * X[:, 4] + noise * generator.randn(n_samples) return X, y def make_friedman2(n_samples=100, noise=0.0, random_state=None): """Generate the "Friedman \#2" regression problem This dataset is described in Friedman [1] and Breiman [2]. Inputs `X` are 4 independent features uniformly distributed on the intervals:: 0 <= X[:, 0] <= 100, 40 * pi <= X[:, 1] <= 560 * pi, 0 <= X[:, 2] <= 1, 1 <= X[:, 3] <= 11. The output `y` is created according to the formula:: y(X) = (X[:, 0] ** 2 + (X[:, 1] * X[:, 2] \ - 1 / (X[:, 1] * X[:, 3])) ** 2) ** 0.5 + noise * N(0, 1). Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. noise : float, optional (default=0.0) The standard deviation of the gaussian noise applied to the output. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, 4] The input samples. y : array of shape [n_samples] The output values. References ---------- .. [1] J. Friedman, "Multivariate adaptive regression splines", The Annals of Statistics 19 (1), pages 1-67, 1991. .. [2] L. Breiman, "Bagging predictors", Machine Learning 24, pages 123-140, 1996. """ generator = check_random_state(random_state) X = generator.rand(n_samples, 4) X[:, 0] *= 100 X[:, 1] *= 520 * np.pi X[:, 1] += 40 * np.pi X[:, 3] *= 10 X[:, 3] += 1 y = (X[:, 0] ** 2 + (X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) ** 2) ** 0.5 \ + noise * generator.randn(n_samples) return X, y def make_friedman3(n_samples=100, noise=0.0, random_state=None): """Generate the "Friedman \#3" regression problem This dataset is described in Friedman [1] and Breiman [2]. Inputs `X` are 4 independent features uniformly distributed on the intervals:: 0 <= X[:, 0] <= 100, 40 * pi <= X[:, 1] <= 560 * pi, 0 <= X[:, 2] <= 1, 1 <= X[:, 3] <= 11. The output `y` is created according to the formula:: y(X) = arctan((X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) \ / X[:, 0]) + noise * N(0, 1). Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. noise : float, optional (default=0.0) The standard deviation of the gaussian noise applied to the output. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, 4] The input samples. y : array of shape [n_samples] The output values. References ---------- .. [1] J. Friedman, "Multivariate adaptive regression splines", The Annals of Statistics 19 (1), pages 1-67, 1991. .. [2] L. Breiman, "Bagging predictors", Machine Learning 24, pages 123-140, 1996. """ generator = check_random_state(random_state) X = generator.rand(n_samples, 4) X[:, 0] *= 100 X[:, 1] *= 520 * np.pi X[:, 1] += 40 * np.pi X[:, 3] *= 10 X[:, 3] += 1 y = np.arctan((X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) / X[:, 0]) \ + noise * generator.randn(n_samples) return X, y def make_low_rank_matrix(n_samples=100, n_features=100, effective_rank=10, tail_strength=0.5, random_state=None): """Generate a mostly low rank matrix with bell-shaped singular values Most of the variance can be explained by a bell-shaped curve of width effective_rank: the low rank part of the singular values profile is:: (1 - tail_strength) * exp(-1.0 * (i / effective_rank) ** 2) The remaining singular values' tail is fat, decreasing as:: tail_strength * exp(-0.1 * i / effective_rank). The low rank part of the profile can be considered the structured signal part of the data while the tail can be considered the noisy part of the data that cannot be summarized by a low number of linear components (singular vectors). This kind of singular profiles is often seen in practice, for instance: - gray level pictures of faces - TF-IDF vectors of text documents crawled from the web Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=100) The number of features. effective_rank : int, optional (default=10) The approximate number of singular vectors required to explain most of the data by linear combinations. tail_strength : float between 0.0 and 1.0, optional (default=0.5) The relative importance of the fat noisy tail of the singular values profile. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The matrix. """ generator = check_random_state(random_state) n = min(n_samples, n_features) # Random (ortho normal) vectors u, _ = linalg.qr(generator.randn(n_samples, n), mode='economic') v, _ = linalg.qr(generator.randn(n_features, n), mode='economic') # Index of the singular values singular_ind = np.arange(n, dtype=np.float64) # Build the singular profile by assembling signal and noise components low_rank = ((1 - tail_strength) * np.exp(-1.0 * (singular_ind / effective_rank) ** 2)) tail = tail_strength * np.exp(-0.1 * singular_ind / effective_rank) s = np.identity(n) * (low_rank + tail) return np.dot(np.dot(u, s), v.T) def make_sparse_coded_signal(n_samples, n_components, n_features, n_nonzero_coefs, random_state=None): """Generate a signal as a sparse combination of dictionary elements. Returns a matrix Y = DX, such as D is (n_features, n_components), X is (n_components, n_samples) and each column of X has exactly n_nonzero_coefs non-zero elements. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int number of samples to generate n_components: int, number of components in the dictionary n_features : int number of features of the dataset to generate n_nonzero_coefs : int number of active (non-zero) coefficients in each sample random_state: int or RandomState instance, optional (default=None) seed used by the pseudo random number generator Returns ------- data: array of shape [n_features, n_samples] The encoded signal (Y). dictionary: array of shape [n_features, n_components] The dictionary with normalized components (D). code: array of shape [n_components, n_samples] The sparse code such that each column of this matrix has exactly n_nonzero_coefs non-zero items (X). """ generator = check_random_state(random_state) # generate dictionary D = generator.randn(n_features, n_components) D /= np.sqrt(np.sum((D ** 2), axis=0)) # generate code X = np.zeros((n_components, n_samples)) for i in range(n_samples): idx = np.arange(n_components) generator.shuffle(idx) idx = idx[:n_nonzero_coefs] X[idx, i] = generator.randn(n_nonzero_coefs) # encode signal Y = np.dot(D, X) return map(np.squeeze, (Y, D, X)) def make_sparse_uncorrelated(n_samples=100, n_features=10, random_state=None): """Generate a random regression problem with sparse uncorrelated design This dataset is described in Celeux et al [1]. as:: X ~ N(0, 1) y(X) = X[:, 0] + 2 * X[:, 1] - 2 * X[:, 2] - 1.5 * X[:, 3] Only the first 4 features are informative. The remaining features are useless. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=10) The number of features. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The input samples. y : array of shape [n_samples] The output values. References ---------- .. [1] G. Celeux, M. El Anbari, J.-M. Marin, C. P. Robert, "Regularization in regression: comparing Bayesian and frequentist methods in a poorly informative situation", 2009. """ generator = check_random_state(random_state) X = generator.normal(loc=0, scale=1, size=(n_samples, n_features)) y = generator.normal(loc=(X[:, 0] + 2 * X[:, 1] - 2 * X[:, 2] - 1.5 * X[:, 3]), scale=np.ones(n_samples)) return X, y def make_spd_matrix(n_dim, random_state=None): """Generate a random symmetric, positive-definite matrix. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_dim : int The matrix dimension. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_dim, n_dim] The random symmetric, positive-definite matrix. See also -------- make_sparse_spd_matrix """ generator = check_random_state(random_state) A = generator.rand(n_dim, n_dim) U, s, V = linalg.svd(np.dot(A.T, A)) X = np.dot(np.dot(U, 1.0 + np.diag(generator.rand(n_dim))), V) return X def make_sparse_spd_matrix(dim=1, alpha=0.95, norm_diag=False, smallest_coef=.1, largest_coef=.9, random_state=None): """Generate a sparse symmetric definite positive matrix. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- dim: integer, optional (default=1) The size of the random matrix to generate. alpha: float between 0 and 1, optional (default=0.95) The probability that a coefficient is non zero (see notes). random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. largest_coef : float between 0 and 1, optional (default=0.9) The value of the largest coefficient. smallest_coef : float between 0 and 1, optional (default=0.1) The value of the smallest coefficient. norm_diag : boolean, optional (default=False) Whether to normalize the output matrix to make the leading diagonal elements all 1 Returns ------- prec : sparse matrix of shape (dim, dim) The generated matrix. Notes ----- The sparsity is actually imposed on the cholesky factor of the matrix. Thus alpha does not translate directly into the filling fraction of the matrix itself. See also -------- make_spd_matrix """ random_state = check_random_state(random_state) chol = -np.eye(dim) aux = random_state.rand(dim, dim) aux[aux < alpha] = 0 aux[aux > alpha] = (smallest_coef + (largest_coef - smallest_coef) * random_state.rand(np.sum(aux > alpha))) aux = np.tril(aux, k=-1) # Permute the lines: we don't want to have asymmetries in the final # SPD matrix permutation = random_state.permutation(dim) aux = aux[permutation].T[permutation] chol += aux prec = np.dot(chol.T, chol) if norm_diag: # Form the diagonal vector into a row matrix d = np.diag(prec).reshape(1, prec.shape[0]) d = 1. / np.sqrt(d) prec *= d prec *= d.T return prec def make_swiss_roll(n_samples=100, noise=0.0, random_state=None): """Generate a swiss roll dataset. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of sample points on the S curve. noise : float, optional (default=0.0) The standard deviation of the gaussian noise. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, 3] The points. t : array of shape [n_samples] The univariate position of the sample according to the main dimension of the points in the manifold. Notes ----- The algorithm is from Marsland [1]. References ---------- .. [1] S. Marsland, "Machine Learning: An Algorithmic Perspective", Chapter 10, 2009. http://www-ist.massey.ac.nz/smarsland/Code/10/lle.py """ generator = check_random_state(random_state) t = 1.5 * np.pi * (1 + 2 * generator.rand(1, n_samples)) x = t * np.cos(t) y = 21 * generator.rand(1, n_samples) z = t * np.sin(t) X = np.concatenate((x, y, z)) X += noise * generator.randn(3, n_samples) X = X.T t = np.squeeze(t) return X, t def make_s_curve(n_samples=100, noise=0.0, random_state=None): """Generate an S curve dataset. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of sample points on the S curve. noise : float, optional (default=0.0) The standard deviation of the gaussian noise. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, 3] The points. t : array of shape [n_samples] The univariate position of the sample according to the main dimension of the points in the manifold. """ generator = check_random_state(random_state) t = 3 * np.pi * (generator.rand(1, n_samples) - 0.5) x = np.sin(t) y = 2.0 * generator.rand(1, n_samples) z = np.sign(t) * (np.cos(t) - 1) X = np.concatenate((x, y, z)) X += noise * generator.randn(3, n_samples) X = X.T t = np.squeeze(t) return X, t def make_gaussian_quantiles(mean=None, cov=1., n_samples=100, n_features=2, n_classes=3, shuffle=True, random_state=None): """Generate isotropic Gaussian and label samples by quantile This classification dataset is constructed by taking a multi-dimensional standard normal distribution and defining classes separated by nested concentric multi-dimensional spheres such that roughly equal numbers of samples are in each class (quantiles of the :math:`\chi^2` distribution). Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- mean : array of shape [n_features], optional (default=None) The mean of the multi-dimensional normal distribution. If None then use the origin (0, 0, ...). cov : float, optional (default=1.) The covariance matrix will be this value times the unit matrix. This dataset only produces symmetric normal distributions. n_samples : int, optional (default=100) The total number of points equally divided among classes. n_features : int, optional (default=2) The number of features for each sample. n_classes : int, optional (default=3) The number of classes shuffle : boolean, optional (default=True) Shuffle the samples. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The generated samples. y : array of shape [n_samples] The integer labels for quantile membership of each sample. Notes ----- The dataset is from Zhu et al [1]. References ---------- .. [1] J. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost", 2009. """ if n_samples < n_classes: raise ValueError("n_samples must be at least n_classes") generator = check_random_state(random_state) if mean is None: mean = np.zeros(n_features) else: mean = np.array(mean) # Build multivariate normal distribution X = generator.multivariate_normal(mean, cov * np.identity(n_features), (n_samples,)) # Sort by distance from origin idx = np.argsort(np.sum((X - mean[np.newaxis, :]) ** 2, axis=1)) X = X[idx, :] # Label by quantile step = n_samples // n_classes y = np.hstack([np.repeat(np.arange(n_classes), step), np.repeat(n_classes - 1, n_samples - step * n_classes)]) if shuffle: X, y = util_shuffle(X, y, random_state=generator) return X, y def _shuffle(data, random_state=None): generator = check_random_state(random_state) n_rows, n_cols = data.shape row_idx = generator.permutation(n_rows) col_idx = generator.permutation(n_cols) result = data[row_idx][:, col_idx] return result, row_idx, col_idx def make_biclusters(shape, n_clusters, noise=0.0, minval=10, maxval=100, shuffle=True, random_state=None): """Generate an array with constant block diagonal structure for biclustering. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- shape : iterable (n_rows, n_cols) The shape of the result. n_clusters : integer The number of biclusters. noise : float, optional (default=0.0) The standard deviation of the gaussian noise. minval : int, optional (default=10) Minimum value of a bicluster. maxval : int, optional (default=100) Maximum value of a bicluster. shuffle : boolean, optional (default=True) Shuffle the samples. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape `shape` The generated array. rows : array of shape (n_clusters, X.shape[0],) The indicators for cluster membership of each row. cols : array of shape (n_clusters, X.shape[1],) The indicators for cluster membership of each column. References ---------- .. [1] Dhillon, I. S. (2001, August). Co-clustering documents and words using bipartite spectral graph partitioning. In Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 269-274). ACM. See also -------- make_checkerboard """ generator = check_random_state(random_state) n_rows, n_cols = shape consts = generator.uniform(minval, maxval, n_clusters) # row and column clusters of approximately equal sizes row_sizes = generator.multinomial(n_rows, np.repeat(1.0 / n_clusters, n_clusters)) col_sizes = generator.multinomial(n_cols, np.repeat(1.0 / n_clusters, n_clusters)) row_labels = np.hstack(list(np.repeat(val, rep) for val, rep in zip(range(n_clusters), row_sizes))) col_labels = np.hstack(list(np.repeat(val, rep) for val, rep in zip(range(n_clusters), col_sizes))) result = np.zeros(shape, dtype=np.float64) for i in range(n_clusters): selector = np.outer(row_labels == i, col_labels == i) result[selector] += consts[i] if noise > 0: result += generator.normal(scale=noise, size=result.shape) if shuffle: result, row_idx, col_idx = _shuffle(result, random_state) row_labels = row_labels[row_idx] col_labels = col_labels[col_idx] rows = np.vstack(row_labels == c for c in range(n_clusters)) cols = np.vstack(col_labels == c for c in range(n_clusters)) return result, rows, cols def make_checkerboard(shape, n_clusters, noise=0.0, minval=10, maxval=100, shuffle=True, random_state=None): """Generate an array with block checkerboard structure for biclustering. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- shape : iterable (n_rows, n_cols) The shape of the result. n_clusters : integer or iterable (n_row_clusters, n_column_clusters) The number of row and column clusters. noise : float, optional (default=0.0) The standard deviation of the gaussian noise. minval : int, optional (default=10) Minimum value of a bicluster. maxval : int, optional (default=100) Maximum value of a bicluster. shuffle : boolean, optional (default=True) Shuffle the samples. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape `shape` The generated array. rows : array of shape (n_clusters, X.shape[0],) The indicators for cluster membership of each row. cols : array of shape (n_clusters, X.shape[1],) The indicators for cluster membership of each column. References ---------- .. [1] Kluger, Y., Basri, R., Chang, J. T., & Gerstein, M. (2003). Spectral biclustering of microarray data: coclustering genes and conditions. Genome research, 13(4), 703-716. See also -------- make_biclusters """ generator = check_random_state(random_state) if hasattr(n_clusters, "__len__"): n_row_clusters, n_col_clusters = n_clusters else: n_row_clusters = n_col_clusters = n_clusters # row and column clusters of approximately equal sizes n_rows, n_cols = shape row_sizes = generator.multinomial(n_rows, np.repeat(1.0 / n_row_clusters, n_row_clusters)) col_sizes = generator.multinomial(n_cols, np.repeat(1.0 / n_col_clusters, n_col_clusters)) row_labels = np.hstack(list(np.repeat(val, rep) for val, rep in zip(range(n_row_clusters), row_sizes))) col_labels = np.hstack(list(np.repeat(val, rep) for val, rep in zip(range(n_col_clusters), col_sizes))) result = np.zeros(shape, dtype=np.float64) for i in range(n_row_clusters): for j in range(n_col_clusters): selector = np.outer(row_labels == i, col_labels == j) result[selector] += generator.uniform(minval, maxval) if noise > 0: result += generator.normal(scale=noise, size=result.shape) if shuffle: result, row_idx, col_idx = _shuffle(result, random_state) row_labels = row_labels[row_idx] col_labels = col_labels[col_idx] rows = np.vstack(row_labels == label for label in range(n_row_clusters) for _ in range(n_col_clusters)) cols = np.vstack(col_labels == label for _ in range(n_row_clusters) for label in range(n_col_clusters)) return result, rows, cols
bsd-3-clause
willgrass/pandas
pandas/core/series.py
1
33974
""" Data structure for 1-dimensional cross-sectional and time series data """ # pylint: disable-msg=E1101,E1103 # pylint: disable-msg=W0703,W0622 import itertools import sys from numpy import NaN, ndarray import numpy as np from pandas.core.common import isnull, notnull from pandas.core.daterange import DateRange from pandas.core.index import Index, NULL_INDEX from pandas.core.mixins import Picklable, Groupable import pandas.core.datetools as datetools import pandas.lib.tseries as tseries #------------------------------------------------------------------------------- # Wrapper function for Series arithmetic methods def _seriesOpWrap(opname): """ Wrapper function for Series arithmetic operations, to avoid code duplication. """ MIRROR_OPS = { '__add__' : '__radd__', '__sub__' : '__rsub__', '__div__' : '__rdiv__', '__mul__' : '__rmul__', } def wrapper(self, other): from pandas.core.frame import DataFrame func = getattr(self.values, opname) if isinstance(other, Series): if self.index.equals(other.index): return Series(func(other.values), index=self.index) newIndex = self.index + other.index try: if self.dtype != np.float_: this = self.astype(float) else: this = self if other.dtype != np.float_: other = other.astype(float) # buffered Cython function expects double type arr = tseries.combineFunc(opname, newIndex, this, other, self.index.indexMap, other.index.indexMap) except Exception: arr = Series.combineFunc(self, other, getattr(type(self[0]), opname)) result = Series(arr, index=newIndex) return result elif isinstance(other, DataFrame): reverse_op = MIRROR_OPS.get(opname) if reverse_op is None: raise Exception('Cannot do %s op, sorry!') return getattr(other, reverse_op)(self) else: return Series(func(other), index=self.index) return wrapper #------------------------------------------------------------------------------- # Series class class Series(np.ndarray, Picklable, Groupable): """ Generic indexed (labeled) vector (time series or cross-section) Contains values in a numpy-ndarray with an optional bound index (also an array of dates, strings, or whatever you want the 'row names' of your series to be) Rows can be retrieved by index value (date, string, etc.) or relative position in the underlying array. Operations between Series (+, -, /, *, **) align values based on their associated index values-- they need not be the same length. Parameters ---------- data : array-like or dict Contains data stored in Series index : array-like Index object (or other iterable of same length as data) Must be input if first argument is not a dict. If both a dict and index sequence are used, the index will override the keys found in the dict. Notes ----- If you combine two series, all values for an index position must be present or the value for that index position will be nan. The new index is the sorted union of the two Series indices. """ def __new__(cls, data, index=None, dtype=None, copy=False): if isinstance(data, Series): if index is None: index = data.index elif isinstance(data, dict): if index is None: index = Index(sorted(data.keys())) data = [data[idx] for idx in index] # Make a copy of the data, infer type try: subarr = np.array(data, dtype=dtype, copy=copy) except ValueError: if dtype: raise subarr = np.array(data, dtype=object) if subarr.ndim == 0: if isinstance(data, list): # pragma: no cover subarr = np.array(data, dtype=object) else: return subarr.item() elif subarr.ndim > 1: raise Exception('Data must be 1-dimensional') if index is None: raise Exception('Index cannot be None!') # This is to prevent mixed-type Series getting all casted to # NumPy string type, e.g. NaN --> '-1#IND'. if issubclass(subarr.dtype.type, basestring): subarr = np.array(data, dtype=object, copy=copy) # Change the class of the array to be the subclass type. subarr = subarr.view(cls) subarr.index = index if subarr.index._allDates: subarr = subarr.view(TimeSeries) return subarr def __hash__(self): raise TypeError('unhashable type') _index = None def _get_index(self): return self._index def _set_index(self, index): indexTypes = ndarray, Index, list, tuple if not isinstance(index, indexTypes): raise TypeError("Expected index to be in %s; was %s." % (indexTypes, type(index))) if len(self) != len(index): raise AssertionError('Lengths of index and values did not match!') if not isinstance(index, Index): index = Index(index) self._index = index index = property(fget=_get_index, fset=_set_index) def __array_finalize__(self, obj): """ Gets called after any ufunc or other array operations, necessary to pass on the index. """ self._index = getattr(obj, '_index', None) def toDict(self): return dict(self.iteritems()) @classmethod def fromValue(cls, value=np.NaN, index=None, dtype=None): """ Create Series with all values being the input scalar Parameters ---------- input : dict object Keys become indices of returned Series kwds : optionally provide arguments as keywords Returns ------- y : Series """ # If we create an empty array using a string to infer # the dtype, NumPy will only allocate one character per entry # so this is kind of bad. Alternately we could use np.repeat # instead of np.empty (but then you still don't want things # coming out as np.str_! if isinstance(value, basestring): dtype = np.object_ if dtype is None: arr = np.empty(len(index), dtype=type(value)) else: arr = np.empty(len(index), dtype=dtype) arr.fill(value) return Series(arr, index=index) def __contains__(self, key): return key in self.index def __reduce__(self): """Necessary for making this object picklable""" object_state = list(ndarray.__reduce__(self)) subclass_state = (self.index, ) object_state[2] = (object_state[2], subclass_state) return tuple(object_state) def __setstate__(self, state): """Necessary for making this object picklable""" nd_state, own_state = state ndarray.__setstate__(self, nd_state) index, = own_state self.index = index def __getitem__(self, key): """ Returns item(s) for requested index/sequence, overrides default behavior for series[key]. Logic is as follows: - If key is in the index, return the value corresponding to that index - Otherwise, use key (presumably one integer or a sequence of integers) to obtain values from the series. In the case of a sequence, a 'slice' of the series (with corresponding dates) will be returned, otherwise a single value. """ values = self.values try: # Check that we can even look for this in the index return values[self.index.indexMap[key]] except KeyError: if isinstance(key, int): return values[key] raise Exception('Requested index not in this series!') except TypeError: # Could not hash item pass # is there a case where this would NOT be an ndarray? # need to find an example, I took out the case for now dataSlice = values[key] indices = Index(self.index.view(ndarray)[key]) return Series(dataSlice, index=indices) def get(self, key, default=None): """ Returns value occupying requested index, default to specified missing value if not present Parameters ---------- key : object Index value looking for default : object, optional Value to return if key not in index Returns ------- y : scalar """ if key in self.index: return ndarray.__getitem__(self, self.index.indexMap[key]) else: return default def __getslice__(self, i, j): """ Returns a slice of the Series. Note that the underlying values are COPIES. The reason that the getslice returns copies is that otherwise you will have a reference to the original series which could be inadvertently changed if the slice were altered (made mutable). """ newArr = self.values[i:j].copy() newIndex = self.index[i:j] return Series(newArr, index=newIndex) def __setitem__(self, key, value): """ If this series is mutable, set specified indices equal to given values. """ try: loc = self.index.indexMap[key] ndarray.__setitem__(self, loc, value) except Exception: values = self.values values[key] = value def __setslice__(self, i, j, value): """Set slice equal to given value(s)""" ndarray.__setslice__(self, i, j, value) def __repr__(self): """Clean string representation of a Series""" vals = self.values index = self.index if len(index) > 500: head = _seriesRepr(index[:50], vals[:50]) tail = _seriesRepr(index[-50:], vals[-50:]) return head + '\n...\n' + tail + '\nlength: %d' % len(vals) elif len(index) > 0: return _seriesRepr(index, vals) else: return '%s' % ndarray.__repr__(self) def toString(self, buffer=sys.stdout, nanRep='NaN'): print >> buffer, _seriesRepr(self.index, self.values, nanRep=nanRep) def __str__(self): return repr(self) def __iter__(self): return iter(self.values) def copy(self): return Series(self.values.copy(), index=self.index) #------------------------------------------------------------------------------- # Arithmetic operators __add__ = _seriesOpWrap('__add__') __sub__ = _seriesOpWrap('__sub__') __mul__ = _seriesOpWrap('__mul__') __div__ = _seriesOpWrap('__div__') __pow__ = _seriesOpWrap('__pow__') # Inplace operators __iadd__ = __add__ __isub__ = __sub__ __imul__ = __mul__ __idiv__ = __div__ __ipow__ = __pow__ #------------------------------------------------------------------------------- # Statistics, overridden ndarray methods def count(self): """ Return number of observations of Series. Returns ------- nobs : int """ return notnull(self.values).sum() def sum(self, axis=None, dtype=None, out=None): """ Compute sum of non-null values """ return self._ndarray_statistic('sum') def mean(self, axis=None, dtype=None, out=None): """ Compute mean of non-null values """ return self._ndarray_statistic('mean') def _ndarray_statistic(self, funcname): arr = self.values retVal = getattr(arr, funcname)() if isnull(retVal): arr = remove_na(arr) retVal = getattr(arr, funcname)() return retVal def min(self, axis=None, out=None): """ Compute minimum of non-null values """ arr = self.values.copy() if not issubclass(arr.dtype.type, np.int_): arr[isnull(arr)] = np.inf return arr.min() def max(self, axis=None, out=None): """ Compute maximum of non-null values """ arr = self.values.copy() if not issubclass(arr.dtype.type, np.int_): arr[isnull(arr)] = -np.inf return arr.max() def std(self, axis=None, dtype=None, out=None, ddof=1): """ Compute unbiased standard deviation of non-null values """ nona = remove_na(self.values) if len(nona) < 2: return NaN return ndarray.std(nona, axis, dtype, out, ddof) def var(self, axis=None, dtype=None, out=None, ddof=1): """ Compute unbiased variance of non-null values """ nona = remove_na(self.values) if len(nona) < 2: return NaN return ndarray.var(nona, axis, dtype, out, ddof) def skew(self): """ Computes the skewness of the non-null values Returns ------- skew : float """ y = np.array(self.values) mask = notnull(y) count = mask.sum() np.putmask(y, -mask, 0) A = y.sum() / count B = (y**2).sum() / count - A**2 C = (y**3).sum() / count - A**3 - 3*A*B return (np.sqrt((count**2-count))*C) / ((count-2)*np.sqrt(B)**3) def cumsum(self, axis=0, dtype=None, out=None): """ Overriding numpy's built-in cumsum functionality """ arr = self.copy() okLocs = notnull(arr) result = np.cumsum(arr.view(ndarray)[okLocs]) arr = arr.astype(result.dtype) arr[okLocs] = result return arr def cumprod(self, axis=0, dtype=None, out=None): """ Overriding numpy's built-in cumprod functionality """ arr = self.copy() okLocs = notnull(arr) arr[okLocs] = np.cumprod(arr.view(ndarray)[okLocs]) return arr def median(self): """ Compute median value of non-null values """ arr = self.values arr = arr[notnull(arr)] return tseries.median(arr) def corr(self, other): """ Compute correlation two Series, excluding missing values Parameters ---------- other : Series object Returns ------- correlation : float """ commonIdx = remove_na(self).index.intersection(remove_na(other).index) if len(commonIdx) == 0: return NaN this = self.reindex(commonIdx) that = other.reindex(commonIdx) return np.corrcoef(this, that)[0, 1] def diff(self): """ 1st discrete difference of object Returns ------- TimeSeries """ return (self - self.shift(1)) def autocorr(self): """ Lag-1 autocorrelation Returns ------- TimeSeries """ return self.corr(self.shift(1)) def clip(self, upper=None, lower=None): """ Trim values at input threshold(s) Parameters ---------- lower : float, default None upper : float, default None Returns ------- y : Series """ result = self if lower is not None: result = result.clip_lower(lower) if upper is not None: result = result.clip_upper(upper) return result def clip_upper(self, threshold): """Return copy of series with values above given value truncated""" return np.where(self > threshold, threshold, self) def clip_lower(self, threshold): """Return copy of series with values below given value truncated""" return np.where(self < threshold, threshold, self) #------------------------------------------------------------------------------- # Iteration def keys(self): "Alias for Series index" return self.index @property def values(self): """ Return Series as ndarray Returns ------- arr : numpy.ndarray """ return self.view(ndarray) def iteritems(self): """ Lazily iterate over (index, value) tuples """ return itertools.izip(iter(self.index), iter(self)) #------------------------------------------------------------------------------- # Combination def append(self, other): """ Concatenate two Series. The indices should not overlap Parameters ---------- other : Series Returns ------- y : Series """ newIndex = np.concatenate((self.index, other.index)) # Force overlap check try: newIndex = Index(newIndex) except Exception: raise newValues = np.concatenate((self, other)) return Series(newValues, index=newIndex) def combineFunc(self, other, func): """ Combines this Series using the given function with either * another Series index by index * a scalar value * DataFrame Parameters ---------- other : {Series, DataFrame, scalar value} Returns ------- y : {Series or DataFrame} Output depends on input. If a DataFrame is inputted, that will be the return type. """ if isinstance(other, Series): newIndex = self.index + other.index newArr = np.empty(len(newIndex), dtype=self.dtype) for i, idx in enumerate(newIndex): newArr[i] = func(self.get(idx, NaN), other.get(idx, NaN)) else: newIndex = self.index newArr = func(self.values, other) return Series(newArr, index=newIndex) def combineFirst(self, other): """ Combine Series values, choosing calling Series's values first. Parameters ---------- other : Series Returns ------- y : Series formed as union of two Series """ if self.index.equals(other.index): newIndex = self.index # save ourselves the copying in this case this = self else: newIndex = self.index + other.index this = self.reindex(newIndex) other = other.reindex(newIndex) result = Series(np.where(isnull(this), other, this), index=newIndex) return result #------------------------------------------------------------------------------- # Reindexing, sorting def sort(self, axis=0, kind='quicksort', order=None): """ Overridden NumPy sort, taking care with missing values """ sortedSeries = self.order(missingAtEnd=True) self[:] = sortedSeries self.index = sortedSeries.index def argsort(self, axis=0, kind='quicksort', order=None): """ Overriding numpy's built-in cumsum functionality """ values = self.values mask = isnull(values) if mask.any(): result = values.copy() notmask = -mask result[notmask] = np.argsort(values[notmask]) return Series(result, index=self.index) else: return Series(np.argsort(values), index=self.index) def order(self, missingAtEnd=True): """ Sorts Series object, by value, maintaining index-value object Parameters ---------- missingAtEnd : boolean (optional, default=True) Put NaN's at beginning or end In general, AVOID sorting Series unless you absolutely need to. Returns ------- y : Series sorted by values """ def _try_mergesort(arr): # easier to ask forgiveness than permission try: return arr.argsort(kind='mergesort') except TypeError: # stable sort not available for object dtype return arr.argsort() arr = self.values sortedIdx = np.empty(len(self), dtype=np.int32) bad = isnull(arr) good = -bad idx = np.arange(len(self)) if missingAtEnd: n = sum(good) sortedIdx[:n] = idx[good][_try_mergesort(arr[good])] sortedIdx[n:] = idx[bad] else: n = sum(bad) sortedIdx[n:] = idx[good][_try_mergesort(arr[good])] sortedIdx[:n] = idx[bad] return Series(arr[sortedIdx], index=self.index[sortedIdx]) def map(self, arg): """ Map values of Series using input correspondence (which can be a dict, Series, or function). Parameters ---------- arg : function, dict, or Series Returns ------- y : Series same index as caller """ if isinstance(arg, (dict, Series)): if isinstance(arg, dict): arg = Series(arg) indexer, mask = tseries.getMergeVec(self, arg.index.indexMap) newValues = arg.view(np.ndarray).take(indexer) np.putmask(newValues, -mask, np.nan) newSer = Series(newValues, index=self.index) return newSer else: return Series([arg(x) for x in self], index=self.index) merge = map def reindex(self, newIndex, fillMethod=None): """Overloaded version of reindex for TimeSeries. Supports filling with values based on new index. See analogous method for DataFrame, will be faster for multiple TimeSeries Parameters ---------- newIndex : array-like, preferably an Index object (to avoid duplicating data) fillMethod : {'backfill', 'pad', 'interpolate', None} Method to use for filling holes in reindexed Series Returns ------- TimeSeries """ if self.index.equals(newIndex): return self.copy() if not isinstance(newIndex, Index): newIndex = Index(newIndex) if len(self.index) == 0: return Series.fromValue(NaN, index=newIndex) if fillMethod is not None: fillMethod = fillMethod.upper() # Cython for blazing speed fillVec, mask = tseries.getFillVec(self.index, newIndex, self.index.indexMap, newIndex.indexMap, kind=fillMethod) newValues = self.values.take(fillVec) notmask = -mask if notmask.any(): if issubclass(newValues.dtype.type, np.int_): newValues = newValues.astype(float) elif issubclass(newValues.dtype.type, np.bool_): newValues = newValues.astype(object) np.putmask(newValues, notmask, NaN) return Series(newValues, index=newIndex) def fill(self, value=None, method='pad'): """ Fill NaN values using the specified method. Parameters ---------- value : any kind (should be same type as array) Value to use to fill holes (e.g. 0) method : {'backfill', 'pad', None} Method to use for filling holes in new inde Returns ------- TimeSeries with NaN's filled See also -------- reindex, asfreq """ if value is not None: newSeries = self.copy() newSeries[isnull(newSeries)] = value return newSeries else: # Using reindex to pad / backfill withoutna = remove_na(self) return withoutna.reindex(self.index, fillMethod=method) #------------------------------------------------------------------------------- # Miscellaneous def plot(self, label=None, kind='line', rot=30, **kwds): # pragma: no cover """ Plot the input series with the index on the x-axis using matplotlib / pylab. Parameters ---------- label : label argument to provide to plot kind : {'line', 'bar', 'hist'} Default: line for TimeSeries, hist for Series kwds : other plotting keyword arguments Notes ----- See matplotlib documentation online for more on this subject Default plot-types: TimeSeries (line), Series (bar) Intended to be used in ipython -pylab mode """ import matplotlib.pyplot as plt if label is not None: kwds = kwds.copy() kwds['label'] = label N = len(self) if kind == 'line': plt.plot(self.index, self.values, **kwds) elif kind == 'bar': xinds = np.arange(N) + 0.25 plt.bar(xinds, self.values, 0.5, bottom=np.zeros(N), linewidth=1) if N < 10: fontsize = 12 else: fontsize = 10 plt.xticks(xinds + 0.25, self.index, rotation=rot, fontsize=fontsize) def toCSV(self, path): """ Write the Series to a CSV file Parameters ---------- path : string or None Output filepath. If None, write to stdout """ f = open(path, 'wb') for idx, value in self.iteritems(): f.write(str(idx) + ',' + str(value) + ',\n') f.close() def valid(self): """ Return Series without NaN values Returns ------- Series """ return remove_na(self) def _firstTimeWithValue(self): noNA = remove_na(self) if len(noNA) > 0: return noNA.index[0] else: return None def _lastTimeWithValue(self): noNA = remove_na(self) if len(noNA) > 0: return noNA.index[-1] else: return None #------------------------------------------------------------------------------- # Time series-oriented methods def shift(self, periods, offset=None, timeRule=None): """ Shift the underlying series of the DataMatrix and Series objects within by given number (positive or negative) of business/weekdays. Parameters ---------- periods : int (+ or -) Number of periods to move offset : DateOffset, optional Increment to use from datetools module timeRule : string time rule name to use by name (e.g. 'WEEKDAY') Returns ------- TimeSeries """ if periods == 0: return self.copy() if timeRule is not None and offset is None: offset = datetools.getOffset(timeRule) if offset is None: newValues = np.empty(len(self), dtype=self.dtype) if periods > 0: newValues[periods:] = self.values[:-periods] newValues[:periods] = np.NaN elif periods < 0: newValues[:periods] = self.values[-periods:] newValues[periods:] = np.NaN return Series(newValues, index=self.index) else: newIndex = self.index.shift(periods, offset) return Series(self, index=newIndex) def truncate(self, before=None, after=None): """Function truncate a sorted TimeSeries before and/or after some particular dates. Parameters ---------- before : date Truncate before date after : date Truncate after date Notes ----- If TimeSeries is contained in a DataFrame, consider using the version of the function there. Returns ------- TimeSeries """ before = datetools.to_datetime(before) after = datetools.to_datetime(after) if before is None: beg_slice = 0 elif before in self.index: beg_slice = self.index.indexMap[before] elif before < self.index[-1]: beg_slice = self.index.searchsorted(before, side='left') else: return Series([], index=NULL_INDEX) if after is None: end_slice = len(self) elif after in self.index: end_slice = self.index.indexMap[after] + 1 elif after > self.index[0]: end_slice = self.index.searchsorted(after, side='right') else: return Series([], index=NULL_INDEX) return self[beg_slice:end_slice] def asOf(self, date): """ Return last good (non-NaN) value in TimeSeries if value is NaN for requested date. If there is no good value, NaN is returned. Parameters ---------- date : datetime or similar value Notes ----- Dates are assumed to be sorted Returns ------- value or NaN """ if isinstance(date, basestring): date = datetools.to_datetime(date) v = self.get(date) if isnull(v): candidates = self.index[notnull(self)] index = candidates.searchsorted(date) if index > 0: asOfDate = candidates[index - 1] else: return NaN return self.get(asOfDate) else: return v def asfreq(self, freq, fillMethod=None): """ Convert this TimeSeries to the provided frequency using DateOffset objects. Optionally provide fill method to pad/backfill/interpolate missing values. Parameters ---------- offset : DateOffset object, or string in {'WEEKDAY', 'EOM'} DateOffset object or subclass (e.g. monthEnd) fillMethod : {'backfill', 'pad', 'interpolate', None} Method to use for filling holes in new inde Returns ------- TimeSeries """ if isinstance(freq, datetools.DateOffset): dateRange = DateRange(self.index[0], self.index[-1], offset=freq) else: dateRange = DateRange(self.index[0], self.index[-1], timeRule=freq) return self.reindex(dateRange, fillMethod=fillMethod) def interpolate(self, method='linear'): """ Interpolate missing values (after the first valid value) Parameters ---------- method : {'linear', 'time'} Interpolation method. Time interpolation works on daily and higher resolution data to interpolate given length of interval Returns ------- Series with values interpolated """ if method == 'time': if not isinstance(self, TimeSeries): raise Exception('time-weighted interpolation only works' 'on TimeSeries') inds = np.array([d.toordinal() for d in self.index]) else: inds = np.arange(len(self)) values = self.values invalid = isnull(values) valid = -invalid firstIndex = valid.argmax() valid = valid[firstIndex:] invalid = invalid[firstIndex:] inds = inds[firstIndex:] result = values.copy() result[firstIndex:][invalid] = np.interp(inds[invalid], inds[valid], values[firstIndex:][valid]) return Series(result, index=self.index) def rename(self, mapper): """ Alter Series index using dict or function Parameters ---------- mapper : dict-like or function Transformation to apply to each index Notes ----- Function / dict values must be unique (1-to-1) Returns ------- y : Series (new object) """ if isinstance(mapper, (dict, Series)): mapper = mapper.__getitem__ result = self.copy() result.index = [mapper(x) for x in self.index] return result @property def weekday(self): return Series([d.weekday() for d in self.index], index=self.index) class TimeSeries(Series): pass #------------------------------------------------------------------------------- # Supplementary functions def remove_na(arr): """ Return array containing only true/non-NaN values, possibly empty. """ return arr[notnull(arr)] def _seriesRepr(index, vals, nanRep='NaN'): string_index = [str(x) for x in index] maxlen = max(len(x) for x in string_index) padSpace = min(maxlen, 60) if vals.dtype == np.object_: def _format(k, v): return '%s %s' % (str(k).ljust(padSpace), v) elif vals.dtype == np.float_: def _format(k, v): if np.isnan(v): v = nanRep else: v = str(v) return '%s %s' % (str(k).ljust(padSpace), v) else: def _format(k, v): return '%s %s' % (str(k).ljust(padSpace), v) it = itertools.starmap(_format, itertools.izip(string_index, vals)) return '\n'.join(it)
bsd-3-clause
harshaneelhg/scikit-learn
sklearn/tests/test_kernel_approximation.py
244
7588
import numpy as np from scipy.sparse import csr_matrix from sklearn.utils.testing import assert_array_equal, assert_equal, assert_true from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_array_almost_equal, assert_raises from sklearn.utils.testing import assert_less_equal from sklearn.metrics.pairwise import kernel_metrics from sklearn.kernel_approximation import RBFSampler from sklearn.kernel_approximation import AdditiveChi2Sampler from sklearn.kernel_approximation import SkewedChi2Sampler from sklearn.kernel_approximation import Nystroem from sklearn.metrics.pairwise import polynomial_kernel, rbf_kernel # generate data rng = np.random.RandomState(0) X = rng.random_sample(size=(300, 50)) Y = rng.random_sample(size=(300, 50)) X /= X.sum(axis=1)[:, np.newaxis] Y /= Y.sum(axis=1)[:, np.newaxis] def test_additive_chi2_sampler(): # test that AdditiveChi2Sampler approximates kernel on random data # compute exact kernel # appreviations for easier formular X_ = X[:, np.newaxis, :] Y_ = Y[np.newaxis, :, :] large_kernel = 2 * X_ * Y_ / (X_ + Y_) # reduce to n_samples_x x n_samples_y by summing over features kernel = (large_kernel.sum(axis=2)) # approximate kernel mapping transform = AdditiveChi2Sampler(sample_steps=3) X_trans = transform.fit_transform(X) Y_trans = transform.transform(Y) kernel_approx = np.dot(X_trans, Y_trans.T) assert_array_almost_equal(kernel, kernel_approx, 1) X_sp_trans = transform.fit_transform(csr_matrix(X)) Y_sp_trans = transform.transform(csr_matrix(Y)) assert_array_equal(X_trans, X_sp_trans.A) assert_array_equal(Y_trans, Y_sp_trans.A) # test error is raised on negative input Y_neg = Y.copy() Y_neg[0, 0] = -1 assert_raises(ValueError, transform.transform, Y_neg) # test error on invalid sample_steps transform = AdditiveChi2Sampler(sample_steps=4) assert_raises(ValueError, transform.fit, X) # test that the sample interval is set correctly sample_steps_available = [1, 2, 3] for sample_steps in sample_steps_available: # test that the sample_interval is initialized correctly transform = AdditiveChi2Sampler(sample_steps=sample_steps) assert_equal(transform.sample_interval, None) # test that the sample_interval is changed in the fit method transform.fit(X) assert_not_equal(transform.sample_interval_, None) # test that the sample_interval is set correctly sample_interval = 0.3 transform = AdditiveChi2Sampler(sample_steps=4, sample_interval=sample_interval) assert_equal(transform.sample_interval, sample_interval) transform.fit(X) assert_equal(transform.sample_interval_, sample_interval) def test_skewed_chi2_sampler(): # test that RBFSampler approximates kernel on random data # compute exact kernel c = 0.03 # appreviations for easier formular X_c = (X + c)[:, np.newaxis, :] Y_c = (Y + c)[np.newaxis, :, :] # we do it in log-space in the hope that it's more stable # this array is n_samples_x x n_samples_y big x n_features log_kernel = ((np.log(X_c) / 2.) + (np.log(Y_c) / 2.) + np.log(2.) - np.log(X_c + Y_c)) # reduce to n_samples_x x n_samples_y by summing over features in log-space kernel = np.exp(log_kernel.sum(axis=2)) # approximate kernel mapping transform = SkewedChi2Sampler(skewedness=c, n_components=1000, random_state=42) X_trans = transform.fit_transform(X) Y_trans = transform.transform(Y) kernel_approx = np.dot(X_trans, Y_trans.T) assert_array_almost_equal(kernel, kernel_approx, 1) # test error is raised on negative input Y_neg = Y.copy() Y_neg[0, 0] = -1 assert_raises(ValueError, transform.transform, Y_neg) def test_rbf_sampler(): # test that RBFSampler approximates kernel on random data # compute exact kernel gamma = 10. kernel = rbf_kernel(X, Y, gamma=gamma) # approximate kernel mapping rbf_transform = RBFSampler(gamma=gamma, n_components=1000, random_state=42) X_trans = rbf_transform.fit_transform(X) Y_trans = rbf_transform.transform(Y) kernel_approx = np.dot(X_trans, Y_trans.T) error = kernel - kernel_approx assert_less_equal(np.abs(np.mean(error)), 0.01) # close to unbiased np.abs(error, out=error) assert_less_equal(np.max(error), 0.1) # nothing too far off assert_less_equal(np.mean(error), 0.05) # mean is fairly close def test_input_validation(): # Regression test: kernel approx. transformers should work on lists # No assertions; the old versions would simply crash X = [[1, 2], [3, 4], [5, 6]] AdditiveChi2Sampler().fit(X).transform(X) SkewedChi2Sampler().fit(X).transform(X) RBFSampler().fit(X).transform(X) X = csr_matrix(X) RBFSampler().fit(X).transform(X) def test_nystroem_approximation(): # some basic tests rnd = np.random.RandomState(0) X = rnd.uniform(size=(10, 4)) # With n_components = n_samples this is exact X_transformed = Nystroem(n_components=X.shape[0]).fit_transform(X) K = rbf_kernel(X) assert_array_almost_equal(np.dot(X_transformed, X_transformed.T), K) trans = Nystroem(n_components=2, random_state=rnd) X_transformed = trans.fit(X).transform(X) assert_equal(X_transformed.shape, (X.shape[0], 2)) # test callable kernel linear_kernel = lambda X, Y: np.dot(X, Y.T) trans = Nystroem(n_components=2, kernel=linear_kernel, random_state=rnd) X_transformed = trans.fit(X).transform(X) assert_equal(X_transformed.shape, (X.shape[0], 2)) # test that available kernels fit and transform kernels_available = kernel_metrics() for kern in kernels_available: trans = Nystroem(n_components=2, kernel=kern, random_state=rnd) X_transformed = trans.fit(X).transform(X) assert_equal(X_transformed.shape, (X.shape[0], 2)) def test_nystroem_singular_kernel(): # test that nystroem works with singular kernel matrix rng = np.random.RandomState(0) X = rng.rand(10, 20) X = np.vstack([X] * 2) # duplicate samples gamma = 100 N = Nystroem(gamma=gamma, n_components=X.shape[0]).fit(X) X_transformed = N.transform(X) K = rbf_kernel(X, gamma=gamma) assert_array_almost_equal(K, np.dot(X_transformed, X_transformed.T)) assert_true(np.all(np.isfinite(Y))) def test_nystroem_poly_kernel_params(): # Non-regression: Nystroem should pass other parameters beside gamma. rnd = np.random.RandomState(37) X = rnd.uniform(size=(10, 4)) K = polynomial_kernel(X, degree=3.1, coef0=.1) nystroem = Nystroem(kernel="polynomial", n_components=X.shape[0], degree=3.1, coef0=.1) X_transformed = nystroem.fit_transform(X) assert_array_almost_equal(np.dot(X_transformed, X_transformed.T), K) def test_nystroem_callable(): # Test Nystroem on a callable. rnd = np.random.RandomState(42) n_samples = 10 X = rnd.uniform(size=(n_samples, 4)) def logging_histogram_kernel(x, y, log): """Histogram kernel that writes to a log.""" log.append(1) return np.minimum(x, y).sum() kernel_log = [] X = list(X) # test input validation Nystroem(kernel=logging_histogram_kernel, n_components=(n_samples - 1), kernel_params={'log': kernel_log}).fit(X) assert_equal(len(kernel_log), n_samples * (n_samples - 1) / 2)
bsd-3-clause
ankurankan/scikit-learn
examples/plot_multioutput_face_completion.py
330
3019
""" ============================================== Face completion with a multi-output estimators ============================================== This example shows the use of multi-output estimator to complete images. The goal is to predict the lower half of a face given its upper half. The first column of images shows true faces. The next columns illustrate how extremely randomized trees, k nearest neighbors, linear regression and ridge regression complete the lower half of those faces. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import fetch_olivetti_faces from sklearn.utils.validation import check_random_state from sklearn.ensemble import ExtraTreesRegressor from sklearn.neighbors import KNeighborsRegressor from sklearn.linear_model import LinearRegression from sklearn.linear_model import RidgeCV # Load the faces datasets data = fetch_olivetti_faces() targets = data.target data = data.images.reshape((len(data.images), -1)) train = data[targets < 30] test = data[targets >= 30] # Test on independent people # Test on a subset of people n_faces = 5 rng = check_random_state(4) face_ids = rng.randint(test.shape[0], size=(n_faces, )) test = test[face_ids, :] n_pixels = data.shape[1] X_train = train[:, :np.ceil(0.5 * n_pixels)] # Upper half of the faces y_train = train[:, np.floor(0.5 * n_pixels):] # Lower half of the faces X_test = test[:, :np.ceil(0.5 * n_pixels)] y_test = test[:, np.floor(0.5 * n_pixels):] # Fit estimators ESTIMATORS = { "Extra trees": ExtraTreesRegressor(n_estimators=10, max_features=32, random_state=0), "K-nn": KNeighborsRegressor(), "Linear regression": LinearRegression(), "Ridge": RidgeCV(), } y_test_predict = dict() for name, estimator in ESTIMATORS.items(): estimator.fit(X_train, y_train) y_test_predict[name] = estimator.predict(X_test) # Plot the completed faces image_shape = (64, 64) n_cols = 1 + len(ESTIMATORS) plt.figure(figsize=(2. * n_cols, 2.26 * n_faces)) plt.suptitle("Face completion with multi-output estimators", size=16) for i in range(n_faces): true_face = np.hstack((X_test[i], y_test[i])) if i: sub = plt.subplot(n_faces, n_cols, i * n_cols + 1) else: sub = plt.subplot(n_faces, n_cols, i * n_cols + 1, title="true faces") sub.axis("off") sub.imshow(true_face.reshape(image_shape), cmap=plt.cm.gray, interpolation="nearest") for j, est in enumerate(sorted(ESTIMATORS)): completed_face = np.hstack((X_test[i], y_test_predict[est][i])) if i: sub = plt.subplot(n_faces, n_cols, i * n_cols + 2 + j) else: sub = plt.subplot(n_faces, n_cols, i * n_cols + 2 + j, title=est) sub.axis("off") sub.imshow(completed_face.reshape(image_shape), cmap=plt.cm.gray, interpolation="nearest") plt.show()
bsd-3-clause
mxamin/coursera
coursera/api.py
1
51527
# vim: set fileencoding=utf8 : """ This module contains implementations of different APIs that are used by the downloader. """ import os import json import base64 import logging import time import requests import urllib from collections import namedtuple from six import iterkeys, iteritems from six.moves.urllib_parse import quote_plus from .utils import (BeautifulSoup, make_coursera_absolute_url, extend_supplement_links, clean_url, clean_filename, is_debug_run, unescape_html) from .network import get_reply, get_page, post_page_and_reply from .define import (OPENCOURSE_SUPPLEMENT_URL, OPENCOURSE_PROGRAMMING_ASSIGNMENTS_URL, OPENCOURSE_ASSET_URL, OPENCOURSE_ASSETS_URL, OPENCOURSE_API_ASSETS_V1_URL, OPENCOURSE_ONDEMAND_COURSE_MATERIALS, OPENCOURSE_VIDEO_URL, OPENCOURSE_MEMBERSHIPS, OPENCOURSE_REFERENCES_POLL_URL, OPENCOURSE_REFERENCE_ITEM_URL, OPENCOURSE_PROGRAMMING_IMMEDIATE_INSTRUCTIOINS_URL, # New feature, Notebook (Python Jupyter) OPENCOURSE_NOTEBOOK_DESCRIPTIONS, OPENCOURSE_NOTEBOOK_LAUNCHES, OPENCOURSE_NOTEBOOK_TREE, OPENCOURSE_NOTEBOOK_DOWNLOAD, POST_OPENCOURSE_API_QUIZ_SESSION, POST_OPENCOURSE_API_QUIZ_SESSION_GET_STATE, POST_OPENCOURSE_ONDEMAND_EXAM_SESSIONS, POST_OPENCOURSE_ONDEMAND_EXAM_SESSIONS_GET_STATE, INSTRUCTIONS_HTML_INJECTION_PRE, INSTRUCTIONS_HTML_MATHJAX_URL, INSTRUCTIONS_HTML_INJECTION_AFTER, IN_MEMORY_EXTENSION, IN_MEMORY_MARKER) from .cookies import prepape_auth_headers class QuizExamToMarkupConverter(object): """ Converts quiz/exam JSON into semi HTML (Coursera Markup) for local viewing. The output needs to be further processed by MarkupToHTMLConverter. """ KNOWN_QUESTION_TYPES = ('mcq', 'mcqReflect', 'checkbox', 'singleNumeric', 'textExactMatch', 'mathExpression', 'regex', 'reflect') # TODO: support live MathJAX preview rendering for mathExpression # and regex question types KNOWN_INPUT_TYPES = ('textExactMatch', 'singleNumeric', 'mathExpression', 'regex', 'reflect') def __init__(self, session): self._session = session def __call__(self, quiz_or_exam_json): result = [] for question_index, question_json in enumerate(quiz_or_exam_json['questions']): question_type = question_json['question']['type'] if question_type not in self.KNOWN_QUESTION_TYPES: logging.info('Unknown question type: %s', question_type) logging.info('Question json: %s', question_json) logging.info('Please report class name, quiz name and the data' ' above to coursera-dl authors') prompt = question_json['variant']['definition']['prompt'] options = question_json['variant']['definition'].get('options', []) # Question number result.append('<h3>Question %d</h3>' % (question_index + 1)) # Question text question_text = unescape_html(prompt['definition']['value']) result.append(question_text) # Input for answer if question_type in self.KNOWN_INPUT_TYPES: result.extend(self._generate_input_field()) # Convert input_type from JSON reply to HTML input type input_type = { 'mcq': 'radio', 'mcqReflect': 'radio', 'checkbox': 'checkbox' }.get(question_type, '') # Convert options, they are either checkboxes or radio buttons result.extend(self._convert_options( question_index, options, input_type)) result.append('<hr>') return '\n'.join(result) def _convert_options(self, question_index, options, input_type): if not options: return [] result = ['<form>'] for option in options: option_text = unescape_html(option['display']['definition']['value']) # We need to replace <text> with <span> so that answer text # stays on the same line with checkbox/radio button option_text = self._replace_tag(option_text, 'text', 'span') result.append('<label><input type="%s" name="%s">' '%s<br></label>' % ( input_type, question_index, option_text)) result.append('</form>') return result def _replace_tag(self, text, initial_tag, target_tag): soup = BeautifulSoup(text) while soup.find(initial_tag): soup.find(initial_tag).name = target_tag return soup.prettify() def _generate_input_field(self): return ['<form><label>Enter answer here:<input type="text" ' 'name=""><br></label></form>'] class MarkupToHTMLConverter(object): def __init__(self, session, mathjax_cdn_url=None): self._session = session self._asset_retriever = AssetRetriever(session) if not mathjax_cdn_url: mathjax_cdn_url = INSTRUCTIONS_HTML_MATHJAX_URL self._mathjax_cdn_url = mathjax_cdn_url def __call__(self, markup): """ Convert instructions markup to make it more suitable for offline reading. @param markup: HTML (kinda) markup to prettify. @type markup: str @return: Prettified HTML with several markup tags replaced with HTML equivalents. @rtype: str """ soup = BeautifulSoup(markup) self._convert_markup_basic(soup) self._convert_markup_images(soup) self._convert_markup_audios(soup) return soup.prettify() def _convert_markup_basic(self, soup): """ Perform basic conversion of instructions markup. This includes replacement of several textual markup tags with their HTML equivalents. @param soup: BeautifulSoup instance. @type soup: BeautifulSoup """ # Inject meta charset tag meta = soup.new_tag('meta', charset='UTF-8') soup.insert(0, meta) # 1. Inject basic CSS style css = "".join([ INSTRUCTIONS_HTML_INJECTION_PRE, self._mathjax_cdn_url, INSTRUCTIONS_HTML_INJECTION_AFTER]) css_soup = BeautifulSoup(css) soup.append(css_soup) # 2. Replace <text> with <p> while soup.find('text'): soup.find('text').name = 'p' # 3. Replace <heading level="1"> with <h1> while soup.find('heading'): heading = soup.find('heading') heading.name = 'h%s' % heading.attrs.get('level', '1') # 4. Replace <code> with <pre> while soup.find('code'): soup.find('code').name = 'pre' # 5. Replace <list> with <ol> or <ul> while soup.find('list'): list_ = soup.find('list') type_ = list_.attrs.get('bullettype', 'numbers') list_.name = 'ol' if type_ == 'numbers' else 'ul' def _convert_markup_images(self, soup): """ Convert images of instructions markup. Images are downloaded, base64-encoded and inserted into <img> tags. @param soup: BeautifulSoup instance. @type soup: BeautifulSoup """ # 6. Replace <img> assets with actual image contents images = [image for image in soup.find_all('img') if image.attrs.get('assetid') is not None] if not images: return # Get assetid attribute from all images asset_ids = [image.attrs.get('assetid') for image in images] self._asset_retriever(asset_ids) for image in images: # Encode each image using base64 asset = self._asset_retriever[image['assetid']] if asset.data is not None: encoded64 = base64.b64encode(asset.data).decode() image['src'] = 'data:%s;base64,%s' % (asset.content_type, encoded64) def _convert_markup_audios(self, soup): """ Convert audios of instructions markup. Audios are downloaded, base64-encoded and inserted as <audio controls> <source> tag. @param soup: BeautifulSoup instance. @type soup: BeautifulSoup """ # 7. Replace <asset> audio assets with actual audio contents audios = [audio for audio in soup.find_all('asset') if audio.attrs.get('id') is not None and audio.attrs.get('assettype') == 'audio'] if not audios: return # Get assetid attribute from all audios asset_ids = [audio.attrs.get('id') for audio in audios] self._asset_retriever(asset_ids) for audio in audios: # Encode each audio using base64 asset = self._asset_retriever[audio['id']] if asset.data is not None: encoded64 = base64.b64encode(asset.data).decode() data_string = 'data:%s;base64,%s' % (asset.content_type, encoded64) source_tag = soup.new_tag('source', src=data_string, type=asset.content_type) controls_tag = soup.new_tag('audio', controls="") controls_tag.string = 'Your browser does not support the audio element.' controls_tag.append(source_tag) audio.insert_after(controls_tag) class OnDemandCourseMaterialItems(object): """ Helper class that allows accessing lecture JSONs by lesson IDs. """ def __init__(self, items): """ Initialization. Build a map from lessonId to Lecture (item) @param items: linked.OnDemandCourseMaterialItems key of OPENCOURSE_ONDEMAND_COURSE_MATERIALS response. @type items: dict """ # Build a map of lessonId => Item self._items = dict((item['lessonId'], item) for item in items) @staticmethod def create(session, course_name): """ Create an instance using a session and a course_name. @param session: Requests session. @type session: requests.Session @param course_name: Course name (slug) from course json. @type course_name: str @return: Instance of OnDemandCourseMaterialItems @rtype: OnDemandCourseMaterialItems """ dom = get_page(session, OPENCOURSE_ONDEMAND_COURSE_MATERIALS, json=True, class_name=course_name) return OnDemandCourseMaterialItems( dom['linked']['onDemandCourseMaterialItems.v1']) def get(self, lesson_id): """ Return lecture by lesson ID. @param lesson_id: Lesson ID. @type lesson_id: str @return: Lesson JSON. @rtype: dict Example: { "id": "AUd0k", "moduleId": "0MGvs", "lessonId": "QgCuM", "name": "Programming Assignment 1: Decomposition of Graphs", "slug": "programming-assignment-1-decomposition-of-graphs", "timeCommitment": 10800000, "content": { "typeName": "gradedProgramming", "definition": { "programmingAssignmentId": "zHzR5yhHEeaE0BKOcl4zJQ@2", "gradingWeight": 20 } }, "isLocked": true, "itemLockedReasonCode": "PREMIUM", "trackId": "core" }, """ return self._items.get(lesson_id) class Asset(namedtuple('Asset', 'id name type_name url content_type data')): """ This class contains information about an asset. """ __slots__ = () def __repr__(self): return 'Asset(id="%s", name="%s", type_name="%s", url="%s", content_type="%s", data="<...>")' % ( self.id, self.name, self.type_name, self.url, self.content_type) class AssetRetriever(object): """ This class helps download assets by their ID. """ def __init__(self, session): self._session = session self._asset_mapping = {} def __getitem__(self, asset_id): return self._asset_mapping[asset_id] def __call__(self, asset_ids, download=True): result = [] # Download information about assets (by IDs) asset_list = get_page(self._session, OPENCOURSE_API_ASSETS_V1_URL, json=True, id=','.join(asset_ids)) # Create a map "asset_id => asset" for easier access asset_map = dict((asset['id'], asset) for asset in asset_list['elements']) for asset_id in asset_ids: # Download each asset asset_dict = asset_map[asset_id] url = asset_dict['url']['url'].strip() data, content_type = None, None if download: reply = get_reply(self._session, url) if reply.status_code == 200: data = reply.content content_type = reply.headers.get('Content-Type') asset = Asset(id=asset_dict['id'].strip(), name=asset_dict['name'].strip(), type_name=asset_dict['typeName'].strip(), url=url, content_type=content_type, data=data) self._asset_mapping[asset.id] = asset result.append(asset) return result class CourseraOnDemand(object): """ This is a class that provides a friendly interface to extract certain parts of on-demand courses. On-demand class is a new format that Coursera is using, they contain `/learn/' in their URLs. This class does not support old-style Coursera classes. This API is by no means complete. """ def __init__(self, session, course_id, course_name, unrestricted_filenames=False, mathjax_cdn_url=None): """ Initialize Coursera OnDemand API. @param session: Current session that holds cookies and so on. @type session: requests.Session @param course_id: Course ID from course json. @type course_id: str @param unrestricted_filenames: Flag that indicates whether grabbed file names should endure stricter character filtering. @see `clean_filename` for the details. @type unrestricted_filenames: bool """ self._session = session self._notebook_cookies = None self._course_id = course_id self._course_name = course_name self._unrestricted_filenames = unrestricted_filenames self._user_id = None self._quiz_to_markup = QuizExamToMarkupConverter(session) self._markup_to_html = MarkupToHTMLConverter(session, mathjax_cdn_url=mathjax_cdn_url) self._asset_retriever = AssetRetriever(session) def obtain_user_id(self): reply = get_page(self._session, OPENCOURSE_MEMBERSHIPS, json=True) elements = reply['elements'] user_id = elements[0]['userId'] if elements else None self._user_id = user_id def list_courses(self): """ List enrolled courses. @return: List of enrolled courses. @rtype: [str] """ reply = get_page(self._session, OPENCOURSE_MEMBERSHIPS, json=True) course_list = reply['linked']['courses.v1'] slugs = [element['slug'] for element in course_list] return slugs def extract_links_from_exam(self, exam_id): try: session_id = self._get_exam_session_id(exam_id) exam_json = self._get_exam_json(exam_id, session_id) return self._convert_quiz_json_to_links(exam_json, 'exam') except requests.exceptions.HTTPError as exception: logging.error('Could not download exam %s: %s', exam_id, exception) if is_debug_run(): logging.exception('Could not download exam %s: %s', exam_id, exception) return None def _get_notebook_folder(self, url, jupyterId, **kwargs): supplement_links = {} url = url.format(**kwargs) reply = get_page( self._session, url, json=True ) headers = self._auth_headers_with_json() for content in reply['content']: if content['type'] == 'directory': a = self._get_notebook_folder(OPENCOURSE_NOTEBOOK_TREE, jupyterId, jupId=jupyterId, path=content['path'], timestamp=int(time.time())) supplement_links.update(a) elif content['type'] == 'file': tmpUrl = OPENCOURSE_NOTEBOOK_DOWNLOAD.format(path=content['path'], jupId=jupyterId, timestamp=int(time.time())) filename, extension = os.path.splitext(clean_url(tmpUrl)) head, tail = os.path.split(content['path']) if os.path.isdir(self._course_name + "/notebook/" + head + "/") == False: logging.info('Creating [{}] directories...'.format(head)) os.makedirs(self._course_name + "/notebook/" + head + "/") r = requests.get(tmpUrl.replace(" ", "%20"), cookies=self._session.cookies) if os.path.exists(self._course_name + "/notebook/" + head + "/" + tail) == False: logging.info('Downloading {} into {}'.format(tail, head)) with open(self._course_name + "/notebook/" + head + "/" + tail, 'wb+') as f: f.write(r.content) else: logging.info('Skipping {}... (file exists)'.format(tail)) if not str(extension[1:]) in supplement_links: supplement_links[str(extension[1:])] = [] supplement_links[str(extension[1:])].append((tmpUrl.replace(" ", "%20"), filename)) elif content['type'] == 'notebook': tmpUrl = OPENCOURSE_NOTEBOOK_DOWNLOAD.format(path=content['path'], jupId=jupyterId, timestamp=int(time.time())) filename, extension = os.path.splitext(clean_url(tmpUrl)) head, tail = os.path.split(content['path']) if os.path.isdir(self._course_name + "/notebook/" + head + "/") == False: logging.info('Creating [{}] directories...'.format(head)) os.makedirs(self._course_name + "/notebook/" + head + "/") r = requests.get(tmpUrl.replace(" ", "%20"), cookies=self._session.cookies) if os.path.exists(self._course_name + "/notebook/" + head + "/" + tail) == False: logging.info('Downloading Jupyter {} into {}'.format(tail, head)) with open(self._course_name + "/notebook/" + head + "/" + tail, 'wb+') as f: f.write(r.content) else: logging.info('Skipping {}... (file exists)'.format(tail)) if not "ipynb" in supplement_links: supplement_links["ipynb"] = [] supplement_links["ipynb"].append((tmpUrl.replace(" ", "%20"), filename)) else: logging.info('Unsupported typename {} in notebook'.format(content['type'])) return supplement_links def _get_notebook_json(self, notebook_id, authorizationId): import re, time headers = self._auth_headers_with_json() reply = get_page( self._session, OPENCOURSE_NOTEBOOK_DESCRIPTIONS, json=False, authId=authorizationId, headers=headers ) jupyterId = re.findall(r"\"\/user\/(.*)\/tree\"", reply) if len(jupyterId) == 0: logging.error('Could not download notebook %s', notebook_id) return None jupyterId = jupyterId[0] newReq = requests.Session() req = newReq.get(OPENCOURSE_NOTEBOOK_TREE.format(jupId=jupyterId, path="/", timestamp=int(time.time())), headers=headers) return self._get_notebook_folder(OPENCOURSE_NOTEBOOK_TREE, jupyterId, jupId=jupyterId, path="/", timestamp=int(time.time())) def extract_links_from_notebook(self, notebook_id): try: authorizationId = self._extract_notebook_text(notebook_id) ret = self._get_notebook_json(notebook_id, authorizationId) return ret except requests.exceptions.HTTPError as exception: logging.error('Could not download notebook %s: %s', notebook_id, exception) if is_debug_run(): logging.exception('Could not download notebook %s: %s', notebook_id, exception) return None def extract_links_from_quiz(self, quiz_id): try: session_id = self._get_quiz_session_id(quiz_id) quiz_json = self._get_quiz_json(quiz_id, session_id) return self._convert_quiz_json_to_links(quiz_json, 'quiz') except requests.exceptions.HTTPError as exception: logging.error('Could not download quiz %s: %s', quiz_id, exception) if is_debug_run(): logging.exception('Could not download quiz %s: %s', quiz_id, exception) return None def _convert_quiz_json_to_links(self, quiz_json, filename_suffix): markup = self._quiz_to_markup(quiz_json) html = self._markup_to_html(markup) supplement_links = {} instructions = (IN_MEMORY_MARKER + html, filename_suffix) extend_supplement_links( supplement_links, {IN_MEMORY_EXTENSION: [instructions]}) return supplement_links def _get_exam_json(self, exam_id, session_id): headers = self._auth_headers_with_json() data = {"name": "getState", "argument": []} reply = get_page(self._session, POST_OPENCOURSE_ONDEMAND_EXAM_SESSIONS_GET_STATE, json=True, post=True, data=json.dumps(data), headers=headers, session_id=session_id) return reply['elements'][0]['result'] def _get_exam_session_id(self, exam_id): headers = self._auth_headers_with_json() data = {'courseId': self._course_id, 'itemId': exam_id} _body, reply = post_page_and_reply(self._session, POST_OPENCOURSE_ONDEMAND_EXAM_SESSIONS, data=json.dumps(data), headers=headers) return reply.headers.get('X-Coursera-Id') def _get_quiz_json(self, quiz_id, session_id): headers = self._auth_headers_with_json() data = {"contentRequestBody": {"argument": []}} reply = get_page(self._session, POST_OPENCOURSE_API_QUIZ_SESSION_GET_STATE, json=True, post=True, data=json.dumps(data), headers=headers, user_id=self._user_id, class_name=self._course_name, quiz_id=quiz_id, session_id=session_id) return reply['contentResponseBody']['return'] def _get_quiz_session_id(self, quiz_id): headers = self._auth_headers_with_json() data = {"contentRequestBody":[]} reply = get_page(self._session, POST_OPENCOURSE_API_QUIZ_SESSION, json=True, post=True, data=json.dumps(data), headers=headers, user_id=self._user_id, class_name=self._course_name, quiz_id=quiz_id) return reply['contentResponseBody']['session']['id'] def _auth_headers_with_json(self): headers = prepape_auth_headers(self._session, include_cauth=True) headers.update({ 'Content-Type': 'application/json; charset=UTF-8' }) return headers def extract_links_from_lecture(self, video_id, subtitle_language='en', resolution='540p', assets=None): """ Return the download URLs of on-demand course video. @param video_id: Video ID. @type video_id: str @param subtitle_language: Subtitle language. @type subtitle_language: str @param resolution: Preferred video resolution. @type resolution: str @param assets: List of assets that may present in the video. @type assets: [str] @return: @see CourseraOnDemand._extract_links_from_text """ if assets is None: assets = [] try: links = self._extract_videos_and_subtitles_from_lecture( video_id, subtitle_language, resolution) assets = self._normalize_assets(assets) extend_supplement_links( links, self._extract_links_from_lecture_assets(assets)) return links except requests.exceptions.HTTPError as exception: logging.error('Could not download lecture %s: %s', video_id, exception) if is_debug_run(): logging.exception('Could not download lecture %s: %s', video_id, exception) return None def _normalize_assets(self, assets): """ Perform asset normalization. For some reason, assets that are sometimes present in lectures, have "@1" at the end of their id. Such "uncut" asset id when fed to OPENCOURSE_ASSETS_URL results in error that says: "Routing error: 'get-all' not implemented". To avoid that, the last two characters from asset id are cut off and after that that method works fine. It looks like, Web UI is doing the same. @param assets: List of asset ids. @type assets: [str] @return: Normalized list of asset ids (without trailing "@1") @rtype: [str] """ new_assets = [] for asset in assets: # For example: giAxucdaEeWJTQ5WTi8YJQ@1 if len(asset) == 24: # Turn it into: giAxucdaEeWJTQ5WTi8YJQ asset = asset[:-2] new_assets.append(asset) return new_assets def _extract_links_from_lecture_assets(self, asset_ids): """ Extract links to files of the asset ids. @param asset_ids: List of asset ids. @type asset_ids: [str] @return: @see CourseraOnDemand._extract_links_from_text """ links = {} def _add_asset(name, url, destination): filename, extension = os.path.splitext(clean_url(name)) if extension is '': return extension = clean_filename( extension.lower().strip('.').strip(), self._unrestricted_filenames) basename = clean_filename( os.path.basename(filename), self._unrestricted_filenames) url = url.strip() if extension not in destination: destination[extension] = [] destination[extension].append((url, basename)) for asset_id in asset_ids: for asset in self._get_asset_urls(asset_id): _add_asset(asset['name'], asset['url'], links) return links def _get_asset_urls(self, asset_id): """ Get list of asset urls and file names. This method may internally use AssetRetriever to extract `asset` element types. @param asset_id: Asset ID. @type asset_id: str @return List of dictionaries with asset file names and urls. @rtype [{ 'name': '<filename.ext>' 'url': '<url>' }] """ dom = get_page(self._session, OPENCOURSE_ASSETS_URL, json=True, id=asset_id) logging.debug('Parsing JSON for asset_id <%s>.', asset_id) urls = [] for element in dom['elements']: typeName = element['typeName'] definition = element['definition'] # Elements of `asset` types look as follows: # # {'elements': [{'definition': {'assetId': 'gtSfvscoEeW7RxKvROGwrw', # 'name': 'Презентация к лекции'}, # 'id': 'phxNlMcoEeWXCQ4nGuQJXw', # 'typeName': 'asset'}], # 'linked': None, # 'paging': None} # if typeName == 'asset': open_course_asset_id = definition['assetId'] for asset in self._asset_retriever([open_course_asset_id], download=False): urls.append({'name': asset.name, 'url': asset.url}) # Elements of `url` types look as follows: # # {'elements': [{'definition': {'name': 'What motivates you.pptx', # 'url': 'https://d396qusza40orc.cloudfront.net/learning/Powerpoints/2-4A_What_motivates_you.pptx'}, # 'id': '0hixqpWJEeWQkg5xdHApow', # 'typeName': 'url'}], # 'linked': None, # 'paging': None} # elif typeName == 'url': urls.append({'name': definition['name'].strip(), 'url': definition['url'].strip()}) else: logging.warning( 'Unknown asset typeName: %s\ndom: %s\n' 'If you think the downloader missed some ' 'files, please report the issue here:\n' 'https://github.com/coursera-dl/coursera-dl/issues/new', typeName, json.dumps(dom, indent=4)) return urls def _extract_videos_and_subtitles_from_lecture(self, video_id, subtitle_language='en', resolution='540p'): dom = get_page(self._session, OPENCOURSE_VIDEO_URL, json=True, video_id=video_id) logging.debug('Parsing JSON for video_id <%s>.', video_id) video_content = {} # videos logging.debug('Gathering video URLs for video_id <%s>.', video_id) sources = dom['sources'] sources.sort(key=lambda src: src['resolution']) sources.reverse() # Try to select resolution requested by the user. filtered_sources = [source for source in sources if source['resolution'] == resolution] if len(filtered_sources) == 0: # We will just use the 'vanilla' version of sources here, instead of # filtered_sources. logging.warning('Requested resolution %s not available for <%s>. ' 'Downloading highest resolution available instead.', resolution, video_id) else: logging.debug('Proceeding with download of resolution %s of <%s>.', resolution, video_id) sources = filtered_sources video_url = sources[0]['formatSources']['video/mp4'] video_content['mp4'] = video_url subtitle_link = self._extract_subtitles_from_video_dom( dom, subtitle_language, video_id) for key, value in iteritems(subtitle_link): video_content[key] = value lecture_video_content = {} for key, value in iteritems(video_content): lecture_video_content[key] = [(value, '')] return lecture_video_content def _extract_subtitles_from_video_dom(self, video_dom, subtitle_language, video_id): # subtitles and transcripts subtitle_nodes = [ ('subtitles', 'srt', 'subtitle'), ('subtitlesTxt', 'txt', 'transcript'), ] subtitle_set_download = set() subtitle_set_nonexist = set() subtitle_links = {} for (subtitle_node, subtitle_extension, subtitle_description) \ in subtitle_nodes: logging.debug('Gathering %s URLs for video_id <%s>.', subtitle_description, video_id) subtitles = video_dom.get(subtitle_node) download_all_subtitle = False if subtitles is not None: subtitles_set = set(subtitles) requested_subtitle_list = [s.strip() for s in subtitle_language.split(",")] for language_with_alts in requested_subtitle_list: if download_all_subtitle: break grouped_language_list = [l.strip() for l in language_with_alts.split("|")] for language in grouped_language_list: if language == "all": download_all_subtitle = True break elif language in subtitles_set: subtitle_set_download.update([language]) break else: subtitle_set_nonexist.update([language]) if download_all_subtitle and subtitles is not None: subtitle_set_download = set(subtitles) if not download_all_subtitle and subtitle_set_nonexist: logging.warning("%s unavailable in '%s' language for video " "with video id: [%s]," "%s", subtitle_description.capitalize(), ", ".join(subtitle_set_nonexist), video_id, subtitle_description) if not subtitle_set_download: logging.warning("%s all requested subtitles are unavaliable," "with video id: [%s], falling back to 'en' " "%s", subtitle_description.capitalize(), video_id, subtitle_description) subtitle_set_download = set(['en']) for current_subtitle_language in subtitle_set_download: subtitle_url = subtitles.get(current_subtitle_language) if subtitle_url is not None: # some subtitle urls are relative! subtitle_links[ "%s.%s" % (current_subtitle_language, subtitle_extension) ] = make_coursera_absolute_url(subtitle_url) return subtitle_links def extract_links_from_programming_immediate_instructions(self, element_id): """ Return a dictionary with links to supplement files (pdf, csv, zip, ipynb, html and so on) extracted from graded programming assignment. @param element_id: Element ID to extract files from. @type element_id: str @return: @see CourseraOnDemand._extract_links_from_text """ logging.debug('Extracting links from programming immediate ' 'instructions for element_id <%s>.', element_id) try: # Assignment text (instructions) contains asset tags which describe # supplementary files. text = ''.join( self._extract_programming_immediate_instructions_text(element_id)) if not text: return {} supplement_links = self._extract_links_from_text(text) instructions = (IN_MEMORY_MARKER + self._markup_to_html(text), 'instructions') extend_supplement_links( supplement_links, {IN_MEMORY_EXTENSION: [instructions]}) return supplement_links except requests.exceptions.HTTPError as exception: logging.error('Could not download programming assignment %s: %s', element_id, exception) if is_debug_run(): logging.exception('Could not download programming assignment %s: %s', element_id, exception) return None def extract_links_from_programming(self, element_id): """ Return a dictionary with links to supplement files (pdf, csv, zip, ipynb, html and so on) extracted from graded programming assignment. @param element_id: Element ID to extract files from. @type element_id: str @return: @see CourseraOnDemand._extract_links_from_text """ logging.debug('Gathering supplement URLs for element_id <%s>.', element_id) try: # Assignment text (instructions) contains asset tags which describe # supplementary files. text = ''.join(self._extract_assignment_text(element_id)) if not text: return {} supplement_links = self._extract_links_from_text(text) instructions = (IN_MEMORY_MARKER + self._markup_to_html(text), 'instructions') extend_supplement_links( supplement_links, {IN_MEMORY_EXTENSION: [instructions]}) return supplement_links except requests.exceptions.HTTPError as exception: logging.error('Could not download programming assignment %s: %s', element_id, exception) if is_debug_run(): logging.exception('Could not download programming assignment %s: %s', element_id, exception) return None def extract_links_from_supplement(self, element_id): """ Return a dictionary with supplement files (pdf, csv, zip, ipynb, html and so on) extracted from supplement page. @return: @see CourseraOnDemand._extract_links_from_text """ logging.debug('Gathering supplement URLs for element_id <%s>.', element_id) try: dom = get_page(self._session, OPENCOURSE_SUPPLEMENT_URL, json=True, course_id=self._course_id, element_id=element_id) supplement_content = {} # Supplement content has structure as follows: # 'linked' { # 'openCourseAssets.v1' [ { # 'definition' { # 'value' for asset in dom['linked']['openCourseAssets.v1']: value = asset['definition']['value'] # Supplement lecture types are known to contain both <asset> tags # and <a href> tags (depending on the course), so we extract # both of them. extend_supplement_links( supplement_content, self._extract_links_from_text(value)) instructions = (IN_MEMORY_MARKER + self._markup_to_html(value), 'instructions') extend_supplement_links( supplement_content, {IN_MEMORY_EXTENSION: [instructions]}) return supplement_content except requests.exceptions.HTTPError as exception: logging.error('Could not download supplement %s: %s', element_id, exception) if is_debug_run(): logging.exception('Could not download supplement %s: %s', element_id, exception) return None def _extract_asset_tags(self, text): """ Extract asset tags from text into a convenient form. @param text: Text to extract asset tags from. This text contains HTML code that is parsed by BeautifulSoup. @type text: str @return: Asset map. @rtype: { '<id>': { 'name': '<name>', 'extension': '<extension>' }, ... } """ soup = BeautifulSoup(text) asset_tags_map = {} for asset in soup.find_all('asset'): asset_tags_map[asset['id']] = {'name': asset['name'], 'extension': asset['extension']} return asset_tags_map def _extract_asset_urls(self, asset_ids): """ Extract asset URLs along with asset ids. @param asset_ids: List of ids to get URLs for. @type assertn: [str] @return: List of dictionaries with asset URLs and ids. @rtype: [{ 'id': '<id>', 'url': '<url>' }] """ dom = get_page(self._session, OPENCOURSE_ASSET_URL, json=True, ids=quote_plus(','.join(asset_ids))) return [{'id': element['id'], 'url': element['url'].strip()} for element in dom['elements']] def extract_references_poll(self): try: dom = get_page(self._session, OPENCOURSE_REFERENCES_POLL_URL.format( course_id=self._course_id), json=True ) logging.info('Downloaded resource poll (%d bytes)', len(dom)) return dom['elements'] except requests.exceptions.HTTPError as exception: logging.error('Could not download resource section: %s', exception) if is_debug_run(): logging.exception('Could not download resource section: %s', exception) return None def extract_links_from_reference(self, short_id): """ Return a dictionary with supplement files (pdf, csv, zip, ipynb, html and so on) extracted from supplement page. @return: @see CourseraOnDemand._extract_links_from_text """ logging.debug('Gathering resource URLs for short_id <%s>.', short_id) try: dom = get_page(self._session, OPENCOURSE_REFERENCE_ITEM_URL, json=True, course_id=self._course_id, short_id=short_id) resource_content = {} # Supplement content has structure as follows: # 'linked' { # 'openCourseAssets.v1' [ { # 'definition' { # 'value' for asset in dom['linked']['openCourseAssets.v1']: value = asset['definition']['value'] # Supplement lecture types are known to contain both <asset> tags # and <a href> tags (depending on the course), so we extract # both of them. extend_supplement_links( resource_content, self._extract_links_from_text(value)) instructions = (IN_MEMORY_MARKER + self._markup_to_html(value), 'resources') extend_supplement_links( resource_content, {IN_MEMORY_EXTENSION: [instructions]}) return resource_content except requests.exceptions.HTTPError as exception: logging.error('Could not download supplement %s: %s', short_id, exception) if is_debug_run(): logging.exception('Could not download supplement %s: %s', short_id, exception) return None def _extract_programming_immediate_instructions_text(self, element_id): """ Extract assignment text (instructions). @param element_id: Element id to extract assignment instructions from. @type element_id: str @return: List of assignment text (instructions). @rtype: [str] """ dom = get_page(self._session, OPENCOURSE_PROGRAMMING_IMMEDIATE_INSTRUCTIOINS_URL, json=True, course_id=self._course_id, element_id=element_id) return [element['assignmentInstructions']['definition']['value'] for element in dom['elements']] def _extract_notebook_text(self, element_id): """ Extract notebook text (instructions). @param element_id: Element id to extract notebook links. @type element_id: str @return: Notebook URL. @rtype: [str] """ headers = self._auth_headers_with_json() data = {'courseId': self._course_id, 'learnerId': self._user_id, 'itemId': element_id} dom = get_page(self._session, OPENCOURSE_NOTEBOOK_LAUNCHES, post=True, json=True, user_id=self._user_id, course_id=self._course_id, headers=headers, element_id=element_id, data=json.dumps(data) ) # Return authorization id. This id changes on each request return dom['elements'][0]['authorizationId'] def _extract_assignment_text(self, element_id): """ Extract assignment text (instructions). @param element_id: Element id to extract assignment instructions from. @type element_id: str @return: List of assignment text (instructions). @rtype: [str] """ dom = get_page(self._session, OPENCOURSE_PROGRAMMING_ASSIGNMENTS_URL, json=True, course_id=self._course_id, element_id=element_id) return [element['submissionLearnerSchema']['definition'] ['assignmentInstructions']['definition']['value'] for element in dom['elements']] def _extract_links_from_text(self, text): """ Extract supplement links from the html text. Links may be provided in two ways: 1. <a> tags with href attribute 2. <asset> tags with id attribute (requires additional request to get the direct URL to the asset file) @param text: HTML text. @type text: str @return: Dictionary with supplement links grouped by extension. @rtype: { '<extension1>': [ ('<link1>', '<title1>'), ('<link2>', '<title2') ], 'extension2': [ ('<link3>', '<title3>'), ('<link4>', '<title4>') ], ... } """ supplement_links = self._extract_links_from_a_tags_in_text(text) extend_supplement_links( supplement_links, self._extract_links_from_asset_tags_in_text(text)) return supplement_links def _extract_links_from_asset_tags_in_text(self, text): """ Scan the text and extract asset tags and links to corresponding files. @param text: Page text. @type text: str @return: @see CourseraOnDemand._extract_links_from_text """ # Extract asset tags from instructions text asset_tags_map = self._extract_asset_tags(text) ids = list(iterkeys(asset_tags_map)) if not ids: return {} # asset tags contain asset names and ids. We need to make another # HTTP request to get asset URL. asset_urls = self._extract_asset_urls(ids) supplement_links = {} # Build supplement links, providing nice titles along the way for asset in asset_urls: title = clean_filename( asset_tags_map[asset['id']]['name'], self._unrestricted_filenames) extension = clean_filename( asset_tags_map[asset['id']]['extension'].strip(), self._unrestricted_filenames) url = asset['url'].strip() if extension not in supplement_links: supplement_links[extension] = [] supplement_links[extension].append((url, title)) return supplement_links def _extract_links_from_a_tags_in_text(self, text): """ Extract supplement links from the html text that contains <a> tags with href attribute. @param text: HTML text. @type text: str @return: Dictionary with supplement links grouped by extension. @rtype: { '<extension1>': [ ('<link1>', '<title1>'), ('<link2>', '<title2') ], 'extension2': [ ('<link3>', '<title3>'), ('<link4>', '<title4>') ] } """ soup = BeautifulSoup(text) links = [item['href'].strip() for item in soup.find_all('a') if 'href' in item.attrs] links = sorted(list(set(links))) supplement_links = {} for link in links: filename, extension = os.path.splitext(clean_url(link)) # Some courses put links to sites in supplement section, e.g.: # http://pandas.pydata.org/ if extension is '': continue # Make lowercase and cut the leading/trailing dot extension = clean_filename( extension.lower().strip('.').strip(), self._unrestricted_filenames) basename = clean_filename( os.path.basename(filename), self._unrestricted_filenames) if extension not in supplement_links: supplement_links[extension] = [] # Putting basename into the second slot of the tuple is important # because that will allow to download many supplements within a # single lecture, e.g.: # 01_slides-presented-in-this-module.pdf # 01_slides-presented-in-this-module_Dalal-cvpr05.pdf # 01_slides-presented-in-this-module_LM-3dtexton.pdf supplement_links[extension].append((link, basename)) return supplement_links
lgpl-3.0
minixalpha/spark
python/pyspark/serializers.py
4
21331
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ PySpark supports custom serializers for transferring data; this can improve performance. By default, PySpark uses L{PickleSerializer} to serialize objects using Python's C{cPickle} serializer, which can serialize nearly any Python object. Other serializers, like L{MarshalSerializer}, support fewer datatypes but can be faster. The serializer is chosen when creating L{SparkContext}: >>> from pyspark.context import SparkContext >>> from pyspark.serializers import MarshalSerializer >>> sc = SparkContext('local', 'test', serializer=MarshalSerializer()) >>> sc.parallelize(list(range(1000))).map(lambda x: 2 * x).take(10) [0, 2, 4, 6, 8, 10, 12, 14, 16, 18] >>> sc.stop() PySpark serialize objects in batches; By default, the batch size is chosen based on the size of objects, also configurable by SparkContext's C{batchSize} parameter: >>> sc = SparkContext('local', 'test', batchSize=2) >>> rdd = sc.parallelize(range(16), 4).map(lambda x: x) Behind the scenes, this creates a JavaRDD with four partitions, each of which contains two batches of two objects: >>> rdd.glom().collect() [[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15]] >>> int(rdd._jrdd.count()) 8 >>> sc.stop() """ import sys from itertools import chain, product import marshal import struct import types import collections import zlib import itertools if sys.version < '3': import cPickle as pickle protocol = 2 from itertools import izip as zip, imap as map else: import pickle protocol = 3 xrange = range from pyspark import cloudpickle __all__ = ["PickleSerializer", "MarshalSerializer", "UTF8Deserializer"] class SpecialLengths(object): END_OF_DATA_SECTION = -1 PYTHON_EXCEPTION_THROWN = -2 TIMING_DATA = -3 END_OF_STREAM = -4 NULL = -5 START_ARROW_STREAM = -6 class PythonEvalType(object): NON_UDF = 0 SQL_BATCHED_UDF = 1 SQL_PANDAS_UDF = 2 class Serializer(object): def dump_stream(self, iterator, stream): """ Serialize an iterator of objects to the output stream. """ raise NotImplementedError def load_stream(self, stream): """ Return an iterator of deserialized objects from the input stream. """ raise NotImplementedError def _load_stream_without_unbatching(self, stream): """ Return an iterator of deserialized batches (iterable) of objects from the input stream. if the serializer does not operate on batches the default implementation returns an iterator of single element lists. """ return map(lambda x: [x], self.load_stream(stream)) # Note: our notion of "equality" is that output generated by # equal serializers can be deserialized using the same serializer. # This default implementation handles the simple cases; # subclasses should override __eq__ as appropriate. def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not self.__eq__(other) def __repr__(self): return "%s()" % self.__class__.__name__ def __hash__(self): return hash(str(self)) class FramedSerializer(Serializer): """ Serializer that writes objects as a stream of (length, data) pairs, where C{length} is a 32-bit integer and data is C{length} bytes. """ def __init__(self): # On Python 2.6, we can't write bytearrays to streams, so we need to convert them # to strings first. Check if the version number is that old. self._only_write_strings = sys.version_info[0:2] <= (2, 6) def dump_stream(self, iterator, stream): for obj in iterator: self._write_with_length(obj, stream) def load_stream(self, stream): while True: try: yield self._read_with_length(stream) except EOFError: return def _write_with_length(self, obj, stream): serialized = self.dumps(obj) if serialized is None: raise ValueError("serialized value should not be None") if len(serialized) > (1 << 31): raise ValueError("can not serialize object larger than 2G") write_int(len(serialized), stream) if self._only_write_strings: stream.write(str(serialized)) else: stream.write(serialized) def _read_with_length(self, stream): length = read_int(stream) if length == SpecialLengths.END_OF_DATA_SECTION: raise EOFError elif length == SpecialLengths.NULL: return None obj = stream.read(length) if len(obj) < length: raise EOFError return self.loads(obj) def dumps(self, obj): """ Serialize an object into a byte array. When batching is used, this will be called with an array of objects. """ raise NotImplementedError def loads(self, obj): """ Deserialize an object from a byte array. """ raise NotImplementedError class ArrowSerializer(FramedSerializer): """ Serializes bytes as Arrow data with the Arrow file format. """ def dumps(self, batch): import pyarrow as pa import io sink = io.BytesIO() writer = pa.RecordBatchFileWriter(sink, batch.schema) writer.write_batch(batch) writer.close() return sink.getvalue() def loads(self, obj): import pyarrow as pa reader = pa.RecordBatchFileReader(pa.BufferReader(obj)) return reader.read_all() def __repr__(self): return "ArrowSerializer" def _create_batch(series): import pyarrow as pa # Make input conform to [(series1, type1), (series2, type2), ...] if not isinstance(series, (list, tuple)) or \ (len(series) == 2 and isinstance(series[1], pa.DataType)): series = [series] series = ((s, None) if not isinstance(s, (list, tuple)) else s for s in series) # If a nullable integer series has been promoted to floating point with NaNs, need to cast # NOTE: this is not necessary with Arrow >= 0.7 def cast_series(s, t): if t is None or s.dtype == t.to_pandas_dtype(): return s else: return s.fillna(0).astype(t.to_pandas_dtype(), copy=False) arrs = [pa.Array.from_pandas(cast_series(s, t), mask=s.isnull(), type=t) for s, t in series] return pa.RecordBatch.from_arrays(arrs, ["_%d" % i for i in xrange(len(arrs))]) class ArrowStreamPandasSerializer(Serializer): """ Serializes Pandas.Series as Arrow data with Arrow streaming format. """ def dump_stream(self, iterator, stream): """ Make ArrowRecordBatches from Pandas Series and serialize. Input is a single series or a list of series accompanied by an optional pyarrow type to coerce the data to. """ import pyarrow as pa writer = None try: for series in iterator: batch = _create_batch(series) if writer is None: write_int(SpecialLengths.START_ARROW_STREAM, stream) writer = pa.RecordBatchStreamWriter(stream, batch.schema) writer.write_batch(batch) finally: if writer is not None: writer.close() def load_stream(self, stream): """ Deserialize ArrowRecordBatches to an Arrow table and return as a list of pandas.Series. """ import pyarrow as pa reader = pa.open_stream(stream) for batch in reader: table = pa.Table.from_batches([batch]) yield [c.to_pandas() for c in table.itercolumns()] def __repr__(self): return "ArrowStreamPandasSerializer" class BatchedSerializer(Serializer): """ Serializes a stream of objects in batches by calling its wrapped Serializer with streams of objects. """ UNLIMITED_BATCH_SIZE = -1 UNKNOWN_BATCH_SIZE = 0 def __init__(self, serializer, batchSize=UNLIMITED_BATCH_SIZE): self.serializer = serializer self.batchSize = batchSize def _batched(self, iterator): if self.batchSize == self.UNLIMITED_BATCH_SIZE: yield list(iterator) elif hasattr(iterator, "__len__") and hasattr(iterator, "__getslice__"): n = len(iterator) for i in xrange(0, n, self.batchSize): yield iterator[i: i + self.batchSize] else: items = [] count = 0 for item in iterator: items.append(item) count += 1 if count == self.batchSize: yield items items = [] count = 0 if items: yield items def dump_stream(self, iterator, stream): self.serializer.dump_stream(self._batched(iterator), stream) def load_stream(self, stream): return chain.from_iterable(self._load_stream_without_unbatching(stream)) def _load_stream_without_unbatching(self, stream): return self.serializer.load_stream(stream) def __repr__(self): return "BatchedSerializer(%s, %d)" % (str(self.serializer), self.batchSize) class FlattenedValuesSerializer(BatchedSerializer): """ Serializes a stream of list of pairs, split the list of values which contain more than a certain number of objects to make them have similar sizes. """ def __init__(self, serializer, batchSize=10): BatchedSerializer.__init__(self, serializer, batchSize) def _batched(self, iterator): n = self.batchSize for key, values in iterator: for i in range(0, len(values), n): yield key, values[i:i + n] def load_stream(self, stream): return self.serializer.load_stream(stream) def __repr__(self): return "FlattenedValuesSerializer(%s, %d)" % (self.serializer, self.batchSize) class AutoBatchedSerializer(BatchedSerializer): """ Choose the size of batch automatically based on the size of object """ def __init__(self, serializer, bestSize=1 << 16): BatchedSerializer.__init__(self, serializer, self.UNKNOWN_BATCH_SIZE) self.bestSize = bestSize def dump_stream(self, iterator, stream): batch, best = 1, self.bestSize iterator = iter(iterator) while True: vs = list(itertools.islice(iterator, batch)) if not vs: break bytes = self.serializer.dumps(vs) write_int(len(bytes), stream) stream.write(bytes) size = len(bytes) if size < best: batch *= 2 elif size > best * 10 and batch > 1: batch //= 2 def __repr__(self): return "AutoBatchedSerializer(%s)" % self.serializer class CartesianDeserializer(Serializer): """ Deserializes the JavaRDD cartesian() of two PythonRDDs. Due to pyspark batching we cannot simply use the result of the Java RDD cartesian, we additionally need to do the cartesian within each pair of batches. """ def __init__(self, key_ser, val_ser): self.key_ser = key_ser self.val_ser = val_ser def _load_stream_without_unbatching(self, stream): key_batch_stream = self.key_ser._load_stream_without_unbatching(stream) val_batch_stream = self.val_ser._load_stream_without_unbatching(stream) for (key_batch, val_batch) in zip(key_batch_stream, val_batch_stream): # for correctness with repeated cartesian/zip this must be returned as one batch yield product(key_batch, val_batch) def load_stream(self, stream): return chain.from_iterable(self._load_stream_without_unbatching(stream)) def __repr__(self): return "CartesianDeserializer(%s, %s)" % \ (str(self.key_ser), str(self.val_ser)) class PairDeserializer(Serializer): """ Deserializes the JavaRDD zip() of two PythonRDDs. Due to pyspark batching we cannot simply use the result of the Java RDD zip, we additionally need to do the zip within each pair of batches. """ def __init__(self, key_ser, val_ser): self.key_ser = key_ser self.val_ser = val_ser def _load_stream_without_unbatching(self, stream): key_batch_stream = self.key_ser._load_stream_without_unbatching(stream) val_batch_stream = self.val_ser._load_stream_without_unbatching(stream) for (key_batch, val_batch) in zip(key_batch_stream, val_batch_stream): # For double-zipped RDDs, the batches can be iterators from other PairDeserializer, # instead of lists. We need to convert them to lists if needed. key_batch = key_batch if hasattr(key_batch, '__len__') else list(key_batch) val_batch = val_batch if hasattr(val_batch, '__len__') else list(val_batch) if len(key_batch) != len(val_batch): raise ValueError("Can not deserialize PairRDD with different number of items" " in batches: (%d, %d)" % (len(key_batch), len(val_batch))) # for correctness with repeated cartesian/zip this must be returned as one batch yield zip(key_batch, val_batch) def load_stream(self, stream): return chain.from_iterable(self._load_stream_without_unbatching(stream)) def __repr__(self): return "PairDeserializer(%s, %s)" % (str(self.key_ser), str(self.val_ser)) class NoOpSerializer(FramedSerializer): def loads(self, obj): return obj def dumps(self, obj): return obj # Hook namedtuple, make it picklable __cls = {} def _restore(name, fields, value): """ Restore an object of namedtuple""" k = (name, fields) cls = __cls.get(k) if cls is None: cls = collections.namedtuple(name, fields) __cls[k] = cls return cls(*value) def _hack_namedtuple(cls): """ Make class generated by namedtuple picklable """ name = cls.__name__ fields = cls._fields def __reduce__(self): return (_restore, (name, fields, tuple(self))) cls.__reduce__ = __reduce__ cls._is_namedtuple_ = True return cls def _hijack_namedtuple(): """ Hack namedtuple() to make it picklable """ # hijack only one time if hasattr(collections.namedtuple, "__hijack"): return global _old_namedtuple # or it will put in closure global _old_namedtuple_kwdefaults # or it will put in closure too def _copy_func(f): return types.FunctionType(f.__code__, f.__globals__, f.__name__, f.__defaults__, f.__closure__) def _kwdefaults(f): # __kwdefaults__ contains the default values of keyword-only arguments which are # introduced from Python 3. The possible cases for __kwdefaults__ in namedtuple # are as below: # # - Does not exist in Python 2. # - Returns None in <= Python 3.5.x. # - Returns a dictionary containing the default values to the keys from Python 3.6.x # (See https://bugs.python.org/issue25628). kargs = getattr(f, "__kwdefaults__", None) if kargs is None: return {} else: return kargs _old_namedtuple = _copy_func(collections.namedtuple) _old_namedtuple_kwdefaults = _kwdefaults(collections.namedtuple) def namedtuple(*args, **kwargs): for k, v in _old_namedtuple_kwdefaults.items(): kwargs[k] = kwargs.get(k, v) cls = _old_namedtuple(*args, **kwargs) return _hack_namedtuple(cls) # replace namedtuple with new one collections.namedtuple.__globals__["_old_namedtuple_kwdefaults"] = _old_namedtuple_kwdefaults collections.namedtuple.__globals__["_old_namedtuple"] = _old_namedtuple collections.namedtuple.__globals__["_hack_namedtuple"] = _hack_namedtuple collections.namedtuple.__code__ = namedtuple.__code__ collections.namedtuple.__hijack = 1 # hack the cls already generated by namedtuple # those created in other module can be pickled as normal, # so only hack those in __main__ module for n, o in sys.modules["__main__"].__dict__.items(): if (type(o) is type and o.__base__ is tuple and hasattr(o, "_fields") and "__reduce__" not in o.__dict__): _hack_namedtuple(o) # hack inplace _hijack_namedtuple() class PickleSerializer(FramedSerializer): """ Serializes objects using Python's pickle serializer: http://docs.python.org/2/library/pickle.html This serializer supports nearly any Python object, but may not be as fast as more specialized serializers. """ def dumps(self, obj): return pickle.dumps(obj, protocol) if sys.version >= '3': def loads(self, obj, encoding="bytes"): return pickle.loads(obj, encoding=encoding) else: def loads(self, obj, encoding=None): return pickle.loads(obj) class CloudPickleSerializer(PickleSerializer): def dumps(self, obj): return cloudpickle.dumps(obj, 2) class MarshalSerializer(FramedSerializer): """ Serializes objects using Python's Marshal serializer: http://docs.python.org/2/library/marshal.html This serializer is faster than PickleSerializer but supports fewer datatypes. """ def dumps(self, obj): return marshal.dumps(obj) def loads(self, obj): return marshal.loads(obj) class AutoSerializer(FramedSerializer): """ Choose marshal or pickle as serialization protocol automatically """ def __init__(self): FramedSerializer.__init__(self) self._type = None def dumps(self, obj): if self._type is not None: return b'P' + pickle.dumps(obj, -1) try: return b'M' + marshal.dumps(obj) except Exception: self._type = b'P' return b'P' + pickle.dumps(obj, -1) def loads(self, obj): _type = obj[0] if _type == b'M': return marshal.loads(obj[1:]) elif _type == b'P': return pickle.loads(obj[1:]) else: raise ValueError("invalid sevialization type: %s" % _type) class CompressedSerializer(FramedSerializer): """ Compress the serialized data """ def __init__(self, serializer): FramedSerializer.__init__(self) assert isinstance(serializer, FramedSerializer), "serializer must be a FramedSerializer" self.serializer = serializer def dumps(self, obj): return zlib.compress(self.serializer.dumps(obj), 1) def loads(self, obj): return self.serializer.loads(zlib.decompress(obj)) def __repr__(self): return "CompressedSerializer(%s)" % self.serializer class UTF8Deserializer(Serializer): """ Deserializes streams written by String.getBytes. """ def __init__(self, use_unicode=True): self.use_unicode = use_unicode def loads(self, stream): length = read_int(stream) if length == SpecialLengths.END_OF_DATA_SECTION: raise EOFError elif length == SpecialLengths.NULL: return None s = stream.read(length) return s.decode("utf-8") if self.use_unicode else s def load_stream(self, stream): try: while True: yield self.loads(stream) except struct.error: return except EOFError: return def __repr__(self): return "UTF8Deserializer(%s)" % self.use_unicode def read_long(stream): length = stream.read(8) if not length: raise EOFError return struct.unpack("!q", length)[0] def write_long(value, stream): stream.write(struct.pack("!q", value)) def pack_long(value): return struct.pack("!q", value) def read_int(stream): length = stream.read(4) if not length: raise EOFError return struct.unpack("!i", length)[0] def write_int(value, stream): stream.write(struct.pack("!i", value)) def write_with_length(obj, stream): write_int(len(obj), stream) stream.write(obj) if __name__ == '__main__': import doctest (failure_count, test_count) = doctest.testmod() if failure_count: exit(-1)
apache-2.0
devanshdalal/scikit-learn
examples/linear_model/plot_sgd_loss_functions.py
86
1234
""" ========================== SGD: convex loss functions ========================== A plot that compares the various convex loss functions supported by :class:`sklearn.linear_model.SGDClassifier` . """ print(__doc__) import numpy as np import matplotlib.pyplot as plt def modified_huber_loss(y_true, y_pred): z = y_pred * y_true loss = -4 * z loss[z >= -1] = (1 - z[z >= -1]) ** 2 loss[z >= 1.] = 0 return loss xmin, xmax = -4, 4 xx = np.linspace(xmin, xmax, 100) lw = 2 plt.plot([xmin, 0, 0, xmax], [1, 1, 0, 0], color='gold', lw=lw, label="Zero-one loss") plt.plot(xx, np.where(xx < 1, 1 - xx, 0), color='teal', lw=lw, label="Hinge loss") plt.plot(xx, -np.minimum(xx, 0), color='yellowgreen', lw=lw, label="Perceptron loss") plt.plot(xx, np.log2(1 + np.exp(-xx)), color='cornflowerblue', lw=lw, label="Log loss") plt.plot(xx, np.where(xx < 1, 1 - xx, 0) ** 2, color='orange', lw=lw, label="Squared hinge loss") plt.plot(xx, modified_huber_loss(xx, 1), color='darkorchid', lw=lw, linestyle='--', label="Modified Huber loss") plt.ylim((0, 8)) plt.legend(loc="upper right") plt.xlabel(r"Decision function $f(x)$") plt.ylabel("$L(y=1, f(x))$") plt.show()
bsd-3-clause
htygithub/bokeh
bokeh/charts/builders/line_builder.py
2
9366
"""This is the Bokeh charts interface. It gives you a high level API to build complex plot is a simple way. This is the Line class which lets you build your Line charts just passing the arguments to the Chart class and calling the proper functions. """ # ----------------------------------------------------------------------------- # Copyright (c) 2012 - 2014, Continuum Analytics, Inc. All rights reserved. # # Powered by the Bokeh Development Team. # # The full license is in the file LICENSE.txt, distributed with this software. # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- # Imports # ----------------------------------------------------------------------------- from __future__ import absolute_import from six import iteritems from itertools import chain from ..builder import XYBuilder, create_and_build from ..glyphs import LineGlyph, PointGlyph from ..attributes import DashAttr, ColorAttr, MarkerAttr from ..data_source import NumericalColumnsAssigner from ...models.sources import ColumnDataSource from ...properties import Bool, String, List from ..operations import Stack, Dodge # ----------------------------------------------------------------------------- # Classes and functions # ----------------------------------------------------------------------------- def Line(data=None, x=None, y=None, **kws): """ Create a line chart using :class:`LineBuilder <bokeh.charts.builders.line_builder.LineBuilder>` to render the glyphs. The line chart is typically is used with column oriented data, where each column contains comparable measurements and the column names are treated as a categorical variable for differentiating the measurement values. One of the columns can be used as an index for either the x or y axis. .. note:: Only the x or y axis can display multiple variables, while the other is used as an index. Args: data (list(list), numpy.ndarray, pandas.DataFrame, list(pd.Series)): a 2d data source with columns of data for each line. x (str or list(str), optional): specifies variable(s) to use for x axis y (str or list(str), optional): specifies variable(s) to use for y axis In addition the the parameters specific to this chart, :ref:`userguide_charts_defaults` are also accepted as keyword parameters. .. note:: This chart type differs on input types as compared to other charts, due to the way that line charts typically are plotting labeled series. For example, a column for AAPL stock prices over time. Another way this could be plotted is to have a DataFrame with a column of `stock_label` and columns of `price`, which is the stacked format. Both should be supported, but the former is the expected one. Internally, the latter format is being derived. Returns: :class:`Chart`: includes glyph renderers that generate the lines Examples: .. bokeh-plot:: :source-position: above import numpy as np from bokeh.charts import Line, output_file, show # (dict, OrderedDict, lists, arrays and DataFrames are valid inputs) xyvalues = np.array([[2, 3, 7, 5, 26], [12, 33, 47, 15, 126], [22, 43, 10, 25, 26]]) line = Line(xyvalues, title="line", legend="top_left", ylabel='Languages') output_file('line.html') show(line) """ kws['x'] = x kws['y'] = y return create_and_build(LineBuilder, data, **kws) class LineBuilder(XYBuilder): """This is the Line class and it is in charge of plotting Line charts in an easy and intuitive way. Essentially, we provide a way to ingest the data, make the proper calculations and push the references into a source object. We additionally make calculations for the ranges. And finally add the needed lines taking the references from the source. """ series_names = List(String, help="""Names that represent the items being plotted.""") stack = Bool(default=False) default_attributes = {'color': ColorAttr(), 'dash': DashAttr(), 'marker': MarkerAttr()} dimensions = ['y', 'x'] column_selector = NumericalColumnsAssigner glyph = LineGlyph @property def measures(self): if isinstance(self.y.selection, list): return self.y.selection elif isinstance(self.x.selection, list): return self.x.selection else: return None @property def measure_input(self): return isinstance(self.y.selection, list) or isinstance(self.x.selection, list) @property def stack_flags(self): # Check if we stack measurements and by which attributes # This happens if we used the same series labels for dimensions as attributes return {k: self.attr_measurement(k) for k in list( self.attributes.keys())} def get_id_cols(self, stack_flags): # collect the other columns used as identifiers, that aren't a measurement name id_cols = [self.attributes[attr].columns for attr, stack in iteritems(stack_flags) if not stack and self.attributes[attr].columns != self.measures and self.attributes[attr].columns is not None] return list(chain.from_iterable(id_cols)) def setup(self): """Handle input options that require transforming data and/or user selections.""" # handle special case of inputs as measures if self.measure_input: stack_flags = self.stack_flags id_cols = self.get_id_cols(stack_flags) # if we have measures input, we need to stack by something, set default if all(attr is False for attr in list(stack_flags.values())): stack_flags['color'] = True # stack the measurement dimension while keeping id columns self._stack_measures(ids=id_cols) # set the attributes to key off of the name of the stacked measurement source = ColumnDataSource(self._data.df) for attr_name, stack_flag in iteritems(stack_flags): if stack_flags[attr_name]: default_attr = self.attributes[attr_name] default_attr.setup(columns='series', data=source) # Handle when to use special column names if self.x.selection is None and self.y.selection is not None: self.x.selection = 'index' elif self.x.selection is not None and self.y.selection is None: self.y.selection = 'index' def attr_measurement(self, attr_name): """Detect if the attribute has been given measurement columns.""" cols = self.attributes[attr_name].columns return (cols is not None and (cols == self.y.selection or cols == self.x.selection)) def set_series(self, col_name): series = self._data.df[col_name].drop_duplicates().tolist() series = [str(item) for item in series] self.series_names = series def _stack_measures(self, ids, var_name='series'): """Stack data and keep the ids columns. Args: ids (list(str)): the column names that describe the measures """ if isinstance(self.y.selection, list): dim = 'y' if self.x.selection is not None: ids.append(self.x.selection) else: dim = 'x' if self.y.selection is not None: ids.append(self.y.selection) if len(ids) == 0: ids = None dim_prop = getattr(self, dim) # transform our data by stacking the measurements into one column self._data.stack_measures(measures=dim_prop.selection, ids=ids, var_name=var_name) # update our dimension with the updated data dim_prop.set_data(self._data) self.set_series('series') def get_builder_attr(self): attrs = self.properties() return {attr: getattr(self, attr) for attr in attrs if attr in self.glyph.properties()} def yield_renderers(self): build_attr = self.get_builder_attr() # get the list of builder attributes and only pass them on if glyph supports attrs = list(self.attributes.keys()) attrs = [attr for attr in attrs if attr in self.glyph.properties()] for group in self._data.groupby(**self.attributes): group_kwargs = self.get_group_kwargs(group, attrs) group_kwargs.update(build_attr) glyph = self.glyph(x=group.get_values(self.x.selection), y=group.get_values(self.y.selection), **group_kwargs) # dash=group['dash'] # save reference to composite glyph self.add_glyph(group, glyph) # yield each renderer produced by composite glyph for renderer in glyph.renderers: yield renderer Stack().apply(self.comp_glyphs) Dodge().apply(self.comp_glyphs) class PointSeriesBuilder(LineBuilder): glyph = PointGlyph
bsd-3-clause
alejob/mdanalysis
package/MDAnalysis/analysis/contacts.py
1
45584
# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; coding:utf-8 -*- # vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4 # # MDAnalysis --- http://www.mdanalysis.org # Copyright (c) 2006-2016 The MDAnalysis Development Team and contributors # (see the file AUTHORS for the full list of names) # # Released under the GNU Public Licence, v2 or any higher version # # Please cite your use of MDAnalysis in published work: # # R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler, # D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein. # MDAnalysis: A Python package for the rapid analysis of molecular dynamics # simulations. In S. Benthall and S. Rostrup editors, Proceedings of the 15th # Python in Science Conference, pages 102-109, Austin, TX, 2016. SciPy. # # N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein. # MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations. # J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787 # """ Native contacts analysis --- :mod:`MDAnalysis.analysis.contacts` ================================================================ This module contains classes to analyze native contacts *Q* over a trajectory. Native contacts of a conformation are contacts that exist in a reference structure and in the conformation. Contacts in the reference structure are always defined as being closer then a distance `radius`. The fraction of native contacts for a conformation can be calculated in different ways. This module supports 3 different metrics listed below, as well as custom metrics. 1. *Hard Cut*: To count as a contact the atoms *i* and *j* have to be at least as close as in the reference structure. 2. *Soft Cut*: The atom pair *i* and *j* is assigned based on a soft potential that is 1 if the distance is 0, 1/2 if the distance is the same as in the reference and 0 for large distances. For the exact definition of the potential and parameters have a look at function :func:`soft_cut_q`. 3. *Radius Cut*: To count as a contact the atoms *i* and *j* cannot be further apart than some distance `radius`. The "fraction of native contacts" *Q(t)* is a number between 0 and 1 and calculated as the total number of native contacts for a given time frame divided by the total number of contacts in the reference structure. Examples for contact analysis ----------------------------- One-dimensional contact analysis ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ As an example we analyze the opening ("unzipping") of salt bridges when the AdK enzyme opens up; this is one of the example trajectories in MDAnalysis. :: import MDAnalysis as mda from MDAnalysis.analysis import contacts from MDAnalysis.tests.datafiles import PSF,DCD import matplotlib.pyplot as plt # example trajectory (transition of AdK from closed to open) u = mda.Universe(PSF,DCD) # crude definition of salt bridges as contacts between NH/NZ in ARG/LYS and # OE*/OD* in ASP/GLU. You might want to think a little bit harder about the # problem before using this for real work. sel_basic = "(resname ARG LYS) and (name NH* NZ)" sel_acidic = "(resname ASP GLU) and (name OE* OD*)" # reference groups (first frame of the trajectory, but you could also use a # separate PDB, eg crystal structure) acidic = u.select_atoms(sel_acidic) basic = u.select_atoms(sel_basic) # set up analysis of native contacts ("salt bridges"); salt bridges have a # distance <6 A ca1 = contacts.Contacts(u, selection=(sel_acidic, sel_basic), refgroup=(acidic, basic), radius=6.0) # iterate through trajectory and perform analysis of "native contacts" Q ca1.run() # print number of averave contacts average_contacts = np.mean(ca1.timeseries[:, 1]) print('average contacts = {}'.format(average_contacts)) # plot time series q(t) f, ax = plt.subplots() ax.plot(ca1.timeseries[:, 0], ca1.timeseries[:, 1]) ax.set(xlabel='frame', ylabel='fraction of native contacts', title='Native Contacts, average = {:.2f}'.format(average_contacts)) fig.show() The first graph shows that when AdK opens, about 20% of the salt bridges that existed in the closed state disappear when the enzyme opens. They open in a step-wise fashion (made more clear by the movie `AdK_zipper_cartoon.avi`_). .. _`AdK_zipper_cartoon.avi`: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2803350/bin/NIHMS150766-supplement-03.avi .. rubric:: Notes Suggested cutoff distances for different simulations * For all-atom simulations, cutoff = 4.5 Å * For coarse-grained simulations, cutoff = 6.0 Å Two-dimensional contact analysis (q1-q2) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Analyze a single DIMS transition of AdK between its closed and open conformation and plot the trajectory projected on q1-q2 [Franklin2007]_ :: import MDAnalysis as mda from MDAnalysis.analysis import contacts from MDAnalysisTests.datafiles import PSF, DCD u = mda.Universe(PSF, DCD) q1q2 = contacts.q1q2(u, 'name CA', radius=8) q1q2.run() f, ax = plt.subplots(1, 2, figsize=plt.figaspect(0.5)) ax[0].plot(q1q2.timeseries[:, 0], q1q2.timeseries[:, 1], label='q1') ax[0].plot(q1q2.timeseries[:, 0], q1q2.timeseries[:, 2], label='q2') ax[0].legend(loc='best') ax[1].plot(q1q2.timeseries[:, 1], q1q2.timeseries[:, 2], '.-') f.show() Compare the resulting pathway to the `MinActionPath result for AdK`_ [Franklin2007]_. .. _MinActionPath result for AdK: http://lorentz.dynstr.pasteur.fr/joel/adenylate.php Writing your own contact analysis ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The :class:`Contacts` class has been designed to be extensible for your own analysis. As an example we will analyze when the acidic and basic groups of AdK are in contact which each other; this means that at least one of the contacts formed in the reference is closer than 2.5 Å. For this we define a new function to determine if any contact is closer than 2.5 Å; this function must implement the API prescribed by :class:`Contacts`:: def is_any_closer(r, r0, dist=2.5): return np.any(r < dist) The first two parameters `r` and `r0` are provided by :class:`Contacts` when it calls :func:`is_any_closer` while the others can be passed as keyword args using the `kwargs` parameter in :class:`Contacts`. Next we are creating an instance of the :class:`Contacts` class and use the :func:`is_any_closer` function as an argument to `method` and run the analysis:: # crude definition of salt bridges as contacts between NH/NZ in ARG/LYS and # OE*/OD* in ASP/GLU. You might want to think a little bit harder about the # problem before using this for real work. sel_basic = "(resname ARG LYS) and (name NH* NZ)" sel_acidic = "(resname ASP GLU) and (name OE* OD*)" # reference groups (first frame of the trajectory, but you could also use a # separate PDB, eg crystal structure) acidic = u.select_atoms(sel_acidic) basic = u.select_atoms(sel_basic) nc = contacts.Contacts(u, selection=(sel_acidic, sel_basic), method=is_any_closer, refgroup=(acidic, basic), kwargs={'dist': 2.5}) nc.run() bound = nc.timeseries[:, 1] frames = nc.timeseries[:, 0] f, ax = plt.subplots() ax.plot(frames, bound, '.') ax.set(xlabel='frame', ylabel='is Bound', ylim=(-0.1, 1.1)) f.show() Functions --------- .. autofunction:: hard_cut_q .. autofunction:: soft_cut_q .. autofunction:: radius_cut_q .. autofunction:: contact_matrix .. autofunction:: q1q2 Classes ------- .. autoclass:: Contacts :members: Deprecated ---------- The following classes are deprecated and are scheduled for removal in release 0.17.0. .. autoclass:: ContactAnalysis1 :members: .. autoclass:: ContactAnalysis :members: """ from __future__ import division from six.moves import zip import os import errno import warnings import bz2 import numpy as np from numpy.lib.utils import deprecate import logging import MDAnalysis import MDAnalysis.lib.distances from MDAnalysis.lib.util import openany from MDAnalysis.analysis.distances import distance_array from MDAnalysis.core.groups import AtomGroup from .base import AnalysisBase logger = logging.getLogger("MDAnalysis.analysis.contacts") def soft_cut_q(r, r0, beta=5.0, lambda_constant=1.8): r"""Calculate fraction of native contacts *Q* for a soft cut off The native contact function is defined as [Best2013]_ .. math:: Q(r, r_0) = \frac{1}{1 + e^{\beta (r - \lambda r_0)}} Reasonable values for different simulation types are - *All Atom*: `lambda_constant = 1.8` (unitless) - *Coarse Grained*: `lambda_constant = 1.5` (unitless) Parameters ---------- r: array Contact distances at time t r0: array Contact distances at time t=0, reference distances beta: float (default 5.0 Angstrom) Softness of the switching function lambda_constant: float (default 1.8, unitless) Reference distance tolerance Returns ------- Q : float fraction of native contacts References ---------- .. [Best2013] RB Best, G Hummer, and WA Eaton, "Native contacts determine protein folding mechanisms in atomistic simulations" _PNAS_ **110** (2013), 17874–17879. doi: `10.1073/pnas.1311599110 <http://doi.org/10.1073/pnas.1311599110>`_. """ r = np.asarray(r) r0 = np.asarray(r0) result = 1/(1 + np.exp(beta*(r - lambda_constant * r0))) return result.sum() / len(r0) def hard_cut_q(r, cutoff): """Calculate fraction of native contacts *Q* for a hard cut off. The cutoff can either be a float or a :class:`~numpy.ndarray` of the same shape as `r`. Parameters ---------- r : ndarray distance matrix cutoff : ndarray | float cut off value to count distances. Can either be a float of a ndarray of the same size as distances Returns ------- Q : float fraction of contacts """ r = np.asarray(r) cutoff = np.asarray(cutoff) y = r <= cutoff return y.sum() / r.size def radius_cut_q(r, r0, radius): """calculate native contacts *Q* based on the single distance radius. Parameters ---------- r : ndarray distance array between atoms r0 : ndarray unused to fullfill :class:`Contacts` API radius : float Distance between atoms at which a contact is formed Returns ------- Q : float fraction of contacts References ---------- .. [Franklin2007] Franklin, J., Koehl, P., Doniach, S., & Delarue, M. (2007). MinActionPath: Maximum likelihood trajectory for large-scale structural transitions in a coarse-grained locally harmonic energy landscape. Nucleic Acids Research, 35(SUPPL.2), 477–482. doi: `10.1093/nar/gkm342 <http://doi.org/10.1093/nar/gkm342>`_ """ return hard_cut_q(r, radius) def contact_matrix(d, radius, out=None): """calculate contacts from distance matrix Parameters ---------- d : array-like distance matrix radius : float distance below which a contact is formed. out: array (optional) If `out` is supplied as a pre-allocated array of the correct shape then it is filled instead of allocating a new one in order to increase performance. Returns ------- contacts : ndarray boolean array of formed contacts """ if out is not None: out[:] = d <= radius else: out = d <= radius return out class Contacts(AnalysisBase): """Calculate contacts based observables. The standard methods used in this class calculate the fraction of native contacts *Q* from a trajectory. .. rubric:: Contact API By defining your own method it is possible to calculate other observables that only depend on the distances and a possible reference distance. The **Contact API** prescribes that this method must be a function with call signature ``func(r, r0, **kwargs)`` and must be provided in the keyword argument `method`. Attributes ---------- timeseries : list list containing *Q* for all refgroup pairs and analyzed frames """ def __init__(self, u, selection, refgroup, method="hard_cut", radius=4.5, kwargs=None, **basekwargs): """ Parameters ---------- u : Universe trajectory selection : tuple(string, string) two contacting groups that change over time refgroup : tuple(AtomGroup, AtomGroup) two contacting atomgroups in their reference conformation. This can also be a list of tuples containing different atom groups radius : float, optional (4.5 Angstroms) radius within which contacts exist in refgroup method : string | callable (optional) Can either be one of ``['hard_cut' , 'soft_cut']`` or a callable with call signature ``func(r, r0, **kwargs)`` (the "Contacts API"). kwargs : dict, optional dictionary of additional kwargs passed to `method`. Check respective functions for reasonable values. start : int, optional First frame of trajectory to analyse, Default: None becomes 0. stop : int, optional Frame index to stop analysis. Default: None becomes n_frames. Iteration stops *before* this frame number, which means that the trajectory would be read until the end. step : int, optional Step between frames to analyse, Default: None becomes 1. """ self.u = u super(Contacts, self).__init__(self.u.trajectory, **basekwargs) if method == 'hard_cut': self.fraction_contacts = hard_cut_q elif method == 'soft_cut': self.fraction_contacts = soft_cut_q else: if not callable(method): raise ValueError("method has to be callable") self.fraction_contacts = method self.selection = selection self.grA = u.select_atoms(selection[0]) self.grB = u.select_atoms(selection[1]) # contacts formed in reference self.r0 = [] self.initial_contacts = [] if isinstance(refgroup[0], AtomGroup): refA, refB = refgroup self.r0.append(distance_array(refA.positions, refB.positions)) self.initial_contacts.append(contact_matrix(self.r0[-1], radius)) else: for refA, refB in refgroup: self.r0.append(distance_array(refA.positions, refB.positions)) self.initial_contacts.append(contact_matrix(self.r0[-1], radius)) self.fraction_kwargs = kwargs if kwargs is not None else {} self.timeseries = [] def _single_frame(self): # compute distance array for a frame d = distance_array(self.grA.positions, self.grB.positions) y = np.empty(len(self.r0) + 1) y[0] = self._ts.frame for i, (initial_contacts, r0) in enumerate(zip(self.initial_contacts, self.r0)): # select only the contacts that were formed in the reference state r = d[initial_contacts] r0 = r0[initial_contacts] y[i + 1] = self.fraction_contacts(r, r0, **self.fraction_kwargs) if len(y) == 1: y = y[0] self.timeseries.append(y) def _conclude(self): self.timeseries = np.array(self.timeseries, dtype=float) def save(self, outfile): """save contacts timeseries Parameters ---------- outfile : str file to save contacts """ with open(outfile, "w") as f: f.write("# q1 analysis\n") np.savetxt(f, self.timeseries) def _new_selections(u_orig, selections, frame): """create stand alone AGs from selections at frame""" u = MDAnalysis.Universe(u_orig.filename, u_orig.trajectory.filename) u.trajectory[frame] return [u.select_atoms(s) for s in selections] def q1q2(u, selection='all', radius=4.5, start=None, stop=None, step=None): """Perform a q1-q2 analysis. Compares native contacts between the starting structure and final structure of a trajectory [Franklin2007]_. Parameters ---------- u : Universe Universe with a trajectory selection : string, optional atoms to do analysis on radius : float, optional distance at which contact is formed start : int, optional First frame of trajectory to analyse, Default: 0 stop : int, optional Last frame of trajectory to analyse, Default: -1 step : int, optional Step between frames to analyse, Default: 1 Returns ------- contacts : :class:`Contacts` Contact Analysis that is set up for a q1-q2 analysis """ selection = (selection, selection) first_frame_refs = _new_selections(u, selection, 0) last_frame_refs = _new_selections(u, selection, -1) return Contacts(u, selection, (first_frame_refs, last_frame_refs), radius=radius, method=radius_cut_q, start=start, stop=stop, step=step, kwargs={'radius': radius}) ################################################################################ ################################################################################ ################################################################################ ################################################################################ ################################################################################ ################################################################################ # What comes now are old deprecated contact Analysis classes # ContactAnalysis needs to be cleaned up and possibly renamed but # until then it remains because we don't have the functionality # elsewhere. @deprecate(new_name="Contacts", message="This class will be removed in 0.17") class ContactAnalysis(object): """Perform a native contact analysis ("q1-q2"). The analysis of the trajectory is performed with the :meth:`ContactAnalysis.run` method. The result is stored in :attr:`ContactAnalysis.timeseries`. It is a numpy array which contains the frame number at index 0, q1 and q2 at index 1 and 2, and the total number of contacts in 3 and 4. :: frame q1 q2 n1 n2 The total number of contacts in the reference states 1 and 2 are stored in :attr:`ContactAnalysis.nref` (index 0 and 1). The :meth:`ContactAnalysis.run` method calculates the percentage of native contacts *q1* and *q2* along a trajectory. "Contacts" are defined as the number of Ca atoms (or per-residue *centroids* of a user defined *selection*) within *radius* of a primary Ca. *q1* is the fraction of contacts relative to the reference state 1 (typically the starting conformation of the trajectory) and *q2* is the fraction of contacts relative to the conformation 2. The timeseries is written to a bzip2-compressed file in `targetdir` named "basename(trajectory)infix_q1q2.dat.bz2" and is also accessible as the attribute :attr:`ContactAnalysis.timeseries`. .. deprecated:: 0.15.0 """ def __init__(self, topology, trajectory, ref1=None, ref2=None, radius=8.0, targetdir=os.path.curdir, infix="", force=False, selection="name CA", centroids=False): """ Parameters ---------- topology : filename as str topology file trajectory : filename as str trajectory ref1 : filename or ``None``, optional structure of the reference conformation 1 (pdb); if ``None`` the *first* frame of the trajectory is chosen ref2 : filename or ``None``, optional structure of the reference conformation 2 (pdb); if ``None`` the *last* frame of the trajectory is chosen radius : float, optional, default 8 A contacts are deemed any Ca within radius targetdir : path, optional, default ``.`` output files are saved in this directory infix : string, optional additional tag string that is inserted into the output filename of the data file selection : string, optional, default ``"name CA"`` MDAnalysis selection string that selects the particles of interest; the default is to only select the C-alpha atoms in `ref1` and `ref2` .. Note:: If `selection` produces more than one atom per residue then you will get multiple contacts per residue unless you also set `centroids` = ``True`` centroids : bool If set to ``True``, use the centroids for the selected atoms on a per-residue basis to compute contacts. This allows, for instance defining the sidechains as `selection` and then computing distances between sidechain centroids. """ self.topology = topology self.trajectory = trajectory self.radius = radius self.targetdir = targetdir self.force = force self.selection = selection self.centroids = centroids trajectorybase = os.path.splitext(os.path.basename(trajectory))[0] output = trajectorybase + infix + '_q1q2.dat' self.output = os.path.join(self.targetdir, output) self.output_bz2 = self.output + '.bz2' self.timeseries = None # final result # short circuit if output file already exists: skip everything if self.output_exists(): self._skip = True # do not bother reading any data or initializing arrays... !! return # don't bother if trajectory is empty (can lead to segfaults so better # catch it) stats = os.stat(trajectory) if stats.st_size == 0: warnings.warn('trajectory = {trajectory!s} is empty, ' 'skipping...'.format(**vars())) self._skip = True return # under normal circumstances we do not skip self._skip = False # expensive initialization starts with building Universes :-) self.u = MDAnalysis.Universe(topology, trajectory) if ref1 is None: ref1 = os.path.join(self.targetdir, trajectorybase + '_first.pdb') self.u.trajectory[0] # extract first frame self.u.atoms.write(ref1) self.ref1 = ref1 if ref2 is None: ref2 = os.path.join(self.targetdir, trajectorybase + '_last.pdb') self.u.trajectory[-1] # extract last frame self.u.atoms.write(ref2) self.u.trajectory[0] # rewind, just in case... self.ref2 = ref2 r1 = MDAnalysis.Universe(topology, self.ref1) r2 = MDAnalysis.Universe(topology, self.ref2) self.ca = self.u.select_atoms(self.selection) ca1 = r1.select_atoms(self.selection) ca2 = r2.select_atoms(self.selection) # NOTE: self_distance_array() produces a 1D array; this works here # but is not the same as the 2D output from distance_array()! # See the docs for self_distance_array(). dref = [self.get_distance_array(ca1), self.get_distance_array(ca2)] self.qref = [self.qarray(dref[0]), self.qarray(dref[1])] self.nref = [self.qref[0].sum(), self.qref[1].sum()] self.d = np.zeros_like(dref[0]) self.q = self.qarray(self.d) self._qtmp = np.zeros_like(self.q) # pre-allocated array def get_distance_array(self, g, **kwargs): """Calculate the self_distance_array for atoms in group *g*. Parameters ---------- g : AtomGroup group of atoms to calculate distance array for results : array, optional passed on to :func:`MDAnalysis.lib.distances.self_distance_array` as a preallocated array centroids : bool, optional, default ``None`` ``True``: calculate per-residue centroids from the selected atoms; ``False``: consider each atom separately; ``None``: use the class default for *centroids* [``None``] """ centroids = kwargs.pop("centroids", None) centroids = self.centroids if centroids is None else centroids if not centroids: coordinates = g.positions else: # centroids per residue (but only including the selected atoms) coordinates = np.array([residue.centroid() for residue in g.split("residue")]) return MDAnalysis.lib.distances.self_distance_array(coordinates, **kwargs) def output_exists(self, force=False): """Return True if default output file already exists. Disable with force=True (will always return False) """ return (os.path.isfile(self.output) or os.path.isfile(self.output_bz2)) and not (self.force or force) def run(self, store=True, force=False): """Analyze trajectory and produce timeseries. Stores results in :attr:`ContactAnalysis.timeseries` (if store=True) and writes them to a bzip2-compressed data file. """ if self._skip or self.output_exists(force=force): warnings.warn("File {output!r} or {output_bz2!r} already exists, " "loading {trajectory!r}.".format(**vars(self))) try: self.load(self.output) except IOError: self.load(self.output_bz2) return None outbz2 = bz2.BZ2File(self.output_bz2, mode='w', buffering=8192) try: outbz2.write("# q1-q2 analysis\n" "# nref1 = {0:d}\n" "# nref2 = {1:d}\n".format(self.nref[0], self.nref[1])) outbz2.write("# frame q1 q2 n1 n2\n") records = [] for ts in self.u.trajectory: frame = ts.frame # use pre-allocated distance array to save a little bit of time self.get_distance_array(self.ca, result=self.d) self.qarray(self.d, out=self.q) n1, q1 = self.qN(self.q, 0, out=self._qtmp) n2, q2 = self.qN(self.q, 1, out=self._qtmp) if store: records.append((frame, q1, q2, n1, n2)) outbz2.write("{frame:4d} {q1:8.6f} {q2:8.6f} {n1:5d} {n2:5d}\n".format(**vars())) finally: outbz2.close() if store: self.timeseries = np.array(records).T return self.output_bz2 def qarray(self, d, out=None): """Return array with ``True`` for contacts. Note ---- This method is typically only used internally. Arguments --------- d : array 2D array of distances. The method uses the value of :attr:`radius` to determine if a ``distance < radius`` is considered a contact. out : array, optional If `out` is supplied as a pre-allocated array of the correct shape then it is filled instead of allocating a new one in order to increase performance. Returns ------- array contact matrix """ if out is None: out = (d <= self.radius) else: out[:] = (d <= self.radius) return out def qN(self, q, n, out=None): """Calculate native contacts relative to reference state. Note ---- This method is typically only used internally. Arguments --------- q : array contact matrix (see :meth:`Contacts.qarray`) out : array, optional If `out` is supplied as a pre-allocated array of the correct shape then it will contain the contact matrix relative to the reference state, i.e. only those contacts that are also seen in the reference state. Returns ------- contacts : integer total number of contacts fraction : float fraction of contacts relative to the reference state """ if out is None: out = np.logical_and(q, self.qref[n]) else: np.logical_and(q, self.qref[n], out) contacts = out.sum() return contacts, float(contacts) / self.nref[n] def load(self, filename): """Load the data file.""" records = [] with openany(filename) as data: for line in data: if line.startswith('#'): continue records.append(map(float, line.split())) self.timeseries = np.array(records).T def plot(self, **kwargs): """Plot q1-q2.""" from pylab import plot, xlabel, ylabel kwargs.setdefault('color', 'black') if self.timeseries is None: raise ValueError("No timeseries data; do " "'ContactAnalysis.run(store=True)' first.") t = self.timeseries plot(t[1], t[2], **kwargs) xlabel(r"$q_1$") ylabel(r"$q_2$") @deprecate(new_name="Contacts", message="This class will be removed in 0.17") class ContactAnalysis1(object): """Perform a very flexible native contact analysis with respect to a single reference. This analysis class allows one to calculate the fraction of native contacts *q* between two arbitrary groups of atoms with respect to an arbitrary reference structure. For instance, as a reference one could take a crystal structure of a complex, and as the two groups atoms one selects two molecules A and B in the complex. Then the question to be answered by *q* is, is which percentage of the contacts between A and B persist during the simulation. First prepare :class:`~MDAnalysis.core.groups.AtomGroup` selections for the reference atoms; this example uses some arbitrary selections:: ref = Universe('crystal.pdb') refA = ref.select_atoms('name CA and segid A and resid 6:100') refB = ref.select_atoms('name CA and segid B and resid 1:40') Load the trajectory:: u = Universe(topology, trajectory) We then need two selection strings *selA* and *selB* that, when applied as ``u.select_atoms(selA)`` produce a list of atoms that is equivalent to the reference (i.e. ``u.select_atoms(selA)`` must select the same atoms as ``refA`` in this example):: selA = 'name CA and resid 1:95' # corresponds to refA selB = 'name CA and resid 150:189' # corresponds to refB .. Note:: It is the user's responsibility to provide a reference group (or groups) that describe equivalent atoms to the ones selected by *selection*. Now we are ready to set up the analysis:: CA1 = ContactAnalysis1(u, selection=(selA,selB), refgroup=(refA,refB), radius=8.0, outfile="q.dat") If the groups do not match in length then a :exc:`ValueError` is raised. The analysis across the whole trajectory is performed with :: CA1.run() Results are saved to *outfile* (``framenumber q N`` per line) and can also be plotted with :: CA1.plot() # plots the time series q(t) CA1.plot_qavg() # plots the matrix of average contacts <q> **Description of computed values** in the output file: *N* number of native contacts *q* fraction of native contacts relative to the reference .. deprecated:: 0.15.0 """ def __init__(self, *args, **kwargs): """Calculate native contacts within a group or between two groups. :Arguments: *topology* psf or pdb file *trajectory* dcd or xtc/trr file *universe* instead of a topology/trajectory combination, one can also supply a :class:`MDAnalysis.Universe` :Keywords: *selection* selection string that determines which distances are calculated; if this is a tuple or list with two entries then distances are calculated between these two different groups ["name CA or name B*"] *refgroup* reference group, either a single :class:`~MDAnalysis.core.groups.AtomGroup` (if there is only a single *selection*) or a list of two such groups. The reference contacts are directly computed from *refgroup* and hence the atoms in the reference group(s) must be equivalent to the ones produced by the *selection* on the input trajectory. *radius* contacts are deemed any atoms within radius [8.0 A] *outfile* name of the output file; with the gz or bz2 suffix, a compressed file is written. The average <q> is written to a second, gzipped file that has the same name with 'array' included. E.g. for the default name "q1.dat.gz" the <q> file will be "q1.array.gz". The format is the matrix in column-row format, i.e. selection 1 residues are the columns and selection 2 residues are rows. The file can be read with :func:`np.loadtxt`. ["q1.dat.gz"] The function calculates the percentage of native contacts q1 along a trajectory. "Contacts" are defined as the number of atoms within *radius* of a given other atom. *q1* is the fraction of contacts relative to the reference state 1 (typically the starting conformation of the trajectory). The timeseries is written to a file *outfile* and is also accessible as the attribute :attr:`ContactAnalysis1.timeseries`. """ # XX or should I use as input # sel = (group1, group2), ref = (refgroup1, refgroup2) # and get the universe from sel? # Currently it's a odd hybrid. # # Enhancements: # - select contact pairs to write out as a timecourse # - make this selection based on qavg from os.path import splitext warnings.warn("ContactAnalysis1 is deprecated and will be removed " "in 1.0. Use Contacts instead.", category=DeprecationWarning) self.selection_strings = self._return_tuple2(kwargs.pop( 'selection', "name CA or name B*"), "selection") self.references = self._return_tuple2(kwargs.pop('refgroup', None), "refgroup") self.radius = kwargs.pop('radius', 8.0) self.targetdir = kwargs.pop('targetdir', os.path.curdir) self.output = kwargs.pop('outfile', "q1.dat.gz") self.outarray = splitext(splitext(self.output)[0])[0] + ".array.gz" self.force = kwargs.pop('force', False) self.timeseries = None # final result self.filenames = args self.universe = MDAnalysis.as_Universe(*args, **kwargs) self.selections = [self.universe.select_atoms(s) for s in self.selection_strings] # sanity checkes for x in self.references: if x is None: raise ValueError("a reference AtomGroup must be supplied") for ref, sel, s in zip(self.references, self.selections, self.selection_strings): if ref.atoms.n_atoms != sel.atoms.n_atoms: raise ValueError("selection=%r: Number of atoms differ " "between reference (%d) and trajectory (%d)" % (s, ref.atoms.n_atoms, sel.atoms.n_atoms)) # compute reference contacts dref = MDAnalysis.lib.distances.distance_array( self.references[0].positions, self.references[1].positions) self.qref = self.qarray(dref) self.nref = self.qref.sum() # setup arrays for the trajectory self.d = np.zeros_like(dref) self.q = self.qarray(self.d) self._qtmp = np.zeros_like(self.q) # pre-allocated array self.qavg = np.zeros(shape=self.q.shape, dtype=np.float64) def _return_tuple2(self, x, name): if not isinstance(x, (tuple, list, np.ndarray)): t = (x,) else: t = x if len(t) == 2: return t elif len(t) == 1: return (x, x) else: raise ValueError("%(name)s must be a single object or a " "tuple/list with two objects and not %(x)r" % vars()) def output_exists(self, force=False): """Return True if default output file already exists. Disable with force=True (will always return False) """ return os.path.isfile(self.output) and not (self.force or force) def run(self, store=True, force=False, start=0, stop=None, step=1, **kwargs): """Analyze trajectory and produce timeseries. Stores results in :attr:`ContactAnalysis1.timeseries` (if store=True) and writes them to a data file. The average q is written to a second data file. *start* The value of the first frame index in the trajectory to be used (default: index 0) *stop* The value of the last frame index in the trajectory to be used (default: None -- use all frames) *step* The number of frames to skip during trajectory iteration (default: use every frame) """ if 'start_frame' in kwargs: warnings.warn("start_frame argument has been deprecated, use " "start instead -- removal targeted for version " "0.15.0", DeprecationWarning) start = kwargs.pop('start_frame') if 'end_frame' in kwargs: warnings.warn("end_frame argument has been deprecated, use " "stop instead -- removal targeted for version " "0.15.0", DeprecationWarning) stop = kwargs.pop('end_frame') if 'step_value' in kwargs: warnings.warn("step_value argument has been deprecated, use " "step instead -- removal targeted for version " "0.15.0", DeprecationWarning) step = kwargs.pop('step_value') if self.output_exists(force=force): warnings.warn("File %r already exists, loading it INSTEAD of " "trajectory %r. Use force=True to overwrite " "the output file. " % (self.output, self.universe.trajectory.filename)) self.load(self.output) return None with openany(self.output, 'w') as out: out.write("# q1 analysis\n# nref = {0:d}\n".format((self.nref))) out.write("# frame q1 n1\n") records = [] self.qavg *= 0 # average contact existence A, B = self.selections for ts in self.universe.trajectory[start:stop:step]: frame = ts.frame # use pre-allocated distance array to save a little bit of time MDAnalysis.lib.distances.distance_array(A.coordinates(), B.coordinates(), result=self.d) self.qarray(self.d, out=self.q) n1, q1 = self.qN(self.q, out=self._qtmp) self.qavg += self.q if store: records.append((frame, q1, n1)) out.write("{frame:4d} {q1:8.6f} {n1:5d}\n".format(**vars())) if store: self.timeseries = np.array(records).T n_frames = len(np.arange( self.universe.trajectory.n_frames)[start:stop:step]) if n_frames > 0: self.qavg /= n_frames else: logger.warn("No frames were analyzed. " "Check values of start, stop, step.") logger.debug("start={start} stop={stop} step={step}".format(**vars())) np.savetxt(self.outarray, self.qavg, fmt="%8.6f") return self.output def qarray(self, d, out=None): """Return distance array with True for contacts. *d* is the matrix of distances. The method uses the value of :attr:`ContactAnalysis1.radius` to determine if a ``distance < radius`` is considered a contact. If *out* is supplied as a pre-allocated array of the correct shape then it is filled instead of allocating a new one in order to increase performance. This method is typically only used internally. """ if out is None: out = (d <= self.radius) else: out[:] = (d <= self.radius) return out def qN(self, q, out=None): """Calculate native contacts relative to reference state. *q* is the matrix of contacts (e.g. :attr:`~ContactAnalysis1.q`). If *out* is supplied as a pre-allocated array of the correct shape then it is filled instead of allocating a new one in order to increase performance. This method is typically only used internally. """ if out is None: out = np.logical_and(q, self.qref) else: np.logical_and(q, self.qref, out) contacts = out.sum() return contacts, float(contacts) / self.nref def load(self, filename): """Load the data file.""" records = [] with openany(filename) as data: for line in data: if line.startswith('#'): continue records.append(map(float, line.split())) self.timeseries = np.array(records).T try: self.qavg = np.loadtxt(self.outarray) except IOError as err: if err.errno != errno.ENOENT: raise def plot(self, filename=None, **kwargs): """Plot q(t). If `filename` is supplied then the figure is also written to file (the suffix determines the file type, e.g. pdf, png, eps, ...). All other keyword arguments are passed on to :func:`pylab.plot`. """ from pylab import plot, xlabel, ylabel, savefig kwargs.setdefault('color', 'black') kwargs.setdefault('linewidth', 2) if self.timeseries is None: raise ValueError("No timeseries data; " "do 'ContactAnalysis.run(store=True)' first.") t = self.timeseries plot(t[0], t[1], **kwargs) xlabel(r"frame number $t$") ylabel(r"native contacts $q_1$") if filename is not None: savefig(filename) def _plot_qavg_pcolor(self, filename=None, **kwargs): """Plot :attr:`ContactAnalysis1.qavg`, the matrix of average native contacts.""" from pylab import (pcolor, gca, meshgrid, xlabel, ylabel, xlim, ylim, colorbar, savefig) x, y = self.selections[0].resids, self.selections[1].resids X, Y = meshgrid(x, y) pcolor(X, Y, self.qavg.T, **kwargs) gca().set_aspect('equal') xlim(min(x), max(x)) ylim(min(y), max(y)) xlabel("residues") ylabel("residues") colorbar() if filename is not None: savefig(filename) def plot_qavg(self, filename=None, **kwargs): """Plot :attr:`ContactAnalysis1.qavg`, the matrix of average native contacts. If *filename* is supplied then the figure is also written to file (the suffix determines the file type, e.g. pdf, png, eps, ...). All other keyword arguments are passed on to :func:`pylab.imshow`. """ from pylab import (imshow, xlabel, ylabel, xlim, ylim, colorbar, cm, clf, savefig) x, y = self.selections[0].resids, self.selections[1].resids kwargs['origin'] = 'lower' kwargs.setdefault('aspect', 'equal') kwargs.setdefault('interpolation', 'nearest') kwargs.setdefault('vmin', 0) kwargs.setdefault('vmax', 1) kwargs.setdefault('cmap', cm.hot) kwargs.setdefault('extent', (min(x), max(x), min(y), max(y))) clf() imshow(self.qavg.T, **kwargs) xlim(min(x), max(x)) ylim(min(y), max(y)) xlabel("residue from {0!r}".format(self.selection_strings[0])) ylabel("residue from {0!r}".format(self.selection_strings[1])) colorbar() if filename is not None: savefig(filename)
gpl-2.0
fivejjs/AD3
python/example_grid.py
2
4958
import itertools import numpy as np import matplotlib.pyplot as plt import pdb import ad3.factor_graph as fg grid_size = 20 num_states = 5 factor_graph = fg.PFactorGraph() multi_variables = [] random_grid = np.random.uniform(size=(grid_size, grid_size, num_states)) for i in xrange(grid_size): multi_variables.append([]) for j in xrange(grid_size): new_variable = factor_graph.create_multi_variable(num_states) for state in xrange(num_states): new_variable.set_log_potential(state, random_grid[i, j, state]) multi_variables[i].append(new_variable) alpha = .3 potts_matrix = alpha * np.eye(num_states) potts_potentials = potts_matrix.ravel().tolist() for i, j in itertools.product(xrange(grid_size), repeat=2): if (j > 0): #horizontal edge edge_variables = [multi_variables[i][j - 1], multi_variables[i][j]] factor_graph.create_factor_dense(edge_variables, potts_potentials) if (i > 0): #vertical edge edge_variables = [multi_variables[i - 1][j], multi_variables[i][j]] factor_graph.create_factor_dense(edge_variables, potts_potentials) factor_graph.set_eta_ad3(.1) factor_graph.adapt_eta_ad3(True) factor_graph.set_max_iterations_ad3(1000) value, marginals, edge_marginals, solver_status =\ factor_graph.solve_lp_map_ad3() res = np.array(marginals).reshape(20, 20, 5) plt.matshow(np.argmax(random_grid, axis=-1), vmin=0, vmax=4) plt.matshow(np.argmax(res, axis=-1), vmin=0, vmax=4) plt.show() use_sequence_factors = True if use_sequence_factors: # Now do the same with sequence factors. # Create a factor graph using sequence-factors which is equivalent to the # previous one. sequential_factor_graph = fg.PFactorGraph() # Create a binary variable for each state at each position in the grid. binary_variables = [] for i in xrange(grid_size): binary_variables.append([]) for j in xrange(grid_size): binary_variables[i].append([]) for k in xrange(num_states): # Assign a random log-potential to each state. state_variable = sequential_factor_graph.create_binary_variable() log_potential = multi_variables[i][j].get_log_potential(k) state_variable.set_log_potential(log_potential) binary_variables[i][j].append(state_variable) # Design the edge log-potentials. # Right now they are diagonal and favoring smooth configurations, but # that needs not be the case. additional_log_potentials = [] for i in xrange(grid_size+1): if i == 0: num_previous_states = 1 else: num_previous_states = num_states if i == grid_size: num_current_states = 1 else: num_current_states = num_states for k in xrange(num_previous_states): for l in xrange(num_current_states): if k == l and i != 0 and i != grid_size: additional_log_potentials.append(alpha) else: additional_log_potentials.append(0.0) # Create a sequential factor for each row in the grid. # NOTE: need to keep a list of factors, otherwise the Python garbage # collector will destroy the factor objects... factors = [] for i in xrange(grid_size): variables = [] num_states = [] for j in xrange(grid_size): variables.extend(binary_variables[i][j]) num_states.append(len(binary_variables[i][j])) factor = fg.PFactorSequence() # Set True below to let the factor graph own the factor so that we # don't need to delete it. sequential_factor_graph.declare_factor(factor, variables, False) factor.initialize(num_states) factor.set_additional_log_potentials(additional_log_potentials) factors.append(factor) # Create a sequential factor for each column in the grid. for j in xrange(grid_size): variables = [] num_states = [] for i in xrange(grid_size): variables.extend(binary_variables[i][j]) num_states.append(len(binary_variables[i][j])) factor = fg.PFactorSequence() # Set True below to let the factor graph own the factor so that we # don't need to delete it. sequential_factor_graph.declare_factor(factor, variables, False) factor.initialize(num_states) factor.set_additional_log_potentials(additional_log_potentials) factors.append(factor) sequential_factor_graph.set_eta_ad3(.1) sequential_factor_graph.adapt_eta_ad3(True) sequential_factor_graph.set_max_iterations_ad3(1000) value, marginals, edge_marginals, solver_status = sequential_factor_graph.solve_lp_map_ad3() res = np.array(marginals).reshape(20, 20, 5) plt.matshow(np.argmax(res, axis=-1), vmin=0, vmax=4) plt.show()
lgpl-3.0
sebastic/QGIS
python/plugins/processing/algs/qgis/MeanAndStdDevPlot.py
19
3553
# -*- coding: utf-8 -*- """ *************************************************************************** MeanAndStdDevPlot.py --------------------- Date : January 2013 Copyright : (C) 2013 by Victor Olaya Email : volayaf at gmail dot com *************************************************************************** * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * *************************************************************************** """ __author__ = 'Victor Olaya' __date__ = 'January 2013' __copyright__ = '(C) 2013, Victor Olaya' # This will get replaced with a git SHA1 when you do a git archive __revision__ = '$Format:%H$' import matplotlib.pyplot as plt import matplotlib.pylab as lab import numpy as np from processing.core.GeoAlgorithm import GeoAlgorithm from processing.core.parameters import ParameterTable from processing.core.parameters import ParameterTableField from processing.core.outputs import OutputHTML from processing.tools import vector from processing.tools import dataobjects class MeanAndStdDevPlot(GeoAlgorithm): INPUT = 'INPUT' OUTPUT = 'OUTPUT' NAME_FIELD = 'NAME_FIELD' MEAN_FIELD = 'MEAN_FIELD' STDDEV_FIELD = 'STDDEV_FIELD' def defineCharacteristics(self): self.name, self.i18n_name = self.trAlgorithm('Mean and standard deviation plot') self.group, self.i18n_group = self.trAlgorithm('Graphics') self.addParameter(ParameterTable(self.INPUT, self.tr('Input table'))) self.addParameter(ParameterTableField(self.NAME_FIELD, self.tr('Category name field'), self.INPUT, ParameterTableField.DATA_TYPE_ANY)) self.addParameter(ParameterTableField(self.MEAN_FIELD, self.tr('Mean field'), self.INPUT)) self.addParameter(ParameterTableField(self.STDDEV_FIELD, self.tr('StdDev field'), self.INPUT)) self.addOutput(OutputHTML(self.OUTPUT, self.tr('Plot'))) def processAlgorithm(self, progress): layer = dataobjects.getObjectFromUri( self.getParameterValue(self.INPUT)) namefieldname = self.getParameterValue(self.NAME_FIELD) meanfieldname = self.getParameterValue(self.MEAN_FIELD) stddevfieldname = self.getParameterValue(self.STDDEV_FIELD) output = self.getOutputValue(self.OUTPUT) values = vector.values(layer, namefieldname, meanfieldname, stddevfieldname) plt.close() ind = np.arange(len(values[namefieldname])) width = 0.8 plt.bar(ind, values[meanfieldname], width, color='r', yerr=values[stddevfieldname], error_kw=dict(ecolor='yellow'), ) plt.xticks(ind, values[namefieldname], rotation=45) plotFilename = output + '.png' lab.savefig(plotFilename) f = open(output, 'w') f.write('<html><img src="' + plotFilename + '"/></html>') f.close()
gpl-2.0
466152112/scikit-learn
examples/ensemble/plot_voting_probas.py
316
2824
""" =========================================================== Plot class probabilities calculated by the VotingClassifier =========================================================== Plot the class probabilities of the first sample in a toy dataset predicted by three different classifiers and averaged by the `VotingClassifier`. First, three examplary classifiers are initialized (`LogisticRegression`, `GaussianNB`, and `RandomForestClassifier`) and used to initialize a soft-voting `VotingClassifier` with weights `[1, 1, 5]`, which means that the predicted probabilities of the `RandomForestClassifier` count 5 times as much as the weights of the other classifiers when the averaged probability is calculated. To visualize the probability weighting, we fit each classifier on the training set and plot the predicted class probabilities for the first sample in this example dataset. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import GaussianNB from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import VotingClassifier clf1 = LogisticRegression(random_state=123) clf2 = RandomForestClassifier(random_state=123) clf3 = GaussianNB() X = np.array([[-1.0, -1.0], [-1.2, -1.4], [-3.4, -2.2], [1.1, 1.2]]) y = np.array([1, 1, 2, 2]) eclf = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='soft', weights=[1, 1, 5]) # predict class probabilities for all classifiers probas = [c.fit(X, y).predict_proba(X) for c in (clf1, clf2, clf3, eclf)] # get class probabilities for the first sample in the dataset class1_1 = [pr[0, 0] for pr in probas] class2_1 = [pr[0, 1] for pr in probas] # plotting N = 4 # number of groups ind = np.arange(N) # group positions width = 0.35 # bar width fig, ax = plt.subplots() # bars for classifier 1-3 p1 = ax.bar(ind, np.hstack(([class1_1[:-1], [0]])), width, color='green') p2 = ax.bar(ind + width, np.hstack(([class2_1[:-1], [0]])), width, color='lightgreen') # bars for VotingClassifier p3 = ax.bar(ind, [0, 0, 0, class1_1[-1]], width, color='blue') p4 = ax.bar(ind + width, [0, 0, 0, class2_1[-1]], width, color='steelblue') # plot annotations plt.axvline(2.8, color='k', linestyle='dashed') ax.set_xticks(ind + width) ax.set_xticklabels(['LogisticRegression\nweight 1', 'GaussianNB\nweight 1', 'RandomForestClassifier\nweight 5', 'VotingClassifier\n(average probabilities)'], rotation=40, ha='right') plt.ylim([0, 1]) plt.title('Class probabilities for sample 1 by different classifiers') plt.legend([p1[0], p2[0]], ['class 1', 'class 2'], loc='upper left') plt.show()
bsd-3-clause
PrashntS/scikit-learn
sklearn/metrics/metrics.py
233
1262
import warnings warnings.warn("sklearn.metrics.metrics is deprecated and will be removed in " "0.18. Please import from sklearn.metrics", DeprecationWarning) from .ranking import auc from .ranking import average_precision_score from .ranking import label_ranking_average_precision_score from .ranking import precision_recall_curve from .ranking import roc_auc_score from .ranking import roc_curve from .classification import accuracy_score from .classification import classification_report from .classification import confusion_matrix from .classification import f1_score from .classification import fbeta_score from .classification import hamming_loss from .classification import hinge_loss from .classification import jaccard_similarity_score from .classification import log_loss from .classification import matthews_corrcoef from .classification import precision_recall_fscore_support from .classification import precision_score from .classification import recall_score from .classification import zero_one_loss from .regression import explained_variance_score from .regression import mean_absolute_error from .regression import mean_squared_error from .regression import median_absolute_error from .regression import r2_score
bsd-3-clause
mortonjt/scipy
scipy/signal/spectral.py
5
13830
"""Tools for spectral analysis. """ from __future__ import division, print_function, absolute_import import numpy as np from scipy import fftpack from . import signaltools from .windows import get_window from ._spectral import lombscargle import warnings from scipy._lib.six import string_types __all__ = ['periodogram', 'welch', 'lombscargle'] def periodogram(x, fs=1.0, window=None, nfft=None, detrend='constant', return_onesided=True, scaling='density', axis=-1): """ Estimate power spectral density using a periodogram. Parameters ---------- x : array_like Time series of measurement values fs : float, optional Sampling frequency of the `x` time series in units of Hz. Defaults to 1.0. window : str or tuple or array_like, optional Desired window to use. See `get_window` for a list of windows and required parameters. If `window` is an array it will be used directly as the window. Defaults to None; equivalent to 'boxcar'. nfft : int, optional Length of the FFT used. If None the length of `x` will be used. detrend : str or function or False, optional Specifies how to detrend `x` prior to computing the spectrum. If `detrend` is a string, it is passed as the ``type`` argument to `detrend`. If it is a function, it should return a detrended array. If `detrend` is False, no detrending is done. Defaults to 'constant'. return_onesided : bool, optional If True, return a one-sided spectrum for real data. If False return a two-sided spectrum. Note that for complex data, a two-sided spectrum is always returned. scaling : { 'density', 'spectrum' }, optional Selects between computing the power spectral density ('density') where `Pxx` has units of V**2/Hz if `x` is measured in V and computing the power spectrum ('spectrum') where `Pxx` has units of V**2 if `x` is measured in V. Defaults to 'density' axis : int, optional Axis along which the periodogram is computed; the default is over the last axis (i.e. ``axis=-1``). Returns ------- f : ndarray Array of sample frequencies. Pxx : ndarray Power spectral density or power spectrum of `x`. Notes ----- .. versionadded:: 0.12.0 See Also -------- welch: Estimate power spectral density using Welch's method lombscargle: Lomb-Scargle periodogram for unevenly sampled data Examples -------- >>> from scipy import signal >>> import matplotlib.pyplot as plt Generate a test signal, a 2 Vrms sine wave at 1234 Hz, corrupted by 0.001 V**2/Hz of white noise sampled at 10 kHz. >>> fs = 10e3 >>> N = 1e5 >>> amp = 2*np.sqrt(2) >>> freq = 1234.0 >>> noise_power = 0.001 * fs / 2 >>> time = np.arange(N) / fs >>> x = amp*np.sin(2*np.pi*freq*time) >>> x += np.random.normal(scale=np.sqrt(noise_power), size=time.shape) Compute and plot the power spectral density. >>> f, Pxx_den = signal.periodogram(x, fs) >>> plt.semilogy(f, Pxx_den) >>> plt.ylim([1e-7, 1e2]) >>> plt.xlabel('frequency [Hz]') >>> plt.ylabel('PSD [V**2/Hz]') >>> plt.show() If we average the last half of the spectral density, to exclude the peak, we can recover the noise power on the signal. >>> np.mean(Pxx_den[256:]) 0.0009924865443739191 Now compute and plot the power spectrum. >>> f, Pxx_spec = signal.periodogram(x, fs, 'flattop', scaling='spectrum') >>> plt.figure() >>> plt.semilogy(f, np.sqrt(Pxx_spec)) >>> plt.ylim([1e-4, 1e1]) >>> plt.xlabel('frequency [Hz]') >>> plt.ylabel('Linear spectrum [V RMS]') >>> plt.show() The peak height in the power spectrum is an estimate of the RMS amplitude. >>> np.sqrt(Pxx_spec.max()) 2.0077340678640727 """ x = np.asarray(x) if x.size == 0: return np.empty(x.shape), np.empty(x.shape) if window is None: window = 'boxcar' if nfft is None: nperseg = x.shape[axis] elif nfft == x.shape[axis]: nperseg = nfft elif nfft > x.shape[axis]: nperseg = x.shape[axis] elif nfft < x.shape[axis]: s = [np.s_[:]]*len(x.shape) s[axis] = np.s_[:nfft] x = x[s] nperseg = nfft nfft = None return welch(x, fs, window, nperseg, 0, nfft, detrend, return_onesided, scaling, axis) def welch(x, fs=1.0, window='hanning', nperseg=256, noverlap=None, nfft=None, detrend='constant', return_onesided=True, scaling='density', axis=-1): """ Estimate power spectral density using Welch's method. Welch's method [1]_ computes an estimate of the power spectral density by dividing the data into overlapping segments, computing a modified periodogram for each segment and averaging the periodograms. Parameters ---------- x : array_like Time series of measurement values fs : float, optional Sampling frequency of the `x` time series in units of Hz. Defaults to 1.0. window : str or tuple or array_like, optional Desired window to use. See `get_window` for a list of windows and required parameters. If `window` is array_like it will be used directly as the window and its length will be used for nperseg. Defaults to 'hanning'. nperseg : int, optional Length of each segment. Defaults to 256. noverlap : int, optional Number of points to overlap between segments. If None, ``noverlap = nperseg / 2``. Defaults to None. nfft : int, optional Length of the FFT used, if a zero padded FFT is desired. If None, the FFT length is `nperseg`. Defaults to None. detrend : str or function or False, optional Specifies how to detrend each segment. If `detrend` is a string, it is passed as the ``type`` argument to `detrend`. If it is a function, it takes a segment and returns a detrended segment. If `detrend` is False, no detrending is done. Defaults to 'constant'. return_onesided : bool, optional If True, return a one-sided spectrum for real data. If False return a two-sided spectrum. Note that for complex data, a two-sided spectrum is always returned. scaling : { 'density', 'spectrum' }, optional Selects between computing the power spectral density ('density') where Pxx has units of V**2/Hz if x is measured in V and computing the power spectrum ('spectrum') where Pxx has units of V**2 if x is measured in V. Defaults to 'density'. axis : int, optional Axis along which the periodogram is computed; the default is over the last axis (i.e. ``axis=-1``). Returns ------- f : ndarray Array of sample frequencies. Pxx : ndarray Power spectral density or power spectrum of x. See Also -------- periodogram: Simple, optionally modified periodogram lombscargle: Lomb-Scargle periodogram for unevenly sampled data Notes ----- An appropriate amount of overlap will depend on the choice of window and on your requirements. For the default 'hanning' window an overlap of 50% is a reasonable trade off between accurately estimating the signal power, while not over counting any of the data. Narrower windows may require a larger overlap. If `noverlap` is 0, this method is equivalent to Bartlett's method [2]_. .. versionadded:: 0.12.0 References ---------- .. [1] P. Welch, "The use of the fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms", IEEE Trans. Audio Electroacoust. vol. 15, pp. 70-73, 1967. .. [2] M.S. Bartlett, "Periodogram Analysis and Continuous Spectra", Biometrika, vol. 37, pp. 1-16, 1950. Examples -------- >>> from scipy import signal >>> import matplotlib.pyplot as plt Generate a test signal, a 2 Vrms sine wave at 1234 Hz, corrupted by 0.001 V**2/Hz of white noise sampled at 10 kHz. >>> fs = 10e3 >>> N = 1e5 >>> amp = 2*np.sqrt(2) >>> freq = 1234.0 >>> noise_power = 0.001 * fs / 2 >>> time = np.arange(N) / fs >>> x = amp*np.sin(2*np.pi*freq*time) >>> x += np.random.normal(scale=np.sqrt(noise_power), size=time.shape) Compute and plot the power spectral density. >>> f, Pxx_den = signal.welch(x, fs, nperseg=1024) >>> plt.semilogy(f, Pxx_den) >>> plt.ylim([0.5e-3, 1]) >>> plt.xlabel('frequency [Hz]') >>> plt.ylabel('PSD [V**2/Hz]') >>> plt.show() If we average the last half of the spectral density, to exclude the peak, we can recover the noise power on the signal. >>> np.mean(Pxx_den[256:]) 0.0009924865443739191 Now compute and plot the power spectrum. >>> f, Pxx_spec = signal.welch(x, fs, 'flattop', 1024, scaling='spectrum') >>> plt.figure() >>> plt.semilogy(f, np.sqrt(Pxx_spec)) >>> plt.xlabel('frequency [Hz]') >>> plt.ylabel('Linear spectrum [V RMS]') >>> plt.show() The peak height in the power spectrum is an estimate of the RMS amplitude. >>> np.sqrt(Pxx_spec.max()) 2.0077340678640727 """ x = np.asarray(x) if x.size == 0: return np.empty(x.shape), np.empty(x.shape) if axis != -1: x = np.rollaxis(x, axis, len(x.shape)) if x.shape[-1] < nperseg: warnings.warn('nperseg = %d, is greater than x.shape[%d] = %d, using ' 'nperseg = x.shape[%d]' % (nperseg, axis, x.shape[axis], axis)) nperseg = x.shape[-1] if isinstance(window, string_types) or type(window) is tuple: win = get_window(window, nperseg) else: win = np.asarray(window) if len(win.shape) != 1: raise ValueError('window must be 1-D') if win.shape[0] > x.shape[-1]: raise ValueError('window is longer than x.') nperseg = win.shape[0] # numpy 1.5.1 doesn't have result_type. outdtype = (np.array([x[0]]) * np.array([1], 'f')).dtype.char.lower() if win.dtype != outdtype: win = win.astype(outdtype) if scaling == 'density': scale = 1.0 / (fs * (win*win).sum()) elif scaling == 'spectrum': scale = 1.0 / win.sum()**2 else: raise ValueError('Unknown scaling: %r' % scaling) if noverlap is None: noverlap = nperseg // 2 elif noverlap >= nperseg: raise ValueError('noverlap must be less than nperseg.') if nfft is None: nfft = nperseg elif nfft < nperseg: raise ValueError('nfft must be greater than or equal to nperseg.') if not detrend: detrend_func = lambda seg: seg elif not hasattr(detrend, '__call__'): detrend_func = lambda seg: signaltools.detrend(seg, type=detrend) elif axis != -1: # Wrap this function so that it receives a shape that it could # reasonably expect to receive. def detrend_func(seg): seg = np.rollaxis(seg, -1, axis) seg = detrend(seg) return np.rollaxis(seg, axis, len(seg.shape)) else: detrend_func = detrend step = nperseg - noverlap indices = np.arange(0, x.shape[-1]-nperseg+1, step) if np.isrealobj(x) and return_onesided: outshape = list(x.shape) if nfft % 2 == 0: # even outshape[-1] = nfft // 2 + 1 Pxx = np.empty(outshape, outdtype) for k, ind in enumerate(indices): x_dt = detrend_func(x[..., ind:ind+nperseg]) xft = fftpack.rfft(x_dt*win, nfft) # fftpack.rfft returns the positive frequency part of the fft # as real values, packed r r i r i r i ... # this indexing is to extract the matching real and imaginary # parts, while also handling the pure real zero and nyquist # frequencies. if k == 0: Pxx[..., (0,-1)] = xft[..., (0,-1)]**2 Pxx[..., 1:-1] = xft[..., 1:-1:2]**2 + xft[..., 2::2]**2 else: Pxx *= k/(k+1.0) Pxx[..., (0,-1)] += xft[..., (0,-1)]**2 / (k+1.0) Pxx[..., 1:-1] += (xft[..., 1:-1:2]**2 + xft[..., 2::2]**2) \ / (k+1.0) else: # odd outshape[-1] = (nfft+1) // 2 Pxx = np.empty(outshape, outdtype) for k, ind in enumerate(indices): x_dt = detrend_func(x[..., ind:ind+nperseg]) xft = fftpack.rfft(x_dt*win, nfft) if k == 0: Pxx[..., 0] = xft[..., 0]**2 Pxx[..., 1:] = xft[..., 1::2]**2 + xft[..., 2::2]**2 else: Pxx *= k/(k+1.0) Pxx[..., 0] += xft[..., 0]**2 / (k+1) Pxx[..., 1:] += (xft[..., 1::2]**2 + xft[..., 2::2]**2) \ / (k+1.0) Pxx[..., 1:-1] *= 2*scale Pxx[..., (0,-1)] *= scale f = np.arange(Pxx.shape[-1]) * (fs/nfft) else: for k, ind in enumerate(indices): x_dt = detrend_func(x[..., ind:ind+nperseg]) xft = fftpack.fft(x_dt*win, nfft) if k == 0: Pxx = (xft * xft.conj()).real else: Pxx *= k/(k+1.0) Pxx += (xft * xft.conj()).real / (k+1.0) Pxx *= scale f = fftpack.fftfreq(nfft, 1.0/fs) if axis != -1: Pxx = np.rollaxis(Pxx, -1, axis) return f, Pxx
bsd-3-clause
treycausey/scikit-learn
sklearn/neighbors/base.py
1
23445
"""Base and mixin classes for nearest neighbors""" # Authors: Jake Vanderplas <[email protected]> # Fabian Pedregosa <[email protected]> # Alexandre Gramfort <[email protected]> # Sparseness support by Lars Buitinck <[email protected]> # Multi-output support by Arnaud Joly <[email protected]> # # License: BSD 3 clause (C) INRIA, University of Amsterdam import warnings from abc import ABCMeta, abstractmethod import numpy as np from scipy.sparse import csr_matrix, issparse from .ball_tree import BallTree from .kd_tree import KDTree from ..base import BaseEstimator from ..metrics import pairwise_distances from ..metrics.pairwise import PAIRWISE_DISTANCE_FUNCTIONS from ..utils import safe_asarray, atleast2d_or_csr, check_arrays from ..utils.validation import DataConversionWarning from ..externals import six VALID_METRICS = dict(ball_tree=BallTree.valid_metrics, kd_tree=KDTree.valid_metrics, # The following list comes from the # sklearn.metrics.pairwise doc string brute=(list(PAIRWISE_DISTANCE_FUNCTIONS.keys()) + ['braycurtis', 'canberra', 'chebyshev', 'correlation', 'cosine', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule', 'wminkowski'])) VALID_METRICS_SPARSE = dict(ball_tree=[], kd_tree=[], brute=PAIRWISE_DISTANCE_FUNCTIONS.keys()) class NeighborsWarning(UserWarning): pass # Make sure that NeighborsWarning are displayed more than once warnings.simplefilter("always", NeighborsWarning) def _check_weights(weights): """Check to make sure weights are valid""" if weights in (None, 'uniform', 'distance'): return weights elif callable(weights): return weights else: raise ValueError("weights not recognized: should be 'uniform', " "'distance', or a callable function") def _get_weights(dist, weights): """Get the weights from an array of distances and a parameter ``weights`` Parameters =========== dist: ndarray The input distances weights: {'uniform', 'distance' or a callable} The kind of weighting used Returns ======== weights_arr: array of the same shape as ``dist`` if ``weights == 'uniform'``, then returns None """ if weights in (None, 'uniform'): return None elif weights == 'distance': with np.errstate(divide='ignore'): dist = 1. / dist return dist elif callable(weights): return weights(dist) else: raise ValueError("weights not recognized: should be 'uniform', " "'distance', or a callable function") class NeighborsBase(six.with_metaclass(ABCMeta, BaseEstimator)): """Base class for nearest neighbors estimators.""" @abstractmethod def __init__(self): pass def _init_params(self, n_neighbors=None, radius=None, algorithm='auto', leaf_size=30, metric='minkowski', p=2, **kwargs): self.n_neighbors = n_neighbors self.radius = radius self.algorithm = algorithm self.leaf_size = leaf_size self.metric = metric self.metric_kwds = kwargs self.p = p if algorithm not in ['auto', 'brute', 'kd_tree', 'ball_tree']: raise ValueError("unrecognized algorithm: '%s'" % algorithm) if algorithm == 'auto': alg_check = 'ball_tree' else: alg_check = algorithm if callable(metric): if algorithm == 'kd_tree': # callable metric is only valid for brute force and ball_tree raise ValueError( "kd_tree algorithm does not support callable metric '%s'" % metric) elif metric not in VALID_METRICS[alg_check]: raise ValueError("Metric '%s' not valid for algorithm '%s'" % (metric, algorithm)) if self.metric in ['wminkowski', 'minkowski']: self.metric_kwds['p'] = p if p < 1: raise ValueError("p must be greater than one " "for minkowski metric") self._fit_X = None self._tree = None self._fit_method = None def _fit(self, X): self.effective_metric_ = self.metric self.effective_metric_kwds_ = self.metric_kwds # For minkowski distance, use more efficient methods where available if self.metric == 'minkowski': self.effective_metric_kwds_ = self.metric_kwds.copy() p = self.effective_metric_kwds_.pop('p', 2) if p < 1: raise ValueError("p must be greater than one " "for minkowski metric") elif p == 1: self.effective_metric_ = 'manhattan' elif p == 2: self.effective_metric_ = 'euclidean' elif p == np.inf: self.effective_metric_ = 'chebyshev' else: self.effective_metric_kwds_['p'] = p if isinstance(X, NeighborsBase): self._fit_X = X._fit_X self._tree = X._tree self._fit_method = X._fit_method return self elif isinstance(X, BallTree): self._fit_X = X.data self._tree = X self._fit_method = 'ball_tree' return self elif isinstance(X, KDTree): self._fit_X = X.data self._tree = X self._fit_method = 'kd_tree' return self X = safe_asarray(X) if X.ndim != 2: raise ValueError("data type not understood") n_samples = X.shape[0] if n_samples == 0: raise ValueError("n_samples must be greater than 0") if issparse(X): if self.algorithm not in ('auto', 'brute'): warnings.warn("cannot use tree with sparse input: " "using brute force") if self.effective_metric_ not in VALID_METRICS_SPARSE['brute']: raise ValueError("metric '%s' not valid for sparse input" % self.effective_metric_) self._fit_X = X.tocsr() self._tree = None self._fit_method = 'brute' return self self._fit_method = self.algorithm self._fit_X = X if self._fit_method == 'auto': # A tree approach is better for small number of neighbors, # and KDTree is generally faster when available if (self.n_neighbors is None or self.n_neighbors < self._fit_X.shape[0] // 2): if self.effective_metric_ in VALID_METRICS['kd_tree']: self._fit_method = 'kd_tree' else: self._fit_method = 'ball_tree' else: self._fit_method = 'brute' if self._fit_method == 'ball_tree': self._tree = BallTree(X, self.leaf_size, metric=self.effective_metric_, **self.effective_metric_kwds_) elif self._fit_method == 'kd_tree': self._tree = KDTree(X, self.leaf_size, metric=self.effective_metric_, **self.effective_metric_kwds_) elif self._fit_method == 'brute': self._tree = None else: raise ValueError("algorithm = '%s' not recognized" % self.algorithm) return self class KNeighborsMixin(object): """Mixin for k-neighbors searches""" def kneighbors(self, X, n_neighbors=None, return_distance=True): """Finds the K-neighbors of a point. Returns distance Parameters ---------- X : array-like, last dimension same as that of fit data The new point. n_neighbors : int Number of neighbors to get (default is the value passed to the constructor). return_distance : boolean, optional. Defaults to True. If False, distances will not be returned Returns ------- dist : array Array representing the lengths to point, only present if return_distance=True ind : array Indices of the nearest points in the population matrix. Examples -------- In the following example, we construct a NeighborsClassifier class from an array representing our data set and ask who's the closest point to [1,1,1] >>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]] >>> from sklearn.neighbors import NearestNeighbors >>> neigh = NearestNeighbors(n_neighbors=1) >>> neigh.fit(samples) # doctest: +ELLIPSIS NearestNeighbors(algorithm='auto', leaf_size=30, ...) >>> print(neigh.kneighbors([1., 1., 1.])) # doctest: +ELLIPSIS (array([[ 0.5]]), array([[2]]...)) As you can see, it returns [[0.5]], and [[2]], which means that the element is at distance 0.5 and is the third element of samples (indexes start at 0). You can also query for multiple points: >>> X = [[0., 1., 0.], [1., 0., 1.]] >>> neigh.kneighbors(X, return_distance=False) # doctest: +ELLIPSIS array([[1], [2]]...) """ if self._fit_method is None: raise ValueError("must fit neighbors before querying") X = atleast2d_or_csr(X) if n_neighbors is None: n_neighbors = self.n_neighbors if self._fit_method == 'brute': # for efficiency, use squared euclidean distances if self.effective_metric_ == 'euclidean': dist = pairwise_distances(X, self._fit_X, 'euclidean', squared=True) else: dist = pairwise_distances(X, self._fit_X, self.effective_metric_, **self.effective_metric_kwds_) # XXX: should be implemented with a partial sort neigh_ind = dist.argsort(axis=1) neigh_ind = neigh_ind[:, :n_neighbors] if return_distance: j = np.arange(neigh_ind.shape[0])[:, None] if self.effective_metric_ == 'euclidean': return np.sqrt(dist[j, neigh_ind]), neigh_ind else: return dist[j, neigh_ind], neigh_ind else: return neigh_ind elif self._fit_method in ['ball_tree', 'kd_tree']: result = self._tree.query(X, n_neighbors, return_distance=return_distance) return result else: raise ValueError("internal: _fit_method not recognized") def kneighbors_graph(self, X, n_neighbors=None, mode='connectivity'): """Computes the (weighted) graph of k-Neighbors for points in X Parameters ---------- X : array-like, shape = [n_samples, n_features] Sample data n_neighbors : int Number of neighbors for each sample. (default is value passed to the constructor). mode : {'connectivity', 'distance'}, optional Type of returned matrix: 'connectivity' will return the connectivity matrix with ones and zeros, in 'distance' the edges are Euclidean distance between points. Returns ------- A : sparse matrix in CSR format, shape = [n_samples, n_samples_fit] n_samples_fit is the number of samples in the fitted data A[i, j] is assigned the weight of edge that connects i to j. Examples -------- >>> X = [[0], [3], [1]] >>> from sklearn.neighbors import NearestNeighbors >>> neigh = NearestNeighbors(n_neighbors=2) >>> neigh.fit(X) # doctest: +ELLIPSIS NearestNeighbors(algorithm='auto', leaf_size=30, ...) >>> A = neigh.kneighbors_graph(X) >>> A.todense() matrix([[ 1., 0., 1.], [ 0., 1., 1.], [ 1., 0., 1.]]) See also -------- NearestNeighbors.radius_neighbors_graph """ X = safe_asarray(X) if n_neighbors is None: n_neighbors = self.n_neighbors n_samples1 = X.shape[0] n_samples2 = self._fit_X.shape[0] n_nonzero = n_samples1 * n_neighbors A_indptr = np.arange(0, n_nonzero + 1, n_neighbors) # construct CSR matrix representation of the k-NN graph if mode == 'connectivity': A_data = np.ones((n_samples1, n_neighbors)) A_ind = self.kneighbors(X, n_neighbors, return_distance=False) elif mode == 'distance': data, ind = self.kneighbors(X, n_neighbors + 1, return_distance=True) A_data, A_ind = data[:, 1:], ind[:, 1:] else: raise ValueError( 'Unsupported mode, must be one of "connectivity" ' 'or "distance" but got "%s" instead' % mode) return csr_matrix((A_data.ravel(), A_ind.ravel(), A_indptr), shape=(n_samples1, n_samples2)) class RadiusNeighborsMixin(object): """Mixin for radius-based neighbors searches""" def radius_neighbors(self, X, radius=None, return_distance=True): """Finds the neighbors within a given radius of a point or points. Returns indices of and distances to the neighbors of each point. Parameters ---------- X : array-like, last dimension same as that of fit data The new point or points radius : float Limiting distance of neighbors to return. (default is the value passed to the constructor). return_distance : boolean, optional. Defaults to True. If False, distances will not be returned Returns ------- dist : array Array representing the euclidean distances to each point, only present if return_distance=True. ind : array Indices of the nearest points in the population matrix. Examples -------- In the following example, we construct a NeighborsClassifier class from an array representing our data set and ask who's the closest point to [1,1,1] >>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]] >>> from sklearn.neighbors import NearestNeighbors >>> neigh = NearestNeighbors(radius=1.6) >>> neigh.fit(samples) # doctest: +ELLIPSIS NearestNeighbors(algorithm='auto', leaf_size=30, ...) >>> print(neigh.radius_neighbors([1., 1., 1.])) # doctest: +ELLIPSIS (array([[ 1.5, 0.5]]...), array([[1, 2]]...) The first array returned contains the distances to all points which are closer than 1.6, while the second array returned contains their indices. In general, multiple points can be queried at the same time. Notes ----- Because the number of neighbors of each point is not necessarily equal, the results for multiple query points cannot be fit in a standard data array. For efficiency, `radius_neighbors` returns arrays of objects, where each object is a 1D array of indices or distances. """ if self._fit_method is None: raise ValueError("must fit neighbors before querying") X = atleast2d_or_csr(X) if radius is None: radius = self.radius if self._fit_method == 'brute': # for efficiency, use squared euclidean distances if self.effective_metric_ == 'euclidean': dist = pairwise_distances(X, self._fit_X, 'euclidean', squared=True) radius *= radius else: dist = pairwise_distances(X, self._fit_X, self.effective_metric_, **self.effective_metric_kwds_) neigh_ind = [np.where(d < radius)[0] for d in dist] # if there are the same number of neighbors for each point, # we can do a normal array. Otherwise, we return an object # array with elements that are numpy arrays try: neigh_ind = np.asarray(neigh_ind, dtype=int) dtype_F = float except ValueError: neigh_ind = np.asarray(neigh_ind, dtype='object') dtype_F = object if return_distance: if self.effective_metric_ == 'euclidean': dist = np.array([np.sqrt(d[neigh_ind[i]]) for i, d in enumerate(dist)], dtype=dtype_F) else: dist = np.array([d[neigh_ind[i]] for i, d in enumerate(dist)], dtype=dtype_F) return dist, neigh_ind else: return neigh_ind elif self._fit_method in ['ball_tree', 'kd_tree']: results = self._tree.query_radius(X, radius, return_distance=return_distance) if return_distance: ind, dist = results return dist, ind else: return results else: raise ValueError("internal: _fit_method not recognized") def radius_neighbors_graph(self, X, radius=None, mode='connectivity'): """Computes the (weighted) graph of Neighbors for points in X Neighborhoods are restricted the points at a distance lower than radius. Parameters ---------- X : array-like, shape = [n_samples, n_features] Sample data radius : float Radius of neighborhoods. (default is the value passed to the constructor). mode : {'connectivity', 'distance'}, optional Type of returned matrix: 'connectivity' will return the connectivity matrix with ones and zeros, in 'distance' the edges are Euclidean distance between points. Returns ------- A : sparse matrix in CSR format, shape = [n_samples, n_samples] A[i, j] is assigned the weight of edge that connects i to j. Examples -------- >>> X = [[0], [3], [1]] >>> from sklearn.neighbors import NearestNeighbors >>> neigh = NearestNeighbors(radius=1.5) >>> neigh.fit(X) # doctest: +ELLIPSIS NearestNeighbors(algorithm='auto', leaf_size=30, ...) >>> A = neigh.radius_neighbors_graph(X) >>> A.todense() matrix([[ 1., 0., 1.], [ 0., 1., 0.], [ 1., 0., 1.]]) See also -------- kneighbors_graph """ X = safe_asarray(X) if radius is None: radius = self.radius n_samples1 = X.shape[0] n_samples2 = self._fit_X.shape[0] # construct CSR matrix representation of the NN graph if mode == 'connectivity': A_ind = self.radius_neighbors(X, radius, return_distance=False) A_data = None elif mode == 'distance': dist, A_ind = self.radius_neighbors(X, radius, return_distance=True) A_data = np.concatenate(list(dist)) else: raise ValueError( 'Unsupported mode, must be one of "connectivity", ' 'or "distance" but got %s instead' % mode) n_neighbors = np.array([len(a) for a in A_ind]) n_nonzero = np.sum(n_neighbors) if A_data is None: A_data = np.ones(n_nonzero) A_ind = np.concatenate(list(A_ind)) A_indptr = np.concatenate((np.zeros(1, dtype=int), np.cumsum(n_neighbors))) return csr_matrix((A_data, A_ind, A_indptr), shape=(n_samples1, n_samples2)) class SupervisedFloatMixin(object): def fit(self, X, y): """Fit the model using X as training data and y as target values Parameters ---------- X : {array-like, sparse matrix, BallTree, KDTree} Training data. If array or matrix, shape = [n_samples, n_features] y : {array-like, sparse matrix} Target values, array of float values, shape = [n_samples] or [n_samples, n_outputs] """ if not isinstance(X, (KDTree, BallTree)): X, y = check_arrays(X, y, sparse_format="csr") self._y = y return self._fit(X) class SupervisedIntegerMixin(object): def fit(self, X, y): """Fit the model using X as training data and y as target values Parameters ---------- X : {array-like, sparse matrix, BallTree, KDTree} Training data. If array or matrix, shape = [n_samples, n_features] y : {array-like, sparse matrix} Target values of shape = [n_samples] or [n_samples, n_outputs] """ if not isinstance(X, (KDTree, BallTree)): X, y = check_arrays(X, y, sparse_format="csr") if y.ndim == 1 or y.ndim == 2 and y.shape[1] == 1: if y.ndim != 1: warnings.warn("A column-vector y was passed when a 1d array " "was expected. Please change the shape of y to " "(n_samples, ), for example using ravel().", DataConversionWarning, stacklevel=2) self.outputs_2d_ = False y = y.reshape((-1, 1)) else: self.outputs_2d_ = True self.classes_ = [] self._y = np.empty(y.shape, dtype=np.int) for k in range(self._y.shape[1]): classes, self._y[:, k] = np.unique(y[:, k], return_inverse=True) self.classes_.append(classes) if not self.outputs_2d_: self.classes_ = self.classes_[0] self._y = self._y.ravel() return self._fit(X) class UnsupervisedMixin(object): def fit(self, X, y=None): """Fit the model using X as training data Parameters ---------- X : {array-like, sparse matrix, BallTree, KDTree} Training data. If array or matrix, shape = [n_samples, n_features] """ return self._fit(X)
bsd-3-clause
altairpearl/scikit-learn
examples/model_selection/plot_underfitting_overfitting.py
53
2668
""" ============================ Underfitting vs. Overfitting ============================ This example demonstrates the problems of underfitting and overfitting and how we can use linear regression with polynomial features to approximate nonlinear functions. The plot shows the function that we want to approximate, which is a part of the cosine function. In addition, the samples from the real function and the approximations of different models are displayed. The models have polynomial features of different degrees. We can see that a linear function (polynomial with degree 1) is not sufficient to fit the training samples. This is called **underfitting**. A polynomial of degree 4 approximates the true function almost perfectly. However, for higher degrees the model will **overfit** the training data, i.e. it learns the noise of the training data. We evaluate quantitatively **overfitting** / **underfitting** by using cross-validation. We calculate the mean squared error (MSE) on the validation set, the higher, the less likely the model generalizes correctly from the training data. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.pipeline import Pipeline from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import LinearRegression from sklearn.model_selection import cross_val_score np.random.seed(0) n_samples = 30 degrees = [1, 4, 15] true_fun = lambda X: np.cos(1.5 * np.pi * X) X = np.sort(np.random.rand(n_samples)) y = true_fun(X) + np.random.randn(n_samples) * 0.1 plt.figure(figsize=(14, 5)) for i in range(len(degrees)): ax = plt.subplot(1, len(degrees), i + 1) plt.setp(ax, xticks=(), yticks=()) polynomial_features = PolynomialFeatures(degree=degrees[i], include_bias=False) linear_regression = LinearRegression() pipeline = Pipeline([("polynomial_features", polynomial_features), ("linear_regression", linear_regression)]) pipeline.fit(X[:, np.newaxis], y) # Evaluate the models using crossvalidation scores = cross_val_score(pipeline, X[:, np.newaxis], y, scoring="mean_squared_error", cv=10) X_test = np.linspace(0, 1, 100) plt.plot(X_test, pipeline.predict(X_test[:, np.newaxis]), label="Model") plt.plot(X_test, true_fun(X_test), label="True function") plt.scatter(X, y, label="Samples") plt.xlabel("x") plt.ylabel("y") plt.xlim((0, 1)) plt.ylim((-2, 2)) plt.legend(loc="best") plt.title("Degree {}\nMSE = {:.2e}(+/- {:.2e})".format( degrees[i], -scores.mean(), scores.std())) plt.show()
bsd-3-clause
bmcfee/mir_eval
setup.py
1
1087
from setuptools import setup with open('README.rst') as file: long_description = file.read() setup( name='mir_eval', version='0.4', description='Common metrics for common audio/music processing tasks.', author='Colin Raffel', author_email='[email protected]', url='https://github.com/craffel/mir_eval', packages=['mir_eval'], long_description=long_description, classifiers=[ "License :: OSI Approved :: MIT License", "Programming Language :: Python", 'Development Status :: 5 - Production/Stable', "Intended Audience :: Developers", "Topic :: Multimedia :: Sound/Audio :: Analysis", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3", ], keywords='audio music mir dsp', license='MIT', install_requires=[ 'numpy >= 1.7.0', 'scipy >= 0.14.0', 'future', 'six' ], extras_require={ 'display': ['matplotlib>=1.5.0', 'scipy>=0.16.0'], 'testing': ['matplotlib>=2.1.0'] } )
mit
anand-c-goog/tensorflow
tensorflow/contrib/learn/python/learn/estimators/__init__.py
3
2595
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Estimators.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.learn.python.learn.estimators._sklearn import NotFittedError from tensorflow.contrib.learn.python.learn.estimators.classifier import Classifier from tensorflow.contrib.learn.python.learn.estimators.dnn import DNNClassifier from tensorflow.contrib.learn.python.learn.estimators.dnn import DNNRegressor from tensorflow.contrib.learn.python.learn.estimators.dnn_linear_combined import DNNLinearCombinedClassifier from tensorflow.contrib.learn.python.learn.estimators.dnn_linear_combined import DNNLinearCombinedRegressor from tensorflow.contrib.learn.python.learn.estimators.estimator import BaseEstimator from tensorflow.contrib.learn.python.learn.estimators.estimator import Estimator from tensorflow.contrib.learn.python.learn.estimators.estimator import infer_real_valued_columns_from_input from tensorflow.contrib.learn.python.learn.estimators.estimator import infer_real_valued_columns_from_input_fn from tensorflow.contrib.learn.python.learn.estimators.estimator import ModeKeys from tensorflow.contrib.learn.python.learn.estimators.head import MetricKey from tensorflow.contrib.learn.python.learn.estimators.head import PredictionKey from tensorflow.contrib.learn.python.learn.estimators.linear import LinearClassifier from tensorflow.contrib.learn.python.learn.estimators.linear import LinearRegressor from tensorflow.contrib.learn.python.learn.estimators.logistic_regressor import LogisticRegressor from tensorflow.contrib.learn.python.learn.estimators.random_forest import TensorForestEstimator from tensorflow.contrib.learn.python.learn.estimators.random_forest import TensorForestLossMonitor from tensorflow.contrib.learn.python.learn.estimators.run_config import RunConfig from tensorflow.contrib.learn.python.learn.estimators.svm import SVM
apache-2.0
schreiberx/sweet
benchmarks_sphere/paper_jrn_parco_rexi_nonlinear/test_ln2_convergence/postprocessing_consolidate.py
1
2722
#! /usr/bin/env python3 import sys import math from mule_local.JobMule import * from mule.plotting.Plotting import * from mule.postprocessing.JobsData import * from mule.postprocessing.JobsDataConsolidate import * import matplotlib.pyplot as plt from matplotlib.lines import Line2D groups = ['runtime.timestepping_method', 'runtime.max_simulation_time'] tagnames_y = [ 'sphere_data_diff_prog_h.norm_l1', 'sphere_data_diff_prog_h.norm_linf', ] j = JobsData('./job_bench_*', verbosity=0) c = JobsDataConsolidate(j) print("") print("Groups:") job_groups = c.create_groups(groups) for key, g in job_groups.items(): print(key) # Filter out errors beyond this value! def data_filter(x, y, jobdata): x = float(x) y = float(y) return False # Filter out NaNs for wallclock time studies # NaNs require significantly more computation time if math.isnan(y): return True if y > 10.0: return True return False for tagname_y in tagnames_y: print("*"*80) print("Processing tagname "+tagname_y) print("*"*80) params = [ { 'tagname_x': 'runtime.timestep_size', 'xlabel': "Timestep size", 'ylabel': tagname_y, 'title': 'Timestep size vs. error', 'xscale': 'log', 'yscale': 'log', }, ] """ params += [ { 'tagname_x': 'output.simulation_benchmark_timings.main_timestepping', 'xlabel': "Wallclock time (seconds)", 'ylabel': tagname_y, 'title': 'Wallclock time vs. error', 'xscale': 'log', 'yscale': 'log', }, ] """ for param in params: tagname_x = param['tagname_x'] xlabel = param['xlabel'] ylabel = param['ylabel'] title = param['title'] xscale = param['xscale'] yscale = param['yscale'] print("*"*80) print("Processing tag "+tagname_x) print("*"*80) #if True: if False: """ Table format """ d = JobsData_GroupsDataTable( job_groups, tagname_x, tagname_y, data_filter = data_filter ) fileid = "output_table_"+tagname_x.replace('.', '-').replace('_', '-')+"_vs_"+tagname_y.replace('.', '-').replace('_', '-') print("Data table:") d.print() #d.write(fileid+".csv") if True: """ Plotting format """ d = JobsData_GroupsPlottingScattered( job_groups, tagname_x, tagname_y, data_filter = data_filter ) for key, group_data in d.get_data_float().items(): print("Group: "+key) prev_value = -1.0 conv = '-' for (x, y) in zip(group_data['x_values'], group_data['y_values']): if prev_value >= 0: conv = y/prev_value print("\t"+str(x)+"\t=>\t"+str(y)+"\tconvergence: "+str(conv)) prev_value = y print("Info:") print(" NaN: Errors in simulations") print(" None: No data available")
mit
shadmanj/college-code
BME301-Bioelectricity/hodgkin-huxley-solver-PYTHON/2nd-order-DE-solver.py
1
3308
#Shadman Jubaer #BME 301 #HW 2 #These functions will numerically solve a second order differential #equation using either Euler or Runge-Kutta numerical solving methods. #------------------------------------------------------------ import math as m import matplotlib.pyplot as plt #Generates interval over which to solve numerically #Interval created between a start and stop value with #a given step-size. def irange(start,stop,step): while start <= stop: yield start start += step #Solves 2nd Order ODE using Euler #Input arguments: #ode_u1 = y'(t) #ode_u2 = y''(t) #interval: x domain over which to solve #initial_value_u1: initial y value #initial value_u2: initial y' value #Outputs: #y: numerically solved y(t) values #yp: numerically solved y'(t) values def euler(ode_u1,ode_u2,interval,step_size,initial_value_u1,initial_value_u2): u1 = initial_value_u1 u2 = initial_value_u2 h = step_size y = [] yp = [] for i in interval: u2 = u2 + h*ode_u2(i,u1,u2) yp.append(u2) u1 = u1 + h*ode_u1(i,u1,u2) y.append(u1) return y, yp #Solves 2nd Order ODE using Runge-Kutta #Solves 2nd Order ODE using Euler #Input arguments: #ode_u1 = y'(t) #ode_u2 = y''(t) #interval: x domain over which to solve #initial_value_u1: initial y value #initial value_u2: initial y' value #Outputs: #y: numerically solved y(t) values #yp: numerically solved y'(t) values def rk(ode_u1,ode_u2,interval,step_size,initial_value_u1,initial_value_u2): u1 = initial_value_u1 u2 = initial_value_u2 h = step_size y = [] yp = [] for i in interval: k1p = ode_u2(i,u1,u2) k2p = ode_u2(i+(h/2),u1,u2) k3p = ode_u2(i+(h/2),u1,u2) k4p = ode_u2(i+(h),u1,u2) u2 = u2 + h*((k1p + k2p*2 + k3p*2 + k4p)/6) yp.append(u2) k1 = ode_u1(i,u1,u2) k2 = ode_u1(i+(h/2),u1,u2) k3 = ode_u1(i+(h/2),u1,u2) k4 = ode_u1(i+(h),u1,u2) u1 = u1 + h*((k1 + k2*2 + k3*2 + k4)/6) y.append(u1) return y, yp #----------------------- TEST FUNCTIONS --------------------- ''' #Returns y' def u1(t,u1,u2): u1_prime = u2 return u1_prime #y'' = -sin(t) def u2(t,u1,u2): u2_prime = -m.sin(t) return u2_prime #------------------- ------------------------- #------------------- TEST ------------------------- #------------------- ------------------------- start = 0 stop = 50*m.pi N = 1000 h = (stop-start)/(N-1) x_hw = list(i for i in irange(start,stop,h)) y_initial = m.sin(start) y_prime_initial = m.cos(start) ans_euler, ans_eulerp = euler(u1,u2,x_hw, h, y_initial, y_prime_initial) y_analitical = [m.sin(step) for step in x_hw] y_analitical_p = [m.cos(step) for step in x_hw] ans_rk, ans_rkp = rk(u1,u2,x_hw, h, y_initial, y_prime_initial) #-------------------------------------------------------------- t = x_hw plt.plot(t, ans_euler, 'blue', t, ans_rk, 'red',t, y_analitical,'green') plt.show() #-------------------------------------------------------------- '''
mit
bikong2/scikit-learn
sklearn/tests/test_pipeline.py
162
14875
""" Test the pipeline module. """ import numpy as np from scipy import sparse from sklearn.externals.six.moves import zip from sklearn.utils.testing import assert_raises, assert_raises_regex, assert_raise_message from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.base import clone from sklearn.pipeline import Pipeline, FeatureUnion, make_pipeline, make_union from sklearn.svm import SVC from sklearn.linear_model import LogisticRegression from sklearn.linear_model import LinearRegression from sklearn.cluster import KMeans from sklearn.feature_selection import SelectKBest, f_classif from sklearn.decomposition import PCA, RandomizedPCA, TruncatedSVD from sklearn.datasets import load_iris from sklearn.preprocessing import StandardScaler from sklearn.feature_extraction.text import CountVectorizer JUNK_FOOD_DOCS = ( "the pizza pizza beer copyright", "the pizza burger beer copyright", "the the pizza beer beer copyright", "the burger beer beer copyright", "the coke burger coke copyright", "the coke burger burger", ) class IncorrectT(object): """Small class to test parameter dispatching. """ def __init__(self, a=None, b=None): self.a = a self.b = b class T(IncorrectT): def fit(self, X, y): return self def get_params(self, deep=False): return {'a': self.a, 'b': self.b} def set_params(self, **params): self.a = params['a'] return self class TransfT(T): def transform(self, X, y=None): return X class FitParamT(object): """Mock classifier """ def __init__(self): self.successful = False pass def fit(self, X, y, should_succeed=False): self.successful = should_succeed def predict(self, X): return self.successful def test_pipeline_init(): # Test the various init parameters of the pipeline. assert_raises(TypeError, Pipeline) # Check that we can't instantiate pipelines with objects without fit # method pipe = assert_raises(TypeError, Pipeline, [('svc', IncorrectT)]) # Smoke test with only an estimator clf = T() pipe = Pipeline([('svc', clf)]) assert_equal(pipe.get_params(deep=True), dict(svc__a=None, svc__b=None, svc=clf, **pipe.get_params(deep=False) )) # Check that params are set pipe.set_params(svc__a=0.1) assert_equal(clf.a, 0.1) assert_equal(clf.b, None) # Smoke test the repr: repr(pipe) # Test with two objects clf = SVC() filter1 = SelectKBest(f_classif) pipe = Pipeline([('anova', filter1), ('svc', clf)]) # Check that we can't use the same stage name twice assert_raises(ValueError, Pipeline, [('svc', SVC()), ('svc', SVC())]) # Check that params are set pipe.set_params(svc__C=0.1) assert_equal(clf.C, 0.1) # Smoke test the repr: repr(pipe) # Check that params are not set when naming them wrong assert_raises(ValueError, pipe.set_params, anova__C=0.1) # Test clone pipe2 = clone(pipe) assert_false(pipe.named_steps['svc'] is pipe2.named_steps['svc']) # Check that apart from estimators, the parameters are the same params = pipe.get_params(deep=True) params2 = pipe2.get_params(deep=True) for x in pipe.get_params(deep=False): params.pop(x) for x in pipe2.get_params(deep=False): params2.pop(x) # Remove estimators that where copied params.pop('svc') params.pop('anova') params2.pop('svc') params2.pop('anova') assert_equal(params, params2) def test_pipeline_methods_anova(): # Test the various methods of the pipeline (anova). iris = load_iris() X = iris.data y = iris.target # Test with Anova + LogisticRegression clf = LogisticRegression() filter1 = SelectKBest(f_classif, k=2) pipe = Pipeline([('anova', filter1), ('logistic', clf)]) pipe.fit(X, y) pipe.predict(X) pipe.predict_proba(X) pipe.predict_log_proba(X) pipe.score(X, y) def test_pipeline_fit_params(): # Test that the pipeline can take fit parameters pipe = Pipeline([('transf', TransfT()), ('clf', FitParamT())]) pipe.fit(X=None, y=None, clf__should_succeed=True) # classifier should return True assert_true(pipe.predict(None)) # and transformer params should not be changed assert_true(pipe.named_steps['transf'].a is None) assert_true(pipe.named_steps['transf'].b is None) def test_pipeline_raise_set_params_error(): # Test pipeline raises set params error message for nested models. pipe = Pipeline([('cls', LinearRegression())]) # expected error message error_msg = ('Invalid parameter %s for estimator %s. ' 'Check the list of available parameters ' 'with `estimator.get_params().keys()`.') assert_raise_message(ValueError, error_msg % ('fake', 'Pipeline'), pipe.set_params, fake='nope') # nested model check assert_raise_message(ValueError, error_msg % ("fake", pipe), pipe.set_params, fake__estimator='nope') def test_pipeline_methods_pca_svm(): # Test the various methods of the pipeline (pca + svm). iris = load_iris() X = iris.data y = iris.target # Test with PCA + SVC clf = SVC(probability=True, random_state=0) pca = PCA(n_components='mle', whiten=True) pipe = Pipeline([('pca', pca), ('svc', clf)]) pipe.fit(X, y) pipe.predict(X) pipe.predict_proba(X) pipe.predict_log_proba(X) pipe.score(X, y) def test_pipeline_methods_preprocessing_svm(): # Test the various methods of the pipeline (preprocessing + svm). iris = load_iris() X = iris.data y = iris.target n_samples = X.shape[0] n_classes = len(np.unique(y)) scaler = StandardScaler() pca = RandomizedPCA(n_components=2, whiten=True) clf = SVC(probability=True, random_state=0) for preprocessing in [scaler, pca]: pipe = Pipeline([('preprocess', preprocessing), ('svc', clf)]) pipe.fit(X, y) # check shapes of various prediction functions predict = pipe.predict(X) assert_equal(predict.shape, (n_samples,)) proba = pipe.predict_proba(X) assert_equal(proba.shape, (n_samples, n_classes)) log_proba = pipe.predict_log_proba(X) assert_equal(log_proba.shape, (n_samples, n_classes)) decision_function = pipe.decision_function(X) assert_equal(decision_function.shape, (n_samples, n_classes)) pipe.score(X, y) def test_fit_predict_on_pipeline(): # test that the fit_predict method is implemented on a pipeline # test that the fit_predict on pipeline yields same results as applying # transform and clustering steps separately iris = load_iris() scaler = StandardScaler() km = KMeans(random_state=0) # first compute the transform and clustering step separately scaled = scaler.fit_transform(iris.data) separate_pred = km.fit_predict(scaled) # use a pipeline to do the transform and clustering in one step pipe = Pipeline([('scaler', scaler), ('Kmeans', km)]) pipeline_pred = pipe.fit_predict(iris.data) assert_array_almost_equal(pipeline_pred, separate_pred) def test_fit_predict_on_pipeline_without_fit_predict(): # tests that a pipeline does not have fit_predict method when final # step of pipeline does not have fit_predict defined scaler = StandardScaler() pca = PCA() pipe = Pipeline([('scaler', scaler), ('pca', pca)]) assert_raises_regex(AttributeError, "'PCA' object has no attribute 'fit_predict'", getattr, pipe, 'fit_predict') def test_feature_union(): # basic sanity check for feature union iris = load_iris() X = iris.data X -= X.mean(axis=0) y = iris.target svd = TruncatedSVD(n_components=2, random_state=0) select = SelectKBest(k=1) fs = FeatureUnion([("svd", svd), ("select", select)]) fs.fit(X, y) X_transformed = fs.transform(X) assert_equal(X_transformed.shape, (X.shape[0], 3)) # check if it does the expected thing assert_array_almost_equal(X_transformed[:, :-1], svd.fit_transform(X)) assert_array_equal(X_transformed[:, -1], select.fit_transform(X, y).ravel()) # test if it also works for sparse input # We use a different svd object to control the random_state stream fs = FeatureUnion([("svd", svd), ("select", select)]) X_sp = sparse.csr_matrix(X) X_sp_transformed = fs.fit_transform(X_sp, y) assert_array_almost_equal(X_transformed, X_sp_transformed.toarray()) # test setting parameters fs.set_params(select__k=2) assert_equal(fs.fit_transform(X, y).shape, (X.shape[0], 4)) # test it works with transformers missing fit_transform fs = FeatureUnion([("mock", TransfT()), ("svd", svd), ("select", select)]) X_transformed = fs.fit_transform(X, y) assert_equal(X_transformed.shape, (X.shape[0], 8)) def test_make_union(): pca = PCA() mock = TransfT() fu = make_union(pca, mock) names, transformers = zip(*fu.transformer_list) assert_equal(names, ("pca", "transft")) assert_equal(transformers, (pca, mock)) def test_pipeline_transform(): # Test whether pipeline works with a transformer at the end. # Also test pipeline.transform and pipeline.inverse_transform iris = load_iris() X = iris.data pca = PCA(n_components=2) pipeline = Pipeline([('pca', pca)]) # test transform and fit_transform: X_trans = pipeline.fit(X).transform(X) X_trans2 = pipeline.fit_transform(X) X_trans3 = pca.fit_transform(X) assert_array_almost_equal(X_trans, X_trans2) assert_array_almost_equal(X_trans, X_trans3) X_back = pipeline.inverse_transform(X_trans) X_back2 = pca.inverse_transform(X_trans) assert_array_almost_equal(X_back, X_back2) def test_pipeline_fit_transform(): # Test whether pipeline works with a transformer missing fit_transform iris = load_iris() X = iris.data y = iris.target transft = TransfT() pipeline = Pipeline([('mock', transft)]) # test fit_transform: X_trans = pipeline.fit_transform(X, y) X_trans2 = transft.fit(X, y).transform(X) assert_array_almost_equal(X_trans, X_trans2) def test_make_pipeline(): t1 = TransfT() t2 = TransfT() pipe = make_pipeline(t1, t2) assert_true(isinstance(pipe, Pipeline)) assert_equal(pipe.steps[0][0], "transft-1") assert_equal(pipe.steps[1][0], "transft-2") pipe = make_pipeline(t1, t2, FitParamT()) assert_true(isinstance(pipe, Pipeline)) assert_equal(pipe.steps[0][0], "transft-1") assert_equal(pipe.steps[1][0], "transft-2") assert_equal(pipe.steps[2][0], "fitparamt") def test_feature_union_weights(): # test feature union with transformer weights iris = load_iris() X = iris.data y = iris.target pca = RandomizedPCA(n_components=2, random_state=0) select = SelectKBest(k=1) # test using fit followed by transform fs = FeatureUnion([("pca", pca), ("select", select)], transformer_weights={"pca": 10}) fs.fit(X, y) X_transformed = fs.transform(X) # test using fit_transform fs = FeatureUnion([("pca", pca), ("select", select)], transformer_weights={"pca": 10}) X_fit_transformed = fs.fit_transform(X, y) # test it works with transformers missing fit_transform fs = FeatureUnion([("mock", TransfT()), ("pca", pca), ("select", select)], transformer_weights={"mock": 10}) X_fit_transformed_wo_method = fs.fit_transform(X, y) # check against expected result # We use a different pca object to control the random_state stream assert_array_almost_equal(X_transformed[:, :-1], 10 * pca.fit_transform(X)) assert_array_equal(X_transformed[:, -1], select.fit_transform(X, y).ravel()) assert_array_almost_equal(X_fit_transformed[:, :-1], 10 * pca.fit_transform(X)) assert_array_equal(X_fit_transformed[:, -1], select.fit_transform(X, y).ravel()) assert_equal(X_fit_transformed_wo_method.shape, (X.shape[0], 7)) def test_feature_union_parallel(): # test that n_jobs work for FeatureUnion X = JUNK_FOOD_DOCS fs = FeatureUnion([ ("words", CountVectorizer(analyzer='word')), ("chars", CountVectorizer(analyzer='char')), ]) fs_parallel = FeatureUnion([ ("words", CountVectorizer(analyzer='word')), ("chars", CountVectorizer(analyzer='char')), ], n_jobs=2) fs_parallel2 = FeatureUnion([ ("words", CountVectorizer(analyzer='word')), ("chars", CountVectorizer(analyzer='char')), ], n_jobs=2) fs.fit(X) X_transformed = fs.transform(X) assert_equal(X_transformed.shape[0], len(X)) fs_parallel.fit(X) X_transformed_parallel = fs_parallel.transform(X) assert_equal(X_transformed.shape, X_transformed_parallel.shape) assert_array_equal( X_transformed.toarray(), X_transformed_parallel.toarray() ) # fit_transform should behave the same X_transformed_parallel2 = fs_parallel2.fit_transform(X) assert_array_equal( X_transformed.toarray(), X_transformed_parallel2.toarray() ) # transformers should stay fit after fit_transform X_transformed_parallel2 = fs_parallel2.transform(X) assert_array_equal( X_transformed.toarray(), X_transformed_parallel2.toarray() ) def test_feature_union_feature_names(): word_vect = CountVectorizer(analyzer="word") char_vect = CountVectorizer(analyzer="char_wb", ngram_range=(3, 3)) ft = FeatureUnion([("chars", char_vect), ("words", word_vect)]) ft.fit(JUNK_FOOD_DOCS) feature_names = ft.get_feature_names() for feat in feature_names: assert_true("chars__" in feat or "words__" in feat) assert_equal(len(feature_names), 35) def test_classes_property(): iris = load_iris() X = iris.data y = iris.target reg = make_pipeline(SelectKBest(k=1), LinearRegression()) reg.fit(X, y) assert_raises(AttributeError, getattr, reg, "classes_") clf = make_pipeline(SelectKBest(k=1), LogisticRegression(random_state=0)) assert_raises(AttributeError, getattr, clf, "classes_") clf.fit(X, y) assert_array_equal(clf.classes_, np.unique(y))
bsd-3-clause
MKLab-ITI/news-popularity-prediction
news_popularity_prediction/learning/ranking.py
1
12176
__author__ = 'Georgios Rizos ([email protected])' import os import numpy as np from scipy.stats import kendalltau import pandas as pd from sklearn.ensemble import RandomForestRegressor from sklearn.cross_validation import KFold from news_popularity_prediction.datautil.common import get_threads_number from news_popularity_prediction.datautil.feature_rw import h5_open, h5_close, h5load_from, h5store_at,\ load_sklearn_model, store_sklearn_model def random_ranking(y_train, X_test): pass def initialize_k_evaluation_measures(number_of_k, number_of_folds, number_of_features): kendall_tau_score_array = np.empty((number_of_k, number_of_folds), dtype=np.float64) p_value_array = np.empty((number_of_k, number_of_folds), dtype=np.float64) mean_square_error = np.empty((number_of_k, number_of_folds), dtype=np.float64) top_k_jaccard = np.empty((number_of_k, number_of_folds), dtype=np.float64) feature_importances_array = np.empty([number_of_k, number_of_folds, number_of_features], dtype=np.float64) k_evaluation_measures = [kendall_tau_score_array, p_value_array, mean_square_error, top_k_jaccard, feature_importances_array] return k_evaluation_measures def update_k_evaluation_measures(k_evaluation_measures, k_index, evaluation_measure_arrays): k_evaluation_measures[0][k_index, :] = evaluation_measure_arrays[0] k_evaluation_measures[1][k_index, :] = evaluation_measure_arrays[1] k_evaluation_measures[2][k_index, :] = evaluation_measure_arrays[2] k_evaluation_measures[3][k_index, :] = evaluation_measure_arrays[3] try: k_evaluation_measures[4][k_index, :, :] = np.squeeze(evaluation_measure_arrays[4]) except ValueError: k_evaluation_measures[4][k_index, :, :] = evaluation_measure_arrays[4] print("Kendall's tau: ", np.mean(evaluation_measure_arrays[0])) print("Mean MSE: ", np.mean(evaluation_measure_arrays[2])) print("Top-100 Jaccard: ", np.mean(evaluation_measure_arrays[3])) def store_k_evaluation_measures(store_path, k_list, k_evaluation_measures, feature_column_names): number_of_folds = k_evaluation_measures[0].shape[1] h5_store = h5_open(store_path + "results.h5") for fold_index in range(number_of_folds): data_frame = pd.DataFrame(k_evaluation_measures[0][:, fold_index], columns=["kendall_tau"], index=k_list) h5store_at(h5_store, "/data/kendall_tau/fold" + str(fold_index), data_frame) data_frame = pd.DataFrame(k_evaluation_measures[1][:, fold_index], columns=["p_value"], index=k_list) h5store_at(h5_store, "/data/p_value/fold" + str(fold_index), data_frame) data_frame = pd.DataFrame(k_evaluation_measures[2][:, fold_index], columns=["mse"], index=k_list) h5store_at(h5_store, "/data/mse/fold" + str(fold_index), data_frame) data_frame = pd.DataFrame(k_evaluation_measures[3][:, fold_index], columns=["jaccard"], index=k_list) h5store_at(h5_store, "/data/top_k_jaccard/fold" + str(fold_index), data_frame) data_frame = pd.DataFrame(k_evaluation_measures[4][:, fold_index, :], columns=feature_column_names, index=k_list) h5store_at(h5_store, "/data/feature_importances/fold" + str(fold_index), data_frame) h5_close(h5_store) def load_k_evaluation_measures(store_path, number_of_folds=10): h5_store = h5_open(store_path + "results.h5") kendall_tau_keys = ["/data/" + "kendall_tau/fold" + str(fold_index) for fold_index in range(number_of_folds)] p_value_keys = ["/data/" + "p_value/fold" + str(fold_index) for fold_index in range(number_of_folds)] mse_keys = ["/data/" + "mse/fold" + str(fold_index) for fold_index in range(number_of_folds)] jaccard_keys = ["/data/" + "top_k_jaccard/fold" + str(fold_index) for fold_index in range(number_of_folds)] feature_importances_keys = ["/data/" + "feature_importances/fold" + str(fold_index) for fold_index in range(number_of_folds)] if (len(kendall_tau_keys) != len(p_value_keys)) or\ (len(kendall_tau_keys) != len(feature_importances_keys)): print("Fold number different for evaluation measures load.") raise RuntimeError number_of_folds = len(feature_importances_keys) data_frame = h5load_from(h5_store, feature_importances_keys[0]) k_list = data_frame.index number_of_samples = k_list.size feature_names_list = data_frame.columns number_of_features = len(feature_names_list) kendall_tau_array = np.empty((number_of_samples, number_of_folds), dtype=np.float64) p_value_array = np.empty((number_of_samples, number_of_folds), dtype=np.float64) mean_square_error = np.empty((number_of_samples, number_of_folds), dtype=np.float64) top_k_jaccard = np.empty((number_of_samples, number_of_folds), dtype=np.float64) feature_importances_array = np.empty((number_of_samples, number_of_folds, number_of_features), dtype=np.float64) for f in range(number_of_folds): kendall_tau_key = kendall_tau_keys[f] p_value_key = p_value_keys[f] mse_key = mse_keys[f] jaccard_key = jaccard_keys[f] feature_importances_key = feature_importances_keys[f] kendall_tau_data_frame = h5load_from(h5_store, kendall_tau_key) p_value_data_frame = h5load_from(h5_store, p_value_key) mse_data_frame = h5load_from(h5_store, mse_key) jaccard_data_frame = h5load_from(h5_store, jaccard_key) feature_importances_data_frame = h5load_from(h5_store, feature_importances_key) kendall_tau_array[:, f] = np.squeeze(kendall_tau_data_frame.values) p_value_array[:, f] = np.squeeze(p_value_data_frame.values) mean_square_error[:, f] = np.squeeze(mse_data_frame.values) top_k_jaccard[:, f] = np.squeeze(jaccard_data_frame.values) try: feature_importances_array[:, f, :] = np.squeeze(feature_importances_data_frame.values) except ValueError: feature_importances_array[:, f, :] = feature_importances_data_frame.values k_evaluation_measures = (kendall_tau_array, p_value_array, mean_square_error, top_k_jaccard, feature_importances_array) return k_list, k_evaluation_measures, feature_names_list def form_ground_truth(y_raw): return y_raw, y_raw def initialize_evaluation_measure_arrays(number_of_folds, number_of_features): kendall_tau_score_array = np.empty(number_of_folds, dtype=np.float64) p_value_array = np.empty(number_of_folds, dtype=np.float64) mse_array = np.empty(number_of_folds, dtype=np.float64) jaccard_array = np.empty(number_of_folds, dtype=np.float64) feature_importances_array = np.empty((number_of_folds, number_of_features), dtype=np.float64) measure_arrays_list = [kendall_tau_score_array, p_value_array, mse_array, jaccard_array, feature_importances_array] return measure_arrays_list def folding(y, n_folds): k_fold = KFold(y.size, n_folds=n_folds, random_state=0) return k_fold def learning_module(file_path, X_train, X_test, y_train, y_test, train_test, baseline=None): if baseline is None: regressor_fitted = get_regressor_fitted(file_path, X_train, X_test, y_train, y_test) y_pred = regressor_fitted.predict(X_test) test = train_test[1] max_pred_index = np.argmax(y_pred) max_pred_index = test[max_pred_index] feature_importances = regressor_fitted.feature_importances_ else: if baseline == "mean": y_pred = np.ones_like(y_test) * baseline_mean(y_train) elif baseline == "median": y_pred = np.ones_like(y_test) * baseline_median(y_train) else: print("Invalid baseline method.") raise RuntimeError feature_importances = np.empty((1, 0)) # Test. kendall_tau_score, p_value = kendalltau(y_test, y_pred) mse = np.mean(np.power(y_test - y_pred, 2)) top_k_jaccard = top_k_jaccard_score(y_test, y_pred, top_k=100) ranking_evaluation_tuple = [kendall_tau_score, p_value, mse, top_k_jaccard, feature_importances] return ranking_evaluation_tuple def baseline_mean(y_train, osn=None): if osn is None: return np.mean(y_train) else: raise RuntimeError def baseline_median(y_train, osn=None): if osn is None: return np.median(y_train) else: raise RuntimeError def top_k_jaccard_score(x, y, top_k): l = x.size x_index = np.argsort(x) y_index = np.argsort(y) jaccard = jaccard_index(x_index[l - top_k:l], y_index[l - top_k:l]) return jaccard def jaccard_index(x, y): nom = np.intersect1d(x, y).size denom = np.union1d(x, y).size return nom/denom def get_regressor_fitted(file_path, X_train, X_test, y_train, y_test): if os.path.exists(file_path): try: regressor_fitted = load_sklearn_model(file_path) except EOFError as e: print(file_path) raise e else: regressor = RandomForestRegressor(n_estimators=50, criterion="mse", max_features="auto", n_jobs=get_threads_number()) regressor_fitted = regressor.fit(X_train, y_train) store_sklearn_model(file_path, regressor_fitted) return regressor_fitted def update_evaluation_measure_arrays(evaluation_measure_arrays, fold_index, evaluation_tuple): evaluation_measure_arrays[0][fold_index] = evaluation_tuple[0] # Kendall's tau evaluation_measure_arrays[1][fold_index] = evaluation_tuple[1] # p-value evaluation_measure_arrays[2][fold_index] = evaluation_tuple[2] evaluation_measure_arrays[3][fold_index] = evaluation_tuple[3] evaluation_measure_arrays[4][fold_index, :] = evaluation_tuple[4] # Feature weights def is_k_valid(i, inv_cum_dist_dict, number_of_folds): k_is_valid = True for r_inv_cum_dist in inv_cum_dist_dict.values(): discrete_r_list = list() for r_list in r_inv_cum_dist[-i-1:]: discrete_r_list.extend(r_list) discrete_r_list = set(discrete_r_list) if not len(discrete_r_list) > 50: k_is_valid = False break return k_is_valid
apache-2.0
rs2/pandas
pandas/tests/test_lib.py
2
7969
import numpy as np import pytest from pandas._libs import lib, writers as libwriters import pandas as pd from pandas import Index import pandas._testing as tm class TestMisc: def test_max_len_string_array(self): arr = a = np.array(["foo", "b", np.nan], dtype="object") assert libwriters.max_len_string_array(arr) == 3 # unicode arr = a.astype("U").astype(object) assert libwriters.max_len_string_array(arr) == 3 # bytes for python3 arr = a.astype("S").astype(object) assert libwriters.max_len_string_array(arr) == 3 # raises msg = "No matching signature found" with pytest.raises(TypeError, match=msg): libwriters.max_len_string_array(arr.astype("U")) def test_fast_unique_multiple_list_gen_sort(self): keys = [["p", "a"], ["n", "d"], ["a", "s"]] gen = (key for key in keys) expected = np.array(["a", "d", "n", "p", "s"]) out = lib.fast_unique_multiple_list_gen(gen, sort=True) tm.assert_numpy_array_equal(np.array(out), expected) gen = (key for key in keys) expected = np.array(["p", "a", "n", "d", "s"]) out = lib.fast_unique_multiple_list_gen(gen, sort=False) tm.assert_numpy_array_equal(np.array(out), expected) def test_fast_unique_multiple_unsortable_runtimewarning(self): arr = [np.array(["foo", pd.Timestamp("2000")])] with tm.assert_produces_warning(RuntimeWarning): lib.fast_unique_multiple(arr, sort=None) class TestIndexing: def test_maybe_indices_to_slice_left_edge(self): target = np.arange(100) # slice indices = np.array([], dtype=np.int64) maybe_slice = lib.maybe_indices_to_slice(indices, len(target)) assert isinstance(maybe_slice, slice) tm.assert_numpy_array_equal(target[indices], target[maybe_slice]) for end in [1, 2, 5, 20, 99]: for step in [1, 2, 4]: indices = np.arange(0, end, step, dtype=np.int64) maybe_slice = lib.maybe_indices_to_slice(indices, len(target)) assert isinstance(maybe_slice, slice) tm.assert_numpy_array_equal(target[indices], target[maybe_slice]) # reverse indices = indices[::-1] maybe_slice = lib.maybe_indices_to_slice(indices, len(target)) assert isinstance(maybe_slice, slice) tm.assert_numpy_array_equal(target[indices], target[maybe_slice]) # not slice for case in [[2, 1, 2, 0], [2, 2, 1, 0], [0, 1, 2, 1], [-2, 0, 2], [2, 0, -2]]: indices = np.array(case, dtype=np.int64) maybe_slice = lib.maybe_indices_to_slice(indices, len(target)) assert not isinstance(maybe_slice, slice) tm.assert_numpy_array_equal(maybe_slice, indices) tm.assert_numpy_array_equal(target[indices], target[maybe_slice]) def test_maybe_indices_to_slice_right_edge(self): target = np.arange(100) # slice for start in [0, 2, 5, 20, 97, 98]: for step in [1, 2, 4]: indices = np.arange(start, 99, step, dtype=np.int64) maybe_slice = lib.maybe_indices_to_slice(indices, len(target)) assert isinstance(maybe_slice, slice) tm.assert_numpy_array_equal(target[indices], target[maybe_slice]) # reverse indices = indices[::-1] maybe_slice = lib.maybe_indices_to_slice(indices, len(target)) assert isinstance(maybe_slice, slice) tm.assert_numpy_array_equal(target[indices], target[maybe_slice]) # not slice indices = np.array([97, 98, 99, 100], dtype=np.int64) maybe_slice = lib.maybe_indices_to_slice(indices, len(target)) assert not isinstance(maybe_slice, slice) tm.assert_numpy_array_equal(maybe_slice, indices) msg = "index 100 is out of bounds for axis (0|1) with size 100" with pytest.raises(IndexError, match=msg): target[indices] with pytest.raises(IndexError, match=msg): target[maybe_slice] indices = np.array([100, 99, 98, 97], dtype=np.int64) maybe_slice = lib.maybe_indices_to_slice(indices, len(target)) assert not isinstance(maybe_slice, slice) tm.assert_numpy_array_equal(maybe_slice, indices) with pytest.raises(IndexError, match=msg): target[indices] with pytest.raises(IndexError, match=msg): target[maybe_slice] for case in [[99, 97, 99, 96], [99, 99, 98, 97], [98, 98, 97, 96]]: indices = np.array(case, dtype=np.int64) maybe_slice = lib.maybe_indices_to_slice(indices, len(target)) assert not isinstance(maybe_slice, slice) tm.assert_numpy_array_equal(maybe_slice, indices) tm.assert_numpy_array_equal(target[indices], target[maybe_slice]) def test_maybe_indices_to_slice_both_edges(self): target = np.arange(10) # slice for step in [1, 2, 4, 5, 8, 9]: indices = np.arange(0, 9, step, dtype=np.int64) maybe_slice = lib.maybe_indices_to_slice(indices, len(target)) assert isinstance(maybe_slice, slice) tm.assert_numpy_array_equal(target[indices], target[maybe_slice]) # reverse indices = indices[::-1] maybe_slice = lib.maybe_indices_to_slice(indices, len(target)) assert isinstance(maybe_slice, slice) tm.assert_numpy_array_equal(target[indices], target[maybe_slice]) # not slice for case in [[4, 2, 0, -2], [2, 2, 1, 0], [0, 1, 2, 1]]: indices = np.array(case, dtype=np.int64) maybe_slice = lib.maybe_indices_to_slice(indices, len(target)) assert not isinstance(maybe_slice, slice) tm.assert_numpy_array_equal(maybe_slice, indices) tm.assert_numpy_array_equal(target[indices], target[maybe_slice]) def test_maybe_indices_to_slice_middle(self): target = np.arange(100) # slice for start, end in [(2, 10), (5, 25), (65, 97)]: for step in [1, 2, 4, 20]: indices = np.arange(start, end, step, dtype=np.int64) maybe_slice = lib.maybe_indices_to_slice(indices, len(target)) assert isinstance(maybe_slice, slice) tm.assert_numpy_array_equal(target[indices], target[maybe_slice]) # reverse indices = indices[::-1] maybe_slice = lib.maybe_indices_to_slice(indices, len(target)) assert isinstance(maybe_slice, slice) tm.assert_numpy_array_equal(target[indices], target[maybe_slice]) # not slice for case in [[14, 12, 10, 12], [12, 12, 11, 10], [10, 11, 12, 11]]: indices = np.array(case, dtype=np.int64) maybe_slice = lib.maybe_indices_to_slice(indices, len(target)) assert not isinstance(maybe_slice, slice) tm.assert_numpy_array_equal(maybe_slice, indices) tm.assert_numpy_array_equal(target[indices], target[maybe_slice]) def test_maybe_booleans_to_slice(self): arr = np.array([0, 0, 1, 1, 1, 0, 1], dtype=np.uint8) result = lib.maybe_booleans_to_slice(arr) assert result.dtype == np.bool_ result = lib.maybe_booleans_to_slice(arr[:0]) assert result == slice(0, 0) def test_get_reverse_indexer(self): indexer = np.array([-1, -1, 1, 2, 0, -1, 3, 4], dtype=np.int64) result = lib.get_reverse_indexer(indexer, 5) expected = np.array([4, 2, 3, 6, 7], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) def test_cache_readonly_preserve_docstrings(): # GH18197 assert Index.hasnans.__doc__ is not None
bsd-3-clause
DouglasLeeTucker/DECam_PGCM
bin/y2a1_rawdata.py
1
66323
#!/usr/bin/env python """ y2a1_rawdata.py Example: y2a1_rawdata.py --help y2a1_rawdata.py --tag Y2A1_FINALCUT --baseName y2a1_rawdata --verbose 2 """ ################################## def main(): import argparse import time """Create command line arguments""" parser = argparse.ArgumentParser(description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument('--baseName', help='base name of the output CSV file', default='rawdata') parser.add_argument('--fileNamePattern', help='pattern of filenames to be globbed (used by combine_stilts_internal_match_files and reformat_stilts_internal_match_files_for_gcm_exp)', default='y2a1_rawdata.svy1y2y3.sorted.tmp.z.csv.??.inmatch') parser.add_argument('--outputFileName', help='name of an output file', default='output.csv') parser.add_argument('--tag', help='PROCTAG tag name', default='Y2A1_FINALCUT') parser.add_argument('--reqnum', help='REQNUM (used by se_object_query_by_reqnum)', default=2285, type=int) parser.add_argument('--expnumMin', help='Minimum value for EXPNUM', default=1, type=int) parser.add_argument('--expnumMax', help='Maximum value for EXPNUM', default=99999999, type=int) parser.add_argument('--nite', help='nite to query (used by se_object_query_by_nite_and_band)', default='20130113') parser.add_argument('--bands', help='comma-separated list of filter bands to consider', default='g,r,i,z,Y') parser.add_argument('--band', help='single filter band to consider (used by se_object_query_by_nite_and_band)', default='u') parser.add_argument('--cleanup', help='remove less interesting intermediate files', default=False, action='store_true') parser.add_argument('--do_exposure_query',help='do exposure query', default=False, action='store_true') parser.add_argument('--do_reqnum_query',help='do reqnum query', default=False, action='store_true') parser.add_argument('--do_se_object_query_by_reqnum',help='do object query', default=False, action='store_true') parser.add_argument('--do_se_object_query_by_expnumRange',help='do object query', default=False, action='store_true') parser.add_argument('--do_reqnum_query_results_to_csv_band_files',help='do convert reqnum_query results to a set of CSV files (one per filter band)', default=False, action='store_true') parser.add_argument('--do_nite_band_query_results_to_csv_band_files',help='do convert night_band_query results to a set of CSV files (one per filter band)', default=False, action='store_true') parser.add_argument('--do_add_exp_info',help='do add exposure info to the se_object files', default=False, action='store_true') parser.add_argument('--do_combine_stilts_internal_match_files',help='do combine STILTS internally matched files', default=False, action='store_true') parser.add_argument('--do_reformat_stilts_internal_match_files_for_gcm_exp',help='do reformat STILTS internally matched filesfor GCM (exposure-by-exposure fit)', default=False, action='store_true') parser.add_argument('--do_blacklist_query',help='do blacklist query', default=False, action='store_true') parser.add_argument('--do_y3a1_blacklist_query',help='do y3a1_blacklist query', default=False, action='store_true') parser.add_argument('--do_image_query',help='do image query', default=False, action='store_true') parser.add_argument('--do_exp_image_cat_y3a1blacklist_query',help='do exposure/image/catalog/y3a1_blacklist query and merge', default=False, action='store_true') parser.add_argument('--do_se_object_query_by_nite_and_band',help='do nite/band objects query', default=False, action='store_true') parser.add_argument('--verbose', help='verbosity level of output to screen (0,1,2,...)', default=0, type=int) args = parser.parse_args() if args.verbose > 0: print args # Checking bandList... supportedBandList = ['u','g','r','i','z','Y'] bandList = args.bands.strip().split(',') badBandCount = 0 for band in bandList: try: supportedBandIndex = supportedBandList.index(band) except: print """Filter band %s not found in list of supported bands...""" % (band) badBandCount = badBandCount + 1 if badBandCount > 0: print """The list of supported bands is %s""" % (supportedBandList) print """Note that the filter band names in this list are case-sensitive.""" print """Exiting now!...""" print return 1 # Run exposure query... if args.do_exposure_query==True: status = exposure_query(args) # Run object query by reqnum... if args.do_se_object_query_by_reqnum==True: status = se_object_query_by_reqnum(args) # Run object query by expnum range... if args.do_se_object_query_by_expnumRange==True: status = se_object_query_by_expnumRange(args) # Run object query by nite and band... if args.do_se_object_query_by_nite_and_band==True: status = se_object_query_by_nite_and_band(args) # Run query to find unique list of reqnums for # a given processing tag and within a given expnum range... if args.do_reqnum_query==True: reqnum_query(args) # Convert results from reqnum_query to a set of # CSV files (one per filter band)... if args.do_reqnum_query_results_to_csv_band_files==True: reqnum_query_results_to_csv_band_files(args) # Convert results from nite_band_query to a set of # CSV files (one per filter band)... if args.do_nite_band_query_results_to_csv_band_files==True: nite_band_query_results_to_csv_band_files(args) # Add exposure info to the se_object files... if args.do_add_exp_info==True: add_exp_info(args) # Combine files from STILTS internal match into a # single large file... if args.do_combine_stilts_internal_match_files==True: combine_stilts_internal_match_files(args) # Reformat files from STILTS internal match into a # single large file that is ingestible by GCM for # the exposure-by-exposure fit... if args.do_reformat_stilts_internal_match_files_for_gcm_exp==True: reformat_stilts_internal_match_files_for_gcm_exp(args) # Run blacklist query... if args.do_blacklist_query==True: status = blacklist_query(args) # Run y3a1_blacklist query... # (this includes Eli Rykoff's spread_model blacklist just for y3a1...) if args.do_y3a1_blacklist_query==True: status = y3a1_blacklist_query(args) # Run image query... if args.do_image_query==True: status = image_query(args) if args.do_exp_image_cat_y3a1blacklist_query==True: status = exp_image_cat_y3a1blacklist_query(args) ################################## # def exposure_query(args): import easyaccess as ea import numpy as np if args.verbose>0: print print '* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *' print 'exposure_query' print '* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *' print print 'TBD...' connection=ea.connect('desoper') query=""" select e.expnum, t.unitname, t.reqnum, t.attnum, e.radeg as EXPRA, e.decdeg as EXPDEC, e.exptime, e.airmass, e.band, e.nite, e.mjd_obs, e.field, e.object, e.program, qa.* from prod.exposure e, prod.proctag t, prod.qa_summary qa where t.pfw_attempt_id=qa.pfw_attempt_id and e.expnum=qa.expnum and t.tag='%s' and qa.expnum between %d and %d order by qa.expnum """ % (args.tag, args.expnumMin, args.expnumMax) if args.verbose>0: print query outputFile="""%s.expinfo.csv""" % (args.baseName) connection.query_and_save(query,outputFile) connection.close() if args.verbose>0: print return 0 ################################## # # Based on query from Eli Rykoff and Dave Burke, which # is in turn is based on a query from Robert Gruendl. def se_object_query_orig(args): import easyaccess as ea import numpy as np if args.verbose>0: print print '* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *' print 'y2a1_se_object_query' print '* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *' print connection=ea.connect('desoper') query=""" with x as ( select /*+materialize */ pfw_attempt_id from prod.proctag where tag='Y2A1_FINALCUT' ), y as ( select /*+materialize */ a.expnum as expnum, max(a.lastchanged_time) as evaltime source from prod.finalcut_eval a where a.analyst!='SNQUALITY' and (upper(a.program)='SURVEY' or upper(a.program)='SUPERNOVA') group by a.expnum ), z as ( select /*+materialize */ b.expnum from prod.finalcut_eval b, y where b.expnum=y.expnum and b.lastchanged_time=y.evaltime and b.accepted='True' ) select o.ra, o.dec, o.flux_psf, o.fluxerr_psf, o.class_star, o.spread_model, cast(o.band as VARCHAR(1)) as band, cast(c.expnum as NUMBER(8)) as expnum, cast(c.ccdnum as NUMBER(4)) as ccdnum, e.mjd_obs, e.exptime, e.tradeg, e.tdecdeg, cast(e.ha as varchar(12)) as ha from prod.se_object o, prod.catalog c, prod.exposure e, x, z where x.pfw_attempt_id=c.pfw_attempt_id and c.filetype='cat_finalcut' and c.expnum=z.expnum and e.expnum=c.expnum and o.filename=c.filename and (o.x_image between 100 and 1900) and (o.y_image between 100 and 3950) and o.flags = 0 and o.class_star > 0.50 and o.spread_model < 0.01 and ((1.086*o.fluxerr_psf/o.flux_psf) between 0.001 and 0.100) and (c.expnum between 383995 and 410586)""" if args.verbose>0: print query outputFiles="""%s.objinfo.fits""" % (args.baseName) connection.query_and_save(query,outputFiles) connection.close() if args.verbose>0: print return 0 ################################## # # Based on query from Eli Rykoff and Dave Burke, which # is in turn is based on a query from Robert Gruendl. def se_object_query_by_reqnum_old(args): import easyaccess as ea import numpy as np if args.verbose>0: print print '* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *' print 'y2a1_se_object_query_by_reqnum_old' print '* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *' print connection=ea.connect('desoper') query=""" with x as ( select /*+materialize */ pfw_attempt_id from prod.proctag where tag='%s' and reqnum=%d ), y as ( select /*+materialize */ a.expnum as expnum, max(a.lastchanged_time) as evaltime from prod.finalcut_eval a where a.analyst!='SNQUALITY' group by a.expnum ), z as ( select /*+materialize */ b.expnum from prod.finalcut_eval b, y where b.expnum=y.expnum and b.lastchanged_time=y.evaltime and b.accepted='True' ) select c.expnum, c.filename, cast(o.band as VARCHAR(1)) as BAND, c.ccdnum as CCDNUM, o.object_number, o.x_image, o.y_image, o.ra, o.dec, o.flux_psf, o.fluxerr_psf, o.flux_aper_8, fluxerr_aper_8, o.class_star, o.spread_model, o.spreaderr_model, o.flags from prod.se_object o, prod.catalog c, x, z where x.pfw_attempt_id=c.pfw_attempt_id and c.filetype='cat_finalcut' and c.expnum=z.expnum and o.filename=c.filename and o.flags = 0 and o.class_star > 0.80 and o.spread_model < 0.01 and ((1.086*o.fluxerr_psf/o.flux_psf) between 0.001 and 0.01) and (c.expnum between %d and %d)""" % \ (args.tag, args.reqnum, args.expnumMin, args.expnumMax) if args.verbose>0: print query outputFiles="""%s.%s.%d-%d.%d.objinfo.fits""" % \ (args.baseName, args.tag, args.expnumMin, args.expnumMax, args.reqnum) connection.query_and_save(query,outputFiles) connection.close() if args.verbose>0: print return 0 ################################## # # Based on query from Eli Rykoff and Dave Burke, which # is in turn is based on a query from Robert Gruendl. def se_object_query_by_reqnum(args): import easyaccess as ea import numpy as np if args.verbose>0: print print '* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *' print 'y2a1_se_object_query_by_reqnum' print '* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *' print connection=ea.connect('desoper') query=""" with x as ( select /*+materialize */ t.pfw_attempt_id, qa.expnum from prod.proctag t, prod.qa_summary qa where t.pfw_attempt_id=qa.pfw_attempt_id and tag='%s' and reqnum=%d and qa.expnum between %d and %d ) select c.expnum, c.filename, cast(o.band as VARCHAR(1)) as BAND, c.ccdnum as CCDNUM, o.object_number, o.x_image, o.y_image, o.ra, o.dec, o.flux_psf, o.fluxerr_psf, o.flux_aper_8, fluxerr_aper_8, o.class_star, o.spread_model, o.spreaderr_model, o.flags from prod.se_object o, prod.catalog c, x where x.pfw_attempt_id=c.pfw_attempt_id and c.filetype='cat_finalcut' and c.expnum=x.expnum and o.filename=c.filename and o.flags = 0 and o.class_star > 0.80 and o.spread_model < 0.01 and ((1.086*o.fluxerr_psf/o.flux_psf) between 0.001 and 0.01) """ % \ (args.tag, args.reqnum, args.expnumMin, args.expnumMax) if args.verbose>0: print query outputFiles="""%s.%s.%d-%d.%d.objinfo.fits""" % \ (args.baseName, args.tag, args.expnumMin, args.expnumMax, args.reqnum) connection.query_and_save(query,outputFiles) connection.close() if args.verbose>0: print return 0 ################################## # # Based on query from Eli Rykoff and Dave Burke, which # is in turn is based on a query from Robert Gruendl. def se_object_query_by_nite_and_band(args): import easyaccess as ea import numpy as np if args.verbose>0: print print '* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *' print 'y2a1_se_object_query_by_nite_and_band' print '* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *' print connection=ea.connect('desoper') # Note looser cuts for o.flags and "magerr_psf"... query=""" with x as ( select /*+materialize */ t.pfw_attempt_id, qa.expnum, e.band from prod.proctag t, prod.qa_summary qa, prod.exposure e where t.pfw_attempt_id=qa.pfw_attempt_id and qa.expnum=e.expnum and t.tag='%s' and e.nite='%s' and e.band='%s' ) select c.expnum, c.filename, x.band, c.ccdnum as CCDNUM, o.object_number, o.x_image, o.y_image, o.ra, o.dec, o.flux_psf, o.fluxerr_psf, o.flux_aper_8, o.fluxerr_aper_8, o.class_star, o.spread_model, o.spreaderr_model, o.flags from prod.se_object o, prod.catalog c, x where x.pfw_attempt_id=c.pfw_attempt_id and c.filetype='cat_finalcut' and c.expnum=x.expnum and o.filename=c.filename and o.flags < 3 and o.class_star > 0.80 and o.spread_model < 0.01 and ((1.086*o.fluxerr_psf/o.flux_psf) between 0.001 and 0.03) """ % \ (args.tag, args.nite, args.band) if args.verbose>0: print query outputFiles="""%s.%s.%s.%s.objinfo.fits""" % \ (args.baseName, args.tag, args.nite, args.band) connection.query_and_save(query,outputFiles) connection.close() if args.verbose>0: print return 0 ################################## # # Based on query from Eli Rykoff and Dave Burke, which # is in turn is based on a query from Robert Gruendl. def se_object_query_by_expnumRange_old(args): import easyaccess as ea import numpy as np if args.verbose>0: print print '* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *' print 'y2a1_se_object_query' print '* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *' print connection=ea.connect('desoper') query=""" with x as ( select /*+materialize */ pfw_attempt_id from prod.proctag where tag='%s' ), y as ( select /*+materialize */ a.expnum as expnum, max(a.lastchanged_time) as evaltime from prod.finalcut_eval a where a.analyst!='SNQUALITY' group by a.expnum ), z as ( select /*+materialize */ b.expnum from prod.finalcut_eval b, y where b.expnum=y.expnum and b.lastchanged_time=y.evaltime and b.accepted='True' ) select c.expnum, c.filename, cast(o.band as VARCHAR(1)) as BAND, c.ccdnum as CCDNUM, o.object_number, o.x_image, o.y_image, o.ra, o.dec, o.flux_psf, o.fluxerr_psf, o.flux_aper_8, fluxerr_aper_8, o.class_star, o.spread_model, o.spreaderr_model, o.flags from prod.se_object o, prod.catalog c, x, z where x.pfw_attempt_id=c.pfw_attempt_id and c.filetype='cat_finalcut' and c.expnum=z.expnum and o.filename=c.filename and o.flags = 0 and o.class_star > 0.80 and o.spread_model < 0.01 and ((1.086*o.fluxerr_psf/o.flux_psf) between 0.001 and 0.01) and (c.expnum between %d and %d)""" % \ (args.tag, args.expnumMin, args.expnumMax) if args.verbose>0: print query outputFiles="""%s.%s.exp%d-%d.objinfo.fits""" % \ (args.baseName, args.tag, args.expnumMin, args.expnumMax) connection.query_and_save(query,outputFiles) connection.close() if args.verbose>0: print return 0 ################################## ################################## # # Based on query from Eli Rykoff and Dave Burke, which # is in turn is based on a query from Robert Gruendl. def se_object_query_by_expnumRange(args): import easyaccess as ea import numpy as np if args.verbose>0: print print '* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *' print 'y2a1_se_object_query' print '* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *' print connection=ea.connect('desoper') query=""" with x as ( select /*+materialize */ t.pfw_attempt_id, qa.expnum from prod.proctag t, prod.qa_summary qa where t.pfw_attempt_id=qa.pfw_attempt_id and tag='%s' and qa.expnum between %d and %d ) select c.expnum, c.filename, cast(o.band as VARCHAR(1)) as BAND, c.ccdnum as CCDNUM, o.object_number, o.x_image, o.y_image, o.ra, o.dec, o.flux_psf, o.fluxerr_psf, o.flux_aper_8, fluxerr_aper_8, o.class_star, o.spread_model, o.spreaderr_model, o.flags from prod.se_object o, prod.catalog c, x where x.pfw_attempt_id=c.pfw_attempt_id and c.filetype='cat_finalcut' and c.expnum=x.expnum and o.filename=c.filename and o.flags = 0 and o.class_star > 0.80 and o.spread_model < 0.01 and ((1.086*o.fluxerr_psf/o.flux_psf) between 0.001 and 0.01) """ % \ (args.tag, args.expnumMin, args.expnumMax) if args.verbose>0: print query outputFiles="""%s.%s.exp%d-%d.objinfo.fits""" % \ (args.baseName, args.tag, args.expnumMin, args.expnumMax) connection.query_and_save(query,outputFiles) connection.close() if args.verbose>0: print return 0 ################################## # # Based on query from Robert Gruendl. def reqnum_query_old(args): import easyaccess as ea import numpy as np if args.verbose>0: print print '* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *' print 'reqnum_query_old' print '* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *' print connection=ea.connect('desoper') query=""" with x as ( select /*+materialize */ pfw_attempt_id, unitname, reqnum, attnum from prod.proctag where tag='%s' ), y as ( select /*+materialize */ a.expnum as expnum, max(a.lastchanged_time) as evaltime from prod.finalcut_eval a where a.analyst!='SNQUALITY' group by a.expnum ), z as ( select /*+materialize */ b.expnum, b.unitname, b.reqnum, b.attnum from prod.finalcut_eval b, y where b.expnum=y.expnum and b.lastchanged_time=y.evaltime and b.accepted='True' ) select distinct x.reqnum from x, z where z.unitname=x.unitname and z.reqnum=x.reqnum and z.attnum=x.attnum and z.expnum between %d and %d order by x.reqnum """ % (args.tag, args.expnumMin, args.expnumMax) if args.verbose>0: print query outputFile="""%s.reqnums.csv""" % (args.baseName) connection.query_and_save(query,outputFile) connection.close() if args.verbose>0: print return 0 ################################## # # Based on query from Robert Gruendl. def reqnum_query(args): import easyaccess as ea import numpy as np if args.verbose>0: print print '* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *' print 'reqnum_query' print '* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *' print connection=ea.connect('desoper') query=""" select distinct (t.reqnum) from prod.proctag t, prod.qa_summary qa where t.pfw_attempt_id=qa.pfw_attempt_id and t.tag='%s' and qa.expnum between %d and %d order by t.reqnum """ % (args.tag, args.expnumMin, args.expnumMax) if args.verbose>0: print query outputFile="""%s.reqnums.csv""" % (args.baseName) connection.query_and_save(query,outputFile) connection.close() if args.verbose>0: print return 0 ################################## # reqnum_query_results_to_csv_band_files_old # # Based on sepBands from y2a1_tertiaries.py # def reqnum_query_results_to_csv_band_files_old(args): import os import sys import glob from astropy.io import fits if args.verbose>0: print print '* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *' print 'reqnum_query_results_to_csv_band_files_old' print '* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *' print # This pattern matching will need to be made more general # (maybe instead pass a list of files instead of trying to # pattern match?)... pattern = """%s.%s.??????-??????.????.objinfo.fits""" % \ (args.baseName, args.tag) fileNameList = sorted(glob.glob(pattern)) if args.verbose>1: print fileNameList # Open up a CSV output file for each filter band... bandList = args.bands.strip().split(',') fout = {} for band in bandList: outputFile = """%s.objinfo.%s.csv""" % (args.baseName, band) fout[band] = open(outputFile,'w') # Read header from the "zeroth" input file from fileNameList hdulist = fits.open(fileNameList[0]) columnNamesList = hdulist[1].columns.names hdulist.close() # Check if there is column called 'BAND'... try: bandCol = columnNamesList.index('BAND') except: print """Could not find 'BAND' in header of %s...""" % (fileNameList[0]) print """Exiting 'reqnum_query_results_to_csv_band_files' method with return code 1 now...""" return 1 # Create a CSV header line from columnNamesList... hout = '' for columnName in columnNamesList: hout = hout+columnName+',' hout = hout[:-1] hout = hout+'\n' # Write header to each of the output files (one per filter band)... for band in bandList: fout[band].write(hout) # Loop through each of the input files from fileNameList... invalidBandList = [] for fileName in fileNameList: print fileName # Open the input file... hdulist = fits.open(fileName) tbdata = hdulist[1].data for linecnt in range(tbdata.size): if ( (linecnt/1000.0 == int(linecnt/1000.0)) and (args.verbose > 1) ): print '\r'+'Progress (lines read from '+fileName+'): ',linecnt, sys.stdout.flush() lins = tbdata[linecnt] #band = tbdata['BAND'][linecnt] band = lins[bandCol] if band in bandList: # Create a CSV data line from lins... lin = '' for colcnt in range(len(lins)): lin = lin+str(lins[colcnt])+',' lin = lin[:-1] lin = lin+'\n' # Output CSV data line to appropriate output file... fout[band].write(lin) elif band not in invalidBandList: invalidBandList.append(band) print 'Unrecognized band: '+band # Close this input file... hdulist.close() if args.verbose > 1: print # Close the output file for each filter band... for band in bandList: fout[band].close if args.verbose>0: print return 0 ################################## # reqnum_query_results_to_csv_band_files # # Based on sepBands from y2a1_tertiaries.py # Uses STILTS for quick conversion of FITS to CSV of input files. # def reqnum_query_results_to_csv_band_files(args): import os import sys import datetime import glob from astropy.io import fits stiltsDir='/usrdevel/dp0/dtucker/STILTS3.0/latest' if args.verbose>0: print print '* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *' print 'reqnum_query_results_to_csv_band_files' print '* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *' print # This pattern matching will need to be made more general # (maybe instead pass a list of files instead of trying to # pattern match?)... #pattern = """%s.%s.??????-??????.????.objinfo.fits""" % \ pattern = """%s.%s.??????-??????.????.objinfo*.fits""" % \ (args.baseName, args.tag) fileNameList = sorted(glob.glob(pattern)) if args.verbose>1: print fileNameList # Convert each FITS file to CSV format via the STILTS tcopy command... print 'Converting files from FITS to CSV format...' for fileName in fileNameList: print fileName inputFile = fileName outputFile = """%s.csv""" % (inputFile) cmd = """%s/stilts -Xmx8000m tcopy in=%s ifmt=fits out=%s ofmt=csv""" % (stiltsDir,inputFile,outputFile) print datetime.datetime.now() print """Running: %s""" % (cmd) status = os.system(cmd) print datetime.datetime.now() print if status !=0: print """%s failed.""" % (cmd) return 1 # Open up a CSV output file for each filter band... bandList = args.bands.strip().split(',') fout = {} for band in bandList: outputFile = """%s.objinfo.%s.csv""" % (args.baseName, band) fout[band] = open(outputFile,'w') # Read header from the "zeroth" input file from fileNameList # (well, actually from its equivalent CSV file)... csvFileName = """%s.csv""" % (fileNameList[0]) fin = open(csvFileName) hin = fin.readline() fin.close() # Identify which column contains the filter band... hins=hin.upper().strip().split(',') try: bandCol = hins.index('BAND') except: print """Could not find 'BAND' in header of %s...""" % (fileNameList[0]) print """Exiting 'reqnum_query_results_to_csv_band_files' method with return code 1 now...""" return 1 # Write header to each of the output files (one per filter band)... for band in bandList: fout[band].write(hin) # Loop through each of the input files from fileNameList... invalidBandList = [] for fileName in fileNameList: csvFileName = """%s.csv""" % (fileName) print csvFileName # Open the input file... with open(csvFileName,'r') as fin: # Skip header line... try: next(fin) except: print """%s is empty. Skipping...""" % (csvFileName) continue print linecnt = 0 for lin in fin: # Increment line count... linecnt += 1 if ( (linecnt/1000.0 == int(linecnt/1000.0)) and (args.verbose > 1) ): print '\r'+'Progress (lines read from '+csvFileName+'): ',linecnt, sys.stdout.flush() lins=lin.strip().split(',') band = lins[bandCol] if band in bandList: fout[band].write(lin) else: print 'Unrecognized band: '+band if args.verbose > 1: print # Close the output file for each filter band... for band in bandList: fout[band].close # If the "--cleanup" option was used, remove the csv versions # of the original files... if args.cleanup: for fileName in fileNameList: csvFileName = """%s.csv""" % (fileName) os.remove(csvFileName) if args.verbose>0: print return 0 ################################## # nite_band_query_results_to_csv_band_files # # Almost identical to reqnum_quer_results_to_csv_bands_files above. # Uses STILTS for quick conversion of FITS to CSV of input files. # def nite_band_query_results_to_csv_band_files(args): import os import sys import datetime import glob from astropy.io import fits stiltsDir='/usrdevel/dp0/dtucker/STILTS3.0/latest' if args.verbose>0: print print '* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *' print 'nite_band_query_results_to_csv_band_files' print '* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *' print # This pattern matching will need to be made more general # (maybe instead pass a list of files instead of trying to # pattern match?)... #pattern = """%s.%s.??????-??????.????.objinfo.fits""" % \ #pattern = """%s.%s.??????-??????.????.objinfo*.fits""" % \ # (args.baseName, args.tag) # The different pattern is basically the only difference # between nite_band_query_results_to_csv_band_files and # reqnum_query_results_to_csv_band_files... pattern = """%s.%s.????????.?.objinfo*.fits""" % \ (args.baseName, args.tag) fileNameList = sorted(glob.glob(pattern)) if args.verbose>1: print fileNameList # Convert each FITS file to CSV format via the STILTS tcopy command... print 'Converting files from FITS to CSV format...' for fileName in fileNameList: print fileName inputFile = fileName outputFile = """%s.csv""" % (inputFile) cmd = """%s/stilts -Xmx8000m tcopy in=%s ifmt=fits out=%s ofmt=csv""" % (stiltsDir,inputFile,outputFile) print datetime.datetime.now() print """Running: %s""" % (cmd) status = os.system(cmd) print datetime.datetime.now() print if status !=0: print """%s failed.""" % (cmd) return 1 # Open up a CSV output file for each filter band... bandList = args.bands.strip().split(',') fout = {} for band in bandList: outputFile = """%s.objinfo.%s.csv""" % (args.baseName, band) fout[band] = open(outputFile,'w') # Read header from the "zeroth" input file from fileNameList # (well, actually from its equivalent CSV file)... csvFileName = """%s.csv""" % (fileNameList[0]) fin = open(csvFileName) hin = fin.readline() fin.close() # Identify which column contains the filter band... hins=hin.upper().strip().split(',') try: bandCol = hins.index('BAND') except: print """Could not find 'BAND' in header of %s...""" % (fileNameList[0]) print """Exiting 'reqnum_query_results_to_csv_band_files' method with return code 1 now...""" return 1 # Write header to each of the output files (one per filter band)... for band in bandList: fout[band].write(hin) # Loop through each of the input files from fileNameList... invalidBandList = [] for fileName in fileNameList: csvFileName = """%s.csv""" % (fileName) print csvFileName # Open the input file... with open(csvFileName,'r') as fin: # Skip header line... try: next(fin) except: print """%s is empty. Skipping...""" % (csvFileName) continue print linecnt = 0 for lin in fin: # Increment line count... linecnt += 1 if ( (linecnt/1000.0 == int(linecnt/1000.0)) and (args.verbose > 1) ): print '\r'+'Progress (lines read from '+csvFileName+'): ',linecnt, sys.stdout.flush() lins=lin.strip().split(',') band = lins[bandCol] if band in bandList: fout[band].write(lin) else: print 'Unrecognized band: '+band if args.verbose > 1: print # Close the output file for each filter band... for band in bandList: fout[band].close # If the "--cleanup" option was used, remove the csv versions # of the original files... if args.cleanup: for fileName in fileNameList: csvFileName = """%s.csv""" % (fileName) os.remove(csvFileName) if args.verbose>0: print return 0 ################################## # add_exp_info # def add_exp_info(args): import numpy as np import os import sys if args.verbose>0: print print '* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *' print 'add_exp_info' print '* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *' print # Read in expInfoFile... expInfoFile="""%s.expinfo.csv""" % (args.baseName) if os.path.isfile(expInfoFile)==False: print """Exposure info file %s does not exist...""" % (expInfoFile) print """Exiting addExpInfo method with return code 1""" return 1 expInfoDict = {} with open(expInfoFile,'r') as fin: # Read header line... try: hin = fin.readline() except: print """%s is empty.""" % (expInfoFile) print """Exiting 'add_exp_info' method with return code 1 now...""" return 1 # Identify column in the expInfoFile CSV file corresponding to EXPNUM... hins=hin.upper().strip().split(',') try: expnumCol = hins.index('EXPNUM') except: print """Could not find 'EXPNUM' in header of %s...""" % (expInfoFile) print """Exiting 'add_exp_info' method with return code 1 now...""" return 1 hin_orig = hin print linecnt = 0 for lin in fin: # Increment line count... linecnt += 1 if ( (linecnt/1000.0 == int(linecnt/1000.0)) and (args.verbose > 1) ): print '\r'+'Progress (lines read from '+expInfoFile+'): ',linecnt, sys.stdout.flush() lins=lin.strip().split(',') expnum = int(lins[expnumCol]) expnumString = str(expnum) expInfoDict[expnumString] = lin.strip() if args.verbose > 1: print # Loop through each filter band in the official bandList... bandList = args.bands.strip().split(',') for band in bandList: # Check for existence of objInfoFile for this filter band... objInfoFile = """%s.objinfo.%s.csv""" % (args.baseName, band) if os.path.isfile(objInfoFile)==False: print """%s does not exist... Skipping""" % (objInfoFile) continue # Open the outputFile for this filter band... outputFile = """%s.%s.csv""" % (args.baseName, band) fout = open(outputFile,'w') # Open the objInfoFile for this filter band... with open(objInfoFile,'r') as fin: # Read header line... try: hin = fin.readline() except: print """%s is empty. Skipping...""" % (objInfoFile) continue # Identify column in the objInfoFile CSV file corresponding to EXPNUM... hins=hin.upper().strip().split(',') try: expnumCol = hins.index('EXPNUM') except: print """Could not find 'EXPNUM' in header of %s... Skipping""" % (objInfoFile) continue # Write header line... hout = hin_orig.upper().strip()+','+hin.upper().strip()+'\n' fout.write(hout) linecnt = 0 for lin in fin: # Increment line count... linecnt += 1 if ( (linecnt/1000.0 == int(linecnt/1000.0)) and (args.verbose > 1) ): print '\r'+'Progress (lines read from '+objInfoFile+'): ',linecnt, sys.stdout.flush() lins=lin.strip().split(',') expnum = int(lins[expnumCol]) expnumString = str(expnum) try: outputLine=expInfoDict[expnumString] except: if args.verbose > 2: print """Expnum %d not in %s. Skipping...""" % (expnum, expInfoFile) else: outputLine = outputLine+','+lin.strip()+'\n' fout.write(outputLine) if args.verbose > 1: print if args.verbose>0: print return 0 ################################## # def combine_stilts_internal_match_files(args): import os import sys import glob if args.verbose>0: print print '* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *' print 'combine_stilts_internal_match_files' print '* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *' print fileNamePattern = 'y2a1_rawdata.svy1y2y3.sorted.tmp.g.csv.??.inmatch' fileNamePattern = args.fileNamePattern fileNameList = sorted(glob.glob(fileNamePattern)) if args.verbose>2: print fileNameList # Read header line from the "zeroth" input file from fileNameList fin = open(fileNameList[0]) hin = fin.readline() fin.close() # Identify which column contains the GroupID... hins=hin.upper().strip().split(',') try: groupIDCol = hins.index('GROUPID') except: print """Could not find 'GROUPID' in header of %s...""" % (fileNameList[0]) print """Exiting now...""" return 1 # Open up the output file and write header to it... outputFileName = args.outputFileName fout = open(outputFileName,'w') fout.write(hin) groupIDOffset = 0 # Loop through each of the input files from fileNameList... for fileName in fileNameList: print fileName # Create an array of newGroupIDs contained within this fileName... newGroupIDList = [] # Open the input file... with open(fileName,'r') as fin: # Skip header line... try: next(fin) except: print """%s is empty. Skipping...""" % (fileName) continue #print linecnt = 0 for lin in fin: # Increment line count... linecnt += 1 if ( (linecnt/10000.0 == int(linecnt/10000.0)) and (args.verbose > 1) ): print '\r'+'Progress (lines read from '+fileName+'): ',linecnt, sys.stdout.flush() # Update GroupID... lins=lin.strip().split(',') groupID = int(lins[groupIDCol]) newGroupID = groupID + groupIDOffset newGroupIDList.append(newGroupID) lins[groupIDCol] = str(newGroupID) # Output updated line... outputLine = '' for value in lins: outputLine = outputLine+value+',' outputLine = outputLine[:-1] outputLine = outputLine+'\n' fout.write(outputLine) # After we finish with a given fileName, # we update the groupIDOffset to be # the value of the largest newGroupID # in that fileName... groupIDOffset = max(newGroupIDList) print groupIDOffset if args.verbose > 1: print print # Close the output file... fout.close() if args.verbose>0: print return 0 ################################## # def reformat_stilts_internal_match_files_for_gcm_exp_old(args): import os import sys import glob import numpy as np import pandas as pd import math import gcmPythonTools import datetime print 'Start of program: ', print datetime.datetime.now() if args.verbose>0: print print '* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *' print 'reformat_stilts_internal_match_files_for_gcm_exp' print '* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *' print # Add blacklist, y3a1_blacklist, y3a1_graylist (non-photometric exposures), # and updated qa_summary table to "prune" non-photometric or otherwise # questionable data from the fit. fileNamePattern = 'y2a1_rawdata.svy1y2y3.sorted.tmp.g.csv.ac.inmatch.first1000' #fileNamePattern = 'y2a1_rawdata.svy1y2y3.sorted.tmp.g.csv.??.inmatch' fileNamePattern = args.fileNamePattern fileNameList = sorted(glob.glob(fileNamePattern)) if args.verbose>2: print fileNameList # Open up the output file and write header to it... outputFileName = args.outputFileName fout = open(outputFileName,'w') hdr = gcmPythonTools.gcmInputFileHeader("stdstars") #if args.verbose > 1: # print hdr fout.write(hdr) groupIDOffset = 0 # Loop through each of the input files from fileNameList... for fileName in fileNameList: #print fileName # Create an array of newGroupIDs contained within this fileName... newGroupIDList = [] # Open the input file as a pandas dataframe... print 'Start reading '+fileName+': ', print datetime.datetime.now() dataFrame = pd.pandas.read_csv(fileName) print 'Finished reading '+fileName+': ', print datetime.datetime.now() dataFrame['MAG'] = -2.5*np.log10(dataFrame['FLUX_PSF']/dataFrame['EXPTIME']) dataFrame['MAGERR'] = 1.086*dataFrame['FLUXERR_PSF']/dataFrame['FLUX_PSF'] #print dataFrame # Update GroupID and groupIDOffset dataFrame['GroupID'] = dataFrame['GroupID'] + groupIDOffset groupIDOffset = max(dataFrame['GroupID']) # Identify unique set of groupIDs... uniqGroupIDArray = np.sort(dataFrame['GroupID'].unique()) print 'Starting loop through individual groups: ', print datetime.datetime.now() for groupID in uniqGroupIDArray: #if args.verbose > 1: #print """Working on GroupID %d (max GroupID=%d)""" % (groupID, groupIDOffset) # Create a temporary data frame just containing # members of this particular group... mask = (dataFrame['GroupID'] == groupID) tmpDataFrame = dataFrame[mask] # How many members are in this particular group # (especially after masking for bad expnums, etc.)? nmem = tmpDataFrame['GroupID'].size # Loop over all unique pairs in this group, outputting # info in a format digestible by the Global Calibrations # Module code GlobalZPSolverDC6.java... for i in range(0,nmem-1): regionid1 = tmpDataFrame['EXPNUM_old'].iloc[i] regionRaCenDeg1 = tmpDataFrame['EXPRA'].iloc[i] regionDecCenDeg1 = tmpDataFrame['EXPDEC'].iloc[i] regionQuality1 = 0 starid1 = tmpDataFrame['GLOBJID'].iloc[i] ximage1 = tmpDataFrame['X_IMAGE'].iloc[i] yimage1 = tmpDataFrame['Y_IMAGE'].iloc[i] raDeg1 = tmpDataFrame['RA'].iloc[i] decDeg1 = tmpDataFrame['DEC'].iloc[i] mag1 = tmpDataFrame['MAG'].iloc[i] magErr1 = tmpDataFrame['MAGERR'].iloc[i] #flux1 = tmpDataFrame['FLUX_PSF'].iloc[i] #fluxErr1 = tmpDataFrame['FLUXERR_PSF'].iloc[i] #exptime1 = tmpDataFrame['EXPTIME'].iloc[i] #if ( (flux1 > 0.) and (exptime1 > 0.) ) : # mag1 = -2.5*math.log10(flux1/exptime1) #else: # mag1 = -9999. #if ( (flux1 > 0.) and (fluxErr1 >= 0.) ): # magErr1 = 1.086*fluxErr1/flux1 #else: # magErr1 = -9999. for j in range(i+1,nmem): regionid2 = tmpDataFrame['EXPNUM_old'].iloc[j] regionRaCenDeg2 = tmpDataFrame['EXPRA'].iloc[j] regionDecCenDeg2 = tmpDataFrame['EXPDEC'].iloc[j] regionQuality2 = 0 starid2 = tmpDataFrame['GLOBJID'].iloc[j] ximage2 = tmpDataFrame['X_IMAGE'].iloc[j] yimage2 = tmpDataFrame['Y_IMAGE'].iloc[j] raDeg2 = tmpDataFrame['RA'].iloc[j] decDeg2 = tmpDataFrame['DEC'].iloc[j] mag2 = tmpDataFrame['MAG'].iloc[j] magErr2 = tmpDataFrame['MAGERR'].iloc[j] #flux2 = tmpDataFrame['FLUX_PSF'].iloc[j] #fluxErr2 = tmpDataFrame['FLUXERR_PSF'].iloc[j] #exptime2 = tmpDataFrame['EXPTIME'].iloc[j] #if ( (flux2 > 0.) and (exptime2 > 0.) ) : # mag2 = -2.5*math.log10(flux2/exptime2) #else: # mag2 = -9999. #if ( (flux2 > 0.) and (fluxErr2 >= 0.) ): # magErr2 = 1.086*fluxErr2/flux2 #else: # magErr2 = -9999. #try: # sepArcsec = 3600.*gcmPythonTools.sepDegGet(raDeg1,decDeg1,raDeg2,decDeg2) #except: # sepArcsec = -9999. # Newly added - need to replace: sepArcsec = 0.00 #if ( mag1 > -99. and magErr1 > 0. and mag2 > -99. and magErr2 > 0\ # and sepArcsec >= 0. and regionid1 != regionid2 ): outputLine = '%d %f %f %d %d %f %f %f %f %d %f %f %d %d %f %f %f %f %f\n' % \ ( regionid1, regionRaCenDeg1, regionDecCenDeg1, regionQuality1, \ starid1, raDeg1, decDeg1, mag1, magErr1,\ regionid2, regionRaCenDeg2, regionDecCenDeg2, regionQuality2, \ starid2, raDeg2, decDeg2, mag2, magErr2,\ sepArcsec) fout.write(outputLine) #endif #endfor_j #endfor_i #print groupIDOffset #endfor_groupID del dataFrame #if args.verbose > 1: # print # print #endfor_filename # Close the output file... fout.close() print 'Finished: ', print datetime.datetime.now() if args.verbose>0: print return 0 ################################## # def reformat_stilts_internal_match_files_for_gcm_exp(args): import os import sys import glob import numpy as np import pandas as pd import math import gcmPythonTools import datetime print 'Start of program: ', print datetime.datetime.now() if args.verbose>0: print print '* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *' print 'reformat_stilts_internal_match_files_for_gcm_exp' print '* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *' print # Add blacklist, y3a1_blacklist, y3a1_graylist (non-photometric exposures), # and updated qa_summary table to "prune" non-photometric or otherwise # questionable data from the fit. #fileNamePattern = 'y2a1_rawdata.svy1y2y3.sorted.tmp.g.csv.ac.inmatch.first1000' fileNamePattern = 'y2a1_rawdata.svy1y2y3.sorted.tmp.g.csv.??.inmatch' fileNamePattern = args.fileNamePattern fileNameList = sorted(glob.glob(fileNamePattern)) if args.verbose>2: print fileNameList # Open up the output file and write header to it... outputFileName = args.outputFileName fout = open(outputFileName,'w') hdr = gcmPythonTools.gcmInputFileHeader("stdstars") #if args.verbose > 1: # print hdr fout.write(hdr) # Loop through each of the input files from fileNameList... for fileName in fileNameList: #print fileName # Open the input file as a pandas dataframe... print 'Start reading '+fileName+': ', print datetime.datetime.now() dataFrame = pd.pandas.read_csv(fileName) print 'Finished reading '+fileName+': ', print datetime.datetime.now() dataFrame['MAG'] = -2.5*np.log10(dataFrame['FLUX_PSF']/dataFrame['EXPTIME']) dataFrame['MAGERR'] = 1.086*dataFrame['FLUXERR_PSF']/dataFrame['FLUX_PSF'] maxGroupID = max(dataFrame['GroupID']) grouped = dataFrame.groupby('GroupID') print 'Starting loop through individual groups: ', print datetime.datetime.now() ntot = 0 for name, group in grouped: if args.verbose > 1: if (ntot % 100 == 0): print datetime.datetime.now(), print """Working on GroupID %d (max GroupID=%d)""" % (name, maxGroupID) ntot = ntot + 1 # How many members are in this particular group # (especially after masking for bad expnums, etc.)? nmem = group['GroupID'].size # Loop over all unique pairs in this group, outputting # info in a format digestible by the Global Calibrations # Module code GlobalZPSolverDC6.java... for i in range(0,nmem-1): regionid1 = group['EXPNUM_old'].iloc[i] regionRaCenDeg1 = group['EXPRA'].iloc[i] regionDecCenDeg1 = group['EXPDEC'].iloc[i] regionQuality1 = 0 starid1 = group['GLOBJID'].iloc[i] ximage1 = group['X_IMAGE'].iloc[i] yimage1 = group['Y_IMAGE'].iloc[i] raDeg1 = group['RA'].iloc[i] decDeg1 = group['DEC'].iloc[i] mag1 = group['MAG'].iloc[i] magErr1 = group['MAGERR'].iloc[i] for j in range(i+1,nmem): regionid2 = group['EXPNUM_old'].iloc[j] regionRaCenDeg2 = group['EXPRA'].iloc[j] regionDecCenDeg2 = group['EXPDEC'].iloc[j] regionQuality2 = 0 starid2 = group['GLOBJID'].iloc[j] ximage2 = group['X_IMAGE'].iloc[j] yimage2 = group['Y_IMAGE'].iloc[j] raDeg2 = group['RA'].iloc[j] decDeg2 = group['DEC'].iloc[j] mag2 = group['MAG'].iloc[j] magErr2 = group['MAGERR'].iloc[j] #try: # sepArcsec = 3600.*gcmPythonTools.sepDegGet(raDeg1,decDeg1,raDeg2,decDeg2) #except: # sepArcsec = -9999. # Newly added - need to replace: sepArcsec = 0.00 #if ( mag1 > -99. and magErr1 > 0. and mag2 > -99. and magErr2 > 0\ # and sepArcsec >= 0. and regionid1 != regionid2 ): outputLine = '%d %f %f %d %d %f %f %f %f %d %f %f %d %d %f %f %f %f %f\n' % \ ( regionid1, regionRaCenDeg1, regionDecCenDeg1, regionQuality1, \ starid1, raDeg1, decDeg1, mag1, magErr1,\ regionid2, regionRaCenDeg2, regionDecCenDeg2, regionQuality2, \ starid2, raDeg2, decDeg2, mag2, magErr2,\ sepArcsec) fout.write(outputLine) #endif #endfor_j #endfor_i #print groupIDOffset #endfor_groupID del dataFrame #if args.verbose > 1: # print # print #endfor_filename # Close the output file... fout.close() print 'Finished: ', print datetime.datetime.now() if args.verbose>0: print return 0 ################################## # def blacklist_query(args): import easyaccess as ea import numpy as np if args.verbose>0: print print '* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *' print 'blacklist_query' print '* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *' print connection=ea.connect('desoper') query=""" select * from prod.blacklist where expnum between %d and %d order by expnum, ccdnum """ % (args.expnumMin, args.expnumMax) if args.verbose>0: print query outputFile="""%s.blacklist.csv""" % (args.baseName) connection.query_and_save(query,outputFile) connection.close() if args.verbose>0: print return 0 ################################## # PROD.y3a1_blacklist contains the merger of the # original PROD.blacklist table and Eli Rykoff's # special, just-for-Y3A1 spread_model-based # y3a1_blacklist... def y3a1_blacklist_query(args): import easyaccess as ea import numpy as np if args.verbose>0: print print '* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *' print 'y3a1_blacklist_query' print '* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *' print connection=ea.connect('desoper') query=""" select * from prod.y3a1_blacklist where expnum between %d and %d order by expnum, ccdnum """ % (args.expnumMin, args.expnumMax) if args.verbose>0: print query outputFile="""%s.y3a1_blacklist.csv""" % (args.baseName) connection.query_and_save(query,outputFile) connection.close() if args.verbose>0: print return 0 ################################## # # Based on se_object_query_by_reqnum... def image_query(args): import easyaccess as ea import numpy as np if args.verbose>0: print print '* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *' print 'image_query' print '* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *' print connection=ea.connect('desoper') query=""" with x as ( select /*+materialize */ t.pfw_attempt_id, qa.expnum from prod.proctag t, prod.qa_summary qa where t.pfw_attempt_id=qa.pfw_attempt_id and tag='%s' ) select i.pfw_attempt_id, i.band, i.expnum, i.ccdnum, i.rac1, i.decc1, i.rac2, i.decc2, i.rac3, i.decc3, i.rac4, i.decc4, i.ra_cent, i.dec_cent, i.racmax, i.racmin, i.crossra0 from prod.image i, x where x.pfw_attempt_id=i.pfw_attempt_id and i.filetype='red_starflat' and i.expnum=x.expnum order by i.expnum, i.ccdnum """ % (args.tag) if args.verbose>0: print query outputFile = args.outputFileName connection.query_and_save(query,outputFile) connection.close() if args.verbose>0: print return 0 ################################## # # Based on se_object_query_by_reqnum... def exp_image_cat_y3a1blacklist_query(args): import easyaccess as ea import numpy as np import pandas as pd import datetime if args.verbose>0: print print '* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *' print 'exp_image_cat_y3a1blacklist_query' print '* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *' print # Open database connection... connection=ea.connect('desoper') # Prepare and run query0... if args.verbose>0: print print "Running query0..." print datetime.datetime.now() print query0=""" select e.expnum, t.unitname, t.reqnum, t.attnum, e.radeg as EXPRA, e.decdeg as EXPDEC, e.exptime, e.airmass, e.band, e.nite, e.mjd_obs, e.field, e.object, e.program, qa.pfw_attempt_id, qa.source, qa.t_eff, qa.psf_fwhm, qa.f_eff, qa.skybrightness, qa.b_eff, qa.cloud_apass, qa.cloud_nomad, qa.n_apass, qa.n_nomad, qa.c_eff, qa.skytilt, qa.astrom_sigma, qa.astrom_offset, qa.astrom_ndets, qa.astrom_chi2, qa.nobjects, qa.flag, qa.calnac from prod.exposure e, prod.proctag t, prod.qa_summary qa where t.pfw_attempt_id=qa.pfw_attempt_id and e.expnum=qa.expnum and t.tag='%s' """ % (args.tag) if args.verbose>0: print query0 df0 = connection.query_to_pandas(query0).sort('EXPNUM') if args.verbose > 0: print datetime.datetime.now() if args.verbose > 0: print print "Outputting query0 to test_df0.csv..." print datetime.datetime.now() df0.to_csv('test_df0.csv',index=False,float_format='%.8f') if args.verbose > 0: print datetime.datetime.now() # Prepare and run query1... if args.verbose>0: print print "Running query1..." print datetime.datetime.now() print query1=""" with x as ( select /*+materialize */ t.pfw_attempt_id, qa.expnum from prod.proctag t, prod.qa_summary qa where t.pfw_attempt_id=qa.pfw_attempt_id and tag='%s' ) select i.pfw_attempt_id, i.band, i.expnum, i.ccdnum, i.gaina, i.gainb, i.rdnoisea, i.rdnoiseb, i.rac1, i.decc1, i.rac2, i.decc2, i.rac3, i.decc3, i.rac4, i.decc4, i.ra_cent, i.dec_cent, i.racmax, i.racmin, i.crossra0 from prod.image i, x where x.pfw_attempt_id=i.pfw_attempt_id and i.filetype='red_starflat' and i.expnum=x.expnum """ % (args.tag) if args.verbose>0: print query1 df1 = connection.query_to_pandas(query1).sort(['EXPNUM','CCDNUM']) #df1 = pd.read_csv('test_df1.csv') if args.verbose > 0: print datetime.datetime.now() if args.verbose > 0: print print "Outputting query1 to test_df1.csv..." print datetime.datetime.now() df1.to_csv('test_df1.csv',index=False,float_format='%.8f') if args.verbose > 0: print datetime.datetime.now() # Prepare and run query2... if args.verbose>0: print print "Running query2..." print datetime.datetime.now() print query2=""" with x as ( select /*+materialize */ t.pfw_attempt_id, qa.expnum from prod.proctag t, prod.qa_summary qa where t.pfw_attempt_id=qa.pfw_attempt_id and tag='%s' ) select c.filename, c.band, c.expnum, c.ccdnum, c.objects from prod.catalog c, x where x.pfw_attempt_id=c.pfw_attempt_id and c.filetype='cat_finalcut' and c.expnum=x.expnum """ % (args.tag) if args.verbose>0: print query2 df2 = connection.query_to_pandas(query2).sort(['EXPNUM','CCDNUM']) if args.verbose > 0: print datetime.datetime.now() if args.verbose > 0: print print "Outputting query2 to test_df2.csv..." print datetime.datetime.now() df2.to_csv('test_df2.csv',index=False,float_format='%.8f') if args.verbose > 0: print datetime.datetime.now() # Prepare and run query3... if args.verbose>0: print print "Running query3..." print datetime.datetime.now() print query3=""" select * from prod.y3a1_blacklist """ if args.verbose>0: print query3 df3 = connection.query_to_pandas(query3).sort(['EXPNUM','CCDNUM']) if args.verbose > 0: print datetime.datetime.now() # Add EXPNUMCCDNUM column... df3.loc[:, 'EXPNUMCCDNUM'] = 100*df3['EXPNUM'] + df3['CCDNUM'] if args.verbose > 0: print print "Outputting query3 to test_df3.csv..." print datetime.datetime.now() df3.to_csv('test_df3.csv',index=False,float_format='%.8f') if args.verbose > 0: print datetime.datetime.now() # Create blacklist array based on EXPNUMCCDNUM column... blacklistArray = df3['EXPNUMCCDNUM'].values # Merge queries... # # To drop columns with duplicate names, we make use of # recommendations from an e-mail from S. Allam (27 July 2016) # and from these two stackoverflow questions: # http://stackoverflow.com/questions/27313647/merging-two-pandas-dataframes-results-in-duplicate-columns # and http://stackoverflow.com/questions/19125091/pandas-merge-how-to-avoid-duplicating-columns # Merge df0 and df1... if args.verbose > 0: print print "Merging data frames df0 and df1..." print datetime.datetime.now() df01 = df0.merge(df1, on=['EXPNUM'], suffixes=('', '_y')).sort(['EXPNUM'], ascending=True).reset_index(drop=True) to_drop = [colname for colname in df01 if colname.endswith('_y')] df01.drop(to_drop, axis=1, inplace=True) if args.verbose > 0: print datetime.datetime.now() if args.verbose > 0: print print "Outputting data frame df01 to test_df01.csv..." print datetime.datetime.now() df01.to_csv('test_df01.csv',index=False,float_format='%.8f') if args.verbose > 0: print datetime.datetime.now() # Merge df01 and df2... if args.verbose > 0: print print "Merging data frames df01 and df2..." print datetime.datetime.now() df012 = df01.merge(df2, on=['EXPNUM','CCDNUM'], suffixes=('', '_y')).sort(['EXPNUM','CCDNUM'], ascending=True).reset_index(drop=True) to_drop = [colname for colname in df012 if colname.endswith('_y')] df012.drop(to_drop, axis=1, inplace=True) if args.verbose > 0: print datetime.datetime.now() # Add EXPNUMCCDNUM column... df012.loc[:, 'EXPNUMCCDNUM'] = 100*df012['EXPNUM'] + df012['CCDNUM'] if args.verbose > 0: print print "Outputting data frame df012 to test_df012.csv..." print datetime.datetime.now() df012.to_csv('test_df012.csv',index=False,float_format='%.8f') if args.verbose > 0: print datetime.datetime.now() # Create blacklist mask... # Note that this makes use of the inverse operator ("~")... mask = ~df012.EXPNUMCCDNUM.isin(blacklistArray) # Output the mask==True entries... outputFile = args.outputFileName if args.verbose > 0: print print """Outputting blacklist-cleaned data frame df012 to %s...""" % (outputFile) print datetime.datetime.now() df012[mask].to_csv(outputFile, index=False) # Close database connection... connection.close() if args.verbose>0: print return 0 ################################## if __name__ == "__main__": main() ##################################
gpl-3.0
ned2/okdata
okregression.py
1
4262
#!/usr/bin/env python2 from __future__ import division import sys import os import argparse import numpy from sklearn import linear_model from sklearn import metrics from sklearn.cross_validation import train_test_split from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfTransformer from sklearn.pipeline import Pipeline import okc TRAIN_PROPORTION = 0.8 text_func = lambda user : user.text match_func = lambda user : float(user.match) def argparser(): argparser = argparse.ArgumentParser() argparser.add_argument("--regressor", default='linear') argparser.add_argument("--alpha", type=float, default=0.1) argparser.add_argument("path") argparser.add_argument("--topfeatures", default=0, type=int) return argparser def get_regressor(regressor_type): return { 'linear' : linear_model.LinearRegression(), 'ridge' : linear_model.Ridge(alpha=ALPHA), 'ridgecv' : linear_model.RidgeCV(alphas=[0.1, 1.0, 10.0]), 'lasso' : linear_model.Lasso(alpha=ALPHA), 'sgd' : linear_model.SGDRegressor(alpha=ALPHA), 'pa' : linear_model.PassiveAggressiveRegressor(), 'bridge' : linear_model.BayesianRidge(), }[regressor_type] class Regressor(object): def __init__(self, instances, labels, regressor_type, tfidf=True): regressor = self.get_regressor(regressor_type, tfidf) self.regressor = regressor.fit(instances, labels) def get_regressor(self, regressor_type, tfidf): count_vect = CountVectorizer( analyzer='char_wb', ngram_range=(1,4), strip_accents='unicode', ) pipeline = [('vect', count_vect)] if tfidf: pipeline.append(('tfidf', TfidfTransformer())) pipeline.append(('regressor', get_regressor(regressor_type))) return Pipeline(pipeline) def test(self, instances, labels): predicted = self.regressor.predict(instances) print "Mean absoulte error: {}".format(metrics.mean_absolute_error(labels, predicted)) print "Mean squared error: {}".format(metrics.mean_squared_error(labels, predicted)) def show_most_informative_features(self, instances, topn): coefs_with_fns = sorted(zip(self.coefficients, self.features, self.feature_values(instances))) top = zip(coefs_with_fns[:topn], coefs_with_fns[:-(topn + 1):-1]) for (coef_1, fn_1, freq_1), (coef_2, fn_2, freq_2) in top: fn_1 = okc.decode_punct(fn_1) fn_2 = okc.decode_punct(fn_2) print "{:10.4f}{:>20}{:10} |{:10.4f}{:>20}{:10}".format(coef_1, fn_1, freq_1, coef_2, fn_2, freq_2) def feature_values(self, instances): """So we can get the raw counts of the features as used by the regressor.""" matrix = self.regressor.steps[0][1].fit_transform(instances) return matrix.sum(axis=0).tolist()[0] @property def coefficients(self): return self.regressor.steps[-1][1].coef_[0] @property def features(self): return self.regressor.steps[0][1].get_feature_names() def train_test(user_paths, regressor_type, topfeatures=0): train_user_paths, test_user_paths = train_test_split( user_paths, train_size=TRAIN_PROPORTION, random_state=42 ) train_instances = okc.load_users(train_user_paths, func=text_func) train_labels = okc.load_users(train_user_paths, func=match_func) test_instances = okc.load_users(test_user_paths, func=text_func) test_labels = okc.load_users(test_user_paths, func=match_func) print "Training model" regressor = Regressor(train_instances, list(train_labels), regressor_type) print "Testing model" regressor.test(test_instances, list(test_labels)) if topfeatures: regressor.show_most_informative_features(train_instances, topfeatures) return regressor def main(): global ALPHA args = argparser().parse_args() ALPHA = args.alpha paths = [os.path.join(args.path, p) for p in os.listdir(args.path)] regressor = train_test(paths, args.regressor, topfeatures=args.topfeatures) if __name__ == "__main__": sys.exit(main())
mit
MoamerEncsConcordiaCa/tensorflow
tensorflow/contrib/learn/python/learn/preprocessing/tests/categorical_test.py
137
2219
# encoding: utf-8 # Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Categorical tests.""" # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.learn.python.learn.learn_io import HAS_PANDAS from tensorflow.contrib.learn.python.learn.preprocessing import categorical from tensorflow.python.platform import test class CategoricalTest(test.TestCase): """Categorical tests.""" def testSingleCategoricalProcessor(self): cat_processor = categorical.CategoricalProcessor(min_frequency=1) x = cat_processor.fit_transform([["0"], [1], [float("nan")], ["C"], ["C"], [1], ["0"], [np.nan], [3]]) self.assertAllEqual(list(x), [[2], [1], [0], [3], [3], [1], [2], [0], [0]]) def testSingleCategoricalProcessorPandasSingleDF(self): if HAS_PANDAS: import pandas as pd # pylint: disable=g-import-not-at-top cat_processor = categorical.CategoricalProcessor() data = pd.DataFrame({"Gender": ["Male", "Female", "Male"]}) x = list(cat_processor.fit_transform(data)) self.assertAllEqual(list(x), [[1], [2], [1]]) def testMultiCategoricalProcessor(self): cat_processor = categorical.CategoricalProcessor( min_frequency=0, share=False) x = cat_processor.fit_transform([["0", "Male"], [1, "Female"], ["3", "Male"]]) self.assertAllEqual(list(x), [[1, 1], [2, 2], [3, 1]]) if __name__ == "__main__": test.main()
apache-2.0
mne-tools/mne-tools.github.io
0.14/_downloads/plot_label_from_stc.py
31
3963
""" ================================================= Generate a functional label from source estimates ================================================= Threshold source estimates and produce a functional label. The label is typically the region of interest that contains high values. Here we compare the average time course in the anatomical label obtained by FreeSurfer segmentation and the average time course from the functional label. As expected the time course in the functional label yields higher values. """ # Author: Luke Bloy <[email protected]> # Alex Gramfort <[email protected]> # License: BSD (3-clause) import numpy as np import matplotlib.pyplot as plt import mne from mne.minimum_norm import read_inverse_operator, apply_inverse from mne.datasets import sample print(__doc__) data_path = sample.data_path() subjects_dir = data_path + '/subjects' fname_inv = data_path + '/MEG/sample/sample_audvis-meg-oct-6-meg-inv.fif' fname_evoked = data_path + '/MEG/sample/sample_audvis-ave.fif' subjects_dir = data_path + '/subjects' subject = 'sample' snr = 3.0 lambda2 = 1.0 / snr ** 2 method = "dSPM" # use dSPM method (could also be MNE or sLORETA) # Compute a label/ROI based on the peak power between 80 and 120 ms. # The label bankssts-lh is used for the comparison. aparc_label_name = 'bankssts-lh' tmin, tmax = 0.080, 0.120 # Load data evoked = mne.read_evokeds(fname_evoked, condition=0, baseline=(None, 0)) inverse_operator = read_inverse_operator(fname_inv) src = inverse_operator['src'] # get the source space # Compute inverse solution stc = apply_inverse(evoked, inverse_operator, lambda2, method, pick_ori='normal') # Make an STC in the time interval of interest and take the mean stc_mean = stc.copy().crop(tmin, tmax).mean() # use the stc_mean to generate a functional label # region growing is halted at 60% of the peak value within the # anatomical label / ROI specified by aparc_label_name label = mne.read_labels_from_annot(subject, parc='aparc', subjects_dir=subjects_dir, regexp=aparc_label_name)[0] stc_mean_label = stc_mean.in_label(label) data = np.abs(stc_mean_label.data) stc_mean_label.data[data < 0.6 * np.max(data)] = 0. func_labels, _ = mne.stc_to_label(stc_mean_label, src=src, smooth=True, subjects_dir=subjects_dir, connected=True) # take first as func_labels are ordered based on maximum values in stc func_label = func_labels[0] # load the anatomical ROI for comparison anat_label = mne.read_labels_from_annot(subject, parc='aparc', subjects_dir=subjects_dir, regexp=aparc_label_name)[0] # extract the anatomical time course for each label stc_anat_label = stc.in_label(anat_label) pca_anat = stc.extract_label_time_course(anat_label, src, mode='pca_flip')[0] stc_func_label = stc.in_label(func_label) pca_func = stc.extract_label_time_course(func_label, src, mode='pca_flip')[0] # flip the pca so that the max power between tmin and tmax is positive pca_anat *= np.sign(pca_anat[np.argmax(np.abs(pca_anat))]) pca_func *= np.sign(pca_func[np.argmax(np.abs(pca_anat))]) ############################################################################### # plot the time courses.... plt.figure() plt.plot(1e3 * stc_anat_label.times, pca_anat, 'k', label='Anatomical %s' % aparc_label_name) plt.plot(1e3 * stc_func_label.times, pca_func, 'b', label='Functional %s' % aparc_label_name) plt.legend() plt.show() ############################################################################### # plot brain in 3D with PySurfer if available brain = stc_mean.plot(hemi='lh', subjects_dir=subjects_dir) brain.show_view('lateral') # show both labels brain.add_label(anat_label, borders=True, color='k') brain.add_label(func_label, borders=True, color='b')
bsd-3-clause
MechCoder/scikit-learn
examples/svm/plot_rbf_parameters.py
20
8048
''' ================== RBF SVM parameters ================== This example illustrates the effect of the parameters ``gamma`` and ``C`` of the Radial Basis Function (RBF) kernel SVM. Intuitively, the ``gamma`` parameter defines how far the influence of a single training example reaches, with low values meaning 'far' and high values meaning 'close'. The ``gamma`` parameters can be seen as the inverse of the radius of influence of samples selected by the model as support vectors. The ``C`` parameter trades off misclassification of training examples against simplicity of the decision surface. A low ``C`` makes the decision surface smooth, while a high ``C`` aims at classifying all training examples correctly by giving the model freedom to select more samples as support vectors. The first plot is a visualization of the decision function for a variety of parameter values on a simplified classification problem involving only 2 input features and 2 possible target classes (binary classification). Note that this kind of plot is not possible to do for problems with more features or target classes. The second plot is a heatmap of the classifier's cross-validation accuracy as a function of ``C`` and ``gamma``. For this example we explore a relatively large grid for illustration purposes. In practice, a logarithmic grid from :math:`10^{-3}` to :math:`10^3` is usually sufficient. If the best parameters lie on the boundaries of the grid, it can be extended in that direction in a subsequent search. Note that the heat map plot has a special colorbar with a midpoint value close to the score values of the best performing models so as to make it easy to tell them appart in the blink of an eye. The behavior of the model is very sensitive to the ``gamma`` parameter. If ``gamma`` is too large, the radius of the area of influence of the support vectors only includes the support vector itself and no amount of regularization with ``C`` will be able to prevent overfitting. When ``gamma`` is very small, the model is too constrained and cannot capture the complexity or "shape" of the data. The region of influence of any selected support vector would include the whole training set. The resulting model will behave similarly to a linear model with a set of hyperplanes that separate the centers of high density of any pair of two classes. For intermediate values, we can see on the second plot that good models can be found on a diagonal of ``C`` and ``gamma``. Smooth models (lower ``gamma`` values) can be made more complex by selecting a larger number of support vectors (larger ``C`` values) hence the diagonal of good performing models. Finally one can also observe that for some intermediate values of ``gamma`` we get equally performing models when ``C`` becomes very large: it is not necessary to regularize by limiting the number of support vectors. The radius of the RBF kernel alone acts as a good structural regularizer. In practice though it might still be interesting to limit the number of support vectors with a lower value of ``C`` so as to favor models that use less memory and that are faster to predict. We should also note that small differences in scores results from the random splits of the cross-validation procedure. Those spurious variations can be smoothed out by increasing the number of CV iterations ``n_splits`` at the expense of compute time. Increasing the value number of ``C_range`` and ``gamma_range`` steps will increase the resolution of the hyper-parameter heat map. ''' print(__doc__) import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import Normalize from sklearn.svm import SVC from sklearn.preprocessing import StandardScaler from sklearn.datasets import load_iris from sklearn.model_selection import StratifiedShuffleSplit from sklearn.model_selection import GridSearchCV # Utility function to move the midpoint of a colormap to be around # the values of interest. class MidpointNormalize(Normalize): def __init__(self, vmin=None, vmax=None, midpoint=None, clip=False): self.midpoint = midpoint Normalize.__init__(self, vmin, vmax, clip) def __call__(self, value, clip=None): x, y = [self.vmin, self.midpoint, self.vmax], [0, 0.5, 1] return np.ma.masked_array(np.interp(value, x, y)) ############################################################################## # Load and prepare data set # # dataset for grid search iris = load_iris() X = iris.data y = iris.target # Dataset for decision function visualization: we only keep the first two # features in X and sub-sample the dataset to keep only 2 classes and # make it a binary classification problem. X_2d = X[:, :2] X_2d = X_2d[y > 0] y_2d = y[y > 0] y_2d -= 1 # It is usually a good idea to scale the data for SVM training. # We are cheating a bit in this example in scaling all of the data, # instead of fitting the transformation on the training set and # just applying it on the test set. scaler = StandardScaler() X = scaler.fit_transform(X) X_2d = scaler.fit_transform(X_2d) ############################################################################## # Train classifiers # # For an initial search, a logarithmic grid with basis # 10 is often helpful. Using a basis of 2, a finer # tuning can be achieved but at a much higher cost. C_range = np.logspace(-2, 10, 13) gamma_range = np.logspace(-9, 3, 13) param_grid = dict(gamma=gamma_range, C=C_range) cv = StratifiedShuffleSplit(n_splits=5, test_size=0.2, random_state=42) grid = GridSearchCV(SVC(), param_grid=param_grid, cv=cv) grid.fit(X, y) print("The best parameters are %s with a score of %0.2f" % (grid.best_params_, grid.best_score_)) # Now we need to fit a classifier for all parameters in the 2d version # (we use a smaller set of parameters here because it takes a while to train) C_2d_range = [1e-2, 1, 1e2] gamma_2d_range = [1e-1, 1, 1e1] classifiers = [] for C in C_2d_range: for gamma in gamma_2d_range: clf = SVC(C=C, gamma=gamma) clf.fit(X_2d, y_2d) classifiers.append((C, gamma, clf)) ############################################################################## # visualization # # draw visualization of parameter effects plt.figure(figsize=(8, 6)) xx, yy = np.meshgrid(np.linspace(-3, 3, 200), np.linspace(-3, 3, 200)) for (k, (C, gamma, clf)) in enumerate(classifiers): # evaluate decision function in a grid Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) # visualize decision function for these parameters plt.subplot(len(C_2d_range), len(gamma_2d_range), k + 1) plt.title("gamma=10^%d, C=10^%d" % (np.log10(gamma), np.log10(C)), size='medium') # visualize parameter's effect on decision function plt.pcolormesh(xx, yy, -Z, cmap=plt.cm.RdBu) plt.scatter(X_2d[:, 0], X_2d[:, 1], c=y_2d, cmap=plt.cm.RdBu_r, edgecolors='k') plt.xticks(()) plt.yticks(()) plt.axis('tight') scores = grid.cv_results_['mean_test_score'].reshape(len(C_range), len(gamma_range)) # Draw heatmap of the validation accuracy as a function of gamma and C # # The score are encoded as colors with the hot colormap which varies from dark # red to bright yellow. As the most interesting scores are all located in the # 0.92 to 0.97 range we use a custom normalizer to set the mid-point to 0.92 so # as to make it easier to visualize the small variations of score values in the # interesting range while not brutally collapsing all the low score values to # the same color. plt.figure(figsize=(8, 6)) plt.subplots_adjust(left=.2, right=0.95, bottom=0.15, top=0.95) plt.imshow(scores, interpolation='nearest', cmap=plt.cm.hot, norm=MidpointNormalize(vmin=0.2, midpoint=0.92)) plt.xlabel('gamma') plt.ylabel('C') plt.colorbar() plt.xticks(np.arange(len(gamma_range)), gamma_range, rotation=45) plt.yticks(np.arange(len(C_range)), C_range) plt.title('Validation accuracy') plt.show()
bsd-3-clause
ellonweb/merlin
Arthur/views/graphs.py
1
10037
# This file is part of Merlin/Arthur. # Merlin/Arthur is the Copyright (C)2011 of Elliot Rosemarine. # Individual portions may be copyright by individual contributors, and # are included in this collective work with permission of the copyright # owners. # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA import os from django.conf.urls.defaults import include, patterns, url from django.http import HttpResponse, HttpResponseNotFound from Core.config import Config from Core.db import session from Core.maps import Galaxy, GalaxyHistory, Planet, PlanetHistory, Alliance, AllianceHistory from Arthur.loadable import loadable, load graphing = Config.get("Misc", "graphing") != "disabled" caching = Config.get("Misc", "graphing") == "cached" if graphing: import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas from matplotlib.ticker import FuncFormatter urlpatterns = patterns('', url(r'^graphs/(?P<type>values|ranks)/', include(patterns('Arthur.views.graphs', url(r'^(?P<x>\d+)[. :\-](?P<y>\d+)[. :\-](?P<z>\d+)', 'planet', name="planetG"), url(r'^(?P<x>\d+)[. :\-](?P<y>\d+)', 'galaxy', name="galaxyG"), url(r'^(?P<name>[^/]+)', 'alliance', name="allianceG"), ))), ) if graphing else () white = '#ffffff' black = '#000000' red = '#ff0000' green = '#00ff00' blue = '#0000ff' yellow = '#ffff00' magenta = '#ff00ff' cyan = '#00ffff' pink = '#ff6666' bgcolor = '#292D3A' axcolor = '#373B48' class graphs(loadable): _num2short_scale = 1 width = 500 left, right = {'values': yellow, 'ranks': yellow}, {'values': green, 'ranks': green} plot = {'values' : lambda ax, Q: ((ax[1].plot(Q[0],Q[1],yellow)[0], "Size",), (ax[2].plot(Q[0],Q[2],green)[0], "Score",), (ax[2].plot(Q[0],Q[3],magenta)[0], "Value",), ), 'ranks' : lambda ax, Q: ((ax[1].plot(Q[0],Q[1],yellow)[0], "Size",), (ax[2].plot(Q[0],Q[2],green)[0], "Score",), (ax[2].plot(Q[0],Q[3],magenta)[0], "Value",), ), } ax = {'values' : lambda i, Q: [(0,), Q[1], Q[2]][i], 'ranks' : lambda i, Q: [(0,), Q[1], Q[2]][i], } def process_request(self, request): if request.path_info == "/draw": if 'REDIRECT_URL' in request.META and request.META['REDIRECT_URL'].startswith("/graphs"): request.path_info = request.META['REDIRECT_URL'] del request.META['REDIRECT_URL'] def execute(self, request, user, type, x=None, y=None, z=None, name=None): width = self.width *(8.0/640) height = width *(6.0/8.0) fig = plt.figure(figsize=(width,height,), facecolor=bgcolor, edgecolor=bgcolor) try: ## Set up the axes fig.subplots_adjust(left=0.08,right=1-0.08,bottom=0.05,top=1-0.075) ax = {} ax[0] = fig.add_subplot(111) ax[0].yaxis.set_visible(False) ax[0].set_axis_bgcolor(axcolor) ax[1] = fig.add_axes(ax[0].get_position(True), sharex=ax[0], frameon=False) ax[1].yaxis.tick_left() ax[1].yaxis.set_label_position('left') ax[1].xaxis.set_visible(False) ax[2] = fig.add_axes(ax[0].get_position(True), sharex=ax[1], frameon=False) ax[2].yaxis.tick_right() ax[2].yaxis.set_label_position('right') ax[2].xaxis.set_visible(False) ## Load the data o = self.load(x,y,z,name) if not o: return self.error(fig,"Unable to load target x:%s y:%s z:%s name:%s"%(x,y,z,name,)) q = self.query[type].filter_by(current=o) d = zip(*q.all()) ## Plot the data and draw a legend leg = ax[0].legend(*zip(*self.plot[type](ax,d)), loc='upper left', ncol=len(d)-1, columnspacing=1, handlelength=0.1, handletextpad=0.5) leg.get_frame().set_facecolor(black) leg.get_frame().set_alpha(0.5) for t in leg.get_texts(): t.set_color(white) t.set_fontsize(10) ## Sort out the axes ax[0].tick_params(labelcolor=white) ax[1].tick_params(labelcolor=self.left[type]) ax[2].tick_params(labelcolor=self.right[type]) if type == "values": # pretty axis labels ax[1].yaxis.set_major_formatter(FuncFormatter(lambda x,pos:self.num2short(x))) ax[2].yaxis.set_major_formatter(FuncFormatter(lambda x,pos:self.num2short(x))) else: ax[1].yaxis.set_major_formatter(FuncFormatter(self.rank_axis_format)) ax[2].yaxis.set_major_formatter(FuncFormatter(self.rank_axis_format)) for i in (0,1,2,): # axis scales bottom, top = ax[i].get_ylim() bottom = 0 peak = max(self.ax[type](i,d)) if peak >= top: top = peak + 1 if type == "values": # for values, scale all the way down to 0 ax[i].set_ylim(bottom, top) else: # for ranks, invert axes, 0 at the top ax[i].set_ylim(top, bottom) ## Fix some odd behaviour ax[0].set_xlim(d[0][0], d[0][-1]) #align first tick to left ax[2].axvline(x=d[0][0], color=black) #fix gfx glitch on left yaxis ## Title title = self.title(o) + (" Rank" if type == "ranks" else "") + " History" fig.suptitle(title, color=white, fontsize=18) return self.render(fig, self.cache(request, type)) finally: plt.close(fig) def rank_axis_format(self, x, pos): if x == 0: return "" if int(x) < x: return "" return int(x) def cache(self, request, type): if not caching: return "" path = "Arthur"+request.path_info dir = os.path.dirname(path) if not os.path.exists(dir): try: os.makedirs(dir) except OSError: return "" return path def render(self, fig, path=""): canvas = FigureCanvas(fig) try: if not caching: raise IOError with open(path, "wb") as file: canvas.print_png(file) except IOError: pass response = HttpResponse(content_type='image/png') canvas.print_png(response) return response def error(self, fig, msg): fig.suptitle(msg, color=white) return HttpResponseNotFound(self.render(fig), content_type='image/png') @load class planet(graphs): load = staticmethod(lambda x, y, z, name: Planet.load(x,y,z)) title = staticmethod(lambda o: "%s:%s:%s" %(o.x,o.y,o.z,)) query = {'values' : session.query(PlanetHistory.tick, PlanetHistory.size, PlanetHistory.score, PlanetHistory.value), 'ranks' : session.query(PlanetHistory.tick, PlanetHistory.size_rank, PlanetHistory.score_rank, PlanetHistory.value_rank), } @load class galaxy(graphs): load = staticmethod(lambda x, y, z, name: Galaxy.load(x,y)) title = staticmethod(lambda o: "%s:%s" %(o.x,o.y,)) query = {'values' : session.query(GalaxyHistory.tick, GalaxyHistory.size, GalaxyHistory.score, GalaxyHistory.value), 'ranks' : session.query(GalaxyHistory.tick, GalaxyHistory.size_rank, GalaxyHistory.score_rank, GalaxyHistory.value_rank), } @load class alliance(graphs): load = staticmethod(lambda x, y, z, name: Alliance.load(name, exact=True)) title = staticmethod(lambda o: "%s" %(o.name,)) left, right = {'values': yellow, 'ranks': cyan}, {'values': green, 'ranks': green} query = {'values' : session.query(AllianceHistory.tick, AllianceHistory.size, AllianceHistory.score, AllianceHistory.members), 'ranks' : session.query(AllianceHistory.tick, AllianceHistory.size_rank, AllianceHistory.score_rank, AllianceHistory.points_rank), } plot = {'values' : lambda ax, Q: ((ax[1].plot(Q[0],Q[1],yellow)[0], "Size",), (ax[2].plot(Q[0],Q[2],green)[0], "Score",), (ax[0].plot(Q[0],Q[3],pink)[0], "Members",), ), 'ranks' : lambda ax, Q: ((ax[2].plot(Q[0],Q[1],yellow)[0], "Size",), (ax[2].plot(Q[0],Q[2],green)[0], "Score",), (ax[1].plot(Q[0],Q[3],cyan)[0], "Points",), ), } ax = {'values' : lambda i, Q: [Q[3], Q[1], Q[2]][i], 'ranks' : lambda i, Q: [(0,), Q[3], Q[2]][i], }
gpl-2.0
h2oai/h2o-dev
h2o-py/tests/testdir_misc/pyunit_pubdev_5921_na_prints_large.py
3
2405
import sys sys.path.insert(1,"../../") import h2o from tests import pyunit_utils from h2o.estimators.gbm import H2OGradientBoostingEstimator import math def partial_plot_test(): # Import data set that contains NAs data = h2o.import_file(pyunit_utils.locate("smalldata/airlines/AirlinesTrainWgt.csv"), na_strings=["NA"]) test = h2o.import_file(pyunit_utils.locate("smalldata/airlines/AirlinesTrainWgt.csv"), na_strings=["NA"]) x = data.names y = "IsDepDelayed" data[y] = data[y] x.remove(y) x.remove("Weight") x.remove("IsDepDelayed_REC") WC = "Weight" # Build a GBM model predicting for response CAPSULE gbm_model = H2OGradientBoostingEstimator(ntrees=80, learn_rate=0.1, seed=12345) gbm_model.train(x=x, y=y, training_frame=data) # pdp with weight and no NA pdpw = gbm_model.partial_plot(data=test, cols=["Input_miss", "Distance"], server=True, plot=False, weight_column=WC) # pdp with weight and NA pdpwNA = gbm_model.partial_plot(data=test, cols=["Input_miss", "Distance"], server=True, plot=False, weight_column=WC, include_na = True) input_miss_list = pyunit_utils.extract_col_value_H2OTwoDimTable(pdpwNA[0], "input_miss") assert math.isnan(input_miss_list[-1]), "Expected last element to be nan but is not." distance_list = pyunit_utils.extract_col_value_H2OTwoDimTable(pdpwNA[1], "distance") assert math.isnan(distance_list[-1]), "Expected last element to be nan but is not." # compare pdpw with pdpwNA, they should equal upto NA since the pdpw does not have NAs. pyunit_utils.assert_H2OTwoDimTable_equal_upto(pdpw[0], pdpwNA[0], pdpw[0].col_header, tolerance=1e-10) pyunit_utils.assert_H2OTwoDimTable_equal_upto(pdpw[1], pdpwNA[1], pdpw[1].col_header, tolerance=1e-10) # compare pdpwNA with theoretical results pyunit_utils.compare_weightedStats(gbm_model, test, input_miss_list, "Input_miss", test[WC].as_data_frame(use_pandas=False, header=False), pdpwNA[0], tol=1e-10) pyunit_utils.compare_weightedStats(gbm_model, test, distance_list, "Distance", test[WC].as_data_frame(use_pandas=False, header=False), pdpwNA[1], tol=1e-10) if __name__ == "__main__": pyunit_utils.standalone_test(partial_plot_test) else: partial_plot_test()
apache-2.0
RMKD/networkx
examples/multigraph/chess_masters.py
54
5146
#!/usr/bin/env python """ An example of the MultiDiGraph clas The function chess_pgn_graph reads a collection of chess matches stored in the specified PGN file (PGN ="Portable Game Notation") Here the (compressed) default file --- chess_masters_WCC.pgn.bz2 --- contains all 685 World Chess Championship matches from 1886 - 1985. (data from http://chessproblem.my-free-games.com/chess/games/Download-PGN.php) The chess_pgn_graph() function returns a MultiDiGraph with multiple edges. Each node is the last name of a chess master. Each edge is directed from white to black and contains selected game info. The key statement in chess_pgn_graph below is G.add_edge(white, black, game_info) where game_info is a dict describing each game. """ # Copyright (C) 2006-2010 by # Aric Hagberg <[email protected]> # Dan Schult <[email protected]> # Pieter Swart <[email protected]> # All rights reserved. # BSD license. import networkx as nx # tag names specifying what game info should be # stored in the dict on each digraph edge game_details=["Event", "Date", "Result", "ECO", "Site"] def chess_pgn_graph(pgn_file="chess_masters_WCC.pgn.bz2"): """Read chess games in pgn format in pgn_file. Filenames ending in .gz or .bz2 will be uncompressed. Return the MultiDiGraph of players connected by a chess game. Edges contain game data in a dict. """ import bz2 G=nx.MultiDiGraph() game={} datafile = bz2.BZ2File(pgn_file) lines = (line.decode().rstrip('\r\n') for line in datafile) for line in lines: if line.startswith('['): tag,value=line[1:-1].split(' ',1) game[str(tag)]=value.strip('"') else: # empty line after tag set indicates # we finished reading game info if game: white=game.pop('White') black=game.pop('Black') G.add_edge(white, black, **game) game={} return G if __name__ == '__main__': import networkx as nx G=chess_pgn_graph() ngames=G.number_of_edges() nplayers=G.number_of_nodes() print("Loaded %d chess games between %d players\n"\ % (ngames,nplayers)) # identify connected components # of the undirected version Gcc=list(nx.connected_component_subgraphs(G.to_undirected())) if len(Gcc)>1: print("Note the disconnected component consisting of:") print(Gcc[1].nodes()) # find all games with B97 opening (as described in ECO) openings=set([game_info['ECO'] for (white,black,game_info) in G.edges(data=True)]) print("\nFrom a total of %d different openings,"%len(openings)) print('the following games used the Sicilian opening') print('with the Najdorff 7...Qb6 "Poisoned Pawn" variation.\n') for (white,black,game_info) in G.edges(data=True): if game_info['ECO']=='B97': print(white,"vs",black) for k,v in game_info.items(): print(" ",k,": ",v) print("\n") try: import matplotlib.pyplot as plt except ImportError: import sys print("Matplotlib needed for drawing. Skipping") sys.exit(0) # make new undirected graph H without multi-edges H=nx.Graph(G) # edge width is proportional number of games played edgewidth=[] for (u,v,d) in H.edges(data=True): edgewidth.append(len(G.get_edge_data(u,v))) # node size is proportional to number of games won wins=dict.fromkeys(G.nodes(),0.0) for (u,v,d) in G.edges(data=True): r=d['Result'].split('-') if r[0]=='1': wins[u]+=1.0 elif r[0]=='1/2': wins[u]+=0.5 wins[v]+=0.5 else: wins[v]+=1.0 try: pos=nx.graphviz_layout(H) except: pos=nx.spring_layout(H,iterations=20) plt.rcParams['text.usetex'] = False plt.figure(figsize=(8,8)) nx.draw_networkx_edges(H,pos,alpha=0.3,width=edgewidth, edge_color='m') nodesize=[wins[v]*50 for v in H] nx.draw_networkx_nodes(H,pos,node_size=nodesize,node_color='w',alpha=0.4) nx.draw_networkx_edges(H,pos,alpha=0.4,node_size=0,width=1,edge_color='k') nx.draw_networkx_labels(H,pos,fontsize=14) font = {'fontname' : 'Helvetica', 'color' : 'k', 'fontweight' : 'bold', 'fontsize' : 14} plt.title("World Chess Championship Games: 1886 - 1985", font) # change font and write text (using data coordinates) font = {'fontname' : 'Helvetica', 'color' : 'r', 'fontweight' : 'bold', 'fontsize' : 14} plt.text(0.5, 0.97, "edge width = # games played", horizontalalignment='center', transform=plt.gca().transAxes) plt.text(0.5, 0.94, "node size = # games won", horizontalalignment='center', transform=plt.gca().transAxes) plt.axis('off') plt.savefig("chess_masters.png",dpi=75) print("Wrote chess_masters.png") plt.show() # display
bsd-3-clause
arm-hpc/allinea_json_analysis
PR_JSON_Scripts/pr_plot_mem_use_mpi_bar.py
1
6161
#!/usr/bin/env python # Copyright 2015-2017 ARM Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import matplotlib.pyplot as plt import argparse import json from pr_json_common import * from json_dict_common import * def plot_metrics_as_bar(dataDict, labels, yLabel, threads=False): """ Plot metrics on a bar char from the list of metrics supplied, where the metric values are read from the dictionary supplied Args: dataDict (dict): Dictionary of the form {numProcs: [list, of, metrics]} with data to plot labels (list): Labels for legends of the data yLabel (str): Label for the y-axis of the graph threads (bool): Indicator whether to label the x-axis as scaling of threads or processes Returns: Nothing """ # Get the xData xData = range(len(dataDict)) # Get the width of an individual bar totalBarsWidth = 0.95 barsPerProc = len(list(dataDict.values())[0]) barWidth = float(totalBarsWidth) / barsPerProc barsPerProc -= 1 # For each of the processes plot a bar colors = ['r', 'b', 'g', 'k'] sortedKeys = sorted(dataDict.keys()) xInd = 0 for key in sortedKeys: # For each of the metrics plot a bar barData = dataDict[key] ind = 0 barLoc = xData[xInd] - float(barsPerProc) * barWidth / 2 barHandles = [] for barItem in barData: barHandles.append(plt.bar(barLoc, barItem, width=barWidth, color=colors[ind % len(colors)], align='center', label=labels[ind])) barLoc += barWidth ind += 1 xInd += 1 plt.xticks(xData, sortedKeys) if (threads): plt.xlabel("Number of Threads") else: plt.xlabel("Number of Processes") plt.ylabel(yLabel) plt.legend(handles=barHandles, loc=1, bbox_to_anchor=(1.1, 1.1)) #### End of function plot_metrics_as_bar def get_mem_use_mpi_percent(fileList, threads=False): """ Gets the percentage memory usage per core and the MPI usage reported in the files that are passed in. It is assumed that the files are JSON representations of Performance report profiles, and that they are in a series showing strong scaling from a program Args: fileList (list): List of files from which to read JSON Performance Reports data threads (bool): Indicates whether the number of processes or number of threads should be read Returns: Dictionary of the format {numProcs : [memUsage, MPIUsage]} """ # Read in the list of files dataDict = {} for filename in fileList: profileDict = {} # Read the json in from file with open(filename, 'r') as f: profileDict = json.load(f) # Get the total memory per-node memPerNode = get_mem_per_node(profileDict) # Get the number of nodes numNodes = get_num_nodes(profileDict) # Get the memory used in the application per-process meanMem = get_dict_field_val(profileDict, ["data", "memory", "mean"]) # Get the number of processes numProcs = get_num_processes(profileDict) memPercent = (meanMem * numProcs * 100) / (memPerNode * numNodes) # Get the percentage time spent in MPI mpiPercent = get_dict_field_val(profileDict, ["data", "overview", "mpi", "percent"]) #mpiPercent = float(mpiPercent) * get_runtime(profileDict) # Get the number of processes or threads used numProcs = get_num_threads(profileDict) if threads else numProcs # Update the dictionary of data to plot dataDict.update({numProcs : [memPercent, mpiPercent]}) return dataDict #### End of function get_mem_use_mpi_percent def plot_mem_use_mpi_percent_as_bar(fileList, threads=False): """ Plots the percentage memory usage per core next to the MPI usage reported in the files that are passed in. It is assumed that the files are JSON representations of Performance Report profiles, and that they are in a series showing strong scaling for a program Args: fileList (list): List of files from which to read JSON Performance Reports data threads (bool): Indicates whether the number of processes or number of threads should be read Returns: Nothing """ dataDict = get_mem_use_mpi_percent(fileList, threads) # Plot the metrics plot_metrics_as_bar(dataDict, ["Memory Use", "MPI Time"], "Proportion (%)", threads) #### End of function plot_mem_use_mpi_percent_as_bar if (__name__ == "__main__"): parser = argparse.ArgumentParser(description="Utility to plot a bar chart" + " of the percentage memory usage vs the percentage of time spent " + "in MPI calls in a program run.") # Add a file containing a list of files to read data from parser.add_argument("infile", help="JSON file to read a list of input files from." + " It is assumed that the input files are part of a series of runs that " + "show weak scaling of a program", type=argparse.FileType('r')) # Add an argument to show if the strong scaling is for threads or processes parser.add_argument("--threads", help="Indicates whether threads or processes" + " should used in the scaling analysis", action="store_true", default=False) args = parser.parse_args() # Plot the memory usage and MPI percentage run time from the file passed in fileList = [line.strip() for line in args.infile.readlines()] plot_mem_use_mpi_percent_as_bar(fileList, args.threads) plt.show()
apache-2.0
ivazquez/genetic-variation
src/plot.py
3
30669
#!/usr/bin/python # -*- coding: utf-8 -*- # Load external dependencies from setup import * # Load internal dependencies import config, utils def histogram_binned_data(ax, data, bins=50): """ """ nx, xbins = np.histogram(data, bins=bins, normed=True) nx_frac = nx/float(len(nx)) # Each bin divided by total number of objects width = xbins[1] - xbins[0] # Width of each bin x = np.ravel(zip(xbins[:-1], xbins[:-1]+width)) y = np.ravel(zip(nx_frac,nx_frac)) return x, y def boxplot_custom(bp, ax, colors, hatches): """ Custom boxplot style """ for i in range(len(bp['boxes'])): box = bp['boxes'][i] box.set_linewidth(0) boxX = [] boxY = [] for j in range(5): boxX.append(box.get_xdata()[j]) boxY.append(box.get_ydata()[j]) boxCoords = zip(boxX,boxY) boxPolygon = patches.Polygon( boxCoords, facecolor = colors[i % len(colors)], linewidth=0, hatch = hatches[i % len(hatches)], zorder=4 ) ax.add_patch(boxPolygon) for i in range(0, len(bp['boxes'])): # Boxes bp['boxes'][i].set(color=colors[i]) # Whiskers bp['whiskers'][i*2].set(color=colors[i], linewidth=1.5, linestyle='-', zorder=4) bp['whiskers'][i*2 + 1].set(color=colors[i], linewidth=1.5, linestyle='-', zorder=4) # Top and bottom fliers bp['fliers'][i].set(markerfacecolor=colors[i], marker='o', alpha=0.75, markersize=3, markeredgecolor='none', zorder=4) bp['medians'][i].set(color='black', linewidth=2, zorder=5) # 4 caps to remove for c in bp['caps']: c.set_linewidth(0) ax.spines['top'].set_visible(False) ax.spines['bottom'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['left'].set_visible(True) ax.get_xaxis().tick_bottom() ax.get_yaxis().tick_left() ax.tick_params(axis='y', length=0) def heatmap(x, y, z, ax, title, xlabel, ylabel, xticklabels, yticklabels, cmap='RdBu', hatch='', vmin=0.0, vmax=1.0, show=False, speed='slow', zorder=1): """ Inspired by: - http://stackoverflow.com/a/16124677/395857 - http://stackoverflow.com/a/25074150/395857 """ # Plot the heatmap if speed=='slow': c = ax.pcolor(x, y, z, linewidths=1, cmap=cmap, hatch=hatch, vmin=vmin, vmax=vmax, rasterized=True, zorder=zorder) # Place the major ticks at the middle of each cell ax.set_xticks(np.arange(z.shape[1]) + 0.5, minor=False) ax.set_yticks(np.arange(z.shape[0]) + 0.5, minor=False) # Set tick labels ax.set_xticklabels(xticklabels, minor=False, rotation=90) ax.set_yticklabels(yticklabels, minor=False) else: c = ax.pcolormesh(x, y, z, linewidths=1, cmap=cmap, hatch=hatch, vmin=vmin, vmax=vmax, rasterized=True, zorder=zorder) # Set title and x/y labels ax.set_title(title) ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) # Remove last blank column ax.set_xlim(min(x), max(x)) ax.set_ylim(min(y), max(y)) # Turn off all the ticks for t in ax.xaxis.get_major_ticks(): t.tick1On = False t.tick2On = False for t in ax.yaxis.get_major_ticks(): t.tick1On = False t.tick2On = False # Proper orientation (origin at the top left instead of bottom left) ax.invert_yaxis() return c def heatmap_spores(S, ax, title, xlabel, ylabel, xticklabels, yticklabels, fold=False, cmap='RdBu', vmin=0.0, vmax=1.0, radius=0.25): """ """ dict_mat = {u'MATa':{'x':[-radius]*len(S.loc[u'MATa']), 'y':np.arange(0.5,len(S.loc[u'MATa']))}, u'MATα':{'x':np.arange(0.5,len(S.loc[u'MATα'])), 'y':[-radius]*len(S[u'MATα'])}} for mating in dict_mat.iterkeys(): data = map(list, zip(*[dict_mat[mating]['x'], dict_mat[mating]['y']])) circles = [plt.Circle([x, y], radius) for (x, y) in data] # col = patch_collections(circles, edgecolor='black', lw=0.75) s = S.ix[mating].values # col.set(array=s, cmap=cmap) # col.set_clim([vmin, vmax]) # col.set_clip_on(False) # # ax.add_collection(col) return dict_mat def heatmap_hybrids(H, ax, title, xlabel, ylabel, xticklabels, yticklabels, fold=False, cmap='RdBu', vmin=0.0, vmax=1.0, pad=0.25, legend_title=''): """ """ from matplotlib.ticker import FormatStrFormatter if fold: # Get the matrix M and its transpose X = H.values Y = H.values.T # Calculate the element-wise average of the two matrices Z = np.add(X, Y) / 2. Z = np.tril(Z) # Get the lower triangle of the matrix Z = np.ma.masked_array(Z, Z == 0) # Mask the upper triangle else: Z = H.values # Z = np.ma.array(Z, mask=np.isnan(Z)) cmap.set_bad('0.1',1.) im = ax.pcolor(Z, edgecolors='lightgrey', linewidths=0.5, cmap=cmap, vmin=vmin, vmax=vmax, rasterized=True) # Place the major ticks at the middle of each cell ax.set_xticks(np.arange(Z.shape[1]) + 0.5, minor=False) ax.set_yticks(np.arange(Z.shape[0]) + 0.5, minor=False) # Set tick labels ax.set_xticklabels(xticklabels, minor=False, rotation=90) ax.set_yticklabels(yticklabels, minor=False) # Set title and x/y labels ax.set_title(title, fontsize=6, y=1.15) ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) # Remove last blank column ax.set_xlim( (0, Z.shape[1]) ) ax.set_ylim( (0, Z.shape[0]) ) # Turn off all the ticks for t in ax.xaxis.get_major_ticks(): t.tick1On = False t.tick2On = False for t in ax.yaxis.get_major_ticks(): t.tick1On = False t.tick2On = False # Proper orientation (origin at the top left instead of bottom left) ax.invert_yaxis() # Set equal aspect ratio ax.set_aspect('equal') # Add colorbar cax = inset_axes(ax, width='4%', height='30%', loc=3, bbox_to_anchor=(1.05, 0., 1, 1), bbox_transform=ax.transAxes, borderpad=0) cbar = plt.colorbar(im, cax=cax, ticks=[vmin, 0, vmax], format='%.1f') cbar.ax.set_title(legend_title, horizontalalignment='center', fontsize=6) cbar.ax.tick_params(labelsize=5) cbar.locator = ticker.MaxNLocator(nbins=3) cbar.outline.set_visible(False) def gw_frequency(data, ax=None, **kwargs): """ """ # Line plots data.plot( ax=ax, kind='line', legend=False, rasterized=True, zorder=2, **kwargs ) # Draw chromosome shades chr_coords = utils.chr_coords() for chrom, g in chr_coords.groupby('chr_arabic'): ax.axvspan(g.chr_start.squeeze(), g.chr_end.squeeze(), color=('0.95' if chrom % 2 == 1 else 'w'), lw=0, zorder=0, rasterized=True) # Axes limits ax.set_ylim(0, 1) # Axis tick properties ax.yaxis.set_major_locator(ticker.MaxNLocator(nbins=4)) ax.yaxis.set_minor_locator(ticker.MaxNLocator(nbins=20)) ax.yaxis.set_ticks_position('left') # Axis tick parameters ax.tick_params(axis='x', which='major', size=0, labelsize=6) ax.tick_params(axis='y', which='major', size=2, labelsize=6) ax.tick_params(axis='both', which='minor', size=1, labelsize=4) # Grid ax.yaxis.grid(lw=0.6, ls='-', color='0.9', which='major', zorder=1) # Turn off the x-axis ticks for tick in ax.xaxis.get_major_ticks(): tick.tick1On = False tick.tick2On = False def chr_frequency(data, ax=None, **kwargs): """ """ # Line plots data.plot( ax=ax, kind='line', legend=False, rasterized=True, zorder=2, **kwargs ) # Axes limits ax.set_ylim(0, 1) # Axis tick properties ax.yaxis.set_major_locator(ticker.MaxNLocator(nbins=4)) ax.yaxis.set_minor_locator(ticker.MaxNLocator(nbins=20)) ax.yaxis.set_ticks_position('left') # Axis tick parameters ax.tick_params(axis='x', which='major', size=0, labelsize=6) ax.tick_params(axis='y', which='major', size=2, labelsize=6) ax.tick_params(axis='both', which='minor', size=1, labelsize=4) # Grid ax.yaxis.grid(lw=0.6, ls='-', color='0.9', which='major', zorder=1) # Turn off the x-axis ticks for tick in ax.xaxis.get_major_ticks(): tick.tick1On = False tick.tick2On = False def histogram_frequency(data, ax=None, **kwargs): """ """ # Histogram plots for time in data: x, y = histogram_binned_data(ax, data[time], bins=50) ax.plot(x, y, color=config.time['color'][time], lw=0.5, rasterized=True, zorder=1) ax.fill_between(x, 0, y, label=time, facecolor=config.time['color'][time], zorder=1, **kwargs) # Axes limits ax.set_xlim(0, 1) ax.set_ylim(bottom=0) # Axis tick properties ax.xaxis.set_major_locator(ticker.MaxNLocator(nbins=2)) ax.xaxis.set_minor_locator(ticker.MaxNLocator(nbins=4)) ax.yaxis.set_major_locator(ticker.MaxNLocator(nbins=3, prune='upper')) ax.yaxis.set_ticks_position('right') # Axis tick parameters ax.tick_params(axis='both', which='major', size=2, labelsize=6) ax.tick_params(axis='both', which='minor', size=1, labelsize=4) # Grid ax.xaxis.grid(lw=0.6, ls='-', color='0.9', which='minor', zorder=0) def loh_length(data, ax=None, **kwargs): """ """ data.plot(ax=ax, logy=True, style='.', marker='o', ms=3, mec='none', legend=False, **kwargs) utils.simple_axes(ax) # Axes limits ax.set_xlim(0,1.1E3) ax.set_ylim(1E-5,1E-0) # Axes labels ax.set_xlabel('Homozygosity segment length (kb)') ax.set_ylabel('Frequency') # Legend ax.legend(frameon=False, loc='upper right', borderaxespad=0., prop={'size':5}, handlelength=0.75) def loh_fluctuation(data, ax=None, **kwargs): """ """ data.plot(ax=ax, kind='bar', edgecolor='k', legend=False, error_kw=dict(ecolor='0.1', lw=.75, capsize=.75, capthick=.75), **kwargs) utils.simple_axes(ax) # Set tick labels ax.set_xticklabels(data.index.get_level_values('environment'), minor=False, rotation=0) # Set axes labels ax.set_xlabel('Environment') ax.set_ylabel(r'Locus-specific LOH rate (gen$^{-1}$)') # Set log scale ax.set_yscale('log') # Draw legend ax.legend(frameon=False, loc='upper right', borderaxespad=0., prop={'size':5}, handlelength=0.75) def filter_multiindex(data, names=None): """ Filter multiindex by level 'type' """ indexer = [slice(None)]*len(data.index.names) indexer[data.index.names.index('type')] = names return data.loc[tuple(indexer),:].dropna(axis=1, how='all') ### Consensus genotype ### def consensus_genotype(data, ax=None): """ Plot the consensus genotype across multiple clones """ if len(data) > 0: x = data.columns.get_level_values('pos_cum').values y = np.arange(len(data.index)) # Make a color map of fixed colors cmap = mpl.colors.ListedColormap([config.background['color']['NA/NA'], config.background['color']['WA/NA'], config.background['color']['WA/WA']]) bounds = [0,1,2] norm = mpl.colors.BoundaryNorm(bounds, cmap.N) heatmap(np.r_[x, x.max()+1], np.r_[y, y.max()+1], data, ax, '', '', '', [], [], cmap=cmap, vmin=0, vmax=2) ### SNV/indel mutations ### def snv_indel_genotype(data, ax=None): """ Plot genotype of SNVs/indels """ if len(data) > 0: for ii,(k,g) in enumerate(data.groupby(level='clone')): g = g.dropna(axis=1) x = g.columns.get_level_values('pos_cum').values y = [ii+.5]*len(x) colors = [config.genotype['color'][int(gt)] for gt in g.values.flatten()] ax.scatter(x, y, facecolors=colors, edgecolors='k', s=8, rasterized=False, zorder=3) ### Copy number ### def copy_number(data, ax=None): """ Plot copy number aberrations """ if len(data.columns) > 0: print(data) x = data.columns.get_level_values('pos_cum').values y = np.arange(len(data.index.get_level_values('clone'))) cmap = mpl.colors.ListedColormap(['none','w','none']) bounds = [1,2,3] norm = mpl.colors.BoundaryNorm(bounds, cmap.N) for cn, hatch in zip([1, 3], ['xx','--']): heatmap(np.r_[x, x.max()+1], np.r_[y, y.max()+1], np.ma.masked_array(data, data!=cn), ax, '', '', '', [], [], cmap=cmap, hatch=hatch, vmin=1, vmax=3, zorder=2) ### LOH ### def loh_genotype(data, ax=None): """ Plot genotype changes due to LOH """ if len(data) > 0: x = data.columns.get_level_values('pos_cum').values y = np.arange(len(data.index.get_level_values('clone'))) # Make a color map of fixed colors cmap = mpl.colors.ListedColormap(['k','w','k']) bounds = [-1,0,1] norm = mpl.colors.BoundaryNorm(bounds, cmap.N) heatmap(np.r_[x, x.max()+1], np.r_[y, y.max()+1], data, ax, '', '', '', [], [], cmap=cmap, vmin=-1, vmax=1, zorder=1) def annotate_genotype(data, ax=None): """ Annotate mutation genotype """ labels = data.columns.get_level_values('gene') loc = zip(data.columns.get_level_values('pos_cum'), [-.25]*data.shape[1]) for l, xy in zip(labels, loc): trans = ax.get_xaxis_transform() # x in data units, y in axes fraction ax.annotate(l, xy=xy, xytext=(0, 4), textcoords='offset points', arrowprops=dict(arrowstyle='wedge,tail_width=0.7', color='black'), fontsize=5, style=('italic' if l!='non-coding' else 'normal'), weight=('bold' if l in ['RNR2','RNR4','FPR1','TOR1'] else 'normal'), annotation_clip=False, va='bottom', ha='center') def genome_instability(data, ax=None, title=None): """ """ idx = 0 # Plot tracks for ii, (s, group) in enumerate(data.groupby(level='set')): # Consensus genotypes consensus_data = filter_multiindex(group, names=['consensus']) nrows = consensus_data.index.get_level_values('clone').nunique() ax1 = plt.subplot(ax[idx:idx+nrows]) consensus_genotype(consensus_data, ax1) if ax1.is_first_row(): # Set axis label labels = ['Consensus'] ax1.set_yticks(np.arange(len(labels)) + 0.5, minor=True) ax1.set_yticklabels(labels, fontweight='bold', va='center', minor=True) ax1.set_title(title, fontsize=6, y=2, weight='bold') # Annotate variants annotation = filter_multiindex(data, names=['snv_indel']) annotate_genotype(annotation, ax1) idx += nrows # De novo genotypes de_novo_data = filter_multiindex(group, names=['snv_indel','copy_number','loh']) labels = de_novo_data.index.get_level_values('clone').unique() nrows = len(labels) ax2 = plt.subplot(ax[idx:idx+nrows], sharex=ax1) # SNV/indel snv_indel_data = filter_multiindex(group, names=['snv_indel']) snv_indel_genotype(snv_indel_data, ax2) # Copy number copy_number_data = filter_multiindex(group, names=['copy_number']) copy_number(copy_number_data, ax2) # LOH loh_data = filter_multiindex(group, names=['loh']) loh_genotype(loh_data, ax2) # Annotate clonal lineages ax2.set_yticks(np.arange(len(labels)) + 0.5) ax2.set_yticklabels('C' + labels, fontweight='bold', va='center') [ax2.axhline(g, lw=0.5, ls="-", color="lightgray") for g in np.arange(len(labels))] lineage = group.index.get_level_values('lineage').unique()[0] ax2.tick_params(axis='y', colors=config.lineages[lineage]['fill'], width=5, which='both') # Show chromosome boundaries chrom_boundaries(ax2) idx += nrows # Set axis label ax2.set_xlabel('Chromosome') def scatter_plot(x, y, ax=None, **kwargs): """ """ ax.plot(x, y, linestyle='', rasterized=False, **kwargs)#, label=config.population['long_label'][t]) from matplotlib.ticker import MaxNLocator ax.xaxis.set_major_locator(ticker.MaxNLocator(nbins=5, prune='upper')) ax.yaxis.set_major_locator(ticker.MaxNLocator(nbins=5, prune='upper')) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.get_xaxis().tick_bottom() ax.get_yaxis().tick_left() def histogram_x(X, ax=None, time=None): """ """ import gmm # Fit the Gaussian mixture model N = np.arange(1, 4) models = gmm.gmm_fit(X, N) # Compute the AIC and the BIC AIC = [m.aic(X) for m in models] BIC = [m.bic(X) for m in models] M_best = models[np.argmin(BIC)] # Plot data bins = 34 xbins, y = histogram_binned_data(ax, X, bins=bins) ax.fill_between(xbins, 0, y, label=config.population['long_label'][time], alpha=0.5, facecolor=config.population['color'][time]) xbins = np.linspace(ax.get_xlim()[0], ax.get_xlim()[1], 1000) logprob = M_best.score_samples(np.array([xbins]).T) pdf = np.exp(logprob) ax.plot(xbins, pdf / bins, '-', color=config.population['color'][time], lw=1) # Mean of the distribution for p in abs(M_best.means_.ravel()): ax.axvline(x=p, ls='--', lw=1.5, color=config.population['color'][time], zorder=1) pos = ax.get_ylim()[0] * 0.75 + ax.get_ylim()[1] * 0.25 trans = ax.get_xaxis_transform() # x in data units, y in axes fraction ax.annotate(np.around(p, 2), xy=(p, 0.85), xycoords=trans, fontsize=6, color='k', va='center', ha=('right' if time=='ancestral' else 'left'), xytext=((-5 if time=='ancestral' else 5),0), textcoords='offset points', path_effects=[path_effects.withStroke(linewidth=0.5, foreground="w")]) ax.set_xticks([]) ax.set_xticklabels([]) ax.set_yticks(ax.get_yticks()[1:]) ax.yaxis.set_major_locator(ticker.MaxNLocator(nbins=2)) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.get_xaxis().tick_bottom() ax.get_yaxis().tick_left() def histogram_y(Y, ax=None, time=None): """ """ import gmm # Fit the Gaussian mixture model N = np.arange(1, 4) models = gmm.gmm_fit(Y, N) # Compute the AIC and the BIC AIC = [m.aic(Y) for m in models] BIC = [m.bic(Y) for m in models] M_best = models[np.argmin(BIC)] # Plot data bins = 34 ybins, x = histogram_binned_data(ax, Y, bins=bins) ax.fill_betweenx(ybins, 0, x, label=config.population['long_label'][time], alpha=0.5, facecolor=config.population['color'][time]) ybins = np.linspace(ax.get_ylim()[0], ax.get_ylim()[1], 1000) logprob = M_best.score_samples(np.array([ybins]).T) pdf = np.exp(logprob) ax.plot(pdf / bins, ybins, '-', color=config.population['color'][time], lw=1) # Mean of the distribution for p in abs(M_best.means_.ravel()): ax.axhline(y=p, ls='--', lw=1.5, color=config.population['color'][time], zorder=1) pos = ax.get_xlim()[0] * 0.75 + ax.get_xlim()[1] * 0.25 trans = ax.get_yaxis_transform() # x in data units, y in axes fraction ax.annotate(np.around(p, 2), xy=(0.85, p), xycoords=trans, fontsize=6, color='k', ha='center', va=('bottom' if time=='ancestral' else 'top'), xytext=(0,(-10 if time=='ancestral' else 10)), textcoords='offset points', path_effects=[path_effects.withStroke(linewidth=0.5, foreground="w")]) ax.set_yticks([]) ax.set_yticklabels([]) ax.set_xticks(ax.get_xticks()[1:]) ax.xaxis.set_major_locator(ticker.MaxNLocator(nbins=2)) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.get_xaxis().tick_bottom() ax.get_yaxis().tick_left() def lollipops(data, ax=None): """ """ data = data.agg([np.mean, np.median, np.std, 'count']) if len(data)>0: x_data = np.array(data) y_data = np.repeat([0.2*(ax.get_ylim()[1]-ax.get_ylim()[0])], len(x_data)) arr = zip(x_data, y_data) markerline, stemlines, baseline = ax.stem(x_data, y_data) plt.setp(markerline, 'color', config.population['color'][time], markersize = 2.75, markeredgewidth=.75, markeredgecolor='k', zorder=3) plt.setp(stemlines, linewidth=.75, color=config.population['color'][time], path_effects=[path_effects.withStroke(linewidth=1.25, foreground='k')], zorder=2) plt.setp(baseline, 'color', 'none', zorder=1) # for idx, label in data.iterrows(): # ax.annotate(label.name[1], # xy = (label, 0.2), xycoords=('data','axes fraction'), # xytext = (0, 8), textcoords = 'offset points', # ha = 'center', va = 'top', # fontsize = 6, style = 'italic', # path_effects=[path_effects.withStroke(linewidth=0.5, foreground="w")]) import seaborn as sns def scatter_rank_correlation(data, ax=None, environment=None): """ Scatter plot - Rank correlation """ if ax is None: ax = plt.gca() # Define colour palettes colors = [config.population['color'].get(e, 'k') for e in data.columns] # # Scatter plot # sns.stripplot(ax=ax, data=data[data['environment']=='YNB'], # x="population", y="value", hue="group", marker='o', size=7,#marker='marker', # palette=colors, clip_on=False) # # sns.stripplot(ax=ax, data=data[data['environment']==environment], # x="population", y="value", hue="group", marker='^', size=7, # palette=colors, clip_on=False) # # Remove default legend # ax.legend_.remove() # Mean expectation ax.axvline(x=0.0, c='lightgray', ls='--', lw=2) # Axes limits ax.set_xlim((-1,1)) ax.xaxis.set_major_locator(ticker.MaxNLocator(nbins=5)) ax.tick_params(axis='x-axis', which='major', size=2, labelsize=6) ax.tick_params(axis='y-axis', which='major', size=0, labelsize=7) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['left'].set_visible(False) def chrom_boundaries(ax=None): """ Show chromosome boundaries """ # Set labels chr_coords = utils.chr_coords() ticks = chr_coords.chr_start + (chr_coords.chr_end - chr_coords.chr_start)/2. labels = chr_coords.chr_roman ax.set_xticks(ticks) ax.set_xticklabels(labels) # Show grid start = chr_coords.chr_start grid=[x+1. for x in list(set(start))] [ax.axvline(g, lw=0.5, ls="-", color="gray") for g in grid] def set_custom_labels(index, pos): """ Custom labels for nested axes. index : pos : """ start = dict((m[pos], ii) for ii,m in enumerate(index.values)) end = dict((m[pos], len(index)-ii-1) for ii,m in enumerate(index[::-1].values)) labels = dict((key, (start[key] + end.get(key, 0))/2.) for key in end.keys()) return start, end, labels def connect_bbox(bbox1, bbox2, loc1a, loc2a, loc1b, loc2b, prop_lines, prop_connector=None, prop_patches=None): """ """ from mpl_toolkits.axes_grid1.inset_locator import BboxPatch, BboxConnector, BboxConnectorPatch if prop_connector is None: prop_connector = prop_lines.copy() prop_connector["alpha"] = prop_connector.get("alpha", 1)*0.2 if prop_patches is None: prop_patches = prop_lines.copy() prop_patches["alpha"] = prop_patches.get("alpha", 1)*0.2 c1 = BboxConnector(bbox1, bbox2, loc1=loc1a, loc2=loc2a, **prop_lines) c1.set_clip_on(False) c2 = BboxConnector(bbox1, bbox2, loc1=loc1b, loc2=loc2b, **prop_lines) c2.set_clip_on(False) bbox_patch1 = BboxPatch(bbox1, **prop_patches) bbox_patch2 = BboxPatch(bbox2, **prop_patches) p = BboxConnectorPatch(bbox1, bbox2, loc1a=loc1a, loc2a=loc2a, loc1b=loc1b, loc2b=loc2b, **prop_connector) p.set_fill(True) p.set_clip_on(False) return c1, c2, bbox_patch1, bbox_patch2, p def zoom_effect(ax1, ax2, xmin, xmax, **kwargs): """ ax1 : the main axes ax1 : the zoomed axes (xmin,xmax) : the limits of the colored area in both plot axes. connect ax1 & ax2. The x-range of (xmin, xmax) in both axes will be marked. The keywords parameters will be used to create patches. """ from matplotlib.transforms import Bbox, TransformedBbox, blended_transform_factory trans1 = blended_transform_factory(ax1.transData, ax1.transAxes) trans2 = blended_transform_factory(ax2.transData, ax2.transAxes) bbox = Bbox.from_extents(xmin, 0, xmax, 1) mybbox1 = TransformedBbox(bbox, trans1) mybbox2 = TransformedBbox(bbox, trans2) prop_connector = kwargs.copy() prop_connector["edgecolor"] = "none" prop_connector["facecolor"] = "gray" prop_connector["alpha"] = 0.4 prop_patches = kwargs.copy() prop_patches["edgecolor"] = "none" prop_patches["facecolor"] = "gray" prop_patches["alpha"] = 0.4 c1, c2, bbox_patch1, bbox_patch2, p = \ connect_bbox(mybbox1, mybbox2, loc1a=3, loc2a=2, loc1b=4, loc2b=1, prop_lines=kwargs, prop_connector=prop_connector, prop_patches=prop_patches) ax1.add_patch(bbox_patch1) # ax2.add_patch(bbox_patch2) ax2.add_patch(c1) ax2.add_patch(c2) ax2.add_patch(p) return c1, c2, bbox_patch1, bbox_patch2, p def get_text_positions(x_data, y_data, txt_width, txt_height): """ """ a = zip(y_data, x_data) text_positions = y_data.copy() for index, (y, x) in enumerate(a): local_text_positions = [i for i in a if i[0] > (y - txt_height) and (abs(i[1] - x) < txt_width * 2) and i != (y,x)] if local_text_positions: sorted_ltp = sorted(local_text_positions) if abs(sorted_ltp[0][0] - y) < txt_height: #True == collision differ = np.diff(sorted_ltp, axis=0) a[index] = (sorted_ltp[-1][0] + txt_height, a[index][1]) text_positions[index] = sorted_ltp[-1][0] + txt_height for k, (j, m) in enumerate(differ): #j is the vertical distance between words if j > txt_height * 2: #if True then room to fit a word in a[index] = (sorted_ltp[k][0] + txt_height, a[index][1]) text_positions[index] = sorted_ltp[k][0] + txt_height break return text_positions def text_plotter(x_data, y_data, text_positions, axis,txt_width,txt_height): """ """ for x,y,t in zip(x_data, y_data, text_positions): axis.text(x - txt_width, 1.01*t, '%d'%int(y),rotation=0, color='blue') if y != t: axis.arrow(x, t,0,y-t, color='red',alpha=0.3, width=txt_width*0.1, head_width=txt_width, head_length=txt_height*0.5, zorder=0,length_includes_head=True) def annotate_custom(ax, s, xy_arr=[], *args, **kwargs): """ """ ans = [] an = ax.annotate(s, xy_arr[0], *args, **kwargs) ans.append(an) d = {} try: d['xycoords'] = kwargs['xycoords'] except KeyError: pass try: d['arrowprops'] = kwargs['arrowprops'] except KeyError: pass for xy in xy_arr[1:]: an = ax.annotate(s, xy, alpha=0.0, xytext=(0,0), textcoords=an, **d) ans.append(an) return ans def colorbar_index(ncolors, cmap): """ """ cmap = colormap_discretize(cmap, ncolors) mappable = plt.cm.ScalarMappable(cmap=cmap) mappable.set_array([]) mappable.set_clim(-0.5, ncolors+0.5) return mappable def colormap_discretize(cmap, N): """ Return a discrete colormap from the continuous colormap cmap. cmap: colormap instance, eg. cm.jet. N: number of colors. Example x = resize(arange(100), (5,100)) djet = cmap_discretize(cm.jet, 5) imshow(x, cmap=djet) """ import matplotlib.colors as mcolors if type(cmap) == str: cmap = plt.get_cmap(cmap) colors_i = np.concatenate((np.linspace(0, 1., N), (0.,0.,0.,0.))) colors_rgba = cmap(colors_i) indices = np.linspace(0, 1., N+1) cdict = {} for ki,key in enumerate(('red','green','blue')): cdict[key] = [ (indices[i], colors_rgba[i-1,ki], colors_rgba[i,ki]) for i in xrange(N+1) ] # Return colormap object return mcolors.LinearSegmentedColormap(cmap.name + "_%d"%N, cdict, 1024) def save_figure(filename, formats=['pdf','png','svg'], **kwargs): """ Save matplotlib figure in multiple formats (pdf, png, svg). formats: list of formats. kwargs: arguments to plt.savefig (e.g. dpi). """ if 'pdf' in formats: plt.savefig(filename+'.pdf', bbox_inches='tight', **kwargs) if 'png' in formats: plt.savefig(filename+'.png', bbox_inches='tight', **kwargs) if 'svg' in formats: plt.savefig(filename+'.svg', bbox_inches='tight', **kwargs)
mit
mbokulic/bmt_parser
bmt_parser/main.py
1
3797
''' This is the top-level script for - parsing the xml using mets and alto files - disambiguating names from the parsed data - transforming the data into a suitable format for drawing graphs Uses logging, logs to "parse.log" in root. It will empty the log at start. ''' import logging import argparse import os import pandas as pd import bmt_parser.config as cf import bmt_parser.parse_xml as parse_xml import bmt_parser.disambiguate_names as disambiguate import bmt_parser.collaborators as for_graph logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) stream_handler = logging.StreamHandler() logger.addHandler(stream_handler) open('parse.log', 'w').close() # emptying log file_handler = logging.FileHandler('parse.log') file_handler.setLevel(logging.WARNING) logger.addHandler(file_handler) parser = argparse.ArgumentParser( description='A script for parsing Blue Mountain periodicals data ' 'https://github.com/pulibrary/BlueMountain. You first need to download ' 'the data using the provided bash script. Outputs will be stored in paths ' 'as provided in config.py') parser.add_argument('--periodical_name', '-name', required=False, help='name ' 'of the periodical you wish to parse. Will be used for ' 'naming output') parser.add_argument('--xml_data_path', '-xml', required=False, help='dir ' 'where the Blue Mountain data is located. If not provided,' ' no parsing will be done (a lengthy process, you probably' ' want to skip this after the first time)') parser.add_argument('--disambiguation_file', '-d', required=False, help='path to csv with disambiguations, needs to be tab ' 'delimited (Blue Mountain provides an Excel file so you ' 'will need to convert. If not provided, no disambiguation ' 'will be done.') parser.add_argument('--name_replacements', '-repl', required=False, help='Optional: path to json that has replacements for the' 'resolved name ("Unique Names") column in the ' 'disambiguation file') parser.add_argument('--tf_for_graph', '-graph', required=False, default=False, action='store_true', help='Flag whether to transform data ' 'for displaying it as a graph. Will try to find data in ' 'paths as defined in config.py.') args = parser.parse_args() # creating output dir if it does not exist if not os.path.exists(cf.OUTPUT_DIR): os.makedirs(cf.OUTPUT_DIR) # putting periodical name in output paths if args.periodical_name: paths = { key: os.path.join(cf.OUTPUT_DIR, '_'.join([args.periodical_name, cf.PATHS[key]])) for key in cf.PATHS.keys()} else: paths = { key: os.path.join(cf.OUTPUT_DIR, cf.PATHS[key]) for key in cf.PATHS.keys()} # running parser and data transformation code if args.xml_data_path: parse_xml.main(args.xml_data_path, paths['data']) if args.disambiguation_file: data = disambiguate.main(args.disambiguation_file, paths['data'], args.name_replacements) data.to_csv(paths['disamb'], sep=cf.CSV_SEP, index=False) if args.tf_for_graph: if not args.disambiguation_file: if os.path.exists(paths['disamb']): data = pd.read_csv(paths['disamb'], sep=cf.CSV_SEP) elif os.path.exists(paths['data']): data = pd.read_csv(paths['data'], sep=cf.CSV_SEP) else: raise ValueError('no data file for this periodical!') collabs = for_graph.get_collaborators(data) collabs.to_csv(paths['collabs'], sep=cf.CSV_SEP, index=False)
mit
eickenberg/scikit-learn
examples/decomposition/plot_faces_decomposition.py
204
4452
""" ============================ Faces dataset decompositions ============================ This example applies to :ref:`olivetti_faces` different unsupervised matrix decomposition (dimension reduction) methods from the module :py:mod:`sklearn.decomposition` (see the documentation chapter :ref:`decompositions`) . """ print(__doc__) # Authors: Vlad Niculae, Alexandre Gramfort # License: BSD 3 clause import logging from time import time from numpy.random import RandomState import matplotlib.pyplot as plt from sklearn.datasets import fetch_olivetti_faces from sklearn.cluster import MiniBatchKMeans from sklearn import decomposition # Display progress logs on stdout logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s %(message)s') n_row, n_col = 2, 3 n_components = n_row * n_col image_shape = (64, 64) rng = RandomState(0) ############################################################################### # Load faces data dataset = fetch_olivetti_faces(shuffle=True, random_state=rng) faces = dataset.data n_samples, n_features = faces.shape # global centering faces_centered = faces - faces.mean(axis=0) # local centering faces_centered -= faces_centered.mean(axis=1).reshape(n_samples, -1) print("Dataset consists of %d faces" % n_samples) ############################################################################### def plot_gallery(title, images, n_col=n_col, n_row=n_row): plt.figure(figsize=(2. * n_col, 2.26 * n_row)) plt.suptitle(title, size=16) for i, comp in enumerate(images): plt.subplot(n_row, n_col, i + 1) vmax = max(comp.max(), -comp.min()) plt.imshow(comp.reshape(image_shape), cmap=plt.cm.gray, interpolation='nearest', vmin=-vmax, vmax=vmax) plt.xticks(()) plt.yticks(()) plt.subplots_adjust(0.01, 0.05, 0.99, 0.93, 0.04, 0.) ############################################################################### # List of the different estimators, whether to center and transpose the # problem, and whether the transformer uses the clustering API. estimators = [ ('Eigenfaces - RandomizedPCA', decomposition.RandomizedPCA(n_components=n_components, whiten=True), True), ('Non-negative components - NMF', decomposition.NMF(n_components=n_components, init='nndsvda', beta=5.0, tol=5e-3, sparseness='components'), False), ('Independent components - FastICA', decomposition.FastICA(n_components=n_components, whiten=True), True), ('Sparse comp. - MiniBatchSparsePCA', decomposition.MiniBatchSparsePCA(n_components=n_components, alpha=0.8, n_iter=100, batch_size=3, random_state=rng), True), ('MiniBatchDictionaryLearning', decomposition.MiniBatchDictionaryLearning(n_components=15, alpha=0.1, n_iter=50, batch_size=3, random_state=rng), True), ('Cluster centers - MiniBatchKMeans', MiniBatchKMeans(n_clusters=n_components, tol=1e-3, batch_size=20, max_iter=50, random_state=rng), True), ('Factor Analysis components - FA', decomposition.FactorAnalysis(n_components=n_components, max_iter=2), True), ] ############################################################################### # Plot a sample of the input data plot_gallery("First centered Olivetti faces", faces_centered[:n_components]) ############################################################################### # Do the estimation and plot it for name, estimator, center in estimators: print("Extracting the top %d %s..." % (n_components, name)) t0 = time() data = faces if center: data = faces_centered estimator.fit(data) train_time = (time() - t0) print("done in %0.3fs" % train_time) if hasattr(estimator, 'cluster_centers_'): components_ = estimator.cluster_centers_ else: components_ = estimator.components_ if hasattr(estimator, 'noise_variance_'): plot_gallery("Pixelwise variance", estimator.noise_variance_.reshape(1, -1), n_col=1, n_row=1) plot_gallery('%s - Train time %.1fs' % (name, train_time), components_[:n_components]) plt.show()
bsd-3-clause
uzbit/mlutils
mlutils.py
1
20009
import os import random import numpy as np import pickle as pickle from sklearn.preprocessing import LabelEncoder from sklearn.metrics import confusion_matrix, matthews_corrcoef, make_scorer, roc_curve, auc from sklearn.model_selection import train_test_split from .MetaClassifier import MetaClassifier LOGIT_ACCEPT_RATE = 0.5 SEED = 42 def plot_hist(y1, y2 = None, binFactor=50.0, title=''): import matplotlib.pyplot as plt thisMax = max(y1) thisMin = min(y1) if y2 is not None: max2 = max(y2) min2 = min(y2) thisMax = max(thisMax, max2) thisMin = min(thisMin, min2) thisWidth = (thisMax - thisMin)/binFactor try: plt.hist(y1, alpha = 0.5, bins=np.arange(thisMin, thisMax + thisWidth, thisWidth), label='y1') if y2 is not None: plt.hist(y2, alpha = 0.5, bins=np.arange(thisMin, thisMax + thisWidth, thisWidth), label='y2') except IndexError: print(title, 'had no values!') plt.title(title) plt.legend() plt.show() def plot_importance(clf, columns): import matplotlib.pyplot as plt feature_importance = clf.feature_importances_ # make importances relative to max importance feature_importance = 100.0 * (feature_importance / feature_importance.max()) sorted_idx = np.argsort(feature_importance) pos = np.arange(sorted_idx.shape[0]) + .5 plt.figure(figsize=(12, 6)) plt.subplot(1, 1, 1) plt.barh(pos, feature_importance[sorted_idx], align='center') plt.yticks(pos, columns[sorted_idx]) plt.xlabel('Relative Importance') plt.title('Variable Importance') plt.show() def plot_deviance(clf, X, y, n_estimators): import matplotlib.pyplot as plt offset = int(X.shape[0] * 0.9) X_train, y_train = X[:offset], y[:offset] X_test, y_test = X[offset:], y[offset:] clf.fit(X_train, y_train) test_score = np.zeros((n_estimators,), dtype=np.float64) for i, y_pred in enumerate(clf.staged_decision_function(X_test)): test_score[i] = clf.loss_(y_test, y_pred) plt.figure(figsize=(12, 6)) #plt.subplot(1, 2, 1) plt.title('Deviance') plt.plot(np.arange(n_estimators) + 1, clf.train_score_, 'b-', label='Training Set Deviance') plt.plot(np.arange(n_estimators) + 1, test_score, 'r-', label='Test Set Deviance') plt.legend(loc='upper right') plt.xlabel('Boosting Iterations') plt.ylabel('Deviance') plt.show() def get_classification(y, rate=0.5): return np.array([1 if x else 0 for x in y >= rate]) def get_labelencoder(column_values): le = LabelEncoder() le.fit(column_values) return le def get_remove_features(df, featureColumns, N=4): removeList = [] for feat in featureColumns: vals = df[feat].values nthtile = np.percentile(vals, np.arange(0, 100, N)) nth0 = nthtile[0] countDiff = 0 for nth in nthtile: if nth != nth0: countDiff += 1 if countDiff == 0: removeList.append(feat) return removeList def transform_column(le, df, column): df[column] = le.transform(df[column]) def do_evo_search(X, y, grid={}, scorer=None, cv=3, population_size=50, mutation_prob=0.3, #crossover_prob=0.5, generations_number=20, n_jobs=4, gridpickle='bestParams.pickle'): print("Performing evolutionary XGBoost search...") import xgboost as xgb from evolutionary_search import EvolutionaryAlgorithmSearchCV from sklearn.pipeline import Pipeline X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, stratify=y, random_state=SEED) print("Training on ", X_test.shape) if not grid: grid = dict() grid['xgb__learning_rate'] = [0.001, 0.05, 0.1] grid['xgb__max_depth'] = [3, 5, 10, 20] grid['xgb__gamma'] = [0, 1, 10] grid['xgb__subsample'] = [0.75, 1] grid['xgb__colsample_bytree'] = [0.75, 1] grid['xgb__min_child_weight'] = [1, 3, 5, 10] #grid['xgb__base_score'] = [0.1] grid['xgb__max_delta_step'] = [0, 1, 5] grid['xgb__n_estimators'] = [200, 500, 1000] grid['xgb__reg_lambda'] = [1, 10, 100] grid['xgb__reg_alpha'] = [1, 10, 100] grid['xgb__silent'] = [1] grid['xgb__objective'] = ['binary:logistic'] #grid['pca__n_components'] = [50, 100, 200] if not scorer: scorer = make_scorer(scorer_auc, greater_is_better=True) pipeline = Pipeline(steps=[ ('xgb', xgb.XGBClassifier()) ]) clf = EvolutionaryAlgorithmSearchCV( pipeline, grid, scoring=scorer, verbose=True, n_jobs=n_jobs, cv=cv, population_size=population_size, mutation_prob=mutation_prob, generations_number=generations_number, ) if gridpickle and os.path.exists(gridpickle): bestParams = pickle.load(open(gridpickle, 'rb')) else: clf.fit(X_test, y_test) print("Best score", clf.best_score_) print("Best params", clf.best_params_) bestParams = {x.split('__')[1]:clf.best_params_[x] for x in clf.best_params_ if x.split('__')[0] == 'xgb'} pickle.dump(bestParams, open(gridpickle, 'wb')) print(bestParams) return bestParams def do_xgboost_hyperopt_search(X, y, cv=3, maxEvals=10, testSize=0.2, seed=SEED): if os.path.exists('bestParams.pickle'): return pickle.load(open('bestParams.pickle', 'rb')) import xgboost as xgb from hyperopt import hp from hyperopt import fmin, tpe, hp, STATUS_OK, Trials print("Performing hyperopt search...") intChoices = { 'n_estimators': np.arange(300, 10000, dtype=int), 'max_depth': np.arange(3, 100, dtype=int), } space = { 'n_estimators' : hp.choice('n_estimators', intChoices['n_estimators']), 'learning_rate' : hp.uniform('learning_rate', 0.0001, 0.01), 'max_depth' : hp.choice('max_depth', intChoices['max_depth']), 'min_child_weight' : hp.uniform('min_child_weight', 0, 20), 'subsample' : hp.uniform('subsample', 0.6, 1), 'gamma' : hp.uniform('gamma', 0.6, 1), 'reg_alpha' : hp.uniform('reg_alpha', 0, 1), 'reg_lambda' : hp.uniform('reg_lambda', 1, 100), 'colsample_bytree' : hp.uniform('colsample_bytree', 0.6, 1), 'objective':'binary:logistic', 'silent' : 1 } def score(params): results = list() print("Testing for ", params) for i in range(cv): X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=testSize, stratify=y, random_state=seed+i ) print("Train shape", X_train.shape) clf = xgb.XGBClassifier(**params) clf.fit(X_train, y_train, eval_set=[(X_train, y_train), (X_test, y_test)], early_stopping_rounds = 100, eval_metric='auc' ) probs = clf.predict_proba(X_test, ntree_limit=clf.best_iteration)[:,1] fpr, tpr, _ = roc_curve(y_test, probs, pos_label=1) results.append(auc(fpr, tpr)) print("Outcomes: ", results) print("This score:", 1.0-np.mean(results)) print() return {'loss': 1.0-np.mean(results), 'status': STATUS_OK} trials = Trials() bestParams = fmin(score, space, algo=tpe.suggest, trials=trials, max_evals=maxEvals ) for intChoice in intChoices: bestParams[intChoice] = intChoices[intChoice][bestParams[intChoice]] print("Saving the best parameters: ", bestParams) pickle.dump(bestParams, open('bestParams.pickle', 'wb')) return bestParams def do_lnn_hyperopt_search(X, y, cv=3, maxEvals=10, testSize=0.2, seed=SEED): from hyperopt import hp from hyperopt import fmin, tpe, hp, STATUS_OK, Trials print("Performing LNN hyperopt search...") intParams = [ 'dense0_num_units', 'dense1_num_units', 'dense2_num_units', 'max_epochs', ] space = { 'dense0_num_units' : hp.qloguniform('dense0_num_units', np.log(1e3), np.log(1e4), 1), #hp.choice('dense0_num_units', intChoices['dense0_num_units']), 'dense1_num_units' : hp.qloguniform('dense1_num_units', np.log(1e2), np.log(1e3), 1), #hp.choice('dense1_num_units', intChoices['dense1_num_units']), 'dense2_num_units' : hp.qloguniform('dense2_num_units', np.log(1e1), np.log(1e2), 1), #hp.choice('dense2_num_units', intChoices['dense2_num_units']), 'update_learning_rate' : hp.loguniform('update_learning_rate', np.log(1e-4), np.log(1e-1)), 'dropout0_p' : hp.uniform('dropout0_p', 0.1, 0.5), 'dropout1_p' : hp.uniform('dropout1_p', 0.1, 0.5), 'dropout2_p' : hp.uniform('dropout2_p', 0.1, 0.5), 'max_epochs' : hp.qloguniform('max_epochs', np.log(5e1), np.log(1e2), 1), #hp.choice('max_epochs', intChoices['max_epochs']), 'train_split' : hp.uniform('train_split', 0.199999, 0.2), } def score(params): results = list() print("Testing for ", params) params['input_shape'] = X.shape[1] params['output_shape'] = 2 for param in intParams: params[param] = int(params[param]) for i in range(cv): X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=testSize, stratify=y, random_state=seed+i ) print("Train shape", X_train.shape) mcObj = MetaClassifier() mcObj.resetEstimatorList() # why is this fucking necessary?! mcObj.addLNN( preproc='scale', params=params ) mcObj.fit(X_train, y_train) results.append(get_auc(mcObj, X_test, y_test)) print("Outcomes: ", results) print("This score:", 1.0-np.mean(results)) print() return {'loss': 1.0-np.mean(results), 'status': STATUS_OK} trials = Trials() bestParams = fmin(score, space, algo=tpe.suggest, trials=trials, max_evals=maxEvals, #rseed=None ) for param in intParams: bestParams[param] = int(bestParams[param]) bestParams['input_shape'] = X.shape[1] bestParams['output_shape'] = 2 print("Saving the best parameters: ", bestParams) pickle.dump(bestParams, open('bestParams_lnn.pickle', 'wb')) return bestParams def do_knn_hyperopt_search(X, y, cv=3, maxEvals=10, testSize=0.2, seed=SEED): from hyperopt import hp from hyperopt import fmin, tpe, hp, STATUS_OK, Trials from keras.wrappers.scikit_learn import KerasClassifier from keras.models import Sequential from keras.layers import Dense, Dropout from keras.layers.local import LocallyConnected1D from keras.optimizers import SGD print("Performing KNN hyperopt search...") intParams = [ 'dense0_num_units', 'dense1_num_units', 'dense2_num_units', 'nb_epoch', #'batch_size', ] space = { 'dense0_num_units' : hp.qloguniform('dense0_num_units', np.log(1e3), np.log(1e4), 1), #hp.choice('dense0_num_units', intChoices['dense0_num_units']), 'dense1_num_units' : hp.qloguniform('dense1_num_units', np.log(1e2), np.log(1e3), 1), #hp.choice('dense1_num_units', intChoices['dense1_num_units']), 'dense2_num_units' : hp.qloguniform('dense2_num_units', np.log(1e1), np.log(1e2), 1), #hp.choice('dense2_num_units', intChoices['dense2_num_units']), 'update_learning_rate' : hp.loguniform('update_learning_rate', np.log(1e-4), np.log(1e-1)), 'dropout0_p' : hp.uniform('dropout0_p', 0.1, 0.5), 'dropout1_p' : hp.uniform('dropout1_p', 0.1, 0.5), 'dropout2_p' : hp.uniform('dropout2_p', 0.1, 0.5), 'nb_epoch' : hp.qloguniform('nb_epoch', np.log(5e1), np.log(1e2), 1), #hp.choice('max_epochs', intChoices['max_epochs']), #'batch_size' : hp.quniform('batch_size', 1, 32, 1), } def score(params): results = list() print("Testing for ", params) def build_fn(): model = Sequential() sgd = SGD(lr=params['update_learning_rate'], decay=1e-6, momentum=0.9, nesterov=True) model.add(Dense(int(params['dense0_num_units']), input_dim=params['input_shape'] , init='uniform', activation='tanh') ) model.add(Dropout(params['dropout0_p'])) model.add(Dense(int(params['dense1_num_units']), init='uniform', activation='tanh') ) model.add(Dropout(params['dropout1_p'])) model.add(Dense(int(params['dense2_num_units']), init='uniform', activation='tanh') ) model.add(Dropout(params['dropout2_p'])) model.add(Dense(int(params['output_shape']), init='uniform', activation='sigmoid') ) # Compile model model.compile( loss='binary_crossentropy', optimizer='adagrad', metrics=['accuracy'], ) return model params['input_shape'] = X.shape[1] params['output_shape'] = 1 for param in intParams: params[param] = int(params[param]) for i in range(cv): X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=testSize, stratify=y, random_state=seed+i ) print("Train shape", X_train.shape) mcObj = MetaClassifier() mcObj.resetEstimatorList() # why is this fucking necessary?! mcObj.addKNN( preproc='scale', params={ 'build_fn': build_fn, 'nb_epoch': int(params['nb_epoch']), #'batch_size': int(params['batch_size']), } ) mcObj.fit(X_train, y_train) results.append(get_auc(mcObj, X_test, y_test)) print("Outcomes: ", results) print("This score:", 1.0-np.mean(results)) print() return {'loss': 1.0-np.mean(results), 'status': STATUS_OK} trials = Trials() bestParams = fmin(score, space, algo=tpe.suggest, trials=trials, max_evals=maxEvals, ) for param in intParams: bestParams[param] = int(bestParams[param]) bestParams['input_shape'] = X.shape[1] bestParams['output_shape'] = 1 print("Saving the best parameters: ", bestParams) pickle.dump(bestParams, open('bestParams_knn.pickle', 'wb')) return bestParams def do_bayes_search(X, y, cv=3, testSize=0.3): if os.path.exists('bestParams.pickle'): return pickle.load(open('bestParams.pickle', 'rb')) print("Performing Bayesian search...") from bayes_opt.bayesian_optimization import BayesianOptimization import warnings warnings.filterwarnings("ignore") def xgboostcv( eta, max_depth, num_round, gamma, subsample, max_delta_step, min_child_weight, colsample_bytree, rate_drop, skip_drop, reg_alpha, reg_lambda, seed=1234, scorer=None ): param = { 'eta':eta, 'max_depth':int(round(max_depth)), 'num_round':int(round(num_round)), 'gamma':max(0, gamma), 'subsample':max(0, subsample), 'max_delta_step':max(0, max_delta_step), 'min_child_weight':max(0, min_child_weight), 'colsample_bytree':max(0, colsample_bytree), #'rate_drop': max(0, rate_drop), #'skip_drop': max(0, skip_drop), 'reg_alpha': max(0, reg_alpha), 'reg_lambda': max(0, reg_lambda), 'silent':1, 'objective':'binary:logistic', 'nthread':4, } results = list() for i in range(cv): X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=testSize, stratify=y, random_state=seed+i ) xg_train = xgb.DMatrix(X_train, label=y_train) xg_test = xgb.DMatrix(X_test, label=y_test) model = xgb.train( param, xg_train, param['num_round'], evals=[(xg_test, 'test')], feval=eval_auc, #early_stopping_rounds=EARLY_STOPPING ) preds = model.predict(xg_test, ntree_limit=model.best_iteration) results.append(eval_auc(preds, xg_test)[1]) print("Outcomes: ", results) return np.mean(results) xgboostBO = BayesianOptimization( xgboostcv, { 'eta': (0.001, 0.5), #'learning_rate': (0.001, 0.5), 'max_depth': (3, 50), 'num_round': (100, 1000), 'gamma': (0, 100), 'reg_lambda': (0, 1000), 'reg_alpha': (0., 1.), 'subsample': (0.8, 1.0), 'colsample_bytree': (0.8, 1.0), 'max_delta_step': (0, 10), 'min_child_weight': (1, 50), #'rate_drop': (0., 1.), #'skip_drop': (0.7, 1.), } ) xgboostBO.maximize(init_points=20, restarts=15, n_iter=50) print('XGBOOST: %f' % xgboostBO.res['max']['max_val']) bestParams = xgboostBO.res['max']['max_params'] bestParams['max_depth'] = int(round(bestParams['max_depth'])) bestParams['num_round'] = int(round(bestParams['num_round'])) pickle.dump(bestParams, open('bestParams.pickle', 'wb')) return bestParams def do_random_search(X, y, nIter=3, gridpickle='bestParams.pickle'): from sklearn.grid_search import RandomizedSearchCV from scipy.stats import randint as sp_randint from scipy.stats import uniform as sp_uniform clf = xgb.XGBClassifier() grid = dict() grid['max_depth'] = sp_randint(3, 15) grid['learning_rate'] = sp_uniform(loc=0.001, scale=0.1) grid['n_estimators'] = sp_randint(100, 1500) grid['silent'] = [True] grid['objective'] = ['binary:logistic'] grid['gamma'] = sp_randint(1, 100) grid['min_child_weight'] = sp_randint(0, 20) grid['max_delta_step'] = sp_randint(0, 10) grid['subsample'] = sp_uniform(loc=0.7, scale=0.29) grid['colsample_bytree'] = sp_uniform(loc=0.7, scale=0.29) grid['reg_alpha'] = sp_uniform(loc=0.0, scale=1.0) grid['reg_lambda'] = sp_uniform(loc=1, scale=99) def report(grid_scores): top_scores = sorted(grid_scores, key=lambda x: x[1], reverse=True) for i, score in enumerate(top_scores): print(("Model with rank: {0}".format(i + 1))) print(("Mean validation score: {0:.3f} (std: {1:.3f})".format( score.mean_validation_score, np.std(score.cv_validation_scores)))) print(("Parameters: {0}".format(score.parameters))) print("") return top_scores[0] if gridpickle and os.path.exists(gridpickle): bestParams = pickle.load(open(gridpickle, 'rb')) else: randomSearchCV = RandomizedSearchCV( clf, cv=3, scoring='roc_auc', param_distributions=grid, n_iter=nIter, random_state=SEED, verbose=100 ) randomSearchCV.fit(X, y) report(randomSearchCV.grid_scores_) bestParams = randomSearchCV.best_params_ print(bestParams) pickle.dump(bestParams, open(gridpickle, 'wb')) return bestParams def print_feature_importance(model, cols): fmap = model.get_fscore() print("There are %d cols and only %d are used." % (len(cols), len(list(fmap.keys())))) sortedList = list() for feat, score in sorted(list(fmap.items()), key=lambda x: x[1], reverse=True): feat_idx = int(feat[1:]) sortedList.append([feat_idx, fmap[feat], cols[feat_idx]]) print(sortedList[-1]) return sortedList def print_confusion_matrix(label, preds, labels=None): cm = confusion_matrix(label, preds, labels=labels) print("confusion matrix:") print("label=class0, pred=class0", cm[0][0]) print("label=class1, pred=class1", cm[1][1]) print("label=class0, pred=class1", cm[0][1]) print("label=class1, pred=class0", cm[1][0]) print("Class0 True rate", cm[0][0]/float(cm[0][0]+cm[0][1])) print("Class1 True rate", cm[1][1]/float(cm[1][1]+cm[1][0])) print("Class0 False rate", cm[0][1]/float(cm[0][0]+cm[0][1])) print("Class1 False rate", cm[1][0]/float(cm[1][1]+cm[1][0])) def get_confusion_rates(label, preds, labels=None): cm = confusion_matrix(label, preds, labels=labels) ret = { "class0true": cm[0][0]/float(cm[0][0]+cm[0][1]), "class1true": cm[1][1]/float(cm[1][1]+cm[1][0]), "class0false": cm[0][1]/float(cm[0][0]+cm[0][1]), "class1false": cm[1][0]/float(cm[1][1]+cm[1][0]), } return ret def get_auc(clf, X_test, y_test): probs = clf.predict_proba(X_test)[:,1] fpr, tpr, _ = roc_curve(y_test, probs, pos_label=1) thisAUC = auc(fpr, tpr) return thisAUC def scorer_auc(labels, preds): fpr, tpr, _ = roc_curve(labels, preds, pos_label=1) score = auc(fpr, tpr) return score def eval_auc(preds, dtrain): labels = dtrain.get_label() fpr, tpr, _ = roc_curve(labels, preds, pos_label=1) score = auc(fpr, tpr) return 'auc', score def eval_error(preds, dtrain): labels = dtrain.get_label() return 'error', float(sum(labels != (preds > RETURN_ACCEPT_RATE))) / len(labels) def scorer_mcc(labels, preds): preds = get_classification(preds, rate=LOGIT_ACCEPT_RATE) coeff = matthews_corrcoef(labels, preds) return coeff def eval_mcc(preds, dtrain): labels = dtrain.get_label() preds = get_classification(preds, rate=LOGIT_ACCEPT_RATE) coeff = matthews_corrcoef(labels, preds) return 'MCC', -coeff def eval_custom(preds, dtrain): labels = dtrain.get_label() preds = get_classification(preds, rate=LOGIT_ACCEPT_RATE) cm = confusion_matrix(labels, preds) alpha = 1.0 beta = 1.0 if cm[1][1] > 0 and cm[0][0] > 0: pos = float(cm[1][0])/cm[1][1] neg = float(cm[0][1])/cm[0][0] score = 1. - alpha*pos - beta*neg + pos*neg*alpha*beta else: score = -(float(cm[0][1])+float(cm[1][0])) return 'custom', -score def eval_custom2(preds, dtrain): labels = dtrain.get_label() preds = get_classification(preds, rate=LOGIT_ACCEPT_RATE) cm = confusion_matrix(labels, preds) if cm[0][1] > 0 and cm[1][1]+cm[1][0] > 0 and cm[0][0]+cm[0][1] > 0: tpRate = (cm[1][1]/float(cm[1][1]+cm[1][0])) fpRate = (cm[0][1]/float(cm[0][0]+cm[0][1])) score = tpRate/fpRate else: score = -(float(cm[0][1])+float(cm[1][0])) return 'custom2', -score
apache-2.0
ltiao/scikit-learn
sklearn/gaussian_process/kernels.py
5
65974
"""Kernels for Gaussian process regression and classification. The kernels in this module allow kernel-engineering, i.e., they can be combined via the "+" and "*" operators or be exponentiated with a scalar via "**". These sum and product expressions can also contain scalar values, which are automatically converted to a constant kernel. All kernels allow (analytic) gradient-based hyperparameter optimization. The space of hyperparameters can be specified by giving lower und upper boundaries for the value of each hyperparameter (the search space is thus rectangular). Instead of specifying bounds, hyperparameters can also be declared to be "fixed", which causes these hyperparameters to be excluded from optimization. """ # Author: Jan Hendrik Metzen <[email protected]> # Licence: BSD 3 clause # Note: this module is strongly inspired by the kernel module of the george # package. from abc import ABCMeta, abstractmethod from collections import namedtuple import inspect import math import numpy as np from scipy.special import kv, gamma from scipy.spatial.distance import pdist, cdist, squareform from ..metrics.pairwise import pairwise_kernels from ..externals import six from ..base import clone class Hyperparameter(namedtuple('Hyperparameter', ('name', 'value_type', 'bounds', 'n_elements', 'fixed'))): """A kernel hyperparameter's specification in form of a namedtuple. Entries ------- name : string The name of the hyperparameter. Note that a kernel using a hyperparameter with name "x" must have the attributes self.x and self.x_bounds value_type : string The type of the hyperparameter. Currently, only "numeric" hyperparameters are supported. bounds : pair of floats >= 0 or "fixed" The lower and upper bound on the parameter. If n_elements>1, a pair of 1d array with n_elements each may be given alternatively. If the string "fixed" is passed as bounds, the hyperparameter's value cannot be changed. n_elements : int, default=1 The number of elements of the hyperparameter value. Defaults to 1, which corresponds to a scalar hyperparameter. n_elements > 1 corresponds to a hyperparameter which is vector-valued, such as, e.g., anisotropic length-scales. fixed : bool, default: None Whether the value of this hyperparameter is fixed, i.e., cannot be changed during hyperparameter tuning. If None is passed, the "fixed" is derived based on the given bounds. """ # A raw namedtuple is very memory efficient as it packs the attributes # in a struct to get rid of the __dict__ of attributes in particular it # does not copy the string for the keys on each instance. # By deriving a namedtuple class just to introduce the __init__ method we # would also reintroduce the __dict__ on the instance. By telling the # Python interpreter that this subclass uses static __slots__ instead of # dynamic attributes. Furthermore we don't need any additional slot in the # subclass so we set __slots__ to the empty tuple. __slots__ = () def __new__(cls, name, value_type, bounds, n_elements=1, fixed=None): if bounds != "fixed": bounds = np.atleast_2d(bounds) if n_elements > 1: # vector-valued parameter if bounds.shape[0] == 1: bounds = np.repeat(bounds, n_elements, 0) elif bounds.shape[0] != n_elements: raise ValueError("Bounds on %s should have either 1 or " "%d dimensions. Given are %d" % (name, n_elements, bounds.shape[0])) if fixed is None: fixed = (bounds == "fixed") return super(Hyperparameter, cls).__new__( cls, name, value_type, bounds, n_elements, fixed) class Kernel(six.with_metaclass(ABCMeta)): """Base class for all kernels.""" def get_params(self, deep=True): """Get parameters of this kernel. Parameters ---------- deep: boolean, optional If True, will return the parameters for this estimator and contained subobjects that are estimators. Returns ------- params : mapping of string to any Parameter names mapped to their values. """ params = dict() # introspect the constructor arguments to find the model parameters # to represent cls = self.__class__ init = getattr(cls.__init__, 'deprecated_original', cls.__init__) args, varargs, kw, default = inspect.getargspec(init) if varargs is not None: raise RuntimeError("scikit-learn kernels should always " "specify their parameters in the signature" " of their __init__ (no varargs)." " %s doesn't follow this convention." % (cls, )) # Remove 'self' and store remaining arguments in params args = args[1:] for arg in args: params[arg] = getattr(self, arg, None) return params def set_params(self, **params): """Set the parameters of this kernel. The method works on simple kernels as well as on nested kernels. The latter have parameters of the form ``<component>__<parameter>`` so that it's possible to update each component of a nested object. Returns ------- self """ if not params: # Simple optimisation to gain speed (inspect is slow) return self valid_params = self.get_params(deep=True) for key, value in six.iteritems(params): split = key.split('__', 1) if len(split) > 1: # nested objects case name, sub_name = split if name not in valid_params: raise ValueError('Invalid parameter %s for kernel %s. ' 'Check the list of available parameters ' 'with `kernel.get_params().keys()`.' % (name, self)) sub_object = valid_params[name] sub_object.set_params(**{sub_name: value}) else: # simple objects case if key not in valid_params: raise ValueError('Invalid parameter %s for kernel %s. ' 'Check the list of available parameters ' 'with `kernel.get_params().keys()`.' % (key, self.__class__.__name__)) setattr(self, key, value) return self def clone_with_theta(self, theta): """Returns a clone of self with given hyperparameters theta. """ cloned = clone(self) cloned.theta = theta return cloned @property def n_dims(self): """Returns the number of non-fixed hyperparameters of the kernel.""" return self.theta.shape[0] @property def hyperparameters(self): """Returns a list of all hyperparameter specifications.""" r = [] for attr, value in sorted(self.__dict__.items()): if attr.startswith("hyperparameter_"): r.append(value) return r @property def theta(self): """Returns the (flattened, log-transformed) non-fixed hyperparameters. Note that theta are typically the log-transformed values of the kernel's hyperparameters as this representation of the search space is more amenable for hyperparameter search, as hyperparameters like length-scales naturally live on a log-scale. Returns ------- theta : array, shape (n_dims,) The non-fixed, log-transformed hyperparameters of the kernel """ theta = [] for hyperparameter in self.hyperparameters: if not hyperparameter.fixed: theta.append(getattr(self, hyperparameter.name)) if len(theta) > 0: return np.log(np.hstack(theta)) else: return np.array([]) @theta.setter def theta(self, theta): """Sets the (flattened, log-transformed) non-fixed hyperparameters. Parameters ---------- theta : array, shape (n_dims,) The non-fixed, log-transformed hyperparameters of the kernel """ i = 0 for hyperparameter in self.hyperparameters: if hyperparameter.fixed: continue if hyperparameter.n_elements > 1: # vector-valued parameter setattr(self, hyperparameter.name, np.exp(theta[i:i + hyperparameter.n_elements])) i += hyperparameter.n_elements else: setattr(self, hyperparameter.name, np.exp(theta[i])) i += 1 if i != len(theta): raise ValueError("theta has not the correct number of entries." " Should be %d; given are %d" % (i, len(theta))) @property def bounds(self): """Returns the log-transformed bounds on the theta. Returns ------- bounds : array, shape (n_dims, 2) The log-transformed bounds on the kernel's hyperparameters theta """ bounds = [] for hyperparameter in self.hyperparameters: if not hyperparameter.fixed: bounds.append(hyperparameter.bounds) if len(bounds) > 0: return np.log(np.vstack(bounds)) else: return np.array([]) def __add__(self, b): if not isinstance(b, Kernel): return Sum(self, ConstantKernel(b)) return Sum(self, b) def __radd__(self, b): if not isinstance(b, Kernel): return Sum(ConstantKernel(b), self) return Sum(b, self) def __mul__(self, b): if not isinstance(b, Kernel): return Product(self, ConstantKernel(b)) return Product(self, b) def __rmul__(self, b): if not isinstance(b, Kernel): return Product(ConstantKernel(b), self) return Product(b, self) def __pow__(self, b): return Exponentiation(self, b) def __eq__(self, b): if type(self) != type(b): return False params_a = self.get_params() params_b = b.get_params() for key in set(list(params_a.keys()) + list(params_b.keys())): if np.any(params_a.get(key, None) != params_b.get(key, None)): return False return True def __repr__(self): return "{0}({1})".format(self.__class__.__name__, ", ".join(map("{0:.3g}".format, self.theta))) @abstractmethod def __call__(self, X, Y=None, eval_gradient=False): """Evaluate the kernel.""" @abstractmethod def diag(self, X): """Returns the diagonal of the kernel k(X, X). The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently since only the diagonal is evaluated. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Returns ------- K_diag : array, shape (n_samples_X,) Diagonal of kernel k(X, X) """ @abstractmethod def is_stationary(self): """Returns whether the kernel is stationary. """ class NormalizedKernelMixin(object): """Mixin for kernels which are normalized: k(X, X)=1.""" def diag(self, X): """Returns the diagonal of the kernel k(X, X). The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently since only the diagonal is evaluated. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Returns ------- K_diag : array, shape (n_samples_X,) Diagonal of kernel k(X, X) """ return np.ones(X.shape[0]) class StationaryKernelMixin(object): """Mixin for kernels which are stationary: k(X, Y)= f(X-Y).""" def is_stationary(self): """Returns whether the kernel is stationary. """ return True class CompoundKernel(Kernel): """Kernel which is composed of a set of other kernels.""" def __init__(self, kernels): self.kernels = kernels def get_params(self, deep=True): """Get parameters of this kernel. Parameters ---------- deep: boolean, optional If True, will return the parameters for this estimator and contained subobjects that are estimators. Returns ------- params : mapping of string to any Parameter names mapped to their values. """ return dict(kernels=self.kernels) @property def theta(self): """Returns the (flattened, log-transformed) non-fixed hyperparameters. Note that theta are typically the log-transformed values of the kernel's hyperparameters as this representation of the search space is more amenable for hyperparameter search, as hyperparameters like length-scales naturally live on a log-scale. Returns ------- theta : array, shape (n_dims,) The non-fixed, log-transformed hyperparameters of the kernel """ return np.hstack([kernel.theta for kernel in self.kernels]) @theta.setter def theta(self, theta): """Sets the (flattened, log-transformed) non-fixed hyperparameters. Parameters ---------- theta : array, shape (n_dims,) The non-fixed, log-transformed hyperparameters of the kernel """ k_dims = self.k1.n_dims for i, kernel in enumerate(self.kernels): kernel.theta = theta[i*k_dims:(i+1)*k_dims] @property def bounds(self): """Returns the log-transformed bounds on the theta. Returns ------- bounds : array, shape (n_dims, 2) The log-transformed bounds on the kernel's hyperparameters theta """ return np.vstack([kernel.bounds for kernel in self.kernels]) def __call__(self, X, Y=None, eval_gradient=False): """Return the kernel k(X, Y) and optionally its gradient. Note that this compound kernel returns the results of all simple kernel stacked along an additional axis. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. Returns ------- K : array, shape (n_samples_X, n_samples_Y, n_kernels) Kernel k(X, Y) K_gradient : array, shape (n_samples_X, n_samples_X, n_dims, n_kernels) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. """ if eval_gradient: K = [] K_grad = [] for kernel in self.kernels: K_single, K_grad_single = kernel(X, Y, eval_gradient) K.append(K_single) K_grad.append(K_grad_single[..., np.newaxis]) return np.dstack(K), np.concatenate(K_grad, 3) else: return np.dstack([kernel(X, Y, eval_gradient) for kernel in self.kernels]) def __eq__(self, b): if type(self) != type(b) or len(self.kernels) != len(b.kernels): return False return np.all([self.kernels[i] == b.kernels[i] for i in range(len(self.kernels))]) def is_stationary(self): """Returns whether the kernel is stationary. """ return np.all([kernel.is_stationary() for kernel in self.kernels]) def diag(self, X): """Returns the diagonal of the kernel k(X, X). The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently since only the diagonal is evaluated. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Returns ------- K_diag : array, shape (n_samples_X, n_kernels) Diagonal of kernel k(X, X) """ return np.vstack([kernel.diag(X) for kernel in self.kernels]).T class KernelOperator(Kernel): """Base class for all kernel operators. """ def __init__(self, k1, k2): self.k1 = k1 self.k2 = k2 def get_params(self, deep=True): """Get parameters of this kernel. Parameters ---------- deep: boolean, optional If True, will return the parameters for this estimator and contained subobjects that are estimators. Returns ------- params : mapping of string to any Parameter names mapped to their values. """ params = dict(k1=self.k1, k2=self.k2) if deep: deep_items = self.k1.get_params().items() params.update(('k1__' + k, val) for k, val in deep_items) deep_items = self.k2.get_params().items() params.update(('k2__' + k, val) for k, val in deep_items) return params @property def hyperparameters(self): """Returns a list of all hyperparameter.""" r = [] for hyperparameter in self.k1.hyperparameters: r.append(Hyperparameter("k1__" + hyperparameter.name, hyperparameter.value_type, hyperparameter.bounds, hyperparameter.n_elements)) for hyperparameter in self.k2.hyperparameters: r.append(Hyperparameter("k2__" + hyperparameter.name, hyperparameter.value_type, hyperparameter.bounds, hyperparameter.n_elements)) return r @property def theta(self): """Returns the (flattened, log-transformed) non-fixed hyperparameters. Note that theta are typically the log-transformed values of the kernel's hyperparameters as this representation of the search space is more amenable for hyperparameter search, as hyperparameters like length-scales naturally live on a log-scale. Returns ------- theta : array, shape (n_dims,) The non-fixed, log-transformed hyperparameters of the kernel """ return np.append(self.k1.theta, self.k2.theta) @theta.setter def theta(self, theta): """Sets the (flattened, log-transformed) non-fixed hyperparameters. Parameters ---------- theta : array, shape (n_dims,) The non-fixed, log-transformed hyperparameters of the kernel """ k1_dims = self.k1.n_dims self.k1.theta = theta[:k1_dims] self.k2.theta = theta[k1_dims:] @property def bounds(self): """Returns the log-transformed bounds on the theta. Returns ------- bounds : array, shape (n_dims, 2) The log-transformed bounds on the kernel's hyperparameters theta """ if self.k1.bounds.size == 0: return self.k2.bounds if self.k2.bounds.size == 0: return self.k1.bounds return np.vstack((self.k1.bounds, self.k2.bounds)) def __eq__(self, b): if type(self) != type(b): return False return (self.k1 == b.k1 and self.k2 == b.k2) \ or (self.k1 == b.k2 and self.k2 == b.k1) def is_stationary(self): """Returns whether the kernel is stationary. """ return self.k1.is_stationary() and self.k2.is_stationary() class Sum(KernelOperator): """Sum-kernel k1 + k2 of two kernels k1 and k2. The resulting kernel is defined as k_sum(X, Y) = k1(X, Y) + k2(X, Y) Parameters ---------- k1 : Kernel object The first base-kernel of the sum-kernel k2 : Kernel object The second base-kernel of the sum-kernel """ def __call__(self, X, Y=None, eval_gradient=False): """Return the kernel k(X, Y) and optionally its gradient. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. Returns ------- K : array, shape (n_samples_X, n_samples_Y) Kernel k(X, Y) K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. """ if eval_gradient: K1, K1_gradient = self.k1(X, Y, eval_gradient=True) K2, K2_gradient = self.k2(X, Y, eval_gradient=True) return K1 + K2, np.dstack((K1_gradient, K2_gradient)) else: return self.k1(X, Y) + self.k2(X, Y) def diag(self, X): """Returns the diagonal of the kernel k(X, X). The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently since only the diagonal is evaluated. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Returns ------- K_diag : array, shape (n_samples_X,) Diagonal of kernel k(X, X) """ return self.k1.diag(X) + self.k2.diag(X) def __repr__(self): return "{0} + {1}".format(self.k1, self.k2) class Product(KernelOperator): """Product-kernel k1 * k2 of two kernels k1 and k2. The resulting kernel is defined as k_prod(X, Y) = k1(X, Y) * k2(X, Y) Parameters ---------- k1 : Kernel object The first base-kernel of the product-kernel k2 : Kernel object The second base-kernel of the product-kernel """ def __call__(self, X, Y=None, eval_gradient=False): """Return the kernel k(X, Y) and optionally its gradient. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. Returns ------- K : array, shape (n_samples_X, n_samples_Y) Kernel k(X, Y) K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. """ if eval_gradient: K1, K1_gradient = self.k1(X, Y, eval_gradient=True) K2, K2_gradient = self.k2(X, Y, eval_gradient=True) return K1 * K2, np.dstack((K1_gradient * K2[:, :, np.newaxis], K2_gradient * K1[:, :, np.newaxis])) else: return self.k1(X, Y) * self.k2(X, Y) def diag(self, X): """Returns the diagonal of the kernel k(X, X). The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently since only the diagonal is evaluated. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Returns ------- K_diag : array, shape (n_samples_X,) Diagonal of kernel k(X, X) """ return self.k1.diag(X) * self.k2.diag(X) def __repr__(self): return "{0} * {1}".format(self.k1, self.k2) class Exponentiation(Kernel): """Exponentiate kernel by given exponent. The resulting kernel is defined as k_exp(X, Y) = k(X, Y) ** exponent Parameters ---------- kernel : Kernel object The base kernel exponent : float The exponent for the base kernel """ def __init__(self, kernel, exponent): self.kernel = kernel self.exponent = exponent def get_params(self, deep=True): """Get parameters of this kernel. Parameters ---------- deep: boolean, optional If True, will return the parameters for this estimator and contained subobjects that are estimators. Returns ------- params : mapping of string to any Parameter names mapped to their values. """ params = dict(kernel=self.kernel, exponent=self.exponent) if deep: deep_items = self.kernel.get_params().items() params.update(('kernel__' + k, val) for k, val in deep_items) return params @property def hyperparameters(self): """Returns a list of all hyperparameter.""" r = [] for hyperparameter in self.kernel.hyperparameters: r.append(Hyperparameter("kernel__" + hyperparameter.name, hyperparameter.value_type, hyperparameter.bounds, hyperparameter.n_elements)) return r @property def theta(self): """Returns the (flattened, log-transformed) non-fixed hyperparameters. Note that theta are typically the log-transformed values of the kernel's hyperparameters as this representation of the search space is more amenable for hyperparameter search, as hyperparameters like length-scales naturally live on a log-scale. Returns ------- theta : array, shape (n_dims,) The non-fixed, log-transformed hyperparameters of the kernel """ return self.kernel.theta @theta.setter def theta(self, theta): """Sets the (flattened, log-transformed) non-fixed hyperparameters. Parameters ---------- theta : array, shape (n_dims,) The non-fixed, log-transformed hyperparameters of the kernel """ self.kernel.theta = theta @property def bounds(self): """Returns the log-transformed bounds on the theta. Returns ------- bounds : array, shape (n_dims, 2) The log-transformed bounds on the kernel's hyperparameters theta """ return self.kernel.bounds def __eq__(self, b): if type(self) != type(b): return False return (self.kernel == b.kernel and self.exponent == b.exponent) def __call__(self, X, Y=None, eval_gradient=False): """Return the kernel k(X, Y) and optionally its gradient. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. Returns ------- K : array, shape (n_samples_X, n_samples_Y) Kernel k(X, Y) K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. """ if eval_gradient: K, K_gradient = self.kernel(X, Y, eval_gradient=True) K_gradient *= \ self.exponent * K[:, :, np.newaxis] ** (self.exponent - 1) return K ** self.exponent, K_gradient else: K = self.kernel(X, Y, eval_gradient=False) return K ** self.exponent def diag(self, X): """Returns the diagonal of the kernel k(X, X). The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently since only the diagonal is evaluated. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Returns ------- K_diag : array, shape (n_samples_X,) Diagonal of kernel k(X, X) """ return self.kernel.diag(X) ** self.exponent def __repr__(self): return "{0} ** {1}".format(self.kernel, self.exponent) def is_stationary(self): """Returns whether the kernel is stationary. """ return self.kernel.is_stationary() class ConstantKernel(StationaryKernelMixin, Kernel): """Constant kernel. Can be used as part of a product-kernel where it scales the magnitude of the other factor (kernel) or as part of a sum-kernel, where it modifies the mean of the Gaussian process. k(x_1, x_2) = constant_value for all x_1, x_2 Parameters ---------- constant_value : float, default: 1.0 The constant value which defines the covariance: k(x_1, x_2) = constant_value constant_value_bounds : pair of floats >= 0, default: (1e-5, 1e5) The lower and upper bound on constant_value """ def __init__(self, constant_value=1.0, constant_value_bounds=(1e-5, 1e5)): self.constant_value = constant_value self.constant_value_bounds = constant_value_bounds self.hyperparameter_constant_value = \ Hyperparameter("constant_value", "numeric", constant_value_bounds) def __call__(self, X, Y=None, eval_gradient=False): """Return the kernel k(X, Y) and optionally its gradient. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. Only supported when Y is None. Returns ------- K : array, shape (n_samples_X, n_samples_Y) Kernel k(X, Y) K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. """ X = np.atleast_2d(X) if Y is None: Y = X elif eval_gradient: raise ValueError("Gradient can only be evaluated when Y is None.") K = self.constant_value * np.ones((X.shape[0], Y.shape[0])) if eval_gradient: if not self.hyperparameter_constant_value.fixed: return (K, self.constant_value * np.ones((X.shape[0], X.shape[0], 1))) else: return K, np.empty((X.shape[0], X.shape[0], 0)) else: return K def diag(self, X): """Returns the diagonal of the kernel k(X, X). The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently since only the diagonal is evaluated. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Returns ------- K_diag : array, shape (n_samples_X,) Diagonal of kernel k(X, X) """ return self.constant_value * np.ones(X.shape[0]) def __repr__(self): return "{0:.3g}**2".format(np.sqrt(self.constant_value)) class WhiteKernel(StationaryKernelMixin, Kernel): """White kernel. The main use-case of this kernel is as part of a sum-kernel where it explains the noise-component of the signal. Tuning its parameter corresponds to estimating the noise-level. k(x_1, x_2) = noise_level if x_1 == x_2 else 0 Parameters ---------- noise_level : float, default: 1.0 Parameter controlling the noise level noise_level_bounds : pair of floats >= 0, default: (1e-5, 1e5) The lower and upper bound on noise_level """ def __init__(self, noise_level=1.0, noise_level_bounds=(1e-5, 1e5)): self.noise_level = noise_level self.noise_level_bounds = noise_level_bounds self.hyperparameter_noise_level = \ Hyperparameter("noise_level", "numeric", noise_level_bounds) def __call__(self, X, Y=None, eval_gradient=False): """Return the kernel k(X, Y) and optionally its gradient. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. Only supported when Y is None. Returns ------- K : array, shape (n_samples_X, n_samples_Y) Kernel k(X, Y) K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. """ X = np.atleast_2d(X) if Y is not None and eval_gradient: raise ValueError("Gradient can only be evaluated when Y is None.") if Y is None: K = self.noise_level * np.eye(X.shape[0]) if eval_gradient: if not self.hyperparameter_noise_level.fixed: return (K, self.noise_level * np.eye(X.shape[0])[:, :, np.newaxis]) else: return K, np.empty((X.shape[0], X.shape[0], 0)) else: return K else: return np.zeros((X.shape[0], Y.shape[0])) def diag(self, X): """Returns the diagonal of the kernel k(X, X). The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently since only the diagonal is evaluated. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Returns ------- K_diag : array, shape (n_samples_X,) Diagonal of kernel k(X, X) """ return self.noise_level * np.ones(X.shape[0]) def __repr__(self): return "{0}(noise_level={1:.3g})".format(self.__class__.__name__, self.noise_level) class RBF(StationaryKernelMixin, NormalizedKernelMixin, Kernel): """Radial-basis function kernel (aka squared-exponential kernel). The RBF kernel is a stationary kernel. It is also known as the "squared exponential" kernel. It is parameterized by a length-scale parameter length_scale>0, which can either be a scalar (isotropic variant of the kernel) or a vector with the same number of dimensions as the inputs X (anisotropic variant of the kernel). The kernel is given by: k(x_i, x_j) = exp(-1 / 2 d(x_i / length_scale, x_j / length_scale)^2) This kernel is infinitely differentiable, which implies that GPs with this kernel as covariance function have mean square derivatives of all orders, and are thus very smooth. Parameters ----------- length_scale : float or array with shape (n_features,), default: 1.0 The length scale of the kernel. If a float, an isotropic kernel is used. If an array, an anisotropic kernel is used where each dimension of l defines the length-scale of the respective feature dimension. length_scale_bounds : pair of floats >= 0, default: (1e-5, 1e5) The lower and upper bound on length_scale """ def __init__(self, length_scale=1.0, length_scale_bounds=(1e-5, 1e5)): if np.iterable(length_scale): if len(length_scale) > 1: self.anisotropic = True self.length_scale = np.asarray(length_scale, dtype=np.float) else: self.anisotropic = False self.length_scale = float(length_scale[0]) else: self.anisotropic = False self.length_scale = float(length_scale) self.length_scale_bounds = length_scale_bounds if self.anisotropic: # anisotropic length_scale self.hyperparameter_length_scale = \ Hyperparameter("length_scale", "numeric", length_scale_bounds, len(length_scale)) else: self.hyperparameter_length_scale = \ Hyperparameter("length_scale", "numeric", length_scale_bounds) def __call__(self, X, Y=None, eval_gradient=False): """Return the kernel k(X, Y) and optionally its gradient. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. Only supported when Y is None. Returns ------- K : array, shape (n_samples_X, n_samples_Y) Kernel k(X, Y) K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. """ X = np.atleast_2d(X) if self.anisotropic and X.shape[1] != self.length_scale.shape[0]: raise Exception("Anisotropic kernel must have the same number of " "dimensions as data (%d!=%d)" % (self.length_scale.shape[0], X.shape[1])) if Y is None: dists = pdist(X / self.length_scale, metric='sqeuclidean') K = np.exp(-.5 * dists) # convert from upper-triangular matrix to square matrix K = squareform(K) np.fill_diagonal(K, 1) else: if eval_gradient: raise ValueError( "Gradient can only be evaluated when Y is None.") dists = cdist(X / self.length_scale, Y / self.length_scale, metric='sqeuclidean') K = np.exp(-.5 * dists) if eval_gradient: if self.hyperparameter_length_scale.fixed: # Hyperparameter l kept fixed return K, np.empty((X.shape[0], X.shape[0], 0)) elif not self.anisotropic or self.length_scale.shape[0] == 1: K_gradient = \ (K * squareform(dists))[:, :, np.newaxis] return K, K_gradient elif self.anisotropic: # We need to recompute the pairwise dimension-wise distances K_gradient = (X[:, np.newaxis, :] - X[np.newaxis, :, :]) ** 2 \ / (self.length_scale ** 2) K_gradient *= K[..., np.newaxis] return K, K_gradient else: raise Exception("Anisotropic kernels require that the number " "of length scales and features match.") else: return K def __repr__(self): if self.anisotropic: return "{0}(length_scale=[{1}])".format( self.__class__.__name__, ", ".join(map("{0:.3g}".format, self.length_scale))) else: # isotropic return "{0}(length_scale={1:.3g})".format( self.__class__.__name__, self.length_scale) class Matern(RBF): """ Matern kernel. The class of Matern kernels is a generalization of the RBF and the absolute exponential kernel parameterized by an additional parameter nu. The smaller nu, the less smooth the approximated function is. For nu=inf, the kernel becomes equivalent to the RBF kernel and for nu=0.5 to the absolute exponential kernel. Important intermediate values are nu=1.5 (once differentiable functions) and nu=2.5 (twice differentiable functions). See Rasmussen and Williams 2006, pp84 for details regarding the different variants of the Matern kernel. Parameters ----------- length_scale : float or array with shape (n_features,), default: 1.0 The length scale of the kernel. If a float, an isotropic kernel is used. If an array, an anisotropic kernel is used where each dimension of l defines the length-scale of the respective feature dimension. length_scale_bounds : pair of floats >= 0, default: (1e-5, 1e5) The lower and upper bound on length_scale nu: float, default: 1.5 The parameter nu controlling the smoothness of the learned function. The smaller nu, the less smooth the approximated function is. For nu=inf, the kernel becomes equivalent to the RBF kernel and for nu=0.5 to the absolute exponential kernel. Important intermediate values are nu=1.5 (once differentiable functions) and nu=2.5 (twice differentiable functions). Note that values of nu not in [0.5, 1.5, 2.5, inf] incur a considerably higher computational cost (appr. 10 times higher) since they require to evaluate the modified Bessel function. Furthermore, in contrast to l, nu is kept fixed to its initial value and not optimized. """ def __init__(self, length_scale=1.0, length_scale_bounds=(1e-5, 1e5), nu=1.5): super(Matern, self).__init__(length_scale, length_scale_bounds) self.nu = nu def __call__(self, X, Y=None, eval_gradient=False): """Return the kernel k(X, Y) and optionally its gradient. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. Only supported when Y is None. Returns ------- K : array, shape (n_samples_X, n_samples_Y) Kernel k(X, Y) K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. """ X = np.atleast_2d(X) if self.anisotropic and X.shape[1] != self.length_scale.shape[0]: raise Exception("Anisotropic kernel must have the same number of " "dimensions as data (%d!=%d)" % (self.length_scale.shape[0], X.shape[1])) if Y is None: dists = pdist(X / self.length_scale, metric='euclidean') else: if eval_gradient: raise ValueError( "Gradient can only be evaluated when Y is None.") dists = cdist(X / self.length_scale, Y / self.length_scale, metric='euclidean') if self.nu == 0.5: K = np.exp(-dists) elif self.nu == 1.5: K = dists * math.sqrt(3) K = (1. + K) * np.exp(-K) elif self.nu == 2.5: K = dists * math.sqrt(5) K = (1. + K + K ** 2 / 3.0) * np.exp(-K) else: # general case; expensive to evaluate K = dists K[K == 0.0] += np.finfo(float).eps # strict zeros result in nan tmp = (math.sqrt(2 * self.nu) * K) K.fill((2 ** (1. - self.nu)) / gamma(self.nu)) K *= tmp ** self.nu K *= kv(self.nu, tmp) if Y is None: # convert from upper-triangular matrix to square matrix K = squareform(K) np.fill_diagonal(K, 1) if eval_gradient: if self.hyperparameter_length_scale.fixed: # Hyperparameter l kept fixed K_gradient = np.empty((X.shape[0], X.shape[0], 0)) return K, K_gradient # We need to recompute the pairwise dimension-wise distances if self.anisotropic: D = (X[:, np.newaxis, :] - X[np.newaxis, :, :])**2 \ / (self.length_scale ** 2) else: D = squareform(dists**2)[:, :, np.newaxis] if self.nu == 0.5: K_gradient = K[..., np.newaxis] * D \ / np.sqrt(D.sum(2))[:, :, np.newaxis] K_gradient[~np.isfinite(K_gradient)] = 0 elif self.nu == 1.5: K_gradient = \ 3 * D * np.exp(-np.sqrt(3 * D.sum(-1)))[..., np.newaxis] elif self.nu == 2.5: tmp = np.sqrt(5 * D.sum(-1))[..., np.newaxis] K_gradient = 5.0/3.0 * D * (tmp + 1) * np.exp(-tmp) else: # approximate gradient numerically def f(theta): # helper function return self.clone_with_theta(theta)(X, Y) return K, _approx_fprime(self.theta, f, 1e-10) if not self.anisotropic: return K, K_gradient[:, :].sum(-1)[:, :, np.newaxis] else: return K, K_gradient else: return K def __repr__(self): if self.anisotropic: return "{0}(length_scale=[{1}], nu={2:.3g})".format( self.__class__.__name__, ", ".join(map("{0:.3g}".format, self.length_scale)), self.nu) else: # isotropic return "{0}(length_scale={1:.3g}, nu={2:.3g})".format( self.__class__.__name__, self.length_scale, self.nu) class RationalQuadratic(StationaryKernelMixin, NormalizedKernelMixin, Kernel): """Rational Quadratic kernel. The RationalQuadratic kernel can be seen as a scale mixture (an infinite sum) of RBF kernels with different characteristic length-scales. It is parameterized by a length-scale parameter length_scale>0 and a scale mixture parameter alpha>0. Only the isotropic variant where length_scale is a scalar is supported at the moment. The kernel given by: k(x_i, x_j) = (1 + d(x_i, x_j)^2 / (2*alpha * length_scale^2))^-alpha Parameters ---------- length_scale : float > 0, default: 1.0 The length scale of the kernel. alpha : float > 0, default: 1.0 Scale mixture parameter length_scale_bounds : pair of floats >= 0, default: (1e-5, 1e5) The lower and upper bound on length_scale alpha_bounds : pair of floats >= 0, default: (1e-5, 1e5) The lower and upper bound on alpha """ def __init__(self, length_scale=1.0, alpha=1.0, length_scale_bounds=(1e-5, 1e5), alpha_bounds=(1e-5, 1e5)): self.length_scale = length_scale self.alpha = alpha self.length_scale_bounds = length_scale_bounds self.alpha_bounds = alpha_bounds self.hyperparameter_length_scale = \ Hyperparameter("length_scale", "numeric", length_scale_bounds) self.hyperparameter_alpha = \ Hyperparameter("alpha", "numeric", alpha_bounds) def __call__(self, X, Y=None, eval_gradient=False): """Return the kernel k(X, Y) and optionally its gradient. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. Only supported when Y is None. Returns ------- K : array, shape (n_samples_X, n_samples_Y) Kernel k(X, Y) K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. """ X = np.atleast_2d(X) if Y is None: dists = squareform(pdist(X, metric='sqeuclidean')) tmp = dists / (2 * self.alpha * self.length_scale ** 2) base = (1 + tmp) K = base ** -self.alpha np.fill_diagonal(K, 1) else: if eval_gradient: raise ValueError( "Gradient can only be evaluated when Y is None.") dists = cdist(X, Y, metric='sqeuclidean') K = (1 + dists / (2 * self.alpha * self.length_scale ** 2)) \ ** -self.alpha if eval_gradient: # gradient with respect to length_scale if not self.hyperparameter_length_scale.fixed: length_scale_gradient = \ dists * K / (self.length_scale ** 2 * base) length_scale_gradient = length_scale_gradient[:, :, np.newaxis] else: # l is kept fixed length_scale_gradient = np.empty((K.shape[0], K.shape[1], 0)) # gradient with respect to alpha if not self.hyperparameter_alpha.fixed: alpha_gradient = \ K * (-self.alpha * np.log(base) + dists / (2 * self.length_scale ** 2 * base)) alpha_gradient = alpha_gradient[:, :, np.newaxis] else: # alpha is kept fixed alpha_gradient = np.empty((K.shape[0], K.shape[1], 0)) return K, np.dstack((alpha_gradient, length_scale_gradient)) else: return K def __repr__(self): return "{0}(alpha={1:.3g}, length_scale={2:.3g})".format( self.__class__.__name__, self.alpha, self.length_scale) class ExpSineSquared(StationaryKernelMixin, NormalizedKernelMixin, Kernel): """Exp-Sine-Squared kernel. The ExpSineSquared kernel allows modeling periodic functions. It is parameterized by a length-scale parameter length_scale>0 and a periodicity parameter periodicity>0. Only the isotropic variant where l is a scalar is supported at the moment. The kernel given by: k(x_i, x_j) = exp(-2 sin(\pi / periodicity * d(x_i, x_j)) / length_scale)^2 Parameters ---------- length_scale : float > 0, default: 1.0 The length scale of the kernel. periodicity : float > 0, default: 1.0 The periodicity of the kernel. length_scale_bounds : pair of floats >= 0, default: (1e-5, 1e5) The lower and upper bound on length_scale periodicity_bounds : pair of floats >= 0, default: (1e-5, 1e5) The lower and upper bound on periodicity """ def __init__(self, length_scale=1.0, periodicity=1.0, length_scale_bounds=(1e-5, 1e5), periodicity_bounds=(1e-5, 1e5)): self.length_scale = length_scale self.periodicity = periodicity self.length_scale_bounds = length_scale_bounds self.periodicity_bounds = periodicity_bounds self.hyperparameter_length_scale = \ Hyperparameter("length_scale", "numeric", length_scale_bounds) self.hyperparameter_periodicity = \ Hyperparameter("periodicity", "numeric", periodicity_bounds) def __call__(self, X, Y=None, eval_gradient=False): """Return the kernel k(X, Y) and optionally its gradient. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. Only supported when Y is None. Returns ------- K : array, shape (n_samples_X, n_samples_Y) Kernel k(X, Y) K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. """ X = np.atleast_2d(X) if Y is None: dists = squareform(pdist(X, metric='euclidean')) arg = np.pi * dists / self.periodicity sin_of_arg = np.sin(arg) K = np.exp(- 2 * (sin_of_arg / self.length_scale) ** 2) else: if eval_gradient: raise ValueError( "Gradient can only be evaluated when Y is None.") dists = cdist(X, Y, metric='euclidean') K = np.exp(- 2 * (np.sin(np.pi / self.periodicity * dists) / self.length_scale) ** 2) if eval_gradient: cos_of_arg = np.cos(arg) # gradient with respect to length_scale if not self.hyperparameter_length_scale.fixed: length_scale_gradient = \ 4 / self.length_scale**2 * sin_of_arg**2 * K length_scale_gradient = length_scale_gradient[:, :, np.newaxis] else: # length_scale is kept fixed length_scale_gradient = np.empty((K.shape[0], K.shape[1], 0)) # gradient with respect to p if not self.hyperparameter_periodicity.fixed: periodicity_gradient = \ 4 * arg / self.length_scale**2 * cos_of_arg \ * sin_of_arg * K periodicity_gradient = periodicity_gradient[:, :, np.newaxis] else: # p is kept fixed periodicity_gradient = np.empty((K.shape[0], K.shape[1], 0)) return K, np.dstack((length_scale_gradient, periodicity_gradient)) else: return K def __repr__(self): return "{0}(length_scale={1:.3g}, periodicity={2:.3g})".format( self.__class__.__name__, self.length_scale, self.periodicity) class DotProduct(Kernel): """Dot-Product kernel. The DotProduct kernel is non-stationary and can be obtained from linear regression by putting N(0, 1) priors on the coefficients of x_d (d = 1, . . . , D) and a prior of N(0, \sigma_0^2) on the bias. The DotProduct kernel is invariant to a rotation of the coordinates about the origin, but not translations. It is parameterized by a parameter sigma_0^2. For sigma_0^2 =0, the kernel is called the homogeneous linear kernel, otherwise it is inhomogeneous. The kernel is given by k(x_i, x_j) = sigma_0 ^ 2 + x_i \cdot x_j The DotProduct kernel is commonly combined with exponentiation. Parameters ---------- sigma_0 : float >= 0, default: 1.0 Parameter controlling the inhomogenity of the kernel. If sigma_0=0, the kernel is homogenous. sigma_0_bounds : pair of floats >= 0, default: (1e-5, 1e5) The lower and upper bound on l """ def __init__(self, sigma_0=1.0, sigma_0_bounds=(1e-5, 1e5)): self.sigma_0 = sigma_0 self.sigma_0_bounds = sigma_0_bounds self.hyperparameter_sigma_0 = \ Hyperparameter("sigma_0", "numeric", sigma_0_bounds) def __call__(self, X, Y=None, eval_gradient=False): """Return the kernel k(X, Y) and optionally its gradient. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. Only supported when Y is None. Returns ------- K : array, shape (n_samples_X, n_samples_Y) Kernel k(X, Y) K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. """ X = np.atleast_2d(X) if Y is None: K = np.inner(X, X) + self.sigma_0 ** 2 else: if eval_gradient: raise ValueError( "Gradient can only be evaluated when Y is None.") K = np.inner(X, Y) + self.sigma_0 ** 2 if eval_gradient: if not self.hyperparameter_sigma_0.fixed: K_gradient = np.empty((K.shape[0], K.shape[1], 1)) K_gradient[..., 0] = 2 * self.sigma_0 ** 2 return K, K_gradient else: return K, np.empty((X.shape[0], X.shape[0], 0)) else: return K def diag(self, X): """Returns the diagonal of the kernel k(X, X). The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently since only the diagonal is evaluated. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Returns ------- K_diag : array, shape (n_samples_X,) Diagonal of kernel k(X, X) """ return np.einsum('ij,ij->i', X, X) + self.sigma_0 ** 2 def is_stationary(self): """Returns whether the kernel is stationary. """ return False def __repr__(self): return "{0}(sigma_0={1:.3g})".format( self.__class__.__name__, self.sigma_0) # adapted from scipy/optimize/optimize.py for functions with 2d output def _approx_fprime(xk, f, epsilon, args=()): f0 = f(*((xk,) + args)) grad = np.zeros((f0.shape[0], f0.shape[1], len(xk)), float) ei = np.zeros((len(xk), ), float) for k in range(len(xk)): ei[k] = 1.0 d = epsilon * ei grad[:, :, k] = (f(*((xk + d,) + args)) - f0) / d[k] ei[k] = 0.0 return grad class PairwiseKernel(Kernel): """Wrapper for kernels in sklearn.metrics.pairwise. A thin wrapper around the functionality of the kernels in sklearn.metrics.pairwise. Note: Evaluation of eval_gradient is not analytic but numeric and all kernels support only isotropic distances. The parameter gamma is considered to be a hyperparameter and may be optimized. The other kernel parameters are set directly at initialization and are kept fixed. Parameters ---------- gamma: float >= 0, default: 1.0 Parameter gamma of the pairwise kernel specified by metric gamma_bounds : pair of floats >= 0, default: (1e-5, 1e5) The lower and upper bound on gamma metric : string, or callable, default: "linear" The metric to use when calculating kernel between instances in a feature array. If metric is a string, it must be one of the metrics in pairwise.PAIRWISE_KERNEL_FUNCTIONS. If metric is "precomputed", X is assumed to be a kernel matrix. Alternatively, if metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays from X as input and return a value indicating the distance between them. pairwise_kernels_kwargs : dict, default: None All entries of this dict (if any) are passed as keyword arguments to the pairwise kernel function. """ def __init__(self, gamma=1.0, gamma_bounds=(1e-5, 1e5), metric="linear", pairwise_kernels_kwargs=None): self.gamma = gamma self.gamma_bounds = gamma_bounds self.hyperparameter_gamma = \ Hyperparameter("gamma", "numeric", gamma_bounds) self.metric = metric if pairwise_kernels_kwargs is not None: self.pairwise_kernels_kwargs = pairwise_kernels_kwargs else: self.pairwise_kernels_kwargs = {} def __call__(self, X, Y=None, eval_gradient=False): """Return the kernel k(X, Y) and optionally its gradient. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. Only supported when Y is None. Returns ------- K : array, shape (n_samples_X, n_samples_Y) Kernel k(X, Y) K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. """ X = np.atleast_2d(X) K = pairwise_kernels(X, Y, metric=self.metric, gamma=self.gamma, filter_params=True, **self.pairwise_kernels_kwargs) if eval_gradient: if self.hyperparameter_gamma.fixed: return K, np.empty((X.shape[0], X.shape[0], 0)) else: # approximate gradient numerically def f(gamma): # helper function return pairwise_kernels( X, Y, metric=self.metric, gamma=np.exp(gamma), filter_params=True, **self.pairwise_kernels_kwargs) return K, _approx_fprime(self.theta, f, 1e-10) else: return K def diag(self, X): """Returns the diagonal of the kernel k(X, X). The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently since only the diagonal is evaluated. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Returns ------- K_diag : array, shape (n_samples_X,) Diagonal of kernel k(X, X) """ # We have to fall back to slow way of computing diagonal return np.apply_along_axis(self, 1, X)[:, 0] def is_stationary(self): """Returns whether the kernel is stationary. """ return self.metric in ["rbf"] def __repr__(self): return "{0}(gamma={1}, metric={2})".format( self.__class__.__name__, self.gamma, self.metric)
bsd-3-clause
stan-dev/math
benchmarks/benchmark.py
1
29437
#!/usr/bin/python from __future__ import print_function import itertools import numbers import os import subprocess import sys from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser HERE = os.path.dirname(os.path.realpath(__file__)) TEST_FOLDER = os.path.abspath(os.path.join(HERE, "..", "test")) sys.path.append(TEST_FOLDER) from sig_utils import * WORKING_FOLDER = "./benchmarks/" BENCHMARK_TEMPLATE = """ static void {benchmark_name}(benchmark::State& state) {{ {setup} for (auto _ : state) {{ {var_conversions} auto start = std::chrono::high_resolution_clock::now(); {code} auto end = std::chrono::high_resolution_clock::now(); auto elapsed_seconds = std::chrono::duration_cast<std::chrono::duration<double>>(end - start); state.SetIterationTime(elapsed_seconds.count()); stan::math::recover_memory(); benchmark::ClobberMemory(); }} }} BENCHMARK({benchmark_name})->RangeMultiplier({multi})->Range(1, {max_size})->UseManualTime(); """ CUSTOM_MAIN = """ int main(int argc, char** argv) {{ stan::math::ChainableStack::instance_->memalloc_.alloc({}); stan::math::recover_memory(); ::benchmark::Initialize(&argc, argv); ::benchmark::RunSpecifiedBenchmarks(); }} """ overload_scalar = { "Prim": "double", "Rev": "stan::math::var", "Fwd": "stan::math::fvar<double>", "Mix": "stan::math::fvar<stan::math::var>", } def run_command(command): """ Runs given command and waits until it finishes executing. :param command: command to execute """ print() print(" ".join(command)) p1 = subprocess.Popen(command) if p1.wait() != 0: raise RuntimeError("command failed: " + " ".join(command)) def build(exe_filepath): """ Builds a file using make. :param exe_filepath: File to build """ run_command([make, exe_filepath]) def run_benchmark(exe_filepath, n_repeats=1, csv_out_file=None): """ Runs a benchmark :param exe_filepath: path to the benchmark executable :param n_repeats: how many times to repeat each benchmark :param csv_out_file: path to csv fle to store benchmark results into """ command = [exe_filepath] if n_repeats > 1: command.append("--benchmark_repetitions={}".format(n_repeats)) command.append("--benchmark_display_aggregates_only=true") if csv_out_file is not None: command.append("--benchmark_out={}".format(csv_out_file)) command.append("--benchmark_out_format=csv") run_command(command) def pick_color(n): str_bit_reversed_n = "{:015b}".format(n + 1)[::-1] r = 0.9 * ((int(str_bit_reversed_n[0::3], 2) / 2.0 ** 5 + 0.3) % 1) g = 0.9 * ((int(str_bit_reversed_n[1::3], 2) / 2.0 ** 5 + 0.3) % 1) b = 0.9 * ((int(str_bit_reversed_n[2::3], 2) / 2.0 ** 5 + 0.3) % 1) return r, g, b def plot_results(csv_filename, out_file="", plot_log_y=False): """ Plots benchmark results. :param csv_filename: path to csv file containing results to plot :param out_file: path to image file to store figure into. If it equals to "window" opens it in an interactive window. """ import pandas import numpy import matplotlib if out_file != "window": matplotlib.use("Agg") import matplotlib.pyplot as plt with open(csv_filename) as f: # google benchmark writes some non-csv data at beginning for line in iter(f.readline, ""): if line.startswith("name,iterations"): f.seek(f.tell() - len(line) - 1, os.SEEK_SET) break data = pandas.read_csv(f) name_split = data["name"].str.split("/", expand=True) timing_data = pandas.concat( [name_split.iloc[:, :2], data["real_time"]], axis=1, ).loc[name_split.iloc[:, 2]=="manual_time", :] timing_data.columns = ["signatures", "sizes", "times"] timing_data.loc[:, "sizes"] = timing_data["sizes"].astype(int) timing_data.loc[:, "times"] /= 1000 # convert to microseconds fig, ax = plt.subplots(figsize=(10, 10)) fig.set_tight_layout(True) ax.set_xscale("log") if plot_log_y: ax.set_yscale("log") ax.set_xlabel("size") ax.set_ylabel("time[us]") for n, (signature, sub_data) in enumerate(timing_data.groupby("signatures")): avg_sig_times = ( sub_data.groupby(by="sizes")["times"] .median() .reset_index() .sort_values(by="sizes") ) ax.plot( avg_sig_times["sizes"], avg_sig_times["times"], label=signature, color=pick_color(n), ) for n, (signature, sub_data) in enumerate(timing_data.groupby("signatures")): ax.plot( sub_data["sizes"], sub_data["times"], "x", color=pick_color(n), label="_nolegend_", scaley=False, ) [ spine.set_visible(False) for loc, spine in ax.spines.items() if loc in ["top", "right", "left", "bottom"] ] ax.minorticks_off() ax.grid() ax.legend() if out_file == "window": plt.show() else: fig.savefig(out_file, bbox_inches="tight", dpi=300) def plot_compare(csv_filename, reference_csv_filename, out_file="", plot_log_y=False): """ Plots benchmark speedup compared to reference results. :param csv_filename: path to csv file containing results to plot :param reference_csv_filename: path to csv file containing reference results to plot :param out_file: path to image file to store figure into. If it equals to "window" opens it in an interactive window. """ import pandas, numpy, matplotlib if out_file != "window": matplotlib.use("Agg") import matplotlib.pyplot as plt with open(csv_filename) as f: # google benchmark writes some non-csv data at beginning for line in iter(f.readline, ""): if line.startswith("name,iterations"): f.seek(f.tell() - len(line) - 1, os.SEEK_SET) break data = pandas.read_csv(f) with open(reference_csv_filename) as f: # google benchmark writes some non-csv data at beginning for line in iter(f.readline, ""): if line.startswith("name,iterations"): f.seek(f.tell() - len(line) - 1, os.SEEK_SET) break reference_data = pandas.read_csv(f) name_split = data["name"].str.split("/", expand=True) timing_data = pandas.concat( [name_split.iloc[:, :2], data["real_time"]], axis=1, ).loc[name_split.iloc[:, 2]=="manual_time", :] reference_name_split = reference_data["name"].str.split("/", expand=True) reference_timing_data = pandas.concat( [ reference_name_split.iloc[:, :2], reference_data["real_time"], ], axis=1, ).loc[reference_name_split.iloc[:, 2]=="manual_time", :] timing_data.columns = reference_timing_data.columns = [ "signatures", "sizes", "times", ] same_in_last_selector = reference_timing_data["signatures"].isin( timing_data["signatures"] ) reference_timing_data = reference_timing_data.loc[same_in_last_selector, :] assert (reference_timing_data["signatures"] == timing_data["signatures"]).all() assert (reference_timing_data["sizes"] == timing_data["sizes"]).all() timing_data["speedup"] = reference_timing_data["times"] / timing_data["times"] timing_data["sizes"] = timing_data["sizes"].astype(int) fig, ax = plt.subplots(figsize=(10, 10)) fig.set_tight_layout(True) ax.set_xscale("log") if plot_log_y: ax.set_yscale("log") ax.set_xlabel("size") ax.set_ylabel("speedup") for n, (signature, sub_data) in enumerate(timing_data.groupby("signatures")): avg_sig_speedups = ( sub_data.groupby(by="sizes")["speedup"] .median() .reset_index() .sort_values(by="sizes") ) ax.plot( avg_sig_speedups["sizes"], avg_sig_speedups["speedup"], label=signature, color=pick_color(n), ) plt.plot([1, max(timing_data["sizes"])], [1, 1], "--", color="gray") for n, (signature, sub_data) in enumerate(timing_data.groupby("signatures")): ax.plot( sub_data["sizes"], sub_data["speedup"], "x", color=pick_color(n), label="_nolegend_", scaley=False, ) [ spine.set_visible(False) for loc, spine in ax.spines.items() if loc in ["top", "right", "left", "bottom"] ] ax.minorticks_off() ax.grid() ax.legend() if out_file == "window": plt.show() else: fig.savefig(out_file, bbox_inches="tight", dpi=300) def benchmark( functions_or_sigs, cpp_filename="benchmark.cpp", overloads=("Prim", "Rev"), multiplier_param=None, max_size_param=None, max_dim=3, n_repeats=1, skip_similar_signatures=False, csv_out_file=None, opencl=False, varmat=False, ): """ Generates benchmark code, compiles it and runs the benchmark. :param functions_or_sigs: List of function names and/or signatures to benchmark :param cpp_filename: filename of cpp file to use :param overloads: Which overloads to benchmark :param multiplier_param: Multiplyer, by which to increase argument size. :param max_size_param: Maximum argument size. :param max_dim: Maximum number of argument dimensions to benchmark. Signatures with any argument with larger number of dimensions are skipped." :param n_repeats: Number of times to repeat each benchmark. :param skip_similar_signatures: Whether to skip similar signatures. Two signatures are similar if they difffer only in similar vector types, which are vector, row_vector and real[]. :param csv_out_file: Filename of the csv file to store benchmark results in. """ all_signatures = get_signatures() functions, signatures = handle_function_list(functions_or_sigs) functions = set(functions) signatures = set(signatures) remaining_functions = set(functions) parsed_signatures = [] ref_signatures = set() for signature in all_signatures: return_type, function_name, stan_args = parse_signature(signature) reference_args = tuple(reference_vector_argument(i) for i in stan_args) if ( skip_similar_signatures and (function_name, reference_args) in ref_signatures ): continue if (signature in signatures) or (function_name in functions): parsed_signatures.append([return_type, function_name, stan_args]) remaining_functions.discard(function_name) ref_signatures.add((function_name, reference_args)) for signature in signatures: return_type, function_name, stan_args = parse_signature(signature) reference_args = tuple(reference_vector_argument(i) for i in stan_args) if ( skip_similar_signatures and (function_name, reference_args) in ref_signatures ): continue ref_signatures.add((function_name, reference_args)) parsed_signatures.append([return_type, function_name, stan_args]) remaining_functions.discard(function_name) if remaining_functions: raise NameError( "Functions not found: " + ", ".join(sorted(remaining_functions)) ) result = "" max_args_with_max_dimm = 0 default_max_size = 1024 * 1024 * 16 for return_type, function_name, stan_args in parsed_signatures: dimm = 0 args_with_max_dimm = 0 for arg in stan_args: arg_dimm = 0 if "vector" in arg: arg_dimm = 1 if "matrix" in arg: arg_dimm = 2 if "[" in arg: arg_dimm += len(arg.split("]")[0].split("[")[1]) if arg_dimm == dimm: args_with_max_dimm += 1 elif arg_dimm > dimm: dimm = arg_dimm args_with_max_dimm = 1 if dimm > max_dim: continue max_args_with_max_dimm = max(max_args_with_max_dimm, args_with_max_dimm) if max_size_param is None: if dimm == 0: # signature with only scalar arguments max_size = 1 else: max_size = default_max_size max_size = int(max_size ** (1.0 / dimm)) else: max_size = max_size_param if multiplier_param is None: multiplier = 4 if dimm >= 2: multiplier = 2 else: multiplier = multiplier_param cpp_arg_templates = [] overload_opts = [] for n, stan_arg in enumerate(stan_args): cpp_arg_template = get_cpp_type(stan_arg) arg_overload_opts = ["Prim"] if "SCALAR" in cpp_arg_template and not ( function_name in non_differentiable_args and n in non_differentiable_args[function_name] ): arg_overload_opts = overloads cpp_arg_templates.append(cpp_arg_template) overload_opts.append(arg_overload_opts) for arg_overloads in itertools.product(*overload_opts): # generate one benchmark benchmark_name = function_name setup = "" var_conversions = "" if opencl in ("copy", "copy_rev") and return_type not in scalar_stan_types: code = " auto res = stan::math::from_matrix_cl(stan::math::{}(".format( function_name ) else: code = " auto res = stan::math::eval(stan::math::{}(".format( function_name ) for ( n, (arg_overload, cpp_arg_template, stan_arg), ) in enumerate(zip(arg_overloads, cpp_arg_templates, stan_args)): n_vec, inner_type = parse_array(stan_arg) if n_vec: benchmark_name += ( "_" + arg_overload + "_" + inner_type + str(n_vec) ) else: benchmark_name += "_" + arg_overload + "_" + stan_arg scalar = overload_scalar[arg_overload] arg_type = cpp_arg_template.replace("SCALAR", scalar) var_name = "arg" + str(n) make_arg_function = "make_arg" is_argument_autodiff = "var" in arg_type is_argument_scalar = stan_arg in scalar_stan_types value = 0.4 if function_name in special_arg_values: if isinstance(special_arg_values[function_name][n], str): make_arg_function = make_special_arg_values[special_arg_values[function_name][n]] elif isinstance( special_arg_values[function_name][n], numbers.Number ): value = special_arg_values[function_name][n] if not is_argument_autodiff or ( not is_argument_scalar and ( opencl == "base" or varmat == "base" or make_arg_function != "make_arg" )): arg_type_prim = cpp_arg_template.replace("SCALAR", "double"); setup += ( " {} {} = stan::test::{}<{}>({}, state.range(0));\n".format( arg_type_prim, var_name, make_arg_function, arg_type_prim, value, ) ) if not is_argument_scalar: if opencl == "base" or opencl == "copy_rev": setup += " auto {} = stan::math::to_matrix_cl({});\n".format( var_name + "_cl", var_name ) var_name += "_cl" if is_argument_autodiff: var_conversions += ( " stan::math::var_value<stan::math::matrix_cl<double>> {}({});\n".format( var_name + "_var", var_name) ) var_name += "_var" elif varmat == "base" and arg_overload == "Rev": var_conversions += " stan::math::var_value<{}> {}({});\n".format( arg_type_prim, var_name + "_varmat", var_name ) var_name += "_varmat" elif is_argument_autodiff: #rev var_conversions += " {} {} = {};\n".format( arg_type, var_name + "_var", var_name ) var_name += "_var" else: var_conversions += ( " {} {} = stan::test::{}<{}>({}, state.range(0));\n".format( arg_type, var_name, make_arg_function, arg_type, value, ) ) if not is_argument_scalar: if opencl == "base" or (opencl == "copy_rev" and not is_argument_autodiff): var_conversions += ( " auto {} = stan::math::to_matrix_cl({});\n".format( var_name + "_cl", var_name ) ) var_name += "_cl" elif varmat == "base" and arg_overload == "Rev": var_conversions += ( " auto {} = stan::math::to_var_value({});\n".format( var_name + "_varmat", var_name ) ) var_name += "_varmat" if (opencl == "copy" or opencl == "copy_rev" and is_argument_autodiff) and not is_argument_scalar: code += "stan::math::to_matrix_cl({}), ".format(var_name) elif ( varmat == "copy" and not is_argument_scalar and arg_overload == "Rev" ): code += "stan::math::to_var_value({}), ".format(var_name) else: code += var_name + ", " code = code[:-2] + "));\n" if "Rev" in arg_overloads: code += " stan::math::grad();\n" if opencl == "base": code += " stan::math::opencl_context.queue().finish();\n" var_conversions += " stan::math::opencl_context.queue().finish();\n" result += BENCHMARK_TEMPLATE.format( benchmark_name=benchmark_name, setup=setup, var_conversions=var_conversions, code=code, multi=multiplier, max_size=max_size, ) cpp_filepath = os.path.join(WORKING_FOLDER, cpp_filename) with open(cpp_filepath, "w") as f: f.write("#include <benchmark/benchmark.h>\n") f.write("#include <test/expressions/expression_test_helpers.hpp>\n\n") f.write(result) if "Rev" in overloads: # estimate the amount of arena memory the benchmarks will need DOUBLE_SIZE = 8 N_ARRAYS = 4 # vals, adjoints, pointers + 1 for anything else f.write( CUSTOM_MAIN.format( (max_size_param or default_max_size) * DOUBLE_SIZE * N_ARRAYS * (max_args_with_max_dimm + 1) ) ) else: f.write("BENCHMARK_MAIN();") exe_filepath = cpp_filepath.replace(".cpp", exe_extension) build(exe_filepath) run_benchmark(exe_filepath, n_repeats, csv_out_file) def main( functions_or_sigs, cpp_filename="benchmark.cpp", overloads=("Prim", "Rev"), multiplier_param=None, max_size_param=None, max_dim=3, n_repeats=1, skip_similar_signatures=False, csv_out_file=None, opencl=False, varmat=False, plot=False, plot_log_y=False, plot_speedup=False, plot_reference=None, ): """ Generates benchmark code, compiles it and runs the benchmark. Optionally plots the results. :param functions_or_sigs: List of function names and/or signatures to benchmark :param cpp_filename: filename of cpp file to use :param overloads: Which overloads to benchmark :param multiplier_param: Multiplyer, by which to increase argument size. :param max_size_param: Maximum argument size. :param max_dim: Maximum number of argument dimensions to benchmark. Signatures with any argument with larger number of dimensions are skipped." :param n_repeats: Number of times to repeat each benchmark. :param skip_similar_signatures: Whether to skip similar signatures. Two signatures are similar if they difffer only in similar vector types, which are vector, row_vector and real[]. :param csv_out_file: Filename of the csv file to store benchmark results in. :param plot: Filename of bmp or csv fle to store plot into. If filename is empty, opens a window with graph. :param plot_log_y: Use logarithmic y axis for plotting :param plot_speedup: plot speedup of OpenCL or varmat overloads compared to CPU ones """ if plot and csv_out_file is None: csv_out_file = ".benchmark.csv" if plot_speedup and (opencl or varmat): if opencl: special = "_cl" else: special = "_varmat" opencl_csv_out_file = csv_out_file + special if "." in csv_out_file: base, ext = csv_out_file.rsplit(".", 1) opencl_csv_out_file = base + special + "." + ext benchmark( functions_or_sigs, cpp_filename, overloads, multiplier_param, max_size_param, max_dim, n_repeats, skip_similar_signatures, csv_out_file, False, False, ) benchmark( functions_or_sigs, cpp_filename, overloads, multiplier_param, max_size_param, max_dim, n_repeats, skip_similar_signatures, opencl_csv_out_file, opencl, varmat, ) plot_compare(opencl_csv_out_file, csv_out_file, plot) else: benchmark( functions_or_sigs, cpp_filename, overloads, multiplier_param, max_size_param, max_dim, n_repeats, skip_similar_signatures, csv_out_file, opencl, varmat, ) if plot_reference: plot_compare(csv_out_file, plot_reference, plot, plot_log_y) elif plot: plot_results(csv_out_file, plot, plot_log_y) class FullErrorMsgParser(ArgumentParser): """ Modified ArgumentParser that prints full error message on any error. """ def error(self, message): sys.stderr.write("error: %s\n" % message) self.print_help() sys.exit(2) def processCLIArgs(): """ Define and process the command line interface to the benchmark.py script. """ parser = FullErrorMsgParser( description="Generate and run_command benchmarks.", formatter_class=ArgumentDefaultsHelpFormatter, ) parser.add_argument( "functions", nargs="+", type=str, default=[], help="Signatures and/or function names to benchmark.", ) parser.add_argument( "--overloads", nargs="+", type=str, default=["Prim", "Rev"], help="Which overload combinations to benchmark. Possible values: Prim, Rev, Fwd, Mix. Defaults to Prim and Rev.", ) parser.add_argument( "--multiplier", type=int, default=None, help="Multiplyer, by which to increase argument size. Defaults to 4 for functions with " "1-dimensional arguments and 2 for other functions.", ) parser.add_argument( "--max_size", type=int, default=None, help="Maximum argument size. Defaults to (16000000)**(1/dimm), where dimm is the largest " "number of dimensions of arguments.", ) parser.add_argument( "--max_dim", type=int, default=3, help="Maximum number of argument dimensions to benchmark. Signatures with any argument with " "larger number of dimensions are skipped.", ) parser.add_argument( "--cpp", metavar="filename", type=str, default="benchmark.cpp", help="Filename of the cpp file to generate.", ) parser.add_argument( "--repeats", metavar="N", type=int, default=1, help="Number of times to repeat each benchmark.", ) parser.add_argument( "--csv", metavar="filename", type=str, default=None, help="Filename of the csv file to store benchmark results in. By default does not store results.", ) parser.add_argument( "--plot", metavar="filename", type=str, default=False, help="Filename store plotted graph into. If filename equals to 'window', opens a window with the graph." " Plotting requires matplotlib and pandas libraries. Default: no plotting.", ) parser.add_argument( "--plot_log_y", default=False, action="store_true", help="Use logarithmic y axis when plotting.", ) parser.add_argument( "--opencl", metavar="setting", type=str, default=False, help="Benchmark OpenCL overloads. Possible values: " "base - benchmark just the execution time, " "copy - include argument copying time" "copy_rev - include argument copying time for var arguments only", ) parser.add_argument( "--varmat", metavar="setting", type=str, default=False, help="Benchmark varmat overloads. Possible values: " "base - benchmark just the execution time, " "copy - include argument copying time", ) parser.add_argument( "--plot_speedup", default=False, action="store_true", help="Plots speedup of OpenCL or varmat overloads compared to Eigen matvar ones. Can only be specified together " "with both --plot and either --opencl or --varmat. Cannot be specified together with --plot_reference.", ) parser.add_argument( "--plot_reference", metavar="filename", type=str, default=None, help="Specify filename of reference run csv output. Plots speedup of this run compared to the reference. " "Reference run must have all parameters the same as this one, except possibly --opencl, output files and " "plotting parameters. Can only be specified together with --plot. Cannot be specified together with " "--plot_cl_speedup.", ) parser.add_argument( "--skip_similar_signatures", default=False, action="store_true", help="Skip similar signatures. Two signatures are similar if they" "difffer only in similar vector types, which are vector, row_vector and real[].", ) args = parser.parse_args() assert not (args.opencl and args.varmat), ValueError( "--opencl and --varmat cannot be specified at the same time!" ) if args.plot_reference or args.plot_speedup or args.plot_log_y: assert args.plot, ValueError( "--plot is required if you specify any of --plot_reference, --plot_speedup, --plot_log_y!" ) main( functions_or_sigs=args.functions, cpp_filename=args.cpp, overloads=args.overloads, multiplier_param=args.multiplier, max_size_param=args.max_size, max_dim=args.max_dim, csv_out_file=args.csv, n_repeats=args.repeats, skip_similar_signatures=args.skip_similar_signatures, plot=args.plot, plot_log_y=args.plot_log_y, opencl=args.opencl, plot_speedup=args.plot_speedup, plot_reference=args.plot_reference, varmat=args.varmat, ) if __name__ == "__main__": processCLIArgs()
bsd-3-clause
antiface/mne-python
examples/preprocessing/plot_define_target_events.py
19
3350
""" ============================================================ Define target events based on time lag, plot evoked response ============================================================ This script shows how to define higher order events based on time lag between reference and target events. For illustration, we will put face stimuli presented into two classes, that is 1) followed by an early button press (within 590 milliseconds) and followed by a late button press (later than 590 milliseconds). Finally, we will visualize the evoked responses to both 'quickly-processed' and 'slowly-processed' face stimuli. """ # Authors: Denis Engemann <[email protected]> # # License: BSD (3-clause) import mne from mne import io from mne.event import define_target_events from mne.datasets import sample import matplotlib.pyplot as plt print(__doc__) data_path = sample.data_path() ############################################################################### # Set parameters raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif' event_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw-eve.fif' # Setup for reading the raw data raw = io.Raw(raw_fname) events = mne.read_events(event_fname) # Set up pick list: EEG + STI 014 - bad channels (modify to your needs) include = [] # or stim channels ['STI 014'] raw.info['bads'] += ['EEG 053'] # bads # pick MEG channels picks = mne.pick_types(raw.info, meg='mag', eeg=False, stim=False, eog=True, include=include, exclude='bads') ############################################################################### # Find stimulus event followed by quick button presses reference_id = 5 # presentation of a smiley face target_id = 32 # button press sfreq = raw.info['sfreq'] # sampling rate tmin = 0.1 # trials leading to very early responses will be rejected tmax = 0.59 # ignore face stimuli followed by button press later than 590 ms new_id = 42 # the new event id for a hit. If None, reference_id is used. fill_na = 99 # the fill value for misses events_, lag = define_target_events(events, reference_id, target_id, sfreq, tmin, tmax, new_id, fill_na) print(events_) # The 99 indicates missing or too late button presses # besides the events also the lag between target and reference is returned # this could e.g. be used as parametric regressor in subsequent analyses. print(lag[lag != fill_na]) # lag in milliseconds # ############################################################################# # Construct epochs tmin_ = -0.2 tmax_ = 0.4 event_id = dict(early=new_id, late=fill_na) epochs = mne.Epochs(raw, events_, event_id, tmin_, tmax_, picks=picks, baseline=(None, 0), reject=dict(mag=4e-12)) # average epochs and get an Evoked dataset. early, late = [epochs[k].average() for k in event_id] ############################################################################### # View evoked response times = 1e3 * epochs.times # time in milliseconds title = 'Evoked response followed by %s button press' plt.clf() ax = plt.subplot(2, 1, 1) early.plot(axes=ax) plt.title(title % 'late') plt.ylabel('Evoked field (fT)') ax = plt.subplot(2, 1, 2) late.plot(axes=ax) plt.title(title % 'early') plt.ylabel('Evoked field (fT)') plt.show()
bsd-3-clause
ryfeus/lambda-packs
LightGBM_sklearn_scipy_numpy/source/sklearn/datasets/svmlight_format.py
30
18814
"""This module implements a loader and dumper for the svmlight format This format is a text-based format, with one sample per line. It does not store zero valued features hence is suitable for sparse dataset. The first element of each line can be used to store a target variable to predict. This format is used as the default format for both svmlight and the libsvm command line programs. """ # Authors: Mathieu Blondel <[email protected]> # Lars Buitinck # Olivier Grisel <[email protected]> # License: BSD 3 clause from contextlib import closing import io import os.path import numpy as np import scipy.sparse as sp from ._svmlight_format import _load_svmlight_file from .. import __version__ from ..externals import six from ..externals.six import u, b from ..externals.six.moves import range, zip from ..utils import check_array def load_svmlight_file(f, n_features=None, dtype=np.float64, multilabel=False, zero_based="auto", query_id=False, offset=0, length=-1): """Load datasets in the svmlight / libsvm format into sparse CSR matrix This format is a text-based format, with one sample per line. It does not store zero valued features hence is suitable for sparse dataset. The first element of each line can be used to store a target variable to predict. This format is used as the default format for both svmlight and the libsvm command line programs. Parsing a text based source can be expensive. When working on repeatedly on the same dataset, it is recommended to wrap this loader with joblib.Memory.cache to store a memmapped backup of the CSR results of the first call and benefit from the near instantaneous loading of memmapped structures for the subsequent calls. In case the file contains a pairwise preference constraint (known as "qid" in the svmlight format) these are ignored unless the query_id parameter is set to True. These pairwise preference constraints can be used to constraint the combination of samples when using pairwise loss functions (as is the case in some learning to rank problems) so that only pairs with the same query_id value are considered. This implementation is written in Cython and is reasonably fast. However, a faster API-compatible loader is also available at: https://github.com/mblondel/svmlight-loader Parameters ---------- f : {str, file-like, int} (Path to) a file to load. If a path ends in ".gz" or ".bz2", it will be uncompressed on the fly. If an integer is passed, it is assumed to be a file descriptor. A file-like or file descriptor will not be closed by this function. A file-like object must be opened in binary mode. n_features : int or None The number of features to use. If None, it will be inferred. This argument is useful to load several files that are subsets of a bigger sliced dataset: each subset might not have examples of every feature, hence the inferred shape might vary from one slice to another. n_features is only required if ``offset`` or ``length`` are passed a non-default value. dtype : numpy data type, default np.float64 Data type of dataset to be loaded. This will be the data type of the output numpy arrays ``X`` and ``y``. multilabel : boolean, optional, default False Samples may have several labels each (see http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html) zero_based : boolean or "auto", optional, default "auto" Whether column indices in f are zero-based (True) or one-based (False). If column indices are one-based, they are transformed to zero-based to match Python/NumPy conventions. If set to "auto", a heuristic check is applied to determine this from the file contents. Both kinds of files occur "in the wild", but they are unfortunately not self-identifying. Using "auto" or True should always be safe when no ``offset`` or ``length`` is passed. If ``offset`` or ``length`` are passed, the "auto" mode falls back to ``zero_based=True`` to avoid having the heuristic check yield inconsistent results on different segments of the file. query_id : boolean, default False If True, will return the query_id array for each file. offset : integer, optional, default 0 Ignore the offset first bytes by seeking forward, then discarding the following bytes up until the next new line character. length : integer, optional, default -1 If strictly positive, stop reading any new line of data once the position in the file has reached the (offset + length) bytes threshold. Returns ------- X : scipy.sparse matrix of shape (n_samples, n_features) y : ndarray of shape (n_samples,), or, in the multilabel a list of tuples of length n_samples. query_id : array of shape (n_samples,) query_id for each sample. Only returned when query_id is set to True. See also -------- load_svmlight_files: similar function for loading multiple files in this format, enforcing the same number of features/columns on all of them. Examples -------- To use joblib.Memory to cache the svmlight file:: from sklearn.externals.joblib import Memory from sklearn.datasets import load_svmlight_file mem = Memory("./mycache") @mem.cache def get_data(): data = load_svmlight_file("mysvmlightfile") return data[0], data[1] X, y = get_data() """ return tuple(load_svmlight_files([f], n_features, dtype, multilabel, zero_based, query_id, offset, length)) def _gen_open(f): if isinstance(f, int): # file descriptor return io.open(f, "rb", closefd=False) elif not isinstance(f, six.string_types): raise TypeError("expected {str, int, file-like}, got %s" % type(f)) _, ext = os.path.splitext(f) if ext == ".gz": import gzip return gzip.open(f, "rb") elif ext == ".bz2": from bz2 import BZ2File return BZ2File(f, "rb") else: return open(f, "rb") def _open_and_load(f, dtype, multilabel, zero_based, query_id, offset=0, length=-1): if hasattr(f, "read"): actual_dtype, data, ind, indptr, labels, query = \ _load_svmlight_file(f, dtype, multilabel, zero_based, query_id, offset, length) # XXX remove closing when Python 2.7+/3.1+ required else: with closing(_gen_open(f)) as f: actual_dtype, data, ind, indptr, labels, query = \ _load_svmlight_file(f, dtype, multilabel, zero_based, query_id, offset, length) # convert from array.array, give data the right dtype if not multilabel: labels = np.frombuffer(labels, np.float64) data = np.frombuffer(data, actual_dtype) indices = np.frombuffer(ind, np.intc) indptr = np.frombuffer(indptr, dtype=np.intc) # never empty query = np.frombuffer(query, np.int64) data = np.asarray(data, dtype=dtype) # no-op for float{32,64} return data, indices, indptr, labels, query def load_svmlight_files(files, n_features=None, dtype=np.float64, multilabel=False, zero_based="auto", query_id=False, offset=0, length=-1): """Load dataset from multiple files in SVMlight format This function is equivalent to mapping load_svmlight_file over a list of files, except that the results are concatenated into a single, flat list and the samples vectors are constrained to all have the same number of features. In case the file contains a pairwise preference constraint (known as "qid" in the svmlight format) these are ignored unless the query_id parameter is set to True. These pairwise preference constraints can be used to constraint the combination of samples when using pairwise loss functions (as is the case in some learning to rank problems) so that only pairs with the same query_id value are considered. Parameters ---------- files : iterable over {str, file-like, int} (Paths of) files to load. If a path ends in ".gz" or ".bz2", it will be uncompressed on the fly. If an integer is passed, it is assumed to be a file descriptor. File-likes and file descriptors will not be closed by this function. File-like objects must be opened in binary mode. n_features : int or None The number of features to use. If None, it will be inferred from the maximum column index occurring in any of the files. This can be set to a higher value than the actual number of features in any of the input files, but setting it to a lower value will cause an exception to be raised. dtype : numpy data type, default np.float64 Data type of dataset to be loaded. This will be the data type of the output numpy arrays ``X`` and ``y``. multilabel : boolean, optional Samples may have several labels each (see http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html) zero_based : boolean or "auto", optional Whether column indices in f are zero-based (True) or one-based (False). If column indices are one-based, they are transformed to zero-based to match Python/NumPy conventions. If set to "auto", a heuristic check is applied to determine this from the file contents. Both kinds of files occur "in the wild", but they are unfortunately not self-identifying. Using "auto" or True should always be safe when no offset or length is passed. If offset or length are passed, the "auto" mode falls back to zero_based=True to avoid having the heuristic check yield inconsistent results on different segments of the file. query_id : boolean, defaults to False If True, will return the query_id array for each file. offset : integer, optional, default 0 Ignore the offset first bytes by seeking forward, then discarding the following bytes up until the next new line character. length : integer, optional, default -1 If strictly positive, stop reading any new line of data once the position in the file has reached the (offset + length) bytes threshold. Returns ------- [X1, y1, ..., Xn, yn] where each (Xi, yi) pair is the result from load_svmlight_file(files[i]). If query_id is set to True, this will return instead [X1, y1, q1, ..., Xn, yn, qn] where (Xi, yi, qi) is the result from load_svmlight_file(files[i]) Notes ----- When fitting a model to a matrix X_train and evaluating it against a matrix X_test, it is essential that X_train and X_test have the same number of features (X_train.shape[1] == X_test.shape[1]). This may not be the case if you load the files individually with load_svmlight_file. See also -------- load_svmlight_file """ if (offset != 0 or length > 0) and zero_based == "auto": # disable heuristic search to avoid getting inconsistent results on # different segments of the file zero_based = True if (offset != 0 or length > 0) and n_features is None: raise ValueError( "n_features is required when offset or length is specified.") r = [_open_and_load(f, dtype, multilabel, bool(zero_based), bool(query_id), offset=offset, length=length) for f in files] if (zero_based is False or zero_based == "auto" and all(len(tmp[1]) and np.min(tmp[1]) > 0 for tmp in r)): for _, indices, _, _, _ in r: indices -= 1 n_f = max(ind[1].max() if len(ind[1]) else 0 for ind in r) + 1 if n_features is None: n_features = n_f elif n_features < n_f: raise ValueError("n_features was set to {}," " but input file contains {} features" .format(n_features, n_f)) result = [] for data, indices, indptr, y, query_values in r: shape = (indptr.shape[0] - 1, n_features) X = sp.csr_matrix((data, indices, indptr), shape) X.sort_indices() result += X, y if query_id: result.append(query_values) return result def _dump_svmlight(X, y, f, multilabel, one_based, comment, query_id): X_is_sp = int(hasattr(X, "tocsr")) y_is_sp = int(hasattr(y, "tocsr")) if X.dtype.kind == 'i': value_pattern = u("%d:%d") else: value_pattern = u("%d:%.16g") if y.dtype.kind == 'i': label_pattern = u("%d") else: label_pattern = u("%.16g") line_pattern = u("%s") if query_id is not None: line_pattern += u(" qid:%d") line_pattern += u(" %s\n") if comment: f.write(b("# Generated by dump_svmlight_file from scikit-learn %s\n" % __version__)) f.write(b("# Column indices are %s-based\n" % ["zero", "one"][one_based])) f.write(b("#\n")) f.writelines(b("# %s\n" % line) for line in comment.splitlines()) for i in range(X.shape[0]): if X_is_sp: span = slice(X.indptr[i], X.indptr[i + 1]) row = zip(X.indices[span], X.data[span]) else: nz = X[i] != 0 row = zip(np.where(nz)[0], X[i, nz]) s = " ".join(value_pattern % (j + one_based, x) for j, x in row) if multilabel: if y_is_sp: nz_labels = y[i].nonzero()[1] else: nz_labels = np.where(y[i] != 0)[0] labels_str = ",".join(label_pattern % j for j in nz_labels) else: if y_is_sp: labels_str = label_pattern % y.data[i] else: labels_str = label_pattern % y[i] if query_id is not None: feat = (labels_str, query_id[i], s) else: feat = (labels_str, s) f.write((line_pattern % feat).encode('ascii')) def dump_svmlight_file(X, y, f, zero_based=True, comment=None, query_id=None, multilabel=False): """Dump the dataset in svmlight / libsvm file format. This format is a text-based format, with one sample per line. It does not store zero valued features hence is suitable for sparse dataset. The first element of each line can be used to store a target variable to predict. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. y : {array-like, sparse matrix}, shape = [n_samples (, n_labels)] Target values. Class labels must be an integer or float, or array-like objects of integer or float for multilabel classifications. f : string or file-like in binary mode If string, specifies the path that will contain the data. If file-like, data will be written to f. f should be opened in binary mode. zero_based : boolean, optional Whether column indices should be written zero-based (True) or one-based (False). comment : string, optional Comment to insert at the top of the file. This should be either a Unicode string, which will be encoded as UTF-8, or an ASCII byte string. If a comment is given, then it will be preceded by one that identifies the file as having been dumped by scikit-learn. Note that not all tools grok comments in SVMlight files. query_id : array-like, shape = [n_samples] Array containing pairwise preference constraints (qid in svmlight format). multilabel : boolean, optional Samples may have several labels each (see http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html) .. versionadded:: 0.17 parameter *multilabel* to support multilabel datasets. """ if comment is not None: # Convert comment string to list of lines in UTF-8. # If a byte string is passed, then check whether it's ASCII; # if a user wants to get fancy, they'll have to decode themselves. # Avoid mention of str and unicode types for Python 3.x compat. if isinstance(comment, bytes): comment.decode("ascii") # just for the exception else: comment = comment.encode("utf-8") if six.b("\0") in comment: raise ValueError("comment string contains NUL byte") yval = check_array(y, accept_sparse='csr', ensure_2d=False) if sp.issparse(yval): if yval.shape[1] != 1 and not multilabel: raise ValueError("expected y of shape (n_samples, 1)," " got %r" % (yval.shape,)) else: if yval.ndim != 1 and not multilabel: raise ValueError("expected y of shape (n_samples,), got %r" % (yval.shape,)) Xval = check_array(X, accept_sparse='csr') if Xval.shape[0] != yval.shape[0]: raise ValueError("X.shape[0] and y.shape[0] should be the same, got" " %r and %r instead." % (Xval.shape[0], yval.shape[0])) # We had some issues with CSR matrices with unsorted indices (e.g. #1501), # so sort them here, but first make sure we don't modify the user's X. # TODO We can do this cheaper; sorted_indices copies the whole matrix. if yval is y and hasattr(yval, "sorted_indices"): y = yval.sorted_indices() else: y = yval if hasattr(y, "sort_indices"): y.sort_indices() if Xval is X and hasattr(Xval, "sorted_indices"): X = Xval.sorted_indices() else: X = Xval if hasattr(X, "sort_indices"): X.sort_indices() if query_id is not None: query_id = np.asarray(query_id) if query_id.shape[0] != y.shape[0]: raise ValueError("expected query_id of shape (n_samples,), got %r" % (query_id.shape,)) one_based = not zero_based if hasattr(f, "write"): _dump_svmlight(X, y, f, multilabel, one_based, comment, query_id) else: with open(f, "wb") as f: _dump_svmlight(X, y, f, multilabel, one_based, comment, query_id)
mit
ryanjmccall/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/cm.py
70
5385
""" This module contains the instantiations of color mapping classes """ import numpy as np from numpy import ma import matplotlib as mpl import matplotlib.colors as colors import matplotlib.cbook as cbook from matplotlib._cm import * def get_cmap(name=None, lut=None): """ Get a colormap instance, defaulting to rc values if *name* is None """ if name is None: name = mpl.rcParams['image.cmap'] if lut is None: lut = mpl.rcParams['image.lut'] assert(name in datad.keys()) return colors.LinearSegmentedColormap(name, datad[name], lut) class ScalarMappable: """ This is a mixin class to support scalar -> RGBA mapping. Handles normalization and colormapping """ def __init__(self, norm=None, cmap=None): """ *norm* is an instance of :class:`colors.Normalize` or one of its subclasses, used to map luminance to 0-1. *cmap* is a :mod:`cm` colormap instance, for example :data:`cm.jet` """ self.callbacksSM = cbook.CallbackRegistry(( 'changed',)) if cmap is None: cmap = get_cmap() if norm is None: norm = colors.Normalize() self._A = None self.norm = norm self.cmap = cmap self.colorbar = None self.update_dict = {'array':False} def set_colorbar(self, im, ax): 'set the colorbar image and axes associated with mappable' self.colorbar = im, ax def to_rgba(self, x, alpha=1.0, bytes=False): '''Return a normalized rgba array corresponding to *x*. If *x* is already an rgb array, insert *alpha*; if it is already rgba, return it unchanged. If *bytes* is True, return rgba as 4 uint8s instead of 4 floats. ''' try: if x.ndim == 3: if x.shape[2] == 3: if x.dtype == np.uint8: alpha = np.array(alpha*255, np.uint8) m, n = x.shape[:2] xx = np.empty(shape=(m,n,4), dtype = x.dtype) xx[:,:,:3] = x xx[:,:,3] = alpha elif x.shape[2] == 4: xx = x else: raise ValueError("third dimension must be 3 or 4") if bytes and xx.dtype != np.uint8: xx = (xx * 255).astype(np.uint8) return xx except AttributeError: pass x = ma.asarray(x) x = self.norm(x) x = self.cmap(x, alpha=alpha, bytes=bytes) return x def set_array(self, A): 'Set the image array from numpy array *A*' self._A = A self.update_dict['array'] = True def get_array(self): 'Return the array' return self._A def get_cmap(self): 'return the colormap' return self.cmap def get_clim(self): 'return the min, max of the color limits for image scaling' return self.norm.vmin, self.norm.vmax def set_clim(self, vmin=None, vmax=None): """ set the norm limits for image scaling; if *vmin* is a length2 sequence, interpret it as ``(vmin, vmax)`` which is used to support setp ACCEPTS: a length 2 sequence of floats """ if (vmin is not None and vmax is None and cbook.iterable(vmin) and len(vmin)==2): vmin, vmax = vmin if vmin is not None: self.norm.vmin = vmin if vmax is not None: self.norm.vmax = vmax self.changed() def set_cmap(self, cmap): """ set the colormap for luminance data ACCEPTS: a colormap """ if cmap is None: cmap = get_cmap() self.cmap = cmap self.changed() def set_norm(self, norm): 'set the normalization instance' if norm is None: norm = colors.Normalize() self.norm = norm self.changed() def autoscale(self): """ Autoscale the scalar limits on the norm instance using the current array """ if self._A is None: raise TypeError('You must first set_array for mappable') self.norm.autoscale(self._A) self.changed() def autoscale_None(self): """ Autoscale the scalar limits on the norm instance using the current array, changing only limits that are None """ if self._A is None: raise TypeError('You must first set_array for mappable') self.norm.autoscale_None(self._A) self.changed() def add_checker(self, checker): """ Add an entry to a dictionary of boolean flags that are set to True when the mappable is changed. """ self.update_dict[checker] = False def check_update(self, checker): """ If mappable has changed since the last check, return True; else return False """ if self.update_dict[checker]: self.update_dict[checker] = False return True return False def changed(self): """ Call this whenever the mappable is changed to notify all the callbackSM listeners to the 'changed' signal """ self.callbacksSM.process('changed', self) for key in self.update_dict: self.update_dict[key] = True
gpl-3.0
jamesrp/pyeq2
Examples/GUI/devExamples/wxMatplotlibExample.py
2
1093
# based on http://stackoverflow.com/questions/10737459/embedding-a-matplotlib-figure-inside-a-wxpython-panel from numpy import arange, sin, pi import matplotlib matplotlib.use('WXAgg') from matplotlib.backends.backend_wxagg import FigureCanvasWxAgg as FigureCanvas #from matplotlib.backends.backend_wx import NavigationToolbar2Wx # not used in this example from matplotlib.figure import Figure import wx class CanvasPanel(wx.Panel): def __init__(self, parent): wx.Panel.__init__(self, parent) self.figure = Figure() self.axes = self.figure.add_subplot(111) self.canvas = FigureCanvas(self, -1, self.figure) self.sizer = wx.BoxSizer(wx.VERTICAL) self.sizer.Add(self.canvas, 1, wx.LEFT | wx.TOP | wx.GROW) self.SetSizer(self.sizer) self.Fit() def draw(self): t = arange(0.0, 3.0, 0.01) s = sin(2 * pi * t) self.axes.plot(t, s) if __name__ == "__main__": app = wx.App() fr = wx.Frame(None, title='test') panel = CanvasPanel(fr) panel.draw() fr.Show() app.MainLoop()
bsd-2-clause
rvraghav93/scikit-learn
sklearn/mixture/tests/test_bayesian_mixture.py
84
17929
# Author: Wei Xue <[email protected]> # Thierry Guillemot <[email protected]> # License: BSD 3 clause import numpy as np from scipy.special import gammaln from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_almost_equal from sklearn.mixture.bayesian_mixture import _log_dirichlet_norm from sklearn.mixture.bayesian_mixture import _log_wishart_norm from sklearn.mixture import BayesianGaussianMixture from sklearn.mixture.tests.test_gaussian_mixture import RandomData from sklearn.exceptions import ConvergenceWarning from sklearn.utils.testing import assert_greater_equal, ignore_warnings COVARIANCE_TYPE = ['full', 'tied', 'diag', 'spherical'] PRIOR_TYPE = ['dirichlet_process', 'dirichlet_distribution'] def test_log_dirichlet_norm(): rng = np.random.RandomState(0) weight_concentration = rng.rand(2) expected_norm = (gammaln(np.sum(weight_concentration)) - np.sum(gammaln(weight_concentration))) predected_norm = _log_dirichlet_norm(weight_concentration) assert_almost_equal(expected_norm, predected_norm) def test_log_wishart_norm(): rng = np.random.RandomState(0) n_components, n_features = 5, 2 degrees_of_freedom = np.abs(rng.rand(n_components)) + 1. log_det_precisions_chol = n_features * np.log(range(2, 2 + n_components)) expected_norm = np.empty(5) for k, (degrees_of_freedom_k, log_det_k) in enumerate( zip(degrees_of_freedom, log_det_precisions_chol)): expected_norm[k] = -( degrees_of_freedom_k * (log_det_k + .5 * n_features * np.log(2.)) + np.sum(gammaln(.5 * (degrees_of_freedom_k - np.arange(0, n_features)[:, np.newaxis])), 0)) predected_norm = _log_wishart_norm(degrees_of_freedom, log_det_precisions_chol, n_features) assert_almost_equal(expected_norm, predected_norm) def test_bayesian_mixture_covariance_type(): rng = np.random.RandomState(0) n_samples, n_features = 10, 2 X = rng.rand(n_samples, n_features) covariance_type = 'bad_covariance_type' bgmm = BayesianGaussianMixture(covariance_type=covariance_type, random_state=rng) assert_raise_message(ValueError, "Invalid value for 'covariance_type': %s " "'covariance_type' should be in " "['spherical', 'tied', 'diag', 'full']" % covariance_type, bgmm.fit, X) def test_bayesian_mixture_weight_concentration_prior_type(): rng = np.random.RandomState(0) n_samples, n_features = 10, 2 X = rng.rand(n_samples, n_features) bad_prior_type = 'bad_prior_type' bgmm = BayesianGaussianMixture( weight_concentration_prior_type=bad_prior_type, random_state=rng) assert_raise_message(ValueError, "Invalid value for 'weight_concentration_prior_type':" " %s 'weight_concentration_prior_type' should be in " "['dirichlet_process', 'dirichlet_distribution']" % bad_prior_type, bgmm.fit, X) def test_bayesian_mixture_weights_prior_initialisation(): rng = np.random.RandomState(0) n_samples, n_components, n_features = 10, 5, 2 X = rng.rand(n_samples, n_features) # Check raise message for a bad value of weight_concentration_prior bad_weight_concentration_prior_ = 0. bgmm = BayesianGaussianMixture( weight_concentration_prior=bad_weight_concentration_prior_, random_state=0) assert_raise_message(ValueError, "The parameter 'weight_concentration_prior' " "should be greater than 0., but got %.3f." % bad_weight_concentration_prior_, bgmm.fit, X) # Check correct init for a given value of weight_concentration_prior weight_concentration_prior = rng.rand() bgmm = BayesianGaussianMixture( weight_concentration_prior=weight_concentration_prior, random_state=rng).fit(X) assert_almost_equal(weight_concentration_prior, bgmm.weight_concentration_prior_) # Check correct init for the default value of weight_concentration_prior bgmm = BayesianGaussianMixture(n_components=n_components, random_state=rng).fit(X) assert_almost_equal(1. / n_components, bgmm.weight_concentration_prior_) def test_bayesian_mixture_means_prior_initialisation(): rng = np.random.RandomState(0) n_samples, n_components, n_features = 10, 3, 2 X = rng.rand(n_samples, n_features) # Check raise message for a bad value of mean_precision_prior bad_mean_precision_prior_ = 0. bgmm = BayesianGaussianMixture( mean_precision_prior=bad_mean_precision_prior_, random_state=rng) assert_raise_message(ValueError, "The parameter 'mean_precision_prior' should be " "greater than 0., but got %.3f." % bad_mean_precision_prior_, bgmm.fit, X) # Check correct init for a given value of mean_precision_prior mean_precision_prior = rng.rand() bgmm = BayesianGaussianMixture( mean_precision_prior=mean_precision_prior, random_state=rng).fit(X) assert_almost_equal(mean_precision_prior, bgmm.mean_precision_prior_) # Check correct init for the default value of mean_precision_prior bgmm = BayesianGaussianMixture(random_state=rng).fit(X) assert_almost_equal(1., bgmm.mean_precision_prior_) # Check raise message for a bad shape of mean_prior mean_prior = rng.rand(n_features + 1) bgmm = BayesianGaussianMixture(n_components=n_components, mean_prior=mean_prior, random_state=rng) assert_raise_message(ValueError, "The parameter 'means' should have the shape of ", bgmm.fit, X) # Check correct init for a given value of mean_prior mean_prior = rng.rand(n_features) bgmm = BayesianGaussianMixture(n_components=n_components, mean_prior=mean_prior, random_state=rng).fit(X) assert_almost_equal(mean_prior, bgmm.mean_prior_) # Check correct init for the default value of bemean_priorta bgmm = BayesianGaussianMixture(n_components=n_components, random_state=rng).fit(X) assert_almost_equal(X.mean(axis=0), bgmm.mean_prior_) def test_bayesian_mixture_precisions_prior_initialisation(): rng = np.random.RandomState(0) n_samples, n_features = 10, 2 X = rng.rand(n_samples, n_features) # Check raise message for a bad value of degrees_of_freedom_prior bad_degrees_of_freedom_prior_ = n_features - 1. bgmm = BayesianGaussianMixture( degrees_of_freedom_prior=bad_degrees_of_freedom_prior_, random_state=rng) assert_raise_message(ValueError, "The parameter 'degrees_of_freedom_prior' should be " "greater than %d, but got %.3f." % (n_features - 1, bad_degrees_of_freedom_prior_), bgmm.fit, X) # Check correct init for a given value of degrees_of_freedom_prior degrees_of_freedom_prior = rng.rand() + n_features - 1. bgmm = BayesianGaussianMixture( degrees_of_freedom_prior=degrees_of_freedom_prior, random_state=rng).fit(X) assert_almost_equal(degrees_of_freedom_prior, bgmm.degrees_of_freedom_prior_) # Check correct init for the default value of degrees_of_freedom_prior degrees_of_freedom_prior_default = n_features bgmm = BayesianGaussianMixture( degrees_of_freedom_prior=degrees_of_freedom_prior_default, random_state=rng).fit(X) assert_almost_equal(degrees_of_freedom_prior_default, bgmm.degrees_of_freedom_prior_) # Check correct init for a given value of covariance_prior covariance_prior = { 'full': np.cov(X.T, bias=1) + 10, 'tied': np.cov(X.T, bias=1) + 5, 'diag': np.diag(np.atleast_2d(np.cov(X.T, bias=1))) + 3, 'spherical': rng.rand()} bgmm = BayesianGaussianMixture(random_state=rng) for cov_type in ['full', 'tied', 'diag', 'spherical']: bgmm.covariance_type = cov_type bgmm.covariance_prior = covariance_prior[cov_type] bgmm.fit(X) assert_almost_equal(covariance_prior[cov_type], bgmm.covariance_prior_) # Check raise message for a bad spherical value of covariance_prior bad_covariance_prior_ = -1. bgmm = BayesianGaussianMixture(covariance_type='spherical', covariance_prior=bad_covariance_prior_, random_state=rng) assert_raise_message(ValueError, "The parameter 'spherical covariance_prior' " "should be greater than 0., but got %.3f." % bad_covariance_prior_, bgmm.fit, X) # Check correct init for the default value of covariance_prior covariance_prior_default = { 'full': np.atleast_2d(np.cov(X.T)), 'tied': np.atleast_2d(np.cov(X.T)), 'diag': np.var(X, axis=0, ddof=1), 'spherical': np.var(X, axis=0, ddof=1).mean()} bgmm = BayesianGaussianMixture(random_state=0) for cov_type in ['full', 'tied', 'diag', 'spherical']: bgmm.covariance_type = cov_type bgmm.fit(X) assert_almost_equal(covariance_prior_default[cov_type], bgmm.covariance_prior_) def test_bayesian_mixture_check_is_fitted(): rng = np.random.RandomState(0) n_samples, n_features = 10, 2 # Check raise message bgmm = BayesianGaussianMixture(random_state=rng) X = rng.rand(n_samples, n_features) assert_raise_message(ValueError, 'This BayesianGaussianMixture instance is not ' 'fitted yet.', bgmm.score, X) def test_bayesian_mixture_weights(): rng = np.random.RandomState(0) n_samples, n_features = 10, 2 X = rng.rand(n_samples, n_features) # Case Dirichlet distribution for the weight concentration prior type bgmm = BayesianGaussianMixture( weight_concentration_prior_type="dirichlet_distribution", n_components=3, random_state=rng).fit(X) expected_weights = (bgmm.weight_concentration_ / np.sum(bgmm.weight_concentration_)) assert_almost_equal(expected_weights, bgmm.weights_) assert_almost_equal(np.sum(bgmm.weights_), 1.0) # Case Dirichlet process for the weight concentration prior type dpgmm = BayesianGaussianMixture( weight_concentration_prior_type="dirichlet_process", n_components=3, random_state=rng).fit(X) weight_dirichlet_sum = (dpgmm.weight_concentration_[0] + dpgmm.weight_concentration_[1]) tmp = dpgmm.weight_concentration_[1] / weight_dirichlet_sum expected_weights = (dpgmm.weight_concentration_[0] / weight_dirichlet_sum * np.hstack((1, np.cumprod(tmp[:-1])))) expected_weights /= np.sum(expected_weights) assert_almost_equal(expected_weights, dpgmm.weights_) assert_almost_equal(np.sum(dpgmm.weights_), 1.0) @ignore_warnings(category=ConvergenceWarning) def test_monotonic_likelihood(): # We check that each step of the each step of variational inference without # regularization improve monotonically the training set of the bound rng = np.random.RandomState(0) rand_data = RandomData(rng, scale=20) n_components = rand_data.n_components for prior_type in PRIOR_TYPE: for covar_type in COVARIANCE_TYPE: X = rand_data.X[covar_type] bgmm = BayesianGaussianMixture( weight_concentration_prior_type=prior_type, n_components=2 * n_components, covariance_type=covar_type, warm_start=True, max_iter=1, random_state=rng, tol=1e-4) current_lower_bound = -np.infty # Do one training iteration at a time so we can make sure that the # training log likelihood increases after each iteration. for _ in range(600): prev_lower_bound = current_lower_bound current_lower_bound = bgmm.fit(X).lower_bound_ assert_greater_equal(current_lower_bound, prev_lower_bound) if bgmm.converged_: break assert(bgmm.converged_) def test_compare_covar_type(): # We can compare the 'full' precision with the other cov_type if we apply # 1 iter of the M-step (done during _initialize_parameters). rng = np.random.RandomState(0) rand_data = RandomData(rng, scale=7) X = rand_data.X['full'] n_components = rand_data.n_components for prior_type in PRIOR_TYPE: # Computation of the full_covariance bgmm = BayesianGaussianMixture( weight_concentration_prior_type=prior_type, n_components=2 * n_components, covariance_type='full', max_iter=1, random_state=0, tol=1e-7) bgmm._check_initial_parameters(X) bgmm._initialize_parameters(X, np.random.RandomState(0)) full_covariances = ( bgmm.covariances_ * bgmm.degrees_of_freedom_[:, np.newaxis, np.newaxis]) # Check tied_covariance = mean(full_covariances, 0) bgmm = BayesianGaussianMixture( weight_concentration_prior_type=prior_type, n_components=2 * n_components, covariance_type='tied', max_iter=1, random_state=0, tol=1e-7) bgmm._check_initial_parameters(X) bgmm._initialize_parameters(X, np.random.RandomState(0)) tied_covariance = bgmm.covariances_ * bgmm.degrees_of_freedom_ assert_almost_equal(tied_covariance, np.mean(full_covariances, 0)) # Check diag_covariance = diag(full_covariances) bgmm = BayesianGaussianMixture( weight_concentration_prior_type=prior_type, n_components=2 * n_components, covariance_type='diag', max_iter=1, random_state=0, tol=1e-7) bgmm._check_initial_parameters(X) bgmm._initialize_parameters(X, np.random.RandomState(0)) diag_covariances = (bgmm.covariances_ * bgmm.degrees_of_freedom_[:, np.newaxis]) assert_almost_equal(diag_covariances, np.array([np.diag(cov) for cov in full_covariances])) # Check spherical_covariance = np.mean(diag_covariances, 0) bgmm = BayesianGaussianMixture( weight_concentration_prior_type=prior_type, n_components=2 * n_components, covariance_type='spherical', max_iter=1, random_state=0, tol=1e-7) bgmm._check_initial_parameters(X) bgmm._initialize_parameters(X, np.random.RandomState(0)) spherical_covariances = bgmm.covariances_ * bgmm.degrees_of_freedom_ assert_almost_equal( spherical_covariances, np.mean(diag_covariances, 1)) @ignore_warnings(category=ConvergenceWarning) def test_check_covariance_precision(): # We check that the dot product of the covariance and the precision # matrices is identity. rng = np.random.RandomState(0) rand_data = RandomData(rng, scale=7) n_components, n_features = 2 * rand_data.n_components, 2 # Computation of the full_covariance bgmm = BayesianGaussianMixture(n_components=n_components, max_iter=100, random_state=rng, tol=1e-3, reg_covar=0) for covar_type in COVARIANCE_TYPE: bgmm.covariance_type = covar_type bgmm.fit(rand_data.X[covar_type]) if covar_type == 'full': for covar, precision in zip(bgmm.covariances_, bgmm.precisions_): assert_almost_equal(np.dot(covar, precision), np.eye(n_features)) elif covar_type == 'tied': assert_almost_equal(np.dot(bgmm.covariances_, bgmm.precisions_), np.eye(n_features)) elif covar_type == 'diag': assert_almost_equal(bgmm.covariances_ * bgmm.precisions_, np.ones((n_components, n_features))) else: assert_almost_equal(bgmm.covariances_ * bgmm.precisions_, np.ones(n_components)) @ignore_warnings(category=ConvergenceWarning) def test_invariant_translation(): # We check here that adding a constant in the data change correctly the # parameters of the mixture rng = np.random.RandomState(0) rand_data = RandomData(rng, scale=100) n_components = 2 * rand_data.n_components for prior_type in PRIOR_TYPE: for covar_type in COVARIANCE_TYPE: X = rand_data.X[covar_type] bgmm1 = BayesianGaussianMixture( weight_concentration_prior_type=prior_type, n_components=n_components, max_iter=100, random_state=0, tol=1e-3, reg_covar=0).fit(X) bgmm2 = BayesianGaussianMixture( weight_concentration_prior_type=prior_type, n_components=n_components, max_iter=100, random_state=0, tol=1e-3, reg_covar=0).fit(X + 100) assert_almost_equal(bgmm1.means_, bgmm2.means_ - 100) assert_almost_equal(bgmm1.weights_, bgmm2.weights_) assert_almost_equal(bgmm1.covariances_, bgmm2.covariances_)
bsd-3-clause
mhue/scikit-learn
sklearn/linear_model/tests/test_theil_sen.py
234
9928
""" Testing for Theil-Sen module (sklearn.linear_model.theil_sen) """ # Author: Florian Wilhelm <[email protected]> # License: BSD 3 clause from __future__ import division, print_function, absolute_import import os import sys from contextlib import contextmanager import numpy as np from numpy.testing import assert_array_equal, assert_array_less from numpy.testing import assert_array_almost_equal, assert_warns from scipy.linalg import norm from scipy.optimize import fmin_bfgs from nose.tools import raises, assert_almost_equal from sklearn.utils import ConvergenceWarning from sklearn.linear_model import LinearRegression, TheilSenRegressor from sklearn.linear_model.theil_sen import _spatial_median, _breakdown_point from sklearn.linear_model.theil_sen import _modified_weiszfeld_step from sklearn.utils.testing import assert_greater, assert_less @contextmanager def no_stdout_stderr(): old_stdout = sys.stdout old_stderr = sys.stderr sys.stdout = open(os.devnull, 'w') sys.stderr = open(os.devnull, 'w') yield sys.stdout.flush() sys.stderr.flush() sys.stdout = old_stdout sys.stderr = old_stderr def gen_toy_problem_1d(intercept=True): random_state = np.random.RandomState(0) # Linear model y = 3*x + N(2, 0.1**2) w = 3. if intercept: c = 2. n_samples = 50 else: c = 0.1 n_samples = 100 x = random_state.normal(size=n_samples) noise = 0.1 * random_state.normal(size=n_samples) y = w * x + c + noise # Add some outliers if intercept: x[42], y[42] = (-2, 4) x[43], y[43] = (-2.5, 8) x[33], y[33] = (2.5, 1) x[49], y[49] = (2.1, 2) else: x[42], y[42] = (-2, 4) x[43], y[43] = (-2.5, 8) x[53], y[53] = (2.5, 1) x[60], y[60] = (2.1, 2) x[72], y[72] = (1.8, -7) return x[:, np.newaxis], y, w, c def gen_toy_problem_2d(): random_state = np.random.RandomState(0) n_samples = 100 # Linear model y = 5*x_1 + 10*x_2 + N(1, 0.1**2) X = random_state.normal(size=(n_samples, 2)) w = np.array([5., 10.]) c = 1. noise = 0.1 * random_state.normal(size=n_samples) y = np.dot(X, w) + c + noise # Add some outliers n_outliers = n_samples // 10 ix = random_state.randint(0, n_samples, size=n_outliers) y[ix] = 50 * random_state.normal(size=n_outliers) return X, y, w, c def gen_toy_problem_4d(): random_state = np.random.RandomState(0) n_samples = 10000 # Linear model y = 5*x_1 + 10*x_2 + 42*x_3 + 7*x_4 + N(1, 0.1**2) X = random_state.normal(size=(n_samples, 4)) w = np.array([5., 10., 42., 7.]) c = 1. noise = 0.1 * random_state.normal(size=n_samples) y = np.dot(X, w) + c + noise # Add some outliers n_outliers = n_samples // 10 ix = random_state.randint(0, n_samples, size=n_outliers) y[ix] = 50 * random_state.normal(size=n_outliers) return X, y, w, c def test_modweiszfeld_step_1d(): X = np.array([1., 2., 3.]).reshape(3, 1) # Check startvalue is element of X and solution median = 2. new_y = _modified_weiszfeld_step(X, median) assert_array_almost_equal(new_y, median) # Check startvalue is not the solution y = 2.5 new_y = _modified_weiszfeld_step(X, y) assert_array_less(median, new_y) assert_array_less(new_y, y) # Check startvalue is not the solution but element of X y = 3. new_y = _modified_weiszfeld_step(X, y) assert_array_less(median, new_y) assert_array_less(new_y, y) # Check that a single vector is identity X = np.array([1., 2., 3.]).reshape(1, 3) y = X[0, ] new_y = _modified_weiszfeld_step(X, y) assert_array_equal(y, new_y) def test_modweiszfeld_step_2d(): X = np.array([0., 0., 1., 1., 0., 1.]).reshape(3, 2) y = np.array([0.5, 0.5]) # Check first two iterations new_y = _modified_weiszfeld_step(X, y) assert_array_almost_equal(new_y, np.array([1 / 3, 2 / 3])) new_y = _modified_weiszfeld_step(X, new_y) assert_array_almost_equal(new_y, np.array([0.2792408, 0.7207592])) # Check fix point y = np.array([0.21132505, 0.78867497]) new_y = _modified_weiszfeld_step(X, y) assert_array_almost_equal(new_y, y) def test_spatial_median_1d(): X = np.array([1., 2., 3.]).reshape(3, 1) true_median = 2. _, median = _spatial_median(X) assert_array_almost_equal(median, true_median) # Test larger problem and for exact solution in 1d case random_state = np.random.RandomState(0) X = random_state.randint(100, size=(1000, 1)) true_median = np.median(X.ravel()) _, median = _spatial_median(X) assert_array_equal(median, true_median) def test_spatial_median_2d(): X = np.array([0., 0., 1., 1., 0., 1.]).reshape(3, 2) _, median = _spatial_median(X, max_iter=100, tol=1.e-6) def cost_func(y): dists = np.array([norm(x - y) for x in X]) return np.sum(dists) # Check if median is solution of the Fermat-Weber location problem fermat_weber = fmin_bfgs(cost_func, median, disp=False) assert_array_almost_equal(median, fermat_weber) # Check when maximum iteration is exceeded a warning is emitted assert_warns(ConvergenceWarning, _spatial_median, X, max_iter=30, tol=0.) def test_theil_sen_1d(): X, y, w, c = gen_toy_problem_1d() # Check that Least Squares fails lstq = LinearRegression().fit(X, y) assert_greater(np.abs(lstq.coef_ - w), 0.9) # Check that Theil-Sen works theil_sen = TheilSenRegressor(random_state=0).fit(X, y) assert_array_almost_equal(theil_sen.coef_, w, 1) assert_array_almost_equal(theil_sen.intercept_, c, 1) def test_theil_sen_1d_no_intercept(): X, y, w, c = gen_toy_problem_1d(intercept=False) # Check that Least Squares fails lstq = LinearRegression(fit_intercept=False).fit(X, y) assert_greater(np.abs(lstq.coef_ - w - c), 0.5) # Check that Theil-Sen works theil_sen = TheilSenRegressor(fit_intercept=False, random_state=0).fit(X, y) assert_array_almost_equal(theil_sen.coef_, w + c, 1) assert_almost_equal(theil_sen.intercept_, 0.) def test_theil_sen_2d(): X, y, w, c = gen_toy_problem_2d() # Check that Least Squares fails lstq = LinearRegression().fit(X, y) assert_greater(norm(lstq.coef_ - w), 1.0) # Check that Theil-Sen works theil_sen = TheilSenRegressor(max_subpopulation=1e3, random_state=0).fit(X, y) assert_array_almost_equal(theil_sen.coef_, w, 1) assert_array_almost_equal(theil_sen.intercept_, c, 1) def test_calc_breakdown_point(): bp = _breakdown_point(1e10, 2) assert_less(np.abs(bp - 1 + 1/(np.sqrt(2))), 1.e-6) @raises(ValueError) def test_checksubparams_negative_subpopulation(): X, y, w, c = gen_toy_problem_1d() TheilSenRegressor(max_subpopulation=-1, random_state=0).fit(X, y) @raises(ValueError) def test_checksubparams_too_few_subsamples(): X, y, w, c = gen_toy_problem_1d() TheilSenRegressor(n_subsamples=1, random_state=0).fit(X, y) @raises(ValueError) def test_checksubparams_too_many_subsamples(): X, y, w, c = gen_toy_problem_1d() TheilSenRegressor(n_subsamples=101, random_state=0).fit(X, y) @raises(ValueError) def test_checksubparams_n_subsamples_if_less_samples_than_features(): random_state = np.random.RandomState(0) n_samples, n_features = 10, 20 X = random_state.normal(size=(n_samples, n_features)) y = random_state.normal(size=n_samples) TheilSenRegressor(n_subsamples=9, random_state=0).fit(X, y) def test_subpopulation(): X, y, w, c = gen_toy_problem_4d() theil_sen = TheilSenRegressor(max_subpopulation=250, random_state=0).fit(X, y) assert_array_almost_equal(theil_sen.coef_, w, 1) assert_array_almost_equal(theil_sen.intercept_, c, 1) def test_subsamples(): X, y, w, c = gen_toy_problem_4d() theil_sen = TheilSenRegressor(n_subsamples=X.shape[0], random_state=0).fit(X, y) lstq = LinearRegression().fit(X, y) # Check for exact the same results as Least Squares assert_array_almost_equal(theil_sen.coef_, lstq.coef_, 9) def test_verbosity(): X, y, w, c = gen_toy_problem_1d() # Check that Theil-Sen can be verbose with no_stdout_stderr(): TheilSenRegressor(verbose=True, random_state=0).fit(X, y) TheilSenRegressor(verbose=True, max_subpopulation=10, random_state=0).fit(X, y) def test_theil_sen_parallel(): X, y, w, c = gen_toy_problem_2d() # Check that Least Squares fails lstq = LinearRegression().fit(X, y) assert_greater(norm(lstq.coef_ - w), 1.0) # Check that Theil-Sen works theil_sen = TheilSenRegressor(n_jobs=-1, random_state=0, max_subpopulation=2e3).fit(X, y) assert_array_almost_equal(theil_sen.coef_, w, 1) assert_array_almost_equal(theil_sen.intercept_, c, 1) def test_less_samples_than_features(): random_state = np.random.RandomState(0) n_samples, n_features = 10, 20 X = random_state.normal(size=(n_samples, n_features)) y = random_state.normal(size=n_samples) # Check that Theil-Sen falls back to Least Squares if fit_intercept=False theil_sen = TheilSenRegressor(fit_intercept=False, random_state=0).fit(X, y) lstq = LinearRegression(fit_intercept=False).fit(X, y) assert_array_almost_equal(theil_sen.coef_, lstq.coef_, 12) # Check fit_intercept=True case. This will not be equal to the Least # Squares solution since the intercept is calculated differently. theil_sen = TheilSenRegressor(fit_intercept=True, random_state=0).fit(X, y) y_pred = theil_sen.predict(X) assert_array_almost_equal(y_pred, y, 12)
bsd-3-clause
willkara/HealthAnalytics
4_data_collection/Simulations/Correlated_Gen4_100/Stat_Aggregator.py
4
3240
import pandas as pd from math import floor from math import ceil state_abb = [ 'AL', 'AK', 'AZ', 'AR', 'CA', 'CO', 'CT', 'DE', 'DC', 'FL', \ 'GA', 'HI', 'ID', 'IL', 'IN', 'IA', 'KS', 'KY', 'LA', 'ME', \ 'MD', 'MA', 'MI', 'MN', 'MS', 'MO', 'MT', 'NE', 'NV', 'NH', \ 'NJ', 'NM', 'NY', 'NC', 'ND', 'OH', 'OK', 'OR', 'PA', 'PR', \ 'RI', 'SC', 'SD', 'TN', 'TX', 'UT', 'VT', 'VA', 'WA', 'WV', \ 'WI', 'WY'] gender = [] ethni = [] # Aggregating the Gender Precentages in the DataFrame repeat = '_SampleData.csv' print "Doing Aggregation for Gender" for state in range(len(state_abb)): filename = state_abb[ state ] + repeat df = pd.read_csv(filename) df.pop('Unnamed: 0') total_value = float(len(df.index)) unique = ['M', 'F'] tmpList = [] for value in unique: count_value = float(df[df['Gender'] == value]['Gender'].count()) tmpList.append( count_value / total_value ) gender.append(tmpList) df_out = pd.DataFrame(gender, index=state_abb) df_out.columns = unique df_out.to_csv('Gender_Summary.csv') print "Doing Aggregation for Ethnicity" for state in range(len(state_abb)): filename = state_abb[ state ] + repeat df = pd.read_csv(filename) df.pop('Unnamed: 0') total_value = float(len(df.index)) unique = ['WhiteNonHisp', 'Hisp', 'Black', 'Asian', 'NavAm', 'PacIs', 'Mixed', 'Other'] tmpList = [] for value in unique: count_value = float(df[df['Ethnicity'] == value]['Ethnicity'].count()) tmpList.append( count_value / total_value ) ethni.append(tmpList) df_out = pd.DataFrame(ethni, index=state_abb) df_out.columns = unique df_out.to_csv('Ethnicity_Summary.csv') predictor = ['Age_years', 'Height', 'Waist', 'Weight', 'BMI', 'WtHR', 'HR', \ 'Avg_Sys', 'Avg_Dia', 'Tri', 'LDL', 'HDL'] for key in range(len(predictor)): continuous = [] print "Doing Aggregation for ", predictor[ key ] curr_prd = predictor[ key ] for state in range(len(state_abb)): filename = state_abb[ state ] + repeat df = pd.read_csv(filename) df.pop('Unnamed: 0') total_value = float(len(df.index)) min_value = floor(df[ curr_prd ].min()) max_value = ceil(df[ curr_prd ].max()) average = df[ curr_prd ].mean() std = df[ curr_prd ].std() tmpList = [] tmpList.append(average) tmpList.append(std) tmpList.append(min_value) tmpList.append(max_value) slope = (max_value - min_value) / 20 bins = [(min_value + (slope * float(i))) for i in range(21)] for j in range(20): count_value = float(df[(df[ curr_prd ] >= bins[ j ]) \ & (df[ curr_prd ] < bins[ j + 1 ])][ curr_prd ].count()) tmpList.append( count_value / total_value ) continuous.append(tmpList) df_out = pd.DataFrame(continuous, index=state_abb) columns = ['Avg', 'Std', 'Min', 'Max', 'Bin1', 'Bin2', 'Bin3', 'Bin4', 'Bin5', \ 'Bin6', 'Bin7', 'Bin8', 'Bin9', 'Bin10', 'Bin11', 'Bin12', 'Bin13', \ 'Bin14', 'Bin15', 'Bin16', 'Bin17', 'Bin18', 'Bin19', 'Bin20'] df_out.columns = columns if predictor[ key ] == 'Age_years': df_out.to_csv('Age_Summary.csv') elif predictor[ key ] == 'Avg_Sys': df_out.to_csv('Sys_Summary.csv') elif predictor[ key ] == 'Avg_Dia': df_out.to_csv('Dia_Summary.csv') else: df_out.to_csv(predictor[ key ] + '_Summary.csv')
mit
AustereCuriosity/astropy
astropy/nddata/ccddata.py
1
21267
# Licensed under a 3-clause BSD style license - see LICENSE.rst """This module implements the base CCDData class.""" from __future__ import (absolute_import, division, print_function, unicode_literals) import numpy as np from .compat import NDDataArray from .nduncertainty import StdDevUncertainty, NDUncertainty from ..io import fits, registry from .. import units as u from .. import log from ..wcs import WCS from ..utils.decorators import sharedmethod __all__ = ['CCDData', 'fits_ccddata_reader', 'fits_ccddata_writer'] # Global value which can turn on/off the unit requirements when creating a # CCDData. Should be used with care because several functions actually break # if the unit is None! _config_ccd_requires_unit = True def _arithmetic(op): """Decorator factory which temporarly disables the need for a unit when creating a new CCDData instance. The final result must have a unit. Parameters ---------- op : function The function to apply. Supported are: - ``np.add`` - ``np.subtract`` - ``np.multiply`` - ``np.true_divide`` Notes ----- Should only be used on CCDData ``add``, ``subtract``, ``divide`` or ``multiply`` because only these methods from NDArithmeticMixin are overwritten. """ def decorator(func): def inner(self, operand, operand2=None, **kwargs): global _config_ccd_requires_unit _config_ccd_requires_unit = False result = self._prepare_then_do_arithmetic(op, operand, operand2, **kwargs) # Wrap it again as CCDData so it checks the final unit. _config_ccd_requires_unit = True return result.__class__(result) inner.__doc__ = ("See `astropy.nddata.NDArithmeticMixin.{}`." "".format(func.__name__)) return sharedmethod(inner) return decorator class CCDData(NDDataArray): """A class describing basic CCD data. The CCDData class is based on the NDData object and includes a data array, uncertainty frame, mask frame, meta data, units, and WCS information for a single CCD image. Parameters ----------- data : `~astropy.nddata.CCDData`-like or `numpy.ndarray`-like The actual data contained in this `~astropy.nddata.CCDData` object. Note that the data will always be saved by *reference*, so you should make a copy of the ``data`` before passing it in if that's the desired behavior. uncertainty : `~astropy.nddata.StdDevUncertainty`, `numpy.ndarray` or \ None, optional Uncertainties on the data. Default is ``None``. mask : `numpy.ndarray` or None, optional Mask for the data, given as a boolean Numpy array with a shape matching that of the data. The values must be `False` where the data is *valid* and `True` when it is not (like Numpy masked arrays). If ``data`` is a numpy masked array, providing ``mask`` here will causes the mask from the masked array to be ignored. Default is ``None``. flags : `numpy.ndarray` or `~astropy.nddata.FlagCollection` or None, \ optional Flags giving information about each pixel. These can be specified either as a Numpy array of any type with a shape matching that of the data, or as a `~astropy.nddata.FlagCollection` instance which has a shape matching that of the data. Default is ``None``. wcs : `~astropy.wcs.WCS` or None, optional WCS-object containing the world coordinate system for the data. Default is ``None``. meta : dict-like object or None, optional Metadata for this object. "Metadata" here means all information that is included with this object but not part of any other attribute of this particular object, e.g. creation date, unique identifier, simulation parameters, exposure time, telescope name, etc. unit : `~astropy.units.Unit` or str, optional The units of the data. Default is ``None``. .. warning:: If the unit is ``None`` or not otherwise specified it will raise a ``ValueError`` Raises ------ ValueError If the ``uncertainty`` or ``mask`` inputs cannot be broadcast (e.g., match shape) onto ``data``. Methods ------- read(\\*args, \\**kwargs) ``Classmethod`` to create an CCDData instance based on a ``FITS`` file. This method uses :func:`fits_ccddata_reader` with the provided parameters. write(\\*args, \\**kwargs) Writes the contents of the CCDData instance into a new ``FITS`` file. This method uses :func:`fits_ccddata_writer` with the provided parameters. Notes ----- `~astropy.nddata.CCDData` objects can be easily converted to a regular Numpy array using `numpy.asarray`. For example:: >>> from astropy.nddata import CCDData >>> import numpy as np >>> x = CCDData([1,2,3], unit='adu') >>> np.asarray(x) array([1, 2, 3]) This is useful, for example, when plotting a 2D image using matplotlib. >>> from astropy.nddata import CCDData >>> from matplotlib import pyplot as plt # doctest: +SKIP >>> x = CCDData([[1,2,3], [4,5,6]], unit='adu') >>> plt.imshow(x) # doctest: +SKIP """ def __init__(self, *args, **kwd): if 'meta' not in kwd: kwd['meta'] = kwd.pop('header', None) if 'header' in kwd: raise ValueError("can't have both header and meta.") super(CCDData, self).__init__(*args, **kwd) # Check if a unit is set. This can be temporarly disabled by the # _CCDDataUnit contextmanager. if _config_ccd_requires_unit and self.unit is None: raise ValueError("a unit for CCDData must be specified.") @property def data(self): return self._data @data.setter def data(self, value): self._data = value @property def wcs(self): return self._wcs @wcs.setter def wcs(self, value): self._wcs = value @property def unit(self): return self._unit @unit.setter def unit(self, value): self._unit = u.Unit(value) @property def header(self): return self._meta @header.setter def header(self, value): self.meta = value @property def uncertainty(self): return self._uncertainty @uncertainty.setter def uncertainty(self, value): if value is not None: if isinstance(value, NDUncertainty): if getattr(value, '_parent_nddata', None) is not None: value = value.__class__(value, copy=False) self._uncertainty = value elif isinstance(value, np.ndarray): if value.shape != self.shape: raise ValueError("uncertainty must have same shape as " "data.") self._uncertainty = StdDevUncertainty(value) log.info("array provided for uncertainty; assuming it is a " "StdDevUncertainty.") else: raise TypeError("uncertainty must be an instance of a " "NDUncertainty object or a numpy array.") self._uncertainty.parent_nddata = self else: self._uncertainty = value def to_hdu(self, hdu_mask='MASK', hdu_uncertainty='UNCERT', hdu_flags=None, wcs_relax=True): """Creates an HDUList object from a CCDData object. Parameters ---------- hdu_mask, hdu_uncertainty, hdu_flags : str or None, optional If it is a string append this attribute to the HDUList as `~astropy.io.fits.ImageHDU` with the string as extension name. Flags are not supported at this time. If ``None`` this attribute is not appended. Default is ``'MASK'`` for mask, ``'UNCERT'`` for uncertainty and ``None`` for flags. wcs_relax : bool Value of the ``relax`` parameter to use in converting the WCS to a FITS header using `~astropy.wcs.WCS.to_header`. The common ``CTYPE`` ``RA---TAN-SIP`` and ``DEC--TAN-SIP`` requires ``relax=True`` for the ``-SIP`` part of the ``CTYPE`` to be preserved. Raises ------- ValueError - If ``self.mask`` is set but not a `numpy.ndarray`. - If ``self.uncertainty`` is set but not a `~astropy.nddata.StdDevUncertainty`. - If ``self.uncertainty`` is set but has another unit then ``self.data``. NotImplementedError Saving flags is not supported. Returns ------- hdulist : `~astropy.io.fits.HDUList` """ if isinstance(self.header, fits.Header): # Copy here so that we can modify the HDU header by adding WCS # information without changing the header of the CCDData object. header = self.header.copy() else: # Because _insert_in_metadata_fits_safe is written as a method # we need to create a dummy CCDData instance to hold the FITS # header we are constructing. This probably indicates that # _insert_in_metadata_fits_safe should be rewritten in a more # sensible way... dummy_ccd = CCDData([1], meta=fits.Header(), unit="adu") for k, v in self.header.items(): dummy_ccd._insert_in_metadata_fits_safe(k, v) header = dummy_ccd.header if self.unit is not u.dimensionless_unscaled: header['bunit'] = self.unit.to_string() if self.wcs: # Simply extending the FITS header with the WCS can lead to # duplicates of the WCS keywords; iterating over the WCS # header should be safer. # # Turns out if I had read the io.fits.Header.extend docs more # carefully, I would have realized that the keywords exist to # avoid duplicates and preserve, as much as possible, the # structure of the commentary cards. # # Note that until astropy/astropy#3967 is closed, the extend # will fail if there are comment cards in the WCS header but # not header. wcs_header = self.wcs.to_header(relax=wcs_relax) header.extend(wcs_header, useblanks=False, update=True) hdus = [fits.PrimaryHDU(self.data, header)] if hdu_mask and self.mask is not None: # Always assuming that the mask is a np.ndarray (check that it has # a 'shape'). if not hasattr(self.mask, 'shape'): raise ValueError('only a numpy.ndarray mask can be saved.') # Convert boolean mask to uint since io.fits cannot handle bool. hduMask = fits.ImageHDU(self.mask.astype(np.uint8), name=hdu_mask) hdus.append(hduMask) if hdu_uncertainty and self.uncertainty is not None: # We need to save some kind of information which uncertainty was # used so that loading the HDUList can infer the uncertainty type. # No idea how this can be done so only allow StdDevUncertainty. if self.uncertainty.__class__.__name__ != 'StdDevUncertainty': raise ValueError('only StdDevUncertainty can be saved.') # Assuming uncertainty is an StdDevUncertainty save just the array # this might be problematic if the Uncertainty has a unit differing # from the data so abort for different units. This is important for # astropy > 1.2 if (hasattr(self.uncertainty, 'unit') and self.uncertainty.unit is not None and self.uncertainty.unit != self.unit): raise ValueError('saving uncertainties with a unit differing' 'from the data unit is not supported.') hduUncert = fits.ImageHDU(self.uncertainty.array, name=hdu_uncertainty) hdus.append(hduUncert) if hdu_flags and self.flags: raise NotImplementedError('adding the flags to a HDU is not ' 'supported at this time.') hdulist = fits.HDUList(hdus) return hdulist def copy(self): """ Return a copy of the CCDData object. """ return self.__class__(self, copy=True) add = _arithmetic(np.add)(NDDataArray.add) subtract = _arithmetic(np.subtract)(NDDataArray.subtract) multiply = _arithmetic(np.multiply)(NDDataArray.multiply) divide = _arithmetic(np.true_divide)(NDDataArray.divide) def _insert_in_metadata_fits_safe(self, key, value): """ Insert key/value pair into metadata in a way that FITS can serialize. Parameters ---------- key : str Key to be inserted in dictionary. value : str or None Value to be inserted. Notes ----- This addresses a shortcoming of the FITS standard. There are length restrictions on both the ``key`` (8 characters) and ``value`` (72 characters) in the FITS standard. There is a convention for handling long keywords and a convention for handling long values, but the two conventions cannot be used at the same time. This addresses that case by checking the length of the ``key`` and ``value`` and, if necessary, shortening the key. """ if len(key) > 8 and len(value) > 72: short_name = key[:8] self.meta['HIERARCH {0}'.format(key.upper())] = ( short_name, "Shortened name for {}".format(key)) self.meta[short_name] = value else: self.meta[key] = value # This needs to be importable by the tests... _KEEP_THESE_KEYWORDS_IN_HEADER = [ 'JD-OBS', 'MJD-OBS', 'DATE-OBS' ] def _generate_wcs_and_update_header(hdr): """ Generate a WCS object from a header and remove the WCS-specific keywords from the header. Parameters ---------- hdr : astropy.io.fits.header or other dict-like Returns ------- new_header, wcs """ # Try constructing a WCS object. This may generate a warning, but never # an error. wcs = WCS(hdr) # Test for success by checking to see if the wcs ctype has a non-empty # value, return None for wcs if ctype is empty. if not wcs.wcs.ctype[0]: return (hdr, None) new_hdr = hdr.copy() # If the keywords below are in the header they are also added to WCS. # It seems like they should *not* be removed from the header, though. wcs_header = wcs.to_header(relax=True) for k in wcs_header: if k not in _KEEP_THESE_KEYWORDS_IN_HEADER: new_hdr.remove(k, ignore_missing=True) return (new_hdr, wcs) def fits_ccddata_reader(filename, hdu=0, unit=None, hdu_uncertainty='UNCERT', hdu_mask='MASK', hdu_flags=None, **kwd): """ Generate a CCDData object from a FITS file. Parameters ---------- filename : str Name of fits file. hdu : int, optional FITS extension from which CCDData should be initialized. If zero and and no data in the primary extension, it will search for the first extension with data. The header will be added to the primary header. Default is ``0``. unit : `~astropy.units.Unit`, optional Units of the image data. If this argument is provided and there is a unit for the image in the FITS header (the keyword ``BUNIT`` is used as the unit, if present), this argument is used for the unit. Default is ``None``. hdu_uncertainty : str or None, optional FITS extension from which the uncertainty should be initialized. If the extension does not exist the uncertainty of the CCDData is ``None``. Default is ``'UNCERT'``. hdu_mask : str or None, optional FITS extension from which the mask should be initialized. If the extension does not exist the mask of the CCDData is ``None``. Default is ``'MASK'``. hdu_flags : str or None, optional Currently not implemented. Default is ``None``. kwd : Any additional keyword parameters are passed through to the FITS reader in :mod:`astropy.io.fits`; see Notes for additional discussion. Notes ----- FITS files that contained scaled data (e.g. unsigned integer images) will be scaled and the keywords used to manage scaled data in :mod:`astropy.io.fits` are disabled. """ unsupport_open_keywords = { 'do_not_scale_image_data': 'Image data must be scaled.', 'scale_back': 'Scale information is not preserved.' } for key, msg in unsupport_open_keywords.items(): if key in kwd: prefix = 'unsupported keyword: {0}.'.format(key) raise TypeError(' '.join([prefix, msg])) with fits.open(filename, **kwd) as hdus: hdr = hdus[hdu].header if hdu_uncertainty is not None and hdu_uncertainty in hdus: uncertainty = StdDevUncertainty(hdus[hdu_uncertainty].data) else: uncertainty = None if hdu_mask is not None and hdu_mask in hdus: # Mask is saved as uint but we want it to be boolean. mask = hdus[hdu_mask].data.astype(np.bool_) else: mask = None if hdu_flags is not None and hdu_flags in hdus: raise NotImplementedError('loading flags is currently not ' 'supported.') # search for the first instance with data if # the primary header is empty. if hdu == 0 and hdus[hdu].data is None: for i in range(len(hdus)): if hdus.fileinfo(i)['datSpan'] > 0: hdu = i hdr = hdr + hdus[hdu].header log.info("first HDU with data is extension " "{0}.".format(hdu)) break if 'bunit' in hdr: fits_unit_string = hdr['bunit'] # patch to handle FITS files using ADU for the unit instead of the # standard version of 'adu' if fits_unit_string.strip().lower() == 'adu': fits_unit_string = fits_unit_string.lower() else: fits_unit_string = None if unit is not None and fits_unit_string: log.info("using the unit {0} passed to the FITS reader instead of " "the unit {1} in the FITS file.".format(unit, fits_unit_string)) use_unit = unit or fits_unit_string hdr, wcs = _generate_wcs_and_update_header(hdr) ccd_data = CCDData(hdus[hdu].data, meta=hdr, unit=use_unit, mask=mask, uncertainty=uncertainty, wcs=wcs) return ccd_data def fits_ccddata_writer(ccd_data, filename, hdu_mask='MASK', hdu_uncertainty='UNCERT', hdu_flags=None, **kwd): """ Write CCDData object to FITS file. Parameters ---------- filename : str Name of file. hdu_mask, hdu_uncertainty, hdu_flags : str or None, optional If it is a string append this attribute to the HDUList as `~astropy.io.fits.ImageHDU` with the string as extension name. Flags are not supported at this time. If ``None`` this attribute is not appended. Default is ``'MASK'`` for mask, ``'UNCERT'`` for uncertainty and ``None`` for flags. kwd : All additional keywords are passed to :py:mod:`astropy.io.fits` Raises ------- ValueError - If ``self.mask`` is set but not a `numpy.ndarray`. - If ``self.uncertainty`` is set but not a `~astropy.nddata.StdDevUncertainty`. - If ``self.uncertainty`` is set but has another unit then ``self.data``. NotImplementedError Saving flags is not supported. """ hdu = ccd_data.to_hdu(hdu_mask=hdu_mask, hdu_uncertainty=hdu_uncertainty, hdu_flags=hdu_flags) hdu.writeto(filename, **kwd) with registry.delay_doc_updates(CCDData): registry.register_reader('fits', CCDData, fits_ccddata_reader) registry.register_writer('fits', CCDData, fits_ccddata_writer) registry.register_identifier('fits', CCDData, fits.connect.is_fits) try: CCDData.read.__doc__ = fits_ccddata_reader.__doc__ except AttributeError: CCDData.read.__func__.__doc__ = fits_ccddata_reader.__doc__ try: CCDData.write.__doc__ = fits_ccddata_writer.__doc__ except AttributeError: CCDData.write.__func__.__doc__ = fits_ccddata_writer.__doc__
bsd-3-clause
hjweide/rpi-datathon-2015
utils.py
1
2426
#!/usr/bin/env python import cPickle as pickle import pandas as pd import re from bs4 import BeautifulSoup from nltk.corpus import stopwords from os import getcwd from os.path import exists, join # remove markup, stopwords, etc. from tweets def tweet_to_words(tweet, min_length): tweet_text = BeautifulSoup(tweet).get_text() letters_only = re.sub('[^a-zA-Z]', ' ', tweet_text) # convert to lowercase and get rid of all extra whitespace words = letters_only.lower().split() # it is faster to search a set than a list stops = set(stopwords.words('english')) meaningful_words = [w for w in words if w not in stops] if len(meaningful_words) >= min_length: return ' '.join(meaningful_words) return None # read tweets from the csv file def read_tweets(datafile, filename, min_length=0): # check if we have already saved this file to disk to save computation if not exists(filename): # some lines are bad, just skip them (we have enough tweets already!) data = pd.read_csv(datafile, header=0, delimiter=',', quotechar='"', error_bad_lines=False, encoding='utf-8-sig') num_tweets = data['ItemID'].size print('cleaned tweets will be saved to %s' % (filename)) clean_tweets, clean_tweets_sentiment = [], [] for i in xrange(num_tweets): if (i + 1) % 1000 == 0: print(' cleaning tweet %d of %d' % (i + 1, num_tweets)) clean_tweet = tweet_to_words(data['SentimentText'][i], min_length) if clean_tweet is not None: clean_tweet_sentiment = data['Sentiment'][i] clean_tweets.append(clean_tweet) clean_tweets_sentiment.append(clean_tweet_sentiment) # save the cleaned tweets to disk for future use with open(filename, 'wb') as ofile: pickle.dump((clean_tweets, clean_tweets_sentiment), ofile) else: print('loading cleaned tweets from disk: %s' % (filename)) with open(filename, 'rb') as ifile: clean_tweets, clean_tweets_sentiment = pickle.load(ifile) return clean_tweets, clean_tweets_sentiment # example usage if __name__ == '__main__': root = getcwd() tweetsfile = join(root, 'data', 'tweets.csv') tweetsfile_clean = join(root, 'data', 'tweets_clean.pickle') clean_tweets, clean_tweets_sentiment = read_tweets(tweetsfile, tweetsfile_clean)
mit
wolfiex/DSMACC-testing
dsmacc/parsekpp/reactiontypes.py
1
3417
name = "reformat" #from ..helperscripts import picker import glob,sys,os,re,pathos import pandas as pd import numpy as np from sympy import Symbol, expand, N def iseqn (x): #find equations if (re.search(r'\{[\. \s\d]*\}', x)): return True def pool_eqn(x): #sort the reactions r,p=x[0].split('=') p=p.split('+') p.sort() r=r.split('+') r.sort() #p='+'.join(p) #r='+'.join(r) x[0] = [r,p] #replace D and exp for sympy re.sub(r'(\d)[dD]([+-\.\d])',r'\1e\2', x[1].split('//')[0].replace('EXP','exp') x[1] = x[1].split('//')[0].replace(';','') return x def categorise(x,join=True): cat2 = 'Radicals/Other' if 'RO2' in x[1]: cat = re.search(r'RO2[\w]*\b',x[1]).group() cat2 = 'RO2' elif 'J(' in x[1]: cat = 'hv' cat2 = 'Photolysis' elif '*O2' in x[1] : cat = 'O2' cat2 = 'Decomposition' elif 'H2O' in x[1] : cat = 'H2O' else: radical = set(x[0][0]) & set('OH,HO2,NO,NO2,NO3,Cl,CL,O3'.split(',')) if len(radical): cat = list(radical)[0] else: try: cat = re.search(r'K[\w]*\b',x[1]).group() except: cat = 'Uni-molecular' cat2 = 'Decomposition' if join: return ['->'.join(['+'.join(i) for i in x[0] ]) , x[1] , cat,cat2] else: return [x[0][0],x[0][1], x[1] , cat,cat2] def reformat_kpp(file_list = False,findcat = True,join=True ,inorganics=False,available_cores = 1): if not file_list: #read files from picker file_list = picker.Picker('mechanisms/[!(formatted)]*.kpp',remove=['mechanisms/','.kpp'],title = 'Select Mechanisms').getSelected() file_text = [open('mechanisms/%s.kpp'%i,'r').read() for i in file_list] if inorganics: file_list.append('inorganics') file_text.append(open('src/background/inorganic_mcm.kpp','r').read()) if file_list == ['inorganics']: sys.exit('You forgot to enter a file to reformat') fullstr='~'.join(file_text) else: #read given files file_text = [open('mechanisms/%s.kpp'%i,'r').read() for i in file_list] fullstr='~'.join(file_text) minfull = re.sub(r' |\n|\t|\s|\r','', fullstr).upper() eqn = [i.split(':') for i in re.findall(r'[^/]{1,2}\s*\{[\.\W\s\d]*?\}([^;]+)' ,' '+minfull,re.S|re.M)] nocoeff = re.compile(r'\b\d*\.*\d*([\W\d\w]+)\b') specs = [] for e in eqn: specs.extend(re.findall(r"[\w']+", e[0])) specs = list(set((nocoeff.sub(r'\1',i) for i in specs))) specs.sort() eqn = list(map(pool_eqn,eqn)) if findcat: cat2 = lambda p: categorise(p, join) eqn = list(map(cat2, eqn)) if join: jn = 'eqn,rate,category,group' else: jn = 'from,to,rate,category,group' #print eqn return pd.DataFrame(eqn,columns=jn.split(',')) else: return eqn if __name__ == '__main__': print ('lets go - quickstart test of propane.kpp') ret = reformat_kpp(['formatted_butane_inorganics_True.kpp']) tally = ret.groupby(['category','group']).count() #filter lone reactions tally = tally[tally.eqn>1] tally.index = ['_'.join([j,i]).strip() for i,j in tally.index.values] tally.sort_index(inplace=True) print((tally['eqn'].to_json())) print((set(ret.group))) #tally /= tally.sum()
gpl-3.0
SENeC-Initiative/PyNeurActiv
plot/raster.py
2
7089
#!/usr/bin/env python #-*- coding:utf-8 -*- # # This file is part of the NNGT project to generate and analyze # neuronal networks and their activity. # Copyright (C) 2015-2017 Tanguy Fardet # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # nest_plot.py # This file is part of the NNGT module # Distributed as a free software, in the hope that it will be useful, under the # terms of the GNU General Public License. """ Utility functions to plot Nactivity """ from itertools import cycle import numpy as np from PyNeurActiv.analysis import (ActivityRecord, get_b2, firing_rate, neurons_sorter) from .plot_tools import _markers from ..lib import nonstring_container #-----------------------------------------------------------------------------# # Plotting the activity #------------------------ # def raster_plot(activity, network=None, limits=None, sort=None, normalize=1., decimate=None, hist=True, mark_network_bursts=True, mark_spike_patterns=True, title=None, axis=None, label=None, markers=None, show=False): ''' Plot the monitored activity. Parameters ---------- activity : :class:`~PyNeurActiv.analysis.ActivityRecord` or (N, 2) array Recorded spikes and senders, either from `raster_analysis` or directly from a 2d array. If an `ActivityRecord` is provided, then the names of the columns should be stated if they differ from default 'neuron'/'time'. network : :class:`~nngt.Network` or subclass, optional (default: None) Network for which the activity was monitored. limits : tuple, optional (default: None) Time limits of the plot (if not specified, times of first and last spike for raster plots). show : bool, optional (default: True) Whether to show the plot right away or to wait for the next plt.show(). sort : str or list, optional (default: None) Sorting method that will be used to attribute a new index to each neuron. See :func:`~PyNeurActiv.analysis.neurons_sorter`. normalize : float, optional (default: None) Normalize the recorded results by a given float. decimate : int or list of ints, optional (default: None) Represent only a fraction of the spiking neurons; only one neuron in `decimate` will be represented (e.g. setting `decimate` to 5 will lead to only 20% of the neurons being represented). If a list is provided, it must have one entry per NeuralGroup in the population. hist : bool, optional (default: True) Whether to display the histogram when plotting spikes rasters. title : str, optional (default: None) Title of the plot. fignum : int, optional (default: None) Plot the activity on an existing figure (from ``figure.number``). label : str, optional (default: None) Add a label to the plot. Warning ------- Sorting with "firing_rate" only works if NEST gids form a continuous integer range. Returns ------- axis : list List of the figure numbers. ''' import matplotlib.pyplot as plt if not isinstance(activity, ActivityRecord): datadict = {'neuron': activity[:, 0], 'time': activity[:, 1]} activity = ActivityRecord(datadict) senders, times = activity.data.T senders = senders.astype(int) num_spikes = len(times) neurons = np.unique(senders).astype(int) num_neurons = len(neurons) from itertools import cycle colors = cycle(('r','g','b','k','y','gray')) # markers if markers is None and mark_network_bursts: markers = _markers elif not nonstring_container(markers): markers = cycle([markers]) else: markers = cycle(['o']) # decimate if necessary if decimate is not None: idx_keep = np.where(np.mod(senders, decimate) == 0)[0] senders = senders[idx_keep] times = times[idx_keep] # sorting sorter = np.arange(neurons[-1] + 1, dtype=int) if sort == "spikes": sorter = activity._sort elif sort is not None: sorter = neurons_sorter( neurons, sort, data=activity.data, network=network) if len(times): if axis is None: _, axis = plt.subplots() ylabel = "Neuron ID" xlabel = "Time (ms)" show_burst = mark_spike_patterns * ('individual_burst' in activity) cburst = 'r' if show_burst else 'b' cspike = 'b' delta_t = 0.01*(times[-1]-times[0]) burst = np.ones(num_spikes, dtype=bool) interburst = np.zeros(num_spikes, dtype=bool) iburst = np.ones(num_spikes, dtype=bool) ispike = np.zeros(num_spikes, dtype=bool) descriptor1, descriptor2 = np.ones(num_spikes), np.ones(num_spikes) try: num_events = int(np.nanmax(activity.array('network_burst'))) descriptor1 = activity.array('network_burst') descriptor2 = activity.array('network_interburst') except: num_events = 1 if show_burst: iburst = ~np.isnan(activity.array('individual_burst')) for c, ev, m in zip(colors, range(num_events), markers): burst = np.isclose(descriptor1, ev + 1) interburst = np.isclose(descriptor2, ev + 1) bb_idx = np.where(iburst & burst)[0] bs_idx = np.where(~iburst & burst)[0] axis.plot(times[bb_idx], sorter[senders[bb_idx]], ls='', marker=m, c=cburst) axis.plot(times[bs_idx], sorter[senders[bs_idx]], ls='', marker=m, c=cspike) # interburst (empty if no bursts) ib_idx = np.where(iburst & interburst)[0] is_idx = np.where(~iburst & interburst)[0] axis.plot(times[ib_idx], sorter[senders[ib_idx]], ls='', marker=m, c=cburst, fillstyle='none') axis.plot(times[is_idx], sorter[senders[is_idx]], ls='', marker=m, c=cspike, fillstyle='none') axis.set_ylabel(ylabel) axis.set_xlabel(xlabel) if limits is not None: axis.set_xlim(limits) else: axis.set_xlim([times[0]-delta_t, times[-1]+delta_t]) axis.legend(bbox_to_anchor=(1.1, 1.2)) if title is None: title = 'Raster plot' plt.title(title) if show: plt.show() return axis
gpl-3.0
yavuzovski/playground
machine learning/Udacity/ud120-projects/outliers/outlier_removal_regression.py
1
2785
#!/usr/bin/python import random import numpy import matplotlib.pyplot as plt import pickle from outlier_cleaner import outlierCleaner ### load up some practice data with outliers in it ages = pickle.load( open("practice_outliers_ages.pkl", "r") ) net_worths = pickle.load( open("practice_outliers_net_worths.pkl", "r") ) ### ages and net_worths need to be reshaped into 2D numpy arrays ### second argument of reshape command is a tuple of integers: (n_rows, n_columns) ### by convention, n_rows is the number of data points ### and n_columns is the number of features ages = numpy.reshape( numpy.array(ages), (len(ages), 1)) net_worths = numpy.reshape( numpy.array(net_worths), (len(net_worths), 1)) from sklearn.cross_validation import train_test_split ages_train, ages_test, net_worths_train, net_worths_test = train_test_split(ages, net_worths, test_size=0.1, random_state=42) ### fill in a regression here! Name the regression object reg so that ### the plotting code below works, and you can see what your regression looks like from sklearn.linear_model import LinearRegression reg = LinearRegression() reg.fit(ages_train, net_worths_train) print("slope of the uncleaned data: {}".format(reg.coef_)) print("score of the uncleaned data: {}".format(reg.score(ages_test, net_worths_test))) try: plt.plot(ages, reg.predict(ages), color="blue") except NameError: pass plt.scatter(ages, net_worths) plt.show() ### identify and remove the most outlier-y points cleaned_data = [] try: predictions = reg.predict(ages_train) cleaned_data = outlierCleaner( predictions, ages_train, net_worths_train ) except NameError: print "your regression object doesn't exist, or isn't name reg" print "can't make predictions to use in identifying outliers" ### only run this code if cleaned_data is returning data if len(cleaned_data) > 0: ages, net_worths, errors = zip(*cleaned_data) ages = numpy.reshape( numpy.array(ages), (len(ages), 1)) net_worths = numpy.reshape( numpy.array(net_worths), (len(net_worths), 1)) ### refit your cleaned data! try: reg.fit(ages, net_worths) print("slope of the cleaned data: {}".format(reg.coef_)) print("score of the cleaned data: {}".format(reg.score(ages_test, net_worths_test))) plt.plot(ages, reg.predict(ages), color="blue") except NameError: print "you don't seem to have regression imported/created," print " or else your regression object isn't named reg" print " either way, only draw the scatter plot of the cleaned data" plt.scatter(ages, net_worths) plt.xlabel("ages") plt.ylabel("net worths") plt.show() else: print "outlierCleaner() is returning an empty list, no refitting to be done"
gpl-3.0
pbvarga1/pdsview
tests/test_histogram.py
3
11774
#!/usr/bin/env python # -*- coding: utf-8 -*- import os import pytest import numpy as np from qtpy import QtWidgets, QtCore from matplotlib.lines import Line2D from pdsview import pdsview, histogram FILE_1 = os.path.join( 'tests', 'mission_data', '1p190678905erp64kcp2600l8c1.img') FILE_2 = os.path.join( 'tests', 'mission_data', '2p129641989eth0361p2600r8m1.img') FILE_3 = os.path.join( 'tests', 'mission_data', '1p134482118erp0902p2600r8m1.img') test_images = pdsview.ImageSet([FILE_1, FILE_2]) window = pdsview.PDSViewer(test_images) image_view = window.view_canvas def test_model_init(): model = histogram.HistogramModel(image_view) assert model._image_view == image_view assert model._views == set() assert model._cut_low is None assert model._cut_high is None assert model._bins == 100 def test_model_image_view(): image_view = window.view_canvas model = histogram.HistogramModel(image_view) model.image_view == image_view model.image_view == model._image_view # Test setter method image_view2 = pdsview.PDSViewer(pdsview.ImageSet([FILE_3])).view_canvas model.image_view = image_view2 assert model.image_view == image_view2 def test_model_cut_low(): model = histogram.HistogramModel(image_view) assert model.cut_low == model.view_cuts[0] assert model.cut_low == model._cut_low # Test Setting model.cut_low = 42 assert model.cut_low == 42 assert model._cut_low == 42 assert model.view_cuts[0] == 42 def test_model_cut_high(): model = histogram.HistogramModel(image_view) assert model.cut_high is model.view_cuts[1] assert model.cut_high == model._cut_high # Test Setting model.cut_high = 42 assert model.cut_high == 42 assert model._cut_high == 42 assert model.view_cuts[1] == 42 def test_model_cuts(): def test_new_cuts(new_cuts, model): model.cuts = new_cuts assert model.cuts == new_cuts assert model.cut_low == new_cuts[0] assert model.cut_high == new_cuts[1] assert model.view_cuts == new_cuts model = histogram.HistogramModel(image_view) assert model.cuts == model.view_cuts # Test Setter test_new_cuts((24, 42), model) test_new_cuts((20, 42), model) test_new_cuts((20, 40), model) with pytest.warns(UserWarning): model.cuts = 42, 24 assert model.cuts == (24, 42) def test_model_view_cuts(): model = histogram.HistogramModel(image_view) assert model.view_cuts == image_view.get_cut_levels() def test_bins(): model = histogram.HistogramModel(image_view) assert model.bins == model._bins # Test Setter model.bins = 42 assert model.bins == 42 assert model.bins == model._bins def test_model_data(): model = histogram.HistogramModel(image_view) assert np.array_equal(model.data, image_view.get_image().data) def test_model_register(): model = histogram.HistogramModel(image_view) mock_view = QtWidgets.QWidget() model.register(mock_view) assert mock_view in model._views def test_model_unregister(): model = histogram.HistogramModel(image_view) mock_view = QtWidgets.QWidget() model.register(mock_view) assert mock_view in model._views model.unregister(mock_view) assert mock_view not in model._views def test_model_restore(): model = histogram.HistogramModel(image_view) assert model.cuts == model.view_cuts image_view.cut_levels(24, 42) model.cuts = 10, 100 model.restore() assert model.cuts == model.view_cuts def test_model__set_view_cuts(): model = histogram.HistogramModel(image_view) model._cut_low = 24 model._cut_high = 42 model._set_view_cuts() assert model.view_cuts == (24, 42) def test_controller_set_cut_low(): model = histogram.HistogramModel(image_view) test_hist = histogram.Histogram(model) test_controller = histogram.HistogramController(model, test_hist) test_controller.set_cut_low(24) assert model.cut_low == 24 assert model.view_cuts[0] == 24 def test_controller_set_cut_high(): model = histogram.HistogramModel(image_view) test_hist = histogram.Histogram(model) test_controller = histogram.HistogramController(model, test_hist) test_controller.set_cut_high(42) assert model.cut_high == 42 assert model.view_cuts[1] == 42 def test_controller_set_cuts(): model = histogram.HistogramModel(image_view) test_hist = histogram.Histogram(model) test_controller = histogram.HistogramController(model, test_hist) test_controller.set_cuts(10, 100) assert model.cut_low == 10 assert model.cut_high == 100 assert model.cuts == (10, 100) assert model.view_cuts == (10, 100) def test_controller_set_bins(): model = histogram.HistogramModel(image_view) test_hist = histogram.Histogram(model) test_controller = histogram.HistogramController(model, test_hist) test_controller.set_bins(50) assert model.bins == 50 def test_controller_restore(): model = histogram.HistogramModel(image_view) def_cuts = model.view_cuts test_hist = histogram.Histogram(model) test_controller = histogram.HistogramController(model, test_hist) model.cuts = 24, 42 image_view.cut_levels(*def_cuts) test_controller.restore() assert model.cuts != (24, 42) assert model.cuts == def_cuts assert model.view_cuts == def_cuts def test_histogram_init(): model = histogram.HistogramModel(image_view) test_hist = histogram.Histogram(model) assert test_hist.model == model assert test_hist in model._views assert test_hist.sizePolicy().hasHeightForWidth() assert test_hist._right_vline is None assert test_hist._left_vline is None def test_histogram_set_vlines(): model = histogram.HistogramModel(image_view) test_hist = histogram.Histogram(model) test_hist._set_vlines() assert isinstance(test_hist._left_vline, Line2D) assert isinstance(test_hist._right_vline, Line2D) assert test_hist._left_vline.get_xdata()[0] == model.cut_low assert test_hist._right_vline.get_xdata()[0] == model.cut_high def test_histogram_change_cut_low(): model = histogram.HistogramModel(image_view) test_hist = histogram.Histogram(model) test_hist._set_vlines() model._cut_low = 24 test_hist.change_cut_low(draw=False) assert test_hist._left_vline.get_xdata()[0] == 24 assert test_hist._right_vline.get_xdata()[0] == model.cut_high def test_histogram_change_cut_high(): model = histogram.HistogramModel(image_view) test_hist = histogram.Histogram(model) test_hist._set_vlines() model._cut_high = 42 test_hist.change_cut_high(draw=False) assert test_hist._right_vline.get_xdata()[0] == 42 assert test_hist._left_vline.get_xdata()[0] == model.cut_low def test_histogram_change_cuts(): model = histogram.HistogramModel(image_view) test_hist = histogram.Histogram(model) test_hist._set_vlines() model._cut_low = 24 model._cut_high = 42 test_hist.change_cuts() assert test_hist._left_vline.get_xdata()[0] == 24 assert test_hist._right_vline.get_xdata()[0] == 42 def test_histogram_change_bins(): model = histogram.HistogramModel(image_view) test_hist = histogram.Histogram(model) test_hist.set_data() assert model.bins == 100 assert len(test_hist._ax.patches) == 100 model._bins = 50 test_hist.change_bins() assert len(test_hist._ax.patches) == 50 def get_xdata(ax, x): xdata, _ = ax.transform((x, 10)) return xdata # def test_histogram_move_line(qtbot): """Testing the move line is much more difficult than I thought Passing in the correct data points is very tough and I can't figure out exactly how to do so.""" def test_histogram_widget_change_cut_low(): model = histogram.HistogramModel(image_view) test_hist_widget = histogram.HistogramWidget(model) new_cut_low = model.cut_low - 3 model._cut_low = new_cut_low test_hist_widget.change_cut_low() assert float(test_hist_widget._cut_low_box.text()) == new_cut_low new_cut_low += 1.2 model._cut_low = new_cut_low test_hist_widget.change_cut_low() assert float(test_hist_widget._cut_low_box.text()) == new_cut_low def test_histogram_widget_change_cut_high(): model = histogram.HistogramModel(image_view) test_hist_widget = histogram.HistogramWidget(model) new_cut_high = model.cut_high + 3 model._cut_high = new_cut_high test_hist_widget.change_cut_high() assert float(test_hist_widget._cut_high_box.text()) == new_cut_high new_cut_high -= 1.2 model._cut_high = new_cut_high test_hist_widget.change_cut_high() assert float(test_hist_widget._cut_high_box.text()) == new_cut_high def test_histogram_widget_change_cuts(): model = histogram.HistogramModel(image_view) test_hist_widget = histogram.HistogramWidget(model) new_cut_high = model.cut_high + 3 model._cut_high = new_cut_high new_cut_low = model.cut_low - 3 model._cut_low = new_cut_low test_hist_widget.change_cuts() assert float(test_hist_widget._cut_low_box.text()) == new_cut_low assert float(test_hist_widget._cut_high_box.text()) == new_cut_high new_cut_high -= 1.2 model._cut_high = new_cut_high new_cut_low += 1.2 model._cut_low = new_cut_low test_hist_widget.change_cuts() assert float(test_hist_widget._cut_low_box.text()) == new_cut_low assert float(test_hist_widget._cut_high_box.text()) == new_cut_high def test_histogram_widget_change_bins(): model = histogram.HistogramModel(image_view) test_hist_widget = histogram.HistogramWidget(model) new_bins = model.bins + 20 model._bins = new_bins test_hist_widget.change_bins() assert int(test_hist_widget._bins_box.text()) == new_bins def test_histogram_widget_keyPressEvent(qtbot): window.show() qtbot.addWidget(window.histogram_widget) qtbot.addWidget(window) # Change only cut low new_cut_low = window.histogram.cut_low - 3 window.histogram_widget._cut_low_box.setText("%.3f" % (new_cut_low)) qtbot.keyPress(window.histogram_widget, QtCore.Qt.Key_Return) assert window.histogram.cut_low == new_cut_low # Change only cut high new_cut_high = window.histogram.cut_high + 3 window.histogram_widget._cut_high_box.setText("%.3f" % (new_cut_high)) qtbot.keyPress(window.histogram_widget, QtCore.Qt.Key_Return) assert window.histogram.cut_high == new_cut_high # Change both cuts new_cut_low += 1.5 new_cut_high -= 1.5 window.histogram_widget._cut_low_box.setText("%.3f" % (new_cut_low)) window.histogram_widget._cut_high_box.setText("%.3f" % (new_cut_high)) qtbot.keyPress(window.histogram_widget, QtCore.Qt.Key_Return) assert window.histogram.cut_low == new_cut_low assert window.histogram.cut_high == new_cut_high # Change the bins new_bins = window.histogram.bins + 50 window.histogram_widget._bins_box.setText("%d" % (new_bins)) qtbot.keyPress(window.histogram_widget, QtCore.Qt.Key_Return) assert window.histogram.bins == new_bins assert window.histogram.cut_low == new_cut_low assert window.histogram.cut_high == new_cut_high # Change all new_cut_low += 1.5 new_cut_high -= 1.5 window.histogram_widget._cut_low_box.setText("%.3f" % (new_cut_low)) window.histogram_widget._cut_high_box.setText("%.3f" % (new_cut_high)) new_bins -= 25 window.histogram_widget._bins_box.setText("%d" % (new_bins)) qtbot.keyPress(window.histogram_widget, QtCore.Qt.Key_Return) assert window.histogram.bins == new_bins assert window.histogram.cut_low == new_cut_low assert window.histogram.cut_high == new_cut_high
bsd-3-clause
avalentino/pyepr
doc/examples/export_gdalvrt.py
1
5903
#!/usr/bin/env python3 import os import epr from osgeo import gdal epr_to_gdal_type = { epr.E_TID_UNKNOWN: gdal.GDT_Unknown, epr.E_TID_UCHAR: gdal.GDT_Byte, epr.E_TID_CHAR: gdal.GDT_Byte, epr.E_TID_USHORT: gdal.GDT_UInt16, epr.E_TID_SHORT: gdal.GDT_Int16, epr.E_TID_UINT: gdal.GDT_UInt32, epr.E_TID_INT: gdal.GDT_Int32, epr.E_TID_FLOAT: gdal.GDT_Float32, epr.E_TID_DOUBLE: gdal.GDT_Float64, #epr.E_TID_STRING: gdal.GDT_Unknown, #epr.E_TID_SPARE: gdal.GDT_Unknown, #epr.E_TID_TIME: gdal.GDT_Unknown, } def epr2gdal_band(band, vrt): product = band.product dataset = band.dataset record = dataset.read_record(0) field = record.get_field_at(band._field_index - 1) ysize = product.get_scene_height() xsize = product.get_scene_width() if isinstance(vrt, gdal.Dataset): if (vrt.RasterYSize, vrt.RasterXSize) != (ysize, xsize): raise ValueError('dataset size do not match') gdal_ds = vrt elif os.path.exists(vrt): gdal_ds = gdal.Open(vrt, gdal.GA_Update) if gdal_ds is None: raise RuntimeError('unable to open "{}"'.format(vrt)) driver = gdal_ds.GetDriver() if driver.ShortName != 'VRT': raise TypeError('unexpected GDAL driver ({}). ' 'VRT driver expected'.format(driver.ShortName)) else: driver = gdal.GetDriverByName('VRT') if driver is None: raise RuntimeError('unable to get driver "VRT"') gdal_ds = driver.Create(vrt, xsize, ysize, 0) if gdal_ds is None: raise RuntimeError('unable to create "{}" dataset'.format(vrt)) filename = os.pathsep.join(product.file_path.split('/')) # denormalize offset = dataset.get_dsd().ds_offset + field.get_offset() line_offset = record.tot_size pixel_offset = epr.get_data_type_size(field.get_type()) if band.sample_model == epr.E_SMOD_1OF2: pixel_offset *= 2 elif band.sample_model == epr.E_SMOD_2OF2: offset += pixel_offset pixel_offset *= 2 options = [ 'subClass=VRTRawRasterBand', 'SourceFilename={}'.format(filename), 'ImageOffset={}'.format(offset), 'LineOffset={}'.format(line_offset), 'PixelOffset={}'.format(pixel_offset), 'ByteOrder=MSB', ] gtype = epr_to_gdal_type[field.get_type()] ret = gdal_ds.AddBand(gtype, options=options) if ret != gdal.CE_None: raise RuntimeError( 'unable to add VRTRawRasterBand to "{}"'.format(vrt)) gdal_band = gdal_ds.GetRasterBand(gdal_ds.RasterCount) gdal_band.SetDescription(band.description) metadata = { 'name': band.get_name(), 'dataset_name': dataset.get_name(), 'dataset_description': dataset.description, 'lines_mirrored': str(band.lines_mirrored), 'sample_model': epr.get_sample_model_name(band.sample_model), 'scaling_factor': str(band.scaling_factor), 'scaling_offset': str(band.scaling_offset), 'scaling_method': epr.get_scaling_method_name(band.scaling_method), 'spectr_band_index': str(band.spectr_band_index), 'unit': band.unit if band.unit else '', 'bm_expr': band.bm_expr if band.bm_expr else '', } gdal_band.SetMetadata(metadata) return gdal_ds def epr2gdal(product, vrt, overwrite_existing=False): if isinstance(product, str): filename = product product = epr.open(filename) ysize = product.get_scene_height() xsize = product.get_scene_width() if os.path.exists(vrt) and not overwrite_existing: raise ValueError('unable to create "{0}". Already exists'.format(vrt)) driver = gdal.GetDriverByName('VRT') if driver is None: raise RuntimeError('unable to get driver "VRT"') gdal_ds = driver.Create(vrt, xsize, ysize, 0) if gdal_ds is None: raise RuntimeError('unable to create "{}" dataset'.format(vrt)) metadata = { 'id_string': product.id_string, 'meris_iodd_version': str(product.meris_iodd_version), 'dataset_names': ','.join(product.get_dataset_names()), 'num_datasets': str(product.get_num_datasets()), 'num_dsds': str(product.get_num_dsds()), } gdal_ds.SetMetadata(metadata) mph = product.get_mph() metadata = str(mph).replace(' = ', '=').split('\n') gdal_ds.SetMetadata(metadata, 'MPH') sph = product.get_sph() metadata = str(sph).replace(' = ', '=').split('\n') gdal_ds.SetMetadata(metadata, 'SPH') for band in product.bands(): epr2gdal_band(band, gdal_ds) # @TODO: set geographic info return gdal_ds if __name__ == '__main__': filename = 'MER_LRC_2PTGMV20000620_104318_00000104X000_00000_00000_0001.N1' vrtfilename = os.path.splitext(filename)[0] + '.vrt' gdal_ds = epr2gdal(filename, vrtfilename) with epr.open(filename) as product: band_index = product.get_band_names().index('water_vapour') band = product.get_band('water_vapour') eprdata = band.read_as_array() unit = band.unit lines_mirrored = band.lines_mirrored scaling_offset = band.scaling_offset scaling_factor = band.scaling_factor gdal_band = gdal_ds.GetRasterBand(band_index + 1) vrtdata = gdal_band.ReadAsArray() if lines_mirrored: vrtdata = vrtdata[:, ::-1] vrtdata = vrtdata * scaling_factor + scaling_offset print('Max absolute error:', abs(vrtdata - eprdata).max()) # plot from matplotlib import pyplot as plt plt.figure() plt.subplot(2, 1, 1) plt.imshow(eprdata) plt.grid(True) cb = plt.colorbar() cb.set_label(unit) plt.title('EPR data') plt.subplot(2, 1, 2) plt.imshow(vrtdata) plt.grid(True) cb = plt.colorbar() cb.set_label(unit) plt.title('VRT data') plt.show()
gpl-3.0
josauder/procedural_city_generation
procedural_city_generation/roadmap/config.py
2
3544
# -*- coding:utf-8 -*- from __future__ import division import matplotlib.image as mpimg import matplotlib.pyplot as plt import numpy as np import os class Global_Lists: def __init__(self): self.vertex_list=[] self.vertex_queue=[] self.tree=None def config(): """ Starts the program up with all necessary things. Reads the inputs, creates the Singleton objects properly, sets up the heightmap for later, makes sure all Vertices in the axiom have the correct neighbor. Could need a rework in which the Singletons are unified and not broken as they are now. Returns ------- variables : Variables object Singleton with all numeric values which are not to be changed at runtime singleton.global_lists : singleton.global_lists object Singleton with the Global Lists which will be altered at runtime """ import json from collections import namedtuple import os import procedural_city_generation from procedural_city_generation.additional_stuff.Singleton import Singleton path=os.path.dirname(procedural_city_generation.__file__) singleton=Singleton("roadmap") #Creates Singleton-Variables object from namedtuple from procedural_city_generation.roadmap.Vertex import Vertex, set_plotbool #Creates Vertex objects from coordinates singleton.axiom=[Vertex(np.array([float(x[0]), float(x[1])])) for x in singleton.axiom] singleton.border=np.array([singleton.border_x, singleton.border_y]) set_plotbool(singleton.plot) #Finds the longest possible length of a connection between to vertices singleton.maxLength=max(singleton.radiallMax, singleton.gridlMax, singleton.organiclMax, singleton.minor_roadlMax, singleton.seedlMax) import os from procedural_city_generation.roadmap.config_functions.input_image_setup import input_image_setup singleton.img, singleton.img2=input_image_setup(singleton.rule_image_name, singleton.density_image_name) with open (path+"/temp/"+singleton.output_name+"_densitymap.txt", 'w') as f: f.write(singleton.density_image_name.split(".")[0]+"diffused.png") from procedural_city_generation.roadmap.config_functions.find_radial_centers import find_radial_centers singleton.center=find_radial_centers(singleton) singleton.center= [np.array([singleton.border[0]*((x[1]/singleton.img.shape[1])-0.5)*2, singleton.border[1]*(((singleton.img.shape[0]-x[0])/singleton.img.shape[0])-0.5)*2]) for x in singleton.center] from procedural_city_generation.roadmap.config_functions.setup_heightmap import setup_heightmap setup_heightmap(singleton, path) singleton.global_lists=Global_Lists() singleton.global_lists.vertex_list.extend(singleton.axiom) singleton.global_lists.coordsliste=[x.coords for x in singleton.global_lists.vertex_list] def setNeighbours(vertex): """ Correctly Sets up the neighbors for a vertex from the axiom. Parameters ---------- vertex : vertex Object """ d=np.inf neighbour=None for v in singleton.axiom: if v is not vertex: dneu=np.linalg.norm(v.coords-vertex.coords) if dneu<d: d=dneu neighbour=v vertex.neighbours=[neighbour] for k in singleton.axiom: setNeighbours(k) from scipy.spatial import cKDTree singleton.global_lists.tree=cKDTree(singleton.global_lists.coordsliste, leafsize=160) return singleton
mpl-2.0
RPGOne/Skynet
test_estimators.py
2
2065
# Copyright 2015-present Scikit Flow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tensorflow as tf import random from sklearn import datasets, metrics from sklearn.cross_validation import train_test_split import skflow class CustomOptimizer(tf.test.TestCase): def testIrisMomentum(self): random.seed(42) iris = datasets.load_iris() X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2, random_state=42) # setup exponential decay function def exp_decay(global_step): return tf.train.exponential_decay( learning_rate=0.1, global_step=global_step, decay_steps=100, decay_rate=0.001) custom_optimizer = lambda x: tf.train.MomentumOptimizer(x, 0.9) classifier = skflow.TensorFlowDNNClassifier(hidden_units=[10, 20, 10], n_classes=3, steps=800, learning_rate=exp_decay, optimizer=custom_optimizer) classifier.fit(X_train, y_train) score = metrics.accuracy_score(y_test, classifier.predict(X_test)) self.assertGreater(score, 0.7, "Failed with score = {0}".format(score)) if __name__ == "__main__": tf.test.main()
bsd-3-clause
etherkit/OpenBeacon2
client/macos/venv/lib/python3.8/site-packages/PyInstaller/hooks/hook-matplotlib.backends.py
4
3224
#----------------------------------------------------------------------------- # Copyright (c) 2013-2020, PyInstaller Development Team. # # Distributed under the terms of the GNU General Public License (version 2 # or later) with exception for distributing the bootloader. # # The full license is in the file COPYING.txt, distributed with this software. # # SPDX-License-Identifier: (GPL-2.0-or-later WITH Bootloader-exception) #----------------------------------------------------------------------------- from PyInstaller.compat import is_darwin from PyInstaller.utils.hooks import ( eval_statement, exec_statement, logger) def get_matplotlib_backend_module_names(): """ List the names of all matplotlib backend modules importable under the current Python installation. Returns ---------- list List of the fully-qualified names of all such modules. """ # Statement safely importing a single backend module. import_statement = """ import os, sys # Preserve stdout. sys_stdout = sys.stdout try: # Redirect output printed by this importation to "/dev/null", preventing # such output from being erroneously interpreted as an error. with open(os.devnull, 'w') as dev_null: sys.stdout = dev_null __import__('%s') # If this is an ImportError, print this exception's message without a traceback. # ImportError messages are human-readable and require no additional context. except ImportError as exc: sys.stdout = sys_stdout print(exc) # Else, print this exception preceded by a traceback. traceback.print_exc() # prints to stderr rather than stdout and must not be called here! except Exception: sys.stdout = sys_stdout import traceback print(traceback.format_exc()) """ # List of the human-readable names of all available backends. backend_names = eval_statement( 'import matplotlib; print(matplotlib.rcsetup.all_backends)') # List of the fully-qualified names of all importable backend modules. module_names = [] # If the current system is not OS X and the "CocoaAgg" backend is available, # remove this backend from consideration. Attempting to import this backend # on non-OS X systems halts the current subprocess without printing output # or raising exceptions, preventing its reliable detection. if not is_darwin and 'CocoaAgg' in backend_names: backend_names.remove('CocoaAgg') # For safety, attempt to import each backend in a unique subprocess. for backend_name in backend_names: module_name = 'matplotlib.backends.backend_%s' % backend_name.lower() stdout = exec_statement(import_statement % module_name) # If no output was printed, this backend is importable. if not stdout: module_names.append(module_name) logger.info(' Matplotlib backend "%s": added' % backend_name) else: logger.info(' Matplotlib backend "%s": ignored\n %s' % (backend_name, stdout)) return module_names # Freeze all importable backends, as PyInstaller is unable to determine exactly # which backends are required by the current program. hiddenimports = get_matplotlib_backend_module_names()
gpl-3.0
ashhher3/scikit-learn
sklearn/linear_model/logistic.py
6
55848
""" Logistic Regression """ # Author: Gael Varoquaux <[email protected]> # Fabian Pedregosa <[email protected]> # Alexandre Gramfort <[email protected]> # Manoj Kumar <[email protected]> # Lars Buitinck # Simon Wu <[email protected]> import numbers import warnings import numpy as np from scipy import optimize, sparse from .base import LinearClassifierMixin, SparseCoefMixin, BaseEstimator from ..feature_selection.from_model import _LearntSelectorMixin from ..preprocessing import LabelEncoder, LabelBinarizer from ..svm.base import _fit_liblinear from ..utils import check_array, check_consistent_length, compute_class_weight from ..utils.extmath import (logsumexp, log_logistic, safe_sparse_dot, squared_norm) from ..utils.optimize import newton_cg from ..utils.validation import (as_float_array, DataConversionWarning, check_X_y) from ..utils.fixes import expit from ..externals.joblib import Parallel, delayed from ..cross_validation import _check_cv from ..externals import six from ..metrics import SCORERS # .. some helper functions for logistic_regression_path .. def _intercept_dot(w, X, y): """Computes y * np.dot(X, w). It takes into consideration if the intercept should be fit or not. Parameters ---------- w : ndarray, shape (n_features,) or (n_features + 1,) Coefficient vector. X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. y : ndarray, shape (n_samples,) Array of labels. """ c = 0. if w.size == X.shape[1] + 1: c = w[-1] w = w[:-1] z = safe_sparse_dot(X, w) + c return w, c, y * z def _logistic_loss_and_grad(w, X, y, alpha, sample_weight=None): """Computes the logistic loss and gradient. Parameters ---------- w : ndarray, shape (n_features,) or (n_features + 1,) Coefficient vector. X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. y : ndarray, shape (n_samples,) Array of labels. alpha : float Regularization parameter. alpha is equal to 1 / C. sample_weight : ndarray, shape (n_samples,) optional Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. Returns ------- out : float Logistic loss. grad : ndarray, shape (n_features,) or (n_features + 1,) Logistic gradient. """ _, n_features = X.shape grad = np.empty_like(w) w, c, yz = _intercept_dot(w, X, y) if sample_weight is None: sample_weight = np.ones(y.shape[0]) # Logistic loss is the negative of the log of the logistic function. out = -np.sum(sample_weight * log_logistic(yz)) + .5 * alpha * np.dot(w, w) z = expit(yz) z0 = sample_weight * (z - 1) * y grad[:n_features] = safe_sparse_dot(X.T, z0) + alpha * w # Case where we fit the intercept. if grad.shape[0] > n_features: grad[-1] = z0.sum() return out, grad def _logistic_loss(w, X, y, alpha, sample_weight=None): """Computes the logistic loss. Parameters ---------- w : ndarray, shape (n_features,) or (n_features + 1,) Coefficient vector. X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. y : ndarray, shape (n_samples,) Array of labels. alpha : float Regularization parameter. alpha is equal to 1 / C. sample_weight : ndarray, shape (n_samples,) optional Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. Returns ------- out : float Logistic loss. """ w, c, yz = _intercept_dot(w, X, y) if sample_weight is None: sample_weight = np.ones(y.shape[0]) # Logistic loss is the negative of the log of the logistic function. out = -np.sum(sample_weight * log_logistic(yz)) + .5 * alpha * np.dot(w, w) return out def _logistic_loss_grad_hess(w, X, y, alpha, sample_weight=None): """Computes the logistic loss, gradient and the Hessian. Parameters ---------- w : ndarray, shape (n_features,) or (n_features + 1,) Coefficient vector. X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. y : ndarray, shape (n_samples,) Array of labels. alpha : float Regularization parameter. alpha is equal to 1 / C. sample_weight : ndarray, shape (n_samples,) optional Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. Returns ------- out : float Logistic loss. grad : ndarray, shape (n_features,) or (n_features + 1,) Logistic gradient. Hs : callable Function that takes the gradient as a parameter and returns the matrix product of the Hessian and gradient. """ n_samples, n_features = X.shape grad = np.empty_like(w) fit_intercept = grad.shape[0] > n_features w, c, yz = _intercept_dot(w, X, y) if sample_weight is None: sample_weight = np.ones(y.shape[0]) # Logistic loss is the negative of the log of the logistic function. out = -np.sum(sample_weight * log_logistic(yz)) + .5 * alpha * np.dot(w, w) z = expit(yz) z0 = sample_weight * (z - 1) * y grad[:n_features] = safe_sparse_dot(X.T, z0) + alpha * w # Case where we fit the intercept. if fit_intercept: grad[-1] = z0.sum() # The mat-vec product of the Hessian d = sample_weight * z * (1 - z) if sparse.issparse(X): dX = safe_sparse_dot(sparse.dia_matrix((d, 0), shape=(n_samples, n_samples)), X) else: # Precompute as much as possible dX = d[:, np.newaxis] * X if fit_intercept: # Calculate the double derivative with respect to intercept # In the case of sparse matrices this returns a matrix object. dd_intercept = np.squeeze(np.array(dX.sum(axis=0))) def Hs(s): ret = np.empty_like(s) ret[:n_features] = X.T.dot(dX.dot(s[:n_features])) ret[:n_features] += alpha * s[:n_features] # For the fit intercept case. if fit_intercept: ret[:n_features] += s[-1] * dd_intercept ret[-1] = dd_intercept.dot(s[:n_features]) ret[-1] += d.sum() * s[-1] return ret return out, grad, Hs def _multinomial_loss(w, X, Y, alpha, sample_weight): """Computes multinomial loss and class probabilities. Parameters ---------- w : ndarray, shape (n_classes * n_features,) or (n_classes * (n_features + 1),) Coefficient vector. X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Y : ndarray, shape (n_samples, n_classes) Transformed labels according to the output of LabelBinarizer. alpha : float Regularization parameter. alpha is equal to 1 / C. sample_weight : ndarray, shape (n_samples,) optional Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. Returns ------- loss : float Multinomial loss. p : ndarray, shape (n_samples, n_classes) Estimated class probabilities. w : ndarray, shape (n_classes, n_features) Reshaped param vector excluding intercept terms. """ n_classes = Y.shape[1] n_features = X.shape[1] fit_intercept = w.size == (n_classes * (n_features + 1)) w = w.reshape(n_classes, -1) sample_weight = sample_weight[:, np.newaxis] if fit_intercept: intercept = w[:, -1] w = w[:, :-1] else: intercept = 0 p = safe_sparse_dot(X, w.T) p += intercept p -= logsumexp(p, axis=1)[:, np.newaxis] loss = -(sample_weight * Y * p).sum() loss += 0.5 * alpha * squared_norm(w) p = np.exp(p, p) return loss, p, w def _multinomial_loss_grad(w, X, Y, alpha, sample_weight): """Computes the multinomial loss, gradient and class probabilities. Parameters ---------- w : ndarray, shape (n_classes * n_features,) or (n_classes * (n_features + 1),) Coefficient vector. X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Y : ndarray, shape (n_samples, n_classes) Transformed labels according to the output of LabelBinarizer. alpha : float Regularization parameter. alpha is equal to 1 / C. sample_weight : ndarray, shape (n_samples,) optional Array of weights that are assigned to individual samples. Returns ------- loss : float Multinomial loss. grad : ndarray, shape (n_classes * n_features,) or (n_classes * (n_features + 1),) Ravelled gradient of the multinomial loss. p : ndarray, shape (n_samples, n_classes) Estimated class probabilities """ n_classes = Y.shape[1] n_features = X.shape[1] fit_intercept = (w.size == n_classes * (n_features + 1)) grad = np.zeros((n_classes, n_features + bool(fit_intercept))) loss, p, w = _multinomial_loss(w, X, Y, alpha, sample_weight) sample_weight = sample_weight[:, np.newaxis] diff = sample_weight * (p - Y) grad[:, :n_features] = safe_sparse_dot(diff.T, X) grad[:, :n_features] += alpha * w if fit_intercept: grad[:, -1] = diff.sum(axis=0) return loss, grad.ravel(), p def _multinomial_loss_grad_hess(w, X, Y, alpha, sample_weight): """ Provides multinomial loss, gradient, and a function for computing hessian vector product. Parameters ---------- w : ndarray, shape (n_classes * n_features,) or (n_classes * (n_features + 1),) Coefficient vector. X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Y : ndarray, shape (n_samples, n_classes) Transformed labels according to the output of LabelBinarizer. alpha : float Regularization parameter. alpha is equal to 1 / C. sample_weight : ndarray, shape (n_samples,) optional Array of weights that are assigned to individual samples. Returns ------- loss : float Multinomial loss. grad : array, shape (n_classes * n_features,) or (n_classes * (n_features + 1),) Ravelled gradient of the multinomial loss. hessp : callable Function that takes in a vector input of shape (n_classes * n_features) or (n_classes * (n_features + 1)) and returns matrix-vector product with hessian. References ---------- Barak A. Pearlmutter (1993). Fast Exact Multiplication by the Hessian. http://www.bcl.hamilton.ie/~barak/papers/nc-hessian.pdf """ n_features = X.shape[1] n_classes = Y.shape[1] fit_intercept = w.size == (n_classes * (n_features + 1)) loss, grad, p = _multinomial_loss_grad(w, X, Y, alpha, sample_weight) sample_weight = sample_weight[:, np.newaxis] # Hessian-vector product derived by applying the R-operator on the gradient # of the multinomial loss function. def hessp(v): v = v.reshape(n_classes, -1) if fit_intercept: inter_terms = v[:, -1] v = v[:, :-1] else: inter_terms = 0 # r_yhat holds the result of applying the R-operator on the multinomial # estimator. r_yhat = safe_sparse_dot(X, v.T) r_yhat += inter_terms r_yhat += (-p * r_yhat).sum(axis=1)[:, np.newaxis] r_yhat *= p r_yhat *= sample_weight hessProd = np.zeros((n_classes, n_features + bool(fit_intercept))) hessProd[:, :n_features] = safe_sparse_dot(r_yhat.T, X) hessProd[:, :n_features] += v * alpha if fit_intercept: hessProd[:, -1] = r_yhat.sum(axis=0) return hessProd.ravel() return loss, grad, hessp def logistic_regression_path(X, y, pos_class=None, Cs=10, fit_intercept=True, max_iter=100, tol=1e-4, verbose=0, solver='lbfgs', coef=None, copy=True, class_weight=None, dual=False, penalty='l2', intercept_scaling=1., multi_class='ovr'): """Compute a Logistic Regression model for a list of regularization parameters. This is an implementation that uses the result of the previous model to speed up computations along the set of solutions, making it faster than sequentially calling LogisticRegression for the different parameters. Parameters ---------- X : array-like or sparse matrix, shape (n_samples, n_features) Input data. y : array-like, shape (n_samples,) Input data, target values. Cs : int | array-like, shape (n_cs,) List of values for the regularization parameter or integer specifying the number of regularization parameters that should be used. In this case, the parameters will be chosen in a logarithmic scale between 1e-4 and 1e4. pos_class : int, None The class with respect to which we perform a one-vs-all fit. If None, then it is assumed that the given problem is binary. fit_intercept : bool Whether to fit an intercept for the model. In this case the shape of the returned array is (n_cs, n_features + 1). max_iter : int Maximum number of iterations for the solver. tol : float Stopping criterion. For the newton-cg and lbfgs solvers, the iteration will stop when ``max{|g_i | i = 1, ..., n} <= tol`` where ``g_i`` is the i-th component of the gradient. verbose : int For the liblinear and lbfgs solvers set verbose to any positive number for verbosity. solver : {'lbfgs', 'newton-cg', 'liblinear'} Numerical solver to use. coef : array-like, shape (n_features,), default None Initialization value for coefficients of logistic regression. copy : bool, default True Whether or not to produce a copy of the data. Setting this to True will be useful in cases, when logistic_regression_path is called repeatedly with the same data, as y is modified along the path. class_weight : {dict, 'auto'}, optional Over-/undersamples the samples of each class according to the given weights. If not given, all classes are supposed to have weight one. The 'auto' mode selects weights inversely proportional to class frequencies in the training set. dual : bool Dual or primal formulation. Dual formulation is only implemented for l2 penalty with liblinear solver. Prefer dual=False when n_samples > n_features. penalty : str, 'l1' or 'l2' Used to specify the norm used in the penalization. The newton-cg and lbfgs solvers support only l2 penalties. intercept_scaling : float, default 1. This parameter is useful only when the solver 'liblinear' is used and self.fit_intercept is set to True. In this case, x becomes [x, self.intercept_scaling], i.e. a "synthetic" feature with constant value equals to intercept_scaling is appended to the instance vector. The intercept becomes intercept_scaling * synthetic feature weight Note! the synthetic feature weight is subject to l1/l2 regularization as all other features. To lessen the effect of regularization on synthetic feature weight (and therefore on the intercept) intercept_scaling has to be increased. multi_class : str, {'ovr', 'multinomial'} Multiclass option can be either 'ovr' or 'multinomial'. If the option chosen is 'ovr', then a binary problem is fit for each label. Else the loss minimised is the multinomial loss fit across the entire probability distribution. Works only for the 'lbfgs' solver. Returns ------- coefs : ndarray, shape (n_cs, n_features) or (n_cs, n_features + 1) List of coefficients for the Logistic Regression model. If fit_intercept is set to True then the second dimension will be n_features + 1, where the last item represents the intercept. Cs : ndarray Grid of Cs used for cross-validation. Notes ----- You might get slighly different results with the solver liblinear than with the others since this uses LIBLINEAR which penalizes the intercept. """ if isinstance(Cs, numbers.Integral): Cs = np.logspace(-4, 4, Cs) if multi_class not in ['multinomial', 'ovr']: raise ValueError("multi_class can be either 'multinomial' or 'ovr'" "got %s" % multi_class) if solver not in ['liblinear', 'newton-cg', 'lbfgs']: raise ValueError("Logistic Regression supports only liblinear," " newton-cg and lbfgs solvers. got %s" % solver) if multi_class == 'multinomial' and solver == 'liblinear': raise ValueError("Solver %s cannot solve problems with " "a multinomial backend." % solver) if solver != 'liblinear': if penalty != 'l2': raise ValueError("newton-cg and lbfgs solvers support only " "l2 penalties, got %s penalty." % penalty) if dual: raise ValueError("newton-cg and lbfgs solvers support only " "dual=False, got dual=%s" % dual) # Preprocessing. X = check_array(X, accept_sparse='csr', dtype=np.float64) y = check_array(y, ensure_2d=False, copy=copy) _, n_features = X.shape check_consistent_length(X, y) classes = np.unique(y) if pos_class is None and multi_class != 'multinomial': if (classes.size > 2): raise ValueError('To fit OvR, use the pos_class argument') # np.unique(y) gives labels in sorted order. pos_class = classes[1] # If class_weights is a dict (provided by the user), the weights # are assigned to the original labels. If it is "auto", then # the class_weights are assigned after masking the labels with a OvR. sample_weight = np.ones(X.shape[0]) le = LabelEncoder() if isinstance(class_weight, dict): if solver == "liblinear": if classes.size == 2: # Reconstruct the weights with keys 1 and -1 temp = {1: class_weight[pos_class], -1: class_weight[classes[0]]} class_weight = temp.copy() else: raise ValueError("In LogisticRegressionCV the liblinear " "solver cannot handle multiclass with " "class_weight of type dict. Use the lbfgs, " "newton-cg solvers or set " "class_weight='auto'") else: class_weight_ = compute_class_weight(class_weight, classes, y) sample_weight = class_weight_[le.fit_transform(y)] # For doing a ovr, we need to mask the labels first. for the # multinomial case this is not necessary. if multi_class == 'ovr': w0 = np.zeros(n_features + int(fit_intercept)) mask_classes = [-1, 1] mask = (y == pos_class) y[mask] = 1 y[~mask] = -1 # To take care of object dtypes, i.e 1 and -1 are in the form of # strings. y = as_float_array(y, copy=False) else: lbin = LabelBinarizer() Y_bin = lbin.fit_transform(y) if Y_bin.shape[1] == 1: Y_bin = np.hstack([1 - Y_bin, Y_bin]) w0 = np.zeros((Y_bin.shape[1], n_features + int(fit_intercept)), order='F') mask_classes = classes if class_weight == "auto": class_weight_ = compute_class_weight(class_weight, mask_classes, y) sample_weight = class_weight_[le.fit_transform(y)] if coef is not None: # it must work both giving the bias term and not if multi_class == 'ovr': if not coef.size in (n_features, w0.size): raise ValueError( 'Initialization coef is of shape %d, expected shape ' '%d or %d' % (coef.size, n_features, w0.size) ) w0[:coef.size] = coef else: # For binary problems coef.shape[0] should be 1, otherwise it # should be classes.size. n_vectors = classes.size if n_vectors == 2: n_vectors = 1 if (coef.shape[0] != n_vectors or coef.shape[1] not in (n_features, n_features + 1)): raise ValueError( 'Initialization coef is of shape (%d, %d), expected ' 'shape (%d, %d) or (%d, %d)' % ( coef.shape[0], coef.shape[1], classes.size, n_features, classes.size, n_features + 1 ) ) w0[:, :coef.shape[1]] = coef if multi_class == 'multinomial': # fmin_l_bfgs_b and newton-cg accepts only ravelled parameters. w0 = w0.ravel() target = Y_bin if solver == 'lbfgs': func = lambda x, *args: _multinomial_loss_grad(x, *args)[0:2] elif solver == 'newton-cg': func = lambda x, *args: _multinomial_loss(x, *args)[0] grad = lambda x, *args: _multinomial_loss_grad(x, *args)[1] hess = _multinomial_loss_grad_hess else: target = y if solver == 'lbfgs': func = _logistic_loss_and_grad elif solver == 'newton-cg': func = _logistic_loss grad = lambda x, *args: _logistic_loss_and_grad(x, *args)[1] hess = _logistic_loss_grad_hess coefs = list() for C in Cs: if solver == 'lbfgs': try: w0, loss, info = optimize.fmin_l_bfgs_b( func, w0, fprime=None, args=(X, target, 1. / C, sample_weight), iprint=(verbose > 0) - 1, pgtol=tol, maxiter=max_iter ) except TypeError: # old scipy doesn't have maxiter w0, loss, info = optimize.fmin_l_bfgs_b( func, w0, fprime=None, args=(X, target, 1. / C, sample_weight), iprint=(verbose > 0) - 1, pgtol=tol ) if info["warnflag"] == 1 and verbose > 0: warnings.warn("lbfgs failed to converge. Increase the number " "of iterations.") elif solver == 'newton-cg': args = (X, target, 1. / C, sample_weight) w0 = newton_cg(hess, func, grad, w0, args=args, maxiter=max_iter, tol=tol) elif solver == 'liblinear': coef_, intercept_, _, = _fit_liblinear( X, y, C, fit_intercept, intercept_scaling, class_weight, penalty, dual, verbose, max_iter, tol, ) if fit_intercept: w0 = np.concatenate([coef_.ravel(), intercept_]) else: w0 = coef_.ravel() else: raise ValueError("solver must be one of {'liblinear', 'lbfgs', " "'newton-cg'}, got '%s' instead" % solver) if multi_class == 'multinomial': multi_w0 = np.reshape(w0, (classes.size, -1)) if classes.size == 2: multi_w0 = multi_w0[1][np.newaxis, :] coefs.append(multi_w0) else: coefs.append(w0) return coefs, np.array(Cs) # helper function for LogisticCV def _log_reg_scoring_path(X, y, train, test, pos_class=None, Cs=10, scoring=None, fit_intercept=False, max_iter=100, tol=1e-4, class_weight=None, verbose=0, solver='lbfgs', penalty='l2', dual=False, copy=True, intercept_scaling=1., multi_class='ovr'): """Computes scores across logistic_regression_path Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target labels. train : list of indices The indices of the train set. test : list of indices The indices of the test set. pos_class : int, None The class with respect to which we perform a one-vs-all fit. If None, then it is assumed that the given problem is binary. Cs : list of floats | int Each of the values in Cs describes the inverse of regularization strength. If Cs is as an int, then a grid of Cs values are chosen in a logarithmic scale between 1e-4 and 1e4. If not provided, then a fixed set of values for Cs are used. scoring : callable For a list of scoring functions that can be used, look at :mod:`sklearn.metrics`. The default scoring option used is accuracy_score. fit_intercept : bool If False, then the bias term is set to zero. Else the last term of each coef_ gives us the intercept. max_iter : int Maximum number of iterations for the solver. tol : float Tolerance for stopping criteria. class_weight : {dict, 'auto'}, optional Over-/undersamples the samples of each class according to the given weights. If not given, all classes are supposed to have weight one. The 'auto' mode selects weights inversely proportional to class frequencies in the training set. verbose : int For the liblinear and lbfgs solvers set verbose to any positive number for verbosity. solver : {'lbfgs', 'newton-cg', 'liblinear'} Decides which solver to use. penalty : str, 'l1' or 'l2' Used to specify the norm used in the penalization. The newton-cg and lbfgs solvers support only l2 penalties. dual : bool Dual or primal formulation. Dual formulation is only implemented for l2 penalty with liblinear solver. Prefer dual=False when n_samples > n_features. intercept_scaling : float, default 1. This parameter is useful only when the solver 'liblinear' is used and self.fit_intercept is set to True. In this case, x becomes [x, self.intercept_scaling], i.e. a "synthetic" feature with constant value equals to intercept_scaling is appended to the instance vector. The intercept becomes intercept_scaling * synthetic feature weight Note! the synthetic feature weight is subject to l1/l2 regularization as all other features. To lessen the effect of regularization on synthetic feature weight (and therefore on the intercept) intercept_scaling has to be increased. multi_class : str, {'ovr', 'multinomial'} Multiclass option can be either 'ovr' or 'multinomial'. If the option chosen is 'ovr', then a binary problem is fit for each label. Else the loss minimised is the multinomial loss fit across the entire probability distribution. Works only for the 'lbfgs' solver. copy : bool, default True Whether or not to produce a copy of the data. Setting this to True will be useful in cases, when ``_log_reg_scoring_path`` is called repeatedly with the same data, as y is modified along the path. Returns ------- coefs : ndarray, shape (n_cs, n_features) or (n_cs, n_features + 1) List of coefficients for the Logistic Regression model. If fit_intercept is set to True then the second dimension will be n_features + 1, where the last item represents the intercept. Cs : ndarray Grid of Cs used for cross-validation. scores : ndarray, shape (n_cs,) Scores obtained for each Cs. """ log_reg = LogisticRegression(fit_intercept=fit_intercept) X_train = X[train] X_test = X[test] y_train = y[train] y_test = y[test] # The score method of Logistic Regression has a classes_ attribute. if multi_class == 'ovr': log_reg.classes_ = np.array([-1, 1]) elif multi_class == 'multinomial': log_reg.classes_ = np.unique(y_train) else: raise ValueError("multi_class should be either multinomial or ovr, " "got %d" % multi_class) if pos_class is not None: mask = (y_test == pos_class) y_test[mask] = 1 y_test[~mask] = -1 # To deal with object dtypes, we need to convert into an array of floats. y_test = as_float_array(y_test, copy=False) coefs, Cs = logistic_regression_path(X_train, y_train, Cs=Cs, fit_intercept=fit_intercept, solver=solver, max_iter=max_iter, class_weight=class_weight, copy=copy, pos_class=pos_class, multi_class=multi_class, tol=tol, verbose=verbose, dual=dual, penalty=penalty, intercept_scaling=intercept_scaling) scores = list() if isinstance(scoring, six.string_types): scoring = SCORERS[scoring] for w in coefs: if multi_class == 'ovr': w = w[np.newaxis, :] if fit_intercept: log_reg.coef_ = w[:, :-1] log_reg.intercept_ = w[:, -1] else: log_reg.coef_ = w log_reg.intercept_ = 0. if scoring is None: scores.append(log_reg.score(X_test, y_test)) else: scores.append(scoring(log_reg, X_test, y_test)) return coefs, Cs, np.array(scores) class LogisticRegression(BaseEstimator, LinearClassifierMixin, _LearntSelectorMixin, SparseCoefMixin): """Logistic Regression (aka logit, MaxEnt) classifier. In the multiclass case, the training algorithm uses the one-vs-rest (OvR) scheme if the 'multi_class' option is set to 'ovr' and uses the cross-entropy loss, if the 'multi_class' option is set to 'multinomial'. (Currently the 'multinomial' option is supported only by the 'lbfgs' and 'newton-cg' solvers.) This class implements regularized logistic regression using the `liblinear` library, newton-cg and lbfgs solvers. It can handle both dense and sparse input. Use C-ordered arrays or CSR matrices containing 64-bit floats for optimal performance; any other input format will be converted (and copied). The newton-cg and lbfgs solvers support only L2 regularization with primal formulation. The liblinear solver supports both L1 and L2 regularization, with a dual formulation only for the L2 penalty. Parameters ---------- penalty : str, 'l1' or 'l2' Used to specify the norm used in the penalization. The newton-cg and lbfgs solvers support only l2 penalties. dual : bool Dual or primal formulation. Dual formulation is only implemented for l2 penalty with liblinear solver. Prefer dual=False when n_samples > n_features. C : float, optional (default=1.0) Inverse of regularization strength; must be a positive float. Like in support vector machines, smaller values specify stronger regularization. fit_intercept : bool, default: True Specifies if a constant (a.k.a. bias or intercept) should be added the decision function. intercept_scaling : float, default: 1 Useful only if solver is liblinear. when self.fit_intercept is True, instance vector x becomes [x, self.intercept_scaling], i.e. a "synthetic" feature with constant value equals to intercept_scaling is appended to the instance vector. The intercept becomes intercept_scaling * synthetic feature weight Note! the synthetic feature weight is subject to l1/l2 regularization as all other features. To lessen the effect of regularization on synthetic feature weight (and therefore on the intercept) intercept_scaling has to be increased. class_weight : {dict, 'auto'}, optional Over-/undersamples the samples of each class according to the given weights. If not given, all classes are supposed to have weight one. The 'auto' mode selects weights inversely proportional to class frequencies in the training set. max_iter : int Useful only for the newton-cg and lbfgs solvers. Maximum number of iterations taken for the solvers to converge. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. solver : {'newton-cg', 'lbfgs', 'liblinear'} Algorithm to use in the optimization problem. tol : float, optional Tolerance for stopping criteria. multi_class : str, {'ovr', 'multinomial'} Multiclass option can be either 'ovr' or 'multinomial'. If the option chosen is 'ovr', then a binary problem is fit for each label. Else the loss minimised is the multinomial loss fit across the entire probability distribution. Works only for the 'lbfgs' solver. verbose : int For the liblinear and lbfgs solvers set verbose to any positive number for verbosity. Attributes ---------- coef_ : array, shape (n_classes, n_features) Coefficient of the features in the decision function. intercept_ : array, shape (n_classes,) Intercept (a.k.a. bias) added to the decision function. If `fit_intercept` is set to False, the intercept is set to zero. n_iter_ : int Maximum of the actual number of iterations across all classes. Valid only for the liblinear solver. See also -------- SGDClassifier : incrementally trained logistic regression (when given the parameter ``loss="log"``). sklearn.svm.LinearSVC : learns SVM models using the same algorithm. Notes ----- The underlying C implementation uses a random number generator to select features when fitting the model. It is thus not uncommon, to have slightly different results for the same input data. If that happens, try with a smaller tol parameter. Predict output may not match that of standalone liblinear in certain cases. See :ref:`differences from liblinear <liblinear_differences>` in the narrative documentation. References ---------- LIBLINEAR -- A Library for Large Linear Classification http://www.csie.ntu.edu.tw/~cjlin/liblinear/ Hsiang-Fu Yu, Fang-Lan Huang, Chih-Jen Lin (2011). Dual coordinate descent methods for logistic regression and maximum entropy models. Machine Learning 85(1-2):41-75. http://www.csie.ntu.edu.tw/~cjlin/papers/maxent_dual.pdf See also -------- sklearn.linear_model.SGDClassifier """ def __init__(self, penalty='l2', dual=False, tol=1e-4, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver='liblinear', max_iter=100, multi_class='ovr', verbose=0): self.penalty = penalty self.dual = dual self.tol = tol self.C = C self.fit_intercept = fit_intercept self.intercept_scaling = intercept_scaling self.class_weight = class_weight self.random_state = random_state self.solver = solver self.max_iter = max_iter self.multi_class = multi_class self.verbose = verbose def fit(self, X, y): """Fit the model according to the given training data. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) Target vector relative to X. Returns ------- self : object Returns self. """ if self.C < 0: raise ValueError("Penalty term must be positive; got (C=%r)" % self.C) X, y = check_X_y(X, y, accept_sparse='csr', dtype=np.float64, order="C") self.classes_ = np.unique(y) if self.solver not in ['liblinear', 'newton-cg', 'lbfgs']: raise ValueError( "Logistic Regression supports only liblinear, newton-cg and " "lbfgs solvers, Got solver=%s" % self.solver ) if self.solver == 'liblinear' and self.multi_class == 'multinomial': raise ValueError("Solver %s does not support a multinomial " "backend." % self.solver) if self.multi_class not in ['ovr', 'multinomial']: raise ValueError("multi_class should be either ovr or multinomial " "got %s" % self.multi_class) if self.solver == 'liblinear': self.coef_, self.intercept_, self.n_iter_ = _fit_liblinear( X, y, self.C, self.fit_intercept, self.intercept_scaling, self.class_weight, self.penalty, self.dual, self.verbose, self.max_iter, self.tol ) return self n_classes = len(self.classes_) classes_ = self.classes_ if n_classes < 2: raise ValueError("This solver needs samples of at least 2 classes" " in the data, but the data contains only one" " class: %r" % classes_[0]) if len(self.classes_) == 2: n_classes = 1 classes_ = classes_[1:] self.coef_ = list() self.intercept_ = np.zeros(n_classes) # Hack so that we iterate only once for the multinomial case. if self.multi_class == 'multinomial': classes_ = [None] for ind, class_ in enumerate(classes_): coef_, _ = logistic_regression_path( X, y, pos_class=class_, Cs=[self.C], fit_intercept=self.fit_intercept, tol=self.tol, verbose=self.verbose, solver=self.solver, multi_class=self.multi_class, max_iter=self.max_iter, class_weight=self.class_weight) self.coef_.append(coef_[0]) self.coef_ = np.squeeze(self.coef_) # For the binary case, this get squeezed to a 1-D array. if self.coef_.ndim == 1: self.coef_ = self.coef_[np.newaxis, :] self.coef_ = np.asarray(self.coef_) if self.fit_intercept: self.intercept_ = self.coef_[:, -1] self.coef_ = self.coef_[:, :-1] return self def predict_proba(self, X): """Probability estimates. The returned estimates for all classes are ordered by the label of classes. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- T : array-like, shape = [n_samples, n_classes] Returns the probability of the sample for each class in the model, where classes are ordered as they are in ``self.classes_``. """ return self._predict_proba_lr(X) def predict_log_proba(self, X): """Log of probability estimates. The returned estimates for all classes are ordered by the label of classes. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- T : array-like, shape = [n_samples, n_classes] Returns the log-probability of the sample for each class in the model, where classes are ordered as they are in ``self.classes_``. """ return np.log(self.predict_proba(X)) class LogisticRegressionCV(LogisticRegression, BaseEstimator, LinearClassifierMixin, _LearntSelectorMixin): """Logistic Regression CV (aka logit, MaxEnt) classifier. This class implements logistic regression using liblinear, newton-cg or LBFGS optimizer. The newton-cg and lbfgs solvers support only L2 regularization with primal formulation. The liblinear solver supports both L1 and L2 regularization, with a dual formulation only for the L2 penalty. For the grid of Cs values (that are set by default to be ten values in a logarithmic scale between 1e-4 and 1e4), the best hyperparameter is selected by the cross-validator StratifiedKFold, but it can be changed using the cv parameter. In the case of newton-cg and lbfgs solvers, we warm start along the path i.e guess the initial coefficients of the present fit to be the coefficients got after convergence in the previous fit, so in general it is supposed to be faster. For a multiclass problem, the hyperparameters for each class are computed using the best scores got by doing a one-vs-rest in parallel across all folds and classes. Hence this is not the true multinomial loss. Parameters ---------- Cs : list of floats | int Each of the values in Cs describes the inverse of regularization strength. If Cs is as an int, then a grid of Cs values are chosen in a logarithmic scale between 1e-4 and 1e4. Like in support vector machines, smaller values specify stronger regularization. fit_intercept : bool, default: True Specifies if a constant (a.k.a. bias or intercept) should be added the decision function. class_weight : {dict, 'auto'}, optional Over-/undersamples the samples of each class according to the given weights. If not given, all classes are supposed to have weight one. The 'auto' mode selects weights inversely proportional to class frequencies in the training set. cv : integer or cross-validation generator The default cross-validation generator used is Stratified K-Folds. If an integer is provided, then it is the number of folds used. See the module :mod:`sklearn.cross_validation` module for the list of possible cross-validation objects. penalty : str, 'l1' or 'l2' Used to specify the norm used in the penalization. The newton-cg and lbfgs solvers support only l2 penalties. dual : bool Dual or primal formulation. Dual formulation is only implemented for l2 penalty with liblinear solver. Prefer dual=False when n_samples > n_features. scoring : callabale Scoring function to use as cross-validation criteria. For a list of scoring functions that can be used, look at :mod:`sklearn.metrics`. The default scoring option used is accuracy_score. solver : {'newton-cg', 'lbfgs', 'liblinear'} Algorithm to use in the optimization problem. tol : float, optional Tolerance for stopping criteria. max_iter : int, optional Maximum number of iterations of the optimization algorithm. class_weight : {dict, 'auto'}, optional Over-/undersamples the samples of each class according to the given weights. If not given, all classes are supposed to have weight one. The 'auto' mode selects weights inversely proportional to class frequencies in the training set. n_jobs : int, optional Number of CPU cores used during the cross-validation loop. If given a value of -1, all cores are used. verbose : int For the liblinear and lbfgs solvers set verbose to any positive number for verbosity. refit : bool If set to True, the scores are averaged across all folds, and the coefs and the C that corresponds to the best score is taken, and a final refit is done using these parameters. Otherwise the coefs, intercepts and C that correspond to the best scores across folds are averaged. multi_class : str, {'ovr', 'multinomial'} Multiclass option can be either 'ovr' or 'multinomial'. If the option chosen is 'ovr', then a binary problem is fit for each label. Else the loss minimised is the multinomial loss fit across the entire probability distribution. Works only for the 'lbfgs' solver. intercept_scaling : float, default 1. Useful only if solver is liblinear. This parameter is useful only when the solver 'liblinear' is used and self.fit_intercept is set to True. In this case, x becomes [x, self.intercept_scaling], i.e. a "synthetic" feature with constant value equals to intercept_scaling is appended to the instance vector. The intercept becomes intercept_scaling * synthetic feature weight Note! the synthetic feature weight is subject to l1/l2 regularization as all other features. To lessen the effect of regularization on synthetic feature weight (and therefore on the intercept) intercept_scaling has to be increased. Attributes ---------- coef_ : array, shape (1, n_features) or (n_classes, n_features) Coefficient of the features in the decision function. `coef_` is of shape (1, n_features) when the given problem is binary. `coef_` is readonly property derived from `raw_coef_` that follows the internal memory layout of liblinear. intercept_ : array, shape (1,) or (n_classes,) Intercept (a.k.a. bias) added to the decision function. It is available only when parameter intercept is set to True and is of shape(1,) when the problem is binary. Cs_ : array Array of C i.e. inverse of regularization parameter values used for cross-validation. coefs_paths_ : array, shape (n_folds, len(Cs_), n_features) or (n_folds, len(Cs_), n_features + 1) dict with classes as the keys, and the path of coefficients obtained during cross-validating across each fold and then across each Cs after doing an OvR for the corresponding class as values. If the 'multi_class' option is set to 'multinomial', then the coefs_paths are the coefficients corresponding to each class. Each dict value has shape (n_folds, len(Cs_), n_features) or (n_folds, len(Cs_), n_features + 1) depending on whether the intercept is fit or not. scores_ : dict dict with classes as the keys, and the values as the grid of scores obtained during cross-validating each fold, after doing an OvR for the corresponding class. If the 'multi_class' option given is 'multinomial' then the same scores are repeated across all classes, since this is the multinomial class. Each dict value has shape (n_folds, len(Cs)) C_ : array, shape (n_classes,) or (n_classes - 1,) Array of C that maps to the best scores across every class. If refit is set to False, then for each class, the best C is the average of the C's that correspond to the best scores for each fold. See also -------- LogisticRegression """ def __init__(self, Cs=10, fit_intercept=True, cv=None, dual=False, penalty='l2', scoring=None, solver='lbfgs', tol=1e-4, max_iter=100, class_weight=None, n_jobs=1, verbose=0, refit=True, intercept_scaling=1., multi_class='ovr'): self.Cs = Cs self.fit_intercept = fit_intercept self.cv = cv self.dual = dual self.penalty = penalty self.scoring = scoring self.tol = tol self.max_iter = max_iter self.class_weight = class_weight self.n_jobs = n_jobs self.verbose = verbose self.solver = solver self.refit = refit self.intercept_scaling = intercept_scaling self.multi_class = multi_class def fit(self, X, y): """Fit the model according to the given training data. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) Target vector relative to X. Returns ------- self : object Returns self. """ if self.solver != 'liblinear': if self.penalty != 'l2': raise ValueError("newton-cg and lbfgs solvers support only " "l2 penalties.") if self.dual: raise ValueError("newton-cg and lbfgs solvers support only " "the primal form.") X = check_array(X, accept_sparse='csr', dtype=np.float64) y = check_array(y, ensure_2d=False) if self.multi_class not in ['ovr', 'multinomial']: raise ValueError("multi_class backend should be either " "'ovr' or 'multinomial'" " got %s" % self.multi_class) if y.ndim == 2 and y.shape[1] == 1: warnings.warn( "A column-vector y was passed when a 1d array was" " expected. Please change the shape of y to " "(n_samples, ), for example using ravel().", DataConversionWarning ) y = np.ravel(y) check_consistent_length(X, y) # init cross-validation generator cv = _check_cv(self.cv, X, y, classifier=True) folds = list(cv) self._enc = LabelEncoder() self._enc.fit(y) labels = self.classes_ = np.unique(y) n_classes = len(labels) if n_classes < 2: raise ValueError("This solver needs samples of at least 2 classes" " in the data, but the data contains only one" " class: %r" % self.classes_[0]) if n_classes == 2: # OvR in case of binary problems is as good as fitting # the higher label n_classes = 1 labels = labels[1:] # We need this hack to iterate only once over labels, in the case of # multi_class = multinomial, without changing the value of the labels. iter_labels = labels if self.multi_class == 'multinomial': iter_labels = [None] if self.class_weight and not(isinstance(self.class_weight, dict) or self.class_weight == 'auto'): raise ValueError("class_weight provided should be a " "dict or 'auto'") path_func = delayed(_log_reg_scoring_path) fold_coefs_ = Parallel(n_jobs=self.n_jobs, verbose=self.verbose)( path_func(X, y, train, test, pos_class=label, Cs=self.Cs, fit_intercept=self.fit_intercept, penalty=self.penalty, dual=self.dual, solver=self.solver, tol=self.tol, max_iter=self.max_iter, verbose=self.verbose, class_weight=self.class_weight, scoring=self.scoring, multi_class=self.multi_class, intercept_scaling=self.intercept_scaling ) for label in iter_labels for train, test in folds) if self.multi_class == 'multinomial': multi_coefs_paths, Cs, multi_scores = zip(*fold_coefs_) multi_coefs_paths = np.asarray(multi_coefs_paths) multi_scores = np.asarray(multi_scores) # This is just to maintain API similarity between the ovr and # multinomial option. # Coefs_paths in now n_folds X len(Cs) X n_classes X n_features # we need it to be n_classes X len(Cs) X n_folds X n_features # to be similar to "ovr". coefs_paths = np.rollaxis(multi_coefs_paths, 2, 0) # Multinomial has a true score across all labels. Hence the # shape is n_folds X len(Cs). We need to repeat this score # across all labels for API similarity. scores = np.tile(multi_scores, (n_classes, 1, 1)) self.Cs_ = Cs[0] else: coefs_paths, Cs, scores = zip(*fold_coefs_) self.Cs_ = Cs[0] coefs_paths = np.reshape(coefs_paths, (n_classes, len(folds), len(self.Cs_), -1)) self.coefs_paths_ = dict(zip(labels, coefs_paths)) scores = np.reshape(scores, (n_classes, len(folds), -1)) self.scores_ = dict(zip(labels, scores)) self.C_ = list() self.coef_ = np.empty((n_classes, X.shape[1])) self.intercept_ = np.zeros(n_classes) # hack to iterate only once for multinomial case. if self.multi_class == 'multinomial': scores = multi_scores coefs_paths = multi_coefs_paths for index, label in enumerate(iter_labels): if self.multi_class == 'ovr': scores = self.scores_[label] coefs_paths = self.coefs_paths_[label] if self.refit: best_index = scores.sum(axis=0).argmax() C_ = self.Cs_[best_index] self.C_.append(C_) if self.multi_class == 'multinomial': coef_init = np.mean(coefs_paths[:, best_index, :, :], axis=0) else: coef_init = np.mean(coefs_paths[:, best_index, :], axis=0) w, _ = logistic_regression_path( X, y, pos_class=label, Cs=[C_], solver=self.solver, fit_intercept=self.fit_intercept, coef=coef_init, max_iter=self.max_iter, tol=self.tol, class_weight=self.class_weight, multi_class=self.multi_class, verbose=max(0, self.verbose - 1)) w = w[0] else: # Take the best scores across every fold and the average of all # coefficients corresponding to the best scores. best_indices = np.argmax(scores, axis=1) w = np.mean([ coefs_paths[i][best_indices[i]] for i in range(len(folds)) ], axis=0) self.C_.append(np.mean(self.Cs_[best_indices])) if self.multi_class == 'multinomial': self.C_ = np.tile(self.C_, n_classes) self.coef_ = w[:, :X.shape[1]] if self.fit_intercept: self.intercept_ = w[:, -1] else: self.coef_[index] = w[: X.shape[1]] if self.fit_intercept: self.intercept_[index] = w[-1] self.C_ = np.asarray(self.C_) return self
bsd-3-clause
em-er-es/rollo
Scripts/computeposition/compute_position.py
1
10329
#!/bin/env python2 # -*- coding: utf-8 -*- #%% Information # 86805 - Software Architectures for Robotics # Assignment 03 - Localization system for a wheeled humanoid robot # Rabbia Asghar, Ernest Skrzypczyk # Odometry model # Inputs: Initial coordinates of the robot (centre position), initial orientation of the robot in radians, n_L and n_R is rotation speed [rpm] of the respectively left and right wheel # Outputs: Final coordinates of the robot (centre position), final orientation of the robot [radians] # Assumptions: # 1. The robot is a rigid body # 2. The model represents a differential drive robot # 3. There is no S_Lip in the wheel and the surface is plane # 4. Both wheels are turning in the forward direction #%% Import basic libraries from __future__ import print_function #Python2 from matplotlib import pyplot as plt #%% Import additional libraries for a script call and parse arguments if __name__ == '__main__': import os import argparse import numpy as np parser = argparse.ArgumentParser(prog=os.path.basename(__file__)) #%% Movement arguments parser.add_argument('-nL', '--rotation-speed-left', dest='n_L', type=float, default=10.0, help='Rotation speed of the left wheel', metavar='N_L <!10>[1/min]') parser.add_argument('-nR', '--rotation-speed-right', dest='n_R', type=float, default=10.0, help='Rotation speed of the right wheel', metavar='N_R <!10>[1/min]') parser.add_argument('-Px', '--initial-position-x', dest='P_i_x', type=float, default=0.0, help='Initial position of the robot - X coordinate', metavar='P_I_X <!0>[m]') parser.add_argument('-Py', '--initial-position-y', dest='P_i_y', type=float, default=0.0, help='Initial position of the robot - Y coordinate', metavar='P_I_Y <!0>[m]') parser.add_argument('-Th', '--initial-orientation', dest='Theta_i', type=float, default=0.0, help='Initial orientation of the robot - Theta', metavar='THETA <!0>[rad]') parser.add_argument('-t', '--time', dest='t', type=float, default=10.0, help='Time for the movement', metavar='t <!10.0>[s]') parser.add_argument('-dt', '--step-time', dest='dt', type=float, default=-100.0, help='Time step for approximation for positive values and number of steps for negative', metavar='t <-100.0>[{s, 1}]') parser.add_argument('-rL', '--radius-wheel-left', dest='r_L', type=float, default=0.1, help='Radius of the left wheel', metavar='R_L <!0.100>[m]') parser.add_argument('-rR', '--radius-wheel-right', dest='r_R', type=float, default=0.1, help='Radius of the right wheel', metavar='R_R <!0.100>[m]') parser.add_argument('-al', '--axle-length', dest='axle_l', type=float, default=0.205, help='Distance between wheels - Length of the axle', metavar='AXLE_L <!0.205>[m]') #%% Additional script relevant arguments # parser.add_argument('-1', '-p', '--pause', dest='pause', action='store_true', help='Pause between processed images') # parser.add_argument('-cp', '--color-plot', dest='colorPlot', type=bool, help='Colorize generated plot') parser.add_argument('-gp', '--generate-plot', dest='generatePlot', action='store_true', default=0, help='Generate a plot of movement') parser.add_argument('-d', '--degrees', dest='degrees', action='store_true', default=0, help='Output orientation in degrees instead of radians') # parser.add_argument('-ia', '--invert-axes', dest='invertAxes', type=bool, default=0, help='Invert axes on distortion plots') # parser.add_argument('-l', '--log', dest='logFile', type=str, help='Write a log file with results', metavar='LOGFILENAME') parser.add_argument('-pd', '--predefined', dest='predefined', action='store_true', default=0, help='Use a predefined sets of parameters for movement simulation') # parser.add_argument('-si', '--show-images', dest='showImages', action='store_true', default=0, help='Show images') # parser.add_argument('-s', '--save-images', dest='saveImages', action='store_true', default=0, help='Save images') # parser.add_argument('-sp', '--save-path', dest='savePath', type=str, default='/tmp', default=0, help='Defines path for generated images, implies save images option', metavar='<SAVEPATH><!/tmp>') parser.add_argument('-v', '--verbose', dest='verbose', action='store_true', default=0, help='Produce more verbose output') args = parser.parse_args() # Parse script call arguments #%% Assign arguments n_L = float(args.n_L) n_R = float(args.n_R) P_i_x = float(args.P_i_x) P_i_y = float(args.P_i_y) t = float(args.t) dt = float(args.dt) Theta_i = float(args.Theta_i) r_L = float(args.r_L) r_R = float(args.r_R) axle_l = float(args.axle_l) #%% Script arguments # logFile = str(args.logFile) degrees = bool(args.degrees) # colorPlot = bool(args.colorPlot) generatePlot = bool(args.generatePlot) predefined = bool(args.predefined) # saveImages = bool(args.saveImages) # savePath = str(args.savePath) # showImages = bool(args.showImages) verbose = bool(args.verbose) #%% Function definition def rollo_compute_position(P_i_x, P_i_y, Theta_i, n_L, n_R, t, r_L, r_R, axle_l, verbose, degrees): "Calculates the final position accodring to the odometry model" if degrees: Theta_i = Theta_i / 180.0 * np.pi S_L = t * (n_L / 60.0) * 2 * np.pi * r_L # Linear distance traveled by left wheel in meters S_R = t * (n_R / 60.0) * 2 * np.pi * r_R # Linear distance traveled by right wheel in meters Beta = (S_L - S_R) / 2.0 # Travel angle r = (S_L + S_R) / 2.0 # Travel radius P_f_x = P_i_x + r * np.cos(Theta_i - (Beta / 2.0)) P_f_y = P_i_y + r * np.sin(Theta_i - (Beta / 2.0)) Theta_f = Theta_i - Beta if degrees: Theta_f = Theta_f * 180 / np.pi if verbose and t_s + dt == t_f: print('Linear distance traveled by left wheel (S_L [m]): ', S_L) print('Linear distance traveled by right wheel (S_R [m]): ', S_R) print('Travel radius [m]: ', r) print('Travel angle [', ThetaFormat, ']:', Beta) return [P_f_x, P_f_y, Theta_f] #%% Main script if __name__ == '__main__': if degrees: # ThetaFormat = '°' ThetaFormat = 'deg' else: ThetaFormat = 'rad' if predefined: P_i_x = -2; P_i_y = -2; if degrees: Theta_i = 45 else: Theta_i = np.pi / 4.0 n_L = 6; n_R = 5; t = 1000; r_L = 0.1; r_R = 0.1; axle_l = 0.205; print('Using predefined variables set') if verbose: print('Time (t [s]): ', t) print('Initial position (X [m]; Y [m]): ', P_i_x, ';', P_i_y) print('Initial orientation (Theta [', ThetaFormat, ']): ', Theta_i) print('Axle length (axle_l [m]): ', axle_l) print('Wheel rotation speed - left (n_L [1/min]): ', n_L) print('Wheel rotation speed - right (n_R [1/min]): ', n_R) print('Wheel radius - left (r_L [m]): ', r_L) print('Wheel radius - right (r_R [m]): ', r_R) if generatePlot: axi = 8.0 axd = 1 markerScale = 20 lineWidth = 1.6 ###TODO use array instead of scalar values Theta_i_t = Theta_i P_i_x_t = P_i_x P_i_y_t = P_i_y if dt < 0: steps = - float(dt) dt = t / steps else: steps = np.ceil(t / float(dt)) t_s = 0 t_f = t if verbose: print('Time step (dt [s]): ', dt) print('Number of steps (n [1]): ', steps) # for i in np.arange(0, t, t / step): for i in np.arange(1, steps + 1, 1): # [P_f_x_t, P_f_y_t, Theta_f_t] = rollo_compute_position(P_i_x_t, P_i_y_t, Theta_i_t, n_L, n_R, dt, r_L, r_R, axle_l, 0, degrees) [P_f_x_t, P_f_y_t, Theta_f_t] = rollo_compute_position(P_i_x_t, P_i_y_t, Theta_i_t, n_L, n_R, dt, r_L, r_R, axle_l, verbose, degrees) print('Loop:', int(i), 'Calculated position (x [m], y [m], Theta [', ThetaFormat, ']):', P_f_x_t, P_f_y_t, Theta_f_t) # print(int(i)) ###TODO calculate lowest and highest points for axes if generatePlot: if not degrees: of = np.rad2deg(Theta_i_t) - 90 else: of = Theta_i_t - 90 plt.plot(P_f_x_t, P_f_y_t, 'b', marker=(3, 0, of), markersize = markerScale / 3) Theta_i_t = Theta_f_t P_i_x_t = P_f_x_t P_i_y_t = P_f_y_t t_s = t_s + dt P_f_x = P_f_x_t P_f_y = P_f_y_t Theta_f = Theta_f_t if verbose: print('Simulation duration (t_s [s]): ', t_s) # [P_f_x, P_f_y, Theta_f] = rollo_compute_position(P_i_x, P_i_y, Theta_i, n_L, n_R, t, r_L, r_R, axle_l, verbose, degrees) print('Final position (x [m], y [m]): ', P_f_x, ',', P_f_y) if degrees: # print('Final orientation (Theta [°]): ', Theta_f % 360) print('Final orientation (Theta [deg]): ', Theta_f % 360) else: print('Final orientation (Theta [rad]): ', Theta_f % (2 * np.pi)) if generatePlot: ###TODO take the highest or lowest values from simulation and add a margin to the plot axx = np.max([np.ceil(np.abs(P_f_x - P_i_x) / axi) * axi, np.abs(P_f_x) + axd, np.abs(P_i_x) + axd]) axy = np.max([np.ceil(np.abs(P_f_y - P_i_y) / axi) * axi, np.abs(P_f_y) + axd, np.abs(P_i_y) + axd]) # plt.axis([-axx, axx, -axy, axy]) plt.axis('equal') if not degrees: oi = np.rad2deg(Theta_i) - 90 of = np.rad2deg(Theta_f) - 90 else: oi = Theta_i - 90 of = Theta_f - 90 plt.plot(P_i_x, P_i_y, 'g', marker = (3, 0, oi), markersize = markerScale, linewidth = lineWidth) # plt.plot(P_f_x_t, P_f_y_t, 'r', marker = (3, 0, of), markersize = markerScale, linewidth = lineWidth) plt.plot(P_f_x, P_f_y, 'r', marker = (3, 0, of), markersize = markerScale, linewidth = lineWidth) plt.grid(1) figure = plt.gcf() figure.canvas.set_window_title('Rollo - Odometry model') plt.xlabel('x [m]') plt.ylabel('y [m]') plt.tight_layout() plt.show() # print(P_f_x_t, P_f_y_t, Theta_f_t, z) # print(t, rollo_compute_position(P_i_x, P_i_y, Theta_i, n_L, n_R, t, r_L, r_R, axle_l, 0, degrees)) # print(t_s, rollo_compute_position(P_i_x, P_i_y, Theta_i, n_L, n_R, z-dt, r_L, r_R, axle_l, 0, degrees))
gpl-2.0
mwaskom/lyman
conftest.py
1
14325
import os from copy import deepcopy import numpy as np import pandas as pd import nibabel as nib import pytest from lyman.frontend import LymanInfo @pytest.fixture() def execdir(tmpdir): origdir = tmpdir.chdir() yield tmpdir origdir.chdir() @pytest.fixture() def lyman_info(tmpdir): data_dir = tmpdir.mkdir("data") proc_dir = tmpdir.mkdir("proc") cache_dir = tmpdir.mkdir("cache") os.environ["SUBJECTS_DIR"] = str(data_dir) # TODO probably get these from default info functions scan_info = { "subj01": { "sess01": {"exp_alpha": ["run01", "run02"]}, "sess02": {"exp_alpha": ["run01"], "exp_beta": ["run01", "run02", "run03"]}, }, "subj02": { "sess01": {"exp_alpha": ["run01", "run02", "run03"]} }, } contrasts = [ ("a", ["a", "b"], [1, 0]), ("b", ["b"], [1]), ("a-b", ["a", "b"], [1, -1]) ] info = LymanInfo().trait_set( data_dir=str(data_dir), proc_dir=str(proc_dir), cache_dir=str(cache_dir), scan_info=scan_info, phase_encoding="ap", fm_template="{session}_{encoding}.nii.gz", ts_template="{session}_{experiment}_{run}.nii.gz", sb_template="{session}_{experiment}_{run}_sbref.nii.gz", experiment_name="exp_alpha", crop_frames=2, tr=1.5, model_name="model_a", smooth_fwhm=4, nuisance_components=dict(wm=2, csf=2, edge=2, noise=2), surface_smoothing=True, interpolate_noise=True, hpf_cutoff=10, percent_change=True, hrf_derivative=False, save_residuals=True, contrasts=contrasts, ) subjects = ["subj01", "subj02"] sessions = None design = pd.DataFrame(dict( onset=[0, 6, 12, 18, 24], condition=["a", "b", "c", "b", "a"], session="sess01", run="run01", )) for subject in subjects: subject_dir = data_dir.mkdir(subject) subject_dir.mkdir("mri") subject_dir.mkdir("surf") subject_dir.mkdir("label") subject_dir.mkdir("func") design_dir = subject_dir.mkdir("design") design.to_csv(design_dir.join( "{experiment_name}-{model_name}.csv".format(**info.trait_get()) )) vol_shape = 12, 8, 4 n_tp = 20 n_conditions = len(design["condition"].unique()) n_regressors = sum(info.nuisance_components.values()) n_params = n_conditions + n_regressors return dict( info=info, subjects=subjects, sessions=sessions, proc_dir=proc_dir, data_dir=data_dir, vol_shape=vol_shape, n_tp=n_tp, n_params=n_params, design=design, ) @pytest.fixture() def freesurfer(lyman_info): subject = "subj01" mri_dir = lyman_info["data_dir"].join(subject).join("mri") label_dir = lyman_info["data_dir"].join(subject).join("label") seed = sum(map(ord, "freesurfer")) rs = np.random.RandomState(seed) affine = np.eye(4) vol_shape = lyman_info["vol_shape"] mask = rs.choice([0, 1], vol_shape, p=[.2, .8]) norm_data = rs.randint(0, 110, vol_shape) * mask norm_file = str(mri_dir.join("norm.mgz")) nib.save(nib.MGHImage(norm_data.astype("uint8"), affine), norm_file) orig_file = str(mri_dir.join("orig.mgz")) nib.save(nib.MGHImage(norm_data.astype("uint8"), affine), orig_file) wmparc_vals = [1000, 10, 11, 16, 8, 3000, 5001, 7, 46, 4] wmparc_data = rs.choice(wmparc_vals, vol_shape) * mask wmparc_file = str(mri_dir.join("wmparc.mgz")) nib.save(nib.MGHImage(wmparc_data.astype("int16"), affine), wmparc_file) n = 10 fmt = ["%d", "%.3f", "%.3f", "%.3f", "%.9f"] label_data = np.c_[np.arange(n), np.zeros((n, 4))] label_files = {} for hemi in ["lh", "rh"]: fname = str(label_dir.join("{}.cortex.label".format(hemi))) label_files[hemi] = fname np.savetxt(fname, label_data, fmt=fmt, header=str(n)) lyman_info.update( subject=subject, norm_file=norm_file, orig_file=orig_file, wmparc_file=wmparc_file, label_files=label_files, ) return lyman_info @pytest.fixture() def template(freesurfer): subject = "subj01" template_dir = (freesurfer["proc_dir"] .mkdir(subject) .mkdir("template")) seed = sum(map(ord, "template")) rs = np.random.RandomState(seed) vol_shape = freesurfer["vol_shape"] affine = np.array([[-2, 0, 0, 10], [0, -2, -1, 10], [0, 1, 2, 5], [0, 0, 0, 1]]) reg_file = str(template_dir.join("anat2func.mat")) np.savetxt(reg_file, np.random.randn(4, 4)) lut = pd.DataFrame([ ["Unknown", 0, 0, 0, 0], ["Cortical-gray-matter", 59, 95, 138, 255], ["Subcortical-gray-matter", 91, 129, 129, 255], ["Brain-stem", 126, 163, 209, 255], ["Cerebellar-gray-matter", 168, 197, 233, 255], ["Superficial-white-matter", 206, 129, 134, 255], ["Deep-white-matter", 184, 103, 109, 255], ["Cerebellar-white-matter", 155, 78, 73, 255], ["CSF", 251, 221, 122, 255] ]) lut_file = str(template_dir.join("seg.lut")) lut.to_csv(lut_file, sep="\t", header=False, index=True) seg_data = rs.randint(0, 9, vol_shape) seg_file = str(template_dir.join("seg.nii.gz")) nib.save(nib.Nifti1Image(seg_data, affine), seg_file) anat_data = rs.randint(0, 100, vol_shape) anat_file = str(template_dir.join("anat.nii.gz")) nib.save(nib.Nifti1Image(anat_data, affine), anat_file) mask_data = (seg_data > 0).astype(np.uint8) mask_file = str(template_dir.join("mask.nii.gz")) nib.save(nib.Nifti1Image(mask_data, affine), mask_file) edge_data = (anat_data > 60).astype(np.uint8) edge_file = str(template_dir.join("edge.nii.gz")) nib.save(nib.Nifti1Image(edge_data, affine), edge_file) n_verts = (seg_data == 1).sum() surf_ids = np.arange(n_verts) surf_data = np.full(vol_shape + (2,), -1, np.int) surf_data[seg_data == 1, 0] = surf_ids surf_data[seg_data == 1, 1] = surf_ids surf_file = str(template_dir.join("surf.nii.gz")) nib.save(nib.Nifti1Image(surf_data, affine), surf_file) ribbon_data = (surf_data > -1).any(axis=-1).astype(np.int8) ribbon_file = str(template_dir.join("ribbon.nii.gz")) nib.save(nib.Nifti1Image(ribbon_data, affine), ribbon_file) mesh_name = "graymid" verts = rs.uniform(-1, 1, (n_verts, 3)) faces = np.array([(i, i + 1, i + 2) for i in range(n_verts - 2)]) surf_dir = freesurfer["data_dir"].join(subject).join("surf") mesh_files = (str(surf_dir.join("lh." + mesh_name)), str(surf_dir.join("rh." + mesh_name))) for fname in mesh_files: nib.freesurfer.write_geometry(fname, verts, faces) freesurfer.update( vol_shape=vol_shape, subject=subject, lut_file=lut_file, seg_file=seg_file, reg_file=reg_file, anat_file=anat_file, edge_file=edge_file, mask_file=mask_file, surf_file=surf_file, ribbon_file=ribbon_file, mesh_name=mesh_name, mesh_files=mesh_files, ) return freesurfer @pytest.fixture() def timeseries(template): seed = sum(map(ord, "timeseries")) rs = np.random.RandomState(seed) session = "sess01" run = "run01" exp_name = template["info"].experiment_name model_name = template["info"].model_name vol_shape = template["vol_shape"] n_tp = template["n_tp"] affine = np.eye(4) affine[:3, :3] *= 2 timeseries_dir = (template["proc_dir"] .join(template["subject"]) .mkdir(exp_name) .mkdir("timeseries") .mkdir("{}_{}".format(session, run))) model_dir = (template["proc_dir"] .join(template["subject"]) .join(exp_name) .mkdir(model_name) .mkdir("{}_{}".format(session, run))) mask_data = nib.load(template["seg_file"]).get_fdata() > 0 mask_data &= rs.uniform(0, 1, vol_shape) > .05 mask_file = str(timeseries_dir.join("mask.nii.gz")) nib.save(nib.Nifti1Image(mask_data.astype(np.int), affine), mask_file) noise_data = mask_data & rs.choice([False, True], vol_shape, p=[.95, .05]) noise_file = str(timeseries_dir.join("noise.nii.gz")) nib.save(nib.Nifti1Image(noise_data.astype(np.int), affine), noise_file) ts_shape = vol_shape + (n_tp,) ts_data = rs.normal(100, 5, ts_shape) * mask_data[..., np.newaxis] ts_file = str(timeseries_dir.join("func.nii.gz")) nib.save(nib.Nifti1Image(ts_data, affine), ts_file) mc_data = rs.normal(0, 1, (n_tp, 6)) mc_file = str(timeseries_dir.join("mc.csv")) cols = ["trans_x", "trans_y", "trans_z", "rot_x", "rot_y", "rot_z"] pd.DataFrame(mc_data, columns=cols).to_csv(mc_file) template.update( n_tp=n_tp, affine=affine, session=session, run=run, mask_file=mask_file, noise_file=noise_file, ts_file=ts_file, mc_file=mc_file, timeseries_dir=timeseries_dir, model_dir=model_dir, ) return template @pytest.fixture() def modelfit(timeseries): seed = sum(map(ord, "modelfit")) rs = np.random.RandomState(seed) vol_shape = timeseries["vol_shape"] affine = timeseries["affine"] n_params = timeseries["n_params"] n_tp = timeseries["n_tp"] n_vox = np.product(vol_shape) model_dir = timeseries["model_dir"] seg_data = nib.load(timeseries["seg_file"]).get_fdata() mask_data = nib.load(timeseries["mask_file"]).get_fdata() mask_data = ((seg_data == 1) & (mask_data == 1)).astype(np.int) mask_file = str(model_dir.join("mask.nii.gz")) nib.save(nib.Nifti1Image(mask_data, affine), mask_file) beta_data = rs.normal(0, 1, vol_shape + (n_params,)) beta_file = str(model_dir.join("beta.nii.gz")) nib.save(nib.Nifti1Image(beta_data, affine), beta_file) ols_data = np.empty((n_vox, n_params, n_params)) for i in range(n_vox): X = rs.normal(0, 1, (n_tp, n_params)) ols_data[i] = np.linalg.pinv(np.dot(X.T, X)) ols_data = ols_data.reshape(vol_shape + (n_params ** 2,)) ols_file = str(model_dir.join("ols.nii.gz")) nib.save(nib.Nifti1Image(ols_data, affine), ols_file) error_data = rs.uniform(0, 5, vol_shape) error_file = str(model_dir.join("error.nii.gz")) nib.save(nib.Nifti1Image(error_data, affine), error_file) design_data = rs.normal(0, 1, (n_tp, n_params)) columns = list(np.sort(timeseries["design"]["condition"].unique())) for source, comp in timeseries["info"].nuisance_components.items(): columns.extend([f"{source}{i+1}" for i in range(comp)]) model_file = str(model_dir.join("model.csv")) pd.DataFrame(design_data, columns=columns).to_csv(model_file, index=False) timeseries.update( n_params=n_params, mask_file=mask_file, beta_file=beta_file, ols_file=ols_file, error_file=error_file, model_file=model_file, ) return timeseries @pytest.fixture() def modelres(modelfit): seed = sum(map(ord, "modelres")) rs = np.random.RandomState(seed) vol_shape = modelfit["vol_shape"] affine = modelfit["affine"] name_lists = [ ["a", "b", "c", "a-b"], ["a", "b", "a-b"], ] run_ns = [len(n_list) for n_list in name_lists] info = deepcopy(modelfit["info"]) info.contrasts.insert(2, ("c", ["c"], [1])) exp_name = modelfit["info"].experiment_name model_name = modelfit["info"].model_name session = "s1" runs = ["r1", "r2"] model_dir_base = (modelfit["proc_dir"] .join(modelfit["subject"]) .join(exp_name) .join(model_name)) model_dirs = [ model_dir_base.mkdir("{}_{}".format(session, run)) for run in runs ] con_data = [rs.normal(0, 5, vol_shape + (n,)) for n in run_ns] con_files = [str(d.join("contrast.nii.gz")) for d in model_dirs] for d, f in zip(con_data, con_files): nib.save(nib.Nifti1Image(d, affine), f) var_data = [rs.uniform(0, 5, vol_shape + (n,)) for n in run_ns] var_files = [str(d.join("variance.nii.gz")) for d in model_dirs] for d, f in zip(var_data, var_files): nib.save(nib.Nifti1Image(d, affine), f) name_files = [str(d.join("contrast.txt")) for d in model_dirs] for l, f in zip(name_lists, name_files): np.savetxt(f, l, "%s") modelfit.update( info=info, contrast_files=con_files, variance_files=var_files, name_files=name_files, ) return modelfit @pytest.fixture def meshdata(execdir): verts = np.array([[0, 0, 0], [1, 0, 0], [1, 1, 1], [2, 0, 0], [2, 2, 2]], np.float) faces = np.array([[0, 1, 2], [0, 2, 3], [2, 3, 4]], np.int) sqrt2 = np.sqrt(2) sqrt3 = np.sqrt(3) sqrt8 = np.sqrt(8) neighbors = {0: {1: 1.0, 2: sqrt3, 3: 2.0}, 1: {0: 1.0, 2: sqrt2}, 2: {0: sqrt3, 1: sqrt2, 3: sqrt3, 4: sqrt3}, 3: {0: 2.0, 2: sqrt3, 4: sqrt8}, 4: {2: sqrt3, 3: sqrt8}} subj = "subj01" surf = "white" surf_dir = execdir.mkdir(subj).mkdir("surf") for hemi in ["lh", "rh"]: fname = str(surf_dir.join("{}.{}".format(hemi, surf))) nib.freesurfer.write_geometry(fname, verts, faces) meshdata = dict( verts=verts, faces=faces, neighbors=neighbors, fname=fname, subj=subj, surf=surf, hemi=hemi, ) orig_subjects_dir = os.environ.get("SUBJECTS_DIR", None) os.environ["SUBJECTS_DIR"] = str(execdir) yield meshdata if orig_subjects_dir is None: del os.environ["SUBJECTS_DIR"] else: os.environ["SUBJECTS_DIR"] = orig_subjects_dir
bsd-3-clause
Git3251/trading-with-python
historicDataDownloader/historicDataDownloader.py
77
4526
''' Created on 4 aug. 2012 Copyright: Jev Kuznetsov License: BSD a module for downloading historic data from IB ''' import ib import pandas from ib.ext.Contract import Contract from ib.opt import ibConnection, message from time import sleep import tradingWithPython.lib.logger as logger from pandas import DataFrame, Index import datetime as dt from timeKeeper import TimeKeeper import time timeFormat = "%Y%m%d %H:%M:%S" class DataHandler(object): ''' handles incoming messages ''' def __init__(self,tws): self._log = logger.getLogger('DH') tws.register(self.msgHandler,message.HistoricalData) self.reset() def reset(self): self._log.debug('Resetting data') self.dataReady = False self._timestamp = [] self._data = {'open':[],'high':[],'low':[],'close':[],'volume':[],'count':[],'WAP':[]} def msgHandler(self,msg): #print '[msg]', msg if msg.date[:8] == 'finished': self._log.debug('Data recieved') self.dataReady = True return self._timestamp.append(dt.datetime.strptime(msg.date,timeFormat)) for k in self._data.keys(): self._data[k].append(getattr(msg, k)) @property def data(self): ''' return downloaded data as a DataFrame ''' df = DataFrame(data=self._data,index=Index(self._timestamp)) return df class Downloader(object): def __init__(self,debug=False): self._log = logger.getLogger('DLD') self._log.debug('Initializing data dwonloader. Pandas version={0}, ibpy version:{1}'.format(pandas.__version__,ib.version)) self.tws = ibConnection() self._dataHandler = DataHandler(self.tws) if debug: self.tws.registerAll(self._debugHandler) self.tws.unregister(self._debugHandler,message.HistoricalData) self._log.debug('Connecting to tws') self.tws.connect() self._timeKeeper = TimeKeeper() # keep track of past requests self._reqId = 1 # current request id def _debugHandler(self,msg): print '[debug]', msg def requestData(self,contract,endDateTime,durationStr='1800 S',barSizeSetting='1 secs',whatToShow='TRADES',useRTH=1,formatDate=1): self._log.debug('Requesting data for %s end time %s.' % (contract.m_symbol,endDateTime)) while self._timeKeeper.nrRequests(timeSpan=600) > 59: print 'Too many requests done. Waiting... ' time.sleep(1) self._timeKeeper.addRequest() self._dataHandler.reset() self.tws.reqHistoricalData(self._reqId,contract,endDateTime,durationStr,barSizeSetting,whatToShow,useRTH,formatDate) self._reqId+=1 #wait for data startTime = time.time() timeout = 3 while not self._dataHandler.dataReady and (time.time()-startTime < timeout): sleep(2) if not self._dataHandler.dataReady: self._log.error('Data timeout') print self._dataHandler.data return self._dataHandler.data def getIntradayData(self,contract, dateTuple ): ''' get full day data on 1-s interval date: a tuple of (yyyy,mm,dd) ''' openTime = dt.datetime(*dateTuple)+dt.timedelta(hours=16) closeTime = dt.datetime(*dateTuple)+dt.timedelta(hours=22) timeRange = pandas.date_range(openTime,closeTime,freq='30min') datasets = [] for t in timeRange: datasets.append(self.requestData(contract,t.strftime(timeFormat))) return pandas.concat(datasets) def disconnect(self): self.tws.disconnect() if __name__=='__main__': dl = Downloader(debug=True) c = Contract() c.m_symbol = 'SPY' c.m_secType = 'STK' c.m_exchange = 'SMART' c.m_currency = 'USD' df = dl.getIntradayData(c, (2012,8,6)) df.to_csv('test.csv') # df = dl.requestData(c, '20120803 22:00:00') # df.to_csv('test1.csv') # df = dl.requestData(c, '20120803 21:30:00') # df.to_csv('test2.csv') dl.disconnect() print 'Done.'
bsd-3-clause
OshynSong/scikit-learn
sklearn/grid_search.py
61
37197
""" The :mod:`sklearn.grid_search` includes utilities to fine-tune the parameters of an estimator. """ from __future__ import print_function # Author: Alexandre Gramfort <[email protected]>, # Gael Varoquaux <[email protected]> # Andreas Mueller <[email protected]> # Olivier Grisel <[email protected]> # License: BSD 3 clause from abc import ABCMeta, abstractmethod from collections import Mapping, namedtuple, Sized from functools import partial, reduce from itertools import product import operator import warnings import numpy as np from .base import BaseEstimator, is_classifier, clone from .base import MetaEstimatorMixin, ChangedBehaviorWarning from .cross_validation import check_cv from .cross_validation import _fit_and_score from .externals.joblib import Parallel, delayed from .externals import six from .utils import check_random_state from .utils.random import sample_without_replacement from .utils.validation import _num_samples, indexable from .utils.metaestimators import if_delegate_has_method from .metrics.scorer import check_scoring __all__ = ['GridSearchCV', 'ParameterGrid', 'fit_grid_point', 'ParameterSampler', 'RandomizedSearchCV'] class ParameterGrid(object): """Grid of parameters with a discrete number of values for each. Can be used to iterate over parameter value combinations with the Python built-in function iter. Read more in the :ref:`User Guide <grid_search>`. Parameters ---------- param_grid : dict of string to sequence, or sequence of such The parameter grid to explore, as a dictionary mapping estimator parameters to sequences of allowed values. An empty dict signifies default parameters. A sequence of dicts signifies a sequence of grids to search, and is useful to avoid exploring parameter combinations that make no sense or have no effect. See the examples below. Examples -------- >>> from sklearn.grid_search import ParameterGrid >>> param_grid = {'a': [1, 2], 'b': [True, False]} >>> list(ParameterGrid(param_grid)) == ( ... [{'a': 1, 'b': True}, {'a': 1, 'b': False}, ... {'a': 2, 'b': True}, {'a': 2, 'b': False}]) True >>> grid = [{'kernel': ['linear']}, {'kernel': ['rbf'], 'gamma': [1, 10]}] >>> list(ParameterGrid(grid)) == [{'kernel': 'linear'}, ... {'kernel': 'rbf', 'gamma': 1}, ... {'kernel': 'rbf', 'gamma': 10}] True >>> ParameterGrid(grid)[1] == {'kernel': 'rbf', 'gamma': 1} True See also -------- :class:`GridSearchCV`: uses ``ParameterGrid`` to perform a full parallelized parameter search. """ def __init__(self, param_grid): if isinstance(param_grid, Mapping): # wrap dictionary in a singleton list to support either dict # or list of dicts param_grid = [param_grid] self.param_grid = param_grid def __iter__(self): """Iterate over the points in the grid. Returns ------- params : iterator over dict of string to any Yields dictionaries mapping each estimator parameter to one of its allowed values. """ for p in self.param_grid: # Always sort the keys of a dictionary, for reproducibility items = sorted(p.items()) if not items: yield {} else: keys, values = zip(*items) for v in product(*values): params = dict(zip(keys, v)) yield params def __len__(self): """Number of points on the grid.""" # Product function that can handle iterables (np.product can't). product = partial(reduce, operator.mul) return sum(product(len(v) for v in p.values()) if p else 1 for p in self.param_grid) def __getitem__(self, ind): """Get the parameters that would be ``ind``th in iteration Parameters ---------- ind : int The iteration index Returns ------- params : dict of string to any Equal to list(self)[ind] """ # This is used to make discrete sampling without replacement memory # efficient. for sub_grid in self.param_grid: # XXX: could memoize information used here if not sub_grid: if ind == 0: return {} else: ind -= 1 continue # Reverse so most frequent cycling parameter comes first keys, values_lists = zip(*sorted(sub_grid.items())[::-1]) sizes = [len(v_list) for v_list in values_lists] total = np.product(sizes) if ind >= total: # Try the next grid ind -= total else: out = {} for key, v_list, n in zip(keys, values_lists, sizes): ind, offset = divmod(ind, n) out[key] = v_list[offset] return out raise IndexError('ParameterGrid index out of range') class ParameterSampler(object): """Generator on parameters sampled from given distributions. Non-deterministic iterable over random candidate combinations for hyper- parameter search. If all parameters are presented as a list, sampling without replacement is performed. If at least one parameter is given as a distribution, sampling with replacement is used. It is highly recommended to use continuous distributions for continuous parameters. Note that as of SciPy 0.12, the ``scipy.stats.distributions`` do not accept a custom RNG instance and always use the singleton RNG from ``numpy.random``. Hence setting ``random_state`` will not guarantee a deterministic iteration whenever ``scipy.stats`` distributions are used to define the parameter search space. Read more in the :ref:`User Guide <grid_search>`. Parameters ---------- param_distributions : dict Dictionary where the keys are parameters and values are distributions from which a parameter is to be sampled. Distributions either have to provide a ``rvs`` function to sample from them, or can be given as a list of values, where a uniform distribution is assumed. n_iter : integer Number of parameter settings that are produced. random_state : int or RandomState Pseudo random number generator state used for random uniform sampling from lists of possible values instead of scipy.stats distributions. Returns ------- params : dict of string to any **Yields** dictionaries mapping each estimator parameter to as sampled value. Examples -------- >>> from sklearn.grid_search import ParameterSampler >>> from scipy.stats.distributions import expon >>> import numpy as np >>> np.random.seed(0) >>> param_grid = {'a':[1, 2], 'b': expon()} >>> param_list = list(ParameterSampler(param_grid, n_iter=4)) >>> rounded_list = [dict((k, round(v, 6)) for (k, v) in d.items()) ... for d in param_list] >>> rounded_list == [{'b': 0.89856, 'a': 1}, ... {'b': 0.923223, 'a': 1}, ... {'b': 1.878964, 'a': 2}, ... {'b': 1.038159, 'a': 2}] True """ def __init__(self, param_distributions, n_iter, random_state=None): self.param_distributions = param_distributions self.n_iter = n_iter self.random_state = random_state def __iter__(self): # check if all distributions are given as lists # in this case we want to sample without replacement all_lists = np.all([not hasattr(v, "rvs") for v in self.param_distributions.values()]) rnd = check_random_state(self.random_state) if all_lists: # look up sampled parameter settings in parameter grid param_grid = ParameterGrid(self.param_distributions) grid_size = len(param_grid) if grid_size < self.n_iter: raise ValueError( "The total space of parameters %d is smaller " "than n_iter=%d." % (grid_size, self.n_iter) + " For exhaustive searches, use GridSearchCV.") for i in sample_without_replacement(grid_size, self.n_iter, random_state=rnd): yield param_grid[i] else: # Always sort the keys of a dictionary, for reproducibility items = sorted(self.param_distributions.items()) for _ in six.moves.range(self.n_iter): params = dict() for k, v in items: if hasattr(v, "rvs"): params[k] = v.rvs() else: params[k] = v[rnd.randint(len(v))] yield params def __len__(self): """Number of points that will be sampled.""" return self.n_iter def fit_grid_point(X, y, estimator, parameters, train, test, scorer, verbose, error_score='raise', **fit_params): """Run fit on one set of parameters. Parameters ---------- X : array-like, sparse matrix or list Input data. y : array-like or None Targets for input data. estimator : estimator object This estimator will be cloned and then fitted. parameters : dict Parameters to be set on estimator for this grid point. train : ndarray, dtype int or bool Boolean mask or indices for training set. test : ndarray, dtype int or bool Boolean mask or indices for test set. scorer : callable or None. If provided must be a scorer callable object / function with signature ``scorer(estimator, X, y)``. verbose : int Verbosity level. **fit_params : kwargs Additional parameter passed to the fit function of the estimator. error_score : 'raise' (default) or numeric Value to assign to the score if an error occurs in estimator fitting. If set to 'raise', the error is raised. If a numeric value is given, FitFailedWarning is raised. This parameter does not affect the refit step, which will always raise the error. Returns ------- score : float Score of this parameter setting on given training / test split. parameters : dict The parameters that have been evaluated. n_samples_test : int Number of test samples in this split. """ score, n_samples_test, _ = _fit_and_score(estimator, X, y, scorer, train, test, verbose, parameters, fit_params, error_score) return score, parameters, n_samples_test def _check_param_grid(param_grid): if hasattr(param_grid, 'items'): param_grid = [param_grid] for p in param_grid: for v in p.values(): if isinstance(v, np.ndarray) and v.ndim > 1: raise ValueError("Parameter array should be one-dimensional.") check = [isinstance(v, k) for k in (list, tuple, np.ndarray)] if True not in check: raise ValueError("Parameter values should be a list.") if len(v) == 0: raise ValueError("Parameter values should be a non-empty " "list.") class _CVScoreTuple (namedtuple('_CVScoreTuple', ('parameters', 'mean_validation_score', 'cv_validation_scores'))): # A raw namedtuple is very memory efficient as it packs the attributes # in a struct to get rid of the __dict__ of attributes in particular it # does not copy the string for the keys on each instance. # By deriving a namedtuple class just to introduce the __repr__ method we # would also reintroduce the __dict__ on the instance. By telling the # Python interpreter that this subclass uses static __slots__ instead of # dynamic attributes. Furthermore we don't need any additional slot in the # subclass so we set __slots__ to the empty tuple. __slots__ = () def __repr__(self): """Simple custom repr to summarize the main info""" return "mean: {0:.5f}, std: {1:.5f}, params: {2}".format( self.mean_validation_score, np.std(self.cv_validation_scores), self.parameters) class BaseSearchCV(six.with_metaclass(ABCMeta, BaseEstimator, MetaEstimatorMixin)): """Base class for hyper parameter search with cross-validation.""" @abstractmethod def __init__(self, estimator, scoring=None, fit_params=None, n_jobs=1, iid=True, refit=True, cv=None, verbose=0, pre_dispatch='2*n_jobs', error_score='raise'): self.scoring = scoring self.estimator = estimator self.n_jobs = n_jobs self.fit_params = fit_params if fit_params is not None else {} self.iid = iid self.refit = refit self.cv = cv self.verbose = verbose self.pre_dispatch = pre_dispatch self.error_score = error_score @property def _estimator_type(self): return self.estimator._estimator_type def score(self, X, y=None): """Returns the score on the given data, if the estimator has been refit This uses the score defined by ``scoring`` where provided, and the ``best_estimator_.score`` method otherwise. Parameters ---------- X : array-like, shape = [n_samples, n_features] Input data, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] or [n_samples, n_output], optional Target relative to X for classification or regression; None for unsupervised learning. Returns ------- score : float Notes ----- * The long-standing behavior of this method changed in version 0.16. * It no longer uses the metric provided by ``estimator.score`` if the ``scoring`` parameter was set when fitting. """ if self.scorer_ is None: raise ValueError("No score function explicitly defined, " "and the estimator doesn't provide one %s" % self.best_estimator_) if self.scoring is not None and hasattr(self.best_estimator_, 'score'): warnings.warn("The long-standing behavior to use the estimator's " "score function in {0}.score has changed. The " "scoring parameter is now used." "".format(self.__class__.__name__), ChangedBehaviorWarning) return self.scorer_(self.best_estimator_, X, y) @if_delegate_has_method(delegate='estimator') def predict(self, X): """Call predict on the estimator with the best found parameters. Only available if ``refit=True`` and the underlying estimator supports ``predict``. Parameters ----------- X : indexable, length n_samples Must fulfill the input assumptions of the underlying estimator. """ return self.best_estimator_.predict(X) @if_delegate_has_method(delegate='estimator') def predict_proba(self, X): """Call predict_proba on the estimator with the best found parameters. Only available if ``refit=True`` and the underlying estimator supports ``predict_proba``. Parameters ----------- X : indexable, length n_samples Must fulfill the input assumptions of the underlying estimator. """ return self.best_estimator_.predict_proba(X) @if_delegate_has_method(delegate='estimator') def predict_log_proba(self, X): """Call predict_log_proba on the estimator with the best found parameters. Only available if ``refit=True`` and the underlying estimator supports ``predict_log_proba``. Parameters ----------- X : indexable, length n_samples Must fulfill the input assumptions of the underlying estimator. """ return self.best_estimator_.predict_log_proba(X) @if_delegate_has_method(delegate='estimator') def decision_function(self, X): """Call decision_function on the estimator with the best found parameters. Only available if ``refit=True`` and the underlying estimator supports ``decision_function``. Parameters ----------- X : indexable, length n_samples Must fulfill the input assumptions of the underlying estimator. """ return self.best_estimator_.decision_function(X) @if_delegate_has_method(delegate='estimator') def transform(self, X): """Call transform on the estimator with the best found parameters. Only available if the underlying estimator supports ``transform`` and ``refit=True``. Parameters ----------- X : indexable, length n_samples Must fulfill the input assumptions of the underlying estimator. """ return self.best_estimator_.transform(X) @if_delegate_has_method(delegate='estimator') def inverse_transform(self, Xt): """Call inverse_transform on the estimator with the best found parameters. Only available if the underlying estimator implements ``inverse_transform`` and ``refit=True``. Parameters ----------- Xt : indexable, length n_samples Must fulfill the input assumptions of the underlying estimator. """ return self.best_estimator_.transform(Xt) def _fit(self, X, y, parameter_iterable): """Actual fitting, performing the search over parameters.""" estimator = self.estimator cv = self.cv self.scorer_ = check_scoring(self.estimator, scoring=self.scoring) n_samples = _num_samples(X) X, y = indexable(X, y) if y is not None: if len(y) != n_samples: raise ValueError('Target variable (y) has a different number ' 'of samples (%i) than data (X: %i samples)' % (len(y), n_samples)) cv = check_cv(cv, X, y, classifier=is_classifier(estimator)) if self.verbose > 0: if isinstance(parameter_iterable, Sized): n_candidates = len(parameter_iterable) print("Fitting {0} folds for each of {1} candidates, totalling" " {2} fits".format(len(cv), n_candidates, n_candidates * len(cv))) base_estimator = clone(self.estimator) pre_dispatch = self.pre_dispatch out = Parallel( n_jobs=self.n_jobs, verbose=self.verbose, pre_dispatch=pre_dispatch )( delayed(_fit_and_score)(clone(base_estimator), X, y, self.scorer_, train, test, self.verbose, parameters, self.fit_params, return_parameters=True, error_score=self.error_score) for parameters in parameter_iterable for train, test in cv) # Out is a list of triplet: score, estimator, n_test_samples n_fits = len(out) n_folds = len(cv) scores = list() grid_scores = list() for grid_start in range(0, n_fits, n_folds): n_test_samples = 0 score = 0 all_scores = [] for this_score, this_n_test_samples, _, parameters in \ out[grid_start:grid_start + n_folds]: all_scores.append(this_score) if self.iid: this_score *= this_n_test_samples n_test_samples += this_n_test_samples score += this_score if self.iid: score /= float(n_test_samples) else: score /= float(n_folds) scores.append((score, parameters)) # TODO: shall we also store the test_fold_sizes? grid_scores.append(_CVScoreTuple( parameters, score, np.array(all_scores))) # Store the computed scores self.grid_scores_ = grid_scores # Find the best parameters by comparing on the mean validation score: # note that `sorted` is deterministic in the way it breaks ties best = sorted(grid_scores, key=lambda x: x.mean_validation_score, reverse=True)[0] self.best_params_ = best.parameters self.best_score_ = best.mean_validation_score if self.refit: # fit the best estimator using the entire dataset # clone first to work around broken estimators best_estimator = clone(base_estimator).set_params( **best.parameters) if y is not None: best_estimator.fit(X, y, **self.fit_params) else: best_estimator.fit(X, **self.fit_params) self.best_estimator_ = best_estimator return self class GridSearchCV(BaseSearchCV): """Exhaustive search over specified parameter values for an estimator. Important members are fit, predict. GridSearchCV implements a "fit" method and a "predict" method like any classifier except that the parameters of the classifier used to predict is optimized by cross-validation. Read more in the :ref:`User Guide <grid_search>`. Parameters ---------- estimator : object type that implements the "fit" and "predict" methods A object of that type is instantiated for each grid point. param_grid : dict or list of dictionaries Dictionary with parameters names (string) as keys and lists of parameter settings to try as values, or a list of such dictionaries, in which case the grids spanned by each dictionary in the list are explored. This enables searching over any sequence of parameter settings. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. fit_params : dict, optional Parameters to pass to the fit method. n_jobs : int, default 1 Number of jobs to run in parallel. pre_dispatch : int, or string, optional Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be: - None, in which case all the jobs are immediately created and spawned. Use this for lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs - An int, giving the exact number of total jobs that are spawned - A string, giving an expression as a function of n_jobs, as in '2*n_jobs' iid : boolean, default=True If True, the data is assumed to be identically distributed across the folds, and the loss minimized is the total loss per sample, and not the mean loss across the folds. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, if ``y`` is binary or multiclass, :class:`StratifiedKFold` used. If the estimator is a classifier or if ``y`` is neither binary nor multiclass, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. refit : boolean, default=True Refit the best estimator with the entire dataset. If "False", it is impossible to make predictions using this GridSearchCV instance after fitting. verbose : integer Controls the verbosity: the higher, the more messages. error_score : 'raise' (default) or numeric Value to assign to the score if an error occurs in estimator fitting. If set to 'raise', the error is raised. If a numeric value is given, FitFailedWarning is raised. This parameter does not affect the refit step, which will always raise the error. Examples -------- >>> from sklearn import svm, grid_search, datasets >>> iris = datasets.load_iris() >>> parameters = {'kernel':('linear', 'rbf'), 'C':[1, 10]} >>> svr = svm.SVC() >>> clf = grid_search.GridSearchCV(svr, parameters) >>> clf.fit(iris.data, iris.target) ... # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS GridSearchCV(cv=None, error_score=..., estimator=SVC(C=1.0, cache_size=..., class_weight=..., coef0=..., decision_function_shape=None, degree=..., gamma=..., kernel='rbf', max_iter=-1, probability=False, random_state=None, shrinking=True, tol=..., verbose=False), fit_params={}, iid=..., n_jobs=1, param_grid=..., pre_dispatch=..., refit=..., scoring=..., verbose=...) Attributes ---------- grid_scores_ : list of named tuples Contains scores for all parameter combinations in param_grid. Each entry corresponds to one parameter setting. Each named tuple has the attributes: * ``parameters``, a dict of parameter settings * ``mean_validation_score``, the mean score over the cross-validation folds * ``cv_validation_scores``, the list of scores for each fold best_estimator_ : estimator Estimator that was chosen by the search, i.e. estimator which gave highest score (or smallest loss if specified) on the left out data. Not available if refit=False. best_score_ : float Score of best_estimator on the left out data. best_params_ : dict Parameter setting that gave the best results on the hold out data. scorer_ : function Scorer function used on the held out data to choose the best parameters for the model. Notes ------ The parameters selected are those that maximize the score of the left out data, unless an explicit score is passed in which case it is used instead. If `n_jobs` was set to a value higher than one, the data is copied for each point in the grid (and not `n_jobs` times). This is done for efficiency reasons if individual jobs take very little time, but may raise errors if the dataset is large and not enough memory is available. A workaround in this case is to set `pre_dispatch`. Then, the memory is copied only `pre_dispatch` many times. A reasonable value for `pre_dispatch` is `2 * n_jobs`. See Also --------- :class:`ParameterGrid`: generates all the combinations of a an hyperparameter grid. :func:`sklearn.cross_validation.train_test_split`: utility function to split the data into a development set usable for fitting a GridSearchCV instance and an evaluation set for its final evaluation. :func:`sklearn.metrics.make_scorer`: Make a scorer from a performance metric or loss function. """ def __init__(self, estimator, param_grid, scoring=None, fit_params=None, n_jobs=1, iid=True, refit=True, cv=None, verbose=0, pre_dispatch='2*n_jobs', error_score='raise'): super(GridSearchCV, self).__init__( estimator, scoring, fit_params, n_jobs, iid, refit, cv, verbose, pre_dispatch, error_score) self.param_grid = param_grid _check_param_grid(param_grid) def fit(self, X, y=None): """Run fit with all sets of parameters. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] or [n_samples, n_output], optional Target relative to X for classification or regression; None for unsupervised learning. """ return self._fit(X, y, ParameterGrid(self.param_grid)) class RandomizedSearchCV(BaseSearchCV): """Randomized search on hyper parameters. RandomizedSearchCV implements a "fit" method and a "predict" method like any classifier except that the parameters of the classifier used to predict is optimized by cross-validation. In contrast to GridSearchCV, not all parameter values are tried out, but rather a fixed number of parameter settings is sampled from the specified distributions. The number of parameter settings that are tried is given by n_iter. If all parameters are presented as a list, sampling without replacement is performed. If at least one parameter is given as a distribution, sampling with replacement is used. It is highly recommended to use continuous distributions for continuous parameters. Read more in the :ref:`User Guide <randomized_parameter_search>`. Parameters ---------- estimator : object type that implements the "fit" and "predict" methods A object of that type is instantiated for each parameter setting. param_distributions : dict Dictionary with parameters names (string) as keys and distributions or lists of parameters to try. Distributions must provide a ``rvs`` method for sampling (such as those from scipy.stats.distributions). If a list is given, it is sampled uniformly. n_iter : int, default=10 Number of parameter settings that are sampled. n_iter trades off runtime vs quality of the solution. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. fit_params : dict, optional Parameters to pass to the fit method. n_jobs : int, default=1 Number of jobs to run in parallel. pre_dispatch : int, or string, optional Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be: - None, in which case all the jobs are immediately created and spawned. Use this for lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs - An int, giving the exact number of total jobs that are spawned - A string, giving an expression as a function of n_jobs, as in '2*n_jobs' iid : boolean, default=True If True, the data is assumed to be identically distributed across the folds, and the loss minimized is the total loss per sample, and not the mean loss across the folds. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, if ``y`` is binary or multiclass, :class:`StratifiedKFold` used. If the estimator is a classifier or if ``y`` is neither binary nor multiclass, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. refit : boolean, default=True Refit the best estimator with the entire dataset. If "False", it is impossible to make predictions using this RandomizedSearchCV instance after fitting. verbose : integer Controls the verbosity: the higher, the more messages. random_state : int or RandomState Pseudo random number generator state used for random uniform sampling from lists of possible values instead of scipy.stats distributions. error_score : 'raise' (default) or numeric Value to assign to the score if an error occurs in estimator fitting. If set to 'raise', the error is raised. If a numeric value is given, FitFailedWarning is raised. This parameter does not affect the refit step, which will always raise the error. Attributes ---------- grid_scores_ : list of named tuples Contains scores for all parameter combinations in param_grid. Each entry corresponds to one parameter setting. Each named tuple has the attributes: * ``parameters``, a dict of parameter settings * ``mean_validation_score``, the mean score over the cross-validation folds * ``cv_validation_scores``, the list of scores for each fold best_estimator_ : estimator Estimator that was chosen by the search, i.e. estimator which gave highest score (or smallest loss if specified) on the left out data. Not available if refit=False. best_score_ : float Score of best_estimator on the left out data. best_params_ : dict Parameter setting that gave the best results on the hold out data. Notes ----- The parameters selected are those that maximize the score of the held-out data, according to the scoring parameter. If `n_jobs` was set to a value higher than one, the data is copied for each parameter setting(and not `n_jobs` times). This is done for efficiency reasons if individual jobs take very little time, but may raise errors if the dataset is large and not enough memory is available. A workaround in this case is to set `pre_dispatch`. Then, the memory is copied only `pre_dispatch` many times. A reasonable value for `pre_dispatch` is `2 * n_jobs`. See Also -------- :class:`GridSearchCV`: Does exhaustive search over a grid of parameters. :class:`ParameterSampler`: A generator over parameter settins, constructed from param_distributions. """ def __init__(self, estimator, param_distributions, n_iter=10, scoring=None, fit_params=None, n_jobs=1, iid=True, refit=True, cv=None, verbose=0, pre_dispatch='2*n_jobs', random_state=None, error_score='raise'): self.param_distributions = param_distributions self.n_iter = n_iter self.random_state = random_state super(RandomizedSearchCV, self).__init__( estimator=estimator, scoring=scoring, fit_params=fit_params, n_jobs=n_jobs, iid=iid, refit=refit, cv=cv, verbose=verbose, pre_dispatch=pre_dispatch, error_score=error_score) def fit(self, X, y=None): """Run fit on the estimator with randomly drawn parameters. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vector, where n_samples in the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] or [n_samples, n_output], optional Target relative to X for classification or regression; None for unsupervised learning. """ sampled_params = ParameterSampler(self.param_distributions, self.n_iter, random_state=self.random_state) return self._fit(X, y, sampled_params)
bsd-3-clause
rajegannathan/grasp-lift-eeg-cat-dog-solution-updated
python-packages/hyperopt-0.0.2/hyperopt/tests/test_plotting.py
3
1760
""" Verify that the plotting routines can at least run. If environment variable HYPEROPT_SHOW is defined and true, then the plots actually appear. """ import unittest import os try: import matplotlib matplotlib.use('svg') # -- prevents trying to connect to X server except ImportError: import nose raise nose.SkipTest() from hyperopt import Experiment, Trials, TreeParzenEstimator from .test_tpe import many_dists import hyperopt.bandits import hyperopt.plotting def get_do_show(): rval = int(os.getenv('HYPEROPT_SHOW', '0')) print 'do_show =', rval return rval class TestPlotting(unittest.TestCase): def setUp(self): bandit = self.bandit = many_dists() algo = TreeParzenEstimator(bandit) trials = Trials() experiment = Experiment(trials, algo, async=False) experiment.max_queue_len = 1 N=200 if 0: import cProfile stats = cProfile.runctx('experiment.run(N)', globals={}, locals=locals(), filename='fooprof') import pstats p = pstats.Stats('fooprof') p.sort_stats('cumulative').print_stats(10) p.sort_stats('time').print_stats(10) else: experiment.run(N) self.trials = trials def test_plot_history(self): hyperopt.plotting.main_plot_history( self.trials, do_show=get_do_show()) def test_plot_histogram(self): hyperopt.plotting.main_plot_histogram( self.trials, do_show=get_do_show()) def test_plot_vars(self): hyperopt.plotting.main_plot_vars( self.trials, self.bandit, do_show=get_do_show())
bsd-3-clause
zyndagj/reptiming_logFC
flankingRegions.py
2
6599
#!/usr/bin/env python import numpy as np from collections import Counter import argparse, os, re, sys import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt import matplotlib.patches as mpatches import matplotlib.cm as cm from itertools import izip_longest from operator import itemgetter def main(): parser = argparse.ArgumentParser(description="Investigates the flanking regiosn around EL and EML.") parser.add_argument("GFF3",metavar="GFF3", help="Segmentation Profile (mitotic)", nargs=1) parser.add_argument("-T",metavar="STR", help="Times (Default: %(default)s)", default="ES,MS,LS", type=str) args = parser.parse_args() plotVars(args.T) firstLast, allTimes = processGenome(args.GFF3[0]) plt.figure(figsize=(4,8)) ax = plt.subplot(211) ax.xaxis.set_visible(False) firstLastFreqs = countFreqs(firstLast) writeFreqs(firstLastFreqs, 'EL_links.tab') plotFreqs(firstLastFreqs, 'Frequency of EL Links') ax = plt.subplot(212) ax.xaxis.set_visible(False) allFreqs = countFreqs(allTimes) writeFreqs(allFreqs, 'EML_links.tab') plotFreqs(allFreqs, 'Frequency of EML Links') plt.tight_layout() plt.savefig('relationships.png') def plotFreqs(counter, name): labels, inds, cinds = makeLabels() colDict = {labels[i]:colors[cinds[i]] for i in range(len(labels))} for k,v in counter.iteritems(): plt.plot([0,1], [v,v], 'k-') plt.scatter([0],[v], s=60, c=colDict[k[0]]) plt.scatter([1],[v], s=60, c=colDict[k[2]]) plt.text(1.2, v, '-'.join(k).translate(None,'S'), fontsize=9) plt.xlim((-0.25,1.8)) plt.title(name+' (total=%i)'%(sum(counter.values())), y=1.05) def countFreqs(inList): c = Counter() c.update(inList) return c def writeFreqs(counter, outFile): OF = open(outFile,'w') for k,i in counter.iteritems(): OF.write('%s\t%i\n'%('\t'.join(k),i)) OF.close() def processGenome(gff): flName = nameList[0]+nameList[-1] allName = ''.join(nameList) firstLast = [] allTimes = [] for f, s, t in fileReader(gff): if s[1] == flName: if checkDist(f,s,t): firstLast.append((f[1], s[1], t[1])) elif s[1] == allName: if checkDist(f,s,t): allTimes.append((f[1], s[1], t[1])) return (firstLast, allTimes) def checkDist(f,s,t): ntf = f[0][2] == s[0][1] ntt = s[0][2] == t[0][1] return ntf and ntt def toBA(name): ''' >>> toBA('ESMS') array([ True, True, False], dtype=bool) >>> toBA('MSLS') array([False, True, True], dtype=bool) ''' return np.array([N in name for N in nameList], dtype=np.bool) def plotVars(names): global nameList nameList = names.split(',') global colors if names == 'ES,MS,LS': #global times #times = ('ES','ESMS','MS','MSLS','LS','ESLS','ESMSLS') #myColors = ("#2250F1","#28C5CC","#1A8A12","#FFFD33","#FB0018","#EA3CF2","#FAB427") colors = ["#FB0018","#1A8A12","#FFFD33","#2250F1","#EA3CF2","#28C5CC","#FAB427"] else: colors = cm.rainbow(np.linspace(0,1,2**len(nameList)-1)) def plotComp(segments, title, tileSize, chromDict, figExt): plt.figure() yIndex = 0.1 yHeight = 0.8 sortedChroms = sorted(chromDict.keys()) labels, inds, cinds = makeLabels() OT = open("composition_%s.tab"%(title), 'w') OT.write("Chr\t"+'\t \t'.join(labels)+'\t \tChr Length\n') for chrom in sortedChroms: otStr = '%s\t'%(chrom) chromSize = chromDict[chrom] X = np.zeros(2**len(nameList)-1) for arrayStr, size in segments[chrom]: sortedInd = inds[int(arrayStr,2)-1] X[sortedInd] += size*tileSize percents = list(np.round(X/float(chromSize),3)) sP = map(lambda x: str(x*100)+'%', percents) otStr += '\t'.join([str(val) for tup in zip(X,sP) for val in tup])+'\t'+str(chromSize)+'\n' OT.write(otStr) xranges = zip(np.cumsum([0]+percents[:-1]), percents) plt.broken_barh(xranges, (yIndex, yHeight), lw=0, color=[colors[i] for i in cinds]) yIndex += 1 OT.close() plt.xlim((0,1)) plt.yticks(np.arange(0.5, len(sortedChroms)), sortedChroms) plt.ylabel("Chromosome") plt.xlabel("Fraction of Chromosome") plt.title(title+" Chromosome Composition") patches = [mpatches.Patch(color=colors[cinds[i]], label=labels[i]) for i in xrange(len(labels))] plt.figlegend(patches, labels, loc='center right', ncol=1, frameon=False) plt.tight_layout(rect=[0,0,0.81,1.0]) plt.savefig("composition_%s.%s"%(title, figExt)) plt.close() def makeLabels(): ''' >>> makeLabels() ['ES', 'ESMS', 'ESLS', 'ESMSLS', 'MS', 'MSLS', 'LS'] ''' labels = [] numNames = 2**len(nameList)-1 for i in range(numNames): binRep = map(int, np.binary_repr(i+1,len(nameList))) name = '' for binI in range(len(binRep)): if binRep[binI]: name += nameList[binI] boolA = np.array(binRep, dtype=np.bool) val = np.mean(np.where(boolA)) labels.append((name,val)) sortedLabels = sorted(labels, key=itemgetter(1,0)) inds = [sortedLabels.index(x) for x in labels] cinds = [labels.index(x) for x in sortedLabels] return (map(lambda x: x[0], sortedLabels), inds, cinds) def plotSize(segments, title, tileSize, figExt): X = [[] for i in xrange(2**len(nameList)-1)] labels, inds, cinds = makeLabels() for chromList in segments.itervalues(): for arrayStr, size in chromList: base10 = int(arrayStr,2) sortedInd = inds[base10-1] X[sortedInd].append(size*tileSize) print "%s Size Distribution"%(title) print "%-6s %10s %10s %10s %10s %10s %10s"%("","min","1st-Q","median","3rd-Q","max",'count') for segment, xIndex in zip(labels, range(len(labels))): fiveSum = fivenum(X[xIndex]) # (min, 1st-Q, median, 3rd-Q, max) args = (segment,)+fiveSum+(len(X[xIndex]),) print "%-6s %10.1f %10.1f %10.1f %10.1f %10.1f %10i"%args plt.figure() plt.boxplot(X, labels=labels, showfliers=False) plt.ylabel("Segment Size (bp)") plt.xlabel("Time") plt.title(title+" Size Distribution") plt.savefig("size_dist_%s.%s"%(title, figExt)) plt.close() def fileReader(a): if not os.path.splitext(a)[1] == '.gff3': sys.exit("%s is not a gff3 file"%(a)) IF = open(a,'r') # Skip header tmpLine = IF.readline() while tmpLine[0] == '#': tmpLine = IF.readline() sLine = lineParser(tmpLine) #((chrom, start, end), name) tLine = lineParser(IF.readline()) for line in IF: if line[0] != '#': fLine = sLine sLine = tLine tLine = lineParser(line) yield((fLine, sLine, tLine)) # pre-compiled RE for finding the name in the GFF nameRE = re.compile(r'Name=([^;]+);') def lineParser(line): tmp = line.split('\t') try: location = (tmp[0], int(tmp[3])-1, int(tmp[4])) # (chrom, start, end) except: print "Couldn't parse:", tmp sys.exit() name = nameRE.search(tmp[8]).group(1) # name return location, name if __name__ == "__main__": main() else: nameList = ['ES','MS','LS']
bsd-2-clause
kayarre/Tools
mpi_ascii.py
1
6255
#mpi_ascii.py from mpi4py import MPI import numpy as np import pandas as pd import os import h5py def write_fields(dbFile, time_idx, time_pt, velocity, compression=None, add_fields=None): timeIdxGroup = dbFile.create_group("field_{0:d}".format(time_idx)) timeIdxGroup.attrs["time"] = np.float32(time_pt) timeIdxGroup.create_dataset("velocity", data=velocity, dtype=np.float32, compression=compression) if(add_fields != None): for fld in add_fields.keys(): timeIdxGroup.create_dataset(fld, data=add_fields[fld], dtype=np.float32, compression=compression) def initialize_write(dbFile, time_idx, time_pt, coords, velocity, compression=None, nodes=None, add_fields=None): """Write the velocity field into an HDF5 file. Will also write the corresponding time value. Parameters --------- hdf5File : h5py.File The the HDF5 file. time_pt : float The value of time associated with the written velocity field. coords : list of 1d ndarray A list 1d ndarray containing the points. velocity : list of 1d ndarray A list of ndarrays to write to velocity field. """ pointGroup = dbFile.create_group("coordinates") pointGroup.attrs["nPoints"] = np.int64(coords.shape[0]) pointGroup.attrs["dimension"] = np.int32(coords.shape[1]) pointGroup.create_dataset("coordinates", data=coords, dtype=np.float32, compression=compression) if(nodes != None): pointGroup.create_dataset("nodes", data=nodes, dtype=np.int32, compression=compression) write_fields(dbFile, time_idx, time_pt, velocity, add_fields=None, compression=compression) def write_time(dbFile, time, time_idx, compression=None): timeGroup = dbFile.create_group("time") timeGroup.attrs["tPoints"] = np.int32(time.shape[0]) timeGroup.create_dataset("time", data=time, dtype=np.float32, compression=compression) timeGroup.create_dataset("time_index", data=time_idx, dtype=np.int32, compression=compression) def write_binary(dbFile, sol_files, stop_n, compression=None): time = [] var_dict = {} for file_idx, file_ in enumerate(sol_files): if (file_idx >= stop_n): break if os.path.isfile(file_): print(os.path.split(file_)[-1]) split_name = file_.split('-') time_pt = float(split_name[-1]) print(time_pt) time.append(time_pt) data = pd.read_csv(file_, sep='\s+', usecols=np.arange(1,7)).values if(file_idx == 0): coords = data[:,0:3] v = data[:,3:6] initialize_write(dbFile, file_idx, split_name[-1], coords, v, compression) else: v = data[:,3:6] write_fields(dbFile, file_idx, split_name[-1], v, compression) time = np.asarray(time) length_t = time.shape[0] index_t = np.arange(length_t) write_time(dbFile, time, index_t, compression) def run_script(): rank = MPI.COMM_WORLD.Get_rank() size = MPI.COMM_WORLD.Get_size() name = MPI.Get_processor_name() # ****************************** # actual (serial) work goes here # ****************************** #python ascii_2_binary.py --dir_path=/raid/home/ksansom/caseFiles/ultrasound/cases/DSI006DA/fluent_4PL --search_name=DSI006DA_4PL_ascii-* --output_name=DSI006DA_4PL --n_steps=2 dir_path = "/raid/home/ksansom/caseFiles/ultrasound/cases" sub_dir = "fluent" file_list_name = "file_list" out_path_dir = "post_proc" case_dict = {"DSI002CARc" : [1, 635], "DSI003LERd" : [2, 836], "DSI006DA" : [3, 849], "DSI007LERb" : [4, 644], "DSI009CALb" : [5, 691], "DSI010CALb" : [6, 1030], "DSI010LERd" : [7, 908], "DSI011CARe" : [8, 1769], "DSI015DALd" : [9, 1930] } #print("Hello, world! This is rank {0:d} of {1:d} running on {2:s}".format(rank, size, name)) case_id = case_dict.keys() length_cases = len(case_dict.keys()) if(rank == 0): print(length_cases) #length_cases = 2 if(length_cases > size): print("Not enough processors to complete") MPI.COMM_WORLD.Abort() else: for idx, case in enumerate(case_id): #here is one case execute for that rank #print("yo", idx, case) if(rank > length_cases): continue elif(rank+1 == idx): print("run case {0:s} on rank {1:d}".format(case, rank)) ascii_path = os.path.join(dir_path, case, sub_dir) file_list_path = os.path.join(ascii_path, file_list_name) out_file_name = "{0:s}.hdf5".format(case) out_path = os.path.join(ascii_path, out_path_dir) #out_file_path = os.path.join(out_path, out_file_name) if not os.path.exists(out_path): print("creating path directory") os.makedirs(out_path) sol_names = pd.read_csv(file_list_path, header=None).values sol_files = [os.path.join(ascii_path, str(i[0])) for i in sol_names] #make sure all the files exist for fname in sol_files: if(not os.path.isfile(fname)): print("There is a missing file in case {0:s}".format(case)) print(fname) continue out_file_path = os.path.join(out_path, out_file_name) # Allocate arrays for the fluctuations if os.path.isfile(out_file_path): print("HDF5 file already exists. It it will be overwritten.") try: os.remove(out_file_path) except FileNotFoundError: print("Error trying to delete: {0:s}".format(out_file_path)) dbFile = h5py.File(out_file_path, 'w') #dbFile = h5py.File(out_file_path, 'a', driver='mpio', comm=MPI.COMM_WORLD) compression = "lzf" #compression = None #write_binary(dbFile, sol_files, case_dict[case][1], compression) write_binary(dbFile, sol_files, 2, compression) MPI.COMM_WORLD.Barrier() # wait for everybody to synchronize _here_ if ( __name__ == '__main__' ): run_script()
bsd-2-clause
mgoddard-pivotal/data-science-from-scratch
code/visualizing_data.py
58
5116
import matplotlib.pyplot as plt from collections import Counter def make_chart_simple_line_chart(plt): years = [1950, 1960, 1970, 1980, 1990, 2000, 2010] gdp = [300.2, 543.3, 1075.9, 2862.5, 5979.6, 10289.7, 14958.3] # create a line chart, years on x-axis, gdp on y-axis plt.plot(years, gdp, color='green', marker='o', linestyle='solid') # add a title plt.title("Nominal GDP") # add a label to the y-axis plt.ylabel("Billions of $") plt.show() def make_chart_simple_bar_chart(plt): movies = ["Annie Hall", "Ben-Hur", "Casablanca", "Gandhi", "West Side Story"] num_oscars = [5, 11, 3, 8, 10] # bars are by default width 0.8, so we'll add 0.1 to the left coordinates # so that each bar is centered xs = [i + 0.1 for i, _ in enumerate(movies)] # plot bars with left x-coordinates [xs], heights [num_oscars] plt.bar(xs, num_oscars) plt.ylabel("# of Academy Awards") plt.title("My Favorite Movies") # label x-axis with movie names at bar centers plt.xticks([i + 0.5 for i, _ in enumerate(movies)], movies) plt.show() def make_chart_histogram(plt): grades = [83,95,91,87,70,0,85,82,100,67,73,77,0] decile = lambda grade: grade // 10 * 10 histogram = Counter(decile(grade) for grade in grades) plt.bar([x - 4 for x in histogram.keys()], # shift each bar to the left by 4 histogram.values(), # give each bar its correct height 8) # give each bar a width of 8 plt.axis([-5, 105, 0, 5]) # x-axis from -5 to 105, # y-axis from 0 to 5 plt.xticks([10 * i for i in range(11)]) # x-axis labels at 0, 10, ..., 100 plt.xlabel("Decile") plt.ylabel("# of Students") plt.title("Distribution of Exam 1 Grades") plt.show() def make_chart_misleading_y_axis(plt, mislead=True): mentions = [500, 505] years = [2013, 2014] plt.bar([2012.6, 2013.6], mentions, 0.8) plt.xticks(years) plt.ylabel("# of times I heard someone say 'data science'") # if you don't do this, matplotlib will label the x-axis 0, 1 # and then add a +2.013e3 off in the corner (bad matplotlib!) plt.ticklabel_format(useOffset=False) if mislead: # misleading y-axis only shows the part above 500 plt.axis([2012.5,2014.5,499,506]) plt.title("Look at the 'Huge' Increase!") else: plt.axis([2012.5,2014.5,0,550]) plt.title("Not So Huge Anymore.") plt.show() def make_chart_several_line_charts(plt): variance = [1,2,4,8,16,32,64,128,256] bias_squared = [256,128,64,32,16,8,4,2,1] total_error = [x + y for x, y in zip(variance, bias_squared)] xs = range(len(variance)) # we can make multiple calls to plt.plot # to show multiple series on the same chart plt.plot(xs, variance, 'g-', label='variance') # green solid line plt.plot(xs, bias_squared, 'r-.', label='bias^2') # red dot-dashed line plt.plot(xs, total_error, 'b:', label='total error') # blue dotted line # because we've assigned labels to each series # we can get a legend for free # loc=9 means "top center" plt.legend(loc=9) plt.xlabel("model complexity") plt.title("The Bias-Variance Tradeoff") plt.show() def make_chart_scatter_plot(plt): friends = [ 70, 65, 72, 63, 71, 64, 60, 64, 67] minutes = [175, 170, 205, 120, 220, 130, 105, 145, 190] labels = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i'] plt.scatter(friends, minutes) # label each point for label, friend_count, minute_count in zip(labels, friends, minutes): plt.annotate(label, xy=(friend_count, minute_count), # put the label with its point xytext=(5, -5), # but slightly offset textcoords='offset points') plt.title("Daily Minutes vs. Number of Friends") plt.xlabel("# of friends") plt.ylabel("daily minutes spent on the site") plt.show() def make_chart_scatterplot_axes(plt, equal_axes=False): test_1_grades = [ 99, 90, 85, 97, 80] test_2_grades = [100, 85, 60, 90, 70] plt.scatter(test_1_grades, test_2_grades) plt.xlabel("test 1 grade") plt.ylabel("test 2 grade") if equal_axes: plt.title("Axes Are Comparable") plt.axis("equal") else: plt.title("Axes Aren't Comparable") plt.show() def make_chart_pie_chart(plt): plt.pie([0.95, 0.05], labels=["Uses pie charts", "Knows better"]) # make sure pie is a circle and not an oval plt.axis("equal") plt.show() if __name__ == "__main__": make_chart_simple_line_chart(plt) make_chart_simple_bar_chart(plt) make_chart_histogram(plt) make_chart_misleading_y_axis(plt, mislead=True) make_chart_misleading_y_axis(plt, mislead=False) make_chart_several_line_charts(plt) make_chart_scatterplot_axes(plt, equal_axes=False) make_chart_scatterplot_axes(plt, equal_axes=True) make_chart_pie_chart(plt)
unlicense
yavalvas/yav_com
build/matplotlib/examples/units/basic_units.py
9
11157
import math import numpy as np import matplotlib.units as units import matplotlib.ticker as ticker from matplotlib.axes import Axes from matplotlib.cbook import iterable class ProxyDelegate(object): def __init__(self, fn_name, proxy_type): self.proxy_type = proxy_type self.fn_name = fn_name def __get__(self, obj, objtype=None): return self.proxy_type(self.fn_name, obj) class TaggedValueMeta (type): def __init__(cls, name, bases, dict): for fn_name in cls._proxies.keys(): try: dummy = getattr(cls, fn_name) except AttributeError: setattr(cls, fn_name, ProxyDelegate(fn_name, cls._proxies[fn_name])) class PassThroughProxy(object): def __init__(self, fn_name, obj): self.fn_name = fn_name self.target = obj.proxy_target def __call__(self, *args): fn = getattr(self.target, self.fn_name) ret = fn(*args) return ret class ConvertArgsProxy(PassThroughProxy): def __init__(self, fn_name, obj): PassThroughProxy.__init__(self, fn_name, obj) self.unit = obj.unit def __call__(self, *args): converted_args = [] for a in args: try: converted_args.append(a.convert_to(self.unit)) except AttributeError: converted_args.append(TaggedValue(a, self.unit)) converted_args = tuple([c.get_value() for c in converted_args]) return PassThroughProxy.__call__(self, *converted_args) class ConvertReturnProxy(PassThroughProxy): def __init__(self, fn_name, obj): PassThroughProxy.__init__(self, fn_name, obj) self.unit = obj.unit def __call__(self, *args): ret = PassThroughProxy.__call__(self, *args) if (type(ret) == type(NotImplemented)): return NotImplemented return TaggedValue(ret, self.unit) class ConvertAllProxy(PassThroughProxy): def __init__(self, fn_name, obj): PassThroughProxy.__init__(self, fn_name, obj) self.unit = obj.unit def __call__(self, *args): converted_args = [] arg_units = [self.unit] for a in args: if hasattr(a, 'get_unit') and not hasattr(a, 'convert_to'): # if this arg has a unit type but no conversion ability, # this operation is prohibited return NotImplemented if hasattr(a, 'convert_to'): try: a = a.convert_to(self.unit) except: pass arg_units.append(a.get_unit()) converted_args.append(a.get_value()) else: converted_args.append(a) if hasattr(a, 'get_unit'): arg_units.append(a.get_unit()) else: arg_units.append(None) converted_args = tuple(converted_args) ret = PassThroughProxy.__call__(self, *converted_args) if (type(ret) == type(NotImplemented)): return NotImplemented ret_unit = unit_resolver(self.fn_name, arg_units) if (ret_unit == NotImplemented): return NotImplemented return TaggedValue(ret, ret_unit) class _TaggedValue(object): _proxies = {'__add__': ConvertAllProxy, '__sub__': ConvertAllProxy, '__mul__': ConvertAllProxy, '__rmul__': ConvertAllProxy, '__cmp__': ConvertAllProxy, '__lt__': ConvertAllProxy, '__gt__': ConvertAllProxy, '__len__': PassThroughProxy} def __new__(cls, value, unit): # generate a new subclass for value value_class = type(value) try: subcls = type('TaggedValue_of_%s' % (value_class.__name__), tuple([cls, value_class]), {}) if subcls not in units.registry: units.registry[subcls] = basicConverter return object.__new__(subcls, value, unit) except TypeError: if cls not in units.registry: units.registry[cls] = basicConverter return object.__new__(cls, value, unit) def __init__(self, value, unit): self.value = value self.unit = unit self.proxy_target = self.value def __getattribute__(self, name): if (name.startswith('__')): return object.__getattribute__(self, name) variable = object.__getattribute__(self, 'value') if (hasattr(variable, name) and name not in self.__class__.__dict__): return getattr(variable, name) return object.__getattribute__(self, name) def __array__(self, t=None, context=None): if t is not None: return np.asarray(self.value).astype(t) else: return np.asarray(self.value, 'O') def __array_wrap__(self, array, context): return TaggedValue(array, self.unit) def __repr__(self): return 'TaggedValue(' + repr(self.value) + ', ' + repr(self.unit) + ')' def __str__(self): return str(self.value) + ' in ' + str(self.unit) def __len__(self): return len(self.value) def __iter__(self): class IteratorProxy(object): def __init__(self, iter, unit): self.iter = iter self.unit = unit def __next__(self): value = next(self.iter) return TaggedValue(value, self.unit) next = __next__ # for Python 2 return IteratorProxy(iter(self.value), self.unit) def get_compressed_copy(self, mask): new_value = np.ma.masked_array(self.value, mask=mask).compressed() return TaggedValue(new_value, self.unit) def convert_to(self, unit): if (unit == self.unit or not unit): return self new_value = self.unit.convert_value_to(self.value, unit) return TaggedValue(new_value, unit) def get_value(self): return self.value def get_unit(self): return self.unit TaggedValue = TaggedValueMeta('TaggedValue', (_TaggedValue, ), {}) class BasicUnit(object): def __init__(self, name, fullname=None): self.name = name if fullname is None: fullname = name self.fullname = fullname self.conversions = dict() def __repr__(self): return 'BasicUnit(%s)'%self.name def __str__(self): return self.fullname def __call__(self, value): return TaggedValue(value, self) def __mul__(self, rhs): value = rhs unit = self if hasattr(rhs, 'get_unit'): value = rhs.get_value() unit = rhs.get_unit() unit = unit_resolver('__mul__', (self, unit)) if (unit == NotImplemented): return NotImplemented return TaggedValue(value, unit) def __rmul__(self, lhs): return self*lhs def __array_wrap__(self, array, context): return TaggedValue(array, self) def __array__(self, t=None, context=None): ret = np.array([1]) if t is not None: return ret.astype(t) else: return ret def add_conversion_factor(self, unit, factor): def convert(x): return x*factor self.conversions[unit] = convert def add_conversion_fn(self, unit, fn): self.conversions[unit] = fn def get_conversion_fn(self, unit): return self.conversions[unit] def convert_value_to(self, value, unit): conversion_fn = self.conversions[unit] ret = conversion_fn(value) return ret def get_unit(self): return self class UnitResolver(object): def addition_rule(self, units): for unit_1, unit_2 in zip(units[:-1], units[1:]): if (unit_1 != unit_2): return NotImplemented return units[0] def multiplication_rule(self, units): non_null = [u for u in units if u] if (len(non_null) > 1): return NotImplemented return non_null[0] op_dict = { '__mul__': multiplication_rule, '__rmul__': multiplication_rule, '__add__': addition_rule, '__radd__': addition_rule, '__sub__': addition_rule, '__rsub__': addition_rule} def __call__(self, operation, units): if (operation not in self.op_dict): return NotImplemented return self.op_dict[operation](self, units) unit_resolver = UnitResolver() cm = BasicUnit('cm', 'centimeters') inch = BasicUnit('inch', 'inches') inch.add_conversion_factor(cm, 2.54) cm.add_conversion_factor(inch, 1/2.54) radians = BasicUnit('rad', 'radians') degrees = BasicUnit('deg', 'degrees') radians.add_conversion_factor(degrees, 180.0/np.pi) degrees.add_conversion_factor(radians, np.pi/180.0) secs = BasicUnit('s', 'seconds') hertz = BasicUnit('Hz', 'Hertz') minutes = BasicUnit('min', 'minutes') secs.add_conversion_fn(hertz, lambda x: 1./x) secs.add_conversion_factor(minutes, 1/60.0) # radians formatting def rad_fn(x, pos=None): n = int((x / np.pi) * 2.0 + 0.25) if n == 0: return '0' elif n == 1: return r'$\pi/2$' elif n == 2: return r'$\pi$' elif n % 2 == 0: return r'$%s\pi$' % (n/2,) else: return r'$%s\pi/2$' % (n,) class BasicUnitConverter(units.ConversionInterface): @staticmethod def axisinfo(unit, axis): 'return AxisInfo instance for x and unit' if unit==radians: return units.AxisInfo( majloc=ticker.MultipleLocator(base=np.pi/2), majfmt=ticker.FuncFormatter(rad_fn), label=unit.fullname, ) elif unit==degrees: return units.AxisInfo( majloc=ticker.AutoLocator(), majfmt=ticker.FormatStrFormatter(r'$%i^\circ$'), label=unit.fullname, ) elif unit is not None: if hasattr(unit, 'fullname'): return units.AxisInfo(label=unit.fullname) elif hasattr(unit, 'unit'): return units.AxisInfo(label=unit.unit.fullname) return None @staticmethod def convert(val, unit, axis): if units.ConversionInterface.is_numlike(val): return val if iterable(val): return [thisval.convert_to(unit).get_value() for thisval in val] else: return val.convert_to(unit).get_value() @staticmethod def default_units(x, axis): 'return the default unit for x or None' if iterable(x): for thisx in x: return thisx.unit return x.unit def cos(x): if iterable(x): return [math.cos(val.convert_to(radians).get_value()) for val in x] else: return math.cos(x.convert_to(radians).get_value()) basicConverter = BasicUnitConverter() units.registry[BasicUnit] = basicConverter units.registry[TaggedValue] = basicConverter
mit
Frankkkkk/arctic
tests/integration/chunkstore/test_chunkstore.py
1
59477
from pandas import DataFrame, MultiIndex, Index, Series from datetime import datetime as dt from pandas.util.testing import assert_frame_equal, assert_series_equal from arctic.date import DateRange from arctic.exceptions import NoDataFoundException import pandas as pd import numpy as np import random import pytest import pymongo import pickle from arctic.chunkstore.chunkstore import START, SYMBOL from arctic.chunkstore.passthrough_chunker import PassthroughChunker def test_write_dataframe(chunkstore_lib): df = DataFrame(data={'data': [1, 2, 3]}, index=MultiIndex.from_tuples([(dt(2016, 1, 1), 1), (dt(2016, 1, 2), 1), (dt(2016, 1, 3), 1)], names=['date', 'id']) ) chunkstore_lib.write('test_df', df, chunk_size='D') read_df = chunkstore_lib.read('test_df') assert_frame_equal(df, read_df) def test_upsert_dataframe(chunkstore_lib): df = DataFrame(data={'data': [1, 2, 3]}, index=MultiIndex.from_tuples([(dt(2016, 1, 1), 1), (dt(2016, 1, 2), 1), (dt(2016, 1, 3), 1)], names=['date', 'id']) ) chunkstore_lib.update('test_df', df, upsert=True) read_df = chunkstore_lib.read('test_df') assert_frame_equal(df, read_df) def test_write_dataframe_noindex(chunkstore_lib): df = DataFrame(data={'data': [1, 2, 3], 'date': [dt(2016, 1, 1), dt(2016, 1, 2), dt(2016, 1, 3)] } ) chunkstore_lib.write('test_df', df) read_df = chunkstore_lib.read('test_df') assert_frame_equal(df, read_df) def test_overwrite_dataframe(chunkstore_lib): df = DataFrame(data={'data': [1, 2, 3, 4]}, index=MultiIndex.from_tuples([(dt(2016, 1, 1), 1), (dt(2016, 1, 2), 1), (dt(2016, 1, 3), 1), (dt(2016, 1, 4), 1)], names=['date', 'id']) ) dg = DataFrame(data={'data': [1, 2, 3]}, index=MultiIndex.from_tuples([(dt(2016, 1, 1), 1), (dt(2016, 1, 2), 1), (dt(2016, 1, 3), 1)], names=['date', 'id']) ) chunkstore_lib.write('test_df', df) chunkstore_lib.write('test_df', dg) read_df = chunkstore_lib.read('test_df') assert_frame_equal(dg, read_df) def test_overwrite_dataframe_noindex(chunkstore_lib): df = DataFrame(data={'data': [1, 2, 3, 4], 'date': [dt(2016, 1, 1), dt(2016, 1, 2), dt(2016, 1, 3), dt(2016, 1, 4)]}) df2 = DataFrame(data={'data': [5, 6, 7, 8], 'date': [dt(2016, 1, 1), dt(2016, 1, 2), dt(2016, 1, 3), dt(2016, 1, 4)]}) chunkstore_lib.write('test_df', df) chunkstore_lib.write('test_df', df2) read_df = chunkstore_lib.read('test_df') assert_frame_equal(df2, read_df) def test_overwrite_dataframe_monthly(chunkstore_lib): df = DataFrame(data={'data': [1, 2, 3, 4, 5, 6]}, index=MultiIndex.from_tuples([(dt(2016, 1, 5), 1), (dt(2016, 2, 5), 1), (dt(2016, 3, 5), 1), (dt(2016, 4, 5), 1), (dt(2016, 5, 5), 1), (dt(2016, 6, 5), 1)], names=['date', 'id']) ) dg = DataFrame(data={'data': [1, 2, 3, 4, 5, 6]}, index=MultiIndex.from_tuples([(dt(2016, 1, 1), 1), (dt(2016, 2, 2), 1), (dt(2016, 3, 3), 1), (dt(2016, 4, 4), 1), (dt(2016, 5, 5), 1), (dt(2016, 6, 6), 1)], names=['date', 'id']) ) chunkstore_lib.write('test_df', df, chunk_size='M') chunkstore_lib.write('test_df', dg, chunk_size='M') read_df = chunkstore_lib.read('test_df') assert_frame_equal(dg, read_df) def test_write_read_with_daterange(chunkstore_lib): df = DataFrame(data={'data': [1, 2, 3]}, index=MultiIndex.from_tuples([(dt(2016, 1, 1), 1), (dt(2016, 1, 2), 1), (dt(2016, 1, 3), 1)], names=['date', 'id']) ) dg = DataFrame(data={'data': [1, 2]}, index=MultiIndex.from_tuples([(dt(2016, 1, 1), 1), (dt(2016, 1, 2), 1)], names=['date', 'id']) ) chunkstore_lib.write('test_df', df) read_df = chunkstore_lib.read('test_df', chunk_range=DateRange(dt(2016, 1, 1), dt(2016, 1, 2))) assert_frame_equal(read_df, dg) read_with_dr = chunkstore_lib.read('test_df', chunk_range=pd.date_range(dt(2016, 1, 1), dt(2016, 1, 2))) assert_frame_equal(read_df, dg) def test_write_read_with_daterange_noindex(chunkstore_lib): df = DataFrame(data={'data': [1, 2, 3], 'date': [dt(2016, 1, 1), dt(2016, 1, 2), dt(2016, 1, 3)]}) dg = DataFrame(data={'data': [1, 2], 'date': [dt(2016, 1, 1), dt(2016, 1, 2)]}) chunkstore_lib.write('test_df', df) read_df = chunkstore_lib.read('test_df', chunk_range=DateRange(dt(2016, 1, 1), dt(2016, 1, 2))) assert_frame_equal(read_df, dg) def test_store_single_index_df(chunkstore_lib): df = DataFrame(data=[1, 2, 3], index=Index(data=[dt(2016, 1, 1), dt(2016, 1, 2), dt(2016, 1, 3)], name='date'), columns=['data']) chunkstore_lib.write('chunkstore_test', df, chunk_size='D') ret = chunkstore_lib.read('chunkstore_test', chunk_range=DateRange(dt(2016, 1, 1), dt(2016, 1, 3))) assert_frame_equal(df, ret) def test_no_range(chunkstore_lib): df = DataFrame(data=[1, 2, 3], index=Index(data=[dt(2016, 1, 1), dt(2016, 1, 2), dt(2016, 1, 3)], name='date'), columns=['data']) chunkstore_lib.write('chunkstore_test', df, chunk_size='D') ret = chunkstore_lib.read('chunkstore_test') assert_frame_equal(df, ret) def test_closed_open(chunkstore_lib): df = DataFrame(data=[1, 2, 3], index=Index(data=[dt(2016, 1, 1), dt(2016, 1, 2), dt(2016, 1, 3)], name='date'), columns=['data']) chunkstore_lib.write('chunkstore_test', df, chunk_size='D') ret = chunkstore_lib.read('chunkstore_test', chunk_range=DateRange(dt(2016, 1, 1), None)) assert_frame_equal(df, ret) def test_open_closed(chunkstore_lib): df = DataFrame(data=[1, 2, 3], index=Index(data=[dt(2016, 1, 1), dt(2016, 1, 2), dt(2016, 1, 3)], name='date'), columns=['data']) chunkstore_lib.write('chunkstore_test', df, chunk_size='D') ret = chunkstore_lib.read('chunkstore_test', chunk_range=DateRange(None, dt(2017, 1, 1))) assert_frame_equal(df, ret) def test_closed_open_no_index(chunkstore_lib): df = DataFrame(data={'date': [1, 2, 3], 'date': [dt(2016, 1, 1), dt(2016, 1, 2), dt(2016, 1, 3)] } ) chunkstore_lib.write('chunkstore_test', df, chunk_size='D') ret = chunkstore_lib.read('chunkstore_test', chunk_range=DateRange(dt(2016, 1, 1), None)) assert_frame_equal(df, ret) def test_open_open_no_index(chunkstore_lib): df = DataFrame(data={'date': [1, 2, 3], 'date': [dt(2016, 1, 1), dt(2016, 1, 2), dt(2016, 1, 3)] } ) chunkstore_lib.write('chunkstore_test', df, chunk_size='D') ret = chunkstore_lib.read('chunkstore_test', chunk_range=DateRange(None, None)) assert_frame_equal(df, ret) def test_monthly_df(chunkstore_lib): df = DataFrame(data=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10], index=Index(data=[dt(2016, 1, 1), dt(2016, 1, 2), dt(2016, 1, 3), dt(2016, 1, 4), dt(2016, 1, 5), dt(2016, 2, 1), dt(2016, 2, 2), dt(2016, 2, 3), dt(2016, 2, 4), dt(2016, 3, 1)], name='date'), columns=['data']) chunkstore_lib.write('chunkstore_test', df, chunk_size='M') ret = chunkstore_lib.read('chunkstore_test', chunk_range=DateRange(dt(2016, 1, 1), dt(2016, 1, 2))) assert len(ret) == 2 assert_frame_equal(df, chunkstore_lib.read('chunkstore_test')) def test_yearly_df(chunkstore_lib): df = DataFrame(data=[1, 2, 3], index=Index(data=[dt(2016, 1, 1), dt(2016, 2, 1), dt(2016, 3, 3)], name='date'), columns=['data']) chunkstore_lib.write('chunkstore_test', df, chunk_size='A') ret = chunkstore_lib.read('chunkstore_test', chunk_range=DateRange(dt(2016, 1, 1), dt(2016, 3, 3))) assert_frame_equal(df, ret) def test_append_daily(chunkstore_lib): df = DataFrame(data=[1, 2, 3], index=Index(data=[dt(2016, 1, 1), dt(2016, 1, 2), dt(2016, 1, 3)], name='date'), columns=['data']) chunkstore_lib.write('chunkstore_test', df, chunk_size='D') df2 = DataFrame(data=[4, 5, 6], index=Index(data=[dt(2016, 1, 4), dt(2016, 1, 5), dt(2016, 1, 6)], name='date'), columns=['data']) chunkstore_lib.append('chunkstore_test', df2) ret = chunkstore_lib.read('chunkstore_test', chunk_range=DateRange(dt(2016, 1, 1), dt(2016, 1, 6))) assert_frame_equal(ret, pd.concat([df, df2])) def test_append_monthly(chunkstore_lib): df = DataFrame(data=[1, 2, 3], index=Index(data=[dt(2016, 1, 1), dt(2016, 2, 1), dt(2016, 3, 1)], name='date'), columns=['data']) chunkstore_lib.write('chunkstore_test', df, chunk_size='M') df2 = DataFrame(data=[4, 5, 6], index=Index(data=[dt(2016, 4, 1), dt(2016, 5, 1), dt(2016, 6, 1)], name='date'), columns=['data']) chunkstore_lib.append('chunkstore_test', df2) ret = chunkstore_lib.read('chunkstore_test', chunk_range=DateRange(dt(2016, 1, 1), dt(2016, 12, 31))) assert_frame_equal(ret, pd.concat([df, df2])) def test_append_yearly(chunkstore_lib): df = DataFrame(data=[1, 2, 3], index=Index(data=[dt(2010, 1, 1), dt(2011, 1, 1), dt(2012, 1, 1)], name='date'), columns=['data']) chunkstore_lib.write('chunkstore_test', df, chunk_size='A') df2 = DataFrame(data=[4, 5, 6], index=Index(data=[dt(2013, 1, 1), dt(2014, 1, 1), dt(2015, 1, 1)], name='date'), columns=['data']) chunkstore_lib.append('chunkstore_test', df2) ret = chunkstore_lib.read('chunkstore_test', chunk_range=DateRange(dt(2000, 1, 1), dt(2100, 12, 31))) assert_frame_equal(ret, pd.concat([df, df2])) def test_append_existing_chunk(chunkstore_lib): df = DataFrame(data=[1.7, 2.8, 3.1], index=Index(data=[dt(2016, 1, 1), dt(2016, 1, 2), dt(2016, 1, 3)], name='date'), columns=['data']) chunkstore_lib.write('chunkstore_test', df, chunk_size='M') df2 = DataFrame(data=[4.0, 5.1, 6.9], index=Index(data=[dt(2016, 1, 4), dt(2016, 1, 5), dt(2016, 1, 6)], name='date'), columns=['data']) chunkstore_lib.append('chunkstore_test', df2) ret = chunkstore_lib.read('chunkstore_test', chunk_range=DateRange(dt(2016, 1, 1), dt(2016, 1, 31))) assert_frame_equal(ret, pd.concat([df, df2])) def test_store_objects_df(chunkstore_lib): df = DataFrame(data=['1', '2', '3'], index=Index(data=[dt(2016, 1, 1), dt(2016, 1, 2), dt(2016, 1, 3)], name='date'), columns=['data']) chunkstore_lib.write('chunkstore_test', df, chunk_size='D') ret = chunkstore_lib.read('chunkstore_test', chunk_range=DateRange(dt(2016, 1, 1), dt(2016, 1, 3))) assert_frame_equal(df, ret) def test_empty_range(chunkstore_lib): df = DataFrame(data={'data': [1], 'values': [10]}, index=Index(data=[dt(2016, 1, 1)], name='date')) chunkstore_lib.write('chunkstore_test', df, chunk_size='D') df = chunkstore_lib.read('chunkstore_test', chunk_range=DateRange(dt(2016, 1, 2))) assert(df.empty) def test_update(chunkstore_lib): df = DataFrame(data={'data': [1, 2, 3]}, index=pd.Index(data=[dt(2016, 1, 1), dt(2016, 1, 2), dt(2016, 1, 3)], name='date')) df2 = DataFrame(data={'data': [20, 30, 40]}, index=pd.Index(data=[dt(2016, 1, 2), dt(2016, 1, 3), dt(2016, 1, 4)], name='date')) equals = DataFrame(data={'data': [1, 20, 30, 40]}, index=pd.Index(data=[dt(2016, 1, 1), dt(2016, 1, 2), dt(2016, 1, 3), dt(2016, 1, 4)], name='date')) chunkstore_lib.write('chunkstore_test', df, chunk_size='D') chunkstore_lib.update('chunkstore_test', df2) assert_frame_equal(chunkstore_lib.read('chunkstore_test'), equals) assert(chunkstore_lib.get_info('chunkstore_test')['len'] == len(equals)) assert(chunkstore_lib.get_info('chunkstore_test')['chunk_count'] == len(equals)) def test_update_no_overlap(chunkstore_lib): df = DataFrame(data={'data': [1, 2, 3]}, index=pd.Index(data=[dt(2016, 1, 1), dt(2016, 1, 2), dt(2016, 1, 3)], name='date')) df2 = DataFrame(data={'data': [20, 30, 40]}, index=pd.Index(data=[dt(2015, 1, 2), dt(2015, 1, 3), dt(2015, 1, 4)], name='date')) equals = DataFrame(data={'data': [20, 30, 40, 1, 2, 3]}, index=pd.Index(data=[dt(2015, 1, 2), dt(2015, 1, 3), dt(2015, 1, 4), dt(2016, 1, 1), dt(2016, 1, 2), dt(2016, 1, 3)], name='date')) chunkstore_lib.write('chunkstore_test', df, chunk_size='D') chunkstore_lib.update('chunkstore_test', df2) assert_frame_equal(chunkstore_lib.read('chunkstore_test'), equals) def test_update_chunk_range(chunkstore_lib): df = DataFrame(data={'data': [1, 2, 3]}, index=pd.Index(data=[dt(2015, 1, 1), dt(2015, 1, 2), dt(2015, 1, 3)], name='date')) df2 = DataFrame(data={'data': [30]}, index=pd.Index(data=[dt(2015, 1, 2)], name='date')) equals = DataFrame(data={'data': [30, 3]}, index=pd.Index(data=[dt(2015, 1, 2), dt(2015, 1, 3)], name='date')) chunkstore_lib.write('chunkstore_test', df, chunk_size='M') chunkstore_lib.update('chunkstore_test', df2, chunk_range=DateRange(dt(2015, 1, 1), dt(2015, 1, 2))) assert_frame_equal(chunkstore_lib.read('chunkstore_test'), equals) def test_update_chunk_range_overlap(chunkstore_lib): df = DataFrame(data={'data': [1, 2, 3]}, index=pd.Index(data=[dt(2015, 1, 1), dt(2015, 1, 2), dt(2015, 1, 3)], name='date')) chunkstore_lib.write('chunkstore_test', df, chunk_size='M') chunkstore_lib.update('chunkstore_test', df, chunk_range=DateRange(dt(2015, 1, 1), dt(2015, 1, 3))) assert_frame_equal(chunkstore_lib.read('chunkstore_test'), df) def test_append_before(chunkstore_lib): df = DataFrame(data={'data': [1, 2, 3]}, index=pd.Index(data=[dt(2016, 1, 1), dt(2016, 1, 2), dt(2016, 1, 3)], name='date')) df2 = DataFrame(data={'data': [20, 30, 40]}, index=pd.Index(data=[dt(2015, 1, 2), dt(2015, 1, 3), dt(2015, 1, 4)], name='date')) equals = DataFrame(data={'data': [20, 30, 40, 1, 2, 3]}, index=pd.Index(data=[dt(2015, 1, 2), dt(2015, 1, 3), dt(2015, 1, 4), dt(2016, 1, 1), dt(2016, 1, 2), dt(2016, 1, 3)], name='date')) chunkstore_lib.write('chunkstore_test', df, chunk_size='D') chunkstore_lib.append('chunkstore_test', df2) assert_frame_equal(chunkstore_lib.read('chunkstore_test') , equals) def test_append_and_update(chunkstore_lib): df = DataFrame(data={'data': [1, 2, 3]}, index=pd.Index(data=[dt(2016, 1, 1), dt(2016, 1, 2), dt(2016, 1, 3)], name='date')) df2 = DataFrame(data={'data': [20, 30, 40]}, index=pd.Index(data=[dt(2015, 1, 2), dt(2015, 1, 3), dt(2015, 1, 4)], name='date')) df3 = DataFrame(data={'data': [100, 300]}, index=pd.Index(data=[dt(2015, 1, 2), dt(2016, 1, 2)], name='date')) equals = DataFrame(data={'data': [100, 30, 40, 1, 300, 3]}, index=pd.Index(data=[dt(2015, 1, 2), dt(2015, 1, 3), dt(2015, 1, 4), dt(2016, 1, 1), dt(2016, 1, 2), dt(2016, 1, 3)], name='date')) chunkstore_lib.write('chunkstore_test', df, chunk_size='D') chunkstore_lib.append('chunkstore_test', df2) chunkstore_lib.update('chunkstore_test', df3) assert_frame_equal(chunkstore_lib.read('chunkstore_test') , equals) def test_update_same_df(chunkstore_lib): df = DataFrame(data={'data': [1, 2, 3]}, index=pd.Index(data=[dt(2016, 1, 1), dt(2016, 1, 2), dt(2016, 1, 3)], name='date')) chunkstore_lib.write('chunkstore_test', df, chunk_size='D') sym = chunkstore_lib._get_symbol_info('chunkstore_test') chunkstore_lib.update('chunkstore_test', df) assert(sym == chunkstore_lib._get_symbol_info('chunkstore_test')) def test_df_with_multiindex(chunkstore_lib): df = DataFrame(data=[1, 2, 3], index=MultiIndex.from_tuples([(dt(2016, 1, 1), 2), (dt(2016, 1, 2), 3), (dt(2016, 1, 3), 2)], names=['date', 'security'])) chunkstore_lib.write('pandas', df, chunk_size='D') saved_df = chunkstore_lib.read('pandas') assert np.all(df.values == saved_df.values) def test_with_strings(chunkstore_lib): df = DataFrame(data={'data': ['A', 'B', 'C']}, index=pd.Index(data=[dt(2016, 1, 1), dt(2016, 1, 2), dt(2016, 1, 3)], name='date')) chunkstore_lib.write('chunkstore_test', df, chunk_size='D') read_df = chunkstore_lib.read('chunkstore_test') assert_frame_equal(read_df, df) def test_with_strings_multiindex_append(chunkstore_lib): df = DataFrame(data={'data': ['A', 'BBB', 'CC']}, index=MultiIndex.from_tuples([(dt(2016, 1, 1), 2), (dt(2016, 1, 1), 3), (dt(2016, 1, 2), 2)], names=['date', 'security'])) chunkstore_lib.write('chunkstore_test', df, chunk_size='D') read_df = chunkstore_lib.read('chunkstore_test') assert_frame_equal(read_df, df) df2 = DataFrame(data={'data': ['AAAAAAA']}, index=MultiIndex.from_tuples([(dt(2016, 1, 2), 4)], names=['date', 'security'])) chunkstore_lib.append('chunkstore_test', df2) df = DataFrame(data={'data': ['A', 'BBB', 'CC', 'AAAAAAA']}, index=MultiIndex.from_tuples([(dt(2016, 1, 1), 2), (dt(2016, 1, 1), 3), (dt(2016, 1, 2), 2), (dt(2016, 1, 2), 4)], names=['date', 'security'])) assert_frame_equal(chunkstore_lib.read('chunkstore_test') , df) def gen_daily_data(month, days, securities): for day in days: openp = [round(random.uniform(50.0, 100.0), 1) for x in securities] closep = [round(x + random.uniform(-5.0, 5.0), 1) for x in openp] index_list = [(dt(2016, month, day), s) for s in securities] yield DataFrame(data={'open': openp, 'close': closep}, index=MultiIndex.from_tuples(index_list, names=['date', 'security'])) def write_random_data(chunkstore_lib, name, month, days, securities, chunk_size='D', update=False, append=False): ''' will generate daily data and write it in daily chunks regardless of what the chunk_size is set to. month: integer days: list of integers securities: list of integers chunk_size: one of 'D', 'M', 'A' update: force update for each daily write append: force append for each daily write ''' df_list = [] for df in gen_daily_data(month, days, securities): if update: chunkstore_lib.update(name, df) elif append or len(df_list) > 0: chunkstore_lib.append(name, df) else: chunkstore_lib.write(name, df, chunk_size=chunk_size) df_list.append(df) return pd.concat(df_list) def test_multiple_actions(chunkstore_lib): def helper(chunkstore_lib, name, chunk_size): written_df = write_random_data(chunkstore_lib, name, 1, list(range(1, 31)), list(range(1, 101)), chunk_size=chunk_size) read_info = chunkstore_lib.read(name) assert_frame_equal(written_df, read_info) df = write_random_data(chunkstore_lib, name, 1, list(range(1, 31)), list(range(1, 101)), chunk_size=chunk_size) read_info = chunkstore_lib.read(name) assert_frame_equal(df, read_info) r = read_info df = write_random_data(chunkstore_lib, name, 2, list(range(1, 29)), list(range(1, 501)), append=True, chunk_size=chunk_size) read_info = chunkstore_lib.read(name) assert_frame_equal(pd.concat([r, df]), read_info) for chunk_size in ['D', 'M', 'A']: helper(chunkstore_lib, 'test_data_' + chunk_size, chunk_size) def test_multiple_actions_monthly_data(chunkstore_lib): def helper(chunkstore_lib, chunk_size, name, df, append): chunkstore_lib.write(name, df, chunk_size=chunk_size) r = chunkstore_lib.read(name) assert_frame_equal(r, df) chunkstore_lib.append(name, append) assert_frame_equal(chunkstore_lib.read(name), pd.concat([df, append])) chunkstore_lib.update(name, append) if chunk_size is not 'A': assert_frame_equal(chunkstore_lib.read(name), pd.concat([df, append])) else: # chunksize is the entire DF, so we'll overwrite the whole thing # with the update when its yearly chunking assert_frame_equal(chunkstore_lib.read(name), append) df = [] for month in range(1, 4): df.extend(list(gen_daily_data(month, list(range(1, 21)), list(range(1, 11))))) df = pd.concat(df) append = [] for month in range(6, 10): append.extend(list(gen_daily_data(month, list(range(1, 21)), list(range(1, 11))))) append = pd.concat(append) for chunk_size in ['D', 'M', 'A']: helper(chunkstore_lib, chunk_size, 'test_monthly_' + chunk_size, df, append) def test_delete(chunkstore_lib): df = DataFrame(data={'data': [1, 2, 3]}, index=MultiIndex.from_tuples([(dt(2016, 1, 1), 1), (dt(2016, 1, 2), 1), (dt(2016, 1, 3), 1)], names=['date', 'id']) ) chunkstore_lib.write('test_df', df) read_df = chunkstore_lib.read('test_df') assert_frame_equal(df, read_df) assert ('test_df' in chunkstore_lib.list_symbols()) chunkstore_lib.delete('test_df') assert (chunkstore_lib.list_symbols() == []) def test_get_info(chunkstore_lib): df = DataFrame(data={'data': [1, 2, 3]}, index=MultiIndex.from_tuples([(dt(2016, 1, 1), 1), (dt(2016, 1, 2), 1), (dt(2016, 1, 3), 1)], names=['date', 'id']) ) chunkstore_lib.write('test_df', df) info = {'len': 3, 'appended_rows': 0, 'chunk_count': 3, 'metadata': {'columns': [u'date', u'id', u'data']}, 'chunker': u'date', 'chunk_size': 'D', 'serializer': u'FrameToArray' } assert(chunkstore_lib.get_info('test_df') == info) def test_get_info_after_append(chunkstore_lib): df = DataFrame(data={'data': [1.1, 2.1, 3.1]}, index=MultiIndex.from_tuples([(dt(2016, 1, 1), 1), (dt(2016, 1, 2), 1), (dt(2016, 1, 3), 1)], names=['date', 'id']) ) chunkstore_lib.write('test_df', df) df2 = DataFrame(data={'data': [1.1, 1.1, 1.1]}, index=MultiIndex.from_tuples([(dt(2016, 1, 1), 2), (dt(2016, 1, 2), 2), (dt(2016, 1, 4), 1)], names=['date', 'id']) ) chunkstore_lib.append('test_df', df2) assert_frame_equal(chunkstore_lib.read('test_df'), pd.concat([df, df2]).sort_index()) info = {'len': 6, 'appended_rows': 2, 'chunk_count': 4, 'metadata': {'columns': [u'date', u'id', u'data']}, 'chunker': u'date', 'chunk_size': u'D', 'serializer': u'FrameToArray' } assert(chunkstore_lib.get_info('test_df') == info) def test_get_info_after_update(chunkstore_lib): df = DataFrame(data={'data': [1.1, 2.1, 3.1]}, index=MultiIndex.from_tuples([(dt(2016, 1, 1), 1), (dt(2016, 1, 2), 1), (dt(2016, 1, 3), 1)], names=['date', 'id']) ) chunkstore_lib.write('test_df', df) df2 = DataFrame(data={'data': [1.1, 1.1, 1.1]}, index=MultiIndex.from_tuples([(dt(2016, 1, 1), 2), (dt(2016, 1, 2), 2), (dt(2016, 1, 4), 1)], names=['date', 'id']) ) chunkstore_lib.update('test_df', df2) info = {'len': 4, 'appended_rows': 0, 'chunk_count': 4, 'metadata': {'columns': [u'date', u'id', u'data']}, 'chunker': u'date', 'chunk_size': u'D', 'serializer': u'FrameToArray' } assert(chunkstore_lib.get_info('test_df') == info) def test_delete_range(chunkstore_lib): df = DataFrame(data={'data': [1, 2, 3, 4, 5, 6]}, index=MultiIndex.from_tuples([(dt(2016, 1, 1), 1), (dt(2016, 1, 2), 1), (dt(2016, 2, 1), 1), (dt(2016, 2, 2), 1), (dt(2016, 3, 1), 1), (dt(2016, 3, 2), 1)], names=['date', 'id']) ) df_result = DataFrame(data={'data': [1, 6]}, index=MultiIndex.from_tuples([(dt(2016, 1, 1), 1), (dt(2016, 3, 2), 1)], names=['date', 'id']) ) chunkstore_lib.write('test', df, chunk_size='M') chunkstore_lib.delete('test', chunk_range=DateRange(dt(2016, 1, 2), dt(2016, 3, 1))) assert_frame_equal(chunkstore_lib.read('test'), df_result) assert(chunkstore_lib.get_info('test')['len'] == len(df_result)) assert(chunkstore_lib.get_info('test')['chunk_count'] == 2) def test_delete_range_noindex(chunkstore_lib): df = DataFrame(data={'data': [1, 2, 3, 4, 5, 6], 'date': [dt(2016, 1, 1), dt(2016, 1, 2), dt(2016, 2, 1), dt(2016, 2, 2), dt(2016, 3, 1), dt(2016, 3, 2)]}) df_result = DataFrame(data={'data': [1, 6], 'date': [dt(2016, 1, 1), dt(2016, 3, 2)]}) chunkstore_lib.write('test', df, chunk_size='M') chunkstore_lib.delete('test', chunk_range=DateRange(dt(2016, 1, 2), dt(2016, 3, 1))) assert_frame_equal(chunkstore_lib.read('test'), df_result) def test_read_chunk_range(chunkstore_lib): df = DataFrame(data={'data': [1, 2, 3, 4, 5, 6, 7, 8, 9]}, index=MultiIndex.from_tuples([(dt(2016, 1, 1), 1), (dt(2016, 1, 2), 1), (dt(2016, 1, 3), 1), (dt(2016, 2, 1), 1), (dt(2016, 2, 2), 1), (dt(2016, 2, 3), 1), (dt(2016, 3, 1), 1), (dt(2016, 3, 2), 1), (dt(2016, 3, 3), 1)], names=['date', 'id']) ) chunkstore_lib.write('test', df, chunk_size='M') assert(chunkstore_lib.read('test', chunk_range=DateRange(dt(2016, 1, 1), dt(2016, 1, 1))).index.get_level_values('date')[0] == dt(2016,1,1)) assert(chunkstore_lib.read('test', chunk_range=DateRange(dt(2016, 1, 2), dt(2016, 1, 2))).index.get_level_values('date')[0] == dt(2016, 1, 2)) assert(chunkstore_lib.read('test', chunk_range=DateRange(dt(2016, 1, 3), dt(2016, 1, 3))).index.get_level_values('date')[0] == dt(2016, 1, 3)) assert(chunkstore_lib.read('test', chunk_range=DateRange(dt(2016, 2, 2), dt(2016, 2, 2))).index.get_level_values('date')[0] == dt(2016, 2, 2)) assert(len(chunkstore_lib.read('test', chunk_range=DateRange(dt(2016, 2, 2), dt(2016, 2, 2)), filter_data=False)) == 3) df2 = chunkstore_lib.read('test', chunk_range=DateRange(None, None)) assert_frame_equal(df, df2) def test_read_data_doesnt_exist(chunkstore_lib): with pytest.raises(NoDataFoundException) as e: chunkstore_lib.read('some_data') assert('No data found' in str(e)) def test_invalid_type(chunkstore_lib): with pytest.raises(Exception) as e: chunkstore_lib.write('some_data', str("Cannot write a string"), 'D') assert('Can only chunk DataFrames' in str(e)) def test_append_no_data(chunkstore_lib): with pytest.raises(NoDataFoundException) as e: chunkstore_lib.append('some_data', DataFrame()) assert('Symbol does not exist.' in str(e)) def test_append_no_new_data(chunkstore_lib): df = DataFrame(data={'data': [1, 2, 3, 4, 5, 6, 7, 8, 9]}, index=MultiIndex.from_tuples([(dt(2016, 1, 1), 1), (dt(2016, 1, 2), 1), (dt(2016, 1, 3), 1), (dt(2016, 2, 1), 1), (dt(2016, 2, 2), 1), (dt(2016, 2, 3), 1), (dt(2016, 3, 1), 1), (dt(2016, 3, 2), 1), (dt(2016, 3, 3), 1)], names=['date', 'id']) ) chunkstore_lib.write('test', df) chunkstore_lib.append('test', df) r = chunkstore_lib.read('test') assert_frame_equal(pd.concat([df, df]).sort_index(), r) def test_overwrite_series(chunkstore_lib): s = pd.Series([1], index=pd.date_range('2016-01-01', '2016-01-01', name='date'), name='vals') chunkstore_lib.write('test', s) chunkstore_lib.write('test', s + 1) assert_series_equal(chunkstore_lib.read('test'), s + 1) def test_overwrite_series_monthly(chunkstore_lib): s = pd.Series([1, 2], index=pd.Index(data=[dt(2016, 1, 1), dt(2016, 2, 1)], name='date'), name='vals') chunkstore_lib.write('test', s, chunk_size='M') chunkstore_lib.write('test', s + 1, chunk_size='M') assert_series_equal(chunkstore_lib.read('test'), s + 1) def test_pandas_datetime_index_store_series(chunkstore_lib): df = Series(data=[1, 2, 3], index=Index(data=[dt(2016, 1, 1), dt(2016, 1, 2), dt(2016, 1, 3)], name='date'), name='data') chunkstore_lib.write('chunkstore_test', df, chunk_size='D') s = chunkstore_lib.read('chunkstore_test', chunk_range=DateRange(dt(2016, 1, 1), dt(2016, 1, 3))) assert_series_equal(s, df) def test_yearly_series(chunkstore_lib): df = Series(data=[1, 2, 3], index=Index(data=[dt(2016, 1, 1), dt(2016, 2, 1), dt(2016, 3, 3)], name='date'), name='data') chunkstore_lib.write('chunkstore_test', df, chunk_size='A') ret = chunkstore_lib.read('chunkstore_test', chunk_range=DateRange(dt(2016, 1, 1), dt(2016, 3, 3))) assert_series_equal(df, ret) def test_store_objects_series(chunkstore_lib): df = Series(data=['1', '2', '3'], index=Index(data=[dt(2016, 1, 1), dt(2016, 1, 2), dt(2016, 1, 3)], name='date'), name='data') chunkstore_lib.write('chunkstore_test', df, chunk_size='D') ret = chunkstore_lib.read('chunkstore_test', chunk_range=DateRange(dt(2016, 1, 1), dt(2016, 1, 3))) assert_series_equal(df, ret) def test_update_series(chunkstore_lib): df = Series(data=[1, 2, 3], index=pd.Index(data=[dt(2016, 1, 1), dt(2016, 1, 2), dt(2016, 1, 3)], name='date'), name='data') df2 = Series(data=[20, 30, 40], index=pd.Index(data=[dt(2016, 1, 2), dt(2016, 1, 3), dt(2016, 1, 4)], name='date'), name='data') equals = Series(data=[1, 20, 30, 40], index=pd.Index(data=[dt(2016, 1, 1), dt(2016, 1, 2), dt(2016, 1, 3), dt(2016, 1, 4)], name='date'), name='data') chunkstore_lib.write('chunkstore_test', df, chunk_size='D') chunkstore_lib.update('chunkstore_test', df2) assert_series_equal(chunkstore_lib.read('chunkstore_test'), equals) def test_update_same_series(chunkstore_lib): df = Series(data=[1, 2, 3], index=pd.Index(data=[dt(2016, 1, 1), dt(2016, 1, 2), dt(2016, 1, 3)], name='date'), name='data') chunkstore_lib.write('chunkstore_test', df, chunk_size='D') sym = chunkstore_lib._get_symbol_info('chunkstore_test') chunkstore_lib.update('chunkstore_test', df) assert(sym == chunkstore_lib._get_symbol_info('chunkstore_test')) def test_dtype_mismatch(chunkstore_lib): s = pd.Series([1], index=pd.date_range('2016-01-01', '2016-01-01', name='date'), name='vals') # Write with an int chunkstore_lib.write('test', s, chunk_size='D') assert(str(chunkstore_lib.read('test').dtype) == 'int64') # Update with a float chunkstore_lib.update('test', s * 1.0) assert(str(chunkstore_lib.read('test').dtype) == 'float64') chunkstore_lib.write('test', s * 1.0, chunk_size='D') assert(str(chunkstore_lib.read('test').dtype) == 'float64') def test_read_column_subset(chunkstore_lib): df = DataFrame(data={'data': [1, 2, 3, 4, 5, 6, 7, 8, 9], 'open': [1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.8, 9.9], 'close': [1.2, 2.3, 3.4, 4.5, 5.6, 6.7, 7.8, 8.9, 9.0], 'prev_close': [.1, .2, .3, .4, .5, .6, .7, .8, .8], 'volume': [1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000] }, index=MultiIndex.from_tuples([(dt(2016, 1, 1), 1), (dt(2016, 1, 2), 1), (dt(2016, 1, 3), 1), (dt(2016, 2, 1), 1), (dt(2016, 2, 2), 1), (dt(2016, 2, 3), 1), (dt(2016, 3, 1), 1), (dt(2016, 3, 2), 1), (dt(2016, 3, 3), 1)], names=['date', 'id']) ) chunkstore_lib.write('test', df, chunk_size='D') r = chunkstore_lib.read('test', columns=['prev_close', 'volume']) assert_frame_equal(r, df[['prev_close', 'volume']]) def test_rename(chunkstore_lib): df = DataFrame(data={'data': [1, 2, 3, 4, 5, 6, 7, 8, 9], 'open': [1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.8, 9.9], 'close': [1.2, 2.3, 3.4, 4.5, 5.6, 6.7, 7.8, 8.9, 9.0], 'prev_close': [.1, .2, .3, .4, .5, .6, .7, .8, .8], 'volume': [1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000] }, index=MultiIndex.from_tuples([(dt(2016, 1, 1), 1), (dt(2016, 1, 2), 1), (dt(2016, 1, 3), 1), (dt(2016, 2, 1), 1), (dt(2016, 2, 2), 1), (dt(2016, 2, 3), 1), (dt(2016, 3, 1), 1), (dt(2016, 3, 2), 1), (dt(2016, 3, 3), 1)], names=['date', 'id']) ) chunkstore_lib.write('test', df, chunk_size='D') assert_frame_equal(chunkstore_lib.read('test'), df) chunkstore_lib.rename('test', 'new_name') assert_frame_equal(chunkstore_lib.read('new_name'), df) with pytest.raises(Exception) as e: chunkstore_lib.rename('new_name', 'new_name') assert('already exists' in str(e)) with pytest.raises(NoDataFoundException) as e: chunkstore_lib.rename('doesnt_exist', 'temp') assert('No data found for doesnt_exist' in str(e)) assert('test' not in chunkstore_lib.list_symbols()) ''' read out all chunks that have symbol set to 'test'. List should be empty ''' chunks = [] for x in chunkstore_lib._collection.find({SYMBOL: 'test'}, sort=[(START, pymongo.ASCENDING)],): chunks.append(x) assert(len(chunks) == 0) def test_pass_thru_chunker(chunkstore_lib): df = DataFrame(data={'data': [1, 2, 3]}) chunkstore_lib.write('test_df', df, chunker=PassthroughChunker()) read_df = chunkstore_lib.read('test_df') assert_frame_equal(df, read_df) def test_pass_thru_chunker_append(chunkstore_lib): df = DataFrame(data={'data': [1, 2, 3]}) df2 = DataFrame(data={'data': [4, 5, 6]}) chunkstore_lib.write('test_df', df, chunker=PassthroughChunker()) chunkstore_lib.append('test_df', df2) read_df = chunkstore_lib.read('test_df') assert_frame_equal(pd.concat([df, df2], ignore_index=True), read_df) def test_pass_thru_chunker_update(chunkstore_lib): df = DataFrame(data={'data': [1, 2, 3]}) df2 = DataFrame(data={'data': [5, 6, 7]}) chunkstore_lib.write('test_df', df, chunker=PassthroughChunker()) chunkstore_lib.update('test_df', df2) read_df = chunkstore_lib.read('test_df') assert_frame_equal(df2, read_df) def test_pass_thru_chunker_update_range(chunkstore_lib): df = DataFrame(data={'data': [1, 2, 3]}) df2 = DataFrame(data={'data': [5, 6, 7]}) chunkstore_lib.write('test_df', df, chunker=PassthroughChunker()) chunkstore_lib.update('test_df', df2, chunk_range="") read_df = chunkstore_lib.read('test_df') assert_frame_equal(read_df, df2) def test_size_chunking(chunkstore_lib): df = DataFrame(data={'data': np.random.randint(0, 100, size=5500000), 'date': [dt(2016, 1, 1)] * 5500000}) chunkstore_lib.write('test_df', df) read_df = chunkstore_lib.read('test_df') assert_frame_equal(df, read_df) def test_size_chunk_append(chunkstore_lib): df = DataFrame(data={'data': np.random.randint(0, 100, size=5500000), 'date': [dt(2016, 1, 1)] * 5500000}) dg = DataFrame(data={'data': np.random.randint(0, 100, size=5500000), 'date': [dt(2016, 1, 1)] * 5500000}) chunkstore_lib.write('test_df', df) chunkstore_lib.append('test_df', dg) read_df = chunkstore_lib.read('test_df') assert_frame_equal(pd.concat([df, dg], ignore_index=True), read_df) def test_delete_range_segment(chunkstore_lib): df = DataFrame(data={'data': np.random.randint(0, 100, size=7000000), 'date': [dt(2016, 1, 1)] * 7000000}) dg = DataFrame(data={'data': np.random.randint(0, 100, size=100), 'date': [dt(2016, 1, 2)] * 100}) chunkstore_lib.write('test_df', pd.concat([df, dg], ignore_index=True), chunk_size='M') chunkstore_lib.delete('test_df') assert('test_df' not in chunkstore_lib.list_symbols()) chunkstore_lib.write('test_df', pd.concat([df, dg], ignore_index=True), chunk_size='M') chunkstore_lib.delete('test_df', chunk_range=pd.date_range(dt(2016, 1, 1), dt(2016, 1, 1))) read_df = chunkstore_lib.read('test_df') assert(read_df.equals(dg)) assert(chunkstore_lib._collection.count({'sy': 'test_df'}) == 1) def test_size_chunk_update(chunkstore_lib): df = DataFrame(data={'data': np.random.randint(0, 100, size=5500000), 'date': [dt(2016, 1, 1)] * 5500000}) dg = DataFrame(data={'data': np.random.randint(0, 100, size=5500000), 'date': [dt(2016, 1, 1)] * 5500000}) dh = DataFrame(data={'data': np.random.randint(0, 100, size=100), 'date': [dt(2016, 1, 1)] * 100}) chunkstore_lib.write('test_df', df) chunkstore_lib.append('test_df', dg) chunkstore_lib.update('test_df', dh) read_df = chunkstore_lib.read('test_df') assert_frame_equal(dh, read_df) assert(chunkstore_lib._collection.count({'sy': 'test_df'}) == 1) def test_size_chunk_multiple_update(chunkstore_lib): df_large = DataFrame(data={'data': np.random.randint(0, 100, size=5500000), 'date': [dt(2015, 1, 1)] * 5500000}) df_small = DataFrame(data={'data': np.random.randint(0, 100, size=100), 'date': [dt(2016, 1, 1)] * 100}) chunkstore_lib.update('test_df', df_large, upsert=True) chunkstore_lib.update('test_df', df_small, upsert=True) read_df = chunkstore_lib.read('test_df') expected = pd.concat([df_large, df_small]).reset_index(drop=True) assert_frame_equal(expected, read_df) assert(chunkstore_lib._collection.count({'sy': 'test_df'}) == 3) def test_get_chunk_range(chunkstore_lib): df = DataFrame(data={'data': [1, 2, 3]}, index=MultiIndex.from_tuples([(dt(2016, 1, 1), 1), (dt(2016, 1, 2), 1), (dt(2016, 1, 3), 1)], names=['date', 'id']) ) chunkstore_lib.write('test_df', df, chunk_size='D') x = list(chunkstore_lib.get_chunk_ranges('test_df')) assert(len(x) == 3) assert((b'2016-01-01', b'2016-01-01') in x) assert((b'2016-01-02', b'2016-01-02') in x) assert((b'2016-01-03', b'2016-01-03') in x) def test_iterators(chunkstore_lib): df = DataFrame(data={'data': [1, 2, 3]}, index=MultiIndex.from_tuples([(dt(2016, 1, 1), 1), (dt(2016, 1, 2), 1), (dt(2016, 1, 3), 1)], names=['date', 'id']) ) chunkstore_lib.write('test_df', df, chunk_size='D') for x, d in enumerate(chunkstore_lib.iterator('test_df')): assert(len(d) == 1) assert(d.data[0] == x + 1) for x, d in enumerate(chunkstore_lib.reverse_iterator('test_df')): assert(len(d) == 1) assert(d.data[0] == len(df) - x) dr = DateRange(dt(2016, 1, 2), dt(2016, 1, 2)) assert(len(list(chunkstore_lib.iterator('test_df', chunk_range=dr))) == 1) assert(len(list(chunkstore_lib.reverse_iterator('test_df', chunk_range=dr))) == 1) def test_unnamed_colums(chunkstore_lib): df = DataFrame(data={'data': [1, 2, 3]}, index=MultiIndex.from_tuples([(dt(2016, 1, 1), 1), (dt(2016, 1, 2), 1), (dt(2016, 1, 3), 1)], names=['date', None]) ) with pytest.raises(Exception) as e: chunkstore_lib.write('test_df', df, chunk_size='D') assert('must be named' in str(e)) df = DataFrame(data={None: [1, 2, 3]}, index=MultiIndex.from_tuples([(dt(2016, 1, 1), 1), (dt(2016, 1, 2), 1), (dt(2016, 1, 3), 1)], names=['date', 'id']) ) with pytest.raises(Exception) as e: chunkstore_lib.write('test_df', df, chunk_size='D') assert('must be named' in str(e)) def test_quarterly_data(chunkstore_lib): df = DataFrame(data={'data': np.random.randint(0, 100, size=366)}, index=pd.date_range('2016-01-01', '2016-12-31')) df.index.name = 'date' chunkstore_lib.write('quarterly', df, chunk_size='Q') assert_frame_equal(df, chunkstore_lib.read('quarterly')) assert(len(chunkstore_lib.read('quarterly', chunk_range=(None, '2016-01-05'))) == 5) count = 0 for _ in chunkstore_lib._collection.find({SYMBOL: 'quarterly'}, sort=[(START, pymongo.ASCENDING)],): count += 1 assert(count == 4) def test_list_symbols(chunkstore_lib): df = DataFrame(data={'data': np.random.randint(0, 100, size=366)}, index=pd.date_range('2016-01-01', '2016-12-31')) df.index.name = 'date' chunkstore_lib.write('rabbit', df) chunkstore_lib.write('dragon', df) chunkstore_lib.write('snake', df) chunkstore_lib.write('wolf', df) chunkstore_lib.write('bear', df) assert('dragon' in chunkstore_lib.list_symbols()) assert(set(['rabbit', 'dragon', 'bear']) == set(chunkstore_lib.list_symbols(partial_match='r'))) assert(chunkstore_lib.has_symbol('dragon')) assert(chunkstore_lib.has_symbol('marmot') is False) def test_stats(chunkstore_lib): df = DataFrame(data={'data': np.random.randint(0, 100, size=366)}, index=pd.date_range('2016-01-01', '2016-12-31')) df.index.name = 'date' chunkstore_lib.write('rabbit', df) chunkstore_lib.write('dragon', df) chunkstore_lib.write('snake', df) chunkstore_lib.write('wolf', df) chunkstore_lib.write('bear', df) s = chunkstore_lib.stats() assert(s['symbols']['count'] == 5) assert(s['chunks']['count'] == 366 * 5) assert(s['chunks']['count'] == s['metadata']['count']) def test_metadata(chunkstore_lib): df = DataFrame(data={'data': np.random.randint(0, 100, size=2)}, index=pd.date_range('2016-01-01', '2016-01-02')) df.index.name = 'date' chunkstore_lib.write('data', df, metadata = 'some metadata') m = chunkstore_lib.read_metadata('data') assert(m == u'some metadata') def test_metadata_update(chunkstore_lib): df = DataFrame(data={'data': np.random.randint(0, 100, size=2)}, index=pd.date_range('2016-01-01', '2016-01-02')) df.index.name = 'date' chunkstore_lib.write('data', df, metadata = 'some metadata', chunk_size='M') df = DataFrame(data={'data': np.random.randint(0, 100, size=1)}, index=pd.date_range('2016-01-02', '2016-01-02')) df.index.name = 'date' chunkstore_lib.update('data', df, metadata='different metadata') m = chunkstore_lib.read_metadata('data') assert(m == u'different metadata') def test_metadata_nosymbol(chunkstore_lib): with pytest.raises(NoDataFoundException): chunkstore_lib.read_metadata('None') def test_metadata_none(chunkstore_lib): df = DataFrame(data={'data': np.random.randint(0, 100, size=2)}, index=pd.date_range('2016-01-01', '2016-01-02')) df.index.name = 'date' chunkstore_lib.write('data', df, chunk_size='M') assert(chunkstore_lib.read_metadata('data') == None) def test_metadata_invalid(chunkstore_lib): df = DataFrame(data={'data': np.random.randint(0, 100, size=2)}, index=pd.date_range('2016-01-01', '2016-01-02')) df.index.name = 'date' with pytest.raises(Exception) as e: chunkstore_lib.write('data', df, chunk_size='M', metadata=df) def test_write_metadata(chunkstore_lib): df = DataFrame(data={'data': np.random.randint(0, 100, size=2)}, index=pd.date_range('2016-01-01', '2016-01-02')) df.index.name = 'date' chunkstore_lib.write('data', df) chunkstore_lib.write_metadata('data', 'meta') m = chunkstore_lib.read_metadata('data') assert(m == u'meta') def test_write_metadata_nosymbol(chunkstore_lib): with pytest.raises(NoDataFoundException): chunkstore_lib.write_metadata('doesnt_exist', 'meta') def test_audit(chunkstore_lib): df = DataFrame(data={'data': np.random.randint(0, 100, size=2)}, index=pd.date_range('2016-01-01', '2016-01-02')) df.index.name = 'date' chunkstore_lib.write('data', df, audit={'user': 'test_user'}) df = DataFrame(data={'data': np.random.randint(0, 100, size=10)}, index=pd.date_range('2016-01-01', '2016-01-10')) df.index.name = 'date' chunkstore_lib.write('data', df, audit={'user': 'other_user'}) assert(len(chunkstore_lib.read_audit_log()) == 2) assert(len(chunkstore_lib.read_audit_log(symbol='data')) == 2) assert(len(chunkstore_lib.read_audit_log(symbol='none')) == 0) chunkstore_lib.append('data', df, audit={'user': 'test_user'}) assert(chunkstore_lib.read_audit_log()[-1]['appended_rows'] == 10) df = DataFrame(data={'data': np.random.randint(0, 100, size=5)}, index=pd.date_range('2017-01-01', '2017-01-5')) df.index.name = 'date' chunkstore_lib.update('data', df, audit={'user': 'other_user'}) assert(chunkstore_lib.read_audit_log()[-1]['new_chunks'] == 5) chunkstore_lib.rename('data', 'data_new', audit={'user': 'temp_user'}) assert(chunkstore_lib.read_audit_log()[-1]['action'] == 'symbol rename') chunkstore_lib.delete('data_new', chunk_range=DateRange('2016-01-01', '2016-01-02'), audit={'user': 'test_user'}) chunkstore_lib.delete('data_new', audit={'user': 'test_user'}) assert(chunkstore_lib.read_audit_log()[-1]['action'] == 'symbol delete') assert(chunkstore_lib.read_audit_log()[-2]['action'] == 'range delete') def test_chunkstore_misc(chunkstore_lib): p = pickle.dumps(chunkstore_lib) c = pickle.loads(p) assert(chunkstore_lib._arctic_lib.get_name() == c._arctic_lib.get_name()) assert("arctic_test.TEST" in str(chunkstore_lib)) assert(str(chunkstore_lib) == repr(chunkstore_lib)) def test_unsorted_index(chunkstore_lib): df = pd.DataFrame({'date': [dt(2016,9,1), dt(2016,8,31)], 'vals': range(2)}).set_index('date') df2 = pd.DataFrame({'date': [dt(2016,9,2), dt(2016,9,1)], 'vals': range(2)}).set_index('date') chunkstore_lib.write('test_symbol', df) assert_frame_equal(df.sort_index(), chunkstore_lib.read('test_symbol')) chunkstore_lib.update('test_symbol', df2) assert_frame_equal(chunkstore_lib.read('test_symbol'), pd.DataFrame({'date': pd.date_range('2016-8-31', '2016-9-2'), 'vals': [1,1,0]}).set_index('date')) def test_unsorted_date_col(chunkstore_lib): df = pd.DataFrame({'date': [dt(2016,9,1), dt(2016,8,31)], 'vals': range(2)}) df2 = pd.DataFrame({'date': [dt(2016,9,2), dt(2016,9,1)], 'vals': range(2)}) chunkstore_lib.write('test_symbol', df) try: df = df.sort_values('date') except AttributeError: df = df.sort(columns='date') assert_frame_equal(df.reset_index(drop=True), chunkstore_lib.read('test_symbol')) chunkstore_lib.update('test_symbol', df2) assert_frame_equal(chunkstore_lib.read('test_symbol'), pd.DataFrame({'date': pd.date_range('2016-8-31', '2016-9-2'), 'vals': [1,1,0]})) def test_chunk_range_with_dti(chunkstore_lib): df = pd.DataFrame({'date': [dt(2016,9,1), dt(2016,8,31)], 'vals': range(2)}) chunkstore_lib.write('data', df) assert(len(list(chunkstore_lib.get_chunk_ranges('data', chunk_range=pd.date_range(dt(2016,1,1), dt(2016, 12, 31))))) == 2)
lgpl-2.1
alistairlow/tensorflow
tensorflow/contrib/distributions/python/ops/mixture_same_family.py
12
14331
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """The same-family Mixture distribution class.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn_ops from tensorflow.python.ops.distributions import distribution from tensorflow.python.ops.distributions import util as distribution_util class MixtureSameFamily(distribution.Distribution): """Mixture (same-family) distribution. The `MixtureSameFamily` distribution implements a (batch of) mixture distribution where all components are from different parameterizations of the same distribution type. It is parameterized by a `Categorical` "selecting distribution" (over `k` components) and a components distribution, i.e., a `Distribution` with a rightmost batch shape (equal to `[k]`) which indexes each (batch of) component. #### Examples ```python import matplotlib.pyplot as plt ds = tf.contrib.distributions ### Create a mixture of two scalar Gaussians: gm = ds.MixtureSameFamily( mixture_distribution=ds.Categorical( probs=[0.3, 0.7]), components_distribution=ds.Normal( loc=[-1., 1], # One for each component. scale=[0.1, 0.5])) # And same here. gm.mean() # ==> 0.4 gm.variance() # ==> 1.018 # Plot PDF. x = np.linspace(-2., 3., int(1e4), dtype=np.float32) plt.plot(x, gm.prob(x).eval()); ### Create a mixture of two Bivariate Gaussians: gm = ds.MixtureSameFamily( mixture_distribution=ds.Categorical( probs=[0.3, 0.7]), components_distribution=ds.MultivariateNormalDiag( loc=[[-1., 1], # component 1 [1, -1]], # component 2 scale_identity_multiplier=[.3, .6])) gm.mean() # ==> array([ 0.4, -0.4], dtype=float32) gm.covariance() # ==> array([[ 1.119, -0.84], # [-0.84, 1.119]], dtype=float32) # Plot PDF contours. def meshgrid(x, y=x): [gx, gy] = np.meshgrid(x, y, indexing='ij') gx, gy = np.float32(gx), np.float32(gy) grid = np.concatenate([gx.ravel()[None, :], gy.ravel()[None, :]], axis=0) return grid.T.reshape(x.size, y.size, 2) grid = meshgrid(np.linspace(-2, 2, 100, dtype=np.float32)) plt.contour(grid[..., 0], grid[..., 1], gm.prob(grid).eval()); ``` """ def __init__(self, mixture_distribution, components_distribution, validate_args=False, allow_nan_stats=True, name="MixtureSameFamily"): """Construct a `MixtureSameFamily` distribution. Args: mixture_distribution: `tf.distributions.Categorical`-like instance. Manages the probability of selecting components. The number of categories must match the rightmost batch dimension of the `components_distribution`. Must have either scalar `batch_shape` or `batch_shape` matching `components_distribution.batch_shape[:-1]`. components_distribution: `tf.distributions.Distribution`-like instance. Right-most batch dimension indexes components. validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. allow_nan_stats: Python `bool`, default `True`. When `True`, statistics (e.g., mean, mode, variance) use the value "`NaN`" to indicate the result is undefined. When `False`, an exception is raised if one or more of the statistic's batch members are undefined. name: Python `str` name prefixed to Ops created by this class. Raises: ValueError: `if not mixture_distribution.dtype.is_integer`. ValueError: if mixture_distribution does not have scalar `event_shape`. ValueError: if `mixture_distribution.batch_shape` and `components_distribution.batch_shape[:-1]` are both fully defined and the former is neither scalar nor equal to the latter. ValueError: if `mixture_distribution` categories does not equal `components_distribution` rightmost batch shape. """ parameters = locals() with ops.name_scope(name): self._mixture_distribution = mixture_distribution self._components_distribution = components_distribution self._runtime_assertions = [] s = components_distribution.event_shape_tensor() self._event_ndims = (s.shape[0].value if s.shape.with_rank_at_least(1)[0].value is not None else array_ops.shape(s)[0]) if not mixture_distribution.dtype.is_integer: raise ValueError( "`mixture_distribution.dtype` ({}) is not over integers".format( mixture_distribution.dtype.name)) if (mixture_distribution.event_shape.ndims is not None and mixture_distribution.event_shape.ndims != 0): raise ValueError("`mixture_distribution` must have scalar `event_dim`s") elif validate_args: self._runtime_assertions += [ control_flow_ops.assert_has_rank( mixture_distribution.event_shape_tensor(), 0, message="`mixture_distribution` must have scalar `event_dim`s"), ] mdbs = mixture_distribution.batch_shape cdbs = components_distribution.batch_shape.with_rank_at_least(1)[:-1] if mdbs.is_fully_defined() and cdbs.is_fully_defined(): if mdbs.ndims != 0 and mdbs != cdbs: raise ValueError( "`mixture_distribution.batch_shape` (`{}`) is not " "compatible with `components_distribution.batch_shape` " "(`{}`)".format(mdbs.as_list(), cdbs.as_list())) elif validate_args: mdbs = mixture_distribution.batch_shape_tensor() cdbs = components_distribution.batch_shape_tensor()[:-1] self._runtime_assertions += [ control_flow_ops.assert_equal( distribution_util.pick_vector( mixture_distribution.is_scalar_batch(), cdbs, mdbs), cdbs, message=( "`mixture_distribution.batch_shape` is not " "compatible with `components_distribution.batch_shape`"))] km = mixture_distribution.logits.shape.with_rank_at_least(1)[-1].value kc = components_distribution.batch_shape.with_rank_at_least(1)[-1].value if km is not None and kc is not None and km != kc: raise ValueError("`mixture_distribution components` ({}) does not " "equal `components_distribution.batch_shape[-1]` " "({})".format(km, kc)) elif validate_args: km = array_ops.shape(mixture_distribution.logits)[-1] kc = components_distribution.batch_shape_tensor()[-1] self._runtime_assertions += [ control_flow_ops.assert_equal( km, kc, message=("`mixture_distribution components` does not equal " "`components_distribution.batch_shape[-1:]`")), ] elif km is None: km = array_ops.shape(mixture_distribution.logits)[-1] self._num_components = km super(MixtureSameFamily, self).__init__( dtype=self._components_distribution.dtype, reparameterization_type=distribution.NOT_REPARAMETERIZED, validate_args=validate_args, allow_nan_stats=allow_nan_stats, parameters=parameters, graph_parents=( self._mixture_distribution._graph_parents # pylint: disable=protected-access + self._components_distribution._graph_parents), # pylint: disable=protected-access name=name) @property def mixture_distribution(self): return self._mixture_distribution @property def components_distribution(self): return self._components_distribution def _batch_shape_tensor(self): with ops.control_dependencies(self._runtime_assertions): return self.components_distribution.batch_shape_tensor()[:-1] def _batch_shape(self): return self.components_distribution.batch_shape.with_rank_at_least(1)[:-1] def _event_shape_tensor(self): with ops.control_dependencies(self._runtime_assertions): return self.components_distribution.event_shape_tensor() def _event_shape(self): return self.components_distribution.event_shape def _sample_n(self, n, seed): with ops.control_dependencies(self._runtime_assertions): x = self.components_distribution.sample(n) # [n, B, k, E] # TODO(jvdillon): Consider using tf.gather (by way of index unrolling). npdt = x.dtype.as_numpy_dtype mask = array_ops.one_hot( indices=self.mixture_distribution.sample(n), # [n, B] depth=self._num_components, # == k on_value=np.ones([], dtype=npdt), off_value=np.zeros([], dtype=npdt)) # [n, B, k] mask = self._pad_mix_dims(mask) # [n, B, k, [1]*e] return math_ops.reduce_sum( x * mask, axis=-1 - self._event_ndims) # [n, B, E] def _log_prob(self, x): with ops.control_dependencies(self._runtime_assertions): x = self._pad_sample_dims(x) log_prob_x = self.components_distribution.log_prob(x) # [S, B, k] log_mix_prob = nn_ops.log_softmax( self.mixture_distribution.logits, dim=-1) # [B, k] return math_ops.reduce_logsumexp( log_prob_x + log_mix_prob, axis=-1) # [S, B] def _mean(self): with ops.control_dependencies(self._runtime_assertions): probs = self._pad_mix_dims( self.mixture_distribution.probs) # [B, k, [1]*e] return math_ops.reduce_sum( probs * self.components_distribution.mean(), axis=-1 - self._event_ndims) # [B, E] def _log_cdf(self, x): x = self._pad_sample_dims(x) log_cdf_x = self.components_distribution.log_cdf(x) # [S, B, k] log_mix_prob = nn_ops.log_softmax( self.mixture_distribution.logits, dim=-1) # [B, k] return math_ops.reduce_logsumexp( log_cdf_x + log_mix_prob, axis=-1) # [S, B] def _variance(self): with ops.control_dependencies(self._runtime_assertions): # Law of total variance: Var(Y) = E[Var(Y|X)] + Var(E[Y|X]) probs = self._pad_mix_dims( self.mixture_distribution.probs) # [B, k, [1]*e] mean_cond_var = math_ops.reduce_sum( probs * self.components_distribution.variance(), axis=-1 - self._event_ndims) # [B, E] var_cond_mean = math_ops.reduce_sum( probs * math_ops.squared_difference( self.components_distribution.mean(), self._pad_sample_dims(self._mean())), axis=-1 - self._event_ndims) # [B, E] return mean_cond_var + var_cond_mean # [B, E] def _covariance(self): static_event_ndims = self.event_shape.ndims if static_event_ndims != 1: # Covariance is defined only for vector distributions. raise NotImplementedError("covariance is not implemented") with ops.control_dependencies(self._runtime_assertions): # Law of total variance: Var(Y) = E[Var(Y|X)] + Var(E[Y|X]) probs = self._pad_mix_dims(self._pad_mix_dims( self.mixture_distribution.probs)) # [B, k, 1, 1] mean_cond_var = math_ops.reduce_sum( probs * self.components_distribution.covariance(), axis=-3) # [B, e, e] var_cond_mean = math_ops.reduce_sum( probs * _outer_squared_difference( self.components_distribution.mean(), self._pad_sample_dims(self._mean())), axis=-3) # [B, e, e] return mean_cond_var + var_cond_mean # [B, e, e] def _pad_sample_dims(self, x): with ops.name_scope("pad_sample_dims", values=[x]): ndims = x.shape.ndims if x.shape.ndims is not None else array_ops.rank(x) shape = array_ops.shape(x) d = ndims - self._event_ndims x = array_ops.reshape(x, shape=array_ops.concat([ shape[:d], [1], shape[d:]], axis=0)) return x def _pad_mix_dims(self, x): with ops.name_scope("pad_mix_dims", values=[x]): def _get_ndims(d): if d.batch_shape.ndims is not None: return d.batch_shape.ndims return array_ops.shape(d.batch_shape_tensor())[0] dist_batch_ndims = _get_ndims(self) cat_batch_ndims = _get_ndims(self.mixture_distribution) bnd = distribution_util.pick_vector( self.mixture_distribution.is_scalar_batch(), [dist_batch_ndims], [cat_batch_ndims])[0] s = array_ops.shape(x) x = array_ops.reshape(x, shape=array_ops.concat([ s[:-1], array_ops.ones([bnd], dtype=dtypes.int32), s[-1:], array_ops.ones([self._event_ndims], dtype=dtypes.int32), ], axis=0)) return x def _outer_squared_difference(x, y): """Convenience function analogous to tf.squared_difference.""" z = x - y return z[..., array_ops.newaxis, :] * z[..., array_ops.newaxis]
apache-2.0
stccenter/datadiscovery
ranking/sorting.py
1
2328
""" Created on Tue Jun 6 13:22:42 2017 @author: larakamal enchanced sorting this code uses insertion sort to rank the documents the input of the code is a saved machine learning model from ranking_save_model.py and a data file from data/labelled_queries the output of the file is a ranked data file, change the directory of the output file accordingly in line 67 """ import pandas as pd import csv #sorting function def insertion_sort(features, model): #initialize rank from 0 to length of features rank = [] for i in range(len(features)): rank.append(i) #insertion sort to sort features and rank list #insertion sort assumes transitivity for i in range(1, len(features)): j = i-1 temp = features[i] temp2 = rank[i] while(model.predict((features[j] - temp).reshape(1,-1)) == 0 and (j >=0)): features[j+1] = features[j] rank[j+1] = rank[j] j = j - 1 features[j+1] = temp rank[j+1] = temp2 return rank def get_search_results(model, scaler, algorithm): #extract 10 features from documents queries = ["gravity", "ocean pressure", "ocean temperature", "ocean wind", "pathfinder", "quikscat", "radar", "saline density", "sea ice"] for q in queries: path = "data/labelled_queries/" + q + ".csv"; dataframe = pd.read_csv(path) output_path = "data/results/test/" + algorithm + "/" + q + "_sorted.csv"; features = dataframe.ix[:,0:10] features = scaler.transform(features) rank = insertion_sort(features, model) #re-arrange documents accordingly rows = dataframe.ix[:,0:11] sorted_rows =[] for i in rank: sorted_rows.append(rows.values[i]) #save file with open(output_path, 'w', encoding = 'utf-8-sig') as outcsv: writer = csv.writer(outcsv) writer.writerow(['term_score', 'releaseDate_score', 'versionNum_score', 'processingL_score', 'allPop_score','monthPop_score', 'userPop_score', 'spatialR_score','temporalR_score','click_score','label']) for i in sorted_rows: writer.writerow(i)
apache-2.0
fw1121/bcbio-nextgen
bcbio/utils.py
2
18266
"""Helpful utilities for building analysis pipelines. """ import gzip import os import tempfile import time import shutil import contextlib import itertools import functools import random import ConfigParser import collections import fnmatch import subprocess import toolz as tz import yaml try: from concurrent import futures except ImportError: try: import futures except ImportError: futures = None @contextlib.contextmanager def cpmap(cores=1): """Configurable parallel map context manager. Returns appropriate map compatible function based on configuration: - Local single core (the default) - Multiple local cores """ if int(cores) == 1: yield itertools.imap else: if futures is None: raise ImportError("concurrent.futures not available") pool = futures.ProcessPoolExecutor(cores) yield pool.map pool.shutdown() def map_wrap(f): """Wrap standard function to easily pass into 'map' processing. """ @functools.wraps(f) def wrapper(*args, **kwargs): return apply(f, *args, **kwargs) return wrapper def transform_to(ext): """ Decorator to create an output filename from an output filename with the specified extension. Changes the extension, in_file is transformed to a new type. Takes functions like this to decorate: f(in_file, out_dir=None, out_file=None) or, f(in_file=in_file, out_dir=None, out_file=None) examples: @transform(".bam") f("the/input/path/file.sam") -> f("the/input/path/file.sam", out_file="the/input/path/file.bam") @transform(".bam") f("the/input/path/file.sam", out_dir="results") -> f("the/input/path/file.sam", out_file="results/file.bam") """ def decor(f): @functools.wraps(f) def wrapper(*args, **kwargs): out_file = kwargs.get("out_file", None) if not out_file: in_path = kwargs.get("in_file", args[0]) out_dir = kwargs.get("out_dir", os.path.dirname(in_path)) safe_makedir(out_dir) out_name = replace_suffix(os.path.basename(in_path), ext) out_file = os.path.join(out_dir, out_name) kwargs["out_file"] = out_file if not file_exists(out_file): out_file = f(*args, **kwargs) return out_file return wrapper return decor def filter_to(word): """ Decorator to create an output filename from an input filename by adding a word onto the stem. in_file is filtered by the function and the results are written to out_file. You would want to use this over transform_to if you don't know the extension of the file going in. This also memoizes the output file. Takes functions like this to decorate: f(in_file, out_dir=None, out_file=None) or, f(in_file=in_file, out_dir=None, out_file=None) examples: @filter_to(".foo") f("the/input/path/file.sam") -> f("the/input/path/file.sam", out_file="the/input/path/file.foo.bam") @filter_to(".foo") f("the/input/path/file.sam", out_dir="results") -> f("the/input/path/file.sam", out_file="results/file.foo.bam") """ def decor(f): @functools.wraps(f) def wrapper(*args, **kwargs): out_file = kwargs.get("out_file", None) if not out_file: in_path = kwargs.get("in_file", args[0]) out_dir = kwargs.get("out_dir", os.path.dirname(in_path)) safe_makedir(out_dir) out_name = append_stem(os.path.basename(in_path), word) out_file = os.path.join(out_dir, out_name) kwargs["out_file"] = out_file if not file_exists(out_file): out_file = f(*args, **kwargs) return out_file return wrapper return decor def memoize_outfile(ext=None, stem=None): """ Memoization decorator. See docstring for transform_to and filter_to for details. """ if ext: return transform_to(ext) if stem: return filter_to(stem) def safe_makedir(dname): """Make a directory if it doesn't exist, handling concurrent race conditions. """ if not dname: return dname num_tries = 0 max_tries = 5 while not os.path.exists(dname): # we could get an error here if multiple processes are creating # the directory at the same time. Grr, concurrency. try: os.makedirs(dname) except OSError: if num_tries > max_tries: raise num_tries += 1 time.sleep(2) return dname @contextlib.contextmanager def chdir(new_dir): """Context manager to temporarily change to a new directory. http://lucentbeing.com/blog/context-managers-and-the-with-statement-in-python/ """ cur_dir = os.getcwd() safe_makedir(new_dir) os.chdir(new_dir) try: yield finally: os.chdir(cur_dir) @contextlib.contextmanager def tmpfile(*args, **kwargs): """Make a tempfile, safely cleaning up file descriptors on completion. """ (fd, fname) = tempfile.mkstemp(*args, **kwargs) try: yield fname finally: os.close(fd) if os.path.exists(fname): os.remove(fname) def file_exists(fname): """Check if a file exists and is non-empty. """ try: return fname and os.path.exists(fname) and os.path.getsize(fname) > 0 except OSError: return False def file_uptodate(fname, cmp_fname): """Check if a file exists, is non-empty and is more recent than cmp_fname. """ try: return (file_exists(fname) and file_exists(cmp_fname) and os.path.getmtime(fname) >= os.path.getmtime(cmp_fname)) except OSError: return False def create_dirs(config, names=None): if names is None: names = config["dir"].keys() for dname in names: d = config["dir"][dname] safe_makedir(d) def save_diskspace(fname, reason, config): """Overwrite a file in place with a short message to save disk. This keeps files as a sanity check on processes working, but saves disk by replacing them with a short message. """ if config["algorithm"].get("save_diskspace", False): with open(fname, "w") as out_handle: out_handle.write("File removed to save disk space: %s" % reason) def read_galaxy_amqp_config(galaxy_config, base_dir): """Read connection information on the RabbitMQ server from Galaxy config. """ galaxy_config = add_full_path(galaxy_config, base_dir) config = ConfigParser.ConfigParser() config.read(galaxy_config) amqp_config = {} for option in config.options("galaxy_amqp"): amqp_config[option] = config.get("galaxy_amqp", option) return amqp_config def add_full_path(dirname, basedir=None): if basedir is None: basedir = os.getcwd() if not dirname.startswith("/"): dirname = os.path.join(basedir, dirname) return dirname def splitext_plus(f): """Split on file extensions, allowing for zipped extensions. """ base, ext = os.path.splitext(f) if ext in [".gz", ".bz2", ".zip"]: base, ext2 = os.path.splitext(base) ext = ext2 + ext return base, ext def remove_safe(f): try: os.remove(f) except OSError: pass def file_plus_index(fname): """Convert a file name into the file plus required indexes. """ exts = {".vcf": ".idx", ".bam": ".bai", ".vcf.gz": ".tbi", ".bed.gz": ".tbi", ".fq.gz": ".gbi"} ext = splitext_plus(fname)[-1] if ext in exts: return [fname, fname + exts[ext]] else: return [fname] def symlink_plus(orig, new): """Create relative symlinks and handle associated biological index files. """ for ext in ["", ".idx", ".gbi", ".tbi", ".bai"]: if os.path.exists(orig + ext) and (not os.path.lexists(new + ext) or not os.path.exists(new + ext)): with chdir(os.path.dirname(new)): remove_safe(new + ext) # Work around symlink issues on some filesystems. Randomly # fail to symlink. try: os.symlink(os.path.relpath(orig + ext), os.path.basename(new + ext)) except OSError: if not os.path.exists(new + ext) or not os.path.lexists(new + ext): remove_safe(new + ext) shutil.copyfile(orig + ext, new + ext) orig_noext = splitext_plus(orig)[0] new_noext = splitext_plus(new)[0] for sub_ext in [".bai"]: if os.path.exists(orig_noext + sub_ext) and not os.path.lexists(new_noext + sub_ext): with chdir(os.path.dirname(new_noext)): os.symlink(os.path.relpath(orig_noext + sub_ext), os.path.basename(new_noext + sub_ext)) def open_gzipsafe(f): return gzip.open(f) if f.endswith(".gz") else open(f) def append_stem(to_transform, word): """ renames a filename or list of filenames with 'word' appended to the stem of each one: example: append_stem("/path/to/test.sam", "_filtered") -> "/path/to/test_filtered.sam" """ if is_sequence(to_transform): return [append_stem(f, word) for f in to_transform] elif is_string(to_transform): (base, ext) = splitext_plus(to_transform) return "".join([base, word, ext]) else: raise ValueError("append_stem takes a single filename as a string or " "a list of filenames to transform.") def replace_suffix(to_transform, suffix): """ replaces the suffix on a filename or list of filenames example: replace_suffix("/path/to/test.sam", ".bam") -> "/path/to/test.bam" """ if is_sequence(to_transform): transformed = [] for f in to_transform: (base, _) = os.path.splitext(f) transformed.append(base + suffix) return transformed elif is_string(to_transform): (base, _) = os.path.splitext(to_transform) return base + suffix else: raise ValueError("replace_suffix takes a single filename as a string or " "a list of filenames to transform.") # ## Functional programming def partition_all(n, iterable): """Partition a list into equally sized pieces, including last smaller parts http://stackoverflow.com/questions/5129102/python-equivalent-to-clojures-partition-all """ it = iter(iterable) while True: chunk = list(itertools.islice(it, n)) if not chunk: break yield chunk def partition(pred, iterable): 'Use a predicate to partition entries into false entries and true entries' # partition(is_odd, range(10)) --> 0 2 4 6 8 and 1 3 5 7 9 t1, t2 = itertools.tee(iterable) return itertools.ifilterfalse(pred, t1), itertools.ifilter(pred, t2) # ## Dealing with configuration files def merge_config_files(fnames): """Merge configuration files, preferring definitions in latter files. """ def _load_yaml(fname): with open(fname) as in_handle: config = yaml.load(in_handle) return config out = _load_yaml(fnames[0]) for fname in fnames[1:]: cur = _load_yaml(fname) for k, v in cur.iteritems(): if k in out and isinstance(out[k], dict): out[k].update(v) else: out[k] = v return out def deepish_copy(org): """Improved speed deep copy for dictionaries of simple python types. Thanks to Gregg Lind: http://writeonly.wordpress.com/2009/05/07/deepcopy-is-a-pig-for-simple-data/ """ out = dict().fromkeys(org) for k, v in org.iteritems(): if isinstance(v, dict): out[k] = deepish_copy(v) else: try: out[k] = v.copy() # dicts, sets except AttributeError: try: out[k] = v[:] # lists, tuples, strings, unicode except TypeError: out[k] = v # ints return out def get_in(d, t, default=None): """ look up if you can get a tuple of values from a nested dictionary, each item in the tuple a deeper layer example: get_in({1: {2: 3}}, (1, 2)) -> 3 example: get_in({1: {2: 3}}, (2, 3)) -> {} """ return tz.get_in(t, d, default) def flatten(l): """ flatten an irregular list of lists example: flatten([[[1, 2, 3], [4, 5]], 6]) -> [1, 2, 3, 4, 5, 6] lifted from: http://stackoverflow.com/questions/2158395/ """ for el in l: if isinstance(el, collections.Iterable) and not isinstance(el, basestring): for sub in flatten(el): yield sub else: yield el def is_sequence(arg): """ check if 'arg' is a sequence example: arg([]) -> True example: arg("lol") -> False """ return (not hasattr(arg, "strip") and hasattr(arg, "__getitem__") or hasattr(arg, "__iter__")) def is_pair(arg): """ check if 'arg' is a two-item sequence """ return is_sequence(arg) and len(arg) == 2 def is_string(arg): return isinstance(arg, basestring) def locate(pattern, root=os.curdir): '''Locate all files matching supplied filename pattern in and below supplied root directory.''' for path, dirs, files in os.walk(os.path.abspath(root)): for filename in fnmatch.filter(files, pattern): yield os.path.join(path, filename) def itersubclasses(cls, _seen=None): """ snagged from: http://code.activestate.com/recipes/576949/ itersubclasses(cls) Generator over all subclasses of a given class, in depth first order. >>> list(itersubclasses(int)) == [bool] True >>> class A(object): pass >>> class B(A): pass >>> class C(A): pass >>> class D(B,C): pass >>> class E(D): pass >>> >>> for cls in itersubclasses(A): ... print(cls.__name__) B D E C >>> # get ALL (new-style) classes currently defined >>> [cls.__name__ for cls in itersubclasses(object)] #doctest: +ELLIPSIS ['type', ...'tuple', ...] """ if not isinstance(cls, type): raise TypeError('itersubclasses must be called with ' 'new-style classes, not %.100r' % cls) if _seen is None: _seen = set() try: subs = cls.__subclasses__() except TypeError: # fails only when cls is type subs = cls.__subclasses__(cls) for sub in subs: if sub not in _seen: _seen.add(sub) yield sub for sub in itersubclasses(sub, _seen): yield sub def replace_directory(out_files, dest_dir): """ change the output directory to dest_dir can take a string (single file) or a list of files """ if is_sequence(out_files): filenames = map(os.path.basename, out_files) return [os.path.join(dest_dir, x) for x in filenames] elif is_string(out_files): return os.path.join(dest_dir, os.path.basename(out_files)) else: raise ValueError("in_files must either be a sequence of filenames " "or a string") def which(program): """ returns the path to an executable or None if it can't be found""" def is_exe(fpath): return os.path.isfile(fpath) and os.access(fpath, os.X_OK) fpath, fname = os.path.split(program) if fpath: if is_exe(program): return program else: for path in os.environ["PATH"].split(os.pathsep): exe_file = os.path.join(path, program) if is_exe(exe_file): return exe_file return None def reservoir_sample(stream, num_items, item_parser=lambda x: x): """ samples num_items from the stream keeping each with equal probability """ kept = [] for index, item in enumerate(stream): if index < num_items: kept.append(item_parser(item)) else: r = random.randint(0, index) if r < num_items: kept[r] = item_parser(item) return kept def compose(f, g): return lambda x: f(g(x)) def dictapply(d, fn): """ apply a function to all non-dict values in a dictionary """ for k, v in d.items(): if isinstance(v, dict): v = dictapply(v, fn) else: d[k] = fn(v) return d def R_sitelib(): """Retrieve the R site-library installed with the bcbio installer. """ from bcbio import install return os.path.join(install.get_defaults().get("tooldir", "/usr/local"), "lib", "R", "site-library") def R_package_path(package): """ return the path to an installed R package """ local_sitelib = R_sitelib() cmd = """Rscript -e '.libPaths(c("{local_sitelib}")); find.package("{package}")'""" try: output = subprocess.check_output(cmd.format(**locals()), shell=True) except subprocess.CalledProcessError, e: return None for line in output.split("\n"): if "[1]" not in line: continue dirname = line.split("[1]")[1].replace("\"", "").strip() if os.path.exists(dirname): return dirname return None def is_gzipped(fname): _, ext = os.path.splitext(fname) return ext in [".gz", "gzip"] def is_bzipped(fname): _, ext = os.path.splitext(fname) return ext in [".bz2", "bzip2"] def open_possible_gzip(fname, flag="r"): if is_gzipped(fname): if "b" not in flag: flag += "b" return gzip.open(fname, flag) else: return open(fname, flag) def filter_missing(xs): """ remove items from a list if they evaluate to False """ return filter(lambda x: x, xs) def rbind(dfs): """ acts like rbind for pandas dataframes """ if len(dfs) == 1: return dfs[0] df = dfs[0] for d in dfs[1:]: df = df.append(d) return df
mit
Fireblend/scikit-learn
sklearn/tests/test_kernel_ridge.py
342
3027
import numpy as np import scipy.sparse as sp from sklearn.datasets import make_regression from sklearn.linear_model import Ridge from sklearn.kernel_ridge import KernelRidge from sklearn.metrics.pairwise import pairwise_kernels from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_array_almost_equal X, y = make_regression(n_features=10) Xcsr = sp.csr_matrix(X) Xcsc = sp.csc_matrix(X) Y = np.array([y, y]).T def test_kernel_ridge(): pred = Ridge(alpha=1, fit_intercept=False).fit(X, y).predict(X) pred2 = KernelRidge(kernel="linear", alpha=1).fit(X, y).predict(X) assert_array_almost_equal(pred, pred2) def test_kernel_ridge_csr(): pred = Ridge(alpha=1, fit_intercept=False, solver="cholesky").fit(Xcsr, y).predict(Xcsr) pred2 = KernelRidge(kernel="linear", alpha=1).fit(Xcsr, y).predict(Xcsr) assert_array_almost_equal(pred, pred2) def test_kernel_ridge_csc(): pred = Ridge(alpha=1, fit_intercept=False, solver="cholesky").fit(Xcsc, y).predict(Xcsc) pred2 = KernelRidge(kernel="linear", alpha=1).fit(Xcsc, y).predict(Xcsc) assert_array_almost_equal(pred, pred2) def test_kernel_ridge_singular_kernel(): # alpha=0 causes a LinAlgError in computing the dual coefficients, # which causes a fallback to a lstsq solver. This is tested here. pred = Ridge(alpha=0, fit_intercept=False).fit(X, y).predict(X) kr = KernelRidge(kernel="linear", alpha=0) ignore_warnings(kr.fit)(X, y) pred2 = kr.predict(X) assert_array_almost_equal(pred, pred2) def test_kernel_ridge_precomputed(): for kernel in ["linear", "rbf", "poly", "cosine"]: K = pairwise_kernels(X, X, metric=kernel) pred = KernelRidge(kernel=kernel).fit(X, y).predict(X) pred2 = KernelRidge(kernel="precomputed").fit(K, y).predict(K) assert_array_almost_equal(pred, pred2) def test_kernel_ridge_precomputed_kernel_unchanged(): K = np.dot(X, X.T) K2 = K.copy() KernelRidge(kernel="precomputed").fit(K, y) assert_array_almost_equal(K, K2) def test_kernel_ridge_sample_weights(): K = np.dot(X, X.T) # precomputed kernel sw = np.random.RandomState(0).rand(X.shape[0]) pred = Ridge(alpha=1, fit_intercept=False).fit(X, y, sample_weight=sw).predict(X) pred2 = KernelRidge(kernel="linear", alpha=1).fit(X, y, sample_weight=sw).predict(X) pred3 = KernelRidge(kernel="precomputed", alpha=1).fit(K, y, sample_weight=sw).predict(K) assert_array_almost_equal(pred, pred2) assert_array_almost_equal(pred, pred3) def test_kernel_ridge_multi_output(): pred = Ridge(alpha=1, fit_intercept=False).fit(X, Y).predict(X) pred2 = KernelRidge(kernel="linear", alpha=1).fit(X, Y).predict(X) assert_array_almost_equal(pred, pred2) pred3 = KernelRidge(kernel="linear", alpha=1).fit(X, y).predict(X) pred3 = np.array([pred3, pred3]).T assert_array_almost_equal(pred2, pred3)
bsd-3-clause
marionleborgne/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/axes.py
69
259904
from __future__ import division, generators import math, sys, warnings, datetime, new import numpy as np from numpy import ma import matplotlib rcParams = matplotlib.rcParams import matplotlib.artist as martist import matplotlib.axis as maxis import matplotlib.cbook as cbook import matplotlib.collections as mcoll import matplotlib.colors as mcolors import matplotlib.contour as mcontour import matplotlib.dates as mdates import matplotlib.font_manager as font_manager import matplotlib.image as mimage import matplotlib.legend as mlegend import matplotlib.lines as mlines import matplotlib.mlab as mlab import matplotlib.patches as mpatches import matplotlib.quiver as mquiver import matplotlib.scale as mscale import matplotlib.table as mtable import matplotlib.text as mtext import matplotlib.ticker as mticker import matplotlib.transforms as mtransforms iterable = cbook.iterable is_string_like = cbook.is_string_like def _process_plot_format(fmt): """ Process a matlab(TM) style color/line style format string. Return a (*linestyle*, *color*) tuple as a result of the processing. Default values are ('-', 'b'). Example format strings include: * 'ko': black circles * '.b': blue dots * 'r--': red dashed lines .. seealso:: :func:`~matplotlib.Line2D.lineStyles` and :func:`~matplotlib.pyplot.colors`: for all possible styles and color format string. """ linestyle = None marker = None color = None # Is fmt just a colorspec? try: color = mcolors.colorConverter.to_rgb(fmt) return linestyle, marker, color # Yes. except ValueError: pass # No, not just a color. # handle the multi char special cases and strip them from the # string if fmt.find('--')>=0: linestyle = '--' fmt = fmt.replace('--', '') if fmt.find('-.')>=0: linestyle = '-.' fmt = fmt.replace('-.', '') if fmt.find(' ')>=0: linestyle = 'None' fmt = fmt.replace(' ', '') chars = [c for c in fmt] for c in chars: if c in mlines.lineStyles: if linestyle is not None: raise ValueError( 'Illegal format string "%s"; two linestyle symbols' % fmt) linestyle = c elif c in mlines.lineMarkers: if marker is not None: raise ValueError( 'Illegal format string "%s"; two marker symbols' % fmt) marker = c elif c in mcolors.colorConverter.colors: if color is not None: raise ValueError( 'Illegal format string "%s"; two color symbols' % fmt) color = c else: raise ValueError( 'Unrecognized character %c in format string' % c) if linestyle is None and marker is None: linestyle = rcParams['lines.linestyle'] if linestyle is None: linestyle = 'None' if marker is None: marker = 'None' return linestyle, marker, color def set_default_color_cycle(clist): """ Change the default cycle of colors that will be used by the plot command. This must be called before creating the :class:`Axes` to which it will apply; it will apply to all future axes. *clist* is a sequence of mpl color specifiers """ _process_plot_var_args.defaultColors = clist[:] rcParams['lines.color'] = clist[0] class _process_plot_var_args: """ Process variable length arguments to the plot command, so that plot commands like the following are supported:: plot(t, s) plot(t1, s1, t2, s2) plot(t1, s1, 'ko', t2, s2) plot(t1, s1, 'ko', t2, s2, 'r--', t3, e3) an arbitrary number of *x*, *y*, *fmt* are allowed """ defaultColors = ['b','g','r','c','m','y','k'] def __init__(self, axes, command='plot'): self.axes = axes self.command = command self._clear_color_cycle() def _clear_color_cycle(self): self.colors = _process_plot_var_args.defaultColors[:] # if the default line color is a color format string, move it up # in the que try: ind = self.colors.index(rcParams['lines.color']) except ValueError: self.firstColor = rcParams['lines.color'] else: self.colors[0], self.colors[ind] = self.colors[ind], self.colors[0] self.firstColor = self.colors[0] self.Ncolors = len(self.colors) self.count = 0 def set_color_cycle(self, clist): self.colors = clist[:] self.firstColor = self.colors[0] self.Ncolors = len(self.colors) self.count = 0 def _get_next_cycle_color(self): if self.count==0: color = self.firstColor else: color = self.colors[int(self.count % self.Ncolors)] self.count += 1 return color def __call__(self, *args, **kwargs): if self.axes.xaxis is not None and self.axes.yaxis is not None: xunits = kwargs.pop( 'xunits', self.axes.xaxis.units) yunits = kwargs.pop( 'yunits', self.axes.yaxis.units) if xunits!=self.axes.xaxis.units: self.axes.xaxis.set_units(xunits) if yunits!=self.axes.yaxis.units: self.axes.yaxis.set_units(yunits) ret = self._grab_next_args(*args, **kwargs) return ret def set_lineprops(self, line, **kwargs): assert self.command == 'plot', 'set_lineprops only works with "plot"' for key, val in kwargs.items(): funcName = "set_%s"%key if not hasattr(line,funcName): raise TypeError, 'There is no line property "%s"'%key func = getattr(line,funcName) func(val) def set_patchprops(self, fill_poly, **kwargs): assert self.command == 'fill', 'set_patchprops only works with "fill"' for key, val in kwargs.items(): funcName = "set_%s"%key if not hasattr(fill_poly,funcName): raise TypeError, 'There is no patch property "%s"'%key func = getattr(fill_poly,funcName) func(val) def _xy_from_y(self, y): if self.axes.yaxis is not None: b = self.axes.yaxis.update_units(y) if b: return np.arange(len(y)), y, False if not ma.isMaskedArray(y): y = np.asarray(y) if len(y.shape) == 1: y = y[:,np.newaxis] nr, nc = y.shape x = np.arange(nr) if len(x.shape) == 1: x = x[:,np.newaxis] return x,y, True def _xy_from_xy(self, x, y): if self.axes.xaxis is not None and self.axes.yaxis is not None: bx = self.axes.xaxis.update_units(x) by = self.axes.yaxis.update_units(y) # right now multicol is not supported if either x or y are # unit enabled but this can be fixed.. if bx or by: return x, y, False x = ma.asarray(x) y = ma.asarray(y) if len(x.shape) == 1: x = x[:,np.newaxis] if len(y.shape) == 1: y = y[:,np.newaxis] nrx, ncx = x.shape nry, ncy = y.shape assert nrx == nry, 'Dimensions of x and y are incompatible' if ncx == ncy: return x, y, True if ncx == 1: x = np.repeat(x, ncy, axis=1) if ncy == 1: y = np.repeat(y, ncx, axis=1) assert x.shape == y.shape, 'Dimensions of x and y are incompatible' return x, y, True def _plot_1_arg(self, y, **kwargs): assert self.command == 'plot', 'fill needs at least 2 arguments' ret = [] x, y, multicol = self._xy_from_y(y) if multicol: for j in xrange(y.shape[1]): color = self._get_next_cycle_color() seg = mlines.Line2D(x, y[:,j], color = color, axes=self.axes, ) self.set_lineprops(seg, **kwargs) ret.append(seg) else: color = self._get_next_cycle_color() seg = mlines.Line2D(x, y, color = color, axes=self.axes, ) self.set_lineprops(seg, **kwargs) ret.append(seg) return ret def _plot_2_args(self, tup2, **kwargs): ret = [] if is_string_like(tup2[1]): assert self.command == 'plot', ('fill needs at least 2 non-string ' 'arguments') y, fmt = tup2 x, y, multicol = self._xy_from_y(y) linestyle, marker, color = _process_plot_format(fmt) def makeline(x, y): _color = color if _color is None: _color = self._get_next_cycle_color() seg = mlines.Line2D(x, y, color=_color, linestyle=linestyle, marker=marker, axes=self.axes, ) self.set_lineprops(seg, **kwargs) ret.append(seg) if multicol: for j in xrange(y.shape[1]): makeline(x[:,j], y[:,j]) else: makeline(x, y) return ret else: x, y = tup2 x, y, multicol = self._xy_from_xy(x, y) def makeline(x, y): color = self._get_next_cycle_color() seg = mlines.Line2D(x, y, color=color, axes=self.axes, ) self.set_lineprops(seg, **kwargs) ret.append(seg) def makefill(x, y): x = self.axes.convert_xunits(x) y = self.axes.convert_yunits(y) facecolor = self._get_next_cycle_color() seg = mpatches.Polygon(np.hstack( (x[:,np.newaxis],y[:,np.newaxis])), facecolor = facecolor, fill=True, closed=closed ) self.set_patchprops(seg, **kwargs) ret.append(seg) if self.command == 'plot': func = makeline else: closed = kwargs.get('closed', True) func = makefill if multicol: for j in xrange(y.shape[1]): func(x[:,j], y[:,j]) else: func(x, y) return ret def _plot_3_args(self, tup3, **kwargs): ret = [] x, y, fmt = tup3 x, y, multicol = self._xy_from_xy(x, y) linestyle, marker, color = _process_plot_format(fmt) def makeline(x, y): _color = color if _color is None: _color = self._get_next_cycle_color() seg = mlines.Line2D(x, y, color=_color, linestyle=linestyle, marker=marker, axes=self.axes, ) self.set_lineprops(seg, **kwargs) ret.append(seg) def makefill(x, y): facecolor = color x = self.axes.convert_xunits(x) y = self.axes.convert_yunits(y) seg = mpatches.Polygon(np.hstack( (x[:,np.newaxis],y[:,np.newaxis])), facecolor = facecolor, fill=True, closed=closed ) self.set_patchprops(seg, **kwargs) ret.append(seg) if self.command == 'plot': func = makeline else: closed = kwargs.get('closed', True) func = makefill if multicol: for j in xrange(y.shape[1]): func(x[:,j], y[:,j]) else: func(x, y) return ret def _grab_next_args(self, *args, **kwargs): remaining = args while 1: if len(remaining)==0: return if len(remaining)==1: for seg in self._plot_1_arg(remaining[0], **kwargs): yield seg remaining = [] continue if len(remaining)==2: for seg in self._plot_2_args(remaining, **kwargs): yield seg remaining = [] continue if len(remaining)==3: if not is_string_like(remaining[2]): raise ValueError, 'third arg must be a format string' for seg in self._plot_3_args(remaining, **kwargs): yield seg remaining=[] continue if is_string_like(remaining[2]): for seg in self._plot_3_args(remaining[:3], **kwargs): yield seg remaining=remaining[3:] else: for seg in self._plot_2_args(remaining[:2], **kwargs): yield seg remaining=remaining[2:] class Axes(martist.Artist): """ The :class:`Axes` contains most of the figure elements: :class:`~matplotlib.axis.Axis`, :class:`~matplotlib.axis.Tick`, :class:`~matplotlib.lines.Line2D`, :class:`~matplotlib.text.Text`, :class:`~matplotlib.patches.Polygon`, etc., and sets the coordinate system. The :class:`Axes` instance supports callbacks through a callbacks attribute which is a :class:`~matplotlib.cbook.CallbackRegistry` instance. The events you can connect to are 'xlim_changed' and 'ylim_changed' and the callback will be called with func(*ax*) where *ax* is the :class:`Axes` instance. """ name = "rectilinear" _shared_x_axes = cbook.Grouper() _shared_y_axes = cbook.Grouper() def __str__(self): return "Axes(%g,%g;%gx%g)" % tuple(self._position.bounds) def __init__(self, fig, rect, axisbg = None, # defaults to rc axes.facecolor frameon = True, sharex=None, # use Axes instance's xaxis info sharey=None, # use Axes instance's yaxis info label='', **kwargs ): """ Build an :class:`Axes` instance in :class:`~matplotlib.figure.Figure` *fig* with *rect=[left, bottom, width, height]* in :class:`~matplotlib.figure.Figure` coordinates Optional keyword arguments: ================ ========================================= Keyword Description ================ ========================================= *adjustable* [ 'box' | 'datalim' ] *alpha* float: the alpha transparency *anchor* [ 'C', 'SW', 'S', 'SE', 'E', 'NE', 'N', 'NW', 'W' ] *aspect* [ 'auto' | 'equal' | aspect_ratio ] *autoscale_on* [ *True* | *False* ] whether or not to autoscale the *viewlim* *axis_bgcolor* any matplotlib color, see :func:`~matplotlib.pyplot.colors` *axisbelow* draw the grids and ticks below the other artists *cursor_props* a (*float*, *color*) tuple *figure* a :class:`~matplotlib.figure.Figure` instance *frame_on* a boolean - draw the axes frame *label* the axes label *navigate* [ *True* | *False* ] *navigate_mode* [ 'PAN' | 'ZOOM' | None ] the navigation toolbar button status *position* [left, bottom, width, height] in class:`~matplotlib.figure.Figure` coords *sharex* an class:`~matplotlib.axes.Axes` instance to share the x-axis with *sharey* an class:`~matplotlib.axes.Axes` instance to share the y-axis with *title* the title string *visible* [ *True* | *False* ] whether the axes is visible *xlabel* the xlabel *xlim* (*xmin*, *xmax*) view limits *xscale* [%(scale)s] *xticklabels* sequence of strings *xticks* sequence of floats *ylabel* the ylabel strings *ylim* (*ymin*, *ymax*) view limits *yscale* [%(scale)s] *yticklabels* sequence of strings *yticks* sequence of floats ================ ========================================= """ % {'scale': ' | '.join([repr(x) for x in mscale.get_scale_names()])} martist.Artist.__init__(self) if isinstance(rect, mtransforms.Bbox): self._position = rect else: self._position = mtransforms.Bbox.from_bounds(*rect) self._originalPosition = self._position.frozen() self.set_axes(self) self.set_aspect('auto') self._adjustable = 'box' self.set_anchor('C') self._sharex = sharex self._sharey = sharey if sharex is not None: self._shared_x_axes.join(self, sharex) if sharex._adjustable == 'box': sharex._adjustable = 'datalim' #warnings.warn( # 'shared axes: "adjustable" is being changed to "datalim"') self._adjustable = 'datalim' if sharey is not None: self._shared_y_axes.join(self, sharey) if sharey._adjustable == 'box': sharey._adjustable = 'datalim' #warnings.warn( # 'shared axes: "adjustable" is being changed to "datalim"') self._adjustable = 'datalim' self.set_label(label) self.set_figure(fig) # this call may differ for non-sep axes, eg polar self._init_axis() if axisbg is None: axisbg = rcParams['axes.facecolor'] self._axisbg = axisbg self._frameon = frameon self._axisbelow = rcParams['axes.axisbelow'] self._hold = rcParams['axes.hold'] self._connected = {} # a dict from events to (id, func) self.cla() # funcs used to format x and y - fall back on major formatters self.fmt_xdata = None self.fmt_ydata = None self.set_cursor_props((1,'k')) # set the cursor properties for axes self._cachedRenderer = None self.set_navigate(True) self.set_navigate_mode(None) if len(kwargs): martist.setp(self, **kwargs) if self.xaxis is not None: self._xcid = self.xaxis.callbacks.connect('units finalize', self.relim) if self.yaxis is not None: self._ycid = self.yaxis.callbacks.connect('units finalize', self.relim) def get_window_extent(self, *args, **kwargs): ''' get the axes bounding box in display space; *args* and *kwargs* are empty ''' return self.bbox def _init_axis(self): "move this out of __init__ because non-separable axes don't use it" self.xaxis = maxis.XAxis(self) self.yaxis = maxis.YAxis(self) self._update_transScale() def set_figure(self, fig): """ Set the class:`~matplotlib.axes.Axes` figure accepts a class:`~matplotlib.figure.Figure` instance """ martist.Artist.set_figure(self, fig) self.bbox = mtransforms.TransformedBbox(self._position, fig.transFigure) #these will be updated later as data is added self.dataLim = mtransforms.Bbox.unit() self.viewLim = mtransforms.Bbox.unit() self.transScale = mtransforms.TransformWrapper( mtransforms.IdentityTransform()) self._set_lim_and_transforms() def _set_lim_and_transforms(self): """ set the *dataLim* and *viewLim* :class:`~matplotlib.transforms.Bbox` attributes and the *transScale*, *transData*, *transLimits* and *transAxes* transformations. """ self.transAxes = mtransforms.BboxTransformTo(self.bbox) # Transforms the x and y axis separately by a scale factor # It is assumed that this part will have non-linear components self.transScale = mtransforms.TransformWrapper( mtransforms.IdentityTransform()) # An affine transformation on the data, generally to limit the # range of the axes self.transLimits = mtransforms.BboxTransformFrom( mtransforms.TransformedBbox(self.viewLim, self.transScale)) # The parentheses are important for efficiency here -- they # group the last two (which are usually affines) separately # from the first (which, with log-scaling can be non-affine). self.transData = self.transScale + (self.transLimits + self.transAxes) self._xaxis_transform = mtransforms.blended_transform_factory( self.axes.transData, self.axes.transAxes) self._yaxis_transform = mtransforms.blended_transform_factory( self.axes.transAxes, self.axes.transData) def get_xaxis_transform(self): """ Get the transformation used for drawing x-axis labels, ticks and gridlines. The x-direction is in data coordinates and the y-direction is in axis coordinates. .. note:: This transformation is primarily used by the :class:`~matplotlib.axis.Axis` class, and is meant to be overridden by new kinds of projections that may need to place axis elements in different locations. """ return self._xaxis_transform def get_xaxis_text1_transform(self, pad_points): """ Get the transformation used for drawing x-axis labels, which will add the given amount of padding (in points) between the axes and the label. The x-direction is in data coordinates and the y-direction is in axis coordinates. Returns a 3-tuple of the form:: (transform, valign, halign) where *valign* and *halign* are requested alignments for the text. .. note:: This transformation is primarily used by the :class:`~matplotlib.axis.Axis` class, and is meant to be overridden by new kinds of projections that may need to place axis elements in different locations. """ return (self._xaxis_transform + mtransforms.ScaledTranslation(0, -1 * pad_points / 72.0, self.figure.dpi_scale_trans), "top", "center") def get_xaxis_text2_transform(self, pad_points): """ Get the transformation used for drawing the secondary x-axis labels, which will add the given amount of padding (in points) between the axes and the label. The x-direction is in data coordinates and the y-direction is in axis coordinates. Returns a 3-tuple of the form:: (transform, valign, halign) where *valign* and *halign* are requested alignments for the text. .. note:: This transformation is primarily used by the :class:`~matplotlib.axis.Axis` class, and is meant to be overridden by new kinds of projections that may need to place axis elements in different locations. """ return (self._xaxis_transform + mtransforms.ScaledTranslation(0, pad_points / 72.0, self.figure.dpi_scale_trans), "bottom", "center") def get_yaxis_transform(self): """ Get the transformation used for drawing y-axis labels, ticks and gridlines. The x-direction is in axis coordinates and the y-direction is in data coordinates. .. note:: This transformation is primarily used by the :class:`~matplotlib.axis.Axis` class, and is meant to be overridden by new kinds of projections that may need to place axis elements in different locations. """ return self._yaxis_transform def get_yaxis_text1_transform(self, pad_points): """ Get the transformation used for drawing y-axis labels, which will add the given amount of padding (in points) between the axes and the label. The x-direction is in axis coordinates and the y-direction is in data coordinates. Returns a 3-tuple of the form:: (transform, valign, halign) where *valign* and *halign* are requested alignments for the text. .. note:: This transformation is primarily used by the :class:`~matplotlib.axis.Axis` class, and is meant to be overridden by new kinds of projections that may need to place axis elements in different locations. """ return (self._yaxis_transform + mtransforms.ScaledTranslation(-1 * pad_points / 72.0, 0, self.figure.dpi_scale_trans), "center", "right") def get_yaxis_text2_transform(self, pad_points): """ Get the transformation used for drawing the secondary y-axis labels, which will add the given amount of padding (in points) between the axes and the label. The x-direction is in axis coordinates and the y-direction is in data coordinates. Returns a 3-tuple of the form:: (transform, valign, halign) where *valign* and *halign* are requested alignments for the text. .. note:: This transformation is primarily used by the :class:`~matplotlib.axis.Axis` class, and is meant to be overridden by new kinds of projections that may need to place axis elements in different locations. """ return (self._yaxis_transform + mtransforms.ScaledTranslation(pad_points / 72.0, 0, self.figure.dpi_scale_trans), "center", "left") def _update_transScale(self): self.transScale.set( mtransforms.blended_transform_factory( self.xaxis.get_transform(), self.yaxis.get_transform())) if hasattr(self, "lines"): for line in self.lines: line._transformed_path.invalidate() def get_position(self, original=False): 'Return the a copy of the axes rectangle as a Bbox' if original: return self._originalPosition.frozen() else: return self._position.frozen() def set_position(self, pos, which='both'): """ Set the axes position with:: pos = [left, bottom, width, height] in relative 0,1 coords, or *pos* can be a :class:`~matplotlib.transforms.Bbox` There are two position variables: one which is ultimately used, but which may be modified by :meth:`apply_aspect`, and a second which is the starting point for :meth:`apply_aspect`. Optional keyword arguments: *which* ========== ==================== value description ========== ==================== 'active' to change the first 'original' to change the second 'both' to change both ========== ==================== """ if not isinstance(pos, mtransforms.BboxBase): pos = mtransforms.Bbox.from_bounds(*pos) if which in ('both', 'active'): self._position.set(pos) if which in ('both', 'original'): self._originalPosition.set(pos) def reset_position(self): 'Make the original position the active position' pos = self.get_position(original=True) self.set_position(pos, which='active') def _set_artist_props(self, a): 'set the boilerplate props for artists added to axes' a.set_figure(self.figure) if not a.is_transform_set(): a.set_transform(self.transData) a.set_axes(self) def _gen_axes_patch(self): """ Returns the patch used to draw the background of the axes. It is also used as the clipping path for any data elements on the axes. In the standard axes, this is a rectangle, but in other projections it may not be. .. note:: Intended to be overridden by new projection types. """ return mpatches.Rectangle((0.0, 0.0), 1.0, 1.0) def cla(self): 'Clear the current axes' # Note: this is called by Axes.__init__() self.xaxis.cla() self.yaxis.cla() self.ignore_existing_data_limits = True self.callbacks = cbook.CallbackRegistry(('xlim_changed', 'ylim_changed')) if self._sharex is not None: # major and minor are class instances with # locator and formatter attributes self.xaxis.major = self._sharex.xaxis.major self.xaxis.minor = self._sharex.xaxis.minor x0, x1 = self._sharex.get_xlim() self.set_xlim(x0, x1, emit=False) self.xaxis.set_scale(self._sharex.xaxis.get_scale()) else: self.xaxis.set_scale('linear') if self._sharey is not None: self.yaxis.major = self._sharey.yaxis.major self.yaxis.minor = self._sharey.yaxis.minor y0, y1 = self._sharey.get_ylim() self.set_ylim(y0, y1, emit=False) self.yaxis.set_scale(self._sharey.yaxis.get_scale()) else: self.yaxis.set_scale('linear') self._autoscaleon = True self._update_transScale() # needed? self._get_lines = _process_plot_var_args(self) self._get_patches_for_fill = _process_plot_var_args(self, 'fill') self._gridOn = rcParams['axes.grid'] self.lines = [] self.patches = [] self.texts = [] self.tables = [] self.artists = [] self.images = [] self.legend_ = None self.collections = [] # collection.Collection instances self.grid(self._gridOn) props = font_manager.FontProperties(size=rcParams['axes.titlesize']) self.titleOffsetTrans = mtransforms.ScaledTranslation( 0.0, 5.0 / 72.0, self.figure.dpi_scale_trans) self.title = mtext.Text( x=0.5, y=1.0, text='', fontproperties=props, verticalalignment='bottom', horizontalalignment='center', ) self.title.set_transform(self.transAxes + self.titleOffsetTrans) self.title.set_clip_box(None) self._set_artist_props(self.title) # the patch draws the background of the axes. we want this to # be below the other artists; the axesPatch name is # deprecated. We use the frame to draw the edges so we are # setting the edgecolor to None self.patch = self.axesPatch = self._gen_axes_patch() self.patch.set_figure(self.figure) self.patch.set_facecolor(self._axisbg) self.patch.set_edgecolor('None') self.patch.set_linewidth(0) self.patch.set_transform(self.transAxes) # the frame draws the border around the axes and we want this # above. this is a place holder for a more sophisticated # artist that might just draw a left, bottom frame, or a # centered frame, etc the axesFrame name is deprecated self.frame = self.axesFrame = self._gen_axes_patch() self.frame.set_figure(self.figure) self.frame.set_facecolor('none') self.frame.set_edgecolor(rcParams['axes.edgecolor']) self.frame.set_linewidth(rcParams['axes.linewidth']) self.frame.set_transform(self.transAxes) self.frame.set_zorder(2.5) self.axison = True self.xaxis.set_clip_path(self.patch) self.yaxis.set_clip_path(self.patch) self._shared_x_axes.clean() self._shared_y_axes.clean() def clear(self): 'clear the axes' self.cla() def set_color_cycle(self, clist): """ Set the color cycle for any future plot commands on this Axes. clist is a list of mpl color specifiers. """ self._get_lines.set_color_cycle(clist) def ishold(self): 'return the HOLD status of the axes' return self._hold def hold(self, b=None): """ call signature:: hold(b=None) Set the hold state. If *hold* is *None* (default), toggle the *hold* state. Else set the *hold* state to boolean value *b*. Examples: * toggle hold: >>> hold() * turn hold on: >>> hold(True) * turn hold off >>> hold(False) When hold is True, subsequent plot commands will be added to the current axes. When hold is False, the current axes and figure will be cleared on the next plot command """ if b is None: self._hold = not self._hold else: self._hold = b def get_aspect(self): return self._aspect def set_aspect(self, aspect, adjustable=None, anchor=None): """ *aspect* ======== ================================================ value description ======== ================================================ 'auto' automatic; fill position rectangle with data 'normal' same as 'auto'; deprecated 'equal' same scaling from data to plot units for x and y num a circle will be stretched such that the height is num times the width. aspect=1 is the same as aspect='equal'. ======== ================================================ *adjustable* ========= ============================ value description ========= ============================ 'box' change physical size of axes 'datalim' change xlim or ylim ========= ============================ *anchor* ===== ===================== value description ===== ===================== 'C' centered 'SW' lower left corner 'S' middle of bottom edge 'SE' lower right corner etc. ===== ===================== """ if aspect in ('normal', 'auto'): self._aspect = 'auto' elif aspect == 'equal': self._aspect = 'equal' else: self._aspect = float(aspect) # raise ValueError if necessary if adjustable is not None: self.set_adjustable(adjustable) if anchor is not None: self.set_anchor(anchor) def get_adjustable(self): return self._adjustable def set_adjustable(self, adjustable): """ ACCEPTS: [ 'box' | 'datalim' ] """ if adjustable in ('box', 'datalim'): if self in self._shared_x_axes or self in self._shared_y_axes: if adjustable == 'box': raise ValueError( 'adjustable must be "datalim" for shared axes') self._adjustable = adjustable else: raise ValueError('argument must be "box", or "datalim"') def get_anchor(self): return self._anchor def set_anchor(self, anchor): """ *anchor* ===== ============ value description ===== ============ 'C' Center 'SW' bottom left 'S' bottom 'SE' bottom right 'E' right 'NE' top right 'N' top 'NW' top left 'W' left ===== ============ """ if anchor in mtransforms.Bbox.coefs.keys() or len(anchor) == 2: self._anchor = anchor else: raise ValueError('argument must be among %s' % ', '.join(mtransforms.BBox.coefs.keys())) def get_data_ratio(self): """ Returns the aspect ratio of the raw data. This method is intended to be overridden by new projection types. """ xmin,xmax = self.get_xbound() xsize = max(math.fabs(xmax-xmin), 1e-30) ymin,ymax = self.get_ybound() ysize = max(math.fabs(ymax-ymin), 1e-30) return ysize/xsize def apply_aspect(self, position=None): ''' Use :meth:`_aspect` and :meth:`_adjustable` to modify the axes box or the view limits. ''' if position is None: position = self.get_position(original=True) aspect = self.get_aspect() if aspect == 'auto': self.set_position( position , which='active') return if aspect == 'equal': A = 1 else: A = aspect #Ensure at drawing time that any Axes involved in axis-sharing # does not have its position changed. if self in self._shared_x_axes or self in self._shared_y_axes: if self._adjustable == 'box': self._adjustable = 'datalim' warnings.warn( 'shared axes: "adjustable" is being changed to "datalim"') figW,figH = self.get_figure().get_size_inches() fig_aspect = figH/figW if self._adjustable == 'box': box_aspect = A * self.get_data_ratio() pb = position.frozen() pb1 = pb.shrunk_to_aspect(box_aspect, pb, fig_aspect) self.set_position(pb1.anchored(self.get_anchor(), pb), 'active') return # reset active to original in case it had been changed # by prior use of 'box' self.set_position(position, which='active') xmin,xmax = self.get_xbound() xsize = max(math.fabs(xmax-xmin), 1e-30) ymin,ymax = self.get_ybound() ysize = max(math.fabs(ymax-ymin), 1e-30) l,b,w,h = position.bounds box_aspect = fig_aspect * (h/w) data_ratio = box_aspect / A y_expander = (data_ratio*xsize/ysize - 1.0) #print 'y_expander', y_expander # If y_expander > 0, the dy/dx viewLim ratio needs to increase if abs(y_expander) < 0.005: #print 'good enough already' return dL = self.dataLim xr = 1.05 * dL.width yr = 1.05 * dL.height xmarg = xsize - xr ymarg = ysize - yr Ysize = data_ratio * xsize Xsize = ysize / data_ratio Xmarg = Xsize - xr Ymarg = Ysize - yr xm = 0 # Setting these targets to, e.g., 0.05*xr does not seem to help. ym = 0 #print 'xmin, xmax, ymin, ymax', xmin, xmax, ymin, ymax #print 'xsize, Xsize, ysize, Ysize', xsize, Xsize, ysize, Ysize changex = (self in self._shared_y_axes and self not in self._shared_x_axes) changey = (self in self._shared_x_axes and self not in self._shared_y_axes) if changex and changey: warnings.warn("adjustable='datalim' cannot work with shared " "x and y axes") return if changex: adjust_y = False else: #print 'xmarg, ymarg, Xmarg, Ymarg', xmarg, ymarg, Xmarg, Ymarg if xmarg > xm and ymarg > ym: adjy = ((Ymarg > 0 and y_expander < 0) or (Xmarg < 0 and y_expander > 0)) else: adjy = y_expander > 0 #print 'y_expander, adjy', y_expander, adjy adjust_y = changey or adjy #(Ymarg > xmarg) if adjust_y: yc = 0.5*(ymin+ymax) y0 = yc - Ysize/2.0 y1 = yc + Ysize/2.0 self.set_ybound((y0, y1)) #print 'New y0, y1:', y0, y1 #print 'New ysize, ysize/xsize', y1-y0, (y1-y0)/xsize else: xc = 0.5*(xmin+xmax) x0 = xc - Xsize/2.0 x1 = xc + Xsize/2.0 self.set_xbound((x0, x1)) #print 'New x0, x1:', x0, x1 #print 'New xsize, ysize/xsize', x1-x0, ysize/(x1-x0) def axis(self, *v, **kwargs): ''' Convenience method for manipulating the x and y view limits and the aspect ratio of the plot. *kwargs* are passed on to :meth:`set_xlim` and :meth:`set_ylim` ''' if len(v)==1 and is_string_like(v[0]): s = v[0].lower() if s=='on': self.set_axis_on() elif s=='off': self.set_axis_off() elif s in ('equal', 'tight', 'scaled', 'normal', 'auto', 'image'): self.set_autoscale_on(True) self.set_aspect('auto') self.autoscale_view() # self.apply_aspect() if s=='equal': self.set_aspect('equal', adjustable='datalim') elif s == 'scaled': self.set_aspect('equal', adjustable='box', anchor='C') self.set_autoscale_on(False) # Req. by Mark Bakker elif s=='tight': self.autoscale_view(tight=True) self.set_autoscale_on(False) elif s == 'image': self.autoscale_view(tight=True) self.set_autoscale_on(False) self.set_aspect('equal', adjustable='box', anchor='C') else: raise ValueError('Unrecognized string %s to axis; ' 'try on or off' % s) xmin, xmax = self.get_xlim() ymin, ymax = self.get_ylim() return xmin, xmax, ymin, ymax try: v[0] except IndexError: emit = kwargs.get('emit', True) xmin = kwargs.get('xmin', None) xmax = kwargs.get('xmax', None) xmin, xmax = self.set_xlim(xmin, xmax, emit) ymin = kwargs.get('ymin', None) ymax = kwargs.get('ymax', None) ymin, ymax = self.set_ylim(ymin, ymax, emit) return xmin, xmax, ymin, ymax v = v[0] if len(v) != 4: raise ValueError('v must contain [xmin xmax ymin ymax]') self.set_xlim([v[0], v[1]]) self.set_ylim([v[2], v[3]]) return v def get_child_artists(self): """ Return a list of artists the axes contains. .. deprecated:: 0.98 """ raise DeprecationWarning('Use get_children instead') def get_frame(self): 'Return the axes Rectangle frame' warnings.warn('use ax.patch instead', DeprecationWarning) return self.patch def get_legend(self): 'Return the legend.Legend instance, or None if no legend is defined' return self.legend_ def get_images(self): 'return a list of Axes images contained by the Axes' return cbook.silent_list('AxesImage', self.images) def get_lines(self): 'Return a list of lines contained by the Axes' return cbook.silent_list('Line2D', self.lines) def get_xaxis(self): 'Return the XAxis instance' return self.xaxis def get_xgridlines(self): 'Get the x grid lines as a list of Line2D instances' return cbook.silent_list('Line2D xgridline', self.xaxis.get_gridlines()) def get_xticklines(self): 'Get the xtick lines as a list of Line2D instances' return cbook.silent_list('Text xtickline', self.xaxis.get_ticklines()) def get_yaxis(self): 'Return the YAxis instance' return self.yaxis def get_ygridlines(self): 'Get the y grid lines as a list of Line2D instances' return cbook.silent_list('Line2D ygridline', self.yaxis.get_gridlines()) def get_yticklines(self): 'Get the ytick lines as a list of Line2D instances' return cbook.silent_list('Line2D ytickline', self.yaxis.get_ticklines()) #### Adding and tracking artists def has_data(self): '''Return *True* if any artists have been added to axes. This should not be used to determine whether the *dataLim* need to be updated, and may not actually be useful for anything. ''' return ( len(self.collections) + len(self.images) + len(self.lines) + len(self.patches))>0 def add_artist(self, a): 'Add any :class:`~matplotlib.artist.Artist` to the axes' a.set_axes(self) self.artists.append(a) self._set_artist_props(a) a.set_clip_path(self.patch) a._remove_method = lambda h: self.artists.remove(h) def add_collection(self, collection, autolim=True): ''' add a :class:`~matplotlib.collections.Collection` instance to the axes ''' label = collection.get_label() if not label: collection.set_label('collection%d'%len(self.collections)) self.collections.append(collection) self._set_artist_props(collection) collection.set_clip_path(self.patch) if autolim: if collection._paths and len(collection._paths): self.update_datalim(collection.get_datalim(self.transData)) collection._remove_method = lambda h: self.collections.remove(h) def add_line(self, line): ''' Add a :class:`~matplotlib.lines.Line2D` to the list of plot lines ''' self._set_artist_props(line) line.set_clip_path(self.patch) self._update_line_limits(line) if not line.get_label(): line.set_label('_line%d'%len(self.lines)) self.lines.append(line) line._remove_method = lambda h: self.lines.remove(h) def _update_line_limits(self, line): p = line.get_path() if p.vertices.size > 0: self.dataLim.update_from_path(p, self.ignore_existing_data_limits, updatex=line.x_isdata, updatey=line.y_isdata) self.ignore_existing_data_limits = False def add_patch(self, p): """ Add a :class:`~matplotlib.patches.Patch` *p* to the list of axes patches; the clipbox will be set to the Axes clipping box. If the transform is not set, it will be set to :attr:`transData`. """ self._set_artist_props(p) p.set_clip_path(self.patch) self._update_patch_limits(p) self.patches.append(p) p._remove_method = lambda h: self.patches.remove(h) def _update_patch_limits(self, patch): 'update the data limits for patch *p*' # hist can add zero height Rectangles, which is useful to keep # the bins, counts and patches lined up, but it throws off log # scaling. We'll ignore rects with zero height or width in # the auto-scaling if (isinstance(patch, mpatches.Rectangle) and (patch.get_width()==0 or patch.get_height()==0)): return vertices = patch.get_path().vertices if vertices.size > 0: xys = patch.get_patch_transform().transform(vertices) if patch.get_data_transform() != self.transData: transform = (patch.get_data_transform() + self.transData.inverted()) xys = transform.transform(xys) self.update_datalim(xys, updatex=patch.x_isdata, updatey=patch.y_isdata) def add_table(self, tab): ''' Add a :class:`~matplotlib.tables.Table` instance to the list of axes tables ''' self._set_artist_props(tab) self.tables.append(tab) tab.set_clip_path(self.patch) tab._remove_method = lambda h: self.tables.remove(h) def relim(self): 'recompute the data limits based on current artists' # Collections are deliberately not supported (yet); see # the TODO note in artists.py. self.dataLim.ignore(True) self.ignore_existing_data_limits = True for line in self.lines: self._update_line_limits(line) for p in self.patches: self._update_patch_limits(p) def update_datalim(self, xys, updatex=True, updatey=True): 'Update the data lim bbox with seq of xy tups or equiv. 2-D array' # if no data is set currently, the bbox will ignore its # limits and set the bound to be the bounds of the xydata. # Otherwise, it will compute the bounds of it's current data # and the data in xydata if iterable(xys) and not len(xys): return if not ma.isMaskedArray(xys): xys = np.asarray(xys) self.dataLim.update_from_data_xy(xys, self.ignore_existing_data_limits, updatex=updatex, updatey=updatey) self.ignore_existing_data_limits = False def update_datalim_numerix(self, x, y): 'Update the data lim bbox with seq of xy tups' # if no data is set currently, the bbox will ignore it's # limits and set the bound to be the bounds of the xydata. # Otherwise, it will compute the bounds of it's current data # and the data in xydata if iterable(x) and not len(x): return self.dataLim.update_from_data(x, y, self.ignore_existing_data_limits) self.ignore_existing_data_limits = False def update_datalim_bounds(self, bounds): ''' Update the datalim to include the given :class:`~matplotlib.transforms.Bbox` *bounds* ''' self.dataLim.set(mtransforms.Bbox.union([self.dataLim, bounds])) def _process_unit_info(self, xdata=None, ydata=None, kwargs=None): 'look for unit *kwargs* and update the axis instances as necessary' if self.xaxis is None or self.yaxis is None: return #print 'processing', self.get_geometry() if xdata is not None: # we only need to update if there is nothing set yet. if not self.xaxis.have_units(): self.xaxis.update_units(xdata) #print '\tset from xdata', self.xaxis.units if ydata is not None: # we only need to update if there is nothing set yet. if not self.yaxis.have_units(): self.yaxis.update_units(ydata) #print '\tset from ydata', self.yaxis.units # process kwargs 2nd since these will override default units if kwargs is not None: xunits = kwargs.pop( 'xunits', self.xaxis.units) if xunits!=self.xaxis.units: #print '\tkw setting xunits', xunits self.xaxis.set_units(xunits) # If the units being set imply a different converter, # we need to update. if xdata is not None: self.xaxis.update_units(xdata) yunits = kwargs.pop('yunits', self.yaxis.units) if yunits!=self.yaxis.units: #print '\tkw setting yunits', yunits self.yaxis.set_units(yunits) # If the units being set imply a different converter, # we need to update. if ydata is not None: self.yaxis.update_units(ydata) def in_axes(self, mouseevent): ''' return *True* if the given *mouseevent* (in display coords) is in the Axes ''' return self.patch.contains(mouseevent)[0] def get_autoscale_on(self): """ Get whether autoscaling is applied on plot commands """ return self._autoscaleon def set_autoscale_on(self, b): """ Set whether autoscaling is applied on plot commands accepts: [ *True* | *False* ] """ self._autoscaleon = b def autoscale_view(self, tight=False, scalex=True, scaley=True): """ autoscale the view limits using the data limits. You can selectively autoscale only a single axis, eg, the xaxis by setting *scaley* to *False*. The autoscaling preserves any axis direction reversal that has already been done. """ # if image data only just use the datalim if not self._autoscaleon: return if scalex: xshared = self._shared_x_axes.get_siblings(self) dl = [ax.dataLim for ax in xshared] bb = mtransforms.BboxBase.union(dl) x0, x1 = bb.intervalx if scaley: yshared = self._shared_y_axes.get_siblings(self) dl = [ax.dataLim for ax in yshared] bb = mtransforms.BboxBase.union(dl) y0, y1 = bb.intervaly if (tight or (len(self.images)>0 and len(self.lines)==0 and len(self.patches)==0)): if scalex: self.set_xbound(x0, x1) if scaley: self.set_ybound(y0, y1) return if scalex: XL = self.xaxis.get_major_locator().view_limits(x0, x1) self.set_xbound(XL) if scaley: YL = self.yaxis.get_major_locator().view_limits(y0, y1) self.set_ybound(YL) #### Drawing def draw(self, renderer=None, inframe=False): "Draw everything (plot lines, axes, labels)" if renderer is None: renderer = self._cachedRenderer if renderer is None: raise RuntimeError('No renderer defined') if not self.get_visible(): return renderer.open_group('axes') self.apply_aspect() # the patch draws the background rectangle -- the frame below # will draw the edges if self.axison and self._frameon: self.patch.draw(renderer) artists = [] if len(self.images)<=1 or renderer.option_image_nocomposite(): for im in self.images: im.draw(renderer) else: # make a composite image blending alpha # list of (mimage.Image, ox, oy) mag = renderer.get_image_magnification() ims = [(im.make_image(mag),0,0) for im in self.images if im.get_visible()] l, b, r, t = self.bbox.extents width = mag*((round(r) + 0.5) - (round(l) - 0.5)) height = mag*((round(t) + 0.5) - (round(b) - 0.5)) im = mimage.from_images(height, width, ims) im.is_grayscale = False l, b, w, h = self.bbox.bounds # composite images need special args so they will not # respect z-order for now renderer.draw_image( round(l), round(b), im, self.bbox, self.patch.get_path(), self.patch.get_transform()) artists.extend(self.collections) artists.extend(self.patches) artists.extend(self.lines) artists.extend(self.texts) artists.extend(self.artists) if self.axison and not inframe: if self._axisbelow: self.xaxis.set_zorder(0.5) self.yaxis.set_zorder(0.5) else: self.xaxis.set_zorder(2.5) self.yaxis.set_zorder(2.5) artists.extend([self.xaxis, self.yaxis]) if not inframe: artists.append(self.title) artists.extend(self.tables) if self.legend_ is not None: artists.append(self.legend_) # the frame draws the edges around the axes patch -- we # decouple these so the patch can be in the background and the # frame in the foreground. if self.axison and self._frameon: artists.append(self.frame) dsu = [ (a.zorder, i, a) for i, a in enumerate(artists) if not a.get_animated() ] dsu.sort() for zorder, i, a in dsu: a.draw(renderer) renderer.close_group('axes') self._cachedRenderer = renderer def draw_artist(self, a): """ This method can only be used after an initial draw which caches the renderer. It is used to efficiently update Axes data (axis ticks, labels, etc are not updated) """ assert self._cachedRenderer is not None a.draw(self._cachedRenderer) def redraw_in_frame(self): """ This method can only be used after an initial draw which caches the renderer. It is used to efficiently update Axes data (axis ticks, labels, etc are not updated) """ assert self._cachedRenderer is not None self.draw(self._cachedRenderer, inframe=True) def get_renderer_cache(self): return self._cachedRenderer def __draw_animate(self): # ignore for now; broken if self._lastRenderer is None: raise RuntimeError('You must first call ax.draw()') dsu = [(a.zorder, a) for a in self.animated.keys()] dsu.sort() renderer = self._lastRenderer renderer.blit() for tmp, a in dsu: a.draw(renderer) #### Axes rectangle characteristics def get_frame_on(self): """ Get whether the axes rectangle patch is drawn """ return self._frameon def set_frame_on(self, b): """ Set whether the axes rectangle patch is drawn ACCEPTS: [ *True* | *False* ] """ self._frameon = b def get_axisbelow(self): """ Get whether axis below is true or not """ return self._axisbelow def set_axisbelow(self, b): """ Set whether the axis ticks and gridlines are above or below most artists ACCEPTS: [ *True* | *False* ] """ self._axisbelow = b def grid(self, b=None, **kwargs): """ call signature:: grid(self, b=None, **kwargs) Set the axes grids on or off; *b* is a boolean If *b* is *None* and ``len(kwargs)==0``, toggle the grid state. If *kwargs* are supplied, it is assumed that you want a grid and *b* is thus set to *True* *kawrgs* are used to set the grid line properties, eg:: ax.grid(color='r', linestyle='-', linewidth=2) Valid :class:`~matplotlib.lines.Line2D` kwargs are %(Line2D)s """ if len(kwargs): b = True self.xaxis.grid(b, **kwargs) self.yaxis.grid(b, **kwargs) grid.__doc__ = cbook.dedent(grid.__doc__) % martist.kwdocd def ticklabel_format(self, **kwargs): """ Convenience method for manipulating the ScalarFormatter used by default for linear axes. Optional keyword arguments: ============ ===================================== Keyword Description ============ ===================================== *style* [ 'sci' (or 'scientific') | 'plain' ] plain turns off scientific notation *scilimits* (m, n), pair of integers; if *style* is 'sci', scientific notation will be used for numbers outside the range 10`-m`:sup: to 10`n`:sup:. Use (0,0) to include all numbers. *axis* [ 'x' | 'y' | 'both' ] ============ ===================================== Only the major ticks are affected. If the method is called when the :class:`~matplotlib.ticker.ScalarFormatter` is not the :class:`~matplotlib.ticker.Formatter` being used, an :exc:`AttributeError` will be raised. """ style = kwargs.pop('style', '').lower() scilimits = kwargs.pop('scilimits', None) if scilimits is not None: try: m, n = scilimits m+n+1 # check that both are numbers except (ValueError, TypeError): raise ValueError("scilimits must be a sequence of 2 integers") axis = kwargs.pop('axis', 'both').lower() if style[:3] == 'sci': sb = True elif style in ['plain', 'comma']: sb = False if style == 'plain': cb = False else: cb = True raise NotImplementedError, "comma style remains to be added" elif style == '': sb = None else: raise ValueError, "%s is not a valid style value" try: if sb is not None: if axis == 'both' or axis == 'x': self.xaxis.major.formatter.set_scientific(sb) if axis == 'both' or axis == 'y': self.yaxis.major.formatter.set_scientific(sb) if scilimits is not None: if axis == 'both' or axis == 'x': self.xaxis.major.formatter.set_powerlimits(scilimits) if axis == 'both' or axis == 'y': self.yaxis.major.formatter.set_powerlimits(scilimits) except AttributeError: raise AttributeError( "This method only works with the ScalarFormatter.") def set_axis_off(self): """turn off the axis""" self.axison = False def set_axis_on(self): """turn on the axis""" self.axison = True def get_axis_bgcolor(self): 'Return the axis background color' return self._axisbg def set_axis_bgcolor(self, color): """ set the axes background color ACCEPTS: any matplotlib color - see :func:`~matplotlib.pyplot.colors` """ self._axisbg = color self.patch.set_facecolor(color) ### data limits, ticks, tick labels, and formatting def invert_xaxis(self): "Invert the x-axis." left, right = self.get_xlim() self.set_xlim(right, left) def xaxis_inverted(self): 'Returns True if the x-axis is inverted.' left, right = self.get_xlim() return right < left def get_xbound(self): """ Returns the x-axis numerical bounds where:: lowerBound < upperBound """ left, right = self.get_xlim() if left < right: return left, right else: return right, left def set_xbound(self, lower=None, upper=None): """ Set the lower and upper numerical bounds of the x-axis. This method will honor axes inversion regardless of parameter order. """ if upper is None and iterable(lower): lower,upper = lower old_lower,old_upper = self.get_xbound() if lower is None: lower = old_lower if upper is None: upper = old_upper if self.xaxis_inverted(): if lower < upper: self.set_xlim(upper, lower) else: self.set_xlim(lower, upper) else: if lower < upper: self.set_xlim(lower, upper) else: self.set_xlim(upper, lower) def get_xlim(self): """ Get the x-axis range [*xmin*, *xmax*] """ return tuple(self.viewLim.intervalx) def set_xlim(self, xmin=None, xmax=None, emit=True, **kwargs): """ call signature:: set_xlim(self, *args, **kwargs) Set the limits for the xaxis Returns the current xlimits as a length 2 tuple: [*xmin*, *xmax*] Examples:: set_xlim((valmin, valmax)) set_xlim(valmin, valmax) set_xlim(xmin=1) # xmax unchanged set_xlim(xmax=1) # xmin unchanged Keyword arguments: *ymin*: scalar the min of the ylim *ymax*: scalar the max of the ylim *emit*: [ True | False ] notify observers of lim change ACCEPTS: len(2) sequence of floats """ if xmax is None and iterable(xmin): xmin,xmax = xmin self._process_unit_info(xdata=(xmin, xmax)) if xmin is not None: xmin = self.convert_xunits(xmin) if xmax is not None: xmax = self.convert_xunits(xmax) old_xmin,old_xmax = self.get_xlim() if xmin is None: xmin = old_xmin if xmax is None: xmax = old_xmax xmin, xmax = mtransforms.nonsingular(xmin, xmax, increasing=False) xmin, xmax = self.xaxis.limit_range_for_scale(xmin, xmax) self.viewLim.intervalx = (xmin, xmax) if emit: self.callbacks.process('xlim_changed', self) # Call all of the other x-axes that are shared with this one for other in self._shared_x_axes.get_siblings(self): if other is not self: other.set_xlim(self.viewLim.intervalx, emit=False) if (other.figure != self.figure and other.figure.canvas is not None): other.figure.canvas.draw_idle() return xmin, xmax def get_xscale(self): 'return the xaxis scale string: %s' % ( ", ".join(mscale.get_scale_names())) return self.xaxis.get_scale() def set_xscale(self, value, **kwargs): """ call signature:: set_xscale(value) Set the scaling of the x-axis: %(scale)s ACCEPTS: [%(scale)s] Different kwargs are accepted, depending on the scale: %(scale_docs)s """ self.xaxis.set_scale(value, **kwargs) self.autoscale_view() self._update_transScale() set_xscale.__doc__ = cbook.dedent(set_xscale.__doc__) % { 'scale': ' | '.join([repr(x) for x in mscale.get_scale_names()]), 'scale_docs': mscale.get_scale_docs().strip()} def get_xticks(self, minor=False): 'Return the x ticks as a list of locations' return self.xaxis.get_ticklocs(minor=minor) def set_xticks(self, ticks, minor=False): """ Set the x ticks with list of *ticks* ACCEPTS: sequence of floats """ return self.xaxis.set_ticks(ticks, minor=minor) def get_xmajorticklabels(self): 'Get the xtick labels as a list of Text instances' return cbook.silent_list('Text xticklabel', self.xaxis.get_majorticklabels()) def get_xminorticklabels(self): 'Get the xtick labels as a list of Text instances' return cbook.silent_list('Text xticklabel', self.xaxis.get_minorticklabels()) def get_xticklabels(self, minor=False): 'Get the xtick labels as a list of Text instances' return cbook.silent_list('Text xticklabel', self.xaxis.get_ticklabels(minor=minor)) def set_xticklabels(self, labels, fontdict=None, minor=False, **kwargs): """ call signature:: set_xticklabels(labels, fontdict=None, minor=False, **kwargs) Set the xtick labels with list of strings *labels*. Return a list of axis text instances. *kwargs* set the :class:`~matplotlib.text.Text` properties. Valid properties are %(Text)s ACCEPTS: sequence of strings """ return self.xaxis.set_ticklabels(labels, fontdict, minor=minor, **kwargs) set_xticklabels.__doc__ = cbook.dedent( set_xticklabels.__doc__) % martist.kwdocd def invert_yaxis(self): "Invert the y-axis." left, right = self.get_ylim() self.set_ylim(right, left) def yaxis_inverted(self): 'Returns True if the y-axis is inverted.' left, right = self.get_ylim() return right < left def get_ybound(self): "Return y-axis numerical bounds in the form of lowerBound < upperBound" left, right = self.get_ylim() if left < right: return left, right else: return right, left def set_ybound(self, lower=None, upper=None): """Set the lower and upper numerical bounds of the y-axis. This method will honor axes inversion regardless of parameter order. """ if upper is None and iterable(lower): lower,upper = lower old_lower,old_upper = self.get_ybound() if lower is None: lower = old_lower if upper is None: upper = old_upper if self.yaxis_inverted(): if lower < upper: self.set_ylim(upper, lower) else: self.set_ylim(lower, upper) else: if lower < upper: self.set_ylim(lower, upper) else: self.set_ylim(upper, lower) def get_ylim(self): """ Get the y-axis range [*ymin*, *ymax*] """ return tuple(self.viewLim.intervaly) def set_ylim(self, ymin=None, ymax=None, emit=True, **kwargs): """ call signature:: set_ylim(self, *args, **kwargs): Set the limits for the yaxis; v = [ymin, ymax]:: set_ylim((valmin, valmax)) set_ylim(valmin, valmax) set_ylim(ymin=1) # ymax unchanged set_ylim(ymax=1) # ymin unchanged Keyword arguments: *ymin*: scalar the min of the ylim *ymax*: scalar the max of the ylim *emit*: [ True | False ] notify observers of lim change Returns the current ylimits as a length 2 tuple ACCEPTS: len(2) sequence of floats """ if ymax is None and iterable(ymin): ymin,ymax = ymin if ymin is not None: ymin = self.convert_yunits(ymin) if ymax is not None: ymax = self.convert_yunits(ymax) old_ymin,old_ymax = self.get_ylim() if ymin is None: ymin = old_ymin if ymax is None: ymax = old_ymax ymin, ymax = mtransforms.nonsingular(ymin, ymax, increasing=False) ymin, ymax = self.yaxis.limit_range_for_scale(ymin, ymax) self.viewLim.intervaly = (ymin, ymax) if emit: self.callbacks.process('ylim_changed', self) # Call all of the other y-axes that are shared with this one for other in self._shared_y_axes.get_siblings(self): if other is not self: other.set_ylim(self.viewLim.intervaly, emit=False) if (other.figure != self.figure and other.figure.canvas is not None): other.figure.canvas.draw_idle() return ymin, ymax def get_yscale(self): 'return the xaxis scale string: %s' % ( ", ".join(mscale.get_scale_names())) return self.yaxis.get_scale() def set_yscale(self, value, **kwargs): """ call signature:: set_yscale(value) Set the scaling of the y-axis: %(scale)s ACCEPTS: [%(scale)s] Different kwargs are accepted, depending on the scale: %(scale_docs)s """ self.yaxis.set_scale(value, **kwargs) self.autoscale_view() self._update_transScale() set_yscale.__doc__ = cbook.dedent(set_yscale.__doc__) % { 'scale': ' | '.join([repr(x) for x in mscale.get_scale_names()]), 'scale_docs': mscale.get_scale_docs().strip()} def get_yticks(self, minor=False): 'Return the y ticks as a list of locations' return self.yaxis.get_ticklocs(minor=minor) def set_yticks(self, ticks, minor=False): """ Set the y ticks with list of *ticks* ACCEPTS: sequence of floats Keyword arguments: *minor*: [ False | True ] Sets the minor ticks if True """ return self.yaxis.set_ticks(ticks, minor=minor) def get_ymajorticklabels(self): 'Get the xtick labels as a list of Text instances' return cbook.silent_list('Text yticklabel', self.yaxis.get_majorticklabels()) def get_yminorticklabels(self): 'Get the xtick labels as a list of Text instances' return cbook.silent_list('Text yticklabel', self.yaxis.get_minorticklabels()) def get_yticklabels(self, minor=False): 'Get the xtick labels as a list of Text instances' return cbook.silent_list('Text yticklabel', self.yaxis.get_ticklabels(minor=minor)) def set_yticklabels(self, labels, fontdict=None, minor=False, **kwargs): """ call signature:: set_yticklabels(labels, fontdict=None, minor=False, **kwargs) Set the ytick labels with list of strings *labels*. Return a list of :class:`~matplotlib.text.Text` instances. *kwargs* set :class:`~matplotlib.text.Text` properties for the labels. Valid properties are %(Text)s ACCEPTS: sequence of strings """ return self.yaxis.set_ticklabels(labels, fontdict, minor=minor, **kwargs) set_yticklabels.__doc__ = cbook.dedent( set_yticklabels.__doc__) % martist.kwdocd def xaxis_date(self, tz=None): """Sets up x-axis ticks and labels that treat the x data as dates. *tz* is the time zone to use in labeling dates. Defaults to rc value. """ xmin, xmax = self.dataLim.intervalx if xmin==0.: # no data has been added - let's set the default datalim. # We should probably use a better proxy for the datalim # have been updated than the ignore setting dmax = today = datetime.date.today() dmin = today-datetime.timedelta(days=10) self._process_unit_info(xdata=(dmin, dmax)) dmin, dmax = self.convert_xunits([dmin, dmax]) self.viewLim.intervalx = dmin, dmax self.dataLim.intervalx = dmin, dmax locator = self.xaxis.get_major_locator() if not isinstance(locator, mdates.DateLocator): locator = mdates.AutoDateLocator(tz) self.xaxis.set_major_locator(locator) # the autolocator uses the viewlim to pick the right date # locator, but it may not have correct viewlim before an # autoscale. If the viewlim is still zero..1, set it to the # datalim and the autoscaler will update it on request if self.viewLim.intervalx[0]==0.: self.viewLim.intervalx = tuple(self.dataLim.intervalx) locator.refresh() formatter = self.xaxis.get_major_formatter() if not isinstance(formatter, mdates.DateFormatter): formatter = mdates.AutoDateFormatter(locator, tz) self.xaxis.set_major_formatter(formatter) def yaxis_date(self, tz=None): """Sets up y-axis ticks and labels that treat the y data as dates. *tz* is the time zone to use in labeling dates. Defaults to rc value. """ ymin, ymax = self.dataLim.intervaly if ymin==0.: # no data has been added - let's set the default datalim. # We should probably use a better proxy for the datalim # have been updated than the ignore setting dmax = today = datetime.date.today() dmin = today-datetime.timedelta(days=10) self._process_unit_info(ydata=(dmin, dmax)) dmin, dmax = self.convert_yunits([dmin, dmax]) self.viewLim.intervaly = dmin, dmax self.dataLim.intervaly = dmin, dmax locator = self.yaxis.get_major_locator() if not isinstance(locator, mdates.DateLocator): locator = mdates.AutoDateLocator(tz) self.yaxis.set_major_locator(locator) # the autolocator uses the viewlim to pick the right date # locator, but it may not have correct viewlim before an # autoscale. If the viewlim is still zero..1, set it to the # datalim and the autoscaler will update it on request if self.viewLim.intervaly[0]==0.: self.viewLim.intervaly = tuple(self.dataLim.intervaly) locator.refresh() formatter = self.xaxis.get_major_formatter() if not isinstance(formatter, mdates.DateFormatter): formatter = mdates.AutoDateFormatter(locator, tz) self.yaxis.set_major_formatter(formatter) def format_xdata(self, x): """ Return *x* string formatted. This function will use the attribute self.fmt_xdata if it is callable, else will fall back on the xaxis major formatter """ try: return self.fmt_xdata(x) except TypeError: func = self.xaxis.get_major_formatter().format_data_short val = func(x) return val def format_ydata(self, y): """ Return y string formatted. This function will use the :attr:`fmt_ydata` attribute if it is callable, else will fall back on the yaxis major formatter """ try: return self.fmt_ydata(y) except TypeError: func = self.yaxis.get_major_formatter().format_data_short val = func(y) return val def format_coord(self, x, y): 'return a format string formatting the *x*, *y* coord' if x is None: x = '???' if y is None: y = '???' xs = self.format_xdata(x) ys = self.format_ydata(y) return 'x=%s, y=%s'%(xs,ys) #### Interactive manipulation def can_zoom(self): """ Return *True* if this axes support the zoom box """ return True def get_navigate(self): """ Get whether the axes responds to navigation commands """ return self._navigate def set_navigate(self, b): """ Set whether the axes responds to navigation toolbar commands ACCEPTS: [ True | False ] """ self._navigate = b def get_navigate_mode(self): """ Get the navigation toolbar button status: 'PAN', 'ZOOM', or None """ return self._navigate_mode def set_navigate_mode(self, b): """ Set the navigation toolbar button status; .. warning:: this is not a user-API function. """ self._navigate_mode = b def start_pan(self, x, y, button): """ Called when a pan operation has started. *x*, *y* are the mouse coordinates in display coords. button is the mouse button number: * 1: LEFT * 2: MIDDLE * 3: RIGHT .. note:: Intended to be overridden by new projection types. """ self._pan_start = cbook.Bunch( lim = self.viewLim.frozen(), trans = self.transData.frozen(), trans_inverse = self.transData.inverted().frozen(), bbox = self.bbox.frozen(), x = x, y = y ) def end_pan(self): """ Called when a pan operation completes (when the mouse button is up.) .. note:: Intended to be overridden by new projection types. """ del self._pan_start def drag_pan(self, button, key, x, y): """ Called when the mouse moves during a pan operation. *button* is the mouse button number: * 1: LEFT * 2: MIDDLE * 3: RIGHT *key* is a "shift" key *x*, *y* are the mouse coordinates in display coords. .. note:: Intended to be overridden by new projection types. """ def format_deltas(key, dx, dy): if key=='control': if(abs(dx)>abs(dy)): dy = dx else: dx = dy elif key=='x': dy = 0 elif key=='y': dx = 0 elif key=='shift': if 2*abs(dx) < abs(dy): dx=0 elif 2*abs(dy) < abs(dx): dy=0 elif(abs(dx)>abs(dy)): dy=dy/abs(dy)*abs(dx) else: dx=dx/abs(dx)*abs(dy) return (dx,dy) p = self._pan_start dx = x - p.x dy = y - p.y if dx == 0 and dy == 0: return if button == 1: dx, dy = format_deltas(key, dx, dy) result = p.bbox.translated(-dx, -dy) \ .transformed(p.trans_inverse) elif button == 3: try: dx = -dx / float(self.bbox.width) dy = -dy / float(self.bbox.height) dx, dy = format_deltas(key, dx, dy) if self.get_aspect() != 'auto': dx = 0.5 * (dx + dy) dy = dx alpha = np.power(10.0, (dx, dy)) start = p.trans_inverse.transform_point((p.x, p.y)) lim_points = p.lim.get_points() result = start + alpha * (lim_points - start) result = mtransforms.Bbox(result) except OverflowError: warnings.warn('Overflow while panning') return self.set_xlim(*result.intervalx) self.set_ylim(*result.intervaly) def get_cursor_props(self): """ return the cursor propertiess as a (*linewidth*, *color*) tuple, where *linewidth* is a float and *color* is an RGBA tuple """ return self._cursorProps def set_cursor_props(self, *args): """ Set the cursor property as:: ax.set_cursor_props(linewidth, color) or:: ax.set_cursor_props((linewidth, color)) ACCEPTS: a (*float*, *color*) tuple """ if len(args)==1: lw, c = args[0] elif len(args)==2: lw, c = args else: raise ValueError('args must be a (linewidth, color) tuple') c =mcolors.colorConverter.to_rgba(c) self._cursorProps = lw, c def connect(self, s, func): """ Register observers to be notified when certain events occur. Register with callback functions with the following signatures. The function has the following signature:: func(ax) # where ax is the instance making the callback. The following events can be connected to: 'xlim_changed','ylim_changed' The connection id is is returned - you can use this with disconnect to disconnect from the axes event """ raise DeprecationWarning('use the callbacks CallbackRegistry instance ' 'instead') def disconnect(self, cid): 'disconnect from the Axes event.' raise DeprecationWarning('use the callbacks CallbackRegistry instance ' 'instead') def get_children(self): 'return a list of child artists' children = [] children.append(self.xaxis) children.append(self.yaxis) children.extend(self.lines) children.extend(self.patches) children.extend(self.texts) children.extend(self.tables) children.extend(self.artists) children.extend(self.images) if self.legend_ is not None: children.append(self.legend_) children.extend(self.collections) children.append(self.title) children.append(self.patch) children.append(self.frame) return children def contains(self,mouseevent): """Test whether the mouse event occured in the axes. Returns T/F, {} """ if callable(self._contains): return self._contains(self,mouseevent) return self.patch.contains(mouseevent) def pick(self, *args): """ call signature:: pick(mouseevent) each child artist will fire a pick event if mouseevent is over the artist and the artist has picker set """ if len(args)>1: raise DeprecationWarning('New pick API implemented -- ' 'see API_CHANGES in the src distribution') martist.Artist.pick(self,args[0]) def __pick(self, x, y, trans=None, among=None): """ Return the artist under point that is closest to the *x*, *y*. If *trans* is *None*, *x*, and *y* are in window coords, (0,0 = lower left). Otherwise, *trans* is a :class:`~matplotlib.transforms.Transform` that specifies the coordinate system of *x*, *y*. The selection of artists from amongst which the pick function finds an artist can be narrowed using the optional keyword argument *among*. If provided, this should be either a sequence of permitted artists or a function taking an artist as its argument and returning a true value if and only if that artist can be selected. Note this algorithm calculates distance to the vertices of the polygon, so if you want to pick a patch, click on the edge! """ # MGDTODO: Needs updating if trans is not None: xywin = trans.transform_point((x,y)) else: xywin = x,y def dist_points(p1, p2): 'return the distance between two points' x1, y1 = p1 x2, y2 = p2 return math.sqrt((x1-x2)**2+(y1-y2)**2) def dist_x_y(p1, x, y): '*x* and *y* are arrays; return the distance to the closest point' x1, y1 = p1 return min(np.sqrt((x-x1)**2+(y-y1)**2)) def dist(a): if isinstance(a, Text): bbox = a.get_window_extent() l,b,w,h = bbox.bounds verts = (l,b), (l,b+h), (l+w,b+h), (l+w, b) xt, yt = zip(*verts) elif isinstance(a, Patch): path = a.get_path() tverts = a.get_transform().transform_path(path) xt, yt = zip(*tverts) elif isinstance(a, mlines.Line2D): xdata = a.get_xdata(orig=False) ydata = a.get_ydata(orig=False) xt, yt = a.get_transform().numerix_x_y(xdata, ydata) return dist_x_y(xywin, np.asarray(xt), np.asarray(yt)) artists = self.lines + self.patches + self.texts if callable(among): artists = filter(test, artists) elif iterable(among): amongd = dict([(k,1) for k in among]) artists = [a for a in artists if a in amongd] elif among is None: pass else: raise ValueError('among must be callable or iterable') if not len(artists): return None ds = [ (dist(a),a) for a in artists] ds.sort() return ds[0][1] #### Labelling def get_title(self): """ Get the title text string. """ return self.title.get_text() def set_title(self, label, fontdict=None, **kwargs): """ call signature:: set_title(label, fontdict=None, **kwargs): Set the title for the axes. kwargs are Text properties: %(Text)s ACCEPTS: str .. seealso:: :meth:`text`: for information on how override and the optional args work """ default = { 'fontsize':rcParams['axes.titlesize'], 'verticalalignment' : 'bottom', 'horizontalalignment' : 'center' } self.title.set_text(label) self.title.update(default) if fontdict is not None: self.title.update(fontdict) self.title.update(kwargs) return self.title set_title.__doc__ = cbook.dedent(set_title.__doc__) % martist.kwdocd def get_xlabel(self): """ Get the xlabel text string. """ label = self.xaxis.get_label() return label.get_text() def set_xlabel(self, xlabel, fontdict=None, **kwargs): """ call signature:: set_xlabel(xlabel, fontdict=None, **kwargs) Set the label for the xaxis. Valid kwargs are Text properties: %(Text)s ACCEPTS: str .. seealso:: :meth:`text`: for information on how override and the optional args work """ label = self.xaxis.get_label() label.set_text(xlabel) if fontdict is not None: label.update(fontdict) label.update(kwargs) return label set_xlabel.__doc__ = cbook.dedent(set_xlabel.__doc__) % martist.kwdocd def get_ylabel(self): """ Get the ylabel text string. """ label = self.yaxis.get_label() return label.get_text() def set_ylabel(self, ylabel, fontdict=None, **kwargs): """ call signature:: set_ylabel(ylabel, fontdict=None, **kwargs) Set the label for the yaxis Valid kwargs are Text properties: %(Text)s ACCEPTS: str .. seealso:: :meth:`text`: for information on how override and the optional args work """ label = self.yaxis.get_label() label.set_text(ylabel) if fontdict is not None: label.update(fontdict) label.update(kwargs) return label set_ylabel.__doc__ = cbook.dedent(set_ylabel.__doc__) % martist.kwdocd def text(self, x, y, s, fontdict=None, withdash=False, **kwargs): """ call signature:: text(x, y, s, fontdict=None, **kwargs) Add text in string *s* to axis at location *x*, *y*, data coordinates. Keyword arguments: *fontdict*: A dictionary to override the default text properties. If *fontdict* is *None*, the defaults are determined by your rc parameters. *withdash*: [ False | True ] Creates a :class:`~matplotlib.text.TextWithDash` instance instead of a :class:`~matplotlib.text.Text` instance. Individual keyword arguments can be used to override any given parameter:: text(x, y, s, fontsize=12) The default transform specifies that text is in data coords, alternatively, you can specify text in axis coords (0,0 is lower-left and 1,1 is upper-right). The example below places text in the center of the axes:: text(0.5, 0.5,'matplotlib', horizontalalignment='center', verticalalignment='center', transform = ax.transAxes) You can put a rectangular box around the text instance (eg. to set a background color) by using the keyword *bbox*. *bbox* is a dictionary of :class:`matplotlib.patches.Rectangle` properties. For example:: text(x, y, s, bbox=dict(facecolor='red', alpha=0.5)) Valid kwargs are :class:`matplotlib.text.Text` properties: %(Text)s """ default = { 'verticalalignment' : 'bottom', 'horizontalalignment' : 'left', #'verticalalignment' : 'top', 'transform' : self.transData, } # At some point if we feel confident that TextWithDash # is robust as a drop-in replacement for Text and that # the performance impact of the heavier-weight class # isn't too significant, it may make sense to eliminate # the withdash kwarg and simply delegate whether there's # a dash to TextWithDash and dashlength. if withdash: t = mtext.TextWithDash( x=x, y=y, text=s, ) else: t = mtext.Text( x=x, y=y, text=s, ) self._set_artist_props(t) t.update(default) if fontdict is not None: t.update(fontdict) t.update(kwargs) self.texts.append(t) t._remove_method = lambda h: self.texts.remove(h) #if t.get_clip_on(): t.set_clip_box(self.bbox) if 'clip_on' in kwargs: t.set_clip_box(self.bbox) return t text.__doc__ = cbook.dedent(text.__doc__) % martist.kwdocd def annotate(self, *args, **kwargs): """ call signature:: annotate(s, xy, xytext=None, xycoords='data', textcoords='data', arrowprops=None, **kwargs) Keyword arguments: %(Annotation)s .. plot:: mpl_examples/pylab_examples/annotation_demo2.py """ a = mtext.Annotation(*args, **kwargs) a.set_transform(mtransforms.IdentityTransform()) self._set_artist_props(a) if kwargs.has_key('clip_on'): a.set_clip_path(self.patch) self.texts.append(a) return a annotate.__doc__ = cbook.dedent(annotate.__doc__) % martist.kwdocd #### Lines and spans def axhline(self, y=0, xmin=0, xmax=1, **kwargs): """ call signature:: axhline(y=0, xmin=0, xmax=1, **kwargs) Axis Horizontal Line Draw a horizontal line at *y* from *xmin* to *xmax*. With the default values of *xmin* = 0 and *xmax* = 1, this line will always span the horizontal extent of the axes, regardless of the xlim settings, even if you change them, eg. with the :meth:`set_xlim` command. That is, the horizontal extent is in axes coords: 0=left, 0.5=middle, 1.0=right but the *y* location is in data coordinates. Return value is the :class:`~matplotlib.lines.Line2D` instance. kwargs are the same as kwargs to plot, and can be used to control the line properties. Eg., * draw a thick red hline at *y* = 0 that spans the xrange >>> axhline(linewidth=4, color='r') * draw a default hline at *y* = 1 that spans the xrange >>> axhline(y=1) * draw a default hline at *y* = .5 that spans the the middle half of the xrange >>> axhline(y=.5, xmin=0.25, xmax=0.75) Valid kwargs are :class:`~matplotlib.lines.Line2D` properties: %(Line2D)s .. seealso:: :meth:`axhspan`: for example plot and source code """ ymin, ymax = self.get_ybound() # We need to strip away the units for comparison with # non-unitized bounds yy = self.convert_yunits( y ) scaley = (yy<ymin) or (yy>ymax) trans = mtransforms.blended_transform_factory( self.transAxes, self.transData) l = mlines.Line2D([xmin,xmax], [y,y], transform=trans, **kwargs) l.x_isdata = False self.add_line(l) self.autoscale_view(scalex=False, scaley=scaley) return l axhline.__doc__ = cbook.dedent(axhline.__doc__) % martist.kwdocd def axvline(self, x=0, ymin=0, ymax=1, **kwargs): """ call signature:: axvline(x=0, ymin=0, ymax=1, **kwargs) Axis Vertical Line Draw a vertical line at *x* from *ymin* to *ymax*. With the default values of *ymin* = 0 and *ymax* = 1, this line will always span the vertical extent of the axes, regardless of the xlim settings, even if you change them, eg. with the :meth:`set_xlim` command. That is, the vertical extent is in axes coords: 0=bottom, 0.5=middle, 1.0=top but the *x* location is in data coordinates. Return value is the :class:`~matplotlib.lines.Line2D` instance. kwargs are the same as kwargs to plot, and can be used to control the line properties. Eg., * draw a thick red vline at *x* = 0 that spans the yrange >>> axvline(linewidth=4, color='r') * draw a default vline at *x* = 1 that spans the yrange >>> axvline(x=1) * draw a default vline at *x* = .5 that spans the the middle half of the yrange >>> axvline(x=.5, ymin=0.25, ymax=0.75) Valid kwargs are :class:`~matplotlib.lines.Line2D` properties: %(Line2D)s .. seealso:: :meth:`axhspan`: for example plot and source code """ xmin, xmax = self.get_xbound() # We need to strip away the units for comparison with # non-unitized bounds xx = self.convert_xunits( x ) scalex = (xx<xmin) or (xx>xmax) trans = mtransforms.blended_transform_factory( self.transData, self.transAxes) l = mlines.Line2D([x,x], [ymin,ymax] , transform=trans, **kwargs) l.y_isdata = False self.add_line(l) self.autoscale_view(scalex=scalex, scaley=False) return l axvline.__doc__ = cbook.dedent(axvline.__doc__) % martist.kwdocd def axhspan(self, ymin, ymax, xmin=0, xmax=1, **kwargs): """ call signature:: axhspan(ymin, ymax, xmin=0, xmax=1, **kwargs) Axis Horizontal Span. *y* coords are in data units and *x* coords are in axes (relative 0-1) units. Draw a horizontal span (rectangle) from *ymin* to *ymax*. With the default values of *xmin* = 0 and *xmax* = 1, this always spans the xrange, regardless of the xlim settings, even if you change them, eg. with the :meth:`set_xlim` command. That is, the horizontal extent is in axes coords: 0=left, 0.5=middle, 1.0=right but the *y* location is in data coordinates. Return value is a :class:`matplotlib.patches.Polygon` instance. Examples: * draw a gray rectangle from *y* = 0.25-0.75 that spans the horizontal extent of the axes >>> axhspan(0.25, 0.75, facecolor='0.5', alpha=0.5) Valid kwargs are :class:`~matplotlib.patches.Polygon` properties: %(Polygon)s **Example:** .. plot:: mpl_examples/pylab_examples/axhspan_demo.py """ trans = mtransforms.blended_transform_factory( self.transAxes, self.transData) # process the unit information self._process_unit_info( [xmin, xmax], [ymin, ymax], kwargs=kwargs ) # first we need to strip away the units xmin, xmax = self.convert_xunits( [xmin, xmax] ) ymin, ymax = self.convert_yunits( [ymin, ymax] ) verts = (xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin) p = mpatches.Polygon(verts, **kwargs) p.set_transform(trans) p.x_isdata = False self.add_patch(p) return p axhspan.__doc__ = cbook.dedent(axhspan.__doc__) % martist.kwdocd def axvspan(self, xmin, xmax, ymin=0, ymax=1, **kwargs): """ call signature:: axvspan(xmin, xmax, ymin=0, ymax=1, **kwargs) Axis Vertical Span. *x* coords are in data units and *y* coords are in axes (relative 0-1) units. Draw a vertical span (rectangle) from *xmin* to *xmax*. With the default values of *ymin* = 0 and *ymax* = 1, this always spans the yrange, regardless of the ylim settings, even if you change them, eg. with the :meth:`set_ylim` command. That is, the vertical extent is in axes coords: 0=bottom, 0.5=middle, 1.0=top but the *y* location is in data coordinates. Return value is the :class:`matplotlib.patches.Polygon` instance. Examples: * draw a vertical green translucent rectangle from x=1.25 to 1.55 that spans the yrange of the axes >>> axvspan(1.25, 1.55, facecolor='g', alpha=0.5) Valid kwargs are :class:`~matplotlib.patches.Polygon` properties: %(Polygon)s .. seealso:: :meth:`axhspan`: for example plot and source code """ trans = mtransforms.blended_transform_factory( self.transData, self.transAxes) # process the unit information self._process_unit_info( [xmin, xmax], [ymin, ymax], kwargs=kwargs ) # first we need to strip away the units xmin, xmax = self.convert_xunits( [xmin, xmax] ) ymin, ymax = self.convert_yunits( [ymin, ymax] ) verts = [(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin)] p = mpatches.Polygon(verts, **kwargs) p.set_transform(trans) p.y_isdata = False self.add_patch(p) return p axvspan.__doc__ = cbook.dedent(axvspan.__doc__) % martist.kwdocd def hlines(self, y, xmin, xmax, colors='k', linestyles='solid', label='', **kwargs): """ call signature:: hlines(y, xmin, xmax, colors='k', linestyles='solid', **kwargs) Plot horizontal lines at each *y* from *xmin* to *xmax*. Returns the :class:`~matplotlib.collections.LineCollection` that was added. Required arguments: *y*: a 1-D numpy array or iterable. *xmin* and *xmax*: can be scalars or ``len(x)`` numpy arrays. If they are scalars, then the respective values are constant, else the widths of the lines are determined by *xmin* and *xmax*. Optional keyword arguments: *colors*: a line collections color argument, either a single color or a ``len(y)`` list of colors *linestyles*: [ 'solid' | 'dashed' | 'dashdot' | 'dotted' ] **Example:** .. plot:: mpl_examples/pylab_examples/hline_demo.py """ if kwargs.get('fmt') is not None: raise DeprecationWarning('hlines now uses a ' 'collections.LineCollection and not a ' 'list of Line2D to draw; see API_CHANGES') # We do the conversion first since not all unitized data is uniform y = self.convert_yunits( y ) xmin = self.convert_xunits( xmin ) xmax = self.convert_xunits( xmax ) if not iterable(y): y = [y] if not iterable(xmin): xmin = [xmin] if not iterable(xmax): xmax = [xmax] y = np.asarray(y) xmin = np.asarray(xmin) xmax = np.asarray(xmax) if len(xmin)==1: xmin = np.resize( xmin, y.shape ) if len(xmax)==1: xmax = np.resize( xmax, y.shape ) if len(xmin)!=len(y): raise ValueError, 'xmin and y are unequal sized sequences' if len(xmax)!=len(y): raise ValueError, 'xmax and y are unequal sized sequences' verts = [ ((thisxmin, thisy), (thisxmax, thisy)) for thisxmin, thisxmax, thisy in zip(xmin, xmax, y)] coll = mcoll.LineCollection(verts, colors=colors, linestyles=linestyles, label=label) self.add_collection(coll) coll.update(kwargs) minx = min(xmin.min(), xmax.min()) maxx = max(xmin.max(), xmax.max()) miny = y.min() maxy = y.max() corners = (minx, miny), (maxx, maxy) self.update_datalim(corners) self.autoscale_view() return coll hlines.__doc__ = cbook.dedent(hlines.__doc__) def vlines(self, x, ymin, ymax, colors='k', linestyles='solid', label='', **kwargs): """ call signature:: vlines(x, ymin, ymax, color='k', linestyles='solid') Plot vertical lines at each *x* from *ymin* to *ymax*. *ymin* or *ymax* can be scalars or len(*x*) numpy arrays. If they are scalars, then the respective values are constant, else the heights of the lines are determined by *ymin* and *ymax*. *colors* a line collections color args, either a single color or a len(*x*) list of colors *linestyles* one of [ 'solid' | 'dashed' | 'dashdot' | 'dotted' ] Returns the :class:`matplotlib.collections.LineCollection` that was added. kwargs are :class:`~matplotlib.collections.LineCollection` properties: %(LineCollection)s """ if kwargs.get('fmt') is not None: raise DeprecationWarning('vlines now uses a ' 'collections.LineCollection and not a ' 'list of Line2D to draw; see API_CHANGES') self._process_unit_info(xdata=x, ydata=ymin, kwargs=kwargs) # We do the conversion first since not all unitized data is uniform x = self.convert_xunits( x ) ymin = self.convert_yunits( ymin ) ymax = self.convert_yunits( ymax ) if not iterable(x): x = [x] if not iterable(ymin): ymin = [ymin] if not iterable(ymax): ymax = [ymax] x = np.asarray(x) ymin = np.asarray(ymin) ymax = np.asarray(ymax) if len(ymin)==1: ymin = np.resize( ymin, x.shape ) if len(ymax)==1: ymax = np.resize( ymax, x.shape ) if len(ymin)!=len(x): raise ValueError, 'ymin and x are unequal sized sequences' if len(ymax)!=len(x): raise ValueError, 'ymax and x are unequal sized sequences' Y = np.array([ymin, ymax]).T verts = [ ((thisx, thisymin), (thisx, thisymax)) for thisx, (thisymin, thisymax) in zip(x,Y)] #print 'creating line collection' coll = mcoll.LineCollection(verts, colors=colors, linestyles=linestyles, label=label) self.add_collection(coll) coll.update(kwargs) minx = min( x ) maxx = max( x ) miny = min( min(ymin), min(ymax) ) maxy = max( max(ymin), max(ymax) ) corners = (minx, miny), (maxx, maxy) self.update_datalim(corners) self.autoscale_view() return coll vlines.__doc__ = cbook.dedent(vlines.__doc__) % martist.kwdocd #### Basic plotting def plot(self, *args, **kwargs): """ Plot lines and/or markers to the :class:`~matplotlib.axes.Axes`. *args* is a variable length argument, allowing for multiple *x*, *y* pairs with an optional format string. For example, each of the following is legal:: plot(x, y) # plot x and y using default line style and color plot(x, y, 'bo') # plot x and y using blue circle markers plot(y) # plot y using x as index array 0..N-1 plot(y, 'r+') # ditto, but with red plusses If *x* and/or *y* is 2-dimensional, then the corresponding columns will be plotted. An arbitrary number of *x*, *y*, *fmt* groups can be specified, as in:: a.plot(x1, y1, 'g^', x2, y2, 'g-') Return value is a list of lines that were added. The following format string characters are accepted to control the line style or marker: ================ =============================== character description ================ =============================== '-' solid line style '--' dashed line style '-.' dash-dot line style ':' dotted line style '.' point marker ',' pixel marker 'o' circle marker 'v' triangle_down marker '^' triangle_up marker '<' triangle_left marker '>' triangle_right marker '1' tri_down marker '2' tri_up marker '3' tri_left marker '4' tri_right marker 's' square marker 'p' pentagon marker '*' star marker 'h' hexagon1 marker 'H' hexagon2 marker '+' plus marker 'x' x marker 'D' diamond marker 'd' thin_diamond marker '|' vline marker '_' hline marker ================ =============================== The following color abbreviations are supported: ========== ======== character color ========== ======== 'b' blue 'g' green 'r' red 'c' cyan 'm' magenta 'y' yellow 'k' black 'w' white ========== ======== In addition, you can specify colors in many weird and wonderful ways, including full names (``'green'``), hex strings (``'#008000'``), RGB or RGBA tuples (``(0,1,0,1)``) or grayscale intensities as a string (``'0.8'``). Of these, the string specifications can be used in place of a ``fmt`` group, but the tuple forms can be used only as ``kwargs``. Line styles and colors are combined in a single format string, as in ``'bo'`` for blue circles. The *kwargs* can be used to set line properties (any property that has a ``set_*`` method). You can use this to set a line label (for auto legends), linewidth, anitialising, marker face color, etc. Here is an example:: plot([1,2,3], [1,2,3], 'go-', label='line 1', linewidth=2) plot([1,2,3], [1,4,9], 'rs', label='line 2') axis([0, 4, 0, 10]) legend() If you make multiple lines with one plot command, the kwargs apply to all those lines, e.g.:: plot(x1, y1, x2, y2, antialised=False) Neither line will be antialiased. You do not need to use format strings, which are just abbreviations. All of the line properties can be controlled by keyword arguments. For example, you can set the color, marker, linestyle, and markercolor with:: plot(x, y, color='green', linestyle='dashed', marker='o', markerfacecolor='blue', markersize=12). See :class:`~matplotlib.lines.Line2D` for details. The kwargs are :class:`~matplotlib.lines.Line2D` properties: %(Line2D)s kwargs *scalex* and *scaley*, if defined, are passed on to :meth:`~matplotlib.axes.Axes.autoscale_view` to determine whether the *x* and *y* axes are autoscaled; the default is *True*. """ scalex = kwargs.pop( 'scalex', True) scaley = kwargs.pop( 'scaley', True) if not self._hold: self.cla() lines = [] for line in self._get_lines(*args, **kwargs): self.add_line(line) lines.append(line) self.autoscale_view(scalex=scalex, scaley=scaley) return lines plot.__doc__ = cbook.dedent(plot.__doc__) % martist.kwdocd def plot_date(self, x, y, fmt='bo', tz=None, xdate=True, ydate=False, **kwargs): """ call signature:: plot_date(x, y, fmt='bo', tz=None, xdate=True, ydate=False, **kwargs) Similar to the :func:`~matplotlib.pyplot.plot` command, except the *x* or *y* (or both) data is considered to be dates, and the axis is labeled accordingly. *x* and/or *y* can be a sequence of dates represented as float days since 0001-01-01 UTC. Keyword arguments: *fmt*: string The plot format string. *tz*: [ None | timezone string ] The time zone to use in labeling dates. If *None*, defaults to rc value. *xdate*: [ True | False ] If *True*, the *x*-axis will be labeled with dates. *ydate*: [ False | True ] If *True*, the *y*-axis will be labeled with dates. Note if you are using custom date tickers and formatters, it may be necessary to set the formatters/locators after the call to :meth:`plot_date` since :meth:`plot_date` will set the default tick locator to :class:`matplotlib.ticker.AutoDateLocator` (if the tick locator is not already set to a :class:`matplotlib.ticker.DateLocator` instance) and the default tick formatter to :class:`matplotlib.ticker.AutoDateFormatter` (if the tick formatter is not already set to a :class:`matplotlib.ticker.DateFormatter` instance). Valid kwargs are :class:`~matplotlib.lines.Line2D` properties: %(Line2D)s .. seealso:: :mod:`~matplotlib.dates`: for helper functions :func:`~matplotlib.dates.date2num`, :func:`~matplotlib.dates.num2date` and :func:`~matplotlib.dates.drange`: for help on creating the required floating point dates. """ if not self._hold: self.cla() ret = self.plot(x, y, fmt, **kwargs) if xdate: self.xaxis_date(tz) if ydate: self.yaxis_date(tz) self.autoscale_view() return ret plot_date.__doc__ = cbook.dedent(plot_date.__doc__) % martist.kwdocd def loglog(self, *args, **kwargs): """ call signature:: loglog(*args, **kwargs) Make a plot with log scaling on the *x* and *y* axis. :func:`~matplotlib.pyplot.loglog` supports all the keyword arguments of :func:`~matplotlib.pyplot.plot` and :meth:`matplotlib.axes.Axes.set_xscale` / :meth:`matplotlib.axes.Axes.set_yscale`. Notable keyword arguments: *basex*/*basey*: scalar > 1 base of the *x*/*y* logarithm *subsx*/*subsy*: [ None | sequence ] the location of the minor *x*/*y* ticks; *None* defaults to autosubs, which depend on the number of decades in the plot; see :meth:`matplotlib.axes.Axes.set_xscale` / :meth:`matplotlib.axes.Axes.set_yscale` for details The remaining valid kwargs are :class:`~matplotlib.lines.Line2D` properties: %(Line2D)s **Example:** .. plot:: mpl_examples/pylab_examples/log_demo.py """ if not self._hold: self.cla() dx = {'basex': kwargs.pop('basex', 10), 'subsx': kwargs.pop('subsx', None), } dy = {'basey': kwargs.pop('basey', 10), 'subsy': kwargs.pop('subsy', None), } self.set_xscale('log', **dx) self.set_yscale('log', **dy) b = self._hold self._hold = True # we've already processed the hold l = self.plot(*args, **kwargs) self._hold = b # restore the hold return l loglog.__doc__ = cbook.dedent(loglog.__doc__) % martist.kwdocd def semilogx(self, *args, **kwargs): """ call signature:: semilogx(*args, **kwargs) Make a plot with log scaling on the *x* axis. :func:`semilogx` supports all the keyword arguments of :func:`~matplotlib.pyplot.plot` and :meth:`matplotlib.axes.Axes.set_xscale`. Notable keyword arguments: *basex*: scalar > 1 base of the *x* logarithm *subsx*: [ None | sequence ] The location of the minor xticks; *None* defaults to autosubs, which depend on the number of decades in the plot; see :meth:`~matplotlib.axes.Axes.set_xscale` for details. The remaining valid kwargs are :class:`~matplotlib.lines.Line2D` properties: %(Line2D)s .. seealso:: :meth:`loglog`: For example code and figure """ if not self._hold: self.cla() d = {'basex': kwargs.pop( 'basex', 10), 'subsx': kwargs.pop( 'subsx', None), } self.set_xscale('log', **d) b = self._hold self._hold = True # we've already processed the hold l = self.plot(*args, **kwargs) self._hold = b # restore the hold return l semilogx.__doc__ = cbook.dedent(semilogx.__doc__) % martist.kwdocd def semilogy(self, *args, **kwargs): """ call signature:: semilogy(*args, **kwargs) Make a plot with log scaling on the *y* axis. :func:`semilogy` supports all the keyword arguments of :func:`~matplotlib.pylab.plot` and :meth:`matplotlib.axes.Axes.set_yscale`. Notable keyword arguments: *basey*: scalar > 1 Base of the *y* logarithm *subsy*: [ None | sequence ] The location of the minor yticks; *None* defaults to autosubs, which depend on the number of decades in the plot; see :meth:`~matplotlib.axes.Axes.set_yscale` for details. The remaining valid kwargs are :class:`~matplotlib.lines.Line2D` properties: %(Line2D)s .. seealso:: :meth:`loglog`: For example code and figure """ if not self._hold: self.cla() d = {'basey': kwargs.pop('basey', 10), 'subsy': kwargs.pop('subsy', None), } self.set_yscale('log', **d) b = self._hold self._hold = True # we've already processed the hold l = self.plot(*args, **kwargs) self._hold = b # restore the hold return l semilogy.__doc__ = cbook.dedent(semilogy.__doc__) % martist.kwdocd def acorr(self, x, **kwargs): """ call signature:: acorr(x, normed=False, detrend=mlab.detrend_none, usevlines=False, maxlags=None, **kwargs) Plot the autocorrelation of *x*. If *normed* = *True*, normalize the data by the autocorrelation at 0-th lag. *x* is detrended by the *detrend* callable (default no normalization). Data are plotted as ``plot(lags, c, **kwargs)`` Return value is a tuple (*lags*, *c*, *line*) where: - *lags* are a length 2*maxlags+1 lag vector - *c* is the 2*maxlags+1 auto correlation vector - *line* is a :class:`~matplotlib.lines.Line2D` instance returned by :meth:`plot` The default *linestyle* is None and the default *marker* is ``'o'``, though these can be overridden with keyword args. The cross correlation is performed with :func:`numpy.correlate` with *mode* = 2. If *usevlines* is *True*, :meth:`~matplotlib.axes.Axes.vlines` rather than :meth:`~matplotlib.axes.Axes.plot` is used to draw vertical lines from the origin to the acorr. Otherwise, the plot style is determined by the kwargs, which are :class:`~matplotlib.lines.Line2D` properties. *maxlags* is a positive integer detailing the number of lags to show. The default value of *None* will return all :math:`2 \mathrm{len}(x) - 1` lags. The return value is a tuple (*lags*, *c*, *linecol*, *b*) where - *linecol* is the :class:`~matplotlib.collections.LineCollection` - *b* is the *x*-axis. .. seealso:: :meth:`~matplotlib.axes.Axes.plot` or :meth:`~matplotlib.axes.Axes.vlines`: For documentation on valid kwargs. **Example:** :func:`~matplotlib.pyplot.xcorr` above, and :func:`~matplotlib.pyplot.acorr` below. **Example:** .. plot:: mpl_examples/pylab_examples/xcorr_demo.py """ return self.xcorr(x, x, **kwargs) acorr.__doc__ = cbook.dedent(acorr.__doc__) % martist.kwdocd def xcorr(self, x, y, normed=False, detrend=mlab.detrend_none, usevlines=False, maxlags=None, **kwargs): """ call signature:: xcorr(x, y, normed=False, detrend=mlab.detrend_none, usevlines=False, **kwargs): Plot the cross correlation between *x* and *y*. If *normed* = *True*, normalize the data by the cross correlation at 0-th lag. *x* and y are detrended by the *detrend* callable (default no normalization). *x* and *y* must be equal length. Data are plotted as ``plot(lags, c, **kwargs)`` Return value is a tuple (*lags*, *c*, *line*) where: - *lags* are a length ``2*maxlags+1`` lag vector - *c* is the ``2*maxlags+1`` auto correlation vector - *line* is a :class:`~matplotlib.lines.Line2D` instance returned by :func:`~matplotlib.pyplot.plot`. The default *linestyle* is *None* and the default *marker* is 'o', though these can be overridden with keyword args. The cross correlation is performed with :func:`numpy.correlate` with *mode* = 2. If *usevlines* is *True*: :func:`~matplotlib.pyplot.vlines` rather than :func:`~matplotlib.pyplot.plot` is used to draw vertical lines from the origin to the xcorr. Otherwise the plotstyle is determined by the kwargs, which are :class:`~matplotlib.lines.Line2D` properties. The return value is a tuple (*lags*, *c*, *linecol*, *b*) where *linecol* is the :class:`matplotlib.collections.LineCollection` instance and *b* is the *x*-axis. *maxlags* is a positive integer detailing the number of lags to show. The default value of *None* will return all ``(2*len(x)-1)`` lags. **Example:** :func:`~matplotlib.pyplot.xcorr` above, and :func:`~matplotlib.pyplot.acorr` below. **Example:** .. plot:: mpl_examples/pylab_examples/xcorr_demo.py """ Nx = len(x) if Nx!=len(y): raise ValueError('x and y must be equal length') x = detrend(np.asarray(x)) y = detrend(np.asarray(y)) c = np.correlate(x, y, mode=2) if normed: c/= np.sqrt(np.dot(x,x) * np.dot(y,y)) if maxlags is None: maxlags = Nx - 1 if maxlags >= Nx or maxlags < 1: raise ValueError('maglags must be None or strictly ' 'positive < %d'%Nx) lags = np.arange(-maxlags,maxlags+1) c = c[Nx-1-maxlags:Nx+maxlags] if usevlines: a = self.vlines(lags, [0], c, **kwargs) b = self.axhline(**kwargs) else: kwargs.setdefault('marker', 'o') kwargs.setdefault('linestyle', 'None') a, = self.plot(lags, c, **kwargs) b = None return lags, c, a, b xcorr.__doc__ = cbook.dedent(xcorr.__doc__) % martist.kwdocd def legend(self, *args, **kwargs): """ call signature:: legend(*args, **kwargs) Place a legend on the current axes at location *loc*. Labels are a sequence of strings and *loc* can be a string or an integer specifying the legend location. To make a legend with existing lines:: legend() :meth:`legend` by itself will try and build a legend using the label property of the lines/patches/collections. You can set the label of a line by doing:: plot(x, y, label='my data') or:: line.set_label('my data'). If label is set to '_nolegend_', the item will not be shown in legend. To automatically generate the legend from labels:: legend( ('label1', 'label2', 'label3') ) To make a legend for a list of lines and labels:: legend( (line1, line2, line3), ('label1', 'label2', 'label3') ) To make a legend at a given location, using a location argument:: legend( ('label1', 'label2', 'label3'), loc='upper left') or:: legend( (line1, line2, line3), ('label1', 'label2', 'label3'), loc=2) The location codes are =============== ============= Location String Location Code =============== ============= 'best' 0 'upper right' 1 'upper left' 2 'lower left' 3 'lower right' 4 'right' 5 'center left' 6 'center right' 7 'lower center' 8 'upper center' 9 'center' 10 =============== ============= If none of these are locations are suitable, loc can be a 2-tuple giving x,y in axes coords, ie:: loc = 0, 1 # left top loc = 0.5, 0.5 # center Keyword arguments: *isaxes*: [ True | False ] Indicates that this is an axes legend *numpoints*: integer The number of points in the legend line, default is 4 *prop*: [ None | FontProperties ] A :class:`matplotlib.font_manager.FontProperties` instance, or *None* to use rc settings. *pad*: [ None | scalar ] The fractional whitespace inside the legend border, between 0 and 1. If *None*, use rc settings. *markerscale*: [ None | scalar ] The relative size of legend markers vs. original. If *None*, use rc settings. *shadow*: [ None | False | True ] If *True*, draw a shadow behind legend. If *None*, use rc settings. *labelsep*: [ None | scalar ] The vertical space between the legend entries. If *None*, use rc settings. *handlelen*: [ None | scalar ] The length of the legend lines. If *None*, use rc settings. *handletextsep*: [ None | scalar ] The space between the legend line and legend text. If *None*, use rc settings. *axespad*: [ None | scalar ] The border between the axes and legend edge. If *None*, use rc settings. **Example:** .. plot:: mpl_examples/api/legend_demo.py """ def get_handles(): handles = self.lines[:] handles.extend(self.patches) handles.extend([c for c in self.collections if isinstance(c, mcoll.LineCollection)]) handles.extend([c for c in self.collections if isinstance(c, mcoll.RegularPolyCollection)]) return handles if len(args)==0: handles = [] labels = [] for handle in get_handles(): label = handle.get_label() if (label is not None and label != '' and not label.startswith('_')): handles.append(handle) labels.append(label) if len(handles) == 0: warnings.warn("No labeled objects found. " "Use label='...' kwarg on individual plots.") return None elif len(args)==1: # LABELS labels = args[0] handles = [h for h, label in zip(get_handles(), labels)] elif len(args)==2: if is_string_like(args[1]) or isinstance(args[1], int): # LABELS, LOC labels, loc = args handles = [h for h, label in zip(get_handles(), labels)] kwargs['loc'] = loc else: # LINES, LABELS handles, labels = args elif len(args)==3: # LINES, LABELS, LOC handles, labels, loc = args kwargs['loc'] = loc else: raise TypeError('Invalid arguments to legend') handles = cbook.flatten(handles) self.legend_ = mlegend.Legend(self, handles, labels, **kwargs) return self.legend_ #### Specialized plotting def step(self, x, y, *args, **kwargs): ''' call signature:: step(x, y, *args, **kwargs) Make a step plot. Additional keyword args to :func:`step` are the same as those for :func:`~matplotlib.pyplot.plot`. *x* and *y* must be 1-D sequences, and it is assumed, but not checked, that *x* is uniformly increasing. Keyword arguments: *where*: [ 'pre' | 'post' | 'mid' ] If 'pre', the interval from x[i] to x[i+1] has level y[i] If 'post', that interval has level y[i+1] If 'mid', the jumps in *y* occur half-way between the *x*-values. ''' where = kwargs.pop('where', 'pre') if where not in ('pre', 'post', 'mid'): raise ValueError("'where' argument to step must be " "'pre', 'post' or 'mid'") kwargs['linestyle'] = 'steps-' + where return self.plot(x, y, *args, **kwargs) def bar(self, left, height, width=0.8, bottom=None, color=None, edgecolor=None, linewidth=None, yerr=None, xerr=None, ecolor=None, capsize=3, align='edge', orientation='vertical', log=False, **kwargs ): """ call signature:: bar(left, height, width=0.8, bottom=0, color=None, edgecolor=None, linewidth=None, yerr=None, xerr=None, ecolor=None, capsize=3, align='edge', orientation='vertical', log=False) Make a bar plot with rectangles bounded by: *left*, *left* + *width*, *bottom*, *bottom* + *height* (left, right, bottom and top edges) *left*, *height*, *width*, and *bottom* can be either scalars or sequences Return value is a list of :class:`matplotlib.patches.Rectangle` instances. Required arguments: ======== =============================================== Argument Description ======== =============================================== *left* the x coordinates of the left sides of the bars *height* the heights of the bars ======== =============================================== Optional keyword arguments: =============== ========================================== Keyword Description =============== ========================================== *width* the widths of the bars *bottom* the y coordinates of the bottom edges of the bars *color* the colors of the bars *edgecolor* the colors of the bar edges *linewidth* width of bar edges; None means use default linewidth; 0 means don't draw edges. *xerr* if not None, will be used to generate errorbars on the bar chart *yerr* if not None, will be used to generate errorbars on the bar chart *ecolor* specifies the color of any errorbar *capsize* (default 3) determines the length in points of the error bar caps *align* 'edge' (default) | 'center' *orientation* 'vertical' | 'horizontal' *log* [False|True] False (default) leaves the orientation axis as-is; True sets it to log scale =============== ========================================== For vertical bars, *align* = 'edge' aligns bars by their left edges in left, while *align* = 'center' interprets these values as the *x* coordinates of the bar centers. For horizontal bars, *align* = 'edge' aligns bars by their bottom edges in bottom, while *align* = 'center' interprets these values as the *y* coordinates of the bar centers. The optional arguments *color*, *edgecolor*, *linewidth*, *xerr*, and *yerr* can be either scalars or sequences of length equal to the number of bars. This enables you to use bar as the basis for stacked bar charts, or candlestick plots. Other optional kwargs: %(Rectangle)s **Example:** A stacked bar chart. .. plot:: mpl_examples/pylab_examples/bar_stacked.py """ if not self._hold: self.cla() label = kwargs.pop('label', '') def make_iterable(x): if not iterable(x): return [x] else: return x # make them safe to take len() of _left = left left = make_iterable(left) height = make_iterable(height) width = make_iterable(width) _bottom = bottom bottom = make_iterable(bottom) linewidth = make_iterable(linewidth) adjust_ylim = False adjust_xlim = False if orientation == 'vertical': self._process_unit_info(xdata=left, ydata=height, kwargs=kwargs) if log: self.set_yscale('log') # size width and bottom according to length of left if _bottom is None: if self.get_yscale() == 'log': bottom = [1e-100] adjust_ylim = True else: bottom = [0] nbars = len(left) if len(width) == 1: width *= nbars if len(bottom) == 1: bottom *= nbars elif orientation == 'horizontal': self._process_unit_info(xdata=width, ydata=bottom, kwargs=kwargs) if log: self.set_xscale('log') # size left and height according to length of bottom if _left is None: if self.get_xscale() == 'log': left = [1e-100] adjust_xlim = True else: left = [0] nbars = len(bottom) if len(left) == 1: left *= nbars if len(height) == 1: height *= nbars else: raise ValueError, 'invalid orientation: %s' % orientation # do not convert to array here as unit info is lost #left = np.asarray(left) #height = np.asarray(height) #width = np.asarray(width) #bottom = np.asarray(bottom) if len(linewidth) < nbars: linewidth *= nbars if color is None: color = [None] * nbars else: color = list(mcolors.colorConverter.to_rgba_array(color)) if len(color) < nbars: color *= nbars if edgecolor is None: edgecolor = [None] * nbars else: edgecolor = list(mcolors.colorConverter.to_rgba_array(edgecolor)) if len(edgecolor) < nbars: edgecolor *= nbars if yerr is not None: if not iterable(yerr): yerr = [yerr]*nbars if xerr is not None: if not iterable(xerr): xerr = [xerr]*nbars # FIXME: convert the following to proper input validation # raising ValueError; don't use assert for this. assert len(left)==nbars, "argument 'left' must be %d or scalar" % nbars assert len(height)==nbars, ("argument 'height' must be %d or scalar" % nbars) assert len(width)==nbars, ("argument 'width' must be %d or scalar" % nbars) assert len(bottom)==nbars, ("argument 'bottom' must be %d or scalar" % nbars) if yerr is not None and len(yerr)!=nbars: raise ValueError( "bar() argument 'yerr' must be len(%s) or scalar" % nbars) if xerr is not None and len(xerr)!=nbars: raise ValueError( "bar() argument 'xerr' must be len(%s) or scalar" % nbars) patches = [] # lets do some conversions now since some types cannot be # subtracted uniformly if self.xaxis is not None: xconv = self.xaxis.converter if xconv is not None: units = self.xaxis.get_units() left = xconv.convert( left, units ) width = xconv.convert( width, units ) if self.yaxis is not None: yconv = self.yaxis.converter if yconv is not None : units = self.yaxis.get_units() bottom = yconv.convert( bottom, units ) height = yconv.convert( height, units ) if align == 'edge': pass elif align == 'center': if orientation == 'vertical': left = [left[i] - width[i]/2. for i in xrange(len(left))] elif orientation == 'horizontal': bottom = [bottom[i] - height[i]/2. for i in xrange(len(bottom))] else: raise ValueError, 'invalid alignment: %s' % align args = zip(left, bottom, width, height, color, edgecolor, linewidth) for l, b, w, h, c, e, lw in args: if h<0: b += h h = abs(h) if w<0: l += w w = abs(w) r = mpatches.Rectangle( xy=(l, b), width=w, height=h, facecolor=c, edgecolor=e, linewidth=lw, label=label ) label = '_nolegend_' r.update(kwargs) #print r.get_label(), label, 'label' in kwargs self.add_patch(r) patches.append(r) holdstate = self._hold self.hold(True) # ensure hold is on before plotting errorbars if xerr is not None or yerr is not None: if orientation == 'vertical': # using list comps rather than arrays to preserve unit info x = [l+0.5*w for l, w in zip(left, width)] y = [b+h for b,h in zip(bottom, height)] elif orientation == 'horizontal': # using list comps rather than arrays to preserve unit info x = [l+w for l,w in zip(left, width)] y = [b+0.5*h for b,h in zip(bottom, height)] self.errorbar( x, y, yerr=yerr, xerr=xerr, fmt=None, ecolor=ecolor, capsize=capsize) self.hold(holdstate) # restore previous hold state if adjust_xlim: xmin, xmax = self.dataLim.intervalx xmin = np.amin(width[width!=0]) # filter out the 0 width rects if xerr is not None: xmin = xmin - np.amax(xerr) xmin = max(xmin*0.9, 1e-100) self.dataLim.intervalx = (xmin, xmax) if adjust_ylim: ymin, ymax = self.dataLim.intervaly ymin = np.amin(height[height!=0]) # filter out the 0 height rects if yerr is not None: ymin = ymin - np.amax(yerr) ymin = max(ymin*0.9, 1e-100) self.dataLim.intervaly = (ymin, ymax) self.autoscale_view() return patches bar.__doc__ = cbook.dedent(bar.__doc__) % martist.kwdocd def barh(self, bottom, width, height=0.8, left=None, **kwargs): """ call signature:: barh(bottom, width, height=0.8, left=0, **kwargs) Make a horizontal bar plot with rectangles bounded by: *left*, *left* + *width*, *bottom*, *bottom* + *height* (left, right, bottom and top edges) *bottom*, *width*, *height*, and *left* can be either scalars or sequences Return value is a list of :class:`matplotlib.patches.Rectangle` instances. Required arguments: ======== ====================================================== Argument Description ======== ====================================================== *bottom* the vertical positions of the bottom edges of the bars *width* the lengths of the bars ======== ====================================================== Optional keyword arguments: =============== ========================================== Keyword Description =============== ========================================== *height* the heights (thicknesses) of the bars *left* the x coordinates of the left edges of the bars *color* the colors of the bars *edgecolor* the colors of the bar edges *linewidth* width of bar edges; None means use default linewidth; 0 means don't draw edges. *xerr* if not None, will be used to generate errorbars on the bar chart *yerr* if not None, will be used to generate errorbars on the bar chart *ecolor* specifies the color of any errorbar *capsize* (default 3) determines the length in points of the error bar caps *align* 'edge' (default) | 'center' *log* [False|True] False (default) leaves the horizontal axis as-is; True sets it to log scale =============== ========================================== Setting *align* = 'edge' aligns bars by their bottom edges in bottom, while *align* = 'center' interprets these values as the *y* coordinates of the bar centers. The optional arguments *color*, *edgecolor*, *linewidth*, *xerr*, and *yerr* can be either scalars or sequences of length equal to the number of bars. This enables you to use barh as the basis for stacked bar charts, or candlestick plots. other optional kwargs: %(Rectangle)s """ patches = self.bar(left=left, height=height, width=width, bottom=bottom, orientation='horizontal', **kwargs) return patches barh.__doc__ = cbook.dedent(barh.__doc__) % martist.kwdocd def broken_barh(self, xranges, yrange, **kwargs): """ call signature:: broken_barh(self, xranges, yrange, **kwargs) A collection of horizontal bars spanning *yrange* with a sequence of *xranges*. Required arguments: ========= ============================== Argument Description ========= ============================== *xranges* sequence of (*xmin*, *xwidth*) *yrange* sequence of (*ymin*, *ywidth*) ========= ============================== kwargs are :class:`matplotlib.collections.BrokenBarHCollection` properties: %(BrokenBarHCollection)s these can either be a single argument, ie:: facecolors = 'black' or a sequence of arguments for the various bars, ie:: facecolors = ('black', 'red', 'green') **Example:** .. plot:: mpl_examples/pylab_examples/broken_barh.py """ col = mcoll.BrokenBarHCollection(xranges, yrange, **kwargs) self.add_collection(col, autolim=True) self.autoscale_view() return col broken_barh.__doc__ = cbook.dedent(broken_barh.__doc__) % martist.kwdocd def stem(self, x, y, linefmt='b-', markerfmt='bo', basefmt='r-'): """ call signature:: stem(x, y, linefmt='b-', markerfmt='bo', basefmt='r-') A stem plot plots vertical lines (using *linefmt*) at each *x* location from the baseline to *y*, and places a marker there using *markerfmt*. A horizontal line at 0 is is plotted using *basefmt*. Return value is a tuple (*markerline*, *stemlines*, *baseline*). .. seealso:: `this document`__ for details :file:`examples/pylab_examples/stem_plot.py`: for a demo __ http://www.mathworks.com/access/helpdesk/help/techdoc/ref/stem.html """ remember_hold=self._hold if not self._hold: self.cla() self.hold(True) markerline, = self.plot(x, y, markerfmt) stemlines = [] for thisx, thisy in zip(x, y): l, = self.plot([thisx,thisx], [0, thisy], linefmt) stemlines.append(l) baseline, = self.plot([np.amin(x), np.amax(x)], [0,0], basefmt) self.hold(remember_hold) return markerline, stemlines, baseline def pie(self, x, explode=None, labels=None, colors=None, autopct=None, pctdistance=0.6, shadow=False, labeldistance=1.1): r""" call signature:: pie(x, explode=None, labels=None, colors=('b', 'g', 'r', 'c', 'm', 'y', 'k', 'w'), autopct=None, pctdistance=0.6, labeldistance=1.1, shadow=False) Make a pie chart of array *x*. The fractional area of each wedge is given by x/sum(x). If sum(x) <= 1, then the values of x give the fractional area directly and the array will not be normalized. Keyword arguments: *explode*: [ None | len(x) sequence ] If not *None*, is a len(*x*) array which specifies the fraction of the radius with which to offset each wedge. *colors*: [ None | color sequence ] A sequence of matplotlib color args through which the pie chart will cycle. *labels*: [ None | len(x) sequence of strings ] A sequence of strings providing the labels for each wedge *autopct*: [ None | format string | format function ] If not *None*, is a string or function used to label the wedges with their numeric value. The label will be placed inside the wedge. If it is a format string, the label will be ``fmt%pct``. If it is a function, it will be called. *pctdistance*: scalar The ratio between the center of each pie slice and the start of the text generated by *autopct*. Ignored if *autopct* is *None*; default is 0.6. *labeldistance*: scalar The radial distance at which the pie labels are drawn *shadow*: [ False | True ] Draw a shadow beneath the pie. The pie chart will probably look best if the figure and axes are square. Eg.:: figure(figsize=(8,8)) ax = axes([0.1, 0.1, 0.8, 0.8]) Return value: If *autopct* is None, return the tuple (*patches*, *texts*): - *patches* is a sequence of :class:`matplotlib.patches.Wedge` instances - *texts* is a list of the label :class:`matplotlib.text.Text` instances. If *autopct* is not *None*, return the tuple (*patches*, *texts*, *autotexts*), where *patches* and *texts* are as above, and *autotexts* is a list of :class:`~matplotlib.text.Text` instances for the numeric labels. """ self.set_frame_on(False) x = np.asarray(x).astype(np.float32) sx = float(x.sum()) if sx>1: x = np.divide(x,sx) if labels is None: labels = ['']*len(x) if explode is None: explode = [0]*len(x) assert(len(x)==len(labels)) assert(len(x)==len(explode)) if colors is None: colors = ('b', 'g', 'r', 'c', 'm', 'y', 'k', 'w') center = 0,0 radius = 1 theta1 = 0 i = 0 texts = [] slices = [] autotexts = [] for frac, label, expl in cbook.safezip(x,labels, explode): x, y = center theta2 = theta1 + frac thetam = 2*math.pi*0.5*(theta1+theta2) x += expl*math.cos(thetam) y += expl*math.sin(thetam) w = mpatches.Wedge((x,y), radius, 360.*theta1, 360.*theta2, facecolor=colors[i%len(colors)]) slices.append(w) self.add_patch(w) w.set_label(label) if shadow: # make sure to add a shadow after the call to # add_patch so the figure and transform props will be # set shad = mpatches.Shadow(w, -0.02, -0.02, #props={'facecolor':w.get_facecolor()} ) shad.set_zorder(0.9*w.get_zorder()) self.add_patch(shad) xt = x + labeldistance*radius*math.cos(thetam) yt = y + labeldistance*radius*math.sin(thetam) label_alignment = xt > 0 and 'left' or 'right' t = self.text(xt, yt, label, size=rcParams['xtick.labelsize'], horizontalalignment=label_alignment, verticalalignment='center') texts.append(t) if autopct is not None: xt = x + pctdistance*radius*math.cos(thetam) yt = y + pctdistance*radius*math.sin(thetam) if is_string_like(autopct): s = autopct%(100.*frac) elif callable(autopct): s = autopct(100.*frac) else: raise TypeError( 'autopct must be callable or a format string') t = self.text(xt, yt, s, horizontalalignment='center', verticalalignment='center') autotexts.append(t) theta1 = theta2 i += 1 self.set_xlim((-1.25, 1.25)) self.set_ylim((-1.25, 1.25)) self.set_xticks([]) self.set_yticks([]) if autopct is None: return slices, texts else: return slices, texts, autotexts def errorbar(self, x, y, yerr=None, xerr=None, fmt='-', ecolor=None, elinewidth=None, capsize=3, barsabove=False, lolims=False, uplims=False, xlolims=False, xuplims=False, **kwargs): """ call signature:: errorbar(x, y, yerr=None, xerr=None, fmt='-', ecolor=None, elinewidth=None, capsize=3, barsabove=False, lolims=False, uplims=False, xlolims=False, xuplims=False) Plot *x* versus *y* with error deltas in *yerr* and *xerr*. Vertical errorbars are plotted if *yerr* is not *None*. Horizontal errorbars are plotted if *xerr* is not *None*. *x*, *y*, *xerr*, and *yerr* can all be scalars, which plots a single error bar at *x*, *y*. Optional keyword arguments: *xerr*/*yerr*: [ scalar | N, Nx1, Nx2 array-like ] If a scalar number, len(N) array-like object, or an Nx1 array-like object, errorbars are drawn +/- value. If a rank-1, Nx2 Numpy array, errorbars are drawn at -column1 and +column2 *fmt*: '-' The plot format symbol for *y*. If *fmt* is *None*, just plot the errorbars with no line symbols. This can be useful for creating a bar plot with errorbars. *ecolor*: [ None | mpl color ] a matplotlib color arg which gives the color the errorbar lines; if *None*, use the marker color. *elinewidth*: scalar the linewidth of the errorbar lines. If *None*, use the linewidth. *capsize*: scalar the size of the error bar caps in points *barsabove*: [ True | False ] if *True*, will plot the errorbars above the plot symbols. Default is below. *lolims*/*uplims*/*xlolims*/*xuplims*: [ False | True ] These arguments can be used to indicate that a value gives only upper/lower limits. In that case a caret symbol is used to indicate this. lims-arguments may be of the same type as *xerr* and *yerr*. All other keyword arguments are passed on to the plot command for the markers, so you can add additional key=value pairs to control the errorbar markers. For example, this code makes big red squares with thick green edges:: x,y,yerr = rand(3,10) errorbar(x, y, yerr, marker='s', mfc='red', mec='green', ms=20, mew=4) where *mfc*, *mec*, *ms* and *mew* are aliases for the longer property names, *markerfacecolor*, *markeredgecolor*, *markersize* and *markeredgewith*. valid kwargs for the marker properties are %(Line2D)s Return value is a length 3 tuple. The first element is the :class:`~matplotlib.lines.Line2D` instance for the *y* symbol lines. The second element is a list of error bar cap lines, the third element is a list of :class:`~matplotlib.collections.LineCollection` instances for the horizontal and vertical error ranges. **Example:** .. plot:: mpl_examples/pylab_examples/errorbar_demo.py """ self._process_unit_info(xdata=x, ydata=y, kwargs=kwargs) if not self._hold: self.cla() # make sure all the args are iterable; use lists not arrays to # preserve units if not iterable(x): x = [x] if not iterable(y): y = [y] if xerr is not None: if not iterable(xerr): xerr = [xerr]*len(x) if yerr is not None: if not iterable(yerr): yerr = [yerr]*len(y) l0 = None if barsabove and fmt is not None: l0, = self.plot(x,y,fmt,**kwargs) barcols = [] caplines = [] lines_kw = {'label':'_nolegend_'} if elinewidth: lines_kw['linewidth'] = elinewidth else: if 'linewidth' in kwargs: lines_kw['linewidth']=kwargs['linewidth'] if 'lw' in kwargs: lines_kw['lw']=kwargs['lw'] if 'transform' in kwargs: lines_kw['transform'] = kwargs['transform'] # arrays fine here, they are booleans and hence not units if not iterable(lolims): lolims = np.asarray([lolims]*len(x), bool) else: lolims = np.asarray(lolims, bool) if not iterable(uplims): uplims = np.array([uplims]*len(x), bool) else: uplims = np.asarray(uplims, bool) if not iterable(xlolims): xlolims = np.array([xlolims]*len(x), bool) else: xlolims = np.asarray(xlolims, bool) if not iterable(xuplims): xuplims = np.array([xuplims]*len(x), bool) else: xuplims = np.asarray(xuplims, bool) def xywhere(xs, ys, mask): """ return xs[mask], ys[mask] where mask is True but xs and ys are not arrays """ assert len(xs)==len(ys) assert len(xs)==len(mask) xs = [thisx for thisx, b in zip(xs, mask) if b] ys = [thisy for thisy, b in zip(ys, mask) if b] return xs, ys if capsize > 0: plot_kw = { 'ms':2*capsize, 'label':'_nolegend_'} if 'markeredgewidth' in kwargs: plot_kw['markeredgewidth']=kwargs['markeredgewidth'] if 'mew' in kwargs: plot_kw['mew']=kwargs['mew'] if 'transform' in kwargs: plot_kw['transform'] = kwargs['transform'] if xerr is not None: if (iterable(xerr) and len(xerr)==2 and iterable(xerr[0]) and iterable(xerr[1])): # using list comps rather than arrays to preserve units left = [thisx-thiserr for (thisx, thiserr) in cbook.safezip(x,xerr[0])] right = [thisx+thiserr for (thisx, thiserr) in cbook.safezip(x,xerr[1])] else: # using list comps rather than arrays to preserve units left = [thisx-thiserr for (thisx, thiserr) in cbook.safezip(x,xerr)] right = [thisx+thiserr for (thisx, thiserr) in cbook.safezip(x,xerr)] barcols.append( self.hlines(y, left, right, **lines_kw ) ) if capsize > 0: if xlolims.any(): # can't use numpy logical indexing since left and # y are lists leftlo, ylo = xywhere(left, y, xlolims) caplines.extend( self.plot(leftlo, ylo, ls='None', marker=mlines.CARETLEFT, **plot_kw) ) xlolims = ~xlolims leftlo, ylo = xywhere(left, y, xlolims) caplines.extend( self.plot(leftlo, ylo, 'k|', **plot_kw) ) else: caplines.extend( self.plot(left, y, 'k|', **plot_kw) ) if xuplims.any(): rightup, yup = xywhere(right, y, xuplims) caplines.extend( self.plot(rightup, yup, ls='None', marker=mlines.CARETRIGHT, **plot_kw) ) xuplims = ~xuplims rightup, yup = xywhere(right, y, xuplims) caplines.extend( self.plot(rightup, yup, 'k|', **plot_kw) ) else: caplines.extend( self.plot(right, y, 'k|', **plot_kw) ) if yerr is not None: if (iterable(yerr) and len(yerr)==2 and iterable(yerr[0]) and iterable(yerr[1])): # using list comps rather than arrays to preserve units lower = [thisy-thiserr for (thisy, thiserr) in cbook.safezip(y,yerr[0])] upper = [thisy+thiserr for (thisy, thiserr) in cbook.safezip(y,yerr[1])] else: # using list comps rather than arrays to preserve units lower = [thisy-thiserr for (thisy, thiserr) in cbook.safezip(y,yerr)] upper = [thisy+thiserr for (thisy, thiserr) in cbook.safezip(y,yerr)] barcols.append( self.vlines(x, lower, upper, **lines_kw) ) if capsize > 0: if lolims.any(): xlo, lowerlo = xywhere(x, lower, lolims) caplines.extend( self.plot(xlo, lowerlo, ls='None', marker=mlines.CARETDOWN, **plot_kw) ) lolims = ~lolims xlo, lowerlo = xywhere(x, lower, lolims) caplines.extend( self.plot(xlo, lowerlo, 'k_', **plot_kw) ) else: caplines.extend( self.plot(x, lower, 'k_', **plot_kw) ) if uplims.any(): xup, upperup = xywhere(x, upper, uplims) caplines.extend( self.plot(xup, upperup, ls='None', marker=mlines.CARETUP, **plot_kw) ) uplims = ~uplims xup, upperup = xywhere(x, upper, uplims) caplines.extend( self.plot(xup, upperup, 'k_', **plot_kw) ) else: caplines.extend( self.plot(x, upper, 'k_', **plot_kw) ) if not barsabove and fmt is not None: l0, = self.plot(x,y,fmt,**kwargs) if ecolor is None: if l0 is None: ecolor = self._get_lines._get_next_cycle_color() else: ecolor = l0.get_color() for l in barcols: l.set_color(ecolor) for l in caplines: l.set_color(ecolor) self.autoscale_view() return (l0, caplines, barcols) errorbar.__doc__ = cbook.dedent(errorbar.__doc__) % martist.kwdocd def boxplot(self, x, notch=0, sym='b+', vert=1, whis=1.5, positions=None, widths=None): """ call signature:: boxplot(x, notch=0, sym='+', vert=1, whis=1.5, positions=None, widths=None) Make a box and whisker plot for each column of *x* or each vector in sequence *x*. The box extends from the lower to upper quartile values of the data, with a line at the median. The whiskers extend from the box to show the range of the data. Flier points are those past the end of the whiskers. - *notch* = 0 (default) produces a rectangular box plot. - *notch* = 1 will produce a notched box plot *sym* (default 'b+') is the default symbol for flier points. Enter an empty string ('') if you don't want to show fliers. - *vert* = 1 (default) makes the boxes vertical. - *vert* = 0 makes horizontal boxes. This seems goofy, but that's how Matlab did it. *whis* (default 1.5) defines the length of the whiskers as a function of the inner quartile range. They extend to the most extreme data point within ( ``whis*(75%-25%)`` ) data range. *positions* (default 1,2,...,n) sets the horizontal positions of the boxes. The ticks and limits are automatically set to match the positions. *widths* is either a scalar or a vector and sets the width of each box. The default is 0.5, or ``0.15*(distance between extreme positions)`` if that is smaller. *x* is an array or a sequence of vectors. Returns a dictionary mapping each component of the boxplot to a list of the :class:`matplotlib.lines.Line2D` instances created. **Example:** .. plot:: pyplots/boxplot_demo.py """ if not self._hold: self.cla() holdStatus = self._hold whiskers, caps, boxes, medians, fliers = [], [], [], [], [] # convert x to a list of vectors if hasattr(x, 'shape'): if len(x.shape) == 1: if hasattr(x[0], 'shape'): x = list(x) else: x = [x,] elif len(x.shape) == 2: nr, nc = x.shape if nr == 1: x = [x] elif nc == 1: x = [x.ravel()] else: x = [x[:,i] for i in xrange(nc)] else: raise ValueError, "input x can have no more than 2 dimensions" if not hasattr(x[0], '__len__'): x = [x] col = len(x) # get some plot info if positions is None: positions = range(1, col + 1) if widths is None: distance = max(positions) - min(positions) widths = min(0.15*max(distance,1.0), 0.5) if isinstance(widths, float) or isinstance(widths, int): widths = np.ones((col,), float) * widths # loop through columns, adding each to plot self.hold(True) for i,pos in enumerate(positions): d = np.ravel(x[i]) row = len(d) # get median and quartiles q1, med, q3 = mlab.prctile(d,[25,50,75]) # get high extreme iq = q3 - q1 hi_val = q3 + whis*iq wisk_hi = np.compress( d <= hi_val , d ) if len(wisk_hi) == 0: wisk_hi = q3 else: wisk_hi = max(wisk_hi) # get low extreme lo_val = q1 - whis*iq wisk_lo = np.compress( d >= lo_val, d ) if len(wisk_lo) == 0: wisk_lo = q1 else: wisk_lo = min(wisk_lo) # get fliers - if we are showing them flier_hi = [] flier_lo = [] flier_hi_x = [] flier_lo_x = [] if len(sym) != 0: flier_hi = np.compress( d > wisk_hi, d ) flier_lo = np.compress( d < wisk_lo, d ) flier_hi_x = np.ones(flier_hi.shape[0]) * pos flier_lo_x = np.ones(flier_lo.shape[0]) * pos # get x locations for fliers, whisker, whisker cap and box sides box_x_min = pos - widths[i] * 0.5 box_x_max = pos + widths[i] * 0.5 wisk_x = np.ones(2) * pos cap_x_min = pos - widths[i] * 0.25 cap_x_max = pos + widths[i] * 0.25 cap_x = [cap_x_min, cap_x_max] # get y location for median med_y = [med, med] # calculate 'regular' plot if notch == 0: # make our box vectors box_x = [box_x_min, box_x_max, box_x_max, box_x_min, box_x_min ] box_y = [q1, q1, q3, q3, q1 ] # make our median line vectors med_x = [box_x_min, box_x_max] # calculate 'notch' plot else: notch_max = med + 1.57*iq/np.sqrt(row) notch_min = med - 1.57*iq/np.sqrt(row) if notch_max > q3: notch_max = q3 if notch_min < q1: notch_min = q1 # make our notched box vectors box_x = [box_x_min, box_x_max, box_x_max, cap_x_max, box_x_max, box_x_max, box_x_min, box_x_min, cap_x_min, box_x_min, box_x_min ] box_y = [q1, q1, notch_min, med, notch_max, q3, q3, notch_max, med, notch_min, q1] # make our median line vectors med_x = [cap_x_min, cap_x_max] med_y = [med, med] # vertical or horizontal plot? if vert: def doplot(*args): return self.plot(*args) else: def doplot(*args): shuffled = [] for i in xrange(0, len(args), 3): shuffled.extend([args[i+1], args[i], args[i+2]]) return self.plot(*shuffled) whiskers.extend(doplot(wisk_x, [q1, wisk_lo], 'b--', wisk_x, [q3, wisk_hi], 'b--')) caps.extend(doplot(cap_x, [wisk_hi, wisk_hi], 'k-', cap_x, [wisk_lo, wisk_lo], 'k-')) boxes.extend(doplot(box_x, box_y, 'b-')) medians.extend(doplot(med_x, med_y, 'r-')) fliers.extend(doplot(flier_hi_x, flier_hi, sym, flier_lo_x, flier_lo, sym)) # fix our axes/ticks up a little if 1 == vert: setticks, setlim = self.set_xticks, self.set_xlim else: setticks, setlim = self.set_yticks, self.set_ylim newlimits = min(positions)-0.5, max(positions)+0.5 setlim(newlimits) setticks(positions) # reset hold status self.hold(holdStatus) return dict(whiskers=whiskers, caps=caps, boxes=boxes, medians=medians, fliers=fliers) def scatter(self, x, y, s=20, c='b', marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=1.0, linewidths=None, faceted=True, verts=None, **kwargs): """ call signatures:: scatter(x, y, s=20, c='b', marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=1.0, linewidths=None, verts=None, **kwargs) Make a scatter plot of *x* versus *y*, where *x*, *y* are 1-D sequences of the same length, *N*. Keyword arguments: *s*: size in points^2. It is a scalar or an array of the same length as *x* and *y*. *c*: a color. *c* can be a single color format string, or a sequence of color specifications of length *N*, or a sequence of *N* numbers to be mapped to colors using the *cmap* and *norm* specified via kwargs (see below). Note that *c* should not be a single numeric RGB or RGBA sequence because that is indistinguishable from an array of values to be colormapped. *c* can be a 2-D array in which the rows are RGB or RGBA, however. *marker*: can be one of: ===== ============== Value Description ===== ============== 's' square 'o' circle '^' triangle up '>' triangle right 'v' triangle down '<' triangle left 'd' diamond 'p' pentagram 'h' hexagon '8' octagon '+' plus 'x' cross ===== ============== The marker can also be a tuple (*numsides*, *style*, *angle*), which will create a custom, regular symbol. *numsides*: the number of sides *style*: the style of the regular symbol: ===== ============================================= Value Description ===== ============================================= 0 a regular polygon 1 a star-like symbol 2 an asterisk 3 a circle (*numsides* and *angle* is ignored) ===== ============================================= *angle*: the angle of rotation of the symbol Finally, *marker* can be (*verts*, 0): *verts* is a sequence of (*x*, *y*) vertices for a custom scatter symbol. Alternatively, use the kwarg combination *marker* = *None*, *verts* = *verts*. Any or all of *x*, *y*, *s*, and *c* may be masked arrays, in which case all masks will be combined and only unmasked points will be plotted. Other keyword arguments: the color mapping and normalization arguments will be used only if *c* is an array of floats. *cmap*: [ None | Colormap ] A :class:`matplotlib.colors.Colormap` instance. If *None*, defaults to rc ``image.cmap``. *cmap* is only used if *c* is an array of floats. *norm*: [ None | Normalize ] A :class:`matplotlib.colors.Normalize` instance is used to scale luminance data to 0, 1. If *None*, use the default :func:`normalize`. *norm* is only used if *c* is an array of floats. *vmin*/*vmax*: *vmin* and *vmax* are used in conjunction with norm to normalize luminance data. If either are None, the min and max of the color array *C* is used. Note if you pass a *norm* instance, your settings for *vmin* and *vmax* will be ignored. *alpha*: 0 <= scalar <= 1 The alpha value for the patches *linewidths*: [ None | scalar | sequence ] If *None*, defaults to (lines.linewidth,). Note that this is a tuple, and if you set the linewidths argument you must set it as a sequence of floats, as required by :class:`~matplotlib.collections.RegularPolyCollection`. Optional kwargs control the :class:`~matplotlib.collections.Collection` properties; in particular: *edgecolors*: 'none' to plot faces with no outlines *facecolors*: 'none' to plot unfilled outlines Here are the standard descriptions of all the :class:`~matplotlib.collections.Collection` kwargs: %(Collection)s A :class:`~matplotlib.collections.Collection` instance is returned. """ if not self._hold: self.cla() syms = { # a dict from symbol to (numsides, angle) 's' : (4,math.pi/4.0,0), # square 'o' : (20,3,0), # circle '^' : (3,0,0), # triangle up '>' : (3,math.pi/2.0,0), # triangle right 'v' : (3,math.pi,0), # triangle down '<' : (3,3*math.pi/2.0,0), # triangle left 'd' : (4,0,0), # diamond 'p' : (5,0,0), # pentagram 'h' : (6,0,0), # hexagon '8' : (8,0,0), # octagon '+' : (4,0,2), # plus 'x' : (4,math.pi/4.0,2) # cross } self._process_unit_info(xdata=x, ydata=y, kwargs=kwargs) x, y, s, c = cbook.delete_masked_points(x, y, s, c) if is_string_like(c) or cbook.is_sequence_of_strings(c): colors = mcolors.colorConverter.to_rgba_array(c, alpha) else: sh = np.shape(c) # The inherent ambiguity is resolved in favor of color # mapping, not interpretation as rgb or rgba: if len(sh) == 1 and sh[0] == len(x): colors = None # use cmap, norm after collection is created else: colors = mcolors.colorConverter.to_rgba_array(c, alpha) if not iterable(s): scales = (s,) else: scales = s if faceted: edgecolors = None else: edgecolors = 'none' warnings.warn( '''replace "faceted=False" with "edgecolors='none'"''', DeprecationWarning) #2008/04/18 sym = None symstyle = 0 # to be API compatible if marker is None and not (verts is None): marker = (verts, 0) verts = None if is_string_like(marker): # the standard way to define symbols using a string character sym = syms.get(marker) if sym is None and verts is None: raise ValueError('Unknown marker symbol to scatter') numsides, rotation, symstyle = syms[marker] elif iterable(marker): # accept marker to be: # (numsides, style, [angle]) # or # (verts[], style, [angle]) if len(marker)<2 or len(marker)>3: raise ValueError('Cannot create markersymbol from marker') if cbook.is_numlike(marker[0]): # (numsides, style, [angle]) if len(marker)==2: numsides, rotation = marker[0], 0. elif len(marker)==3: numsides, rotation = marker[0], marker[2] sym = True if marker[1] in (1,2): symstyle = marker[1] else: verts = np.asarray(marker[0]) if sym is not None: if symstyle==0: collection = mcoll.RegularPolyCollection( numsides, rotation, scales, facecolors = colors, edgecolors = edgecolors, linewidths = linewidths, offsets = zip(x,y), transOffset = self.transData, ) elif symstyle==1: collection = mcoll.StarPolygonCollection( numsides, rotation, scales, facecolors = colors, edgecolors = edgecolors, linewidths = linewidths, offsets = zip(x,y), transOffset = self.transData, ) elif symstyle==2: collection = mcoll.AsteriskPolygonCollection( numsides, rotation, scales, facecolors = colors, edgecolors = edgecolors, linewidths = linewidths, offsets = zip(x,y), transOffset = self.transData, ) elif symstyle==3: collection = mcoll.CircleCollection( scales, facecolors = colors, edgecolors = edgecolors, linewidths = linewidths, offsets = zip(x,y), transOffset = self.transData, ) else: rescale = np.sqrt(max(verts[:,0]**2+verts[:,1]**2)) verts /= rescale collection = mcoll.PolyCollection( (verts,), scales, facecolors = colors, edgecolors = edgecolors, linewidths = linewidths, offsets = zip(x,y), transOffset = self.transData, ) collection.set_transform(mtransforms.IdentityTransform()) collection.set_alpha(alpha) collection.update(kwargs) if colors is None: if norm is not None: assert(isinstance(norm, mcolors.Normalize)) if cmap is not None: assert(isinstance(cmap, mcolors.Colormap)) collection.set_array(np.asarray(c)) collection.set_cmap(cmap) collection.set_norm(norm) if vmin is not None or vmax is not None: collection.set_clim(vmin, vmax) else: collection.autoscale_None() temp_x = x temp_y = y minx = np.amin(temp_x) maxx = np.amax(temp_x) miny = np.amin(temp_y) maxy = np.amax(temp_y) w = maxx-minx h = maxy-miny # the pad is a little hack to deal with the fact that we don't # want to transform all the symbols whose scales are in points # to data coords to get the exact bounding box for efficiency # reasons. It can be done right if this is deemed important padx, pady = 0.05*w, 0.05*h corners = (minx-padx, miny-pady), (maxx+padx, maxy+pady) self.update_datalim( corners) self.autoscale_view() # add the collection last self.add_collection(collection) return collection scatter.__doc__ = cbook.dedent(scatter.__doc__) % martist.kwdocd def hexbin(self, x, y, C = None, gridsize = 100, bins = None, xscale = 'linear', yscale = 'linear', cmap=None, norm=None, vmin=None, vmax=None, alpha=1.0, linewidths=None, edgecolors='none', reduce_C_function = np.mean, **kwargs): """ call signature:: hexbin(x, y, C = None, gridsize = 100, bins = None, xscale = 'linear', yscale = 'linear', cmap=None, norm=None, vmin=None, vmax=None, alpha=1.0, linewidths=None, edgecolors='none' reduce_C_function = np.mean, **kwargs) Make a hexagonal binning plot of *x* versus *y*, where *x*, *y* are 1-D sequences of the same length, *N*. If *C* is None (the default), this is a histogram of the number of occurences of the observations at (x[i],y[i]). If *C* is specified, it specifies values at the coordinate (x[i],y[i]). These values are accumulated for each hexagonal bin and then reduced according to *reduce_C_function*, which defaults to numpy's mean function (np.mean). (If *C* is specified, it must also be a 1-D sequence of the same length as *x* and *y*.) *x*, *y* and/or *C* may be masked arrays, in which case only unmasked points will be plotted. Optional keyword arguments: *gridsize*: [ 100 | integer ] The number of hexagons in the *x*-direction, default is 100. The corresponding number of hexagons in the *y*-direction is chosen such that the hexagons are approximately regular. Alternatively, gridsize can be a tuple with two elements specifying the number of hexagons in the *x*-direction and the *y*-direction. *bins*: [ None | 'log' | integer | sequence ] If *None*, no binning is applied; the color of each hexagon directly corresponds to its count value. If 'log', use a logarithmic scale for the color map. Internally, :math:`log_{10}(i+1)` is used to determine the hexagon color. If an integer, divide the counts in the specified number of bins, and color the hexagons accordingly. If a sequence of values, the values of the lower bound of the bins to be used. *xscale*: [ 'linear' | 'log' ] Use a linear or log10 scale on the horizontal axis. *scale*: [ 'linear' | 'log' ] Use a linear or log10 scale on the vertical axis. Other keyword arguments controlling color mapping and normalization arguments: *cmap*: [ None | Colormap ] a :class:`matplotlib.cm.Colormap` instance. If *None*, defaults to rc ``image.cmap``. *norm*: [ None | Normalize ] :class:`matplotlib.colors.Normalize` instance is used to scale luminance data to 0,1. *vmin*/*vmax*: scalar *vmin* and *vmax* are used in conjunction with *norm* to normalize luminance data. If either are *None*, the min and max of the color array *C* is used. Note if you pass a norm instance, your settings for *vmin* and *vmax* will be ignored. *alpha*: scalar the alpha value for the patches *linewidths*: [ None | scalar ] If *None*, defaults to rc lines.linewidth. Note that this is a tuple, and if you set the linewidths argument you must set it as a sequence of floats, as required by :class:`~matplotlib.collections.RegularPolyCollection`. Other keyword arguments controlling the Collection properties: *edgecolors*: [ None | mpl color | color sequence ] If 'none', draws the edges in the same color as the fill color. This is the default, as it avoids unsightly unpainted pixels between the hexagons. If *None*, draws the outlines in the default color. If a matplotlib color arg or sequence of rgba tuples, draws the outlines in the specified color. Here are the standard descriptions of all the :class:`~matplotlib.collections.Collection` kwargs: %(Collection)s The return value is a :class:`~matplotlib.collections.PolyCollection` instance; use :meth:`~matplotlib.collection.PolyCollection.get_array` on this :class:`~matplotlib.collections.PolyCollection` to get the counts in each hexagon. **Example:** .. plot:: mpl_examples/pylab_examples/hexbin_demo.py """ if not self._hold: self.cla() self._process_unit_info(xdata=x, ydata=y, kwargs=kwargs) x, y, C = cbook.delete_masked_points(x, y, C) # Set the size of the hexagon grid if iterable(gridsize): nx, ny = gridsize else: nx = gridsize ny = int(nx/math.sqrt(3)) # Count the number of data in each hexagon x = np.array(x, float) y = np.array(y, float) if xscale=='log': x = np.log10(x) if yscale=='log': y = np.log10(y) xmin = np.amin(x) xmax = np.amax(x) ymin = np.amin(y) ymax = np.amax(y) # In the x-direction, the hexagons exactly cover the region from # xmin to xmax. Need some padding to avoid roundoff errors. padding = 1.e-9 * (xmax - xmin) xmin -= padding xmax += padding sx = (xmax-xmin) / nx sy = (ymax-ymin) / ny x = (x-xmin)/sx y = (y-ymin)/sy ix1 = np.round(x).astype(int) iy1 = np.round(y).astype(int) ix2 = np.floor(x).astype(int) iy2 = np.floor(y).astype(int) nx1 = nx + 1 ny1 = ny + 1 nx2 = nx ny2 = ny n = nx1*ny1+nx2*ny2 d1 = (x-ix1)**2 + 3.0 * (y-iy1)**2 d2 = (x-ix2-0.5)**2 + 3.0 * (y-iy2-0.5)**2 bdist = (d1<d2) if C is None: accum = np.zeros(n) # Create appropriate views into "accum" array. lattice1 = accum[:nx1*ny1] lattice2 = accum[nx1*ny1:] lattice1.shape = (nx1,ny1) lattice2.shape = (nx2,ny2) for i in xrange(len(x)): if bdist[i]: lattice1[ix1[i], iy1[i]]+=1 else: lattice2[ix2[i], iy2[i]]+=1 else: # create accumulation arrays lattice1 = np.empty((nx1,ny1),dtype=object) for i in xrange(nx1): for j in xrange(ny1): lattice1[i,j] = [] lattice2 = np.empty((nx2,ny2),dtype=object) for i in xrange(nx2): for j in xrange(ny2): lattice2[i,j] = [] for i in xrange(len(x)): if bdist[i]: lattice1[ix1[i], iy1[i]].append( C[i] ) else: lattice2[ix2[i], iy2[i]].append( C[i] ) for i in xrange(nx1): for j in xrange(ny1): vals = lattice1[i,j] if len(vals): lattice1[i,j] = reduce_C_function( vals ) else: lattice1[i,j] = np.nan for i in xrange(nx2): for j in xrange(ny2): vals = lattice2[i,j] if len(vals): lattice2[i,j] = reduce_C_function( vals ) else: lattice2[i,j] = np.nan accum = np.hstack(( lattice1.astype(float).ravel(), lattice2.astype(float).ravel())) good_idxs = ~np.isnan(accum) px = xmin + sx * np.array([ 0.5, 0.5, 0.0, -0.5, -0.5, 0.0]) py = ymin + sy * np.array([-0.5, 0.5, 1.0, 0.5, -0.5, -1.0]) / 3.0 polygons = np.zeros((6, n, 2), float) polygons[:,:nx1*ny1,0] = np.repeat(np.arange(nx1), ny1) polygons[:,:nx1*ny1,1] = np.tile(np.arange(ny1), nx1) polygons[:,nx1*ny1:,0] = np.repeat(np.arange(nx2) + 0.5, ny2) polygons[:,nx1*ny1:,1] = np.tile(np.arange(ny2), nx2) + 0.5 if C is not None: # remove accumulation bins with no data polygons = polygons[:,good_idxs,:] accum = accum[good_idxs] polygons = np.transpose(polygons, axes=[1,0,2]) polygons[:,:,0] *= sx polygons[:,:,1] *= sy polygons[:,:,0] += px polygons[:,:,1] += py if xscale=='log': polygons[:,:,0] = 10**(polygons[:,:,0]) xmin = 10**xmin xmax = 10**xmax self.set_xscale('log') if yscale=='log': polygons[:,:,1] = 10**(polygons[:,:,1]) ymin = 10**ymin ymax = 10**ymax self.set_yscale('log') if edgecolors=='none': edgecolors = 'face' collection = mcoll.PolyCollection( polygons, edgecolors = edgecolors, linewidths = linewidths, transOffset = self.transData, ) # Transform accum if needed if bins=='log': accum = np.log10(accum+1) elif bins!=None: if not iterable(bins): minimum, maximum = min(accum), max(accum) bins-=1 # one less edge than bins bins = minimum + (maximum-minimum)*np.arange(bins)/bins bins = np.sort(bins) accum = bins.searchsorted(accum) if norm is not None: assert(isinstance(norm, mcolors.Normalize)) if cmap is not None: assert(isinstance(cmap, mcolors.Colormap)) collection.set_array(accum) collection.set_cmap(cmap) collection.set_norm(norm) collection.set_alpha(alpha) collection.update(kwargs) if vmin is not None or vmax is not None: collection.set_clim(vmin, vmax) else: collection.autoscale_None() corners = ((xmin, ymin), (xmax, ymax)) self.update_datalim( corners) self.autoscale_view() # add the collection last self.add_collection(collection) return collection hexbin.__doc__ = cbook.dedent(hexbin.__doc__) % martist.kwdocd def arrow(self, x, y, dx, dy, **kwargs): """ call signature:: arrow(x, y, dx, dy, **kwargs) Draws arrow on specified axis from (*x*, *y*) to (*x* + *dx*, *y* + *dy*). Optional kwargs control the arrow properties: %(FancyArrow)s **Example:** .. plot:: mpl_examples/pylab_examples/arrow_demo.py """ a = mpatches.FancyArrow(x, y, dx, dy, **kwargs) self.add_artist(a) return a arrow.__doc__ = cbook.dedent(arrow.__doc__) % martist.kwdocd def quiverkey(self, *args, **kw): qk = mquiver.QuiverKey(*args, **kw) self.add_artist(qk) return qk quiverkey.__doc__ = mquiver.QuiverKey.quiverkey_doc def quiver(self, *args, **kw): if not self._hold: self.cla() q = mquiver.Quiver(self, *args, **kw) self.add_collection(q, False) self.update_datalim(q.XY) self.autoscale_view() return q quiver.__doc__ = mquiver.Quiver.quiver_doc def barbs(self, *args, **kw): """ %(barbs_doc)s **Example:** .. plot:: mpl_examples/pylab_examples/barb_demo.py """ if not self._hold: self.cla() b = mquiver.Barbs(self, *args, **kw) self.add_collection(b) self.update_datalim(b.get_offsets()) self.autoscale_view() return b barbs.__doc__ = cbook.dedent(barbs.__doc__) % { 'barbs_doc': mquiver.Barbs.barbs_doc} def fill(self, *args, **kwargs): """ call signature:: fill(*args, **kwargs) Plot filled polygons. *args* is a variable length argument, allowing for multiple *x*, *y* pairs with an optional color format string; see :func:`~matplotlib.pyplot.plot` for details on the argument parsing. For example, to plot a polygon with vertices at *x*, *y* in blue.:: ax.fill(x,y, 'b' ) An arbitrary number of *x*, *y*, *color* groups can be specified:: ax.fill(x1, y1, 'g', x2, y2, 'r') Return value is a list of :class:`~matplotlib.patches.Patch` instances that were added. The same color strings that :func:`~matplotlib.pyplot.plot` supports are supported by the fill format string. If you would like to fill below a curve, eg. shade a region between 0 and *y* along *x*, use :meth:`fill_between` The *closed* kwarg will close the polygon when *True* (default). kwargs control the Polygon properties: %(Polygon)s **Example:** .. plot:: mpl_examples/pylab_examples/fill_demo.py """ if not self._hold: self.cla() patches = [] for poly in self._get_patches_for_fill(*args, **kwargs): self.add_patch( poly ) patches.append( poly ) self.autoscale_view() return patches fill.__doc__ = cbook.dedent(fill.__doc__) % martist.kwdocd def fill_between(self, x, y1, y2=0, where=None, **kwargs): """ call signature:: fill_between(x, y1, y2=0, where=None, **kwargs) Create a :class:`~matplotlib.collections.PolyCollection` filling the regions between *y1* and *y2* where ``where==True`` *x* an N length np array of the x data *y1* an N length scalar or np array of the x data *y2* an N length scalar or np array of the x data *where* if None, default to fill between everywhere. If not None, it is a a N length numpy boolean array and the fill will only happen over the regions where ``where==True`` *kwargs* keyword args passed on to the :class:`PolyCollection` kwargs control the Polygon properties: %(PolyCollection)s .. plot:: mpl_examples/pylab_examples/fill_between.py """ # Handle united data, such as dates self._process_unit_info(xdata=x, ydata=y1, kwargs=kwargs) self._process_unit_info(ydata=y2) # Convert the arrays so we can work with them x = np.asarray(self.convert_xunits(x)) y1 = np.asarray(self.convert_yunits(y1)) y2 = np.asarray(self.convert_yunits(y2)) if not cbook.iterable(y1): y1 = np.ones_like(x)*y1 if not cbook.iterable(y2): y2 = np.ones_like(x)*y2 if where is None: where = np.ones(len(x), np.bool) where = np.asarray(where) assert( (len(x)==len(y1)) and (len(x)==len(y2)) and len(x)==len(where)) polys = [] for ind0, ind1 in mlab.contiguous_regions(where): theseverts = [] xslice = x[ind0:ind1] y1slice = y1[ind0:ind1] y2slice = y2[ind0:ind1] if not len(xslice): continue N = len(xslice) X = np.zeros((2*N+2, 2), np.float) # the purpose of the next two lines is for when y2 is a # scalar like 0 and we want the fill to go all the way # down to 0 even if none of the y1 sample points do X[0] = xslice[0], y2slice[0] X[N+1] = xslice[-1], y2slice[-1] X[1:N+1,0] = xslice X[1:N+1,1] = y1slice X[N+2:,0] = xslice[::-1] X[N+2:,1] = y2slice[::-1] polys.append(X) collection = mcoll.PolyCollection(polys, **kwargs) # now update the datalim and autoscale XY1 = np.array([x[where], y1[where]]).T XY2 = np.array([x[where], y2[where]]).T self.dataLim.update_from_data_xy(XY1, self.ignore_existing_data_limits, updatex=True, updatey=True) self.dataLim.update_from_data_xy(XY2, self.ignore_existing_data_limits, updatex=False, updatey=True) self.add_collection(collection) self.autoscale_view() return collection fill_between.__doc__ = cbook.dedent(fill_between.__doc__) % martist.kwdocd #### plotting z(x,y): imshow, pcolor and relatives, contour def imshow(self, X, cmap=None, norm=None, aspect=None, interpolation=None, alpha=1.0, vmin=None, vmax=None, origin=None, extent=None, shape=None, filternorm=1, filterrad=4.0, imlim=None, resample=None, url=None, **kwargs): """ call signature:: imshow(X, cmap=None, norm=None, aspect=None, interpolation=None, alpha=1.0, vmin=None, vmax=None, origin=None, extent=None, **kwargs) Display the image in *X* to current axes. *X* may be a float array, a uint8 array or a PIL image. If *X* is an array, *X* can have the following shapes: * MxN -- luminance (grayscale, float array only) * MxNx3 -- RGB (float or uint8 array) * MxNx4 -- RGBA (float or uint8 array) The value for each component of MxNx3 and MxNx4 float arrays should be in the range 0.0 to 1.0; MxN float arrays may be normalised. An :class:`matplotlib.image.AxesImage` instance is returned. Keyword arguments: *cmap*: [ None | Colormap ] A :class:`matplotlib.cm.Colormap` instance, eg. cm.jet. If *None*, default to rc ``image.cmap`` value. *cmap* is ignored when *X* has RGB(A) information *aspect*: [ None | 'auto' | 'equal' | scalar ] If 'auto', changes the image aspect ratio to match that of the axes If 'equal', and *extent* is *None*, changes the axes aspect ratio to match that of the image. If *extent* is not *None*, the axes aspect ratio is changed to match that of the extent. If *None*, default to rc ``image.aspect`` value. *interpolation*: Acceptable values are *None*, 'nearest', 'bilinear', 'bicubic', 'spline16', 'spline36', 'hanning', 'hamming', 'hermite', 'kaiser', 'quadric', 'catrom', 'gaussian', 'bessel', 'mitchell', 'sinc', 'lanczos', If *interpolation* is *None*, default to rc ``image.interpolation``. See also the *filternorm* and *filterrad* parameters *norm*: [ None | Normalize ] An :class:`matplotlib.colors.Normalize` instance; if *None*, default is ``normalization()``. This scales luminance -> 0-1 *norm* is only used for an MxN float array. *vmin*/*vmax*: [ None | scalar ] Used to scale a luminance image to 0-1. If either is *None*, the min and max of the luminance values will be used. Note if *norm* is not *None*, the settings for *vmin* and *vmax* will be ignored. *alpha*: scalar The alpha blending value, between 0 (transparent) and 1 (opaque) *origin*: [ None | 'upper' | 'lower' ] Place the [0,0] index of the array in the upper left or lower left corner of the axes. If *None*, default to rc ``image.origin``. *extent*: [ None | scalars (left, right, bottom, top) ] Eata values of the axes. The default assigns zero-based row, column indices to the *x*, *y* centers of the pixels. *shape*: [ None | scalars (columns, rows) ] For raw buffer images *filternorm*: A parameter for the antigrain image resize filter. From the antigrain documentation, if *filternorm* = 1, the filter normalizes integer values and corrects the rounding errors. It doesn't do anything with the source floating point values, it corrects only integers according to the rule of 1.0 which means that any sum of pixel weights must be equal to 1.0. So, the filter function must produce a graph of the proper shape. *filterrad*: The filter radius for filters that have a radius parameter, i.e. when interpolation is one of: 'sinc', 'lanczos' or 'blackman' Additional kwargs are :class:`~matplotlib.artist.Artist` properties: %(Artist)s **Example:** .. plot:: mpl_examples/pylab_examples/image_demo.py """ if not self._hold: self.cla() if norm is not None: assert(isinstance(norm, mcolors.Normalize)) if cmap is not None: assert(isinstance(cmap, mcolors.Colormap)) if aspect is None: aspect = rcParams['image.aspect'] self.set_aspect(aspect) im = mimage.AxesImage(self, cmap, norm, interpolation, origin, extent, filternorm=filternorm, filterrad=filterrad, resample=resample, **kwargs) im.set_data(X) im.set_alpha(alpha) self._set_artist_props(im) im.set_clip_path(self.patch) #if norm is None and shape is None: # im.set_clim(vmin, vmax) if vmin is not None or vmax is not None: im.set_clim(vmin, vmax) else: im.autoscale_None() im.set_url(url) xmin, xmax, ymin, ymax = im.get_extent() corners = (xmin, ymin), (xmax, ymax) self.update_datalim(corners) if self._autoscaleon: self.set_xlim((xmin, xmax)) self.set_ylim((ymin, ymax)) self.images.append(im) return im imshow.__doc__ = cbook.dedent(imshow.__doc__) % martist.kwdocd def _pcolorargs(self, funcname, *args): if len(args)==1: C = args[0] numRows, numCols = C.shape X, Y = np.meshgrid(np.arange(numCols+1), np.arange(numRows+1) ) elif len(args)==3: X, Y, C = args else: raise TypeError( 'Illegal arguments to %s; see help(%s)' % (funcname, funcname)) Nx = X.shape[-1] Ny = Y.shape[0] if len(X.shape) <> 2 or X.shape[0] == 1: x = X.reshape(1,Nx) X = x.repeat(Ny, axis=0) if len(Y.shape) <> 2 or Y.shape[1] == 1: y = Y.reshape(Ny, 1) Y = y.repeat(Nx, axis=1) if X.shape != Y.shape: raise TypeError( 'Incompatible X, Y inputs to %s; see help(%s)' % ( funcname, funcname)) return X, Y, C def pcolor(self, *args, **kwargs): """ call signatures:: pcolor(C, **kwargs) pcolor(X, Y, C, **kwargs) Create a pseudocolor plot of a 2-D array. *C* is the array of color values. *X* and *Y*, if given, specify the (*x*, *y*) coordinates of the colored quadrilaterals; the quadrilateral for C[i,j] has corners at:: (X[i, j], Y[i, j]), (X[i, j+1], Y[i, j+1]), (X[i+1, j], Y[i+1, j]), (X[i+1, j+1], Y[i+1, j+1]). Ideally the dimensions of *X* and *Y* should be one greater than those of *C*; if the dimensions are the same, then the last row and column of *C* will be ignored. Note that the the column index corresponds to the *x*-coordinate, and the row index corresponds to *y*; for details, see the :ref:`Grid Orientation <axes-pcolor-grid-orientation>` section below. If either or both of *X* and *Y* are 1-D arrays or column vectors, they will be expanded as needed into the appropriate 2-D arrays, making a rectangular grid. *X*, *Y* and *C* may be masked arrays. If either C[i, j], or one of the vertices surrounding C[i,j] (*X* or *Y* at [i, j], [i+1, j], [i, j+1],[i+1, j+1]) is masked, nothing is plotted. Keyword arguments: *cmap*: [ None | Colormap ] A :class:`matplotlib.cm.Colormap` instance. If *None*, use rc settings. norm: [ None | Normalize ] An :class:`matplotlib.colors.Normalize` instance is used to scale luminance data to 0,1. If *None*, defaults to :func:`normalize`. *vmin*/*vmax*: [ None | scalar ] *vmin* and *vmax* are used in conjunction with *norm* to normalize luminance data. If either are *None*, the min and max of the color array *C* is used. If you pass a *norm* instance, *vmin* and *vmax* will be ignored. *shading*: [ 'flat' | 'faceted' ] If 'faceted', a black grid is drawn around each rectangle; if 'flat', edges are not drawn. Default is 'flat', contrary to Matlab(TM). This kwarg is deprecated; please use 'edgecolors' instead: * shading='flat' -- edgecolors='None' * shading='faceted -- edgecolors='k' *edgecolors*: [ None | 'None' | color | color sequence] If *None*, the rc setting is used by default. If 'None', edges will not be visible. An mpl color or sequence of colors will set the edge color *alpha*: 0 <= scalar <= 1 the alpha blending value Return value is a :class:`matplotlib.collection.Collection` instance. .. _axes-pcolor-grid-orientation: The grid orientation follows the Matlab(TM) convention: an array *C* with shape (*nrows*, *ncolumns*) is plotted with the column number as *X* and the row number as *Y*, increasing up; hence it is plotted the way the array would be printed, except that the *Y* axis is reversed. That is, *C* is taken as *C*(*y*, *x*). Similarly for :func:`~matplotlib.pyplot.meshgrid`:: x = np.arange(5) y = np.arange(3) X, Y = meshgrid(x,y) is equivalent to: X = array([[0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4]]) Y = array([[0, 0, 0, 0, 0], [1, 1, 1, 1, 1], [2, 2, 2, 2, 2]]) so if you have:: C = rand( len(x), len(y)) then you need:: pcolor(X, Y, C.T) or:: pcolor(C.T) Matlab :func:`pcolor` always discards the last row and column of *C*, but matplotlib displays the last row and column if *X* and *Y* are not specified, or if *X* and *Y* have one more row and column than *C*. kwargs can be used to control the :class:`~matplotlib.collection.PolyCollection` properties: %(PolyCollection)s """ if not self._hold: self.cla() alpha = kwargs.pop('alpha', 1.0) norm = kwargs.pop('norm', None) cmap = kwargs.pop('cmap', None) vmin = kwargs.pop('vmin', None) vmax = kwargs.pop('vmax', None) shading = kwargs.pop('shading', 'flat') X, Y, C = self._pcolorargs('pcolor', *args) Ny, Nx = X.shape # convert to MA, if necessary. C = ma.asarray(C) X = ma.asarray(X) Y = ma.asarray(Y) mask = ma.getmaskarray(X)+ma.getmaskarray(Y) xymask = mask[0:-1,0:-1]+mask[1:,1:]+mask[0:-1,1:]+mask[1:,0:-1] # don't plot if C or any of the surrounding vertices are masked. mask = ma.getmaskarray(C)[0:Ny-1,0:Nx-1]+xymask newaxis = np.newaxis compress = np.compress ravelmask = (mask==0).ravel() X1 = compress(ravelmask, ma.filled(X[0:-1,0:-1]).ravel()) Y1 = compress(ravelmask, ma.filled(Y[0:-1,0:-1]).ravel()) X2 = compress(ravelmask, ma.filled(X[1:,0:-1]).ravel()) Y2 = compress(ravelmask, ma.filled(Y[1:,0:-1]).ravel()) X3 = compress(ravelmask, ma.filled(X[1:,1:]).ravel()) Y3 = compress(ravelmask, ma.filled(Y[1:,1:]).ravel()) X4 = compress(ravelmask, ma.filled(X[0:-1,1:]).ravel()) Y4 = compress(ravelmask, ma.filled(Y[0:-1,1:]).ravel()) npoly = len(X1) xy = np.concatenate((X1[:,newaxis], Y1[:,newaxis], X2[:,newaxis], Y2[:,newaxis], X3[:,newaxis], Y3[:,newaxis], X4[:,newaxis], Y4[:,newaxis], X1[:,newaxis], Y1[:,newaxis]), axis=1) verts = xy.reshape((npoly, 5, 2)) #verts = zip(zip(X1,Y1),zip(X2,Y2),zip(X3,Y3),zip(X4,Y4)) C = compress(ravelmask, ma.filled(C[0:Ny-1,0:Nx-1]).ravel()) if shading == 'faceted': edgecolors = (0,0,0,1), linewidths = (0.25,) else: edgecolors = 'face' linewidths = (1.0,) kwargs.setdefault('edgecolors', edgecolors) kwargs.setdefault('antialiaseds', (0,)) kwargs.setdefault('linewidths', linewidths) collection = mcoll.PolyCollection(verts, **kwargs) collection.set_alpha(alpha) collection.set_array(C) if norm is not None: assert(isinstance(norm, mcolors.Normalize)) if cmap is not None: assert(isinstance(cmap, mcolors.Colormap)) collection.set_cmap(cmap) collection.set_norm(norm) if vmin is not None or vmax is not None: collection.set_clim(vmin, vmax) else: collection.autoscale_None() self.grid(False) x = X.compressed() y = Y.compressed() minx = np.amin(x) maxx = np.amax(x) miny = np.amin(y) maxy = np.amax(y) corners = (minx, miny), (maxx, maxy) self.update_datalim( corners) self.autoscale_view() self.add_collection(collection) return collection pcolor.__doc__ = cbook.dedent(pcolor.__doc__) % martist.kwdocd def pcolormesh(self, *args, **kwargs): """ call signatures:: pcolormesh(C) pcolormesh(X, Y, C) pcolormesh(C, **kwargs) *C* may be a masked array, but *X* and *Y* may not. Masked array support is implemented via *cmap* and *norm*; in contrast, :func:`~matplotlib.pyplot.pcolor` simply does not draw quadrilaterals with masked colors or vertices. Keyword arguments: *cmap*: [ None | Colormap ] A :class:`matplotlib.cm.Colormap` instance. If None, use rc settings. *norm*: [ None | Normalize ] A :class:`matplotlib.colors.Normalize` instance is used to scale luminance data to 0,1. If None, defaults to :func:`normalize`. *vmin*/*vmax*: [ None | scalar ] *vmin* and *vmax* are used in conjunction with *norm* to normalize luminance data. If either are *None*, the min and max of the color array *C* is used. If you pass a *norm* instance, *vmin* and *vmax* will be ignored. *shading*: [ 'flat' | 'faceted' ] If 'faceted', a black grid is drawn around each rectangle; if 'flat', edges are not drawn. Default is 'flat', contrary to Matlab(TM). This kwarg is deprecated; please use 'edgecolors' instead: * shading='flat' -- edgecolors='None' * shading='faceted -- edgecolors='k' *edgecolors*: [ None | 'None' | color | color sequence] If None, the rc setting is used by default. If 'None', edges will not be visible. An mpl color or sequence of colors will set the edge color *alpha*: 0 <= scalar <= 1 the alpha blending value Return value is a :class:`matplotlib.collection.QuadMesh` object. kwargs can be used to control the :class:`matplotlib.collections.QuadMesh` properties: %(QuadMesh)s .. seealso:: :func:`~matplotlib.pyplot.pcolor`: For an explanation of the grid orientation and the expansion of 1-D *X* and/or *Y* to 2-D arrays. """ if not self._hold: self.cla() alpha = kwargs.pop('alpha', 1.0) norm = kwargs.pop('norm', None) cmap = kwargs.pop('cmap', None) vmin = kwargs.pop('vmin', None) vmax = kwargs.pop('vmax', None) shading = kwargs.pop('shading', 'flat') edgecolors = kwargs.pop('edgecolors', 'None') antialiased = kwargs.pop('antialiased', False) X, Y, C = self._pcolorargs('pcolormesh', *args) Ny, Nx = X.shape # convert to one dimensional arrays C = ma.ravel(C[0:Ny-1, 0:Nx-1]) # data point in each cell is value at # lower left corner X = X.ravel() Y = Y.ravel() coords = np.zeros(((Nx * Ny), 2), dtype=float) coords[:, 0] = X coords[:, 1] = Y if shading == 'faceted' or edgecolors != 'None': showedges = 1 else: showedges = 0 collection = mcoll.QuadMesh( Nx - 1, Ny - 1, coords, showedges, antialiased=antialiased) # kwargs are not used collection.set_alpha(alpha) collection.set_array(C) if norm is not None: assert(isinstance(norm, mcolors.Normalize)) if cmap is not None: assert(isinstance(cmap, mcolors.Colormap)) collection.set_cmap(cmap) collection.set_norm(norm) if vmin is not None or vmax is not None: collection.set_clim(vmin, vmax) else: collection.autoscale_None() self.grid(False) minx = np.amin(X) maxx = np.amax(X) miny = np.amin(Y) maxy = np.amax(Y) corners = (minx, miny), (maxx, maxy) self.update_datalim( corners) self.autoscale_view() self.add_collection(collection) return collection pcolormesh.__doc__ = cbook.dedent(pcolormesh.__doc__) % martist.kwdocd def pcolorfast(self, *args, **kwargs): """ pseudocolor plot of a 2-D array Experimental; this is a version of pcolor that does not draw lines, that provides the fastest possible rendering with the Agg backend, and that can handle any quadrilateral grid. Call signatures:: pcolor(C, **kwargs) pcolor(xr, yr, C, **kwargs) pcolor(x, y, C, **kwargs) pcolor(X, Y, C, **kwargs) C is the 2D array of color values corresponding to quadrilateral cells. Let (nr, nc) be its shape. C may be a masked array. ``pcolor(C, **kwargs)`` is equivalent to ``pcolor([0,nc], [0,nr], C, **kwargs)`` *xr*, *yr* specify the ranges of *x* and *y* corresponding to the rectangular region bounding *C*. If:: xr = [x0, x1] and:: yr = [y0,y1] then *x* goes from *x0* to *x1* as the second index of *C* goes from 0 to *nc*, etc. (*x0*, *y0*) is the outermost corner of cell (0,0), and (*x1*, *y1*) is the outermost corner of cell (*nr*-1, *nc*-1). All cells are rectangles of the same size. This is the fastest version. *x*, *y* are 1D arrays of length *nc* +1 and *nr* +1, respectively, giving the x and y boundaries of the cells. Hence the cells are rectangular but the grid may be nonuniform. The speed is intermediate. (The grid is checked, and if found to be uniform the fast version is used.) *X* and *Y* are 2D arrays with shape (*nr* +1, *nc* +1) that specify the (x,y) coordinates of the corners of the colored quadrilaterals; the quadrilateral for C[i,j] has corners at (X[i,j],Y[i,j]), (X[i,j+1],Y[i,j+1]), (X[i+1,j],Y[i+1,j]), (X[i+1,j+1],Y[i+1,j+1]). The cells need not be rectangular. This is the most general, but the slowest to render. It may produce faster and more compact output using ps, pdf, and svg backends, however. Note that the the column index corresponds to the x-coordinate, and the row index corresponds to y; for details, see the "Grid Orientation" section below. Optional keyword arguments: *cmap*: [ None | Colormap ] A cm Colormap instance from cm. If None, use rc settings. *norm*: [ None | Normalize ] An mcolors.Normalize instance is used to scale luminance data to 0,1. If None, defaults to normalize() *vmin*/*vmax*: [ None | scalar ] *vmin* and *vmax* are used in conjunction with norm to normalize luminance data. If either are *None*, the min and max of the color array *C* is used. If you pass a norm instance, *vmin* and *vmax* will be *None*. *alpha*: 0 <= scalar <= 1 the alpha blending value Return value is an image if a regular or rectangular grid is specified, and a QuadMesh collection in the general quadrilateral case. """ if not self._hold: self.cla() alpha = kwargs.pop('alpha', 1.0) norm = kwargs.pop('norm', None) cmap = kwargs.pop('cmap', None) vmin = kwargs.pop('vmin', None) vmax = kwargs.pop('vmax', None) if norm is not None: assert(isinstance(norm, mcolors.Normalize)) if cmap is not None: assert(isinstance(cmap, mcolors.Colormap)) C = args[-1] nr, nc = C.shape if len(args) == 1: style = "image" x = [0, nc] y = [0, nr] elif len(args) == 3: x, y = args[:2] x = np.asarray(x) y = np.asarray(y) if x.ndim == 1 and y.ndim == 1: if x.size == 2 and y.size == 2: style = "image" else: dx = np.diff(x) dy = np.diff(y) if (np.ptp(dx) < 0.01*np.abs(dx.mean()) and np.ptp(dy) < 0.01*np.abs(dy.mean())): style = "image" else: style = "pcolorimage" elif x.ndim == 2 and y.ndim == 2: style = "quadmesh" else: raise TypeError("arguments do not match valid signatures") else: raise TypeError("need 1 argument or 3 arguments") if style == "quadmesh": # convert to one dimensional arrays # This should also be moved to the QuadMesh class C = ma.ravel(C) # data point in each cell is value # at lower left corner X = x.ravel() Y = y.ravel() Nx = nc+1 Ny = nr+1 # The following needs to be cleaned up; the renderer # requires separate contiguous arrays for X and Y, # but the QuadMesh class requires the 2D array. coords = np.empty(((Nx * Ny), 2), np.float64) coords[:, 0] = X coords[:, 1] = Y # The QuadMesh class can also be changed to # handle relevant superclass kwargs; the initializer # should do much more than it does now. collection = mcoll.QuadMesh(nc, nr, coords, 0) collection.set_alpha(alpha) collection.set_array(C) collection.set_cmap(cmap) collection.set_norm(norm) self.add_collection(collection) xl, xr, yb, yt = X.min(), X.max(), Y.min(), Y.max() ret = collection else: # One of the image styles: xl, xr, yb, yt = x[0], x[-1], y[0], y[-1] if style == "image": im = mimage.AxesImage(self, cmap, norm, interpolation='nearest', origin='lower', extent=(xl, xr, yb, yt), **kwargs) im.set_data(C) im.set_alpha(alpha) self.images.append(im) ret = im if style == "pcolorimage": im = mimage.PcolorImage(self, x, y, C, cmap=cmap, norm=norm, alpha=alpha, **kwargs) self.images.append(im) ret = im self._set_artist_props(ret) if vmin is not None or vmax is not None: ret.set_clim(vmin, vmax) else: ret.autoscale_None() self.update_datalim(np.array([[xl, yb], [xr, yt]])) self.autoscale_view(tight=True) return ret def contour(self, *args, **kwargs): if not self._hold: self.cla() kwargs['filled'] = False return mcontour.ContourSet(self, *args, **kwargs) contour.__doc__ = mcontour.ContourSet.contour_doc def contourf(self, *args, **kwargs): if not self._hold: self.cla() kwargs['filled'] = True return mcontour.ContourSet(self, *args, **kwargs) contourf.__doc__ = mcontour.ContourSet.contour_doc def clabel(self, CS, *args, **kwargs): return CS.clabel(*args, **kwargs) clabel.__doc__ = mcontour.ContourSet.clabel.__doc__ def table(self, **kwargs): """ call signature:: table(cellText=None, cellColours=None, cellLoc='right', colWidths=None, rowLabels=None, rowColours=None, rowLoc='left', colLabels=None, colColours=None, colLoc='center', loc='bottom', bbox=None): Add a table to the current axes. Returns a :class:`matplotlib.table.Table` instance. For finer grained control over tables, use the :class:`~matplotlib.table.Table` class and add it to the axes with :meth:`~matplotlib.axes.Axes.add_table`. Thanks to John Gill for providing the class and table. kwargs control the :class:`~matplotlib.table.Table` properties: %(Table)s """ return mtable.table(self, **kwargs) table.__doc__ = cbook.dedent(table.__doc__) % martist.kwdocd def twinx(self): """ call signature:: ax = twinx() create a twin of Axes for generating a plot with a sharex x-axis but independent y axis. The y-axis of self will have ticks on left and the returned axes will have ticks on the right """ ax2 = self.figure.add_axes(self.get_position(True), sharex=self, frameon=False) ax2.yaxis.tick_right() ax2.yaxis.set_label_position('right') self.yaxis.tick_left() return ax2 def twiny(self): """ call signature:: ax = twiny() create a twin of Axes for generating a plot with a shared y-axis but independent x axis. The x-axis of self will have ticks on bottom and the returned axes will have ticks on the top """ ax2 = self.figure.add_axes(self.get_position(True), sharey=self, frameon=False) ax2.xaxis.tick_top() ax2.xaxis.set_label_position('top') self.xaxis.tick_bottom() return ax2 def get_shared_x_axes(self): 'Return a copy of the shared axes Grouper object for x axes' return self._shared_x_axes def get_shared_y_axes(self): 'Return a copy of the shared axes Grouper object for y axes' return self._shared_y_axes #### Data analysis def hist(self, x, bins=10, range=None, normed=False, cumulative=False, bottom=None, histtype='bar', align='mid', orientation='vertical', rwidth=None, log=False, **kwargs): """ call signature:: hist(x, bins=10, range=None, normed=False, cumulative=False, bottom=None, histtype='bar', align='mid', orientation='vertical', rwidth=None, log=False, **kwargs) Compute and draw the histogram of *x*. The return value is a tuple (*n*, *bins*, *patches*) or ([*n0*, *n1*, ...], *bins*, [*patches0*, *patches1*,...]) if the input contains multiple data. Keyword arguments: *bins*: Either an integer number of bins or a sequence giving the bins. *x* are the data to be binned. *x* can be an array, a 2D array with multiple data in its columns, or a list of arrays with data of different length. Note, if *bins* is an integer input argument=numbins, *bins* + 1 bin edges will be returned, compatible with the semantics of :func:`numpy.histogram` with the *new* = True argument. Unequally spaced bins are supported if *bins* is a sequence. *range*: The lower and upper range of the bins. Lower and upper outliers are ignored. If not provided, *range* is (x.min(), x.max()). Range has no effect if *bins* is a sequence. If *bins* is a sequence or *range* is specified, autoscaling is set off (*autoscale_on* is set to *False*) and the xaxis limits are set to encompass the full specified bin range. *normed*: If *True*, the first element of the return tuple will be the counts normalized to form a probability density, i.e., ``n/(len(x)*dbin)``. In a probability density, the integral of the histogram should be 1; you can verify that with a trapezoidal integration of the probability density function:: pdf, bins, patches = ax.hist(...) print np.sum(pdf * np.diff(bins)) *cumulative*: If *True*, then a histogram is computed where each bin gives the counts in that bin plus all bins for smaller values. The last bin gives the total number of datapoints. If *normed* is also *True* then the histogram is normalized such that the last bin equals 1. If *cumulative* evaluates to less than 0 (e.g. -1), the direction of accumulation is reversed. In this case, if *normed* is also *True*, then the histogram is normalized such that the first bin equals 1. *histtype*: [ 'bar' | 'barstacked' | 'step' | 'stepfilled' ] The type of histogram to draw. - 'bar' is a traditional bar-type histogram. If multiple data are given the bars are aranged side by side. - 'barstacked' is a bar-type histogram where multiple data are stacked on top of each other. - 'step' generates a lineplot that is by default unfilled. - 'stepfilled' generates a lineplot that is by default filled. *align*: ['left' | 'mid' | 'right' ] Controls how the histogram is plotted. - 'left': bars are centered on the left bin edges. - 'mid': bars are centered between the bin edges. - 'right': bars are centered on the right bin edges. *orientation*: [ 'horizontal' | 'vertical' ] If 'horizontal', :func:`~matplotlib.pyplot.barh` will be used for bar-type histograms and the *bottom* kwarg will be the left edges. *rwidth*: The relative width of the bars as a fraction of the bin width. If *None*, automatically compute the width. Ignored if *histtype* = 'step' or 'stepfilled'. *log*: If *True*, the histogram axis will be set to a log scale. If *log* is *True* and *x* is a 1D array, empty bins will be filtered out and only the non-empty (*n*, *bins*, *patches*) will be returned. kwargs are used to update the properties of the hist :class:`~matplotlib.patches.Rectangle` instances: %(Rectangle)s You can use labels for your histogram, and only the first :class:`~matplotlib.patches.Rectangle` gets the label (the others get the magic string '_nolegend_'. This will make the histograms work in the intuitive way for bar charts:: ax.hist(10+2*np.random.randn(1000), label='men') ax.hist(12+3*np.random.randn(1000), label='women', alpha=0.5) ax.legend() **Example:** .. plot:: mpl_examples/pylab_examples/histogram_demo.py """ if not self._hold: self.cla() # NOTE: the range keyword overwrites the built-in func range !!! # needs to be fixed in with numpy !!! if kwargs.get('width') is not None: raise DeprecationWarning( 'hist now uses the rwidth to give relative width ' 'and not absolute width') try: # make sure a copy is created: don't use asarray x = np.transpose(np.array(x)) if len(x.shape)==1: x.shape = (1,x.shape[0]) elif len(x.shape)==2 and x.shape[1]<x.shape[0]: warnings.warn('2D hist should be nsamples x nvariables; ' 'this looks transposed') except ValueError: # multiple hist with data of different length if iterable(x[0]) and not is_string_like(x[0]): tx = [] for i in xrange(len(x)): tx.append( np.array(x[i]) ) x = tx else: raise ValueError, 'Can not use providet data to create a histogram' # Check whether bins or range are given explicitly. In that # case do not autoscale axes. binsgiven = (cbook.iterable(bins) or range != None) # check the version of the numpy if np.__version__ < "1.3": # version 1.1 and 1.2 hist_kwargs = dict(range=range, normed=bool(normed), new=True) else: # version 1.3 and later, drop new=True hist_kwargs = dict(range=range, normed=bool(normed)) n = [] for i in xrange(len(x)): # this will automatically overwrite bins, # so that each histogram uses the same bins m, bins = np.histogram(x[i], bins, **hist_kwargs) n.append(m) if cumulative: slc = slice(None) if cbook.is_numlike(cumulative) and cumulative < 0: slc = slice(None,None,-1) if normed: n = [(m * np.diff(bins))[slc].cumsum()[slc] for m in n] else: n = [m[slc].cumsum()[slc] for m in n] patches = [] if histtype.startswith('bar'): totwidth = np.diff(bins) stacked = False if rwidth is not None: dr = min(1., max(0., rwidth)) elif len(n)>1: dr = 0.8 else: dr = 1.0 if histtype=='bar': width = dr*totwidth/len(n) dw = width if len(n)>1: boffset = -0.5*dr*totwidth*(1.-1./len(n)) else: boffset = 0.0 elif histtype=='barstacked': width = dr*totwidth boffset, dw = 0.0, 0.0 stacked = True else: raise ValueError, 'invalid histtype: %s' % histtype if align == 'mid' or align == 'edge': boffset += 0.5*totwidth elif align == 'right': boffset += totwidth elif align != 'left' and align != 'center': raise ValueError, 'invalid align: %s' % align if orientation == 'horizontal': for m in n: color = self._get_lines._get_next_cycle_color() patch = self.barh(bins[:-1]+boffset, m, height=width, left=bottom, align='center', log=log, color=color) patches.append(patch) if stacked: if bottom is None: bottom = 0.0 bottom += m boffset += dw elif orientation == 'vertical': for m in n: color = self._get_lines._get_next_cycle_color() patch = self.bar(bins[:-1]+boffset, m, width=width, bottom=bottom, align='center', log=log, color=color) patches.append(patch) if stacked: if bottom is None: bottom = 0.0 bottom += m boffset += dw else: raise ValueError, 'invalid orientation: %s' % orientation elif histtype.startswith('step'): x = np.zeros( 2*len(bins), np.float ) y = np.zeros( 2*len(bins), np.float ) x[0::2], x[1::2] = bins, bins if align == 'left' or align == 'center': x -= 0.5*(bins[1]-bins[0]) elif align == 'right': x += 0.5*(bins[1]-bins[0]) elif align != 'mid' and align != 'edge': raise ValueError, 'invalid align: %s' % align if log: y[0],y[-1] = 1e-100, 1e-100 if orientation == 'horizontal': self.set_xscale('log') elif orientation == 'vertical': self.set_yscale('log') fill = False if histtype == 'stepfilled': fill = True elif histtype != 'step': raise ValueError, 'invalid histtype: %s' % histtype for m in n: y[1:-1:2], y[2::2] = m, m if orientation == 'horizontal': x,y = y,x elif orientation != 'vertical': raise ValueError, 'invalid orientation: %s' % orientation color = self._get_lines._get_next_cycle_color() if fill: patches.append( self.fill(x, y, closed=False, facecolor=color) ) else: patches.append( self.fill(x, y, closed=False, edgecolor=color, fill=False) ) # adopted from adjust_x/ylim part of the bar method if orientation == 'horizontal': xmin, xmax = 0, self.dataLim.intervalx[1] for m in n: xmin = np.amin(m[m!=0]) # filter out the 0 height bins xmin = max(xmin*0.9, 1e-100) self.dataLim.intervalx = (xmin, xmax) elif orientation == 'vertical': ymin, ymax = 0, self.dataLim.intervaly[1] for m in n: ymin = np.amin(m[m!=0]) # filter out the 0 height bins ymin = max(ymin*0.9, 1e-100) self.dataLim.intervaly = (ymin, ymax) self.autoscale_view() else: raise ValueError, 'invalid histtype: %s' % histtype label = kwargs.pop('label', '') for patch in patches: for p in patch: p.update(kwargs) p.set_label(label) label = '_nolegend_' if binsgiven: self.set_autoscale_on(False) if orientation == 'vertical': self.autoscale_view(scalex=False, scaley=True) XL = self.xaxis.get_major_locator().view_limits(bins[0], bins[-1]) self.set_xbound(XL) else: self.autoscale_view(scalex=True, scaley=False) YL = self.yaxis.get_major_locator().view_limits(bins[0], bins[-1]) self.set_ybound(YL) if len(n)==1: return n[0], bins, cbook.silent_list('Patch', patches[0]) else: return n, bins, cbook.silent_list('Lists of Patches', patches) hist.__doc__ = cbook.dedent(hist.__doc__) % martist.kwdocd def psd(self, x, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none, window=mlab.window_hanning, noverlap=0, pad_to=None, sides='default', scale_by_freq=None, **kwargs): """ call signature:: psd(x, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none, window=mlab.window_hanning, noverlap=0, pad_to=None, sides='default', scale_by_freq=None, **kwargs) The power spectral density by Welch's average periodogram method. The vector *x* is divided into *NFFT* length segments. Each segment is detrended by function *detrend* and windowed by function *window*. *noverlap* gives the length of the overlap between segments. The :math:`|\mathrm{fft}(i)|^2` of each segment :math:`i` are averaged to compute *Pxx*, with a scaling to correct for power loss due to windowing. *Fs* is the sampling frequency. %(PSD)s *Fc*: integer The center frequency of *x* (defaults to 0), which offsets the x extents of the plot to reflect the frequency range used when a signal is acquired and then filtered and downsampled to baseband. Returns the tuple (*Pxx*, *freqs*). For plotting, the power is plotted as :math:`10\log_{10}(P_{xx})` for decibels, though *Pxx* itself is returned. References: Bendat & Piersol -- Random Data: Analysis and Measurement Procedures, John Wiley & Sons (1986) kwargs control the :class:`~matplotlib.lines.Line2D` properties: %(Line2D)s **Example:** .. plot:: mpl_examples/pylab_examples/psd_demo.py """ if not self._hold: self.cla() pxx, freqs = mlab.psd(x, NFFT, Fs, detrend, window, noverlap, pad_to, sides, scale_by_freq) pxx.shape = len(freqs), freqs += Fc if scale_by_freq in (None, True): psd_units = 'dB/Hz' else: psd_units = 'dB' self.plot(freqs, 10*np.log10(pxx), **kwargs) self.set_xlabel('Frequency') self.set_ylabel('Power Spectral Density (%s)' % psd_units) self.grid(True) vmin, vmax = self.viewLim.intervaly intv = vmax-vmin logi = int(np.log10(intv)) if logi==0: logi=.1 step = 10*logi #print vmin, vmax, step, intv, math.floor(vmin), math.ceil(vmax)+1 ticks = np.arange(math.floor(vmin), math.ceil(vmax)+1, step) self.set_yticks(ticks) return pxx, freqs psd_doc_dict = dict() psd_doc_dict.update(martist.kwdocd) psd_doc_dict.update(mlab.kwdocd) psd_doc_dict['PSD'] = cbook.dedent(psd_doc_dict['PSD']) psd.__doc__ = cbook.dedent(psd.__doc__) % psd_doc_dict def csd(self, x, y, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none, window=mlab.window_hanning, noverlap=0, pad_to=None, sides='default', scale_by_freq=None, **kwargs): """ call signature:: csd(x, y, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none, window=mlab.window_hanning, noverlap=0, pad_to=None, sides='default', scale_by_freq=None, **kwargs) The cross spectral density :math:`P_{xy}` by Welch's average periodogram method. The vectors *x* and *y* are divided into *NFFT* length segments. Each segment is detrended by function *detrend* and windowed by function *window*. The product of the direct FFTs of *x* and *y* are averaged over each segment to compute :math:`P_{xy}`, with a scaling to correct for power loss due to windowing. Returns the tuple (*Pxy*, *freqs*). *P* is the cross spectrum (complex valued), and :math:`10\log_{10}|P_{xy}|` is plotted. %(PSD)s *Fc*: integer The center frequency of *x* (defaults to 0), which offsets the x extents of the plot to reflect the frequency range used when a signal is acquired and then filtered and downsampled to baseband. References: Bendat & Piersol -- Random Data: Analysis and Measurement Procedures, John Wiley & Sons (1986) kwargs control the Line2D properties: %(Line2D)s **Example:** .. plot:: mpl_examples/pylab_examples/csd_demo.py .. seealso: :meth:`psd` For a description of the optional parameters. """ if not self._hold: self.cla() pxy, freqs = mlab.csd(x, y, NFFT, Fs, detrend, window, noverlap, pad_to, sides, scale_by_freq) pxy.shape = len(freqs), # pxy is complex freqs += Fc self.plot(freqs, 10*np.log10(np.absolute(pxy)), **kwargs) self.set_xlabel('Frequency') self.set_ylabel('Cross Spectrum Magnitude (dB)') self.grid(True) vmin, vmax = self.viewLim.intervaly intv = vmax-vmin step = 10*int(np.log10(intv)) ticks = np.arange(math.floor(vmin), math.ceil(vmax)+1, step) self.set_yticks(ticks) return pxy, freqs csd.__doc__ = cbook.dedent(csd.__doc__) % psd_doc_dict def cohere(self, x, y, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none, window=mlab.window_hanning, noverlap=0, pad_to=None, sides='default', scale_by_freq=None, **kwargs): """ call signature:: cohere(x, y, NFFT=256, Fs=2, Fc=0, detrend = mlab.detrend_none, window = mlab.window_hanning, noverlap=0, pad_to=None, sides='default', scale_by_freq=None, **kwargs) cohere the coherence between *x* and *y*. Coherence is the normalized cross spectral density: .. math:: C_{xy} = \\frac{|P_{xy}|^2}{P_{xx}P_{yy}} %(PSD)s *Fc*: integer The center frequency of *x* (defaults to 0), which offsets the x extents of the plot to reflect the frequency range used when a signal is acquired and then filtered and downsampled to baseband. The return value is a tuple (*Cxy*, *f*), where *f* are the frequencies of the coherence vector. kwargs are applied to the lines. References: * Bendat & Piersol -- Random Data: Analysis and Measurement Procedures, John Wiley & Sons (1986) kwargs control the :class:`~matplotlib.lines.Line2D` properties of the coherence plot: %(Line2D)s **Example:** .. plot:: mpl_examples/pylab_examples/cohere_demo.py """ if not self._hold: self.cla() cxy, freqs = mlab.cohere(x, y, NFFT, Fs, detrend, window, noverlap, scale_by_freq) freqs += Fc self.plot(freqs, cxy, **kwargs) self.set_xlabel('Frequency') self.set_ylabel('Coherence') self.grid(True) return cxy, freqs cohere.__doc__ = cbook.dedent(cohere.__doc__) % psd_doc_dict def specgram(self, x, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none, window=mlab.window_hanning, noverlap=128, cmap=None, xextent=None, pad_to=None, sides='default', scale_by_freq=None): """ call signature:: specgram(x, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none, window=mlab.window_hanning, noverlap=128, cmap=None, xextent=None, pad_to=None, sides='default', scale_by_freq=None) Compute a spectrogram of data in *x*. Data are split into *NFFT* length segments and the PSD of each section is computed. The windowing function *window* is applied to each segment, and the amount of overlap of each segment is specified with *noverlap*. %(PSD)s *Fc*: integer The center frequency of *x* (defaults to 0), which offsets the y extents of the plot to reflect the frequency range used when a signal is acquired and then filtered and downsampled to baseband. *cmap*: A :class:`matplotlib.cm.Colormap` instance; if *None* use default determined by rc *xextent*: The image extent along the x-axis. xextent = (xmin,xmax) The default is (0,max(bins)), where bins is the return value from :func:`mlab.specgram` Return value is (*Pxx*, *freqs*, *bins*, *im*): - *bins* are the time points the spectrogram is calculated over - *freqs* is an array of frequencies - *Pxx* is a len(times) x len(freqs) array of power - *im* is a :class:`matplotlib.image.AxesImage` instance Note: If *x* is real (i.e. non-complex), only the positive spectrum is shown. If *x* is complex, both positive and negative parts of the spectrum are shown. This can be overridden using the *sides* keyword argument. **Example:** .. plot:: mpl_examples/pylab_examples/specgram_demo.py """ if not self._hold: self.cla() Pxx, freqs, bins = mlab.specgram(x, NFFT, Fs, detrend, window, noverlap, pad_to, sides, scale_by_freq) Z = 10. * np.log10(Pxx) Z = np.flipud(Z) if xextent is None: xextent = 0, np.amax(bins) xmin, xmax = xextent freqs += Fc extent = xmin, xmax, freqs[0], freqs[-1] im = self.imshow(Z, cmap, extent=extent) self.axis('auto') return Pxx, freqs, bins, im specgram.__doc__ = cbook.dedent(specgram.__doc__) % psd_doc_dict del psd_doc_dict #So that this does not become an Axes attribute def spy(self, Z, precision=0, marker=None, markersize=None, aspect='equal', **kwargs): """ call signature:: spy(Z, precision=0, marker=None, markersize=None, aspect='equal', **kwargs) ``spy(Z)`` plots the sparsity pattern of the 2-D array *Z*. If *precision* is 0, any non-zero value will be plotted; else, values of :math:`|Z| > precision` will be plotted. For :class:`scipy.sparse.spmatrix` instances, there is a special case: if *precision* is 'present', any value present in the array will be plotted, even if it is identically zero. The array will be plotted as it would be printed, with the first index (row) increasing down and the second index (column) increasing to the right. By default aspect is 'equal', so that each array element occupies a square space; set the aspect kwarg to 'auto' to allow the plot to fill the plot box, or to any scalar number to specify the aspect ratio of an array element directly. Two plotting styles are available: image or marker. Both are available for full arrays, but only the marker style works for :class:`scipy.sparse.spmatrix` instances. If *marker* and *markersize* are *None*, an image will be returned and any remaining kwargs are passed to :func:`~matplotlib.pyplot.imshow`; else, a :class:`~matplotlib.lines.Line2D` object will be returned with the value of marker determining the marker type, and any remaining kwargs passed to the :meth:`~matplotlib.axes.Axes.plot` method. If *marker* and *markersize* are *None*, useful kwargs include: * *cmap* * *alpha* .. seealso:: :func:`~matplotlib.pyplot.imshow` For controlling colors, e.g. cyan background and red marks, use:: cmap = mcolors.ListedColormap(['c','r']) If *marker* or *markersize* is not *None*, useful kwargs include: * *marker* * *markersize* * *color* Useful values for *marker* include: * 's' square (default) * 'o' circle * '.' point * ',' pixel .. seealso:: :func:`~matplotlib.pyplot.plot` """ if precision is None: precision = 0 warnings.DeprecationWarning("Use precision=0 instead of None") # 2008/10/03 if marker is None and markersize is None and hasattr(Z, 'tocoo'): marker = 's' if marker is None and markersize is None: Z = np.asarray(Z) mask = np.absolute(Z)>precision if 'cmap' not in kwargs: kwargs['cmap'] = mcolors.ListedColormap(['w', 'k'], name='binary') nr, nc = Z.shape extent = [-0.5, nc-0.5, nr-0.5, -0.5] ret = self.imshow(mask, interpolation='nearest', aspect=aspect, extent=extent, origin='upper', **kwargs) else: if hasattr(Z, 'tocoo'): c = Z.tocoo() if precision == 'present': y = c.row x = c.col else: nonzero = np.absolute(c.data) > precision y = c.row[nonzero] x = c.col[nonzero] else: Z = np.asarray(Z) nonzero = np.absolute(Z)>precision y, x = np.nonzero(nonzero) if marker is None: marker = 's' if markersize is None: markersize = 10 marks = mlines.Line2D(x, y, linestyle='None', marker=marker, markersize=markersize, **kwargs) self.add_line(marks) nr, nc = Z.shape self.set_xlim(xmin=-0.5, xmax=nc-0.5) self.set_ylim(ymin=nr-0.5, ymax=-0.5) self.set_aspect(aspect) ret = marks self.title.set_y(1.05) self.xaxis.tick_top() self.xaxis.set_ticks_position('both') self.xaxis.set_major_locator(mticker.MaxNLocator(nbins=9, steps=[1, 2, 5, 10], integer=True)) self.yaxis.set_major_locator(mticker.MaxNLocator(nbins=9, steps=[1, 2, 5, 10], integer=True)) return ret def matshow(self, Z, **kwargs): ''' Plot a matrix or array as an image. The matrix will be shown the way it would be printed, with the first row at the top. Row and column numbering is zero-based. Argument: *Z* anything that can be interpreted as a 2-D array kwargs all are passed to :meth:`~matplotlib.axes.Axes.imshow`. :meth:`matshow` sets defaults for *extent*, *origin*, *interpolation*, and *aspect*; use care in overriding the *extent* and *origin* kwargs, because they interact. (Also, if you want to change them, you probably should be using imshow directly in your own version of matshow.) Returns: an :class:`matplotlib.image.AxesImage` instance. ''' Z = np.asarray(Z) nr, nc = Z.shape extent = [-0.5, nc-0.5, nr-0.5, -0.5] kw = {'extent': extent, 'origin': 'upper', 'interpolation': 'nearest', 'aspect': 'equal'} # (already the imshow default) kw.update(kwargs) im = self.imshow(Z, **kw) self.title.set_y(1.05) self.xaxis.tick_top() self.xaxis.set_ticks_position('both') self.xaxis.set_major_locator(mticker.MaxNLocator(nbins=9, steps=[1, 2, 5, 10], integer=True)) self.yaxis.set_major_locator(mticker.MaxNLocator(nbins=9, steps=[1, 2, 5, 10], integer=True)) return im class SubplotBase: """ Base class for subplots, which are :class:`Axes` instances with additional methods to facilitate generating and manipulating a set of :class:`Axes` within a figure. """ def __init__(self, fig, *args, **kwargs): """ *fig* is a :class:`matplotlib.figure.Figure` instance. *args* is the tuple (*numRows*, *numCols*, *plotNum*), where the array of subplots in the figure has dimensions *numRows*, *numCols*, and where *plotNum* is the number of the subplot being created. *plotNum* starts at 1 in the upper left corner and increases to the right. If *numRows* <= *numCols* <= *plotNum* < 10, *args* can be the decimal integer *numRows* * 100 + *numCols* * 10 + *plotNum*. """ self.figure = fig if len(args)==1: s = str(args[0]) if len(s) != 3: raise ValueError('Argument to subplot must be a 3 digits long') rows, cols, num = map(int, s) elif len(args)==3: rows, cols, num = args else: raise ValueError( 'Illegal argument to subplot') total = rows*cols num -= 1 # convert from matlab to python indexing # ie num in range(0,total) if num >= total: raise ValueError( 'Subplot number exceeds total subplots') self._rows = rows self._cols = cols self._num = num self.update_params() # _axes_class is set in the subplot_class_factory self._axes_class.__init__(self, fig, self.figbox, **kwargs) def get_geometry(self): 'get the subplot geometry, eg 2,2,3' return self._rows, self._cols, self._num+1 # COVERAGE NOTE: Never used internally or from examples def change_geometry(self, numrows, numcols, num): 'change subplot geometry, eg. from 1,1,1 to 2,2,3' self._rows = numrows self._cols = numcols self._num = num-1 self.update_params() self.set_position(self.figbox) def update_params(self): 'update the subplot position from fig.subplotpars' rows = self._rows cols = self._cols num = self._num pars = self.figure.subplotpars left = pars.left right = pars.right bottom = pars.bottom top = pars.top wspace = pars.wspace hspace = pars.hspace totWidth = right-left totHeight = top-bottom figH = totHeight/(rows + hspace*(rows-1)) sepH = hspace*figH figW = totWidth/(cols + wspace*(cols-1)) sepW = wspace*figW rowNum, colNum = divmod(num, cols) figBottom = top - (rowNum+1)*figH - rowNum*sepH figLeft = left + colNum*(figW + sepW) self.figbox = mtransforms.Bbox.from_bounds(figLeft, figBottom, figW, figH) self.rowNum = rowNum self.colNum = colNum self.numRows = rows self.numCols = cols if 0: print 'rcn', rows, cols, num print 'lbrt', left, bottom, right, top print 'self.figBottom', self.figBottom print 'self.figLeft', self.figLeft print 'self.figW', self.figW print 'self.figH', self.figH print 'self.rowNum', self.rowNum print 'self.colNum', self.colNum print 'self.numRows', self.numRows print 'self.numCols', self.numCols def is_first_col(self): return self.colNum==0 def is_first_row(self): return self.rowNum==0 def is_last_row(self): return self.rowNum==self.numRows-1 def is_last_col(self): return self.colNum==self.numCols-1 # COVERAGE NOTE: Never used internally or from examples def label_outer(self): """ set the visible property on ticklabels so xticklabels are visible only if the subplot is in the last row and yticklabels are visible only if the subplot is in the first column """ lastrow = self.is_last_row() firstcol = self.is_first_col() for label in self.get_xticklabels(): label.set_visible(lastrow) for label in self.get_yticklabels(): label.set_visible(firstcol) _subplot_classes = {} def subplot_class_factory(axes_class=None): # This makes a new class that inherits from SubclassBase and the # given axes_class (which is assumed to be a subclass of Axes). # This is perhaps a little bit roundabout to make a new class on # the fly like this, but it means that a new Subplot class does # not have to be created for every type of Axes. if axes_class is None: axes_class = Axes new_class = _subplot_classes.get(axes_class) if new_class is None: new_class = new.classobj("%sSubplot" % (axes_class.__name__), (SubplotBase, axes_class), {'_axes_class': axes_class}) _subplot_classes[axes_class] = new_class return new_class # This is provided for backward compatibility Subplot = subplot_class_factory() martist.kwdocd['Axes'] = martist.kwdocd['Subplot'] = martist.kwdoc(Axes) """ # this is some discarded code I was using to find the minimum positive # data point for some log scaling fixes. I realized there was a # cleaner way to do it, but am keeping this around as an example for # how to get the data out of the axes. Might want to make something # like this a method one day, or better yet make get_verts an Artist # method minx, maxx = self.get_xlim() if minx<=0 or maxx<=0: # find the min pos value in the data xs = [] for line in self.lines: xs.extend(line.get_xdata(orig=False)) for patch in self.patches: xs.extend([x for x,y in patch.get_verts()]) for collection in self.collections: xs.extend([x for x,y in collection.get_verts()]) posx = [x for x in xs if x>0] if len(posx): minx = min(posx) maxx = max(posx) # warning, probably breaks inverted axis self.set_xlim((0.1*minx, maxx)) """
agpl-3.0