repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
sdiazb/airflow
airflow/www/views.py
3
97885
# -*- coding: utf-8 -*- # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from past.builtins import basestring, unicode import ast import os import pkg_resources import socket from functools import wraps from datetime import datetime, timedelta import dateutil.parser import copy import json import bleach from collections import defaultdict import inspect from textwrap import dedent import traceback import sqlalchemy as sqla from sqlalchemy import or_, desc, and_, union_all from flask import ( redirect, url_for, request, Markup, Response, current_app, render_template, make_response) from flask_admin import BaseView, expose, AdminIndexView from flask_admin.contrib.sqla import ModelView from flask_admin.actions import action from flask_admin.babel import lazy_gettext from flask_admin.tools import iterdecode from flask_login import flash from flask._compat import PY2 from jinja2.sandbox import ImmutableSandboxedEnvironment import markdown import nvd3 from wtforms import ( Form, SelectField, TextAreaField, PasswordField, StringField, validators) from pygments import highlight, lexers from pygments.formatters import HtmlFormatter import airflow from airflow import configuration as conf from airflow import models from airflow import settings from airflow.api.common.experimental.mark_tasks import set_dag_run_state from airflow.exceptions import AirflowException from airflow.settings import Session from airflow.models import XCom, DagRun from airflow.ti_deps.dep_context import DepContext, QUEUE_DEPS, SCHEDULER_DEPS from airflow.models import BaseOperator from airflow.operators.subdag_operator import SubDagOperator from airflow.utils.logging import LoggingMixin, get_log_filename from airflow.utils.json import json_ser from airflow.utils.state import State from airflow.utils.db import provide_session from airflow.utils.helpers import alchemy_to_dict from airflow.utils import logging as log_utils from airflow.utils.dates import infer_time_unit, scale_time_units from airflow.www import utils as wwwutils from airflow.www.forms import DateTimeForm, DateTimeWithNumRunsForm from airflow.www.validators import GreaterEqualThan from airflow.configuration import AirflowConfigException QUERY_LIMIT = 100000 CHART_LIMIT = 200000 dagbag = models.DagBag(settings.DAGS_FOLDER) login_required = airflow.login.login_required current_user = airflow.login.current_user logout_user = airflow.login.logout_user FILTER_BY_OWNER = False if conf.getboolean('webserver', 'FILTER_BY_OWNER'): # filter_by_owner if authentication is enabled and filter_by_owner is true FILTER_BY_OWNER = not current_app.config['LOGIN_DISABLED'] def dag_link(v, c, m, p): dag_id = bleach.clean(m.dag_id) url = url_for( 'airflow.graph', dag_id=dag_id) return Markup( '<a href="{}">{}</a>'.format(url, dag_id)) def log_url_formatter(v, c, m, p): return Markup( '<a href="{m.log_url}">' ' <span class="glyphicon glyphicon-book" aria-hidden="true">' '</span></a>').format(**locals()) def task_instance_link(v, c, m, p): dag_id = bleach.clean(m.dag_id) task_id = bleach.clean(m.task_id) url = url_for( 'airflow.task', dag_id=dag_id, task_id=task_id, execution_date=m.execution_date.isoformat()) url_root = url_for( 'airflow.graph', dag_id=dag_id, root=task_id, execution_date=m.execution_date.isoformat()) return Markup( """ <span style="white-space: nowrap;"> <a href="{url}">{task_id}</a> <a href="{url_root}" title="Filter on this task and upstream"> <span class="glyphicon glyphicon-filter" style="margin-left: 0px;" aria-hidden="true"></span> </a> </span> """.format(**locals())) def state_token(state): color = State.color(state) return Markup( '<span class="label" style="background-color:{color};">' '{state}</span>'.format(**locals())) def state_f(v, c, m, p): return state_token(m.state) def duration_f(v, c, m, p): if m.end_date and m.duration: return timedelta(seconds=m.duration) def datetime_f(v, c, m, p): attr = getattr(m, p) dttm = attr.isoformat() if attr else '' if datetime.now().isoformat()[:4] == dttm[:4]: dttm = dttm[5:] return Markup("<nobr>{}</nobr>".format(dttm)) def nobr_f(v, c, m, p): return Markup("<nobr>{}</nobr>".format(getattr(m, p))) def label_link(v, c, m, p): try: default_params = ast.literal_eval(m.default_params) except: default_params = {} url = url_for( 'airflow.chart', chart_id=m.id, iteration_no=m.iteration_no, **default_params) return Markup("<a href='{url}'>{m.label}</a>".format(**locals())) def pool_link(v, c, m, p): url = '/admin/taskinstance/?flt1_pool_equals=' + m.pool return Markup("<a href='{url}'>{m.pool}</a>".format(**locals())) def pygment_html_render(s, lexer=lexers.TextLexer): return highlight( s, lexer(), HtmlFormatter(linenos=True), ) def render(obj, lexer): out = "" if isinstance(obj, basestring): out += pygment_html_render(obj, lexer) elif isinstance(obj, (tuple, list)): for i, s in enumerate(obj): out += "<div>List item #{}</div>".format(i) out += "<div>" + pygment_html_render(s, lexer) + "</div>" elif isinstance(obj, dict): for k, v in obj.items(): out += '<div>Dict item "{}"</div>'.format(k) out += "<div>" + pygment_html_render(v, lexer) + "</div>" return out def wrapped_markdown(s): return '<div class="rich_doc">' + markdown.markdown(s) + "</div>" attr_renderer = { 'bash_command': lambda x: render(x, lexers.BashLexer), 'hql': lambda x: render(x, lexers.SqlLexer), 'sql': lambda x: render(x, lexers.SqlLexer), 'doc': lambda x: render(x, lexers.TextLexer), 'doc_json': lambda x: render(x, lexers.JsonLexer), 'doc_rst': lambda x: render(x, lexers.RstLexer), 'doc_yaml': lambda x: render(x, lexers.YamlLexer), 'doc_md': wrapped_markdown, 'python_callable': lambda x: render( inspect.getsource(x), lexers.PythonLexer), } def data_profiling_required(f): ''' Decorator for views requiring data profiling access ''' @wraps(f) def decorated_function(*args, **kwargs): if ( current_app.config['LOGIN_DISABLED'] or (not current_user.is_anonymous() and current_user.data_profiling()) ): return f(*args, **kwargs) else: flash("This page requires data profiling privileges", "error") return redirect(url_for('admin.index')) return decorated_function def fused_slots(v, c, m, p): url = ( '/admin/taskinstance/' + '?flt1_pool_equals=' + m.pool + '&flt2_state_equals=running') return Markup("<a href='{0}'>{1}</a>".format(url, m.used_slots())) def fqueued_slots(v, c, m, p): url = ( '/admin/taskinstance/' + '?flt1_pool_equals=' + m.pool + '&flt2_state_equals=queued&sort=10&desc=1') return Markup("<a href='{0}'>{1}</a>".format(url, m.queued_slots())) def recurse_tasks(tasks, task_ids, dag_ids, task_id_to_dag): if isinstance(tasks, list): for task in tasks: recurse_tasks(task, task_ids, dag_ids, task_id_to_dag) return if isinstance(tasks, SubDagOperator): subtasks = tasks.subdag.tasks dag_ids.append(tasks.subdag.dag_id) for subtask in subtasks: if subtask.task_id not in task_ids: task_ids.append(subtask.task_id) task_id_to_dag[subtask.task_id] = tasks.subdag recurse_tasks(subtasks, task_ids, dag_ids, task_id_to_dag) if isinstance(tasks, BaseOperator): task_id_to_dag[tasks.task_id] = tasks.dag def get_chart_height(dag): """ TODO(aoen): See [AIRFLOW-1263] We use the number of tasks in the DAG as a heuristic to approximate the size of generated chart (otherwise the charts are tiny and unreadable when DAGs have a large number of tasks). Ideally nvd3 should allow for dynamic-height charts, that is charts that take up space based on the size of the components within. """ return 600 + len(dag.tasks) * 10 class Airflow(BaseView): def is_visible(self): return False @expose('/') @login_required def index(self): return self.render('airflow/dags.html') @expose('/chart_data') @data_profiling_required @wwwutils.gzipped # @cache.cached(timeout=3600, key_prefix=wwwutils.make_cache_key) def chart_data(self): from airflow import macros import pandas as pd session = settings.Session() chart_id = request.args.get('chart_id') csv = request.args.get('csv') == "true" chart = session.query(models.Chart).filter_by(id=chart_id).first() db = session.query( models.Connection).filter_by(conn_id=chart.conn_id).first() session.expunge_all() session.commit() session.close() payload = {} payload['state'] = 'ERROR' payload['error'] = '' # Processing templated fields try: args = ast.literal_eval(chart.default_params) if type(args) is not type(dict()): raise AirflowException('Not a dict') except: args = {} payload['error'] += ( "Default params is not valid, string has to evaluate as " "a Python dictionary. ") request_dict = {k: request.args.get(k) for k in request.args} args.update(request_dict) args['macros'] = macros sandbox = ImmutableSandboxedEnvironment() sql = sandbox.from_string(chart.sql).render(**args) label = sandbox.from_string(chart.label).render(**args) payload['sql_html'] = Markup(highlight( sql, lexers.SqlLexer(), # Lexer call HtmlFormatter(noclasses=True)) ) payload['label'] = label pd.set_option('display.max_colwidth', 100) hook = db.get_hook() try: df = hook.get_pandas_df( wwwutils.limit_sql(sql, CHART_LIMIT, conn_type=db.conn_type)) df = df.fillna(0) except Exception as e: payload['error'] += "SQL execution failed. Details: " + str(e) if csv: return Response( response=df.to_csv(index=False), status=200, mimetype="application/text") if not payload['error'] and len(df) == CHART_LIMIT: payload['warning'] = ( "Data has been truncated to {0}" " rows. Expect incomplete results.").format(CHART_LIMIT) if not payload['error'] and len(df) == 0: payload['error'] += "Empty result set. " elif ( not payload['error'] and chart.sql_layout == 'series' and chart.chart_type != "datatable" and len(df.columns) < 3): payload['error'] += "SQL needs to return at least 3 columns. " elif ( not payload['error'] and chart.sql_layout == 'columns'and len(df.columns) < 2): payload['error'] += "SQL needs to return at least 2 columns. " elif not payload['error']: import numpy as np chart_type = chart.chart_type data = None if chart.show_datatable or chart_type == "datatable": data = df.to_dict(orient="split") data['columns'] = [{'title': c} for c in data['columns']] payload['data'] = data # Trying to convert time to something Highcharts likes x_col = 1 if chart.sql_layout == 'series' else 0 if chart.x_is_date: try: # From string to datetime df[df.columns[x_col]] = pd.to_datetime( df[df.columns[x_col]]) df[df.columns[x_col]] = df[df.columns[x_col]].apply( lambda x: int(x.strftime("%s")) * 1000) except Exception as e: payload['error'] = "Time conversion failed" if chart_type == 'datatable': payload['state'] = 'SUCCESS' return wwwutils.json_response(payload) else: if chart.sql_layout == 'series': # User provides columns (series, x, y) xaxis_label = df.columns[1] yaxis_label = df.columns[2] df[df.columns[2]] = df[df.columns[2]].astype(np.float) df = df.pivot_table( index=df.columns[1], columns=df.columns[0], values=df.columns[2], aggfunc=np.sum) else: # User provides columns (x, y, metric1, metric2, ...) xaxis_label = df.columns[0] yaxis_label = 'y' df.index = df[df.columns[0]] df = df.sort(df.columns[0]) del df[df.columns[0]] for col in df.columns: df[col] = df[col].astype(np.float) df = df.fillna(0) NVd3ChartClass = chart_mapping.get(chart.chart_type) NVd3ChartClass = getattr(nvd3, NVd3ChartClass) nvd3_chart = NVd3ChartClass(x_is_date=chart.x_is_date) for col in df.columns: nvd3_chart.add_serie(name=col, y=df[col].tolist(), x=df[col].index.tolist()) try: nvd3_chart.buildcontent() payload['chart_type'] = nvd3_chart.__class__.__name__ payload['htmlcontent'] = nvd3_chart.htmlcontent except Exception as e: payload['error'] = str(e) payload['state'] = 'SUCCESS' payload['request_dict'] = request_dict return wwwutils.json_response(payload) @expose('/chart') @data_profiling_required def chart(self): session = settings.Session() chart_id = request.args.get('chart_id') embed = request.args.get('embed') chart = session.query(models.Chart).filter_by(id=chart_id).first() session.expunge_all() session.commit() session.close() NVd3ChartClass = chart_mapping.get(chart.chart_type) if not NVd3ChartClass: flash( "Not supported anymore as the license was incompatible, " "sorry", "danger") redirect('/admin/chart/') sql = "" if chart.show_sql: sql = Markup(highlight( chart.sql, lexers.SqlLexer(), # Lexer call HtmlFormatter(noclasses=True)) ) return self.render( 'airflow/nvd3.html', chart=chart, title="Airflow - Chart", sql=sql, label=chart.label, embed=embed) @expose('/dag_stats') def dag_stats(self): ds = models.DagStat session = Session() ds.update() qry = ( session.query(ds.dag_id, ds.state, ds.count) ) data = {} for dag_id, state, count in qry: if dag_id not in data: data[dag_id] = {} data[dag_id][state] = count payload = {} for dag in dagbag.dags.values(): payload[dag.safe_dag_id] = [] for state in State.dag_states: try: count = data[dag.dag_id][state] except Exception: count = 0 d = { 'state': state, 'count': count, 'dag_id': dag.dag_id, 'color': State.color(state) } payload[dag.safe_dag_id].append(d) return wwwutils.json_response(payload) @expose('/task_stats') def task_stats(self): TI = models.TaskInstance DagRun = models.DagRun Dag = models.DagModel session = Session() LastDagRun = ( session.query(DagRun.dag_id, sqla.func.max(DagRun.execution_date).label('execution_date')) .join(Dag, Dag.dag_id == DagRun.dag_id) .filter(DagRun.state != State.RUNNING) .filter(Dag.is_active == True) .group_by(DagRun.dag_id) .subquery('last_dag_run') ) RunningDagRun = ( session.query(DagRun.dag_id, DagRun.execution_date) .join(Dag, Dag.dag_id == DagRun.dag_id) .filter(DagRun.state == State.RUNNING) .filter(Dag.is_active == True) .subquery('running_dag_run') ) # Select all task_instances from active dag_runs. # If no dag_run is active, return task instances from most recent dag_run. LastTI = ( session.query(TI.dag_id.label('dag_id'), TI.state.label('state')) .join(LastDagRun, and_( LastDagRun.c.dag_id == TI.dag_id, LastDagRun.c.execution_date == TI.execution_date)) ) RunningTI = ( session.query(TI.dag_id.label('dag_id'), TI.state.label('state')) .join(RunningDagRun, and_( RunningDagRun.c.dag_id == TI.dag_id, RunningDagRun.c.execution_date == TI.execution_date)) ) UnionTI = union_all(LastTI, RunningTI).alias('union_ti') qry = ( session.query(UnionTI.c.dag_id, UnionTI.c.state, sqla.func.count()) .group_by(UnionTI.c.dag_id, UnionTI.c.state) ) data = {} for dag_id, state, count in qry: if dag_id not in data: data[dag_id] = {} data[dag_id][state] = count session.commit() session.close() payload = {} for dag in dagbag.dags.values(): payload[dag.safe_dag_id] = [] for state in State.task_states: try: count = data[dag.dag_id][state] except: count = 0 d = { 'state': state, 'count': count, 'dag_id': dag.dag_id, 'color': State.color(state) } payload[dag.safe_dag_id].append(d) return wwwutils.json_response(payload) @expose('/code') @login_required def code(self): dag_id = request.args.get('dag_id') dag = dagbag.get_dag(dag_id) title = dag_id try: with open(dag.fileloc, 'r') as f: code = f.read() html_code = highlight( code, lexers.PythonLexer(), HtmlFormatter(linenos=True)) except IOError as e: html_code = str(e) return self.render( 'airflow/dag_code.html', html_code=html_code, dag=dag, title=title, root=request.args.get('root'), demo_mode=conf.getboolean('webserver', 'demo_mode')) @expose('/dag_details') @login_required def dag_details(self): dag_id = request.args.get('dag_id') dag = dagbag.get_dag(dag_id) title = "DAG details" session = settings.Session() TI = models.TaskInstance states = ( session.query(TI.state, sqla.func.count(TI.dag_id)) .filter(TI.dag_id == dag_id) .group_by(TI.state) .all() ) return self.render( 'airflow/dag_details.html', dag=dag, title=title, states=states, State=State) @current_app.errorhandler(404) def circles(self): return render_template( 'airflow/circles.html', hostname=socket.getfqdn()), 404 @current_app.errorhandler(500) def show_traceback(self): from airflow.utils import asciiart as ascii_ return render_template( 'airflow/traceback.html', hostname=socket.getfqdn(), nukular=ascii_.nukular, info=traceback.format_exc()), 500 @expose('/noaccess') def noaccess(self): return self.render('airflow/noaccess.html') @expose('/headers') def headers(self): d = { 'headers': {k: v for k, v in request.headers}, } if hasattr(current_user, 'is_superuser'): d['is_superuser'] = current_user.is_superuser() d['data_profiling'] = current_user.data_profiling() d['is_anonymous'] = current_user.is_anonymous() d['is_authenticated'] = current_user.is_authenticated() if hasattr(current_user, 'username'): d['username'] = current_user.username return wwwutils.json_response(d) @expose('/pickle_info') @login_required def pickle_info(self): d = {} dag_id = request.args.get('dag_id') dags = [dagbag.dags.get(dag_id)] if dag_id else dagbag.dags.values() for dag in dags: if not dag.is_subdag: d[dag.dag_id] = dag.pickle_info() return wwwutils.json_response(d) @expose('/login', methods=['GET', 'POST']) def login(self): return airflow.login.login(self, request) @expose('/logout') def logout(self): logout_user() flash('You have been logged out.') return redirect(url_for('admin.index')) @expose('/rendered') @login_required @wwwutils.action_logging def rendered(self): dag_id = request.args.get('dag_id') task_id = request.args.get('task_id') execution_date = request.args.get('execution_date') dttm = dateutil.parser.parse(execution_date) form = DateTimeForm(data={'execution_date': dttm}) dag = dagbag.get_dag(dag_id) task = copy.copy(dag.get_task(task_id)) ti = models.TaskInstance(task=task, execution_date=dttm) try: ti.render_templates() except Exception as e: flash("Error rendering template: " + str(e), "error") title = "Rendered Template" html_dict = {} for template_field in task.__class__.template_fields: content = getattr(task, template_field) if template_field in attr_renderer: html_dict[template_field] = attr_renderer[template_field](content) else: html_dict[template_field] = ( "<pre><code>" + str(content) + "</pre></code>") return self.render( 'airflow/ti_code.html', html_dict=html_dict, dag=dag, task_id=task_id, execution_date=execution_date, form=form, title=title,) def _get_log(self, ti, log_filename): """ Get log for a specific try number. :param ti: current task instance :param log_filename: relative filename to fetch the log """ # TODO: This is not the best practice. Log handler and # reader should be configurable and separated from the # frontend. The new airflow logging design is in progress. # Please refer to #2422(https://github.com/apache/incubator-airflow/pull/2422). log = '' # Load remote log remote_log_base = conf.get('core', 'REMOTE_BASE_LOG_FOLDER') remote_log_loaded = False if remote_log_base: remote_log_path = os.path.join(remote_log_base, log_filename) remote_log = "" # S3 if remote_log_path.startswith('s3:/'): s3_log = log_utils.S3Log() if s3_log.log_exists(remote_log_path): remote_log += s3_log.read(remote_log_path, return_error=True) remote_log_loaded = True # GCS elif remote_log_path.startswith('gs:/'): gcs_log = log_utils.GCSLog() if gcs_log.log_exists(remote_log_path): remote_log += gcs_log.read(remote_log_path, return_error=True) remote_log_loaded = True # unsupported else: remote_log += '*** Unsupported remote log location.' if remote_log: log += ('*** Reading remote log from {}.\n{}\n'.format( remote_log_path, remote_log)) # We only want to display local log if the remote log is not loaded. if not remote_log_loaded: # Load local log local_log_base = os.path.expanduser(conf.get('core', 'BASE_LOG_FOLDER')) local_log_path = os.path.join(local_log_base, log_filename) if os.path.exists(local_log_path): try: f = open(local_log_path) log += "*** Reading local log.\n" + "".join(f.readlines()) f.close() except: log = "*** Failed to load local log file: {0}.\n".format(local_log_path) else: WORKER_LOG_SERVER_PORT = conf.get('celery', 'WORKER_LOG_SERVER_PORT') url = os.path.join( "http://{ti.hostname}:{WORKER_LOG_SERVER_PORT}/log", log_filename ).format(**locals()) log += "*** Log file isn't local.\n" log += "*** Fetching here: {url}\n".format(**locals()) try: import requests timeout = None # No timeout try: timeout = conf.getint('webserver', 'log_fetch_timeout_sec') except (AirflowConfigException, ValueError): pass response = requests.get(url, timeout=timeout) response.raise_for_status() log += '\n' + response.text except: log += "*** Failed to fetch log file from work r.\n".format( **locals()) if PY2 and not isinstance(log, unicode): log = log.decode('utf-8') return log @expose('/log') @login_required @wwwutils.action_logging def log(self): dag_id = request.args.get('dag_id') task_id = request.args.get('task_id') execution_date = request.args.get('execution_date') dttm = dateutil.parser.parse(execution_date) form = DateTimeForm(data={'execution_date': dttm}) dag = dagbag.get_dag(dag_id) TI = models.TaskInstance session = Session() ti = session.query(TI).filter( TI.dag_id == dag_id, TI.task_id == task_id, TI.execution_date == dttm).first() logs = [] if ti is None: logs = ["*** Task instance did not exist in the DB\n"] else: logs = [''] * ti.try_number for try_number in range(ti.try_number): log_filename = get_log_filename( dag_id, task_id, execution_date, try_number) logs[try_number] += self._get_log(ti, log_filename) return self.render( 'airflow/ti_log.html', logs=logs, dag=dag, title="Log by attempts", task_id=task_id, execution_date=execution_date, form=form) @expose('/task') @login_required @wwwutils.action_logging def task(self): TI = models.TaskInstance dag_id = request.args.get('dag_id') task_id = request.args.get('task_id') # Carrying execution_date through, even though it's irrelevant for # this context execution_date = request.args.get('execution_date') dttm = dateutil.parser.parse(execution_date) form = DateTimeForm(data={'execution_date': dttm}) dag = dagbag.get_dag(dag_id) if not dag or task_id not in dag.task_ids: flash( "Task [{}.{}] doesn't seem to exist" " at the moment".format(dag_id, task_id), "error") return redirect('/admin/') task = copy.copy(dag.get_task(task_id)) task.resolve_template_files() ti = TI(task=task, execution_date=dttm) ti.refresh_from_db() ti_attrs = [] for attr_name in dir(ti): if not attr_name.startswith('_'): attr = getattr(ti, attr_name) if type(attr) != type(self.task): ti_attrs.append((attr_name, str(attr))) task_attrs = [] for attr_name in dir(task): if not attr_name.startswith('_'): attr = getattr(task, attr_name) if type(attr) != type(self.task) and \ attr_name not in attr_renderer: task_attrs.append((attr_name, str(attr))) # Color coding the special attributes that are code special_attrs_rendered = {} for attr_name in attr_renderer: if hasattr(task, attr_name): source = getattr(task, attr_name) special_attrs_rendered[attr_name] = attr_renderer[attr_name](source) no_failed_deps_result = [( "Unknown", dedent("""\ All dependencies are met but the task instance is not running. In most cases this just means that the task will probably be scheduled soon unless:<br/> - The scheduler is down or under heavy load<br/> {} <br/> If this task instance does not start soon please contact your Airflow administrator for assistance.""" .format( "- This task instance already ran and had it's state changed manually (e.g. cleared in the UI)<br/>" if ti.state == State.NONE else "")))] # Use the scheduler's context to figure out which dependencies are not met dep_context = DepContext(SCHEDULER_DEPS) failed_dep_reasons = [(dep.dep_name, dep.reason) for dep in ti.get_failed_dep_statuses( dep_context=dep_context)] title = "Task Instance Details" return self.render( 'airflow/task.html', task_attrs=task_attrs, ti_attrs=ti_attrs, failed_dep_reasons=failed_dep_reasons or no_failed_deps_result, task_id=task_id, execution_date=execution_date, special_attrs_rendered=special_attrs_rendered, form=form, dag=dag, title=title) @expose('/xcom') @login_required @wwwutils.action_logging def xcom(self): dag_id = request.args.get('dag_id') task_id = request.args.get('task_id') # Carrying execution_date through, even though it's irrelevant for # this context execution_date = request.args.get('execution_date') dttm = dateutil.parser.parse(execution_date) form = DateTimeForm(data={'execution_date': dttm}) dag = dagbag.get_dag(dag_id) if not dag or task_id not in dag.task_ids: flash( "Task [{}.{}] doesn't seem to exist" " at the moment".format(dag_id, task_id), "error") return redirect('/admin/') session = Session() xcomlist = session.query(XCom).filter( XCom.dag_id == dag_id, XCom.task_id == task_id, XCom.execution_date == dttm).all() attributes = [] for xcom in xcomlist: if not xcom.key.startswith('_'): attributes.append((xcom.key, xcom.value)) title = "XCom" return self.render( 'airflow/xcom.html', attributes=attributes, task_id=task_id, execution_date=execution_date, form=form, dag=dag, title=title) @expose('/run') @login_required @wwwutils.action_logging @wwwutils.notify_owner def run(self): dag_id = request.args.get('dag_id') task_id = request.args.get('task_id') origin = request.args.get('origin') dag = dagbag.get_dag(dag_id) task = dag.get_task(task_id) execution_date = request.args.get('execution_date') execution_date = dateutil.parser.parse(execution_date) ignore_all_deps = request.args.get('ignore_all_deps') == "true" ignore_task_deps = request.args.get('ignore_task_deps') == "true" ignore_ti_state = request.args.get('ignore_ti_state') == "true" try: from airflow.executors import GetDefaultExecutor from airflow.executors import CeleryExecutor executor = GetDefaultExecutor() if not isinstance(executor, CeleryExecutor): flash("Only works with the CeleryExecutor, sorry", "error") return redirect(origin) except ImportError: # in case CeleryExecutor cannot be imported it is not active either flash("Only works with the CeleryExecutor, sorry", "error") return redirect(origin) ti = models.TaskInstance(task=task, execution_date=execution_date) ti.refresh_from_db() # Make sure the task instance can be queued dep_context = DepContext( deps=QUEUE_DEPS, ignore_all_deps=ignore_all_deps, ignore_task_deps=ignore_task_deps, ignore_ti_state=ignore_ti_state) failed_deps = list(ti.get_failed_dep_statuses(dep_context=dep_context)) if failed_deps: failed_deps_str = ", ".join( ["{}: {}".format(dep.dep_name, dep.reason) for dep in failed_deps]) flash("Could not queue task instance for execution, dependencies not met: " "{}".format(failed_deps_str), "error") return redirect(origin) executor.start() executor.queue_task_instance( ti, ignore_all_deps=ignore_all_deps, ignore_task_deps=ignore_task_deps, ignore_ti_state=ignore_ti_state) executor.heartbeat() flash( "Sent {} to the message queue, " "it should start any moment now.".format(ti)) return redirect(origin) @expose('/trigger') @login_required @wwwutils.action_logging @wwwutils.notify_owner def trigger(self): dag_id = request.args.get('dag_id') origin = request.args.get('origin') or "/admin/" dag = dagbag.get_dag(dag_id) if not dag: flash("Cannot find dag {}".format(dag_id)) return redirect(origin) execution_date = datetime.now() run_id = "manual__{0}".format(execution_date.isoformat()) dr = DagRun.find(dag_id=dag_id, run_id=run_id) if dr: flash("This run_id {} already exists".format(run_id)) return redirect(origin) run_conf = {} dag.create_dagrun( run_id=run_id, execution_date=execution_date, state=State.RUNNING, conf=run_conf, external_trigger=True ) flash( "Triggered {}, " "it should start any moment now.".format(dag_id)) return redirect(origin) def _clear_dag_tis(self, dag, start_date, end_date, origin, recursive=False, confirmed=False): if confirmed: count = dag.clear( start_date=start_date, end_date=end_date, include_subdags=recursive) flash("{0} task instances have been cleared".format(count)) return redirect(origin) tis = dag.clear( start_date=start_date, end_date=end_date, include_subdags=recursive, dry_run=True) if not tis: flash("No task instances to clear", 'error') response = redirect(origin) else: details = "\n".join([str(t) for t in tis]) response = self.render( 'airflow/confirm.html', message=("Here's the list of task instances you are about " "to clear:"), details=details) return response @expose('/clear') @login_required @wwwutils.action_logging @wwwutils.notify_owner def clear(self): dag_id = request.args.get('dag_id') task_id = request.args.get('task_id') origin = request.args.get('origin') dag = dagbag.get_dag(dag_id) execution_date = request.args.get('execution_date') execution_date = dateutil.parser.parse(execution_date) confirmed = request.args.get('confirmed') == "true" upstream = request.args.get('upstream') == "true" downstream = request.args.get('downstream') == "true" future = request.args.get('future') == "true" past = request.args.get('past') == "true" recursive = request.args.get('recursive') == "true" dag = dag.sub_dag( task_regex=r"^{0}$".format(task_id), include_downstream=downstream, include_upstream=upstream) end_date = execution_date if not future else None start_date = execution_date if not past else None return self._clear_dag_tis(dag, start_date, end_date, origin, recursive=recursive, confirmed=confirmed) @expose('/dagrun_clear') @login_required @wwwutils.action_logging @wwwutils.notify_owner def dagrun_clear(self): dag_id = request.args.get('dag_id') task_id = request.args.get('task_id') origin = request.args.get('origin') execution_date = request.args.get('execution_date') confirmed = request.args.get('confirmed') == "true" dag = dagbag.get_dag(dag_id) execution_date = dateutil.parser.parse(execution_date) start_date = execution_date end_date = execution_date return self._clear_dag_tis(dag, start_date, end_date, origin, recursive=True, confirmed=confirmed) @expose('/blocked') @login_required def blocked(self): session = settings.Session() DR = models.DagRun dags = ( session.query(DR.dag_id, sqla.func.count(DR.id)) .filter(DR.state == State.RUNNING) .group_by(DR.dag_id) .all() ) payload = [] for dag_id, active_dag_runs in dags: max_active_runs = 0 if dag_id in dagbag.dags: max_active_runs = dagbag.dags[dag_id].max_active_runs payload.append({ 'dag_id': dag_id, 'active_dag_run': active_dag_runs, 'max_active_runs': max_active_runs, }) return wwwutils.json_response(payload) @expose('/dagrun_success') @login_required @wwwutils.action_logging @wwwutils.notify_owner def dagrun_success(self): dag_id = request.args.get('dag_id') execution_date = request.args.get('execution_date') confirmed = request.args.get('confirmed') == 'true' origin = request.args.get('origin') if not execution_date: flash('Invalid execution date', 'error') return redirect(origin) execution_date = dateutil.parser.parse(execution_date) dag = dagbag.get_dag(dag_id) if not dag: flash('Cannot find DAG: {}'.format(dag_id), 'error') return redirect(origin) new_dag_state = set_dag_run_state(dag, execution_date, state=State.SUCCESS, commit=confirmed) if confirmed: flash('Marked success on {} task instances'.format(len(new_dag_state))) return redirect(origin) else: details = '\n'.join([str(t) for t in new_dag_state]) response = self.render('airflow/confirm.html', message=("Here's the list of task instances you are " "about to mark as successful:"), details=details) return response @expose('/success') @login_required @wwwutils.action_logging @wwwutils.notify_owner def success(self): dag_id = request.args.get('dag_id') task_id = request.args.get('task_id') origin = request.args.get('origin') dag = dagbag.get_dag(dag_id) task = dag.get_task(task_id) task.dag = dag execution_date = request.args.get('execution_date') execution_date = dateutil.parser.parse(execution_date) confirmed = request.args.get('confirmed') == "true" upstream = request.args.get('upstream') == "true" downstream = request.args.get('downstream') == "true" future = request.args.get('future') == "true" past = request.args.get('past') == "true" if not dag: flash("Cannot find DAG: {}".format(dag_id)) return redirect(origin) if not task: flash("Cannot find task {} in DAG {}".format(task_id, dag.dag_id)) return redirect(origin) from airflow.api.common.experimental.mark_tasks import set_state if confirmed: altered = set_state(task=task, execution_date=execution_date, upstream=upstream, downstream=downstream, future=future, past=past, state=State.SUCCESS, commit=True) flash("Marked success on {} task instances".format(len(altered))) return redirect(origin) to_be_altered = set_state(task=task, execution_date=execution_date, upstream=upstream, downstream=downstream, future=future, past=past, state=State.SUCCESS, commit=False) details = "\n".join([str(t) for t in to_be_altered]) response = self.render("airflow/confirm.html", message=("Here's the list of task instances you are " "about to mark as successful:"), details=details) return response @expose('/tree') @login_required @wwwutils.gzipped @wwwutils.action_logging def tree(self): dag_id = request.args.get('dag_id') blur = conf.getboolean('webserver', 'demo_mode') dag = dagbag.get_dag(dag_id) root = request.args.get('root') if root: dag = dag.sub_dag( task_regex=root, include_downstream=False, include_upstream=True) session = settings.Session() base_date = request.args.get('base_date') num_runs = request.args.get('num_runs') num_runs = int(num_runs) if num_runs else 25 if base_date: base_date = dateutil.parser.parse(base_date) else: base_date = dag.latest_execution_date or datetime.now() dates = dag.date_range(base_date, num=-abs(num_runs)) min_date = dates[0] if dates else datetime(2000, 1, 1) DR = models.DagRun dag_runs = ( session.query(DR) .filter( DR.dag_id==dag.dag_id, DR.execution_date<=base_date, DR.execution_date>=min_date) .all() ) dag_runs = { dr.execution_date: alchemy_to_dict(dr) for dr in dag_runs} dates = sorted(list(dag_runs.keys())) max_date = max(dates) if dates else None tis = dag.get_task_instances( session, start_date=min_date, end_date=base_date) task_instances = {} for ti in tis: tid = alchemy_to_dict(ti) dr = dag_runs.get(ti.execution_date) tid['external_trigger'] = dr['external_trigger'] if dr else False task_instances[(ti.task_id, ti.execution_date)] = tid expanded = [] # The default recursion traces every path so that tree view has full # expand/collapse functionality. After 5,000 nodes we stop and fall # back on a quick DFS search for performance. See PR #320. node_count = [0] node_limit = 5000 / max(1, len(dag.roots)) def recurse_nodes(task, visited): visited.add(task) node_count[0] += 1 children = [ recurse_nodes(t, visited) for t in task.upstream_list if node_count[0] < node_limit or t not in visited] # D3 tree uses children vs _children to define what is # expanded or not. The following block makes it such that # repeated nodes are collapsed by default. children_key = 'children' if task.task_id not in expanded: expanded.append(task.task_id) elif children: children_key = "_children" def set_duration(tid): if (isinstance(tid, dict) and tid.get("state") == State.RUNNING and tid["start_date"] is not None): d = datetime.now() - dateutil.parser.parse(tid["start_date"]) tid["duration"] = d.total_seconds() return tid return { 'name': task.task_id, 'instances': [ set_duration(task_instances.get((task.task_id, d))) or { 'execution_date': d.isoformat(), 'task_id': task.task_id } for d in dates], children_key: children, 'num_dep': len(task.upstream_list), 'operator': task.task_type, 'retries': task.retries, 'owner': task.owner, 'start_date': task.start_date, 'end_date': task.end_date, 'depends_on_past': task.depends_on_past, 'ui_color': task.ui_color, } data = { 'name': '[DAG]', 'children': [recurse_nodes(t, set()) for t in dag.roots], 'instances': [ dag_runs.get(d) or {'execution_date': d.isoformat()} for d in dates], } data = json.dumps(data, indent=4, default=json_ser) session.commit() session.close() form = DateTimeWithNumRunsForm(data={'base_date': max_date, 'num_runs': num_runs}) return self.render( 'airflow/tree.html', operators=sorted( list(set([op.__class__ for op in dag.tasks])), key=lambda x: x.__name__ ), root=root, form=form, dag=dag, data=data, blur=blur) @expose('/graph') @login_required @wwwutils.gzipped @wwwutils.action_logging def graph(self): session = settings.Session() dag_id = request.args.get('dag_id') blur = conf.getboolean('webserver', 'demo_mode') dag = dagbag.get_dag(dag_id) if dag_id not in dagbag.dags: flash('DAG "{0}" seems to be missing.'.format(dag_id), "error") return redirect('/admin/') root = request.args.get('root') if root: dag = dag.sub_dag( task_regex=root, include_upstream=True, include_downstream=False) arrange = request.args.get('arrange', dag.orientation) nodes = [] edges = [] for task in dag.tasks: nodes.append({ 'id': task.task_id, 'value': { 'label': task.task_id, 'labelStyle': "fill:{0};".format(task.ui_fgcolor), 'style': "fill:{0};".format(task.ui_color), } }) def get_upstream(task): for t in task.upstream_list: edge = { 'u': t.task_id, 'v': task.task_id, } if edge not in edges: edges.append(edge) get_upstream(t) for t in dag.roots: get_upstream(t) dttm = request.args.get('execution_date') if dttm: dttm = dateutil.parser.parse(dttm) else: dttm = dag.latest_execution_date or datetime.now().date() DR = models.DagRun drs = ( session.query(DR) .filter_by(dag_id=dag_id) .order_by(desc(DR.execution_date)).all() ) dr_choices = [] dr_state = None for dr in drs: dr_choices.append((dr.execution_date.isoformat(), dr.run_id)) if dttm == dr.execution_date: dr_state = dr.state class GraphForm(Form): execution_date = SelectField("DAG run", choices=dr_choices) arrange = SelectField("Layout", choices=( ('LR', "Left->Right"), ('RL', "Right->Left"), ('TB', "Top->Bottom"), ('BT', "Bottom->Top"), )) form = GraphForm( data={'execution_date': dttm.isoformat(), 'arrange': arrange}) task_instances = { ti.task_id: alchemy_to_dict(ti) for ti in dag.get_task_instances(session, dttm, dttm)} tasks = { t.task_id: { 'dag_id': t.dag_id, 'task_type': t.task_type, } for t in dag.tasks} if not tasks: flash("No tasks found", "error") session.commit() session.close() doc_md = markdown.markdown(dag.doc_md) if hasattr(dag, 'doc_md') and dag.doc_md else '' return self.render( 'airflow/graph.html', dag=dag, form=form, width=request.args.get('width', "100%"), height=request.args.get('height', "800"), execution_date=dttm.isoformat(), state_token=state_token(dr_state), doc_md=doc_md, arrange=arrange, operators=sorted( list(set([op.__class__ for op in dag.tasks])), key=lambda x: x.__name__ ), blur=blur, root=root or '', task_instances=json.dumps(task_instances, indent=2), tasks=json.dumps(tasks, indent=2), nodes=json.dumps(nodes, indent=2), edges=json.dumps(edges, indent=2),) @expose('/duration') @login_required @wwwutils.action_logging def duration(self): session = settings.Session() dag_id = request.args.get('dag_id') dag = dagbag.get_dag(dag_id) base_date = request.args.get('base_date') num_runs = request.args.get('num_runs') num_runs = int(num_runs) if num_runs else 25 if base_date: base_date = dateutil.parser.parse(base_date) else: base_date = dag.latest_execution_date or datetime.now() dates = dag.date_range(base_date, num=-abs(num_runs)) min_date = dates[0] if dates else datetime(2000, 1, 1) root = request.args.get('root') if root: dag = dag.sub_dag( task_regex=root, include_upstream=True, include_downstream=False) chart_height = get_chart_height(dag) chart = nvd3.lineChart( name="lineChart", x_is_date=True, height=chart_height, width="1200") cum_chart = nvd3.lineChart( name="cumLineChart", x_is_date=True, height=chart_height, width="1200") y = defaultdict(list) x = defaultdict(list) cum_y = defaultdict(list) tis = dag.get_task_instances( session, start_date=min_date, end_date=base_date) TF = models.TaskFail ti_fails = ( session .query(TF) .filter( TF.dag_id == dag.dag_id, TF.execution_date >= min_date, TF.execution_date <= base_date, TF.task_id.in_([t.task_id for t in dag.tasks])) .all() ) fails_totals = defaultdict(int) for tf in ti_fails: dict_key = (tf.dag_id, tf.task_id, tf.execution_date) fails_totals[dict_key] += tf.duration for ti in tis: if ti.duration: dttm = wwwutils.epoch(ti.execution_date) x[ti.task_id].append(dttm) y[ti.task_id].append(float(ti.duration)) fails_dict_key = (ti.dag_id, ti.task_id, ti.execution_date) fails_total = fails_totals[fails_dict_key] cum_y[ti.task_id].append(float(ti.duration + fails_total)) # determine the most relevant time unit for the set of task instance # durations for the DAG y_unit = infer_time_unit([d for t in y.values() for d in t]) cum_y_unit = infer_time_unit([d for t in cum_y.values() for d in t]) # update the y Axis on both charts to have the correct time units chart.create_y_axis('yAxis', format='.02f', custom_format=False, label='Duration ({})'.format(y_unit)) cum_chart.create_y_axis('yAxis', format='.02f', custom_format=False, label='Duration ({})'.format(cum_y_unit)) for task in dag.tasks: if x[task.task_id]: chart.add_serie(name=task.task_id, x=x[task.task_id], y=scale_time_units(y[task.task_id], y_unit)) cum_chart.add_serie(name=task.task_id, x=x[task.task_id], y=scale_time_units(cum_y[task.task_id], cum_y_unit)) dates = sorted(list({ti.execution_date for ti in tis})) max_date = max([ti.execution_date for ti in tis]) if dates else None session.commit() session.close() form = DateTimeWithNumRunsForm(data={'base_date': max_date, 'num_runs': num_runs}) chart.buildcontent() cum_chart.buildcontent() s_index = cum_chart.htmlcontent.rfind('});') cum_chart.htmlcontent = (cum_chart.htmlcontent[:s_index] + "$( document ).trigger('chartload')" + cum_chart.htmlcontent[s_index:]) return self.render( 'airflow/duration_chart.html', dag=dag, demo_mode=conf.getboolean('webserver', 'demo_mode'), root=root, form=form, chart=chart.htmlcontent, cum_chart=cum_chart.htmlcontent ) @expose('/tries') @login_required @wwwutils.action_logging def tries(self): session = settings.Session() dag_id = request.args.get('dag_id') dag = dagbag.get_dag(dag_id) base_date = request.args.get('base_date') num_runs = request.args.get('num_runs') num_runs = int(num_runs) if num_runs else 25 if base_date: base_date = dateutil.parser.parse(base_date) else: base_date = dag.latest_execution_date or datetime.now() dates = dag.date_range(base_date, num=-abs(num_runs)) min_date = dates[0] if dates else datetime(2000, 1, 1) root = request.args.get('root') if root: dag = dag.sub_dag( task_regex=root, include_upstream=True, include_downstream=False) chart_height = get_chart_height(dag) chart = nvd3.lineChart( name="lineChart", x_is_date=True, y_axis_format='d', height=chart_height, width="1200") for task in dag.tasks: y = [] x = [] for ti in task.get_task_instances(session, start_date=min_date, end_date=base_date): dttm = wwwutils.epoch(ti.execution_date) x.append(dttm) y.append(ti.try_number) if x: chart.add_serie(name=task.task_id, x=x, y=y) tis = dag.get_task_instances( session, start_date=min_date, end_date=base_date) tries = sorted(list({ti.try_number for ti in tis})) max_date = max([ti.execution_date for ti in tis]) if tries else None session.commit() session.close() form = DateTimeWithNumRunsForm(data={'base_date': max_date, 'num_runs': num_runs}) chart.buildcontent() return self.render( 'airflow/chart.html', dag=dag, demo_mode=conf.getboolean('webserver', 'demo_mode'), root=root, form=form, chart=chart.htmlcontent ) @expose('/landing_times') @login_required @wwwutils.action_logging def landing_times(self): session = settings.Session() dag_id = request.args.get('dag_id') dag = dagbag.get_dag(dag_id) base_date = request.args.get('base_date') num_runs = request.args.get('num_runs') num_runs = int(num_runs) if num_runs else 25 if base_date: base_date = dateutil.parser.parse(base_date) else: base_date = dag.latest_execution_date or datetime.now() dates = dag.date_range(base_date, num=-abs(num_runs)) min_date = dates[0] if dates else datetime(2000, 1, 1) root = request.args.get('root') if root: dag = dag.sub_dag( task_regex=root, include_upstream=True, include_downstream=False) chart_height = get_chart_height(dag) chart = nvd3.lineChart( name="lineChart", x_is_date=True, height=chart_height, width="1200") y = {} x = {} for task in dag.tasks: y[task.task_id] = [] x[task.task_id] = [] for ti in task.get_task_instances(session, start_date=min_date, end_date=base_date): ts = ti.execution_date if dag.schedule_interval and dag.following_schedule(ts): ts = dag.following_schedule(ts) if ti.end_date: dttm = wwwutils.epoch(ti.execution_date) secs = (ti.end_date - ts).total_seconds() x[ti.task_id].append(dttm) y[ti.task_id].append(secs) # determine the most relevant time unit for the set of landing times # for the DAG y_unit = infer_time_unit([d for t in y.values() for d in t]) # update the y Axis to have the correct time units chart.create_y_axis('yAxis', format='.02f', custom_format=False, label='Landing Time ({})'.format(y_unit)) for task in dag.tasks: if x[task.task_id]: chart.add_serie(name=task.task_id, x=x[task.task_id], y=scale_time_units(y[task.task_id], y_unit)) tis = dag.get_task_instances( session, start_date=min_date, end_date=base_date) dates = sorted(list({ti.execution_date for ti in tis})) max_date = max([ti.execution_date for ti in tis]) if dates else None session.commit() session.close() form = DateTimeWithNumRunsForm(data={'base_date': max_date, 'num_runs': num_runs}) chart.buildcontent() return self.render( 'airflow/chart.html', dag=dag, chart=chart.htmlcontent, height=str(chart_height + 100) + "px", demo_mode=conf.getboolean('webserver', 'demo_mode'), root=root, form=form, ) @expose('/paused', methods=['POST']) @login_required @wwwutils.action_logging def paused(self): DagModel = models.DagModel dag_id = request.args.get('dag_id') session = settings.Session() orm_dag = session.query( DagModel).filter(DagModel.dag_id == dag_id).first() if request.args.get('is_paused') == 'false': orm_dag.is_paused = True else: orm_dag.is_paused = False session.merge(orm_dag) session.commit() session.close() dagbag.get_dag(dag_id) return "OK" @expose('/refresh') @login_required @wwwutils.action_logging def refresh(self): DagModel = models.DagModel dag_id = request.args.get('dag_id') session = settings.Session() orm_dag = session.query( DagModel).filter(DagModel.dag_id == dag_id).first() if orm_dag: orm_dag.last_expired = datetime.now() session.merge(orm_dag) session.commit() session.close() dagbag.get_dag(dag_id) flash("DAG [{}] is now fresh as a daisy".format(dag_id)) return redirect(request.referrer) @expose('/refresh_all') @login_required @wwwutils.action_logging def refresh_all(self): dagbag.collect_dags(only_if_updated=False) flash("All DAGs are now up to date") return redirect('/') @expose('/gantt') @login_required @wwwutils.action_logging def gantt(self): session = settings.Session() dag_id = request.args.get('dag_id') dag = dagbag.get_dag(dag_id) demo_mode = conf.getboolean('webserver', 'demo_mode') root = request.args.get('root') if root: dag = dag.sub_dag( task_regex=root, include_upstream=True, include_downstream=False) dttm = request.args.get('execution_date') if dttm: dttm = dateutil.parser.parse(dttm) else: dttm = dag.latest_execution_date or datetime.now().date() form = DateTimeForm(data={'execution_date': dttm}) tis = [ ti for ti in dag.get_task_instances(session, dttm, dttm) if ti.start_date] tis = sorted(tis, key=lambda ti: ti.start_date) tasks = [] for ti in tis: end_date = ti.end_date if ti.end_date else datetime.now() tasks.append({ 'startDate': wwwutils.epoch(ti.start_date), 'endDate': wwwutils.epoch(end_date), 'isoStart': ti.start_date.isoformat()[:-4], 'isoEnd': end_date.isoformat()[:-4], 'taskName': ti.task_id, 'duration': "{}".format(end_date - ti.start_date)[:-4], 'status': ti.state, 'executionDate': ti.execution_date.isoformat(), }) states = {ti.state: ti.state for ti in tis} data = { 'taskNames': [ti.task_id for ti in tis], 'tasks': tasks, 'taskStatus': states, 'height': len(tis) * 25, } session.commit() session.close() return self.render( 'airflow/gantt.html', dag=dag, execution_date=dttm.isoformat(), form=form, data=json.dumps(data, indent=2), base_date='', demo_mode=demo_mode, root=root, ) @expose('/object/task_instances') @login_required @wwwutils.action_logging def task_instances(self): session = settings.Session() dag_id = request.args.get('dag_id') dag = dagbag.get_dag(dag_id) dttm = request.args.get('execution_date') if dttm: dttm = dateutil.parser.parse(dttm) else: return ("Error: Invalid execution_date") task_instances = { ti.task_id: alchemy_to_dict(ti) for ti in dag.get_task_instances(session, dttm, dttm)} return json.dumps(task_instances) @expose('/variables/<form>', methods=["GET", "POST"]) @login_required @wwwutils.action_logging def variables(self, form): try: if request.method == 'POST': data = request.json if data: session = settings.Session() var = models.Variable(key=form, val=json.dumps(data)) session.add(var) session.commit() return "" else: return self.render( 'airflow/variables/{}.html'.format(form) ) except: return ("Error: form airflow/variables/{}.html " "not found.").format(form), 404 @expose('/varimport', methods=["GET", "POST"]) @login_required @wwwutils.action_logging def varimport(self): try: out = str(request.files['file'].read()) d = json.loads(out) except Exception: flash("Missing file or syntax error.") else: for k, v in d.items(): models.Variable.set(k, v, serialize_json=isinstance(v, dict)) flash("{} variable(s) successfully updated.".format(len(d))) return redirect('/admin/variable') class HomeView(AdminIndexView): @expose("/") @login_required def index(self): session = Session() DM = models.DagModel qry = None # restrict the dags shown if filter_by_owner and current user is not superuser do_filter = FILTER_BY_OWNER and (not current_user.is_superuser()) owner_mode = conf.get('webserver', 'OWNER_MODE').strip().lower() hide_paused_dags_by_default = conf.getboolean('webserver', 'hide_paused_dags_by_default') show_paused_arg = request.args.get('showPaused', 'None') if show_paused_arg.strip().lower() == 'false': hide_paused = True elif show_paused_arg.strip().lower() == 'true': hide_paused = False else: hide_paused = hide_paused_dags_by_default # read orm_dags from the db qry = session.query(DM) qry_fltr = [] if do_filter and owner_mode == 'ldapgroup': qry_fltr = qry.filter( ~DM.is_subdag, DM.is_active, DM.owners.in_(current_user.ldap_groups) ).all() elif do_filter and owner_mode == 'user': qry_fltr = qry.filter( ~DM.is_subdag, DM.is_active, DM.owners == current_user.user.username ).all() else: qry_fltr = qry.filter( ~DM.is_subdag, DM.is_active ).all() # optionally filter out "paused" dags if hide_paused: orm_dags = {dag.dag_id: dag for dag in qry_fltr if not dag.is_paused} else: orm_dags = {dag.dag_id: dag for dag in qry_fltr} import_errors = session.query(models.ImportError).all() for ie in import_errors: flash( "Broken DAG: [{ie.filename}] {ie.stacktrace}".format(ie=ie), "error") session.expunge_all() session.commit() session.close() # get a list of all non-subdag dags visible to everyone # optionally filter out "paused" dags if hide_paused: unfiltered_webserver_dags = [dag for dag in dagbag.dags.values() if not dag.parent_dag and not dag.is_paused] else: unfiltered_webserver_dags = [dag for dag in dagbag.dags.values() if not dag.parent_dag] # optionally filter to get only dags that the user should see if do_filter and owner_mode == 'ldapgroup': # only show dags owned by someone in @current_user.ldap_groups webserver_dags = { dag.dag_id: dag for dag in unfiltered_webserver_dags if dag.owner in current_user.ldap_groups } elif do_filter and owner_mode == 'user': # only show dags owned by @current_user.user.username webserver_dags = { dag.dag_id: dag for dag in unfiltered_webserver_dags if dag.owner == current_user.user.username } else: webserver_dags = { dag.dag_id: dag for dag in unfiltered_webserver_dags } all_dag_ids = sorted(set(orm_dags.keys()) | set(webserver_dags.keys())) return self.render( 'airflow/dags.html', webserver_dags=webserver_dags, orm_dags=orm_dags, hide_paused=hide_paused, all_dag_ids=all_dag_ids) class QueryView(wwwutils.DataProfilingMixin, BaseView): @expose('/', methods=['POST', 'GET']) @wwwutils.gzipped def query(self): session = settings.Session() dbs = session.query(models.Connection).order_by( models.Connection.conn_id).all() session.expunge_all() db_choices = list( ((db.conn_id, db.conn_id) for db in dbs if db.get_hook())) conn_id_str = request.form.get('conn_id') csv = request.form.get('csv') == "true" sql = request.form.get('sql') class QueryForm(Form): conn_id = SelectField("Layout", choices=db_choices) sql = TextAreaField("SQL", widget=wwwutils.AceEditorWidget()) data = { 'conn_id': conn_id_str, 'sql': sql, } results = None has_data = False error = False if conn_id_str: db = [db for db in dbs if db.conn_id == conn_id_str][0] hook = db.get_hook() try: df = hook.get_pandas_df(wwwutils.limit_sql(sql, QUERY_LIMIT, conn_type=db.conn_type)) # df = hook.get_pandas_df(sql) has_data = len(df) > 0 df = df.fillna('') results = df.to_html( classes=[ 'table', 'table-bordered', 'table-striped', 'no-wrap'], index=False, na_rep='', ) if has_data else '' except Exception as e: flash(str(e), 'error') error = True if has_data and len(df) == QUERY_LIMIT: flash( "Query output truncated at " + str(QUERY_LIMIT) + " rows", 'info') if not has_data and error: flash('No data', 'error') if csv: return Response( response=df.to_csv(index=False), status=200, mimetype="application/text") form = QueryForm(request.form, data=data) session.commit() session.close() return self.render( 'airflow/query.html', form=form, title="Ad Hoc Query", results=results or '', has_data=has_data) class AirflowModelView(ModelView): list_template = 'airflow/model_list.html' edit_template = 'airflow/model_edit.html' create_template = 'airflow/model_create.html' column_display_actions = True page_size = 500 class ModelViewOnly(wwwutils.LoginMixin, AirflowModelView): """ Modifying the base ModelView class for non edit, browse only operations """ named_filter_urls = True can_create = False can_edit = False can_delete = False column_display_pk = True class PoolModelView(wwwutils.SuperUserMixin, AirflowModelView): column_list = ('pool', 'slots', 'used_slots', 'queued_slots') column_formatters = dict( pool=pool_link, used_slots=fused_slots, queued_slots=fqueued_slots) named_filter_urls = True form_args = { 'pool': { 'validators': [ validators.DataRequired(), ] } } class SlaMissModelView(wwwutils.SuperUserMixin, ModelViewOnly): verbose_name_plural = "SLA misses" verbose_name = "SLA miss" column_list = ( 'dag_id', 'task_id', 'execution_date', 'email_sent', 'timestamp') column_formatters = dict( task_id=task_instance_link, execution_date=datetime_f, timestamp=datetime_f, dag_id=dag_link) named_filter_urls = True column_searchable_list = ('dag_id', 'task_id',) column_filters = ( 'dag_id', 'task_id', 'email_sent', 'timestamp', 'execution_date') form_widget_args = { 'email_sent': {'disabled': True}, 'timestamp': {'disabled': True}, } class ChartModelView(wwwutils.DataProfilingMixin, AirflowModelView): verbose_name = "chart" verbose_name_plural = "charts" form_columns = ( 'label', 'owner', 'conn_id', 'chart_type', 'show_datatable', 'x_is_date', 'y_log_scale', 'show_sql', 'height', 'sql_layout', 'sql', 'default_params',) column_list = ( 'label', 'conn_id', 'chart_type', 'owner', 'last_modified',) column_formatters = dict(label=label_link, last_modified=datetime_f) column_default_sort = ('last_modified', True) create_template = 'airflow/chart/create.html' edit_template = 'airflow/chart/edit.html' column_filters = ('label', 'owner.username', 'conn_id') column_searchable_list = ('owner.username', 'label', 'sql') column_descriptions = { 'label': "Can include {{ templated_fields }} and {{ macros }}", 'chart_type': "The type of chart to be displayed", 'sql': "Can include {{ templated_fields }} and {{ macros }}.", 'height': "Height of the chart, in pixels.", 'conn_id': "Source database to run the query against", 'x_is_date': ( "Whether the X axis should be casted as a date field. Expect most " "intelligible date formats to get casted properly." ), 'owner': ( "The chart's owner, mostly used for reference and filtering in " "the list view." ), 'show_datatable': "Whether to display an interactive data table under the chart.", 'default_params': ( 'A dictionary of {"key": "values",} that define what the ' 'templated fields (parameters) values should be by default. ' 'To be valid, it needs to "eval" as a Python dict. ' 'The key values will show up in the url\'s querystring ' 'and can be altered there.' ), 'show_sql': "Whether to display the SQL statement as a collapsible " "section in the chart page.", 'y_log_scale': "Whether to use a log scale for the Y axis.", 'sql_layout': ( "Defines the layout of the SQL that the application should " "expect. Depending on the tables you are sourcing from, it may " "make more sense to pivot / unpivot the metrics." ), } column_labels = { 'sql': "SQL", 'height': "Chart Height", 'sql_layout': "SQL Layout", 'show_sql': "Display the SQL Statement", 'default_params': "Default Parameters", } form_choices = { 'chart_type': [ ('line', 'Line Chart'), ('spline', 'Spline Chart'), ('bar', 'Bar Chart'), ('column', 'Column Chart'), ('area', 'Overlapping Area Chart'), ('stacked_area', 'Stacked Area Chart'), ('percent_area', 'Percent Area Chart'), ('datatable', 'No chart, data table only'), ], 'sql_layout': [ ('series', 'SELECT series, x, y FROM ...'), ('columns', 'SELECT x, y (series 1), y (series 2), ... FROM ...'), ], 'conn_id': [ (c.conn_id, c.conn_id) for c in ( Session().query(models.Connection.conn_id) .group_by(models.Connection.conn_id) ) ] } def on_model_change(self, form, model, is_created=True): if model.iteration_no is None: model.iteration_no = 0 else: model.iteration_no += 1 if not model.user_id and current_user and hasattr(current_user, 'id'): model.user_id = current_user.id model.last_modified = datetime.now() chart_mapping = ( ('line', 'lineChart'), ('spline', 'lineChart'), ('bar', 'multiBarChart'), ('column', 'multiBarChart'), ('area', 'stackedAreaChart'), ('stacked_area', 'stackedAreaChart'), ('percent_area', 'stackedAreaChart'), ('datatable', 'datatable'), ) chart_mapping = dict(chart_mapping) class KnownEventView(wwwutils.DataProfilingMixin, AirflowModelView): verbose_name = "known event" verbose_name_plural = "known events" form_columns = ( 'label', 'event_type', 'start_date', 'end_date', 'reported_by', 'description', ) form_args = { 'label': { 'validators': [ validators.DataRequired(), ], }, 'event_type': { 'validators': [ validators.DataRequired(), ], }, 'start_date': { 'validators': [ validators.DataRequired(), ], }, 'end_date': { 'validators': [ validators.DataRequired(), GreaterEqualThan(fieldname='start_date'), ], }, 'reported_by': { 'validators': [ validators.DataRequired(), ], } } column_list = ( 'label', 'event_type', 'start_date', 'end_date', 'reported_by', ) column_default_sort = ("start_date", True) column_sortable_list = ( 'label', ('event_type', 'event_type.know_event_type'), 'start_date', 'end_date', ('reported_by', 'reported_by.username'), ) class KnownEventTypeView(wwwutils.DataProfilingMixin, AirflowModelView): pass # NOTE: For debugging / troubleshooting # mv = KnowEventTypeView( # models.KnownEventType, # Session, name="Known Event Types", category="Manage") # admin.add_view(mv) # class DagPickleView(SuperUserMixin, ModelView): # pass # mv = DagPickleView( # models.DagPickle, # Session, name="Pickles", category="Manage") # admin.add_view(mv) class VariableView(wwwutils.DataProfilingMixin, AirflowModelView): verbose_name = "Variable" verbose_name_plural = "Variables" list_template = 'airflow/variable_list.html' def hidden_field_formatter(view, context, model, name): if wwwutils.should_hide_value_for_key(model.key): return Markup('*' * 8) return getattr(model, name) form_columns = ( 'key', 'val', ) column_list = ('key', 'val', 'is_encrypted',) column_filters = ('key', 'val') column_searchable_list = ('key', 'val') column_default_sort = ('key', False) form_widget_args = { 'is_encrypted': {'disabled': True}, 'val': { 'rows': 20, } } form_args = { 'key': { 'validators': { validators.DataRequired(), }, }, } column_sortable_list = ( 'key', 'val', 'is_encrypted', ) column_formatters = { 'val': hidden_field_formatter, } # Default flask-admin export functionality doesn't handle serialized json @action('varexport', 'Export', None) def action_varexport(self, ids): V = models.Variable session = settings.Session() qry = session.query(V).filter(V.id.in_(ids)).all() session.close() var_dict = {} d = json.JSONDecoder() for var in qry: val = None try: val = d.decode(var.val) except: val = var.val var_dict[var.key] = val response = make_response(json.dumps(var_dict, sort_keys=True, indent=4)) response.headers["Content-Disposition"] = "attachment; filename=variables.json" return response def on_form_prefill(self, form, id): if wwwutils.should_hide_value_for_key(form.key.data): form.val.data = '*' * 8 class XComView(wwwutils.SuperUserMixin, AirflowModelView): verbose_name = "XCom" verbose_name_plural = "XComs" page_size = 20 form_columns = ( 'key', 'value', 'execution_date', 'task_id', 'dag_id', ) form_extra_fields = { 'value': StringField('Value'), } column_filters = ('key', 'timestamp', 'execution_date', 'task_id', 'dag_id') column_searchable_list = ('key', 'timestamp', 'execution_date', 'task_id', 'dag_id') class JobModelView(ModelViewOnly): verbose_name_plural = "jobs" verbose_name = "job" column_display_actions = False column_default_sort = ('start_date', True) column_filters = ( 'job_type', 'dag_id', 'state', 'unixname', 'hostname', 'start_date', 'end_date', 'latest_heartbeat') column_formatters = dict( start_date=datetime_f, end_date=datetime_f, hostname=nobr_f, state=state_f, latest_heartbeat=datetime_f) class DagRunModelView(ModelViewOnly): verbose_name_plural = "DAG Runs" can_edit = True can_create = True column_editable_list = ('state',) verbose_name = "dag run" column_default_sort = ('execution_date', True) form_choices = { 'state': [ ('success', 'success'), ('running', 'running'), ('failed', 'failed'), ], } form_args = dict( dag_id=dict(validators=[validators.DataRequired()]) ) column_list = ( 'state', 'dag_id', 'execution_date', 'run_id', 'external_trigger') column_filters = column_list column_searchable_list = ('dag_id', 'state', 'run_id') column_formatters = dict( execution_date=datetime_f, state=state_f, start_date=datetime_f, dag_id=dag_link) @action('new_delete', "Delete", "Are you sure you want to delete selected records?") def action_new_delete(self, ids): session = settings.Session() deleted = set(session.query(models.DagRun) .filter(models.DagRun.id.in_(ids)) .all()) session.query(models.DagRun)\ .filter(models.DagRun.id.in_(ids))\ .delete(synchronize_session='fetch') session.commit() dirty_ids = [] for row in deleted: dirty_ids.append(row.dag_id) models.DagStat.update(dirty_ids, dirty_only=False, session=session) session.close() @action('set_running', "Set state to 'running'", None) def action_set_running(self, ids): self.set_dagrun_state(ids, State.RUNNING) @action('set_failed', "Set state to 'failed'", None) def action_set_failed(self, ids): self.set_dagrun_state(ids, State.FAILED) @action('set_success', "Set state to 'success'", None) def action_set_success(self, ids): self.set_dagrun_state(ids, State.SUCCESS) @provide_session def set_dagrun_state(self, ids, target_state, session=None): try: DR = models.DagRun count = 0 dirty_ids = [] for dr in session.query(DR).filter(DR.id.in_(ids)).all(): dirty_ids.append(dr.dag_id) count += 1 dr.state = target_state if target_state == State.RUNNING: dr.start_date = datetime.now() else: dr.end_date = datetime.now() session.commit() models.DagStat.update(dirty_ids, session=session) flash( "{count} dag runs were set to '{target_state}'".format(**locals())) except Exception as ex: if not self.handle_view_exception(ex): raise Exception("Ooops") flash('Failed to set state', 'error') class LogModelView(ModelViewOnly): verbose_name_plural = "logs" verbose_name = "log" column_display_actions = False column_default_sort = ('dttm', True) column_filters = ('dag_id', 'task_id', 'execution_date') column_formatters = dict( dttm=datetime_f, execution_date=datetime_f, dag_id=dag_link) class TaskInstanceModelView(ModelViewOnly): verbose_name_plural = "task instances" verbose_name = "task instance" column_filters = ( 'state', 'dag_id', 'task_id', 'execution_date', 'hostname', 'queue', 'pool', 'operator', 'start_date', 'end_date') named_filter_urls = True column_formatters = dict( log_url=log_url_formatter, task_id=task_instance_link, hostname=nobr_f, state=state_f, execution_date=datetime_f, start_date=datetime_f, end_date=datetime_f, queued_dttm=datetime_f, dag_id=dag_link, duration=duration_f) column_searchable_list = ('dag_id', 'task_id', 'state') column_default_sort = ('job_id', True) form_choices = { 'state': [ ('success', 'success'), ('running', 'running'), ('failed', 'failed'), ], } column_list = ( 'state', 'dag_id', 'task_id', 'execution_date', 'operator', 'start_date', 'end_date', 'duration', 'job_id', 'hostname', 'unixname', 'priority_weight', 'queue', 'queued_dttm', 'try_number', 'pool', 'log_url') can_delete = True page_size = 500 @action('set_running', "Set state to 'running'", None) def action_set_running(self, ids): self.set_task_instance_state(ids, State.RUNNING) @action('set_failed', "Set state to 'failed'", None) def action_set_failed(self, ids): self.set_task_instance_state(ids, State.FAILED) @action('set_success', "Set state to 'success'", None) def action_set_success(self, ids): self.set_task_instance_state(ids, State.SUCCESS) @action('set_retry', "Set state to 'up_for_retry'", None) def action_set_retry(self, ids): self.set_task_instance_state(ids, State.UP_FOR_RETRY) @action('delete', lazy_gettext('Delete'), lazy_gettext('Are you sure you want to delete selected records?')) def action_delete(self, ids): """ As a workaround for AIRFLOW-277, this method overrides Flask-Admin's ModelView.action_delete(). TODO: this method should be removed once the below bug is fixed on Flask-Admin side. https://github.com/flask-admin/flask-admin/issues/1226 """ if 'sqlite' in conf.get('core', 'sql_alchemy_conn'): self.delete_task_instances(ids) else: super(TaskInstanceModelView, self).action_delete(ids) @provide_session def set_task_instance_state(self, ids, target_state, session=None): try: TI = models.TaskInstance count = len(ids) for id in ids: task_id, dag_id, execution_date = id.split(',') execution_date = datetime.strptime(execution_date, '%Y-%m-%d %H:%M:%S') ti = session.query(TI).filter(TI.task_id == task_id, TI.dag_id == dag_id, TI.execution_date == execution_date).one() ti.state = target_state session.commit() flash( "{count} task instances were set to '{target_state}'".format(**locals())) except Exception as ex: if not self.handle_view_exception(ex): raise Exception("Ooops") flash('Failed to set state', 'error') @provide_session def delete_task_instances(self, ids, session=None): try: TI = models.TaskInstance count = 0 for id in ids: task_id, dag_id, execution_date = id.split(',') execution_date = datetime.strptime(execution_date, '%Y-%m-%d %H:%M:%S') count += session.query(TI).filter(TI.task_id == task_id, TI.dag_id == dag_id, TI.execution_date == execution_date).delete() session.commit() flash("{count} task instances were deleted".format(**locals())) except Exception as ex: if not self.handle_view_exception(ex): raise Exception("Ooops") flash('Failed to delete', 'error') def get_one(self, id): """ As a workaround for AIRFLOW-252, this method overrides Flask-Admin's ModelView.get_one(). TODO: this method should be removed once the below bug is fixed on Flask-Admin side. https://github.com/flask-admin/flask-admin/issues/1226 """ task_id, dag_id, execution_date = iterdecode(id) execution_date = dateutil.parser.parse(execution_date) return self.session.query(self.model).get((task_id, dag_id, execution_date)) class ConnectionModelView(wwwutils.SuperUserMixin, AirflowModelView): create_template = 'airflow/conn_create.html' edit_template = 'airflow/conn_edit.html' list_template = 'airflow/conn_list.html' form_columns = ( 'conn_id', 'conn_type', 'host', 'schema', 'login', 'password', 'port', 'extra', 'extra__jdbc__drv_path', 'extra__jdbc__drv_clsname', 'extra__google_cloud_platform__project', 'extra__google_cloud_platform__key_path', 'extra__google_cloud_platform__scope', ) verbose_name = "Connection" verbose_name_plural = "Connections" column_default_sort = ('conn_id', False) column_list = ('conn_id', 'conn_type', 'host', 'port', 'is_encrypted', 'is_extra_encrypted',) form_overrides = dict(_password=PasswordField) form_widget_args = { 'is_extra_encrypted': {'disabled': True}, 'is_encrypted': {'disabled': True}, } # Used to customized the form, the forms elements get rendered # and results are stored in the extra field as json. All of these # need to be prefixed with extra__ and then the conn_type ___ as in # extra__{conn_type}__name. You can also hide form elements and rename # others from the connection_form.js file form_extra_fields = { 'extra__jdbc__drv_path': StringField('Driver Path'), 'extra__jdbc__drv_clsname': StringField('Driver Class'), 'extra__google_cloud_platform__project': StringField('Project Id'), 'extra__google_cloud_platform__key_path': StringField('Keyfile Path'), 'extra__google_cloud_platform__scope': StringField('Scopes (comma seperated)'), } form_choices = { 'conn_type': models.Connection._types } def on_model_change(self, form, model, is_created): formdata = form.data if formdata['conn_type'] in ['jdbc', 'google_cloud_platform']: extra = { key: formdata[key] for key in self.form_extra_fields.keys() if key in formdata} model.extra = json.dumps(extra) @classmethod def alert_fernet_key(cls): fk = None try: fk = conf.get('core', 'fernet_key') except: pass return fk is None @classmethod def is_secure(cls): """ Used to display a message in the Connection list view making it clear that the passwords and `extra` field can't be encrypted. """ is_secure = False try: import cryptography conf.get('core', 'fernet_key') is_secure = True except: pass return is_secure def on_form_prefill(self, form, id): try: d = json.loads(form.data.get('extra', '{}')) except Exception: d = {} for field in list(self.form_extra_fields.keys()): value = d.get(field, '') if value: field = getattr(form, field) field.data = value class UserModelView(wwwutils.SuperUserMixin, AirflowModelView): verbose_name = "User" verbose_name_plural = "Users" column_default_sort = 'username' class VersionView(wwwutils.SuperUserMixin, LoggingMixin, BaseView): @expose('/') def version(self): # Look at the version from setup.py try: airflow_version = pkg_resources.require("apache-airflow")[0].version except Exception as e: airflow_version = None self.logger.error(e) # Get the Git repo and git hash git_version = None try: with open(os.path.join(*[settings.AIRFLOW_HOME, 'airflow', 'git_version'])) as f: git_version = f.readline() except Exception as e: self.logger.error(e) # Render information title = "Version Info" return self.render('airflow/version.html', title=title, airflow_version=airflow_version, git_version=git_version) class ConfigurationView(wwwutils.SuperUserMixin, BaseView): @expose('/') def conf(self): raw = request.args.get('raw') == "true" title = "Airflow Configuration" subtitle = conf.AIRFLOW_CONFIG if conf.getboolean("webserver", "expose_config"): with open(conf.AIRFLOW_CONFIG, 'r') as f: config = f.read() table = [(section, key, value, source) for section, parameters in conf.as_dict(True, True).items() for key, (value, source) in parameters.items()] else: config = ( "# You Airflow administrator chose not to expose the " "configuration, most likely for security reasons.") table = None if raw: return Response( response=config, status=200, mimetype="application/text") else: code_html = Markup(highlight( config, lexers.IniLexer(), # Lexer call HtmlFormatter(noclasses=True)) ) return self.render( 'airflow/config.html', pre_subtitle=settings.HEADER + " v" + airflow.__version__, code_html=code_html, title=title, subtitle=subtitle, table=table) class DagModelView(wwwutils.SuperUserMixin, ModelView): column_list = ('dag_id', 'owners') column_editable_list = ('is_paused',) form_excluded_columns = ('is_subdag', 'is_active') column_searchable_list = ('dag_id',) column_filters = ( 'dag_id', 'owners', 'is_paused', 'is_active', 'is_subdag', 'last_scheduler_run', 'last_expired') form_widget_args = { 'last_scheduler_run': {'disabled': True}, 'fileloc': {'disabled': True}, 'is_paused': {'disabled': True}, 'last_pickled': {'disabled': True}, 'pickle_id': {'disabled': True}, 'last_loaded': {'disabled': True}, 'last_expired': {'disabled': True}, 'pickle_size': {'disabled': True}, 'scheduler_lock': {'disabled': True}, 'owners': {'disabled': True}, } column_formatters = dict( dag_id=dag_link, ) can_delete = False can_create = False page_size = 50 list_template = 'airflow/list_dags.html' named_filter_urls = True def get_query(self): """ Default filters for model """ return ( super(DagModelView, self) .get_query() .filter(or_(models.DagModel.is_active, models.DagModel.is_paused)) .filter(~models.DagModel.is_subdag) ) def get_count_query(self): """ Default filters for model """ return ( super(DagModelView, self) .get_count_query() .filter(models.DagModel.is_active) .filter(~models.DagModel.is_subdag) )
apache-2.0
zehpunktbarron/iOSMAnalyzer
scripts/c5_tag_completeness_shop.py
1
10683
# -*- coding: utf-8 -*- #!/usr/bin/python2.7 #description :This file creates a plot: Calculates the development of the tag-completeness [%] of all "shop" POIs #author :Christopher Barron @ http://giscience.uni-hd.de/ #date :19.01.2013 #version :0.1 #usage :python pyscript.py #============================================================================== import psycopg2 import matplotlib.pyplot as plt import matplotlib.dates as mdates import numpy as np import pylab # import db connection parameters import db_conn_para as db ### ### Connect to database with psycopg2. Add arguments from parser to the connection-string ### try: conn_string="dbname= %s user= %s host= %s password= %s" %(db.g_my_dbname, db.g_my_username, db.g_my_hostname, db.g_my_dbpassword) print "Connecting to database\n->%s" % (conn_string) # Verbindung mit der DB mittels psycopg2 herstellen conn = psycopg2.connect(conn_string) print "Connection to database was established succesfully" except: print "Connection to database failed" ### ### Execute SQL query ### # Mit dieser neuen "cursor Methode" koennen SQL-Abfragen abgefeuert werden cur = conn.cursor() # Execute SQL query. For more than one row use three '"' try: cur.execute(""" -- -- Geschäfte -- SELECT generate_series, -- START Key "name" (CASE WHEN cnt_total <> 0 THEN ROUND((cnt_name * 100.00 / cnt_total), 2) ELSE 0 END)::float AS perc_name, -- END Key "name" -- START Key "operator" (CASE WHEN cnt_total <> 0 THEN ROUND((cnt_operator * 100.00 / cnt_total), 2) ELSE 0 END)::float AS perc_operator, -- END Key "operator" -- START Key "opening_hours" (CASE WHEN cnt_total <> 0 THEN ROUND((cnt_opening * 100.00 / cnt_total), 2) ELSE 0 END)::float AS perc_opening, -- END Key "opening_hours" -- START Key "website" (CASE WHEN cnt_total <> 0 THEN ROUND((cnt_website * 100.00 / cnt_total), 2) ELSE 0 END)::float AS perc_website, -- END Key "website" -- START Key "housenumber" (CASE WHEN cnt_total <> 0 THEN ROUND((cnt_housenumber * 100.00 / cnt_total), 2) ELSE 0 END)::float AS perc_housenumber, -- END Key "housenumber" -- START Key "phone" (CASE WHEN cnt_total <> 0 THEN ROUND((cnt_phone * 100.00 / cnt_total), 2) ELSE 0 END)::float AS perc_phone, -- END Key "phone" -- START Key "wheelchair" (CASE WHEN cnt_total <> 0 THEN ROUND((cnt_wheelchair * 100.00 / cnt_total), 2) ELSE 0 END)::float AS perc_wheelchair -- END Key "wheelchair" FROM (SELECT generate_series, (SELECT count(distinct id) FROM (SELECT id, skeys(tags) FROM hist_plp h WHERE -- Geschäfte tags ? 'shop' AND visible = 'true' AND (version = (SELECT max(version) FROM hist_plp WHERE typ = h.typ AND h.id = hist_plp.id) AND ( valid_from <= generate_series AND (valid_to >= generate_series OR valid_to is null)) AND minor = (SELECT max(minor) from hist_plp where typ = h.typ AND h.id = hist_plp.id AND h.version = hist_plp.version AND ( valid_from <= generate_series AND (valid_to >= generate_series OR valid_to is null)))) ) AS foo WHERE skeys = 'name' ) AS cnt_name, -- START operator (SELECT count(distinct id) FROM (SELECT id, skeys(tags) FROM hist_plp h WHERE -- Geschäfte tags ? 'shop' AND visible = 'true' AND (version = (SELECT max(version) FROM hist_plp WHERE typ = h.typ AND h.id = hist_plp.id) AND ( valid_from <= generate_series AND (valid_to >= generate_series OR valid_to is null)) AND minor = (SELECT max(minor) from hist_plp where typ = h.typ AND h.id = hist_plp.id AND h.version = hist_plp.version AND ( valid_from <= generate_series AND (valid_to >= generate_series OR valid_to is null)))) ) AS foo WHERE skeys = 'operator' ) AS cnt_operator, -- END operator -- START opening_hours (SELECT count(distinct id) FROM (SELECT id, skeys(tags) FROM hist_plp h WHERE -- Geschäfte tags ? 'shop' AND visible = 'true' AND (version = (SELECT max(version) FROM hist_plp WHERE typ = h.typ AND h.id = hist_plp.id) AND ( valid_from <= generate_series AND (valid_to >= generate_series OR valid_to is null)) AND minor = (SELECT max(minor) from hist_plp where typ = h.typ AND h.id = hist_plp.id AND h.version = hist_plp.version AND ( valid_from <= generate_series AND (valid_to >= generate_series OR valid_to is null)))) ) AS foo WHERE skeys = 'opening_hours' ) AS cnt_opening, -- END opening_hours -- START website (SELECT count(distinct id) FROM (SELECT id, skeys(tags) FROM hist_plp h WHERE -- Geschäfte tags ? 'shop' AND visible = 'true' AND (version = (SELECT max(version) FROM hist_plp WHERE typ = h.typ AND h.id = hist_plp.id) AND ( valid_from <= generate_series AND (valid_to >= generate_series OR valid_to is null)) AND minor = (SELECT max(minor) from hist_plp where typ = h.typ AND h.id = hist_plp.id AND h.version = hist_plp.version AND ( valid_from <= generate_series AND (valid_to >= generate_series OR valid_to is null)))) ) AS foo WHERE skeys = 'website' ) AS cnt_website, -- END website -- START housenumber (SELECT count(distinct id) FROM (SELECT id, skeys(tags) FROM hist_plp h WHERE -- Geschäfte tags ? 'shop' AND visible = 'true' AND (version = (SELECT max(version) FROM hist_plp WHERE typ = h.typ AND h.id = hist_plp.id) AND ( valid_from <= generate_series AND (valid_to >= generate_series OR valid_to is null)) AND minor = (SELECT max(minor) from hist_plp where typ = h.typ AND h.id = hist_plp.id AND h.version = hist_plp.version AND ( valid_from <= generate_series AND (valid_to >= generate_series OR valid_to is null)))) ) AS foo WHERE skeys = 'addr:housenumber' ) AS cnt_housenumber, -- END housenumber -- START phone (SELECT count(distinct id) FROM (SELECT id, skeys(tags) FROM hist_plp h WHERE -- Geschäfte tags ? 'shop' AND visible = 'true' AND (version = (SELECT max(version) FROM hist_plp WHERE typ = h.typ AND h.id = hist_plp.id) AND ( valid_from <= generate_series AND (valid_to >= generate_series OR valid_to is null)) AND minor = (SELECT max(minor) from hist_plp where typ = h.typ AND h.id = hist_plp.id AND h.version = hist_plp.version AND ( valid_from <= generate_series AND (valid_to >= generate_series OR valid_to is null)))) ) AS foo WHERE skeys = 'phone' ) AS cnt_phone, -- END phone -- START wheelchair (SELECT count(distinct id) FROM (SELECT id, skeys(tags) FROM hist_plp h WHERE -- Geschäfte tags ? 'shop' AND visible = 'true' AND (version = (SELECT max(version) FROM hist_plp WHERE typ = h.typ AND h.id = hist_plp.id) AND ( valid_from <= generate_series AND (valid_to >= generate_series OR valid_to is null)) AND minor = (SELECT max(minor) from hist_plp where typ = h.typ AND h.id = hist_plp.id AND h.version = hist_plp.version AND ( valid_from <= generate_series AND (valid_to >= generate_series OR valid_to is null)))) ) AS foo WHERE skeys = 'wheelchair' ) AS cnt_wheelchair, -- END wheelchair -- START total (SELECT count(distinct id) FROM (SELECT id, skeys(tags) FROM hist_plp h WHERE -- Geschäfte tags ? 'shop' AND visible = 'true' AND (version = (SELECT max(version) FROM hist_plp WHERE typ = h.typ AND h.id = hist_plp.id) AND ( valid_from <= generate_series AND (valid_to >= generate_series OR valid_to is null)) AND minor = (SELECT max(minor) from hist_plp where typ = h.typ AND h.id = hist_plp.id AND h.version = hist_plp.version AND ( valid_from <= generate_series AND (valid_to >= generate_series OR valid_to is null)))) ) AS foo ) AS cnt_total -- END total FROM generate_series( (SELECT date_trunc ('month',( SELECT MIN(valid_from) FROM hist_plp)) as foo), -- Select minimum date (month) (SELECT MAX(valid_from) FROM hist_plp)::date, -- Select maximum date interval '1 month') ) AS foo2 ; """) # Getting a list of tuples from the database-cursor (cur) data_tuples = [] for row in cur: data_tuples.append(row) except: print "Query could not be executed" ### ### Plot (Multiline-Chart) ### # Datatypes of the returning data datatypes = [('date', 'S20'),('col2', 'double'), ('col3', 'double'), ('col4', 'double'), ('col5', 'double'), ('col6', 'double'), ('col7', 'double'), ('col8', 'double')] # Data-tuple and datatype data = np.array(data_tuples, dtype=datatypes) # Date comes from 'col1' col2 = data['col2'] col3 = data['col3'] col4 = data['col4'] col5 = data['col5'] col6 = data['col6'] col7 = data['col7'] col8 = data['col8'] # Converts date to a manageable date-format for matplotlib dates = mdates.num2date(mdates.datestr2num(data['date'])) fig, ax = plt.subplots() # set figure size fig.set_size_inches(12,8) # Create linechart plt.plot(dates, col2, color = '#2dd700', linewidth=2, label='name = *') plt.plot(dates, col3, color = '#ff6700', linewidth=2, linestyle='dashed', label='operator = *') plt.plot(dates, col4, color = '#00a287', linewidth=2, label='opening_hours = *') plt.plot(dates, col5, color = '#ff6700', linewidth=2, label='website = *') plt.plot(dates, col6, color = '#f5001d', linewidth=2, label='addr:housenumber = *') plt.plot(dates, col7, color = '#2dd700', linewidth=2, linestyle='dashed', label='phone = *') plt.plot(dates, col8, color = '#00a287', linewidth=2, linestyle='dashed', label='wheelchair = *') # Forces the plot to start from 0 and end at 100 pylab.ylim([0,100]) # Place a gray dashed grid behind the thicks (only for y-axis) ax.yaxis.grid(color='gray', linestyle='dashed') # Set this grid behind the thicks ax.set_axisbelow(True) # Rotate x-labels on the x-axis fig.autofmt_xdate() # Label x and y axis plt.xlabel('Date') plt.ylabel('Tag-Completeness [%]') # Locate legend on the plot (http://matplotlib.org/users/legend_guide.html#legend-location) # Shink current axis by 20% box = ax.get_position() ax.set_position([box.x0, box.y0, box.width * 0.9, box.height * 0.9]) # Put a legend to the right of the current axis and reduce the font size ax.legend(loc='center left', bbox_to_anchor=(1, 0.5), prop={'size':9}) # Plot-title plt.title('Development of the Tag-Completeness of all Shop POIs') # Save plot to *.jpeg-file plt.savefig('pics/c5_tag_completeness_shop.jpeg') plt.clf()
gpl-3.0
mistercrunch/panoramix
superset/utils/csv.py
2
3022
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import re import urllib.request from typing import Any, Dict, Optional from urllib.error import URLError import pandas as pd negative_number_re = re.compile(r"^-[0-9.]+$") # This regex will match if the string starts with: # # 1. one of -, @, +, |, =, % # 2. two double quotes immediately followed by one of -, @, +, |, =, % # 3. one or more spaces immediately followed by one of -, @, +, |, =, % # problematic_chars_re = re.compile(r'^(?:"{2}|\s{1,})(?=[\-@+|=%])|^[\-@+|=%]') def escape_value(value: str) -> str: """ Escapes a set of special characters. http://georgemauer.net/2017/10/07/csv-injection.html """ needs_escaping = problematic_chars_re.match(value) is not None is_negative_number = negative_number_re.match(value) is not None if needs_escaping and not is_negative_number: # Escape pipe to be extra safe as this # can lead to remote code execution value = value.replace("|", "\\|") # Precede the line with a single quote. This prevents # evaluation of commands and some spreadsheet software # will hide this visually from the user. Many articles # claim a preceding space will work here too, however, # when uploading a csv file in Google sheets, a leading # space was ignored and code was still evaluated. value = "'" + value return value def df_to_escaped_csv(df: pd.DataFrame, **kwargs: Any) -> Any: escape_values = lambda v: escape_value(v) if isinstance(v, str) else v # Escape csv headers df = df.rename(columns=escape_values) # Escape csv rows df = df.applymap(escape_values) return df.to_csv(**kwargs) def get_chart_csv_data( chart_url: str, auth_cookies: Optional[Dict[str, str]] = None ) -> Optional[bytes]: content = None if auth_cookies: opener = urllib.request.build_opener() cookie_str = ";".join([f"{key}={val}" for key, val in auth_cookies.items()]) opener.addheaders.append(("Cookie", cookie_str)) response = opener.open(chart_url) content = response.read() if response.getcode() != 200: raise URLError(response.getcode()) if content: return content return None
apache-2.0
srv/stereo_slam
scripts/slam_evaluation.py
1
13711
#!/usr/bin/env python import roslib; roslib.load_manifest('stereo_slam') import pylab import numpy as np from matplotlib import pyplot from mpl_toolkits.mplot3d import Axes3D import tf.transformations as tf import scipy.optimize as optimize import collections import math import string class Error(Exception): """ Base class for exceptions in this module. """ pass def trajectory_distances(data): dist = [] dist.append(0) for i in range(len(data) - 1): dist.append(dist[i] + calc_dist(data[i, :], data[i + 1, : ])) return dist def calc_dist_xyz(data_point1, data_point2): xdiff = data_point1[1] - data_point2[1] ydiff = data_point1[2] - data_point2[2] zdiff = data_point1[3] - data_point2[3] return xdiff, ydiff, zdiff def calc_dist(data_point1, data_point2): xdiff, ydiff, zdiff = calc_dist_xyz(data_point1, data_point2) return math.sqrt(xdiff*xdiff + ydiff*ydiff + zdiff*zdiff) def to_transform(data_point): t = [data_point[1], data_point[2], data_point[3]] q = [data_point[4], data_point[5], data_point[6], data_point[7]] rot_mat = tf.quaternion_matrix(q) trans_mat = tf.translation_matrix(t) return tf.concatenate_matrices(trans_mat, rot_mat) def rebase(base_vector, rebased_vector): min_idx_vec = [] for i in range(len(base_vector)): # Search the best coincidence in time with ground truth min_dist = 99999 min_idx = -1 for j in range(len(rebased_vector)): dist = abs(rebased_vector[j,0] - base_vector[i,0]) if dist < min_dist: min_dist = dist min_idx = j min_idx_vec.append(min_idx) min_idx_vec = np.array(min_idx_vec) return rebased_vector[min_idx_vec,:] def apply_tf_to_matrix(tf_delta, data): corrected_data = [] for i in range(len(data)): point = to_transform(data[i,:]) point_d = tf.concatenate_matrices(point, tf_delta) t_d = tf.translation_from_matrix(point_d) q_d = tf.quaternion_from_matrix(point_d) corrected_data.append([data[i,0], t_d[0], t_d[1], t_d[2], q_d[0], q_d[1], q_d[2], q_d[3]]) return np.array(corrected_data) def apply_tf_to_vector(tf_delta, data): corrected_data = [] for i in range(len(data)): point = to_transform(data[i,:]) t_d = tf.translation_from_matrix(point) q_d = tf.quaternion_from_matrix(point) t_d = np.array([t_d[0], t_d[1], t_d[2], 1.0]) point_mod = tf.concatenate_matrices(tf_delta, t_d) corrected_data.append([data[i,0], point_mod[0], point_mod[1], point_mod[2], t_d[2], q_d[0], q_d[1], q_d[2], q_d[3]]) return np.array(corrected_data) def quaternion_from_rpy(roll, pitch, yaw): q = [] q.append( np.cos(roll/2)*np.cos(pitch/2)*np.cos(yaw/2) + np.sin(roll/2)*np.sin(pitch/2)*np.sin(yaw/2)) q.append( np.sin(roll/2)*np.cos(pitch/2)*np.cos(yaw/2) - np.cos(roll/2)*np.sin(pitch/2)*np.sin(yaw/2)) q.append( -np.cos(roll/2)*np.sin(pitch/2)*np.cos(yaw/2) - np.sin(roll/2)*np.cos(pitch/2)*np.sin(yaw/2)) q.append( np.cos(roll/2)*np.cos(pitch/2)*np.sin(yaw/2) - np.sin(roll/2)*np.sin(pitch/2)*np.cos(yaw/2)) q = np.array(q) return q def sigmoid(p, vertices, gt_rebased): # Get the current parameter set and build the transform roll, pitch, yaw = p q = quaternion_from_rpy(roll, pitch, yaw) cur_delta = to_transform([0.0, 0.0, 0.0, 0.0, q[0], q[1], q[2], q[3]]) # Compute the quadratic error for the current delta transformation err = 0.0 for i in range(len(vertices)): # Compute the corrected ground truth tf_gt = to_transform(gt_rebased[i]) tf_gt_t = tf.translation_from_matrix(tf_gt) tf_gt_t = np.array([tf_gt_t[0], tf_gt_t[1], tf_gt_t[2], 1.0]) tf_gt_corrected = tf.concatenate_matrices(cur_delta, tf_gt_t) tf_gt_corr_vect = [0.0, tf_gt_corrected[0], tf_gt_corrected[1], tf_gt_corrected[2], 0.0, 0.0, 0.0, 1.0] # Compute the error err += np.power(calc_dist(vertices[i], tf_gt_corr_vect), 2) return np.sqrt(err) def calc_errors(vector_1, vector_2): # Compute the errors between vectors assert(len(vector_1) == len(vector_1)) output = [] for i in range(len(vector_1)): output.append(calc_dist(vector_1[i,:], vector_2[i,:])) return np.array(output) def calc_time_vector(data): output = [] start_time = data[0,0] for i in range(len(data)): output.append((data[i,0] - start_time)) return np.array(output) def toRSTtable(rows, header=True, vdelim=" ", padding=1, justify='right'): """ Outputs a list of lists as a Restructured Text Table - rows - list of lists - header - if True the first row is treated as a table header - vdelim - vertical delimiter between columns - padding - nr. of spaces are left around the longest element in the column - justify - may be left, center, right """ border="=" # character for drawing the border justify = {'left':string.ljust,'center':string.center,'right':string.rjust}[justify.lower()] # calculate column widhts (longest item in each col # plus "padding" nr of spaces on both sides) cols = zip(*rows) colWidths = [max([len(str(item))+2*padding for item in col]) for col in cols] # the horizontal border needed by rst borderline = vdelim.join([w*border for w in colWidths]) # outputs table in rst format output = "" output += borderline + "\n" for row in rows: output += vdelim.join([justify(str(item),width) for (item,width) in zip(row,colWidths)]) output += "\n" if header: output += borderline + "\n"; header=False output += borderline + "\n" print output return output if __name__ == "__main__": import argparse parser = argparse.ArgumentParser( description='Plot 3D graphics of SLAM.', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('ground_truth_file', help='file with ground truth') parser.add_argument('visual_odometry_file', help='file with visual odometry') parser.add_argument('graph_vertices_file', help='file the vertices of stereo slam') parser.add_argument('graph_edges_file', help='file the edges of stereo slam') parser.add_argument('orb_file', help='file corresponding to the ORB-SLAM trajectory') args = parser.parse_args() colors = ['g','r','b'] angles = [-6, 6, -4, 4, -12, 12] # Setup the font for the graphics font = {'family' : 'Sans', 'weight' : 'normal', 'size' : 35} pylab.rc('font', **font) linewidth = 3.0 # Log print "Adjusting curves, please wait..." # Init figures fig0 = pylab.figure() ax0 = Axes3D(fig0) ax0.grid(True) ax0.set_xlabel("x (m)") ax0.set_ylabel("y (m)") ax0.set_zlabel("z (m)") fig1 = pylab.figure() ax1 = fig1.gca() ax1.grid(True) ax1.set_xlabel("x (m)") ax1.set_ylabel("y (m)") fig2 = pylab.figure() ax2 = fig2.gca() ax2.grid(True) ax2.set_xlabel("x (m)") ax2.set_ylabel("y (m)") fig3 = pylab.figure() ax3 = fig3.gca() ax3.grid(True) ax3.set_xlabel("x (m)") ax3.set_ylabel("y (m)") fig4 = pylab.figure() ax4 = fig4.gca() ax4.grid(True) ax4.set_xlabel("x (m)") ax4.set_ylabel("y (m)") # Load ground truth (gt) data. # Check the file type f = open(args.ground_truth_file) lines = f.readlines() f.close() size = lines[1].split(",") if (len(size) == 8 or len(size) >= 12): gt = pylab.loadtxt(args.ground_truth_file, delimiter=',', comments='%', usecols=(0,5,6,7,8,9,10,11)) gt[:,0] = gt[:,0] / 1000000000 else: gt = pylab.loadtxt(args.ground_truth_file, delimiter=',', comments='%', usecols=(0,1,2,3,4,5,6,7)) # Load the visual odometry odom = pylab.loadtxt(args.visual_odometry_file, delimiter=',', comments='%', usecols=(0,5,6,7,8,9,10,11)) # odom = pylab.loadtxt(args.visual_odometry_file, delimiter=',', comments='%', usecols=(0,4,5,6,7,8,9,10)) odom[:,0] = odom[:,0] / 1000000000 # Load the graph vertices vertices = pylab.loadtxt(args.graph_vertices_file, delimiter=',', usecols=(0,2,3,4,5,6,7,8)) # Load the ORB-SLAM trajectory orb = pylab.loadtxt(args.orb_file, delimiter=',', usecols=(0,2,3,4,5,6,7,8)) # Get the gt indeces for all graph vertices gt_rebased = rebase(vertices, gt) odom_rebased = rebase(vertices, odom) orb_rebased = rebase(vertices, orb) # Compute the translation to make the same origin for all curves first_vertice = to_transform(vertices[0,:]) first_gt_coincidence = to_transform(gt_rebased[0,:]) tf_delta = tf.concatenate_matrices(tf.inverse_matrix(first_gt_coincidence), first_vertice) # Move all the gt and odometry points with the correction gt_moved = apply_tf_to_matrix(tf_delta, gt) gt_rb_moved = apply_tf_to_matrix(tf_delta, gt_rebased) odom_moved = apply_tf_to_matrix(tf_delta, odom) odom_rb_moved = apply_tf_to_matrix(tf_delta, odom_rebased) orb_moved = apply_tf_to_matrix(tf_delta, orb) orb_rb_moved = apply_tf_to_matrix(tf_delta, orb_rebased) # Transform optimization Param = collections.namedtuple('Param','roll pitch yaw') rranges = ((angles[0]*np.pi/180, angles[1]*np.pi/180, 0.04), (angles[2]*np.pi/180, angles[3]*np.pi/180, 0.02), (angles[4]*np.pi/180, angles[5]*np.pi/180, 0.04)) p = optimize.brute(sigmoid, rranges, args=(vertices, gt_rebased)) p = Param(*p) # Build the rotation matrix roll, pitch, yaw = p q = quaternion_from_rpy(roll, pitch, yaw) tf_correction = to_transform([0.0, 0.0, 0.0, 0.0, q[0], q[1], q[2], q[3]]) # Correct ground truth and odometry gt_corrected = apply_tf_to_vector(tf_correction, gt_moved) gt_rb_corrected = apply_tf_to_vector(tf_correction, gt_rb_moved) odom_corrected = apply_tf_to_vector(tf_correction, odom_moved) odom_rb_corrected = apply_tf_to_vector(tf_correction, odom_rb_moved) orb_corrected = apply_tf_to_vector(tf_correction, orb_moved) orb_rb_corrected = apply_tf_to_vector(tf_correction, orb_rb_moved) # Compute the errors print "Computing errors, please wait..." gt_dist = trajectory_distances(gt_rb_corrected) odom_dist = trajectory_distances(odom_rb_corrected) vertices_dist = trajectory_distances(vertices) orb_dist = trajectory_distances(orb_rb_corrected) odom_errors = calc_errors(gt_rb_corrected, odom_rb_corrected) vertices_errors = calc_errors(gt_rb_corrected, vertices) orb_errors = calc_errors(gt_rb_corrected, orb_rb_corrected) time = calc_time_vector(gt_rb_corrected) odom_mae = np.average(np.abs(odom_errors), 0) vertices_mae = np.average(np.abs(vertices_errors), 0) orb_mae = np.average(np.abs(orb_errors), 0) rows = [] rows.append(['Viso2'] + [len(odom_errors)] + [odom_dist[-1]] + [odom_mae]) rows.append(['ORB-SLAM'] + [len(orb_errors)] + [orb_dist[-1]] + [orb_mae]) rows.append(['Stereo-SLAM'] + [len(vertices_errors)] + [vertices_dist[-1]] + [vertices_mae]) # Build the header for the output table header = [ "Input", "Data Points", "Traj. Distance (m)", "Trans. MAE (m)"] toRSTtable([header] + rows) print "Ground truth distance: ", gt_dist[-1], "m" # Plot graph (3D) ax0.plot(gt_corrected[:,1], gt_corrected[:,2], gt_corrected[:,3], colors[0], linewidth=linewidth, label='Ground Truth') ax0.plot(odom_corrected[:,1], odom_corrected[:,2], odom_corrected[:,3], colors[1], linewidth=linewidth, label='Viso2') ax0.plot(orb_corrected[:,1], orb_corrected[:,2], orb_corrected[:,3], 'y', linewidth=linewidth, label='ORB-SLAM') ax0.plot(vertices[:,1], vertices[:,2], vertices[:,3], colors[2], linewidth=linewidth, label='Stereo-SLAM', marker='o') # Plot graph (2D) ax1.plot(gt_corrected[:,1], gt_corrected[:,2], colors[0], linewidth=linewidth, label='Ground truth') ax1.plot(odom_corrected[:,1], odom_corrected[:,2], colors[1], linewidth=linewidth, label='Viso2') ax1.plot(orb_corrected[:,1], orb_corrected[:,2], 'y', linewidth=linewidth, label='ORB-SLAM') ax1.plot(vertices[:,1], vertices[:,2], colors[2], linewidth=linewidth, label='Stereo-SLAM', marker='o') # Plot the graph edges f = open(args.graph_edges_file) lines = f.readlines() f.close() if (len(lines) > 0): edges = pylab.loadtxt(args.graph_edges_file, delimiter=',', usecols=(3,4,5,10,11,12)) for i in range(len(edges)): vect = [] vect.append([edges[i,0], edges[i,1], edges[i,2]]) vect.append([edges[i,3], edges[i,4], edges[i,5]]) vect = np.array(vect) ax0.plot(vect[:,0], vect[:,1], vect[:,2], colors[2], linewidth=linewidth-1, linestyle='--') ax1.plot(vect[:,0], vect[:,1], colors[2], linewidth=linewidth-1, linestyle='--') ax0.legend(loc=2) ax1.legend(loc=2) # Plot individual graphs (2D) ax2.plot(gt_corrected[:,1], gt_corrected[:,2], 'g', linewidth=linewidth, label='Ground truth') ax2.plot(odom_corrected[:,1], odom_corrected[:,2], 'b', linewidth=linewidth, label='Viso2') ax2.legend(loc=2) ax3.plot(gt_corrected[:,1], gt_corrected[:,2], 'g', linewidth=linewidth, label='Ground truth') ax3.plot(orb_corrected[:,1], orb_corrected[:,2], 'b', linewidth=linewidth, label='ORB-SLAM') ax3.legend(loc=2) ax4.plot(gt_corrected[:,1], gt_corrected[:,2], 'g', linewidth=linewidth, label='Ground truth') ax4.plot(vertices[:,1], vertices[:,2], 'b', linewidth=linewidth, label='Stereo-SLAM') ax4.legend(loc=2) # Plot errors fig5 = pylab.figure() ax5 = fig5.gca() ax5.plot(odom_dist, odom_errors, colors[1], linewidth=linewidth, label='Viso2') ax5.plot(orb_dist, orb_errors, 'g', linewidth=linewidth, label='ORB-SLAM') ax5.plot(vertices_dist, vertices_errors, colors[2], linewidth=linewidth, label='Stereo-SLAM') ax5.grid(True) ax5.set_xlabel("Distance (m)") ax5.set_ylabel("Error (m)") ax5.legend(loc=2) ax5.tick_params(axis='both', which='major', labelsize=40); ax5.set_xlim(0, 52) pyplot.draw() pylab.show()
bsd-3-clause
wheeler-microfluidics/dmf-control-board-firmware
dmf_control_board_firmware/tests/test_feedback_calculations.py
3
4665
import numpy as np import pandas as pd from path_helpers import path def compare_results_to_reference(method, reference_results_file, id=1, filter_order=None): input_file = path(__file__).parent / path('FeedbackResults') / \ path('input_1.pickle') data = input_file.pickle_load() # add absolute path reference_results_file = path(__file__).parent / path('FeedbackResults') / \ reference_results_file f = pd.HDFStore(reference_results_file, 'r') reference_results_df = f['/root'] f.close() order = filter_order if filter_order is None: # filter_order=None is represented as -1 order = -1 # filter the results based on id and filter_order reference_results_df = reference_results_df[(reference_results_df['id'] == id) & (reference_results_df['filter_order'] == order)] if method in ['force', 'V_actuation']: results = eval('data.%s()' % method) elif method in ['dxdt']: t, results = eval('data.%s(filter_order=%s)' % (method, filter_order)) else: results = eval('data.%s(filter_order=%s)' % (method, filter_order)) # re-cast masked array as normal array results = np.array(results) max_diff = np.max(np.abs(reference_results_df[method].values - results)) if max_diff > 1e-14: print max_diff assert max_diff == 0 nan_dif = np.isnan(reference_results_df[method].values) ^ np.isnan(results) if np.any(nan_dif): print "Differences exist in the 'np.isnan(x)' status for some values." assert False def test_V_actuation(): compare_results_to_reference('V_actuation', 'reference_results.hdf') def test_x_position(): compare_results_to_reference('x_position', 'reference_results.hdf') def test_force(): compare_results_to_reference('force', 'reference_results.hdf') def test_Z_device(): compare_results_to_reference('Z_device', 'reference_results.hdf') def test_Z_device_filter_order_3(): compare_results_to_reference('Z_device', 'reference_results.hdf', filter_order=3) def test_capacitance(): compare_results_to_reference('capacitance', 'reference_results.hdf') def test_velocity(): compare_results_to_reference('dxdt', 'reference_results_velocity.hdf') def test_velocity_filter_order_3(): compare_results_to_reference('dxdt', 'reference_results_velocity.hdf', filter_order=3) def generate_feedback_results_reference(data, id): input_file = path(__file__).parent / path('FeedbackResults') / \ path('input_%s.pickle' % id) # save a pickled version of the feedback results object input_file.pickle_dump(data, -1) for fname in ['reference_results.hdf', 'reference_results_velocity.hdf']: reference_results_file = path(__file__).parent / \ path('FeedbackResults') / path(fname) if reference_results_file.exists(): f = pd.HDFStore(reference_results_file, 'r') reference_results_df = f['/root'] f.close() # remove any existing data with the same id reference_results_df = reference_results_df[reference_results_df['id'] != id] else: reference_results_df = pd.DataFrame() for filter_order in [None, 3]: if fname == 'reference_results_velocity.hdf': t, dxdt = data.dxdt(filter_order=filter_order) d = {'dxdt': dxdt, 'time': t, } else: d = {'V_actuation': data.V_actuation(), 'force': data.force(), 'Z_device': data.Z_device(filter_order=filter_order), 'capacitance': data.capacitance(filter_order=filter_order), 'x_position': data.x_position(filter_order=filter_order), 'time': data.time, } results_df = pd.DataFrame(d) results_df['id'] = id # store filter_order=None as -1 if filter_order is None: results_df['filter_order'] = -1 else: results_df['filter_order'] = filter_order reference_results_df = reference_results_df.append(results_df) # save an hdf file containing the reference feedback results calculations reference_results_df.to_hdf(reference_results_file, '/root', complib='blosc', complevel=2) def test_get_window_size(): input_file = path(__file__).parent / path('FeedbackResults') / \ path('input_1.pickle') data = input_file.pickle_load() assert data._get_window_size() == 21.0
bsd-3-clause
dpaiton/OpenPV
pv-core/analysis/python/plot_feature_histogram.py
1
4997
""" Plots the Histogram """ import os import sys import numpy as np import matplotlib.pyplot as plt import matplotlib.mlab as mlab import matplotlib.cm as cm import PVReadWeights as rw import PVConversions as conv import scipy.cluster.vq as sp import math import random if len(sys.argv) < 2: print "usage: time_stability filename" print len(sys.argv) sys.exit() w = rw.PVReadWeights(sys.argv[1]) space = 1 nx = w.nx ny = w.ny nxp = w.nxp nyp = w.nyp numpat = w.numPatches nf = w.nf margin = 15 marginstart = margin marginend = nx - margin acount = 0 patchposition = [] supereasytest = 1 d = np.zeros((nxp,nyp)) # create feature list for comparing weights from on and off cells f = np.zeros(w.patchSize) f2 = np.zeros(w.patchSize) fe1 = [] fe2 = [] fe3 = [] fe4 = [] fe5 = [] fe6 = [] fe7 = [] fe8 = [] fcomp = [] f = w.normalize(f) f2 = w.normalize(f2) # vertical lines from right side f = np.zeros([w.nxp, w.nyp]) # first line f[:,0] = 1 fe1.append(f) f = np.zeros([w.nxp, w.nyp]) # second line f[:,1] = 1 fe2.append(f) f2 = np.zeros([w.nxp, w.nyp]) # third line f2[:,2] = 1 fe3.append(f2) f = np.zeros([w.nxp, w.nyp]) f[:,3] = 1 fe4.append(f) #horizontal lines from the top f = np.zeros([w.nxp, w.nyp]) f[0,:] = 1 fe5.append(f) f = np.zeros([w.nxp, w.nyp]) f[1,:] = 1 fe6.append(f) f = np.zeros([w.nxp, w.nyp]) f[2,:] = 1 fe7.append(f) f = np.zeros([w.nxp, w.nyp]) f[3,:] = 1 fe8.append(f) #print "f8", fe8 #print "f7", fe7 #print "f6", fe6 #print "f5", fe5 #print "f4", fe4 #print "f3", fe3 #print "f2", fe2 #print "f1", fe1 def whatFeature(k): result = [] fcomp = [] k = np.reshape(k,(nxp,nyp)) f1 = k * fe1 f1 = np.sum(f1) fcomp.append(f1) #print f1 f2 = k * fe2 f2 = np.sum(f2) #print f2 fcomp.append(f2) f3 = k * fe3 f3 = np.sum(f3) #print f3 fcomp.append(f3) f4 = k * fe4 f4 = np.sum(f4) #print f4 fcomp.append(f4) f5 = k * fe5 f5 = np.sum(f5) #print f5 fcomp.append(f5) f6 = k * fe6 f6 = np.sum(f6) #print f6 fcomp.append(f6) f7 = k * fe7 f7 = np.sum(f7) #print f7 fcomp.append(f7) f8 = k * fe8 f8 = np.sum(f8) #print f8 fcomp.append(f8) fcomp = np.array(fcomp) t = fcomp.argmax() check = fcomp.max() / 4 if check > 0.7: 1 else: result = [10] return result maxp = np.max(fcomp) if maxp == f1: #print "f1" result.append(1) if maxp == f2: #print "f2" result.append(2) if maxp == f3: #print "f3" result.append(3) if maxp == f4: #print "f4" result.append(4) if maxp == f5: #print "f5" result.append(5) if maxp == f6: #print "f6" result.append(6) if maxp == f7: #print "f7" result.append(7) if maxp == f8: #print "f8" result.append(8) if len(result) > 1: rl = len(result) ri = random.randint(0, rl) wn = result[ri-1] result = [] result.append(wn) #print "result = ", result return result space = 1 w = rw.PVReadWeights(sys.argv[1]) coord = 1 coord = int(coord) nx = w.nx ny = w.ny nxp = w.nxp nyp = w.nyp numpat = w.numPatches nf = w.nf margin = 32 start = margin marginend = nx - margin nx_im = nx * (nxp + space) + space ny_im = ny * (nyp + space) + space im = np.zeros((nx_im, ny_im)) im[:,:] = (w.max - w.min) / 2. where = [] zep = [] for k in range(numpat): kx = conv.kxPos(k, nx, ny, nf) ky = conv.kyPos(k, nx, ny, nf) p = w.next_patch() afz = whatFeature(p) zep.append(afz) if len(p) != nxp * nyp: continue if marginstart < kx < marginend: if marginstart < ky < marginend: acount+=1 a = whatFeature(p) a = a[0] if a != 10: where.append(a) #print a count = 0 count1 = 0 count2 = 0 count3 = 0 count4 = 0 count5 = 0 count6 = 0 count7 = 0 count8 = 0 for i in range(len(where)): if where[i] == 1: count1 += 1 if where[i] == 2: count2 += 1 if where[i] == 3: count3 += 1 if where[i] == 4: count4 += 1 if where[i] == 5: count5 += 1 if where[i] == 6: count6 += 1 if where[i] == 7: count7 += 1 if where[i] == 8: count8 += 1 h = [count1, count2, count3, count4, count5, count6, count7, count8] h2 = [0, count1, count2, count3, count4, count5, count6, count7, count8] hmax = np.max(h) hmin = np.min(h) hratio = float(hmax)/hmin ptotal = len(where) / float(acount) print "hmax = ", hmax print "hmin = ", hmin print "hratio = ", hratio print "% of total = ", ptotal fig = plt.figure() ax = fig.add_subplot(111) loc = np.array(range(len(h)))+0.5 width = 1.0 ax.set_title('Feature Histogram') ax.set_xlabel('Total Number of Features = %1.0i \n ratio = %f \n percent of total = %f' %(len(where), hratio, ptotal)) ax.bar(loc, h, width=width, bottom=0, color='b') #ax.plot(np.arange(len(h2)), h2, ls = '-', marker = 'o', color='b', linewidth = 4.0) plt.show()
epl-1.0
adamgreenhall/scikit-learn
benchmarks/bench_sgd_regression.py
283
5569
""" Benchmark for SGD regression Compares SGD regression against coordinate descent and Ridge on synthetic data. """ print(__doc__) # Author: Peter Prettenhofer <[email protected]> # License: BSD 3 clause import numpy as np import pylab as pl import gc from time import time from sklearn.linear_model import Ridge, SGDRegressor, ElasticNet from sklearn.metrics import mean_squared_error from sklearn.datasets.samples_generator import make_regression if __name__ == "__main__": list_n_samples = np.linspace(100, 10000, 5).astype(np.int) list_n_features = [10, 100, 1000] n_test = 1000 noise = 0.1 alpha = 0.01 sgd_results = np.zeros((len(list_n_samples), len(list_n_features), 2)) elnet_results = np.zeros((len(list_n_samples), len(list_n_features), 2)) ridge_results = np.zeros((len(list_n_samples), len(list_n_features), 2)) asgd_results = np.zeros((len(list_n_samples), len(list_n_features), 2)) for i, n_train in enumerate(list_n_samples): for j, n_features in enumerate(list_n_features): X, y, coef = make_regression( n_samples=n_train + n_test, n_features=n_features, noise=noise, coef=True) X_train = X[:n_train] y_train = y[:n_train] X_test = X[n_train:] y_test = y[n_train:] print("=======================") print("Round %d %d" % (i, j)) print("n_features:", n_features) print("n_samples:", n_train) # Shuffle data idx = np.arange(n_train) np.random.seed(13) np.random.shuffle(idx) X_train = X_train[idx] y_train = y_train[idx] std = X_train.std(axis=0) mean = X_train.mean(axis=0) X_train = (X_train - mean) / std X_test = (X_test - mean) / std std = y_train.std(axis=0) mean = y_train.mean(axis=0) y_train = (y_train - mean) / std y_test = (y_test - mean) / std gc.collect() print("- benchmarking ElasticNet") clf = ElasticNet(alpha=alpha, l1_ratio=0.5, fit_intercept=False) tstart = time() clf.fit(X_train, y_train) elnet_results[i, j, 0] = mean_squared_error(clf.predict(X_test), y_test) elnet_results[i, j, 1] = time() - tstart gc.collect() print("- benchmarking SGD") n_iter = np.ceil(10 ** 4.0 / n_train) clf = SGDRegressor(alpha=alpha / n_train, fit_intercept=False, n_iter=n_iter, learning_rate="invscaling", eta0=.01, power_t=0.25) tstart = time() clf.fit(X_train, y_train) sgd_results[i, j, 0] = mean_squared_error(clf.predict(X_test), y_test) sgd_results[i, j, 1] = time() - tstart gc.collect() print("n_iter", n_iter) print("- benchmarking A-SGD") n_iter = np.ceil(10 ** 4.0 / n_train) clf = SGDRegressor(alpha=alpha / n_train, fit_intercept=False, n_iter=n_iter, learning_rate="invscaling", eta0=.002, power_t=0.05, average=(n_iter * n_train // 2)) tstart = time() clf.fit(X_train, y_train) asgd_results[i, j, 0] = mean_squared_error(clf.predict(X_test), y_test) asgd_results[i, j, 1] = time() - tstart gc.collect() print("- benchmarking RidgeRegression") clf = Ridge(alpha=alpha, fit_intercept=False) tstart = time() clf.fit(X_train, y_train) ridge_results[i, j, 0] = mean_squared_error(clf.predict(X_test), y_test) ridge_results[i, j, 1] = time() - tstart # Plot results i = 0 m = len(list_n_features) pl.figure('scikit-learn SGD regression benchmark results', figsize=(5 * 2, 4 * m)) for j in range(m): pl.subplot(m, 2, i + 1) pl.plot(list_n_samples, np.sqrt(elnet_results[:, j, 0]), label="ElasticNet") pl.plot(list_n_samples, np.sqrt(sgd_results[:, j, 0]), label="SGDRegressor") pl.plot(list_n_samples, np.sqrt(asgd_results[:, j, 0]), label="A-SGDRegressor") pl.plot(list_n_samples, np.sqrt(ridge_results[:, j, 0]), label="Ridge") pl.legend(prop={"size": 10}) pl.xlabel("n_train") pl.ylabel("RMSE") pl.title("Test error - %d features" % list_n_features[j]) i += 1 pl.subplot(m, 2, i + 1) pl.plot(list_n_samples, np.sqrt(elnet_results[:, j, 1]), label="ElasticNet") pl.plot(list_n_samples, np.sqrt(sgd_results[:, j, 1]), label="SGDRegressor") pl.plot(list_n_samples, np.sqrt(asgd_results[:, j, 1]), label="A-SGDRegressor") pl.plot(list_n_samples, np.sqrt(ridge_results[:, j, 1]), label="Ridge") pl.legend(prop={"size": 10}) pl.xlabel("n_train") pl.ylabel("Time [sec]") pl.title("Training time - %d features" % list_n_features[j]) i += 1 pl.subplots_adjust(hspace=.30) pl.show()
bsd-3-clause
hlin117/scikit-learn
examples/feature_selection/plot_select_from_model_boston.py
146
1527
""" =================================================== Feature selection using SelectFromModel and LassoCV =================================================== Use SelectFromModel meta-transformer along with Lasso to select the best couple of features from the Boston dataset. """ # Author: Manoj Kumar <[email protected]> # License: BSD 3 clause print(__doc__) import matplotlib.pyplot as plt import numpy as np from sklearn.datasets import load_boston from sklearn.feature_selection import SelectFromModel from sklearn.linear_model import LassoCV # Load the boston dataset. boston = load_boston() X, y = boston['data'], boston['target'] # We use the base estimator LassoCV since the L1 norm promotes sparsity of features. clf = LassoCV() # Set a minimum threshold of 0.25 sfm = SelectFromModel(clf, threshold=0.25) sfm.fit(X, y) n_features = sfm.transform(X).shape[1] # Reset the threshold till the number of features equals two. # Note that the attribute can be set directly instead of repeatedly # fitting the metatransformer. while n_features > 2: sfm.threshold += 0.1 X_transform = sfm.transform(X) n_features = X_transform.shape[1] # Plot the selected two features from X. plt.title( "Features selected from Boston using SelectFromModel with " "threshold %0.3f." % sfm.threshold) feature1 = X_transform[:, 0] feature2 = X_transform[:, 1] plt.plot(feature1, feature2, 'r.') plt.xlabel("Feature number 1") plt.ylabel("Feature number 2") plt.ylim([np.min(feature2), np.max(feature2)]) plt.show()
bsd-3-clause
Zomega/thesis
Wurm/INGEST/fixed_hub.py
1
1510
#TODO: Generalize state... def x_dot( x ): #ti <- theta i #wi <- theta dot i #di <- theta double dot i t1, t2, t3, t4, w1, w2, w3, w4 = x def t(i): return [t1, t2, t3, t4][i] def w(i): return [w1, w2, w3, w4][i] def d(i): return (1/I) * ( torque(i-1, i) - torque(i, i+1) - b * w(i) ) def torque(a, b): a = a % n b = b % n assert abs(a-b) == 1 # TODO return 0 return w(1), w(2), w(3), w(4), d(1), d(2), d(3), d(4) def x_dot( x ): x1, x2 = x x1 = float(x1) x2 = float(x2) #x1_dot = (-6 * x1)/(1 +x1**2)**2 + 2*x2 #x2_dot = -2 * ( x1 + x2 ) / ( 1+x1**2 )**2 #x1_dot = x2 - (x1**3) #x2_dot = -(x2 ** 3) - x1 x1_dot = x2 x2_dot = -x1 + x1**3 - x2 return( x1_dot, x2_dot ) def traj( x0 ): x1 = [x0[0]] x2 = [x0[1]] dt = 0.0001 def scale( alpha, x ): return (alpha*x[0], alpha*x[1]) def add( x1, x2 ): return (x1[0]+x2[0], x1[1]+x2[1]) for i in range(10**3): x_t = (x1[-1], x2[-1]) x_n = add( x_t, scale( dt, x_dot( x_t ) ) ) x1.append(x_n[0]) x2.append(x_n[1]) return (x1, x2) import matplotlib.pyplot as plt from pylab import arange from random import randint def plot(traj): x1, x2 = traj plt.plot(x1, x2) plt.xlabel('x1') plt.ylabel('x2') for n in range(10): plot( traj((randint(-20,20),randint(-20,20)))) print n plt.legend() plt.show()
mit
lin-credible/scikit-learn
examples/decomposition/plot_pca_vs_lda.py
182
1743
""" ======================================================= Comparison of LDA and PCA 2D projection of Iris dataset ======================================================= The Iris dataset represents 3 kind of Iris flowers (Setosa, Versicolour and Virginica) with 4 attributes: sepal length, sepal width, petal length and petal width. Principal Component Analysis (PCA) applied to this data identifies the combination of attributes (principal components, or directions in the feature space) that account for the most variance in the data. Here we plot the different samples on the 2 first principal components. Linear Discriminant Analysis (LDA) tries to identify attributes that account for the most variance *between classes*. In particular, LDA, in contrast to PCA, is a supervised method, using known class labels. """ print(__doc__) import matplotlib.pyplot as plt from sklearn import datasets from sklearn.decomposition import PCA from sklearn.lda import LDA iris = datasets.load_iris() X = iris.data y = iris.target target_names = iris.target_names pca = PCA(n_components=2) X_r = pca.fit(X).transform(X) lda = LDA(n_components=2) X_r2 = lda.fit(X, y).transform(X) # Percentage of variance explained for each components print('explained variance ratio (first two components): %s' % str(pca.explained_variance_ratio_)) plt.figure() for c, i, target_name in zip("rgb", [0, 1, 2], target_names): plt.scatter(X_r[y == i, 0], X_r[y == i, 1], c=c, label=target_name) plt.legend() plt.title('PCA of IRIS dataset') plt.figure() for c, i, target_name in zip("rgb", [0, 1, 2], target_names): plt.scatter(X_r2[y == i, 0], X_r2[y == i, 1], c=c, label=target_name) plt.legend() plt.title('LDA of IRIS dataset') plt.show()
bsd-3-clause
bitforks/freetype-py
examples/glyph-monochrome.py
4
1263
#!/usr/bin/env python # -*- coding: utf-8 -*- # ----------------------------------------------------------------------------- # # FreeType high-level python API - Copyright 2011-2015 Nicolas P. Rougier # Distributed under the terms of the new BSD license. # # ----------------------------------------------------------------------------- ''' Glyph bitmap monochrome rendring ''' from freetype import * def bits(x): data = [] for i in range(8): data.insert(0, int((x & 1) == 1)) x = x >> 1 return data if __name__ == '__main__': import numpy import matplotlib.pyplot as plt face = Face('./Vera.ttf') face.set_char_size( 48*64 ) face.load_char('S', FT_LOAD_RENDER | FT_LOAD_TARGET_MONO ) bitmap = face.glyph.bitmap width = face.glyph.bitmap.width rows = face.glyph.bitmap.rows pitch = face.glyph.bitmap.pitch data = [] for i in range(bitmap.rows): row = [] for j in range(bitmap.pitch): row.extend(bits(bitmap.buffer[i*bitmap.pitch+j])) data.extend(row[:bitmap.width]) Z = numpy.array(data).reshape(bitmap.rows, bitmap.width) plt.imshow(Z, interpolation='nearest', cmap=plt.cm.gray, origin='lower') plt.show()
bsd-3-clause
larenzhang/DQN_for_trading
deep_q_network.py
1
9932
#!/usr/bin/env python import tensorflow as tf import cv2 import sys sys.path.append("Wrapped Game Code/") import random import numpy as np from collections import deque import os from PIL import Image import csv from os.path import join,getsize,getmtime import time import scipy.io as scio import matplotlib.pyplot as plt GAME = 'tetris' # the name of the game being played for log files ACTION_SIZE = 3 # number of valid actions GAMMA = 0.85 # decay rate of past observations OBSERVE = 4000 # timesteps to observe before training EXPLORE = 4000 # frames over which to anneal epsilon FINAL_EPSILON = 0.05 # final value of epsilon INITIAL_EPSILON = 0.05 # starting value of epsilon REPLAY_MEMORY = 50000 # number of previous transitions to remember BATCH = 32 # size of minibatch K = 1 # only select an action every Kth frame, repeat prev for others ACTIONS = np.array([1,0,-1]) #long,neutral,short TRAIN_IMG_PATH = "./dataset/AMZN/AMZN_TRAIN/AMZN_PIC" TRAIN_MAT_PATH = "./dataset/AMZN/AMZN_TRAIN/AMZN.mat" TRAIN_REWARD_PATH = "./dataset/AMZN/AMZN_TRAIN/earning.csv" TEST_IMG_PATH = "./dataset/AMZN/AMZN_TEST/AMZN_PIC" TEST_MAT_PATH = "./dataset/AMZN/AMZN_TEST/AMZN.mat" TEST_REWARD_PATH = "./dataset/AMZN/AMZN_TEST/earning.csv" TEST = True TRAIN = False def imgs2tensor(root_dir): states = [] file_list = os.listdir(root_dir) path_dict = {} for i in range(len(file_list)): path_dict[file_list[i]] = getmtime(join(root_dir,file_list[i])) sort_list = sorted(path_dict.items(),key=lambda e:e[1],reverse=False) for i in range(0,len(file_list)): path = os.path.join(root_dir,sort_list[i][0]) print("path is :",path) if os.path.isfile(path): img = cv2.imread("{}".format(path)) img_gray = cv2.cvtColor(cv2.resize(img,(80,80)),cv2.COLOR_BGR2GRAY) ret, data = cv2.threshold(img_gray,1,255,cv2.THRESH_BINARY) states.append(data) print("states shape:",np.shape(states)) # data = cv2.cvtColor(cv2.resize(data_new, (80, 80)), cv2.COLOR_BGR2GRAY) states_size = np.shape(states)[0] return states def getFileOrderByUpdate(path): file_list = os.listdir(path) path_dict = {} for i in range(len(file_list)): path_dict[file_list[i]] = getmtime(join(path,file_list[i])) sort_list = sorted(path_dict.items(),key=lambda e:e[1],reverse=False) for i in range(len(sort_list)): print(sort_list[i][0],sort_list[i][1]) def get_reward(file_dir): reward = [] with open(file_dir,'r') as file: reader = csv.reader(file) for line in reader: reward.append(line[0]) reward_float = [float(str) for str in reward] return reward_float def create_csv_file(file_name="",data_list=[]): with open(file_name,"w") as csv_file: csv_writer = csv.writer(csv_file) # for data in data_list: # print("data is:",data) csv_writer.writerows(map(lambda x:[x],data_list)) csv_file.close def weight_variable(shape): initial = tf.truncated_normal(shape, stddev = 0.01) return tf.Variable(initial) def bias_variable(shape): initial = tf.constant(0.01, shape = shape) return tf.Variable(initial) def conv2d(x, W, stride): return tf.nn.conv2d(x, W, strides = [1, stride, stride, 1], padding = "SAME") def max_pool_2x2(x): return tf.nn.max_pool(x, ksize = [1, 2, 2, 1], strides = [1, 2, 2, 1], padding = "SAME") def createNetwork(): # network weights W_conv1 = weight_variable([8, 8, 1, 32]) b_conv1 = bias_variable([32]) W_conv2 = weight_variable([4, 4, 32, 64]) b_conv2 = bias_variable([64]) W_conv3 = weight_variable([3, 3, 64, 64]) b_conv3 = bias_variable([64]) W_fc1 = weight_variable([1600, 512]) b_fc1 = bias_variable([512]) W_fc2 = weight_variable([512, ACTION_SIZE]) b_fc2 = bias_variable([ACTION_SIZE]) # input layer s = tf.placeholder("float", [None, 80, 80, 1]) # hidden layers h_conv1 = tf.nn.relu(conv2d(s, W_conv1, 4) + b_conv1) h_pool1 = max_pool_2x2(h_conv1) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2, 2) + b_conv2) # h_pool2 = max_pool_2x2(h_conv2) h_conv3 = tf.nn.relu(conv2d(h_conv2, W_conv3, 1) + b_conv3) #h_pool3 = max_pool_2x2(h_conv3) #h_pool3_flat = tf.reshape(h_pool3, [-1, 256]) h_conv3_flat = tf.reshape(h_conv3, [-1, 1600]) h_fc1 = tf.nn.relu(tf.matmul(h_conv3_flat, W_fc1) + b_fc1) # readout layer readout = tf.matmul(h_fc1, W_fc2) + b_fc2 return s, readout, h_fc1 def trainNetwork(s, readout, h_fc1, sess): #define the cost function a = tf.placeholder("float", [None, ACTION_SIZE]) y = tf.placeholder("float", [None]) #readout_action = tf.reduce_sum(tf.matmul(readout, a), reduction_indices = 1) readout_action = tf.reduce_sum(tf.matmul(readout,a,transpose_b=True), reduction_indices = 1) cost = tf.reduce_mean(tf.square(y - readout_action)) train_step = tf.train.AdamOptimizer(1e-6).minimize(cost) # store the previous observations in replay memory D = deque() # if TRAIN: # if os.path.exists(TRAIN_MAT_PATH): # states = scio.loadmat(TRAIN_MAT_PATH) # else: states = imgs2tensor(TEST_IMG_PATH) # states_dict = {"states":states} # scio.savemat("./dataset/AMZN/AMZN_TRAIN/AMZN.mat",states_dict) # if TEST: # if os.path.exists(TEST_MAT_PATH): # states = scio.loadmat(TEST_MAT_PATH) # else: # states = imgs2tensor(TEST_IMG_PATH) # scio.savemat("./dataset/AMZN/AMZN_TEST/AMZN.mat",states) states_size = np.shape(states)[0] reward = get_reward(TRAIN_REWARD_PATH) s_t = np.reshape(states[0],(80,80,1)) # saving and loading networks saver = tf.train.Saver() sess.run(tf.global_variables_initializer()) checkpoint = tf.train.get_checkpoint_state("saved_networks_1") if checkpoint and checkpoint.model_checkpoint_path: saver.restore(sess, checkpoint.model_checkpoint_path) print("Successfully loaded:", checkpoint.model_checkpoint_path) else: print("Could not find old network weights") epsilon = INITIAL_EPSILON t = 0 cum_reward = [] while "pigs" != "fly": # choose an action epsilon greedily if t<states_size-1: terminal = True readout_t = readout.eval(feed_dict = {s : [s_t]})[0] a_t = np.zeros([ACTION_SIZE]) action_index = 0 if random.random() <= epsilon or t <= OBSERVE: action_index = random.randrange(ACTION_SIZE) a_t[action_index] = 1 else: action_index = np.argmax(readout_t) a_t[action_index] = 1 # scale down epsilon if epsilon > FINAL_EPSILON and t > OBSERVE: epsilon -= (INITIAL_EPSILON - FINAL_EPSILON) / EXPLORE for i in range(0, K): # run the selected action and observe next state and reward s_t1 = np.reshape(states[t+1],(80,80,1)) r_t = reward[t]*(np.dot(a_t,ACTIONS.T)) # store the transition in D D.append((s_t, a_t, r_t, s_t1)) if len(D) > REPLAY_MEMORY: D.popleft() # only train if done observing if t>BATCH: # sample a minibatch to train on minibatch = random.sample(D, BATCH) # get the batch variables s_j_batch = [d[0] for d in minibatch] a_batch = [d[1] for d in minibatch] r_batch = [d[2] for d in minibatch] s_j1_batch = [d[3] for d in minibatch] y_batch = [] readout_j1_batch = readout.eval(feed_dict = {s : s_j1_batch}) for i in range(0, len(minibatch)): # if terminal only equals reward # if minibatch[i][4]: # y_batch.append(r_batch[i]) # else: y_batch.append(r_batch[i] + GAMMA * np.max(readout_j1_batch[i])) # perform gradient step train_step.run(feed_dict = { y : y_batch, a : a_batch, s : s_j_batch}) # save progress every 10000 iterations if TRAIN==True: if t % 50 == 0: saver.save(sess, 'saved_networks_1/' + '{}-dqn'.format(time.strftime('%d-%h-%m',time.localtime(time.time()))),global_step=t) # print info state = "" if t <= OBSERVE: state = "observe" elif t > OBSERVE and t <= OBSERVE + EXPLORE: state = "explore" else: state = "train" print("TIMESTEP", t, "/ STATE", state, "/ EPSILON", epsilon, "/ ACTION", action_index, "/ REWARD", r_t, "/ Q_MAX %e" % np.max(readout_t)) if TEST==True: if t>0: cum_reward.append(cum_reward[t-1]+r_t) else : cum_reward.append(r_t) if t==states_size-1: count = 0 for i in cum_reward: if i>0: count+=1 print("accuracy rate:",count/states_size) t_label = np.linspace(0,1,states_size) # plt.plot(t_label,cum_reward,color='red',linewidth=2) plt.legend() plt.plot(cum_reward) plt.xlabel("Date") plt.ylabel("Total Return") plt.title("AMAZON") create_csv_file("./total_return.csv",cum_reward) plt.show() s_t = s_t1 t += 1 def playGame(): sess = tf.InteractiveSession() s, readout, h_fc1 = createNetwork() trainNetwork(s, readout, h_fc1, sess) def main(): playGame() if __name__ == "__main__": main() # imgs2tensor("./dataset/test")
gpl-2.0
UNR-AERIAL/scikit-learn
examples/feature_stacker.py
246
1906
""" ================================================= Concatenating multiple feature extraction methods ================================================= In many real-world examples, there are many ways to extract features from a dataset. Often it is beneficial to combine several methods to obtain good performance. This example shows how to use ``FeatureUnion`` to combine features obtained by PCA and univariate selection. Combining features using this transformer has the benefit that it allows cross validation and grid searches over the whole process. The combination used in this example is not particularly helpful on this dataset and is only used to illustrate the usage of FeatureUnion. """ # Author: Andreas Mueller <[email protected]> # # License: BSD 3 clause from sklearn.pipeline import Pipeline, FeatureUnion from sklearn.grid_search import GridSearchCV from sklearn.svm import SVC from sklearn.datasets import load_iris from sklearn.decomposition import PCA from sklearn.feature_selection import SelectKBest iris = load_iris() X, y = iris.data, iris.target # This dataset is way to high-dimensional. Better do PCA: pca = PCA(n_components=2) # Maybe some original features where good, too? selection = SelectKBest(k=1) # Build estimator from PCA and Univariate selection: combined_features = FeatureUnion([("pca", pca), ("univ_select", selection)]) # Use combined features to transform dataset: X_features = combined_features.fit(X, y).transform(X) svm = SVC(kernel="linear") # Do grid search over k, n_components and C: pipeline = Pipeline([("features", combined_features), ("svm", svm)]) param_grid = dict(features__pca__n_components=[1, 2, 3], features__univ_select__k=[1, 2], svm__C=[0.1, 1, 10]) grid_search = GridSearchCV(pipeline, param_grid=param_grid, verbose=10) grid_search.fit(X, y) print(grid_search.best_estimator_)
bsd-3-clause
brockk/clintrials
clintrials/phase2/bebop/__init__.py
1
9745
__author__ = 'Kristian Brock' __contact__ = '[email protected]' __all__ = ["peps2v1", "peps2v2"] """ BeBOP: Bayesian design with Bivariate Outcomes and Predictive variables Brock, et al. To be published. BeBOP studies the dual primary outcomes efficacy and toxicity. The two events can be associated to reflect the potential for correlated outcomes. The design models the probabilities of efficacy and toxicity using logistic models so that the information in predictive variables can be incorporated to tailor the treatment acceptance / rejection decision. This is a generalisation of the design that was used in the PePS2 trial. PePS2 studies the efficacy and toxicity of a drug in a population of performance status 2 lung cancer patients. Patient outcomes may plausibly be effected by whether or not they have been treated before, and the expression rate of PD-L1 in their cells. PePS2 uses Brock et al's BeBOP design to incorporate the potentially predictive data in PD-L1 expression rate and whether or not a patient has been pre-treated to find the sub-population(s) where the drug works and is tolerable. """ import numpy import pandas as pd from clintrials.stats import ProbabilityDensitySample class BeBOP(): """ """ def __init__(self, theta_priors, efficacy_model, toxicity_model, joint_model): """ Params: :param theta_priors: list of prior distributions for elements of parameter vector, theta. Each prior object should support obj.ppf(x) and obj.pdf(x) like classes in scipy :param efficacy_model: func with signature x, theta; where x is a case vector and theta a 2d array of parameter values, the first column containing values for the first parameter, the second column the second parameter, etc, so that each row in theta is a single parameter set. Function should return probability of efficacy of case x under each parameter set (i.e. each row of theta) so that a 1*len(theta) array should be returned. :param toxicity_model: func with signature x, theta; where x is a case vector and theta a 2d array of parameter values, the first column containing values for the first parameter, the second column the second parameter, etc, so that each row in theta is a single parameter set. Function should return probability of toxicity of case x under each parameter set (i.e. each row of theta) so that a 1*len(theta) array should be returned. :param joint_model: func with signature x, theta; where x is a case vector and theta a 2d array of parameter values, the first column containing values for the first parameter, the second column the second parameter, etc, so that each row in theta is a single parameter set. Function should return the joint probability of efficacy and toxicity of case x under each parameter set (i.e. each row of theta) so that a 1*len(theta) array should be returned. Generally this method would use efficacy_model and toxicity_model. For non-associated events, for instance, the simple product of efficacy_model(x, theta) and toxicity_model(x, theta) would do the job. For associated events, more complexity is required. In case vector x, the element x[0] should be boolean efficacy variable, with 1 showing efficacy occurred. In case vector x, the element x[1] should be boolean toxicity variable, with 1 showing toxicity occurred. See clintrials.phase2.bebop.peps2v2 for a working trio of efficacy_model, toxicity_model and joint_model that allow for associated efficacy and toxicity events. Note: efficacy_model, toxicity_model and joint_model should be vectorised to work with one case and many parameter sets (rather than just many cases and one parameter set) for quick integration using Monte Carlo. """ self.priors = theta_priors self._pi_e = efficacy_model self._pi_t = toxicity_model self._pi_ab = joint_model # Initialise model self.reset() def reset(self): self.cases = [] self._pds = None def _l_n(self, D, theta): if len(D) > 0: lik = numpy.array(map(lambda x: self._pi_ab(x, theta), D)) return lik.prod(axis=0) else: return numpy.ones(len(theta)) def size(self): return len(self.cases) def efficacies(self): return [case[0] for case in self.cases] def toxicities(self): return [case[1] for case in self.cases] def get_case_elements(self, i): return [case[i] for case in self.cases] def update(self, cases, n=10**6, epsilon = 0.00001, **kwargs): """ TODO :param n: :param epsilon: """ self.cases.extend(cases) limits = [(dist.ppf(epsilon), dist.ppf(1-epsilon)) for dist in self.priors] samp = numpy.column_stack([numpy.random.uniform(*limit_pair, size=n) for limit_pair in limits]) lik_integrand = lambda x: self._l_n(cases, x) * numpy.prod(numpy.array([dist.pdf(col) for (dist, col) in zip(self.priors, x.T)]), axis=0) self._pds = ProbabilityDensitySample(samp, lik_integrand) return def _predict_case(self, case, eff_cutoff, tox_cutoff, pds, samp, estimate_ci=False): x = case eff_probs = self._pi_e(x, samp) tox_probs = self._pi_t(x, samp) from collections import OrderedDict predictions = OrderedDict([ ('Pr(Eff)', pds.expectation(eff_probs)), ('Pr(Tox)', pds.expectation(tox_probs)), ('Pr(AccEff)', pds.expectation((eff_probs > eff_cutoff))), ('Pr(AccTox)', pds.expectation((tox_probs < tox_cutoff))), ]) if estimate_ci: predictions['Pr(Eff) Lower'] = pds.quantile_vector(eff_probs, 0.05, start_value=0.05) predictions['Pr(Eff) Upper'] = pds.quantile_vector(eff_probs, 0.95, start_value=0.95) predictions['Pr(Tox) Lower'] = pds.quantile_vector(tox_probs, 0.05, start_value=0.05) predictions['Pr(Tox) Upper'] = pds.quantile_vector(tox_probs, 0.95, start_value=0.95) return predictions def predict(self, cases, eff_cutoff, tox_cutoff, to_pandas=False, estimate_ci=False): if self._pds is not None: pds = self._pds samp = pds._samp fitted = [self._predict_case(x, eff_cutoff, tox_cutoff, pds, samp, estimate_ci=estimate_ci) for x in cases] if to_pandas: if estimate_ci: return pd.DataFrame(fitted, columns=['Pr(Eff)', 'Pr(Tox)', 'Pr(AccEff)', 'Pr(AccTox)', 'Pr(Eff) Lower', 'Pr(Eff) Upper', 'Pr(Tox) Lower', 'Pr(Tox) Upper']) else: return pd.DataFrame(fitted, columns=['Pr(Eff)', 'Pr(Tox)', 'Pr(AccEff)', 'Pr(AccTox)']) else: return fitted else: return None def get_posterior_param_means(self): if self._pds: return numpy.apply_along_axis(lambda x: self._pds.expectation(x), 0, self._pds._samp) else: return [] def theta_estimate(self, i, alpha=0.05): """ Get posterior confidence interval and mean estimate of element i in parameter vector. Returns (lower, mean, upper) """ if j < len(self.priors): mu = self._pds.expectation(self._pds._samp[:,i]) return numpy.array([self._pds.quantile(i, alpha/2), mu, self._pds.quantile(i, 1-alpha/2)]) else: return (0,0,0) # def efficacy_effect(self, j, alpha=0.05): # """ Get confidence interval and mean estimate of the effect on efficacy, expressed as odds-ratios. # Use: # - j=0, to get treatment effect of the intercept variable # - j=1, to get treatment effect of the pre-treated status variable # - j=2, to get treatment effect of the mutation status variable # """ # if j==0: # expected_log_or = self._pds.expectation(self._pds._samp[:,1]) # return np.exp([self._pds.quantile(1, alpha/2), expected_log_or, self._pds.quantile(1, 1-alpha/2)]) # elif j==1: # expected_log_or = self._pds.expectation(self._pds._samp[:,2]) # return np.exp([self._pds.quantile(2, alpha/2), expected_log_or, self._pds.quantile(2, 1-alpha/2)]) # elif j==2: # expected_log_or = self._pds.expectation(self._pds._samp[:,3]) # return np.exp([self._pds.quantile(3, alpha/2), expected_log_or, self._pds.quantile(3, 1-alpha/2)]) # else: # return (0,0,0) # def toxicity_effect(self, j=0, alpha=0.05): # """ Get confidence interval and mean estimate of the effect on toxicity, expressed as odds-ratios. # Use: # - j=0, to get effect on toxicity of the intercept variable # """ # if j==0: # expected_log_or = self._pds.expectation(self._pds._samp[:,0]) # return np.exp([self._pds.quantile(0, alpha/2), expected_log_or, self._pds.quantile(0, 1-alpha/2)]) # else: # return (0,0,0) # def correlation_effect(self, alpha=0.05): # """ Get confidence interval and mean estimate of the correlation between efficacy and toxicity. """ # expected_psi = self._pds.expectation(self._pds._samp[:,4]) # psi_levels = np.array([self._pds.quantile(4, alpha/2), expected_psi, self._pds.quantile(4, 1-alpha/2)]) # return (np.exp(psi_levels) - 1) / (np.exp(psi_levels) + 1)
gpl-3.0
diegocavalca/Studies
programming/Python/Machine-Learning/Introduction-Udacity/regression/finance_regression.py
7
2106
#!/usr/bin/python """ Starter code for the regression mini-project. Loads up/formats a modified version of the dataset (why modified? we've removed some trouble points that you'll find yourself in the outliers mini-project). Draws a little scatterplot of the training/testing data You fill in the regression code where indicated: """ import sys import pickle sys.path.append("../tools/") from feature_format import featureFormat, targetFeatureSplit dictionary = pickle.load( open("../final_project/final_project_dataset_modified.pkl", "r") ) ### list the features you want to look at--first item in the ### list will be the "target" feature features_list = ["bonus", "salary"] data = featureFormat( dictionary, features_list, remove_any_zeroes=True) target, features = targetFeatureSplit( data ) ### training-testing split needed in regression, just like classification from sklearn.cross_validation import train_test_split feature_train, feature_test, target_train, target_test = train_test_split(features, target, test_size=0.5, random_state=42) train_color = "b" test_color = "b" ### Your regression goes here! ### Please name it reg, so that the plotting code below picks it up and ### plots it correctly. Don't forget to change the test_color above from "b" to ### "r" to differentiate training points from test points. ### draw the scatterplot, with color-coded training and testing points import matplotlib.pyplot as plt for feature, target in zip(feature_test, target_test): plt.scatter( feature, target, color=test_color ) for feature, target in zip(feature_train, target_train): plt.scatter( feature, target, color=train_color ) ### labels for the legend plt.scatter(feature_test[0], target_test[0], color=test_color, label="test") plt.scatter(feature_test[0], target_test[0], color=train_color, label="train") ### draw the regression line, once it's coded try: plt.plot( feature_test, reg.predict(feature_test) ) except NameError: pass plt.xlabel(features_list[1]) plt.ylabel(features_list[0]) plt.legend() plt.show()
cc0-1.0
vinodkc/spark
python/pyspark/pandas/tests/test_categorical.py
14
16649
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from distutils.version import LooseVersion import numpy as np import pandas as pd from pandas.api.types import CategoricalDtype import pyspark.pandas as ps from pyspark.testing.pandasutils import PandasOnSparkTestCase, TestUtils class CategoricalTest(PandasOnSparkTestCase, TestUtils): @property def pdf(self): return pd.DataFrame( { "a": pd.Categorical([1, 2, 3, 1, 2, 3]), "b": pd.Categorical( ["b", "a", "c", "c", "b", "a"], categories=["c", "b", "d", "a"] ), }, ) @property def psdf(self): return ps.from_pandas(self.pdf) @property def df_pair(self): return self.pdf, self.psdf def test_categorical_frame(self): pdf, psdf = self.df_pair self.assert_eq(psdf, pdf) self.assert_eq(psdf.a, pdf.a) self.assert_eq(psdf.b, pdf.b) self.assert_eq(psdf.index, pdf.index) self.assert_eq(psdf.sort_index(), pdf.sort_index()) self.assert_eq(psdf.sort_values("b"), pdf.sort_values("b")) def test_categorical_series(self): pser = pd.Series([1, 2, 3], dtype="category") psser = ps.Series([1, 2, 3], dtype="category") self.assert_eq(psser, pser) self.assert_eq(psser.cat.categories, pser.cat.categories) self.assert_eq(psser.cat.codes, pser.cat.codes) self.assert_eq(psser.cat.ordered, pser.cat.ordered) def test_astype(self): pser = pd.Series(["a", "b", "c"]) psser = ps.from_pandas(pser) self.assert_eq(psser.astype("category"), pser.astype("category")) self.assert_eq( psser.astype(CategoricalDtype(["c", "a", "b"])), pser.astype(CategoricalDtype(["c", "a", "b"])), ) pcser = pser.astype(CategoricalDtype(["c", "a", "b"])) kcser = psser.astype(CategoricalDtype(["c", "a", "b"])) self.assert_eq(kcser.astype("category"), pcser.astype("category")) if LooseVersion(pd.__version__) >= LooseVersion("1.2"): self.assert_eq( kcser.astype(CategoricalDtype(["b", "c", "a"])), pcser.astype(CategoricalDtype(["b", "c", "a"])), ) else: self.assert_eq( kcser.astype(CategoricalDtype(["b", "c", "a"])), pser.astype(CategoricalDtype(["b", "c", "a"])), ) self.assert_eq(kcser.astype(str), pcser.astype(str)) def test_factorize(self): pser = pd.Series(["a", "b", "c", None], dtype=CategoricalDtype(["c", "a", "d", "b"])) psser = ps.from_pandas(pser) pcodes, puniques = pser.factorize() kcodes, kuniques = psser.factorize() self.assert_eq(kcodes.tolist(), pcodes.tolist()) self.assert_eq(kuniques, puniques) pcodes, puniques = pser.factorize(na_sentinel=-2) kcodes, kuniques = psser.factorize(na_sentinel=-2) self.assert_eq(kcodes.tolist(), pcodes.tolist()) self.assert_eq(kuniques, puniques) def test_frame_apply(self): pdf, psdf = self.df_pair self.assert_eq(psdf.apply(lambda x: x).sort_index(), pdf.apply(lambda x: x).sort_index()) self.assert_eq( psdf.apply(lambda x: x, axis=1).sort_index(), pdf.apply(lambda x: x, axis=1).sort_index(), ) def test_frame_apply_without_shortcut(self): with ps.option_context("compute.shortcut_limit", 0): self.test_frame_apply() pdf = pd.DataFrame( {"a": ["a", "b", "c", "a", "b", "c"], "b": ["b", "a", "c", "c", "b", "a"]} ) psdf = ps.from_pandas(pdf) dtype = CategoricalDtype(categories=["a", "b", "c"]) def categorize(ser) -> ps.Series[dtype]: return ser.astype(dtype) self.assert_eq( psdf.apply(categorize).sort_values(["a", "b"]).reset_index(drop=True), pdf.apply(categorize).sort_values(["a", "b"]).reset_index(drop=True), ) def test_frame_transform(self): pdf, psdf = self.df_pair self.assert_eq(psdf.transform(lambda x: x), pdf.transform(lambda x: x)) self.assert_eq(psdf.transform(lambda x: x.cat.codes), pdf.transform(lambda x: x.cat.codes)) pdf = pd.DataFrame( {"a": ["a", "b", "c", "a", "b", "c"], "b": ["b", "a", "c", "c", "b", "a"]} ) psdf = ps.from_pandas(pdf) dtype = CategoricalDtype(categories=["a", "b", "c", "d"]) self.assert_eq( psdf.transform(lambda x: x.astype(dtype)).sort_index(), pdf.transform(lambda x: x.astype(dtype)).sort_index(), ) def test_frame_transform_without_shortcut(self): with ps.option_context("compute.shortcut_limit", 0): self.test_frame_transform() pdf, psdf = self.df_pair def codes(pser) -> ps.Series[np.int8]: return pser.cat.codes self.assert_eq(psdf.transform(codes), pdf.transform(codes)) pdf = pd.DataFrame( {"a": ["a", "b", "c", "a", "b", "c"], "b": ["b", "a", "c", "c", "b", "a"]} ) psdf = ps.from_pandas(pdf) dtype = CategoricalDtype(categories=["a", "b", "c", "d"]) def to_category(pser) -> ps.Series[dtype]: return pser.astype(dtype) self.assert_eq( psdf.transform(to_category).sort_index(), pdf.transform(to_category).sort_index() ) def test_series_apply(self): pdf, psdf = self.df_pair self.assert_eq( psdf.a.apply(lambda x: x).sort_index(), pdf.a.apply(lambda x: x).sort_index() ) def test_series_apply_without_shortcut(self): with ps.option_context("compute.shortcut_limit", 0): self.test_series_apply() pdf, psdf = self.df_pair ret = psdf.a.dtype def identity(pser) -> ret: return pser self.assert_eq(psdf.a.apply(identity).sort_index(), pdf.a.apply(identity).sort_index()) # TODO: The return type is still category. # def to_str(x) -> str: # return str(x) # # self.assert_eq( # psdf.a.apply(to_str).sort_index(), pdf.a.apply(to_str).sort_index() # ) def test_groupby_apply(self): pdf, psdf = self.df_pair self.assert_eq( psdf.groupby("a").apply(lambda df: df).sort_index(), pdf.groupby("a").apply(lambda df: df).sort_index(), ) self.assert_eq( psdf.groupby("b").apply(lambda df: df[["a"]]).sort_index(), pdf.groupby("b").apply(lambda df: df[["a"]]).sort_index(), ) self.assert_eq( psdf.groupby(["a", "b"]).apply(lambda df: df).sort_index(), pdf.groupby(["a", "b"]).apply(lambda df: df).sort_index(), ) self.assert_eq( psdf.groupby("a").apply(lambda df: df.b.cat.codes).sort_index(), pdf.groupby("a").apply(lambda df: df.b.cat.codes).sort_index(), ) self.assert_eq( psdf.groupby("a")["b"].apply(lambda b: b.cat.codes).sort_index(), pdf.groupby("a")["b"].apply(lambda b: b.cat.codes).sort_index(), ) # TODO: grouping by a categorical type sometimes preserves unused categories. # self.assert_eq( # psdf.groupby("a").apply(len).sort_index(), pdf.groupby("a").apply(len).sort_index(), # ) def test_groupby_apply_without_shortcut(self): with ps.option_context("compute.shortcut_limit", 0): self.test_groupby_apply() pdf, psdf = self.df_pair def identity(df) -> ps.DataFrame[zip(psdf.columns, psdf.dtypes)]: return df self.assert_eq( psdf.groupby("a").apply(identity).sort_values(["a", "b"]).reset_index(drop=True), pdf.groupby("a").apply(identity).sort_values(["a", "b"]).reset_index(drop=True), ) def test_groupby_transform(self): pdf, psdf = self.df_pair self.assert_eq( psdf.groupby("a").transform(lambda x: x).sort_index(), pdf.groupby("a").transform(lambda x: x).sort_index(), ) dtype = CategoricalDtype(categories=["a", "b", "c", "d"]) self.assert_eq( psdf.groupby("a").transform(lambda x: x.astype(dtype)).sort_index(), pdf.groupby("a").transform(lambda x: x.astype(dtype)).sort_index(), ) def test_groupby_transform_without_shortcut(self): with ps.option_context("compute.shortcut_limit", 0): self.test_groupby_transform() pdf, psdf = self.df_pair def identity(x) -> ps.Series[psdf.b.dtype]: # type: ignore return x self.assert_eq( psdf.groupby("a").transform(identity).sort_values("b").reset_index(drop=True), pdf.groupby("a").transform(identity).sort_values("b").reset_index(drop=True), ) dtype = CategoricalDtype(categories=["a", "b", "c", "d"]) def astype(x) -> ps.Series[dtype]: return x.astype(dtype) if LooseVersion(pd.__version__) >= LooseVersion("1.2"): self.assert_eq( psdf.groupby("a").transform(astype).sort_values("b").reset_index(drop=True), pdf.groupby("a").transform(astype).sort_values("b").reset_index(drop=True), ) else: expected = pdf.groupby("a").transform(astype) expected["b"] = dtype.categories.take(expected["b"].cat.codes).astype(dtype) self.assert_eq( psdf.groupby("a").transform(astype).sort_values("b").reset_index(drop=True), expected.sort_values("b").reset_index(drop=True), ) def test_frame_apply_batch(self): pdf, psdf = self.df_pair self.assert_eq( psdf.pandas_on_spark.apply_batch(lambda pdf: pdf.astype(str)).sort_index(), pdf.astype(str).sort_index(), ) pdf = pd.DataFrame( {"a": ["a", "b", "c", "a", "b", "c"], "b": ["b", "a", "c", "c", "b", "a"]} ) psdf = ps.from_pandas(pdf) dtype = CategoricalDtype(categories=["a", "b", "c", "d"]) self.assert_eq( psdf.pandas_on_spark.apply_batch(lambda pdf: pdf.astype(dtype)).sort_index(), pdf.astype(dtype).sort_index(), ) def test_frame_apply_batch_without_shortcut(self): with ps.option_context("compute.shortcut_limit", 0): self.test_frame_apply_batch() pdf, psdf = self.df_pair def to_str(pdf) -> 'ps.DataFrame["a":str, "b":str]': # noqa: F405 return pdf.astype(str) self.assert_eq( psdf.pandas_on_spark.apply_batch(to_str).sort_values(["a", "b"]).reset_index(drop=True), to_str(pdf).sort_values(["a", "b"]).reset_index(drop=True), ) pdf = pd.DataFrame( {"a": ["a", "b", "c", "a", "b", "c"], "b": ["b", "a", "c", "c", "b", "a"]} ) psdf = ps.from_pandas(pdf) dtype = CategoricalDtype(categories=["a", "b", "c", "d"]) ret = ps.DataFrame["a":dtype, "b":dtype] def to_category(pdf) -> ret: return pdf.astype(dtype) self.assert_eq( psdf.pandas_on_spark.apply_batch(to_category) .sort_values(["a", "b"]) .reset_index(drop=True), to_category(pdf).sort_values(["a", "b"]).reset_index(drop=True), ) def test_frame_transform_batch(self): pdf, psdf = self.df_pair self.assert_eq( psdf.pandas_on_spark.transform_batch(lambda pdf: pdf.astype(str)).sort_index(), pdf.astype(str).sort_index(), ) self.assert_eq( psdf.pandas_on_spark.transform_batch(lambda pdf: pdf.b.cat.codes).sort_index(), pdf.b.cat.codes.sort_index(), ) pdf = pd.DataFrame( {"a": ["a", "b", "c", "a", "b", "c"], "b": ["b", "a", "c", "c", "b", "a"]} ) psdf = ps.from_pandas(pdf) dtype = CategoricalDtype(categories=["a", "b", "c", "d"]) self.assert_eq( psdf.pandas_on_spark.transform_batch(lambda pdf: pdf.astype(dtype)).sort_index(), pdf.astype(dtype).sort_index(), ) self.assert_eq( psdf.pandas_on_spark.transform_batch(lambda pdf: pdf.b.astype(dtype)).sort_index(), pdf.b.astype(dtype).sort_index(), ) def test_frame_transform_batch_without_shortcut(self): with ps.option_context("compute.shortcut_limit", 0): self.test_frame_transform_batch() pdf, psdf = self.df_pair def to_str(pdf) -> 'ps.DataFrame["a":str, "b":str]': # noqa: F405 return pdf.astype(str) self.assert_eq( psdf.pandas_on_spark.transform_batch(to_str).sort_index(), to_str(pdf).sort_index(), ) def to_codes(pdf) -> ps.Series[np.int8]: return pdf.b.cat.codes self.assert_eq( psdf.pandas_on_spark.transform_batch(to_codes).sort_index(), to_codes(pdf).sort_index(), ) pdf = pd.DataFrame( {"a": ["a", "b", "c", "a", "b", "c"], "b": ["b", "a", "c", "c", "b", "a"]} ) psdf = ps.from_pandas(pdf) dtype = CategoricalDtype(categories=["a", "b", "c", "d"]) ret = ps.DataFrame["a":dtype, "b":dtype] def to_category(pdf) -> ret: return pdf.astype(dtype) self.assert_eq( psdf.pandas_on_spark.transform_batch(to_category).sort_index(), to_category(pdf).sort_index(), ) def to_category(pdf) -> ps.Series[dtype]: return pdf.b.astype(dtype) self.assert_eq( psdf.pandas_on_spark.transform_batch(to_category).sort_index(), to_category(pdf).rename().sort_index(), ) def test_series_transform_batch(self): pdf, psdf = self.df_pair self.assert_eq( psdf.a.pandas_on_spark.transform_batch(lambda pser: pser.astype(str)).sort_index(), pdf.a.astype(str).sort_index(), ) pdf = pd.DataFrame( {"a": ["a", "b", "c", "a", "b", "c"], "b": ["b", "a", "c", "c", "b", "a"]} ) psdf = ps.from_pandas(pdf) dtype = CategoricalDtype(categories=["a", "b", "c", "d"]) self.assert_eq( psdf.a.pandas_on_spark.transform_batch(lambda pser: pser.astype(dtype)).sort_index(), pdf.a.astype(dtype).sort_index(), ) def test_series_transform_batch_without_shortcut(self): with ps.option_context("compute.shortcut_limit", 0): self.test_series_transform_batch() pdf, psdf = self.df_pair def to_str(pser) -> ps.Series[str]: return pser.astype(str) self.assert_eq( psdf.a.pandas_on_spark.transform_batch(to_str).sort_index(), to_str(pdf.a).sort_index() ) pdf = pd.DataFrame( {"a": ["a", "b", "c", "a", "b", "c"], "b": ["b", "a", "c", "c", "b", "a"]} ) psdf = ps.from_pandas(pdf) dtype = CategoricalDtype(categories=["a", "b", "c", "d"]) def to_category(pser) -> ps.Series[dtype]: return pser.astype(dtype) self.assert_eq( psdf.a.pandas_on_spark.transform_batch(to_category).sort_index(), to_category(pdf.a).sort_index(), ) if __name__ == "__main__": import unittest from pyspark.pandas.tests.test_categorical import * # noqa: F401 try: import xmlrunner # type: ignore[import] testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2) except ImportError: testRunner = None unittest.main(testRunner=testRunner, verbosity=2)
apache-2.0
Barmaley-exe/scikit-learn
doc/tutorial/text_analytics/solutions/exercise_01_language_train_model.py
254
2253
"""Build a language detector model The goal of this exercise is to train a linear classifier on text features that represent sequences of up to 3 consecutive characters so as to be recognize natural languages by using the frequencies of short character sequences as 'fingerprints'. """ # Author: Olivier Grisel <[email protected]> # License: Simplified BSD import sys from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import Perceptron from sklearn.pipeline import Pipeline from sklearn.datasets import load_files from sklearn.cross_validation import train_test_split from sklearn import metrics # The training data folder must be passed as first argument languages_data_folder = sys.argv[1] dataset = load_files(languages_data_folder) # Split the dataset in training and test set: docs_train, docs_test, y_train, y_test = train_test_split( dataset.data, dataset.target, test_size=0.5) # TASK: Build a an vectorizer that splits strings into sequence of 1 to 3 # characters instead of word tokens vectorizer = TfidfVectorizer(ngram_range=(1, 3), analyzer='char', use_idf=False) # TASK: Build a vectorizer / classifier pipeline using the previous analyzer # the pipeline instance should stored in a variable named clf clf = Pipeline([ ('vec', vectorizer), ('clf', Perceptron()), ]) # TASK: Fit the pipeline on the training set clf.fit(docs_train, y_train) # TASK: Predict the outcome on the testing set in a variable named y_predicted y_predicted = clf.predict(docs_test) # Print the classification report print(metrics.classification_report(y_test, y_predicted, target_names=dataset.target_names)) # Plot the confusion matrix cm = metrics.confusion_matrix(y_test, y_predicted) print(cm) #import pylab as pl #pl.matshow(cm, cmap=pl.cm.jet) #pl.show() # Predict the result on some short new sentences: sentences = [ u'This is a language detection test.', u'Ceci est un test de d\xe9tection de la langue.', u'Dies ist ein Test, um die Sprache zu erkennen.', ] predicted = clf.predict(sentences) for s, p in zip(sentences, predicted): print(u'The language of "%s" is "%s"' % (s, dataset.target_names[p]))
bsd-3-clause
dhomeier/astropy
astropy/visualization/wcsaxes/ticks.py
12
6569
# Licensed under a 3-clause BSD style license - see LICENSE.rst import numpy as np from matplotlib.lines import Path, Line2D from matplotlib.transforms import Affine2D from matplotlib import rcParams class Ticks(Line2D): """ Ticks are derived from Line2D, and note that ticks themselves are markers. Thus, you should use set_mec, set_mew, etc. To change the tick size (length), you need to use set_ticksize. To change the direction of the ticks (ticks are in opposite direction of ticklabels by default), use set_tick_out(False). Note that Matplotlib's defaults dictionary :data:`~matplotlib.rcParams` contains default settings (color, size, width) of the form `xtick.*` and `ytick.*`. In a WCS projection, there may not be a clear relationship between axes of the projection and 'x' or 'y' axes. For this reason, we read defaults from `xtick.*`. The following settings affect the default appearance of ticks: * `xtick.direction` * `xtick.major.size` * `xtick.major.width` * `xtick.minor.size` * `xtick.color` """ def __init__(self, ticksize=None, tick_out=None, **kwargs): if ticksize is None: ticksize = rcParams['xtick.major.size'] self.set_ticksize(ticksize) self.set_minor_ticksize(rcParams['xtick.minor.size']) self.set_tick_out(rcParams['xtick.direction'] == 'out') self.clear() line2d_kwargs = {'color': rcParams['xtick.color'], 'linewidth': rcParams['xtick.major.width']} line2d_kwargs.update(kwargs) Line2D.__init__(self, [0.], [0.], **line2d_kwargs) self.set_visible_axes('all') self._display_minor_ticks = False def display_minor_ticks(self, display_minor_ticks): self._display_minor_ticks = display_minor_ticks def get_display_minor_ticks(self): return self._display_minor_ticks def set_tick_out(self, tick_out): """ set True if tick need to be rotated by 180 degree. """ self._tick_out = tick_out def get_tick_out(self): """ Return True if the tick will be rotated by 180 degree. """ return self._tick_out def set_ticksize(self, ticksize): """ set length of the ticks in points. """ self._ticksize = ticksize def get_ticksize(self): """ Return length of the ticks in points. """ return self._ticksize def set_minor_ticksize(self, ticksize): """ set length of the minor ticks in points. """ self._minor_ticksize = ticksize def get_minor_ticksize(self): """ Return length of the minor ticks in points. """ return self._minor_ticksize @property def out_size(self): if self._tick_out: return self._ticksize else: return 0. def set_visible_axes(self, visible_axes): self._visible_axes = visible_axes def get_visible_axes(self): if self._visible_axes == 'all': return self.world.keys() else: return [x for x in self._visible_axes if x in self.world] def clear(self): self.world = {} self.pixel = {} self.angle = {} self.disp = {} self.minor_world = {} self.minor_pixel = {} self.minor_angle = {} self.minor_disp = {} def add(self, axis, world, pixel, angle, axis_displacement): if axis not in self.world: self.world[axis] = [world] self.pixel[axis] = [pixel] self.angle[axis] = [angle] self.disp[axis] = [axis_displacement] else: self.world[axis].append(world) self.pixel[axis].append(pixel) self.angle[axis].append(angle) self.disp[axis].append(axis_displacement) def get_minor_world(self): return self.minor_world def add_minor(self, minor_axis, minor_world, minor_pixel, minor_angle, minor_axis_displacement): if minor_axis not in self.minor_world: self.minor_world[minor_axis] = [minor_world] self.minor_pixel[minor_axis] = [minor_pixel] self.minor_angle[minor_axis] = [minor_angle] self.minor_disp[minor_axis] = [minor_axis_displacement] else: self.minor_world[minor_axis].append(minor_world) self.minor_pixel[minor_axis].append(minor_pixel) self.minor_angle[minor_axis].append(minor_angle) self.minor_disp[minor_axis].append(minor_axis_displacement) def __len__(self): return len(self.world) _tickvert_path = Path([[0., 0.], [1., 0.]]) def draw(self, renderer, ticks_locs): """ Draw the ticks. """ if not self.get_visible(): return offset = renderer.points_to_pixels(self.get_ticksize()) self._draw_ticks(renderer, self.pixel, self.angle, offset, ticks_locs) if self._display_minor_ticks: offset = renderer.points_to_pixels(self.get_minor_ticksize()) self._draw_ticks(renderer, self.minor_pixel, self.minor_angle, offset, ticks_locs) def _draw_ticks(self, renderer, pixel_array, angle_array, offset, ticks_locs): """ Draw the minor ticks. """ path_trans = self.get_transform() gc = renderer.new_gc() gc.set_foreground(self.get_color()) gc.set_alpha(self.get_alpha()) gc.set_linewidth(self.get_linewidth()) marker_scale = Affine2D().scale(offset, offset) marker_rotation = Affine2D() marker_transform = marker_scale + marker_rotation initial_angle = 180. if self.get_tick_out() else 0. for axis in self.get_visible_axes(): if axis not in pixel_array: continue for loc, angle in zip(pixel_array[axis], angle_array[axis]): # Set the rotation for this tick marker_rotation.rotate_deg(initial_angle + angle) # Draw the markers locs = path_trans.transform_non_affine(np.array([loc, loc])) renderer.draw_markers(gc, self._tickvert_path, marker_transform, Path(locs), path_trans.get_affine()) # Reset the tick rotation before moving to the next tick marker_rotation.clear() ticks_locs[axis].append(locs) gc.restore()
bsd-3-clause
Tihacker/Wikipedia-Templates-Analysis
categorizza/fit.py
1
6649
#!/usr/bin/env python # -*- coding: utf-8 -*- """Create template graphs png of multiple graphs. Usage: stampagrafici.py [<template>] [options] Options: -h --help Show this screen. -v Verbose. --esempio --esempio2 --esempio3 """ import csv, re, pdb, ast, time, os, math from docopt import docopt import datetime import matplotlib.pyplot as plot import numpy as np import matplotlib.dates as mdates import tarfile def do(inputtemplate, verbose): #NORMALIZZAZIONE if(arguments['--esempio'] or arguments['--esempio2'] or arguments['--esempio3']): coord = csv.reader(open("it/graphs/total/Bio.csv", "r")) else: coord = csv.reader(open(inputtemplate, "r")) xdiff = 0 ymax = 0 ymin = -1 x = [] y = [] for c in coord: date = int(c[0]) value = int(c[1]) if xdiff == 0: xdiff = date if ymin == -1: ymin = value if value > ymax: ymax = value if value < ymin: ymin = value x.append(date - xdiff) y.append(value) xdiff = date - xdiff ydiff = ymax - ymin normx = [] normy = [] n = 0 if xdiff != 0 and ydiff != 0: while (n < len(x)): partial = 0 percent = x[n] / xdiff normx.append(percent) partial = y[n] - ymin normy.append(partial / ydiff) n = n + 1 else: return 1 #ESEMPIO2 number = 0 halfnormx = [] limit = 0 while number < len(normx)/4: halfnormx.append(normx[number]) limit = normx[number] number = number + 1 number = 0 halfnormy = [] while number < len(normx)/4: halfnormy.append(normy[number]) number = number + 1 if(arguments['--esempio3']): normx = [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1] normy = [0.5, 0.6, 0.5, 0.6, 0.5, 0.6, 0.5, 0.6, 0.5, 0.6, 0.5] #PRE np.seterr(all="warn") l = np.linspace(0, 1, len(normx)) r2 = {} #PIATTA z = np.polyfit(normx, normy, 0) piatta = np.poly1d(z) i = 0 media = np.sum(normy)/len(normy) ssreg = np.sum((piatta(normx)-media)**2) sstot = np.sum((normy - media)**2) print(sstot) r2["piatta"] = ssreg / sstot #LINEARE if(arguments['--esempio']): z = np.polyfit(halfnormx, halfnormy, 1) else: z = np.polyfit(normx, normy, 1) lineare = np.poly1d(z) i = 0 media = np.sum(normy)/len(normy) ssreg = np.sum((lineare(normx)-media)**2) sstot = np.sum((normy - media)**2) r2["lineare"] = ssreg / sstot #POLINOMIALE if(arguments['--esempio']): z = np.polyfit(halfnormx, halfnormy, 2) else: z = np.polyfit(normx, normy, 2) polinomiale = np.poly1d(z) i = 0 media = np.sum(normy)/len(normy) ssreg = np.sum((polinomiale(normx)-media)**2) sstot = np.sum((normy - media)**2) r2["polinomiale"] = ssreg / sstot #ESPONENZIALE normyexp = [] for n in normy: if n == 0: normyexp.append(0) else: normyexp.append(np.log(n)) z = np.polyfit(normx, normyexp, 1) esponenziale = np.poly1d(z) i = 0 media = np.sum(normyexp)/len(normyexp) ssreg = np.sum((esponenziale(normx)-media)**2) sstot = np.sum((normyexp - media)**2) if (sstot != 0): r2["esponenziale"] = ssreg / sstot else: r2["esponenziale"] = 0 #SQUARE normysquare = [] for n in normy: normysquare.append(n**2) z = np.polyfit(normx, normysquare, 1) radice = np.poly1d(z) i = 0 media = np.sum(normysquare)/len(normysquare) ssreg = np.sum((radice(normx)-media)**2) sstot = np.sum((normysquare - media)**2) r2["radice"] = ssreg / sstot #LOG normylog = [] for n in normy: normylog.append(np.exp(n)) z = np.polyfit(normx, normylog, 1) log = np.poly1d(z) i = 0 media = np.sum(normylog)/len(normylog) ssreg = np.sum((log(normx)-media)**2) sstot = np.sum((normylog - media)**2) r2["log"] = ssreg / sstot #CALCOLOMIGLIORE best = max(r2, key=r2.get) if r2[best] == r2["polinomiale"]: if ((r2["polinomiale"] - r2["lineare"])/r2["lineare"] < 0.1): best = "lineare" if r2[best] == r2["lineare"]: if ((r2["lineare"] - r2["piatta"])/r2["piatta"] < 0.1): best = "piatta" if r2[best] <= 0.5: best = "none" if (verbose): #STAMPAGRAFICI fig = plot.figure() ax = fig.add_subplot(111) ax.grid(which='major', alpha=0.5) plot.xlabel('X') plot.ylabel("Y") if (arguments['--esempio']): l = np.linspace(-1, 2, len(normx)) ax.set_xlim([0,1]) ax.set_ylim([0,1.5]) ax.axvline(limit, linestyle='--', label = "Limite fit") plot.plot(normx, normy, 'ro', label = "Punti") plot.plot(l, lineare(l), linewidth=2, label="Lineare") plot.plot(l, polinomiale(l), linewidth=2, label="Polinomiale") if (arguments['--esempio2']): plot.xlabel('X') plot.ylabel("Y") plot.plot(l, normy) plot.plot(l, normylog, linewidth=1, label="Log") else: ax.set_xlim([0,1]) ax.set_ylim([0,1]) plot.plot(normx, normy, linewidth=2, label="Curva") plot.plot(l, piatta(l), linewidth=1, label="Piatta") plot.plot(l, lineare(l), linewidth=1, label="Lineare") plot.plot(l, polinomiale(l), linewidth=1, label="Polinomiale") plot.plot(l, np.exp(esponenziale(l)), linewidth=1, label="Esponenziale") plot.plot(l, np.sqrt(radice(l)), linewidth=1, label="Radice") plot.plot(l, np.log(log(l)), linewidth=1, label="Log") plot.legend(bbox_to_anchor=(0.35, 1)) print("PIATTA: " + str(r2["piatta"])) print("LINEARE: " + str(r2["lineare"])) print("POLI: " + str(r2["polinomiale"])) print("ESPONENZIALE: " + str(r2["esponenziale"])) print("SQUARE: " + str(r2["radice"])) print("LOG: " + str(r2["log"])) print("Migliore: " + best) plot.show() return best if __name__ == "__main__": arguments = docopt(__doc__) i = arguments['<template>'] result = do(i, arguments['-v']) print(result)
mit
lukas/ml-class
videos/time-series/plotutil.py
2
2197
import matplotlib matplotlib.use('Agg') # noqa import matplotlib.pyplot as plt from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas from matplotlib.figure import Figure from tensorflow import keras import numpy as np import wandb def fig2data(fig): """ @brief Convert a Matplotlib figure to a 4D numpy array with RGBA channels and return it @param fig a matplotlib figure @return a numpy 3D array of RGBA values """ # draw the renderer fig.canvas.draw() # Get the RGBA buffer from the figure w, h = fig.canvas.get_width_height() buf = np.fromstring(fig.canvas.tostring_argb(), dtype=np.uint8) buf.shape = (w, h, 4) # canvas.tostring_argb give pixmap in ARGB mode. Roll the ALPHA channel to have it in RGBA mode buf = np.roll(buf, 3, axis=2) return buf def repeated_predictions(model, data, look_back, steps=100): predictions = [] for i in range(steps): input_data = data[np.newaxis, :, np.newaxis] generated = model.predict(input_data)[0] data = np.append(data, generated)[-look_back:] predictions.append(generated) return predictions class PlotCallback(keras.callbacks.Callback): def __init__(self, trainX, trainY, testX, testY, look_back): self.repeat_predictions = True self.trainX = trainX self.trainY = trainY self.testX = testX self.testY = testY self.look_back = look_back def on_epoch_end(self, epoch, logs): if self.repeat_predictions: preds = repeated_predictions( self.model, self.trainX[-1, :, 0], self.look_back, self.testX.shape[0]) else: preds = model.predict(testX) # Generate a figure with matplotlib</font> figure = matplotlib.pyplot.figure(figsize=(10, 10)) plot = figure.add_subplot(111) plot.plot(self.trainY) plot.plot(np.append(np.empty_like(self.trainY) * np.nan, self.testY)) plot.plot(np.append(np.empty_like(self.trainY) * np.nan, preds)) data = fig2data(figure) matplotlib.pyplot.close(figure) wandb.log({"image": wandb.Image(data)}, commit=False)
gpl-2.0
markneville/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/backends/__init__.py
72
2225
import matplotlib import inspect import warnings # ipython relies on interactive_bk being defined here from matplotlib.rcsetup import interactive_bk __all__ = ['backend','show','draw_if_interactive', 'new_figure_manager', 'backend_version'] backend = matplotlib.get_backend() # validates, to match all_backends def pylab_setup(): 'return new_figure_manager, draw_if_interactive and show for pylab' # Import the requested backend into a generic module object if backend.startswith('module://'): backend_name = backend[9:] else: backend_name = 'backend_'+backend backend_name = backend_name.lower() # until we banish mixed case backend_name = 'matplotlib.backends.%s'%backend_name.lower() backend_mod = __import__(backend_name, globals(),locals(),[backend_name]) # Things we pull in from all backends new_figure_manager = backend_mod.new_figure_manager # image backends like pdf, agg or svg do not need to do anything # for "show" or "draw_if_interactive", so if they are not defined # by the backend, just do nothing def do_nothing_show(*args, **kwargs): frame = inspect.currentframe() fname = frame.f_back.f_code.co_filename if fname in ('<stdin>', '<ipython console>'): warnings.warn(""" Your currently selected backend, '%s' does not support show(). Please select a GUI backend in your matplotlibrc file ('%s') or with matplotlib.use()""" % (backend, matplotlib.matplotlib_fname())) def do_nothing(*args, **kwargs): pass backend_version = getattr(backend_mod,'backend_version', 'unknown') show = getattr(backend_mod, 'show', do_nothing_show) draw_if_interactive = getattr(backend_mod, 'draw_if_interactive', do_nothing) # Additional imports which only happen for certain backends. This section # should probably disappear once all backends are uniform. if backend.lower() in ['wx','wxagg']: Toolbar = backend_mod.Toolbar __all__.append('Toolbar') matplotlib.verbose.report('backend %s version %s' % (backend,backend_version)) return new_figure_manager, draw_if_interactive, show
agpl-3.0
equialgo/scikit-learn
sklearn/neighbors/tests/test_lof.py
34
4142
# Authors: Nicolas Goix <[email protected]> # Alexandre Gramfort <[email protected]> # License: BSD 3 clause from math import sqrt import numpy as np from sklearn import neighbors from numpy.testing import assert_array_equal from sklearn import metrics from sklearn.metrics import roc_auc_score from sklearn.utils import check_random_state from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_warns_message from sklearn.datasets import load_iris # load the iris dataset # and randomly permute it rng = check_random_state(0) iris = load_iris() perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] def test_lof(): # Toy sample (the last two samples are outliers): X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1], [5, 3], [-4, 2]] # Test LocalOutlierFactor: clf = neighbors.LocalOutlierFactor(n_neighbors=5) score = clf.fit(X).negative_outlier_factor_ assert_array_equal(clf._fit_X, X) # Assert largest outlier score is smaller than smallest inlier score: assert_greater(np.min(score[:-2]), np.max(score[-2:])) # Assert predict() works: clf = neighbors.LocalOutlierFactor(contamination=0.25, n_neighbors=5).fit(X) assert_array_equal(clf._predict(), 6 * [1] + 2 * [-1]) def test_lof_performance(): # Generate train/test data rng = check_random_state(2) X = 0.3 * rng.randn(120, 2) X_train = np.r_[X + 2, X - 2] X_train = X[:100] # Generate some abnormal novel observations X_outliers = rng.uniform(low=-4, high=4, size=(20, 2)) X_test = np.r_[X[100:], X_outliers] y_test = np.array([0] * 20 + [1] * 20) # fit the model clf = neighbors.LocalOutlierFactor().fit(X_train) # predict scores (the lower, the more normal) y_pred = -clf._decision_function(X_test) # check that roc_auc is good assert_greater(roc_auc_score(y_test, y_pred), .99) def test_lof_values(): # toy samples: X_train = [[1, 1], [1, 2], [2, 1]] clf = neighbors.LocalOutlierFactor(n_neighbors=2).fit(X_train) s_0 = 2. * sqrt(2.) / (1. + sqrt(2.)) s_1 = (1. + sqrt(2)) * (1. / (4. * sqrt(2.)) + 1. / (2. + 2. * sqrt(2))) # check predict() assert_array_almost_equal(-clf.negative_outlier_factor_, [s_0, s_1, s_1]) # check predict(one sample not in train) assert_array_almost_equal(-clf._decision_function([[2., 2.]]), [s_0]) # # check predict(one sample already in train) assert_array_almost_equal(-clf._decision_function([[1., 1.]]), [s_1]) def test_lof_precomputed(random_state=42): """Tests LOF with a distance matrix.""" # Note: smaller samples may result in spurious test success rng = np.random.RandomState(random_state) X = rng.random_sample((10, 4)) Y = rng.random_sample((3, 4)) DXX = metrics.pairwise_distances(X, metric='euclidean') DYX = metrics.pairwise_distances(Y, X, metric='euclidean') # As a feature matrix (n_samples by n_features) lof_X = neighbors.LocalOutlierFactor(n_neighbors=3) lof_X.fit(X) pred_X_X = lof_X._predict() pred_X_Y = lof_X._predict(Y) # As a dense distance matrix (n_samples by n_samples) lof_D = neighbors.LocalOutlierFactor(n_neighbors=3, algorithm='brute', metric='precomputed') lof_D.fit(DXX) pred_D_X = lof_D._predict() pred_D_Y = lof_D._predict(DYX) assert_array_almost_equal(pred_X_X, pred_D_X) assert_array_almost_equal(pred_X_Y, pred_D_Y) def test_n_neighbors_attribute(): X = iris.data clf = neighbors.LocalOutlierFactor(n_neighbors=500).fit(X) assert_equal(clf.n_neighbors_, X.shape[0] - 1) clf = neighbors.LocalOutlierFactor(n_neighbors=500) assert_warns_message(UserWarning, "n_neighbors will be set to (n_samples - 1)", clf.fit, X) assert_equal(clf.n_neighbors_, X.shape[0] - 1)
bsd-3-clause
zhenv5/scikit-learn
sklearn/ensemble/partial_dependence.py
251
15097
"""Partial dependence plots for tree ensembles. """ # Authors: Peter Prettenhofer # License: BSD 3 clause from itertools import count import numbers import numpy as np from scipy.stats.mstats import mquantiles from ..utils.extmath import cartesian from ..externals.joblib import Parallel, delayed from ..externals import six from ..externals.six.moves import map, range, zip from ..utils import check_array from ..tree._tree import DTYPE from ._gradient_boosting import _partial_dependence_tree from .gradient_boosting import BaseGradientBoosting def _grid_from_X(X, percentiles=(0.05, 0.95), grid_resolution=100): """Generate a grid of points based on the ``percentiles of ``X``. The grid is generated by placing ``grid_resolution`` equally spaced points between the ``percentiles`` of each column of ``X``. Parameters ---------- X : ndarray The data percentiles : tuple of floats The percentiles which are used to construct the extreme values of the grid axes. grid_resolution : int The number of equally spaced points that are placed on the grid. Returns ------- grid : ndarray All data points on the grid; ``grid.shape[1] == X.shape[1]`` and ``grid.shape[0] == grid_resolution * X.shape[1]``. axes : seq of ndarray The axes with which the grid has been created. """ if len(percentiles) != 2: raise ValueError('percentile must be tuple of len 2') if not all(0. <= x <= 1. for x in percentiles): raise ValueError('percentile values must be in [0, 1]') axes = [] for col in range(X.shape[1]): uniques = np.unique(X[:, col]) if uniques.shape[0] < grid_resolution: # feature has low resolution use unique vals axis = uniques else: emp_percentiles = mquantiles(X, prob=percentiles, axis=0) # create axis based on percentiles and grid resolution axis = np.linspace(emp_percentiles[0, col], emp_percentiles[1, col], num=grid_resolution, endpoint=True) axes.append(axis) return cartesian(axes), axes def partial_dependence(gbrt, target_variables, grid=None, X=None, percentiles=(0.05, 0.95), grid_resolution=100): """Partial dependence of ``target_variables``. Partial dependence plots show the dependence between the joint values of the ``target_variables`` and the function represented by the ``gbrt``. Read more in the :ref:`User Guide <partial_dependence>`. Parameters ---------- gbrt : BaseGradientBoosting A fitted gradient boosting model. target_variables : array-like, dtype=int The target features for which the partial dependecy should be computed (size should be smaller than 3 for visual renderings). grid : array-like, shape=(n_points, len(target_variables)) The grid of ``target_variables`` values for which the partial dependecy should be evaluated (either ``grid`` or ``X`` must be specified). X : array-like, shape=(n_samples, n_features) The data on which ``gbrt`` was trained. It is used to generate a ``grid`` for the ``target_variables``. The ``grid`` comprises ``grid_resolution`` equally spaced points between the two ``percentiles``. percentiles : (low, high), default=(0.05, 0.95) The lower and upper percentile used create the extreme values for the ``grid``. Only if ``X`` is not None. grid_resolution : int, default=100 The number of equally spaced points on the ``grid``. Returns ------- pdp : array, shape=(n_classes, n_points) The partial dependence function evaluated on the ``grid``. For regression and binary classification ``n_classes==1``. axes : seq of ndarray or None The axes with which the grid has been created or None if the grid has been given. Examples -------- >>> samples = [[0, 0, 2], [1, 0, 0]] >>> labels = [0, 1] >>> from sklearn.ensemble import GradientBoostingClassifier >>> gb = GradientBoostingClassifier(random_state=0).fit(samples, labels) >>> kwargs = dict(X=samples, percentiles=(0, 1), grid_resolution=2) >>> partial_dependence(gb, [0], **kwargs) # doctest: +SKIP (array([[-4.52..., 4.52...]]), [array([ 0., 1.])]) """ if not isinstance(gbrt, BaseGradientBoosting): raise ValueError('gbrt has to be an instance of BaseGradientBoosting') if gbrt.estimators_.shape[0] == 0: raise ValueError('Call %s.fit before partial_dependence' % gbrt.__class__.__name__) if (grid is None and X is None) or (grid is not None and X is not None): raise ValueError('Either grid or X must be specified') target_variables = np.asarray(target_variables, dtype=np.int32, order='C').ravel() if any([not (0 <= fx < gbrt.n_features) for fx in target_variables]): raise ValueError('target_variables must be in [0, %d]' % (gbrt.n_features - 1)) if X is not None: X = check_array(X, dtype=DTYPE, order='C') grid, axes = _grid_from_X(X[:, target_variables], percentiles, grid_resolution) else: assert grid is not None # dont return axes if grid is given axes = None # grid must be 2d if grid.ndim == 1: grid = grid[:, np.newaxis] if grid.ndim != 2: raise ValueError('grid must be 2d but is %dd' % grid.ndim) grid = np.asarray(grid, dtype=DTYPE, order='C') assert grid.shape[1] == target_variables.shape[0] n_trees_per_stage = gbrt.estimators_.shape[1] n_estimators = gbrt.estimators_.shape[0] pdp = np.zeros((n_trees_per_stage, grid.shape[0],), dtype=np.float64, order='C') for stage in range(n_estimators): for k in range(n_trees_per_stage): tree = gbrt.estimators_[stage, k].tree_ _partial_dependence_tree(tree, grid, target_variables, gbrt.learning_rate, pdp[k]) return pdp, axes def plot_partial_dependence(gbrt, X, features, feature_names=None, label=None, n_cols=3, grid_resolution=100, percentiles=(0.05, 0.95), n_jobs=1, verbose=0, ax=None, line_kw=None, contour_kw=None, **fig_kw): """Partial dependence plots for ``features``. The ``len(features)`` plots are arranged in a grid with ``n_cols`` columns. Two-way partial dependence plots are plotted as contour plots. Read more in the :ref:`User Guide <partial_dependence>`. Parameters ---------- gbrt : BaseGradientBoosting A fitted gradient boosting model. X : array-like, shape=(n_samples, n_features) The data on which ``gbrt`` was trained. features : seq of tuples or ints If seq[i] is an int or a tuple with one int value, a one-way PDP is created; if seq[i] is a tuple of two ints, a two-way PDP is created. feature_names : seq of str Name of each feature; feature_names[i] holds the name of the feature with index i. label : object The class label for which the PDPs should be computed. Only if gbrt is a multi-class model. Must be in ``gbrt.classes_``. n_cols : int The number of columns in the grid plot (default: 3). percentiles : (low, high), default=(0.05, 0.95) The lower and upper percentile used to create the extreme values for the PDP axes. grid_resolution : int, default=100 The number of equally spaced points on the axes. n_jobs : int The number of CPUs to use to compute the PDs. -1 means 'all CPUs'. Defaults to 1. verbose : int Verbose output during PD computations. Defaults to 0. ax : Matplotlib axis object, default None An axis object onto which the plots will be drawn. line_kw : dict Dict with keywords passed to the ``pylab.plot`` call. For one-way partial dependence plots. contour_kw : dict Dict with keywords passed to the ``pylab.plot`` call. For two-way partial dependence plots. fig_kw : dict Dict with keywords passed to the figure() call. Note that all keywords not recognized above will be automatically included here. Returns ------- fig : figure The Matplotlib Figure object. axs : seq of Axis objects A seq of Axis objects, one for each subplot. Examples -------- >>> from sklearn.datasets import make_friedman1 >>> from sklearn.ensemble import GradientBoostingRegressor >>> X, y = make_friedman1() >>> clf = GradientBoostingRegressor(n_estimators=10).fit(X, y) >>> fig, axs = plot_partial_dependence(clf, X, [0, (0, 1)]) #doctest: +SKIP ... """ import matplotlib.pyplot as plt from matplotlib import transforms from matplotlib.ticker import MaxNLocator from matplotlib.ticker import ScalarFormatter if not isinstance(gbrt, BaseGradientBoosting): raise ValueError('gbrt has to be an instance of BaseGradientBoosting') if gbrt.estimators_.shape[0] == 0: raise ValueError('Call %s.fit before partial_dependence' % gbrt.__class__.__name__) # set label_idx for multi-class GBRT if hasattr(gbrt, 'classes_') and np.size(gbrt.classes_) > 2: if label is None: raise ValueError('label is not given for multi-class PDP') label_idx = np.searchsorted(gbrt.classes_, label) if gbrt.classes_[label_idx] != label: raise ValueError('label %s not in ``gbrt.classes_``' % str(label)) else: # regression and binary classification label_idx = 0 X = check_array(X, dtype=DTYPE, order='C') if gbrt.n_features != X.shape[1]: raise ValueError('X.shape[1] does not match gbrt.n_features') if line_kw is None: line_kw = {'color': 'green'} if contour_kw is None: contour_kw = {} # convert feature_names to list if feature_names is None: # if not feature_names use fx indices as name feature_names = [str(i) for i in range(gbrt.n_features)] elif isinstance(feature_names, np.ndarray): feature_names = feature_names.tolist() def convert_feature(fx): if isinstance(fx, six.string_types): try: fx = feature_names.index(fx) except ValueError: raise ValueError('Feature %s not in feature_names' % fx) return fx # convert features into a seq of int tuples tmp_features = [] for fxs in features: if isinstance(fxs, (numbers.Integral,) + six.string_types): fxs = (fxs,) try: fxs = np.array([convert_feature(fx) for fx in fxs], dtype=np.int32) except TypeError: raise ValueError('features must be either int, str, or tuple ' 'of int/str') if not (1 <= np.size(fxs) <= 2): raise ValueError('target features must be either one or two') tmp_features.append(fxs) features = tmp_features names = [] try: for fxs in features: l = [] # explicit loop so "i" is bound for exception below for i in fxs: l.append(feature_names[i]) names.append(l) except IndexError: raise ValueError('features[i] must be in [0, n_features) ' 'but was %d' % i) # compute PD functions pd_result = Parallel(n_jobs=n_jobs, verbose=verbose)( delayed(partial_dependence)(gbrt, fxs, X=X, grid_resolution=grid_resolution, percentiles=percentiles) for fxs in features) # get global min and max values of PD grouped by plot type pdp_lim = {} for pdp, axes in pd_result: min_pd, max_pd = pdp[label_idx].min(), pdp[label_idx].max() n_fx = len(axes) old_min_pd, old_max_pd = pdp_lim.get(n_fx, (min_pd, max_pd)) min_pd = min(min_pd, old_min_pd) max_pd = max(max_pd, old_max_pd) pdp_lim[n_fx] = (min_pd, max_pd) # create contour levels for two-way plots if 2 in pdp_lim: Z_level = np.linspace(*pdp_lim[2], num=8) if ax is None: fig = plt.figure(**fig_kw) else: fig = ax.get_figure() fig.clear() n_cols = min(n_cols, len(features)) n_rows = int(np.ceil(len(features) / float(n_cols))) axs = [] for i, fx, name, (pdp, axes) in zip(count(), features, names, pd_result): ax = fig.add_subplot(n_rows, n_cols, i + 1) if len(axes) == 1: ax.plot(axes[0], pdp[label_idx].ravel(), **line_kw) else: # make contour plot assert len(axes) == 2 XX, YY = np.meshgrid(axes[0], axes[1]) Z = pdp[label_idx].reshape(list(map(np.size, axes))).T CS = ax.contour(XX, YY, Z, levels=Z_level, linewidths=0.5, colors='k') ax.contourf(XX, YY, Z, levels=Z_level, vmax=Z_level[-1], vmin=Z_level[0], alpha=0.75, **contour_kw) ax.clabel(CS, fmt='%2.2f', colors='k', fontsize=10, inline=True) # plot data deciles + axes labels deciles = mquantiles(X[:, fx[0]], prob=np.arange(0.1, 1.0, 0.1)) trans = transforms.blended_transform_factory(ax.transData, ax.transAxes) ylim = ax.get_ylim() ax.vlines(deciles, [0], 0.05, transform=trans, color='k') ax.set_xlabel(name[0]) ax.set_ylim(ylim) # prevent x-axis ticks from overlapping ax.xaxis.set_major_locator(MaxNLocator(nbins=6, prune='lower')) tick_formatter = ScalarFormatter() tick_formatter.set_powerlimits((-3, 4)) ax.xaxis.set_major_formatter(tick_formatter) if len(axes) > 1: # two-way PDP - y-axis deciles + labels deciles = mquantiles(X[:, fx[1]], prob=np.arange(0.1, 1.0, 0.1)) trans = transforms.blended_transform_factory(ax.transAxes, ax.transData) xlim = ax.get_xlim() ax.hlines(deciles, [0], 0.05, transform=trans, color='k') ax.set_ylabel(name[1]) # hline erases xlim ax.set_xlim(xlim) else: ax.set_ylabel('Partial dependence') if len(axes) == 1: ax.set_ylim(pdp_lim[1]) axs.append(ax) fig.subplots_adjust(bottom=0.15, top=0.7, left=0.1, right=0.95, wspace=0.4, hspace=0.3) return fig, axs
bsd-3-clause
FedericoGarza/tsfeatures
tsfeatures/metrics/metrics.py
1
10356
#!/usr/bin/env python # coding: utf-8 import numpy as np import pandas as pd from functools import partial from math import sqrt from multiprocessing import Pool from typing import Callable, Optional AVAILABLE_METRICS = ['mse', 'rmse', 'mape', 'smape', 'mase', 'rmsse', 'mini_owa', 'pinball_loss'] ###################################################################### # METRICS ###################################################################### def mse(y: np.array, y_hat:np.array) -> float: """Calculates Mean Squared Error. MSE measures the prediction accuracy of a forecasting method by calculating the squared deviation of the prediction and the true value at a given time and averages these devations over the length of the series. Parameters ---------- y: numpy array actual test values y_hat: numpy array predicted values Returns ------- scalar: MSE """ mse = np.mean(np.square(y - y_hat)) return mse def rmse(y: np.array, y_hat:np.array) -> float: """Calculates Root Mean Squared Error. RMSE measures the prediction accuracy of a forecasting method by calculating the squared deviation of the prediction and the true value at a given time and averages these devations over the length of the series. Finally the RMSE will be in the same scale as the original time series so its comparison with other series is possible only if they share a common scale. Parameters ---------- y: numpy array actual test values y_hat: numpy array predicted values Returns ------- scalar: RMSE """ rmse = sqrt(np.mean(np.square(y - y_hat))) return rmse def mape(y: np.array, y_hat:np.array) -> float: """Calculates Mean Absolute Percentage Error. MAPE measures the relative prediction accuracy of a forecasting method by calculating the percentual deviation of the prediction and the true value at a given time and averages these devations over the length of the series. Parameters ---------- y: numpy array actual test values y_hat: numpy array predicted values Returns ------- scalar: MAPE """ mape = np.mean(np.abs(y - y_hat) / np.abs(y)) mape = 100 * mape return mape def smape(y: np.array, y_hat:np.array) -> float: """Calculates Symmetric Mean Absolute Percentage Error. SMAPE measures the relative prediction accuracy of a forecasting method by calculating the relative deviation of the prediction and the true value scaled by the sum of the absolute values for the prediction and true value at a given time, then averages these devations over the length of the series. This allows the SMAPE to have bounds between 0% and 200% which is desireble compared to normal MAPE that may be undetermined. Parameters ---------- y: numpy array actual test values y_hat: numpy array predicted values Returns ------- scalar: SMAPE """ scale = np.abs(y) + np.abs(y_hat) scale[scale == 0] = 1e-3 smape = np.mean(np.abs(y - y_hat) / scale) smape = 200 * smape return smape def mase(y: np.array, y_hat: np.array, y_train: np.array, seasonality: int = 1) -> float: """Calculates the M4 Mean Absolute Scaled Error. MASE measures the relative prediction accuracy of a forecasting method by comparinng the mean absolute errors of the prediction and the true value against the mean absolute errors of the seasonal naive model. Parameters ---------- y: numpy array actual test values y_hat: numpy array predicted values y_train: numpy array actual train values for Naive1 predictions seasonality: int main frequency of the time series Hourly 24, Daily 7, Weekly 52, Monthly 12, Quarterly 4, Yearly 1 Returns ------- scalar: MASE """ scale = np.mean(abs(y_train[seasonality:] - y_train[:-seasonality])) mase = np.mean(abs(y - y_hat)) / scale mase = 100 * mase return mase def rmsse(y: np.array, y_hat: np.array, y_train: np.array, seasonality: int = 1) -> float: """Calculates the M5 Root Mean Squared Scaled Error. Parameters ---------- y: numpy array actual test values y_hat: numpy array of len h (forecasting horizon) predicted values y_train: numpy array actual train values seasonality: int main frequency of the time series Hourly 24, Daily 7, Weekly 52, Monthly 12, Quarterly 4, Yearly 1 Returns ------- scalar: RMSSE """ scale = np.mean(np.square(y_train[seasonality:] - y_train[:-seasonality])) rmsse = sqrt(mse(y, y_hat) / scale) rmsse = 100 * rmsse return rmsse def mini_owa(y: np.array, y_hat: np.array, y_train: np.array, seasonality: int, y_bench: np.array): """Calculates the Overall Weighted Average for a single series. MASE, sMAPE for Naive2 and current model then calculatess Overall Weighted Average. Parameters ---------- y: numpy array actual test values y_hat: numpy array of len h (forecasting horizon) predicted values y_train: numpy array insample values of the series for scale seasonality: int main frequency of the time series Hourly 24, Daily 7, Weekly 52, Monthly 12, Quarterly 4, Yearly 1 y_bench: numpy array of len h (forecasting horizon) predicted values of the benchmark model Returns ------- return: mini_OWA """ mase_y = mase(y, y_hat, y_train, seasonality) mase_bench = mase(y, y_bench, y_train, seasonality) smape_y = smape(y, y_hat) smape_bench = smape(y, y_bench) mini_owa = ((mase_y/mase_bench) + (smape_y/smape_bench))/2 return mini_owa def pinball_loss(y: np.array, y_hat: np.array, tau: int = 0.5): """Calculates the Pinball Loss. The Pinball loss measures the deviation of a quantile forecast. By weighting the absolute deviation in a non symmetric way, the loss pays more attention to under or over estimation. A common value for tau is 0.5 for the deviation from the median. Parameters ---------- y: numpy array actual test values y_hat: numpy array of len h (forecasting horizon) predicted values tau: float Fixes the quantile against which the predictions are compared. Returns ------- return: pinball_loss """ delta_y = y - y_hat pinball = np.maximum(tau * delta_y, (tau-1) * delta_y) pinball = pinball.mean() return pinball ###################################################################### # PANEL EVALUATION ###################################################################### def _evaluate_ts(uid, y_test, y_hat, y_train, metric, seasonality, y_bench, metric_name): y_test_uid = y_test.loc[uid].y.values y_hat_uid = y_hat.loc[uid].y_hat.values if metric_name in ['mase', 'rmsse']: y_train_uid = y_train.loc[uid].y.values evaluation_uid = metric(y=y_test_uid, y_hat=y_hat_uid, y_train=y_train_uid, seasonality=seasonality) elif metric_name in ['mini_owa']: y_train_uid = y_train.loc[uid].y.values y_bench_uid = y_bench.loc[uid].y_hat.values evaluation_uid = metric(y=y_test_uid, y_hat=y_hat_uid, y_train=y_train_uid, seasonality=seasonality, y_bench=y_bench_uid) else: evaluation_uid = metric(y=y_test_uid, y_hat=y_hat_uid) return uid, evaluation_uid def evaluate_panel(y_test: pd.DataFrame, y_hat: pd.DataFrame, y_train: pd.DataFrame, metric: Callable, seasonality: Optional[int] = None, y_bench: Optional[pd.DataFrame] = None, threads: Optional[int] = None): """Calculates a specific metric for y and y_hat (and y_train, if needed). Parameters ---------- y_test: pandas df df with columns ['unique_id', 'ds', 'y'] y_hat: pandas df df with columns ['unique_id', 'ds', 'y_hat'] y_train: pandas df df with columns ['unique_id', 'ds', 'y'] (train) This is used in the scaled metrics ('mase', 'rmsse'). metric: callable loss function seasonality: int Main frequency of the time series. Used in ('mase', 'rmsse'). Commonly used seasonalities: Hourly: 24, Daily: 7, Weekly: 52, Monthly: 12, Quarterly: 4, Yearly: 1. y_bench: pandas df df with columns ['unique_id', 'ds', 'y_hat'] predicted values of the benchmark model This is used in 'mini_owa'. threads: int Number of threads to use. Use None (default) for parallel processing. Returns ------ pandas dataframe: loss ofr each unique_id in the panel data """ metric_name = metric.__code__.co_name uids = y_test['unique_id'].unique() y_hat_uids = y_hat['unique_id'].unique() assert len(y_test)==len(y_hat), "not same length" assert all(uids == y_hat_uids), "not same u_ids" y_test = y_test.set_index(['unique_id', 'ds']) y_hat = y_hat.set_index(['unique_id', 'ds']) if metric_name in ['mase', 'rmsse']: y_train = y_train.set_index(['unique_id', 'ds']) elif metric_name in ['mini_owa']: y_train = y_train.set_index(['unique_id', 'ds']) y_bench = y_bench.set_index(['unique_id', 'ds']) partial_evaluation = partial(_evaluate_ts, y_test=y_test, y_hat=y_hat, y_train=y_train, metric=metric, seasonality=seasonality, y_bench=y_bench, metric_name=metric_name) with Pool(threads) as pool: evaluations = pool.map(partial_evaluation, uids) evaluations = pd.DataFrame(evaluations, columns=['unique_id', 'error']) return evaluations
mit
Dih5/xpecgen
xpecgen/xpecgen.py
1
33042
#!/usr/bin/env python # -*- coding: UTF-8 -*- """xpecgen.py: A module to calculate x-ray spectra generated in tungsten anodes.""" from __future__ import print_function import math from bisect import bisect_left import os from glob import glob import warnings import csv import numpy as np from scipy import interpolate, integrate, optimize import xlsxwriter try: import matplotlib.pyplot as plt plt.ion() plot_available = True except ImportError: warnings.warn("Unable to import matplotlib. Plotting will be disabled.") plot_available = False __author__ = 'Dih5' __version__ = "1.3.0" data_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "data") # --------------------General purpose functions-------------------------# def log_interp_1d(xx, yy, kind='linear'): """ Perform interpolation in log-log scale. Args: xx (List[float]): x-coordinates of the points. yy (List[float]): y-coordinates of the points. kind (str or int, optional): The kind of interpolation in the log-log domain. This is passed to scipy.interpolate.interp1d. Returns: A function whose call method uses interpolation in log-log scale to find the value at a given point. """ log_x = np.log(xx) log_y = np.log(yy) # No big difference in efficiency was found when replacing interp1d by # UnivariateSpline lin_interp = interpolate.interp1d(log_x, log_y, kind=kind) return lambda zz: np.exp(lin_interp(np.log(zz))) # This custom implementation of dblquad is based in the one in numpy # (Cf. https://github.com/scipy/scipy/blob/v0.16.1/scipy/integrate/quadpack.py#L449 ) # It was modified to work only in rectangular regions (no g(x) nor h(x)) # to set the inner integral epsrel # and to increase the limit of points taken def _infunc(x, func, c, d, more_args, epsrel): myargs = (x,) + more_args return integrate.quad(func, c, d, args=myargs, epsrel=epsrel, limit=2000)[0] def custom_dblquad(func, a, b, c, d, args=(), epsabs=1.49e-8, epsrel=1.49e-8, maxp1=50, limit=2000): """ A wrapper around numpy's dblquad to restrict it to a rectangular region and to pass arguments to the 'inner' integral. Args: func: The integrand function f(y,x). a (float): The lower bound of the second argument in the integrand function. b (float): The upper bound of the second argument in the integrand function. c (float): The lower bound of the first argument in the integrand function. d (float): The upper bound of the first argument in the integrand function. args (sequence, optional): extra arguments to pass to func. epsabs (float, optional): Absolute tolerance passed directly to the inner 1-D quadrature integration. epsrel (float, optional): Relative tolerance of the inner 1-D integrals. Default is 1.49e-8. maxp1 (float or int, optional): An upper bound on the number of Chebyshev moments. limit (int, optional): Upper bound on the number of cycles (>=3) for use with a sinusoidal weighting and an infinite end-point. Returns: (tuple): tuple containing: y (float): The resultant integral. abserr (float): An estimate of the error. """ return integrate.quad(_infunc, a, b, (func, c, d, args, epsrel), epsabs=epsabs, epsrel=epsrel, maxp1=maxp1, limit=limit) def triangle(x, loc=0, size=0.5, area=1): """ The triangle window function centered in loc, of given size and area, evaluated at a point. Args: x: The point where the function is evaluated. loc: The position of the peak. size: The total. area: The area below the function. Returns: The value of the function. """ # t=abs((x-loc)/size) # return 0 if t>1 else (1-t)*abs(area/size) return 0 if abs((x - loc) / size) > 1 else (1 - abs((x - loc) / size)) * abs(area / size) # --------------------Spectrum model functionality----------------------# class Spectrum: """ Set of 2D points and discrete components representing a spectrum. A Spectrum can be multiplied by a scalar (int, float...) to increase its counts in such a factor. Two spectra can be added if they share their x axes and their discrete component positions. Note: When two spectrum are added it is not checked it that addition makes sense. It is the user's responsibility to do so. Attributes: x (:obj:`numpy.ndarray`): x coordinates (energy) describing the continuum part of the spectrum. y (:obj:`numpy.ndarray`): y coordinates (pdf) describing the continuum part of the spectrum. discrete (List[List[float]]): discrete components of the spectrum, each of the form [x, num, rel_x] where: * x is the mean position of the peak. * num is the number of particles in the peak. * rel_x is a characteristic distance where it should extend. The exact meaning depends on the windows function. """ def __init__(self): """ Create an empty spectrum. """ self.x = [] self.y = [] self.discrete = [] def clone(self): """ Return a new Spectrum object cloning itself Returns: :obj:`Spectrum`: The new Spectrum. """ s = Spectrum() s.x = list(self.x) s.y = self.y[:] s.discrete = [] for a in self.discrete: s.discrete.append(a[:]) return s def get_continuous_function(self): """ Get a function representing the continuous part of the spectrum. Returns: An interpolation function representing the continuous part of the spectrum. """ return interpolate.interp1d(self.x, self.y, bounds_error=False, fill_value=0) def get_points(self, peak_shape=triangle, num_discrete=10): """ Returns two lists of coordinates x y representing the whole spectrum, both the continuous and discrete components. The mesh is chosen by extending x to include details of the discrete peaks. Args: peak_shape: The window function used to calculate the peaks. See :obj:`triangle` for an example. num_discrete: Number of points that are added to mesh in each peak. Returns: (tuple): tuple containing: x2 (List[float]): The list of x coordinates (energy) in the whole spectrum. y2 (List[float]): The list of y coordinates (density) in the whole spectrum. """ if peak_shape is None or self.discrete == []: return self.x[:], self.y[:] # A mesh for each discrete component: discrete_mesh = np.concatenate(list(map(lambda x: np.linspace( x[0] - x[2], x[0] + x[2], num=num_discrete, endpoint=True), self.discrete))) x2 = sorted(np.concatenate((discrete_mesh, self.x))) f = self.get_continuous_function() peak = np.vectorize(peak_shape) def g(x): t = 0 for l in self.discrete: t += peak(x, loc=l[0], size=l[2]) * l[1] return t y2 = [f(x) + g(x) for x in x2] return x2, y2 def get_plot(self, place, show_mesh=True, prepare_format=True, peak_shape=triangle): """ Prepare a plot of the data in the given place Args: place: The class whose method plot is called to produce the plot (e.g., matplotlib.pyplot). show_mesh (bool): Whether to plot the points over the continuous line as circles. prepare_format (bool): Whether to include ticks and labels in the plot. peak_shape: The window function used to plot the peaks. See :obj:`triangle` for an example. """ if prepare_format: place.tick_params(axis='both', which='major', labelsize=10) place.tick_params(axis='both', which='minor', labelsize=8) place.set_xlabel('E', fontsize=10, fontweight='bold') place.set_ylabel('f(E)', fontsize=10, fontweight='bold') x2, y2 = self.get_points(peak_shape=peak_shape) if show_mesh: place.plot(self.x, self.y, 'bo', x2, y2, 'b-') else: place.plot(x2, y2, 'b-') def show_plot(self, show_mesh=True, block=True): """ Prepare the plot of the data and show it in matplotlib window. Args: show_mesh (bool): Whether to plot the points over the continuous line as circles. block (bool): Whether the plot is blocking or non blocking. """ if plot_available: plt.clf() self.get_plot(plt, show_mesh=show_mesh, prepare_format=False) plt.xlabel("E") plt.ylabel("f(E)") plt.gcf().canvas.set_window_title("".join(('xpecgen v', __version__))) plt.show(block=block) else: warnings.warn("Asked for a plot but matplotlib could not be imported.") def export_csv(self, route="a.csv", peak_shape=triangle, transpose=False): """ Export the data to a csv file (comma-separated values). Args: route (str): The route where the file will be saved. peak_shape: The window function used to plot the peaks. See :obj:`triangle` for an example. transpose (bool): True to write in two columns, False in two rows. """ x2, y2 = self.get_points(peak_shape=peak_shape) with open(route, 'w') as csvfile: w = csv.writer(csvfile, dialect='excel') if transpose: w.writerows([list(a) for a in zip(*[x2, y2])]) else: w.writerow(x2) w.writerow(y2) def export_xlsx(self, route="a.xlsx", peak_shape=triangle, markers=False): """ Export the data to a xlsx file (Excel format). Args: route (str): The route where the file will be saved. peak_shape: The window function used to plot the peaks. See :obj:`triangle` for an example. markers (bool): Whether to use markers or a continuous line in the plot in the file. """ x2, y2 = self.get_points(peak_shape=peak_shape) workbook = xlsxwriter.Workbook(route) worksheet = workbook.add_worksheet() bold = workbook.add_format({'bold': 1}) worksheet.write(0, 0, "Energy (keV)", bold) worksheet.write(0, 1, "Photon density (1/keV)", bold) worksheet.write_column('A2', x2) worksheet.write_column('B2', y2) # Add a plot if markers: chart = workbook.add_chart( {'type': 'scatter', 'subtype': 'straight_with_markers'}) else: chart = workbook.add_chart( {'type': 'scatter', 'subtype': 'straight'}) chart.add_series({ 'name': '=Sheet1!$B$1', 'categories': '=Sheet1!$A$2:$A$' + str(len(x2) + 1), 'values': '=Sheet1!$B$2:$B$' + str(len(y2) + 1), }) chart.set_title({'name': 'Emission spectrum'}) chart.set_x_axis( {'name': 'Energy (keV)', 'min': 0, 'max': str(x2[-1])}) chart.set_y_axis({'name': 'Photon density (1/keV)'}) chart.set_legend({'position': 'none'}) chart.set_style(11) worksheet.insert_chart('D3', chart, {'x_offset': 25, 'y_offset': 10}) workbook.close() def get_norm(self, weight=None): """ Return the norm of the spectrum using a weighting function. Args: weight: A function used as a weight to calculate the norm. Typical examples are: * weight(E)=1 [Photon number] * weight(E)=E [Energy] * weight(E)=fluence2Dose(E) [Dose] Returns: (float): The calculated norm. """ if weight is None: w = lambda x: 1 else: w = weight y2 = list(map(lambda x, y: w(x) * y, self.x, self.y)) return integrate.simps(y2, x=self.x) + sum([w(a[0]) * a[1] for a in self.discrete]) def set_norm(self, value=1, weight=None): """ Set the norm of the spectrum using a weighting function. Args: value (float): The norm of the modified spectrum in the given convention. weight: A function used as a weight to calculate the norm. Typical examples are: * weight(E)=1 [Photon number] * weight(E)=E [Energy] * weight(E)=fluence2Dose(E) [Dose] """ norm = self.get_norm(weight=weight) / value self.y = [a / norm for a in self.y] self.discrete = [[a[0], a[1] / norm, a[2]] for a in self.discrete] def hvl(self, value=0.5, weight=lambda x: 1, mu=lambda x: 1, energy_min=0): """ Calculate a generalized half-value-layer. This method calculates the depth of a material needed for a certain dosimetric magnitude to decrease in a given factor. Args: value (float): The factor the desired magnitude is decreased. Must be in [0, 1]. weight: A function used as a weight to calculate the norm. Typical examples are: * weight(E)=1 [Photon number] * weight(E)=E [Energy] * weight(E)=fluence2Dose(E) [Dose] mu: The energy absorption coefficient as a function of energy. energy_min (float): A low-energy cutoff to use in the calculation. Returns: (float): The generalized hvl in cm. """ # TODO: (?) Cut characteristic if below cutoff. However, such a high cutoff # would probably make no sense # Use low-energy cutoff low_index = bisect_left(self.x, energy_min) x = self.x[low_index:] y = self.y[low_index:] # Normalize to 1 with weighting function y2 = list(map(lambda a, b: weight(a) * b, x, y)) discrete2 = [weight(a[0]) * a[1] for a in self.discrete] n2 = integrate.simps(y2, x=x) + sum(discrete2) y3 = [a / n2 for a in y2] discrete3 = [[a[0], weight(a[0]) * a[1] / n2] for a in self.discrete] # Now we only need to add attenuation as a function of depth f = lambda t: integrate.simps(list(map(lambda a, b: b * math.exp(-mu(a) * t), x, y3)), x=x) + sum( [c[1] * math.exp(-mu(c[0]) * t) for c in discrete3]) - value # Search the order of magnitude of the root (using the fact that f is # monotonically decreasing) a = 1.0 if f(a) > 0: while f(a) > 0: a *= 10.0 # Now f(a)<=0 and f(a*0.1)>0 return optimize.brentq(f, a * 0.1, a) else: while f(a) < 0: a *= 0.1 # Now f(a)>=0 and f(a*10)<0 return optimize.brentq(f, a, a * 10.0) def attenuate(self, depth=1, mu=lambda x: 1): """ Attenuate the spectrum as if it passed thorough a given depth of material with attenuation described by a given attenuation coefficient. Consistent units should be used. Args: depth: The amount of material (typically in cm). mu: The energy-dependent absorption coefficient (typically in cm^-1). """ self.y = list( map(lambda x, y: y * math.exp(-mu(x) * depth), self.x, self.y)) self.discrete = list( map(lambda l: [l[0], l[1] * math.exp(-mu(l[0]) * depth), l[2]], self.discrete)) def __add__(self, other): """Add two instances, assuming that makes sense.""" if not isinstance(other, Spectrum): # so s+0=s and sum([s1, s2,...]) makes sense return self s = Spectrum() s.x = self.x s.y = [a + b for a, b in zip(self.y, other.y)] s.discrete = [[a[0], a[1] + b[1], a[2]] for a, b in zip(self.discrete, other.discrete)] return s def __radd__(self, other): return self.__add__(other) def __mul__(self, other): """Multiply the counts by an scalar.""" s2 = self.clone() s2.y = [a * other for a in self.y] s2.discrete = [[a[0], a[1] * other, a[2]] for a in self.discrete] return s2 def __rmul__(self, other): return self.__mul__(other) # --------------------Spectrum calculation functionality----------------# def get_fluence(e_0=100.0): """ Returns a function representing the electron fluence with the distance in CSDA units. Args: e_0 (float): The kinetic energy whose CSDA range is used to scale the distances. Returns: A function representing fluence(x,u) with x in CSDA units. """ # List of available energies e0_str_list = list(map(lambda x: (os.path.split(x)[1]).split(".csv")[ 0], glob(os.path.join(data_path, "fluence", "*.csv")))) e0_list = sorted(list(map(int, list(filter(str.isdigit, e0_str_list))))) e_closest = min(e0_list, key=lambda x: abs(x - e_0)) with open(os.path.join(data_path, "fluence/grid.csv"), 'r') as csvfile: r = csv.reader(csvfile, delimiter=' ', quotechar='|', quoting=csv.QUOTE_MINIMAL) t = next(r) x = np.array([float(a) for a in t[0].split(",")]) t = next(r) u = np.array([float(a) for a in t[0].split(",")]) t = [] with open(os.path.join(data_path, "fluence", "".join([str(e_closest), ".csv"])), 'r') as csvfile: r = csv.reader(csvfile, delimiter=' ', quotechar='|', quoting=csv.QUOTE_MINIMAL) for row in r: t.append([float(a) for a in row[0].split(",")]) t = np.array(t) f = interpolate.RectBivariateSpline(x, u, t, kx=1, ky=1) # Note f is returning numpy 1x1 arrays return f # return lambda x,u:f(x,u)[0] def get_cs(e_0=100, z=74): """ Returns a function representing the scaled bremsstrahlung cross_section. Args: e_0 (float): The electron kinetic energy, used to scale u=e_e/e_0. z (int): Atomic number of the material. Returns: A function representing cross_section(e_g,u) in mb/keV, with e_g in keV. """ # NOTE: Data is given for E0>1keV. CS values below this level should be used with caution. # The default behaviour is to keep it constant with open(os.path.join(data_path, "cs/grid.csv"), 'r') as csvfile: r = csv.reader(csvfile, delimiter=' ', quotechar='|', quoting=csv.QUOTE_MINIMAL) t = next(r) e_e = np.array([float(a) for a in t[0].split(",")]) log_e_e = np.log10(e_e) t = next(r) k = np.array([float(a) for a in t[0].split(",")]) t = [] with open(os.path.join(data_path, "cs/%d.csv" % z), 'r') as csvfile: r = csv.reader(csvfile, delimiter=' ', quotechar='|', quoting=csv.QUOTE_MINIMAL) for row in r: t.append([float(a) for a in row[0].split(",")]) t = np.array(t) scaled = interpolate.RectBivariateSpline(log_e_e, k, t, kx=3, ky=1) m_electron = 511 z2 = z * z return lambda e_g, u: (u * e_0 + m_electron) ** 2 * z2 / (u * e_0 * e_g * (u * e_0 + 2 * m_electron)) * ( scaled(np.log10(u * e_0), e_g / (u * e_0))) def get_mu(z=74): """ Returns a function representing an energy-dependent attenuation coefficient. Args: z (int or str): The identifier of the material in the data folder, typically the atomic number. Returns: The attenuation coefficient mu(E) in cm^-1 as a function of the energy measured in keV. """ with open(os.path.join(data_path, "mu", "".join([str(z), ".csv"])), 'r') as csvfile: r = csv.reader(csvfile, delimiter=' ', quotechar='|', quoting=csv.QUOTE_MINIMAL) t = next(r) x = [float(a) for a in t[0].split(",")] t = next(r) y = [float(a) for a in t[0].split(",")] return log_interp_1d(x, y) def get_csda(z=74): """ Returns a function representing the CSDA range in tungsten. Args: z (int): Atomic number of the material. Returns: The CSDA range in cm in tungsten as a function of the electron kinetic energy in keV. """ with open(os.path.join(data_path, "csda/%d.csv" % z), 'r') as csvfile: r = csv.reader(csvfile, delimiter=' ', quotechar='|', quoting=csv.QUOTE_MINIMAL) t = next(r) x = [float(a) for a in t[0].split(",")] t = next(r) y = [float(a) for a in t[0].split(",")] return interpolate.interp1d(x, y, kind='linear') def get_mu_csda(e_0, z=74): """ Returns a function representing the CSDA-scaled energy-dependent attenuation coefficient in tungsten. Args: e_0 (float): The electron initial kinetic energy. z (int): Atomic number of the material. Returns: The attenuation coefficient mu(E) in CSDA units as a function of the energy measured in keV. """ mu = get_mu(z) csda = get_csda(z=z)(e_0) return lambda e: mu(e) * csda def get_fluence_to_dose(): """ Returns a function representing the weighting factor which converts fluence to dose. Returns: A function representing the weighting factor which converts fluence to dose in Gy * cm^2. """ with open(os.path.join(data_path, "fluence2dose/f2d.csv"), 'r') as csvfile: r = csv.reader(csvfile, delimiter=' ', quotechar='|', quoting=csv.QUOTE_MINIMAL) t = next(r) x = [float(a) for a in t[0].split(",")] t = next(r) y = [float(a) for a in t[0].split(",")] return interpolate.interp1d(x, y, kind='linear') def get_source_function(fluence, cs, mu, theta, e_g, phi=0.0): """ Returns the attenuated source function (Eq. 2 in the paper) for the given parameters. An E_0-dependent factor (the fraction found there) is excluded. However, the E_0 dependence is removed in integrate_source. Args: fluence: The function representing the fluence. cs: The function representing the bremsstrahlung cross-section. mu: The function representing the attenuation coefficient. theta (float): The emission angle in degrees, the anode's normal being at 90º. e_g (float): The emitted photon energy in keV. phi (float): The elevation angle in degrees, the anode's normal being at 12º. Returns: The attenuated source function s(u,x). """ factor = -mu(e_g) / math.sin(math.radians(theta)) / math.cos(math.radians(phi)) return lambda u, x: fluence(x, u) * cs(e_g, u) * math.exp(factor * x) def integrate_source(fluence, cs, mu, theta, e_g, e_0, phi=0.0, x_min=0.0, x_max=0.6, epsrel=0.1, z=74): """ Find the integral of the attenuated source function. An E_0-independent factor is excluded (i.e., the E_0 dependence on get_source_function is taken into account here). Args: fluence: The function representing the fluence. cs: The function representing the bremsstrahlung cross-section. mu: The function representing the attenuation coefficient. theta (float): The emission angle in degrees, the anode's normal being at 90º. e_g: (float): The emitted photon energy in keV. e_0 (float): The electron initial kinetic energy. phi (float): The elevation angle in degrees, the anode's normal being at 12º. x_min: The lower-bound of the integral in depth, scaled by the CSDA range. x_max: The upper-bound of the integral in depth, scaled by the CSDA range. epsrel: The relative tolerance of the integral. z (int): Atomic number of the material. Returns: float: The value of the integral. """ if e_g >= e_0: return 0 f = get_source_function(fluence, cs, mu, theta, e_g, phi=phi) (y, y_err) = custom_dblquad(f, x_min, x_max, e_g / e_0, 1, epsrel=epsrel, limit=100) # The factor includes n_med, its units being 1/(mb * r_CSDA). We only take into account the r_CSDA dependence. y *= get_csda(z=z)(e_0) return y def add_char_radiation(s, method="fraction_above_poly"): """ Adds characteristic radiation to a calculated bremsstrahlung spectrum, assuming it is a tungsten-generated spectrum If a discrete component already exists in the spectrum, it is replaced. Args: s (:obj:`Spectrum`): The spectrum whose discrete component is recalculated. method (str): The method to use to calculate the discrete component. Available methods include: * 'fraction_above_linear': Use a linear relation between bremsstrahlung above the K-edge and peaks. * 'fraction_above_poly': Use polynomial fits between bremsstrahlung above the K-edge and peaks. """ s.discrete = [] if s.x[-1] < 69.51: # If under k edge, no char radiation return f = s.get_continuous_function() norm = integrate.quad(f, s.x[0], s.x[-1], limit=2000)[0] fraction_above = integrate.quad(f, 74, s.x[-1], limit=2000)[0] / norm if method == "fraction_above_linear": s.discrete.append([58.65, 0.1639 * fraction_above * norm, 1]) s.discrete.append([67.244, 0.03628 * fraction_above * norm, 1]) s.discrete.append([69.067, 0.01410 * fraction_above * norm, 1]) else: if method != "fraction_above_poly": print( "WARNING: Unknown char radiation calculation method. Using fraction_above_poly") s.discrete.append([58.65, (0.1912 * fraction_above - 0.00615 * fraction_above ** 2 - 0.1279 * fraction_above ** 3) * norm, 1]) s.discrete.append([67.244, (0.04239 * fraction_above + 0.002003 * fraction_above ** 2 - 0.02356 * fraction_above ** 3) * norm, 1]) s.discrete.append([69.067, (0.01437 * fraction_above + 0.002346 * fraction_above ** 2 - 0.009332 * fraction_above ** 3) * norm, 1]) return def console_monitor(a, b): """ Simple monitor function which can be used with :obj:`calculate_spectrum`. Prints in stdout 'a/b'. Args: a: An object representing the completed amount (e.g., a number representing a part...). b: An object representing the total amount (... of a number representing a total). """ print("Calculation: ", a, "/", b) def calculate_spectrum_mesh(e_0, theta, mesh, phi=0.0, epsrel=0.2, monitor=console_monitor, z=74): """ Calculates the x-ray spectrum for given parameters. Characteristic peaks are also calculated by add_char_radiation, which is called with the default parameters. Args: e_0 (float): Electron kinetic energy in keV theta (float): X-ray emission angle in degrees, the normal being at 90º mesh (list of float or ndarray): The photon energies where the integral will be evaluated phi (float): X-ray emission elevation angle in degrees. epsrel (float): The tolerance parameter used in numeric integration. monitor: A function to be called after each iteration with arguments finished_count, total_count. See for example :obj:`console_monitor`. z (int): Atomic number of the material. Returns: :obj:`Spectrum`: The calculated spectrum """ # Prepare spectrum s = Spectrum() s.x = mesh mesh_len = len(mesh) # Prepare integrand function fluence = get_fluence(e_0) cs = get_cs(e_0, z=z) mu = get_mu_csda(e_0, z=z) # quad may raise warnings about the numerical integration method, # which are related to the estimated accuracy. Since this is not relevant, # they are suppressed. warnings.simplefilter("ignore") for i, e_g in enumerate(s.x): s.y.append(integrate_source(fluence, cs, mu, theta, e_g, e_0, phi=phi, epsrel=epsrel, z=z)) if monitor is not None: monitor(i + 1, mesh_len) if z == 74: add_char_radiation(s) return s def calculate_spectrum(e_0, theta, e_min, num_e, phi=0.0, epsrel=0.2, monitor=console_monitor, z=74): """ Calculates the x-ray spectrum for given parameters. Characteristic peaks are also calculated by add_char_radiation, which is called with the default parameters. Args: e_0 (float): Electron kinetic energy in keV theta (float): X-ray emission angle in degrees, the normal being at 90º e_min (float): Minimum kinetic energy to calculate in the spectrum in keV num_e (int): Number of points to calculate in the spectrum phi (float): X-ray emission elevation angle in degrees. epsrel (float): The tolerance parameter used in numeric integration. monitor: A function to be called after each iteration with arguments finished_count, total_count. See for example :obj:`console_monitor`. z (int): Atomic number of the material. Returns: :obj:`Spectrum`: The calculated spectrum """ return calculate_spectrum_mesh(e_0, theta, np.linspace(e_min, e_0, num=num_e, endpoint=True), phi=phi, epsrel=epsrel, monitor=monitor, z=z) def cli(): import argparse import sys parser = argparse.ArgumentParser(description='Calculate a bremsstrahlung spectrum.') parser.add_argument('e_0', metavar='E0', type=float, help='Electron kinetic energy in keV') parser.add_argument('theta', metavar='theta', type=float, default=12, help="X-ray emission angle in degrees, the anode's normal being at 90º.") parser.add_argument('--phi', metavar='phi', type=float, default=0, help="X-ray emission altitude in degrees, the anode's normal being at 0º.") parser.add_argument('--z', metavar='z', type=int, default=74, help="Atomic number of the material (characteristic radiation is only available for z=74).") parser.add_argument('--e_min', metavar='e_min', type=float, default=3.0, help="Minimum kinetic energy in keV in the bremsstrahlung calculation.") parser.add_argument('--n_points', metavar='n_points', type=int, default=50, help="Number of points used in the bremsstrahlung calculation.") parser.add_argument('--mesh', metavar='e_i', type=float, nargs='+', help="Energy mesh where the bremsstrahlung will be calculated. " "Overrides e_min and n_points parameters.") parser.add_argument('--epsrel', metavar='tolerance', type=float, default=0.5, help="Numerical tolerance in integration.") parser.add_argument('-o', '--output', metavar='path', type=str, help="Output file. Available formats are csv, xlsx, and pkl, selected by the file extension. " "pkl appends objects using the pickle module. Note you have to import the Spectrum class " " INTO THE NAMESPACE (e.g., from xpecgen.xpecgen import Spectrum) to load them. " "If this argument is not provided, points are written to the standard output and " "calculation monitor is not displayed.") parser.add_argument('--overwrite', action="store_true", help="If this flag is set and the output is a pkl file, overwrite its content instead of " "appending.") args = parser.parse_args() if args.output is not None: if "." not in args.output: print("Output file format unknown", file=sys.stderr) exit(-1) else: ext = args.output.split(".")[-1].lower() if ext not in ["csv", "xlsx", "pkl"]: print("Output file format unknown", file=sys.stderr) exit(-1) monitor = console_monitor else: monitor = None if args.mesh is None: mesh = np.linspace(args.e_min, args.e_0, num=args.n_points, endpoint=True) else: mesh = args.mesh s = calculate_spectrum_mesh(args.e_0, args.theta, mesh, phi=args.phi, epsrel=args.epsrel, monitor=monitor, z=args.z) x2, y2 = s.get_points() if args.output is None: [print("%.6g, %.6g" % (x, y)) for x, y in zip(x2, y2)] elif ext == "csv": s.export_csv(args.output) elif ext == "xlsx": s.export_xlsx(args.output) elif ext == "pkl": import pickle print(args.overwrite) if args.overwrite: mode = "wb" else: mode = "ab" with open(args.output, mode) as output: pickle.dump(s, output, pickle.HIGHEST_PROTOCOL) if __name__ == '__main__': cli()
gpl-3.0
Lx37/seaborn
seaborn/algorithms.py
35
6889
"""Algorithms to support fitting routines in seaborn plotting functions.""" from __future__ import division import numpy as np from scipy import stats from .external.six.moves import range def bootstrap(*args, **kwargs): """Resample one or more arrays with replacement and store aggregate values. Positional arguments are a sequence of arrays to bootstrap along the first axis and pass to a summary function. Keyword arguments: n_boot : int, default 10000 Number of iterations axis : int, default None Will pass axis to ``func`` as a keyword argument. units : array, default None Array of sampling unit IDs. When used the bootstrap resamples units and then observations within units instead of individual datapoints. smooth : bool, default False If True, performs a smoothed bootstrap (draws samples from a kernel destiny estimate); only works for one-dimensional inputs and cannot be used `units` is present. func : callable, default np.mean Function to call on the args that are passed in. random_seed : int | None, default None Seed for the random number generator; useful if you want reproducible resamples. Returns ------- boot_dist: array array of bootstrapped statistic values """ # Ensure list of arrays are same length if len(np.unique(list(map(len, args)))) > 1: raise ValueError("All input arrays must have the same length") n = len(args[0]) # Default keyword arguments n_boot = kwargs.get("n_boot", 10000) func = kwargs.get("func", np.mean) axis = kwargs.get("axis", None) units = kwargs.get("units", None) smooth = kwargs.get("smooth", False) random_seed = kwargs.get("random_seed", None) if axis is None: func_kwargs = dict() else: func_kwargs = dict(axis=axis) # Initialize the resampler rs = np.random.RandomState(random_seed) # Coerce to arrays args = list(map(np.asarray, args)) if units is not None: units = np.asarray(units) # Do the bootstrap if smooth: return _smooth_bootstrap(args, n_boot, func, func_kwargs) if units is not None: return _structured_bootstrap(args, n_boot, units, func, func_kwargs, rs) boot_dist = [] for i in range(int(n_boot)): resampler = rs.randint(0, n, n) sample = [a.take(resampler, axis=0) for a in args] boot_dist.append(func(*sample, **func_kwargs)) return np.array(boot_dist) def _structured_bootstrap(args, n_boot, units, func, func_kwargs, rs): """Resample units instead of datapoints.""" unique_units = np.unique(units) n_units = len(unique_units) args = [[a[units == unit] for unit in unique_units] for a in args] boot_dist = [] for i in range(int(n_boot)): resampler = rs.randint(0, n_units, n_units) sample = [np.take(a, resampler, axis=0) for a in args] lengths = map(len, sample[0]) resampler = [rs.randint(0, n, n) for n in lengths] sample = [[c.take(r, axis=0) for c, r in zip(a, resampler)] for a in sample] sample = list(map(np.concatenate, sample)) boot_dist.append(func(*sample, **func_kwargs)) return np.array(boot_dist) def _smooth_bootstrap(args, n_boot, func, func_kwargs): """Bootstrap by resampling from a kernel density estimate.""" n = len(args[0]) boot_dist = [] kde = [stats.gaussian_kde(np.transpose(a)) for a in args] for i in range(int(n_boot)): sample = [a.resample(n).T for a in kde] boot_dist.append(func(*sample, **func_kwargs)) return np.array(boot_dist) def randomize_corrmat(a, tail="both", corrected=True, n_iter=1000, random_seed=None, return_dist=False): """Test the significance of set of correlations with permutations. By default this corrects for multiple comparisons across one side of the matrix. Parameters ---------- a : n_vars x n_obs array array with variables as rows tail : both | upper | lower whether test should be two-tailed, or which tail to integrate over corrected : boolean if True reports p values with respect to the max stat distribution n_iter : int number of permutation iterations random_seed : int or None seed for RNG return_dist : bool if True, return n_vars x n_vars x n_iter Returns ------- p_mat : float array of probabilites for actual correlation from null CDF """ if tail not in ["upper", "lower", "both"]: raise ValueError("'tail' must be 'upper', 'lower', or 'both'") rs = np.random.RandomState(random_seed) a = np.asarray(a, np.float) flat_a = a.ravel() n_vars, n_obs = a.shape # Do the permutations to establish a null distribution null_dist = np.empty((n_vars, n_vars, n_iter)) for i_i in range(n_iter): perm_i = np.concatenate([rs.permutation(n_obs) + (v * n_obs) for v in range(n_vars)]) a_i = flat_a[perm_i].reshape(n_vars, n_obs) null_dist[..., i_i] = np.corrcoef(a_i) # Get the observed correlation values real_corr = np.corrcoef(a) # Figure out p values based on the permutation distribution p_mat = np.zeros((n_vars, n_vars)) upper_tri = np.triu_indices(n_vars, 1) if corrected: if tail == "both": max_dist = np.abs(null_dist[upper_tri]).max(axis=0) elif tail == "lower": max_dist = null_dist[upper_tri].min(axis=0) elif tail == "upper": max_dist = null_dist[upper_tri].max(axis=0) cdf = lambda x: stats.percentileofscore(max_dist, x) / 100. for i, j in zip(*upper_tri): observed = real_corr[i, j] if tail == "both": p_ij = 1 - cdf(abs(observed)) elif tail == "lower": p_ij = cdf(observed) elif tail == "upper": p_ij = 1 - cdf(observed) p_mat[i, j] = p_ij else: for i, j in zip(*upper_tri): null_corrs = null_dist[i, j] cdf = lambda x: stats.percentileofscore(null_corrs, x) / 100. observed = real_corr[i, j] if tail == "both": p_ij = 2 * (1 - cdf(abs(observed))) elif tail == "lower": p_ij = cdf(observed) elif tail == "upper": p_ij = 1 - cdf(observed) p_mat[i, j] = p_ij # Make p matrix symettrical with nans on the diagonal p_mat += p_mat.T p_mat[np.diag_indices(n_vars)] = np.nan if return_dist: return p_mat, null_dist return p_mat
bsd-3-clause
Ziqi-Li/bknqgis
pandas/pandas/util/_print_versions.py
11
5141
import os import platform import sys import struct import subprocess import codecs import locale import importlib def get_sys_info(): "Returns system information as a dict" blob = [] # get full commit hash commit = None if os.path.isdir(".git") and os.path.isdir("pandas"): try: pipe = subprocess.Popen('git log --format="%H" -n 1'.split(" "), stdout=subprocess.PIPE, stderr=subprocess.PIPE) so, serr = pipe.communicate() except: pass else: if pipe.returncode == 0: commit = so try: commit = so.decode('utf-8') except ValueError: pass commit = commit.strip().strip('"') blob.append(('commit', commit)) try: (sysname, nodename, release, version, machine, processor) = platform.uname() blob.extend([ ("python", '.'.join(map(str, sys.version_info))), ("python-bits", struct.calcsize("P") * 8), ("OS", "{sysname}".format(sysname=sysname)), ("OS-release", "{release}".format(release=release)), # ("Version", "{version}".format(version=version)), ("machine", "{machine}".format(machine=machine)), ("processor", "{processor}".format(processor=processor)), ("byteorder", "{byteorder}".format(byteorder=sys.byteorder)), ("LC_ALL", "{lc}".format(lc=os.environ.get('LC_ALL', "None"))), ("LANG", "{lang}".format(lang=os.environ.get('LANG', "None"))), ("LOCALE", '.'.join(map(str, locale.getlocale()))), ]) except: pass return blob def show_versions(as_json=False): sys_info = get_sys_info() deps = [ # (MODULE_NAME, f(mod) -> mod version) ("pandas", lambda mod: mod.__version__), ("pytest", lambda mod: mod.__version__), ("pip", lambda mod: mod.__version__), ("setuptools", lambda mod: mod.__version__), ("Cython", lambda mod: mod.__version__), ("numpy", lambda mod: mod.version.version), ("scipy", lambda mod: mod.version.version), ("pyarrow", lambda mod: mod.__version__), ("xarray", lambda mod: mod.__version__), ("IPython", lambda mod: mod.__version__), ("sphinx", lambda mod: mod.__version__), ("patsy", lambda mod: mod.__version__), ("dateutil", lambda mod: mod.__version__), ("pytz", lambda mod: mod.VERSION), ("blosc", lambda mod: mod.__version__), ("bottleneck", lambda mod: mod.__version__), ("tables", lambda mod: mod.__version__), ("numexpr", lambda mod: mod.__version__), ("feather", lambda mod: mod.__version__), ("matplotlib", lambda mod: mod.__version__), ("openpyxl", lambda mod: mod.__version__), ("xlrd", lambda mod: mod.__VERSION__), ("xlwt", lambda mod: mod.__VERSION__), ("xlsxwriter", lambda mod: mod.__version__), ("lxml", lambda mod: mod.etree.__version__), ("bs4", lambda mod: mod.__version__), ("html5lib", lambda mod: mod.__version__), ("sqlalchemy", lambda mod: mod.__version__), ("pymysql", lambda mod: mod.__version__), ("psycopg2", lambda mod: mod.__version__), ("jinja2", lambda mod: mod.__version__), ("s3fs", lambda mod: mod.__version__), ("fastparquet", lambda mod: mod.__version__), ("pandas_gbq", lambda mod: mod.__version__), ("pandas_datareader", lambda mod: mod.__version__), ] deps_blob = list() for (modname, ver_f) in deps: try: if modname in sys.modules: mod = sys.modules[modname] else: mod = importlib.import_module(modname) ver = ver_f(mod) deps_blob.append((modname, ver)) except: deps_blob.append((modname, None)) if (as_json): try: import json except: import simplejson as json j = dict(system=dict(sys_info), dependencies=dict(deps_blob)) if as_json is True: print(j) else: with codecs.open(as_json, "wb", encoding='utf8') as f: json.dump(j, f, indent=2) else: print("\nINSTALLED VERSIONS") print("------------------") for k, stat in sys_info: print("{k}: {stat}".format(k=k, stat=stat)) print("") for k, stat in deps_blob: print("{k}: {stat}".format(k=k, stat=stat)) def main(): from optparse import OptionParser parser = OptionParser() parser.add_option("-j", "--json", metavar="FILE", nargs=1, help="Save output as JSON into file, pass in " "'-' to output to stdout") (options, args) = parser.parse_args() if options.json == "-": options.json = True show_versions(as_json=options.json) return 0 if __name__ == "__main__": sys.exit(main())
gpl-2.0
iaklampanos/bde-climate-1
scripts/sc5.py
1
23408
#from __future__ import print_function import os import sys import matplotlib import multiprocessing from ipywidgets import interact, interactive, fixed import ipywidgets as widgets import IPython import subprocess import sys from subprocess import Popen, PIPE, STDOUT import graphviz as gv import json import networkx as nx from datetime import datetime HIVE='localhost:10000' PILOT_PATH = '/home/stathis/bde-climate-1' NC_FILENAME = '/home/stathis/sc5/rsdscs_Amon_HadGEM2-ES_rcp26_r2i1p1_200512-203011.nc' CLUSTER_USER = 'stathis' #CLUSTER_IP = '172.17.20.114' CLUSTER_IP = 'athina' CLUSTER_DATA_DIR = '/home/stathis/Downloads' CLUSTER_BUILD_DIR = '/home/stathis/Develop' PROC='exp' def get_stamp(msg=''): return msg + ' ' + str(datetime.now()) def run_shell_command(s): c = s.split('|') cp = None # the current process for i in range(0, len(c)): c[i] = c[i].replace('**PIPE**', '|') cin = cout = None if i > 0: cin = cp.stdout if i < len(c)-1: cout = subprocess.PIPE sys.stdout.flush() cp = subprocess.Popen(c[i], stdout=cout, stdin=cin, shell=True) cp.wait() def run_shell_command(s): subprocess.call(s) def help(): print('Hello, world') def _create_user_structure(): ''' make create-structure''' run_shell_command("make -C /home/stathis/bde-climate-1 create-structure") def updateIngestHTML(x): global txarea txarea.value += x.strip() + '<br/>' def ingest(filename): ''' make ingest-file NETCDFFILE=yourfilewithfullpath ''' txarea.value += get_stamp('Starting ingest') + '\n' s = execu(ingest_command(netcdffile=filename), pattern=None, fn=updateIngestHTML) def execu(command, pattern=None, fn=sys.stdout.write): """ pattern is not really useful; fn is being called multiple times until the command has completed """ p = subprocess.Popen(str(command), shell=True, stdin=PIPE, stdout=PIPE, stderr=STDOUT) while True: l = p.stdout.readline() if pattern == None: fn(l) else: if str(l).find(pattern) > 0: fn(l) if p.poll() != None: break def ingest_command(clusteruser=CLUSTER_USER, clusterip=CLUSTER_IP, clim1_dd=CLUSTER_DATA_DIR, clim1_bd=CLUSTER_BUILD_DIR, netcdffile='somefile'): curr_user = os.environ['USER'] sti0 = 'scp ./__FILE__ __UNAME__@__HOST__:__BUILD_DIR__/bde-climate-1' sti1 = 'ssh __UNAME__@__HOST__ -T "export CLIMATE1_CASSANDRA_DATA_DIR=__DATA_DIR__ && export CLIMATE1_BUILD_DIR=__BUILD_DIR__ && cd __BUILD_DIR__/bde-climate-1 && make -s ingest-file-background NETCDFFILE=__FILE__ CUSER=__CUSER__"' sti = sti0 + ' && ' + sti1 sti = sti.replace('__UNAME__', clusteruser) sti = sti.replace( '__HOST__', clusterip) sti = sti.replace('__DATA_DIR__', clim1_dd) sti = sti.replace('__BUILD_DIR__', clim1_bd) sti = sti.replace('__FILE__', netcdffile) sti = sti.replace('__CUSER__', curr_user) # print(sti) return sti def prov_command(clusteruser=CLUSTER_USER, clusterip=CLUSTER_IP, clim1_dd=CLUSTER_DATA_DIR, clim1_bd=CLUSTER_BUILD_DIR, netcdfkey='somekey'): # make export-file NETCDFKEY=yourkeysearch NETCDFOUT=nameofnetcdfoutfile curr_user = os.environ['USER'] sti = 'ssh __UNAME__@__HOST__ -T "export CLIMATE1_CASSANDRA_DATA_DIR=__DATA_DIR__ && export CLIMATE1_BUILD_DIR=__BUILD_DIR__ && cd __BUILD_DIR__/bde-climate-1 && make -s get-prov DATASET=__KEY__ | tee -a /mnt/share500/logs/__CUSER__.log"' sti = sti.replace('__UNAME__', clusteruser) sti = sti.replace( '__HOST__', clusterip) sti = sti.replace('__DATA_DIR__', clim1_dd) sti = sti.replace('__BUILD_DIR__', clim1_bd) sti = sti.replace('__KEY__', netcdfkey) sti = sti.replace('__CUSER__', curr_user) return sti def monitor_command(clusteruser=CLUSTER_USER, clusterip=CLUSTER_IP, clim1_dd=CLUSTER_DATA_DIR, clim1_bd=CLUSTER_BUILD_DIR, proc=PROC): # make monitor log curr_user = os.environ['USER'] sti = 'ssh __UNAME__@__HOST__ -T "export CLIMATE1_CASSANDRA_DATA_DIR=__DATA_DIR__ && export CLIMATE1_BUILD_DIR=__BUILD_DIR__ && cd __BUILD_DIR__/bde-climate-1 && make -s monitor-log CUSER=__CUSER__ PROC=__PROC__"' sti = sti.replace('__UNAME__', clusteruser) sti = sti.replace( '__HOST__', clusterip) sti = sti.replace('__DATA_DIR__', clim1_dd) sti = sti.replace('__BUILD_DIR__', clim1_bd) sti = sti.replace('__PROC__', proc) sti = sti.replace('__CUSER__', curr_user) return sti def export_command(clusteruser=CLUSTER_USER, clusterip=CLUSTER_IP, clim1_dd=CLUSTER_DATA_DIR, clim1_bd=CLUSTER_BUILD_DIR, netcdfkey='somekey'): # make export-file NETCDFKEY=yourkeysearch NETCDFOUT=nameofnetcdfoutfile curr_user = os.environ['USER'] sti0 = 'echo "Retrieving __FILE__..." && scp __UNAME__@__HOST__:__BUILD_DIR__/bde-climate-1/__FILE__ .' sti1 = 'echo "Exporting __FILE__..." && ssh __UNAME__@__HOST__ -T "export CLIMATE1_CASSANDRA_DATA_DIR=__DATA_DIR__ && export CLIMATE1_BUILD_DIR=__BUILD_DIR__ && cd __BUILD_DIR__/bde-climate-1 && make -s export-file CUSER=__CUSER__ NETCDFKEY=__KEY__ NETCDFOUT=__FILE__ | tee -a /mnt/share500/logs/__CUSER__.exp.log"' sti = sti1 + ' && ' + sti0 sti = sti.replace('__UNAME__', clusteruser) sti = sti.replace( '__HOST__', clusterip) sti = sti.replace('__DATA_DIR__', clim1_dd) sti = sti.replace('__BUILD_DIR__', clim1_bd) sti = sti.replace('__KEY__', netcdfkey) sti = sti.replace('__FILE__', 'exp_' + netcdfkey) sti = sti.replace('__CUSER__', curr_user) return sti def datakeys_command(clusteruser=CLUSTER_USER, clusterip=CLUSTER_IP, clim1_dd=CLUSTER_DATA_DIR, clim1_bd=CLUSTER_BUILD_DIR): # make export-file NETCDFKEY=yourkeysearch NETCDFOUT=nameofnetcdfoutfile curr_user = os.environ['USER'] sti = 'ssh __UNAME__@__HOST__ -T "export CLIMATE1_CASSANDRA_DATA_DIR=__DATA_DIR__ && export CLIMATE1_BUILD_DIR=__BUILD_DIR__ && cd __BUILD_DIR__/bde-climate-1 && make -s cassandra-get-datasets | tee -a /mnt/share500/logs/__CUSER__.log"' sti = sti.replace('__UNAME__', clusteruser) sti = sti.replace( '__HOST__', clusterip) sti = sti.replace('__DATA_DIR__', clim1_dd) sti = sti.replace('__BUILD_DIR__', clim1_bd) sti = sti.replace('__CUSER__', curr_user) return sti global ncfiles ncfiles = [] def filestolist(x): ncfiles.append(x.strip()) def netcdf_files(): global ncfiles ncfiles = [] execu('ls *.nc', fn=filestolist) return ncfiles[:-1] def netcdf_global_files(): #global gncfiles #gncfiles = [] ncfiles = [] execu('ls *.nc | grep -E -v "wrf|met"', fn=filestolist) return ncfiles[:-1] global dataset_keys dataset_keys = [] def populate_cassandra_keys_list(l): dataset_keys.append(l.strip()) def get_cassandra_data_keys(): global dataset_keys dataset_keys = [] execu(datakeys_command(), fn=populate_cassandra_keys_list) return dataset_keys[:-1] def update_export_HTML(x): tx_export.value += x.strip() + '<br/>' def update_wrf_HTML(x): tx_wrf.value += x.strip() + '<br/>' def export_clicked(b): tx_export.value += get_stamp('Starting export') + '<br/>' dexp = multiprocessing.Process(name='export', target=execu, args=(export_command(netcdfkey=dd_export.value), None, update_export_HTML,)) dexp.daemon = True dexp.start() #execu(export_command(netcdfkey=dd_export.value), fn=update_export_HTML, pattern=None) def monitor_export_clicked(b): global m_exp global mexp if not m_exp: tx_export.value += get_stamp('Monitoring export') + '<br/>' mexp = multiprocessing.Process(name='monitor_export', target=monitor_export) mexp.daemon = True mexp.start() m_exp = True else: if mexp: mexp.terminate() def monitor_export(): execu(monitor_command(proc='exp'), fn=update_export_HTML, pattern=None) def monitor_ingest(): execu(monitor_command(proc='ing'), fn=updateIngestHTML, pattern=None) def monitor_wrf(): execu(monitor_command(proc='wrf'), fn=update_wrf_HTML, pattern=None) from netCDF4 import Dataset import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.basemap import Basemap def extract_var(name): toks = name.split('_') for t in toks: if t != 'exp': return t continue return None def plot_clicked(b): global tx_plot global dd_plot IPython.display.clear_output() #clear_output(wait=True) # tx_plot.value += 'Plot clicked<br/>' # tx_plot.value = '<script>$(".output").remove()</script>' my_example_nc_file = dd_plot.value fh = Dataset(my_example_nc_file, mode='r') var = extract_var(my_example_nc_file) if var == None: tx_plot.value += 'Unknown error <br/>' return # tx_plot.value += var + '<br/>' lons = fh.variables['lon'][:] lats = fh.variables['lat'][:] time = fh.variables['time'][:] rsdscs = fh.variables[var][:] #print(rsdscs.shape) #print(rsdscs[0].shape) rsdscs_units = fh.variables[var].units fh.close() lon_0 = lons.mean() lat_0 = lats.mean() m = Basemap(width=50000000,height=35000000, resolution='l',projection='cyl',\ lat_ts=40,lat_0=lat_0,lon_0=lon_0) lon, lat = np.meshgrid(lons, lats) xi, yi = m(lon, lat) #Add Size fig = plt.figure(figsize=(16,16)) # Plot Data cs = m.pcolor(xi,yi,np.squeeze(rsdscs[0])) # Add Grid Lines m.drawparallels(np.arange(-80., 81., 20.), labels=[1,0,0,0], fontsize=10) m.drawmeridians(np.arange(-180., 181., 20.), labels=[0,0,0,1], fontsize=10) # Add Coastlines, States, and Country Boundaries m.drawcoastlines() m.drawstates() m.drawcountries() # Add Colorbar cbar = m.colorbar(cs, location='bottom', pad="10%") cbar.set_label(rsdscs_units) # Add Title # plt.title('Surface Downwelling Clear-Sky Shortwave Radiation') #myplot.show() def display_plot_form(): global dd_plot global dd_vars_plot global bt_plot global tx_plot global ncfiles netcdf_global_files() dd_plot = widgets.Dropdown( options=ncfiles, description='Available keys:' ) #dd_vars_plot = widgets.Dropdown( # options=['var1','var2'], # description='Vars:' #) bt_plot = widgets.Button(description='Plot') bt_plot.on_click(plot_clicked) tx_plot = widgets.HTML() container = widgets.HBox(children=[dd_plot]) container2 = widgets.HBox(children=[bt_plot]) display(container) display(container2) display(tx_plot) def display_export_form(): # Find available datasets/keys # Display dropdown list # Export button global dd_export global bt_export global lt_export global tx_export global datakeys global m_exp global mexp m_exp = False datakeys = get_cassandra_data_keys() l = widgets.HTML( value = '<span style="color:#fff;">................................................... </span> ' ) dd_export = widgets.Dropdown( options=get_cassandra_data_keys(), description='Available keys:', ) bt_export = widgets.Button(description="Export") lt_export = widgets.Button(description="Monitor Export") #tx_export = widgets.Textarea(height=3) tx_export = widgets.HTML() container = widgets.HBox(children=[dd_export, l, bt_export, lt_export]) bt_export.on_click(export_clicked) lt_export.on_click(monitor_export_clicked) display(container) display(tx_export) import traceback def update_prov(l): global provlist global html_prov l = l.strip() if l == '': return try: provlist.append(json.loads(l)) except ValueError: traceback.print_exc(file=sys.stdout) print l html_prov.value += 'Unknown error occurred...' import matplotlib.image as mpimg from IPython.display import Image, display from IPython.core.display import HTML def get_short_id(id): return id[:6]+'...' def prov_clicked(b): global provlist global html_prov html_prov.value = '' html_prov.value = 'Drawing data lineage... <br/>' + html_prov.value provlist = [] execu(prov_command(netcdfkey=dd_prov.value), fn=update_prov) g1 = gv.Digraph(format='png') for i in provlist: # print i g1.node(get_short_id(i['id']), '\n'.join(i['paths'])) if i['parentid'] is not None: g1.node(get_short_id(i['parentid'])) lbl = '' if 'downscaling' in i and 'agentname' in i['downscaling'][0]: lbl = i['downscaling'][0]['agentname'] + '\n' + i['downscaling'][0]['et'] g1.edge( get_short_id(i['parentid']), get_short_id(i['id']), label=lbl ) if i['bparentid'] is not None: g1.node(get_short_id(i['bparentid'])) lbl = '' if 'downscaling' in i and 'agentname' in i['downscaling'][0]: lbl = i['downscaling'][0]['agentname'] + '\n' + i['downscaling'][0]['et'] g1.edge( get_short_id(i['bparentid']), get_short_id(i['id']), label=lbl ) # print g1.source g1.render(filename='img/g1') #html_prov.value = '<meta http-equiv="Cache-Control" content="no-cache, no-store, must-revalidate" /> <meta http-equiv="Pragma" content="no-cache" /> <meta http-equiv="Expires" content="0" />' html_prov.value = '<div><img id="myimg" src=""></div>' html_prov.value += ' <script> d = new Date(); $("#myimg").attr("src", "img/g1.png?"+d.getTime()); console.log(d.getTime());</script>' def wrf_clicked(b): global dd_reg_wrf global dd_st_wrf global dd_dur_wrf global mx_wrf reg = None stdate = None dur = None if dd_reg_wrf.value == 'Europe': reg = 'd01' elif dd_reg_wrf.value == 'Greece': reg = 'd02' elif dd_reg_wrf.value == 'Europe-->Greece': reg = 'd01d02' else: pass if mx_wrf.value: print "on development" #monitor_wrf() else: IPython.display.clear_output() print get_stamp('Starting WRF') stdate = dd_st_wrf.value.replace('-', '') dur = dd_dur_wrf.value if reg == 'd01d02': #print 'run nesting' execu(wrf_command_nest(region=reg, startdate=stdate, duration=dur), pattern=None) else: execu(wrf_command(region=reg, startdate=stdate, duration=dur), pattern=None) def analytics_command(clusteruser=CLUSTER_USER, clusterip=CLUSTER_IP, clim1_dd=CLUSTER_DATA_DIR, clim1_bd=CLUSTER_BUILD_DIR, region ='d01', day = '07'): # make export-file NETCDFKEY=yourkeysearch NETCDFOUT=nameofnetcdfoutfile curr_user = os.environ['USER'] sti = 'ssh __UNAME__@__HOST__ -T "export CLIMATE1_CASSANDRA_DATA_DIR=__DATA_DIR__ && export CLIMATE1_BUILD_DIR=__BUILD_DIR__ && cd __BUILD_DIR__/bde-climate-1 && make -s hive-query-daily-indx REG=__REGION__ DAY=__DAY__ CUSER=__CUSER__ | tee -a /mnt/share500/logs/__CUSER__.log"' sti = sti.replace('__UNAME__', clusteruser) sti = sti.replace( '__HOST__', clusterip) sti = sti.replace('__DATA_DIR__', clim1_dd) sti = sti.replace('__BUILD_DIR__', clim1_bd) sti = sti.replace('__REGION__', region) sti = sti.replace('__DAY__', day) sti = sti.replace('__CUSER__', curr_user) return sti def update_analytics_out(x): global tx_an if 'c0 |' in x: toks = x.split('|') mmax = toks[4] mmin = toks[5] tx_an.value = 'Max=' + str(mmax) + ', Min=' + str(mmin) + ' (K)<br/>' def analytics_click(b): global dd_days_an global dd_region_an global tx_an tx_an.value = '' reg = 'd02' stdate = None dur = None if dd_region_an.value == 'Europe': reg = 'd01' elif dd_region_an.value == 'Greece': reg = 'd02' day = dd_days_an.value.split('-')[2] execu(analytics_command(region=reg, day=day), fn=update_analytics_out) if tx_an.value.strip() == '': tx_an.value = 'Data not found' def display_analytics_form(): global dd_days_an global dd_region_an global bt_an global tx_an dd_days_an = widgets.Dropdown( options=['2016-07-01', '2016-07-03', '2016-07-07'], value='2016-07-07', description='Available days:' ) dd_region_an = widgets.Dropdown( options=['Europe', 'Greece'], value='Greece', description='Available regions:' ) tx_an = widgets.HTML() bt_an = widgets.Button(description='Calculate') container = widgets.HBox(children=[dd_days_an, dd_region_an, bt_an]) bt_an.on_click(analytics_click) display(container) display(tx_an) def display_wrf_form(): global dd_reg_wrf global dd_st_wrf global dd_dur_wrf global bt_wrf global tx_wrf global mx_wrf l = widgets.HTML( value = '<span style="color:#fff;">................................................... </span> ' ) dd_reg_wrf = widgets.Dropdown( options=["Europe", "Greece", "Europe-->Greece"], value="Europe", description='Available regions:', ) dd_st_wrf = widgets.Dropdown( options=["2016-07-01","2016-07-02","2016-07-03","2016-07-04","2016-07-05","2016-07-06","2016-07-07"], value="2016-07-01", description='Starting date:', ) dd_dur_wrf= widgets.Dropdown( options=['6', '12', '18', '24'], value='6', desciption='Duration:', ) bt_wrf = widgets.Button(description="Run WRF") mx_wrf = widgets.Checkbox(description="Run WRF Monitor", value=False) tx_wrf = widgets.HTML() container = widgets.HBox(children=[dd_reg_wrf, dd_st_wrf, dd_dur_wrf]) bt_wrf.on_click(wrf_clicked) display(container) display(bt_wrf) display(mx_wrf) display(tx_wrf) def display_prov_form(): global dd_prov global bt_prov global html_prov #global datakeys #datakeys = get_cassandra_data_keys() l = widgets.HTML( value = '<span style="color:#fff;">................................................... </span> ' ) dd_prov = widgets.Dropdown( options=get_cassandra_data_keys(), description='Available keys:', ) bt_prov = widgets.Button(description="Display lineage") html_prov = widgets.HTML() container = widgets.HBox(children=[dd_prov, l, bt_prov]) bt_prov.on_click(prov_clicked) display(container) display(html_prov) def display_ingest_form(): global w global b global m global txarea netcdf_files() l = widgets.HTML( value = '<span style="color:#fff;">................................................... </span> ' ) w = widgets.Dropdown( options=ncfiles, description='Choose file:', ) b = widgets.Button(description='Ingest') m = widgets.Checkbox(description='Ingest Monitor', value=False) txarea = widgets.HTML() container = widgets.HBox(children=[w, l, b, m]) b.on_click(ingest_clicked) display(container) display(txarea) def ingest_clicked(b): global txarea txarea.value = '' ingest(filename=w.value) if m.value: print "on development" #monitor_ingest() else: IPython.display.clear_output() def export(filename): ''' make export-file NETCDFKEY=yourkeysearch NETCDFOUT=nameofnetcdfoutfile ''' ''' MAY support more selective use-case ''' pass def wrf_command(clusteruser=CLUSTER_USER, clusterip=CLUSTER_IP, clim1_dd=CLUSTER_DATA_DIR, clim1_bd=CLUSTER_BUILD_DIR, region ='R1', startdate = '20070101', duration = 6): # make export-file NETCDFKEY=yourkeysearch NETCDFOUT=nameofnetcdfoutfile curr_user = os.environ['USER'] sti = 'ssh __UNAME__@__HOST__ -T "export CLIMATE1_CASSANDRA_DATA_DIR=__DATA_DIR__ && export CLIMATE1_BUILD_DIR=__BUILD_DIR__ && cd __BUILD_DIR__/bde-climate-1 && make -s run-wrf-background RSTARTDT=__STARTDATE__ RDURATION=__RDURATION__ REG=__REGION__ CUSER=__CUSER__"' sti = sti.replace('__UNAME__', clusteruser) sti = sti.replace( '__HOST__', clusterip) sti = sti.replace('__DATA_DIR__', clim1_dd) sti = sti.replace('__BUILD_DIR__', clim1_bd) sti = sti.replace('__STARTDATE__', startdate) sti = sti.replace('__RDURATION__', duration) sti = sti.replace('__REGION__', region) sti = sti.replace('__CUSER__', curr_user) return sti def wrf_command_nest(clusteruser=CLUSTER_USER, clusterip=CLUSTER_IP, clim1_dd=CLUSTER_DATA_DIR, clim1_bd=CLUSTER_BUILD_DIR, region ='R1', startdate = '20070101', duration = 6): # make export-file NETCDFKEY=yourkeysearch NETCDFOUT=nameofnetcdfoutfile curr_user = os.environ['USER'] sti = 'ssh __UNAME__@__HOST__ -T "export CLIMATE1_CASSANDRA_DATA_DIR=__DATA_DIR__ && export CLIMATE1_BUILD_DIR=__BUILD_DIR__ && cd __BUILD_DIR__/bde-climate-1 && make -s run-wrf-nest-background RSTARTDT=__STARTDATE__ RDURATION=__RDURATION__ REG=__REGION__ CUSER=__CUSER__"' sti = sti.replace('__UNAME__', clusteruser) sti = sti.replace( '__HOST__', clusterip) sti = sti.replace('__DATA_DIR__', clim1_dd) sti = sti.replace('__BUILD_DIR__', clim1_bd) sti = sti.replace('__STARTDATE__', startdate) sti = sti.replace('__RDURATION__', duration) sti = sti.replace('__REGION__', region) sti = sti.replace('__CUSER__', curr_user) return sti def _run_wrf(): '''make run-wrf RSTARTDT=StartDateOfModel RDURATION=DurationOfModelInHours REG=<d01|d02|d03> ''' pass def _run_wrf_nest(): '''run-wrf RSTARTDT=StartDateOfModel RDURATION=DurationOfModelInHours REG=<d01d02|d02d03>''' def view_data(data=0): ''' matplotlib thingy ''' print('a') pass def hive_command(clusteruser='stathis', clusterip='172.17.20.106', clim1_bd='/home/stathis/Downloads', clim1_dd='/home/stathis/bde-climate-1', command='ls /home'): curr_user = os.environ['USER'] sti = 'ssh __UNAME__@__HOST__ -T "export CLIMATE1_CASSANDRA_DATA_DIR=__DATA_DIR__ && export CLIMATE1_BUILD_DIR=__BUILD_DIR__ && cd __BUILD_DIR__ && docker exec -i hive __COMMND__ | tee -a /mnt/share500/logs/__CUSER__.log"' sti = sti.replace('__UNAME__', clusteruser) sti = sti.replace( '__HOST__', clusterip) sti = sti.replace('__DATA_DIR__', clim1_dd) sti = sti.replace('__BUILD_DIR__', clim1_bd) sti = sti.replace('__COMMND__', command) sti = sti.replace('__CUSER__', curr_user) print(sti) return sti def exec_bash(command): return os.popen(command).read() #p = Popen(command, shell=True, stdin=PIPE, stdout=PIPE, stderr=STDOUT, close_fds=True) #output = p.stdout.read() #return output # Test: # execu('ls / | grep "te"')
apache-2.0
lostpg/computationalphysics_N2014301020009
EX_08.py
1
7600
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import numpy as np import pylab as pl import math import matplotlib.pyplot as plt from matplotlib import animation #这个包用于动画制作 class StadiumShape(): def __init__(self, alpha = 0.001): self.alpha = alpha self.xi = [] self.yi = [] self.x = [] self.y = [] def calcPoints(self): j = 0 while j < math.pi : self.xi.append(math.cos(j)) self.yi.append(math.sin(j) + self.alpha) j += 0.01 for i in range(len(self.xi)): # top half self.x.append(self.xi[i]) self.y.append(self.yi[i]) # bottom half self.x.append(self.xi[i]) self.y.append(-self.yi[i]) def showPlot(self): pl.plot(self.x,self.y,'.') pl.xlim(-1.1,1.1) pl.ylim(-1.1,1.1) pl.show() class Billiard(): def __init__(self, init_x = 0.17, init_y = 0.0, init_vx = 0.15, init_vy = 0.1, time_step = 0.01, total_time = 1000, alpha = 0.01): self.x = [init_x] self.y = [init_y] self.vx = init_vx self.vy = init_vy self.v = math.sqrt(init_vx ** 2 + init_vy ** 2) self.dt = time_step self.tt = total_time self.alpha = alpha self.t = 0 self.ps_x = [] self.ps_vx =[] self.alpha = alpha def trajectory(self): while (self.t < self.tt): self.t += self.dt x_next = self.x[-1] + self.vx * self.dt y_next = self.y[-1] + self.vy * self.dt # 下一个点没有越界 if x_next ** 2 + (abs(y_next) - self.alpha) ** 2 < 1: self.x.append(x_next) self.y.append(y_next) if abs(self.y[-1]) < 0.001: self.ps_vx.append(self.vx) self.ps_x.append(self.x[-1]) # 下个点成功越界,计算碰撞点并计算碰撞后速度 else: divisor = 2 # 往回走一点点 while divisor <= 2048: x_next -= (self.vx * self.dt / divisor) y_next -= (self.vy * self.dt / divisor) # 当下个点与边界距离在误差允许范围内时,跳出 loop if abs(x_next ** 2 + (abs(y_next) - self.alpha) ** 2 - 1) < 0.00001: divisor = 10000 # 如果刚刚往回走过了,撤销那一步,下一次走得再小一点 elif x_next ** 2 + (abs(y_next) - self.alpha) ** 2 < 1: x_next += (self.vx * self.dt / divisor) y_next += (self.vy * self.dt / divisor) divisor *= 2 # 跳出 loop 后,认为已到达边界点,将当前 x_next, y_next 加入self.x, # self.y,计算反弹后方向,当前位置也是此处边缘的法线 self.x.append(x_next) self.y.append(y_next) m = -1 if y_next < 0: m = 1 vi_ver_x = x_next * (self.vx * x_next + self.vy * (y_next + m * self.alpha)) vi_ver_y = (y_next + m * self.alpha) * (self.vx * x_next + self.vy * (y_next + m * self.alpha)) vi_par_x = self.vx - vi_ver_x vi_par_y = self.vy - vi_ver_y vf_ver_x = - vi_ver_x vf_ver_y = - vi_ver_y self.vx = vf_ver_x + vi_par_x self.vy = vf_ver_y + vi_par_y if abs(self.y[-1]) < 0.001: self.ps_vx.append(self.vx) self.ps_x.append(self.x[-1]) # 使和速度等于初速度 # self.vx, self.vy = self.v * self.vx * (self.vx ** 2 + self.vy ** 2), self.v * self.vy * (self.vx ** 2 + self.vy ** 2) def drawTrajectory(self): stadium = StadiumShape(alpha = self.alpha) stadium.calcPoints() pl.plot(stadium.x, stadium.y,'.', color='k', linewidth=0.5) pl.plot(self.x,self.y,'.', color='r', linewidth=0.1) pl.ylim(-1.1,1.1) pl.axis('equal') pl.title('Stadium with $\\alpha$ = %r' % self.alpha) pl.show() def phaseSpace(self): pl.plot(self.ps_x,self.ps_vx,'.') pl.show() class Comparison(): def draw(self): billiard1 = Billiard(alpha=0.0, init_y = 0) billiard2 = Billiard(alpha=0.0, init_y = 0.0001) billiard1.trajectory() billiard2.trajectory() sep = [] time = [] for i in range(len(billiard1.x)): time.append(i * billiard1.dt) sep.append((billiard1.x[i]-billiard2.x[i]) ** 2 + (billiard1.y[i]-billiard2.y[i]) ** 2) pl.semilogy(time, sep) pl.title('Stadium with $\\alpha$ = %r, - divergence of two trajectories' % billiard1.alpha) pl.xlabel('Time') pl.ylabel('Separation') pl.show() def main1(): #原始轨迹图 billiard = Billiard(alpha=0.1) billiard.trajectory() billiard.drawTrajectory() billiard.phaseSpace() def main2(): #两个初始值有微小差异的球的轨迹分离度 comparison = Comparison() comparison.draw() def main3(): #两个球的动图 fig = plt.figure() ax = plt.axes(title=('Stadium with $\\alpha$ = 0.1, - divergence of two trajectories'), aspect='equal', autoscale_on=False, xlim=(-1.1,1.1),ylim=(-1.1,1.1), xlabel=('x'), ylabel=('y')) billiard1 = Billiard(alpha=0.1, init_y = 0,total_time = 2000) billiard1.trajectory() billiard2 = Billiard(alpha=0.1, init_y = 0.0001,total_time = 2000) billiard2.trajectory() stadium = StadiumShape(alpha = 0.1) stadium.calcPoints() line1=ax.plot([],[],'b:')#初始化数据,line是轨迹,point是轨迹的头部 point1=ax.plot([],[],'bo',markersize=10) line2=ax.plot([],[],'r:') point2=ax.plot([],[],'ro',markersize=10) circle=ax.plot([],[],'k.',markersize=1) images=[] def init():#该函数用于初始化动画 circle = ax.plot line1=ax.plot([],[],'b:',markersize=8) point1=ax.plot([],[],'bo',markersize=10) line2=ax.plot([],[],'r:',markersize=8) point2 = ax.plot([], [], 'ro', markersize=10) circle=ax.plot([],[],'k.',markersize=1) return line1,point1,line2,point2,circle def anmi(i):#anmi函数用于每一帧的数据更新,i是帧数。 ax.clear() circle=ax.plot(stadium.x,stadium.y,'k.',markersize=1) line1=ax.plot(billiard1.x[0:100*i],billiard1.y[0:100*i], 'b:',markersize=8) point1 = ax.plot(billiard1.x[100*i-1:100*i],billiard1.y[100*i-1:100*i],'bo', markersize=10) line2 = ax.plot(billiard2.x[0:100*i],billiard2.y[0:100*i], 'r:',markersize=8) point2 = ax.plot(billiard2.x[100*i-1:100*i],billiard2.y[100*i-1:100*i], 'ro', markersize=10) return line1,point1,line2,point2,circle #animation.FuncAnimation用于动画制作,输入init函数和anmi函数,frams是帧数,一共画500祯,interval是相邻祯的间隔,单位是毫秒,此处为1毫秒 anim = animation.FuncAnimation(fig, anmi, init_func=init, frames=500, interval=1, blit=False,repeat=False,) plt.show() if __name__ == '__main__': main3()
gpl-3.0
mwidner/mwidner.github.io
markdown_generator/talks.py
199
4000
# coding: utf-8 # # Talks markdown generator for academicpages # # Takes a TSV of talks with metadata and converts them for use with [academicpages.github.io](academicpages.github.io). This is an interactive Jupyter notebook ([see more info here](http://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html)). The core python code is also in `talks.py`. Run either from the `markdown_generator` folder after replacing `talks.tsv` with one containing your data. # # TODO: Make this work with BibTex and other databases, rather than Stuart's non-standard TSV format and citation style. # In[1]: import pandas as pd import os # ## Data format # # The TSV needs to have the following columns: title, type, url_slug, venue, date, location, talk_url, description, with a header at the top. Many of these fields can be blank, but the columns must be in the TSV. # # - Fields that cannot be blank: `title`, `url_slug`, `date`. All else can be blank. `type` defaults to "Talk" # - `date` must be formatted as YYYY-MM-DD. # - `url_slug` will be the descriptive part of the .md file and the permalink URL for the page about the paper. # - The .md file will be `YYYY-MM-DD-[url_slug].md` and the permalink will be `https://[yourdomain]/talks/YYYY-MM-DD-[url_slug]` # - The combination of `url_slug` and `date` must be unique, as it will be the basis for your filenames # # ## Import TSV # # Pandas makes this easy with the read_csv function. We are using a TSV, so we specify the separator as a tab, or `\t`. # # I found it important to put this data in a tab-separated values format, because there are a lot of commas in this kind of data and comma-separated values can get messed up. However, you can modify the import statement, as pandas also has read_excel(), read_json(), and others. # In[3]: talks = pd.read_csv("talks.tsv", sep="\t", header=0) talks # ## Escape special characters # # YAML is very picky about how it takes a valid string, so we are replacing single and double quotes (and ampersands) with their HTML encoded equivilents. This makes them look not so readable in raw format, but they are parsed and rendered nicely. # In[4]: html_escape_table = { "&": "&amp;", '"': "&quot;", "'": "&apos;" } def html_escape(text): if type(text) is str: return "".join(html_escape_table.get(c,c) for c in text) else: return "False" # ## Creating the markdown files # # This is where the heavy lifting is done. This loops through all the rows in the TSV dataframe, then starts to concatentate a big string (```md```) that contains the markdown for each type. It does the YAML metadata first, then does the description for the individual page. # In[5]: loc_dict = {} for row, item in talks.iterrows(): md_filename = str(item.date) + "-" + item.url_slug + ".md" html_filename = str(item.date) + "-" + item.url_slug year = item.date[:4] md = "---\ntitle: \"" + item.title + '"\n' md += "collection: talks" + "\n" if len(str(item.type)) > 3: md += 'type: "' + item.type + '"\n' else: md += 'type: "Talk"\n' md += "permalink: /talks/" + html_filename + "\n" if len(str(item.venue)) > 3: md += 'venue: "' + item.venue + '"\n' if len(str(item.location)) > 3: md += "date: " + str(item.date) + "\n" if len(str(item.location)) > 3: md += 'location: "' + str(item.location) + '"\n' md += "---\n" if len(str(item.talk_url)) > 3: md += "\n[More information here](" + item.talk_url + ")\n" if len(str(item.description)) > 3: md += "\n" + html_escape(item.description) + "\n" md_filename = os.path.basename(md_filename) #print(md) with open("../_talks/" + md_filename, 'w') as f: f.write(md) # These files are in the talks directory, one directory below where we're working from.
mit
johnaparker/dynamics
examples/greens.py
1
1606
from tqdm import tqdm from my_pytools.my_matplotlib.animation import trajectory_animation import matplotlib.pyplot as plt from scipy import constants import numpy as np import h5py import miepy import dynamics # final time and time step dt = 10e-9 tf = 1000*dt time = np.arange(0,tf,dt) # sphere properties radius = 75e-9 density = 10490 Ag = miepy.materials.predefined.Ag() source = miepy.sources.rhc_polarized_plane_wave(amplitude=3e8) mass = 4/3*np.pi*radius**3*density Iz = 2/5*mass*radius**2 wavelength = 800e-9 eps_b = 1.33**2 k = 2*np.pi*eps_b**0.5/wavelength eps_ag = Ag.eps(wavelength) alpha = 4*np.pi*radius**3*eps_b*(eps_ag - eps_b)/(eps_ag + 2*eps_b)*constants.epsilon_0 # fluid properties mu = 0.6e-3 # liquid viscosity temp = 1000 # temperature # initial conditions positions = [[-300e-9,0.0,0], [300e-9,0.0,0], [0,300e-9,0]] positions = [[-300e-9,0.0,0], [300e-9,0.0,0]] system = dynamics.particles(positions, mass, Iz, dt, outfile='out.h5') dynamics.langevin(system, radius, temp, mu) em = dynamics.point_dipole_electrodynamics(system, alpha, source, wavelength, eps_b) dynamics.constrain_along_normal(system, [0,0,1]) for i,t in enumerate(tqdm(time)): system.update() system.empty_cache() skip = 5 with h5py.File('out.h5','r') as f: trajectories = f['positions'][...] angles = f['angles'][...] anim = trajectory_animation(trajectories[::skip]*1e9, radius*1e9, 'z', colors=['C0','C1', 'C2'], trail=100, angles=angles[::skip], time=time[::skip]*1e6, time_unit = r'$\mu s$', number_labels=True, trail_type='fading', interval=30) plt.show()
mit
mdesco/dipy
scratch/very_scratch/spherical_statistics.py
20
5695
import numpy as np import dipy.core.meshes as meshes import get_vertices as gv from dipy.core.triangle_subdivide import create_unit_sphere #from dipy.viz import fos #from dipy.io import dicomreaders as dcm #import dipy.core.geometry as geometry #import matplotlib.pyplot as mplp import dipy.core.sphere_plots as splot # set up a dictionary of sphere points that are in use EITHER as a set # directions for diffusion weighted acquisitions OR as a set of # evaluation points for an ODF (orientation distribution function. sphere_dic = {'fy362': {'filepath' : '/home/ian/Devel/dipy/dipy/core/data/evenly_distributed_sphere_362.npz', 'object': 'npz', 'vertices': 'vertices', 'omit': 0, 'hemi': False}, 'fy642': {'filepath' : '/home/ian/Devel/dipy/dipy/core/data/evenly_distributed_sphere_642.npz', 'object': 'npz', 'vertices': 'odf_vertices', 'omit': 0, 'hemi': False}, 'siem64': {'filepath':'/home/ian/Devel/dipy/dipy/core/tests/data/small_64D.gradients.npy', 'object': 'npy', 'omit': 1, 'hemi': True}, 'create2': {}, 'create3': {}, 'create4': {}, 'create5': {}, 'create6': {}, 'create7': {}, 'create8': {}, 'create9': {}, 'marta200': {'filepath': '/home/ian/Data/Spheres/200.npy', 'object': 'npy', 'omit': 0, 'hemi': True}, 'dsi101': {'filepath': '/home/ian/Data/Frank_Eleftherios/frank/20100511_m030y_cbu100624/08_ep2d_advdiff_101dir_DSI', 'object': 'dicom', 'omit': 0, 'hemi': True}} def plot_sphere(v,key): r = fos.ren() fos.add(r,fos.point(v,fos.green, point_radius= 0.01)) fos.show(r, title=key, size=(1000,1000)) def plot_lambert(v,key): lamb = geometry.lambert_equal_area_projection_cart(*v.T).T (y1,y2) = lamb radius = np.sum(lamb**2,axis=0) < 1 #print inner #print y1[inner] #print y1[-inner] figure = mplp.figure(facecolor='w') current = figure.add_subplot(111) current.patch.set_color('k') current.plot(y1[radius],y2[radius],'.g') current.plot(y1[-radius],y2[-radius],'.r') current.axes.set_aspect(aspect = 'equal', adjustable = 'box') figure.show() figure.waitforbuttonpress() mplp.close() def get_vertex_set(key): if key[:6] == 'create': number = eval(key[6:]) vertices, edges, faces = create_unit_sphere(number) omit = 0 else: entry = sphere_dic[key] #print entry if entry.has_key('omit'): omit = entry['omit'] else: omit = 0 filepath = entry['filepath'] if entry['object'] == 'npz': filearray = np.load(filepath) vertices = filearray[entry['vertices']] elif sphere_dic[key]['object'] == 'npy': vertices = np.load(filepath) elif entry['object'] == 'dicom': data,affine,bvals,gradients=dcm.read_mosaic_dir(filepath) #print (bvals.shape, gradients.shape) grad3 = np.vstack((bvals,bvals,bvals)).transpose() #print grad3.shape #vertices = grad3*gradients vertices = gradients if omit > 0: vertices = vertices[omit:,:] if entry['hemi']: vertices = np.vstack([vertices, -vertices]) print key, ': number of vertices = ', vertices.shape[0], '(drop ',omit,')' return vertices[omit:,:] xup=np.array([ 1,0,0]) xdn=np.array([-1,0,0]) yup=np.array([0, 1,0]) ydn=np.array([0,-1,0]) zup=np.array([0,0, 1]) zdn=np.array([0,0,-1]) #for key in sphere_dic: #for key in ['siem64']: for key in ['fy642']: v = gv.get_vertex_set(key) splot.plot_sphere(v,key) splot.plot_lambert(v,key,centre=np.array([0.,0.])) equat, polar = meshes.spherical_statistics(v,north=xup,width=0.2) l = 2.*len(v) equat = equat/l polar = polar/l print '%6.3f %6.3f %6.3f %6.3f' % (equat.min(), equat.mean(), equat.max(), np.sqrt(equat.var())) print '%6.3f %6.3f %6.3f %6.3f' % (polar.min(), polar.mean(), polar.max(), np.sqrt(polar.var())) def spherical_statistics(vertices, north=np.array([0,0,1]), width=0.02): ''' function to evaluate a spherical triangulation by looking at the variability of numbers of vertices in 'vertices' in equatorial bands of width 'width' orthogonal to each point in 'vertices' ''' equatorial_counts = np.array([len(equatorial_zone_vertices(vertices, pole, width=width)) for pole in vertices if np.dot(pole,north) >= 0]) #equatorial_counts = np.bincount(equatorial_counts) #args = np.where(equatorial_counts>0) #print zip(list(args[0]), equatorial_counts[args]) polar_counts = np.array([len(polar_zone_vertices(vertices, pole, width=width)) for pole in vertices if np.dot(pole,north) >= 0]) #unique_counts = np.sort(np.array(list(set(equatorial_counts)))) #polar_counts = np.bincount(polar_counts) #counts_tokens = [(uc, bin_counts[uc]) for uc in bin_counts if ] #args = np.where(polar_counts>0) #print '(number, frequency):', zip(unique_counts,tokens) #print '(number, frequency):', counts_tokens #print zip(args, bin_counts[args]) #print zip(list(args[0]), polar_counts[args]) return equatorial_counts, polar_counts def spherical_proportion(zone_width): # assuming radius is 1: (2*np.pi*zone_width)/(4*np.pi) # 0 <= zone_width <= 2 return zone_width/2. def angle_for_zone(zone_width): return np.arcsin(zone_width/2.) def coarseness(faces): faces = np.asarray(faces) coarseness = 0.0 for face in faces: a, b, c = face coarse = np.max(coarse, geom.circumradius(a,b,c)) return coarse
bsd-3-clause
petosegan/scikit-learn
examples/model_selection/plot_learning_curve.py
250
4171
""" ======================== Plotting Learning Curves ======================== On the left side the learning curve of a naive Bayes classifier is shown for the digits dataset. Note that the training score and the cross-validation score are both not very good at the end. However, the shape of the curve can be found in more complex datasets very often: the training score is very high at the beginning and decreases and the cross-validation score is very low at the beginning and increases. On the right side we see the learning curve of an SVM with RBF kernel. We can see clearly that the training score is still around the maximum and the validation score could be increased with more training samples. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import cross_validation from sklearn.naive_bayes import GaussianNB from sklearn.svm import SVC from sklearn.datasets import load_digits from sklearn.learning_curve import learning_curve def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None, n_jobs=1, train_sizes=np.linspace(.1, 1.0, 5)): """ Generate a simple plot of the test and traning learning curve. Parameters ---------- estimator : object type that implements the "fit" and "predict" methods An object of that type which is cloned for each validation. title : string Title for the chart. X : array-like, shape (n_samples, n_features) Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples) or (n_samples, n_features), optional Target relative to X for classification or regression; None for unsupervised learning. ylim : tuple, shape (ymin, ymax), optional Defines minimum and maximum yvalues plotted. cv : integer, cross-validation generator, optional If an integer is passed, it is the number of folds (defaults to 3). Specific cross-validation objects can be passed, see sklearn.cross_validation module for the list of possible objects n_jobs : integer, optional Number of jobs to run in parallel (default 1). """ plt.figure() plt.title(title) if ylim is not None: plt.ylim(*ylim) plt.xlabel("Training examples") plt.ylabel("Score") train_sizes, train_scores, test_scores = learning_curve( estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_sizes) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) plt.grid() plt.fill_between(train_sizes, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.1, color="r") plt.fill_between(train_sizes, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.1, color="g") plt.plot(train_sizes, train_scores_mean, 'o-', color="r", label="Training score") plt.plot(train_sizes, test_scores_mean, 'o-', color="g", label="Cross-validation score") plt.legend(loc="best") return plt digits = load_digits() X, y = digits.data, digits.target title = "Learning Curves (Naive Bayes)" # Cross validation with 100 iterations to get smoother mean test and train # score curves, each time with 20% data randomly selected as a validation set. cv = cross_validation.ShuffleSplit(digits.data.shape[0], n_iter=100, test_size=0.2, random_state=0) estimator = GaussianNB() plot_learning_curve(estimator, title, X, y, ylim=(0.7, 1.01), cv=cv, n_jobs=4) title = "Learning Curves (SVM, RBF kernel, $\gamma=0.001$)" # SVC is more expensive so we do a lower number of CV iterations: cv = cross_validation.ShuffleSplit(digits.data.shape[0], n_iter=10, test_size=0.2, random_state=0) estimator = SVC(gamma=0.001) plot_learning_curve(estimator, title, X, y, (0.7, 1.01), cv=cv, n_jobs=4) plt.show()
bsd-3-clause
terkkila/scikit-learn
examples/decomposition/plot_pca_vs_fa_model_selection.py
78
4510
#!/usr/bin/python # -*- coding: utf-8 -*- """ =============================================================== Model selection with Probabilistic PCA and Factor Analysis (FA) =============================================================== Probabilistic PCA and Factor Analysis are probabilistic models. The consequence is that the likelihood of new data can be used for model selection and covariance estimation. Here we compare PCA and FA with cross-validation on low rank data corrupted with homoscedastic noise (noise variance is the same for each feature) or heteroscedastic noise (noise variance is the different for each feature). In a second step we compare the model likelihood to the likelihoods obtained from shrinkage covariance estimators. One can observe that with homoscedastic noise both FA and PCA succeed in recovering the size of the low rank subspace. The likelihood with PCA is higher than FA in this case. However PCA fails and overestimates the rank when heteroscedastic noise is present. Under appropriate circumstances the low rank models are more likely than shrinkage models. The automatic estimation from Automatic Choice of Dimensionality for PCA. NIPS 2000: 598-604 by Thomas P. Minka is also compared. """ print(__doc__) # Authors: Alexandre Gramfort # Denis A. Engemann # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from scipy import linalg from sklearn.decomposition import PCA, FactorAnalysis from sklearn.covariance import ShrunkCovariance, LedoitWolf from sklearn.cross_validation import cross_val_score from sklearn.grid_search import GridSearchCV ############################################################################### # Create the data n_samples, n_features, rank = 1000, 50, 10 sigma = 1. rng = np.random.RandomState(42) U, _, _ = linalg.svd(rng.randn(n_features, n_features)) X = np.dot(rng.randn(n_samples, rank), U[:, :rank].T) # Adding homoscedastic noise X_homo = X + sigma * rng.randn(n_samples, n_features) # Adding heteroscedastic noise sigmas = sigma * rng.rand(n_features) + sigma / 2. X_hetero = X + rng.randn(n_samples, n_features) * sigmas ############################################################################### # Fit the models n_components = np.arange(0, n_features, 5) # options for n_components def compute_scores(X): pca = PCA() fa = FactorAnalysis() pca_scores, fa_scores = [], [] for n in n_components: pca.n_components = n fa.n_components = n pca_scores.append(np.mean(cross_val_score(pca, X))) fa_scores.append(np.mean(cross_val_score(fa, X))) return pca_scores, fa_scores def shrunk_cov_score(X): shrinkages = np.logspace(-2, 0, 30) cv = GridSearchCV(ShrunkCovariance(), {'shrinkage': shrinkages}) return np.mean(cross_val_score(cv.fit(X).best_estimator_, X)) def lw_score(X): return np.mean(cross_val_score(LedoitWolf(), X)) for X, title in [(X_homo, 'Homoscedastic Noise'), (X_hetero, 'Heteroscedastic Noise')]: pca_scores, fa_scores = compute_scores(X) n_components_pca = n_components[np.argmax(pca_scores)] n_components_fa = n_components[np.argmax(fa_scores)] pca = PCA(n_components='mle') pca.fit(X) n_components_pca_mle = pca.n_components_ print("best n_components by PCA CV = %d" % n_components_pca) print("best n_components by FactorAnalysis CV = %d" % n_components_fa) print("best n_components by PCA MLE = %d" % n_components_pca_mle) plt.figure() plt.plot(n_components, pca_scores, 'b', label='PCA scores') plt.plot(n_components, fa_scores, 'r', label='FA scores') plt.axvline(rank, color='g', label='TRUTH: %d' % rank, linestyle='-') plt.axvline(n_components_pca, color='b', label='PCA CV: %d' % n_components_pca, linestyle='--') plt.axvline(n_components_fa, color='r', label='FactorAnalysis CV: %d' % n_components_fa, linestyle='--') plt.axvline(n_components_pca_mle, color='k', label='PCA MLE: %d' % n_components_pca_mle, linestyle='--') # compare with other covariance estimators plt.axhline(shrunk_cov_score(X), color='violet', label='Shrunk Covariance MLE', linestyle='-.') plt.axhline(lw_score(X), color='orange', label='LedoitWolf MLE' % n_components_pca_mle, linestyle='-.') plt.xlabel('nb of components') plt.ylabel('CV scores') plt.legend(loc='lower right') plt.title(title) plt.show()
bsd-3-clause
fdtomasi/string_kernel
string_kernel/io_utils.py
1
3946
import os import sys import csv import pandas as pd d = {'CYS': 'C', 'ASP': 'D', 'SER': 'S', 'GLN': 'Q', 'LYS': 'K', 'ILE': 'I', 'PRO': 'P', 'THR': 'T', 'PHE': 'F', 'ASN': 'N', 'GLY': 'G', 'HIS': 'H', 'LEU': 'L', 'ARG': 'R', 'TRP': 'W', 'ALA': 'A', 'VAL': 'V', 'GLU': 'E', 'TYR': 'Y', 'MET': 'M'} def shorten(x): if len(x) % 3 != 0: raise ValueError('Input length should be a multiple of three') y = '' for i in range(len(x) / 3): y += d[x[3 * i:3 * i + 3]] return y def read_pdb(pdb_file, dialect='excel-tab'): """Read a protein database file. From the pdb file, the heavy and light chain are extracted, with the following criteria to divide them in CDRs: # LCDR1: 24_L:34_L, # LCDR2: 48_L:54_L, # LCDR3: 89_L:98_L, # HCDR1: 24_H:34_H, # HCDR2: 51_H:57_H, # HCDR3: 93_H:104_H Hence L chain from 24 to 34, from 48 to 54 and so on. The numbering is of pdb file, that is the kabat-chothia numbering. There can be some IG with ids like 100A, 100B; they must be considered if they are inside the intervals specified before. Parameters ---------- pdb_file : str A protein database file. Delimited according to `dialect`. dialect : ('excel-tab', 'excel') Dialect for csv.DictReader. Returns ------- dict : dictionary For each CDR, return the correspondent sequence for the pdb_file specified. """ try: heavy = [] light = [] loops = ['LCDR1', 'LCDR2', 'LCDR3', 'HCDR1', 'HCDR2', 'HCDR3'] seqs = ['', '', '', '', '', ''] with open(pdb_file, 'rb') as f: for line in f: words = [w for w in line.split(" ") if w != ''] if words[0] != 'ATOM': continue if words[4] == 'H': if heavy == [] or words[5] != heavy[-1][1]: heavy.append((words[3], words[5])) elif words[4] == 'L': if light == [] or words[5] != light[-1][1]: light.append((words[3], words[5])) else: raise ValueError for pos, t in enumerate(light): # remove the suffix A, B, D ... n = int(t[1][:-1]) if t[1][-1].isalpha() else int(t[1]) if 24 <= n <= 34: seqs[0] += t[0] elif 48 <= n <= 54: seqs[1] += t[0] elif 89 <= n <= 98: seqs[2] += t[0] for pos, t in enumerate(heavy): # remove the suffix A, B, D ... n = int(t[1][:-1]) if t[1][-1].isalpha() else int(t[1]) if 24 <= n <= 34: seqs[3] += t[0] elif 51 <= n <= 57: seqs[4] += t[0] elif 93 <= n <= 104: seqs[5] += t[0] except IOError: sys.exit('ERROR: File %s cannot be read' % pdb_file) except Exception as e: sys.exit('ERROR: {}'.format(e)) return {k: v for k, v in zip(loops, map(shorten, seqs))} # , light, heavy def pdb_to_df(path): loops = ['LCDR1', 'LCDR2', 'LCDR3', 'HCDR1', 'HCDR2', 'HCDR3'] df = pd.DataFrame(columns=loops) filenames = [os.path.join(path, f) for f in os.listdir(path) if os.path.isfile(os.path.join(path, f)) and f.endswith('.pdb')] for f in filenames: dict_seqs = read_pdb(f) df = df.append(dict_seqs, ignore_index=True) # # To insert the names of the sequences, load them from the merged file # # after conversion # __df = pd.read_csv('/home/fede/Dropbox/projects/Franco_Fabio_Marcat/' # 'conversioni_ID/tab_final_merged_newid_mutation.csv') # indexes = [] # for f in filenames: # df1[df1['ID TM matrice'] == x]['new_id_tm'] df.index = map(lambda x: x.split('/')[-1], filenames) return df
mit
pprett/scikit-learn
examples/plot_digits_pipe.py
65
1652
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Pipelining: chaining a PCA and a logistic regression ========================================================= The PCA does an unsupervised dimensionality reduction, while the logistic regression does the prediction. We use a GridSearchCV to set the dimensionality of the PCA """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model, decomposition, datasets from sklearn.pipeline import Pipeline from sklearn.model_selection import GridSearchCV logistic = linear_model.LogisticRegression() pca = decomposition.PCA() pipe = Pipeline(steps=[('pca', pca), ('logistic', logistic)]) digits = datasets.load_digits() X_digits = digits.data y_digits = digits.target # Plot the PCA spectrum pca.fit(X_digits) plt.figure(1, figsize=(4, 3)) plt.clf() plt.axes([.2, .2, .7, .7]) plt.plot(pca.explained_variance_, linewidth=2) plt.axis('tight') plt.xlabel('n_components') plt.ylabel('explained_variance_') # Prediction n_components = [20, 40, 64] Cs = np.logspace(-4, 4, 3) # Parameters of pipelines can be set using ‘__’ separated parameter names: estimator = GridSearchCV(pipe, dict(pca__n_components=n_components, logistic__C=Cs)) estimator.fit(X_digits, y_digits) plt.axvline(estimator.best_estimator_.named_steps['pca'].n_components, linestyle=':', label='n_components chosen') plt.legend(prop=dict(size=12)) plt.show()
bsd-3-clause
AlexanderFabisch/scikit-learn
examples/ensemble/plot_bias_variance.py
357
7324
""" ============================================================ Single estimator versus bagging: bias-variance decomposition ============================================================ This example illustrates and compares the bias-variance decomposition of the expected mean squared error of a single estimator against a bagging ensemble. In regression, the expected mean squared error of an estimator can be decomposed in terms of bias, variance and noise. On average over datasets of the regression problem, the bias term measures the average amount by which the predictions of the estimator differ from the predictions of the best possible estimator for the problem (i.e., the Bayes model). The variance term measures the variability of the predictions of the estimator when fit over different instances LS of the problem. Finally, the noise measures the irreducible part of the error which is due the variability in the data. The upper left figure illustrates the predictions (in dark red) of a single decision tree trained over a random dataset LS (the blue dots) of a toy 1d regression problem. It also illustrates the predictions (in light red) of other single decision trees trained over other (and different) randomly drawn instances LS of the problem. Intuitively, the variance term here corresponds to the width of the beam of predictions (in light red) of the individual estimators. The larger the variance, the more sensitive are the predictions for `x` to small changes in the training set. The bias term corresponds to the difference between the average prediction of the estimator (in cyan) and the best possible model (in dark blue). On this problem, we can thus observe that the bias is quite low (both the cyan and the blue curves are close to each other) while the variance is large (the red beam is rather wide). The lower left figure plots the pointwise decomposition of the expected mean squared error of a single decision tree. It confirms that the bias term (in blue) is low while the variance is large (in green). It also illustrates the noise part of the error which, as expected, appears to be constant and around `0.01`. The right figures correspond to the same plots but using instead a bagging ensemble of decision trees. In both figures, we can observe that the bias term is larger than in the previous case. In the upper right figure, the difference between the average prediction (in cyan) and the best possible model is larger (e.g., notice the offset around `x=2`). In the lower right figure, the bias curve is also slightly higher than in the lower left figure. In terms of variance however, the beam of predictions is narrower, which suggests that the variance is lower. Indeed, as the lower right figure confirms, the variance term (in green) is lower than for single decision trees. Overall, the bias- variance decomposition is therefore no longer the same. The tradeoff is better for bagging: averaging several decision trees fit on bootstrap copies of the dataset slightly increases the bias term but allows for a larger reduction of the variance, which results in a lower overall mean squared error (compare the red curves int the lower figures). The script output also confirms this intuition. The total error of the bagging ensemble is lower than the total error of a single decision tree, and this difference indeed mainly stems from a reduced variance. For further details on bias-variance decomposition, see section 7.3 of [1]_. References ---------- .. [1] T. Hastie, R. Tibshirani and J. Friedman, "Elements of Statistical Learning", Springer, 2009. """ print(__doc__) # Author: Gilles Louppe <[email protected]> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.ensemble import BaggingRegressor from sklearn.tree import DecisionTreeRegressor # Settings n_repeat = 50 # Number of iterations for computing expectations n_train = 50 # Size of the training set n_test = 1000 # Size of the test set noise = 0.1 # Standard deviation of the noise np.random.seed(0) # Change this for exploring the bias-variance decomposition of other # estimators. This should work well for estimators with high variance (e.g., # decision trees or KNN), but poorly for estimators with low variance (e.g., # linear models). estimators = [("Tree", DecisionTreeRegressor()), ("Bagging(Tree)", BaggingRegressor(DecisionTreeRegressor()))] n_estimators = len(estimators) # Generate data def f(x): x = x.ravel() return np.exp(-x ** 2) + 1.5 * np.exp(-(x - 2) ** 2) def generate(n_samples, noise, n_repeat=1): X = np.random.rand(n_samples) * 10 - 5 X = np.sort(X) if n_repeat == 1: y = f(X) + np.random.normal(0.0, noise, n_samples) else: y = np.zeros((n_samples, n_repeat)) for i in range(n_repeat): y[:, i] = f(X) + np.random.normal(0.0, noise, n_samples) X = X.reshape((n_samples, 1)) return X, y X_train = [] y_train = [] for i in range(n_repeat): X, y = generate(n_samples=n_train, noise=noise) X_train.append(X) y_train.append(y) X_test, y_test = generate(n_samples=n_test, noise=noise, n_repeat=n_repeat) # Loop over estimators to compare for n, (name, estimator) in enumerate(estimators): # Compute predictions y_predict = np.zeros((n_test, n_repeat)) for i in range(n_repeat): estimator.fit(X_train[i], y_train[i]) y_predict[:, i] = estimator.predict(X_test) # Bias^2 + Variance + Noise decomposition of the mean squared error y_error = np.zeros(n_test) for i in range(n_repeat): for j in range(n_repeat): y_error += (y_test[:, j] - y_predict[:, i]) ** 2 y_error /= (n_repeat * n_repeat) y_noise = np.var(y_test, axis=1) y_bias = (f(X_test) - np.mean(y_predict, axis=1)) ** 2 y_var = np.var(y_predict, axis=1) print("{0}: {1:.4f} (error) = {2:.4f} (bias^2) " " + {3:.4f} (var) + {4:.4f} (noise)".format(name, np.mean(y_error), np.mean(y_bias), np.mean(y_var), np.mean(y_noise))) # Plot figures plt.subplot(2, n_estimators, n + 1) plt.plot(X_test, f(X_test), "b", label="$f(x)$") plt.plot(X_train[0], y_train[0], ".b", label="LS ~ $y = f(x)+noise$") for i in range(n_repeat): if i == 0: plt.plot(X_test, y_predict[:, i], "r", label="$\^y(x)$") else: plt.plot(X_test, y_predict[:, i], "r", alpha=0.05) plt.plot(X_test, np.mean(y_predict, axis=1), "c", label="$\mathbb{E}_{LS} \^y(x)$") plt.xlim([-5, 5]) plt.title(name) if n == 0: plt.legend(loc="upper left", prop={"size": 11}) plt.subplot(2, n_estimators, n_estimators + n + 1) plt.plot(X_test, y_error, "r", label="$error(x)$") plt.plot(X_test, y_bias, "b", label="$bias^2(x)$"), plt.plot(X_test, y_var, "g", label="$variance(x)$"), plt.plot(X_test, y_noise, "c", label="$noise(x)$") plt.xlim([-5, 5]) plt.ylim([0, 0.1]) if n == 0: plt.legend(loc="upper left", prop={"size": 11}) plt.show()
bsd-3-clause
srjit/fakenewschallange
code/python/eda/wmdistance.py
1
2398
import os import sys sys.path.append("../") from gensim import models import pandas as pd import numpy as np import preprocessing as pp filename = "../../../data/sample.csv" data = pd.read_csv(filename, sep=',') data['header_features'] = data.Headline.apply(lambda x : pp.process(x)) data['content_features'] = data.articleBody.apply(lambda x : pp.process(x)) model = models.Word2Vec.load_word2vec_format('/media/sree/venus/code/word2vec/GoogleNews-vectors-negative300.bin', binary=True) def sent2vec(words): M = [] for w in words: try: M.append(model[w]) except: continue M = np.array(M) v = M.sum(axis=0) return v / np.sqrt((v ** 2).sum()) ## create the header vector header_vectors = np.zeros((data.shape[0], 300)) for i, q in enumerate(data.header_features.values): header_vectors[i, :] = sent2vec(q) # header_series = pd.Series(header_vectors) # data['header_vector'] = header_series.values ## create the content vector content_vectors = np.zeros((data.shape[0], 300)) for i, q in enumerate(data.content_features.values): content_vectors[i, :] = sent2vec(q) # content_series = pd.Series(content_vectors) # data['content_vector'] = content_series.values # model = KeyedVectors.load_word2vec_format('data/GoogleNews-vectors-negative300.bin.gz', binary=True) data['wmd'] = data.apply(lambda x: model.wmdistance(x['header_features'], x['content_features']), axis=1) # data['header_vectors'] = data.header_features.apply(lambda x : sent2vec(x)) # data['content_vectors'] = data.header_features.apply(lambda x : sent2vec(x)) ## Word2Vec WMD Distance def toCSV(stance, values): metric = "word_mover_" f = open(metric + stance + "_values.csv", "w") try: os.remove(f.name) except OSError: pass f = open(metric + stance + "_values.csv", "w") for i in values: f.write(str(i) + "\n") range_of_values = {} for stance_level in np.unique(data.Stance): filtered_rows = data[(data.Stance == stance_level)] print("Statistics for group : " + stance_level) ## range of wmds group_max_wmd = np.max(filtered_rows.wmd) group_min_wmd = np.min(filtered_rows.wmd) range_of_values[stance_level] = filtered_rows.wmd.tolist() value_list = filtered_rows.wmd.tolist() value_list.sort() toCSV(stance_level, value_list)
gpl-3.0
Vimos/scikit-learn
sklearn/feature_selection/tests/test_from_model.py
2
7204
import numpy as np from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import skip_if_32bit from sklearn import datasets from sklearn.linear_model import LogisticRegression, SGDClassifier, Lasso from sklearn.svm import LinearSVC from sklearn.feature_selection import SelectFromModel from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import PassiveAggressiveClassifier from sklearn.utils.fixes import norm iris = datasets.load_iris() data, y = iris.data, iris.target rng = np.random.RandomState(0) def test_invalid_input(): clf = SGDClassifier(alpha=0.1, n_iter=10, shuffle=True, random_state=None) for threshold in ["gobbledigook", ".5 * gobbledigook"]: model = SelectFromModel(clf, threshold=threshold) model.fit(data, y) assert_raises(ValueError, model.transform, data) def test_input_estimator_unchanged(): """ Test that SelectFromModel fits on a clone of the estimator. """ est = RandomForestClassifier() transformer = SelectFromModel(estimator=est) transformer.fit(data, y) assert_true(transformer.estimator is est) @skip_if_32bit def test_feature_importances(): X, y = datasets.make_classification( n_samples=1000, n_features=10, n_informative=3, n_redundant=0, n_repeated=0, shuffle=False, random_state=0) est = RandomForestClassifier(n_estimators=50, random_state=0) for threshold, func in zip(["mean", "median"], [np.mean, np.median]): transformer = SelectFromModel(estimator=est, threshold=threshold) transformer.fit(X, y) assert_true(hasattr(transformer.estimator_, 'feature_importances_')) X_new = transformer.transform(X) assert_less(X_new.shape[1], X.shape[1]) importances = transformer.estimator_.feature_importances_ feature_mask = np.abs(importances) > func(importances) assert_array_almost_equal(X_new, X[:, feature_mask]) # Check with sample weights sample_weight = np.ones(y.shape) sample_weight[y == 1] *= 100 est = RandomForestClassifier(n_estimators=50, random_state=0) transformer = SelectFromModel(estimator=est) transformer.fit(X, y, sample_weight=sample_weight) importances = transformer.estimator_.feature_importances_ transformer.fit(X, y, sample_weight=3 * sample_weight) importances_bis = transformer.estimator_.feature_importances_ assert_almost_equal(importances, importances_bis) # For the Lasso and related models, the threshold defaults to 1e-5 transformer = SelectFromModel(estimator=Lasso(alpha=0.1)) transformer.fit(X, y) X_new = transformer.transform(X) mask = np.abs(transformer.estimator_.coef_) > 1e-5 assert_array_equal(X_new, X[:, mask]) @skip_if_32bit def test_feature_importances_2d_coef(): X, y = datasets.make_classification( n_samples=1000, n_features=10, n_informative=3, n_redundant=0, n_repeated=0, shuffle=False, random_state=0, n_classes=4) est = LogisticRegression() for threshold, func in zip(["mean", "median"], [np.mean, np.median]): for order in [1, 2, np.inf]: # Fit SelectFromModel a multi-class problem transformer = SelectFromModel(estimator=LogisticRegression(), threshold=threshold, norm_order=order) transformer.fit(X, y) assert_true(hasattr(transformer.estimator_, 'coef_')) X_new = transformer.transform(X) assert_less(X_new.shape[1], X.shape[1]) # Manually check that the norm is correctly performed est.fit(X, y) importances = norm(est.coef_, axis=0, ord=order) feature_mask = importances > func(importances) assert_array_equal(X_new, X[:, feature_mask]) def test_partial_fit(): est = PassiveAggressiveClassifier(random_state=0, shuffle=False) transformer = SelectFromModel(estimator=est) transformer.partial_fit(data, y, classes=np.unique(y)) old_model = transformer.estimator_ transformer.partial_fit(data, y, classes=np.unique(y)) new_model = transformer.estimator_ assert_true(old_model is new_model) X_transform = transformer.transform(data) transformer.fit(np.vstack((data, data)), np.concatenate((y, y))) assert_array_equal(X_transform, transformer.transform(data)) # check that if est doesn't have partial_fit, neither does SelectFromModel transformer = SelectFromModel(estimator=RandomForestClassifier()) assert_false(hasattr(transformer, "partial_fit")) def test_calling_fit_reinitializes(): est = LinearSVC(random_state=0) transformer = SelectFromModel(estimator=est) transformer.fit(data, y) transformer.set_params(estimator__C=100) transformer.fit(data, y) assert_equal(transformer.estimator_.C, 100) def test_prefit(): """ Test all possible combinations of the prefit parameter. """ # Passing a prefit parameter with the selected model # and fitting a unfit model with prefit=False should give same results. clf = SGDClassifier(alpha=0.1, n_iter=10, shuffle=True, random_state=0) model = SelectFromModel(clf) model.fit(data, y) X_transform = model.transform(data) clf.fit(data, y) model = SelectFromModel(clf, prefit=True) assert_array_equal(model.transform(data), X_transform) # Check that the model is rewritten if prefit=False and a fitted model is # passed model = SelectFromModel(clf, prefit=False) model.fit(data, y) assert_array_equal(model.transform(data), X_transform) # Check that prefit=True and calling fit raises a ValueError model = SelectFromModel(clf, prefit=True) assert_raises(ValueError, model.fit, data, y) def test_threshold_string(): est = RandomForestClassifier(n_estimators=50, random_state=0) model = SelectFromModel(est, threshold="0.5*mean") model.fit(data, y) X_transform = model.transform(data) # Calculate the threshold from the estimator directly. est.fit(data, y) threshold = 0.5 * np.mean(est.feature_importances_) mask = est.feature_importances_ > threshold assert_array_equal(X_transform, data[:, mask]) def test_threshold_without_refitting(): """Test that the threshold can be set without refitting the model.""" clf = SGDClassifier(alpha=0.1, n_iter=10, shuffle=True, random_state=0) model = SelectFromModel(clf, threshold="0.1 * mean") model.fit(data, y) X_transform = model.transform(data) # Set a higher threshold to filter out more features. model.threshold = "1.0 * mean" assert_greater(X_transform.shape[1], model.transform(data).shape[1])
bsd-3-clause
hamedhsn/incubator-airflow
scripts/perf/scheduler_ops_metrics.py
30
6536
# -*- coding: utf-8 -*- # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from datetime import datetime import logging import pandas as pd import sys from airflow import configuration, settings from airflow.jobs import SchedulerJob from airflow.models import DagBag, DagModel, DagRun, TaskInstance from airflow.utils.state import State SUBDIR = 'scripts/perf/dags' DAG_IDS = ['perf_dag_1', 'perf_dag_2'] MAX_RUNTIME_SECS = 6 class SchedulerMetricsJob(SchedulerJob): """ This class extends SchedulerJob to instrument the execution performance of task instances contained in each DAG. We want to know if any DAG is starved of resources, and this will be reflected in the stats printed out at the end of the test run. The following metrics will be instrumented for each task instance (dag_id, task_id, execution_date) tuple: 1. Queuing delay - time taken from starting the executor to the task instance to be added to the executor queue. 2. Start delay - time taken from starting the executor to the task instance to start execution. 3. Land time - time taken from starting the executor to task instance completion. 4. Duration - time taken for executing the task instance. The DAGs implement bash operators that call the system wait command. This is representative of typical operators run on Airflow - queries that are run on remote systems and spend the majority of their time on I/O wait. To Run: $ python scripts/perf/scheduler_ops_metrics.py """ __mapper_args__ = { 'polymorphic_identity': 'SchedulerMetricsJob' } def print_stats(self): """ Print operational metrics for the scheduler test. """ session = settings.Session() TI = TaskInstance tis = ( session .query(TI) .filter(TI.dag_id.in_(DAG_IDS)) .all() ) successful_tis = filter(lambda x: x.state == State.SUCCESS, tis) ti_perf = [(ti.dag_id, ti.task_id, ti.execution_date, (ti.queued_dttm - self.start_date).total_seconds(), (ti.start_date - self.start_date).total_seconds(), (ti.end_date - self.start_date).total_seconds(), ti.duration) for ti in successful_tis] ti_perf_df = pd.DataFrame(ti_perf, columns=['dag_id', 'task_id', 'execution_date', 'queue_delay', 'start_delay', 'land_time', 'duration']) print('Performance Results') print('###################') for dag_id in DAG_IDS: print('DAG {}'.format(dag_id)) print(ti_perf_df[ti_perf_df['dag_id'] == dag_id]) print('###################') if len(tis) > len(successful_tis): print("WARNING!! The following task instances haven't completed") print(pd.DataFrame([(ti.dag_id, ti.task_id, ti.execution_date, ti.state) for ti in filter(lambda x: x.state != State.SUCCESS, tis)], columns=['dag_id', 'task_id', 'execution_date', 'state'])) session.commit() def heartbeat(self): """ Override the scheduler heartbeat to determine when the test is complete """ super(SchedulerMetricsJob, self).heartbeat() session = settings.Session() # Get all the relevant task instances TI = TaskInstance successful_tis = ( session .query(TI) .filter(TI.dag_id.in_(DAG_IDS)) .filter(TI.state.in_([State.SUCCESS])) .all() ) session.commit() dagbag = DagBag(SUBDIR) dags = [dagbag.dags[dag_id] for dag_id in DAG_IDS] # the tasks in perf_dag_1 and per_dag_2 have a daily schedule interval. num_task_instances = sum([(datetime.today() - task.start_date).days for dag in dags for task in dag.tasks]) if (len(successful_tis) == num_task_instances or (datetime.now()-self.start_date).total_seconds() > MAX_RUNTIME_SECS): if (len(successful_tis) == num_task_instances): self.logger.info("All tasks processed! Printing stats.") else: self.logger.info("Test timeout reached. " "Printing available stats.") self.print_stats() set_dags_paused_state(True) sys.exit() def clear_dag_runs(): """ Remove any existing DAG runs for the perf test DAGs. """ session = settings.Session() drs = session.query(DagRun).filter( DagRun.dag_id.in_(DAG_IDS), ).all() for dr in drs: logging.info('Deleting DagRun :: {}'.format(dr)) session.delete(dr) def clear_dag_task_instances(): """ Remove any existing task instances for the perf test DAGs. """ session = settings.Session() TI = TaskInstance tis = ( session .query(TI) .filter(TI.dag_id.in_(DAG_IDS)) .all() ) for ti in tis: logging.info('Deleting TaskInstance :: {}'.format(ti)) session.delete(ti) session.commit() def set_dags_paused_state(is_paused): """ Toggle the pause state of the DAGs in the test. """ session = settings.Session() dms = session.query(DagModel).filter( DagModel.dag_id.in_(DAG_IDS)) for dm in dms: logging.info('Setting DAG :: {} is_paused={}'.format(dm, is_paused)) dm.is_paused = is_paused session.commit() def main(): configuration.load_test_config() set_dags_paused_state(False) clear_dag_runs() clear_dag_task_instances() job = SchedulerMetricsJob(dag_ids=DAG_IDS, subdir=SUBDIR) job.run() if __name__ == "__main__": main()
apache-2.0
NMTHydro/Recharge
utils/tornadoPlot_SA.py
1
4933
# =============================================================================== # Copyright 2016 dgketchum # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance # with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # =============================================================================== # =================================IMPORTS======================================= import os import matplotlib.pyplot as plt from matplotlib import rc from numpy import array, set_printoptions from pandas import read_pickle, set_option, options def round_to_value(number, roundto): return round(number / roundto) * roundto rc('mathtext', default='regular') set_option('display.max_rows', None) set_option('display.max_columns', None) set_option('display.width', None) set_option('display.precision', 3) options.display.float_format = '${:,.2f}'.format set_printoptions(threshold=3000, edgeitems=5000, precision=3) set_option('display.height', None) set_option('display.max_rows', None) FACTORS = ['Temperature', 'Precipitation', 'Reference ET', 'Total Available Water (TAW)', 'Vegetation Density (NDVI)', 'Soil Ksat'] def make_tornado_plot(dataframe, factors, show=False, fig_path=None): dfs = os.listdir(dataframe) print 'pickled dfs: {}'.format(dfs) filename = 'norm_sensitivity.pkl' if filename in dfs: df = read_pickle(os.path.join(dataframe, filename)) df.to_csv(os.path.join(fig_path, 'sample_norm_df.csv')) print df xx = 1 for index, row in df.iterrows(): print index, row base = row[0][5] lows = [] for fact in row: lows.append(min(fact)) lows = array(lows) values = [] for fact in row: values.append(max(fact)) # The y position for each variable ys = range(len(values))[::-1] # top to bottom # Plot the bars, one by one for y, low, value in zip(ys, lows, values): # The width of the 'low' and 'high' pieces low_width = base - low high_width = abs(value - base) # Each bar is a "broken" horizontal bar chart plt.broken_barh( [(low, low_width), (base, high_width)], (y - 0.4, 0.8), facecolors=['white', 'white'], # Try different colors if you like edgecolors=['black', 'black'], linewidth=1) plt.subplots_adjust(left=0.32) # Display the value as text. It should be positioned in the center of # the 'high' bar, except if there isn't any room there, then it should be # next to bar instead. x = base + high_width / 2 if x <= base: x = base + high_width # plt.text(x, y, str(round(value - low, 1)) + 'mm', va='center', ha='center') # Draw a vertical line down the middle plt.axvline(base, color='black') # Position the x-axis on the top, hide all the other spines (=axis lines) axes = plt.gca() # (gca = get current axes) axes.spines['left'].set_visible(False) axes.spines['right'].set_visible(False) axes.spines['bottom'].set_visible(False) axes.xaxis.set_ticks_position('top') # Make the y-axis display the factors plt.yticks(ys, factors) print 'location: {}'.format(index) plt.title('{} [mm]'.format(index.replace('_', ' ')), y=1.05) # Set the portion of the x- and y-axes to show plt.xlim(min(-20, 1.2 * min(lows)), base + 1.1 * max(values)) plt.ylim(-1, len(factors)) # plt.show() if show: plt.show() # if fig_path: # plt.savefig('{}_tornado'.format(index), fig_path, ext='jpg', dpi=500, close=True, verbose=True) plt.close() if __name__ == '__main__': root = os.path.join('F:\\', 'ETRM_Inputs') sensitivity = os.path.join(root, 'sensitivity_analysis') pickles = os.path.join(sensitivity, 'pickled') figure_save_path = os.path.join(sensitivity, 'figures') make_tornado_plot(pickles, FACTORS, fig_path=figure_save_path, show=True) # ========================== EOF ==============================================
apache-2.0
pratapvardhan/pandas
pandas/tests/indexes/multi/test_copy.py
2
4111
# -*- coding: utf-8 -*- from copy import copy, deepcopy import pandas.util.testing as tm from pandas import (CategoricalIndex, IntervalIndex, MultiIndex, PeriodIndex, RangeIndex, Series, compat) def assert_multiindex_copied(copy, original): # Levels should be (at least, shallow copied) tm.assert_copy(copy.levels, original.levels) tm.assert_almost_equal(copy.labels, original.labels) # Labels doesn't matter which way copied tm.assert_almost_equal(copy.labels, original.labels) assert copy.labels is not original.labels # Names doesn't matter which way copied assert copy.names == original.names assert copy.names is not original.names # Sort order should be copied assert copy.sortorder == original.sortorder def test_copy(idx): i_copy = idx.copy() assert_multiindex_copied(i_copy, idx) def test_shallow_copy(idx): i_copy = idx._shallow_copy() assert_multiindex_copied(i_copy, idx) def test_view(idx): i_view = idx.view() assert_multiindex_copied(i_view, idx) def test_copy_name(idx): # gh-12309: Check that the "name" argument # passed at initialization is honored. # TODO: Remove or refactor MultiIndex not tested. for name, index in compat.iteritems({'idx': idx}): if isinstance(index, MultiIndex): continue first = index.__class__(index, copy=True, name='mario') second = first.__class__(first, copy=False) # Even though "copy=False", we want a new object. assert first is not second # Not using tm.assert_index_equal() since names differ. assert index.equals(first) assert first.name == 'mario' assert second.name == 'mario' s1 = Series(2, index=first) s2 = Series(3, index=second[:-1]) if not isinstance(index, CategoricalIndex): # See gh-13365 s3 = s1 * s2 assert s3.index.name == 'mario' def test_ensure_copied_data(idx): # Check the "copy" argument of each Index.__new__ is honoured # GH12309 # TODO: REMOVE THIS TEST. MultiIndex is tested seperately as noted below. for name, index in compat.iteritems({'idx': idx}): init_kwargs = {} if isinstance(index, PeriodIndex): # Needs "freq" specification: init_kwargs['freq'] = index.freq elif isinstance(index, (RangeIndex, MultiIndex, CategoricalIndex)): # RangeIndex cannot be initialized from data # MultiIndex and CategoricalIndex are tested separately continue index_type = index.__class__ result = index_type(index.values, copy=True, **init_kwargs) tm.assert_index_equal(index, result) tm.assert_numpy_array_equal(index.values, result.values, check_same='copy') if isinstance(index, PeriodIndex): # .values an object array of Period, thus copied result = index_type(ordinal=index.asi8, copy=False, **init_kwargs) tm.assert_numpy_array_equal(index._ndarray_values, result._ndarray_values, check_same='same') elif isinstance(index, IntervalIndex): # checked in test_interval.py pass else: result = index_type(index.values, copy=False, **init_kwargs) tm.assert_numpy_array_equal(index.values, result.values, check_same='same') tm.assert_numpy_array_equal(index._ndarray_values, result._ndarray_values, check_same='same') def test_copy_and_deepcopy(indices): if isinstance(indices, MultiIndex): return for func in (copy, deepcopy): idx_copy = func(indices) assert idx_copy is not indices assert idx_copy.equals(indices) new_copy = indices.copy(deep=True, name="banana") assert new_copy.name == "banana"
bsd-3-clause
DSLituiev/scikit-learn
sklearn/covariance/tests/test_graph_lasso.py
272
5245
""" Test the graph_lasso module. """ import sys import numpy as np from scipy import linalg from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_less from sklearn.covariance import (graph_lasso, GraphLasso, GraphLassoCV, empirical_covariance) from sklearn.datasets.samples_generator import make_sparse_spd_matrix from sklearn.externals.six.moves import StringIO from sklearn.utils import check_random_state from sklearn import datasets def test_graph_lasso(random_state=0): # Sample data from a sparse multivariate normal dim = 20 n_samples = 100 random_state = check_random_state(random_state) prec = make_sparse_spd_matrix(dim, alpha=.95, random_state=random_state) cov = linalg.inv(prec) X = random_state.multivariate_normal(np.zeros(dim), cov, size=n_samples) emp_cov = empirical_covariance(X) for alpha in (0., .1, .25): covs = dict() icovs = dict() for method in ('cd', 'lars'): cov_, icov_, costs = graph_lasso(emp_cov, alpha=alpha, mode=method, return_costs=True) covs[method] = cov_ icovs[method] = icov_ costs, dual_gap = np.array(costs).T # Check that the costs always decrease (doesn't hold if alpha == 0) if not alpha == 0: assert_array_less(np.diff(costs), 0) # Check that the 2 approaches give similar results assert_array_almost_equal(covs['cd'], covs['lars'], decimal=4) assert_array_almost_equal(icovs['cd'], icovs['lars'], decimal=4) # Smoke test the estimator model = GraphLasso(alpha=.25).fit(X) model.score(X) assert_array_almost_equal(model.covariance_, covs['cd'], decimal=4) assert_array_almost_equal(model.covariance_, covs['lars'], decimal=4) # For a centered matrix, assume_centered could be chosen True or False # Check that this returns indeed the same result for centered data Z = X - X.mean(0) precs = list() for assume_centered in (False, True): prec_ = GraphLasso(assume_centered=assume_centered).fit(Z).precision_ precs.append(prec_) assert_array_almost_equal(precs[0], precs[1]) def test_graph_lasso_iris(): # Hard-coded solution from R glasso package for alpha=1.0 # The iris datasets in R and sklearn do not match in a few places, these # values are for the sklearn version cov_R = np.array([ [0.68112222, 0.0, 0.2651911, 0.02467558], [0.00, 0.1867507, 0.0, 0.00], [0.26519111, 0.0, 3.0924249, 0.28774489], [0.02467558, 0.0, 0.2877449, 0.57853156] ]) icov_R = np.array([ [1.5188780, 0.0, -0.1302515, 0.0], [0.0, 5.354733, 0.0, 0.0], [-0.1302515, 0.0, 0.3502322, -0.1686399], [0.0, 0.0, -0.1686399, 1.8123908] ]) X = datasets.load_iris().data emp_cov = empirical_covariance(X) for method in ('cd', 'lars'): cov, icov = graph_lasso(emp_cov, alpha=1.0, return_costs=False, mode=method) assert_array_almost_equal(cov, cov_R) assert_array_almost_equal(icov, icov_R) def test_graph_lasso_iris_singular(): # Small subset of rows to test the rank-deficient case # Need to choose samples such that none of the variances are zero indices = np.arange(10, 13) # Hard-coded solution from R glasso package for alpha=0.01 cov_R = np.array([ [0.08, 0.056666662595, 0.00229729713223, 0.00153153142149], [0.056666662595, 0.082222222222, 0.00333333333333, 0.00222222222222], [0.002297297132, 0.003333333333, 0.00666666666667, 0.00009009009009], [0.001531531421, 0.002222222222, 0.00009009009009, 0.00222222222222] ]) icov_R = np.array([ [24.42244057, -16.831679593, 0.0, 0.0], [-16.83168201, 24.351841681, -6.206896552, -12.5], [0.0, -6.206896171, 153.103448276, 0.0], [0.0, -12.499999143, 0.0, 462.5] ]) X = datasets.load_iris().data[indices, :] emp_cov = empirical_covariance(X) for method in ('cd', 'lars'): cov, icov = graph_lasso(emp_cov, alpha=0.01, return_costs=False, mode=method) assert_array_almost_equal(cov, cov_R, decimal=5) assert_array_almost_equal(icov, icov_R, decimal=5) def test_graph_lasso_cv(random_state=1): # Sample data from a sparse multivariate normal dim = 5 n_samples = 6 random_state = check_random_state(random_state) prec = make_sparse_spd_matrix(dim, alpha=.96, random_state=random_state) cov = linalg.inv(prec) X = random_state.multivariate_normal(np.zeros(dim), cov, size=n_samples) # Capture stdout, to smoke test the verbose mode orig_stdout = sys.stdout try: sys.stdout = StringIO() # We need verbose very high so that Parallel prints on stdout GraphLassoCV(verbose=100, alphas=5, tol=1e-1).fit(X) finally: sys.stdout = orig_stdout # Smoke test with specified alphas GraphLassoCV(alphas=[0.8, 0.5], tol=1e-1, n_jobs=1).fit(X)
bsd-3-clause
wilsonkichoi/zipline
zipline/data/loader.py
2
17292
# # Copyright 2016 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from collections import OrderedDict import logbook import pandas as pd from pandas_datareader.data import DataReader import pytz from six import iteritems from six.moves.urllib_error import HTTPError from .benchmarks import get_benchmark_returns from . import treasuries, treasuries_can from ..utils.paths import ( cache_root, data_root, ) from ..utils.deprecate import deprecated from ..utils.tradingcalendar import ( trading_day as trading_day_nyse, trading_days as trading_days_nyse, ) logger = logbook.Logger('Loader') # Mapping from index symbol to appropriate bond data INDEX_MAPPING = { '^GSPC': (treasuries, 'treasury_curves.csv', 'www.federalreserve.gov'), '^GSPTSE': (treasuries_can, 'treasury_curves_can.csv', 'bankofcanada.ca'), '^FTSE': # use US treasuries until UK bonds implemented (treasuries, 'treasury_curves.csv', 'www.federalreserve.gov'), } ONE_HOUR = pd.Timedelta(hours=1) def last_modified_time(path): """ Get the last modified time of path as a Timestamp. """ return pd.Timestamp(os.path.getmtime(path), unit='s', tz='UTC') def get_data_filepath(name): """ Returns a handle to data file. Creates containing directory, if needed. """ dr = data_root() if not os.path.exists(dr): os.makedirs(dr) return os.path.join(dr, name) def get_cache_filepath(name): cr = cache_root() if not os.path.exists(cr): os.makedirs(cr) return os.path.join(cr, name) def get_benchmark_filename(symbol): return "%s_benchmark.csv" % symbol def has_data_for_dates(series_or_df, first_date, last_date): """ Does `series_or_df` have data on or before first_date and on or after last_date? """ dts = series_or_df.index if not isinstance(dts, pd.DatetimeIndex): raise TypeError("Expected a DatetimeIndex, but got %s." % type(dts)) first, last = dts[[0, -1]] return (first <= first_date) and (last >= last_date) def load_market_data(trading_day=trading_day_nyse, trading_days=trading_days_nyse, bm_symbol='^GSPC'): """ Load benchmark returns and treasury yield curves for the given calendar and benchmark symbol. Benchmarks are downloaded as a Series from Yahoo Finance. Treasury curves are US Treasury Bond rates and are downloaded from 'www.federalreserve.gov' by default. For Canadian exchanges, a loader for Canadian bonds from the Bank of Canada is also available. Results downloaded from the internet are cached in ~/.zipline/data. Subsequent loads will attempt to read from the cached files before falling back to redownload. Parameters ---------- trading_day : pandas.CustomBusinessDay, optional A trading_day used to determine the latest day for which we expect to have data. Defaults to an NYSE trading day. trading_days : pd.DatetimeIndex, optional A calendar of trading days. Also used for determining what cached dates we should expect to have cached. Defaults to the NYSE calendar. bm_symbol : str, optional Symbol for the benchmark index to load. Defaults to '^GSPC', the Yahoo ticker for the S&P 500. Returns ------- (benchmark_returns, treasury_curves) : (pd.Series, pd.DataFrame) Notes ----- Both return values are DatetimeIndexed with values dated to midnight in UTC of each stored date. The columns of `treasury_curves` are: '1month', '3month', '6month', '1year','2year','3year','5year','7year','10year','20year','30year' """ first_date = trading_days[0] now = pd.Timestamp.utcnow() # We expect to have benchmark and treasury data that's current up until # **two** full trading days prior to the most recently completed trading # day. # Example: # On Thu Oct 22 2015, the previous completed trading day is Wed Oct 21. # However, data for Oct 21 doesn't become available until the early morning # hours of Oct 22. This means that there are times on the 22nd at which we # cannot reasonably expect to have data for the 21st available. To be # conservative, we instead expect that at any time on the 22nd, we can # download data for Tuesday the 20th, which is two full trading days prior # to the date on which we're running a test. # We'll attempt to download new data if the latest entry in our cache is # before this date. last_date = trading_days[trading_days.get_loc(now, method='ffill') - 2] br = ensure_benchmark_data( bm_symbol, first_date, last_date, now, # We need the trading_day to figure out the close prior to the first # date so that we can compute returns for the first date. trading_day, ) tc = ensure_treasury_data( bm_symbol, first_date, last_date, now, ) benchmark_returns = br[br.index.slice_indexer(first_date, last_date)] treasury_curves = tc[tc.index.slice_indexer(first_date, last_date)] return benchmark_returns, treasury_curves def ensure_benchmark_data(symbol, first_date, last_date, now, trading_day): """ Ensure we have benchmark data for `symbol` from `first_date` to `last_date` Parameters ---------- symbol : str The symbol for the benchmark to load. first_date : pd.Timestamp First required date for the cache. last_date : pd.Timestamp Last required date for the cache. now : pd.Timestamp The current time. This is used to prevent repeated attempts to re-download data that isn't available due to scheduling quirks or other failures. trading_day : pd.CustomBusinessDay A trading day delta. Used to find the day before first_date so we can get the close of the day prior to first_date. We attempt to download data unless we already have data stored at the data cache for `symbol` whose first entry is before or on `first_date` and whose last entry is on or after `last_date`. If we perform a download and the cache criteria are not satisfied, we wait at least one hour before attempting a redownload. This is determined by comparing the current time to the result of os.path.getmtime on the cache path. """ path = get_data_filepath(get_benchmark_filename(symbol)) # If the path does not exist, it means the first download has not happened # yet, so don't try to read from 'path'. if os.path.exists(path): try: data = pd.Series.from_csv(path).tz_localize('UTC') if has_data_for_dates(data, first_date, last_date): return data # Don't re-download if we've successfully downloaded and written a # file in the last hour. last_download_time = last_modified_time(path) if (now - last_download_time) <= ONE_HOUR: logger.warn( "Refusing to download new benchmark data because a " "download succeeded at %s." % last_download_time ) return data except (OSError, IOError, ValueError) as e: # These can all be raised by various versions of pandas on various # classes of malformed input. Treat them all as cache misses. logger.info( "Loading data for {path} failed with error [{error}].".format( path=path, error=e, ) ) logger.info( "Cache at {path} does not have data from {start} to {end}.\n" "Downloading benchmark data for '{symbol}'.", start=first_date, end=last_date, symbol=symbol, path=path, ) try: data = get_benchmark_returns( symbol, first_date - trading_day, last_date, ) data.to_csv(path) except (OSError, IOError, HTTPError): logger.exception('failed to cache the new benchmark returns') if not has_data_for_dates(data, first_date, last_date): logger.warn("Still don't have expected data after redownload!") return data def ensure_treasury_data(bm_symbol, first_date, last_date, now): """ Ensure we have treasury data from treasury module associated with `bm_symbol`. Parameters ---------- bm_symbol : str Benchmark symbol for which we're loading associated treasury curves. first_date : pd.Timestamp First date required to be in the cache. last_date : pd.Timestamp Last date required to be in the cache. now : pd.Timestamp The current time. This is used to prevent repeated attempts to re-download data that isn't available due to scheduling quirks or other failures. We attempt to download data unless we already have data stored in the cache for `module_name` whose first entry is before or on `first_date` and whose last entry is on or after `last_date`. If we perform a download and the cache criteria are not satisfied, we wait at least one hour before attempting a redownload. This is determined by comparing the current time to the result of os.path.getmtime on the cache path. """ loader_module, filename, source = INDEX_MAPPING.get( bm_symbol, INDEX_MAPPING['^GSPC'] ) first_date = max(first_date, loader_module.earliest_possible_date()) path = get_data_filepath(filename) # If the path does not exist, it means the first download has not happened # yet, so don't try to read from 'path'. if os.path.exists(path): try: data = pd.DataFrame.from_csv(path).tz_localize('UTC') if has_data_for_dates(data, first_date, last_date): return data # Don't re-download if we've successfully downloaded and written a # file in the last hour. last_download_time = last_modified_time(path) if (now - last_download_time) <= ONE_HOUR: logger.warn( "Refusing to download new treasury data because a " "download succeeded at %s." % last_download_time ) return data except (OSError, IOError, ValueError) as e: # These can all be raised by various versions of pandas on various # classes of malformed input. Treat them all as cache misses. logger.info( "Loading data for {path} failed with error [{error}].".format( path=path, error=e, ) ) try: data = loader_module.get_treasury_data(first_date, last_date) data.to_csv(path) except (OSError, IOError, HTTPError): logger.exception('failed to cache treasury data') if not has_data_for_dates(data, first_date, last_date): logger.warn("Still don't have expected data after redownload!") return data def _load_raw_yahoo_data(indexes=None, stocks=None, start=None, end=None): """Load closing prices from yahoo finance. :Optional: indexes : dict (Default: {'SPX': '^GSPC'}) Financial indexes to load. stocks : list (Default: ['AAPL', 'GE', 'IBM', 'MSFT', 'XOM', 'AA', 'JNJ', 'PEP', 'KO']) Stock closing prices to load. start : datetime (Default: datetime(1993, 1, 1, 0, 0, 0, 0, pytz.utc)) Retrieve prices from start date on. end : datetime (Default: datetime(2002, 1, 1, 0, 0, 0, 0, pytz.utc)) Retrieve prices until end date. :Note: This is based on code presented in a talk by Wes McKinney: http://wesmckinney.com/files/20111017/notebook_output.pdf """ assert indexes is not None or stocks is not None, """ must specify stocks or indexes""" if start is None: start = pd.datetime(1990, 1, 1, 0, 0, 0, 0, pytz.utc) if start is not None and end is not None: assert start < end, "start date is later than end date." data = OrderedDict() if stocks is not None: for stock in stocks: logger.info('Loading stock: {}'.format(stock)) stock_pathsafe = stock.replace(os.path.sep, '--') cache_filename = "{stock}-{start}-{end}.csv".format( stock=stock_pathsafe, start=start, end=end).replace(':', '-') cache_filepath = get_cache_filepath(cache_filename) if os.path.exists(cache_filepath): stkd = pd.DataFrame.from_csv(cache_filepath) else: stkd = DataReader(stock, 'yahoo', start, end).sort_index() stkd.to_csv(cache_filepath) data[stock] = stkd if indexes is not None: for name, ticker in iteritems(indexes): logger.info('Loading index: {} ({})'.format(name, ticker)) stkd = DataReader(ticker, 'yahoo', start, end).sort_index() data[name] = stkd return data def load_from_yahoo(indexes=None, stocks=None, start=None, end=None, adjusted=True): """ Loads price data from Yahoo into a dataframe for each of the indicated assets. By default, 'price' is taken from Yahoo's 'Adjusted Close', which removes the impact of splits and dividends. If the argument 'adjusted' is False, then the non-adjusted 'close' field is used instead. :param indexes: Financial indexes to load. :type indexes: dict :param stocks: Stock closing prices to load. :type stocks: list :param start: Retrieve prices from start date on. :type start: datetime :param end: Retrieve prices until end date. :type end: datetime :param adjusted: Adjust the price for splits and dividends. :type adjusted: bool """ data = _load_raw_yahoo_data(indexes, stocks, start, end) if adjusted: close_key = 'Adj Close' else: close_key = 'Close' df = pd.DataFrame({key: d[close_key] for key, d in iteritems(data)}) df.index = df.index.tz_localize(pytz.utc) return df @deprecated( 'load_bars_from_yahoo is deprecated, please register a' ' yahoo_equities data bundle instead', ) def load_bars_from_yahoo(indexes=None, stocks=None, start=None, end=None, adjusted=True): """ Loads data from Yahoo into a panel with the following column names for each indicated security: - open - high - low - close - volume - price Note that 'price' is Yahoo's 'Adjusted Close', which removes the impact of splits and dividends. If the argument 'adjusted' is True, then the open, high, low, and close values are adjusted as well. :param indexes: Financial indexes to load. :type indexes: dict :param stocks: Stock closing prices to load. :type stocks: list :param start: Retrieve prices from start date on. :type start: datetime :param end: Retrieve prices until end date. :type end: datetime :param adjusted: Adjust open/high/low/close for splits and dividends. The 'price' field is always adjusted. :type adjusted: bool """ data = _load_raw_yahoo_data(indexes, stocks, start, end) panel = pd.Panel(data) # Rename columns panel.minor_axis = ['open', 'high', 'low', 'close', 'volume', 'price'] panel.major_axis = panel.major_axis.tz_localize(pytz.utc) # Adjust data if adjusted: adj_cols = ['open', 'high', 'low', 'close'] for ticker in panel.items: ratio = (panel[ticker]['price'] / panel[ticker]['close']) ratio_filtered = ratio.fillna(0).values for col in adj_cols: panel[ticker][col] *= ratio_filtered return panel def load_prices_from_csv(filepath, identifier_col, tz='UTC'): data = pd.read_csv(filepath, index_col=identifier_col) data.index = pd.DatetimeIndex(data.index, tz=tz) data.sort_index(inplace=True) return data def load_prices_from_csv_folder(folderpath, identifier_col, tz='UTC'): data = None for file in os.listdir(folderpath): if '.csv' not in file: continue raw = load_prices_from_csv(os.path.join(folderpath, file), identifier_col, tz) if data is None: data = raw else: data = pd.concat([data, raw], axis=1) return data
apache-2.0
peterwilletts24/Python-Scripts
plot_scripts/EMBRACE/plot_from_pp.py
1
5237
""" Load pp, plot and save """ import os, sys #import matplotlib #matplotlib.use('Agg') # Must be before importing matplotlib.pyplot or pylab! #from matplotlib import rc #from matplotlib.font_manager import FontProperties #from matplotlib import rcParams #rc('font', family = 'serif', serif = 'cmr10') #rc('text', usetex=True) #rcParams['text.usetex']=True #rcParams['text.latex.unicode']=True import matplotlib.pyplot as plt import matplotlib as mpl import matplotlib.cm as mpl_cm import numpy as np import iris import iris.coords as coords import iris.quickplot as qplt import iris.plot as iplt import iris.coord_categorisation import cartopy.crs as ccrs import cartopy.io.img_tiles as cimgt import matplotlib.ticker as mticker from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER import datetime from mpl_toolkits.basemap import cm import imp from textwrap import wrap import re import iris.analysis.cartography import math model_name_convert_title = imp.load_source('util', '/home/pwille/python_scripts/modules/model_name_convert_title.py') unrotate = imp.load_source('util', '/home/pwille/python_scripts/modules/unrotate_pole.py') pp_file = '3234_mean' degs_crop_top = 1.7 degs_crop_bottom = 2.5 min_contour = 0 max_contour = 180 tick_interval=20 # # cmap= cm.s3pcpn_l divisor=10 # for lat/lon rounding def main(): #experiment_ids = ['djzns', 'djznq', 'djzny', 'djznw', 'dkhgu', 'dkjxq', 'dklyu', 'dkmbq', 'dklwu', 'dklzq','dkbhu' ] experiment_ids = ['djzny' ] for experiment_id in experiment_ids: expmin1 = experiment_id[:-1] pfile = '/projects/cascade/pwille/moose_retrievals/%s/%s/%s.pp' % (expmin1, experiment_id, pp_file) #pc = iris(pfile) pcube = iris.load_cube(pfile) print pcube #print pc # Get min and max latitude/longitude and unrotate to get min/max corners to crop plot automatically - otherwise end with blank bits on the edges lats = pcube.coord('grid_latitude').points lons = pcube.coord('grid_longitude').points cs = pcube.coord_system('CoordSystem') if isinstance(cs, iris.coord_systems.RotatedGeogCS): print 'Rotated CS %s' % cs lon_low= np.min(lons) lon_high = np.max(lons) lat_low = np.min(lats) lat_high = np.max(lats) lon_corners, lat_corners = np.meshgrid((lon_low, lon_high), (lat_low, lat_high)) lon_corner_u,lat_corner_u = unrotate.unrotate_pole(lon_corners, lat_corners, cs.grid_north_pole_longitude, cs.grid_north_pole_latitude) lon_low = lon_corner_u[0,0] lon_high = lon_corner_u[0,1] lat_low = lat_corner_u[0,0] lat_high = lat_corner_u[1,0] else: lon_low= np.min(lons) lon_high = np.max(lons) lat_low = np.min(lats) lat_high = np.max(lats) lon_low_tick=lon_low -(lon_low%divisor) lon_high_tick=math.ceil(lon_high/divisor)*divisor lat_low_tick=lat_low - (lat_low%divisor) lat_high_tick=math.ceil(lat_high/divisor)*divisor print lat_high_tick print lat_low_tick plt.figure(figsize=(8,8)) cmap= cmap=plt.cm.RdBu_r ax = plt.axes(projection=ccrs.PlateCarree(), extent=(lon_low,lon_high,lat_low+degs_crop_bottom,lat_high-degs_crop_top)) clevs = np.linspace(min_contour, max_contour,256) cont = iplt.contourf(pcube, clevs, cmap=cmap, extend='both') #plt.clabel(cont, fmt='%d') #ax.stock_img() ax.coastlines(resolution='110m', color='#262626') gl = ax.gridlines(draw_labels=True,linewidth=0.5, color='#262626', alpha=0.5, linestyle='--') gl.xlabels_top = False gl.ylabels_right = True #gl.xlines = False dx, dy = 10, 10 gl.xlocator = mticker.FixedLocator(range(int(lon_low_tick),int(lon_high_tick)+dx,dx)) gl.ylocator = mticker.FixedLocator(range(int(lat_low_tick),int(lat_high_tick)+dy,dy)) gl.xformatter = LONGITUDE_FORMATTER gl.yformatter = LATITUDE_FORMATTER gl.xlabel_style = {'size': 12, 'color':'#262626'} #gl.xlabel_style = {'color': '#262626', 'weight': 'bold'} gl.ylabel_style = {'size': 12, 'color':'#262626'} cbar = plt.colorbar(cont, orientation='horizontal', pad=0.05, extend='both', format = '%d') #cbar.set_label('') cbar.set_label(pcube.units) cbar.set_ticks(np.arange(min_contour, max_contour+tick_interval,tick_interval)) ticks = (np.arange(min_contour, max_contour+tick_interval,tick_interval)) cbar.set_ticklabels(['%d' % i for i in ticks]) main_title=pcube.standard_name.title().replace('_',' ') model_info=re.sub('(.{75})', '\\1\n', str(model_name_convert_title.main(experiment_id)), 0, re.DOTALL) model_info = re.sub(r'[(\']', ' ', model_info) model_info = re.sub(r'[\',)]', ' ', model_info) print model_info plt.title('\n'.join(wrap('%s\n%s' % (main_title, model_info), 1000,replace_whitespace=False)), fontsize=12) plt.show() if not os.path.exists('/home/pwille/figures/%s/%s' % (experiment_id, plot_diag)): os.makedirs('/home/pwille/figures/%s/%s' % (experiment_id, plot_diag)) #plt.savefig('/home/pwille/figures/%s/%s/%s%s_%s.png' % (experiment_id, plot_diag, pcube.standard_name.title(), experiment_id, plot_diag), format='png', bbox_inches='tight') #plt.close() if __name__ == '__main__': main()
mit
BookChan/content
labs/lab2/cs109style.py
38
1293
from __future__ import print_function from IPython.core.display import HTML from matplotlib import rcParams #colorbrewer2 Dark2 qualitative color table dark2_colors = [(0.10588235294117647, 0.6196078431372549, 0.4666666666666667), (0.8509803921568627, 0.37254901960784315, 0.00784313725490196), (0.4588235294117647, 0.4392156862745098, 0.7019607843137254), (0.9058823529411765, 0.1607843137254902, 0.5411764705882353), (0.4, 0.6509803921568628, 0.11764705882352941), (0.9019607843137255, 0.6705882352941176, 0.00784313725490196), (0.6509803921568628, 0.4627450980392157, 0.11372549019607843), (0.4, 0.4, 0.4)] def customize_mpl(): """Tweak matplotlib visual style""" print("Setting custom matplotlib visual style") rcParams['figure.figsize'] = (10, 6) rcParams['figure.dpi'] = 150 rcParams['axes.color_cycle'] = dark2_colors rcParams['lines.linewidth'] = 2 rcParams['axes.grid'] = True rcParams['axes.facecolor'] = '#eeeeee' rcParams['font.size'] = 14 rcParams['patch.edgecolor'] = 'none' def customize_css(): print("Setting custom CSS for the IPython Notebook") styles = open('custom.css', 'r').read() return HTML(styles)
mit
jisantuc/MakinScoresEasy
scorer.py
1
4560
import ConfigParser import argparse import re import pandas as pd parser = argparse.ArgumentParser( description=('Create weighted institutional rankings from RePEC' ' based on custom combinations of economic fields') ) parser.add_argument('--codes', '-c', nargs='*', type=str, default=[], help='Fields to search') parser.add_argument('--weights', '-w', nargs='*', type=float, default=[], help=('Weights to assign to scores in ' 'each fields. Must match length ' 'of --codes and --codes must be ' 'specified')) parser.add_argument('--outf', '-o', default=None, help=('File to dump output. If ' 'None, writes to stdout')) parser.add_argument('--config', help=('Location of config file. Ignores other ' 'options if specified.')) def table_for_code(code, weight=1): """ Parameters ========== code: str three-letter lowercase NEP field code Returns ======= Top rankings from code listed as a pandas DataFrame """ base_url = 'https://ideas.repec.org/top/top.%s.html' scoresdf = pd.read_html(base_url % code.lower(), encoding='utf-8')[0] scoresdf.set_index('Institution', inplace=True) scoresdf['weight'] = weight scoresdf['weighted_score'] = scoresdf['weight'] * scoresdf['Score'] return scoresdf[ ['Score', 'Authors', 'Rank', 'weight', 'weighted_score'] ] def weighted_scores(codes, weights=None): """ Weights institutions' scores in fields identified by codes according to weights given in weights. If an institution isn't present in the table for one of the codes present in codes, it is given the worst score from that table. If codes and weights are not the same length and weights is not None, throws a ValueError. Parameters ========== codes: list of str three-letter lowercase NEP field codes weights: list of (positive) numerics Importance attached to ranking in each code Returns ======= Table of weighted scores for each institution as pandas DataFrame """ # should be: join + suffixes? merge + suffixes? how does mult-join # work again? # alt: make single code score return a dict of {code: df} and use # keys for suffixes dfs = {code: table_for_code(code, weight) for code, weight in zip(codes, weights)} indices = [] indices = list(reduce(lambda x, y: x | y, map(lambda x: set(x.index.tolist()), dfs.values()))) dfs = {code: dfs[code].reindex(indices).fillna(dfs[code]['Score'].max()) for code in dfs.keys()} for val in dfs.values(): print val.columns df = reduce(lambda x, y: x[['weighted_score']] + y[['weighted_score']], dfs.values()) return df / sum(weights) def read_config(config_file): parser = ConfigParser.ConfigParser() parser.read(config_file) section = 'ScoringSettings' return { 'codes': parser.get(section, 'codes').split(', '), 'weights': map(float, parser.get(section, 'weights').split(', ')), 'outf': parser.get(section, 'outf') } if __name__ == '__main__': args = parser.parse_args() if args.config: opts = read_config(args.config) codes = opts['codes'] weights = opts['weights'] outf = opts['outf'] else: codes = args.codes if len(args.codes) > 0 else ['inst.all'] weights = args.weights if len(args.weights) > 0 else [1] * len(codes) outf = args.outf if args.outf else 'stdout' if len(weights) != len(codes): raise ValueError( ('Number of weights passed (%d) must equal number of codes ' '(%d)') % (len(args.weights), len(args.codes)) ) scores = weighted_scores(codes, weights)\ .sort_values('weighted_score').round(3) if outf != 'stdout': scores.to_csv(outf, encoding='utf-8', header=True) else: with pd.option_context('max_rows', len(scores)): print scores if len(scores) > pd.get_option('max_row'): print ('***********************************\n' 'Result df is pretty long. Consider writing to file. Be ' 'prepared to do some scrolling.\n' '***********************************')
mit
cuemacro/finmarketpy
finmarketpy_examples/fx_forwards_indices_examples.py
1
8658
__author__ = 'saeedamen' # Saeed Amen # # Copyright 2016-2020 Cuemacro - https://www.cuemacro.com / @cuemacro # # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the # License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and limitations under the License. # """ Shows how to use finmarketpy to create total return indices for FX forwards with appropriate roll rules """ import pandas as pd # For plotting from chartpy import Chart, Style # For loading market data from findatapy.market import Market, MarketDataGenerator, MarketDataRequest from findatapy.timeseries import Calculations from findatapy.util.loggermanager import LoggerManager logger = LoggerManager().getLogger(__name__) chart = Chart(engine='plotly') market = Market(market_data_generator=MarketDataGenerator()) calculations = Calculations() # Choose run_example = 0 for everything # run_example = 1 - creating USDTRY total return index rolling forwards and compare with BBG indices # run_example = 2 - creating AUDJPY (via AUDUSD and JPYUSD) total return index rolling forwards & compare with BBG indices run_example = 0 from finmarketpy.curve.fxforwardscurve import FXForwardsCurve ###### Create total return indices plot for USDBRL using forwards # We shall be using USDBRL 1M forward contracts and rolling them 5 business days before month end if run_example == 1 or run_example == 0: cross = 'USDBRL' # Download more tenors fx_forwards_tenors = ['1W', '1M', '2M', '3M'] # Get USDBRL data for spot, forwards + depos md_request = MarketDataRequest(start_date='02 Jan 2007', finish_date='01 Jun 2007', data_source='bloomberg', cut='NYC', category='fx-forwards-market', tickers=cross, fx_forwards_tenor=fx_forwards_tenors, base_depos_currencies=[cross[0:3], cross[3:6]], cache_algo='cache_algo_return') # In case any missing values fill down (particularly can get this for NDFs) df_market = market.fetch_market(md_request=md_request).fillna(method='ffill') fx_forwards_curve = FXForwardsCurve() # Let's trade a 1M forward, and we roll 5 business days (based on both base + terms currency holidays) # before month end df_cuemacro_tot_1M = fx_forwards_curve.construct_total_return_index(cross, df_market, fx_forwards_trading_tenor='1M', roll_days_before=5, roll_event='month-end', roll_months=1, fx_forwards_tenor_for_interpolation=fx_forwards_tenors, output_calculation_fields=True) df_cuemacro_tot_1M.columns = [x.replace('forward-tot', 'forward-tot-1M-cuemacro') for x in df_cuemacro_tot_1M.columns] # Now do a 3M forward, and we roll 5 business days before end of quarter(based on both base + terms currency holidays) # before month end df_cuemacro_tot_3M = fx_forwards_curve.construct_total_return_index(cross, df_market, fx_forwards_trading_tenor='3M', roll_days_before=5, roll_event='month-end', roll_months=3, fx_forwards_tenor_for_interpolation=fx_forwards_tenors, output_calculation_fields=True) df_cuemacro_tot_3M.columns = [x.replace('forward-tot', 'forward-tot-3M-cuemacro') for x in df_cuemacro_tot_3M.columns] # Get spot data md_request.abstract_curve = None md_request.category = 'fx' df_spot = market.fetch_market(md_request=md_request) df_spot.columns = [x + '-spot' for x in df_spot.columns] # Get Bloomberg calculated total return indices (for spot) md_request.category = 'fx-tot' df_bbg_tot = market.fetch_market(md_request) df_bbg_tot.columns = [x + '-bbg' for x in df_bbg_tot.columns] # Get Bloomberg calculated total return indices (for 1M forwards rolled) md_request.category = 'fx-tot-forwards' df_bbg_tot_forwards = market.fetch_market(md_request) df_bbg_tot_forwards.columns = [x + '-bbg' for x in df_bbg_tot_forwards.columns] # Combine into a single data frame and plot, we note that the Cuemacro constructed indices track the Bloomberg # indices relatively well (both from spot and forwards). Also note the large difference with spot indices # CAREFUL to fill down, before reindexing because forwards indices are likely to have different publishing dates df = calculations.join([pd.DataFrame(df_cuemacro_tot_1M[cross + '-forward-tot-1M-cuemacro.close']), pd.DataFrame(df_cuemacro_tot_3M[cross + '-forward-tot-3M-cuemacro.close']), df_bbg_tot, df_spot, df_bbg_tot_forwards], how='outer').fillna(method='ffill') df = calculations.create_mult_index_from_prices(df) chart.plot(df) ###### Create total return indices plot for AUDJPY using the underlying USD legs (ie. AUDUSD & JPYUSD) if run_example == 2 or run_example == 0: cross = 'AUDJPY' # Download more tenors fx_forwards_tenors = ['1W', '1M', '2M', '3M'] # Parameters for how to construct total return indices, and the rolling rule # 1M forward contract, and roll it 5 working days before month end # We'll be constructing our total return index from AUDUSD and JPYUSD fx_forwards_curve = FXForwardsCurve(fx_forwards_trading_tenor='1M', roll_days_before=5, roll_event='month-end', construct_via_currency='USD', fx_forwards_tenor_for_interpolation=fx_forwards_tenors, roll_months=1, output_calculation_fields=True) # Get AUDJPY (AUDUSD and JPYUSD) data for spot, forwards + depos and also construct the total returns forward index md_request = MarketDataRequest(start_date='02 Jan 2007', finish_date='01 Jun 2007', data_source='bloomberg', cut='NYC', category='fx', tickers=cross, fx_forwards_tenor=fx_forwards_tenors, base_depos_currencies=[cross[0:3], cross[3:6]], cache_algo='cache_algo_return', abstract_curve=fx_forwards_curve) # In case any missing values fill down (particularly can get this for NDFs) df_cuemacro_tot_1M = market.fetch_market(md_request=md_request).fillna(method='ffill') fx_forwards_curve = FXForwardsCurve() df_cuemacro_tot_1M.columns = [x.replace('forward-tot', 'forward-tot-1M-cuemacro') for x in df_cuemacro_tot_1M.columns] # Get spot data md_request.abstract_curve = None md_request.category = 'fx' df_spot = market.fetch_market(md_request=md_request) df_spot.columns = [x + '-spot' for x in df_spot.columns] # Get Bloomberg calculated total return indices (for spot) md_request.category = 'fx-tot' df_bbg_tot = market.fetch_market(md_request) df_bbg_tot.columns = [x + '-bbg' for x in df_bbg_tot.columns] # Get Bloomberg calculated total return indices (for 1M forwards rolled) md_request.category = 'fx-tot-forwards' df_bbg_tot_forwards = market.fetch_market(md_request) df_bbg_tot_forwards.columns = [x + '-bbg' for x in df_bbg_tot_forwards.columns] # Combine into a single data frame and plot, we note that the Cuemacro constructed indices track the Bloomberg # indices relatively well (both from spot and forwards). Also note the large difference with spot indices # CAREFUL to fill down, before reindexing because forwards indices are likely to have different publishing dates df = calculations.join([pd.DataFrame(df_cuemacro_tot_1M[cross + '-forward-tot-1M-cuemacro.close']), df_bbg_tot, df_spot, df_bbg_tot_forwards], how='outer').fillna(method='ffill') df = calculations.create_mult_index_from_prices(df) chart.plot(df)
apache-2.0
binghongcha08/pyQMD
GWP/2D/1.0.1/resample/c.py
28
1767
##!/usr/bin/python import numpy as np import pylab as plt import seaborn as sns sns.set_context('poster') #with open("traj.dat") as f: # data = f.read() # # data = data.split('\n') # # x = [row.split(' ')[0] for row in data] # y = [row.split(' ')[1] for row in data] # # fig = plt.figure() # # ax1 = fig.add_subplot(111) # # ax1.set_title("Plot title...") # ax1.set_xlabel('your x label..') # ax1.set_ylabel('your y label...') # # ax1.plot(x,y, c='r', label='the data') # # leg = ax1.legend() #fig = plt.figure() f, (ax1, ax2) = plt.subplots(2, sharex=True) #f.subplots_adjust(hspace=0.1) #plt.subplot(211) ax1.set_ylim(0,4) data = np.genfromtxt(fname='q.dat') #data = np.loadtxt('traj.dat') for x in range(1,data.shape[1]): ax1.plot(data[:,0],data[:,x], linewidth=1) #plt.figure(1) #plt.plot(x,y1,'-') #plt.plot(x,y2,'g-') #plt.xlabel('time') ax1.set_ylabel('position [bohr]') #plt.title('traj') #plt.subplot(212) data = np.genfromtxt(fname='c.dat') #data = np.loadtxt('traj.dat') for x in range(1,16): ax2.plot(data[:,0],data[:,x], linewidth=1) ax2.set_xlabel('time [a.u.]') ax2.set_ylabel('$|c_i|$') #plt.ylim(-0.2,5) #plt.subplot(2,2,3) #data = np.genfromtxt(fname='norm') #plt.plot(data[:,0],data[:,1],'r-',linewidth=2) #plt.ylim(0,2) #plt.subplot(2,2,4) #data = np.genfromtxt(fname='wf.dat') #data1 = np.genfromtxt(fname='wf0.dat') #data0 = np.genfromtxt('../spo_1d/t500') #plt.plot(data[:,0],data[:,1],'r--',linewidth=2) #plt.plot(data0[:,0],data0[:,1],'k-',linewidth=2) #plt.plot(data1[:,0],data1[:,1],'k-.',linewidth=2) #plt.title('t=100') #plt.figure(1) #plt.plot(x,y1,'-') #plt.plot(x,y2,'g-') #plt.xlim(0.8,2.1) #plt.xlabel('x') #plt.ylabel('$\psi^*\psi$') plt.savefig('traj.pdf') plt.show()
gpl-3.0
aewhatley/scikit-learn
examples/text/hashing_vs_dict_vectorizer.py
284
3265
""" =========================================== FeatureHasher and DictVectorizer Comparison =========================================== Compares FeatureHasher and DictVectorizer by using both to vectorize text documents. The example demonstrates syntax and speed only; it doesn't actually do anything useful with the extracted vectors. See the example scripts {document_classification_20newsgroups,clustering}.py for actual learning on text documents. A discrepancy between the number of terms reported for DictVectorizer and for FeatureHasher is to be expected due to hash collisions. """ # Author: Lars Buitinck <[email protected]> # License: BSD 3 clause from __future__ import print_function from collections import defaultdict import re import sys from time import time import numpy as np from sklearn.datasets import fetch_20newsgroups from sklearn.feature_extraction import DictVectorizer, FeatureHasher def n_nonzero_columns(X): """Returns the number of non-zero columns in a CSR matrix X.""" return len(np.unique(X.nonzero()[1])) def tokens(doc): """Extract tokens from doc. This uses a simple regex to break strings into tokens. For a more principled approach, see CountVectorizer or TfidfVectorizer. """ return (tok.lower() for tok in re.findall(r"\w+", doc)) def token_freqs(doc): """Extract a dict mapping tokens from doc to their frequencies.""" freq = defaultdict(int) for tok in tokens(doc): freq[tok] += 1 return freq categories = [ 'alt.atheism', 'comp.graphics', 'comp.sys.ibm.pc.hardware', 'misc.forsale', 'rec.autos', 'sci.space', 'talk.religion.misc', ] # Uncomment the following line to use a larger set (11k+ documents) #categories = None print(__doc__) print("Usage: %s [n_features_for_hashing]" % sys.argv[0]) print(" The default number of features is 2**18.") print() try: n_features = int(sys.argv[1]) except IndexError: n_features = 2 ** 18 except ValueError: print("not a valid number of features: %r" % sys.argv[1]) sys.exit(1) print("Loading 20 newsgroups training data") raw_data = fetch_20newsgroups(subset='train', categories=categories).data data_size_mb = sum(len(s.encode('utf-8')) for s in raw_data) / 1e6 print("%d documents - %0.3fMB" % (len(raw_data), data_size_mb)) print() print("DictVectorizer") t0 = time() vectorizer = DictVectorizer() vectorizer.fit_transform(token_freqs(d) for d in raw_data) duration = time() - t0 print("done in %fs at %0.3fMB/s" % (duration, data_size_mb / duration)) print("Found %d unique terms" % len(vectorizer.get_feature_names())) print() print("FeatureHasher on frequency dicts") t0 = time() hasher = FeatureHasher(n_features=n_features) X = hasher.transform(token_freqs(d) for d in raw_data) duration = time() - t0 print("done in %fs at %0.3fMB/s" % (duration, data_size_mb / duration)) print("Found %d unique terms" % n_nonzero_columns(X)) print() print("FeatureHasher on raw tokens") t0 = time() hasher = FeatureHasher(n_features=n_features, input_type="string") X = hasher.transform(tokens(d) for d in raw_data) duration = time() - t0 print("done in %fs at %0.3fMB/s" % (duration, data_size_mb / duration)) print("Found %d unique terms" % n_nonzero_columns(X))
bsd-3-clause
olafhauk/mne-python
mne/source_estimate.py
2
127526
# Authors: Alexandre Gramfort <[email protected]> # Matti Hämäläinen <[email protected]> # Martin Luessi <[email protected]> # Mads Jensen <[email protected]> # # License: BSD (3-clause) import contextlib import copy import os.path as op from types import GeneratorType import numpy as np from scipy import linalg, sparse from scipy.sparse import coo_matrix, block_diag as sparse_block_diag from .baseline import rescale from .cov import Covariance from .evoked import _get_peak from .filter import resample from .io.constants import FIFF from .surface import (read_surface, _get_ico_surface, mesh_edges, _project_onto_surface) from .source_space import (_ensure_src, _get_morph_src_reordering, _ensure_src_subject, SourceSpaces, _get_src_nn, _import_nibabel, _get_mri_info_data, _get_atlas_values, _check_volume_labels, read_freesurfer_lut) from .transforms import _get_trans, apply_trans from .utils import (get_subjects_dir, _check_subject, logger, verbose, _pl, _time_mask, warn, copy_function_doc_to_method_doc, fill_doc, _check_option, _validate_type, _check_src_normal, _check_stc_units, _check_pandas_installed, _check_pandas_index_arguments, _convert_times, _ensure_int, _build_data_frame, _check_time_format, _check_path_like, sizeof_fmt, object_size) from .viz import (plot_source_estimates, plot_vector_source_estimates, plot_volume_source_estimates) from .io.base import TimeMixin from .io.meas_info import Info from .externals.h5io import read_hdf5, write_hdf5 def _read_stc(filename): """Aux Function.""" with open(filename, 'rb') as fid: buf = fid.read() stc = dict() offset = 0 num_bytes = 4 # read tmin in ms stc['tmin'] = float(np.frombuffer(buf, dtype=">f4", count=1, offset=offset)) stc['tmin'] /= 1000.0 offset += num_bytes # read sampling rate in ms stc['tstep'] = float(np.frombuffer(buf, dtype=">f4", count=1, offset=offset)) stc['tstep'] /= 1000.0 offset += num_bytes # read number of vertices/sources vertices_n = int(np.frombuffer(buf, dtype=">u4", count=1, offset=offset)) offset += num_bytes # read the source vector stc['vertices'] = np.frombuffer(buf, dtype=">u4", count=vertices_n, offset=offset) offset += num_bytes * vertices_n # read the number of timepts data_n = int(np.frombuffer(buf, dtype=">u4", count=1, offset=offset)) offset += num_bytes if (vertices_n and # vertices_n can be 0 (empty stc) ((len(buf) // 4 - 4 - vertices_n) % (data_n * vertices_n)) != 0): raise ValueError('incorrect stc file size') # read the data matrix stc['data'] = np.frombuffer(buf, dtype=">f4", count=vertices_n * data_n, offset=offset) stc['data'] = stc['data'].reshape([data_n, vertices_n]).T return stc def _write_stc(filename, tmin, tstep, vertices, data): """Write an STC file. Parameters ---------- filename : string The name of the STC file. tmin : float The first time point of the data in seconds. tstep : float Time between frames in seconds. vertices : array of integers Vertex indices (0 based). data : 2D array The data matrix (nvert * ntime). """ fid = open(filename, 'wb') # write start time in ms fid.write(np.array(1000 * tmin, dtype='>f4').tobytes()) # write sampling rate in ms fid.write(np.array(1000 * tstep, dtype='>f4').tobytes()) # write number of vertices fid.write(np.array(vertices.shape[0], dtype='>u4').tobytes()) # write the vertex indices fid.write(np.array(vertices, dtype='>u4').tobytes()) # write the number of timepts fid.write(np.array(data.shape[1], dtype='>u4').tobytes()) # # write the data # fid.write(np.array(data.T, dtype='>f4').tobytes()) # close the file fid.close() def _read_3(fid): """Read 3 byte integer from file.""" data = np.fromfile(fid, dtype=np.uint8, count=3).astype(np.int32) out = np.left_shift(data[0], 16) + np.left_shift(data[1], 8) + data[2] return out def _read_w(filename): """Read a w file. w files contain activations or source reconstructions for a single time point. Parameters ---------- filename : string The name of the w file. Returns ------- data: dict The w structure. It has the following keys: vertices vertex indices (0 based) data The data matrix (nvert long) """ with open(filename, 'rb', buffering=0) as fid: # buffering=0 for np bug # skip first 2 bytes fid.read(2) # read number of vertices/sources (3 byte integer) vertices_n = int(_read_3(fid)) vertices = np.zeros((vertices_n), dtype=np.int32) data = np.zeros((vertices_n), dtype=np.float32) # read the vertices and data for i in range(vertices_n): vertices[i] = _read_3(fid) data[i] = np.fromfile(fid, dtype='>f4', count=1)[0] w = dict() w['vertices'] = vertices w['data'] = data return w def _write_3(fid, val): """Write 3 byte integer to file.""" f_bytes = np.zeros((3), dtype=np.uint8) f_bytes[0] = (val >> 16) & 255 f_bytes[1] = (val >> 8) & 255 f_bytes[2] = val & 255 fid.write(f_bytes.tobytes()) def _write_w(filename, vertices, data): """Write a w file. w files contain activations or source reconstructions for a single time point. Parameters ---------- filename: string The name of the w file. vertices: array of int Vertex indices (0 based). data: 1D array The data array (nvert). """ assert (len(vertices) == len(data)) fid = open(filename, 'wb') # write 2 zero bytes fid.write(np.zeros((2), dtype=np.uint8).tobytes()) # write number of vertices/sources (3 byte integer) vertices_n = len(vertices) _write_3(fid, vertices_n) # write the vertices and data for i in range(vertices_n): _write_3(fid, vertices[i]) # XXX: without float() endianness is wrong, not sure why fid.write(np.array(float(data[i]), dtype='>f4').tobytes()) # close the file fid.close() def read_source_estimate(fname, subject=None): """Read a source estimate object. Parameters ---------- fname : str Path to (a) source-estimate file(s). subject : str | None Name of the subject the source estimate(s) is (are) from. It is good practice to set this attribute to avoid combining incompatible labels and SourceEstimates (e.g., ones from other subjects). Note that due to file specification limitations, the subject name isn't saved to or loaded from files written to disk. Returns ------- stc : SourceEstimate | VectorSourceEstimate | VolSourceEstimate | MixedSourceEstimate The source estimate object loaded from file. Notes ----- - for volume source estimates, ``fname`` should provide the path to a single file named '*-vl.stc` or '*-vol.stc' - for surface source estimates, ``fname`` should either provide the path to the file corresponding to a single hemisphere ('*-lh.stc', '*-rh.stc') or only specify the asterisk part in these patterns. In any case, the function expects files for both hemisphere with names following this pattern. - for vector surface source estimates, only HDF5 files are supported. - for mixed source estimates, only HDF5 files are supported. - for single time point .w files, ``fname`` should follow the same pattern as for surface estimates, except that files are named '*-lh.w' and '*-rh.w'. """ # noqa: E501 fname_arg = fname _validate_type(fname, 'path-like', 'fname') fname = str(fname) # make sure corresponding file(s) can be found ftype = None if op.exists(fname): if fname.endswith('-vl.stc') or fname.endswith('-vol.stc') or \ fname.endswith('-vl.w') or fname.endswith('-vol.w'): ftype = 'volume' elif fname.endswith('.stc'): ftype = 'surface' if fname.endswith(('-lh.stc', '-rh.stc')): fname = fname[:-7] else: err = ("Invalid .stc filename: %r; needs to end with " "hemisphere tag ('...-lh.stc' or '...-rh.stc')" % fname) raise IOError(err) elif fname.endswith('.w'): ftype = 'w' if fname.endswith(('-lh.w', '-rh.w')): fname = fname[:-5] else: err = ("Invalid .w filename: %r; needs to end with " "hemisphere tag ('...-lh.w' or '...-rh.w')" % fname) raise IOError(err) elif fname.endswith('.h5'): ftype = 'h5' fname = fname[:-3] else: raise RuntimeError('Unknown extension for file %s' % fname_arg) if ftype != 'volume': stc_exist = [op.exists(f) for f in [fname + '-rh.stc', fname + '-lh.stc']] w_exist = [op.exists(f) for f in [fname + '-rh.w', fname + '-lh.w']] if all(stc_exist) and ftype != 'w': ftype = 'surface' elif all(w_exist): ftype = 'w' elif op.exists(fname + '.h5'): ftype = 'h5' elif op.exists(fname + '-stc.h5'): ftype = 'h5' fname += '-stc' elif any(stc_exist) or any(w_exist): raise IOError("Hemisphere missing for %r" % fname_arg) else: raise IOError("SourceEstimate File(s) not found for: %r" % fname_arg) # read the files if ftype == 'volume': # volume source space if fname.endswith('.stc'): kwargs = _read_stc(fname) elif fname.endswith('.w'): kwargs = _read_w(fname) kwargs['data'] = kwargs['data'][:, np.newaxis] kwargs['tmin'] = 0.0 kwargs['tstep'] = 0.0 else: raise IOError('Volume source estimate must end with .stc or .w') kwargs['vertices'] = [kwargs['vertices']] elif ftype == 'surface': # stc file with surface source spaces lh = _read_stc(fname + '-lh.stc') rh = _read_stc(fname + '-rh.stc') assert lh['tmin'] == rh['tmin'] assert lh['tstep'] == rh['tstep'] kwargs = lh.copy() kwargs['data'] = np.r_[lh['data'], rh['data']] kwargs['vertices'] = [lh['vertices'], rh['vertices']] elif ftype == 'w': # w file with surface source spaces lh = _read_w(fname + '-lh.w') rh = _read_w(fname + '-rh.w') kwargs = lh.copy() kwargs['data'] = np.atleast_2d(np.r_[lh['data'], rh['data']]).T kwargs['vertices'] = [lh['vertices'], rh['vertices']] # w files only have a single time point kwargs['tmin'] = 0.0 kwargs['tstep'] = 1.0 ftype = 'surface' elif ftype == 'h5': kwargs = read_hdf5(fname + '.h5', title='mnepython') ftype = kwargs.pop('src_type', 'surface') if isinstance(kwargs['vertices'], np.ndarray): kwargs['vertices'] = [kwargs['vertices']] if ftype != 'volume': # Make sure the vertices are ordered vertices = kwargs['vertices'] if any(np.any(np.diff(v.astype(int)) <= 0) for v in vertices): sidx = [np.argsort(verts) for verts in vertices] vertices = [verts[idx] for verts, idx in zip(vertices, sidx)] data = kwargs['data'][np.r_[sidx[0], len(sidx[0]) + sidx[1]]] kwargs['vertices'] = vertices kwargs['data'] = data if 'subject' not in kwargs: kwargs['subject'] = subject if subject is not None and subject != kwargs['subject']: raise RuntimeError('provided subject name "%s" does not match ' 'subject name from the file "%s' % (subject, kwargs['subject'])) if ftype in ('volume', 'discrete'): klass = VolVectorSourceEstimate elif ftype == 'mixed': klass = MixedVectorSourceEstimate else: assert ftype == 'surface' klass = VectorSourceEstimate if kwargs['data'].ndim < 3: klass = klass._scalar_class return klass(**kwargs) def _get_src_type(src, vertices, warn_text=None): src_type = None if src is None: if warn_text is None: warn("src should not be None for a robust guess of stc type.") else: warn(warn_text) if isinstance(vertices, list) and len(vertices) == 2: src_type = 'surface' elif isinstance(vertices, np.ndarray) or isinstance(vertices, list) \ and len(vertices) == 1: src_type = 'volume' elif isinstance(vertices, list) and len(vertices) > 2: src_type = 'mixed' else: src_type = src.kind assert src_type in ('surface', 'volume', 'mixed', 'discrete') return src_type def _make_stc(data, vertices, src_type=None, tmin=None, tstep=None, subject=None, vector=False, source_nn=None, warn_text=None): """Generate a surface, vector-surface, volume or mixed source estimate.""" def guess_src_type(): return _get_src_type(src=None, vertices=vertices, warn_text=warn_text) src_type = guess_src_type() if src_type is None else src_type if vector and src_type == 'surface' and source_nn is None: raise RuntimeError('No source vectors supplied.') # infer Klass from src_type if src_type == 'surface': Klass = VectorSourceEstimate if vector else SourceEstimate elif src_type in ('volume', 'discrete'): Klass = VolVectorSourceEstimate if vector else VolSourceEstimate elif src_type == 'mixed': Klass = MixedVectorSourceEstimate if vector else MixedSourceEstimate else: raise ValueError('vertices has to be either a list with one or more ' 'arrays or an array') # Rotate back for vector source estimates if vector: n_vertices = sum(len(v) for v in vertices) assert data.shape[0] in (n_vertices, n_vertices * 3) if len(data) == n_vertices: assert src_type == 'surface' # should only be possible for this assert source_nn.shape == (n_vertices, 3) data = data[:, np.newaxis] * source_nn[:, :, np.newaxis] else: data = data.reshape((-1, 3, data.shape[-1])) assert source_nn.shape in ((n_vertices, 3, 3), (n_vertices * 3, 3)) # This will be an identity transform for volumes, but let's keep # the code simple and general and just do the matrix mult data = np.matmul( np.transpose(source_nn.reshape(n_vertices, 3, 3), axes=[0, 2, 1]), data) return Klass( data=data, vertices=vertices, tmin=tmin, tstep=tstep, subject=subject ) def _verify_source_estimate_compat(a, b): """Make sure two SourceEstimates are compatible for arith. operations.""" compat = False if type(a) != type(b): raise ValueError('Cannot combine %s and %s.' % (type(a), type(b))) if len(a.vertices) == len(b.vertices): if all(np.array_equal(av, vv) for av, vv in zip(a.vertices, b.vertices)): compat = True if not compat: raise ValueError('Cannot combine source estimates that do not have ' 'the same vertices. Consider using stc.expand().') if a.subject != b.subject: raise ValueError('source estimates do not have the same subject ' 'names, %r and %r' % (a.subject, b.subject)) class _BaseSourceEstimate(TimeMixin): _data_ndim = 2 @verbose def __init__(self, data, vertices, tmin, tstep, subject=None, verbose=None): # noqa: D102 assert hasattr(self, '_data_ndim'), self.__class__.__name__ assert hasattr(self, '_src_type'), self.__class__.__name__ assert hasattr(self, '_src_count'), self.__class__.__name__ kernel, sens_data = None, None if isinstance(data, tuple): if len(data) != 2: raise ValueError('If data is a tuple it has to be length 2') kernel, sens_data = data data = None if kernel.shape[1] != sens_data.shape[0]: raise ValueError('kernel (%s) and sens_data (%s) have invalid ' 'dimensions' % (kernel.shape, sens_data.shape)) if sens_data.ndim != 2: raise ValueError('The sensor data must have 2 dimensions, got ' '%s' % (sens_data.ndim,)) _validate_type(vertices, list, 'vertices') if self._src_count is not None: if len(vertices) != self._src_count: raise ValueError('vertices must be a list with %d entries, ' 'got %s' % (self._src_count, len(vertices))) vertices = [np.array(v, np.int64) for v in vertices] # makes copy if any(np.any(np.diff(v) <= 0) for v in vertices): raise ValueError('Vertices must be ordered in increasing order.') n_src = sum([len(v) for v in vertices]) # safeguard the user against doing something silly if data is not None: if data.ndim not in (self._data_ndim, self._data_ndim - 1): raise ValueError('Data (shape %s) must have %s dimensions for ' '%s' % (data.shape, self._data_ndim, self.__class__.__name__)) if data.shape[0] != n_src: raise ValueError( f'Number of vertices ({n_src}) and stc.data.shape[0] ' f'({data.shape[0]}) must match') if self._data_ndim == 3: if data.shape[1] != 3: raise ValueError( 'Data for VectorSourceEstimate must have ' 'shape[1] == 3, got shape %s' % (data.shape,)) if data.ndim == self._data_ndim - 1: # allow upbroadcasting data = data[..., np.newaxis] self._data = data self._tmin = tmin self._tstep = tstep self.vertices = vertices self.verbose = verbose self._kernel = kernel self._sens_data = sens_data self._kernel_removed = False self._times = None self._update_times() self.subject = _check_subject(None, subject, False) def __repr__(self): # noqa: D105 s = "%d vertices" % (sum(len(v) for v in self.vertices),) if self.subject is not None: s += ", subject : %s" % self.subject s += ", tmin : %s (ms)" % (1e3 * self.tmin) s += ", tmax : %s (ms)" % (1e3 * self.times[-1]) s += ", tstep : %s (ms)" % (1e3 * self.tstep) s += ", data shape : %s" % (self.shape,) sz = sum(object_size(x) for x in (self.vertices + [self.data])) s += f", ~{sizeof_fmt(sz)}" return "<%s | %s>" % (type(self).__name__, s) @fill_doc def get_peak(self, tmin=None, tmax=None, mode='abs', vert_as_index=False, time_as_index=False): """Get location and latency of peak amplitude. Parameters ---------- %(get_peak_parameters)s Returns ------- pos : int The vertex exhibiting the maximum response, either ID or index. latency : float The latency in seconds. """ stc = self.magnitude() if self._data_ndim == 3 else self if self._n_vertices == 0: raise RuntimeError('Cannot find peaks with no vertices') vert_idx, time_idx, _ = _get_peak( stc.data, self.times, tmin, tmax, mode) if not vert_as_index: vert_idx = np.concatenate(self.vertices)[vert_idx] if not time_as_index: time_idx = self.times[time_idx] return vert_idx, time_idx @verbose def extract_label_time_course(self, labels, src, mode='auto', allow_empty=False, verbose=None): """Extract label time courses for lists of labels. This function will extract one time course for each label. The way the time courses are extracted depends on the mode parameter. Parameters ---------- %(eltc_labels)s %(eltc_src)s %(eltc_mode)s %(eltc_allow_empty)s %(verbose_meth)s Returns ------- %(eltc_returns)s See Also -------- extract_label_time_course : Extract time courses for multiple STCs. Notes ----- %(eltc_mode_notes)s """ return extract_label_time_course( self, labels, src, mode=mode, return_generator=False, allow_empty=allow_empty, verbose=verbose) @verbose def apply_baseline(self, baseline=(None, 0), *, verbose=None): """Baseline correct source estimate data. Parameters ---------- %(baseline_stc)s Defaults to ``(None, 0)``, i.e. beginning of the the data until time point zero. %(verbose_meth)s Returns ------- stc : instance of SourceEstimate The baseline-corrected source estimate object. Notes ----- Baseline correction can be done multiple times. """ self.data = rescale(self.data, self.times, baseline, copy=False) return self @verbose def save(self, fname, ftype='h5', verbose=None): """Save the full source estimate to an HDF5 file. Parameters ---------- fname : str The file name to write the source estimate to, should end in '-stc.h5'. ftype : str File format to use. Currently, the only allowed values is "h5". %(verbose_meth)s """ _validate_type(fname, 'path-like', 'fname') fname = str(fname) if ftype != 'h5': raise ValueError('%s objects can only be written as HDF5 files.' % (self.__class__.__name__,)) if not fname.endswith('.h5'): fname += '-stc.h5' write_hdf5(fname, dict(vertices=self.vertices, data=self.data, tmin=self.tmin, tstep=self.tstep, subject=self.subject, src_type=self._src_type), title='mnepython', overwrite=True) @copy_function_doc_to_method_doc(plot_source_estimates) def plot(self, subject=None, surface='inflated', hemi='lh', colormap='auto', time_label='auto', smoothing_steps=10, transparent=True, alpha=1.0, time_viewer='auto', subjects_dir=None, figure=None, views='auto', colorbar=True, clim='auto', cortex="classic", size=800, background="black", foreground=None, initial_time=None, time_unit='s', backend='auto', spacing='oct6', title=None, show_traces='auto', src=None, volume_options=1., view_layout='vertical', add_data_kwargs=None, verbose=None): brain = plot_source_estimates( self, subject, surface=surface, hemi=hemi, colormap=colormap, time_label=time_label, smoothing_steps=smoothing_steps, transparent=transparent, alpha=alpha, time_viewer=time_viewer, subjects_dir=subjects_dir, figure=figure, views=views, colorbar=colorbar, clim=clim, cortex=cortex, size=size, background=background, foreground=foreground, initial_time=initial_time, time_unit=time_unit, backend=backend, spacing=spacing, title=title, show_traces=show_traces, src=src, volume_options=volume_options, view_layout=view_layout, add_data_kwargs=add_data_kwargs, verbose=verbose) return brain @property def sfreq(self): """Sample rate of the data.""" return 1. / self.tstep @property def _n_vertices(self): return sum(len(v) for v in self.vertices) def _remove_kernel_sens_data_(self): """Remove kernel and sensor space data and compute self._data.""" if self._kernel is not None or self._sens_data is not None: self._kernel_removed = True self._data = np.dot(self._kernel, self._sens_data) self._kernel = None self._sens_data = None @fill_doc def crop(self, tmin=None, tmax=None, include_tmax=True): """Restrict SourceEstimate to a time interval. Parameters ---------- tmin : float | None The first time point in seconds. If None the first present is used. tmax : float | None The last time point in seconds. If None the last present is used. %(include_tmax)s Returns ------- stc : instance of SourceEstimate The cropped source estimate. """ mask = _time_mask(self.times, tmin, tmax, sfreq=self.sfreq, include_tmax=include_tmax) self.tmin = self.times[np.where(mask)[0][0]] if self._kernel is not None and self._sens_data is not None: self._sens_data = self._sens_data[..., mask] else: self.data = self.data[..., mask] return self # return self for chaining methods @verbose def resample(self, sfreq, npad='auto', window='boxcar', n_jobs=1, verbose=None): """Resample data. If appropriate, an anti-aliasing filter is applied before resampling. See :ref:`resampling-and-decimating` for more information. Parameters ---------- sfreq : float New sample rate to use. npad : int | str Amount to pad the start and end of the data. Can also be "auto" to use a padding that will result in a power-of-two size (can be much faster). window : str | tuple Window to use in resampling. See :func:`scipy.signal.resample`. %(n_jobs)s %(verbose_meth)s Returns ------- stc : instance of SourceEstimate The resampled source estimate. Notes ----- For some data, it may be more accurate to use npad=0 to reduce artifacts. This is dataset dependent -- check your data! Note that the sample rate of the original data is inferred from tstep. """ # resampling in sensor instead of source space gives a somewhat # different result, so we don't allow it self._remove_kernel_sens_data_() o_sfreq = 1.0 / self.tstep data = self.data if data.dtype == np.float32: data = data.astype(np.float64) self.data = resample(data, sfreq, o_sfreq, npad, n_jobs=n_jobs) # adjust indirectly affected variables self.tstep = 1.0 / sfreq return self @property def data(self): """Numpy array of source estimate data.""" if self._data is None: # compute the solution the first time the data is accessed and # remove the kernel and sensor data self._remove_kernel_sens_data_() return self._data @data.setter def data(self, value): value = np.asarray(value) if self._data is not None and value.ndim != self._data.ndim: raise ValueError('Data array should have %d dimensions.' % self._data.ndim) n_verts = sum(len(v) for v in self.vertices) if value.shape[0] != n_verts: raise ValueError('The first dimension of the data array must ' 'match the number of vertices (%d != %d)' % (value.shape[0], n_verts)) self._data = value self._update_times() @property def shape(self): """Shape of the data.""" if self._data is not None: return self._data.shape return (self._kernel.shape[0], self._sens_data.shape[1]) @property def tmin(self): """The first timestamp.""" return self._tmin @tmin.setter def tmin(self, value): self._tmin = float(value) self._update_times() @property def tstep(self): """The change in time between two consecutive samples (1 / sfreq).""" return self._tstep @tstep.setter def tstep(self, value): if value <= 0: raise ValueError('.tstep must be greater than 0.') self._tstep = float(value) self._update_times() @property def times(self): """A timestamp for each sample.""" return self._times @times.setter def times(self, value): raise ValueError('You cannot write to the .times attribute directly. ' 'This property automatically updates whenever ' '.tmin, .tstep or .data changes.') def _update_times(self): """Update the times attribute after changing tmin, tmax, or tstep.""" self._times = self.tmin + (self.tstep * np.arange(self.shape[-1])) self._times.flags.writeable = False def __add__(self, a): """Add source estimates.""" stc = self.copy() stc += a return stc def __iadd__(self, a): # noqa: D105 self._remove_kernel_sens_data_() if isinstance(a, _BaseSourceEstimate): _verify_source_estimate_compat(self, a) self.data += a.data else: self.data += a return self def mean(self): """Make a summary stc file with mean over time points. Returns ------- stc : SourceEstimate | VectorSourceEstimate The modified stc. """ out = self.sum() out /= len(self.times) return out def sum(self): """Make a summary stc file with sum over time points. Returns ------- stc : SourceEstimate | VectorSourceEstimate The modified stc. """ data = self.data tmax = self.tmin + self.tstep * data.shape[-1] tmin = (self.tmin + tmax) / 2. tstep = tmax - self.tmin sum_stc = self.__class__(self.data.sum(axis=-1, keepdims=True), vertices=self.vertices, tmin=tmin, tstep=tstep, subject=self.subject) return sum_stc def __sub__(self, a): """Subtract source estimates.""" stc = self.copy() stc -= a return stc def __isub__(self, a): # noqa: D105 self._remove_kernel_sens_data_() if isinstance(a, _BaseSourceEstimate): _verify_source_estimate_compat(self, a) self.data -= a.data else: self.data -= a return self def __truediv__(self, a): # noqa: D105 return self.__div__(a) def __div__(self, a): # noqa: D105 """Divide source estimates.""" stc = self.copy() stc /= a return stc def __itruediv__(self, a): # noqa: D105 return self.__idiv__(a) def __idiv__(self, a): # noqa: D105 self._remove_kernel_sens_data_() if isinstance(a, _BaseSourceEstimate): _verify_source_estimate_compat(self, a) self.data /= a.data else: self.data /= a return self def __mul__(self, a): """Multiply source estimates.""" stc = self.copy() stc *= a return stc def __imul__(self, a): # noqa: D105 self._remove_kernel_sens_data_() if isinstance(a, _BaseSourceEstimate): _verify_source_estimate_compat(self, a) self.data *= a.data else: self.data *= a return self def __pow__(self, a): # noqa: D105 stc = self.copy() stc **= a return stc def __ipow__(self, a): # noqa: D105 self._remove_kernel_sens_data_() self.data **= a return self def __radd__(self, a): # noqa: D105 return self + a def __rsub__(self, a): # noqa: D105 return self - a def __rmul__(self, a): # noqa: D105 return self * a def __rdiv__(self, a): # noqa: D105 return self / a def __neg__(self): # noqa: D105 """Negate the source estimate.""" stc = self.copy() stc._remove_kernel_sens_data_() stc.data *= -1 return stc def __pos__(self): # noqa: D105 return self def __abs__(self): """Compute the absolute value of the data. Returns ------- stc : instance of _BaseSourceEstimate A version of the source estimate, where the data attribute is set to abs(self.data). """ stc = self.copy() stc._remove_kernel_sens_data_() stc._data = abs(stc._data) return stc def sqrt(self): """Take the square root. Returns ------- stc : instance of SourceEstimate A copy of the SourceEstimate with sqrt(data). """ return self ** (0.5) def copy(self): """Return copy of source estimate instance. Returns ------- stc : instance of SourceEstimate A copy of the source estimate. """ return copy.deepcopy(self) def bin(self, width, tstart=None, tstop=None, func=np.mean): """Return a source estimate object with data summarized over time bins. Time bins of ``width`` seconds. This method is intended for visualization only. No filter is applied to the data before binning, making the method inappropriate as a tool for downsampling data. Parameters ---------- width : scalar Width of the individual bins in seconds. tstart : scalar | None Time point where the first bin starts. The default is the first time point of the stc. tstop : scalar | None Last possible time point contained in a bin (if the last bin would be shorter than width it is dropped). The default is the last time point of the stc. func : callable Function that is applied to summarize the data. Needs to accept a numpy.array as first input and an ``axis`` keyword argument. Returns ------- stc : SourceEstimate | VectorSourceEstimate The binned source estimate. """ if tstart is None: tstart = self.tmin if tstop is None: tstop = self.times[-1] times = np.arange(tstart, tstop + self.tstep, width) nt = len(times) - 1 data = np.empty(self.shape[:-1] + (nt,), dtype=self.data.dtype) for i in range(nt): idx = (self.times >= times[i]) & (self.times < times[i + 1]) data[..., i] = func(self.data[..., idx], axis=-1) tmin = times[0] + width / 2. stc = self.copy() stc._data = data stc.tmin = tmin stc.tstep = width return stc def transform_data(self, func, idx=None, tmin_idx=None, tmax_idx=None): """Get data after a linear (time) transform has been applied. The transform is applied to each source time course independently. Parameters ---------- func : callable The transform to be applied, including parameters (see, e.g., :func:`functools.partial`). The first parameter of the function is the input data. The first return value is the transformed data, remaining outputs are ignored. The first dimension of the transformed data has to be the same as the first dimension of the input data. idx : array | None Indicices of source time courses for which to compute transform. If None, all time courses are used. tmin_idx : int | None Index of first time point to include. If None, the index of the first time point is used. tmax_idx : int | None Index of the first time point not to include. If None, time points up to (and including) the last time point are included. Returns ------- data_t : ndarray The transformed data. Notes ----- Applying transforms can be significantly faster if the SourceEstimate object was created using "(kernel, sens_data)", for the "data" parameter as the transform is applied in sensor space. Inverse methods, e.g., "apply_inverse_epochs", or "apply_lcmv_epochs" do this automatically (if possible). """ if idx is None: # use all time courses by default idx = slice(None, None) if self._kernel is None and self._sens_data is None: if self._kernel_removed: warn('Performance can be improved by not accessing the data ' 'attribute before calling this method.') # transform source space data directly data_t = func(self.data[idx, ..., tmin_idx:tmax_idx]) if isinstance(data_t, tuple): # use only first return value data_t = data_t[0] else: # apply transform in sensor space sens_data_t = func(self._sens_data[:, tmin_idx:tmax_idx]) if isinstance(sens_data_t, tuple): # use only first return value sens_data_t = sens_data_t[0] # apply inverse data_shape = sens_data_t.shape if len(data_shape) > 2: # flatten the last dimensions sens_data_t = sens_data_t.reshape(data_shape[0], np.prod(data_shape[1:])) data_t = np.dot(self._kernel[idx, :], sens_data_t) # restore original shape if necessary if len(data_shape) > 2: data_t = data_t.reshape(data_t.shape[0], *data_shape[1:]) return data_t def transform(self, func, idx=None, tmin=None, tmax=None, copy=False): """Apply linear transform. The transform is applied to each source time course independently. Parameters ---------- func : callable The transform to be applied, including parameters (see, e.g., :func:`functools.partial`). The first parameter of the function is the input data. The first two dimensions of the transformed data should be (i) vertices and (ii) time. See Notes for details. idx : array | None Indices of source time courses for which to compute transform. If None, all time courses are used. tmin : float | int | None First time point to include (ms). If None, self.tmin is used. tmax : float | int | None Last time point to include (ms). If None, self.tmax is used. copy : bool If True, return a new instance of SourceEstimate instead of modifying the input inplace. Returns ------- stcs : SourceEstimate | VectorSourceEstimate | list The transformed stc or, in the case of transforms which yield N-dimensional output (where N > 2), a list of stcs. For a list, copy must be True. Notes ----- Transforms which yield 3D output (e.g. time-frequency transforms) are valid, so long as the first two dimensions are vertices and time. In this case, the copy parameter must be True and a list of SourceEstimates, rather than a single instance of SourceEstimate, will be returned, one for each index of the 3rd dimension of the transformed data. In the case of transforms yielding 2D output (e.g. filtering), the user has the option of modifying the input inplace (copy = False) or returning a new instance of SourceEstimate (copy = True) with the transformed data. Applying transforms can be significantly faster if the SourceEstimate object was created using "(kernel, sens_data)", for the "data" parameter as the transform is applied in sensor space. Inverse methods, e.g., "apply_inverse_epochs", or "apply_lcmv_epochs" do this automatically (if possible). """ # min and max data indices to include times = 1000. * self.times t_idx = np.where(_time_mask(times, tmin, tmax, sfreq=self.sfreq))[0] if tmin is None: tmin_idx = None else: tmin_idx = t_idx[0] if tmax is None: tmax_idx = None else: # +1, because upper boundary needs to include the last sample tmax_idx = t_idx[-1] + 1 data_t = self.transform_data(func, idx=idx, tmin_idx=tmin_idx, tmax_idx=tmax_idx) # account for change in n_vertices if idx is not None: idx_lh = idx[idx < len(self.lh_vertno)] idx_rh = idx[idx >= len(self.lh_vertno)] - len(self.lh_vertno) verts_lh = self.lh_vertno[idx_lh] verts_rh = self.rh_vertno[idx_rh] else: verts_lh = self.lh_vertno verts_rh = self.rh_vertno verts = [verts_lh, verts_rh] tmin_idx = 0 if tmin_idx is None else tmin_idx tmin = self.times[tmin_idx] if data_t.ndim > 2: # return list of stcs if transformed data has dimensionality > 2 if copy: stcs = [SourceEstimate(data_t[:, :, a], verts, tmin, self.tstep, self.subject) for a in range(data_t.shape[-1])] else: raise ValueError('copy must be True if transformed data has ' 'more than 2 dimensions') else: # return new or overwritten stc stcs = self if not copy else self.copy() stcs.vertices = verts stcs.data = data_t stcs.tmin = tmin return stcs @fill_doc def to_data_frame(self, index=None, scalings=None, long_format=False, time_format='ms'): """Export data in tabular structure as a pandas DataFrame. Vertices are converted to columns in the DataFrame. By default, an additional column "time" is added, unless ``index='time'`` (in which case time values form the DataFrame's index). Parameters ---------- %(df_index_evk)s Defaults to ``None``. %(df_scalings)s %(df_longform_stc)s %(df_time_format)s .. versionadded:: 0.20 Returns ------- %(df_return)s """ # check pandas once here, instead of in each private utils function pd = _check_pandas_installed() # noqa # arg checking valid_index_args = ['time', 'subject'] valid_time_formats = ['ms', 'timedelta'] index = _check_pandas_index_arguments(index, valid_index_args) time_format = _check_time_format(time_format, valid_time_formats) # get data data = self.data.T times = self.times # prepare extra columns / multiindex mindex = list() default_index = ['time'] if self.subject is not None: default_index = ['subject', 'time'] mindex.append(('subject', np.repeat(self.subject, data.shape[0]))) times = _convert_times(self, times, time_format) mindex.append(('time', times)) # triage surface vs volume source estimates col_names = list() kinds = ['VOL'] * len(self.vertices) if isinstance(self, (_BaseSurfaceSourceEstimate, _BaseMixedSourceEstimate)): kinds[:2] = ['LH', 'RH'] for ii, (kind, vertno) in enumerate(zip(kinds, self.vertices)): col_names.extend(['{}_{}'.format(kind, vert) for vert in vertno]) # build DataFrame df = _build_data_frame(self, data, None, long_format, mindex, index, default_index=default_index, col_names=col_names, col_kind='source') return df def _center_of_mass(vertices, values, hemi, surf, subject, subjects_dir, restrict_vertices): """Find the center of mass on a surface.""" if (values == 0).all() or (values < 0).any(): raise ValueError('All values must be non-negative and at least one ' 'must be non-zero, cannot compute COM') subjects_dir = get_subjects_dir(subjects_dir, raise_error=True) surf = read_surface(op.join(subjects_dir, subject, 'surf', hemi + '.' + surf)) if restrict_vertices is True: restrict_vertices = vertices elif restrict_vertices is False: restrict_vertices = np.arange(surf[0].shape[0]) elif isinstance(restrict_vertices, SourceSpaces): idx = 1 if restrict_vertices.kind == 'surface' and hemi == 'rh' else 0 restrict_vertices = restrict_vertices[idx]['vertno'] else: restrict_vertices = np.array(restrict_vertices, int) pos = surf[0][vertices, :].T c_o_m = np.sum(pos * values, axis=1) / np.sum(values) vertex = np.argmin(np.sqrt(np.mean((surf[0][restrict_vertices, :] - c_o_m) ** 2, axis=1))) vertex = restrict_vertices[vertex] return vertex @fill_doc class _BaseSurfaceSourceEstimate(_BaseSourceEstimate): """Abstract base class for surface source estimates. Parameters ---------- data : array The data in source space. vertices : list of array, shape (2,) Vertex numbers corresponding to the data. The first element of the list contains vertices of left hemisphere and the second element contains vertices of right hemisphere. tmin : scalar Time point of the first sample in data. tstep : scalar Time step between successive samples in data. subject : str | None The subject name. While not necessary, it is safer to set the subject parameter to avoid analysis errors. %(verbose)s Attributes ---------- subject : str | None The subject name. times : array of shape (n_times,) The time vector. vertices : list of array, shape (2,) Vertex numbers corresponding to the data. The first element of the list contains vertices of left hemisphere and the second element contains vertices of right hemisphere. data : array The data in source space. shape : tuple The shape of the data. A tuple of int (n_dipoles, n_times). """ _src_type = 'surface' _src_count = 2 @property def lh_data(self): """Left hemisphere data.""" return self.data[:len(self.lh_vertno)] @property def rh_data(self): """Right hemisphere data.""" return self.data[len(self.lh_vertno):] @property def lh_vertno(self): """Left hemisphere vertno.""" return self.vertices[0] @property def rh_vertno(self): """Right hemisphere vertno.""" return self.vertices[1] def _hemilabel_stc(self, label): if label.hemi == 'lh': stc_vertices = self.vertices[0] else: stc_vertices = self.vertices[1] # find index of the Label's vertices idx = np.nonzero(np.in1d(stc_vertices, label.vertices))[0] # find output vertices vertices = stc_vertices[idx] # find data if label.hemi == 'rh': values = self.data[idx + len(self.vertices[0])] else: values = self.data[idx] return vertices, values def in_label(self, label): """Get a source estimate object restricted to a label. SourceEstimate contains the time course of activation of all sources inside the label. Parameters ---------- label : Label | BiHemiLabel The label (as created for example by mne.read_label). If the label does not match any sources in the SourceEstimate, a ValueError is raised. Returns ------- stc : SourceEstimate | VectorSourceEstimate The source estimate restricted to the given label. """ # make sure label and stc are compatible from .label import Label, BiHemiLabel _validate_type(label, (Label, BiHemiLabel), 'label') if label.subject is not None and self.subject is not None \ and label.subject != self.subject: raise RuntimeError('label and stc must have same subject names, ' 'currently "%s" and "%s"' % (label.subject, self.subject)) if label.hemi == 'both': lh_vert, lh_val = self._hemilabel_stc(label.lh) rh_vert, rh_val = self._hemilabel_stc(label.rh) vertices = [lh_vert, rh_vert] values = np.vstack((lh_val, rh_val)) elif label.hemi == 'lh': lh_vert, values = self._hemilabel_stc(label) vertices = [lh_vert, np.array([], int)] else: assert label.hemi == 'rh' rh_vert, values = self._hemilabel_stc(label) vertices = [np.array([], int), rh_vert] if sum([len(v) for v in vertices]) == 0: raise ValueError('No vertices match the label in the stc file') label_stc = self.__class__(values, vertices=vertices, tmin=self.tmin, tstep=self.tstep, subject=self.subject) return label_stc def expand(self, vertices): """Expand SourceEstimate to include more vertices. This will add rows to stc.data (zero-filled) and modify stc.vertices to include all vertices in stc.vertices and the input vertices. Parameters ---------- vertices : list of array New vertices to add. Can also contain old values. Returns ------- stc : SourceEstimate | VectorSourceEstimate The modified stc (note: method operates inplace). """ if not isinstance(vertices, list): raise TypeError('vertices must be a list') if not len(self.vertices) == len(vertices): raise ValueError('vertices must have the same length as ' 'stc.vertices') # can no longer use kernel and sensor data self._remove_kernel_sens_data_() inserters = list() offsets = [0] for vi, (v_old, v_new) in enumerate(zip(self.vertices, vertices)): v_new = np.setdiff1d(v_new, v_old) inds = np.searchsorted(v_old, v_new) # newer numpy might overwrite inds after np.insert, copy here inserters += [inds.copy()] offsets += [len(v_old)] self.vertices[vi] = np.insert(v_old, inds, v_new) inds = [ii + offset for ii, offset in zip(inserters, offsets[:-1])] inds = np.concatenate(inds) new_data = np.zeros((len(inds),) + self.data.shape[1:]) self.data = np.insert(self.data, inds, new_data, axis=0) return self @verbose def to_original_src(self, src_orig, subject_orig=None, subjects_dir=None, verbose=None): """Get a source estimate from morphed source to the original subject. Parameters ---------- src_orig : instance of SourceSpaces The original source spaces that were morphed to the current subject. subject_orig : str | None The original subject. For most source spaces this shouldn't need to be provided, since it is stored in the source space itself. %(subjects_dir)s %(verbose_meth)s Returns ------- stc : SourceEstimate | VectorSourceEstimate The transformed source estimate. See Also -------- morph_source_spaces Notes ----- .. versionadded:: 0.10.0 """ if self.subject is None: raise ValueError('stc.subject must be set') src_orig = _ensure_src(src_orig, kind='surface') subject_orig = _ensure_src_subject(src_orig, subject_orig) data_idx, vertices = _get_morph_src_reordering( self.vertices, src_orig, subject_orig, self.subject, subjects_dir) return self.__class__(self._data[data_idx], vertices, self.tmin, self.tstep, subject_orig) @fill_doc def get_peak(self, hemi=None, tmin=None, tmax=None, mode='abs', vert_as_index=False, time_as_index=False): """Get location and latency of peak amplitude. Parameters ---------- hemi : {'lh', 'rh', None} The hemi to be considered. If None, the entire source space is considered. %(get_peak_parameters)s Returns ------- pos : int The vertex exhibiting the maximum response, either ID or index. latency : float | int The time point of the maximum response, either latency in seconds or index. """ _check_option('hemi', hemi, ('lh', 'rh', None)) vertex_offset = 0 if hemi is not None: if hemi == 'lh': data = self.lh_data vertices = [self.lh_vertno, []] else: vertex_offset = len(self.vertices[0]) data = self.rh_data vertices = [[], self.rh_vertno] meth = self.__class__( data, vertices, self.tmin, self.tstep).get_peak else: meth = super().get_peak out = meth(tmin=tmin, tmax=tmax, mode=mode, vert_as_index=vert_as_index, time_as_index=time_as_index) if vertex_offset and vert_as_index: out = (out[0] + vertex_offset, out[1]) return out @fill_doc class SourceEstimate(_BaseSurfaceSourceEstimate): """Container for surface source estimates. Parameters ---------- data : array of shape (n_dipoles, n_times) | tuple, shape (2,) The data in source space. When it is a single array, the left hemisphere is stored in data[:len(vertices[0])] and the right hemisphere is stored in data[-len(vertices[1]):]. When data is a tuple, it contains two arrays: - "kernel" shape (n_vertices, n_sensors) and - "sens_data" shape (n_sensors, n_times). In this case, the source space data corresponds to ``np.dot(kernel, sens_data)``. vertices : list of array, shape (2,) Vertex numbers corresponding to the data. The first element of the list contains vertices of left hemisphere and the second element contains vertices of right hemisphere. tmin : scalar Time point of the first sample in data. tstep : scalar Time step between successive samples in data. subject : str | None The subject name. While not necessary, it is safer to set the subject parameter to avoid analysis errors. %(verbose)s Attributes ---------- subject : str | None The subject name. times : array of shape (n_times,) The time vector. vertices : list of array, shape (2,) The indices of the dipoles in the left and right source space. data : array of shape (n_dipoles, n_times) The data in source space. shape : tuple The shape of the data. A tuple of int (n_dipoles, n_times). See Also -------- VectorSourceEstimate : A container for vector source estimates. VolSourceEstimate : A container for volume source estimates. MixedSourceEstimate : A container for mixed surface + volume source estimates. """ @verbose def save(self, fname, ftype='stc', verbose=None): """Save the source estimates to a file. Parameters ---------- fname : str The stem of the file name. The file names used for surface source spaces are obtained by adding "-lh.stc" and "-rh.stc" (or "-lh.w" and "-rh.w") to the stem provided, for the left and the right hemisphere, respectively. ftype : str File format to use. Allowed values are "stc" (default), "w", and "h5". The "w" format only supports a single time point. %(verbose_meth)s """ _validate_type(fname, 'path-like', 'fname') fname = str(fname) _check_option('ftype', ftype, ['stc', 'w', 'h5']) lh_data = self.data[:len(self.lh_vertno)] rh_data = self.data[-len(self.rh_vertno):] if ftype == 'stc': if np.iscomplexobj(self.data): raise ValueError("Cannot save complex-valued STC data in " "FIFF format; please set ftype='h5' to save " "in HDF5 format instead, or cast the data to " "real numbers before saving.") logger.info('Writing STC to disk...') _write_stc(fname + '-lh.stc', tmin=self.tmin, tstep=self.tstep, vertices=self.lh_vertno, data=lh_data) _write_stc(fname + '-rh.stc', tmin=self.tmin, tstep=self.tstep, vertices=self.rh_vertno, data=rh_data) elif ftype == 'w': if self.shape[1] != 1: raise ValueError('w files can only contain a single time ' 'point') logger.info('Writing STC to disk (w format)...') _write_w(fname + '-lh.w', vertices=self.lh_vertno, data=lh_data[:, 0]) _write_w(fname + '-rh.w', vertices=self.rh_vertno, data=rh_data[:, 0]) elif ftype == 'h5': super().save(fname) logger.info('[done]') @verbose def estimate_snr(self, info, fwd, cov, verbose=None): r"""Compute time-varying SNR in the source space. This function should only be used with source estimates with units nanoAmperes (i.e., MNE-like solutions, *not* dSPM or sLORETA). .. warning:: This function currently only works properly for fixed orientation. Parameters ---------- info : instance Info The measurement info. fwd : instance of Forward The forward solution used to create the source estimate. cov : instance of Covariance The noise covariance used to estimate the resting cortical activations. Should be an evoked covariance, not empty room. %(verbose)s Returns ------- snr_stc : instance of SourceEstimate The source estimate with the SNR computed. Notes ----- We define the SNR in decibels for each source location at each time point as: .. math:: {\rm SNR} = 10\log_10[\frac{a^2}{N}\sum_k\frac{b_k^2}{s_k^2}] where :math:`\\b_k` is the signal on sensor :math:`k` provided by the forward model for a source with unit amplitude, :math:`a` is the source amplitude, :math:`N` is the number of sensors, and :math:`s_k^2` is the noise variance on sensor :math:`k`. References ---------- .. [1] Goldenholz, D. M., Ahlfors, S. P., Hämäläinen, M. S., Sharon, D., Ishitobi, M., Vaina, L. M., & Stufflebeam, S. M. (2009). Mapping the Signal-To-Noise-Ratios of Cortical Sources in Magnetoencephalography and Electroencephalography. Human Brain Mapping, 30(4), 1077–1086. doi:10.1002/hbm.20571 """ from .forward import convert_forward_solution, Forward from .minimum_norm.inverse import _prepare_forward _validate_type(fwd, Forward, 'fwd') _validate_type(info, Info, 'info') _validate_type(cov, Covariance, 'cov') _check_stc_units(self) if (self.data >= 0).all(): warn('This STC appears to be from free orientation, currently SNR' ' function is valid only for fixed orientation') fwd = convert_forward_solution(fwd, surf_ori=True, force_fixed=False) # G is gain matrix [ch x src], cov is noise covariance [ch x ch] G, _, _, _, _, _, _, cov, _ = _prepare_forward( fwd, info, cov, fixed=True, loose=0, rank=None, pca=False, use_cps=True, exp=None, limit_depth_chs=False, combine_xyz='fro', allow_fixed_depth=False, limit=None) G = G['sol']['data'] n_channels = cov['dim'] # number of sensors/channels b_k2 = (G * G).T s_k2 = np.diag(cov['data']) scaling = (1 / n_channels) * np.sum(b_k2 / s_k2, axis=1, keepdims=True) snr_stc = self.copy() snr_stc._data[:] = 10 * np.log10((self.data * self.data) * scaling) return snr_stc @fill_doc def center_of_mass(self, subject=None, hemi=None, restrict_vertices=False, subjects_dir=None, surf='sphere'): """Compute the center of mass of activity. This function computes the spatial center of mass on the surface as well as the temporal center of mass as in [1]_. .. note:: All activity must occur in a single hemisphere, otherwise an error is raised. The "mass" of each point in space for computing the spatial center of mass is computed by summing across time, and vice-versa for each point in time in computing the temporal center of mass. This is useful for quantifying spatio-temporal cluster locations, especially when combined with :func:`mne.vertex_to_mni`. Parameters ---------- subject : str | None The subject the stc is defined for. hemi : int, or None Calculate the center of mass for the left (0) or right (1) hemisphere. If None, one of the hemispheres must be all zeroes, and the center of mass will be calculated for the other hemisphere (useful for getting COM for clusters). restrict_vertices : bool | array of int | instance of SourceSpaces If True, returned vertex will be one from stc. Otherwise, it could be any vertex from surf. If an array of int, the returned vertex will come from that array. If instance of SourceSpaces (as of 0.13), the returned vertex will be from the given source space. For most accuruate estimates, do not restrict vertices. %(subjects_dir)s surf : str The surface to use for Euclidean distance center of mass finding. The default here is "sphere", which finds the center of mass on the spherical surface to help avoid potential issues with cortical folding. Returns ------- vertex : int Vertex of the spatial center of mass for the inferred hemisphere, with each vertex weighted by the sum of the stc across time. For a boolean stc, then, this would be weighted purely by the duration each vertex was active. hemi : int Hemisphere the vertex was taken from. t : float Time of the temporal center of mass (weighted by the sum across source vertices). See Also -------- mne.Label.center_of_mass mne.vertex_to_mni References ---------- .. [1] Larson and Lee, "The cortical dynamics underlying effective switching of auditory spatial attention", NeuroImage 2012. """ if not isinstance(surf, str): raise TypeError('surf must be a string, got %s' % (type(surf),)) subject = _check_subject(self.subject, subject) if np.any(self.data < 0): raise ValueError('Cannot compute COM with negative values') values = np.sum(self.data, axis=1) # sum across time vert_inds = [np.arange(len(self.vertices[0])), np.arange(len(self.vertices[1])) + len(self.vertices[0])] if hemi is None: hemi = np.where(np.array([np.sum(values[vi]) for vi in vert_inds]))[0] if not len(hemi) == 1: raise ValueError('Could not infer hemisphere') hemi = hemi[0] _check_option('hemi', hemi, [0, 1]) vertices = self.vertices[hemi] values = values[vert_inds[hemi]] # left or right del vert_inds vertex = _center_of_mass( vertices, values, hemi=['lh', 'rh'][hemi], surf=surf, subject=subject, subjects_dir=subjects_dir, restrict_vertices=restrict_vertices) # do time center of mass by using the values across space masses = np.sum(self.data, axis=0).astype(float) t_ind = np.sum(masses * np.arange(self.shape[1])) / np.sum(masses) t = self.tmin + self.tstep * t_ind return vertex, hemi, t class _BaseVectorSourceEstimate(_BaseSourceEstimate): _data_ndim = 3 @verbose def __init__(self, data, vertices=None, tmin=None, tstep=None, subject=None, verbose=None): # noqa: D102 assert hasattr(self, '_scalar_class') super().__init__(data, vertices, tmin, tstep, subject, verbose) def magnitude(self): """Compute magnitude of activity without directionality. Returns ------- stc : instance of SourceEstimate The source estimate without directionality information. """ data_mag = np.linalg.norm(self.data, axis=1) return self._scalar_class( data_mag, self.vertices, self.tmin, self.tstep, self.subject, self.verbose) def _get_src_normals(self, src, use_cps): normals = np.vstack([_get_src_nn(s, use_cps, v) for s, v in zip(src, self.vertices)]) return normals @fill_doc def project(self, directions, src=None, use_cps=True): """Project the data for each vertex in a given direction. Parameters ---------- directions : ndarray, shape (n_vertices, 3) | str Can be: - ``'normal'`` Project onto the source space normals. - ``'pca'`` SVD will be used to project onto the direction of maximal power for each source. - :class:`~numpy.ndarray`, shape (n_vertices, 3) Projection directions for each source. src : instance of SourceSpaces | None The source spaces corresponding to the source estimate. Not used when ``directions`` is an array, optional when ``directions='pca'``. %(use_cps)s Should be the same value that was used when the forward model was computed (typically True). Returns ------- stc : instance of SourceEstimate The projected source estimate. directions : ndarray, shape (n_vertices, 3) The directions that were computed (or just used). Notes ----- When using SVD, there is a sign ambiguity for the direction of maximal power. When ``src is None``, the direction is chosen that makes the resulting time waveform sum positive (i.e., have positive amplitudes). When ``src`` is provided, the directions are flipped in the direction of the source normals, i.e., outward from cortex for surface source spaces and in the +Z / superior direction for volume source spaces. .. versionadded:: 0.21 """ _validate_type(directions, (str, np.ndarray), 'directions') _validate_type(src, (None, SourceSpaces), 'src') if isinstance(directions, str): _check_option('directions', directions, ('normal', 'pca'), extra='when str') if directions == 'normal': if src is None: raise ValueError( 'If directions="normal", src cannot be None') _check_src_normal('normal', src) directions = self._get_src_normals(src, use_cps) else: assert directions == 'pca' x = self.data if not np.isrealobj(self.data): _check_option('stc.data.dtype', self.data.dtype, (np.complex64, np.complex128)) dtype = \ np.float32 if x.dtype == np.complex64 else np.float64 x = x.view(dtype) assert x.shape[-1] == 2 * self.data.shape[-1] u, _, v = np.linalg.svd(x, full_matrices=False) directions = u[:, :, 0] # The sign is arbitrary, so let's flip it in the direction that # makes the resulting time series the most positive: if src is None: signs = np.sum(v[:, 0].real, axis=1, keepdims=True) else: normals = self._get_src_normals(src, use_cps) signs = np.sum(directions * normals, axis=1, keepdims=True) assert signs.shape == (self.data.shape[0], 1) signs = np.sign(signs) signs[signs == 0] = 1. directions *= signs _check_option( 'directions.shape', directions.shape, [(self.data.shape[0], 3)]) data_norm = np.matmul(directions[:, np.newaxis], self.data)[:, 0] stc = self._scalar_class( data_norm, self.vertices, self.tmin, self.tstep, self.subject, self.verbose) return stc, directions @copy_function_doc_to_method_doc(plot_vector_source_estimates) def plot(self, subject=None, hemi='lh', colormap='hot', time_label='auto', smoothing_steps=10, transparent=True, brain_alpha=0.4, overlay_alpha=None, vector_alpha=1.0, scale_factor=None, time_viewer='auto', subjects_dir=None, figure=None, views='lateral', colorbar=True, clim='auto', cortex='classic', size=800, background='black', foreground=None, initial_time=None, time_unit='s', show_traces='auto', src=None, volume_options=1., view_layout='vertical', add_data_kwargs=None, verbose=None): # noqa: D102 return plot_vector_source_estimates( self, subject=subject, hemi=hemi, colormap=colormap, time_label=time_label, smoothing_steps=smoothing_steps, transparent=transparent, brain_alpha=brain_alpha, overlay_alpha=overlay_alpha, vector_alpha=vector_alpha, scale_factor=scale_factor, time_viewer=time_viewer, subjects_dir=subjects_dir, figure=figure, views=views, colorbar=colorbar, clim=clim, cortex=cortex, size=size, background=background, foreground=foreground, initial_time=initial_time, time_unit=time_unit, show_traces=show_traces, src=src, volume_options=volume_options, view_layout=view_layout, add_data_kwargs=add_data_kwargs, verbose=verbose) class _BaseVolSourceEstimate(_BaseSourceEstimate): _src_type = 'volume' _src_count = None @copy_function_doc_to_method_doc(plot_source_estimates) def plot_3d(self, subject=None, surface='white', hemi='both', colormap='auto', time_label='auto', smoothing_steps=10, transparent=True, alpha=0.1, time_viewer='auto', subjects_dir=None, figure=None, views='axial', colorbar=True, clim='auto', cortex="classic", size=800, background="black", foreground=None, initial_time=None, time_unit='s', backend='auto', spacing='oct6', title=None, show_traces='auto', src=None, volume_options=1., view_layout='vertical', add_data_kwargs=None, verbose=None): return super().plot( subject=subject, surface=surface, hemi=hemi, colormap=colormap, time_label=time_label, smoothing_steps=smoothing_steps, transparent=transparent, alpha=alpha, time_viewer=time_viewer, subjects_dir=subjects_dir, figure=figure, views=views, colorbar=colorbar, clim=clim, cortex=cortex, size=size, background=background, foreground=foreground, initial_time=initial_time, time_unit=time_unit, backend=backend, spacing=spacing, title=title, show_traces=show_traces, src=src, volume_options=volume_options, view_layout=view_layout, add_data_kwargs=add_data_kwargs, verbose=verbose) @copy_function_doc_to_method_doc(plot_volume_source_estimates) def plot(self, src, subject=None, subjects_dir=None, mode='stat_map', bg_img='T1.mgz', colorbar=True, colormap='auto', clim='auto', transparent='auto', show=True, initial_time=None, initial_pos=None, verbose=None): data = self.magnitude() if self._data_ndim == 3 else self return plot_volume_source_estimates( data, src=src, subject=subject, subjects_dir=subjects_dir, mode=mode, bg_img=bg_img, colorbar=colorbar, colormap=colormap, clim=clim, transparent=transparent, show=show, initial_time=initial_time, initial_pos=initial_pos, verbose=verbose) # Override here to provide the volume-specific options @verbose def extract_label_time_course(self, labels, src, mode='auto', allow_empty=False, *, trans=None, mri_resolution=True, verbose=None): """Extract label time courses for lists of labels. This function will extract one time course for each label. The way the time courses are extracted depends on the mode parameter. Parameters ---------- %(eltc_labels)s %(eltc_src)s %(eltc_mode)s %(eltc_allow_empty)s %(trans_deprecated)s %(eltc_mri_resolution)s %(verbose_meth)s Returns ------- %(eltc_returns)s See Also -------- extract_label_time_course : Extract time courses for multiple STCs. Notes ----- %(eltc_mode_notes)s """ return extract_label_time_course( self, labels, src, mode=mode, return_generator=False, allow_empty=allow_empty, trans=trans, mri_resolution=mri_resolution, verbose=verbose) @fill_doc def in_label(self, label, mri, src, trans=None): """Get a source estimate object restricted to a label. SourceEstimate contains the time course of activation of all sources inside the label. Parameters ---------- label : str | int The label to use. Can be the name of a label if using a standard FreeSurfer atlas, or an integer value to extract from the ``mri``. mri : str Path to the atlas to use. src : instance of SourceSpaces The volumetric source space. It must be a single, whole-brain volume. %(trans_deprecated)s Returns ------- stc : VolSourceEstimate | VolVectorSourceEstimate The source estimate restricted to the given label. Notes ----- .. versionadded:: 0.21.0 """ if len(self.vertices) != 1: raise RuntimeError('This method can only be used with whole-brain ' 'volume source spaces') _validate_type(label, (str, 'int-like'), 'label') if isinstance(label, str): volume_label = [label] else: volume_label = {'Volume ID %s' % (label): _ensure_int(label)} _dep_trans(trans) label = _volume_labels(src, (mri, volume_label), mri_resolution=False) assert len(label) == 1 label = label[0] vertices = label.vertices keep = np.in1d(self.vertices[0], label.vertices) values, vertices = self.data[keep], [self.vertices[0][keep]] label_stc = self.__class__(values, vertices=vertices, tmin=self.tmin, tstep=self.tstep, subject=self.subject) return label_stc def save_as_volume(self, fname, src, dest='mri', mri_resolution=False, format='nifti1'): """Save a volume source estimate in a NIfTI file. Parameters ---------- fname : str The name of the generated nifti file. src : list The list of source spaces (should all be of type volume). dest : 'mri' | 'surf' If 'mri' the volume is defined in the coordinate system of the original T1 image. If 'surf' the coordinate system of the FreeSurfer surface is used (Surface RAS). mri_resolution : bool It True the image is saved in MRI resolution. .. warning:: If you have many time points, the file produced can be huge. format : str Either 'nifti1' (default) or 'nifti2'. .. versionadded:: 0.17 Returns ------- img : instance Nifti1Image The image object. Notes ----- .. versionadded:: 0.9.0 """ import nibabel as nib _validate_type(fname, 'path-like', 'fname') fname = str(fname) img = self.as_volume(src, dest=dest, mri_resolution=mri_resolution, format=format) nib.save(img, fname) def as_volume(self, src, dest='mri', mri_resolution=False, format='nifti1'): """Export volume source estimate as a nifti object. Parameters ---------- src : instance of SourceSpaces The source spaces (should all be of type volume, or part of a mixed source space). dest : 'mri' | 'surf' If 'mri' the volume is defined in the coordinate system of the original T1 image. If 'surf' the coordinate system of the FreeSurfer surface is used (Surface RAS). mri_resolution : bool It True the image is saved in MRI resolution. .. warning:: If you have many time points, the file produced can be huge. format : str Either 'nifti1' (default) or 'nifti2'. Returns ------- img : instance of Nifti1Image The image object. Notes ----- .. versionadded:: 0.9.0 """ from .morph import _interpolate_data data = self.magnitude() if self._data_ndim == 3 else self return _interpolate_data(data, src, mri_resolution=mri_resolution, mri_space=True, output=format) @fill_doc class VolSourceEstimate(_BaseVolSourceEstimate): """Container for volume source estimates. Parameters ---------- data : array of shape (n_dipoles, n_times) | tuple, shape (2,) The data in source space. The data can either be a single array or a tuple with two arrays: "kernel" shape (n_vertices, n_sensors) and "sens_data" shape (n_sensors, n_times). In this case, the source space data corresponds to ``np.dot(kernel, sens_data)``. vertices : array of shape (n_dipoles,) The indices of the dipoles in the source space. tmin : scalar Time point of the first sample in data. tstep : scalar Time step between successive samples in data. subject : str | None The subject name. While not necessary, it is safer to set the subject parameter to avoid analysis errors. %(verbose)s Attributes ---------- subject : str | None The subject name. times : array of shape (n_times,) The time vector. vertices : array of shape (n_dipoles,) The indices of the dipoles in the source space. data : array of shape (n_dipoles, n_times) The data in source space. shape : tuple The shape of the data. A tuple of int (n_dipoles, n_times). See Also -------- SourceEstimate : A container for surface source estimates. VolVectorSourceEstimate : A container for volume vector source estimates. MixedSourceEstimate : A container for mixed surface + volume source estimates. Notes ----- .. versionadded:: 0.9.0 """ @verbose def save(self, fname, ftype='stc', verbose=None): """Save the source estimates to a file. Parameters ---------- fname : str The stem of the file name. The stem is extended with "-vl.stc" or "-vl.w". ftype : str File format to use. Allowed values are "stc" (default), "w", and "h5". The "w" format only supports a single time point. %(verbose_meth)s """ _validate_type(fname, 'path-like', 'fname') fname = str(fname) _check_option('ftype', ftype, ['stc', 'w', 'h5']) if ftype != 'h5' and len(self.vertices) != 1: raise ValueError('Can only write to .stc or .w if a single volume ' 'source space was used, use .h5 instead') if ftype != 'h5' and self.data.dtype == 'complex': raise ValueError('Can only write non-complex data to .stc or .w' ', use .h5 instead') if ftype == 'stc': logger.info('Writing STC to disk...') if not (fname.endswith('-vl.stc') or fname.endswith('-vol.stc')): fname += '-vl.stc' _write_stc(fname, tmin=self.tmin, tstep=self.tstep, vertices=self.vertices[0], data=self.data) elif ftype == 'w': logger.info('Writing STC to disk (w format)...') if not (fname.endswith('-vl.w') or fname.endswith('-vol.w')): fname += '-vl.w' _write_w(fname, vertices=self.vertices[0], data=self.data) elif ftype == 'h5': super().save(fname, 'h5') logger.info('[done]') @fill_doc class VolVectorSourceEstimate(_BaseVolSourceEstimate, _BaseVectorSourceEstimate): """Container for volume source estimates. Parameters ---------- data : array of shape (n_dipoles, 3, n_times) The data in source space. Each dipole contains three vectors that denote the dipole strength in X, Y and Z directions over time. vertices : array of shape (n_dipoles,) The indices of the dipoles in the source space. tmin : scalar Time point of the first sample in data. tstep : scalar Time step between successive samples in data. subject : str | None The subject name. While not necessary, it is safer to set the subject parameter to avoid analysis errors. %(verbose)s Attributes ---------- subject : str | None The subject name. times : array of shape (n_times,) The time vector. vertices : array of shape (n_dipoles,) The indices of the dipoles in the source space. data : array of shape (n_dipoles, n_times) The data in source space. shape : tuple The shape of the data. A tuple of int (n_dipoles, n_times). See Also -------- SourceEstimate : A container for surface source estimates. VectorSourceEstimate : A container for vector source estimates. MixedSourceEstimate : A container for mixed surface + volume source estimates. Notes ----- .. versionadded:: 0.9.0 """ _scalar_class = VolSourceEstimate # defaults differ: hemi='both', views='axial' @copy_function_doc_to_method_doc(plot_vector_source_estimates) def plot_3d(self, subject=None, hemi='both', colormap='hot', time_label='auto', smoothing_steps=10, transparent=True, brain_alpha=0.4, overlay_alpha=None, vector_alpha=1.0, scale_factor=None, time_viewer='auto', subjects_dir=None, figure=None, views='axial', colorbar=True, clim='auto', cortex='classic', size=800, background='black', foreground=None, initial_time=None, time_unit='s', show_traces='auto', src=None, volume_options=1., view_layout='vertical', add_data_kwargs=None, verbose=None): # noqa: D102 return _BaseVectorSourceEstimate.plot( self, subject=subject, hemi=hemi, colormap=colormap, time_label=time_label, smoothing_steps=smoothing_steps, transparent=transparent, brain_alpha=brain_alpha, overlay_alpha=overlay_alpha, vector_alpha=vector_alpha, scale_factor=scale_factor, time_viewer=time_viewer, subjects_dir=subjects_dir, figure=figure, views=views, colorbar=colorbar, clim=clim, cortex=cortex, size=size, background=background, foreground=foreground, initial_time=initial_time, time_unit=time_unit, show_traces=show_traces, src=src, volume_options=volume_options, view_layout=view_layout, add_data_kwargs=add_data_kwargs, verbose=verbose) @fill_doc class VectorSourceEstimate(_BaseVectorSourceEstimate, _BaseSurfaceSourceEstimate): """Container for vector surface source estimates. For each vertex, the magnitude of the current is defined in the X, Y and Z directions. Parameters ---------- data : array of shape (n_dipoles, 3, n_times) The data in source space. Each dipole contains three vectors that denote the dipole strength in X, Y and Z directions over time. vertices : list of array, shape (2,) Vertex numbers corresponding to the data. The first element of the list contains vertices of left hemisphere and the second element contains vertices of right hemisphere. tmin : float Time point of the first sample in data. tstep : float Time step between successive samples in data. subject : str | None The subject name. While not necessary, it is safer to set the subject parameter to avoid analysis errors. %(verbose)s Attributes ---------- subject : str | None The subject name. times : array of shape (n_times,) The time vector. shape : tuple The shape of the data. A tuple of int (n_dipoles, n_times). See Also -------- SourceEstimate : A container for surface source estimates. VolSourceEstimate : A container for volume source estimates. MixedSourceEstimate : A container for mixed surface + volume source estimates. Notes ----- .. versionadded:: 0.15 """ _scalar_class = SourceEstimate ############################################################################### # Mixed source estimate (two cortical surfs plus other stuff) class _BaseMixedSourceEstimate(_BaseSourceEstimate): _src_type = 'mixed' _src_count = None @verbose def __init__(self, data, vertices=None, tmin=None, tstep=None, subject=None, verbose=None): # noqa: D102 if not isinstance(vertices, list) or len(vertices) < 2: raise ValueError('Vertices must be a list of numpy arrays with ' 'one array per source space.') super().__init__(data, vertices=vertices, tmin=tmin, tstep=tstep, subject=subject, verbose=verbose) @property def _n_surf_vert(self): return sum(len(v) for v in self.vertices[:2]) def surface(self): """Return the cortical surface source estimate. Returns ------- stc : instance of SourceEstimate or VectorSourceEstimate The surface source estimate. """ if self._data_ndim == 3: klass = VectorSourceEstimate else: klass = SourceEstimate return klass( self.data[:self._n_surf_vert], self.vertices[:2], self.tmin, self.tstep, self.subject, self.verbose) def volume(self): """Return the volume surface source estimate. Returns ------- stc : instance of VolSourceEstimate or VolVectorSourceEstimate The volume source estimate. """ if self._data_ndim == 3: klass = VolVectorSourceEstimate else: klass = VolSourceEstimate return klass( self.data[self._n_surf_vert:], self.vertices[2:], self.tmin, self.tstep, self.subject, self.verbose) @fill_doc class MixedSourceEstimate(_BaseMixedSourceEstimate): """Container for mixed surface and volume source estimates. Parameters ---------- data : array of shape (n_dipoles, n_times) | tuple, shape (2,) The data in source space. The data can either be a single array or a tuple with two arrays: "kernel" shape (n_vertices, n_sensors) and "sens_data" shape (n_sensors, n_times). In this case, the source space data corresponds to ``np.dot(kernel, sens_data)``. vertices : list of array Vertex numbers corresponding to the data. The list contains arrays with one array per source space. tmin : scalar Time point of the first sample in data. tstep : scalar Time step between successive samples in data. subject : str | None The subject name. While not necessary, it is safer to set the subject parameter to avoid analysis errors. %(verbose)s Attributes ---------- subject : str | None The subject name. times : array of shape (n_times,) The time vector. vertices : list of array Vertex numbers corresponding to the data. The list contains arrays with one array per source space. data : array of shape (n_dipoles, n_times) The data in source space. shape : tuple The shape of the data. A tuple of int (n_dipoles, n_times). See Also -------- SourceEstimate : A container for surface source estimates. VectorSourceEstimate : A container for vector source estimates. VolSourceEstimate : A container for volume source estimates. VolVectorSourceEstimate : A container for Volume vector source estimates. Notes ----- .. versionadded:: 0.9.0 """ @fill_doc class MixedVectorSourceEstimate(_BaseVectorSourceEstimate, _BaseMixedSourceEstimate): """Container for volume source estimates. Parameters ---------- data : array, shape (n_dipoles, 3, n_times) The data in source space. Each dipole contains three vectors that denote the dipole strength in X, Y and Z directions over time. vertices : list of array, shape (n_src,) Vertex numbers corresponding to the data. tmin : scalar Time point of the first sample in data. tstep : scalar Time step between successive samples in data. subject : str | None The subject name. While not necessary, it is safer to set the subject parameter to avoid analysis errors. %(verbose)s Attributes ---------- subject : str | None The subject name. times : array, shape (n_times,) The time vector. vertices : array of shape (n_dipoles,) The indices of the dipoles in the source space. data : array of shape (n_dipoles, n_times) The data in source space. shape : tuple The shape of the data. A tuple of int (n_dipoles, n_times). See Also -------- MixedSourceEstimate : A container for mixed surface + volume source estimates. Notes ----- .. versionadded:: 0.21.0 """ _scalar_class = MixedSourceEstimate ############################################################################### # Morphing def _get_vol_mask(src): """Get the volume source space mask.""" assert len(src) == 1 # not a mixed source space shape = src[0]['shape'][::-1] mask = np.zeros(shape, bool) mask.flat[src[0]['vertno']] = True return mask def _spatio_temporal_src_adjacency_vol(src, n_times): from sklearn.feature_extraction import grid_to_graph mask = _get_vol_mask(src) edges = grid_to_graph(*mask.shape, mask=mask) adjacency = _get_adjacency_from_edges(edges, n_times) return adjacency def _spatio_temporal_src_adjacency_surf(src, n_times): if src[0]['use_tris'] is None: # XXX It would be nice to support non oct source spaces too... raise RuntimeError("The source space does not appear to be an ico " "surface. adjacency cannot be extracted from" " non-ico source spaces.") used_verts = [np.unique(s['use_tris']) for s in src] offs = np.cumsum([0] + [len(u_v) for u_v in used_verts])[:-1] tris = np.concatenate([np.searchsorted(u_v, s['use_tris']) + off for u_v, s, off in zip(used_verts, src, offs)]) adjacency = spatio_temporal_tris_adjacency(tris, n_times) # deal with source space only using a subset of vertices masks = [np.in1d(u, s['vertno']) for s, u in zip(src, used_verts)] if sum(u.size for u in used_verts) != adjacency.shape[0] / n_times: raise ValueError('Used vertices do not match adjacency shape') if [np.sum(m) for m in masks] != [len(s['vertno']) for s in src]: raise ValueError('Vertex mask does not match number of vertices') masks = np.concatenate(masks) missing = 100 * float(len(masks) - np.sum(masks)) / len(masks) if missing: warn('%0.1f%% of original source space vertices have been' ' omitted, tri-based adjacency will have holes.\n' 'Consider using distance-based adjacency or ' 'morphing data to all source space vertices.' % missing) masks = np.tile(masks, n_times) masks = np.where(masks)[0] adjacency = adjacency.tocsr() adjacency = adjacency[masks] adjacency = adjacency[:, masks] # return to original format adjacency = adjacency.tocoo() return adjacency @verbose def spatio_temporal_src_adjacency(src, n_times, dist=None, verbose=None): """Compute adjacency for a source space activation over time. Parameters ---------- src : instance of SourceSpaces The source space. It can be a surface source space or a volume source space. n_times : int Number of time instants. dist : float, or None Maximal geodesic distance (in m) between vertices in the source space to consider neighbors. If None, immediate neighbors are extracted from an ico surface. %(verbose)s Returns ------- adjacency : ~scipy.sparse.coo_matrix The adjacency matrix describing the spatio-temporal graph structure. If N is the number of vertices in the source space, the N first nodes in the graph are the vertices are time 1, the nodes from 2 to 2N are the vertices during time 2, etc. """ # XXX we should compute adjacency for each source space and then # use scipy.sparse.block_diag to concatenate them if src[0]['type'] == 'vol': if dist is not None: raise ValueError('dist must be None for a volume ' 'source space. Got %s.' % dist) adjacency = _spatio_temporal_src_adjacency_vol(src, n_times) elif dist is not None: # use distances computed and saved in the source space file adjacency = spatio_temporal_dist_adjacency(src, n_times, dist) else: adjacency = _spatio_temporal_src_adjacency_surf(src, n_times) return adjacency @verbose def grade_to_tris(grade, verbose=None): """Get tris defined for a certain grade. Parameters ---------- grade : int Grade of an icosahedral mesh. %(verbose)s Returns ------- tris : list 2-element list containing Nx3 arrays of tris, suitable for use in spatio_temporal_tris_adjacency. """ a = _get_ico_tris(grade, None, False) tris = np.concatenate((a, a + (np.max(a) + 1))) return tris @verbose def spatio_temporal_tris_adjacency(tris, n_times, remap_vertices=False, verbose=None): """Compute adjacency from triangles and time instants. Parameters ---------- tris : array N x 3 array defining triangles. n_times : int Number of time points. remap_vertices : bool Reassign vertex indices based on unique values. Useful to process a subset of triangles. Defaults to False. %(verbose)s Returns ------- adjacency : ~scipy.sparse.coo_matrix The adjacency matrix describing the spatio-temporal graph structure. If N is the number of vertices in the source space, the N first nodes in the graph are the vertices are time 1, the nodes from 2 to 2N are the vertices during time 2, etc. """ if remap_vertices: logger.info('Reassigning vertex indices.') tris = np.searchsorted(np.unique(tris), tris) edges = mesh_edges(tris) edges = (edges + sparse.eye(edges.shape[0], format='csr')).tocoo() return _get_adjacency_from_edges(edges, n_times) @verbose def spatio_temporal_dist_adjacency(src, n_times, dist, verbose=None): """Compute adjacency from distances in a source space and time instants. Parameters ---------- src : instance of SourceSpaces The source space must have distances between vertices computed, such that src['dist'] exists and is useful. This can be obtained with a call to :func:`mne.setup_source_space` with the ``add_dist=True`` option. n_times : int Number of time points. dist : float Maximal geodesic distance (in m) between vertices in the source space to consider neighbors. %(verbose)s Returns ------- adjacency : ~scipy.sparse.coo_matrix The adjacency matrix describing the spatio-temporal graph structure. If N is the number of vertices in the source space, the N first nodes in the graph are the vertices are time 1, the nodes from 2 to 2N are the vertices during time 2, etc. """ if src[0]['dist'] is None: raise RuntimeError('src must have distances included, consider using ' 'setup_source_space with add_dist=True') blocks = [s['dist'][s['vertno'], :][:, s['vertno']] for s in src] # Ensure we keep explicit zeros; deal with changes in SciPy for block in blocks: if isinstance(block, np.ndarray): block[block == 0] = -np.inf else: block.data[block.data == 0] == -1 edges = sparse_block_diag(blocks) edges.data[:] = np.less_equal(edges.data, dist) # clean it up and put it in coo format edges = edges.tocsr() edges.eliminate_zeros() edges = edges.tocoo() return _get_adjacency_from_edges(edges, n_times) @verbose def spatial_src_adjacency(src, dist=None, verbose=None): """Compute adjacency for a source space activation. Parameters ---------- src : instance of SourceSpaces The source space. It can be a surface source space or a volume source space. dist : float, or None Maximal geodesic distance (in m) between vertices in the source space to consider neighbors. If None, immediate neighbors are extracted from an ico surface. %(verbose)s Returns ------- adjacency : ~scipy.sparse.coo_matrix The adjacency matrix describing the spatial graph structure. """ return spatio_temporal_src_adjacency(src, 1, dist) @verbose def spatial_tris_adjacency(tris, remap_vertices=False, verbose=None): """Compute adjacency from triangles. Parameters ---------- tris : array N x 3 array defining triangles. remap_vertices : bool Reassign vertex indices based on unique values. Useful to process a subset of triangles. Defaults to False. %(verbose)s Returns ------- adjacency : ~scipy.sparse.coo_matrix The adjacency matrix describing the spatial graph structure. """ return spatio_temporal_tris_adjacency(tris, 1, remap_vertices) @verbose def spatial_dist_adjacency(src, dist, verbose=None): """Compute adjacency from distances in a source space. Parameters ---------- src : instance of SourceSpaces The source space must have distances between vertices computed, such that src['dist'] exists and is useful. This can be obtained with a call to :func:`mne.setup_source_space` with the ``add_dist=True`` option. dist : float Maximal geodesic distance (in m) between vertices in the source space to consider neighbors. %(verbose)s Returns ------- adjacency : ~scipy.sparse.coo_matrix The adjacency matrix describing the spatial graph structure. """ return spatio_temporal_dist_adjacency(src, 1, dist) @verbose def spatial_inter_hemi_adjacency(src, dist, verbose=None): """Get vertices on each hemisphere that are close to the other hemisphere. Parameters ---------- src : instance of SourceSpaces The source space. Must be surface type. dist : float Maximal Euclidean distance (in m) between vertices in one hemisphere compared to the other to consider neighbors. %(verbose)s Returns ------- adjacency : ~scipy.sparse.coo_matrix The adjacency matrix describing the spatial graph structure. Typically this should be combined (addititively) with another existing intra-hemispheric adjacency matrix, e.g. computed using geodesic distances. """ from scipy.spatial.distance import cdist src = _ensure_src(src, kind='surface') adj = cdist(src[0]['rr'][src[0]['vertno']], src[1]['rr'][src[1]['vertno']]) adj = sparse.csr_matrix(adj <= dist, dtype=int) empties = [sparse.csr_matrix((nv, nv), dtype=int) for nv in adj.shape] adj = sparse.vstack([sparse.hstack([empties[0], adj]), sparse.hstack([adj.T, empties[1]])]) return adj @verbose def _get_adjacency_from_edges(edges, n_times, verbose=None): """Given edges sparse matrix, create adjacency matrix.""" n_vertices = edges.shape[0] logger.info("-- number of adjacent vertices : %d" % n_vertices) nnz = edges.col.size aux = n_vertices * np.tile(np.arange(n_times)[:, None], (1, nnz)) col = (edges.col[None, :] + aux).ravel() row = (edges.row[None, :] + aux).ravel() if n_times > 1: # add temporal edges o = (n_vertices * np.arange(n_times - 1)[:, None] + np.arange(n_vertices)[None, :]).ravel() d = (n_vertices * np.arange(1, n_times)[:, None] + np.arange(n_vertices)[None, :]).ravel() row = np.concatenate((row, o, d)) col = np.concatenate((col, d, o)) data = np.ones(edges.data.size * n_times + 2 * n_vertices * (n_times - 1), dtype=np.int64) adjacency = coo_matrix((data, (row, col)), shape=(n_times * n_vertices,) * 2) return adjacency @verbose def _get_ico_tris(grade, verbose=None, return_surf=False): """Get triangles for ico surface.""" ico = _get_ico_surface(grade) if not return_surf: return ico['tris'] else: return ico def _pca_flip(flip, data): U, s, V = linalg.svd(data, full_matrices=False) # determine sign-flip sign = np.sign(np.dot(U[:, 0], flip)) # use average power in label for scaling scale = linalg.norm(s) / np.sqrt(len(data)) return sign * scale * V[0] _label_funcs = { 'mean': lambda flip, data: np.mean(data, axis=0), 'mean_flip': lambda flip, data: np.mean(flip * data, axis=0), 'max': lambda flip, data: np.max(np.abs(data), axis=0), 'pca_flip': _pca_flip, } @contextlib.contextmanager def _temporary_vertices(src, vertices): orig_vertices = [s['vertno'] for s in src] for s, v in zip(src, vertices): s['vertno'] = v try: yield finally: for s, v in zip(src, orig_vertices): s['vertno'] = v def _prepare_label_extraction(stc, labels, src, mode, allow_empty, use_sparse): """Prepare indices and flips for extract_label_time_course.""" # If src is a mixed src space, the first 2 src spaces are surf type and # the other ones are vol type. For mixed source space n_labels will be # given by the number of ROIs of the cortical parcellation plus the number # of vol src space. # If stc=None (i.e. no activation time courses provided) and mode='mean', # only computes vertex indices and label_flip will be list of None. from .label import label_sign_flip, Label, BiHemiLabel # if source estimate provided in stc, get vertices from source space and # check that they are the same as in the stcs if stc is not None: vertno = stc.vertices for s, v, hemi in zip(src, stc.vertices, ('left', 'right')): n_missing = (~np.in1d(v, s['vertno'])).sum() if n_missing: raise ValueError('%d/%d %s hemisphere stc vertices missing ' 'from the source space, likely mismatch' % (n_missing, len(v), hemi)) else: vertno = [s['vertno'] for s in src] nvert = [len(vn) for vn in vertno] # initialization label_flip = list() label_vertidx = list() bad_labels = list() for li, label in enumerate(labels): if use_sparse: assert isinstance(label, dict) vertidx = label['csr'] # This can happen if some labels aren't present in the space if vertidx.shape[0] == 0: bad_labels.append(label['name']) vertidx = None # Efficiency shortcut: use linearity early to avoid redundant # calculations elif mode == 'mean': vertidx = sparse.csr_matrix(vertidx.mean(axis=0)) label_vertidx.append(vertidx) label_flip.append(None) continue # standard case _validate_type(label, (Label, BiHemiLabel), 'labels[%d]' % (li,)) if label.hemi == 'both': # handle BiHemiLabel sub_labels = [label.lh, label.rh] else: sub_labels = [label] this_vertidx = list() for slabel in sub_labels: if slabel.hemi == 'lh': this_vertices = np.intersect1d(vertno[0], slabel.vertices) vertidx = np.searchsorted(vertno[0], this_vertices) elif slabel.hemi == 'rh': this_vertices = np.intersect1d(vertno[1], slabel.vertices) vertidx = nvert[0] + np.searchsorted(vertno[1], this_vertices) else: raise ValueError('label %s has invalid hemi' % label.name) this_vertidx.append(vertidx) # convert it to an array this_vertidx = np.concatenate(this_vertidx) this_flip = None if len(this_vertidx) == 0: bad_labels.append(label.name) this_vertidx = None # to later check if label is empty elif mode not in ('mean', 'max'): # mode-dependent initialization # label_sign_flip uses two properties: # # - src[ii]['nn'] # - src[ii]['vertno'] # # So if we override vertno with the stc vertices, it will pick # the correct normals. with _temporary_vertices(src, stc.vertices): this_flip = label_sign_flip(label, src[:2])[:, None] label_vertidx.append(this_vertidx) label_flip.append(this_flip) if len(bad_labels): msg = ('source space does not contain any vertices for %d label%s:\n%s' % (len(bad_labels), _pl(bad_labels), bad_labels)) if not allow_empty: raise ValueError(msg) else: msg += '\nAssigning all-zero time series.' if allow_empty == 'ignore': logger.info(msg) else: warn(msg) return label_vertidx, label_flip def _vol_src_rr(src): return apply_trans( src[0]['src_mri_t'], np.array( [d.ravel(order='F') for d in np.meshgrid( *(np.arange(s) for s in src[0]['shape']), indexing='ij')], float).T) def _volume_labels(src, labels, mri_resolution): # This will create Label objects that should do the right thing for our # given volumetric source space when used with extract_label_time_course from .label import Label assert src.kind == 'volume' extra = ' when using a volume source space' _import_nibabel('use volume atlas labels') _validate_type(labels, ('path-like', list, tuple), 'labels' + extra) if _check_path_like(labels): mri = labels infer_labels = True else: if len(labels) != 2: raise ValueError('labels, if list or tuple, must have length 2, ' 'got %s' % (len(labels),)) mri, labels = labels infer_labels = False _validate_type(mri, 'path-like', 'labels[0]' + extra) logger.info('Reading atlas %s' % (mri,)) vol_info = _get_mri_info_data(str(mri), data=True) atlas_data = vol_info['data'] atlas_values = np.unique(atlas_data) if atlas_values.dtype.kind == 'f': # MGZ will be 'i' atlas_values = atlas_values[np.isfinite(atlas_values)] if not (atlas_values == np.round(atlas_values)).all(): raise RuntimeError('Non-integer values present in atlas, cannot ' 'labelize') atlas_values = np.round(atlas_values).astype(np.int64) if infer_labels: labels = { k: v for k, v in read_freesurfer_lut()[0].items() if v in atlas_values} labels = _check_volume_labels(labels, mri, name='labels[1]') assert isinstance(labels, dict) del atlas_values vox_mri_t = vol_info['vox_mri_t'] want = src[0].get('vox_mri_t', None) if want is None: raise RuntimeError( 'Cannot use volumetric atlas if no mri was supplied during ' 'source space creation') vox_mri_t, want = vox_mri_t['trans'], want['trans'] if not np.allclose(vox_mri_t, want, atol=1e-6): raise RuntimeError( 'atlas vox_mri_t does not match that used to create the source ' 'space') src_shape = tuple(src[0]['mri_' + k] for k in ('width', 'height', 'depth')) atlas_shape = atlas_data.shape if atlas_shape != src_shape: raise RuntimeError('atlas shape %s does not match source space MRI ' 'shape %s' % (atlas_shape, src_shape)) atlas_data = atlas_data.ravel(order='F') if mri_resolution: # Upsample then just index out_labels = list() nnz = 0 interp = src[0]['interpolator'] # should be guaranteed by size checks above and our src interp code assert interp.shape[0] == np.prod(src_shape) assert interp.shape == (atlas_data.size, len(src[0]['rr'])) interp = interp[:, src[0]['vertno']] for k, v in labels.items(): mask = atlas_data == v csr = interp[mask] out_labels.append(dict(csr=csr, name=k)) nnz += csr.shape[0] > 0 else: # Use nearest values vertno = src[0]['vertno'] rr = _vol_src_rr(src) del src src_values = _get_atlas_values(vol_info, rr[vertno]) vertices = [vertno[src_values == val] for val in labels.values()] out_labels = [Label(v, hemi='lh', name=val) for v, val in zip(vertices, labels.keys())] nnz = sum(len(v) != 0 for v in vertices) logger.info('%d/%d atlas regions had at least one vertex ' 'in the source space' % (nnz, len(out_labels))) return out_labels def _dep_trans(trans): if trans is not None: warn('trans is no longer needed and will be removed in 0.23, do not ' 'pass it as an argument', DeprecationWarning) def _gen_extract_label_time_course(stcs, labels, src, mode='mean', allow_empty=False, trans=None, mri_resolution=True, verbose=None): # loop through source estimates and extract time series _dep_trans(trans) _validate_type(src, SourceSpaces) _check_option('mode', mode, sorted(_label_funcs.keys()) + ['auto']) kind = src.kind if kind in ('surface', 'mixed'): if not isinstance(labels, list): labels = [labels] use_sparse = False else: labels = _volume_labels(src, labels, mri_resolution) use_sparse = bool(mri_resolution) n_mode = len(labels) # how many processed with the given mode n_mean = len(src[2:]) if kind == 'mixed' else 0 n_labels = n_mode + n_mean vertno = func = None for si, stc in enumerate(stcs): _validate_type(stc, _BaseSourceEstimate, 'stcs[%d]' % (si,), 'source estimate') if isinstance(stc, (_BaseVolSourceEstimate, _BaseVectorSourceEstimate)): _check_option( 'mode', mode, ('mean', 'max', 'auto'), 'when using a vector and/or volume source estimate') mode = 'mean' if mode == 'auto' else mode else: mode = 'mean_flip' if mode == 'auto' else mode if vertno is None: vertno = copy.deepcopy(stc.vertices) # avoid keeping a ref nvert = np.array([len(v) for v in vertno]) label_vertidx, src_flip = _prepare_label_extraction( stc, labels, src, mode, allow_empty, use_sparse) func = _label_funcs[mode] # make sure the stc is compatible with the source space if len(vertno) != len(stc.vertices): raise ValueError('stc not compatible with source space') for vn, svn in zip(vertno, stc.vertices): if len(vn) != len(svn): raise ValueError('stc not compatible with source space. ' 'stc has %s time series but there are %s ' 'vertices in source space. Ensure you used ' 'src from the forward or inverse operator, ' 'as forward computation can exclude vertices.' % (len(svn), len(vn))) if not np.array_equal(svn, vn): raise ValueError('stc not compatible with source space') logger.info('Extracting time courses for %d labels (mode: %s)' % (n_labels, mode)) # do the extraction label_tc = np.zeros((n_labels,) + stc.data.shape[1:], dtype=stc.data.dtype) for i, (vertidx, flip) in enumerate(zip(label_vertidx, src_flip)): if vertidx is not None: if isinstance(vertidx, sparse.csr_matrix): assert mri_resolution assert vertidx.shape[1] == stc.data.shape[0] this_data = np.reshape(stc.data, (stc.data.shape[0], -1)) this_data = vertidx @ this_data this_data.shape = \ (this_data.shape[0],) + stc.data.shape[1:] else: this_data = stc.data[vertidx] label_tc[i] = func(flip, this_data) # extract label time series for the vol src space (only mean supported) offset = nvert[:-n_mean].sum() # effectively :2 or :0 for i, nv in enumerate(nvert[2:]): if nv != 0: v2 = offset + nv label_tc[n_mode + i] = np.mean(stc.data[offset:v2], axis=0) offset = v2 # this is a generator! yield label_tc @verbose def extract_label_time_course(stcs, labels, src, mode='auto', allow_empty=False, return_generator=False, *, trans=None, mri_resolution=True, verbose=None): """Extract label time course for lists of labels and source estimates. This function will extract one time course for each label and source estimate. The way the time courses are extracted depends on the mode parameter (see Notes). Parameters ---------- stcs : SourceEstimate | list (or generator) of SourceEstimate The source estimates from which to extract the time course. %(eltc_labels)s %(eltc_src)s %(eltc_mode)s %(eltc_allow_empty)s return_generator : bool If True, a generator instead of a list is returned. %(trans_deprecated)s %(eltc_mri_resolution)s %(verbose)s Returns ------- %(eltc_returns)s Notes ----- %(eltc_mode_notes)s If encountering a ``ValueError`` due to mismatch between number of source points in the subject source space and computed ``stc`` object set ``src`` argument to ``fwd['src']`` or ``inv['src']`` to ensure the source space is the one actually used by the inverse to compute the source time courses. """ # convert inputs to lists if not isinstance(stcs, (list, tuple, GeneratorType)): stcs = [stcs] return_several = False return_generator = False else: return_several = True label_tc = _gen_extract_label_time_course( stcs, labels, src, mode=mode, allow_empty=allow_empty, trans=trans, mri_resolution=mri_resolution) if not return_generator: # do the extraction and return a list label_tc = list(label_tc) if not return_several: # input was a single SoureEstimate, return single array label_tc = label_tc[0] return label_tc @verbose def stc_near_sensors(evoked, trans, subject, distance=0.01, mode='sum', project=True, subjects_dir=None, src=None, verbose=None): """Create a STC from ECoG and sEEG sensor data. Parameters ---------- evoked : instance of Evoked The evoked data. Must contain ECoG, or sEEG channels. %(trans)s subject : str The subject name. distance : float Distance (m) defining the activation "ball" of the sensor. mode : str Can be "sum" to do a linear sum of weights, "nearest" to use only the weight of the nearest sensor, or "zero" to use a zero-order hold. See Notes. project : bool If True, project the electrodes to the nearest ``'pial`` surface vertex before computing distances. Only used when doing a surface projection. %(subjects_dir)s src : instance of SourceSpaces The source space. .. warning:: If a surface source space is used, make sure that ``surf='pial'`` was used during construction. %(verbose)s Returns ------- stc : instance of SourceEstimate The surface source estimate. If src is None, a surface source estimate will be produced, and the number of vertices will equal the number of pial-surface vertices that were close enough to the sensors to take on a non-zero volue. If src is not None, a surface, volume, or mixed source estimate will be produced (depending on the kind of source space passed) and the vertices will match those of src (i.e., there may be me many all-zero values in stc.data). Notes ----- For surface projections, this function projects the ECoG sensors to the pial surface (if ``project``), then the activation at each pial surface vertex is given by the mode: - ``'sum'`` Activation is the sum across each sensor weighted by the fractional ``distance`` from each sensor. A sensor with zero distance gets weight 1 and a sensor at ``distance`` meters away (or larger) gets weight 0. If ``distance`` is less than the distance between any two electrodes, this will be the same as ``'nearest'``. - ``'weighted'`` Same as ``'sum'`` except that only the nearest electrode is used, rather than summing across electrodes within the ``distance`` radius. As as ``'nearest'`` for vertices with distance zero to the projected sensor. - ``'nearest'`` The value is given by the value of the nearest sensor, up to a ``distance`` (beyond which it is zero). If creating a Volume STC, ``src`` must be passed in, and this function will project sEEG sensors to nearby surrounding vertices. Then the activation at each volume vertex is given by the mode in the same way as ECoG surface projections. .. versionadded:: 0.22 """ from scipy.spatial.distance import cdist, pdist from .evoked import Evoked _validate_type(evoked, Evoked, 'evoked') _validate_type(mode, str, 'mode') _validate_type(src, (None, SourceSpaces), 'src') _check_option('mode', mode, ('sum', 'single', 'nearest')) # create a copy of Evoked using ecog and seeg evoked = evoked.copy().pick_types(ecog=True, seeg=True) # get channel positions that will be used to pinpoint where # in the Source space we will use the evoked data pos = evoked._get_channel_positions() # remove nan channels nan_inds = np.where(np.isnan(pos).any(axis=1))[0] nan_chs = [evoked.ch_names[idx] for idx in nan_inds] evoked.drop_channels(nan_chs) pos = [pos[idx] for idx in range(len(pos)) if idx not in nan_inds] # coord_frame transformation from native mne "head" to MRI coord_frame trans, _ = _get_trans(trans, 'head', 'mri', allow_none=True) # convert head positions -> coord_frame MRI pos = apply_trans(trans, pos) subject = _check_subject(None, subject, False) subjects_dir = get_subjects_dir(subjects_dir, raise_error=True) if src is None: # fake a full surface one rrs = [read_surface(op.join(subjects_dir, subject, 'surf', f'{hemi}.pial'))[0] for hemi in ('lh', 'rh')] src = SourceSpaces([ dict(rr=rr / 1000., vertno=np.arange(len(rr)), type='surf', coord_frame=FIFF.FIFFV_COORD_MRI) for rr in rrs]) del rrs keep_all = False else: keep_all = True # ensure it's a usable one klass = dict( surface=SourceEstimate, volume=VolSourceEstimate, mixed=MixedSourceEstimate, ) _check_option('src.kind', src.kind, sorted(klass.keys())) klass = klass[src.kind] rrs = np.concatenate([s['rr'][s['vertno']] for s in src]) if src[0]['coord_frame'] == FIFF.FIFFV_COORD_HEAD: rrs = apply_trans(trans, rrs) # projection will only occur with surfaces logger.info( f'Projecting data from {len(pos)} sensor{_pl(pos)} onto {len(rrs)} ' f'{src.kind} vertices: {mode} mode') if project and src.kind == 'surface': logger.info(' Projecting electrodes onto surface') pos = _project_onto_surface(pos, dict(rr=rrs), project_rrs=True, method='nearest')[2] min_dist = pdist(pos).min() * 1000 logger.info( f' Minimum {"projected " if project else ""}intra-sensor distance: ' f'{min_dist:0.1f} mm') # compute pairwise distance between source space points and sensors dists = cdist(rrs, pos) assert dists.shape == (len(rrs), len(pos)) # only consider vertices within our "epsilon-ball" # characterized by distance kwarg vertices = np.where((dists <= distance).any(-1))[0] logger.info(f' {len(vertices)} / {len(rrs)} non-zero vertices') w = np.maximum(1. - dists[vertices] / distance, 0) # now we triage based on mode if mode in ('single', 'nearest'): range_ = np.arange(w.shape[0]) idx = np.argmax(w, axis=1) vals = w[range_, idx] if mode == 'single' else 1. w.fill(0) w[range_, idx] = vals missing = np.where(~np.any(w, axis=0))[0] if len(missing): warn(f'Channel{_pl(missing)} missing in STC: ' f'{", ".join(evoked.ch_names[mi] for mi in missing)}') nz_data = w @ evoked.data if not keep_all: assert src.kind == 'surface' data = nz_data offset = len(src[0]['vertno']) vertices = [vertices[vertices < offset], vertices[vertices >= offset] - offset] else: data = np.zeros( (sum(len(s['vertno']) for s in src), len(evoked.times)), dtype=nz_data.dtype) data[vertices] = nz_data vertices = [s['vertno'].copy() for s in src] return klass(data, vertices, evoked.times[0], 1. / evoked.info['sfreq'], subject=subject, verbose=verbose)
bsd-3-clause
dgwakeman/mne-python
mne/tests/test_epochs.py
2
55177
# Author: Alexandre Gramfort <[email protected]> # Denis Engemann <[email protected]> # # License: BSD (3-clause) import os.path as op from copy import deepcopy from nose.tools import (assert_true, assert_equal, assert_raises, assert_not_equal) from numpy.testing import (assert_array_equal, assert_array_almost_equal, assert_allclose) import numpy as np import copy as cp import warnings from scipy import fftpack import matplotlib from mne import (io, Epochs, read_events, pick_events, read_epochs, equalize_channels, pick_types, pick_channels, read_evokeds, write_evokeds) from mne.epochs import ( bootstrap, equalize_epoch_counts, combine_event_ids, add_channels_epochs, EpochsArray, concatenate_epochs, _BaseEpochs) from mne.utils import (_TempDir, requires_pandas, slow_test, clean_warning_registry, run_tests_if_main, requires_scipy_version) from mne.io.meas_info import create_info from mne.io.proj import _has_eeg_average_ref_proj from mne.event import merge_events from mne.io.constants import FIFF from mne.externals.six.moves import zip from mne.externals.six.moves import cPickle as pickle matplotlib.use('Agg') # for testing don't use X server warnings.simplefilter('always') # enable b/c these tests throw warnings base_dir = op.join(op.dirname(__file__), '..', 'io', 'tests', 'data') raw_fname = op.join(base_dir, 'test_raw.fif') event_name = op.join(base_dir, 'test-eve.fif') evoked_nf_name = op.join(base_dir, 'test-nf-ave.fif') event_id, tmin, tmax = 1, -0.2, 0.5 event_id_2 = 2 def _get_data(): raw = io.Raw(raw_fname, add_eeg_ref=False) events = read_events(event_name) picks = pick_types(raw.info, meg=True, eeg=True, stim=True, ecg=True, eog=True, include=['STI 014'], exclude='bads') return raw, events, picks reject = dict(grad=1000e-12, mag=4e-12, eeg=80e-6, eog=150e-6) flat = dict(grad=1e-15, mag=1e-15) clean_warning_registry() # really clean warning stack def test_base_epochs(): """Test base epochs class """ raw = _get_data()[0] epochs = _BaseEpochs(raw.info, event_id, tmin, tmax) assert_raises(NotImplementedError, epochs.get_data) assert_raises(NotImplementedError, epochs.__next__) assert_equal(epochs.__iter__()._current, 0) @requires_scipy_version('0.14') def test_savgol_filter(): """Test savgol filtering """ h_freq = 10. raw, events = _get_data()[:2] epochs = Epochs(raw, events, event_id, tmin, tmax) assert_raises(RuntimeError, epochs.savgol_filter, 10.) epochs = Epochs(raw, events, event_id, tmin, tmax, preload=True) freqs = fftpack.fftfreq(len(epochs.times), 1. / epochs.info['sfreq']) data = np.abs(fftpack.fft(epochs.get_data())) match_mask = np.logical_and(freqs >= 0, freqs <= h_freq / 2.) mismatch_mask = np.logical_and(freqs >= h_freq * 2, freqs < 50.) epochs.savgol_filter(h_freq) data_filt = np.abs(fftpack.fft(epochs.get_data())) # decent in pass-band assert_allclose(np.mean(data[:, :, match_mask], 0), np.mean(data_filt[:, :, match_mask], 0), rtol=1e-4, atol=1e-2) # suppression in stop-band assert_true(np.mean(data[:, :, mismatch_mask]) > np.mean(data_filt[:, :, mismatch_mask]) * 5) def test_epochs_hash(): """Test epoch hashing """ raw, events = _get_data()[:2] epochs = Epochs(raw, events, event_id, tmin, tmax) assert_raises(RuntimeError, epochs.__hash__) epochs = Epochs(raw, events, event_id, tmin, tmax, preload=True) assert_equal(hash(epochs), hash(epochs)) epochs_2 = Epochs(raw, events, event_id, tmin, tmax, preload=True) assert_equal(hash(epochs), hash(epochs_2)) # do NOT use assert_equal here, failing output is terrible assert_true(pickle.dumps(epochs) == pickle.dumps(epochs_2)) epochs_2._data[0, 0, 0] -= 1 assert_not_equal(hash(epochs), hash(epochs_2)) def test_event_ordering(): """Test event order""" raw, events = _get_data()[:2] events2 = events.copy() np.random.shuffle(events2) for ii, eve in enumerate([events, events2]): with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') Epochs(raw, eve, event_id, tmin, tmax, baseline=(None, 0), reject=reject, flat=flat) assert_equal(len(w), ii) if ii > 0: assert_true('chronologically' in '%s' % w[-1].message) def test_epochs_bad_baseline(): """Test Epochs initialization with bad baseline parameters """ raw, events = _get_data()[:2] assert_raises(ValueError, Epochs, raw, events, None, -0.1, 0.3, (-0.2, 0)) assert_raises(ValueError, Epochs, raw, events, None, -0.1, 0.3, (0, 0.4)) def test_epoch_combine_ids(): """Test combining event ids in epochs compared to events """ raw, events, picks = _get_data() epochs = Epochs(raw, events, {'a': 1, 'b': 2, 'c': 3, 'd': 4, 'e': 5, 'f': 32}, tmin, tmax, picks=picks, preload=False) events_new = merge_events(events, [1, 2], 12) epochs_new = combine_event_ids(epochs, ['a', 'b'], {'ab': 12}) assert_equal(epochs_new['ab'].name, 'ab') assert_array_equal(events_new, epochs_new.events) # should probably add test + functionality for non-replacement XXX def test_epoch_multi_ids(): """Test epoch selection via multiple/partial keys """ raw, events, picks = _get_data() epochs = Epochs(raw, events, {'a/b/a': 1, 'a/b/b': 2, 'a/c': 3, 'b/d': 4, 'a_b': 5}, tmin, tmax, picks=picks, preload=False) epochs_regular = epochs[['a', 'b']] epochs_multi = epochs[['a/b/a', 'a/b/b']] assert_array_equal(epochs_regular.events, epochs_multi.events) def test_read_epochs_bad_events(): """Test epochs when events are at the beginning or the end of the file """ raw, events, picks = _get_data() # Event at the beginning epochs = Epochs(raw, np.array([[raw.first_samp, 0, event_id]]), event_id, tmin, tmax, picks=picks, baseline=(None, 0)) with warnings.catch_warnings(record=True): evoked = epochs.average() epochs = Epochs(raw, np.array([[raw.first_samp, 0, event_id]]), event_id, tmin, tmax, picks=picks, baseline=(None, 0)) assert_true(repr(epochs)) # test repr epochs.drop_bad_epochs() assert_true(repr(epochs)) with warnings.catch_warnings(record=True): evoked = epochs.average() # Event at the end epochs = Epochs(raw, np.array([[raw.last_samp, 0, event_id]]), event_id, tmin, tmax, picks=picks, baseline=(None, 0)) with warnings.catch_warnings(record=True): evoked = epochs.average() assert evoked warnings.resetwarnings() @slow_test def test_read_write_epochs(): """Test epochs from raw files with IO as fif file """ raw, events, picks = _get_data() tempdir = _TempDir() epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True) evoked = epochs.average() data = epochs.get_data() # Bad tmin/tmax parameters assert_raises(ValueError, Epochs, raw, events, event_id, tmax, tmin, baseline=None) epochs_no_id = Epochs(raw, pick_events(events, include=event_id), None, tmin, tmax, picks=picks, baseline=(None, 0)) assert_array_equal(data, epochs_no_id.get_data()) eog_picks = pick_types(raw.info, meg=False, eeg=False, stim=False, eog=True, exclude='bads') eog_ch_names = [raw.ch_names[k] for k in eog_picks] epochs.drop_channels(eog_ch_names) assert_true(len(epochs.info['chs']) == len(epochs.ch_names) == epochs.get_data().shape[1]) data_no_eog = epochs.get_data() assert_true(data.shape[1] == (data_no_eog.shape[1] + len(eog_picks))) # test decim kwarg with warnings.catch_warnings(record=True) as w: # decim with lowpass warnings.simplefilter('always') epochs_dec = Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), decim=4) assert_equal(len(w), 1) # decim without lowpass lowpass = raw.info['lowpass'] raw.info['lowpass'] = None epochs_dec = Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), decim=4) assert_equal(len(w), 2) raw.info['lowpass'] = lowpass data_dec = epochs_dec.get_data() assert_array_equal(data[:, :, epochs_dec._decim_idx], data_dec) evoked_dec = epochs_dec.average() assert_array_equal(evoked.data[:, epochs_dec._decim_idx], evoked_dec.data) n = evoked.data.shape[1] n_dec = evoked_dec.data.shape[1] n_dec_min = n // 4 assert_true(n_dec_min <= n_dec <= n_dec_min + 1) assert_true(evoked_dec.info['sfreq'] == evoked.info['sfreq'] / 4) # test IO epochs.save(op.join(tempdir, 'test-epo.fif')) epochs_read = read_epochs(op.join(tempdir, 'test-epo.fif')) assert_array_almost_equal(epochs_read.get_data(), epochs.get_data()) assert_array_equal(epochs_read.times, epochs.times) assert_array_almost_equal(epochs_read.average().data, evoked.data) assert_equal(epochs_read.proj, epochs.proj) bmin, bmax = epochs.baseline if bmin is None: bmin = epochs.times[0] if bmax is None: bmax = epochs.times[-1] baseline = (bmin, bmax) assert_array_almost_equal(epochs_read.baseline, baseline) assert_array_almost_equal(epochs_read.tmin, epochs.tmin, 2) assert_array_almost_equal(epochs_read.tmax, epochs.tmax, 2) assert_equal(epochs_read.event_id, epochs.event_id) epochs.event_id.pop('1') epochs.event_id.update({'a:a': 1}) # test allow for ':' in key epochs.save(op.join(tempdir, 'foo-epo.fif')) epochs_read2 = read_epochs(op.join(tempdir, 'foo-epo.fif')) assert_equal(epochs_read2.event_id, epochs.event_id) # add reject here so some of the epochs get dropped epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), reject=reject) epochs.save(op.join(tempdir, 'test-epo.fif')) # ensure bad events are not saved epochs_read3 = read_epochs(op.join(tempdir, 'test-epo.fif')) assert_array_equal(epochs_read3.events, epochs.events) data = epochs.get_data() assert_true(epochs_read3.events.shape[0] == data.shape[0]) # test copying loaded one (raw property) epochs_read4 = epochs_read3.copy() assert_array_almost_equal(epochs_read4.get_data(), data) # test equalizing loaded one (drop_log property) epochs_read4.equalize_event_counts(epochs.event_id) epochs.drop_epochs([1, 2], reason='can we recover orig ID?') epochs.save(op.join(tempdir, 'test-epo.fif')) epochs_read5 = read_epochs(op.join(tempdir, 'test-epo.fif')) assert_array_equal(epochs_read5.selection, epochs.selection) assert_array_equal(epochs_read5.drop_log, epochs.drop_log) # Test that one can drop channels on read file epochs_read5.drop_channels(epochs_read5.ch_names[:1]) # test warnings on bad filenames with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') epochs_badname = op.join(tempdir, 'test-bad-name.fif.gz') epochs.save(epochs_badname) read_epochs(epochs_badname) assert_true(len(w) == 2) def test_epochs_proj(): """Test handling projection (apply proj in Raw or in Epochs) """ raw, events, picks = _get_data() exclude = raw.info['bads'] + ['MEG 2443', 'EEG 053'] # bads + 2 more this_picks = pick_types(raw.info, meg=True, eeg=False, stim=True, eog=True, exclude=exclude) epochs = Epochs(raw, events[:4], event_id, tmin, tmax, picks=this_picks, baseline=(None, 0), proj=True) assert_true(all(p['active'] is True for p in epochs.info['projs'])) evoked = epochs.average() assert_true(all(p['active'] is True for p in evoked.info['projs'])) data = epochs.get_data() raw_proj = io.Raw(raw_fname, proj=True) epochs_no_proj = Epochs(raw_proj, events[:4], event_id, tmin, tmax, picks=this_picks, baseline=(None, 0), proj=False) data_no_proj = epochs_no_proj.get_data() assert_true(all(p['active'] is True for p in epochs_no_proj.info['projs'])) evoked_no_proj = epochs_no_proj.average() assert_true(all(p['active'] is True for p in evoked_no_proj.info['projs'])) assert_true(epochs_no_proj.proj is True) # as projs are active from Raw assert_array_almost_equal(data, data_no_proj, decimal=8) # make sure we can exclude avg ref this_picks = pick_types(raw.info, meg=True, eeg=True, stim=True, eog=True, exclude=exclude) epochs = Epochs(raw, events[:4], event_id, tmin, tmax, picks=this_picks, baseline=(None, 0), proj=True, add_eeg_ref=True) assert_true(_has_eeg_average_ref_proj(epochs.info['projs'])) epochs = Epochs(raw, events[:4], event_id, tmin, tmax, picks=this_picks, baseline=(None, 0), proj=True, add_eeg_ref=False) assert_true(not _has_eeg_average_ref_proj(epochs.info['projs'])) # make sure we don't add avg ref when a custom ref has been applied raw.info['custom_ref_applied'] = True epochs = Epochs(raw, events[:4], event_id, tmin, tmax, picks=this_picks, baseline=(None, 0), proj=True) assert_true(not _has_eeg_average_ref_proj(epochs.info['projs'])) def test_evoked_arithmetic(): """Test arithmetic of evoked data """ raw, events, picks = _get_data() epochs1 = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks, baseline=(None, 0)) evoked1 = epochs1.average() epochs2 = Epochs(raw, events[4:8], event_id, tmin, tmax, picks=picks, baseline=(None, 0)) evoked2 = epochs2.average() epochs = Epochs(raw, events[:8], event_id, tmin, tmax, picks=picks, baseline=(None, 0)) evoked = epochs.average() evoked_sum = evoked1 + evoked2 assert_array_equal(evoked.data, evoked_sum.data) assert_array_equal(evoked.times, evoked_sum.times) assert_true(evoked_sum.nave == (evoked1.nave + evoked2.nave)) evoked_diff = evoked1 - evoked1 assert_array_equal(np.zeros_like(evoked.data), evoked_diff.data) def test_evoked_io_from_epochs(): """Test IO of evoked data made from epochs """ tempdir = _TempDir() raw, events, picks = _get_data() # offset our tmin so we don't get exactly a zero value when decimating with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') epochs = Epochs(raw, events[:4], event_id, tmin + 0.011, tmax, picks=picks, baseline=(None, 0), decim=5) assert_true(len(w) == 1) evoked = epochs.average() evoked.save(op.join(tempdir, 'evoked-ave.fif')) evoked2 = read_evokeds(op.join(tempdir, 'evoked-ave.fif'))[0] assert_allclose(evoked.data, evoked2.data, rtol=1e-4, atol=1e-20) assert_allclose(evoked.times, evoked2.times, rtol=1e-4, atol=1 / evoked.info['sfreq']) # now let's do one with negative time with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') epochs = Epochs(raw, events[:4], event_id, 0.1, tmax, picks=picks, baseline=(0.1, 0.2), decim=5) evoked = epochs.average() evoked.save(op.join(tempdir, 'evoked-ave.fif')) evoked2 = read_evokeds(op.join(tempdir, 'evoked-ave.fif'))[0] assert_allclose(evoked.data, evoked2.data, rtol=1e-4, atol=1e-20) assert_allclose(evoked.times, evoked2.times, rtol=1e-4, atol=1e-20) # should be equivalent to a cropped original with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') epochs = Epochs(raw, events[:4], event_id, -0.2, tmax, picks=picks, baseline=(0.1, 0.2), decim=5) evoked = epochs.average() evoked.crop(0.099, None) assert_allclose(evoked.data, evoked2.data, rtol=1e-4, atol=1e-20) assert_allclose(evoked.times, evoked2.times, rtol=1e-4, atol=1e-20) def test_evoked_standard_error(): """Test calculation and read/write of standard error """ raw, events, picks = _get_data() tempdir = _TempDir() epochs = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks, baseline=(None, 0)) evoked = [epochs.average(), epochs.standard_error()] write_evokeds(op.join(tempdir, 'evoked-ave.fif'), evoked) evoked2 = read_evokeds(op.join(tempdir, 'evoked-ave.fif'), [0, 1]) evoked3 = [read_evokeds(op.join(tempdir, 'evoked-ave.fif'), 'Unknown'), read_evokeds(op.join(tempdir, 'evoked-ave.fif'), 'Unknown', kind='standard_error')] for evoked_new in [evoked2, evoked3]: assert_true(evoked_new[0]._aspect_kind == FIFF.FIFFV_ASPECT_AVERAGE) assert_true(evoked_new[0].kind == 'average') assert_true(evoked_new[1]._aspect_kind == FIFF.FIFFV_ASPECT_STD_ERR) assert_true(evoked_new[1].kind == 'standard_error') for ave, ave2 in zip(evoked, evoked_new): assert_array_almost_equal(ave.data, ave2.data) assert_array_almost_equal(ave.times, ave2.times) assert_equal(ave.nave, ave2.nave) assert_equal(ave._aspect_kind, ave2._aspect_kind) assert_equal(ave.kind, ave2.kind) assert_equal(ave.last, ave2.last) assert_equal(ave.first, ave2.first) def test_reject_epochs(): """Test of epochs rejection """ raw, events, picks = _get_data() events1 = events[events[:, 2] == event_id] epochs = Epochs(raw, events1, event_id, tmin, tmax, baseline=(None, 0), reject=reject, flat=flat) assert_raises(RuntimeError, len, epochs) n_events = len(epochs.events) data = epochs.get_data() n_clean_epochs = len(data) # Should match # mne_process_raw --raw test_raw.fif --projoff \ # --saveavetag -ave --ave test.ave --filteroff assert_true(n_events > n_clean_epochs) assert_true(n_clean_epochs == 3) assert_true(epochs.drop_log == [[], [], [], ['MEG 2443'], ['MEG 2443'], ['MEG 2443'], ['MEG 2443']]) # Ensure epochs are not dropped based on a bad channel raw_2 = raw.copy() raw_2.info['bads'] = ['MEG 2443'] reject_crazy = dict(grad=1000e-15, mag=4e-15, eeg=80e-9, eog=150e-9) epochs = Epochs(raw_2, events1, event_id, tmin, tmax, baseline=(None, 0), reject=reject_crazy, flat=flat) epochs.drop_bad_epochs() assert_true(all('MEG 2442' in e for e in epochs.drop_log)) assert_true(all('MEG 2443' not in e for e in epochs.drop_log)) # Invalid reject_tmin/reject_tmax/detrend assert_raises(ValueError, Epochs, raw, events1, event_id, tmin, tmax, reject_tmin=1., reject_tmax=0) assert_raises(ValueError, Epochs, raw, events1, event_id, tmin, tmax, reject_tmin=tmin - 1, reject_tmax=1.) assert_raises(ValueError, Epochs, raw, events1, event_id, tmin, tmax, reject_tmin=0., reject_tmax=tmax + 1) epochs = Epochs(raw, events1, event_id, tmin, tmax, picks=picks, baseline=(None, 0), reject=reject, flat=flat, reject_tmin=0., reject_tmax=.1) data = epochs.get_data() n_clean_epochs = len(data) assert_true(n_clean_epochs == 7) assert_true(len(epochs) == 7) assert_true(epochs.times[epochs._reject_time][0] >= 0.) assert_true(epochs.times[epochs._reject_time][-1] <= 0.1) # Invalid data for _is_good_epoch function epochs = Epochs(raw, events1, event_id, tmin, tmax, reject=None, flat=None) assert_equal(epochs._is_good_epoch(None), (False, ['NO_DATA'])) assert_equal(epochs._is_good_epoch(np.zeros((1, 1))), (False, ['TOO_SHORT'])) data = epochs[0].get_data()[0] assert_equal(epochs._is_good_epoch(data), (True, None)) def test_preload_epochs(): """Test preload of epochs """ raw, events, picks = _get_data() epochs_preload = Epochs(raw, events[:16], event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True, reject=reject, flat=flat) data_preload = epochs_preload.get_data() epochs = Epochs(raw, events[:16], event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=False, reject=reject, flat=flat) data = epochs.get_data() assert_array_equal(data_preload, data) assert_array_almost_equal(epochs_preload.average().data, epochs.average().data, 18) def test_indexing_slicing(): """Test of indexing and slicing operations """ raw, events, picks = _get_data() epochs = Epochs(raw, events[:20], event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=False, reject=reject, flat=flat) data_normal = epochs.get_data() n_good_events = data_normal.shape[0] # indices for slicing start_index = 1 end_index = n_good_events - 1 assert((end_index - start_index) > 0) for preload in [True, False]: epochs2 = Epochs(raw, events[:20], event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=preload, reject=reject, flat=flat) if not preload: epochs2.drop_bad_epochs() # using slicing epochs2_sliced = epochs2[start_index:end_index] data_epochs2_sliced = epochs2_sliced.get_data() assert_array_equal(data_epochs2_sliced, data_normal[start_index:end_index]) # using indexing pos = 0 for idx in range(start_index, end_index): data = epochs2_sliced[pos].get_data() assert_array_equal(data[0], data_normal[idx]) pos += 1 # using indexing with an int data = epochs2[data_epochs2_sliced.shape[0]].get_data() assert_array_equal(data, data_normal[[idx]]) # using indexing with an array idx = np.random.randint(0, data_epochs2_sliced.shape[0], 10) data = epochs2[idx].get_data() assert_array_equal(data, data_normal[idx]) # using indexing with a list of indices idx = [0] data = epochs2[idx].get_data() assert_array_equal(data, data_normal[idx]) idx = [0, 1] data = epochs2[idx].get_data() assert_array_equal(data, data_normal[idx]) def test_comparision_with_c(): """Test of average obtained vs C code """ raw, events = _get_data()[:2] c_evoked = read_evokeds(evoked_nf_name, condition=0) epochs = Epochs(raw, events, event_id, tmin, tmax, baseline=None, preload=True, reject=None, flat=None) evoked = epochs.average() sel = pick_channels(c_evoked.ch_names, evoked.ch_names) evoked_data = evoked.data c_evoked_data = c_evoked.data[sel] assert_true(evoked.nave == c_evoked.nave) assert_array_almost_equal(evoked_data, c_evoked_data, 10) assert_array_almost_equal(evoked.times, c_evoked.times, 12) def test_crop(): """Test of crop of epochs """ raw, events, picks = _get_data() epochs = Epochs(raw, events[:5], event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=False, reject=reject, flat=flat) assert_raises(RuntimeError, epochs.crop, None, 0.2) # not preloaded data_normal = epochs.get_data() epochs2 = Epochs(raw, events[:5], event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True, reject=reject, flat=flat) with warnings.catch_warnings(record=True) as w: epochs2.crop(-20, 200) assert_true(len(w) == 2) # indices for slicing tmin_window = tmin + 0.1 tmax_window = tmax - 0.1 tmask = (epochs.times >= tmin_window) & (epochs.times <= tmax_window) assert_true(tmin_window > tmin) assert_true(tmax_window < tmax) epochs3 = epochs2.crop(tmin_window, tmax_window, copy=True) data3 = epochs3.get_data() epochs2.crop(tmin_window, tmax_window) data2 = epochs2.get_data() assert_array_equal(data2, data_normal[:, :, tmask]) assert_array_equal(data3, data_normal[:, :, tmask]) def test_resample(): """Test of resample of epochs """ raw, events, picks = _get_data() epochs = Epochs(raw, events[:10], event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=False, reject=reject, flat=flat) assert_raises(RuntimeError, epochs.resample, 100) epochs = Epochs(raw, events[:10], event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True, reject=reject, flat=flat) data_normal = cp.deepcopy(epochs.get_data()) times_normal = cp.deepcopy(epochs.times) sfreq_normal = epochs.info['sfreq'] # upsample by 2 epochs.resample(sfreq_normal * 2, npad=0) data_up = cp.deepcopy(epochs.get_data()) times_up = cp.deepcopy(epochs.times) sfreq_up = epochs.info['sfreq'] # downsamply by 2, which should match epochs.resample(sfreq_normal, npad=0) data_new = cp.deepcopy(epochs.get_data()) times_new = cp.deepcopy(epochs.times) sfreq_new = epochs.info['sfreq'] assert_true(data_up.shape[2] == 2 * data_normal.shape[2]) assert_true(sfreq_up == 2 * sfreq_normal) assert_true(sfreq_new == sfreq_normal) assert_true(len(times_up) == 2 * len(times_normal)) assert_array_almost_equal(times_new, times_normal, 10) assert_true(data_up.shape[2] == 2 * data_normal.shape[2]) assert_array_almost_equal(data_new, data_normal, 5) # use parallel epochs = Epochs(raw, events[:10], event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True, reject=reject, flat=flat) epochs.resample(sfreq_normal * 2, n_jobs=2, npad=0) assert_true(np.allclose(data_up, epochs._data, rtol=1e-8, atol=1e-16)) def test_detrend(): """Test detrending of epochs """ raw, events, picks = _get_data() # test first-order epochs_1 = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks, baseline=None, detrend=1) epochs_2 = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks, baseline=None, detrend=None) data_picks = pick_types(epochs_1.info, meg=True, eeg=True, exclude='bads') evoked_1 = epochs_1.average() evoked_2 = epochs_2.average() evoked_2.detrend(1) # Due to roundoff these won't be exactly equal, but they should be close assert_true(np.allclose(evoked_1.data, evoked_2.data, rtol=1e-8, atol=1e-20)) # test zeroth-order case for preload in [True, False]: epochs_1 = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks, baseline=(None, None), preload=preload) epochs_2 = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks, baseline=None, preload=preload, detrend=0) a = epochs_1.get_data() b = epochs_2.get_data() # All data channels should be almost equal assert_true(np.allclose(a[:, data_picks, :], b[:, data_picks, :], rtol=1e-16, atol=1e-20)) # There are non-M/EEG channels that should not be equal: assert_true(not np.allclose(a, b)) assert_raises(ValueError, Epochs, raw, events[:4], event_id, tmin, tmax, detrend=2) def test_bootstrap(): """Test of bootstrapping of epochs """ raw, events, picks = _get_data() epochs = Epochs(raw, events[:5], event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True, reject=reject, flat=flat) epochs2 = bootstrap(epochs, random_state=0) assert_true(len(epochs2.events) == len(epochs.events)) assert_true(epochs._data.shape == epochs2._data.shape) def test_epochs_copy(): """Test copy epochs """ raw, events, picks = _get_data() epochs = Epochs(raw, events[:5], event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True, reject=reject, flat=flat) copied = epochs.copy() assert_array_equal(epochs._data, copied._data) epochs = Epochs(raw, events[:5], event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=False, reject=reject, flat=flat) copied = epochs.copy() data = epochs.get_data() copied_data = copied.get_data() assert_array_equal(data, copied_data) def test_iter_evoked(): """Test the iterator for epochs -> evoked """ raw, events, picks = _get_data() epochs = Epochs(raw, events[:5], event_id, tmin, tmax, picks=picks, baseline=(None, 0)) for ii, ev in enumerate(epochs.iter_evoked()): x = ev.data y = epochs.get_data()[ii, :, :] assert_array_equal(x, y) def test_subtract_evoked(): """Test subtraction of Evoked from Epochs """ raw, events, picks = _get_data() epochs = Epochs(raw, events[:10], event_id, tmin, tmax, picks=picks, baseline=(None, 0)) # make sure subraction fails if data channels are missing assert_raises(ValueError, epochs.subtract_evoked, epochs.average(picks[:5])) # do the subraction using the default argument epochs.subtract_evoked() # apply SSP now epochs.apply_proj() # use preloading and SSP from the start epochs2 = Epochs(raw, events[:10], event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True, proj=True) evoked = epochs2.average() epochs2.subtract_evoked(evoked) # this gives the same result assert_allclose(epochs.get_data(), epochs2.get_data()) # if we compute the evoked response after subtracting it we get zero zero_evoked = epochs.average() data = zero_evoked.data assert_array_almost_equal(data, np.zeros_like(data), decimal=20) def test_epoch_eq(): """Test epoch count equalization and condition combining """ raw, events, picks = _get_data() # equalizing epochs objects epochs_1 = Epochs(raw, events, event_id, tmin, tmax, picks=picks) epochs_2 = Epochs(raw, events, event_id_2, tmin, tmax, picks=picks) epochs_1.drop_bad_epochs() # make sure drops are logged assert_true(len([l for l in epochs_1.drop_log if not l]) == len(epochs_1.events)) drop_log1 = epochs_1.drop_log = [[] for _ in range(len(epochs_1.events))] drop_log2 = [[] if l == ['EQUALIZED_COUNT'] else l for l in epochs_1.drop_log] assert_true(drop_log1 == drop_log2) assert_true(len([l for l in epochs_1.drop_log if not l]) == len(epochs_1.events)) assert_true(epochs_1.events.shape[0] != epochs_2.events.shape[0]) equalize_epoch_counts([epochs_1, epochs_2], method='mintime') assert_true(epochs_1.events.shape[0] == epochs_2.events.shape[0]) epochs_3 = Epochs(raw, events, event_id, tmin, tmax, picks=picks) epochs_4 = Epochs(raw, events, event_id_2, tmin, tmax, picks=picks) equalize_epoch_counts([epochs_3, epochs_4], method='truncate') assert_true(epochs_1.events.shape[0] == epochs_3.events.shape[0]) assert_true(epochs_3.events.shape[0] == epochs_4.events.shape[0]) # equalizing conditions epochs = Epochs(raw, events, {'a': 1, 'b': 2, 'c': 3, 'd': 4}, tmin, tmax, picks=picks, reject=reject) epochs.drop_bad_epochs() # make sure drops are logged assert_true(len([l for l in epochs.drop_log if not l]) == len(epochs.events)) drop_log1 = deepcopy(epochs.drop_log) old_shapes = [epochs[key].events.shape[0] for key in ['a', 'b', 'c', 'd']] epochs.equalize_event_counts(['a', 'b'], copy=False) # undo the eq logging drop_log2 = [[] if l == ['EQUALIZED_COUNT'] else l for l in epochs.drop_log] assert_true(drop_log1 == drop_log2) assert_true(len([l for l in epochs.drop_log if not l]) == len(epochs.events)) new_shapes = [epochs[key].events.shape[0] for key in ['a', 'b', 'c', 'd']] assert_true(new_shapes[0] == new_shapes[1]) assert_true(new_shapes[2] == new_shapes[2]) assert_true(new_shapes[3] == new_shapes[3]) # now with two conditions collapsed old_shapes = new_shapes epochs.equalize_event_counts([['a', 'b'], 'c'], copy=False) new_shapes = [epochs[key].events.shape[0] for key in ['a', 'b', 'c', 'd']] assert_true(new_shapes[0] + new_shapes[1] == new_shapes[2]) assert_true(new_shapes[3] == old_shapes[3]) assert_raises(KeyError, epochs.equalize_event_counts, [1, 'a']) # now let's combine conditions old_shapes = new_shapes epochs = epochs.equalize_event_counts([['a', 'b'], ['c', 'd']])[0] new_shapes = [epochs[key].events.shape[0] for key in ['a', 'b', 'c', 'd']] assert_true(old_shapes[0] + old_shapes[1] == new_shapes[0] + new_shapes[1]) assert_true(new_shapes[0] + new_shapes[1] == new_shapes[2] + new_shapes[3]) assert_raises(ValueError, combine_event_ids, epochs, ['a', 'b'], {'ab': 1}) combine_event_ids(epochs, ['a', 'b'], {'ab': 12}, copy=False) caught = 0 for key in ['a', 'b']: try: epochs[key] except KeyError: caught += 1 assert_raises(Exception, caught == 2) assert_true(not np.any(epochs.events[:, 2] == 1)) assert_true(not np.any(epochs.events[:, 2] == 2)) epochs = combine_event_ids(epochs, ['c', 'd'], {'cd': 34}) assert_true(np.all(np.logical_or(epochs.events[:, 2] == 12, epochs.events[:, 2] == 34))) assert_true(epochs['ab'].events.shape[0] == old_shapes[0] + old_shapes[1]) assert_true(epochs['ab'].events.shape[0] == epochs['cd'].events.shape[0]) def test_access_by_name(): """Test accessing epochs by event name and on_missing for rare events """ tempdir = _TempDir() raw, events, picks = _get_data() # Test various invalid inputs assert_raises(ValueError, Epochs, raw, events, {1: 42, 2: 42}, tmin, tmax, picks=picks) assert_raises(ValueError, Epochs, raw, events, {'a': 'spam', 2: 'eggs'}, tmin, tmax, picks=picks) assert_raises(ValueError, Epochs, raw, events, {'a': 'spam', 2: 'eggs'}, tmin, tmax, picks=picks) assert_raises(ValueError, Epochs, raw, events, 'foo', tmin, tmax, picks=picks) assert_raises(ValueError, Epochs, raw, events, ['foo'], tmin, tmax, picks=picks) # Test accessing non-existent events (assumes 12345678 does not exist) event_id_illegal = dict(aud_l=1, does_not_exist=12345678) assert_raises(ValueError, Epochs, raw, events, event_id_illegal, tmin, tmax) # Test on_missing assert_raises(ValueError, Epochs, raw, events, 1, tmin, tmax, on_missing='foo') with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') Epochs(raw, events, event_id_illegal, tmin, tmax, on_missing='warning') nw = len(w) assert_true(1 <= nw <= 2) Epochs(raw, events, event_id_illegal, tmin, tmax, on_missing='ignore') assert_equal(len(w), nw) # Test constructing epochs with a list of ints as events epochs = Epochs(raw, events, [1, 2], tmin, tmax, picks=picks) for k, v in epochs.event_id.items(): assert_equal(int(k), v) epochs = Epochs(raw, events, {'a': 1, 'b': 2}, tmin, tmax, picks=picks) assert_raises(KeyError, epochs.__getitem__, 'bar') data = epochs['a'].get_data() event_a = events[events[:, 2] == 1] assert_true(len(data) == len(event_a)) epochs = Epochs(raw, events, {'a': 1, 'b': 2}, tmin, tmax, picks=picks, preload=True) assert_raises(KeyError, epochs.__getitem__, 'bar') epochs.save(op.join(tempdir, 'test-epo.fif')) epochs2 = read_epochs(op.join(tempdir, 'test-epo.fif')) for ep in [epochs, epochs2]: data = ep['a'].get_data() event_a = events[events[:, 2] == 1] assert_true(len(data) == len(event_a)) assert_array_equal(epochs2['a'].events, epochs['a'].events) epochs3 = Epochs(raw, events, {'a': 1, 'b': 2, 'c': 3, 'd': 4}, tmin, tmax, picks=picks, preload=True) assert_equal(list(sorted(epochs3[('a', 'b')].event_id.values())), [1, 2]) epochs4 = epochs['a'] epochs5 = epochs3['a'] assert_array_equal(epochs4.events, epochs5.events) # 20 is our tolerance because epochs are written out as floats assert_array_almost_equal(epochs4.get_data(), epochs5.get_data(), 20) epochs6 = epochs3[['a', 'b']] assert_true(all(np.logical_or(epochs6.events[:, 2] == 1, epochs6.events[:, 2] == 2))) assert_array_equal(epochs.events, epochs6.events) assert_array_almost_equal(epochs.get_data(), epochs6.get_data(), 20) # Make sure we preserve names assert_equal(epochs['a'].name, 'a') assert_equal(epochs[['a', 'b']]['a'].name, 'a') @requires_pandas def test_to_data_frame(): """Test epochs Pandas exporter""" raw, events, picks = _get_data() epochs = Epochs(raw, events, {'a': 1, 'b': 2}, tmin, tmax, picks=picks) assert_raises(ValueError, epochs.to_data_frame, index=['foo', 'bar']) assert_raises(ValueError, epochs.to_data_frame, index='qux') assert_raises(ValueError, epochs.to_data_frame, np.arange(400)) df = epochs.to_data_frame(index=['condition', 'epoch', 'time'], picks=list(range(epochs.info['nchan']))) # Default index and picks df2 = epochs.to_data_frame() assert_equal(df.index.names, df2.index.names) assert_array_equal(df.columns.values, epochs.ch_names) data = np.hstack(epochs.get_data()) assert_true((df.columns == epochs.ch_names).all()) assert_array_equal(df.values[:, 0], data[0] * 1e13) assert_array_equal(df.values[:, 2], data[2] * 1e15) for ind in ['time', ['condition', 'time'], ['condition', 'time', 'epoch']]: df = epochs.to_data_frame(index=ind) assert_true(df.index.names == ind if isinstance(ind, list) else [ind]) # test that non-indexed data were present as categorial variables df.reset_index().columns[:3] == ['condition', 'epoch', 'time'] def test_epochs_proj_mixin(): """Test SSP proj methods from ProjMixin class """ raw, events, picks = _get_data() for proj in [True, False]: epochs = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks, baseline=(None, 0), proj=proj) assert_true(all(p['active'] == proj for p in epochs.info['projs'])) # test adding / deleting proj if proj: epochs.get_data() assert_true(all(p['active'] == proj for p in epochs.info['projs'])) assert_raises(ValueError, epochs.add_proj, epochs.info['projs'][0], {'remove_existing': True}) assert_raises(ValueError, epochs.add_proj, 'spam') assert_raises(ValueError, epochs.del_proj, 0) else: projs = deepcopy(epochs.info['projs']) n_proj = len(epochs.info['projs']) epochs.del_proj(0) assert_true(len(epochs.info['projs']) == n_proj - 1) epochs.add_proj(projs, remove_existing=False) assert_true(len(epochs.info['projs']) == 2 * n_proj - 1) epochs.add_proj(projs, remove_existing=True) assert_true(len(epochs.info['projs']) == n_proj) # catch no-gos. # wrong proj argument assert_raises(ValueError, Epochs, raw, events[:4], event_id, tmin, tmax, picks=picks, baseline=(None, 0), proj='crazy') # delayed without reject params assert_raises(RuntimeError, Epochs, raw, events[:4], event_id, tmin, tmax, picks=picks, baseline=(None, 0), proj='delayed', reject=None) for preload in [True, False]: epochs = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks, baseline=(None, 0), proj='delayed', preload=preload, add_eeg_ref=True, verbose=True, reject=reject) epochs2 = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks, baseline=(None, 0), proj=True, preload=preload, add_eeg_ref=True, reject=reject) assert_allclose(epochs.copy().apply_proj().get_data()[0], epochs2.get_data()[0]) # make sure data output is constant across repeated calls # e.g. drop bads assert_array_equal(epochs.get_data(), epochs.get_data()) assert_array_equal(epochs2.get_data(), epochs2.get_data()) # test epochs.next calls data = epochs.get_data().copy() data2 = np.array([e for e in epochs]) assert_array_equal(data, data2) # cross application from processing stream 1 to 2 epochs.apply_proj() assert_array_equal(epochs._projector, epochs2._projector) assert_allclose(epochs._data, epochs2.get_data()) # test mixin against manual application epochs = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks, baseline=None, proj=False, add_eeg_ref=True) data = epochs.get_data().copy() epochs.apply_proj() assert_allclose(np.dot(epochs._projector, data[0]), epochs._data[0]) def test_drop_epochs(): """Test dropping of epochs. """ raw, events, picks = _get_data() epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0)) events1 = events[events[:, 2] == event_id] # Bound checks assert_raises(IndexError, epochs.drop_epochs, [len(epochs.events)]) assert_raises(IndexError, epochs.drop_epochs, [-1]) assert_raises(ValueError, epochs.drop_epochs, [[1, 2], [3, 4]]) # Test selection attribute assert_array_equal(epochs.selection, np.where(events[:, 2] == event_id)[0]) assert_equal(len(epochs.drop_log), len(events)) assert_true(all(epochs.drop_log[k] == ['IGNORED'] for k in set(range(len(events))) - set(epochs.selection))) selection = epochs.selection.copy() n_events = len(epochs.events) epochs.drop_epochs([2, 4], reason='d') assert_equal(epochs.drop_log_stats(), 2. / n_events * 100) assert_equal(len(epochs.drop_log), len(events)) assert_equal([epochs.drop_log[k] for k in selection[[2, 4]]], [['d'], ['d']]) assert_array_equal(events[epochs.selection], events1[[0, 1, 3, 5, 6]]) assert_array_equal(events[epochs[3:].selection], events1[[5, 6]]) assert_array_equal(events[epochs['1'].selection], events1[[0, 1, 3, 5, 6]]) def test_drop_epochs_mult(): """Test that subselecting epochs or making less epochs is equivalent""" raw, events, picks = _get_data() for preload in [True, False]: epochs1 = Epochs(raw, events, {'a': 1, 'b': 2}, tmin, tmax, picks=picks, reject=reject, preload=preload)['a'] epochs2 = Epochs(raw, events, {'a': 1}, tmin, tmax, picks=picks, reject=reject, preload=preload) if preload: # In the preload case you cannot know the bads if already ignored assert_equal(len(epochs1.drop_log), len(epochs2.drop_log)) for d1, d2 in zip(epochs1.drop_log, epochs2.drop_log): if d1 == ['IGNORED']: assert_true(d2 == ['IGNORED']) if d1 != ['IGNORED'] and d1 != []: assert_true((d2 == d1) or (d2 == ['IGNORED'])) if d1 == []: assert_true(d2 == []) assert_array_equal(epochs1.events, epochs2.events) assert_array_equal(epochs1.selection, epochs2.selection) else: # In the non preload is should be exactly the same assert_equal(epochs1.drop_log, epochs2.drop_log) assert_array_equal(epochs1.events, epochs2.events) assert_array_equal(epochs1.selection, epochs2.selection) def test_contains(): """Test membership API""" raw, events = _get_data()[:2] tests = [(('mag', False), ('grad', 'eeg')), (('grad', False), ('mag', 'eeg')), ((False, True), ('grad', 'mag'))] for (meg, eeg), others in tests: picks_contains = pick_types(raw.info, meg=meg, eeg=eeg) epochs = Epochs(raw, events, {'a': 1, 'b': 2}, tmin, tmax, picks=picks_contains, reject=None, preload=False) test = 'eeg' if eeg is True else meg assert_true(test in epochs) assert_true(not any(o in epochs for o in others)) assert_raises(ValueError, epochs.__contains__, 'foo') assert_raises(ValueError, epochs.__contains__, 1) def test_drop_channels_mixin(): """Test channels-dropping functionality """ raw, events = _get_data()[:2] # here without picks to get additional coverage epochs = Epochs(raw, events, event_id, tmin, tmax, picks=None, baseline=(None, 0), preload=True) drop_ch = epochs.ch_names[:3] ch_names = epochs.ch_names[3:] ch_names_orig = epochs.ch_names dummy = epochs.drop_channels(drop_ch, copy=True) assert_equal(ch_names, dummy.ch_names) assert_equal(ch_names_orig, epochs.ch_names) assert_equal(len(ch_names_orig), epochs.get_data().shape[1]) epochs.drop_channels(drop_ch) assert_equal(ch_names, epochs.ch_names) assert_equal(len(ch_names), epochs.get_data().shape[1]) def test_pick_channels_mixin(): """Test channel-picking functionality """ raw, events, picks = _get_data() epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True) ch_names = epochs.ch_names[:3] epochs.preload = False assert_raises(RuntimeError, epochs.drop_channels, ['foo']) epochs.preload = True ch_names_orig = epochs.ch_names dummy = epochs.pick_channels(ch_names, copy=True) assert_equal(ch_names, dummy.ch_names) assert_equal(ch_names_orig, epochs.ch_names) assert_equal(len(ch_names_orig), epochs.get_data().shape[1]) epochs.pick_channels(ch_names) assert_equal(ch_names, epochs.ch_names) assert_equal(len(ch_names), epochs.get_data().shape[1]) # Invalid picks assert_raises(ValueError, Epochs, raw, events, event_id, tmin, tmax, picks=[]) def test_equalize_channels(): """Test equalization of channels """ raw, events, picks = _get_data() epochs1 = Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), proj=False, preload=True) epochs2 = epochs1.copy() ch_names = epochs1.ch_names[2:] epochs1.drop_channels(epochs1.ch_names[:1]) epochs2.drop_channels(epochs2.ch_names[1:2]) my_comparison = [epochs1, epochs2] equalize_channels(my_comparison) for e in my_comparison: assert_equal(ch_names, e.ch_names) def test_illegal_event_id(): """Test handling of invalid events ids""" raw, events, picks = _get_data() event_id_illegal = dict(aud_l=1, does_not_exist=12345678) assert_raises(ValueError, Epochs, raw, events, event_id_illegal, tmin, tmax, picks=picks, baseline=(None, 0), proj=False) def test_add_channels_epochs(): """Test adding channels""" raw, events, picks = _get_data() def make_epochs(picks): return Epochs(raw, events, event_id, tmin, tmax, baseline=(None, 0), reject=None, preload=True, proj=False, picks=picks) picks = pick_types(raw.info, meg=True, eeg=True, exclude='bads') picks_meg = pick_types(raw.info, meg=True, eeg=False, exclude='bads') picks_eeg = pick_types(raw.info, meg=False, eeg=True, exclude='bads') epochs = make_epochs(picks=picks) epochs_meg = make_epochs(picks=picks_meg) epochs_eeg = make_epochs(picks=picks_eeg) epochs2 = add_channels_epochs([epochs_meg, epochs_eeg]) assert_equal(len(epochs.info['projs']), len(epochs2.info['projs'])) assert_equal(len(epochs.info.keys()), len(epochs2.info.keys())) data1 = epochs.get_data() data2 = epochs2.get_data() data3 = np.concatenate([e.get_data() for e in [epochs_meg, epochs_eeg]], axis=1) assert_array_equal(data1.shape, data2.shape) # XXX unrelated bug? this crashes when proj == True assert_array_equal(data1, data3) assert_array_equal(data1, data2) epochs_meg2 = epochs_meg.copy() epochs_meg2.info['meas_date'] += 10 add_channels_epochs([epochs_meg2, epochs_eeg]) epochs_meg2 = epochs_meg.copy() epochs2.info['filename'] = epochs2.info['filename'].upper() epochs2 = add_channels_epochs([epochs_meg, epochs_eeg]) epochs_meg2 = epochs_meg.copy() epochs_meg2.events[3, 2] -= 1 assert_raises(ValueError, add_channels_epochs, [epochs_meg2, epochs_eeg]) assert_raises(ValueError, add_channels_epochs, [epochs_meg, epochs_eeg[:2]]) epochs_meg.info['chs'].pop(0) assert_raises(RuntimeError, add_channels_epochs, [epochs_meg, epochs_eeg]) epochs_meg2 = epochs_meg.copy() epochs_meg2.info['sfreq'] = None assert_raises(RuntimeError, add_channels_epochs, [epochs_meg2, epochs_eeg]) epochs_meg2 = epochs_meg.copy() epochs_meg2.info['sfreq'] += 10 assert_raises(RuntimeError, add_channels_epochs, [epochs_meg2, epochs_eeg]) epochs_meg2 = epochs_meg.copy() epochs_meg2.info['ch_names'][1] = epochs_meg2.info['ch_names'][0] assert_raises(ValueError, add_channels_epochs, [epochs_meg2, epochs_eeg]) epochs_meg2 = epochs_meg.copy() epochs_meg2.info['dev_head_t']['to'] += 1 assert_raises(ValueError, add_channels_epochs, [epochs_meg2, epochs_eeg]) epochs_meg2 = epochs_meg.copy() epochs_meg2.info['dev_head_t']['to'] += 1 assert_raises(ValueError, add_channels_epochs, [epochs_meg2, epochs_eeg]) epochs_meg2 = epochs_meg.copy() epochs_meg2.info['expimenter'] = 'foo' assert_raises(RuntimeError, add_channels_epochs, [epochs_meg2, epochs_eeg]) epochs_meg2 = epochs_meg.copy() epochs_meg2.preload = False assert_raises(ValueError, add_channels_epochs, [epochs_meg2, epochs_eeg]) epochs_meg2 = epochs_meg.copy() epochs_meg2.tmin += 0.4 assert_raises(NotImplementedError, add_channels_epochs, [epochs_meg2, epochs_eeg]) epochs_meg2 = epochs_meg.copy() epochs_meg2.tmin += 0.5 assert_raises(NotImplementedError, add_channels_epochs, [epochs_meg2, epochs_eeg]) epochs_meg2 = epochs_meg.copy() epochs_meg2.baseline = None assert_raises(NotImplementedError, add_channels_epochs, [epochs_meg2, epochs_eeg]) epochs_meg2 = epochs_meg.copy() epochs_meg2.event_id['b'] = 2 assert_raises(NotImplementedError, add_channels_epochs, [epochs_meg2, epochs_eeg]) def test_array_epochs(): """Test creating epochs from array """ tempdir = _TempDir() # creating rng = np.random.RandomState(42) data = rng.random_sample((10, 20, 300)) sfreq = 1e3 ch_names = ['EEG %03d' % (i + 1) for i in range(20)] types = ['eeg'] * 20 info = create_info(ch_names, sfreq, types) events = np.c_[np.arange(1, 600, 60), np.zeros(10), [1, 2] * 5] event_id = {'a': 1, 'b': 2} epochs = EpochsArray(data, info, events=events, event_id=event_id, tmin=-.2) # saving temp_fname = op.join(tempdir, 'test-epo.fif') epochs.save(temp_fname) epochs2 = read_epochs(temp_fname) data2 = epochs2.get_data() assert_allclose(data, data2) assert_allclose(epochs.times, epochs2.times) assert_equal(epochs.event_id, epochs2.event_id) assert_array_equal(epochs.events, epochs2.events) # plotting epochs[0].plot() # indexing assert_array_equal(np.unique(epochs['a'].events[:, 2]), np.array([1])) assert_equal(len(epochs[:2]), 2) data[0, 5, 150] = 3000 data[1, :, :] = 0 data[2, 5, 210] = 3000 data[3, 5, 260] = 0 epochs = EpochsArray(data, info, events=events, event_id=event_id, tmin=0, reject=dict(eeg=1000), flat=dict(eeg=1e-1), reject_tmin=0.1, reject_tmax=0.2) assert_equal(len(epochs), len(events) - 2) assert_equal(epochs.drop_log[0], ['EEG 006']) assert_equal(len(events), len(epochs.selection)) # baseline data = np.ones((10, 20, 300)) epochs = EpochsArray(data, info, events=events, event_id=event_id, tmin=-.2, baseline=(None, 0)) ep_data = epochs.get_data() assert_array_equal(np.zeros_like(ep_data), ep_data) def test_concatenate_epochs(): """test concatenate epochs""" raw, events, picks = _get_data() epochs = Epochs( raw=raw, events=events, event_id=event_id, tmin=tmin, tmax=tmax, picks=picks) epochs2 = epochs.copy() epochs_list = [epochs, epochs2] epochs_conc = concatenate_epochs(epochs_list) assert_array_equal( epochs_conc.events[:, 0], np.unique(epochs_conc.events[:, 0])) expected_shape = list(epochs.get_data().shape) expected_shape[0] *= 2 expected_shape = tuple(expected_shape) assert_equal(epochs_conc.get_data().shape, expected_shape) assert_equal(epochs_conc.drop_log, epochs.drop_log * 2) epochs2 = epochs.copy() epochs2._data = epochs2.get_data() epochs2.preload = True assert_raises( ValueError, concatenate_epochs, [epochs, epochs2.drop_channels(epochs2.ch_names[:1], copy=True)]) epochs2.times = np.delete(epochs2.times, 1) assert_raises( ValueError, concatenate_epochs, [epochs, epochs2]) assert_equal(epochs_conc.raw, None) run_tests_if_main()
bsd-3-clause
kcavagnolo/astroML
book_figures/appendix/fig_broadcast_visual.py
3
8624
""" Broadcast Visualization ----------------------- Figure A.1 A visualization of NumPy array broadcasting. Note that the extra memory indicated by the dotted boxes is never allocated, but it can be convenient to think about the operations as if it is. """ # Author: Jake VanderPlas # License: BSD # The figure produced by this code is published in the textbook # "Statistics, Data Mining, and Machine Learning in Astronomy" (2013) # For more information, see http://astroML.github.com # To report a bug or issue, use the following forum: # https://groups.google.com/forum/#!forum/astroml-general import numpy as np from matplotlib import pyplot as plt #---------------------------------------------------------------------- # This function adjusts matplotlib settings for a uniform feel in the textbook. # Note that with usetex=True, fonts are rendered with LaTeX. This may # result in an error if LaTeX is not installed on your system. In that case, # you can set usetex to False. from astroML.plotting import setup_text_plots setup_text_plots(fontsize=8, usetex=True) #------------------------------------------------------------ # Draw a figure and axis with no boundary fig = plt.figure(figsize=(5, 3.75), facecolor='w') ax = plt.axes([0, 0, 1, 1], xticks=[], yticks=[], frameon=False) def draw_cube(ax, xy, size, depth=0.4, edges=None, label=None, label_kwargs=None, **kwargs): """draw and label a cube. edges is a list of numbers between 1 and 12, specifying which of the 12 cube edges to draw""" if edges is None: edges = range(1, 13) x, y = xy if 1 in edges: ax.plot([x, x + size], [y + size, y + size], **kwargs) if 2 in edges: ax.plot([x + size, x + size], [y, y + size], **kwargs) if 3 in edges: ax.plot([x, x + size], [y, y], **kwargs) if 4 in edges: ax.plot([x, x], [y, y + size], **kwargs) if 5 in edges: ax.plot([x, x + depth], [y + size, y + depth + size], **kwargs) if 6 in edges: ax.plot([x + size, x + size + depth], [y + size, y + depth + size], **kwargs) if 7 in edges: ax.plot([x + size, x + size + depth], [y, y + depth], **kwargs) if 8 in edges: ax.plot([x, x + depth], [y, y + depth], **kwargs) if 9 in edges: ax.plot([x + depth, x + depth + size], [y + depth + size, y + depth + size], **kwargs) if 10 in edges: ax.plot([x + depth + size, x + depth + size], [y + depth, y + depth + size], **kwargs) if 11 in edges: ax.plot([x + depth, x + depth + size], [y + depth, y + depth], **kwargs) if 12 in edges: ax.plot([x + depth, x + depth], [y + depth, y + depth + size], **kwargs) if label: if label_kwargs is None: label_kwargs = {} ax.text(x + 0.5 * size, y + 0.5 * size, label, ha='center', va='center', **label_kwargs) solid = dict(c='black', ls='-', lw=1, label_kwargs=dict(color='k')) dotted = dict(c='black', ls=':', lw=0.5, label_kwargs=dict(color='gray')) depth = 0.3 #------------------------------------------------------------ # Draw top operation: vector plus scalar draw_cube(ax, (1, 10), 1, depth, [1, 2, 3, 4, 5, 6, 9], '0', **solid) draw_cube(ax, (2, 10), 1, depth, [1, 2, 3, 6, 9], '1', **solid) draw_cube(ax, (3, 10), 1, depth, [1, 2, 3, 6, 7, 9, 10], '2', **solid) draw_cube(ax, (6, 10), 1, depth, [1, 2, 3, 4, 5, 6, 7, 9, 10], '5', **solid) draw_cube(ax, (7, 10), 1, depth, [1, 2, 3, 6, 7, 9, 10, 11], '5', **dotted) draw_cube(ax, (8, 10), 1, depth, [1, 2, 3, 6, 7, 9, 10, 11], '5', **dotted) draw_cube(ax, (12, 10), 1, depth, [1, 2, 3, 4, 5, 6, 9], '5', **solid) draw_cube(ax, (13, 10), 1, depth, [1, 2, 3, 6, 9], '6', **solid) draw_cube(ax, (14, 10), 1, depth, [1, 2, 3, 6, 7, 9, 10], '7', **solid) ax.text(5, 10.5, '+', size=12, ha='center', va='center') ax.text(10.5, 10.5, '=', size=12, ha='center', va='center') ax.text(1, 11.5, r'${\tt np.arange(3) + 5}$', size=12, ha='left', va='bottom') #------------------------------------------------------------ # Draw middle operation: matrix plus vector # first block draw_cube(ax, (1, 7.5), 1, depth, [1, 2, 3, 4, 5, 6, 9], '1', **solid) draw_cube(ax, (2, 7.5), 1, depth, [1, 2, 3, 6, 9], '1', **solid) draw_cube(ax, (3, 7.5), 1, depth, [1, 2, 3, 6, 7, 9, 10], '1', **solid) draw_cube(ax, (1, 6.5), 1, depth, [2, 3, 4], '1', **solid) draw_cube(ax, (2, 6.5), 1, depth, [2, 3], '1', **solid) draw_cube(ax, (3, 6.5), 1, depth, [2, 3, 7, 10], '1', **solid) draw_cube(ax, (1, 5.5), 1, depth, [2, 3, 4], '1', **solid) draw_cube(ax, (2, 5.5), 1, depth, [2, 3], '1', **solid) draw_cube(ax, (3, 5.5), 1, depth, [2, 3, 7, 10], '1', **solid) # second block draw_cube(ax, (6, 7.5), 1, depth, [1, 2, 3, 4, 5, 6, 9], '0', **solid) draw_cube(ax, (7, 7.5), 1, depth, [1, 2, 3, 6, 9], '1', **solid) draw_cube(ax, (8, 7.5), 1, depth, [1, 2, 3, 6, 7, 9, 10], '2', **solid) draw_cube(ax, (6, 6.5), 1, depth, range(2, 13), '0', **dotted) draw_cube(ax, (7, 6.5), 1, depth, [2, 3, 6, 7, 9, 10, 11], '1', **dotted) draw_cube(ax, (8, 6.5), 1, depth, [2, 3, 6, 7, 9, 10, 11], '2', **dotted) draw_cube(ax, (6, 5.5), 1, depth, [2, 3, 4, 7, 8, 10, 11, 12], '0', **dotted) draw_cube(ax, (7, 5.5), 1, depth, [2, 3, 7, 10, 11], '1', **dotted) draw_cube(ax, (8, 5.5), 1, depth, [2, 3, 7, 10, 11], '2', **dotted) # third block draw_cube(ax, (12, 7.5), 1, depth, [1, 2, 3, 4, 5, 6, 9], '1', **solid) draw_cube(ax, (13, 7.5), 1, depth, [1, 2, 3, 6, 9], '2', **solid) draw_cube(ax, (14, 7.5), 1, depth, [1, 2, 3, 6, 7, 9, 10], '3', **solid) draw_cube(ax, (12, 6.5), 1, depth, [2, 3, 4], '1', **solid) draw_cube(ax, (13, 6.5), 1, depth, [2, 3], '2', **solid) draw_cube(ax, (14, 6.5), 1, depth, [2, 3, 7, 10], '3', **solid) draw_cube(ax, (12, 5.5), 1, depth, [2, 3, 4], '1', **solid) draw_cube(ax, (13, 5.5), 1, depth, [2, 3], '2', **solid) draw_cube(ax, (14, 5.5), 1, depth, [2, 3, 7, 10], '3', **solid) ax.text(5, 7.0, '+', size=12, ha='center', va='center') ax.text(10.5, 7.0, '=', size=12, ha='center', va='center') ax.text(1, 9.0, r'${\tt np.ones((3,\, 3)) + np.arange(3)}$', size=12, ha='left', va='bottom') #------------------------------------------------------------ # Draw bottom operation: vector plus vector, double broadcast # first block draw_cube(ax, (1, 3), 1, depth, [1, 2, 3, 4, 5, 6, 7, 9, 10], '0', **solid) draw_cube(ax, (1, 2), 1, depth, [2, 3, 4, 7, 10], '1', **solid) draw_cube(ax, (1, 1), 1, depth, [2, 3, 4, 7, 10], '2', **solid) draw_cube(ax, (2, 3), 1, depth, [1, 2, 3, 6, 7, 9, 10, 11], '0', **dotted) draw_cube(ax, (2, 2), 1, depth, [2, 3, 7, 10, 11], '1', **dotted) draw_cube(ax, (2, 1), 1, depth, [2, 3, 7, 10, 11], '2', **dotted) draw_cube(ax, (3, 3), 1, depth, [1, 2, 3, 6, 7, 9, 10, 11], '0', **dotted) draw_cube(ax, (3, 2), 1, depth, [2, 3, 7, 10, 11], '1', **dotted) draw_cube(ax, (3, 1), 1, depth, [2, 3, 7, 10, 11], '2', **dotted) # second block draw_cube(ax, (6, 3), 1, depth, [1, 2, 3, 4, 5, 6, 9], '0', **solid) draw_cube(ax, (7, 3), 1, depth, [1, 2, 3, 6, 9], '1', **solid) draw_cube(ax, (8, 3), 1, depth, [1, 2, 3, 6, 7, 9, 10], '2', **solid) draw_cube(ax, (6, 2), 1, depth, range(2, 13), '0', **dotted) draw_cube(ax, (7, 2), 1, depth, [2, 3, 6, 7, 9, 10, 11], '1', **dotted) draw_cube(ax, (8, 2), 1, depth, [2, 3, 6, 7, 9, 10, 11], '2', **dotted) draw_cube(ax, (6, 1), 1, depth, [2, 3, 4, 7, 8, 10, 11, 12], '0', **dotted) draw_cube(ax, (7, 1), 1, depth, [2, 3, 7, 10, 11], '1', **dotted) draw_cube(ax, (8, 1), 1, depth, [2, 3, 7, 10, 11], '2', **dotted) # third block draw_cube(ax, (12, 3), 1, depth, [1, 2, 3, 4, 5, 6, 9], '0', **solid) draw_cube(ax, (13, 3), 1, depth, [1, 2, 3, 6, 9], '1', **solid) draw_cube(ax, (14, 3), 1, depth, [1, 2, 3, 6, 7, 9, 10], '2', **solid) draw_cube(ax, (12, 2), 1, depth, [2, 3, 4], '1', **solid) draw_cube(ax, (13, 2), 1, depth, [2, 3], '2', **solid) draw_cube(ax, (14, 2), 1, depth, [2, 3, 7, 10], '3', **solid) draw_cube(ax, (12, 1), 1, depth, [2, 3, 4], '2', **solid) draw_cube(ax, (13, 1), 1, depth, [2, 3], '3', **solid) draw_cube(ax, (14, 1), 1, depth, [2, 3, 7, 10], '4', **solid) ax.text(5, 2.5, '+', size=12, ha='center', va='center') ax.text(10.5, 2.5, '=', size=12, ha='center', va='center') ax.text(1, 4.5, r'${\tt np.arange(3).reshape((3,\, 1)) + np.arange(3)}$', ha='left', size=12, va='bottom') ax.set_xlim(0, 16) ax.set_ylim(0.5, 12.5) plt.show()
bsd-2-clause
GJL/flink
flink-python/pyflink/table/serializers.py
13
3089
################################################################################ # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ################################################################################ import io from pyflink.serializers import Serializer from pyflink.table.utils import arrow_to_pandas, pandas_to_arrow class ArrowSerializer(Serializer): """ Serializes pandas.Series into Arrow streaming format data. """ def __init__(self, schema, row_type, timezone): super(ArrowSerializer, self).__init__() self._schema = schema self._field_types = row_type.field_types() self._timezone = timezone def __repr__(self): return "ArrowSerializer" def dump_to_stream(self, iterator, stream): writer = None try: for cols in iterator: batch = pandas_to_arrow(self._schema, self._timezone, self._field_types, cols) if writer is None: import pyarrow as pa writer = pa.RecordBatchStreamWriter(stream, batch.schema) writer.write_batch(batch) finally: if writer is not None: writer.close() def load_from_stream(self, stream): import pyarrow as pa reader = pa.ipc.open_stream(stream) for batch in reader: yield arrow_to_pandas(self._timezone, self._field_types, [batch]) def load_from_iterator(self, itor): class IteratorIO(io.RawIOBase): def __init__(self, itor): super(IteratorIO, self).__init__() self.itor = itor self.leftover = None def readable(self): return True def readinto(self, b): output_buffer_len = len(b) input = self.leftover or (self.itor.next() if self.itor.hasNext() else None) if input is None: return 0 output, self.leftover = input[:output_buffer_len], input[output_buffer_len:] b[:len(output)] = output return len(output) import pyarrow as pa reader = pa.ipc.open_stream( io.BufferedReader(IteratorIO(itor), buffer_size=io.DEFAULT_BUFFER_SIZE)) for batch in reader: yield batch
apache-2.0
XiaowenLin/cs598rk
scripts/spark_data_frame.py
1
1187
%history from pyspark.sql.types import * from pyspark.sql import Row rdd = sc.textFile('data/realEstate.csv') rdd = rdd.map(lambda line: line.split(",")) header = rdd.first() rdd = rdd.filter(lambda line:line != header) df = rdd.map(lambda line: Row(street = line[0], city = line[1], zip=line[2], beds=line[4], baths=line[5], sqft=line[6], price=line[9])).toDF() import pandas df.toPandas() favorite_zip = df[df.zip == 95815] favorite_zip.show(5) favorite_zip.show() df.select('city','beds').show(10) df.groupBy("beds").count().show() df.describe(['baths', 'beds','price','sqft']).show() df.describe(['baths', 'beds','price','sqft']).show() # regression with mllib import pyspark.mllib import pyspark.mllib.regression from pyspark.mllib.regression import LabeledPoint from pyspark.sql.functions import * df = df.select('price','baths','beds','sqft') df = df[df.baths > 0] df = df[df.beds > 0] df = df[df.sqft > 0] df.describe(['baths','beds','price','sqft']).show() temp = df.map(lambda line:LabeledPoint(line[0],[line[1:]])) from pyspark.mllib.util import MLUtils from pyspark.mllib.linalg import Vectors from pyspark.mllib.feature import StandardScaler %history -f spark_data_frame.py
mit
zfrenchee/pandas
asv_bench/benchmarks/ctors.py
4
1873
import numpy as np import pandas.util.testing as tm from pandas import Series, Index, DatetimeIndex, Timestamp, MultiIndex from .pandas_vb_common import setup # noqa class SeriesConstructors(object): goal_time = 0.2 param_names = ["data_fmt", "with_index"] params = [[lambda x: x, list, lambda arr: list(arr.astype(str)), lambda arr: dict(zip(range(len(arr)), arr)), lambda arr: [(i, -i) for i in arr], lambda arr: [[i, -i] for i in arr], lambda arr: ([(i, -i) for i in arr][:-1] + [None]), lambda arr: ([[i, -i] for i in arr][:-1] + [None])], [False, True]] def setup(self, data_fmt, with_index): N = 10**4 arr = np.random.randn(N) self.data = data_fmt(arr) self.index = np.arange(N) if with_index else None def time_series_constructor(self, data_fmt, with_index): Series(self.data, index=self.index) class SeriesDtypesConstructors(object): goal_time = 0.2 def setup(self): N = 10**4 self.arr = np.random.randn(N, N) self.arr_str = np.array(['foo', 'bar', 'baz'], dtype=object) self.s = Series([Timestamp('20110101'), Timestamp('20120101'), Timestamp('20130101')] * N * 10) def time_index_from_array_string(self): Index(self.arr_str) def time_index_from_array_floats(self): Index(self.arr) def time_dtindex_from_series(self): DatetimeIndex(self.s) def time_dtindex_from_index_with_series(self): Index(self.s) class MultiIndexConstructor(object): goal_time = 0.2 def setup(self): N = 10**4 self.iterables = [tm.makeStringIndex(N), range(20)] def time_multiindex_from_iterables(self): MultiIndex.from_product(self.iterables)
bsd-3-clause
AlexanderFabisch/scikit-learn
benchmarks/bench_mnist.py
44
6801
""" ======================= MNIST dataset benchmark ======================= Benchmark on the MNIST dataset. The dataset comprises 70,000 samples and 784 features. Here, we consider the task of predicting 10 classes - digits from 0 to 9 from their raw images. By contrast to the covertype dataset, the feature space is homogenous. Example of output : [..] Classification performance: =========================== Classifier train-time test-time error-rate ------------------------------------------------------------ MLP_adam 53.46s 0.11s 0.0224 Nystroem-SVM 112.97s 0.92s 0.0228 MultilayerPerceptron 24.33s 0.14s 0.0287 ExtraTrees 42.99s 0.57s 0.0294 RandomForest 42.70s 0.49s 0.0318 SampledRBF-SVM 135.81s 0.56s 0.0486 LinearRegression-SAG 16.67s 0.06s 0.0824 CART 20.69s 0.02s 0.1219 dummy 0.00s 0.01s 0.8973 """ from __future__ import division, print_function # Author: Issam H. Laradji # Arnaud Joly <[email protected]> # License: BSD 3 clause import os from time import time import argparse import numpy as np from sklearn.datasets import fetch_mldata from sklearn.datasets import get_data_home from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.dummy import DummyClassifier from sklearn.externals.joblib import Memory from sklearn.kernel_approximation import Nystroem from sklearn.kernel_approximation import RBFSampler from sklearn.metrics import zero_one_loss from sklearn.pipeline import make_pipeline from sklearn.svm import LinearSVC from sklearn.tree import DecisionTreeClassifier from sklearn.utils import check_array from sklearn.linear_model import LogisticRegression from sklearn.neural_network import MLPClassifier # Memoize the data extraction and memory map the resulting # train / test splits in readonly mode memory = Memory(os.path.join(get_data_home(), 'mnist_benchmark_data'), mmap_mode='r') @memory.cache def load_data(dtype=np.float32, order='F'): """Load the data, then cache and memmap the train/test split""" ###################################################################### ## Load dataset print("Loading dataset...") data = fetch_mldata('MNIST original') X = check_array(data['data'], dtype=dtype, order=order) y = data["target"] # Normalize features X = X / 255 ## Create train-test split (as [Joachims, 2006]) print("Creating train-test split...") n_train = 60000 X_train = X[:n_train] y_train = y[:n_train] X_test = X[n_train:] y_test = y[n_train:] return X_train, X_test, y_train, y_test ESTIMATORS = { "dummy": DummyClassifier(), 'CART': DecisionTreeClassifier(), 'ExtraTrees': ExtraTreesClassifier(n_estimators=100), 'RandomForest': RandomForestClassifier(n_estimators=100), 'Nystroem-SVM': make_pipeline( Nystroem(gamma=0.015, n_components=1000), LinearSVC(C=100)), 'SampledRBF-SVM': make_pipeline( RBFSampler(gamma=0.015, n_components=1000), LinearSVC(C=100)), 'LinearRegression-SAG': LogisticRegression(solver='sag', tol=1e-1, C=1e4), 'MultilayerPerceptron': MLPClassifier( hidden_layer_sizes=(100, 100), max_iter=400, alpha=1e-4, algorithm='sgd', learning_rate_init=0.2, momentum=0.9, verbose=1, tol=1e-4, random_state=1), 'MLP-adam': MLPClassifier( hidden_layer_sizes=(100, 100), max_iter=400, alpha=1e-4, algorithm='adam', learning_rate_init=0.001, verbose=1, tol=1e-4, random_state=1) } if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--classifiers', nargs="+", choices=ESTIMATORS, type=str, default=['ExtraTrees', 'Nystroem-SVM'], help="list of classifiers to benchmark.") parser.add_argument('--n-jobs', nargs="?", default=1, type=int, help="Number of concurrently running workers for " "models that support parallelism.") parser.add_argument('--order', nargs="?", default="C", type=str, choices=["F", "C"], help="Allow to choose between fortran and C ordered " "data") parser.add_argument('--random-seed', nargs="?", default=0, type=int, help="Common seed used by random number generator.") args = vars(parser.parse_args()) print(__doc__) X_train, X_test, y_train, y_test = load_data(order=args["order"]) print("") print("Dataset statistics:") print("===================") print("%s %d" % ("number of features:".ljust(25), X_train.shape[1])) print("%s %d" % ("number of classes:".ljust(25), np.unique(y_train).size)) print("%s %s" % ("data type:".ljust(25), X_train.dtype)) print("%s %d (size=%dMB)" % ("number of train samples:".ljust(25), X_train.shape[0], int(X_train.nbytes / 1e6))) print("%s %d (size=%dMB)" % ("number of test samples:".ljust(25), X_test.shape[0], int(X_test.nbytes / 1e6))) print() print("Training Classifiers") print("====================") error, train_time, test_time = {}, {}, {} for name in sorted(args["classifiers"]): print("Training %s ... " % name, end="") estimator = ESTIMATORS[name] estimator_params = estimator.get_params() estimator.set_params(**{p: args["random_seed"] for p in estimator_params if p.endswith("random_state")}) if "n_jobs" in estimator_params: estimator.set_params(n_jobs=args["n_jobs"]) time_start = time() estimator.fit(X_train, y_train) train_time[name] = time() - time_start time_start = time() y_pred = estimator.predict(X_test) test_time[name] = time() - time_start error[name] = zero_one_loss(y_test, y_pred) print("done") print() print("Classification performance:") print("===========================") print("{0: <24} {1: >10} {2: >11} {3: >12}" "".format("Classifier ", "train-time", "test-time", "error-rate")) print("-" * 60) for name in sorted(args["classifiers"], key=error.get): print("{0: <23} {1: >10.2f}s {2: >10.2f}s {3: >12.4f}" "".format(name, train_time[name], test_time[name], error[name])) print()
bsd-3-clause
brodoll/sms-tools
lectures/07-Sinusoidal-plus-residual-model/plots-code/hpsModelFrame.py
22
2075
import numpy as np import matplotlib.pyplot as plt from scipy.signal import hamming, triang, blackmanharris, resample import math from scipy.fftpack import fft, ifft, fftshift import sys, os, functools, time sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../../../software/models/')) import dftModel as DFT import utilFunctions as UF import harmonicModel as HM (fs, x) = UF.wavread('../../../sounds/flute-A4.wav') pos = .8*fs M = 601 hM1 = int(math.floor((M+1)/2)) hM2 = int(math.floor(M/2)) w = np.hamming(M) N = 1024 t = -100 nH = 40 minf0 = 420 maxf0 = 460 f0et = 5 minSineDur = .1 harmDevSlope = 0.01 Ns = 512 H = Ns/4 stocf = .2 x1 = x[pos-hM1:pos+hM2] x2 = x[pos-Ns/2-1:pos+Ns/2-1] mX, pX = DFT.dftAnal(x1, w, N) ploc = UF.peakDetection(mX, t) iploc, ipmag, ipphase = UF.peakInterp(mX, pX, ploc) ipfreq = fs*iploc/N f0 = UF.f0Twm(ipfreq, ipmag, f0et, minf0, maxf0) hfreqp = [] hfreq, hmag, hphase = HM.harmonicDetection(ipfreq, ipmag, ipphase, f0, nH, hfreqp, fs, harmDevSlope) Yh = UF.genSpecSines(hfreq, hmag, hphase, Ns, fs) mYh = 20 * np.log10(abs(Yh[:Ns/2])) bh=blackmanharris(Ns) X2 = fft(fftshift(x2*bh/sum(bh))) Xr = X2-Yh mXr = 20 * np.log10(abs(Xr[:Ns/2])) mYst = resample(np.maximum(-200, mXr), mXr.size*stocf) # decimate the mag spectrum maxplotfreq = 8000.0 plt.figure(1, figsize=(9, 7)) plt.subplot(2,1,1) binFreq = (fs/2.0)*np.arange(mX.size)/(mX.size) plt.plot(binFreq,mX,'r', lw=1.5) plt.axis([0,maxplotfreq,-100,max(mX)+2]) plt.plot(hfreq, hmag, marker='x', color='b', linestyle='', lw=2, markeredgewidth=1.5) plt.title('mX + harmonics') plt.subplot(2,1,2) binFreq = (fs/2.0)*np.arange(mXr.size)/(mXr.size) plt.plot(binFreq,mYh,'r', lw=.6, label='mYh') plt.plot(binFreq,mXr,'r', lw=1.0, label='mXr') binFreq = (fs/2.0)*np.arange(mYst.size)/(mYst.size) plt.plot(binFreq,mYst,'r', lw=1.5, label='mYst') plt.axis([0,maxplotfreq,-100,max(mYh)+2]) plt.legend(prop={'size':15}) plt.title('mYh + mXr + mYst') plt.tight_layout() plt.savefig('hpsModelFrame.png') plt.show()
agpl-3.0
jeremygilly/measurement-arduino-python
arduino_listener.py
1
3233
""" Full credit to Mahesh Venkitachalam at electronut.in who's initial code made this possible. I've just edited a few things to make it useful for this case of datalogging. """ import sys, serial, argparse import numpy as np from time import sleep from collections import deque import itertools import matplotlib.pyplot as plt import matplotlib.animation as animation import datetime output = "none" count = 0 # plot class class AnalogPlot: # constr def __init__(self, strPort, maxLen): # open serial port self.ser = serial.Serial(strPort, 9600) self.ax = deque([0.0]*maxLen) self.ay = deque([0.0]*maxLen) self.maxLen = maxLen global output_file output_file.write('yyyy-mm-dd hh:mm:ss' + ' ' + 'output' + '\n') # add to buffer def addToBuf(self, buf, val): if len(buf) < self.maxLen: buf.append(val) # print ('adding') else: buf.pop() buf.appendleft(val) # print ('appending right') # add data def add(self, data): assert(len(data) == 1) self.addToBuf(self.ax, data[0]) global output output = str(data[0]) # self.outputFile(self, data[0]) # self.addToBuf(self.ay, data[1]) # update plot def update(self, frameNum, a0, a1): try: line = self.ser.readline() print(line) data = [float(val) for val in line.split()] # print data if(len(data) == 1): self.add(data) print(data) a0.set_data(range(self.maxLen), self.ax) now = str(datetime.datetime.now()) global output_file output_file.write(now + ', ' + output + '\n') except KeyboardInterrupt: print('exiting') return a0 # clean up def close(self): # close serial self.ser.flush() self.ser.close() # main() function def main(): now = datetime.datetime.now() formatted_date = now.strftime("%Y %m %d - %I %M %S") print formatted_date write_to_file_path = str(formatted_date) + ".txt" global output_file output_file = open(write_to_file_path, 'w+') # create parser parser = argparse.ArgumentParser(description="LDR serial") # add expected arguments parser.add_argument('--port', dest='port', required=True) # parse args args = parser.parse_args() #strPort = '/dev/tty.usbserial-A7006Yqh' strPort = args.port print('reading from serial port %s...' % strPort) # plot parameters analogPlot = AnalogPlot(strPort, 100) print('plotting data...') # set up animation fig = plt.figure() ax = plt.axes(xlim=(0, 300), ylim=(0, 400)) a0, = ax.plot([], []) a1, = ax.plot([], []) plt.ylabel('Response (mV)') plt.xlabel('Samples') anim = animation.FuncAnimation(fig, analogPlot.update, fargs=(a0, a1), interval=5) # show plot plt.show() # clean up analogPlot.close() print('exiting.') # call main if __name__ == '__main__': main()
mit
phdowling/scikit-learn
sklearn/decomposition/base.py
313
5647
"""Principal Component Analysis Base Classes""" # Author: Alexandre Gramfort <[email protected]> # Olivier Grisel <[email protected]> # Mathieu Blondel <[email protected]> # Denis A. Engemann <[email protected]> # Kyle Kastner <[email protected]> # # License: BSD 3 clause import numpy as np from scipy import linalg from ..base import BaseEstimator, TransformerMixin from ..utils import check_array from ..utils.extmath import fast_dot from ..utils.validation import check_is_fitted from ..externals import six from abc import ABCMeta, abstractmethod class _BasePCA(six.with_metaclass(ABCMeta, BaseEstimator, TransformerMixin)): """Base class for PCA methods. Warning: This class should not be used directly. Use derived classes instead. """ def get_covariance(self): """Compute data covariance with the generative model. ``cov = components_.T * S**2 * components_ + sigma2 * eye(n_features)`` where S**2 contains the explained variances, and sigma2 contains the noise variances. Returns ------- cov : array, shape=(n_features, n_features) Estimated covariance of data. """ components_ = self.components_ exp_var = self.explained_variance_ if self.whiten: components_ = components_ * np.sqrt(exp_var[:, np.newaxis]) exp_var_diff = np.maximum(exp_var - self.noise_variance_, 0.) cov = np.dot(components_.T * exp_var_diff, components_) cov.flat[::len(cov) + 1] += self.noise_variance_ # modify diag inplace return cov def get_precision(self): """Compute data precision matrix with the generative model. Equals the inverse of the covariance but computed with the matrix inversion lemma for efficiency. Returns ------- precision : array, shape=(n_features, n_features) Estimated precision of data. """ n_features = self.components_.shape[1] # handle corner cases first if self.n_components_ == 0: return np.eye(n_features) / self.noise_variance_ if self.n_components_ == n_features: return linalg.inv(self.get_covariance()) # Get precision using matrix inversion lemma components_ = self.components_ exp_var = self.explained_variance_ if self.whiten: components_ = components_ * np.sqrt(exp_var[:, np.newaxis]) exp_var_diff = np.maximum(exp_var - self.noise_variance_, 0.) precision = np.dot(components_, components_.T) / self.noise_variance_ precision.flat[::len(precision) + 1] += 1. / exp_var_diff precision = np.dot(components_.T, np.dot(linalg.inv(precision), components_)) precision /= -(self.noise_variance_ ** 2) precision.flat[::len(precision) + 1] += 1. / self.noise_variance_ return precision @abstractmethod def fit(X, y=None): """Placeholder for fit. Subclasses should implement this method! Fit the model with X. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. Returns ------- self : object Returns the instance itself. """ def transform(self, X, y=None): """Apply dimensionality reduction to X. X is projected on the first principal components previously extracted from a training set. Parameters ---------- X : array-like, shape (n_samples, n_features) New data, where n_samples is the number of samples and n_features is the number of features. Returns ------- X_new : array-like, shape (n_samples, n_components) Examples -------- >>> import numpy as np >>> from sklearn.decomposition import IncrementalPCA >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> ipca = IncrementalPCA(n_components=2, batch_size=3) >>> ipca.fit(X) IncrementalPCA(batch_size=3, copy=True, n_components=2, whiten=False) >>> ipca.transform(X) # doctest: +SKIP """ check_is_fitted(self, ['mean_', 'components_'], all_or_any=all) X = check_array(X) if self.mean_ is not None: X = X - self.mean_ X_transformed = fast_dot(X, self.components_.T) if self.whiten: X_transformed /= np.sqrt(self.explained_variance_) return X_transformed def inverse_transform(self, X, y=None): """Transform data back to its original space. In other words, return an input X_original whose transform would be X. Parameters ---------- X : array-like, shape (n_samples, n_components) New data, where n_samples is the number of samples and n_components is the number of components. Returns ------- X_original array-like, shape (n_samples, n_features) Notes ----- If whitening is enabled, inverse_transform will compute the exact inverse operation, which includes reversing whitening. """ if self.whiten: return fast_dot(X, np.sqrt(self.explained_variance_[:, np.newaxis]) * self.components_) + self.mean_ else: return fast_dot(X, self.components_) + self.mean_
bsd-3-clause
robince/pyentropy_gcodexport
docs/source/conf.py
4
6664
# -*- coding: utf-8 -*- # # pyEntropy documentation build configuration file, created by # sphinx-quickstart on Sun Dec 13 04:02:39 2009. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys, os # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. sys.path.append(os.path.abspath('../sphinxext')) # get devel version first sys.path.insert(0,os.path.abspath('../../')) # -- General configuration ----------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.autosummary', 'sphinx.ext.pngmath', 'ipython_console_highlighting', 'matplotlib.sphinxext.plot_directive', 'numpydoc' ] # numpydoc settings numpydoc_show_class_members = True #autoclass_content = "both" # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8' # The master toctree document. master_doc = 'index' # General information about the project. project = u'pyEntropy' copyright = u'2009, Robin Ince' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '0.5.0' # The full version, including alpha/beta/rc tags. release = '0.5.0' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of documents that shouldn't be included in the build. #unused_docs = [] # List of directories, relative to source directory, that shouldn't be searched # for source files. exclude_trees = [] # The reST default role (used for this markup: `text`) to use for all documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. Major themes that come with # Sphinx are currently 'default' and 'sphinxdoc'. html_theme = 'sphinxdoc' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. html_short_title = "%s v%s"%(project,release) # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_use_modindex = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. html_show_sourcelink = False # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # If nonempty, this is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = '' # Output file base name for HTML help builder. htmlhelp_basename = 'pyEntropydoc' # -- Options for LaTeX output -------------------------------------------------- # The paper size ('letter' or 'a4'). #latex_paper_size = 'letter' # The font size ('10pt', '11pt' or '12pt'). #latex_font_size = '10pt' # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'pyEntropy.tex', u'pyEntropy Documentation', u'Robin Ince', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # Additional stuff for the LaTeX preamble. #latex_preamble = '' # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_use_modindex = True
gpl-2.0
abulak/TDA-Cause-Effect-Pairs
outliers-plotter.py
1
2206
import numpy as np import numpy.ma as ma import os import sys import matplotlib from matplotlib.backends.backend_pdf import PdfPages matplotlib.use('Agg') import matplotlib.pyplot as plt class PairOutlierPlotter: """ Outlier Plotter; requires outliers model and assumes outliers_$model and orig_points are in the working directory """ def __init__(self, model): self.name = os.getcwd()[-8:] self.suffix = str(model) outliers_path = os.path.join(os.getcwd(), 'outliers_' + self.suffix) self.outliers = np.loadtxt(outliers_path, dtype=np.int) self.points = np.loadtxt(os.path.join(os.getcwd(), 'std_points')) def plot_outlier(self, i): masked_points = ma.masked_array(self.points) if i < 0: plt.title(self.name) plt.scatter(self.points[:, 0], self.points[:, 1], color='black', alpha=0.7, s=15) else: outs = self.outliers[:i+1] removed_points = self.points[self.outliers[:i + 1]] masked_points[outs] = ma.masked to_plot = masked_points.compressed().reshape( self.points.shape[0] - i - 1, 2) plt.title(self.name + ", outlier: " + str(i+1)) plt.scatter(to_plot[:, 0], to_plot[:, 1], color='black', alpha=0.7, s=15) plt.scatter(removed_points[:, 0], removed_points[:, 1], color='red', alpha=0.7, s=15) def save_plots_pdf(self): print("Generating outlier plots of ", self.name, "for model:", self.suffix) pdf_file = os.path.join(os.getcwd(), 'outliers_' + self.suffix + '.pdf') with PdfPages(pdf_file) as pdf: for i in range(-1, self.outliers.shape[0]): plt.figure(figsize=(12, 12)) self.plot_outlier(i) pdf.savefig() plt.close() print("Done:", self.name, self.suffix) def workflow(model): p = PairOutlierPlotter(model) p.save_plots_pdf() if __name__ == "__main__": if len(sys.argv) == 2: workflow(sys.argv[1]) else: print("Usage: outliers-plotter.py $MODEL")
gpl-2.0
jlegendary/scikit-learn
sklearn/utils/tests/test_extmath.py
130
16270
# Authors: Olivier Grisel <[email protected]> # Mathieu Blondel <[email protected]> # Denis Engemann <[email protected]> # # License: BSD 3 clause import numpy as np from scipy import sparse from scipy import linalg from scipy import stats from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_raises from sklearn.utils.extmath import density from sklearn.utils.extmath import logsumexp from sklearn.utils.extmath import norm, squared_norm from sklearn.utils.extmath import randomized_svd from sklearn.utils.extmath import row_norms from sklearn.utils.extmath import weighted_mode from sklearn.utils.extmath import cartesian from sklearn.utils.extmath import log_logistic from sklearn.utils.extmath import fast_dot, _fast_dot from sklearn.utils.extmath import svd_flip from sklearn.utils.extmath import _batch_mean_variance_update from sklearn.utils.extmath import _deterministic_vector_sign_flip from sklearn.datasets.samples_generator import make_low_rank_matrix def test_density(): rng = np.random.RandomState(0) X = rng.randint(10, size=(10, 5)) X[1, 2] = 0 X[5, 3] = 0 X_csr = sparse.csr_matrix(X) X_csc = sparse.csc_matrix(X) X_coo = sparse.coo_matrix(X) X_lil = sparse.lil_matrix(X) for X_ in (X_csr, X_csc, X_coo, X_lil): assert_equal(density(X_), density(X)) def test_uniform_weights(): # with uniform weights, results should be identical to stats.mode rng = np.random.RandomState(0) x = rng.randint(10, size=(10, 5)) weights = np.ones(x.shape) for axis in (None, 0, 1): mode, score = stats.mode(x, axis) mode2, score2 = weighted_mode(x, weights, axis) assert_true(np.all(mode == mode2)) assert_true(np.all(score == score2)) def test_random_weights(): # set this up so that each row should have a weighted mode of 6, # with a score that is easily reproduced mode_result = 6 rng = np.random.RandomState(0) x = rng.randint(mode_result, size=(100, 10)) w = rng.random_sample(x.shape) x[:, :5] = mode_result w[:, :5] += 1 mode, score = weighted_mode(x, w, axis=1) assert_array_equal(mode, mode_result) assert_array_almost_equal(score.ravel(), w[:, :5].sum(1)) def test_logsumexp(): # Try to add some smallish numbers in logspace x = np.array([1e-40] * 1000000) logx = np.log(x) assert_almost_equal(np.exp(logsumexp(logx)), x.sum()) X = np.vstack([x, x]) logX = np.vstack([logx, logx]) assert_array_almost_equal(np.exp(logsumexp(logX, axis=0)), X.sum(axis=0)) assert_array_almost_equal(np.exp(logsumexp(logX, axis=1)), X.sum(axis=1)) def test_randomized_svd_low_rank(): # Check that extmath.randomized_svd is consistent with linalg.svd n_samples = 100 n_features = 500 rank = 5 k = 10 # generate a matrix X of approximate effective rank `rank` and no noise # component (very structured signal): X = make_low_rank_matrix(n_samples=n_samples, n_features=n_features, effective_rank=rank, tail_strength=0.0, random_state=0) assert_equal(X.shape, (n_samples, n_features)) # compute the singular values of X using the slow exact method U, s, V = linalg.svd(X, full_matrices=False) # compute the singular values of X using the fast approximate method Ua, sa, Va = randomized_svd(X, k) assert_equal(Ua.shape, (n_samples, k)) assert_equal(sa.shape, (k,)) assert_equal(Va.shape, (k, n_features)) # ensure that the singular values of both methods are equal up to the real # rank of the matrix assert_almost_equal(s[:k], sa) # check the singular vectors too (while not checking the sign) assert_almost_equal(np.dot(U[:, :k], V[:k, :]), np.dot(Ua, Va)) # check the sparse matrix representation X = sparse.csr_matrix(X) # compute the singular values of X using the fast approximate method Ua, sa, Va = randomized_svd(X, k) assert_almost_equal(s[:rank], sa[:rank]) def test_norm_squared_norm(): X = np.random.RandomState(42).randn(50, 63) X *= 100 # check stability X += 200 assert_almost_equal(np.linalg.norm(X.ravel()), norm(X)) assert_almost_equal(norm(X) ** 2, squared_norm(X), decimal=6) assert_almost_equal(np.linalg.norm(X), np.sqrt(squared_norm(X)), decimal=6) def test_row_norms(): X = np.random.RandomState(42).randn(100, 100) sq_norm = (X ** 2).sum(axis=1) assert_array_almost_equal(sq_norm, row_norms(X, squared=True), 5) assert_array_almost_equal(np.sqrt(sq_norm), row_norms(X)) Xcsr = sparse.csr_matrix(X, dtype=np.float32) assert_array_almost_equal(sq_norm, row_norms(Xcsr, squared=True), 5) assert_array_almost_equal(np.sqrt(sq_norm), row_norms(Xcsr)) def test_randomized_svd_low_rank_with_noise(): # Check that extmath.randomized_svd can handle noisy matrices n_samples = 100 n_features = 500 rank = 5 k = 10 # generate a matrix X wity structure approximate rank `rank` and an # important noisy component X = make_low_rank_matrix(n_samples=n_samples, n_features=n_features, effective_rank=rank, tail_strength=0.5, random_state=0) assert_equal(X.shape, (n_samples, n_features)) # compute the singular values of X using the slow exact method _, s, _ = linalg.svd(X, full_matrices=False) # compute the singular values of X using the fast approximate method # without the iterated power method _, sa, _ = randomized_svd(X, k, n_iter=0) # the approximation does not tolerate the noise: assert_greater(np.abs(s[:k] - sa).max(), 0.05) # compute the singular values of X using the fast approximate method with # iterated power method _, sap, _ = randomized_svd(X, k, n_iter=5) # the iterated power method is helping getting rid of the noise: assert_almost_equal(s[:k], sap, decimal=3) def test_randomized_svd_infinite_rank(): # Check that extmath.randomized_svd can handle noisy matrices n_samples = 100 n_features = 500 rank = 5 k = 10 # let us try again without 'low_rank component': just regularly but slowly # decreasing singular values: the rank of the data matrix is infinite X = make_low_rank_matrix(n_samples=n_samples, n_features=n_features, effective_rank=rank, tail_strength=1.0, random_state=0) assert_equal(X.shape, (n_samples, n_features)) # compute the singular values of X using the slow exact method _, s, _ = linalg.svd(X, full_matrices=False) # compute the singular values of X using the fast approximate method # without the iterated power method _, sa, _ = randomized_svd(X, k, n_iter=0) # the approximation does not tolerate the noise: assert_greater(np.abs(s[:k] - sa).max(), 0.1) # compute the singular values of X using the fast approximate method with # iterated power method _, sap, _ = randomized_svd(X, k, n_iter=5) # the iterated power method is still managing to get most of the structure # at the requested rank assert_almost_equal(s[:k], sap, decimal=3) def test_randomized_svd_transpose_consistency(): # Check that transposing the design matrix has limit impact n_samples = 100 n_features = 500 rank = 4 k = 10 X = make_low_rank_matrix(n_samples=n_samples, n_features=n_features, effective_rank=rank, tail_strength=0.5, random_state=0) assert_equal(X.shape, (n_samples, n_features)) U1, s1, V1 = randomized_svd(X, k, n_iter=3, transpose=False, random_state=0) U2, s2, V2 = randomized_svd(X, k, n_iter=3, transpose=True, random_state=0) U3, s3, V3 = randomized_svd(X, k, n_iter=3, transpose='auto', random_state=0) U4, s4, V4 = linalg.svd(X, full_matrices=False) assert_almost_equal(s1, s4[:k], decimal=3) assert_almost_equal(s2, s4[:k], decimal=3) assert_almost_equal(s3, s4[:k], decimal=3) assert_almost_equal(np.dot(U1, V1), np.dot(U4[:, :k], V4[:k, :]), decimal=2) assert_almost_equal(np.dot(U2, V2), np.dot(U4[:, :k], V4[:k, :]), decimal=2) # in this case 'auto' is equivalent to transpose assert_almost_equal(s2, s3) def test_svd_flip(): # Check that svd_flip works in both situations, and reconstructs input. rs = np.random.RandomState(1999) n_samples = 20 n_features = 10 X = rs.randn(n_samples, n_features) # Check matrix reconstruction U, S, V = linalg.svd(X, full_matrices=False) U1, V1 = svd_flip(U, V, u_based_decision=False) assert_almost_equal(np.dot(U1 * S, V1), X, decimal=6) # Check transposed matrix reconstruction XT = X.T U, S, V = linalg.svd(XT, full_matrices=False) U2, V2 = svd_flip(U, V, u_based_decision=True) assert_almost_equal(np.dot(U2 * S, V2), XT, decimal=6) # Check that different flip methods are equivalent under reconstruction U_flip1, V_flip1 = svd_flip(U, V, u_based_decision=True) assert_almost_equal(np.dot(U_flip1 * S, V_flip1), XT, decimal=6) U_flip2, V_flip2 = svd_flip(U, V, u_based_decision=False) assert_almost_equal(np.dot(U_flip2 * S, V_flip2), XT, decimal=6) def test_randomized_svd_sign_flip(): a = np.array([[2.0, 0.0], [0.0, 1.0]]) u1, s1, v1 = randomized_svd(a, 2, flip_sign=True, random_state=41) for seed in range(10): u2, s2, v2 = randomized_svd(a, 2, flip_sign=True, random_state=seed) assert_almost_equal(u1, u2) assert_almost_equal(v1, v2) assert_almost_equal(np.dot(u2 * s2, v2), a) assert_almost_equal(np.dot(u2.T, u2), np.eye(2)) assert_almost_equal(np.dot(v2.T, v2), np.eye(2)) def test_cartesian(): # Check if cartesian product delivers the right results axes = (np.array([1, 2, 3]), np.array([4, 5]), np.array([6, 7])) true_out = np.array([[1, 4, 6], [1, 4, 7], [1, 5, 6], [1, 5, 7], [2, 4, 6], [2, 4, 7], [2, 5, 6], [2, 5, 7], [3, 4, 6], [3, 4, 7], [3, 5, 6], [3, 5, 7]]) out = cartesian(axes) assert_array_equal(true_out, out) # check single axis x = np.arange(3) assert_array_equal(x[:, np.newaxis], cartesian((x,))) def test_logistic_sigmoid(): # Check correctness and robustness of logistic sigmoid implementation naive_logistic = lambda x: 1 / (1 + np.exp(-x)) naive_log_logistic = lambda x: np.log(naive_logistic(x)) x = np.linspace(-2, 2, 50) assert_array_almost_equal(log_logistic(x), naive_log_logistic(x)) extreme_x = np.array([-100., 100.]) assert_array_almost_equal(log_logistic(extreme_x), [-100, 0]) def test_fast_dot(): # Check fast dot blas wrapper function if fast_dot is np.dot: return rng = np.random.RandomState(42) A = rng.random_sample([2, 10]) B = rng.random_sample([2, 10]) try: linalg.get_blas_funcs(['gemm'])[0] has_blas = True except (AttributeError, ValueError): has_blas = False if has_blas: # Test _fast_dot for invalid input. # Maltyped data. for dt1, dt2 in [['f8', 'f4'], ['i4', 'i4']]: assert_raises(ValueError, _fast_dot, A.astype(dt1), B.astype(dt2).T) # Malformed data. ## ndim == 0 E = np.empty(0) assert_raises(ValueError, _fast_dot, E, E) ## ndim == 1 assert_raises(ValueError, _fast_dot, A, A[0]) ## ndim > 2 assert_raises(ValueError, _fast_dot, A.T, np.array([A, A])) ## min(shape) == 1 assert_raises(ValueError, _fast_dot, A, A[0, :][None, :]) # test for matrix mismatch error assert_raises(ValueError, _fast_dot, A, A) # Test cov-like use case + dtypes. for dtype in ['f8', 'f4']: A = A.astype(dtype) B = B.astype(dtype) # col < row C = np.dot(A.T, A) C_ = fast_dot(A.T, A) assert_almost_equal(C, C_, decimal=5) C = np.dot(A.T, B) C_ = fast_dot(A.T, B) assert_almost_equal(C, C_, decimal=5) C = np.dot(A, B.T) C_ = fast_dot(A, B.T) assert_almost_equal(C, C_, decimal=5) # Test square matrix * rectangular use case. A = rng.random_sample([2, 2]) for dtype in ['f8', 'f4']: A = A.astype(dtype) B = B.astype(dtype) C = np.dot(A, B) C_ = fast_dot(A, B) assert_almost_equal(C, C_, decimal=5) C = np.dot(A.T, B) C_ = fast_dot(A.T, B) assert_almost_equal(C, C_, decimal=5) if has_blas: for x in [np.array([[d] * 10] * 2) for d in [np.inf, np.nan]]: assert_raises(ValueError, _fast_dot, x, x.T) def test_incremental_variance_update_formulas(): # Test Youngs and Cramer incremental variance formulas. # Doggie data from http://www.mathsisfun.com/data/standard-deviation.html A = np.array([[600, 470, 170, 430, 300], [600, 470, 170, 430, 300], [600, 470, 170, 430, 300], [600, 470, 170, 430, 300]]).T idx = 2 X1 = A[:idx, :] X2 = A[idx:, :] old_means = X1.mean(axis=0) old_variances = X1.var(axis=0) old_sample_count = X1.shape[0] final_means, final_variances, final_count = _batch_mean_variance_update( X2, old_means, old_variances, old_sample_count) assert_almost_equal(final_means, A.mean(axis=0), 6) assert_almost_equal(final_variances, A.var(axis=0), 6) assert_almost_equal(final_count, A.shape[0]) def test_incremental_variance_ddof(): # Test that degrees of freedom parameter for calculations are correct. rng = np.random.RandomState(1999) X = rng.randn(50, 10) n_samples, n_features = X.shape for batch_size in [11, 20, 37]: steps = np.arange(0, X.shape[0], batch_size) if steps[-1] != X.shape[0]: steps = np.hstack([steps, n_samples]) for i, j in zip(steps[:-1], steps[1:]): batch = X[i:j, :] if i == 0: incremental_means = batch.mean(axis=0) incremental_variances = batch.var(axis=0) # Assign this twice so that the test logic is consistent incremental_count = batch.shape[0] sample_count = batch.shape[0] else: result = _batch_mean_variance_update( batch, incremental_means, incremental_variances, sample_count) (incremental_means, incremental_variances, incremental_count) = result sample_count += batch.shape[0] calculated_means = np.mean(X[:j], axis=0) calculated_variances = np.var(X[:j], axis=0) assert_almost_equal(incremental_means, calculated_means, 6) assert_almost_equal(incremental_variances, calculated_variances, 6) assert_equal(incremental_count, sample_count) def test_vector_sign_flip(): # Testing that sign flip is working & largest value has positive sign data = np.random.RandomState(36).randn(5, 5) max_abs_rows = np.argmax(np.abs(data), axis=1) data_flipped = _deterministic_vector_sign_flip(data) max_rows = np.argmax(data_flipped, axis=1) assert_array_equal(max_abs_rows, max_rows) signs = np.sign(data[range(data.shape[0]), max_abs_rows]) assert_array_equal(data, data_flipped * signs[:, np.newaxis])
bsd-3-clause
asurve/incubator-systemml
src/main/python/systemml/converters.py
8
12296
#------------------------------------------------------------- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # #------------------------------------------------------------- __all__ = [ 'getNumCols', 'convertToMatrixBlock', 'convert_caffemodel', 'convert_lmdb_to_jpeg', 'convertToNumPyArr', 'convertToPandasDF', 'SUPPORTED_TYPES' , 'convertToLabeledDF', 'convertImageToNumPyArr', 'getDatasetMean'] import numpy as np import pandas as pd import os import math from pyspark.context import SparkContext from scipy.sparse import coo_matrix, spmatrix, csr_matrix from .classloader import * SUPPORTED_TYPES = (np.ndarray, pd.DataFrame, spmatrix) DATASET_MEAN = {'VGG_ILSVRC_19_2014':[103.939, 116.779, 123.68]} def getNumCols(numPyArr): if numPyArr.ndim == 1: return 1 else: return numPyArr.shape[1] def get_pretty_str(key, value): return '\t"' + key + '": ' + str(value) + ',\n' def save_tensor_csv(tensor, file_path, shouldTranspose): w = w.reshape(w.shape[0], -1) if shouldTranspose: w = w.T np.savetxt(file_path, w, delimiter=',') with open(file_path + '.mtd', 'w') as file: file.write('{\n\t"data_type": "matrix",\n\t"value_type": "double",\n') file.write(get_pretty_str('rows', w.shape[0])) file.write(get_pretty_str('cols', w.shape[1])) file.write(get_pretty_str('nnz', np.count_nonzero(w))) file.write('\t"format": "csv",\n\t"description": {\n\t\t"author": "SystemML"\n\t}\n}\n') def convert_caffemodel(sc, deploy_file, caffemodel_file, output_dir, format="binary", is_caffe_installed=False): """ Saves the weights and bias in the caffemodel file to output_dir in the specified format. This method does not requires caffe to be installed. Parameters ---------- sc: SparkContext SparkContext deploy_file: string Path to the input network file caffemodel_file: string Path to the input caffemodel file output_dir: string Path to the output directory format: string Format of the weights and bias (can be binary, csv or text) is_caffe_installed: bool True if caffe is installed """ if is_caffe_installed: if format != 'csv': raise ValueError('The format ' + str(format) + ' is not supported when caffe is installed. Hint: Please specify format=csv') import caffe net = caffe.Net(deploy_file, caffemodel_file, caffe.TEST) for layerName in net.params.keys(): num_parameters = len(net.params[layerName]) if num_parameters == 0: continue elif num_parameters == 2: # Weights and Biases layerType = net.layers[list(net._layer_names).index(layerName)].type shouldTranspose = True if layerType == 'InnerProduct' else False save_tensor_csv(net.params[layerName][0].data, os.path.join(output_dir, layerName + '_weight.mtx'), shouldTranspose) save_tensor_csv(net.params[layerName][1].data, os.path.join(output_dir, layerName + '_bias.mtx'), shouldTranspose) elif num_parameters == 1: # Only Weight layerType = net.layers[list(net._layer_names).index(layerName)].type shouldTranspose = True if layerType == 'InnerProduct' else False save_tensor_csv(net.params[layerName][0].data, os.path.join(output_dir, layerName + '_weight.mtx'), shouldTranspose) else: raise ValueError('Unsupported number of parameters:' + str(num_parameters)) else: createJavaObject(sc, 'dummy') utilObj = sc._jvm.org.apache.sysml.api.dl.Utils() utilObj.saveCaffeModelFile(sc._jsc, deploy_file, caffemodel_file, output_dir, format) def convert_lmdb_to_jpeg(lmdb_img_file, output_dir): """ Saves the images in the lmdb file as jpeg in the output_dir. This method requires caffe to be installed along with lmdb and cv2 package. To install cv2 package, do `pip install opencv-python`. Parameters ---------- lmdb_img_file: string Path to the input lmdb file output_dir: string Output directory for images (local filesystem) """ import lmdb, caffe, cv2 lmdb_cursor = lmdb.open(lmdb_file, readonly=True).begin().cursor() datum = caffe.proto.caffe_pb2.Datum() i = 1 for _, value in lmdb_cursor: datum.ParseFromString(value) data = caffe.io.datum_to_array(datum) output_file_path = os.path.join(output_dir, 'file_' + str(i) + '.jpg') image = np.transpose(data, (1,2,0)) # CxHxW to HxWxC in cv2 cv2.imwrite(output_file_path, image) i = i + 1 def convertToLabeledDF(sparkSession, X, y=None): from pyspark.ml.feature import VectorAssembler if y is not None: pd1 = pd.DataFrame(X) pd2 = pd.DataFrame(y, columns=['label']) pdf = pd.concat([pd1, pd2], axis=1) inputColumns = ['C' + str(i) for i in pd1.columns] outputColumns = inputColumns + ['label'] else: pdf = pd.DataFrame(X) inputColumns = ['C' + str(i) for i in pdf.columns] outputColumns = inputColumns assembler = VectorAssembler(inputCols=inputColumns, outputCol='features') out = assembler.transform(sparkSession.createDataFrame(pdf, outputColumns)) if y is not None: return out.select('features', 'label') else: return out.select('features') def _convertSPMatrixToMB(sc, src): src = coo_matrix(src, dtype=np.float64) numRows = src.shape[0] numCols = src.shape[1] data = src.data row = src.row.astype(np.int32) col = src.col.astype(np.int32) nnz = len(src.col) buf1 = bytearray(data.tostring()) buf2 = bytearray(row.tostring()) buf3 = bytearray(col.tostring()) createJavaObject(sc, 'dummy') return sc._jvm.org.apache.sysml.runtime.instructions.spark.utils.RDDConverterUtilsExt.convertSciPyCOOToMB(buf1, buf2, buf3, numRows, numCols, nnz) def _convertDenseMatrixToMB(sc, src): numCols = getNumCols(src) numRows = src.shape[0] arr = src.ravel().astype(np.float64) buf = bytearray(arr.tostring()) createJavaObject(sc, 'dummy') return sc._jvm.org.apache.sysml.runtime.instructions.spark.utils.RDDConverterUtilsExt.convertPy4JArrayToMB(buf, numRows, numCols) def _copyRowBlock(i, sc, ret, src, numRowsPerBlock, rlen, clen): rowIndex = int(i / numRowsPerBlock) tmp = src[i:min(i+numRowsPerBlock, rlen),] mb = _convertSPMatrixToMB(sc, tmp) if isinstance(src, spmatrix) else _convertDenseMatrixToMB(sc, tmp) sc._jvm.org.apache.sysml.runtime.instructions.spark.utils.RDDConverterUtilsExt.copyRowBlocks(mb, rowIndex, ret, numRowsPerBlock, rlen, clen) return i def convertToMatrixBlock(sc, src, maxSizeBlockInMB=8): if not isinstance(sc, SparkContext): raise TypeError('sc needs to be of type SparkContext') isSparse = True if isinstance(src, spmatrix) else False src = np.asarray(src, dtype=np.float64) if not isSparse else src if len(src.shape) != 2: src_type = str(type(src).__name__) raise TypeError('Expected 2-dimensional ' + src_type + ', instead passed ' + str(len(src.shape)) + '-dimensional ' + src_type) # Ignoring sparsity for computing numRowsPerBlock for now numRowsPerBlock = int(math.ceil((maxSizeBlockInMB*1000000) / (src.shape[1]*8))) multiBlockTransfer = False if numRowsPerBlock >= src.shape[0] else True if not multiBlockTransfer: return _convertSPMatrixToMB(sc, src) if isSparse else _convertDenseMatrixToMB(sc, src) else: # Since coo_matrix does not have range indexing src = csr_matrix(src) if isSparse else src rlen = int(src.shape[0]) clen = int(src.shape[1]) ret = sc._jvm.org.apache.sysml.runtime.instructions.spark.utils.RDDConverterUtilsExt.allocateDenseOrSparse(rlen, clen, isSparse) [ _copyRowBlock(i, sc, ret, src, numRowsPerBlock, rlen, clen) for i in range(0, src.shape[0], numRowsPerBlock) ] sc._jvm.org.apache.sysml.runtime.instructions.spark.utils.RDDConverterUtilsExt.postProcessAfterCopying(ret) return ret def convertToNumPyArr(sc, mb): if isinstance(sc, SparkContext): numRows = mb.getNumRows() numCols = mb.getNumColumns() createJavaObject(sc, 'dummy') buf = sc._jvm.org.apache.sysml.runtime.instructions.spark.utils.RDDConverterUtilsExt.convertMBtoPy4JDenseArr(mb) return np.frombuffer(buf, count=numRows*numCols, dtype=np.float64).reshape((numRows, numCols)) else: raise TypeError('sc needs to be of type SparkContext') # TODO: We can generalize this by creating py4j gateway ourselves # Returns the mean of a model if defined otherwise None def getDatasetMean(dataset_name): """ Parameters ---------- dataset_name: Name of the dataset used to train model. This name is artificial name based on dataset used to train the model. Returns ------- mean: Mean value of model if its defined in the list DATASET_MEAN else None. """ try: mean = DATASET_MEAN[dataset_name.upper()] except: mean = None return mean # Example usage: convertImageToNumPyArr(im, img_shape=(3, 224, 224), add_rotated_images=True, add_mirrored_images=True) # The above call returns a numpy array of shape (6, 50176) in NCHW format def convertImageToNumPyArr(im, img_shape=None, add_rotated_images=False, add_mirrored_images=False, color_mode = 'RGB', mean=None): ## Input Parameters # color_mode: In case of VGG models which expect image data in BGR format instead of RGB for other most models, # color_mode parameter is used to process image data in BGR format. # mean: mean value is used to subtract from input data from every pixel value. By default value is None, so mean value not subtracted. if img_shape is not None: num_channels = img_shape[0] size = (img_shape[1], img_shape[2]) else: num_channels = 1 if im.mode == 'L' else 3 size = None if num_channels != 1 and num_channels != 3: raise ValueError('Expected the number of channels to be either 1 or 3') from PIL import Image if size is not None: im = im.resize(size, Image.LANCZOS) expected_mode = 'L' if num_channels == 1 else 'RGB' if expected_mode is not im.mode: im = im.convert(expected_mode) def _im2NumPy(im): if expected_mode == 'L': return np.asarray(im.getdata()).reshape((1, -1)) else: im = (np.array(im).astype(np.float)) # (H,W,C) -> (C,H,W) im = im.transpose(2, 0, 1) # RGB -> BGR if color_mode == 'BGR': im = im[...,::-1] # Subtract Mean if mean is not None: for c in range(3): im[:, :, c] = im[:, :, c] - mean[c] # (C,H,W) --> (1, C*H*W) return im.reshape((1, -1)) ret = _im2NumPy(im) if add_rotated_images: ret = np.vstack((ret, _im2NumPy(im.rotate(90)), _im2NumPy(im.rotate(180)), _im2NumPy(im.rotate(270)) )) if add_mirrored_images: ret = np.vstack((ret, _im2NumPy(im.transpose(Image.FLIP_LEFT_RIGHT)), _im2NumPy(im.transpose(Image.FLIP_TOP_BOTTOM)))) return ret def convertToPandasDF(X): if not isinstance(X, pd.DataFrame): return pd.DataFrame(X, columns=['C' + str(i) for i in range(getNumCols(X))]) return X
apache-2.0
edhuckle/statsmodels
statsmodels/sandbox/infotheo.py
33
16417
""" Information Theoretic and Entropy Measures References ---------- Golan, As. 2008. "Information and Entropy Econometrics -- A Review and Synthesis." Foundations And Trends in Econometrics 2(1-2), 1-145. Golan, A., Judge, G., and Miller, D. 1996. Maximum Entropy Econometrics. Wiley & Sons, Chichester. """ #For MillerMadow correction #Miller, G. 1955. Note on the bias of information estimates. Info. Theory # Psychol. Prob. Methods II-B:95-100. #For ChaoShen method #Chao, A., and T.-J. Shen. 2003. Nonparametric estimation of Shannon's index of diversity when #there are unseen species in sample. Environ. Ecol. Stat. 10:429-443. #Good, I. J. 1953. The population frequencies of species and the estimation of population parameters. #Biometrika 40:237-264. #Horvitz, D.G., and D. J. Thompson. 1952. A generalization of sampling without replacement from a finute universe. J. Am. Stat. Assoc. 47:663-685. #For NSB method #Nemenman, I., F. Shafee, and W. Bialek. 2002. Entropy and inference, revisited. In: Dietterich, T., #S. Becker, Z. Gharamani, eds. Advances in Neural Information Processing Systems 14: 471-478. #Cambridge (Massachusetts): MIT Press. #For shrinkage method #Dougherty, J., Kohavi, R., and Sahami, M. (1995). Supervised and unsupervised discretization of #continuous features. In International Conference on Machine Learning. #Yang, Y. and Webb, G. I. (2003). Discretization for naive-bayes learning: managing discretization #bias and variance. Technical Report 2003/131 School of Computer Science and Software Engineer- #ing, Monash University. from statsmodels.compat.python import range, lzip, lmap from scipy import stats import numpy as np from matplotlib import pyplot as plt from scipy.misc import logsumexp as sp_logsumexp #TODO: change these to use maxentutils so that over/underflow is handled #with the logsumexp. def logsumexp(a, axis=None): """ Compute the log of the sum of exponentials log(e^{a_1}+...e^{a_n}) of a Avoids numerical overflow. Parameters ---------- a : array-like The vector to exponentiate and sum axis : int, optional The axis along which to apply the operation. Defaults is None. Returns ------- sum(log(exp(a))) Notes ----- This function was taken from the mailing list http://mail.scipy.org/pipermail/scipy-user/2009-October/022931.html This should be superceded by the ufunc when it is finished. """ if axis is None: # Use the scipy.maxentropy version. return sp_logsumexp(a) a = np.asarray(a) shp = list(a.shape) shp[axis] = 1 a_max = a.max(axis=axis) s = np.log(np.exp(a - a_max.reshape(shp)).sum(axis=axis)) lse = a_max + s return lse def _isproperdist(X): """ Checks to see if `X` is a proper probability distribution """ X = np.asarray(X) if not np.allclose(np.sum(X), 1) or not np.all(X>=0) or not np.all(X<=1): return False else: return True def discretize(X, method="ef", nbins=None): """ Discretize `X` Parameters ---------- bins : int, optional Number of bins. Default is floor(sqrt(N)) method : string "ef" is equal-frequency binning "ew" is equal-width binning Examples -------- """ nobs = len(X) if nbins == None: nbins = np.floor(np.sqrt(nobs)) if method == "ef": discrete = np.ceil(nbins * stats.rankdata(X)/nobs) if method == "ew": width = np.max(X) - np.min(X) width = np.floor(width/nbins) svec, ivec = stats.fastsort(X) discrete = np.zeros(nobs) binnum = 1 base = svec[0] discrete[ivec[0]] = binnum for i in range(1,nobs): if svec[i] < base + width: discrete[ivec[i]] = binnum else: base = svec[i] binnum += 1 discrete[ivec[i]] = binnum return discrete #TODO: looks okay but needs more robust tests for corner cases def logbasechange(a,b): """ There is a one-to-one transformation of the entropy value from a log base b to a log base a : H_{b}(X)=log_{b}(a)[H_{a}(X)] Returns ------- log_{b}(a) """ return np.log(b)/np.log(a) def natstobits(X): """ Converts from nats to bits """ return logbasechange(np.e, 2) * X def bitstonats(X): """ Converts from bits to nats """ return logbasechange(2, np.e) * X #TODO: make this entropy, and then have different measures as #a method def shannonentropy(px, logbase=2): """ This is Shannon's entropy Parameters ----------- logbase, int or np.e The base of the log px : 1d or 2d array_like Can be a discrete probability distribution, a 2d joint distribution, or a sequence of probabilities. Returns ----- For log base 2 (bits) given a discrete distribution H(p) = sum(px * log2(1/px) = -sum(pk*log2(px)) = E[log2(1/p(X))] For log base 2 (bits) given a joint distribution H(px,py) = -sum_{k,j}*w_{kj}log2(w_{kj}) Notes ----- shannonentropy(0) is defined as 0 """ #TODO: haven't defined the px,py case? px = np.asarray(px) if not np.all(px <= 1) or not np.all(px >= 0): raise ValueError("px does not define proper distribution") entropy = -np.sum(np.nan_to_num(px*np.log2(px))) if logbase != 2: return logbasechange(2,logbase) * entropy else: return entropy # Shannon's information content def shannoninfo(px, logbase=2): """ Shannon's information Parameters ---------- px : float or array-like `px` is a discrete probability distribution Returns ------- For logbase = 2 np.log2(px) """ px = np.asarray(px) if not np.all(px <= 1) or not np.all(px >= 0): raise ValueError("px does not define proper distribution") if logbase != 2: return - logbasechange(2,logbase) * np.log2(px) else: return - np.log2(px) def condentropy(px, py, pxpy=None, logbase=2): """ Return the conditional entropy of X given Y. Parameters ---------- px : array-like py : array-like pxpy : array-like, optional If pxpy is None, the distributions are assumed to be independent and conendtropy(px,py) = shannonentropy(px) logbase : int or np.e Returns ------- sum_{kj}log(q_{j}/w_{kj} where q_{j} = Y[j] and w_kj = X[k,j] """ if not _isproperdist(px) or not _isproperdist(py): raise ValueError("px or py is not a proper probability distribution") if pxpy != None and not _isproperdist(pxpy): raise ValueError("pxpy is not a proper joint distribtion") if pxpy == None: pxpy = np.outer(py,px) condent = np.sum(pxpy * np.nan_to_num(np.log2(py/pxpy))) if logbase == 2: return condent else: return logbasechange(2, logbase) * condent def mutualinfo(px,py,pxpy, logbase=2): """ Returns the mutual information between X and Y. Parameters ---------- px : array-like Discrete probability distribution of random variable X py : array-like Discrete probability distribution of random variable Y pxpy : 2d array-like The joint probability distribution of random variables X and Y. Note that if X and Y are independent then the mutual information is zero. logbase : int or np.e, optional Default is 2 (bits) Returns ------- shannonentropy(px) - condentropy(px,py,pxpy) """ if not _isproperdist(px) or not _isproperdist(py): raise ValueError("px or py is not a proper probability distribution") if pxpy != None and not _isproperdist(pxpy): raise ValueError("pxpy is not a proper joint distribtion") if pxpy == None: pxpy = np.outer(py,px) return shannonentropy(px, logbase=logbase) - condentropy(px,py,pxpy, logbase=logbase) def corrent(px,py,pxpy,logbase=2): """ An information theoretic correlation measure. Reflects linear and nonlinear correlation between two random variables X and Y, characterized by the discrete probability distributions px and py respectively. Parameters ---------- px : array-like Discrete probability distribution of random variable X py : array-like Discrete probability distribution of random variable Y pxpy : 2d array-like, optional Joint probability distribution of X and Y. If pxpy is None, X and Y are assumed to be independent. logbase : int or np.e, optional Default is 2 (bits) Returns ------- mutualinfo(px,py,pxpy,logbase=logbase)/shannonentropy(py,logbase=logbase) Notes ----- This is also equivalent to corrent(px,py,pxpy) = 1 - condent(px,py,pxpy)/shannonentropy(py) """ if not _isproperdist(px) or not _isproperdist(py): raise ValueError("px or py is not a proper probability distribution") if pxpy != None and not _isproperdist(pxpy): raise ValueError("pxpy is not a proper joint distribtion") if pxpy == None: pxpy = np.outer(py,px) return mutualinfo(px,py,pxpy,logbase=logbase)/shannonentropy(py, logbase=logbase) def covent(px,py,pxpy,logbase=2): """ An information theoretic covariance measure. Reflects linear and nonlinear correlation between two random variables X and Y, characterized by the discrete probability distributions px and py respectively. Parameters ---------- px : array-like Discrete probability distribution of random variable X py : array-like Discrete probability distribution of random variable Y pxpy : 2d array-like, optional Joint probability distribution of X and Y. If pxpy is None, X and Y are assumed to be independent. logbase : int or np.e, optional Default is 2 (bits) Returns ------- condent(px,py,pxpy,logbase=logbase) + condent(py,px,pxpy, logbase=logbase) Notes ----- This is also equivalent to covent(px,py,pxpy) = condent(px,py,pxpy) + condent(py,px,pxpy) """ if not _isproperdist(px) or not _isproperdist(py): raise ValueError("px or py is not a proper probability distribution") if pxpy != None and not _isproperdist(pxpy): raise ValueError("pxpy is not a proper joint distribtion") if pxpy == None: pxpy = np.outer(py,px) return condent(px,py,pxpy,logbase=logbase) + condent(py,px,pxpy, logbase=logbase) #### Generalized Entropies #### def renyientropy(px,alpha=1,logbase=2,measure='R'): """ Renyi's generalized entropy Parameters ---------- px : array-like Discrete probability distribution of random variable X. Note that px is assumed to be a proper probability distribution. logbase : int or np.e, optional Default is 2 (bits) alpha : float or inf The order of the entropy. The default is 1, which in the limit is just Shannon's entropy. 2 is Renyi (Collision) entropy. If the string "inf" or numpy.inf is specified the min-entropy is returned. measure : str, optional The type of entropy measure desired. 'R' returns Renyi entropy measure. 'T' returns the Tsallis entropy measure. Returns ------- 1/(1-alpha)*log(sum(px**alpha)) In the limit as alpha -> 1, Shannon's entropy is returned. In the limit as alpha -> inf, min-entropy is returned. """ #TODO:finish returns #TODO:add checks for measure if not _isproperdist(px): raise ValueError("px is not a proper probability distribution") alpha = float(alpha) if alpha == 1: genent = shannonentropy(px) if logbase != 2: return logbasechange(2, logbase) * genent return genent elif 'inf' in string(alpha).lower() or alpha == np.inf: return -np.log(np.max(px)) # gets here if alpha != (1 or inf) px = px**alpha genent = np.log(px.sum()) if logbase == 2: return 1/(1-alpha) * genent else: return 1/(1-alpha) * logbasechange(2, logbase) * genent #TODO: before completing this, need to rethink the organization of # (relative) entropy measures, ie., all put into one function # and have kwdargs, etc.? def gencrossentropy(px,py,pxpy,alpha=1,logbase=2, measure='T'): """ Generalized cross-entropy measures. Parameters ---------- px : array-like Discrete probability distribution of random variable X py : array-like Discrete probability distribution of random variable Y pxpy : 2d array-like, optional Joint probability distribution of X and Y. If pxpy is None, X and Y are assumed to be independent. logbase : int or np.e, optional Default is 2 (bits) measure : str, optional The measure is the type of generalized cross-entropy desired. 'T' is the cross-entropy version of the Tsallis measure. 'CR' is Cressie-Read measure. """ if __name__ == "__main__": print("From Golan (2008) \"Information and Entropy Econometrics -- A Review \ and Synthesis") print("Table 3.1") # Examples from Golan (2008) X = [.2,.2,.2,.2,.2] Y = [.322,.072,.511,.091,.004] for i in X: print(shannoninfo(i)) for i in Y: print(shannoninfo(i)) print(shannonentropy(X)) print(shannonentropy(Y)) p = [1e-5,1e-4,.001,.01,.1,.15,.2,.25,.3,.35,.4,.45,.5] plt.subplot(111) plt.ylabel("Information") plt.xlabel("Probability") x = np.linspace(0,1,100001) plt.plot(x, shannoninfo(x)) # plt.show() plt.subplot(111) plt.ylabel("Entropy") plt.xlabel("Probability") x = np.linspace(0,1,101) plt.plot(x, lmap(shannonentropy, lzip(x,1-x))) # plt.show() # define a joint probability distribution # from Golan (2008) table 3.3 w = np.array([[0,0,1./3],[1/9.,1/9.,1/9.],[1/18.,1/9.,1/6.]]) # table 3.4 px = w.sum(0) py = w.sum(1) H_X = shannonentropy(px) H_Y = shannonentropy(py) H_XY = shannonentropy(w) H_XgivenY = condentropy(px,py,w) H_YgivenX = condentropy(py,px,w) # note that cross-entropy is not a distance measure as the following shows D_YX = logbasechange(2,np.e)*stats.entropy(px, py) D_XY = logbasechange(2,np.e)*stats.entropy(py, px) I_XY = mutualinfo(px,py,w) print("Table 3.3") print(H_X,H_Y, H_XY, H_XgivenY, H_YgivenX, D_YX, D_XY, I_XY) print("discretize functions") X=np.array([21.2,44.5,31.0,19.5,40.6,38.7,11.1,15.8,31.9,25.8,20.2,14.2, 24.0,21.0,11.3,18.0,16.3,22.2,7.8,27.8,16.3,35.1,14.9,17.1,28.2,16.4, 16.5,46.0,9.5,18.8,32.1,26.1,16.1,7.3,21.4,20.0,29.3,14.9,8.3,22.5, 12.8,26.9,25.5,22.9,11.2,20.7,26.2,9.3,10.8,15.6]) discX = discretize(X) #CF: R's infotheo #TODO: compare to pyentropy quantize? print print("Example in section 3.6 of Golan, using table 3.3") print("Bounding errors using Fano's inequality") print("H(P_{e}) + P_{e}log(K-1) >= H(X|Y)") print("or, a weaker inequality") print("P_{e} >= [H(X|Y) - 1]/log(K)") print("P(x) = %s" % px) print("X = 3 has the highest probability, so this is the estimate Xhat") pe = 1 - px[2] print("The probability of error Pe is 1 - p(X=3) = %0.4g" % pe) H_pe = shannonentropy([pe,1-pe]) print("H(Pe) = %0.4g and K=3" % H_pe) print("H(Pe) + Pe*log(K-1) = %0.4g >= H(X|Y) = %0.4g" % \ (H_pe+pe*np.log2(2), H_XgivenY)) print("or using the weaker inequality") print("Pe = %0.4g >= [H(X) - 1]/log(K) = %0.4g" % (pe, (H_X - 1)/np.log2(3))) print("Consider now, table 3.5, where there is additional information") print("The conditional probabilities of P(X|Y=y) are ") w2 = np.array([[0.,0.,1.],[1/3.,1/3.,1/3.],[1/6.,1/3.,1/2.]]) print(w2) # not a proper distribution? print("The probability of error given this information is") print("Pe = [H(X|Y) -1]/log(K) = %0.4g" % ((np.mean([0,shannonentropy(w2[1]),shannonentropy(w2[2])])-1)/np.log2(3))) print("such that more information lowers the error") ### Stochastic processes markovchain = np.array([[.553,.284,.163],[.465,.312,.223],[.420,.322,.258]])
bsd-3-clause
jasonleaster/Machine_Learning
K_Means/km.py
1
6556
""" Programmer : EOF File : km.py Date : 2015.12.29 E-mail : [email protected] Description : The implementation of K-Means Model. """ import numpy from numpy.random import uniform as rand from matplotlib import pyplot def euclidean_distance(list1, list2): assert isinstance(list1, list) assert isinstance(list2, list) summer = 0 for item1, item2 in zip(list1, list2): summer += (item1 - item2)**2 return numpy.sqrt(summer) class KMeans: def __init__(self, Mat, K, disFunc = euclidean_distance): self._Mat = numpy.array(Mat) self.SampleDem = self._Mat.shape[0] self.SampleNum = self._Mat.shape[1] self.classNum = K self.distance = disFunc # The boundary of training samples self.scope = [[min(self._Mat[i, :]), max(self._Mat[i, :])] for i in range(self.SampleDem)] """ The result after classification. classification[i][0] is the label of sample `i`. classification[i][1] is the distance between sample `i` and the mean point of that class. """ self.classification = [[None, None] for i in range(self.SampleNum)] """ Initialization of @meanVals in randomly in the scope. """ self.__initMeanVal__() def __initMeanVal__(self): while True: self.meanVal = numpy.array([[rand(self.scope[i][0], self.scope[i][1]) for i in range(self.SampleDem)] for j in range(self.classNum)]).transpose() self.classify() classSet = set() for i in range(self.SampleNum): classSet.add(self.classification[i][0]) if len(classSet) == self.classNum: break def classify(self): for i in range(self.SampleNum): minDis = +numpy.inf label = None for k in range(self.classNum): d = self.distance(self._Mat[:, i].tolist(), self.meanVal[:, k].tolist()) if d < minDis: minDis = d label = k self.classification[i][0] = label self.classification[i][1] = minDis """ After you initialized this class, just call this function and K Means Model will be built """ def train(self): while True: if self.stopOrNot(): return for k in range(self.classNum): mean = None counter = 0 for i in range(self.SampleNum): if self.classification[i][0] == k: if mean == None: mean = numpy.array(self._Mat[:, i])*1. else: mean += self._Mat[:, i] counter += 1. mean /= counter self.meanVal[:, k] = mean self.classify() """ Get the minimum inner distance of class `k` """ def minDisInClass(self, k): assert k >= 0 minDis = +numpy.inf for i in range(self.SampleNum): if self.classification[i][0] == k: summer = 0. for j in range(self.SampleNum): if self.classification[j][0] == k: summer += self.distance(self._Mat[:, i].tolist(), self._Mat[:, j].tolist()) if minDis > summer: minDis = summer opt_point = self._Mat[:, i] return (minDis, opt_point) """ This function *may* update @self.meanVal and will check whether to stop the training process. Return True, if it should be stoped. Otherwise, return False """ def stopOrNot(self): STOP = True for k in range(self.classNum): summer = 0. for i in range(self.SampleNum): if self.classification[i][0] == k: summer += self.distance(self.meanVal[:,k].tolist(), self._Mat[:, i].tolist()) (minDis, new_mean_point) = self.minDisInClass(k) if summer > minDis: self.meanVal[:, k] = new_mean_point STOP = False continue if STOP == True: return True else: self.classify() if self.stopOrNot() == True: return True else: return False return False def show(self): """ Only support two demention feature samples! Just a toy function. If the feature is more than 2-dementionm, please don't call this function in user program. """ assert self.SampleDem == 2 assert self.classNum <= 8 print "Means: " print self.meanVal width = 2 for k in range(self.classNum): for i in range(self.SampleNum): if self.classification[i][0] == 0: pyplot.plot(self._Mat[0][i], self._Mat[1][i], "or", markersize = 10) elif self.classification[i][0] == 1: pyplot.plot(self._Mat[0][i], self._Mat[1][i], "og", markersize = 10) elif self.classification[i][0] == 2: pyplot.plot(self._Mat[0][i], self._Mat[1][i], "ob", markersize = 10) elif self.classification[i][0] == 3: pyplot.plot(self._Mat[0][i], self._Mat[1][i], "oc", markersize = 10) elif self.classification[i][0] == 4: pyplot.plot(self._Mat[0][i], self._Mat[1][i], "om", markersize = 10) elif self.classification[i][0] == 5: pyplot.plot(self._Mat[0][i], self._Mat[1][i], "oy", markersize = 10) elif self.classification[i][0] == 6: pyplot.plot(self._Mat[0][i], self._Mat[1][i], "ok", markersize = 10) elif self.classification[i][0] == 7: pyplot.plot(self._Mat[0][i], self._Mat[1][i], "ow", markersize = 10) pyplot.axis([int(self.scope[0][0]) - 2*width, int(self.scope[0][1]) + 2*width, int(self.scope[1][0]) - width, int(self.scope[1][1]) + width]) pyplot.title("The OutPut (figure by Jason Leaster)") pyplot.show()
gpl-2.0
tiagoams/blueC_fluxes
integ_adv2.py
1
5857
#!/usr/bin/env python # -*- coding: utf-8 -*- """ integ_adv integrates tracer advection variables in NEMO-ERSEM starting at coastline where flux is zero NERC-DEFRA SSB-BlueC projects Created on Wed 10:30:00 2017-06-07 @author: TAMS00 TODO """ print('loading modules...') import os import sys import numpy as np import xarray as xr import matplotlib.pyplot as plt import matplotlib.colors as colors import math print('done') if (('Windows' in sys.platform) and (os.environ['COMPUTERNAME']=='PC4447')): base='c:/Users/tams00/Documents/nerc_ssb/c_fluxes/AMM7-HINDCAST-v0' elif ( ('linux' in sys.platform) and ( ( 'jc.rl.ac.uk' in os.environ['HOSTNAME']) or ( 'ceda.ac.uk' in os.environ['HOSTNAME']) ) ): #base='/group_workspaces/jasmin2/ssb/data/internal/AMM7-hindcasts/v0' base = '/group_workspaces/jasmin2/ssb/data/internal/AMM7-hindcasts/v0.2' elif ( ('linux' in sys.platform) and ( os.environ['HOSTNAME'][0:2] == 'es' ) ): base='/nerc/n01/n01/momme/AMM7-HINDCAST-v0-erosion' else: print('base dir not defined') modelpaths=[os.path.join(base+'/1981/01/','amm7_1d_19810101_19810131_grid_T.nc')] #, bathy_path='~/nerc_ssb/bathy_meter.nc' xadv_3d='XAD_O3_c_e3t' yadv_3d='YAD_O3_c_e3t' def is_land(bathy,row,col): #if math.isclose(bathy.values[row,col], 0.0): if np.isclose(bathy.values[row,col], 0.0): return True else: return False # integrate varArr from row,col in the given direction # and save in intArr # # XAD[r,c] = adv_x[r,c+1] - adv_x[r,c] (tested empirically in embayment case) # adv_x[r,c] = adv_x[r,c+1] - XAD[r,c] use when going west # adv_x[r,c+1] = XAD[r,c] + adv_x[r,c] use when going east # # NOTE: imshow shows geographic array upside down # YAD[r,c] = adv_y[r+1,c] - adv_y[r,c] (tested empirically in embayment case) # adv_x[r,c] = adv_x[r+1,c] - YAD[r,c] use when going south # adv_x[r+1,c] = YAD[r,c] + adv_x[r,c] use when going north # Corrected Arakawa C indexing in NEMO # https://www.nemo-ocean.eu/wp-content/uploads/NEMO_book.pdf pp.54 # # V # _ # j T |U # i # # XAD[r,c] = adv_x[r,c] - adv_x[r,c-1] # adv_x[r,c] = adv_x[r,c-1] + XAD[r,c] use when going east # adv_x[r,c] = adv_x[r,c+1] - XAD[r,c+1] use when going west # # YAD[r,c] = adv_y[r,c] - adv_y[r-1,c] # adv_y[r,c] = adv_y[r-1,c] + YAD[r,c] use when going north # adv_y[r,c] = adv_y[r+1,c] - YAD[r+1,c] use when going south # S.W.: as below, which results in opposite direction (postive right and up?) # YAD[r,c] = adv_y[r-1,c] - adv_y[r,c] # adv_y[r,c] = adv_y[r-1,c] - YAD[r,c] use when going north # adv_y[r,c] = adv_y[r+1,c] + YAD[r+1,c] use when going south def integrate_xadv(varArr,ocean): # for XAD [rows,cols]=varArr.shape horArr=np.zeros([rows,cols]) for row in range(1,rows): for col in range(1,cols): if ( (col == 1) and ocean[row,col] ): horArr[row,col] = +1 * varArr[row,col] elif ( ocean[row,col] ): horArr[row,col] = varArr[row,col] + horArr[row,col-1] return horArr def integrate_yadv(varArr,ocean): # for XAD [rows,cols]=varArr.shape verArr=np.zeros([rows,cols]) for row in range(1,rows): for col in range(1,cols): if ( (row == 1) and ocean[row,col] ): verArr[row,col] = +1 * varArr[row,col] elif ( ocean[row,col] ): verArr[row,col] = varArr[row,col] + verArr[row-1,col] return verArr def plot_results(bathy,verArr,horArr,modelout): fig, axs = plt.subplots(nrows=2, ncols=3, figsize=(12,12)) lim1=max(abs(np.array([verArr.max(),verArr.min(),horArr.max(),horArr.min()])))/2 lim2=max(abs(np.array([modelout[xadv_3d][0,0,:,:].max(),modelout[xadv_3d][0,0,:,:].min()])))/2 axs[0,0].imshow(np.log10(bathy),origin='lower') axs[0,0].set_title('bathymetry from bathy_meter.nc') im = axs[0,1].imshow(horArr,origin='lower',vmax=lim1,vmin=-1*lim1,cmap='seismic') axs[0,1].set_title('abs. hor. advection') fig.colorbar(im, ax=axs[0,1]) im = axs[1,1].imshow(modelout[xadv_3d][0,0,:,:],origin='lower',vmax=lim2,vmin=-1*lim2,cmap='seismic') axs[1,1].set_title(xadv_3d) fig.colorbar(im, ax=axs[1,1]) im = axs[0,2].imshow(verArr,origin='lower',vmax=lim1,vmin=-1*lim1,cmap='seismic') axs[0,2].set_title('abs. ver. advection') fig.colorbar(im, ax=axs[0,2]) im = axs[1,2].imshow(modelout[yadv_3d][0,0,:,:],origin='lower',vmax=lim2,vmin=-1*lim2,cmap='seismic') axs[1,2].set_title(yadv_3d) fig.colorbar(im, ax=axs[1,2]) plt.show() #**************************************************** # main() to take an optional 'argv' argument, which # allows us to call it from the interactive Python prompt: #**************************************************** def main(argv=None): print('open_mfdataset') modelout = xr.open_mfdataset(modelpaths) varArr = modelout[yadv_3d][:3,:3,:,:].values print('open_dataset') bathy = xr.open_dataset(bathy_path)['Bathymetry'][:,:].squeeze() print('done') ocean = ~np.isclose(bathy,0) [times,depths,rows,cols] = varArr.shape # x advection from XAD trend verArrDXY = np.zeros([depths,rows,cols]) for idepth in range(depths): verArrTXY = np.zeros([times,rows,cols]) for itime in range(times): print('itime: ',itime,' idepth:',idepth) #varArr = varArr[itime,0,:,:].squeeze() verArrTXY[itime,:,:] = integrate_yadv(varArr[itime,idepth,:,:].squeeze(),ocean) verArrDXY[idepth,:,:] = verArrTXY.mean(axis=0) verAvgArr = verArrDXY.mean(axis=0) #verDA.to_netcdf('xadv.nc') plot_results(bathy,verAvgArr,verAvgArr,modelout) if __name__ == "__main__": main()
gpl-3.0
fabioticconi/scikit-learn
examples/neighbors/plot_regression.py
349
1402
""" ============================ Nearest Neighbors regression ============================ Demonstrate the resolution of a regression problem using a k-Nearest Neighbor and the interpolation of the target using both barycenter and constant weights. """ print(__doc__) # Author: Alexandre Gramfort <[email protected]> # Fabian Pedregosa <[email protected]> # # License: BSD 3 clause (C) INRIA ############################################################################### # Generate sample data import numpy as np import matplotlib.pyplot as plt from sklearn import neighbors np.random.seed(0) X = np.sort(5 * np.random.rand(40, 1), axis=0) T = np.linspace(0, 5, 500)[:, np.newaxis] y = np.sin(X).ravel() # Add noise to targets y[::5] += 1 * (0.5 - np.random.rand(8)) ############################################################################### # Fit regression model n_neighbors = 5 for i, weights in enumerate(['uniform', 'distance']): knn = neighbors.KNeighborsRegressor(n_neighbors, weights=weights) y_ = knn.fit(X, y).predict(T) plt.subplot(2, 1, i + 1) plt.scatter(X, y, c='k', label='data') plt.plot(T, y_, c='g', label='prediction') plt.axis('tight') plt.legend() plt.title("KNeighborsRegressor (k = %i, weights = '%s')" % (n_neighbors, weights)) plt.show()
bsd-3-clause
yong-wang/cuda-convnet2
shownet.py
180
18206
# Copyright 2014 Google Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys from tarfile import TarFile, TarInfo from matplotlib import pylab as pl import numpy as n import getopt as opt from python_util.util import * from math import sqrt, ceil, floor from python_util.gpumodel import IGPUModel import random as r import numpy.random as nr from convnet import ConvNet from python_util.options import * from PIL import Image from time import sleep class ShowNetError(Exception): pass class ShowConvNet(ConvNet): def __init__(self, op, load_dic): ConvNet.__init__(self, op, load_dic) def init_data_providers(self): self.need_gpu = self.op.get_value('show_preds') class Dummy: def advance_batch(self): pass if self.need_gpu: ConvNet.init_data_providers(self) else: self.train_data_provider = self.test_data_provider = Dummy() def import_model(self): if self.need_gpu: ConvNet.import_model(self) def init_model_state(self): if self.op.get_value('show_preds'): self.softmax_name = self.op.get_value('show_preds') def init_model_lib(self): if self.need_gpu: ConvNet.init_model_lib(self) def plot_cost(self): if self.show_cost not in self.train_outputs[0][0]: raise ShowNetError("Cost function with name '%s' not defined by given convnet." % self.show_cost) # print self.test_outputs train_errors = [eval(self.layers[self.show_cost]['outputFilter'])(o[0][self.show_cost], o[1])[self.cost_idx] for o in self.train_outputs] test_errors = [eval(self.layers[self.show_cost]['outputFilter'])(o[0][self.show_cost], o[1])[self.cost_idx] for o in self.test_outputs] if self.smooth_test_errors: test_errors = [sum(test_errors[max(0,i-len(self.test_batch_range)):i])/(i-max(0,i-len(self.test_batch_range))) for i in xrange(1,len(test_errors)+1)] numbatches = len(self.train_batch_range) test_errors = n.row_stack(test_errors) test_errors = n.tile(test_errors, (1, self.testing_freq)) test_errors = list(test_errors.flatten()) test_errors += [test_errors[-1]] * max(0,len(train_errors) - len(test_errors)) test_errors = test_errors[:len(train_errors)] numepochs = len(train_errors) / float(numbatches) pl.figure(1) x = range(0, len(train_errors)) pl.plot(x, train_errors, 'k-', label='Training set') pl.plot(x, test_errors, 'r-', label='Test set') pl.legend() ticklocs = range(numbatches, len(train_errors) - len(train_errors) % numbatches + 1, numbatches) epoch_label_gran = int(ceil(numepochs / 20.)) epoch_label_gran = int(ceil(float(epoch_label_gran) / 10) * 10) if numepochs >= 10 else epoch_label_gran ticklabels = map(lambda x: str((x[1] / numbatches)) if x[0] % epoch_label_gran == epoch_label_gran-1 else '', enumerate(ticklocs)) pl.xticks(ticklocs, ticklabels) pl.xlabel('Epoch') # pl.ylabel(self.show_cost) pl.title('%s[%d]' % (self.show_cost, self.cost_idx)) # print "plotted cost" def make_filter_fig(self, filters, filter_start, fignum, _title, num_filters, combine_chans, FILTERS_PER_ROW=16): MAX_ROWS = 24 MAX_FILTERS = FILTERS_PER_ROW * MAX_ROWS num_colors = filters.shape[0] f_per_row = int(ceil(FILTERS_PER_ROW / float(1 if combine_chans else num_colors))) filter_end = min(filter_start+MAX_FILTERS, num_filters) filter_rows = int(ceil(float(filter_end - filter_start) / f_per_row)) filter_pixels = filters.shape[1] filter_size = int(sqrt(filters.shape[1])) fig = pl.figure(fignum) fig.text(.5, .95, '%s %dx%d filters %d-%d' % (_title, filter_size, filter_size, filter_start, filter_end-1), horizontalalignment='center') num_filters = filter_end - filter_start if not combine_chans: bigpic = n.zeros((filter_size * filter_rows + filter_rows + 1, filter_size*num_colors * f_per_row + f_per_row + 1), dtype=n.single) else: bigpic = n.zeros((3, filter_size * filter_rows + filter_rows + 1, filter_size * f_per_row + f_per_row + 1), dtype=n.single) for m in xrange(filter_start,filter_end ): filter = filters[:,:,m] y, x = (m - filter_start) / f_per_row, (m - filter_start) % f_per_row if not combine_chans: for c in xrange(num_colors): filter_pic = filter[c,:].reshape((filter_size,filter_size)) bigpic[1 + (1 + filter_size) * y:1 + (1 + filter_size) * y + filter_size, 1 + (1 + filter_size*num_colors) * x + filter_size*c:1 + (1 + filter_size*num_colors) * x + filter_size*(c+1)] = filter_pic else: filter_pic = filter.reshape((3, filter_size,filter_size)) bigpic[:, 1 + (1 + filter_size) * y:1 + (1 + filter_size) * y + filter_size, 1 + (1 + filter_size) * x:1 + (1 + filter_size) * x + filter_size] = filter_pic pl.xticks([]) pl.yticks([]) if not combine_chans: pl.imshow(bigpic, cmap=pl.cm.gray, interpolation='nearest') else: bigpic = bigpic.swapaxes(0,2).swapaxes(0,1) pl.imshow(bigpic, interpolation='nearest') def plot_filters(self): FILTERS_PER_ROW = 16 filter_start = 0 # First filter to show if self.show_filters not in self.layers: raise ShowNetError("Layer with name '%s' not defined by given convnet." % self.show_filters) layer = self.layers[self.show_filters] filters = layer['weights'][self.input_idx] # filters = filters - filters.min() # filters = filters / filters.max() if layer['type'] == 'fc': # Fully-connected layer num_filters = layer['outputs'] channels = self.channels filters = filters.reshape(channels, filters.shape[0]/channels, filters.shape[1]) elif layer['type'] in ('conv', 'local'): # Conv layer num_filters = layer['filters'] channels = layer['filterChannels'][self.input_idx] if layer['type'] == 'local': filters = filters.reshape((layer['modules'], channels, layer['filterPixels'][self.input_idx], num_filters)) filters = filters[:, :, :, self.local_plane] # first map for now (modules, channels, pixels) filters = filters.swapaxes(0,2).swapaxes(0,1) num_filters = layer['modules'] # filters = filters.swapaxes(0,1).reshape(channels * layer['filterPixels'][self.input_idx], num_filters * layer['modules']) # num_filters *= layer['modules'] FILTERS_PER_ROW = layer['modulesX'] else: filters = filters.reshape(channels, filters.shape[0]/channels, filters.shape[1]) # Convert YUV filters to RGB if self.yuv_to_rgb and channels == 3: R = filters[0,:,:] + 1.28033 * filters[2,:,:] G = filters[0,:,:] + -0.21482 * filters[1,:,:] + -0.38059 * filters[2,:,:] B = filters[0,:,:] + 2.12798 * filters[1,:,:] filters[0,:,:], filters[1,:,:], filters[2,:,:] = R, G, B combine_chans = not self.no_rgb and channels == 3 # Make sure you don't modify the backing array itself here -- so no -= or /= if self.norm_filters: #print filters.shape filters = filters - n.tile(filters.reshape((filters.shape[0] * filters.shape[1], filters.shape[2])).mean(axis=0).reshape(1, 1, filters.shape[2]), (filters.shape[0], filters.shape[1], 1)) filters = filters / n.sqrt(n.tile(filters.reshape((filters.shape[0] * filters.shape[1], filters.shape[2])).var(axis=0).reshape(1, 1, filters.shape[2]), (filters.shape[0], filters.shape[1], 1))) #filters = filters - n.tile(filters.min(axis=0).min(axis=0), (3, filters.shape[1], 1)) #filters = filters / n.tile(filters.max(axis=0).max(axis=0), (3, filters.shape[1], 1)) #else: filters = filters - filters.min() filters = filters / filters.max() self.make_filter_fig(filters, filter_start, 2, 'Layer %s' % self.show_filters, num_filters, combine_chans, FILTERS_PER_ROW=FILTERS_PER_ROW) def plot_predictions(self): epoch, batch, data = self.get_next_batch(train=False) # get a test batch num_classes = self.test_data_provider.get_num_classes() NUM_ROWS = 2 NUM_COLS = 4 NUM_IMGS = NUM_ROWS * NUM_COLS if not self.save_preds else data[0].shape[1] NUM_TOP_CLASSES = min(num_classes, 5) # show this many top labels NUM_OUTPUTS = self.model_state['layers'][self.softmax_name]['outputs'] PRED_IDX = 1 label_names = [lab.split(',')[0] for lab in self.test_data_provider.batch_meta['label_names']] if self.only_errors: preds = n.zeros((data[0].shape[1], NUM_OUTPUTS), dtype=n.single) else: preds = n.zeros((NUM_IMGS, NUM_OUTPUTS), dtype=n.single) #rand_idx = nr.permutation(n.r_[n.arange(1), n.where(data[1] == 552)[1], n.where(data[1] == 795)[1], n.where(data[1] == 449)[1], n.where(data[1] == 274)[1]])[:NUM_IMGS] rand_idx = nr.randint(0, data[0].shape[1], NUM_IMGS) if NUM_IMGS < data[0].shape[1]: data = [n.require(d[:,rand_idx], requirements='C') for d in data] # data += [preds] # Run the model print [d.shape for d in data], preds.shape self.libmodel.startFeatureWriter(data, [preds], [self.softmax_name]) IGPUModel.finish_batch(self) print preds data[0] = self.test_data_provider.get_plottable_data(data[0]) if self.save_preds: if not gfile.Exists(self.save_preds): gfile.MakeDirs(self.save_preds) preds_thresh = preds > 0.5 # Binarize predictions data[0] = data[0] * 255.0 data[0][data[0]<0] = 0 data[0][data[0]>255] = 255 data[0] = n.require(data[0], dtype=n.uint8) dir_name = '%s_predictions_batch_%d' % (os.path.basename(self.save_file), batch) tar_name = os.path.join(self.save_preds, '%s.tar' % dir_name) tfo = gfile.GFile(tar_name, "w") tf = TarFile(fileobj=tfo, mode='w') for img_idx in xrange(NUM_IMGS): img = data[0][img_idx,:,:,:] imsave = Image.fromarray(img) prefix = "CORRECT" if data[1][0,img_idx] == preds_thresh[img_idx,PRED_IDX] else "FALSE_POS" if preds_thresh[img_idx,PRED_IDX] == 1 else "FALSE_NEG" file_name = "%s_%.2f_%d_%05d_%d.png" % (prefix, preds[img_idx,PRED_IDX], batch, img_idx, data[1][0,img_idx]) # gf = gfile.GFile(file_name, "w") file_string = StringIO() imsave.save(file_string, "PNG") tarinf = TarInfo(os.path.join(dir_name, file_name)) tarinf.size = file_string.tell() file_string.seek(0) tf.addfile(tarinf, file_string) tf.close() tfo.close() # gf.close() print "Wrote %d prediction PNGs to %s" % (preds.shape[0], tar_name) else: fig = pl.figure(3, figsize=(12,9)) fig.text(.4, .95, '%s test samples' % ('Mistaken' if self.only_errors else 'Random')) if self.only_errors: # what the net got wrong if NUM_OUTPUTS > 1: err_idx = [i for i,p in enumerate(preds.argmax(axis=1)) if p not in n.where(data[2][:,i] > 0)[0]] else: err_idx = n.where(data[1][0,:] != preds[:,0].T)[0] print err_idx err_idx = r.sample(err_idx, min(len(err_idx), NUM_IMGS)) data[0], data[1], preds = data[0][:,err_idx], data[1][:,err_idx], preds[err_idx,:] import matplotlib.gridspec as gridspec import matplotlib.colors as colors cconv = colors.ColorConverter() gs = gridspec.GridSpec(NUM_ROWS*2, NUM_COLS, width_ratios=[1]*NUM_COLS, height_ratios=[2,1]*NUM_ROWS ) #print data[1] for row in xrange(NUM_ROWS): for col in xrange(NUM_COLS): img_idx = row * NUM_COLS + col if data[0].shape[0] <= img_idx: break pl.subplot(gs[(row * 2) * NUM_COLS + col]) #pl.subplot(NUM_ROWS*2, NUM_COLS, row * 2 * NUM_COLS + col + 1) pl.xticks([]) pl.yticks([]) img = data[0][img_idx,:,:,:] pl.imshow(img, interpolation='lanczos') show_title = data[1].shape[0] == 1 true_label = [int(data[1][0,img_idx])] if show_title else n.where(data[1][:,img_idx]==1)[0] #print true_label #print preds[img_idx,:].shape #print preds[img_idx,:].max() true_label_names = [label_names[i] for i in true_label] img_labels = sorted(zip(preds[img_idx,:], label_names), key=lambda x: x[0])[-NUM_TOP_CLASSES:] #print img_labels axes = pl.subplot(gs[(row * 2 + 1) * NUM_COLS + col]) height = 0.5 ylocs = n.array(range(NUM_TOP_CLASSES))*height pl.barh(ylocs, [l[0] for l in img_labels], height=height, \ color=['#ffaaaa' if l[1] in true_label_names else '#aaaaff' for l in img_labels]) #pl.title(", ".join(true_labels)) if show_title: pl.title(", ".join(true_label_names), fontsize=15, fontweight='bold') else: print true_label_names pl.yticks(ylocs + height/2, [l[1] for l in img_labels], x=1, backgroundcolor=cconv.to_rgba('0.65', alpha=0.5), weight='bold') for line in enumerate(axes.get_yticklines()): line[1].set_visible(False) #pl.xticks([width], ['']) #pl.yticks([]) pl.xticks([]) pl.ylim(0, ylocs[-1] + height) pl.xlim(0, 1) def start(self): self.op.print_values() # print self.show_cost if self.show_cost: self.plot_cost() if self.show_filters: self.plot_filters() if self.show_preds: self.plot_predictions() if pl: pl.show() sys.exit(0) @classmethod def get_options_parser(cls): op = ConvNet.get_options_parser() for option in list(op.options): if option not in ('gpu', 'load_file', 'inner_size', 'train_batch_range', 'test_batch_range', 'multiview_test', 'data_path', 'pca_noise', 'scalar_mean'): op.delete_option(option) op.add_option("show-cost", "show_cost", StringOptionParser, "Show specified objective function", default="") op.add_option("show-filters", "show_filters", StringOptionParser, "Show learned filters in specified layer", default="") op.add_option("norm-filters", "norm_filters", BooleanOptionParser, "Individually normalize filters shown with --show-filters", default=0) op.add_option("input-idx", "input_idx", IntegerOptionParser, "Input index for layer given to --show-filters", default=0) op.add_option("cost-idx", "cost_idx", IntegerOptionParser, "Cost function return value index for --show-cost", default=0) op.add_option("no-rgb", "no_rgb", BooleanOptionParser, "Don't combine filter channels into RGB in layer given to --show-filters", default=False) op.add_option("yuv-to-rgb", "yuv_to_rgb", BooleanOptionParser, "Convert RGB filters to YUV in layer given to --show-filters", default=False) op.add_option("channels", "channels", IntegerOptionParser, "Number of channels in layer given to --show-filters (fully-connected layers only)", default=0) op.add_option("show-preds", "show_preds", StringOptionParser, "Show predictions made by given softmax on test set", default="") op.add_option("save-preds", "save_preds", StringOptionParser, "Save predictions to given path instead of showing them", default="") op.add_option("only-errors", "only_errors", BooleanOptionParser, "Show only mistaken predictions (to be used with --show-preds)", default=False, requires=['show_preds']) op.add_option("local-plane", "local_plane", IntegerOptionParser, "Local plane to show", default=0) op.add_option("smooth-test-errors", "smooth_test_errors", BooleanOptionParser, "Use running average for test error plot?", default=1) op.options['load_file'].default = None return op if __name__ == "__main__": #nr.seed(6) try: op = ShowConvNet.get_options_parser() op, load_dic = IGPUModel.parse_options(op) model = ShowConvNet(op, load_dic) model.start() except (UnpickleError, ShowNetError, opt.GetoptError), e: print "----------------" print "Error:" print e
apache-2.0
d-mittal/pystruct
pystruct/tests/test_learners/test_crammer_singer_svm.py
4
7793
import numpy as np from numpy.testing import (assert_array_equal, assert_array_almost_equal, assert_almost_equal, assert_equal) from nose.tools import assert_greater from sklearn.datasets import make_blobs from sklearn.metrics import f1_score from pystruct.models import MultiClassClf from pystruct.learners import (OneSlackSSVM, NSlackSSVM, SubgradientSSVM) def test_crammer_singer_model(): X, Y = make_blobs(n_samples=80, centers=3, random_state=42) # we have to add a constant 1 feature by hand :-/ X = np.hstack([X, np.ones((X.shape[0], 1))]) pbl = MultiClassClf(n_features=3, n_classes=3) # test inference energy rng = np.random.RandomState(0) w = rng.uniform(size=pbl.size_joint_feature) x = X[0] y, energy = pbl.inference(x, w, return_energy=True) assert_almost_equal(energy, np.dot(w, pbl.joint_feature(x, y))) # test inference result: energies = [np.dot(w, pbl.joint_feature(x, y_hat)) for y_hat in range(3)] assert_equal(np.argmax(energies), y) # test loss_augmented inference energy y, energy = pbl.loss_augmented_inference(x, Y[0], w, return_energy=True) assert_almost_equal(energy, np.dot(w, pbl.joint_feature(x, y)) + pbl.loss(Y[0], y)) # test batch versions Y_batch = pbl.batch_inference(X, w) Y_ = [pbl.inference(x, w) for x in X] assert_array_equal(Y_batch, Y_) Y_batch = pbl.batch_loss_augmented_inference(X, Y, w) Y_ = [pbl.loss_augmented_inference(x, y, w) for x, y in zip(X, Y)] assert_array_equal(Y_batch, Y_) loss_batch = pbl.batch_loss(Y, Y_) loss = [pbl.loss(y, y_) for y, y_ in zip(Y, Y_)] assert_array_equal(loss_batch, loss) def test_crammer_singer_model_class_weight(): X, Y = make_blobs(n_samples=80, centers=3, random_state=42) # we have to add a constant 1 feature by hand :-/ X = np.hstack([X, np.ones((X.shape[0], 1))]) pbl = MultiClassClf(n_features=3, n_classes=3, class_weight=[1, 2, 1]) rng = np.random.RandomState(0) w = rng.uniform(size=pbl.size_joint_feature) # test inference energy x = X[0] y, energy = pbl.inference(x, w, return_energy=True) assert_almost_equal(energy, np.dot(w, pbl.joint_feature(x, y))) # test inference_result: energies = [np.dot(w, pbl.joint_feature(x, y_hat)) for y_hat in range(3)] assert_equal(np.argmax(energies), y) # test loss_augmented inference energy y, energy = pbl.loss_augmented_inference(x, Y[0], w, return_energy=True) assert_almost_equal(energy, np.dot(w, pbl.joint_feature(x, y)) + pbl.loss(Y[0], y)) # test batch versions Y_batch = pbl.batch_inference(X, w) Y_ = [pbl.inference(x, w) for x in X] assert_array_equal(Y_batch, Y_) Y_batch = pbl.batch_loss_augmented_inference(X, Y, w) Y_ = [pbl.loss_augmented_inference(x, y, w) for x, y in zip(X, Y)] assert_array_equal(Y_batch, Y_) loss_batch = pbl.batch_loss(Y, Y_) loss = [pbl.loss(y, y_) for y, y_ in zip(Y, Y_)] assert_array_equal(loss_batch, loss) def test_simple_1d_dataset_cutting_plane(): # 10 1d datapoints between 0 and 1 X = np.random.uniform(size=(30, 1)) Y = (X.ravel() > 0.5).astype(np.int) # we have to add a constant 1 feature by hand :-/ X = np.hstack([X, np.ones((X.shape[0], 1))]) pbl = MultiClassClf(n_features=2) svm = NSlackSSVM(pbl, check_constraints=True, C=10000) svm.fit(X, Y) assert_array_equal(Y, np.hstack(svm.predict(X))) def test_blobs_2d_cutting_plane(): # make two gaussian blobs X, Y = make_blobs(n_samples=80, centers=3, random_state=42) # we have to add a constant 1 feature by hand :-/ X = np.hstack([X, np.ones((X.shape[0], 1))]) X_train, X_test, Y_train, Y_test = X[:40], X[40:], Y[:40], Y[40:] pbl = MultiClassClf(n_features=3, n_classes=3) svm = NSlackSSVM(pbl, check_constraints=True, C=1000, batch_size=1) svm.fit(X_train, Y_train) assert_array_equal(Y_test, np.hstack(svm.predict(X_test))) def test_blobs_2d_one_slack(): # make two gaussian blobs X, Y = make_blobs(n_samples=80, centers=3, random_state=42) # we have to add a constant 1 feature by hand :-/ X = np.hstack([X, np.ones((X.shape[0], 1))]) X_train, X_test, Y_train, Y_test = X[:40], X[40:], Y[:40], Y[40:] pbl = MultiClassClf(n_features=3, n_classes=3) svm = OneSlackSSVM(pbl, check_constraints=True, C=1000) svm.fit(X_train, Y_train) assert_array_equal(Y_test, np.hstack(svm.predict(X_test))) def test_blobs_2d_subgradient(): # make two gaussian blobs X, Y = make_blobs(n_samples=80, centers=3, random_state=42) # we have to add a constant 1 feature by hand :-/ X = np.hstack([X, np.ones((X.shape[0], 1))]) X_train, X_test, Y_train, Y_test = X[:40], X[40:], Y[:40], Y[40:] pbl = MultiClassClf(n_features=3, n_classes=3) svm = SubgradientSSVM(pbl, C=1000) svm.fit(X_train, Y_train) assert_array_equal(Y_test, np.hstack(svm.predict(X_test))) def test_equal_class_weights(): # test that equal class weight is the same as no class weight X, Y = make_blobs(n_samples=80, centers=3, random_state=42) X = np.hstack([X, np.ones((X.shape[0], 1))]) X_train, X_test, Y_train, Y_test = X[:40], X[40:], Y[:40], Y[40:] pbl = MultiClassClf(n_features=3, n_classes=3) svm = OneSlackSSVM(pbl, C=10) svm.fit(X_train, Y_train) predict_no_class_weight = svm.predict(X_test) pbl_class_weight = MultiClassClf(n_features=3, n_classes=3, class_weight=np.ones(3)) svm_class_weight = OneSlackSSVM(pbl_class_weight, C=10) svm_class_weight.fit(X_train, Y_train) predict_class_weight = svm_class_weight.predict(X_test) assert_array_equal(predict_no_class_weight, predict_class_weight) assert_array_almost_equal(svm.w, svm_class_weight.w) def test_class_weights(): X, Y = make_blobs(n_samples=210, centers=3, random_state=1, cluster_std=3, shuffle=False) X = np.hstack([X, np.ones((X.shape[0], 1))]) X, Y = X[:170], Y[:170] pbl = MultiClassClf(n_features=3, n_classes=3) svm = OneSlackSSVM(pbl, C=10) svm.fit(X, Y) weights = 1. / np.bincount(Y) weights *= len(weights) / np.sum(weights) pbl_class_weight = MultiClassClf(n_features=3, n_classes=3, class_weight=weights) svm_class_weight = OneSlackSSVM(pbl_class_weight, C=10) svm_class_weight.fit(X, Y) assert_greater(f1_score(Y, svm_class_weight.predict(X)), f1_score(Y, svm.predict(X))) def test_class_weights_rescale_C(): # check that our crammer-singer implementation with class weights and # rescale_C=True is the same as LinearSVC's c-s class_weight implementation from sklearn.svm import LinearSVC X, Y = make_blobs(n_samples=210, centers=3, random_state=1, cluster_std=3, shuffle=False) X = np.hstack([X, np.ones((X.shape[0], 1))]) X, Y = X[:170], Y[:170] weights = 1. / np.bincount(Y) weights *= len(weights) / np.sum(weights) pbl_class_weight = MultiClassClf(n_features=3, n_classes=3, class_weight=weights, rescale_C=True) svm_class_weight = OneSlackSSVM(pbl_class_weight, C=10, tol=1e-5) svm_class_weight.fit(X, Y) try: linearsvm = LinearSVC(multi_class='crammer_singer', fit_intercept=False, class_weight='auto', C=10) linearsvm.fit(X, Y) assert_array_almost_equal(svm_class_weight.w, linearsvm.coef_.ravel(), 3) except TypeError: # travis has a really old sklearn version that doesn't support # class_weight in LinearSVC pass
bsd-2-clause
evgchz/scikit-learn
examples/classification/plot_digits_classification.py
289
2397
""" ================================ Recognizing hand-written digits ================================ An example showing how the scikit-learn can be used to recognize images of hand-written digits. This example is commented in the :ref:`tutorial section of the user manual <introduction>`. """ print(__doc__) # Author: Gael Varoquaux <gael dot varoquaux at normalesup dot org> # License: BSD 3 clause # Standard scientific Python imports import matplotlib.pyplot as plt # Import datasets, classifiers and performance metrics from sklearn import datasets, svm, metrics # The digits dataset digits = datasets.load_digits() # The data that we are interested in is made of 8x8 images of digits, let's # have a look at the first 3 images, stored in the `images` attribute of the # dataset. If we were working from image files, we could load them using # pylab.imread. Note that each image must have the same size. For these # images, we know which digit they represent: it is given in the 'target' of # the dataset. images_and_labels = list(zip(digits.images, digits.target)) for index, (image, label) in enumerate(images_and_labels[:4]): plt.subplot(2, 4, index + 1) plt.axis('off') plt.imshow(image, cmap=plt.cm.gray_r, interpolation='nearest') plt.title('Training: %i' % label) # To apply a classifier on this data, we need to flatten the image, to # turn the data in a (samples, feature) matrix: n_samples = len(digits.images) data = digits.images.reshape((n_samples, -1)) # Create a classifier: a support vector classifier classifier = svm.SVC(gamma=0.001) # We learn the digits on the first half of the digits classifier.fit(data[:n_samples / 2], digits.target[:n_samples / 2]) # Now predict the value of the digit on the second half: expected = digits.target[n_samples / 2:] predicted = classifier.predict(data[n_samples / 2:]) print("Classification report for classifier %s:\n%s\n" % (classifier, metrics.classification_report(expected, predicted))) print("Confusion matrix:\n%s" % metrics.confusion_matrix(expected, predicted)) images_and_predictions = list(zip(digits.images[n_samples / 2:], predicted)) for index, (image, prediction) in enumerate(images_and_predictions[:4]): plt.subplot(2, 4, index + 5) plt.axis('off') plt.imshow(image, cmap=plt.cm.gray_r, interpolation='nearest') plt.title('Prediction: %i' % prediction) plt.show()
bsd-3-clause
saiwing-yeung/scikit-learn
sklearn/datasets/samples_generator.py
26
56554
""" Generate samples of synthetic data sets. """ # Authors: B. Thirion, G. Varoquaux, A. Gramfort, V. Michel, O. Grisel, # G. Louppe, J. Nothman # License: BSD 3 clause import numbers import array import numpy as np from scipy import linalg import scipy.sparse as sp from ..preprocessing import MultiLabelBinarizer from ..utils import check_array, check_random_state from ..utils import shuffle as util_shuffle from ..utils.fixes import astype from ..utils.random import sample_without_replacement from ..externals import six map = six.moves.map zip = six.moves.zip def _generate_hypercube(samples, dimensions, rng): """Returns distinct binary samples of length dimensions """ if dimensions > 30: return np.hstack([_generate_hypercube(samples, dimensions - 30, rng), _generate_hypercube(samples, 30, rng)]) out = astype(sample_without_replacement(2 ** dimensions, samples, random_state=rng), dtype='>u4', copy=False) out = np.unpackbits(out.view('>u1')).reshape((-1, 32))[:, -dimensions:] return out def make_classification(n_samples=100, n_features=20, n_informative=2, n_redundant=2, n_repeated=0, n_classes=2, n_clusters_per_class=2, weights=None, flip_y=0.01, class_sep=1.0, hypercube=True, shift=0.0, scale=1.0, shuffle=True, random_state=None): """Generate a random n-class classification problem. This initially creates clusters of points normally distributed (std=1) about vertices of a `2 * class_sep`-sided hypercube, and assigns an equal number of clusters to each class. It introduces interdependence between these features and adds various types of further noise to the data. Prior to shuffling, `X` stacks a number of these primary "informative" features, "redundant" linear combinations of these, "repeated" duplicates of sampled features, and arbitrary noise for and remaining features. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=20) The total number of features. These comprise `n_informative` informative features, `n_redundant` redundant features, `n_repeated` duplicated features and `n_features-n_informative-n_redundant- n_repeated` useless features drawn at random. n_informative : int, optional (default=2) The number of informative features. Each class is composed of a number of gaussian clusters each located around the vertices of a hypercube in a subspace of dimension `n_informative`. For each cluster, informative features are drawn independently from N(0, 1) and then randomly linearly combined within each cluster in order to add covariance. The clusters are then placed on the vertices of the hypercube. n_redundant : int, optional (default=2) The number of redundant features. These features are generated as random linear combinations of the informative features. n_repeated : int, optional (default=0) The number of duplicated features, drawn randomly from the informative and the redundant features. n_classes : int, optional (default=2) The number of classes (or labels) of the classification problem. n_clusters_per_class : int, optional (default=2) The number of clusters per class. weights : list of floats or None (default=None) The proportions of samples assigned to each class. If None, then classes are balanced. Note that if `len(weights) == n_classes - 1`, then the last class weight is automatically inferred. More than `n_samples` samples may be returned if the sum of `weights` exceeds 1. flip_y : float, optional (default=0.01) The fraction of samples whose class are randomly exchanged. class_sep : float, optional (default=1.0) The factor multiplying the hypercube dimension. hypercube : boolean, optional (default=True) If True, the clusters are put on the vertices of a hypercube. If False, the clusters are put on the vertices of a random polytope. shift : float, array of shape [n_features] or None, optional (default=0.0) Shift features by the specified value. If None, then features are shifted by a random value drawn in [-class_sep, class_sep]. scale : float, array of shape [n_features] or None, optional (default=1.0) Multiply features by the specified value. If None, then features are scaled by a random value drawn in [1, 100]. Note that scaling happens after shifting. shuffle : boolean, optional (default=True) Shuffle the samples and the features. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The generated samples. y : array of shape [n_samples] The integer labels for class membership of each sample. Notes ----- The algorithm is adapted from Guyon [1] and was designed to generate the "Madelon" dataset. References ---------- .. [1] I. Guyon, "Design of experiments for the NIPS 2003 variable selection benchmark", 2003. See also -------- make_blobs: simplified variant make_multilabel_classification: unrelated generator for multilabel tasks """ generator = check_random_state(random_state) # Count features, clusters and samples if n_informative + n_redundant + n_repeated > n_features: raise ValueError("Number of informative, redundant and repeated " "features must sum to less than the number of total" " features") if 2 ** n_informative < n_classes * n_clusters_per_class: raise ValueError("n_classes * n_clusters_per_class must" " be smaller or equal 2 ** n_informative") if weights and len(weights) not in [n_classes, n_classes - 1]: raise ValueError("Weights specified but incompatible with number " "of classes.") n_useless = n_features - n_informative - n_redundant - n_repeated n_clusters = n_classes * n_clusters_per_class if weights and len(weights) == (n_classes - 1): weights.append(1.0 - sum(weights)) if weights is None: weights = [1.0 / n_classes] * n_classes weights[-1] = 1.0 - sum(weights[:-1]) # Distribute samples among clusters by weight n_samples_per_cluster = [] for k in range(n_clusters): n_samples_per_cluster.append(int(n_samples * weights[k % n_classes] / n_clusters_per_class)) for i in range(n_samples - sum(n_samples_per_cluster)): n_samples_per_cluster[i % n_clusters] += 1 # Initialize X and y X = np.zeros((n_samples, n_features)) y = np.zeros(n_samples, dtype=np.int) # Build the polytope whose vertices become cluster centroids centroids = _generate_hypercube(n_clusters, n_informative, generator).astype(float) centroids *= 2 * class_sep centroids -= class_sep if not hypercube: centroids *= generator.rand(n_clusters, 1) centroids *= generator.rand(1, n_informative) # Initially draw informative features from the standard normal X[:, :n_informative] = generator.randn(n_samples, n_informative) # Create each cluster; a variant of make_blobs stop = 0 for k, centroid in enumerate(centroids): start, stop = stop, stop + n_samples_per_cluster[k] y[start:stop] = k % n_classes # assign labels X_k = X[start:stop, :n_informative] # slice a view of the cluster A = 2 * generator.rand(n_informative, n_informative) - 1 X_k[...] = np.dot(X_k, A) # introduce random covariance X_k += centroid # shift the cluster to a vertex # Create redundant features if n_redundant > 0: B = 2 * generator.rand(n_informative, n_redundant) - 1 X[:, n_informative:n_informative + n_redundant] = \ np.dot(X[:, :n_informative], B) # Repeat some features if n_repeated > 0: n = n_informative + n_redundant indices = ((n - 1) * generator.rand(n_repeated) + 0.5).astype(np.intp) X[:, n:n + n_repeated] = X[:, indices] # Fill useless features if n_useless > 0: X[:, -n_useless:] = generator.randn(n_samples, n_useless) # Randomly replace labels if flip_y >= 0.0: flip_mask = generator.rand(n_samples) < flip_y y[flip_mask] = generator.randint(n_classes, size=flip_mask.sum()) # Randomly shift and scale if shift is None: shift = (2 * generator.rand(n_features) - 1) * class_sep X += shift if scale is None: scale = 1 + 100 * generator.rand(n_features) X *= scale if shuffle: # Randomly permute samples X, y = util_shuffle(X, y, random_state=generator) # Randomly permute features indices = np.arange(n_features) generator.shuffle(indices) X[:, :] = X[:, indices] return X, y def make_multilabel_classification(n_samples=100, n_features=20, n_classes=5, n_labels=2, length=50, allow_unlabeled=True, sparse=False, return_indicator='dense', return_distributions=False, random_state=None): """Generate a random multilabel classification problem. For each sample, the generative process is: - pick the number of labels: n ~ Poisson(n_labels) - n times, choose a class c: c ~ Multinomial(theta) - pick the document length: k ~ Poisson(length) - k times, choose a word: w ~ Multinomial(theta_c) In the above process, rejection sampling is used to make sure that n is never zero or more than `n_classes`, and that the document length is never zero. Likewise, we reject classes which have already been chosen. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=20) The total number of features. n_classes : int, optional (default=5) The number of classes of the classification problem. n_labels : int, optional (default=2) The average number of labels per instance. More precisely, the number of labels per sample is drawn from a Poisson distribution with ``n_labels`` as its expected value, but samples are bounded (using rejection sampling) by ``n_classes``, and must be nonzero if ``allow_unlabeled`` is False. length : int, optional (default=50) The sum of the features (number of words if documents) is drawn from a Poisson distribution with this expected value. allow_unlabeled : bool, optional (default=True) If ``True``, some instances might not belong to any class. sparse : bool, optional (default=False) If ``True``, return a sparse feature matrix .. versionadded:: 0.17 parameter to allow *sparse* output. return_indicator : 'dense' (default) | 'sparse' | False If ``dense`` return ``Y`` in the dense binary indicator format. If ``'sparse'`` return ``Y`` in the sparse binary indicator format. ``False`` returns a list of lists of labels. return_distributions : bool, optional (default=False) If ``True``, return the prior class probability and conditional probabilities of features given classes, from which the data was drawn. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The generated samples. Y : array or sparse CSR matrix of shape [n_samples, n_classes] The label sets. p_c : array, shape [n_classes] The probability of each class being drawn. Only returned if ``return_distributions=True``. p_w_c : array, shape [n_features, n_classes] The probability of each feature being drawn given each class. Only returned if ``return_distributions=True``. """ generator = check_random_state(random_state) p_c = generator.rand(n_classes) p_c /= p_c.sum() cumulative_p_c = np.cumsum(p_c) p_w_c = generator.rand(n_features, n_classes) p_w_c /= np.sum(p_w_c, axis=0) def sample_example(): _, n_classes = p_w_c.shape # pick a nonzero number of labels per document by rejection sampling y_size = n_classes + 1 while (not allow_unlabeled and y_size == 0) or y_size > n_classes: y_size = generator.poisson(n_labels) # pick n classes y = set() while len(y) != y_size: # pick a class with probability P(c) c = np.searchsorted(cumulative_p_c, generator.rand(y_size - len(y))) y.update(c) y = list(y) # pick a non-zero document length by rejection sampling n_words = 0 while n_words == 0: n_words = generator.poisson(length) # generate a document of length n_words if len(y) == 0: # if sample does not belong to any class, generate noise word words = generator.randint(n_features, size=n_words) return words, y # sample words with replacement from selected classes cumulative_p_w_sample = p_w_c.take(y, axis=1).sum(axis=1).cumsum() cumulative_p_w_sample /= cumulative_p_w_sample[-1] words = np.searchsorted(cumulative_p_w_sample, generator.rand(n_words)) return words, y X_indices = array.array('i') X_indptr = array.array('i', [0]) Y = [] for i in range(n_samples): words, y = sample_example() X_indices.extend(words) X_indptr.append(len(X_indices)) Y.append(y) X_data = np.ones(len(X_indices), dtype=np.float64) X = sp.csr_matrix((X_data, X_indices, X_indptr), shape=(n_samples, n_features)) X.sum_duplicates() if not sparse: X = X.toarray() # return_indicator can be True due to backward compatibility if return_indicator in (True, 'sparse', 'dense'): lb = MultiLabelBinarizer(sparse_output=(return_indicator == 'sparse')) Y = lb.fit([range(n_classes)]).transform(Y) elif return_indicator is not False: raise ValueError("return_indicator must be either 'sparse', 'dense' " 'or False.') if return_distributions: return X, Y, p_c, p_w_c return X, Y def make_hastie_10_2(n_samples=12000, random_state=None): """Generates data for binary classification used in Hastie et al. 2009, Example 10.2. The ten features are standard independent Gaussian and the target ``y`` is defined by:: y[i] = 1 if np.sum(X[i] ** 2) > 9.34 else -1 Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=12000) The number of samples. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, 10] The input samples. y : array of shape [n_samples] The output values. References ---------- .. [1] T. Hastie, R. Tibshirani and J. Friedman, "Elements of Statistical Learning Ed. 2", Springer, 2009. See also -------- make_gaussian_quantiles: a generalization of this dataset approach """ rs = check_random_state(random_state) shape = (n_samples, 10) X = rs.normal(size=shape).reshape(shape) y = ((X ** 2.0).sum(axis=1) > 9.34).astype(np.float64) y[y == 0.0] = -1.0 return X, y def make_regression(n_samples=100, n_features=100, n_informative=10, n_targets=1, bias=0.0, effective_rank=None, tail_strength=0.5, noise=0.0, shuffle=True, coef=False, random_state=None): """Generate a random regression problem. The input set can either be well conditioned (by default) or have a low rank-fat tail singular profile. See :func:`make_low_rank_matrix` for more details. The output is generated by applying a (potentially biased) random linear regression model with `n_informative` nonzero regressors to the previously generated input and some gaussian centered noise with some adjustable scale. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=100) The number of features. n_informative : int, optional (default=10) The number of informative features, i.e., the number of features used to build the linear model used to generate the output. n_targets : int, optional (default=1) The number of regression targets, i.e., the dimension of the y output vector associated with a sample. By default, the output is a scalar. bias : float, optional (default=0.0) The bias term in the underlying linear model. effective_rank : int or None, optional (default=None) if not None: The approximate number of singular vectors required to explain most of the input data by linear combinations. Using this kind of singular spectrum in the input allows the generator to reproduce the correlations often observed in practice. if None: The input set is well conditioned, centered and gaussian with unit variance. tail_strength : float between 0.0 and 1.0, optional (default=0.5) The relative importance of the fat noisy tail of the singular values profile if `effective_rank` is not None. noise : float, optional (default=0.0) The standard deviation of the gaussian noise applied to the output. shuffle : boolean, optional (default=True) Shuffle the samples and the features. coef : boolean, optional (default=False) If True, the coefficients of the underlying linear model are returned. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The input samples. y : array of shape [n_samples] or [n_samples, n_targets] The output values. coef : array of shape [n_features] or [n_features, n_targets], optional The coefficient of the underlying linear model. It is returned only if coef is True. """ n_informative = min(n_features, n_informative) generator = check_random_state(random_state) if effective_rank is None: # Randomly generate a well conditioned input set X = generator.randn(n_samples, n_features) else: # Randomly generate a low rank, fat tail input set X = make_low_rank_matrix(n_samples=n_samples, n_features=n_features, effective_rank=effective_rank, tail_strength=tail_strength, random_state=generator) # Generate a ground truth model with only n_informative features being non # zeros (the other features are not correlated to y and should be ignored # by a sparsifying regularizers such as L1 or elastic net) ground_truth = np.zeros((n_features, n_targets)) ground_truth[:n_informative, :] = 100 * generator.rand(n_informative, n_targets) y = np.dot(X, ground_truth) + bias # Add noise if noise > 0.0: y += generator.normal(scale=noise, size=y.shape) # Randomly permute samples and features if shuffle: X, y = util_shuffle(X, y, random_state=generator) indices = np.arange(n_features) generator.shuffle(indices) X[:, :] = X[:, indices] ground_truth = ground_truth[indices] y = np.squeeze(y) if coef: return X, y, np.squeeze(ground_truth) else: return X, y def make_circles(n_samples=100, shuffle=True, noise=None, random_state=None, factor=.8): """Make a large circle containing a smaller circle in 2d. A simple toy dataset to visualize clustering and classification algorithms. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The total number of points generated. shuffle: bool, optional (default=True) Whether to shuffle the samples. noise : double or None (default=None) Standard deviation of Gaussian noise added to the data. factor : double < 1 (default=.8) Scale factor between inner and outer circle. Returns ------- X : array of shape [n_samples, 2] The generated samples. y : array of shape [n_samples] The integer labels (0 or 1) for class membership of each sample. """ if factor > 1 or factor < 0: raise ValueError("'factor' has to be between 0 and 1.") generator = check_random_state(random_state) # so as not to have the first point = last point, we add one and then # remove it. linspace = np.linspace(0, 2 * np.pi, n_samples // 2 + 1)[:-1] outer_circ_x = np.cos(linspace) outer_circ_y = np.sin(linspace) inner_circ_x = outer_circ_x * factor inner_circ_y = outer_circ_y * factor X = np.vstack((np.append(outer_circ_x, inner_circ_x), np.append(outer_circ_y, inner_circ_y))).T y = np.hstack([np.zeros(n_samples // 2, dtype=np.intp), np.ones(n_samples // 2, dtype=np.intp)]) if shuffle: X, y = util_shuffle(X, y, random_state=generator) if noise is not None: X += generator.normal(scale=noise, size=X.shape) return X, y def make_moons(n_samples=100, shuffle=True, noise=None, random_state=None): """Make two interleaving half circles A simple toy dataset to visualize clustering and classification algorithms. Parameters ---------- n_samples : int, optional (default=100) The total number of points generated. shuffle : bool, optional (default=True) Whether to shuffle the samples. noise : double or None (default=None) Standard deviation of Gaussian noise added to the data. Read more in the :ref:`User Guide <sample_generators>`. Returns ------- X : array of shape [n_samples, 2] The generated samples. y : array of shape [n_samples] The integer labels (0 or 1) for class membership of each sample. """ n_samples_out = n_samples // 2 n_samples_in = n_samples - n_samples_out generator = check_random_state(random_state) outer_circ_x = np.cos(np.linspace(0, np.pi, n_samples_out)) outer_circ_y = np.sin(np.linspace(0, np.pi, n_samples_out)) inner_circ_x = 1 - np.cos(np.linspace(0, np.pi, n_samples_in)) inner_circ_y = 1 - np.sin(np.linspace(0, np.pi, n_samples_in)) - .5 X = np.vstack((np.append(outer_circ_x, inner_circ_x), np.append(outer_circ_y, inner_circ_y))).T y = np.hstack([np.zeros(n_samples_in, dtype=np.intp), np.ones(n_samples_out, dtype=np.intp)]) if shuffle: X, y = util_shuffle(X, y, random_state=generator) if noise is not None: X += generator.normal(scale=noise, size=X.shape) return X, y def make_blobs(n_samples=100, n_features=2, centers=3, cluster_std=1.0, center_box=(-10.0, 10.0), shuffle=True, random_state=None): """Generate isotropic Gaussian blobs for clustering. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The total number of points equally divided among clusters. n_features : int, optional (default=2) The number of features for each sample. centers : int or array of shape [n_centers, n_features], optional (default=3) The number of centers to generate, or the fixed center locations. cluster_std: float or sequence of floats, optional (default=1.0) The standard deviation of the clusters. center_box: pair of floats (min, max), optional (default=(-10.0, 10.0)) The bounding box for each cluster center when centers are generated at random. shuffle : boolean, optional (default=True) Shuffle the samples. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The generated samples. y : array of shape [n_samples] The integer labels for cluster membership of each sample. Examples -------- >>> from sklearn.datasets.samples_generator import make_blobs >>> X, y = make_blobs(n_samples=10, centers=3, n_features=2, ... random_state=0) >>> print(X.shape) (10, 2) >>> y array([0, 0, 1, 0, 2, 2, 2, 1, 1, 0]) See also -------- make_classification: a more intricate variant """ generator = check_random_state(random_state) if isinstance(centers, numbers.Integral): centers = generator.uniform(center_box[0], center_box[1], size=(centers, n_features)) else: centers = check_array(centers) n_features = centers.shape[1] if isinstance(cluster_std, numbers.Real): cluster_std = np.ones(len(centers)) * cluster_std X = [] y = [] n_centers = centers.shape[0] n_samples_per_center = [int(n_samples // n_centers)] * n_centers for i in range(n_samples % n_centers): n_samples_per_center[i] += 1 for i, (n, std) in enumerate(zip(n_samples_per_center, cluster_std)): X.append(centers[i] + generator.normal(scale=std, size=(n, n_features))) y += [i] * n X = np.concatenate(X) y = np.array(y) if shuffle: indices = np.arange(n_samples) generator.shuffle(indices) X = X[indices] y = y[indices] return X, y def make_friedman1(n_samples=100, n_features=10, noise=0.0, random_state=None): """Generate the "Friedman \#1" regression problem This dataset is described in Friedman [1] and Breiman [2]. Inputs `X` are independent features uniformly distributed on the interval [0, 1]. The output `y` is created according to the formula:: y(X) = 10 * sin(pi * X[:, 0] * X[:, 1]) + 20 * (X[:, 2] - 0.5) ** 2 \ + 10 * X[:, 3] + 5 * X[:, 4] + noise * N(0, 1). Out of the `n_features` features, only 5 are actually used to compute `y`. The remaining features are independent of `y`. The number of features has to be >= 5. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=10) The number of features. Should be at least 5. noise : float, optional (default=0.0) The standard deviation of the gaussian noise applied to the output. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The input samples. y : array of shape [n_samples] The output values. References ---------- .. [1] J. Friedman, "Multivariate adaptive regression splines", The Annals of Statistics 19 (1), pages 1-67, 1991. .. [2] L. Breiman, "Bagging predictors", Machine Learning 24, pages 123-140, 1996. """ if n_features < 5: raise ValueError("n_features must be at least five.") generator = check_random_state(random_state) X = generator.rand(n_samples, n_features) y = 10 * np.sin(np.pi * X[:, 0] * X[:, 1]) + 20 * (X[:, 2] - 0.5) ** 2 \ + 10 * X[:, 3] + 5 * X[:, 4] + noise * generator.randn(n_samples) return X, y def make_friedman2(n_samples=100, noise=0.0, random_state=None): """Generate the "Friedman \#2" regression problem This dataset is described in Friedman [1] and Breiman [2]. Inputs `X` are 4 independent features uniformly distributed on the intervals:: 0 <= X[:, 0] <= 100, 40 * pi <= X[:, 1] <= 560 * pi, 0 <= X[:, 2] <= 1, 1 <= X[:, 3] <= 11. The output `y` is created according to the formula:: y(X) = (X[:, 0] ** 2 + (X[:, 1] * X[:, 2] \ - 1 / (X[:, 1] * X[:, 3])) ** 2) ** 0.5 + noise * N(0, 1). Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. noise : float, optional (default=0.0) The standard deviation of the gaussian noise applied to the output. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, 4] The input samples. y : array of shape [n_samples] The output values. References ---------- .. [1] J. Friedman, "Multivariate adaptive regression splines", The Annals of Statistics 19 (1), pages 1-67, 1991. .. [2] L. Breiman, "Bagging predictors", Machine Learning 24, pages 123-140, 1996. """ generator = check_random_state(random_state) X = generator.rand(n_samples, 4) X[:, 0] *= 100 X[:, 1] *= 520 * np.pi X[:, 1] += 40 * np.pi X[:, 3] *= 10 X[:, 3] += 1 y = (X[:, 0] ** 2 + (X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) ** 2) ** 0.5 \ + noise * generator.randn(n_samples) return X, y def make_friedman3(n_samples=100, noise=0.0, random_state=None): """Generate the "Friedman \#3" regression problem This dataset is described in Friedman [1] and Breiman [2]. Inputs `X` are 4 independent features uniformly distributed on the intervals:: 0 <= X[:, 0] <= 100, 40 * pi <= X[:, 1] <= 560 * pi, 0 <= X[:, 2] <= 1, 1 <= X[:, 3] <= 11. The output `y` is created according to the formula:: y(X) = arctan((X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) \ / X[:, 0]) + noise * N(0, 1). Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. noise : float, optional (default=0.0) The standard deviation of the gaussian noise applied to the output. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, 4] The input samples. y : array of shape [n_samples] The output values. References ---------- .. [1] J. Friedman, "Multivariate adaptive regression splines", The Annals of Statistics 19 (1), pages 1-67, 1991. .. [2] L. Breiman, "Bagging predictors", Machine Learning 24, pages 123-140, 1996. """ generator = check_random_state(random_state) X = generator.rand(n_samples, 4) X[:, 0] *= 100 X[:, 1] *= 520 * np.pi X[:, 1] += 40 * np.pi X[:, 3] *= 10 X[:, 3] += 1 y = np.arctan((X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) / X[:, 0]) \ + noise * generator.randn(n_samples) return X, y def make_low_rank_matrix(n_samples=100, n_features=100, effective_rank=10, tail_strength=0.5, random_state=None): """Generate a mostly low rank matrix with bell-shaped singular values Most of the variance can be explained by a bell-shaped curve of width effective_rank: the low rank part of the singular values profile is:: (1 - tail_strength) * exp(-1.0 * (i / effective_rank) ** 2) The remaining singular values' tail is fat, decreasing as:: tail_strength * exp(-0.1 * i / effective_rank). The low rank part of the profile can be considered the structured signal part of the data while the tail can be considered the noisy part of the data that cannot be summarized by a low number of linear components (singular vectors). This kind of singular profiles is often seen in practice, for instance: - gray level pictures of faces - TF-IDF vectors of text documents crawled from the web Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=100) The number of features. effective_rank : int, optional (default=10) The approximate number of singular vectors required to explain most of the data by linear combinations. tail_strength : float between 0.0 and 1.0, optional (default=0.5) The relative importance of the fat noisy tail of the singular values profile. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The matrix. """ generator = check_random_state(random_state) n = min(n_samples, n_features) # Random (ortho normal) vectors u, _ = linalg.qr(generator.randn(n_samples, n), mode='economic') v, _ = linalg.qr(generator.randn(n_features, n), mode='economic') # Index of the singular values singular_ind = np.arange(n, dtype=np.float64) # Build the singular profile by assembling signal and noise components low_rank = ((1 - tail_strength) * np.exp(-1.0 * (singular_ind / effective_rank) ** 2)) tail = tail_strength * np.exp(-0.1 * singular_ind / effective_rank) s = np.identity(n) * (low_rank + tail) return np.dot(np.dot(u, s), v.T) def make_sparse_coded_signal(n_samples, n_components, n_features, n_nonzero_coefs, random_state=None): """Generate a signal as a sparse combination of dictionary elements. Returns a matrix Y = DX, such as D is (n_features, n_components), X is (n_components, n_samples) and each column of X has exactly n_nonzero_coefs non-zero elements. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int number of samples to generate n_components: int, number of components in the dictionary n_features : int number of features of the dataset to generate n_nonzero_coefs : int number of active (non-zero) coefficients in each sample random_state: int or RandomState instance, optional (default=None) seed used by the pseudo random number generator Returns ------- data: array of shape [n_features, n_samples] The encoded signal (Y). dictionary: array of shape [n_features, n_components] The dictionary with normalized components (D). code: array of shape [n_components, n_samples] The sparse code such that each column of this matrix has exactly n_nonzero_coefs non-zero items (X). """ generator = check_random_state(random_state) # generate dictionary D = generator.randn(n_features, n_components) D /= np.sqrt(np.sum((D ** 2), axis=0)) # generate code X = np.zeros((n_components, n_samples)) for i in range(n_samples): idx = np.arange(n_components) generator.shuffle(idx) idx = idx[:n_nonzero_coefs] X[idx, i] = generator.randn(n_nonzero_coefs) # encode signal Y = np.dot(D, X) return map(np.squeeze, (Y, D, X)) def make_sparse_uncorrelated(n_samples=100, n_features=10, random_state=None): """Generate a random regression problem with sparse uncorrelated design This dataset is described in Celeux et al [1]. as:: X ~ N(0, 1) y(X) = X[:, 0] + 2 * X[:, 1] - 2 * X[:, 2] - 1.5 * X[:, 3] Only the first 4 features are informative. The remaining features are useless. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=10) The number of features. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The input samples. y : array of shape [n_samples] The output values. References ---------- .. [1] G. Celeux, M. El Anbari, J.-M. Marin, C. P. Robert, "Regularization in regression: comparing Bayesian and frequentist methods in a poorly informative situation", 2009. """ generator = check_random_state(random_state) X = generator.normal(loc=0, scale=1, size=(n_samples, n_features)) y = generator.normal(loc=(X[:, 0] + 2 * X[:, 1] - 2 * X[:, 2] - 1.5 * X[:, 3]), scale=np.ones(n_samples)) return X, y def make_spd_matrix(n_dim, random_state=None): """Generate a random symmetric, positive-definite matrix. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_dim : int The matrix dimension. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_dim, n_dim] The random symmetric, positive-definite matrix. See also -------- make_sparse_spd_matrix """ generator = check_random_state(random_state) A = generator.rand(n_dim, n_dim) U, s, V = linalg.svd(np.dot(A.T, A)) X = np.dot(np.dot(U, 1.0 + np.diag(generator.rand(n_dim))), V) return X def make_sparse_spd_matrix(dim=1, alpha=0.95, norm_diag=False, smallest_coef=.1, largest_coef=.9, random_state=None): """Generate a sparse symmetric definite positive matrix. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- dim: integer, optional (default=1) The size of the random matrix to generate. alpha: float between 0 and 1, optional (default=0.95) The probability that a coefficient is zero (see notes). Larger values enforce more sparsity. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. largest_coef : float between 0 and 1, optional (default=0.9) The value of the largest coefficient. smallest_coef : float between 0 and 1, optional (default=0.1) The value of the smallest coefficient. norm_diag : boolean, optional (default=False) Whether to normalize the output matrix to make the leading diagonal elements all 1 Returns ------- prec : sparse matrix of shape (dim, dim) The generated matrix. Notes ----- The sparsity is actually imposed on the cholesky factor of the matrix. Thus alpha does not translate directly into the filling fraction of the matrix itself. See also -------- make_spd_matrix """ random_state = check_random_state(random_state) chol = -np.eye(dim) aux = random_state.rand(dim, dim) aux[aux < alpha] = 0 aux[aux > alpha] = (smallest_coef + (largest_coef - smallest_coef) * random_state.rand(np.sum(aux > alpha))) aux = np.tril(aux, k=-1) # Permute the lines: we don't want to have asymmetries in the final # SPD matrix permutation = random_state.permutation(dim) aux = aux[permutation].T[permutation] chol += aux prec = np.dot(chol.T, chol) if norm_diag: # Form the diagonal vector into a row matrix d = np.diag(prec).reshape(1, prec.shape[0]) d = 1. / np.sqrt(d) prec *= d prec *= d.T return prec def make_swiss_roll(n_samples=100, noise=0.0, random_state=None): """Generate a swiss roll dataset. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of sample points on the S curve. noise : float, optional (default=0.0) The standard deviation of the gaussian noise. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, 3] The points. t : array of shape [n_samples] The univariate position of the sample according to the main dimension of the points in the manifold. Notes ----- The algorithm is from Marsland [1]. References ---------- .. [1] S. Marsland, "Machine Learning: An Algorithmic Perspective", Chapter 10, 2009. http://seat.massey.ac.nz/personal/s.r.marsland/Code/10/lle.py """ generator = check_random_state(random_state) t = 1.5 * np.pi * (1 + 2 * generator.rand(1, n_samples)) x = t * np.cos(t) y = 21 * generator.rand(1, n_samples) z = t * np.sin(t) X = np.concatenate((x, y, z)) X += noise * generator.randn(3, n_samples) X = X.T t = np.squeeze(t) return X, t def make_s_curve(n_samples=100, noise=0.0, random_state=None): """Generate an S curve dataset. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of sample points on the S curve. noise : float, optional (default=0.0) The standard deviation of the gaussian noise. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, 3] The points. t : array of shape [n_samples] The univariate position of the sample according to the main dimension of the points in the manifold. """ generator = check_random_state(random_state) t = 3 * np.pi * (generator.rand(1, n_samples) - 0.5) x = np.sin(t) y = 2.0 * generator.rand(1, n_samples) z = np.sign(t) * (np.cos(t) - 1) X = np.concatenate((x, y, z)) X += noise * generator.randn(3, n_samples) X = X.T t = np.squeeze(t) return X, t def make_gaussian_quantiles(mean=None, cov=1., n_samples=100, n_features=2, n_classes=3, shuffle=True, random_state=None): """Generate isotropic Gaussian and label samples by quantile This classification dataset is constructed by taking a multi-dimensional standard normal distribution and defining classes separated by nested concentric multi-dimensional spheres such that roughly equal numbers of samples are in each class (quantiles of the :math:`\chi^2` distribution). Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- mean : array of shape [n_features], optional (default=None) The mean of the multi-dimensional normal distribution. If None then use the origin (0, 0, ...). cov : float, optional (default=1.) The covariance matrix will be this value times the unit matrix. This dataset only produces symmetric normal distributions. n_samples : int, optional (default=100) The total number of points equally divided among classes. n_features : int, optional (default=2) The number of features for each sample. n_classes : int, optional (default=3) The number of classes shuffle : boolean, optional (default=True) Shuffle the samples. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The generated samples. y : array of shape [n_samples] The integer labels for quantile membership of each sample. Notes ----- The dataset is from Zhu et al [1]. References ---------- .. [1] J. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost", 2009. """ if n_samples < n_classes: raise ValueError("n_samples must be at least n_classes") generator = check_random_state(random_state) if mean is None: mean = np.zeros(n_features) else: mean = np.array(mean) # Build multivariate normal distribution X = generator.multivariate_normal(mean, cov * np.identity(n_features), (n_samples,)) # Sort by distance from origin idx = np.argsort(np.sum((X - mean[np.newaxis, :]) ** 2, axis=1)) X = X[idx, :] # Label by quantile step = n_samples // n_classes y = np.hstack([np.repeat(np.arange(n_classes), step), np.repeat(n_classes - 1, n_samples - step * n_classes)]) if shuffle: X, y = util_shuffle(X, y, random_state=generator) return X, y def _shuffle(data, random_state=None): generator = check_random_state(random_state) n_rows, n_cols = data.shape row_idx = generator.permutation(n_rows) col_idx = generator.permutation(n_cols) result = data[row_idx][:, col_idx] return result, row_idx, col_idx def make_biclusters(shape, n_clusters, noise=0.0, minval=10, maxval=100, shuffle=True, random_state=None): """Generate an array with constant block diagonal structure for biclustering. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- shape : iterable (n_rows, n_cols) The shape of the result. n_clusters : integer The number of biclusters. noise : float, optional (default=0.0) The standard deviation of the gaussian noise. minval : int, optional (default=10) Minimum value of a bicluster. maxval : int, optional (default=100) Maximum value of a bicluster. shuffle : boolean, optional (default=True) Shuffle the samples. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape `shape` The generated array. rows : array of shape (n_clusters, X.shape[0],) The indicators for cluster membership of each row. cols : array of shape (n_clusters, X.shape[1],) The indicators for cluster membership of each column. References ---------- .. [1] Dhillon, I. S. (2001, August). Co-clustering documents and words using bipartite spectral graph partitioning. In Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 269-274). ACM. See also -------- make_checkerboard """ generator = check_random_state(random_state) n_rows, n_cols = shape consts = generator.uniform(minval, maxval, n_clusters) # row and column clusters of approximately equal sizes row_sizes = generator.multinomial(n_rows, np.repeat(1.0 / n_clusters, n_clusters)) col_sizes = generator.multinomial(n_cols, np.repeat(1.0 / n_clusters, n_clusters)) row_labels = np.hstack(list(np.repeat(val, rep) for val, rep in zip(range(n_clusters), row_sizes))) col_labels = np.hstack(list(np.repeat(val, rep) for val, rep in zip(range(n_clusters), col_sizes))) result = np.zeros(shape, dtype=np.float64) for i in range(n_clusters): selector = np.outer(row_labels == i, col_labels == i) result[selector] += consts[i] if noise > 0: result += generator.normal(scale=noise, size=result.shape) if shuffle: result, row_idx, col_idx = _shuffle(result, random_state) row_labels = row_labels[row_idx] col_labels = col_labels[col_idx] rows = np.vstack(row_labels == c for c in range(n_clusters)) cols = np.vstack(col_labels == c for c in range(n_clusters)) return result, rows, cols def make_checkerboard(shape, n_clusters, noise=0.0, minval=10, maxval=100, shuffle=True, random_state=None): """Generate an array with block checkerboard structure for biclustering. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- shape : iterable (n_rows, n_cols) The shape of the result. n_clusters : integer or iterable (n_row_clusters, n_column_clusters) The number of row and column clusters. noise : float, optional (default=0.0) The standard deviation of the gaussian noise. minval : int, optional (default=10) Minimum value of a bicluster. maxval : int, optional (default=100) Maximum value of a bicluster. shuffle : boolean, optional (default=True) Shuffle the samples. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape `shape` The generated array. rows : array of shape (n_clusters, X.shape[0],) The indicators for cluster membership of each row. cols : array of shape (n_clusters, X.shape[1],) The indicators for cluster membership of each column. References ---------- .. [1] Kluger, Y., Basri, R., Chang, J. T., & Gerstein, M. (2003). Spectral biclustering of microarray data: coclustering genes and conditions. Genome research, 13(4), 703-716. See also -------- make_biclusters """ generator = check_random_state(random_state) if hasattr(n_clusters, "__len__"): n_row_clusters, n_col_clusters = n_clusters else: n_row_clusters = n_col_clusters = n_clusters # row and column clusters of approximately equal sizes n_rows, n_cols = shape row_sizes = generator.multinomial(n_rows, np.repeat(1.0 / n_row_clusters, n_row_clusters)) col_sizes = generator.multinomial(n_cols, np.repeat(1.0 / n_col_clusters, n_col_clusters)) row_labels = np.hstack(list(np.repeat(val, rep) for val, rep in zip(range(n_row_clusters), row_sizes))) col_labels = np.hstack(list(np.repeat(val, rep) for val, rep in zip(range(n_col_clusters), col_sizes))) result = np.zeros(shape, dtype=np.float64) for i in range(n_row_clusters): for j in range(n_col_clusters): selector = np.outer(row_labels == i, col_labels == j) result[selector] += generator.uniform(minval, maxval) if noise > 0: result += generator.normal(scale=noise, size=result.shape) if shuffle: result, row_idx, col_idx = _shuffle(result, random_state) row_labels = row_labels[row_idx] col_labels = col_labels[col_idx] rows = np.vstack(row_labels == label for label in range(n_row_clusters) for _ in range(n_col_clusters)) cols = np.vstack(col_labels == label for _ in range(n_row_clusters) for label in range(n_col_clusters)) return result, rows, cols
bsd-3-clause
DistrictDataLabs/tribe
tribe/viz.py
2
1967
# tribe.viz # Visualization utility for Email social network # # Author: Benjamin Bengfort <[email protected]> # Created: Thu Nov 20 16:28:40 2014 -0500 # # Copyright (C) 2014 District Data Labs # For license information, see LICENSE.txt # # ID: viz.py [b96b383] [email protected] $ """ Visualization utility for Email social network """ ########################################################################## ## Imports ########################################################################## import math import networkx as nx from operator import itemgetter from functools import wraps try: import matplotlib.pyplot as plt except (ImportError, RuntimeError): import warnings plt = None def configure(func): """ Configures visualization environment. """ @wraps(func) def wrapper(*args, **kwargs): if plt is None: warnings.warn("matplotlib is not installed or you are using a virtualenv!") return None return func(*args, **kwargs) return wrapper @configure def show_simple_network(nodes=12, prob=0.2, hot=False): G = nx.erdos_renyi_graph(nodes, prob) pos = nx.spring_layout(G) nx.draw_networkx_nodes(G, pos, node_color='#0080C9', node_size=500, linewidths=1.0) nx.draw_networkx_edges(G, pos, width=1.0, style='dashed', alpha=0.75) if hot: center, _ = sorted(G.degree().items(), key=itemgetter(1))[-1] nx.draw_networkx_nodes(G, pos, nodelist=[center], node_size=600, node_color="#D9AF0B") plt.axis('off') plt.show() return G @configure def draw_social_network(G, path=None): k = 1/math.sqrt(G.order()) * 2 pos = nx.spring_layout(G, k=k) deg = [100*v for v in G.degree().values()] nx.draw_networkx_nodes(G, pos, node_size=deg, linewidths=1.0, alpha=0.90) nx.draw_networkx_edges(G, pos, width=1.0, style='dashed', alpha=0.75) if path: plt.savefig(path) else: plt.show()
mit
InvestmentSystems/function-pipe
doc/source/usage_df.py
1
13071
import zipfile import collections import os import webbrowser import requests import pandas as pd import function_pipe as fpn # source url URL_NAMES = 'https://www.ssa.gov/oact/babynames/names.zip' FP_ZIP = '/tmp/names.zip' class Core: def load_data_dict(fp): '''Source data from ZIP and load into dictionary of DFs. Returns: ordered dict of DFs keyed by year ''' # download if not already found if not os.path.exists(fp): r = requests.get(URL_NAMES) with open(fp, 'wb') as f: f.write(r.content) post = collections.OrderedDict() with zipfile.ZipFile(fp) as zf: # get ZipInfo instances for zi in sorted(zf.infolist(), key=lambda zi: zi.filename): fn = zi.filename if fn.startswith('yob'): year = int(fn[3:7]) df = pd.read_csv( zf.open(zi), header=None, names=('name', 'gender', 'count')) df['year'] = year post[year] = df return post def gender_count_per_year(data_dict): records = [] for year, df in data_dict.items(): male = df[df['gender'] == 'M']['count'].sum() female = df[df['gender'] == 'F']['count'].sum() records.append((male, female)) return pd.DataFrame.from_records(records, index=data_dict.keys(), # ordered columns=('M', 'F')) def percent(df): post = pd.DataFrame(index=df.index) sum = df.sum(axis=1) for col in df.columns: post[col] = df[col] / sum return post def year_range(df, start, end): return df.loc[start:end] def plot(df, fp='/tmp/plot.png', title=None): #print('calling plot', fp) if os.path.exists(fp): os.remove(fp) ax = df.plot(title=title) fig = ax.get_figure() fig.savefig(fp) return fp def open_plot(fp): print('calling open plot') os.system('eog ' + fp) #------------------------------------------------------------------------------- # approach 1: call lots of functions wiht lots of statements def approach_statement(): dd = Core.load_data_dict(FP_ZIP) #ddf = Core.data_df(dd) g_count = Core.gender_count_per_year(dd) g_percent = Core.percent(g_count) g_sub = Core.year_range(g_percent, 1950, 2000) fp = Core.plot(g_sub) Core.open_plot(fp) #------------------------------------------------------------------------------- class FN: @fpn.FunctionNode def load_data_dict(fp): '''Source data from ZIP and load into dictionary of DFs. Returns: ordered dict of DFs keyed by year ''' # download if not already found if not os.path.exists(fp): r = requests.get(URL_NAMES) with open(fp, 'wb') as f: f.write(r.content) post = collections.OrderedDict() with zipfile.ZipFile(fp) as zf: # get ZipInfo instances for zi in sorted(zf.infolist(), key=lambda zi: zi.filename): fn = zi.filename if fn.startswith('yob'): year = int(fn[3:7]) df = pd.read_csv( zf.open(zi), header=None, names=('name', 'gender', 'count')) df['year'] = year post[year] = df return post @fpn.FunctionNode def gender_count_per_year(data_dict): records = [] for year, df in data_dict.items(): male = df[df['gender'] == 'M']['count'].sum() female = df[df['gender'] == 'F']['count'].sum() records.append((male, female)) return pd.DataFrame.from_records(records, index=data_dict.keys(), # ordered columns=('M', 'F')) @fpn.FunctionNode def percent(df): post = pd.DataFrame(index=df.index) sum = df.sum(axis=1) for col in df.columns: post[col] = df[col] / sum return post @fpn.FunctionNode def year_range(df, start, end): return df.loc[start:end] @fpn.FunctionNode def plot(df, fp='/tmp/plot.png', title=None): #print('calling plot', fp) if os.path.exists(fp): os.remove(fp) ax = df.plot(title=title) fig = ax.get_figure() fig.savefig(fp) return fp @fpn.FunctionNode def open_plot(fp): webbrowser.open(fp) def approach_composition(): # partional function node arguments f = (FN.load_data_dict >> FN.gender_count_per_year >> FN.year_range.partial(start=1950, end=2000) >> FN.percent >> FN.plot >> FN.open_plot) # using operators to scale percent #f = (FN.load_data_dict #>> FN.gender_count_per_year #>> FN.year_range.partial(start=1950, end=2000) #>> (FN.percent * 100) #>> FN.plot #>> FN.open_plot) f(FP_ZIP) # how do we plot more than one thing without resourcing data #------------------------------------------------------------------------------- class PN1: @fpn.pipe_node @fpn.pipe_kwarg_bind(fpn.PN_INPUT) def load_data_dict(fp): return Core.load_data_dict(fp) @fpn.pipe_node @fpn.pipe_kwarg_bind(fpn.PREDECESSOR_RETURN) def gender_count_per_year(data_dict): return Core.gender_count_per_year(data_dict) @fpn.pipe_node @fpn.pipe_kwarg_bind(fpn.PREDECESSOR_RETURN) def percent(df): return Core.percent(df) @fpn.pipe_node_factory @fpn.pipe_kwarg_bind(fpn.PREDECESSOR_RETURN) def year_range(df, start, end): return Core.year_range(df, start, end) @fpn.pipe_node @fpn.pipe_kwarg_bind(fpn.PREDECESSOR_RETURN) def plot(df): return Core.plot(df) @fpn.pipe_node @fpn.pipe_kwarg_bind(fpn.PREDECESSOR_RETURN) def open_plot(df): return Core.open_plot(df) def approach_pipe_1(): f = (PN1.load_data_dict | PN1.gender_count_per_year | PN1.percent | PN1.year_range(1900, 2000) | PN1.plot | PN1.open_plot) # with operator f = (PN1.load_data_dict | PN1.gender_count_per_year | PN1.percent * 100 | PN1.year_range(1900, 2000) | PN1.plot | PN1.open_plot) fpn.run(f, FP_ZIP) #------------------------------------------------------------------------------- # alternate approach where component functions take kwargs; only exposed args are those for pipe factories; use PipNodeInput as input class PN2: @fpn.pipe_node_factory def load_data_dict(fp, **kwargs): return Core.load_data_dict(fp) @fpn.pipe_node def gender_count_per_year(**kwargs): return Core.gender_count_per_year(kwargs[fpn.PREDECESSOR_RETURN]) @fpn.pipe_node def percent(**kwargs): return Core.percent(kwargs[fpn.PREDECESSOR_RETURN]) @fpn.pipe_node_factory def year_range(start, end, **kwargs): return Core.year_range(kwargs[fpn.PREDECESSOR_RETURN], start, end) @fpn.pipe_node def plot(**kwargs): return Core.plot(kwargs[fpn.PREDECESSOR_RETURN]) @fpn.pipe_node def open_plot(**kwargs): return Core.open_plot(kwargs[fpn.PREDECESSOR_RETURN]) def approach_pipe_2(): f = (PN2.load_data_dict(FP_ZIP) | PN2.gender_count_per_year | PN2.percent * 100 | PN2.year_range(1900, 2000) | PN2.plot | PN2.open_plot) # with store and recall to do multiple operations f = (PN2.load_data_dict(FP_ZIP) | PN2.gender_count_per_year | PN2.percent * 100 | fpn.store('gpcent') | PN2.year_range(1900, 2000) | PN2.plot | PN2.open_plot | fpn.recall('gpcent') | PN2.year_range(2001, 2015) | PN2.plot | PN2.open_plot ) #fpn.run(f) # this implicitly passes a PipeNodeInput f(pn_input=fpn.PipeNodeInput()) #------------------------------------------------------------------------------- # use pipe node input to distribute data dict, also output directory class PN4: # refactor methods to take to take args # add method that gets class PNI(fpn.PipeNodeInput): URL_NAMES = 'https://www.ssa.gov/oact/babynames/names.zip' @classmethod def load_data_dict(cls, fp): if not os.path.exists(fp): r = requests.get(cls.URL_NAMES) with open(fp, 'wb') as f: f.write(r.content) post = collections.OrderedDict() with zipfile.ZipFile(fp) as zf: # get ZipInfo instances for zi in sorted(zf.infolist(), key=lambda zi: zi.filename): fn = zi.filename if fn.startswith('yob'): year = int(fn[3:7]) df = pd.read_csv( zf.open(zi), header=None, names=('name', 'gender', 'count')) df['year'] = year post[year] = df return post def __init__(self, output_dir): super().__init__() self.output_dir = output_dir fp_zip = os.path.join(output_dir, 'names.zip') self.data_dict = self.load_data_dict(fp_zip) # new function that is more general than gender_count_per_year @fpn.pipe_node_factory def name_count_per_year(name_match, **kwargs): pni = kwargs[fpn.PN_INPUT] records = [] for year, df in pni.data_dict.items(): counts = collections.OrderedDict() sel_name = df['name'].apply(name_match) for gender in ('M', 'F'): sel_gender = (df['gender'] == gender) & sel_name counts[gender] = df[sel_gender]['count'].sum() records.append(tuple(counts.values())) return pd.DataFrame.from_records(records, index=pni.data_dict.keys(), # ordered columns=('M', 'F')) @fpn.pipe_node def percent(**kwargs): df = kwargs[fpn.PREDECESSOR_RETURN] post = pd.DataFrame(index=df.index) sum = df.sum(axis=1) for col in df.columns: post[col] = df[col] / sum return post @fpn.pipe_node_factory def year_range(start, end, **kwargs): return kwargs[fpn.PREDECESSOR_RETURN].loc[start:end] @fpn.pipe_node_factory def plot(file_name, title=None, **kwargs): # now we can pass a file name pni = kwargs[fpn.PN_INPUT] df = kwargs[fpn.PREDECESSOR_RETURN] fp = os.path.join(pni.output_dir, file_name) ax = df.plot(title=title) ax.get_figure().savefig(fp) print(fp) return fp @fpn.pipe_node def open_plot(**kwargs): webbrowser.open(kwargs[fpn.PREDECESSOR_RETURN]) @fpn.pipe_node_factory def merge_gender_data(**kwargs): pni = kwargs[fpn.PN_INPUT] # get index from source data dict df = pd.DataFrame(index=pni.data_dict.keys()) for k, v in kwargs.items(): if k not in fpn.PIPE_NODE_KWARGS: for gender in ('M', 'F'): df[k + '_' + gender] = v[gender] return df #@fpn.pipe_node #def write_xlsx(**kwargs): #pni = kwargs[fpn.PN_INPUT] #xlsx_fp = os.path.join(pni.output_dir, 'output.xlsx') #xlsx = pd.ExcelWriter(xlsx_fp) #for k, df in pni.store_items(): #df.to_excel(xlsx, k) #xlsx.save() #return xlsx_fp def approach_pipe_4a(): f = (PN4.name_count_per_year(lambda n: n.lower().startswith('lesl')) | PN4.percent | PN4.plot('lesl.png') | PN4.open_plot | PN4.name_count_per_year(lambda n: n.lower().startswith('dana')) | PN4.percent | PN4.plot('dana.png') | PN4.open_plot ) f[PN4.PNI('/tmp')] # use our derived PipeNodeInput def approach_pipe_4b(): a = (PN4.name_count_per_year(lambda n: n.lower().startswith('lesl')) | PN4.percent | fpn.store('lesl')) b = (PN4.name_count_per_year(lambda n: n.lower().startswith('dana')) | PN4.percent | fpn.store('dana')) f = (PN4.merge_gender_data(lesl=a, dana=b) | PN4.year_range(1920, 2000) | fpn.store('merged') * 100 | PN4.plot('gender.png') | PN4.open_plot) pni = PN4.PNI('/tmp') f[pni] xlsx_fp = os.path.join(pni.output_dir, 'output.xlsx') xlsx = pd.ExcelWriter(xlsx_fp) for k, df in pni.store_items(): df.to_excel(xlsx, k) xlsx.save() os.system('libreoffice --calc ' + xlsx_fp) if __name__ == '__main__': import sys if len(sys.argv) > 1: func = locals().get(sys.argv[1], None) if func: print(func) func()
mit
charanpald/wallhack
wallhack/kcore/BoundExp.py
1
2602
import array import numpy import scipy.io import scipy.sparse.linalg import matplotlib matplotlib.use("GTK3Agg") import matplotlib.pyplot as plt from sandbox.util.PathDefaults import PathDefaults from sandbox.util.IdIndexer import IdIndexer from sandbox.util.Latex import Latex from apgl.graph.GraphUtils import GraphUtils """ We try to figure out the change in L_i and L_{i+1} """ numpy.set_printoptions(suppress=True, precision=4) dataDir = PathDefaults.getDataDir() + "kcore/" indexer = IdIndexer() node1Inds = array.array("i") node2Inds = array.array("i") Ls = [] us = [] boundFro = [] bound2 = [] ks = [] eyes = [] deltas = [] for i in range(1, 9): print(i) networkFilename = dataDir + "network_1_kcores/network_1-core" + str("%02d" % (i,)) + ".txt" networkFile = open(networkFilename) networkFile.readline() networkFile.readline() networkFile.readline() networkFile.readline() node1Inds = array.array("i") node2Inds = array.array("i") for line in networkFile: vals = line.split() node1Inds.append(indexer.append(vals[0])) node2Inds.append(indexer.append(vals[1])) node1Inds = numpy.array(node1Inds) node2Inds = numpy.array(node2Inds) m = len(indexer.getIdDict()) A = numpy.zeros((m, m)) A[node1Inds, node2Inds] = 1 A = (A+A.T)/2 A = scipy.sparse.csr_matrix(A) L = GraphUtils.normalisedLaplacianSym(A) Ls.append(L) u, V = scipy.sparse.linalg.eigs(L, k=m-2, which="SM") u = u.real inds = numpy.argsort(u) u = u[inds] V = V[:, inds] us.append(u) k0 = numpy.where(u > 0.01)[0][0] k = numpy.argmax(numpy.diff(u[k0:])) ks.append(k) print("k0="+ str(k0) + " k="+ str(k)) V = V[:, k0:k0+k+1] if i != 1: E = L - Ls[-2] E = numpy.array(E.todense()) EV = E.dot(V) L = numpy.array(L.todense()) delta = us[-2][k0+k+1] - us[-1][k0+k] boundFro.append(numpy.linalg.norm(EV)/delta) bound2.append(numpy.linalg.norm(EV, ord=2)/delta) eyes.append(i) deltas.append(delta) boundFro = numpy.array(boundFro) bound2 = numpy.array(bound2) eyes = numpy.array(eyes)-1 deltas = numpy.array(deltas) #2 norm bound is bad #Frobenius norm bound is good but only for last few cores print(1/deltas) print(ks) print(boundFro/numpy.sqrt(ks[:-1])) print(Latex.array1DToRow(eyes)) print(Latex.array1DToRow(numpy.sqrt(ks))) print(Latex.array1DToRow(boundFro)) print(Latex.array1DToRow(bound2))
gpl-3.0
xhongyi/toybrick
Plotting-script-bitvector/time_results/bar_plot-xlabel.py
1
5787
#!/usr/bin/python import sys import numpy as np import matplotlib as mpl from matplotlib.patches import Rectangle mpl.use('pgf') """ parse CLI inputs """ OUTPUT_FILE = sys.argv[1] INPUT_FILE = sys.argv[2] NUM_EDITS = sys.argv[3] print "Starting work on " + OUTPUT_FILE + ".{pdf,pgf}. This may take 10+ minutes, be patient." def figsize(scale): fig_width_pt = 469.755 # Get this from LaTeX using \the\textwidth inches_per_pt = 1.0/72.27 # Convert pt to inch golden_mean = .16#(np.sqrt(5.0)-1.0)/2.0 # Aesthetic ratio (you could change this) fig_width = fig_width_pt*inches_per_pt*scale # width in inches fig_height = fig_width*golden_mean # height in inches fig_size = [fig_width,fig_height] return fig_size def savefig(filename): plt.savefig('{}.pgf'.format(filename)) plt.savefig('{}.pdf'.format(filename)) pgf_with_latex = { # setup matplotlib to use latex for output "pgf.texsystem": "pdflatex", # change this if using xetex or lautex "text.usetex": True, # use LaTeX to write all text "font.family": "serif", "font.serif": [], # blank entries should cause plots to inherit fonts from the document "font.sans-serif": [], "font.monospace": [], "axes.labelsize": 10, # LaTeX default is 10pt font. "text.fontsize": 10, "legend.fontsize": 8, # Make the legend/label fonts a little smaller "xtick.labelsize": 8, "ytick.labelsize": 8, "figure.figsize": figsize(0.9), # default fig size of 0.9 textwidth "pgf.preamble": [ r"\usepackage[utf8x]{inputenc}", # use utf8 fonts becasue your computer can handle it :) r"\usepackage[T1]{fontenc}", # plots will be generated using this preamble ] } mpl.rcParams.update(pgf_with_latex) mpl.rcParams.update({'font.size': 22}) import matplotlib.pyplot as plt """ used to define a new figure with settingin pgf_with_latex """ def newfig(width): plt.clf() fig = plt.figure(figsize=figsize(width)) ax = fig.add_subplot(111) return fig, ax """ this function will label the tops of the bar with their height (near end of code are example calls) """ def autolabel(rects): # attach some text labels for rect in rects: height = rect.get_height() ax.text(rect.get_x()+rect.get_width()/2., 1.05*height, '%d'%int(height),ha='center', va='bottom') """ open files and read in data """ f = open(INPUT_FILE, 'r') f_data = f.read().strip('\n').split('\n')[1:] shd_data = [] seqan_data = [] swps_data = [] af_data = [] for line in f_data: times = line.split('\t') shd_data.append(float(times[1])) seqan_data.append(float(times[0])) swps_data.append(float(times[2])) af_data.append(float(times[3])) """ set information for the bar plot and create the rectangles """ N = len(shd_data) ind = np.arange(N) # the x locations for the groups width = .20 # the width of the bars fig, ax = newfig(1.0) rects1 = ax.bar(ind, shd_data, width, color='black') rects2 = ax.bar(ind+width, seqan_data, width, color='r', hatch='/') rects3 = ax.bar(ind+2*width, af_data, width, color='#33CC33', hatch='.') rects4 = ax.bar(ind+3*width, swps_data, width, color='#6666FF', hatch='-') """ COMMENTED OUT AXES INFORMATION TO MAKE PLOT MORE COMPACT """ '''# xtick mark only on fitfh plot ax.set_ylabel('Time (sec)') if(int(NUM_EDITS) == 5): # adds xlabel to the fifth plot fig.subplots_adjust(bottom=0.275, top=.95, right=.99, left=.125) ax.set_xlabel('Benchmarks') plt.xticks(rotation=-25) ax.set_xticklabels( ('ERR240726', 'ERR240727', 'ERR240728', 'ERR240729', 'ERR240730', 'ERR240731', 'ERR240732', 'ERR240733', 'ERR240734', 'ERR240735') ) else: fig.subplots_adjust(bottom=0.05, top=.95, right=.99, left=.125) ''' # xtick marks on every plot ax.set_xlabel('Benchmarks') plt.xticks(rotation=-25) ax.set_xticklabels( ('ERR240726', 'ERR240727', 'ERR240728', 'ERR240729', 'ERR240730', 'ERR240731', 'ERR240732', 'ERR240733', 'ERR240734', 'ERR240735') ) ''' plt.tick_params(\ axis='x', # changes apply to the x-axis which='both', # both major and minor ticks are affected bottom='off', # ticks along the bottom edge are off top='off', # ticks along the top edge are off labelbottom='off') # labels along the bottom edge are off ''' fig.subplots_adjust(bottom=0.6, top=.95, right=.99, left=.125) ''' if(int(NUM_EDITS) == 1): ax.text(.1,.99*ymax, str(NUM_EDITS) + " errors tolerated") else: ax.text(.1,.90*ymax, str(NUM_EDITS) + " errors tolerated") ''' ''' if(int(NUM_EDITS) == 1): ax.set_title(NUM_EDITS + " Edit Tolerated Between Read and Reference") else: ax.set_title(NUM_EDITS + " Edits Tolerated Between Read and Reference") ''' """ Set the only 3 ytick marks """ ymax = 10000*(int(max(swps_data) / 10000) + 1) ax.set_yticks( (0, ymax/2, ymax) ) """ Set the x lim based on number of rectangles and distance between xtick marks """ plt.xlim([-width,width*(5*len(shd_data) + 8)]) ax.set_xticks(ind+4*width) """ Plot the rectangle and set legend title based on number of erros """ '''if(int(NUM_EDITS) == 1): legend = ax.legend( (rects1[0], rects2[0], rects3[0], rects4[0]), ('SHD', 'Seqan', 'AF', 'Swps'), loc=1, title=str(NUM_EDITS) + " Error") else: legend = ax.legend( (rects1[0], rects2[0], rects3[0], rects4[0]), ('SHD', 'Seqan', 'AF', 'Swps'), loc=1, title=str(NUM_EDITS) + " Errors") plt.setp(legend.get_title(),fontsize='10') ''' #autolabel(rects1) #autolabel(rects2) #autolabel(rects3) """ output the pgf and pdflatex documents """ savefig(OUTPUT_FILE) print "Done with " + OUTPUT_FILE + ".{pdf,pgf}"
bsd-3-clause
gwpy/gwpy
examples/timeseries/filter.py
3
2797
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (C) Duncan Macleod (2014-2020) # # This file is part of GWpy. # # GWpy is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # GWpy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GWpy. If not, see <http://www.gnu.org/licenses/>. """Filtering a `TimeSeries` with a ZPK filter Several data streams read from the LIGO detectors are whitened before being recorded to prevent numerical errors when using single-precision data storage. In this example we read such `channel <gwpy.detector.Channel>` and undo the whitening to show the physical content of these data. """ __author__ = "Duncan Macleod <[email protected]>" __currentmodule__ = 'gwpy.timeseries' # First, we import the `TimeSeries` and :meth:`~TimeSeries.get` the data: from gwpy.timeseries import TimeSeries white = TimeSeries.get( 'L1:OAF-CAL_DARM_DQ', 'March 2 2015 12:00', 'March 2 2015 12:30') # Now, we can re-calibrate these data into displacement units by first applying # a `highpass <TimeSeries.highpass>` filter to remove the low-frequency noise, # and then applying our de-whitening filter in `ZPK <TimeSeries.zpk>` format # with five zeros at 100 Hz and five poles at 1 Hz (giving an overall DC # gain of 10 :sup:`-10`: hp = white.highpass(4) displacement = hp.zpk([100]*5, [1]*5, 1e-10) # We can visualise the impact of the whitening by calculating the ASD # `~gwpy.frequencyseries.FrequencySeries` before and after the filter, whiteasd = white.asd(8, 4) dispasd = displacement.asd(8, 4) # and plotting: from gwpy.plot import Plot plot = Plot(whiteasd, dispasd, separate=True, sharex=True, xscale='log', yscale='log') # Here we have passed the two # `spectra <gwpy.frequencyseries.FrequencySeries>` in order, # then `separate=True` to display them on separate Axes, `sharex=True` to tie # the `~matplotlib.axis.XAxis` of each of the `~gwpy.plot.Axes` # together. # # Finally, we prettify our plot with some limits, and some labels: plot.text(0.95, 0.05, 'Preliminary', fontsize=40, color='gray', # hide ha='right', rotation=45, va='bottom', alpha=0.5) # hide plot.axes[0].set_ylabel('ASD [whitened]') plot.axes[1].set_ylabel(r'ASD [m/$\sqrt{\mathrm{Hz}}$]') plot.axes[1].set_xlabel('Frequency [Hz]') plot.axes[1].set_ylim(1e-20, 1e-15) plot.axes[1].set_xlim(5, 4000) plot.show()
gpl-3.0
Shaswat27/scipy
scipy/cluster/hierarchy.py
18
95902
""" ======================================================== Hierarchical clustering (:mod:`scipy.cluster.hierarchy`) ======================================================== .. currentmodule:: scipy.cluster.hierarchy These functions cut hierarchical clusterings into flat clusterings or find the roots of the forest formed by a cut by providing the flat cluster ids of each observation. .. autosummary:: :toctree: generated/ fcluster fclusterdata leaders These are routines for agglomerative clustering. .. autosummary:: :toctree: generated/ linkage single complete average weighted centroid median ward These routines compute statistics on hierarchies. .. autosummary:: :toctree: generated/ cophenet from_mlab_linkage inconsistent maxinconsts maxdists maxRstat to_mlab_linkage Routines for visualizing flat clusters. .. autosummary:: :toctree: generated/ dendrogram These are data structures and routines for representing hierarchies as tree objects. .. autosummary:: :toctree: generated/ ClusterNode leaves_list to_tree cut_tree These are predicates for checking the validity of linkage and inconsistency matrices as well as for checking isomorphism of two flat cluster assignments. .. autosummary:: :toctree: generated/ is_valid_im is_valid_linkage is_isomorphic is_monotonic correspond num_obs_linkage Utility routines for plotting: .. autosummary:: :toctree: generated/ set_link_color_palette References ---------- .. [1] "Statistics toolbox." API Reference Documentation. The MathWorks. http://www.mathworks.com/access/helpdesk/help/toolbox/stats/. Accessed October 1, 2007. .. [2] "Hierarchical clustering." API Reference Documentation. The Wolfram Research, Inc. http://reference.wolfram.com/mathematica/HierarchicalClustering/tutorial/ HierarchicalClustering.html. Accessed October 1, 2007. .. [3] Gower, JC and Ross, GJS. "Minimum Spanning Trees and Single Linkage Cluster Analysis." Applied Statistics. 18(1): pp. 54--64. 1969. .. [4] Ward Jr, JH. "Hierarchical grouping to optimize an objective function." Journal of the American Statistical Association. 58(301): pp. 236--44. 1963. .. [5] Johnson, SC. "Hierarchical clustering schemes." Psychometrika. 32(2): pp. 241--54. 1966. .. [6] Sneath, PH and Sokal, RR. "Numerical taxonomy." Nature. 193: pp. 855--60. 1962. .. [7] Batagelj, V. "Comparing resemblance measures." Journal of Classification. 12: pp. 73--90. 1995. .. [8] Sokal, RR and Michener, CD. "A statistical method for evaluating systematic relationships." Scientific Bulletins. 38(22): pp. 1409--38. 1958. .. [9] Edelbrock, C. "Mixture model tests of hierarchical clustering algorithms: the problem of classifying everybody." Multivariate Behavioral Research. 14: pp. 367--84. 1979. .. [10] Jain, A., and Dubes, R., "Algorithms for Clustering Data." Prentice-Hall. Englewood Cliffs, NJ. 1988. .. [11] Fisher, RA "The use of multiple measurements in taxonomic problems." Annals of Eugenics, 7(2): 179-188. 1936 * MATLAB and MathWorks are registered trademarks of The MathWorks, Inc. * Mathematica is a registered trademark of The Wolfram Research, Inc. """ from __future__ import division, print_function, absolute_import # Copyright (C) Damian Eads, 2007-2008. New BSD License. # hierarchy.py (derived from cluster.py, http://scipy-cluster.googlecode.com) # # Author: Damian Eads # Date: September 22, 2007 # # Copyright (c) 2007, 2008, Damian Eads # # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # - Redistributions of source code must retain the above # copyright notice, this list of conditions and the # following disclaimer. # - Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # - Neither the name of the author nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import warnings import bisect from collections import deque import numpy as np from . import _hierarchy import scipy.spatial.distance as distance from scipy._lib.six import string_types from scipy._lib.six import xrange _LINKAGE_METHODS = {'single': 0, 'complete': 1, 'average': 2, 'centroid': 3, 'median': 4, 'ward': 5, 'weighted': 6} _EUCLIDEAN_METHODS = ('centroid', 'median', 'ward') __all__ = ['ClusterNode', 'average', 'centroid', 'complete', 'cophenet', 'correspond', 'cut_tree', 'dendrogram', 'fcluster', 'fclusterdata', 'from_mlab_linkage', 'inconsistent', 'is_isomorphic', 'is_monotonic', 'is_valid_im', 'is_valid_linkage', 'leaders', 'leaves_list', 'linkage', 'maxRstat', 'maxdists', 'maxinconsts', 'median', 'num_obs_linkage', 'set_link_color_palette', 'single', 'to_mlab_linkage', 'to_tree', 'ward', 'weighted', 'distance'] def _warning(s): warnings.warn('scipy.cluster: %s' % s, stacklevel=3) def _copy_array_if_base_present(a): """ Copies the array if its base points to a parent array. """ if a.base is not None: return a.copy() elif np.issubsctype(a, np.float32): return np.array(a, dtype=np.double) else: return a def _copy_arrays_if_base_present(T): """ Accepts a tuple of arrays T. Copies the array T[i] if its base array points to an actual array. Otherwise, the reference is just copied. This is useful if the arrays are being passed to a C function that does not do proper striding. """ l = [_copy_array_if_base_present(a) for a in T] return l def _randdm(pnts): """ Generates a random distance matrix stored in condensed form. A pnts * (pnts - 1) / 2 sized vector is returned. """ if pnts >= 2: D = np.random.rand(pnts * (pnts - 1) / 2) else: raise ValueError("The number of points in the distance matrix " "must be at least 2.") return D def single(y): """ Performs single/min/nearest linkage on the condensed distance matrix ``y`` Parameters ---------- y : ndarray The upper triangular of the distance matrix. The result of ``pdist`` is returned in this form. Returns ------- Z : ndarray The linkage matrix. See Also -------- linkage: for advanced creation of hierarchical clusterings. """ return linkage(y, method='single', metric='euclidean') def complete(y): """ Performs complete/max/farthest point linkage on a condensed distance matrix Parameters ---------- y : ndarray The upper triangular of the distance matrix. The result of ``pdist`` is returned in this form. Returns ------- Z : ndarray A linkage matrix containing the hierarchical clustering. See the ``linkage`` function documentation for more information on its structure. See Also -------- linkage """ return linkage(y, method='complete', metric='euclidean') def average(y): """ Performs average/UPGMA linkage on a condensed distance matrix Parameters ---------- y : ndarray The upper triangular of the distance matrix. The result of ``pdist`` is returned in this form. Returns ------- Z : ndarray A linkage matrix containing the hierarchical clustering. See the ``linkage`` function documentation for more information on its structure. See Also -------- linkage: for advanced creation of hierarchical clusterings. """ return linkage(y, method='average', metric='euclidean') def weighted(y): """ Performs weighted/WPGMA linkage on the condensed distance matrix. See ``linkage`` for more information on the return structure and algorithm. Parameters ---------- y : ndarray The upper triangular of the distance matrix. The result of ``pdist`` is returned in this form. Returns ------- Z : ndarray A linkage matrix containing the hierarchical clustering. See the ``linkage`` function documentation for more information on its structure. See Also -------- linkage : for advanced creation of hierarchical clusterings. """ return linkage(y, method='weighted', metric='euclidean') def centroid(y): """ Performs centroid/UPGMC linkage. See ``linkage`` for more information on the return structure and algorithm. The following are common calling conventions: 1. ``Z = centroid(y)`` Performs centroid/UPGMC linkage on the condensed distance matrix ``y``. See ``linkage`` for more information on the return structure and algorithm. 2. ``Z = centroid(X)`` Performs centroid/UPGMC linkage on the observation matrix ``X`` using Euclidean distance as the distance metric. See ``linkage`` for more information on the return structure and algorithm. Parameters ---------- y : ndarray A condensed or redundant distance matrix. A condensed distance matrix is a flat array containing the upper triangular of the distance matrix. This is the form that ``pdist`` returns. Alternatively, a collection of m observation vectors in n dimensions may be passed as a m by n array. Returns ------- Z : ndarray A linkage matrix containing the hierarchical clustering. See the ``linkage`` function documentation for more information on its structure. See Also -------- linkage: for advanced creation of hierarchical clusterings. """ return linkage(y, method='centroid', metric='euclidean') def median(y): """ Performs median/WPGMC linkage. See ``linkage`` for more information on the return structure and algorithm. The following are common calling conventions: 1. ``Z = median(y)`` Performs median/WPGMC linkage on the condensed distance matrix ``y``. See ``linkage`` for more information on the return structure and algorithm. 2. ``Z = median(X)`` Performs median/WPGMC linkage on the observation matrix ``X`` using Euclidean distance as the distance metric. See linkage for more information on the return structure and algorithm. Parameters ---------- y : ndarray A condensed or redundant distance matrix. A condensed distance matrix is a flat array containing the upper triangular of the distance matrix. This is the form that ``pdist`` returns. Alternatively, a collection of m observation vectors in n dimensions may be passed as a m by n array. Returns ------- Z : ndarray The hierarchical clustering encoded as a linkage matrix. See Also -------- linkage: for advanced creation of hierarchical clusterings. """ return linkage(y, method='median', metric='euclidean') def ward(y): """ Performs Ward's linkage on a condensed or redundant distance matrix. See linkage for more information on the return structure and algorithm. The following are common calling conventions: 1. ``Z = ward(y)`` Performs Ward's linkage on the condensed distance matrix ``Z``. See linkage for more information on the return structure and algorithm. 2. ``Z = ward(X)`` Performs Ward's linkage on the observation matrix ``X`` using Euclidean distance as the distance metric. See linkage for more information on the return structure and algorithm. Parameters ---------- y : ndarray A condensed or redundant distance matrix. A condensed distance matrix is a flat array containing the upper triangular of the distance matrix. This is the form that ``pdist`` returns. Alternatively, a collection of m observation vectors in n dimensions may be passed as a m by n array. Returns ------- Z : ndarray The hierarchical clustering encoded as a linkage matrix. See Also -------- linkage: for advanced creation of hierarchical clusterings. """ return linkage(y, method='ward', metric='euclidean') def linkage(y, method='single', metric='euclidean'): """ Performs hierarchical/agglomerative clustering on the condensed distance matrix y. y must be a :math:`{n \\choose 2}` sized vector where n is the number of original observations paired in the distance matrix. The behavior of this function is very similar to the MATLAB linkage function. An :math:`(n-1)` by 4 matrix ``Z`` is returned. At the :math:`i`-th iteration, clusters with indices ``Z[i, 0]`` and ``Z[i, 1]`` are combined to form cluster :math:`n + i`. A cluster with an index less than :math:`n` corresponds to one of the :math:`n` original observations. The distance between clusters ``Z[i, 0]`` and ``Z[i, 1]`` is given by ``Z[i, 2]``. The fourth value ``Z[i, 3]`` represents the number of original observations in the newly formed cluster. The following linkage methods are used to compute the distance :math:`d(s, t)` between two clusters :math:`s` and :math:`t`. The algorithm begins with a forest of clusters that have yet to be used in the hierarchy being formed. When two clusters :math:`s` and :math:`t` from this forest are combined into a single cluster :math:`u`, :math:`s` and :math:`t` are removed from the forest, and :math:`u` is added to the forest. When only one cluster remains in the forest, the algorithm stops, and this cluster becomes the root. A distance matrix is maintained at each iteration. The ``d[i,j]`` entry corresponds to the distance between cluster :math:`i` and :math:`j` in the original forest. At each iteration, the algorithm must update the distance matrix to reflect the distance of the newly formed cluster u with the remaining clusters in the forest. Suppose there are :math:`|u|` original observations :math:`u[0], \\ldots, u[|u|-1]` in cluster :math:`u` and :math:`|v|` original objects :math:`v[0], \\ldots, v[|v|-1]` in cluster :math:`v`. Recall :math:`s` and :math:`t` are combined to form cluster :math:`u`. Let :math:`v` be any remaining cluster in the forest that is not :math:`u`. The following are methods for calculating the distance between the newly formed cluster :math:`u` and each :math:`v`. * method='single' assigns .. math:: d(u,v) = \\min(dist(u[i],v[j])) for all points :math:`i` in cluster :math:`u` and :math:`j` in cluster :math:`v`. This is also known as the Nearest Point Algorithm. * method='complete' assigns .. math:: d(u, v) = \\max(dist(u[i],v[j])) for all points :math:`i` in cluster u and :math:`j` in cluster :math:`v`. This is also known by the Farthest Point Algorithm or Voor Hees Algorithm. * method='average' assigns .. math:: d(u,v) = \\sum_{ij} \\frac{d(u[i], v[j])} {(|u|*|v|)} for all points :math:`i` and :math:`j` where :math:`|u|` and :math:`|v|` are the cardinalities of clusters :math:`u` and :math:`v`, respectively. This is also called the UPGMA algorithm. * method='weighted' assigns .. math:: d(u,v) = (dist(s,v) + dist(t,v))/2 where cluster u was formed with cluster s and t and v is a remaining cluster in the forest. (also called WPGMA) * method='centroid' assigns .. math:: dist(s,t) = ||c_s-c_t||_2 where :math:`c_s` and :math:`c_t` are the centroids of clusters :math:`s` and :math:`t`, respectively. When two clusters :math:`s` and :math:`t` are combined into a new cluster :math:`u`, the new centroid is computed over all the original objects in clusters :math:`s` and :math:`t`. The distance then becomes the Euclidean distance between the centroid of :math:`u` and the centroid of a remaining cluster :math:`v` in the forest. This is also known as the UPGMC algorithm. * method='median' assigns :math:`d(s,t)` like the ``centroid`` method. When two clusters :math:`s` and :math:`t` are combined into a new cluster :math:`u`, the average of centroids s and t give the new centroid :math:`u`. This is also known as the WPGMC algorithm. * method='ward' uses the Ward variance minimization algorithm. The new entry :math:`d(u,v)` is computed as follows, .. math:: d(u,v) = \\sqrt{\\frac{|v|+|s|} {T}d(v,s)^2 + \\frac{|v|+|t|} {T}d(v,t)^2 - \\frac{|v|} {T}d(s,t)^2} where :math:`u` is the newly joined cluster consisting of clusters :math:`s` and :math:`t`, :math:`v` is an unused cluster in the forest, :math:`T=|v|+|s|+|t|`, and :math:`|*|` is the cardinality of its argument. This is also known as the incremental algorithm. Warning: When the minimum distance pair in the forest is chosen, there may be two or more pairs with the same minimum distance. This implementation may chose a different minimum than the MATLAB version. Parameters ---------- y : ndarray A condensed or redundant distance matrix. A condensed distance matrix is a flat array containing the upper triangular of the distance matrix. This is the form that ``pdist`` returns. Alternatively, a collection of :math:`m` observation vectors in n dimensions may be passed as an :math:`m` by :math:`n` array. method : str, optional The linkage algorithm to use. See the ``Linkage Methods`` section below for full descriptions. metric : str or function, optional The distance metric to use in the case that y is a collection of observation vectors; ignored otherwise. See the ``distance.pdist`` function for a list of valid distance metrics. A custom distance function can also be used. See the ``distance.pdist`` function for details. Returns ------- Z : ndarray The hierarchical clustering encoded as a linkage matrix. Notes ----- 1. For method 'single' an optimized algorithm called SLINK is implemented, which has :math:`O(n^2)` time complexity. For methods 'complete', 'average', 'weighted' and 'ward' an algorithm called nearest-neighbors chain is implemented, which too has time complexity :math:`O(n^2)`. For other methods a naive algorithm is implemented with :math:`O(n^3)` time complexity. All algorithms use :math:`O(n^2)` memory. Refer to [1]_ for details about the algorithms. 2. Methods 'centroid', 'median' and 'ward' are correctly defined only if Euclidean pairwise metric is used. If `y` is passed as precomputed pairwise distances, then it is a user responsibility to assure that these distances are in fact Euclidean, otherwise the produced result will be incorrect. References ---------- .. [1] Daniel Mullner, "Modern hierarchical, agglomerative clustering algorithms", `arXiv:1109.2378v1 <http://arxiv.org/abs/1109.2378v1>`_ , 2011. """ if method not in _LINKAGE_METHODS: raise ValueError("Invalid method: {0}".format(method)) y = _convert_to_double(np.asarray(y, order='c')) if y.ndim == 1: distance.is_valid_y(y, throw=True, name='y') [y] = _copy_arrays_if_base_present([y]) elif y.ndim == 2: if method in _EUCLIDEAN_METHODS and metric != 'euclidean': raise ValueError("Method '{0}' requires the distance metric " "to be Euclidean".format(method)) y = distance.pdist(y, metric) else: raise ValueError("`y` must be 1 or 2 dimensional.") n = int(distance.num_obs_y(y)) method_code = _LINKAGE_METHODS[method] if method == 'single': return _hierarchy.slink(y, n) elif method in ['complete', 'average', 'weighted', 'ward']: return _hierarchy.nn_chain(y, n, method_code) else: return _hierarchy.linkage(y, n, method_code) class ClusterNode: """ A tree node class for representing a cluster. Leaf nodes correspond to original observations, while non-leaf nodes correspond to non-singleton clusters. The to_tree function converts a matrix returned by the linkage function into an easy-to-use tree representation. See Also -------- to_tree : for converting a linkage matrix ``Z`` into a tree object. """ def __init__(self, id, left=None, right=None, dist=0, count=1): if id < 0: raise ValueError('The id must be non-negative.') if dist < 0: raise ValueError('The distance must be non-negative.') if (left is None and right is not None) or \ (left is not None and right is None): raise ValueError('Only full or proper binary trees are permitted.' ' This node has one child.') if count < 1: raise ValueError('A cluster must contain at least one original ' 'observation.') self.id = id self.left = left self.right = right self.dist = dist if self.left is None: self.count = count else: self.count = left.count + right.count def __lt__(self, node): if not isinstance(node, ClusterNode): raise ValueError("Can't compare ClusterNode " "to type {}".format(type(node))) return self.dist < node.dist def __gt__(self, node): if not isinstance(node, ClusterNode): raise ValueError("Can't compare ClusterNode " "to type {}".format(type(node))) return self.dist > node.dist def __eq__(self, node): if not isinstance(node, ClusterNode): raise ValueError("Can't compare ClusterNode " "to type {}".format(type(node))) return self.dist == node.dist def get_id(self): """ The identifier of the target node. For ``0 <= i < n``, `i` corresponds to original observation i. For ``n <= i < 2n-1``, `i` corresponds to non-singleton cluster formed at iteration ``i-n``. Returns ------- id : int The identifier of the target node. """ return self.id def get_count(self): """ The number of leaf nodes (original observations) belonging to the cluster node nd. If the target node is a leaf, 1 is returned. Returns ------- get_count : int The number of leaf nodes below the target node. """ return self.count def get_left(self): """ Return a reference to the left child tree object. Returns ------- left : ClusterNode The left child of the target node. If the node is a leaf, None is returned. """ return self.left def get_right(self): """ Returns a reference to the right child tree object. Returns ------- right : ClusterNode The left child of the target node. If the node is a leaf, None is returned. """ return self.right def is_leaf(self): """ Returns True if the target node is a leaf. Returns ------- leafness : bool True if the target node is a leaf node. """ return self.left is None def pre_order(self, func=(lambda x: x.id)): """ Performs pre-order traversal without recursive function calls. When a leaf node is first encountered, ``func`` is called with the leaf node as its argument, and its result is appended to the list. For example, the statement:: ids = root.pre_order(lambda x: x.id) returns a list of the node ids corresponding to the leaf nodes of the tree as they appear from left to right. Parameters ---------- func : function Applied to each leaf ClusterNode object in the pre-order traversal. Given the i'th leaf node in the pre-ordeR traversal ``n[i]``, the result of func(n[i]) is stored in L[i]. If not provided, the index of the original observation to which the node corresponds is used. Returns ------- L : list The pre-order traversal. """ # Do a preorder traversal, caching the result. To avoid having to do # recursion, we'll store the previous index we've visited in a vector. n = self.count curNode = [None] * (2 * n) lvisited = set() rvisited = set() curNode[0] = self k = 0 preorder = [] while k >= 0: nd = curNode[k] ndid = nd.id if nd.is_leaf(): preorder.append(func(nd)) k = k - 1 else: if ndid not in lvisited: curNode[k + 1] = nd.left lvisited.add(ndid) k = k + 1 elif ndid not in rvisited: curNode[k + 1] = nd.right rvisited.add(ndid) k = k + 1 # If we've visited the left and right of this non-leaf # node already, go up in the tree. else: k = k - 1 return preorder _cnode_bare = ClusterNode(0) _cnode_type = type(ClusterNode) def _order_cluster_tree(Z): """ Returns clustering nodes in bottom-up order by distance. Parameters ---------- Z : scipy.cluster.linkage array The linkage matrix. Returns ------- nodes : list A list of ClusterNode objects. """ q = deque() tree = to_tree(Z) q.append(tree) nodes = [] while q: node = q.popleft() if not node.is_leaf(): bisect.insort_left(nodes, node) q.append(node.get_right()) q.append(node.get_left()) return nodes def cut_tree(Z, n_clusters=None, height=None): """ Given a linkage matrix Z, return the cut tree. Parameters ---------- Z : scipy.cluster.linkage array The linkage matrix. n_clusters : array_like, optional Number of clusters in the tree at the cut point. height : array_like, optional The height at which to cut the tree. Only possible for ultrametric trees. Returns ------- cutree : array An array indicating group membership at each agglomeration step. I.e., for a full cut tree, in the first column each data point is in its own cluster. At the next step, two nodes are merged. Finally all singleton and non-singleton clusters are in one group. If `n_clusters` or `height` is given, the columns correspond to the columns of `n_clusters` or `height`. Examples -------- >>> from scipy import cluster >>> np.random.seed(23) >>> X = np.random.randn(50, 4) >>> Z = cluster.hierarchy.ward(X) >>> cutree = cluster.hierarchy.cut_tree(Z, n_clusters=[5, 10]) >>> cutree[:10] array([[0, 0], [1, 1], [2, 2], [3, 3], [3, 4], [2, 2], [0, 0], [1, 5], [3, 6], [4, 7]]) """ nobs = num_obs_linkage(Z) nodes = _order_cluster_tree(Z) if height is not None and n_clusters is not None: raise ValueError("At least one of either height or n_clusters " "must be None") elif height is None and n_clusters is None: # return the full cut tree cols_idx = np.arange(nobs) elif height is not None: heights = np.array([x.dist for x in nodes]) cols_idx = np.searchsorted(heights, height) else: cols_idx = nobs - np.searchsorted(np.arange(nobs), n_clusters) try: n_cols = len(cols_idx) except TypeError: # scalar n_cols = 1 cols_idx = np.array([cols_idx]) groups = np.zeros((n_cols, nobs), dtype=int) last_group = np.arange(nobs) if 0 in cols_idx: groups[0] = last_group for i, node in enumerate(nodes): idx = node.pre_order() this_group = last_group.copy() this_group[idx] = last_group[idx].min() this_group[this_group > last_group[idx].max()] -= 1 if i + 1 in cols_idx: groups[np.where(i + 1 == cols_idx)[0]] = this_group last_group = this_group return groups.T def to_tree(Z, rd=False): """ Converts a hierarchical clustering encoded in the matrix ``Z`` (by linkage) into an easy-to-use tree object. The reference r to the root ClusterNode object is returned. Each ClusterNode object has a left, right, dist, id, and count attribute. The left and right attributes point to ClusterNode objects that were combined to generate the cluster. If both are None then the ClusterNode object is a leaf node, its count must be 1, and its distance is meaningless but set to 0. Note: This function is provided for the convenience of the library user. ClusterNodes are not used as input to any of the functions in this library. Parameters ---------- Z : ndarray The linkage matrix in proper form (see the ``linkage`` function documentation). rd : bool, optional When False, a reference to the root ClusterNode object is returned. Otherwise, a tuple (r,d) is returned. ``r`` is a reference to the root node while ``d`` is a dictionary mapping cluster ids to ClusterNode references. If a cluster id is less than n, then it corresponds to a singleton cluster (leaf node). See ``linkage`` for more information on the assignment of cluster ids to clusters. Returns ------- L : list The pre-order traversal. """ Z = np.asarray(Z, order='c') is_valid_linkage(Z, throw=True, name='Z') # Number of original objects is equal to the number of rows minus 1. n = Z.shape[0] + 1 # Create a list full of None's to store the node objects d = [None] * (n * 2 - 1) # Create the nodes corresponding to the n original objects. for i in xrange(0, n): d[i] = ClusterNode(i) nd = None for i in xrange(0, n - 1): fi = int(Z[i, 0]) fj = int(Z[i, 1]) if fi > i + n: raise ValueError(('Corrupt matrix Z. Index to derivative cluster ' 'is used before it is formed. See row %d, ' 'column 0') % fi) if fj > i + n: raise ValueError(('Corrupt matrix Z. Index to derivative cluster ' 'is used before it is formed. See row %d, ' 'column 1') % fj) nd = ClusterNode(i + n, d[fi], d[fj], Z[i, 2]) # ^ id ^ left ^ right ^ dist if Z[i, 3] != nd.count: raise ValueError(('Corrupt matrix Z. The count Z[%d,3] is ' 'incorrect.') % i) d[n + i] = nd if rd: return (nd, d) else: return nd def _convert_to_bool(X): if X.dtype != bool: X = X.astype(bool) if not X.flags.contiguous: X = X.copy() return X def _convert_to_double(X): if X.dtype != np.double: X = X.astype(np.double) if not X.flags.contiguous: X = X.copy() return X def cophenet(Z, Y=None): """ Calculates the cophenetic distances between each observation in the hierarchical clustering defined by the linkage ``Z``. Suppose ``p`` and ``q`` are original observations in disjoint clusters ``s`` and ``t``, respectively and ``s`` and ``t`` are joined by a direct parent cluster ``u``. The cophenetic distance between observations ``i`` and ``j`` is simply the distance between clusters ``s`` and ``t``. Parameters ---------- Z : ndarray The hierarchical clustering encoded as an array (see `linkage` function). Y : ndarray (optional) Calculates the cophenetic correlation coefficient ``c`` of a hierarchical clustering defined by the linkage matrix `Z` of a set of :math:`n` observations in :math:`m` dimensions. `Y` is the condensed distance matrix from which `Z` was generated. Returns ------- c : ndarray The cophentic correlation distance (if ``y`` is passed). d : ndarray The cophenetic distance matrix in condensed form. The :math:`ij` th entry is the cophenetic distance between original observations :math:`i` and :math:`j`. """ Z = np.asarray(Z, order='c') is_valid_linkage(Z, throw=True, name='Z') Zs = Z.shape n = Zs[0] + 1 zz = np.zeros((n * (n-1)) // 2, dtype=np.double) # Since the C code does not support striding using strides. # The dimensions are used instead. Z = _convert_to_double(Z) _hierarchy.cophenetic_distances(Z, zz, int(n)) if Y is None: return zz Y = np.asarray(Y, order='c') distance.is_valid_y(Y, throw=True, name='Y') z = zz.mean() y = Y.mean() Yy = Y - y Zz = zz - z numerator = (Yy * Zz) denomA = Yy**2 denomB = Zz**2 c = numerator.sum() / np.sqrt((denomA.sum() * denomB.sum())) return (c, zz) def inconsistent(Z, d=2): r""" Calculates inconsistency statistics on a linkage. Note: This function behaves similarly to the MATLAB(TM) inconsistent function. Parameters ---------- Z : ndarray The :math:`(n-1)` by 4 matrix encoding the linkage (hierarchical clustering). See `linkage` documentation for more information on its form. d : int, optional The number of links up to `d` levels below each non-singleton cluster. Returns ------- R : ndarray A :math:`(n-1)` by 5 matrix where the ``i``'th row contains the link statistics for the non-singleton cluster ``i``. The link statistics are computed over the link heights for links :math:`d` levels below the cluster ``i``. ``R[i,0]`` and ``R[i,1]`` are the mean and standard deviation of the link heights, respectively; ``R[i,2]`` is the number of links included in the calculation; and ``R[i,3]`` is the inconsistency coefficient, .. math:: \frac{\mathtt{Z[i,2]} - \mathtt{R[i,0]}} {R[i,1]} """ Z = np.asarray(Z, order='c') Zs = Z.shape is_valid_linkage(Z, throw=True, name='Z') if (not d == np.floor(d)) or d < 0: raise ValueError('The second argument d must be a nonnegative ' 'integer value.') # Since the C code does not support striding using strides. # The dimensions are used instead. [Z] = _copy_arrays_if_base_present([Z]) n = Zs[0] + 1 R = np.zeros((n - 1, 4), dtype=np.double) _hierarchy.inconsistent(Z, R, int(n), int(d)) return R def from_mlab_linkage(Z): """ Converts a linkage matrix generated by MATLAB(TM) to a new linkage matrix compatible with this module. The conversion does two things: * the indices are converted from ``1..N`` to ``0..(N-1)`` form, and * a fourth column Z[:,3] is added where Z[i,3] is represents the number of original observations (leaves) in the non-singleton cluster i. This function is useful when loading in linkages from legacy data files generated by MATLAB. Parameters ---------- Z : ndarray A linkage matrix generated by MATLAB(TM). Returns ------- ZS : ndarray A linkage matrix compatible with this library. """ Z = np.asarray(Z, dtype=np.double, order='c') Zs = Z.shape # If it's empty, return it. if len(Zs) == 0 or (len(Zs) == 1 and Zs[0] == 0): return Z.copy() if len(Zs) != 2: raise ValueError("The linkage array must be rectangular.") # If it contains no rows, return it. if Zs[0] == 0: return Z.copy() Zpart = Z.copy() if Zpart[:, 0:2].min() != 1.0 and Zpart[:, 0:2].max() != 2 * Zs[0]: raise ValueError('The format of the indices is not 1..N') Zpart[:, 0:2] -= 1.0 CS = np.zeros((Zs[0],), dtype=np.double) _hierarchy.calculate_cluster_sizes(Zpart, CS, int(Zs[0]) + 1) return np.hstack([Zpart, CS.reshape(Zs[0], 1)]) def to_mlab_linkage(Z): """ Converts a linkage matrix to a MATLAB(TM) compatible one. Converts a linkage matrix ``Z`` generated by the linkage function of this module to a MATLAB(TM) compatible one. The return linkage matrix has the last column removed and the cluster indices are converted to ``1..N`` indexing. Parameters ---------- Z : ndarray A linkage matrix generated by this library. Returns ------- to_mlab_linkage : ndarray A linkage matrix compatible with MATLAB(TM)'s hierarchical clustering functions. The return linkage matrix has the last column removed and the cluster indices are converted to ``1..N`` indexing. """ Z = np.asarray(Z, order='c', dtype=np.double) Zs = Z.shape if len(Zs) == 0 or (len(Zs) == 1 and Zs[0] == 0): return Z.copy() is_valid_linkage(Z, throw=True, name='Z') ZP = Z[:, 0:3].copy() ZP[:, 0:2] += 1.0 return ZP def is_monotonic(Z): """ Returns True if the linkage passed is monotonic. The linkage is monotonic if for every cluster :math:`s` and :math:`t` joined, the distance between them is no less than the distance between any previously joined clusters. Parameters ---------- Z : ndarray The linkage matrix to check for monotonicity. Returns ------- b : bool A boolean indicating whether the linkage is monotonic. """ Z = np.asarray(Z, order='c') is_valid_linkage(Z, throw=True, name='Z') # We expect the i'th value to be greater than its successor. return (Z[1:, 2] >= Z[:-1, 2]).all() def is_valid_im(R, warning=False, throw=False, name=None): """Returns True if the inconsistency matrix passed is valid. It must be a :math:`n` by 4 numpy array of doubles. The standard deviations ``R[:,1]`` must be nonnegative. The link counts ``R[:,2]`` must be positive and no greater than :math:`n-1`. Parameters ---------- R : ndarray The inconsistency matrix to check for validity. warning : bool, optional When True, issues a Python warning if the linkage matrix passed is invalid. throw : bool, optional When True, throws a Python exception if the linkage matrix passed is invalid. name : str, optional This string refers to the variable name of the invalid linkage matrix. Returns ------- b : bool True if the inconsistency matrix is valid. """ R = np.asarray(R, order='c') valid = True name_str = "%r " % name if name else '' try: if type(R) != np.ndarray: raise TypeError('Variable %spassed as inconsistency matrix is not ' 'a numpy array.' % name_str) if R.dtype != np.double: raise TypeError('Inconsistency matrix %smust contain doubles ' '(double).' % name_str) if len(R.shape) != 2: raise ValueError('Inconsistency matrix %smust have shape=2 (i.e. ' 'be two-dimensional).' % name_str) if R.shape[1] != 4: raise ValueError('Inconsistency matrix %smust have 4 columns.' % name_str) if R.shape[0] < 1: raise ValueError('Inconsistency matrix %smust have at least one ' 'row.' % name_str) if (R[:, 0] < 0).any(): raise ValueError('Inconsistency matrix %scontains negative link ' 'height means.' % name_str) if (R[:, 1] < 0).any(): raise ValueError('Inconsistency matrix %scontains negative link ' 'height standard deviations.' % name_str) if (R[:, 2] < 0).any(): raise ValueError('Inconsistency matrix %scontains negative link ' 'counts.' % name_str) except Exception as e: if throw: raise if warning: _warning(str(e)) valid = False return valid def is_valid_linkage(Z, warning=False, throw=False, name=None): """ Checks the validity of a linkage matrix. A linkage matrix is valid if it is a two dimensional array (type double) with :math:`n` rows and 4 columns. The first two columns must contain indices between 0 and :math:`2n-1`. For a given row ``i``, the following two expressions have to hold: .. math:: 0 \\leq \\mathtt{Z[i,0]} \\leq i+n-1 0 \\leq Z[i,1] \\leq i+n-1 I.e. a cluster cannot join another cluster unless the cluster being joined has been generated. Parameters ---------- Z : array_like Linkage matrix. warning : bool, optional When True, issues a Python warning if the linkage matrix passed is invalid. throw : bool, optional When True, throws a Python exception if the linkage matrix passed is invalid. name : str, optional This string refers to the variable name of the invalid linkage matrix. Returns ------- b : bool True if the inconsistency matrix is valid. """ Z = np.asarray(Z, order='c') valid = True name_str = "%r " % name if name else '' try: if type(Z) != np.ndarray: raise TypeError('Passed linkage argument %sis not a valid array.' % name_str) if Z.dtype != np.double: raise TypeError('Linkage matrix %smust contain doubles.' % name_str) if len(Z.shape) != 2: raise ValueError('Linkage matrix %smust have shape=2 (i.e. be ' 'two-dimensional).' % name_str) if Z.shape[1] != 4: raise ValueError('Linkage matrix %smust have 4 columns.' % name_str) if Z.shape[0] == 0: raise ValueError('Linkage must be computed on at least two ' 'observations.') n = Z.shape[0] if n > 1: if ((Z[:, 0] < 0).any() or (Z[:, 1] < 0).any()): raise ValueError('Linkage %scontains negative indices.' % name_str) if (Z[:, 2] < 0).any(): raise ValueError('Linkage %scontains negative distances.' % name_str) if (Z[:, 3] < 0).any(): raise ValueError('Linkage %scontains negative counts.' % name_str) if _check_hierarchy_uses_cluster_before_formed(Z): raise ValueError('Linkage %suses non-singleton cluster before ' 'it is formed.' % name_str) if _check_hierarchy_uses_cluster_more_than_once(Z): raise ValueError('Linkage %suses the same cluster more than once.' % name_str) except Exception as e: if throw: raise if warning: _warning(str(e)) valid = False return valid def _check_hierarchy_uses_cluster_before_formed(Z): n = Z.shape[0] + 1 for i in xrange(0, n - 1): if Z[i, 0] >= n + i or Z[i, 1] >= n + i: return True return False def _check_hierarchy_uses_cluster_more_than_once(Z): n = Z.shape[0] + 1 chosen = set([]) for i in xrange(0, n - 1): if (Z[i, 0] in chosen) or (Z[i, 1] in chosen) or Z[i, 0] == Z[i, 1]: return True chosen.add(Z[i, 0]) chosen.add(Z[i, 1]) return False def _check_hierarchy_not_all_clusters_used(Z): n = Z.shape[0] + 1 chosen = set([]) for i in xrange(0, n - 1): chosen.add(int(Z[i, 0])) chosen.add(int(Z[i, 1])) must_chosen = set(range(0, 2 * n - 2)) return len(must_chosen.difference(chosen)) > 0 def num_obs_linkage(Z): """ Returns the number of original observations of the linkage matrix passed. Parameters ---------- Z : ndarray The linkage matrix on which to perform the operation. Returns ------- n : int The number of original observations in the linkage. """ Z = np.asarray(Z, order='c') is_valid_linkage(Z, throw=True, name='Z') return (Z.shape[0] + 1) def correspond(Z, Y): """ Checks for correspondence between linkage and condensed distance matrices They must have the same number of original observations for the check to succeed. This function is useful as a sanity check in algorithms that make extensive use of linkage and distance matrices that must correspond to the same set of original observations. Parameters ---------- Z : array_like The linkage matrix to check for correspondence. Y : array_like The condensed distance matrix to check for correspondence. Returns ------- b : bool A boolean indicating whether the linkage matrix and distance matrix could possibly correspond to one another. """ is_valid_linkage(Z, throw=True) distance.is_valid_y(Y, throw=True) Z = np.asarray(Z, order='c') Y = np.asarray(Y, order='c') return distance.num_obs_y(Y) == num_obs_linkage(Z) def fcluster(Z, t, criterion='inconsistent', depth=2, R=None, monocrit=None): """ Forms flat clusters from the hierarchical clustering defined by the linkage matrix ``Z``. Parameters ---------- Z : ndarray The hierarchical clustering encoded with the matrix returned by the `linkage` function. t : float The threshold to apply when forming flat clusters. criterion : str, optional The criterion to use in forming flat clusters. This can be any of the following values: ``inconsistent`` : If a cluster node and all its descendants have an inconsistent value less than or equal to `t` then all its leaf descendants belong to the same flat cluster. When no non-singleton cluster meets this criterion, every node is assigned to its own cluster. (Default) ``distance`` : Forms flat clusters so that the original observations in each flat cluster have no greater a cophenetic distance than `t`. ``maxclust`` : Finds a minimum threshold ``r`` so that the cophenetic distance between any two original observations in the same flat cluster is no more than ``r`` and no more than `t` flat clusters are formed. ``monocrit`` : Forms a flat cluster from a cluster node c with index i when ``monocrit[j] <= t``. For example, to threshold on the maximum mean distance as computed in the inconsistency matrix R with a threshold of 0.8 do:: MR = maxRstat(Z, R, 3) cluster(Z, t=0.8, criterion='monocrit', monocrit=MR) ``maxclust_monocrit`` : Forms a flat cluster from a non-singleton cluster node ``c`` when ``monocrit[i] <= r`` for all cluster indices ``i`` below and including ``c``. ``r`` is minimized such that no more than ``t`` flat clusters are formed. monocrit must be monotonic. For example, to minimize the threshold t on maximum inconsistency values so that no more than 3 flat clusters are formed, do:: MI = maxinconsts(Z, R) cluster(Z, t=3, criterion='maxclust_monocrit', monocrit=MI) depth : int, optional The maximum depth to perform the inconsistency calculation. It has no meaning for the other criteria. Default is 2. R : ndarray, optional The inconsistency matrix to use for the 'inconsistent' criterion. This matrix is computed if not provided. monocrit : ndarray, optional An array of length n-1. `monocrit[i]` is the statistics upon which non-singleton i is thresholded. The monocrit vector must be monotonic, i.e. given a node c with index i, for all node indices j corresponding to nodes below c, ``monocrit[i] >= monocrit[j]``. Returns ------- fcluster : ndarray An array of length n. T[i] is the flat cluster number to which original observation i belongs. """ Z = np.asarray(Z, order='c') is_valid_linkage(Z, throw=True, name='Z') n = Z.shape[0] + 1 T = np.zeros((n,), dtype='i') # Since the C code does not support striding using strides. # The dimensions are used instead. [Z] = _copy_arrays_if_base_present([Z]) if criterion == 'inconsistent': if R is None: R = inconsistent(Z, depth) else: R = np.asarray(R, order='c') is_valid_im(R, throw=True, name='R') # Since the C code does not support striding using strides. # The dimensions are used instead. [R] = _copy_arrays_if_base_present([R]) _hierarchy.cluster_in(Z, R, T, float(t), int(n)) elif criterion == 'distance': _hierarchy.cluster_dist(Z, T, float(t), int(n)) elif criterion == 'maxclust': _hierarchy.cluster_maxclust_dist(Z, T, int(n), int(t)) elif criterion == 'monocrit': [monocrit] = _copy_arrays_if_base_present([monocrit]) _hierarchy.cluster_monocrit(Z, monocrit, T, float(t), int(n)) elif criterion == 'maxclust_monocrit': [monocrit] = _copy_arrays_if_base_present([monocrit]) _hierarchy.cluster_maxclust_monocrit(Z, monocrit, T, int(n), int(t)) else: raise ValueError('Invalid cluster formation criterion: %s' % str(criterion)) return T def fclusterdata(X, t, criterion='inconsistent', metric='euclidean', depth=2, method='single', R=None): """ Cluster observation data using a given metric. Clusters the original observations in the n-by-m data matrix X (n observations in m dimensions), using the euclidean distance metric to calculate distances between original observations, performs hierarchical clustering using the single linkage algorithm, and forms flat clusters using the inconsistency method with `t` as the cut-off threshold. A one-dimensional array T of length n is returned. T[i] is the index of the flat cluster to which the original observation i belongs. Parameters ---------- X : (N, M) ndarray N by M data matrix with N observations in M dimensions. t : float The threshold to apply when forming flat clusters. criterion : str, optional Specifies the criterion for forming flat clusters. Valid values are 'inconsistent' (default), 'distance', or 'maxclust' cluster formation algorithms. See `fcluster` for descriptions. metric : str, optional The distance metric for calculating pairwise distances. See `distance.pdist` for descriptions and linkage to verify compatibility with the linkage method. depth : int, optional The maximum depth for the inconsistency calculation. See `inconsistent` for more information. method : str, optional The linkage method to use (single, complete, average, weighted, median centroid, ward). See `linkage` for more information. Default is "single". R : ndarray, optional The inconsistency matrix. It will be computed if necessary if it is not passed. Returns ------- fclusterdata : ndarray A vector of length n. T[i] is the flat cluster number to which original observation i belongs. Notes ----- This function is similar to the MATLAB function clusterdata. """ X = np.asarray(X, order='c', dtype=np.double) if type(X) != np.ndarray or len(X.shape) != 2: raise TypeError('The observation matrix X must be an n by m numpy ' 'array.') Y = distance.pdist(X, metric=metric) Z = linkage(Y, method=method) if R is None: R = inconsistent(Z, d=depth) else: R = np.asarray(R, order='c') T = fcluster(Z, criterion=criterion, depth=depth, R=R, t=t) return T def leaves_list(Z): """ Returns a list of leaf node ids The return corresponds to the observation vector index as it appears in the tree from left to right. Z is a linkage matrix. Parameters ---------- Z : ndarray The hierarchical clustering encoded as a matrix. `Z` is a linkage matrix. See ``linkage`` for more information. Returns ------- leaves_list : ndarray The list of leaf node ids. """ Z = np.asarray(Z, order='c') is_valid_linkage(Z, throw=True, name='Z') n = Z.shape[0] + 1 ML = np.zeros((n,), dtype='i') [Z] = _copy_arrays_if_base_present([Z]) _hierarchy.prelist(Z, ML, int(n)) return ML # Maps number of leaves to text size. # # p <= 20, size="12" # 20 < p <= 30, size="10" # 30 < p <= 50, size="8" # 50 < p <= np.inf, size="6" _dtextsizes = {20: 12, 30: 10, 50: 8, 85: 6, np.inf: 5} _drotation = {20: 0, 40: 45, np.inf: 90} _dtextsortedkeys = list(_dtextsizes.keys()) _dtextsortedkeys.sort() _drotationsortedkeys = list(_drotation.keys()) _drotationsortedkeys.sort() def _remove_dups(L): """ Removes duplicates AND preserves the original order of the elements. The set class is not guaranteed to do this. """ seen_before = set([]) L2 = [] for i in L: if i not in seen_before: seen_before.add(i) L2.append(i) return L2 def _get_tick_text_size(p): for k in _dtextsortedkeys: if p <= k: return _dtextsizes[k] def _get_tick_rotation(p): for k in _drotationsortedkeys: if p <= k: return _drotation[k] def _plot_dendrogram(icoords, dcoords, ivl, p, n, mh, orientation, no_labels, color_list, leaf_font_size=None, leaf_rotation=None, contraction_marks=None, ax=None, above_threshold_color='b'): # Import matplotlib here so that it's not imported unless dendrograms # are plotted. Raise an informative error if importing fails. try: # if an axis is provided, don't use pylab at all if ax is None: import matplotlib.pylab import matplotlib.patches import matplotlib.collections except ImportError: raise ImportError("You must install the matplotlib library to plot " "the dendrogram. Use no_plot=True to calculate the " "dendrogram without plotting.") if ax is None: ax = matplotlib.pylab.gca() # if we're using pylab, we want to trigger a draw at the end trigger_redraw = True else: trigger_redraw = False # Independent variable plot width ivw = len(ivl) * 10 # Dependent variable plot height dvw = mh + mh * 0.05 iv_ticks = np.arange(5, len(ivl) * 10 + 5, 10) if orientation in ('top', 'bottom'): if orientation == 'top': ax.set_ylim([0, dvw]) ax.set_xlim([0, ivw]) else: ax.set_ylim([dvw, 0]) ax.set_xlim([0, ivw]) xlines = icoords ylines = dcoords if no_labels: ax.set_xticks([]) ax.set_xticklabels([]) else: ax.set_xticks(iv_ticks) if orientation == 'top': ax.xaxis.set_ticks_position('bottom') else: ax.xaxis.set_ticks_position('top') # Make the tick marks invisible because they cover up the links for line in ax.get_xticklines(): line.set_visible(False) leaf_rot = float(_get_tick_rotation(len(ivl))) if ( leaf_rotation is None) else leaf_rotation leaf_font = float(_get_tick_text_size(len(ivl))) if ( leaf_font_size is None) else leaf_font_size ax.set_xticklabels(ivl, rotation=leaf_rot, size=leaf_font) elif orientation in ('left', 'right'): if orientation == 'left': ax.set_xlim([dvw, 0]) ax.set_ylim([0, ivw]) else: ax.set_xlim([0, dvw]) ax.set_ylim([0, ivw]) xlines = dcoords ylines = icoords if no_labels: ax.set_yticks([]) ax.set_yticklabels([]) else: ax.set_yticks(iv_ticks) if orientation == 'left': ax.yaxis.set_ticks_position('right') else: ax.yaxis.set_ticks_position('left') # Make the tick marks invisible because they cover up the links for line in ax.get_yticklines(): line.set_visible(False) leaf_font = float(_get_tick_text_size(len(ivl))) if ( leaf_font_size is None) else leaf_font_size if leaf_rotation is not None: ax.set_yticklabels(ivl, rotation=leaf_rotation, size=leaf_font) else: ax.set_yticklabels(ivl, size=leaf_font) # Let's use collections instead. This way there is a separate legend item # for each tree grouping, rather than stupidly one for each line segment. colors_used = _remove_dups(color_list) color_to_lines = {} for color in colors_used: color_to_lines[color] = [] for (xline, yline, color) in zip(xlines, ylines, color_list): color_to_lines[color].append(list(zip(xline, yline))) colors_to_collections = {} # Construct the collections. for color in colors_used: coll = matplotlib.collections.LineCollection(color_to_lines[color], colors=(color,)) colors_to_collections[color] = coll # Add all the groupings below the color threshold. for color in colors_used: if color != above_threshold_color: ax.add_collection(colors_to_collections[color]) # If there's a grouping of links above the color threshold, it goes last. if above_threshold_color in colors_to_collections: ax.add_collection(colors_to_collections[above_threshold_color]) if contraction_marks is not None: Ellipse = matplotlib.patches.Ellipse for (x, y) in contraction_marks: if orientation in ('left', 'right'): e = Ellipse((y, x), width=dvw / 100, height=1.0) else: e = Ellipse((x, y), width=1.0, height=dvw / 100) ax.add_artist(e) e.set_clip_box(ax.bbox) e.set_alpha(0.5) e.set_facecolor('k') if trigger_redraw: matplotlib.pylab.draw_if_interactive() _link_line_colors = ['g', 'r', 'c', 'm', 'y', 'k'] def set_link_color_palette(palette): """ Set list of matplotlib color codes for use by dendrogram. Note that this palette is global (i.e. setting it once changes the colors for all subsequent calls to `dendrogram`) and that it affects only the the colors below ``color_threshold``. Note that `dendrogram` also accepts a custom coloring function through its ``link_color_func`` keyword, which is more flexible and non-global. Parameters ---------- palette : list of str or None A list of matplotlib color codes. The order of the color codes is the order in which the colors are cycled through when color thresholding in the dendrogram. If ``None``, resets the palette to its default (which is ``['g', 'r', 'c', 'm', 'y', 'k']``). Returns ------- None See Also -------- dendrogram Notes ----- Ability to reset the palette with ``None`` added in Scipy 0.17.0. Examples -------- >>> from scipy.cluster import hierarchy >>> ytdist = np.array([662., 877., 255., 412., 996., 295., 468., 268., 400., ... 754., 564., 138., 219., 869., 669.]) >>> Z = hierarchy.linkage(ytdist, 'single') >>> dn = hierarchy.dendrogram(Z, no_plot=True) >>> dn['color_list'] ['g', 'b', 'b', 'b', 'b'] >>> hierarchy.set_link_color_palette(['c', 'm', 'y', 'k']) >>> dn = hierarchy.dendrogram(Z, no_plot=True) >>> dn['color_list'] ['c', 'b', 'b', 'b', 'b'] >>> dn = hierarchy.dendrogram(Z, no_plot=True, color_threshold=267, ... above_threshold_color='k') >>> dn['color_list'] ['c', 'm', 'm', 'k', 'k'] Now reset the color palette to its default: >>> hierarchy.set_link_color_palette(None) """ if palette is None: # reset to its default palette = ['g', 'r', 'c', 'm', 'y', 'k'] elif type(palette) not in (list, tuple): raise TypeError("palette must be a list or tuple") _ptypes = [isinstance(p, string_types) for p in palette] if False in _ptypes: raise TypeError("all palette list elements must be color strings") for i in list(_link_line_colors): _link_line_colors.remove(i) _link_line_colors.extend(list(palette)) def dendrogram(Z, p=30, truncate_mode=None, color_threshold=None, get_leaves=True, orientation='top', labels=None, count_sort=False, distance_sort=False, show_leaf_counts=True, no_plot=False, no_labels=False, leaf_font_size=None, leaf_rotation=None, leaf_label_func=None, show_contracted=False, link_color_func=None, ax=None, above_threshold_color='b'): """ Plots the hierarchical clustering as a dendrogram. The dendrogram illustrates how each cluster is composed by drawing a U-shaped link between a non-singleton cluster and its children. The height of the top of the U-link is the distance between its children clusters. It is also the cophenetic distance between original observations in the two children clusters. It is expected that the distances in Z[:,2] be monotonic, otherwise crossings appear in the dendrogram. Parameters ---------- Z : ndarray The linkage matrix encoding the hierarchical clustering to render as a dendrogram. See the ``linkage`` function for more information on the format of ``Z``. p : int, optional The ``p`` parameter for ``truncate_mode``. truncate_mode : str, optional The dendrogram can be hard to read when the original observation matrix from which the linkage is derived is large. Truncation is used to condense the dendrogram. There are several modes: ``None/'none'`` No truncation is performed (Default). ``'lastp'`` The last ``p`` non-singleton formed in the linkage are the only non-leaf nodes in the linkage; they correspond to rows ``Z[n-p-2:end]`` in ``Z``. All other non-singleton clusters are contracted into leaf nodes. ``'mlab'`` This corresponds to MATLAB(TM) behavior. (not implemented yet) ``'level'/'mtica'`` No more than ``p`` levels of the dendrogram tree are displayed. This corresponds to Mathematica(TM) behavior. color_threshold : double, optional For brevity, let :math:`t` be the ``color_threshold``. Colors all the descendent links below a cluster node :math:`k` the same color if :math:`k` is the first node below the cut threshold :math:`t`. All links connecting nodes with distances greater than or equal to the threshold are colored blue. If :math:`t` is less than or equal to zero, all nodes are colored blue. If ``color_threshold`` is None or 'default', corresponding with MATLAB(TM) behavior, the threshold is set to ``0.7*max(Z[:,2])``. get_leaves : bool, optional Includes a list ``R['leaves']=H`` in the result dictionary. For each :math:`i`, ``H[i] == j``, cluster node ``j`` appears in position ``i`` in the left-to-right traversal of the leaves, where :math:`j < 2n-1` and :math:`i < n`. orientation : str, optional The direction to plot the dendrogram, which can be any of the following strings: ``'top'`` Plots the root at the top, and plot descendent links going downwards. (default). ``'bottom'`` Plots the root at the bottom, and plot descendent links going upwards. ``'left'`` Plots the root at the left, and plot descendent links going right. ``'right'`` Plots the root at the right, and plot descendent links going left. labels : ndarray, optional By default ``labels`` is None so the index of the original observation is used to label the leaf nodes. Otherwise, this is an :math:`n` -sized list (or tuple). The ``labels[i]`` value is the text to put under the :math:`i` th leaf node only if it corresponds to an original observation and not a non-singleton cluster. count_sort : str or bool, optional For each node n, the order (visually, from left-to-right) n's two descendent links are plotted is determined by this parameter, which can be any of the following values: ``False`` Nothing is done. ``'ascending'`` or ``True`` The child with the minimum number of original objects in its cluster is plotted first. ``'descendent'`` The child with the maximum number of original objects in its cluster is plotted first. Note ``distance_sort`` and ``count_sort`` cannot both be True. distance_sort : str or bool, optional For each node n, the order (visually, from left-to-right) n's two descendent links are plotted is determined by this parameter, which can be any of the following values: ``False`` Nothing is done. ``'ascending'`` or ``True`` The child with the minimum distance between its direct descendents is plotted first. ``'descending'`` The child with the maximum distance between its direct descendents is plotted first. Note ``distance_sort`` and ``count_sort`` cannot both be True. show_leaf_counts : bool, optional When True, leaf nodes representing :math:`k>1` original observation are labeled with the number of observations they contain in parentheses. no_plot : bool, optional When True, the final rendering is not performed. This is useful if only the data structures computed for the rendering are needed or if matplotlib is not available. no_labels : bool, optional When True, no labels appear next to the leaf nodes in the rendering of the dendrogram. leaf_rotation : double, optional Specifies the angle (in degrees) to rotate the leaf labels. When unspecified, the rotation is based on the number of nodes in the dendrogram (default is 0). leaf_font_size : int, optional Specifies the font size (in points) of the leaf labels. When unspecified, the size based on the number of nodes in the dendrogram. leaf_label_func : lambda or function, optional When leaf_label_func is a callable function, for each leaf with cluster index :math:`k < 2n-1`. The function is expected to return a string with the label for the leaf. Indices :math:`k < n` correspond to original observations while indices :math:`k \\geq n` correspond to non-singleton clusters. For example, to label singletons with their node id and non-singletons with their id, count, and inconsistency coefficient, simply do:: # First define the leaf label function. def llf(id): if id < n: return str(id) else: return '[%d %d %1.2f]' % (id, count, R[n-id,3]) # The text for the leaf nodes is going to be big so force # a rotation of 90 degrees. dendrogram(Z, leaf_label_func=llf, leaf_rotation=90) show_contracted : bool, optional When True the heights of non-singleton nodes contracted into a leaf node are plotted as crosses along the link connecting that leaf node. This really is only useful when truncation is used (see ``truncate_mode`` parameter). link_color_func : callable, optional If given, `link_color_function` is called with each non-singleton id corresponding to each U-shaped link it will paint. The function is expected to return the color to paint the link, encoded as a matplotlib color string code. For example:: dendrogram(Z, link_color_func=lambda k: colors[k]) colors the direct links below each untruncated non-singleton node ``k`` using ``colors[k]``. ax : matplotlib Axes instance, optional If None and `no_plot` is not True, the dendrogram will be plotted on the current axes. Otherwise if `no_plot` is not True the dendrogram will be plotted on the given ``Axes`` instance. This can be useful if the dendrogram is part of a more complex figure. above_threshold_color : str, optional This matplotlib color string sets the color of the links above the color_threshold. The default is 'b'. Returns ------- R : dict A dictionary of data structures computed to render the dendrogram. Its has the following keys: ``'color_list'`` A list of color names. The k'th element represents the color of the k'th link. ``'icoord'`` and ``'dcoord'`` Each of them is a list of lists. Let ``icoord = [I1, I2, ..., Ip]`` where ``Ik = [xk1, xk2, xk3, xk4]`` and ``dcoord = [D1, D2, ..., Dp]`` where ``Dk = [yk1, yk2, yk3, yk4]``, then the k'th link painted is ``(xk1, yk1)`` - ``(xk2, yk2)`` - ``(xk3, yk3)`` - ``(xk4, yk4)``. ``'ivl'`` A list of labels corresponding to the leaf nodes. ``'leaves'`` For each i, ``H[i] == j``, cluster node ``j`` appears in position ``i`` in the left-to-right traversal of the leaves, where :math:`j < 2n-1` and :math:`i < n`. If ``j`` is less than ``n``, the ``i``-th leaf node corresponds to an original observation. Otherwise, it corresponds to a non-singleton cluster. See Also -------- linkage, set_link_color_palette Examples -------- >>> from scipy.cluster import hierarchy >>> import matplotlib.pyplot as plt A very basic example: >>> ytdist = np.array([662., 877., 255., 412., 996., 295., 468., 268., ... 400., 754., 564., 138., 219., 869., 669.]) >>> Z = hierarchy.linkage(ytdist, 'single') >>> plt.figure() >>> dn = hierarchy.dendrogram(Z) Now plot in given axes, improve the color scheme and use both vertical and horizontal orientations: >>> hierarchy.set_link_color_palette(['m', 'c', 'y', 'k']) >>> fig, axes = plt.subplots(1, 2, figsize=(8, 3)) >>> dn1 = hierarchy.dendrogram(Z, ax=axes[0], above_threshold_color='y', ... orientation='top') >>> dn2 = hierarchy.dendrogram(Z, ax=axes[1], above_threshold_color='#bcbddc', ... orientation='right') >>> hierarchy.set_link_color_palette(None) # reset to default after use >>> plt.show() """ # This feature was thought about but never implemented (still useful?): # # ... = dendrogram(..., leaves_order=None) # # Plots the leaves in the order specified by a vector of # original observation indices. If the vector contains duplicates # or results in a crossing, an exception will be thrown. Passing # None orders leaf nodes based on the order they appear in the # pre-order traversal. Z = np.asarray(Z, order='c') if orientation not in ["top", "left", "bottom", "right"]: raise ValueError("orientation must be one of 'top', 'left', " "'bottom', or 'right'") is_valid_linkage(Z, throw=True, name='Z') Zs = Z.shape n = Zs[0] + 1 if type(p) in (int, float): p = int(p) else: raise TypeError('The second argument must be a number') if truncate_mode not in ('lastp', 'mlab', 'mtica', 'level', 'none', None): raise ValueError('Invalid truncation mode.') if truncate_mode == 'lastp' or truncate_mode == 'mlab': if p > n or p == 0: p = n if truncate_mode == 'mtica' or truncate_mode == 'level': if p <= 0: p = np.inf if get_leaves: lvs = [] else: lvs = None icoord_list = [] dcoord_list = [] color_list = [] current_color = [0] currently_below_threshold = [False] ivl = [] # list of leaves if color_threshold is None or (isinstance(color_threshold, string_types) and color_threshold == 'default'): color_threshold = max(Z[:, 2]) * 0.7 R = {'icoord': icoord_list, 'dcoord': dcoord_list, 'ivl': ivl, 'leaves': lvs, 'color_list': color_list} # Empty list will be filled in _dendrogram_calculate_info contraction_marks = [] if show_contracted else None _dendrogram_calculate_info( Z=Z, p=p, truncate_mode=truncate_mode, color_threshold=color_threshold, get_leaves=get_leaves, orientation=orientation, labels=labels, count_sort=count_sort, distance_sort=distance_sort, show_leaf_counts=show_leaf_counts, i=2*n - 2, iv=0.0, ivl=ivl, n=n, icoord_list=icoord_list, dcoord_list=dcoord_list, lvs=lvs, current_color=current_color, color_list=color_list, currently_below_threshold=currently_below_threshold, leaf_label_func=leaf_label_func, contraction_marks=contraction_marks, link_color_func=link_color_func, above_threshold_color=above_threshold_color) if not no_plot: mh = max(Z[:, 2]) _plot_dendrogram(icoord_list, dcoord_list, ivl, p, n, mh, orientation, no_labels, color_list, leaf_font_size=leaf_font_size, leaf_rotation=leaf_rotation, contraction_marks=contraction_marks, ax=ax, above_threshold_color=above_threshold_color) return R def _append_singleton_leaf_node(Z, p, n, level, lvs, ivl, leaf_label_func, i, labels): # If the leaf id structure is not None and is a list then the caller # to dendrogram has indicated that cluster id's corresponding to the # leaf nodes should be recorded. if lvs is not None: lvs.append(int(i)) # If leaf node labels are to be displayed... if ivl is not None: # If a leaf_label_func has been provided, the label comes from the # string returned from the leaf_label_func, which is a function # passed to dendrogram. if leaf_label_func: ivl.append(leaf_label_func(int(i))) else: # Otherwise, if the dendrogram caller has passed a labels list # for the leaf nodes, use it. if labels is not None: ivl.append(labels[int(i - n)]) else: # Otherwise, use the id as the label for the leaf.x ivl.append(str(int(i))) def _append_nonsingleton_leaf_node(Z, p, n, level, lvs, ivl, leaf_label_func, i, labels, show_leaf_counts): # If the leaf id structure is not None and is a list then the caller # to dendrogram has indicated that cluster id's corresponding to the # leaf nodes should be recorded. if lvs is not None: lvs.append(int(i)) if ivl is not None: if leaf_label_func: ivl.append(leaf_label_func(int(i))) else: if show_leaf_counts: ivl.append("(" + str(int(Z[i - n, 3])) + ")") else: ivl.append("") def _append_contraction_marks(Z, iv, i, n, contraction_marks): _append_contraction_marks_sub(Z, iv, int(Z[i - n, 0]), n, contraction_marks) _append_contraction_marks_sub(Z, iv, int(Z[i - n, 1]), n, contraction_marks) def _append_contraction_marks_sub(Z, iv, i, n, contraction_marks): if i >= n: contraction_marks.append((iv, Z[i - n, 2])) _append_contraction_marks_sub(Z, iv, int(Z[i - n, 0]), n, contraction_marks) _append_contraction_marks_sub(Z, iv, int(Z[i - n, 1]), n, contraction_marks) def _dendrogram_calculate_info(Z, p, truncate_mode, color_threshold=np.inf, get_leaves=True, orientation='top', labels=None, count_sort=False, distance_sort=False, show_leaf_counts=False, i=-1, iv=0.0, ivl=[], n=0, icoord_list=[], dcoord_list=[], lvs=None, mhr=False, current_color=[], color_list=[], currently_below_threshold=[], leaf_label_func=None, level=0, contraction_marks=None, link_color_func=None, above_threshold_color='b'): """ Calculates the endpoints of the links as well as the labels for the the dendrogram rooted at the node with index i. iv is the independent variable value to plot the left-most leaf node below the root node i (if orientation='top', this would be the left-most x value where the plotting of this root node i and its descendents should begin). ivl is a list to store the labels of the leaf nodes. The leaf_label_func is called whenever ivl != None, labels == None, and leaf_label_func != None. When ivl != None and labels != None, the labels list is used only for labeling the leaf nodes. When ivl == None, no labels are generated for leaf nodes. When get_leaves==True, a list of leaves is built as they are visited in the dendrogram. Returns a tuple with l being the independent variable coordinate that corresponds to the midpoint of cluster to the left of cluster i if i is non-singleton, otherwise the independent coordinate of the leaf node if i is a leaf node. Returns ------- A tuple (left, w, h, md), where: * left is the independent variable coordinate of the center of the the U of the subtree * w is the amount of space used for the subtree (in independent variable units) * h is the height of the subtree in dependent variable units * md is the ``max(Z[*,2]``) for all nodes ``*`` below and including the target node. """ if n == 0: raise ValueError("Invalid singleton cluster count n.") if i == -1: raise ValueError("Invalid root cluster index i.") if truncate_mode == 'lastp': # If the node is a leaf node but corresponds to a non-single cluster, # its label is either the empty string or the number of original # observations belonging to cluster i. if 2 * n - p > i >= n: d = Z[i - n, 2] _append_nonsingleton_leaf_node(Z, p, n, level, lvs, ivl, leaf_label_func, i, labels, show_leaf_counts) if contraction_marks is not None: _append_contraction_marks(Z, iv + 5.0, i, n, contraction_marks) return (iv + 5.0, 10.0, 0.0, d) elif i < n: _append_singleton_leaf_node(Z, p, n, level, lvs, ivl, leaf_label_func, i, labels) return (iv + 5.0, 10.0, 0.0, 0.0) elif truncate_mode in ('mtica', 'level'): if i > n and level > p: d = Z[i - n, 2] _append_nonsingleton_leaf_node(Z, p, n, level, lvs, ivl, leaf_label_func, i, labels, show_leaf_counts) if contraction_marks is not None: _append_contraction_marks(Z, iv + 5.0, i, n, contraction_marks) return (iv + 5.0, 10.0, 0.0, d) elif i < n: _append_singleton_leaf_node(Z, p, n, level, lvs, ivl, leaf_label_func, i, labels) return (iv + 5.0, 10.0, 0.0, 0.0) elif truncate_mode in ('mlab',): pass # Otherwise, only truncate if we have a leaf node. # # If the truncate_mode is mlab, the linkage has been modified # with the truncated tree. # # Only place leaves if they correspond to original observations. if i < n: _append_singleton_leaf_node(Z, p, n, level, lvs, ivl, leaf_label_func, i, labels) return (iv + 5.0, 10.0, 0.0, 0.0) # !!! Otherwise, we don't have a leaf node, so work on plotting a # non-leaf node. # Actual indices of a and b aa = int(Z[i - n, 0]) ab = int(Z[i - n, 1]) if aa > n: # The number of singletons below cluster a na = Z[aa - n, 3] # The distance between a's two direct children. da = Z[aa - n, 2] else: na = 1 da = 0.0 if ab > n: nb = Z[ab - n, 3] db = Z[ab - n, 2] else: nb = 1 db = 0.0 if count_sort == 'ascending' or count_sort == True: # If a has a count greater than b, it and its descendents should # be drawn to the right. Otherwise, to the left. if na > nb: # The cluster index to draw to the left (ua) will be ab # and the one to draw to the right (ub) will be aa ua = ab ub = aa else: ua = aa ub = ab elif count_sort == 'descending': # If a has a count less than or equal to b, it and its # descendents should be drawn to the left. Otherwise, to # the right. if na > nb: ua = aa ub = ab else: ua = ab ub = aa elif distance_sort == 'ascending' or distance_sort == True: # If a has a distance greater than b, it and its descendents should # be drawn to the right. Otherwise, to the left. if da > db: ua = ab ub = aa else: ua = aa ub = ab elif distance_sort == 'descending': # If a has a distance less than or equal to b, it and its # descendents should be drawn to the left. Otherwise, to # the right. if da > db: ua = aa ub = ab else: ua = ab ub = aa else: ua = aa ub = ab # Updated iv variable and the amount of space used. (uiva, uwa, uah, uamd) = \ _dendrogram_calculate_info( Z=Z, p=p, truncate_mode=truncate_mode, color_threshold=color_threshold, get_leaves=get_leaves, orientation=orientation, labels=labels, count_sort=count_sort, distance_sort=distance_sort, show_leaf_counts=show_leaf_counts, i=ua, iv=iv, ivl=ivl, n=n, icoord_list=icoord_list, dcoord_list=dcoord_list, lvs=lvs, current_color=current_color, color_list=color_list, currently_below_threshold=currently_below_threshold, leaf_label_func=leaf_label_func, level=level + 1, contraction_marks=contraction_marks, link_color_func=link_color_func, above_threshold_color=above_threshold_color) h = Z[i - n, 2] if h >= color_threshold or color_threshold <= 0: c = above_threshold_color if currently_below_threshold[0]: current_color[0] = (current_color[0] + 1) % len(_link_line_colors) currently_below_threshold[0] = False else: currently_below_threshold[0] = True c = _link_line_colors[current_color[0]] (uivb, uwb, ubh, ubmd) = \ _dendrogram_calculate_info( Z=Z, p=p, truncate_mode=truncate_mode, color_threshold=color_threshold, get_leaves=get_leaves, orientation=orientation, labels=labels, count_sort=count_sort, distance_sort=distance_sort, show_leaf_counts=show_leaf_counts, i=ub, iv=iv + uwa, ivl=ivl, n=n, icoord_list=icoord_list, dcoord_list=dcoord_list, lvs=lvs, current_color=current_color, color_list=color_list, currently_below_threshold=currently_below_threshold, leaf_label_func=leaf_label_func, level=level + 1, contraction_marks=contraction_marks, link_color_func=link_color_func, above_threshold_color=above_threshold_color) max_dist = max(uamd, ubmd, h) icoord_list.append([uiva, uiva, uivb, uivb]) dcoord_list.append([uah, h, h, ubh]) if link_color_func is not None: v = link_color_func(int(i)) if not isinstance(v, string_types): raise TypeError("link_color_func must return a matplotlib " "color string!") color_list.append(v) else: color_list.append(c) return (((uiva + uivb) / 2), uwa + uwb, h, max_dist) def is_isomorphic(T1, T2): """ Determines if two different cluster assignments are equivalent. Parameters ---------- T1 : array_like An assignment of singleton cluster ids to flat cluster ids. T2 : array_like An assignment of singleton cluster ids to flat cluster ids. Returns ------- b : bool Whether the flat cluster assignments `T1` and `T2` are equivalent. """ T1 = np.asarray(T1, order='c') T2 = np.asarray(T2, order='c') if type(T1) != np.ndarray: raise TypeError('T1 must be a numpy array.') if type(T2) != np.ndarray: raise TypeError('T2 must be a numpy array.') T1S = T1.shape T2S = T2.shape if len(T1S) != 1: raise ValueError('T1 must be one-dimensional.') if len(T2S) != 1: raise ValueError('T2 must be one-dimensional.') if T1S[0] != T2S[0]: raise ValueError('T1 and T2 must have the same number of elements.') n = T1S[0] d = {} for i in xrange(0, n): if T1[i] in d: if d[T1[i]] != T2[i]: return False else: d[T1[i]] = T2[i] return True def maxdists(Z): """ Returns the maximum distance between any non-singleton cluster. Parameters ---------- Z : ndarray The hierarchical clustering encoded as a matrix. See ``linkage`` for more information. Returns ------- maxdists : ndarray A ``(n-1)`` sized numpy array of doubles; ``MD[i]`` represents the maximum distance between any cluster (including singletons) below and including the node with index i. More specifically, ``MD[i] = Z[Q(i)-n, 2].max()`` where ``Q(i)`` is the set of all node indices below and including node i. """ Z = np.asarray(Z, order='c', dtype=np.double) is_valid_linkage(Z, throw=True, name='Z') n = Z.shape[0] + 1 MD = np.zeros((n - 1,)) [Z] = _copy_arrays_if_base_present([Z]) _hierarchy.get_max_dist_for_each_cluster(Z, MD, int(n)) return MD def maxinconsts(Z, R): """ Returns the maximum inconsistency coefficient for each non-singleton cluster and its descendents. Parameters ---------- Z : ndarray The hierarchical clustering encoded as a matrix. See ``linkage`` for more information. R : ndarray The inconsistency matrix. Returns ------- MI : ndarray A monotonic ``(n-1)``-sized numpy array of doubles. """ Z = np.asarray(Z, order='c') R = np.asarray(R, order='c') is_valid_linkage(Z, throw=True, name='Z') is_valid_im(R, throw=True, name='R') n = Z.shape[0] + 1 if Z.shape[0] != R.shape[0]: raise ValueError("The inconsistency matrix and linkage matrix each " "have a different number of rows.") MI = np.zeros((n - 1,)) [Z, R] = _copy_arrays_if_base_present([Z, R]) _hierarchy.get_max_Rfield_for_each_cluster(Z, R, MI, int(n), 3) return MI def maxRstat(Z, R, i): """ Returns the maximum statistic for each non-singleton cluster and its descendents. Parameters ---------- Z : array_like The hierarchical clustering encoded as a matrix. See `linkage` for more information. R : array_like The inconsistency matrix. i : int The column of `R` to use as the statistic. Returns ------- MR : ndarray Calculates the maximum statistic for the i'th column of the inconsistency matrix `R` for each non-singleton cluster node. ``MR[j]`` is the maximum over ``R[Q(j)-n, i]`` where ``Q(j)`` the set of all node ids corresponding to nodes below and including ``j``. """ Z = np.asarray(Z, order='c') R = np.asarray(R, order='c') is_valid_linkage(Z, throw=True, name='Z') is_valid_im(R, throw=True, name='R') if type(i) is not int: raise TypeError('The third argument must be an integer.') if i < 0 or i > 3: raise ValueError('i must be an integer between 0 and 3 inclusive.') if Z.shape[0] != R.shape[0]: raise ValueError("The inconsistency matrix and linkage matrix each " "have a different number of rows.") n = Z.shape[0] + 1 MR = np.zeros((n - 1,)) [Z, R] = _copy_arrays_if_base_present([Z, R]) _hierarchy.get_max_Rfield_for_each_cluster(Z, R, MR, int(n), i) return MR def leaders(Z, T): """ Returns the root nodes in a hierarchical clustering. Returns the root nodes in a hierarchical clustering corresponding to a cut defined by a flat cluster assignment vector ``T``. See the ``fcluster`` function for more information on the format of ``T``. For each flat cluster :math:`j` of the :math:`k` flat clusters represented in the n-sized flat cluster assignment vector ``T``, this function finds the lowest cluster node :math:`i` in the linkage tree Z such that: * leaf descendents belong only to flat cluster j (i.e. ``T[p]==j`` for all :math:`p` in :math:`S(i)` where :math:`S(i)` is the set of leaf ids of leaf nodes descendent with cluster node :math:`i`) * there does not exist a leaf that is not descendent with :math:`i` that also belongs to cluster :math:`j` (i.e. ``T[q]!=j`` for all :math:`q` not in :math:`S(i)`). If this condition is violated, ``T`` is not a valid cluster assignment vector, and an exception will be thrown. Parameters ---------- Z : ndarray The hierarchical clustering encoded as a matrix. See ``linkage`` for more information. T : ndarray The flat cluster assignment vector. Returns ------- L : ndarray The leader linkage node id's stored as a k-element 1-D array where ``k`` is the number of flat clusters found in ``T``. ``L[j]=i`` is the linkage cluster node id that is the leader of flat cluster with id M[j]. If ``i < n``, ``i`` corresponds to an original observation, otherwise it corresponds to a non-singleton cluster. For example: if ``L[3]=2`` and ``M[3]=8``, the flat cluster with id 8's leader is linkage node 2. M : ndarray The leader linkage node id's stored as a k-element 1-D array where ``k`` is the number of flat clusters found in ``T``. This allows the set of flat cluster ids to be any arbitrary set of ``k`` integers. """ Z = np.asarray(Z, order='c') T = np.asarray(T, order='c') if type(T) != np.ndarray or T.dtype != 'i': raise TypeError('T must be a one-dimensional numpy array of integers.') is_valid_linkage(Z, throw=True, name='Z') if len(T) != Z.shape[0] + 1: raise ValueError('Mismatch: len(T)!=Z.shape[0] + 1.') Cl = np.unique(T) kk = len(Cl) L = np.zeros((kk,), dtype='i') M = np.zeros((kk,), dtype='i') n = Z.shape[0] + 1 [Z, T] = _copy_arrays_if_base_present([Z, T]) s = _hierarchy.leaders(Z, T, L, M, int(kk), int(n)) if s >= 0: raise ValueError(('T is not a valid assignment vector. Error found ' 'when examining linkage node %d (< 2n-1).') % s) return (L, M)
bsd-3-clause
sauloal/cnidaria
scripts/venv/lib/python2.7/site-packages/pandas/io/stata.py
2
77178
""" Module contains tools for processing Stata files into DataFrames The StataReader below was originally written by Joe Presbrey as part of PyDTA. It has been extended and improved by Skipper Seabold from the Statsmodels project who also developed the StataWriter and was finally added to pandas in an once again improved version. You can find more information on http://presbrey.mit.edu/PyDTA and http://statsmodels.sourceforge.net/devel/ """ import numpy as np import sys import struct from dateutil.relativedelta import relativedelta from pandas.core.base import StringMixin from pandas.core.categorical import Categorical from pandas.core.frame import DataFrame from pandas.core.series import Series import datetime from pandas import compat, to_timedelta, to_datetime, isnull, DatetimeIndex from pandas.compat import lrange, lmap, lzip, text_type, string_types, range, \ zip, BytesIO from pandas.util.decorators import Appender import pandas.core.common as com from pandas.io.common import get_filepath_or_buffer from pandas.lib import max_len_string_array, infer_dtype from pandas.tslib import NaT, Timestamp _statafile_processing_params1 = """\ convert_dates : boolean, defaults to True Convert date variables to DataFrame time values convert_categoricals : boolean, defaults to True Read value labels and convert columns to Categorical/Factor variables""" _encoding_params = """\ encoding : string, None or encoding Encoding used to parse the files. Note that Stata doesn't support unicode. None defaults to iso-8859-1.""" _statafile_processing_params2 = """\ index : identifier of index column identifier of column that should be used as index of the DataFrame convert_missing : boolean, defaults to False Flag indicating whether to convert missing values to their Stata representations. If False, missing values are replaced with nans. If True, columns containing missing values are returned with object data types and missing values are represented by StataMissingValue objects. preserve_dtypes : boolean, defaults to True Preserve Stata datatypes. If False, numeric data are upcast to pandas default types for foreign data (float64 or int64) columns : list or None Columns to retain. Columns will be returned in the given order. None returns all columns order_categoricals : boolean, defaults to True Flag indicating whether converted categorical data are ordered.""" _chunksize_params = """\ chunksize : int, default None Return StataReader object for iterations, returns chunks with given number of lines""" _iterator_params = """\ iterator : boolean, default False Return StataReader object""" _read_stata_doc = """Read Stata file into DataFrame Parameters ---------- filepath_or_buffer : string or file-like object Path to .dta file or object implementing a binary read() functions %s %s %s %s %s Returns ------- DataFrame or StataReader Examples -------- Read a Stata dta file: >> df = pandas.read_stata('filename.dta') Read a Stata dta file in 10,000 line chunks: >> itr = pandas.read_stata('filename.dta', chunksize=10000) >> for chunk in itr: >> do_something(chunk) """ % (_statafile_processing_params1, _encoding_params, _statafile_processing_params2, _chunksize_params, _iterator_params) _data_method_doc = """Reads observations from Stata file, converting them into a dataframe This is a legacy method. Use `read` in new code. Parameters ---------- %s %s Returns ------- DataFrame """ % (_statafile_processing_params1, _statafile_processing_params2) _read_method_doc = """\ Reads observations from Stata file, converting them into a dataframe Parameters ---------- nrows : int Number of lines to read from data file, if None read whole file. %s %s Returns ------- DataFrame """ % (_statafile_processing_params1, _statafile_processing_params2) _stata_reader_doc = """\ Class for reading Stata dta files. Parameters ---------- path_or_buf : string or file-like object Path to .dta file or object implementing a binary read() functions %s %s %s %s """ % (_statafile_processing_params1, _statafile_processing_params2, _encoding_params, _chunksize_params) @Appender(_read_stata_doc) def read_stata(filepath_or_buffer, convert_dates=True, convert_categoricals=True, encoding=None, index=None, convert_missing=False, preserve_dtypes=True, columns=None, order_categoricals=True, chunksize=None, iterator=False): reader = StataReader(filepath_or_buffer, convert_dates=convert_dates, convert_categoricals=convert_categoricals, index=index, convert_missing=convert_missing, preserve_dtypes=preserve_dtypes, columns=columns, order_categoricals=order_categoricals, chunksize=chunksize, encoding=encoding) if iterator or chunksize: return reader return reader.read() _date_formats = ["%tc", "%tC", "%td", "%d", "%tw", "%tm", "%tq", "%th", "%ty"] stata_epoch = datetime.datetime(1960, 1, 1) def _stata_elapsed_date_to_datetime_vec(dates, fmt): """ Convert from SIF to datetime. http://www.stata.com/help.cgi?datetime Parameters ---------- dates : Series The Stata Internal Format date to convert to datetime according to fmt fmt : str The format to convert to. Can be, tc, td, tw, tm, tq, th, ty Returns Returns ------- converted : Series The converted dates Examples -------- >>> import pandas as pd >>> dates = pd.Series([52]) >>> _stata_elapsed_date_to_datetime_vec(dates , "%tw") 0 1961-01-01 dtype: datetime64[ns] Notes ----- datetime/c - tc milliseconds since 01jan1960 00:00:00.000, assuming 86,400 s/day datetime/C - tC - NOT IMPLEMENTED milliseconds since 01jan1960 00:00:00.000, adjusted for leap seconds date - td days since 01jan1960 (01jan1960 = 0) weekly date - tw weeks since 1960w1 This assumes 52 weeks in a year, then adds 7 * remainder of the weeks. The datetime value is the start of the week in terms of days in the year, not ISO calendar weeks. monthly date - tm months since 1960m1 quarterly date - tq quarters since 1960q1 half-yearly date - th half-years since 1960h1 yearly date - ty years since 0000 If you don't have pandas with datetime support, then you can't do milliseconds accurately. """ MIN_YEAR, MAX_YEAR = Timestamp.min.year, Timestamp.max.year MAX_DAY_DELTA = (Timestamp.max - datetime.datetime(1960, 1, 1)).days MIN_DAY_DELTA = (Timestamp.min - datetime.datetime(1960, 1, 1)).days MIN_MS_DELTA = MIN_DAY_DELTA * 24 * 3600 * 1000 MAX_MS_DELTA = MAX_DAY_DELTA * 24 * 3600 * 1000 def convert_year_month_safe(year, month): """ Convert year and month to datetimes, using pandas vectorized versions when the date range falls within the range supported by pandas. Other wise it falls back to a slower but more robust method using datetime. """ if year.max() < MAX_YEAR and year.min() > MIN_YEAR: return to_datetime(100 * year + month, format='%Y%m') else: index = getattr(year, 'index', None) return Series( [datetime.datetime(y, m, 1) for y, m in zip(year, month)], index=index) def convert_year_days_safe(year, days): """ Converts year (e.g. 1999) and days since the start of the year to a datetime or datetime64 Series """ if year.max() < (MAX_YEAR - 1) and year.min() > MIN_YEAR: return to_datetime(year, format='%Y') + to_timedelta(days, unit='d') else: index = getattr(year, 'index', None) value = [datetime.datetime(y, 1, 1) + relativedelta(days=int(d)) for y, d in zip(year, days)] return Series(value, index=index) def convert_delta_safe(base, deltas, unit): """ Convert base dates and deltas to datetimes, using pandas vectorized versions if the deltas satisfy restrictions required to be expressed as dates in pandas. """ index = getattr(deltas, 'index', None) if unit == 'd': if deltas.max() > MAX_DAY_DELTA or deltas.min() < MIN_DAY_DELTA: values = [base + relativedelta(days=int(d)) for d in deltas] return Series(values, index=index) elif unit == 'ms': if deltas.max() > MAX_MS_DELTA or deltas.min() < MIN_MS_DELTA: values = [base + relativedelta(microseconds=(int(d) * 1000)) for d in deltas] return Series(values, index=index) else: raise ValueError('format not understood') base = to_datetime(base) deltas = to_timedelta(deltas, unit=unit) return base + deltas # TODO: If/when pandas supports more than datetime64[ns], this should be improved to use correct range, e.g. datetime[Y] for yearly bad_locs = np.isnan(dates) has_bad_values = False if bad_locs.any(): has_bad_values = True data_col = Series(dates) data_col[bad_locs] = 1.0 # Replace with NaT dates = dates.astype(np.int64) if fmt in ["%tc", "tc"]: # Delta ms relative to base base = stata_epoch ms = dates conv_dates = convert_delta_safe(base, ms, 'ms') elif fmt in ["%tC", "tC"]: from warnings import warn warn("Encountered %tC format. Leaving in Stata Internal Format.") conv_dates = Series(dates, dtype=np.object) if has_bad_values: conv_dates[bad_locs] = np.nan return conv_dates elif fmt in ["%td", "td", "%d", "d"]: # Delta days relative to base base = stata_epoch days = dates conv_dates = convert_delta_safe(base, days, 'd') elif fmt in ["%tw", "tw"]: # does not count leap days - 7 days is a week year = stata_epoch.year + dates // 52 days = (dates % 52) * 7 conv_dates = convert_year_days_safe(year, days) elif fmt in ["%tm", "tm"]: # Delta months relative to base year = stata_epoch.year + dates // 12 month = (dates % 12) + 1 conv_dates = convert_year_month_safe(year, month) elif fmt in ["%tq", "tq"]: # Delta quarters relative to base year = stata_epoch.year + dates // 4 month = (dates % 4) * 3 + 1 conv_dates = convert_year_month_safe(year, month) elif fmt in ["%th", "th"]: # Delta half-years relative to base year = stata_epoch.year + dates // 2 month = (dates % 2) * 6 + 1 conv_dates = convert_year_month_safe(year, month) elif fmt in ["%ty", "ty"]: # Years -- not delta year = dates month = np.ones_like(dates) conv_dates = convert_year_month_safe(year, month) else: raise ValueError("Date fmt %s not understood" % fmt) if has_bad_values: # Restore NaT for bad values conv_dates[bad_locs] = NaT return conv_dates def _datetime_to_stata_elapsed_vec(dates, fmt): """ Convert from datetime to SIF. http://www.stata.com/help.cgi?datetime Parameters ---------- dates : Series Series or array containing datetime.datetime or datetime64[ns] to convert to the Stata Internal Format given by fmt fmt : str The format to convert to. Can be, tc, td, tw, tm, tq, th, ty """ index = dates.index NS_PER_DAY = 24 * 3600 * 1000 * 1000 * 1000 US_PER_DAY = NS_PER_DAY / 1000 def parse_dates_safe(dates, delta=False, year=False, days=False): d = {} if com.is_datetime64_dtype(dates.values): if delta: delta = dates - stata_epoch d['delta'] = delta.values.astype( np.int64) // 1000 # microseconds if days or year: dates = DatetimeIndex(dates) d['year'], d['month'] = dates.year, dates.month if days: days = (dates.astype(np.int64) - to_datetime(d['year'], format='%Y').astype(np.int64)) d['days'] = days // NS_PER_DAY elif infer_dtype(dates) == 'datetime': if delta: delta = dates.values - stata_epoch f = lambda x: \ US_PER_DAY * x.days + 1000000 * x.seconds + x.microseconds v = np.vectorize(f) d['delta'] = v(delta) if year: year_month = dates.apply(lambda x: 100 * x.year + x.month) d['year'] = year_month.values // 100 d['month'] = (year_month.values - d['year'] * 100) if days: f = lambda x: (x - datetime.datetime(x.year, 1, 1)).days v = np.vectorize(f) d['days'] = v(dates) else: raise ValueError('Columns containing dates must contain either ' 'datetime64, datetime.datetime or null values.') return DataFrame(d, index=index) bad_loc = isnull(dates) index = dates.index if bad_loc.any(): dates = Series(dates) if com.is_datetime64_dtype(dates): dates[bad_loc] = to_datetime(stata_epoch) else: dates[bad_loc] = stata_epoch if fmt in ["%tc", "tc"]: d = parse_dates_safe(dates, delta=True) conv_dates = d.delta / 1000 elif fmt in ["%tC", "tC"]: from warnings import warn warn("Stata Internal Format tC not supported.") conv_dates = dates elif fmt in ["%td", "td"]: d = parse_dates_safe(dates, delta=True) conv_dates = d.delta // US_PER_DAY elif fmt in ["%tw", "tw"]: d = parse_dates_safe(dates, year=True, days=True) conv_dates = (52 * (d.year - stata_epoch.year) + d.days // 7) elif fmt in ["%tm", "tm"]: d = parse_dates_safe(dates, year=True) conv_dates = (12 * (d.year - stata_epoch.year) + d.month - 1) elif fmt in ["%tq", "tq"]: d = parse_dates_safe(dates, year=True) conv_dates = 4 * (d.year - stata_epoch.year) + (d.month - 1) // 3 elif fmt in ["%th", "th"]: d = parse_dates_safe(dates, year=True) conv_dates = 2 * (d.year - stata_epoch.year) + \ (d.month > 6).astype(np.int) elif fmt in ["%ty", "ty"]: d = parse_dates_safe(dates, year=True) conv_dates = d.year else: raise ValueError("fmt %s not understood" % fmt) conv_dates = Series(conv_dates, dtype=np.float64) missing_value = struct.unpack('<d', b'\x00\x00\x00\x00\x00\x00\xe0\x7f')[0] conv_dates[bad_loc] = missing_value return Series(conv_dates, index=index) excessive_string_length_error = """ Fixed width strings in Stata .dta files are limited to 244 (or fewer) characters. Column '%s' does not satisfy this restriction. """ class PossiblePrecisionLoss(Warning): pass precision_loss_doc = """ Column converted from %s to %s, and some data are outside of the lossless conversion range. This may result in a loss of precision in the saved data. """ class ValueLabelTypeMismatch(Warning): pass value_label_mismatch_doc = """ Stata value labels (pandas categories) must be strings. Column {0} contains non-string labels which will be converted to strings. Please check that the Stata data file created has not lost information due to duplicate labels. """ class InvalidColumnName(Warning): pass invalid_name_doc = """ Not all pandas column names were valid Stata variable names. The following replacements have been made: {0} If this is not what you expect, please make sure you have Stata-compliant column names in your DataFrame (strings only, max 32 characters, only alphanumerics and underscores, no Stata reserved words) """ def _cast_to_stata_types(data): """Checks the dtypes of the columns of a pandas DataFrame for compatibility with the data types and ranges supported by Stata, and converts if necessary. Parameters ---------- data : DataFrame The DataFrame to check and convert Notes ----- Numeric columns in Stata must be one of int8, int16, int32, float32 or float64, with some additional value restrictions. int8 and int16 columns are checked for violations of the value restrictions and upcast if needed. int64 data is not usable in Stata, and so it is downcast to int32 whenever the value are in the int32 range, and sidecast to float64 when larger than this range. If the int64 values are outside of the range of those perfectly representable as float64 values, a warning is raised. bool columns are cast to int8. uint colums are converted to int of the same size if there is no loss in precision, other wise are upcast to a larger type. uint64 is currently not supported since it is concerted to object in a DataFrame. """ ws = '' # original, if small, if large conversion_data = ((np.bool, np.int8, np.int8), (np.uint8, np.int8, np.int16), (np.uint16, np.int16, np.int32), (np.uint32, np.int32, np.int64)) for col in data: dtype = data[col].dtype # Cast from unsupported types to supported types for c_data in conversion_data: if dtype == c_data[0]: if data[col].max() <= np.iinfo(c_data[1]).max: dtype = c_data[1] else: dtype = c_data[2] if c_data[2] == np.float64: # Warn if necessary if data[col].max() >= 2 ** 53: ws = precision_loss_doc % ('uint64', 'float64') data[col] = data[col].astype(dtype) # Check values and upcast if necessary if dtype == np.int8: if data[col].max() > 100 or data[col].min() < -127: data[col] = data[col].astype(np.int16) elif dtype == np.int16: if data[col].max() > 32740 or data[col].min() < -32767: data[col] = data[col].astype(np.int32) elif dtype == np.int64: if data[col].max() <= 2147483620 and data[col].min() >= -2147483647: data[col] = data[col].astype(np.int32) else: data[col] = data[col].astype(np.float64) if data[col].max() >= 2 ** 53 or data[col].min() <= -2 ** 53: ws = precision_loss_doc % ('int64', 'float64') if ws: import warnings warnings.warn(ws, PossiblePrecisionLoss) return data class StataValueLabel(object): """ Parse a categorical column and prepare formatted output Parameters ----------- value : int8, int16, int32, float32 or float64 The Stata missing value code Attributes ---------- string : string String representation of the Stata missing value value : int8, int16, int32, float32 or float64 The original encoded missing value Methods ------- generate_value_label """ def __init__(self, catarray): self.labname = catarray.name categories = catarray.cat.categories self.value_labels = list(zip(np.arange(len(categories)), categories)) self.value_labels.sort(key=lambda x: x[0]) self.text_len = np.int32(0) self.off = [] self.val = [] self.txt = [] self.n = 0 # Compute lengths and setup lists of offsets and labels for vl in self.value_labels: category = vl[1] if not isinstance(category, string_types): category = str(category) import warnings warnings.warn(value_label_mismatch_doc.format(catarray.name), ValueLabelTypeMismatch) self.off.append(self.text_len) self.text_len += len(category) + 1 # +1 for the padding self.val.append(vl[0]) self.txt.append(category) self.n += 1 if self.text_len > 32000: raise ValueError('Stata value labels for a single variable must ' 'have a combined length less than 32,000 ' 'characters.') # Ensure int32 self.off = np.array(self.off, dtype=np.int32) self.val = np.array(self.val, dtype=np.int32) # Total length self.len = 4 + 4 + 4 * self.n + 4 * self.n + self.text_len def _encode(self, s): """ Python 3 compatability shim """ if compat.PY3: return s.encode(self._encoding) else: return s def generate_value_label(self, byteorder, encoding): """ Parameters ---------- byteorder : str Byte order of the output encoding : str File encoding Returns ------- value_label : bytes Bytes containing the formatted value label """ self._encoding = encoding bio = BytesIO() null_string = '\x00' null_byte = b'\x00' # len bio.write(struct.pack(byteorder + 'i', self.len)) # labname labname = self._encode(_pad_bytes(self.labname[:32], 33)) bio.write(labname) # padding - 3 bytes for i in range(3): bio.write(struct.pack('c', null_byte)) # value_label_table # n - int32 bio.write(struct.pack(byteorder + 'i', self.n)) # textlen - int32 bio.write(struct.pack(byteorder + 'i', self.text_len)) # off - int32 array (n elements) for offset in self.off: bio.write(struct.pack(byteorder + 'i', offset)) # val - int32 array (n elements) for value in self.val: bio.write(struct.pack(byteorder + 'i', value)) # txt - Text labels, null terminated for text in self.txt: bio.write(self._encode(text + null_string)) bio.seek(0) return bio.read() class StataMissingValue(StringMixin): """ An observation's missing value. Parameters ----------- value : int8, int16, int32, float32 or float64 The Stata missing value code Attributes ---------- string : string String representation of the Stata missing value value : int8, int16, int32, float32 or float64 The original encoded missing value Notes ----- More information: <http://www.stata.com/help.cgi?missing> Integer missing values make the code '.', '.a', ..., '.z' to the ranges 101 ... 127 (for int8), 32741 ... 32767 (for int16) and 2147483621 ... 2147483647 (for int32). Missing values for floating point data types are more complex but the pattern is simple to discern from the following table. np.float32 missing values (float in Stata) 0000007f . 0008007f .a 0010007f .b ... 00c0007f .x 00c8007f .y 00d0007f .z np.float64 missing values (double in Stata) 000000000000e07f . 000000000001e07f .a 000000000002e07f .b ... 000000000018e07f .x 000000000019e07f .y 00000000001ae07f .z """ # Construct a dictionary of missing values MISSING_VALUES = {} bases = (101, 32741, 2147483621) for b in bases: # Conversion to long to avoid hash issues on 32 bit platforms #8968 MISSING_VALUES[compat.long(b)] = '.' for i in range(1, 27): MISSING_VALUES[compat.long(i + b)] = '.' + chr(96 + i) float32_base = b'\x00\x00\x00\x7f' increment = struct.unpack('<i', b'\x00\x08\x00\x00')[0] for i in range(27): value = struct.unpack('<f', float32_base)[0] MISSING_VALUES[value] = '.' if i > 0: MISSING_VALUES[value] += chr(96 + i) int_value = struct.unpack('<i', struct.pack('<f', value))[0] + increment float32_base = struct.pack('<i', int_value) float64_base = b'\x00\x00\x00\x00\x00\x00\xe0\x7f' increment = struct.unpack('q', b'\x00\x00\x00\x00\x00\x01\x00\x00')[0] for i in range(27): value = struct.unpack('<d', float64_base)[0] MISSING_VALUES[value] = '.' if i > 0: MISSING_VALUES[value] += chr(96 + i) int_value = struct.unpack('q', struct.pack('<d', value))[0] + increment float64_base = struct.pack('q', int_value) BASE_MISSING_VALUES = {'int8': 101, 'int16': 32741, 'int32': 2147483621, 'float32': struct.unpack('<f', float32_base)[0], 'float64': struct.unpack('<d', float64_base)[0]} def __init__(self, value): self._value = value # Conversion to long to avoid hash issues on 32 bit platforms #8968 value = compat.long(value) if value < 2147483648 else float(value) self._str = self.MISSING_VALUES[value] string = property(lambda self: self._str, doc="The Stata representation of the missing value: " "'.', '.a'..'.z'") value = property(lambda self: self._value, doc='The binary representation of the missing value.') def __unicode__(self): return self.string def __repr__(self): # not perfect :-/ return "%s(%s)" % (self.__class__, self) def __eq__(self, other): return (isinstance(other, self.__class__) and self.string == other.string and self.value == other.value) @classmethod def get_base_missing_value(cls, dtype): if dtype == np.int8: value = cls.BASE_MISSING_VALUES['int8'] elif dtype == np.int16: value = cls.BASE_MISSING_VALUES['int16'] elif dtype == np.int32: value = cls.BASE_MISSING_VALUES['int32'] elif dtype == np.float32: value = cls.BASE_MISSING_VALUES['float32'] elif dtype == np.float64: value = cls.BASE_MISSING_VALUES['float64'] else: raise ValueError('Unsupported dtype') return value class StataParser(object): _default_encoding = 'iso-8859-1' def __init__(self, encoding): self._encoding = encoding #type code. #-------------------- #str1 1 = 0x01 #str2 2 = 0x02 #... #str244 244 = 0xf4 #byte 251 = 0xfb (sic) #int 252 = 0xfc #long 253 = 0xfd #float 254 = 0xfe #double 255 = 0xff #-------------------- #NOTE: the byte type seems to be reserved for categorical variables # with a label, but the underlying variable is -127 to 100 # we're going to drop the label and cast to int self.DTYPE_MAP = \ dict( lzip(range(1, 245), ['a' + str(i) for i in range(1, 245)]) + [ (251, np.int8), (252, np.int16), (253, np.int32), (254, np.float32), (255, np.float64) ] ) self.DTYPE_MAP_XML = \ dict( [ (32768, np.uint8), # Keys to GSO (65526, np.float64), (65527, np.float32), (65528, np.int32), (65529, np.int16), (65530, np.int8) ] ) self.TYPE_MAP = lrange(251) + list('bhlfd') self.TYPE_MAP_XML = \ dict( [ (32768, 'L'), (65526, 'd'), (65527, 'f'), (65528, 'l'), (65529, 'h'), (65530, 'b') ] ) #NOTE: technically, some of these are wrong. there are more numbers # that can be represented. it's the 27 ABOVE and BELOW the max listed # numeric data type in [U] 12.2.2 of the 11.2 manual float32_min = b'\xff\xff\xff\xfe' float32_max = b'\xff\xff\xff\x7e' float64_min = b'\xff\xff\xff\xff\xff\xff\xef\xff' float64_max = b'\xff\xff\xff\xff\xff\xff\xdf\x7f' self.VALID_RANGE = \ { 'b': (-127, 100), 'h': (-32767, 32740), 'l': (-2147483647, 2147483620), 'f': (np.float32(struct.unpack('<f', float32_min)[0]), np.float32(struct.unpack('<f', float32_max)[0])), 'd': (np.float64(struct.unpack('<d', float64_min)[0]), np.float64(struct.unpack('<d', float64_max)[0])) } self.OLD_TYPE_MAPPING = \ { 'i': 252, 'f': 254, 'b': 251 } # These missing values are the generic '.' in Stata, and are used # to replace nans self.MISSING_VALUES = \ { 'b': 101, 'h': 32741, 'l': 2147483621, 'f': np.float32(struct.unpack('<f', b'\x00\x00\x00\x7f')[0]), 'd': np.float64(struct.unpack('<d', b'\x00\x00\x00\x00\x00\x00\xe0\x7f')[0]) } self.NUMPY_TYPE_MAP = \ { 'b': 'i1', 'h': 'i2', 'l': 'i4', 'f': 'f4', 'd': 'f8', 'L': 'u8' } # Reserved words cannot be used as variable names self.RESERVED_WORDS = ('aggregate', 'array', 'boolean', 'break', 'byte', 'case', 'catch', 'class', 'colvector', 'complex', 'const', 'continue', 'default', 'delegate', 'delete', 'do', 'double', 'else', 'eltypedef', 'end', 'enum', 'explicit', 'export', 'external', 'float', 'for', 'friend', 'function', 'global', 'goto', 'if', 'inline', 'int', 'local', 'long', 'NULL', 'pragma', 'protected', 'quad', 'rowvector', 'short', 'typedef', 'typename', 'virtual') def _decode_bytes(self, str, errors=None): if compat.PY3 or self._encoding is not None: return str.decode(self._encoding, errors) else: return str class StataReader(StataParser): __doc__ = _stata_reader_doc def __init__(self, path_or_buf, convert_dates=True, convert_categoricals=True, index=None, convert_missing=False, preserve_dtypes=True, columns=None, order_categoricals=True, encoding='iso-8859-1', chunksize=None): super(StataReader, self).__init__(encoding) self.col_sizes = () # Arguments to the reader (can be temporarily overridden in # calls to read). self._convert_dates = convert_dates self._convert_categoricals = convert_categoricals self._index = index self._convert_missing = convert_missing self._preserve_dtypes = preserve_dtypes self._columns = columns self._order_categoricals = order_categoricals self._encoding = encoding self._chunksize = chunksize # State variables for the file self._has_string_data = False self._missing_values = False self._can_read_value_labels = False self._column_selector_set = False self._value_labels_read = False self._data_read = False self._dtype = None self._lines_read = 0 self._native_byteorder = _set_endianness(sys.byteorder) if isinstance(path_or_buf, str): path_or_buf, encoding = get_filepath_or_buffer( path_or_buf, encoding=self._default_encoding ) if isinstance(path_or_buf, (str, compat.text_type, bytes)): self.path_or_buf = open(path_or_buf, 'rb') else: # Copy to BytesIO, and ensure no encoding contents = path_or_buf.read() try: contents = contents.encode(self._default_encoding) except: pass self.path_or_buf = BytesIO(contents) self._read_header() def _read_header(self): first_char = self.path_or_buf.read(1) if struct.unpack('c', first_char)[0] == b'<': # format 117 or higher (XML like) self.path_or_buf.read(27) # stata_dta><header><release> self.format_version = int(self.path_or_buf.read(3)) if self.format_version not in [117]: raise ValueError("Version of given Stata file is not 104, " "105, 108, 113 (Stata 8/9), 114 (Stata " "10/11), 115 (Stata 12) or 117 (Stata 13)") self.path_or_buf.read(21) # </release><byteorder> self.byteorder = self.path_or_buf.read(3) == "MSF" and '>' or '<' self.path_or_buf.read(15) # </byteorder><K> self.nvar = struct.unpack(self.byteorder + 'H', self.path_or_buf.read(2))[0] self.path_or_buf.read(7) # </K><N> self.nobs = struct.unpack(self.byteorder + 'I', self.path_or_buf.read(4))[0] self.path_or_buf.read(11) # </N><label> strlen = struct.unpack('b', self.path_or_buf.read(1))[0] self.data_label = self._null_terminate(self.path_or_buf.read(strlen)) self.path_or_buf.read(19) # </label><timestamp> strlen = struct.unpack('b', self.path_or_buf.read(1))[0] self.time_stamp = self._null_terminate(self.path_or_buf.read(strlen)) self.path_or_buf.read(26) # </timestamp></header><map> self.path_or_buf.read(8) # 0x0000000000000000 self.path_or_buf.read(8) # position of <map> seek_vartypes = struct.unpack( self.byteorder + 'q', self.path_or_buf.read(8))[0] + 16 seek_varnames = struct.unpack( self.byteorder + 'q', self.path_or_buf.read(8))[0] + 10 seek_sortlist = struct.unpack( self.byteorder + 'q', self.path_or_buf.read(8))[0] + 10 seek_formats = struct.unpack( self.byteorder + 'q', self.path_or_buf.read(8))[0] + 9 seek_value_label_names = struct.unpack( self.byteorder + 'q', self.path_or_buf.read(8))[0] + 19 # Stata 117 data files do not follow the described format. This is # a work around that uses the previous label, 33 bytes for each # variable, 20 for the closing tag and 17 for the opening tag self.path_or_buf.read(8) # <variable_lables>, throw away seek_variable_labels = seek_value_label_names + (33*self.nvar) + 20 + 17 # Below is the original, correct code (per Stata sta format doc, # although this is not followed in actual 117 dtas) #seek_variable_labels = struct.unpack( # self.byteorder + 'q', self.path_or_buf.read(8))[0] + 17 self.path_or_buf.read(8) # <characteristics> self.data_location = struct.unpack( self.byteorder + 'q', self.path_or_buf.read(8))[0] + 6 self.seek_strls = struct.unpack( self.byteorder + 'q', self.path_or_buf.read(8))[0] + 7 self.seek_value_labels = struct.unpack( self.byteorder + 'q', self.path_or_buf.read(8))[0] + 14 #self.path_or_buf.read(8) # </stata_dta> #self.path_or_buf.read(8) # EOF self.path_or_buf.seek(seek_vartypes) typlist = [struct.unpack(self.byteorder + 'H', self.path_or_buf.read(2))[0] for i in range(self.nvar)] self.typlist = [None]*self.nvar try: i = 0 for typ in typlist: if typ <= 2045: self.typlist[i] = typ #elif typ == 32768: # raise ValueError("Long strings are not supported") else: self.typlist[i] = self.TYPE_MAP_XML[typ] i += 1 except: raise ValueError("cannot convert stata types [{0}]" .format(','.join(typlist))) self.dtyplist = [None]*self.nvar try: i = 0 for typ in typlist: if typ <= 2045: self.dtyplist[i] = str(typ) else: self.dtyplist[i] = self.DTYPE_MAP_XML[typ] i += 1 except: raise ValueError("cannot convert stata dtypes [{0}]" .format(','.join(typlist))) self.path_or_buf.seek(seek_varnames) self.varlist = [self._null_terminate(self.path_or_buf.read(33)) for i in range(self.nvar)] self.path_or_buf.seek(seek_sortlist) self.srtlist = struct.unpack( self.byteorder + ('h' * (self.nvar + 1)), self.path_or_buf.read(2 * (self.nvar + 1)) )[:-1] self.path_or_buf.seek(seek_formats) self.fmtlist = [self._null_terminate(self.path_or_buf.read(49)) for i in range(self.nvar)] self.path_or_buf.seek(seek_value_label_names) self.lbllist = [self._null_terminate(self.path_or_buf.read(33)) for i in range(self.nvar)] self.path_or_buf.seek(seek_variable_labels) self.vlblist = [self._null_terminate(self.path_or_buf.read(81)) for i in range(self.nvar)] else: # header self.format_version = struct.unpack('b', first_char)[0] if self.format_version not in [104, 105, 108, 113, 114, 115]: raise ValueError("Version of given Stata file is not 104, " "105, 108, 113 (Stata 8/9), 114 (Stata " "10/11), 115 (Stata 12) or 117 (Stata 13)") self.byteorder = struct.unpack('b', self.path_or_buf.read(1))[0] == 0x1 and '>' or '<' self.filetype = struct.unpack('b', self.path_or_buf.read(1))[0] self.path_or_buf.read(1) # unused self.nvar = struct.unpack(self.byteorder + 'H', self.path_or_buf.read(2))[0] self.nobs = struct.unpack(self.byteorder + 'I', self.path_or_buf.read(4))[0] if self.format_version > 105: self.data_label = self._null_terminate(self.path_or_buf.read(81)) else: self.data_label = self._null_terminate(self.path_or_buf.read(32)) if self.format_version > 104: self.time_stamp = self._null_terminate(self.path_or_buf.read(18)) # descriptors if self.format_version > 108: typlist = [ord(self.path_or_buf.read(1)) for i in range(self.nvar)] else: typlist = [ self.OLD_TYPE_MAPPING[ self._decode_bytes(self.path_or_buf.read(1)) ] for i in range(self.nvar) ] try: self.typlist = [self.TYPE_MAP[typ] for typ in typlist] except: raise ValueError("cannot convert stata types [{0}]" .format(','.join(typlist))) try: self.dtyplist = [self.DTYPE_MAP[typ] for typ in typlist] except: raise ValueError("cannot convert stata dtypes [{0}]" .format(','.join(typlist))) if self.format_version > 108: self.varlist = [self._null_terminate(self.path_or_buf.read(33)) for i in range(self.nvar)] else: self.varlist = [self._null_terminate(self.path_or_buf.read(9)) for i in range(self.nvar)] self.srtlist = struct.unpack( self.byteorder + ('h' * (self.nvar + 1)), self.path_or_buf.read(2 * (self.nvar + 1)) )[:-1] if self.format_version > 113: self.fmtlist = [self._null_terminate(self.path_or_buf.read(49)) for i in range(self.nvar)] elif self.format_version > 104: self.fmtlist = [self._null_terminate(self.path_or_buf.read(12)) for i in range(self.nvar)] else: self.fmtlist = [self._null_terminate(self.path_or_buf.read(7)) for i in range(self.nvar)] if self.format_version > 108: self.lbllist = [self._null_terminate(self.path_or_buf.read(33)) for i in range(self.nvar)] else: self.lbllist = [self._null_terminate(self.path_or_buf.read(9)) for i in range(self.nvar)] if self.format_version > 105: self.vlblist = [self._null_terminate(self.path_or_buf.read(81)) for i in range(self.nvar)] else: self.vlblist = [self._null_terminate(self.path_or_buf.read(32)) for i in range(self.nvar)] # ignore expansion fields (Format 105 and later) # When reading, read five bytes; the last four bytes now tell you # the size of the next read, which you discard. You then continue # like this until you read 5 bytes of zeros. if self.format_version > 104: while True: data_type = struct.unpack(self.byteorder + 'b', self.path_or_buf.read(1))[0] if self.format_version > 108: data_len = struct.unpack(self.byteorder + 'i', self.path_or_buf.read(4))[0] else: data_len = struct.unpack(self.byteorder + 'h', self.path_or_buf.read(2))[0] if data_type == 0: break self.path_or_buf.read(data_len) # necessary data to continue parsing self.data_location = self.path_or_buf.tell() self.has_string_data = len([x for x in self.typlist if type(x) is int]) > 0 # calculate size of a data record self.col_sizes = lmap(lambda x: self._calcsize(x), self.typlist) # remove format details from %td self.fmtlist = ["%td" if x.startswith("%td") else x for x in self.fmtlist] def _calcsize(self, fmt): return (type(fmt) is int and fmt or struct.calcsize(self.byteorder + fmt)) def _null_terminate(self, s): if compat.PY3 or self._encoding is not None: # have bytes not strings, # so must decode s = s.partition(b"\0")[0] return s.decode(self._encoding or self._default_encoding) else: null_byte = "\0" try: return s.lstrip(null_byte)[:s.index(null_byte)] except: return s def _read_value_labels(self): if self.format_version <= 108: # Value labels are not supported in version 108 and earlier. return if self._value_labels_read: # Don't read twice return if self.format_version >= 117: self.path_or_buf.seek(self.seek_value_labels) else: offset = self.nobs * self._dtype.itemsize self.path_or_buf.seek(self.data_location + offset) self._value_labels_read = True self.value_label_dict = dict() while True: if self.format_version >= 117: if self.path_or_buf.read(5) == b'</val': # <lbl> break # end of variable label table slength = self.path_or_buf.read(4) if not slength: break # end of variable label table (format < 117) labname = self._null_terminate(self.path_or_buf.read(33)) self.path_or_buf.read(3) # padding n = struct.unpack(self.byteorder + 'I', self.path_or_buf.read(4))[0] txtlen = struct.unpack(self.byteorder + 'I', self.path_or_buf.read(4))[0] off = [] for i in range(n): off.append(struct.unpack(self.byteorder + 'I', self.path_or_buf.read(4))[0]) val = [] for i in range(n): val.append(struct.unpack(self.byteorder + 'I', self.path_or_buf.read(4))[0]) txt = self.path_or_buf.read(txtlen) self.value_label_dict[labname] = dict() for i in range(n): self.value_label_dict[labname][val[i]] = ( self._null_terminate(txt[off[i]:]) ) if self.format_version >= 117: self.path_or_buf.read(6) # </lbl> self._value_labels_read = True def _read_strls(self): self.path_or_buf.seek(self.seek_strls) self.GSO = dict() while True: if self.path_or_buf.read(3) != b'GSO': break v_o = struct.unpack(self.byteorder + 'Q', self.path_or_buf.read(8))[0] typ = struct.unpack('B', self.path_or_buf.read(1))[0] length = struct.unpack(self.byteorder + 'I', self.path_or_buf.read(4))[0] va = self.path_or_buf.read(length) if typ == 130: va = va[0:-1].decode(self._encoding or self._default_encoding) self.GSO[v_o] = va # legacy @Appender('DEPRECATED: ' + _data_method_doc) def data(self, **kwargs): import warnings warnings.warn("'data' is deprecated, use 'read' instead") if self._data_read: raise Exception("Data has already been read.") self._data_read = True return self.read(None, **kwargs) def __iter__(self): try: if self._chunksize: while True: yield self.read(self._chunksize) else: yield self.read() except StopIteration: pass def get_chunk(self, size=None): """ Reads lines from Stata file and returns as dataframe Parameters ---------- size : int, defaults to None Number of lines to read. If None, reads whole file. Returns ------- DataFrame """ if size is None: size = self._chunksize return self.read(nrows=size) @Appender(_read_method_doc) def read(self, nrows=None, convert_dates=None, convert_categoricals=None, index=None, convert_missing=None, preserve_dtypes=None, columns=None, order_categoricals=None): # Handle empty file or chunk. If reading incrementally raise # StopIteration. If reading the whole thing return an empty # data frame. if (self.nobs == 0) and (nrows is None): self._can_read_value_labels = True self._data_read = True return DataFrame(columns=self.varlist) # Handle options if convert_dates is None: convert_dates = self._convert_dates if convert_categoricals is None: convert_categoricals = self._convert_categoricals if convert_missing is None: convert_missing = self._convert_missing if preserve_dtypes is None: preserve_dtypes = self._preserve_dtypes if columns is None: columns = self._columns if order_categoricals is None: order_categoricals = self._order_categoricals if nrows is None: nrows = self.nobs if (self.format_version >= 117) and (self._dtype is None): self._can_read_value_labels = True self._read_strls() # Setup the dtype. if self._dtype is None: dtype = [] # Convert struct data types to numpy data type for i, typ in enumerate(self.typlist): if typ in self.NUMPY_TYPE_MAP: dtype.append(('s' + str(i), self.byteorder + self.NUMPY_TYPE_MAP[typ])) else: dtype.append(('s' + str(i), 'S' + str(typ))) dtype = np.dtype(dtype) self._dtype = dtype # Read data dtype = self._dtype max_read_len = (self.nobs - self._lines_read) * dtype.itemsize read_len = nrows * dtype.itemsize read_len = min(read_len, max_read_len) if read_len <= 0: # Iterator has finished, should never be here unless # we are reading the file incrementally self._read_value_labels() raise StopIteration offset = self._lines_read * dtype.itemsize self.path_or_buf.seek(self.data_location + offset) read_lines = min(nrows, self.nobs - self._lines_read) data = np.frombuffer(self.path_or_buf.read(read_len), dtype=dtype, count=read_lines) self._lines_read += read_lines if self._lines_read == self.nobs: self._can_read_value_labels = True self._data_read = True # if necessary, swap the byte order to native here if self.byteorder != self._native_byteorder: data = data.byteswap().newbyteorder() if convert_categoricals: self._read_value_labels() if len(data)==0: data = DataFrame(columns=self.varlist, index=index) else: data = DataFrame.from_records(data, index=index) data.columns = self.varlist # If index is not specified, use actual row number rather than # restarting at 0 for each chunk. if index is None: ix = np.arange(self._lines_read - read_lines, self._lines_read) data = data.set_index(ix) if columns is not None: data = self._do_select_columns(data, columns) # Decode strings for col, typ in zip(data, self.typlist): if type(typ) is int: data[col] = data[col].apply(self._null_terminate, convert_dtype=True) data = self._insert_strls(data) cols_ = np.where(self.dtyplist)[0] # Convert columns (if needed) to match input type index = data.index requires_type_conversion = False data_formatted = [] for i in cols_: if self.dtyplist[i] is not None: col = data.columns[i] dtype = data[col].dtype if (dtype != np.dtype(object)) and (dtype != self.dtyplist[i]): requires_type_conversion = True data_formatted.append((col, Series(data[col], index, self.dtyplist[i]))) else: data_formatted.append((col, data[col])) if requires_type_conversion: data = DataFrame.from_items(data_formatted) del data_formatted self._do_convert_missing(data, convert_missing) if convert_dates: cols = np.where(lmap(lambda x: x in _date_formats, self.fmtlist))[0] for i in cols: col = data.columns[i] data[col] = _stata_elapsed_date_to_datetime_vec(data[col], self.fmtlist[i]) if convert_categoricals and self.value_label_dict: data = self._do_convert_categoricals(data, self.value_label_dict, self.lbllist, order_categoricals) if not preserve_dtypes: retyped_data = [] convert = False for col in data: dtype = data[col].dtype if dtype in (np.float16, np.float32): dtype = np.float64 convert = True elif dtype in (np.int8, np.int16, np.int32): dtype = np.int64 convert = True retyped_data.append((col, data[col].astype(dtype))) if convert: data = DataFrame.from_items(retyped_data) return data def _do_convert_missing(self, data, convert_missing): # Check for missing values, and replace if found for i, colname in enumerate(data): fmt = self.typlist[i] if fmt not in self.VALID_RANGE: continue nmin, nmax = self.VALID_RANGE[fmt] series = data[colname] missing = np.logical_or(series < nmin, series > nmax) if not missing.any(): continue if convert_missing: # Replacement follows Stata notation missing_loc = np.argwhere(missing) umissing, umissing_loc = np.unique(series[missing], return_inverse=True) replacement = Series(series, dtype=np.object) for j, um in enumerate(umissing): missing_value = StataMissingValue(um) loc = missing_loc[umissing_loc == j] replacement.iloc[loc] = missing_value else: # All replacements are identical dtype = series.dtype if dtype not in (np.float32, np.float64): dtype = np.float64 replacement = Series(series, dtype=dtype) replacement[missing] = np.nan data[colname] = replacement def _insert_strls(self, data): if not hasattr(self, 'GSO') or len(self.GSO) == 0: return data for i, typ in enumerate(self.typlist): if typ != 'L': continue data.iloc[:, i] = [self.GSO[k] for k in data.iloc[:, i]] return data def _do_select_columns(self, data, columns): if not self._column_selector_set: column_set = set(columns) if len(column_set) != len(columns): raise ValueError('columns contains duplicate entries') unmatched = column_set.difference(data.columns) if unmatched: raise ValueError('The following columns were not found in the ' 'Stata data set: ' + ', '.join(list(unmatched))) # Copy information for retained columns for later processing dtyplist = [] typlist = [] fmtlist = [] lbllist = [] matched = set() for i, col in enumerate(data.columns): if col in column_set: matched.update([col]) dtyplist.append(self.dtyplist[i]) typlist.append(self.typlist[i]) fmtlist.append(self.fmtlist[i]) lbllist.append(self.lbllist[i]) self.dtyplist = dtyplist self.typlist = typlist self.fmtlist = fmtlist self.lbllist = lbllist self._column_selector_set = True return data[columns] def _do_convert_categoricals(self, data, value_label_dict, lbllist, order_categoricals): """ Converts categorical columns to Categorical type. """ value_labels = list(compat.iterkeys(value_label_dict)) cat_converted_data = [] for col, label in zip(data, lbllist): if label in value_labels: # Explicit call with ordered=True cat_data = Categorical(data[col], ordered=order_categoricals) categories = [] for category in cat_data.categories: if category in value_label_dict[label]: categories.append(value_label_dict[label][category]) else: categories.append(category) # Partially labeled cat_data.categories = categories # TODO: is the next line needed above in the data(...) method? cat_data = Series(cat_data, index=data.index) cat_converted_data.append((col, cat_data)) else: cat_converted_data.append((col, data[col])) data = DataFrame.from_items(cat_converted_data) return data def data_label(self): """Returns data label of Stata file""" return self.data_label def variable_labels(self): """Returns variable labels as a dict, associating each variable name with corresponding label """ return dict(zip(self.varlist, self.vlblist)) def value_labels(self): """Returns a dict, associating each variable name a dict, associating each value its corresponding label """ if not self._value_labels_read: self._read_value_labels() return self.value_label_dict def _open_file_binary_write(fname, encoding): if hasattr(fname, 'write'): #if 'b' not in fname.mode: return fname return open(fname, "wb") def _set_endianness(endianness): if endianness.lower() in ["<", "little"]: return "<" elif endianness.lower() in [">", "big"]: return ">" else: # pragma : no cover raise ValueError("Endianness %s not understood" % endianness) def _pad_bytes(name, length): """ Takes a char string and pads it wih null bytes until it's length chars """ return name + "\x00" * (length - len(name)) def _convert_datetime_to_stata_type(fmt): """ Converts from one of the stata date formats to a type in TYPE_MAP """ if fmt in ["tc", "%tc", "td", "%td", "tw", "%tw", "tm", "%tm", "tq", "%tq", "th", "%th", "ty", "%ty"]: return np.float64 # Stata expects doubles for SIFs else: raise ValueError("fmt %s not understood" % fmt) def _maybe_convert_to_int_keys(convert_dates, varlist): new_dict = {} for key in convert_dates: if not convert_dates[key].startswith("%"): # make sure proper fmts convert_dates[key] = "%" + convert_dates[key] if key in varlist: new_dict.update({varlist.index(key): convert_dates[key]}) else: if not isinstance(key, int): raise ValueError( "convert_dates key is not in varlist and is not an int" ) new_dict.update({key: convert_dates[key]}) return new_dict def _dtype_to_stata_type(dtype, column): """ Converts dtype types to stata types. Returns the byte of the given ordinal. See TYPE_MAP and comments for an explanation. This is also explained in the dta spec. 1 - 244 are strings of this length Pandas Stata 251 - chr(251) - for int8 byte 252 - chr(252) - for int16 int 253 - chr(253) - for int32 long 254 - chr(254) - for float32 float 255 - chr(255) - for double double If there are dates to convert, then dtype will already have the correct type inserted. """ # TODO: expand to handle datetime to integer conversion if dtype.type == np.string_: return chr(dtype.itemsize) elif dtype.type == np.object_: # try to coerce it to the biggest string # not memory efficient, what else could we # do? itemsize = max_len_string_array(com._ensure_object(column.values)) return chr(max(itemsize, 1)) elif dtype == np.float64: return chr(255) elif dtype == np.float32: return chr(254) elif dtype == np.int32: return chr(253) elif dtype == np.int16: return chr(252) elif dtype == np.int8: return chr(251) else: # pragma : no cover raise ValueError("Data type %s not currently understood. " "Please report an error to the developers." % dtype) def _dtype_to_default_stata_fmt(dtype, column): """ Maps numpy dtype to stata's default format for this type. Not terribly important since users can change this in Stata. Semantics are object -> "%DDs" where DD is the length of the string. If not a string, raise ValueError float64 -> "%10.0g" float32 -> "%9.0g" int64 -> "%9.0g" int32 -> "%12.0g" int16 -> "%8.0g" int8 -> "%8.0g" """ # TODO: Refactor to combine type with format # TODO: expand this to handle a default datetime format? if dtype.type == np.object_: inferred_dtype = infer_dtype(column.dropna()) if not (inferred_dtype in ('string', 'unicode') or len(column) == 0): raise ValueError('Writing general object arrays is not supported') itemsize = max_len_string_array(com._ensure_object(column.values)) if itemsize > 244: raise ValueError(excessive_string_length_error % column.name) return "%" + str(max(itemsize, 1)) + "s" elif dtype == np.float64: return "%10.0g" elif dtype == np.float32: return "%9.0g" elif dtype == np.int32: return "%12.0g" elif dtype == np.int8 or dtype == np.int16: return "%8.0g" else: # pragma : no cover raise ValueError("Data type %s not currently understood. " "Please report an error to the developers." % dtype) class StataWriter(StataParser): """ A class for writing Stata binary dta files from array-like objects Parameters ---------- fname : file path or buffer Where to save the dta file. data : array-like Array-like input to save. Pandas objects are also accepted. convert_dates : dict Dictionary mapping column of datetime types to the stata internal format that you want to use for the dates. Options are 'tc', 'td', 'tm', 'tw', 'th', 'tq', 'ty'. Column can be either a number or a name. encoding : str Default is latin-1. Note that Stata does not support unicode. byteorder : str Can be ">", "<", "little", or "big". The default is None which uses `sys.byteorder` time_stamp : datetime A date time to use when writing the file. Can be None, in which case the current time is used. dataset_label : str A label for the data set. Should be 80 characters or smaller. Returns ------- writer : StataWriter instance The StataWriter instance has a write_file method, which will write the file to the given `fname`. Examples -------- >>> import pandas as pd >>> data = pd.DataFrame([[1.0, 1]], columns=['a', 'b']) >>> writer = StataWriter('./data_file.dta', data) >>> writer.write_file() Or with dates >>> from datetime import datetime >>> data = pd.DataFrame([[datetime(2000,1,1)]], columns=['date']) >>> writer = StataWriter('./date_data_file.dta', data, {'date' : 'tw'}) >>> writer.write_file() """ def __init__(self, fname, data, convert_dates=None, write_index=True, encoding="latin-1", byteorder=None, time_stamp=None, data_label=None): super(StataWriter, self).__init__(encoding) self._convert_dates = convert_dates self._write_index = write_index self._time_stamp = time_stamp self._data_label = data_label # attach nobs, nvars, data, varlist, typlist self._prepare_pandas(data) if byteorder is None: byteorder = sys.byteorder self._byteorder = _set_endianness(byteorder) self._file = _open_file_binary_write( fname, self._encoding or self._default_encoding ) self.type_converters = {253: np.int32, 252: np.int16, 251: np.int8} def _write(self, to_write): """ Helper to call encode before writing to file for Python 3 compat. """ if compat.PY3: self._file.write(to_write.encode(self._encoding or self._default_encoding)) else: self._file.write(to_write) def _prepare_categoricals(self, data): """Check for categorigal columns, retain categorical information for Stata file and convert categorical data to int""" is_cat = [com.is_categorical_dtype(data[col]) for col in data] self._is_col_cat = is_cat self._value_labels = [] if not any(is_cat): return data get_base_missing_value = StataMissingValue.get_base_missing_value index = data.index data_formatted = [] for col, col_is_cat in zip(data, is_cat): if col_is_cat: self._value_labels.append(StataValueLabel(data[col])) dtype = data[col].cat.codes.dtype if dtype == np.int64: raise ValueError('It is not possible to export int64-based ' 'categorical data to Stata.') values = data[col].cat.codes.values.copy() # Upcast if needed so that correct missing values can be set if values.max() >= get_base_missing_value(dtype): if dtype == np.int8: dtype = np.int16 elif dtype == np.int16: dtype = np.int32 else: dtype = np.float64 values = np.array(values, dtype=dtype) # Replace missing values with Stata missing value for type values[values == -1] = get_base_missing_value(dtype) data_formatted.append((col, values, index)) else: data_formatted.append((col, data[col])) return DataFrame.from_items(data_formatted) def _replace_nans(self, data): # return data """Checks floating point data columns for nans, and replaces these with the generic Stata for missing value (.)""" for c in data: dtype = data[c].dtype if dtype in (np.float32, np.float64): if dtype == np.float32: replacement = self.MISSING_VALUES['f'] else: replacement = self.MISSING_VALUES['d'] data[c] = data[c].fillna(replacement) return data def _check_column_names(self, data): """Checks column names to ensure that they are valid Stata column names. This includes checks for: * Non-string names * Stata keywords * Variables that start with numbers * Variables with names that are too long When an illegal variable name is detected, it is converted, and if dates are exported, the variable name is propogated to the date conversion dictionary """ converted_names = [] columns = list(data.columns) original_columns = columns[:] duplicate_var_id = 0 for j, name in enumerate(columns): orig_name = name if not isinstance(name, string_types): name = text_type(name) for c in name: if (c < 'A' or c > 'Z') and (c < 'a' or c > 'z') and \ (c < '0' or c > '9') and c != '_': name = name.replace(c, '_') # Variable name must not be a reserved word if name in self.RESERVED_WORDS: name = '_' + name # Variable name may not start with a number if name[0] >= '0' and name[0] <= '9': name = '_' + name name = name[:min(len(name), 32)] if not name == orig_name: # check for duplicates while columns.count(name) > 0: # prepend ascending number to avoid duplicates name = '_' + str(duplicate_var_id) + name name = name[:min(len(name), 32)] duplicate_var_id += 1 # need to possibly encode the orig name if its unicode try: orig_name = orig_name.encode('utf-8') except: pass converted_names.append('{0} -> {1}'.format(orig_name, name)) columns[j] = name data.columns = columns # Check date conversion, and fix key if needed if self._convert_dates: for c, o in zip(columns, original_columns): if c != o: self._convert_dates[c] = self._convert_dates[o] del self._convert_dates[o] if converted_names: import warnings ws = invalid_name_doc.format('\n '.join(converted_names)) warnings.warn(ws, InvalidColumnName) return data def _prepare_pandas(self, data): #NOTE: we might need a different API / class for pandas objects so # we can set different semantics - handle this with a PR to pandas.io data = data.copy() if self._write_index: data = data.reset_index() # Ensure column names are strings data = self._check_column_names(data) # Check columns for compatibility with stata, upcast if necessary data = _cast_to_stata_types(data) # Replace NaNs with Stata missing values data = self._replace_nans(data) # Convert categoricals to int data, and strip labels data = self._prepare_categoricals(data) self.nobs, self.nvar = data.shape self.data = data self.varlist = data.columns.tolist() dtypes = data.dtypes if self._convert_dates is not None: self._convert_dates = _maybe_convert_to_int_keys( self._convert_dates, self.varlist ) for key in self._convert_dates: new_type = _convert_datetime_to_stata_type( self._convert_dates[key] ) dtypes[key] = np.dtype(new_type) self.typlist = [] self.fmtlist = [] for col, dtype in dtypes.iteritems(): self.fmtlist.append(_dtype_to_default_stata_fmt(dtype, data[col])) self.typlist.append(_dtype_to_stata_type(dtype, data[col])) # set the given format for the datetime cols if self._convert_dates is not None: for key in self._convert_dates: self.fmtlist[key] = self._convert_dates[key] def write_file(self): self._write_header(time_stamp=self._time_stamp, data_label=self._data_label) self._write_descriptors() self._write_variable_labels() # write 5 zeros for expansion fields self._write(_pad_bytes("", 5)) self._prepare_data() self._write_data() self._write_value_labels() self._file.close() def _write_value_labels(self): for vl in self._value_labels: self._file.write(vl.generate_value_label(self._byteorder, self._encoding)) def _write_header(self, data_label=None, time_stamp=None): byteorder = self._byteorder # ds_format - just use 114 self._file.write(struct.pack("b", 114)) # byteorder self._write(byteorder == ">" and "\x01" or "\x02") # filetype self._write("\x01") # unused self._write("\x00") # number of vars, 2 bytes self._file.write(struct.pack(byteorder+"h", self.nvar)[:2]) # number of obs, 4 bytes self._file.write(struct.pack(byteorder+"i", self.nobs)[:4]) # data label 81 bytes, char, null terminated if data_label is None: self._file.write(self._null_terminate(_pad_bytes("", 80))) else: self._file.write( self._null_terminate(_pad_bytes(data_label[:80], 80)) ) # time stamp, 18 bytes, char, null terminated # format dd Mon yyyy hh:mm if time_stamp is None: time_stamp = datetime.datetime.now() elif not isinstance(time_stamp, datetime.datetime): raise ValueError("time_stamp should be datetime type") self._file.write( self._null_terminate(time_stamp.strftime("%d %b %Y %H:%M")) ) def _write_descriptors(self, typlist=None, varlist=None, srtlist=None, fmtlist=None, lbllist=None): nvar = self.nvar # typlist, length nvar, format byte array for typ in self.typlist: self._write(typ) # varlist names are checked by _check_column_names # varlist, requires null terminated for name in self.varlist: name = self._null_terminate(name, True) name = _pad_bytes(name[:32], 33) self._write(name) # srtlist, 2*(nvar+1), int array, encoded by byteorder srtlist = _pad_bytes("", (2*(nvar+1))) self._write(srtlist) # fmtlist, 49*nvar, char array for fmt in self.fmtlist: self._write(_pad_bytes(fmt, 49)) # lbllist, 33*nvar, char array for i in range(nvar): # Use variable name when categorical if self._is_col_cat[i]: name = self.varlist[i] name = self._null_terminate(name, True) name = _pad_bytes(name[:32], 33) self._write(name) else: # Default is empty label self._write(_pad_bytes("", 33)) def _write_variable_labels(self, labels=None): nvar = self.nvar if labels is None: for i in range(nvar): self._write(_pad_bytes("", 81)) def _prepare_data(self): data = self.data typlist = self.typlist convert_dates = self._convert_dates # 1. Convert dates if self._convert_dates is not None: for i, col in enumerate(data): if i in convert_dates: data[col] = _datetime_to_stata_elapsed_vec(data[col], self.fmtlist[i]) # 2. Convert bad string data to '' and pad to correct length dtype = [] data_cols = [] has_strings = False for i, col in enumerate(data): typ = ord(typlist[i]) if typ <= 244: has_strings = True data[col] = data[col].fillna('').apply(_pad_bytes, args=(typ,)) stype = 'S%d' % typ dtype.append(('c'+str(i), stype)) string = data[col].str.encode(self._encoding) data_cols.append(string.values.astype(stype)) else: dtype.append(('c'+str(i), data[col].dtype)) data_cols.append(data[col].values) dtype = np.dtype(dtype) if has_strings: self.data = np.fromiter(zip(*data_cols), dtype=dtype) else: self.data = data.to_records(index=False) def _write_data(self): data = self.data data.tofile(self._file) def _null_terminate(self, s, as_string=False): null_byte = '\x00' if compat.PY3 and not as_string: s += null_byte return s.encode(self._encoding) else: s += null_byte return s
mit
siou83/trading-with-python
lib/widgets.py
78
3012
# -*- coding: utf-8 -*- """ A collection of widgets for gui building Copyright: Jev Kuznetsov License: BSD """ from __future__ import division import sys from PyQt4.QtCore import * from PyQt4.QtGui import * import numpy as np from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.backends.backend_qt4agg import NavigationToolbar2QTAgg as NavigationToolbar from matplotlib.figure import Figure import matplotlib.pyplot as plt class MatplotlibWidget(QWidget): def __init__(self,parent=None,grid=True): QWidget.__init__(self,parent) self.grid = grid self.fig = Figure() self.canvas =FigureCanvas(self.fig) self.canvas.setParent(self) self.canvas.mpl_connect('button_press_event', self.onPick) # bind pick event #self.axes = self.fig.add_subplot(111) margins = [0.05,0.1,0.9,0.8] self.axes = self.fig.add_axes(margins) self.toolbar = NavigationToolbar(self.canvas,self) #self.initFigure() layout = QVBoxLayout() layout.addWidget(self.toolbar) layout.addWidget(self.canvas) self.setLayout(layout) def onPick(self,event): print 'Pick event' print 'you pressed', event.button, event.xdata, event.ydata def update(self): self.canvas.draw() def plot(self,*args,**kwargs): self.axes.plot(*args,**kwargs) self.axes.grid(self.grid) self.update() def clear(self): self.axes.clear() def initFigure(self): self.axes.grid(True) x = np.linspace(-1,1) y = x**2 self.axes.plot(x,y,'o-') class PlotWindow(QMainWindow): ''' a stand-alone window with embedded matplotlib widget ''' def __init__(self,parent=None): super(PlotWindow,self).__init__(parent) self.setAttribute(Qt.WA_DeleteOnClose) self.mplWidget = MatplotlibWidget() self.setCentralWidget(self.mplWidget) def plot(self,dataFrame): ''' plot dataframe ''' dataFrame.plot(ax=self.mplWidget.axes) def getAxes(self): return self.mplWidget.axes def getFigure(self): return self.mplWidget.fig def update(self): self.mplWidget.update() class MainForm(QMainWindow): def __init__(self, parent=None): QMainWindow.__init__(self, parent) self.setWindowTitle('Demo: PyQt with matplotlib') self.plot = MatplotlibWidget() self.setCentralWidget(self.plot) self.plot.clear() self.plot.plot(np.random.rand(10),'x-') #--------------------- if __name__=='__main__': app = QApplication(sys.argv) form = MainForm() form.show() app.exec_()
bsd-3-clause
bryanbriney/abanalysis
ab_analysis.py
2
13237
#!/usr/bin/python # filename: ab_analysis.py ########################################################################### # # Copyright (c) 2013 Bryan Briney. All rights reserved. # # @version: 1.0.0 # @author: Bryan Briney # @props: IgBLAST team (http://www.ncbi.nlm.nih.gov/igblast/igblast.cgi) # @license: MIT (http://opensource.org/licenses/MIT) # ########################################################################### import os import time import math import glob import platform import argparse import threading from subprocess import Popen, PIPE from multiprocessing import Pool, cpu_count from Bio import SeqIO from blast_parse import BlastParse parser = argparse.ArgumentParser("Antibody annotation with IgBLAST.") parser.add_argument('-i', '--in', dest='input', required=True, help="The input file, to be split and processed in parallel. \ If a directory is given, all files in the directory will be iteratively processed.") parser.add_argument('-o', '--out', dest='output', required=True, help="The output directory, which will contain JSON or tab-delimited output files.") parser.add_argument('-l', '--log', dest='log', default='', help="The log file, to which the BlastParse log info will be written. \ Default is stdout.") parser.add_argument('-t', '--temp', dest='temp_dir', default='', help="The directory in which temp files will be stored. \ If the directory doesn't exist, it will be created. \ Defaults to './temp_files'.") parser.add_argument('-p', '--threads', dest='num_threads', default=0, type=int, help="Number of parallel igblastn instances to spawn. \ Defaults to max available processors.") parser.add_argument('-v', '--tsv', dest="tsv_out", action='store_true', default=False, help="NOT YET IMPLEMENTED. If set, the final output (from BlastParse) will be in tab-delimited format. \ Defaults to JSON output.") parser.add_argument('-m', '--merge', dest="merge", action='store_true', default=False, help="Use if the input files are paired-end FASTQs (either gzip compressed or uncompressed) \ from Illumina platforms. Prior to running IgBLAST, reads will be merged with pandaseq. \ Requires that pandaseq is installed.") parser.add_argument('-n', '--next_seq', dest="next_seq", action='store_true', default=False, help="Use if the run was performed on a NextSeq sequencer. \ Multiple lane files for the same sample will be merged.") parser.add_argument('-u', '--uaid', dest="uaid", type=int, default=None, help="Use if the input files contain unique antibody identifiers (UAIDs). \ UAIDs will be identified and incorporated into the output JSON file.") parser.add_argument('-b', '--basespace', dest="use_basespace", default=False, action='store_true', help="NOT YET IMPLEMENTED. Use flag if files should be downloaded directly from BaseSpace. \ Files will be downloaded into the directory provided with the '-i' flag, which should be empty.") parser.add_argument('-d', '--debug', dest="debug", action='store_true', default=False, help="If set, will write all failed/exception sequences to file and give more informative errors.") parser.add_argument('-s', '--species', dest='species', default='human', choices=['human', 'macaque', 'mouse']) args = parser.parse_args() class launch_thread(threading.Thread): def __init__(self, in_file, out_file): threading.Thread.__init__(self) self.in_file = in_file self.out_file = out_file binary = './igblastn_' + platform.system().lower() self.cmd = '{3} -germline_db_V database/{0}_gl_V -germline_db_J database/{0}_gl_J -germline_db_D database/{0}_gl_D ' + \ '-organism {0} -domain_system imgt -auxiliary_data optional_file/{0}_gl.aux ' + \ '-show_translation -outfmt 3 -num_alignments_V 1 -num_alignments_D 1 -num_alignments_J 1 ' + \ '-query {1} -out {2}'.format(args.species, self.in_file, self.out_file, binary) def run(self): p = Popen(self.cmd, shell=True, stdout=PIPE, stderr=PIPE) stdout, stderr = p.communicate() ##################################################################### # # FILES AND DIRECTORIES # ##################################################################### def build_temp_dirs(): if args.temp_dir != '': temp_directory = args.temp_dir else: temp_directory = "./temp_files" temp_out_directory = temp_directory + "/temp_output" if not os.path.exists(temp_directory): os.mkdir(temp_directory) if not os.path.exists(temp_out_directory): os.mkdir(temp_out_directory) return temp_directory, temp_out_directory def build_output_dir(): output_dir = args.output if not os.path.exists(output_dir): os.mkdir(output_dir) return output_dir def list_files(d): if os.path.isdir(d): expanded_dir = os.path.expanduser(d) return sorted(glob.glob(expanded_dir + '/*')) else: return [d,] def file_length(file): c = 0 with open(file) as f: for i, l in enumerate(f): if l[0] == '>': c += 1 return c def num_procs(): if args.num_threads > 0: return args.num_threads return cpu_count() def clean_up(temp_files, temp_out_files, temp_directory, temp_out_directory): for file in temp_out_files: os.remove(file) os.rmdir(temp_out_directory) for file in temp_files: os.remove(file) os.rmdir(temp_directory) def file_splitter(file, splitlen, num_seqs, temp_directory): counter = 1 files_list = [] lines = open(file, 'r').read().replace(' ', '_').split('>') for line in range(0, num_seqs+1, splitlen): output = lines[line:line+splitlen] temp_filename = temp_directory + "/tempfile_" + str(counter) files_list.append(temp_filename) open(temp_filename, "w").write("") temp_file = open(temp_directory + "/tempfile_" + str(counter), "a") if counter == 1: temp_file.write('>'.join(output)) counter += 1 else: temp_file.write('>' + '>'.join(output)) counter += 1 temp_file.close() return files_list ##################################################################### # # PRINTING # ##################################################################### def print_input_info(i): print '' print '' print '========================================' print 'Parallel IgBLAST' print '========================================' print '' if len(i) > 1: print 'Input is a directory of {} files.\n\n'.format(len(i)) else: print 'Input is a single file.\n\n' def print_infile(i): b = os.path.basename(i) print '-'*len(b) print b print '-'*len(b) def print_summary_output(g, e, f, blast_time, parse_time): total_seqs = g+e+f print '' print 'Out of {} total sequences:'.format(total_seqs) print '{} sequences processed normally'.format(g) print '{} sequences passed sanity checks, but could not be processed'.format(e) print '{} sequences failed sanity checks are were not processed'.format(f) print '' print 'IgBLAST took {0} seconds ({1} sequences per second)'.format(blast_time, total_seqs/blast_time) print 'parsing took {0} seconds ({1} sequences per second)'.format(parse_time, total_seqs/parse_time) print '' ##################################################################### # # PARSING # ##################################################################### def line_generator(blast_file): f = open(blast_file, 'r') for line in f: yield line def block_generator(blast_file): l = line_generator(blast_file) line = next(l) while line.find('Query= ') == -1: line = next(l) block = line.replace('Query= ', '') while True: try: line = next(l) while line.find('Query= ') == -1: block += line line = next(l) yield block block = line.replace('Query= ', '') except StopIteration: yield block break raise StopIteration def do_parse(blastout): out_file = blastout + '.json' result = [] pool = Pool(processes=cpu_count()) for i in block_generator(blastout): try: if args.debug: result.append(parser(i)) else: result.append(pool.apply_async(parser, (i,))) except StopIteration: break pool.close() pool.join() good, exceptions, failed = process_parse_data(result, out_file) result = [] return good, exceptions, failed def parser(i): bp = BlastParse(i, species=args.species, tsv=args.tsv_out, log=args.log, debug=args.debug, uaid=args.uaid) if bp.sanity_checks() < 1: output = bp.parse() return output else: return ['', '', i] def process_parse_data(results, out_file): good = 0 exceptions = 0 failed = 0 r_handle = build_result_handle(out_file) if args.debug: e_handle = build_exception_handle(out_file) f_handle = build_failed_handle(out_file) for result in results: if args.debug: if result[0] != '': r_handle.write(result[0]) good += 1 elif result[1] != '': e_handle.write(result[1]) exceptions += 1 elif result[2] != '': f_handle.write(result[2]) failed += 1 else: r = result.get() if r[0] != '': r_handle.write(r[0]) good += 1 elif r[1] != '': exceptions += 1 elif r[2] != '': failed += 1 return good, exceptions, failed def build_result_handle(out_file): open(out_file, 'w').write('') return open(out_file, 'a') def build_exception_handle(out_file): e_file = out_file.split('.')[0] + '_exceptions' open(e_file, 'w').write('') return open(e_file, 'a') def build_failed_handle(out_file): f_file = out_file.split('.')[0] + '_failed' open(f_file, 'w').write('') return open(f_file, 'a') ##################################################################### # # INPUT PROCESSING # ##################################################################### def check_input(input_list): format = format_check(input_list[0]) if format == 'fasta': return input_list else: return convert_to_fasta(input_list) def format_check(in_file): with open(in_file) as f: line = f.next() while line == '': line = f.next() if line.startswith('>'): return 'fasta' elif line.startswith('@'): return 'fastq' else: raise RuntimeError('Input files must be in either FASTA or FASTQ format.') def convert_to_fasta(input_list): fasta_dir = args.input + 'fastas/' if not os.path.exists(fasta_dir): os.mkdir(fasta_dir) for f in input_list: out_file = os.path.join(fasta_dir, os.path.basename(f).split('.')[0]) open(out_file, 'w').write('') out_handle = open(out_file, 'a') for s in SeqIO.parse(f, 'fastq'): out_handle.write('>{0}\n{1}\n'.format(s.id, str(s.seq))) return list_files(fasta_dir) def merge_reads(): import pandaseq merge_dir = args.input + 'merged_reads/' if not os.path.exists(merge_dir): os.mkdir(merge_dir) pandaseq.run(args.input, merge_dir, nextseq=args.next_seq) return list_files(merge_dir) def preprocess(files): import pre_processing processed_dir = args.input + 'processed/' if not os.path.exists(processed_dir): os.mkdir(processed_dir) pre_processing.run(files, processed_dir) return list_files(processed_dir) def download_files(): from basespace import BaseSpace bs = BaseSpace() bs.download(args.input) args.merge = True ##################################################################### # # IgBLAST # ##################################################################### def do_igblast(i, out_dir): o_prefix = os.path.basename(i).split('.')[0] o = os.path.join(out_dir, o_prefix + '_blastout') # parallel IgBLASTn blast_start = time.time() blastout = parallel_igblast(i,o) blast_end = time.time() blast_time = blast_end - blast_start # parse the IgBLASTn output parse_start = time.time() good_seqs, exc_seqs, failed_seqs = do_parse(blastout) parse_end = time.time() parse_time = parse_end - parse_start print_summary_output(good_seqs, exc_seqs, failed_seqs, blast_time, parse_time) def parallel_igblast(in_file, out_file): num_seqs = file_length(in_file) threads = num_procs() split_length = int(math.ceil(float(num_seqs) / threads)) temp_directory, temp_out_directory = build_temp_dirs() split_files = file_splitter(in_file, split_length, num_seqs, temp_directory) thread_list = [] blastout_list = [] # run IgBLASTn in parallel for f in split_files: temp_out_file = os.path.join(temp_out_directory, os.path.basename(f).split('.')[0] + "_blastout") t = launch_thread(f, temp_out_file) t.start() thread_list.append(t) blastout_list.append(temp_out_file) for thread in thread_list: thread.join() # combine all blastout files into a single output file open(out_file, 'w').write('') with open(out_file, 'w') as out_handle: for f in blastout_list: with open(f) as in_handle: for line in in_handle: out_handle.write(line) clean_up(split_files, blastout_list, temp_directory, temp_out_directory) return out_file def main(): # if args.use_basespace: # download_files() if args.merge: input_list = merge_reads() else: input_list = list_files(args.input) input_list = check_input(input_list) input_list = preprocess(input_list) print_input_info(input_list) output_dir = build_output_dir() for i in input_list: if os.path.isfile(i): print_infile(i) do_igblast(i, output_dir) if __name__ == '__main__': main()
mit
fredhusser/scikit-learn
doc/tutorial/text_analytics/solutions/exercise_02_sentiment.py
254
2795
"""Build a sentiment analysis / polarity model Sentiment analysis can be casted as a binary text classification problem, that is fitting a linear classifier on features extracted from the text of the user messages so as to guess wether the opinion of the author is positive or negative. In this examples we will use a movie review dataset. """ # Author: Olivier Grisel <[email protected]> # License: Simplified BSD import sys from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.svm import LinearSVC from sklearn.pipeline import Pipeline from sklearn.grid_search import GridSearchCV from sklearn.datasets import load_files from sklearn.cross_validation import train_test_split from sklearn import metrics if __name__ == "__main__": # NOTE: we put the following in a 'if __name__ == "__main__"' protected # block to be able to use a multi-core grid search that also works under # Windows, see: http://docs.python.org/library/multiprocessing.html#windows # The multiprocessing module is used as the backend of joblib.Parallel # that is used when n_jobs != 1 in GridSearchCV # the training data folder must be passed as first argument movie_reviews_data_folder = sys.argv[1] dataset = load_files(movie_reviews_data_folder, shuffle=False) print("n_samples: %d" % len(dataset.data)) # split the dataset in training and test set: docs_train, docs_test, y_train, y_test = train_test_split( dataset.data, dataset.target, test_size=0.25, random_state=None) # TASK: Build a vectorizer / classifier pipeline that filters out tokens # that are too rare or too frequent pipeline = Pipeline([ ('vect', TfidfVectorizer(min_df=3, max_df=0.95)), ('clf', LinearSVC(C=1000)), ]) # TASK: Build a grid search to find out whether unigrams or bigrams are # more useful. # Fit the pipeline on the training set using grid search for the parameters parameters = { 'vect__ngram_range': [(1, 1), (1, 2)], } grid_search = GridSearchCV(pipeline, parameters, n_jobs=-1) grid_search.fit(docs_train, y_train) # TASK: print the cross-validated scores for the each parameters set # explored by the grid search print(grid_search.grid_scores_) # TASK: Predict the outcome on the testing set and store it in a variable # named y_predicted y_predicted = grid_search.predict(docs_test) # Print the classification report print(metrics.classification_report(y_test, y_predicted, target_names=dataset.target_names)) # Print and plot the confusion matrix cm = metrics.confusion_matrix(y_test, y_predicted) print(cm) # import matplotlib.pyplot as plt # plt.matshow(cm) # plt.show()
bsd-3-clause
uzh-rpg/rpg_svo
svo_analysis/src/svo_analysis/analyse_logs.py
17
3497
#!/usr/bin/python import os import yaml import numpy as np import matplotlib.pyplot as plt def analyse_logs(D, trace_dir): # identify measurements which result from normal frames and which from keyframes is_kf = np.argwhere( (D['dropout'] == 1) & (D['repr_n_mps'] >= 0)) is_frame = np.argwhere(D['repr_n_mps'] >= 0) is_nokf = np.argwhere( (D['dropout'] == 0) & (D['repr_n_mps'] >= 0)) # set initial time to zero D['timestamp'] = D['timestamp'] - D['timestamp'][0] # ---------------------------------------------------------------------------- # plot number of reprojected points mean_n_reproj_points = np.mean(D['repr_n_mps'][is_frame]); mean_n_reproj_matches = np.mean(D['repr_n_new_references'][is_frame]); mean_n_edges_final = np.mean(D['sfba_n_edges_final'][is_frame]); fig = plt.figure(figsize=(8,3)) ax = fig.add_subplot(111, xlabel='time [s]') ax.plot(D['timestamp'][is_frame], D['repr_n_mps'][is_frame], 'r-', label='Reprojected Points, avg = %.2f'%mean_n_reproj_points) ax.plot(D['timestamp'][is_frame], D['repr_n_new_references'][is_frame], 'b-', label='Feature Matches, avg = %.2f'%mean_n_reproj_matches) ax.plot(D['timestamp'][is_frame], D['sfba_n_edges_final'][is_frame], 'g-', label='Points after Optimization, avg = %.2f'%mean_n_edges_final) ax.set_ylim(bottom=0) ax.legend(loc='lower right') fig.tight_layout() fig.savefig(os.path.join(trace_dir,'num_reprojected.pdf'), bbox_inches="tight") # ---------------------------------------------------------------------------- # plot median error before and after pose-optimzation and bundle adjustment init_error_avg = np.mean(D['sfba_error_init'][is_frame]) opt1_avg = np.mean(D['sfba_error_final'][is_frame]) fig = plt.figure(figsize=(8,2)) ax = fig.add_subplot(111, xlabel='time [s]', ylabel='error [px]') ax.plot(D['timestamp'][is_frame], D['sfba_error_init'][is_frame], 'r-', label='Initial error') ax.plot(D['timestamp'][is_frame], D['sfba_error_final'][is_frame], 'b-', label='Final error') ax.legend(ncol=2) fig.tight_layout() fig.savefig(os.path.join(trace_dir,'reprojection_error.pdf'), bbox_inches="tight") print 'average reprojection error improvement: ' + str(init_error_avg - opt1_avg) # ---------------------------------------------------------------------------- # plot number of candidate points fig = plt.figure(figsize=(8,3)) ax = fig.add_subplot(111, xlabel='time [s]') ax.plot(D['timestamp'][is_frame], D['n_candidates'][is_frame], 'r-', label='Candidate Points') fig.tight_layout() fig.savefig(os.path.join(trace_dir,'candidate_points.pdf'), bbox_inches="tight") # ---------------------------------------------------------------------------- # plot number of candidate points fig = plt.figure(figsize=(8,2)) ax = fig.add_subplot(111, xlabel='time [s]', ylabel='px') ax.plot(D['timestamp'][is_frame], D['sfba_thresh'][is_frame], 'r-', label='Threshold') fig.tight_layout() fig.savefig(os.path.join(trace_dir,'optimization_thresh.pdf'), bbox_inches="tight") # ---------------------------------------------------------------------------- # write other statistics to file stat = {'num_frames': len(is_frame), 'num_kfs': len(is_kf), 'reproj_error_avg_improvement': float(init_error_avg - opt1_avg)} with open(os.path.join(trace_dir,'dataset_stats.yaml'),'w') as outfile: outfile.write(yaml.dump(stat, default_flow_style=False))
gpl-3.0
j-faria/OPEN
OPEN/macros/lp_pdf.py
1
2237
# -*- coding: utf-8 -*- # 'run -i' this script: magic = get_ipython().magic import datetime import glob import os from matplotlib.backends.backend_pdf import PdfPages import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec import numpy as np from OPEN.periodograms import gls from OPEN.utils import day2year, rms from OPEN.tqdm import tqdm all_files = glob.glob('/home/joao/phd/data/*mean*') print 'Total: ', len(all_files), ' files' with PdfPages('lp_data.pdf') as pdf: for filename in tqdm(all_files[0:10]): # print filename print magic('read ' + filename + ' --skip=2 -d') N = len(default.time) if N < 5: print "LESS THAN 5 MEASUREMENTS" continue # skip this star per = gls(default) # calculate periodogram per1 = gls(default, quantity='fwhm') per2 = gls(default, quantity='rhk') tspan = max(default.time) - min(default.time) rms_over_err = rms(default.vrad - default.vrad.mean()) / default.error.mean() plt.figure(figsize=(8,10)) gs = gridspec.GridSpec(4, 2) # plot the data ax1 = plt.subplot(gs[0]) ax1.ticklabel_format(useOffset=False) default.do_plot_obs(newFig=False, leg=False) plt.locator_params(nbins=4) # info ax2 = plt.subplot(gs[0,1]) plt.axis('off') plt.text(0., 0.9, os.path.basename(filename)) plt.text(0., 0.68, '# points %d' % N) plt.text(0., 0.5, 'time span %3.1f years' % day2year(tspan)) plt.text(0., 0.3, 'RV rms / <err> %3.2f' % rms_over_err) # plt.text(0.5, 0.5, '# meas. %d' % N) # plot the periodogram ax3 = plt.subplot(gs[1, :]) per._plot(doFAP=True, newFig=False, axes=ax3) # the other periogorams try: ax4 = plt.subplot(gs[2, :]) per1._plot(newFig=False, axes=ax4) plt.title('FWHM') ax5 = plt.subplot(gs[3, :]) per2._plot(newFig=False, axes=ax5) plt.title('RHK') except ValueError: print 'SOME ERROR OCCURRED...' continue pdf.savefig() plt.close() # We can also set the file's metadata via the PdfPages object: d = pdf.infodict() d['Title'] = 'LP-metal-poor-data' d['Author'] = u'João Faria' d['Subject'] = 'Subject' d['Keywords'] = 'LP metal poor data gls joao faria' d['CreationDate'] = datetime.datetime.today() d['ModDate'] = datetime.datetime.today()
mit
pv/scikit-learn
examples/cluster/plot_kmeans_assumptions.py
270
2040
""" ==================================== Demonstration of k-means assumptions ==================================== This example is meant to illustrate situations where k-means will produce unintuitive and possibly unexpected clusters. In the first three plots, the input data does not conform to some implicit assumption that k-means makes and undesirable clusters are produced as a result. In the last plot, k-means returns intuitive clusters despite unevenly sized blobs. """ print(__doc__) # Author: Phil Roth <[email protected]> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.datasets import make_blobs plt.figure(figsize=(12, 12)) n_samples = 1500 random_state = 170 X, y = make_blobs(n_samples=n_samples, random_state=random_state) # Incorrect number of clusters y_pred = KMeans(n_clusters=2, random_state=random_state).fit_predict(X) plt.subplot(221) plt.scatter(X[:, 0], X[:, 1], c=y_pred) plt.title("Incorrect Number of Blobs") # Anisotropicly distributed data transformation = [[ 0.60834549, -0.63667341], [-0.40887718, 0.85253229]] X_aniso = np.dot(X, transformation) y_pred = KMeans(n_clusters=3, random_state=random_state).fit_predict(X_aniso) plt.subplot(222) plt.scatter(X_aniso[:, 0], X_aniso[:, 1], c=y_pred) plt.title("Anisotropicly Distributed Blobs") # Different variance X_varied, y_varied = make_blobs(n_samples=n_samples, cluster_std=[1.0, 2.5, 0.5], random_state=random_state) y_pred = KMeans(n_clusters=3, random_state=random_state).fit_predict(X_varied) plt.subplot(223) plt.scatter(X_varied[:, 0], X_varied[:, 1], c=y_pred) plt.title("Unequal Variance") # Unevenly sized blobs X_filtered = np.vstack((X[y == 0][:500], X[y == 1][:100], X[y == 2][:10])) y_pred = KMeans(n_clusters=3, random_state=random_state).fit_predict(X_filtered) plt.subplot(224) plt.scatter(X_filtered[:, 0], X_filtered[:, 1], c=y_pred) plt.title("Unevenly Sized Blobs") plt.show()
bsd-3-clause
0todd0000/spm1d
spm1d/rft1d/examples/val_broken_3_T2.py
1
1887
import numpy as np from matplotlib import pyplot from spm1d import rft1d def here_hotellingsT2(y): N = y.shape[0] m = np.matrix( y.mean(axis=0) ) T2 = [] for ii,mm in enumerate(m): W = np.matrix( np.cov(y[:,ii,:].T, ddof=1) ) #estimated covariance t2 = N * mm * np.linalg.inv(W) * mm.T T2.append( float(t2) ) return np.asarray(T2) #(0) Set parameters: np.random.seed(0) nResponses = 25 nNodes = 101 nComponents = 2 nIterations = 200 #raise this to at least 500 for convergence FWHM = 12.0 W0 = np.eye(nComponents) ### derived parameters: df = nComponents, nResponses-1 #p,m ### generate a field mask: nodes = np.array([True]*nNodes) #nothing masked out nodes[10:30] = False #this region will be masked out nodes[60:85] = False #(1) Generate Gaussian 1D fields, compute test stat: generator = rft1d.random.GeneratorMulti1D(nResponses, nodes, nComponents, FWHM, W0) T2 = [] for i in range(nIterations): y = generator.generate_sample() t2 = here_hotellingsT2(y) T2.append( np.nanmax(t2) ) T2 = np.array(T2) #(2) Survival functions for field maximum: heights = np.linspace(8.0, 15, 21) sf = np.array( [ (T2>=h).mean() for h in heights] ) sfE_full = rft1d.T2.sf(heights, df, nNodes, FWHM) #theoretical (full) sfE_broken = rft1d.T2.sf(heights, df, nodes, FWHM) #theoretical (broken) #(3) Plot results: pyplot.close('all') ax = pyplot.axes() ax.plot(heights, sfE_full, 'b-', label='Theoretical (full)') ax.plot(heights, sfE_broken, 'r-', label='Theoretical (broken)') ax.plot(heights, sf, 'ro', label='Simulated (broken)') ax.set_xlabel('x', size=16) ax.set_ylabel('$P (T^2_\mathrm{max} > x)$', size=20) ax.legend() ax.set_title('Broken field validation ($T^2$)', size=20) pyplot.show()
gpl-3.0
Aureliu/keras
examples/kaggle_otto_nn.py
70
3775
from __future__ import absolute_import from __future__ import print_function import numpy as np import pandas as pd np.random.seed(1337) # for reproducibility from keras.models import Sequential from keras.layers.core import Dense, Dropout, Activation from keras.layers.normalization import BatchNormalization from keras.layers.advanced_activations import PReLU from keras.utils import np_utils, generic_utils from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import StandardScaler ''' This demonstrates how to reach a score of 0.4890 (local validation) on the Kaggle Otto challenge, with a deep net using Keras. Compatible Python 2.7-3.4. Requires Scikit-Learn and Pandas. Recommended to run on GPU: Command: THEANO_FLAGS=mode=FAST_RUN,device=gpu,floatX=float32 python kaggle_otto_nn.py On EC2 g2.2xlarge instance: 19s/epoch. 6-7 minutes total training time. Best validation score at epoch 21: 0.4881 Try it at home: - with/without BatchNormalization (BatchNormalization helps!) - with ReLU or with PReLU (PReLU helps!) - with smaller layers, largers layers - with more layers, less layers - with different optimizers (SGD+momentum+decay is probably better than Adam!) Get the data from Kaggle: https://www.kaggle.com/c/otto-group-product-classification-challenge/data ''' def load_data(path, train=True): df = pd.read_csv(path) X = df.values.copy() if train: np.random.shuffle(X) # https://youtu.be/uyUXoap67N8 X, labels = X[:, 1:-1].astype(np.float32), X[:, -1] return X, labels else: X, ids = X[:, 1:].astype(np.float32), X[:, 0].astype(str) return X, ids def preprocess_data(X, scaler=None): if not scaler: scaler = StandardScaler() scaler.fit(X) X = scaler.transform(X) return X, scaler def preprocess_labels(labels, encoder=None, categorical=True): if not encoder: encoder = LabelEncoder() encoder.fit(labels) y = encoder.transform(labels).astype(np.int32) if categorical: y = np_utils.to_categorical(y) return y, encoder def make_submission(y_prob, ids, encoder, fname): with open(fname, 'w') as f: f.write('id,') f.write(','.join([str(i) for i in encoder.classes_])) f.write('\n') for i, probs in zip(ids, y_prob): probas = ','.join([i] + [str(p) for p in probs.tolist()]) f.write(probas) f.write('\n') print("Wrote submission to file {}.".format(fname)) print("Loading data...") X, labels = load_data('train.csv', train=True) X, scaler = preprocess_data(X) y, encoder = preprocess_labels(labels) X_test, ids = load_data('test.csv', train=False) X_test, _ = preprocess_data(X_test, scaler) nb_classes = y.shape[1] print(nb_classes, 'classes') dims = X.shape[1] print(dims, 'dims') print("Building model...") model = Sequential() model.add(Dense(dims, 512, init='glorot_uniform')) model.add(PReLU((512,))) model.add(BatchNormalization((512,))) model.add(Dropout(0.5)) model.add(Dense(512, 512, init='glorot_uniform')) model.add(PReLU((512,))) model.add(BatchNormalization((512,))) model.add(Dropout(0.5)) model.add(Dense(512, 512, init='glorot_uniform')) model.add(PReLU((512,))) model.add(BatchNormalization((512,))) model.add(Dropout(0.5)) model.add(Dense(512, nb_classes, init='glorot_uniform')) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer="adam") print("Training model...") model.fit(X, y, nb_epoch=20, batch_size=128, validation_split=0.15) print("Generating submission...") proba = model.predict_proba(X_test) make_submission(proba, ids, encoder, fname='keras-otto.csv')
mit
CallaJun/hackprince
indico/matplotlib/markers.py
10
26324
""" This module contains functions to handle markers. Used by both the marker functionality of `~matplotlib.axes.Axes.plot` and `~matplotlib.axes.Axes.scatter`. All possible markers are defined here: ============================== =============================================== marker description ============================== =============================================== "." point "," pixel "o" circle "v" triangle_down "^" triangle_up "<" triangle_left ">" triangle_right "1" tri_down "2" tri_up "3" tri_left "4" tri_right "8" octagon "s" square "p" pentagon "*" star "h" hexagon1 "H" hexagon2 "+" plus "x" x "D" diamond "d" thin_diamond "|" vline "_" hline TICKLEFT tickleft TICKRIGHT tickright TICKUP tickup TICKDOWN tickdown CARETLEFT caretleft CARETRIGHT caretright CARETUP caretup CARETDOWN caretdown "None" nothing None nothing " " nothing "" nothing ``'$...$'`` render the string using mathtext. `verts` a list of (x, y) pairs used for Path vertices. The center of the marker is located at (0,0) and the size is normalized. path a `~matplotlib.path.Path` instance. (`numsides`, `style`, `angle`) see below ============================== =============================================== The marker can also be a tuple (`numsides`, `style`, `angle`), which will create a custom, regular symbol. `numsides`: the number of sides `style`: the style of the regular symbol: ===== ============================================= Value Description ===== ============================================= 0 a regular polygon 1 a star-like symbol 2 an asterisk 3 a circle (`numsides` and `angle` is ignored) ===== ============================================= `angle`: the angle of rotation of the symbol, in degrees For backward compatibility, the form (`verts`, 0) is also accepted, but it is equivalent to just `verts` for giving a raw set of vertices that define the shape. """ from __future__ import (absolute_import, division, print_function, unicode_literals) import six from six.moves import xrange import numpy as np from .cbook import is_math_text, is_string_like, is_numlike, iterable from matplotlib import rcParams from .path import Path from .transforms import IdentityTransform, Affine2D # special-purpose marker identifiers: (TICKLEFT, TICKRIGHT, TICKUP, TICKDOWN, CARETLEFT, CARETRIGHT, CARETUP, CARETDOWN) = list(xrange(8)) class MarkerStyle(object): markers = { '.': 'point', ',': 'pixel', 'o': 'circle', 'v': 'triangle_down', '^': 'triangle_up', '<': 'triangle_left', '>': 'triangle_right', '1': 'tri_down', '2': 'tri_up', '3': 'tri_left', '4': 'tri_right', '8': 'octagon', 's': 'square', 'p': 'pentagon', '*': 'star', 'h': 'hexagon1', 'H': 'hexagon2', '+': 'plus', 'x': 'x', 'D': 'diamond', 'd': 'thin_diamond', '|': 'vline', '_': 'hline', TICKLEFT: 'tickleft', TICKRIGHT: 'tickright', TICKUP: 'tickup', TICKDOWN: 'tickdown', CARETLEFT: 'caretleft', CARETRIGHT: 'caretright', CARETUP: 'caretup', CARETDOWN: 'caretdown', "None": 'nothing', None: 'nothing', ' ': 'nothing', '': 'nothing' } # Just used for informational purposes. is_filled() # is calculated in the _set_* functions. filled_markers = ( 'o', 'v', '^', '<', '>', '8', 's', 'p', '*', 'h', 'H', 'D', 'd') fillstyles = ('full', 'left', 'right', 'bottom', 'top', 'none') _half_fillstyles = ('left', 'right', 'bottom', 'top') # TODO: Is this ever used as a non-constant? _point_size_reduction = 0.5 def __init__(self, marker=None, fillstyle='full'): """ MarkerStyle Attributes ---------- markers : list of known markes fillstyles : list of known fillstyles filled_markers : list of known filled markers. Parameters ---------- marker : string or array_like, optional, default: None See the descriptions of possible markers in the module docstring. fillstyle : string, optional, default: 'full' 'full', 'left", 'right', 'bottom', 'top', 'none' """ self._fillstyle = fillstyle self.set_marker(marker) self.set_fillstyle(fillstyle) def __getstate__(self): d = self.__dict__.copy() d.pop('_marker_function') return d def __setstate__(self, statedict): self.__dict__ = statedict self.set_marker(self._marker) self._recache() def _recache(self): self._path = Path(np.empty((0, 2))) self._transform = IdentityTransform() self._alt_path = None self._alt_transform = None self._snap_threshold = None self._joinstyle = 'round' self._capstyle = 'butt' self._filled = True self._marker_function() if six.PY3: def __bool__(self): return bool(len(self._path.vertices)) else: def __nonzero__(self): return bool(len(self._path.vertices)) def is_filled(self): return self._filled def get_fillstyle(self): return self._fillstyle def set_fillstyle(self, fillstyle): """ Sets fillstyle Parameters ---------- fillstyle : string amongst known fillstyles """ if fillstyle not in self.fillstyles: raise ValueError("Unrecognized fillstyle %s" % ' '.join(self.fillstyles)) self._fillstyle = fillstyle self._recache() def get_joinstyle(self): return self._joinstyle def get_capstyle(self): return self._capstyle def get_marker(self): return self._marker def set_marker(self, marker): if (iterable(marker) and len(marker) in (2, 3) and marker[1] in (0, 1, 2, 3)): self._marker_function = self._set_tuple_marker elif isinstance(marker, np.ndarray): self._marker_function = self._set_vertices elif not isinstance(marker, list) and marker in self.markers: self._marker_function = getattr( self, '_set_' + self.markers[marker]) elif is_string_like(marker) and is_math_text(marker): self._marker_function = self._set_mathtext_path elif isinstance(marker, Path): self._marker_function = self._set_path_marker else: try: Path(marker) self._marker_function = self._set_vertices except ValueError: raise ValueError('Unrecognized marker style {}'.format(marker)) self._marker = marker self._recache() def get_path(self): return self._path def get_transform(self): return self._transform.frozen() def get_alt_path(self): return self._alt_path def get_alt_transform(self): return self._alt_transform.frozen() def get_snap_threshold(self): return self._snap_threshold def _set_nothing(self): self._filled = False def _set_custom_marker(self, path): verts = path.vertices rescale = max(np.max(np.abs(verts[:, 0])), np.max(np.abs(verts[:, 1]))) self._transform = Affine2D().scale(0.5 / rescale) self._path = path def _set_path_marker(self): self._set_custom_marker(self._marker) def _set_vertices(self): verts = self._marker marker = Path(verts) self._set_custom_marker(marker) def _set_tuple_marker(self): marker = self._marker if is_numlike(marker[0]): if len(marker) == 2: numsides, rotation = marker[0], 0.0 elif len(marker) == 3: numsides, rotation = marker[0], marker[2] symstyle = marker[1] if symstyle == 0: self._path = Path.unit_regular_polygon(numsides) self._joinstyle = 'miter' elif symstyle == 1: self._path = Path.unit_regular_star(numsides) self._joinstyle = 'bevel' elif symstyle == 2: self._path = Path.unit_regular_asterisk(numsides) self._filled = False self._joinstyle = 'bevel' elif symstyle == 3: self._path = Path.unit_circle() self._transform = Affine2D().scale(0.5).rotate_deg(rotation) else: verts = np.asarray(marker[0]) path = Path(verts) self._set_custom_marker(path) def _set_mathtext_path(self): """ Draws mathtext markers '$...$' using TextPath object. Submitted by tcb """ from matplotlib.text import TextPath from matplotlib.font_manager import FontProperties # again, the properties could be initialised just once outside # this function # Font size is irrelevant here, it will be rescaled based on # the drawn size later props = FontProperties(size=1.0) text = TextPath(xy=(0, 0), s=self.get_marker(), fontproperties=props, usetex=rcParams['text.usetex']) if len(text.vertices) == 0: return xmin, ymin = text.vertices.min(axis=0) xmax, ymax = text.vertices.max(axis=0) width = xmax - xmin height = ymax - ymin max_dim = max(width, height) self._transform = Affine2D() \ .translate(-xmin + 0.5 * -width, -ymin + 0.5 * -height) \ .scale(1.0 / max_dim) self._path = text self._snap = False def _half_fill(self): fs = self.get_fillstyle() result = fs in self._half_fillstyles return result def _set_circle(self, reduction=1.0): self._transform = Affine2D().scale(0.5 * reduction) self._snap_threshold = 6.0 fs = self.get_fillstyle() if not self._half_fill(): self._path = Path.unit_circle() else: # build a right-half circle if fs == 'bottom': rotate = 270. elif fs == 'top': rotate = 90. elif fs == 'left': rotate = 180. else: rotate = 0. self._path = self._alt_path = Path.unit_circle_righthalf() self._transform.rotate_deg(rotate) self._alt_transform = self._transform.frozen().rotate_deg(180.) def _set_pixel(self): self._path = Path.unit_rectangle() # Ideally, you'd want -0.5, -0.5 here, but then the snapping # algorithm in the Agg backend will round this to a 2x2 # rectangle from (-1, -1) to (1, 1). By offsetting it # slightly, we can force it to be (0, 0) to (1, 1), which both # makes it only be a single pixel and places it correctly # aligned to 1-width stroking (i.e. the ticks). This hack is # the best of a number of bad alternatives, mainly because the # backends are not aware of what marker is actually being used # beyond just its path data. self._transform = Affine2D().translate(-0.49999, -0.49999) self._snap_threshold = None def _set_point(self): self._set_circle(reduction=self._point_size_reduction) _triangle_path = Path( [[0.0, 1.0], [-1.0, -1.0], [1.0, -1.0], [0.0, 1.0]], [Path.MOVETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY]) # Going down halfway looks to small. Golden ratio is too far. _triangle_path_u = Path( [[0.0, 1.0], [-3 / 5., -1 / 5.], [3 / 5., -1 / 5.], [0.0, 1.0]], [Path.MOVETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY]) _triangle_path_d = Path( [[-3 / 5., -1 / 5.], [3 / 5., -1 / 5.], [1.0, -1.0], [-1.0, -1.0], [-3 / 5., -1 / 5.]], [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY]) _triangle_path_l = Path( [[0.0, 1.0], [0.0, -1.0], [-1.0, -1.0], [0.0, 1.0]], [Path.MOVETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY]) _triangle_path_r = Path( [[0.0, 1.0], [0.0, -1.0], [1.0, -1.0], [0.0, 1.0]], [Path.MOVETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY]) def _set_triangle(self, rot, skip): self._transform = Affine2D().scale(0.5, 0.5).rotate_deg(rot) self._snap_threshold = 5.0 fs = self.get_fillstyle() if not self._half_fill(): self._path = self._triangle_path else: mpaths = [self._triangle_path_u, self._triangle_path_l, self._triangle_path_d, self._triangle_path_r] if fs == 'top': self._path = mpaths[(0 + skip) % 4] self._alt_path = mpaths[(2 + skip) % 4] elif fs == 'bottom': self._path = mpaths[(2 + skip) % 4] self._alt_path = mpaths[(0 + skip) % 4] elif fs == 'left': self._path = mpaths[(1 + skip) % 4] self._alt_path = mpaths[(3 + skip) % 4] else: self._path = mpaths[(3 + skip) % 4] self._alt_path = mpaths[(1 + skip) % 4] self._alt_transform = self._transform self._joinstyle = 'miter' def _set_triangle_up(self): return self._set_triangle(0.0, 0) def _set_triangle_down(self): return self._set_triangle(180.0, 2) def _set_triangle_left(self): return self._set_triangle(90.0, 3) def _set_triangle_right(self): return self._set_triangle(270.0, 1) def _set_square(self): self._transform = Affine2D().translate(-0.5, -0.5) self._snap_threshold = 2.0 fs = self.get_fillstyle() if not self._half_fill(): self._path = Path.unit_rectangle() else: # build a bottom filled square out of two rectangles, one # filled. Use the rotation to support left, right, bottom # or top if fs == 'bottom': rotate = 0. elif fs == 'top': rotate = 180. elif fs == 'left': rotate = 270. else: rotate = 90. self._path = Path([[0.0, 0.0], [1.0, 0.0], [1.0, 0.5], [0.0, 0.5], [0.0, 0.0]]) self._alt_path = Path([[0.0, 0.5], [1.0, 0.5], [1.0, 1.0], [0.0, 1.0], [0.0, 0.5]]) self._transform.rotate_deg(rotate) self._alt_transform = self._transform self._joinstyle = 'miter' def _set_diamond(self): self._transform = Affine2D().translate(-0.5, -0.5).rotate_deg(45) self._snap_threshold = 5.0 fs = self.get_fillstyle() if not self._half_fill(): self._path = Path.unit_rectangle() else: self._path = Path([[0.0, 0.0], [1.0, 0.0], [1.0, 1.0], [0.0, 0.0]]) self._alt_path = Path([[0.0, 0.0], [0.0, 1.0], [1.0, 1.0], [0.0, 0.0]]) if fs == 'bottom': rotate = 270. elif fs == 'top': rotate = 90. elif fs == 'left': rotate = 180. else: rotate = 0. self._transform.rotate_deg(rotate) self._alt_transform = self._transform self._joinstyle = 'miter' def _set_thin_diamond(self): self._set_diamond() self._transform.scale(0.6, 1.0) def _set_pentagon(self): self._transform = Affine2D().scale(0.5) self._snap_threshold = 5.0 polypath = Path.unit_regular_polygon(5) fs = self.get_fillstyle() if not self._half_fill(): self._path = polypath else: verts = polypath.vertices y = (1 + np.sqrt(5)) / 4. top = Path([verts[0], verts[1], verts[4], verts[0]]) bottom = Path([verts[1], verts[2], verts[3], verts[4], verts[1]]) left = Path([verts[0], verts[1], verts[2], [0, -y], verts[0]]) right = Path([verts[0], verts[4], verts[3], [0, -y], verts[0]]) if fs == 'top': mpath, mpath_alt = top, bottom elif fs == 'bottom': mpath, mpath_alt = bottom, top elif fs == 'left': mpath, mpath_alt = left, right else: mpath, mpath_alt = right, left self._path = mpath self._alt_path = mpath_alt self._alt_transform = self._transform self._joinstyle = 'miter' def _set_star(self): self._transform = Affine2D().scale(0.5) self._snap_threshold = 5.0 fs = self.get_fillstyle() polypath = Path.unit_regular_star(5, innerCircle=0.381966) if not self._half_fill(): self._path = polypath else: verts = polypath.vertices top = Path(np.vstack((verts[0:4, :], verts[7:10, :], verts[0]))) bottom = Path(np.vstack((verts[3:8, :], verts[3]))) left = Path(np.vstack((verts[0:6, :], verts[0]))) right = Path(np.vstack((verts[0], verts[5:10, :], verts[0]))) if fs == 'top': mpath, mpath_alt = top, bottom elif fs == 'bottom': mpath, mpath_alt = bottom, top elif fs == 'left': mpath, mpath_alt = left, right else: mpath, mpath_alt = right, left self._path = mpath self._alt_path = mpath_alt self._alt_transform = self._transform self._joinstyle = 'bevel' def _set_hexagon1(self): self._transform = Affine2D().scale(0.5) self._snap_threshold = None fs = self.get_fillstyle() polypath = Path.unit_regular_polygon(6) if not self._half_fill(): self._path = polypath else: verts = polypath.vertices # not drawing inside lines x = np.abs(np.cos(5 * np.pi / 6.)) top = Path(np.vstack(([-x, 0], verts[(1, 0, 5), :], [x, 0]))) bottom = Path(np.vstack(([-x, 0], verts[2:5, :], [x, 0]))) left = Path(verts[(0, 1, 2, 3), :]) right = Path(verts[(0, 5, 4, 3), :]) if fs == 'top': mpath, mpath_alt = top, bottom elif fs == 'bottom': mpath, mpath_alt = bottom, top elif fs == 'left': mpath, mpath_alt = left, right else: mpath, mpath_alt = right, left self._path = mpath self._alt_path = mpath_alt self._alt_transform = self._transform self._joinstyle = 'miter' def _set_hexagon2(self): self._transform = Affine2D().scale(0.5).rotate_deg(30) self._snap_threshold = None fs = self.get_fillstyle() polypath = Path.unit_regular_polygon(6) if not self._half_fill(): self._path = polypath else: verts = polypath.vertices # not drawing inside lines x, y = np.sqrt(3) / 4, 3 / 4. top = Path(verts[(1, 0, 5, 4, 1), :]) bottom = Path(verts[(1, 2, 3, 4), :]) left = Path(np.vstack(([x, y], verts[(0, 1, 2), :], [-x, -y], [x, y]))) right = Path(np.vstack(([x, y], verts[(5, 4, 3), :], [-x, -y]))) if fs == 'top': mpath, mpath_alt = top, bottom elif fs == 'bottom': mpath, mpath_alt = bottom, top elif fs == 'left': mpath, mpath_alt = left, right else: mpath, mpath_alt = right, left self._path = mpath self._alt_path = mpath_alt self._alt_transform = self._transform self._joinstyle = 'miter' def _set_octagon(self): self._transform = Affine2D().scale(0.5) self._snap_threshold = 5.0 fs = self.get_fillstyle() polypath = Path.unit_regular_polygon(8) if not self._half_fill(): self._transform.rotate_deg(22.5) self._path = polypath else: x = np.sqrt(2.) / 4. half = Path([[0, -1], [0, 1], [-x, 1], [-1, x], [-1, -x], [-x, -1], [0, -1]]) if fs == 'bottom': rotate = 90. elif fs == 'top': rotate = 270. elif fs == 'right': rotate = 180. else: rotate = 0. self._transform.rotate_deg(rotate) self._path = self._alt_path = half self._alt_transform = self._transform.frozen().rotate_deg(180.0) self._joinstyle = 'miter' _line_marker_path = Path([[0.0, -1.0], [0.0, 1.0]]) def _set_vline(self): self._transform = Affine2D().scale(0.5) self._snap_threshold = 1.0 self._filled = False self._path = self._line_marker_path def _set_hline(self): self._transform = Affine2D().scale(0.5).rotate_deg(90) self._snap_threshold = 1.0 self._filled = False self._path = self._line_marker_path _tickhoriz_path = Path([[0.0, 0.0], [1.0, 0.0]]) def _set_tickleft(self): self._transform = Affine2D().scale(-1.0, 1.0) self._snap_threshold = 1.0 self._filled = False self._path = self._tickhoriz_path def _set_tickright(self): self._transform = Affine2D().scale(1.0, 1.0) self._snap_threshold = 1.0 self._filled = False self._path = self._tickhoriz_path _tickvert_path = Path([[-0.0, 0.0], [-0.0, 1.0]]) def _set_tickup(self): self._transform = Affine2D().scale(1.0, 1.0) self._snap_threshold = 1.0 self._filled = False self._path = self._tickvert_path def _set_tickdown(self): self._transform = Affine2D().scale(1.0, -1.0) self._snap_threshold = 1.0 self._filled = False self._path = self._tickvert_path _plus_path = Path([[-1.0, 0.0], [1.0, 0.0], [0.0, -1.0], [0.0, 1.0]], [Path.MOVETO, Path.LINETO, Path.MOVETO, Path.LINETO]) def _set_plus(self): self._transform = Affine2D().scale(0.5) self._snap_threshold = 1.0 self._filled = False self._path = self._plus_path _tri_path = Path([[0.0, 0.0], [0.0, -1.0], [0.0, 0.0], [0.8, 0.5], [0.0, 0.0], [-0.8, 0.5]], [Path.MOVETO, Path.LINETO, Path.MOVETO, Path.LINETO, Path.MOVETO, Path.LINETO]) def _set_tri_down(self): self._transform = Affine2D().scale(0.5) self._snap_threshold = 5.0 self._filled = False self._path = self._tri_path def _set_tri_up(self): self._transform = Affine2D().scale(0.5).rotate_deg(180) self._snap_threshold = 5.0 self._filled = False self._path = self._tri_path def _set_tri_left(self): self._transform = Affine2D().scale(0.5).rotate_deg(270) self._snap_threshold = 5.0 self._filled = False self._path = self._tri_path def _set_tri_right(self): self._transform = Affine2D().scale(0.5).rotate_deg(90) self._snap_threshold = 5.0 self._filled = False self._path = self._tri_path _caret_path = Path([[-1.0, 1.5], [0.0, 0.0], [1.0, 1.5]]) def _set_caretdown(self): self._transform = Affine2D().scale(0.5) self._snap_threshold = 3.0 self._filled = False self._path = self._caret_path self._joinstyle = 'miter' def _set_caretup(self): self._transform = Affine2D().scale(0.5).rotate_deg(180) self._snap_threshold = 3.0 self._filled = False self._path = self._caret_path self._joinstyle = 'miter' def _set_caretleft(self): self._transform = Affine2D().scale(0.5).rotate_deg(270) self._snap_threshold = 3.0 self._filled = False self._path = self._caret_path self._joinstyle = 'miter' def _set_caretright(self): self._transform = Affine2D().scale(0.5).rotate_deg(90) self._snap_threshold = 3.0 self._filled = False self._path = self._caret_path self._joinstyle = 'miter' _x_path = Path([[-1.0, -1.0], [1.0, 1.0], [-1.0, 1.0], [1.0, -1.0]], [Path.MOVETO, Path.LINETO, Path.MOVETO, Path.LINETO]) def _set_x(self): self._transform = Affine2D().scale(0.5) self._snap_threshold = 3.0 self._filled = False self._path = self._x_path
lgpl-3.0
lcharleux/compmod
doc/sandbox/awa-pascale/compart_classes.py
1
5764
from abapy import materials from abapy.misc import load import matplotlib.pyplot as plt from matplotlib import cm import numpy as np import pandas as pd import pickle, copy, platform, compmod, os from scipy import optimize, interpolate def Tensile_Test(settings): args = settings.copy() # MATERIALS CREATION Ne = settings['Nx'] * settings['Ny'] if settings['is_3D']: Ne *= settings['Nz'] if settings['compart']: E = settings["E"] * np.ones(Ne) # Young's modulus nu = settings["nu"] * np.ones(Ne) # Poisson's ratio sy_mean = settings["sy_mean"] * np.ones(Ne) sigma_sat = settings["sigma_sat"] * np.ones(Ne) n_hol = settings["n_hol"] * np.ones(Ne) n_bil = settings["n_bil"] * np.ones(Ne) sy = compmod.distributions.Rayleigh(settings["sy_mean"]).rvs(Ne) labels = ['mat_{0}'.format(i+1) for i in xrange(len(sy_mean))] if args['material_type'] == "Bilinear": args['material'] = [materials.Bilinear(labels = labels[i], E = E[i], nu = nu[i], Ssat = sigma_sat[i], n=n_bil[i], sy = sy[i]) for i in xrange(Ne)] if args['material_type'] == "Hollomon": args['material'] = [materials.Hollomon(labels = labels[i], E = E[i], nu = nu[i], n=n_hol[i], sy = sy[i]) for i in xrange(Ne)] else: labels = 'SAMPLE_MAT' if args['material_type'] == "Bilinear": args['material'] = materials.Bilinear(labels = labels, E = settings["E"], nu = settings["nu"], sy = settings["sy_mean"], Ssat = settings["sigma_sat"], n = settings["n_bil"]) if args['material_type'] == "Hollomon": args['material'] = materials.Hollomon(labels = labels, E = settings["E"], nu = settings["nu"], sy = settings["sy_mean"], n = settings["n_hol"]) m = compmod.models.CuboidTest(**args) m.MakeInp() m.Run() m.MakePostProc() m.RunPostProc() m.LoadResults() # Plotting results if m.outputs['completed']: # History Outputs disp = np.array(m.outputs['history']['disp'].values()[0].data[0]) force = np.array(np.array(m.outputs['history']['force'].values()).sum().data[0]) volume = np.array(np.array(m.outputs['history']['volume'].values()).sum().data[0]) length = settings['ly'] + disp surface = volume / length logstrain = np.log10(1. + disp / settings['ly']) linstrain = disp/ settings['ly'] strain = linstrain stress = force / surface output = {} output["force"] = force output["disp"] = disp output["stress"] = stress output["strain"] = strain output["volume"] = volume output["length"] = length df = pd.DataFrame(output) df.to_csv("{0}{1}.csv".format(settings["workdir"], settings["label"]), index = False) df.to_excel("{0}{1}.xls".format(settings["workdir"], settings["label"]), index = False) inputs = pd.DataFrame(settings, index = [0]) inputs.transpose().to_csv("{0}{1}_inputs.csv".format(settings["workdir"], settings["label"])) class Optimize(object): def __init__(self, settings): settings = settings.copy() settings['compart'] = True # True: compartimented, False: homogeneous settings["material_type"] = "Bilinear" # "Bilinear" or "Hollomon" self.settings = settings self.inputs = [] self.sim_id = 1 exp = pd.read_csv(settings["expdir"] + settings["experiment"], delim_whitespace = True) exp.stress *= settings['exp_stress_factor'] exp.strain *= settings['exp_strain_factor'] # STRAIN GRID FOR LEAST SQUARE OPTIMIZATION self.strain_grid = np.linspace( max(settings["eps_lim_min"], exp.strain.min()), min(settings["eps_lim_max"], exp.strain.max()), 100) # Strain grid self.sigma_exp_grid = interpolate.interp1d(exp.strain, exp.stress)(self.strain_grid) def Cost_Function(self, X): settings = self.settings.copy() settings["sy_mean"] = X[0] # [Pa] (only for bilinear) settings["n_bil"] = X[1] # [Pa] Bilinear hardening settings["sigma_sat"] = X[2] # [Pa] # SIMULATION LABEL RENAMING settings["label"] += "_{0}".format(self.sim_id) Tensile_Test(settings) sim = pd.read_csv(settings["workdir"] + settings["label"] + ".csv") strain_grid = self.strain_grid sigma_sim_grid = interpolate.interp1d(sim.strain, sim.stress)(strain_grid) err = ((sigma_sim_grid - self.sigma_exp_grid)**2).sum()/len(strain_grid) self.inputs.append([self.sim_id] + list(X)) self.sim_id +=1 return err def run(self): # EXPERIMENTAL DATA settings = self.settings # OPTIMiZATION START POINT X0 = np.array([settings["sy_mean"], settings["n_bil"], settings['sigma_sat']]) sol_compart = optimize.minimize(self.Cost_Function, X0, method = "Nelder-Mead", options = {"maxfev": settings["max_number_of_simulations"], "maxiter": settings["max_number_of_iterations"]}) self.sol = sol_compart inputs = np.array(self.inputs).transpose() df = pd.DataFrame({"sim_id": inputs[0], "sy_mean":inputs[1], "n_bil": inputs[2], "sigma_sat":inputs[3],}) df.to_csv("{0}{1}_opti_results.csv".format(settings["workdir"], settings["label"]), index = False)
gpl-2.0
jreback/pandas
pandas/tests/frame/apply/test_apply_relabeling.py
4
3679
import numpy as np import pytest import pandas as pd import pandas._testing as tm class TestDataFrameNamedAggregate: def test_agg_relabel(self): # GH 26513 df = pd.DataFrame({"A": [1, 2, 1, 2], "B": [1, 2, 3, 4], "C": [3, 4, 5, 6]}) # simplest case with one column, one func result = df.agg(foo=("B", "sum")) expected = pd.DataFrame({"B": [10]}, index=pd.Index(["foo"])) tm.assert_frame_equal(result, expected) # test on same column with different methods result = df.agg(foo=("B", "sum"), bar=("B", "min")) expected = pd.DataFrame({"B": [10, 1]}, index=pd.Index(["foo", "bar"])) tm.assert_frame_equal(result, expected) def test_agg_relabel_multi_columns_multi_methods(self): # GH 26513, test on multiple columns with multiple methods df = pd.DataFrame({"A": [1, 2, 1, 2], "B": [1, 2, 3, 4], "C": [3, 4, 5, 6]}) result = df.agg( foo=("A", "sum"), bar=("B", "mean"), cat=("A", "min"), dat=("B", "max"), f=("A", "max"), g=("C", "min"), ) expected = pd.DataFrame( { "A": [6.0, np.nan, 1.0, np.nan, 2.0, np.nan], "B": [np.nan, 2.5, np.nan, 4.0, np.nan, np.nan], "C": [np.nan, np.nan, np.nan, np.nan, np.nan, 3.0], }, index=pd.Index(["foo", "bar", "cat", "dat", "f", "g"]), ) tm.assert_frame_equal(result, expected) def test_agg_relabel_partial_functions(self): # GH 26513, test on partial, functools or more complex cases df = pd.DataFrame({"A": [1, 2, 1, 2], "B": [1, 2, 3, 4], "C": [3, 4, 5, 6]}) result = df.agg(foo=("A", np.mean), bar=("A", "mean"), cat=("A", min)) expected = pd.DataFrame( {"A": [1.5, 1.5, 1.0]}, index=pd.Index(["foo", "bar", "cat"]) ) tm.assert_frame_equal(result, expected) result = df.agg( foo=("A", min), bar=("A", np.min), cat=("B", max), dat=("C", "min"), f=("B", np.sum), kk=("B", lambda x: min(x)), ) expected = pd.DataFrame( { "A": [1.0, 1.0, np.nan, np.nan, np.nan, np.nan], "B": [np.nan, np.nan, 4.0, np.nan, 10.0, 1.0], "C": [np.nan, np.nan, np.nan, 3.0, np.nan, np.nan], }, index=pd.Index(["foo", "bar", "cat", "dat", "f", "kk"]), ) tm.assert_frame_equal(result, expected) def test_agg_namedtuple(self): # GH 26513 df = pd.DataFrame({"A": [0, 1], "B": [1, 2]}) result = df.agg( foo=pd.NamedAgg("B", "sum"), bar=pd.NamedAgg("B", min), cat=pd.NamedAgg(column="B", aggfunc="count"), fft=pd.NamedAgg("B", aggfunc="max"), ) expected = pd.DataFrame( {"B": [3, 1, 2, 2]}, index=pd.Index(["foo", "bar", "cat", "fft"]) ) tm.assert_frame_equal(result, expected) result = df.agg( foo=pd.NamedAgg("A", "min"), bar=pd.NamedAgg(column="B", aggfunc="max"), cat=pd.NamedAgg(column="A", aggfunc="max"), ) expected = pd.DataFrame( {"A": [0.0, np.nan, 1.0], "B": [np.nan, 2.0, np.nan]}, index=pd.Index(["foo", "bar", "cat"]), ) tm.assert_frame_equal(result, expected) def test_agg_raises(self): # GH 26513 df = pd.DataFrame({"A": [0, 1], "B": [1, 2]}) msg = "Must provide" with pytest.raises(TypeError, match=msg): df.agg()
bsd-3-clause
RPGOne/Skynet
scikit-learn-c604ac39ad0e5b066d964df3e8f31ba7ebda1e0e/sklearn/neural_network/tests/test_rbm.py
17
6222
import sys import re import numpy as np from scipy.sparse import csc_matrix, csr_matrix, lil_matrix from sklearn.utils.testing import (assert_almost_equal, assert_array_equal, assert_true) from sklearn.datasets import load_digits from sklearn.externals.six.moves import cStringIO as StringIO from sklearn.neural_network import BernoulliRBM from sklearn.utils.validation import assert_all_finite np.seterr(all='warn') Xdigits = load_digits().data Xdigits -= Xdigits.min() Xdigits /= Xdigits.max() def test_fit(): X = Xdigits.copy() rbm = BernoulliRBM(n_components=64, learning_rate=0.1, batch_size=10, n_iter=7, random_state=9) rbm.fit(X) assert_almost_equal(rbm.score_samples(X).mean(), -21., decimal=0) # in-place tricks shouldn't have modified X assert_array_equal(X, Xdigits) def test_partial_fit(): X = Xdigits.copy() rbm = BernoulliRBM(n_components=64, learning_rate=0.1, batch_size=20, random_state=9) n_samples = X.shape[0] n_batches = int(np.ceil(float(n_samples) / rbm.batch_size)) batch_slices = np.array_split(X, n_batches) for i in range(7): for batch in batch_slices: rbm.partial_fit(batch) assert_almost_equal(rbm.score_samples(X).mean(), -21., decimal=0) assert_array_equal(X, Xdigits) def test_transform(): X = Xdigits[:100] rbm1 = BernoulliRBM(n_components=16, batch_size=5, n_iter=5, random_state=42) rbm1.fit(X) Xt1 = rbm1.transform(X) Xt2 = rbm1._mean_hiddens(X) assert_array_equal(Xt1, Xt2) def test_small_sparse(): """BernoulliRBM should work on small sparse matrices.""" X = csr_matrix(Xdigits[:4]) BernoulliRBM().fit(X) # no exception def test_small_sparse_partial_fit(): for sparse in [csc_matrix, csr_matrix]: X_sparse = sparse(Xdigits[:100]) X = Xdigits[:100].copy() rbm1 = BernoulliRBM(n_components=64, learning_rate=0.1, batch_size=10, random_state=9) rbm2 = BernoulliRBM(n_components=64, learning_rate=0.1, batch_size=10, random_state=9) rbm1.partial_fit(X_sparse) rbm2.partial_fit(X) assert_almost_equal(rbm1.score_samples(X).mean(), rbm2.score_samples(X).mean(), decimal=0) def test_sample_hiddens(): rng = np.random.RandomState(0) X = Xdigits[:100] rbm1 = BernoulliRBM(n_components=2, batch_size=5, n_iter=5, random_state=42) rbm1.fit(X) h = rbm1._mean_hiddens(X[0]) hs = np.mean([rbm1._sample_hiddens(X[0], rng) for i in range(100)], 0) assert_almost_equal(h, hs, decimal=1) def test_fit_gibbs(): """ Gibbs on the RBM hidden layer should be able to recreate [[0], [1]] from the same input """ rng = np.random.RandomState(42) X = np.array([[0.], [1.]]) rbm1 = BernoulliRBM(n_components=2, batch_size=2, n_iter=42, random_state=rng) # you need that much iters rbm1.fit(X) assert_almost_equal(rbm1.components_, np.array([[0.02649814], [0.02009084]]), decimal=4) assert_almost_equal(rbm1.gibbs(X), X) return rbm1 def test_fit_gibbs_sparse(): """ Gibbs on the RBM hidden layer should be able to recreate [[0], [1]] from the same input even when the input is sparse, and test against non-sparse """ rbm1 = test_fit_gibbs() rng = np.random.RandomState(42) from scipy.sparse import csc_matrix X = csc_matrix([[0.], [1.]]) rbm2 = BernoulliRBM(n_components=2, batch_size=2, n_iter=42, random_state=rng) rbm2.fit(X) assert_almost_equal(rbm2.components_, np.array([[0.02649814], [0.02009084]]), decimal=4) assert_almost_equal(rbm2.gibbs(X), X.toarray()) assert_almost_equal(rbm1.components_, rbm2.components_) def test_gibbs_smoke(): """Check if we don't get NaNs sampling the full digits dataset.""" rng = np.random.RandomState(42) X = Xdigits rbm1 = BernoulliRBM(n_components=42, batch_size=40, n_iter=20, random_state=rng) rbm1.fit(X) X_sampled = rbm1.gibbs(X) assert_all_finite(X_sampled) def test_score_samples(): """Test score_samples (pseudo-likelihood) method.""" # Assert that pseudo-likelihood is computed without clipping. # See Fabian's blog, http://bit.ly/1iYefRk rng = np.random.RandomState(42) X = np.vstack([np.zeros(1000), np.ones(1000)]) rbm1 = BernoulliRBM(n_components=10, batch_size=2, n_iter=10, random_state=rng) rbm1.fit(X) assert_true((rbm1.score_samples(X) < -300).all()) # Sparse vs. dense should not affect the output. Also test sparse input # validation. rbm1.random_state = 42 d_score = rbm1.score_samples(X) rbm1.random_state = 42 s_score = rbm1.score_samples(lil_matrix(X)) assert_almost_equal(d_score, s_score) # Test numerical stability (#2785): would previously generate infinities # and crash with an exception. with np.errstate(under='ignore'): rbm1.score_samples(np.arange(1000) * 100) def test_rbm_verbose(): rbm = BernoulliRBM(n_iter=2, verbose=10) old_stdout = sys.stdout sys.stdout = StringIO() try: rbm.fit(Xdigits) finally: sys.stdout = old_stdout def test_sparse_and_verbose(): """ Make sure RBM works with sparse input when verbose=True """ old_stdout = sys.stdout sys.stdout = StringIO() from scipy.sparse import csc_matrix X = csc_matrix([[0.], [1.]]) rbm = BernoulliRBM(n_components=2, batch_size=2, n_iter=1, random_state=42, verbose=True) try: rbm.fit(X) s = sys.stdout.getvalue() # make sure output is sound assert_true(re.match(r"\[BernoulliRBM\] Iteration 1," r" pseudo-likelihood = -?(\d)+(\.\d+)?," r" time = (\d|\.)+s", s)) finally: sys.stdout = old_stdout
bsd-3-clause
jdoherty7/Adaptive_Interpolation
tests/vis.py
1
1263
import matplotlib.pyplot as plt import numpy as np D = [4, 6, 9, 13] Gnd = np.array([ 3.6 , 3.11, 3.51, 0.93]) Mnd = np.array([10.81, 10.58, 10.52, 3.16]) Gcd = np.array([3.6, 3.47, 3.51, 1.74]) Mcd = np.array([7.84, 8.2, 7.96, 4.1]) plt.figure() plt.title("Performance Total") plt.subplot(211) plt.ylabel("GFLOPS/s") plt.plot(D, Gnd, c='b', label="store interval") plt.plot(D, Gcd, c='r', label="calculate interval") plt.subplot(212) plt.ylabel("Memory Bandwidth (GB/s)") plt.plot(D, Mnd, c='b', label="store interval") plt.plot(D, Mcd, c='r', label="calculate interval") plt.legend() plt.show() plt.figure() plt.title("Performance Percent") #plt.subplot(211) #plt.ylabel("GFLOPS/s") plt.ylabel("Percent of peak performance") plt.plot(D, Gnd/35.2, c='b', label="store interval, GFLOPS") plt.plot(D, Gcd/35.2, c='r', label="calculate interval, GFLOPS") #plt.subplot(212) #plt.ylabel("Memory Bandwidth (GB/s)") plt.plot(D, Mnd/18.73, marker="o", c='b', label="store interval, MB") plt.plot(D, Mcd/18.73, marker="o", c='r', label="calculate interval, MB") #plt.plot(D, Gnd/35.2 + Mnd/18.73, marker="s", c='b', label="total store interval") #plt.plot(D, Gcd/35.2 + Mcd/18.73, marker="s", c='r', label="total calculate interval") plt.legend() plt.show()
mit
alberto-antonietti/nest-simulator
pynest/examples/clopath_synapse_spike_pairing.py
12
5804
# -*- coding: utf-8 -*- # # clopath_synapse_spike_pairing.py # # This file is part of NEST. # # Copyright (C) 2004 The NEST Initiative # # NEST is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # NEST is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with NEST. If not, see <http://www.gnu.org/licenses/>. """ Clopath Rule: Spike pairing experiment ---------------------------------------- This script simulates one ``aeif_psc_delta_clopath`` neuron that is connected with a Clopath connection [1]_. The synapse receives pairs of a pre- and a postsynaptic spikes that are separated by either 10 ms (pre before post) or -10 ms (post before pre). The change of the synaptic weight is measured after five of such pairs. This experiment is repeated five times with different rates of the sequence of the spike pairs: 10Hz, 20Hz, 30Hz, 40Hz, and 50Hz. References ~~~~~~~~~~~ .. [1] Clopath C, Büsing L, Vasilaki E, Gerstner W (2010). Connectivity reflects coding: a model of voltage-based STDP with homeostasis. Nature Neuroscience 13:3, 344--352 """ import numpy as np import matplotlib.pyplot as plt import nest ############################################################################## # First we specify the neuron parameters. To enable voltage dependent # prefactor ``A_LTD(u_bar_bar)`` add ``A_LTD_const: False`` to the dictionary. nrn_params = {'V_m': -70.6, 'E_L': -70.6, 'C_m': 281.0, 'theta_minus': -70.6, 'theta_plus': -45.3, 'A_LTD': 14.0e-5, 'A_LTP': 8.0e-5, 'tau_minus': 10.0, 'tau_plus': 7.0, 'delay_u_bars': 4.0, 'a': 4.0, 'b': 0.0805, 'V_reset': -70.6 + 21.0, 'V_clamp': 33.0, 't_clamp': 2.0, 't_ref': 0.0, } ############################################################################## # Hardcoded spike times of presynaptic spike generator spike_times_pre = [ # Presynaptic spike before the postsynaptic [20., 120., 220., 320., 420.], [20., 70., 120., 170., 220.], [20., 53.3, 86.7, 120., 153.3], [20., 45., 70., 95., 120.], [20., 40., 60., 80., 100.], # Presynaptic spike after the postsynaptic [120., 220., 320., 420., 520., 620.], [70., 120., 170., 220., 270., 320.], [53.3, 86.6, 120., 153.3, 186.6, 220.], [45., 70., 95., 120., 145., 170.], [40., 60., 80., 100., 120., 140.]] ############################################################################## # Hardcoded spike times of postsynaptic spike generator spike_times_post = [ [10., 110., 210., 310., 410.], [10., 60., 110., 160., 210.], [10., 43.3, 76.7, 110., 143.3], [10., 35., 60., 85., 110.], [10., 30., 50., 70., 90.], [130., 230., 330., 430., 530., 630.], [80., 130., 180., 230., 280., 330.], [63.3, 96.6, 130., 163.3, 196.6, 230.], [55., 80., 105., 130., 155., 180.], [50., 70., 90., 110., 130., 150.]] init_w = 0.5 syn_weights = [] resolution = 0.1 ############################################################################## # Loop over pairs of spike trains for (s_t_pre, s_t_post) in zip(spike_times_pre, spike_times_post): nest.ResetKernel() nest.SetKernelStatus({"resolution": resolution}) # Create one neuron nrn = nest.Create("aeif_psc_delta_clopath", 1, nrn_params) # We need a parrot neuron since spike generators can only # be connected with static connections prrt_nrn = nest.Create("parrot_neuron", 1) # Create and connect spike generators spike_gen_pre = nest.Create("spike_generator", 1, { "spike_times": s_t_pre}) nest.Connect(spike_gen_pre, prrt_nrn, syn_spec={"delay": resolution}) spike_gen_post = nest.Create("spike_generator", 1, { "spike_times": s_t_post}) nest.Connect(spike_gen_post, nrn, syn_spec={ "delay": resolution, "weight": 80.0}) # Create weight recorder wr = nest.Create('weight_recorder', 1) # Create Clopath connection with weight recorder nest.CopyModel("clopath_synapse", "clopath_synapse_rec", {"weight_recorder": wr}) syn_dict = {"synapse_model": "clopath_synapse_rec", "weight": init_w, "delay": resolution} nest.Connect(prrt_nrn, nrn, syn_spec=syn_dict) # Simulation simulation_time = (10.0 + max(s_t_pre[-1], s_t_post[-1])) nest.Simulate(simulation_time) # Extract and save synaptic weights weights = wr.get("events", "weights") syn_weights.append(weights[-1]) syn_weights = np.array(syn_weights) # scaling of the weights so that they are comparable to [1] syn_weights = 100.0*15.0*(syn_weights - init_w)/init_w + 100.0 # Plot results fig1, axA = plt.subplots(1, sharex=False) axA.plot([10., 20., 30., 40., 50.], syn_weights[5:], color='b', lw=2.5, ls='-', label="pre-post pairing") axA.plot([10., 20., 30., 40., 50.], syn_weights[:5], color='g', lw=2.5, ls='-', label="post-pre pairing") axA.set_ylabel("normalized weight change") axA.set_xlabel("rho (Hz)") axA.legend() axA.set_title("synaptic weight") plt.show()
gpl-2.0
andrewcbennett/iris
lib/iris/tests/test_pandas.py
1
17642
# (C) British Crown Copyright 2013 - 2015, Met Office # # This file is part of Iris. # # Iris is free software: you can redistribute it and/or modify it under # the terms of the GNU Lesser General Public License as published by the # Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Iris is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with Iris. If not, see <http://www.gnu.org/licenses/>. from __future__ import (absolute_import, division, print_function) from six.moves import (filter, input, map, range, zip) # noqa # import iris tests first so that some things can be initialised before # importing anything else import iris.tests as tests import copy import datetime import unittest import cf_units import matplotlib.units import netcdftime import numpy as np # Importing pandas has the side-effect of messing with the formatters # used by matplotlib for handling dates. default_units_registry = copy.copy(matplotlib.units.registry) try: import pandas except ImportError: # Disable all these tests if pandas is not installed. pandas = None matplotlib.units.registry = default_units_registry skip_pandas = unittest.skipIf(pandas is None, 'Test(s) require "pandas", ' 'which is not available.') if pandas is not None: from iris.coords import DimCoord from iris.cube import Cube import iris.pandas import cf_units @skip_pandas class TestAsSeries(tests.IrisTest): """Test conversion of 1D cubes to Pandas using as_series()""" def test_no_dim_coord(self): cube = Cube(np.array([0, 1, 2, 3, 4]), long_name="foo") series = iris.pandas.as_series(cube) self.assertArrayEqual(series, cube.data) self.assertString( str(series), tests.get_result_path(('pandas', 'as_series', 'no_dim_coord.txt'))) def test_simple(self): cube = Cube(np.array([0, 1, 2, 3, 4.4]), long_name="foo") dim_coord = DimCoord([5, 6, 7, 8, 9], long_name="bar") cube.add_dim_coord(dim_coord, 0) series = iris.pandas.as_series(cube) self.assertArrayEqual(series, cube.data) self.assertString( str(series), tests.get_result_path(('pandas', 'as_series', 'simple.txt'))) def test_masked(self): data = np.ma.MaskedArray([0, 1, 2, 3, 4.4], mask=[0, 1, 0, 1, 0]) cube = Cube(data, long_name="foo") series = iris.pandas.as_series(cube) self.assertArrayEqual(series, cube.data.astype('f').filled(np.nan)) self.assertString( str(series), tests.get_result_path(('pandas', 'as_series', 'masked.txt'))) def test_time_gregorian(self): cube = Cube(np.array([0, 1, 2, 3, 4]), long_name="ts") time_coord = DimCoord([0, 100.1, 200.2, 300.3, 400.4], long_name="time", units="days since 2000-01-01 00:00") cube.add_dim_coord(time_coord, 0) series = iris.pandas.as_series(cube) self.assertArrayEqual(series, cube.data) self.assertString( str(series), tests.get_result_path(('pandas', 'as_series', 'time_gregorian.txt'))) def test_time_360(self): cube = Cube(np.array([0, 1, 2, 3, 4]), long_name="ts") time_unit = cf_units.Unit("days since 2000-01-01 00:00", calendar=cf_units.CALENDAR_360_DAY) time_coord = DimCoord([0, 100.1, 200.2, 300.3, 400.4], long_name="time", units=time_unit) cube.add_dim_coord(time_coord, 0) series = iris.pandas.as_series(cube) self.assertArrayEqual(series, cube.data) self.assertString( str(series), tests.get_result_path(('pandas', 'as_series', 'time_360.txt'))) def test_copy_true(self): cube = Cube(np.array([0, 1, 2, 3, 4]), long_name="foo") series = iris.pandas.as_series(cube) series[0] = 99 self.assertEqual(cube.data[0], 0) def test_copy_int32_false(self): cube = Cube(np.array([0, 1, 2, 3, 4], dtype=np.int32), long_name="foo") series = iris.pandas.as_series(cube, copy=False) series[0] = 99 self.assertEqual(cube.data[0], 99) def test_copy_int64_false(self): cube = Cube(np.array([0, 1, 2, 3, 4], dtype=np.int32), long_name="foo") series = iris.pandas.as_series(cube, copy=False) series[0] = 99 self.assertEqual(cube.data[0], 99) def test_copy_float_false(self): cube = Cube(np.array([0, 1, 2, 3.3, 4]), long_name="foo") series = iris.pandas.as_series(cube, copy=False) series[0] = 99 self.assertEqual(cube.data[0], 99) def test_copy_masked_true(self): data = np.ma.MaskedArray([0, 1, 2, 3, 4], mask=[0, 1, 0, 1, 0]) cube = Cube(data, long_name="foo") series = iris.pandas.as_series(cube) series[0] = 99 self.assertEqual(cube.data[0], 0) def test_copy_masked_false(self): data = np.ma.MaskedArray([0, 1, 2, 3, 4], mask=[0, 1, 0, 1, 0]) cube = Cube(data, long_name="foo") with self.assertRaises(ValueError): series = iris.pandas.as_series(cube, copy=False) @skip_pandas class TestAsDataFrame(tests.IrisTest): """Test conversion of 2D cubes to Pandas using as_data_frame()""" def test_no_dim_coords(self): cube = Cube(np.array([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]), long_name="foo") data_frame = iris.pandas.as_data_frame(cube) self.assertArrayEqual(data_frame, cube.data) self.assertString( str(data_frame), tests.get_result_path(('pandas', 'as_dataframe', 'no_dim_coords.txt'))) def test_no_x_coord(self): cube = Cube(np.array([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]), long_name="foo") y_coord = DimCoord([10, 11], long_name="bar") cube.add_dim_coord(y_coord, 0) data_frame = iris.pandas.as_data_frame(cube) self.assertArrayEqual(data_frame, cube.data) self.assertString( str(data_frame), tests.get_result_path(('pandas', 'as_dataframe', 'no_x_coord.txt'))) def test_no_y_coord(self): cube = Cube(np.array([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]), long_name="foo") x_coord = DimCoord([10, 11, 12, 13, 14], long_name="bar") cube.add_dim_coord(x_coord, 1) data_frame = iris.pandas.as_data_frame(cube) self.assertArrayEqual(data_frame, cube.data) self.assertString( str(data_frame), tests.get_result_path(('pandas', 'as_dataframe', 'no_y_coord.txt'))) def test_simple(self): cube = Cube(np.array([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]), long_name="foo") x_coord = DimCoord([10, 11, 12, 13, 14], long_name="bar") y_coord = DimCoord([15, 16], long_name="milk") cube.add_dim_coord(x_coord, 1) cube.add_dim_coord(y_coord, 0) data_frame = iris.pandas.as_data_frame(cube) self.assertArrayEqual(data_frame, cube.data) self.assertString( str(data_frame), tests.get_result_path(('pandas', 'as_dataframe', 'simple.txt'))) def test_masked(self): data = np.ma.MaskedArray([[0, 1, 2, 3, 4.4], [5, 6, 7, 8, 9]], mask=[[0, 1, 0, 1, 0], [1, 0, 1, 0, 1]]) cube = Cube(data, long_name="foo") data_frame = iris.pandas.as_data_frame(cube) self.assertArrayEqual(data_frame, cube.data.astype('f').filled(np.nan)) self.assertString( str(data_frame), tests.get_result_path(('pandas', 'as_dataframe', 'masked.txt'))) def test_time_gregorian(self): cube = Cube(np.array([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]), long_name="ts") day_offsets = [0, 100.1, 200.2, 300.3, 400.4] time_coord = DimCoord(day_offsets, long_name="time", units="days since 2000-01-01 00:00") cube.add_dim_coord(time_coord, 1) data_frame = iris.pandas.as_data_frame(cube) self.assertArrayEqual(data_frame, cube.data) nanoseconds_per_day = 24 * 60 * 60 * 1000000000 days_to_2000 = 365 * 30 + 7 # pandas Timestamp class cannot handle floats in pandas <v0.12 timestamps = [pandas.Timestamp(int(nanoseconds_per_day * (days_to_2000 + day_offset))) for day_offset in day_offsets] self.assertTrue(all(data_frame.columns == timestamps)) self.assertTrue(all(data_frame.index == [0, 1])) def test_time_360(self): cube = Cube(np.array([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]), long_name="ts") time_unit = cf_units.Unit("days since 2000-01-01 00:00", calendar=cf_units.CALENDAR_360_DAY) time_coord = DimCoord([100.1, 200.2], long_name="time", units=time_unit) cube.add_dim_coord(time_coord, 0) data_frame = iris.pandas.as_data_frame(cube) self.assertArrayEqual(data_frame, cube.data) self.assertString( str(data_frame), tests.get_result_path(('pandas', 'as_dataframe', 'time_360.txt'))) def test_copy_true(self): cube = Cube(np.array([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]), long_name="foo") data_frame = iris.pandas.as_data_frame(cube) data_frame[0][0] = 99 self.assertEqual(cube.data[0, 0], 0) def test_copy_int32_false(self): cube = Cube(np.array([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]], dtype=np.int32), long_name="foo") data_frame = iris.pandas.as_data_frame(cube, copy=False) data_frame[0][0] = 99 self.assertEqual(cube.data[0, 0], 99) def test_copy_int64_false(self): cube = Cube(np.array([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]], dtype=np.int64), long_name="foo") data_frame = iris.pandas.as_data_frame(cube, copy=False) data_frame[0][0] = 99 self.assertEqual(cube.data[0, 0], 99) def test_copy_float_false(self): cube = Cube(np.array([[0, 1, 2, 3, 4.4], [5, 6, 7, 8, 9]]), long_name="foo") data_frame = iris.pandas.as_data_frame(cube, copy=False) data_frame[0][0] = 99 self.assertEqual(cube.data[0, 0], 99) def test_copy_masked_true(self): data = np.ma.MaskedArray([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]], mask=[[0, 1, 0, 1, 0], [1, 0, 1, 0, 1]]) cube = Cube(data, long_name="foo") data_frame = iris.pandas.as_data_frame(cube) data_frame[0][0] = 99 self.assertEqual(cube.data[0, 0], 0) def test_copy_masked_false(self): data = np.ma.MaskedArray([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]], mask=[[0, 1, 0, 1, 0], [1, 0, 1, 0, 1]]) cube = Cube(data, long_name="foo") with self.assertRaises(ValueError): data_frame = iris.pandas.as_data_frame(cube, copy=False) @skip_pandas class TestSeriesAsCube(tests.IrisTest): def test_series_simple(self): series = pandas.Series([0, 1, 2, 3, 4], index=[5, 6, 7, 8, 9]) self.assertCML( iris.pandas.as_cube(series), tests.get_result_path(('pandas', 'as_cube', 'series_simple.cml'))) def test_series_object(self): class Thing(object): def __repr__(self): return "A Thing" series = pandas.Series( [0, 1, 2, 3, 4], index=[Thing(), Thing(), Thing(), Thing(), Thing()]) self.assertCML( iris.pandas.as_cube(series), tests.get_result_path(('pandas', 'as_cube', 'series_object.cml'))) def test_series_masked(self): series = pandas.Series([0, float('nan'), 2, np.nan, 4], index=[5, 6, 7, 8, 9]) self.assertCML( iris.pandas.as_cube(series), tests.get_result_path(('pandas', 'as_cube', 'series_masked.cml'))) def test_series_datetime_gregorian(self): series = pandas.Series( [0, 1, 2, 3, 4], index=[datetime.datetime(2001, 1, 1, 1, 1, 1), datetime.datetime(2002, 2, 2, 2, 2, 2), datetime.datetime(2003, 3, 3, 3, 3, 3), datetime.datetime(2004, 4, 4, 4, 4, 4), datetime.datetime(2005, 5, 5, 5, 5, 5)]) self.assertCML( iris.pandas.as_cube(series), tests.get_result_path(('pandas', 'as_cube', 'series_datetime_gregorian.cml'))) def test_series_netcdftime_360(self): series = pandas.Series( [0, 1, 2, 3, 4], index=[netcdftime.datetime(2001, 1, 1, 1, 1, 1), netcdftime.datetime(2002, 2, 2, 2, 2, 2), netcdftime.datetime(2003, 3, 3, 3, 3, 3), netcdftime.datetime(2004, 4, 4, 4, 4, 4), netcdftime.datetime(2005, 5, 5, 5, 5, 5)]) self.assertCML( iris.pandas.as_cube(series, calendars={0: cf_units.CALENDAR_360_DAY}), tests.get_result_path(('pandas', 'as_cube', 'series_netcdfimte_360.cml'))) def test_copy_true(self): series = pandas.Series([0, 1, 2, 3, 4], index=[5, 6, 7, 8, 9]) cube = iris.pandas.as_cube(series) cube.data[0] = 99 self.assertEqual(series[5], 0) def test_copy_false(self): series = pandas.Series([0, 1, 2, 3, 4], index=[5, 6, 7, 8, 9]) cube = iris.pandas.as_cube(series, copy=False) cube.data[0] = 99 self.assertEqual(series[5], 99) @skip_pandas class TestDataFrameAsCube(tests.IrisTest): def test_data_frame_simple(self): data_frame = pandas.DataFrame([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]], index=[10, 11], columns=[12, 13, 14, 15, 16]) self.assertCML( iris.pandas.as_cube(data_frame), tests.get_result_path(('pandas', 'as_cube', 'data_frame_simple.cml'))) def test_data_frame_nonotonic(self): data_frame = pandas.DataFrame([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]], index=[10, 10], columns=[12, 12, 14, 15, 16]) self.assertCML( iris.pandas.as_cube(data_frame), tests.get_result_path(('pandas', 'as_cube', 'data_frame_nonotonic.cml'))) def test_data_frame_masked(self): data_frame = pandas.DataFrame([[0, float('nan'), 2, 3, 4], [5, 6, 7, np.nan, 9]], index=[10, 11], columns=[12, 13, 14, 15, 16]) self.assertCML( iris.pandas.as_cube(data_frame), tests.get_result_path(('pandas', 'as_cube', 'data_frame_masked.cml'))) def test_data_frame_netcdftime_360(self): data_frame = pandas.DataFrame( [[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]], index=[netcdftime.datetime(2001, 1, 1, 1, 1, 1), netcdftime.datetime(2002, 2, 2, 2, 2, 2)], columns=[10, 11, 12, 13, 14]) self.assertCML( iris.pandas.as_cube( data_frame, calendars={0: cf_units.CALENDAR_360_DAY}), tests.get_result_path(('pandas', 'as_cube', 'data_frame_netcdftime_360.cml'))) def test_data_frame_datetime_gregorian(self): data_frame = pandas.DataFrame( [[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]], index=[datetime.datetime(2001, 1, 1, 1, 1, 1), datetime.datetime(2002, 2, 2, 2, 2, 2)], columns=[10, 11, 12, 13, 14]) self.assertCML( iris.pandas.as_cube(data_frame), tests.get_result_path(('pandas', 'as_cube', 'data_frame_datetime_gregorian.cml'))) def test_copy_true(self): data_frame = pandas.DataFrame([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]) cube = iris.pandas.as_cube(data_frame) cube.data[0, 0] = 99 self.assertEqual(data_frame[0][0], 0) def test_copy_false(self): data_frame = pandas.DataFrame([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]) cube = iris.pandas.as_cube(data_frame, copy=False) cube.data[0, 0] = 99 self.assertEqual(data_frame[0][0], 99) if __name__ == "__main__": tests.main()
gpl-3.0
flightcom/freqtrade
freqtrade/tests/strategy/test_default_strategy.py
1
1256
import json import pytest from pandas import DataFrame from freqtrade.strategy.default_strategy import DefaultStrategy, class_name from freqtrade.analyze import parse_ticker_dataframe @pytest.fixture def result(): with open('freqtrade/tests/testdata/BTC_ETH-1.json') as data_file: return parse_ticker_dataframe(json.load(data_file)) def test_default_strategy_class_name(): assert class_name == DefaultStrategy.__name__ def test_default_strategy_structure(): assert hasattr(DefaultStrategy, 'minimal_roi') assert hasattr(DefaultStrategy, 'stoploss') assert hasattr(DefaultStrategy, 'ticker_interval') assert hasattr(DefaultStrategy, 'populate_indicators') assert hasattr(DefaultStrategy, 'populate_buy_trend') assert hasattr(DefaultStrategy, 'populate_sell_trend') def test_default_strategy(result): strategy = DefaultStrategy() assert type(strategy.minimal_roi) is dict assert type(strategy.stoploss) is float assert type(strategy.ticker_interval) is int indicators = strategy.populate_indicators(result) assert type(indicators) is DataFrame assert type(strategy.populate_buy_trend(indicators)) is DataFrame assert type(strategy.populate_sell_trend(indicators)) is DataFrame
gpl-3.0
OpenSoccerManager/opensoccermanager
uigtk/evaluation.py
1
1745
#!/usr/bin/env python3 # This file is part of OpenSoccerManager. # # OpenSoccerManager is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by the # Free Software Foundation, either version 3 of the License, or (at your # option) any later version. # # OpenSoccerManager is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY # or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for # more details. # # You should have received a copy of the GNU General Public License along with # OpenSoccerManager. If not, see <http://www.gnu.org/licenses/>. from gi.repository import Gtk from matplotlib.figure import Figure from matplotlib.backends.backend_gtk3cairo import FigureCanvasGTK3Cairo as FigureCanvas import uigtk.widgets class Evaluation(uigtk.widgets.Grid): __name__ = "evaluation" def __init__(self): uigtk.widgets.Grid.__init__(self) figure = Figure() axis = figure.add_subplot(1, 1, 1) axis.set_xlim(0, 46) axis.set_xlabel("Week") axis.set_ylim(0, 100) axis.set_ylabel("Percentage Rating") values = [0] * 46 line, = axis.plot(values, label='Chairman') line, = axis.plot(values, label='Staff') line, = axis.plot(values, label='Fans') line, = axis.plot(values, label='Finances') line, = axis.plot(values, label='Media') axis.legend() figurecanvas = FigureCanvas(figure) figurecanvas.set_hexpand(True) figurecanvas.set_vexpand(True) self.add(figurecanvas) def run(self): self.show_all()
gpl-3.0
yutiansut/QUANTAXIS
QUANTAXIS/QASU/trans_gm.py
2
5663
""" 用于将本地掘金分钟数据转换为 QA 格式 有条件的用户可自行转换 """ import datetime import concurrent.futures from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor import pandas as pd import pymongo import os import QUANTAXIS as QA from QUANTAXIS.QAFetch.QATdx import QA_fetch_get_stock_list from QUANTAXIS.QAUtil import ( DATABASE, QA_util_date_stamp, QA_util_get_real_date, QA_util_log_info, QA_util_time_stamp, QA_util_to_json_from_pandas, trade_date_sse) def QA_SU_trans_stock_min(client=DATABASE, ui_log=None, ui_progress=None, data_path: str = "D:\\gm\\", type_="1min"): """ 将掘金本地数据导入 QA 数据库 :param client: :param ui_log: :param ui_progress: :param data_path: 存放掘金数据的路径,默认文件名格式为类似 "SHSE.600000.csv" 格式 """ code_list = list(map(lambda x: x.split(".")[1], os.listdir(data_path))) coll = client.stock_min coll.create_index([ ("code", pymongo.ASCENDING), ("time_stamp", pymongo.ASCENDING), ("date_stamp", pymongo.ASCENDING), ]) err = [] def __transform_gm_to_qa(file_path: str = None, end_time: str = None, type_="1min"): """ 导入相应 csv 文件,并处理格式 1. 这里默认为掘金数据格式: amount bob close eob frequency high low open position pre_close symbol volume 0 2522972.0 2018-08-16 09:30:00+08:00 9.84 2018-08-16 09:31:00+08:00 60s 9.87 9.84 9.87 0 0.0 SHSE.600000 255900 1 3419453.0 2018-08-16 09:31:00+08:00 9.89 2018-08-16 09:32:00+08:00 60s 9.90 9.84 9.86 0 0.0 SHSE.600000 346400 ... 2. 与 QUANTAXIS.QAFetch.QATdx.QA_fetch_get_stock_min 获取数据进行匹配,具体处理详见相应源码 open close high low vol amount ... datetime 2018-12-03 09:31:00 10.99 10.90 10.99 10.90 2.211700e+06 2.425626e+07 ... """ if file_path is None: raise ValueError("输入文件地址") df_local = pd.read_csv(file_path) # 列名处理 df_local = df_local.rename(columns={ "eob": "datetime", "volume": "vol", "symbol": "code" }).drop(["bob", "frequency", "position", "pre_close"], axis=1) # 格式处理 df_local["code"] = df_local["code"].map(str).str.slice(5, ) df_local["datetime"] = pd.to_datetime(df_local["datetime"].map(str).str.slice( 0, 19), utc=False) df_local["date"] = df_local.datetime.map(str).str.slice(0, 10) df_local = df_local.set_index("datetime", drop=False) df_local["date_stamp"] = df_local["date"].apply( lambda x: QA_util_date_stamp(x)) df_local["time_stamp"] = ( df_local["datetime"].map(str).apply(lambda x: QA_util_time_stamp(x))) df_local["type"] = type_ df_local = df_local.loc[slice(None, end_time)] df_local["datetime"] = df_local["datetime"].map(str) df_local["type"] = type_ return df_local[[ "open", "close", "high", "low", "vol", "amount", "datetime", "code", "date", "date_stamp", "time_stamp", "type", ]] def __saving_work(code, coll): QA_util_log_info( "##JOB03 Now Saving STOCK_MIN ==== {}".format(code), ui_log=ui_log) try: col_filter = {"code": code, "type": type_} ref_ = coll.find(col_filter) end_time = ref_[0]['datetime'] # 本地存储分钟数据最早的时间 filename = "SHSE."+code + \ ".csv" if code[0] == '6' else "SZSE."+code+".csv" __data = __transform_gm_to_qa( data_path+filename, end_time, type_) # 加入 end_time, 避免出现数据重复 QA_util_log_info( "##JOB03.{} Now Saving {} from {} to {} == {}".format( type_, code, __data['datetime'].iloc[0], __data['datetime'].iloc[-1], type_, ), ui_log=ui_log, ) if len(__data) > 1: coll.insert_many( QA_util_to_json_from_pandas(__data)[1::]) except Exception as e: QA_util_log_info(e, ui_log=ui_log) err.append(code) QA_util_log_info(err, ui_log=ui_log) executor = ThreadPoolExecutor(max_workers=4) res = { executor.submit(__saving_work, code_list[i_], coll) for i_ in range(len(code_list)) } count = 0 for i_ in concurrent.futures.as_completed(res): strProgress = "TRANSFORM PROGRESS {} ".format( str(float(count / len(code_list) * 100))[0:4] + "%") intProgress = int(count / len(code_list) * 10000.0) count = count + 1 if len(err) < 1: QA_util_log_info("SUCCESS", ui_log=ui_log) else: QA_util_log_info(" ERROR CODE \n ", ui_log=ui_log) QA_util_log_info(err, ui_log=ui_log) if len(err) < 1: QA_util_log_info("SUCCESS", ui_log=ui_log) else: QA_util_log_info(" ERROR CODE \n ", ui_log=ui_log) QA_util_log_info(err, ui_log=ui_log) if __name__ == "__main__": QA_SU_trans_stock_min()()
mit
benhamner/GEFlightQuest
PythonModule/geflight/benchmark/only_estimated_arrival_benchmark.py
3
2146
from dateutil.parser import parse from geflight.transform import flighthistoryevents, utilities as tu from geflight.benchmark import utilities as bu from geflight.benchmark import process_test_set_scaffold import os import pandas as pd def get_estimated_arrival(row, arrival_type, midnight_time): if row["estimated_%s_arrival" % arrival_type] != "MISSING": return row["estimated_%s_arrival" % arrival_type] return midnight_time def process_day(day): day.df_test_flight_history["estimated_runway_arrival"] = "MISSING" day.df_test_flight_history["estimated_gate_arrival"] = "MISSING" df_fhe = pd.read_csv(os.path.join(day.test_day_path, "FlightHistory", "flighthistoryevents.csv"), converters={"date_time_recorded": tu.parse_datetime_format6}) df_fhe = df_fhe.sort("date_time_recorded") for i, row in df_fhe.iterrows(): f_id = row["flight_history_id"] if f_id not in day.df_test_flight_history.index: continue if type(row["data_updated"]) != str: continue offset = day.df_test_flight_history["arrival_airport_timezone_offset"][f_id] if offset>0: offset_str = "+" + str(offset) else: offset_str = str(offset) gate_str = flighthistoryevents.get_estimated_gate_arrival_string(row["data_updated"]) if gate_str: day.df_test_flight_history["estimated_gate_arrival"][f_id] = parse(gate_str+offset_str) runway_str = flighthistoryevents.get_estimated_runway_arrival_string(row["data_updated"]) if runway_str: day.df_test_flight_history["estimated_runway_arrival"][f_id] = parse(runway_str+offset_str) for i, row in day.df_test_flight_history.iterrows(): day.df_predictions["actual_runway_arrival"][i] = get_estimated_arrival(row, "runway", day.midnight_time) day.df_predictions["actual_gate_arrival"][i] = get_estimated_arrival(row, "gate", day.midnight_time) return day.df_predictions if __name__=="__main__": process_test_set_scaffold.process_test_set(process_day, "only_estimated_arrival_benchmark.csv")
bsd-2-clause
scalable-networks/gnuradio-3.7.2.1
gr-filter/examples/interpolate.py
58
8816
#!/usr/bin/env python # # Copyright 2009,2012,2013 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # from gnuradio import gr from gnuradio import blocks from gnuradio import filter import sys, time try: from gnuradio import analog except ImportError: sys.stderr.write("Error: Program requires gr-analog.\n") sys.exit(1) try: import scipy from scipy import fftpack except ImportError: sys.stderr.write("Error: Program requires scipy (see: www.scipy.org).\n") sys.exit(1) try: import pylab from pylab import mlab except ImportError: sys.stderr.write("Error: Program requires matplotlib (see: matplotlib.sourceforge.net).\n") sys.exit(1) class pfb_top_block(gr.top_block): def __init__(self): gr.top_block.__init__(self) self._N = 100000 # number of samples to use self._fs = 2000 # initial sampling rate self._interp = 5 # Interpolation rate for PFB interpolator self._ainterp = 5.5 # Resampling rate for the PFB arbitrary resampler # Frequencies of the signals we construct freq1 = 100 freq2 = 200 # Create a set of taps for the PFB interpolator # This is based on the post-interpolation sample rate self._taps = filter.firdes.low_pass_2(self._interp, self._interp*self._fs, freq2+50, 50, attenuation_dB=120, window=filter.firdes.WIN_BLACKMAN_hARRIS) # Create a set of taps for the PFB arbitrary resampler # The filter size is the number of filters in the filterbank; 32 will give very low side-lobes, # and larger numbers will reduce these even farther # The taps in this filter are based on a sampling rate of the filter size since it acts # internally as an interpolator. flt_size = 32 self._taps2 = filter.firdes.low_pass_2(flt_size, flt_size*self._fs, freq2+50, 150, attenuation_dB=120, window=filter.firdes.WIN_BLACKMAN_hARRIS) # Calculate the number of taps per channel for our own information tpc = scipy.ceil(float(len(self._taps)) / float(self._interp)) print "Number of taps: ", len(self._taps) print "Number of filters: ", self._interp print "Taps per channel: ", tpc # Create a couple of signals at different frequencies self.signal1 = analog.sig_source_c(self._fs, analog.GR_SIN_WAVE, freq1, 0.5) self.signal2 = analog.sig_source_c(self._fs, analog.GR_SIN_WAVE, freq2, 0.5) self.signal = blocks.add_cc() self.head = blocks.head(gr.sizeof_gr_complex, self._N) # Construct the PFB interpolator filter self.pfb = filter.pfb.interpolator_ccf(self._interp, self._taps) # Construct the PFB arbitrary resampler filter self.pfb_ar = filter.pfb.arb_resampler_ccf(self._ainterp, self._taps2, flt_size) self.snk_i = blocks.vector_sink_c() #self.pfb_ar.pfb.print_taps() #self.pfb.pfb.print_taps() # Connect the blocks self.connect(self.signal1, self.head, (self.signal,0)) self.connect(self.signal2, (self.signal,1)) self.connect(self.signal, self.pfb) self.connect(self.signal, self.pfb_ar) self.connect(self.signal, self.snk_i) # Create the sink for the interpolated signals self.snk1 = blocks.vector_sink_c() self.snk2 = blocks.vector_sink_c() self.connect(self.pfb, self.snk1) self.connect(self.pfb_ar, self.snk2) def main(): tb = pfb_top_block() tstart = time.time() tb.run() tend = time.time() print "Run time: %f" % (tend - tstart) if 1: fig1 = pylab.figure(1, figsize=(12,10), facecolor="w") fig2 = pylab.figure(2, figsize=(12,10), facecolor="w") fig3 = pylab.figure(3, figsize=(12,10), facecolor="w") Ns = 10000 Ne = 10000 fftlen = 8192 winfunc = scipy.blackman # Plot input signal fs = tb._fs d = tb.snk_i.data()[Ns:Ns+Ne] sp1_f = fig1.add_subplot(2, 1, 1) X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs, window = lambda d: d*winfunc(fftlen), scale_by_freq=True) X_in = 10.0*scipy.log10(abs(fftpack.fftshift(X))) f_in = scipy.arange(-fs/2.0, fs/2.0, fs/float(X_in.size)) p1_f = sp1_f.plot(f_in, X_in, "b") sp1_f.set_xlim([min(f_in), max(f_in)+1]) sp1_f.set_ylim([-200.0, 50.0]) sp1_f.set_title("Input Signal", weight="bold") sp1_f.set_xlabel("Frequency (Hz)") sp1_f.set_ylabel("Power (dBW)") Ts = 1.0/fs Tmax = len(d)*Ts t_in = scipy.arange(0, Tmax, Ts) x_in = scipy.array(d) sp1_t = fig1.add_subplot(2, 1, 2) p1_t = sp1_t.plot(t_in, x_in.real, "b-o") #p1_t = sp1_t.plot(t_in, x_in.imag, "r-o") sp1_t.set_ylim([-2.5, 2.5]) sp1_t.set_title("Input Signal", weight="bold") sp1_t.set_xlabel("Time (s)") sp1_t.set_ylabel("Amplitude") # Plot output of PFB interpolator fs_int = tb._fs*tb._interp sp2_f = fig2.add_subplot(2, 1, 1) d = tb.snk1.data()[Ns:Ns+(tb._interp*Ne)] X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs, window = lambda d: d*winfunc(fftlen), scale_by_freq=True) X_o = 10.0*scipy.log10(abs(fftpack.fftshift(X))) f_o = scipy.arange(-fs_int/2.0, fs_int/2.0, fs_int/float(X_o.size)) p2_f = sp2_f.plot(f_o, X_o, "b") sp2_f.set_xlim([min(f_o), max(f_o)+1]) sp2_f.set_ylim([-200.0, 50.0]) sp2_f.set_title("Output Signal from PFB Interpolator", weight="bold") sp2_f.set_xlabel("Frequency (Hz)") sp2_f.set_ylabel("Power (dBW)") Ts_int = 1.0/fs_int Tmax = len(d)*Ts_int t_o = scipy.arange(0, Tmax, Ts_int) x_o1 = scipy.array(d) sp2_t = fig2.add_subplot(2, 1, 2) p2_t = sp2_t.plot(t_o, x_o1.real, "b-o") #p2_t = sp2_t.plot(t_o, x_o.imag, "r-o") sp2_t.set_ylim([-2.5, 2.5]) sp2_t.set_title("Output Signal from PFB Interpolator", weight="bold") sp2_t.set_xlabel("Time (s)") sp2_t.set_ylabel("Amplitude") # Plot output of PFB arbitrary resampler fs_aint = tb._fs * tb._ainterp sp3_f = fig3.add_subplot(2, 1, 1) d = tb.snk2.data()[Ns:Ns+(tb._interp*Ne)] X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs, window = lambda d: d*winfunc(fftlen), scale_by_freq=True) X_o = 10.0*scipy.log10(abs(fftpack.fftshift(X))) f_o = scipy.arange(-fs_aint/2.0, fs_aint/2.0, fs_aint/float(X_o.size)) p3_f = sp3_f.plot(f_o, X_o, "b") sp3_f.set_xlim([min(f_o), max(f_o)+1]) sp3_f.set_ylim([-200.0, 50.0]) sp3_f.set_title("Output Signal from PFB Arbitrary Resampler", weight="bold") sp3_f.set_xlabel("Frequency (Hz)") sp3_f.set_ylabel("Power (dBW)") Ts_aint = 1.0/fs_aint Tmax = len(d)*Ts_aint t_o = scipy.arange(0, Tmax, Ts_aint) x_o2 = scipy.array(d) sp3_f = fig3.add_subplot(2, 1, 2) p3_f = sp3_f.plot(t_o, x_o2.real, "b-o") p3_f = sp3_f.plot(t_o, x_o1.real, "m-o") #p3_f = sp3_f.plot(t_o, x_o2.imag, "r-o") sp3_f.set_ylim([-2.5, 2.5]) sp3_f.set_title("Output Signal from PFB Arbitrary Resampler", weight="bold") sp3_f.set_xlabel("Time (s)") sp3_f.set_ylabel("Amplitude") pylab.show() if __name__ == "__main__": try: main() except KeyboardInterrupt: pass
gpl-3.0
gevero/deap
examples/ga/kursawefct.py
12
2948
# This file is part of DEAP. # # DEAP is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as # published by the Free Software Foundation, either version 3 of # the License, or (at your option) any later version. # # DEAP is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with DEAP. If not, see <http://www.gnu.org/licenses/>. import array import logging import random import numpy from deap import algorithms from deap import base from deap import benchmarks from deap import creator from deap import tools creator.create("FitnessMin", base.Fitness, weights=(-1.0, -1.0)) creator.create("Individual", array.array, typecode='d', fitness=creator.FitnessMin) toolbox = base.Toolbox() # Attribute generator toolbox.register("attr_float", random.uniform, -5, 5) # Structure initializers toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr_float, 3) toolbox.register("population", tools.initRepeat, list, toolbox.individual) def checkBounds(min, max): def decorator(func): def wrappper(*args, **kargs): offspring = func(*args, **kargs) for child in offspring: for i in range(len(child)): if child[i] > max: child[i] = max elif child[i] < min: child[i] = min return offspring return wrappper return decorator toolbox.register("evaluate", benchmarks.kursawe) toolbox.register("mate", tools.cxBlend, alpha=1.5) toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=3, indpb=0.3) toolbox.register("select", tools.selNSGA2) toolbox.decorate("mate", checkBounds(-5, 5)) toolbox.decorate("mutate", checkBounds(-5, 5)) def main(): random.seed(64) MU, LAMBDA = 50, 100 pop = toolbox.population(n=MU) hof = tools.ParetoFront() stats = tools.Statistics(lambda ind: ind.fitness.values) stats.register("avg", numpy.mean, axis=0) stats.register("std", numpy.std, axis=0) stats.register("min", numpy.min, axis=0) stats.register("max", numpy.max, axis=0) algorithms.eaMuPlusLambda(pop, toolbox, mu=MU, lambda_=LAMBDA, cxpb=0.5, mutpb=0.2, ngen=150, stats=stats, halloffame=hof) return pop, stats, hof if __name__ == "__main__": pop, stats, hof = main() # import matplotlib.pyplot as plt # import numpy # # front = numpy.array([ind.fitness.values for ind in pop]) # plt.scatter(front[:,0], front[:,1], c="b") # plt.axis("tight") # plt.show()
lgpl-3.0