repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
kevinpetersavage/BOUT-dev
examples/elm-pb/Python/plotmode.py
7
1518
from __future__ import print_function from __future__ import division from builtins import str from builtins import range from past.utils import old_div from numpy import *; #from scipy.io import readsav; import matplotlib.pyplot as plt; # Dynamic matplotlib settings from matplotlib import rcParams; rcParams['font.size'] = 20; rcParams['legend.fontsize'] = 'small'; rcParams['legend.labelspacing'] = 0.1; rcParams['lines.linewidth'] = 2; rcParams['savefig.bbox'] = 'tight'; # Create image directory if not exists import os; if not os.path.exists('image'): os.makedirs('image'); #fphi = transpose(readsav('fphi.idl.dat')['fphi'])[:,:,:,]; fphi = load('fp.npy') plt.figure(); for i in range(1, 9): print("Growth rate for mode number", i) print(gradient(log(abs(fphi[34, 32, i, :])))) plt.semilogy(((abs(fphi[34, 32, i, :]))), label = 'n=' + str(i * 5)); plt.legend(loc=2); plt.xlabel('Time'); plt.savefig('image/plotmode.png'); plt.savefig('image/plotmode.eps'); plt.show(block=False); plt.figure(); for i in range(1, 9): plt.plot(abs(fphi[:, 32, i, -1]), label = 'n=' + str(i * 5)); plt.legend(); plt.xlabel('X index'); plt.savefig('image/plotmodeamp.png'); plt.savefig('image/plotmodeamp.eps'); plt.show(block=False); plt.figure(); for i in range(1, 9): plt.plot(old_div(abs(fphi[:, 32, i, -1]),abs(fphi[:, 32, i, -1]).max()), label = 'n=' + str(i * 5)); plt.legend(); plt.xlabel('X index'); plt.savefig('image/plotmodenorm.png'); plt.savefig('image/plotmodenorm.eps'); plt.show();
gpl-3.0
vortex-ape/scikit-learn
sklearn/neighbors/unsupervised.py
7
4764
"""Unsupervised nearest neighbors learner""" from .base import NeighborsBase from .base import KNeighborsMixin from .base import RadiusNeighborsMixin from .base import UnsupervisedMixin class NearestNeighbors(NeighborsBase, KNeighborsMixin, RadiusNeighborsMixin, UnsupervisedMixin): """Unsupervised learner for implementing neighbor searches. Read more in the :ref:`User Guide <unsupervised_neighbors>`. Parameters ---------- n_neighbors : int, optional (default = 5) Number of neighbors to use by default for :meth:`kneighbors` queries. radius : float, optional (default = 1.0) Range of parameter space to use by default for :meth:`radius_neighbors` queries. algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional Algorithm used to compute the nearest neighbors: - 'ball_tree' will use :class:`BallTree` - 'kd_tree' will use :class:`KDTree` - 'brute' will use a brute-force search. - 'auto' will attempt to decide the most appropriate algorithm based on the values passed to :meth:`fit` method. Note: fitting on sparse input will override the setting of this parameter, using brute force. leaf_size : int, optional (default = 30) Leaf size passed to BallTree or KDTree. This can affect the speed of the construction and query, as well as the memory required to store the tree. The optimal value depends on the nature of the problem. metric : string or callable, default 'minkowski' metric to use for distance computation. Any metric from scikit-learn or scipy.spatial.distance can be used. If metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays as input and return one value indicating the distance between them. This works for Scipy's metrics, but is less efficient than passing the metric name as a string. Distance matrices are not supported. Valid values for metric are: - from scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2', 'manhattan'] - from scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev', 'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule'] See the documentation for scipy.spatial.distance for details on these metrics. p : integer, optional (default = 2) Parameter for the Minkowski metric from sklearn.metrics.pairwise.pairwise_distances. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. metric_params : dict, optional (default = None) Additional keyword arguments for the metric function. n_jobs : int or None, optional (default=None) The number of parallel jobs to run for neighbors search. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary <n_jobs>` for more details. Examples -------- >>> import numpy as np >>> from sklearn.neighbors import NearestNeighbors >>> samples = [[0, 0, 2], [1, 0, 0], [0, 0, 1]] >>> neigh = NearestNeighbors(2, 0.4) >>> neigh.fit(samples) #doctest: +ELLIPSIS NearestNeighbors(...) >>> neigh.kneighbors([[0, 0, 1.3]], 2, return_distance=False) ... #doctest: +ELLIPSIS array([[2, 0]]...) >>> nbrs = neigh.radius_neighbors([[0, 0, 1.3]], 0.4, return_distance=False) >>> np.asarray(nbrs[0][0]) array(2) See also -------- KNeighborsClassifier RadiusNeighborsClassifier KNeighborsRegressor RadiusNeighborsRegressor BallTree Notes ----- See :ref:`Nearest Neighbors <neighbors>` in the online documentation for a discussion of the choice of ``algorithm`` and ``leaf_size``. https://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm """ def __init__(self, n_neighbors=5, radius=1.0, algorithm='auto', leaf_size=30, metric='minkowski', p=2, metric_params=None, n_jobs=None, **kwargs): super(NearestNeighbors, self).__init__( n_neighbors=n_neighbors, radius=radius, algorithm=algorithm, leaf_size=leaf_size, metric=metric, p=p, metric_params=metric_params, n_jobs=n_jobs, **kwargs)
bsd-3-clause
hugobowne/scikit-learn
examples/cluster/plot_mean_shift.py
351
1793
""" ============================================= A demo of the mean-shift clustering algorithm ============================================= Reference: Dorin Comaniciu and Peter Meer, "Mean Shift: A robust approach toward feature space analysis". IEEE Transactions on Pattern Analysis and Machine Intelligence. 2002. pp. 603-619. """ print(__doc__) import numpy as np from sklearn.cluster import MeanShift, estimate_bandwidth from sklearn.datasets.samples_generator import make_blobs ############################################################################### # Generate sample data centers = [[1, 1], [-1, -1], [1, -1]] X, _ = make_blobs(n_samples=10000, centers=centers, cluster_std=0.6) ############################################################################### # Compute clustering with MeanShift # The following bandwidth can be automatically detected using bandwidth = estimate_bandwidth(X, quantile=0.2, n_samples=500) ms = MeanShift(bandwidth=bandwidth, bin_seeding=True) ms.fit(X) labels = ms.labels_ cluster_centers = ms.cluster_centers_ labels_unique = np.unique(labels) n_clusters_ = len(labels_unique) print("number of estimated clusters : %d" % n_clusters_) ############################################################################### # Plot result import matplotlib.pyplot as plt from itertools import cycle plt.figure(1) plt.clf() colors = cycle('bgrcmykbgrcmykbgrcmykbgrcmyk') for k, col in zip(range(n_clusters_), colors): my_members = labels == k cluster_center = cluster_centers[k] plt.plot(X[my_members, 0], X[my_members, 1], col + '.') plt.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=14) plt.title('Estimated number of clusters: %d' % n_clusters_) plt.show()
bsd-3-clause
anne-urai/RT_RDK
old_code/HDDM_joblib.py
2
4893
#!/usr/bin/env python # encoding: utf-8 """ Anne Urai, 2016 adapted from JW de Gee uses joblib instead of parallel python """ # ============================================ # # HDDM cheat sheet # ============================================ # # v = drift rate # a = boundary separation # t = nondecision time # z = starting point # dc = drift driterion # sv = inter-trial variability in drift-rate # st = inter-trial variability in non-decision time # sz = inter-trial variability in starting-point # ============================================ # # define the function that will do the work # ============================================ # def run_model(mypath, model_version, trace_id, nr_samples=50000): if model_version == 1: model_name = 'stimcoding' elif model_version == 2: model_name = 'prevresp_z' elif model_version == 3: model_name = 'prevresp_dc' elif model_version == 4: model_name = 'prevresp_prevrt_z' elif model_version == 5: model_name = 'prevresp_prevrt_dc' elif model_version == 6: model_name = 'prevresp_prevpupil_z' elif model_version == 7: model_name = 'prevresp_prevpupil_dc' import os model_filename = os.path.join(mypath, model_name, 'modelfit-md%d.model'%trace_id) modelExists = os.path.isfile(model_filename) if modelExists: print "model already exists, skipping" else: import hddm # get the csv mydata = hddm.load_csv(os.path.join(mypath, '2ifc_data_hddm.csv')) # specify the model m = hddm.HDDMStimCoding(mydata, stim_col='stimulus', split_param='v', drift_criterion=True, bias=True, include=('sv'), group_only_nodes=['sv'], depends_on={'t':['sessionnr'], 'v':['sessionnr'], 'a':['sessionnr'], 'dc':['sessionnr'], 'z':['sessionnr', 'prevresp']}, p_outlier=.05) # ============================================ # # do the actual sampling # ============================================ # m.sample(nr_samples, burn=nr_samples/4, thin=3, db='pickle', dbname=os.path.join(mypath, model_name, 'modelfit-md%d.db'%trace_id)) m.save(model_filename) # save the model to disk # ============================================ # # save the output values # ============================================ # results = m.gen_stats() # this seems different from print_stats?? results.to_csv(os.path.join(mypath, model_name, 'results-md%d.csv'%trace_id)) # save the DIC for this model text_file = open(os.path.join(mypath, model_name, 'DIC-md%d.txt'%trace_id), 'w') text_file.write("Model {}: {}\n".format(trace_id, m.dic)) text_file.close() # dont return model object, can't be pickled so Parallel will hang return trace_id # ============================================ # # set up this model # ============================================ # model_name = 'prevresp_z_stimcoding' nr_samples = 50000 # 50.000 for real results? nr_traces = 3 # find path depending on local/klimag import os usr = os.environ.get('USER') if usr in ['anne']: mypath = '/Users/anne/Data/projects/0/neurodec/Data/MEG-PL/Data/HDDM' if usr in ['aurai']: mypath = '/home/aurai/Data/MEG-PL/Data/HDDM' # make a folder for the outputs, combine name and time thispath = os.path.join(mypath, model_name) if not os.path.exists(thispath): os.mkdir(thispath) # ============================================ # # run models in parallel # ============================================ # from joblib import Parallel, delayed Parallel(n_jobs=nr_traces, verbose=10) \ (delayed(run_model)(mypath, model_name, trace_id, nr_samples) \ for trace_id in range(nr_traces)) # ============================================ # # post-processing # ============================================ # import hddm import matplotlib.pyplot as plt print "HDDM imported, starting post-processing" models = [] for trace_id in range(nr_traces): # run the models serially thism = hddm.load(os.path.join(mypath, model_name, 'modelfit-md%d.model'%trace_id)) print os.path.join(mypath, model_name, 'modelfit-md%d.model'%trace_id) # plot some output stuff in figures subfolder figpath = os.path.join(mypath, model_name, 'figures-md%d'%trace_id) if not os.path.exists(figpath): os.mkdir(figpath) thism.plot_posteriors(save=True, path=figpath, format='pdf') plt.close('all') # this will leave figures open, make sure to close them all models.append(thism) # gelman rubic on the list of models gr = hddm.analyze.gelman_rubin(models) text_file = open(os.path.join(mypath, model_name, 'gelman_rubic.txt'), 'w') for p in gr.items(): text_file.write("%s:%s\n" % p) text_file.close()
mit
kamcpp/tensorflow
tensorflow/contrib/learn/python/learn/tests/dataframe/in_memory_source_test.py
30
3738
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests NumpySource and PandasSource.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf from tensorflow.contrib.learn.python.learn.dataframe.transforms import in_memory_source # pylint: disable=g-import-not-at-top try: import pandas as pd HAS_PANDAS = True except ImportError: HAS_PANDAS = False def get_rows(array, row_indices): rows = [array[i] for i in row_indices] return np.vstack(rows) class NumpySourceTestCase(tf.test.TestCase): def testNumpySource(self): batch_size = 3 iterations = 1000 array = np.arange(32).reshape([16, 2]) numpy_source = in_memory_source.NumpySource(array, batch_size=batch_size) index_column = numpy_source().index value_column = numpy_source().value cache = {} with tf.Graph().as_default(): value_tensor = value_column.build(cache) index_tensor = index_column.build(cache) with tf.Session() as sess: coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess=sess, coord=coord) for i in range(iterations): expected_index = [ j % array.shape[0] for j in range(batch_size * i, batch_size * (i + 1)) ] expected_value = get_rows(array, expected_index) actual_index, actual_value = sess.run([index_tensor, value_tensor]) np.testing.assert_array_equal(expected_index, actual_index) np.testing.assert_array_equal(expected_value, actual_value) coord.request_stop() coord.join(threads) class PandasSourceTestCase(tf.test.TestCase): def testPandasFeeding(self): if not HAS_PANDAS: return batch_size = 3 iterations = 1000 index = np.arange(100, 132) a = np.arange(32) b = np.arange(32, 64) dataframe = pd.DataFrame({"a": a, "b": b}, index=index) pandas_source = in_memory_source.PandasSource(dataframe, batch_size=batch_size) pandas_columns = pandas_source() cache = {} with tf.Graph().as_default(): pandas_tensors = [col.build(cache) for col in pandas_columns] with tf.Session() as sess: coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess=sess, coord=coord) for i in range(iterations): indices = [j % dataframe.shape[0] for j in range(batch_size * i, batch_size * (i + 1))] expected_df_indices = dataframe.index[indices] expected_rows = dataframe.iloc[indices] actual_value = sess.run(pandas_tensors) np.testing.assert_array_equal(expected_df_indices, actual_value[0]) for col_num, col in enumerate(dataframe.columns): np.testing.assert_array_equal(expected_rows[col].values, actual_value[col_num + 1]) coord.request_stop() coord.join(threads) if __name__ == "__main__": tf.test.main()
apache-2.0
yunfeilu/scikit-learn
sklearn/externals/joblib/parallel.py
79
35628
""" Helpers for embarrassingly parallel code. """ # Author: Gael Varoquaux < gael dot varoquaux at normalesup dot org > # Copyright: 2010, Gael Varoquaux # License: BSD 3 clause from __future__ import division import os import sys import gc import warnings from math import sqrt import functools import time import threading import itertools from numbers import Integral try: import cPickle as pickle except: import pickle from ._multiprocessing_helpers import mp if mp is not None: from .pool import MemmapingPool from multiprocessing.pool import ThreadPool from .format_stack import format_exc, format_outer_frames from .logger import Logger, short_format_time from .my_exceptions import TransportableException, _mk_exception from .disk import memstr_to_kbytes from ._compat import _basestring VALID_BACKENDS = ['multiprocessing', 'threading'] # Environment variables to protect against bad situations when nesting JOBLIB_SPAWNED_PROCESS = "__JOBLIB_SPAWNED_PARALLEL__" # In seconds, should be big enough to hide multiprocessing dispatching # overhead. # This settings was found by running benchmarks/bench_auto_batching.py # with various parameters on various platforms. MIN_IDEAL_BATCH_DURATION = .2 # Should not be too high to avoid stragglers: long jobs running alone # on a single worker while other workers have no work to process any more. MAX_IDEAL_BATCH_DURATION = 2 # Under Python 3.4+ use the 'forkserver' start method by default: this makes it # possible to avoid crashing 3rd party libraries that manage an internal thread # pool that does not tolerate forking if hasattr(mp, 'get_start_method'): method = os.environ.get('JOBLIB_START_METHOD') if (method is None and mp.get_start_method() == 'fork' and 'forkserver' in mp.get_all_start_methods()): method = 'forkserver' DEFAULT_MP_CONTEXT = mp.get_context(method=method) else: DEFAULT_MP_CONTEXT = None class BatchedCalls(object): """Wrap a sequence of (func, args, kwargs) tuples as a single callable""" def __init__(self, iterator_slice): self.items = list(iterator_slice) self._size = len(self.items) def __call__(self): return [func(*args, **kwargs) for func, args, kwargs in self.items] def __len__(self): return self._size ############################################################################### # CPU count that works also when multiprocessing has been disabled via # the JOBLIB_MULTIPROCESSING environment variable def cpu_count(): """ Return the number of CPUs. """ if mp is None: return 1 return mp.cpu_count() ############################################################################### # For verbosity def _verbosity_filter(index, verbose): """ Returns False for indices increasingly apart, the distance depending on the value of verbose. We use a lag increasing as the square of index """ if not verbose: return True elif verbose > 10: return False if index == 0: return False verbose = .5 * (11 - verbose) ** 2 scale = sqrt(index / verbose) next_scale = sqrt((index + 1) / verbose) return (int(next_scale) == int(scale)) ############################################################################### class WorkerInterrupt(Exception): """ An exception that is not KeyboardInterrupt to allow subprocesses to be interrupted. """ pass ############################################################################### class SafeFunction(object): """ Wraps a function to make it exception with full traceback in their representation. Useful for parallel computing with multiprocessing, for which exceptions cannot be captured. """ def __init__(self, func): self.func = func def __call__(self, *args, **kwargs): try: return self.func(*args, **kwargs) except KeyboardInterrupt: # We capture the KeyboardInterrupt and reraise it as # something different, as multiprocessing does not # interrupt processing for a KeyboardInterrupt raise WorkerInterrupt() except: e_type, e_value, e_tb = sys.exc_info() text = format_exc(e_type, e_value, e_tb, context=10, tb_offset=1) if issubclass(e_type, TransportableException): raise else: raise TransportableException(text, e_type) ############################################################################### def delayed(function, check_pickle=True): """Decorator used to capture the arguments of a function. Pass `check_pickle=False` when: - performing a possibly repeated check is too costly and has been done already once outside of the call to delayed. - when used in conjunction `Parallel(backend='threading')`. """ # Try to pickle the input function, to catch the problems early when # using with multiprocessing: if check_pickle: pickle.dumps(function) def delayed_function(*args, **kwargs): return function, args, kwargs try: delayed_function = functools.wraps(function)(delayed_function) except AttributeError: " functools.wraps fails on some callable objects " return delayed_function ############################################################################### class ImmediateComputeBatch(object): """Sequential computation of a batch of tasks. This replicates the async computation API but actually does not delay the computations when joblib.Parallel runs in sequential mode. """ def __init__(self, batch): # Don't delay the application, to avoid keeping the input # arguments in memory self.results = batch() def get(self): return self.results ############################################################################### class BatchCompletionCallBack(object): """Callback used by joblib.Parallel's multiprocessing backend. This callable is executed by the parent process whenever a worker process has returned the results of a batch of tasks. It is used for progress reporting, to update estimate of the batch processing duration and to schedule the next batch of tasks to be processed. """ def __init__(self, dispatch_timestamp, batch_size, parallel): self.dispatch_timestamp = dispatch_timestamp self.batch_size = batch_size self.parallel = parallel def __call__(self, out): self.parallel.n_completed_tasks += self.batch_size this_batch_duration = time.time() - self.dispatch_timestamp if (self.parallel.batch_size == 'auto' and self.batch_size == self.parallel._effective_batch_size): # Update the smoothed streaming estimate of the duration of a batch # from dispatch to completion old_duration = self.parallel._smoothed_batch_duration if old_duration == 0: # First record of duration for this batch size after the last # reset. new_duration = this_batch_duration else: # Update the exponentially weighted average of the duration of # batch for the current effective size. new_duration = 0.8 * old_duration + 0.2 * this_batch_duration self.parallel._smoothed_batch_duration = new_duration self.parallel.print_progress() if self.parallel._original_iterator is not None: self.parallel.dispatch_next() ############################################################################### class Parallel(Logger): ''' Helper class for readable parallel mapping. Parameters ----------- n_jobs: int, default: 1 The maximum number of concurrently running jobs, such as the number of Python worker processes when backend="multiprocessing" or the size of the thread-pool when backend="threading". If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. backend: str or None, default: 'multiprocessing' Specify the parallelization backend implementation. Supported backends are: - "multiprocessing" used by default, can induce some communication and memory overhead when exchanging input and output data with the with the worker Python processes. - "threading" is a very low-overhead backend but it suffers from the Python Global Interpreter Lock if the called function relies a lot on Python objects. "threading" is mostly useful when the execution bottleneck is a compiled extension that explicitly releases the GIL (for instance a Cython loop wrapped in a "with nogil" block or an expensive call to a library such as NumPy). verbose: int, optional The verbosity level: if non zero, progress messages are printed. Above 50, the output is sent to stdout. The frequency of the messages increases with the verbosity level. If it more than 10, all iterations are reported. pre_dispatch: {'all', integer, or expression, as in '3*n_jobs'} The number of batches (of tasks) to be pre-dispatched. Default is '2*n_jobs'. When batch_size="auto" this is reasonable default and the multiprocessing workers shoud never starve. batch_size: int or 'auto', default: 'auto' The number of atomic tasks to dispatch at once to each worker. When individual evaluations are very fast, multiprocessing can be slower than sequential computation because of the overhead. Batching fast computations together can mitigate this. The ``'auto'`` strategy keeps track of the time it takes for a batch to complete, and dynamically adjusts the batch size to keep the time on the order of half a second, using a heuristic. The initial batch size is 1. ``batch_size="auto"`` with ``backend="threading"`` will dispatch batches of a single task at a time as the threading backend has very little overhead and using larger batch size has not proved to bring any gain in that case. temp_folder: str, optional Folder to be used by the pool for memmaping large arrays for sharing memory with worker processes. If None, this will try in order: - a folder pointed by the JOBLIB_TEMP_FOLDER environment variable, - /dev/shm if the folder exists and is writable: this is a RAMdisk filesystem available by default on modern Linux distributions, - the default system temporary folder that can be overridden with TMP, TMPDIR or TEMP environment variables, typically /tmp under Unix operating systems. Only active when backend="multiprocessing". max_nbytes int, str, or None, optional, 1M by default Threshold on the size of arrays passed to the workers that triggers automated memory mapping in temp_folder. Can be an int in Bytes, or a human-readable string, e.g., '1M' for 1 megabyte. Use None to disable memmaping of large arrays. Only active when backend="multiprocessing". Notes ----- This object uses the multiprocessing module to compute in parallel the application of a function to many different arguments. The main functionality it brings in addition to using the raw multiprocessing API are (see examples for details): * More readable code, in particular since it avoids constructing list of arguments. * Easier debugging: - informative tracebacks even when the error happens on the client side - using 'n_jobs=1' enables to turn off parallel computing for debugging without changing the codepath - early capture of pickling errors * An optional progress meter. * Interruption of multiprocesses jobs with 'Ctrl-C' * Flexible pickling control for the communication to and from the worker processes. * Ability to use shared memory efficiently with worker processes for large numpy-based datastructures. Examples -------- A simple example: >>> from math import sqrt >>> from sklearn.externals.joblib import Parallel, delayed >>> Parallel(n_jobs=1)(delayed(sqrt)(i**2) for i in range(10)) [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0] Reshaping the output when the function has several return values: >>> from math import modf >>> from sklearn.externals.joblib import Parallel, delayed >>> r = Parallel(n_jobs=1)(delayed(modf)(i/2.) for i in range(10)) >>> res, i = zip(*r) >>> res (0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5) >>> i (0.0, 0.0, 1.0, 1.0, 2.0, 2.0, 3.0, 3.0, 4.0, 4.0) The progress meter: the higher the value of `verbose`, the more messages:: >>> from time import sleep >>> from sklearn.externals.joblib import Parallel, delayed >>> r = Parallel(n_jobs=2, verbose=5)(delayed(sleep)(.1) for _ in range(10)) #doctest: +SKIP [Parallel(n_jobs=2)]: Done 1 out of 10 | elapsed: 0.1s remaining: 0.9s [Parallel(n_jobs=2)]: Done 3 out of 10 | elapsed: 0.2s remaining: 0.5s [Parallel(n_jobs=2)]: Done 6 out of 10 | elapsed: 0.3s remaining: 0.2s [Parallel(n_jobs=2)]: Done 9 out of 10 | elapsed: 0.5s remaining: 0.1s [Parallel(n_jobs=2)]: Done 10 out of 10 | elapsed: 0.5s finished Traceback example, note how the line of the error is indicated as well as the values of the parameter passed to the function that triggered the exception, even though the traceback happens in the child process:: >>> from heapq import nlargest >>> from sklearn.externals.joblib import Parallel, delayed >>> Parallel(n_jobs=2)(delayed(nlargest)(2, n) for n in (range(4), 'abcde', 3)) #doctest: +SKIP #... --------------------------------------------------------------------------- Sub-process traceback: --------------------------------------------------------------------------- TypeError Mon Nov 12 11:37:46 2012 PID: 12934 Python 2.7.3: /usr/bin/python ........................................................................... /usr/lib/python2.7/heapq.pyc in nlargest(n=2, iterable=3, key=None) 419 if n >= size: 420 return sorted(iterable, key=key, reverse=True)[:n] 421 422 # When key is none, use simpler decoration 423 if key is None: --> 424 it = izip(iterable, count(0,-1)) # decorate 425 result = _nlargest(n, it) 426 return map(itemgetter(0), result) # undecorate 427 428 # General case, slowest method TypeError: izip argument #1 must support iteration ___________________________________________________________________________ Using pre_dispatch in a producer/consumer situation, where the data is generated on the fly. Note how the producer is first called a 3 times before the parallel loop is initiated, and then called to generate new data on the fly. In this case the total number of iterations cannot be reported in the progress messages:: >>> from math import sqrt >>> from sklearn.externals.joblib import Parallel, delayed >>> def producer(): ... for i in range(6): ... print('Produced %s' % i) ... yield i >>> out = Parallel(n_jobs=2, verbose=100, pre_dispatch='1.5*n_jobs')( ... delayed(sqrt)(i) for i in producer()) #doctest: +SKIP Produced 0 Produced 1 Produced 2 [Parallel(n_jobs=2)]: Done 1 jobs | elapsed: 0.0s Produced 3 [Parallel(n_jobs=2)]: Done 2 jobs | elapsed: 0.0s Produced 4 [Parallel(n_jobs=2)]: Done 3 jobs | elapsed: 0.0s Produced 5 [Parallel(n_jobs=2)]: Done 4 jobs | elapsed: 0.0s [Parallel(n_jobs=2)]: Done 5 out of 6 | elapsed: 0.0s remaining: 0.0s [Parallel(n_jobs=2)]: Done 6 out of 6 | elapsed: 0.0s finished ''' def __init__(self, n_jobs=1, backend='multiprocessing', verbose=0, pre_dispatch='2 * n_jobs', batch_size='auto', temp_folder=None, max_nbytes='1M', mmap_mode='r'): self.verbose = verbose self._mp_context = DEFAULT_MP_CONTEXT if backend is None: # `backend=None` was supported in 0.8.2 with this effect backend = "multiprocessing" elif hasattr(backend, 'Pool') and hasattr(backend, 'Lock'): # Make it possible to pass a custom multiprocessing context as # backend to change the start method to forkserver or spawn or # preload modules on the forkserver helper process. self._mp_context = backend backend = "multiprocessing" if backend not in VALID_BACKENDS: raise ValueError("Invalid backend: %s, expected one of %r" % (backend, VALID_BACKENDS)) self.backend = backend self.n_jobs = n_jobs if (batch_size == 'auto' or isinstance(batch_size, Integral) and batch_size > 0): self.batch_size = batch_size else: raise ValueError( "batch_size must be 'auto' or a positive integer, got: %r" % batch_size) self.pre_dispatch = pre_dispatch self._temp_folder = temp_folder if isinstance(max_nbytes, _basestring): self._max_nbytes = 1024 * memstr_to_kbytes(max_nbytes) else: self._max_nbytes = max_nbytes self._mmap_mode = mmap_mode # Not starting the pool in the __init__ is a design decision, to be # able to close it ASAP, and not burden the user with closing it # unless they choose to use the context manager API with a with block. self._pool = None self._output = None self._jobs = list() self._managed_pool = False # This lock is used coordinate the main thread of this process with # the async callback thread of our the pool. self._lock = threading.Lock() def __enter__(self): self._managed_pool = True self._initialize_pool() return self def __exit__(self, exc_type, exc_value, traceback): self._terminate_pool() self._managed_pool = False def _effective_n_jobs(self): n_jobs = self.n_jobs if n_jobs == 0: raise ValueError('n_jobs == 0 in Parallel has no meaning') elif mp is None or n_jobs is None: # multiprocessing is not available or disabled, fallback # to sequential mode return 1 elif n_jobs < 0: n_jobs = max(mp.cpu_count() + 1 + n_jobs, 1) return n_jobs def _initialize_pool(self): """Build a process or thread pool and return the number of workers""" n_jobs = self._effective_n_jobs() # The list of exceptions that we will capture self.exceptions = [TransportableException] if n_jobs == 1: # Sequential mode: do not use a pool instance to avoid any # useless dispatching overhead self._pool = None elif self.backend == 'threading': self._pool = ThreadPool(n_jobs) elif self.backend == 'multiprocessing': if mp.current_process().daemon: # Daemonic processes cannot have children self._pool = None warnings.warn( 'Multiprocessing-backed parallel loops cannot be nested,' ' setting n_jobs=1', stacklevel=3) return 1 elif threading.current_thread().name != 'MainThread': # Prevent posix fork inside in non-main posix threads self._pool = None warnings.warn( 'Multiprocessing backed parallel loops cannot be nested' ' below threads, setting n_jobs=1', stacklevel=3) return 1 else: already_forked = int(os.environ.get(JOBLIB_SPAWNED_PROCESS, 0)) if already_forked: raise ImportError('[joblib] Attempting to do parallel computing ' 'without protecting your import on a system that does ' 'not support forking. To use parallel-computing in a ' 'script, you must protect your main loop using "if ' "__name__ == '__main__'" '". Please see the joblib documentation on Parallel ' 'for more information' ) # Set an environment variable to avoid infinite loops os.environ[JOBLIB_SPAWNED_PROCESS] = '1' # Make sure to free as much memory as possible before forking gc.collect() poolargs = dict( max_nbytes=self._max_nbytes, mmap_mode=self._mmap_mode, temp_folder=self._temp_folder, verbose=max(0, self.verbose - 50), context_id=0, # the pool is used only for one call ) if self._mp_context is not None: # Use Python 3.4+ multiprocessing context isolation poolargs['context'] = self._mp_context self._pool = MemmapingPool(n_jobs, **poolargs) # We are using multiprocessing, we also want to capture # KeyboardInterrupts self.exceptions.extend([KeyboardInterrupt, WorkerInterrupt]) else: raise ValueError("Unsupported backend: %s" % self.backend) return n_jobs def _terminate_pool(self): if self._pool is not None: self._pool.close() self._pool.terminate() # terminate does a join() self._pool = None if self.backend == 'multiprocessing': os.environ.pop(JOBLIB_SPAWNED_PROCESS, 0) def _dispatch(self, batch): """Queue the batch for computing, with or without multiprocessing WARNING: this method is not thread-safe: it should be only called indirectly via dispatch_one_batch. """ # If job.get() catches an exception, it closes the queue: if self._aborting: return if self._pool is None: job = ImmediateComputeBatch(batch) self._jobs.append(job) self.n_dispatched_batches += 1 self.n_dispatched_tasks += len(batch) self.n_completed_tasks += len(batch) if not _verbosity_filter(self.n_dispatched_batches, self.verbose): self._print('Done %3i tasks | elapsed: %s', (self.n_completed_tasks, short_format_time(time.time() - self._start_time) )) else: dispatch_timestamp = time.time() cb = BatchCompletionCallBack(dispatch_timestamp, len(batch), self) job = self._pool.apply_async(SafeFunction(batch), callback=cb) self._jobs.append(job) self.n_dispatched_tasks += len(batch) self.n_dispatched_batches += 1 def dispatch_next(self): """Dispatch more data for parallel processing This method is meant to be called concurrently by the multiprocessing callback. We rely on the thread-safety of dispatch_one_batch to protect against concurrent consumption of the unprotected iterator. """ if not self.dispatch_one_batch(self._original_iterator): self._iterating = False self._original_iterator = None def dispatch_one_batch(self, iterator): """Prefetch the tasks for the next batch and dispatch them. The effective size of the batch is computed here. If there are no more jobs to dispatch, return False, else return True. The iterator consumption and dispatching is protected by the same lock so calling this function should be thread safe. """ if self.batch_size == 'auto' and self.backend == 'threading': # Batching is never beneficial with the threading backend batch_size = 1 elif self.batch_size == 'auto': old_batch_size = self._effective_batch_size batch_duration = self._smoothed_batch_duration if (batch_duration > 0 and batch_duration < MIN_IDEAL_BATCH_DURATION): # The current batch size is too small: the duration of the # processing of a batch of task is not large enough to hide # the scheduling overhead. ideal_batch_size = int( old_batch_size * MIN_IDEAL_BATCH_DURATION / batch_duration) # Multiply by two to limit oscilations between min and max. batch_size = max(2 * ideal_batch_size, 1) self._effective_batch_size = batch_size if self.verbose >= 10: self._print("Batch computation too fast (%.4fs.) " "Setting batch_size=%d.", ( batch_duration, batch_size)) elif (batch_duration > MAX_IDEAL_BATCH_DURATION and old_batch_size >= 2): # The current batch size is too big. If we schedule overly long # running batches some CPUs might wait with nothing left to do # while a couple of CPUs a left processing a few long running # batches. Better reduce the batch size a bit to limit the # likelihood of scheduling such stragglers. self._effective_batch_size = batch_size = old_batch_size // 2 if self.verbose >= 10: self._print("Batch computation too slow (%.2fs.) " "Setting batch_size=%d.", ( batch_duration, batch_size)) else: # No batch size adjustment batch_size = old_batch_size if batch_size != old_batch_size: # Reset estimation of the smoothed mean batch duration: this # estimate is updated in the multiprocessing apply_async # CallBack as long as the batch_size is constant. Therefore # we need to reset the estimate whenever we re-tune the batch # size. self._smoothed_batch_duration = 0 else: # Fixed batch size strategy batch_size = self.batch_size with self._lock: tasks = BatchedCalls(itertools.islice(iterator, batch_size)) if not tasks: # No more tasks available in the iterator: tell caller to stop. return False else: self._dispatch(tasks) return True def _print(self, msg, msg_args): """Display the message on stout or stderr depending on verbosity""" # XXX: Not using the logger framework: need to # learn to use logger better. if not self.verbose: return if self.verbose < 50: writer = sys.stderr.write else: writer = sys.stdout.write msg = msg % msg_args writer('[%s]: %s\n' % (self, msg)) def print_progress(self): """Display the process of the parallel execution only a fraction of time, controlled by self.verbose. """ if not self.verbose: return elapsed_time = time.time() - self._start_time # This is heuristic code to print only 'verbose' times a messages # The challenge is that we may not know the queue length if self._original_iterator: if _verbosity_filter(self.n_dispatched_batches, self.verbose): return self._print('Done %3i tasks | elapsed: %s', (self.n_completed_tasks, short_format_time(elapsed_time), )) else: index = self.n_dispatched_batches # We are finished dispatching total_tasks = self.n_dispatched_tasks # We always display the first loop if not index == 0: # Display depending on the number of remaining items # A message as soon as we finish dispatching, cursor is 0 cursor = (total_tasks - index + 1 - self._pre_dispatch_amount) frequency = (total_tasks // self.verbose) + 1 is_last_item = (index + 1 == total_tasks) if (is_last_item or cursor % frequency): return remaining_time = (elapsed_time / (index + 1) * (self.n_dispatched_tasks - index - 1.)) self._print('Done %3i out of %3i | elapsed: %s remaining: %s', (index + 1, total_tasks, short_format_time(elapsed_time), short_format_time(remaining_time), )) def retrieve(self): self._output = list() while self._iterating or len(self._jobs) > 0: if len(self._jobs) == 0: # Wait for an async callback to dispatch new jobs time.sleep(0.01) continue # We need to be careful: the job list can be filling up as # we empty it and Python list are not thread-safe by default hence # the use of the lock with self._lock: job = self._jobs.pop(0) try: self._output.extend(job.get()) except tuple(self.exceptions) as exception: # Stop dispatching any new job in the async callback thread self._aborting = True if isinstance(exception, TransportableException): # Capture exception to add information on the local # stack in addition to the distant stack this_report = format_outer_frames(context=10, stack_start=1) report = """Multiprocessing exception: %s --------------------------------------------------------------------------- Sub-process traceback: --------------------------------------------------------------------------- %s""" % (this_report, exception.message) # Convert this to a JoblibException exception_type = _mk_exception(exception.etype)[0] exception = exception_type(report) # Kill remaining running processes without waiting for # the results as we will raise the exception we got back # to the caller instead of returning any result. with self._lock: self._terminate_pool() if self._managed_pool: # In case we had to terminate a managed pool, let # us start a new one to ensure that subsequent calls # to __call__ on the same Parallel instance will get # a working pool as they expect. self._initialize_pool() raise exception def __call__(self, iterable): if self._jobs: raise ValueError('This Parallel instance is already running') # A flag used to abort the dispatching of jobs in case an # exception is found self._aborting = False if not self._managed_pool: n_jobs = self._initialize_pool() else: n_jobs = self._effective_n_jobs() if self.batch_size == 'auto': self._effective_batch_size = 1 iterator = iter(iterable) pre_dispatch = self.pre_dispatch if pre_dispatch == 'all' or n_jobs == 1: # prevent further dispatch via multiprocessing callback thread self._original_iterator = None self._pre_dispatch_amount = 0 else: self._original_iterator = iterator if hasattr(pre_dispatch, 'endswith'): pre_dispatch = eval(pre_dispatch) self._pre_dispatch_amount = pre_dispatch = int(pre_dispatch) # The main thread will consume the first pre_dispatch items and # the remaining items will later be lazily dispatched by async # callbacks upon task completions. iterator = itertools.islice(iterator, pre_dispatch) self._start_time = time.time() self.n_dispatched_batches = 0 self.n_dispatched_tasks = 0 self.n_completed_tasks = 0 self._smoothed_batch_duration = 0.0 try: self._iterating = True while self.dispatch_one_batch(iterator): pass if pre_dispatch == "all" or n_jobs == 1: # The iterable was consumed all at once by the above for loop. # No need to wait for async callbacks to trigger to # consumption. self._iterating = False self.retrieve() # Make sure that we get a last message telling us we are done elapsed_time = time.time() - self._start_time self._print('Done %3i out of %3i | elapsed: %s finished', (len(self._output), len(self._output), short_format_time(elapsed_time))) finally: if not self._managed_pool: self._terminate_pool() self._jobs = list() output = self._output self._output = None return output def __repr__(self): return '%s(n_jobs=%s)' % (self.__class__.__name__, self.n_jobs)
bsd-3-clause
sanjanalab/GUIDES
static/data/gtex/gtex_mouse/generate_exons_2.py
2
4937
''' 1. Generate CCDS -> ENSG mapping. 2. Get ENSG -> CCDS intervals mapping from CCDS_coords. 3. Go through CCDS_coords.csv and change all CCDS to ENSG. 4. Remove duplicates on name column. 5. Change ENSG exon positions to the intervals we found above. 6. Add 5 to either side. 7. Save ''' import pandas as pd import pickle import time t0 = time.time() def union_intervals(intervals): sorted_by_lower_bound = sorted(intervals, key=lambda tup: tup[0]) merged = [] for higher in sorted_by_lower_bound: if not merged: merged.append(higher) else: lower = merged[-1] # test for intersection between lower and higher: # we know via sorting that lower[0] <= higher[0] if higher[0] <= lower[1]: upper_bound = max(lower[1], higher[1]) merged[-1] = (lower[0], upper_bound) # replace by merged interval else: merged.append(higher) return merged # 1. Generate CCDS -> ENSG mapping. ccds_ensg_map = {} with open('ENSMUSG-CCDS.txt', 'r') as ensg_ccds: for line in ensg_ccds: comps = line.strip('\n').split('\t') ensg = comps[0] ccds = comps[1] if len(ccds) > 0: if ccds not in ccds_ensg_map: ccds_ensg_map[ccds] = ensg # 2. Get ENSG -> CCDS intervals mapping from CCDS_coords. # set of starts/stops for an ensg ensg_coords = {} # CCDS -> range mapping (str |-> list) with open('CCDS_coords.csv', 'r') as ccds_coords_file: ccds_df = pd.read_csv(ccds_coords_file, sep="\t", header=0) # go through each CCDS entry individually print "going through each CCDS entry for ensg", time.time() - t0 for i, row in ccds_df.iterrows(): if i % (len(ccds_df) / 100) == 0: print i, '/', len(ccds_df), time.time() - t0 # find which ensembl gene it belongs to ccds_name = row['name'].split('.')[0] if ccds_name not in ccds_ensg_map: print ccds_name, "not in ccds_ensg_map" continue ensg = ccds_ensg_map[ccds_name] # Add the associated information to ensg_coords starts = row['exonStarts'] stops = row['exonEnds'] starts_nums = [int(num) for num in starts.split(',')[:-1]] stops_nums = [int(num) for num in stops.split(',')[:-1]] new_intervals = [(int(a),int(b)) for a, b in zip(starts_nums, stops_nums)] if ensg not in ensg_coords: ensg_coords[ensg] = { 'df_data': row, 'intervals': union_intervals(new_intervals) } else: all_intervals = ensg_coords[ensg]['intervals'] + new_intervals ensg_coords[ensg]['intervals'] = union_intervals(all_intervals) print "ready to go through results and move intervals into df", time.time() - t0 # go through results and move intervals into df results_df = pd.DataFrame(columns=['','name','chrom','strand','txStart','txEnd','cdsStart','cdsEnd','exonCount','exonStarts','exonEnds','id','name2','cdsStartStat','cdsEndStat','exonFrames']) exon_info_df = pd.DataFrame(columns=['','name','chrom','strand','txStart','txEnd','cdsStart','cdsEnd','exonCount','exonStarts','exonEnds','id','name2','cdsStartStat','cdsEndStat','exonFrames']) for idx, ensg in enumerate(ensg_coords): if idx % (len(ensg_coords) / 100) == 0: print idx, '/', len(ensg_coords), time.time() - t0 exonCount = len(ensg_coords[ensg]['intervals']) if exonCount == 0: continue # expand intervals to include intronic sequences (5 each side) starts_list = [] ends_list = [] for i in range(len(ensg_coords[ensg]['intervals'])): starts_list.append(ensg_coords[ensg]['intervals'][i][0] - 5) ends_list.append(ensg_coords[ensg]['intervals'][i][1] + 5) # recombine into string starts_list_str = (','.join([str(n) for n in starts_list])) + ',' ends_list_str = (','.join([str(n) for n in ends_list])) + ',' new_row = ensg_coords[ensg]['df_data'] ccdsStart = ensg_coords[ensg]['intervals'][0][0] ccdsEnd = ensg_coords[ensg]['intervals'][-1][1] new_row['name'] = ensg new_row['txStart'] = ccdsStart new_row['cdsStart'] = ccdsStart new_row['txEnd'] = ccdsEnd new_row['cdsEnd'] = ccdsEnd new_row['exonCount'] = exonCount new_row['exonStarts'] = starts_list_str new_row['exonEnds'] = ends_list_str new_row['chrom'] = new_row['chrom'].split('chr')[1] results_df.loc[idx] = new_row new_row['exonStarts'] = starts_list new_row['exonEnds'] = ends_list exon_info_df.loc[idx] = new_row print "writing results", time.time() - t0 # Write results exon_info = exon_info_df[["name", "chrom", "strand", "exonCount", "exonStarts", "exonEnds"]] with open("exon_info.p", "wb") as f: pickle.dump(exon_info, f) results_df.to_csv('refGene_mouse.txt', sep="\t", index=False, header=False) end_time = time.time() hours, rem = divmod(end_time-t0, 3600) minutes, seconds = divmod(rem, 60) print "time elapsed" print("{:0>2}:{:0>2}:{:05.2f}".format(int(hours),int(minutes),seconds))
bsd-3-clause
UC3MSocialRobots/novelty-detection-in-hri
helper files/helper.py
2
12942
import pandas as pd import numpy as np import scipy import arff as arff # Downloaded from: http://code.google.com/p/arff/ import matplotlib.pyplot as plt from sklearn.decomposition import PCA from pylab import * from itertools import cycle from sklearn import metrics from sklearn.svm import OneClassSVM from sklearn.cluster import KMeans from sklearn.mixture import GMM, DPGMM from sklearn.hmm import GaussianHMM from sklearn.covariance import MinCovDet from sklearn.covariance import EllipticEnvelope from scipy import stats import user_data_loader as udl from IPython.display import HTML from IPython.html import widgets from IPython.display import display, clear_output import lsanomaly import print_ske as pp red = 'STAND_POINTING_RIGHT' blue = 'STAND_POINTING_LEFT' green = 'STAND_POINTING_FORWARD' global GMM_n, one_n, lsa_n, K_n, GMM_s, one_s, lsa_s #Novelty Scores for each algorithm, those ''_n are for noise score, ''_s are for strangeness score global K_GMM_n, K_KMeans_n, K_GMM_s, K_KMeans_s #K_GMM_n, K_KMeans_n are the noise curiosity factors for each algorithm #K_GMM_s, K_KMeans_s are the strangeness curiosity factors for each algorithm #Ks is a list containing the 4 above mentioned parameters ''' --------- FUNTIONS TO RELOAD AND DISPLAY RESULTS --------- ''' def compute_and_reload_figures(normal_users, queue, users_normal, users, Ks, name=''): ''' Receives the list of normal_users and the queue. Also users_normal and users, with the form of [[number_user, pose]...] Recevices Ks, the list of curiosity factors for the algorithms Can receive a name to save the figure displayed Calls compute scores to obtain the strangeness score and noise score for all the last entry in the queue Computes the colors of the bars depending on the values of the scores Plots a bar graph with the scores and the names ''' global GMM_n, one_n, lsa_n, K_n, GMM_s, one_s, lsa_s #Novelty Scores for each algorithm, those ''_n are for noise score, ''_s are for strangeness score GMM_n = [] one_n = [] lsa_n = [] K_n = [] GMM_s = [] one_s = [] lsa_s = [] K_s =[] compute_scores(normal_users, queue, Ks) # Calls the function to compute scores, that updates GMM_n, one_n, lsa_n, K_n, GMM_s, one_s, lsa_s scores_n = np.array([K_n[0],lsa_n[0]+0.01,one_n[0]+0.01,GMM_n[0]]) #Create a numpy array with the noise scores to display in the graph names_n = ('KM','LSA', 'SVM1C','GMM' ) #names to display in the noise score graph scores_s = np.array([K_s[0],lsa_s[0]+0.01,one_s[0]+0.01,GMM_s[0]]) #Create a numpy array with the noise scores to display in the graph names_s = ('KM','LSA', 'SVM1C','GMM') #names to display in the strangeness score graph print scores_s # If the entry is detected as not interesting by all algorithms, the strangeness score is not displayed if GMM_n[0]>=1 and one_n[0]>=1 and lsa_n[0]>=1 and K_n[0]>=1: scores_s = np.array([0,0,0,0]) # Compute colors corresponding to the score value # noise = red, interesting = green # known = red, strange = green colors_n = [] colors_s = [] for n in scores_n.tolist(): if n >= 1: colors_n.append('red') else: colors_n.append('green') for n in scores_s.tolist(): if n >= 1: colors_s.append('green') else: colors_s.append('red') #Plot the figures f= plt.figure(figsize=(15,5)) # Print normal users and the last entry introduced to the system in black ax1 = f.add_subplot(1,4,3, projection='3d') users_normal_new = list(users_normal) users_normal_new.append(users[-1]) pp.print_users(users_normal_new, ax1) # Print all users, with the last entry introduced to the system in black ax2 = f.add_subplot(1,4,1, projection='3d') pp.print_users(users, ax2) # Display names and scores of the algorithms ax3 = f.add_subplot(1,4,2) ax4 = f.add_subplot(1,4,4) y_pos = np.arange(len(names_n)) ax3.barh(y_pos, scores_n, align='center', alpha=0.4, color = colors_n) ax4.barh(y_pos, scores_s, align='center', alpha=0.4, color = colors_s) ax3.set_yticks(y_pos) ax3.set_yticklabels(names_n) ax4.set_yticks(y_pos) ax4.set_yticklabels(names_s) ax3.set_title('noise score') ax4.set_title('strangeness score') #f.savefig('/Users/_USER_/Images/'+name+'.pdf', format='pdf') ''' --------- FUNTIONS TO CALCULATE NOVELTY SCORES --------- ''' def compute_scores(normal_users, queue, Ks=[]): ''' Calculates the novelty scores (noise and strangeness) for the 4 algotithms Receives the list of normal users and the queue (all users) and the list of curiosity factors Ks Updates the global variables GMM_n, one_n, lsa_n, K_n, GMM_s, one_s, lsa_s with the results ''' global GMM_n, one_n, lsa_n, K_n, GMM_s, one_s, lsa_s, K_s #Novelty Scores for each algorithm, those ''_n are for noise score, ''_s are for strangeness score GMM_n = [] one_n = [] lsa_n = [] K_n = [] GMM_s = [] one_s = [] lsa_s = [] K_s = [] K_GMM_n, K_KMeans_n, K_GMM_s, K_KMeans_s = Ks #K_GMM_n, K_KMeans_n are the noise curiosity factors for each algorithm #K_GMM_s, K_KMeans_s are the strangeness curiosity factors for each algorithm #Ks is a list containing the 4 above mentioned parameters ''' For One_class_SVM and LSA, when asked to predict the new entry, a label is directly returned LSA: 'anomaly' or '0' (normal) One One_class_SVM: -1 (anomaly) or 1 (normal) GMM and K means predict a fitting score. The novelty score is obtained calculating the zscore of the entry compared with the scores of all other entries, calling the function get_score_last_item If the zscore returned >= 1 the new entry is anomalous ''' ''' Noise scores are computed with the queue as the base of knowledge, fitting all the entries but the last to the algorithm ''' B = GMM(covariance_type='full', n_components = 1) B.fit(queue[0:-1]) x = [B.score([i]).mean() for i in queue] GMM_n.append(get_score_last_item(x, K_GMM_n)) K = KMeans(n_clusters=1) K.fit(queue[0:-1]) x = [K.score([i]) for i in queue] K_n.append(get_score_last_item(x, K_KMeans_n)) oneClassSVM = OneClassSVM(nu=0.1) oneClassSVM.fit(queue[0:-1]) x = oneClassSVM.predict(np.array([queue[-1]])) if x == -1: one_n.append(1) if x == 1: one_n.append(0) X = np.array(queue[0:-1]) anomalymodel = lsanomaly.LSAnomaly() anomalymodel.fit(X) x = anomalymodel.predict(np.array([queue[-1]])) if x == ['anomaly']: lsa_n.append(1) if x == [0]: lsa_n.append(0) ''' Strangeness scores are computed with the normal users as the base of knowledge, fitting normal users to the algorithm ''' normal_and_new = normal_users + [queue[-1]] #List to be passed to get_score_last_item to calculate the zscore of the last item, the new entry B = GMM(covariance_type='full', n_components = 1) B.fit(normal_users) x = [B.score([i]).mean() for i in normal_and_new] GMM_s.append(get_score_last_item(x, K_GMM_s)) K = KMeans(n_clusters=1) K.fit(normal_users) x = [K.score([i]) for i in normal_and_new] K_s.append(get_score_last_item(x, K_KMeans_s)) oneClassSVM = OneClassSVM(nu=0.1) oneClassSVM.fit(normal_users) x = oneClassSVM.predict(np.array([queue[-1]])) if x == -1: one_s.append(1) if x == 1: one_s.append(0) anomalymodel = lsanomaly.LSAnomaly() X = np.array(normal_users) anomalymodel.fit(X) x = anomalymodel.predict(np.array([queue[-1]])) if x == ['anomaly']: lsa_s.append(1) if x == [0]: lsa_s.append(0) return GMM_n, one_n, lsa_n, K_n, GMM_s, one_s, lsa_s, K_s def get_score_last_item(x, K_curiosity): ''' Obtains a normalized (z) score of the last item of a list, with respect to the other items''' ser = pd.Series(x, dtype=float) old = ser[0:-1] new = ser[ser.size-1] return abs((new-old.mean())/(old.std()*K_curiosity)) ''' ------------- FUNTIONS TO START THE SYSTEM ------------- ''' def start_users(number_users, pose, indexes=[]): ''' Starts the system creating users has a [number_user, pose] form normal_users and queue are lists of users in data form Uses a number of users, number_users, all posing in the same direction, initial_pose The users selected are random It takes the median value of the users ''' import random if indexes == []: indexes = [i for i in np.arange(30)] indexes.pop(indexes.index(0)) # There is no 'user00' data, so we remove it indexes.pop(indexes.index(6)) # There is no 'user06' data, so we remove it indexes.pop(indexes.index(12)) # There is no 'user12' data, POINTING LEFT so we remove it users = [] pose = pose for i in xrange(1,number_users): j = random.choice(indexes) users.append([j, pose]) indexes.pop(indexes.index(j)) normal_users = get_median_users(users) queue = normal_users return users, normal_users, queue def get_median_users(users): ''' Returns a list of the median values for each user in users users = [[number, pose],[number2, pose]...] ''' list_users_median = [] for u in users: n = divide_user_by_pose('data/exp03-user'+str(u[0]).zfill(2)+'.arff', u[1]) mean = np.median(n, axis=0) list_users_median.append(mean) return list_users_median ''' -------------- FUNTIONS TO LEARN POSES -------------- ''' def add_user_median(l_users, new_user_index, pose): ''' Adds the median of the new user to the passed list and returns it ''' l_new = list(l_users) new_user = divide_user_by_pose('data/exp03-user'+str(new_user_index).zfill(2)+'.arff', pose) median = np.median(new_user,axis =0) l_new.append(median) return l_new ''' -------------- FUNCTIONS TO EXTRACT AND NORMALIZE DATA -------------- ''' def divide_user_by_pose(file, pose): ''' Returns the normalized data of a desired pose from a user file, in an numpy array ''' uf = udl.load_user_file(file) multiind_first, multiind_second = udl.make_multiindex(udl.joints, udl.attribs) uf.columns = pd.MultiIndex.from_arrays([list(multiind_first), list(multiind_second)], names=['joint', 'attrib']) orig_torso, df_normalized = udl.normalize_joints(uf, 'torso') uf.update(df_normalized) uf.torso = uf.torso - uf.torso uf.columns = udl.index drops = list(uf.columns[84:123])+['h_seqNum', 'h_stamp', 'user_id'] uf2 = uf.drop(drops,1).groupby('pose') group_pose_with_label = uf2.get_group(pose) group_pose = group_pose_with_label.drop('pose',1) return group_pose.values ''' ------------- OTHER FUNCTIONS NOT USED IN THE NOTEBOOK ------------- ''' def compute_print_scores(normal_users, queue): K_GMM_n, K_KMeans_n, K_GMM_s, K_KMeans_s = Ks print 'novelty score GMM' B = GMM(covariance_type='full', n_components = 1) B.fit(queue) x = [B.score([i]).mean() for i in queue] print get_score_last_item(x, K_GMM_n) print 'novelty score OneClassSVM' x = anom_one_class(queue, [queue[-1]]) print x[-1] print 'novelty score LSA' anomalymodel = lsanomaly.LSAnomaly() X = np.array(queue) anomalymodel.fit(X) print anomalymodel.predict(np.array([queue[-1]])) print 'novelty score degree K_means' K = KMeans(n_clusters=1) K.fit(queue) x = [K.score([i]) for i in queue] print get_score_last_item(x, K_KMeans_n) normal_and_new = normal_users + [queue[-1]] print 'degree of belonging to known class GMM' B = GMM(covariance_type='full', n_components = 1) B.fit(normal_users) x = [B.score([i]).mean() for i in normal_and_new] print get_score_last_item(x, K_GMM_s) print 'degree of belonging to known class OneClassSVM' x = anom_one_class(normal_users, [queue[-1]]) print x[-1] print 'degree of belonging to known class LSA' anomalymodel = lsanomaly.LSAnomaly() X = np.array(normal_users) anomalymodel.fit(X) print anomalymodel.predict(np.array([queue[-1]])) print 'degree of belonging to known class K_means' K = KMeans(n_clusters=1) K.fit(normal_users) x = [K.score([i]) for i in normal_and_new] print get_score_last_item(x, K_KMeans_s)
gpl-3.0
ThisIsSoSteve/Project-Tensorflow-Cars
plot_course_data.py
1
2616
#import os import pickle import glob #import numpy as np from tqdm import tqdm import matplotlib.pyplot as plt #from data_control_no_images.read import Read listing = glob.glob('F:/Project_Cars_Data/1lap-fullspeed/Watkins Glen International - Short Circuit' + '/*.pkl') x = [] y = [] throttle = [] raw_throttle = [] brake = [] raw_brake = [] steering = [] raw_steering = [] xy = [] for filename in tqdm(listing): with open(filename, 'rb') as file_data: project_cars_state = pickle.load(file_data) controller_state = pickle.load(file_data) #remove none flying lap data if project_cars_state.mParticipantInfo[0].mCurrentLapDistance == 0.0: continue position = project_cars_state.mParticipantInfo[0].mWorldPosition x.append(round(position[0])) y.append(round(position[2])) throttle.append(controller_state['right_trigger']/255)# 0 - 255 brake.append(controller_state['left_trigger']/255) #0 - 255 steering.append(controller_state['thumb_lx']/32767) #-32768 - 32767 #steering.append(project_cars_state.mSteering) raw_steering.append(project_cars_state.mUnfilteredSteering) raw_brake.append(project_cars_state.mUnfilteredBrake) raw_throttle.append(project_cars_state.mUnfilteredThrottle) xy.append([position[0], position[2]]) plt.figure(figsize=(10, 10)) plt.scatter(x, y, c=steering) plt.colorbar() plt.axis('equal') plt.title('position and controller steering') plt.show() plt.close() plt.figure(figsize=(10, 10)) plt.scatter(x, y, c=raw_steering) plt.colorbar() plt.axis('equal') plt.title('position and raw steering') plt.show() plt.close() plt.figure(figsize=(10, 10)) plt.scatter(x, y, c=throttle) plt.colorbar() plt.axis('equal') plt.title('position and controller throttle') plt.show() plt.close() plt.figure(figsize=(10, 10)) plt.scatter(x, y, c=raw_throttle) plt.colorbar() plt.axis('equal') plt.title('position and raw throttle') plt.show() plt.close() plt.figure(figsize=(10, 10)) plt.scatter(x, y, c=brake) plt.colorbar() plt.axis('equal') plt.title('position and controller brake') plt.show() plt.close() plt.figure(figsize=(10, 10)) plt.scatter(x, y, c=raw_brake) plt.colorbar() plt.axis('equal') plt.title('position and raw brake') plt.show() plt.close() # get_data = Read(True) # mean, std = get_data.load_mean_and_std('F:/Project_Cars_Data/Full_Speed_Training_none_image') # print(mean) # print(std) # xy = (xy - mean) / std # print(np.array(xy[:,0]).shape) # plt.scatter(xy[:,0], xy[:,1]) # plt.axis('equal') # plt.show()
mit
Clyde-fare/scikit-learn
sklearn/ensemble/tests/test_gradient_boosting_loss_functions.py
221
5517
""" Testing for the gradient boosting loss functions and initial estimators. """ import numpy as np from numpy.testing import assert_array_equal from numpy.testing import assert_almost_equal from numpy.testing import assert_equal from nose.tools import assert_raises from sklearn.utils import check_random_state from sklearn.ensemble.gradient_boosting import BinomialDeviance from sklearn.ensemble.gradient_boosting import LogOddsEstimator from sklearn.ensemble.gradient_boosting import LeastSquaresError from sklearn.ensemble.gradient_boosting import RegressionLossFunction from sklearn.ensemble.gradient_boosting import LOSS_FUNCTIONS from sklearn.ensemble.gradient_boosting import _weighted_percentile def test_binomial_deviance(): # Check binomial deviance loss. # Check against alternative definitions in ESLII. bd = BinomialDeviance(2) # pred has the same BD for y in {0, 1} assert_equal(bd(np.array([0.0]), np.array([0.0])), bd(np.array([1.0]), np.array([0.0]))) assert_almost_equal(bd(np.array([1.0, 1.0, 1.0]), np.array([100.0, 100.0, 100.0])), 0.0) assert_almost_equal(bd(np.array([1.0, 0.0, 0.0]), np.array([100.0, -100.0, -100.0])), 0) # check if same results as alternative definition of deviance (from ESLII) alt_dev = lambda y, pred: np.mean(np.logaddexp(0.0, -2.0 * (2.0 * y - 1) * pred)) test_data = [(np.array([1.0, 1.0, 1.0]), np.array([100.0, 100.0, 100.0])), (np.array([0.0, 0.0, 0.0]), np.array([100.0, 100.0, 100.0])), (np.array([0.0, 0.0, 0.0]), np.array([-100.0, -100.0, -100.0])), (np.array([1.0, 1.0, 1.0]), np.array([-100.0, -100.0, -100.0]))] for datum in test_data: assert_almost_equal(bd(*datum), alt_dev(*datum)) # check the gradient against the alt_ng = lambda y, pred: (2 * y - 1) / (1 + np.exp(2 * (2 * y - 1) * pred)) for datum in test_data: assert_almost_equal(bd.negative_gradient(*datum), alt_ng(*datum)) def test_log_odds_estimator(): # Check log odds estimator. est = LogOddsEstimator() assert_raises(ValueError, est.fit, None, np.array([1])) est.fit(None, np.array([1.0, 0.0])) assert_equal(est.prior, 0.0) assert_array_equal(est.predict(np.array([[1.0], [1.0]])), np.array([[0.0], [0.0]])) def test_sample_weight_smoke(): rng = check_random_state(13) y = rng.rand(100) pred = rng.rand(100) # least squares loss = LeastSquaresError(1) loss_wo_sw = loss(y, pred) loss_w_sw = loss(y, pred, np.ones(pred.shape[0], dtype=np.float32)) assert_almost_equal(loss_wo_sw, loss_w_sw) def test_sample_weight_init_estimators(): # Smoke test for init estimators with sample weights. rng = check_random_state(13) X = rng.rand(100, 2) sample_weight = np.ones(100) reg_y = rng.rand(100) clf_y = rng.randint(0, 2, size=100) for Loss in LOSS_FUNCTIONS.values(): if Loss is None: continue if issubclass(Loss, RegressionLossFunction): k = 1 y = reg_y else: k = 2 y = clf_y if Loss.is_multi_class: # skip multiclass continue loss = Loss(k) init_est = loss.init_estimator() init_est.fit(X, y) out = init_est.predict(X) assert_equal(out.shape, (y.shape[0], 1)) sw_init_est = loss.init_estimator() sw_init_est.fit(X, y, sample_weight=sample_weight) sw_out = init_est.predict(X) assert_equal(sw_out.shape, (y.shape[0], 1)) # check if predictions match assert_array_equal(out, sw_out) def test_weighted_percentile(): y = np.empty(102, dtype=np.float) y[:50] = 0 y[-51:] = 2 y[-1] = 100000 y[50] = 1 sw = np.ones(102, dtype=np.float) sw[-1] = 0.0 score = _weighted_percentile(y, sw, 50) assert score == 1 def test_weighted_percentile_equal(): y = np.empty(102, dtype=np.float) y.fill(0.0) sw = np.ones(102, dtype=np.float) sw[-1] = 0.0 score = _weighted_percentile(y, sw, 50) assert score == 0 def test_weighted_percentile_zero_weight(): y = np.empty(102, dtype=np.float) y.fill(1.0) sw = np.ones(102, dtype=np.float) sw.fill(0.0) score = _weighted_percentile(y, sw, 50) assert score == 1.0 def test_sample_weight_deviance(): # Test if deviance supports sample weights. rng = check_random_state(13) X = rng.rand(100, 2) sample_weight = np.ones(100) reg_y = rng.rand(100) clf_y = rng.randint(0, 2, size=100) mclf_y = rng.randint(0, 3, size=100) for Loss in LOSS_FUNCTIONS.values(): if Loss is None: continue if issubclass(Loss, RegressionLossFunction): k = 1 y = reg_y p = reg_y else: k = 2 y = clf_y p = clf_y if Loss.is_multi_class: k = 3 y = mclf_y # one-hot encoding p = np.zeros((y.shape[0], k), dtype=np.float64) for i in range(k): p[:, i] = y == i loss = Loss(k) deviance_w_w = loss(y, p, sample_weight) deviance_wo_w = loss(y, p) assert deviance_wo_w == deviance_w_w
bsd-3-clause
HeraclesHX/scikit-learn
examples/plot_isotonic_regression.py
303
1767
""" =================== Isotonic Regression =================== An illustration of the isotonic regression on generated data. The isotonic regression finds a non-decreasing approximation of a function while minimizing the mean squared error on the training data. The benefit of such a model is that it does not assume any form for the target function such as linearity. For comparison a linear regression is also presented. """ print(__doc__) # Author: Nelle Varoquaux <[email protected]> # Alexandre Gramfort <[email protected]> # Licence: BSD import numpy as np import matplotlib.pyplot as plt from matplotlib.collections import LineCollection from sklearn.linear_model import LinearRegression from sklearn.isotonic import IsotonicRegression from sklearn.utils import check_random_state n = 100 x = np.arange(n) rs = check_random_state(0) y = rs.randint(-50, 50, size=(n,)) + 50. * np.log(1 + np.arange(n)) ############################################################################### # Fit IsotonicRegression and LinearRegression models ir = IsotonicRegression() y_ = ir.fit_transform(x, y) lr = LinearRegression() lr.fit(x[:, np.newaxis], y) # x needs to be 2d for LinearRegression ############################################################################### # plot result segments = [[[i, y[i]], [i, y_[i]]] for i in range(n)] lc = LineCollection(segments, zorder=0) lc.set_array(np.ones(len(y))) lc.set_linewidths(0.5 * np.ones(n)) fig = plt.figure() plt.plot(x, y, 'r.', markersize=12) plt.plot(x, y_, 'g.-', markersize=12) plt.plot(x, lr.predict(x[:, np.newaxis]), 'b-') plt.gca().add_collection(lc) plt.legend(('Data', 'Isotonic Fit', 'Linear Fit'), loc='lower right') plt.title('Isotonic regression') plt.show()
bsd-3-clause
aminert/scikit-learn
sklearn/decomposition/tests/test_dict_learning.py
47
8095
import numpy as np from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_raises from sklearn.utils.testing import ignore_warnings from sklearn.decomposition import DictionaryLearning from sklearn.decomposition import MiniBatchDictionaryLearning from sklearn.decomposition import SparseCoder from sklearn.decomposition import dict_learning_online from sklearn.decomposition import sparse_encode rng_global = np.random.RandomState(0) n_samples, n_features = 10, 8 X = rng_global.randn(n_samples, n_features) def test_dict_learning_shapes(): n_components = 5 dico = DictionaryLearning(n_components, random_state=0).fit(X) assert_true(dico.components_.shape == (n_components, n_features)) def test_dict_learning_overcomplete(): n_components = 12 dico = DictionaryLearning(n_components, random_state=0).fit(X) assert_true(dico.components_.shape == (n_components, n_features)) def test_dict_learning_reconstruction(): n_components = 12 dico = DictionaryLearning(n_components, transform_algorithm='omp', transform_alpha=0.001, random_state=0) code = dico.fit(X).transform(X) assert_array_almost_equal(np.dot(code, dico.components_), X) dico.set_params(transform_algorithm='lasso_lars') code = dico.transform(X) assert_array_almost_equal(np.dot(code, dico.components_), X, decimal=2) # used to test lars here too, but there's no guarantee the number of # nonzero atoms is right. def test_dict_learning_reconstruction_parallel(): # regression test that parallel reconstruction works with n_jobs=-1 n_components = 12 dico = DictionaryLearning(n_components, transform_algorithm='omp', transform_alpha=0.001, random_state=0, n_jobs=-1) code = dico.fit(X).transform(X) assert_array_almost_equal(np.dot(code, dico.components_), X) dico.set_params(transform_algorithm='lasso_lars') code = dico.transform(X) assert_array_almost_equal(np.dot(code, dico.components_), X, decimal=2) def test_dict_learning_nonzero_coefs(): n_components = 4 dico = DictionaryLearning(n_components, transform_algorithm='lars', transform_n_nonzero_coefs=3, random_state=0) code = dico.fit(X).transform(X[1]) assert_true(len(np.flatnonzero(code)) == 3) dico.set_params(transform_algorithm='omp') code = dico.transform(X[1]) assert_equal(len(np.flatnonzero(code)), 3) def test_dict_learning_unknown_fit_algorithm(): n_components = 5 dico = DictionaryLearning(n_components, fit_algorithm='<unknown>') assert_raises(ValueError, dico.fit, X) def test_dict_learning_split(): n_components = 5 dico = DictionaryLearning(n_components, transform_algorithm='threshold', random_state=0) code = dico.fit(X).transform(X) dico.split_sign = True split_code = dico.transform(X) assert_array_equal(split_code[:, :n_components] - split_code[:, n_components:], code) def test_dict_learning_online_shapes(): rng = np.random.RandomState(0) n_components = 8 code, dictionary = dict_learning_online(X, n_components=n_components, alpha=1, random_state=rng) assert_equal(code.shape, (n_samples, n_components)) assert_equal(dictionary.shape, (n_components, n_features)) assert_equal(np.dot(code, dictionary).shape, X.shape) def test_dict_learning_online_verbosity(): n_components = 5 # test verbosity from sklearn.externals.six.moves import cStringIO as StringIO import sys old_stdout = sys.stdout try: sys.stdout = StringIO() dico = MiniBatchDictionaryLearning(n_components, n_iter=20, verbose=1, random_state=0) dico.fit(X) dico = MiniBatchDictionaryLearning(n_components, n_iter=20, verbose=2, random_state=0) dico.fit(X) dict_learning_online(X, n_components=n_components, alpha=1, verbose=1, random_state=0) dict_learning_online(X, n_components=n_components, alpha=1, verbose=2, random_state=0) finally: sys.stdout = old_stdout assert_true(dico.components_.shape == (n_components, n_features)) def test_dict_learning_online_estimator_shapes(): n_components = 5 dico = MiniBatchDictionaryLearning(n_components, n_iter=20, random_state=0) dico.fit(X) assert_true(dico.components_.shape == (n_components, n_features)) def test_dict_learning_online_overcomplete(): n_components = 12 dico = MiniBatchDictionaryLearning(n_components, n_iter=20, random_state=0).fit(X) assert_true(dico.components_.shape == (n_components, n_features)) def test_dict_learning_online_initialization(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) dico = MiniBatchDictionaryLearning(n_components, n_iter=0, dict_init=V, random_state=0).fit(X) assert_array_equal(dico.components_, V) def test_dict_learning_online_partial_fit(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) # random init V /= np.sum(V ** 2, axis=1)[:, np.newaxis] dict1 = MiniBatchDictionaryLearning(n_components, n_iter=10 * len(X), batch_size=1, alpha=1, shuffle=False, dict_init=V, random_state=0).fit(X) dict2 = MiniBatchDictionaryLearning(n_components, alpha=1, n_iter=1, dict_init=V, random_state=0) for i in range(10): for sample in X: dict2.partial_fit(sample) assert_true(not np.all(sparse_encode(X, dict1.components_, alpha=1) == 0)) assert_array_almost_equal(dict1.components_, dict2.components_, decimal=2) def test_sparse_encode_shapes(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) # random init V /= np.sum(V ** 2, axis=1)[:, np.newaxis] for algo in ('lasso_lars', 'lasso_cd', 'lars', 'omp', 'threshold'): code = sparse_encode(X, V, algorithm=algo) assert_equal(code.shape, (n_samples, n_components)) def test_sparse_encode_error(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) # random init V /= np.sum(V ** 2, axis=1)[:, np.newaxis] code = sparse_encode(X, V, alpha=0.001) assert_true(not np.all(code == 0)) assert_less(np.sqrt(np.sum((np.dot(code, V) - X) ** 2)), 0.1) def test_sparse_encode_error_default_sparsity(): rng = np.random.RandomState(0) X = rng.randn(100, 64) D = rng.randn(2, 64) code = ignore_warnings(sparse_encode)(X, D, algorithm='omp', n_nonzero_coefs=None) assert_equal(code.shape, (100, 2)) def test_unknown_method(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) # random init assert_raises(ValueError, sparse_encode, X, V, algorithm="<unknown>") def test_sparse_coder_estimator(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) # random init V /= np.sum(V ** 2, axis=1)[:, np.newaxis] code = SparseCoder(dictionary=V, transform_algorithm='lasso_lars', transform_alpha=0.001).transform(X) assert_true(not np.all(code == 0)) assert_less(np.sqrt(np.sum((np.dot(code, V) - X) ** 2)), 0.1)
bsd-3-clause
datapythonista/pandas
pandas/tests/extension/base/printing.py
4
1193
import io import pytest import pandas as pd from pandas.tests.extension.base.base import BaseExtensionTests class BasePrintingTests(BaseExtensionTests): """Tests checking the formatting of your EA when printed.""" @pytest.mark.parametrize("size", ["big", "small"]) def test_array_repr(self, data, size): if size == "small": data = data[:5] else: data = type(data)._concat_same_type([data] * 5) result = repr(data) assert type(data).__name__ in result assert f"Length: {len(data)}" in result assert str(data.dtype) in result if size == "big": assert "..." in result def test_array_repr_unicode(self, data): result = str(data) assert isinstance(result, str) def test_series_repr(self, data): ser = pd.Series(data) assert data.dtype.name in repr(ser) def test_dataframe_repr(self, data): df = pd.DataFrame({"A": data}) repr(df) def test_dtype_name_in_info(self, data): buf = io.StringIO() pd.DataFrame({"A": data}).info(buf=buf) result = buf.getvalue() assert data.dtype.name in result
bsd-3-clause
giorgiop/scikit-learn
sklearn/feature_selection/tests/test_base.py
98
3681
import numpy as np from scipy import sparse as sp from numpy.testing import assert_array_equal from sklearn.base import BaseEstimator from sklearn.feature_selection.base import SelectorMixin from sklearn.utils import check_array from sklearn.utils.testing import assert_raises, assert_equal class StepSelector(SelectorMixin, BaseEstimator): """Retain every `step` features (beginning with 0)""" def __init__(self, step=2): self.step = step def fit(self, X, y=None): X = check_array(X, 'csc') self.n_input_feats = X.shape[1] return self def _get_support_mask(self): mask = np.zeros(self.n_input_feats, dtype=bool) mask[::self.step] = True return mask support = [True, False] * 5 support_inds = [0, 2, 4, 6, 8] X = np.arange(20).reshape(2, 10) Xt = np.arange(0, 20, 2).reshape(2, 5) Xinv = X.copy() Xinv[:, 1::2] = 0 y = [0, 1] feature_names = list('ABCDEFGHIJ') feature_names_t = feature_names[::2] feature_names_inv = np.array(feature_names) feature_names_inv[1::2] = '' def test_transform_dense(): sel = StepSelector() Xt_actual = sel.fit(X, y).transform(X) Xt_actual2 = StepSelector().fit_transform(X, y) assert_array_equal(Xt, Xt_actual) assert_array_equal(Xt, Xt_actual2) # Check dtype matches assert_equal(np.int32, sel.transform(X.astype(np.int32)).dtype) assert_equal(np.float32, sel.transform(X.astype(np.float32)).dtype) # Check 1d list and other dtype: names_t_actual = sel.transform([feature_names]) assert_array_equal(feature_names_t, names_t_actual.ravel()) # Check wrong shape raises error assert_raises(ValueError, sel.transform, np.array([[1], [2]])) def test_transform_sparse(): sparse = sp.csc_matrix sel = StepSelector() Xt_actual = sel.fit(sparse(X)).transform(sparse(X)) Xt_actual2 = sel.fit_transform(sparse(X)) assert_array_equal(Xt, Xt_actual.toarray()) assert_array_equal(Xt, Xt_actual2.toarray()) # Check dtype matches assert_equal(np.int32, sel.transform(sparse(X).astype(np.int32)).dtype) assert_equal(np.float32, sel.transform(sparse(X).astype(np.float32)).dtype) # Check wrong shape raises error assert_raises(ValueError, sel.transform, np.array([[1], [2]])) def test_inverse_transform_dense(): sel = StepSelector() Xinv_actual = sel.fit(X, y).inverse_transform(Xt) assert_array_equal(Xinv, Xinv_actual) # Check dtype matches assert_equal(np.int32, sel.inverse_transform(Xt.astype(np.int32)).dtype) assert_equal(np.float32, sel.inverse_transform(Xt.astype(np.float32)).dtype) # Check 1d list and other dtype: names_inv_actual = sel.inverse_transform([feature_names_t]) assert_array_equal(feature_names_inv, names_inv_actual.ravel()) # Check wrong shape raises error assert_raises(ValueError, sel.inverse_transform, np.array([[1], [2]])) def test_inverse_transform_sparse(): sparse = sp.csc_matrix sel = StepSelector() Xinv_actual = sel.fit(sparse(X)).inverse_transform(sparse(Xt)) assert_array_equal(Xinv, Xinv_actual.toarray()) # Check dtype matches assert_equal(np.int32, sel.inverse_transform(sparse(Xt).astype(np.int32)).dtype) assert_equal(np.float32, sel.inverse_transform(sparse(Xt).astype(np.float32)).dtype) # Check wrong shape raises error assert_raises(ValueError, sel.inverse_transform, np.array([[1], [2]])) def test_get_support(): sel = StepSelector() sel.fit(X, y) assert_array_equal(support, sel.get_support()) assert_array_equal(support_inds, sel.get_support(indices=True))
bsd-3-clause
yaonepiece/AtariBreakoutAI
Double DQN/src/Atari_Breakout.py
1
13065
import sys import time import pygame import numpy as np from enum import Enum from math import cos, sin, pi from skimage.transform import resize from skimage.color import rgb2gray from sklearn.preprocessing import normalize as norm class Colors(Enum): Black = (0, 0, 0, 255) Blue = (0, 100, 255, 255) Orange = (255, 180, 70, 255) Red = (255, 0, 0, 255) White = (255, 255, 255, 255) class AtariGame: def __init__(self, _speed=1, _brickx=8, _bricky=5, _white=False, _banner=False, _screen=True): # Hyperparameters self.windowWidth = 400 self.windowHeight = 300 self.runspeed = _speed self.fps = 50 self.fpsClock = pygame.time.Clock() self.brickx, self.bricky = _brickx, _bricky self.brick = np.ones((_bricky, _brickx), dtype=int) self.brickRect = [[pygame.Rect(self.windowWidth * j // _brickx, 20 * i + 40, (self.windowWidth * (j + 1) // _brickx) - (self.windowWidth * j // _brickx), 20) for j in range(_brickx)] for i in range(_bricky)] self.ballPos = np.array([200.0, 200.0]) self.ballSpeed = 5 self.ballVector = norm([[-1, -1]]).ravel() self.ballSize = 8 self.barLength = 50 self.barWidth = 10 self.barinitX, self.barinitY = 200.0, 295.0 self.barRect = pygame.Rect(self.barinitX - self.barLength // 2, self.barinitY - self.barWidth // 2, self.barLength, self.barWidth) self.seconds = 0 self.ticks = 0 self.barSpeed = 8 self.barMove = 0 self.start = True self.end = False self.white = _white self.banner = _banner self.screen = _screen self.n_features = 5 self.actions = 3 self.ball_rand() pygame.init() self.surface = pygame.display.set_mode((self.windowWidth, self.windowHeight)) pygame.display.set_caption('Atari Breakout') def get_state(self): a = np.empty(5, dtype=float) # bricks[40] ballPos[2] ballVec[2] barX a[0] = self.ballPos[0] a[1] = self.ballPos[1] a[2] = self.ballVector[0] a[3] = self.ballVector[1] a[4] = self.barRect.centerx return a def die(self): self.draw() fontsize = 50 font = pygame.font.SysFont(None, fontsize) if self.white: text = font.render('You lose!', True, Colors.Red) else: text = font.render('You lose!', True, Colors.White) text_rect = text.get_rect() # Set the center of the text box text_rect.centerx = self.surface.get_rect().centerx text_rect.centery = self.surface.get_rect().centery self.surface.blit(text, text_rect) pygame.display.update() def gameclear(self): self.draw() fontsize = 50 font = pygame.font.SysFont(None, fontsize) if self.white: text = font.render('You win!', True, Colors.Red) else: text = font.render('You Win!!', True, (255, 255, 255)) text_rect = text.get_rect() # Set the center of the text box text_rect.centerx = self.surface.get_rect().centerx text_rect.centery = self.surface.get_rect().centery self.surface.blit(text, text_rect) pygame.display.update() def timesup(self): self.draw() fontsize = 50 font = pygame.font.SysFont(None, fontsize) if self.white: text = font.render('Time\'s up!', 1, Colors.Red) else: text = font.render('Time\'s up!', 1, Colors.White) text_rect = text.get_rect() # Set the center of the text box text_rect.centerx = self.surface.get_rect().centerx text_rect.centery = self.surface.get_rect().centery self.surface.blit(text, text_rect) pygame.display.update() def restart(self): self.brick = np.ones((self.bricky, self.brickx), dtype=int) self.ballPos = np.array([200.0, 200.0]) self.ball_rand() self.barRect = pygame.Rect(self.barinitX - self.barLength // 2, self.barinitY - self.barWidth // 2, self.barLength, self.barWidth) self.seconds = 0 self.ticks = 0 self.start = True self.end = False self.draw() image_data = pygame.surfarray.array3d(pygame.display.get_surface()) image_data = rgb2gray(resize(image_data, (80, 80), mode='reflect')) image_stack = np.stack([image_data for _ in range(4)]) return image_stack def draw(self): self.surface.fill(Colors.Black.value) if self.white: pygame.draw.circle(self.surface, Colors.White.value, tuple(self.ballPos.astype(int)), self.ballSize) else: pygame.draw.circle(self.surface, Colors.Red.value, tuple(self.ballPos.astype(int)), self.ballSize) for i in range(self.bricky): for j in range(self.brickx): if self.brick[i][j] == 1: if not self.white: if (i + j) % 2 == 0: rectcolor = Colors.Orange.value else: rectcolor = Colors.Blue.value else: rectcolor = Colors.White.value pygame.draw.rect(self.surface, rectcolor, self.brickRect[i][j]) pygame.draw.rect(self.surface, Colors.White.value, self.barRect) pygame.display.update() def startpause(self): fontsize = 50 font = pygame.font.SysFont(None, fontsize) self.draw() if self.white: text = font.render('Ready?', 1, Colors.Red) else: text = font.render('Ready?', 1, (255, 255, 255, 255)) text_rect = text.get_rect() # Set the center of the text box text_rect.centerx = self.surface.get_rect().centerx text_rect.centery = self.surface.get_rect().centery self.surface.blit(text, text_rect) pygame.display.update() time.sleep(0.3) def ball_rand(self): angle = (np.random.rand() * 0.5 + 1.27) * pi self.ballVector = np.array([cos(angle), sin(angle)]) def ball_move(self): tmp_reward = 0.01 # move pre_pos = np.copy(self.ballPos) self.ballPos += self.ballSpeed * self.ballVector # touchwall if self.ballPos[0] <= self.ballSize: self.ballPos[0] = float(self.ballSize) self.ballVector[0] *= -1 elif self.ballPos[0] >= (self.windowWidth - self.ballSize): self.ballPos[0] = self.windowWidth - self.ballSize self.ballVector[0] *= -1 if self.ballPos[1] <= self.ballSize: self.ballPos[1] = float(self.ballSize) self.ballVector[1] *= -1 elif self.ballPos[1] >= (self.windowHeight - self.ballSize): return True, -5 # breakbrick for i in range(self.bricky): for j in range(self.brickx): if self.brick[i][j] == 1: # touch from right if (self.brickRect[i][j].right - self.ballSize) < self.ballPos[0] <= ( self.brickRect[i][j].right + self.ballSize) and pre_pos[0] > self.ballPos[0] and \ self.brickRect[i][j].top <= self.ballPos[1] < self.brickRect[i][j].bottom: self.ballVector[0] *= -1 self.brick[i][j] = 0 # touch from left if (self.brickRect[i][j].right + self.ballSize) > self.ballPos[0] >= ( self.brickRect[i][j].left - self.ballSize) \ and pre_pos[0] < self.ballPos[0] and self.brickRect[i][j].bottom > self.ballPos[1] >= \ self.brickRect[i][j].top: self.ballVector[0] *= -1 self.brick[i][j] = 0 # touch from bottom if (self.brickRect[i][j].bottom - self.ballSize) < self.ballPos[1] <= ( self.brickRect[i][j].bottom + self.ballSize) \ and pre_pos[1] > self.ballPos[1] and self.brickRect[i][j].right > self.ballPos[0] >= \ self.brickRect[i][j].left: self.ballVector[1] *= -1 self.brick[i][j] = 0 # touch from top if (self.brickRect[i][j].top + self.ballSize) > self.ballPos[1] >= ( self.brickRect[i][j].top - self.ballSize) \ and pre_pos[1] < self.ballPos[1] and self.brickRect[i][j].right > self.ballPos[0] >= \ self.brickRect[i][j].left: self.ballVector[1] *= -1 self.brick[i][j] = 0 tmp_vector = np.copy(self.ballVector) # touchpad ball_rect = pygame.Rect( self.ballPos[0] - self.ballSize, self.ballPos[1] - self.ballSize, self.ballSize * 2, self.ballSize * 2 ) if pygame.Rect.colliderect(ball_rect, self.barRect): tmp_vector = norm([self.ballPos - np.array(self.barRect.center)]).ravel() if tmp_vector[1] >= 0: tmp_vector = norm([[tmp_vector[0], 1]]).ravel() elif tmp_vector[1] > -0.5: if tmp_vector[0] > 0: tmp_vector += norm(np.array([[0.86, -0.5]])).ravel() - tmp_vector else: tmp_vector += norm(np.array([[-0.86, -0.5]])).ravel() - tmp_vector tmp_reward = 1 self.ballVector = tmp_vector if np.sum(self.brick) > 0: return False, tmp_reward else: return True, 100 def move_bar(self): self.barRect.left += self.barSpeed * self.barMove if self.barRect.left >= 400 - self.barLength: self.barRect.left = int(400.0 - self.barLength) if self.barRect.left <= 0: self.barRect.left = 0 def render(self, _move=0): # check valid if self.end: return terminal = False # startPause if self.start: if self.banner: self.startpause() self.start = False # draw things self.draw() # update if _move == 0: self.barMove = 0 elif _move == 1: self.barMove = -1 else: self.barMove = 1 self.move_bar() preb = np.sum(self.brick) self.end, tmp_reward = self.ball_move() aftb = np.sum(self.brick) if not self.end and aftb < preb and aftb < self.brickx * self.bricky - 1 and preb < self.brickx * self.bricky: tmp_reward = 5 * (preb - aftb) # time step self.ticks += 1 if self.ticks == self.fps: self.seconds, self.ticks = self.seconds + 1, 0 if self.seconds == 180: self.end = True if self.banner: self.timesup() terminal = True # check gameover elif self.end: if self.banner: if np.sum(self.brick) > 0: self.die() else: self.gameclear() terminal = True pygame.event.clear() pygame.display.update() image_data = pygame.surfarray.array2d(pygame.display.get_surface()) image_data = rgb2gray(resize(image_data, (80, 80), mode='reflect')) return image_data, tmp_reward, terminal if __name__ == '__main__': # Game start atari = AtariGame(_speed=1, _brickx=16, _bricky=5, _white=False, _banner=True) end = False gamepoint = 0 while True: # getkey pressedKeys = pygame.key.get_pressed() if pressedKeys[ord('q')]: pygame.quit() sys.exit() elif pressedKeys[ord('a')] and not pressedKeys[ord('d')]: move = 1 elif pressedKeys[ord('d')] and not pressedKeys[ord('a')]: move = 2 else: move = 0 screen, reward, end = atari.render(_move=move) if reward > 1: gamepoint += reward print('Point:', gamepoint) elif reward < 0: gamepoint = 0 if end: time.sleep(0.5) atari.restart() else: atari.fpsClock.tick(atari.fps * atari.runspeed)
apache-2.0
harshnisar/EvoML
evoml/evaluators.py
1
11238
import numpy as np from sklearn.metrics import mean_squared_error from util import centroid_df from util import distance def evalOneMax_KNN(individual, df_test, base_estimator): """ This will have the code for testing the model on unseen data. Parameters ---------- individual : list, required List of dataframes with each dataframes last column the dependent column. df_test : DataFrame, required The test dataframe against which you are evaluating your model in the fitness function. model : Estimator, required The estimator to use in the model. Side note: We can even start with just one partial part of the dataset, keep trying to increase its cv score in fitness function. To get the optimal dataset. I am fearing, it will make a dataset of exactly same values in the end. That will have the best cv error. Therefore need to add a component of unseen data performance. """ total_mse = [] ensembles = [] centroids = [] for df_ in individual: # clf = LinearRegression() clf = base_estimator() clf = clf.fit(df_.iloc[:, 0:-1], df_.iloc[:,-1]) ensembles.append(clf) centroids.append(centroid_df(df_.iloc[:,0:-1])) ## for sum of mse return uncomment these #y_pred = clf.predict(df_test[x_columns]) #mse = mean_squared_error(y_pred, df_test[y_column]) #total_mse.append(mse) #print total_mse y_preds_ensemble = [] for row in df_test.iloc[:, 0:-1].values: distances = [distance(row, centroid) for centroid in centroids] model_index = np.argmin(distances) #todo: optional use the average of the 2 min distances ka prediction. #todo: parameter. y_pred = ensembles[model_index].predict(row)[0] y_preds_ensemble.append(y_pred) rmse_ensemble = np.sqrt(mean_squared_error(y_preds_ensemble, df_test.iloc[:,-1])) return (rmse_ensemble), def evalOneMax_KNN_EG(individual, df_test, base_estimator, n_votes): """ This will have the code for testing the model on unseen data. Parameters ---------- individual : list, required List of dataframes with each dataframes last column the dependent column. df_test : DataFrame, required The test dataframe against which you are evaluating your model in the fitness function. model : Estimator, required The estimator to use in the model. Side note: We can even start with just one partial part of the dataset, keep trying to increase its cv score in fitness function. To get the optimal dataset. I am fearing, it will make a dataset of exactly same values in the end. That will have the best cv error. Therefore need to add a component of unseen data performance. """ total_mse = [] ensembles = [] centroids = [] for eg_ in individual: # clf = LinearRegression() clf = eg_.estimator ensembles.append(clf) centroids.append(centroid_df(eg_.X)) ## for sum of mse return uncomment these #y_pred = clf.predict(df_test[x_columns]) #mse = mean_squared_error(y_pred, df_test[y_column]) #total_mse.append(mse) #print total_mse y_preds_ensemble = [] ensembles = np.array(ensembles) # df_test = df_test.sample(, replace = False) for row in df_test.iloc[:, 0:-1].values: distances = np.array([distance(row, centroid) for centroid in centroids]) # model_index = np.argmin(distances) #todo: optional use the average of the 2 min distances ka prediction #todo: parameter. model_ixs = distances.argsort()[:n_votes] models = ensembles[model_ixs] # mean of all predictions. y_pred = np.nanmedian([mdl.predict(row)[0] for mdl in models]) # y_pred = ensembles[model_index].predict(row)[0] y_preds_ensemble.append(y_pred) # rmse_ensemble = np.sqrt(mean_squared_error(y_preds_ensemble, df_test.iloc[:,-1])) rmse_ensemble = np.sqrt(mean_squared_error(y_preds_ensemble, df_test.iloc[:,-1])) return (rmse_ensemble), def eval_ensemble_oob_KNN_EG(individual, df, base_estimator, n_votes): """ Fitness is based on entire ensembles performance on Out of Bag samples calculated using the union of the all samples used while training each child model. Used in FEGO. Parameters ---------- individual : list, required List of dataframes with each dataframes last column the dependent column. df: DataFrame, required The entire dataframe given to model to train - X and y combined. model : Estimator, required The estimator to use in the model. #todo: not really needed. double check. Side note: We can even start with just one partial part of the dataset, keep trying to increase its cv score in fitness function. To get the optimal dataset. I am fearing, it will make a dataset of exactly same values in the end. That will have the best cv error. Therefore need to add a component of unseen data performance. """ total_mse = [] ensembles = [] centroids = [] # All the indices used in each child model. bag_idx = [] for eg_ in individual: # clf = LinearRegression() clf = eg_.estimator ensembles.append(clf) idx = eg_.X.index.tolist() # print len(idx) bag_idx.append(idx) centroids.append(centroid_df(eg_.X)) ## for sum of mse return uncomment these #y_pred = clf.predict(df_test[x_columns]) #mse = mean_squared_error(y_pred, df_test[y_column]) #total_mse.append(mse) #print total_mse # flattening and converting to set. # print bag_idx bag_idx = set(sum(bag_idx, [])) # print len(bag_idx) out_bag_idx = list(set(df.index.tolist()) - bag_idx) print 'Size of OOB', len(out_bag_idx) df_test = df.loc[out_bag_idx] y_preds_ensemble = [] ensembles = np.array(ensembles) for row in df_test.iloc[:, 0:-1].values: distances = np.array([distance(row, centroid) for centroid in centroids]) # model_index = np.argmin(distances) #todo: optional use the average of the 2 min distances ka prediction. #todo: parameter. model_ixs = distances.argsort()[:n_votes] models = ensembles[model_ixs] # mean of all predictions. y_pred = np.mean([mdl.predict(row)[0] for mdl in models]) # y_pred = ensembles[model_index].predict(row)[0] y_preds_ensemble.append(y_pred) rmse_ensemble = np.sqrt(mean_squared_error(y_preds_ensemble, df_test.iloc[:,-1])) return (rmse_ensemble), def eval_each_model_oob_KNN_EG(individual, df, base_estimator, n_votes): """ Fitness is based on average of each constituent model's RMSE over its own private oob. Used in FEMPO. Replicates how a random forest works. Does not consider voting in the fitness. (How will it figure out to make better distinguished segments?) Parameters ---------- individual : list, required List of dataframes with each dataframes last column the dependent column. df: DataFrame, required The entire dataframe given to model to train - X and y combined. model : Estimator, required The estimator to use in the model. #todo: not really needed. double check. Side note: We can even start with just one partial part of the dataset, keep trying to increase its cv score in fitness function. To get the optimal dataset. I am fearing, it will make a dataset of exactly same values in the end. That will have the best cv error. Therefore need to add a component of unseen data performance. """ total_rmses = [] ensembles = [] centroids = [] # All the indices used in each child model. bag_idx = [] for eg_ in individual: # Generate Private OOB. bag_idx = set(eg_.X.index.tolist()) out_bag_idx = list(set(df.index.tolist()) - bag_idx) df_test = df.loc[out_bag_idx] clf = eg_.estimator ensembles.append(clf) bag_idx = set(list(eg_.X.index.tolist())) p_out_bag_idx = list(set(df.index.tolist()) - bag_idx) p_out_bag = df.loc[p_out_bag_idx] # print len(p_out_bag.columns) p_out_bag_X = p_out_bag.iloc[:,:-1] p_out_bag_y = p_out_bag.iloc[:,-1] # will test on p_out_bag if p_out_bag_y.shape[0] == 0: print 'OOB ran-out' #Should we then use rmse on itself? continue preds = clf.predict(p_out_bag_X) rmse = np.sqrt(mean_squared_error(p_out_bag_y, preds)) # rmse = mean_squared_error(p_out_bag_y, preds) total_rmses.append(rmse) ## for sum of mse return uncomment these #y_pred = clf.predict(df_test[x_columns]) #mse = mean_squared_error(y_pred, df_test[y_column]) #total_mse.append(mse) #print total_mse # flattening and converting to set. return (np.nanmean(total_rmses)), def eval_each_model_PT_KNN_EG(individual, df, base_estimator, n_votes): """ Fitness is based on average of each constituent model's RMSE over its own private test_set Used in FEMPT. Replicates how a random forest works. Does not consider voting in the fitness. (How will it figure out to make better distinguished segments?) - Makes each segment robust. Parameters ---------- individual : list, required List of dataframes with each dataframes last column the dependent column. df: DataFrame, required The entire dataframe given to model to train - X and y combined. model : Estimator, required The estimator to use in the model. #todo: not really needed. double check. Side note: We can even start with just one partial part of the dataset, keep trying to increase its cv score in fitness function. To get the optimal dataset. I am fearing, it will make a dataset of exactly same values in the end. That will have the best cv error. Therefore need to add a component of unseen data performance. """ total_rmses = [] ensembles = [] centroids = [] # All the indices used in each child model. bag_idx = [] for eg_ in individual: # Generate Private OOB. clf = eg_.estimator ensembles.append(clf) # rmse is precalculated in EG if private_test = True rmse = eg_.rmse total_rmses.append(rmse) ## for sum of mse return uncomment these #y_pred = clf.predict(df_test[x_columns]) #mse = mean_squared_error(y_pred, df_test[y_column]) #total_mse.append(mse) #print total_mse # flattening and converting to set. return (np.nanmean(total_rmses)),
gpl-3.0
fabianp/scikit-learn
sklearn/tests/test_naive_bayes.py
142
17496
import pickle from io import BytesIO import numpy as np import scipy.sparse from sklearn.datasets import load_digits, load_iris from sklearn.cross_validation import cross_val_score, train_test_split from sklearn.externals.six.moves import zip from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_greater from sklearn.naive_bayes import GaussianNB, BernoulliNB, MultinomialNB # Data is just 6 separable points in the plane X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]]) y = np.array([1, 1, 1, 2, 2, 2]) # A bit more random tests rng = np.random.RandomState(0) X1 = rng.normal(size=(10, 3)) y1 = (rng.normal(size=(10)) > 0).astype(np.int) # Data is 6 random integer points in a 100 dimensional space classified to # three classes. X2 = rng.randint(5, size=(6, 100)) y2 = np.array([1, 1, 2, 2, 3, 3]) def test_gnb(): # Gaussian Naive Bayes classification. # This checks that GaussianNB implements fit and predict and returns # correct values for a simple toy dataset. clf = GaussianNB() y_pred = clf.fit(X, y).predict(X) assert_array_equal(y_pred, y) y_pred_proba = clf.predict_proba(X) y_pred_log_proba = clf.predict_log_proba(X) assert_array_almost_equal(np.log(y_pred_proba), y_pred_log_proba, 8) # Test whether label mismatch between target y and classes raises # an Error # FIXME Remove this test once the more general partial_fit tests are merged assert_raises(ValueError, GaussianNB().partial_fit, X, y, classes=[0, 1]) def test_gnb_prior(): # Test whether class priors are properly set. clf = GaussianNB().fit(X, y) assert_array_almost_equal(np.array([3, 3]) / 6.0, clf.class_prior_, 8) clf.fit(X1, y1) # Check that the class priors sum to 1 assert_array_almost_equal(clf.class_prior_.sum(), 1) def test_gnb_sample_weight(): """Test whether sample weights are properly used in GNB. """ # Sample weights all being 1 should not change results sw = np.ones(6) clf = GaussianNB().fit(X, y) clf_sw = GaussianNB().fit(X, y, sw) assert_array_almost_equal(clf.theta_, clf_sw.theta_) assert_array_almost_equal(clf.sigma_, clf_sw.sigma_) # Fitting twice with half sample-weights should result # in same result as fitting once with full weights sw = rng.rand(y.shape[0]) clf1 = GaussianNB().fit(X, y, sample_weight=sw) clf2 = GaussianNB().partial_fit(X, y, classes=[1, 2], sample_weight=sw / 2) clf2.partial_fit(X, y, sample_weight=sw / 2) assert_array_almost_equal(clf1.theta_, clf2.theta_) assert_array_almost_equal(clf1.sigma_, clf2.sigma_) # Check that duplicate entries and correspondingly increased sample # weights yield the same result ind = rng.randint(0, X.shape[0], 20) sample_weight = np.bincount(ind, minlength=X.shape[0]) clf_dupl = GaussianNB().fit(X[ind], y[ind]) clf_sw = GaussianNB().fit(X, y, sample_weight) assert_array_almost_equal(clf_dupl.theta_, clf_sw.theta_) assert_array_almost_equal(clf_dupl.sigma_, clf_sw.sigma_) def test_discrete_prior(): # Test whether class priors are properly set. for cls in [BernoulliNB, MultinomialNB]: clf = cls().fit(X2, y2) assert_array_almost_equal(np.log(np.array([2, 2, 2]) / 6.0), clf.class_log_prior_, 8) def test_mnnb(): # Test Multinomial Naive Bayes classification. # This checks that MultinomialNB implements fit and predict and returns # correct values for a simple toy dataset. for X in [X2, scipy.sparse.csr_matrix(X2)]: # Check the ability to predict the learning set. clf = MultinomialNB() assert_raises(ValueError, clf.fit, -X, y2) y_pred = clf.fit(X, y2).predict(X) assert_array_equal(y_pred, y2) # Verify that np.log(clf.predict_proba(X)) gives the same results as # clf.predict_log_proba(X) y_pred_proba = clf.predict_proba(X) y_pred_log_proba = clf.predict_log_proba(X) assert_array_almost_equal(np.log(y_pred_proba), y_pred_log_proba, 8) # Check that incremental fitting yields the same results clf2 = MultinomialNB() clf2.partial_fit(X[:2], y2[:2], classes=np.unique(y2)) clf2.partial_fit(X[2:5], y2[2:5]) clf2.partial_fit(X[5:], y2[5:]) y_pred2 = clf2.predict(X) assert_array_equal(y_pred2, y2) y_pred_proba2 = clf2.predict_proba(X) y_pred_log_proba2 = clf2.predict_log_proba(X) assert_array_almost_equal(np.log(y_pred_proba2), y_pred_log_proba2, 8) assert_array_almost_equal(y_pred_proba2, y_pred_proba) assert_array_almost_equal(y_pred_log_proba2, y_pred_log_proba) # Partial fit on the whole data at once should be the same as fit too clf3 = MultinomialNB() clf3.partial_fit(X, y2, classes=np.unique(y2)) y_pred3 = clf3.predict(X) assert_array_equal(y_pred3, y2) y_pred_proba3 = clf3.predict_proba(X) y_pred_log_proba3 = clf3.predict_log_proba(X) assert_array_almost_equal(np.log(y_pred_proba3), y_pred_log_proba3, 8) assert_array_almost_equal(y_pred_proba3, y_pred_proba) assert_array_almost_equal(y_pred_log_proba3, y_pred_log_proba) def check_partial_fit(cls): clf1 = cls() clf1.fit([[0, 1], [1, 0]], [0, 1]) clf2 = cls() clf2.partial_fit([[0, 1], [1, 0]], [0, 1], classes=[0, 1]) assert_array_equal(clf1.class_count_, clf2.class_count_) assert_array_equal(clf1.feature_count_, clf2.feature_count_) clf3 = cls() clf3.partial_fit([[0, 1]], [0], classes=[0, 1]) clf3.partial_fit([[1, 0]], [1]) assert_array_equal(clf1.class_count_, clf3.class_count_) assert_array_equal(clf1.feature_count_, clf3.feature_count_) def test_discretenb_partial_fit(): for cls in [MultinomialNB, BernoulliNB]: yield check_partial_fit, cls def test_gnb_partial_fit(): clf = GaussianNB().fit(X, y) clf_pf = GaussianNB().partial_fit(X, y, np.unique(y)) assert_array_almost_equal(clf.theta_, clf_pf.theta_) assert_array_almost_equal(clf.sigma_, clf_pf.sigma_) assert_array_almost_equal(clf.class_prior_, clf_pf.class_prior_) clf_pf2 = GaussianNB().partial_fit(X[0::2, :], y[0::2], np.unique(y)) clf_pf2.partial_fit(X[1::2], y[1::2]) assert_array_almost_equal(clf.theta_, clf_pf2.theta_) assert_array_almost_equal(clf.sigma_, clf_pf2.sigma_) assert_array_almost_equal(clf.class_prior_, clf_pf2.class_prior_) def test_discretenb_pickle(): # Test picklability of discrete naive Bayes classifiers for cls in [BernoulliNB, MultinomialNB, GaussianNB]: clf = cls().fit(X2, y2) y_pred = clf.predict(X2) store = BytesIO() pickle.dump(clf, store) clf = pickle.load(BytesIO(store.getvalue())) assert_array_equal(y_pred, clf.predict(X2)) if cls is not GaussianNB: # TODO re-enable me when partial_fit is implemented for GaussianNB # Test pickling of estimator trained with partial_fit clf2 = cls().partial_fit(X2[:3], y2[:3], classes=np.unique(y2)) clf2.partial_fit(X2[3:], y2[3:]) store = BytesIO() pickle.dump(clf2, store) clf2 = pickle.load(BytesIO(store.getvalue())) assert_array_equal(y_pred, clf2.predict(X2)) def test_input_check_fit(): # Test input checks for the fit method for cls in [BernoulliNB, MultinomialNB, GaussianNB]: # check shape consistency for number of samples at fit time assert_raises(ValueError, cls().fit, X2, y2[:-1]) # check shape consistency for number of input features at predict time clf = cls().fit(X2, y2) assert_raises(ValueError, clf.predict, X2[:, :-1]) def test_input_check_partial_fit(): for cls in [BernoulliNB, MultinomialNB]: # check shape consistency assert_raises(ValueError, cls().partial_fit, X2, y2[:-1], classes=np.unique(y2)) # classes is required for first call to partial fit assert_raises(ValueError, cls().partial_fit, X2, y2) # check consistency of consecutive classes values clf = cls() clf.partial_fit(X2, y2, classes=np.unique(y2)) assert_raises(ValueError, clf.partial_fit, X2, y2, classes=np.arange(42)) # check consistency of input shape for partial_fit assert_raises(ValueError, clf.partial_fit, X2[:, :-1], y2) # check consistency of input shape for predict assert_raises(ValueError, clf.predict, X2[:, :-1]) def test_discretenb_predict_proba(): # Test discrete NB classes' probability scores # The 100s below distinguish Bernoulli from multinomial. # FIXME: write a test to show this. X_bernoulli = [[1, 100, 0], [0, 1, 0], [0, 100, 1]] X_multinomial = [[0, 1], [1, 3], [4, 0]] # test binary case (1-d output) y = [0, 0, 2] # 2 is regression test for binary case, 02e673 for cls, X in zip([BernoulliNB, MultinomialNB], [X_bernoulli, X_multinomial]): clf = cls().fit(X, y) assert_equal(clf.predict(X[-1]), 2) assert_equal(clf.predict_proba(X[0]).shape, (1, 2)) assert_array_almost_equal(clf.predict_proba(X[:2]).sum(axis=1), np.array([1., 1.]), 6) # test multiclass case (2-d output, must sum to one) y = [0, 1, 2] for cls, X in zip([BernoulliNB, MultinomialNB], [X_bernoulli, X_multinomial]): clf = cls().fit(X, y) assert_equal(clf.predict_proba(X[0]).shape, (1, 3)) assert_equal(clf.predict_proba(X[:2]).shape, (2, 3)) assert_almost_equal(np.sum(clf.predict_proba(X[1])), 1) assert_almost_equal(np.sum(clf.predict_proba(X[-1])), 1) assert_almost_equal(np.sum(np.exp(clf.class_log_prior_)), 1) assert_almost_equal(np.sum(np.exp(clf.intercept_)), 1) def test_discretenb_uniform_prior(): # Test whether discrete NB classes fit a uniform prior # when fit_prior=False and class_prior=None for cls in [BernoulliNB, MultinomialNB]: clf = cls() clf.set_params(fit_prior=False) clf.fit([[0], [0], [1]], [0, 0, 1]) prior = np.exp(clf.class_log_prior_) assert_array_equal(prior, np.array([.5, .5])) def test_discretenb_provide_prior(): # Test whether discrete NB classes use provided prior for cls in [BernoulliNB, MultinomialNB]: clf = cls(class_prior=[0.5, 0.5]) clf.fit([[0], [0], [1]], [0, 0, 1]) prior = np.exp(clf.class_log_prior_) assert_array_equal(prior, np.array([.5, .5])) # Inconsistent number of classes with prior assert_raises(ValueError, clf.fit, [[0], [1], [2]], [0, 1, 2]) assert_raises(ValueError, clf.partial_fit, [[0], [1]], [0, 1], classes=[0, 1, 1]) def test_discretenb_provide_prior_with_partial_fit(): # Test whether discrete NB classes use provided prior # when using partial_fit iris = load_iris() iris_data1, iris_data2, iris_target1, iris_target2 = train_test_split( iris.data, iris.target, test_size=0.4, random_state=415) for cls in [BernoulliNB, MultinomialNB]: for prior in [None, [0.3, 0.3, 0.4]]: clf_full = cls(class_prior=prior) clf_full.fit(iris.data, iris.target) clf_partial = cls(class_prior=prior) clf_partial.partial_fit(iris_data1, iris_target1, classes=[0, 1, 2]) clf_partial.partial_fit(iris_data2, iris_target2) assert_array_almost_equal(clf_full.class_log_prior_, clf_partial.class_log_prior_) def test_sample_weight_multiclass(): for cls in [BernoulliNB, MultinomialNB]: # check shape consistency for number of samples at fit time yield check_sample_weight_multiclass, cls def check_sample_weight_multiclass(cls): X = [ [0, 0, 1], [0, 1, 1], [0, 1, 1], [1, 0, 0], ] y = [0, 0, 1, 2] sample_weight = np.array([1, 1, 2, 2], dtype=np.float) sample_weight /= sample_weight.sum() clf = cls().fit(X, y, sample_weight=sample_weight) assert_array_equal(clf.predict(X), [0, 1, 1, 2]) # Check sample weight using the partial_fit method clf = cls() clf.partial_fit(X[:2], y[:2], classes=[0, 1, 2], sample_weight=sample_weight[:2]) clf.partial_fit(X[2:3], y[2:3], sample_weight=sample_weight[2:3]) clf.partial_fit(X[3:], y[3:], sample_weight=sample_weight[3:]) assert_array_equal(clf.predict(X), [0, 1, 1, 2]) def test_sample_weight_mnb(): clf = MultinomialNB() clf.fit([[1, 2], [1, 2], [1, 0]], [0, 0, 1], sample_weight=[1, 1, 4]) assert_array_equal(clf.predict([1, 0]), [1]) positive_prior = np.exp(clf.intercept_[0]) assert_array_almost_equal([1 - positive_prior, positive_prior], [1 / 3., 2 / 3.]) def test_coef_intercept_shape(): # coef_ and intercept_ should have shapes as in other linear models. # Non-regression test for issue #2127. X = [[1, 0, 0], [1, 1, 1]] y = [1, 2] # binary classification for clf in [MultinomialNB(), BernoulliNB()]: clf.fit(X, y) assert_equal(clf.coef_.shape, (1, 3)) assert_equal(clf.intercept_.shape, (1,)) def test_check_accuracy_on_digits(): # Non regression test to make sure that any further refactoring / optim # of the NB models do not harm the performance on a slightly non-linearly # separable dataset digits = load_digits() X, y = digits.data, digits.target binary_3v8 = np.logical_or(digits.target == 3, digits.target == 8) X_3v8, y_3v8 = X[binary_3v8], y[binary_3v8] # Multinomial NB scores = cross_val_score(MultinomialNB(alpha=10), X, y, cv=10) assert_greater(scores.mean(), 0.86) scores = cross_val_score(MultinomialNB(alpha=10), X_3v8, y_3v8, cv=10) assert_greater(scores.mean(), 0.94) # Bernoulli NB scores = cross_val_score(BernoulliNB(alpha=10), X > 4, y, cv=10) assert_greater(scores.mean(), 0.83) scores = cross_val_score(BernoulliNB(alpha=10), X_3v8 > 4, y_3v8, cv=10) assert_greater(scores.mean(), 0.92) # Gaussian NB scores = cross_val_score(GaussianNB(), X, y, cv=10) assert_greater(scores.mean(), 0.77) scores = cross_val_score(GaussianNB(), X_3v8, y_3v8, cv=10) assert_greater(scores.mean(), 0.86) def test_feature_log_prob_bnb(): # Test for issue #4268. # Tests that the feature log prob value computed by BernoulliNB when # alpha=1.0 is equal to the expression given in Manning, Raghavan, # and Schuetze's "Introduction to Information Retrieval" book: # http://nlp.stanford.edu/IR-book/html/htmledition/the-bernoulli-model-1.html X = np.array([[0, 0, 0], [1, 1, 0], [0, 1, 0], [1, 0, 1], [0, 1, 0]]) Y = np.array([0, 0, 1, 2, 2]) # Fit Bernoulli NB w/ alpha = 1.0 clf = BernoulliNB(alpha=1.0) clf.fit(X, Y) # Manually form the (log) numerator and denominator that # constitute P(feature presence | class) num = np.log(clf.feature_count_ + 1.0) denom = np.tile(np.log(clf.class_count_ + 2.0), (X.shape[1], 1)).T # Check manual estimate matches assert_array_equal(clf.feature_log_prob_, (num - denom)) def test_bnb(): # Tests that BernoulliNB when alpha=1.0 gives the same values as # those given for the toy example in Manning, Raghavan, and # Schuetze's "Introduction to Information Retrieval" book: # http://nlp.stanford.edu/IR-book/html/htmledition/the-bernoulli-model-1.html # Training data points are: # Chinese Beijing Chinese (class: China) # Chinese Chinese Shanghai (class: China) # Chinese Macao (class: China) # Tokyo Japan Chinese (class: Japan) # Features are Beijing, Chinese, Japan, Macao, Shanghai, and Tokyo X = np.array([[1, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 1, 0, 1, 0, 0], [0, 1, 1, 0, 0, 1]]) # Classes are China (0), Japan (1) Y = np.array([0, 0, 0, 1]) # Fit BernoulliBN w/ alpha = 1.0 clf = BernoulliNB(alpha=1.0) clf.fit(X, Y) # Check the class prior is correct class_prior = np.array([0.75, 0.25]) assert_array_almost_equal(np.exp(clf.class_log_prior_), class_prior) # Check the feature probabilities are correct feature_prob = np.array([[0.4, 0.8, 0.2, 0.4, 0.4, 0.2], [1/3.0, 2/3.0, 2/3.0, 1/3.0, 1/3.0, 2/3.0]]) assert_array_almost_equal(np.exp(clf.feature_log_prob_), feature_prob) # Testing data point is: # Chinese Chinese Chinese Tokyo Japan X_test = np.array([0, 1, 1, 0, 0, 1]) # Check the predictive probabilities are correct unnorm_predict_proba = np.array([[0.005183999999999999, 0.02194787379972565]]) predict_proba = unnorm_predict_proba / np.sum(unnorm_predict_proba) assert_array_almost_equal(clf.predict_proba(X_test), predict_proba)
bsd-3-clause
JackThorp/ComputationalNeurodynamics
Exercise_2/Run2L.py
3
2347
""" Computational Neurodynamics Exercise 2 Simulates two layers of Izhikevich neurons. Layer 0 is stimulated with a constant base current and layer 1 receives synaptic input of layer 0. (C) Murray Shanahan et al, 2015 """ from Connect2L import Connect2L import numpy as np import matplotlib.pyplot as plt N1 = 4 N2 = 4 T = 500 # Simulation time Ib = 5 # Base current net = Connect2L(N1, N2) ## Initialise layers for lr in xrange(len(net.layer)): net.layer[lr].v = -65 * np.ones(net.layer[lr].N) net.layer[lr].u = net.layer[lr].b * net.layer[lr].v net.layer[lr].firings = np.array([]) v1 = np.zeros([T, N1]) v2 = np.zeros([T, N2]) u1 = np.zeros([T, N1]) u2 = np.zeros([T, N2]) ## SIMULATE for t in xrange(T): # Deliver a constant base current to layer 1 net.layer[0].I = Ib * np.ones(N1) net.layer[1].I = np.zeros(N2) net.Update(t) v1[t] = net.layer[0].v v2[t] = net.layer[1].v u1[t] = net.layer[0].u u2[t] = net.layer[1].u ## Retrieve firings and add Dirac pulses for presentation firings1 = net.layer[0].firings firings2 = net.layer[1].firings if firings1.size != 0: v1[firings1[:, 0], firings1[:, 1]] = 30 if firings2.size != 0: v2[firings2[:, 0], firings2[:, 1]] = 30 ## Plot membrane potentials plt.figure(1) plt.subplot(211) plt.plot(range(T), v1) plt.title('Population 1 membrane potentials') plt.ylabel('Voltage (mV)') plt.ylim([-90, 40]) plt.subplot(212) plt.plot(range(T), v2) plt.title('Population 2 membrane potentials') plt.ylabel('Voltage (mV)') plt.ylim([-90, 40]) plt.xlabel('Time (ms)') ## Plot recovery variable plt.figure(2) plt.subplot(211) plt.plot(range(T), u1) plt.title('Population 1 recovery variables') plt.ylabel('Voltage (mV)') plt.subplot(212) plt.plot(range(T), u2) plt.title('Population 2 recovery variables') plt.ylabel('Voltage (mV)') plt.xlabel('Time (ms)') ## Raster plots of firings if firings1.size != 0: plt.figure(3) plt.subplot(211) plt.scatter(firings1[:, 0], firings1[:, 1] + 1, marker='.') plt.xlim(0, T) plt.ylabel('Neuron number') plt.ylim(0, N1+1) plt.title('Population 1 firings') if firings2.size != 0: plt.subplot(212) plt.scatter(firings2[:, 0], firings2[:, 1] + 1, marker='.') plt.xlim(0, T) plt.ylabel('Neuron number') plt.ylim(0, N2+1) plt.xlabel('Time (ms)') plt.title('Population 2 firings') plt.show()
gpl-3.0
CVML/scikit-learn
examples/preprocessing/plot_robust_scaling.py
221
2702
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Robust Scaling on Toy Data ========================================================= Making sure that each Feature has approximately the same scale can be a crucial preprocessing step. However, when data contains outliers, :class:`StandardScaler <sklearn.preprocessing.StandardScaler>` can often be mislead. In such cases, it is better to use a scaler that is robust against outliers. Here, we demonstrate this on a toy dataset, where one single datapoint is a large outlier. """ from __future__ import print_function print(__doc__) # Code source: Thomas Unterthiner # License: BSD 3 clause import matplotlib.pyplot as plt import numpy as np from sklearn.preprocessing import StandardScaler, RobustScaler # Create training and test data np.random.seed(42) n_datapoints = 100 Cov = [[0.9, 0.0], [0.0, 20.0]] mu1 = [100.0, -3.0] mu2 = [101.0, -3.0] X1 = np.random.multivariate_normal(mean=mu1, cov=Cov, size=n_datapoints) X2 = np.random.multivariate_normal(mean=mu2, cov=Cov, size=n_datapoints) Y_train = np.hstack([[-1]*n_datapoints, [1]*n_datapoints]) X_train = np.vstack([X1, X2]) X1 = np.random.multivariate_normal(mean=mu1, cov=Cov, size=n_datapoints) X2 = np.random.multivariate_normal(mean=mu2, cov=Cov, size=n_datapoints) Y_test = np.hstack([[-1]*n_datapoints, [1]*n_datapoints]) X_test = np.vstack([X1, X2]) X_train[0, 0] = -1000 # a fairly large outlier # Scale data standard_scaler = StandardScaler() Xtr_s = standard_scaler.fit_transform(X_train) Xte_s = standard_scaler.transform(X_test) robust_scaler = RobustScaler() Xtr_r = robust_scaler.fit_transform(X_train) Xte_r = robust_scaler.fit_transform(X_test) # Plot data fig, ax = plt.subplots(1, 3, figsize=(12, 4)) ax[0].scatter(X_train[:, 0], X_train[:, 1], color=np.where(Y_train > 0, 'r', 'b')) ax[1].scatter(Xtr_s[:, 0], Xtr_s[:, 1], color=np.where(Y_train > 0, 'r', 'b')) ax[2].scatter(Xtr_r[:, 0], Xtr_r[:, 1], color=np.where(Y_train > 0, 'r', 'b')) ax[0].set_title("Unscaled data") ax[1].set_title("After standard scaling (zoomed in)") ax[2].set_title("After robust scaling (zoomed in)") # for the scaled data, we zoom in to the data center (outlier can't be seen!) for a in ax[1:]: a.set_xlim(-3, 3) a.set_ylim(-3, 3) plt.tight_layout() plt.show() # Classify using k-NN from sklearn.neighbors import KNeighborsClassifier knn = KNeighborsClassifier() knn.fit(Xtr_s, Y_train) acc_s = knn.score(Xte_s, Y_test) print("Testset accuracy using standard scaler: %.3f" % acc_s) knn.fit(Xtr_r, Y_train) acc_r = knn.score(Xte_r, Y_test) print("Testset accuracy using robust scaler: %.3f" % acc_r)
bsd-3-clause
dpshelio/sunpy
sunpy/instr/rhessi.py
1
11794
# -*- coding: utf-8 -*- """ Provides programs to process and analyze RHESSI data. .. warning:: This module is in development. """ import re import csv import numpy as np import astropy.units as u from astropy.time import TimeDelta from astropy.time import Time import sunpy.io from sunpy.time import TimeRange, parse_time from sunpy.coordinates import sun __all__ = ['parse_observing_summary_hdulist', 'backprojection', 'parse_observing_summary_dbase_file'] # Measured fixed grid parameters grid_pitch = (4.52467, 7.85160, 13.5751, 23.5542, 40.7241, 70.5309, 122.164, 211.609, 366.646) grid_orientation = (3.53547, 2.75007, 3.53569, 2.74962, 3.92596, 2.35647, 0.786083, 0.00140674, 1.57147) lc_linecolors = ('black', 'pink', 'green', 'blue', 'brown', 'red', 'navy', 'orange', 'green') def parse_observing_summary_dbase_file(filename): """ Parse the RHESSI observing summary database file. This file lists the name of observing summary files for specific time ranges along with other info Parameters ---------- filename : `str` The filename of the obssumm dbase file. Returns ------- out : `dict` Return a `dict` containing the parsed data in the dbase file. Examples -------- >>> import sunpy.instr.rhessi as rhessi >>> rhessi.parse_observing_summary_dbase_file(fname) # doctest: +SKIP References ---------- | https://hesperia.gsfc.nasa.gov/ssw/hessi/doc/guides/hessi_data_access.htm#Observing%20Summary%20Data .. note:: This API is currently limited to providing data from whole days only. """ # An example dbase file can be found at: # https://hesperia.gsfc.nasa.gov/hessidata/dbase/hsi_obssumm_filedb_200311.txt with open(filename) as fd: reader = csv.reader(fd, delimiter=' ', skipinitialspace=True) _ = next(reader) # skip 'HESSI Filedb File:' row _ = next(reader) # skip 'Created: ...' row _ = next(reader) # skip 'Number of Files: ...' row column_names = next(reader) # ['Filename', 'Orb_st', 'Orb_end',...] obssumm_filename = [] orbit_start = [] orbit_end = [] start_time = [] end_time = [] status_flag = [] number_of_packets = [] for row in reader: obssumm_filename.append(row[0]) orbit_start.append(int(row[1])) orbit_end.append(int(row[2])) start_time.append(Time.strptime(row[3], '%d-%b-%y')) # skip time end_time.append(Time.strptime(row[5], '%d-%b-%y')) # skip time status_flag.append(int(row[7])) number_of_packets.append(int(row[8])) return { column_names[0].lower(): obssumm_filename, column_names[1].lower(): orbit_start, column_names[2].lower(): orbit_end, column_names[3].lower(): start_time, column_names[4].lower(): end_time, column_names[5].lower(): status_flag, column_names[6].lower(): number_of_packets } def parse_observing_summary_hdulist(hdulist): """ Parse a RHESSI observation summary file. Parameters ---------- hdulist : list The HDU list from the fits file. Returns ------- out : `dict` Returns a dictionary. """ header = hdulist[0].header reference_time_ut = parse_time(hdulist[5].data.field('UT_REF')[0], format='utime') time_interval_sec = hdulist[5].data.field('TIME_INTV')[0] # label_unit = fits[5].data.field('DIM1_UNIT')[0] # labels = fits[5].data.field('DIM1_IDS') labels = ['3 - 6 keV', '6 - 12 keV', '12 - 25 keV', '25 - 50 keV', '50 - 100 keV', '100 - 300 keV', '300 - 800 keV', '800 - 7000 keV', '7000 - 20000 keV'] # The data stored in the fits file are "compressed" countrates stored as # one byte compressed_countrate = np.array(hdulist[6].data.field('countrate')) countrate = uncompress_countrate(compressed_countrate) dim = np.array(countrate[:, 0]).size time_array = parse_time(reference_time_ut) + \ TimeDelta(time_interval_sec * np.arange(dim) * u.second) # TODO generate the labels for the dict automatically from labels data = {'time': time_array, 'data': countrate, 'labels': labels} return header, data def uncompress_countrate(compressed_countrate): """Convert the compressed count rate inside of observing summary file from a compressed byte to a true count rate Parameters ---------- compressed_countrate : byte array A compressed count rate returned from an observing summary file. References ---------- Hsi_obs_summ_decompress.pro `<https://hesperia.gsfc.nasa.gov/ssw/hessi/idl/qlook_archive/hsi_obs_summ_decompress.pro>`_ """ # Ensure uncompressed counts are between 0 and 255 if (compressed_countrate.min() < 0) or (compressed_countrate.max() > 255): raise ValueError( 'Exepected uncompressed counts {} to in range 0-255'.format(compressed_countrate)) # TODO Must be a better way than creating entire lookup table on each call ll = np.arange(0, 16, 1) lkup = np.zeros(256, dtype='int') _sum = 0 for i in range(0, 16): lkup[16 * i:16 * (i + 1)] = ll * 2 ** i + _sum if i < 15: _sum = lkup[16 * (i + 1) - 1] + 2 ** i return lkup[compressed_countrate] def hsi_linecolors(): """Define discrete colors to use for RHESSI plots Parameters ---------- None Returns ------- tuple : matplotliblib color list References ---------- hsi_linecolors.pro `<https://hesperia.gsfc.nasa.gov/ssw/hessi/idl/gen/hsi_linecolors.pro>`_ """ return ('black', 'magenta', 'lime', 'cyan', 'y', 'red', 'blue', 'orange', 'olive') def _backproject(calibrated_event_list, detector=8, pixel_size=(1., 1.), image_dim=(64, 64)): """ Given a stacked calibrated event list fits file create a back projection image for an individual detectors. This function is used by backprojection. Parameters ---------- calibrated_event_list : str filename of a RHESSI calibrated event list detector : int the detector number pixel_size : 2-tuple the size of the pixels in arcseconds. Default is (1,1). image_dim : 2-tuple the size of the output image in number of pixels Returns ------- out : ndarray Return a backprojection image. Examples -------- >>> import sunpy.instr.rhessi as rhessi """ # info_parameters = fits[2] # detector_efficiency = info_parameters.data.field('cbe_det_eff$$REL') afits = sunpy.io.read_file(calibrated_event_list) fits_detector_index = detector + 2 detector_index = detector - 1 grid_angle = np.pi/2. - grid_orientation[detector_index] harm_ang_pitch = grid_pitch[detector_index]/1 phase_map_center = afits[fits_detector_index].data.field('phase_map_ctr') this_roll_angle = afits[fits_detector_index].data.field('roll_angle') modamp = afits[fits_detector_index].data.field('modamp') grid_transmission = afits[fits_detector_index].data.field('gridtran') count = afits[fits_detector_index].data.field('count') tempa = (np.arange(image_dim[0] * image_dim[1]) % image_dim[0]) - (image_dim[0]-1)/2. tempb = tempa.reshape(image_dim[0], image_dim[1]).transpose().reshape(image_dim[0]*image_dim[1]) pixel = np.array(list(zip(tempa, tempb)))*pixel_size[0] phase_pixel = (2 * np.pi/harm_ang_pitch) *\ (np.outer(pixel[:, 0], np.cos(this_roll_angle - grid_angle)) - np.outer(pixel[:, 1], np.sin(this_roll_angle - grid_angle))) + phase_map_center phase_modulation = np.cos(phase_pixel) gridmod = modamp * grid_transmission probability_of_transmission = gridmod * phase_modulation + grid_transmission bproj_image = np.inner(probability_of_transmission, count).reshape(image_dim) return bproj_image @u.quantity_input def backprojection(calibrated_event_list, pixel_size: u.arcsec=(1., 1.) * u.arcsec, image_dim: u.pix=(64, 64) * u.pix): """ Given a stacked calibrated event list fits file create a back projection image. .. warning:: The image is not in the right orientation! Parameters ---------- calibrated_event_list : str filename of a RHESSI calibrated event list pixel_size : `~astropy.units.Quantity` instance the size of the pixels in arcseconds. Default is (1,1). image_dim : `~astropy.units.Quantity` instance the size of the output image in number of pixels Returns ------- out : RHESSImap Return a backprojection map. Examples -------- This example is broken. >>> import sunpy.data >>> import sunpy.data.sample # doctest: +REMOTE_DATA >>> import sunpy.instr.rhessi as rhessi >>> map = rhessi.backprojection(sunpy.data.sample.RHESSI_EVENT_LIST) # doctest: +SKIP >>> map.peek() # doctest: +SKIP """ # import sunpy.map in here so that net and timeseries don't end up importing map import sunpy.map pixel_size = pixel_size.to(u.arcsec) image_dim = np.array(image_dim.to(u.pix).value, dtype=int) afits = sunpy.io.read_file(calibrated_event_list) info_parameters = afits[2] xyoffset = info_parameters.data.field('USED_XYOFFSET')[0] time_range = TimeRange(info_parameters.data.field('ABSOLUTE_TIME_RANGE')[0], format='utime') image = np.zeros(image_dim) # find out what detectors were used det_index_mask = afits[1].data.field('det_index_mask')[0] detector_list = (np.arange(9)+1) * np.array(det_index_mask) for detector in detector_list: if detector > 0: image = image + _backproject(calibrated_event_list, detector=detector, pixel_size=pixel_size.value, image_dim=image_dim) dict_header = { "DATE-OBS": time_range.center.strftime("%Y-%m-%d %H:%M:%S"), "CDELT1": pixel_size[0], "NAXIS1": image_dim[0], "CRVAL1": xyoffset[0], "CRPIX1": image_dim[0]/2 + 0.5, "CUNIT1": "arcsec", "CTYPE1": "HPLN-TAN", "CDELT2": pixel_size[1], "NAXIS2": image_dim[1], "CRVAL2": xyoffset[1], "CRPIX2": image_dim[0]/2 + 0.5, "CUNIT2": "arcsec", "CTYPE2": "HPLT-TAN", "HGLT_OBS": 0, "HGLN_OBS": 0, "RSUN_OBS": sun.angular_radius(time_range.center).value, "RSUN_REF": sunpy.sun.constants.radius.value, "DSUN_OBS": sun.earth_distance(time_range.center).value * sunpy.sun.constants.au.value } result_map = sunpy.map.Map(image, dict_header) return result_map def _build_energy_bands(label, bands): """ Parameters ---------- label: `str` bands: `list` of `str` Returns ------- bands_with_units: `list` of `str` Each `str` item is an energy band and its unit Example ------- >>> from sunpy.instr.rhessi import _build_energy_bands >>> _build_energy_bands('Energy bands (keV)', ['3 - 6', '6 - 12', '12 - 25']) ['3 - 6 keV', '6 - 12 keV', '12 - 25 keV'] """ unit_pattern = re.compile(r'^.+\((?P<UNIT>\w+)\)$') matched = unit_pattern.match(label) if matched is None: raise ValueError("Unable to find energy unit in '{0}' " "using REGEX '{1}'".format(label, unit_pattern.pattern)) unit = matched.group('UNIT').strip() return ['{energy_band} {unit}'.format(energy_band=band, unit=unit) for band in bands]
bsd-2-clause
jblackburne/scikit-learn
sklearn/metrics/tests/test_pairwise.py
13
26241
import numpy as np from numpy import linalg from scipy.sparse import dok_matrix, csr_matrix, issparse from scipy.spatial.distance import cosine, cityblock, minkowski, wminkowski from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raises_regexp from sklearn.utils.testing import assert_true from sklearn.utils.testing import ignore_warnings from sklearn.externals.six import iteritems from sklearn.metrics.pairwise import euclidean_distances from sklearn.metrics.pairwise import manhattan_distances from sklearn.metrics.pairwise import linear_kernel from sklearn.metrics.pairwise import chi2_kernel, additive_chi2_kernel from sklearn.metrics.pairwise import polynomial_kernel from sklearn.metrics.pairwise import rbf_kernel from sklearn.metrics.pairwise import laplacian_kernel from sklearn.metrics.pairwise import sigmoid_kernel from sklearn.metrics.pairwise import cosine_similarity from sklearn.metrics.pairwise import cosine_distances from sklearn.metrics.pairwise import pairwise_distances from sklearn.metrics.pairwise import pairwise_distances_argmin_min from sklearn.metrics.pairwise import pairwise_distances_argmin from sklearn.metrics.pairwise import pairwise_kernels from sklearn.metrics.pairwise import PAIRWISE_KERNEL_FUNCTIONS from sklearn.metrics.pairwise import PAIRWISE_DISTANCE_FUNCTIONS from sklearn.metrics.pairwise import PAIRWISE_BOOLEAN_FUNCTIONS from sklearn.metrics.pairwise import PAIRED_DISTANCES from sklearn.metrics.pairwise import check_pairwise_arrays from sklearn.metrics.pairwise import check_paired_arrays from sklearn.metrics.pairwise import paired_distances from sklearn.metrics.pairwise import paired_euclidean_distances from sklearn.metrics.pairwise import paired_manhattan_distances from sklearn.preprocessing import normalize from sklearn.exceptions import DataConversionWarning def test_pairwise_distances(): # Test the pairwise_distance helper function. rng = np.random.RandomState(0) # Euclidean distance should be equivalent to calling the function. X = rng.random_sample((5, 4)) S = pairwise_distances(X, metric="euclidean") S2 = euclidean_distances(X) assert_array_almost_equal(S, S2) # Euclidean distance, with Y != X. Y = rng.random_sample((2, 4)) S = pairwise_distances(X, Y, metric="euclidean") S2 = euclidean_distances(X, Y) assert_array_almost_equal(S, S2) # Test with tuples as X and Y X_tuples = tuple([tuple([v for v in row]) for row in X]) Y_tuples = tuple([tuple([v for v in row]) for row in Y]) S2 = pairwise_distances(X_tuples, Y_tuples, metric="euclidean") assert_array_almost_equal(S, S2) # "cityblock" uses scikit-learn metric, cityblock (function) is # scipy.spatial. S = pairwise_distances(X, metric="cityblock") S2 = pairwise_distances(X, metric=cityblock) assert_equal(S.shape[0], S.shape[1]) assert_equal(S.shape[0], X.shape[0]) assert_array_almost_equal(S, S2) # The manhattan metric should be equivalent to cityblock. S = pairwise_distances(X, Y, metric="manhattan") S2 = pairwise_distances(X, Y, metric=cityblock) assert_equal(S.shape[0], X.shape[0]) assert_equal(S.shape[1], Y.shape[0]) assert_array_almost_equal(S, S2) # Low-level function for manhattan can divide in blocks to avoid # using too much memory during the broadcasting S3 = manhattan_distances(X, Y, size_threshold=10) assert_array_almost_equal(S, S3) # Test cosine as a string metric versus cosine callable # The string "cosine" uses sklearn.metric, # while the function cosine is scipy.spatial S = pairwise_distances(X, Y, metric="cosine") S2 = pairwise_distances(X, Y, metric=cosine) assert_equal(S.shape[0], X.shape[0]) assert_equal(S.shape[1], Y.shape[0]) assert_array_almost_equal(S, S2) # Test with sparse X and Y, # currently only supported for Euclidean, L1 and cosine. X_sparse = csr_matrix(X) Y_sparse = csr_matrix(Y) S = pairwise_distances(X_sparse, Y_sparse, metric="euclidean") S2 = euclidean_distances(X_sparse, Y_sparse) assert_array_almost_equal(S, S2) S = pairwise_distances(X_sparse, Y_sparse, metric="cosine") S2 = cosine_distances(X_sparse, Y_sparse) assert_array_almost_equal(S, S2) S = pairwise_distances(X_sparse, Y_sparse.tocsc(), metric="manhattan") S2 = manhattan_distances(X_sparse.tobsr(), Y_sparse.tocoo()) assert_array_almost_equal(S, S2) S2 = manhattan_distances(X, Y) assert_array_almost_equal(S, S2) # Test with scipy.spatial.distance metric, with a kwd kwds = {"p": 2.0} S = pairwise_distances(X, Y, metric="minkowski", **kwds) S2 = pairwise_distances(X, Y, metric=minkowski, **kwds) assert_array_almost_equal(S, S2) # same with Y = None kwds = {"p": 2.0} S = pairwise_distances(X, metric="minkowski", **kwds) S2 = pairwise_distances(X, metric=minkowski, **kwds) assert_array_almost_equal(S, S2) # Test that scipy distance metrics throw an error if sparse matrix given assert_raises(TypeError, pairwise_distances, X_sparse, metric="minkowski") assert_raises(TypeError, pairwise_distances, X, Y_sparse, metric="minkowski") # Test that a value error is raised if the metric is unknown assert_raises(ValueError, pairwise_distances, X, Y, metric="blah") # ignore conversion to boolean in pairwise_distances @ignore_warnings(category=DataConversionWarning) def test_pairwise_boolean_distance(): # test that we convert to boolean arrays for boolean distances rng = np.random.RandomState(0) X = rng.randn(5, 4) Y = X.copy() Y[0, 0] = 1 - Y[0, 0] for metric in PAIRWISE_BOOLEAN_FUNCTIONS: for Z in [Y, None]: res = pairwise_distances(X, Z, metric=metric) res[np.isnan(res)] = 0 assert_true(np.sum(res != 0) == 0) def test_pairwise_precomputed(): for func in [pairwise_distances, pairwise_kernels]: # Test correct shape assert_raises_regexp(ValueError, '.* shape .*', func, np.zeros((5, 3)), metric='precomputed') # with two args assert_raises_regexp(ValueError, '.* shape .*', func, np.zeros((5, 3)), np.zeros((4, 4)), metric='precomputed') # even if shape[1] agrees (although thus second arg is spurious) assert_raises_regexp(ValueError, '.* shape .*', func, np.zeros((5, 3)), np.zeros((4, 3)), metric='precomputed') # Test not copied (if appropriate dtype) S = np.zeros((5, 5)) S2 = func(S, metric="precomputed") assert_true(S is S2) # with two args S = np.zeros((5, 3)) S2 = func(S, np.zeros((3, 3)), metric="precomputed") assert_true(S is S2) # Test always returns float dtype S = func(np.array([[1]], dtype='int'), metric='precomputed') assert_equal('f', S.dtype.kind) # Test converts list to array-like S = func([[1.]], metric='precomputed') assert_true(isinstance(S, np.ndarray)) def check_pairwise_parallel(func, metric, kwds): rng = np.random.RandomState(0) for make_data in (np.array, csr_matrix): X = make_data(rng.random_sample((5, 4))) Y = make_data(rng.random_sample((3, 4))) try: S = func(X, metric=metric, n_jobs=1, **kwds) except (TypeError, ValueError) as exc: # Not all metrics support sparse input # ValueError may be triggered by bad callable if make_data is csr_matrix: assert_raises(type(exc), func, X, metric=metric, n_jobs=2, **kwds) continue else: raise S2 = func(X, metric=metric, n_jobs=2, **kwds) assert_array_almost_equal(S, S2) S = func(X, Y, metric=metric, n_jobs=1, **kwds) S2 = func(X, Y, metric=metric, n_jobs=2, **kwds) assert_array_almost_equal(S, S2) def test_pairwise_parallel(): wminkowski_kwds = {'w': np.arange(1, 5).astype('double'), 'p': 1} metrics = [(pairwise_distances, 'euclidean', {}), (pairwise_distances, wminkowski, wminkowski_kwds), (pairwise_distances, 'wminkowski', wminkowski_kwds), (pairwise_kernels, 'polynomial', {'degree': 1}), (pairwise_kernels, callable_rbf_kernel, {'gamma': .1}), ] for func, metric, kwds in metrics: yield check_pairwise_parallel, func, metric, kwds def test_pairwise_callable_nonstrict_metric(): # paired_distances should allow callable metric where metric(x, x) != 0 # Knowing that the callable is a strict metric would allow the diagonal to # be left uncalculated and set to 0. assert_equal(pairwise_distances([[1.]], metric=lambda x, y: 5)[0, 0], 5) def callable_rbf_kernel(x, y, **kwds): # Callable version of pairwise.rbf_kernel. K = rbf_kernel(np.atleast_2d(x), np.atleast_2d(y), **kwds) return K def test_pairwise_kernels(): # Test the pairwise_kernels helper function. rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) Y = rng.random_sample((2, 4)) # Test with all metrics that should be in PAIRWISE_KERNEL_FUNCTIONS. test_metrics = ["rbf", "laplacian", "sigmoid", "polynomial", "linear", "chi2", "additive_chi2"] for metric in test_metrics: function = PAIRWISE_KERNEL_FUNCTIONS[metric] # Test with Y=None K1 = pairwise_kernels(X, metric=metric) K2 = function(X) assert_array_almost_equal(K1, K2) # Test with Y=Y K1 = pairwise_kernels(X, Y=Y, metric=metric) K2 = function(X, Y=Y) assert_array_almost_equal(K1, K2) # Test with tuples as X and Y X_tuples = tuple([tuple([v for v in row]) for row in X]) Y_tuples = tuple([tuple([v for v in row]) for row in Y]) K2 = pairwise_kernels(X_tuples, Y_tuples, metric=metric) assert_array_almost_equal(K1, K2) # Test with sparse X and Y X_sparse = csr_matrix(X) Y_sparse = csr_matrix(Y) if metric in ["chi2", "additive_chi2"]: # these don't support sparse matrices yet assert_raises(ValueError, pairwise_kernels, X_sparse, Y=Y_sparse, metric=metric) continue K1 = pairwise_kernels(X_sparse, Y=Y_sparse, metric=metric) assert_array_almost_equal(K1, K2) # Test with a callable function, with given keywords. metric = callable_rbf_kernel kwds = {'gamma': 0.1} K1 = pairwise_kernels(X, Y=Y, metric=metric, **kwds) K2 = rbf_kernel(X, Y=Y, **kwds) assert_array_almost_equal(K1, K2) # callable function, X=Y K1 = pairwise_kernels(X, Y=X, metric=metric, **kwds) K2 = rbf_kernel(X, Y=X, **kwds) assert_array_almost_equal(K1, K2) def test_pairwise_kernels_filter_param(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) Y = rng.random_sample((2, 4)) K = rbf_kernel(X, Y, gamma=0.1) params = {"gamma": 0.1, "blabla": ":)"} K2 = pairwise_kernels(X, Y, metric="rbf", filter_params=True, **params) assert_array_almost_equal(K, K2) assert_raises(TypeError, pairwise_kernels, X, Y, "rbf", **params) def test_paired_distances(): # Test the pairwise_distance helper function. rng = np.random.RandomState(0) # Euclidean distance should be equivalent to calling the function. X = rng.random_sample((5, 4)) # Euclidean distance, with Y != X. Y = rng.random_sample((5, 4)) for metric, func in iteritems(PAIRED_DISTANCES): S = paired_distances(X, Y, metric=metric) S2 = func(X, Y) assert_array_almost_equal(S, S2) S3 = func(csr_matrix(X), csr_matrix(Y)) assert_array_almost_equal(S, S3) if metric in PAIRWISE_DISTANCE_FUNCTIONS: # Check the pairwise_distances implementation # gives the same value distances = PAIRWISE_DISTANCE_FUNCTIONS[metric](X, Y) distances = np.diag(distances) assert_array_almost_equal(distances, S) # Check the callable implementation S = paired_distances(X, Y, metric='manhattan') S2 = paired_distances(X, Y, metric=lambda x, y: np.abs(x - y).sum(axis=0)) assert_array_almost_equal(S, S2) # Test that a value error is raised when the lengths of X and Y should not # differ Y = rng.random_sample((3, 4)) assert_raises(ValueError, paired_distances, X, Y) def test_pairwise_distances_argmin_min(): # Check pairwise minimum distances computation for any metric X = [[0], [1]] Y = [[-1], [2]] Xsp = dok_matrix(X) Ysp = csr_matrix(Y, dtype=np.float32) # euclidean metric D, E = pairwise_distances_argmin_min(X, Y, metric="euclidean") D2 = pairwise_distances_argmin(X, Y, metric="euclidean") assert_array_almost_equal(D, [0, 1]) assert_array_almost_equal(D2, [0, 1]) assert_array_almost_equal(D, [0, 1]) assert_array_almost_equal(E, [1., 1.]) # sparse matrix case Dsp, Esp = pairwise_distances_argmin_min(Xsp, Ysp, metric="euclidean") assert_array_equal(Dsp, D) assert_array_equal(Esp, E) # We don't want np.matrix here assert_equal(type(Dsp), np.ndarray) assert_equal(type(Esp), np.ndarray) # Non-euclidean scikit-learn metric D, E = pairwise_distances_argmin_min(X, Y, metric="manhattan") D2 = pairwise_distances_argmin(X, Y, metric="manhattan") assert_array_almost_equal(D, [0, 1]) assert_array_almost_equal(D2, [0, 1]) assert_array_almost_equal(E, [1., 1.]) D, E = pairwise_distances_argmin_min(Xsp, Ysp, metric="manhattan") D2 = pairwise_distances_argmin(Xsp, Ysp, metric="manhattan") assert_array_almost_equal(D, [0, 1]) assert_array_almost_equal(E, [1., 1.]) # Non-euclidean Scipy distance (callable) D, E = pairwise_distances_argmin_min(X, Y, metric=minkowski, metric_kwargs={"p": 2}) assert_array_almost_equal(D, [0, 1]) assert_array_almost_equal(E, [1., 1.]) # Non-euclidean Scipy distance (string) D, E = pairwise_distances_argmin_min(X, Y, metric="minkowski", metric_kwargs={"p": 2}) assert_array_almost_equal(D, [0, 1]) assert_array_almost_equal(E, [1., 1.]) # Compare with naive implementation rng = np.random.RandomState(0) X = rng.randn(97, 149) Y = rng.randn(111, 149) dist = pairwise_distances(X, Y, metric="manhattan") dist_orig_ind = dist.argmin(axis=0) dist_orig_val = dist[dist_orig_ind, range(len(dist_orig_ind))] dist_chunked_ind, dist_chunked_val = pairwise_distances_argmin_min( X, Y, axis=0, metric="manhattan", batch_size=50) np.testing.assert_almost_equal(dist_orig_ind, dist_chunked_ind, decimal=7) np.testing.assert_almost_equal(dist_orig_val, dist_chunked_val, decimal=7) def test_euclidean_distances(): # Check the pairwise Euclidean distances computation X = [[0]] Y = [[1], [2]] D = euclidean_distances(X, Y) assert_array_almost_equal(D, [[1., 2.]]) X = csr_matrix(X) Y = csr_matrix(Y) D = euclidean_distances(X, Y) assert_array_almost_equal(D, [[1., 2.]]) rng = np.random.RandomState(0) X = rng.random_sample((10, 4)) Y = rng.random_sample((20, 4)) X_norm_sq = (X ** 2).sum(axis=1).reshape(1, -1) Y_norm_sq = (Y ** 2).sum(axis=1).reshape(1, -1) # check that we still get the right answers with {X,Y}_norm_squared D1 = euclidean_distances(X, Y) D2 = euclidean_distances(X, Y, X_norm_squared=X_norm_sq) D3 = euclidean_distances(X, Y, Y_norm_squared=Y_norm_sq) D4 = euclidean_distances(X, Y, X_norm_squared=X_norm_sq, Y_norm_squared=Y_norm_sq) assert_array_almost_equal(D2, D1) assert_array_almost_equal(D3, D1) assert_array_almost_equal(D4, D1) # check we get the wrong answer with wrong {X,Y}_norm_squared X_norm_sq *= 0.5 Y_norm_sq *= 0.5 wrong_D = euclidean_distances(X, Y, X_norm_squared=np.zeros_like(X_norm_sq), Y_norm_squared=np.zeros_like(Y_norm_sq)) assert_greater(np.max(np.abs(wrong_D - D1)), .01) # Paired distances def test_paired_euclidean_distances(): # Check the paired Euclidean distances computation X = [[0], [0]] Y = [[1], [2]] D = paired_euclidean_distances(X, Y) assert_array_almost_equal(D, [1., 2.]) def test_paired_manhattan_distances(): # Check the paired manhattan distances computation X = [[0], [0]] Y = [[1], [2]] D = paired_manhattan_distances(X, Y) assert_array_almost_equal(D, [1., 2.]) def test_chi_square_kernel(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) Y = rng.random_sample((10, 4)) K_add = additive_chi2_kernel(X, Y) gamma = 0.1 K = chi2_kernel(X, Y, gamma=gamma) assert_equal(K.dtype, np.float) for i, x in enumerate(X): for j, y in enumerate(Y): chi2 = -np.sum((x - y) ** 2 / (x + y)) chi2_exp = np.exp(gamma * chi2) assert_almost_equal(K_add[i, j], chi2) assert_almost_equal(K[i, j], chi2_exp) # check diagonal is ones for data with itself K = chi2_kernel(Y) assert_array_equal(np.diag(K), 1) # check off-diagonal is < 1 but > 0: assert_true(np.all(K > 0)) assert_true(np.all(K - np.diag(np.diag(K)) < 1)) # check that float32 is preserved X = rng.random_sample((5, 4)).astype(np.float32) Y = rng.random_sample((10, 4)).astype(np.float32) K = chi2_kernel(X, Y) assert_equal(K.dtype, np.float32) # check integer type gets converted, # check that zeros are handled X = rng.random_sample((10, 4)).astype(np.int32) K = chi2_kernel(X, X) assert_true(np.isfinite(K).all()) assert_equal(K.dtype, np.float) # check that kernel of similar things is greater than dissimilar ones X = [[.3, .7], [1., 0]] Y = [[0, 1], [.9, .1]] K = chi2_kernel(X, Y) assert_greater(K[0, 0], K[0, 1]) assert_greater(K[1, 1], K[1, 0]) # test negative input assert_raises(ValueError, chi2_kernel, [[0, -1]]) assert_raises(ValueError, chi2_kernel, [[0, -1]], [[-1, -1]]) assert_raises(ValueError, chi2_kernel, [[0, 1]], [[-1, -1]]) # different n_features in X and Y assert_raises(ValueError, chi2_kernel, [[0, 1]], [[.2, .2, .6]]) # sparse matrices assert_raises(ValueError, chi2_kernel, csr_matrix(X), csr_matrix(Y)) assert_raises(ValueError, additive_chi2_kernel, csr_matrix(X), csr_matrix(Y)) def test_kernel_symmetry(): # Valid kernels should be symmetric rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) for kernel in (linear_kernel, polynomial_kernel, rbf_kernel, laplacian_kernel, sigmoid_kernel, cosine_similarity): K = kernel(X, X) assert_array_almost_equal(K, K.T, 15) def test_kernel_sparse(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) X_sparse = csr_matrix(X) for kernel in (linear_kernel, polynomial_kernel, rbf_kernel, laplacian_kernel, sigmoid_kernel, cosine_similarity): K = kernel(X, X) K2 = kernel(X_sparse, X_sparse) assert_array_almost_equal(K, K2) def test_linear_kernel(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) K = linear_kernel(X, X) # the diagonal elements of a linear kernel are their squared norm assert_array_almost_equal(K.flat[::6], [linalg.norm(x) ** 2 for x in X]) def test_rbf_kernel(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) K = rbf_kernel(X, X) # the diagonal elements of a rbf kernel are 1 assert_array_almost_equal(K.flat[::6], np.ones(5)) def test_laplacian_kernel(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) K = laplacian_kernel(X, X) # the diagonal elements of a laplacian kernel are 1 assert_array_almost_equal(np.diag(K), np.ones(5)) # off-diagonal elements are < 1 but > 0: assert_true(np.all(K > 0)) assert_true(np.all(K - np.diag(np.diag(K)) < 1)) def test_cosine_similarity_sparse_output(): # Test if cosine_similarity correctly produces sparse output. rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) Y = rng.random_sample((3, 4)) Xcsr = csr_matrix(X) Ycsr = csr_matrix(Y) K1 = cosine_similarity(Xcsr, Ycsr, dense_output=False) assert_true(issparse(K1)) K2 = pairwise_kernels(Xcsr, Y=Ycsr, metric="cosine") assert_array_almost_equal(K1.todense(), K2) def test_cosine_similarity(): # Test the cosine_similarity. rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) Y = rng.random_sample((3, 4)) Xcsr = csr_matrix(X) Ycsr = csr_matrix(Y) for X_, Y_ in ((X, None), (X, Y), (Xcsr, None), (Xcsr, Ycsr)): # Test that the cosine is kernel is equal to a linear kernel when data # has been previously normalized by L2-norm. K1 = pairwise_kernels(X_, Y=Y_, metric="cosine") X_ = normalize(X_) if Y_ is not None: Y_ = normalize(Y_) K2 = pairwise_kernels(X_, Y=Y_, metric="linear") assert_array_almost_equal(K1, K2) def test_check_dense_matrices(): # Ensure that pairwise array check works for dense matrices. # Check that if XB is None, XB is returned as reference to XA XA = np.resize(np.arange(40), (5, 8)) XA_checked, XB_checked = check_pairwise_arrays(XA, None) assert_true(XA_checked is XB_checked) assert_array_equal(XA, XA_checked) def test_check_XB_returned(): # Ensure that if XA and XB are given correctly, they return as equal. # Check that if XB is not None, it is returned equal. # Note that the second dimension of XB is the same as XA. XA = np.resize(np.arange(40), (5, 8)) XB = np.resize(np.arange(32), (4, 8)) XA_checked, XB_checked = check_pairwise_arrays(XA, XB) assert_array_equal(XA, XA_checked) assert_array_equal(XB, XB_checked) XB = np.resize(np.arange(40), (5, 8)) XA_checked, XB_checked = check_paired_arrays(XA, XB) assert_array_equal(XA, XA_checked) assert_array_equal(XB, XB_checked) def test_check_different_dimensions(): # Ensure an error is raised if the dimensions are different. XA = np.resize(np.arange(45), (5, 9)) XB = np.resize(np.arange(32), (4, 8)) assert_raises(ValueError, check_pairwise_arrays, XA, XB) XB = np.resize(np.arange(4 * 9), (4, 9)) assert_raises(ValueError, check_paired_arrays, XA, XB) def test_check_invalid_dimensions(): # Ensure an error is raised on 1D input arrays. # The modified tests are not 1D. In the old test, the array was internally # converted to 2D anyways XA = np.arange(45).reshape(9, 5) XB = np.arange(32).reshape(4, 8) assert_raises(ValueError, check_pairwise_arrays, XA, XB) XA = np.arange(45).reshape(9, 5) XB = np.arange(32).reshape(4, 8) assert_raises(ValueError, check_pairwise_arrays, XA, XB) def test_check_sparse_arrays(): # Ensures that checks return valid sparse matrices. rng = np.random.RandomState(0) XA = rng.random_sample((5, 4)) XA_sparse = csr_matrix(XA) XB = rng.random_sample((5, 4)) XB_sparse = csr_matrix(XB) XA_checked, XB_checked = check_pairwise_arrays(XA_sparse, XB_sparse) # compare their difference because testing csr matrices for # equality with '==' does not work as expected. assert_true(issparse(XA_checked)) assert_equal(abs(XA_sparse - XA_checked).sum(), 0) assert_true(issparse(XB_checked)) assert_equal(abs(XB_sparse - XB_checked).sum(), 0) XA_checked, XA_2_checked = check_pairwise_arrays(XA_sparse, XA_sparse) assert_true(issparse(XA_checked)) assert_equal(abs(XA_sparse - XA_checked).sum(), 0) assert_true(issparse(XA_2_checked)) assert_equal(abs(XA_2_checked - XA_checked).sum(), 0) def tuplify(X): # Turns a numpy matrix (any n-dimensional array) into tuples. s = X.shape if len(s) > 1: # Tuplify each sub-array in the input. return tuple(tuplify(row) for row in X) else: # Single dimension input, just return tuple of contents. return tuple(r for r in X) def test_check_tuple_input(): # Ensures that checks return valid tuples. rng = np.random.RandomState(0) XA = rng.random_sample((5, 4)) XA_tuples = tuplify(XA) XB = rng.random_sample((5, 4)) XB_tuples = tuplify(XB) XA_checked, XB_checked = check_pairwise_arrays(XA_tuples, XB_tuples) assert_array_equal(XA_tuples, XA_checked) assert_array_equal(XB_tuples, XB_checked) def test_check_preserve_type(): # Ensures that type float32 is preserved. XA = np.resize(np.arange(40), (5, 8)).astype(np.float32) XB = np.resize(np.arange(40), (5, 8)).astype(np.float32) XA_checked, XB_checked = check_pairwise_arrays(XA, None) assert_equal(XA_checked.dtype, np.float32) # both float32 XA_checked, XB_checked = check_pairwise_arrays(XA, XB) assert_equal(XA_checked.dtype, np.float32) assert_equal(XB_checked.dtype, np.float32) # mismatched A XA_checked, XB_checked = check_pairwise_arrays(XA.astype(np.float), XB) assert_equal(XA_checked.dtype, np.float) assert_equal(XB_checked.dtype, np.float) # mismatched B XA_checked, XB_checked = check_pairwise_arrays(XA, XB.astype(np.float)) assert_equal(XA_checked.dtype, np.float) assert_equal(XB_checked.dtype, np.float)
bsd-3-clause
jakevdp/multiband_LS
figures/fig06_multiband_models.py
1
2434
""" Here we plot a typical approach to the multi-band periodogram: treating each band separately, and taking a majority vote between the bands. """ import numpy as np import matplotlib.pyplot as plt # Use seaborn settings for plot styles import seaborn; seaborn.set() from gatspy.datasets import RRLyraeGenerated from gatspy.periodic import (LombScargleAstroML, LombScargleMultiband, NaiveMultiband) # Choose a Sesar 2010 object to base our fits on lcid = 1019544 rrlyrae = RRLyraeGenerated(lcid, random_state=0) print("Extinction A_r = {0:.4f}".format(rrlyrae.obsmeta['rExt'])) # Generate data in a 6-month observing season Nobs = 60 rng = np.random.RandomState(0) nights = np.arange(180) rng.shuffle(nights) nights = nights[:Nobs] # Find a subset of the simulated data. This is the same procedure as in # fig_multiband_sim t = 57000 + nights + 0.05 * rng.randn(Nobs) dy = 0.06 + 0.01 * rng.randn(Nobs) mags = np.array([rrlyrae.generated(band, t, err=dy, corrected=False) for band in 'ugriz']) filts = np.array([f for f in 'ugriz']) # Here's our subset filts = np.take(list('ugriz'), np.arange(Nobs), mode='wrap') mags = mags[np.arange(Nobs) % 5, np.arange(Nobs)] masks = [(filts == band) for band in 'ugriz'] fig, ax = plt.subplots(5, sharex=True, sharey=True) fig.subplots_adjust(left=0.1, right=0.93, hspace=0.1) periods = np.linspace(0.2, 1.4, 1000) combos = [(1, 0), (0, 1), (2, 0), (2, 1), (2, 2)] for axi, (Nbase, Nband) in zip(ax, combos): LS_multi = LombScargleMultiband(Nterms_base=Nbase, Nterms_band=Nband) LS_multi.fit(t, mags, dy, filts) P_multi = LS_multi.periodogram(periods) axi.plot(periods, P_multi, lw=1) text = ('$N_{{base}}={0},\ N_{{band}}={1}\ \ (M^{{eff}}={2})$' ''.format(Nbase, Nband, (2 * max(0, Nbase - Nband) + 5 * (2 * Nband + 1)))) if (Nbase, Nband) == (1, 0): text += ' "shared-phase model"' elif (Nbase, Nband) == (0, 1): text += ' "multi-phase model"' axi.text(0.21, 0.98, text, fontsize=10, ha='left', va='top') axi.yaxis.set_major_locator(plt.MultipleLocator(0.5)) axi.yaxis.set_major_formatter(plt.NullFormatter()) ax[0].set_title('Periodograms for Multiterm Models') ax[-1].set_xlabel('Period (days)') ax[2].set_ylabel('multiterm model power') fig.savefig('fig06.pdf') plt.show()
bsd-2-clause
dilawar/moogli
scripts/moogli_purkinje_simulation_with_rm_and_graph.py
4
8730
""" This script demonstrates how to use moogli to carry out a simulation and simultaneously update the visualizer. Also another viewer shows the compartment rm values. The visualizers remain active while the simulation is running. Once the simulation finishes, a graph comes up, showing the soma vm values. """ import moogli import moose from moose import neuroml from PyQt4 import Qt, QtCore, QtGui import sys import os import random import numpy as np import math from PyQt4.QtCore import * from PyQt4.QtGui import * from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.figure import Figure # The QApplication class manages the GUI application's # control flow and main settings app = QtGui.QApplication(sys.argv) # Load model from the neuroml file into moose filename = os.path.join( os.path.split(os.path.realpath(__file__))[0] , "../neuroml/PurkinjeCellPassivePulseInput/PurkinjePassive.net.xml" ) popdict, projdict = moose.neuroml.loadNeuroML_L123(filename) # setting up hsolve object for each neuron for popinfo in popdict.values(): for cell in popinfo[1].values(): solver = moose.HSolve(cell.path + "/hsolve") solver.target = cell.path # create a table to store vm values table = moose.Table("/soma_table") moose.connect( table , 'requestOut' , moose.element("/cells[0]/BigCellCML_0[0]/Seg0_soma_0[0]") , "getVm" ) # reinit moose to bring to a reliable initial state. moose.reinit() SIMULATION_DELTA = 0.001 SIMULATION_TIME = 0.03 ALL_COMPARTMENTS = map( lambda x : x.path , moose.wildcardFind("/cells[0]/##[ISA=CompartmentBase]") ) BASE_RM_VALUE = min( map( lambda x : moose.element(x).Rm , ALL_COMPARTMENTS ) ) PEAK_RM_VALUE = max( map( lambda x : moose.element(x).Rm , ALL_COMPARTMENTS ) ) BASE_RM_COLOR = [0.0, 1.0, 0.0, 0.1] PEAK_RM_COLOR = [1.0, 0.0, 0.0, 1.0] BASE_VM_VALUE = -0.065 PEAK_VM_VALUE = -0.060 BASE_VM_COLOR = [1.0, 0.0, 0.0, 0.1] PEAK_VM_COLOR = [0.0, 0.0, 1.0, 1.0] """Create a class for plotting vm""" class PlotWidget(FigureCanvas): """Ultimately, this is a QWidget (as well as a FigureCanvasAgg, etc.).""" def __init__(self, parent=None, width=5, height=4, dpi=100): fig = Figure(figsize=(width, height), dpi=dpi) self.axes = fig.add_subplot(111) # We want the axes cleared every time plot() is called self.axes.hold(False) FigureCanvas.__init__(self, fig) self.setParent(parent) FigureCanvas.setSizePolicy(self, QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Expanding) FigureCanvas.updateGeometry(self) def create_vm_visualizer(): # Moogli requires a morphology object. Create a morphology object # by reading the geometry details from all objects of type CompartmentBase # inside /cells[0] vm_morphology = moogli.read_morphology_from_moose(name = "", path = "/cells[0]") # Create a named group of compartments called 'group-all' # which will contain all the compartments of the model. # Each group has a strict upper and lower limit for the # variable which is being visualized. # Both limits map to colors provided to the api. # The value of the variable is linearly mapped to a color value # lying between the upper and lower color values. vm_morphology.create_group( "group-all" # group name , ALL_COMPARTMENTS # sequence of compartments belonging to this group , BASE_VM_VALUE # base value of variable , PEAK_VM_VALUE # peak value of variable , BASE_VM_COLOR # color corresponding to base value , PEAK_VM_COLOR # color corresponding to peak value ) # set initial color of all compartments in accordance with their vm vm_morphology.set_color( "group-all" , map( lambda x : moose.element(x).Vm , ALL_COMPARTMENTS ) ) # instantiate the visualizer with the morphology object created earlier vm_viewer = moogli.DynamicMorphologyViewerWidget(vm_morphology) # Callback function will be called by the visualizer at regular intervals. # The callback can modify both the morphology and viewer object's properties # since they are passed as arguments. def callback(morphology, viewer): # run simulation for 1 ms moose.start(SIMULATION_DELTA) # change color of all the compartments according to their vm values. # a value higher than peak value will be clamped to peak value # a value lower than base value will be clamped to base value. morphology.set_color( "group-all" , map( lambda x : moose.element(x).Vm , ALL_COMPARTMENTS ) ) # if the callback returns true, it will be called again. # if it returns false it will not be called again. # the condition below ensures that simulation runs for 1 sec if moose.element("/clock").currentTime < SIMULATION_TIME : return True else: plot_widget = PlotWidget() xs = np.linspace(0, moose.element("/clock").runTime, len(table.vector)) ys = table.vector.copy() plot_widget.axes.plot(xs, ys) plot_widget.draw() plot_widget.show() plot_widget.setWindowTitle("Soma Vm") return False # set the callback function to be called after every idletime milliseconds vm_viewer.set_callback(callback, idletime = 0) # make sure that entire model is visible vm_viewer.pitch(math.pi / 2) vm_viewer.zoom(0.25) vm_viewer.setWindowTitle("Vm Visualization") return vm_viewer def create_rm_visualizer(): # Moogli requires a morphology object. Create a morphology object # by reading the geometry details from all objects of type CompartmentBase # inside /cells[0] morphology = moogli.read_morphology_from_moose(name = "", path = "/cells[0]") # Create a named group of compartments called 'group-all' # which will contain all the compartments of the model. # Each group has a strict upper and lower limit for the # variable which is being visualized. # Both limits map to colors provided to the api. # The value of the variable is linearly mapped to a color value # lying between the upper and lower color values. morphology.create_group( "group-all" # group name , ALL_COMPARTMENTS # sequence of compartments belonging to this group , BASE_RM_VALUE # base value of variable , PEAK_RM_VALUE # peak value of variable , BASE_RM_COLOR # color corresponding to base value , PEAK_RM_COLOR # color corresponding to peak value ) # set initial color of all compartments in accordance with their rm morphology.set_color( "group-all" , map( lambda x : moose.element(x).Rm , ALL_COMPARTMENTS ) ) # instantiate the visualizer with the morphology object created earlier rm_viewer = moogli.MorphologyViewerWidget(morphology) # make sure that entire model is visible rm_viewer.pitch(math.pi / 2) rm_viewer.zoom(0.25) rm_viewer.setWindowTitle("Rm") return rm_viewer vm_visualizer = create_vm_visualizer() rm_visualizer = create_rm_visualizer() vm_visualizer.show() rm_visualizer.show() # http://stackoverflow.com/questions/15861839/error-upon-app-shutdown-qglcontextmakecurrent-cannot-make-invalid-context-cu def delete_gl_widget(): global vm_visualizer global rm_visualizer vm_visualizer.setParent(None) del vm_visualizer rm_visualizer.setParent(None) del rm_visualizer QApplication.instance().aboutToQuit.connect( delete_gl_widget ) # Enter the main event loop and wait until exit() is called. # It is necessary to call this function to start event handling. # The main event loop receives events from the window system and # dispatches these to the application widgets. app.exec_()
gpl-2.0
phdowling/scikit-learn
examples/linear_model/plot_theilsen.py
232
3615
""" ==================== Theil-Sen Regression ==================== Computes a Theil-Sen Regression on a synthetic dataset. See :ref:`theil_sen_regression` for more information on the regressor. Compared to the OLS (ordinary least squares) estimator, the Theil-Sen estimator is robust against outliers. It has a breakdown point of about 29.3% in case of a simple linear regression which means that it can tolerate arbitrary corrupted data (outliers) of up to 29.3% in the two-dimensional case. The estimation of the model is done by calculating the slopes and intercepts of a subpopulation of all possible combinations of p subsample points. If an intercept is fitted, p must be greater than or equal to n_features + 1. The final slope and intercept is then defined as the spatial median of these slopes and intercepts. In certain cases Theil-Sen performs better than :ref:`RANSAC <ransac_regression>` which is also a robust method. This is illustrated in the second example below where outliers with respect to the x-axis perturb RANSAC. Tuning the ``residual_threshold`` parameter of RANSAC remedies this but in general a priori knowledge about the data and the nature of the outliers is needed. Due to the computational complexity of Theil-Sen it is recommended to use it only for small problems in terms of number of samples and features. For larger problems the ``max_subpopulation`` parameter restricts the magnitude of all possible combinations of p subsample points to a randomly chosen subset and therefore also limits the runtime. Therefore, Theil-Sen is applicable to larger problems with the drawback of losing some of its mathematical properties since it then works on a random subset. """ # Author: Florian Wilhelm -- <[email protected]> # License: BSD 3 clause import time import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression, TheilSenRegressor from sklearn.linear_model import RANSACRegressor print(__doc__) estimators = [('OLS', LinearRegression()), ('Theil-Sen', TheilSenRegressor(random_state=42)), ('RANSAC', RANSACRegressor(random_state=42)), ] ############################################################################## # Outliers only in the y direction np.random.seed(0) n_samples = 200 # Linear model y = 3*x + N(2, 0.1**2) x = np.random.randn(n_samples) w = 3. c = 2. noise = 0.1 * np.random.randn(n_samples) y = w * x + c + noise # 10% outliers y[-20:] += -20 * x[-20:] X = x[:, np.newaxis] plt.plot(x, y, 'k+', mew=2, ms=8) line_x = np.array([-3, 3]) for name, estimator in estimators: t0 = time.time() estimator.fit(X, y) elapsed_time = time.time() - t0 y_pred = estimator.predict(line_x.reshape(2, 1)) plt.plot(line_x, y_pred, label='%s (fit time: %.2fs)' % (name, elapsed_time)) plt.axis('tight') plt.legend(loc='upper left') ############################################################################## # Outliers in the X direction np.random.seed(0) # Linear model y = 3*x + N(2, 0.1**2) x = np.random.randn(n_samples) noise = 0.1 * np.random.randn(n_samples) y = 3 * x + 2 + noise # 10% outliers x[-20:] = 9.9 y[-20:] += 22 X = x[:, np.newaxis] plt.figure() plt.plot(x, y, 'k+', mew=2, ms=8) line_x = np.array([-3, 10]) for name, estimator in estimators: t0 = time.time() estimator.fit(X, y) elapsed_time = time.time() - t0 y_pred = estimator.predict(line_x.reshape(2, 1)) plt.plot(line_x, y_pred, label='%s (fit time: %.2fs)' % (name, elapsed_time)) plt.axis('tight') plt.legend(loc='upper left') plt.show()
bsd-3-clause
tomlof/scikit-learn
sklearn/tests/test_base.py
11
14443
# Author: Gael Varoquaux # License: BSD 3 clause import numpy as np import scipy.sparse as sp import sklearn from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_no_warnings from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import assert_dict_equal from sklearn.base import BaseEstimator, clone, is_classifier from sklearn.svm import SVC from sklearn.pipeline import Pipeline from sklearn.model_selection import GridSearchCV from sklearn.tree import DecisionTreeClassifier from sklearn.tree import DecisionTreeRegressor from sklearn import datasets from sklearn.utils import deprecated from sklearn.base import TransformerMixin from sklearn.utils.mocking import MockDataFrame import pickle ############################################################################# # A few test classes class MyEstimator(BaseEstimator): def __init__(self, l1=0, empty=None): self.l1 = l1 self.empty = empty class K(BaseEstimator): def __init__(self, c=None, d=None): self.c = c self.d = d class T(BaseEstimator): def __init__(self, a=None, b=None): self.a = a self.b = b class ModifyInitParams(BaseEstimator): """Deprecated behavior. Equal parameters but with a type cast. Doesn't fulfill a is a """ def __init__(self, a=np.array([0])): self.a = a.copy() class DeprecatedAttributeEstimator(BaseEstimator): def __init__(self, a=None, b=None): self.a = a if b is not None: DeprecationWarning("b is deprecated and renamed 'a'") self.a = b @property @deprecated("Parameter 'b' is deprecated and renamed to 'a'") def b(self): return self._b class Buggy(BaseEstimator): " A buggy estimator that does not set its parameters right. " def __init__(self, a=None): self.a = 1 class NoEstimator(object): def __init__(self): pass def fit(self, X=None, y=None): return self def predict(self, X=None): return None class VargEstimator(BaseEstimator): """scikit-learn estimators shouldn't have vargs.""" def __init__(self, *vargs): pass ############################################################################# # The tests def test_clone(): # Tests that clone creates a correct deep copy. # We create an estimator, make a copy of its original state # (which, in this case, is the current state of the estimator), # and check that the obtained copy is a correct deep copy. from sklearn.feature_selection import SelectFpr, f_classif selector = SelectFpr(f_classif, alpha=0.1) new_selector = clone(selector) assert_true(selector is not new_selector) assert_equal(selector.get_params(), new_selector.get_params()) selector = SelectFpr(f_classif, alpha=np.zeros((10, 2))) new_selector = clone(selector) assert_true(selector is not new_selector) def test_clone_2(): # Tests that clone doesn't copy everything. # We first create an estimator, give it an own attribute, and # make a copy of its original state. Then we check that the copy doesn't # have the specific attribute we manually added to the initial estimator. from sklearn.feature_selection import SelectFpr, f_classif selector = SelectFpr(f_classif, alpha=0.1) selector.own_attribute = "test" new_selector = clone(selector) assert_false(hasattr(new_selector, "own_attribute")) def test_clone_buggy(): # Check that clone raises an error on buggy estimators. buggy = Buggy() buggy.a = 2 assert_raises(RuntimeError, clone, buggy) no_estimator = NoEstimator() assert_raises(TypeError, clone, no_estimator) varg_est = VargEstimator() assert_raises(RuntimeError, clone, varg_est) def test_clone_empty_array(): # Regression test for cloning estimators with empty arrays clf = MyEstimator(empty=np.array([])) clf2 = clone(clf) assert_array_equal(clf.empty, clf2.empty) clf = MyEstimator(empty=sp.csr_matrix(np.array([[0]]))) clf2 = clone(clf) assert_array_equal(clf.empty.data, clf2.empty.data) def test_clone_nan(): # Regression test for cloning estimators with default parameter as np.nan clf = MyEstimator(empty=np.nan) clf2 = clone(clf) assert_true(clf.empty is clf2.empty) def test_clone_copy_init_params(): # test for deprecation warning when copying or casting an init parameter est = ModifyInitParams() message = ("Estimator ModifyInitParams modifies parameters in __init__. " "This behavior is deprecated as of 0.18 and support " "for this behavior will be removed in 0.20.") assert_warns_message(DeprecationWarning, message, clone, est) def test_clone_sparse_matrices(): sparse_matrix_classes = [ getattr(sp, name) for name in dir(sp) if name.endswith('_matrix')] for cls in sparse_matrix_classes: sparse_matrix = cls(np.eye(5)) clf = MyEstimator(empty=sparse_matrix) clf_cloned = clone(clf) assert_true(clf.empty.__class__ is clf_cloned.empty.__class__) assert_array_equal(clf.empty.toarray(), clf_cloned.empty.toarray()) def test_repr(): # Smoke test the repr of the base estimator. my_estimator = MyEstimator() repr(my_estimator) test = T(K(), K()) assert_equal( repr(test), "T(a=K(c=None, d=None), b=K(c=None, d=None))" ) some_est = T(a=["long_params"] * 1000) assert_equal(len(repr(some_est)), 415) def test_str(): # Smoke test the str of the base estimator my_estimator = MyEstimator() str(my_estimator) def test_get_params(): test = T(K(), K()) assert_true('a__d' in test.get_params(deep=True)) assert_true('a__d' not in test.get_params(deep=False)) test.set_params(a__d=2) assert_true(test.a.d == 2) assert_raises(ValueError, test.set_params, a__a=2) def test_get_params_deprecated(): # deprecated attribute should not show up as params est = DeprecatedAttributeEstimator(a=1) assert_true('a' in est.get_params()) assert_true('a' in est.get_params(deep=True)) assert_true('a' in est.get_params(deep=False)) assert_true('b' not in est.get_params()) assert_true('b' not in est.get_params(deep=True)) assert_true('b' not in est.get_params(deep=False)) def test_is_classifier(): svc = SVC() assert_true(is_classifier(svc)) assert_true(is_classifier(GridSearchCV(svc, {'C': [0.1, 1]}))) assert_true(is_classifier(Pipeline([('svc', svc)]))) assert_true(is_classifier(Pipeline( [('svc_cv', GridSearchCV(svc, {'C': [0.1, 1]}))]))) def test_set_params(): # test nested estimator parameter setting clf = Pipeline([("svc", SVC())]) # non-existing parameter in svc assert_raises(ValueError, clf.set_params, svc__stupid_param=True) # non-existing parameter of pipeline assert_raises(ValueError, clf.set_params, svm__stupid_param=True) # we don't currently catch if the things in pipeline are estimators # bad_pipeline = Pipeline([("bad", NoEstimator())]) # assert_raises(AttributeError, bad_pipeline.set_params, # bad__stupid_param=True) def test_score_sample_weight(): rng = np.random.RandomState(0) # test both ClassifierMixin and RegressorMixin estimators = [DecisionTreeClassifier(max_depth=2), DecisionTreeRegressor(max_depth=2)] sets = [datasets.load_iris(), datasets.load_boston()] for est, ds in zip(estimators, sets): est.fit(ds.data, ds.target) # generate random sample weights sample_weight = rng.randint(1, 10, size=len(ds.target)) # check that the score with and without sample weights are different assert_not_equal(est.score(ds.data, ds.target), est.score(ds.data, ds.target, sample_weight=sample_weight), msg="Unweighted and weighted scores " "are unexpectedly equal") def test_clone_pandas_dataframe(): class DummyEstimator(BaseEstimator, TransformerMixin): """This is a dummy class for generating numerical features This feature extractor extracts numerical features from pandas data frame. Parameters ---------- df: pandas data frame The pandas data frame parameter. Notes ----- """ def __init__(self, df=None, scalar_param=1): self.df = df self.scalar_param = scalar_param def fit(self, X, y=None): pass def transform(self, X, y=None): pass # build and clone estimator d = np.arange(10) df = MockDataFrame(d) e = DummyEstimator(df, scalar_param=1) cloned_e = clone(e) # the test assert_true((e.df == cloned_e.df).values.all()) assert_equal(e.scalar_param, cloned_e.scalar_param) def test_pickle_version_warning_is_not_raised_with_matching_version(): iris = datasets.load_iris() tree = DecisionTreeClassifier().fit(iris.data, iris.target) tree_pickle = pickle.dumps(tree) assert_true(b"version" in tree_pickle) tree_restored = assert_no_warnings(pickle.loads, tree_pickle) # test that we can predict with the restored decision tree classifier score_of_original = tree.score(iris.data, iris.target) score_of_restored = tree_restored.score(iris.data, iris.target) assert_equal(score_of_original, score_of_restored) class TreeBadVersion(DecisionTreeClassifier): def __getstate__(self): return dict(self.__dict__.items(), _sklearn_version="something") pickle_error_message = ( "Trying to unpickle estimator {estimator} from " "version {old_version} when using version " "{current_version}. This might " "lead to breaking code or invalid results. " "Use at your own risk.") def test_pickle_version_warning_is_issued_upon_different_version(): iris = datasets.load_iris() tree = TreeBadVersion().fit(iris.data, iris.target) tree_pickle_other = pickle.dumps(tree) message = pickle_error_message.format(estimator="TreeBadVersion", old_version="something", current_version=sklearn.__version__) assert_warns_message(UserWarning, message, pickle.loads, tree_pickle_other) class TreeNoVersion(DecisionTreeClassifier): def __getstate__(self): return self.__dict__ def test_pickle_version_warning_is_issued_when_no_version_info_in_pickle(): iris = datasets.load_iris() # TreeNoVersion has no getstate, like pre-0.18 tree = TreeNoVersion().fit(iris.data, iris.target) tree_pickle_noversion = pickle.dumps(tree) assert_false(b"version" in tree_pickle_noversion) message = pickle_error_message.format(estimator="TreeNoVersion", old_version="pre-0.18", current_version=sklearn.__version__) # check we got the warning about using pre-0.18 pickle assert_warns_message(UserWarning, message, pickle.loads, tree_pickle_noversion) def test_pickle_version_no_warning_is_issued_with_non_sklearn_estimator(): iris = datasets.load_iris() tree = TreeNoVersion().fit(iris.data, iris.target) tree_pickle_noversion = pickle.dumps(tree) try: module_backup = TreeNoVersion.__module__ TreeNoVersion.__module__ = "notsklearn" assert_no_warnings(pickle.loads, tree_pickle_noversion) finally: TreeNoVersion.__module__ = module_backup class DontPickleAttributeMixin(object): def __getstate__(self): data = self.__dict__.copy() data["_attribute_not_pickled"] = None return data def __setstate__(self, state): state["_restored"] = True self.__dict__.update(state) class MultiInheritanceEstimator(BaseEstimator, DontPickleAttributeMixin): def __init__(self, attribute_pickled=5): self.attribute_pickled = attribute_pickled self._attribute_not_pickled = None def test_pickling_when_getstate_is_overwritten_by_mixin(): estimator = MultiInheritanceEstimator() estimator._attribute_not_pickled = "this attribute should not be pickled" serialized = pickle.dumps(estimator) estimator_restored = pickle.loads(serialized) assert_equal(estimator_restored.attribute_pickled, 5) assert_equal(estimator_restored._attribute_not_pickled, None) assert_true(estimator_restored._restored) def test_pickling_when_getstate_is_overwritten_by_mixin_outside_of_sklearn(): try: estimator = MultiInheritanceEstimator() text = "this attribute should not be pickled" estimator._attribute_not_pickled = text old_mod = type(estimator).__module__ type(estimator).__module__ = "notsklearn" serialized = estimator.__getstate__() assert_dict_equal(serialized, {'_attribute_not_pickled': None, 'attribute_pickled': 5}) serialized['attribute_pickled'] = 4 estimator.__setstate__(serialized) assert_equal(estimator.attribute_pickled, 4) assert_true(estimator._restored) finally: type(estimator).__module__ = old_mod class SingleInheritanceEstimator(BaseEstimator): def __init__(self, attribute_pickled=5): self.attribute_pickled = attribute_pickled self._attribute_not_pickled = None def __getstate__(self): data = self.__dict__.copy() data["_attribute_not_pickled"] = None return data def test_pickling_works_when_getstate_is_overwritten_in_the_child_class(): estimator = SingleInheritanceEstimator() estimator._attribute_not_pickled = "this attribute should not be pickled" serialized = pickle.dumps(estimator) estimator_restored = pickle.loads(serialized) assert_equal(estimator_restored.attribute_pickled, 5) assert_equal(estimator_restored._attribute_not_pickled, None)
bsd-3-clause
webmasterraj/GaSiProMo
flask/lib/python2.7/site-packages/pandas/tseries/tests/test_offsets.py
2
143864
import os from datetime import date, datetime, timedelta from dateutil.relativedelta import relativedelta from pandas.compat import range, iteritems from pandas import compat import nose from nose.tools import assert_raises import numpy as np from pandas.core.datetools import ( bday, BDay, CDay, BQuarterEnd, BMonthEnd, CBMonthEnd, CBMonthBegin, BYearEnd, MonthEnd, MonthBegin, BYearBegin, CustomBusinessDay, QuarterBegin, BQuarterBegin, BMonthBegin, DateOffset, Week, YearBegin, YearEnd, Hour, Minute, Second, Day, Micro, Milli, Nano, Easter, WeekOfMonth, format, ole2datetime, QuarterEnd, to_datetime, normalize_date, get_offset, get_offset_name, get_standard_freq) from pandas import Series from pandas.tseries.frequencies import _offset_map from pandas.tseries.index import _to_m8, DatetimeIndex, _daterange_cache, date_range from pandas.tseries.tools import parse_time_string import pandas.tseries.offsets as offsets from pandas.io.pickle import read_pickle from pandas.tslib import NaT, Timestamp, Timedelta import pandas.tslib as tslib from pandas.util.testing import assertRaisesRegexp import pandas.util.testing as tm from pandas.tseries.offsets import BusinessMonthEnd, CacheableOffset, \ LastWeekOfMonth, FY5253, FY5253Quarter, WeekDay from pandas.tseries.holiday import USFederalHolidayCalendar _multiprocess_can_split_ = True def test_monthrange(): import calendar for y in range(2000, 2013): for m in range(1, 13): assert tslib.monthrange(y, m) == calendar.monthrange(y, m) #### ## Misc function tests #### def test_format(): actual = format(datetime(2008, 1, 15)) assert actual == '20080115' def test_ole2datetime(): actual = ole2datetime(60000) assert actual == datetime(2064, 4, 8) assert_raises(ValueError, ole2datetime, 60) def test_to_datetime1(): actual = to_datetime(datetime(2008, 1, 15)) assert actual == datetime(2008, 1, 15) actual = to_datetime('20080115') assert actual == datetime(2008, 1, 15) # unparseable s = 'Month 1, 1999' assert to_datetime(s) == s def test_normalize_date(): actual = normalize_date(datetime(2007, 10, 1, 1, 12, 5, 10)) assert actual == datetime(2007, 10, 1) def test_to_m8(): valb = datetime(2007, 10, 1) valu = _to_m8(valb) tm.assert_isinstance(valu, np.datetime64) # assert valu == np.datetime64(datetime(2007,10,1)) # def test_datetime64_box(): # valu = np.datetime64(datetime(2007,10,1)) # valb = _dt_box(valu) # assert type(valb) == datetime # assert valb == datetime(2007,10,1) ##### ### DateOffset Tests ##### class Base(tm.TestCase): _offset = None _offset_types = [getattr(offsets, o) for o in offsets.__all__] timezones = [None, 'UTC', 'Asia/Tokyo', 'US/Eastern', 'dateutil/Asia/Tokyo', 'dateutil/US/Pacific'] @property def offset_types(self): return self._offset_types def _get_offset(self, klass, value=1, normalize=False): # create instance from offset class if klass is FY5253 or klass is FY5253Quarter: klass = klass(n=value, startingMonth=1, weekday=1, qtr_with_extra_week=1, variation='last', normalize=normalize) elif klass is LastWeekOfMonth: klass = klass(n=value, weekday=5, normalize=normalize) elif klass is WeekOfMonth: klass = klass(n=value, week=1, weekday=5, normalize=normalize) elif klass is Week: klass = klass(n=value, weekday=5, normalize=normalize) elif klass is DateOffset: klass = klass(days=value, normalize=normalize) else: try: klass = klass(value, normalize=normalize) except: klass = klass(normalize=normalize) return klass def test_apply_out_of_range(self): if self._offset is None: return # try to create an out-of-bounds result timestamp; if we can't create the offset # skip try: offset = self._get_offset(self._offset, value=10000) result = Timestamp('20080101') + offset self.assertIsInstance(result, datetime) self.assertIsNone(result.tzinfo) tm._skip_if_no_pytz() tm._skip_if_no_dateutil() # Check tz is preserved for tz in self.timezones: t = Timestamp('20080101', tz=tz) result = t + offset self.assertIsInstance(result, datetime) self.assertEqual(t.tzinfo, result.tzinfo) except (tslib.OutOfBoundsDatetime): raise except (ValueError, KeyError) as e: raise nose.SkipTest("cannot create out_of_range offset: {0} {1}".format(str(self).split('.')[-1],e)) class TestCommon(Base): def setUp(self): # exected value created by Base._get_offset # are applied to 2011/01/01 09:00 (Saturday) # used for .apply and .rollforward self.expecteds = {'Day': Timestamp('2011-01-02 09:00:00'), 'DateOffset': Timestamp('2011-01-02 09:00:00'), 'BusinessDay': Timestamp('2011-01-03 09:00:00'), 'CustomBusinessDay': Timestamp('2011-01-03 09:00:00'), 'CustomBusinessMonthEnd': Timestamp('2011-01-31 09:00:00'), 'CustomBusinessMonthBegin': Timestamp('2011-01-03 09:00:00'), 'MonthBegin': Timestamp('2011-02-01 09:00:00'), 'BusinessMonthBegin': Timestamp('2011-01-03 09:00:00'), 'MonthEnd': Timestamp('2011-01-31 09:00:00'), 'BusinessMonthEnd': Timestamp('2011-01-31 09:00:00'), 'YearBegin': Timestamp('2012-01-01 09:00:00'), 'BYearBegin': Timestamp('2011-01-03 09:00:00'), 'YearEnd': Timestamp('2011-12-31 09:00:00'), 'BYearEnd': Timestamp('2011-12-30 09:00:00'), 'QuarterBegin': Timestamp('2011-03-01 09:00:00'), 'BQuarterBegin': Timestamp('2011-03-01 09:00:00'), 'QuarterEnd': Timestamp('2011-03-31 09:00:00'), 'BQuarterEnd': Timestamp('2011-03-31 09:00:00'), 'WeekOfMonth': Timestamp('2011-01-08 09:00:00'), 'LastWeekOfMonth': Timestamp('2011-01-29 09:00:00'), 'FY5253Quarter': Timestamp('2011-01-25 09:00:00'), 'FY5253': Timestamp('2011-01-25 09:00:00'), 'Week': Timestamp('2011-01-08 09:00:00'), 'Easter': Timestamp('2011-04-24 09:00:00'), 'Hour': Timestamp('2011-01-01 10:00:00'), 'Minute': Timestamp('2011-01-01 09:01:00'), 'Second': Timestamp('2011-01-01 09:00:01'), 'Milli': Timestamp('2011-01-01 09:00:00.001000'), 'Micro': Timestamp('2011-01-01 09:00:00.000001'), 'Nano': Timestamp(np.datetime64('2011-01-01T09:00:00.000000001Z'))} def test_return_type(self): for offset in self.offset_types: offset = self._get_offset(offset) # make sure that we are returning a Timestamp result = Timestamp('20080101') + offset self.assertIsInstance(result, Timestamp) # make sure that we are returning NaT self.assertTrue(NaT + offset is NaT) self.assertTrue(offset + NaT is NaT) self.assertTrue(NaT - offset is NaT) self.assertTrue((-offset).apply(NaT) is NaT) def _check_offsetfunc_works(self, offset, funcname, dt, expected, normalize=False): offset_s = self._get_offset(offset, normalize=normalize) func = getattr(offset_s, funcname) result = func(dt) self.assertTrue(isinstance(result, Timestamp)) self.assertEqual(result, expected) result = func(Timestamp(dt)) self.assertTrue(isinstance(result, Timestamp)) self.assertEqual(result, expected) # test nano second is preserved result = func(Timestamp(dt) + Nano(5)) self.assertTrue(isinstance(result, Timestamp)) if normalize is False: self.assertEqual(result, expected + Nano(5)) else: self.assertEqual(result, expected) if isinstance(dt, np.datetime64): # test tz when input is datetime or Timestamp return tm._skip_if_no_pytz() tm._skip_if_no_dateutil() for tz in self.timezones: expected_localize = expected.tz_localize(tz) tz_obj = tslib.maybe_get_tz(tz) dt_tz = tslib._localize_pydatetime(dt, tz_obj) result = func(dt_tz) self.assertTrue(isinstance(result, Timestamp)) self.assertEqual(result, expected_localize) result = func(Timestamp(dt, tz=tz)) self.assertTrue(isinstance(result, Timestamp)) self.assertEqual(result, expected_localize) # test nano second is preserved result = func(Timestamp(dt, tz=tz) + Nano(5)) self.assertTrue(isinstance(result, Timestamp)) if normalize is False: self.assertEqual(result, expected_localize + Nano(5)) else: self.assertEqual(result, expected_localize) def test_apply(self): sdt = datetime(2011, 1, 1, 9, 0) ndt = np.datetime64('2011-01-01 09:00Z') for offset in self.offset_types: for dt in [sdt, ndt]: expected = self.expecteds[offset.__name__] self._check_offsetfunc_works(offset, 'apply', dt, expected) expected = Timestamp(expected.date()) self._check_offsetfunc_works(offset, 'apply', dt, expected, normalize=True) def test_rollforward(self): expecteds = self.expecteds.copy() # result will not be changed if the target is on the offset no_changes = ['Day', 'MonthBegin', 'YearBegin', 'Week', 'Hour', 'Minute', 'Second', 'Milli', 'Micro', 'Nano', 'DateOffset'] for n in no_changes: expecteds[n] = Timestamp('2011/01/01 09:00') # but be changed when normalize=True norm_expected = expecteds.copy() for k in norm_expected: norm_expected[k] = Timestamp(norm_expected[k].date()) normalized = {'Day': Timestamp('2011-01-02 00:00:00'), 'DateOffset': Timestamp('2011-01-02 00:00:00'), 'MonthBegin': Timestamp('2011-02-01 00:00:00'), 'YearBegin': Timestamp('2012-01-01 00:00:00'), 'Week': Timestamp('2011-01-08 00:00:00'), 'Hour': Timestamp('2011-01-01 00:00:00'), 'Minute': Timestamp('2011-01-01 00:00:00'), 'Second': Timestamp('2011-01-01 00:00:00'), 'Milli': Timestamp('2011-01-01 00:00:00'), 'Micro': Timestamp('2011-01-01 00:00:00')} norm_expected.update(normalized) sdt = datetime(2011, 1, 1, 9, 0) ndt = np.datetime64('2011-01-01 09:00Z') for offset in self.offset_types: for dt in [sdt, ndt]: expected = expecteds[offset.__name__] self._check_offsetfunc_works(offset, 'rollforward', dt, expected) expected = norm_expected[offset.__name__] self._check_offsetfunc_works(offset, 'rollforward', dt, expected, normalize=True) def test_rollback(self): expecteds = {'BusinessDay': Timestamp('2010-12-31 09:00:00'), 'CustomBusinessDay': Timestamp('2010-12-31 09:00:00'), 'CustomBusinessMonthEnd': Timestamp('2010-12-31 09:00:00'), 'CustomBusinessMonthBegin': Timestamp('2010-12-01 09:00:00'), 'BusinessMonthBegin': Timestamp('2010-12-01 09:00:00'), 'MonthEnd': Timestamp('2010-12-31 09:00:00'), 'BusinessMonthEnd': Timestamp('2010-12-31 09:00:00'), 'BYearBegin': Timestamp('2010-01-01 09:00:00'), 'YearEnd': Timestamp('2010-12-31 09:00:00'), 'BYearEnd': Timestamp('2010-12-31 09:00:00'), 'QuarterBegin': Timestamp('2010-12-01 09:00:00'), 'BQuarterBegin': Timestamp('2010-12-01 09:00:00'), 'QuarterEnd': Timestamp('2010-12-31 09:00:00'), 'BQuarterEnd': Timestamp('2010-12-31 09:00:00'), 'WeekOfMonth': Timestamp('2010-12-11 09:00:00'), 'LastWeekOfMonth': Timestamp('2010-12-25 09:00:00'), 'FY5253Quarter': Timestamp('2010-10-26 09:00:00'), 'FY5253': Timestamp('2010-01-26 09:00:00'), 'Easter': Timestamp('2010-04-04 09:00:00')} # result will not be changed if the target is on the offset for n in ['Day', 'MonthBegin', 'YearBegin', 'Week', 'Hour', 'Minute', 'Second', 'Milli', 'Micro', 'Nano', 'DateOffset']: expecteds[n] = Timestamp('2011/01/01 09:00') # but be changed when normalize=True norm_expected = expecteds.copy() for k in norm_expected: norm_expected[k] = Timestamp(norm_expected[k].date()) normalized = {'Day': Timestamp('2010-12-31 00:00:00'), 'DateOffset': Timestamp('2010-12-31 00:00:00'), 'MonthBegin': Timestamp('2010-12-01 00:00:00'), 'YearBegin': Timestamp('2010-01-01 00:00:00'), 'Week': Timestamp('2010-12-25 00:00:00'), 'Hour': Timestamp('2011-01-01 00:00:00'), 'Minute': Timestamp('2011-01-01 00:00:00'), 'Second': Timestamp('2011-01-01 00:00:00'), 'Milli': Timestamp('2011-01-01 00:00:00'), 'Micro': Timestamp('2011-01-01 00:00:00')} norm_expected.update(normalized) sdt = datetime(2011, 1, 1, 9, 0) ndt = np.datetime64('2011-01-01 09:00Z') for offset in self.offset_types: for dt in [sdt, ndt]: expected = expecteds[offset.__name__] self._check_offsetfunc_works(offset, 'rollback', dt, expected) expected = norm_expected[offset.__name__] self._check_offsetfunc_works(offset, 'rollback', dt, expected, normalize=True) def test_onOffset(self): for offset in self.offset_types: dt = self.expecteds[offset.__name__] offset_s = self._get_offset(offset) self.assertTrue(offset_s.onOffset(dt)) # when normalize=True, onOffset checks time is 00:00:00 offset_n = self._get_offset(offset, normalize=True) self.assertFalse(offset_n.onOffset(dt)) date = datetime(dt.year, dt.month, dt.day) self.assertTrue(offset_n.onOffset(date)) def test_add(self): dt = datetime(2011, 1, 1, 9, 0) for offset in self.offset_types: offset_s = self._get_offset(offset) expected = self.expecteds[offset.__name__] result_dt = dt + offset_s result_ts = Timestamp(dt) + offset_s for result in [result_dt, result_ts]: self.assertTrue(isinstance(result, Timestamp)) self.assertEqual(result, expected) tm._skip_if_no_pytz() for tz in self.timezones: expected_localize = expected.tz_localize(tz) result = Timestamp(dt, tz=tz) + offset_s self.assertTrue(isinstance(result, Timestamp)) self.assertEqual(result, expected_localize) # normalize=True offset_s = self._get_offset(offset, normalize=True) expected = Timestamp(expected.date()) result_dt = dt + offset_s result_ts = Timestamp(dt) + offset_s for result in [result_dt, result_ts]: self.assertTrue(isinstance(result, Timestamp)) self.assertEqual(result, expected) for tz in self.timezones: expected_localize = expected.tz_localize(tz) result = Timestamp(dt, tz=tz) + offset_s self.assertTrue(isinstance(result, Timestamp)) self.assertEqual(result, expected_localize) def test_pickle_v0_15_2(self): offsets = {'DateOffset': DateOffset(years=1), 'MonthBegin': MonthBegin(1), 'Day': Day(1), 'YearBegin': YearBegin(1), 'Week': Week(1)} pickle_path = os.path.join(tm.get_data_path(), 'dateoffset_0_15_2.pickle') # This code was executed once on v0.15.2 to generate the pickle: # with open(pickle_path, 'wb') as f: pickle.dump(offsets, f) # tm.assert_dict_equal(offsets, read_pickle(pickle_path)) class TestDateOffset(Base): _multiprocess_can_split_ = True def setUp(self): self.d = Timestamp(datetime(2008, 1, 2)) _offset_map.clear() def test_repr(self): repr(DateOffset()) repr(DateOffset(2)) repr(2 * DateOffset()) repr(2 * DateOffset(months=2)) def test_mul(self): assert DateOffset(2) == 2 * DateOffset(1) assert DateOffset(2) == DateOffset(1) * 2 def test_constructor(self): assert((self.d + DateOffset(months=2)) == datetime(2008, 3, 2)) assert((self.d - DateOffset(months=2)) == datetime(2007, 11, 2)) assert((self.d + DateOffset(2)) == datetime(2008, 1, 4)) assert not DateOffset(2).isAnchored() assert DateOffset(1).isAnchored() d = datetime(2008, 1, 31) assert((d + DateOffset(months=1)) == datetime(2008, 2, 29)) def test_copy(self): assert(DateOffset(months=2).copy() == DateOffset(months=2)) def test_eq(self): offset1 = DateOffset(days=1) offset2 = DateOffset(days=365) self.assertNotEqual(offset1, offset2) class TestBusinessDay(Base): _multiprocess_can_split_ = True _offset = BDay def setUp(self): self.d = datetime(2008, 1, 1) self.offset = BDay() self.offset2 = BDay(2) def test_different_normalize_equals(self): # equivalent in this special case offset = BDay() offset2 = BDay() offset2.normalize = True self.assertEqual(offset, offset2) def test_repr(self): self.assertEqual(repr(self.offset), '<BusinessDay>') assert repr(self.offset2) == '<2 * BusinessDays>' expected = '<BusinessDay: offset=datetime.timedelta(1)>' assert repr(self.offset + timedelta(1)) == expected def test_with_offset(self): offset = self.offset + timedelta(hours=2) assert (self.d + offset) == datetime(2008, 1, 2, 2) def testEQ(self): self.assertEqual(self.offset2, self.offset2) def test_mul(self): pass def test_hash(self): self.assertEqual(hash(self.offset2), hash(self.offset2)) def testCall(self): self.assertEqual(self.offset2(self.d), datetime(2008, 1, 3)) def testRAdd(self): self.assertEqual(self.d + self.offset2, self.offset2 + self.d) def testSub(self): off = self.offset2 self.assertRaises(Exception, off.__sub__, self.d) self.assertEqual(2 * off - off, off) self.assertEqual(self.d - self.offset2, self.d + BDay(-2)) def testRSub(self): self.assertEqual(self.d - self.offset2, (-self.offset2).apply(self.d)) def testMult1(self): self.assertEqual(self.d + 10 * self.offset, self.d + BDay(10)) def testMult2(self): self.assertEqual(self.d + (-5 * BDay(-10)), self.d + BDay(50)) def testRollback1(self): self.assertEqual(BDay(10).rollback(self.d), self.d) def testRollback2(self): self.assertEqual( BDay(10).rollback(datetime(2008, 1, 5)), datetime(2008, 1, 4)) def testRollforward1(self): self.assertEqual(BDay(10).rollforward(self.d), self.d) def testRollforward2(self): self.assertEqual( BDay(10).rollforward(datetime(2008, 1, 5)), datetime(2008, 1, 7)) def test_roll_date_object(self): offset = BDay() dt = date(2012, 9, 15) result = offset.rollback(dt) self.assertEqual(result, datetime(2012, 9, 14)) result = offset.rollforward(dt) self.assertEqual(result, datetime(2012, 9, 17)) offset = offsets.Day() result = offset.rollback(dt) self.assertEqual(result, datetime(2012, 9, 15)) result = offset.rollforward(dt) self.assertEqual(result, datetime(2012, 9, 15)) def test_onOffset(self): tests = [(BDay(), datetime(2008, 1, 1), True), (BDay(), datetime(2008, 1, 5), False)] for offset, date, expected in tests: assertOnOffset(offset, date, expected) def test_apply(self): tests = [] tests.append((bday, {datetime(2008, 1, 1): datetime(2008, 1, 2), datetime(2008, 1, 4): datetime(2008, 1, 7), datetime(2008, 1, 5): datetime(2008, 1, 7), datetime(2008, 1, 6): datetime(2008, 1, 7), datetime(2008, 1, 7): datetime(2008, 1, 8)})) tests.append((2 * bday, {datetime(2008, 1, 1): datetime(2008, 1, 3), datetime(2008, 1, 4): datetime(2008, 1, 8), datetime(2008, 1, 5): datetime(2008, 1, 8), datetime(2008, 1, 6): datetime(2008, 1, 8), datetime(2008, 1, 7): datetime(2008, 1, 9)})) tests.append((-bday, {datetime(2008, 1, 1): datetime(2007, 12, 31), datetime(2008, 1, 4): datetime(2008, 1, 3), datetime(2008, 1, 5): datetime(2008, 1, 4), datetime(2008, 1, 6): datetime(2008, 1, 4), datetime(2008, 1, 7): datetime(2008, 1, 4), datetime(2008, 1, 8): datetime(2008, 1, 7)})) tests.append((-2 * bday, {datetime(2008, 1, 1): datetime(2007, 12, 28), datetime(2008, 1, 4): datetime(2008, 1, 2), datetime(2008, 1, 5): datetime(2008, 1, 3), datetime(2008, 1, 6): datetime(2008, 1, 3), datetime(2008, 1, 7): datetime(2008, 1, 3), datetime(2008, 1, 8): datetime(2008, 1, 4), datetime(2008, 1, 9): datetime(2008, 1, 7)})) tests.append((BDay(0), {datetime(2008, 1, 1): datetime(2008, 1, 1), datetime(2008, 1, 4): datetime(2008, 1, 4), datetime(2008, 1, 5): datetime(2008, 1, 7), datetime(2008, 1, 6): datetime(2008, 1, 7), datetime(2008, 1, 7): datetime(2008, 1, 7)})) for offset, cases in tests: for base, expected in compat.iteritems(cases): assertEq(offset, base, expected) def test_apply_large_n(self): dt = datetime(2012, 10, 23) result = dt + BDay(10) self.assertEqual(result, datetime(2012, 11, 6)) result = dt + BDay(100) - BDay(100) self.assertEqual(result, dt) off = BDay() * 6 rs = datetime(2012, 1, 1) - off xp = datetime(2011, 12, 23) self.assertEqual(rs, xp) st = datetime(2011, 12, 18) rs = st + off xp = datetime(2011, 12, 26) self.assertEqual(rs, xp) off = BDay() * 10 rs = datetime(2014, 1, 5) + off # see #5890 xp = datetime(2014, 1, 17) self.assertEqual(rs, xp) def test_apply_corner(self): self.assertRaises(TypeError, BDay().apply, BMonthEnd()) def test_offsets_compare_equal(self): # root cause of #456 offset1 = BDay() offset2 = BDay() self.assertFalse(offset1 != offset2) class TestCustomBusinessDay(Base): _multiprocess_can_split_ = True _offset = CDay def setUp(self): self.d = datetime(2008, 1, 1) self.nd = np.datetime64('2008-01-01 00:00:00Z') tm._skip_if_no_cday() self.offset = CDay() self.offset2 = CDay(2) def test_different_normalize_equals(self): # equivalent in this special case offset = CDay() offset2 = CDay() offset2.normalize = True self.assertEqual(offset, offset2) def test_repr(self): assert repr(self.offset) == '<CustomBusinessDay>' assert repr(self.offset2) == '<2 * CustomBusinessDays>' expected = '<BusinessDay: offset=datetime.timedelta(1)>' assert repr(self.offset + timedelta(1)) == expected def test_with_offset(self): offset = self.offset + timedelta(hours=2) assert (self.d + offset) == datetime(2008, 1, 2, 2) def testEQ(self): self.assertEqual(self.offset2, self.offset2) def test_mul(self): pass def test_hash(self): self.assertEqual(hash(self.offset2), hash(self.offset2)) def testCall(self): self.assertEqual(self.offset2(self.d), datetime(2008, 1, 3)) self.assertEqual(self.offset2(self.nd), datetime(2008, 1, 3)) def testRAdd(self): self.assertEqual(self.d + self.offset2, self.offset2 + self.d) def testSub(self): off = self.offset2 self.assertRaises(Exception, off.__sub__, self.d) self.assertEqual(2 * off - off, off) self.assertEqual(self.d - self.offset2, self.d + CDay(-2)) def testRSub(self): self.assertEqual(self.d - self.offset2, (-self.offset2).apply(self.d)) def testMult1(self): self.assertEqual(self.d + 10 * self.offset, self.d + CDay(10)) def testMult2(self): self.assertEqual(self.d + (-5 * CDay(-10)), self.d + CDay(50)) def testRollback1(self): self.assertEqual(CDay(10).rollback(self.d), self.d) def testRollback2(self): self.assertEqual( CDay(10).rollback(datetime(2008, 1, 5)), datetime(2008, 1, 4)) def testRollforward1(self): self.assertEqual(CDay(10).rollforward(self.d), self.d) def testRollforward2(self): self.assertEqual( CDay(10).rollforward(datetime(2008, 1, 5)), datetime(2008, 1, 7)) def test_roll_date_object(self): offset = CDay() dt = date(2012, 9, 15) result = offset.rollback(dt) self.assertEqual(result, datetime(2012, 9, 14)) result = offset.rollforward(dt) self.assertEqual(result, datetime(2012, 9, 17)) offset = offsets.Day() result = offset.rollback(dt) self.assertEqual(result, datetime(2012, 9, 15)) result = offset.rollforward(dt) self.assertEqual(result, datetime(2012, 9, 15)) def test_onOffset(self): tests = [(CDay(), datetime(2008, 1, 1), True), (CDay(), datetime(2008, 1, 5), False)] for offset, date, expected in tests: assertOnOffset(offset, date, expected) def test_apply(self): from pandas.core.datetools import cday tests = [] tests.append((cday, {datetime(2008, 1, 1): datetime(2008, 1, 2), datetime(2008, 1, 4): datetime(2008, 1, 7), datetime(2008, 1, 5): datetime(2008, 1, 7), datetime(2008, 1, 6): datetime(2008, 1, 7), datetime(2008, 1, 7): datetime(2008, 1, 8)})) tests.append((2 * cday, {datetime(2008, 1, 1): datetime(2008, 1, 3), datetime(2008, 1, 4): datetime(2008, 1, 8), datetime(2008, 1, 5): datetime(2008, 1, 8), datetime(2008, 1, 6): datetime(2008, 1, 8), datetime(2008, 1, 7): datetime(2008, 1, 9)})) tests.append((-cday, {datetime(2008, 1, 1): datetime(2007, 12, 31), datetime(2008, 1, 4): datetime(2008, 1, 3), datetime(2008, 1, 5): datetime(2008, 1, 4), datetime(2008, 1, 6): datetime(2008, 1, 4), datetime(2008, 1, 7): datetime(2008, 1, 4), datetime(2008, 1, 8): datetime(2008, 1, 7)})) tests.append((-2 * cday, {datetime(2008, 1, 1): datetime(2007, 12, 28), datetime(2008, 1, 4): datetime(2008, 1, 2), datetime(2008, 1, 5): datetime(2008, 1, 3), datetime(2008, 1, 6): datetime(2008, 1, 3), datetime(2008, 1, 7): datetime(2008, 1, 3), datetime(2008, 1, 8): datetime(2008, 1, 4), datetime(2008, 1, 9): datetime(2008, 1, 7)})) tests.append((CDay(0), {datetime(2008, 1, 1): datetime(2008, 1, 1), datetime(2008, 1, 4): datetime(2008, 1, 4), datetime(2008, 1, 5): datetime(2008, 1, 7), datetime(2008, 1, 6): datetime(2008, 1, 7), datetime(2008, 1, 7): datetime(2008, 1, 7)})) for offset, cases in tests: for base, expected in compat.iteritems(cases): assertEq(offset, base, expected) def test_apply_large_n(self): dt = datetime(2012, 10, 23) result = dt + CDay(10) self.assertEqual(result, datetime(2012, 11, 6)) result = dt + CDay(100) - CDay(100) self.assertEqual(result, dt) off = CDay() * 6 rs = datetime(2012, 1, 1) - off xp = datetime(2011, 12, 23) self.assertEqual(rs, xp) st = datetime(2011, 12, 18) rs = st + off xp = datetime(2011, 12, 26) self.assertEqual(rs, xp) def test_apply_corner(self): self.assertRaises(Exception, CDay().apply, BMonthEnd()) def test_offsets_compare_equal(self): # root cause of #456 offset1 = CDay() offset2 = CDay() self.assertFalse(offset1 != offset2) def test_holidays(self): # Define a TradingDay offset holidays = ['2012-05-01', datetime(2013, 5, 1), np.datetime64('2014-05-01')] tday = CDay(holidays=holidays) for year in range(2012, 2015): dt = datetime(year, 4, 30) xp = datetime(year, 5, 2) rs = dt + tday self.assertEqual(rs, xp) def test_weekmask(self): weekmask_saudi = 'Sat Sun Mon Tue Wed' # Thu-Fri Weekend weekmask_uae = '1111001' # Fri-Sat Weekend weekmask_egypt = [1,1,1,1,0,0,1] # Fri-Sat Weekend bday_saudi = CDay(weekmask=weekmask_saudi) bday_uae = CDay(weekmask=weekmask_uae) bday_egypt = CDay(weekmask=weekmask_egypt) dt = datetime(2013, 5, 1) xp_saudi = datetime(2013, 5, 4) xp_uae = datetime(2013, 5, 2) xp_egypt = datetime(2013, 5, 2) self.assertEqual(xp_saudi, dt + bday_saudi) self.assertEqual(xp_uae, dt + bday_uae) self.assertEqual(xp_egypt, dt + bday_egypt) xp2 = datetime(2013, 5, 5) self.assertEqual(xp2, dt + 2 * bday_saudi) self.assertEqual(xp2, dt + 2 * bday_uae) self.assertEqual(xp2, dt + 2 * bday_egypt) def test_weekmask_and_holidays(self): weekmask_egypt = 'Sun Mon Tue Wed Thu' # Fri-Sat Weekend holidays = ['2012-05-01', datetime(2013, 5, 1), np.datetime64('2014-05-01')] bday_egypt = CDay(holidays=holidays, weekmask=weekmask_egypt) dt = datetime(2013, 4, 30) xp_egypt = datetime(2013, 5, 5) self.assertEqual(xp_egypt, dt + 2 * bday_egypt) def test_calendar(self): calendar = USFederalHolidayCalendar() dt = datetime(2014, 1, 17) assertEq(CDay(calendar=calendar), dt, datetime(2014, 1, 21)) def test_roundtrip_pickle(self): def _check_roundtrip(obj): unpickled = self.round_trip_pickle(obj) self.assertEqual(unpickled, obj) _check_roundtrip(self.offset) _check_roundtrip(self.offset2) _check_roundtrip(self.offset*2) def test_pickle_compat_0_14_1(self): hdays = [datetime(2013,1,1) for ele in range(4)] pth = tm.get_data_path() cday0_14_1 = read_pickle(os.path.join(pth, 'cday-0.14.1.pickle')) cday = CDay(holidays=hdays) self.assertEqual(cday, cday0_14_1) class CustomBusinessMonthBase(object): _multiprocess_can_split_ = True def setUp(self): self.d = datetime(2008, 1, 1) tm._skip_if_no_cday() self.offset = self._object() self.offset2 = self._object(2) def testEQ(self): self.assertEqual(self.offset2, self.offset2) def test_mul(self): pass def test_hash(self): self.assertEqual(hash(self.offset2), hash(self.offset2)) def testRAdd(self): self.assertEqual(self.d + self.offset2, self.offset2 + self.d) def testSub(self): off = self.offset2 self.assertRaises(Exception, off.__sub__, self.d) self.assertEqual(2 * off - off, off) self.assertEqual(self.d - self.offset2, self.d + self._object(-2)) def testRSub(self): self.assertEqual(self.d - self.offset2, (-self.offset2).apply(self.d)) def testMult1(self): self.assertEqual(self.d + 10 * self.offset, self.d + self._object(10)) def testMult2(self): self.assertEqual(self.d + (-5 * self._object(-10)), self.d + self._object(50)) def test_offsets_compare_equal(self): offset1 = self._object() offset2 = self._object() self.assertFalse(offset1 != offset2) def test_roundtrip_pickle(self): def _check_roundtrip(obj): unpickled = self.round_trip_pickle(obj) self.assertEqual(unpickled, obj) _check_roundtrip(self._object()) _check_roundtrip(self._object(2)) _check_roundtrip(self._object()*2) class TestCustomBusinessMonthEnd(CustomBusinessMonthBase, Base): _object = CBMonthEnd def test_different_normalize_equals(self): # equivalent in this special case offset = CBMonthEnd() offset2 = CBMonthEnd() offset2.normalize = True self.assertEqual(offset, offset2) def test_repr(self): assert repr(self.offset) == '<CustomBusinessMonthEnd>' assert repr(self.offset2) == '<2 * CustomBusinessMonthEnds>' def testCall(self): self.assertEqual(self.offset2(self.d), datetime(2008, 2, 29)) def testRollback1(self): self.assertEqual( CDay(10).rollback(datetime(2007, 12, 31)), datetime(2007, 12, 31)) def testRollback2(self): self.assertEqual(CBMonthEnd(10).rollback(self.d), datetime(2007,12,31)) def testRollforward1(self): self.assertEqual(CBMonthEnd(10).rollforward(self.d), datetime(2008,1,31)) def test_roll_date_object(self): offset = CBMonthEnd() dt = date(2012, 9, 15) result = offset.rollback(dt) self.assertEqual(result, datetime(2012, 8, 31)) result = offset.rollforward(dt) self.assertEqual(result, datetime(2012, 9, 28)) offset = offsets.Day() result = offset.rollback(dt) self.assertEqual(result, datetime(2012, 9, 15)) result = offset.rollforward(dt) self.assertEqual(result, datetime(2012, 9, 15)) def test_onOffset(self): tests = [(CBMonthEnd(), datetime(2008, 1, 31), True), (CBMonthEnd(), datetime(2008, 1, 1), False)] for offset, date, expected in tests: assertOnOffset(offset, date, expected) def test_apply(self): cbm = CBMonthEnd() tests = [] tests.append((cbm, {datetime(2008, 1, 1): datetime(2008, 1, 31), datetime(2008, 2, 7): datetime(2008, 2, 29)})) tests.append((2 * cbm, {datetime(2008, 1, 1): datetime(2008, 2, 29), datetime(2008, 2, 7): datetime(2008, 3, 31)})) tests.append((-cbm, {datetime(2008, 1, 1): datetime(2007, 12, 31), datetime(2008, 2, 8): datetime(2008, 1, 31)})) tests.append((-2 * cbm, {datetime(2008, 1, 1): datetime(2007, 11, 30), datetime(2008, 2, 9): datetime(2007, 12, 31)})) tests.append((CBMonthEnd(0), {datetime(2008, 1, 1): datetime(2008, 1, 31), datetime(2008, 2, 7): datetime(2008, 2, 29)})) for offset, cases in tests: for base, expected in compat.iteritems(cases): assertEq(offset, base, expected) def test_apply_large_n(self): dt = datetime(2012, 10, 23) result = dt + CBMonthEnd(10) self.assertEqual(result, datetime(2013, 7, 31)) result = dt + CDay(100) - CDay(100) self.assertEqual(result, dt) off = CBMonthEnd() * 6 rs = datetime(2012, 1, 1) - off xp = datetime(2011, 7, 29) self.assertEqual(rs, xp) st = datetime(2011, 12, 18) rs = st + off xp = datetime(2012, 5, 31) self.assertEqual(rs, xp) def test_holidays(self): # Define a TradingDay offset holidays = ['2012-01-31', datetime(2012, 2, 28), np.datetime64('2012-02-29')] bm_offset = CBMonthEnd(holidays=holidays) dt = datetime(2012,1,1) self.assertEqual(dt + bm_offset,datetime(2012,1,30)) self.assertEqual(dt + 2*bm_offset,datetime(2012,2,27)) def test_datetimeindex(self): from pandas.tseries.holiday import USFederalHolidayCalendar hcal = USFederalHolidayCalendar() freq = CBMonthEnd(calendar=hcal) self.assertEqual(DatetimeIndex(start='20120101',end='20130101', freq=freq).tolist()[0], datetime(2012,1,31)) class TestCustomBusinessMonthBegin(CustomBusinessMonthBase, Base): _object = CBMonthBegin def test_different_normalize_equals(self): # equivalent in this special case offset = CBMonthBegin() offset2 = CBMonthBegin() offset2.normalize = True self.assertEqual(offset, offset2) def test_repr(self): assert repr(self.offset) == '<CustomBusinessMonthBegin>' assert repr(self.offset2) == '<2 * CustomBusinessMonthBegins>' def testCall(self): self.assertEqual(self.offset2(self.d), datetime(2008, 3, 3)) def testRollback1(self): self.assertEqual( CDay(10).rollback(datetime(2007, 12, 31)), datetime(2007, 12, 31)) def testRollback2(self): self.assertEqual(CBMonthBegin(10).rollback(self.d), datetime(2008,1,1)) def testRollforward1(self): self.assertEqual(CBMonthBegin(10).rollforward(self.d), datetime(2008,1,1)) def test_roll_date_object(self): offset = CBMonthBegin() dt = date(2012, 9, 15) result = offset.rollback(dt) self.assertEqual(result, datetime(2012, 9, 3)) result = offset.rollforward(dt) self.assertEqual(result, datetime(2012, 10, 1)) offset = offsets.Day() result = offset.rollback(dt) self.assertEqual(result, datetime(2012, 9, 15)) result = offset.rollforward(dt) self.assertEqual(result, datetime(2012, 9, 15)) def test_onOffset(self): tests = [(CBMonthBegin(), datetime(2008, 1, 1), True), (CBMonthBegin(), datetime(2008, 1, 31), False)] for offset, date, expected in tests: assertOnOffset(offset, date, expected) def test_apply(self): cbm = CBMonthBegin() tests = [] tests.append((cbm, {datetime(2008, 1, 1): datetime(2008, 2, 1), datetime(2008, 2, 7): datetime(2008, 3, 3)})) tests.append((2 * cbm, {datetime(2008, 1, 1): datetime(2008, 3, 3), datetime(2008, 2, 7): datetime(2008, 4, 1)})) tests.append((-cbm, {datetime(2008, 1, 1): datetime(2007, 12, 3), datetime(2008, 2, 8): datetime(2008, 2, 1)})) tests.append((-2 * cbm, {datetime(2008, 1, 1): datetime(2007, 11, 1), datetime(2008, 2, 9): datetime(2008, 1, 1)})) tests.append((CBMonthBegin(0), {datetime(2008, 1, 1): datetime(2008, 1, 1), datetime(2008, 1, 7): datetime(2008, 2, 1)})) for offset, cases in tests: for base, expected in compat.iteritems(cases): assertEq(offset, base, expected) def test_apply_large_n(self): dt = datetime(2012, 10, 23) result = dt + CBMonthBegin(10) self.assertEqual(result, datetime(2013, 8, 1)) result = dt + CDay(100) - CDay(100) self.assertEqual(result, dt) off = CBMonthBegin() * 6 rs = datetime(2012, 1, 1) - off xp = datetime(2011, 7, 1) self.assertEqual(rs, xp) st = datetime(2011, 12, 18) rs = st + off xp = datetime(2012, 6, 1) self.assertEqual(rs, xp) def test_holidays(self): # Define a TradingDay offset holidays = ['2012-02-01', datetime(2012, 2, 2), np.datetime64('2012-03-01')] bm_offset = CBMonthBegin(holidays=holidays) dt = datetime(2012,1,1) self.assertEqual(dt + bm_offset,datetime(2012,1,2)) self.assertEqual(dt + 2*bm_offset,datetime(2012,2,3)) def test_datetimeindex(self): hcal = USFederalHolidayCalendar() cbmb = CBMonthBegin(calendar=hcal) self.assertEqual(DatetimeIndex(start='20120101', end='20130101', freq=cbmb).tolist()[0], datetime(2012,1,3)) def assertOnOffset(offset, date, expected): actual = offset.onOffset(date) assert actual == expected, ("\nExpected: %s\nActual: %s\nFor Offset: %s)" "\nAt Date: %s" % (expected, actual, offset, date)) class TestWeek(Base): _offset = Week def test_repr(self): self.assertEqual(repr(Week(weekday=0)), "<Week: weekday=0>") self.assertEqual(repr(Week(n=-1, weekday=0)), "<-1 * Week: weekday=0>") self.assertEqual(repr(Week(n=-2, weekday=0)), "<-2 * Weeks: weekday=0>") def test_corner(self): self.assertRaises(ValueError, Week, weekday=7) assertRaisesRegexp(ValueError, "Day must be", Week, weekday=-1) def test_isAnchored(self): self.assertTrue(Week(weekday=0).isAnchored()) self.assertFalse(Week().isAnchored()) self.assertFalse(Week(2, weekday=2).isAnchored()) self.assertFalse(Week(2).isAnchored()) def test_offset(self): tests = [] tests.append((Week(), # not business week {datetime(2008, 1, 1): datetime(2008, 1, 8), datetime(2008, 1, 4): datetime(2008, 1, 11), datetime(2008, 1, 5): datetime(2008, 1, 12), datetime(2008, 1, 6): datetime(2008, 1, 13), datetime(2008, 1, 7): datetime(2008, 1, 14)})) tests.append((Week(weekday=0), # Mon {datetime(2007, 12, 31): datetime(2008, 1, 7), datetime(2008, 1, 4): datetime(2008, 1, 7), datetime(2008, 1, 5): datetime(2008, 1, 7), datetime(2008, 1, 6): datetime(2008, 1, 7), datetime(2008, 1, 7): datetime(2008, 1, 14)})) tests.append((Week(0, weekday=0), # n=0 -> roll forward. Mon {datetime(2007, 12, 31): datetime(2007, 12, 31), datetime(2008, 1, 4): datetime(2008, 1, 7), datetime(2008, 1, 5): datetime(2008, 1, 7), datetime(2008, 1, 6): datetime(2008, 1, 7), datetime(2008, 1, 7): datetime(2008, 1, 7)})) tests.append((Week(-2, weekday=1), # n=0 -> roll forward. Mon {datetime(2010, 4, 6): datetime(2010, 3, 23), datetime(2010, 4, 8): datetime(2010, 3, 30), datetime(2010, 4, 5): datetime(2010, 3, 23)})) for offset, cases in tests: for base, expected in compat.iteritems(cases): assertEq(offset, base, expected) def test_onOffset(self): for weekday in range(7): offset = Week(weekday=weekday) for day in range(1, 8): date = datetime(2008, 1, day) if day % 7 == weekday: expected = True else: expected = False assertOnOffset(offset, date, expected) def test_offsets_compare_equal(self): # root cause of #456 offset1 = Week() offset2 = Week() self.assertFalse(offset1 != offset2) class TestWeekOfMonth(Base): _offset = WeekOfMonth def test_constructor(self): assertRaisesRegexp(ValueError, "^N cannot be 0", WeekOfMonth, n=0, week=1, weekday=1) assertRaisesRegexp(ValueError, "^Week", WeekOfMonth, n=1, week=4, weekday=0) assertRaisesRegexp(ValueError, "^Week", WeekOfMonth, n=1, week=-1, weekday=0) assertRaisesRegexp(ValueError, "^Day", WeekOfMonth, n=1, week=0, weekday=-1) assertRaisesRegexp(ValueError, "^Day", WeekOfMonth, n=1, week=0, weekday=7) def test_repr(self): self.assertEqual(repr(WeekOfMonth(weekday=1,week=2)), "<WeekOfMonth: week=2, weekday=1>") def test_offset(self): date1 = datetime(2011, 1, 4) # 1st Tuesday of Month date2 = datetime(2011, 1, 11) # 2nd Tuesday of Month date3 = datetime(2011, 1, 18) # 3rd Tuesday of Month date4 = datetime(2011, 1, 25) # 4th Tuesday of Month # see for loop for structure test_cases = [ (-2, 2, 1, date1, datetime(2010, 11, 16)), (-2, 2, 1, date2, datetime(2010, 11, 16)), (-2, 2, 1, date3, datetime(2010, 11, 16)), (-2, 2, 1, date4, datetime(2010, 12, 21)), (-1, 2, 1, date1, datetime(2010, 12, 21)), (-1, 2, 1, date2, datetime(2010, 12, 21)), (-1, 2, 1, date3, datetime(2010, 12, 21)), (-1, 2, 1, date4, datetime(2011, 1, 18)), (1, 0, 0, date1, datetime(2011, 2, 7)), (1, 0, 0, date2, datetime(2011, 2, 7)), (1, 0, 0, date3, datetime(2011, 2, 7)), (1, 0, 0, date4, datetime(2011, 2, 7)), (1, 0, 1, date1, datetime(2011, 2, 1)), (1, 0, 1, date2, datetime(2011, 2, 1)), (1, 0, 1, date3, datetime(2011, 2, 1)), (1, 0, 1, date4, datetime(2011, 2, 1)), (1, 0, 2, date1, datetime(2011, 1, 5)), (1, 0, 2, date2, datetime(2011, 2, 2)), (1, 0, 2, date3, datetime(2011, 2, 2)), (1, 0, 2, date4, datetime(2011, 2, 2)), (1, 2, 1, date1, datetime(2011, 1, 18)), (1, 2, 1, date2, datetime(2011, 1, 18)), (1, 2, 1, date3, datetime(2011, 2, 15)), (1, 2, 1, date4, datetime(2011, 2, 15)), (2, 2, 1, date1, datetime(2011, 2, 15)), (2, 2, 1, date2, datetime(2011, 2, 15)), (2, 2, 1, date3, datetime(2011, 3, 15)), (2, 2, 1, date4, datetime(2011, 3, 15)), ] for n, week, weekday, date, expected in test_cases: offset = WeekOfMonth(n, week=week, weekday=weekday) assertEq(offset, date, expected) # try subtracting result = datetime(2011, 2, 1) - WeekOfMonth(week=1, weekday=2) self.assertEqual(result, datetime(2011, 1, 12)) result = datetime(2011, 2, 3) - WeekOfMonth(week=0, weekday=2) self.assertEqual(result, datetime(2011, 2, 2)) def test_onOffset(self): test_cases = [ (0, 0, datetime(2011, 2, 7), True), (0, 0, datetime(2011, 2, 6), False), (0, 0, datetime(2011, 2, 14), False), (1, 0, datetime(2011, 2, 14), True), (0, 1, datetime(2011, 2, 1), True), (0, 1, datetime(2011, 2, 8), False), ] for week, weekday, date, expected in test_cases: offset = WeekOfMonth(week=week, weekday=weekday) self.assertEqual(offset.onOffset(date), expected) class TestLastWeekOfMonth(Base): _offset = LastWeekOfMonth def test_constructor(self): assertRaisesRegexp(ValueError, "^N cannot be 0", \ LastWeekOfMonth, n=0, weekday=1) assertRaisesRegexp(ValueError, "^Day", LastWeekOfMonth, n=1, weekday=-1) assertRaisesRegexp(ValueError, "^Day", LastWeekOfMonth, n=1, weekday=7) def test_offset(self): #### Saturday last_sat = datetime(2013,8,31) next_sat = datetime(2013,9,28) offset_sat = LastWeekOfMonth(n=1, weekday=5) one_day_before = (last_sat + timedelta(days=-1)) self.assertEqual(one_day_before + offset_sat, last_sat) one_day_after = (last_sat + timedelta(days=+1)) self.assertEqual(one_day_after + offset_sat, next_sat) #Test On that day self.assertEqual(last_sat + offset_sat, next_sat) #### Thursday offset_thur = LastWeekOfMonth(n=1, weekday=3) last_thurs = datetime(2013,1,31) next_thurs = datetime(2013,2,28) one_day_before = last_thurs + timedelta(days=-1) self.assertEqual(one_day_before + offset_thur, last_thurs) one_day_after = last_thurs + timedelta(days=+1) self.assertEqual(one_day_after + offset_thur, next_thurs) # Test on that day self.assertEqual(last_thurs + offset_thur, next_thurs) three_before = last_thurs + timedelta(days=-3) self.assertEqual(three_before + offset_thur, last_thurs) two_after = last_thurs + timedelta(days=+2) self.assertEqual(two_after + offset_thur, next_thurs) offset_sunday = LastWeekOfMonth(n=1, weekday=WeekDay.SUN) self.assertEqual(datetime(2013,7,31) + offset_sunday, datetime(2013,8,25)) def test_onOffset(self): test_cases = [ (WeekDay.SUN, datetime(2013, 1, 27), True), (WeekDay.SAT, datetime(2013, 3, 30), True), (WeekDay.MON, datetime(2013, 2, 18), False), #Not the last Mon (WeekDay.SUN, datetime(2013, 2, 25), False), #Not a SUN (WeekDay.MON, datetime(2013, 2, 25), True), (WeekDay.SAT, datetime(2013, 11, 30), True), (WeekDay.SAT, datetime(2006, 8, 26), True), (WeekDay.SAT, datetime(2007, 8, 25), True), (WeekDay.SAT, datetime(2008, 8, 30), True), (WeekDay.SAT, datetime(2009, 8, 29), True), (WeekDay.SAT, datetime(2010, 8, 28), True), (WeekDay.SAT, datetime(2011, 8, 27), True), (WeekDay.SAT, datetime(2019, 8, 31), True), ] for weekday, date, expected in test_cases: offset = LastWeekOfMonth(weekday=weekday) self.assertEqual(offset.onOffset(date), expected, msg=date) class TestBMonthBegin(Base): _offset = BMonthBegin def test_offset(self): tests = [] tests.append((BMonthBegin(), {datetime(2008, 1, 1): datetime(2008, 2, 1), datetime(2008, 1, 31): datetime(2008, 2, 1), datetime(2006, 12, 29): datetime(2007, 1, 1), datetime(2006, 12, 31): datetime(2007, 1, 1), datetime(2006, 9, 1): datetime(2006, 10, 2), datetime(2007, 1, 1): datetime(2007, 2, 1), datetime(2006, 12, 1): datetime(2007, 1, 1)})) tests.append((BMonthBegin(0), {datetime(2008, 1, 1): datetime(2008, 1, 1), datetime(2006, 10, 2): datetime(2006, 10, 2), datetime(2008, 1, 31): datetime(2008, 2, 1), datetime(2006, 12, 29): datetime(2007, 1, 1), datetime(2006, 12, 31): datetime(2007, 1, 1), datetime(2006, 9, 15): datetime(2006, 10, 2)})) tests.append((BMonthBegin(2), {datetime(2008, 1, 1): datetime(2008, 3, 3), datetime(2008, 1, 15): datetime(2008, 3, 3), datetime(2006, 12, 29): datetime(2007, 2, 1), datetime(2006, 12, 31): datetime(2007, 2, 1), datetime(2007, 1, 1): datetime(2007, 3, 1), datetime(2006, 11, 1): datetime(2007, 1, 1)})) tests.append((BMonthBegin(-1), {datetime(2007, 1, 1): datetime(2006, 12, 1), datetime(2008, 6, 30): datetime(2008, 6, 2), datetime(2008, 6, 1): datetime(2008, 5, 1), datetime(2008, 3, 10): datetime(2008, 3, 3), datetime(2008, 12, 31): datetime(2008, 12, 1), datetime(2006, 12, 29): datetime(2006, 12, 1), datetime(2006, 12, 30): datetime(2006, 12, 1), datetime(2007, 1, 1): datetime(2006, 12, 1)})) for offset, cases in tests: for base, expected in compat.iteritems(cases): assertEq(offset, base, expected) def test_onOffset(self): tests = [(BMonthBegin(), datetime(2007, 12, 31), False), (BMonthBegin(), datetime(2008, 1, 1), True), (BMonthBegin(), datetime(2001, 4, 2), True), (BMonthBegin(), datetime(2008, 3, 3), True)] for offset, date, expected in tests: assertOnOffset(offset, date, expected) def test_offsets_compare_equal(self): # root cause of #456 offset1 = BMonthBegin() offset2 = BMonthBegin() self.assertFalse(offset1 != offset2) class TestBMonthEnd(Base): _offset = BMonthEnd def test_offset(self): tests = [] tests.append((BMonthEnd(), {datetime(2008, 1, 1): datetime(2008, 1, 31), datetime(2008, 1, 31): datetime(2008, 2, 29), datetime(2006, 12, 29): datetime(2007, 1, 31), datetime(2006, 12, 31): datetime(2007, 1, 31), datetime(2007, 1, 1): datetime(2007, 1, 31), datetime(2006, 12, 1): datetime(2006, 12, 29)})) tests.append((BMonthEnd(0), {datetime(2008, 1, 1): datetime(2008, 1, 31), datetime(2008, 1, 31): datetime(2008, 1, 31), datetime(2006, 12, 29): datetime(2006, 12, 29), datetime(2006, 12, 31): datetime(2007, 1, 31), datetime(2007, 1, 1): datetime(2007, 1, 31)})) tests.append((BMonthEnd(2), {datetime(2008, 1, 1): datetime(2008, 2, 29), datetime(2008, 1, 31): datetime(2008, 3, 31), datetime(2006, 12, 29): datetime(2007, 2, 28), datetime(2006, 12, 31): datetime(2007, 2, 28), datetime(2007, 1, 1): datetime(2007, 2, 28), datetime(2006, 11, 1): datetime(2006, 12, 29)})) tests.append((BMonthEnd(-1), {datetime(2007, 1, 1): datetime(2006, 12, 29), datetime(2008, 6, 30): datetime(2008, 5, 30), datetime(2008, 12, 31): datetime(2008, 11, 28), datetime(2006, 12, 29): datetime(2006, 11, 30), datetime(2006, 12, 30): datetime(2006, 12, 29), datetime(2007, 1, 1): datetime(2006, 12, 29)})) for offset, cases in tests: for base, expected in compat.iteritems(cases): assertEq(offset, base, expected) def test_normalize(self): dt = datetime(2007, 1, 1, 3) result = dt + BMonthEnd(normalize=True) expected = dt.replace(hour=0) + BMonthEnd() self.assertEqual(result, expected) def test_onOffset(self): tests = [(BMonthEnd(), datetime(2007, 12, 31), True), (BMonthEnd(), datetime(2008, 1, 1), False)] for offset, date, expected in tests: assertOnOffset(offset, date, expected) def test_offsets_compare_equal(self): # root cause of #456 offset1 = BMonthEnd() offset2 = BMonthEnd() self.assertFalse(offset1 != offset2) class TestMonthBegin(Base): _offset = MonthBegin def test_offset(self): tests = [] # NOTE: I'm not entirely happy with the logic here for Begin -ss # see thread 'offset conventions' on the ML tests.append((MonthBegin(), {datetime(2008, 1, 31): datetime(2008, 2, 1), datetime(2008, 2, 1): datetime(2008, 3, 1), datetime(2006, 12, 31): datetime(2007, 1, 1), datetime(2006, 12, 1): datetime(2007, 1, 1), datetime(2007, 1, 31): datetime(2007, 2, 1)})) tests.append((MonthBegin(0), {datetime(2008, 1, 31): datetime(2008, 2, 1), datetime(2008, 1, 1): datetime(2008, 1, 1), datetime(2006, 12, 3): datetime(2007, 1, 1), datetime(2007, 1, 31): datetime(2007, 2, 1)})) tests.append((MonthBegin(2), {datetime(2008, 2, 29): datetime(2008, 4, 1), datetime(2008, 1, 31): datetime(2008, 3, 1), datetime(2006, 12, 31): datetime(2007, 2, 1), datetime(2007, 12, 28): datetime(2008, 2, 1), datetime(2007, 1, 1): datetime(2007, 3, 1), datetime(2006, 11, 1): datetime(2007, 1, 1)})) tests.append((MonthBegin(-1), {datetime(2007, 1, 1): datetime(2006, 12, 1), datetime(2008, 5, 31): datetime(2008, 5, 1), datetime(2008, 12, 31): datetime(2008, 12, 1), datetime(2006, 12, 29): datetime(2006, 12, 1), datetime(2006, 1, 2): datetime(2006, 1, 1)})) for offset, cases in tests: for base, expected in compat.iteritems(cases): assertEq(offset, base, expected) class TestMonthEnd(Base): _offset = MonthEnd def test_offset(self): tests = [] tests.append((MonthEnd(), {datetime(2008, 1, 1): datetime(2008, 1, 31), datetime(2008, 1, 31): datetime(2008, 2, 29), datetime(2006, 12, 29): datetime(2006, 12, 31), datetime(2006, 12, 31): datetime(2007, 1, 31), datetime(2007, 1, 1): datetime(2007, 1, 31), datetime(2006, 12, 1): datetime(2006, 12, 31)})) tests.append((MonthEnd(0), {datetime(2008, 1, 1): datetime(2008, 1, 31), datetime(2008, 1, 31): datetime(2008, 1, 31), datetime(2006, 12, 29): datetime(2006, 12, 31), datetime(2006, 12, 31): datetime(2006, 12, 31), datetime(2007, 1, 1): datetime(2007, 1, 31)})) tests.append((MonthEnd(2), {datetime(2008, 1, 1): datetime(2008, 2, 29), datetime(2008, 1, 31): datetime(2008, 3, 31), datetime(2006, 12, 29): datetime(2007, 1, 31), datetime(2006, 12, 31): datetime(2007, 2, 28), datetime(2007, 1, 1): datetime(2007, 2, 28), datetime(2006, 11, 1): datetime(2006, 12, 31)})) tests.append((MonthEnd(-1), {datetime(2007, 1, 1): datetime(2006, 12, 31), datetime(2008, 6, 30): datetime(2008, 5, 31), datetime(2008, 12, 31): datetime(2008, 11, 30), datetime(2006, 12, 29): datetime(2006, 11, 30), datetime(2006, 12, 30): datetime(2006, 11, 30), datetime(2007, 1, 1): datetime(2006, 12, 31)})) for offset, cases in tests: for base, expected in compat.iteritems(cases): assertEq(offset, base, expected) # def test_day_of_month(self): # dt = datetime(2007, 1, 1) # offset = MonthEnd(day=20) # result = dt + offset # self.assertEqual(result, datetime(2007, 1, 20)) # result = result + offset # self.assertEqual(result, datetime(2007, 2, 20)) def test_normalize(self): dt = datetime(2007, 1, 1, 3) result = dt + MonthEnd(normalize=True) expected = dt.replace(hour=0) + MonthEnd() self.assertEqual(result, expected) def test_onOffset(self): tests = [(MonthEnd(), datetime(2007, 12, 31), True), (MonthEnd(), datetime(2008, 1, 1), False)] for offset, date, expected in tests: assertOnOffset(offset, date, expected) class TestBQuarterBegin(Base): _offset = BQuarterBegin def test_repr(self): self.assertEqual(repr(BQuarterBegin()),"<BusinessQuarterBegin: startingMonth=3>") self.assertEqual(repr(BQuarterBegin(startingMonth=3)), "<BusinessQuarterBegin: startingMonth=3>") self.assertEqual(repr(BQuarterBegin(startingMonth=1)), "<BusinessQuarterBegin: startingMonth=1>") def test_isAnchored(self): self.assertTrue(BQuarterBegin(startingMonth=1).isAnchored()) self.assertTrue(BQuarterBegin().isAnchored()) self.assertFalse(BQuarterBegin(2, startingMonth=1).isAnchored()) def test_offset(self): tests = [] tests.append((BQuarterBegin(startingMonth=1), {datetime(2008, 1, 1): datetime(2008, 4, 1), datetime(2008, 1, 31): datetime(2008, 4, 1), datetime(2008, 2, 15): datetime(2008, 4, 1), datetime(2008, 2, 29): datetime(2008, 4, 1), datetime(2008, 3, 15): datetime(2008, 4, 1), datetime(2008, 3, 31): datetime(2008, 4, 1), datetime(2008, 4, 15): datetime(2008, 7, 1), datetime(2007, 3, 15): datetime(2007, 4, 2), datetime(2007, 2, 28): datetime(2007, 4, 2), datetime(2007, 1, 1): datetime(2007, 4, 2), datetime(2007, 4, 15): datetime(2007, 7, 2), datetime(2007, 7, 1): datetime(2007, 7, 2), datetime(2007, 4, 1): datetime(2007, 4, 2), datetime(2007, 4, 2): datetime(2007, 7, 2), datetime(2008, 4, 30): datetime(2008, 7, 1), })) tests.append((BQuarterBegin(startingMonth=2), {datetime(2008, 1, 1): datetime(2008, 2, 1), datetime(2008, 1, 31): datetime(2008, 2, 1), datetime(2008, 1, 15): datetime(2008, 2, 1), datetime(2008, 2, 29): datetime(2008, 5, 1), datetime(2008, 3, 15): datetime(2008, 5, 1), datetime(2008, 3, 31): datetime(2008, 5, 1), datetime(2008, 4, 15): datetime(2008, 5, 1), datetime(2008, 8, 15): datetime(2008, 11, 3), datetime(2008, 9, 15): datetime(2008, 11, 3), datetime(2008, 11, 1): datetime(2008, 11, 3), datetime(2008, 4, 30): datetime(2008, 5, 1), })) tests.append((BQuarterBegin(startingMonth=1, n=0), {datetime(2008, 1, 1): datetime(2008, 1, 1), datetime(2007, 12, 31): datetime(2008, 1, 1), datetime(2008, 2, 15): datetime(2008, 4, 1), datetime(2008, 2, 29): datetime(2008, 4, 1), datetime(2008, 1, 15): datetime(2008, 4, 1), datetime(2008, 2, 27): datetime(2008, 4, 1), datetime(2008, 3, 15): datetime(2008, 4, 1), datetime(2007, 4, 1): datetime(2007, 4, 2), datetime(2007, 4, 2): datetime(2007, 4, 2), datetime(2007, 7, 1): datetime(2007, 7, 2), datetime(2007, 4, 15): datetime(2007, 7, 2), datetime(2007, 7, 2): datetime(2007, 7, 2), })) tests.append((BQuarterBegin(startingMonth=1, n=-1), {datetime(2008, 1, 1): datetime(2007, 10, 1), datetime(2008, 1, 31): datetime(2008, 1, 1), datetime(2008, 2, 15): datetime(2008, 1, 1), datetime(2008, 2, 29): datetime(2008, 1, 1), datetime(2008, 3, 15): datetime(2008, 1, 1), datetime(2008, 3, 31): datetime(2008, 1, 1), datetime(2008, 4, 15): datetime(2008, 4, 1), datetime(2007, 7, 3): datetime(2007, 7, 2), datetime(2007, 4, 3): datetime(2007, 4, 2), datetime(2007, 7, 2): datetime(2007, 4, 2), datetime(2008, 4, 1): datetime(2008, 1, 1), })) tests.append((BQuarterBegin(startingMonth=1, n=2), {datetime(2008, 1, 1): datetime(2008, 7, 1), datetime(2008, 1, 15): datetime(2008, 7, 1), datetime(2008, 2, 29): datetime(2008, 7, 1), datetime(2008, 3, 15): datetime(2008, 7, 1), datetime(2007, 3, 31): datetime(2007, 7, 2), datetime(2007, 4, 15): datetime(2007, 10, 1), datetime(2008, 4, 30): datetime(2008, 10, 1), })) for offset, cases in tests: for base, expected in compat.iteritems(cases): assertEq(offset, base, expected) # corner offset = BQuarterBegin(n=-1, startingMonth=1) self.assertEqual(datetime(2007, 4, 3) + offset, datetime(2007, 4, 2)) class TestBQuarterEnd(Base): _offset = BQuarterEnd def test_repr(self): self.assertEqual(repr(BQuarterEnd()),"<BusinessQuarterEnd: startingMonth=3>") self.assertEqual(repr(BQuarterEnd(startingMonth=3)), "<BusinessQuarterEnd: startingMonth=3>") self.assertEqual(repr(BQuarterEnd(startingMonth=1)), "<BusinessQuarterEnd: startingMonth=1>") def test_isAnchored(self): self.assertTrue(BQuarterEnd(startingMonth=1).isAnchored()) self.assertTrue(BQuarterEnd().isAnchored()) self.assertFalse(BQuarterEnd(2, startingMonth=1).isAnchored()) def test_offset(self): tests = [] tests.append((BQuarterEnd(startingMonth=1), {datetime(2008, 1, 1): datetime(2008, 1, 31), datetime(2008, 1, 31): datetime(2008, 4, 30), datetime(2008, 2, 15): datetime(2008, 4, 30), datetime(2008, 2, 29): datetime(2008, 4, 30), datetime(2008, 3, 15): datetime(2008, 4, 30), datetime(2008, 3, 31): datetime(2008, 4, 30), datetime(2008, 4, 15): datetime(2008, 4, 30), datetime(2008, 4, 30): datetime(2008, 7, 31), })) tests.append((BQuarterEnd(startingMonth=2), {datetime(2008, 1, 1): datetime(2008, 2, 29), datetime(2008, 1, 31): datetime(2008, 2, 29), datetime(2008, 2, 15): datetime(2008, 2, 29), datetime(2008, 2, 29): datetime(2008, 5, 30), datetime(2008, 3, 15): datetime(2008, 5, 30), datetime(2008, 3, 31): datetime(2008, 5, 30), datetime(2008, 4, 15): datetime(2008, 5, 30), datetime(2008, 4, 30): datetime(2008, 5, 30), })) tests.append((BQuarterEnd(startingMonth=1, n=0), {datetime(2008, 1, 1): datetime(2008, 1, 31), datetime(2008, 1, 31): datetime(2008, 1, 31), datetime(2008, 2, 15): datetime(2008, 4, 30), datetime(2008, 2, 29): datetime(2008, 4, 30), datetime(2008, 3, 15): datetime(2008, 4, 30), datetime(2008, 3, 31): datetime(2008, 4, 30), datetime(2008, 4, 15): datetime(2008, 4, 30), datetime(2008, 4, 30): datetime(2008, 4, 30), })) tests.append((BQuarterEnd(startingMonth=1, n=-1), {datetime(2008, 1, 1): datetime(2007, 10, 31), datetime(2008, 1, 31): datetime(2007, 10, 31), datetime(2008, 2, 15): datetime(2008, 1, 31), datetime(2008, 2, 29): datetime(2008, 1, 31), datetime(2008, 3, 15): datetime(2008, 1, 31), datetime(2008, 3, 31): datetime(2008, 1, 31), datetime(2008, 4, 15): datetime(2008, 1, 31), datetime(2008, 4, 30): datetime(2008, 1, 31), })) tests.append((BQuarterEnd(startingMonth=1, n=2), {datetime(2008, 1, 31): datetime(2008, 7, 31), datetime(2008, 2, 15): datetime(2008, 7, 31), datetime(2008, 2, 29): datetime(2008, 7, 31), datetime(2008, 3, 15): datetime(2008, 7, 31), datetime(2008, 3, 31): datetime(2008, 7, 31), datetime(2008, 4, 15): datetime(2008, 7, 31), datetime(2008, 4, 30): datetime(2008, 10, 31), })) for offset, cases in tests: for base, expected in compat.iteritems(cases): assertEq(offset, base, expected) # corner offset = BQuarterEnd(n=-1, startingMonth=1) self.assertEqual(datetime(2010, 1, 31) + offset, datetime(2010, 1, 29)) def test_onOffset(self): tests = [ (BQuarterEnd(1, startingMonth=1), datetime(2008, 1, 31), True), (BQuarterEnd(1, startingMonth=1), datetime(2007, 12, 31), False), (BQuarterEnd(1, startingMonth=1), datetime(2008, 2, 29), False), (BQuarterEnd(1, startingMonth=1), datetime(2007, 3, 30), False), (BQuarterEnd(1, startingMonth=1), datetime(2007, 3, 31), False), (BQuarterEnd(1, startingMonth=1), datetime(2008, 4, 30), True), (BQuarterEnd(1, startingMonth=1), datetime(2008, 5, 30), False), (BQuarterEnd(1, startingMonth=1), datetime(2007, 6, 29), False), (BQuarterEnd(1, startingMonth=1), datetime(2007, 6, 30), False), (BQuarterEnd(1, startingMonth=2), datetime(2008, 1, 31), False), (BQuarterEnd(1, startingMonth=2), datetime(2007, 12, 31), False), (BQuarterEnd(1, startingMonth=2), datetime(2008, 2, 29), True), (BQuarterEnd(1, startingMonth=2), datetime(2007, 3, 30), False), (BQuarterEnd(1, startingMonth=2), datetime(2007, 3, 31), False), (BQuarterEnd(1, startingMonth=2), datetime(2008, 4, 30), False), (BQuarterEnd(1, startingMonth=2), datetime(2008, 5, 30), True), (BQuarterEnd(1, startingMonth=2), datetime(2007, 6, 29), False), (BQuarterEnd(1, startingMonth=2), datetime(2007, 6, 30), False), (BQuarterEnd(1, startingMonth=3), datetime(2008, 1, 31), False), (BQuarterEnd(1, startingMonth=3), datetime(2007, 12, 31), True), (BQuarterEnd(1, startingMonth=3), datetime(2008, 2, 29), False), (BQuarterEnd(1, startingMonth=3), datetime(2007, 3, 30), True), (BQuarterEnd(1, startingMonth=3), datetime(2007, 3, 31), False), (BQuarterEnd(1, startingMonth=3), datetime(2008, 4, 30), False), (BQuarterEnd(1, startingMonth=3), datetime(2008, 5, 30), False), (BQuarterEnd(1, startingMonth=3), datetime(2007, 6, 29), True), (BQuarterEnd(1, startingMonth=3), datetime(2007, 6, 30), False), ] for offset, date, expected in tests: assertOnOffset(offset, date, expected) def makeFY5253LastOfMonthQuarter(*args, **kwds): return FY5253Quarter(*args, variation="last", **kwds) def makeFY5253NearestEndMonthQuarter(*args, **kwds): return FY5253Quarter(*args, variation="nearest", **kwds) def makeFY5253NearestEndMonth(*args, **kwds): return FY5253(*args, variation="nearest", **kwds) def makeFY5253LastOfMonth(*args, **kwds): return FY5253(*args, variation="last", **kwds) class TestFY5253LastOfMonth(Base): def test_onOffset(self): offset_lom_sat_aug = makeFY5253LastOfMonth(1, startingMonth=8, weekday=WeekDay.SAT) offset_lom_sat_sep = makeFY5253LastOfMonth(1, startingMonth=9, weekday=WeekDay.SAT) tests = [ #From Wikipedia (see: http://en.wikipedia.org/wiki/4%E2%80%934%E2%80%935_calendar#Last_Saturday_of_the_month_at_fiscal_year_end) (offset_lom_sat_aug, datetime(2006, 8, 26), True), (offset_lom_sat_aug, datetime(2007, 8, 25), True), (offset_lom_sat_aug, datetime(2008, 8, 30), True), (offset_lom_sat_aug, datetime(2009, 8, 29), True), (offset_lom_sat_aug, datetime(2010, 8, 28), True), (offset_lom_sat_aug, datetime(2011, 8, 27), True), (offset_lom_sat_aug, datetime(2012, 8, 25), True), (offset_lom_sat_aug, datetime(2013, 8, 31), True), (offset_lom_sat_aug, datetime(2014, 8, 30), True), (offset_lom_sat_aug, datetime(2015, 8, 29), True), (offset_lom_sat_aug, datetime(2016, 8, 27), True), (offset_lom_sat_aug, datetime(2017, 8, 26), True), (offset_lom_sat_aug, datetime(2018, 8, 25), True), (offset_lom_sat_aug, datetime(2019, 8, 31), True), (offset_lom_sat_aug, datetime(2006, 8, 27), False), (offset_lom_sat_aug, datetime(2007, 8, 28), False), (offset_lom_sat_aug, datetime(2008, 8, 31), False), (offset_lom_sat_aug, datetime(2009, 8, 30), False), (offset_lom_sat_aug, datetime(2010, 8, 29), False), (offset_lom_sat_aug, datetime(2011, 8, 28), False), (offset_lom_sat_aug, datetime(2006, 8, 25), False), (offset_lom_sat_aug, datetime(2007, 8, 24), False), (offset_lom_sat_aug, datetime(2008, 8, 29), False), (offset_lom_sat_aug, datetime(2009, 8, 28), False), (offset_lom_sat_aug, datetime(2010, 8, 27), False), (offset_lom_sat_aug, datetime(2011, 8, 26), False), (offset_lom_sat_aug, datetime(2019, 8, 30), False), #From GMCR (see for example: http://yahoo.brand.edgar-online.com/Default.aspx?companyid=3184&formtypeID=7) (offset_lom_sat_sep, datetime(2010, 9, 25), True), (offset_lom_sat_sep, datetime(2011, 9, 24), True), (offset_lom_sat_sep, datetime(2012, 9, 29), True), ] for offset, date, expected in tests: assertOnOffset(offset, date, expected) def test_apply(self): offset_lom_aug_sat = makeFY5253LastOfMonth(startingMonth=8, weekday=WeekDay.SAT) offset_lom_aug_sat_1 = makeFY5253LastOfMonth(n=1, startingMonth=8, weekday=WeekDay.SAT) date_seq_lom_aug_sat = [datetime(2006, 8, 26), datetime(2007, 8, 25), datetime(2008, 8, 30), datetime(2009, 8, 29), datetime(2010, 8, 28), datetime(2011, 8, 27), datetime(2012, 8, 25), datetime(2013, 8, 31), datetime(2014, 8, 30), datetime(2015, 8, 29), datetime(2016, 8, 27)] tests = [ (offset_lom_aug_sat, date_seq_lom_aug_sat), (offset_lom_aug_sat_1, date_seq_lom_aug_sat), (offset_lom_aug_sat, [datetime(2006, 8, 25)] + date_seq_lom_aug_sat), (offset_lom_aug_sat_1, [datetime(2006, 8, 27)] + date_seq_lom_aug_sat[1:]), (makeFY5253LastOfMonth(n=-1, startingMonth=8, weekday=WeekDay.SAT), list(reversed(date_seq_lom_aug_sat))), ] for test in tests: offset, data = test current = data[0] for datum in data[1:]: current = current + offset self.assertEqual(current, datum) class TestFY5253NearestEndMonth(Base): def test_get_target_month_end(self): self.assertEqual(makeFY5253NearestEndMonth(startingMonth=8, weekday=WeekDay.SAT).get_target_month_end(datetime(2013,1,1)), datetime(2013,8,31)) self.assertEqual(makeFY5253NearestEndMonth(startingMonth=12, weekday=WeekDay.SAT).get_target_month_end(datetime(2013,1,1)), datetime(2013,12,31)) self.assertEqual(makeFY5253NearestEndMonth(startingMonth=2, weekday=WeekDay.SAT).get_target_month_end(datetime(2013,1,1)), datetime(2013,2,28)) def test_get_year_end(self): self.assertEqual(makeFY5253NearestEndMonth(startingMonth=8, weekday=WeekDay.SAT).get_year_end(datetime(2013,1,1)), datetime(2013,8,31)) self.assertEqual(makeFY5253NearestEndMonth(startingMonth=8, weekday=WeekDay.SUN).get_year_end(datetime(2013,1,1)), datetime(2013,9,1)) self.assertEqual(makeFY5253NearestEndMonth(startingMonth=8, weekday=WeekDay.FRI).get_year_end(datetime(2013,1,1)), datetime(2013,8,30)) offset_n = FY5253(weekday=WeekDay.TUE, startingMonth=12, variation="nearest") self.assertEqual(offset_n.get_year_end(datetime(2012,1,1)), datetime(2013,1,1)) self.assertEqual(offset_n.get_year_end(datetime(2012,1,10)), datetime(2013,1,1)) self.assertEqual(offset_n.get_year_end(datetime(2013,1,1)), datetime(2013,12,31)) self.assertEqual(offset_n.get_year_end(datetime(2013,1,2)), datetime(2013,12,31)) self.assertEqual(offset_n.get_year_end(datetime(2013,1,3)), datetime(2013,12,31)) self.assertEqual(offset_n.get_year_end(datetime(2013,1,10)), datetime(2013,12,31)) JNJ = FY5253(n=1, startingMonth=12, weekday=6, variation="nearest") self.assertEqual(JNJ.get_year_end(datetime(2006, 1, 1)), datetime(2006, 12, 31)) def test_onOffset(self): offset_lom_aug_sat = makeFY5253NearestEndMonth(1, startingMonth=8, weekday=WeekDay.SAT) offset_lom_aug_thu = makeFY5253NearestEndMonth(1, startingMonth=8, weekday=WeekDay.THU) offset_n = FY5253(weekday=WeekDay.TUE, startingMonth=12, variation="nearest") tests = [ # From Wikipedia (see: http://en.wikipedia.org/wiki/4%E2%80%934%E2%80%935_calendar#Saturday_nearest_the_end_of_month) # 2006-09-02 2006 September 2 # 2007-09-01 2007 September 1 # 2008-08-30 2008 August 30 (leap year) # 2009-08-29 2009 August 29 # 2010-08-28 2010 August 28 # 2011-09-03 2011 September 3 # 2012-09-01 2012 September 1 (leap year) # 2013-08-31 2013 August 31 # 2014-08-30 2014 August 30 # 2015-08-29 2015 August 29 # 2016-09-03 2016 September 3 (leap year) # 2017-09-02 2017 September 2 # 2018-09-01 2018 September 1 # 2019-08-31 2019 August 31 (offset_lom_aug_sat, datetime(2006, 9, 2), True), (offset_lom_aug_sat, datetime(2007, 9, 1), True), (offset_lom_aug_sat, datetime(2008, 8, 30), True), (offset_lom_aug_sat, datetime(2009, 8, 29), True), (offset_lom_aug_sat, datetime(2010, 8, 28), True), (offset_lom_aug_sat, datetime(2011, 9, 3), True), (offset_lom_aug_sat, datetime(2016, 9, 3), True), (offset_lom_aug_sat, datetime(2017, 9, 2), True), (offset_lom_aug_sat, datetime(2018, 9, 1), True), (offset_lom_aug_sat, datetime(2019, 8, 31), True), (offset_lom_aug_sat, datetime(2006, 8, 27), False), (offset_lom_aug_sat, datetime(2007, 8, 28), False), (offset_lom_aug_sat, datetime(2008, 8, 31), False), (offset_lom_aug_sat, datetime(2009, 8, 30), False), (offset_lom_aug_sat, datetime(2010, 8, 29), False), (offset_lom_aug_sat, datetime(2011, 8, 28), False), (offset_lom_aug_sat, datetime(2006, 8, 25), False), (offset_lom_aug_sat, datetime(2007, 8, 24), False), (offset_lom_aug_sat, datetime(2008, 8, 29), False), (offset_lom_aug_sat, datetime(2009, 8, 28), False), (offset_lom_aug_sat, datetime(2010, 8, 27), False), (offset_lom_aug_sat, datetime(2011, 8, 26), False), (offset_lom_aug_sat, datetime(2019, 8, 30), False), #From Micron, see: http://google.brand.edgar-online.com/?sym=MU&formtypeID=7 (offset_lom_aug_thu, datetime(2012, 8, 30), True), (offset_lom_aug_thu, datetime(2011, 9, 1), True), (offset_n, datetime(2012, 12, 31), False), (offset_n, datetime(2013, 1, 1), True), (offset_n, datetime(2013, 1, 2), False), ] for offset, date, expected in tests: assertOnOffset(offset, date, expected) def test_apply(self): date_seq_nem_8_sat = [datetime(2006, 9, 2), datetime(2007, 9, 1), datetime(2008, 8, 30), datetime(2009, 8, 29), datetime(2010, 8, 28), datetime(2011, 9, 3)] JNJ = [datetime(2005, 1, 2), datetime(2006, 1, 1), datetime(2006, 12, 31), datetime(2007, 12, 30), datetime(2008, 12, 28), datetime(2010, 1, 3), datetime(2011, 1, 2), datetime(2012, 1, 1), datetime(2012, 12, 30)] DEC_SAT = FY5253(n=-1, startingMonth=12, weekday=5, variation="nearest") tests = [ (makeFY5253NearestEndMonth(startingMonth=8, weekday=WeekDay.SAT), date_seq_nem_8_sat), (makeFY5253NearestEndMonth(n=1, startingMonth=8, weekday=WeekDay.SAT), date_seq_nem_8_sat), (makeFY5253NearestEndMonth(startingMonth=8, weekday=WeekDay.SAT), [datetime(2006, 9, 1)] + date_seq_nem_8_sat), (makeFY5253NearestEndMonth(n=1, startingMonth=8, weekday=WeekDay.SAT), [datetime(2006, 9, 3)] + date_seq_nem_8_sat[1:]), (makeFY5253NearestEndMonth(n=-1, startingMonth=8, weekday=WeekDay.SAT), list(reversed(date_seq_nem_8_sat))), (makeFY5253NearestEndMonth(n=1, startingMonth=12, weekday=WeekDay.SUN), JNJ), (makeFY5253NearestEndMonth(n=-1, startingMonth=12, weekday=WeekDay.SUN), list(reversed(JNJ))), (makeFY5253NearestEndMonth(n=1, startingMonth=12, weekday=WeekDay.SUN), [datetime(2005,1,2), datetime(2006, 1, 1)]), (makeFY5253NearestEndMonth(n=1, startingMonth=12, weekday=WeekDay.SUN), [datetime(2006,1,2), datetime(2006, 12, 31)]), (DEC_SAT, [datetime(2013,1,15), datetime(2012,12,29)]) ] for test in tests: offset, data = test current = data[0] for datum in data[1:]: current = current + offset self.assertEqual(current, datum) class TestFY5253LastOfMonthQuarter(Base): def test_isAnchored(self): self.assertTrue(makeFY5253LastOfMonthQuarter(startingMonth=1, weekday=WeekDay.SAT, qtr_with_extra_week=4).isAnchored()) self.assertTrue(makeFY5253LastOfMonthQuarter(weekday=WeekDay.SAT, startingMonth=3, qtr_with_extra_week=4).isAnchored()) self.assertFalse(makeFY5253LastOfMonthQuarter(2, startingMonth=1, weekday=WeekDay.SAT, qtr_with_extra_week=4).isAnchored()) def test_equality(self): self.assertEqual(makeFY5253LastOfMonthQuarter(startingMonth=1, weekday=WeekDay.SAT, qtr_with_extra_week=4), makeFY5253LastOfMonthQuarter(startingMonth=1, weekday=WeekDay.SAT, qtr_with_extra_week=4)) self.assertNotEqual(makeFY5253LastOfMonthQuarter(startingMonth=1, weekday=WeekDay.SAT, qtr_with_extra_week=4), makeFY5253LastOfMonthQuarter(startingMonth=1, weekday=WeekDay.SUN, qtr_with_extra_week=4)) self.assertNotEqual(makeFY5253LastOfMonthQuarter(startingMonth=1, weekday=WeekDay.SAT, qtr_with_extra_week=4), makeFY5253LastOfMonthQuarter(startingMonth=2, weekday=WeekDay.SAT, qtr_with_extra_week=4)) def test_offset(self): offset = makeFY5253LastOfMonthQuarter(1, startingMonth=9, weekday=WeekDay.SAT, qtr_with_extra_week=4) offset2 = makeFY5253LastOfMonthQuarter(2, startingMonth=9, weekday=WeekDay.SAT, qtr_with_extra_week=4) offset4 = makeFY5253LastOfMonthQuarter(4, startingMonth=9, weekday=WeekDay.SAT, qtr_with_extra_week=4) offset_neg1 = makeFY5253LastOfMonthQuarter(-1, startingMonth=9, weekday=WeekDay.SAT, qtr_with_extra_week=4) offset_neg2 = makeFY5253LastOfMonthQuarter(-2, startingMonth=9, weekday=WeekDay.SAT, qtr_with_extra_week=4) GMCR = [datetime(2010, 3, 27), datetime(2010, 6, 26), datetime(2010, 9, 25), datetime(2010, 12, 25), datetime(2011, 3, 26), datetime(2011, 6, 25), datetime(2011, 9, 24), datetime(2011, 12, 24), datetime(2012, 3, 24), datetime(2012, 6, 23), datetime(2012, 9, 29), datetime(2012, 12, 29), datetime(2013, 3, 30), datetime(2013, 6, 29)] assertEq(offset, base=GMCR[0], expected=GMCR[1]) assertEq(offset, base=GMCR[0] + relativedelta(days=-1), expected=GMCR[0]) assertEq(offset, base=GMCR[1], expected=GMCR[2]) assertEq(offset2, base=GMCR[0], expected=GMCR[2]) assertEq(offset4, base=GMCR[0], expected=GMCR[4]) assertEq(offset_neg1, base=GMCR[-1], expected=GMCR[-2]) assertEq(offset_neg1, base=GMCR[-1] + relativedelta(days=+1), expected=GMCR[-1]) assertEq(offset_neg2, base=GMCR[-1], expected=GMCR[-3]) date = GMCR[0] + relativedelta(days=-1) for expected in GMCR: assertEq(offset, date, expected) date = date + offset date = GMCR[-1] + relativedelta(days=+1) for expected in reversed(GMCR): assertEq(offset_neg1, date, expected) date = date + offset_neg1 def test_onOffset(self): lomq_aug_sat_4 = makeFY5253LastOfMonthQuarter(1, startingMonth=8, weekday=WeekDay.SAT, qtr_with_extra_week=4) lomq_sep_sat_4 = makeFY5253LastOfMonthQuarter(1, startingMonth=9, weekday=WeekDay.SAT, qtr_with_extra_week=4) tests = [ #From Wikipedia (lomq_aug_sat_4, datetime(2006, 8, 26), True), (lomq_aug_sat_4, datetime(2007, 8, 25), True), (lomq_aug_sat_4, datetime(2008, 8, 30), True), (lomq_aug_sat_4, datetime(2009, 8, 29), True), (lomq_aug_sat_4, datetime(2010, 8, 28), True), (lomq_aug_sat_4, datetime(2011, 8, 27), True), (lomq_aug_sat_4, datetime(2019, 8, 31), True), (lomq_aug_sat_4, datetime(2006, 8, 27), False), (lomq_aug_sat_4, datetime(2007, 8, 28), False), (lomq_aug_sat_4, datetime(2008, 8, 31), False), (lomq_aug_sat_4, datetime(2009, 8, 30), False), (lomq_aug_sat_4, datetime(2010, 8, 29), False), (lomq_aug_sat_4, datetime(2011, 8, 28), False), (lomq_aug_sat_4, datetime(2006, 8, 25), False), (lomq_aug_sat_4, datetime(2007, 8, 24), False), (lomq_aug_sat_4, datetime(2008, 8, 29), False), (lomq_aug_sat_4, datetime(2009, 8, 28), False), (lomq_aug_sat_4, datetime(2010, 8, 27), False), (lomq_aug_sat_4, datetime(2011, 8, 26), False), (lomq_aug_sat_4, datetime(2019, 8, 30), False), #From GMCR (lomq_sep_sat_4, datetime(2010, 9, 25), True), (lomq_sep_sat_4, datetime(2011, 9, 24), True), (lomq_sep_sat_4, datetime(2012, 9, 29), True), (lomq_sep_sat_4, datetime(2013, 6, 29), True), (lomq_sep_sat_4, datetime(2012, 6, 23), True), (lomq_sep_sat_4, datetime(2012, 6, 30), False), (lomq_sep_sat_4, datetime(2013, 3, 30), True), (lomq_sep_sat_4, datetime(2012, 3, 24), True), (lomq_sep_sat_4, datetime(2012, 12, 29), True), (lomq_sep_sat_4, datetime(2011, 12, 24), True), #INTC (extra week in Q1) #See: http://www.intc.com/releasedetail.cfm?ReleaseID=542844 (makeFY5253LastOfMonthQuarter(1, startingMonth=12, weekday=WeekDay.SAT, qtr_with_extra_week=1), datetime(2011, 4, 2), True), #see: http://google.brand.edgar-online.com/?sym=INTC&formtypeID=7 (makeFY5253LastOfMonthQuarter(1, startingMonth=12, weekday=WeekDay.SAT, qtr_with_extra_week=1), datetime(2012, 12, 29), True), (makeFY5253LastOfMonthQuarter(1, startingMonth=12, weekday=WeekDay.SAT, qtr_with_extra_week=1), datetime(2011, 12, 31), True), (makeFY5253LastOfMonthQuarter(1, startingMonth=12, weekday=WeekDay.SAT, qtr_with_extra_week=1), datetime(2010, 12, 25), True), ] for offset, date, expected in tests: assertOnOffset(offset, date, expected) def test_year_has_extra_week(self): #End of long Q1 self.assertTrue(makeFY5253LastOfMonthQuarter(1, startingMonth=12, weekday=WeekDay.SAT, qtr_with_extra_week=1).year_has_extra_week(datetime(2011, 4, 2))) #Start of long Q1 self.assertTrue(makeFY5253LastOfMonthQuarter(1, startingMonth=12, weekday=WeekDay.SAT, qtr_with_extra_week=1).year_has_extra_week(datetime(2010, 12, 26))) #End of year before year with long Q1 self.assertFalse(makeFY5253LastOfMonthQuarter(1, startingMonth=12, weekday=WeekDay.SAT, qtr_with_extra_week=1).year_has_extra_week(datetime(2010, 12, 25))) for year in [x for x in range(1994, 2011+1) if x not in [2011, 2005, 2000, 1994]]: self.assertFalse(makeFY5253LastOfMonthQuarter(1, startingMonth=12, weekday=WeekDay.SAT, qtr_with_extra_week=1).year_has_extra_week(datetime(year, 4, 2))) #Other long years self.assertTrue(makeFY5253LastOfMonthQuarter(1, startingMonth=12, weekday=WeekDay.SAT, qtr_with_extra_week=1).year_has_extra_week(datetime(2005, 4, 2))) self.assertTrue(makeFY5253LastOfMonthQuarter(1, startingMonth=12, weekday=WeekDay.SAT, qtr_with_extra_week=1).year_has_extra_week(datetime(2000, 4, 2))) self.assertTrue(makeFY5253LastOfMonthQuarter(1, startingMonth=12, weekday=WeekDay.SAT, qtr_with_extra_week=1).year_has_extra_week(datetime(1994, 4, 2))) def test_get_weeks(self): sat_dec_1 = makeFY5253LastOfMonthQuarter(1, startingMonth=12, weekday=WeekDay.SAT, qtr_with_extra_week=1) sat_dec_4 = makeFY5253LastOfMonthQuarter(1, startingMonth=12, weekday=WeekDay.SAT, qtr_with_extra_week=4) self.assertEqual(sat_dec_1.get_weeks(datetime(2011, 4, 2)), [14, 13, 13, 13]) self.assertEqual(sat_dec_4.get_weeks(datetime(2011, 4, 2)), [13, 13, 13, 14]) self.assertEqual(sat_dec_1.get_weeks(datetime(2010, 12, 25)), [13, 13, 13, 13]) class TestFY5253NearestEndMonthQuarter(Base): def test_onOffset(self): offset_nem_sat_aug_4 = makeFY5253NearestEndMonthQuarter(1, startingMonth=8, weekday=WeekDay.SAT, qtr_with_extra_week=4) offset_nem_thu_aug_4 = makeFY5253NearestEndMonthQuarter(1, startingMonth=8, weekday=WeekDay.THU, qtr_with_extra_week=4) offset_n = FY5253(weekday=WeekDay.TUE, startingMonth=12, variation="nearest", qtr_with_extra_week=4) tests = [ #From Wikipedia (offset_nem_sat_aug_4, datetime(2006, 9, 2), True), (offset_nem_sat_aug_4, datetime(2007, 9, 1), True), (offset_nem_sat_aug_4, datetime(2008, 8, 30), True), (offset_nem_sat_aug_4, datetime(2009, 8, 29), True), (offset_nem_sat_aug_4, datetime(2010, 8, 28), True), (offset_nem_sat_aug_4, datetime(2011, 9, 3), True), (offset_nem_sat_aug_4, datetime(2016, 9, 3), True), (offset_nem_sat_aug_4, datetime(2017, 9, 2), True), (offset_nem_sat_aug_4, datetime(2018, 9, 1), True), (offset_nem_sat_aug_4, datetime(2019, 8, 31), True), (offset_nem_sat_aug_4, datetime(2006, 8, 27), False), (offset_nem_sat_aug_4, datetime(2007, 8, 28), False), (offset_nem_sat_aug_4, datetime(2008, 8, 31), False), (offset_nem_sat_aug_4, datetime(2009, 8, 30), False), (offset_nem_sat_aug_4, datetime(2010, 8, 29), False), (offset_nem_sat_aug_4, datetime(2011, 8, 28), False), (offset_nem_sat_aug_4, datetime(2006, 8, 25), False), (offset_nem_sat_aug_4, datetime(2007, 8, 24), False), (offset_nem_sat_aug_4, datetime(2008, 8, 29), False), (offset_nem_sat_aug_4, datetime(2009, 8, 28), False), (offset_nem_sat_aug_4, datetime(2010, 8, 27), False), (offset_nem_sat_aug_4, datetime(2011, 8, 26), False), (offset_nem_sat_aug_4, datetime(2019, 8, 30), False), #From Micron, see: http://google.brand.edgar-online.com/?sym=MU&formtypeID=7 (offset_nem_thu_aug_4, datetime(2012, 8, 30), True), (offset_nem_thu_aug_4, datetime(2011, 9, 1), True), #See: http://google.brand.edgar-online.com/?sym=MU&formtypeID=13 (offset_nem_thu_aug_4, datetime(2013, 5, 30), True), (offset_nem_thu_aug_4, datetime(2013, 2, 28), True), (offset_nem_thu_aug_4, datetime(2012, 11, 29), True), (offset_nem_thu_aug_4, datetime(2012, 5, 31), True), (offset_nem_thu_aug_4, datetime(2007, 3, 1), True), (offset_nem_thu_aug_4, datetime(1994, 3, 3), True), (offset_n, datetime(2012, 12, 31), False), (offset_n, datetime(2013, 1, 1), True), (offset_n, datetime(2013, 1, 2), False) ] for offset, date, expected in tests: assertOnOffset(offset, date, expected) def test_offset(self): offset = makeFY5253NearestEndMonthQuarter(1, startingMonth=8, weekday=WeekDay.THU, qtr_with_extra_week=4) MU = [datetime(2012, 5, 31), datetime(2012, 8, 30), datetime(2012, 11, 29), datetime(2013, 2, 28), datetime(2013, 5, 30)] date = MU[0] + relativedelta(days=-1) for expected in MU: assertEq(offset, date, expected) date = date + offset assertEq(offset, datetime(2012, 5, 31), datetime(2012, 8, 30)) assertEq(offset, datetime(2012, 5, 30), datetime(2012, 5, 31)) offset2 = FY5253Quarter(weekday=5, startingMonth=12, variation="last", qtr_with_extra_week=4) assertEq(offset2, datetime(2013,1,15), datetime(2013, 3, 30)) class TestQuarterBegin(Base): def test_repr(self): self.assertEqual(repr(QuarterBegin()), "<QuarterBegin: startingMonth=3>") self.assertEqual(repr(QuarterBegin(startingMonth=3)), "<QuarterBegin: startingMonth=3>") self.assertEqual(repr(QuarterBegin(startingMonth=1)),"<QuarterBegin: startingMonth=1>") def test_isAnchored(self): self.assertTrue(QuarterBegin(startingMonth=1).isAnchored()) self.assertTrue(QuarterBegin().isAnchored()) self.assertFalse(QuarterBegin(2, startingMonth=1).isAnchored()) def test_offset(self): tests = [] tests.append((QuarterBegin(startingMonth=1), {datetime(2007, 12, 1): datetime(2008, 1, 1), datetime(2008, 1, 1): datetime(2008, 4, 1), datetime(2008, 2, 15): datetime(2008, 4, 1), datetime(2008, 2, 29): datetime(2008, 4, 1), datetime(2008, 3, 15): datetime(2008, 4, 1), datetime(2008, 3, 31): datetime(2008, 4, 1), datetime(2008, 4, 15): datetime(2008, 7, 1), datetime(2008, 4, 1): datetime(2008, 7, 1), })) tests.append((QuarterBegin(startingMonth=2), {datetime(2008, 1, 1): datetime(2008, 2, 1), datetime(2008, 1, 31): datetime(2008, 2, 1), datetime(2008, 1, 15): datetime(2008, 2, 1), datetime(2008, 2, 29): datetime(2008, 5, 1), datetime(2008, 3, 15): datetime(2008, 5, 1), datetime(2008, 3, 31): datetime(2008, 5, 1), datetime(2008, 4, 15): datetime(2008, 5, 1), datetime(2008, 4, 30): datetime(2008, 5, 1), })) tests.append((QuarterBegin(startingMonth=1, n=0), {datetime(2008, 1, 1): datetime(2008, 1, 1), datetime(2008, 12, 1): datetime(2009, 1, 1), datetime(2008, 1, 1): datetime(2008, 1, 1), datetime(2008, 2, 15): datetime(2008, 4, 1), datetime(2008, 2, 29): datetime(2008, 4, 1), datetime(2008, 3, 15): datetime(2008, 4, 1), datetime(2008, 3, 31): datetime(2008, 4, 1), datetime(2008, 4, 15): datetime(2008, 4, 1), datetime(2008, 4, 30): datetime(2008, 4, 1), })) tests.append((QuarterBegin(startingMonth=1, n=-1), {datetime(2008, 1, 1): datetime(2007, 10, 1), datetime(2008, 1, 31): datetime(2008, 1, 1), datetime(2008, 2, 15): datetime(2008, 1, 1), datetime(2008, 2, 29): datetime(2008, 1, 1), datetime(2008, 3, 15): datetime(2008, 1, 1), datetime(2008, 3, 31): datetime(2008, 1, 1), datetime(2008, 4, 15): datetime(2008, 4, 1), datetime(2008, 4, 30): datetime(2008, 4, 1), datetime(2008, 7, 1): datetime(2008, 4, 1)})) tests.append((QuarterBegin(startingMonth=1, n=2), {datetime(2008, 1, 1): datetime(2008, 7, 1), datetime(2008, 2, 15): datetime(2008, 7, 1), datetime(2008, 2, 29): datetime(2008, 7, 1), datetime(2008, 3, 15): datetime(2008, 7, 1), datetime(2008, 3, 31): datetime(2008, 7, 1), datetime(2008, 4, 15): datetime(2008, 10, 1), datetime(2008, 4, 1): datetime(2008, 10, 1), })) for offset, cases in tests: for base, expected in compat.iteritems(cases): assertEq(offset, base, expected) # corner offset = QuarterBegin(n=-1, startingMonth=1) self.assertEqual(datetime(2010, 2, 1) + offset, datetime(2010, 1, 1)) class TestQuarterEnd(Base): _offset = QuarterEnd def test_repr(self): self.assertEqual(repr(QuarterEnd()), "<QuarterEnd: startingMonth=3>") self.assertEqual(repr(QuarterEnd(startingMonth=3)), "<QuarterEnd: startingMonth=3>") self.assertEqual(repr(QuarterEnd(startingMonth=1)), "<QuarterEnd: startingMonth=1>") def test_isAnchored(self): self.assertTrue(QuarterEnd(startingMonth=1).isAnchored()) self.assertTrue(QuarterEnd().isAnchored()) self.assertFalse(QuarterEnd(2, startingMonth=1).isAnchored()) def test_offset(self): tests = [] tests.append((QuarterEnd(startingMonth=1), {datetime(2008, 1, 1): datetime(2008, 1, 31), datetime(2008, 1, 31): datetime(2008, 4, 30), datetime(2008, 2, 15): datetime(2008, 4, 30), datetime(2008, 2, 29): datetime(2008, 4, 30), datetime(2008, 3, 15): datetime(2008, 4, 30), datetime(2008, 3, 31): datetime(2008, 4, 30), datetime(2008, 4, 15): datetime(2008, 4, 30), datetime(2008, 4, 30): datetime(2008, 7, 31), })) tests.append((QuarterEnd(startingMonth=2), {datetime(2008, 1, 1): datetime(2008, 2, 29), datetime(2008, 1, 31): datetime(2008, 2, 29), datetime(2008, 2, 15): datetime(2008, 2, 29), datetime(2008, 2, 29): datetime(2008, 5, 31), datetime(2008, 3, 15): datetime(2008, 5, 31), datetime(2008, 3, 31): datetime(2008, 5, 31), datetime(2008, 4, 15): datetime(2008, 5, 31), datetime(2008, 4, 30): datetime(2008, 5, 31), })) tests.append((QuarterEnd(startingMonth=1, n=0), {datetime(2008, 1, 1): datetime(2008, 1, 31), datetime(2008, 1, 31): datetime(2008, 1, 31), datetime(2008, 2, 15): datetime(2008, 4, 30), datetime(2008, 2, 29): datetime(2008, 4, 30), datetime(2008, 3, 15): datetime(2008, 4, 30), datetime(2008, 3, 31): datetime(2008, 4, 30), datetime(2008, 4, 15): datetime(2008, 4, 30), datetime(2008, 4, 30): datetime(2008, 4, 30), })) tests.append((QuarterEnd(startingMonth=1, n=-1), {datetime(2008, 1, 1): datetime(2007, 10, 31), datetime(2008, 1, 31): datetime(2007, 10, 31), datetime(2008, 2, 15): datetime(2008, 1, 31), datetime(2008, 2, 29): datetime(2008, 1, 31), datetime(2008, 3, 15): datetime(2008, 1, 31), datetime(2008, 3, 31): datetime(2008, 1, 31), datetime(2008, 4, 15): datetime(2008, 1, 31), datetime(2008, 4, 30): datetime(2008, 1, 31), datetime(2008, 7, 1): datetime(2008, 4, 30)})) tests.append((QuarterEnd(startingMonth=1, n=2), {datetime(2008, 1, 31): datetime(2008, 7, 31), datetime(2008, 2, 15): datetime(2008, 7, 31), datetime(2008, 2, 29): datetime(2008, 7, 31), datetime(2008, 3, 15): datetime(2008, 7, 31), datetime(2008, 3, 31): datetime(2008, 7, 31), datetime(2008, 4, 15): datetime(2008, 7, 31), datetime(2008, 4, 30): datetime(2008, 10, 31), })) for offset, cases in tests: for base, expected in compat.iteritems(cases): assertEq(offset, base, expected) # corner offset = QuarterEnd(n=-1, startingMonth=1) self.assertEqual(datetime(2010, 2, 1) + offset, datetime(2010, 1, 31)) def test_onOffset(self): tests = [(QuarterEnd(1, startingMonth=1), datetime(2008, 1, 31), True), (QuarterEnd( 1, startingMonth=1), datetime(2007, 12, 31), False), (QuarterEnd( 1, startingMonth=1), datetime(2008, 2, 29), False), (QuarterEnd( 1, startingMonth=1), datetime(2007, 3, 30), False), (QuarterEnd( 1, startingMonth=1), datetime(2007, 3, 31), False), (QuarterEnd(1, startingMonth=1), datetime(2008, 4, 30), True), (QuarterEnd( 1, startingMonth=1), datetime(2008, 5, 30), False), (QuarterEnd( 1, startingMonth=1), datetime(2008, 5, 31), False), (QuarterEnd( 1, startingMonth=1), datetime(2007, 6, 29), False), (QuarterEnd( 1, startingMonth=1), datetime(2007, 6, 30), False), (QuarterEnd( 1, startingMonth=2), datetime(2008, 1, 31), False), (QuarterEnd( 1, startingMonth=2), datetime(2007, 12, 31), False), (QuarterEnd(1, startingMonth=2), datetime(2008, 2, 29), True), (QuarterEnd( 1, startingMonth=2), datetime(2007, 3, 30), False), (QuarterEnd( 1, startingMonth=2), datetime(2007, 3, 31), False), (QuarterEnd( 1, startingMonth=2), datetime(2008, 4, 30), False), (QuarterEnd( 1, startingMonth=2), datetime(2008, 5, 30), False), (QuarterEnd(1, startingMonth=2), datetime(2008, 5, 31), True), (QuarterEnd( 1, startingMonth=2), datetime(2007, 6, 29), False), (QuarterEnd( 1, startingMonth=2), datetime(2007, 6, 30), False), (QuarterEnd( 1, startingMonth=3), datetime(2008, 1, 31), False), (QuarterEnd( 1, startingMonth=3), datetime(2007, 12, 31), True), (QuarterEnd( 1, startingMonth=3), datetime(2008, 2, 29), False), (QuarterEnd( 1, startingMonth=3), datetime(2007, 3, 30), False), (QuarterEnd(1, startingMonth=3), datetime(2007, 3, 31), True), (QuarterEnd( 1, startingMonth=3), datetime(2008, 4, 30), False), (QuarterEnd( 1, startingMonth=3), datetime(2008, 5, 30), False), (QuarterEnd( 1, startingMonth=3), datetime(2008, 5, 31), False), (QuarterEnd( 1, startingMonth=3), datetime(2007, 6, 29), False), (QuarterEnd(1, startingMonth=3), datetime(2007, 6, 30), True), ] for offset, date, expected in tests: assertOnOffset(offset, date, expected) class TestBYearBegin(Base): _offset = BYearBegin def test_misspecified(self): self.assertRaises(ValueError, BYearBegin, month=13) self.assertRaises(ValueError, BYearEnd, month=13) def test_offset(self): tests = [] tests.append((BYearBegin(), {datetime(2008, 1, 1): datetime(2009, 1, 1), datetime(2008, 6, 30): datetime(2009, 1, 1), datetime(2008, 12, 31): datetime(2009, 1, 1), datetime(2011, 1, 1): datetime(2011, 1, 3), datetime(2011, 1, 3): datetime(2012, 1, 2), datetime(2005, 12, 30): datetime(2006, 1, 2), datetime(2005, 12, 31): datetime(2006, 1, 2) } )) tests.append((BYearBegin(0), {datetime(2008, 1, 1): datetime(2008, 1, 1), datetime(2008, 6, 30): datetime(2009, 1, 1), datetime(2008, 12, 31): datetime(2009, 1, 1), datetime(2005, 12, 30): datetime(2006, 1, 2), datetime(2005, 12, 31): datetime(2006, 1, 2), })) tests.append((BYearBegin(-1), {datetime(2007, 1, 1): datetime(2006, 1, 2), datetime(2009, 1, 4): datetime(2009, 1, 1), datetime(2009, 1, 1): datetime(2008, 1, 1), datetime(2008, 6, 30): datetime(2008, 1, 1), datetime(2008, 12, 31): datetime(2008, 1, 1), datetime(2006, 12, 29): datetime(2006, 1, 2), datetime(2006, 12, 30): datetime(2006, 1, 2), datetime(2006, 1, 1): datetime(2005, 1, 3), })) tests.append((BYearBegin(-2), {datetime(2007, 1, 1): datetime(2005, 1, 3), datetime(2007, 6, 30): datetime(2006, 1, 2), datetime(2008, 12, 31): datetime(2007, 1, 1), })) for offset, cases in tests: for base, expected in compat.iteritems(cases): assertEq(offset, base, expected) class TestYearBegin(Base): _offset = YearBegin def test_misspecified(self): self.assertRaises(ValueError, YearBegin, month=13) def test_offset(self): tests = [] tests.append((YearBegin(), {datetime(2008, 1, 1): datetime(2009, 1, 1), datetime(2008, 6, 30): datetime(2009, 1, 1), datetime(2008, 12, 31): datetime(2009, 1, 1), datetime(2005, 12, 30): datetime(2006, 1, 1), datetime(2005, 12, 31): datetime(2006, 1, 1), })) tests.append((YearBegin(0), {datetime(2008, 1, 1): datetime(2008, 1, 1), datetime(2008, 6, 30): datetime(2009, 1, 1), datetime(2008, 12, 31): datetime(2009, 1, 1), datetime(2005, 12, 30): datetime(2006, 1, 1), datetime(2005, 12, 31): datetime(2006, 1, 1), })) tests.append((YearBegin(3), {datetime(2008, 1, 1): datetime(2011, 1, 1), datetime(2008, 6, 30): datetime(2011, 1, 1), datetime(2008, 12, 31): datetime(2011, 1, 1), datetime(2005, 12, 30): datetime(2008, 1, 1), datetime(2005, 12, 31): datetime(2008, 1, 1), })) tests.append((YearBegin(-1), {datetime(2007, 1, 1): datetime(2006, 1, 1), datetime(2007, 1, 15): datetime(2007, 1, 1), datetime(2008, 6, 30): datetime(2008, 1, 1), datetime(2008, 12, 31): datetime(2008, 1, 1), datetime(2006, 12, 29): datetime(2006, 1, 1), datetime(2006, 12, 30): datetime(2006, 1, 1), datetime(2007, 1, 1): datetime(2006, 1, 1), })) tests.append((YearBegin(-2), {datetime(2007, 1, 1): datetime(2005, 1, 1), datetime(2008, 6, 30): datetime(2007, 1, 1), datetime(2008, 12, 31): datetime(2007, 1, 1), })) tests.append((YearBegin(month=4), {datetime(2007, 4, 1): datetime(2008, 4, 1), datetime(2007, 4, 15): datetime(2008, 4, 1), datetime(2007, 3, 1): datetime(2007, 4, 1), datetime(2007, 12, 15): datetime(2008, 4, 1), datetime(2012, 1, 31): datetime(2012, 4, 1), })) tests.append((YearBegin(0, month=4), {datetime(2007, 4, 1): datetime(2007, 4, 1), datetime(2007, 3, 1): datetime(2007, 4, 1), datetime(2007, 12, 15): datetime(2008, 4, 1), datetime(2012, 1, 31): datetime(2012, 4, 1), })) tests.append((YearBegin(4, month=4), {datetime(2007, 4, 1): datetime(2011, 4, 1), datetime(2007, 4, 15): datetime(2011, 4, 1), datetime(2007, 3, 1): datetime(2010, 4, 1), datetime(2007, 12, 15): datetime(2011, 4, 1), datetime(2012, 1, 31): datetime(2015, 4, 1), })) tests.append((YearBegin(-1, month=4), {datetime(2007, 4, 1): datetime(2006, 4, 1), datetime(2007, 3, 1): datetime(2006, 4, 1), datetime(2007, 12, 15): datetime(2007, 4, 1), datetime(2012, 1, 31): datetime(2011, 4, 1), })) tests.append((YearBegin(-3, month=4), {datetime(2007, 4, 1): datetime(2004, 4, 1), datetime(2007, 3, 1): datetime(2004, 4, 1), datetime(2007, 12, 15): datetime(2005, 4, 1), datetime(2012, 1, 31): datetime(2009, 4, 1), })) for offset, cases in tests: for base, expected in compat.iteritems(cases): assertEq(offset, base, expected) def test_onOffset(self): tests = [ (YearBegin(), datetime(2007, 1, 3), False), (YearBegin(), datetime(2008, 1, 1), True), (YearBegin(), datetime(2006, 12, 31), False), (YearBegin(), datetime(2006, 1, 2), False), ] for offset, date, expected in tests: assertOnOffset(offset, date, expected) class TestBYearEndLagged(Base): def test_bad_month_fail(self): self.assertRaises(Exception, BYearEnd, month=13) self.assertRaises(Exception, BYearEnd, month=0) def test_offset(self): tests = [] tests.append((BYearEnd(month=6), {datetime(2008, 1, 1): datetime(2008, 6, 30), datetime(2007, 6, 30): datetime(2008, 6, 30)}, )) tests.append((BYearEnd(n=-1, month=6), {datetime(2008, 1, 1): datetime(2007, 6, 29), datetime(2007, 6, 30): datetime(2007, 6, 29)}, )) for offset, cases in tests: for base, expected in compat.iteritems(cases): self.assertEqual(base + offset, expected) def test_roll(self): offset = BYearEnd(month=6) date = datetime(2009, 11, 30) self.assertEqual(offset.rollforward(date), datetime(2010, 6, 30)) self.assertEqual(offset.rollback(date), datetime(2009, 6, 30)) def test_onOffset(self): tests = [ (BYearEnd(month=2), datetime(2007, 2, 28), True), (BYearEnd(month=6), datetime(2007, 6, 30), False), ] for offset, date, expected in tests: assertOnOffset(offset, date, expected) class TestBYearEnd(Base): _offset = BYearEnd def test_offset(self): tests = [] tests.append((BYearEnd(), {datetime(2008, 1, 1): datetime(2008, 12, 31), datetime(2008, 6, 30): datetime(2008, 12, 31), datetime(2008, 12, 31): datetime(2009, 12, 31), datetime(2005, 12, 30): datetime(2006, 12, 29), datetime(2005, 12, 31): datetime(2006, 12, 29), })) tests.append((BYearEnd(0), {datetime(2008, 1, 1): datetime(2008, 12, 31), datetime(2008, 6, 30): datetime(2008, 12, 31), datetime(2008, 12, 31): datetime(2008, 12, 31), datetime(2005, 12, 31): datetime(2006, 12, 29), })) tests.append((BYearEnd(-1), {datetime(2007, 1, 1): datetime(2006, 12, 29), datetime(2008, 6, 30): datetime(2007, 12, 31), datetime(2008, 12, 31): datetime(2007, 12, 31), datetime(2006, 12, 29): datetime(2005, 12, 30), datetime(2006, 12, 30): datetime(2006, 12, 29), datetime(2007, 1, 1): datetime(2006, 12, 29), })) tests.append((BYearEnd(-2), {datetime(2007, 1, 1): datetime(2005, 12, 30), datetime(2008, 6, 30): datetime(2006, 12, 29), datetime(2008, 12, 31): datetime(2006, 12, 29), })) for offset, cases in tests: for base, expected in compat.iteritems(cases): assertEq(offset, base, expected) def test_onOffset(self): tests = [ (BYearEnd(), datetime(2007, 12, 31), True), (BYearEnd(), datetime(2008, 1, 1), False), (BYearEnd(), datetime(2006, 12, 31), False), (BYearEnd(), datetime(2006, 12, 29), True), ] for offset, date, expected in tests: assertOnOffset(offset, date, expected) class TestYearEnd(Base): _offset = YearEnd def test_misspecified(self): self.assertRaises(ValueError, YearEnd, month=13) def test_offset(self): tests = [] tests.append((YearEnd(), {datetime(2008, 1, 1): datetime(2008, 12, 31), datetime(2008, 6, 30): datetime(2008, 12, 31), datetime(2008, 12, 31): datetime(2009, 12, 31), datetime(2005, 12, 30): datetime(2005, 12, 31), datetime(2005, 12, 31): datetime(2006, 12, 31), })) tests.append((YearEnd(0), {datetime(2008, 1, 1): datetime(2008, 12, 31), datetime(2008, 6, 30): datetime(2008, 12, 31), datetime(2008, 12, 31): datetime(2008, 12, 31), datetime(2005, 12, 30): datetime(2005, 12, 31), })) tests.append((YearEnd(-1), {datetime(2007, 1, 1): datetime(2006, 12, 31), datetime(2008, 6, 30): datetime(2007, 12, 31), datetime(2008, 12, 31): datetime(2007, 12, 31), datetime(2006, 12, 29): datetime(2005, 12, 31), datetime(2006, 12, 30): datetime(2005, 12, 31), datetime(2007, 1, 1): datetime(2006, 12, 31), })) tests.append((YearEnd(-2), {datetime(2007, 1, 1): datetime(2005, 12, 31), datetime(2008, 6, 30): datetime(2006, 12, 31), datetime(2008, 12, 31): datetime(2006, 12, 31), })) for offset, cases in tests: for base, expected in compat.iteritems(cases): assertEq(offset, base, expected) def test_onOffset(self): tests = [ (YearEnd(), datetime(2007, 12, 31), True), (YearEnd(), datetime(2008, 1, 1), False), (YearEnd(), datetime(2006, 12, 31), True), (YearEnd(), datetime(2006, 12, 29), False), ] for offset, date, expected in tests: assertOnOffset(offset, date, expected) class TestYearEndDiffMonth(Base): def test_offset(self): tests = [] tests.append((YearEnd(month=3), {datetime(2008, 1, 1): datetime(2008, 3, 31), datetime(2008, 2, 15): datetime(2008, 3, 31), datetime(2008, 3, 31): datetime(2009, 3, 31), datetime(2008, 3, 30): datetime(2008, 3, 31), datetime(2005, 3, 31): datetime(2006, 3, 31), datetime(2006, 7, 30): datetime(2007, 3, 31)})) tests.append((YearEnd(0, month=3), {datetime(2008, 1, 1): datetime(2008, 3, 31), datetime(2008, 2, 28): datetime(2008, 3, 31), datetime(2008, 3, 31): datetime(2008, 3, 31), datetime(2005, 3, 30): datetime(2005, 3, 31), })) tests.append((YearEnd(-1, month=3), {datetime(2007, 1, 1): datetime(2006, 3, 31), datetime(2008, 2, 28): datetime(2007, 3, 31), datetime(2008, 3, 31): datetime(2007, 3, 31), datetime(2006, 3, 29): datetime(2005, 3, 31), datetime(2006, 3, 30): datetime(2005, 3, 31), datetime(2007, 3, 1): datetime(2006, 3, 31), })) tests.append((YearEnd(-2, month=3), {datetime(2007, 1, 1): datetime(2005, 3, 31), datetime(2008, 6, 30): datetime(2007, 3, 31), datetime(2008, 3, 31): datetime(2006, 3, 31), })) for offset, cases in tests: for base, expected in compat.iteritems(cases): assertEq(offset, base, expected) def test_onOffset(self): tests = [ (YearEnd(month=3), datetime(2007, 3, 31), True), (YearEnd(month=3), datetime(2008, 1, 1), False), (YearEnd(month=3), datetime(2006, 3, 31), True), (YearEnd(month=3), datetime(2006, 3, 29), False), ] for offset, date, expected in tests: assertOnOffset(offset, date, expected) def assertEq(offset, base, expected): actual = offset + base actual_swapped = base + offset actual_apply = offset.apply(base) try: assert actual == expected assert actual_swapped == expected assert actual_apply == expected except AssertionError: raise AssertionError("\nExpected: %s\nActual: %s\nFor Offset: %s)" "\nAt Date: %s" % (expected, actual, offset, base)) def test_Easter(): assertEq(Easter(), datetime(2010, 1, 1), datetime(2010, 4, 4)) assertEq(Easter(), datetime(2010, 4, 5), datetime(2011, 4, 24)) assertEq(Easter(2), datetime(2010, 1, 1), datetime(2011, 4, 24)) assertEq(Easter(), datetime(2010, 4, 4), datetime(2011, 4, 24)) assertEq(Easter(2), datetime(2010, 4, 4), datetime(2012, 4, 8)) assertEq(-Easter(), datetime(2011, 1, 1), datetime(2010, 4, 4)) assertEq(-Easter(), datetime(2010, 4, 5), datetime(2010, 4, 4)) assertEq(-Easter(2), datetime(2011, 1, 1), datetime(2009, 4, 12)) assertEq(-Easter(), datetime(2010, 4, 4), datetime(2009, 4, 12)) assertEq(-Easter(2), datetime(2010, 4, 4), datetime(2008, 3, 23)) class TestTicks(tm.TestCase): ticks = [Hour, Minute, Second, Milli, Micro, Nano] def test_ticks(self): offsets = [(Hour, Timedelta(hours=5)), (Minute, Timedelta(hours=2, minutes=3)), (Second, Timedelta(hours=2, seconds=3)), (Milli, Timedelta(hours=2, milliseconds=3)), (Micro, Timedelta(hours=2, microseconds=3)), (Nano, Timedelta(hours=2, nanoseconds=3))] for kls, expected in offsets: offset = kls(3) result = offset + Timedelta(hours=2) self.assertTrue(isinstance(result, Timedelta)) self.assertEqual(result, expected) def test_Hour(self): assertEq(Hour(), datetime(2010, 1, 1), datetime(2010, 1, 1, 1)) assertEq(Hour(-1), datetime(2010, 1, 1, 1), datetime(2010, 1, 1)) assertEq(2 * Hour(), datetime(2010, 1, 1), datetime(2010, 1, 1, 2)) assertEq(-1 * Hour(), datetime(2010, 1, 1, 1), datetime(2010, 1, 1)) self.assertEqual(Hour(3) + Hour(2), Hour(5)) self.assertEqual(Hour(3) - Hour(2), Hour()) self.assertNotEqual(Hour(4), Hour(1)) def test_Minute(self): assertEq(Minute(), datetime(2010, 1, 1), datetime(2010, 1, 1, 0, 1)) assertEq(Minute(-1), datetime(2010, 1, 1, 0, 1), datetime(2010, 1, 1)) assertEq(2 * Minute(), datetime(2010, 1, 1), datetime(2010, 1, 1, 0, 2)) assertEq(-1 * Minute(), datetime(2010, 1, 1, 0, 1), datetime(2010, 1, 1)) self.assertEqual(Minute(3) + Minute(2), Minute(5)) self.assertEqual(Minute(3) - Minute(2), Minute()) self.assertNotEqual(Minute(5), Minute()) def test_Second(self): assertEq(Second(), datetime(2010, 1, 1), datetime(2010, 1, 1, 0, 0, 1)) assertEq(Second(-1), datetime(2010, 1, 1, 0, 0, 1), datetime(2010, 1, 1)) assertEq(2 * Second(), datetime(2010, 1, 1), datetime(2010, 1, 1, 0, 0, 2)) assertEq( -1 * Second(), datetime(2010, 1, 1, 0, 0, 1), datetime(2010, 1, 1)) self.assertEqual(Second(3) + Second(2), Second(5)) self.assertEqual(Second(3) - Second(2), Second()) def test_Millisecond(self): assertEq(Milli(), datetime(2010, 1, 1), datetime(2010, 1, 1, 0, 0, 0, 1000)) assertEq(Milli(-1), datetime(2010, 1, 1, 0, 0, 0, 1000), datetime(2010, 1, 1)) assertEq(Milli(2), datetime(2010, 1, 1), datetime(2010, 1, 1, 0, 0, 0, 2000)) assertEq(2 * Milli(), datetime(2010, 1, 1), datetime(2010, 1, 1, 0, 0, 0, 2000)) assertEq(-1 * Milli(), datetime(2010, 1, 1, 0, 0, 0, 1000), datetime(2010, 1, 1)) self.assertEqual(Milli(3) + Milli(2), Milli(5)) self.assertEqual(Milli(3) - Milli(2), Milli()) def test_MillisecondTimestampArithmetic(self): assertEq(Milli(), Timestamp('2010-01-01'), Timestamp('2010-01-01 00:00:00.001')) assertEq(Milli(-1), Timestamp('2010-01-01 00:00:00.001'), Timestamp('2010-01-01')) def test_Microsecond(self): assertEq(Micro(), datetime(2010, 1, 1), datetime(2010, 1, 1, 0, 0, 0, 1)) assertEq(Micro(-1), datetime(2010, 1, 1, 0, 0, 0, 1), datetime(2010, 1, 1)) assertEq(2 * Micro(), datetime(2010, 1, 1), datetime(2010, 1, 1, 0, 0, 0, 2)) assertEq(-1 * Micro(), datetime(2010, 1, 1, 0, 0, 0, 1), datetime(2010, 1, 1)) self.assertEqual(Micro(3) + Micro(2), Micro(5)) self.assertEqual(Micro(3) - Micro(2), Micro()) def test_NanosecondGeneric(self): timestamp = Timestamp(datetime(2010, 1, 1)) self.assertEqual(timestamp.nanosecond, 0) result = timestamp + Nano(10) self.assertEqual(result.nanosecond, 10) reverse_result = Nano(10) + timestamp self.assertEqual(reverse_result.nanosecond, 10) def test_Nanosecond(self): timestamp = Timestamp(datetime(2010, 1, 1)) assertEq(Nano(), timestamp, timestamp + np.timedelta64(1, 'ns')) assertEq(Nano(-1), timestamp + np.timedelta64(1, 'ns'), timestamp) assertEq(2 * Nano(), timestamp, timestamp + np.timedelta64(2, 'ns')) assertEq(-1 * Nano(), timestamp + np.timedelta64(1, 'ns'), timestamp) self.assertEqual(Nano(3) + Nano(2), Nano(5)) self.assertEqual(Nano(3) - Nano(2), Nano()) # GH9284 self.assertEqual(Nano(1) + Nano(10), Nano(11)) self.assertEqual(Nano(5) + Micro(1), Nano(1005)) self.assertEqual(Micro(5) + Nano(1), Nano(5001)) def test_tick_zero(self): for t1 in self.ticks: for t2 in self.ticks: self.assertEqual(t1(0), t2(0)) self.assertEqual(t1(0) + t2(0), t1(0)) if t1 is not Nano: self.assertEqual(t1(2) + t2(0), t1(2)) if t1 is Nano: self.assertEqual(t1(2) + Nano(0), t1(2)) def test_tick_equalities(self): for t in self.ticks: self.assertEqual(t(3), t(3)) self.assertEqual(t(), t(1)) # not equals self.assertNotEqual(t(3), t(2)) self.assertNotEqual(t(3), t(-3)) def test_tick_operators(self): for t in self.ticks: self.assertEqual(t(3) + t(2), t(5)) self.assertEqual(t(3) - t(2), t(1)) self.assertEqual(t(800) + t(300), t(1100)) self.assertEqual(t(1000) - t(5), t(995)) def test_tick_offset(self): for t in self.ticks: self.assertFalse(t().isAnchored()) def test_compare_ticks(self): for kls in self.ticks: three = kls(3) four = kls(4) for _ in range(10): self.assertTrue(three < kls(4)) self.assertTrue(kls(3) < four) self.assertTrue(four > kls(3)) self.assertTrue(kls(4) > three) self.assertTrue(kls(3) == kls(3)) self.assertTrue(kls(3) != kls(4)) class TestOffsetNames(tm.TestCase): def test_get_offset_name(self): assertRaisesRegexp(ValueError, 'Bad rule.*BusinessDays', get_offset_name, BDay(2)) assert get_offset_name(BDay()) == 'B' assert get_offset_name(BMonthEnd()) == 'BM' assert get_offset_name(Week(weekday=0)) == 'W-MON' assert get_offset_name(Week(weekday=1)) == 'W-TUE' assert get_offset_name(Week(weekday=2)) == 'W-WED' assert get_offset_name(Week(weekday=3)) == 'W-THU' assert get_offset_name(Week(weekday=4)) == 'W-FRI' self.assertEqual(get_offset_name(LastWeekOfMonth(weekday=WeekDay.SUN)), "LWOM-SUN") self.assertEqual(get_offset_name(makeFY5253LastOfMonthQuarter(weekday=1, startingMonth=3, qtr_with_extra_week=4)),"REQ-L-MAR-TUE-4") self.assertEqual(get_offset_name(makeFY5253NearestEndMonthQuarter(weekday=1, startingMonth=3, qtr_with_extra_week=3)), "REQ-N-MAR-TUE-3") def test_get_offset(): assertRaisesRegexp(ValueError, "rule.*GIBBERISH", get_offset, 'gibberish') assertRaisesRegexp(ValueError, "rule.*QS-JAN-B", get_offset, 'QS-JAN-B') pairs = [ ('B', BDay()), ('b', BDay()), ('bm', BMonthEnd()), ('Bm', BMonthEnd()), ('W-MON', Week(weekday=0)), ('W-TUE', Week(weekday=1)), ('W-WED', Week(weekday=2)), ('W-THU', Week(weekday=3)), ('W-FRI', Week(weekday=4)), ('w@Sat', Week(weekday=5)), ("RE-N-DEC-MON", makeFY5253NearestEndMonth(weekday=0, startingMonth=12)), ("RE-L-DEC-TUE", makeFY5253LastOfMonth(weekday=1, startingMonth=12)), ("REQ-L-MAR-TUE-4", makeFY5253LastOfMonthQuarter(weekday=1, startingMonth=3, qtr_with_extra_week=4)), ("REQ-L-DEC-MON-3", makeFY5253LastOfMonthQuarter(weekday=0, startingMonth=12, qtr_with_extra_week=3)), ("REQ-N-DEC-MON-3", makeFY5253NearestEndMonthQuarter(weekday=0, startingMonth=12, qtr_with_extra_week=3)), ] for name, expected in pairs: offset = get_offset(name) assert offset == expected, ("Expected %r to yield %r (actual: %r)" % (name, expected, offset)) def test_parse_time_string(): (date, parsed, reso) = parse_time_string('4Q1984') (date_lower, parsed_lower, reso_lower) = parse_time_string('4q1984') assert date == date_lower assert parsed == parsed_lower assert reso == reso_lower def test_get_standard_freq(): fstr = get_standard_freq('W') assert fstr == get_standard_freq('w') assert fstr == get_standard_freq('1w') assert fstr == get_standard_freq(('W', 1)) assert fstr == get_standard_freq('WeEk') fstr = get_standard_freq('5Q') assert fstr == get_standard_freq('5q') assert fstr == get_standard_freq('5QuarTer') assert fstr == get_standard_freq(('q', 5)) def test_quarterly_dont_normalize(): date = datetime(2012, 3, 31, 5, 30) offsets = (QuarterBegin, QuarterEnd, BQuarterEnd, BQuarterBegin) for klass in offsets: result = date + klass() assert(result.time() == date.time()) class TestOffsetAliases(tm.TestCase): def setUp(self): _offset_map.clear() def test_alias_equality(self): for k, v in compat.iteritems(_offset_map): if v is None: continue self.assertEqual(k, v.copy()) def test_rule_code(self): lst = ['M', 'MS', 'BM', 'BMS', 'D', 'B', 'H', 'T', 'S', 'L', 'U'] for k in lst: self.assertEqual(k, get_offset(k).rule_code) # should be cached - this is kind of an internals test... assert k in _offset_map self.assertEqual(k, (get_offset(k) * 3).rule_code) suffix_lst = ['MON', 'TUE', 'WED', 'THU', 'FRI', 'SAT', 'SUN'] base = 'W' for v in suffix_lst: alias = '-'.join([base, v]) self.assertEqual(alias, get_offset(alias).rule_code) self.assertEqual(alias, (get_offset(alias) * 5).rule_code) suffix_lst = ['JAN', 'FEB', 'MAR', 'APR', 'MAY', 'JUN', 'JUL', 'AUG', 'SEP', 'OCT', 'NOV', 'DEC'] base_lst = ['A', 'AS', 'BA', 'BAS', 'Q', 'QS', 'BQ', 'BQS'] for base in base_lst: for v in suffix_lst: alias = '-'.join([base, v]) self.assertEqual(alias, get_offset(alias).rule_code) self.assertEqual(alias, (get_offset(alias) * 5).rule_code) def test_apply_ticks(): result = offsets.Hour(3).apply(offsets.Hour(4)) exp = offsets.Hour(7) assert(result == exp) def test_delta_to_tick(): delta = timedelta(3) tick = offsets._delta_to_tick(delta) assert(tick == offsets.Day(3)) def test_dateoffset_misc(): oset = offsets.DateOffset(months=2, days=4) # it works result = oset.freqstr assert(not offsets.DateOffset(months=2) == 2) def test_freq_offsets(): off = BDay(1, offset=timedelta(0, 1800)) assert(off.freqstr == 'B+30Min') off = BDay(1, offset=timedelta(0, -1800)) assert(off.freqstr == 'B-30Min') def get_all_subclasses(cls): ret = set() this_subclasses = cls.__subclasses__() ret = ret | set(this_subclasses) for this_subclass in this_subclasses: ret | get_all_subclasses(this_subclass) return ret class TestCaching(tm.TestCase): # as of GH 6479 (in 0.14.0), offset caching is turned off # as of v0.12.0 only BusinessMonth/Quarter were actually caching def setUp(self): _daterange_cache.clear() _offset_map.clear() def run_X_index_creation(self, cls): inst1 = cls() if not inst1.isAnchored(): self.assertFalse(inst1._should_cache(), cls) return self.assertTrue(inst1._should_cache(), cls) DatetimeIndex(start=datetime(2013,1,31), end=datetime(2013,3,31), freq=inst1, normalize=True) self.assertTrue(cls() in _daterange_cache, cls) def test_should_cache_month_end(self): self.assertFalse(MonthEnd()._should_cache()) def test_should_cache_bmonth_end(self): self.assertFalse(BusinessMonthEnd()._should_cache()) def test_should_cache_week_month(self): self.assertFalse(WeekOfMonth(weekday=1, week=2)._should_cache()) def test_all_cacheableoffsets(self): for subclass in get_all_subclasses(CacheableOffset): if subclass.__name__[0] == "_" \ or subclass in TestCaching.no_simple_ctr: continue self.run_X_index_creation(subclass) def test_month_end_index_creation(self): DatetimeIndex(start=datetime(2013,1,31), end=datetime(2013,3,31), freq=MonthEnd(), normalize=True) self.assertFalse(MonthEnd() in _daterange_cache) def test_bmonth_end_index_creation(self): DatetimeIndex(start=datetime(2013,1,31), end=datetime(2013,3,29), freq=BusinessMonthEnd(), normalize=True) self.assertFalse(BusinessMonthEnd() in _daterange_cache) def test_week_of_month_index_creation(self): inst1 = WeekOfMonth(weekday=1, week=2) DatetimeIndex(start=datetime(2013,1,31), end=datetime(2013,3,29), freq=inst1, normalize=True) inst2 = WeekOfMonth(weekday=1, week=2) self.assertFalse(inst2 in _daterange_cache) class TestReprNames(tm.TestCase): def test_str_for_named_is_name(self): # look at all the amazing combinations! month_prefixes = ['A', 'AS', 'BA', 'BAS', 'Q', 'BQ', 'BQS', 'QS'] names = [prefix + '-' + month for prefix in month_prefixes for month in ['JAN', 'FEB', 'MAR', 'APR', 'MAY', 'JUN', 'JUL', 'AUG', 'SEP', 'OCT', 'NOV', 'DEC']] days = ['MON', 'TUE', 'WED', 'THU', 'FRI', 'SAT', 'SUN'] names += ['W-' + day for day in days] names += ['WOM-' + week + day for week in ('1', '2', '3', '4') for day in days] #singletons names += ['S', 'T', 'U', 'BM', 'BMS', 'BQ', 'QS'] # No 'Q' _offset_map.clear() for name in names: offset = get_offset(name) self.assertEqual(repr(offset), name) self.assertEqual(str(offset), name) def get_utc_offset_hours(ts): # take a Timestamp and compute total hours of utc offset o = ts.utcoffset() return (o.days * 24 * 3600 + o.seconds) / 3600.0 class TestDST(tm.TestCase): """ test DateOffset additions over Daylight Savings Time """ # one microsecond before the DST transition ts_pre_fallback = "2013-11-03 01:59:59.999999" ts_pre_springfwd = "2013-03-10 01:59:59.999999" # test both basic names and dateutil timezones timezone_utc_offsets = { 'US/Eastern': dict( utc_offset_daylight=-4, utc_offset_standard=-5, ), 'dateutil/US/Pacific': dict( utc_offset_daylight=-7, utc_offset_standard=-8, ) } valid_date_offsets_singular = [ 'weekday', 'day', 'hour', 'minute', 'second', 'microsecond' ] valid_date_offsets_plural = [ 'weeks', 'days', 'hours', 'minutes', 'seconds', 'milliseconds', 'microseconds' ] def _test_all_offsets(self, n, **kwds): valid_offsets = self.valid_date_offsets_plural if n > 1 \ else self.valid_date_offsets_singular for name in valid_offsets: self._test_offset(offset_name=name, offset_n=n, **kwds) def _test_offset(self, offset_name, offset_n, tstart, expected_utc_offset): offset = DateOffset(**{offset_name: offset_n}) t = tstart + offset if expected_utc_offset is not None: self.assertTrue(get_utc_offset_hours(t) == expected_utc_offset) if offset_name == 'weeks': # dates should match self.assertTrue( t.date() == timedelta(days=7 * offset.kwds['weeks']) + tstart.date() ) # expect the same day of week, hour of day, minute, second, ... self.assertTrue( t.dayofweek == tstart.dayofweek and t.hour == tstart.hour and t.minute == tstart.minute and t.second == tstart.second ) elif offset_name == 'days': # dates should match self.assertTrue(timedelta(offset.kwds['days']) + tstart.date() == t.date()) # expect the same hour of day, minute, second, ... self.assertTrue( t.hour == tstart.hour and t.minute == tstart.minute and t.second == tstart.second ) elif offset_name in self.valid_date_offsets_singular: # expect the signular offset value to match between tstart and t datepart_offset = getattr(t, offset_name if offset_name != 'weekday' else 'dayofweek') self.assertTrue(datepart_offset == offset.kwds[offset_name]) else: # the offset should be the same as if it was done in UTC self.assertTrue( t == (tstart.tz_convert('UTC') + offset).tz_convert('US/Pacific') ) def _make_timestamp(self, string, hrs_offset, tz): offset_string = '{hrs:02d}00'.format(hrs=hrs_offset) if hrs_offset >= 0 else \ '-{hrs:02d}00'.format(hrs=-1 * hrs_offset) return Timestamp(string + offset_string).tz_convert(tz) def test_fallback_plural(self): """test moving from daylight savings to standard time""" for tz, utc_offsets in self.timezone_utc_offsets.items(): hrs_pre = utc_offsets['utc_offset_daylight'] hrs_post = utc_offsets['utc_offset_standard'] self._test_all_offsets( n=3, tstart=self._make_timestamp(self.ts_pre_fallback, hrs_pre, tz), expected_utc_offset=hrs_post ) def test_springforward_plural(self): """test moving from standard to daylight savings""" for tz, utc_offsets in self.timezone_utc_offsets.items(): hrs_pre = utc_offsets['utc_offset_standard'] hrs_post = utc_offsets['utc_offset_daylight'] self._test_all_offsets( n=3, tstart=self._make_timestamp(self.ts_pre_springfwd, hrs_pre, tz), expected_utc_offset=hrs_post ) def test_fallback_singular(self): # in the case of signular offsets, we dont neccesarily know which utc offset # the new Timestamp will wind up in (the tz for 1 month may be different from 1 second) # so we don't specify an expected_utc_offset for tz, utc_offsets in self.timezone_utc_offsets.items(): hrs_pre = utc_offsets['utc_offset_standard'] self._test_all_offsets( n=1, tstart=self._make_timestamp(self.ts_pre_fallback, hrs_pre, tz), expected_utc_offset=None ) def test_springforward_singular(self): for tz, utc_offsets in self.timezone_utc_offsets.items(): hrs_pre = utc_offsets['utc_offset_standard'] self._test_all_offsets( n=1, tstart=self._make_timestamp(self.ts_pre_springfwd, hrs_pre, tz), expected_utc_offset=None ) def test_all_offset_classes(self): tests = {MonthBegin: ['11/2/2012', '12/1/2012'], MonthEnd: ['11/2/2012', '11/30/2012'], BMonthBegin: ['11/2/2012', '12/3/2012'], BMonthEnd: ['11/2/2012', '11/30/2012'], CBMonthBegin: ['11/2/2012', '12/3/2012'], CBMonthEnd: ['11/2/2012', '11/30/2012'], Week: ['11/2/2012', '11/9/2012'], YearBegin: ['11/2/2012', '1/1/2013'], YearEnd: ['11/2/2012', '12/31/2012'], BYearBegin: ['11/2/2012', '1/1/2013'], BYearEnd: ['11/2/2012', '12/31/2012'], QuarterBegin: ['11/2/2012', '12/1/2012'], QuarterEnd: ['11/2/2012', '12/31/2012'], BQuarterBegin: ['11/2/2012', '12/3/2012'], BQuarterEnd: ['11/2/2012', '12/31/2012'], Day: ['11/4/2012', '11/4/2012 23:00'] } for offset, test_values in iteritems(tests): first = Timestamp(test_values[0], tz='US/Eastern') + offset() second = Timestamp(test_values[1], tz='US/Eastern') self.assertEqual(first, second, str(offset)) if __name__ == '__main__': nose.runmodule(argv=[__file__, '-vvs', '-x', '--pdb', '--pdb-failure'], exit=False)
gpl-2.0
bikash/kaggleCompetition
microsoft malware/code/fullline.py
1
11844
# -*- coding: utf-8 -*- """ Created on Wed Mar 18 01:55:47 2015 @author: marios michailidis """ # licence: FreeBSD """ Copyright (c) 2015, Marios Michailidis All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ import random import numpy as np import scipy as spss from scipy.sparse import csr_matrix import sys sys.path.append("../../xgboost/wrapper") import xgboost as xgb from sklearn.ensemble import ExtraTreesClassifier thre=20 num_round=1150 lr=0.05 max_de=7 subsam=0.4 colsample_bytree=0.5 gamma =0.001 min_child_weight=0.05 seed=1 objective='multi:softprob' param = {} param['booster']= 'gbtree'#gblinear param['objective'] = objective param['bst:eta'] = lr param['seed']=seed param['bst:max_depth'] = max_de param['eval_metric'] = 'auc' param['bst:min_child_weight']=min_child_weight param['silent'] = 1 param['nthread'] = thre param['bst:subsample'] = subsam param['num_class'] = 9 param['gamma'] = gamma param['colsample_bytree']=colsample_bytree def transform2dtos(D2,y2): # transform a 2d array of predictions to single array # we also change d1=[] y1=[] for i in range (0,len(D2)): for j in range (0,len(D2[0])): d1.append(float(D2[i][j])) if y2[i]==float(j): y1.append(1.0) else: y1.append(0.0) return d1,y1 """ print predictions in file""" def printfilewithtarget(X, name): print("start print the training file with target") wfile=open(name + ".csv", "w") for i in range (0, len(X)): wfile.write(str(X[i][0]) ) for j in range (1, len(X[i])): wfile.write("," +str(X[i][j]) ) wfile.write("\n") wfile.close() print("done") """ the metric we are being tested on""" def logloss_metric(p, y): logloss=0 for i in range (0, len(p)): for j in range (0,len(p[i])): if y[i]==float(j): logloss+= np.log(spss.maximum(spss.minimum(p[i][j],1-(1e-15) ),1e-15 )) return -logloss/float(len(y)) """Load a csv file""" def load(name): print("start reading file with target") wfile=open(name , "r") line=wfile.readline().replace("\n","") splits=line.split(",") datalen=len(splits) wfile.close() X = np.loadtxt(open( name), delimiter=',',usecols=range(0, datalen), skiprows=0) print("done") return np.array(X) """ use to concatebate the various kfold sets together""" def cving(x1, x2, x3, x4,x5, y1 ,y2, y3, y4, y5, ind1, ind2, ind3, ind4 ,ind5, num): if num==0: xwhole=np.concatenate((x2,x3,x4,x5), axis=0) yhol=np.concatenate((y2,y3,y4,y5), axis=0) return x1,y1 ,ind1,xwhole,yhol elif num==1: xwhole=np.concatenate((x1,x3,x4,x5), axis=0) yhol=np.concatenate((y1,y3,y4,y5), axis=0) return x2,y2 ,ind2,xwhole,yhol elif num==2: xwhole=np.concatenate((x1,x2,x4,x5), axis=0) yhol=np.concatenate((y1,y2,y4,y5), axis=0) return x3,y3 ,ind3,xwhole,yhol elif num==3: xwhole=np.concatenate((x1,x2,x3,x5), axis=0) yhol=np.concatenate((y1,y2,y3,y5), axis=0) return x4,y4 ,ind4,xwhole,yhol else : xwhole=np.concatenate((x1,x2,x3,x4), axis=0) yhol=np.concatenate((y1,y2,y3,y4), axis=0) return x5,y5 ,ind5,xwhole,yhol """ Splits data to 5 kfold sets""" def split_array_in_5(array, seed): random.seed(seed) new_arra1=[] new_arra2=[] new_arra3=[] new_arra4=[] new_arra5=[] indiceds1=[] indiceds2=[] indiceds3=[] indiceds4=[] indiceds5=[] for j in range (0,len(array)): rand=random.random() if rand <0.2: new_arra1.append(array[j]) indiceds1.append(j) elif rand <0.4: new_arra2.append(array[j]) indiceds2.append(j) elif rand <0.6: new_arra3.append(array[j]) indiceds3.append(j) elif rand <0.8: new_arra4.append(array[j]) indiceds4.append(j) else : new_arra5.append(array[j]) indiceds5.append(j) #convert to numpy new_arra1=np.array(new_arra1) new_arra2=np.array(new_arra2) new_arra3=np.array(new_arra3) new_arra4=np.array(new_arra4) new_arra5=np.array(new_arra5) #return arrays and indices return new_arra1,new_arra2,new_arra3,new_arra4,new_arra5,indiceds1,indiceds2,indiceds3,indiceds4,indiceds5 def scalepreds(prs): for i in range (0, len(prs)): suum=0.0 for j in range (0,9): suum+=prs[i][j] for j in range (0,9): prs[i][j]/=suum """loads first columns of a file""" def loadfirstcolumn(filename): pred=[] op=open(filename,'r') op.readline() #header for line in op: line=line.replace('\n','') sp=line.split(',') #load always the last columns pred.append(sp[0]) op.close() return pred """loads last columns of a file""" def loadlastcolumn(filename): pred=[] op=open(filename,'r') op.readline() #header for line in op: line=line.replace('\n','') sp=line.split(',') #load always the last columns pred.append(float(sp[len(sp)-1])-1.0) op.close() return pred """ This is the main method""" def main(): directory='' train_file="fullinebytetrain.csv" test_file="fullinebytetest.csv" SEED= 15 outset="fullline" y= loadlastcolumn(directory+"trainLabels.csv") ids=loadfirstcolumn(directory+"sampleSubmission.csv") include_inpretrain=True model=ExtraTreesClassifier(n_estimators=100, criterion='entropy', max_depth=16, min_samples_split=2,min_samples_leaf=1, max_features=0.5,n_jobs=20, random_state=1) trainini_file= ["old1gramtrain.csv"] testini_file = ["old1gramtest.csv"] X=load(train_file) print ("train samples: %d columns: %d " % (len(X) , len(X[0]))) X_test=load(test_file) print ("train samples: %d columns: %d" % (len(X_test) , len(X_test[0]))) if include_inpretrain: for t in range(0,len(trainini_file)): Xini=load(trainini_file[t]) print ("train samples: %d columns: %d " % (len(Xini) , len(Xini[0]))) X_testini=load(testini_file[t]) print ("train samples: %d columns: %d" % (len(X_testini) , len(X_testini[0]))) X=np.column_stack((X,Xini)) X_test=np.column_stack((X_test,X_testini)) print ("train after merge samples: %d columns: %d" % (len(X) , len(X[0]))) print ("train after merge samples: %d columns: %d" % (len(X_test) , len(X_test[0]))) number_of_folds=5 # repeat the CV procedure 10 times to get more precise results train_stacker=[ [0.0 for d in range (0,9)] for k in range (0,len(X)) ] test_stacker=[[0.0 for d in range (0,9)] for k in range (0,len(X_test))] #label_stacker=[0 for k in range (0,len(X))] #split trainingg x1,x2,x3,x4,x5,in1,in2,in3,in4,in5=split_array_in_5(X, SEED) y1,y2,y3,y4,y5,iny1,iny2,iny3,iny4,iny5=split_array_in_5(y, SEED) #create target variable mean_log = 0.0 for i in range(0,number_of_folds): X_cv,y_cv,indcv,X_train,y_train=cving(x1, x2, x3, x4,x5, y1 ,y2, y3, y4, y5,in1, in2, in3, in4 ,in5, i) print (" train size: %d. test size: %d, cols: %d " % (len(X_train) ,len(X_cv) ,len(X_train[0]) )) """ model XGBOOST classifier""" xgmat = xgb.DMatrix( csr_matrix(X_train), label=y_train, missing =-999.0 ) bst = xgb.train( param.items(), xgmat, num_round ); xgmat_cv = xgb.DMatrix( csr_matrix(X_cv), missing =-999.0) preds =bst.predict( xgmat_cv ).reshape( len(X_cv), 9).tolist() scalepreds(preds) """now model scikit classifier""" model.fit(X_train, y_train) predsextra = model.predict_proba(X_cv) scalepreds(predsextra) for pr in range (0,len(preds)): for d in range (0,9): preds[pr][d]=preds[pr][d]*0.8 + predsextra[pr][d]*0.2 # compute Loglikelihood metric for this CV fold loglike = logloss_metric( preds,y_cv) print "size train: %d size cv: %d Loglikelihood (fold %d/%d): %f" % (len(X_train), len(X_cv), i + 1, number_of_folds, loglike) mean_log += loglike #save the results no=0 for real_index in indcv: for d in range (0,9): train_stacker[real_index][d]=(preds[no][d]) no+=1 if (number_of_folds)>0: mean_log/=number_of_folds print (" Average M loglikelihood: %f" % (mean_log) ) xgmat = xgb.DMatrix( csr_matrix(X), label=y, missing =-999.0 ) bst = xgb.train( param.items(), xgmat, num_round ); xgmat_cv = xgb.DMatrix(csr_matrix(X_test), missing =-999.0) preds =bst.predict( xgmat_cv ).reshape( len(X_test), 9 ).tolist() scalepreds(preds) #predicting for test model.fit(X, y) predsextra = model.predict_proba(X_test) scalepreds(predsextra) for pr in range (0,len(preds)): for d in range (0,9): test_stacker[pr][d]=preds[pr][d]*0.8 + predsextra[pr][d]*0.2 # === Predictions === # print (" printing datasets ") printfilewithtarget(train_stacker, outset + "train") printfilewithtarget(test_stacker, outset + "test") print("Write results...") output_file = "submission_"+str( (mean_log ))+".csv" print("Writing submission to %s" % output_file) f = open(output_file, "w") f.write("Id")# the header for b in range (1,10): f.write("," + str("Prediction" + str(b) ) ) f.write("\n") for g in range(0, len(test_stacker)) : f.write("%s" % ((ids[g]))) for prediction in test_stacker[g]: f.write(",%f" % (prediction)) f.write("\n") f.close() print("Done.") if __name__=="__main__": main()
apache-2.0
takeriki/colonylive
clive/analysis/image/part/grid.py
1
1363
""" Determine colony grid position based on object map """ import cPickle import numpy as np import matplotlib.pylab as plt class PlateGrid: def __init__(self, ncol, nrow, xy_init, x_dif, y_dif): self.ncol = ncol self.nrow = nrow self.xy_init = xy_init self.x_dif = x_dif self.y_dif = y_dif self.poss = [(col,row) for row in range(1,nrow+1) for col in range(1,ncol+1)] self._calc_pos2xy_center() self._calc_crippos() def _calc_pos2xy_center(self): self.pos2xy_center = {} for col, row in self.poss: cx = int(self.xy_init[0] + self.x_dif * (col-1)) cy = int(self.xy_init[1] + self.y_dif * (row-1)) self.pos2xy_center[(col,row)] = (cx,cy) def _calc_crippos(self): rx = self.x_dif ry = self.y_dif x_tl = int(self.xy_init[0] - self.x_dif) y_tl = int(self.xy_init[1] - self.y_dif) x_br = int(self.xy_init[0] + self.x_dif * self.ncol) y_br = int(self.xy_init[1] + self.y_dif * self.nrow) self.xy_tl = (x_tl,y_tl) self.xy_br = (x_br,y_br) if __name__ == "__main__": ncol = 48 nrow = 32 grid = PlateGrid(ncol, nrow, (1,1), 30, 30) print grid
gpl-3.0
sarahgrogan/scikit-learn
examples/cluster/plot_lena_compress.py
271
2229
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Vector Quantization Example ========================================================= The classic image processing example, Lena, an 8-bit grayscale bit-depth, 512 x 512 sized image, is used here to illustrate how `k`-means is used for vector quantization. """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import scipy as sp import matplotlib.pyplot as plt from sklearn import cluster n_clusters = 5 np.random.seed(0) try: lena = sp.lena() except AttributeError: # Newer versions of scipy have lena in misc from scipy import misc lena = misc.lena() X = lena.reshape((-1, 1)) # We need an (n_sample, n_feature) array k_means = cluster.KMeans(n_clusters=n_clusters, n_init=4) k_means.fit(X) values = k_means.cluster_centers_.squeeze() labels = k_means.labels_ # create an array from labels and values lena_compressed = np.choose(labels, values) lena_compressed.shape = lena.shape vmin = lena.min() vmax = lena.max() # original lena plt.figure(1, figsize=(3, 2.2)) plt.imshow(lena, cmap=plt.cm.gray, vmin=vmin, vmax=256) # compressed lena plt.figure(2, figsize=(3, 2.2)) plt.imshow(lena_compressed, cmap=plt.cm.gray, vmin=vmin, vmax=vmax) # equal bins lena regular_values = np.linspace(0, 256, n_clusters + 1) regular_labels = np.searchsorted(regular_values, lena) - 1 regular_values = .5 * (regular_values[1:] + regular_values[:-1]) # mean regular_lena = np.choose(regular_labels.ravel(), regular_values) regular_lena.shape = lena.shape plt.figure(3, figsize=(3, 2.2)) plt.imshow(regular_lena, cmap=plt.cm.gray, vmin=vmin, vmax=vmax) # histogram plt.figure(4, figsize=(3, 2.2)) plt.clf() plt.axes([.01, .01, .98, .98]) plt.hist(X, bins=256, color='.5', edgecolor='.5') plt.yticks(()) plt.xticks(regular_values) values = np.sort(values) for center_1, center_2 in zip(values[:-1], values[1:]): plt.axvline(.5 * (center_1 + center_2), color='b') for center_1, center_2 in zip(regular_values[:-1], regular_values[1:]): plt.axvline(.5 * (center_1 + center_2), color='b', linestyle='--') plt.show()
bsd-3-clause
jpn--/larch
larch/model/latentclass.py
1
19924
import numpy import pandas from typing import MutableMapping from ..util import Dict from ..dataframes import DataFrames, MissingDataError from ..exceptions import ParameterNotInModelWarning from .linear import ParameterRef_C from ..general_precision import l4_float_dtype from ..model import persist_flags from ..model.abstract_model import AbstractChoiceModel def sync_frames(*models): """ Synchronize model parameter frames. Parameters ---------- *models : Sequence[Model] """ # check if all frames are already in sync in_sync = True pf1 = models[0]._frame for m in models[1:]: if m._frame is not pf1: in_sync = False if not in_sync: joined = pandas.concat([m._frame for m in models], sort=False) joined = joined[~joined.index.duplicated(keep='first')] for m in models: m.set_frame(joined) class LatentClassModel(AbstractChoiceModel): """ A latent class model. Parameters ---------- k_membership : Model The class membership model. k_models : MutableMapping[int,Model] The individual class choice models. dataservice : DataService The dataservice used to populate data for this model. title : str, optional A descriptive title for use in reporting. frame : pandas.DataFrame, optional Initialize the parameterframe with this. """ def __init__( self, k_membership, k_models, *, dataservice=None, title=None, frame=None, constraints=None, ): assert isinstance(k_membership, AbstractChoiceModel) if len(getattr(k_membership, 'utility_ca', [])): raise ValueError("the class membership model cannot include `utility_ca`, only `utility_co`") self._k_membership = k_membership self._k_membership._model_does_not_require_choice = True if not isinstance(k_models, MutableMapping): raise ValueError(f'k_models must be a MutableMapping, not {type(k_models)}') self._k_models = k_models self._dataservice = dataservice if self._dataservice is None: self._dataservice = k_membership.dataservice else: if not(k_membership.dataservice is None or k_membership.dataservice is self._dataservice): raise ValueError("dataservice for all constituent models must be the same") for m in self._k_models.values(): if self._dataservice is None: self._dataservice = m.dataservice if not (m.dataservice is None or m.dataservice is self._dataservice): raise ValueError("dataservice for all constituent models must be the same") self._dataframes = None self._mangled = True self.constraints = constraints super().__init__( parameters=None, frame=frame, title=title, ) self.unmangle() def _k_model_names(self): return list(sorted(self._k_models.keys())) def required_data(self): # combine all required_data from all class-level submodels req = Dict() for k_name, k_model in self._k_models.items(): k_req = k_model.required_data() for i in ['ca','co']: if i in k_req or i in req: req[i] = list(set(req.get(i,[])) | set(k_req.get(i,[]))) for i in ['weight_co', 'avail_ca', 'avail_co', 'choice_ca', 'choice_co_code', 'choice_co_vars', ]: if i in req: if i in k_req and req[i] != k_req[i]: raise ValueError(f'mismatched {i}') else: pass else: if i in k_req: req[i] = k_req[i] else: pass top_req = self._k_membership.required_data() if 'co' in top_req: req['co'] = list(sorted(set(req.get('co', [])) | set(top_req.get('co', [])))) return req def total_weight(self): """ The total weight of cases in the attached dataframes. Returns ------- float """ if self._dataframes is None: raise MissingDataError("no dataframes are set") return self._dataframes.total_weight() def __prep_for_compute(self, x=None): self.unmangle() if x is not None: self._k_membership.set_values(x) def class_membership_probability(self, x=None, start_case=0, stop_case=-1, step_case=1): self.__prep_for_compute(x) return self._k_membership.probability( x=None, return_dataframe='idco', start_case=start_case, stop_case=stop_case, step_case=step_case, ) def class_membership_d_probability(self, x=None, start_case=0, stop_case=-1, step_case=1): self.__prep_for_compute(x) return self._k_membership.d_probability( x=None, start_case=start_case, stop_case=stop_case, step_case=step_case, ) def probability(self, x=None, start_case=0, stop_case=-1, step_case=1, return_dataframe=False,): self.__prep_for_compute(x) if start_case >= self.dataframes.n_cases: raise IndexError("start_case >= n_cases") if stop_case == -1: stop_case = self.dataframes.n_cases if start_case > stop_case: raise IndexError("start_case > stop_case") if step_case <= 0: raise IndexError("non-positive step_case") n_rows = ((stop_case - start_case) // step_case) + (1 if (stop_case - start_case) % step_case else 0) p = numpy.zeros([n_rows, self.dataframes.n_alts]) import warnings with warnings.catch_warnings(): warnings.simplefilter("ignore", category=ParameterNotInModelWarning) k_membership_probability = self.class_membership_probability( start_case=start_case, stop_case=stop_case, step_case=step_case, ) for k_name, k_model in self._k_models.items(): k_pr = k_model.probability(start_case=start_case, stop_case=stop_case, step_case=step_case) p += ( numpy.asarray( k_pr[:,:self.dataframes.n_alts] ) * k_membership_probability.loc[:,k_name].values[:, None] ) if return_dataframe: return pandas.DataFrame( p, index=self._dataframes.caseindex[start_case:stop_case:step_case], columns=self._dataframes.alternative_codes(), ) return p def d_probability(self, x=None, start_case=0, stop_case=-1, step_case=1,): """ Compute the partial derivative of probability w.r.t. the parameters. Note this function is known to be incomplete. It computes the derivative only within the classes, not for the class membership model. Parameters ---------- x start_case stop_case step_case return_dataframe Returns ------- """ self.__prep_for_compute(x) if start_case >= self.dataframes.n_cases: raise IndexError("start_case >= n_cases") if stop_case == -1: stop_case = self.dataframes.n_cases if start_case > stop_case: raise IndexError("start_case > stop_case") if step_case <= 0: raise IndexError("non-positive step_case") n_rows = ((stop_case - start_case) // step_case) + (1 if (stop_case - start_case) % step_case else 0) p = numpy.zeros([n_rows, self.dataframes.n_alts, len(self.pf)]) import warnings with warnings.catch_warnings(): warnings.simplefilter("ignore", category=ParameterNotInModelWarning) k_membership_probability = self.class_membership_probability( start_case=start_case, stop_case=stop_case, step_case=step_case, ) k_membership_d_probability = self.class_membership_d_probability( start_case=start_case, stop_case=stop_case, step_case=step_case, ) for k_name, k_model in self._k_models.items(): k_pr = k_model.probability(start_case=start_case, stop_case=stop_case, step_case=step_case) k_d_pr = k_model.d_probability(start_case=start_case, stop_case=stop_case, step_case=step_case) p += ( numpy.asarray( k_d_pr[:,:self.dataframes.n_alts,:] ) * k_membership_probability.loc[:,k_name].values[:, None, None] ) k_position = k_membership_probability.columns.get_loc(k_name) p += ( numpy.asarray( k_pr[:,:self.dataframes.n_alts, None] ) * k_membership_d_probability[:,k_position,:][:,None,:] ) return p def loglike2( self, x=None, *, start_case=0, stop_case=-1, step_case=1, persist=0, leave_out=-1, keep_only=-1, subsample=-1, return_series=True, probability_only=False, ): """ Compute a log likelihood value and it first derivative. Parameters ---------- x : {'null', 'init', 'best', array-like, dict, scalar}, optional Values for the parameters. See :ref:`set_values` for details. start_case : int, default 0 The first case to include in the log likelihood computation. To include all cases, start from 0 (the default). stop_case : int, default -1 One past the last case to include in the log likelihood computation. This is processed as usual for Python slicing and iterating, and negative values count backward from the end. To include all cases, end at -1 (the default). step_case : int, default 1 The step size of the case iterator to use in likelihood calculation. This is processed as usual for Python slicing and iterating. To include all cases, step by 1 (the default). persist : int, default 0 Whether to return a variety of internal and intermediate arrays in the result dictionary. If set to 0, only the final `ll` value is included. leave_out, keep_only, subsample : int, optional Settings for cross validation calculations. If `leave_out` and `subsample` are set, then case rows where rownumber % subsample == leave_out are dropped. If `keep_only` and `subsample` are set, then only case rows where rownumber % subsample == keep_only are used. return_series : bool Deprecated, no effect. Derivatives are always returned as a Series. Returns ------- dictx The log likelihood is given by key 'll' and the first derivative by key 'dll'. Other arrays are also included if `persist` is set to True. """ if leave_out != -1 or keep_only != -1 or subsample != -1: raise NotImplementedError() from ..util import dictx self.__prep_for_compute(x) pr = self.probability( x=None, start_case=start_case, stop_case=stop_case, step_case=step_case, ) y = dictx() if probability_only: y.ll = numpy.nan y.probability = pr return y d_p = self.d_probability( x=None, start_case=start_case, stop_case=stop_case, step_case=step_case, ) from .nl import d_loglike_from_d_probability from .mnl import loglike_from_probability if stop_case == -1: stop_case_ = self.n_cases else: stop_case_ = stop_case if self.dataframes.data_wt is not None: wt = self.dataframes.data_wt.iloc[start_case:stop_case_:step_case] else: wt = None ch = self.dataframes.array_ch()[start_case:stop_case_:step_case] y.ll = loglike_from_probability( pr, ch, wt ) if persist & persist_flags.PERSIST_PROBABILITY: y.probability = pr if persist & persist_flags.PERSIST_BHHH: y.dll, y.bhhh = d_loglike_from_d_probability( pr, d_p, ch, wt, True ) else: y.dll = d_loglike_from_d_probability( pr, d_p, ch, wt, False ) if start_case==0 and (stop_case==-1 or stop_case==self.n_cases) and step_case==1: self._check_if_best(y.ll) return y def loglike2_bhhh( self, x=None, *, start_case=0, stop_case=-1, step_case=1, persist=0, leave_out=-1, keep_only=-1, subsample=-1, return_series=False, ): """ Compute a log likelihood value, it first derivative, and the BHHH approximation of the Hessian. The `BHHH algorithm <https://en.wikipedia.org/wiki/Berndt–Hall–Hall–Hausman_algorithm>` employs a matrix computated as the sum of the casewise outer product of the gradient, to approximate the hessian matrix. Parameters ---------- x : {'null', 'init', 'best', array-like, dict, scalar}, optional Values for the parameters. See :ref:`set_values` for details. start_case : int, default 0 The first case to include in the log likelihood computation. To include all cases, start from 0 (the default). stop_case : int, default -1 One past the last case to include in the log likelihood computation. This is processed as usual for Python slicing and iterating, and negative values count backward from the end. To include all cases, end at -1 (the default). step_case : int, default 1 The step size of the case iterator to use in likelihood calculation. This is processed as usual for Python slicing and iterating. To include all cases, step by 1 (the default). persist : int, default False Whether to return a variety of internal and intermediate arrays in the result dictionary. If set to 0, only the final `ll` value is included. leave_out, keep_only, subsample : int, optional Settings for cross validation calculations. If `leave_out` and `subsample` are set, then case rows where rownumber % subsample == leave_out are dropped. If `keep_only` and `subsample` are set, then only case rows where rownumber % subsample == keep_only are used. return_series : bool Deprecated, no effect. Derivatives are always returned as a Series. Returns ------- dictx The log likelihood is given by key 'll', the first derivative by key 'dll', and the BHHH matrix by 'bhhh'. Other arrays are also included if `persist` is set to True. """ return self.loglike2( x=x, start_case=start_case, stop_case=stop_case, step_case=step_case, persist=persist | persist_flags.PERSIST_BHHH, leave_out=leave_out, keep_only=keep_only, subsample=subsample, return_series=True, probability_only=False, ) def loglike( self, x=None, *, start_case=0, stop_case=-1, step_case=1, persist=0, leave_out=-1, keep_only=-1, subsample=-1, probability_only=False, ): """ Compute a log likelihood value. Parameters ---------- x : {'null', 'init', 'best', array-like, dict, scalar}, optional Values for the parameters. See :ref:`set_values` for details. start_case : int, default 0 The first case to include in the log likelihood computation. To include all cases, start from 0 (the default). stop_case : int, default -1 One past the last case to include in the log likelihood computation. This is processed as usual for Python slicing and iterating, and negative values count backward from the end. To include all cases, end at -1 (the default). step_case : int, default 1 The step size of the case iterator to use in likelihood calculation. This is processed as usual for Python slicing and iterating. To include all cases, step by 1 (the default). persist : int, default 0 Whether to return a variety of internal and intermediate arrays in the result dictionary. If set to 0, only the final `ll` value is included. leave_out, keep_only, subsample : int, optional Settings for cross validation calculations. If `leave_out` and `subsample` are set, then case rows where rownumber % subsample == leave_out are dropped. If `keep_only` and `subsample` are set, then only case rows where rownumber % subsample == keep_only are used. probability_only : bool, default False Compute only the probability and ignore the likelihood. If this setting is active, the dataframes need not include the "actual" choice data. Returns ------- float or array or dictx The log likelihood as a float, when `probability_only` is False and `persist` is 0. The probability as an array, when `probability_only` is True and `persist` is 0. A dictx is returned if `persist` is non-zero. """ self.__prep_for_compute(x) pr = self.probability( x=None, start_case=start_case, stop_case=stop_case, step_case=step_case, return_dataframe=False, ) if probability_only: return pr from .mnl import loglike_from_probability if stop_case == -1: stop_case_ = self.n_cases else: stop_case_ = stop_case if self.dataframes.data_wt is not None: wt = self.dataframes.data_wt.iloc[start_case:stop_case_:step_case] else: wt = None from ..util import dictx y = dictx() y.ll = loglike_from_probability( pr, self.dataframes.array_ch()[start_case:stop_case_:step_case], wt ) if start_case==0 and (stop_case==-1 or stop_case==self.n_cases) and step_case==1: self._check_if_best(y.ll) if persist & persist_flags.PERSIST_PROBABILITY: y.probability = pr if persist: return y return y.ll @property def dataframes(self): return self._dataframes @dataframes.setter def dataframes(self, x): self._dataframes = x if self._dataframes.data_co is None and self._dataframes.data_ce is not None: self._dataframes.data_co = pandas.DataFrame(data=None, index=self._dataframes.data_ce.index.levels[0].copy()) if self._dataframes.data_co is None and self._dataframes.data_ca is not None: self._dataframes.data_co = pandas.DataFrame(data=None, index=self._dataframes.data_ca.index.levels[0].copy()) top_data = DataFrames( co = x.make_idco(*self._k_membership.required_data().get('co', [])), alt_codes=numpy.arange(1, len(self._k_models)+1), alt_names=self._k_model_names(), av=1, ) # TODO: This kludge creates an empty array for the data_ch in the class membership model # : but it is not needed except to satisfy a data integrity check on that model # : We should instead just allow no-choice when it is a class membership model. # top_data.data_ch = pandas.DataFrame(0, index=top_data.caseindex, columns=self._k_models.keys()) self._k_membership._model_does_not_require_choice = True self._k_membership.dataframes = top_data for k_name, k_model in self._k_models.items(): k_model.dataframes = DataFrames( co=x.data_co, ca=x.data_ca, ce=x.data_ce, av=x.data_av, ch=x.data_ch, wt=x.data_wt, alt_names=x.alternative_names(), alt_codes=x.alternative_codes(), ) def mangle(self, *args, **kwargs): self._k_membership.mangle() for m in self._k_models.values(): m.mangle() super().mangle(*args, **kwargs) def unmangle(self, force=False): super().unmangle(force=force) if self._mangled or force: self._k_membership.unmangle(force=force) for m in self._k_models.values(): m.unmangle(force=force) sync_frames(self, self._k_membership, *self._k_models.values()) self._k_membership.unmangle() for m in self._k_models.values(): m.unmangle() self._mangled = False def load_data(self, dataservice=None, autoscale_weights=True, log_warnings=True): self.unmangle() if dataservice is not None: self._dataservice = dataservice if self._dataservice is not None: dfs = self._dataservice.make_dataframes(self.required_data(), log_warnings=log_warnings) if autoscale_weights and dfs.data_wt is not None: dfs.autoscale_weights() self.dataframes = dfs else: raise ValueError('dataservice is not defined') def set_value(self, name, value=None, **kwargs): if isinstance(name, ParameterRef_C): name = str(name) if name not in self.pf.index: self.unmangle() if value is not None: # value = numpy.float64(value) # self.frame.loc[name,'value'] = value kwargs['value'] = value for k,v in kwargs.items(): if k in self.pf.columns: if self.pf.dtypes[k] == 'float64': v = numpy.float64(v) elif self.pf.dtypes[k] == 'float32': v = numpy.float32(v) elif self.pf.dtypes[k] == 'int8': v = numpy.int8(v) self.pf.loc[name, k] = v # update init values when they are implied if k=='value': if 'initvalue' not in kwargs and pandas.isnull(self.pf.loc[name, 'initvalue']): self.pf.loc[name, 'initvalue'] = l4_float_dtype(v) # update null values when they are implied if 'nullvalue' not in kwargs and pandas.isnull(self.pf.loc[name, 'nullvalue']): self.pf.loc[name, 'nullvalue'] = 0 # refresh everything # TODO: only refresh what changed self._k_membership._check_if_frame_values_changed() for m in self._k_models.values(): m._check_if_frame_values_changed() def _frame_values_have_changed(self): self._k_membership._frame_values_have_changed() for m in self._k_models.values(): m._frame_values_have_changed() @property def n_cases(self): """int : The number of cases in the attached dataframes.""" if self._dataframes is None: raise MissingDataError("no dataframes are set") return self._k_membership.n_cases
gpl-3.0
boland1992/seissuite_iran
build/lib.linux-x86_64-2.7/seissuite/spectrum/extrema_pickle.py
8
9300
# -*- coding: utf-8 -*- """ Created on Fri July 6 11:04:03 2015 @author: boland """ import os import datetime import numpy as np import multiprocessing as mp import matplotlib.pyplot as plt from scipy import signal from obspy import read from scipy.signal import argrelextrema from info_dataless import locs_from_dataless from scipy import interpolate from matplotlib.colors import LogNorm import pickle import fiona from shapely import geometry from shapely.geometry import asPolygon, Polygon from math import sqrt, radians, cos, sin, asin from info_dataless import locs_from_dataless from descartes.patch import PolygonPatch from matplotlib.colors import LogNorm from scipy.spatial import ConvexHull from scipy.cluster.vq import kmeans from shapely.affinity import scale from matplotlib.path import Path from scipy.interpolate import griddata #------------------------------------------------------------------------------ # CLASSES #------------------------------------------------------------------------------ class InShape: """ Class defined in order to define a shapefile boundary AND quickly check if a given set of coordinates is contained within it. This class uses the shapely module. """ def __init__(self, input_shape, coords=0.): #initialise boundary shapefile location string input self.boundary = input_shape #initialise coords shape input self.dots = coords #initialise boundary polygon self.polygon = 0. #initialise output coordinates that are contained within the polygon self.output = 0. def shape_poly(self): with fiona.open(self.boundary) as fiona_collection: # In this case, we'll assume the shapefile only has one later shapefile_record = fiona_collection.next() # Use Shapely to create the polygon self.polygon = geometry.asShape( shapefile_record['geometry'] ) return self.polygon def point_check(self, coord): """ Function that takes a single (2,1) shape input, converts the points into a shapely.geometry.Point object and then checks if the coord is contained within the shapefile. """ self.polygon = self.shape_poly() point = geometry.Point(coord[0], coord[1]) if self.polygon.contains(point): return coord def shape_bounds(self): """ Function that returns the bounding box coordinates xmin,xmax,ymin,ymax """ self.polygon = self.shape_poly() return self.polygon.bounds def shape_buffer(self, shape=None, size=1., res=1): """ Function that returns a new polygon of the larger buffered points. Can import polygon into function if desired. Default is self.shape_poly() """ if shape is None: self.polygon = self.shape_poly() return asPolygon(self.polygon.buffer(size, resolution=res)\ .exterior) def extract_poly_coords(self, poly): if poly.type == 'Polygon': exterior_coords = poly.exterior.coords[:] elif poly.type == 'MultiPolygon': exterior_coords = [] for part in poly: epc = np.asarray(self.extract_poly_coords(part)) # Recursive call exterior_coords.append(epc) else: raise ValueError('Unhandled geometry type: ' + repr(poly.type)) return np.vstack(exterior_coords) def external_coords(self, shape=None, buff=None, size=1., res=1): """ Function that returns the external coords of a buffered shapely polygon. Note that shape variable input MUST be a shapely Polygon object. """ if shape is not None and buff is not None: poly = self.shape_buffer(shape=shape, size=size, res=res) elif shape is not None: poly = shape else: poly = self.shape_poly() exterior_coords = self.extract_poly_coords(poly) return exterior_coords #------------------------------------------------------------------------------ # IMPORT PATHS TO MSEED FILES #------------------------------------------------------------------------------ def spectrum(tr): wave = tr.data #this is how to extract a data array from a mseed file fs = tr.stats.sampling_rate #hour = str(hour).zfill(2) #create correct format for eqstring f, Pxx_spec = signal.welch(wave, fs, 'flattop', nperseg=1024, scaling='spectrum') #plt.semilogy(f, np.sqrt(Pxx_spec)) if len(f) >= 256: column = np.column_stack((f[:255], np.abs(np.sqrt(Pxx_spec)[:255]))) return column else: return 0. # x = np.linspace(0, 10, 1000) # f_interp = interp1d(np.sqrt(Pxx_spec),f, kind='cubic') #x.reverse() #y.reverse() # print f_interp(x) #f,np.sqrt(Pxx_spec),'o', # plt.figure() # plt.plot(x,f_interp(x),'-' ) # plt.show() def paths_sort(path): """ Function defined for customised sorting of the abs_paths list and will be used in conjunction with the sorted() built in python function in order to produce file paths in chronological order. """ base_name = os.path.basename(path) stat_name = base_name.split('.')[0] date = base_name.split('.')[1] try: date = datetime.datetime.strptime(date, '%Y-%m-%d') return date, stat_name except Exception as e: a=4 def paths(folder_path, extension): """ Function that returns a list of desired absolute paths called abs_paths of files that contains a given extension e.g. .txt should be entered as folder_path, txt. This function will run recursively through and find any and all files within this folder with that extension! """ abs_paths = [] for root, dirs, files in os.walk(folder_path): for f in files: fullpath = os.path.join(root, f) if os.path.splitext(fullpath)[1] == '.{}'.format(extension): abs_paths.append(fullpath) abs_paths = sorted(abs_paths, key=paths_sort) return abs_paths # import background shapefile location shape_path = "/home/boland/Dropbox/University/UniMelb\ /AGOS/PROGRAMS/ANT/Versions/26.04.2015/shapefiles/aus.shp" # generate shape object # Generate InShape class SHAPE = InShape(shape_path) # Create shapely polygon from imported shapefile UNIQUE_SHAPE = SHAPE.shape_poly() # set plotting limits for shapefile boundaries lonmin, latmin, lonmax, latmax = SHAPE.shape_bounds() print lonmin, latmin, lonmax, latmax #lonmin, lonmax, latmin, latmax = SHAPE.plot_lims() dataless_path = 'ALL_AUSTRALIA.870093.dataless' stat_locs = locs_from_dataless(dataless_path) #folder_path = '/storage/ANT/INPUT/DATA/AU-2014' folder_path = '/storage/ANT/INPUT/DATA/AU-2014' extension = 'mseed' paths_list = paths(folder_path, extension) t0_total = datetime.datetime.now() figs_counter = 0 pickle_file = '/storage/ANT/spectral_density/station_pds_maxima/\ S Network 2014/noise_info0_SNetwork2014.pickle' f = open(name=pickle_file, mode='rb') noise_info0 = pickle.load(f) f.close() # dump noise_info1 fig = plt.figure(figsize=(15,10), dpi=1000) plt.title('Average Seismic Noise First Peak Maximum PDS\n S Network | 2014') plt.xlabel('Longitude (degrees)') plt.ylabel('Latitude (degrees)') patch = PolygonPatch(UNIQUE_SHAPE, facecolor='white',\ edgecolor='k', zorder=1) ax = fig.add_subplot(111) ax.add_patch(patch) #create 5000 Random points distributed within the circle radius 100 x, y = noise_info0[:,0], noise_info0[:,1] points = np.column_stack((x,y)) xmin, xmax = np.min(x), np.max(x) ymin, ymax = np.min(y), np.max(y) values = noise_info0[:,2] #now we create a grid of values, interpolated from our random sample above y = np.linspace(ymin, ymax, 100) x = np.linspace(xmin, xmax, 100) gridx, gridy = np.meshgrid(x, y) heat_field = griddata(points, values, (gridx, gridy), method='cubic',fill_value=0) print heat_field heat_field = np.where(heat_field < 0, 1, heat_field) heat_field = np.ma.masked_where(heat_field==0,heat_field) plt.pcolor(gridx, gridy, heat_field, cmap='rainbow',alpha=0.5, norm=LogNorm(vmin=100, vmax=3e4), zorder=2) plt.scatter(noise_info0[:,0], noise_info0[:,1], c=noise_info0[:,2], norm=LogNorm(vmin=100, vmax=3e4), s=35, cmap='rainbow', zorder=3) #cmin, cmax = np.min(noise_info0[:,2]), np.max(noise_info0[:,2]) #sc = plt.scatter(noise_info0[:,0], noise_info0[:,1], c=noise_info0[:,2], # norm=LogNorm(vmin=100, vmax=3e4), s=50, cmap=cm, zorder=2) col = plt.colorbar() col.ax.set_ylabel('Maximum Power Density Spectrum (V RMS)') ax.set_xlim(lonmin-0.05*abs(lonmax-lonmin), \ lonmax+0.05*abs(lonmax-lonmin)) ax.set_ylim(latmin-0.05*abs(latmax-latmin), \ latmax+0.05*abs(latmax-latmin)) fig.savefig('station_pds_maxima/check1.svg', format='SVG')
gpl-3.0
GoogleCloudPlatform/mlops-on-gcp
workshops/kfp-caip-sklearn/lab-02-kfp-pipeline/trainer_image/train.py
12
3253
# Copyright 2019 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Covertype Classifier trainer script.""" import pickle import subprocess import sys import fire import hypertune import pandas as pd from sklearn.compose import ColumnTransformer from sklearn.linear_model import SGDClassifier from sklearn.pipeline import Pipeline from sklearn.preprocessing import OneHotEncoder from sklearn.preprocessing import StandardScaler def train_evaluate(job_dir, training_dataset_path, validation_dataset_path, alpha, max_iter, hptune): """Trains the Covertype Classifier model.""" df_train = pd.read_csv(training_dataset_path) df_validation = pd.read_csv(validation_dataset_path) if not hptune: df_train = pd.concat([df_train, df_validation]) numeric_features = [ 'Elevation', 'Aspect', 'Slope', 'Horizontal_Distance_To_Hydrology', 'Vertical_Distance_To_Hydrology', 'Horizontal_Distance_To_Roadways', 'Hillshade_9am', 'Hillshade_Noon', 'Hillshade_3pm', 'Horizontal_Distance_To_Fire_Points' ] categorical_features = ['Wilderness_Area', 'Soil_Type'] preprocessor = ColumnTransformer(transformers=[( 'num', StandardScaler(), numeric_features), ('cat', OneHotEncoder(), categorical_features)]) pipeline = Pipeline([('preprocessor', preprocessor), ('classifier', SGDClassifier(loss='log'))]) num_features_type_map = {feature: 'float64' for feature in numeric_features} df_train = df_train.astype(num_features_type_map) df_validation = df_validation.astype(num_features_type_map) print('Starting training: alpha={}, max_iter={}'.format(alpha, max_iter)) X_train = df_train.drop('Cover_Type', axis=1) y_train = df_train['Cover_Type'] pipeline.set_params(classifier__alpha=alpha, classifier__max_iter=max_iter) pipeline.fit(X_train, y_train) if hptune: X_validation = df_validation.drop('Cover_Type', axis=1) y_validation = df_validation['Cover_Type'] accuracy = pipeline.score(X_validation, y_validation) print('Model accuracy: {}'.format(accuracy)) # Log it with hypertune hpt = hypertune.HyperTune() hpt.report_hyperparameter_tuning_metric( hyperparameter_metric_tag='accuracy', metric_value=accuracy) # Save the model if not hptune: model_filename = 'model.pkl' with open(model_filename, 'wb') as model_file: pickle.dump(pipeline, model_file) gcs_model_path = '{}/{}'.format(job_dir, model_filename) subprocess.check_call(['gsutil', 'cp', model_filename, gcs_model_path], stderr=sys.stdout) print('Saved model in: {}'.format(gcs_model_path)) if __name__ == '__main__': fire.Fire(train_evaluate)
apache-2.0
toolgirl/irish-folk-motifs
src/tune_fragment.py
1
2261
# Copyright (C) 2017 Zia Rauwolf. See LICENSE.txt import subprocess import pandas as pd from tempfile import mkdtemp import os.path class TuneFragment(object): """ Takes in a row of a pandas DataFrame() or a dictionary and plays it as midi. """ def __init__(self, data): """ Creates a .abc file and plays it with timidity from a text file using abc2midi. Parameters ---------- data : .txt Text file that contains abc notation without any of the required notations for .abc. Attributes ---------- _temp_dir : tempfile Temporary directory to put the working files in. _abc_file : abc file Path and file for temporary abc file. _midi_file : midi file Path and name for temporary midi file. """ self.data = data self._temp_dir = mkdtemp() self._abc_file = os.path.join(self._temp_dir, 'current.abc') self._midi_file = os.path.join('/Users/zia/galvanize', 'current.mid') self.create_abcfile() self._convert_abc_2_midi() def play(self): """ Takes the current data and plays it. """ subprocess.call(['timidity', self._midi_file]) def create_abcfile(self, filename=None): ''' Writes the necessary lines to convert .txt to .abc. ''' if filename is None: filename = self._abc_file else: self._abc_file = filename with open(filename, 'w') as f: f.write('X:1\n') f.write('M:{}\n'.format(self.data['meter'])) f.write('L:1/16\n'.format()) if 'type' in self.data: f.write('T:{}\n'.format(self.data['type'])) f.write('K:{}\n'.format(self.data['mode'])) f.write('%%MIDI program 73\n') #plays flute (piano is program 0.) f.write(self.data['abc']) def _convert_abc_2_midi(self): ''' INPUT: .abc file Takes a .abc with at least an X: and a K: and a minimum fragment of one bar if necessary padded with z's that will still play ''' subprocess.call(['abc2midi', self._abc_file, '-BF','-o', self._midi_file])
gpl-3.0
xiaoxiamii/scikit-learn
examples/decomposition/plot_pca_3d.py
354
2432
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Principal components analysis (PCA) ========================================================= These figures aid in illustrating how a point cloud can be very flat in one direction--which is where PCA comes in to choose a direction that is not flat. """ print(__doc__) # Authors: Gael Varoquaux # Jaques Grobler # Kevin Hughes # License: BSD 3 clause from sklearn.decomposition import PCA from mpl_toolkits.mplot3d import Axes3D import numpy as np import matplotlib.pyplot as plt from scipy import stats ############################################################################### # Create the data e = np.exp(1) np.random.seed(4) def pdf(x): return 0.5 * (stats.norm(scale=0.25 / e).pdf(x) + stats.norm(scale=4 / e).pdf(x)) y = np.random.normal(scale=0.5, size=(30000)) x = np.random.normal(scale=0.5, size=(30000)) z = np.random.normal(scale=0.1, size=len(x)) density = pdf(x) * pdf(y) pdf_z = pdf(5 * z) density *= pdf_z a = x + y b = 2 * y c = a - b + z norm = np.sqrt(a.var() + b.var()) a /= norm b /= norm ############################################################################### # Plot the figures def plot_figs(fig_num, elev, azim): fig = plt.figure(fig_num, figsize=(4, 3)) plt.clf() ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=elev, azim=azim) ax.scatter(a[::10], b[::10], c[::10], c=density[::10], marker='+', alpha=.4) Y = np.c_[a, b, c] # Using SciPy's SVD, this would be: # _, pca_score, V = scipy.linalg.svd(Y, full_matrices=False) pca = PCA(n_components=3) pca.fit(Y) pca_score = pca.explained_variance_ratio_ V = pca.components_ x_pca_axis, y_pca_axis, z_pca_axis = V.T * pca_score / pca_score.min() x_pca_axis, y_pca_axis, z_pca_axis = 3 * V.T x_pca_plane = np.r_[x_pca_axis[:2], - x_pca_axis[1::-1]] y_pca_plane = np.r_[y_pca_axis[:2], - y_pca_axis[1::-1]] z_pca_plane = np.r_[z_pca_axis[:2], - z_pca_axis[1::-1]] x_pca_plane.shape = (2, 2) y_pca_plane.shape = (2, 2) z_pca_plane.shape = (2, 2) ax.plot_surface(x_pca_plane, y_pca_plane, z_pca_plane) ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) elev = -40 azim = -80 plot_figs(1, elev, azim) elev = 30 azim = 20 plot_figs(2, elev, azim) plt.show()
bsd-3-clause
ilyes14/scikit-learn
examples/applications/plot_stock_market.py
227
8284
""" ======================================= Visualizing the stock market structure ======================================= This example employs several unsupervised learning techniques to extract the stock market structure from variations in historical quotes. The quantity that we use is the daily variation in quote price: quotes that are linked tend to cofluctuate during a day. .. _stock_market: Learning a graph structure -------------------------- We use sparse inverse covariance estimation to find which quotes are correlated conditionally on the others. Specifically, sparse inverse covariance gives us a graph, that is a list of connection. For each symbol, the symbols that it is connected too are those useful to explain its fluctuations. Clustering ---------- We use clustering to group together quotes that behave similarly. Here, amongst the :ref:`various clustering techniques <clustering>` available in the scikit-learn, we use :ref:`affinity_propagation` as it does not enforce equal-size clusters, and it can choose automatically the number of clusters from the data. Note that this gives us a different indication than the graph, as the graph reflects conditional relations between variables, while the clustering reflects marginal properties: variables clustered together can be considered as having a similar impact at the level of the full stock market. Embedding in 2D space --------------------- For visualization purposes, we need to lay out the different symbols on a 2D canvas. For this we use :ref:`manifold` techniques to retrieve 2D embedding. Visualization ------------- The output of the 3 models are combined in a 2D graph where nodes represents the stocks and edges the: - cluster labels are used to define the color of the nodes - the sparse covariance model is used to display the strength of the edges - the 2D embedding is used to position the nodes in the plan This example has a fair amount of visualization-related code, as visualization is crucial here to display the graph. One of the challenge is to position the labels minimizing overlap. For this we use an heuristic based on the direction of the nearest neighbor along each axis. """ print(__doc__) # Author: Gael Varoquaux [email protected] # License: BSD 3 clause import datetime import numpy as np import matplotlib.pyplot as plt from matplotlib import finance from matplotlib.collections import LineCollection from sklearn import cluster, covariance, manifold ############################################################################### # Retrieve the data from Internet # Choose a time period reasonnably calm (not too long ago so that we get # high-tech firms, and before the 2008 crash) d1 = datetime.datetime(2003, 1, 1) d2 = datetime.datetime(2008, 1, 1) # kraft symbol has now changed from KFT to MDLZ in yahoo symbol_dict = { 'TOT': 'Total', 'XOM': 'Exxon', 'CVX': 'Chevron', 'COP': 'ConocoPhillips', 'VLO': 'Valero Energy', 'MSFT': 'Microsoft', 'IBM': 'IBM', 'TWX': 'Time Warner', 'CMCSA': 'Comcast', 'CVC': 'Cablevision', 'YHOO': 'Yahoo', 'DELL': 'Dell', 'HPQ': 'HP', 'AMZN': 'Amazon', 'TM': 'Toyota', 'CAJ': 'Canon', 'MTU': 'Mitsubishi', 'SNE': 'Sony', 'F': 'Ford', 'HMC': 'Honda', 'NAV': 'Navistar', 'NOC': 'Northrop Grumman', 'BA': 'Boeing', 'KO': 'Coca Cola', 'MMM': '3M', 'MCD': 'Mc Donalds', 'PEP': 'Pepsi', 'MDLZ': 'Kraft Foods', 'K': 'Kellogg', 'UN': 'Unilever', 'MAR': 'Marriott', 'PG': 'Procter Gamble', 'CL': 'Colgate-Palmolive', 'GE': 'General Electrics', 'WFC': 'Wells Fargo', 'JPM': 'JPMorgan Chase', 'AIG': 'AIG', 'AXP': 'American express', 'BAC': 'Bank of America', 'GS': 'Goldman Sachs', 'AAPL': 'Apple', 'SAP': 'SAP', 'CSCO': 'Cisco', 'TXN': 'Texas instruments', 'XRX': 'Xerox', 'LMT': 'Lookheed Martin', 'WMT': 'Wal-Mart', 'WBA': 'Walgreen', 'HD': 'Home Depot', 'GSK': 'GlaxoSmithKline', 'PFE': 'Pfizer', 'SNY': 'Sanofi-Aventis', 'NVS': 'Novartis', 'KMB': 'Kimberly-Clark', 'R': 'Ryder', 'GD': 'General Dynamics', 'RTN': 'Raytheon', 'CVS': 'CVS', 'CAT': 'Caterpillar', 'DD': 'DuPont de Nemours'} symbols, names = np.array(list(symbol_dict.items())).T quotes = [finance.quotes_historical_yahoo(symbol, d1, d2, asobject=True) for symbol in symbols] open = np.array([q.open for q in quotes]).astype(np.float) close = np.array([q.close for q in quotes]).astype(np.float) # The daily variations of the quotes are what carry most information variation = close - open ############################################################################### # Learn a graphical structure from the correlations edge_model = covariance.GraphLassoCV() # standardize the time series: using correlations rather than covariance # is more efficient for structure recovery X = variation.copy().T X /= X.std(axis=0) edge_model.fit(X) ############################################################################### # Cluster using affinity propagation _, labels = cluster.affinity_propagation(edge_model.covariance_) n_labels = labels.max() for i in range(n_labels + 1): print('Cluster %i: %s' % ((i + 1), ', '.join(names[labels == i]))) ############################################################################### # Find a low-dimension embedding for visualization: find the best position of # the nodes (the stocks) on a 2D plane # We use a dense eigen_solver to achieve reproducibility (arpack is # initiated with random vectors that we don't control). In addition, we # use a large number of neighbors to capture the large-scale structure. node_position_model = manifold.LocallyLinearEmbedding( n_components=2, eigen_solver='dense', n_neighbors=6) embedding = node_position_model.fit_transform(X.T).T ############################################################################### # Visualization plt.figure(1, facecolor='w', figsize=(10, 8)) plt.clf() ax = plt.axes([0., 0., 1., 1.]) plt.axis('off') # Display a graph of the partial correlations partial_correlations = edge_model.precision_.copy() d = 1 / np.sqrt(np.diag(partial_correlations)) partial_correlations *= d partial_correlations *= d[:, np.newaxis] non_zero = (np.abs(np.triu(partial_correlations, k=1)) > 0.02) # Plot the nodes using the coordinates of our embedding plt.scatter(embedding[0], embedding[1], s=100 * d ** 2, c=labels, cmap=plt.cm.spectral) # Plot the edges start_idx, end_idx = np.where(non_zero) #a sequence of (*line0*, *line1*, *line2*), where:: # linen = (x0, y0), (x1, y1), ... (xm, ym) segments = [[embedding[:, start], embedding[:, stop]] for start, stop in zip(start_idx, end_idx)] values = np.abs(partial_correlations[non_zero]) lc = LineCollection(segments, zorder=0, cmap=plt.cm.hot_r, norm=plt.Normalize(0, .7 * values.max())) lc.set_array(values) lc.set_linewidths(15 * values) ax.add_collection(lc) # Add a label to each node. The challenge here is that we want to # position the labels to avoid overlap with other labels for index, (name, label, (x, y)) in enumerate( zip(names, labels, embedding.T)): dx = x - embedding[0] dx[index] = 1 dy = y - embedding[1] dy[index] = 1 this_dx = dx[np.argmin(np.abs(dy))] this_dy = dy[np.argmin(np.abs(dx))] if this_dx > 0: horizontalalignment = 'left' x = x + .002 else: horizontalalignment = 'right' x = x - .002 if this_dy > 0: verticalalignment = 'bottom' y = y + .002 else: verticalalignment = 'top' y = y - .002 plt.text(x, y, name, size=10, horizontalalignment=horizontalalignment, verticalalignment=verticalalignment, bbox=dict(facecolor='w', edgecolor=plt.cm.spectral(label / float(n_labels)), alpha=.6)) plt.xlim(embedding[0].min() - .15 * embedding[0].ptp(), embedding[0].max() + .10 * embedding[0].ptp(),) plt.ylim(embedding[1].min() - .03 * embedding[1].ptp(), embedding[1].max() + .03 * embedding[1].ptp()) plt.show()
bsd-3-clause
chiotlune/ext
gnuradio-3.7.0.1/gr-filter/examples/channelize.py
58
7003
#!/usr/bin/env python # # Copyright 2009,2012,2013 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # from gnuradio import gr from gnuradio import blocks from gnuradio import filter import sys, time try: from gnuradio import analog except ImportError: sys.stderr.write("Error: Program requires gr-analog.\n") sys.exit(1) try: import scipy from scipy import fftpack except ImportError: sys.stderr.write("Error: Program requires scipy (see: www.scipy.org).\n") sys.exit(1) try: import pylab from pylab import mlab except ImportError: sys.stderr.write("Error: Program requires matplotlib (see: matplotlib.sourceforge.net).\n") sys.exit(1) class pfb_top_block(gr.top_block): def __init__(self): gr.top_block.__init__(self) self._N = 2000000 # number of samples to use self._fs = 1000 # initial sampling rate self._M = M = 9 # Number of channels to channelize self._ifs = M*self._fs # initial sampling rate # Create a set of taps for the PFB channelizer self._taps = filter.firdes.low_pass_2(1, self._ifs, 475.50, 50, attenuation_dB=100, window=filter.firdes.WIN_BLACKMAN_hARRIS) # Calculate the number of taps per channel for our own information tpc = scipy.ceil(float(len(self._taps)) / float(self._M)) print "Number of taps: ", len(self._taps) print "Number of channels: ", self._M print "Taps per channel: ", tpc # Create a set of signals at different frequencies # freqs lists the frequencies of the signals that get stored # in the list "signals", which then get summed together self.signals = list() self.add = blocks.add_cc() freqs = [-70, -50, -30, -10, 10, 20, 40, 60, 80] for i in xrange(len(freqs)): f = freqs[i] + (M/2-M+i+1)*self._fs self.signals.append(analog.sig_source_c(self._ifs, analog.GR_SIN_WAVE, f, 1)) self.connect(self.signals[i], (self.add,i)) self.head = blocks.head(gr.sizeof_gr_complex, self._N) # Construct the channelizer filter self.pfb = filter.pfb.channelizer_ccf(self._M, self._taps, 1) # Construct a vector sink for the input signal to the channelizer self.snk_i = blocks.vector_sink_c() # Connect the blocks self.connect(self.add, self.head, self.pfb) self.connect(self.add, self.snk_i) # Use this to play with the channel mapping #self.pfb.set_channel_map([5,6,7,8,0,1,2,3,4]) # Create a vector sink for each of M output channels of the filter and connect it self.snks = list() for i in xrange(self._M): self.snks.append(blocks.vector_sink_c()) self.connect((self.pfb, i), self.snks[i]) def main(): tstart = time.time() tb = pfb_top_block() tb.run() tend = time.time() print "Run time: %f" % (tend - tstart) if 1: fig_in = pylab.figure(1, figsize=(16,9), facecolor="w") fig1 = pylab.figure(2, figsize=(16,9), facecolor="w") fig2 = pylab.figure(3, figsize=(16,9), facecolor="w") Ns = 1000 Ne = 10000 fftlen = 8192 winfunc = scipy.blackman fs = tb._ifs # Plot the input signal on its own figure d = tb.snk_i.data()[Ns:Ne] spin_f = fig_in.add_subplot(2, 1, 1) X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs, window = lambda d: d*winfunc(fftlen), scale_by_freq=True) X_in = 10.0*scipy.log10(abs(X)) f_in = scipy.arange(-fs/2.0, fs/2.0, fs/float(X_in.size)) pin_f = spin_f.plot(f_in, X_in, "b") spin_f.set_xlim([min(f_in), max(f_in)+1]) spin_f.set_ylim([-200.0, 50.0]) spin_f.set_title("Input Signal", weight="bold") spin_f.set_xlabel("Frequency (Hz)") spin_f.set_ylabel("Power (dBW)") Ts = 1.0/fs Tmax = len(d)*Ts t_in = scipy.arange(0, Tmax, Ts) x_in = scipy.array(d) spin_t = fig_in.add_subplot(2, 1, 2) pin_t = spin_t.plot(t_in, x_in.real, "b") pin_t = spin_t.plot(t_in, x_in.imag, "r") spin_t.set_xlabel("Time (s)") spin_t.set_ylabel("Amplitude") Ncols = int(scipy.floor(scipy.sqrt(tb._M))) Nrows = int(scipy.floor(tb._M / Ncols)) if(tb._M % Ncols != 0): Nrows += 1 # Plot each of the channels outputs. Frequencies on Figure 2 and # time signals on Figure 3 fs_o = tb._fs Ts_o = 1.0/fs_o Tmax_o = len(d)*Ts_o for i in xrange(len(tb.snks)): # remove issues with the transients at the beginning # also remove some corruption at the end of the stream # this is a bug, probably due to the corner cases d = tb.snks[i].data()[Ns:Ne] sp1_f = fig1.add_subplot(Nrows, Ncols, 1+i) X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs_o, window = lambda d: d*winfunc(fftlen), scale_by_freq=True) X_o = 10.0*scipy.log10(abs(X)) f_o = scipy.arange(-fs_o/2.0, fs_o/2.0, fs_o/float(X_o.size)) p2_f = sp1_f.plot(f_o, X_o, "b") sp1_f.set_xlim([min(f_o), max(f_o)+1]) sp1_f.set_ylim([-200.0, 50.0]) sp1_f.set_title(("Channel %d" % i), weight="bold") sp1_f.set_xlabel("Frequency (Hz)") sp1_f.set_ylabel("Power (dBW)") x_o = scipy.array(d) t_o = scipy.arange(0, Tmax_o, Ts_o) sp2_o = fig2.add_subplot(Nrows, Ncols, 1+i) p2_o = sp2_o.plot(t_o, x_o.real, "b") p2_o = sp2_o.plot(t_o, x_o.imag, "r") sp2_o.set_xlim([min(t_o), max(t_o)+1]) sp2_o.set_ylim([-2, 2]) sp2_o.set_title(("Channel %d" % i), weight="bold") sp2_o.set_xlabel("Time (s)") sp2_o.set_ylabel("Amplitude") pylab.show() if __name__ == "__main__": try: main() except KeyboardInterrupt: pass
gpl-2.0
hgrif/incubator-airflow
airflow/hooks/hive_hooks.py
5
28558
# -*- coding: utf-8 -*- # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import print_function from six.moves import zip from past.builtins import basestring import unicodecsv as csv import itertools import re import subprocess import time from tempfile import NamedTemporaryFile import hive_metastore from airflow.exceptions import AirflowException from airflow.hooks.base_hook import BaseHook from airflow.utils.helpers import as_flattened_list from airflow.utils.file import TemporaryDirectory from airflow import configuration import airflow.security.utils as utils HIVE_QUEUE_PRIORITIES = ['VERY_HIGH', 'HIGH', 'NORMAL', 'LOW', 'VERY_LOW'] class HiveCliHook(BaseHook): """Simple wrapper around the hive CLI. It also supports the ``beeline`` a lighter CLI that runs JDBC and is replacing the heavier traditional CLI. To enable ``beeline``, set the use_beeline param in the extra field of your connection as in ``{ "use_beeline": true }`` Note that you can also set default hive CLI parameters using the ``hive_cli_params`` to be used in your connection as in ``{"hive_cli_params": "-hiveconf mapred.job.tracker=some.jobtracker:444"}`` Parameters passed here can be overridden by run_cli's hive_conf param The extra connection parameter ``auth`` gets passed as in the ``jdbc`` connection string as is. :param mapred_queue: queue used by the Hadoop Scheduler (Capacity or Fair) :type mapred_queue: string :param mapred_queue_priority: priority within the job queue. Possible settings include: VERY_HIGH, HIGH, NORMAL, LOW, VERY_LOW :type mapred_queue_priority: string :param mapred_job_name: This name will appear in the jobtracker. This can make monitoring easier. :type mapred_job_name: string """ def __init__( self, hive_cli_conn_id="hive_cli_default", run_as=None, mapred_queue=None, mapred_queue_priority=None, mapred_job_name=None): conn = self.get_connection(hive_cli_conn_id) self.hive_cli_params = conn.extra_dejson.get('hive_cli_params', '') self.use_beeline = conn.extra_dejson.get('use_beeline', False) self.auth = conn.extra_dejson.get('auth', 'noSasl') self.conn = conn self.run_as = run_as if mapred_queue_priority: mapred_queue_priority = mapred_queue_priority.upper() if mapred_queue_priority not in HIVE_QUEUE_PRIORITIES: raise AirflowException( "Invalid Mapred Queue Priority. Valid values are: " "{}".format(', '.join(HIVE_QUEUE_PRIORITIES))) self.mapred_queue = mapred_queue self.mapred_queue_priority = mapred_queue_priority self.mapred_job_name = mapred_job_name def _prepare_cli_cmd(self): """ This function creates the command list from available information """ conn = self.conn hive_bin = 'hive' cmd_extra = [] if self.use_beeline: hive_bin = 'beeline' jdbc_url = "jdbc:hive2://{conn.host}:{conn.port}/{conn.schema}" if configuration.get('core', 'security') == 'kerberos': template = conn.extra_dejson.get( 'principal', "hive/[email protected]") if "_HOST" in template: template = utils.replace_hostname_pattern( utils.get_components(template)) proxy_user = "" # noqa if conn.extra_dejson.get('proxy_user') == "login" and conn.login: proxy_user = "hive.server2.proxy.user={0}".format(conn.login) elif conn.extra_dejson.get('proxy_user') == "owner" and self.run_as: proxy_user = "hive.server2.proxy.user={0}".format(self.run_as) jdbc_url += ";principal={template};{proxy_user}" elif self.auth: jdbc_url += ";auth=" + self.auth jdbc_url = jdbc_url.format(**locals()) cmd_extra += ['-u', jdbc_url] if conn.login: cmd_extra += ['-n', conn.login] if conn.password: cmd_extra += ['-p', conn.password] hive_params_list = self.hive_cli_params.split() return [hive_bin] + cmd_extra + hive_params_list def _prepare_hiveconf(self, d): """ This function prepares a list of hiveconf params from a dictionary of key value pairs. :param d: :type d: dict >>> hh = HiveCliHook() >>> hive_conf = {"hive.exec.dynamic.partition": "true", ... "hive.exec.dynamic.partition.mode": "nonstrict"} >>> hh._prepare_hiveconf(hive_conf) ["-hiveconf", "hive.exec.dynamic.partition=true",\ "-hiveconf", "hive.exec.dynamic.partition.mode=nonstrict"] """ if not d: return [] return as_flattened_list( zip(["-hiveconf"] * len(d), ["{}={}".format(k, v) for k, v in d.items()]) ) def run_cli(self, hql, schema=None, verbose=True, hive_conf=None): """ Run an hql statement using the hive cli. If hive_conf is specified it should be a dict and the entries will be set as key/value pairs in HiveConf :param hive_conf: if specified these key value pairs will be passed to hive as ``-hiveconf "key"="value"``. Note that they will be passed after the ``hive_cli_params`` and thus will override whatever values are specified in the database. :type hive_conf: dict >>> hh = HiveCliHook() >>> result = hh.run_cli("USE airflow;") >>> ("OK" in result) True """ conn = self.conn schema = schema or conn.schema if schema: hql = "USE {schema};\n{hql}".format(**locals()) with TemporaryDirectory(prefix='airflow_hiveop_') as tmp_dir: with NamedTemporaryFile(dir=tmp_dir) as f: f.write(hql.encode('UTF-8')) f.flush() hive_cmd = self._prepare_cli_cmd() hive_conf_params = self._prepare_hiveconf(hive_conf) if self.mapred_queue: hive_conf_params.extend( ['-hiveconf', 'mapreduce.job.queuename={}' .format(self.mapred_queue)]) if self.mapred_queue_priority: hive_conf_params.extend( ['-hiveconf', 'mapreduce.job.priority={}' .format(self.mapred_queue_priority)]) if self.mapred_job_name: hive_conf_params.extend( ['-hiveconf', 'mapred.job.name={}' .format(self.mapred_job_name)]) hive_cmd.extend(hive_conf_params) hive_cmd.extend(['-f', f.name]) if verbose: self.log.info(" ".join(hive_cmd)) sp = subprocess.Popen( hive_cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, cwd=tmp_dir) self.sp = sp stdout = '' while True: line = sp.stdout.readline() if not line: break stdout += line.decode('UTF-8') if verbose: self.log.info(line.decode('UTF-8').strip()) sp.wait() if sp.returncode: raise AirflowException(stdout) return stdout def test_hql(self, hql): """ Test an hql statement using the hive cli and EXPLAIN """ create, insert, other = [], [], [] for query in hql.split(';'): # naive query_original = query query = query.lower().strip() if query.startswith('create table'): create.append(query_original) elif query.startswith(('set ', 'add jar ', 'create temporary function')): other.append(query_original) elif query.startswith('insert'): insert.append(query_original) other = ';'.join(other) for query_set in [create, insert]: for query in query_set: query_preview = ' '.join(query.split())[:50] self.log.info("Testing HQL [%s (...)]", query_preview) if query_set == insert: query = other + '; explain ' + query else: query = 'explain ' + query try: self.run_cli(query, verbose=False) except AirflowException as e: message = e.args[0].split('\n')[-2] self.log.info(message) error_loc = re.search('(\d+):(\d+)', message) if error_loc and error_loc.group(1).isdigit(): l = int(error_loc.group(1)) begin = max(l-2, 0) end = min(l+3, len(query.split('\n'))) context = '\n'.join(query.split('\n')[begin:end]) self.log.info("Context :\n %s", context) else: self.log.info("SUCCESS") def load_df( self, df, table, create=True, recreate=False, field_dict=None, delimiter=',', encoding='utf8', pandas_kwargs=None, **kwargs): """ Loads a pandas DataFrame into hive. Hive data types will be inferred if not passed but column names will not be sanitized. :param table: target Hive table, use dot notation to target a specific database :type table: str :param create: whether to create the table if it doesn't exist :type create: bool :param recreate: whether to drop and recreate the table at every execution :type recreate: bool :param field_dict: mapping from column name to hive data type :type field_dict: dict :param encoding: string encoding to use when writing DataFrame to file :type encoding: str :param pandas_kwargs: passed to DataFrame.to_csv :type pandas_kwargs: dict :param kwargs: passed to self.load_file """ def _infer_field_types_from_df(df): DTYPE_KIND_HIVE_TYPE = { 'b': 'BOOLEAN', # boolean 'i': 'BIGINT', # signed integer 'u': 'BIGINT', # unsigned integer 'f': 'DOUBLE', # floating-point 'c': 'STRING', # complex floating-point 'O': 'STRING', # object 'S': 'STRING', # (byte-)string 'U': 'STRING', # Unicode 'V': 'STRING' # void } return dict((col, DTYPE_KIND_HIVE_TYPE[dtype.kind]) for col, dtype in df.dtypes.iteritems()) if pandas_kwargs is None: pandas_kwargs = {} with TemporaryDirectory(prefix='airflow_hiveop_') as tmp_dir: with NamedTemporaryFile(dir=tmp_dir) as f: if field_dict is None and (create or recreate): field_dict = _infer_field_types_from_df(df) df.to_csv(f, sep=delimiter, **pandas_kwargs) return self.load_file(filepath=f.name, table=table, delimiter=delimiter, field_dict=field_dict, **kwargs) def load_file( self, filepath, table, delimiter=",", field_dict=None, create=True, overwrite=True, partition=None, recreate=False, tblproperties=None): """ Loads a local file into Hive Note that the table generated in Hive uses ``STORED AS textfile`` which isn't the most efficient serialization format. If a large amount of data is loaded and/or if the tables gets queried considerably, you may want to use this operator only to stage the data into a temporary table before loading it into its final destination using a ``HiveOperator``. :param filepath: local filepath of the file to load :type filepath: str :param table: target Hive table, use dot notation to target a specific database :type table: str :param delimiter: field delimiter in the file :type delimiter: str :param field_dict: A dictionary of the fields name in the file as keys and their Hive types as values :type field_dict: dict :param create: whether to create the table if it doesn't exist :type create: bool :param overwrite: whether to overwrite the data in table or partition :type overwrite: bool :param partition: target partition as a dict of partition columns and values :type partition: dict :param recreate: whether to drop and recreate the table at every execution :type recreate: bool :param tblproperties: TBLPROPERTIES of the hive table being created :type tblproperties: dict """ hql = '' if recreate: hql += "DROP TABLE IF EXISTS {table};\n" if create or recreate: if field_dict is None: raise ValueError("Must provide a field dict when creating a table") fields = ",\n ".join( [k + ' ' + v for k, v in field_dict.items()]) hql += "CREATE TABLE IF NOT EXISTS {table} (\n{fields})\n" if partition: pfields = ",\n ".join( [p + " STRING" for p in partition]) hql += "PARTITIONED BY ({pfields})\n" hql += "ROW FORMAT DELIMITED\n" hql += "FIELDS TERMINATED BY '{delimiter}'\n" hql += "STORED AS textfile\n" if tblproperties is not None: tprops = ", ".join( ["'{0}'='{1}'".format(k, v) for k, v in tblproperties.items()]) hql += "TBLPROPERTIES({tprops})\n" hql += ";" hql = hql.format(**locals()) self.log.info(hql) self.run_cli(hql) hql = "LOAD DATA LOCAL INPATH '{filepath}' " if overwrite: hql += "OVERWRITE " hql += "INTO TABLE {table} " if partition: pvals = ", ".join( ["{0}='{1}'".format(k, v) for k, v in partition.items()]) hql += "PARTITION ({pvals});" hql = hql.format(**locals()) self.log.info(hql) self.run_cli(hql) def kill(self): if hasattr(self, 'sp'): if self.sp.poll() is None: print("Killing the Hive job") self.sp.terminate() time.sleep(60) self.sp.kill() class HiveMetastoreHook(BaseHook): """ Wrapper to interact with the Hive Metastore""" def __init__(self, metastore_conn_id='metastore_default'): self.metastore_conn = self.get_connection(metastore_conn_id) self.metastore = self.get_metastore_client() def __getstate__(self): # This is for pickling to work despite the thirft hive client not # being pickable d = dict(self.__dict__) del d['metastore'] return d def __setstate__(self, d): self.__dict__.update(d) self.__dict__['metastore'] = self.get_metastore_client() def get_metastore_client(self): """ Returns a Hive thrift client. """ from thrift.transport import TSocket, TTransport from thrift.protocol import TBinaryProtocol from hive_service import ThriftHive ms = self.metastore_conn auth_mechanism = ms.extra_dejson.get('authMechanism', 'NOSASL') if configuration.get('core', 'security') == 'kerberos': auth_mechanism = ms.extra_dejson.get('authMechanism', 'GSSAPI') kerberos_service_name = ms.extra_dejson.get('kerberos_service_name', 'hive') socket = TSocket.TSocket(ms.host, ms.port) if configuration.get('core', 'security') == 'kerberos' and auth_mechanism == 'GSSAPI': try: import saslwrapper as sasl except ImportError: import sasl def sasl_factory(): sasl_client = sasl.Client() sasl_client.setAttr("host", ms.host) sasl_client.setAttr("service", kerberos_service_name) sasl_client.init() return sasl_client from thrift_sasl import TSaslClientTransport transport = TSaslClientTransport(sasl_factory, "GSSAPI", socket) else: transport = TTransport.TBufferedTransport(socket) protocol = TBinaryProtocol.TBinaryProtocol(transport) return ThriftHive.Client(protocol) def get_conn(self): return self.metastore def check_for_partition(self, schema, table, partition): """ Checks whether a partition exists :param schema: Name of hive schema (database) @table belongs to :type schema: string :param table: Name of hive table @partition belongs to :type schema: string :partition: Expression that matches the partitions to check for (eg `a = 'b' AND c = 'd'`) :type schema: string :rtype: boolean >>> hh = HiveMetastoreHook() >>> t = 'static_babynames_partitioned' >>> hh.check_for_partition('airflow', t, "ds='2015-01-01'") True """ self.metastore._oprot.trans.open() partitions = self.metastore.get_partitions_by_filter( schema, table, partition, 1) self.metastore._oprot.trans.close() if partitions: return True else: return False def check_for_named_partition(self, schema, table, partition_name): """ Checks whether a partition with a given name exists :param schema: Name of hive schema (database) @table belongs to :type schema: string :param table: Name of hive table @partition belongs to :type schema: string :partition: Name of the partitions to check for (eg `a=b/c=d`) :type schema: string :rtype: boolean >>> hh = HiveMetastoreHook() >>> t = 'static_babynames_partitioned' >>> hh.check_for_named_partition('airflow', t, "ds=2015-01-01") True >>> hh.check_for_named_partition('airflow', t, "ds=xxx") False """ self.metastore._oprot.trans.open() try: self.metastore.get_partition_by_name( schema, table, partition_name) return True except hive_metastore.ttypes.NoSuchObjectException: return False finally: self.metastore._oprot.trans.close() def get_table(self, table_name, db='default'): """Get a metastore table object >>> hh = HiveMetastoreHook() >>> t = hh.get_table(db='airflow', table_name='static_babynames') >>> t.tableName 'static_babynames' >>> [col.name for col in t.sd.cols] ['state', 'year', 'name', 'gender', 'num'] """ self.metastore._oprot.trans.open() if db == 'default' and '.' in table_name: db, table_name = table_name.split('.')[:2] table = self.metastore.get_table(dbname=db, tbl_name=table_name) self.metastore._oprot.trans.close() return table def get_tables(self, db, pattern='*'): """ Get a metastore table object """ self.metastore._oprot.trans.open() tables = self.metastore.get_tables(db_name=db, pattern=pattern) objs = self.metastore.get_table_objects_by_name(db, tables) self.metastore._oprot.trans.close() return objs def get_databases(self, pattern='*'): """ Get a metastore table object """ self.metastore._oprot.trans.open() dbs = self.metastore.get_databases(pattern) self.metastore._oprot.trans.close() return dbs def get_partitions( self, schema, table_name, filter=None): """ Returns a list of all partitions in a table. Works only for tables with less than 32767 (java short max val). For subpartitioned table, the number might easily exceed this. >>> hh = HiveMetastoreHook() >>> t = 'static_babynames_partitioned' >>> parts = hh.get_partitions(schema='airflow', table_name=t) >>> len(parts) 1 >>> parts [{'ds': '2015-01-01'}] """ self.metastore._oprot.trans.open() table = self.metastore.get_table(dbname=schema, tbl_name=table_name) if len(table.partitionKeys) == 0: raise AirflowException("The table isn't partitioned") else: if filter: parts = self.metastore.get_partitions_by_filter( db_name=schema, tbl_name=table_name, filter=filter, max_parts=32767) else: parts = self.metastore.get_partitions( db_name=schema, tbl_name=table_name, max_parts=32767) self.metastore._oprot.trans.close() pnames = [p.name for p in table.partitionKeys] return [dict(zip(pnames, p.values)) for p in parts] def max_partition(self, schema, table_name, field=None, filter=None): """ Returns the maximum value for all partitions in a table. Works only for tables that have a single partition key. For subpartitioned table, we recommend using signal tables. >>> hh = HiveMetastoreHook() >>> t = 'static_babynames_partitioned' >>> hh.max_partition(schema='airflow', table_name=t) '2015-01-01' """ parts = self.get_partitions(schema, table_name, filter) if not parts: return None elif len(parts[0]) == 1: field = list(parts[0].keys())[0] elif not field: raise AirflowException( "Please specify the field you want the max " "value for") return max([p[field] for p in parts]) def table_exists(self, table_name, db='default'): """ Check if table exists >>> hh = HiveMetastoreHook() >>> hh.table_exists(db='airflow', table_name='static_babynames') True >>> hh.table_exists(db='airflow', table_name='does_not_exist') False """ try: t = self.get_table(table_name, db) return True except Exception as e: return False class HiveServer2Hook(BaseHook): """ Wrapper around the impyla library Note that the default authMechanism is PLAIN, to override it you can specify it in the ``extra`` of your connection in the UI as in """ def __init__(self, hiveserver2_conn_id='hiveserver2_default'): self.hiveserver2_conn_id = hiveserver2_conn_id def get_conn(self, schema=None): db = self.get_connection(self.hiveserver2_conn_id) auth_mechanism = db.extra_dejson.get('authMechanism', 'PLAIN') kerberos_service_name = None if configuration.get('core', 'security') == 'kerberos': auth_mechanism = db.extra_dejson.get('authMechanism', 'GSSAPI') kerberos_service_name = db.extra_dejson.get('kerberos_service_name', 'hive') # impyla uses GSSAPI instead of KERBEROS as a auth_mechanism identifier if auth_mechanism == 'KERBEROS': self.log.warning( "Detected deprecated 'KERBEROS' for authMechanism for %s. Please use 'GSSAPI' instead", self.hiveserver2_conn_id ) auth_mechanism = 'GSSAPI' from impala.dbapi import connect return connect( host=db.host, port=db.port, auth_mechanism=auth_mechanism, kerberos_service_name=kerberos_service_name, user=db.login, database=schema or db.schema or 'default') def get_results(self, hql, schema='default', arraysize=1000): from impala.error import ProgrammingError with self.get_conn(schema) as conn: if isinstance(hql, basestring): hql = [hql] results = { 'data': [], 'header': [], } cur = conn.cursor() for statement in hql: cur.execute(statement) records = [] try: # impala Lib raises when no results are returned # we're silencing here as some statements in the list # may be `SET` or DDL records = cur.fetchall() except ProgrammingError: self.log.debug("get_results returned no records") if records: results = { 'data': records, 'header': cur.description, } return results def to_csv( self, hql, csv_filepath, schema='default', delimiter=',', lineterminator='\r\n', output_header=True, fetch_size=1000): schema = schema or 'default' with self.get_conn(schema) as conn: with conn.cursor() as cur: self.log.info("Running query: %s", hql) cur.execute(hql) schema = cur.description with open(csv_filepath, 'wb') as f: writer = csv.writer(f, delimiter=delimiter, lineterminator=lineterminator, encoding='utf-8') if output_header: writer.writerow([c[0] for c in cur.description]) i = 0 while True: rows = [row for row in cur.fetchmany(fetch_size) if row] if not rows: break writer.writerows(rows) i += len(rows) self.log.info("Written %s rows so far.", i) self.log.info("Done. Loaded a total of %s rows.", i) def get_records(self, hql, schema='default'): """ Get a set of records from a Hive query. >>> hh = HiveServer2Hook() >>> sql = "SELECT * FROM airflow.static_babynames LIMIT 100" >>> len(hh.get_records(sql)) 100 """ return self.get_results(hql, schema=schema)['data'] def get_pandas_df(self, hql, schema='default'): """ Get a pandas dataframe from a Hive query >>> hh = HiveServer2Hook() >>> sql = "SELECT * FROM airflow.static_babynames LIMIT 100" >>> df = hh.get_pandas_df(sql) >>> len(df.index) 100 """ import pandas as pd res = self.get_results(hql, schema=schema) df = pd.DataFrame(res['data']) df.columns = [c[0] for c in res['header']] return df
apache-2.0
shahankhatch/scikit-learn
sklearn/linear_model/least_angle.py
37
53448
""" Least Angle Regression algorithm. See the documentation on the Generalized Linear Model for a complete discussion. """ from __future__ import print_function # Author: Fabian Pedregosa <[email protected]> # Alexandre Gramfort <[email protected]> # Gael Varoquaux # # License: BSD 3 clause from math import log import sys import warnings from distutils.version import LooseVersion import numpy as np from scipy import linalg, interpolate from scipy.linalg.lapack import get_lapack_funcs from .base import LinearModel from ..base import RegressorMixin from ..utils import arrayfuncs, as_float_array, check_X_y from ..cross_validation import check_cv from ..utils import ConvergenceWarning from ..externals.joblib import Parallel, delayed from ..externals.six.moves import xrange import scipy solve_triangular_args = {} if LooseVersion(scipy.__version__) >= LooseVersion('0.12'): solve_triangular_args = {'check_finite': False} def lars_path(X, y, Xy=None, Gram=None, max_iter=500, alpha_min=0, method='lar', copy_X=True, eps=np.finfo(np.float).eps, copy_Gram=True, verbose=0, return_path=True, return_n_iter=False, positive=False): """Compute Least Angle Regression or Lasso path using LARS algorithm [1] The optimization objective for the case method='lasso' is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 in the case of method='lars', the objective function is only known in the form of an implicit equation (see discussion in [1]) Read more in the :ref:`User Guide <least_angle_regression>`. Parameters ----------- X : array, shape: (n_samples, n_features) Input data. y : array, shape: (n_samples) Input targets. positive : boolean (default=False) Restrict coefficients to be >= 0. When using this option together with method 'lasso' the model coefficients will not converge to the ordinary-least-squares solution for small values of alpha (neither will they when using method 'lar' ..). Only coeffiencts up to the smallest alpha value (alphas_[alphas_ > 0.].min() when fit_path=True) reached by the stepwise Lars-Lasso algorithm are typically in congruence with the solution of the coordinate descent lasso_path function. max_iter : integer, optional (default=500) Maximum number of iterations to perform, set to infinity for no limit. Gram : None, 'auto', array, shape: (n_features, n_features), optional Precomputed Gram matrix (X' * X), if ``'auto'``, the Gram matrix is precomputed from the given X, if there are more samples than features. alpha_min : float, optional (default=0) Minimum correlation along the path. It corresponds to the regularization parameter alpha parameter in the Lasso. method : {'lar', 'lasso'}, optional (default='lar') Specifies the returned model. Select ``'lar'`` for Least Angle Regression, ``'lasso'`` for the Lasso. eps : float, optional (default=``np.finfo(np.float).eps``) The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. copy_X : bool, optional (default=True) If ``False``, ``X`` is overwritten. copy_Gram : bool, optional (default=True) If ``False``, ``Gram`` is overwritten. verbose : int (default=0) Controls output verbosity. return_path : bool, optional (default=True) If ``return_path==True`` returns the entire path, else returns only the last point of the path. return_n_iter : bool, optional (default=False) Whether to return the number of iterations. Returns -------- alphas : array, shape: [n_alphas + 1] Maximum of covariances (in absolute value) at each iteration. ``n_alphas`` is either ``max_iter``, ``n_features`` or the number of nodes in the path with ``alpha >= alpha_min``, whichever is smaller. active : array, shape [n_alphas] Indices of active variables at the end of the path. coefs : array, shape (n_features, n_alphas + 1) Coefficients along the path n_iter : int Number of iterations run. Returned only if return_n_iter is set to True. See also -------- lasso_path LassoLars Lars LassoLarsCV LarsCV sklearn.decomposition.sparse_encode References ---------- .. [1] "Least Angle Regression", Effron et al. http://www-stat.stanford.edu/~tibs/ftp/lars.pdf .. [2] `Wikipedia entry on the Least-angle regression <http://en.wikipedia.org/wiki/Least-angle_regression>`_ .. [3] `Wikipedia entry on the Lasso <http://en.wikipedia.org/wiki/Lasso_(statistics)#Lasso_method>`_ """ n_features = X.shape[1] n_samples = y.size max_features = min(max_iter, n_features) if return_path: coefs = np.zeros((max_features + 1, n_features)) alphas = np.zeros(max_features + 1) else: coef, prev_coef = np.zeros(n_features), np.zeros(n_features) alpha, prev_alpha = np.array([0.]), np.array([0.]) # better ideas? n_iter, n_active = 0, 0 active, indices = list(), np.arange(n_features) # holds the sign of covariance sign_active = np.empty(max_features, dtype=np.int8) drop = False # will hold the cholesky factorization. Only lower part is # referenced. # We are initializing this to "zeros" and not empty, because # it is passed to scipy linalg functions and thus if it has NaNs, # even if they are in the upper part that it not used, we # get errors raised. # Once we support only scipy > 0.12 we can use check_finite=False and # go back to "empty" L = np.zeros((max_features, max_features), dtype=X.dtype) swap, nrm2 = linalg.get_blas_funcs(('swap', 'nrm2'), (X,)) solve_cholesky, = get_lapack_funcs(('potrs',), (X,)) if Gram is None: if copy_X: # force copy. setting the array to be fortran-ordered # speeds up the calculation of the (partial) Gram matrix # and allows to easily swap columns X = X.copy('F') elif Gram == 'auto': Gram = None if X.shape[0] > X.shape[1]: Gram = np.dot(X.T, X) elif copy_Gram: Gram = Gram.copy() if Xy is None: Cov = np.dot(X.T, y) else: Cov = Xy.copy() if verbose: if verbose > 1: print("Step\t\tAdded\t\tDropped\t\tActive set size\t\tC") else: sys.stdout.write('.') sys.stdout.flush() tiny = np.finfo(np.float).tiny # to avoid division by 0 warning tiny32 = np.finfo(np.float32).tiny # to avoid division by 0 warning equality_tolerance = np.finfo(np.float32).eps while True: if Cov.size: if positive: C_idx = np.argmax(Cov) else: C_idx = np.argmax(np.abs(Cov)) C_ = Cov[C_idx] if positive: C = C_ else: C = np.fabs(C_) else: C = 0. if return_path: alpha = alphas[n_iter, np.newaxis] coef = coefs[n_iter] prev_alpha = alphas[n_iter - 1, np.newaxis] prev_coef = coefs[n_iter - 1] alpha[0] = C / n_samples if alpha[0] <= alpha_min + equality_tolerance: # early stopping if abs(alpha[0] - alpha_min) > equality_tolerance: # interpolation factor 0 <= ss < 1 if n_iter > 0: # In the first iteration, all alphas are zero, the formula # below would make ss a NaN ss = ((prev_alpha[0] - alpha_min) / (prev_alpha[0] - alpha[0])) coef[:] = prev_coef + ss * (coef - prev_coef) alpha[0] = alpha_min if return_path: coefs[n_iter] = coef break if n_iter >= max_iter or n_active >= n_features: break if not drop: ########################################################## # Append x_j to the Cholesky factorization of (Xa * Xa') # # # # ( L 0 ) # # L -> ( ) , where L * w = Xa' x_j # # ( w z ) and z = ||x_j|| # # # ########################################################## if positive: sign_active[n_active] = np.ones_like(C_) else: sign_active[n_active] = np.sign(C_) m, n = n_active, C_idx + n_active Cov[C_idx], Cov[0] = swap(Cov[C_idx], Cov[0]) indices[n], indices[m] = indices[m], indices[n] Cov_not_shortened = Cov Cov = Cov[1:] # remove Cov[0] if Gram is None: X.T[n], X.T[m] = swap(X.T[n], X.T[m]) c = nrm2(X.T[n_active]) ** 2 L[n_active, :n_active] = \ np.dot(X.T[n_active], X.T[:n_active].T) else: # swap does only work inplace if matrix is fortran # contiguous ... Gram[m], Gram[n] = swap(Gram[m], Gram[n]) Gram[:, m], Gram[:, n] = swap(Gram[:, m], Gram[:, n]) c = Gram[n_active, n_active] L[n_active, :n_active] = Gram[n_active, :n_active] # Update the cholesky decomposition for the Gram matrix if n_active: linalg.solve_triangular(L[:n_active, :n_active], L[n_active, :n_active], trans=0, lower=1, overwrite_b=True, **solve_triangular_args) v = np.dot(L[n_active, :n_active], L[n_active, :n_active]) diag = max(np.sqrt(np.abs(c - v)), eps) L[n_active, n_active] = diag if diag < 1e-7: # The system is becoming too ill-conditioned. # We have degenerate vectors in our active set. # We'll 'drop for good' the last regressor added. # Note: this case is very rare. It is no longer triggered by the # test suite. The `equality_tolerance` margin added in 0.16.0 to # get early stopping to work consistently on all versions of # Python including 32 bit Python under Windows seems to make it # very difficult to trigger the 'drop for good' strategy. warnings.warn('Regressors in active set degenerate. ' 'Dropping a regressor, after %i iterations, ' 'i.e. alpha=%.3e, ' 'with an active set of %i regressors, and ' 'the smallest cholesky pivot element being %.3e' % (n_iter, alpha, n_active, diag), ConvergenceWarning) # XXX: need to figure a 'drop for good' way Cov = Cov_not_shortened Cov[0] = 0 Cov[C_idx], Cov[0] = swap(Cov[C_idx], Cov[0]) continue active.append(indices[n_active]) n_active += 1 if verbose > 1: print("%s\t\t%s\t\t%s\t\t%s\t\t%s" % (n_iter, active[-1], '', n_active, C)) if method == 'lasso' and n_iter > 0 and prev_alpha[0] < alpha[0]: # alpha is increasing. This is because the updates of Cov are # bringing in too much numerical error that is greater than # than the remaining correlation with the # regressors. Time to bail out warnings.warn('Early stopping the lars path, as the residues ' 'are small and the current value of alpha is no ' 'longer well controlled. %i iterations, alpha=%.3e, ' 'previous alpha=%.3e, with an active set of %i ' 'regressors.' % (n_iter, alpha, prev_alpha, n_active), ConvergenceWarning) break # least squares solution least_squares, info = solve_cholesky(L[:n_active, :n_active], sign_active[:n_active], lower=True) if least_squares.size == 1 and least_squares == 0: # This happens because sign_active[:n_active] = 0 least_squares[...] = 1 AA = 1. else: # is this really needed ? AA = 1. / np.sqrt(np.sum(least_squares * sign_active[:n_active])) if not np.isfinite(AA): # L is too ill-conditioned i = 0 L_ = L[:n_active, :n_active].copy() while not np.isfinite(AA): L_.flat[::n_active + 1] += (2 ** i) * eps least_squares, info = solve_cholesky( L_, sign_active[:n_active], lower=True) tmp = max(np.sum(least_squares * sign_active[:n_active]), eps) AA = 1. / np.sqrt(tmp) i += 1 least_squares *= AA if Gram is None: # equiangular direction of variables in the active set eq_dir = np.dot(X.T[:n_active].T, least_squares) # correlation between each unactive variables and # eqiangular vector corr_eq_dir = np.dot(X.T[n_active:], eq_dir) else: # if huge number of features, this takes 50% of time, I # think could be avoided if we just update it using an # orthogonal (QR) decomposition of X corr_eq_dir = np.dot(Gram[:n_active, n_active:].T, least_squares) g1 = arrayfuncs.min_pos((C - Cov) / (AA - corr_eq_dir + tiny)) if positive: gamma_ = min(g1, C / AA) else: g2 = arrayfuncs.min_pos((C + Cov) / (AA + corr_eq_dir + tiny)) gamma_ = min(g1, g2, C / AA) # TODO: better names for these variables: z drop = False z = -coef[active] / (least_squares + tiny32) z_pos = arrayfuncs.min_pos(z) if z_pos < gamma_: # some coefficients have changed sign idx = np.where(z == z_pos)[0][::-1] # update the sign, important for LAR sign_active[idx] = -sign_active[idx] if method == 'lasso': gamma_ = z_pos drop = True n_iter += 1 if return_path: if n_iter >= coefs.shape[0]: del coef, alpha, prev_alpha, prev_coef # resize the coefs and alphas array add_features = 2 * max(1, (max_features - n_active)) coefs = np.resize(coefs, (n_iter + add_features, n_features)) alphas = np.resize(alphas, n_iter + add_features) coef = coefs[n_iter] prev_coef = coefs[n_iter - 1] alpha = alphas[n_iter, np.newaxis] prev_alpha = alphas[n_iter - 1, np.newaxis] else: # mimic the effect of incrementing n_iter on the array references prev_coef = coef prev_alpha[0] = alpha[0] coef = np.zeros_like(coef) coef[active] = prev_coef[active] + gamma_ * least_squares # update correlations Cov -= gamma_ * corr_eq_dir # See if any coefficient has changed sign if drop and method == 'lasso': # handle the case when idx is not length of 1 [arrayfuncs.cholesky_delete(L[:n_active, :n_active], ii) for ii in idx] n_active -= 1 m, n = idx, n_active # handle the case when idx is not length of 1 drop_idx = [active.pop(ii) for ii in idx] if Gram is None: # propagate dropped variable for ii in idx: for i in range(ii, n_active): X.T[i], X.T[i + 1] = swap(X.T[i], X.T[i + 1]) # yeah this is stupid indices[i], indices[i + 1] = indices[i + 1], indices[i] # TODO: this could be updated residual = y - np.dot(X[:, :n_active], coef[active]) temp = np.dot(X.T[n_active], residual) Cov = np.r_[temp, Cov] else: for ii in idx: for i in range(ii, n_active): indices[i], indices[i + 1] = indices[i + 1], indices[i] Gram[i], Gram[i + 1] = swap(Gram[i], Gram[i + 1]) Gram[:, i], Gram[:, i + 1] = swap(Gram[:, i], Gram[:, i + 1]) # Cov_n = Cov_j + x_j * X + increment(betas) TODO: # will this still work with multiple drops ? # recompute covariance. Probably could be done better # wrong as Xy is not swapped with the rest of variables # TODO: this could be updated residual = y - np.dot(X, coef) temp = np.dot(X.T[drop_idx], residual) Cov = np.r_[temp, Cov] sign_active = np.delete(sign_active, idx) sign_active = np.append(sign_active, 0.) # just to maintain size if verbose > 1: print("%s\t\t%s\t\t%s\t\t%s\t\t%s" % (n_iter, '', drop_idx, n_active, abs(temp))) if return_path: # resize coefs in case of early stop alphas = alphas[:n_iter + 1] coefs = coefs[:n_iter + 1] if return_n_iter: return alphas, active, coefs.T, n_iter else: return alphas, active, coefs.T else: if return_n_iter: return alpha, active, coef, n_iter else: return alpha, active, coef ############################################################################### # Estimator classes class Lars(LinearModel, RegressorMixin): """Least Angle Regression model a.k.a. LAR Read more in the :ref:`User Guide <least_angle_regression>`. Parameters ---------- n_nonzero_coefs : int, optional Target number of non-zero coefficients. Use ``np.inf`` for no limit. fit_intercept : boolean Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). positive : boolean (default=False) Restrict coefficients to be >= 0. Be aware that you might want to remove fit_intercept which is set True by default. verbose : boolean or integer, optional Sets the verbosity amount normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. eps : float, optional The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Unlike the ``tol`` parameter in some iterative optimization-based algorithms, this parameter does not control the tolerance of the optimization. fit_path : boolean If True the full path is stored in the ``coef_path_`` attribute. If you compute the solution for a large problem or many targets, setting ``fit_path`` to ``False`` will lead to a speedup, especially with a small alpha. Attributes ---------- alphas_ : array, shape (n_alphas + 1,) | list of n_targets such arrays Maximum of covariances (in absolute value) at each iteration. \ ``n_alphas`` is either ``n_nonzero_coefs`` or ``n_features``, \ whichever is smaller. active_ : list, length = n_alphas | list of n_targets such lists Indices of active variables at the end of the path. coef_path_ : array, shape (n_features, n_alphas + 1) \ | list of n_targets such arrays The varying values of the coefficients along the path. It is not present if the ``fit_path`` parameter is ``False``. coef_ : array, shape (n_features,) or (n_targets, n_features) Parameter vector (w in the formulation formula). intercept_ : float | array, shape (n_targets,) Independent term in decision function. n_iter_ : array-like or int The number of iterations taken by lars_path to find the grid of alphas for each target. Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.Lars(n_nonzero_coefs=1) >>> clf.fit([[-1, 1], [0, 0], [1, 1]], [-1.1111, 0, -1.1111]) ... # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE Lars(copy_X=True, eps=..., fit_intercept=True, fit_path=True, n_nonzero_coefs=1, normalize=True, positive=False, precompute='auto', verbose=False) >>> print(clf.coef_) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE [ 0. -1.11...] See also -------- lars_path, LarsCV sklearn.decomposition.sparse_encode """ def __init__(self, fit_intercept=True, verbose=False, normalize=True, precompute='auto', n_nonzero_coefs=500, eps=np.finfo(np.float).eps, copy_X=True, fit_path=True, positive=False): self.fit_intercept = fit_intercept self.verbose = verbose self.normalize = normalize self.method = 'lar' self.precompute = precompute self.n_nonzero_coefs = n_nonzero_coefs self.positive = positive self.eps = eps self.copy_X = copy_X self.fit_path = fit_path def _get_gram(self): # precompute if n_samples > n_features precompute = self.precompute if hasattr(precompute, '__array__'): Gram = precompute elif precompute == 'auto': Gram = 'auto' else: Gram = None return Gram def fit(self, X, y, Xy=None): """Fit the model using X, y as training data. parameters ---------- X : array-like, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values. Xy : array-like, shape (n_samples,) or (n_samples, n_targets), \ optional Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is precomputed. returns ------- self : object returns an instance of self. """ X, y = check_X_y(X, y, y_numeric=True, multi_output=True) n_features = X.shape[1] X, y, X_mean, y_mean, X_std = self._center_data(X, y, self.fit_intercept, self.normalize, self.copy_X) if y.ndim == 1: y = y[:, np.newaxis] n_targets = y.shape[1] alpha = getattr(self, 'alpha', 0.) if hasattr(self, 'n_nonzero_coefs'): alpha = 0. # n_nonzero_coefs parametrization takes priority max_iter = self.n_nonzero_coefs else: max_iter = self.max_iter precompute = self.precompute if not hasattr(precompute, '__array__') and ( precompute is True or (precompute == 'auto' and X.shape[0] > X.shape[1]) or (precompute == 'auto' and y.shape[1] > 1)): Gram = np.dot(X.T, X) else: Gram = self._get_gram() self.alphas_ = [] self.n_iter_ = [] if self.fit_path: self.coef_ = [] self.active_ = [] self.coef_path_ = [] for k in xrange(n_targets): this_Xy = None if Xy is None else Xy[:, k] alphas, active, coef_path, n_iter_ = lars_path( X, y[:, k], Gram=Gram, Xy=this_Xy, copy_X=self.copy_X, copy_Gram=True, alpha_min=alpha, method=self.method, verbose=max(0, self.verbose - 1), max_iter=max_iter, eps=self.eps, return_path=True, return_n_iter=True, positive=self.positive) self.alphas_.append(alphas) self.active_.append(active) self.n_iter_.append(n_iter_) self.coef_path_.append(coef_path) self.coef_.append(coef_path[:, -1]) if n_targets == 1: self.alphas_, self.active_, self.coef_path_, self.coef_ = [ a[0] for a in (self.alphas_, self.active_, self.coef_path_, self.coef_)] self.n_iter_ = self.n_iter_[0] else: self.coef_ = np.empty((n_targets, n_features)) for k in xrange(n_targets): this_Xy = None if Xy is None else Xy[:, k] alphas, _, self.coef_[k], n_iter_ = lars_path( X, y[:, k], Gram=Gram, Xy=this_Xy, copy_X=self.copy_X, copy_Gram=True, alpha_min=alpha, method=self.method, verbose=max(0, self.verbose - 1), max_iter=max_iter, eps=self.eps, return_path=False, return_n_iter=True, positive=self.positive) self.alphas_.append(alphas) self.n_iter_.append(n_iter_) if n_targets == 1: self.alphas_ = self.alphas_[0] self.n_iter_ = self.n_iter_[0] self._set_intercept(X_mean, y_mean, X_std) return self class LassoLars(Lars): """Lasso model fit with Least Angle Regression a.k.a. Lars It is a Linear Model trained with an L1 prior as regularizer. The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 Read more in the :ref:`User Guide <least_angle_regression>`. Parameters ---------- alpha : float Constant that multiplies the penalty term. Defaults to 1.0. ``alpha = 0`` is equivalent to an ordinary least square, solved by :class:`LinearRegression`. For numerical reasons, using ``alpha = 0`` with the LassoLars object is not advised and you should prefer the LinearRegression object. fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). positive : boolean (default=False) Restrict coefficients to be >= 0. Be aware that you might want to remove fit_intercept which is set True by default. Under the positive restriction the model coefficients will not converge to the ordinary-least-squares solution for small values of alpha. Only coeffiencts up to the smallest alpha value (alphas_[alphas_ > 0.].min() when fit_path=True) reached by the stepwise Lars-Lasso algorithm are typically in congruence with the solution of the coordinate descent Lasso estimator. verbose : boolean or integer, optional Sets the verbosity amount normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If True, X will be copied; else, it may be overwritten. precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. max_iter : integer, optional Maximum number of iterations to perform. eps : float, optional The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Unlike the ``tol`` parameter in some iterative optimization-based algorithms, this parameter does not control the tolerance of the optimization. fit_path : boolean If ``True`` the full path is stored in the ``coef_path_`` attribute. If you compute the solution for a large problem or many targets, setting ``fit_path`` to ``False`` will lead to a speedup, especially with a small alpha. Attributes ---------- alphas_ : array, shape (n_alphas + 1,) | list of n_targets such arrays Maximum of covariances (in absolute value) at each iteration. \ ``n_alphas`` is either ``max_iter``, ``n_features``, or the number of \ nodes in the path with correlation greater than ``alpha``, whichever \ is smaller. active_ : list, length = n_alphas | list of n_targets such lists Indices of active variables at the end of the path. coef_path_ : array, shape (n_features, n_alphas + 1) or list If a list is passed it's expected to be one of n_targets such arrays. The varying values of the coefficients along the path. It is not present if the ``fit_path`` parameter is ``False``. coef_ : array, shape (n_features,) or (n_targets, n_features) Parameter vector (w in the formulation formula). intercept_ : float | array, shape (n_targets,) Independent term in decision function. n_iter_ : array-like or int. The number of iterations taken by lars_path to find the grid of alphas for each target. Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.LassoLars(alpha=0.01) >>> clf.fit([[-1, 1], [0, 0], [1, 1]], [-1, 0, -1]) ... # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE LassoLars(alpha=0.01, copy_X=True, eps=..., fit_intercept=True, fit_path=True, max_iter=500, normalize=True, positive=False, precompute='auto', verbose=False) >>> print(clf.coef_) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE [ 0. -0.963257...] See also -------- lars_path lasso_path Lasso LassoCV LassoLarsCV sklearn.decomposition.sparse_encode """ def __init__(self, alpha=1.0, fit_intercept=True, verbose=False, normalize=True, precompute='auto', max_iter=500, eps=np.finfo(np.float).eps, copy_X=True, fit_path=True, positive=False): self.alpha = alpha self.fit_intercept = fit_intercept self.max_iter = max_iter self.verbose = verbose self.normalize = normalize self.method = 'lasso' self.positive = positive self.precompute = precompute self.copy_X = copy_X self.eps = eps self.fit_path = fit_path ############################################################################### # Cross-validated estimator classes def _check_copy_and_writeable(array, copy=False): if copy or not array.flags.writeable: return array.copy() return array def _lars_path_residues(X_train, y_train, X_test, y_test, Gram=None, copy=True, method='lars', verbose=False, fit_intercept=True, normalize=True, max_iter=500, eps=np.finfo(np.float).eps, positive=False): """Compute the residues on left-out data for a full LARS path Parameters ----------- X_train : array, shape (n_samples, n_features) The data to fit the LARS on y_train : array, shape (n_samples) The target variable to fit LARS on X_test : array, shape (n_samples, n_features) The data to compute the residues on y_test : array, shape (n_samples) The target variable to compute the residues on Gram : None, 'auto', array, shape: (n_features, n_features), optional Precomputed Gram matrix (X' * X), if ``'auto'``, the Gram matrix is precomputed from the given X, if there are more samples than features copy : boolean, optional Whether X_train, X_test, y_train and y_test should be copied; if False, they may be overwritten. method : 'lar' | 'lasso' Specifies the returned model. Select ``'lar'`` for Least Angle Regression, ``'lasso'`` for the Lasso. verbose : integer, optional Sets the amount of verbosity fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). positive : boolean (default=False) Restrict coefficients to be >= 0. Be aware that you might want to remove fit_intercept which is set True by default. See reservations for using this option in combination with method 'lasso' for expected small values of alpha in the doc of LassoLarsCV and LassoLarsIC. normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. max_iter : integer, optional Maximum number of iterations to perform. eps : float, optional The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Unlike the ``tol`` parameter in some iterative optimization-based algorithms, this parameter does not control the tolerance of the optimization. Returns -------- alphas : array, shape (n_alphas,) Maximum of covariances (in absolute value) at each iteration. ``n_alphas`` is either ``max_iter`` or ``n_features``, whichever is smaller. active : list Indices of active variables at the end of the path. coefs : array, shape (n_features, n_alphas) Coefficients along the path residues : array, shape (n_alphas, n_samples) Residues of the prediction on the test data """ X_train = _check_copy_and_writeable(X_train, copy) y_train = _check_copy_and_writeable(y_train, copy) X_test = _check_copy_and_writeable(X_test, copy) y_test = _check_copy_and_writeable(y_test, copy) if fit_intercept: X_mean = X_train.mean(axis=0) X_train -= X_mean X_test -= X_mean y_mean = y_train.mean(axis=0) y_train = as_float_array(y_train, copy=False) y_train -= y_mean y_test = as_float_array(y_test, copy=False) y_test -= y_mean if normalize: norms = np.sqrt(np.sum(X_train ** 2, axis=0)) nonzeros = np.flatnonzero(norms) X_train[:, nonzeros] /= norms[nonzeros] alphas, active, coefs = lars_path( X_train, y_train, Gram=Gram, copy_X=False, copy_Gram=False, method=method, verbose=max(0, verbose - 1), max_iter=max_iter, eps=eps, positive=positive) if normalize: coefs[nonzeros] /= norms[nonzeros][:, np.newaxis] residues = np.dot(X_test, coefs) - y_test[:, np.newaxis] return alphas, active, coefs, residues.T class LarsCV(Lars): """Cross-validated Least Angle Regression model Read more in the :ref:`User Guide <least_angle_regression>`. Parameters ---------- fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). positive : boolean (default=False) Restrict coefficients to be >= 0. Be aware that you might want to remove fit_intercept which is set True by default. verbose : boolean or integer, optional Sets the verbosity amount normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. max_iter: integer, optional Maximum number of iterations to perform. cv : cross-validation generator, optional see :mod:`sklearn.cross_validation`. If ``None`` is passed, default to a 5-fold strategy max_n_alphas : integer, optional The maximum number of points on the path used to compute the residuals in the cross-validation n_jobs : integer, optional Number of CPUs to use during the cross validation. If ``-1``, use all the CPUs eps : float, optional The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Attributes ---------- coef_ : array, shape (n_features,) parameter vector (w in the formulation formula) intercept_ : float independent term in decision function coef_path_ : array, shape (n_features, n_alphas) the varying values of the coefficients along the path alpha_ : float the estimated regularization parameter alpha alphas_ : array, shape (n_alphas,) the different values of alpha along the path cv_alphas_ : array, shape (n_cv_alphas,) all the values of alpha along the path for the different folds cv_mse_path_ : array, shape (n_folds, n_cv_alphas) the mean square error on left-out for each fold along the path (alpha values given by ``cv_alphas``) n_iter_ : array-like or int the number of iterations run by Lars with the optimal alpha. See also -------- lars_path, LassoLars, LassoLarsCV """ method = 'lar' def __init__(self, fit_intercept=True, verbose=False, max_iter=500, normalize=True, precompute='auto', cv=None, max_n_alphas=1000, n_jobs=1, eps=np.finfo(np.float).eps, copy_X=True, positive=False): self.fit_intercept = fit_intercept self.positive = positive self.max_iter = max_iter self.verbose = verbose self.normalize = normalize self.precompute = precompute self.copy_X = copy_X self.cv = cv self.max_n_alphas = max_n_alphas self.n_jobs = n_jobs self.eps = eps def fit(self, X, y): """Fit the model using X, y as training data. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) Target values. Returns ------- self : object returns an instance of self. """ self.fit_path = True X, y = check_X_y(X, y, y_numeric=True) # init cross-validation generator cv = check_cv(self.cv, X, y, classifier=False) Gram = 'auto' if self.precompute else None cv_paths = Parallel(n_jobs=self.n_jobs, verbose=self.verbose)( delayed(_lars_path_residues)( X[train], y[train], X[test], y[test], Gram=Gram, copy=False, method=self.method, verbose=max(0, self.verbose - 1), normalize=self.normalize, fit_intercept=self.fit_intercept, max_iter=self.max_iter, eps=self.eps, positive=self.positive) for train, test in cv) all_alphas = np.concatenate(list(zip(*cv_paths))[0]) # Unique also sorts all_alphas = np.unique(all_alphas) # Take at most max_n_alphas values stride = int(max(1, int(len(all_alphas) / float(self.max_n_alphas)))) all_alphas = all_alphas[::stride] mse_path = np.empty((len(all_alphas), len(cv_paths))) for index, (alphas, active, coefs, residues) in enumerate(cv_paths): alphas = alphas[::-1] residues = residues[::-1] if alphas[0] != 0: alphas = np.r_[0, alphas] residues = np.r_[residues[0, np.newaxis], residues] if alphas[-1] != all_alphas[-1]: alphas = np.r_[alphas, all_alphas[-1]] residues = np.r_[residues, residues[-1, np.newaxis]] this_residues = interpolate.interp1d(alphas, residues, axis=0)(all_alphas) this_residues **= 2 mse_path[:, index] = np.mean(this_residues, axis=-1) mask = np.all(np.isfinite(mse_path), axis=-1) all_alphas = all_alphas[mask] mse_path = mse_path[mask] # Select the alpha that minimizes left-out error i_best_alpha = np.argmin(mse_path.mean(axis=-1)) best_alpha = all_alphas[i_best_alpha] # Store our parameters self.alpha_ = best_alpha self.cv_alphas_ = all_alphas self.cv_mse_path_ = mse_path # Now compute the full model # it will call a lasso internally when self if LassoLarsCV # as self.method == 'lasso' Lars.fit(self, X, y) return self @property def alpha(self): # impedance matching for the above Lars.fit (should not be documented) return self.alpha_ class LassoLarsCV(LarsCV): """Cross-validated Lasso, using the LARS algorithm The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 Read more in the :ref:`User Guide <least_angle_regression>`. Parameters ---------- fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). positive : boolean (default=False) Restrict coefficients to be >= 0. Be aware that you might want to remove fit_intercept which is set True by default. Under the positive restriction the model coefficients do not converge to the ordinary-least-squares solution for small values of alpha. Only coeffiencts up to the smallest alpha value (alphas_[alphas_ > 0.].min() when fit_path=True) reached by the stepwise Lars-Lasso algorithm are typically in congruence with the solution of the coordinate descent Lasso estimator. As a consequence using LassoLarsCV only makes sense for problems where a sparse solution is expected and/or reached. verbose : boolean or integer, optional Sets the verbosity amount normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. max_iter : integer, optional Maximum number of iterations to perform. cv : cross-validation generator, optional see sklearn.cross_validation module. If None is passed, default to a 5-fold strategy max_n_alphas : integer, optional The maximum number of points on the path used to compute the residuals in the cross-validation n_jobs : integer, optional Number of CPUs to use during the cross validation. If ``-1``, use all the CPUs eps : float, optional The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. copy_X : boolean, optional, default True If True, X will be copied; else, it may be overwritten. Attributes ---------- coef_ : array, shape (n_features,) parameter vector (w in the formulation formula) intercept_ : float independent term in decision function. coef_path_ : array, shape (n_features, n_alphas) the varying values of the coefficients along the path alpha_ : float the estimated regularization parameter alpha alphas_ : array, shape (n_alphas,) the different values of alpha along the path cv_alphas_ : array, shape (n_cv_alphas,) all the values of alpha along the path for the different folds cv_mse_path_ : array, shape (n_folds, n_cv_alphas) the mean square error on left-out for each fold along the path (alpha values given by ``cv_alphas``) n_iter_ : array-like or int the number of iterations run by Lars with the optimal alpha. Notes ----- The object solves the same problem as the LassoCV object. However, unlike the LassoCV, it find the relevant alphas values by itself. In general, because of this property, it will be more stable. However, it is more fragile to heavily multicollinear datasets. It is more efficient than the LassoCV if only a small number of features are selected compared to the total number, for instance if there are very few samples compared to the number of features. See also -------- lars_path, LassoLars, LarsCV, LassoCV """ method = 'lasso' class LassoLarsIC(LassoLars): """Lasso model fit with Lars using BIC or AIC for model selection The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 AIC is the Akaike information criterion and BIC is the Bayes Information criterion. Such criteria are useful to select the value of the regularization parameter by making a trade-off between the goodness of fit and the complexity of the model. A good model should explain well the data while being simple. Read more in the :ref:`User Guide <least_angle_regression>`. Parameters ---------- criterion : 'bic' | 'aic' The type of criterion to use. fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). positive : boolean (default=False) Restrict coefficients to be >= 0. Be aware that you might want to remove fit_intercept which is set True by default. Under the positive restriction the model coefficients do not converge to the ordinary-least-squares solution for small values of alpha. Only coeffiencts up to the smallest alpha value (alphas_[alphas_ > 0.].min() when fit_path=True) reached by the stepwise Lars-Lasso algorithm are typically in congruence with the solution of the coordinate descent Lasso estimator. As a consequence using LassoLarsIC only makes sense for problems where a sparse solution is expected and/or reached. verbose : boolean or integer, optional Sets the verbosity amount normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If True, X will be copied; else, it may be overwritten. precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. max_iter : integer, optional Maximum number of iterations to perform. Can be used for early stopping. eps : float, optional The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Unlike the ``tol`` parameter in some iterative optimization-based algorithms, this parameter does not control the tolerance of the optimization. Attributes ---------- coef_ : array, shape (n_features,) parameter vector (w in the formulation formula) intercept_ : float independent term in decision function. alpha_ : float the alpha parameter chosen by the information criterion n_iter_ : int number of iterations run by lars_path to find the grid of alphas. criterion_ : array, shape (n_alphas,) The value of the information criteria ('aic', 'bic') across all alphas. The alpha which has the smallest information criteria is chosen. Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.LassoLarsIC(criterion='bic') >>> clf.fit([[-1, 1], [0, 0], [1, 1]], [-1.1111, 0, -1.1111]) ... # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE LassoLarsIC(copy_X=True, criterion='bic', eps=..., fit_intercept=True, max_iter=500, normalize=True, positive=False, precompute='auto', verbose=False) >>> print(clf.coef_) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE [ 0. -1.11...] Notes ----- The estimation of the number of degrees of freedom is given by: "On the degrees of freedom of the lasso" Hui Zou, Trevor Hastie, and Robert Tibshirani Ann. Statist. Volume 35, Number 5 (2007), 2173-2192. http://en.wikipedia.org/wiki/Akaike_information_criterion http://en.wikipedia.org/wiki/Bayesian_information_criterion See also -------- lars_path, LassoLars, LassoLarsCV """ def __init__(self, criterion='aic', fit_intercept=True, verbose=False, normalize=True, precompute='auto', max_iter=500, eps=np.finfo(np.float).eps, copy_X=True, positive=False): self.criterion = criterion self.fit_intercept = fit_intercept self.positive = positive self.max_iter = max_iter self.verbose = verbose self.normalize = normalize self.copy_X = copy_X self.precompute = precompute self.eps = eps def fit(self, X, y, copy_X=True): """Fit the model using X, y as training data. Parameters ---------- X : array-like, shape (n_samples, n_features) training data. y : array-like, shape (n_samples,) target values. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. Returns ------- self : object returns an instance of self. """ self.fit_path = True X, y = check_X_y(X, y, y_numeric=True) X, y, Xmean, ymean, Xstd = LinearModel._center_data( X, y, self.fit_intercept, self.normalize, self.copy_X) max_iter = self.max_iter Gram = self._get_gram() alphas_, active_, coef_path_, self.n_iter_ = lars_path( X, y, Gram=Gram, copy_X=copy_X, copy_Gram=True, alpha_min=0.0, method='lasso', verbose=self.verbose, max_iter=max_iter, eps=self.eps, return_n_iter=True, positive=self.positive) n_samples = X.shape[0] if self.criterion == 'aic': K = 2 # AIC elif self.criterion == 'bic': K = log(n_samples) # BIC else: raise ValueError('criterion should be either bic or aic') R = y[:, np.newaxis] - np.dot(X, coef_path_) # residuals mean_squared_error = np.mean(R ** 2, axis=0) df = np.zeros(coef_path_.shape[1], dtype=np.int) # Degrees of freedom for k, coef in enumerate(coef_path_.T): mask = np.abs(coef) > np.finfo(coef.dtype).eps if not np.any(mask): continue # get the number of degrees of freedom equal to: # Xc = X[:, mask] # Trace(Xc * inv(Xc.T, Xc) * Xc.T) ie the number of non-zero coefs df[k] = np.sum(mask) self.alphas_ = alphas_ with np.errstate(divide='ignore'): self.criterion_ = n_samples * np.log(mean_squared_error) + K * df n_best = np.argmin(self.criterion_) self.alpha_ = alphas_[n_best] self.coef_ = coef_path_[:, n_best] self._set_intercept(Xmean, ymean, Xstd) return self
bsd-3-clause
madjelan/CostSensitiveClassification
costcla/models/regression.py
1
9231
""" This module include the cost-sensitive logistic regression method. """ # Authors: Alejandro Correa Bahnsen <[email protected]> # License: BSD 3 clause import numpy as np import math from scipy.optimize import minimize from sklearn.base import BaseEstimator # from sklearn.linear_model.logistic import _intercept_dot from pyea import GeneticAlgorithmOptimizer from ..metrics import cost_loss # Not in sklearn 0.15, is in 0.16-git #TODO: replace once sklearn 0.16 is release # The one in sklearn 0.16 return yz instead of z, therefore, # the impact on the code should be addressed before making the change. def _intercept_dot(w, X): """Computes y * np.dot(X, w). It takes into consideration if the intercept should be fit or not. Parameters ---------- w : ndarray, shape (n_features,) or (n_features + 1,) Coefficient vector. X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. """ c = 0. if w.size == X.shape[1] + 1: c = w[-1] w = w[:-1] z = np.dot(X, w) + c return w, c, z def _sigmoid(z): """ Private function that calculate the sigmoid function """ return 1 / (1 + np.exp(-z)) def _logistic_cost_loss_i(w, X, y, cost_mat, alpha): n_samples = X.shape[0] w, c, z = _intercept_dot(w, X) y_prob = _sigmoid(z) out = cost_loss(y, y_prob, cost_mat) / n_samples out += .5 * alpha * np.dot(w, w) return out def _logistic_cost_loss(w, X, y, cost_mat, alpha): """Computes the logistic loss. Parameters ---------- w : array-like, shape (n_w, n_features,) or (n_w, n_features + 1,) Coefficient vector or matrix of coefficient. X : array-like, shape (n_samples, n_features) Training data. y : ndarray, shape (n_samples,) Array of labels. cost_mat : array-like of shape = [n_samples, 4] Cost matrix of the classification problem Where the columns represents the costs of: false positives, false negatives, true positives and true negatives, for each example. alpha : float Regularization parameter. alpha is equal to 1 / C. Returns ------- out : float Logistic loss. """ if w.shape[0] == w.size: # Only evaluating one w return _logistic_cost_loss_i(w, X, y, cost_mat, alpha) else: # Evaluating a set of w n_w = w.shape[0] out = np.zeros(n_w) for i in range(n_w): out[i] = _logistic_cost_loss_i(w[i], X, y, cost_mat, alpha) return out class CostSensitiveLogisticRegression(BaseEstimator): """A example-dependent cost-sensitive Logistic Regression classifier. Parameters ---------- C : float, optional (default=1.0) Inverse of regularization strength; must be a positive float. Like in support vector machines, smaller values specify stronger regularization. fit_intercept : bool, default: True Specifies if a constant (a.k.a. bias or intercept) should be added the decision function. max_iter : int Useful only for the ga and bfgs solvers. Maximum number of iterations taken for the solvers to converge. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. solver : {'ga', 'bfgs'} Algorithm to use in the optimization problem. tol : float, optional Tolerance for stopping criteria. verbose : int, optional (default=0) Controls the verbosity of the optimization process. Attributes ---------- `coef_` : array, shape (n_classes, n_features) Coefficient of the features in the decision function. `intercept_` : array, shape (n_classes,) Intercept (a.k.a. bias) added to the decision function. If `fit_intercept` is set to False, the intercept is set to zero. See also -------- sklearn.tree.DecisionTreeClassifier References ---------- .. [1] A. Correa Bahnsen, D.Aouada, B, Ottersten, `"Example-Dependent Cost-Sensitive Logistic Regression for Credit Scoring" <http://albahnsen.com/files/Example-Dependent%20Cost-Sensitive%20Logistic%20Regression%20for%20Credit%20Scoring_publish.pdf>`__, in Proceedings of the International Conference on Machine Learning and Applications, , 2014. Examples -------- >>> from sklearn.linear_model import LogisticRegression >>> from sklearn.cross_validation import train_test_split >>> from costcla.datasets import load_creditscoring2 >>> from costcla.models import CostSensitiveLogisticRegression >>> from costcla.metrics import savings_score >>> data = load_creditscoring2() >>> sets = train_test_split(data.data, data.target, data.cost_mat, test_size=0.33, random_state=0) >>> X_train, X_test, y_train, y_test, cost_mat_train, cost_mat_test = sets >>> y_pred_test_lr = LogisticRegression(random_state=0).fit(X_train, y_train).predict(X_test) >>> f = CostSensitiveLogisticRegression() >>> f.fit(X_train, y_train, cost_mat_train) >>> y_pred_test_cslr = f.predict(X_test) >>> # Savings using Logistic Regression >>> print savings_score(y_test, y_pred_test_lr, cost_mat_test) 0.00283419465107 >>> # Savings using Cost Sensitive Logistic Regression >>> print savings_score(y_test, y_pred_test_cslr, cost_mat_test) 0.142872237978 """ def __init__(self, C=1.0, fit_intercept=True, max_iter=100, random_state=None, solver='ga', tol=1e-4, verbose=0): self.C = C self.fit_intercept = fit_intercept self.max_iter = max_iter self.random_state = random_state self.solver = solver self.tol = tol self.coef_ = None self.intercept_ = 0. self.verbose = verbose def fit(self, X, y, cost_mat): """ Build a example-dependent cost-sensitive logistic regression from the training set (X, y, cost_mat) Parameters ---------- X : array-like of shape = [n_samples, n_features] The input samples. y : array indicator matrix Ground truth (correct) labels. cost_mat : array-like of shape = [n_samples, 4] Cost matrix of the classification problem Where the columns represents the costs of: false positives, false negatives, true positives and true negatives, for each example. Returns ------- self : object Returns self. """ #TODO: Check input n_features = X.shape[1] if self.fit_intercept: w0 = np.zeros(n_features + 1) else: w0 = np.zeros(n_features) if self.solver == 'ga': #TODO: add n_jobs res = GeneticAlgorithmOptimizer(_logistic_cost_loss, w0.shape[0], iters=self.max_iter, type_='cont', n_chromosomes=100, per_mutations=0.25, n_elite=10, fargs=(X, y, cost_mat, 1. / self.C), range_=(-5, 5), n_jobs=1, verbose=self.verbose) res.fit() elif self.solver == 'bfgs': if self.verbose > 0: disp = True else: disp = False res = minimize(_logistic_cost_loss, w0, method='BFGS', args=(X, y, cost_mat, 1. / self.C), tol=self.tol, options={'maxiter': self.max_iter, 'disp': disp}) if self.fit_intercept: self.coef_ = res.x[:-1] self.intercept_ = res.x[-1] else: self.coef_ = res.x def predict_proba(self, X): """Probability estimates. The returned estimates. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- T : array-like, shape = [n_samples, 2] Returns the probability of the sample for each class in the model. """ y_prob = np.zeros((X.shape[0], 2)) y_prob[:, 1] = _sigmoid(np.dot(X, self.coef_) + self.intercept_) y_prob[:, 0] = 1 - y_prob[:, 1] return y_prob def predict(self, X, cut_point=0.5): """Predicted class. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- T : array-like, shape = [n_samples] Returns the prediction of the sample.. """ return np.floor(self.predict_proba(X)[:, 1] + (1 - cut_point))
bsd-3-clause
LeBarbouze/tunacell
scripts/univariate-analysis-2.py
1
10791
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ script: univariate-analysis-2.py followinf univariate-analysis.py, used to explore more features of univariate analysis In this script we show how to load/compute univariate analysis on other types of observables, and how to build good-looking autocorrelation functions by using the stationary hypothesis, where only time differences matter, which in practice increases the effective sample size. """ from __future__ import print_function from builtins import input import argparse import time from tqdm import tqdm import matplotlib.pyplot as plt from tunacell import Experiment, Observable, FilterSet from tunacell.base.observable import FunctionalObservable from tunacell.filters.cells import FilterCellIDparity from tunacell.stats.api import (compute_univariate, load_univariate, compute_stationary, load_stationary, NoValidTimes) from tunacell.stats.single import UnivariateIOError, StationaryUnivariateIOError from tunacell.stats.utils import Regions, CompuParams from tunacell.plotting.dynamics import plot_onepoint, plot_twopoints, plot_stationary # close all open plots plt.close('all') # Arguments argparser = argparse.ArgumentParser() argparser.add_argument('-e', '--experiment', type=str, help='Path to experiment root folder', default='~/tmptunacell/simutest') argparser.add_argument('-i', '--interactive', help='Ask user to press Enter between parts', action='store_true') argparser.add_argument('--time', type=float, help='Time per figure when non-interactive mode is on', default=3) args = argparser.parse_args() single_plot_timing = args.time msg = ('==============tunacell=tutorial==============\n' '== ==\n' '== Univariate analysis (2/2) ==\n' '== ==\n' '== This tutorial shows more details about ==\n' '== the univariate analysis (statistics of ==\n' '== single, dynamic observable): ==\n' '== * import/export of results ==\n' '== * details of stationary analysis ==\n' '== * time-lapse, cell cycle observables ==\n' '== (refer to comments in code to get more ==\n' '== details) ==\n' '== ==\n' '==============tunacell=tutorial==============\n') print(msg) print() # ============================================================================= # We start with the same settings as in univariate-analysis.py. # We first load the univariate analysis that we performed, and exported # in univariate-anbalysis.py (please run that script before starting this one) # ============================================================================= msg = 'Loading experiment with evenID condition (from part 1/2)' dashes = len(msg) * '*' print(msg + '\n' + dashes) # define the exp instance, no filter applied path_to_exp = args.experiment exp = Experiment(path_to_exp) # define a condition even = FilterCellIDparity('even') condition = FilterSet(label='evenID', filtercell=even) ou = Observable(name='exact-growth-rate', raw='ou') # Reference values md = exp.metadata params = md['ornstein_uhlenbeck_params'] ref_mean = params['target'] ref_var = params['noise']/(2 * params['spring']) ref_decayrate = params['spring'] print('Loading univariate results (computed and exported in part 1/2)') # loading univariate analysis for the ou observable univariate = load_univariate(exp, ou, cset=[condition, ]) # ============================================================================= # The last command would raise an exception of type UnivariateIOError if # computations had not been exported before. We can use this property # to try loading results, and if it fails, start the computation. # Below we do so for a few other observables # ============================================================================= # TIME-LAPSE OBSERVABLES (time-series per cell) print('Defining a bunch of observables, time-lapse, and cell-cycle') # local estimate of growth rate by using the differentiation of size measurement # (the raw column 'exp_ou_int' plays the role of cell size in our simulations) gr = Observable(name='approx-growth-rate', raw='exp_ou_int', differentiate=True, scale='log', local_fit=True, time_window=15.) # dynamic, functional observable: twice the growth rate ou2 = FunctionalObservable(name='double-growth-rate', f=lambda x : 2 * x, observables=[ou, ]) # time-aligned upon root cell division for size analysis # fixing tref allows to align timeseries to a common origin; the 'root' option # means that it will be aligned to each colony root cell division time size = Observable(name='size', raw='exp_ou_int', tref='root') continuous_obs = [ou, gr, ou2, size] # SOME CELL-CYCLE TYPE OBSERVABLES (one value per cell) # cell-cycle average growth rate average_gr = Observable(name='average-growth-rate', raw='ou', differentiate=False, scale='linear', local_fit=False, mode='average', timing='g') # size at cell division division_size = Observable(name='division-size', raw='exp_ou_int', differentiate=False, scale='log', local_fit=False, mode='division', timing='g') # increase in cell size timed at division time increase = Observable(name='added-size', raw='exp_ou_int', mode='net-increase-additive', timing='d') cycle_obs = [average_gr, division_size, increase] # Start computations univariates_store = {} figs = [] msg = 'Computing dynamic univariate statistics...' dashes = len(msg) * '*' print(msg + '\n' + dashes) for obs in continuous_obs + cycle_obs: print('* {} ...'.format(obs.name)) try: univ = load_univariate(exp, obs, cset=[condition, ]) except UnivariateIOError: univ = compute_univariate(exp, obs, cset=[condition, ]) univ.export_text() # save as text files # store univariate object in a dic indexed by observable univariates_store[obs] = univ # some options for plotting functions trefs = [40., 80., 150.] grefs = [1, 2] if obs in [ou, gr]: kwargs = {'mean_ref': ref_mean, 'var_ref': ref_var} kwargs2 = {'show_exp_decay': ref_decayrate, 'trefs': trefs} elif obs in [ou2, ]: kwargs = {'mean_ref': 2 * ref_mean, 'var_ref': 4 * ref_var} kwargs2 = {'show_exp_decay': ref_decayrate, 'trefs': trefs} elif obs in [size, increase]: kwargs = {} kwargs2 = {'trefs': trefs} elif obs in [average_gr, ]: kwargs = {'mean_ref': ref_mean} kwargs2 = {'trefs': grefs} else: kwargs = {} kwargs2 = {'trefs': grefs} # print('Ok') fig = plot_onepoint(univ, show_ci=True, save=True, verbose=False, **kwargs) fig.show() figs.append(fig) fig2 = plot_twopoints(univ, save=True, verbose=False, **kwargs2) # figs.append(fig2) # commented: too much figures if args.interactive: ans = input('Press Enter to close these figures and proceed to stationary autocorrelation analysis') else: for seconds in tqdm(range(10*len(figs)), desc='waiting'): time.sleep(single_plot_timing/10) plt.close('all') # ============================================================================= # A look at the onepoint functions allows the user to identify regions of time # where the process looks stationary. There is a function to define such # regions, and in fact, we already use one in the previous computations, # defined by default: the region 'ALL' that comprises all time values. # Here we mention the used region explicitely, and we stick to the 'ALL' # region since we find the process stationary on the entire time course # ============================================================================= regions = Regions(exp) regions.reset() # eliminate all regions except 'ALL' steady_region = regions.get('ALL') # and we need to use some computation options (more on that elsewhere) # define computation options options = CompuParams() # leaving to default is safe # ============================================================================= # Now we proceed in the same way: try to load, if it fails, compute. # We call the plotting function accordingly. # ============================================================================= msg = 'Computing stationary autocorrelation functions...' dashes = len(msg) * '*' print(msg + '\n' + dashes) figs = [] for obs in continuous_obs + cycle_obs: print('* {} ...'.format(obs.name)) # need the univariate object to compute stationary statistics univ = univariates_store[obs] try: stat = load_stationary(univ, steady_region, options) except StationaryUnivariateIOError: try: stat = compute_stationary(univ, steady_region, options) stat.export_text() # save as text files except NoValidTimes: stat = None # print('Ok') # plotting features if obs in [ou, gr, ou2]: kwargs = {'show_exp_decay': ref_decayrate} else: kwargs = {} if stat is not None: fig = plot_stationary(stat, save=True, verbose=False, **kwargs) fig.show() figs.append(fig) if args.interactive: ans = input('Press Enter to close these figures and proceed') else: for seconds in tqdm(range(10*len(figs)), desc='waiting'): time.sleep(single_plot_timing/10) plt.close('all') # ============================================================================= # For the sake of demonstration, we define here another, smaller region # ============================================================================= msg = 'Selecting a smaller region of time' dashes = len(msg) * '*' print(msg + '\n' + dashes) regions.add(name='beginning', tmin=0., tmax=100.) reg = regions.get('beginning') # we just start the computation for exact-growth-rate univ = univariates_store[ou] try: stat = load_stationary(univ, reg, options) except StationaryUnivariateIOError: stat = compute_stationary(univ, reg, options) stat.export_text() fig = plot_stationary(stat, save=True, verbose=False, show_exp_decay=ref_decayrate) fig.show() if args.interactive: ans = input('Press Enter to close these figures and terminate script') else: for seconds in tqdm(range(10), desc='waiting'): time.sleep(single_plot_timing/10) plt.close('all')
mit
vsmolyakov/opt
bayes_opt/bayes_opt_sklearn.py
1
3486
import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from matplotlib import gridspec from sklearn.datasets import make_classification from sklearn.cross_validation import cross_val_score from sklearn.ensemble import RandomForestClassifier as RFC from sklearn.svm import SVC from bayes_opt import BayesianOptimization np.random.seed(0) # Load data set and target values data, target = make_classification( n_samples=1000, n_features=45, n_informative=12, n_redundant=7 ) def svccv(gamma): val = cross_val_score( SVC(gamma=gamma, random_state=0), data, target, 'f1', cv=2 ).mean() return val def rfccv(n_estimators, max_depth): val = cross_val_score( RFC(n_estimators=int(n_estimators), max_depth=int(max_depth), random_state=0 ), data, target, 'f1', cv=2 ).mean() return val def posterior(bo, x, xmin=-2, xmax=10): xmin, xmax = -2, 10 bo.gp.fit(bo.X, bo.Y) mu, sigma = bo.gp.predict(x, return_std=True) return mu, sigma def plot_gp(bo, x): fig = plt.figure(figsize=(16, 10)) fig.suptitle('Gaussian Process and Utility Function After {} Steps'.format(len(bo.X)), fontdict={'size':30}) gs = gridspec.GridSpec(2, 1, height_ratios=[3, 1]) axis = plt.subplot(gs[0]) acq = plt.subplot(gs[1]) mu, sigma = posterior(bo, x) axis.plot(bo.X.flatten(), bo.Y, 'D', markersize=8, label=u'Observations', color='r') axis.plot(x, mu, '--', color='k', label='Prediction') axis.fill(np.concatenate([x, x[::-1]]), np.concatenate([mu - 1.9600 * sigma, (mu + 1.9600 * sigma)[::-1]]), alpha=.6, fc='c', ec='None', label='95% confidence interval') axis.set_xlim((0, 0.1)) axis.set_ylim((None, None)) axis.set_ylabel('f(x)', fontdict={'size':20}) axis.set_xlabel('x', fontdict={'size':20}) utility = bo.util.utility(x, bo.gp, 0) acq.plot(x, utility, label='Utility Function', color='purple') acq.plot(x[np.argmax(utility)], np.max(utility), '*', markersize=15, label=u'Next Best Guess', markerfacecolor='gold', markeredgecolor='k', markeredgewidth=1) acq.set_xlim((0, 0.1)) acq.set_ylim((0, np.max(utility) + 0.5)) acq.set_ylabel('Utility', fontdict={'size':20}) acq.set_xlabel('x', fontdict={'size':20}) axis.legend() acq.legend() if __name__ == "__main__": gp_params = {"alpha": 1e-5} #SVM svcBO = BayesianOptimization(svccv, {'gamma': (0.00001, 0.1)}) svcBO.maximize(init_points=3, n_iter=4, **gp_params) #Random Forest rfcBO = BayesianOptimization( rfccv, {'n_estimators': (10, 300), 'max_depth': (2, 10) } ) rfcBO.explore({'max_depth': [2, 4, 6], 'n_estimators': [64, 128, 256]}) rfcBO.maximize(init_points=4, n_iter=4, **gp_params) print('Final Results') print('SVC: %f' % svcBO.res['max']['max_val']) print('RFC: %f' % rfcBO.res['max']['max_val']) #visualize results x = np.linspace(0.00001,0.1,64).reshape(-1,1) plot_gp(svcBO,x) plt.show() rfc_X = map(lambda x: round(x,0), rfcBO.X[:,0]) rfc_Y = map(lambda x: round(x,0), rfcBO.X[:,1]) data = pd.DataFrame(data={'n_est':rfc_X,'max_depth':rfc_Y,'score':rfcBO.Y}) data = data.pivot(index='n_est', columns='max_depth', values='score') sns.heatmap(data) plt.show()
mit
yavalvas/yav_com
build/matplotlib/doc/utils/pylab_names.py
4
1632
from __future__ import print_function """ autogenerate some tables for pylab namespace """ from pylab import * d = locals() keys = d.keys() keys.sort() modd = dict() for k in keys: o = d[k] if not callable(o): continue doc = getattr(o, '__doc__', None) if doc is not None: doc = ' - '.join([line for line in doc.split('\n') if line.strip()][:2]) mod = getattr(o, '__module__', None) if mod is None: mod = 'unknown' if mod is not None: if mod.startswith('matplotlib'): if k[0].isupper(): k = ':class:`~%s.%s`'%(mod, k) else: k = ':func:`~%s.%s`'%(mod, k) mod = ':mod:`%s`'%mod elif mod.startswith('numpy'): #k = '`%s <%s>`_'%(k, 'http://scipy.org/Numpy_Example_List_With_Doc#%s'%k) k = '`%s <%s>`_'%(k, 'http://sd-2116.dedibox.fr/pydocweb/doc/%s.%s'%(mod, k)) if doc is None: doc = 'TODO' mod, k, doc = mod.strip(), k.strip(), doc.strip()[:80] modd.setdefault(mod, []).append((k, doc)) mods = modd.keys() mods.sort() for mod in mods: border = '*'*len(mod) print(mod) print(border) print() funcs, docs = zip(*modd[mod]) maxfunc = max([len(f) for f in funcs]) maxdoc = max(40, max([len(d) for d in docs]) ) border = ' '.join(['='*maxfunc, '='*maxdoc]) print(border) print(' '.join(['symbol'.ljust(maxfunc), 'description'.ljust(maxdoc)])) print(border) for func, doc in modd[mod]: row = ' '.join([func.ljust(maxfunc), doc.ljust(maxfunc)]) print(row) print(border) print() #break
mit
akhilaananthram/nupic.research
sequence_prediction/continuous_sequence/processNN5dataset.py
1
1892
# ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2015, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- import pandas as pd import csv def saveSeriesToCSV(fileName, dataSet): outputFile = open(fileName,"w") csvWriter = csv.writer(outputFile) csvWriter.writerow(['date', 'data']) csvWriter.writerow(['datetime', 'float']) csvWriter.writerow(['T', '']) for r in range(len(dataSet)): csvWriter.writerow([str(dataSet.index[r]), dataSet[r]]) outputFile.close() df = pd.read_excel('./data/NN5dataset.xlsx', header=0, skiprows=[1, 2, 3], index_col=0) (numRec, numFile) = df.shape numRecTrain = 735 # break into series and train/test dataset for i in range(numFile): dataSetName = df.columns[i] print " save data: ", dataSetName dataSet = pd.Series(df[dataSetName]) trainfileName = './data/NN5/' + dataSetName + '.csv' testfileName = './data/NN5/' + dataSetName + '_cont.csv' saveSeriesToCSV(trainfileName, dataSet[:numRecTrain]) saveSeriesToCSV(testfileName, dataSet[numRecTrain:])
gpl-3.0
nmayorov/scikit-learn
sklearn/grid_search.py
8
38406
""" The :mod:`sklearn.grid_search` includes utilities to fine-tune the parameters of an estimator. """ from __future__ import print_function # Author: Alexandre Gramfort <[email protected]>, # Gael Varoquaux <[email protected]> # Andreas Mueller <[email protected]> # Olivier Grisel <[email protected]> # License: BSD 3 clause from abc import ABCMeta, abstractmethod from collections import Mapping, namedtuple, Sized from functools import partial, reduce from itertools import product import operator import warnings import numpy as np from .base import BaseEstimator, is_classifier, clone from .base import MetaEstimatorMixin from .cross_validation import check_cv from .cross_validation import _fit_and_score from .externals.joblib import Parallel, delayed from .externals import six from .utils import check_random_state from .utils.random import sample_without_replacement from .utils.validation import _num_samples, indexable from .utils.metaestimators import if_delegate_has_method from .metrics.scorer import check_scoring from .exceptions import ChangedBehaviorWarning __all__ = ['GridSearchCV', 'ParameterGrid', 'fit_grid_point', 'ParameterSampler', 'RandomizedSearchCV'] warnings.warn("This module has been deprecated in favor of the " "model_selection module into which all the refactored classes " "and functions are moved. This module will be removed in 0.20.", DeprecationWarning) class ParameterGrid(object): """Grid of parameters with a discrete number of values for each. Can be used to iterate over parameter value combinations with the Python built-in function iter. Read more in the :ref:`User Guide <grid_search>`. Parameters ---------- param_grid : dict of string to sequence, or sequence of such The parameter grid to explore, as a dictionary mapping estimator parameters to sequences of allowed values. An empty dict signifies default parameters. A sequence of dicts signifies a sequence of grids to search, and is useful to avoid exploring parameter combinations that make no sense or have no effect. See the examples below. Examples -------- >>> from sklearn.grid_search import ParameterGrid >>> param_grid = {'a': [1, 2], 'b': [True, False]} >>> list(ParameterGrid(param_grid)) == ( ... [{'a': 1, 'b': True}, {'a': 1, 'b': False}, ... {'a': 2, 'b': True}, {'a': 2, 'b': False}]) True >>> grid = [{'kernel': ['linear']}, {'kernel': ['rbf'], 'gamma': [1, 10]}] >>> list(ParameterGrid(grid)) == [{'kernel': 'linear'}, ... {'kernel': 'rbf', 'gamma': 1}, ... {'kernel': 'rbf', 'gamma': 10}] True >>> ParameterGrid(grid)[1] == {'kernel': 'rbf', 'gamma': 1} True See also -------- :class:`GridSearchCV`: uses ``ParameterGrid`` to perform a full parallelized parameter search. """ def __init__(self, param_grid): if isinstance(param_grid, Mapping): # wrap dictionary in a singleton list to support either dict # or list of dicts param_grid = [param_grid] self.param_grid = param_grid def __iter__(self): """Iterate over the points in the grid. Returns ------- params : iterator over dict of string to any Yields dictionaries mapping each estimator parameter to one of its allowed values. """ for p in self.param_grid: # Always sort the keys of a dictionary, for reproducibility items = sorted(p.items()) if not items: yield {} else: keys, values = zip(*items) for v in product(*values): params = dict(zip(keys, v)) yield params def __len__(self): """Number of points on the grid.""" # Product function that can handle iterables (np.product can't). product = partial(reduce, operator.mul) return sum(product(len(v) for v in p.values()) if p else 1 for p in self.param_grid) def __getitem__(self, ind): """Get the parameters that would be ``ind``th in iteration Parameters ---------- ind : int The iteration index Returns ------- params : dict of string to any Equal to list(self)[ind] """ # This is used to make discrete sampling without replacement memory # efficient. for sub_grid in self.param_grid: # XXX: could memoize information used here if not sub_grid: if ind == 0: return {} else: ind -= 1 continue # Reverse so most frequent cycling parameter comes first keys, values_lists = zip(*sorted(sub_grid.items())[::-1]) sizes = [len(v_list) for v_list in values_lists] total = np.product(sizes) if ind >= total: # Try the next grid ind -= total else: out = {} for key, v_list, n in zip(keys, values_lists, sizes): ind, offset = divmod(ind, n) out[key] = v_list[offset] return out raise IndexError('ParameterGrid index out of range') class ParameterSampler(object): """Generator on parameters sampled from given distributions. Non-deterministic iterable over random candidate combinations for hyper- parameter search. If all parameters are presented as a list, sampling without replacement is performed. If at least one parameter is given as a distribution, sampling with replacement is used. It is highly recommended to use continuous distributions for continuous parameters. Note that as of SciPy 0.12, the ``scipy.stats.distributions`` do not accept a custom RNG instance and always use the singleton RNG from ``numpy.random``. Hence setting ``random_state`` will not guarantee a deterministic iteration whenever ``scipy.stats`` distributions are used to define the parameter search space. Read more in the :ref:`User Guide <grid_search>`. Parameters ---------- param_distributions : dict Dictionary where the keys are parameters and values are distributions from which a parameter is to be sampled. Distributions either have to provide a ``rvs`` function to sample from them, or can be given as a list of values, where a uniform distribution is assumed. n_iter : integer Number of parameter settings that are produced. random_state : int or RandomState Pseudo random number generator state used for random uniform sampling from lists of possible values instead of scipy.stats distributions. Returns ------- params : dict of string to any **Yields** dictionaries mapping each estimator parameter to as sampled value. Examples -------- >>> from sklearn.grid_search import ParameterSampler >>> from scipy.stats.distributions import expon >>> import numpy as np >>> np.random.seed(0) >>> param_grid = {'a':[1, 2], 'b': expon()} >>> param_list = list(ParameterSampler(param_grid, n_iter=4)) >>> rounded_list = [dict((k, round(v, 6)) for (k, v) in d.items()) ... for d in param_list] >>> rounded_list == [{'b': 0.89856, 'a': 1}, ... {'b': 0.923223, 'a': 1}, ... {'b': 1.878964, 'a': 2}, ... {'b': 1.038159, 'a': 2}] True """ def __init__(self, param_distributions, n_iter, random_state=None): self.param_distributions = param_distributions self.n_iter = n_iter self.random_state = random_state def __iter__(self): # check if all distributions are given as lists # in this case we want to sample without replacement all_lists = np.all([not hasattr(v, "rvs") for v in self.param_distributions.values()]) rnd = check_random_state(self.random_state) if all_lists: # look up sampled parameter settings in parameter grid param_grid = ParameterGrid(self.param_distributions) grid_size = len(param_grid) if grid_size < self.n_iter: raise ValueError( "The total space of parameters %d is smaller " "than n_iter=%d." % (grid_size, self.n_iter) + " For exhaustive searches, use GridSearchCV.") for i in sample_without_replacement(grid_size, self.n_iter, random_state=rnd): yield param_grid[i] else: # Always sort the keys of a dictionary, for reproducibility items = sorted(self.param_distributions.items()) for _ in six.moves.range(self.n_iter): params = dict() for k, v in items: if hasattr(v, "rvs"): params[k] = v.rvs() else: params[k] = v[rnd.randint(len(v))] yield params def __len__(self): """Number of points that will be sampled.""" return self.n_iter def fit_grid_point(X, y, estimator, parameters, train, test, scorer, verbose, error_score='raise', **fit_params): """Run fit on one set of parameters. Parameters ---------- X : array-like, sparse matrix or list Input data. y : array-like or None Targets for input data. estimator : estimator object A object of that type is instantiated for each grid point. This is assumed to implement the scikit-learn estimator interface. Either estimator needs to provide a ``score`` function, or ``scoring`` must be passed. parameters : dict Parameters to be set on estimator for this grid point. train : ndarray, dtype int or bool Boolean mask or indices for training set. test : ndarray, dtype int or bool Boolean mask or indices for test set. scorer : callable or None. If provided must be a scorer callable object / function with signature ``scorer(estimator, X, y)``. verbose : int Verbosity level. **fit_params : kwargs Additional parameter passed to the fit function of the estimator. error_score : 'raise' (default) or numeric Value to assign to the score if an error occurs in estimator fitting. If set to 'raise', the error is raised. If a numeric value is given, FitFailedWarning is raised. This parameter does not affect the refit step, which will always raise the error. Returns ------- score : float Score of this parameter setting on given training / test split. parameters : dict The parameters that have been evaluated. n_samples_test : int Number of test samples in this split. """ score, n_samples_test, _ = _fit_and_score(estimator, X, y, scorer, train, test, verbose, parameters, fit_params, error_score) return score, parameters, n_samples_test def _check_param_grid(param_grid): if hasattr(param_grid, 'items'): param_grid = [param_grid] for p in param_grid: for v in p.values(): if isinstance(v, np.ndarray) and v.ndim > 1: raise ValueError("Parameter array should be one-dimensional.") check = [isinstance(v, k) for k in (list, tuple, np.ndarray)] if True not in check: raise ValueError("Parameter values should be a list.") if len(v) == 0: raise ValueError("Parameter values should be a non-empty " "list.") class _CVScoreTuple (namedtuple('_CVScoreTuple', ('parameters', 'mean_validation_score', 'cv_validation_scores'))): # A raw namedtuple is very memory efficient as it packs the attributes # in a struct to get rid of the __dict__ of attributes in particular it # does not copy the string for the keys on each instance. # By deriving a namedtuple class just to introduce the __repr__ method we # would also reintroduce the __dict__ on the instance. By telling the # Python interpreter that this subclass uses static __slots__ instead of # dynamic attributes. Furthermore we don't need any additional slot in the # subclass so we set __slots__ to the empty tuple. __slots__ = () def __repr__(self): """Simple custom repr to summarize the main info""" return "mean: {0:.5f}, std: {1:.5f}, params: {2}".format( self.mean_validation_score, np.std(self.cv_validation_scores), self.parameters) class BaseSearchCV(six.with_metaclass(ABCMeta, BaseEstimator, MetaEstimatorMixin)): """Base class for hyper parameter search with cross-validation.""" @abstractmethod def __init__(self, estimator, scoring=None, fit_params=None, n_jobs=1, iid=True, refit=True, cv=None, verbose=0, pre_dispatch='2*n_jobs', error_score='raise'): self.scoring = scoring self.estimator = estimator self.n_jobs = n_jobs self.fit_params = fit_params if fit_params is not None else {} self.iid = iid self.refit = refit self.cv = cv self.verbose = verbose self.pre_dispatch = pre_dispatch self.error_score = error_score @property def _estimator_type(self): return self.estimator._estimator_type def score(self, X, y=None): """Returns the score on the given data, if the estimator has been refit. This uses the score defined by ``scoring`` where provided, and the ``best_estimator_.score`` method otherwise. Parameters ---------- X : array-like, shape = [n_samples, n_features] Input data, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] or [n_samples, n_output], optional Target relative to X for classification or regression; None for unsupervised learning. Returns ------- score : float Notes ----- * The long-standing behavior of this method changed in version 0.16. * It no longer uses the metric provided by ``estimator.score`` if the ``scoring`` parameter was set when fitting. """ if self.scorer_ is None: raise ValueError("No score function explicitly defined, " "and the estimator doesn't provide one %s" % self.best_estimator_) if self.scoring is not None and hasattr(self.best_estimator_, 'score'): warnings.warn("The long-standing behavior to use the estimator's " "score function in {0}.score has changed. The " "scoring parameter is now used." "".format(self.__class__.__name__), ChangedBehaviorWarning) return self.scorer_(self.best_estimator_, X, y) @if_delegate_has_method(delegate='estimator') def predict(self, X): """Call predict on the estimator with the best found parameters. Only available if ``refit=True`` and the underlying estimator supports ``predict``. Parameters ----------- X : indexable, length n_samples Must fulfill the input assumptions of the underlying estimator. """ return self.best_estimator_.predict(X) @if_delegate_has_method(delegate='estimator') def predict_proba(self, X): """Call predict_proba on the estimator with the best found parameters. Only available if ``refit=True`` and the underlying estimator supports ``predict_proba``. Parameters ----------- X : indexable, length n_samples Must fulfill the input assumptions of the underlying estimator. """ return self.best_estimator_.predict_proba(X) @if_delegate_has_method(delegate='estimator') def predict_log_proba(self, X): """Call predict_log_proba on the estimator with the best found parameters. Only available if ``refit=True`` and the underlying estimator supports ``predict_log_proba``. Parameters ----------- X : indexable, length n_samples Must fulfill the input assumptions of the underlying estimator. """ return self.best_estimator_.predict_log_proba(X) @if_delegate_has_method(delegate='estimator') def decision_function(self, X): """Call decision_function on the estimator with the best found parameters. Only available if ``refit=True`` and the underlying estimator supports ``decision_function``. Parameters ----------- X : indexable, length n_samples Must fulfill the input assumptions of the underlying estimator. """ return self.best_estimator_.decision_function(X) @if_delegate_has_method(delegate='estimator') def transform(self, X): """Call transform on the estimator with the best found parameters. Only available if the underlying estimator supports ``transform`` and ``refit=True``. Parameters ----------- X : indexable, length n_samples Must fulfill the input assumptions of the underlying estimator. """ return self.best_estimator_.transform(X) @if_delegate_has_method(delegate='estimator') def inverse_transform(self, Xt): """Call inverse_transform on the estimator with the best found parameters. Only available if the underlying estimator implements ``inverse_transform`` and ``refit=True``. Parameters ----------- Xt : indexable, length n_samples Must fulfill the input assumptions of the underlying estimator. """ return self.best_estimator_.transform(Xt) def _fit(self, X, y, parameter_iterable): """Actual fitting, performing the search over parameters.""" estimator = self.estimator cv = self.cv self.scorer_ = check_scoring(self.estimator, scoring=self.scoring) n_samples = _num_samples(X) X, y = indexable(X, y) if y is not None: if len(y) != n_samples: raise ValueError('Target variable (y) has a different number ' 'of samples (%i) than data (X: %i samples)' % (len(y), n_samples)) cv = check_cv(cv, X, y, classifier=is_classifier(estimator)) if self.verbose > 0: if isinstance(parameter_iterable, Sized): n_candidates = len(parameter_iterable) print("Fitting {0} folds for each of {1} candidates, totalling" " {2} fits".format(len(cv), n_candidates, n_candidates * len(cv))) base_estimator = clone(self.estimator) pre_dispatch = self.pre_dispatch out = Parallel( n_jobs=self.n_jobs, verbose=self.verbose, pre_dispatch=pre_dispatch )( delayed(_fit_and_score)(clone(base_estimator), X, y, self.scorer_, train, test, self.verbose, parameters, self.fit_params, return_parameters=True, error_score=self.error_score) for parameters in parameter_iterable for train, test in cv) # Out is a list of triplet: score, estimator, n_test_samples n_fits = len(out) n_folds = len(cv) scores = list() grid_scores = list() for grid_start in range(0, n_fits, n_folds): n_test_samples = 0 score = 0 all_scores = [] for this_score, this_n_test_samples, _, parameters in \ out[grid_start:grid_start + n_folds]: all_scores.append(this_score) if self.iid: this_score *= this_n_test_samples n_test_samples += this_n_test_samples score += this_score if self.iid: score /= float(n_test_samples) else: score /= float(n_folds) scores.append((score, parameters)) # TODO: shall we also store the test_fold_sizes? grid_scores.append(_CVScoreTuple( parameters, score, np.array(all_scores))) # Store the computed scores self.grid_scores_ = grid_scores # Find the best parameters by comparing on the mean validation score: # note that `sorted` is deterministic in the way it breaks ties best = sorted(grid_scores, key=lambda x: x.mean_validation_score, reverse=True)[0] self.best_params_ = best.parameters self.best_score_ = best.mean_validation_score if self.refit: # fit the best estimator using the entire dataset # clone first to work around broken estimators best_estimator = clone(base_estimator).set_params( **best.parameters) if y is not None: best_estimator.fit(X, y, **self.fit_params) else: best_estimator.fit(X, **self.fit_params) self.best_estimator_ = best_estimator return self class GridSearchCV(BaseSearchCV): """Exhaustive search over specified parameter values for an estimator. Important members are fit, predict. GridSearchCV implements a "fit" and a "score" method. It also implements "predict", "predict_proba", "decision_function", "transform" and "inverse_transform" if they are implemented in the estimator used. The parameters of the estimator used to apply these methods are optimized by cross-validated grid-search over a parameter grid. Read more in the :ref:`User Guide <grid_search>`. Parameters ---------- estimator : estimator object. A object of that type is instantiated for each grid point. This is assumed to implement the scikit-learn estimator interface. Either estimator needs to provide a ``score`` function, or ``scoring`` must be passed. param_grid : dict or list of dictionaries Dictionary with parameters names (string) as keys and lists of parameter settings to try as values, or a list of such dictionaries, in which case the grids spanned by each dictionary in the list are explored. This enables searching over any sequence of parameter settings. scoring : string, callable or None, default=None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. If ``None``, the ``score`` method of the estimator is used. fit_params : dict, optional Parameters to pass to the fit method. n_jobs : int, default=1 Number of jobs to run in parallel. .. versionchanged:: 0.17 Upgraded to joblib 0.9.3. pre_dispatch : int, or string, optional Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be: - None, in which case all the jobs are immediately created and spawned. Use this for lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs - An int, giving the exact number of total jobs that are spawned - A string, giving an expression as a function of n_jobs, as in '2*n_jobs' iid : boolean, default=True If True, the data is assumed to be identically distributed across the folds, and the loss minimized is the total loss per sample, and not the mean loss across the folds. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, if the estimator is a classifier and ``y`` is either binary or multiclass, :class:`StratifiedKFold` used. In all other cases, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. refit : boolean, default=True Refit the best estimator with the entire dataset. If "False", it is impossible to make predictions using this GridSearchCV instance after fitting. verbose : integer Controls the verbosity: the higher, the more messages. error_score : 'raise' (default) or numeric Value to assign to the score if an error occurs in estimator fitting. If set to 'raise', the error is raised. If a numeric value is given, FitFailedWarning is raised. This parameter does not affect the refit step, which will always raise the error. Examples -------- >>> from sklearn import svm, grid_search, datasets >>> iris = datasets.load_iris() >>> parameters = {'kernel':('linear', 'rbf'), 'C':[1, 10]} >>> svr = svm.SVC() >>> clf = grid_search.GridSearchCV(svr, parameters) >>> clf.fit(iris.data, iris.target) ... # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS GridSearchCV(cv=None, error_score=..., estimator=SVC(C=1.0, cache_size=..., class_weight=..., coef0=..., decision_function_shape=None, degree=..., gamma=..., kernel='rbf', max_iter=-1, probability=False, random_state=None, shrinking=True, tol=..., verbose=False), fit_params={}, iid=..., n_jobs=1, param_grid=..., pre_dispatch=..., refit=..., scoring=..., verbose=...) Attributes ---------- grid_scores_ : list of named tuples Contains scores for all parameter combinations in param_grid. Each entry corresponds to one parameter setting. Each named tuple has the attributes: * ``parameters``, a dict of parameter settings * ``mean_validation_score``, the mean score over the cross-validation folds * ``cv_validation_scores``, the list of scores for each fold best_estimator_ : estimator Estimator that was chosen by the search, i.e. estimator which gave highest score (or smallest loss if specified) on the left out data. Not available if refit=False. best_score_ : float Score of best_estimator on the left out data. best_params_ : dict Parameter setting that gave the best results on the hold out data. scorer_ : function Scorer function used on the held out data to choose the best parameters for the model. Notes ------ The parameters selected are those that maximize the score of the left out data, unless an explicit score is passed in which case it is used instead. If `n_jobs` was set to a value higher than one, the data is copied for each point in the grid (and not `n_jobs` times). This is done for efficiency reasons if individual jobs take very little time, but may raise errors if the dataset is large and not enough memory is available. A workaround in this case is to set `pre_dispatch`. Then, the memory is copied only `pre_dispatch` many times. A reasonable value for `pre_dispatch` is `2 * n_jobs`. See Also --------- :class:`ParameterGrid`: generates all the combinations of a an hyperparameter grid. :func:`sklearn.cross_validation.train_test_split`: utility function to split the data into a development set usable for fitting a GridSearchCV instance and an evaluation set for its final evaluation. :func:`sklearn.metrics.make_scorer`: Make a scorer from a performance metric or loss function. """ def __init__(self, estimator, param_grid, scoring=None, fit_params=None, n_jobs=1, iid=True, refit=True, cv=None, verbose=0, pre_dispatch='2*n_jobs', error_score='raise'): super(GridSearchCV, self).__init__( estimator, scoring, fit_params, n_jobs, iid, refit, cv, verbose, pre_dispatch, error_score) self.param_grid = param_grid _check_param_grid(param_grid) def fit(self, X, y=None): """Run fit with all sets of parameters. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] or [n_samples, n_output], optional Target relative to X for classification or regression; None for unsupervised learning. """ return self._fit(X, y, ParameterGrid(self.param_grid)) class RandomizedSearchCV(BaseSearchCV): """Randomized search on hyper parameters. RandomizedSearchCV implements a "fit" and a "score" method. It also implements "predict", "predict_proba", "decision_function", "transform" and "inverse_transform" if they are implemented in the estimator used. The parameters of the estimator used to apply these methods are optimized by cross-validated search over parameter settings. In contrast to GridSearchCV, not all parameter values are tried out, but rather a fixed number of parameter settings is sampled from the specified distributions. The number of parameter settings that are tried is given by n_iter. If all parameters are presented as a list, sampling without replacement is performed. If at least one parameter is given as a distribution, sampling with replacement is used. It is highly recommended to use continuous distributions for continuous parameters. Read more in the :ref:`User Guide <randomized_parameter_search>`. Parameters ---------- estimator : estimator object. A object of that type is instantiated for each grid point. This is assumed to implement the scikit-learn estimator interface. Either estimator needs to provide a ``score`` function, or ``scoring`` must be passed. param_distributions : dict Dictionary with parameters names (string) as keys and distributions or lists of parameters to try. Distributions must provide a ``rvs`` method for sampling (such as those from scipy.stats.distributions). If a list is given, it is sampled uniformly. n_iter : int, default=10 Number of parameter settings that are sampled. n_iter trades off runtime vs quality of the solution. scoring : string, callable or None, default=None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. If ``None``, the ``score`` method of the estimator is used. fit_params : dict, optional Parameters to pass to the fit method. n_jobs : int, default=1 Number of jobs to run in parallel. pre_dispatch : int, or string, optional Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be: - None, in which case all the jobs are immediately created and spawned. Use this for lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs - An int, giving the exact number of total jobs that are spawned - A string, giving an expression as a function of n_jobs, as in '2*n_jobs' iid : boolean, default=True If True, the data is assumed to be identically distributed across the folds, and the loss minimized is the total loss per sample, and not the mean loss across the folds. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, if the estimator is a classifier and ``y`` is either binary or multiclass, :class:`StratifiedKFold` used. In all other cases, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. refit : boolean, default=True Refit the best estimator with the entire dataset. If "False", it is impossible to make predictions using this RandomizedSearchCV instance after fitting. verbose : integer Controls the verbosity: the higher, the more messages. random_state : int or RandomState Pseudo random number generator state used for random uniform sampling from lists of possible values instead of scipy.stats distributions. error_score : 'raise' (default) or numeric Value to assign to the score if an error occurs in estimator fitting. If set to 'raise', the error is raised. If a numeric value is given, FitFailedWarning is raised. This parameter does not affect the refit step, which will always raise the error. Attributes ---------- grid_scores_ : list of named tuples Contains scores for all parameter combinations in param_grid. Each entry corresponds to one parameter setting. Each named tuple has the attributes: * ``parameters``, a dict of parameter settings * ``mean_validation_score``, the mean score over the cross-validation folds * ``cv_validation_scores``, the list of scores for each fold best_estimator_ : estimator Estimator that was chosen by the search, i.e. estimator which gave highest score (or smallest loss if specified) on the left out data. Not available if refit=False. best_score_ : float Score of best_estimator on the left out data. best_params_ : dict Parameter setting that gave the best results on the hold out data. Notes ----- The parameters selected are those that maximize the score of the held-out data, according to the scoring parameter. If `n_jobs` was set to a value higher than one, the data is copied for each parameter setting(and not `n_jobs` times). This is done for efficiency reasons if individual jobs take very little time, but may raise errors if the dataset is large and not enough memory is available. A workaround in this case is to set `pre_dispatch`. Then, the memory is copied only `pre_dispatch` many times. A reasonable value for `pre_dispatch` is `2 * n_jobs`. See Also -------- :class:`GridSearchCV`: Does exhaustive search over a grid of parameters. :class:`ParameterSampler`: A generator over parameter settings, constructed from param_distributions. """ def __init__(self, estimator, param_distributions, n_iter=10, scoring=None, fit_params=None, n_jobs=1, iid=True, refit=True, cv=None, verbose=0, pre_dispatch='2*n_jobs', random_state=None, error_score='raise'): self.param_distributions = param_distributions self.n_iter = n_iter self.random_state = random_state super(RandomizedSearchCV, self).__init__( estimator=estimator, scoring=scoring, fit_params=fit_params, n_jobs=n_jobs, iid=iid, refit=refit, cv=cv, verbose=verbose, pre_dispatch=pre_dispatch, error_score=error_score) def fit(self, X, y=None): """Run fit on the estimator with randomly drawn parameters. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vector, where n_samples in the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] or [n_samples, n_output], optional Target relative to X for classification or regression; None for unsupervised learning. """ sampled_params = ParameterSampler(self.param_distributions, self.n_iter, random_state=self.random_state) return self._fit(X, y, sampled_params)
bsd-3-clause
mikebenfield/scikit-learn
sklearn/mixture/dpgmm.py
25
35852
"""Bayesian Gaussian Mixture Models and Dirichlet Process Gaussian Mixture Models""" from __future__ import print_function # Author: Alexandre Passos ([email protected]) # Bertrand Thirion <[email protected]> # # Based on mixture.py by: # Ron Weiss <[email protected]> # Fabian Pedregosa <[email protected]> # # Important note for the deprecation cleaning of 0.20 : # All the function and classes of this file have been deprecated in 0.18. # When you remove this file please also remove the related files # - 'sklearn/mixture/gmm.py' # - 'sklearn/mixture/test_dpgmm.py' # - 'sklearn/mixture/test_gmm.py' import numpy as np from scipy.special import digamma as _digamma, gammaln as _gammaln from scipy import linalg from scipy.spatial.distance import cdist from ..externals.six.moves import xrange from ..utils import check_random_state, check_array, deprecated from ..utils.extmath import logsumexp, pinvh, squared_norm, stable_cumsum from ..utils.validation import check_is_fitted from .. import cluster from .gmm import _GMMBase @deprecated("The function digamma is deprecated in 0.18 and " "will be removed in 0.20. Use scipy.special.digamma instead.") def digamma(x): return _digamma(x + np.finfo(np.float32).eps) @deprecated("The function gammaln is deprecated in 0.18 and " "will be removed in 0.20. Use scipy.special.gammaln instead.") def gammaln(x): return _gammaln(x + np.finfo(np.float32).eps) @deprecated("The function log_normalize is deprecated in 0.18 and " "will be removed in 0.20.") def log_normalize(v, axis=0): """Normalized probabilities from unnormalized log-probabilites""" v = np.rollaxis(v, axis) v = v.copy() v -= v.max(axis=0) out = logsumexp(v) v = np.exp(v - out) v += np.finfo(np.float32).eps v /= np.sum(v, axis=0) return np.swapaxes(v, 0, axis) @deprecated("The function wishart_log_det is deprecated in 0.18 and " "will be removed in 0.20.") def wishart_log_det(a, b, detB, n_features): """Expected value of the log of the determinant of a Wishart The expected value of the logarithm of the determinant of a wishart-distributed random variable with the specified parameters.""" l = np.sum(digamma(0.5 * (a - np.arange(-1, n_features - 1)))) l += n_features * np.log(2) return l + detB @deprecated("The function wishart_logz is deprecated in 0.18 and " "will be removed in 0.20.") def wishart_logz(v, s, dets, n_features): "The logarithm of the normalization constant for the wishart distribution" z = 0. z += 0.5 * v * n_features * np.log(2) z += (0.25 * (n_features * (n_features - 1)) * np.log(np.pi)) z += 0.5 * v * np.log(dets) z += np.sum(gammaln(0.5 * (v - np.arange(n_features) + 1))) return z def _bound_wishart(a, B, detB): """Returns a function of the dof, scale matrix and its determinant used as an upper bound in variational approximation of the evidence""" n_features = B.shape[0] logprior = wishart_logz(a, B, detB, n_features) logprior -= wishart_logz(n_features, np.identity(n_features), 1, n_features) logprior += 0.5 * (a - 1) * wishart_log_det(a, B, detB, n_features) logprior += 0.5 * a * np.trace(B) return logprior ############################################################################## # Variational bound on the log likelihood of each class ############################################################################## def _sym_quad_form(x, mu, A): """helper function to calculate symmetric quadratic form x.T * A * x""" q = (cdist(x, mu[np.newaxis], "mahalanobis", VI=A) ** 2).reshape(-1) return q def _bound_state_log_lik(X, initial_bound, precs, means, covariance_type): """Update the bound with likelihood terms, for standard covariance types""" n_components, n_features = means.shape n_samples = X.shape[0] bound = np.empty((n_samples, n_components)) bound[:] = initial_bound if covariance_type in ['diag', 'spherical']: for k in range(n_components): d = X - means[k] bound[:, k] -= 0.5 * np.sum(d * d * precs[k], axis=1) elif covariance_type == 'tied': for k in range(n_components): bound[:, k] -= 0.5 * _sym_quad_form(X, means[k], precs) elif covariance_type == 'full': for k in range(n_components): bound[:, k] -= 0.5 * _sym_quad_form(X, means[k], precs[k]) return bound class _DPGMMBase(_GMMBase): """Variational Inference for the Infinite Gaussian Mixture Model. DPGMM stands for Dirichlet Process Gaussian Mixture Model, and it is an infinite mixture model with the Dirichlet Process as a prior distribution on the number of clusters. In practice the approximate inference algorithm uses a truncated distribution with a fixed maximum number of components, but almost always the number of components actually used depends on the data. Stick-breaking Representation of a Gaussian mixture model probability distribution. This class allows for easy and efficient inference of an approximate posterior distribution over the parameters of a Gaussian mixture model with a variable number of components (smaller than the truncation parameter n_components). Initialization is with normally-distributed means and identity covariance, for proper convergence. Read more in the :ref:`User Guide <dpgmm>`. Parameters ---------- n_components : int, default 1 Number of mixture components. covariance_type : string, default 'diag' String describing the type of covariance parameters to use. Must be one of 'spherical', 'tied', 'diag', 'full'. alpha : float, default 1 Real number representing the concentration parameter of the dirichlet process. Intuitively, the Dirichlet Process is as likely to start a new cluster for a point as it is to add that point to a cluster with alpha elements. A higher alpha means more clusters, as the expected number of clusters is ``alpha*log(N)``. tol : float, default 1e-3 Convergence threshold. n_iter : int, default 10 Maximum number of iterations to perform before convergence. params : string, default 'wmc' Controls which parameters are updated in the training process. Can contain any combination of 'w' for weights, 'm' for means, and 'c' for covars. init_params : string, default 'wmc' Controls which parameters are updated in the initialization process. Can contain any combination of 'w' for weights, 'm' for means, and 'c' for covars. Defaults to 'wmc'. verbose : int, default 0 Controls output verbosity. Attributes ---------- covariance_type : string String describing the type of covariance parameters used by the DP-GMM. Must be one of 'spherical', 'tied', 'diag', 'full'. n_components : int Number of mixture components. weights_ : array, shape (`n_components`,) Mixing weights for each mixture component. means_ : array, shape (`n_components`, `n_features`) Mean parameters for each mixture component. precs_ : array Precision (inverse covariance) parameters for each mixture component. The shape depends on `covariance_type`:: (`n_components`, 'n_features') if 'spherical', (`n_features`, `n_features`) if 'tied', (`n_components`, `n_features`) if 'diag', (`n_components`, `n_features`, `n_features`) if 'full' converged_ : bool True when convergence was reached in fit(), False otherwise. See Also -------- GMM : Finite Gaussian mixture model fit with EM VBGMM : Finite Gaussian mixture model fit with a variational algorithm, better for situations where there might be too little data to get a good estimate of the covariance matrix. """ def __init__(self, n_components=1, covariance_type='diag', alpha=1.0, random_state=None, tol=1e-3, verbose=0, min_covar=None, n_iter=10, params='wmc', init_params='wmc'): self.alpha = alpha super(_DPGMMBase, self).__init__(n_components, covariance_type, random_state=random_state, tol=tol, min_covar=min_covar, n_iter=n_iter, params=params, init_params=init_params, verbose=verbose) def _get_precisions(self): """Return precisions as a full matrix.""" if self.covariance_type == 'full': return self.precs_ elif self.covariance_type in ['diag', 'spherical']: return [np.diag(cov) for cov in self.precs_] elif self.covariance_type == 'tied': return [self.precs_] * self.n_components def _get_covars(self): return [pinvh(c) for c in self._get_precisions()] def _set_covars(self, covars): raise NotImplementedError("""The variational algorithm does not support setting the covariance parameters.""") def score_samples(self, X): """Return the likelihood of the data under the model. Compute the bound on log probability of X under the model and return the posterior distribution (responsibilities) of each mixture component for each element of X. This is done by computing the parameters for the mean-field of z for each observation. Parameters ---------- X : array_like, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point. Returns ------- logprob : array_like, shape (n_samples,) Log probabilities of each data point in X responsibilities : array_like, shape (n_samples, n_components) Posterior probabilities of each mixture component for each observation """ check_is_fitted(self, 'gamma_') X = check_array(X) if X.ndim == 1: X = X[:, np.newaxis] z = np.zeros((X.shape[0], self.n_components)) sd = digamma(self.gamma_.T[1] + self.gamma_.T[2]) dgamma1 = digamma(self.gamma_.T[1]) - sd dgamma2 = np.zeros(self.n_components) dgamma2[0] = digamma(self.gamma_[0, 2]) - digamma(self.gamma_[0, 1] + self.gamma_[0, 2]) for j in range(1, self.n_components): dgamma2[j] = dgamma2[j - 1] + digamma(self.gamma_[j - 1, 2]) dgamma2[j] -= sd[j - 1] dgamma = dgamma1 + dgamma2 # Free memory and developers cognitive load: del dgamma1, dgamma2, sd if self.covariance_type not in ['full', 'tied', 'diag', 'spherical']: raise NotImplementedError("This ctype is not implemented: %s" % self.covariance_type) p = _bound_state_log_lik(X, self._initial_bound + self.bound_prec_, self.precs_, self.means_, self.covariance_type) z = p + dgamma z = log_normalize(z, axis=-1) bound = np.sum(z * p, axis=-1) return bound, z def _update_concentration(self, z): """Update the concentration parameters for each cluster""" sz = np.sum(z, axis=0) self.gamma_.T[1] = 1. + sz self.gamma_.T[2].fill(0) for i in range(self.n_components - 2, -1, -1): self.gamma_[i, 2] = self.gamma_[i + 1, 2] + sz[i] self.gamma_.T[2] += self.alpha def _update_means(self, X, z): """Update the variational distributions for the means""" n_features = X.shape[1] for k in range(self.n_components): if self.covariance_type in ['spherical', 'diag']: num = np.sum(z.T[k].reshape((-1, 1)) * X, axis=0) num *= self.precs_[k] den = 1. + self.precs_[k] * np.sum(z.T[k]) self.means_[k] = num / den elif self.covariance_type in ['tied', 'full']: if self.covariance_type == 'tied': cov = self.precs_ else: cov = self.precs_[k] den = np.identity(n_features) + cov * np.sum(z.T[k]) num = np.sum(z.T[k].reshape((-1, 1)) * X, axis=0) num = np.dot(cov, num) self.means_[k] = linalg.lstsq(den, num)[0] def _update_precisions(self, X, z): """Update the variational distributions for the precisions""" n_features = X.shape[1] if self.covariance_type == 'spherical': self.dof_ = 0.5 * n_features * np.sum(z, axis=0) for k in range(self.n_components): # could be more memory efficient ? sq_diff = np.sum((X - self.means_[k]) ** 2, axis=1) self.scale_[k] = 1. self.scale_[k] += 0.5 * np.sum(z.T[k] * (sq_diff + n_features)) self.bound_prec_[k] = ( 0.5 * n_features * ( digamma(self.dof_[k]) - np.log(self.scale_[k]))) self.precs_ = np.tile(self.dof_ / self.scale_, [n_features, 1]).T elif self.covariance_type == 'diag': for k in range(self.n_components): self.dof_[k].fill(1. + 0.5 * np.sum(z.T[k], axis=0)) sq_diff = (X - self.means_[k]) ** 2 # see comment above self.scale_[k] = np.ones(n_features) + 0.5 * np.dot( z.T[k], (sq_diff + 1)) self.precs_[k] = self.dof_[k] / self.scale_[k] self.bound_prec_[k] = 0.5 * np.sum(digamma(self.dof_[k]) - np.log(self.scale_[k])) self.bound_prec_[k] -= 0.5 * np.sum(self.precs_[k]) elif self.covariance_type == 'tied': self.dof_ = 2 + X.shape[0] + n_features self.scale_ = (X.shape[0] + 1) * np.identity(n_features) for k in range(self.n_components): diff = X - self.means_[k] self.scale_ += np.dot(diff.T, z[:, k:k + 1] * diff) self.scale_ = pinvh(self.scale_) self.precs_ = self.dof_ * self.scale_ self.det_scale_ = linalg.det(self.scale_) self.bound_prec_ = 0.5 * wishart_log_det( self.dof_, self.scale_, self.det_scale_, n_features) self.bound_prec_ -= 0.5 * self.dof_ * np.trace(self.scale_) elif self.covariance_type == 'full': for k in range(self.n_components): sum_resp = np.sum(z.T[k]) self.dof_[k] = 2 + sum_resp + n_features self.scale_[k] = (sum_resp + 1) * np.identity(n_features) diff = X - self.means_[k] self.scale_[k] += np.dot(diff.T, z[:, k:k + 1] * diff) self.scale_[k] = pinvh(self.scale_[k]) self.precs_[k] = self.dof_[k] * self.scale_[k] self.det_scale_[k] = linalg.det(self.scale_[k]) self.bound_prec_[k] = 0.5 * wishart_log_det( self.dof_[k], self.scale_[k], self.det_scale_[k], n_features) self.bound_prec_[k] -= 0.5 * self.dof_[k] * np.trace( self.scale_[k]) def _monitor(self, X, z, n, end=False): """Monitor the lower bound during iteration Debug method to help see exactly when it is failing to converge as expected. Note: this is very expensive and should not be used by default.""" if self.verbose > 0: print("Bound after updating %8s: %f" % (n, self.lower_bound(X, z))) if end: print("Cluster proportions:", self.gamma_.T[1]) print("covariance_type:", self.covariance_type) def _do_mstep(self, X, z, params): """Maximize the variational lower bound Update each of the parameters to maximize the lower bound.""" self._monitor(X, z, "z") self._update_concentration(z) self._monitor(X, z, "gamma") if 'm' in params: self._update_means(X, z) self._monitor(X, z, "mu") if 'c' in params: self._update_precisions(X, z) self._monitor(X, z, "a and b", end=True) def _initialize_gamma(self): "Initializes the concentration parameters" self.gamma_ = self.alpha * np.ones((self.n_components, 3)) def _bound_concentration(self): """The variational lower bound for the concentration parameter.""" logprior = gammaln(self.alpha) * self.n_components logprior += np.sum((self.alpha - 1) * ( digamma(self.gamma_.T[2]) - digamma(self.gamma_.T[1] + self.gamma_.T[2]))) logprior += np.sum(- gammaln(self.gamma_.T[1] + self.gamma_.T[2])) logprior += np.sum(gammaln(self.gamma_.T[1]) + gammaln(self.gamma_.T[2])) logprior -= np.sum((self.gamma_.T[1] - 1) * ( digamma(self.gamma_.T[1]) - digamma(self.gamma_.T[1] + self.gamma_.T[2]))) logprior -= np.sum((self.gamma_.T[2] - 1) * ( digamma(self.gamma_.T[2]) - digamma(self.gamma_.T[1] + self.gamma_.T[2]))) return logprior def _bound_means(self): "The variational lower bound for the mean parameters" logprior = 0. logprior -= 0.5 * squared_norm(self.means_) logprior -= 0.5 * self.means_.shape[1] * self.n_components return logprior def _bound_precisions(self): """Returns the bound term related to precisions""" logprior = 0. if self.covariance_type == 'spherical': logprior += np.sum(gammaln(self.dof_)) logprior -= np.sum( (self.dof_ - 1) * digamma(np.maximum(0.5, self.dof_))) logprior += np.sum(- np.log(self.scale_) + self.dof_ - self.precs_[:, 0]) elif self.covariance_type == 'diag': logprior += np.sum(gammaln(self.dof_)) logprior -= np.sum( (self.dof_ - 1) * digamma(np.maximum(0.5, self.dof_))) logprior += np.sum(- np.log(self.scale_) + self.dof_ - self.precs_) elif self.covariance_type == 'tied': logprior += _bound_wishart(self.dof_, self.scale_, self.det_scale_) elif self.covariance_type == 'full': for k in range(self.n_components): logprior += _bound_wishart(self.dof_[k], self.scale_[k], self.det_scale_[k]) return logprior def _bound_proportions(self, z): """Returns the bound term related to proportions""" dg12 = digamma(self.gamma_.T[1] + self.gamma_.T[2]) dg1 = digamma(self.gamma_.T[1]) - dg12 dg2 = digamma(self.gamma_.T[2]) - dg12 cz = stable_cumsum(z[:, ::-1], axis=-1)[:, -2::-1] logprior = np.sum(cz * dg2[:-1]) + np.sum(z * dg1) del cz # Save memory z_non_zeros = z[z > np.finfo(np.float32).eps] logprior -= np.sum(z_non_zeros * np.log(z_non_zeros)) return logprior def _logprior(self, z): logprior = self._bound_concentration() logprior += self._bound_means() logprior += self._bound_precisions() logprior += self._bound_proportions(z) return logprior def lower_bound(self, X, z): """returns a lower bound on model evidence based on X and membership""" check_is_fitted(self, 'means_') if self.covariance_type not in ['full', 'tied', 'diag', 'spherical']: raise NotImplementedError("This ctype is not implemented: %s" % self.covariance_type) X = np.asarray(X) if X.ndim == 1: X = X[:, np.newaxis] c = np.sum(z * _bound_state_log_lik(X, self._initial_bound + self.bound_prec_, self.precs_, self.means_, self.covariance_type)) return c + self._logprior(z) def _set_weights(self): for i in xrange(self.n_components): self.weights_[i] = self.gamma_[i, 1] / (self.gamma_[i, 1] + self.gamma_[i, 2]) self.weights_ /= np.sum(self.weights_) def _fit(self, X, y=None): """Estimate model parameters with the variational algorithm. For a full derivation and description of the algorithm see doc/modules/dp-derivation.rst or http://scikit-learn.org/stable/modules/dp-derivation.html A initialization step is performed before entering the em algorithm. If you want to avoid this step, set the keyword argument init_params to the empty string '' when creating the object. Likewise, if you would like just to do an initialization, set n_iter=0. Parameters ---------- X : array_like, shape (n, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point. Returns ------- responsibilities : array, shape (n_samples, n_components) Posterior probabilities of each mixture component for each observation. """ self.random_state_ = check_random_state(self.random_state) # initialization step X = check_array(X) if X.ndim == 1: X = X[:, np.newaxis] n_samples, n_features = X.shape z = np.ones((n_samples, self.n_components)) z /= self.n_components self._initial_bound = - 0.5 * n_features * np.log(2 * np.pi) self._initial_bound -= np.log(2 * np.pi * np.e) if (self.init_params != '') or not hasattr(self, 'gamma_'): self._initialize_gamma() if 'm' in self.init_params or not hasattr(self, 'means_'): self.means_ = cluster.KMeans( n_clusters=self.n_components, random_state=self.random_state_).fit(X).cluster_centers_[::-1] if 'w' in self.init_params or not hasattr(self, 'weights_'): self.weights_ = np.tile(1.0 / self.n_components, self.n_components) if 'c' in self.init_params or not hasattr(self, 'precs_'): if self.covariance_type == 'spherical': self.dof_ = np.ones(self.n_components) self.scale_ = np.ones(self.n_components) self.precs_ = np.ones((self.n_components, n_features)) self.bound_prec_ = 0.5 * n_features * ( digamma(self.dof_) - np.log(self.scale_)) elif self.covariance_type == 'diag': self.dof_ = 1 + 0.5 * n_features self.dof_ *= np.ones((self.n_components, n_features)) self.scale_ = np.ones((self.n_components, n_features)) self.precs_ = np.ones((self.n_components, n_features)) self.bound_prec_ = 0.5 * (np.sum(digamma(self.dof_) - np.log(self.scale_), 1)) self.bound_prec_ -= 0.5 * np.sum(self.precs_, 1) elif self.covariance_type == 'tied': self.dof_ = 1. self.scale_ = np.identity(n_features) self.precs_ = np.identity(n_features) self.det_scale_ = 1. self.bound_prec_ = 0.5 * wishart_log_det( self.dof_, self.scale_, self.det_scale_, n_features) self.bound_prec_ -= 0.5 * self.dof_ * np.trace(self.scale_) elif self.covariance_type == 'full': self.dof_ = (1 + self.n_components + n_samples) self.dof_ *= np.ones(self.n_components) self.scale_ = [2 * np.identity(n_features) for _ in range(self.n_components)] self.precs_ = [np.identity(n_features) for _ in range(self.n_components)] self.det_scale_ = np.ones(self.n_components) self.bound_prec_ = np.zeros(self.n_components) for k in range(self.n_components): self.bound_prec_[k] = wishart_log_det( self.dof_[k], self.scale_[k], self.det_scale_[k], n_features) self.bound_prec_[k] -= (self.dof_[k] * np.trace(self.scale_[k])) self.bound_prec_ *= 0.5 # EM algorithms current_log_likelihood = None # reset self.converged_ to False self.converged_ = False for i in range(self.n_iter): prev_log_likelihood = current_log_likelihood # Expectation step curr_logprob, z = self.score_samples(X) current_log_likelihood = ( curr_logprob.mean() + self._logprior(z) / n_samples) # Check for convergence. if prev_log_likelihood is not None: change = abs(current_log_likelihood - prev_log_likelihood) if change < self.tol: self.converged_ = True break # Maximization step self._do_mstep(X, z, self.params) if self.n_iter == 0: # Need to make sure that there is a z value to output # Output zeros because it was just a quick initialization z = np.zeros((X.shape[0], self.n_components)) self._set_weights() return z @deprecated("The `DPGMM` class is not working correctly and it's better " "to use `sklearn.mixture.BayesianGaussianMixture` class with " "parameter `weight_concentration_prior_type='dirichlet_process'` " "instead. DPGMM is deprecated in 0.18 and will be " "removed in 0.20.") class DPGMM(_DPGMMBase): """Dirichlet Process Gaussian Mixture Models .. deprecated:: 0.18 This class will be removed in 0.20. Use :class:`sklearn.mixture.BayesianGaussianMixture` with parameter ``weight_concentration_prior_type='dirichlet_process'`` instead. """ def __init__(self, n_components=1, covariance_type='diag', alpha=1.0, random_state=None, tol=1e-3, verbose=0, min_covar=None, n_iter=10, params='wmc', init_params='wmc'): super(DPGMM, self).__init__( n_components=n_components, covariance_type=covariance_type, alpha=alpha, random_state=random_state, tol=tol, verbose=verbose, min_covar=min_covar, n_iter=n_iter, params=params, init_params=init_params) @deprecated("The `VBGMM` class is not working correctly and it's better " "to use `sklearn.mixture.BayesianGaussianMixture` class with " "parameter `weight_concentration_prior_type=" "'dirichlet_distribution'` instead. " "VBGMM is deprecated in 0.18 and will be removed in 0.20.") class VBGMM(_DPGMMBase): """Variational Inference for the Gaussian Mixture Model .. deprecated:: 0.18 This class will be removed in 0.20. Use :class:`sklearn.mixture.BayesianGaussianMixture` with parameter ``weight_concentration_prior_type='dirichlet_distribution'`` instead. Variational inference for a Gaussian mixture model probability distribution. This class allows for easy and efficient inference of an approximate posterior distribution over the parameters of a Gaussian mixture model with a fixed number of components. Initialization is with normally-distributed means and identity covariance, for proper convergence. Read more in the :ref:`User Guide <vbgmm>`. Parameters ---------- n_components : int, default 1 Number of mixture components. covariance_type : string, default 'diag' String describing the type of covariance parameters to use. Must be one of 'spherical', 'tied', 'diag', 'full'. alpha : float, default 1 Real number representing the concentration parameter of the dirichlet distribution. Intuitively, the higher the value of alpha the more likely the variational mixture of Gaussians model will use all components it can. tol : float, default 1e-3 Convergence threshold. n_iter : int, default 10 Maximum number of iterations to perform before convergence. params : string, default 'wmc' Controls which parameters are updated in the training process. Can contain any combination of 'w' for weights, 'm' for means, and 'c' for covars. init_params : string, default 'wmc' Controls which parameters are updated in the initialization process. Can contain any combination of 'w' for weights, 'm' for means, and 'c' for covars. Defaults to 'wmc'. verbose : int, default 0 Controls output verbosity. Attributes ---------- covariance_type : string String describing the type of covariance parameters used by the DP-GMM. Must be one of 'spherical', 'tied', 'diag', 'full'. n_features : int Dimensionality of the Gaussians. n_components : int (read-only) Number of mixture components. weights_ : array, shape (`n_components`,) Mixing weights for each mixture component. means_ : array, shape (`n_components`, `n_features`) Mean parameters for each mixture component. precs_ : array Precision (inverse covariance) parameters for each mixture component. The shape depends on `covariance_type`:: (`n_components`, 'n_features') if 'spherical', (`n_features`, `n_features`) if 'tied', (`n_components`, `n_features`) if 'diag', (`n_components`, `n_features`, `n_features`) if 'full' converged_ : bool True when convergence was reached in fit(), False otherwise. See Also -------- GMM : Finite Gaussian mixture model fit with EM DPGMM : Infinite Gaussian mixture model, using the dirichlet process, fit with a variational algorithm """ def __init__(self, n_components=1, covariance_type='diag', alpha=1.0, random_state=None, tol=1e-3, verbose=0, min_covar=None, n_iter=10, params='wmc', init_params='wmc'): super(VBGMM, self).__init__( n_components, covariance_type, random_state=random_state, tol=tol, verbose=verbose, min_covar=min_covar, n_iter=n_iter, params=params, init_params=init_params) self.alpha = alpha def _fit(self, X, y=None): """Estimate model parameters with the variational algorithm. For a full derivation and description of the algorithm see doc/modules/dp-derivation.rst or http://scikit-learn.org/stable/modules/dp-derivation.html A initialization step is performed before entering the EM algorithm. If you want to avoid this step, set the keyword argument init_params to the empty string '' when creating the object. Likewise, if you just would like to do an initialization, set n_iter=0. Parameters ---------- X : array_like, shape (n, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point. Returns ------- responsibilities : array, shape (n_samples, n_components) Posterior probabilities of each mixture component for each observation. """ self.alpha_ = float(self.alpha) / self.n_components return super(VBGMM, self)._fit(X, y) def score_samples(self, X): """Return the likelihood of the data under the model. Compute the bound on log probability of X under the model and return the posterior distribution (responsibilities) of each mixture component for each element of X. This is done by computing the parameters for the mean-field of z for each observation. Parameters ---------- X : array_like, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point. Returns ------- logprob : array_like, shape (n_samples,) Log probabilities of each data point in X responsibilities : array_like, shape (n_samples, n_components) Posterior probabilities of each mixture component for each observation """ check_is_fitted(self, 'gamma_') X = check_array(X) if X.ndim == 1: X = X[:, np.newaxis] dg = digamma(self.gamma_) - digamma(np.sum(self.gamma_)) if self.covariance_type not in ['full', 'tied', 'diag', 'spherical']: raise NotImplementedError("This ctype is not implemented: %s" % self.covariance_type) p = _bound_state_log_lik(X, self._initial_bound + self.bound_prec_, self.precs_, self.means_, self.covariance_type) z = p + dg z = log_normalize(z, axis=-1) bound = np.sum(z * p, axis=-1) return bound, z def _update_concentration(self, z): for i in range(self.n_components): self.gamma_[i] = self.alpha_ + np.sum(z.T[i]) def _initialize_gamma(self): self.gamma_ = self.alpha_ * np.ones(self.n_components) def _bound_proportions(self, z): logprior = 0. dg = digamma(self.gamma_) dg -= digamma(np.sum(self.gamma_)) logprior += np.sum(dg.reshape((-1, 1)) * z.T) z_non_zeros = z[z > np.finfo(np.float32).eps] logprior -= np.sum(z_non_zeros * np.log(z_non_zeros)) return logprior def _bound_concentration(self): logprior = 0. logprior = gammaln(np.sum(self.gamma_)) - gammaln(self.n_components * self.alpha_) logprior -= np.sum(gammaln(self.gamma_) - gammaln(self.alpha_)) sg = digamma(np.sum(self.gamma_)) logprior += np.sum((self.gamma_ - self.alpha_) * (digamma(self.gamma_) - sg)) return logprior def _monitor(self, X, z, n, end=False): """Monitor the lower bound during iteration Debug method to help see exactly when it is failing to converge as expected. Note: this is very expensive and should not be used by default.""" if self.verbose > 0: print("Bound after updating %8s: %f" % (n, self.lower_bound(X, z))) if end: print("Cluster proportions:", self.gamma_) print("covariance_type:", self.covariance_type) def _set_weights(self): self.weights_[:] = self.gamma_ self.weights_ /= np.sum(self.weights_)
bsd-3-clause
alexsavio/scikit-learn
sklearn/decomposition/tests/test_incremental_pca.py
297
8265
"""Tests for Incremental PCA.""" import numpy as np from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_raises from sklearn import datasets from sklearn.decomposition import PCA, IncrementalPCA iris = datasets.load_iris() def test_incremental_pca(): # Incremental PCA on dense arrays. X = iris.data batch_size = X.shape[0] // 3 ipca = IncrementalPCA(n_components=2, batch_size=batch_size) pca = PCA(n_components=2) pca.fit_transform(X) X_transformed = ipca.fit_transform(X) np.testing.assert_equal(X_transformed.shape, (X.shape[0], 2)) assert_almost_equal(ipca.explained_variance_ratio_.sum(), pca.explained_variance_ratio_.sum(), 1) for n_components in [1, 2, X.shape[1]]: ipca = IncrementalPCA(n_components, batch_size=batch_size) ipca.fit(X) cov = ipca.get_covariance() precision = ipca.get_precision() assert_array_almost_equal(np.dot(cov, precision), np.eye(X.shape[1])) def test_incremental_pca_check_projection(): # Test that the projection of data is correct. rng = np.random.RandomState(1999) n, p = 100, 3 X = rng.randn(n, p) * .1 X[:10] += np.array([3, 4, 5]) Xt = 0.1 * rng.randn(1, p) + np.array([3, 4, 5]) # Get the reconstruction of the generated data X # Note that Xt has the same "components" as X, just separated # This is what we want to ensure is recreated correctly Yt = IncrementalPCA(n_components=2).fit(X).transform(Xt) # Normalize Yt /= np.sqrt((Yt ** 2).sum()) # Make sure that the first element of Yt is ~1, this means # the reconstruction worked as expected assert_almost_equal(np.abs(Yt[0][0]), 1., 1) def test_incremental_pca_inverse(): # Test that the projection of data can be inverted. rng = np.random.RandomState(1999) n, p = 50, 3 X = rng.randn(n, p) # spherical data X[:, 1] *= .00001 # make middle component relatively small X += [5, 4, 3] # make a large mean # same check that we can find the original data from the transformed # signal (since the data is almost of rank n_components) ipca = IncrementalPCA(n_components=2, batch_size=10).fit(X) Y = ipca.transform(X) Y_inverse = ipca.inverse_transform(Y) assert_almost_equal(X, Y_inverse, decimal=3) def test_incremental_pca_validation(): # Test that n_components is >=1 and <= n_features. X = [[0, 1], [1, 0]] for n_components in [-1, 0, .99, 3]: assert_raises(ValueError, IncrementalPCA(n_components, batch_size=10).fit, X) def test_incremental_pca_set_params(): # Test that components_ sign is stable over batch sizes. rng = np.random.RandomState(1999) n_samples = 100 n_features = 20 X = rng.randn(n_samples, n_features) X2 = rng.randn(n_samples, n_features) X3 = rng.randn(n_samples, n_features) ipca = IncrementalPCA(n_components=20) ipca.fit(X) # Decreasing number of components ipca.set_params(n_components=10) assert_raises(ValueError, ipca.partial_fit, X2) # Increasing number of components ipca.set_params(n_components=15) assert_raises(ValueError, ipca.partial_fit, X3) # Returning to original setting ipca.set_params(n_components=20) ipca.partial_fit(X) def test_incremental_pca_num_features_change(): # Test that changing n_components will raise an error. rng = np.random.RandomState(1999) n_samples = 100 X = rng.randn(n_samples, 20) X2 = rng.randn(n_samples, 50) ipca = IncrementalPCA(n_components=None) ipca.fit(X) assert_raises(ValueError, ipca.partial_fit, X2) def test_incremental_pca_batch_signs(): # Test that components_ sign is stable over batch sizes. rng = np.random.RandomState(1999) n_samples = 100 n_features = 3 X = rng.randn(n_samples, n_features) all_components = [] batch_sizes = np.arange(10, 20) for batch_size in batch_sizes: ipca = IncrementalPCA(n_components=None, batch_size=batch_size).fit(X) all_components.append(ipca.components_) for i, j in zip(all_components[:-1], all_components[1:]): assert_almost_equal(np.sign(i), np.sign(j), decimal=6) def test_incremental_pca_batch_values(): # Test that components_ values are stable over batch sizes. rng = np.random.RandomState(1999) n_samples = 100 n_features = 3 X = rng.randn(n_samples, n_features) all_components = [] batch_sizes = np.arange(20, 40, 3) for batch_size in batch_sizes: ipca = IncrementalPCA(n_components=None, batch_size=batch_size).fit(X) all_components.append(ipca.components_) for i, j in zip(all_components[:-1], all_components[1:]): assert_almost_equal(i, j, decimal=1) def test_incremental_pca_partial_fit(): # Test that fit and partial_fit get equivalent results. rng = np.random.RandomState(1999) n, p = 50, 3 X = rng.randn(n, p) # spherical data X[:, 1] *= .00001 # make middle component relatively small X += [5, 4, 3] # make a large mean # same check that we can find the original data from the transformed # signal (since the data is almost of rank n_components) batch_size = 10 ipca = IncrementalPCA(n_components=2, batch_size=batch_size).fit(X) pipca = IncrementalPCA(n_components=2, batch_size=batch_size) # Add one to make sure endpoint is included batch_itr = np.arange(0, n + 1, batch_size) for i, j in zip(batch_itr[:-1], batch_itr[1:]): pipca.partial_fit(X[i:j, :]) assert_almost_equal(ipca.components_, pipca.components_, decimal=3) def test_incremental_pca_against_pca_iris(): # Test that IncrementalPCA and PCA are approximate (to a sign flip). X = iris.data Y_pca = PCA(n_components=2).fit_transform(X) Y_ipca = IncrementalPCA(n_components=2, batch_size=25).fit_transform(X) assert_almost_equal(np.abs(Y_pca), np.abs(Y_ipca), 1) def test_incremental_pca_against_pca_random_data(): # Test that IncrementalPCA and PCA are approximate (to a sign flip). rng = np.random.RandomState(1999) n_samples = 100 n_features = 3 X = rng.randn(n_samples, n_features) + 5 * rng.rand(1, n_features) Y_pca = PCA(n_components=3).fit_transform(X) Y_ipca = IncrementalPCA(n_components=3, batch_size=25).fit_transform(X) assert_almost_equal(np.abs(Y_pca), np.abs(Y_ipca), 1) def test_explained_variances(): # Test that PCA and IncrementalPCA calculations match X = datasets.make_low_rank_matrix(1000, 100, tail_strength=0., effective_rank=10, random_state=1999) prec = 3 n_samples, n_features = X.shape for nc in [None, 99]: pca = PCA(n_components=nc).fit(X) ipca = IncrementalPCA(n_components=nc, batch_size=100).fit(X) assert_almost_equal(pca.explained_variance_, ipca.explained_variance_, decimal=prec) assert_almost_equal(pca.explained_variance_ratio_, ipca.explained_variance_ratio_, decimal=prec) assert_almost_equal(pca.noise_variance_, ipca.noise_variance_, decimal=prec) def test_whitening(): # Test that PCA and IncrementalPCA transforms match to sign flip. X = datasets.make_low_rank_matrix(1000, 10, tail_strength=0., effective_rank=2, random_state=1999) prec = 3 n_samples, n_features = X.shape for nc in [None, 9]: pca = PCA(whiten=True, n_components=nc).fit(X) ipca = IncrementalPCA(whiten=True, n_components=nc, batch_size=250).fit(X) Xt_pca = pca.transform(X) Xt_ipca = ipca.transform(X) assert_almost_equal(np.abs(Xt_pca), np.abs(Xt_ipca), decimal=prec) Xinv_ipca = ipca.inverse_transform(Xt_ipca) Xinv_pca = pca.inverse_transform(Xt_pca) assert_almost_equal(X, Xinv_ipca, decimal=prec) assert_almost_equal(X, Xinv_pca, decimal=prec) assert_almost_equal(Xinv_pca, Xinv_ipca, decimal=prec)
bsd-3-clause
TshepangRas/tshilo-dikotla
tshilo_dikotla/views/statistics_view.py
1
5407
import asyncio import pandas as pd import json import pytz from datetime import date, datetime from django.conf import settings from django.contrib.auth.decorators import login_required from django.http.response import HttpResponse from django.utils.decorators import method_decorator from django.views.generic import TemplateView from edc_base.views import EdcBaseViewMixin from edc_constants.constants import CLOSED, NO, YES from edc_sync.models.outgoing_transaction import OutgoingTransaction from call_manager.models import Call from td_maternal.models import MaternalConsent, PotentialCall tz = pytz.timezone(settings.TIME_ZONE) class StatisticsView(EdcBaseViewMixin, TemplateView): template_name = 'tshilo_dikotla/home.html' def __init__(self): self._response_data = {} self.columns = [ 'consented', 'consented_today', 'contacted_retry', 'contacted_today', 'not_consented', 'not_contacted', 'consent_verified', 'pending_transactions', 'potential_calls'] def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) context.update( title=settings.PROJECT_TITLE, project_name=settings.PROJECT_TITLE, ) return context @method_decorator(login_required) def dispatch(self, *args, **kwargs): return super(StatisticsView, self).dispatch(*args, **kwargs) def get(self, request, *args, **kwargs): context = self.get_context_data(**kwargs) if request.is_ajax(): loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) loop = asyncio.get_event_loop() future_a = asyncio.Future() future_b = asyncio.Future() future_c = asyncio.Future() tasks = [ self.potential_call_data(future_a), self.transaction_data(future_b), self.contact_data(future_c), ] loop.run_until_complete(asyncio.wait(tasks)) self.response_data.update(future_a.result()) self.response_data.update(future_b.result()) self.response_data.update(future_c.result()) loop.close() return HttpResponse(json.dumps(self.response_data), content_type='application/json') return self.render_to_response(context) @asyncio.coroutine def contact_data(self, future): response_data = {} calls = Call.objects.filter(call_attempts__gte=1) if calls: response_data.update(contacted_retry=calls.exclude(call_status=CLOSED).count()) calls.filter(**self.modified_option) if calls: response_data.update(contacted_today=calls.count()) future.set_result(self.verified_response_data(response_data)) @asyncio.coroutine def transaction_data(self, future): response_data = {} tx = OutgoingTransaction.objects.filter(is_consumed_server=False) if tx: response_data.update(pending_transactions=tx.count()) future.set_result(self.verified_response_data(response_data)) @asyncio.coroutine def potential_call_data(self, future): response_data = {} columns = ['id', 'contacted', 'consented', 'modified'] qs = PotentialCall.objects.values_list(*columns).all() # columns = ['id', 'consented', 'modified'] # qs = MaternalConsent.objects.values_list(*columns).all() potential_calls = pd.DataFrame(list(qs), columns=columns) if not potential_calls.empty: response_data.update({ 'potential_calls': int(potential_calls['id'].count()), 'not_contacted': int(potential_calls.query('contacted == False')['contacted'].count()), 'not_consented': int(potential_calls.query('consented == False')['consented'].count()), 'consented': int(potential_calls.query('consented == True')['consented'].count()), 'consent_verified': int(potential_calls.query('consented == True')['consented'].count()), }) d = date.today() local_date = tz.localize(datetime(d.year, d.month, d.day, 0, 0, 0)) potential_calls = potential_calls[(potential_calls['modified'] >= local_date)] response_data.update({ 'contacted_today': int(potential_calls.query('contacted == True')['contacted'].count()), 'consented_today': int(potential_calls.query('consented == True')['consented'].count()), }) future.set_result(self.verified_response_data(response_data)) @property def modified_option(self): d = date.today() local_date = tz.localize(datetime(d.year, d.month, d.day, 0, 0, 0)) return {'modified__gte': local_date} def verified_response_data(self, response_data): diff = set(response_data.keys()).difference(set(self.response_data.keys())) if diff: raise KeyError('Invalid key or keys in response data dictionary. Got {}'.format(diff)) return response_data @property def response_data(self): if not self._response_data: self._response_data = dict(zip(self.columns, len(self.columns) * [0])) return self._response_data
gpl-2.0
qiime2/q2-types
q2_types/per_sample_sequences/_util.py
1
13180
# ---------------------------------------------------------------------------- # Copyright (c) 2016-2021, QIIME 2 development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file LICENSE, distributed with this software. # ---------------------------------------------------------------------------- import collections import gzip import os import shutil import pandas as pd import qiime2.util import skbio import yaml # Note: we DI all of the formats into these utils so that we don't wind # up in circular import mayhem. That is all. def _parse_casava_filename(path, parse_lane=True): directions = ['forward', 'reverse'] filename = str(path).replace('.fastq.gz', '') if parse_lane: sample_id, barcode_id, lane_number, read_number, _ = \ filename.rsplit('_', maxsplit=4) else: sample_id, barcode_id, read_number, _ = \ filename.rsplit('_', maxsplit=3) read_number = int(read_number[1:]) lane_number = int(lane_number[1:]) if parse_lane else 1 direction = directions[read_number - 1] return sample_id, barcode_id, lane_number, read_number, direction def _single_lane_per_sample_fastq_helper(dirfmt, output_cls, manifest_fmt, fastq_fmt, yaml_fmt, parse_lane=True): result = output_cls() manifest = manifest_fmt() manifest_fh = manifest.open() manifest_fh.write('sample-id,filename,direction\n') for path, view in dirfmt.sequences.iter_views(fastq_fmt): parsed = _parse_casava_filename(path, parse_lane) sample_id, barcode_id, lane_number, read_number, direction = parsed result.sequences.write_data(view, fastq_fmt, sample_id=sample_id, barcode_id=barcode_id, lane_number=lane_number, read_number=read_number) filepath = result.sequences.path_maker(sample_id=sample_id, barcode_id=barcode_id, lane_number=lane_number, read_number=read_number) name = filepath.name manifest_fh.write('%s,%s,%s\n' % (sample_id, name, direction)) manifest_fh.close() result.manifest.write_data(manifest, manifest_fmt) metadata = yaml_fmt() metadata.path.write_text(yaml.dump({'phred-offset': 33})) result.metadata.write_data(metadata, yaml_fmt) return result def _dirfmt_to_casava(dirfmt_in, manifest_fmt, abs_manifest_fmt, fastq_fmt, casava_fmt): dirfmt_out = casava_fmt() for fastq, _ in dirfmt_in.sequences.iter_views(fastq_fmt): from_fp = str(dirfmt_in.path / fastq.name) to_fp = str(dirfmt_out.path / fastq.name) qiime2.util.duplicate(from_fp, to_fp) return dirfmt_out def _parse_and_validate_manifest(manifest_fh, single_end, absolute, abs_manifest_fmt, manifest_fmt): try: manifest = pd.read_csv(manifest_fh, comment='#', header=0, skip_blank_lines=True, dtype=object) except Exception as e: raise ValueError('There was an issue parsing the manifest ' 'file as CSV:\n %s' % e) expected_header = (abs_manifest_fmt.EXPECTED_HEADER if absolute else manifest_fmt.EXPECTED_HEADER) _validate_header(manifest, expected_header) for idx in manifest.index: record = manifest.loc[idx] if record.isnull().any(): raise ValueError('Empty cells are not supported in ' 'manifest files. Found one or more ' 'empty cells in this record: %s' % ','.join(map(str, record))) record[expected_header[1]] = \ os.path.expandvars(record[expected_header[1]]) path = record[expected_header[1]] if absolute: if not os.path.isabs(path): raise ValueError('All paths provided in manifest must be ' 'absolute but found relative path: %s' % path) else: if os.path.isabs(path): raise ValueError('All paths provided in manifest must be ' 'relative but found absolute path: %s' % path) path = os.path.join(os.path.dirname(manifest_fh.name), path) if not os.path.exists(path): raise FileNotFoundError( 'A path specified in the manifest does not exist ' 'or is not accessible: ' '%s' % path) if single_end: _validate_single_end_fastq_manifest_directions(manifest) else: _validate_paired_end_fastq_manifest_directions(manifest) return manifest def _validate_header(manifest, expected_header): header = manifest.columns.tolist() if header != expected_header: raise ValueError('Expected manifest header %r but ' 'found %r.' % (','.join(expected_header), ','.join(header))) def _duplicated_ids(sample_ids): counts = collections.Counter(sample_ids).most_common() if len(counts) == 0 or counts[0][1] == 1: # if there were no sample ids provided, or the most frequent sample id # was only observed once, there are no duplicates return [] else: return [e[0] for e in counts if e[1] > 1] def _validate_single_end_fastq_manifest_directions(manifest): directions = set(manifest['direction']) if not directions.issubset({'forward', 'reverse'}): raise ValueError('Directions can only be "forward" or ' '"reverse", but observed: %s' % ', '.join(directions)) if len(directions) > 1: raise ValueError('Manifest for single-end reads can ' 'contain only forward or reverse reads, ' 'but not both. The following directions were ' 'observed: %s' % ', '.join(directions)) duplicated_ids = _duplicated_ids(manifest['sample-id']) if len(duplicated_ids) > 0: raise ValueError('Each sample id can only appear one time in a ' 'manifest for single-end reads, but the following ' 'sample ids were observed more than once: ' '%s' % ', '.join(duplicated_ids)) def _validate_paired_end_fastq_manifest_directions(manifest): forward_direction_sample_ids = [] reverse_direction_sample_ids = [] for _, sample_id, _, direction in manifest.itertuples(): if direction == 'forward': forward_direction_sample_ids.append(sample_id) elif direction == 'reverse': reverse_direction_sample_ids.append(sample_id) else: raise ValueError('Directions can only be "forward" or ' '"reverse", but observed: %s' % direction) duplicated_ids_forward = _duplicated_ids(forward_direction_sample_ids) if len(duplicated_ids_forward) > 0: raise ValueError('Each sample id can have only one forward read ' 'record in a paired-end read manifest, but the ' 'following sample ids were associated with more ' 'than one forward read record: ' '%s' % ', '.join(duplicated_ids_forward)) duplicated_ids_reverse = _duplicated_ids(reverse_direction_sample_ids) if len(duplicated_ids_reverse) > 0: raise ValueError('Each sample id can have only one reverse read ' 'record in a paired-end read manifest, but the ' 'following sample ids were associated with more ' 'than one reverse read record: ' '%s' % ', '.join(duplicated_ids_reverse)) if sorted(forward_direction_sample_ids) != \ sorted(reverse_direction_sample_ids): forward_but_no_reverse = set(forward_direction_sample_ids) - \ set(reverse_direction_sample_ids) if len(forward_but_no_reverse) > 0: raise ValueError('Forward and reverse reads must be provided ' 'exactly one time each for each sample. The ' 'following samples had forward but not ' 'reverse read fastq files: %s' % ', '.join(forward_but_no_reverse)) else: reverse_but_no_forward = set(reverse_direction_sample_ids) - \ set(forward_direction_sample_ids) raise ValueError('Forward and reverse reads must be provided ' 'exactly one time each for each sample. The ' 'following samples had reverse but not ' 'forward read fastq files: %s' % ', '.join(reverse_but_no_forward)) def _copy_with_compression(src, dst): with open(src, 'rb') as src_fh: if src_fh.read(2)[:2] != b'\x1f\x8b': src_fh.seek(0) # SO: http://stackoverflow.com/a/27069578/579416 # shutil.copyfileobj will pick a pretty good chunksize for us with gzip.open(dst, 'wb') as dst_fh: shutil.copyfileobj(src_fh, dst_fh) return qiime2.util.duplicate(src, dst) def _fastq_manifest_helper(fmt, fastq_copy_fn, single_end, se_fmt, pe_fmt, abs_manifest_fmt, manifest_fmt, yaml_fmt): direction_to_read_number = {'forward': 1, 'reverse': 2} input_manifest = _parse_and_validate_manifest( fmt.open(), single_end=single_end, absolute=True, abs_manifest_fmt=abs_manifest_fmt, manifest_fmt=manifest_fmt, ) if single_end: result = se_fmt() else: result = pe_fmt() output_manifest_data = [] for idx, sample_id, input_fastq_fp, direction in \ input_manifest.itertuples(): read_number = direction_to_read_number[direction] output_fastq_fp = \ result.sequences.path_maker(sample_id=sample_id, # the remaining values aren't used # internally by QIIME, so their values # aren't very important barcode_id=idx, lane_number=1, read_number=read_number) output_manifest_data.append( [sample_id, output_fastq_fp.name, direction]) fastq_copy_fn(input_fastq_fp, str(output_fastq_fp)) output_manifest = manifest_fmt() output_manifest_df = \ pd.DataFrame(output_manifest_data, columns=output_manifest.EXPECTED_HEADER) output_manifest_df.to_csv(str(output_manifest), index=False) result.manifest.write_data(output_manifest, manifest_fmt) metadata = yaml_fmt() metadata.path.write_text(yaml.dump({'phred-offset': 33})) result.metadata.write_data(metadata, yaml_fmt) return result _phred64_warning = ('Importing of PHRED 64 data is slow as it is converted ' 'internally to PHRED 33. Working with the imported data ' 'will not be slower than working with PHRED 33 data.') def _write_phred64_to_phred33(phred64_path, phred33_path): with open(phred64_path, 'rb') as phred64_fh, \ open(phred33_path, 'wb') as phred33_fh: for seq in skbio.io.read(phred64_fh, format='fastq', variant='illumina1.3'): skbio.io.write(seq, into=phred33_fh, format='fastq', variant='illumina1.8', compression='gzip') def _manifest_v2_to_v1(fmt, manifest_fmt): df = qiime2.Metadata.load(str(fmt)).to_dataframe() # Drop unneccessary metadata columns df = df[list(fmt.METADATA_COLUMNS.keys())] denormalized_dfs = [] for column, direction in fmt.METADATA_COLUMNS.items(): denormalized_df = df[[column]] original_index_name = denormalized_df.index.name denormalized_df.reset_index(drop=False, inplace=True) denormalized_df.rename(columns={ original_index_name: 'sample-id', column: 'absolute-filepath' }, inplace=True) denormalized_df['direction'] = direction denormalized_dfs.append(denormalized_df) old_fmt = manifest_fmt() pd.concat(denormalized_dfs, axis=0).to_csv(str(old_fmt), index=False) return old_fmt def _manifest_to_df(ff, base_dir): manifest = pd.read_csv(str(ff), header=0, comment='#') manifest.filename = manifest.filename.apply( lambda f: os.path.join(base_dir, f)) df = manifest.pivot(index='sample-id', columns='direction', values='filename') df.columns.name = None return df
bsd-3-clause
research-team/memristive-brain
mem_neuron_code/delta_t_fb_finder.py
1
5270
from datetime import datetime as dt from scipy.signal import find_peaks import matplotlib.pyplot as plt from nptdms import TdmsFile import numpy as np import argparse import fnmatch import os # func to find files in folder def file_finder(pattern, path): result = [] for root, dirs, files in os.walk(path): for name in files: if fnmatch.fnmatch(name, pattern): result.append(os.path.join(root, name)) return result # construct the argument parse and parse the arguments ap = argparse.ArgumentParser() ap.add_argument("-i", "--input", type = str, required = True, help="path to folder with tdms file") ap.add_argument("-o", "--output", type = str, required = False, help="output folder") args = vars(ap.parse_args()) # find tdms file in folder TDMSPath = file_finder('*.tdms', args['input'])[0] # open founded tdms file with TdmsFile.open(TDMSPath) as file_tdms: # find all input channels in tdms and grap the time channel grp='input_pins' channels=[i.name for i in file_tdms[grp].channels()] channel=file_tdms[grp][channels[0]] times=channel.time_track() # choose the time period of interest in the experiment (seconds) time_period_begin = 1138.7 #351.7 time_period_end = 1141.5 #391.3 time_index_range_begin = np.where(times >= time_period_begin)[0][0] time_index_range_end = np.where(times <= time_period_end)[-1][-1] time = times[time_index_range_begin : time_index_range_end] # show input channels with matplotlib fig = plt.figure(figsize=(200,70)) plt.rcParams.update({'font.size': 64}) ''' fig.add_subplot(2, 1, 1) inp1 = np.array(file_tdms[grp]['inp1'][time_index_range_begin : time_index_range_end]) out = np.array(file_tdms[grp]['out' ][time_index_range_begin : time_index_range_end]) plt.plot(time, inp1, time, out) plt.ylabel('V_inp1_out (V)') # ось абсцисс plt.xlabel('Time (s)') # ось ординат plt.grid() # включение отображение сетки fig.add_subplot(2, 1, 2) mem1fb = np.array(file_tdms[grp]['mem1fb'][time_index_range_begin : time_index_range_end]) plt.plot(time, mem1fb) plt.ylabel('V_mem1fb (V)') # ось абсцисс plt.xlabel('Time (s)') # ось ординат plt.grid() # включение отображение сетки ''' inp1 = np.array(file_tdms[grp]['inp1'][time_index_range_begin : time_index_range_end]) out = np.array(file_tdms[grp]['out' ][time_index_range_begin : time_index_range_end]) # find delta_t on selected time period between inp1 and out input_time_start_high_voltage = [] input_val_start_high_voltage = [] for c, i in enumerate(inp1): if c == 0: first_point = i continue second_point = i if second_point - first_point > 1: input_time_start_high_voltage.append(time[c]) input_val_start_high_voltage.append(inp1[c]) first_point = second_point j = 0 input_val_start_high_voltage_n = [] input_time_start_high_voltage_n = [] for xk, yk in zip(input_val_start_high_voltage, input_time_start_high_voltage): if j % 2 != 0: input_val_start_high_voltage_n.append(xk) input_time_start_high_voltage_n.append(yk) j += 1 output_time_start_high_voltage = [] output_val_start_high_voltage = [] for c, i in enumerate(out): if c == 0: first_point = i continue second_point = i if second_point - first_point > 1: #and c % 2 != 0: output_time_start_high_voltage.append(time[c]) output_val_start_high_voltage.append(out[c]) first_point = second_point fig.add_subplot(3, 1, 1) plt.plot(time, inp1) plt.plot(input_time_start_high_voltage_n, input_val_start_high_voltage_n, 'x', color = 'black') plt.plot(time, out) plt.plot(output_time_start_high_voltage, output_val_start_high_voltage, 'x', color = 'black') #print(input_time_start_high_voltage, output_time_start_high_voltage) for x, y in zip(input_time_start_high_voltage_n, output_time_start_high_voltage): print(y - x) fig.add_subplot(3, 1, 2) mem1fb = np.array(file_tdms[grp]['mem1fb'][time_index_range_begin : time_index_range_end]) peaks_fb, _ = find_peaks(mem1fb, distance = 1, height = 0.8) difr = np.diff(peaks_fb) countxjk_array = [] for countxjk, xjk in enumerate(difr): if xjk > 500: countxjk_array.append(countxjk + 1) test_peaks = np.split(peaks_fb, countxjk_array) mean_index = [] mean_value = [] for test_peak in test_peaks: mean_index.append(int(np.mean(test_peak))) mean_value.append(np.median(mem1fb[test_peak])) #print(mean_index) #print(mean_value) #print(peaks_fb) plt.plot(time, mem1fb) plt.plot(time[mean_index], mean_value, 'x', color = 'red') fig.add_subplot(3, 1, 3) difer = abs(np.diff(mean_value)) plt.boxplot(difer) #plt.show() plt.savefig('delta_t/datas_{}_{}.pdf'.format(time_period_begin, time_period_end)) plt.close('all')
mit
Kirubaharan/hydrology
cumulative_impact_of_check_dam/rainfall_had.py
1
2007
__author__ = 'kiruba' import numpy as np import matplotlib.pyplot as plt import pandas as pd import itertools import checkdam.checkdam as cd # rain file rain_file = '/media/kiruba/New Volume/KSNDMC 15 mins Daily Data/dailyrainfalldata15minsdailyrainfalldata15minsf/TUBAGERE.csv' rain_df = pd.read_csv(rain_file, sep=',', header=0) # print rain_df.head() rain_df.drop(["TRGCODE", "DISTRICT", "TALUKNAME", "HOBLINAME", "HOBLICODE", "PHASE", "COMPANY", "TYPE", "CATEGORY", "FIRSTREPORTED", "Total" ], inplace=True, axis=1) data_1 = [] for row_no, row in rain_df.iterrows(): date = row['Date'] for time, value in row.ix[1:, ].iteritems(): data_1.append((date, time, value)) data_1_df = pd.DataFrame(data_1,columns=['date', 'time', 'rain(mm)']) # print data_1_df.head() # print data_1_df.tail() date_format_1 = "%d-%b-%y %H:%M" data_1_df['date_time'] = pd.to_datetime(data_1_df['date'] + ' ' + data_1_df['time'], format=date_format_1) data_1_df.set_index(data_1_df['date_time'], inplace=True) data_1_df.sort_index(inplace=True) data_1_df.drop(['date_time', 'date', 'time'], axis=1, inplace=True) # cumulative difference data_1_8h_df = data_1_df['2010-01-01 8H30T': '2015-11-30 8H30T'] data_1_8h_df['diff'] = 0.000 for d1, d2 in cd.pairwise(data_1_8h_df.index): if data_1_8h_df['rain(mm)'][d2] > data_1_8h_df['rain(mm)'][d1]: data_1_8h_df['diff'][d2] = data_1_8h_df['rain(mm)'][d2] - data_1_8h_df['rain(mm)'][d1] """ Remove duplicates """ rain_df = data_1_8h_df rain_df['index'] = rain_df.index rain_df.drop_duplicates(subset='index', take_last=True, inplace=True) del rain_df['index'] rain_df.sort_index(inplace=True) # print rain_df.head() # resample_daily rain_df_daily_had = rain_df.resample('D', how=np.sum, label='left', closed='left') print rain_df_daily_had.head() rain_df_daily_had.to_csv('/media/kiruba/New Volume/milli_watershed/cumulative impacts/had_rainfall_daily.csv') rain_df.to_csv('/media/kiruba/New Volume/milli_watershed/cumulative impacts/had_rainfall.csv')
gpl-3.0
Hiyorimi/scikit-image
doc/examples/filters/plot_entropy.py
9
2234
""" ======= Entropy ======= In information theory, information entropy is the log-base-2 of the number of possible outcomes for a message. For an image, local entropy is related to the complexity contained in a given neighborhood, typically defined by a structuring element. The entropy filter can detect subtle variations in the local gray level distribution. In the first example, the image is composed of two surfaces with two slightly different distributions. The image has a uniform random distribution in the range [-14, +14] in the middle of the image and a uniform random distribution in the range [-15, 15] at the image borders, both centered at a gray value of 128. To detect the central square, we compute the local entropy measure using a circular structuring element of a radius big enough to capture the local gray level distribution. The second example shows how to detect texture in the camera image using a smaller structuring element. """ import matplotlib.pyplot as plt import numpy as np from skimage import data from skimage.util import img_as_ubyte from skimage.filters.rank import entropy from skimage.morphology import disk # First example: object detection. noise_mask = 28 * np.ones((128, 128), dtype=np.uint8) noise_mask[32:-32, 32:-32] = 30 noise = (noise_mask * np.random.random(noise_mask.shape) - 0.5 * noise_mask).astype(np.uint8) img = noise + 128 entr_img = entropy(img, disk(10)) fig, (ax0, ax1, ax2) = plt.subplots(1, 3, figsize=(8, 3)) ax0.imshow(noise_mask, cmap=plt.cm.gray) ax0.set_xlabel("Noise mask") ax1.imshow(img, cmap=plt.cm.gray) ax1.set_xlabel("Noisy image") ax2.imshow(entr_img) ax2.set_xlabel("Local entropy") fig.tight_layout() # Second example: texture detection. image = img_as_ubyte(data.camera()) fig, (ax0, ax1) = plt.subplots(ncols=2, figsize=(10, 4), sharex=True, sharey=True, subplot_kw={"adjustable": "box-forced"}) img0 = ax0.imshow(image, cmap=plt.cm.gray) ax0.set_title("Image") ax0.axis("off") fig.colorbar(img0, ax=ax0) img1 = ax1.imshow(entropy(image, disk(5)), cmap=plt.cm.gray) ax1.set_title("Entropy") ax1.axis("off") fig.colorbar(img1, ax=ax1) fig.tight_layout() plt.show()
bsd-3-clause
nmayorov/scikit-learn
sklearn/datasets/tests/test_mldata.py
384
5221
"""Test functionality of mldata fetching utilities.""" import os import shutil import tempfile import scipy as sp from sklearn import datasets from sklearn.datasets import mldata_filename, fetch_mldata from sklearn.utils.testing import assert_in from sklearn.utils.testing import assert_not_in from sklearn.utils.testing import mock_mldata_urlopen from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import with_setup from sklearn.utils.testing import assert_array_equal tmpdir = None def setup_tmpdata(): # create temporary dir global tmpdir tmpdir = tempfile.mkdtemp() os.makedirs(os.path.join(tmpdir, 'mldata')) def teardown_tmpdata(): # remove temporary dir if tmpdir is not None: shutil.rmtree(tmpdir) def test_mldata_filename(): cases = [('datasets-UCI iris', 'datasets-uci-iris'), ('news20.binary', 'news20binary'), ('book-crossing-ratings-1.0', 'book-crossing-ratings-10'), ('Nile Water Level', 'nile-water-level'), ('MNIST (original)', 'mnist-original')] for name, desired in cases: assert_equal(mldata_filename(name), desired) @with_setup(setup_tmpdata, teardown_tmpdata) def test_download(): """Test that fetch_mldata is able to download and cache a data set.""" _urlopen_ref = datasets.mldata.urlopen datasets.mldata.urlopen = mock_mldata_urlopen({ 'mock': { 'label': sp.ones((150,)), 'data': sp.ones((150, 4)), }, }) try: mock = fetch_mldata('mock', data_home=tmpdir) for n in ["COL_NAMES", "DESCR", "target", "data"]: assert_in(n, mock) assert_equal(mock.target.shape, (150,)) assert_equal(mock.data.shape, (150, 4)) assert_raises(datasets.mldata.HTTPError, fetch_mldata, 'not_existing_name') finally: datasets.mldata.urlopen = _urlopen_ref @with_setup(setup_tmpdata, teardown_tmpdata) def test_fetch_one_column(): _urlopen_ref = datasets.mldata.urlopen try: dataname = 'onecol' # create fake data set in cache x = sp.arange(6).reshape(2, 3) datasets.mldata.urlopen = mock_mldata_urlopen({dataname: {'x': x}}) dset = fetch_mldata(dataname, data_home=tmpdir) for n in ["COL_NAMES", "DESCR", "data"]: assert_in(n, dset) assert_not_in("target", dset) assert_equal(dset.data.shape, (2, 3)) assert_array_equal(dset.data, x) # transposing the data array dset = fetch_mldata(dataname, transpose_data=False, data_home=tmpdir) assert_equal(dset.data.shape, (3, 2)) finally: datasets.mldata.urlopen = _urlopen_ref @with_setup(setup_tmpdata, teardown_tmpdata) def test_fetch_multiple_column(): _urlopen_ref = datasets.mldata.urlopen try: # create fake data set in cache x = sp.arange(6).reshape(2, 3) y = sp.array([1, -1]) z = sp.arange(12).reshape(4, 3) # by default dataname = 'threecol-default' datasets.mldata.urlopen = mock_mldata_urlopen({ dataname: ( { 'label': y, 'data': x, 'z': z, }, ['z', 'data', 'label'], ), }) dset = fetch_mldata(dataname, data_home=tmpdir) for n in ["COL_NAMES", "DESCR", "target", "data", "z"]: assert_in(n, dset) assert_not_in("x", dset) assert_not_in("y", dset) assert_array_equal(dset.data, x) assert_array_equal(dset.target, y) assert_array_equal(dset.z, z.T) # by order dataname = 'threecol-order' datasets.mldata.urlopen = mock_mldata_urlopen({ dataname: ({'y': y, 'x': x, 'z': z}, ['y', 'x', 'z']), }) dset = fetch_mldata(dataname, data_home=tmpdir) for n in ["COL_NAMES", "DESCR", "target", "data", "z"]: assert_in(n, dset) assert_not_in("x", dset) assert_not_in("y", dset) assert_array_equal(dset.data, x) assert_array_equal(dset.target, y) assert_array_equal(dset.z, z.T) # by number dataname = 'threecol-number' datasets.mldata.urlopen = mock_mldata_urlopen({ dataname: ({'y': y, 'x': x, 'z': z}, ['z', 'x', 'y']), }) dset = fetch_mldata(dataname, target_name=2, data_name=0, data_home=tmpdir) for n in ["COL_NAMES", "DESCR", "target", "data", "x"]: assert_in(n, dset) assert_not_in("y", dset) assert_not_in("z", dset) assert_array_equal(dset.data, z) assert_array_equal(dset.target, y) # by name dset = fetch_mldata(dataname, target_name='y', data_name='z', data_home=tmpdir) for n in ["COL_NAMES", "DESCR", "target", "data", "x"]: assert_in(n, dset) assert_not_in("y", dset) assert_not_in("z", dset) finally: datasets.mldata.urlopen = _urlopen_ref
bsd-3-clause
martinwicke/tensorflow
tensorflow/contrib/learn/python/learn/estimators/estimator.py
4
46466
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Base Estimator class.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import abc import copy import inspect import itertools import os import tempfile import time import numpy as np import six from tensorflow.contrib import framework as contrib_framework from tensorflow.contrib import layers from tensorflow.contrib import metrics as metrics_lib from tensorflow.contrib.framework import deprecated from tensorflow.contrib.framework import deprecated_arg_values from tensorflow.contrib.framework import deprecated_args from tensorflow.contrib.framework import list_variables from tensorflow.contrib.framework import load_variable from tensorflow.contrib.learn.python.learn import evaluable from tensorflow.contrib.learn.python.learn import graph_actions from tensorflow.contrib.learn.python.learn import metric_spec from tensorflow.contrib.learn.python.learn import monitors as monitor_lib from tensorflow.contrib.learn.python.learn import trainable from tensorflow.contrib.learn.python.learn.estimators import _sklearn as sklearn from tensorflow.contrib.learn.python.learn.estimators import metric_key from tensorflow.contrib.learn.python.learn.estimators import model_fn as model_fn_lib from tensorflow.contrib.learn.python.learn.estimators import run_config from tensorflow.contrib.learn.python.learn.estimators import tensor_signature from tensorflow.contrib.learn.python.learn.estimators._sklearn import NotFittedError from tensorflow.contrib.learn.python.learn.learn_io import data_feeder from tensorflow.contrib.learn.python.learn.utils import export from tensorflow.python.framework import errors from tensorflow.python.framework import ops from tensorflow.python.framework import random_seed from tensorflow.python.ops import control_flow_ops from tensorflow.python.platform import tf_logging as logging from tensorflow.python.training import device_setter from tensorflow.python.training import saver AS_ITERABLE_DATE = '2016-09-15' AS_ITERABLE_INSTRUCTIONS = ( 'The default behavior of predict() is changing. The default value for\n' 'as_iterable will change to True, and then the flag will be removed\n' 'altogether. The behavior of this flag is described below.') SCIKIT_DECOUPLE_DATE = '2016-12-01' SCIKIT_DECOUPLE_INSTRUCTIONS = ( 'Estimator is decoupled from Scikit Learn interface by moving into\n' 'separate class SKCompat. Arguments x, y and batch_size are only\n' 'available in the SKCompat class, Estimator will only accept input_fn.\n' 'Example conversion:\n' ' est = Estimator(...) -> est = SKCompat(Estimator(...))') def _get_input_fn(x, y, input_fn, feed_fn, batch_size, shuffle=False, epochs=1): """Make inputs into input and feed functions. Args: x: Numpy, Pandas or Dask matrix or iterable. y: Numpy, Pandas or Dask matrix or iterable. input_fn: Pre-defined input function for training data. feed_fn: Pre-defined data feeder function. batch_size: Size to split data into parts. Must be >= 1. shuffle: Whether to shuffle the inputs. epochs: Number of epochs to run. Returns: Data input and feeder function based on training data. Raises: ValueError: Only one of `(x & y)` or `input_fn` must be provided. """ if input_fn is None: if x is None: raise ValueError('Either x or input_fn must be provided.') if contrib_framework.is_tensor(x) or (y is not None and contrib_framework.is_tensor(y)): raise ValueError('Inputs cannot be tensors. Please provide input_fn.') if feed_fn is not None: raise ValueError('Can not provide both feed_fn and x or y.') df = data_feeder.setup_train_data_feeder(x, y, n_classes=None, batch_size=batch_size, shuffle=shuffle, epochs=epochs) return df.input_builder, df.get_feed_dict_fn() if (x is not None) or (y is not None): raise ValueError('Can not provide both input_fn and x or y.') if batch_size is not None: raise ValueError('Can not provide both input_fn and batch_size.') return input_fn, feed_fn def infer_real_valued_columns_from_input_fn(input_fn): """Creates `FeatureColumn` objects for inputs defined by `input_fn`. This interprets all inputs as dense, fixed-length float values. This creates a local graph in which it calls `input_fn` to build the tensors, then discards it. Args: input_fn: Input function returning a tuple of: features - Dictionary of string feature name to `Tensor` or `Tensor`. labels - `Tensor` of label values. Returns: List of `FeatureColumn` objects. """ with ops.Graph().as_default(): features, _ = input_fn() return layers.infer_real_valued_columns(features) def infer_real_valued_columns_from_input(x): """Creates `FeatureColumn` objects for inputs defined by input `x`. This interprets all inputs as dense, fixed-length float values. Args: x: Real-valued matrix of shape [n_samples, n_features...]. Can be iterator that returns arrays of features. Returns: List of `FeatureColumn` objects. """ input_fn, _ = _get_input_fn( x=x, y=None, input_fn=None, feed_fn=None, batch_size=None) return infer_real_valued_columns_from_input_fn(input_fn) def _get_arguments(func): """Returns list of arguments this function has.""" if hasattr(func, '__code__'): # Regular function. return inspect.getargspec(func).args elif hasattr(func, '__call__'): # Callable object. return _get_arguments(func.__call__) elif hasattr(func, 'func'): # Partial function. return _get_arguments(func.func) def _get_replica_device_setter(config): """Creates a replica device setter if required. Args: config: A RunConfig instance. Returns: A replica device setter, or None. """ ps_ops = [ 'Variable', 'AutoReloadVariable', 'MutableHashTable', 'MutableHashTableOfTensors', 'MutableDenseHashTable' ] if config.task_type: worker_device = '/job:%s/task:%d' % (config.task_type, config.task_id) else: worker_device = '/job:worker' if config.num_ps_replicas > 0: return device_setter.replica_device_setter( ps_tasks=config.num_ps_replicas, worker_device=worker_device, merge_devices=True, ps_ops=ps_ops, cluster=config.cluster_spec) else: return None def _make_metrics_ops(metrics, features, labels, predictions): """Add metrics based on `features`, `labels`, and `predictions`. `metrics` contains a specification for how to run metrics. It is a dict mapping friendly names to either `MetricSpec` objects, or directly to a metric function (assuming that `predictions` and `labels` are single tensors), or to `(pred_name, metric)` `tuple`, which passes `predictions[pred_name]` and `labels` to `metric` (assuming `labels` is a single tensor). Users are encouraged to use `MetricSpec` objects, which are more flexible and cleaner. They also lead to clearer errors. Args: metrics: A dict mapping names to metrics specification, for example `MetricSpec` objects. features: A dict of tensors returned from an input_fn as features/inputs. labels: A single tensor or a dict of tensors returned from an input_fn as labels. predictions: A single tensor or a dict of tensors output from a model as predictions. Returns: A dict mapping the friendly given in `metrics` to the result of calling the given metric function. Raises: ValueError: If metrics specifications do not work with the type of `features`, `labels`, or `predictions` provided. Mostly, a dict is given but no pred_name specified. """ metrics = metrics or {} # If labels is a dict with a single key, unpack into a single tensor. labels_tensor_or_dict = labels if isinstance(labels, dict) and len(labels) == 1: labels_tensor_or_dict = labels[list(labels.keys())[0]] result = {} # Iterate in lexicographic order, so the graph is identical among runs. for name, metric in sorted(six.iteritems(metrics)): if isinstance(metric, metric_spec.MetricSpec): result[name] = metric.create_metric_ops(features, labels, predictions) continue # TODO(b/31229024): Remove the rest of this loop logging.warning('Please specify metrics using MetricSpec. Using bare ' 'functions or (key, fn) tuples is deprecated and support ' 'for it will be removed on Oct 1, 2016.') if isinstance(name, tuple): # Multi-head metrics. if len(name) != 2: raise ValueError('Invalid metric for {}. It returned a tuple with ' 'len {}, expected 2.'.format(name, len(name))) if not isinstance(predictions, dict): raise ValueError( 'Metrics passed provide (name, prediction), ' 'but predictions are not dict. ' 'Metrics: %s, Predictions: %s.' % (metrics, predictions)) # Here are two options: labels are single Tensor or a dict. if isinstance(labels, dict) and name[1] in labels: # If labels are dict and the prediction name is in it, apply metric. result[name[0]] = metric(predictions[name[1]], labels[name[1]]) else: # Otherwise pass the labels to the metric. result[name[0]] = metric(predictions[name[1]], labels_tensor_or_dict) else: # Single head metrics. if isinstance(predictions, dict): raise ValueError( 'Metrics passed provide only name, no prediction, ' 'but predictions are dict. ' 'Metrics: %s, Labels: %s.' % (metrics, labels_tensor_or_dict)) result[name] = metric(predictions, labels_tensor_or_dict) return result class BaseEstimator( sklearn.BaseEstimator, evaluable.Evaluable, trainable.Trainable): """Abstract BaseEstimator class to train and evaluate TensorFlow models. Concrete implementation of this class should provide the following functions: * _get_train_ops * _get_eval_ops * _get_predict_ops `Estimator` implemented below is a good example of how to use this class. """ __metaclass__ = abc.ABCMeta # Note that for Google users, this is overriden with # learn_runner.EstimatorConfig. # TODO(wicke): Remove this once launcher takes over config functionality _Config = run_config.RunConfig # pylint: disable=invalid-name def __init__(self, model_dir=None, config=None): """Initializes a BaseEstimator instance. Args: model_dir: Directory to save model parameters, graph and etc. This can also be used to load checkpoints from the directory into a estimator to continue training a previously saved model. config: A RunConfig instance. """ # Model directory. self._model_dir = model_dir if self._model_dir is None: self._model_dir = tempfile.mkdtemp() logging.warning('Using temporary folder as model directory: %s', self._model_dir) # Create a run configuration. if config is None: self._config = BaseEstimator._Config() logging.info('Using default config.') else: self._config = config logging.info('Using config: %s', str(vars(self._config))) # Set device function depending if there are replicas or not. self._device_fn = _get_replica_device_setter(self._config) # Features and labels TensorSignature objects. # TODO(wicke): Rename these to something more descriptive self._features_info = None self._labels_info = None self._graph = None @property def config(self): # TODO(wicke): make RunConfig immutable, and then return it without a copy. return copy.deepcopy(self._config) @deprecated_args( SCIKIT_DECOUPLE_DATE, SCIKIT_DECOUPLE_INSTRUCTIONS, 'x', 'y', 'batch_size' ) def fit(self, x=None, y=None, input_fn=None, steps=None, batch_size=None, monitors=None, max_steps=None): # pylint: disable=g-doc-args,g-doc-return-or-yield """See `Trainable`. Raises: ValueError: If `x` or `y` are not `None` while `input_fn` is not `None`. ValueError: If both `steps` and `max_steps` are not `None`. """ if (steps is not None) and (max_steps is not None): raise ValueError('Can not provide both steps and max_steps.') input_fn, feed_fn = _get_input_fn(x, y, input_fn, feed_fn=None, batch_size=batch_size, shuffle=True, epochs=None) loss = self._train_model(input_fn=input_fn, feed_fn=feed_fn, steps=steps, monitors=monitors, max_steps=max_steps) logging.info('Loss for final step: %s.', loss) return self @deprecated_args( SCIKIT_DECOUPLE_DATE, SCIKIT_DECOUPLE_INSTRUCTIONS, 'x', 'y', 'batch_size' ) def partial_fit( self, x=None, y=None, input_fn=None, steps=1, batch_size=None, monitors=None): """Incremental fit on a batch of samples. This method is expected to be called several times consecutively on different or the same chunks of the dataset. This either can implement iterative training or out-of-core/online training. This is especially useful when the whole dataset is too big to fit in memory at the same time. Or when model is taking long time to converge, and you want to split up training into subparts. Args: x: Matrix of shape [n_samples, n_features...]. Can be iterator that returns arrays of features. The training input samples for fitting the model. If set, `input_fn` must be `None`. y: Vector or matrix [n_samples] or [n_samples, n_outputs]. Can be iterator that returns array of labels. The training label values (class labels in classification, real numbers in regression). If set, `input_fn` must be `None`. input_fn: Input function. If set, `x`, `y`, and `batch_size` must be `None`. steps: Number of steps for which to train model. If `None`, train forever. batch_size: minibatch size to use on the input, defaults to first dimension of `x`. Must be `None` if `input_fn` is provided. monitors: List of `BaseMonitor` subclass instances. Used for callbacks inside the training loop. Returns: `self`, for chaining. Raises: ValueError: If at least one of `x` and `y` is provided, and `input_fn` is provided. """ logging.warning('The current implementation of partial_fit is not optimized' ' for use in a loop. Consider using fit() instead.') return self.fit(x=x, y=y, input_fn=input_fn, steps=steps, batch_size=batch_size, monitors=monitors) @deprecated_args( SCIKIT_DECOUPLE_DATE, SCIKIT_DECOUPLE_INSTRUCTIONS, 'x', 'y', 'batch_size' ) def evaluate( self, x=None, y=None, input_fn=None, feed_fn=None, batch_size=None, steps=None, metrics=None, name=None): # pylint: disable=g-doc-args,g-doc-return-or-yield """See `Evaluable`. Raises: ValueError: If at least one of `x` or `y` is provided, and at least one of `input_fn` or `feed_fn` is provided. Or if `metrics` is not `None` or `dict`. """ input_fn, feed_fn = _get_input_fn(x, y, input_fn=input_fn, feed_fn=feed_fn, batch_size=batch_size, shuffle=False, epochs=1) if metrics is not None and not isinstance(metrics, dict): raise ValueError('Metrics argument should be None or dict. ' 'Got %s.' % metrics) eval_results, global_step = self._evaluate_model(input_fn=input_fn, feed_fn=feed_fn, steps=steps, metrics=metrics, name=name) if eval_results is not None: eval_results.update({'global_step': global_step}) return eval_results @deprecated_args( SCIKIT_DECOUPLE_DATE, SCIKIT_DECOUPLE_INSTRUCTIONS, 'x', 'batch_size', 'as_iterable' ) def predict( self, x=None, input_fn=None, batch_size=None, outputs=None, as_iterable=True): """Returns predictions for given features. Args: x: Matrix of shape [n_samples, n_features...]. Can be iterator that returns arrays of features. The training input samples for fitting the model. If set, `input_fn` must be `None`. input_fn: Input function. If set, `x` and 'batch_size' must be `None`. batch_size: Override default batch size. If set, 'input_fn' must be 'None'. outputs: list of `str`, name of the output to predict. If `None`, returns all. as_iterable: If True, return an iterable which keeps yielding predictions for each example until inputs are exhausted. Note: The inputs must terminate if you want the iterable to terminate (e.g. be sure to pass num_epochs=1 if you are using something like read_batch_features). Returns: A numpy array of predicted classes or regression values if the constructor's `model_fn` returns a `Tensor` for `predictions` or a `dict` of numpy arrays if `model_fn` returns a `dict`. Returns an iterable of predictions if as_iterable is True. Raises: ValueError: If x and input_fn are both provided or both `None`. """ input_fn, feed_fn = _get_input_fn( x, None, input_fn=input_fn, feed_fn=None, batch_size=batch_size, shuffle=False, epochs=1) return self._infer_model( input_fn=input_fn, feed_fn=feed_fn, outputs=outputs, as_iterable=as_iterable) def get_variable_value(self, name): """Returns value of the variable given by name. Args: name: string, name of the tensor. Returns: Numpy array - value of the tensor. """ return load_variable(self.model_dir, name) def get_variable_names(self): """Returns list of all variable names in this model. Returns: List of names. """ return [name for name, _ in list_variables(self.model_dir)] @property def model_dir(self): return self._model_dir @deprecated_arg_values( '2016-09-23', 'The signature of the input_fn accepted by export is changing to be ' 'consistent with what\'s used by tf.Learn Estimator\'s train/evaluate. ' 'input_fn (and in most cases, input_feature_key) will become required ' 'args, and use_deprecated_input_fn will default to False and be removed ' 'altogether.', use_deprecated_input_fn=True, input_fn=None) def export(self, export_dir, input_fn=export._default_input_fn, # pylint: disable=protected-access input_feature_key=None, use_deprecated_input_fn=True, signature_fn=None, prediction_key=None, default_batch_size=1, exports_to_keep=None): """Exports inference graph into given dir. Args: export_dir: A string containing a directory to write the exported graph and checkpoints. input_fn: If `use_deprecated_input_fn` is true, then a function that given `Tensor` of `Example` strings, parses it into features that are then passed to the model. Otherwise, a function that takes no argument and returns a tuple of (features, labels), where features is a dict of string key to `Tensor` and labels is a `Tensor` that's currently not used (and so can be `None`). input_feature_key: Only used if `use_deprecated_input_fn` is false. String key into the features dict returned by `input_fn` that corresponds to a the raw `Example` strings `Tensor` that the exported model will take as input. Can only be `None` if you're using a custom `signature_fn` that does not use the first arg (examples). use_deprecated_input_fn: Determines the signature format of `input_fn`. signature_fn: Function that returns a default signature and a named signature map, given `Tensor` of `Example` strings, `dict` of `Tensor`s for features and `Tensor` or `dict` of `Tensor`s for predictions. prediction_key: The key for a tensor in the `predictions` dict (output from the `model_fn`) to use as the `predictions` input to the `signature_fn`. Optional. If `None`, predictions will pass to `signature_fn` without filtering. default_batch_size: Default batch size of the `Example` placeholder. exports_to_keep: Number of exports to keep. Returns: The string path to the exported directory. NB: this functionality was added ca. 2016/09/25; clients that depend on the return value may need to handle the case where this function returns None because subclasses are not returning a value. """ # pylint: disable=protected-access return export._export_estimator( estimator=self, export_dir=export_dir, signature_fn=signature_fn, prediction_key=prediction_key, input_fn=input_fn, input_feature_key=input_feature_key, use_deprecated_input_fn=use_deprecated_input_fn, default_batch_size=default_batch_size, exports_to_keep=exports_to_keep) # pylint: enable=protected-access @abc.abstractproperty def _get_train_ops(self, features, labels): """Method that builds model graph and returns trainer ops. Expected to be overriden by sub-classes that require custom support. Args: features: `Tensor` or `dict` of `Tensor` objects. labels: `Tensor` or `dict` of `Tensor` objects. Returns: A `ModelFnOps` object. """ pass @abc.abstractproperty def _get_predict_ops(self, features): """Method that builds model graph and returns prediction ops. Args: features: `Tensor` or `dict` of `Tensor` objects. Returns: A `ModelFnOps` object. """ pass def _get_eval_ops(self, features, labels, metrics): """Method that builds model graph and returns evaluation ops. Expected to be overriden by sub-classes that require custom support. Args: features: `Tensor` or `dict` of `Tensor` objects. labels: `Tensor` or `dict` of `Tensor` objects. metrics: Dict of metrics to run. If None, the default metric functions are used; if {}, no metrics are used. Otherwise, `metrics` should map friendly names for the metric to a `MetricSpec` object defining which model outputs to evaluate against which labels with which metric function. Metric ops should support streaming, e.g., returning update_op and value tensors. See more details in `../../../../metrics/python/metrics/ops/streaming_metrics.py` and `../metric_spec.py`. Returns: A `ModelFnOps` object. """ raise NotImplementedError('_get_eval_ops not implemented in BaseEstimator') @deprecated( '2016-09-23', 'The signature of the input_fn accepted by export is changing to be ' 'consistent with what\'s used by tf.Learn Estimator\'s train/evaluate, ' 'which makes this function useless. This will be removed after the ' 'deprecation date.') def _get_feature_ops_from_example(self, examples_batch): """Returns feature parser for given example batch using features info. This function requires `fit()` has been called. Args: examples_batch: batch of tf.Example Returns: features: `Tensor` or `dict` of `Tensor` objects. Raises: ValueError: If `_features_info` attribute is not available (usually because `fit()` has not been called). """ if self._features_info is None: raise ValueError('Features information missing, was fit() ever called?') return tensor_signature.create_example_parser_from_signatures( self._features_info, examples_batch) def _check_inputs(self, features, labels): if self._features_info is not None: logging.debug('Given features: %s, required signatures: %s.', str(features), str(self._features_info)) if not tensor_signature.tensors_compatible(features, self._features_info): raise ValueError('Features are incompatible with given information. ' 'Given features: %s, required signatures: %s.' % (str(features), str(self._features_info))) else: self._features_info = tensor_signature.create_signatures(features) logging.debug('Setting feature info to %s.', str(self._features_info)) if labels is not None: if self._labels_info is not None: logging.debug('Given labels: %s, required signatures: %s.', str(labels), str(self._labels_info)) if not tensor_signature.tensors_compatible(labels, self._labels_info): raise ValueError('Labels are incompatible with given information. ' 'Given labels: %s, required signatures: %s.' % (str(labels), str(self._labels_info))) else: self._labels_info = tensor_signature.create_signatures(labels) logging.debug('Setting labels info to %s', str(self._labels_info)) def _train_model(self, input_fn, steps, feed_fn=None, init_op=None, init_feed_fn=None, init_fn=None, device_fn=None, monitors=None, log_every_steps=100, fail_on_nan_loss=True, max_steps=None): # TODO(wicke): Remove this once Model and associated code are gone. if hasattr(self._config, 'execution_mode'): if self._config.execution_mode not in ('all', 'train'): return # Stagger startup of worker sessions based on task id. sleep_secs = min( self._config.training_worker_max_startup_secs, self._config.task_id * self._config.training_worker_session_startup_stagger_secs) if sleep_secs: logging.info('Waiting %d secs before starting task %d.', sleep_secs, self._config.task_id) time.sleep(sleep_secs) # Device allocation device_fn = device_fn or self._device_fn self._graph = ops.Graph() with self._graph.as_default() as g, g.device(device_fn): random_seed.set_random_seed(self._config.tf_random_seed) global_step = contrib_framework.create_global_step(g) features, labels = input_fn() self._check_inputs(features, labels) # The default return type of _get_train_ops is ModelFnOps. But there are # some subclasses of tf.contrib.learn.Estimator which override this # method and use the legacy signature, namely _get_train_ops returns a # (train_op, loss) tuple. The following else-statement code covers these # cases, but will soon be deleted after the subclasses are updated. # TODO(b/32664904): Update subclasses and delete the else-statement. train_ops = self._get_train_ops(features, labels) if isinstance(train_ops, model_fn_lib.ModelFnOps): # Default signature train_op = train_ops.train_op loss_op = train_ops.loss else: # Legacy signature if len(train_ops) != 2: raise ValueError('Expected a tuple of train_op and loss, got {}'. format(train_ops)) train_op = train_ops[0] loss_op = train_ops[1] hooks = monitor_lib.replace_monitors_with_hooks(monitors, self) ops.add_to_collection(ops.GraphKeys.LOSSES, loss_op) return graph_actions._monitored_train( # pylint: disable=protected-access graph=g, output_dir=self._model_dir, train_op=train_op, loss_op=loss_op, global_step_tensor=global_step, init_op=init_op, init_feed_dict=init_feed_fn() if init_feed_fn is not None else None, init_fn=init_fn, log_every_steps=log_every_steps, supervisor_is_chief=self.config.is_chief, supervisor_master=self._config.master, supervisor_save_model_secs=self._config.save_checkpoints_secs, supervisor_save_model_steps=self._config.save_checkpoints_steps, supervisor_save_summaries_steps=self._config.save_summary_steps, keep_checkpoint_max=self._config.keep_checkpoint_max, feed_fn=feed_fn, steps=steps, fail_on_nan_loss=fail_on_nan_loss, hooks=hooks, max_steps=max_steps) def _extract_metric_update_ops(self, eval_dict): """Separate update operations from metric value operations.""" update_ops = [] value_ops = {} for name, metric_ops in six.iteritems(eval_dict): if isinstance(metric_ops, (list, tuple)): if len(metric_ops) == 2: value_ops[name] = metric_ops[0] update_ops.append(metric_ops[1]) else: logging.warning( 'Ignoring metric {}. It returned a list|tuple with len {}, ' 'expected 2'.format(name, len(metric_ops))) value_ops[name] = metric_ops else: value_ops[name] = metric_ops if update_ops: update_ops = control_flow_ops.group(*update_ops) else: update_ops = None return update_ops, value_ops def _evaluate_model(self, input_fn, steps, feed_fn=None, metrics=None, name=''): # TODO(wicke): Remove this once Model and associated code are gone. if (hasattr(self._config, 'execution_mode') and self._config.execution_mode not in ('all', 'evaluate', 'eval_evalset')): return None, None # Check that model has been trained. checkpoint_path = self._model_dir latest_path = saver.latest_checkpoint(checkpoint_path) if not latest_path: raise NotFittedError("Couldn't find trained model at %s." % checkpoint_path) # Setup output directory. eval_dir = os.path.join(self._model_dir, 'eval' if not name else 'eval_' + name) with ops.Graph().as_default() as g: random_seed.set_random_seed(self._config.tf_random_seed) global_step = contrib_framework.create_global_step(g) features, labels = input_fn() self._check_inputs(features, labels) # The default return type of _get_eval_ops is ModelFnOps. But there are # some subclasses of tf.contrib.learn.Estimator which override this # method and use the legacy signature, namely _get_eval_ops returns an # `eval_dict` dictionary of Tensors. The following else-statement code # covers these cases, but will soon be deleted after the subclasses are # updated. # TODO(b/32664904): Update subclasses and delete the else-statement. eval_ops = self._get_eval_ops(features, labels, metrics) if isinstance(eval_ops, model_fn_lib.ModelFnOps): # Default signature eval_dict = eval_ops.eval_metric_ops else: # Legacy signature eval_dict = eval_ops update_op, eval_dict = self._extract_metric_update_ops(eval_dict) eval_results, current_global_step = graph_actions.evaluate( graph=g, output_dir=eval_dir, checkpoint_path=checkpoint_path, eval_dict=eval_dict, update_op=update_op, global_step_tensor=global_step, supervisor_master=self._config.evaluation_master, feed_fn=feed_fn, max_steps=steps) return eval_results, current_global_step def _get_features_from_input_fn(self, input_fn): result = input_fn() if isinstance(result, (list, tuple)): return result[0] return result def _infer_model( self, input_fn, feed_fn=None, outputs=None, as_iterable=True): # Check that model has been trained. checkpoint_path = saver.latest_checkpoint(self._model_dir) if not checkpoint_path: raise NotFittedError("Couldn't find trained model at %s." % self._model_dir) with ops.Graph().as_default() as g: random_seed.set_random_seed(self._config.tf_random_seed) contrib_framework.create_global_step(g) features = self._get_features_from_input_fn(input_fn) # The default return type of _get_predict_ops is ModelFnOps. But there are # some subclasses of tf.contrib.learn.Estimator which override this # method and use the legacy signature, namely _get_predict_ops returns a # `predictions` Tensor or dict or Tensors. The following else-statement # code covers these cases, but will soon be deleted after the subclasses # are updated. # TODO(b/32664904): Update subclasses and delete the else-statement. infer_ops = self._get_predict_ops(features) if isinstance(infer_ops, model_fn_lib.ModelFnOps): # Default signature predictions = infer_ops.predictions else: # Legacy signature predictions = infer_ops # If predictions is single output - wrap it into dict, and remember to # return not a dict. return_dict = isinstance(predictions, dict) if not return_dict: predictions = {'predictions': predictions} # Filter what to run predictions on, if outputs provided. if outputs: existing_keys = predictions.keys() predictions = { key: value for key, value in six.iteritems(predictions) if key in outputs } if not predictions: raise ValueError('Expected to run at least one output from %s, ' 'provided %s.' % (existing_keys, outputs)) if as_iterable: return self._infer_model_as_iterable( checkpoint_path, predictions, feed_fn, return_dict) else: return self._infer_model_single( checkpoint_path, predictions, feed_fn, return_dict) def _infer_model_single( self, checkpoint_path, predictions, feed_fn, return_dict): if feed_fn is None: preds = graph_actions.infer(checkpoint_path, predictions) else: def _feed_fn(): while True: yield feed_fn() outputs = graph_actions.run_feeds( output_dict=predictions, feed_dicts=_feed_fn(), restore_checkpoint_path=checkpoint_path) preds = { key: np.concatenate([output[key] for output in outputs], axis=0) for key in predictions} return preds if return_dict else preds['predictions'] def _infer_model_as_iterable( self, checkpoint_path, predictions, feed_fn, return_dict): if feed_fn is None: feed_dicts = itertools.repeat(None) else: def _feed_fn(): while True: yield feed_fn() feed_dicts = _feed_fn() try: for output_batch in graph_actions.run_feeds_iter( output_dict=predictions, feed_dicts=feed_dicts, restore_checkpoint_path=checkpoint_path): # Unpack batches into individual predictions if return_dict: batch_length = list(output_batch.values())[0].shape[0] for i in range(batch_length): yield {key: value[i] for key, value in six.iteritems(output_batch)} else: for pred in output_batch['predictions']: yield pred except errors.OutOfRangeError: # We fall out of the above loop naturally if feed_fn raises StopIteration, # or we catch an OutOfRangeError if we've reached the end of inputs. logging.info('Reached end of inputs for predict_iter.') def _identity_feature_engineering_fn(features, labels): return features, labels class Estimator(BaseEstimator): """Estimator class is the basic TensorFlow model trainer/evaluator. """ def __init__(self, model_fn=None, model_dir=None, config=None, params=None, feature_engineering_fn=None): """Constructs an `Estimator` instance. Args: model_fn: Model function. Follows the signature: * Args: * `features` are single `Tensor` or `dict` of `Tensor`s (depending on data passed to `fit`), * `labels` are `Tensor` or `dict` of `Tensor`s (for multi-head models). If mode is `ModeKeys.INFER`, `labels=None` will be passed. If the `model_fn`'s signature does not accept `mode`, the `model_fn` must still be able to handle `labels=None`. * `mode` specifies if this training, evaluation or prediction. See `ModeKeys`. * `params` is a `dict` of hyperparameters. Will receive what is passed to Estimator in `params` parameter. This allows to configure Estimators from hyper parameter tuning. * Returns: `ModelFnOps` Also supports a legacy signature which returns tuple of: * predictions: `Tensor`, `SparseTensor` or dictionary of same. Can also be any type that is convertible to a `Tensor` or `SparseTensor`, or dictionary of same. * loss: Scalar loss `Tensor`. * train_op: Training update `Tensor` or `Operation`. Supports next three signatures for the function: * `(features, labels) -> (predictions, loss, train_op)` * `(features, labels, mode) -> (predictions, loss, train_op)` * `(features, labels, mode, params) -> (predictions, loss, train_op)` model_dir: Directory to save model parameters, graph and etc. This can also be used to load checkpoints from the directory into a estimator to continue training a previously saved model. config: Configuration object. params: `dict` of hyper parameters that will be passed into `model_fn`. Keys are names of parameters, values are basic python types. feature_engineering_fn: Feature engineering function. Takes features and labels which are the output of `input_fn` and returns features and labels which will be fed into `model_fn`. Please check `model_fn` for a definition of features and labels. Raises: ValueError: parameters of `model_fn` don't match `params`. """ super(Estimator, self).__init__(model_dir=model_dir, config=config) if model_fn is not None: # Check number of arguments of the given function matches requirements. model_fn_args = _get_arguments(model_fn) if params is not None and 'params' not in model_fn_args: raise ValueError('Estimator\'s model_fn (%s) has less than 4 ' 'arguments, but not None params (%s) are passed.' % (model_fn, params)) if params is None and 'params' in model_fn_args: logging.warning('Estimator\'s model_fn (%s) includes params ' 'argument, but params are not passed to Estimator.', model_fn) self._model_fn = model_fn self.params = params self._feature_engineering_fn = ( feature_engineering_fn or _identity_feature_engineering_fn) def _call_model_fn(self, features, labels, mode): """Calls model function with support of 2, 3 or 4 arguments. Args: features: features dict. labels: labels dict. mode: ModeKeys Returns: A `ModelFnOps` object. If model_fn returns a tuple, wraps them up in a `ModelFnOps` object. Raises: ValueError: if model_fn returns invalid objects. """ features, labels = self._feature_engineering_fn(features, labels) model_fn_args = _get_arguments(self._model_fn) if 'mode' in model_fn_args: if 'params' in model_fn_args: model_fn_results = self._model_fn(features, labels, mode=mode, params=self.params) else: model_fn_results = self._model_fn(features, labels, mode=mode) else: model_fn_results = self._model_fn(features, labels) if isinstance(model_fn_results, model_fn_lib.ModelFnOps): return model_fn_results # Here model_fn_ops should be a tuple with 3 elements. if len(model_fn_results) != 3: raise ValueError('Unrecognized value returned by model_fn, ' 'please return ModelFnOps.') return model_fn_lib.ModelFnOps( mode=mode, predictions=model_fn_results[0], loss=model_fn_results[1], train_op=model_fn_results[2]) def _get_train_ops(self, features, labels): """Method that builds model graph and returns trainer ops. Expected to be overriden by sub-classes that require custom support. This implementation uses `model_fn` passed as parameter to constructor to build model. Args: features: `Tensor` or `dict` of `Tensor` objects. labels: `Tensor` or `dict` of `Tensor` objects. Returns: `ModelFnOps` object. """ return self._call_model_fn(features, labels, model_fn_lib.ModeKeys.TRAIN) def _get_eval_ops(self, features, labels, metrics): """Method that builds model graph and returns evaluation ops. Expected to be overriden by sub-classes that require custom support. This implementation uses `model_fn` passed as parameter to constructor to build model. Args: features: `Tensor` or `dict` of `Tensor` objects. labels: `Tensor` or `dict` of `Tensor` objects. metrics: Dict of metrics to run. If None, the default metric functions are used; if {}, no metrics are used. Otherwise, `metrics` should map friendly names for the metric to a `MetricSpec` object defining which model outputs to evaluate against which labels with which metric function. Metric ops should support streaming, e.g., returning update_op and value tensors. See more details in `../../../../metrics/python/metrics/ops/streaming_metrics.py` and `../metric_spec.py`. Returns: `ModelFnOps` object. Raises: ValueError: if `metrics` don't match `labels`. """ model_fn_ops = self._call_model_fn( features, labels, model_fn_lib.ModeKeys.EVAL) # Custom metrics should overwrite defaults. if metrics: model_fn_ops.eval_metric_ops.update(_make_metrics_ops( metrics, features, labels, model_fn_ops.predictions)) if metric_key.MetricKey.LOSS not in model_fn_ops.eval_metric_ops: model_fn_ops.eval_metric_ops[metric_key.MetricKey.LOSS] = ( metrics_lib.streaming_mean(model_fn_ops.loss)) return model_fn_ops def _get_predict_ops(self, features): """Method that builds model graph and returns prediction ops. Expected to be overriden by sub-classes that require custom support. This implementation uses `model_fn` passed as parameter to constructor to build model. Args: features: `Tensor` or `dict` of `Tensor` objects. Returns: `ModelFnOps` object. """ labels = tensor_signature.create_placeholders_from_signatures( self._labels_info) return self._call_model_fn(features, labels, model_fn_lib.ModeKeys.INFER) # For time of deprecation x,y from Estimator allow direct access. # pylint: disable=protected-access class SKCompat(sklearn.BaseEstimator): """Scikit learn wrapper for TensorFlow Learn Estimator.""" def __init__(self, estimator): self._estimator = estimator def fit(self, x, y, batch_size=128, steps=None, max_steps=None, monitors=None): if (steps is not None) and (max_steps is not None): raise ValueError('Can not provide both steps and max_steps.') input_fn, feed_fn = _get_input_fn(x, y, input_fn=None, feed_fn=None, batch_size=batch_size, shuffle=True, epochs=None) loss = self._estimator._train_model( input_fn=input_fn, feed_fn=feed_fn, steps=steps, monitors=monitors, max_steps=max_steps) logging.info('Loss for final step: %s.', loss) return self def score(self, x, y, batch_size=128, steps=None, metrics=None): input_fn, feed_fn = _get_input_fn(x, y, input_fn=None, feed_fn=None, batch_size=batch_size, shuffle=False, epochs=1) if metrics is not None and not isinstance(metrics, dict): raise ValueError('Metrics argument should be None or dict. ' 'Got %s.' % metrics) eval_results, global_step = self._estimator._evaluate_model( input_fn=input_fn, feed_fn=feed_fn, steps=steps, metrics=metrics, name='score') if eval_results is not None: eval_results.update({'global_step': global_step}) return eval_results def predict(self, x, batch_size=128, outputs=None): input_fn, feed_fn = _get_input_fn( x, None, input_fn=None, feed_fn=None, batch_size=batch_size, shuffle=False, epochs=1) return self._estimator._infer_model( input_fn=input_fn, feed_fn=feed_fn, outputs=outputs, as_iterable=False)
apache-2.0
nightjean/Deep-Learning
tensorflow/examples/learn/text_classification_cnn.py
8
4386
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Example of Estimator for CNN-based text classification with DBpedia data.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import sys import numpy as np import pandas from sklearn import metrics import tensorflow as tf learn = tf.contrib.learn FLAGS = None MAX_DOCUMENT_LENGTH = 100 EMBEDDING_SIZE = 20 N_FILTERS = 10 WINDOW_SIZE = 20 FILTER_SHAPE1 = [WINDOW_SIZE, EMBEDDING_SIZE] FILTER_SHAPE2 = [WINDOW_SIZE, N_FILTERS] POOLING_WINDOW = 4 POOLING_STRIDE = 2 n_words = 0 def cnn_model(features, target): """2 layer ConvNet to predict from sequence of words to a class.""" # Convert indexes of words into embeddings. # This creates embeddings matrix of [n_words, EMBEDDING_SIZE] and then # maps word indexes of the sequence into [batch_size, sequence_length, # EMBEDDING_SIZE]. target = tf.one_hot(target, 15, 1, 0) word_vectors = tf.contrib.layers.embed_sequence( features, vocab_size=n_words, embed_dim=EMBEDDING_SIZE, scope='words') word_vectors = tf.expand_dims(word_vectors, 3) with tf.variable_scope('CNN_Layer1'): # Apply Convolution filtering on input sequence. conv1 = tf.contrib.layers.convolution2d( word_vectors, N_FILTERS, FILTER_SHAPE1, padding='VALID') # Add a RELU for non linearity. conv1 = tf.nn.relu(conv1) # Max pooling across output of Convolution+Relu. pool1 = tf.nn.max_pool( conv1, ksize=[1, POOLING_WINDOW, 1, 1], strides=[1, POOLING_STRIDE, 1, 1], padding='SAME') # Transpose matrix so that n_filters from convolution becomes width. pool1 = tf.transpose(pool1, [0, 1, 3, 2]) with tf.variable_scope('CNN_Layer2'): # Second level of convolution filtering. conv2 = tf.contrib.layers.convolution2d( pool1, N_FILTERS, FILTER_SHAPE2, padding='VALID') # Max across each filter to get useful features for classification. pool2 = tf.squeeze(tf.reduce_max(conv2, 1), squeeze_dims=[1]) # Apply regular WX + B and classification. logits = tf.contrib.layers.fully_connected(pool2, 15, activation_fn=None) loss = tf.losses.softmax_cross_entropy(target, logits) train_op = tf.contrib.layers.optimize_loss( loss, tf.contrib.framework.get_global_step(), optimizer='Adam', learning_rate=0.01) return ({ 'class': tf.argmax(logits, 1), 'prob': tf.nn.softmax(logits) }, loss, train_op) def main(unused_argv): global n_words # Prepare training and testing data dbpedia = learn.datasets.load_dataset( 'dbpedia', test_with_fake_data=FLAGS.test_with_fake_data) x_train = pandas.DataFrame(dbpedia.train.data)[1] y_train = pandas.Series(dbpedia.train.target) x_test = pandas.DataFrame(dbpedia.test.data)[1] y_test = pandas.Series(dbpedia.test.target) # Process vocabulary vocab_processor = learn.preprocessing.VocabularyProcessor(MAX_DOCUMENT_LENGTH) x_train = np.array(list(vocab_processor.fit_transform(x_train))) x_test = np.array(list(vocab_processor.transform(x_test))) n_words = len(vocab_processor.vocabulary_) print('Total words: %d' % n_words) # Build model classifier = learn.SKCompat(learn.Estimator(model_fn=cnn_model)) # Train and predict classifier.fit(x_train, y_train, steps=100) y_predicted = classifier.predict(x_test)['class'] score = metrics.accuracy_score(y_test, y_predicted) print('Accuracy: {0:f}'.format(score)) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '--test_with_fake_data', default=False, help='Test the example code with fake data.', action='store_true') FLAGS, unparsed = parser.parse_known_args() tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
apache-2.0
Dataweekends/pyladies_intro_to_data_science
Iris Flowers Workshop.py
1
5598
# coding: utf-8 # # Separating Flowers # This notebook explores a classic Machine Learning Dataset: the Iris flower dataset # # ## Tutorial goals # 1. Explore the dataset # 2. Build a simple predictive modeling # 3. Iterate and improve your score # # How to follow along: # # git clone https://github.com/dataweekends/pyladies_intro_to_data_science # # cd pyladies_intro_to_data_science # # ipython notebook # We start by importing the necessary libraries: # In[ ]: import pandas as pd import numpy as np import matplotlib.pyplot as plt get_ipython().magic(u'matplotlib inline') # ### 1) Explore the dataset # #### Numerical exploration # # - Load the csv file into memory using Pandas # - Describe each attribute # - is it discrete? # - is it continuous? # - is it a number? # - Identify the target # - Check if any values are missing # # Load the csv file into memory using Pandas # In[ ]: df = pd.read_csv('iris-2-classes.csv') # What's the content of ```df``` ? # In[ ]: df.head(3) # Describe each attribute (is it discrete? is it continuous? is it a number? is it text?) # In[ ]: df.info() # Are the features continuous or discrete? # In[ ]: df.describe() # #### Identify the target # What are we trying to predict? # ah, yes... the type of Iris flower! # In[ ]: df['iris_type'].value_counts() # Check if any values are missing # In[ ]: df.info() # #### Mental notes so far: # # - Dataset contains 100 entries # - 1 Target column (```iris_type```) # - 4 Numerical Features # - No missing values # #### Visual exploration # - plot the distribution of the Sepal Length feature # - check the influence of Sepal Length on the target # Plot the distribution of Sepal Length # In[ ]: df['sepal_length_cm'].plot(kind='hist', figsize=(10,6)) plt.title('Distribution of Sepal Length', size = '20') plt.xlabel('Sepal Length (cm)', size = '20') plt.ylabel('Number of flowers', size = '20') # check the influence of Sepal Length # In[ ]: df[df['iris_type']=='virginica']['sepal_length_cm'].plot(kind='hist', bins = 10, range = (4,7), figsize=(10,6), alpha = 0.3, color = 'b') df[df['iris_type']=='versicolor']['sepal_length_cm'].plot(kind='hist', bins = 10, range = (4,7), figsize=(10,6), alpha = 0.3, color = 'g') plt.title('Distribution of Sepal Length', size = '20') plt.xlabel('Sepal Length (cm)', size = '20') plt.ylabel('Number of flowers', size = '20') plt.legend(['Virginica', 'Versicolor']) plt.show() # Check the influence of two features of combined # In[ ]: plt.scatter(df[df['iris_type']== 'virginica']['petal_length_cm'].values, df[df['iris_type']== 'virginica']['sepal_length_cm'].values, label = 'Virginica', c = 'b') plt.scatter(df[df['iris_type']== 'versicolor']['petal_length_cm'].values, df[df['iris_type']== 'versicolor']['sepal_length_cm'].values, label = 'Versicolor', c = 'r') plt.legend(['virginica', 'versicolor'], loc = 2) plt.title('Scatter plot', size = '20') plt.xlabel('Petal Length (cm)', size = '20') plt.ylabel('Sepal Length (cm)', size = '20') plt.show() # Ok, so, the flowers seem to have different characteristics # # Let's build a simple model to test that # Define a new target column called "target" that is 1 if iris_kind = 'virginica' and 0 otherwise # In[ ]: df['target'] = df['iris_type'].map({'virginica': 1, 'versicolor': 0}) print df[['iris_type', 'target']].head(2) print print df[['iris_type', 'target']].tail(2) # Define simplest model as benchmark # The simplest model is a model that predicts 0 for everybody, i.e. all versicolor. # # How good is it? # In[ ]: actual_versicolor = len(df[df['target'] == 0]) total_flowers = len(df) ratio_of_versicolor = actual_versicolor / float(total_flowers) print "If I predict every flower is versicolor, I'm correct %0.1f %% of the time" % (100 * ratio_of_versicolor) df['target'].value_counts() # We need to do better than that # Define features (X) and target (y) variables # In[ ]: X = df[['sepal_length_cm', 'sepal_width_cm', 'petal_length_cm', 'petal_width_cm']] y = df['target'] # Initialize a decision Decision Tree model # In[ ]: from sklearn.tree import DecisionTreeClassifier model = DecisionTreeClassifier(random_state=0) model # Split the features and the target into a Train and a Test subsets. # # Ratio should be 70/30 # In[ ]: from sklearn.cross_validation import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_state=0) # Train the model # In[ ]: model.fit(X_train, y_train) # Calculate the model score # In[ ]: my_score = model.score(X_test, y_test) print "Classification Score: %0.2f" % my_score # Print the confusion matrix for the decision tree model # In[ ]: from sklearn.metrics import confusion_matrix y_pred = model.predict(X_test) print "\n=======confusion matrix==========" print confusion_matrix(y_test, y_pred) # ### 3) Iterate and improve # # Now you have a basic pipeline. How can you improve the score? Try: # - changing the parameters of the model # check the documentation here: # http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html # # - changing the model itself # check examples here: # http://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html # # - try separating 3 classes of flowers using the ```iris.csv``` dataset provided
mit
pxzhang94/GAN
neuraltest/utils.py
2
3230
import tensorflow as tf import tensorflow.contrib.slim as slim import math import matplotlib.pyplot as plt import numpy as np import os def show_all_variables(): model_vars = tf.trainable_variables() slim.model_analyzer.analyze_vars(model_vars, print_info=True) def get_preidcate_labels(predicate, sample_vectors): predicate_labels = [] for index, sample_vector in enumerate(sample_vectors): predicate_label = predicate(sample_vector) predicate_labels.append([float(i) for i in predicate_label]) return np.array(predicate_labels) def evaluate_samples(predicate, sample_vectors, batch_labels): number_0 = 0 correct_0 = 0 correct_1 = 0 for index, sample_vector in enumerate(sample_vectors): if batch_labels[index] == 0: number_0 += 1 if batch_labels[index] == predicate(sample_vector): correct_0 += 1 else: if batch_labels[index] == predicate(sample_vector): correct_1 += 1 return (correct_0 + correct_1) / len(batch_labels) * 100, correct_0 / number_0 * 100, correct_1 / (len(batch_labels) - number_0) * 100 def visualize_results(corrects): epochs = [epoch + 1 for epoch in range(len(corrects))] plt.plot(epochs, corrects) plt.show() def concat(x, y): return tf.concat([x, y], 1) def batch_norm(x, is_training, scope): return tf.layers.batch_normalization( x, epsilon=1e-5, momentum=0.9, training=is_training, name=scope) def lrelu(x, leak=0.2, name="lrelu"): return tf.maximum(x, leak * x) def layer_init(input_layer, output_size, scope=None, with_w=False): shape = input_layer.get_shape().as_list() with tf.variable_scope(scope or "layer"): weight = tf.get_variable( "weights", [ shape[1], output_size], tf.float32, initializer=tf.truncated_normal_initializer( stddev=1.0 / math.sqrt( shape[0]))) bias = tf.get_variable( "bias", [output_size], initializer=tf.constant_initializer(0.0)) return tf.matmul(input_layer, weight) + bias def layer_initialization(shape, scope=None, with_w=False): with tf.variable_scope(scope or "layer"): weight = tf.get_variable( "weights", shape, tf.float32, tf.random_normal_initializer( stddev=1.0 / math.sqrt( float( shape[0])))) bias = tf.get_variable( "bias", shape[1], initializer=tf.constant_initializer(0.0)) return weight, bias def save_results(corrects, predictor): epochs = [epoch + 1 for epoch in range(len(corrects))] fig = plt.figure() ax = fig.add_subplot(111) ax.plot(epochs, corrects) ax.set_title(predictor) ax.grid(True) file_path = os.path.dirname(os.path.abspath("neuraltest")) fig.savefig(os.path.join(file_path, "results", predictor), dpi=200) # fig.savefig("/Users/pxzhang/Documents/SUTD/NeuralTest/results/" + predictor, dpi=200)
apache-2.0
ashhher3/scikit-learn
sklearn/linear_model/tests/test_logistic.py
19
22876
import numpy as np import scipy.sparse as sp from scipy import linalg, optimize, sparse from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_warns from sklearn.utils.testing import raises from sklearn.utils.testing import ignore_warnings from sklearn.utils import ConvergenceWarning from sklearn.linear_model.logistic import ( LogisticRegression, logistic_regression_path, LogisticRegressionCV, _logistic_loss_and_grad, _logistic_loss_grad_hess, _multinomial_loss_grad_hess ) from sklearn.cross_validation import StratifiedKFold from sklearn.datasets import load_iris, make_classification X = [[-1, 0], [0, 1], [1, 1]] X_sp = sp.csr_matrix(X) Y1 = [0, 1, 1] Y2 = [2, 1, 0] iris = load_iris() def check_predictions(clf, X, y): """Check that the model is able to fit the classification data""" n_samples = len(y) classes = np.unique(y) n_classes = classes.shape[0] predicted = clf.fit(X, y).predict(X) assert_array_equal(clf.classes_, classes) assert_equal(predicted.shape, (n_samples,)) assert_array_equal(predicted, y) probabilities = clf.predict_proba(X) assert_equal(probabilities.shape, (n_samples, n_classes)) assert_array_almost_equal(probabilities.sum(axis=1), np.ones(n_samples)) assert_array_equal(probabilities.argmax(axis=1), y) def test_predict_2_classes(): """Simple sanity check on a 2 classes dataset Make sure it predicts the correct result on simple datasets. """ check_predictions(LogisticRegression(random_state=0), X, Y1) check_predictions(LogisticRegression(random_state=0), X_sp, Y1) check_predictions(LogisticRegression(C=100, random_state=0), X, Y1) check_predictions(LogisticRegression(C=100, random_state=0), X_sp, Y1) check_predictions(LogisticRegression(fit_intercept=False, random_state=0), X, Y1) check_predictions(LogisticRegression(fit_intercept=False, random_state=0), X_sp, Y1) def test_error(): """Test for appropriate exception on errors""" assert_raises(ValueError, LogisticRegression(C=-1).fit, X, Y1) def test_predict_3_classes(): check_predictions(LogisticRegression(C=10), X, Y2) check_predictions(LogisticRegression(C=10), X_sp, Y2) def test_predict_iris(): """Test logistic regression with the iris dataset""" n_samples, n_features = iris.data.shape target = iris.target_names[iris.target] # Test that both multinomial and OvR solvers handle # multiclass data correctly and give good accuracy # score (>0.95) for the training data. for clf in [LogisticRegression(C=len(iris.data)), LogisticRegression(C=len(iris.data), solver='lbfgs', multi_class='multinomial'), LogisticRegression(C=len(iris.data), solver='newton-cg', multi_class='multinomial')]: clf.fit(iris.data, target) assert_array_equal(np.unique(target), clf.classes_) pred = clf.predict(iris.data) assert_greater(np.mean(pred == target), .95) probabilities = clf.predict_proba(iris.data) assert_array_almost_equal(probabilities.sum(axis=1), np.ones(n_samples)) pred = iris.target_names[probabilities.argmax(axis=1)] assert_greater(np.mean(pred == target), .95) def test_multinomial_validation(): for solver in ['lbfgs', 'newton-cg']: lr = LogisticRegression(C=-1, solver=solver, multi_class='multinomial') assert_raises(ValueError, lr.fit, [[0, 1], [1, 0]], [0, 1]) def test_multinomial_binary(): """Test multinomial LR on a binary problem.""" target = (iris.target > 0).astype(np.intp) target = np.array(["setosa", "not-setosa"])[target] for solver in ['lbfgs', 'newton-cg']: clf = LogisticRegression(solver=solver, multi_class='multinomial') clf.fit(iris.data, target) assert_equal(clf.coef_.shape, (1, iris.data.shape[1])) assert_equal(clf.intercept_.shape, (1,)) assert_array_equal(clf.predict(iris.data), target) mlr = LogisticRegression(solver=solver, multi_class='multinomial', fit_intercept=False) mlr.fit(iris.data, target) pred = clf.classes_[np.argmax(clf.predict_log_proba(iris.data), axis=1)] assert_greater(np.mean(pred == target), .9) def test_sparsify(): """Test sparsify and densify members.""" n_samples, n_features = iris.data.shape target = iris.target_names[iris.target] clf = LogisticRegression(random_state=0).fit(iris.data, target) pred_d_d = clf.decision_function(iris.data) clf.sparsify() assert_true(sp.issparse(clf.coef_)) pred_s_d = clf.decision_function(iris.data) sp_data = sp.coo_matrix(iris.data) pred_s_s = clf.decision_function(sp_data) clf.densify() pred_d_s = clf.decision_function(sp_data) assert_array_almost_equal(pred_d_d, pred_s_d) assert_array_almost_equal(pred_d_d, pred_s_s) assert_array_almost_equal(pred_d_d, pred_d_s) def test_inconsistent_input(): """Test that an exception is raised on inconsistent input""" rng = np.random.RandomState(0) X_ = rng.random_sample((5, 10)) y_ = np.ones(X_.shape[0]) y_[0] = 0 clf = LogisticRegression(random_state=0) # Wrong dimensions for training data y_wrong = y_[:-1] assert_raises(ValueError, clf.fit, X, y_wrong) # Wrong dimensions for test data assert_raises(ValueError, clf.fit(X_, y_).predict, rng.random_sample((3, 12))) def test_write_parameters(): """Test that we can write to coef_ and intercept_""" clf = LogisticRegression(random_state=0) clf.fit(X, Y1) clf.coef_[:] = 0 clf.intercept_[:] = 0 assert_array_almost_equal(clf.decision_function(X), 0) @raises(ValueError) def test_nan(): """Test proper NaN handling. Regression test for Issue #252: fit used to go into an infinite loop. """ Xnan = np.array(X, dtype=np.float64) Xnan[0, 1] = np.nan LogisticRegression(random_state=0).fit(Xnan, Y1) def test_consistency_path(): """Test that the path algorithm is consistent""" rng = np.random.RandomState(0) X = np.concatenate((rng.randn(100, 2) + [1, 1], rng.randn(100, 2))) y = [1] * 100 + [-1] * 100 Cs = np.logspace(0, 4, 10) f = ignore_warnings # can't test with fit_intercept=True since LIBLINEAR # penalizes the intercept for method in ('lbfgs', 'newton-cg', 'liblinear'): coefs, Cs = f(logistic_regression_path)( X, y, Cs=Cs, fit_intercept=False, tol=1e-16, solver=method) for i, C in enumerate(Cs): lr = LogisticRegression(C=C, fit_intercept=False, tol=1e-16) lr.fit(X, y) lr_coef = lr.coef_.ravel() assert_array_almost_equal(lr_coef, coefs[i], decimal=4) # test for fit_intercept=True for method in ('lbfgs', 'newton-cg', 'liblinear'): Cs = [1e3] coefs, Cs = f(logistic_regression_path)( X, y, Cs=Cs, fit_intercept=True, tol=1e-4, solver=method) lr = LogisticRegression(C=Cs[0], fit_intercept=True, tol=1e-4, intercept_scaling=10000) lr.fit(X, y) lr_coef = np.concatenate([lr.coef_.ravel(), lr.intercept_]) assert_array_almost_equal(lr_coef, coefs[0], decimal=4) def test_liblinear_random_state(): X, y = make_classification(n_samples=20) lr1 = LogisticRegression(random_state=0) lr1.fit(X, y) lr2 = LogisticRegression(random_state=0) lr2.fit(X, y) assert_array_almost_equal(lr1.coef_, lr2.coef_) def test_logistic_loss_and_grad(): X_ref, y = make_classification(n_samples=20) n_features = X_ref.shape[1] X_sp = X_ref.copy() X_sp[X_sp < .1] = 0 X_sp = sp.csr_matrix(X_sp) for X in (X_ref, X_sp): w = np.zeros(n_features) # First check that our derivation of the grad is correct loss, grad = _logistic_loss_and_grad(w, X, y, alpha=1.) approx_grad = optimize.approx_fprime( w, lambda w: _logistic_loss_and_grad(w, X, y, alpha=1.)[0], 1e-3 ) assert_array_almost_equal(grad, approx_grad, decimal=2) # Second check that our intercept implementation is good w = np.zeros(n_features + 1) loss_interp, grad_interp = _logistic_loss_and_grad( w, X, y, alpha=1. ) assert_array_almost_equal(loss, loss_interp) approx_grad = optimize.approx_fprime( w, lambda w: _logistic_loss_and_grad(w, X, y, alpha=1.)[0], 1e-3 ) assert_array_almost_equal(grad_interp, approx_grad, decimal=2) def test_logistic_loss_grad_hess(): rng = np.random.RandomState(0) n_samples, n_features = 50, 5 X_ref = rng.randn(n_samples, n_features) y = np.sign(X_ref.dot(5 * rng.randn(n_features))) X_ref -= X_ref.mean() X_ref /= X_ref.std() X_sp = X_ref.copy() X_sp[X_sp < .1] = 0 X_sp = sp.csr_matrix(X_sp) for X in (X_ref, X_sp): w = .1 * np.ones(n_features) # First check that _logistic_loss_grad_hess is consistent # with _logistic_loss_and_grad loss, grad = _logistic_loss_and_grad(w, X, y, alpha=1.) loss_2, grad_2, hess = _logistic_loss_grad_hess(w, X, y, alpha=1.) assert_array_almost_equal(grad, grad_2) # Now check our hessian along the second direction of the grad vector = np.zeros_like(grad) vector[1] = 1 hess_col = hess(vector) # Computation of the Hessian is particularly fragile to numerical # errors when doing simple finite differences. Here we compute the # grad along a path in the direction of the vector and then use a # least-square regression to estimate the slope e = 1e-3 d_x = np.linspace(-e, e, 30) d_grad = np.array([ _logistic_loss_and_grad(w + t * vector, X, y, alpha=1.)[1] for t in d_x ]) d_grad -= d_grad.mean(axis=0) approx_hess_col = linalg.lstsq(d_x[:, np.newaxis], d_grad)[0].ravel() assert_array_almost_equal(approx_hess_col, hess_col, decimal=3) # Second check that our intercept implementation is good w = np.zeros(n_features + 1) loss_interp, grad_interp = _logistic_loss_and_grad( w, X, y, alpha=1. ) loss_interp_2, grad_interp_2, hess = \ _logistic_loss_grad_hess(w, X, y, alpha=1.) assert_array_almost_equal(loss_interp, loss_interp_2) assert_array_almost_equal(grad_interp, grad_interp_2) def test_logistic_cv(): """test for LogisticRegressionCV object""" n_samples, n_features = 50, 5 rng = np.random.RandomState(0) X_ref = rng.randn(n_samples, n_features) y = np.sign(X_ref.dot(5 * rng.randn(n_features))) X_ref -= X_ref.mean() X_ref /= X_ref.std() lr_cv = LogisticRegressionCV(Cs=[1.], fit_intercept=False, solver='liblinear') lr_cv.fit(X_ref, y) lr = LogisticRegression(C=1., fit_intercept=False) lr.fit(X_ref, y) assert_array_almost_equal(lr.coef_, lr_cv.coef_) assert_array_equal(lr_cv.coef_.shape, (1, n_features)) assert_array_equal(lr_cv.classes_, [-1, 1]) assert_equal(len(lr_cv.classes_), 2) coefs_paths = np.asarray(list(lr_cv.coefs_paths_.values())) assert_array_equal(coefs_paths.shape, (1, 3, 1, n_features)) assert_array_equal(lr_cv.Cs_.shape, (1, )) scores = np.asarray(list(lr_cv.scores_.values())) assert_array_equal(scores.shape, (1, 3, 1)) def test_logistic_cv_sparse(): X, y = make_classification(n_samples=50, n_features=5, random_state=0) X[X < 1.0] = 0.0 csr = sp.csr_matrix(X) clf = LogisticRegressionCV(fit_intercept=True) clf.fit(X, y) clfs = LogisticRegressionCV(fit_intercept=True) clfs.fit(csr, y) assert_array_almost_equal(clfs.coef_, clf.coef_) assert_array_almost_equal(clfs.intercept_, clf.intercept_) assert_equal(clfs.C_, clf.C_) def test_intercept_logistic_helper(): n_samples, n_features = 10, 5 X, y = make_classification(n_samples=n_samples, n_features=n_features, random_state=0) # Fit intercept case. alpha = 1. w = np.ones(n_features + 1) loss_interp, grad_interp, hess_interp = _logistic_loss_grad_hess( w, X, y, alpha) # Do not fit intercept. This can be considered equivalent to adding # a feature vector of ones, i.e column of one vectors. X_ = np.hstack((X, np.ones(10)[:, np.newaxis])) loss, grad, hess = _logistic_loss_grad_hess(w, X_, y, alpha) # In the fit_intercept=False case, the feature vector of ones is # penalized. This should be taken care of. assert_almost_equal(loss_interp + 0.5 * (w[-1] ** 2), loss) # Check gradient. assert_array_almost_equal(grad_interp[:n_features], grad[:n_features]) assert_almost_equal(grad_interp[-1] + alpha * w[-1], grad[-1]) rng = np.random.RandomState(0) grad = rng.rand(n_features + 1) hess_interp = hess_interp(grad) hess = hess(grad) assert_array_almost_equal(hess_interp[:n_features], hess[:n_features]) assert_almost_equal(hess_interp[-1] + alpha * grad[-1], hess[-1]) def test_ovr_multinomial_iris(): """Test that OvR and multinomial are correct using the iris dataset.""" train, target = iris.data, iris.target n_samples, n_features = train.shape # Use pre-defined fold as folds generated for different y cv = StratifiedKFold(target, 3) clf = LogisticRegressionCV(cv=cv) clf.fit(train, target) clf1 = LogisticRegressionCV(cv=cv) target_copy = target.copy() target_copy[target_copy == 0] = 1 clf1.fit(train, target_copy) assert_array_almost_equal(clf.scores_[2], clf1.scores_[2]) assert_array_almost_equal(clf.intercept_[2:], clf1.intercept_) assert_array_almost_equal(clf.coef_[2][np.newaxis, :], clf1.coef_) # Test the shape of various attributes. assert_equal(clf.coef_.shape, (3, n_features)) assert_array_equal(clf.classes_, [0, 1, 2]) coefs_paths = np.asarray(list(clf.coefs_paths_.values())) assert_array_almost_equal(coefs_paths.shape, (3, 3, 10, n_features + 1)) assert_equal(clf.Cs_.shape, (10, )) scores = np.asarray(list(clf.scores_.values())) assert_equal(scores.shape, (3, 3, 10)) # Test that for the iris data multinomial gives a better accuracy than OvR for solver in ['lbfgs', 'newton-cg']: clf_multi = LogisticRegressionCV( solver=solver, multi_class='multinomial', max_iter=15 ) clf_multi.fit(train, target) multi_score = clf_multi.score(train, target) ovr_score = clf.score(train, target) assert_greater(multi_score, ovr_score) # Test attributes of LogisticRegressionCV assert_equal(clf.coef_.shape, clf_multi.coef_.shape) assert_array_equal(clf_multi.classes_, [0, 1, 2]) coefs_paths = np.asarray(list(clf_multi.coefs_paths_.values())) assert_array_almost_equal(coefs_paths.shape, (3, 3, 10, n_features + 1)) assert_equal(clf_multi.Cs_.shape, (10, )) scores = np.asarray(list(clf_multi.scores_.values())) assert_equal(scores.shape, (3, 3, 10)) def test_logistic_regression_solvers(): X, y = make_classification(n_features=10, n_informative=5, random_state=0) clf_n = LogisticRegression(solver='newton-cg', fit_intercept=False) clf_n.fit(X, y) clf_lbf = LogisticRegression(solver='lbfgs', fit_intercept=False) clf_lbf.fit(X, y) clf_lib = LogisticRegression(fit_intercept=False) clf_lib.fit(X, y) assert_array_almost_equal(clf_n.coef_, clf_lib.coef_, decimal=3) assert_array_almost_equal(clf_lib.coef_, clf_lbf.coef_, decimal=3) assert_array_almost_equal(clf_n.coef_, clf_lbf.coef_, decimal=3) def test_logistic_regression_solvers_multiclass(): X, y = make_classification(n_samples=20, n_features=20, n_informative=10, n_classes=3, random_state=0) clf_n = LogisticRegression(solver='newton-cg', fit_intercept=False) clf_n.fit(X, y) clf_lbf = LogisticRegression(solver='lbfgs', fit_intercept=False) clf_lbf.fit(X, y) clf_lib = LogisticRegression(fit_intercept=False) clf_lib.fit(X, y) assert_array_almost_equal(clf_n.coef_, clf_lib.coef_, decimal=4) assert_array_almost_equal(clf_lib.coef_, clf_lbf.coef_, decimal=4) assert_array_almost_equal(clf_n.coef_, clf_lbf.coef_, decimal=4) def test_logistic_regressioncv_class_weights(): X, y = make_classification(n_samples=20, n_features=20, n_informative=10, n_classes=3, random_state=0) # Test the liblinear fails when class_weight of type dict is # provided, when it is multiclass. However it can handle # binary problems. clf_lib = LogisticRegressionCV(class_weight={0: 0.1, 1: 0.2}, solver='liblinear') assert_raises(ValueError, clf_lib.fit, X, y) y_ = y.copy() y_[y == 2] = 1 clf_lib.fit(X, y_) assert_array_equal(clf_lib.classes_, [0, 1]) # Test for class_weight=auto X, y = make_classification(n_samples=20, n_features=20, n_informative=10, random_state=0) clf_lbf = LogisticRegressionCV(solver='lbfgs', fit_intercept=False, class_weight='auto') clf_lbf.fit(X, y) clf_lib = LogisticRegressionCV(solver='liblinear', fit_intercept=False, class_weight='auto') clf_lib.fit(X, y) assert_array_almost_equal(clf_lib.coef_, clf_lbf.coef_, decimal=4) def test_logistic_regression_convergence_warnings(): """Test that warnings are raised if model does not converge""" X, y = make_classification(n_samples=20, n_features=20) clf_lib = LogisticRegression(solver='liblinear', max_iter=2, verbose=1) assert_warns(ConvergenceWarning, clf_lib.fit, X, y) assert_equal(clf_lib.n_iter_, 2) def test_logistic_regression_multinomial(): """Tests for the multinomial option in logistic regression""" # Some basic attributes of Logistic Regression n_samples, n_features, n_classes = 50, 20, 3 X, y = make_classification(n_samples=50, n_features=20, n_informative=10, n_classes=3, random_state=0) clf_int = LogisticRegression(solver='lbfgs', multi_class='multinomial') clf_int.fit(X, y) assert_array_equal(clf_int.coef_.shape, (n_classes, n_features)) clf_wint = LogisticRegression(solver='lbfgs', multi_class='multinomial', fit_intercept=False) clf_wint.fit(X, y) assert_array_equal(clf_wint.coef_.shape, (n_classes, n_features)) # Similar tests for newton-cg solver option clf_ncg_int = LogisticRegression(solver='newton-cg', multi_class='multinomial') clf_ncg_int.fit(X, y) assert_array_equal(clf_ncg_int.coef_.shape, (n_classes, n_features)) clf_ncg_wint = LogisticRegression(solver='newton-cg', fit_intercept=False, multi_class='multinomial') clf_ncg_wint.fit(X, y) assert_array_equal(clf_ncg_wint.coef_.shape, (n_classes, n_features)) # Compare solutions between lbfgs and newton-cg assert_almost_equal(clf_int.coef_, clf_ncg_int.coef_, decimal=3) assert_almost_equal(clf_wint.coef_, clf_ncg_wint.coef_, decimal=3) assert_almost_equal(clf_int.intercept_, clf_ncg_int.intercept_, decimal=3) # Test that the path give almost the same results. However since in this # case we take the average of the coefs after fitting across all the # folds, it need not be exactly the same. for solver in ['lbfgs', 'newton-cg']: clf_path = LogisticRegressionCV(solver=solver, multi_class='multinomial', Cs=[1.]) clf_path.fit(X, y) assert_array_almost_equal(clf_path.coef_, clf_int.coef_, decimal=3) assert_almost_equal(clf_path.intercept_, clf_int.intercept_, decimal=3) def test_multinomial_loss_grad_hess(): rng = np.random.RandomState(0) n_samples, n_features, n_classes = 100, 5, 3 X = rng.randn(n_samples, n_features) w = rng.rand(n_classes, n_features) Y = np.zeros((n_samples, n_classes)) ind = np.argmax(np.dot(X, w.T), axis=1) Y[range(0, n_samples), ind] = 1 w = w.ravel() sample_weights = np.ones(X.shape[0]) _, grad, hessp = _multinomial_loss_grad_hess(w, X, Y, alpha=1., sample_weight=sample_weights) # extract first column of hessian matrix vec = np.zeros(n_features * n_classes) vec[0] = 1 hess_col = hessp(vec) # Estimate hessian using least squares as done in # test_logistic_loss_grad_hess e = 1e-3 d_x = np.linspace(-e, e, 30) d_grad = np.array([ _multinomial_loss_grad_hess(w + t * vec, X, Y, alpha=1., sample_weight=sample_weights)[1] for t in d_x ]) d_grad -= d_grad.mean(axis=0) approx_hess_col = linalg.lstsq(d_x[:, np.newaxis], d_grad)[0].ravel() assert_array_almost_equal(hess_col, approx_hess_col) def test_liblinear_decision_function_zero(): """Test negative prediction when decision_function values are zero. Liblinear predicts the positive class when decision_function values are zero. This is a test to verify that we do not do the same. See Issue: https://github.com/scikit-learn/scikit-learn/issues/3600 and the PR https://github.com/scikit-learn/scikit-learn/pull/3623 """ rng = np.random.RandomState(0) X, y = make_classification(n_samples=5, n_features=5) clf = LogisticRegression(fit_intercept=False) clf.fit(X, y) # Dummy data such that the decision function becomes zero. X = np.zeros((5, 5)) assert_array_equal(clf.predict(X), np.zeros(5)) def test_liblinear_logregcv_sparse(): """Test LogRegCV with solver='liblinear' works for sparse matrices""" X, y = make_classification(n_samples=10, n_features=5) clf = LogisticRegressionCV(solver='liblinear') clf.fit(sparse.csr_matrix(X), y)
bsd-3-clause
BorisJeremic/Real-ESSI-Examples
analytic_solution/test_cases/Contact/Interface_Mesh_Types/Interface_2/HardContact_ElPPlShear/Interface_Test_Normal_Plot.py
30
2779
#!/usr/bin/python import h5py import matplotlib.pylab as plt import matplotlib as mpl import sys import numpy as np; import matplotlib; import math; from matplotlib.ticker import MaxNLocator plt.rcParams.update({'font.size': 28}) # set tick width mpl.rcParams['xtick.major.size'] = 10 mpl.rcParams['xtick.major.width'] = 5 mpl.rcParams['xtick.minor.size'] = 10 mpl.rcParams['xtick.minor.width'] = 5 plt.rcParams['xtick.labelsize']=24 mpl.rcParams['ytick.major.size'] = 10 mpl.rcParams['ytick.major.width'] = 5 mpl.rcParams['ytick.minor.size'] = 10 mpl.rcParams['ytick.minor.width'] = 5 plt.rcParams['ytick.labelsize']=24 ############################################################### ## Analytical Solution ############################################################### # Go over each feioutput and plot each one. thefile = "Analytical_Solution_Normal_Stress.feioutput"; finput = h5py.File(thefile) # Read the time and displacement times = finput["time"][:] normal_stress = -finput["/Model/Elements/Element_Outputs"][9,:]; normal_strain = -finput["/Model/Elements/Element_Outputs"][6,:]; # Configure the figure filename, according to the input filename. outfig=thefile.replace("_","-") outfigname=outfig.replace("h5.feioutput","pdf") # Plot the figure. Add labels and titles. plt.figure(figsize=(12,10)) plt.plot(normal_strain*100,normal_stress/1000,'-r',label='Analytical Solution', Linewidth=4, markersize=20) plt.xlabel(r"Interface Type #") plt.ylabel(r"Normal Stress $\sigma_n [kPa]$") plt.hold(True) ############################################################### ## Numerical Solution ############################################################### # Go over each feioutput and plot each one. thefile = "Interface_Surface_Adding_axial_Load.h5.feioutput"; finput = h5py.File(thefile) # Read the time and displacement times = finput["time"][:] normal_stress = -finput["/Model/Elements/Element_Outputs"][9,:]; normal_strain = -finput["/Model/Elements/Element_Outputs"][6,:]; # Configure the figure filename, according to the input filename. outfig=thefile.replace("_","-") outfigname=outfig.replace("h5.feioutput","pdf") # Plot the figure. Add labels and titles. plt.plot(normal_strain*100,normal_stress/1000,'-k',label='Numerical Solution', Linewidth=4, markersize=20) plt.xlabel(r"Normal Strain [%]") plt.ylabel(r"Normal Stress $\sigma_n [kPa]$") ############################################################# # # # axes = plt.gca() # # # axes.set_xlim([-7,7]) # # # axes.set_ylim([-1,1]) # outfigname = "Interface_Test_Normal_Stress.pdf"; # plt.axis([0, 5.5, 90, 101]) # legend = plt.legend() # legend.get_frame().set_linewidth(0.0) # legend.get_frame().set_facecolor('none') plt.legend() plt.savefig(outfigname, bbox_inches='tight') # plt.show()
cc0-1.0
SvichkarevAnatoly/Course-Python-Bioinformatics
semester2/task13/exercise2.py
1
3697
import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap from sklearn.cross_validation import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.datasets import make_moons, make_circles, make_classification from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier from sklearn.naive_bayes import GaussianNB h = .02 # step size in the mesh names = [ "Nearest Neighbors", "Decision Tree", "Random Forest", "AdaBoost", "Linear SVM", "RBF SVM", "Naive Bayes" ] classifiers = [ KNeighborsClassifier(3), DecisionTreeClassifier(max_depth=5), RandomForestClassifier(max_depth=5, n_estimators=10, max_features=1), AdaBoostClassifier(), SVC(kernel="linear", C=0.025), SVC(gamma=2, C=1), GaussianNB() ] X, y = make_classification(n_features=2, n_redundant=0, n_informative=2, random_state=1, n_clusters_per_class=1) rng = np.random.RandomState(2) X += 2 * rng.uniform(size=X.shape) linearly_separable = (X, y) datasets = [ make_moons(noise=0.1, random_state=0), make_circles(noise=0.1, factor=0.5, random_state=0), linearly_separable ] figure = plt.figure(figsize=(27, 9)) i = 1 # iterate over datasets for ds in datasets: print('------ds-------', ds) # preprocess dataset, split into training and test part X, y = ds X = StandardScaler().fit_transform(X) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.4) x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # just plot the dataset first cm = plt.cm.RdBu cm_bright = ListedColormap(['#FF0000', '#0000FF']) ax = plt.subplot(len(datasets), len(classifiers) + 1, i) # Plot the training points ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright) # and testing points ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6) ax.set_xlim(xx.min(), xx.max()) ax.set_ylim(yy.min(), yy.max()) ax.set_xticks(()) ax.set_yticks(()) i += 1 # iterate over classifiers for name, clf in zip(names, classifiers): ax = plt.subplot(len(datasets), len(classifiers) + 1, i) clf.fit(X_train, y_train) score = clf.score(X_test, y_test) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. if hasattr(clf, "decision_function"): Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) else: Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1] # Put the result into a color plot Z = Z.reshape(xx.shape) ax.contourf(xx, yy, Z, cmap=cm, alpha=.8) # Plot also the training points ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright) # and testing points ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6) ax.set_xlim(xx.min(), xx.max()) ax.set_ylim(yy.min(), yy.max()) ax.set_xticks(()) ax.set_yticks(()) ax.set_title(name) ax.text(xx.max() - .3, yy.min() + .3, ('%.2f' % score).lstrip('0'), size=15, horizontalalignment='right') i += 1 figure.subplots_adjust(left=.02, right=.98) plt.savefig("13-Figure_3_C") plt.show()
gpl-2.0
nelson-liu/scikit-learn
sklearn/datasets/tests/test_20news.py
75
3266
"""Test the 20news downloader, if the data is available.""" import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import SkipTest from sklearn import datasets def test_20news(): try: data = datasets.fetch_20newsgroups( subset='all', download_if_missing=False, shuffle=False) except IOError: raise SkipTest("Download 20 newsgroups to run this test") # Extract a reduced dataset data2cats = datasets.fetch_20newsgroups( subset='all', categories=data.target_names[-1:-3:-1], shuffle=False) # Check that the ordering of the target_names is the same # as the ordering in the full dataset assert_equal(data2cats.target_names, data.target_names[-2:]) # Assert that we have only 0 and 1 as labels assert_equal(np.unique(data2cats.target).tolist(), [0, 1]) # Check that the number of filenames is consistent with data/target assert_equal(len(data2cats.filenames), len(data2cats.target)) assert_equal(len(data2cats.filenames), len(data2cats.data)) # Check that the first entry of the reduced dataset corresponds to # the first entry of the corresponding category in the full dataset entry1 = data2cats.data[0] category = data2cats.target_names[data2cats.target[0]] label = data.target_names.index(category) entry2 = data.data[np.where(data.target == label)[0][0]] assert_equal(entry1, entry2) def test_20news_length_consistency(): """Checks the length consistencies within the bunch This is a non-regression test for a bug present in 0.16.1. """ try: data = datasets.fetch_20newsgroups( subset='all', download_if_missing=False, shuffle=False) except IOError: raise SkipTest("Download 20 newsgroups to run this test") # Extract the full dataset data = datasets.fetch_20newsgroups(subset='all') assert_equal(len(data['data']), len(data.data)) assert_equal(len(data['target']), len(data.target)) assert_equal(len(data['filenames']), len(data.filenames)) def test_20news_vectorized(): try: datasets.fetch_20newsgroups(subset='all', download_if_missing=False) except IOError: raise SkipTest("Download 20 newsgroups to run this test") # test subset = train bunch = datasets.fetch_20newsgroups_vectorized(subset="train") assert_true(sp.isspmatrix_csr(bunch.data)) assert_equal(bunch.data.shape, (11314, 130107)) assert_equal(bunch.target.shape[0], 11314) assert_equal(bunch.data.dtype, np.float64) # test subset = test bunch = datasets.fetch_20newsgroups_vectorized(subset="test") assert_true(sp.isspmatrix_csr(bunch.data)) assert_equal(bunch.data.shape, (7532, 130107)) assert_equal(bunch.target.shape[0], 7532) assert_equal(bunch.data.dtype, np.float64) # test subset = all bunch = datasets.fetch_20newsgroups_vectorized(subset='all') assert_true(sp.isspmatrix_csr(bunch.data)) assert_equal(bunch.data.shape, (11314 + 7532, 130107)) assert_equal(bunch.target.shape[0], 11314 + 7532) assert_equal(bunch.data.dtype, np.float64)
bsd-3-clause
tomlof/scikit-learn
sklearn/decomposition/tests/test_nmf.py
28
17934
import numpy as np import scipy.sparse as sp import numbers from scipy import linalg from sklearn.decomposition import NMF, non_negative_factorization from sklearn.decomposition import nmf # For testing internals from scipy.sparse import csc_matrix from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_raise_message, assert_no_warnings from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_greater from sklearn.utils.testing import ignore_warnings from sklearn.utils.extmath import squared_norm, fast_dot from sklearn.base import clone from sklearn.exceptions import ConvergenceWarning def test_initialize_nn_output(): # Test that initialization does not return negative values rng = np.random.mtrand.RandomState(42) data = np.abs(rng.randn(10, 10)) for init in ('random', 'nndsvd', 'nndsvda', 'nndsvdar'): W, H = nmf._initialize_nmf(data, 10, init=init, random_state=0) assert_false((W < 0).any() or (H < 0).any()) def test_parameter_checking(): A = np.ones((2, 2)) name = 'spam' msg = "Invalid solver parameter: got 'spam' instead of one of" assert_raise_message(ValueError, msg, NMF(solver=name).fit, A) msg = "Invalid init parameter: got 'spam' instead of one of" assert_raise_message(ValueError, msg, NMF(init=name).fit, A) msg = "Invalid beta_loss parameter: got 'spam' instead of one" assert_raise_message(ValueError, msg, NMF(solver='mu', beta_loss=name).fit, A) msg = "Invalid beta_loss parameter: solver 'cd' does not handle " msg += "beta_loss = 1.0" assert_raise_message(ValueError, msg, NMF(solver='cd', beta_loss=1.0).fit, A) msg = "Negative values in data passed to" assert_raise_message(ValueError, msg, NMF().fit, -A) assert_raise_message(ValueError, msg, nmf._initialize_nmf, -A, 2, 'nndsvd') clf = NMF(2, tol=0.1).fit(A) assert_raise_message(ValueError, msg, clf.transform, -A) def test_initialize_close(): # Test NNDSVD error # Test that _initialize_nmf error is less than the standard deviation of # the entries in the matrix. rng = np.random.mtrand.RandomState(42) A = np.abs(rng.randn(10, 10)) W, H = nmf._initialize_nmf(A, 10, init='nndsvd') error = linalg.norm(np.dot(W, H) - A) sdev = linalg.norm(A - A.mean()) assert_true(error <= sdev) def test_initialize_variants(): # Test NNDSVD variants correctness # Test that the variants 'nndsvda' and 'nndsvdar' differ from basic # 'nndsvd' only where the basic version has zeros. rng = np.random.mtrand.RandomState(42) data = np.abs(rng.randn(10, 10)) W0, H0 = nmf._initialize_nmf(data, 10, init='nndsvd') Wa, Ha = nmf._initialize_nmf(data, 10, init='nndsvda') War, Har = nmf._initialize_nmf(data, 10, init='nndsvdar', random_state=0) for ref, evl in ((W0, Wa), (W0, War), (H0, Ha), (H0, Har)): assert_almost_equal(evl[ref != 0], ref[ref != 0]) # ignore UserWarning raised when both solver='mu' and init='nndsvd' @ignore_warnings(category=UserWarning) def test_nmf_fit_nn_output(): # Test that the decomposition does not contain negative values A = np.c_[5 * np.ones(5) - np.arange(1, 6), 5 * np.ones(5) + np.arange(1, 6)] for solver in ('cd', 'mu'): for init in (None, 'nndsvd', 'nndsvda', 'nndsvdar', 'random'): model = NMF(n_components=2, solver=solver, init=init, random_state=0) transf = model.fit_transform(A) assert_false((model.components_ < 0).any() or (transf < 0).any()) def test_nmf_fit_close(): rng = np.random.mtrand.RandomState(42) # Test that the fit is not too far away for solver in ('cd', 'mu'): pnmf = NMF(5, solver=solver, init='nndsvdar', random_state=0, max_iter=600) X = np.abs(rng.randn(6, 5)) assert_less(pnmf.fit(X).reconstruction_err_, 0.1) def test_nmf_transform(): # Test that NMF.transform returns close values rng = np.random.mtrand.RandomState(42) A = np.abs(rng.randn(6, 5)) for solver in ['cd', 'mu']: m = NMF(solver=solver, n_components=3, init='random', random_state=0, tol=1e-5) ft = m.fit_transform(A) t = m.transform(A) assert_array_almost_equal(ft, t, decimal=2) def test_nmf_transform_custom_init(): # Smoke test that checks if NMF.transform works with custom initialization random_state = np.random.RandomState(0) A = np.abs(random_state.randn(6, 5)) n_components = 4 avg = np.sqrt(A.mean() / n_components) H_init = np.abs(avg * random_state.randn(n_components, 5)) W_init = np.abs(avg * random_state.randn(6, n_components)) m = NMF(solver='cd', n_components=n_components, init='custom', random_state=0) m.fit_transform(A, W=W_init, H=H_init) m.transform(A) def test_nmf_inverse_transform(): # Test that NMF.inverse_transform returns close values random_state = np.random.RandomState(0) A = np.abs(random_state.randn(6, 4)) for solver in ('cd', 'mu'): m = NMF(solver=solver, n_components=4, init='random', random_state=0, max_iter=1000) ft = m.fit_transform(A) A_new = m.inverse_transform(ft) assert_array_almost_equal(A, A_new, decimal=2) def test_n_components_greater_n_features(): # Smoke test for the case of more components than features. rng = np.random.mtrand.RandomState(42) A = np.abs(rng.randn(30, 10)) NMF(n_components=15, random_state=0, tol=1e-2).fit(A) def test_nmf_sparse_input(): # Test that sparse matrices are accepted as input from scipy.sparse import csc_matrix rng = np.random.mtrand.RandomState(42) A = np.abs(rng.randn(10, 10)) A[:, 2 * np.arange(5)] = 0 A_sparse = csc_matrix(A) for solver in ('cd', 'mu'): est1 = NMF(solver=solver, n_components=5, init='random', random_state=0, tol=1e-2) est2 = clone(est1) W1 = est1.fit_transform(A) W2 = est2.fit_transform(A_sparse) H1 = est1.components_ H2 = est2.components_ assert_array_almost_equal(W1, W2) assert_array_almost_equal(H1, H2) def test_nmf_sparse_transform(): # Test that transform works on sparse data. Issue #2124 rng = np.random.mtrand.RandomState(42) A = np.abs(rng.randn(3, 2)) A[1, 1] = 0 A = csc_matrix(A) for solver in ('cd', 'mu'): model = NMF(solver=solver, random_state=0, n_components=2, max_iter=400) A_fit_tr = model.fit_transform(A) A_tr = model.transform(A) assert_array_almost_equal(A_fit_tr, A_tr, decimal=1) def test_non_negative_factorization_consistency(): # Test that the function is called in the same way, either directly # or through the NMF class rng = np.random.mtrand.RandomState(42) A = np.abs(rng.randn(10, 10)) A[:, 2 * np.arange(5)] = 0 for solver in ('cd', 'mu'): W_nmf, H, _ = non_negative_factorization( A, solver=solver, random_state=1, tol=1e-2) W_nmf_2, _, _ = non_negative_factorization( A, H=H, update_H=False, solver=solver, random_state=1, tol=1e-2) model_class = NMF(solver=solver, random_state=1, tol=1e-2) W_cls = model_class.fit_transform(A) W_cls_2 = model_class.transform(A) assert_array_almost_equal(W_nmf, W_cls, decimal=10) assert_array_almost_equal(W_nmf_2, W_cls_2, decimal=10) def test_non_negative_factorization_checking(): A = np.ones((2, 2)) # Test parameters checking is public function nnmf = non_negative_factorization assert_no_warnings(nnmf, A, A, A, np.int64(1)) msg = ("Number of components must be a positive integer; " "got (n_components=1.5)") assert_raise_message(ValueError, msg, nnmf, A, A, A, 1.5) msg = ("Number of components must be a positive integer; " "got (n_components='2')") assert_raise_message(ValueError, msg, nnmf, A, A, A, '2') msg = "Negative values in data passed to NMF (input H)" assert_raise_message(ValueError, msg, nnmf, A, A, -A, 2, 'custom') msg = "Negative values in data passed to NMF (input W)" assert_raise_message(ValueError, msg, nnmf, A, -A, A, 2, 'custom') msg = "Array passed to NMF (input H) is full of zeros" assert_raise_message(ValueError, msg, nnmf, A, A, 0 * A, 2, 'custom') msg = "Invalid regularization parameter: got 'spam' instead of one of" assert_raise_message(ValueError, msg, nnmf, A, A, 0 * A, 2, 'custom', True, 'cd', 2., 1e-4, 200, 0., 0., 'spam') def _beta_divergence_dense(X, W, H, beta): """Compute the beta-divergence of X and W.H for dense array only. Used as a reference for testing nmf._beta_divergence. """ if isinstance(X, numbers.Number): W = np.array([[W]]) H = np.array([[H]]) X = np.array([[X]]) WH = fast_dot(W, H) if beta == 2: return squared_norm(X - WH) / 2 WH_Xnonzero = WH[X != 0] X_nonzero = X[X != 0] np.maximum(WH_Xnonzero, 1e-9, out=WH_Xnonzero) if beta == 1: res = np.sum(X_nonzero * np.log(X_nonzero / WH_Xnonzero)) res += WH.sum() - X.sum() elif beta == 0: div = X_nonzero / WH_Xnonzero res = np.sum(div) - X.size - np.sum(np.log(div)) else: res = (X_nonzero ** beta).sum() res += (beta - 1) * (WH ** beta).sum() res -= beta * (X_nonzero * (WH_Xnonzero ** (beta - 1))).sum() res /= beta * (beta - 1) return res def test_beta_divergence(): # Compare _beta_divergence with the reference _beta_divergence_dense n_samples = 20 n_features = 10 n_components = 5 beta_losses = [0., 0.5, 1., 1.5, 2.] # initialization rng = np.random.mtrand.RandomState(42) X = rng.randn(n_samples, n_features) X[X < 0] = 0. X_csr = sp.csr_matrix(X) W, H = nmf._initialize_nmf(X, n_components, init='random', random_state=42) for beta in beta_losses: ref = _beta_divergence_dense(X, W, H, beta) loss = nmf._beta_divergence(X, W, H, beta) loss_csr = nmf._beta_divergence(X_csr, W, H, beta) assert_almost_equal(ref, loss, decimal=7) assert_almost_equal(ref, loss_csr, decimal=7) def test_special_sparse_dot(): # Test the function that computes np.dot(W, H), only where X is non zero. n_samples = 10 n_features = 5 n_components = 3 rng = np.random.mtrand.RandomState(42) X = rng.randn(n_samples, n_features) X[X < 0] = 0. X_csr = sp.csr_matrix(X) W = np.abs(rng.randn(n_samples, n_components)) H = np.abs(rng.randn(n_components, n_features)) WH_safe = nmf._special_sparse_dot(W, H, X_csr) WH = nmf._special_sparse_dot(W, H, X) # test that both results have same values, in X_csr nonzero elements ii, jj = X_csr.nonzero() WH_safe_data = np.asarray(WH_safe[ii, jj]).ravel() assert_array_almost_equal(WH_safe_data, WH[ii, jj], decimal=10) # test that WH_safe and X_csr have the same sparse structure assert_array_equal(WH_safe.indices, X_csr.indices) assert_array_equal(WH_safe.indptr, X_csr.indptr) assert_array_equal(WH_safe.shape, X_csr.shape) @ignore_warnings(category=ConvergenceWarning) def test_nmf_multiplicative_update_sparse(): # Compare sparse and dense input in multiplicative update NMF # Also test continuity of the results with respect to beta_loss parameter n_samples = 20 n_features = 10 n_components = 5 alpha = 0.1 l1_ratio = 0.5 n_iter = 20 # initialization rng = np.random.mtrand.RandomState(1337) X = rng.randn(n_samples, n_features) X = np.abs(X) X_csr = sp.csr_matrix(X) W0, H0 = nmf._initialize_nmf(X, n_components, init='random', random_state=42) for beta_loss in (-1.2, 0, 0.2, 1., 2., 2.5): # Reference with dense array X W, H = W0.copy(), H0.copy() W1, H1, _ = non_negative_factorization( X, W, H, n_components, init='custom', update_H=True, solver='mu', beta_loss=beta_loss, max_iter=n_iter, alpha=alpha, l1_ratio=l1_ratio, regularization='both', random_state=42) # Compare with sparse X W, H = W0.copy(), H0.copy() W2, H2, _ = non_negative_factorization( X_csr, W, H, n_components, init='custom', update_H=True, solver='mu', beta_loss=beta_loss, max_iter=n_iter, alpha=alpha, l1_ratio=l1_ratio, regularization='both', random_state=42) assert_array_almost_equal(W1, W2, decimal=7) assert_array_almost_equal(H1, H2, decimal=7) # Compare with almost same beta_loss, since some values have a specific # behavior, but the results should be continuous w.r.t beta_loss beta_loss -= 1.e-5 W, H = W0.copy(), H0.copy() W3, H3, _ = non_negative_factorization( X_csr, W, H, n_components, init='custom', update_H=True, solver='mu', beta_loss=beta_loss, max_iter=n_iter, alpha=alpha, l1_ratio=l1_ratio, regularization='both', random_state=42) assert_array_almost_equal(W1, W3, decimal=4) assert_array_almost_equal(H1, H3, decimal=4) def test_nmf_negative_beta_loss(): # Test that an error is raised if beta_loss < 0 and X contains zeros. # Test that the output has not NaN values when the input contains zeros. n_samples = 6 n_features = 5 n_components = 3 rng = np.random.mtrand.RandomState(42) X = rng.randn(n_samples, n_features) X[X < 0] = 0 X_csr = sp.csr_matrix(X) def _assert_nmf_no_nan(X, beta_loss): W, H, _ = non_negative_factorization( X, n_components=n_components, solver='mu', beta_loss=beta_loss, random_state=0, max_iter=1000) assert_false(np.any(np.isnan(W))) assert_false(np.any(np.isnan(H))) msg = "When beta_loss <= 0 and X contains zeros, the solver may diverge." for beta_loss in (-0.6, 0.): assert_raise_message(ValueError, msg, _assert_nmf_no_nan, X, beta_loss) _assert_nmf_no_nan(X + 1e-9, beta_loss) for beta_loss in (0.2, 1., 1.2, 2., 2.5): _assert_nmf_no_nan(X, beta_loss) _assert_nmf_no_nan(X_csr, beta_loss) def test_nmf_regularization(): # Test the effect of L1 and L2 regularizations n_samples = 6 n_features = 5 n_components = 3 rng = np.random.mtrand.RandomState(42) X = np.abs(rng.randn(n_samples, n_features)) # L1 regularization should increase the number of zeros l1_ratio = 1. for solver in ['cd', 'mu']: regul = nmf.NMF(n_components=n_components, solver=solver, alpha=0.5, l1_ratio=l1_ratio, random_state=42) model = nmf.NMF(n_components=n_components, solver=solver, alpha=0., l1_ratio=l1_ratio, random_state=42) W_regul = regul.fit_transform(X) W_model = model.fit_transform(X) H_regul = regul.components_ H_model = model.components_ W_regul_n_zeros = W_regul[W_regul == 0].size W_model_n_zeros = W_model[W_model == 0].size H_regul_n_zeros = H_regul[H_regul == 0].size H_model_n_zeros = H_model[H_model == 0].size assert_greater(W_regul_n_zeros, W_model_n_zeros) assert_greater(H_regul_n_zeros, H_model_n_zeros) # L2 regularization should decrease the mean of the coefficients l1_ratio = 0. for solver in ['cd', 'mu']: regul = nmf.NMF(n_components=n_components, solver=solver, alpha=0.5, l1_ratio=l1_ratio, random_state=42) model = nmf.NMF(n_components=n_components, solver=solver, alpha=0., l1_ratio=l1_ratio, random_state=42) W_regul = regul.fit_transform(X) W_model = model.fit_transform(X) H_regul = regul.components_ H_model = model.components_ assert_greater(W_model.mean(), W_regul.mean()) assert_greater(H_model.mean(), H_regul.mean()) @ignore_warnings(category=ConvergenceWarning) def test_nmf_decreasing(): # test that the objective function is decreasing at each iteration n_samples = 20 n_features = 15 n_components = 10 alpha = 0.1 l1_ratio = 0.5 tol = 0. # initialization rng = np.random.mtrand.RandomState(42) X = rng.randn(n_samples, n_features) np.abs(X, X) W0, H0 = nmf._initialize_nmf(X, n_components, init='random', random_state=42) for beta_loss in (-1.2, 0, 0.2, 1., 2., 2.5): for solver in ('cd', 'mu'): if solver != 'mu' and beta_loss != 2: # not implemented continue W, H = W0.copy(), H0.copy() previous_loss = None for _ in range(30): # one more iteration starting from the previous results W, H, _ = non_negative_factorization( X, W, H, beta_loss=beta_loss, init='custom', n_components=n_components, max_iter=1, alpha=alpha, solver=solver, tol=tol, l1_ratio=l1_ratio, verbose=0, regularization='both', random_state=0, update_H=True) loss = nmf._beta_divergence(X, W, H, beta_loss) if previous_loss is not None: assert_greater(previous_loss, loss) previous_loss = loss
bsd-3-clause
hlin117/scikit-learn
examples/cluster/plot_kmeans_stability_low_dim_dense.py
338
4324
""" ============================================================ Empirical evaluation of the impact of k-means initialization ============================================================ Evaluate the ability of k-means initializations strategies to make the algorithm convergence robust as measured by the relative standard deviation of the inertia of the clustering (i.e. the sum of distances to the nearest cluster center). The first plot shows the best inertia reached for each combination of the model (``KMeans`` or ``MiniBatchKMeans``) and the init method (``init="random"`` or ``init="kmeans++"``) for increasing values of the ``n_init`` parameter that controls the number of initializations. The second plot demonstrate one single run of the ``MiniBatchKMeans`` estimator using a ``init="random"`` and ``n_init=1``. This run leads to a bad convergence (local optimum) with estimated centers stuck between ground truth clusters. The dataset used for evaluation is a 2D grid of isotropic Gaussian clusters widely spaced. """ print(__doc__) # Author: Olivier Grisel <[email protected]> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt import matplotlib.cm as cm from sklearn.utils import shuffle from sklearn.utils import check_random_state from sklearn.cluster import MiniBatchKMeans from sklearn.cluster import KMeans random_state = np.random.RandomState(0) # Number of run (with randomly generated dataset) for each strategy so as # to be able to compute an estimate of the standard deviation n_runs = 5 # k-means models can do several random inits so as to be able to trade # CPU time for convergence robustness n_init_range = np.array([1, 5, 10, 15, 20]) # Datasets generation parameters n_samples_per_center = 100 grid_size = 3 scale = 0.1 n_clusters = grid_size ** 2 def make_data(random_state, n_samples_per_center, grid_size, scale): random_state = check_random_state(random_state) centers = np.array([[i, j] for i in range(grid_size) for j in range(grid_size)]) n_clusters_true, n_features = centers.shape noise = random_state.normal( scale=scale, size=(n_samples_per_center, centers.shape[1])) X = np.concatenate([c + noise for c in centers]) y = np.concatenate([[i] * n_samples_per_center for i in range(n_clusters_true)]) return shuffle(X, y, random_state=random_state) # Part 1: Quantitative evaluation of various init methods fig = plt.figure() plots = [] legends = [] cases = [ (KMeans, 'k-means++', {}), (KMeans, 'random', {}), (MiniBatchKMeans, 'k-means++', {'max_no_improvement': 3}), (MiniBatchKMeans, 'random', {'max_no_improvement': 3, 'init_size': 500}), ] for factory, init, params in cases: print("Evaluation of %s with %s init" % (factory.__name__, init)) inertia = np.empty((len(n_init_range), n_runs)) for run_id in range(n_runs): X, y = make_data(run_id, n_samples_per_center, grid_size, scale) for i, n_init in enumerate(n_init_range): km = factory(n_clusters=n_clusters, init=init, random_state=run_id, n_init=n_init, **params).fit(X) inertia[i, run_id] = km.inertia_ p = plt.errorbar(n_init_range, inertia.mean(axis=1), inertia.std(axis=1)) plots.append(p[0]) legends.append("%s with %s init" % (factory.__name__, init)) plt.xlabel('n_init') plt.ylabel('inertia') plt.legend(plots, legends) plt.title("Mean inertia for various k-means init across %d runs" % n_runs) # Part 2: Qualitative visual inspection of the convergence X, y = make_data(random_state, n_samples_per_center, grid_size, scale) km = MiniBatchKMeans(n_clusters=n_clusters, init='random', n_init=1, random_state=random_state).fit(X) fig = plt.figure() for k in range(n_clusters): my_members = km.labels_ == k color = cm.spectral(float(k) / n_clusters, 1) plt.plot(X[my_members, 0], X[my_members, 1], 'o', marker='.', c=color) cluster_center = km.cluster_centers_[k] plt.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=color, markeredgecolor='k', markersize=6) plt.title("Example cluster allocation with a single random init\n" "with MiniBatchKMeans") plt.show()
bsd-3-clause
js850/pele
pele/utils/rotations.py
1
7681
""" Functions related to rotations Most of these were adapted from victor's rotations.f90. Not all functions from the file have been implemented. Warning, they have not all been tested in this format. .. currentmodule:: pele.utils.rotations .. autosummary:: :toctree: generated/ q_multiply aa2q q2aa q2mx mx2q mx2aa rot_q2mx aa2mx random_q random_aa takestep_aa rotate_aa small_random_aa vec_random vec_random_ndim vector_random_uniform_hypersphere q_slerp """ import numpy as np rot_epsilon = 1e-6 def q_multiply(q0, q1): """ multiply 2 quaternions q1, q2 """ q3 = np.zeros(4) q3[0] = q0[0]*q1[0]-q0[1]*q1[1]-q0[2]*q1[2]-q0[3]*q1[3] q3[1] = q0[0]*q1[1]+q0[1]*q1[0]+q0[2]*q1[3]-q0[3]*q1[2] q3[2] = q0[0]*q1[2]-q0[1]*q1[3]+q0[2]*q1[0]+q0[3]*q1[1] q3[3] = q0[0]*q1[3]+q0[1]*q1[2]-q0[2]*q1[1]+q0[3]*q1[0] return q3 def aa2q( AA ): """ convert angle axis to quaternion input V: angle axis vector of lenth 3 output Q: quaternion of length 4 """ q = np.zeros(4, np.float64) thetah = 0.5 * np.linalg.norm( AA ) q[0] = np.cos( thetah ) # do linear expansion for small epsilon if thetah < rot_epsilon: q[1:] = 0.5 * AA else: q[1:] = 0.5 * np.sin(thetah) * AA / thetah # make sure to have normal form if q[0] < 0.0: q = -q return q def q2aa( qin ): """ quaternion to angle axis input Q: quaternion of length 4 output V: angle axis vector of lenth 3 """ q = np.copy(qin) if q[0] < 0.: q = -q if q[0] > 1.0: q /= np.sqrt(np.dot(q,q)) theta = 2. * np.arccos(q[0]) s = np.sqrt(1.-q[0]*q[0]) if s < rot_epsilon: p = 2. * q[1:4] else: p = q[1:4] / s * theta return p def q2mx( qin ): """quaternion to rotation matrix""" Q = qin / np.linalg.norm(qin) RMX = np.zeros([3,3], np.float64) Q2Q3 = Q[1]*Q[2]; Q1Q4 = Q[0]*Q[3]; Q2Q4 = Q[1]*Q[3]; Q1Q3 = Q[0]*Q[2]; Q3Q4 = Q[2]*Q[3]; Q1Q2 = Q[0]*Q[1]; RMX[0,0] = 2.*(0.5 - Q[2]*Q[2] - Q[3]*Q[3]); RMX[1,1] = 2.*(0.5 - Q[1]*Q[1] - Q[3]*Q[3]); RMX[2,2] = 2.*(0.5 - Q[1]*Q[1] - Q[2]*Q[2]); RMX[0,1] = 2.*(Q2Q3 - Q1Q4); RMX[1,0] = 2.*(Q2Q3 + Q1Q4); RMX[0,2] = 2.*(Q2Q4 + Q1Q3); RMX[2,0] = 2.*(Q2Q4 - Q1Q3); RMX[1,2] = 2.*(Q3Q4 - Q1Q2); RMX[2,1] = 2.*(Q3Q4 + Q1Q2); return RMX def mx2q(mi): q = np.zeros(4) m = np.transpose(mi) trace=m[0,0] + m[1,1]+m[2,2] if (trace > 0.): s = np.sqrt(trace+1.0) * 2.0 q[0] = 0.25 * s q[1] = (m[1,2] - m[2,1]) / s q[2] = (m[2,0] - m[0,2]) / s q[3] = (m[0,1] - m[1,0]) / s elif ((m[0,0] > m[1,1]) and (m[0,0] > m[2,2])): s=np.sqrt(1.0 + m[0,0] - m[1,1] - m[2,2]) * 2.0 q[0] = (m[1,2] - m[2,1]) / s q[1] = 0.25 * s q[2] = (m[1,0] + m[0,1]) / s q[3] = (m[2,0] + m[0,2]) / s elif (m[1,1] > m[2,2]): s = np.sqrt(1.0 + m[1,1] - m[0,0] - m[2,2]) * 2.0 q[0] = (m[2,0] - m[0,2]) / s q[1] = (m[1,0] + m[0,1]) / s q[2] = 0.25 * s q[3] = (m[2,1] + m[1,2]) / s else: s = np.sqrt(1.0 + m[2,2] - m[0,0] - m[1,1]) * 2.0 q[0] = (m[0,1] - m[1,0]) / s q[1] = (m[2,0] + m[0,2]) / s q[2] = (m[2,1] + m[1,2]) / s q[3] = 0.25 * s if(q[0] < 0): q = -q return q def mx2aa(m): return q2aa(mx2q(m)) def rot_q2mx(qin): m = np.zeros([3,3], np.float64) q = qin / np.linalg.norm(qin) sq = q**2 m[0,0] = ( sq[1] - sq[2] - sq[3] + sq[0]) m[1,1] = (-sq[1] + sq[2] - sq[3] + sq[0]) m[2,2] = (-sq[1] - sq[2] + sq[3] + sq[0]) tmp0 = q[1]*q[2] tmp1 = q[0]*q[3] m[1,0] = 2.0 * (tmp0 + tmp1) m[0,1] = 2.0 * (tmp0 - tmp1) tmp0 = q[1]*q[3] tmp1 = q[2]*q[0] m[2,0] = 2.0 * (tmp0 - tmp1) m[0,2] = 2.0 * (tmp0 + tmp1) tmp0 = q[2]*q[3] tmp1 = q[0]*q[1] m[2,1] = 2.0 * (tmp0 + tmp1) m[1,2] = 2.0 * (tmp0 - tmp1) return m def aa2mx( p ): return q2mx( aa2q( p ) ) def random_q(): """ uniform random rotation in angle axis formulation input: 3 uniformly distributed random numbers uses the algorithm given in K. Shoemake, Uniform random rotations, Graphics Gems III, pages 124-132. Academic, New York, 1992. This first generates a random rotation in quaternion representation. We should substitute this by a direct angle axis generation, but be careful: the angle of rotation in angle axis representation is NOT uniformly distributed """ from numpy import sqrt, sin, cos, pi u = np.random.uniform(0,1,[3]) q = np.zeros(4, np.float64) q[0] = sqrt(1.-u[0]) * sin(2.*pi*u[1]) q[1] = sqrt(1.-u[0]) * cos(2.*pi*u[1]) q[2] = sqrt(u[0]) * sin(2.*pi*u[2]) q[3] = sqrt(u[0]) * cos(2.*pi*u[2]) return q def random_aa(): return q2aa( random_q() ) def takestep_aa(p, maxtheta): """ change an angle axis vector by a small rotation""" p[:] = rotate_aa(p, small_random_aa(maxtheta)) def rotate_aa(p1, p2): """ change a given angle axis rotation p1 by the rotation p2 """ return q2aa(q_multiply( aa2q(p2), aa2q(p1) )) def small_random_aa(maxtheta): """ generate a small random rotation""" # first choose a random unit vector p = vec_random() # linear for too small steps # this is not completely right but should be ok if maxtheta < rot_epsilon: p = p*dprand()*maxtheta return p s = 1. / (np.sin(0.5*maxtheta)**2) # now choose the angle theta in range 0:step # with distribution sin(0.5*theta)**2 u = dprand() * maxtheta while dprand() > s * np.sin(0.5 * u)**2: u=dprand() * maxtheta p = p*u return p def vec_random(): """ uniform random unit vector """ p = np.zeros(3) u1 = dprand() u2 = dprand() z = 2*u1 - 1. p[0] = np.sqrt(1-z*z) * np.cos(2. * np.pi * u2) p[1] = np.sqrt(1-z*z) * np.sin(2. * np.pi * u2) p[2] = z return p def vec_random_ndim(n): """n-dimensional uniform random unit vector""" v = np.random.normal(size=n) v /= np.linalg.norm(v) return v def vector_random_uniform_hypersphere(k): """return a vector sampled uniformly in a hypersphere of dimension k""" if k == 3: # this function is much faster than the general one u = vec_random() else: u = vec_random_ndim(k) # draw the magnitude of the vector from a power law density: # draws samples in [0, 1] from a power distribution with positive exponent k - 1. p = np.random.power(k) return p * u dprand = lambda: np.random.rand() def q_slerp (a, b,t): if(t<=0.): return a if(t>=1.): return b costheta = np.dot(a, b) c = b # if theta > 180., go other direction if (costheta < 0.0): costheta = -costheta c = -c #linear interpolate close to zero if (costheta > 1.0-1e-5): return t*b + (1-t)*b theta = np.arccos (costheta) return (np.sin ((1.0 - t) * theta) * a + np.sin (t * theta) * c) / np.sin (theta) # # only testing below here # def test_vector_random_uniform_hypersphere(): from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt nvec = 1000 r = np.zeros([nvec,3]) for i in range(nvec): r[i,:] = vector_random_uniform_hypersphere(3) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.scatter(r[:,0], r[:,1], r[:,2]) plt.show() if __name__ == "__main__": test_vector_random_uniform_hypersphere()
gpl-3.0
DailyActie/Surrogate-Model
01-codes/scikit-learn-master/examples/feature_selection/plot_f_test_vs_mi.py
1
1646
""" =========================================== Comparison of F-test and mutual information =========================================== This example illustrates the differences between univariate F-test statistics and mutual information. We consider 3 features x_1, x_2, x_3 distributed uniformly over [0, 1], the target depends on them as follows: y = x_1 + sin(6 * pi * x_2) + 0.1 * N(0, 1), that is the third features is completely irrelevant. The code below plots the dependency of y against individual x_i and normalized values of univariate F-tests statistics and mutual information. As F-test captures only linear dependency, it rates x_1 as the most discriminative feature. On the other hand, mutual information can capture any kind of dependency between variables and it rates x_2 as the most discriminative feature, which probably agrees better with our intuitive perception for this example. Both methods correctly marks x_3 as irrelevant. """ print(__doc__) import matplotlib.pyplot as plt import numpy as np from sklearn.feature_selection import f_regression, mutual_info_regression np.random.seed(0) X = np.random.rand(1000, 3) y = X[:, 0] + np.sin(6 * np.pi * X[:, 1]) + 0.1 * np.random.randn(1000) f_test, _ = f_regression(X, y) f_test /= np.max(f_test) mi = mutual_info_regression(X, y) mi /= np.max(mi) plt.figure(figsize=(15, 5)) for i in range(3): plt.subplot(1, 3, i + 1) plt.scatter(X[:, i], y) plt.xlabel("$x_{}$".format(i + 1), fontsize=14) if i == 0: plt.ylabel("$y$", fontsize=14) plt.title("F-test={:.2f}, MI={:.2f}".format(f_test[i], mi[i]), fontsize=16) plt.show()
mit
dpaiton/OpenPV
pv-core/analysis/python/plot_l1_activity.py
1
1294
""" Plot the highest activity of four different bar positionings """ import sys import numpy as np import matplotlib.pyplot as plt import matplotlib.mlab as mlab import matplotlib.cm as cm import PVReadSparse as rs import PVReadWeights as rw import PVConversions as conv import scipy.cluster.vq as sp import math extended = False a1 = rs.PVReadSparse(sys.argv[1], extended) end = int(sys.argv[2]) numofsteps = int(sys.argv[3]) nx = a1.nx ny = a1.ny numneur = nx * ny activity = [] count = 0 counta=0 for k in range(end): A=a1.next_activity() #print "sum = ", np.sum(A) d = k / numofsteps #act = np.append(activity, np.sum(A)) act = np.sum(A) if k >= (numofsteps*d) and k < ((numofsteps * d) + numofsteps): if k == (numofsteps * d): A1p = act #print "k at first = ", k else: A1p = np.vstack((A1p,act)) if k == (numofsteps-1): A1q = 0 #A1p.sum(axis=0) #print A1q if k == ((numofsteps*d) + (numofsteps-1)): #and k != (numofsteps-1): A1q = np.vstack((A1q, A1p.sum(axis=0))) #print A1q t1 = A1q / float(numneur) #print t1 t1 = t1 / (numofsteps / 2000.0) #print t1 fig = plt.figure() ax = fig.add_subplot(111) ax.plot(np.arange(np.shape(t1)[0]), t1, color='y', ls = '-') plt.show() sys.exit()
epl-1.0
mattgiguere/scikit-learn
sklearn/pipeline.py
8
20449
""" The :mod:`sklearn.pipeline` module implements utilities to build a composite estimator, as a chain of transforms and estimators. """ # Author: Edouard Duchesnay # Gael Varoquaux # Virgile Fritsch # Alexandre Gramfort # Lars Buitinck # Licence: BSD from collections import defaultdict import numpy as np from scipy import sparse from .base import BaseEstimator, TransformerMixin from .externals.joblib import Parallel, delayed from .externals import six from .utils import tosequence from .utils.metaestimators import if_delegate_has_method from .externals.six import iteritems __all__ = ['Pipeline', 'FeatureUnion'] class Pipeline(BaseEstimator): """Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. Parameters ---------- steps: list List of (name, transform) tuples (implementing fit/transform) that are chained, in the order in which they are chained, with the last object an estimator. Examples -------- >>> from sklearn import svm >>> from sklearn.datasets import samples_generator >>> from sklearn.feature_selection import SelectKBest >>> from sklearn.feature_selection import f_regression >>> from sklearn.pipeline import Pipeline >>> # generate some data to play with >>> X, y = samples_generator.make_classification( ... n_informative=5, n_redundant=0, random_state=42) >>> # ANOVA SVM-C >>> anova_filter = SelectKBest(f_regression, k=5) >>> clf = svm.SVC(kernel='linear') >>> anova_svm = Pipeline([('anova', anova_filter), ('svc', clf)]) >>> # You can set the parameters using the names issued >>> # For instance, fit using a k of 10 in the SelectKBest >>> # and a parameter 'C' of the svm >>> anova_svm.set_params(anova__k=10, svc__C=.1).fit(X, y) ... # doctest: +ELLIPSIS Pipeline(steps=[...]) >>> prediction = anova_svm.predict(X) >>> anova_svm.score(X, y) # doctest: +ELLIPSIS 0.77... """ # BaseEstimator interface def __init__(self, steps): self.named_steps = dict(steps) names, estimators = zip(*steps) if len(self.named_steps) != len(steps): raise ValueError("Names provided are not unique: %s" % (names,)) # shallow copy of steps self.steps = tosequence(zip(names, estimators)) transforms = estimators[:-1] estimator = estimators[-1] for t in transforms: if (not (hasattr(t, "fit") or hasattr(t, "fit_transform")) or not hasattr(t, "transform")): raise TypeError("All intermediate steps of the chain should " "be transforms and implement fit and transform" " '%s' (type %s) doesn't)" % (t, type(t))) if not hasattr(estimator, "fit"): raise TypeError("Last step of chain should implement fit " "'%s' (type %s) doesn't)" % (estimator, type(estimator))) @property def _estimator_type(self): return self.steps[-1][1]._estimator_type def get_params(self, deep=True): if not deep: return super(Pipeline, self).get_params(deep=False) else: out = self.named_steps.copy() for name, step in six.iteritems(self.named_steps): for key, value in six.iteritems(step.get_params(deep=True)): out['%s__%s' % (name, key)] = value out.update(super(Pipeline, self).get_params(deep=False)) return out @property def _final_estimator(self): return self.steps[-1][1] # Estimator interface def _pre_transform(self, X, y=None, **fit_params): fit_params_steps = dict((step, {}) for step, _ in self.steps) for pname, pval in six.iteritems(fit_params): step, param = pname.split('__', 1) fit_params_steps[step][param] = pval Xt = X for name, transform in self.steps[:-1]: if hasattr(transform, "fit_transform"): Xt = transform.fit_transform(Xt, y, **fit_params_steps[name]) else: Xt = transform.fit(Xt, y, **fit_params_steps[name]) \ .transform(Xt) return Xt, fit_params_steps[self.steps[-1][0]] def fit(self, X, y=None, **fit_params): """Fit all the transforms one after the other and transform the data, then fit the transformed data using the final estimator. Parameters ---------- X : iterable Training data. Must fulfill input requirements of first step of the pipeline. y : iterable, default=None Training targets. Must fulfill label requirements for all steps of the pipeline. """ Xt, fit_params = self._pre_transform(X, y, **fit_params) self.steps[-1][-1].fit(Xt, y, **fit_params) return self def fit_transform(self, X, y=None, **fit_params): """Fit all the transforms one after the other and transform the data, then use fit_transform on transformed data using the final estimator. Parameters ---------- X : iterable Training data. Must fulfill input requirements of first step of the pipeline. y : iterable, default=None Training targets. Must fulfill label requirements for all steps of the pipeline. """ Xt, fit_params = self._pre_transform(X, y, **fit_params) if hasattr(self.steps[-1][-1], 'fit_transform'): return self.steps[-1][-1].fit_transform(Xt, y, **fit_params) else: return self.steps[-1][-1].fit(Xt, y, **fit_params).transform(Xt) @if_delegate_has_method(delegate='_final_estimator') def predict(self, X): """Applies transforms to the data, and the predict method of the final estimator. Valid only if the final estimator implements predict. Parameters ---------- X : iterable Data to predict on. Must fulfill input requirements of first step of the pipeline. """ Xt = X for name, transform in self.steps[:-1]: Xt = transform.transform(Xt) return self.steps[-1][-1].predict(Xt) @if_delegate_has_method(delegate='_final_estimator') def fit_predict(self, X, y=None, **fit_params): """Applies fit_predict of last step in pipeline after transforms. Applies fit_transforms of a pipeline to the data, followed by the fit_predict method of the final estimator in the pipeline. Valid only if the final estimator implements fit_predict. Parameters ---------- X : iterable Training data. Must fulfill input requirements of first step of the pipeline. y : iterable, default=None Training targets. Must fulfill label requirements for all steps of the pipeline. """ Xt, fit_params = self._pre_transform(X, y, **fit_params) return self.steps[-1][-1].fit_predict(Xt, y, **fit_params) @if_delegate_has_method(delegate='_final_estimator') def predict_proba(self, X): """Applies transforms to the data, and the predict_proba method of the final estimator. Valid only if the final estimator implements predict_proba. Parameters ---------- X : iterable Data to predict on. Must fulfill input requirements of first step of the pipeline. """ Xt = X for name, transform in self.steps[:-1]: Xt = transform.transform(Xt) return self.steps[-1][-1].predict_proba(Xt) @if_delegate_has_method(delegate='_final_estimator') def decision_function(self, X): """Applies transforms to the data, and the decision_function method of the final estimator. Valid only if the final estimator implements decision_function. Parameters ---------- X : iterable Data to predict on. Must fulfill input requirements of first step of the pipeline. """ Xt = X for name, transform in self.steps[:-1]: Xt = transform.transform(Xt) return self.steps[-1][-1].decision_function(Xt) @if_delegate_has_method(delegate='_final_estimator') def predict_log_proba(self, X): """Applies transforms to the data, and the predict_log_proba method of the final estimator. Valid only if the final estimator implements predict_log_proba. Parameters ---------- X : iterable Data to predict on. Must fulfill input requirements of first step of the pipeline. """ Xt = X for name, transform in self.steps[:-1]: Xt = transform.transform(Xt) return self.steps[-1][-1].predict_log_proba(Xt) @if_delegate_has_method(delegate='_final_estimator') def transform(self, X): """Applies transforms to the data, and the transform method of the final estimator. Valid only if the final estimator implements transform. Parameters ---------- X : iterable Data to predict on. Must fulfill input requirements of first step of the pipeline. """ Xt = X for name, transform in self.steps: Xt = transform.transform(Xt) return Xt @if_delegate_has_method(delegate='_final_estimator') def inverse_transform(self, X): """Applies inverse transform to the data. Starts with the last step of the pipeline and applies ``inverse_transform`` in inverse order of the pipeline steps. Valid only if all steps of the pipeline implement inverse_transform. Parameters ---------- X : iterable Data to inverse transform. Must fulfill output requirements of the last step of the pipeline. """ if X.ndim == 1: X = X[None, :] Xt = X for name, step in self.steps[::-1]: Xt = step.inverse_transform(Xt) return Xt @if_delegate_has_method(delegate='_final_estimator') def score(self, X, y=None): """Applies transforms to the data, and the score method of the final estimator. Valid only if the final estimator implements score. Parameters ---------- X : iterable Data to score. Must fulfill input requirements of first step of the pipeline. y : iterable, default=None Targets used for scoring. Must fulfill label requirements for all steps of the pipeline. """ Xt = X for name, transform in self.steps[:-1]: Xt = transform.transform(Xt) return self.steps[-1][-1].score(Xt, y) @property def classes_(self): return self.steps[-1][-1].classes_ @property def _pairwise(self): # check if first estimator expects pairwise input return getattr(self.steps[0][1], '_pairwise', False) def _name_estimators(estimators): """Generate names for estimators.""" names = [type(estimator).__name__.lower() for estimator in estimators] namecount = defaultdict(int) for est, name in zip(estimators, names): namecount[name] += 1 for k, v in list(six.iteritems(namecount)): if v == 1: del namecount[k] for i in reversed(range(len(estimators))): name = names[i] if name in namecount: names[i] += "-%d" % namecount[name] namecount[name] -= 1 return list(zip(names, estimators)) def make_pipeline(*steps): """Construct a Pipeline from the given estimators. This is a shorthand for the Pipeline constructor; it does not require, and does not permit, naming the estimators. Instead, they will be given names automatically based on their types. Examples -------- >>> from sklearn.naive_bayes import GaussianNB >>> from sklearn.preprocessing import StandardScaler >>> make_pipeline(StandardScaler(), GaussianNB()) # doctest: +NORMALIZE_WHITESPACE Pipeline(steps=[('standardscaler', StandardScaler(copy=True, with_mean=True, with_std=True)), ('gaussiannb', GaussianNB())]) Returns ------- p : Pipeline """ return Pipeline(_name_estimators(steps)) def _fit_one_transformer(transformer, X, y): return transformer.fit(X, y) def _transform_one(transformer, name, X, transformer_weights): if transformer_weights is not None and name in transformer_weights: # if we have a weight for this transformer, muliply output return transformer.transform(X) * transformer_weights[name] return transformer.transform(X) def _fit_transform_one(transformer, name, X, y, transformer_weights, **fit_params): if transformer_weights is not None and name in transformer_weights: # if we have a weight for this transformer, muliply output if hasattr(transformer, 'fit_transform'): X_transformed = transformer.fit_transform(X, y, **fit_params) return X_transformed * transformer_weights[name], transformer else: X_transformed = transformer.fit(X, y, **fit_params).transform(X) return X_transformed * transformer_weights[name], transformer if hasattr(transformer, 'fit_transform'): X_transformed = transformer.fit_transform(X, y, **fit_params) return X_transformed, transformer else: X_transformed = transformer.fit(X, y, **fit_params).transform(X) return X_transformed, transformer class FeatureUnion(BaseEstimator, TransformerMixin): """Concatenates results of multiple transformer objects. This estimator applies a list of transformer objects in parallel to the input data, then concatenates the results. This is useful to combine several feature extraction mechanisms into a single transformer. Parameters ---------- transformer_list: list of (string, transformer) tuples List of transformer objects to be applied to the data. The first half of each tuple is the name of the transformer. n_jobs: int, optional Number of jobs to run in parallel (default 1). transformer_weights: dict, optional Multiplicative weights for features per transformer. Keys are transformer names, values the weights. """ def __init__(self, transformer_list, n_jobs=1, transformer_weights=None): self.transformer_list = transformer_list self.n_jobs = n_jobs self.transformer_weights = transformer_weights def get_feature_names(self): """Get feature names from all transformers. Returns ------- feature_names : list of strings Names of the features produced by transform. """ feature_names = [] for name, trans in self.transformer_list: if not hasattr(trans, 'get_feature_names'): raise AttributeError("Transformer %s does not provide" " get_feature_names." % str(name)) feature_names.extend([name + "__" + f for f in trans.get_feature_names()]) return feature_names def fit(self, X, y=None): """Fit all transformers using X. Parameters ---------- X : array-like or sparse matrix, shape (n_samples, n_features) Input data, used to fit transformers. """ transformers = Parallel(n_jobs=self.n_jobs)( delayed(_fit_one_transformer)(trans, X, y) for name, trans in self.transformer_list) self._update_transformer_list(transformers) return self def fit_transform(self, X, y=None, **fit_params): """Fit all transformers using X, transform the data and concatenate results. Parameters ---------- X : array-like or sparse matrix, shape (n_samples, n_features) Input data to be transformed. Returns ------- X_t : array-like or sparse matrix, shape (n_samples, sum_n_components) hstack of results of transformers. sum_n_components is the sum of n_components (output dimension) over transformers. """ result = Parallel(n_jobs=self.n_jobs)( delayed(_fit_transform_one)(trans, name, X, y, self.transformer_weights, **fit_params) for name, trans in self.transformer_list) Xs, transformers = zip(*result) self._update_transformer_list(transformers) if any(sparse.issparse(f) for f in Xs): Xs = sparse.hstack(Xs).tocsr() else: Xs = np.hstack(Xs) return Xs def transform(self, X): """Transform X separately by each transformer, concatenate results. Parameters ---------- X : array-like or sparse matrix, shape (n_samples, n_features) Input data to be transformed. Returns ------- X_t : array-like or sparse matrix, shape (n_samples, sum_n_components) hstack of results of transformers. sum_n_components is the sum of n_components (output dimension) over transformers. """ Xs = Parallel(n_jobs=self.n_jobs)( delayed(_transform_one)(trans, name, X, self.transformer_weights) for name, trans in self.transformer_list) if any(sparse.issparse(f) for f in Xs): Xs = sparse.hstack(Xs).tocsr() else: Xs = np.hstack(Xs) return Xs def get_params(self, deep=True): if not deep: return super(FeatureUnion, self).get_params(deep=False) else: out = dict(self.transformer_list) for name, trans in self.transformer_list: for key, value in iteritems(trans.get_params(deep=True)): out['%s__%s' % (name, key)] = value out.update(super(FeatureUnion, self).get_params(deep=False)) return out def _update_transformer_list(self, transformers): self.transformer_list[:] = [ (name, new) for ((name, old), new) in zip(self.transformer_list, transformers) ] # XXX it would be nice to have a keyword-only n_jobs argument to this function, # but that's not allowed in Python 2.x. def make_union(*transformers): """Construct a FeatureUnion from the given transformers. This is a shorthand for the FeatureUnion constructor; it does not require, and does not permit, naming the transformers. Instead, they will be given names automatically based on their types. It also does not allow weighting. Examples -------- >>> from sklearn.decomposition import PCA, TruncatedSVD >>> make_union(PCA(), TruncatedSVD()) # doctest: +NORMALIZE_WHITESPACE FeatureUnion(n_jobs=1, transformer_list=[('pca', PCA(copy=True, n_components=None, whiten=False)), ('truncatedsvd', TruncatedSVD(algorithm='randomized', n_components=2, n_iter=5, random_state=None, tol=0.0))], transformer_weights=None) Returns ------- f : FeatureUnion """ return FeatureUnion(_name_estimators(transformers))
bsd-3-clause
RPGOne/Skynet
scikit-learn-c604ac39ad0e5b066d964df3e8f31ba7ebda1e0e/sklearn/decomposition/tests/test_sparse_pca.py
31
6002
# Author: Vlad Niculae # License: BSD 3 clause import sys import numpy as np from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import SkipTest from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import if_not_mac_os from sklearn.decomposition import SparsePCA, MiniBatchSparsePCA from sklearn.utils import check_random_state def generate_toy_data(n_components, n_samples, image_size, random_state=None): n_features = image_size[0] * image_size[1] rng = check_random_state(random_state) U = rng.randn(n_samples, n_components) V = rng.randn(n_components, n_features) centers = [(3, 3), (6, 7), (8, 1)] sz = [1, 2, 1] for k in range(n_components): img = np.zeros(image_size) xmin, xmax = centers[k][0] - sz[k], centers[k][0] + sz[k] ymin, ymax = centers[k][1] - sz[k], centers[k][1] + sz[k] img[xmin:xmax][:, ymin:ymax] = 1.0 V[k, :] = img.ravel() # Y is defined by : Y = UV + noise Y = np.dot(U, V) Y += 0.1 * rng.randn(Y.shape[0], Y.shape[1]) # Add noise return Y, U, V # SparsePCA can be a bit slow. To avoid having test times go up, we # test different aspects of the code in the same test def test_correct_shapes(): rng = np.random.RandomState(0) X = rng.randn(12, 10) spca = SparsePCA(n_components=8, random_state=rng) U = spca.fit_transform(X) assert_equal(spca.components_.shape, (8, 10)) assert_equal(U.shape, (12, 8)) # test overcomplete decomposition spca = SparsePCA(n_components=13, random_state=rng) U = spca.fit_transform(X) assert_equal(spca.components_.shape, (13, 10)) assert_equal(U.shape, (12, 13)) def test_fit_transform(): alpha = 1 rng = np.random.RandomState(0) Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng) # wide array spca_lars = SparsePCA(n_components=3, method='lars', alpha=alpha, random_state=0) spca_lars.fit(Y) # Test that CD gives similar results spca_lasso = SparsePCA(n_components=3, method='cd', random_state=0, alpha=alpha) spca_lasso.fit(Y) assert_array_almost_equal(spca_lasso.components_, spca_lars.components_) @if_not_mac_os() def test_fit_transform_parallel(): alpha = 1 rng = np.random.RandomState(0) Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng) # wide array spca_lars = SparsePCA(n_components=3, method='lars', alpha=alpha, random_state=0) spca_lars.fit(Y) U1 = spca_lars.transform(Y) # Test multiple CPUs spca = SparsePCA(n_components=3, n_jobs=2, method='lars', alpha=alpha, random_state=0).fit(Y) U2 = spca.transform(Y) assert_true(not np.all(spca_lars.components_ == 0)) assert_array_almost_equal(U1, U2) def test_transform_nan(): """ Test that SparsePCA won't return NaN when there is 0 feature in all samples. """ rng = np.random.RandomState(0) Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng) # wide array Y[:, 0] = 0 estimator = SparsePCA(n_components=8) assert_false(np.any(np.isnan(estimator.fit_transform(Y)))) def test_fit_transform_tall(): rng = np.random.RandomState(0) Y, _, _ = generate_toy_data(3, 65, (8, 8), random_state=rng) # tall array spca_lars = SparsePCA(n_components=3, method='lars', random_state=rng) U1 = spca_lars.fit_transform(Y) spca_lasso = SparsePCA(n_components=3, method='cd', random_state=rng) U2 = spca_lasso.fit(Y).transform(Y) assert_array_almost_equal(U1, U2) def test_initialization(): rng = np.random.RandomState(0) U_init = rng.randn(5, 3) V_init = rng.randn(3, 4) model = SparsePCA(n_components=3, U_init=U_init, V_init=V_init, max_iter=0, random_state=rng) model.fit(rng.randn(5, 4)) assert_array_equal(model.components_, V_init) def test_mini_batch_correct_shapes(): rng = np.random.RandomState(0) X = rng.randn(12, 10) pca = MiniBatchSparsePCA(n_components=8, random_state=rng) U = pca.fit_transform(X) assert_equal(pca.components_.shape, (8, 10)) assert_equal(U.shape, (12, 8)) # test overcomplete decomposition pca = MiniBatchSparsePCA(n_components=13, random_state=rng) U = pca.fit_transform(X) assert_equal(pca.components_.shape, (13, 10)) assert_equal(U.shape, (12, 13)) def test_mini_batch_fit_transform(): raise SkipTest("skipping mini_batch_fit_transform.") alpha = 1 rng = np.random.RandomState(0) Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng) # wide array spca_lars = MiniBatchSparsePCA(n_components=3, random_state=0, alpha=alpha).fit(Y) U1 = spca_lars.transform(Y) # Test multiple CPUs if sys.platform == 'win32': # fake parallelism for win32 import sklearn.externals.joblib.parallel as joblib_par _mp = joblib_par.multiprocessing joblib_par.multiprocessing = None try: U2 = MiniBatchSparsePCA(n_components=3, n_jobs=2, alpha=alpha, random_state=0).fit(Y).transform(Y) finally: joblib_par.multiprocessing = _mp else: # we can efficiently use parallelism U2 = MiniBatchSparsePCA(n_components=3, n_jobs=2, alpha=alpha, random_state=0).fit(Y).transform(Y) assert_true(not np.all(spca_lars.components_ == 0)) assert_array_almost_equal(U1, U2) # Test that CD gives similar results spca_lasso = MiniBatchSparsePCA(n_components=3, method='cd', alpha=alpha, random_state=0).fit(Y) assert_array_almost_equal(spca_lasso.components_, spca_lars.components_)
bsd-3-clause
yanlend/scikit-learn
examples/tree/plot_iris.py
271
2186
""" ================================================================ Plot the decision surface of a decision tree on the iris dataset ================================================================ Plot the decision surface of a decision tree trained on pairs of features of the iris dataset. See :ref:`decision tree <tree>` for more information on the estimator. For each pair of iris features, the decision tree learns decision boundaries made of combinations of simple thresholding rules inferred from the training samples. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import load_iris from sklearn.tree import DecisionTreeClassifier # Parameters n_classes = 3 plot_colors = "bry" plot_step = 0.02 # Load data iris = load_iris() for pairidx, pair in enumerate([[0, 1], [0, 2], [0, 3], [1, 2], [1, 3], [2, 3]]): # We only take the two corresponding features X = iris.data[:, pair] y = iris.target # Shuffle idx = np.arange(X.shape[0]) np.random.seed(13) np.random.shuffle(idx) X = X[idx] y = y[idx] # Standardize mean = X.mean(axis=0) std = X.std(axis=0) X = (X - mean) / std # Train clf = DecisionTreeClassifier().fit(X, y) # Plot the decision boundary plt.subplot(2, 3, pairidx + 1) x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step), np.arange(y_min, y_max, plot_step)) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) cs = plt.contourf(xx, yy, Z, cmap=plt.cm.Paired) plt.xlabel(iris.feature_names[pair[0]]) plt.ylabel(iris.feature_names[pair[1]]) plt.axis("tight") # Plot the training points for i, color in zip(range(n_classes), plot_colors): idx = np.where(y == i) plt.scatter(X[idx, 0], X[idx, 1], c=color, label=iris.target_names[i], cmap=plt.cm.Paired) plt.axis("tight") plt.suptitle("Decision surface of a decision tree using paired features") plt.legend() plt.show()
bsd-3-clause
cwade/surveyhelper
surveyhelper/response_set.py
1
3236
import pandas as pd import numpy as np class ResponseSet: # TODO - As currently written this code skips the second row of data, # because that's what we want to do for Qualtrics csv results, but this is # potentially a big gotcha, so document well or change. def __init__(self, response_file, codebook, skiprows = [1], encoding="utf8", grouping_var=None, group_dict=None): df = pd.read_csv(response_file , skiprows=skiprows, encoding=encoding) # go through each variable in the codebook and make sure the corresponding # column is integer coded matched_questions = [] for q in codebook.get_questions(): matched = True for v in q.get_variable_names(): if v not in df: print("Warning: Expected variable {} not found in data file {}".format(v, response_file)) matched = False elif df[v].dtype not in [np.int64, np.float64]: print("Converting variable {} to integer from {}".format(v, df[v].dtype)) df[v] = df[v].convert_objects(convert_numeric=True) if matched: matched_questions.append(q) self.data = df self.matched_questions = matched_questions self.codebook = codebook self.grouping_var = grouping_var if (not self.grouping_var and group_dict): raise(Exception( "Grouping variable must also be specified when a grouping dict is passed in." )) if self.grouping_var and not group_dict: self.data[grouping_var] = pd.Categorical(self.data[grouping_var]) if self.grouping_var and group_dict: self.data[grouping_var] = self.data[grouping_var].astype(str) # For some odd reason, inplace=True doesn't work when cats are ["1-2", "3+"] self.data[grouping_var] = self.data[grouping_var].replace(group_dict) self.data[grouping_var] = pd.Categorical(self.data[grouping_var]) self.data[grouping_var] = self.data[grouping_var].cat.reorder_categories(self.uniq(list(group_dict.values()))) def uniq(self, input): output = [] for x in input: if x not in output: output.append(x) return(output) def get_data(self): if not self.grouping_var: group_var = 'z' while group_var in self.data.columns: group_var += 'z' self.data[group_var] = 0 else: group_var = self.grouping_var # self.data.sort(group_var, inplace=True) groups = self.data.groupby(group_var) return(groups) def export_to_tableau(self, output_file, other_vars = [], constants = {}): df = pd.DataFrame() if 'weight' not in self.data: self.data['weight'] = 1 for q in self.matched_questions: d = q.get_tableau_data(self.data, other_vars) df = df.append(d, ignore_index=True) for k, v in constants: df[k] = v df.to_csv(output_file, index=False)
mit
cmsteinbach/Python
Burgers1D/burgers_LaXF-W_with_source_flux_formulation.py
1
7125
# -*- coding: utf-8 -*- """ Created on: Wed Apr 6 14:58:30 2016 @author: cst mail to: your email adress here Abstract: Short Description here Description: Detailed Description here Source: Sources used for this Version: 0.1 Changed on: Wed Apr 6 14:58:30 2016 TO DO´s: - Parameter List Description: - Public Methods Description: - """ from pylab import empty, arange, linspace, tanh, zeros, empty,sin,pi,plot,sign from mpl_toolkits.mplot3d.axes3d import Axes3D import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot3d.axes3d import get_test_data import inspect class Burgers(object): def __init__(self,dx,dt,nx,nt): self.__dx = dx self.__dt = dt self.__nx = nx self.__nt = nt self.__u = empty([nx,nt]) self.__fi = zeros([nx,nt]) self.__cfl = 0. print ('') print ('FD_1D_LAX_WENDROFF:') print ('Python version') print ('') print ('Solve the Burrgers equation with source term in 1D,') print ('du/dt = -dF(u)/dx + S(u)') print ('over the interval:') print ('0.0 <= x <= 1.0') print ('with fixed boundary conditions, and') print ('with a given initial condition') print ('') print ('Numerics: Lax-Wendroff method with flux blended with Lax-Friedrichs') def leftbc(self,uleft): self.__uleft = uleft def rightbc(self,uright): self.__uright = uright def xjump(self,xj): self.__xj = xj def initial(self): for i in range(self.__nx): if i*self.__dx < self.__xj: self.__u[i,0] = self.__uleft else: self.__u[i,0] = self.__uright def flux(self,u): return u#*u/2. def source(self,u): my = 1500. Q = -my*u*(u-1.)*(u-0.5) # print(Q) return Q def timestep(self,u,jt,dt,dx): eps = 0.0000001 u[0,jt] = u[0,jt-1] dx = self.__dx dt = self.__dt for ix in range(1,self.__nx-2): lflx = self.flux(u[ix-1,jt-1]) cflx = self.flux(u[ix,jt-1]) rflx = self.flux(u[ix+1,jt-1]) lu = u[ix-1,jt-1] cu = u[ix ,jt-1] ru = u[ix+1,jt-1] lJF = (cflx - lflx)/(u[ix ,jt-1] - u[ix-1,jt-1] + eps) rJF = (rflx - cflx)/(u[ix+1,jt-1] - u[ix ,jt-1] + eps) lsrc = self.source(u[ix-1,jt-1]) csrc = self.source(u[ix ,jt-1]) rsrc = self.source(u[ix+1,jt-1]) JS = (rsrc - lsrc)/(u[ix+1,jt-1] - u[ix-1,jt-1] + eps) src1 = -csrc*(rJF - lJF)/dx - (lJF + rJF)*(rsrc - lsrc)/dx/4. src2 = csrc*JS - JS*(rflx - lflx)/dx/2. cfi = self.minmod(u[ix-1,jt-1],u[ix ,jt-1],u[ix+1,jt-1]) lH = lflx - (1.-cfi)*dx/dt*(cu - lu) - (cfi)*lJF*(cflx - lflx)/dx*dt rH = rflx - (1.-cfi)*dx/dt*(ru - cu) - (cfi)*rJF*(rflx - cflx)/dx*dt u[ix,jt] = cu - (rH - lH)/2./dx*dt u[ix,jt] = u[ix,jt] + csrc*dt + (cfi)*(src1 + src2)*dt**2/2. u[self.__nx-2,jt] = u[self.__nx-3,jt] u[self.__nx-1,jt] = u[self.__nx-2,jt] return u def minmod(self,um1,u,up1): # calculate r_{i} = \frac{u_i-u_{i-1}}{u_{i+1}-u_i} nom = (u - um1) denom = (up1 - u ) # make sure division by 0 does not happen if(abs(nom) < 1e-14): # nom = 0 nom = 0. denom = 1. elif (nom > 1e-14 and abs(denom) < 1e-14): # nom > 0 => r = \inf nom = 1e14 denom = 1. elif (nom < -1e-14 and abs(denom) < 1e-14): # nom < 0 => r = 0 nom = -1e14 denom = 1. r = nom/denom theta = 2. return max(0.8,min(theta*r,1.)) def minmod2(self,um1,u,up1): # calculate r_{i} = \frac{u_i-u_{i-1}}{u_{i+1}-u_i} nom = (u - um1) denom = (up1 - u ) if(abs(nom) < 1e-14): # nom = 0 nom = 0. denom = 1. elif (nom > 1e-14 and abs(denom) < 1e-14): # nom > 0 => r = \inf nom = 1e14 denom = 1. elif (nom < -1e-14 and abs(denom) < 1e-14): # nom < 0 => r = 0 nom = -1e14 denom = 1. r = nom/denom theta = 2. beta = .0 return max(beta,min(theta*r,1.)) def mc(self,um1,u,up1): # calculate r_{i} = \frac{u_i-u_{i-1}}{u_{i+1}-u_i} nom = (u - um1) denom = (up1 - u ) # make sure division by 0 does not happen if(abs(nom) < 1e-14): # nom = 0 nom = 0. denom = 1. elif (nom > 1e-14 and abs(denom) < 1e-14): # nom > 0 => r = \inf nom = 1e14 denom = 1. elif (nom < -1e-14 and abs(denom) < 1e-14): # nom < 0 => r = 0 nom = -1e14 denom = 1. r = nom/denom theta = 2. return max(0.,min(theta*r,(1.+r)/2.,1.)) def solve(self): print ('') print (' Number of nodes NX = %d' % ( self.__nx )) print (' Number of time steps NT = %d' % ( self.__nt )) print (' left BC, right BC = ',self.__uleft, self.__uright) for j in range(1,self.__nt): self.__u = self.timestep(self.__u,j,self.__dt,self.__dx) print ('') print ('FD_1D_ADVECTION_LAX_WENDROFF_TEST') print (' Normal end of execution.') print ('') def plot3D(self): X = zeros ( [ self.__nx, self.__nt ] ) Y = zeros ( [ self.__nx, self.__nt ] ) Z = zeros ( [ self.__nx, self.__nt ] ) x = linspace(0.,self.__nx*self.__dx,self.__nx) for i in range(self.__nt): X[:,i] = x Y[:,i] = i*self.__dt Z = self.__u fig = plt.figure ( ) ax = fig.gca ( projection = '3d' ) surf = ax.plot_surface ( X, Y, Z, cmap = cm.coolwarm, \ linewidth = 0, antialiased = False ) ax.set_xlabel ( '<--X-->' ) ax.set_ylabel ( '<--T-->' ) ax.set_zlabel ( '<--U(X,T)-->' ) fig.colorbar ( surf, shrink = 0.5, aspect = 10 ) plt.show ( ) def plot2D(self,jt): x = linspace(0.,self.__nx*self.__dx,self.__nx) plot(x,self.__u[:,jt]) def cfl(self): print ('max CFL condition: dt = (%g) <= (%g) = dx / J / dt', self.__cfl) if __name__ == "__main__": burgers = Burgers(0.005,0.001,201,500) burgers.leftbc(1.) burgers.rightbc(0.0) burgers.xjump(.3) burgers.initial() burgers.solve() burgers.plot2D(499) burgers.plot3D()
gpl-3.0
krez13/scikit-learn
benchmarks/bench_glm.py
297
1493
""" A comparison of different methods in GLM Data comes from a random square matrix. """ from datetime import datetime import numpy as np from sklearn import linear_model from sklearn.utils.bench import total_seconds if __name__ == '__main__': import pylab as pl n_iter = 40 time_ridge = np.empty(n_iter) time_ols = np.empty(n_iter) time_lasso = np.empty(n_iter) dimensions = 500 * np.arange(1, n_iter + 1) for i in range(n_iter): print('Iteration %s of %s' % (i, n_iter)) n_samples, n_features = 10 * i + 3, 10 * i + 3 X = np.random.randn(n_samples, n_features) Y = np.random.randn(n_samples) start = datetime.now() ridge = linear_model.Ridge(alpha=1.) ridge.fit(X, Y) time_ridge[i] = total_seconds(datetime.now() - start) start = datetime.now() ols = linear_model.LinearRegression() ols.fit(X, Y) time_ols[i] = total_seconds(datetime.now() - start) start = datetime.now() lasso = linear_model.LassoLars() lasso.fit(X, Y) time_lasso[i] = total_seconds(datetime.now() - start) pl.figure('scikit-learn GLM benchmark results') pl.xlabel('Dimensions') pl.ylabel('Time (s)') pl.plot(dimensions, time_ridge, color='r') pl.plot(dimensions, time_ols, color='g') pl.plot(dimensions, time_lasso, color='b') pl.legend(['Ridge', 'OLS', 'LassoLars'], loc='upper left') pl.axis('tight') pl.show()
bsd-3-clause
nvoron23/scikit-learn
sklearn/cluster/bicluster.py
211
19443
"""Spectral biclustering algorithms. Authors : Kemal Eren License: BSD 3 clause """ from abc import ABCMeta, abstractmethod import numpy as np from scipy.sparse import dia_matrix from scipy.sparse import issparse from . import KMeans, MiniBatchKMeans from ..base import BaseEstimator, BiclusterMixin from ..externals import six from ..utils.arpack import eigsh, svds from ..utils.extmath import (make_nonnegative, norm, randomized_svd, safe_sparse_dot) from ..utils.validation import assert_all_finite, check_array __all__ = ['SpectralCoclustering', 'SpectralBiclustering'] def _scale_normalize(X): """Normalize ``X`` by scaling rows and columns independently. Returns the normalized matrix and the row and column scaling factors. """ X = make_nonnegative(X) row_diag = np.asarray(1.0 / np.sqrt(X.sum(axis=1))).squeeze() col_diag = np.asarray(1.0 / np.sqrt(X.sum(axis=0))).squeeze() row_diag = np.where(np.isnan(row_diag), 0, row_diag) col_diag = np.where(np.isnan(col_diag), 0, col_diag) if issparse(X): n_rows, n_cols = X.shape r = dia_matrix((row_diag, [0]), shape=(n_rows, n_rows)) c = dia_matrix((col_diag, [0]), shape=(n_cols, n_cols)) an = r * X * c else: an = row_diag[:, np.newaxis] * X * col_diag return an, row_diag, col_diag def _bistochastic_normalize(X, max_iter=1000, tol=1e-5): """Normalize rows and columns of ``X`` simultaneously so that all rows sum to one constant and all columns sum to a different constant. """ # According to paper, this can also be done more efficiently with # deviation reduction and balancing algorithms. X = make_nonnegative(X) X_scaled = X dist = None for _ in range(max_iter): X_new, _, _ = _scale_normalize(X_scaled) if issparse(X): dist = norm(X_scaled.data - X.data) else: dist = norm(X_scaled - X_new) X_scaled = X_new if dist is not None and dist < tol: break return X_scaled def _log_normalize(X): """Normalize ``X`` according to Kluger's log-interactions scheme.""" X = make_nonnegative(X, min_value=1) if issparse(X): raise ValueError("Cannot compute log of a sparse matrix," " because log(x) diverges to -infinity as x" " goes to 0.") L = np.log(X) row_avg = L.mean(axis=1)[:, np.newaxis] col_avg = L.mean(axis=0) avg = L.mean() return L - row_avg - col_avg + avg class BaseSpectral(six.with_metaclass(ABCMeta, BaseEstimator, BiclusterMixin)): """Base class for spectral biclustering.""" @abstractmethod def __init__(self, n_clusters=3, svd_method="randomized", n_svd_vecs=None, mini_batch=False, init="k-means++", n_init=10, n_jobs=1, random_state=None): self.n_clusters = n_clusters self.svd_method = svd_method self.n_svd_vecs = n_svd_vecs self.mini_batch = mini_batch self.init = init self.n_init = n_init self.n_jobs = n_jobs self.random_state = random_state def _check_parameters(self): legal_svd_methods = ('randomized', 'arpack') if self.svd_method not in legal_svd_methods: raise ValueError("Unknown SVD method: '{0}'. svd_method must be" " one of {1}.".format(self.svd_method, legal_svd_methods)) def fit(self, X): """Creates a biclustering for X. Parameters ---------- X : array-like, shape (n_samples, n_features) """ X = check_array(X, accept_sparse='csr', dtype=np.float64) self._check_parameters() self._fit(X) def _svd(self, array, n_components, n_discard): """Returns first `n_components` left and right singular vectors u and v, discarding the first `n_discard`. """ if self.svd_method == 'randomized': kwargs = {} if self.n_svd_vecs is not None: kwargs['n_oversamples'] = self.n_svd_vecs u, _, vt = randomized_svd(array, n_components, random_state=self.random_state, **kwargs) elif self.svd_method == 'arpack': u, _, vt = svds(array, k=n_components, ncv=self.n_svd_vecs) if np.any(np.isnan(vt)): # some eigenvalues of A * A.T are negative, causing # sqrt() to be np.nan. This causes some vectors in vt # to be np.nan. _, v = eigsh(safe_sparse_dot(array.T, array), ncv=self.n_svd_vecs) vt = v.T if np.any(np.isnan(u)): _, u = eigsh(safe_sparse_dot(array, array.T), ncv=self.n_svd_vecs) assert_all_finite(u) assert_all_finite(vt) u = u[:, n_discard:] vt = vt[n_discard:] return u, vt.T def _k_means(self, data, n_clusters): if self.mini_batch: model = MiniBatchKMeans(n_clusters, init=self.init, n_init=self.n_init, random_state=self.random_state) else: model = KMeans(n_clusters, init=self.init, n_init=self.n_init, n_jobs=self.n_jobs, random_state=self.random_state) model.fit(data) centroid = model.cluster_centers_ labels = model.labels_ return centroid, labels class SpectralCoclustering(BaseSpectral): """Spectral Co-Clustering algorithm (Dhillon, 2001). Clusters rows and columns of an array `X` to solve the relaxed normalized cut of the bipartite graph created from `X` as follows: the edge between row vertex `i` and column vertex `j` has weight `X[i, j]`. The resulting bicluster structure is block-diagonal, since each row and each column belongs to exactly one bicluster. Supports sparse matrices, as long as they are nonnegative. Read more in the :ref:`User Guide <spectral_coclustering>`. Parameters ---------- n_clusters : integer, optional, default: 3 The number of biclusters to find. svd_method : string, optional, default: 'randomized' Selects the algorithm for finding singular vectors. May be 'randomized' or 'arpack'. If 'randomized', use :func:`sklearn.utils.extmath.randomized_svd`, which may be faster for large matrices. If 'arpack', use :func:`sklearn.utils.arpack.svds`, which is more accurate, but possibly slower in some cases. n_svd_vecs : int, optional, default: None Number of vectors to use in calculating the SVD. Corresponds to `ncv` when `svd_method=arpack` and `n_oversamples` when `svd_method` is 'randomized`. mini_batch : bool, optional, default: False Whether to use mini-batch k-means, which is faster but may get different results. init : {'k-means++', 'random' or an ndarray} Method for initialization of k-means algorithm; defaults to 'k-means++'. n_init : int, optional, default: 10 Number of random initializations that are tried with the k-means algorithm. If mini-batch k-means is used, the best initialization is chosen and the algorithm runs once. Otherwise, the algorithm is run for each initialization and the best solution chosen. n_jobs : int, optional, default: 1 The number of jobs to use for the computation. This works by breaking down the pairwise matrix into n_jobs even slices and computing them in parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. random_state : int seed, RandomState instance, or None (default) A pseudo random number generator used by the K-Means initialization. Attributes ---------- rows_ : array-like, shape (n_row_clusters, n_rows) Results of the clustering. `rows[i, r]` is True if cluster `i` contains row `r`. Available only after calling ``fit``. columns_ : array-like, shape (n_column_clusters, n_columns) Results of the clustering, like `rows`. row_labels_ : array-like, shape (n_rows,) The bicluster label of each row. column_labels_ : array-like, shape (n_cols,) The bicluster label of each column. References ---------- * Dhillon, Inderjit S, 2001. `Co-clustering documents and words using bipartite spectral graph partitioning <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.140.3011>`__. """ def __init__(self, n_clusters=3, svd_method='randomized', n_svd_vecs=None, mini_batch=False, init='k-means++', n_init=10, n_jobs=1, random_state=None): super(SpectralCoclustering, self).__init__(n_clusters, svd_method, n_svd_vecs, mini_batch, init, n_init, n_jobs, random_state) def _fit(self, X): normalized_data, row_diag, col_diag = _scale_normalize(X) n_sv = 1 + int(np.ceil(np.log2(self.n_clusters))) u, v = self._svd(normalized_data, n_sv, n_discard=1) z = np.vstack((row_diag[:, np.newaxis] * u, col_diag[:, np.newaxis] * v)) _, labels = self._k_means(z, self.n_clusters) n_rows = X.shape[0] self.row_labels_ = labels[:n_rows] self.column_labels_ = labels[n_rows:] self.rows_ = np.vstack(self.row_labels_ == c for c in range(self.n_clusters)) self.columns_ = np.vstack(self.column_labels_ == c for c in range(self.n_clusters)) class SpectralBiclustering(BaseSpectral): """Spectral biclustering (Kluger, 2003). Partitions rows and columns under the assumption that the data has an underlying checkerboard structure. For instance, if there are two row partitions and three column partitions, each row will belong to three biclusters, and each column will belong to two biclusters. The outer product of the corresponding row and column label vectors gives this checkerboard structure. Read more in the :ref:`User Guide <spectral_biclustering>`. Parameters ---------- n_clusters : integer or tuple (n_row_clusters, n_column_clusters) The number of row and column clusters in the checkerboard structure. method : string, optional, default: 'bistochastic' Method of normalizing and converting singular vectors into biclusters. May be one of 'scale', 'bistochastic', or 'log'. The authors recommend using 'log'. If the data is sparse, however, log normalization will not work, which is why the default is 'bistochastic'. CAUTION: if `method='log'`, the data must not be sparse. n_components : integer, optional, default: 6 Number of singular vectors to check. n_best : integer, optional, default: 3 Number of best singular vectors to which to project the data for clustering. svd_method : string, optional, default: 'randomized' Selects the algorithm for finding singular vectors. May be 'randomized' or 'arpack'. If 'randomized', uses `sklearn.utils.extmath.randomized_svd`, which may be faster for large matrices. If 'arpack', uses `sklearn.utils.arpack.svds`, which is more accurate, but possibly slower in some cases. n_svd_vecs : int, optional, default: None Number of vectors to use in calculating the SVD. Corresponds to `ncv` when `svd_method=arpack` and `n_oversamples` when `svd_method` is 'randomized`. mini_batch : bool, optional, default: False Whether to use mini-batch k-means, which is faster but may get different results. init : {'k-means++', 'random' or an ndarray} Method for initialization of k-means algorithm; defaults to 'k-means++'. n_init : int, optional, default: 10 Number of random initializations that are tried with the k-means algorithm. If mini-batch k-means is used, the best initialization is chosen and the algorithm runs once. Otherwise, the algorithm is run for each initialization and the best solution chosen. n_jobs : int, optional, default: 1 The number of jobs to use for the computation. This works by breaking down the pairwise matrix into n_jobs even slices and computing them in parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. random_state : int seed, RandomState instance, or None (default) A pseudo random number generator used by the K-Means initialization. Attributes ---------- rows_ : array-like, shape (n_row_clusters, n_rows) Results of the clustering. `rows[i, r]` is True if cluster `i` contains row `r`. Available only after calling ``fit``. columns_ : array-like, shape (n_column_clusters, n_columns) Results of the clustering, like `rows`. row_labels_ : array-like, shape (n_rows,) Row partition labels. column_labels_ : array-like, shape (n_cols,) Column partition labels. References ---------- * Kluger, Yuval, et. al., 2003. `Spectral biclustering of microarray data: coclustering genes and conditions <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.135.1608>`__. """ def __init__(self, n_clusters=3, method='bistochastic', n_components=6, n_best=3, svd_method='randomized', n_svd_vecs=None, mini_batch=False, init='k-means++', n_init=10, n_jobs=1, random_state=None): super(SpectralBiclustering, self).__init__(n_clusters, svd_method, n_svd_vecs, mini_batch, init, n_init, n_jobs, random_state) self.method = method self.n_components = n_components self.n_best = n_best def _check_parameters(self): super(SpectralBiclustering, self)._check_parameters() legal_methods = ('bistochastic', 'scale', 'log') if self.method not in legal_methods: raise ValueError("Unknown method: '{0}'. method must be" " one of {1}.".format(self.method, legal_methods)) try: int(self.n_clusters) except TypeError: try: r, c = self.n_clusters int(r) int(c) except (ValueError, TypeError): raise ValueError("Incorrect parameter n_clusters has value:" " {}. It should either be a single integer" " or an iterable with two integers:" " (n_row_clusters, n_column_clusters)") if self.n_components < 1: raise ValueError("Parameter n_components must be greater than 0," " but its value is {}".format(self.n_components)) if self.n_best < 1: raise ValueError("Parameter n_best must be greater than 0," " but its value is {}".format(self.n_best)) if self.n_best > self.n_components: raise ValueError("n_best cannot be larger than" " n_components, but {} > {}" "".format(self.n_best, self.n_components)) def _fit(self, X): n_sv = self.n_components if self.method == 'bistochastic': normalized_data = _bistochastic_normalize(X) n_sv += 1 elif self.method == 'scale': normalized_data, _, _ = _scale_normalize(X) n_sv += 1 elif self.method == 'log': normalized_data = _log_normalize(X) n_discard = 0 if self.method == 'log' else 1 u, v = self._svd(normalized_data, n_sv, n_discard) ut = u.T vt = v.T try: n_row_clusters, n_col_clusters = self.n_clusters except TypeError: n_row_clusters = n_col_clusters = self.n_clusters best_ut = self._fit_best_piecewise(ut, self.n_best, n_row_clusters) best_vt = self._fit_best_piecewise(vt, self.n_best, n_col_clusters) self.row_labels_ = self._project_and_cluster(X, best_vt.T, n_row_clusters) self.column_labels_ = self._project_and_cluster(X.T, best_ut.T, n_col_clusters) self.rows_ = np.vstack(self.row_labels_ == label for label in range(n_row_clusters) for _ in range(n_col_clusters)) self.columns_ = np.vstack(self.column_labels_ == label for _ in range(n_row_clusters) for label in range(n_col_clusters)) def _fit_best_piecewise(self, vectors, n_best, n_clusters): """Find the ``n_best`` vectors that are best approximated by piecewise constant vectors. The piecewise vectors are found by k-means; the best is chosen according to Euclidean distance. """ def make_piecewise(v): centroid, labels = self._k_means(v.reshape(-1, 1), n_clusters) return centroid[labels].ravel() piecewise_vectors = np.apply_along_axis(make_piecewise, axis=1, arr=vectors) dists = np.apply_along_axis(norm, axis=1, arr=(vectors - piecewise_vectors)) result = vectors[np.argsort(dists)[:n_best]] return result def _project_and_cluster(self, data, vectors, n_clusters): """Project ``data`` to ``vectors`` and cluster the result.""" projected = safe_sparse_dot(data, vectors) _, labels = self._k_means(projected, n_clusters) return labels
bsd-3-clause
xiaoxiamii/scikit-learn
sklearn/neighbors/tests/test_approximate.py
71
18815
""" Testing for the approximate neighbor search using Locality Sensitive Hashing Forest module (sklearn.neighbors.LSHForest). """ # Author: Maheshakya Wijewardena, Joel Nothman import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_array_less from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import ignore_warnings from sklearn.metrics.pairwise import pairwise_distances from sklearn.neighbors import LSHForest from sklearn.neighbors import NearestNeighbors def test_neighbors_accuracy_with_n_candidates(): # Checks whether accuracy increases as `n_candidates` increases. n_candidates_values = np.array([.1, 50, 500]) n_samples = 100 n_features = 10 n_iter = 10 n_points = 5 rng = np.random.RandomState(42) accuracies = np.zeros(n_candidates_values.shape[0], dtype=float) X = rng.rand(n_samples, n_features) for i, n_candidates in enumerate(n_candidates_values): lshf = LSHForest(n_candidates=n_candidates) lshf.fit(X) for j in range(n_iter): query = X[rng.randint(0, n_samples)].reshape(1, -1) neighbors = lshf.kneighbors(query, n_neighbors=n_points, return_distance=False) distances = pairwise_distances(query, X, metric='cosine') ranks = np.argsort(distances)[0, :n_points] intersection = np.intersect1d(ranks, neighbors).shape[0] ratio = intersection / float(n_points) accuracies[i] = accuracies[i] + ratio accuracies[i] = accuracies[i] / float(n_iter) # Sorted accuracies should be equal to original accuracies assert_true(np.all(np.diff(accuracies) >= 0), msg="Accuracies are not non-decreasing.") # Highest accuracy should be strictly greater than the lowest assert_true(np.ptp(accuracies) > 0, msg="Highest accuracy is not strictly greater than lowest.") def test_neighbors_accuracy_with_n_estimators(): # Checks whether accuracy increases as `n_estimators` increases. n_estimators = np.array([1, 10, 100]) n_samples = 100 n_features = 10 n_iter = 10 n_points = 5 rng = np.random.RandomState(42) accuracies = np.zeros(n_estimators.shape[0], dtype=float) X = rng.rand(n_samples, n_features) for i, t in enumerate(n_estimators): lshf = LSHForest(n_candidates=500, n_estimators=t) lshf.fit(X) for j in range(n_iter): query = X[rng.randint(0, n_samples)].reshape(1, -1) neighbors = lshf.kneighbors(query, n_neighbors=n_points, return_distance=False) distances = pairwise_distances(query, X, metric='cosine') ranks = np.argsort(distances)[0, :n_points] intersection = np.intersect1d(ranks, neighbors).shape[0] ratio = intersection / float(n_points) accuracies[i] = accuracies[i] + ratio accuracies[i] = accuracies[i] / float(n_iter) # Sorted accuracies should be equal to original accuracies assert_true(np.all(np.diff(accuracies) >= 0), msg="Accuracies are not non-decreasing.") # Highest accuracy should be strictly greater than the lowest assert_true(np.ptp(accuracies) > 0, msg="Highest accuracy is not strictly greater than lowest.") @ignore_warnings def test_kneighbors(): # Checks whether desired number of neighbors are returned. # It is guaranteed to return the requested number of neighbors # if `min_hash_match` is set to 0. Returned distances should be # in ascending order. n_samples = 12 n_features = 2 n_iter = 10 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) lshf = LSHForest(min_hash_match=0) # Test unfitted estimator assert_raises(ValueError, lshf.kneighbors, X[0]) lshf.fit(X) for i in range(n_iter): n_neighbors = rng.randint(0, n_samples) query = X[rng.randint(0, n_samples)].reshape(1, -1) neighbors = lshf.kneighbors(query, n_neighbors=n_neighbors, return_distance=False) # Desired number of neighbors should be returned. assert_equal(neighbors.shape[1], n_neighbors) # Multiple points n_queries = 5 queries = X[rng.randint(0, n_samples, n_queries)] distances, neighbors = lshf.kneighbors(queries, n_neighbors=1, return_distance=True) assert_equal(neighbors.shape[0], n_queries) assert_equal(distances.shape[0], n_queries) # Test only neighbors neighbors = lshf.kneighbors(queries, n_neighbors=1, return_distance=False) assert_equal(neighbors.shape[0], n_queries) # Test random point(not in the data set) query = rng.randn(n_features).reshape(1, -1) lshf.kneighbors(query, n_neighbors=1, return_distance=False) # Test n_neighbors at initialization neighbors = lshf.kneighbors(query, return_distance=False) assert_equal(neighbors.shape[1], 5) # Test `neighbors` has an integer dtype assert_true(neighbors.dtype.kind == 'i', msg="neighbors are not in integer dtype.") def test_radius_neighbors(): # Checks whether Returned distances are less than `radius` # At least one point should be returned when the `radius` is set # to mean distance from the considering point to other points in # the database. # Moreover, this test compares the radius neighbors of LSHForest # with the `sklearn.neighbors.NearestNeighbors`. n_samples = 12 n_features = 2 n_iter = 10 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) lshf = LSHForest() # Test unfitted estimator assert_raises(ValueError, lshf.radius_neighbors, X[0]) lshf.fit(X) for i in range(n_iter): # Select a random point in the dataset as the query query = X[rng.randint(0, n_samples)].reshape(1, -1) # At least one neighbor should be returned when the radius is the # mean distance from the query to the points of the dataset. mean_dist = np.mean(pairwise_distances(query, X, metric='cosine')) neighbors = lshf.radius_neighbors(query, radius=mean_dist, return_distance=False) assert_equal(neighbors.shape, (1,)) assert_equal(neighbors.dtype, object) assert_greater(neighbors[0].shape[0], 0) # All distances to points in the results of the radius query should # be less than mean_dist distances, neighbors = lshf.radius_neighbors(query, radius=mean_dist, return_distance=True) assert_array_less(distances[0], mean_dist) # Multiple points n_queries = 5 queries = X[rng.randint(0, n_samples, n_queries)] distances, neighbors = lshf.radius_neighbors(queries, return_distance=True) # dists and inds should not be 1D arrays or arrays of variable lengths # hence the use of the object dtype. assert_equal(distances.shape, (n_queries,)) assert_equal(distances.dtype, object) assert_equal(neighbors.shape, (n_queries,)) assert_equal(neighbors.dtype, object) # Compare with exact neighbor search query = X[rng.randint(0, n_samples)].reshape(1, -1) mean_dist = np.mean(pairwise_distances(query, X, metric='cosine')) nbrs = NearestNeighbors(algorithm='brute', metric='cosine').fit(X) distances_exact, _ = nbrs.radius_neighbors(query, radius=mean_dist) distances_approx, _ = lshf.radius_neighbors(query, radius=mean_dist) # Radius-based queries do not sort the result points and the order # depends on the method, the random_state and the dataset order. Therefore # we need to sort the results ourselves before performing any comparison. sorted_dists_exact = np.sort(distances_exact[0]) sorted_dists_approx = np.sort(distances_approx[0]) # Distances to exact neighbors are less than or equal to approximate # counterparts as the approximate radius query might have missed some # closer neighbors. assert_true(np.all(np.less_equal(sorted_dists_exact, sorted_dists_approx))) def test_radius_neighbors_boundary_handling(): X = [[0.999, 0.001], [0.5, 0.5], [0, 1.], [-1., 0.001]] n_points = len(X) # Build an exact nearest neighbors model as reference model to ensure # consistency between exact and approximate methods nnbrs = NearestNeighbors(algorithm='brute', metric='cosine').fit(X) # Build a LSHForest model with hyperparameter values that always guarantee # exact results on this toy dataset. lsfh = LSHForest(min_hash_match=0, n_candidates=n_points).fit(X) # define a query aligned with the first axis query = [[1., 0.]] # Compute the exact cosine distances of the query to the four points of # the dataset dists = pairwise_distances(query, X, metric='cosine').ravel() # The first point is almost aligned with the query (very small angle), # the cosine distance should therefore be almost null: assert_almost_equal(dists[0], 0, decimal=5) # The second point form an angle of 45 degrees to the query vector assert_almost_equal(dists[1], 1 - np.cos(np.pi / 4)) # The third point is orthogonal from the query vector hence at a distance # exactly one: assert_almost_equal(dists[2], 1) # The last point is almost colinear but with opposite sign to the query # therefore it has a cosine 'distance' very close to the maximum possible # value of 2. assert_almost_equal(dists[3], 2, decimal=5) # If we query with a radius of one, all the samples except the last sample # should be included in the results. This means that the third sample # is lying on the boundary of the radius query: exact_dists, exact_idx = nnbrs.radius_neighbors(query, radius=1) approx_dists, approx_idx = lsfh.radius_neighbors(query, radius=1) assert_array_equal(np.sort(exact_idx[0]), [0, 1, 2]) assert_array_equal(np.sort(approx_idx[0]), [0, 1, 2]) assert_array_almost_equal(np.sort(exact_dists[0]), dists[:-1]) assert_array_almost_equal(np.sort(approx_dists[0]), dists[:-1]) # If we perform the same query with a slighltly lower radius, the third # point of the dataset that lay on the boundary of the previous query # is now rejected: eps = np.finfo(np.float64).eps exact_dists, exact_idx = nnbrs.radius_neighbors(query, radius=1 - eps) approx_dists, approx_idx = lsfh.radius_neighbors(query, radius=1 - eps) assert_array_equal(np.sort(exact_idx[0]), [0, 1]) assert_array_equal(np.sort(approx_idx[0]), [0, 1]) assert_array_almost_equal(np.sort(exact_dists[0]), dists[:-2]) assert_array_almost_equal(np.sort(approx_dists[0]), dists[:-2]) def test_distances(): # Checks whether returned neighbors are from closest to farthest. n_samples = 12 n_features = 2 n_iter = 10 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) lshf = LSHForest() lshf.fit(X) for i in range(n_iter): n_neighbors = rng.randint(0, n_samples) query = X[rng.randint(0, n_samples)].reshape(1, -1) distances, neighbors = lshf.kneighbors(query, n_neighbors=n_neighbors, return_distance=True) # Returned neighbors should be from closest to farthest, that is # increasing distance values. assert_true(np.all(np.diff(distances[0]) >= 0)) # Note: the radius_neighbors method does not guarantee the order of # the results. def test_fit(): # Checks whether `fit` method sets all attribute values correctly. n_samples = 12 n_features = 2 n_estimators = 5 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) lshf = LSHForest(n_estimators=n_estimators) lshf.fit(X) # _input_array = X assert_array_equal(X, lshf._fit_X) # A hash function g(p) for each tree assert_equal(n_estimators, len(lshf.hash_functions_)) # Hash length = 32 assert_equal(32, lshf.hash_functions_[0].components_.shape[0]) # Number of trees_ in the forest assert_equal(n_estimators, len(lshf.trees_)) # Each tree has entries for every data point assert_equal(n_samples, len(lshf.trees_[0])) # Original indices after sorting the hashes assert_equal(n_estimators, len(lshf.original_indices_)) # Each set of original indices in a tree has entries for every data point assert_equal(n_samples, len(lshf.original_indices_[0])) def test_partial_fit(): # Checks whether inserting array is consitent with fitted data. # `partial_fit` method should set all attribute values correctly. n_samples = 12 n_samples_partial_fit = 3 n_features = 2 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) X_partial_fit = rng.rand(n_samples_partial_fit, n_features) lshf = LSHForest() # Test unfitted estimator lshf.partial_fit(X) assert_array_equal(X, lshf._fit_X) lshf.fit(X) # Insert wrong dimension assert_raises(ValueError, lshf.partial_fit, np.random.randn(n_samples_partial_fit, n_features - 1)) lshf.partial_fit(X_partial_fit) # size of _input_array = samples + 1 after insertion assert_equal(lshf._fit_X.shape[0], n_samples + n_samples_partial_fit) # size of original_indices_[1] = samples + 1 assert_equal(len(lshf.original_indices_[0]), n_samples + n_samples_partial_fit) # size of trees_[1] = samples + 1 assert_equal(len(lshf.trees_[1]), n_samples + n_samples_partial_fit) def test_hash_functions(): # Checks randomness of hash functions. # Variance and mean of each hash function (projection vector) # should be different from flattened array of hash functions. # If hash functions are not randomly built (seeded with # same value), variances and means of all functions are equal. n_samples = 12 n_features = 2 n_estimators = 5 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) lshf = LSHForest(n_estimators=n_estimators, random_state=rng.randint(0, np.iinfo(np.int32).max)) lshf.fit(X) hash_functions = [] for i in range(n_estimators): hash_functions.append(lshf.hash_functions_[i].components_) for i in range(n_estimators): assert_not_equal(np.var(hash_functions), np.var(lshf.hash_functions_[i].components_)) for i in range(n_estimators): assert_not_equal(np.mean(hash_functions), np.mean(lshf.hash_functions_[i].components_)) def test_candidates(): # Checks whether candidates are sufficient. # This should handle the cases when number of candidates is 0. # User should be warned when number of candidates is less than # requested number of neighbors. X_train = np.array([[5, 5, 2], [21, 5, 5], [1, 1, 1], [8, 9, 1], [6, 10, 2]], dtype=np.float32) X_test = np.array([7, 10, 3], dtype=np.float32).reshape(1, -1) # For zero candidates lshf = LSHForest(min_hash_match=32) lshf.fit(X_train) message = ("Number of candidates is not sufficient to retrieve" " %i neighbors with" " min_hash_match = %i. Candidates are filled up" " uniformly from unselected" " indices." % (3, 32)) assert_warns_message(UserWarning, message, lshf.kneighbors, X_test, n_neighbors=3) distances, neighbors = lshf.kneighbors(X_test, n_neighbors=3) assert_equal(distances.shape[1], 3) # For candidates less than n_neighbors lshf = LSHForest(min_hash_match=31) lshf.fit(X_train) message = ("Number of candidates is not sufficient to retrieve" " %i neighbors with" " min_hash_match = %i. Candidates are filled up" " uniformly from unselected" " indices." % (5, 31)) assert_warns_message(UserWarning, message, lshf.kneighbors, X_test, n_neighbors=5) distances, neighbors = lshf.kneighbors(X_test, n_neighbors=5) assert_equal(distances.shape[1], 5) def test_graphs(): # Smoke tests for graph methods. n_samples_sizes = [5, 10, 20] n_features = 3 rng = np.random.RandomState(42) for n_samples in n_samples_sizes: X = rng.rand(n_samples, n_features) lshf = LSHForest(min_hash_match=0) lshf.fit(X) kneighbors_graph = lshf.kneighbors_graph(X) radius_neighbors_graph = lshf.radius_neighbors_graph(X) assert_equal(kneighbors_graph.shape[0], n_samples) assert_equal(kneighbors_graph.shape[1], n_samples) assert_equal(radius_neighbors_graph.shape[0], n_samples) assert_equal(radius_neighbors_graph.shape[1], n_samples) def test_sparse_input(): # note: Fixed random state in sp.rand is not supported in older scipy. # The test should succeed regardless. X1 = sp.rand(50, 100) X2 = sp.rand(10, 100) forest_sparse = LSHForest(radius=1, random_state=0).fit(X1) forest_dense = LSHForest(radius=1, random_state=0).fit(X1.A) d_sparse, i_sparse = forest_sparse.kneighbors(X2, return_distance=True) d_dense, i_dense = forest_dense.kneighbors(X2.A, return_distance=True) assert_almost_equal(d_sparse, d_dense) assert_almost_equal(i_sparse, i_dense) d_sparse, i_sparse = forest_sparse.radius_neighbors(X2, return_distance=True) d_dense, i_dense = forest_dense.radius_neighbors(X2.A, return_distance=True) assert_equal(d_sparse.shape, d_dense.shape) for a, b in zip(d_sparse, d_dense): assert_almost_equal(a, b) for a, b in zip(i_sparse, i_dense): assert_almost_equal(a, b)
bsd-3-clause
grv87/thesis-code
ML.py
1
8462
#!/usr/bin/env python3 # -*- coding, utf-8 -*- # Оценка параметров смеси гамма-распределений по ММП # Estimation of parameters of mixture of gamma distributions # by ML method # Copyright © 2014 Василий Горохов-Апельсинов # This file is part of code for my bachelor's thesis. # # Code for my bachelor's thesis is free software: you can redistribute # it and/or modify it under the terms of the GNU General Public License # as published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # Code for my bachelor's thesis is distributed in the hope that it will # be useful, but WITHOUT ANY WARRANTY; without even the implied warranty # of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with code for my bachelor's thesis. If not, see # <http://www.gnu.org/licenses/>. # Requirements: Python 3 (works with 3.3), Python-dateutil, NumPy, # SciPy, OpenOpt, MatPlotLib # Data from dateutil.parser import parse tableName = 'MICEX_SBER' startDateTime = parse('2011-06-01T10:30') # endDateTime = parse('2011-06-01T11:30') n = 200 # Size of window k = 2 # Number of components in mixture precision = 3 # Code from common.get_data import getData pos_inf = float('+inf') neg_inf = float('-inf') import numpy as np from math import log as _ln, exp, isfinite, isinf def ln(x): if x == 0: return neg_inf elif isinf(x) and x > 0: return pos_inf else: try: return _ln(x) except: print(x) raise from scipy.stats import gamma # Gamma distribution # Digamma function from scipy.special import psi as _psi def psi(alpha): if alpha == 0: return neg_inf elif isinf(alpha) and alpha > 0: return pos_inf else: return _psi(alpha) from scipy.optimize import minimize #, basinhopping from openopt import GLP, NLP from random import random import matplotlib.pyplot as plt import warnings warnings.filterwarnings('error') x = None f = lambda u, alpha, beta: gamma.pdf(u, alpha, scale = 1 / beta) if u > 0 and alpha != 0 and beta != 0 else 0 k_underline = range(k) k_m_1_underline = range(k - 1) n_underline = range(n) # NLopt # print(len(theta_tilde)) #opt = nlopt.opt(nlopt.GN_ORIG_DIRECT, len(theta_tilde)) #print(opt.get_algorithm_name()) # Make use constraint: sum(p_ast_m) == 1 # These functions get p_i, alpha_i and beta_i from given theta_tilde tuple p = lambda theta_tilde, i: theta_tilde[i] if i <= k - 2 else (1 - sum(theta_tilde[0:k-1])) alpha = lambda theta_tilde, i: theta_tilde[k - 1 + i] beta = lambda theta_tilde, i: theta_tilde[k * 2 - 1 + i] d = True # Negative logarithm of likelihood function def L_T_tilde(theta_tilde): # try: # TODO # return -sum([ln(sum([p(theta_tilde, i) * f(x[j], alpha(theta_tilde, i), beta(theta_tilde, i)) for i in k_underline])) for j in n_underline]) Q = [[f(x[j], alpha(theta_tilde, i), beta(theta_tilde, i)) for j in n_underline] for i in k_underline] R = [[p(theta_tilde, i) * Q[i][j] for j in n_underline] for i in k_underline] S = [sum([R[i][j] for i in k_underline]) for j in n_underline] # global d # if d: # print(Q) # print(R) # print(S) # d = False return -sum([ln(S[j]) for j in n_underline]) # except ValueError: # return pos_inf def L_T_tildewithGrad(theta_tilde, grad): # try: Q = [[f(x[j], alpha(theta_tilde, i), beta(theta_tilde, i)) for j in n_underline] for i in k_underline] R = [[p(theta_tilde, i) * Q[i][j] for j in n_underline] for i in k_underline] S = [sum([R[i][j] for i in k_underline]) for j in n_underline] if grad.size > 0: grad[0:k-1] = [-sum([Q[i][j] / S[j] for j in n_underline]) for i in k_m_1_underline] grad[k-1:k*2-1] = [-sum([R[i][j] / S[j] * (ln(beta(theta_tilde, i)) + ln(x[j]) - psi(alpha(theta_tilde, i))) for j in n_underline]) for i in k_underline] grad[k*2-1:k*3-1] = [sum([R[i][j] / S[j] * alpha(theta_tilde, i) * x[j] / beta(theta_tilde, i) for j in n_underline]) for i in k_underline] return -sum([ln(S[j]) for j in n_underline]) # except: # return pos_inf def grad_L_T_tilde(theta_tilde): try: Q = [[f(x[j], alpha(theta_tilde, i), beta(theta_tilde, i)) for j in n_underline] for i in k_underline] R = [[p(theta_tilde, i) * Q[i][j] for j in n_underline] for i in k_underline] S = [sum([R[i][j] for i in k_underline]) for j in n_underline] return \ [-sum([Q[i][j] / S[j] for j in n_underline]) for i in k_m_1_underline] + \ [-sum([R[i][j] / S[j] * (ln(beta(theta_tilde, i)) + ln(x[j]) - psi(alpha(theta_tilde, i))) for j in n_underline]) for i in k_underline] + \ [sum([R[i][j] / S[j] * alpha(theta_tilde, i) * x[j] / beta(theta_tilde, i) for j in n_underline]) for i in k_underline] except: print(theta_tilde) raise #opt.set_min_objective(L_T_tildewithGrad) # Constraints # constraints = \ # [{ # 'type': 'ineq', # 'fun': lambda theta_tilde, i = i: p(theta_tilde, i) # } for i in k_underline] + \ # [{ # 'type': 'ineq', # 'fun': lambda theta_tilde, i = i: alpha(theta_tilde, i) # } for i in k_underline] + \ # [{ # 'type': 'ineq', # 'fun': lambda theta_tilde, i = i: beta(theta_tilde, i) # } for i in k_underline] #bounds = [(0, 1) for i in range(k - 1)] + [(0, None) for i in range(k)] + [(0, None) for i in range(k)] # For NLopt # for constraint in constraints: # if constraint['type'] == 'eq': # opt.add_equality_constraint(constraint['fun']) # elif constraint['type'] == 'ineq': # opt.add_inequality_constraint(constraint['fun']) # opt.set_lower_bounds([0 for i in range(len(theta_tilde))]) # opt.add_inequality_constraint(lambda theta_tilde, grad: p(theta_tilde, k - 1)) # For OpenOpt #opt_c = [lambda theta_tilde: -p(theta_tilde, k - 1) <= 0] #opt_dc = [lambda theta_tilde: [1 for i in k_m_1_underline] + [0 for i in k_underline] + + [0 for i in k_underline]] opt_A = np.zeros((3 * k, 3 * k - 1)) np.fill_diagonal(opt_A, -1) opt_A[3 * k - 1] = np.ones(3 * k - 1) # print(opt_A) opt_b = [0 for i in range(3 * k - 1)] + [1] # print(opt_b) opt_lb = [0 for i in range(3 * k - 1)] opt_ub = [1 for i in range(3 * k - 1)] # opt.set_ftol_abs(0.001) # opt.set_initial_step(0.1) # def L_T_tildeconstrained(theta_tilde): # for constraint in constraints: # if constraint['fun'](theta_tilde) <= 0: # return pos_inf # return L_T_tilde(theta_tilde) cursor = getData(tableName, startDateTime, n, precision) for row in cursor: moment = row[1] print(moment) x = np.array(row[2]) assert len(x) == n # Make sure we have exactly n values plt.hist(x, bins = 50) # plt.show() # print(x.mean(), x.var()) # Initial values TODO s, loc, t = gamma.fit(x, loc = 0) alpha_est = s beta_est = 1 / t print(alpha_est, loc, beta_est) theta_tilde = np.array( [0.5] + # p_tilde [alpha_est for i in k_underline] + # alpha [beta_est for i in k_underline] # beta ) print(L_T_tilde(theta_tilde)) theta_tilde = np.array( [0.4] + # TODO # p_tilde [alpha_est ** (random() * 2) for i in k_underline] + # alpha [beta_est ** (random() * 2) for i in k_underline] # beta ) print(theta_tilde, L_T_tilde(theta_tilde)) # print('COBYLA') # print(L_T_tilde(theta_tilde)) # res = minimize(L_T_tilde, theta_tilde, method = 'COBYLA', constraints = constraints) # print(res) # assert isfinite(res.fun) # theta_tilde = res.x # print('p', [p(theta_tilde, i) for i in k_underline]) # print('alpha', [alpha(theta_tilde, i) for i in k_underline]) # print('beta', [beta(theta_tilde, i) for i in k_underline]) # # NLopt # theta_tilde = opt.optimize(theta_tilde) # L_T_tilde_ast = opt.last_optimum_value() # print(L_T_tilde_ast) # result = opt.last_optimize_result() # print(result) # OpenOpt opt_p = GLP(L_T_tilde, theta_tilde, df = grad_L_T_tilde, A = opt_A, b = opt_b, lb = opt_lb, ub = opt_ub) res = opt_p.solve('de', maxNonSuccess = 32) # maxNonSuccess = round(exp(len(theta_tilde))) print(res.xf, res.ff) # print('Basin-Hopping') # print(L_T_tildeconstrained(theta_tilde)) # res = basinhopping(L_T_tildeconstrained, theta_tilde) # print(res) # assert isfinite(res.fun) # theta_tilde = res.x # print('p', [p(theta_tilde, i) for i in k_underline]) # print('alpha', [alpha(theta_tilde, i) for i in k_underline]) # print('beta', [beta(theta_tilde, i) for i in k_underline])
gpl-3.0
lokeshpancharia/BuildingMachineLearningSystemsWithPython
ch02/heldout.py
24
1377
# This code is supporting material for the book # Building Machine Learning Systems with Python # by Willi Richert and Luis Pedro Coelho # published by PACKT Publishing # # It is made available under the MIT License # This script demonstrates the difference between the training accuracy and # testing (held-out) accuracy. import numpy as np from sklearn.datasets import load_iris from threshold import fit_model, accuracy data = load_iris() features = data['data'] labels = data['target_names'][data['target']] # We are going to remove the setosa examples as they are too easy: is_setosa = (labels == 'setosa') features = features[~is_setosa] labels = labels[~is_setosa] # Now we classify virginica vs non-virginica is_virginica = (labels == 'virginica') # Split the data in two: testing and training testing = np.tile([True, False], 50) # testing = [True,False,True,False,True,False...] # Training is the negation of testing: i.e., datapoints not used for testing, # will be used for training training = ~testing model = fit_model(features[training], is_virginica[training]) train_accuracy = accuracy(features[training], is_virginica[training], model) test_accuracy = accuracy(features[testing], is_virginica[testing], model) print('''\ Training accuracy was {0:.1%}. Testing accuracy was {1:.1%} (N = {2}). '''.format(train_accuracy, test_accuracy, testing.sum()))
mit
zingale/pyro2
logo/logo.py
1
3223
import numpy as np import matplotlib.pyplot as plt logo_text = """ XXX X X X XX XX X X X X XX X X X X X X X X X XXX XXX X XX X X X X """ class LogoGrid: def __init__(self, mask): logo_lines = mask.split("\n") self.nx = len(logo_lines[1]) self.ny = len(logo_lines) self.xl = np.arange(self.nx) self.xr = np.arange(self.nx) + 1.0 self.x = np.arange(self.nx) + 0.5 self.yl = np.flip(np.arange(self.ny)) self.yr = np.flip(np.arange(self.ny) + 1.0) self.y = np.flip(np.arange(self.ny) + 0.5) self.dx = 1 self.dy = 1 self.xmin = self.xl.min() self.xmax = self.xr.max() self.ymin = self.yl.min() self.ymax = self.yr.max() #print("xmin, xmax", self.xmin, self.xmax) #print("ymin, ymax", self.ymin, self.ymax) self.logo = np.zeros((self.nx, self.ny)) for i in range(1, self.nx): for j in range(1, self.ny-1): if logo_lines[j][i] == "X": self.logo[i,j] = 1.0 def draw_grid(self): # vertical lines for i in range(0, self.nx): plt.plot([self.xl[i], self.xl[i]], [self.ymin-0.5*self.dy, self.ymax+0.5*self.dy], color="C0", lw=3) plt.plot([self.xr[self.nx-1], self.xr[self.nx-1]], [self.ymin-0.5*self.dy, self.ymax+0.5*self.dy], color="C0", lw=3) # horizontal lines for j in range(0, self.ny): plt.plot([self.xmin-0.5*self.dx, self.xmax+0.5*self.dx], [self.yl[j], self.yl[j]], color="C0", lw=3) plt.plot([self.xmin-0.5*self.dx, self.xmax+0.5*self.dx], [self.yr[0], self.yr[0]], color="C0", lw=3) def fill_in_logo(self): for j in range(self.ny): for i in range(self.nx): if self.logo[i,j] == 0.0: continue plt.fill([self.xl[i], self.xl[i], self.xr[i], self.xr[i], self.xl[i]], [self.yl[j], self.yr[j], self.yr[j], self.yl[j], self.yl[j]], color="k", alpha=0.8) def fill_in_background(self): xx = np.linspace(self.xmin, self.xmax, 200, endpoint=True) yy = np.linspace(self.ymin, self.ymax, 200, endpoint=True) x, y = np.meshgrid(xx, yy) # a funky function ff = self._func(x, y) plt.imshow(ff, extent=[self.xmin, self.xmax, self.ymin, self.ymax], alpha=0.25, cmap="plasma") def _func(self, x, y): return (1 + 0.5*(1.0 + np.tanh(y - 0.5*(self.ymin + self.ymax)))) * np.cos(3*np.pi*x/(self.xmax-self.xmin)) lg = LogoGrid(logo_text) lg.draw_grid() lg.fill_in_logo() lg.fill_in_background() #plt.subplots_adjust(0,0,1,1,0,0) ax = plt.gca() ax.set_axis_off() ax.set_aspect("equal", "datalim") ax.xaxis.set_major_locator(plt.NullLocator()) ax.yaxis.set_major_locator(plt.NullLocator()) fig = plt.gcf() fig.set_size_inches(int(lg.nx+1), int(lg.ny+1)) plt.margins(0.0) #plt.tight_layout() plt.savefig("pyro_logo.svg", bbox_inches="tight", pad_inches=0)
bsd-3-clause
saimn/astropy
astropy/visualization/units.py
8
3945
# -*- coding: utf-8 -*- # Licensed under a 3-clause BSD style license - see LICENSE.rst import numpy as np __doctest_skip__ = ['quantity_support'] def quantity_support(format='latex_inline'): """ Enable support for plotting `astropy.units.Quantity` instances in matplotlib. May be (optionally) used with a ``with`` statement. >>> import matplotlib.pyplot as plt >>> from astropy import units as u >>> from astropy import visualization >>> with visualization.quantity_support(): ... plt.figure() ... plt.plot([1, 2, 3] * u.m) [...] ... plt.plot([101, 125, 150] * u.cm) [...] ... plt.draw() Parameters ---------- format : `astropy.units.format.Base` instance or str The name of a format or a formatter object. If not provided, defaults to ``latex_inline``. """ from astropy import units as u # import Angle just so we have a more or less complete list of Quantity # subclasses loaded - matplotlib needs them all separately! # NOTE: in matplotlib >=3.2, subclasses will be recognized automatically, # and once that becomes our minimum version, we can remove this, # adding just u.Quantity itself to the registry. from astropy.coordinates import Angle # noqa from matplotlib import units from matplotlib import ticker # Get all subclass for Quantity, since matplotlib checks on class, # not subclass. def all_issubclass(cls): return {cls}.union( [s for c in cls.__subclasses__() for s in all_issubclass(c)]) def rad_fn(x, pos=None): n = int((x / np.pi) * 2.0 + 0.25) if n == 0: return '0' elif n == 1: return 'π/2' elif n == 2: return 'π' elif n % 2 == 0: return f'{n / 2}π' else: return f'{n}π/2' class MplQuantityConverter(units.ConversionInterface): _all_issubclass_quantity = all_issubclass(u.Quantity) def __init__(self): # Keep track of original converter in case the context manager is # used in a nested way. self._original_converter = {} for cls in self._all_issubclass_quantity: self._original_converter[cls] = units.registry.get(cls) units.registry[cls] = self @staticmethod def axisinfo(unit, axis): if unit == u.radian: return units.AxisInfo( majloc=ticker.MultipleLocator(base=np.pi/2), majfmt=ticker.FuncFormatter(rad_fn), label=unit.to_string(), ) elif unit == u.degree: return units.AxisInfo( majloc=ticker.AutoLocator(), majfmt=ticker.FormatStrFormatter('%i°'), label=unit.to_string(), ) elif unit is not None: return units.AxisInfo(label=unit.to_string(format)) return None @staticmethod def convert(val, unit, axis): if isinstance(val, u.Quantity): return val.to_value(unit) elif isinstance(val, list) and val and isinstance(val[0], u.Quantity): return [v.to_value(unit) for v in val] else: return val @staticmethod def default_units(x, axis): if hasattr(x, 'unit'): return x.unit return None def __enter__(self): return self def __exit__(self, type, value, tb): for cls in self._all_issubclass_quantity: if self._original_converter[cls] is None: del units.registry[cls] else: units.registry[cls] = self._original_converter[cls] return MplQuantityConverter()
bsd-3-clause
Cadasta/cadasta-platform
cadasta/organization/tests/test_importers.py
1
46203
import pytest import pandas as pd from core.tests.utils.cases import FileStorageTestCase, UserTestCase from core.messages import SANITIZE_ERROR from django.contrib.contenttypes.models import ContentType from django.contrib.gis.geos import LineString, Point, Polygon from django.core.exceptions import ValidationError from django.test import TestCase from jsonattrs.models import Attribute, AttributeType, Schema from party.models import Party, TenureRelationship from party.choices import TENURE_RELATIONSHIP_TYPES from questionnaires.models import Questionnaire from questionnaires.tests import factories as q_factories from resources.tests.utils import clear_temp # noqa from spatial.models import SpatialUnit from spatial.choices import TYPE_CHOICES from ..importers import csv, exceptions, validators, xls from ..importers.base import Importer from ..tests.factories import ProjectFactory class BaseImporterTest(UserTestCase, TestCase): def test_init(self): project = ProjectFactory.build() importer = Importer(project) assert importer.project == project def test_get_schema_attrs(self): project = ProjectFactory.create() importer = Importer(project) assert len(importer.get_schema_attrs().keys()) == 5 assert importer.get_schema_attrs()['spatial.spatialunit'] == {} def test_import_data_not_implemented(self): project = ProjectFactory.create() importer = Importer(project) with pytest.raises(NotImplementedError): importer.import_data(config=None) def test_get_headers_not_implemented(self): project = ProjectFactory.create() importer = Importer(project) with pytest.raises(NotImplementedError): importer.get_headers() def test_cast_to_type(self): project = ProjectFactory.create() importer = Importer(project) val = importer._cast_to_type('1.0', 'integer') assert type(val) is int assert val == 1 val = importer._cast_to_type('not an integer', 'integer') assert type(val) is int assert val == 0 val = importer._cast_to_type('1', 'decimal') assert type(val) is float assert val == 1.0 val = importer._cast_to_type('not a decimal', 'decimal') assert type(val) is float assert val == 0.0 def test_map_attrs_to_content_types_with_emoji(self): project = ProjectFactory.create(current_questionnaire='123abc') content_type = ContentType.objects.get( app_label='party', model='party' ) schema = Schema.objects.create( content_type=content_type, selectors=( project.organization.id, project.id, '123abc', )) attr_type = AttributeType.objects.get(name='text') party_hobby_attr = Attribute.objects.create( schema=schema, name='party_hobby', long_name='Party Hobby', attr_type=attr_type, index=0, required=False, omit=False ) headers = ['party_type', 'tenure_type', 'party_name', 'party_hobby'] row = ['IN', 'FH', 'John', 'I 💙 🍻'] contenttypes = { 'party.party': { 'type': 'IN', 'attributes': {}, 'name': 'John', 'project': project} } attributes = ['party::party_hobby'] attr_map = { 'party.party': { 'DEFAULT': { 'party_hobby': (party_hobby_attr, 'party.party', 'Party') } } } importer = Importer(project=project) with pytest.raises(ValidationError) as e: importer._map_attrs_to_content_types( headers, row, contenttypes, attributes, attr_map) assert e.value.message == SANITIZE_ERROR class ImportValidatorTest(TestCase): def test_validate_invalid_column(self): config = { 'party_name_field': 'party_name', 'geometry_field': 'location_geometry', 'type': 'csv' } headers = ['party_type', 'tenure_type', 'some_field', 'invalid_column'] row = ['IN', 'FH', 'location_geometry'] with pytest.raises(ValidationError) as e: validators.validate_row( headers, row, config) assert e.value.message == "Number of headers and columns do not match." def test_validate_party_name_field(self): config = { 'party_name_field': 'party_name', 'party_type_field': 'party_type', 'geometry_field': 'location_geometry', 'type': 'csv' } headers = ['party_type', 'tenure_type', 'some_field'] row = ['IN', 'FH', 'location_geometry'] with pytest.raises(ValidationError) as e: validators.validate_row( headers, row, config) assert e.value.message == "No 'party_name' column found." def test_validate_party_name_field_with_emoji(self): config = { 'party_name_field': 'party_name', 'party_type_field': 'party_type', 'type': 'csv' } headers = ['party_type', 'tenure_type', 'party_name'] row = ['IN', 'FH', 'I 💙 🍻'] with pytest.raises(ValidationError) as e: validators.validate_row( headers, row, config) assert e.value.message == SANITIZE_ERROR def test_validate_party_type_field(self): config = { 'party_name_field': 'party_name', 'party_type_field': 'party_type', 'geometry_field': 'location_geometry', 'type': 'csv' } headers = ['party_name', 'tenure_type', 'some_field'] row = ['Test Party', 'FH', 'location_geometry'] with pytest.raises(ValidationError) as e: validators.validate_row( headers, row, config) assert e.value.message == "No 'party_type' column found." def test_validate_tenure_type(self): config = { 'party_name_field': 'party_name', 'party_type_field': 'party_type', 'geometry_field': 'location_geometry', 'type': 'csv' } geometry = 'SRID=4326;POINT (30 10)' headers = [ 'party_name', 'party_type', 'location_geometry'] row = ['Party Name', 'IN', geometry] with pytest.raises(ValidationError) as e: validators.validate_row( headers, row, config) assert e.value.message == "No 'tenure_type' column found." def test_validate_geometry_field(self): config = { 'party_name_field': 'party_name', 'party_type_field': 'party_type', 'geometry_field': 'location_geometry', 'type': 'csv' } geometry = 'SRID=4326;POINT (30 10)' headers = [ 'party_name', 'party_type', 'location_geometry_bad'] row = ['Party Name', 'IN', geometry] with pytest.raises(ValidationError) as e: validators.validate_row( headers, row, config) assert e.value.message == "No 'geometry_field' column found." def test_validate_location_type_field(self): config = { 'party_name_field': 'party_name', 'party_type_field': 'party_type', 'geometry_field': 'location_geometry', 'type': 'xls', 'location_type_field': 'location_type' } geometry = 'SRID=4326;POINT (30 10)' headers = [ 'party::party_name', 'party::party_type', 'spatialunit::location_geometry', 'spatialunit::bad_location_type_field'] row = ['Party Name', 'IN', geometry, 'PA'] with pytest.raises(ValidationError) as e: validators.validate_row( headers, row, config ) assert e.value.message == "No 'location_type' column found." def test_validate_geometry(self): config = { 'party_name_field': 'party_name', 'party_type_field': 'party_type', 'geometry_field': 'location_geometry', 'type': 'csv' } geometry = 'SRID=4326;POINT (30 10, Z)' headers = [ 'party_name', 'party_type', 'location_geometry'] row = ['Party Name', 'IN', geometry] with pytest.raises(ValidationError) as e: validators.validate_row( headers, row, config) assert e.value.message == "Invalid geometry." def test_validate_empty_geometry(self): config = { 'party_type_field': 'party_type', 'geometry_field': 'location_geometry', 'type': 'csv' } geometry = 'POLYGON EMPTY' headers = ['party_type', 'location_geometry'] row = ['IN', geometry] _, _, geo, _, _ = validators.validate_row(headers, row, config) assert geo.empty is True def test_validate_location_type_choice(self): config = { 'party_name_field': 'party_name', 'party_type_field': 'party_type', 'geometry_field': 'location_geometry', 'type': 'csv', 'location_type_field': 'location_type', 'allowed_location_types': [choice[0] for choice in TYPE_CHOICES] } geometry = 'SRID=4326;POINT (30 10)' headers = [ 'party_name', 'party_type', 'location_geometry', 'location_type'] row = ['Party Name', 'IN', geometry, 'WRONG'] with pytest.raises(ValidationError) as e: validators.validate_row( headers, row, config ) assert e.value.message == "Invalid location_type: 'WRONG'." def test_validate_tenure_type_choice(self): config = { 'party_name_field': 'party_name', 'party_type_field': 'party_type', 'geometry_field': 'location_geometry', 'type': 'csv', 'location_type_field': 'location_type', 'project': ProjectFactory.create(), 'allowed_tenure_types': [t[0] for t in TENURE_RELATIONSHIP_TYPES], 'allowed_location_types': [choice[0] for choice in TYPE_CHOICES] } geometry = 'SRID=4326;POINT (30 10)' headers = [ 'party_name', 'party_type', 'location_geometry', 'location_type', 'tenure_type'] row = ['Party Name', 'IN', geometry, 'PA', 'WRONG'] with pytest.raises(ValidationError) as e: validators.validate_row( headers, row, config ) assert e.value.message == "Invalid tenure_type: 'WRONG'." @pytest.mark.usefixtures('clear_temp') class CSVImportTest(UserTestCase, FileStorageTestCase, TestCase): def setUp(self): super().setUp() self.valid_csv = '/organization/tests/files/test.csv' self.geoshape_csv = '/organization/tests/files/test_geoshape.csv' self.geotrace_csv = '/organization/tests/files/test_geotrace.csv' self.test_wkt = '/organization/tests/files/test_wkt.csv' self.test_wkb = '/organization/tests/files/test_wkb.csv' self.project = ProjectFactory.create(name='Test CSV Import') xlscontent = self.get_file( '/organization/tests/files/uttaran_test.xlsx', 'rb') form = self.storage.save('xls-forms/uttaran_test.xlsx', xlscontent.read()) xlscontent.close() Questionnaire.objects.create_from_form( xls_form=form, project=self.project ) # test for expected schema and attribute creation assert 3 == Schema.objects.all().count() assert 42 == Attribute.objects.all().count() self.party_attributes = [ 'party::educational_qualification', 'party::name_mouza', 'party::j_l', 'party::name_father_hus', 'party::village_name', 'party::mobile_no', 'party::occupation_hh', 'party::class_hh' ] self.party_gr_attributes = [ 'party::test_group_attr' ] self.location_attributes = [ 'spatialunit::deed_of_land', 'spatialunit::amount_othersland', 'spatialunit::land_calculation', 'spatialunit::how_aquire_landwh', 'spatialunit::female_member', 'spaitalunit::mutation_of_land', 'spatialunit::amount_agriland', 'spatialunit::nid_number', 'spatialunit::how_aquire_landt', 'spatialunit::boundary_conflict', 'spatialunit::dakhal_on_land', 'spatialunit::how_aquire_landp', 'spatialunit::how_aquire_landd', 'spatialunit::ownership_conflict', 'spatialunit::others_conflict', 'spatialunit::how_aquire_landm', 'spatialunit::khatain_of_land', 'spatialunit::male_member', 'spatialunit::how_aquire_landw', 'spatialunit::everything', 'spatialunit::location_problems' ] self.tenure_attributes = [ 'tenurerelationship::tenure_name', 'tenurerelationship::tenure_notes' ] self.attributes = ( self.party_attributes + self.location_attributes + self.tenure_attributes ) def test_get_schema_attrs(self): importer = csv.CSVImporter( project=self.project, path=self.path + self.valid_csv) attrs = importer.get_schema_attrs() su_attrs = attrs['spatial.spatialunit']['DEFAULT'] pty_attrs_in = attrs['party.party']['IN'] pty_attrs_gr = attrs['party.party']['GR'] pty_attrs_co = attrs['party.party']['CO'] tenure_attrs = attrs['party.tenurerelationship']['DEFAULT'] assert len(su_attrs) == 29 assert len(pty_attrs_in) == 11 assert len(pty_attrs_gr) == 11 assert len(pty_attrs_co) == 11 assert len(tenure_attrs) == 2 def test_get_attribute_map(self): importer = csv.CSVImporter( project=self.project, path=self.path + self.valid_csv) entity_types = ['PT', 'SU'] attr_map, extra_attrs, extra_headers = importer.get_attribute_map( 'csv', entity_types ) assert len(attr_map.keys()) == 3 assert len(extra_attrs) == 11 assert len(extra_headers) == 10 # assert correct length of conditional selectors assert len(attr_map['party.party']) == 3 assert len(attr_map['party.party']['CO']) == 8 assert len(attr_map['party.party']['GR']) == 8 assert len(attr_map['party.party']['IN']) == 8 # assert correct length of default selectors assert len(attr_map['spatial.spatialunit']) == 1 assert len(attr_map['spatial.spatialunit']['DEFAULT']) == 21 assert len(attr_map['party.tenurerelationship']['DEFAULT']) == 2 # assert correctness of attribute map contents (attr, content_type, label) = attr_map['party.party'][ 'CO']['name_mouza'] assert isinstance(attr, Attribute) assert attr.name == 'name_mouza' assert content_type == 'party.party' assert label == 'Party' def test_get_attribute_map_parties_only(self): importer = csv.CSVImporter( project=self.project, path=self.path + self.valid_csv) entity_types = ['PT'] attr_map, extra_attrs, extra_headers = importer.get_attribute_map( 'csv', entity_types ) assert len(attr_map.keys()) == 1 assert len(extra_attrs) == 3 assert len(extra_headers) == 10 # assert correct length of conditional selectors assert len(attr_map['party.party']) == 3 assert len(attr_map['party.party']['CO']) == 8 assert len(attr_map['party.party']['GR']) == 8 assert len(attr_map['party.party']['IN']) == 8 # assert correctness of attribute map contents (attr, content_type, label) = attr_map['party.party'][ 'CO']['name_mouza'] assert isinstance(attr, Attribute) assert attr.name == 'name_mouza' assert content_type == 'party.party' assert label == 'Party' def test_get_flattened_attribute_map(self): importer = csv.CSVImporter( project=self.project, path=self.path + self.valid_csv) entity_types = ['PT', 'SU'] attr_map, extra_attrs, extra_headers = importer.get_attribute_map( 'csv', entity_types, flatten=True ) party_attrs = attr_map['party'] su_attrs = attr_map['spatialunit'] tenure_attrs = attr_map['tenurerelationship'] assert len(party_attrs) == 8 assert len(su_attrs) == 21 assert len(tenure_attrs) == 2 def test_import_data(self): importer = csv.CSVImporter( project=self.project, path=self.path + self.valid_csv) config = { 'file': self.path + self.valid_csv, 'entity_types': ['PT', 'SU'], 'party_name_field': 'name_of_hh', 'party_type_field': 'party_type', 'location_type_field': 'location_type', 'geometry_field': 'location_geometry', 'attributes': self.attributes, 'project': self.project, 'allowed_tenure_types': [t[0] for t in TENURE_RELATIONSHIP_TYPES], 'allowed_location_types': [choice[0] for choice in TYPE_CHOICES] } importer.import_data(config) assert Party.objects.all().count() == 10 assert SpatialUnit.objects.all().count() == 10 assert TenureRelationship.objects.all().count() == 10 for su in SpatialUnit.objects.filter(project_id=self.project.pk).all(): if su.geometry is not None: assert type(su.geometry) is Point # test spatial unit attribute creation sus = SpatialUnit.objects.filter( attributes__contains={'nid_number': '3913647224045'}) assert len(sus) == 1 su = sus[0] assert su.type == 'PA' assert len(su.attributes) == 20 assert 'how_aquire_landwh' not in su.attributes.keys() assert 'how_aquire_landw' in su.attributes.keys() assert su.attributes[ 'others_conflict'] == ('কিছু বেখলে অাছে জোর করে দখল করে ভোগ করে ' 'অন্য জমির মালক।') assert su.attributes['female_member'] == 4 assert su.attributes['location_problems'] == [ 'conflict', 'risk_of_eviction' ] # test party attribute creation parties = Party.objects.filter( attributes__contains={'Mobile_No': '০১৭৭২৫৬০১৯১'}) assert len(parties) == 1 assert parties[0].type == 'IN' pty_attrs = parties[0].attributes assert len(pty_attrs) == 8 assert pty_attrs['name_father_hus'] == 'মৃত কুব্বাত মন্ডল' # test tenure relationship attribute creation tenure_relationships = TenureRelationship.objects.filter( party=parties[0]) tr_attrs = {'tenure_name': 'Customary', 'tenure_notes': 'a few notes'} assert len(tenure_relationships) == 1 assert len(tenure_relationships[0].attributes) == 2 assert tenure_relationships[0].attributes == tr_attrs def test_import_parties_only(self): importer = csv.CSVImporter( project=self.project, path=self.path + self.valid_csv) config = { 'file': self.path + self.valid_csv, 'entity_types': ['PT'], 'party_name_field': 'name_of_hh', 'party_type_field': 'party_type', 'attributes': self.party_attributes, 'project': self.project } importer.import_data(config) assert Party.objects.all().count() == 10 assert SpatialUnit.objects.all().count() == 0 assert TenureRelationship.objects.all().count() == 0 # test party attribute creation parties = Party.objects.filter( attributes__contains={'Mobile_No': '০১৭৭২৫৬০১৯১'}) assert len(parties) == 1 pty_attrs = parties[0].attributes assert len(pty_attrs) == 8 assert pty_attrs['name_father_hus'] == 'মৃত কুব্বাত মন্ডল' def test_import_locations_only(self): importer = csv.CSVImporter( project=self.project, path=self.path + self.valid_csv) config = { 'file': self.path + self.valid_csv, 'entity_types': ['SU'], 'location_type_field': 'location_type', 'geometry_field': 'location_geometry', 'attributes': self.location_attributes, 'project': self.project, 'allowed_location_types': [choice[0] for choice in TYPE_CHOICES] } importer.import_data(config) assert Party.objects.all().count() == 0 assert SpatialUnit.objects.all().count() == 10 assert TenureRelationship.objects.all().count() == 0 for su in SpatialUnit.objects.filter(project_id=self.project.pk).all(): if su.geometry is not None: assert type(su.geometry) is Point # test spatial unit attribute creation sus = SpatialUnit.objects.filter( attributes__contains={'nid_number': '3913647224045'}) assert len(sus) == 1 su = sus[0] assert su.type == 'PA' assert len(su.attributes) == 20 assert 'how_aquire_landwh' not in su.attributes.keys() assert 'how_aquire_landw' in su.attributes.keys() assert su.attributes[ 'others_conflict'] == ('কিছু বেখলে অাছে জোর করে দখল করে ভোগ করে ' 'অন্য জমির মালক।') assert su.attributes['female_member'] == 4 assert su.attributes['location_problems'] == [ 'conflict', 'risk_of_eviction' ] def test_import_with_geoshape(self): importer = csv.CSVImporter( project=self.project, path=self.path + self.geoshape_csv) config = { 'file': self.path + self.geoshape_csv, 'entity_types': ['SU', 'PT'], 'party_name_field': 'name_of_hh', 'party_type_field': 'party_type', 'location_type_field': 'location_type', 'geometry_field': 'location_geoshape', 'attributes': self.attributes, 'project': self.project, 'allowed_tenure_types': [t[0] for t in TENURE_RELATIONSHIP_TYPES], 'allowed_location_types': [choice[0] for choice in TYPE_CHOICES] } importer.import_data(config) assert Party.objects.all().count() == 10 assert SpatialUnit.objects.all().count() == 10 assert TenureRelationship.objects.all().count() == 10 for su in SpatialUnit.objects.filter(project_id=self.project.pk).all(): if su.geometry is not None: assert type(su.geometry) is Polygon def test_import_with_geotrace(self): importer = csv.CSVImporter( project=self.project, path=self.path + self.geotrace_csv) config = { 'file': self.path + self.geotrace_csv, 'entity_types': ['SU', 'PT'], 'party_name_field': 'name_of_hh', 'party_type_field': 'party_type', 'location_type_field': 'location_type', 'geometry_field': 'location_geotrace', 'attributes': self.attributes, 'project': self.project, 'allowed_tenure_types': [t[0] for t in TENURE_RELATIONSHIP_TYPES], 'allowed_location_types': [choice[0] for choice in TYPE_CHOICES] } importer.import_data(config) assert Party.objects.all().count() == 10 assert SpatialUnit.objects.all().count() == 10 assert TenureRelationship.objects.all().count() == 10 for su in SpatialUnit.objects.filter(project_id=self.project.pk).all(): if su.geometry is not None: assert type(su.geometry) is LineString def _run_import_test(self, filename): importer = csv.CSVImporter( project=self.project, path=self.path + filename) config = { 'file': self.path + filename, 'entity_types': ['SU', 'PT'], 'party_name_field': 'name_of_hh', 'party_type_field': 'party_type', 'location_type_field': 'location_type', 'geometry_field': 'location_geometry', 'attributes': self.attributes, 'project': self.project, 'allowed_tenure_types': [t[0] for t in TENURE_RELATIONSHIP_TYPES], 'allowed_location_types': [choice[0] for choice in TYPE_CHOICES] } importer.import_data(config) assert Party.objects.all().count() == 10 assert SpatialUnit.objects.all().count() == 10 assert TenureRelationship.objects.all().count() == 10 su1 = SpatialUnit.objects.filter( attributes__contains={'nid_number': '3913647224045'}).first() su2 = SpatialUnit.objects.filter( attributes__contains={'nid_number': '3913647224033'}).first() su3 = SpatialUnit.objects.filter( attributes__contains={'nid_number': '3913647225965'}).first() su4 = SpatialUnit.objects.filter( attributes__contains={'nid_number': '3913647224043'}).first() su5 = SpatialUnit.objects.filter( attributes__contains={'nid_number': '3913647224044'}).first() su6 = SpatialUnit.objects.filter( attributes__contains={'nid_number': '3913647224185'}).first() assert su1.geometry.geom_type == 'Point' assert su2.geometry.geom_type == 'LineString' assert su3.geometry.geom_type == 'Polygon' assert su4.geometry.geom_type == 'MultiPoint' assert su5.geometry.geom_type == 'MultiLineString' assert su6.geometry.geom_type == 'MultiPolygon' def test_import_with_wkt(self): self._run_import_test(self.test_wkt) def test_import_with_wkb(self): self._run_import_test(self.test_wkb) class XLSImportTest(UserTestCase, FileStorageTestCase, TestCase): def setUp(self): super().setUp() self.valid_xls = '/organization/tests/files/test_download.xlsx' self.one_to_many_xls = ( '/organization/tests/files/test_one_to_many.xlsx') self.project = ProjectFactory.create(name='Test CSV Import') xlscontent = self.get_file( '/organization/tests/files/uttaran_test.xlsx', 'rb') form = self.storage.save('xls-forms/uttaran_test.xlsx', xlscontent.read()) xlscontent.close() Questionnaire.objects.create_from_form( xls_form=form, project=self.project ) # test for expected schema and attribute creation assert 3 == Schema.objects.all().count() assert 42 == Attribute.objects.all().count() self.party_attributes = [ 'party::educational_qualification', 'party::name_mouza', 'party::j_l', 'party::name_father_hus', 'party::village_name', 'party::mobile_no', 'party::occupation_hh', 'party::class_hh' ] self.location_attributes = [ 'spatialunit::deed_of_land', 'spatialunit::amount_othersland', 'spatialunit::land_calculation', 'spatialunit::how_aquire_landwh', 'spatialunit::female_member', 'spaitalunit::mutation_of_land', 'spatialunit::amount_agriland', 'spatialunit::nid_number', 'spatialunit::how_aquire_landt', 'spatialunit::boundary_conflict', 'spatialunit::dakhal_on_land', 'spatialunit::how_aquire_landp', 'spatialunit::how_aquire_landd', 'spatialunit::ownership_conflict', 'spatialunit::others_conflict', 'spatialunit::how_aquire_landm', 'spatialunit::khatain_of_land', 'spatialunit::male_member', 'spatialunit::how_aquire_landw', 'spatialunit::everything', 'spatialunit::location_problems', 'spatialunit::multiple_landowners' ] self.tenure_attributes = [ 'tenurerelationship::tenure_name', 'tenurerelationship::tenure_notes' ] self.attributes = ( self.party_attributes + self.location_attributes + self.tenure_attributes ) def test_import_data(self): importer = xls.XLSImporter( project=self.project, path=self.path + self.valid_xls) config = { 'file': self.path + self.valid_xls, 'type': 'xls', 'entity_types': ['SU', 'PT'], 'party_name_field': 'name', 'party_type_field': 'type', 'location_type_field': 'type', 'geometry_field': 'geometry.ewkt', 'attributes': self.attributes, 'project': self.project, 'allowed_tenure_types': [t[0] for t in TENURE_RELATIONSHIP_TYPES], 'allowed_location_types': [choice[0] for choice in TYPE_CHOICES] } importer.import_data(config) assert Party.objects.all().count() == 10 assert SpatialUnit.objects.all().count() == 10 assert TenureRelationship.objects.all().count() == 10 for su in SpatialUnit.objects.filter(project_id=self.project.pk).all(): if su.geometry is not None: assert type(su.geometry) is Point # test spatial unit attribute creation sus = SpatialUnit.objects.filter( attributes__contains={'nid_number': '3913647224045'}) assert len(sus) == 1 su = sus[0] assert su.type == 'PA' assert len(su.attributes) == 20 assert 'how_aquire_landwh' not in su.attributes.keys() assert 'how_aquire_landw' in su.attributes.keys() assert su.attributes[ 'others_conflict'] == ('কিছু বেখলে অাছে জোর করে দখল করে ভোগ করে ' 'অন্য জমির মালক।') assert su.attributes['female_member'] == 4 assert su.attributes['location_problems'] == [ 'conflict', 'risk_of_eviction' ] # test party attribute creation parties = Party.objects.filter( attributes__contains={'Mobile_No': '০১৭৭২৫৬০১৯১'}) assert len(parties) == 1 assert parties[0].type == 'IN' pty_attrs = parties[0].attributes assert len(pty_attrs) == 8 assert pty_attrs['name_father_hus'] == 'মৃত কুব্বাত মন্ডল' # test tenure relationship attribute creation tenure_relationships = TenureRelationship.objects.filter( party=parties[0]) tr_attrs = {'tenure_name': 'Customary', 'tenure_notes': 'a few notes'} assert len(tenure_relationships) == 1 assert len(tenure_relationships[0].attributes) == 2 assert tenure_relationships[0].attributes == tr_attrs def test_import_locations_only(self): importer = xls.XLSImporter( project=self.project, path=self.path + self.valid_xls) config = { 'file': self.path + self.valid_xls, 'type': 'xls', 'entity_types': ['SU'], 'location_type_field': 'type', 'geometry_field': 'geometry.ewkt', 'attributes': self.location_attributes, 'project': self.project, 'allowed_location_types': [choice[0] for choice in TYPE_CHOICES] } importer.import_data(config) assert Party.objects.all().count() == 0 assert SpatialUnit.objects.all().count() == 10 assert TenureRelationship.objects.all().count() == 0 for su in SpatialUnit.objects.filter(project_id=self.project.pk).all(): if su.geometry is not None: assert type(su.geometry) is Point # test spatial unit attribute creation sus = SpatialUnit.objects.filter( attributes__contains={'nid_number': '3913647224045'}) assert len(sus) == 1 su = sus[0] assert len(su.attributes) == 20 assert 'how_aquire_landwh' not in su.attributes.keys() assert 'how_aquire_landw' in su.attributes.keys() assert su.attributes[ 'others_conflict'] == ('কিছু বেখলে অাছে জোর করে দখল করে ভোগ করে ' 'অন্য জমির মালক।') assert su.attributes['female_member'] == 4 assert su.attributes['location_problems'] == [ 'conflict', 'risk_of_eviction' ] def test_import_parties_only(self): importer = xls.XLSImporter( project=self.project, path=self.path + self.valid_xls) config = { 'file': self.path + self.valid_xls, 'type': 'xls', 'entity_types': ['PT'], 'party_name_field': 'name', 'party_type_field': 'type', 'attributes': self.party_attributes, 'project': self.project } importer.import_data(config) assert Party.objects.all().count() == 10 assert SpatialUnit.objects.all().count() == 0 assert TenureRelationship.objects.all().count() == 0 # test party attribute creation parties = Party.objects.filter( attributes__contains={'Mobile_No': '০১৭৭২৫৬০১৯১'}) assert len(parties) == 1 assert parties[0].type == 'IN' pty_attrs = parties[0].attributes assert len(pty_attrs) == 8 assert pty_attrs['name_father_hus'] == 'মৃত কুব্বাত মন্ডল' def test_one_to_many_relationships(self): importer = xls.XLSImporter( project=self.project, path=self.path + self.one_to_many_xls) config = { 'file': self.path + self.one_to_many_xls, 'type': 'xls', 'entity_types': ['SU', 'PT'], 'party_name_field': 'name', 'party_type_field': 'type', 'location_type_field': 'type', 'geometry_field': 'geometry.ewkt', 'attributes': self.attributes, 'project': self.project, 'allowed_tenure_types': [t[0] for t in TENURE_RELATIONSHIP_TYPES], 'allowed_location_types': [choice[0] for choice in TYPE_CHOICES] } importer.import_data(config) assert Party.objects.all().count() == 10 assert SpatialUnit.objects.all().count() == 9 assert TenureRelationship.objects.all().count() == 6 # test one-to-many location-party sus = SpatialUnit.objects.filter( attributes__contains={'multiple_landowners': 'yes'}) assert sus.count() == 1 su = sus[0] assert len(su.tenure_relationships.all()) == 2 # test one-to-many party-location parties = Party.objects.filter(name='অাব্দুল জলিল মন্ডল') assert parties.count() == 1 party = parties[0] assert party.tenure_relationships.all().count() == 3 def test_missing_relationship_tab(self): df = pd.read_excel(self.path + self.valid_xls, sheetname=None) del df['relationships'] entity_types = ['SU', 'PT'] with pytest.raises(exceptions.DataImportError) as e: xls.get_csv_from_dataframe(df, entity_types) assert e is not None assert str(e.value) == ( "Error importing file: Missing 'relationships' worksheet." ) def test_empty_party_data(self): df = pd.read_excel(self.path + self.valid_xls, sheetname=None) empty_parties = pd.DataFrame() df['parties'] = empty_parties entity_types = ['SU', 'PT'] with pytest.raises(exceptions.DataImportError) as e: xls.get_csv_from_dataframe(df, entity_types) assert e is not None assert str(e.value) == ( 'Error importing file: Empty worksheet.' ) def test_invalid_entity_type(self): df = pd.read_excel(self.path + self.valid_xls, sheetname=None) entity_types = ['INVALID'] with pytest.raises(exceptions.DataImportError) as e: xls.get_csv_from_dataframe(df, entity_types) assert e is not None assert str(e.value) == ( 'Error importing file: Unsupported import format.' ) class ImportConditionalAttributesTest(UserTestCase, FileStorageTestCase, TestCase): def setUp(self): super().setUp() self.conditionals_csv = ( '/organization/tests/files/test_conditionals.csv') self.conditionals_xls = ( '/organization/tests/files/test_conditionals.xlsx') self.project = ProjectFactory.create(current_questionnaire='123abc') q_factories.QuestionnaireFactory.create(id='123abc', project=self.project) question = q_factories.QuestionFactory.create( questionnaire_id='123abc', type='S1', name='tenure_type', label={'en': 'Type', 'de': 'Typ'}) q_factories.QuestionOptionFactory.create(question=question, name='CU') q_factories.QuestionOptionFactory.create(question=question, name='WR') q_factories.QuestionOptionFactory.create(question=question, name='LH') q_factories.QuestionOptionFactory.create(question=question, name='FH') self.spatial_content_type = ContentType.objects.get( app_label='spatial', model='spatialunit' ) sp_schema = Schema.objects.create( content_type=self.spatial_content_type, selectors=( self.project.organization.id, self.project.id, '123abc', )) attr_type = AttributeType.objects.get(name='text') Attribute.objects.create( schema=sp_schema, name='su_attr', long_name='Test field', attr_type=attr_type, index=0, required=False, omit=False ) self.party_content_type = ContentType.objects.get( app_label='party', model='party' ) pt_schema = Schema.objects.create( content_type=self.party_content_type, selectors=( self.project.organization.id, self.project.id, '123abc', )) pt_schema_in = Schema.objects.create( content_type=self.party_content_type, selectors=( self.project.organization.id, self.project.id, '123abc', 'IN')) pt_schema_gr = Schema.objects.create( content_type=self.party_content_type, selectors=( self.project.organization.id, self.project.id, '123abc', 'GR')) attr_type_txt = AttributeType.objects.get(name='text') attr_type_int = AttributeType.objects.get(name='integer') attr_type_dec = AttributeType.objects.get(name='decimal') Attribute.objects.create( schema=pt_schema, name='default_attr', long_name='Test field', attr_type=attr_type_txt, index=0, required=False, omit=False ) Attribute.objects.create( schema=pt_schema, name='default_int_attr', long_name='Test integer field', attr_type=attr_type_int, index=1, required=False, omit=False ) Attribute.objects.create( schema=pt_schema_in, name='party_in', long_name='Test IN field', attr_type=attr_type_txt, index=0, required=False, omit=False ) Attribute.objects.create( schema=pt_schema_gr, name='party_gr', long_name='Test GR field', attr_type=attr_type_txt, index=0, required=False, omit=False ) Attribute.objects.create( schema=pt_schema_gr, name='party_gr_dec', long_name='Test GR dec field', attr_type=attr_type_dec, index=1, required=False, omit=False ) self.party_default_attributes = [ 'party::default_attr', 'party::default_int_attr' ] self.party_in_attributes = [ 'party::party_in' ] self.party_gr_attributes = [ 'party::party_gr', 'party::party_gr_dec' ] self.party_attributes = ( self.party_default_attributes + self.party_in_attributes + self.party_gr_attributes ) self.location_attributes = ['spatialunit::su_attr'] self.attributes = ( self.location_attributes + self.party_attributes ) def test_get_flattened_attribute_map(self): importer = csv.CSVImporter( project=self.project, path=self.path + self.conditionals_csv) entity_types = ['PT', 'SU'] attr_map, extra_attrs, extra_headers = importer.get_attribute_map( 'csv', entity_types, flatten=True ) party_attrs = attr_map['party'] assert len(party_attrs) == 5 def test_import_csv(self): importer = csv.CSVImporter( project=self.project, path=self.path + self.conditionals_csv) config = { 'file': self.path + self.conditionals_csv, 'entity_types': ['PT', 'SU'], 'party_name_field': 'party_name', 'party_type_field': 'party_type', 'location_type_field': 'location_type', 'geometry_field': 'location_geometry', 'attributes': self.attributes, 'project': self.project, 'allowed_tenure_types': [t[0] for t in TENURE_RELATIONSHIP_TYPES], 'allowed_location_types': [choice[0] for choice in TYPE_CHOICES] } importer.import_data(config) assert Party.objects.all().count() == 2 assert SpatialUnit.objects.all().count() == 2 assert TenureRelationship.objects.all().count() == 2 for su in SpatialUnit.objects.filter(project_id=self.project.pk).all(): if su.geometry is not None: assert type(su.geometry) is Point # test spatial unit attribute creation sus = SpatialUnit.objects.filter( attributes__contains={'su_attr': 'some value'}) assert len(sus) == 1 su = sus[0] assert su.type == 'PA' assert len(su.attributes) == 1 # test party attribute creation party_in = Party.objects.filter(type='IN').first() assert party_in.name == 'Test Party' pty_attrs = party_in.attributes assert len(pty_attrs) == 3 assert pty_attrs['default_attr'] == 'test default attr in' assert pty_attrs['default_int_attr'] == 10 assert pty_attrs['party_in'] == 'some individual value' party_gr = Party.objects.filter(type='GR').first() assert party_gr.name == 'Another Test Party' pty_attrs = party_gr.attributes assert len(pty_attrs) == 4 assert pty_attrs['default_attr'] == 'test default attr gr' assert pty_attrs['default_int_attr'] == 20 assert pty_attrs['party_gr'] == 'some group value' assert pty_attrs['party_gr_dec'] == 2.00 # test tenure relationship creation tenure_relationships = TenureRelationship.objects.all() assert len(tenure_relationships) == 2 def test_import_xlsx(self): importer = xls.XLSImporter( project=self.project, path=self.path + self.conditionals_xls) config = { 'file': self.path + self.conditionals_xls, 'type': 'xls', 'entity_types': ['SU', 'PT'], 'party_name_field': 'name', 'party_type_field': 'type', 'location_type_field': 'type', 'geometry_field': 'geometry.ewkt', 'attributes': self.attributes, 'project': self.project, 'allowed_tenure_types': [t[0] for t in TENURE_RELATIONSHIP_TYPES], 'allowed_location_types': [choice[0] for choice in TYPE_CHOICES] } importer.import_data(config) assert Party.objects.all().count() == 2 assert SpatialUnit.objects.all().count() == 2 assert TenureRelationship.objects.all().count() == 2 for su in SpatialUnit.objects.filter(project_id=self.project.pk).all(): if su.geometry is not None: assert type(su.geometry) is Point # test spatial unit attribute creation sus = SpatialUnit.objects.filter( attributes__contains={'su_attr': 'some value'}) assert len(sus) == 1 su = sus[0] assert su.type == 'PA' assert len(su.attributes) == 1 # test party attribute creation party_in = Party.objects.filter(type='IN').first() assert party_in.name == 'Another Test Party' pty_attrs = party_in.attributes assert len(pty_attrs) == 3 assert pty_attrs['default_attr'] == 'test default attr in' assert pty_attrs['default_int_attr'] == 10 assert pty_attrs['party_in'] == 'some individual value' party_gr = Party.objects.filter(type='GR').first() assert party_gr.name == 'Test Party' pty_attrs = party_gr.attributes assert len(pty_attrs) == 4 assert pty_attrs['default_attr'] == 'test default attr gr' assert pty_attrs['default_int_attr'] == 20 assert pty_attrs['party_gr'] == 'some group value' assert pty_attrs['party_gr_dec'] == 2.0 # test tenure relationship creation tenure_relationships = TenureRelationship.objects.all() assert len(tenure_relationships) == 2
agpl-3.0
louisdijkstra/gonl-sv
back-up/version3/sample.py
1
23439
#!/usr/bin/env python """ Copyright (C) 2015 Louis Dijkstra This file is part of gonl-sv This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. """ import math import operator import numpy as np import matplotlib.mlab as mlab import matplotlib.pyplot as plt from matplotlib import pyplot from random import choice import scipy as sp import scipy.stats # Global variables LD_THRES = .8 # R^2 threshold for a deletion and SNP to be considered 'related' D_TSS_THRES = 1000 D_SNP_DEL_THRES = 100000 AF_THRES = 0.05 N_SAMPLES = 1000 # number of samples def snpsSimilar (hit_snp, nonhit_snp, af_thres = AF_THRES, d_tss_thres = D_TSS_THRES): if hit_snp['type'] == nonhit_snp['type'] and abs(hit_snp['d_tss'] - nonhit_snp['d_tss']) <= d_tss_thres: if abs(hit_snp['af'] - nonhit_snp['af']) <= af_thres or abs(hit_snp['af'] - (1 - nonhit_snp['af'])) <= af_thres: return True return False def returnControlIndices (hit_snps, nonhit_snps, af_thres = AF_THRES, d_tss_thres = D_TSS_THRES): control_indices = [] # will contain lists of indices. Each list contains indices for potential control snps for hit_snp in hit_snps: similar_nonhitsnps = [] for i in range(len(nonhit_snps)): if snpsSimilar(hit_snp, nonhit_snps[i], af_thres, d_tss_thres): similar_nonhitsnps.append(i) if len(similar_nonhitsnps) == 0: print 'WARNING: no matching non-hit-SNP found. Constraints too stringent' control_indices.append(similar_nonhitsnps) return control_indices def snpsSimilar3 (hit_snp, nonhit_snp, af_thres = AF_THRES, d_tss_thres = D_TSS_THRES): if hit_snp['type'] == nonhit_snp['type'] and abs(hit_snp['d_tss'] - nonhit_snp['d_tss']) <= d_tss_thres: if abs(hit_snp['af'] - nonhit_snp['af']) <= af_thres or abs(hit_snp['af'] - (1 - nonhit_snp['af'])) <= af_thres: if abs(hit_snp['d_snp_del'] - nonhit_snp['d_snp_del']) <= D_SNP_DEL_THRES: return True return False def returnControlIndices3 (hit_snps, nonhit_snps, af_thres = AF_THRES, d_tss_thres = D_TSS_THRES): control_indices = [] # will contain lists of indices. Each list contains indices for potential control snps for hit_snp in hit_snps: similar_nonhitsnps = [] for i in range(len(nonhit_snps)): if snpsSimilar3(hit_snp, nonhit_snps[i], af_thres, d_tss_thres): similar_nonhitsnps.append(i) if len(similar_nonhitsnps) == 0: print 'WARNING: no matching non-hit-SNP found. Constraints too stringent' control_indices.append(similar_nonhitsnps) return control_indices def sampleChromosome3 (chromosome, ld_thres = LD_THRES, d_tss_thres = D_TSS_THRES, af_thres = AF_THRES, n_samples = N_SAMPLES): [hit_snps, nonhit_snps] = readSNPData(chromosome) n_hit_snps = len(hit_snps) # control_indices contain lists of indices. Each list contains indices for potential control snps control_indices = returnControlIndices (hit_snps, nonhit_snps, af_thres, d_tss_thres) sample_results = [0.0] * n_samples for sample in range(n_samples): for i in range(n_hit_snps): if len(control_indices[i]) != 0: hit_snp = hit_snps[i] nonhit_snp = nonhit_snps[choice(control_indices[i])] # randomly select a similar nonhit SNP if abs(hit_snp['af'] - nonhit_snp['af']) <= abs(hit_snp['af'] - (1 - nonhit_snp['af'])): if nonhit_snp['r'] >= .84: sample_results[sample] = sample_results[sample] + 1 else: if -1 * nonhit_snp['r'] >= .84: sample_results[sample] = sample_results[sample] + 1 case = 0.0 for hit_snp in hit_snps: if hit_snp['r'] >= .84: case = case + 1 return [n_hit_snps, case, sample_results] def plotSampleResults3 (case, control, n_samples = N_SAMPLES): bins = np.linspace(min(control),max(control),50) w = np.ones_like(control) / len(control) plt.hist(control, bins, weights=w, facecolor='blue', alpha=1) plt.axvline(x=case, color='r', linewidth=4) plt.xlabel(r'Percentage of SNPs with $R^2 > \ 0.7$') plt.ylabel('Probability') plt.show() def sample3(ld_thres = LD_THRES, d_tss_thres = D_TSS_THRES, af_thres = AF_THRES, n_samples = N_SAMPLES): sample_results = [0.0] * n_samples case = 0.0 n_hit_snps = 0.0 for chromosome in range(1,23): print 'Processing chromosome', chromosome [hits, case_chr, sample_chr] = sampleChromosome3(chromosome, ld_thres, d_tss_thres, af_thres, n_samples) case = case + case_chr n_hit_snps = n_hit_snps + hits sample_results = map(operator.add, sample_results, sample_chr) print 'Chr ' + str(chromosome) + '\t', hits, case_chr / hits for i in range(n_samples): sample_results[i] = sample_results[i] / n_hit_snps print '\nOVERALL: ', n_hit_snps, case / n_hit_snps, sample_results plotSampleResults3 (case / n_hit_snps, sample_results) def sampleChromosome2 (chromosome, ld_thres = LD_THRES, d_tss_thres = D_TSS_THRES, af_thres = AF_THRES, n_samples = N_SAMPLES): [hit_snps, nonhit_snps] = readSNPData(chromosome) n_hit_snps = len(hit_snps) # control_indices contain lists of indices. Each list contains indices for potential control snps control_indices = returnControlIndices (hit_snps, nonhit_snps, af_thres, d_tss_thres) sample_results = [0.0] * n_samples for sample in range(n_samples): for i in range(n_hit_snps): if len(control_indices[i]) != 0: hit_snp = hit_snps[i] nonhit_snp = nonhit_snps[choice(control_indices[i])] # randomly select a similar nonhit SNP if abs(hit_snp['af'] - nonhit_snp['af']) <= abs(hit_snp['af'] - (1 - nonhit_snp['af'])): if nonhit_snp['r'] >= 0: sample_results[sample] = sample_results[sample] + 1 else: if -1 * nonhit_snp['r'] >= 0: sample_results[sample] = sample_results[sample] + 1 case = 0.0 for hit_snp in hit_snps: if hit_snp['r'] >= 0: case = case + 1 return [n_hit_snps, case, sample_results] def sample2(ld_thres = LD_THRES, d_tss_thres = D_TSS_THRES, af_thres = AF_THRES, n_samples = N_SAMPLES): sample_results = [0.0] * n_samples case = 0.0 n_hit_snps = 0.0 for chromosome in range(1,23): print 'Processing chromosome', chromosome [hits, case_chr, sample_chr] = sampleChromosome2(chromosome, ld_thres, d_tss_thres, af_thres, n_samples) case = case + case_chr n_hit_snps = n_hit_snps + hits sample_results = map(operator.add, sample_results, sample_chr) print 'Chr ' + str(chromosome) + '\t', hits, case_chr / hits for i in range(n_samples): sample_results[i] = sample_results[i] / n_hit_snps print '\nOVERALL: ', n_hit_snps, case / n_hit_snps, sample_results plotSampleResults (case / n_hit_snps, sample_results) def sampleChromosome (chromosome, ld_thres = LD_THRES, d_tss_thres = D_TSS_THRES, af_thres = AF_THRES, n_samples = N_SAMPLES): [hit_snps, nonhit_snps] = readSNPData(chromosome) n_hit_snps = len(hit_snps) # control_indices contain lists of indices. Each list contains indices for potential control snps control_indices = returnControlIndices (hit_snps, nonhit_snps, af_thres, d_tss_thres) sample_results = [0.0] * n_samples for sample in range(n_samples): for i in range(n_hit_snps): if len(control_indices[i]) != 0: nonhit_snp = nonhit_snps[choice(control_indices[i])] # randomly select a similar nonhit SNP if nonhit_snp['r']**2 >= ld_thres: sample_results[sample] = sample_results[sample] + 1 case = 0.0 for hit_snp in hit_snps: if hit_snp['r']**2 >= ld_thres: case = case + 1 return [n_hit_snps, case, sample_results] def plotSampleResults (case, control, n_samples = N_SAMPLES): bins = np.linspace(min(control),max(control),50) w = np.ones_like(control) / len(control) plt.hist(control, bins, weights=w, facecolor='blue', alpha=1) plt.axvline(x=case, color='r', linewidth=4) plt.xlabel(r'Percentage of SNPs with $R > 0$') plt.ylabel('Probability') plt.show() def sample(ld_thres = LD_THRES, d_tss_thres = D_TSS_THRES, af_thres = AF_THRES, n_samples = N_SAMPLES): sample_results = [0.0] * n_samples case = 0.0 n_hit_snps = 0.0 for chromosome in range(1,23): print 'Processing chromosome', chromosome [hits, case_chr, sample_chr] = sampleChromosome(chromosome, ld_thres, d_tss_thres, af_thres, n_samples) case = case + case_chr n_hit_snps = n_hit_snps + hits sample_results = map(operator.add, sample_results, sample_chr) print 'Chr ' + str(chromosome) + '\t', hits, case_chr / hits for i in range(n_samples): sample_results[i] = sample_results[i] / n_hit_snps print '\nOVERALL: ', n_hit_snps, case / n_hit_snps, sample_results plotSampleResults (case / n_hit_snps, sample_results) def returnHitSNPPositions (chromosome): file_snps = open('/ufs/dijkstra/Projects/SNPs_LD_deletions/SNP_max_r2_chr' + str(chromosome) + '.txt', 'r') positions = [] # hit-SNP positions are stored here for snp in file_snps.readlines(): data = [value for value in snp.split()] if int(data[1]) == 1: positions.append(int(data[2])) else: break file_snps.close() return positions # Writes arrays to a prescripted output file def writeToOutputFile(output, chr, individuals): filename = None if 'children' in individuals: filename = 'chr' + str(chr) + '_children_metrics.txt' else: filename = 'chr' + str(chr) + '_parents_metrics.txt' output_file = open(filename, 'a') for line in output: for item in line: output_file.write(str(item) + '\t') output_file.write('\n') output_file.close() # Returns the distance between the SNP and the deletion (CNV) # Returns 0 when the SNP lies within the deletion def distanceSNP_DEL (snp_pos, del_start, del_length): if snp_pos < del_start: return del_start - snp_pos elif snp_pos > del_start + del_length: return snp_pos - del_start + del_length else: # snp overlaps with the deletion return 0 def readSNPDeletionPairs(chromosome, individuals): hitsnp_del_data = [] # output is stored here nonhitsnp_del_data = [] file_snps = None if 'children' in individuals: file_snps = open('chr' + str(chromosome) + '_children.txt', 'r') else: file_snps = open('chr' + str(chromosome) + '_children.txt', 'r') for line in file_snps.readlines(): l = [value for value in line.split()] snp_del = dict([('pos', int(l[1])), ('type', int(l[2])), ('dist_tss', int(l[3])), ('del_pos', int(l[4])), ('del_length', int(l[5])), ('a', int(l[6])), ('b', int(l[7])), ('c', int(l[8]))]) if l[0] == '0': nonhitsnp_del_data.append(snp_del) else: hitsnp_del_data.append(snp_del) return [hitsnp_del_data, nonhitsnp_del_data] def determineGamma_N(a,b,c,N): a = float(a) b = float(b) c = float(c) gamma = a / (a + c) - (a + b) / N if gamma <= 0: return gamma * N / (a + b) elif a+c <= a + b: return gamma / (1 - (a+b)/N) else: return gamma / ((a + b)/(a+c) - (a+b)/N) def determineR(a,b,c,N): d = N - a - b -c return float((a * d - b * c)) / math.sqrt((a+b)*(a+c)*(b+d)*(c+d)) def fisher(a,b,c,N): table = [[a,c], [b, N - a - b - c]] [odds_ratio, p2] = sp.stats.fisher_exact(table, alternative='two-sided') [odds_ratio, pg] = sp.stats.fisher_exact(table, alternative='greater') [odds_ratio, pl] = sp.stats.fisher_exact(table, alternative='less') return [p2,pg,pl] def compute(chromosome, individuals): N = 470 if 'parents' in individuals: N = None # TODO! [hitsnp_del, nonhitsnp_del] = readSNPDeletionPairs(chromosome, individuals) output = [] for snp in hitsnp_del: dist_snp_del = distanceSNP_DEL(snp['pos'], snp['del_pos'], snp['del_length']) r = determineR(snp['a'], snp['b'], snp['c'], N) gamma_n = determineGamma_N(snp['a'], snp['b'], snp['c'], N) [p2,pg,pl] = fisher(snp['a'], snp['b'], snp['c'], N) output.append([1, snp['type'], snp['dist_tss'], dist_snp_del, r, gamma_n, p2,pg,pl]) #print [1, snp['type'], snp['dist_tss'], dist_snp_del, r, gamma_n, p2,pg,pl] for snp in nonhitsnp_del: dist_snp_del = distanceSNP_DEL(snp['pos'], snp['del_pos'], snp['del_length']) r = determineR(snp['a'], snp['b'], snp['c'], N) gamma_n = determineGamma_N(snp['a'], snp['b'], snp['c'], N) [p2,pg, pl] = fisher(snp['a'], snp['b'], snp['c'], N) output.append([0, snp['type'], snp['dist_tss'], dist_snp_del, r, gamma_n, p2,pg,pl]) #print [0, snp['type'], snp['dist_tss'], dist_snp_del, r, gamma_n, p2,pg,pl] writeToOutputFile(output, chromosome, individuals) def readSNPData (chromosome): hit_snp_positions = returnHitSNPPositions (chromosome) file_snps = open('chr' + str(chromosome) + '.txt', 'r') hit_snps = [] # hit-snp data is stored here nonhit_snps = [] # non hit-snp data is stored here # Read through all lines for line in file_snps.readlines(): l = [value for value in line.split()] snp = [('hit', int(l[1])),('pos', int(l[2])), ('type', l[3]), ('af', float(l[4]))] snp.append(('del_pos', int(l[5]))) snp.append(('del_length', int(l[6]))) snp.append(('del_af', float(l[7]))) snp.append(('r', float(l[8]))) snp.append(('p', float(l[9]))) snp.append(('d_snp_del', int(l[10]))) snp.append(('d_tss', int(l[11]))) snp.append(('min_dist_snp_del', int(l[12]))) snp.append(('g', float(l[13]))) snp.append(('g_n', float(l[14]))) snp.append(('a', int(l[15]))) snp.append(('b', int(l[16]))) snp.append(('c', int(l[17]))) snp.append(('d', int(l[18]))) if int(l[2]) in hit_snp_positions: hit_snps.append(dict(snp)) else: nonhit_snps.append(dict(snp)) file_snps.close() return [hit_snps, nonhit_snps] def plotRDistribution_nonhit (): nonhit_r = [] for chromosome in range(1,23): print 'Processing chromosome', chromosome [hit_snps, nonhit_snps] = readSNPData(chromosome) for snp in nonhit_snps: nonhit_r.append(snp['r']) #print snp['r'] bins = np.linspace(-1.0,1.0,100) w = np.ones_like(nonhit_r) / len(nonhit_r) plt.hist(nonhit_r, bins, weights=w, facecolor='blue', alpha=1) plt.xlabel(r'$R$') plt.ylabel('Probability') plt.title(r'non-GWAS SNP - Deletion combinations') plt.savefig('R_nonhit.png') plt.show() def readSNPData_Androniki (): hit_snp_positions = returnHitSNPPositions (20) file_snps = open('androniki_r_chr20.phased', 'r') hit_snps = [] # hit-snp data is stored here nonhit_snps = [] # non hit-snp data is stored here # Read through all lines for line in file_snps.readlines(): l = [value for value in line.split()] snp = [('hit', int(l[1])),('pos', int(l[2])), ('type', l[3]), ('af', float(l[4]))] snp.append(('del_pos', int(l[5]))) snp.append(('del_length', int(l[6]))) snp.append(('del_af', float(l[7]))) snp.append(('r', float(l[8]))) snp.append(('p', float(l[9]))) snp.append(('d_snp_del', int(l[10]))) snp.append(('d_tss', int(l[11]))) if int(l[2]) in hit_snp_positions: hit_snps.append(dict(snp)) else: nonhit_snps.append(dict(snp)) file_snps.close() return [hit_snps, nonhit_snps] def plotRDistribution_hit_androniki (): hit_r = [] [hit_snps, nonhit_snps] = readSNPData_Androniki() for snp in hit_snps: hit_r.append(snp['r']) bins = np.linspace(-1.0,1.0,20) w = np.ones_like(hit_r) / len(hit_r) plt.hist(hit_r, bins, weights=w, facecolor='blue', alpha=1) plt.xlabel(r'$R$') plt.ylabel('Probability') plt.title(r'GWAS SNP - Deletion combinations on chromosome 20') plt.savefig('R_chr20.png') plt.show() def plotRDistribution_hit (): hit_r = [] for chromosome in range(1,23): print 'Processing chromosome', chromosome [hit_snps, nonhit_snps] = readSNPData(chromosome) for snp in hit_snps: hit_r.append(snp['r']) #print snp['r'] bins = np.linspace(-1.0,1.0,100) w = np.ones_like(hit_r) / len(hit_r) plt.hist(hit_r, bins, weights=w, facecolor='blue', alpha=1) plt.xlabel(r'$R$') plt.ylabel('Probability') plt.title(r'GWAS SNP - Deletion combinations') plt.savefig('R.png') plt.show() def plotGamma_n (): hit, nonhit = [], [] for chromosome in range(22,23): print 'Processing chromosome', chromosome [hit_snps, nonhit_snps] = readSNPData(chromosome) for snp in hit_snps: hit.append(snp['g_n']) for snp in nonhit_snps: nonhit.append(snp['g_n']) bins = np.linspace(-1.0,1.0,100) w = np.ones_like(hit) / len(hit) plot1 = plt.hist(hit, bins, weights=w, facecolor='red', alpha=0.5, label='GWAS SNPs') w = np.ones_like(nonhit) / len(nonhit) plot2 = plt.hist(nonhit, bins, weights=w, facecolor='blue', alpha=0.5, label='non GWAS SNPs') plt.xlabel(r'$\gamma_n$') plt.ylabel('Probability') plt.title('SNP-Deletion Association') plt.legend() plt.show() def plotMaxR2 (): hit, nonhit = [], [] for chromosome in range(1,23): print 'Processing chromosome', chromosome [hit_snps, nonhit_snps] = readSNPData(chromosome) for snp in hit_snps: hit.append(snp['r']**2) for snp in nonhit_snps: nonhit.append(snp['r']**2) bins = np.linspace(0.0,1.0,100) w = np.ones_like(hit) / len(hit) plot1 = plt.hist(hit, bins, weights=w, facecolor='red', alpha=0.5, label='GWAS SNPs') w = np.ones_like(nonhit) / len(nonhit) plot2 = plt.hist(nonhit, bins, weights=w, facecolor='blue', alpha=0.5, label='non GWAS SNPs') plt.xlabel(r'$R^2$') plt.ylabel('Probability') plt.title('SNP-Deletion Association') plt.legend() plt.show() def plotECDF (): hit, nonhit = [], [] for chromosome in range(1,23): print 'Processing chromosome', chromosome snps = readSNPData(chromosome) for snp in snps: if snp['hit'] == 1: hit.append(snp['r2']) else: nonhit.append(snp['r2']) num_bins = 100 counts, bin_edges = np.histogram(nonhit, bins=num_bins, normed=True) cdf = np.cumsum(counts) plt.plot(bin_edges[1:], cdf) plt.show() # Writes arrays to a prescripted output file def writeSNPsToFile(snps, filename): output_file = open(filename, 'a') output_file.write('pos\tsnp_af\ttype\tR\tp\tdel_pos\tdel_length\tdel_af\td_tss\n') for snp in snps: output_file.write(str(snp['pos']) + '\t') output_file.write(str(snp['af']) + '\t') output_file.write(str(snp['type']) + '\t') output_file.write(str(snp['r']) + '\t') output_file.write(str(snp['p']) + '\t') output_file.write(str(snp['del_pos']) + '\t') output_file.write(str(snp['del_length']) + '\t') output_file.write(str(snp['del_af']) + '\t') output_file.write(str(snp['d_tss']) + '\n') output_file.close() #plotRDistribution_nonhit() #plotMaxR2() #sample3() #[hit_snps, nonhit_snps] = readSNPData(20) #writeSNPsToFile(hit_snps, 'hitSNPsChromosome20.txt') #for c in range(1,22): # compute(c, ('children')) # Read in the data for one chromosome and returns the data for the hit- and nonhit-SNPs and deletion pairs def readData(chromosome, individuals): file_snps = None if 'children' in individuals: file_snps = open('chr' + str(chromosome) + '_children_last.txt', 'r') else: file_snps = open('chr' + str(chromosome) + '_parents_last.txt', 'r') hit_snps, nonhit_snps = [], [] # Read through all lines for line in file_snps.readlines(): l = [value for value in line.split()] snp = [('pos', int(l[1])), ('del_pos', int(l[2])), ('type', int(l[3])), ('d_tss', int(l[4])), ('d_del', int(l[5])), ('r', float(l[6])), ('p', float(l[7])), ('a', int(l[8])), ('b', int(l[9])), ('c', int(l[10]))] if int(l[0]) == 1: hit_snps.append(dict(snp)) else: nonhit_snps.append(dict(snp)) file_snps.close() return [hit_snps, nonhit_snps] # Determines whether two SNP-Deletion pairs are similar def snpsSimilarP (hit_snp, nonhit_snp, d_tss_thres = D_TSS_THRES, d_snp_del_thres = D_SNP_DEL_THRES): if hit_snp['type'] == nonhit_snp['type'] and abs(hit_snp['d_tss'] - nonhit_snp['d_tss']) <= d_tss_thres and abs(hit_snp['d_del'] - nonhit_snp['d_del']) <= d_snp_del_thres: af = (hit_snp['a'] + hit_snp['b']) / 470.0 # TODO chance for parents! n_af = (nonhit_snp['a'] + nonhit_snp['b']) / 470.0 if abs(af - n_af) <= 0.05 or abs(af - (1.0 - n_af)) <= 0.05: return True else: return False else: return False # Returns a list that contains for every hit snp a list of indices of nonhit-snps that are similar def returnControlIndicesP (hit_snps, nonhit_snps, d_tss_thres = D_TSS_THRES, d_snp_del_thres = D_SNP_DEL_THRES): control_indices = [] # will contain lists of indices. Each list contains indices for potential control snps n_no_similar_nonhitsnps = 0 for hit_snp in hit_snps: similar_nonhitsnps = [] for i in range(len(nonhit_snps)): if snpsSimilarP(hit_snp, nonhit_snps[i], d_tss_thres, d_snp_del_thres): similar_nonhitsnps.append(i) if len(similar_nonhitsnps) == 0: n_no_similar_nonhitsnps = n_no_similar_nonhitsnps + 1 control_indices.append(similar_nonhitsnps) print '# of hit SNPs with no similar non-hit SNPs:', n_no_similar_nonhitsnps return control_indices def fdr (p_values, q, m): p_values.sort() for k in range(1,m+1): if p_values[k-1] > (k / float(m)) * q: return k-1 return m def sampleP_final(chromosomes, d_tss_thres = D_TSS_THRES, d_snp_del_thres = D_SNP_DEL_THRES, n_samples = N_SAMPLES, individuals=('children')): sample_p = [[]] * n_samples # p-values are stored here for every sample hit_p = [] # p-values for hit snps are stored here n_hit_snps = 0.0 for chromosome in chromosomes: print 'Chromosome', chromosome [hit_snps, nonhit_snps] = readData(chromosome, individuals) n_hit_snps = n_hit_snps + len(hit_snps) control_indices = returnControlIndicesP (hit_snps, nonhit_snps, d_tss_thres, d_snp_del_thres) for hit_snp in hit_snps: hit_p.append(hit_snp['p']) for sample in range(n_samples): for i in range(len(hit_snps)): if len(control_indices[i]) != 0: p = nonhit_snps[choice(control_indices[i])]['p'] sample_p[sample] = sample_p[sample] + [p] else: p = choice(nonhit_snps)['p'] sample_p[sample] = sample_p[sample] + [p] for sample in range(n_samples): sample_p[sample] = fdr(sample_p[sample], .05, int(n_hit_snps)) case = fdr(hit_p, .05, int(n_hit_snps)) return [n_hit_snps, case, sample_p] def sampleP (chromosome, d_tss_thres = D_TSS_THRES, d_snp_del_thres = D_SNP_DEL_THRES, n_samples = N_SAMPLES, individuals=('children')): [hit_snps, nonhit_snps] = readData(chromosome, individuals) n_hit_snps = len(hit_snps) print n_hit_snps # control_indices contain lists of indices. Each list contains indices for potential control snps control_indices = returnControlIndicesP (hit_snps, nonhit_snps, d_tss_thres, d_snp_del_thres) print len(control_indices) sample_results = [None] * n_samples for sample in range(n_samples): p_values = [] for i in range(n_hit_snps): if len(control_indices[i]) != 0: p_values.append(nonhit_snps[choice(control_indices[i])]['p']) else: p_values.append(choice(nonhit_snps)['p']) sample_results[sample] = fdr(p_values, .10, n_hit_snps) print sample_results[sample] p_values_hit = [] for hit_snp in hit_snps: p_values_hit.append(hit_snp['p']) case = fdr(p_values_hit, .10, n_hit_snps) return [n_hit_snps, case, sample_results] print sampleP_final(range(1,23), d_tss_thres = 10000, d_snp_del_thres = 25000, n_samples = 10000, individuals=('parents'))
gpl-3.0
GuessWhoSamFoo/pandas
pandas/tests/util/test_safe_import.py
2
1062
# -*- coding: utf-8 -*- import sys import types import pytest import pandas.util._test_decorators as td @pytest.mark.parametrize("name", ["foo", "hello123"]) def test_safe_import_non_existent(name): assert not td.safe_import(name) def test_safe_import_exists(): assert td.safe_import("pandas") @pytest.mark.parametrize("min_version,valid", [ ("0.0.0", True), ("99.99.99", False) ]) def test_safe_import_versions(min_version, valid): result = td.safe_import("pandas", min_version=min_version) result = result if valid else not result assert result @pytest.mark.parametrize("min_version,valid", [ (None, False), ("1.0", True), ("2.0", False) ]) def test_safe_import_dummy(monkeypatch, min_version, valid): mod_name = "hello123" mod = types.ModuleType(mod_name) mod.__version__ = "1.5" if min_version is not None: monkeypatch.setitem(sys.modules, mod_name, mod) result = td.safe_import(mod_name, min_version=min_version) result = result if valid else not result assert result
bsd-3-clause
yinpatt/thinkstats
code/scatter.py
69
4281
"""This file contains code for use with "Think Stats", by Allen B. Downey, available from greenteapress.com Copyright 2010 Allen B. Downey License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html """ from __future__ import print_function import sys import numpy as np import math import brfss import thinkplot import thinkstats2 def GetHeightWeight(df, hjitter=0.0, wjitter=0.0): """Get sequences of height and weight. df: DataFrame with htm3 and wtkg2 hjitter: float magnitude of random noise added to heights wjitter: float magnitude of random noise added to weights returns: tuple of sequences (heights, weights) """ heights = df.htm3 if hjitter: heights = thinkstats2.Jitter(heights, hjitter) weights = df.wtkg2 if wjitter: weights = thinkstats2.Jitter(weights, wjitter) return heights, weights def ScatterPlot(heights, weights, alpha=1.0): """Make a scatter plot and save it. heights: sequence of float weights: sequence of float alpha: float """ thinkplot.Scatter(heights, weights, alpha=alpha) thinkplot.Config(xlabel='height (cm)', ylabel='weight (kg)', axis=[140, 210, 20, 200], legend=False) def HexBin(heights, weights, bins=None): """Make a hexbin plot and save it. heights: sequence of float weights: sequence of float bins: 'log' or None for linear """ thinkplot.HexBin(heights, weights, bins=bins) thinkplot.Config(xlabel='height (cm)', ylabel='weight (kg)', axis=[140, 210, 20, 200], legend=False) def MakeFigures(df): """Make scatterplots. """ sample = thinkstats2.SampleRows(df, 5000) # simple scatter plot thinkplot.PrePlot(cols=2) heights, weights = GetHeightWeight(sample) ScatterPlot(heights, weights) # scatter plot with jitter thinkplot.SubPlot(2) heights, weights = GetHeightWeight(sample, hjitter=1.3, wjitter=0.5) ScatterPlot(heights, weights) thinkplot.Save(root='scatter1') # with jitter and transparency thinkplot.PrePlot(cols=2) ScatterPlot(heights, weights, alpha=0.1) # hexbin plot thinkplot.SubPlot(2) heights, weights = GetHeightWeight(df, hjitter=1.3, wjitter=0.5) HexBin(heights, weights) thinkplot.Save(root='scatter2') def BinnedPercentiles(df): """Bin the data by height and plot percentiles of weight for eachbin. df: DataFrame """ cdf = thinkstats2.Cdf(df.htm3) print('Fraction between 140 and 200 cm', cdf[200] - cdf[140]) bins = np.arange(135, 210, 5) indices = np.digitize(df.htm3, bins) groups = df.groupby(indices) heights = [group.htm3.mean() for i, group in groups][1:-1] cdfs = [thinkstats2.Cdf(group.wtkg2) for i, group in groups][1:-1] thinkplot.PrePlot(3) for percent in [75, 50, 25]: weights = [cdf.Percentile(percent) for cdf in cdfs] label = '%dth' % percent thinkplot.Plot(heights, weights, label=label) thinkplot.Save(root='scatter3', xlabel='height (cm)', ylabel='weight (kg)') def Correlations(df): print('pandas cov', df.htm3.cov(df.wtkg2)) #print('NumPy cov', np.cov(df.htm3, df.wtkg2, ddof=0)) print('thinkstats2 Cov', thinkstats2.Cov(df.htm3, df.wtkg2)) print() print('pandas corr', df.htm3.corr(df.wtkg2)) #print('NumPy corrcoef', np.corrcoef(df.htm3, df.wtkg2, ddof=0)) print('thinkstats2 Corr', thinkstats2.Corr(df.htm3, df.wtkg2)) print() print('pandas corr spearman', df.htm3.corr(df.wtkg2, method='spearman')) print('thinkstats2 SpearmanCorr', thinkstats2.SpearmanCorr(df.htm3, df.wtkg2)) print('thinkstats2 SpearmanCorr log wtkg3', thinkstats2.SpearmanCorr(df.htm3, np.log(df.wtkg2))) print() print('thinkstats2 Corr log wtkg3', thinkstats2.Corr(df.htm3, np.log(df.wtkg2))) print() def main(script): thinkstats2.RandomSeed(17) df = brfss.ReadBrfss(nrows=None) df = df.dropna(subset=['htm3', 'wtkg2']) Correlations(df) return MakeFigures(df) BinnedPercentiles(df) if __name__ == '__main__': main(*sys.argv)
gpl-3.0
pllim/ginga
mkapp/setup.py
3
2723
# -*- coding: iso-8859-1 -*- """ Build a standalone application for Mac OS X and MS Windows platforms Usage (Mac OS X): python setup.py py2app Usage (Windows): python setup.py py2exe """ import sys from setuptools import setup info_plist_template = u"""<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd"> <plist version="1.0"> <dict> <key>CFBundleName</key> <string>Ginga</string> <key>CFBundlePackageType</key> <string>APPL</string> <key>CFBundleGetInfoString</key> <string>Copyright © 2010-2016, Eric Jeschke ([email protected])</string> <key>CFBundleIconFile</key> <string>Ginga.icns</string> <!-- Version number - appears in About box --> <key>CFBundleShortVersionString</key> <string>%(version)s</string> <!-- Build number - appears in About box --> <key>CFBundleVersion</key> <string>%(build)s</string> <!-- Copyright notice - apears in About box --> <key>NSHumanReadableCopyright</key> <string>Copyright © 2010-2016, Eric Jeschke ([email protected])</string> <!-- Globally unique identifier --> <key>CFBundleIdentifier</key> <string>org.naoj.Ginga</string> <key>CFBundleDevelopmentRegion</key> <string>English</string> <key>CFBundleExecutable</key> <string>Ginga</string> <key>CFBundleDisplayName</key> <string>Ginga</string> </dict> </plist> """ from ginga import __version__ d = dict(version=__version__, build=__version__.replace('.', '')) plist = info_plist_template % d with open('Info.plist', 'w') as out_f: out_f.write(plist) APP = ['Ginga.py'] DATA_FILES = [] OPTIONS = {'argv_emulation': True, 'compressed': True, #'packages': 'ginga,scipy,numpy,kapteyn,astropy,PIL,matplotlib', 'packages': 'ginga,scipy,numpy,astropy,PIL,matplotlib', 'includes': ['sip', 'PyQt4._qt',], # currently creating some problems with the app build on mac os x # so exclude 'excludes': ['cv2',], 'matplotlib_backends': 'Qt4Agg', } if sys.platform == 'darwin': # mac-specific options OPTIONS['plist'] = 'Info.plist' OPTIONS['iconfile'] = 'Ginga.icns' extra_options = dict( setup_requires=['py2app'], options={'py2app': OPTIONS}, ) elif sys.platform == 'win32': extra_options = dict( setup_requires=['py2exe'], options={'py2exe': OPTIONS}, ) else: extra_options = dict( # Normally unix-like platforms will use "setup.py install" # and install the main script as such scripts=["ginga"], ) setup_requires=['py2app'], setup( name="Ginga", app=APP, data_files=DATA_FILES, **extra_options )
bsd-3-clause
mlperf/training_results_v0.7
NVIDIA/benchmarks/ssd/implementations/pytorch/visualize.py
5
5886
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nvidia.dali.pipeline import Pipeline import nvidia.dali.ops as ops import nvidia.dali.types as types import numpy as np from time import time import os import random import time import io import json import torch from PIL import Image from torchvision import transforms from torch.utils.data import DataLoader import matplotlib.pyplot as plt import matplotlib.patches as patches from argparse import ArgumentParser from utils import DefaultBoxes, Encoder, COCODetection from utils import SSDTransformer from ssd300 import SSD300 from train import load_checkpoint, dboxes300_coco def parse_args(): parser = ArgumentParser(description="Visualize models predictions on image") parser.add_argument('--images', '-i', nargs='*', type=str, help='path to jpg image') parser.add_argument('--model', '-m', type=str, default='iter_240000.pt', help='path to trained model') parser.add_argument('--threshold', '-t', type=float, default=0.10, help='threshold for predictions probabilities') parser.add_argument('--annotations', '-a', type=str, default='/coco/annotations/instances_val2017.json', help='path to json with annotations') return parser.parse_args() def print_image(image, model, encoder, inv_map, name_map, category_id_to_color, threshold): # Open image for printing im = Image.open(image) W, H = im.size # Prepare tensor input for model tmp = im.copy() tmp = tmp.resize((300, 300)) img = transforms.ToTensor()(tmp) normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) img = normalize(img).unsqueeze(dim = 0) # Find predictions with torch.no_grad(): ploc, plabel = model(img) ploc, plabel = ploc.float(), plabel.float() ret = [] for idx in range(ploc.shape[0]): # ease-of-use for specific predictions ploc_i = ploc[idx, :, :].unsqueeze(0) plabel_i = plabel[idx, :, :].unsqueeze(0) try: result = encoder.decode_batch(ploc_i, plabel_i, 0.50, 200)[0] except: print("No object detected in image {}".format(image)) continue htot, wtot = (H, W) loc, label, prob = [r.cpu().numpy() for r in result] for loc_, label_, prob_ in zip(loc, label, prob): ret.append([0, loc_[0]*wtot, \ loc_[1]*htot, (loc_[2] - loc_[0])*wtot, (loc_[3] - loc_[1])*htot, prob_, inv_map[label_]]) ret = np.array(ret).astype(np.float32) # Choose bounding boxes for printing bboxes = [] for re in ret: if re[5] > threshold: bboxes.append(re) print("Bounding boxes detected in image {}:".format(image)) print(bboxes) # Prepare image for plotting img = transforms.ToTensor()(im) img = img.permute(1, 2, 0) H = img.shape[0] W = img.shape[1] fig,ax = plt.subplots(1) ax.imshow(img) # Add bboxes with labels used = set() for bbox in bboxes: if (bbox[6] in used): rect = patches.Rectangle((bbox[1], bbox[2]), bbox[3], bbox[4], edgecolor=category_id_to_color[bbox[6]], linewidth=2, facecolor='none') else: rect = patches.Rectangle((bbox[1], bbox[2]), bbox[3], bbox[4], label = name_map[bbox[6]], edgecolor=category_id_to_color[bbox[6]], linewidth=2, facecolor='none') used.add(bbox[6]) ax.add_patch(rect) # Show image plt.legend(ncol=1, bbox_to_anchor=(1.04,1), loc="upper left") plt.show() def main(): # Parse arguments args = parse_args() # Get categories names with open(args.annotations,'r') as anno: js = json.loads(anno.read()) coco_names = js['categories'] # Prepare map of COCO labels to COCO names name_map = {} for name in coco_names: name_map[name['id']] = name['name'] # Prepare map of SSD to COCO labels deleted = [12, 26, 29, 30, 45, 66, 68, 69, 71, 83] inv_map = {} cnt = 0 for i in range(1, 81): while i + cnt in deleted: cnt += 1 inv_map[i] = i + cnt # Prepare colors for categories category_id_to_color = dict([(cat_id, [random.uniform(0, 1) ,random.uniform(0, 1), random.uniform(0, 1)]) for cat_id in range(1, 91)]) # Set math plot lib size plt.rcParams["figure.figsize"] = (12, 8) # Build and load SSD model ssd300 = SSD300(81, backbone="resnet34", model_path=None, dilation=None) load_checkpoint(ssd300, args.model) ssd300.eval() # Prepare encoder dboxes = dboxes300_coco() encoder = Encoder(dboxes) # Print images for image in args.images: print_image(image, ssd300, encoder, inv_map, name_map, category_id_to_color, args.threshold) if __name__ == "__main__": main()
apache-2.0
ran5515/DeepDecision
tensorflow/contrib/learn/python/learn/learn_io/data_feeder_test.py
71
12923
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for `DataFeeder`.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import six from six.moves import xrange # pylint: disable=redefined-builtin # pylint: disable=wildcard-import from tensorflow.contrib.learn.python.learn.learn_io import * from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.platform import test # pylint: enable=wildcard-import class DataFeederTest(test.TestCase): # pylint: disable=undefined-variable """Tests for `DataFeeder`.""" def _wrap_dict(self, data, prepend=''): return {prepend + '1': data, prepend + '2': data} def _assert_raises(self, input_data): with self.assertRaisesRegexp(TypeError, 'annot convert'): data_feeder.DataFeeder(input_data, None, n_classes=0, batch_size=1) def test_input_uint32(self): data = np.matrix([[1, 2], [3, 4]], dtype=np.uint32) self._assert_raises(data) self._assert_raises(self._wrap_dict(data)) def test_input_uint64(self): data = np.matrix([[1, 2], [3, 4]], dtype=np.uint64) self._assert_raises(data) self._assert_raises(self._wrap_dict(data)) def _assert_dtype(self, expected_np_dtype, expected_tf_dtype, input_data): feeder = data_feeder.DataFeeder(input_data, None, n_classes=0, batch_size=1) if isinstance(input_data, dict): for k, v in list(feeder.input_dtype.items()): self.assertEqual(expected_np_dtype, v) else: self.assertEqual(expected_np_dtype, feeder.input_dtype) with ops.Graph().as_default() as g, self.test_session(g): inp, _ = feeder.input_builder() if isinstance(inp, dict): for k, v in list(inp.items()): self.assertEqual(expected_tf_dtype, v.dtype) else: self.assertEqual(expected_tf_dtype, inp.dtype) def test_input_int8(self): data = np.matrix([[1, 2], [3, 4]], dtype=np.int8) self._assert_dtype(np.int8, dtypes.int8, data) self._assert_dtype(np.int8, dtypes.int8, self._wrap_dict(data)) def test_input_int16(self): data = np.matrix([[1, 2], [3, 4]], dtype=np.int16) self._assert_dtype(np.int16, dtypes.int16, data) self._assert_dtype(np.int16, dtypes.int16, self._wrap_dict(data)) def test_input_int32(self): data = np.matrix([[1, 2], [3, 4]], dtype=np.int32) self._assert_dtype(np.int32, dtypes.int32, data) self._assert_dtype(np.int32, dtypes.int32, self._wrap_dict(data)) def test_input_int64(self): data = np.matrix([[1, 2], [3, 4]], dtype=np.int64) self._assert_dtype(np.int64, dtypes.int64, data) self._assert_dtype(np.int64, dtypes.int64, self._wrap_dict(data)) def test_input_uint8(self): data = np.matrix([[1, 2], [3, 4]], dtype=np.uint8) self._assert_dtype(np.uint8, dtypes.uint8, data) self._assert_dtype(np.uint8, dtypes.uint8, self._wrap_dict(data)) def test_input_uint16(self): data = np.matrix([[1, 2], [3, 4]], dtype=np.uint16) self._assert_dtype(np.uint16, dtypes.uint16, data) self._assert_dtype(np.uint16, dtypes.uint16, self._wrap_dict(data)) def test_input_float16(self): data = np.matrix([[1, 2], [3, 4]], dtype=np.float16) self._assert_dtype(np.float16, dtypes.float16, data) self._assert_dtype(np.float16, dtypes.float16, self._wrap_dict(data)) def test_input_float32(self): data = np.matrix([[1, 2], [3, 4]], dtype=np.float32) self._assert_dtype(np.float32, dtypes.float32, data) self._assert_dtype(np.float32, dtypes.float32, self._wrap_dict(data)) def test_input_float64(self): data = np.matrix([[1, 2], [3, 4]], dtype=np.float64) self._assert_dtype(np.float64, dtypes.float64, data) self._assert_dtype(np.float64, dtypes.float64, self._wrap_dict(data)) def test_input_bool(self): data = np.array([[False for _ in xrange(2)] for _ in xrange(2)]) self._assert_dtype(np.bool, dtypes.bool, data) self._assert_dtype(np.bool, dtypes.bool, self._wrap_dict(data)) def test_input_string(self): input_data = np.array([['str%d' % i for i in xrange(2)] for _ in xrange(2)]) self._assert_dtype(input_data.dtype, dtypes.string, input_data) self._assert_dtype(input_data.dtype, dtypes.string, self._wrap_dict(input_data)) def _assertAllClose(self, src, dest, src_key_of=None, src_prop=None): def func(x): val = getattr(x, src_prop) if src_prop else x return val if src_key_of is None else src_key_of[val] if isinstance(src, dict): for k in list(src.keys()): self.assertAllClose(func(src[k]), dest) else: self.assertAllClose(func(src), dest) def test_unsupervised(self): def func(feeder): with self.test_session(): inp, _ = feeder.input_builder() feed_dict_fn = feeder.get_feed_dict_fn() feed_dict = feed_dict_fn() self._assertAllClose(inp, [[1, 2]], feed_dict, 'name') data = np.matrix([[1, 2], [2, 3], [3, 4]]) func(data_feeder.DataFeeder(data, None, n_classes=0, batch_size=1)) func( data_feeder.DataFeeder( self._wrap_dict(data), None, n_classes=0, batch_size=1)) def test_data_feeder_regression(self): def func(df): inp, out = df.input_builder() feed_dict_fn = df.get_feed_dict_fn() feed_dict = feed_dict_fn() self._assertAllClose(inp, [[3, 4], [1, 2]], feed_dict, 'name') self._assertAllClose(out, [2, 1], feed_dict, 'name') x = np.matrix([[1, 2], [3, 4]]) y = np.array([1, 2]) func(data_feeder.DataFeeder(x, y, n_classes=0, batch_size=3)) func( data_feeder.DataFeeder( self._wrap_dict(x, 'in'), self._wrap_dict(y, 'out'), n_classes=self._wrap_dict(0, 'out'), batch_size=3)) def test_epoch(self): def func(feeder): with self.test_session(): feeder.input_builder() epoch = feeder.make_epoch_variable() feed_dict_fn = feeder.get_feed_dict_fn() # First input feed_dict = feed_dict_fn() self.assertAllClose(feed_dict[epoch.name], [0]) # Second input feed_dict = feed_dict_fn() self.assertAllClose(feed_dict[epoch.name], [0]) # Third input feed_dict = feed_dict_fn() self.assertAllClose(feed_dict[epoch.name], [0]) # Back to the first input again, so new epoch. feed_dict = feed_dict_fn() self.assertAllClose(feed_dict[epoch.name], [1]) data = np.matrix([[1, 2], [2, 3], [3, 4]]) labels = np.array([0, 0, 1]) func(data_feeder.DataFeeder(data, labels, n_classes=0, batch_size=1)) func( data_feeder.DataFeeder( self._wrap_dict(data, 'in'), self._wrap_dict(labels, 'out'), n_classes=self._wrap_dict(0, 'out'), batch_size=1)) def test_data_feeder_multioutput_regression(self): def func(df): inp, out = df.input_builder() feed_dict_fn = df.get_feed_dict_fn() feed_dict = feed_dict_fn() self._assertAllClose(inp, [[3, 4], [1, 2]], feed_dict, 'name') self._assertAllClose(out, [[3, 4], [1, 2]], feed_dict, 'name') x = np.matrix([[1, 2], [3, 4]]) y = np.array([[1, 2], [3, 4]]) func(data_feeder.DataFeeder(x, y, n_classes=0, batch_size=2)) func( data_feeder.DataFeeder( self._wrap_dict(x, 'in'), self._wrap_dict(y, 'out'), n_classes=self._wrap_dict(0, 'out'), batch_size=2)) def test_data_feeder_multioutput_classification(self): def func(df): inp, out = df.input_builder() feed_dict_fn = df.get_feed_dict_fn() feed_dict = feed_dict_fn() self._assertAllClose(inp, [[3, 4], [1, 2]], feed_dict, 'name') self._assertAllClose( out, [[[0, 0, 1, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 1]], [[1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 1, 0, 0]]], feed_dict, 'name') x = np.matrix([[1, 2], [3, 4]]) y = np.array([[0, 1, 2], [2, 3, 4]]) func(data_feeder.DataFeeder(x, y, n_classes=5, batch_size=2)) func( data_feeder.DataFeeder( self._wrap_dict(x, 'in'), self._wrap_dict(y, 'out'), n_classes=self._wrap_dict(5, 'out'), batch_size=2)) def test_streaming_data_feeder(self): def func(df): inp, out = df.input_builder() feed_dict_fn = df.get_feed_dict_fn() feed_dict = feed_dict_fn() self._assertAllClose(inp, [[[1, 2]], [[3, 4]]], feed_dict, 'name') self._assertAllClose(out, [[[1], [2]], [[2], [2]]], feed_dict, 'name') def x_iter(wrap_dict=False): yield np.array([[1, 2]]) if not wrap_dict else self._wrap_dict( np.array([[1, 2]]), 'in') yield np.array([[3, 4]]) if not wrap_dict else self._wrap_dict( np.array([[3, 4]]), 'in') def y_iter(wrap_dict=False): yield np.array([[1], [2]]) if not wrap_dict else self._wrap_dict( np.array([[1], [2]]), 'out') yield np.array([[2], [2]]) if not wrap_dict else self._wrap_dict( np.array([[2], [2]]), 'out') func( data_feeder.StreamingDataFeeder( x_iter(), y_iter(), n_classes=0, batch_size=2)) func( data_feeder.StreamingDataFeeder( x_iter(True), y_iter(True), n_classes=self._wrap_dict(0, 'out'), batch_size=2)) # Test non-full batches. func( data_feeder.StreamingDataFeeder( x_iter(), y_iter(), n_classes=0, batch_size=10)) func( data_feeder.StreamingDataFeeder( x_iter(True), y_iter(True), n_classes=self._wrap_dict(0, 'out'), batch_size=10)) def test_dask_data_feeder(self): if HAS_PANDAS and HAS_DASK: x = pd.DataFrame( dict( a=np.array([.1, .3, .4, .6, .2, .1, .6]), b=np.array([.7, .8, .1, .2, .5, .3, .9]))) x = dd.from_pandas(x, npartitions=2) y = pd.DataFrame(dict(labels=np.array([1, 0, 2, 1, 0, 1, 2]))) y = dd.from_pandas(y, npartitions=2) # TODO(ipolosukhin): Remove or restore this. # x = extract_dask_data(x) # y = extract_dask_labels(y) df = data_feeder.DaskDataFeeder(x, y, n_classes=2, batch_size=2) inp, out = df.input_builder() feed_dict_fn = df.get_feed_dict_fn() feed_dict = feed_dict_fn() self.assertAllClose(feed_dict[inp.name], [[0.40000001, 0.1], [0.60000002, 0.2]]) self.assertAllClose(feed_dict[out.name], [[0., 0., 1.], [0., 1., 0.]]) def test_hdf5_data_feeder(self): def func(df): inp, out = df.input_builder() feed_dict_fn = df.get_feed_dict_fn() feed_dict = feed_dict_fn() self._assertAllClose(inp, [[3, 4], [1, 2]], feed_dict, 'name') self.assertAllClose(out, [2, 1], feed_dict, 'name') try: import h5py # pylint: disable=g-import-not-at-top x = np.matrix([[1, 2], [3, 4]]) y = np.array([1, 2]) h5f = h5py.File('test_hdf5.h5', 'w') h5f.create_dataset('x', data=x) h5f.create_dataset('y', data=y) h5f.close() h5f = h5py.File('test_hdf5.h5', 'r') x = h5f['x'] y = h5f['y'] func(data_feeder.DataFeeder(x, y, n_classes=0, batch_size=3)) func( data_feeder.DataFeeder( self._wrap_dict(x, 'in'), self._wrap_dict(y, 'out'), n_classes=self._wrap_dict(0, 'out'), batch_size=3)) except ImportError: print("Skipped test for hdf5 since it's not installed.") class SetupPredictDataFeederTest(DataFeederTest): """Tests for `DataFeeder.setup_predict_data_feeder`.""" def test_iterable_data(self): # pylint: disable=undefined-variable def func(df): self._assertAllClose(six.next(df), [[1, 2], [3, 4]]) self._assertAllClose(six.next(df), [[5, 6]]) data = [[1, 2], [3, 4], [5, 6]] x = iter(data) x_dict = iter([self._wrap_dict(v) for v in iter(data)]) func(data_feeder.setup_predict_data_feeder(x, batch_size=2)) func(data_feeder.setup_predict_data_feeder(x_dict, batch_size=2)) if __name__ == '__main__': test.main()
apache-2.0
vladpopovici/WSItk
WSItk/segm/tissue.py
1
5399
# -*- coding: utf-8 -*- """ SEGM.TISSUE: try to segment the tissue regions from a pathology slide. @author: vlad """ from __future__ import (absolute_import, division, print_function, unicode_literals) __version__ = 0.01 __author__ = 'Vlad Popovici' __all__ = ['tissue_region_from_rgb', 'tissue_fat', 'tissue_chromatin', 'tissue_connective', 'tissue_components', 'superpixels'] import numpy as np import skimage.morphology as skm from skimage.segmentation import slic from skimage.util import img_as_bool from sklearn.cluster import MiniBatchKMeans import mahotas as mh from util.intensity import _R, _G, _B from stain.he import rgb2he2 def tissue_region_from_rgb(_img, _min_area=150, _g_th=None): """ TISSUE_REGION_FROM_RGB detects the region(s) of the image containing the tissue. The original image is supposed to represent a haematoxylin-eosin -stained pathology slide. The main purpose of this function is to detect the parts of a large image which most probably contain tissue material, and to discard the background. Usage: tissue_mask = tissue_from_rgb(img, _min_area=150, _g_th=None) Args: img (numpy.ndarray): the original image in RGB color space _min_area (int, default: 150): any object with an area smaller than the indicated value, will be discarded _g_th (int, default: None): the processing is done on the GREEN channel and all pixels below _g_th are considered candidates for "tissue pixels". If no value is given to _g_th, one is computed by K-Means clustering (K=2), and is returned. Returns: numpy.ndarray: a binary image containing the mask of the regions considered to represent tissue fragments int: threshold used for GREEN channel """ if _g_th is None: # Apply vector quantization to remove the "white" background - work in the # green channel: vq = MiniBatchKMeans(n_clusters=2) _g_th = int(np.round(0.95 * np.max(vq.fit(_G(_img).reshape((-1,1))) .cluster_centers_.squeeze()))) mask = _G(_img) < _g_th skm.binary_closing(mask, skm.disk(3), out=mask) mask = img_as_bool(mask) mask = skm.remove_small_objects(mask, min_size=_min_area, in_place=True) # Some hand-picked rules: # -at least 5% H and E # -at most 25% background # for a region to be considered tissue h, e, b = rgb2he2(_img) mask &= (h > np.percentile(h, 5)) | (e > np.percentile(e, 5)) mask &= (b < np.percentile(b, 50)) # at most at 50% of "other components" mask = mh.close_holes(mask) return img_as_bool(mask), _g_th def tissue_fat(_img, _clf): """ Segment fat regions from a slide. Args: _img _clf Returns: """ p = _clf.predict_proba(_img.reshape((-1,3)))[:,1] p = p.reshape(_img.shape[:-1]) return p def tissue_chromatin(_img, _clf): """ :param _img: :param _clf: :return: """ p = _clf.predict_proba(_img.reshape((-1,3)))[:,1] p = p.reshape(_img.shape[:-1]) return p def tissue_connective(_img, _clf): """ :param _img: :param _clf: :return: """ p = _clf.predict_proba(_img.reshape((-1,3)))[:,1] p = p.reshape(_img.shape[:-1]) return p def tissue_components(_img, _models, _min_prob=0.4999999999): w, h, _ = _img.shape n = w * h # "background": if no class has a posterior of at least 0.5 # the pixel is considered "background" p_bkg = np.zeros((n, )) p_bkg.fill(_min_prob) p_chrm = tissue_chromatin(_img, _models['chromatin']).reshape((-1,)) p_conn = tissue_connective(_img, _models['connective']).reshape((-1,)) p_fat = tissue_fat(_img, _models['fat']).reshape((-1,)) prbs = np.array([p_bkg, p_chrm, p_conn, p_fat]) comp_map = np.argmax(prbs, axis=1) # 0 = background, 1 = chromatin, 2 = connective, 3 = fat comp_map = comp_map.reshape((w, h)) return comp_map def superpixels(img, slide_magnif='x40'): """ SUPERPIXELS: produces a super-pixel representation of the image, with the new super-pixels being the average (separate by channel) of the pixels in the original image falling in the same "cell". :param img: numpy.ndarray RGB image :param slide_magnif: string Indicates the microscope magnification at which the image was acquired. It is used to set some parameters, depending on the magnification. :return: numpy.ndarray The RGB super-pixel image. """ params = dict([('x40', dict([('n_segments', int(10*np.log2(img.size/3))), ('compactness', 50), ('sigma', 2.0)])), ('x20', dict([('n_segments', int(100*np.log2(img.size/3))), ('compactness', 50), ('sigma', 1.5)]))]) p = params[slide_magnif] sp = slic(img, n_segments=p['n_segments'], compactness=p['compactness'], sigma=p['sigma'], multichannel=True, convert2lab=True) n_sp = sp.max() + 1 img_res = np.ndarray(img.shape, dtype=img.dtype) for i in np.arange(n_sp): img_res[sp == i, 0] = int(np.mean(img[sp == i, 0])) img_res[sp == i, 1] = int(np.mean(img[sp == i, 1])) img_res[sp == i, 2] = int(np.mean(img[sp == i, 2])) return img_res
mit
thorwhalen/ut
sound/others/audio_tools.py
1
158402
"""Audio Utils""" # Collected from various sources: # License: BSD 3-clause # Authors: Kyle Kastner # LTSD routine from jfsantos (Joao Felipe Santos) # Harvest, Cheaptrick, D4C, WORLD routines based on MATLAB code from M. Morise # http://ml.cs.yamanashi.ac.jp/world/english/ # MGC code based on r9y9 (Ryuichi Yamamoto) MelGeneralizedCepstrums.jl # Pieces also adapted from SPTK import numpy as np import scipy as sp from numpy.lib.stride_tricks import as_strided import scipy.signal as sg from scipy.interpolate import interp1d import wave from scipy.cluster.vq import vq from scipy import linalg, fftpack from numpy.testing import assert_almost_equal from scipy.linalg import svd from scipy.io import wavfile from scipy.signal import firwin import zipfile import tarfile import os import copy import multiprocessing from multiprocessing import Pool import functools import time try: import urllib.request as urllib # for backwards compatibility except ImportError: import urllib2 as urllib def download(url, server_fname, local_fname=None, progress_update_percentage=5, bypass_certificate_check=False): """ An internet download utility modified from http://stackoverflow.com/questions/22676/ how-do-i-download-a-file-over-http-using-python/22776#22776 """ if bypass_certificate_check: import ssl ctx = ssl.create_default_context() ctx.check_hostname = False ctx.verify_mode = ssl.CERT_NONE u = urllib.request.urlopen(url, context=ctx) else: u = urllib.request.urlopen(url) if local_fname is None: local_fname = server_fname full_path = local_fname meta = u.info() with open(full_path, 'wb') as f: try: file_size = int(meta.get("Content-Length")) except TypeError: print("WARNING: Cannot get file size, displaying bytes instead!") file_size = 100 print(("Downloading: %s Bytes: %s" % (server_fname, file_size))) file_size_dl = 0 block_sz = int(1E7) p = 0 while True: buffer = u.read(block_sz) if not buffer: break file_size_dl += len(buffer) f.write(buffer) if (file_size_dl * 100. / file_size) > p: status = r"%10d [%3.2f%%]" % (file_size_dl, file_size_dl * 100. / file_size) print(status) p += progress_update_percentage def fetch_sample_speech_tapestry(): url = "https://www.dropbox.com/s/qte66a7haqspq2g/tapestry.wav?dl=1" wav_path = "tapestry.wav" if not os.path.exists(wav_path): download(url, wav_path) fs, d = wavfile.read(wav_path) d = d.astype('float32') / (2 ** 15) # file is stereo? - just choose one channel return fs, d def fetch_sample_file(wav_path): if not os.path.exists(wav_path): raise ValueError("Unable to find file at path %s" % wav_path) fs, d = wavfile.read(wav_path) d = d.astype('float32') / (2 ** 15) # file is stereo - just choose one channel if len(d.shape) > 1: d = d[:, 0] return fs, d def fetch_sample_music(): url = "http://www.music.helsinki.fi/tmt/opetus/uusmedia/esim/" url += "a2002011001-e02-16kHz.wav" wav_path = "test.wav" if not os.path.exists(wav_path): download(url, wav_path) fs, d = wavfile.read(wav_path) d = d.astype('float32') / (2 ** 15) # file is stereo - just choose one channel d = d[:, 0] return fs, d def fetch_sample_speech_fruit(n_samples=None): url = 'https://dl.dropboxusercontent.com/u/15378192/audio.tar.gz' wav_path = "audio.tar.gz" if not os.path.exists(wav_path): download(url, wav_path) tf = tarfile.open(wav_path) wav_names = [fname for fname in tf.getnames() if ".wav" in fname.split(os.sep)[-1]] speech = [] print("Loading speech files...") for wav_name in wav_names[:n_samples]: f = tf.extractfile(wav_name) fs, d = wavfile.read(f) d = d.astype('float32') / (2 ** 15) speech.append(d) return fs, speech def fetch_sample_speech_eustace(n_samples=None): """ http://www.cstr.ed.ac.uk/projects/eustace/download.html """ # data url = "http://www.cstr.ed.ac.uk/projects/eustace/down/eustace_wav.zip" wav_path = "eustace_wav.zip" if not os.path.exists(wav_path): download(url, wav_path) # labels url = "http://www.cstr.ed.ac.uk/projects/eustace/down/eustace_labels.zip" labels_path = "eustace_labels.zip" if not os.path.exists(labels_path): download(url, labels_path) # Read wavfiles # 16 kHz wav zf = zipfile.ZipFile(wav_path, 'r') wav_names = [fname for fname in zf.namelist() if ".wav" in fname.split(os.sep)[-1]] fs = 16000 speech = [] print("Loading speech files...") for wav_name in wav_names[:n_samples]: wav_str = zf.read(wav_name) d = np.frombuffer(wav_str, dtype=np.int16) d = d.astype('float32') / (2 ** 15) speech.append(d) zf = zipfile.ZipFile(labels_path, 'r') label_names = [fname for fname in zf.namelist() if ".lab" in fname.split(os.sep)[-1]] labels = [] print("Loading label files...") for label_name in label_names[:n_samples]: label_file_str = zf.read(label_name) labels.append(label_file_str) return fs, speech def stft(X, fftsize=128, step="half", mean_normalize=True, real=False, compute_onesided=True): """ Compute STFT for 1D real valued input X """ if real: local_fft = fftpack.rfft cut = -1 else: local_fft = fftpack.fft cut = None if compute_onesided: cut = fftsize // 2 + 1 if mean_normalize: X -= X.mean() if step == "half": X = halfoverlap(X, fftsize) else: X = overlap(X, fftsize, step) size = fftsize win = 0.54 - .46 * np.cos(2 * np.pi * np.arange(size) / (size - 1)) X = X * win[None] X = local_fft(X)[:, :cut] return X def istft(X, fftsize=128, step="half", wsola=False, mean_normalize=True, real=False, compute_onesided=True): """ Compute ISTFT for STFT transformed X """ if real: local_ifft = fftpack.irfft X_pad = np.zeros((X.shape[0], X.shape[1] + 1)) + 0j X_pad[:, :-1] = X X = X_pad else: local_ifft = fftpack.ifft if compute_onesided: X_pad = np.zeros((X.shape[0], 2 * X.shape[1])) + 0j X_pad[:, :fftsize // 2 + 1] = X X_pad[:, fftsize // 2 + 1:] = 0 X = X_pad X = local_ifft(X).astype("float64") if step == "half": X = invert_halfoverlap(X) else: X = overlap_add(X, step, wsola=wsola) if mean_normalize: X -= np.mean(X) return X def mdct_slow(X, dctsize=128): M = dctsize N = 2 * dctsize N_0 = (M + 1) / 2 X = halfoverlap(X, N) X = sine_window(X) n, k = np.meshgrid(np.arange(N), np.arange(M)) # Use transpose due to "samples as rows" convention tf = np.cos(np.pi * (n + N_0) * (k + 0.5) / M).T return np.dot(X, tf) def imdct_slow(X, dctsize=128): M = dctsize N = 2 * dctsize N_0 = (M + 1) / 2 N_4 = N / 4 n, k = np.meshgrid(np.arange(N), np.arange(M)) # inverse *is not* transposed tf = np.cos(np.pi * (n + N_0) * (k + 0.5) / M) X_r = np.dot(X, tf) / N_4 X_r = sine_window(X_r) X = invert_halfoverlap(X_r) return X def nsgcwin(fmin, fmax, n_bins, fs, signal_len, gamma): """ Nonstationary Gabor window calculation References ---------- Velasco G. A., Holighaus N., Dorfler M., Grill T. Constructing an invertible constant-Q transform with nonstationary Gabor frames, Proceedings of the 14th International Conference on Digital Audio Effects (DAFx 11), Paris, France, 2011 Holighaus N., Dorfler M., Velasco G. A. and Grill T. A framework for invertible, real-time constant-Q transforms, submitted. Original matlab code copyright follows: AUTHOR(s) : Monika Dorfler, Gino Angelo Velasco, Nicki Holighaus, 2010-2011 COPYRIGHT : (c) NUHAG, Dept.Math., University of Vienna, AUSTRIA http://nuhag.eu/ Permission is granted to modify and re-distribute this code in any manner as long as this notice is preserved. All standard disclaimers apply. """ # use a hanning window # no fractional shifts fftres = fs / signal_len fmin = float(fmin) fmax = float(fmax) gamma = float(gamma) nyq = fs / 2. b = np.floor(n_bins * np.log2(fmax / fmin)) fbas = fmin * 2 ** (np.arange(b + 1) / float(n_bins)) Q = 2 ** (1. / n_bins) - 2 ** (-1. / n_bins) cqtbw = Q * fbas + gamma cqtbw = cqtbw.ravel() maxidx = np.where(fbas + cqtbw / 2. > nyq)[0] if len(maxidx) > 0: # replicate bug in MATLAB version... # or is it a feature if sum(maxidx) == 0: first = len(cqtbw) - 1 else: first = maxidx[0] fbas = fbas[:first] cqtbw = cqtbw[:first] minidx = np.where(fbas - cqtbw / 2. < 0)[0] if len(minidx) > 0: fbas = fbas[minidx[-1] + 1:] cqtbw = cqtbw[minidx[-1] + 1:] fbas_len = len(fbas) fbas_new = np.zeros((2 * (len(fbas) + 1))) fbas_new[1:len(fbas) + 1] = fbas fbas = fbas_new fbas[fbas_len + 1] = nyq fbas[fbas_len + 2:] = fs - fbas[1:fbas_len + 1][::-1] bw = np.zeros_like(fbas) bw[0] = 2 * fmin bw[1:len(cqtbw) + 1] = cqtbw bw[len(cqtbw) + 1] = fbas[fbas_len + 2] - fbas[fbas_len] bw[-len(cqtbw):] = cqtbw[::-1] bw = bw / fftres fbas = fbas / fftres posit = np.zeros_like(fbas) posit[:fbas_len + 2] = np.floor(fbas[:fbas_len + 2]) posit[fbas_len + 2:] = np.ceil(fbas[fbas_len + 2:]) base_shift = -posit[-1] % signal_len shift = np.zeros_like(posit).astype("int32") shift[1:] = (posit[1:] - posit[:-1]).astype("int32") shift[0] = base_shift bw = np.round(bw) bwfac = 1 M = bw min_win = 4 for ii in range(len(bw)): if bw[ii] < min_win: bw[ii] = min_win M[ii] = bw[ii] def _win(numel): if numel % 2 == 0: s1 = np.arange(0, .5, 1. / numel) if len(s1) != numel // 2: # edge case with small floating point numbers... s1 = s1[:-1] s2 = np.arange(-.5, 0, 1. / numel) if len(s2) != numel // 2: # edge case with small floating point numbers... s2 = s2[:-1] x = np.concatenate((s1, s2)) else: s1 = np.arange(0, .5, 1. / numel) s2 = np.arange(-.5 + .5 / numel, 0, 1. / numel) if len(s2) != numel // 2: # assume integer truncate 27 // 2 = 13 s2 = s2[:-1] x = np.concatenate((s1, s2)) assert len(x) == numel g = .5 + .5 * np.cos(2 * np.pi * x) return g multiscale = [_win(bi) for bi in bw] bw = bwfac * np.ceil(M / bwfac) for kk in [0, fbas_len + 1]: if M[kk] > M[kk + 1]: multiscale[kk] = np.ones(M[kk]).astype(multiscale[0].dtype) i1 = np.floor(M[kk] / 2) - np.floor(M[kk + 1] / 2) i2 = np.floor(M[kk] / 2) + np.ceil(M[kk + 1] / 2) # Very rarely, gets an off by 1 error? Seems to be at the end... # for now, slice multiscale[kk][i1:i2] = _win(M[kk + 1]) multiscale[kk] = multiscale[kk] / np.sqrt(M[kk]) return multiscale, shift, M def nsgtf_real(X, multiscale, shift, window_lens): """ Nonstationary Gabor Transform for real values References ---------- Velasco G. A., Holighaus N., Dorfler M., Grill T. Constructing an invertible constant-Q transform with nonstationary Gabor frames, Proceedings of the 14th International Conference on Digital Audio Effects (DAFx 11), Paris, France, 2011 Holighaus N., Dorfler M., Velasco G. A. and Grill T. A framework for invertible, real-time constant-Q transforms, submitted. Original matlab code copyright follows: AUTHOR(s) : Monika Dorfler, Gino Angelo Velasco, Nicki Holighaus, 2010-2011 COPYRIGHT : (c) NUHAG, Dept.Math., University of Vienna, AUSTRIA http://nuhag.eu/ Permission is granted to modify and re-distribute this code in any manner as long as this notice is preserved. All standard disclaimers apply. """ # This will break with multchannel input signal_len = len(X) N = len(shift) X_fft = np.fft.fft(X) fill = np.sum(shift) - signal_len if fill > 0: X_fft_tmp = np.zeros((signal_len + shift)) X_fft_tmp[:len(X_fft)] = X_fft X_fft = X_fft_tmp posit = np.cumsum(shift) - shift[0] scale_lens = np.array([len(m) for m in multiscale]) N = np.where(posit - np.floor(scale_lens) <= (signal_len + fill) / 2)[0][-1] c = [] # c[0] is almost exact for ii in range(N): idx_l = np.arange(np.ceil(scale_lens[ii] / 2), scale_lens[ii]) idx_r = np.arange(np.ceil(scale_lens[ii] / 2)) idx = np.concatenate((idx_l, idx_r)) idx = idx.astype("int32") subwin_range = posit[ii] + np.arange(-np.floor(scale_lens[ii] / 2), np.ceil(scale_lens[ii] / 2)) win_range = subwin_range % (signal_len + fill) win_range = win_range.astype("int32") if window_lens[ii] < scale_lens[ii]: raise ValueError("Not handling 'not enough channels' case") else: temp = np.zeros((window_lens[ii],)).astype(X_fft.dtype) temp_idx_l = np.arange(len(temp) - np.floor(scale_lens[ii] / 2), len(temp)) temp_idx_r = np.arange(np.ceil(scale_lens[ii] / 2)) temp_idx = np.concatenate((temp_idx_l, temp_idx_r)) temp_idx = temp_idx.astype("int32") temp[temp_idx] = X_fft[win_range] * multiscale[ii][idx] fs_new_bins = window_lens[ii] fk_bins = posit[ii] displace = fk_bins - np.floor(fk_bins / fs_new_bins) * fs_new_bins displace = displace.astype("int32") temp = np.roll(temp, displace) c.append(np.fft.ifft(temp)) if 0: # cell2mat concatenation c = np.concatenate(c) return c def nsdual(multiscale, shift, window_lens): """ Calculation of nonstationary inverse gabor filters References ---------- Velasco G. A., Holighaus N., Dorfler M., Grill T. Constructing an invertible constant-Q transform with nonstationary Gabor frames, Proceedings of the 14th International Conference on Digital Audio Effects (DAFx 11), Paris, France, 2011 Holighaus N., Dorfler M., Velasco G. A. and Grill T. A framework for invertible, real-time constant-Q transforms, submitted. Original matlab code copyright follows: AUTHOR(s) : Monika Dorfler, Gino Angelo Velasco, Nicki Holighaus, 2010-2011 COPYRIGHT : (c) NUHAG, Dept.Math., University of Vienna, AUSTRIA http://nuhag.eu/ Permission is granted to modify and re-distribute this code in any manner as long as this notice is preserved. All standard disclaimers apply. """ N = len(shift) posit = np.cumsum(shift) seq_len = posit[-1] posit = posit - shift[0] diagonal = np.zeros((seq_len,)) win_range = [] for ii in range(N): filt_len = len(multiscale[ii]) idx = np.arange(-np.floor(filt_len / 2), np.ceil(filt_len / 2)) win_range.append((posit[ii] + idx) % seq_len) subdiag = window_lens[ii] * np.fft.fftshift(multiscale[ii]) ** 2 ind = win_range[ii].astype(np.int) diagonal[ind] = diagonal[ind] + subdiag dual_multiscale = multiscale for ii in range(N): ind = win_range[ii].astype(np.int) dual_multiscale[ii] = np.fft.ifftshift( np.fft.fftshift(dual_multiscale[ii]) / diagonal[ind]) return dual_multiscale def nsgitf_real(c, c_dc, c_nyq, multiscale, shift): """ Nonstationary Inverse Gabor Transform on real valued signal References ---------- Velasco G. A., Holighaus N., Dorfler M., Grill T. Constructing an invertible constant-Q transform with nonstationary Gabor frames, Proceedings of the 14th International Conference on Digital Audio Effects (DAFx 11), Paris, France, 2011 Holighaus N., Dorfler M., Velasco G. A. and Grill T. A framework for invertible, real-time constant-Q transforms, submitted. Original matlab code copyright follows: AUTHOR(s) : Monika Dorfler, Gino Angelo Velasco, Nicki Holighaus, 2010-2011 COPYRIGHT : (c) NUHAG, Dept.Math., University of Vienna, AUSTRIA http://nuhag.eu/ Permission is granted to modify and re-distribute this code in any manner as long as this notice is preserved. All standard disclaimers apply. """ c_l = [] c_l.append(c_dc) c_l.extend([ci for ci in c]) c_l.append(c_nyq) posit = np.cumsum(shift) seq_len = posit[-1] posit -= shift[0] out = np.zeros((seq_len,)).astype(c_l[1].dtype) for ii in range(len(c_l)): filt_len = len(multiscale[ii]) win_range = posit[ii] + np.arange(-np.floor(filt_len / 2), np.ceil(filt_len / 2)) win_range = (win_range % seq_len).astype(np.int) temp = np.fft.fft(c_l[ii]) * len(c_l[ii]) fs_new_bins = len(c_l[ii]) fk_bins = posit[ii] displace = int(fk_bins - np.floor(fk_bins / fs_new_bins) * fs_new_bins) temp = np.roll(temp, -displace) l = np.arange(len(temp) - np.floor(filt_len / 2), len(temp)) r = np.arange(np.ceil(filt_len / 2)) temp_idx = (np.concatenate((l, r)) % len(temp)).astype(np.int) temp = temp[temp_idx] lf = np.arange(filt_len - np.floor(filt_len / 2), filt_len) rf = np.arange(np.ceil(filt_len / 2)) filt_idx = np.concatenate((lf, rf)).astype(np.int) m = multiscale[ii][filt_idx] out[win_range] = out[win_range] + m * temp nyq_bin = np.floor(seq_len / 2) + 1 out_idx = np.arange( nyq_bin - np.abs(1 - seq_len % 2) - 1, 0, -1).astype(np.int) out[nyq_bin:] = np.conj(out[out_idx]) t_out = np.real(np.fft.ifft(out)).astype(np.float64) return t_out def cqt(X, fs, n_bins=48, fmin=27.5, fmax="nyq", gamma=20): """ Constant Q Transform References ---------- Velasco G. A., Holighaus N., Dorfler M., Grill T. Constructing an invertible constant-Q transform with nonstationary Gabor frames, Proceedings of the 14th International Conference on Digital Audio Effects (DAFx 11), Paris, France, 2011 Holighaus N., Dorfler M., Velasco G. A. and Grill T. A framework for invertible, real-time constant-Q transforms, submitted. Original matlab code copyright follows: AUTHOR(s) : Monika Dorfler, Gino Angelo Velasco, Nicki Holighaus, 2010-2011 COPYRIGHT : (c) NUHAG, Dept.Math., University of Vienna, AUSTRIA http://nuhag.eu/ Permission is granted to modify and re-distribute this code in any manner as long as this notice is preserved. All standard disclaimers apply. """ if fmax == "nyq": fmax = fs / 2. multiscale, shift, window_lens = nsgcwin(fmin, fmax, n_bins, fs, len(X), gamma) fbas = fs * np.cumsum(shift[1:]) / len(X) fbas = fbas[:len(window_lens) // 2 - 1] bins = window_lens.shape[0] // 2 - 1 window_lens[1:bins + 1] = window_lens[bins + 2] window_lens[bins + 2:] = window_lens[1:bins + 1][::-1] norm = 2. * window_lens[:bins + 2] / float(len(X)) norm = np.concatenate((norm, norm[1:-1][::-1])) multiscale = [norm[ii] * multiscale[ii] for ii in range(2 * (bins + 1))] c = nsgtf_real(X, multiscale, shift, window_lens) c_dc = c[0] c_nyq = c[-1] c_sub = c[1:-1] c = np.vstack(c_sub) return c, c_dc, c_nyq, multiscale, shift, window_lens def icqt(X_cq, c_dc, c_nyq, multiscale, shift, window_lens): """ Inverse constant Q Transform References ---------- Velasco G. A., Holighaus N., Dorfler M., Grill T. Constructing an invertible constant-Q transform with nonstationary Gabor frames, Proceedings of the 14th International Conference on Digital Audio Effects (DAFx 11), Paris, France, 2011 Holighaus N., Dorfler M., Velasco G. A. and Grill T. A framework for invertible, real-time constant-Q transforms, submitted. Original matlab code copyright follows: AUTHOR(s) : Monika Dorfler, Gino Angelo Velasco, Nicki Holighaus, 2010-2011 COPYRIGHT : (c) NUHAG, Dept.Math., University of Vienna, AUSTRIA http://nuhag.eu/ Permission is granted to modify and re-distribute this code in any manner as long as this notice is preserved. All standard disclaimers apply. """ new_multiscale = nsdual(multiscale, shift, window_lens) X = nsgitf_real(X_cq, c_dc, c_nyq, new_multiscale, shift) return X def rolling_mean(X, window_size): w = 1.0 / window_size * np.ones((window_size)) return np.correlate(X, w, 'valid') def rolling_window(X, window_size): # for 1d data shape = X.shape[:-1] + (X.shape[-1] - window_size + 1, window_size) strides = X.strides + (X.strides[-1],) return np.lib.stride_tricks.as_strided(X, shape=shape, strides=strides) def voiced_unvoiced(X, window_size=256, window_step=128, copy=True): """ Voiced unvoiced detection from a raw signal Based on code from: https://www.clear.rice.edu/elec532/PROJECTS96/lpc/code.html Other references: http://www.seas.ucla.edu/spapl/code/harmfreq_MOLRT_VAD.m Parameters ---------- X : ndarray Raw input signal window_size : int, optional (default=256) The window size to use, in samples. window_step : int, optional (default=128) How far the window steps after each calculation, in samples. copy : bool, optional (default=True) Whether to make a copy of the input array or allow in place changes. """ X = np.array(X, copy=copy) if len(X.shape) < 2: X = X[None] n_points = X.shape[1] n_windows = n_points // window_step # Padding pad_sizes = [(window_size - window_step) // 2, window_size - window_step // 2] # TODO: Handling for odd window sizes / steps X = np.hstack((np.zeros((X.shape[0], pad_sizes[0])), X, np.zeros((X.shape[0], pad_sizes[1])))) clipping_factor = 0.6 b, a = sg.butter(10, np.pi * 9 / 40) voiced_unvoiced = np.zeros((n_windows, 1)) period = np.zeros((n_windows, 1)) for window in range(max(n_windows - 1, 1)): XX = X.ravel()[window * window_step + np.arange(window_size)] XX *= sg.hamming(len(XX)) XX = sg.lfilter(b, a, XX) left_max = np.max(np.abs(XX[:len(XX) // 3])) right_max = np.max(np.abs(XX[-len(XX) // 3:])) clip_value = clipping_factor * np.min([left_max, right_max]) XX_clip = np.clip(XX, clip_value, -clip_value) XX_corr = np.correlate(XX_clip, XX_clip, mode='full') center = np.argmax(XX_corr) right_XX_corr = XX_corr[center:] prev_window = max([window - 1, 0]) if voiced_unvoiced[prev_window] > 0: # Want it to be harder to turn off than turn on strength_factor = .29 else: strength_factor = .3 start = np.where(right_XX_corr < .3 * XX_corr[center])[0] # 20 is hardcoded but should depend on samplerate? try: start = np.max([20, start[0]]) except IndexError: start = 20 search_corr = right_XX_corr[start:] index = np.argmax(search_corr) second_max = search_corr[index] if (second_max > strength_factor * XX_corr[center]): voiced_unvoiced[window] = 1 period[window] = start + index - 1 else: voiced_unvoiced[window] = 0 period[window] = 0 return np.array(voiced_unvoiced), np.array(period) def lpc_analysis(X, order=8, window_step=128, window_size=2 * 128, emphasis=0.9, voiced_start_threshold=.9, voiced_stop_threshold=.6, truncate=False, copy=True): """ Extract LPC coefficients from a signal Based on code from: http://labrosa.ee.columbia.edu/matlab/sws/ _rParameters ---------- X : ndarray Signals to extract LPC coefficients from order : int, optional (default=8) Order of the LPC coefficients. For speech, use the general rule that the order is two times the expected number of formants plus 2. This can be formulated as 2 + 2 * (fs // 2000). For approx. signals with fs = 7000, this is 8 coefficients - 2 + 2 * (7000 // 2000). window_step : int, optional (default=128) The size (in samples) of the space between each window window_size : int, optional (default=2 * 128) The size of each window (in samples) to extract coefficients over emphasis : float, optional (default=0.9) The emphasis coefficient to use for filtering voiced_start_threshold : float, optional (default=0.9) Upper power threshold for estimating when speech has started voiced_stop_threshold : float, optional (default=0.6) Lower power threshold for estimating when speech has stopped truncate : bool, optional (default=False) Whether to cut the data at the last window or do zero padding. copy : bool, optional (default=True) Whether to copy the input X or modify in place Returns ------- lp_coefficients : ndarray lp coefficients to describe the frame per_frame_gain : ndarray calculated gain for each frame residual_excitation : ndarray leftover energy which is not described by lp coefficents and gain voiced_frames : ndarray array of [0, 1] values which holds voiced/unvoiced decision for each frame. References ---------- D. P. W. Ellis (2004), "Sinewave Speech Analysis/Synthesis in Matlab", Web resource, available: http://www.ee.columbia.edu/ln/labrosa/matlab/sws/ """ X = np.array(X, copy=copy) if len(X.shape) < 2: X = X[None] n_points = X.shape[1] n_windows = int(n_points // window_step) if not truncate: pad_sizes = [(window_size - window_step) // 2, window_size - window_step // 2] # TODO: Handling for odd window sizes / steps X = np.hstack((np.zeros((X.shape[0], int(pad_sizes[0]))), X, np.zeros((X.shape[0], int(pad_sizes[1]))))) else: pad_sizes = [0, 0] X = X[0, :n_windows * window_step] lp_coefficients = np.zeros((n_windows, order + 1)) per_frame_gain = np.zeros((n_windows, 1)) residual_excitation = np.zeros( int(((n_windows - 1) * window_step + window_size))) # Pre-emphasis high-pass filter X = sg.lfilter([1, -emphasis], 1, X) # stride_tricks.as_strided? autocorr_X = np.zeros((n_windows, int(2 * window_size - 1))) for window in range(max(n_windows - 1, 1)): wtws = int(window * window_step) XX = X.ravel()[wtws + np.arange(window_size, dtype="int32")] WXX = XX * sg.hanning(window_size) autocorr_X[window] = np.correlate(WXX, WXX, mode='full') center = np.argmax(autocorr_X[window]) RXX = autocorr_X[window, np.arange(center, window_size + order, dtype="int32")] R = linalg.toeplitz(RXX[:-1]) solved_R = linalg.pinv(R).dot(RXX[1:]) filter_coefs = np.hstack((1, -solved_R)) residual_signal = sg.lfilter(filter_coefs, 1, WXX) gain = np.sqrt(np.mean(residual_signal ** 2)) lp_coefficients[window] = filter_coefs per_frame_gain[window] = gain assign_range = wtws + np.arange(window_size, dtype="int32") residual_excitation[assign_range] += residual_signal / gain # Throw away first part in overlap mode for proper synthesis residual_excitation = residual_excitation[int(pad_sizes[0]):] return lp_coefficients, per_frame_gain, residual_excitation def lpc_to_frequency(lp_coefficients, per_frame_gain): """ Extract resonant frequencies and magnitudes from LPC coefficients and gains. Parameters ---------- lp_coefficients : ndarray LPC coefficients, such as those calculated by ``lpc_analysis`` per_frame_gain : ndarray Gain calculated for each frame, such as those calculated by ``lpc_analysis`` Returns ------- frequencies : ndarray Resonant frequencies calculated from LPC coefficients and gain. Returned frequencies are from 0 to 2 * pi magnitudes : ndarray Magnitudes of resonant frequencies References ---------- D. P. W. Ellis (2004), "Sinewave Speech Analysis/Synthesis in Matlab", Web resource, available: http://www.ee.columbia.edu/ln/labrosa/matlab/sws/ """ n_windows, order = lp_coefficients.shape frame_frequencies = np.zeros((n_windows, (order - 1) // 2)) frame_magnitudes = np.zeros_like(frame_frequencies) for window in range(n_windows): w_coefs = lp_coefficients[window] g_coefs = per_frame_gain[window] roots = np.roots(np.hstack(([1], w_coefs[1:]))) # Roots doesn't return the same thing as MATLAB... agh frequencies, index = np.unique( np.abs(np.angle(roots)), return_index=True) # Make sure 0 doesn't show up... gtz = np.where(frequencies > 0)[0] frequencies = frequencies[gtz] index = index[gtz] magnitudes = g_coefs / (1. - np.abs(roots)) sort_index = np.argsort(frequencies) frame_frequencies[window, :len(sort_index)] = frequencies[sort_index] frame_magnitudes[window, :len(sort_index)] = magnitudes[sort_index] return frame_frequencies, frame_magnitudes def lpc_to_lsf(all_lpc): if len(all_lpc.shape) < 2: all_lpc = all_lpc[None] order = all_lpc.shape[1] - 1 all_lsf = np.zeros((len(all_lpc), order)) for i in range(len(all_lpc)): lpc = all_lpc[i] lpc1 = np.append(lpc, 0) lpc2 = lpc1[::-1] sum_filt = lpc1 + lpc2 diff_filt = lpc1 - lpc2 if order % 2 != 0: deconv_diff, _ = sg.deconvolve(diff_filt, [1, 0, -1]) deconv_sum = sum_filt else: deconv_diff, _ = sg.deconvolve(diff_filt, [1, -1]) deconv_sum, _ = sg.deconvolve(sum_filt, [1, 1]) roots_diff = np.roots(deconv_diff) roots_sum = np.roots(deconv_sum) angle_diff = np.angle(roots_diff[::2]) angle_sum = np.angle(roots_sum[::2]) lsf = np.sort(np.hstack((angle_diff, angle_sum))) if len(lsf) != 0: all_lsf[i] = lsf return np.squeeze(all_lsf) def lsf_to_lpc(all_lsf): if len(all_lsf.shape) < 2: all_lsf = all_lsf[None] order = all_lsf.shape[1] all_lpc = np.zeros((len(all_lsf), order + 1)) for i in range(len(all_lsf)): lsf = all_lsf[i] zeros = np.exp(1j * lsf) sum_zeros = zeros[::2] diff_zeros = zeros[1::2] sum_zeros = np.hstack((sum_zeros, np.conj(sum_zeros))) diff_zeros = np.hstack((diff_zeros, np.conj(diff_zeros))) sum_filt = np.poly(sum_zeros) diff_filt = np.poly(diff_zeros) if order % 2 != 0: deconv_diff = sg.convolve(diff_filt, [1, 0, -1]) deconv_sum = sum_filt else: deconv_diff = sg.convolve(diff_filt, [1, -1]) deconv_sum = sg.convolve(sum_filt, [1, 1]) lpc = .5 * (deconv_sum + deconv_diff) # Last coefficient is 0 and not returned all_lpc[i] = lpc[:-1] return np.squeeze(all_lpc) def lpc_synthesis(lp_coefficients, per_frame_gain, residual_excitation=None, voiced_frames=None, window_step=128, emphasis=0.9): """ Synthesize a signal from LPC coefficients Based on code from: http://labrosa.ee.columbia.edu/matlab/sws/ http://web.uvic.ca/~tyoon/resource/auditorytoolbox/auditorytoolbox/synlpc.html Parameters ---------- lp_coefficients : ndarray Linear prediction coefficients per_frame_gain : ndarray Gain coefficients residual_excitation : ndarray or None, optional (default=None) Residual excitations. If None, this will be synthesized with white noise voiced_frames : ndarray or None, optional (default=None) Voiced frames. If None, all frames assumed to be voiced. window_step : int, optional (default=128) The size (in samples) of the space between each window emphasis : float, optional (default=0.9) The emphasis coefficient to use for filtering overlap_add : bool, optional (default=True) What type of processing to use when joining windows copy : bool, optional (default=True) Whether to copy the input X or modify in place Returns ------- synthesized : ndarray Sound vector synthesized from input arguments References ---------- D. P. W. Ellis (2004), "Sinewave Speech Analysis/Synthesis in Matlab", Web resource, available: http://www.ee.columbia.edu/ln/labrosa/matlab/sws/ """ # TODO: Incorporate better synthesis from # http://eecs.oregonstate.edu/education/docs/ece352/CompleteManual.pdf window_size = 2 * window_step [n_windows, order] = lp_coefficients.shape n_points = (n_windows + 1) * window_step n_excitation_points = n_points + window_step + window_step // 2 random_state = np.random.RandomState(1999) if residual_excitation is None: # Need to generate excitation if voiced_frames is None: # No voiced/unvoiced info voiced_frames = np.ones((lp_coefficients.shape[0], 1)) residual_excitation = np.zeros((n_excitation_points)) f, m = lpc_to_frequency(lp_coefficients, per_frame_gain) t = np.linspace(0, 1, window_size, endpoint=False) hanning = sg.hanning(window_size) for window in range(n_windows): window_base = window * window_step index = window_base + np.arange(window_size) if voiced_frames[window]: sig = np.zeros_like(t) cycles = np.cumsum(f[window][0] * t) sig += sg.sawtooth(cycles, 0.001) residual_excitation[index] += hanning * sig residual_excitation[index] += hanning * 0.01 * random_state.randn( window_size) else: n_excitation_points = residual_excitation.shape[0] n_points = n_excitation_points + window_step + window_step // 2 residual_excitation = np.hstack((residual_excitation, np.zeros(window_size))) if voiced_frames is None: voiced_frames = np.ones_like(per_frame_gain) synthesized = np.zeros((n_points)) for window in range(n_windows): window_base = window * window_step oldbit = synthesized[window_base + np.arange(window_step)] w_coefs = lp_coefficients[window] if not np.all(w_coefs): # Hack to make lfilter avoid # ValueError: BUG: filter coefficient a[0] == 0 not supported yet # when all coeffs are 0 w_coefs = [1] g_coefs = voiced_frames[window] * per_frame_gain[window] index = window_base + np.arange(window_size) newbit = g_coefs * sg.lfilter([1], w_coefs, residual_excitation[index]) synthesized[index] = np.hstack((oldbit, np.zeros( (window_size - window_step)))) synthesized[index] += sg.hanning(window_size) * newbit synthesized = sg.lfilter([1], [1, -emphasis], synthesized) return synthesized def soundsc(X, gain_scale=.9, copy=True): """ Approximate implementation of soundsc from MATLAB without the audio playing. Parameters ---------- X : ndarray Signal to be rescaled gain_scale : float Gain multipler, default .9 (90% of maximum representation) copy : bool, optional (default=True) Whether to make a copy of input signal or operate in place. Returns ------- X_sc : ndarray (-32767, 32767) scaled version of X as int16, suitable for writing with scipy.io.wavfile """ X = np.array(X, copy=copy) X = (X - X.min()) / (X.max() - X.min()) X = 2 * X - 1 X = gain_scale * X X = X * 2 ** 15 return X.astype('int16') def _wav2array(nchannels, sampwidth, data): # wavio.py # Author: Warren Weckesser # License: BSD 3-Clause (http://opensource.org/licenses/BSD-3-Clause) """data must be the string containing the bytes from the wav file.""" num_samples, remainder = divmod(len(data), sampwidth * nchannels) if remainder > 0: raise ValueError('The length of data is not a multiple of ' 'sampwidth * num_channels.') if sampwidth > 4: raise ValueError("sampwidth must not be greater than 4.") if sampwidth == 3: a = np.empty((num_samples, nchannels, 4), dtype=np.uint8) raw_bytes = np.fromstring(data, dtype=np.uint8) a[:, :, :sampwidth] = raw_bytes.reshape(-1, nchannels, sampwidth) a[:, :, sampwidth:] = (a[:, :, sampwidth - 1:sampwidth] >> 7) * 255 result = a.view('<i4').reshape(a.shape[:-1]) else: # 8 bit samples are stored as unsigned ints; others as signed ints. dt_char = 'u' if sampwidth == 1 else 'i' a = np.fromstring(data, dtype='<%s%d' % (dt_char, sampwidth)) result = a.reshape(-1, nchannels) return result def readwav(file): # wavio.py # Author: Warren Weckesser # License: BSD 3-Clause (http://opensource.org/licenses/BSD-3-Clause) """ Read a wav file. Returns the frame rate, sample width (in bytes) and a numpy array containing the data. This function does not read compressed wav files. """ wav = wave.open(file) rate = wav.getframerate() nchannels = wav.getnchannels() sampwidth = wav.getsampwidth() nframes = wav.getnframes() data = wav.readframes(nframes) wav.close() array = _wav2array(nchannels, sampwidth, data) return rate, sampwidth, array def csvd(arr): """ Do the complex SVD of a 2D array, returning real valued U, S, VT http://stemblab.github.io/complex-svd/ """ C_r = arr.real C_i = arr.imag block_x = C_r.shape[0] block_y = C_r.shape[1] K = np.zeros((2 * block_x, 2 * block_y)) # Upper left K[:block_x, :block_y] = C_r # Lower left K[:block_x, block_y:] = C_i # Upper right K[block_x:, :block_y] = -C_i # Lower right K[block_x:, block_y:] = C_r return svd(K, full_matrices=False) def icsvd(U, S, VT): """ Invert back to complex values from the output of csvd U, S, VT = csvd(X) X_rec = inv_csvd(U, S, VT) """ K = U.dot(np.diag(S)).dot(VT) block_x = U.shape[0] // 2 block_y = U.shape[1] // 2 arr_rec = np.zeros((block_x, block_y)) + 0j arr_rec.real = K[:block_x, :block_y] arr_rec.imag = K[:block_x, block_y:] return arr_rec def sinusoid_analysis(X, input_sample_rate, resample_block=128, copy=True): """ Contruct a sinusoidal model for the input signal. Parameters ---------- X : ndarray Input signal to model input_sample_rate : int The sample rate of the input signal resample_block : int, optional (default=128) Controls the step size of the sinusoidal model Returns ------- frequencies_hz : ndarray Frequencies for the sinusoids, in Hz. magnitudes : ndarray Magnitudes of sinusoids returned in ``frequencies`` References ---------- D. P. W. Ellis (2004), "Sinewave Speech Analysis/Synthesis in Matlab", Web resource, available: http://www.ee.columbia.edu/ln/labrosa/matlab/sws/ """ X = np.array(X, copy=copy) resample_to = 8000 if input_sample_rate != resample_to: if input_sample_rate % resample_to != 0: raise ValueError("Input sample rate must be a multiple of 8k!") # Should be able to use resample... ? # resampled_count = round(len(X) * resample_to / input_sample_rate) # X = sg.resample(X, resampled_count, window=sg.hanning(len(X))) X = sg.decimate(X, input_sample_rate // resample_to, zero_phase=True) step_size = 2 * round(resample_block / input_sample_rate * resample_to / 2.) a, g, e = lpc_analysis(X, order=8, window_step=step_size, window_size=2 * step_size) f, m = lpc_to_frequency(a, g) f_hz = f * resample_to / (2 * np.pi) return f_hz, m def slinterp(X, factor, copy=True): """ Slow-ish linear interpolation of a 1D numpy array. There must be some better function to do this in numpy. Parameters ---------- X : ndarray 1D input array to interpolate factor : int Integer factor to interpolate by Return ------ X_r : ndarray """ sz = np.product(X.shape) X = np.array(X, copy=copy) X_s = np.hstack((X[1:], [0])) X_r = np.zeros((factor, sz)) for i in range(factor): X_r[i, :] = (factor - i) / float(factor) * X + (i / float(factor)) * X_s return X_r.T.ravel()[:(sz - 1) * factor + 1] def sinusoid_synthesis(frequencies_hz, magnitudes, input_sample_rate=16000, resample_block=128): """ Create a time series based on input frequencies and magnitudes. Parameters ---------- frequencies_hz : ndarray Input signal to model magnitudes : int The sample rate of the input signal input_sample_rate : int, optional (default=16000) The sample rate parameter that the sinusoid analysis was run with resample_block : int, optional (default=128) Controls the step size of the sinusoidal model Returns ------- synthesized : ndarray Sound vector synthesized from input arguments References ---------- D. P. W. Ellis (2004), "Sinewave Speech Analysis/Synthesis in Matlab", Web resource, available: http://www.ee.columbia.edu/ln/labrosa/matlab/sws/ """ rows, cols = frequencies_hz.shape synthesized = np.zeros((1 + ((rows - 1) * resample_block),)) for col in range(cols): mags = slinterp(magnitudes[:, col], resample_block) freqs = slinterp(frequencies_hz[:, col], resample_block) cycles = np.cumsum(2 * np.pi * freqs / float(input_sample_rate)) sines = mags * np.cos(cycles) synthesized += sines return synthesized def dct_compress(X, n_components, window_size=128): """ Compress using the DCT Parameters ---------- X : ndarray, shape=(n_samples,) The input signal to compress. Should be 1-dimensional n_components : int The number of DCT components to keep. Setting n_components to about .5 * window_size can give compression with fairly good reconstruction. window_size : int The input X is broken into windows of window_size, each of which are then compressed with the DCT. Returns ------- X_compressed : ndarray, shape=(num_windows, window_size) A 2D array of non-overlapping DCT coefficients. For use with uncompress Reference --------- http://nbviewer.ipython.org/github/craffel/crucialpython/blob/master/week3/stride_tricks.ipynb """ if len(X) % window_size != 0: append = np.zeros((window_size - len(X) % window_size)) X = np.hstack((X, append)) num_frames = len(X) // window_size X_strided = X.reshape((num_frames, window_size)) X_dct = fftpack.dct(X_strided, norm='ortho') if n_components is not None: X_dct = X_dct[:, :n_components] return X_dct def dct_uncompress(X_compressed, window_size=128): """ Uncompress a DCT compressed signal (such as returned by ``compress``). Parameters ---------- X_compressed : ndarray, shape=(n_samples, n_features) Windowed and compressed array. window_size : int, optional (default=128) Size of the window used when ``compress`` was called. Returns ------- X_reconstructed : ndarray, shape=(n_samples) Reconstructed version of X. """ if X_compressed.shape[1] % window_size != 0: append = np.zeros((X_compressed.shape[0], window_size - X_compressed.shape[1] % window_size)) X_compressed = np.hstack((X_compressed, append)) X_r = fftpack.idct(X_compressed, norm='ortho') return X_r.ravel() def sine_window(X): """ Apply a sinusoid window to X. Parameters ---------- X : ndarray, shape=(n_samples, n_features) Input array of samples Returns ------- X_windowed : ndarray, shape=(n_samples, n_features) Windowed version of X. """ i = np.arange(X.shape[1]) win = np.sin(np.pi * (i + 0.5) / X.shape[1]) row_stride = 0 col_stride = win.itemsize strided_win = as_strided(win, shape=X.shape, strides=(row_stride, col_stride)) return X * strided_win def kaiserbessel_window(X, alpha=6.5): """ Apply a Kaiser-Bessel window to X. Parameters ---------- X : ndarray, shape=(n_samples, n_features) Input array of samples alpha : float, optional (default=6.5) Tuning parameter for Kaiser-Bessel function. alpha=6.5 should make perfect reconstruction possible for DCT. Returns ------- X_windowed : ndarray, shape=(n_samples, n_features) Windowed version of X. """ beta = np.pi * alpha win = sg.kaiser(X.shape[1], beta) row_stride = 0 col_stride = win.itemsize strided_win = as_strided(win, shape=X.shape, strides=(row_stride, col_stride)) return X * strided_win def overlap(X, window_size, window_step): """ Create an overlapped version of X Parameters ---------- X : ndarray, shape=(n_samples,) Input signal to window and overlap window_size : int Size of windows to take window_step : int Step size between windows Returns ------- X_strided : shape=(n_windows, window_size) 2D array of overlapped X """ if window_size % 2 != 0: raise ValueError("Window size must be even!") # Make sure there are an even number of windows before stridetricks append = np.zeros((window_size - len(X) % window_size)) X = np.hstack((X, append)) overlap_sz = window_size - window_step new_shape = X.shape[:-1] + ((X.shape[-1] - overlap_sz) // window_step, window_size) new_strides = X.strides[:-1] + (window_step * X.strides[-1],) + X.strides[-1:] X_strided = as_strided(X, shape=new_shape, strides=new_strides) return X_strided def halfoverlap(X, window_size): """ Create an overlapped version of X using 50% of window_size as overlap. Parameters ---------- X : ndarray, shape=(n_samples,) Input signal to window and overlap window_size : int Size of windows to take Returns ------- X_strided : shape=(n_windows, window_size) 2D array of overlapped X """ if window_size % 2 != 0: raise ValueError("Window size must be even!") window_step = window_size // 2 # Make sure there are an even number of windows before stridetricks append = np.zeros((window_size - len(X) % window_size)) X = np.hstack((X, append)) num_frames = len(X) // window_step - 1 row_stride = X.itemsize * window_step col_stride = X.itemsize X_strided = as_strided(X, shape=(num_frames, window_size), strides=(row_stride, col_stride)) return X_strided def invert_halfoverlap(X_strided): """ Invert ``halfoverlap`` function to reconstruct X Parameters ---------- X_strided : ndarray, shape=(n_windows, window_size) X as overlapped windows Returns ------- X : ndarray, shape=(n_samples,) Reconstructed version of X """ # Hardcoded 50% overlap! Can generalize later... n_rows, n_cols = X_strided.shape X = np.zeros((((int(n_rows // 2) + 1) * n_cols),)).astype(X_strided.dtype) start_index = 0 end_index = n_cols window_step = n_cols // 2 for row in range(X_strided.shape[0]): X[start_index:end_index] += X_strided[row] start_index += window_step end_index += window_step return X def overlap_add(X_strided, window_step, wsola=False): """ overlap add to reconstruct X Parameters ---------- X_strided : ndarray, shape=(n_windows, window_size) X as overlapped windows window_step : int step size for overlap add Returns ------- X : ndarray, shape=(n_samples,) Reconstructed version of X """ n_rows, window_size = X_strided.shape # Start with largest size (no overlap) then truncate after we finish # +2 for one window on each side X = np.zeros(((n_rows + 2) * window_size,)).astype(X_strided.dtype) start_index = 0 total_windowing_sum = np.zeros((X.shape[0])) win = 0.54 - .46 * np.cos(2 * np.pi * np.arange(window_size) / ( window_size - 1)) for i in range(n_rows): end_index = start_index + window_size if wsola: offset_size = window_size - window_step offset = xcorr_offset(X[start_index:start_index + offset_size], X_strided[i, :offset_size]) ss = start_index - offset st = end_index - offset if start_index - offset < 0: ss = 0 st = 0 + (end_index - start_index) X[ss:st] += X_strided[i] total_windowing_sum[ss:st] += win start_index = start_index + window_step else: X[start_index:end_index] += X_strided[i] total_windowing_sum[start_index:end_index] += win start_index += window_step # Not using this right now # X = np.real(X) / (total_windowing_sum + 1) X = X[:end_index] return X def overlap_dct_compress(X, n_components, window_size): """ Overlap (at 50% of window_size) and compress X. Parameters ---------- X : ndarray, shape=(n_samples,) Input signal to compress n_components : int number of DCT components to keep window_size : int Size of windows to take Returns ------- X_dct : ndarray, shape=(n_windows, n_components) Windowed and compressed version of X """ X_strided = halfoverlap(X, window_size) X_dct = fftpack.dct(X_strided, norm='ortho') if n_components is not None: X_dct = X_dct[:, :n_components] return X_dct # Evil voice is caused by adding double the zeros before inverse DCT... # Very cool bug but makes sense def overlap_dct_uncompress(X_compressed, window_size): """ Uncompress X as returned from ``overlap_compress``. Parameters ---------- X_compressed : ndarray, shape=(n_windows, n_components) Windowed and compressed version of X window_size : int Size of windows originally used when compressing X Returns ------- X_reconstructed : ndarray, shape=(n_samples,) Reconstructed version of X """ if X_compressed.shape[1] % window_size != 0: append = np.zeros((X_compressed.shape[0], window_size - X_compressed.shape[1] % window_size)) X_compressed = np.hstack((X_compressed, append)) X_r = fftpack.idct(X_compressed, norm='ortho') return invert_halfoverlap(X_r) def herz_to_mel(freqs): """ Based on code by Dan Ellis http://labrosa.ee.columbia.edu/matlab/tf_agc/ """ f_0 = 0 # 133.33333 f_sp = 200 / 3. # 66.66667 bark_freq = 1000. bark_pt = (bark_freq - f_0) / f_sp # The magic 1.0711703 which is the ratio needed to get from 1000 Hz # to 6400 Hz in 27 steps, and is *almost* the ratio between 1000 Hz # and the preceding linear filter center at 933.33333 Hz # (actually 1000/933.33333 = 1.07142857142857 and # exp(log(6.4)/27) = 1.07117028749447) if not isinstance(freqs, np.ndarray): freqs = np.array(freqs)[None] log_step = np.exp(np.log(6.4) / 27) lin_pts = (freqs < bark_freq) mel = 0. * freqs mel[lin_pts] = (freqs[lin_pts] - f_0) / f_sp mel[~lin_pts] = bark_pt + np.log(freqs[~lin_pts] / bark_freq) / np.log( log_step) return mel def mel_to_herz(mel): """ Based on code by Dan Ellis http://labrosa.ee.columbia.edu/matlab/tf_agc/ """ f_0 = 0 # 133.33333 f_sp = 200 / 3. # 66.66667 bark_freq = 1000. bark_pt = (bark_freq - f_0) / f_sp # The magic 1.0711703 which is the ratio needed to get from 1000 Hz # to 6400 Hz in 27 steps, and is *almost* the ratio between 1000 Hz # and the preceding linear filter center at 933.33333 Hz # (actually 1000/933.33333 = 1.07142857142857 and # exp(log(6.4)/27) = 1.07117028749447) if not isinstance(mel, np.ndarray): mel = np.array(mel)[None] log_step = np.exp(np.log(6.4) / 27) lin_pts = (mel < bark_pt) freqs = 0. * mel freqs[lin_pts] = f_0 + f_sp * mel[lin_pts] freqs[~lin_pts] = bark_freq * np.exp(np.log(log_step) * ( mel[~lin_pts] - bark_pt)) return freqs def mel_freq_weights(n_fft, fs, n_filts=None, width=None): """ Based on code by Dan Ellis http://labrosa.ee.columbia.edu/matlab/tf_agc/ """ min_freq = 0 max_freq = fs // 2 if width is None: width = 1. if n_filts is None: n_filts = int(herz_to_mel(max_freq) / 2) + 1 else: n_filts = int(n_filts) assert n_filts > 0 weights = np.zeros((n_filts, n_fft)) fft_freqs = np.arange(n_fft // 2) / n_fft * fs min_mel = herz_to_mel(min_freq) max_mel = herz_to_mel(max_freq) partial = np.arange(n_filts + 2) / (n_filts + 1.) * (max_mel - min_mel) bin_freqs = mel_to_herz(min_mel + partial) bin_bin = np.round(bin_freqs / fs * (n_fft - 1)) for i in range(n_filts): fs_i = bin_freqs[i + np.arange(3)] fs_i = fs_i[1] + width * (fs_i - fs_i[1]) lo_slope = (fft_freqs - fs_i[0]) / float(fs_i[1] - fs_i[0]) hi_slope = (fs_i[2] - fft_freqs) / float(fs_i[2] - fs_i[1]) weights[i, :n_fft // 2] = np.maximum( 0, np.minimum(lo_slope, hi_slope)) # Constant amplitude multiplier weights = np.diag(2. / (bin_freqs[2:n_filts + 2] - bin_freqs[:n_filts])).dot(weights) weights[:, n_fft // 2:] = 0 return weights def time_attack_agc(X, fs, t_scale=0.5, f_scale=1.): """ AGC based on code by Dan Ellis http://labrosa.ee.columbia.edu/matlab/tf_agc/ """ # 32 ms grid for FFT n_fft = 2 ** int(np.log(0.032 * fs) / np.log(2)) f_scale = float(f_scale) window_size = n_fft window_step = window_size // 2 X_freq = stft(X, window_size, mean_normalize=False) fft_fs = fs / window_step n_bands = max(10, 20 / f_scale) mel_width = f_scale * n_bands / 10. f_to_a = mel_freq_weights(n_fft, fs, n_bands, mel_width) f_to_a = f_to_a[:, :n_fft // 2 + 1] audiogram = np.abs(X_freq).dot(f_to_a.T) fbg = np.zeros_like(audiogram) state = np.zeros((audiogram.shape[1],)) alpha = np.exp(-(1. / fft_fs) / t_scale) for i in range(len(audiogram)): state = np.maximum(alpha * state, audiogram[i]) fbg[i] = state sf_to_a = np.sum(f_to_a, axis=0) E = np.diag(1. / (sf_to_a + (sf_to_a == 0))) E = E.dot(f_to_a.T) E = fbg.dot(E.T) E[E <= 0] = np.min(E[E > 0]) ts = istft(X_freq / E, window_size, mean_normalize=False) return ts, X_freq, E def hebbian_kmeans(X, n_clusters=10, n_epochs=10, W=None, learning_rate=0.01, batch_size=100, random_state=None, verbose=True): """ Modified from existing code from R. Memisevic See http://www.cs.toronto.edu/~rfm/code/hebbian_kmeans.py """ if W is None: if random_state is None: random_state = np.random.RandomState() W = 0.1 * random_state.randn(n_clusters, X.shape[1]) else: assert n_clusters == W.shape[0] X2 = (X ** 2).sum(axis=1, keepdims=True) last_print = 0 for e in range(n_epochs): for i in range(0, X.shape[0], batch_size): X_i = X[i: i + batch_size] X2_i = X2[i: i + batch_size] D = -2 * np.dot(W, X_i.T) D += (W ** 2).sum(axis=1, keepdims=True) D += X2_i.T S = (D == D.min(axis=0)[None, :]).astype("float").T W += learning_rate * ( np.dot(S.T, X_i) - S.sum(axis=0)[:, None] * W) if verbose: if e == 0 or e > (.05 * n_epochs + last_print): last_print = e print(("Epoch %i of %i, cost %.4f" % ( e + 1, n_epochs, D.min(axis=0).sum()))) return W def complex_to_real_view(arr_c): # Inplace view from complex to r, i as separate columns assert arr_c.dtype in [np.complex64, np.complex128] shp = arr_c.shape dtype = np.float64 if arr_c.dtype == np.complex128 else np.float32 arr_r = arr_c.ravel().view(dtype=dtype).reshape(shp[0], 2 * shp[1]) return arr_r def real_to_complex_view(arr_r): # Inplace view from real, image as columns to complex assert arr_r.dtype not in [np.complex64, np.complex128] shp = arr_r.shape dtype = np.complex128 if arr_r.dtype == np.float64 else np.complex64 arr_c = arr_r.ravel().view(dtype=dtype).reshape(shp[0], shp[1] // 2) return arr_c def complex_to_abs(arr_c): return np.abs(arr_c) def complex_to_angle(arr_c): return np.angle(arr_c) def abs_and_angle_to_complex(arr_abs, arr_angle): # abs(f_c2 - f_c) < 1E-15 return arr_abs * np.exp(1j * arr_angle) def angle_to_sin_cos(arr_angle): return np.hstack((np.sin(arr_angle), np.cos(arr_angle))) def sin_cos_to_angle(arr_sin, arr_cos): return np.arctan2(arr_sin, arr_cos) def polyphase_core(x, m, f): # x = input data # m = decimation rate # f = filter # Hack job - append zeros to match decimation rate if x.shape[0] % m != 0: x = np.append(x, np.zeros((m - x.shape[0] % m,))) if f.shape[0] % m != 0: f = np.append(f, np.zeros((m - f.shape[0] % m,))) polyphase = p = np.zeros((m, (x.shape[0] + f.shape[0]) / m), dtype=x.dtype) p[0, :-1] = np.convolve(x[::m], f[::m]) # Invert the x values when applying filters for i in range(1, m): p[i, 1:] = np.convolve(x[m - i::m], f[i::m]) return p def polyphase_single_filter(x, m, f): return np.sum(polyphase_core(x, m, f), axis=0) def polyphase_lowpass(arr, downsample=2, n_taps=50, filter_pad=1.1): filt = firwin(downsample * n_taps, 1 / (downsample * filter_pad)) filtered = polyphase_single_filter(arr, downsample, filt) return filtered def window(arr, window_size, window_step=1, axis=0): """ Directly taken from Erik Rigtorp's post to numpy-discussion. <http://www.mail-archive.com/[email protected]/msg29450.html> <http://stackoverflow.com/questions/4936620/using-strides-for-an-efficient-moving-average-filter> """ if window_size < 1: raise ValueError("`window_size` must be at least 1.") if window_size > arr.shape[-1]: raise ValueError("`window_size` is too long.") orig = list(range(len(arr.shape))) trans = list(range(len(arr.shape))) trans[axis] = orig[-1] trans[-1] = orig[axis] arr = arr.transpose(trans) shape = arr.shape[:-1] + (arr.shape[-1] - window_size + 1, window_size) strides = arr.strides + (arr.strides[-1],) strided = as_strided(arr, shape=shape, strides=strides) if window_step > 1: strided = strided[..., ::window_step, :] orig = list(range(len(strided.shape))) trans = list(range(len(strided.shape))) trans[-2] = orig[-1] trans[-1] = orig[-2] trans = trans[::-1] strided = strided.transpose(trans) return strided def unwindow(arr, window_size, window_step=1, axis=0): # undo windows by broadcast if axis != 0: raise ValueError("axis != 0 currently unsupported") shp = arr.shape unwindowed = np.tile(arr[:, None, ...], (1, window_step, 1, 1)) unwindowed = unwindowed.reshape(shp[0] * window_step, *shp[1:]) return unwindowed.mean(axis=1) def xcorr_offset(x1, x2): """ Under MSR-LA License Based on MATLAB implementation from Spectrogram Inversion Toolbox References ---------- D. Griffin and J. Lim. Signal estimation from modified short-time Fourier transform. IEEE Trans. Acoust. Speech Signal Process., 32(2):236-243, 1984. Malcolm Slaney, Daniel Naar and Richard F. Lyon. Auditory Model Inversion for Sound Separation. Proc. IEEE-ICASSP, Adelaide, 1994, II.77-80. Xinglei Zhu, G. Beauregard, L. Wyse. Real-Time Signal Estimation from Modified Short-Time Fourier Transform Magnitude Spectra. IEEE Transactions on Audio Speech and Language Processing, 08/2007. """ x1 = x1 - x1.mean() x2 = x2 - x2.mean() frame_size = len(x2) half = frame_size // 2 corrs = np.convolve(x1.astype('float32'), x2[::-1].astype('float32')) corrs[:half] = -1E30 corrs[-half:] = -1E30 offset = corrs.argmax() - len(x1) return offset def invert_spectrogram(X_s, step, calculate_offset=True, set_zero_phase=True): """ Under MSR-LA License Based on MATLAB implementation from Spectrogram Inversion Toolbox References ---------- D. Griffin and J. Lim. Signal estimation from modified short-time Fourier transform. IEEE Trans. Acoust. Speech Signal Process., 32(2):236-243, 1984. Malcolm Slaney, Daniel Naar and Richard F. Lyon. Auditory Model Inversion for Sound Separation. Proc. IEEE-ICASSP, Adelaide, 1994, II.77-80. Xinglei Zhu, G. Beauregard, L. Wyse. Real-Time Signal Estimation from Modified Short-Time Fourier Transform Magnitude Spectra. IEEE Transactions on Audio Speech and Language Processing, 08/2007. """ size = int(X_s.shape[1] // 2) wave = np.zeros((X_s.shape[0] * step + size)) # Getting overflow warnings with 32 bit... wave = wave.astype('float64') total_windowing_sum = np.zeros((X_s.shape[0] * step + size)) win = 0.54 - .46 * np.cos(2 * np.pi * np.arange(size) / (size - 1)) est_start = int(size // 2) - 1 est_end = est_start + size for i in range(X_s.shape[0]): wave_start = int(step * i) wave_end = wave_start + size if set_zero_phase: spectral_slice = X_s[i].real + 0j else: # already complex spectral_slice = X_s[i] # Don't need fftshift due to different impl. wave_est = np.real(np.fft.ifft(spectral_slice))[::-1] if calculate_offset and i > 0: offset_size = size - step if offset_size <= 0: print("WARNING: Large step size >50\% detected! " "This code works best with high overlap - try " "with 75% or greater") offset_size = step offset = xcorr_offset(wave[wave_start:wave_start + offset_size], wave_est[est_start:est_start + offset_size]) else: offset = 0 wave[wave_start:wave_end] += win * wave_est[ est_start - offset:est_end - offset] total_windowing_sum[wave_start:wave_end] += win wave = np.real(wave) / (total_windowing_sum + 1E-6) return wave def iterate_invert_spectrogram(X_s, fftsize, step, n_iter=10, verbose=False, complex_input=False): """ Under MSR-LA License Based on MATLAB implementation from Spectrogram Inversion Toolbox References ---------- D. Griffin and J. Lim. Signal estimation from modified short-time Fourier transform. IEEE Trans. Acoust. Speech Signal Process., 32(2):236-243, 1984. Malcolm Slaney, Daniel Naar and Richard F. Lyon. Auditory Model Inversion for Sound Separation. Proc. IEEE-ICASSP, Adelaide, 1994, II.77-80. Xinglei Zhu, G. Beauregard, L. Wyse. Real-Time Signal Estimation from Modified Short-Time Fourier Transform Magnitude Spectra. IEEE Transactions on Audio Speech and Language Processing, 08/2007. """ reg = np.max(X_s) / 1E8 X_best = copy.deepcopy(X_s) try: for i in range(n_iter): if verbose: print(("Runnning iter %i" % i)) if i == 0 and not complex_input: X_t = invert_spectrogram(X_best, step, calculate_offset=True, set_zero_phase=True) else: # Calculate offset was False in the MATLAB version # but in mine it massively improves the result # Possible bug in my impl? X_t = invert_spectrogram(X_best, step, calculate_offset=True, set_zero_phase=False) est = stft(X_t, fftsize=fftsize, step=step, compute_onesided=False) phase = est / np.maximum(reg, np.abs(est)) phase = phase[:len(X_s)] X_s = X_s[:len(phase)] X_best = X_s * phase except ValueError: raise ValueError("The iterate_invert_spectrogram algorithm requires" " stft(..., compute_onesided=False),", " be sure you have calculated stft with this argument") X_t = invert_spectrogram(X_best, step, calculate_offset=True, set_zero_phase=False) return np.real(X_t) def pretty_spectrogram(d, log=True, thresh=5, fft_size=512, step_size=64): """ creates a spectrogram log: take the log of the spectrgram thresh: threshold minimum power for log spectrogram """ specgram = np.abs(stft(d, fftsize=fft_size, step=step_size, real=False, compute_onesided=True)) if log == True: specgram /= specgram.max() # volume normalize to max 1 specgram = np.log10(specgram) # take log specgram[specgram < -thresh] = -thresh # set anything less than the threshold as the threshold else: specgram[specgram < thresh] = thresh # set anything less than the threshold as the threshold return specgram # Also mostly modified or taken from https://gist.github.com/kastnerkyle/179d6e9a88202ab0a2fe def invert_pretty_spectrogram(X_s, log=True, fft_size=512, step_size=512 / 4, n_iter=10): if log == True: X_s = np.power(10, X_s) X_s = np.concatenate([X_s, X_s[:, ::-1]], axis=1) X_t = iterate_invert_spectrogram(X_s, fft_size, step_size, n_iter=n_iter) return X_t def harvest_get_downsampled_signal(x, fs, target_fs): decimation_ratio = np.round(fs / target_fs) offset = np.ceil(140. / decimation_ratio) * decimation_ratio start_pad = x[0] * np.ones(int(offset), dtype=np.float32) end_pad = x[-1] * np.ones(int(offset), dtype=np.float32) x = np.concatenate((start_pad, x, end_pad), axis=0) if fs < target_fs: raise ValueError("CASE NOT HANDLED IN harvest_get_downsampled_signal") else: try: y0 = sg.decimate(x, int(decimation_ratio), 3, zero_phase=True) except: y0 = sg.decimate(x, int(decimation_ratio), 3) actual_fs = fs / decimation_ratio y = y0[int(offset / decimation_ratio):-int(offset / decimation_ratio)] y = y - np.mean(y) return y, actual_fs def harvest_get_raw_f0_candidates(number_of_frames, boundary_f0_list, y_length, temporal_positions, actual_fs, y_spectrum, f0_floor, f0_ceil): raw_f0_candidates = np.zeros((len(boundary_f0_list), number_of_frames), dtype=np.float32) for i in range(len(boundary_f0_list)): raw_f0_candidates[i, :] = harvest_get_f0_candidate_from_raw_event( boundary_f0_list[i], actual_fs, y_spectrum, y_length, temporal_positions, f0_floor, f0_ceil) return raw_f0_candidates def harvest_nuttall(N): t = np.arange(0, N) * 2 * np.pi / (N - 1) coefs = np.array([0.355768, -0.487396, 0.144232, -0.012604]) window = np.cos(t[:, None].dot(np.array([0., 1., 2., 3.])[None])).dot(coefs[:, None]) # 1D window... return window.ravel() def harvest_get_f0_candidate_from_raw_event(boundary_f0, fs, y_spectrum, y_length, temporal_positions, f0_floor, f0_ceil): filter_length_half = int(np.round(fs / boundary_f0 * 2)) band_pass_filter_base = harvest_nuttall(filter_length_half * 2 + 1) shifter = np.cos(2 * np.pi * boundary_f0 * np.arange(-filter_length_half, filter_length_half + 1) / float(fs)) band_pass_filter = band_pass_filter_base * shifter index_bias = filter_length_half # possible numerical issues if 32 bit spectrum_low_pass_filter = np.fft.fft(band_pass_filter.astype("float64"), len(y_spectrum)) filtered_signal = np.real(np.fft.ifft(spectrum_low_pass_filter * y_spectrum)) index_bias = filter_length_half + 1 filtered_signal = filtered_signal[index_bias + np.arange(y_length).astype("int32")] negative_zero_cross = harvest_zero_crossing_engine(filtered_signal, fs) positive_zero_cross = harvest_zero_crossing_engine(-filtered_signal, fs) d_filtered_signal = filtered_signal[1:] - filtered_signal[:-1] peak = harvest_zero_crossing_engine(d_filtered_signal, fs) dip = harvest_zero_crossing_engine(-d_filtered_signal, fs) f0_candidate = harvest_get_f0_candidate_contour(negative_zero_cross, positive_zero_cross, peak, dip, temporal_positions) f0_candidate[f0_candidate > (boundary_f0 * 1.1)] = 0. f0_candidate[f0_candidate < (boundary_f0 * .9)] = 0. f0_candidate[f0_candidate > f0_ceil] = 0. f0_candidate[f0_candidate < f0_floor] = 0. return f0_candidate def harvest_get_f0_candidate_contour(negative_zero_cross_tup, positive_zero_cross_tup, peak_tup, dip_tup, temporal_positions): # 0 is inteval locations # 1 is interval based f0 usable_channel = max(0, len(negative_zero_cross_tup[0]) - 2) usable_channel *= max(0, len(positive_zero_cross_tup[0]) - 2) usable_channel *= max(0, len(peak_tup[0]) - 2) usable_channel *= max(0, len(dip_tup[0]) - 2) if usable_channel > 0: interpolated_f0_list = np.zeros((4, len(temporal_positions))) nz = interp1d(negative_zero_cross_tup[0], negative_zero_cross_tup[1], kind="linear", bounds_error=False, fill_value="extrapolate") pz = interp1d(positive_zero_cross_tup[0], positive_zero_cross_tup[1], kind="linear", bounds_error=False, fill_value="extrapolate") pkz = interp1d(peak_tup[0], peak_tup[1], kind="linear", bounds_error=False, fill_value="extrapolate") dz = interp1d(dip_tup[0], dip_tup[1], kind="linear", bounds_error=False, fill_value="extrapolate") interpolated_f0_list[0, :] = nz(temporal_positions) interpolated_f0_list[1, :] = pz(temporal_positions) interpolated_f0_list[2, :] = pkz(temporal_positions) interpolated_f0_list[3, :] = dz(temporal_positions) f0_candidate = np.mean(interpolated_f0_list, axis=0) else: f0_candidate = temporal_positions * 0 return f0_candidate def harvest_zero_crossing_engine(x, fs, debug=False): # negative zero crossing, going from positive to negative x_shift = x.copy() x_shift[:-1] = x_shift[1:] x_shift[-1] = x[-1] # +1 here to avoid edge case at 0 points = np.arange(len(x)) + 1 negative_going_points = points * ((x_shift * x < 0) * (x_shift < x)) edge_list = negative_going_points[negative_going_points > 0] # -1 to correct index fine_edge_list = edge_list - x[edge_list - 1] / (x[edge_list] - x[edge_list - 1]).astype("float32") interval_locations = (fine_edge_list[:-1] + fine_edge_list[1:]) / float(2) / fs interval_based_f0 = float(fs) / (fine_edge_list[1:] - fine_edge_list[:-1]) return interval_locations, interval_based_f0 def harvest_detect_official_f0_candidates(raw_f0_candidates): number_of_channels, number_of_frames = raw_f0_candidates.shape f0_candidates = np.zeros((int(np.round(number_of_channels / 10.)), number_of_frames)) number_of_candidates = 0 threshold = 10 for i in range(number_of_frames): tmp = raw_f0_candidates[:, i].copy() tmp[tmp > 0] = 1. tmp[0] = 0 tmp[-1] = 0 tmp = tmp[1:] - tmp[:-1] st = np.where(tmp == 1)[0] ed = np.where(tmp == -1)[0] count = 0 for j in range(len(st)): dif = ed[j] - st[j] if dif >= threshold: tmp_f0 = raw_f0_candidates[st[j] + 1: ed[j] + 1, i] f0_candidates[count, i] = np.mean(tmp_f0) count = count + 1 number_of_candidates = max(number_of_candidates, count) return f0_candidates, number_of_candidates def harvest_overlap_f0_candidates(f0_candidates, max_number_of_f0_candidates): n = 3 # this is the optimized parameter... apparently number_of_candidates = n * 2 + 1 new_f0_candidates = f0_candidates[number_of_candidates, :].copy() new_f0_candidates = new_f0_candidates[None] # hack to bypass magic matlab-isms of allocating when indexing OOB new_f0_candidates = np.vstack( [new_f0_candidates] + (new_f0_candidates.shape[-1] - 1) * [np.zeros_like(new_f0_candidates)]) # this indexing is megagross, possible source for bugs! all_nonzero = [] for i in range(number_of_candidates): st = max(-(i - n), 0) ed = min(-(i - n), 0) f1_b = np.arange(max_number_of_f0_candidates).astype("int32") f1 = f1_b + int(i * max_number_of_f0_candidates) all_nonzero = list(set(all_nonzero + list(f1))) f2 = None if ed == 0 else ed f3 = -ed f4 = None if st == 0 else -st new_f0_candidates[f1, st:f2] = f0_candidates[f1_b, f3:f4] new_f0_candidates = new_f0_candidates[all_nonzero, :] return new_f0_candidates def harvest_refine_candidates(x, fs, temporal_positions, f0_candidates, f0_floor, f0_ceil): new_f0_candidates = f0_candidates.copy() f0_scores = f0_candidates * 0. for i in range(len(temporal_positions)): for j in range(len(f0_candidates)): tmp_f0 = f0_candidates[j, i] if tmp_f0 == 0: continue res = harvest_get_refined_f0(x, fs, temporal_positions[i], tmp_f0, f0_floor, f0_ceil) new_f0_candidates[j, i] = res[0] f0_scores[j, i] = res[1] return new_f0_candidates, f0_scores def harvest_get_refined_f0(x, fs, current_time, current_f0, f0_floor, f0_ceil): half_window_length = np.ceil(3. * fs / current_f0 / 2.) window_length_in_time = (2. * half_window_length + 1) / float(fs) base_time = np.arange(-half_window_length, half_window_length + 1) / float(fs) fft_size = int(2 ** np.ceil(np.log2((half_window_length * 2 + 1)) + 1)) frequency_axis = np.arange(fft_size) / fft_size * float(fs) base_index = np.round((current_time + base_time) * fs + 0.001) index_time = (base_index - 1) / float(fs) window_time = index_time - current_time part1 = np.cos(2 * np.pi * window_time / window_length_in_time) part2 = np.cos(4 * np.pi * window_time / window_length_in_time) main_window = 0.42 + 0.5 * part1 + 0.08 * part2 ext = np.zeros((len(main_window) + 2)) ext[1:-1] = main_window diff_window = -((ext[1:-1] - ext[:-2]) + (ext[2:] - ext[1:-1])) / float(2) safe_index = np.maximum(1, np.minimum(len(x), base_index)).astype("int32") - 1 spectrum = np.fft.fft(x[safe_index] * main_window, fft_size) diff_spectrum = np.fft.fft(x[safe_index] * diff_window, fft_size) numerator_i = np.real(spectrum) * np.imag(diff_spectrum) - np.imag(spectrum) * np.real(diff_spectrum) power_spectrum = np.abs(spectrum) ** 2 instantaneous_frequency = frequency_axis + numerator_i / power_spectrum * float(fs) / 2. / np.pi number_of_harmonics = int(min(np.floor(float(fs) / 2. / current_f0), 6.)) harmonics_index = np.arange(number_of_harmonics) + 1 index_list = np.round(current_f0 * fft_size / fs * harmonics_index).astype("int32") instantaneous_frequency_list = instantaneous_frequency[index_list] amplitude_list = np.sqrt(power_spectrum[index_list]) refined_f0 = np.sum(amplitude_list * instantaneous_frequency_list) refined_f0 /= np.sum(amplitude_list * harmonics_index.astype("float32")) variation = np.abs( ((instantaneous_frequency_list / harmonics_index.astype("float32")) - current_f0) / float(current_f0)) refined_score = 1. / (0.000000000001 + np.mean(variation)) if (refined_f0 < f0_floor) or (refined_f0 > f0_ceil) or (refined_score < 2.5): refined_f0 = 0. redined_score = 0. return refined_f0, refined_score def harvest_select_best_f0(reference_f0, f0_candidates, allowed_range): best_f0 = 0 best_error = allowed_range for i in range(len(f0_candidates)): tmp = np.abs(reference_f0 - f0_candidates[i]) / reference_f0 if tmp > best_error: continue best_f0 = f0_candidates[i] best_error = tmp return best_f0, best_error def harvest_remove_unreliable_candidates(f0_candidates, f0_scores): new_f0_candidates = f0_candidates.copy() new_f0_scores = f0_scores.copy() threshold = 0.05 f0_length = f0_candidates.shape[1] number_of_candidates = len(f0_candidates) for i in range(1, f0_length - 1): for j in range(number_of_candidates): reference_f0 = f0_candidates[j, i] if reference_f0 == 0: continue _, min_error1 = harvest_select_best_f0(reference_f0, f0_candidates[:, i + 1], 1) _, min_error2 = harvest_select_best_f0(reference_f0, f0_candidates[:, i - 1], 1) min_error = min([min_error1, min_error2]) if min_error > threshold: new_f0_candidates[j, i] = 0 new_f0_scores[j, i] = 0 return new_f0_candidates, new_f0_scores def harvest_search_f0_base(f0_candidates, f0_scores): f0_base = f0_candidates[0, :] * 0. for i in range(len(f0_base)): max_index = np.argmax(f0_scores[:, i]) f0_base[i] = f0_candidates[max_index, i] return f0_base def harvest_fix_step_1(f0_base, allowed_range): # Step 1: Rapid change of f0 contour is replaced by 0 f0_step1 = f0_base.copy() f0_step1[0] = 0. f0_step1[1] = 0. for i in range(2, len(f0_base)): if f0_base[i] == 0: continue reference_f0 = f0_base[i - 1] * 2 - f0_base[i - 2] c1 = np.abs((f0_base[i] - reference_f0) / reference_f0) > allowed_range c2 = np.abs((f0_base[i] - f0_base[i - 1]) / f0_base[i - 1]) > allowed_range if c1 and c2: f0_step1[i] = 0. return f0_step1 def harvest_fix_step_2(f0_step1, voice_range_minimum): f0_step2 = f0_step1.copy() boundary_list = harvest_get_boundary_list(f0_step1) for i in range(1, int(len(boundary_list) / 2.) + 1): distance = boundary_list[(2 * i) - 1] - boundary_list[(2 * i) - 2] if distance < voice_range_minimum: # need one more due to range not including last index lb = boundary_list[(2 * i) - 2] ub = boundary_list[(2 * i) - 1] + 1 f0_step2[lb:ub] = 0. return f0_step2 def harvest_fix_step_3(f0_step2, f0_candidates, allowed_range, f0_scores): f0_step3 = f0_step2.copy() boundary_list = harvest_get_boundary_list(f0_step2) multichannel_f0 = harvest_get_multichannel_f0(f0_step2, boundary_list) rrange = np.zeros((int(len(boundary_list) / 2), 2)) threshold1 = 100 threshold2 = 2200 count = 0 for i in range(1, int(len(boundary_list) / 2) + 1): # changed to 2 * i - 2 extended_f0, tmp_range_1 = harvest_extend_f0(multichannel_f0[i - 1, :], boundary_list[(2 * i) - 1], min([len(f0_step2) - 1, boundary_list[(2 * i) - 1] + threshold1]), 1, f0_candidates, allowed_range) tmp_f0_sequence, tmp_range_0 = harvest_extend_f0(extended_f0, boundary_list[(2 * i) - 2], max([2, boundary_list[(2 * i) - 2] - threshold1]), -1, f0_candidates, allowed_range) mean_f0 = np.mean(tmp_f0_sequence[tmp_range_0: tmp_range_1 + 1]) if threshold2 / mean_f0 < (tmp_range_1 - tmp_range_0): multichannel_f0[count, :] = tmp_f0_sequence rrange[count, :] = np.array([tmp_range_0, tmp_range_1]) count = count + 1 if count > 0: multichannel_f0 = multichannel_f0[:count, :] rrange = rrange[:count, :] f0_step3 = harvest_merge_f0(multichannel_f0, rrange, f0_candidates, f0_scores) return f0_step3 def harvest_merge_f0(multichannel_f0, rrange, f0_candidates, f0_scores): number_of_channels = len(multichannel_f0) sorted_order = np.argsort(rrange[:, 0]) f0 = multichannel_f0[sorted_order[0], :] for i in range(1, number_of_channels): if rrange[sorted_order[i], 0] - rrange[sorted_order[0], 1] > 0: # no overlapping f0[int(rrange[sorted_order[i], 0]):int(rrange[sorted_order[i], 1])] = multichannel_f0[sorted_order[i], int(rrange[sorted_order[i], 0]):int( rrange[sorted_order[i], 1])] cp = rrange.copy() rrange[sorted_order[0], 0] = cp[sorted_order[i], 0] rrange[sorted_order[0], 1] = cp[sorted_order[i], 1] else: cp = rrange.copy() res = harvest_merge_f0_sub(f0, cp[sorted_order[0], 0], cp[sorted_order[0], 1], multichannel_f0[sorted_order[i], :], cp[sorted_order[i], 0], cp[sorted_order[i], 1], f0_candidates, f0_scores) f0 = res[0] rrange[sorted_order[0], 1] = res[1] return f0 def harvest_merge_f0_sub(f0_1, st1, ed1, f0_2, st2, ed2, f0_candidates, f0_scores): merged_f0 = f0_1 if (st1 <= st2) and (ed1 >= ed2): new_ed = ed1 return merged_f0, new_ed new_ed = ed2 score1 = 0. score2 = 0. for i in range(int(st2), int(ed1) + 1): score1 = score1 + harvest_serach_score(f0_1[i], f0_candidates[:, i], f0_scores[:, i]) score2 = score2 + harvest_serach_score(f0_2[i], f0_candidates[:, i], f0_scores[:, i]) if score1 > score2: merged_f0[int(ed1):int(ed2) + 1] = f0_2[int(ed1):int(ed2) + 1] else: merged_f0[int(st2):int(ed2) + 1] = f0_2[int(st2):int(ed2) + 1] return merged_f0, new_ed def harvest_serach_score(f0, f0_candidates, f0_scores): score = 0 for i in range(len(f0_candidates)): if (f0 == f0_candidates[i]) and (score < f0_scores[i]): score = f0_scores[i] return score def harvest_extend_f0(f0, origin, last_point, shift, f0_candidates, allowed_range): threshold = 4 extended_f0 = f0.copy() tmp_f0 = extended_f0[origin] shifted_origin = origin count = 0 for i in np.arange(origin, last_point + shift, shift): # off by 1 issues if (i + shift) >= f0_candidates.shape[1]: continue bf0, bs = harvest_select_best_f0(tmp_f0, f0_candidates[:, i + shift], allowed_range) extended_f0[i + shift] = bf0 if extended_f0[i + shift] != 0: tmp_f0 = extended_f0[i + shift] count = 0 shifted_origin = i + shift else: count = count + 1 if count == threshold: break return extended_f0, shifted_origin def harvest_get_multichannel_f0(f0, boundary_list): multichannel_f0 = np.zeros((int(len(boundary_list) / 2), len(f0))) for i in range(1, int(len(boundary_list) / 2) + 1): sl = boundary_list[(2 * i) - 2] el = boundary_list[(2 * i) - 1] + 1 multichannel_f0[i - 1, sl:el] = f0[sl:el] return multichannel_f0 def harvest_get_boundary_list(f0): vuv = f0.copy() vuv[vuv != 0] = 1. vuv[0] = 0 vuv[-1] = 0 diff_vuv = vuv[1:] - vuv[:-1] boundary_list = np.where(diff_vuv != 0)[0] boundary_list[::2] = boundary_list[::2] + 1 return boundary_list def harvest_fix_step_4(f0_step3, threshold): f0_step4 = f0_step3.copy() boundary_list = harvest_get_boundary_list(f0_step3) for i in range(1, int(len(boundary_list) / 2.)): distance = boundary_list[(2 * i)] - boundary_list[(2 * i) - 1] - 1 if distance >= threshold: continue boundary0 = f0_step3[boundary_list[(2 * i) - 1]] + 1 boundary1 = f0_step3[boundary_list[(2 * i)]] - 1 coefficient = (boundary1 - boundary0) / float((distance + 1)) count = 1 st = boundary_list[(2 * i) - 1] + 1 ed = boundary_list[(2 * i)] for j in range(st, ed): f0_step4[j] = boundary0 + coefficient * count count = count + 1 return f0_step4 def harvest_fix_f0_contour(f0_candidates, f0_scores): f0_base = harvest_search_f0_base(f0_candidates, f0_scores) f0_step1 = harvest_fix_step_1(f0_base, 0.008) # optimized? f0_step2 = harvest_fix_step_2(f0_step1, 6) # optimized? f0_step3 = harvest_fix_step_3(f0_step2, f0_candidates, 0.18, f0_scores) # optimized? f0 = harvest_fix_step_4(f0_step3, 9) # optimized vuv = f0.copy() vuv[vuv != 0] = 1. return f0, vuv def harvest_filter_f0_contour(f0, st, ed, b, a): smoothed_f0 = f0.copy() smoothed_f0[:st] = smoothed_f0[st] smoothed_f0[ed + 1:] = smoothed_f0[ed] aaa = sg.lfilter(b, a, smoothed_f0) bbb = sg.lfilter(b, a, aaa[::-1]) smoothed_f0 = bbb[::-1].copy() smoothed_f0[:st] = 0. smoothed_f0[ed + 1:] = 0. return smoothed_f0 def harvest_smooth_f0_contour(f0): b = np.array([0.0078202080334971724, 0.015640416066994345, 0.0078202080334971724]) a = np.array([1.0, -1.7347257688092754, 0.76600660094326412]) smoothed_f0 = np.concatenate([np.zeros(300, ), f0, np.zeros(300, )]) boundary_list = harvest_get_boundary_list(smoothed_f0) multichannel_f0 = harvest_get_multichannel_f0(smoothed_f0, boundary_list) for i in range(1, int(len(boundary_list) / 2) + 1): tmp_f0_contour = harvest_filter_f0_contour(multichannel_f0[i - 1, :], boundary_list[(2 * i) - 2], boundary_list[(2 * i) - 1], b, a) st = boundary_list[(2 * i) - 2] ed = boundary_list[(2 * i) - 1] + 1 smoothed_f0[st:ed] = tmp_f0_contour[st:ed] smoothed_f0 = smoothed_f0[300:-300] return smoothed_f0 def _world_get_temporal_positions(x_len, fs): frame_period = 5 basic_frame_period = 1 basic_temporal_positions = np.arange(0, x_len / float(fs), basic_frame_period / float(1000)) temporal_positions = np.arange(0, x_len / float(fs), frame_period / float(1000)) return basic_temporal_positions, temporal_positions def harvest(x, fs): f0_floor = 71 f0_ceil = 800 target_fs = 8000 channels_in_octave = 40. basic_temporal_positions, temporal_positions = _world_get_temporal_positions(len(x), fs) adjusted_f0_floor = f0_floor * 0.9 adjusted_f0_ceil = f0_ceil * 1.1 boundary_f0_list = np.arange(1, np.ceil( np.log2(adjusted_f0_ceil / adjusted_f0_floor) * channels_in_octave) + 1) / float(channels_in_octave) boundary_f0_list = adjusted_f0_floor * 2.0 ** boundary_f0_list y, actual_fs = harvest_get_downsampled_signal(x, fs, target_fs) fft_size = 2. ** np.ceil(np.log2(len(y) + np.round(fs / f0_floor * 4) + 1)) y_spectrum = np.fft.fft(y, int(fft_size)) raw_f0_candidates = harvest_get_raw_f0_candidates( len(basic_temporal_positions), boundary_f0_list, len(y), basic_temporal_positions, actual_fs, y_spectrum, f0_floor, f0_ceil) f0_candidates, number_of_candidates = harvest_detect_official_f0_candidates(raw_f0_candidates) f0_candidates = harvest_overlap_f0_candidates(f0_candidates, number_of_candidates) f0_candidates, f0_scores = harvest_refine_candidates(y, actual_fs, basic_temporal_positions, f0_candidates, f0_floor, f0_ceil) f0_candidates, f0_scores = harvest_remove_unreliable_candidates(f0_candidates, f0_scores) connected_f0, vuv = harvest_fix_f0_contour(f0_candidates, f0_scores) smoothed_f0 = harvest_smooth_f0_contour(connected_f0) idx = np.minimum(len(smoothed_f0) - 1, np.round(temporal_positions * 1000)).astype("int32") f0 = smoothed_f0[idx] vuv = vuv[idx] f0_candidates = f0_candidates return temporal_positions, f0, vuv, f0_candidates def cheaptrick_get_windowed_waveform(x, fs, current_f0, current_position): half_window_length = np.round(1.5 * fs / float(current_f0)) base_index = np.arange(-half_window_length, half_window_length + 1) index = np.round(current_position * fs + 0.001) + base_index + 1 safe_index = np.minimum(len(x), np.maximum(1, np.round(index))).astype("int32") safe_index = safe_index - 1 segment = x[safe_index] time_axis = base_index / float(fs) / 1.5 window1 = 0.5 * np.cos(np.pi * time_axis * float(current_f0)) + 0.5 window1 = window1 / np.sqrt(np.sum(window1 ** 2)) waveform = segment * window1 - window1 * np.mean(segment * window1) / np.mean(window1) return waveform def cheaptrick_get_power_spectrum(waveform, fs, fft_size, f0): power_spectrum = np.abs(np.fft.fft(waveform, fft_size)) ** 2 frequency_axis = np.arange(fft_size) / float(fft_size) * float(fs) ind = frequency_axis < (f0 + fs / fft_size) low_frequency_axis = frequency_axis[ind] low_frequency_replica = interp1d(f0 - low_frequency_axis, power_spectrum[ind], kind="linear", fill_value="extrapolate")(low_frequency_axis) p1 = low_frequency_replica[(frequency_axis < f0)[:len(low_frequency_replica)]] p2 = power_spectrum[(frequency_axis < f0)[:len(power_spectrum)]] power_spectrum[frequency_axis < f0] = p1 + p2 lb1 = int(fft_size / 2) + 1 lb2 = 1 ub2 = int(fft_size / 2) power_spectrum[lb1:] = power_spectrum[lb2:ub2][::-1] return power_spectrum def cheaptrick_linear_smoothing(power_spectrum, f0, fs, fft_size): double_frequency_axis = np.arange(2 * fft_size) / float(fft_size) * fs - fs double_spectrum = np.concatenate([power_spectrum, power_spectrum]) double_segment = np.cumsum(double_spectrum * (fs / float(fft_size))) center_frequency = np.arange(int(fft_size / 2) + 1) / float(fft_size) * fs low_levels = cheaptrick_interp1h(double_frequency_axis + fs / float(fft_size) / 2., double_segment, center_frequency - f0 / 3.) high_levels = cheaptrick_interp1h(double_frequency_axis + fs / float(fft_size) / 2., double_segment, center_frequency + f0 / 3.) smoothed_spectrum = (high_levels - low_levels) * 1.5 / f0 return smoothed_spectrum def cheaptrick_interp1h(x, y, xi): delta_x = float(x[1] - x[0]) xi = np.maximum(x[0], np.minimum(x[-1], xi)) xi_base = (np.floor((xi - x[0]) / delta_x)).astype("int32") xi_fraction = (xi - x[0]) / delta_x - xi_base delta_y = np.zeros_like(y) delta_y[:-1] = y[1:] - y[:-1] yi = y[xi_base] + delta_y[xi_base] * xi_fraction return yi def cheaptrick_smoothing_with_recovery(smoothed_spectrum, f0, fs, fft_size, q1): quefrency_axis = np.arange(fft_size) / float(fs) # 0 is NaN smoothing_lifter = np.sin(np.pi * f0 * quefrency_axis) / (np.pi * f0 * quefrency_axis) p = smoothing_lifter[1:int(fft_size / 2)][::-1].copy() smoothing_lifter[int(fft_size / 2) + 1:] = p smoothing_lifter[0] = 1. compensation_lifter = (1 - 2. * q1) + 2. * q1 * np.cos(2 * np.pi * quefrency_axis * f0) p = compensation_lifter[1:int(fft_size / 2)][::-1].copy() compensation_lifter[int(fft_size / 2) + 1:] = p tandem_cepstrum = np.fft.fft(np.log(smoothed_spectrum)) tmp_spectral_envelope = np.exp(np.real(np.fft.ifft(tandem_cepstrum * smoothing_lifter * compensation_lifter))) spectral_envelope = tmp_spectral_envelope[:int(fft_size / 2) + 1] return spectral_envelope def cheaptrick_estimate_one_slice(x, fs, current_f0, current_position, fft_size, q1): waveform = cheaptrick_get_windowed_waveform(x, fs, current_f0, current_position) power_spectrum = cheaptrick_get_power_spectrum(waveform, fs, fft_size, current_f0) smoothed_spectrum = cheaptrick_linear_smoothing(power_spectrum, current_f0, fs, fft_size) comb_spectrum = np.concatenate([smoothed_spectrum, smoothed_spectrum[1:-1][::-1]]) spectral_envelope = cheaptrick_smoothing_with_recovery(comb_spectrum, current_f0, fs, fft_size, q1) return spectral_envelope def cheaptrick(x, fs, temporal_positions, f0_sequence, vuv, fftlen="auto", q1=-0.15): f0_sequence = f0_sequence.copy() f0_low_limit = 71 default_f0 = 500 if fftlen == "auto": fftlen = int(2 ** np.ceil(np.log2(3. * float(fs) / f0_low_limit + 1))) # raise ValueError("Only fftlen auto currently supported") fft_size = fftlen f0_low_limit = fs * 3.0 / (fft_size - 3.0) f0_sequence[vuv == 0] = default_f0 spectrogram = np.zeros((int(fft_size / 2.) + 1, len(f0_sequence))) for i in range(len(f0_sequence)): if f0_sequence[i] < f0_low_limit: f0_sequence[i] = default_f0 spectrogram[:, i] = cheaptrick_estimate_one_slice(x, fs, f0_sequence[i], temporal_positions[i], fft_size, q1) return temporal_positions, spectrogram.T, fs def d4c_love_train(x, fs, current_f0, current_position, threshold): vuv = 0 if current_f0 == 0: return vuv lowest_f0 = 40 current_f0 = max([current_f0, lowest_f0]) fft_size = int(2 ** np.ceil(np.log2(3. * fs / lowest_f0 + 1))) boundary0 = int(np.ceil(100 / (float(fs) / fft_size))) boundary1 = int(np.ceil(4000 / (float(fs) / fft_size))) boundary2 = int(np.ceil(7900 / (float(fs) / fft_size))) waveform = d4c_get_windowed_waveform(x, fs, current_f0, current_position, 1.5, 2) power_spectrum = np.abs(np.fft.fft(waveform, int(fft_size)) ** 2) power_spectrum[0:boundary0 + 1] = 0. cumulative_spectrum = np.cumsum(power_spectrum) if (cumulative_spectrum[boundary1] / cumulative_spectrum[boundary2]) > threshold: vuv = 1 return vuv def d4c_get_windowed_waveform(x, fs, current_f0, current_position, half_length, window_type): half_window_length = int(np.round(half_length * fs / current_f0)) base_index = np.arange(-half_window_length, half_window_length + 1) index = np.round(current_position * fs + 0.001) + base_index + 1 safe_index = np.minimum(len(x), np.maximum(1, np.round(index))).astype("int32") - 1 segment = x[safe_index] time_axis = base_index / float(fs) / float(half_length) if window_type == 1: window1 = 0.5 * np.cos(np.pi * time_axis * current_f0) + 0.5 elif window_type == 2: window1 = 0.08 * np.cos(np.pi * time_axis * current_f0 * 2) window1 += 0.5 * np.cos(np.pi * time_axis * current_f0) + 0.42 else: raise ValueError("Unknown window type") waveform = segment * window1 - window1 * np.mean(segment * window1) / np.mean(window1) return waveform def d4c_get_static_centroid(x, fs, current_f0, current_position, fft_size): waveform1 = d4c_get_windowed_waveform(x, fs, current_f0, current_position + 1. / current_f0 / 4., 2, 2) waveform2 = d4c_get_windowed_waveform(x, fs, current_f0, current_position - 1. / current_f0 / 4., 2, 2) centroid1 = d4c_get_centroid(waveform1, fft_size) centroid2 = d4c_get_centroid(waveform2, fft_size) centroid = d4c_dc_correction(centroid1 + centroid2, fs, fft_size, current_f0) return centroid def d4c_get_centroid(x, fft_size): fft_size = int(fft_size) time_axis = np.arange(1, len(x) + 1) x = x.copy() x = x / np.sqrt(np.sum(x ** 2)) spectrum = np.fft.fft(x, fft_size) weighted_spectrum = np.fft.fft(-x * 1j * time_axis, fft_size) centroid = -(weighted_spectrum.imag) * spectrum.real + spectrum.imag * weighted_spectrum.real return centroid def d4c_dc_correction(signal, fs, fft_size, f0): fft_size = int(fft_size) frequency_axis = np.arange(fft_size) / fft_size * fs low_frequency_axis = frequency_axis[frequency_axis < f0 + fs / fft_size] low_frequency_replica = interp1d(f0 - low_frequency_axis, signal[frequency_axis < f0 + fs / fft_size], kind="linear", fill_value="extrapolate")(low_frequency_axis) idx = frequency_axis < f0 signal[idx] = low_frequency_replica[idx[:len(low_frequency_replica)]] + signal[idx] signal[int(fft_size / 2.) + 1:] = signal[1: int(fft_size / 2.)][::-1] return signal def d4c_linear_smoothing(group_delay, fs, fft_size, width): double_frequency_axis = np.arange(2 * fft_size) / float(fft_size) * fs - fs double_spectrum = np.concatenate([group_delay, group_delay]) double_segment = np.cumsum(double_spectrum * (fs / float(fft_size))) center_frequency = np.arange(int(fft_size / 2) + 1) / float(fft_size) * fs low_levels = cheaptrick_interp1h(double_frequency_axis + fs / float(fft_size) / 2., double_segment, center_frequency - width / 2.) high_levels = cheaptrick_interp1h(double_frequency_axis + fs / float(fft_size) / 2., double_segment, center_frequency + width / 2.) smoothed_spectrum = (high_levels - low_levels) / width return smoothed_spectrum def d4c_get_smoothed_power_spectrum(waveform, fs, f0, fft_size): power_spectrum = np.abs(np.fft.fft(waveform, int(fft_size))) ** 2 spectral_envelope = d4c_dc_correction(power_spectrum, fs, fft_size, f0) spectral_envelope = d4c_linear_smoothing(spectral_envelope, fs, fft_size, f0) spectral_envelope = np.concatenate([spectral_envelope, spectral_envelope[1:-1][::-1]]) return spectral_envelope def d4c_get_static_group_delay(static_centroid, smoothed_power_spectrum, fs, f0, fft_size): group_delay = static_centroid / smoothed_power_spectrum group_delay = d4c_linear_smoothing(group_delay, fs, fft_size, f0 / 2.) group_delay = np.concatenate([group_delay, group_delay[1:-1][::-1]]) smoothed_group_delay = d4c_linear_smoothing(group_delay, fs, fft_size, f0) group_delay = group_delay[:int(fft_size / 2) + 1] - smoothed_group_delay group_delay = np.concatenate([group_delay, group_delay[1:-1][::-1]]) return group_delay def d4c_get_coarse_aperiodicity(group_delay, fs, fft_size, frequency_interval, number_of_aperiodicities, window1): boundary = np.round(fft_size / len(window1) * 8) half_window_length = np.floor(len(window1) / 2) coarse_aperiodicity = np.zeros((number_of_aperiodicities, 1)) for i in range(1, number_of_aperiodicities + 1): center = np.floor(frequency_interval * i / (fs / float(fft_size))) segment = group_delay[int(center - half_window_length):int(center + half_window_length + 1)] * window1 power_spectrum = np.abs(np.fft.fft(segment, int(fft_size))) ** 2 cumulative_power_spectrum = np.cumsum(np.sort(power_spectrum[:int(fft_size / 2) + 1])) coarse_aperiodicity[i - 1] = -10 * np.log10( cumulative_power_spectrum[int(fft_size / 2 - boundary) - 1] / cumulative_power_spectrum[-1]) return coarse_aperiodicity def d4c_estimate_one_slice(x, fs, current_f0, frequency_interval, current_position, fft_size, number_of_aperiodicities, window1): if current_f0 == 0: coarse_aperiodicity = np.zeros((number_of_aperiodicities, 1)) return coarse_aperiodicity static_centroid = d4c_get_static_centroid(x, fs, current_f0, current_position, fft_size) waveform = d4c_get_windowed_waveform(x, fs, current_f0, current_position, 2, 1) smoothed_power_spectrum = d4c_get_smoothed_power_spectrum(waveform, fs, current_f0, fft_size) static_group_delay = d4c_get_static_group_delay(static_centroid, smoothed_power_spectrum, fs, current_f0, fft_size) coarse_aperiodicity = d4c_get_coarse_aperiodicity(static_group_delay, fs, fft_size, frequency_interval, number_of_aperiodicities, window1) return coarse_aperiodicity def d4c(x, fs, temporal_positions_h, f0_h, vuv_h, threshold="default", fft_size="auto"): f0_low_limit = 47 if fft_size == "auto": fft_size = 2 ** np.ceil(np.log2(4. * fs / f0_low_limit + 1.)) else: raise ValueError("Only fft_size auto currently supported") f0_low_limit_for_spectrum = 71 fft_size_for_spectrum = 2 ** np.ceil(np.log2(3 * fs / f0_low_limit_for_spectrum + 1.)) threshold = 0.85 upper_limit = 15000 frequency_interval = 3000 f0 = f0_h.copy() temporal_positions = temporal_positions_h.copy() f0[vuv_h == 0] = 0. number_of_aperiodicities = int( np.floor(np.min([upper_limit, fs / 2. - frequency_interval]) / float(frequency_interval))) window_length = np.floor(frequency_interval / (fs / float(fft_size))) * 2 + 1 window1 = harvest_nuttall(window_length) aperiodicity = np.zeros((int(fft_size_for_spectrum / 2) + 1, len(f0))) coarse_ap = np.zeros((1, len(f0))) frequency_axis = np.arange(int(fft_size_for_spectrum / 2) + 1) * float(fs) / fft_size_for_spectrum coarse_axis = np.arange(number_of_aperiodicities + 2) * frequency_interval coarse_axis[-1] = fs / 2. for i in range(len(f0)): r = d4c_love_train(x, fs, f0[i], temporal_positions_h[i], threshold) if r == 0: aperiodicity[:, i] = 1 - 0.000000000001 continue current_f0 = max([f0_low_limit, f0[i]]) coarse_aperiodicity = d4c_estimate_one_slice(x, fs, current_f0, frequency_interval, temporal_positions[i], fft_size, number_of_aperiodicities, window1) coarse_ap[0, i] = coarse_aperiodicity.ravel()[0] coarse_aperiodicity = np.maximum(0, coarse_aperiodicity - (current_f0 - 100) * 2. / 100.) piece = np.concatenate([[-60], -coarse_aperiodicity.ravel(), [-0.000000000001]]) part = interp1d(coarse_axis, piece, kind="linear")(frequency_axis) / 20. aperiodicity[:, i] = 10 ** part return temporal_positions_h, f0_h, vuv_h, aperiodicity.T, coarse_ap.squeeze() def world_synthesis_time_base_generation(temporal_positions, f0, fs, vuv, time_axis, default_f0): f0_interpolated_raw = interp1d(temporal_positions, f0, kind="linear", fill_value="extrapolate")(time_axis) vuv_interpolated = interp1d(temporal_positions, vuv, kind="linear", fill_value="extrapolate")(time_axis) vuv_interpolated = vuv_interpolated > 0.5 f0_interpolated = f0_interpolated_raw * vuv_interpolated.astype("float32") f0_interpolated[f0_interpolated == 0] = f0_interpolated[f0_interpolated == 0] + default_f0 total_phase = np.cumsum(2 * np.pi * f0_interpolated / float(fs)) core = np.mod(total_phase, 2 * np.pi) core = np.abs(core[1:] - core[:-1]) # account for diff, avoid deprecation warning with [:-1] pulse_locations = time_axis[:-1][core > (np.pi / 2.)] pulse_locations_index = np.round(pulse_locations * fs).astype("int32") return pulse_locations, pulse_locations_index, vuv_interpolated def world_synthesis_get_spectral_parameters(temporal_positions, temporal_position_index, spectrogram, amplitude_periodic, amplitude_random, pulse_locations): floor_index = int(np.floor(temporal_position_index) - 1) assert floor_index >= 0 ceil_index = int(np.ceil(temporal_position_index) - 1) t1 = temporal_positions[floor_index] t2 = temporal_positions[ceil_index] if t1 == t2: spectrum_slice = spectrogram[:, floor_index] periodic_slice = amplitude_periodic[:, floor_index] aperiodic_slice = amplitude_random[:, floor_index] else: cs = np.concatenate([spectrogram[:, floor_index][None], spectrogram[:, ceil_index][None]], axis=0) mmm = max([t1, min([t2, pulse_locations])]) spectrum_slice = interp1d(np.array([t1, t2]), cs, kind="linear", axis=0)(mmm.copy()) cp = np.concatenate([amplitude_periodic[:, floor_index][None], amplitude_periodic[:, ceil_index][None]], axis=0) periodic_slice = interp1d(np.array([t1, t2]), cp, kind="linear", axis=0)(mmm.copy()) ca = np.concatenate([amplitude_random[:, floor_index][None], amplitude_random[:, ceil_index][None]], axis=0) aperiodic_slice = interp1d(np.array([t1, t2]), ca, kind="linear", axis=0)(mmm.copy()) return spectrum_slice, periodic_slice, aperiodic_slice """ Filter data with an FIR filter using the overlap-add method. from http://projects.scipy.org/scipy/attachment/ticket/837/fftfilt.py """ def nextpow2(x): """Return the first integer N such that 2**N >= abs(x)""" return np.ceil(np.log2(np.abs(x))) def fftfilt(b, x, *n): """Filter the signal x with the FIR filter described by the coefficients in b using the overlap-add method. If the FFT length n is not specified, it and the overlap-add block length are selected so as to minimize the computational cost of the filtering operation.""" N_x = len(x) N_b = len(b) # Determine the FFT length to use: if len(n): # Use the specified FFT length (rounded up to the nearest # power of 2), provided that it is no less than the filter # length: n = n[0] if n != int(n) or n <= 0: raise ValueError('n must be a nonnegative integer') if n < N_b: n = N_b N_fft = 2 ** nextpow2(n) else: if N_x > N_b: # When the filter length is smaller than the signal, # choose the FFT length and block size that minimize the # FLOPS cost. Since the cost for a length-N FFT is # (N/2)*log2(N) and the filtering operation of each block # involves 2 FFT operations and N multiplications, the # cost of the overlap-add method for 1 length-N block is # N*(1+log2(N)). For the sake of efficiency, only FFT # lengths that are powers of 2 are considered: N = 2 ** np.arange(np.ceil(np.log2(N_b)), np.floor(np.log2(N_x))) cost = np.ceil(N_x / (N - N_b + 1)) * N * (np.log2(N) + 1) N_fft = N[np.argmin(cost)] else: # When the filter length is at least as long as the signal, # filter the signal using a single block: N_fft = 2 ** nextpow2(N_b + N_x - 1) N_fft = int(N_fft) # Compute the block length: L = int(N_fft - N_b + 1) # Compute the transform of the filter: H = np.fft.fft(b, N_fft) y = np.zeros(N_x, dtype=np.float32) i = 0 while i <= N_x: il = min([i + L, N_x]) k = min([i + N_fft, N_x]) yt = np.fft.ifft(np.fft.fft(x[i:il], N_fft) * H, N_fft) # Overlap.. y[i:k] = y[i:k] + yt[:k - i] # and add i += L return y def world_synthesis(f0_d4c, vuv_d4c, aperiodicity_d4c, spectrogram_ct, fs_ct, random_seed=1999): # swap 0 and 1 axis spectrogram_ct = spectrogram_ct.T fs = fs_ct # coarse -> fine aper if len(aperiodicity_d4c.shape) == 1 or aperiodicity_d4c.shape[1] == 1: print("Coarse aperiodicity detected - interpolating to full size") aper = np.zeros_like(spectrogram_ct) if len(aperiodicity_d4c.shape) == 1: aperiodicity_d4c = aperiodicity_d4c[None, :] else: aperiodicity_d4c = aperiodicity_d4c.T coarse_aper_d4c = aperiodicity_d4c frequency_interval = 3000 upper_limit = 15000 number_of_aperiodicities = int( np.floor(np.min([upper_limit, fs / 2. - frequency_interval]) / float(frequency_interval))) coarse_axis = np.arange(number_of_aperiodicities + 2) * frequency_interval coarse_axis[-1] = fs / 2. f0_low_limit_for_spectrum = 71 fft_size_for_spectrum = 2 ** np.ceil(np.log2(3 * fs / f0_low_limit_for_spectrum + 1.)) frequency_axis = np.arange(int(fft_size_for_spectrum / 2) + 1) * float(fs) / fft_size_for_spectrum for i in range(len(f0_d4c)): ca = coarse_aper_d4c[0, i] cf = f0_d4c[i] coarse_aperiodicity = np.maximum(0, ca - (cf - 100) * 2. / 100.) piece = np.concatenate([[-60], -ca.ravel(), [-0.000000000001]]) part = interp1d(coarse_axis, piece, kind="linear")(frequency_axis) / 20. aper[:, i] = 10 ** part aperiodicity_d4c = aper else: aperiodicity_d4c = aperiodicity_d4c.T default_f0 = 500. random_state = np.random.RandomState(1999) spectrogram = spectrogram_ct aperiodicity = aperiodicity_d4c # max 30s, if greater than thrown an error max_len = 5000000 _, temporal_positions = _world_get_temporal_positions(max_len, fs) temporal_positions = temporal_positions[:spectrogram.shape[1]] # temporal_positions = temporal_positions_d4c # from IPython import embed; embed() # raise ValueError() vuv = vuv_d4c f0 = f0_d4c time_axis = np.arange(temporal_positions[0], temporal_positions[-1], 1. / fs) y = 0. * time_axis r = world_synthesis_time_base_generation(temporal_positions, f0, fs, vuv, time_axis, default_f0) pulse_locations, pulse_locations_index, interpolated_vuv = r fft_size = int((len(spectrogram) - 1) * 2) base_index = np.arange(-fft_size / 2, fft_size / 2) + 1 y_length = len(y) tmp_complex_cepstrum = np.zeros((fft_size,), dtype=np.complex128) latter_index = np.arange(int(fft_size / 2) + 1, fft_size + 1) - 1 temporal_position_index = interp1d(temporal_positions, np.arange(1, len(temporal_positions) + 1), kind="linear", fill_value="extrapolate")(pulse_locations) temporal_postion_index = np.maximum(1, np.minimum(len(temporal_positions), temporal_position_index)) - 1 amplitude_aperiodic = aperiodicity ** 2 amplitude_periodic = np.maximum(0.001, (1. - amplitude_aperiodic)) for i in range(len(pulse_locations_index)): spectrum_slice, periodic_slice, aperiodic_slice = world_synthesis_get_spectral_parameters( temporal_positions, temporal_position_index[i], spectrogram, amplitude_periodic, amplitude_aperiodic, pulse_locations[i]) idx = min(len(pulse_locations_index), i + 2) - 1 noise_size = pulse_locations_index[idx] - pulse_locations_index[i] output_buffer_index = np.maximum(1, np.minimum(y_length, pulse_locations_index[i] + 1 + base_index)).astype( "int32") - 1 if interpolated_vuv[pulse_locations_index[i]] >= 0.5: tmp_periodic_spectrum = spectrum_slice * periodic_slice # eps in matlab/octave tmp_periodic_spectrum[tmp_periodic_spectrum == 0] = 2.2204E-16 periodic_spectrum = np.concatenate([tmp_periodic_spectrum, tmp_periodic_spectrum[1:-1][::-1]]) tmp_cepstrum = np.real(np.fft.fft(np.log(np.abs(periodic_spectrum)) / 2.)) tmp_complex_cepstrum[latter_index] = tmp_cepstrum[latter_index] * 2 tmp_complex_cepstrum[0] = tmp_cepstrum[0] response = np.fft.fftshift(np.real(np.fft.ifft(np.exp(np.fft.ifft( tmp_complex_cepstrum))))) y[output_buffer_index] += response * np.sqrt( max([1, noise_size])) tmp_aperiodic_spectrum = spectrum_slice * aperiodic_slice else: tmp_aperiodic_spectrum = spectrum_slice tmp_aperiodic_spectrum[tmp_aperiodic_spectrum == 0] = 2.2204E-16 aperiodic_spectrum = np.concatenate([tmp_aperiodic_spectrum, tmp_aperiodic_spectrum[1:-1][::-1]]) tmp_cepstrum = np.real(np.fft.fft(np.log(np.abs(aperiodic_spectrum)) / 2.)) tmp_complex_cepstrum[latter_index] = tmp_cepstrum[latter_index] * 2 tmp_complex_cepstrum[0] = tmp_cepstrum[0] rc = np.fft.ifft(tmp_complex_cepstrum) erc = np.exp(rc) response = np.fft.fftshift(np.real(np.fft.ifft(erc))) noise_input = random_state.randn(max([3, noise_size]), ) y[output_buffer_index] = y[output_buffer_index] + fftfilt(noise_input - np.mean(noise_input), response) return y def _mgc_b2c(wc, c, alpha): wc_o = np.zeros_like(wc) desired_order = len(wc) - 1 for i in range(0, len(c))[::-1]: prev = copy.copy(wc_o) wc_o[0] = c[i] if desired_order >= 1: wc_o[1] = (1. - alpha ** 2) * prev[0] + alpha * prev[1] for m in range(2, desired_order + 1): wc_o[m] = prev[m - 1] + alpha * (prev[m] - wc_o[m - 1]) return wc_o def _mgc_ptrans(p, m, alpha): d = 0. o = 0. d = p[m] for i in range(1, m)[::-1]: o = p[i] + alpha * d d = p[i] p[i] = o o = alpha * d p[0] = (1. - alpha ** 2) * p[0] + 2 * o def _mgc_qtrans(q, m, alpha): d = q[1] for i in range(2, 2 * m + 1): o = q[i] + alpha * d d = q[i] q[i] = o def _mgc_gain(er, c, m, g): t = 0. if g != 0: for i in range(1, m + 1): t += er[i] * c[i] return er[0] + g * t else: return er[0] def _mgc_fill_toeplitz(A, t): n = len(t) for i in range(n): for j in range(n): A[i, j] = t[i - j] if i - j >= 0 else t[j - i] def _mgc_fill_hankel(A, t): n = len(t) // 2 + 1 for i in range(n): for j in range(n): A[i, j] = t[i + j] def _mgc_ignorm(c, gamma): if gamma == 0.: c[0] = np.log(c[0]) return c gain = c[0] ** gamma c[1:] *= gain c[0] = (gain - 1.) / gamma def _mgc_gnorm(c, gamma): if gamma == 0.: c[0] = np.exp(c[0]) return c gain = 1. + gamma * c[0] c[1:] /= gain c[0] = gain ** (1. / gamma) def _mgc_b2mc(mc, alpha): m = len(mc) o = 0. d = mc[m - 1] for i in range(m - 1)[::-1]: o = mc[i] + alpha * d d = mc[i] mc[i] = o def _mgc_mc2b(mc, alpha): itr = list(range(len(mc) - 1))[::-1] for i in itr: mc[i] = mc[i] - alpha * mc[i + 1] def _mgc_gc2gc(src_ceps, src_gamma=0., dst_order=None, dst_gamma=0.): if dst_order == None: dst_order = len(src_ceps) - 1 dst_ceps = np.zeros((dst_order + 1,), dtype=src_ceps.dtype) dst_order = len(dst_ceps) - 1 m1 = len(src_ceps) - 1 dst_ceps[0] = copy.deepcopy(src_ceps[0]) for m in range(2, dst_order + 2): ss1 = 0. ss2 = 0. min_1 = m1 if (m1 < m - 1) else m - 2 itr = list(range(2, min_1 + 2)) if len(itr) < 1: if min_1 + 1 == 2: itr = [2] else: itr = [] """ # old slower version for k in itr: assert k >= 1 assert (m - k) >= 0 cc = src_ceps[k - 1] * dst_ceps[m - k] ss2 += (k - 1) * cc ss1 += (m - k) * cc """ if len(itr) > 0: itr = np.array(itr) cc_a = src_ceps[itr - 1] * dst_ceps[m - itr] ss2 += ((itr - 1) * cc_a).sum() ss1 += ((m - itr) * cc_a).sum() if m <= m1 + 1: dst_ceps[m - 1] = src_ceps[m - 1] + (dst_gamma * ss2 - src_gamma * ss1) / (m - 1.) else: dst_ceps[m - 1] = (dst_gamma * ss2 - src_gamma * ss1) / (m - 1.) return dst_ceps def _mgc_newton(mgc_stored, periodogram, order, alpha, gamma, recursion_order, iter_number, y_fft, z_fft, cr, pr, rr, ri, qr, qi, Tm, Hm, Tm_plus_Hm, b): # a lot of inplace operations to match the Julia code cr[1:order + 1] = mgc_stored[1:order + 1] if alpha != 0: cr_res = _mgc_b2c(cr[:recursion_order + 1], cr[:order + 1], -alpha) cr[:recursion_order + 1] = cr_res[:] y = sp.fftpack.fft(np.cast["float64"](cr)) c = mgc_stored x = periodogram if gamma != 0.: gamma_inv = 1. / gamma else: gamma_inv = np.inf if gamma == -1.: pr[:] = copy.deepcopy(x) new_pr = copy.deepcopy(pr) elif gamma == 0.: pr[:] = copy.deepcopy(x) / np.exp(2 * np.real(y)) new_pr = copy.deepcopy(pr) else: tr = 1. + gamma * np.real(y) ti = -gamma * np.imag(y) trr = tr * tr tii = ti * ti s = trr + tii t = x * np.power(s, (-gamma_inv)) t /= s pr[:] = t rr[:] = tr * t ri[:] = ti * t t /= s qr[:] = (trr - tii) * t s = tr * ti * t qi[:] = (s + s) new_pr = copy.deepcopy(pr) if gamma != -1.: """ print() print(pr.sum()) print(rr.sum()) print(ri.sum()) print(qr.sum()) print(qi.sum()) print() """ pass y_fft[:] = copy.deepcopy(pr) + 0.j z_fft[:] = np.fft.fft(y_fft) / len(y_fft) pr[:] = copy.deepcopy(np.real(z_fft)) if alpha != 0.: idx_1 = pr[:2 * order + 1] idx_2 = pr[:recursion_order + 1] idx_3 = _mgc_b2c(idx_1, idx_2, alpha) pr[:2 * order + 1] = idx_3[:] if gamma == 0. or gamma == -1.: qr[:2 * order + 1] = pr[:2 * order + 1] rr[:order + 1] = copy.deepcopy(pr[:order + 1]) else: for i in range(len(qr)): y_fft[i] = qr[i] + 1j * qi[i] z_fft[:] = np.fft.fft(y_fft) / len(y_fft) qr[:] = np.real(z_fft) for i in range(len(rr)): y_fft[i] = rr[i] + 1j * ri[i] z_fft[:] = np.fft.fft(y_fft) / len(y_fft) rr[:] = np.real(z_fft) if alpha != 0.: qr_new = _mgc_b2c(qr[:recursion_order + 1], qr[:recursion_order + 1], alpha) qr[:recursion_order + 1] = qr_new[:] rr_new = _mgc_b2c(rr[:order + 1], rr[:recursion_order + 1], alpha) rr[:order + 1] = rr_new[:] if alpha != 0: _mgc_ptrans(pr, order, alpha) _mgc_qtrans(qr, order, alpha) eta = 0. if gamma != -1.: eta = _mgc_gain(rr, c, order, gamma) c[0] = np.sqrt(eta) if gamma == -1.: qr[:] = 0. elif gamma != 0.: for i in range(2, 2 * order + 1): qr[i] *= 1. + gamma te = pr[:order] _mgc_fill_toeplitz(Tm, te) he = qr[2: 2 * order + 1] _mgc_fill_hankel(Hm, he) Tm_plus_Hm[:] = Hm[:] + Tm[:] b[:order] = rr[1:order + 1] res = np.linalg.solve(Tm_plus_Hm, b) b[:] = res[:] c[1:order + 1] += res[:order] if gamma == -1.: eta = _mgc_gain(rr, c, order, gamma) c[0] = np.sqrt(eta) return np.log(eta), new_pr def _mgc_mgcepnorm(b_gamma, alpha, gamma, otype): if otype != 0: raise ValueError("Not yet implemented for otype != 0") mgc = copy.deepcopy(b_gamma) _mgc_ignorm(mgc, gamma) _mgc_b2mc(mgc, alpha) return mgc def _sp2mgc(sp, order=20, alpha=0.35, gamma=-0.41, miniter=2, maxiter=30, criteria=0.001, otype=0, verbose=False): # Based on r9y9 Julia code # https://github.com/r9y9/MelGeneralizedCepstrums.jl periodogram = np.abs(sp) ** 2 recursion_order = len(periodogram) - 1 slen = len(periodogram) iter_number = 1 def _z(): return np.zeros((slen,), dtype="float64") def _o(): return np.zeros((order,), dtype="float64") def _o2(): return np.zeros((order, order), dtype="float64") cr = _z() pr = _z() rr = _z() ri = _z().astype("float128") qr = _z() qi = _z().astype("float128") Tm = _o2() Hm = _o2() Tm_plus_Hm = _o2() b = _o() y = _z() + 0j z = _z() + 0j b_gamma = np.zeros((order + 1,), dtype="float64") # return pr_new due to oddness with Julia having different numbers # in pr at end of function vs back in this scope eta0, pr_new = _mgc_newton(b_gamma, periodogram, order, alpha, -1., recursion_order, iter_number, y, z, cr, pr, rr, ri, qr, qi, Tm, Hm, Tm_plus_Hm, b) pr[:] = pr_new """ print(eta0) print(sum(b_gamma)) print(sum(periodogram)) print(order) print(alpha) print(recursion_order) print(sum(y)) print(sum(cr)) print(sum(z)) print(sum(pr)) print(sum(rr)) print(sum(qi)) print(Tm.sum()) print(Hm.sum()) print(sum(b)) raise ValueError() """ if gamma != -1.: d = np.zeros((order + 1,), dtype="float64") if alpha != 0.: _mgc_ignorm(b_gamma, -1.) _mgc_b2mc(b_gamma, alpha) d = copy.deepcopy(b_gamma) _mgc_gnorm(d, -1.) # numbers are slightly different here - numerical diffs? else: d = copy.deepcopy(b_gamma) b_gamma = _mgc_gc2gc(d, -1., order, gamma) if alpha != 0.: _mgc_ignorm(b_gamma, gamma) _mgc_mc2b(b_gamma, alpha) _mgc_gnorm(b_gamma, gamma) if gamma != -1.: eta_t = eta0 for i in range(1, maxiter + 1): eta, pr_new = _mgc_newton(b_gamma, periodogram, order, alpha, gamma, recursion_order, i, y, z, cr, pr, rr, ri, qr, qi, Tm, Hm, Tm_plus_Hm, b) pr[:] = pr_new """ print(eta0) print(sum(b_gamma)) print(sum(periodogram)) print(order) print(alpha) print(recursion_order) print(sum(y)) print(sum(cr)) print(sum(z)) print(sum(pr)) print(sum(rr)) print(sum(qi)) print(Tm.sum()) print(Hm.sum()) print(sum(b)) raise ValueError() """ err = np.abs((eta_t - eta) / eta) if verbose: print(("iter %i, criterion: %f" % (i, err))) if i >= miniter: if err < criteria: if verbose: print(("optimization complete at iter %i" % i)) break eta_t = eta mgc_arr = _mgc_mgcepnorm(b_gamma, alpha, gamma, otype) return mgc_arr _sp_convert_results = [] def _sp_collect_result(result): _sp_convert_results.append(result) def _sp_convert(c_i, order, alpha, gamma, miniter, maxiter, criteria, otype, verbose): i = c_i[0] tot_i = c_i[1] sp_i = c_i[2] r_i = (i, _sp2mgc(sp_i, order=order, alpha=alpha, gamma=gamma, miniter=miniter, maxiter=maxiter, criteria=criteria, otype=otype, verbose=verbose)) return r_i def sp2mgc(sp, order=20, alpha=0.35, gamma=-0.41, miniter=2, maxiter=30, criteria=0.001, otype=0, verbose=False): """ Accepts 1D or 2D one-sided spectrum (complex or real valued). If 2D, assumes time is axis 0. Returns mel generalized cepstral coefficients. Based on r9y9 Julia code https://github.com/r9y9/MelGeneralizedCepstrums.jl """ if len(sp.shape) == 1: sp = np.concatenate((sp, sp[:, 1:][:, ::-1]), axis=0) return _sp2mgc(sp, order=order, alpha=alpha, gamma=gamma, miniter=miniter, maxiter=maxiter, criteria=criteria, otype=otype, verbose=verbose) else: sp = np.concatenate((sp, sp[:, 1:][:, ::-1]), axis=1) # Slooow, use multiprocessing to speed up a bit # http://blog.shenwei.me/python-multiprocessing-pool-difference-between-map-apply-map_async-apply_async/ # http://stackoverflow.com/questions/5666576/show-the-progress-of-a-python-multiprocessing-pool-map-call c = [(i + 1, sp.shape[0], sp[i]) for i in range(sp.shape[0])] p = Pool() start = time.time() if verbose: print(("Starting conversion of %i frames" % sp.shape[0])) print("This may take some time...") # takes ~360s for 630 frames, 1 process itr = p.map_async( functools.partial(_sp_convert, order=order, alpha=alpha, gamma=gamma, miniter=miniter, maxiter=maxiter, criteria=criteria, otype=otype, verbose=False), c, callback=_sp_collect_result) sz = len(c) // itr._chunksize if (sz * itr._chunksize) != len(c): sz += 1 last_remaining = None while True: remaining = itr._number_left if verbose: if remaining != last_remaining: last_remaining = remaining print(("%i chunks of %i complete" % (sz - remaining, sz))) if itr.ready(): break time.sleep(.5) """ # takes ~455s for 630 frames itr = p.imap_unordered(functools.partial(_sp_convert, order=order, alpha=alpha, gamma=gamma, miniter=miniter, maxiter=maxiter, criteria=criteria, otype=otype, verbose=False), c) res = [] # print ~every 5% mod = int(len(c)) // 20 if mod < 1: mod = 1 for i, res_i in enumerate(itr, 1): res.append(res_i) if i % mod == 0 or i == 1: print("%i of %i complete" % (i, len(c))) """ p.close() p.join() stop = time.time() if verbose: print(("Processed %i frames in %s seconds" % (sp.shape[0], stop - start))) # map_async result comes in chunks flat = [a_i for a in _sp_convert_results for a_i in a] final = [o[1] for o in sorted(flat, key=lambda x: x[0])] for i in range(len(_sp_convert_results)): _sp_convert_results.pop() return np.array(final) def win2mgc(windowed_signal, order=20, alpha=0.35, gamma=-0.41, miniter=2, maxiter=30, criteria=0.001, otype=0, verbose=False): """ Accepts 1D or 2D array of windowed signal frames. If 2D, assumes time is axis 0. Returns mel generalized cepstral coefficients. Based on r9y9 Julia code https://github.com/r9y9/MelGeneralizedCepstrums.jl """ if len(windowed_signal.shape) == 1: sp = np.fft.fft(windowed_signal) return _sp2mgc(sp, order=order, alpha=alpha, gamma=gamma, miniter=miniter, maxiter=maxiter, criteria=criteria, otype=otype, verbose=verbose) else: raise ValueError("2D input not yet complete for win2mgc") def _mgc_freqt(wc, c, alpha): prev = np.zeros_like(wc) dst_order = len(wc) - 1 wc *= 0 m1 = len(c) - 1 for i in range(-m1, 1, 1): prev[:] = wc if dst_order >= 0: wc[0] = c[-i] + alpha * prev[0] if dst_order >= 1: wc[1] = (1. - alpha * alpha) * prev[0] + alpha * prev[1] for m in range(2, dst_order + 1): wc[m] = prev[m - 1] + alpha * (prev[m] - wc[m - 1]) def _mgc_mgc2mgc(src_ceps, src_alpha, src_gamma, dst_order, dst_alpha, dst_gamma): dst_ceps = np.zeros((dst_order + 1,)) alpha = (dst_alpha - src_alpha) / (1. - dst_alpha * src_alpha) if alpha == 0.: new_dst_ceps = copy.deepcopy(src_ceps) _mgc_gnorm(new_dst_ceps, src_gamma) dst_ceps = _mgc_gc2gc(new_dst_ceps, src_gamma, dst_order, dst_gamma) _mgc_ignorm(dst_ceps, dst_gamma) else: _mgc_freqt(dst_ceps, src_ceps, alpha) _mgc_gnorm(dst_ceps, src_gamma) new_dst_ceps = copy.deepcopy(dst_ceps) dst_ceps = _mgc_gc2gc(new_dst_ceps, src_gamma, dst_order, dst_gamma) _mgc_ignorm(dst_ceps, dst_gamma) return dst_ceps _mgc_convert_results = [] def _mgc_collect_result(result): _mgc_convert_results.append(result) def _mgc_convert(c_i, alpha, gamma, fftlen): i = c_i[0] tot_i = c_i[1] mgc_i = c_i[2] r_i = (i, _mgc_mgc2mgc(mgc_i, src_alpha=alpha, src_gamma=gamma, dst_order=fftlen // 2, dst_alpha=0., dst_gamma=0.)) return r_i def mgc2sp(mgc_arr, alpha=0.35, gamma=-0.41, fftlen="auto", fs=None, mode="world_pad", verbose=False): """ Accepts 1D or 2D array of mgc If 2D, assume time is on axis 0 Returns reconstructed smooth spectrum Based on r9y9 Julia code https://github.com/r9y9/MelGeneralizedCepstrums.jl """ if mode != "world_pad": raise ValueError("Only currently supported mode is world_pad") if fftlen == "auto": if fs == None: raise ValueError("fs must be provided for fftlen 'auto'") f0_low_limit = 71 fftlen = int(2 ** np.ceil(np.log2(3. * float(fs) / f0_low_limit + 1))) if verbose: print(("setting fftlen to %i" % fftlen)) if len(mgc_arr.shape) == 1: c = _mgc_mgc2mgc(mgc_arr, alpha, gamma, fftlen // 2, 0., 0.) buf = np.zeros((fftlen,), dtype=c.dtype) buf[:len(c)] = c[:] return np.fft.rfft(buf) else: # Slooow, use multiprocessing to speed up a bit # http://blog.shenwei.me/python-multiprocessing-pool-difference-between-map-apply-map_async-apply_async/ # http://stackoverflow.com/questions/5666576/show-the-progress-of-a-python-multiprocessing-pool-map-call c = [(i + 1, mgc_arr.shape[0], mgc_arr[i]) for i in range(mgc_arr.shape[0])] p = Pool() start = time.time() if verbose: print(("Starting conversion of %i frames" % mgc_arr.shape[0])) print("This may take some time...") # itr = p.map(functools.partial(_mgc_convert, alpha=alpha, gamma=gamma, fftlen=fftlen), c) # raise ValueError() # 500.1 s for 630 frames process itr = p.map_async(functools.partial(_mgc_convert, alpha=alpha, gamma=gamma, fftlen=fftlen), c, callback=_mgc_collect_result) sz = len(c) // itr._chunksize if (sz * itr._chunksize) != len(c): sz += 1 last_remaining = None while True: remaining = itr._number_left if verbose: if last_remaining != remaining: last_remaining = remaining print(("%i chunks of %i complete" % (sz - remaining, sz))) if itr.ready(): break time.sleep(.5) p.close() p.join() stop = time.time() if verbose: print(("Processed %i frames in %s seconds" % (mgc_arr.shape[0], stop - start))) # map_async result comes in chunks flat = [a_i for a in _mgc_convert_results for a_i in a] final = [o[1] for o in sorted(flat, key=lambda x: x[0])] for i in range(len(_mgc_convert_results)): _mgc_convert_results.pop() c = np.array(final) buf = np.zeros((len(c), fftlen), dtype=c.dtype) buf[:, :c.shape[1]] = c[:] return np.exp(np.fft.rfft(buf, axis=-1).real) def implot(arr, scale=None, title="", cmap="gray"): import matplotlib.pyplot as plt if scale is "specgram": # plotting part mag = 20. * np.log10(np.abs(arr)) # Transpose so time is X axis, and invert y axis so # frequency is low at bottom mag = mag.T[::-1, :] else: mag = arr f, ax = plt.subplots() ax.matshow(mag, cmap=cmap) plt.axis("off") x1 = mag.shape[0] y1 = mag.shape[1] def autoaspect(x_range, y_range): """ The aspect to make a plot square with ax.set_aspect in Matplotlib """ mx = max(x_range, y_range) mn = min(x_range, y_range) if x_range <= y_range: return mx / float(mn) else: return mn / float(mx) asp = autoaspect(x1, y1) ax.set_aspect(asp) plt.title(title) def test_lpc_to_lsf(): # Matlab style vectors for testing # lsf = [0.7842 1.5605 1.8776 1.8984 2.3593] # a = [1.0000 0.6149 0.9899 0.0000 0.0031 -0.0082]; lsf = [[0.7842, 1.5605, 1.8776, 1.8984, 2.3593], [0.7842, 1.5605, 1.8776, 1.8984, 2.3593]] a = [[1.0000, 0.6149, 0.9899, 0.0000, 0.0031, -0.0082], [1.0000, 0.6149, 0.9899, 0.0000, 0.0031, -0.0082]] a = np.array(a) lsf = np.array(lsf) lsf_r = lpc_to_lsf(a) assert_almost_equal(lsf, lsf_r, decimal=4) a_r = lsf_to_lpc(lsf) assert_almost_equal(a, a_r, decimal=4) lsf_r = lpc_to_lsf(a[0]) assert_almost_equal(lsf[0], lsf_r, decimal=4) a_r = lsf_to_lpc(lsf[0]) assert_almost_equal(a[0], a_r, decimal=4) def test_lpc_analysis_truncate(): # Test that truncate doesn't crash and actually truncates [a, g, e] = lpc_analysis(np.random.randn(85), order=8, window_step=80, window_size=80, emphasis=0.9, truncate=True) assert (a.shape[0] == 1) def test_feature_build(): samplerate, X = fetch_sample_music() # MATLAB wavread does normalization X = X.astype('float32') / (2 ** 15) wsz = 256 wst = 128 a, g, e = lpc_analysis(X, order=8, window_step=wst, window_size=wsz, emphasis=0.9, copy=True) v, p = voiced_unvoiced(X, window_size=wsz, window_step=wst) c = compress(e, n_components=64) # First component of a is always 1 combined = np.hstack((a[:, 1:], g, c[:a.shape[0]])) features = np.zeros((a.shape[0], 2 * combined.shape[1])) start_indices = v * combined.shape[1] start_indices = start_indices.astype('int32') end_indices = (v + 1) * combined.shape[1] end_indices = end_indices.astype('int32') for i in range(features.shape[0]): features[i, start_indices[i]:end_indices[i]] = combined[i] def test_mdct_and_inverse(): fs, X = fetch_sample_music() X_dct = mdct_slow(X) X_r = imdct_slow(X_dct) assert np.all(np.abs(X_r[:len(X)] - X) < 1E-3) assert np.abs(X_r[:len(X)] - X).mean() < 1E-6 def test_all(): test_lpc_analysis_truncate() test_feature_build() test_lpc_to_lsf() test_mdct_and_inverse() def run_lpc_example(): # ae.wav is from # http://www.linguistics.ucla.edu/people/hayes/103/Charts/VChart/ae.wav # Partially following the formant tutorial here # http://www.mathworks.com/help/signal/ug/formant-estimation-with-lpc-coefficients.html samplerate, X = fetch_sample_music() c = overlap_dct_compress(X, 200, 400) X_r = overlap_dct_uncompress(c, 400) wavfile.write('lpc_uncompress.wav', samplerate, soundsc(X_r)) print("Calculating sinusoids") f_hz, m = sinusoid_analysis(X, input_sample_rate=16000) Xs_sine = sinusoid_synthesis(f_hz, m) orig_fname = 'lpc_orig.wav' sine_fname = 'lpc_sine_synth.wav' wavfile.write(orig_fname, samplerate, soundsc(X)) wavfile.write(sine_fname, samplerate, soundsc(Xs_sine)) lpc_order_list = [8, ] dct_components_list = [200, ] window_size_list = [400, ] # Seems like a dct component size of ~2/3rds the step # (1/3rd the window for 50% overlap) works well. for lpc_order in lpc_order_list: for dct_components in dct_components_list: for window_size in window_size_list: # 50% overlap window_step = window_size // 2 a, g, e = lpc_analysis(X, order=lpc_order, window_step=window_step, window_size=window_size, emphasis=0.9, copy=True) print("Calculating LSF") lsf = lpc_to_lsf(a) # Not window_size - window_step! Need to implement overlap print("Calculating compression") c = dct_compress(e, n_components=dct_components, window_size=window_step) co = overlap_dct_compress(e, n_components=dct_components, window_size=window_step) block_excitation = dct_uncompress(c, window_size=window_step) overlap_excitation = overlap_dct_uncompress(co, window_size=window_step) a_r = lsf_to_lpc(lsf) f, m = lpc_to_frequency(a_r, g) block_lpc = lpc_synthesis(a_r, g, block_excitation, emphasis=0.9, window_step=window_step) overlap_lpc = lpc_synthesis(a_r, g, overlap_excitation, emphasis=0.9, window_step=window_step) v, p = voiced_unvoiced(X, window_size=window_size, window_step=window_step) noisy_lpc = lpc_synthesis(a_r, g, voiced_frames=v, emphasis=0.9, window_step=window_step) if dct_components is None: dct_components = window_size noisy_fname = 'lpc_noisy_synth_%iwin_%ilpc_%idct.wav' % ( window_size, lpc_order, dct_components) block_fname = 'lpc_block_synth_%iwin_%ilpc_%idct.wav' % ( window_size, lpc_order, dct_components) overlap_fname = 'lpc_overlap_synth_%iwin_%ilpc_%idct.wav' % ( window_size, lpc_order, dct_components) wavfile.write(noisy_fname, samplerate, soundsc(noisy_lpc)) wavfile.write(block_fname, samplerate, soundsc(block_lpc)) wavfile.write(overlap_fname, samplerate, soundsc(overlap_lpc)) def run_fft_vq_example(): n_fft = 512 time_smoothing = 4 def _pre(list_of_data): f_c = np.vstack([stft(dd, n_fft) for dd in list_of_data]) if len(f_c) % time_smoothing != 0: newlen = len(f_c) - len(f_c) % time_smoothing f_c = f_c[:newlen] f_mag = complex_to_abs(f_c) f_phs = complex_to_angle(f_c) f_sincos = angle_to_sin_cos(f_phs) f_r = np.hstack((f_mag, f_sincos)) f_r = f_r.reshape((len(f_r) // time_smoothing, time_smoothing * f_r.shape[1])) return f_r, n_fft def preprocess_train(list_of_data, random_state): f_r, n_fft = _pre(list_of_data) clusters = f_r return clusters def apply_preprocess(list_of_data, clusters): f_r, n_fft = _pre(list_of_data) memberships, distances = vq(f_r, clusters) vq_r = clusters[memberships] vq_r = vq_r.reshape((time_smoothing * len(vq_r), vq_r.shape[1] // time_smoothing)) f_mag = vq_r[:, :n_fft // 2 + 1] f_sincos = vq_r[:, n_fft // 2 + 1:] extent = f_sincos.shape[1] // 2 f_phs = sin_cos_to_angle(f_sincos[:, :extent], f_sincos[:, extent:]) vq_c = abs_and_angle_to_complex(f_mag, f_phs) d_k = istft(vq_c, fftsize=n_fft) return d_k random_state = np.random.RandomState(1999) """ fs, d = fetch_sample_music() sub = int(.8 * d.shape[0]) d1 = [d[:sub]] d2 = [d[sub:]] """ fs, d = fetch_sample_speech_fruit() d1 = d[::8] + d[1::8] + d[2::8] + d[3::8] + d[4::8] + d[5::8] + d[6::8] d2 = d[7::8] # make sure d1 and d2 aren't the same! assert [len(di) for di in d1] != [len(di) for di in d2] clusters = preprocess_train(d1, random_state) # Training data vq_d1 = apply_preprocess(d1, clusters) vq_d2 = apply_preprocess(d2, clusters) assert [i != j for i, j in zip(vq_d1.ravel(), vq_d2.ravel())] fix_d1 = np.concatenate(d1) fix_d2 = np.concatenate(d2) wavfile.write("fft_train_no_agc.wav", fs, soundsc(fix_d1)) wavfile.write("fft_test_no_agc.wav", fs, soundsc(fix_d2)) wavfile.write("fft_vq_train_no_agc.wav", fs, soundsc(vq_d1, fs)) wavfile.write("fft_vq_test_no_agc.wav", fs, soundsc(vq_d2, fs)) agc_d1, freq_d1, energy_d1 = time_attack_agc(fix_d1, fs, .5, 5) agc_d2, freq_d2, energy_d2 = time_attack_agc(fix_d2, fs, .5, 5) agc_vq_d1, freq_vq_d1, energy_vq_d1 = time_attack_agc(vq_d1, fs, .5, 5) agc_vq_d2, freq_vq_d2, energy_vq_d2 = time_attack_agc(vq_d2, fs, .5, 5) wavfile.write("fft_train_agc.wav", fs, soundsc(agc_d1)) wavfile.write("fft_test_agc.wav", fs, soundsc(agc_d2)) wavfile.write("fft_vq_train_agc.wav", fs, soundsc(agc_vq_d1, fs)) wavfile.write("fft_vq_test_agc.wav", fs, soundsc(agc_vq_d2)) def run_dct_vq_example(): def _pre(list_of_data): # Temporal window setting is crucial! - 512 seems OK for music, 256 # fruit perhaps due to samplerates n_dct = 512 f_r = np.vstack([mdct_slow(dd, n_dct) for dd in list_of_data]) return f_r, n_dct def preprocess_train(list_of_data, random_state): f_r, n_dct = _pre(list_of_data) clusters = f_r return clusters def apply_preprocess(list_of_data, clusters): f_r, n_dct = _pre(list_of_data) f_clust = f_r memberships, distances = vq(f_clust, clusters) vq_r = clusters[memberships] d_k = imdct_slow(vq_r, n_dct) return d_k random_state = np.random.RandomState(1999) # This doesn't work very well due to only taking a sample from the end as # test fs, d = fetch_sample_music() sub = int(.8 * d.shape[0]) d1 = [d[:sub]] d2 = [d[sub:]] """ fs, d = fetch_sample_speech_fruit() d1 = d[::8] + d[1::8] + d[2::8] + d[3::8] + d[4::8] + d[5::8] + d[6::8] d2 = d[7::8] # make sure d1 and d2 aren't the same! assert [len(di) for di in d1] != [len(di) for di in d2] """ clusters = preprocess_train(d1, random_state) # Training data vq_d1 = apply_preprocess(d1, clusters) vq_d2 = apply_preprocess(d2, clusters) assert [i != j for i, j in zip(vq_d2.ravel(), vq_d2.ravel())] fix_d1 = np.concatenate(d1) fix_d2 = np.concatenate(d2) wavfile.write("dct_train_no_agc.wav", fs, soundsc(fix_d1)) wavfile.write("dct_test_no_agc.wav", fs, soundsc(fix_d2)) wavfile.write("dct_vq_train_no_agc.wav", fs, soundsc(vq_d1)) wavfile.write("dct_vq_test_no_agc.wav", fs, soundsc(vq_d2)) """ import matplotlib.pyplot as plt plt.specgram(vq_d2, cmap="gray") plt.figure() plt.specgram(fix_d2, cmap="gray") plt.show() """ agc_d1, freq_d1, energy_d1 = time_attack_agc(fix_d1, fs, .5, 5) agc_d2, freq_d2, energy_d2 = time_attack_agc(fix_d2, fs, .5, 5) agc_vq_d1, freq_vq_d1, energy_vq_d1 = time_attack_agc(vq_d1, fs, .5, 5) agc_vq_d2, freq_vq_d2, energy_vq_d2 = time_attack_agc(vq_d2, fs, .5, 5) wavfile.write("dct_train_agc.wav", fs, soundsc(agc_d1)) wavfile.write("dct_test_agc.wav", fs, soundsc(agc_d2)) wavfile.write("dct_vq_train_agc.wav", fs, soundsc(agc_vq_d1)) wavfile.write("dct_vq_test_agc.wav", fs, soundsc(agc_vq_d2)) def run_phase_reconstruction_example(): fs, d = fetch_sample_speech_tapestry() # actually gives however many components you say! So double what .m file # says fftsize = 512 step = 64 X_s = np.abs(stft(d, fftsize=fftsize, step=step, real=False, compute_onesided=False)) X_t = iterate_invert_spectrogram(X_s, fftsize, step, verbose=True) """ import matplotlib.pyplot as plt plt.specgram(d, cmap="gray") plt.savefig("1.png") plt.close() plt.imshow(X_s, cmap="gray") plt.savefig("2.png") plt.close() """ wavfile.write("phase_original.wav", fs, soundsc(d)) wavfile.write("phase_reconstruction.wav", fs, soundsc(X_t)) def run_phase_vq_example(): def _pre(list_of_data): # Temporal window setting is crucial! - 512 seems OK for music, 256 # fruit perhaps due to samplerates n_fft = 256 step = 32 f_r = np.vstack([np.abs(stft(dd, n_fft, step=step, real=False, compute_onesided=False)) for dd in list_of_data]) return f_r, n_fft, step def preprocess_train(list_of_data, random_state): f_r, n_fft, step = _pre(list_of_data) clusters = copy.deepcopy(f_r) return clusters def apply_preprocess(list_of_data, clusters): f_r, n_fft, step = _pre(list_of_data) f_clust = f_r # Nondeterministic ? memberships, distances = vq(f_clust, clusters) vq_r = clusters[memberships] d_k = iterate_invert_spectrogram(vq_r, n_fft, step, verbose=True) return d_k random_state = np.random.RandomState(1999) fs, d = fetch_sample_speech_fruit() d1 = d[::9] d2 = d[7::8][:5] # make sure d1 and d2 aren't the same! assert [len(di) for di in d1] != [len(di) for di in d2] clusters = preprocess_train(d1, random_state) fix_d1 = np.concatenate(d1) fix_d2 = np.concatenate(d2) vq_d2 = apply_preprocess(d2, clusters) wavfile.write("phase_train_no_agc.wav", fs, soundsc(fix_d1)) wavfile.write("phase_vq_test_no_agc.wav", fs, soundsc(vq_d2)) agc_d1, freq_d1, energy_d1 = time_attack_agc(fix_d1, fs, .5, 5) agc_d2, freq_d2, energy_d2 = time_attack_agc(fix_d2, fs, .5, 5) agc_vq_d2, freq_vq_d2, energy_vq_d2 = time_attack_agc(vq_d2, fs, .5, 5) """ import matplotlib.pyplot as plt plt.specgram(agc_vq_d2, cmap="gray") #plt.title("Fake") plt.figure() plt.specgram(agc_d2, cmap="gray") #plt.title("Real") plt.show() """ wavfile.write("phase_train_agc.wav", fs, soundsc(agc_d1)) wavfile.write("phase_test_agc.wav", fs, soundsc(agc_d2)) wavfile.write("phase_vq_test_agc.wav", fs, soundsc(agc_vq_d2)) def run_cqt_example(): try: fs, d = fetch_sample_file("/Users/User/cqt_resources/kempff1.wav") except ValueError: print("WARNING: Using sample music instead but kempff1.wav is the example") fs, d = fetch_sample_music() X = d[:44100] X_cq, c_dc, c_nyq, multiscale, shift, window_lens = cqt(X, fs) X_r = icqt(X_cq, c_dc, c_nyq, multiscale, shift, window_lens) SNR = 20 * np.log10(np.linalg.norm(X - X_r) / np.linalg.norm(X)) wavfile.write("cqt_original.wav", fs, soundsc(X)) wavfile.write("cqt_reconstruction.wav", fs, soundsc(X_r)) def run_fft_dct_example(): random_state = np.random.RandomState(1999) fs, d = fetch_sample_speech_fruit() n_fft = 64 X = d[0] X_stft = stft(X, n_fft) X_rr = complex_to_real_view(X_stft) X_dct = fftpack.dct(X_rr, axis=-1, norm='ortho') X_dct_sub = X_dct[1:] - X_dct[:-1] std = X_dct_sub.std(axis=0, keepdims=True) X_dct_sub += .01 * std * random_state.randn( X_dct_sub.shape[0], X_dct_sub.shape[1]) X_dct_unsub = np.cumsum(X_dct_sub, axis=0) X_idct = fftpack.idct(X_dct_unsub, axis=-1, norm='ortho') X_irr = real_to_complex_view(X_idct) X_r = istft(X_irr, n_fft)[:len(X)] SNR = 20 * np.log10(np.linalg.norm(X - X_r) / np.linalg.norm(X)) print(SNR) wavfile.write("fftdct_orig.wav", fs, soundsc(X)) wavfile.write("fftdct_rec.wav", fs, soundsc(X_r)) def run_world_example(): fs, d = fetch_sample_speech_tapestry() d = d.astype("float32") / 2 ** 15 temporal_positions_h, f0_h, vuv_h, f0_candidates_h = harvest(d, fs) temporal_positions_ct, spectrogram_ct, fs_ct = cheaptrick(d, fs, temporal_positions_h, f0_h, vuv_h) temporal_positions_d4c, f0_d4c, vuv_d4c, aper_d4c, coarse_aper_d4c = d4c(d, fs, temporal_positions_h, f0_h, vuv_h) # y = world_synthesis(f0_d4c, vuv_d4c, aper_d4c, spectrogram_ct, fs_ct) y = world_synthesis(f0_d4c, vuv_d4c, coarse_aper_d4c, spectrogram_ct, fs_ct) wavfile.write("out.wav", fs, soundsc(y)) def run_mgc_example(): import matplotlib.pyplot as plt fs, x = wavfile.read("test16k.wav") pos = 3000 fftlen = 1024 win = np.blackman(fftlen) / np.sqrt(np.sum(np.blackman(fftlen) ** 2)) xw = x[pos:pos + fftlen] * win sp = 20 * np.log10(np.abs(np.fft.rfft(xw))) mgc_order = 20 mgc_alpha = 0.41 mgc_gamma = -0.35 mgc_arr = win2mgc(xw, order=mgc_order, alpha=mgc_alpha, gamma=mgc_gamma, verbose=True) xwsp = 20 * np.log10(np.abs(np.fft.rfft(xw))) sp = mgc2sp(mgc_arr, mgc_alpha, mgc_gamma, fftlen) plt.plot(xwsp) plt.plot(20. / np.log(10) * np.real(sp), "r") plt.xlim(1, len(xwsp)) plt.show() def run_world_mgc_example(): fs, d = fetch_sample_speech_tapestry() d = d.astype("float32") / 2 ** 15 # harcoded for 16k from # https://github.com/CSTR-Edinburgh/merlin/blob/master/misc/scripts/vocoder/world/extract_features_for_merlin.sh mgc_alpha = 0.58 # mgc_order = 59 mgc_order = 59 # this is actually just mcep mgc_gamma = 0.0 # from sklearn.externals import joblib # mem = joblib.Memory("/tmp") # mem.clear() def enc(): temporal_positions_h, f0_h, vuv_h, f0_candidates_h = harvest(d, fs) temporal_positions_ct, spectrogram_ct, fs_ct = cheaptrick(d, fs, temporal_positions_h, f0_h, vuv_h) temporal_positions_d4c, f0_d4c, vuv_d4c, aper_d4c, coarse_aper_d4c = d4c(d, fs, temporal_positions_h, f0_h, vuv_h) mgc_arr = sp2mgc(spectrogram_ct, mgc_order, mgc_alpha, mgc_gamma, verbose=True) return mgc_arr, spectrogram_ct, f0_d4c, vuv_d4c, coarse_aper_d4c mgc_arr, spectrogram_ct, f0_d4c, vuv_d4c, coarse_aper_d4c = enc() sp_r = mgc2sp(mgc_arr, mgc_alpha, mgc_gamma, fs=fs, verbose=True) """ import matplotlib.pyplot as plt plt.imshow(20 * np.log10(sp_r)) plt.figure() plt.imshow(20 * np.log10(spectrogram_ct)) plt.show() raise ValueError() """ y = world_synthesis(f0_d4c, vuv_d4c, coarse_aper_d4c, sp_r, fs) # y = world_synthesis(f0_d4c, vuv_d4c, aper_d4c, sp_r, fs) wavfile.write("out_mgc.wav", fs, soundsc(y)) def get_frame(signal, winsize, no): shift = winsize // 2 start = no * shift end = start + winsize return signal[start:end] class LTSD(): """ LTSD VAD code from jfsantos """ def __init__(self, winsize, window, order): self.winsize = int(winsize) self.window = window self.order = order self.amplitude = {} def get_amplitude(self, signal, l): if l in self.amplitude: return self.amplitude[l] else: amp = sp.absolute(sp.fft(get_frame(signal, self.winsize, l) * self.window)) self.amplitude[l] = amp return amp def compute_noise_avg_spectrum(self, nsignal): windownum = int(len(nsignal) // (self.winsize // 2) - 1) avgamp = np.zeros(self.winsize) for l in range(windownum): avgamp += sp.absolute(sp.fft(get_frame(nsignal, self.winsize, l) * self.window)) return avgamp / float(windownum) def compute(self, signal): self.windownum = int(len(signal) // (self.winsize // 2) - 1) ltsds = np.zeros(self.windownum) # Calculate the average noise spectrum amplitude based 20 frames in the head parts of input signal. self.avgnoise = self.compute_noise_avg_spectrum(signal[0:self.winsize * 20]) ** 2 for l in range(self.windownum): ltsds[l] = self.ltsd(signal, l, 5) return ltsds def ltse(self, signal, l, order): maxamp = np.zeros(self.winsize) for idx in range(l - order, l + order + 1): amp = self.get_amplitude(signal, idx) maxamp = np.maximum(maxamp, amp) return maxamp def ltsd(self, signal, l, order): if l < order or l + order >= self.windownum: return 0 return 10.0 * np.log10(np.sum(self.ltse(signal, l, order) ** 2 / self.avgnoise) / float(len(self.avgnoise))) def ltsd_vad(x, fs, threshold=9, winsize=8192): # winsize based on sample rate # 1024 for fs = 16000 orig_dtype = x.dtype orig_scale_min = x.min() orig_scale_max = x.max() x = (x - x.min()) / (x.max() - x.min()) # works with 16 bit x = x * (2 ** 15) x = x.astype("int32") window = sp.hanning(winsize) ltsd = LTSD(winsize, window, 5) s_vad = ltsd.compute(x) # LTSD is 50% overlap, so each "step" covers 4096 samples # +1 to cover the extra edge window n_samples = int(((len(s_vad) + 1) * winsize) // 2) time_s = n_samples / float(fs) time_points = np.linspace(0, time_s, len(s_vad)) time_samples = (fs * time_points).astype(np.int32) time_samples = time_samples f_vad = np.zeros_like(x, dtype=np.bool) offset = winsize for n, (ss, es) in enumerate(zip(time_samples[:-1], time_samples[1:])): sss = ss - offset if sss < 0: sss = 0 ses = es - offset if ses < 0: ses = 0 if s_vad[n + 1] < threshold: f_vad[sss:ses] = False else: f_vad[sss:ses] = True f_vad[ses:] = False x = x.astype("float64") x = x / float(2 ** 15) x = x * (orig_scale_max - orig_scale_min) + orig_scale_min x = x.astype(orig_dtype) return x[f_vad], f_vad def run_ltsd_example(): fs, d = fetch_sample_speech_tapestry() winsize = 1024 d = d.astype("float32") / 2 ** 15 d -= d.mean() pad = 3 * fs noise_pwr = np.percentile(d, 1) ** 2 noise_pwr = max(1E-9, noise_pwr) d = np.concatenate((np.zeros((pad,)) + noise_pwr * np.random.randn(pad), d)) _, vad_segments = ltsd_vad(d, fs, winsize=winsize) v_up = np.where(vad_segments == True)[0] s = v_up[0] st = v_up[-1] + int(.5 * fs) d = d[s:st] bname = "tapestry.wav".split(".")[0] wavfile.write("%s_out.wav" % bname, fs, soundsc(d)) if __name__ == "__main__": run_ltsd_example() """ Trying to run all examples will seg fault on my laptop - probably memory! Comment individually run_ltsd_example() run_world_mgc_example() run_world_example() run_mgc_example() run_phase_reconstruction_example() run_phase_vq_example() run_dct_vq_example() run_fft_vq_example() run_lpc_example() run_cqt_example() run_fft_dct_example() test_all() """
mit
ilo10/scikit-learn
sklearn/manifold/tests/test_mds.py
324
1862
import numpy as np from numpy.testing import assert_array_almost_equal from nose.tools import assert_raises from sklearn.manifold import mds def test_smacof(): # test metric smacof using the data of "Modern Multidimensional Scaling", # Borg & Groenen, p 154 sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) Z = np.array([[-.266, -.539], [.451, .252], [.016, -.238], [-.200, .524]]) X, _ = mds.smacof(sim, init=Z, n_components=2, max_iter=1, n_init=1) X_true = np.array([[-1.415, -2.471], [1.633, 1.107], [.249, -.067], [-.468, 1.431]]) assert_array_almost_equal(X, X_true, decimal=3) def test_smacof_error(): # Not symmetric similarity matrix: sim = np.array([[0, 5, 9, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) assert_raises(ValueError, mds.smacof, sim) # Not squared similarity matrix: sim = np.array([[0, 5, 9, 4], [5, 0, 2, 2], [4, 2, 1, 0]]) assert_raises(ValueError, mds.smacof, sim) # init not None and not correct format: sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) Z = np.array([[-.266, -.539], [.016, -.238], [-.200, .524]]) assert_raises(ValueError, mds.smacof, sim, init=Z, n_init=1) def test_MDS(): sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) mds_clf = mds.MDS(metric=False, n_jobs=3, dissimilarity="precomputed") mds_clf.fit(sim)
bsd-3-clause
Jackson-Y/Machine-Learning
text/classification_cnn.py
1
6019
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Example of Estimator for CNN-based text classification with DBpedia data.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import sys import numpy as np import pandas from sklearn import metrics import tensorflow as tf FLAGS = None MAX_DOCUMENT_LENGTH = 100 EMBEDDING_SIZE = 20 N_FILTERS = 10 WINDOW_SIZE = 20 FILTER_SHIAPE1 = [WINDOW_SIZE, EMBEDDING_SIZE] FILTER_SHIAPE2 = [WINDOW_SIZE, N_FILTERS] POOLING_WINDOW = 4 POOLING_STRIDE = 2 n_words = 0 MAX_LABEL = 15 WORDS_FEATURE = 'words' # Name of the input words feature. def cnn_model(features, labels, mode): """2 layer ConvNet to predict from sequence of words to a class.""" # Convert indexes of words into embeddings. # This creates embeddings matrix of [n_words, EMBEDDING_SIZE] and then # maps word indexes of the sequence into [batch_size, sequence_length, # EMBEDDING_SIZE]. word_vectors = tf.contrib.layers.embed_sequence( features[WORDS_FEATURE], vocab_size=n_words, embed_dim=EMBEDDING_SIZE) word_vectors = tf.expand_dims(word_vectors, 3) with tf.variable_scope('CNN_Layer1'): # Apply Convolution filtering on input sequence. conv1 = tf.layers.conv2d( word_vectors, filters=N_FILTERS, kernel_size=FILTER_SHIAPE1, padding='VALID', # Add a ReLU for non linearity. activation=tf.nn.relu ) # Max pooling across output of Convolution+ReLU pool1 = tf.layers.max_pooling2d( conv1, pool_size=POOLING_WINDOW, strides=POOLING_STRIDE, padding='SAME' ) # Transpose matrix so that n_filters from convolution becomes width. pool1 = tf.transpose(pool1, [0, 1, 3, 2]) with tf.variable_scope('CNN_Layer2'): # Second level of convolution filtering. conv2 = tf.layers.conv2d( pool1, filters=N_FILTERS, kernel_size=FILTER_SHIAPE2, padding='VALID' ) # Max across each filter to get useful features for classification. pool2 = tf.squeeze(tf.reduce_max(conv2, 1), squeeze_dims=[1]) # Apply regular WX + B and classification. logits = tf.layers.dense(pool2, MAX_LABEL, activation=None) predicted_classes = tf.argmax(logits, 1) if mode == tf.estimator.ModeKeys.PREDICT: return tf.estimator.EstimatorSpec( mode=mode, predictions={ 'class': predicted_classes, 'prob': tf.nn.softmax(logits) }) onehot_labels = tf.one_hot(labels, MAX_LABEL, 1, 0) loss = tf.losses.softmax_cross_entropy( onehot_labels=onehot_labels, logits=logits ) if mode == tf.estimator.ModeKeys.TRAIN: optimizer = tf.train.AdamOptimizer(learning_rate=0.01) train_op = optimizer.minimize(loss, global_step=tf.train.get_global_step()) return tf.estimator.EstimatorSpec(mode, loss=loss, train_op=train_op) eval_metric_ops = { 'accuracy': tf.metrics.accuracy( labels=labels, predictions=predicted_classes ) } return tf.estimator.EstimatorSpec( mode=mode, loss=loss, eval_metric_ops=eval_metric_ops) def main(unused_argv): global n_words # prepare training and testing data dbpedia = tf.contrib.learn.datasets.load_dataset( 'dbpedia', test_with_fake_data=FLAGS.test_with_fake_data ) x_train = pandas.DataFrame(dbpedia.train.data)[1] y_train = pandas.Series(dbpedia.train.target) x_test = pandas.DataFrame(dbpedia.test.data)[1] y_test = pandas.Series(dbpedia.test.target) # Process vocabulary vocab_processor = tf.contrib.learn.preprocessing.VocabularyProcessor( MAX_DOCUMENT_LENGTH ) x_train = np.array(list(vocab_processor.fit_transform(x_train))) x_test = np.array(list(vocab_processor.transform(x_test))) n_words = len(vocab_processor.vocabulary_) print('Total words: %d' % n_words) # Build model classifier = tf.estimator.Estimator(model_fn=cnn_model) # Train. train_input_fn = tf.estimator.inputs.numpy_input_fn( x={WORDS_FEATURE: x_train}, y=y_train, batch_size=len(x_train), num_epochs=None, shuffle=True ) classifier.train(input_fn=train_input_fn, steps=100) # Predict. test_input_fn = tf.estimator.inputs.numpy_input_fn( x={WORDS_FEATURE: x_test}, y=y_test, num_epochs=1, shuffle=False ) predictions = classifier.predict(input_fn=test_input_fn) y_predicted = np.array(list(p['class'] for p in predictions)) y_predicted = y_predicted.reshape(np.array(y_test).shape) # Score with sklearn score = metrics.accuracy_score(y_test, y_predicted) print('Accuracy (sklearn): {0:f}'.format(score)) # Score with tensorflow scores = classifier.evaluate(input_fn=test_input_fn) print('Accuracy (tensorflow): {0:f}'.format(scores['accuracy'])) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '--test_with_fake_data', default=False, help='Test the example code with fake data.', action='store_true' ) FLAGS, unparsed = parser.parse_known_args() tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
mit
darafferty/factor
factor/scripts/smooth_amps_spline.py
1
26517
#! /usr/bin/env python """ Script to smooth and normalize amplitude solutions Reinout van Weeren, April 2016 """ import argparse from argparse import RawTextHelpFormatter import casacore.tables as pt import numpy import os import lofar.parmdb import math import shutil import multiprocessing from scipy.interpolate import LSQUnivariateSpline, interp1d, interp2d import sys import scipy.ndimage import astropy.convolution def std(inputData, Zero=False, axis=None, dtype=None): """ Robust estimator of the standard deviation of a data set. Based on the robust_sigma function from the AstroIDL User's Library. .. versionchanged:: 1.0.3 Added the 'axis' and 'dtype' keywords to make this function more compatible with numpy.std() """ epsilon = 1.0e-20 if axis is not None: fnc = lambda x: std(x, dtype=dtype) sigma = numpy.apply_along_axis(fnc, axis, inputData) else: data = inputData.ravel() if type(data).__name__ == "MaskedArray": data = data.compressed() if dtype is not None: data = data.astype(dtype) if Zero: data0 = 0.0 else: data0 = numpy.median(data) maxAbsDev = numpy.median(numpy.abs(data-data0)) / 0.6745 if maxAbsDev < epsilon: maxAbsDev = (numpy.abs(data-data0)).mean() / 0.8000 if maxAbsDev < epsilon: sigma = 0.0 return sigma u = (data-data0) / 6.0 / maxAbsDev u2 = u**2.0 good = numpy.where( u2 <= 1.0 ) good = good[0] if len(good) < 3: print "WARNING: Distribution is too strange to compute standard deviation" sigma = -1.0 return sigma numerator = ((data[good]-data0)**2.0 * (1.0-u2[good])**2.0).sum() nElements = (data.ravel()).shape[0] denominator = ((1.0-u2[good])*(1.0-5.0*u2[good])).sum() sigma = nElements*numerator / (denominator*(denominator-1.0)) if sigma > 0: sigma = math.sqrt(sigma) else: sigma = 0.0 return sigma def findscatter(datavector): shifted_vec = numpy.roll(datavector, 1) #scatter = sum(abs(shifted_vec - datavector))/numpy.float(len(datavector)) scatter = numpy.median(abs(shifted_vec - datavector)) return scatter def findscatter_time(dataarray): scattervec = [] for freq in range(0,len(dataarray[:,0])): #print 'findscatter_time', freq scatter = findscatter(dataarray[freq,:]) scattervec.append(scatter) return numpy.median(scattervec) def findscatter_freq(dataarray): scattervec = [] for time in range(0,len(dataarray[0,:])): #print 'findscatter_freq', time scatter = findscatter(dataarray[:,time]) scattervec.append(scatter) return numpy.median(scattervec) def findnoisevec(datavector): shifted_vec = numpy.roll(datavector, 1) scatter_vec = (abs(shifted_vec - datavector)) #scatter_vec = medfilt(scatter_vec,21) scatter_vec = scipy.ndimage.filters.median_filter(scatter_vec,9, mode='mirror') # now smooth gauss = astropy.convolution.Gaussian1DKernel(stddev=4.0) scatter_vec = astropy.convolution.convolve(scatter_vec,gauss , boundary='extend') # normalize scatter_vec scatter_vec = scatter_vec/numpy.mean(scatter_vec) return scatter_vec def spline1D(amp_orig): # to compute knot points f = lambda m, n: [i*n//m + n//(2*m) for i in range(m)] if amp_orig is None: return None, None, None, None, None, None, None # expand array and mirror full array around edges ndata = len(amp_orig) amp = numpy.zeros(ndata+2*ndata) amp[ndata:ndata+ndata] = amp_orig for i in range(0, ndata): # Mirror at left edge. idx = min(ndata-1, ndata-i) amp[i] = amp_orig[idx] # Mirror at right edge idx = max(0, ndata-2-i) amp[ndata+ndata+i] = amp_orig[idx] # Find flagged values flagged = numpy.where(amp == 1.0) # work in log-sapce amp_orig_ext = numpy.copy(amp) amp = numpy.log10(amp) weights = (0.*numpy.copy(amp)) + 1 # initialize weights to 1 # filter bad data and determine average scatter of amplitudes scatter = findscatter(amp) # remove some really bad stuff, by putting weights to zero. idxbadi1 = numpy.where(amp > (numpy.median(amp) + (35.*std(amp)))) weights[idxbadi1] = 1e-10 # small value, zero generates NaN in spline idxbadi2 = numpy.where(amp < (numpy.median(amp) - (35.*std(amp)))) weights[idxbadi2] = 1e-10 # small value, zero generates NaN in spline # Set weights for flagged values weights[flagged] = 1e-10 # small value, zero generates NaN in spline # make the noisevec if len(amp) > 30: # so at least 30/3 = 10 good data points # create noise vector noisevec = findnoisevec(amp) else: noisevec = (numpy.copy(amp) * 0.) + 1.0 # just make constant noise, if we have too little datapoints if scatter < 0.005: #Interior knots t must satisfy Schoenberg-Whitney conditions scatter = 0.005 # otherwise we fit more parameters than we have data points knotfactor = 0.5e3*scatter # normalize based on trial and error #print scatter, antenna, len(amp), knotfactor timevec = numpy.arange(0,len(amp)) knotvec = f(numpy.int(len(amp)/knotfactor),len(amp)) #print antenna, 'knots', knotvec, noisevec[knotvec] #print 'knots OR', knotvec # simple optimization knot selection for vectors that have at least 30 data points # based on the noisevector # removes even numbered knots if the noise is high knotvec_copy = numpy.copy(knotvec) # otherwise tcopy is updated as well if len(timevec) > 30 and len(knotvec) > 2: for counter, knot in enumerate(knotvec_copy): #print counter, knot, noisevec[knot] if (counter % 2 == 0) and noisevec[knot] > 1.5: # even index and large noise knotvec.remove(knot) #print 'Removing knot because of local increase in noise' #print antenna, 'cleaned knots', knotvec, noisevec[knotvec] # asign midpoint if not enough data points/20 if len (knotvec) < 3: # because we are working with a 3x larger mirrored array knotvec = [numpy.int(len(timevec)*0.25),numpy.int(len(timevec)/2),numpy.int(len(timevec)*0.75)] #print 'extending to', knotvec splineorder = 5 # default if len(knotvec) == 3 and scatter > 0.1: splineorder = 3 # reduce order, data is bad if scatter > 0.2: splineorder = 1 # very bad data #print 'knots CL', knotvec spl2 = LSQUnivariateSpline(timevec, amp, knotvec, w=weights, k=splineorder) # now find bad data devatiating from the fit 30 x scatter residual = numpy.abs(spl2(timevec)-amp) idx = numpy.where(residual > 15.*scatter) # second iteration if numpy.any(idx): ampcopy = numpy.copy(amp) ampcopy[idx] = spl2(timevec[idx]) # replace bad amplitudes by model spl2 = LSQUnivariateSpline(timevec, ampcopy, knotvec, w=weights, k=splineorder) residual = numpy.abs(spl2(timevec)-amp) idx = numpy.where(residual > 8.*scatter) # third iteration if numpy.any(idx): ampcopy = numpy.copy(amp) ampcopy[idx] = spl2(timevec[idx]) # replace bad amplitudes by model spl2 = LSQUnivariateSpline(timevec, ampcopy, knotvec, w=weights, k=splineorder) # again look at residual, go back to original amp again, find deviating data > 3x scatter residual = numpy.abs(spl2(timevec)-amp) idx = numpy.where(residual > 3.*scatter) # replace the bad data with model model =spl2(timevec) #if len(idx) != 0: amp[idx] = model[idx] # go out of log-space idxnodata = numpy.where(amp > 1.0) amp[idxnodata] = 0.0 amp = 10**amp amp_clean = amp[ndata:ndata + ndata] idxbad = numpy.where(amp_clean != amp_orig) n_knots = numpy.int(numpy.ceil(numpy.float(len(knotvec))/3.)) # approxmiate, just for plot # return cleaned amplitudes, model, scatter, number of knots, indices of replaced outliers return amp_clean, 10**(model[ndata:ndata + ndata]), noisevec[ndata:ndata + ndata], scatter, n_knots, idxbad, weights[ndata:ndata + ndata] def pad_2Darray(a, width, mode): pad_shape = (a.shape[0]*3, a.shape[1]*3) pad_a = numpy.zeros(pad_shape) # center pad_a[a.shape[0]:2*a.shape[0], a.shape[1]:2*a.shape[1]] = a # four corners pad_a[0:a.shape[0], 0:a.shape[1]] = a[::-1, ::-1] pad_a[0:a.shape[0], 2*a.shape[1]:3*a.shape[1]] = a[::-1, ::-1] pad_a[2*a.shape[0]:3*a.shape[0], 2*a.shape[1]:3*a.shape[1]] = a[::-1, ::-1] pad_a[2*a.shape[0]:3*a.shape[0], 0:a.shape[1]] = a[::-1, ::-1] # middle edges pad_a[0:a.shape[0], a.shape[1]:2*a.shape[1]] = a[:, ::-1] pad_a[a.shape[0]:2*a.shape[0], 2*a.shape[1]:3*a.shape[1]] = a[::-1, :] pad_a[2*a.shape[0]:3*a.shape[0], a.shape[1]:2*a.shape[1]] = a[:, ::-1] pad_a[a.shape[0]:2*a.shape[0], 0:a.shape[1]] = a[::-1, :] return pad_a def median2Dampfilter(amp_orig): try: from numpy import pad except ImportError: pad = pad_2Darray orinal_size = numpy.shape(amp_orig) # padd array by reflection around axis amp = pad(amp_orig, ((numpy.shape(amp_orig)[0],numpy.shape(amp_orig)[0]), (numpy.shape(amp_orig)[1],numpy.shape(amp_orig)[1])), mode='reflect') flagged = numpy.where(amp == 1.0) # take the log amp = numpy.log10(amp) # Set flagged values to NaN amp[flagged] = numpy.nan # create median filtered array, ignoring NaNs amp_median = scipy.ndimage.filters.generic_filter(amp, numpy.nanmedian, (3,5)) # so a bit more smoothing along the time-axis # find scatter scatter_freq = findscatter_freq(amp) scatter_time = findscatter_time(amp) # print 'scatter (freq,time)', scatter_freq, scatter_time scatter = 0.5*(scatter_freq+scatter_time) # average x-y scatter # find bad data idxbad = numpy.where((numpy.abs(amp - amp_median)) > scatter*3.) baddata = numpy.copy(amp)*0.0 baddata[idxbad] = 1.0 # replace the bad data points amp_cleaned = numpy.copy(amp) amp_cleaned[idxbad] = amp_median[idxbad] # raise to the power amp = 10**amp amp_median = 10**amp_median amp_cleaned = 10**amp_cleaned #back to original size amp_median = amp_median[orinal_size[0]:2*orinal_size[0],orinal_size[1]:2*orinal_size[1]] baddata = baddata[orinal_size[0]:2*orinal_size[0],orinal_size[1]:2*orinal_size[1]] amp_cleaned = amp_cleaned[orinal_size[0]:2*orinal_size[0],orinal_size[1]:2*orinal_size[1]] return amp_cleaned, amp_median, baddata def main(instrument_name, instrument_name_smoothed, normalize=True, plotting=False, scratch_dir=None): if type(normalize) is str: if normalize.lower() == 'true': normalize = True else: normalize = False if type(plotting) is str: if plotting.lower() == 'true': plotting = True else: plotting = False gain = 'Gain' # Copy to scratch directory if specified if scratch_dir is not None: instrument_name_orig = instrument_name instrument_name = os.path.join(scratch_dir, os.path.basename(instrument_name_orig)) instrument_name_smoothed_orig = instrument_name_smoothed instrument_name_smoothed = os.path.join(scratch_dir, os.path.basename(instrument_name_smoothed_orig)) shutil.copytree(instrument_name_orig, instrument_name) pdb = lofar.parmdb.parmdb(instrument_name) parms = pdb.getValuesGrid('*') key_names = parms.keys() initial_flagged_dict = {} initial_unflagged_dict = {} for key_name in key_names: # Check for NaNs and zeros. If found, set to 1 initial_flagged_indx = numpy.where(numpy.logical_or(numpy.isnan(parms[key_name]['values']), parms[key_name]['values'] == 0.0)) initial_flagged_dict[key_name] = initial_flagged_indx initial_unflagged_indx = numpy.where(numpy.logical_and(~numpy.isnan(parms[key_name]['values']), parms[key_name]['values'] != 0.0)) initial_unflagged_dict[key_name] = initial_unflagged_indx parms[key_name]['values'][initial_flagged_indx] = 1.0 nchans = len(parms[key_names[0]]['freqs']) # determine the number of polarizations in parmdb (2 or 4) if any(gain+':0:1:' in s for s in key_names): pol_list = ['0:0', '1:1', '0:1', '1:0'] else: pol_list = ['0:0', '1:1'] times = numpy.copy(sorted( parms[key_names[0]]['times'])) orig_times = parms[key_names[0]]['times'] timewidths = parms[key_names[0]]['timewidths'] freqs = numpy.copy(sorted( parms[key_names[0]]['freqs']))/1e6 # get this in MHz orig_freqs = parms[key_names[0]]['freqs'] freqwidths = parms[key_names[0]]['freqwidths'] # times not used at the moment, I assume the time axis for a parmdb is regular and does not contain gaps times = (times - numpy.min(times))/24. #so we get an axis in hrs ntimes = len(times) # Get station names antenna_list = set([s.split(':')[-1] for s in pdb.getNames()]) # for plotting Nr = int(numpy.ceil(numpy.sqrt(len(antenna_list)))) Nc = int(numpy.ceil(numpy.float(len(antenna_list))/Nr)) if plotting: import matplotlib as mpl import matplotlib.pyplot as plt mpl.rc('font',size =6 ) mpl.rc('figure.subplot',left=0.05, bottom=0.05, right=0.95, top=0.95 ) fa, axa = plt.subplots(Nr, Nc, sharex=True, sharey=True, figsize=(16,12)) axsa = axa.reshape((Nr*Nc,1)) if nchans > 5: # 2D filter Nr = len(antenna_list) Nc = int(4) fa2, axa2 = plt.subplots(Nr, Nc, sharex=True, sharey=True, figsize=(8,108),) axsa2 = axa2.reshape((Nr*Nc,1)) for pol in pol_list: for istat,antenna in enumerate(sorted(antenna_list)[::-1]): channel_parms_real = [parms[gain + ':' + pol + ':Real:'+ antenna]['values'][:, chan] for chan in range(nchans)] channel_parms_imag = [parms[gain + ':' + pol + ':Imag:'+ antenna]['values'][:, chan] for chan in range(nchans)] # some plotting setup if len(channel_parms_real[0]) > 500: fmt = ',' else: fmt = 'o' ls='none' channel_amp_orig = [numpy.sqrt(channel_parms_real[chan]**2 + channel_parms_imag[chan]**2) for chan in range(nchans)] # Find flagged solutions and set to 1.0 channel_amp_interp = [] for chan in range(nchans): unflagged_times = numpy.where(channel_parms_real[chan] != 1.0) flagged_times = numpy.where(channel_parms_real[chan] == 1.0) if numpy.any(unflagged_times): if numpy.any(flagged_times): channel_amp_orig[chan][flagged_times] = 1.0 channel_amp_interp.append(channel_amp_orig[chan]) else: channel_amp_interp.append(None) # now find the bad data if ntimes > 5: pool = multiprocessing.Pool() results = pool.map(spline1D, channel_amp_interp) pool.close() pool.join() for chan, (amp_cleaned, model, noisevec, scatter, n_knots, idxbad, weights) in enumerate(results): # put back the results phase = numpy.arctan2(channel_parms_imag[chan], channel_parms_real[chan]) if amp_cleaned is None: amp_cleaned = channel_amp_orig[chan] parms[gain + ':' + pol + ':Real:' + antenna]['values'][:, chan] = numpy.copy(amp_cleaned*numpy.cos(phase)) parms[gain + ':' + pol + ':Imag:' + antenna]['values'][:, chan] = numpy.copy(amp_cleaned*numpy.sin(phase)) if pol in pol_list[0]: cc = 'blue' ccf = 'orange' else: cc = 'green' ccf= 'red' timevec = numpy.arange(0,len(channel_amp_orig[chan])) # only plot one channel, just to verify code works if plotting and chan == nchans-1: # plot last channel axsa[istat][0].plot(timevec, amp_cleaned, marker=fmt, ls=ls, markersize=0.1*len(amp_cleaned), c=cc,mec=cc) axsa[istat][0].plot(timevec,noisevec, c=cc, lw=0.75, ls='--') if pol in pol_list[0]: axsa[istat][0].annotate('scatter=' +'{:.2g}'.format(scatter), xy=(0.5,0.15), color=cc,textcoords='axes fraction') axsa[istat][0].annotate('#knots=' +'{:d}'.format(n_knots), xy=(0.01,0.15), color=cc,textcoords='axes fraction') # we divded by three beucase we mirrored the array else: axsa[istat][0].annotate('scatter=' +'{:.2g}'.format(scatter), xy=(0.5,0.02), color=cc, textcoords='axes fraction') axsa[istat][0].annotate('#knots=' +'{:d}'.format(n_knots), xy=(0.01,0.02), color=cc,textcoords='axes fraction') if numpy.any(idxbad): axsa[istat][0].plot(timevec[idxbad],channel_amp_orig[chan][idxbad], marker='o', c=ccf, ls=ls, markersize=4) idxbadi = numpy.where(weights < 1.0) if numpy.any(idxbadi): axsa[istat][0].plot(timevec[idxbadi],channel_amp_orig[chan][idxbadi], marker='o', c='black', ls=ls, markersize=4, mec='black') axsa[istat][0].plot(timevec, model, c=ccf, lw=1.0) axsa[istat][0].set_title(antenna) axsa[istat][0].set_ylim(-0.3, 2) axsa[istat][0].set_xlim(0, max(timevec)) if nchans > 5: # Do 2D smooth channel_parms_real = [parms[gain + ':' + pol + ':Real:'+ antenna]['values'][:, chan] for chan in range(nchans)] channel_parms_imag = [parms[gain + ':' + pol + ':Imag:'+ antenna]['values'][:, chan] for chan in range(nchans)] channel_parms_real = numpy.asarray(channel_parms_real) channel_parms_imag = numpy.asarray(channel_parms_imag) channel_amp_orig = numpy.asarray([numpy.sqrt(channel_parms_real[chan]**2 + channel_parms_imag[chan]**2) for chan in range(nchans)]) phase = numpy.arctan2(channel_parms_imag[:], channel_parms_real[:]) # Smooth channel_amp_interp = [] unflagged_sols = numpy.where(channel_parms_real != 1.0) x, y = numpy.meshgrid(times, range(nchans)) if numpy.any(unflagged_sols): # Set flagged solutions to 1.0 flagged_sols = numpy.where(channel_parms_real == 1.0) channel_amp_orig[flagged_sols] = 1.0 amp_cleaned, amp_median, baddata = median2Dampfilter(channel_amp_orig) for chan in range(nchans): # put back the results parms[gain + ':' + pol + ':Real:' + antenna]['values'][:, chan] = numpy.copy((amp_cleaned[chan,:])*numpy.cos(phase[chan,:])) parms[gain + ':' + pol + ':Imag:' + antenna]['values'][:, chan] = numpy.copy((amp_cleaned[chan,:])*numpy.sin(phase[chan,:])) if plotting: axsa2[4*istat][0].imshow(numpy.transpose(channel_amp_orig), interpolation='none',origin='lower',clim=(0.5, 1.5),aspect='auto') axsa2[4*istat][0].set_xlabel('freq') axsa2[4*istat][0].set_ylabel('time') axsa2[4*istat][0].set_title('Original' + ' ' + antenna) axsa2[4*istat+1][0].imshow(numpy.transpose(amp_median), interpolation='none',origin='lower',aspect='auto', clim=(0.5,1.5)) axsa2[4*istat+1][0].set_xlabel('freq') axsa2[4*istat+1][0].set_ylabel('time') axsa2[4*istat+1][0].set_title('2D median model') axsa2[4*istat+2][0].imshow(numpy.transpose(numpy.abs(channel_amp_orig-amp_median)), interpolation='none',origin='lower',clim=(0.0, 0.3),aspect='auto') axsa2[4*istat+2][0].set_xlabel('freq') axsa2[4*istat+2][0].set_ylabel('time') axsa2[4*istat+2][0].set_title('abs(Residual)') axsa2[4*istat+3][0].imshow(numpy.transpose(baddata), interpolation='none',origin='lower',clim=(0.0, 2.0), aspect='auto', cmap='gnuplot') axsa2[4*istat+3][0].set_xlabel('freq') axsa2[4*istat+3][0].set_ylabel('time') axsa2[4*istat+3][0].set_title('Replaced solutions') if plotting: fa.savefig('1Dsmooth.png', dpi=100) if nchans > 5: # make 2D plot fa2.tight_layout() fa2.savefig('2Dsmooth.png') plt.show() # Normalize the amplitude solutions to a mean of one across all channels if normalize: # First find the normalization factor amplist = [] for pol in ['0:0','1:1']: # hard code here in case the data contains 0:1 and 1:0 for antenna in antenna_list: key_name = gain + ':' + pol + ':Real:'+ antenna if numpy.any(initial_unflagged_dict[key_name]): # Only use unflagged data for normalization real = numpy.copy(parms[key_name]['values']) key_name = gain + ':' + pol + ':Imag:'+ antenna imag = numpy.copy(parms[key_name]['values']) amp = numpy.copy(numpy.sqrt(real**2 + imag**2)) amplist.append(amp[initial_unflagged_dict[key_name]]) norm_factor = 1.0/(numpy.nanmean(numpy.concatenate(amplist))) print "smooth_amps_spline.py: Normalization-Factor is:", norm_factor # Now do the normalization for chan in range(nchans): for pol in pol_list: for antenna in antenna_list: real = numpy.copy(parms[gain + ':' + pol + ':Real:'+ antenna]['values'][:, chan]) imag = numpy.copy(parms[gain + ':' + pol + ':Imag:'+ antenna]['values'][:, chan]) phase = numpy.arctan2(imag, real) amp = numpy.copy(numpy.sqrt(real**2 + imag**2)) # Clip extremely low amplitude solutions to prevent very high # amplitudes in the corrected data unflagged = numpy.where(~numpy.isnan(amp)) low_ind = numpy.where(amp[unflagged] < 0.2) amp[unflagged][low_ind] = 0.2 parms[gain + ':' + pol + ':Real:'+ antenna]['values'][:, chan] = numpy.copy(amp * numpy.cos(phase) * norm_factor) parms[gain + ':' + pol + ':Imag:'+ antenna]['values'][:, chan] = numpy.copy(amp * numpy.sin(phase) * norm_factor) # Make sure flagged solutions are still flagged for key_name in key_names: parms[key_name]['values'][initial_flagged_dict[key_name]] = numpy.nan if os.path.exists(instrument_name_smoothed): shutil.rmtree(instrument_name_smoothed) pdbnew = lofar.parmdb.parmdb(instrument_name_smoothed, create=True) # Identify any gaps in time (frequency gaps are not allowed), as we need to handle # each section separately if gaps are present delta_times = orig_times[1:] - orig_times[:-1] gaps = numpy.where(delta_times > timewidths[:-1]*1.1) if len(gaps[0]) > 0: gaps_ind = gaps[0] + 1 else: gaps_ind = [] for pol in pol_list: for station in antenna_list: g_start = 0 real = parms['Gain:' + pol + ':Real:'+ station]['values'] imag = parms['Gain:' + pol + ':Imag:'+ station]['values'] for g in gaps_ind: # If time gaps exist, add them one-by-one (except for last one) pdbnew.addValues('Gain:'+pol+':Real:{}'.format(station), real[g_start:g], orig_freqs, freqwidths, orig_times[g_start:g], timewidths[g_start:g], asStartEnd=False) pdbnew.addValues('Gain:'+pol+':Imag:{}'.format(station), imag[g_start:g], orig_freqs, freqwidths, orig_times[g_start:g], timewidths[g_start:g], asStartEnd=False) g_start = g # Add remaining time slots pdbnew.addValues('Gain:'+pol+':Real:{}'.format(station), real[g_start:], orig_freqs, freqwidths, orig_times[g_start:], timewidths[g_start:], asStartEnd=False) pdbnew.addValues('Gain:'+pol+':Imag:{}'.format(station), imag[g_start:], orig_freqs, freqwidths, orig_times[g_start:], timewidths[g_start:], asStartEnd=False) pdbnew.flush() # Copy output to original path and delete copies if scratch directory is specified if scratch_dir is not None: if os.path.exists(instrument_name_smoothed_orig): shutil.rmtree(instrument_name_smoothed_orig) shutil.copytree(instrument_name_smoothed, instrument_name_smoothed_orig) shutil.rmtree(instrument_name) shutil.rmtree(instrument_name_smoothed) if __name__ == '__main__': descriptiontext = "Smooth and normalize amplitude solutions.\n" parser = argparse.ArgumentParser(description=descriptiontext, formatter_class=RawTextHelpFormatter) parser.add_argument('instrument_name', help='name of the instrument parmdb to smooth') parser.add_argument('instrument_name_smoothed', help='name of the output parmdb') parser.add_argument('normalize', help='normalize?') parser.add_argument('plotting', help='make plots?') args = parser.parse_args() main(args.instrument_name, args.instrument_name_smoothed, args.normalize, args.plotting)
gpl-2.0
DougBurke/astropy
astropy/visualization/mpl_normalize.py
2
8314
""" Normalization class for Matplotlib that can be used to produce colorbars. """ import numpy as np from numpy import ma from .interval import (PercentileInterval, AsymmetricPercentileInterval, ManualInterval, MinMaxInterval, BaseInterval) from .stretch import (LinearStretch, SqrtStretch, PowerStretch, LogStretch, AsinhStretch, BaseStretch) try: import matplotlib # pylint: disable=W0611 from matplotlib.colors import Normalize except ImportError: class Normalize: def __init__(self, *args, **kwargs): raise ImportError('matplotlib is required in order to use this ' 'class.') __all__ = ['ImageNormalize', 'simple_norm'] __doctest_requires__ = {'*': ['matplotlib']} class ImageNormalize(Normalize): """ Normalization class to be used with Matplotlib. Parameters ---------- data : `~numpy.ndarray`, optional The image array. This input is used only if ``interval`` is also input. ``data`` and ``interval`` are used to compute the vmin and/or vmax values only if ``vmin`` or ``vmax`` are not input. interval : `~astropy.visualization.BaseInterval` subclass instance, optional The interval object to apply to the input ``data`` to determine the ``vmin`` and ``vmax`` values. This input is used only if ``data`` is also input. ``data`` and ``interval`` are used to compute the vmin and/or vmax values only if ``vmin`` or ``vmax`` are not input. vmin, vmax : float The minimum and maximum levels to show for the data. The ``vmin`` and ``vmax`` inputs override any calculated values from the ``interval`` and ``data`` inputs. stretch : `~astropy.visualization.BaseStretch` subclass instance, optional The stretch object to apply to the data. The default is `~astropy.visualization.LinearStretch`. clip : bool, optional If `True` (default), data values outside the [0:1] range are clipped to the [0:1] range. """ def __init__(self, data=None, interval=None, vmin=None, vmax=None, stretch=LinearStretch(), clip=False): # this super call checks for matplotlib super().__init__(vmin=vmin, vmax=vmax, clip=clip) self.vmin = vmin self.vmax = vmax if data is not None and interval is not None: _vmin, _vmax = interval.get_limits(data) if self.vmin is None: self.vmin = _vmin if self.vmax is None: self.vmax = _vmax if stretch is not None and not isinstance(stretch, BaseStretch): raise TypeError('stretch must be an instance of a BaseStretch ' 'subclass') self.stretch = stretch if interval is not None and not isinstance(interval, BaseInterval): raise TypeError('interval must be an instance of a BaseInterval ' 'subclass') self.interval = interval self.inverse_stretch = stretch.inverse self.clip = clip def __call__(self, values, clip=None): if clip is None: clip = self.clip if isinstance(values, ma.MaskedArray): if clip: mask = False else: mask = values.mask values = values.filled(self.vmax) else: mask = False # Make sure scalars get broadcast to 1-d if np.isscalar(values): values = np.array([values], dtype=float) else: # copy because of in-place operations after values = np.array(values, copy=True, dtype=float) # Set default values for vmin and vmax if not specified self.autoscale_None(values) # Normalize based on vmin and vmax np.subtract(values, self.vmin, out=values) np.true_divide(values, self.vmax - self.vmin, out=values) # Clip to the 0 to 1 range if self.clip: values = np.clip(values, 0., 1., out=values) # Stretch values values = self.stretch(values, out=values, clip=False) # Convert to masked array for matplotlib return ma.array(values, mask=mask) def inverse(self, values): # Find unstretched values in range 0 to 1 values_norm = self.inverse_stretch(values, clip=False) # Scale to original range return values_norm * (self.vmax - self.vmin) + self.vmin def simple_norm(data, stretch='linear', power=1.0, asinh_a=0.1, min_cut=None, max_cut=None, min_percent=None, max_percent=None, percent=None, clip=True): """ Return a Normalization class that can be used for displaying images with Matplotlib. This function enables only a subset of image stretching functions available in `~astropy.visualization.mpl_normalize.ImageNormalize`. This function is used by the ``astropy.visualization.scripts.fits2bitmap`` script. Parameters ---------- data : `~numpy.ndarray` The image array. stretch : {'linear', 'sqrt', 'power', log', 'asinh'}, optional The stretch function to apply to the image. The default is 'linear'. power : float, optional The power index for ``stretch='power'``. The default is 1.0. asinh_a : float, optional For ``stretch='asinh'``, the value where the asinh curve transitions from linear to logarithmic behavior, expressed as a fraction of the normalized image. Must be in the range between 0 and 1. The default is 0.1. min_cut : float, optional The pixel value of the minimum cut level. Data values less than ``min_cut`` will set to ``min_cut`` before stretching the image. The default is the image minimum. ``min_cut`` overrides ``min_percent``. max_cut : float, optional The pixel value of the maximum cut level. Data values greater than ``min_cut`` will set to ``min_cut`` before stretching the image. The default is the image maximum. ``max_cut`` overrides ``max_percent``. min_percent : float, optional The percentile value used to determine the pixel value of minimum cut level. The default is 0.0. ``min_percent`` overrides ``percent``. max_percent : float, optional The percentile value used to determine the pixel value of maximum cut level. The default is 100.0. ``max_percent`` overrides ``percent``. percent : float, optional The percentage of the image values used to determine the pixel values of the minimum and maximum cut levels. The lower cut level will set at the ``(100 - percent) / 2`` percentile, while the upper cut level will be set at the ``(100 + percent) / 2`` percentile. The default is 100.0. ``percent`` is ignored if either ``min_percent`` or ``max_percent`` is input. clip : bool, optional If `True` (default), data values outside the [0:1] range are clipped to the [0:1] range. Returns ------- result : `ImageNormalize` instance An `ImageNormalize` instance that can be used for displaying images with Matplotlib. """ if percent is not None: interval = PercentileInterval(percent) elif min_percent is not None or max_percent is not None: interval = AsymmetricPercentileInterval(min_percent or 0., max_percent or 100.) elif min_cut is not None or max_cut is not None: interval = ManualInterval(min_cut, max_cut) else: interval = MinMaxInterval() if stretch == 'linear': stretch = LinearStretch() elif stretch == 'sqrt': stretch = SqrtStretch() elif stretch == 'power': stretch = PowerStretch(power) elif stretch == 'log': stretch = LogStretch() elif stretch == 'asinh': stretch = AsinhStretch(asinh_a) else: raise ValueError('Unknown stretch: {0}.'.format(stretch)) vmin, vmax = interval.get_limits(data) return ImageNormalize(vmin=vmin, vmax=vmax, stretch=stretch, clip=clip)
bsd-3-clause
kdebrab/pandas
asv_bench/benchmarks/strings.py
3
2934
import warnings import numpy as np from pandas import Series import pandas.util.testing as tm class Methods(object): goal_time = 0.2 def setup(self): self.s = Series(tm.makeStringIndex(10**5)) def time_cat(self): self.s.str.cat(sep=',') def time_center(self): self.s.str.center(100) def time_count(self): self.s.str.count('A') def time_endswith(self): self.s.str.endswith('A') def time_extract(self): with warnings.catch_warnings(record=True): self.s.str.extract('(\\w*)A(\\w*)') def time_findall(self): self.s.str.findall('[A-Z]+') def time_get(self): self.s.str.get(0) def time_len(self): self.s.str.len() def time_match(self): self.s.str.match('A') def time_pad(self): self.s.str.pad(100, side='both') def time_replace(self): self.s.str.replace('A', '\x01\x01') def time_slice(self): self.s.str.slice(5, 15, 2) def time_startswith(self): self.s.str.startswith('A') def time_strip(self): self.s.str.strip('A') def time_rstrip(self): self.s.str.rstrip('A') def time_lstrip(self): self.s.str.lstrip('A') def time_title(self): self.s.str.title() def time_upper(self): self.s.str.upper() def time_lower(self): self.s.str.lower() class Repeat(object): goal_time = 0.2 params = ['int', 'array'] param_names = ['repeats'] def setup(self, repeats): N = 10**5 self.s = Series(tm.makeStringIndex(N)) repeat = {'int': 1, 'array': np.random.randint(1, 3, N)} self.repeat = repeat[repeats] def time_repeat(self, repeats): self.s.str.repeat(self.repeat) class Contains(object): goal_time = 0.2 params = [True, False] param_names = ['regex'] def setup(self, regex): self.s = Series(tm.makeStringIndex(10**5)) def time_contains(self, regex): self.s.str.contains('A', regex=regex) class Split(object): goal_time = 0.2 params = [True, False] param_names = ['expand'] def setup(self, expand): self.s = Series(tm.makeStringIndex(10**5)).str.join('--') def time_split(self, expand): self.s.str.split('--', expand=expand) class Dummies(object): goal_time = 0.2 def setup(self): self.s = Series(tm.makeStringIndex(10**5)).str.join('|') def time_get_dummies(self): self.s.str.get_dummies('|') class Encode(object): goal_time = 0.2 def setup(self): self.ser = Series(tm.makeUnicodeIndex()) def time_encode_decode(self): self.ser.str.encode('utf-8').str.decode('utf-8') class Slice(object): goal_time = 0.2 def setup(self): self.s = Series(['abcdefg', np.nan] * 500000) def time_vector_slice(self): # GH 2602 self.s.str[:5]
bsd-3-clause
rsignell-usgs/notebook
ucsd_wms_test.py
1
4178
# -*- coding: utf-8 -*- # <nbformat>3.0</nbformat> # <headingcell level=2> # Test WMS performance of joinExisting and FMRC aggregations from UCSD THREDDS # <markdowncell> # The [UCSD THREDDS server](http://hfrnet.ucsd.edu/thredds/catalog.html) has the largest archive of gridded HF Radar surface currents in the USA. But their services have been very frustrating to use because sometimes they are fast and sometimes very slow. # # Based on conversations with Tom Cook and Mark Otero, here's how the datasets are constructed: # # There are alway Matlab processes running, retrieving new HFRAdar data and as soon as a certain amount of data comes in, a gridded netcdf file is produced for a specific observation hour. As additional radar data comes in, the *data* in the file is updated, but the metadata stays the same. The file is updated by replacing the existing file with a new file of the same name. # # The files are scanned by a `joinExisting` aggregation scan and also by a `FMRC featureCollection` aggregation scan (accessible via the [FMRC aggregation catalog](http://hfrnet.ucsd.edu/thredds/fmrc-catalog.html)) # # Below we test the WMS performance of the two aggregation techniques. # # We find that even though `FMRC` is not designed for this type of aggregation, it performs consistently better than the `joinExisting`. # # Why? # <codecell> from IPython.core.display import Image import time import pandas as pd import datetime as dt import numpy as np import urllib # <codecell> %matplotlib inline # <codecell> t = range(60) # <codecell> bbox=[-75.413, -70.1733582764, 37.586, 41.68049] # [lonmin lonmax latmin latmax] # <codecell> wms1='http://hfrnet.ucsd.edu/thredds/wms/HFRNet/USEGC/6km/hourly/RTV?' wms_query='LAYERS=surface_sea_water_velocity&ELEVATION=0&TIME=2015-03-11T00%3A00%3A00.000Z&TRANSPARENT=true&STYLES=vector%2Frainbow&CRS=EPSG%3A4326&COLORSCALERANGE=0%2C0.5&NUMCOLORBANDS=20&LOGSCALE=false&SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&EXCEPTIONS=application%2Fvnd.ogc.se_inimage&FORMAT=image%2Fpng&SRS=EPSG%3A4326&' wms_bbox = 'BBOX=%.6f,%.6f,%.6f,%.6f&WIDTH=768&HEIGHT=600' % (bbox[0],bbox[2],bbox[1],bbox[3]) wms_get_map1 = wms1 + wms_query + wms_bbox print wms_get_map1 # <codecell> wms2='http://hfrnet.ucsd.edu/thredds/wms/USEGC/RTV/6km/HFRADAR,_US_East_and_Gulf_Coast,_6km_Resolution,_Hourly_RTV_best.ncd?' wms_get_map2 = wms2 + wms_query + wms_bbox print wms_get_map2 # <codecell> indx=[] dti1=[] dti2=[] for i in t: time.sleep(60) box= bbox + np.random.uniform(-.1,.1,size=4) wms_bbox = 'BBOX=%.6f,%.6f,%.6f,%.6f&WIDTH=768&HEIGHT=600' % (box[0],box[2],box[1],bbox[3]) wms_get_map1 = wms1 + wms_query + wms_bbox indx.append(dt.datetime.now()) time0=time.time() urllib.urlretrieve(wms_get_map1, 'foo.png') dti1.append(time.time()-time0) wms_get_map2 = wms2 + wms_query + wms_bbox time0=time.time() urllib.urlretrieve(wms_get_map2, 'foo.png') dti2.append(time.time()-time0) # <codecell> t1 = pd.Series(index=indx,data=dti1) t1.plot(figsize=(12,4),marker='o') # <codecell> t2 = pd.Series(index=indx,data=dti2) t2.plot(figsize=(12,4),marker='o') # <markdowncell> # The configuration of the `joinExisting` is as follows: # # ```xml # <dataset name="HFRADAR, US East and Gulf Coast, 2km Resolution, Hourly RTV" # ID="HFRNet/USEGC/2km/hourly/RTV" urlPath="HFRNet/USEGC/2km/hourly/RTV"> # <metadata> # <documentation type="Summary">HFRADAR, US East and Gulf Coast, # 2km Resolution, Hourly Combined Total Vectors (RTV)</documentation> # </metadata> # <netcdf xmlns="http://www.unidata.ucar.edu/namespaces/netcdf/ncml-2.2"> # <aggregation dimName="time" type="joinExisting" recheckEvery="10 min"> # <scan location="/exports/hfradar/hfrnet/hfrtv/USEGC" subdirs="true" # olderThan="2 min" # regExp=".*[0-9]{12}_hfr_usegc_2km_rtv_uwls_SIO\.nc$"/> # </aggregation> # </netcdf> # </dataset> # ``` # with the `threddsConfig.xml` cache settings like this: # ```xml # <AggregationCache> # <scour>-1 hours</scour> # </AggregationCache> # ```
mit
jblackburne/scikit-learn
examples/cluster/plot_mini_batch_kmeans.py
86
4092
""" ==================================================================== Comparison of the K-Means and MiniBatchKMeans clustering algorithms ==================================================================== We want to compare the performance of the MiniBatchKMeans and KMeans: the MiniBatchKMeans is faster, but gives slightly different results (see :ref:`mini_batch_kmeans`). We will cluster a set of data, first with KMeans and then with MiniBatchKMeans, and plot the results. We will also plot the points that are labelled differently between the two algorithms. """ print(__doc__) import time import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import MiniBatchKMeans, KMeans from sklearn.metrics.pairwise import pairwise_distances_argmin from sklearn.datasets.samples_generator import make_blobs ############################################################################## # Generate sample data np.random.seed(0) batch_size = 45 centers = [[1, 1], [-1, -1], [1, -1]] n_clusters = len(centers) X, labels_true = make_blobs(n_samples=3000, centers=centers, cluster_std=0.7) ############################################################################## # Compute clustering with Means k_means = KMeans(init='k-means++', n_clusters=3, n_init=10) t0 = time.time() k_means.fit(X) t_batch = time.time() - t0 ############################################################################## # Compute clustering with MiniBatchKMeans mbk = MiniBatchKMeans(init='k-means++', n_clusters=3, batch_size=batch_size, n_init=10, max_no_improvement=10, verbose=0) t0 = time.time() mbk.fit(X) t_mini_batch = time.time() - t0 ############################################################################## # Plot result fig = plt.figure(figsize=(8, 3)) fig.subplots_adjust(left=0.02, right=0.98, bottom=0.05, top=0.9) colors = ['#4EACC5', '#FF9C34', '#4E9A06'] # We want to have the same colors for the same cluster from the # MiniBatchKMeans and the KMeans algorithm. Let's pair the cluster centers per # closest one. k_means_cluster_centers = np.sort(k_means.cluster_centers_, axis=0) mbk_means_cluster_centers = np.sort(mbk.cluster_centers_, axis=0) k_means_labels = pairwise_distances_argmin(X, k_means_cluster_centers) mbk_means_labels = pairwise_distances_argmin(X, mbk_means_cluster_centers) order = pairwise_distances_argmin(k_means_cluster_centers, mbk_means_cluster_centers) # KMeans ax = fig.add_subplot(1, 3, 1) for k, col in zip(range(n_clusters), colors): my_members = k_means_labels == k cluster_center = k_means_cluster_centers[k] ax.plot(X[my_members, 0], X[my_members, 1], 'w', markerfacecolor=col, marker='.') ax.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=6) ax.set_title('KMeans') ax.set_xticks(()) ax.set_yticks(()) plt.text(-3.5, 1.8, 'train time: %.2fs\ninertia: %f' % ( t_batch, k_means.inertia_)) # MiniBatchKMeans ax = fig.add_subplot(1, 3, 2) for k, col in zip(range(n_clusters), colors): my_members = mbk_means_labels == order[k] cluster_center = mbk_means_cluster_centers[order[k]] ax.plot(X[my_members, 0], X[my_members, 1], 'w', markerfacecolor=col, marker='.') ax.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=6) ax.set_title('MiniBatchKMeans') ax.set_xticks(()) ax.set_yticks(()) plt.text(-3.5, 1.8, 'train time: %.2fs\ninertia: %f' % (t_mini_batch, mbk.inertia_)) # Initialise the different array to all False different = (mbk_means_labels == 4) ax = fig.add_subplot(1, 3, 3) for k in range(n_clusters): different += ((k_means_labels == k) != (mbk_means_labels == order[k])) identic = np.logical_not(different) ax.plot(X[identic, 0], X[identic, 1], 'w', markerfacecolor='#bbbbbb', marker='.') ax.plot(X[different, 0], X[different, 1], 'w', markerfacecolor='m', marker='.') ax.set_title('Difference') ax.set_xticks(()) ax.set_yticks(()) plt.show()
bsd-3-clause
yaukwankiu/armor
pattern.py
1
145731
# -*- coding: utf-8 -*- # defining the basic object we will be working with # adapted from : # /media/KINGSTON/ARMOR/ARMOR/python/weatherPattern.py , # /media/KINGSTON/ARMOR/ARMOR/python/clustering.py , # /media/KINGSTON/ARMOR/2013/pythonJan2013/basics.py # Yau Kwan Kiu, Room 801, 23-1-2013 ############################################################################################## # #==== imports ================================================================================ # some of the stuff were moved to defaultParameters.py import copy import time, datetime import pickle import struct import os import re import numpy import numpy as np import numpy.ma as ma #import matplotlib import matplotlib.pyplot as plt #import scipy.misc.pilutil as smp #import numpy.fft as fft #import shutil #import sys from copy import deepcopy try: from scipy import signal from scipy import interpolate except ImportError: #print "Scipy not installed" pass #==== setting up the global parameters======================================================== import defaultParameters as dp # to keep a link 2014-03-12 import misc # to keep a link 2014-03-12 from defaultParameters import * # bad habit but all these variables are prefixed with "default" # or at least i try to make them to from misc import * # same - default functions import colourbarQPESUMS # the colourbars for the Central Weather Bureau import colourbarQPESUMSwhiteBackground # the same as above, with white backgrounds #==== defining the classes =================================================================== class DBZ(object): #python 2.7 (?) new style class, subclassing object """module predecessors: basics.py; weatherPattern.py NOTE: a DBZ object can be loaded from data or generated in run time (e.g. by translation, or other operations.) There is flexibility in this. In particular, the object is instantiated before its values loaded (either from file or from other computations). attributes (some to be defined at __init__, some afterwards): DBZ.name - a string, the name of the instance, default = something like "DBZ20120612.0200" DBZ.matrix - a numpy.ma.core.MaskedArray object DBZ.datatime - a string like "20120612.0200" DBZ.dataPath - a string like "../data/dbz20120612.0200.dat" can be relative (preferred) or absolute DBZ.outputPath - a string like "../data/dbz20120612.0200.dat" can be relative (preferred) or absolute DBZ.inputType - a string to record the type of input file, most common is "txt", which should be 2-dim arrays in text, separated by " " and "\n", readable by numpy or matlab - convention: first row of data = bottom row of pixels DBZ.image - I am not going to define this yet, since matplotlib.pyplot is pretty fast DBZ.imagePath - a string like "../data/dbz20120612.0200.png" can be relative (preferred) or absolute default = "" (undefined) DBZ.dt - time interval from the previous image (default=1; how about 10mins = 1/6 hour??) DBZ.dy - grid size, latitudinal, in km (default =1; how about 0.0125 degree = how many kms?) DBZ.dx - grid size, longitudinal, in km (same as above) DBZ.timeStamp - time stamp when the object was created DBZ.verbose - whether print out a lot of stuff when we work with this object ################################################################# # DBZ.inputFolder - a string, self evident # <-- not used yet, # DBZ.outputFolder - ditto # perhaps not here # DBZ.outputFolderForImages - ditto # ################################################################# DBZ.database - a string, pointing to the database, somehow, for future methods: DBZ.load - load into DBZ.matrix DBZ.save DBZ.saveImage DBZ.printToScreen use: >>> from armor import pattern >>> a = pattern.DBZ(dataTime="20120612.0200",name="", dt=1, dx=1, dy=1, dataPath="", imagePath="") >>> a.load() >>> a.printToScreen() >>> import numpy as np >>> import armor >>> import armor.pattern as pattern >>> dbz=pattern.DBZ >>> a = dbz('20120612.0300') DBZ20120612.0300initialised. Use the command '___.load()' to load your data, and '__.printToScreen()' to print it to screen. >>> b = dbz('20120612.0330') DBZ20120612.0330initialised. Use the command '___.load()' to load your data, and '__.printToScreen()' to print it to screen. >>> a.load() >>> b.load()# -*- coding: utf-8 -*- >>> c=a-b DBZ20120612.0300_minus_DBZ20120612.0330initialised. Use the command '___.load()' to load your data, and '__.printToScreen()' to print it to screen. >>> c.show() >>> d=a*b DBZ20120612.0300_times_DBZ20120612.0330initialised. Use the command '___.load()' to load your data, and '__.printToScreen()' to print it to screen. >>> d.show() >>> """ def __init__(self, dataTime="NoneGiven", matrix=-999, name="", dt=1, dx=1, dy=1,\ dataPath="",outputPath ="",imagePath="",\ cmap=defaultCmap, vmin=-20, vmax=100, coordinateOrigin="default",\ coastDataPath="", relief100DataPath='', relief1000DataPath='',\ relief2000DataPath='', relief3000DataPath='',\ lowerLeftCornerLatitudeLongitude ='',\ upperRightCornerLatitudeLongitude ='',\ database="", allocateMemory=True, imageTopDown="", missingDataThreshold="", #added 2014-02-20 imageDataFolder="", #2014-09-15 verbose=False): self.timeStamp = str(int(time.time())) """ Notes: 1. cmap = colourbar of the dbz plot, need to find out how to plot it with CWB's colour scheme as specified in the modules colourbarQPESUMS and colourbarQPESUMSwhiteBackground 2. coordinateOrigin: normally either place at the centre of the picture or at Taichung Park (24.145056°N 120.683329°E) which translates to (492, 455) in our 881x921 grid reference: http://zh.wikipedia.org/wiki/%E8%87%BA%E4%B8%AD%E5%85%AC%E5%9C%92 /media/KINGSTON/ARMOR/2013/python/testing/test104/test104.py """ ######## # if name == "": name = "DBZ" + dataTime if type(matrix)==type(-999): # if matrix not given, # the following line is replaced 2013-09-07 due to memory waste #matrix = ma.zeros((defaultHeight, defaultWidth)) # initialise with zeros matrix = ma.zeros((1,1)) matrix.mask = False matrix.fill_value = -999 # -999 for missing values always if isinstance(matrix, ma.MaskedArray): matrix.fill_value = -999 if missingDataThreshold=="": missingDataThreshold = dp.defaultMissingDataThreshold #added 2014-02-20 if isinstance(matrix, np.ndarray) and not isinstance(matrix, ma.MaskedArray): matrix = matrix.view(ma.MaskedArray) matrix.mask = (matrix<missingDataThreshold ) matrix.fill_value = -999 if dataPath =="": dataPath =dp. defaultInputFolder + "COMPREF." + dataTime +".dat" if outputPath =="": outputPath = dp.defaultOutputFolder + name + '_'+ self.timeStamp + ".dat" if imagePath =="": imagePath = dp.defaultOutputFolderForImages + name + '_'+self.timeStamp + ".png" if coastDataPath == "": coastDataPath = dp.defaultInputFolder + "taiwanCoast.dat" if relief100DataPath == "": relief100DataPath = dp.defaultInputFolder + "relief100.dat" if relief1000DataPath == "": relief1000DataPath = dp.defaultInputFolder + "relief1000.dat" if relief2000DataPath == "": relief2000DataPath = dp.defaultInputFolder + "relief2000.dat" if relief3000DataPath == "": relief3000DataPath = dp.defaultInputFolder + "relief3000.dat" if lowerLeftCornerLatitudeLongitude =="": lowerLeftCornerLatitudeLongitude = dp.defaultLowerLeftCornerLatitudeLongitude if upperRightCornerLatitudeLongitude=="": upperRightCornerLatitudeLongitude = dp.defaultUpperRightCornerLatitudeLongitude if imageTopDown=="": imageTopDown = dp.defaultImageTopDown if database =="": # an extra parameter not yet used database = dp.defaultDatabase if imageDataFolder =="": imageDataFolder= dp.defaultImageDataFolder ############################################################################### # if matrix shape = (881, 921) then by default the origin at Taichung Park # (24.145056°N 120.683329°E) # or (492, 455) in our grid # else the centre is the origin by default ############################################################################### if coordinateOrigin == "default": #default if matrix.shape == (881, 921) or matrix.size<10: # hack coordinateOrigin = (492, 455) else: coordinateOrigin = (matrix.shape[0]//2, matrix.shape[1]//2) elif coordinateOrigin == "centre" or coordinateOrigin=="center": coordinateOrigin = (matrix.shape[0]//2, matrix.shape[1]//2) elif (coordinateOrigin == 'Taichung' or \ coordinateOrigin == 'Taichung Park' or\ coordinateOrigin == 'taichungpark') and matrix.shape==(881,921): coordinateOrigin = (492,455) #coordinateOrigin = (0,0) # switch it off - will implement coordinate Origin later if verbose: print "------------------------------------------------------------------" print "armor.pattern.DBZ:\nname, dt, dx, dy, dataPath, imagePath =" print name, dt, dx, dy, dataPath, imagePath # ######## self.matrix = matrix self.dataTime = dataTime self.name = name self.dt = dt #retrospective self.dx = dx #grid size self.dy = dy self.outputFolder= defaultOutputFolder self.dataPath = dataPath self.outputPath = outputPath self.imagePath = imagePath self.coastDataPath = coastDataPath self.relief100DataPath = relief100DataPath self.relief1000DataPath = relief1000DataPath self.relief2000DataPath = relief2000DataPath self.relief3000DataPath = relief3000DataPath self.lowerLeftCornerLatitudeLongitude = lowerLeftCornerLatitudeLongitude self.upperRightCornerLatitudeLongitude = upperRightCornerLatitudeLongitude self.database = database self.cmap = cmap self.vmin = vmin # min and max for makeImage() self.vmax = vmax self.coordinateOrigin = coordinateOrigin self.O = self.coordinateOrigin #alise, no guarentee self.imageTopDown = imageTopDown self.missingDataThreshold = missingDataThreshold self.verbose = verbose #self.imageDataFolder = imageDataFolder #commented out for now, don't want to set this attribute until we are actually using it, i.e. with the relevant harddisc plugged in. #self.features = 0 # initialise #self.matrix_backups = [] # for storage #if verbose: # print(self.name + "initialised. Use the command '___.load()' to load your data, " +\ # "and '__.printToScreen()' to print it to screen.") ################################################################################# # basic operator overloads def __call__(self, i=-999, j=-999, display=False): if i ==-999 and j ==-999: height, width = self.matrix.shape h = int(height**.5 /2) w = int(width**.5 /2) print self.matrix.filled().astype(int)[height//2-h:height//2+h,\ width//2-w: width//2+w] return self.matrix.filled().astype(int) else: """ returns interpolated value """ arr= self.matrix i0 = int(i) j0 = int(j) i1 = i0 + 1 j1 = j0 + 1 i_frac = i % 1 j_frac = j % 1 f00 = arr[i0,j0] f01 = arr[i0,j1] f10 = arr[i1,j0] f11 = arr[i1,j1] interpolated_value = (1-i_frac)*(1-j_frac) * f00 + \ (1-i_frac)*( j_frac) * f01 + \ ( i_frac)*(1-j_frac) * f10 + \ ( i_frac)*( j_frac) * f11 if display: print i_frac, j_frac, f00, f01, f10, f11 return interpolated_value def __add__(self, DBZ2): """defining the addition of two pattern.DBZ objects c.f. http://docs.python.org/release/2.5.2/ref/numeric-types.html can move to CUDA in the future """ return DBZ(dataTime=self.dataTime, matrix=self.matrix+DBZ2.matrix,\ name=self.name+"_plus_"+DBZ2.name, \ dt=self.dt, dx=self.dx, dy=self.dy,\ dataPath =self.outputPath+"_plus_"+DBZ2.name+".dat",\ outputPath=self.outputPath+"_plus_"+DBZ2.name+".dat",\ imagePath =self.imagePath +"_plus_"+DBZ2.name+".png",\ database =self.database,\ cmap=self.cmap, verbose=self.verbose) def __sub__(self, DBZ2): """defining the subtraction of two pattern.DBZ objects c.f. http://docs.python.org/release/2.5.2/ref/numeric-types.html can move to CUDA in the future """ return DBZ(dataTime=self.dataTime, matrix=self.matrix-DBZ2.matrix,\ name=self.name+"_minus_"+DBZ2.name, \ dt=self.dt, dx=self.dx, dy=self.dy,\ dataPath =self.outputPath+"_minus_"+DBZ2.name+".dat",\ outputPath=self.outputPath+"_minus_"+DBZ2.name+".dat",\ imagePath =self.imagePath +"_minus_"+DBZ2.name+".png",\ database =self.database,\ cmap=self.cmap, verbose=self.verbose) def __mul__(self, M): """ defining multiplication c.f. http://docs.python.org/release/2.5.2/ref/numeric-types.html can move to CUDA in the future """ if type(M)==type(1) or type(M)==type(1.1) or type(M)==type(self.matrix) : matrix = self.matrix * M name=self.name+"_times_"+ str(M) if type(M)==type(self): matrix = self.matrix * M.matrix name=self.name+"_times_"+ M.name return DBZ(dataTime=self.dataTime, matrix=matrix,\ dt=self.dt, dx=self.dx, dy=self.dy,\ name =name, dataPath =self.outputPath+"_times_"+str(M)+".dat",\ outputPath=self.outputPath+"_times_"+str(M)+".dat",\ imagePath =self.imagePath +"_times_"+str(M)+".png",\ database =self.database,\ cmap=self.cmap, verbose=self.verbose) def __rmul__(self, M): """ defining multiplication on the right c.f. http://docs.python.org/release/2.5.2/ref/numeric-types.html can move to CUDA in the future """ if type(M)==type(1) or type(M)==type(1.1) or type(M)==type(self.matrix) : matrix = self.matrix * M name=self.name+"_times_"+ str(M) if type(M)==type(self): matrix = self.matrix * M.matrix name=self.name+"_times_"+ M.name return DBZ(dataTime=self.dataTime, matrix=matrix,\ dt=self.dt, dx=self.dx, dy=self.dy,\ name =name, dataPath =self.outputPath+"_times_"+str(M)+".dat",\ outputPath=self.outputPath+"_times_"+str(M)+".dat",\ imagePath =self.imagePath +"_times_"+str(M)+".png",\ database =self.database,\ cmap=self.cmap, verbose=self.verbose) # end basic operator overloads ################################## ############################################################ # basic i/o's def load(self, toInferPositionFromShape=True, *args, **kwargs): """ DBZ.load - load into DBZ.matrix adapted from basics.readToArray(path) """ if self.dataPath.endswith('.png') or self.dataPath.endswith('.jpg'): return self.loadImage() #2014-07-26 try: #if it's text m = np.loadtxt(self.dataPath) except ValueError: # try to load with the binary option m = self.loadBinary(**kwargs) except IOError: m = self.loadImage(*args, **kwargs).matrix self.matrix = ma.array(m) # setting the mask self.matrix.fill_value = -999 # -999 for missing values # self.matrix.fill_value = -20.1 # -20 for missing values self.matrix.mask = (m < self.missingDataThreshold) # smaller than -20 considered no echo # 1 March 2013 # converted to -40, 12 september 2013 # converted to missingDataThreshold, 16 september 2013 # anything below " missingDataThreshold is marked as "masked" # changed to (m < self.missingDataThreshold) , 20 feb 2014 if toInferPositionFromShape: # 26 March 2014 # determining the type/position of the grid by the size of the grid (heuristics) if self.matrix.shape == (150,140): self.lowerLeftCornerLatitudeLongitude = defaultWRFLowerLeftCornerLatitudeLongitude self.upperRightCornerLatitudeLongitude = defaultWRFUpperRightCornerLatitudeLongitude ## # THE FOLLOWING IS SKIPPED TO SAVE MEMORY # loading coastal data #try: # self.coastData = np.loadtxt(self.coastDataPath) #except: # print "Cannot load coast data from the path: ", self.coastDataPath return self def loadBinary(self, height=201, width=183): """ codes from Dr. C. Y. Feng, 19 May 2014 e.g. self.dataPath ) a = pattern.DBZ(dataPath= "/media/TOSHIBA EXT/ARMOR/data/1may2014/RADARCV/COMPREF.20140501.1200.0p03.bin" """ dataFile=open(self.dataPath,'rb') data = [] for i in range(height): dataV = struct.unpack("!%df" % width, dataFile.read(4*width)) data.append(list(dataV)) dataFile.close() self.matrix = ma.array(data) return self.matrix def loadImage(self, *args, **kwargs): # to load an image into matrix (jpg/png), if it's not grey-scale make it so from basicio import loadImage if not hasattr(self, 'imageDataFolder'): self.imageDataFolder = dp.defaultImageDataFolder return loadImage.loadImage(a=self, inputFolder=self.imageDataFolder, *args, **kwargs) def loadCoast(self): try: self.coastData = np.loadtxt(self.coastDataPath) except: self.coastData = np.loadtxt(defaultTaiwanReliefDataFolder + 'taiwanCoast.dat') #fallback def load100(self): self.coastData = np.loadtxt(self.relief100DataPath) def load1000(self): self.coastData = np.loadtxt(self.relief1000DataPath) def load2000(self): self.coastData = np.loadtxt(self.relief2000DataPath) def load3000(self): self.coastData = np.loadtxt(self.relief3000DataPath) def toArray(self): """convert return a normal array filled with -999 for missing values for other uses """ return ma.filled(self.matrix) def save(self, outputPath=""): """ * We convert the masked array into a standard array with masked data filled by -999 * adapted from basics.writeArrayToTxtFile(arr, path, as_integer=False): if as_integer: np.savetxt(path, arr, fmt='%.0f') # 0 decimal place else: np.savetxt(path, arr, fmt='%.2f') # two decimal places as default """ if outputPath =="": outputPath = self.outputPath np.savetxt(outputPath, self.toArray()) def constructFromFunction(self, func, funcParameters={}, origin="", height="", width="", newName="", takeRealPart=False, takeImagPart=False, resetVmaxmin=True): """ to construct a matrix from a function added 2014-04-09 """ # setting the coordinate origin if origin == "": origin = self.coordinateOrigin else: self.coordinateOrigin = origin i0, j0 = origin # setting an empty matrix if hasattr(self, "matrix"): self.matrix *= 0 height, width = self.matrix.shape else: if height == "": height = dp.defaultHeight if width == "": width = dp.defaultWidth self.matrix = np.zeros((height, width)) # computing X, Y = np.meshgrid(range(width), range(height)) I, J = Y, X Z = func(I-i0, J-j0, **funcParameters) if takeRealPart: self.fullMatrix = Z Z = np.real(Z) if takeImagPart: self.fullMatrix = Z Z = np.imag(Z) self.matrix = Z if newName != "": self.name = newName if resetVmaxmin: self.vmax = Z.max() self.vmin = Z.min() #del self.dataPath return Z def saveMatrix(self, *args, **kwargs): """ alias for self.save() """ return self.save(*args, **kwargs) def makeImage(self, matrix="", vmin=99999, vmax=-99999, cmap="", title="",\ showColourbar=True, closeAll=True, useSubplot=False, *args, **kwargs): """ requires: matplotlib to make the plot before you save/print it to screen *adapted from basics.printToScreen(m,cmap='gray'): which was in turn adapted from stackoverflow: http://stackoverflow.com/questions/7875688/how-can-i-create-a-standard-colorbar-for-a-series-of-plots-in-python def printToScreen(m,cmap='gray'): fig, axes = plt.subplots(nrows=1, ncols=1) # The vmin and vmax arguments specify the color limits im = axes.imshow(m, vmin=-20, vmax=100, cmap=cmap) cax = fig.add_axes([0.9, 0.1, 0.03, 0.8]) fig.colorbar(im, cax=cax) plt.show() !!! TO DO: FIX THE AXES !!! """ if matrix=="": matrix = self.matrix if vmin == 99999 or vmin=="": vmin = self.vmin if vmax == -99999 or vmax=="": vmax = self.vmax else: if vmin == 99999 or vmin=="": vmin = matrix.min() if vmax == -99999 or vmax=="": vmax = matrix.max() #print "vmax, vmin:", vmax, vmin #debug if title =="": title = self.name if cmap == "": cmap = self.cmap # clear the canvass if closeAll: #plt.clf() plt.close() # make the image if not self.imageTopDown: #matrix = np.flipud(matrix) imshowOrigin = 'lower' else: imshowOrigin = 'upper' if useSubplot: fig, axes = plt.subplots(nrows=1, ncols=1) im = axes.imshow(matrix, # or np.flipud(self.matrix)? vmin=vmin, vmax=vmax, cmap=cmap, # The vmin and vmax arguments specify the color limits origin=imshowOrigin, # 2013-10-15 ) if showColourbar : cax = fig.add_axes([0.9, 0.1, 0.01, 0.8]) fig.colorbar(im,cax=cax) else: plt.imshow(matrix, vmin=vmin, vmax=vmax, cmap=cmap, origin=imshowOrigin) #2014-07-17 if showColourbar: #plt.add_axes([0.9, 0.1, 0.01, 0.8]) plt.colorbar() plt.title(title) #plt.show() # wait, don't show! def saveImage(self, imagePath="", matrix="", #dpi=200, dpi='default', **kwargs): #if matrix=="": # matrix = self.matrix if imagePath == "": imagePath = self.imagePath self.makeImage(matrix, **kwargs) if dpi =="default": plt.savefig(imagePath) else: plt.savefig(imagePath, dpi=dpi) #def printToScreen(self, matrix="", cmap=""): def printToScreen(self, block=False, *args, **kwargs): #2013-12-06 #self.makeImage(matrix=matrix, cmap=cmap) self.makeImage(*args, **kwargs) plt.show(block=block) #def show(self, matrix="", cmap=""): def show(self, *args, **kwargs): #2013-12-06 """alias to printToScreen() """ #self.printToScreen(matrix=matrix, cmap=cmap) self.printToScreen(*args, **kwargs) def showWith(self, b, title1="", title2="", block=False, *args, **kwargs): """ showing two charts together minimalistic approach """ if title1 =="": title1=self.name if title2 =="": title2 = b.name plt.clf() plt.subplot(121) if self.imageTopDown: imshowOrigin='upper' else: imshowOrigin='lower' plt.imshow(self.matrix, vmin=self.vmin, vmax=self.vmax, cmap=self.cmap, origin=imshowOrigin) plt.title(title1) plt.subplot(122) if b.imageTopDown: imshowOrigin='upper' else: imshowOrigin='lower' plt.imshow(b.matrix, vmin=b.vmin, vmax=b.vmax, cmap=b.cmap, origin=imshowOrigin) plt.title(title2) plt.show(block=block) def showWithFlip(self, cmap=""): """flip it upside down and show it """ self.matrix = np.flipud(self.matrix) self.printToScreen(cmap=cmap) def showWithCoast(self, matrix="", cmap='', intensity=9999): #if matrix=="": # matrix=self.matrix try: if self.showingWithCoast: # if already showing coast: do nothing self.show(matrix=matrix) return None # just show and go except AttributeError: # if it didn't happen before: default = False self.showingWithCoast = False # just do something self.showingWithCoast = True self.backupMatrix('chartWithoutCoast') #2014-05-22 if cmap != '': self.cmap_backup = self.cmap self.cmap = cmap else: self.cmap_backup = self.cmap try: if self.coastData == "" : print "haha" #test for existence except AttributeError: self.loadCoast() print "\n... coast data loaded from ", self.coastDataPath, "for ", self.name for v in self.coastData: self.matrix[v[0], v[1]] = intensity try: self.matrix.mask[v[0], v[1]].mask = 0 except AttributeError: # AttributeError: 'numpy.float64' object has no attribute 'mask' pass #matrix=self.matrix #this line is commented out so that self.vmin and self.vmax are used in makeImage() self.show(matrix=matrix) def showWithoutCoast(self): """resetting """ self.showingWithCoast = False self.cmap = self.cmap_backup self.matrix = self.matrix_backups['chartWithoutCoast'] self.show() def show2(self, cmap='', intensity=99999): """ adding the coastline and then flip it """ try: if self.showingWithCoast: # if already showing coast: do nothing self.show() return None # just show and go except AttributeError: # if it didn't happen before: default = False self.showingWithCoast = False # just do something self.showingWithCoast = True self.matrix_backup = self.matrix.copy() if cmap != '': self.cmap_backup = self.cmap.copy() self.cmap = cmap else: self.cmap_backup = self.cmap try: if self.coastData == "" : print "haha" #test for existence except AttributeError: self.loadCoast() print "\n... coast data loaded from ", self.coastDataPath, "for ", self.name for v in self.coastData: self.matrix[v[0], v[1]] = intensity self.matrix = np.flipud(self.matrix) self.printToScreen(cmap=cmap) def show3(self): """alias """ self.showWithoutCoast() def showInverted(self): self.matrix = np.flipud(self.matrix) self.printToScreen() self.matrix = np.flipud(self.matrix) def show0(self): """alias """ self.showInverted() def show4(self): """alias """ self.showInverted() def backupMatrix(self, name=""): """backing up self.matrix for analysis paired with self.restoreMatrix() """ try: self.backupCount += 1 if name =="": name = self.backupCount self.matrix_backups[name] = self.matrix.copy() except AttributeError: self.backupCount = 0 self.matrix_backups = {} if name =="": name = self.backupCount self.matrix_backups[name] = self.matrix.copy() def restoreMatrix(self, name =""): """see self.backupMatrix() for comments """ if name =="": name = self.backupCount self.matrix = self.matrix_backups[name].copy() # end basic i/o's ############################################################ ############################################################# # new objects from old def copy(self): """returning a copy of itself 9 March 2013 """ return DBZ(dataTime =self.dataTime, matrix =self.matrix.copy(), name =self.name, dt =self.dt, dx =self.dx, dy =self.dy, dataPath =self.dataPath, outputPath=self.outputPath[:-4]+ '[copy]' + self.outputPath[-4:], imagePath=self.imagePath[:-4] + '[copy]' + self.imagePath[-4:], coastDataPath=self.coastDataPath, relief100DataPath=self.relief100DataPath, relief1000DataPath=self.relief1000DataPath, relief2000DataPath=self.relief2000DataPath, relief3000DataPath=self.relief3000DataPath, database =self.database, cmap =self.cmap, vmin =self.vmin, vmax =self.vmax, coordinateOrigin= self.coordinateOrigin, lowerLeftCornerLatitudeLongitude = self.lowerLeftCornerLatitudeLongitude, upperRightCornerLatitudeLongitude =self.upperRightCornerLatitudeLongitude, imageTopDown=self.imageTopDown, verbose =self.verbose) def setMaxMin(self, vmax="", vmin=""): if vmax=="": self.vmax = self.matrix.max() else: self.vmax = vmax if vmin=="": self.vmin = self.matrix.min() else: self.vmin=vmin def drawCross(self, i="", j="", radius=5, intensity=9999, newObject=True): """to draw a cross (+) at the marked point """ # to draw a list of crosses - added 2014-01-23 if isinstance(i, list): if newObject: a2 = self.copy() else: a2 = self if j!="": radius = j for p, q in i: # i = list of points a2 = a2.drawCross(i=p, j=q, radius=radius, intensity=intensity) return a2 # codes before 2014-01-23 if i=="" or j=="": i=self.coordinateOrigin[0] j=self.coordinateOrigin[1] matrix=self.matrix.copy() matrix[i-radius:i+radius+1, j ] = intensity matrix[i , j-radius:j+radius+1] = intensity if newObject: return DBZ(dataTime =self.dataTime, matrix = matrix, name =self.name + \ ", cross at x,y=(%d,%d), radius=%d" %\ (j, i, radius), dt =self.dt, dx =self.dx, dy =self.dy, dataPath =self.dataPath, outputPath=self.outputPath[:-4]+ '_with_cross' + self.outputPath[-4:], imagePath=self.imagePath[:-4]+ '_with_cross' + self.imagePath[-4:], coastDataPath=self.coastDataPath, database =self.database, cmap =self.cmap, vmin =self.vmin, vmax =self.vmax, coordinateOrigin= self.coordinateOrigin, lowerLeftCornerLatitudeLongitude = self.lowerLeftCornerLatitudeLongitude, upperRightCornerLatitudeLongitude =self.upperRightCornerLatitudeLongitude, verbose =self.verbose) else: self.matrix = matrix return self def drawFrame(self, intensity=9999, newCopy=False): """ 2013-11-08 """ if newCopy: a = self.copy() # no need for this i guess!!! else: a = self a.matrix[ 0,:] = intensity a.matrix[-1,:] = intensity a.matrix[ :, 0] = intensity a.matrix[ :,-1] = intensity a.matrix.mask[ 0,:] = 0 a.matrix.mask[-1,:] = 0 a.matrix.mask[ :, 0] = 0 a.matrix.mask[ :,-1] = 0 return a def drawCoast(self, intensity=9999, matrix="", newCopy=False, newObject=False): """ adapted from DBZ.show2() """ if newCopy or newObject: a = self.copy() # no need for this i guess!!! else: a = self if matrix =="": matrix = a.matrix try: if a.coastData == "" : print "haha" #test for existence except AttributeError: a.loadCoast() print "\n... coast data loaded from ", a.coastDataPath, "for ", a.name for v in a.coastData: matrix[v[0], v[1]] = intensity matrix.mask[v[0], v[1]] = 0 return a def recentreTaichungPark(self): """ 2013-08-27 use: a = pattern.a a.showTaichungPark() takes as input attributes: lowerLeftCornerLatitudeLongitude upperRightCornerLatitudeLongitude constants: taichung park coordinates (24.145056°N 120.683329°E) changes: self.coordinateOrigin self.O returns: grid square for taichung park """ #global taichungParkLatitude, taichungParkLongitude height, width = self.matrix.shape i0 = taichungParkLatitude #defined in defaultParameters.py j0 = taichungParkLongitude # the above two lines dont work, here's a hack fix #import defaultParameters #j0 = defaultParameters.taichungParkLongitude #i0 = defaultParameters.taichungParkLatitude i1, j1 = self.lowerLeftCornerLatitudeLongitude i2, j2 = self.upperRightCornerLatitudeLongitude i3 = 1.*(i0-i1)*height/(i2-i1) # (latitudeTCP-latLowerleft) * grid per latitude j3 = 1.*(j0-j1)*width/(j2-j1) # ditto for longitude self.coordinateOrigin = (i3,j3) self.O = (i3,j3) return i3, j3 def recentre(self): """alias for recentreTaichungPark(self) """ return self.recentreTaichungPark() def recenter(self): """alias for recentreTaichungPark(self) """ return self.recentreTaichungPark() def drawRectangle(self, bottom=0, left=0, height=100, width=100, intensity=9999, thickness=1, newObject=True): """ return a copy with a rectangle on the image """ vmax = self.vmax matrix = self.matrix.copy() for i in range(bottom, bottom+height): matrix[i , left:left+thickness] = intensity #matrix[i , left] = intensity matrix[i , left+width:left+width+thickness] = intensity for j in range(left, left+width): #matrix[bottom:bottom+2, j] = intensity matrix[bottom, j:j+thickness] = intensity matrix[bottom+height:bottom+height+thickness, j] = intensity if newObject: return DBZ(dataTime =self.dataTime, matrix = matrix, name =self.name + \ ", rectangle at x,y=(%d,%d), width=%d, height=%d" %\ (left, bottom, width, height), dt =self.dt, dx =self.dx, dy =self.dy, dataPath =self.dataPath, outputPath=self.outputPath, imagePath=self.imagePath, coastDataPath=self.coastDataPath, database =self.database, cmap =self.cmap, vmin =self.vmin, vmax =self.vmax, coordinateOrigin= self.coordinateOrigin, verbose =self.verbose) else: self.matrix = matrix return self def drawRectangleForValue(self, N=20, N2="", **kwargs): """ to draw a rectanglular hull for all points with the given value range """ if N2 =="": N2=N indexMatrix = (self.matrix>=N) * (self.matrix<=N2) locations = np.argwhere(indexMatrix) if locations == []: return self else: iMax = max([v[0] for v in locations]) iMin = min([v[0] for v in locations]) jMax = max([v[1] for v in locations]) jMin = min([v[1] for v in locations]) return self.drawRectangle(iMin, jMin, iMax-iMin, jMax-jMin) def getRegionForValue(self, N=20, N2="", **kwargs): """ to draw a rectanglular hull for all points with the given value range """ if N2 =="": N2=N indexMatrix = (self.matrix>=N) * (self.matrix<=N2) locations = np.argwhere(indexMatrix) if locations.tolist() == []: return (-1,-1,0,0) else: iMax = max([v[0] for v in locations]) iMin = min([v[0] for v in locations]) jMax = max([v[1] for v in locations]) jMin = min([v[1] for v in locations]) return (iMin, jMin, iMax-iMin, jMax-jMin) def getWindow(self, bottom=0, left=0, height=100, width=100): """return a dbz object, a window view of itself """ name = self.name +'_windowed' + '_bottom' + str(bottom) +\ '_left' + str(left) + '_height' + str(height) + '_width' + str(width) matrix = self.matrix.copy() matrix = matrix[bottom:bottom+height, left:left+width] return DBZ(dataTime =self.dataTime, matrix = matrix, name = name, dt =self.dt, dx =self.dx, dy =self.dy, dataPath =self.dataPath, outputPath=self.outputPath, imagePath=self.imagePath, coastDataPath=self.coastDataPath, database =self.database, cmap =self.cmap, vmin =self.vmin, vmax =self.vmax, coordinateOrigin = (height//2, width//2) , #hack verbose =self.verbose) def getRectangle(self, *args, **kwargs): """ alias """ return self.getWindow(*args, **kwargs) def getRectangularHull(self, points): """2014-03-13""" iMax = max(v[0] for v in points) iMin = min(v[0] for v in points) jMax = max(v[1] for v in points) jMin = min(v[1] for v in points) height = iMax-iMin width = jMax-jMin return (iMin, jMin, height, width) def drawRectangularHull(self, points, newObject=False, **kwargs): """2014-03-13""" rec = self.getRectangularHull(points) self.drawRectangle(*rec, newObject=newObject, **kwargs) def shiftMatrix(self,i,j): """shifting the array/dbz pattern; masking the edge codes migrated from shiiba.py (now armor.shiiba.regression) to here i = shift in axis-0 = going up j = shift in axis-1 = going right """ #1. copy the matrix matrix = self.matrix.copy() #2. shift the matrix matrix = np.roll(matrix, i,axis=0) matrix = np.roll(matrix, j,axis=1) #3. mask the edges if i>0: # up matrix.mask[ :i, : ] = 1 #mask the first (=bottom) i rows if i<0: # down matrix.mask[i: , : ] = 1 #mask the last (=top) rows; i<0 if j>0: # right matrix.mask[ : , :j] = 1 #mask the first (=left) columns if j<0: # left matrix.mask[ : ,j: ] = 1 #mask the last (=right) columns #4. return an armor.pattern.DBZ object self_shifted_by_ij =DBZ(dataTime=self.dataTime, matrix=matrix,\ name=self.name+"shifted"+str((i,j)),\ dt=self.dt, dx=self.dx, dy=self.dy, \ dataPath =self.outputPath+"shifted"+str((i,j))+".dat",\ outputPath =self.outputPath+"shifted"+str((i,j))+".dat",\ imagePath =self.imagePath +"shifted"+str((i,j))+".png",\ database =self.database,\ cmap=self.cmap, coordinateOrigin = (self.coordinateOrigin,\ self.coordinateOrigin), verbose=self.verbose) return self_shifted_by_ij def shift(self, i, j): """alias for shiftMatrix() """ return self.shiftMatrix(i,j) def smooth(self, ker=""): """ ################################ # smoothing the image by convolution with a kernal # uses SciPY # return : a DBZ object, smoothed # 8 March 2013 ################################# """ if ker=="": ker = 1./237. * np.array( [[1, 4, 7, 4, 1], # default kernel [4,16,26,16, 4], [7,26,41,26, 7], [4,16,26,16, 4], [1, 4, 7, 4, 1]]) phi0 = self.matrix.copy() phi0.fill_value = -999999999 phi0 = signal.convolve(phi0.filled(),ker) phi0 = ma.array(phi0, fill_value=-999, mask=(phi0<-80)) # cutting it down to size (881,921) return DBZ(name=self.name+'smoothed', matrix =phi0[2:-2, 2:-2], dt=self.dt, dx=self.dx, dy=self.dy, dataPath =self.dataPath +'smoothed.dat', outputPath=self.outputPath+'smoothed.dat', imagePath =self.imagePath +'smoothed.dat', coastDataPath=self.coastDataPath, database=self.database, cmap=self.cmap, vmin=self.vmin, vmax=self.vmax, coordinateOrigin = self.coordinateOrigin, verbose=self.verbose) def coarser(self, scale=2): """ ################################ # returning a coarser image by averaging 4 nearby points # # return : a DBZ object # parameter "scale" not used yet # 8 March 2013 # parameter "scale" implementation started on 12 march 2013 ################################# """ phi = self.matrix.copy() # trim if dimensions not even height, width = phi.shape horizontal = width//scale vertical = height//scale phi = phi[0:vertical*scale, 0:horizontal*scale] # trimming # getting the shifted copies # 0 1 # 2 3 phi.fill_value = -999999999 phiList = [] #work to be continued here (parameter "scale" implementation) phi0 = phi[ ::scale, ::scale].flatten() phi1 = phi[ ::scale,1::scale].flatten() phi2 = phi[1::scale, ::scale].flatten() phi3 = phi[1::scale,1::scale].flatten() # unfinished re: scale/averaging phi_mean= ma.vstack([phi0, phi1, phi2, phi3]) phi_mean= ma.mean(phi_mean, axis=0) phi_mean= phi_mean.reshape(vertical, horizontal) # cutting it down to size (881,921) return DBZ(name=self.name+'_coarser', matrix =phi_mean, dt=self.dt, dx=self.dx, dy=self.dy, dataPath =self.dataPath[:-4] +'_coarser' + self.dataPath[-4:], outputPath=self.outputPath[:-4]+'_coarser' + self.outputPath[-4:], imagePath =self.imagePath[:-4] +'_coarser' + self.imagePath[-4:], #coastDataPath=self.coastDataPath, database=self.database, cmap=self.cmap, vmin=self.vmin, vmax=self.vmax, coordinateOrigin = (self.coordinateOrigin[0] //scale,\ self.coordinateOrigin[1] //scale ) , verbose=self.verbose) def coarser2(self): """ like coarser() but returning a matrix of the same size, not smaller do it later when i have time algorithm: to multiply self.matrix with a "diagonal" of matrix [[.5, .5],[.5,.5]] on both left and right. """ height, width = self.matrix.shape pass def coarser3(self, scale=2): """ ################################ # returning a coarser image by picking one out of 2x2 points # # return : a DBZ object # parameter "scale" not used yet # adapted from function "coarser", 25 Feb 2014 ################################# """ phi = self.matrix.copy() # trim if dimensions not even height, width = phi.shape horizontal = width//scale vertical = height//scale phi = phi[0:vertical*scale, 0:horizontal*scale] # trimming # getting the shifted copies # 0 1 # 2 3 phi.fill_value = -999999999 phiList = [] #work to be continued here (parameter "scale" implementation) phi0 = phi[ ::scale, ::scale] # cutting it down to size (881,921) return DBZ(name=self.name+'coarser', matrix =phi0, dt=self.dt, dx=self.dx, dy=self.dy, dataPath =self.dataPath[:-4] +'_coarser' + self.dataPath[-4:], outputPath=self.outputPath[:-4]+'_coarser' + self.outputPath[-4:], imagePath =self.imagePath[:-4] +'_coarser' + self.imagePath[-4:], coastDataPath=self.coastDataPath, database=self.database, cmap=self.cmap, vmin=self.vmin, vmax=self.vmax, coordinateOrigin = (self.coordinateOrigin[0] //scale,\ self.coordinateOrigin[1] //scale ) , verbose=self.verbose) def getWRFwindow(self, window=dp.COMPREF2WRFwindow): if self.matrix.shape == (881,921): a1 = self.getWindow(*window) a1.name = self.name + "_to_WRF_window" a1.outputFolder = self.outputFolder a1.outputPath = self.outputPath[:-4] + "_to_WRF_window" + self.outputPath[-4:] a1.coarser().coarser() return a1 else: return self def getPrediction(self, C): """wrapping armor.shiiba.regression2.getPrediction """ from armor.shiiba import regression2 return regression2.getPrediction(C, self) def predict(self, *args, **kwargs): """wrapping self.getPrediction for the moment """ return self.getPrediction(*args, **kwargs) def advect(self, *args, **kwargs): """wrapping advection.semiLagrangian.interploate2 for the moment """ from armor.advection import semiLagrangian as sl return sl.interpolate2(self, *args, **kwargs) def flipud(self, newObject=True): """wrapping the function np.flipud """ if newObject: a_flipud = self.copy() else: a_flipud = self a_flipud.matrix = np.flipud(a_flipud.matrix) return a_flipud def fliplr(self, newObject=True): if newObject: a_fliplr = self.copy() else: a_fliplr = self a_fliplr.matrix = np.fliplr(a_fliplr.matrix) return a_fliplr def threshold(self, threshold=0, type='lower'): """getting a threshold image of itself with mask """ matrix= self.matrix.copy() name = self.name + " thresholded (" + str(type) + ")at " + str(threshold) oldMask = matrix.mask.copy() if type=='lower': matrix.mask += (matrix < threshold) else: matrix.mask += (matrix > threshold) a_thres = DBZ(dataTime =self.dataTime, matrix =matrix, name =name, dt =self.dt, dx =self.dx, dy =self.dy, dataPath =self.dataPath, outputPath=self.outputPath[:-4] + "_thresholded_" + str(threshold) + self.imagePath[-4:], imagePath=self.imagePath[:-4] + "_thresholded_" + str(threshold) + self.imagePath[-4:], coastDataPath=self.coastDataPath, database =self.database, cmap =self.cmap, vmin =self.vmin, vmax =self.vmax, coordinateOrigin= self.coordinateOrigin, verbose =self.verbose) a_thres.oldMask = oldMask return a_thres def above(self, threshold=10): """ getting all the points above threshold """ a = self a1 = a.copy() a1.name = a.name + '_points_above_' + str(threshold) a1.vmin = -.5 a1.vmax = 2 a1.matrix = (a.matrix >threshold) return a1 def entropyGlobal(self, threshold=-999, strata = [0, 10, 20, 25, 20, 35, 40, 45, 50, 55, 60, 65, 70, 75, 999], display=False): """ http://docs.scipy.org/doc/scipy-dev/reference/generated/scipy.stats.entropy.html scipy: from probability/frequency distribution to entropy """ from scipy.stats import entropy if threshold != -999: a = self.threshold(0) arr = a.matrix else: a=self arr = self.matrix freqList =[] N = len(strata) for i in range(N-1): m = (arr>=strata[i]) * (arr<strata[i+1]) freqList.append(m.sum()) freqList = np.array(freqList) freqTotal = freqList.sum() probArray = 1.* freqList / freqTotal if display: a.show(block=False) return entropy(probArray) def entropyLocal(self, *args, **kwargs): from . import analysis return analysis.entropyLocal(a=self, *args, **kwargs) def entropy(self, *args, **kwargs): return self.entropyGlobal(*args, **kwargs) def affineTransform(self, T=np.matrix([[1,0,0],[0,1,0]]), origin=""): """2013-10-17 """ if origin =="": origin = self.getCentroid() T = np.matrix(T) a2 = self.copy() a2.name += '_affineTransformed' from .geometry import transforms as tr I, J = tr.IJ (a2.matrix) I, J = tr.affine(I, J, T=T, origin=origin) a2.matrix = tr.interpolation(a2.matrix, I, J) a2.matrix = ma.array(a2.matrix, mask=(a2.matrix < self.missingDataThreshold)) #a2.setThreshold(0) return a2 def momentNormalise(self, b, useShiiba=False, centre=(0,0), # shiiba parameter: the search window centre searchWindowHeight=9, searchWindowWidth=9, extraAngle = 0 # set it to np.pi if we want to add 180 degrees or pi to the rotation angle ): """2013-10-17 """ from .geometry import transforms as tr a = self a.getCentroid() a.getEigens() b.getCentroid() b.getEigens() Mlin = tr.rotationMatrix( b.momentAngle+ extraAngle) * \ np.diag(b.eigenvalues / a.eigenvalues) **.5 * \ tr.rotationMatrix(-a.momentAngle ) if useShiiba: x = a.shiiba(b, centre=centre, searchWindowHeight=searchWindowHeight, searchWindowWidth= searchWindowWidth, ) shift = x['C'][2:6:3]+x['mn'] else: shift = b.centroid-a.centroid origin = a.centroid + shift Maffine = np.hstack([Mlin, np.matrix(shift).T]) a2 = a.affineTransform(T=Maffine, origin=origin) a2.name = a.name + '_normalised_to_' + b.name if useShiiba: a2.name+='_with_shiiba' a2.shiibaResult = x ################################# # storing the results a2.Maffine = Maffine try: a.relativeAngle[b.name] = b.momentAngle + extraAngle - a.momentAngle except: a.relativeAngle = {b.name : b.momentAngle + extraAngle - a.momentAngle} try: a.momentRatios[b.name] = np.diag(b.eigenvalues / a.eigenvalues) **.5 except: a.momentRatios = {b.name : np.diag(b.eigenvalues / a.eigenvalues) **.5} ################################# # return value return a2 def shiibaNormalise(self, b): """2013-10-17 """ pass def truncate(self, threshold=0, mode='below', newObject=True): """2013-10-20 truncate the image above/below the threshold """ if newObject: a1 = self.copy() else: a1 = self if mode == 'below': a1.matrix = a1.matrix * (a1.matrix >=threshold ) elif mode == 'above': a1.matrix = a1.matrix * (a1.matrix <= threshold ) return a1 def levelSet(self, value): """ DBZ object at the given value """ a1 = self.copy() a1.name = self.name + '_level_set_' + str(value) a1.matrix = (a1.matrix==value) a1.vmax = 1 a1.vmin = -0.5 return a1 def laplacianOfGaussian(self, sigma=20): """ returns a dbz object """ from scipy import ndimage a1 = self.copy() a1.matrix = ndimage.filters.gaussian_laplace(self.matrix, sigma) a1.matrix = ma.array(a1.matrix, fill_value=-999.) a1.name = self.name + "laplacian-of-gaussian-sigma" + str(sigma) a1.imagePath = self.imagePath[:-4] + "laplacian-of-gaussian-sigma" + str(sigma) + self.imagePath[-4:] #hack a1.outputPath = self.outputPath[:-4] + "laplacian-of-gaussian-sigma" + str(sigma) + self.outputPath[-4:] #hack mx = a1.matrix.max() mn = a1.matrix.min() a1.vmax = mx + (mx-mn)*0.2 # to avoid red top a1.vmin = mn return a1 # def laplacianOfGaussianMask(self, sigma=100): # """ # returns a function from the domain to the interval [0, 1] in Real Numbers # 2013-11-07 # """ # a1 = self.laplacianOfGaussian(sigma=sigma) # m = a1.matrix def gaussianFilter(self, sigma=20): """ returns a dbz object """ from scipy import ndimage a1 = self.copy() a1.matrix = ndimage.filters.gaussian_filter(self.matrix, sigma) a1.matrix = ma.array(a1.matrix, fill_value=-999.) a1.matrix.mask = np.zeros(a1.matrix.shape) a1.name = self.name + "gaussian-sigma" + str(sigma) a1.imagePath = self.imagePath[:-4] + "gaussian-sigma" + str(sigma) + self.imagePath[-4:] #hack a1.outputPath = self.outputPath[:-4] + "gaussian-sigma" + str(sigma) + self.outputPath[-4:] #hack #mx = a1.matrix.max() #mn = a1.matrix.min() #a1.vmax = mx + (mx-mn)*0.2 # to avoid red top # replaced by lines below 2014-02-20 #a1.vmin = mn a1.matrix.mask = (a1.matrix< self.missingDataThreshold) a1.vmax = self.vmax a1.vmin = self.vmin return a1 def gaussianMask(self, sigma=20, fraction=0.8): """ returns an array - a smooth mask valued from 0 to 1 built from the gaussian filter - sigma = sigma - fraction = fraction retained extending from a1.matrix.max() to a1.matrix.min() """ a1 = self.gaussianFilter(sigma=sigma) a1max = a1.matrix.max() a1min = a1.matrix.min() a1min = a1min + (a1max-a1min)*(1-fraction) a_mask = (a1.matrix - a1min) / (a1max-a1min) a_mask *= (a_mask > 0) self.mask = a_mask return a_mask def gaborFilter(self, sigma=20, phi=1./5, theta=0, **kwargs): """ wrapping armor.filter.gabor.gaborFilter """ from armor.filter import gabor a2 = gabor.gaborFilter(self, sigma, phi, theta, **kwargs) return a2 # a pair def shortTermTrajectory(self, DBZstream="", key1="", key2="", radius=30, hours=6, timeInterval=3, verbose=True, drawCoast=True): """ plot the twelve-hourly-trajectory (+-6) within the DBZstream with the DBZ object having the keywords key1 and key2 """ a1 = self.copy() # dirty copy for computation a2 = self.copy() # clean copy for display try: a2.load() #get a clean copy for display #a2.show() #debug except: pass if DBZstream =="": DBZstream = self.DBZstream a1.name = self.name + '\nshort term trajectory: +- ' + str(hours) + 'hours' a2.name = self.name + '\nshort term trajectory: +- ' + str(hours) + 'hours' ds = DBZstream # alias a1.setThreshold(a1.matrix.min()) a1.getCentroid() a2.matrix = a2.drawCross(a1.centroid[0], a1.centroid[1], radius=radius+5, intensity= 9999).matrix for h in range(-hours, hours+1, timeInterval): if h == 0: continue # skip this dataTime = self.timeDiff(hours=h) D = [v for v in ds(dataTime) if key1 in v.name and key2 in v.name] if verbose: print 'time:', dataTime if len(D) == 0: continue # do nothing if none found else: r = max(radius - 2.5 *abs(h), 5) #print 'radius:', rs #debug #print '\n\n\n' D = D[0] # choose the first one if there's any ambiguity if verbose: print 'DBZ object name:', D.name D.load() D.setThreshold(self.matrix.min()) #usually =0 D.getCentroid() if verbose: print D.name, "centroid:", D.centroid # plot the centroid of D onto a1 with crosses of decreasing size, min=5 if h <= 0: a2.matrix = a2.drawCross(D.centroid[0], D.centroid[1], r, intensity= 9999).matrix else: a2.matrix = a2.drawCross(D.centroid[0], D.centroid[1], r, intensity= 90).matrix if drawCoast: a2.drawCoast if verbose: a2.show() return a2 def drawShiibaTrajectory(self, a2, L, k=12, #default - 12 steps (or 2 hours if successive slides are 10 minutes apart) *args, **kwargs ): """wrapper""" from armor import analysis a1_new = analysis.drawShiibaTrajectory(a1=self, a2=a2, L=L, k=k, *args, **kwargs) return a1_new def fft(self): """2014-02-24 wrapping armor.filter.fourier """ from armor.filter import fourier return fourier.fft(self) def ifft(self): """2014-02-24 wrapping armor.filter.fourier """ from armor.filter import fourier return fourier.ifft(self) def sigmoid(self, L=""): """2014-02-24 supplementary function to smooth out the extremities of the fourier transforms wrapping armor.misc.sigmoid""" from armor import misc if L=="": L = self.vmax - self.vmin self.matrix = misc.sigmoid(self.matrix, L=L) self.vmax = 1. self.vmin = 0. def powerSpec(self, *args, **kwargs): """ moved to armor/analysis.py 2014-07-04 updated 2014-07-03 including the new 3dplotting function from lin yen ting armor.graphics.spectrum3d new pipeline: WRF/RADAR -> response layers for various sigmas -> 1. max spec map 2. max internsity map 3. sigma ranges -> 1. 3D max spec chart 2. 3D total spec chart """ from armor import analysis return analysis.powerSpec(self, *args, **kwargs) def powerSpecTest0709(self ,*args, **kwargs): from armor import analysis return analysis.powerSpecTest0709(self, *args, **kwargs) # end new objects from old ############################################################# ############################################################ # functions on object def datetime(self, T="", dh=0): """ 2013-11-28 get the datetime object dH - diff in number of hours """ import datetime if T =="": T = self.dataTime # '20120612.0100' dt = datetime.timedelta(1./24 * dh) dd = re.findall(r'\d\d', T) year = int(dd[0]+dd[1]) month = int(dd[2]) day = int(dd[3]) hour = int(dd[4]) minute = int(dd[5]) return datetime.datetime(year, month, day, hour, minute) + dt def getDataTime(self, T): """ input: T - a datetime.datetime object output: a dataTime string in the pattern.DBZ format effect: none """ dataTime = str(T.year) + ("0"+str(T.month))[-2:] + ("0"+str(T.day))[-2:] + "." + \ ("0"+str(T.hour))[-2:] + ("0"+str(T.minute))[-2:] return dataTime def setDataTime(self, T): """ input: T - a datetime.datetime object output: none effect: resetting self.dataTime to T """ dataTime = str(T.year) + ("0"+str(T.month))[-2:] + ("0"+str(T.day))[-2:] + "." + \ ("0"+str(T.hour))[-2:] + ("0"+str(T.minute))[-2:] self.dataTime = dataTime def volume(self, threshold=-999): """ return the volume above the threshold """ m = self.matrix.copy() m *= (m >= threshold) vol = m.sum() return vol def count(self, threshold=-999): """ return the number of points above the threshold """ m = self.matrix c = (m >= threshold).sum() return c def getCentroid(self): """ 2013-10-17 """ from .geometry import transforms as tr self.centroid = tr.getCentroid(self.matrix) return self.centroid def getEigens(self): """2013-10-17 get the momentMatrix, eigenvalues and eigenvectors, momentAngle store them as attributes and return the eigenvalues and eigenvectors small eigenvalue goes first (small eigenvalue-> i(=y)-axis) """ self.getCentroid() from .geometry import transforms as tr self.momentMatrix = tr.getMomentMatrix(self.matrix) self.eigenvalues, self.eigenvectors = tr.getAxes(self.momentMatrix) v0 = self.eigenvectors[:,0] v1 = self.eigenvectors[:,1] self.momentAngle = np.arctan(1.*v0[1]/v0[0]) return self.eigenvalues, self.eigenvectors def getRelativeAngle(self, b="", returnType="radian", resultInFirstQuadrant=True, threshold=0): """2014-08-04 to get the relative angle between the axes """ arr1 = self.matrix.copy() #backup self.matrix = self.threshold(threshold).matrix #if not hasattr(self,'eigenvectors'): # self.getEigens() self.getEigens() ### if b=="": cos = (self.eigenvectors[0,0]) sin = (self.eigenvectors[1,0]) angle = np.arccos(cos) if sin < 0 : angle = 2 * np.pi -angle self.matrix = arr1 else: arr2 = b.matrix.copy() b.matrix = b.threshold(threshold).matrix b.getEigens() ### #cos = (self.eigenvectors[0,:] * b.eigenvectors[0,:]).sum() cos = (self.eigenvectors[:,0] * b.eigenvectors[:,0]).sum() #2014-10-29 angle = np.arccos(cos) if resultInFirstQuadrant and angle > np.pi/2: #2014-10-29 angle = np.pi - angle self.matrix = arr1 b.matrix = arr2 if returnType == "deg" or returnType=="degree": angle = angle / np.pi * 180 return angle def getAspectRatios(self, b, threshold=0): arr1 = self.matrix.copy() arr2 = b.matrix.copy() self.matrix = self.threshold(threshold).matrix b.matrix = b.threshold(threshold).matrix ### self.getEigens() b.getEigens() ### r0 = (self.eigenvalues[0] / b.eigenvalues[0]) **.5 r1 = (self.eigenvalues[1] / b.eigenvalues[1]) **.5 self.matrix = arr1 b.matrix = arr2 return np.array([r0, r1]) def cov(self, dbz2): """wrapping the ma.cov function: covariance between two images """ phi0 = self.matrix.flatten() phi1 = dbz2.matrix.flatten() cov = ma.cov(phi0, phi1) return cov def corr(self, dbz2): """wrappig the ma.corrcoef function: correlation between two images """ phi0 = self.matrix.flatten() phi1 = dbz2.matrix.flatten() corr = ma.corrcoef(phi0, phi1) if (not isinstance(corr, float)) and (not isinstance(corr,int)): corr = corr[0,1] # return a number return corr def regress(self, dbz2): """wrapping lstsq http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.lstsq.html """ arr1 = self.matrix.flatten() arr2 = dbz2.matrix.flatten() mask = arr1.mask + arr2.mask #print "(1-mask).sum()",(1-mask).sum() #debug arr1.mask = mask arr2.mask = mask arr1 = arr1.compressed() arr2 = arr2.compressed() arr1 = np.vstack([np.ones(len(arr1)), arr1,]).T #debug #print "arr1.shape, arr2.shape", arr1.shape, arr2.shape x, residuals, rank, sing = np.linalg.lstsq(arr1, arr2) return x, residuals def localCov(self, dbz2, windowSize=7): """plotting the local covariance of two dbz patterns a slow version of the function >>> test.tic() ; x=a.localCov(b) ; test.toc() ************************* time spent: 4091.93978906 >>> x >>> xm=x.matrix >>> xm.min() -1.0000000000000002 >>> xm.max() 1.0000000000000002 >>> xm.mean() 0.21721107449067339 >>> x.name = 'local correlation: dbz20120612.0200 - 0210' >>> x.outputPath='testing/test112/localCorrelationMatrix.dat' >>> x.save() >>> x.matrix=np.flipud(x.matrix) >>> x.imagePath='testing/test112/localCorrelationMatrix.png' >>> x.saveImage() >>> """ height, width = self.matrix.shape E = (windowSize-1)/2 #shorthand # initialise localcovar = ma.zeros((height,width)) localcovar.mask = True for i in range(height): for j in range(width): window1 = self.matrix[max(0,i-E):min(i+E+1, height),max(0,j-E):min(j+E+1,width)] window2 = dbz2.matrix[max(0,i-E):min(i+E+1, height),max(0,j-E):min(j+E+1,width)] localcovar[i,j] = ma.corrcoef(window1.flatten(), window2.flatten())[0,1] return localcovar def shiiba(self,b,centre=(0,0),searchWindowHeight=9, searchWindowWidth=9, *args, **kwargs): """wrapping armor.analysis.shiiba """ from armor import analysis self.shiibaResult = analysis.shiiba(self, b, centre=centre, searchWindowHeight=searchWindowHeight, searchWindowWidth=searchWindowWidth, *args, **kwargs) return self.shiibaResult def shiibaLocal(self, b, *args, **kwargs): """wrapping armor.analyais.shiibaLocal """ from armor import analysis self.shiibaLocalResult = analysis.shiibaLocal(self,b, *args, **kwargs) self.shiibaLocalResult def shiibaFree(self,b, *args, **kwargs): """wrapping armor.shiiba.regressionCFLfree """ from armor.shiiba import regressionCFLfree as cflfree self.shiibaFreeResult = cflfree.regressGlobal(self,b, *args, **kwargs) return self.shiibaFreeResult def getVect(self, C): """wrapping armor.shiiba.regression2.convert """ from armor.shiiba import regression2 return regression2.convert(C, self) def getKmeans(self, *args, **kwargs): """wrapping armor.kmeans.clustering.getKmeans() 8 April 2013 """ import armor.kmeans.clustering as clust x = clust.getKmeans(self, *args, **kwargs) self.kmeansResults=x return x def invariantMoments(self, takeRoots=True, **kwargs): """wrappng armor.geometry.moments.HuMoments normalise with respect to the degree """ from armor.geometry import moments x = moments.HuMoments(self.matrix, **kwargs) if takeRoots: x[0] = np.sign(x[0])*abs(x[0])**(.5) x[1] = np.sign(x[1])*abs(x[1])**(.25) x[2] = np.sign(x[2])*abs(x[2])**(1./6) x[3] = np.sign(x[3])*abs(x[3])**(1./6) x[4] = np.sign(x[4])*abs(x[4])**(1./12) x[5] = np.sign(x[5])*abs(x[5])**(1./8) x[6] = np.sign(x[6])*abs(x[6])**(1./12) self.invMom = x #storing it for the future return x def skewness(self, *args, **kwargs): """ to compute the skewnesses along the major and minor axes """ # 1. compute the angle # 2. compute the transformation matrix # 3. compute the skewnesses in the x- and y- directions #from .geometry import tranforms as tr from .geometry import moments as mmt self.getEigens() angle = self.getRelativeAngle() v0 = self.eigenvectors[:,0] v1 = np.array([-v0[1], v0[0]]) #I, J = self.IJ() a2 = self.affineTransform(T=np.vstack([v0,v1]), origin="") a2 = a2.threshold(0) results = {} results['skewness'] = mmt.skewness2(a2.matrix, *args, **kwargs) results['kurtosis'] = mmt.kurtosis2(a2.matrix, *args, **kwargs) return results #a2.show() #debug #a2.getEigens() #debug #return a2 #debug def spline(self): """ wrapping the scipy interpolate module http://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.RectBivariateSpline.html#scipy.interpolate.RectBivariateSpline """ height, width = self.matrix.shape return interpolate.RectBivariateSpline(range(height), range(width), self.matrix) def granulometry(self, scales=[4,10,14,40], outputFolder="",display=True, *args, **kwargs): from .geometry import granulometry as gr granulo = gr.analyse(self, scales=scales, outputFolder=outputFolder, display=display, *args, **kwargs) self.granulo = granulo granulo_objects = [DBZ(matrix=granulo[i], name=self.name+'_granulo_'+str(scales[i]), vmax=1, vmin=-0.5,) for i in range(len(scales))] return granulo_objects def binaryOpening(self, scale=10, threshold=20): """ 2013-12-06 """ try: from scipy import ndimage from .geometry import granulometry as gr structure = gr.disk_structure(scale) opened = ndimage.binary_opening(self.matrix>threshold, structure=structure) return opened except ImportError: print 'Cannot import scipy module "ndimage". Check your scipy package or (re)install it.' def hausdorffDim(self, epsilon=1, *args, **kwargs): from geometry import fractal a1 = self.laplacianOfGaussian(sigma=1.5) a1.matrix= (abs(a1.matrix>1)) a1.setMaxMin() a1.cmap ='jet' #a1.show() res = fractal.hausdorffDim(a1, epsilon, *args, **kwargs) try: self.dimH[epsilon] = res except AttributeError: self.dimH = {epsilon: res} return {'dimH': self.dimH, 'a1': a1} def hausdorffDimPlot(self, epsilons = [1, 2, 4, 8, 16, 32, 64], display=True, imagePath="", closePlots=True, ylim=[1,2]): for epsilon in epsilons: self.hausdorffDim(epsilon) x = np.log2(epsilons) y = [self.dimH[v] for v in epsilons] if closePlots: plt.close() plt.plot(x,y, 'o-') plt.title("Hausdorff Dimension Plot") plt.ylabel("dimension ~ side length/epsilon") plt.xlabel("log2(epsilon)") plt.ylim(ylim) if imagePath!="": plt.savefig(imagePath) if display: plt.show(block=False) def binaryClosing(self, scale=10, threshold=20): """ 2013-12-10 """ try: from scipy import ndimage from .geometry import granulometry as gr structure = gr.disk_structure(scale) closed = ndimage.binary_closing(self.matrix>threshold, structure=structure) return closed except ImportError: print 'Cannot import scipy module "ndimage". Check your scipy package or (re)install it.' def IJ(self): height, width = self.matrix.shape X, Y = np.meshgrid(range(width), range(height)) I, J = Y, X return I, J def doubleGaussian(self, verbose=True): """ defining a double gaussian covering the blob """ from .geometry import transformedCorrelations as tr self.getEigens() # compute the relevant stats self.getCentroid() I, J = self.IJ() g = tr.doubleGaussian(I, J, self.centroid[0], self.centroid[1], 2* self.eigenvalues[0]**.5, 2* self.eigenvalues[1]**.5, -self.momentAngle) if verbose: plt.imshow(g, origin='lower') plt.show() return g def connectedComponents(self, N=-999): """ connected components labelling http://scipy-lectures.github.io/advanced/image_processing/ sorted in descending order 0 = largest component N = max. number of labels """ from scipy import ndimage labels, number_of_components = ndimage.label(self.matrix) if N ==-999: N = number_of_components else: N = min(number_of_components, N) labelsCounts = [(i, (labels==i).sum()) for i in range(number_of_components)] labelsCounts.sort(key=lambda v: v[1], reverse=True) labels2 = np.ones(labels.shape) *-999 for i in range(N): # reset the labels labels2+= (labels==labelsCounts[i][0])*(999+i) labels = labels2 components_object = DBZ(matrix=labels, name=self.name + '_connected_components', vmin=-2, vmax= N ) self.components = labels return components_object def timeDiff(self, days=0, hours=0, minutes=0): """ return a string "yyyymmdd.hhmm" computed from self.dataTime and the input """ T = self.dataTime from datetime import datetime, timedelta timeDiff = timedelta(days=days, microseconds=hours*3600*1000000+minutes*60*1000000) # positive or negative timeIn = datetime(int(T[0:4]), int(T[4:6]), int(T[6:8]), int(T[9:11]), int(T[11:13])) timeOut = timeIn + timeDiff timeOutString = str(timeOut.year) + ('0'+str(timeOut.month))[-2:] + ('0'+str(timeOut.day))[-2:] + \ '.' + ('0'+str(timeOut.hour))[-2:] + ('0'+str(timeOut.minute))[-2:] return timeOutString def getScaleSpace(self, order=0, gamma=1, scales=[1,2,5,10,20,40,100]): """ wraps armor.spectral.scaleSpace see the reference there scales = sigma """ from armor.spectral import scaleSpace as ss scaleSpace = [] for scale in scales: L_scale = ss.L_normalised(image=self.matrix, sigma=scale, order=order, gamma=gamma) scaleSpace.append(L_scale) self.scaleSpace = scaleSpace self.scales = scales return scaleSpace def getScaleMap(self): try: scaleSpace = self.scaleSpace except AttributeError: scaleSpace = self.getScaleSpace() height, width = self.matrix.shape scaleMax = scaleSpace[0] for i in range(1, len(scaleSpace)): scaleMax = np.maximum(scaleMax, scaleSpace[i]) scaleMapMatrix = np.zeros((height,width)) for i in range(height): for j in range(width): scaleMapMatrix[i,j] = min([k for k in range(len(scaleSpace)) if scaleSpace[k][i,j] == scaleMax[i,j] ]) # pick the "min" scale that sits on the optimal scaleMap = self.copy() scaleMap.matrix = scaleMapMatrix scaleMap.name = self.name + "scale_map;\nscales=" + str(self.scales) scaleMap.outputPath = self.outputPath[:-4] + 'scales' + self.outputPath[-4:] scaleMap.imagePath = self.imagePath[:-4] + 'scales' + self.imagePath[-4:] scaleMap.vmin = -5 scaleMap.vmax = scaleMap.matrix.max() + 2 scaleMap.cmap = 'hsv' self.scaleMap = scaleMap return scaleMap def gaussianCorr(self, wrf, sigma=0, sigmaWRF=0, thres=15, showImage=True, saveImage=True, outputFolder='', outputType="correlation", *args, **kwargs): """ wrapping analysis module """ from armor import analysis return analysis.gaussianSmooothNormalisedCorrelation(obs=self, wrf=wrf, sigma=sigma, thres=thres, showImage=showImage,saveImage=saveImage, outputFolder=outputFolder, outputType=outputType,*args, **kwargs) def histogram(self, bins=20, matrix="", outputPath="", display=True, **kwargs): """ wrapping numpy.histogram http://docs.scipy.org/doc/numpy/reference/generated/numpy.histogram.html """ if matrix == "": matrix = self.matrix plt.close() hist, edges = np.histogram(matrix, bins=bins, **kwargs) plt.plot(edges[:-1], hist) if outputPath != "": plt.savefig(outputPath) if display: plt.show() def stormTracking(self, newObject=True, *args, **kwargs): """ wrapper of armor.kmeans.stormTracking.stormTracking() """ from kmeans import stormTracking as st results = st.stormTracking(self, newObject=newObject, *args, **kwargs) return results # end function on object ############################################################ ############################################################ # functions altering (attributes) of object def findEdges(self, threshold=-9999): from armor.geometry import edges m = a.matrix.copy() if threshold !=-9999: m.mask += (m<threshold) m_edges = edges.find(DBZ(matrix=m)) else: m_edges = edges.find(DBZ(matrix=m)) self.edges = m_edges return m_edges def setThreshold(self, threshold=-9999): mask = self.matrix.mask.copy() self.matrix.mask = 0 self.matrix = self.matrix + (self.matrix<threshold) * (threshold-self.matrix) #setting the threshold to 0 self.matrix.mask = mask # end functions altering (attributes) of object ############################################################ ######################################################## # supplementary functions def constructTaiwanReliefData(self, inputFolder=defaultTaiwanReliefDataFolder, outputFolder="", dilation=0): """ construct taiwan relief info to the current grid and save it to the dataFolder """ from armor.taiwanReliefData import convertToGrid if outputFolder=="": outputFolder = os.path.dirname(self.dataPath) + '/' #folder name of the dataPath height, width = self.matrix.shape LL_lat, LL_long = self.lowerLeftCornerLatitudeLongitude UR_lat, UR_long = self.upperRightCornerLatitudeLongitude kwargs = {'files' :['100','1000','2000','3000', 'Coast'], 'width' : width, 'height' : height, 'lowerLeft' : (LL_long, LL_lat), 'upperRight' : (UR_long, UR_lat), 'folder' : inputFolder, 'outputFolder': outputFolder, 'suffix' : ".DAT", 'dilation' : dilation, } convertToGrid.main(**kwargs) def coordinatesToGrid(self, x, verbose=False): """ 20 jan 2014 taken from armor.taiwanReliefData.convertTogrid convention: x = (lat, long, lat long...) """ height, width = self.matrix.shape i1, j1 = self.lowerLeftCornerLatitudeLongitude i2, j2 = self.upperRightCornerLatitudeLongitude nx = 1. * width / (j2-j1) ny = 1. * height / (i2-i1) x = np.array(x) y = np.zeros(len(x)) y[0::2] = (np.round((x[0::2] - i1) * ny)).astype(int) y[1::2] = (np.round((x[1::2] - j1) * nx)).astype(int) if verbose: print x, '-->', y return y # end supplementary functions ######################################################## ######################################################## # features and classifications def showFeatureLayer(self, n=0, n2="", vmin="", vmax=""): if n2=="": self.show(matrix=self.features[:,:,n], vmin=vmin, vmax=vmax) else: self.show(matrix=self.features[:,:,n]-self.features[:,:,n2], vmin=vmin, vmax=vmax) def getFeatureLayer(self, n=0): return self.features[:,:,n] #def whiten(self): #doesn't work yet - whiten requires a rank-2 array # from scipy.cluster import vq # self.features = vq.whiten(self.features) def classify(self, features="", k=20, cmap='jet', display=True, algorithm = 'kmeans', #algorithm='kmeans-with-weight' toWhiten=False, toDrawCentroids=False, crossRadius=10, verbose=True, threshold=0, scope='full', #whether to cluster all or just selected points #scope='selected', intensityStep = 5, # parameter for kmeans-with-weight algorithm *args, **kwargs): """ input: feature vector field output: classification of the image into various classes """ from scipy.cluster import vq if scope != 'full': featuresMask = self.matrix.mask + (self.matrix.filled()<threshold) self.featuresMask = featuresMask if features =="": try: features = self.features except AttributeError: print "Features undefined!! - ", self.name return -1 height, width, depth = features.shape # review each layer and check for degeneracy layersToBeDeleted = [] print "features size:", self.features.shape for i in range(depth): layerRank = np.linalg.matrix_rank(features[:,:,i]) if verbose: print "feature layer", i, ": Rank=", print layerRank if layerRank<1: #features = np.dstack([features[:,:,:i], features[:,:,i+1]]) #features = np.delete(features, i, axis=2) layersToBeDeleted.append(i) if verbose: print "removing layers", layersToBeDeleted features = np.delete(features, layersToBeDeleted, axis=2) height, width, depth = features.shape #perform k-means stuff ########################################################################### ## # if scope == 'full': # form a line for the features before clustering f1 = features.reshape((height*width), depth) else: #f1 = ma.array(features, mask=ma.dstack([featuresMask]*depth)) f1 = ma.array(features, mask=False) f2 = np.zeros(((1-featuresMask).sum(), depth)) for i in range(depth): f1.mask[:,:,i]= featuresMask print i, "f1[:,:,i].count()", f1[:,:,i].count() #debug f1 = ma.reshape(f1, (height*width, depth)) print "f1.shape, f2.shape:", f1.shape, f2.shape #debug print "f1[:,0].compressed().shape, f2[:,0].shape ",f1[:,0].compressed().shape, f2[:,0].shape #debug for i in range(depth): f2[:,i] = f1[:,i].compressed() #print "displaying feature level", i #debug #plt.imshow(features[:,:,i], origin='lower') #debug #plt.show() #debug #time.sleep(1) #debug f1 = f2 if toWhiten: f1 = vq.whiten(f1) # check for other degeneracies layersToBeDeleted2 = [] for i in range(depth): if f1[:,i].min() == f1[:,i].max(): layersToBeDeleted2.append(i) if verbose: print "deleting layer", i f1 = np.delete(f1, layersToBeDeleted2, axis=1) _, depth = f1.shape #plt.close() #debug #plt.imshow(f1[:depth,:], origin='lower') #debug #plt.colorbar() #debug #plt.show(block=False) #debug ####################################################################### # print "algorithm:", algorithm if algorithm == 'kmeans': print "k, args, kwargs:", k, args, kwargs #debug centroids, arr = vq.kmeans2(f1, k=k, *args, **kwargs) #key line if algorithm == "kmeans-with-weight": print "k, args, kwargs:", k, args, kwargs #debug # assuming the first three features are I, J and intensity maxIntensity = int(f1[:,2].max())+1 f2 = f1.copy() for i in range(threshold, maxIntensity, intensityStep): newLayer = f1.copy() pointsBelow = np.nonzero(newLayer[:2] <= i)[0] newLayer = np.delete(newLayer, pointsBelow, axis=0) f2 = np.vstack([f2, newLayer]) print 'f2.shape',f2.shape #debug # IDEA: WE PERFORM CLUSTERING FOR ALL POINTS OF f2 BUT WE USE ONLY RESULTS FOR f1 # WHICH ARE THE DATAPOINTS AT THE TOP OF THE LIST centroids, arr = vq.kmeans2(f2, k=k, *args, **kwargs) #key line arr = arr[0:len(f1)] # ####################################################################### if scope == 'full': # reform the resulting arr into original shape arr = arr.reshape((height, width)) else: arr2 = ma.ones((height, width))* (-999) arr2.mask = True arr2.fill_value= -999 X, Y = np.meshgrid(range(width), range(height)) # don't assume that the first two features are x,y #well, in the end, maybe we should, but won't bother changing this for now. I, J = Y, X I = ma.array(I, mask=featuresMask) J = ma.array(J, mask=featuresMask) coords = np.vstack([I.compressed(),J.compressed()]).T print 'len arr, len coords:', len(arr), len(coords) #debug for i in range(len(coords)): arr2[coords[i][0], coords[i][1]] = arr[i] arr = arr2 # ## ########################################################################### if verbose: print arr print arr.shape #debug a1 = self.copy() a1.name = "k-means, k=%d, for " %k + self.name a1.imagePath = self.imagePath[:-4] + "_kmeans_" + self.imagePath[-4:] a1.outputPath = self.outputPath[:-4] + "_kmeans_" + self.outputPath[-4:] a1.cmap = cmap a1.matrix = np.ma.array(arr, fill_value=-999.) a1.vmax = arr.max() a1.vmin = arr.min() if toDrawCentroids: for i in range(len(centroids)): try: print centroids[i,0], centroids[i,1] a1.drawCross(int(centroids[i,0]), int(centroids[i,1]), radius=crossRadius, newObject=False) # assuming the first two features =i,j except IndexError: pass result= {'centroids':centroids, 'a1':a1} self.classification = result if display: a1.show() time.sleep(2) if display: #a1.show(matrix=np.ma.array(a1.matrix, mask=self.matrix.mask)) a1.show(matrix=np.ma.array(a1.matrix, mask=(self.matrix<threshold))) a2 = a1.copy() a2.name = a1.name + '_2' a2.matrix = np.ma.array(a1.matrix, mask=(self.matrix<threshold)) result['a2'] = a2 self.classificationResult = result return result def initialiseFeatures(self, intensityThreshold=0, fill_value=-999): """ basic feature vectors: i,j, and intensity """ height, width = self.matrix.shape X, Y = np.meshgrid(range(width), range(height)) I, J = Y, X a1 = self.copy() a1.setThreshold(intensityThreshold) a1.matrix.fill_value= fill_value a1.matrix = a1.matrix.filled() self.features = np.dstack([I, J, a1.matrix]) return self.features def deleteFeature(self, layers=[0]): """ to edit the features array """ self.features = np.delete(self.features, layers, axis=2) def granulometryFeatures(self, threshold=0, scales=[1,2,4,8,16,32,64], verbose=True, display=False, outputFolder="", multiplier=1., *args, **kwargs): from scipy import ndimage from geometry import granulometry as gr if not hasattr(self,'features'): self.initialiseFeatures() granuloLayers = gr.analyse(im=self.matrix.filled(), threshold=threshold, scales=scales, verbose=verbose,display=display, outputFolder=outputFolder, *args, **kwargs) for n, layer in enumerate(granuloLayers): scale = scales[n] if verbose: print 'constructing granulo feature for layer: scale =', scale layer = layer.astype(float) layer = (ndimage.gaussian_filter(layer, scale) >0) layer = np.ma.array(layer, mask=0, fill_value=-999) self.features = ma.dstack([self.features, layer]) * multiplier return granuloLayers def gaborFeatures(self, sigma=20, scales = [1, 2, 4, 8, 16], NumberOfOrientations = 4, memoryProblem=False, multiplier=1., outputFolder="", *args, **kwargs): if not hasattr(self, 'features'): self.initialiseFeatures() from filter import gabor filterFeatures = gabor.main(self, sigma, scales, NumberOfOrientations, memoryProblem, outputFolder, *args, **kwargs) try: self.features = np.dstack([self.features, filterFeatures]) * multiplier return filterFeatures except: return filterFeatures def thresholdFeatures(self, threshold=0, multiplier=100., *args, **kwargs): """ those masked or below the threshold are considered one class """ if not hasattr(self, 'features'): self.initialiseFeatures() m = self.matrix.mask + (self.matrix < threshold) m = (1-m) * multiplier self.features = np.dstack([self.features, m]) return m def globalShapeFeatures(self, lowerThreshold= 0., upperThreshold=35., computeSkewness=True, # 2014-11-11 computeAngle=True): #2014-11-24 """ 0. number of components 1. volume 2. centroid 3. high intensity region volume 4. moments """ from .geometry import moments as mmt a1 = self.above(lowerThreshold) rectangle = a1.getRegionForValue(1) a1 = a1.connectedComponents() M1 = a1.matrix.max() components1 = [(a1.matrix==v).sum() for v in range(M1+1)] numberOfComponents = len([v for v in components1[1:] if v>=100]) # the background (labelled as 0) doesn't count volume = a1.matrix.sum() centroid = self.getCentroid() eigenvalues, eigenvectors = a1.getEigens() # a2 = a1.above(upperThreshold) highIntensityRegionVolume = a2.matrix.sum() HuMoments = mmt.HuMoments(self.matrix) features = { 'numberOfComponents' : numberOfComponents, 'volume' : volume, 'centroid' : centroid, 'highIntensityRegionVolume' : highIntensityRegionVolume, 'HuMoments' : HuMoments, 'rectangle' : rectangle, 'eigenvalues' : eigenvalues, 'eigenvectors' : eigenvectors, } if computeSkewness: #2014-11-11 #features['skewness'] = mmt.skewness2(a1.matrix) # skewness with fixed x- y-axes 2014-11-11 #features['kurtosis'] = mmt.kurtosis2(a1.matrix) #instrinsicSkewness = a1.skewness(lower=lowerThreshold) instrinsicSkewness = a1.skewness(lower=0, upper=M1+1) features['skewness'] = instrinsicSkewness['skewness'] # skewness with intrinsic moment arms 2014-11-12 features['kurtosis'] = instrinsicSkewness['kurtosis'] if computeAngle: features['angle'] = a1.getRelativeAngle() self.globalFeatures = features return features def localShapeFeatures(self, block=False, #minComponentSize=100, minComponentSize=dp.defaultMinComponentSize, lowerThreshold=0, upperThreshold=51, *args, **kwargs #2014-11-11 ): """ from armor/tests/imageToDataTest4.py """ a = self.copy() a = a.above(lowerThreshold) a1 = a.connectedComponents() a2 = a.above(upperThreshold).connectedComponents() #a1.show(block=True) #a2.show(block=True) # get the components M1 = a1.matrix.max() #M2 = a2.matrix.max() components1 = [(a1.matrix==v).sum() for v in range(M1+1)] #components2 = [(a2.matrix==v).sum() for v in range(M2+1)] #components1 = sorted([(a1.matrix==v).sum() for v in range(M1+1)][1:], reverse=True) #components2 = sorted([(a2.matrix==v).sum() for v in range(M2+1)][1:], reverse=True) components1 = [v for v in components1 if v>=minComponentSize] #components2 = [v for v in components2 if v>=10] print 'Largest components for %s:' %self.name, sorted(components1, reverse=True) #print sorted(components2, reverse=True)[1:] # get the moments from armor.geometry import moments as mmt HuPowers = np.array([2., 4., 6., 6., 12., 8., 12.]) HuPowers = (HuPowers)**-1 moments1 = np.array([mmt.HuMoments(a1.matrix==v)**HuPowers for v in range(len(components1))]) #moments2 = np.array([mmt.HuMoments(a2.matrix==v)**HuPowers for v in range(len(components2))]) print moments1 #print moments2 # defining the features numberOfComponents = len([v for v in components1[1:] if v>=minComponentSize]) # region of at least 100 pixels volume = a1.matrix.sum() + a2.matrix.sum() localFeatures = [a1.levelSet(v).globalShapeFeatures(lowerThreshold=lowerThreshold, upperThreshold=upperThreshold ,*args, **kwargs) #2014-11-11 for v in range(len(components1))] localFeatures.sort(key=lambda(v):v['volume'], reverse=True) localFeatureVectors = [np.array([(lf['volume'])**.5] + \ (lf['centroid']/10).tolist() + [np.log(v) for v in lf['HuMoments']] + [lf['numberOfComponents']]) \ for lf in localFeatures] features = { 'dataTime' : a.dataTime, 'globalFeatures' : a1.globalShapeFeatures(lowerThreshold=1, upperThreshold=51,), 'localFeatures' : localFeatures, # this includes the "background" 'localFeatureVectors' : localFeatureVectors, } self.localFeatures = features return features ######################################################## # tests def powerSpecTest(self, *args, **kwargs): from . import analysis return analysis.powerSpecTest(self, *args, **kwargs) # ######################################################## ################################################################################ ################################################################################ ################################################################################ class VectorField(object): """wraps two masked arrays sharing the same mask (how can i make them share a mask?) example: >>> from armor import pattern >>> a = pattern.DBZ(dataTime="20120612.0200") >>> a.load() >>> a.show() >>> b = pattern.VectorField(a.matrix, -a.matrix) >>> b.plot() >>> b.show() """ def __init__(self, U, V, mask=False, name='vectorfield', dataPath="", outputPath="", imagePath="", \ key='vector field', title='title', gridSize=25): """ U = first = i-component; V=second=j-component """ U = U.view(ma.MaskedArray) V = V.view(ma.MaskedArray) mask = U.mask + V.mask + mask U.mask = mask.copy() V.mask = mask.copy() self.U = U self.V = V self.mask=mask ################################################# # i don't know how to make this work; comment out #if not isinstance(mask, type(False)): # if mask explicitly given, initialise with it # self.U.mask = mask # self.V.mask = mask ################################################# self.name = name self.dataPath = dataPath self.outputPath = outputPath # for the future self.imagePath = imagePath self.key = key self.title = title self.gridSize= gridSize ###################################################################### # start basic operator overloads def __sub__(self, vect2): """defining the subtraction of two vector fields """ if isinstance(vect2, tuple) or isinstance(vect2,list): name = self.name + "_minus_" + str(vect2) #U = self.U - vect2[0] # before 2014-1-23 we used (x,y) for external interface, not i,j #V = self.V - vect2[1] # this feature was rarely used so ... U = self.U - vect2[1] # 2014-1-23 - i changed my mind - because we need something like mn+vect V = self.V - vect2[0] # hope this doesn't break anything - fingers crossed?! mask = self.mask.copy() key = self.key + " minus " + str(vect2) title = self.title+" minus " + str(vect2) gridSize = self.gridSize else: name = self.name + "_minus_" + vect2.name U = self.U - vect2.U V = self.V - vect2.V mask = self.mask + vect2.mask.copy() key = self.key + " minus " + vect2.key title = self.title+" minus " + vect2.title gridSize = min(self.gridSize, vect2.gridSize) outputPath = self.outputPath + name + ".dat" dataPath = outputPath imagePath = self.imagePath + name + ".png" return VectorField(U, V, mask=mask, name=name, dataPath=dataPath, outputPath=outputPath,\ imagePath=imagePath, key=key, title=title, gridSize=gridSize) def __rsub__(self, vect1): """ 2014-01-24 adapted from __sub__() focus on the case "A-B" where A is a pair (tuple) or list """ if isinstance(vect1, tuple) or isinstance(vect1,list): name = str(vect1) + "_minus_" + self.name U = vect1[1] - self.U # convention: (i,j) = (y,x) V = vect1[0] - self.V # hope this doesn't break anything - fingers crossed?! mask = self.mask.copy() key = str(vect1) + " minus " + self.key title = str(vect1) + " minus " + self.title gridSize = self.gridSize else: name = vect1.name + "_minus_" + self.name U = vect1.U - self.U V = vect1.V - self.V mask = self.mask + vect1.mask.copy() key = vect1.key + " minus " + self.key title = vect1.title +" minus " + self.title gridSize = min(self.gridSize, vect1.gridSize) outputPath = self.outputPath + name + ".dat" dataPath = outputPath imagePath = self.imagePath + name + ".png" return VectorField(U, V, mask=mask, name=name, dataPath=dataPath, outputPath=outputPath,\ imagePath=imagePath, key=key, title=title, gridSize=gridSize) def __add__(self, vect2): """defining the addition of two vector fields """ if isinstance(vect2, tuple) or isinstance(vect2,list): name = self.name + "_plus_" + str(vect2) #U = self.U + vect2[0] # before 2014-1-23 we used (x,y) for external interface, not i,j #V = self.V + vect2[1] # this feature was rarely used so ... U = self.U + vect2[1] # 2014-1-23 - i changed my mind - because we need something like mn+vect V = self.V + vect2[0] # hope this doesn't break anything - fingers crossed?! mask = self.mask.copy() key = self.key + " plus " + str(vect2) title = self.title+" plus " + str(vect2) gridSize = self.gridSize else: name = self.name + "_plus_" + vect2.name U = self.U + vect2.U V = self.V + vect2.V mask = self.mask + vect2.mask.copy() key = self.key + " plus " + vect2.key title = self.title+" plus " + vect2.title gridSize = min(self.gridSize, vect2.gridSize) outputPath = self.outputPath + name + ".dat" dataPath = outputPath imagePath = self.imagePath + name + ".png" return VectorField(U, V, mask=mask, name=name, dataPath=dataPath, outputPath=outputPath,\ imagePath=imagePath, key=key, title=title, gridSize=gridSize) def __radd__(self, vect2): """defining right-addition; wrapping __add__""" return self+vect2 def __mul__(self, s): """scalar for now, will extend later """ if isinstance(s, tuple) or isinstance(s,list): U = self.U * s[0] V = self.V * s[1] else: U = self.U * s V = self.V * s mask=self.mask.copy() name=self.name + "__times__" + str(s) dataPath='' outputPath=self.outputPath + "__times__" + str(s) imagePath =self.imagePath + "__times__" + str(s) key=self.key + "__times__" + str(s) title=self.title + "__times__" + str(s) gridSize = self.gridSize return VectorField(U=U, V=V, mask=mask, name=name, dataPath=dataPath, \ outputPath=outputPath, imagePath=imagePath, \ key=key, title=title, gridSize=gridSize) def __rmul__(self,s): """wrapping __mul__ 2014-01-23 """ return self * s def __call__(self, i=-999, j=-999, verbose=False): """ 22 jan 2014 adapted from DBZ.__call__ """ if i ==-999 and j ==-999: height, width = self.U.shape h = int(height**.5 /2) w = int(width**.5 /2) return (self.U.filled().astype(int), self.V.filled().astype(int) ) else: """ returns interpolated value NOTE TO SELF: can get a better and more efficient interpolation (e.g. spline) later """ arr= self.U i0 = int(i) j0 = int(j) i1 = i0 + 1 j1 = j0 + 1 i_frac = i % 1 j_frac = j % 1 f00 = arr[i0,j0] f01 = arr[i0,j1] f10 = arr[i1,j0] f11 = arr[i1,j1] interpolated_value_U = (1-i_frac)*(1-j_frac) * f00 + \ (1-i_frac)*( j_frac) * f01 + \ ( i_frac)*(1-j_frac) * f10 + \ ( i_frac)*( j_frac) * f11 if verbose: print "U:", i_frac, j_frac, f00, f01, f10, f11 # now compute the V-component arr= self.V i0 = int(i) j0 = int(j) i1 = i0 + 1 j1 = j0 + 1 i_frac = i % 1 j_frac = j % 1 f00 = arr[i0,j0] f01 = arr[i0,j1] f10 = arr[i1,j0] f11 = arr[i1,j1] interpolated_value_V = (1-i_frac)*(1-j_frac) * f00 + \ (1-i_frac)*( j_frac) * f01 + \ ( i_frac)*(1-j_frac) * f10 + \ ( i_frac)*( j_frac) * f11 if verbose: print "V:", i_frac, j_frac, f00, f01, f10, f11 return np.array([interpolated_value_V, interpolated_value_U]) # end basic operator overloads ###################################################################### def plot(self, key="", title="", gridSize=0, X=-1, Y=-1, closeAll=True, lowerLeftKey=False, vmin="", vmax="",): """ make the plot without showing it adapted from basics.plotVectorField(U, V, X=-1, Y=-1, gridSize=25, key="vector field",\ title="title", saveFileName="", outputToScreen=False): """ # clear the canvass #plt.clf() if closeAll: plt.close() U = self.U.copy() V = self.V.copy() if key =="": key = self.key if title =="": title = self.title if gridSize == 0: gridSize = self.gridSize width = U.shape[1] height = U.shape[0] if type(X)==type(-1) or type(Y)==type(-1): X, Y = np.meshgrid(np.arange(0,width), np.arange(0,height)) left = X[ 0, 0] bottom = Y[ 0, 0] #computing the length of the vector field at centre for reference r_centre = (U[height//2, width//2]**2 + V[height//2, width//2]**2) **(0.5) print "==computing the length of the vector field at centre for reference:==\nr_centre=",\ "r_centre" if lowerLeftKey: # making a grid of standardardised vector in the lower-left corner # for scale reference U[1:gridSize+1, 1:gridSize+1] = 1 V[1:gridSize+1, 1:gridSize+1] = 0 Q = plt.quiver( X[::gridSize, ::gridSize], Y[::gridSize, ::gridSize],\ U[::gridSize, ::gridSize], V[::gridSize, ::gridSize],\ color='r', units='x', linewidths=(2,), edgecolors=('k'),\ headaxislength=5 ) qk = plt.quiverkey(Q, 0.7, 0.0, 1, 'length='+str(round(r_centre,5))+' at centre',\ fontproperties={'weight': 'bold'}) if lowerLeftKey: qk = plt.quiverkey(Q, 0.3, 0.0, 1,\ key+',\nlength of the standard arrow in the lower-left corner=1',\ fontproperties={'weight': 'bold'}) plt.axis([left, left+width-1, bottom, bottom+height-1]) plt.title(title) def showPlot(self, block=False, **kwargs): self.plot(**kwargs) plt.show(block=block) def show(self,**kwargs): #alias self.showPlot(**kwargs) def savePlot(self, imagePath=""): if imagePath != "": self.imagePath = imagePath self.plot() if self.imagePath =="": self.imagePath = raw_input("Please enter imagePath:") plt.savefig(self.imagePath, dpi=200) def saveImage(self, *args, **kwargs): """alias for savePlot """ self.savePlot(*args, **kwargs) def toArray(self): """return normal arrays filled with -999 for missing values for other uses """ return ma.filled(self.U), ma.filled(self.V) def saveMatrix(self): """ * We convert and save the masked arrays into standard arrays with masked data filled by -999 """ U, V = self.toArray() np.savetxt(self.outputPath+"U.dat", U, '%.4f') np.savetxt(self.outputPath+"V.dat", V, '%.4f') def pickle(self): pickle.dump(self) ##################################################### # functions from vector fields to values def corr(self, vect2, region1="", region2=""): """adapted from DBZ.corr(): """ height, width = self.U.shape if region1=="": region1 = (0, 0, height, width) if region2=="": region2 = region1 u1 = self.U[region1[0]:region1[0]+region1[2], \ region1[1]:region1[1]+region1[3]].flatten() u2 = vect2.U[region2[0]:region2[0]+region2[2], \ region2[1]:region2[1]+region2[3]].flatten() ucorr = ma.corrcoef(u1, u2) v1 = self.V[region1[0]:region1[0]+region1[2], \ region1[1]:region1[1]+region1[3]].flatten() v2 = vect2.V[region2[0]:region2[0]+region2[2], \ region2[1]:region2[1]+region2[3]].flatten() vcorr = ma.corrcoef(v1, v2) return {'ucorr': ucorr, 'vcorr': vcorr} ######################################################## # functions from vector fields to DBZ objects # 2014-01-21 def semiLagrange(self, L, k=6, direction=+1, verbose=True): """ 22 jan 2014 semi lagrangian advection of a set via self input: L = list of points[(i, j), ...] = [(y, x), ...] k = steps, default = 6 steps = 1 hour if the time-interval between successive COMPREF charts is 10 mins output: results - a list of np.array pairs [ (i,j) coordinates ] """ if verbose: print "semiLagrangian advection of", L, "via", self.name results = copy.deepcopy(L) # output holder for n, pt in enumerate(L): # point for stp in range(k): # step i, j = results[n] di, dj = self(i, j) results[n] = np.array([i+ direction*di, j+ direction*dj]) if verbose: print pt, "-->", results[n] return results # end functions from vector fields to DBZ objects ######################################################## ######################################################## # supplementary functions # end supplementary functions ######################################################## ################################################################################ ################################################################################ # streams of DBZ objects, with basic operations, comparisons, etc class DBZstream: """ a stream of DBZ objects, with basic i/o facilities migrating some codes from armor.basicio.dataStream WE DO ASSUME THAT there are no two sets of data with the same dataTime or else we would need some extra logic to check for redundancies. """ ########################################################### # # basic construction def __init__(self, dataFolder='../data_temp/', #name="COMPREF.DBZ", name="", lowerLeftCornerLatitudeLongitude=defaultLowerLeftCornerLatitudeLongitude, upperRightCornerLatitudeLongitude=defaultUpperRightCornerLatitudeLongitude, outputFolder="", imageFolder="", taiwanReliefFolder ="", key1="", # keywords to pick out specific files key2="", # used only once in the __init__ key3="", preload=False, imageExtension = '.png', #added 2013-09-27 dataExtension = '.txt', dataExtension2 = '.dat', forceAll =False , #2014-07-26 vmin = -40., #added 2013-10-28 vmax = 100., coastDataPath = "", #2014-06-25 ): """ construct the objects without loading them input: path of folder "/../../" process: parse the folder for files output: sequence of armor.pattern.DBZ objects DBZ(name, dataPath, dataTime) # parse the filename and look for clues """ if outputFolder =="": outputFolder = defaultOutputFolder if not outputFolder.endswith('/'): outputFolder += '/' if imageFolder =="": imageFolder = defaultImageFolder if taiwanReliefFolder =="": taiwanReliefFolder = dataFolder if coastDataPath =="": coastDataPath = taiwanReliefFolder + "taiwanCoast.dat" self.dataFolder = dataFolder self.taiwanReliefFolder = taiwanReliefFolder self.lowerLeftCornerLatitudeLongitude = lowerLeftCornerLatitudeLongitude self.upperRightCornerLatitudeLongitude = upperRightCornerLatitudeLongitude self.outputFolder = outputFolder self.imageFolder = imageFolder self.imageExtension = imageExtension self.dataExtension = dataExtension self.dataExtension2 = dataExtension2 self.vmin = vmin self.vmax = vmax self.coastDataPath = coastDataPath dbzList = [] dataFolder = re.sub(r'\\', '/' , dataFolder) # standardise: g:\\ARMOR .. --> g:/ARMOR dataSource = '-'.join(dataFolder.split('/')[-2:]) + '-' if name != "": self.name = name else: self.name = dataSource L = os.listdir(dataFolder) if not forceAll: L = [v for v in L if (v.lower().endswith(self.dataExtension) or v.lower().endswith(self.dataExtension2))\ and (key1 in v) and (key2 in v) and (key3 in v)] # fetch the data files L.sort() for fileName in L: dataTime = "" dataTime = re.findall(r'\d{4}', fileName) if len(dataTime)<3 and not forceAll: # NOT DATED DBZ FILE, REJECT continue if len(dataTime)>3: # 2014-05-06 hack - assuming the date-time would be at the end of the filename dataTime = dataTime[-3:] try: dataTime = dataTime[0] + dataTime[1] + '.' + dataTime[2] except: dataTime = "" dbzName = name + dataTime dataPath = dataFolder + fileName a = DBZ(dataTime=dataTime, name=dbzName, dataPath=dataPath, outputPath=outputFolder+dbzName+self.dataExtension, imagePath=imageFolder+dbzName+self.imageExtension, lowerLeftCornerLatitudeLongitude=lowerLeftCornerLatitudeLongitude, upperRightCornerLatitudeLongitude=upperRightCornerLatitudeLongitude, vmin = self.vmin, vmax = self.vmax, coastDataPath = coastDataPath , #2014-06-25 relief100DataPath = taiwanReliefFolder + "relief100.dat", relief1000DataPath = taiwanReliefFolder + "relief1000.dat", relief2000DataPath = taiwanReliefFolder + "relief2000.dat", relief3000DataPath = taiwanReliefFolder + "relief3000.dat", ) if preload: a.load() dbzList.append(a) a.DBZstream = self ## there you go! ###### # self.list = dbzList # ####################### def __call__(self, N=-999, key2=""): """ if N is an integer then return the N-th DBZ pattern in the stream else if N is a string then return those whose names or dataTimes contains N """ if N == -999: return self.list elif isinstance(N, int): return self.list[N] elif isinstance(N, str): return [v for v in self.list if (N in v.name or N in v.dataTime) and (key2 in v.name or key2 in v.dataTime) ] def __getitem__(self, N=-999): """alias for self.list[] """ item = self.list[N] return item def __len__(self, dataTime=""): return len([v for v in self.list if dataTime in v.dataTime]) ########################################################### # # stream operations def append(self, filePath): """ to append a new member to the DBZstream list or a DBZstream to another """ pass def recentreTaichungPark(self): for D in self.list: D.recentreTaichungPark() def recentre(self): """alias""" self.recentreTaichungPark() def regrid(self, b): """ wrapping armor.geometry.regrid.regrid() b is another DBZ object representing the grid pattern to be transformed to """ from armor.geometry import regrid for i in range(len(self.list)): a_temp = regrid.regrid(self.list[i], b) self.list[i].matrix = a_temp.matrix self.list[i].name += '[regridded]' def cutUnloaded(self): """ cut the unloaded objects """ i=0 while i < len(self.list): dbzObject = self.list[i] if (dbzObject.matrix**2).sum()==0: del(self.list[i]) else: i+=1 return i # length of the stream in the end def intersect(self, ds2, cut_first=False, cut_second=False, verbose=False): """ find the intersection of ds1 and ds2 w.r.t. dataTime and cut ds1 accordingly we assume each dataTime (e.g. '20120612.0200') appears only once in any dataStream this burden is on data management, not here """ ds1 = self #alias # 1. get the list of common dataTimes dataTimeList1 = [v.dataTime for v in ds1.list] dataTimeList2 = [v.dataTime for v in ds2.list] common_dataTimeList = sorted(list(set(dataTimeList1).intersection(set(dataTimeList2)))) if verbose: print dataTimeList # 2. cut ds1, ds2 ds1_new_list = [v for v in ds1 if v.dataTime in common_dataTimeList] ds2_new_list = [v for v in ds2 if v.dataTime in common_dataTimeList] if cut_first: ds1.list = ds1_new if cut_second: ds2.list = ds2_new return ds1_new_list, ds2_new_list def setThreshold(self, threshold): """ set the threshold for each member of the stream """ for dbzpattern in self: dbzpattern.setThreshold(threshold) def backupMatrices(self): for dbzpattern in self: dbzpattern.backupMatrix() def restoreMatrices(self): for dbzpattern in self: dbzpattern.restoreMatrix() def shuffle(self, n=1): """ well, technically it's inverse shuffle """ for i in range(n): self.list = self.list[1::2] + self.list[0::2] ########################################################### # #def load(self, N=-999, name="", verbose=False): # basic I/O def load(self, N=-999, key2="", toInferPositionFromShape=True, verbose=False): """ N - index of object to be loaded, if N==-999 : load all if N is a string, look through the list of dbz objects and load those whose dataTime string contain N and whose name contains name """ if N==-999: for img in self.list: if verbose: print img.name, '|', img.load(toInferPositionFromShape=toInferPositionFromShape) elif isinstance(N, int): self.list[N].load(toInferPositionFromShape=toInferPositionFromShape) elif isinstance(N, str): for img in self.list: if (N in img.dataTime or N in img.name) and (key2 in img.name or key2 in img.dataTime): img.load(toInferPositionFromShape=toInferPositionFromShape) if verbose: print img.name, '|', def unload(self, key=""): """ unload/delete the loaded DBZ data to save memory """ for D in self: if key in D.name or key in D.dataTime: D.matrix = np.zeros((1,1)) def setImageFolder(self, folder=""): # deprecated per the saveImages() function if folder != "": self.imageFolder=folder for dbzPattern in self.list: dbzPattern.imageFolder = folder #dbzPattern.imagePath = folder + dbzPattern.name + '_'+dbzPattern.dataTime + ".png" try: dbzPattern.imagePath = folder + self.name + '_' + dbzPattern.dataTime + self.imageExtension except AttributeError: # hack added 2013-09-27 self.imageExtension = defaultImageExtension dbzPattern.imagePath = folder + self.name + '_' + dbzPattern.dataTime + self.imageExtension def setImagePaths(self, *args, **kwargs): """ alias""" return self.setImageFolder(*args, **kwargs) def setOutputFolder(self, folder): """ set image folders and paths without saving """ if not os.path.isdir(folder): # added 2014-03-06 os.makedirs(folder) # added 2014-03-06 self.outputFolder=folder for dbzPattern in self.list: dbzPattern.outputFolder = folder #dbzPattern.outputPath = folder + dbzPattern.name + '_'+dbzPattern.dataTime + ".dat" dbzPattern.outputPath = folder + dbzPattern.dataTime + self.dataExtension def setTaiwanReliefFolder(self, folder=''): if folder =="": folder = self.taiwanReliefFolder else: self.taiwanReliefFolder = folder for dbzpattern in self: dbzpattern.coastDataPath = folder + "taiwanCoast.dat" dbzpattern.relief100DataPath = folder + "relief100.dat" dbzpattern.relief1000DataPath = folder + "relief1000.dat" dbzpattern.relief2000DataPath = folder + "relief2000.dat" dbzpattern.relief3000DataPath = folder + "relief3000.dat" def setVmin(self, vmin=""): # DBZ.vmin and DBZ.vmax are colour parameters for image output if vmin == "": vmin = self.vmin else: self.vmin = vmin for dbzPattern in self: # telling the plotting function the min and max value in each chart dbzPattern.vmin = vmin def setVmax(self, vmax=""): if vmax == "": vmax = self.vmax else: self.vmax = vmax for dbzPattern in self: dbzPattern.vmax = vmax def saveImages(self, toLoad=False, flipud=False, drawCoast=False, verbose=False, dpi=200): """ note: here we set the imagePath's first (imageFolder+dataTime+ .png) and then save the images to it """ ds1 = self # just a reminder self= a dbz data stream try: # make it in case the folder does not exist yet os.makedirs(ds1.imageFolder) except OSError: # except if it's already there pass for dbzPattern in ds1.list: dbzPattern.imagePath = ds1.imageFolder + ds1.name + dbzPattern.dataTime + '.png' if toLoad: dbzPattern.load() if drawCoast: dbzPattern.drawCoast() if flipud==True: dbzPattern.matrix = np.flipud(dbzPattern.matrix) if verbose: print dbzPattern.imagePath #xxx = raw_input('press enter to continue:') dbzPattern.saveImage(dpi=dpi) def saveMatrices(self, verbose=False): """ note: here we set the imagePath's first (imageFolder+dataTime+ .png) and then save the images to it """ ds1 = self # just a reminder self= a dbz data stream try: # make it in case the folder does not exist yet os.makedirs(ds1.outputFolder) except OSError: # except if it's already there pass for dbzPattern in ds1.list: dbzPattern.outputPath = ds1.outputFolder + ds1.name + dbzPattern.dataTime + '.dat' if verbose: print dbzPattern.imagePath xxx = raw_input('press enter to continue:') dbzPattern.saveMatrix() ########################################################### # # functions on streams def listLoaded(self): """ return the list of loaded DBZ objects in the stream essentially computing those with matrix!=0 """ L = [v for v in self if (v.matrix**2).sum()!=0] return L def countLoaded(self): """ return the number of loaded DBZ objects in the stream essentially computing those with matrix!=0 """ return len([v for v in self if (v.matrix**2).sum()!=0]) def setMasks(self, lowerThreshold): """ reset the masks, masking those values lower than the new lowerThreshold True=masked 2013-09-27 """ for dbzpattern in self.list: m = dbzpattern.matrix m.mask = False m.mask = (m < lowerThreshold) def setFloor(self, lower): """ cut of those that are below lower and replace them as lower """ for d in self.list: m = d.matrix d.matrix = m + (m<lower)* (lower-m) def setCommonMask(self, key=""): """ set the mask to the union of all (biggest mask, showing the general common (smallest) region) """ m = self.list[0].matrix.mask try: for d in self(key): m += d.matrix.mask for d in self(key): d.matrix.mask = m except: print 'cannot construct common mask!' def fix(dbzstream, key1='', threshold=0): #standard fix, codes from armor.objects2 print 'loading', dbzstream.name, 'with key', key1 dbzstream.load(key1) print 'cutting the excess' dbzstream.cutUnloaded() print 'setting threshold', threshold dbzstream.setThreshold(threshold) dbzstream.setTaiwanReliefFolder() dbzstream.setVmin() dbzstream.setVmax() def timeShift(self, days=0, secs=0, verbose=False): """ just change the dataTimes and names ; nothing else. the dataPaths aren't changed 2014-03-05 """ for d in self: T = d.datetime() dt = datetime.timedelta(days + 1.*secs/86400) T += dt d.setDataTime(T) d.name += "_timeShift_%ddays_%dsecs" % (days, secs) if verbose: print d.name, d.dataTime ########################################################### # # Tests and comparisons def corr(self, ds2, verbose=False): """ returns a list of correlation of the streams [(dataTime <str>, corr <float>),...] """ ds1 = self # alias # 1. get the list of common dataTimes dataTimeList1 = [v.dataTime for v in ds1.list] dataTimeList2 = [v.dataTime for v in ds2.list] dataTimeList = sorted(list(set(dataTimeList1).intersection(set(dataTimeList2)))) if verbose: print dataTimeList # 2. compute the correlations with the built in DBZ.corr() method L = [] for T in dataTimeList: a = ds1(T)[0] b = ds2(T)[0] L.append((T, a.corr(b))) return L def invariantMomentsCorr(self, ds2, comparison='distance', verbose=False): ''' comparison = 'dot', 'correlation', 'distance' (euclidean distance) ''' ds1 = self from geometry import moments # 1. get the list of common dataTimes dataTimeList1 = [v.dataTime for v in ds1.list] dataTimeList2 = [v.dataTime for v in ds2.list] dataTimeList = sorted(list(set(dataTimeList1).intersection(set(dataTimeList2)))) if verbose: print dataTimeList # 2. compute the moments and compare them L = [] for T in dataTimeList: a = ds1(T)[0] b = ds2(T)[0] #a.invMom = a.invariantMoments() #b.invMom = b.invariantMoments() a.invariantMoments() b.invariantMoments() #debug print '====== a.invMom, b.invMom: =======' print a.invMom print b.invMom # end debug if comparison == 'corr': invarcorr = np.corrcoef(a.invMom, b.invMom)[0,1] # correlation is not always good. use the vector dot product instead (?!) # see the next line print 'their correlation:', invarcorr elif comparison == 'dot': invarcorr = np.dot(a.invMom,b.invMom)/ (np.dot(a.invMom,a.invMom)*np.dot(b.invMom,b.invMom))**.5 #added 2013-09-28 print "their dot product:", invarcorr else: invarcorr = np.linalg.norm( np.array(a.invMom) - np.array(b.invMom)) print 'their euclidean distance:', invarcorr L.append((T, invarcorr)) return L def regionalAndGlobalInvariantMomentsCorr(self, ds2, N=4, verbose=False): """ analogous to Chen Sin Gam's averaging method From CWB returns a list of scores of the given stream ds2 w.r.t. ds1=self [(dataTime <str>, score <float>),...] """ import itertools import math ds1 = self height, width = ds1[0].matrix.shape h1 = height//N w1 = width //N i_splits = range(0, height, h1) j_splits = range(0, width, w1) splits = itertools.product(i_splits, j_splits) #debug #print 'splits - ', [v for v in splits] #ds2 = ds2.intersect(ds1) #ds1 = ds1.intersect(ds2) dataTimes1 = sorted([v.dataTime for v in ds1]) dataTimes = sorted([v.dataTime for v in ds2 if v.dataTime in dataTimes1]) regionalMomentAverages = [] for T in dataTimes: invarcorr = 0. observation = ds1(T)[0] # one way or other; just for convenience wrf = ds2(T)[0] # reminder to self: there should be/we assume there is only one in the list, so [0] works # global moments corr a = observation b = wrf a.invariantMoments() b.invariantMoments() #invarcorr = ma.corrcoef(a.invMom, b.invMom)[0,1] # correlation is not always good. use the vector dot product instead (?!) # see the next line invarcorr = ma.dot(a.invMom,b.invMom)/ (ma.dot(a.invMom,a.invMom)/ma.dot(b.invMom,b.invMom))**.5 #added 2013-09-28 #if not isinstance(invarcorr, float): #if (invarcorr==np.nan): #if not (invarcorr>999 or invarcorr<=999): # if invarcorr!=nan if math.isnan(invarcorr): invarcorr = 0. Count = 0 else: Count = N # local moments corr #debug print 'invarcorr:', invarcorr, '/', for i,j in splits: a1 = a.getWindow(i, j, h1, w1) b1 = a.getWindow(i, j, h1, w1) a1.invariantMoments() b1.invariantMoments() invarcorr_regional = ma.corrcoef(a1.invMom, b1.invMom)[0,1] # debug print invarcorr_regional, #if not (invarcorr_regional==np.nan): #if (invarcorr_regional>999 or invarcorr_regional<=999): # if invarcorr_regional==nan if not math.isnan(invarcorr_regional): invarcorr += invarcorr_regional Count +=1 #debug print invarcorr, ':', Count, '/', invarcorr = 1. * invarcorr / Count # weighed average print ':', invarcorr, '||', regionalMomentAverages.append((T, invarcorr)) return regionalMomentAverages def gaborFeaturesTest(self, ds2, verbose=False): """ use gabor filter to extract local scale and orientation features """ pass def clusteringTest(self, ds2, verbose=False): """ comparison via clustering """ pass def LeesTransformation(self, ds2, verbose=False): """ Professor Tim-Hau Lee's Idea - perform a normalising transformation according to the first two moments before comparisons """ ds1 = self pass ################################################################################ DS = DBZstream ######################## # demo a = DBZ('20120612.0200') b = DBZ('20120612.0230') c = DBZ('20120612.0300') d = DBZ('20120612.0210') e = DBZ('20120612.0240') f = DBZ('20120612.0310') #a.load() #b.load() #c.load() #d.load() #e.load() #f.load() #a.setThreshold(0) #b.setThreshold(0) #c.setThreshold(0) #d.setThreshold(0) #e.setThreshold(0) #f.setThreshold(0) ds1 = DBZstream(name="COMPREF", imageFolder = '../labReports/20130827/COMPREF/', outputFolder = '../labReports/20130827/COMPREF/') """ exit() python from armor import pattern """ try: print externalHardDriveRoot ds2 = DBZstream(dataFolder='%sdata/SOULIK/wrf_shue/' %externalHardDriveRoot, lowerLeftCornerLatitudeLongitude=(17.7094,113.3272), upperRightCornerLatitudeLongitude=(28.62909, 127.6353), ) except: print 'EXTERNAL HARD DRIVE %sdata/SOULIK/wrf_shue/' %externalHardDriveRoot, "NOT FOUND" try: ds2 = DBZstream(dataFolder='%sdata/SOULIK/wrf_shue/' %hardDriveRoot, lowerLeftCornerLatitudeLongitude=(17.7094,113.3272), upperRightCornerLatitudeLongitude=(28.62909, 127.6353), ) print 'HARD DRIVE %sdata/SOULIK/wrf_shue/' %hardDriveRoot, "\nFOUND!!" except: print 'HARD DRIVE %sdata/SOULIK/wrf_shue/' %hardDriveRoot, "NOT FOUND" try: print externalHardDriveRoot2 ds2 = DBZstream(dataFolder='%sdata/SOULIK/wrf_shue/' %externalHardDriveRoot2, lowerLeftCornerLatitudeLongitude=(17.7094,113.3272), upperRightCornerLatitudeLongitude=(28.62909, 127.6353), ) print 'EXTERNAL HARD DRIVE %sdata/SOULIK/wrf_shue/' %externalHardDriveRoot2, "\nFOUND!!" except: print 'EXTERNAL HARD DRIVE %sdata/SOULIK/wrf_shue/' %externalHardDriveRoot2, "NOT FOUND" try: ds3 = DBZstream(dataFolder='../data_simulation/20120611_12/', name="WRF", lowerLeftCornerLatitudeLongitude=(17.7094,113.3272), upperRightCornerLatitudeLongitude=(28.62909, 127.6353), outputFolder = '../labReports/20130827/WRF/', imageFolder = '../labReports/20130827/WRF/', preload=False) except: print '../data_simulation/20120611_12/ - NOT FOUND' """ The following are constructed from data from mr. shue : https://mail.google.com/mail/u/0/?shva=1#search/azteque%40manysplendid.com/14070bb7d7aef48c wd3 282x342 MaxLatF = 28.62909 MinLatF = 17.7094 MaxLonF = 127.6353 MinLonF = 113.3272 """ try: cx = DBZ(name='WRF20120612.0200', dataTime='20120612.0200', dataPath= usbRoot + '/data_simulation/20120611_12/out_201206120200.txt', lowerLeftCornerLatitudeLongitude= (17.7094, 113.3272), upperRightCornerLatitudeLongitude= (28.62909,127.6353) , ) dx = DBZ(name='WRF20120612.0210', dataTime='20120612.0210', dataPath= usbRoot + '/data_simulation/20120611_12/out_201206120210.txt', lowerLeftCornerLatitudeLongitude= (17.7094, 113.3272), upperRightCornerLatitudeLongitude= (28.62909,127.6353) , ) except: print 'data not found! construction of cx and dx skipped'
cc0-1.0
sumspr/scikit-learn
examples/svm/plot_svm_margin.py
318
2328
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= SVM Margins Example ========================================================= The plots below illustrate the effect the parameter `C` has on the separation line. A large value of `C` basically tells our model that we do not have that much faith in our data's distribution, and will only consider points close to line of separation. A small value of `C` includes more/all the observations, allowing the margins to be calculated using all the data in the area. """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import svm # we create 40 separable points np.random.seed(0) X = np.r_[np.random.randn(20, 2) - [2, 2], np.random.randn(20, 2) + [2, 2]] Y = [0] * 20 + [1] * 20 # figure number fignum = 1 # fit the model for name, penalty in (('unreg', 1), ('reg', 0.05)): clf = svm.SVC(kernel='linear', C=penalty) clf.fit(X, Y) # get the separating hyperplane w = clf.coef_[0] a = -w[0] / w[1] xx = np.linspace(-5, 5) yy = a * xx - (clf.intercept_[0]) / w[1] # plot the parallels to the separating hyperplane that pass through the # support vectors margin = 1 / np.sqrt(np.sum(clf.coef_ ** 2)) yy_down = yy + a * margin yy_up = yy - a * margin # plot the line, the points, and the nearest vectors to the plane plt.figure(fignum, figsize=(4, 3)) plt.clf() plt.plot(xx, yy, 'k-') plt.plot(xx, yy_down, 'k--') plt.plot(xx, yy_up, 'k--') plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=80, facecolors='none', zorder=10) plt.scatter(X[:, 0], X[:, 1], c=Y, zorder=10, cmap=plt.cm.Paired) plt.axis('tight') x_min = -4.8 x_max = 4.2 y_min = -6 y_max = 6 XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j] Z = clf.predict(np.c_[XX.ravel(), YY.ravel()]) # Put the result into a color plot Z = Z.reshape(XX.shape) plt.figure(fignum, figsize=(4, 3)) plt.pcolormesh(XX, YY, Z, cmap=plt.cm.Paired) plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.xticks(()) plt.yticks(()) fignum = fignum + 1 plt.show()
bsd-3-clause
jayflo/scikit-learn
examples/applications/plot_species_distribution_modeling.py
254
7434
""" ============================= Species distribution modeling ============================= Modeling species' geographic distributions is an important problem in conservation biology. In this example we model the geographic distribution of two south american mammals given past observations and 14 environmental variables. Since we have only positive examples (there are no unsuccessful observations), we cast this problem as a density estimation problem and use the `OneClassSVM` provided by the package `sklearn.svm` as our modeling tool. The dataset is provided by Phillips et. al. (2006). If available, the example uses `basemap <http://matplotlib.sourceforge.net/basemap/doc/html/>`_ to plot the coast lines and national boundaries of South America. The two species are: - `"Bradypus variegatus" <http://www.iucnredlist.org/apps/redlist/details/3038/0>`_ , the Brown-throated Sloth. - `"Microryzomys minutus" <http://www.iucnredlist.org/apps/redlist/details/13408/0>`_ , also known as the Forest Small Rice Rat, a rodent that lives in Peru, Colombia, Ecuador, Peru, and Venezuela. References ---------- * `"Maximum entropy modeling of species geographic distributions" <http://www.cs.princeton.edu/~schapire/papers/ecolmod.pdf>`_ S. J. Phillips, R. P. Anderson, R. E. Schapire - Ecological Modelling, 190:231-259, 2006. """ # Authors: Peter Prettenhofer <[email protected]> # Jake Vanderplas <[email protected]> # # License: BSD 3 clause from __future__ import print_function from time import time import numpy as np import matplotlib.pyplot as plt from sklearn.datasets.base import Bunch from sklearn.datasets import fetch_species_distributions from sklearn.datasets.species_distributions import construct_grids from sklearn import svm, metrics # if basemap is available, we'll use it. # otherwise, we'll improvise later... try: from mpl_toolkits.basemap import Basemap basemap = True except ImportError: basemap = False print(__doc__) def create_species_bunch(species_name, train, test, coverages, xgrid, ygrid): """Create a bunch with information about a particular organism This will use the test/train record arrays to extract the data specific to the given species name. """ bunch = Bunch(name=' '.join(species_name.split("_")[:2])) species_name = species_name.encode('ascii') points = dict(test=test, train=train) for label, pts in points.items(): # choose points associated with the desired species pts = pts[pts['species'] == species_name] bunch['pts_%s' % label] = pts # determine coverage values for each of the training & testing points ix = np.searchsorted(xgrid, pts['dd long']) iy = np.searchsorted(ygrid, pts['dd lat']) bunch['cov_%s' % label] = coverages[:, -iy, ix].T return bunch def plot_species_distribution(species=("bradypus_variegatus_0", "microryzomys_minutus_0")): """ Plot the species distribution. """ if len(species) > 2: print("Note: when more than two species are provided," " only the first two will be used") t0 = time() # Load the compressed data data = fetch_species_distributions() # Set up the data grid xgrid, ygrid = construct_grids(data) # The grid in x,y coordinates X, Y = np.meshgrid(xgrid, ygrid[::-1]) # create a bunch for each species BV_bunch = create_species_bunch(species[0], data.train, data.test, data.coverages, xgrid, ygrid) MM_bunch = create_species_bunch(species[1], data.train, data.test, data.coverages, xgrid, ygrid) # background points (grid coordinates) for evaluation np.random.seed(13) background_points = np.c_[np.random.randint(low=0, high=data.Ny, size=10000), np.random.randint(low=0, high=data.Nx, size=10000)].T # We'll make use of the fact that coverages[6] has measurements at all # land points. This will help us decide between land and water. land_reference = data.coverages[6] # Fit, predict, and plot for each species. for i, species in enumerate([BV_bunch, MM_bunch]): print("_" * 80) print("Modeling distribution of species '%s'" % species.name) # Standardize features mean = species.cov_train.mean(axis=0) std = species.cov_train.std(axis=0) train_cover_std = (species.cov_train - mean) / std # Fit OneClassSVM print(" - fit OneClassSVM ... ", end='') clf = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.5) clf.fit(train_cover_std) print("done.") # Plot map of South America plt.subplot(1, 2, i + 1) if basemap: print(" - plot coastlines using basemap") m = Basemap(projection='cyl', llcrnrlat=Y.min(), urcrnrlat=Y.max(), llcrnrlon=X.min(), urcrnrlon=X.max(), resolution='c') m.drawcoastlines() m.drawcountries() else: print(" - plot coastlines from coverage") plt.contour(X, Y, land_reference, levels=[-9999], colors="k", linestyles="solid") plt.xticks([]) plt.yticks([]) print(" - predict species distribution") # Predict species distribution using the training data Z = np.ones((data.Ny, data.Nx), dtype=np.float64) # We'll predict only for the land points. idx = np.where(land_reference > -9999) coverages_land = data.coverages[:, idx[0], idx[1]].T pred = clf.decision_function((coverages_land - mean) / std)[:, 0] Z *= pred.min() Z[idx[0], idx[1]] = pred levels = np.linspace(Z.min(), Z.max(), 25) Z[land_reference == -9999] = -9999 # plot contours of the prediction plt.contourf(X, Y, Z, levels=levels, cmap=plt.cm.Reds) plt.colorbar(format='%.2f') # scatter training/testing points plt.scatter(species.pts_train['dd long'], species.pts_train['dd lat'], s=2 ** 2, c='black', marker='^', label='train') plt.scatter(species.pts_test['dd long'], species.pts_test['dd lat'], s=2 ** 2, c='black', marker='x', label='test') plt.legend() plt.title(species.name) plt.axis('equal') # Compute AUC with regards to background points pred_background = Z[background_points[0], background_points[1]] pred_test = clf.decision_function((species.cov_test - mean) / std)[:, 0] scores = np.r_[pred_test, pred_background] y = np.r_[np.ones(pred_test.shape), np.zeros(pred_background.shape)] fpr, tpr, thresholds = metrics.roc_curve(y, scores) roc_auc = metrics.auc(fpr, tpr) plt.text(-35, -70, "AUC: %.3f" % roc_auc, ha="right") print("\n Area under the ROC curve : %f" % roc_auc) print("\ntime elapsed: %.2fs" % (time() - t0)) plot_species_distribution() plt.show()
bsd-3-clause
adamtiger/tensorflow
tensorflow/examples/learn/text_classification.py
17
6649
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Example of Estimator for DNN-based text classification with DBpedia data.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import sys import numpy as np import pandas from sklearn import metrics import tensorflow as tf FLAGS = None MAX_DOCUMENT_LENGTH = 10 EMBEDDING_SIZE = 50 n_words = 0 MAX_LABEL = 15 WORDS_FEATURE = 'words' # Name of the input words feature. def estimator_spec_for_softmax_classification( logits, labels, mode): """Returns EstimatorSpec instance for softmax classification.""" predicted_classes = tf.argmax(logits, 1) if mode == tf.estimator.ModeKeys.PREDICT: return tf.estimator.EstimatorSpec( mode=mode, predictions={ 'class': predicted_classes, 'prob': tf.nn.softmax(logits) }) onehot_labels = tf.one_hot(labels, MAX_LABEL, 1, 0) loss = tf.losses.softmax_cross_entropy( onehot_labels=onehot_labels, logits=logits) if mode == tf.estimator.ModeKeys.TRAIN: optimizer = tf.train.AdamOptimizer(learning_rate=0.01) train_op = optimizer.minimize(loss, global_step=tf.train.get_global_step()) return tf.estimator.EstimatorSpec(mode, loss=loss, train_op=train_op) eval_metric_ops = { 'accuracy': tf.metrics.accuracy( labels=labels, predictions=predicted_classes) } return tf.estimator.EstimatorSpec( mode=mode, loss=loss, eval_metric_ops=eval_metric_ops) def bag_of_words_model(features, labels, mode): """A bag-of-words model. Note it disregards the word order in the text.""" bow_column = tf.feature_column.categorical_column_with_identity( WORDS_FEATURE, num_buckets=n_words) bow_embedding_column = tf.feature_column.embedding_column( bow_column, dimension=EMBEDDING_SIZE) bow = tf.feature_column.input_layer( features, feature_columns=[bow_embedding_column]) logits = tf.layers.dense(bow, MAX_LABEL, activation=None) return estimator_spec_for_softmax_classification( logits=logits, labels=labels, mode=mode) def rnn_model(features, labels, mode): """RNN model to predict from sequence of words to a class.""" # Convert indexes of words into embeddings. # This creates embeddings matrix of [n_words, EMBEDDING_SIZE] and then # maps word indexes of the sequence into [batch_size, sequence_length, # EMBEDDING_SIZE]. word_vectors = tf.contrib.layers.embed_sequence( features[WORDS_FEATURE], vocab_size=n_words, embed_dim=EMBEDDING_SIZE) # Split into list of embedding per word, while removing doc length dim. # word_list results to be a list of tensors [batch_size, EMBEDDING_SIZE]. word_list = tf.unstack(word_vectors, axis=1) # Create a Gated Recurrent Unit cell with hidden size of EMBEDDING_SIZE. cell = tf.contrib.rnn.GRUCell(EMBEDDING_SIZE) # Create an unrolled Recurrent Neural Networks to length of # MAX_DOCUMENT_LENGTH and passes word_list as inputs for each unit. _, encoding = tf.contrib.rnn.static_rnn(cell, word_list, dtype=tf.float32) # Given encoding of RNN, take encoding of last step (e.g hidden size of the # neural network of last step) and pass it as features for softmax # classification over output classes. logits = tf.layers.dense(encoding, MAX_LABEL, activation=None) return estimator_spec_for_softmax_classification( logits=logits, labels=labels, mode=mode) def main(unused_argv): global n_words # Prepare training and testing data dbpedia = tf.contrib.learn.datasets.load_dataset( 'dbpedia', test_with_fake_data=FLAGS.test_with_fake_data) x_train = pandas.Series(dbpedia.train.data[:,1]) y_train = pandas.Series(dbpedia.train.target) x_test = pandas.Series(dbpedia.test.data[:,1]) y_test = pandas.Series(dbpedia.test.target) # Process vocabulary vocab_processor = tf.contrib.learn.preprocessing.VocabularyProcessor( MAX_DOCUMENT_LENGTH) x_transform_train = vocab_processor.fit_transform(x_train) x_transform_test = vocab_processor.transform(x_test) x_train = np.array(list(x_transform_train)) x_test = np.array(list(x_transform_test)) n_words = len(vocab_processor.vocabulary_) print('Total words: %d' % n_words) # Build model # Switch between rnn_model and bag_of_words_model to test different models. model_fn = rnn_model if FLAGS.bow_model: # Subtract 1 because VocabularyProcessor outputs a word-id matrix where word # ids start from 1 and 0 means 'no word'. But # categorical_column_with_identity assumes 0-based count and uses -1 for # missing word. x_train -= 1 x_test -= 1 model_fn = bag_of_words_model classifier = tf.estimator.Estimator(model_fn=model_fn) # Train. train_input_fn = tf.estimator.inputs.numpy_input_fn( x={WORDS_FEATURE: x_train}, y=y_train, batch_size=len(x_train), num_epochs=None, shuffle=True) classifier.train(input_fn=train_input_fn, steps=100) # Predict. test_input_fn = tf.estimator.inputs.numpy_input_fn( x={WORDS_FEATURE: x_test}, y=y_test, num_epochs=1, shuffle=False) predictions = classifier.predict(input_fn=test_input_fn) y_predicted = np.array(list(p['class'] for p in predictions)) y_predicted = y_predicted.reshape(np.array(y_test).shape) # Score with sklearn. score = metrics.accuracy_score(y_test, y_predicted) print('Accuracy (sklearn): {0:f}'.format(score)) # Score with tensorflow. scores = classifier.evaluate(input_fn=test_input_fn) print('Accuracy (tensorflow): {0:f}'.format(scores['accuracy'])) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '--test_with_fake_data', default=False, help='Test the example code with fake data.', action='store_true') parser.add_argument( '--bow_model', default=False, help='Run with BOW model instead of RNN.', action='store_true') FLAGS, unparsed = parser.parse_known_args() tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
apache-2.0
pytrainer/pytrainer
pytrainer/gui/windowmain.py
1
97568
# -*- coding: utf-8 -*- #Copyright (C) Fiz Vazquez [email protected] # Modified by dgranda #This program is free software; you can redistribute it and/or #modify it under the terms of the GNU General Public License #as published by the Free Software Foundation; either version 2 #of the License, or (at your option) any later version. #This program is distributed in the hope that it will be useful, #but WITHOUT ANY WARRANTY; without even the implied warranty of #MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #GNU General Public License for more details. #You should have received a copy of the GNU General Public License #along with this program; if not, write to the Free Software #Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. import os import logging import matplotlib from gi.repository import GObject from gi.repository import Gtk from gi.repository import Gdk from gi.repository import GdkPixbuf import dateutil.parser from .SimpleGladeApp import SimpleBuilderApp from .popupmenu import PopupMenu from .aboutdialog import About import pytrainer.record from pytrainer.lib.date import Date, second2time from pytrainer.lib.xmlUtils import XMLParser #from pytrainer.lib.gpx import Gpx from pytrainer.recordgraph import RecordGraph from pytrainer.weekgraph import WeekGraph from pytrainer.monthgraph import MonthGraph from pytrainer.yeargraph import YearGraph from pytrainer.totalgraph import TotalGraph from pytrainer.heartrategraph import HeartRateGraph from pytrainer.gui.drawGraph import DrawGraph from pytrainer.gui.windowcalendar import WindowCalendar from pytrainer.lib.listview import ListSearch from pytrainer.lib.uc import UC from pytrainer.core.activity import Activity from pytrainer.lib.localization import gtk_str from sqlalchemy import and_ class Main(SimpleBuilderApp): def __init__(self, sport_service, data_path = None, parent = None, version = None, gpxDir = None): self._sport_service = sport_service self.version = version self.parent = parent self.pytrainer_main = parent self.data_path = data_path self.uc = UC() SimpleBuilderApp.__init__(self, "pytrainer.ui") self.popup = PopupMenu(data_path,self) self.block = False self.activeSport = None self.gpxDir = gpxDir self.record_list = None self.laps = None #Setup graph self.grapher = DrawGraph(self, self.pytrainer_main) self.y1_limits = None self.y1_color = None self.y1_linewidth = 1 # setup Search ListView self.listsearch = ListSearch(sport_service, self) self.aboutwindow = None self.mapviewer = None self.mapviewer_fs = None self.waypointeditor = None def new(self): self.menublocking = 0 self.selected_view="day" self.window1.set_title ("pytrainer %s" % self.version) try: width, height = self.pytrainer_main.profile.getValue("pytraining","window_size").split(',') self.window1.resize(int(width), int(height)) except: pass self.record_list = [] #create the columns for the listdayrecord columns = [{'name':_("id"), 'visible':False},{'name':_("Start"), }, {'name':_("Sport")},{'name':self.uc.unit_distance}] self.create_treeview(self.recordTreeView,columns) #create the columns for the listarea # different codings for mean see eg http://de.wikipedia.org/wiki/%C3%98#Kodierung columns=[ {'name':_("id"), 'visible':False}, {'name':_("Title")}, {'name':_("Date")}, {'name':_("Distance"), 'xalign':1.0, 'format_float':'%.2f', 'quantity': 'distance'}, {'name':_("Sport")}, {'name':_("Time"), 'xalign':1.0, 'format_duration':True}, {'name':_(u"\u2300 HR"), 'xalign':1.0}, {'name':_("Max HR"), 'xalign':1.0}, {'name':_(u"\u2300 Speed"), 'xalign':1.0, 'format_float':'%.1f', 'quantity': 'speed'}, {'name':_("Calories"), 'xalign':1.0} ] self.create_treeview(self.allRecordTreeView,columns) self.create_menulist(columns) #create the columns for the waypoints treeview columns=[{'name':_("id"), 'visible':False},{'name':_("Waypoint")}] self.create_treeview(self.waypointTreeView,columns) #create the columns for the athlete history treeview columns=[ {'name':_("id"), 'visible':False}, {'name':_("Date")}, {'name':_("Weight"), 'xalign':1.0, 'quantity':'weight', 'format_float':'%.1f'}, {'name':_("Body Fat %"), 'xalign':1.0, 'quantity':'bodyfat', 'format_float':'%.1f'}, {'name':_("Resting HR"), 'xalign':1.0}, {'name':_("Max HR"), 'xalign':1.0} ] self.create_treeview(self.athleteTreeView,columns) #create the columns for the stats treeview columns=[ {'name':_("id"), 'visible':False}, {'name':_("Sport")}, {'name':_("Records"), 'xalign':1.0}, {'name':_("Total duration"), 'xalign':1.0, 'format_duration':True}, {'name':_("Total distance"), 'xalign':1.0, 'format_float':'%.1f', 'quantity':'distance'}, {'name':_("Avg speed"), 'format_float':'%.2f', 'quantity':'maxspeed', 'xalign':1.0}, {'name':_("Max speed"), 'format_float':'%.2f', 'quantity':'maxspeed', 'xalign':1.0}, {'name':_("Avg HR"), 'xalign':1.0}, {'name':_("Max HR"), 'xalign':1.0}, {'name':_("Max duration"), 'xalign':1.0, 'format_duration':True}, {'name':_("Max distance"), 'xalign':1.0, 'format_float':'%.1f', 'quantity':'distance'}, ] self.create_treeview(self.statsTreeView,columns) #create the columns for the laps treeview columns=[ {'name':_("Lap")}, {'name':_("Trigger"), 'xalign':0, 'pixbuf':True}, {'name':_("Distance"), 'xalign':1.0, 'format_float':'%.2f', 'quantity':'distance'}, {'name':_("Time"), 'xalign':1.0, 'format_duration':True}, {'name':_("Avg speed"), 'format_float':'%.2f', 'quantity':'speed'}, {'name':_("Max speed"), 'format_float':'%.2f', 'quantity':'speed'}, {'name':_("Avg pace"), 'xalign':1.0, 'quantity':'pace'}, {'name':_("Max pace"), 'xalign':1.0, 'quantity':'pace'}, {'name':_("Avg HR"), 'xalign':1.0}, {'name':_("Max HR"), 'xalign':1.0}, {'name':_("Calories"), 'xalign':1.0}, {'name':_("Intensity"), 'visible':False}, {'name':_("Comments"), 'xalign':0.0}, ] self.create_treeview(self.lapsTreeView,columns) #create the columns for the projected times treeview columns=[ {'name':_("id"), 'visible':False}, {'name':_("Race"), 'xalign':1.0}, {'name':_("Distance"), 'xalign':1.0, 'format_float':'%.2f', 'quantity':'distance'}, {'name':_("Time"), 'xalign':1.0, 'format_duration':True}, ] self.create_treeview(self.analyticsTreeView,columns,sortable=False) #create the columns for the rank treeview columns=[ {'name':_("id"), 'visible':False}, {'name':_("Rank"), 'visible':True}, {'name':_("Date"), 'xalign':1.0}, {'name':_("Distance"), 'xalign':1.0, 'format_float':'%.2f', 'quantity':'distance'}, {'name':_("Time"), 'xalign':1.0, 'format_duration':True}, {'name':_("Speed"), 'format_float':'%.2f', 'quantity':'speed'}, {'name':_("Pace"), 'format_float':'%.2f', 'quantity':'pace'}, {'name':_("Color"), 'visible':False}, ] self.create_treeview(self.rankingTreeView,columns,sortable=False) self.fileconf = self.pytrainer_main.profile.confdir+"/listviewmenu.xml" if not os.path.isfile(self.fileconf): self._createXmlListView(self.fileconf) self.showAllRecordTreeViewColumns() self.allRecordTreeView.set_search_column(1) self.notebook.set_current_page(1) #Set correct map viewer if self.pytrainer_main.profile.getValue("pytraining","default_viewer") == "1": self.radiobuttonOSM.set_active(1) else: self.radiobuttonGMap.set_active(1) self.comboMapLineType.set_active(0) def _float_or(self, value, default): '''Function to parse and return a float, or the default if the parsing fails''' try: result = float(value) except Exception as e: #print type(e) #print e result = default return result def setup(self): logging.debug(">>") self.createGraphs() self.createMap() page = self.notebook.get_current_page() self.on_page_change(None,None,page) logging.debug("<<") def _createXmlListView(self,file): menufile = XMLParser(file) savedOptions = [] savedOptions.append(("date","True")) savedOptions.append(("distance","True")) savedOptions.append(("average","False")) savedOptions.append(("title","True")) savedOptions.append(("sport","True")) savedOptions.append(("id_record","False")) savedOptions.append(("time","False")) savedOptions.append(("beats","False")) savedOptions.append(("maxbeats","False")) savedOptions.append(("calories","False")) menufile.createXMLFile("listviewmenu",savedOptions) def removeImportPlugin(self, plugin): for widget in self.menuitem1_menu: if widget.get_name() == plugin[1]: self.menuitem1_menu.remove(widget) def removeExtension(self, extension): for widget in self.recordbuttons_hbox: if widget.get_name() == extension[1]: logging.debug("Removing extension: %s ", extension[0]) self.recordbuttons_hbox.remove(widget) def addExtension(self,extension): #txtbutton,extensioncode,extensiontype = extension button = Gtk.Button(extension[0]) button.set_name(extension[1]) button.connect("button_press_event", self.runExtension, extension) self.recordbuttons_hbox.pack_start(button,False,False,0) self.recordbuttons_hbox.show_all() def runExtension(self,widget,widget2,extension): #print extension txtbutton,extensioncode,extensiontype = extension id = None if extensiontype=="record": selected,iter = self.recordTreeView.get_selection().get_selected() id = selected.get_value(iter,0) self.parent.runExtension(extension,id) def createGraphs(self): logging.debug(">>") self.drawarearecord = RecordGraph(self.record_graph_vbox, self.window1, self.record_combovalue, self.record_combovalue2, self.btnShowLaps, self.tableConfigY1, pytrainer_main=self.pytrainer_main) self.drawareaheartrate = HeartRateGraph([self.heartrate_vbox, self.heartrate_vbox2, self.heartrate_vbox3], self.window1, pytrainer_main=self.pytrainer_main) self.day_vbox.hide() sports = self._sport_service.get_all_sports() self.drawareaweek = WeekGraph(sports, self.weekview, self.window1, self.week_combovalue, self.week_combovalue2, self.pytrainer_main) self.drawareamonth = MonthGraph(sports, self.month_vbox, self.window1, self.month_combovalue,self.month_combovalue2, self.pytrainer_main) self.drawareayear = YearGraph(sports, self.year_vbox, self.window1, self.year_combovalue,self.year_combovalue2, self.pytrainer_main) self.drawareatotal = TotalGraph(sports, self.total_vbox, self.window1, self.total_combovalue,self.total_combovalue2, self.pytrainer_main) logging.debug("<<") def createMap(self): logging.debug(">>") if not self.mapviewer and not self.mapviewer_fs and not self.waypointeditor: try: from pytrainer.extensions.mapviewer import MapViewer from pytrainer.extensions.waypointeditor import WaypointEditor self.mapviewer = MapViewer(self.data_path, pytrainer_main=self.parent, box=self.map_vbox) self.mapviewer_fs = MapViewer(self.data_path, pytrainer_main=self.parent, box=self.map_vbox_old) self.waypointeditor = WaypointEditor(self.data_path, self.waypointvbox, self.pytrainer_main.waypoint, parent=self.pytrainer_main) except ImportError: logging.error("Webkit not found, map functionality not available") for container in self.map_vbox, self.map_vbox_old, self.waypointvbox: message = Gtk.Label(_("Webkit not found, map functionality not available")) message.set_selectable(True) container.foreach(lambda widget:container.remove(widget)) container.add(message) container.show_all() logging.debug("<<") def updateSportList(self,listSport): logging.debug(">>") liststore = self.sportlist.get_model() firstEntry = _("All Sports") liststore.clear() #Delete all items #Re-add "All Sports" liststore.append([firstEntry]) #Re-add all sports in listSport for sport in listSport: liststore.append([sport.name]) self.sportlist.set_active(0) logging.debug("<<") def render_duration(self, column, cell, model, iter, notif): orig = cell.get_property('text') if not ':' in orig: h,m,s = second2time(int(orig)) new = '%d:%02d:%02d' % (h,m,s) else: new = orig if orig[:4] == ' 0:0': new = orig[4:] elif orig[:3] == ' 0:': new = orig[3:] if len(new)>5: hours = int(new[:-6]) days = _("d") if hours>23: new = "%d %s %02d:%s" % (hours / 24, days, hours%24 ,new[-5:]) cell.set_property('text', new) def render_float(self, column, cell, model, iter, data): _format, _quantity, _idx = data _val = model.get_value(iter, _idx) _val = self.uc.sys2usr(_quantity, _val) _val_str = _format % float(_val) cell.set_property('text', _val_str) def create_treeview(self,treeview,columns,sortable=True): for column_index, column_dict in enumerate(columns): if 'pixbuf' in column_dict: renderer = Gtk.CellRendererPixbuf() else: renderer = Gtk.CellRendererText() column = Gtk.TreeViewColumn(column_dict['name']) column.pack_start(renderer, False) if 'pixbuf' in column_dict: column.add_attribute(renderer, 'pixbuf', column_index) else: column.add_attribute(renderer, 'text', column_index) column.set_sizing(Gtk.TreeViewColumnSizing.AUTOSIZE) column.set_resizable(True) if 'xalign' in column_dict: renderer.set_property('xalign', column_dict['xalign']) if 'visible' in column_dict: column.set_visible(column_dict['visible']) if 'format_float' in column_dict: column.set_cell_data_func(renderer, self.render_float, [column_dict['format_float'], column_dict['quantity'], column_index]) if 'format_duration' in column_dict and column_dict['format_duration']: column.set_cell_data_func(renderer, self.render_duration) if sortable: column.set_sort_column_id(column_index) treeview.append_column(column) def actualize_recordview(self,activity): logging.debug(">>") if activity.id is None: #Blank out fields self.record_distance.set_text("") self.record_upositive.set_text("") self.record_unegative.set_text("") self.record_average.set_text("") self.record_maxspeed.set_text("") self.record_pace.set_text("") self.record_maxpace.set_text("") self.record_sport.set_text("") self.record_date.set_text("") self.record_time.set_text("") self.record_duration.set_text("") #self.record_minute.set_text("") #self.record_second.set_text("") self.record_calories.set_text("") self.record_title.set_text("") self.label_record_equipment.set_text("") self.frame_laps.hide() com_buffer = self.record_comments.get_buffer() start,end = com_buffer.get_bounds() com_buffer.set_text("") #Move to main record page and grey out self.recordview.set_current_page(0) self.recordview.set_sensitive(0) logging.debug("<<") return #Set the units for the activity results, e.g. km, km/h etc self.r_distance_unit.set_text(self.uc.unit_distance) self.r_speed_unit.set_text(self.uc.unit_speed) self.r_maxspeed_unit.set_text(self.uc.unit_speed) self.r_pace_unit.set_text(self.uc.unit_pace) self.r_maxpace_unit.set_text(self.uc.unit_pace) self.r_ascent_unit.set_text(self.uc.unit_height) self.r_descent_unit.set_text(self.uc.unit_height) if activity.has_data: self.recordview.set_sensitive(1) dateTime = activity.date_time recordDateTime = dateTime.strftime("%Y-%m-%d %H:%M:%S") recordDate = dateTime.strftime("%x") recordTime = dateTime.strftime("%X") recordDateTimeOffset = dateTime.strftime("%z") self.record_distance.set_text(activity.get_value_f('distance', "%0.2f")) self.record_upositive.set_text(activity.get_value_f('upositive', "%0.2f")) self.record_unegative.set_text(activity.get_value_f('unegative', "%0.2f")) self.record_average.set_text(activity.get_value_f('average', "%0.2f")) self.record_maxspeed.set_text(activity.get_value_f('maxspeed', "%0.2f")) self.record_pace.set_text(activity.get_value_f('pace', "%s")) self.record_maxpace.set_text(activity.get_value_f('maxpace', "%s")) self.record_sport.set_text(activity.sport_name) self.record_date.set_text(recordDate) self.record_time.set_text(recordTime) self.record_duration.set_text(activity.get_value_f('time', '%s')) self.record_calories.set_text(activity.get_value_f('calories', "%0.0f")) if activity.title: self.record_title.set_text(activity.title) else: self.record_title.set_text('') hrun,mrun,srun = second2time(activity.duration) hpause,mpause,spause = second2time(activity.time_pause) self.record_runrest.set_text("%02d:%02d:%02d / %02d:%02d:%02d" %(hrun,mrun,srun,hpause,mpause,spause)) buffer = self.record_comments.get_buffer() if activity.comments: buffer.set_text(activity.comments) else: buffer.set_text('') if len(activity.equipment) > 0: equipment_text = ", ".join([item.description for item in activity.equipment]) self.label_record_equipment.set_text(equipment_text) else: self.label_record_equipment.set_markup("<i>None</i>") if len(activity.Laps)>1: store = Gtk.ListStore( GObject.TYPE_INT, GdkPixbuf.Pixbuf, GObject.TYPE_FLOAT, GObject.TYPE_STRING, GObject.TYPE_FLOAT, GObject.TYPE_FLOAT, GObject.TYPE_STRING, GObject.TYPE_STRING, GObject.TYPE_INT, GObject.TYPE_INT, GObject.TYPE_INT, GObject.TYPE_STRING, GObject.TYPE_STRING, ) for lap in activity.Laps: t = lap.duration m = lap.distance m = self.uc.speed(m) s = m / float(t) * 3.6 max_speed = lap.max_speed * 3.6 if s > 0: pace = "%d:%02d" %((3600/s)/60,(3600/s)%60) if max_speed >0: max_pace = "%d:%02d" %((3600/max_speed)/60,(3600/max_speed)%60) else: max_pace = "0:00" else: pace = "0:00" max_pace = "0:00" color = { 'active' : '#000000', 'rest' : '#808080', 'resting' : '#808080', } pic = GdkPixbuf.Pixbuf.new_from_file(self.data_path+"glade/trigger_%s.png" % lap.laptrigger) iter = store.append() store.set(iter, 0, lap.lap_number + 1, 1, pic, 2, m/1000, 3, str(int(float(t))), 4, s, 5, max_speed, 6, pace, 7, max_pace, 8, lap.avg_hr if lap.avg_hr else 0, 9, lap.max_hr if lap.max_hr else 0, 10, lap.calories, 11, color[lap.intensity], 12, '' if not lap.comments else (lap.comments if len(lap.comments)<40 else "%s..." % lap.comments[:40]), ) self.lapsTreeView.set_model(store) self.lapsTreeView.set_rules_hint(True) # Use grey color for "rest" laps for c in self.lapsTreeView.get_columns(): for cr in c.get_cells(): if type(cr)==Gtk.CellRendererText: cr.set_property('foreground', 'gray') def edited_cb(cell, path, new_text, data): liststore, activity = data liststore[path][12] = new_text activity.Laps[int(path)].comments = gtk_str(new_text) self.pytrainer_main.ddbb.session.commit() def show_tooltip(widget, x, y, keyboard_mode, tooltip, user_param1): path = self.lapsTreeView.get_path_at_pos(x,y-20) if not path: return False if path[1] != self.lapsTreeView.get_columns()[12]: return False comments = user_param1[1].laps[path[0][0]]['comments'] if comments and len(comments)>40: tooltip.set_text(comments) return True return False if getattr(self.lapsTreeView, 'tooltip_handler_id', None): self.lapsTreeView.disconnect(self.lapsTreeView.tooltip_handler_id) self.lapsTreeView.tooltip_handler_id = self.lapsTreeView.connect('query-tooltip', show_tooltip, (store, activity)) i = 0 for cr in self.lapsTreeView.get_columns()[12].get_cells(): cr.set_property('editable', True) if getattr(self, 'lapview_handler_id', None): cr.disconnect(self.lapview_handler_id) self.lapview_handler_id = cr.connect('edited', edited_cb, (store, activity)) tooltip = Gtk.Tooltip() tooltip.set_text(activity.laps[i]['comments']) # FIXME Use TreePath to set tooltip #self.lapsTreeView.set_tooltip_cell(tooltip, i, self.lapsTreeView.get_columns()[12], cr) self.lapsTreeView.set_tooltip_cell(tooltip, None, self.lapsTreeView.get_columns()[12], cr) i += 1 self.frame_laps.show() else: self.frame_laps.hide() else: self.recordview.set_current_page(0) self.recordview.set_sensitive(0) logging.debug("<<") def actualize_recordgraph(self,activity): logging.debug(">>") self.record_list = activity.tracks self.laps = activity.laps if activity.gpx_file is not None: if not self.pytrainer_main.startup_options.newgraph: logging.debug("Using the original graphing") logging.debug("Activity has GPX data") #Show drop down boxes self.hbox30.show() #Hide new graph details self.graph_data_hbox.hide() self.hboxGraphOptions.hide() #Enable graph self.record_vbox.set_sensitive(1) self.drawarearecord.drawgraph(self.record_list,self.laps) else: #Still just test code.... logging.debug("Using the new TEST graphing approach") #Hide current drop down boxes self.hbox30.hide() self.graph_data_hbox.hide() #Enable graph self.record_vbox.set_sensitive(1) #Create a frame showing data available for graphing #Remove existing frames for child in self.graph_data_hbox.get_children(): if isinstance(child, Gtk.Frame): self.graph_data_hbox.remove(child) #Build frames and vboxs to hold checkbuttons xFrame = Gtk.Frame(label=_("Show on X Axis")) y1Frame = Gtk.Frame(label=_("Show on Y1 Axis")) y2Frame = Gtk.Frame(label=_("Show on Y2 Axis")) limitsFrame = Gtk.Frame(label=_("Axis Limits")) xvbox = Gtk.VBox() y1box = Gtk.Table() y2box = Gtk.Table() limitsbox = Gtk.Table() #Populate X axis data #Create x axis items xdistancebutton = Gtk.RadioButton(label=_("Distance")) xtimebutton = Gtk.RadioButton(group=xdistancebutton, label=_("Time")) xlapsbutton = Gtk.CheckButton(label=_("Laps")) y1gridbutton = Gtk.CheckButton(label=_("Left Axis Grid")) y2gridbutton = Gtk.CheckButton(label=_("Right Axis Grid")) xgridbutton = Gtk.CheckButton(label=_("X Axis Grid")) #Set state of buttons if activity.x_axis == "distance": xdistancebutton.set_active(True) elif activity.x_axis == "time": xtimebutton.set_active(True) xlapsbutton.set_active(activity.show_laps) y1gridbutton.set_active(activity.y1_grid) y2gridbutton.set_active(activity.y2_grid) xgridbutton.set_active(activity.x_grid) #Connect handlers to buttons xdistancebutton.connect("toggled", self.on_xaxischange, "distance", activity) xtimebutton.connect("toggled", self.on_xaxischange, "time", activity) xlapsbutton.connect("toggled", self.on_xlapschange, activity) y1gridbutton.connect("toggled", self.on_gridchange, "y1", activity) y2gridbutton.connect("toggled", self.on_gridchange, "y2", activity) xgridbutton.connect("toggled", self.on_gridchange, "x", activity) #Add buttons to frame xvbox.pack_start(xdistancebutton, False, True, 0) xvbox.pack_start(xtimebutton, False, True, 0) xvbox.pack_start(xlapsbutton, False, True, 0) xvbox.pack_start(y1gridbutton, False, True, 0) xvbox.pack_start(y2gridbutton, False, True, 0) xvbox.pack_start(xgridbutton, False, True, 0) xFrame.add(xvbox) #Populate axis limits frame #TODO Need to change these to editable objects and redraw graphs if changed.... #Create labels etc minlabel = Gtk.Label(label="<small>Min</small>") minlabel.set_use_markup(True) maxlabel = Gtk.Label(label="<small>Max</small>") maxlabel.set_use_markup(True) xlimlabel = Gtk.Label(label="X") limits = {} xminlabel = Gtk.Entry(max_length=10) xmaxlabel = Gtk.Entry(max_length=10) limits['xminlabel'] = xminlabel limits['xmaxlabel'] = xmaxlabel xminlabel.set_width_chars(5) xminlabel.set_alignment(1.0) xmaxlabel.set_width_chars(5) xmaxlabel.set_alignment(1.0) y1limlabel = Gtk.Label(label="Y1") y1minlabel = Gtk.Entry(max_length=10) y1maxlabel = Gtk.Entry(max_length=10) limits['y1minlabel'] = y1minlabel limits['y1maxlabel'] = y1maxlabel y1minlabel.set_width_chars(5) y1minlabel.set_alignment(1.0) y1maxlabel.set_width_chars(5) y1maxlabel.set_alignment(1.0) y2limlabel = Gtk.Label(label="Y2") y2minlabel = Gtk.Entry(max_length=10) y2maxlabel = Gtk.Entry(max_length=10) limits['y2minlabel'] = y2minlabel limits['y2maxlabel'] = y2maxlabel y2minlabel.set_width_chars(5) y2minlabel.set_alignment(1.0) y2maxlabel.set_width_chars(5) y2maxlabel.set_alignment(1.0) resetbutton = Gtk.Button(_('Reset Limits')) resetbutton.connect("clicked", self.on_setlimits, activity, True, None) setbutton = Gtk.Button(_('Set Limits')) setbutton.connect("clicked", self.on_setlimits, activity, False, limits) #Add labels etc to table limitsbox.attach(minlabel, 1, 2, 0, 1, yoptions=Gtk.AttachOptions.SHRINK) limitsbox.attach(maxlabel, 2, 3, 0, 1, yoptions=Gtk.AttachOptions.SHRINK) limitsbox.attach(xlimlabel, 0, 1, 1, 2, yoptions=Gtk.AttachOptions.SHRINK) limitsbox.attach(xminlabel, 1, 2, 1, 2, yoptions=Gtk.AttachOptions.SHRINK, xpadding=5) limitsbox.attach(xmaxlabel, 2, 3, 1, 2, yoptions=Gtk.AttachOptions.SHRINK, xpadding=5) limitsbox.attach(y1limlabel, 0, 1, 2, 3, yoptions=Gtk.AttachOptions.SHRINK) limitsbox.attach(y1minlabel, 1, 2, 2, 3, yoptions=Gtk.AttachOptions.SHRINK, xpadding=5) limitsbox.attach(y1maxlabel, 2, 3, 2, 3, yoptions=Gtk.AttachOptions.SHRINK, xpadding=5) limitsbox.attach(y2limlabel, 0, 1, 3, 4, yoptions=Gtk.AttachOptions.SHRINK) limitsbox.attach(y2minlabel, 1, 2, 3, 4, yoptions=Gtk.AttachOptions.SHRINK, xpadding=5) limitsbox.attach(y2maxlabel, 2, 3, 3, 4, yoptions=Gtk.AttachOptions.SHRINK, xpadding=5) limitsbox.attach(setbutton, 0, 3, 4, 5, yoptions=Gtk.AttachOptions.SHRINK) limitsbox.attach(resetbutton, 0, 3, 5, 6, yoptions=Gtk.AttachOptions.SHRINK) limitsFrame.add(limitsbox) row = 0 if activity.x_axis == "distance": data = activity.distance_data elif activity.x_axis == "time": data = activity.time_data else: logging.error("x axis is unknown") #Populate Y axis data for graphdata in sorted(data.keys()): #First Y axis... #Create button y1button = Gtk.CheckButton(label=data[graphdata].title) #Make button active if this data is to be displayed... y1button.set_active(data[graphdata].show_on_y1) #Connect handler for toggle state changes y1button.connect("toggled", self.on_y1change, y1box, graphdata, activity) #Attach button to container y1box.attach(y1button, 0, 1, row, row+1, xoptions=Gtk.AttachOptions.EXPAND|Gtk.AttachOptions.FILL) if data[graphdata].linecolor is not None: #Create a color choser y1color = Gtk.ColorButton() #Set color to current activity color _color = Gdk.color_parse(data[graphdata].linecolor) y1color.set_color(_color) #Connect handler for color state changes y1color.connect("color-set", self.on_y1colorchange, y1box, graphdata, activity) #Attach to container y1box.attach(y1color, 1, 2, row, row+1) else: blanklabel = Gtk.Label(label="") y1box.attach(blanklabel, 1, 2, row, row+1) #Second Y axis y2button = Gtk.CheckButton(label=data[graphdata].title) y2button.set_active(data[graphdata].show_on_y2) y2button.connect("toggled", self.on_y2change, y2box, graphdata, activity) y2box.attach(y2button, 0, 1, row, row+1, xoptions=Gtk.AttachOptions.EXPAND|Gtk.AttachOptions.FILL) if data[graphdata].y2linecolor is not None: y2color = Gtk.ColorButton() _color = Gdk.color_parse(data[graphdata].y2linecolor) y2color.set_color(_color) y2color.connect("color-set", self.on_y2colorchange, y2box, graphdata, activity) #Attach to container y2box.attach(y2color, 1, 2, row, row+1) else: blanklabel = Gtk.Label(label="") y2box.attach(blanklabel, 1, 2, row, row+1) row += 1 y1Frame.add(y1box) y2Frame.add(y2box) self.graph_data_hbox.pack_start(xFrame, expand=False, fill=False, padding=5) self.graph_data_hbox.pack_start(y1Frame, expand=False, fill=False, padding=5) self.graph_data_hbox.pack_start(y2Frame, expand=False, fill=False, padding=5) self.graph_data_hbox.pack_start(limitsFrame, expand=False, fill=True, padding=5) #self.graph_data_hbox.show_all() self.hboxGraphOptions.show_all() act = self.grapher.drawActivityGraph(activity=activity, box=self.record_graph_vbox) if act.x_limits_u[0] is not None: xmin, xmax = act.x_limits_u else: xmin, xmax = act.x_limits if act.y1_limits_u[0] is not None: y1min, y1max = act.y1_limits_u else: y1min, y1max = act.y1_limits if act.y2_limits_u[0] is not None: y2min, y2max = act.y2_limits_u else: y2min, y2max = act.y2_limits #print y1min, y1max, y2min, y2max if xmin is not None and xmax is not None: xminlabel.set_text(str(xmin)) xmaxlabel.set_text(str(xmax)) if y1min is not None and y1max is not None: y1minlabel.set_text(str(y1min)) y1maxlabel.set_text(str(y1max)) if y2min is not None and y2max is not None: y2minlabel.set_text(str(y2min)) y2maxlabel.set_text(str(y2max)) #Default to showing options self.buttonGraphShowOptions.hide() self.scrolledwindowGraphOptions.show() self.buttonGraphHideOptions.show() else: logging.debug("Activity has no GPX data") #Show drop down boxes self.hbox30.show() #Hide new graph details self.graph_data_hbox.hide() self.hboxGraphOptions.hide() #Remove graph vboxChildren = self.record_graph_vbox.get_children() logging.debug('Vbox has %d children %s', len(vboxChildren), vboxChildren) # ToDo: check why vertical container is shared for child in vboxChildren: #Remove all FigureCanvasGTK and NavigationToolbar2GTKAgg to stop double ups of graphs if isinstance(child, matplotlib.backends.backend_gtk3agg.FigureCanvasGTK3Agg) or isinstance(child, matplotlib.backends.backend_gtk3.NavigationToolbar2GTK3): logging.debug('Removing child: %s', child) self.record_graph_vbox.remove(child) self.record_vbox.set_sensitive(0) logging.debug("<<") def actualize_heartrategraph(self,activity): logging.debug(">>") if activity.tracks is not None and len(activity.tracks)>0: self.heartrate_vbox_.set_sensitive(1) self.drawareaheartrate.drawgraph(activity.tracks) else: self.heartrate_vbox_.set_sensitive(0) logging.debug("<<") def actualize_hrview(self,activity): logging.debug(">>") zones = self.pytrainer_main.profile.getZones() record_list = activity.tracks is_karvonen_method = self.pytrainer_main.profile.getValue("pytraining","prf_hrzones_karvonen") if record_list is not None and len(record_list)>0: record_list=record_list[0] self.record_zone1.set_text("%s-%s" %(zones[4][0],zones[4][1])) self.record_zone2.set_text("%s-%s" %(zones[3][0],zones[3][1])) self.record_zone3.set_text("%s-%s" %(zones[2][0],zones[2][1])) self.record_zone4.set_text("%s-%s" %(zones[1][0],zones[1][1])) self.record_zone5.set_text("%s-%s" %(zones[0][0],zones[0][1])) beats = activity.beats maxbeats = activity.maxbeats self.record_beats.set_text("%0.0f" %beats) self.record_maxbeats.set_text("%0.0f" %maxbeats) self.record_calories2.set_text("%0.0f" %activity.calories) if is_karvonen_method=="True": self.record_zonesmethod.set_text(_("Karvonen method")) else: self.record_zonesmethod.set_text(_("Percentages method")) #else: # self.recordview.set_sensitive(0) logging.debug("<<") def actualize_analytics(self,activity): logging.debug(">>") record_list = activity.tracks def project(d,a): # avoid divide by zero if distance is 0 try: return int(a.duration * (d / a.distance)**1.06) except ZeroDivisionError: return 0 DISTANCES = { .8 : _("800 m"), 1.5 : _("1500 m"), 5 : _("5K"), 7 : _("7K"), 10 : _("10K"), 21.1 : _("Half marathon"), 42.195 : _("Marathon"), 100 : _("100K"), } projected_store = Gtk.ListStore( GObject.TYPE_STRING, #id GObject.TYPE_STRING, #name GObject.TYPE_STRING, #distance GObject.TYPE_STRING, #time ) for d in sorted(DISTANCES.keys()): v = DISTANCES[d] iter = projected_store.append() projected_store.set ( iter, 0, str(d), 1, v, 2, str(d), 3, str(project(d, activity)), ) self.analyticsTreeView.set_model(projected_store) self.analytics_activity = activity self.on_change_rank_percentage() logging.debug("<<") def on_change_rank_percentage(self, widget=None): activity = self.analytics_activity if widget: percentage = widget.get_value() / 100 else: percentage = .05 records = self.pytrainer_main.ddbb.session.query(Activity).filter(and_(Activity.distance.between(activity.distance * (1-percentage), activity.distance * (1+percentage)), Activity.sport == activity.sport)).all() count = 1 for r in records: if r.average > activity.average: count += 1 import numpy speeds = [r.average for r in records] self.label_ranking_range.set_text("%.2f - %.2f %s" % (self.uc.distance(activity.distance * (1-percentage)), self.uc.distance(activity.distance * (1+percentage)), self.uc.unit_distance)) self.label_ranking_rank.set_text("%s/%s" % (count, len(records))) self.label_ranking_avg.set_text("%.2f %s" % (self.uc.speed(numpy.average(speeds)), self.uc.unit_speed)) self.label_ranking_speed.set_text("%.2f %s" % (self.uc.speed(activity.average), self.uc.unit_speed)) self.label_ranking_stddev.set_text("%.4f" % (self.uc.speed(numpy.std(speeds)))) self.label_ranking_dev.set_text("%+.2fσ" % ((activity.average - numpy.average(speeds)) / numpy.std(speeds))) rank_store = Gtk.ListStore( GObject.TYPE_INT, #id GObject.TYPE_INT, #rank GObject.TYPE_STRING, #date GObject.TYPE_FLOAT, #distance GObject.TYPE_INT, #time GObject.TYPE_FLOAT, #speed GObject.TYPE_FLOAT, #pace GObject.TYPE_STRING, #color ) length = len(records) rec_set = [0,] for r in range(max(count-3, 1) if count>1 else count, min(count+3, length-2) if count < length else count): rec_set.append(r) if length>1 and count!=length: rec_set.append(-1) for i in rec_set: r = records[i] iter = rank_store.append() rank = length if i==-1 else i+1 rank_store.set ( iter, 0, i, 1, rank, 2, str(r.date), 3, r.distance, 4, r.duration, 5, r.average, 6, r.pace, 7, '#3AA142' if rank==count else '#000000', ) for c in self.rankingTreeView.get_columns()[:-1]: for cr in c.get_cells(): if type(cr)==Gtk.CellRendererText: cr.set_property('foreground', 'gray') self.rankingTreeView.set_model(rank_store) def actualize_dayview(self, date): logging.debug(">>") self.d_distance_unit.set_text(self.uc.unit_distance) self.d_speed_unit.set_text(self.uc.unit_speed) self.d_maxspeed_unit.set_text(self.uc.unit_speed) self.d_pace_unit.set_text(self.uc.unit_pace) self.d_maxpace_unit.set_text(self.uc.unit_pace) if self.activeSport: sport = self._sport_service.get_sport_by_name(self.activeSport) else: sport = None activity_list = self.pytrainer_main.activitypool.get_activities_for_day(date, sport=sport) tbeats, distance, calories, timeinseconds, beats, maxbeats, maxspeed, average, maxpace, pace, totalascent, totaldescent = self._totals_from_activities(activity_list) if timeinseconds: self.dayview.set_sensitive(1) else: self.dayview.set_sensitive(0) self.day_distance.set_text("%0.2f" %distance) hour,min,sec = second2time(timeinseconds) self.day_hour.set_text("%d" %hour) self.day_minute.set_text("%02d" %min) self.day_second.set_text("%02d" %sec) if tbeats: self.day_beats.set_text("%0.0f" %tbeats) else: self.day_beats.set_text("") self.day_maxbeats.set_text("%0.0f" %maxbeats) if average: self.day_average.set_text("%0.2f" %average) else: self.day_average.set_text("") self.day_maxspeed.set_text("%0.2f" %maxspeed) self.day_pace.set_text("%s" %pace) self.day_maxpace.set_text("%s" %maxpace) self.day_ascdesc.set_text("%d/%d" %(int(totalascent),int(totaldescent))) self.day_calories.set_text("%0.0f" %calories) self.day_topic.set_text(str(date)) logging.debug("<<") def actualize_daygraph(self,record_list): logging.debug(">>") if len(record_list)>0: self.day_vbox.set_sensitive(1) else: self.day_vbox.set_sensitive(0) self.drawareaday.drawgraph(record_list) logging.debug("<<") def actualize_map(self,activity, full_screen=False): logging.debug(">>") if self.mapviewer and self.mapviewer_fs: #Check which type of map viewer to use if self.radiobuttonOSM.get_active(): #Use OSM to draw map logging.debug("Using OSM to draw map....") from pytrainer.extensions.osm import Osm htmlfile = Osm(data_path=self.data_path, waypoint=self.pytrainer_main.waypoint, pytrainer_main=self.parent).drawMap(activity, self.comboMapLineType.get_active()) elif self.radiobuttonGMap.get_active(): #Use Google to draw map logging.debug("Using Google to draw map") from pytrainer.extensions.googlemaps import Googlemaps htmlfile = Googlemaps(data_path=self.data_path, waypoint=self.pytrainer_main.waypoint, pytrainer_main=self.parent).drawMap(activity, self.comboMapLineType.get_active()) else: #Unknown map type... logging.error("Unknown map viewer requested") htmlfile = self.mapviewer.createErrorHtml() logging.debug("Displaying htmlfile: %s" % htmlfile) if full_screen: logging.debug("Displaying in full screen mode") self.mapviewer_fs.display_map(htmlfile=htmlfile) else: logging.debug("Displaying in embedded mode") self.mapviewer.display_map(htmlfile=htmlfile) logging.debug("<<") def actualize_weekview(self, date_range): logging.debug(">>") self.week_date.set_text("%s - %s (%d)" % (date_range.start_date.strftime("%a %d %b"), date_range.end_date.strftime("%a %d %b"), int(date_range.end_date.strftime("%V"))) ) if self.activeSport: sport = self._sport_service.get_sport_by_name(self.activeSport) else: sport = None activity_list = self.pytrainer_main.activitypool.get_activities_period(date_range, sport=sport) tbeats, distance, calories, timeinseconds, beats, maxbeats, maxspeed, average, maxpace, pace, totalascent, totaldescent = self._totals_from_activities(activity_list) if timeinseconds: self.weekview.set_sensitive(1) else: self.weekview.set_sensitive(0) self.w_distance_unit.set_text(self.uc.unit_distance) self.w_speed_unit.set_text(self.uc.unit_speed) self.w_maxspeed_unit.set_text(self.uc.unit_speed) self.w_pace_unit.set_text(self.uc.unit_pace) self.w_maxpace_unit.set_text(self.uc.unit_pace) self.weeka_distance.set_text("%0.2f" %distance) hour,min,sec = second2time(timeinseconds) self.weeka_hour.set_text("%d" %hour) self.weeka_minute.set_text("%02d" %min) self.weeka_second.set_text("%02d" %sec) self.weeka_maxbeats.set_text("%0.0f" %(maxbeats)) self.weeka_beats.set_text("%0.0f" %(tbeats)) self.weeka_average.set_text("%0.2f" %average) self.weeka_maxspeed.set_text("%0.2f" %maxspeed) self.weeka_pace.set_text(pace) self.weeka_maxpace.set_text(maxpace) self.weeka_ascdesc.set_text("%d/%d" %(int(totalascent),int(totaldescent))) self.weeka_calories.set_text("%0.0f" %calories) self.weekview.set_sensitive(1) self.drawareaweek.drawgraph(activity_list, date_range.start_date) logging.debug("<<") def actualize_monthview(self, date_range, nameMonth, daysInMonth): logging.debug(">>") self.month_date.set_text(nameMonth) if self.activeSport: sport = self._sport_service.get_sport_by_name(self.activeSport) else: sport = None activity_list = self.pytrainer_main.activitypool.get_activities_period(date_range, sport=sport) tbeats, distance, calories, timeinseconds, beats, maxbeats, maxspeed, average, maxpace, pace, totalascent, totaldescent = self._totals_from_activities(activity_list) if timeinseconds: self.monthview.set_sensitive(1) else: self.monthview.set_sensitive(0) self.m_distance_unit.set_text(self.uc.unit_distance) self.m_speed_unit.set_text(self.uc.unit_speed) self.m_maxspeed_unit.set_text(self.uc.unit_speed) self.m_pace_unit.set_text(self.uc.unit_pace) self.m_maxpace_unit.set_text(self.uc.unit_pace) self.montha_distance.set_text("%0.2f" %distance) hour,min,sec = second2time(timeinseconds) self.montha_hour.set_text("%d" %hour) self.montha_minute.set_text("%02d" %min) self.montha_second.set_text("%02d" %sec) self.montha_maxbeats.set_text("%0.0f" %(maxbeats)) self.montha_beats.set_text("%0.0f" %(tbeats)) self.montha_average.set_text("%0.2f" %average) self.montha_maxspeed.set_text("%0.2f" %maxspeed) self.montha_pace.set_text(pace) self.montha_maxpace.set_text(maxpace) self.montha_ascdesc.set_text("%d/%d" %(int(totalascent),int(totaldescent))) self.montha_calories.set_text("%0.0f" %calories) self.drawareamonth.drawgraph(activity_list, daysInMonth) logging.debug("<<") def actualize_yearview(self, date_range, year): logging.debug(">>") self.year_date.set_text("%d" %int(year)) if self.activeSport: sport = self._sport_service.get_sport_by_name(self.activeSport) else: sport = None activity_list = self.pytrainer_main.activitypool.get_activities_period(date_range, sport=sport) tbeats, distance, calories, timeinseconds, beats, maxbeats, maxspeed, average, maxpace, pace, totalascent, totaldescent = self._totals_from_activities(activity_list) if timeinseconds: self.yearview.set_sensitive(1) else: self.yearview.set_sensitive(0) self.drawareayear.drawgraph([]) self.y_distance_unit.set_text(self.uc.unit_distance) self.y_speed_unit.set_text(self.uc.unit_speed) self.y_maxspeed_unit.set_text(self.uc.unit_speed) self.y_pace_unit.set_text(self.uc.unit_pace) self.y_maxpace_unit.set_text(self.uc.unit_pace) self.yeara_distance.set_text("%0.2f" %distance) hour,min,sec = second2time(timeinseconds) self.yeara_hour.set_text("%d" %hour) self.yeara_minute.set_text("%02d" %min) self.yeara_second.set_text("%02d" %sec) self.yeara_beats.set_text("%0.0f" %tbeats) self.yeara_maxbeats.set_text("%0.0f" %(maxbeats)) self.yeara_average.set_text("%0.2f" %average) self.yeara_maxspeed.set_text("%0.2f" %maxspeed) self.yeara_pace.set_text(pace) self.yeara_maxpace.set_text(maxpace) self.yeara_ascdesc.set_text("%d/%d " %(totalascent,totaldescent)) self.yeara_calories.set_text("%0.0f" %calories) self.drawareayear.drawgraph(activity_list) logging.debug("<<") def actualize_athleteview(self, athlete): logging.debug(">>") self.labelName.set_text(athlete.name) self.labelDOB.set_text(athlete.age) self.labelHeight.set_text(athlete.height+" cm") #Create history treeview history_store = Gtk.ListStore( GObject.TYPE_INT, #id GObject.TYPE_STRING, #date GObject.TYPE_FLOAT, #weight GObject.TYPE_FLOAT, #body fat % GObject.TYPE_INT, #resting HR GObject.TYPE_INT #max HR ) for data in athlete.data: iter = history_store.append() history_store.set ( iter, 0, data['id_athletestat'], 1, str(data['date']), 2, data['weight'], 3, data['bodyfat'], 4, data['restinghr'], 5, data['maxhr'], ) self.athleteTreeView.set_model(history_store) self.grapher.drawAthleteGraph(athlete=athlete, box=self.boxAthleteGraph) logging.debug("<<") def actualize_statsview(self, stats, record_list): logging.debug(">>") self.labelTotalDistance.set_text(str(round(stats.data['total_distance'])) + " km") self.labelTotalDuration.set_text(str(round(stats.data['total_duration'] / 3600)) + " hours") # skip date format if no stats are saved yet try: self.labelStartDate.set_text(stats.data['start_date'].strftime('%Y-%m-%d')) self.labelEndDate.set_text(stats.data['end_date'].strftime('%Y-%m-%d')) except KeyError: pass data = self.parent.stats.data store = Gtk.ListStore( GObject.TYPE_INT, GObject.TYPE_STRING, GObject.TYPE_INT, GObject.TYPE_INT, GObject.TYPE_FLOAT, GObject.TYPE_FLOAT, GObject.TYPE_FLOAT, GObject.TYPE_INT, GObject.TYPE_INT, GObject.TYPE_INT, GObject.TYPE_FLOAT ) for s in data['sports'].values(): iter = store.append() c = 0 store.set (iter, c, c) c += 1 store.set (iter, c, s['name']) c += 1 store.set (iter, c, s['count']) for f in data['fields'][3:]: c += 1 store.set (iter, c, s['total_'+f]) c += 1 if s['total_duration']!=0: # Avoid division by zero if 0 length sport activity exists in DB store.set (iter, c, s['total_distance'] / s['total_duration'] * 3600.) for f in data['fields']: c += 1 store.set (iter, c, s[f]) self.statsTreeView.set_model(store) self.statsTreeView.set_rules_hint(True) store.set_sort_column_id(3, Gtk.SortType.DESCENDING) self.drawareatotal.drawgraph(record_list) logging.debug("<<") def actualize_listview(self,record_list): logging.debug(">>") store = Gtk.ListStore( GObject.TYPE_INT, GObject.TYPE_STRING, GObject.TYPE_STRING, GObject.TYPE_FLOAT, GObject.TYPE_STRING, GObject.TYPE_STRING, GObject.TYPE_INT, GObject.TYPE_INT, GObject.TYPE_FLOAT, GObject.TYPE_INT, object) for i in record_list: try: hour,min,sec = second2time(i.duration) except (ValueError, TypeError): hour,min,sec = (0,0,0) _time = "%2d:%02d:%02d" %(hour,min,sec) try: _id = i.id except (ValueError, TypeError) as e: logging.debug("Unable to determine id for record: %s. Exception: %s", i, e) continue _title = i.title _date = str(i.date) try: _distance = float(i.distance) except (ValueError, TypeError): _distance = 0 _sport = i.sport.name try: _average = i.average except (ValueError, TypeError): _average = 0 try: _calories = i.calories except (ValueError, TypeError): _calories = 0 try: _beats = round(i.beats) except (ValueError, TypeError) as e: logging.debug("Unable to parse beats for record: %s. Exception: %s", i.id, e) _beats = 0.0 try: _maxbeats = round(i.maxbeats) except (ValueError, TypeError) as e: logging.debug("Unable to parse maxbeats for record: %s. Exception: %s", i.id, e) _maxbeats = 0.0 iter = store.append() store.set ( iter, 0, _id, 1, _title, 2, _date, 3, _distance, 4, _sport, 5, _time, 6, _beats, 7, _maxbeats, 8, _average, 9, _calories ) #self.allRecordTreeView.set_headers_clickable(True) self.allRecordTreeView.set_model(store) self.allRecordTreeView.set_rules_hint(True) logging.debug("<<") def actualize_waypointview(self,record_list,default_waypoint,redrawmap = 1): logging.debug(">>") #redrawmap: indica si tenemos que refrescar tb el mapa. 1 si 0 no #waypoint list tiene: #id_waypoint,lat,lon,ele,comment,time,name,sym #Laas columnas son: #column_names=[_("id"),_("Waypoint")] store = Gtk.ListStore( GObject.TYPE_INT, GObject.TYPE_STRING, object) iterOne = False iterDefault = False counter = 0 default_id = 0 for i in record_list: iter = store.append() if not iterOne: iterOne = iter if int(i[0])==default_waypoint: iterDefault = iter default_id = counter store.set ( iter, 0, int(i[0]), 1, str(i[6]) ) counter+=1 self.waypointTreeView.set_model(store) if iterDefault: self.waypointTreeView.get_selection().select_iter(iterDefault) elif iterOne: self.waypointTreeView.get_selection().select_iter(iterOne) if len(record_list) > 0: self.waypoint_latitude.set_text(str(record_list[default_id][1])) self.waypoint_longitude.set_text(str(record_list[default_id][2])) self.waypoint_name.set_text(str(record_list[default_id][6])) self.waypoint_description.set_text(str(record_list[default_id][4])) self.set_waypoint_type(str(record_list[default_id][7])) if redrawmap == 1 and self.waypointeditor: self.waypointeditor.createHtml(default_waypoint) self.waypointeditor.drawMap() logging.debug("<<") def set_waypoint_type(self, type): x = 0 tree_model = self.waypoint_type.get_model() if tree_model is not None: #iter = tree_model.get_iter_root() for item in tree_model: #if isinstance(item, Gtk.TreeModelRow): if item[0] == type: self.waypoint_type.set_active(x) return x += 1 self.waypoint_type.insert_text(0, type) self.waypoint_type.set_active(0) return def on_waypointTreeView_button_press(self, treeview, event): x = int(event.x) y = int(event.y) time = event.time pthinfo = treeview.get_path_at_pos(x, y) if pthinfo is not None: path, col, cellx, celly = pthinfo treeview.grab_focus() treeview.set_cursor(path, col, 0) if event.button == 1: selected,iter = treeview.get_selection().get_selected() id_waypoint=selected.get_value(iter,0) self.parent.refreshWaypointView(id_waypoint) return False def on_listareasearch_clicked(self, widget): lisOpt = { _("Title"):"title", _("Date"):"date", _("Distance"):"distance", _("Sport"):"sport", _("Time"):"time", _("Beats"):"beats", _("Maxbeats"):"maxbeats", _("Average"):"average", _("Calories"):"calories" } self.listsearch.title = gtk_str(self.lsa_searchvalue.get_text()) self.listsearch.sport = self.lsa_sport.get_active() self.listsearch.past = self.lsa_past.get_active() self.listsearch.duration = self.lsa_duration.get_active() self.listsearch.distance = self.lsa_distance.get_active() self.parent.refreshListView(self.listsearch.condition) def on_listareareset_clicked(self, widget): self.listsearch.reset_lsa() self.parent.refreshListView(self.listsearch.condition) def create_menulist(self,columns): for i, column_dict in enumerate(columns): if 'visible' in column_dict and not column_dict['visible']: pass else: item = Gtk.CheckMenuItem(column_dict['name']) #self.lsa_searchoption.append_text(name) item.connect("button_press_event", self.on_menulistview_activate, i) self.menulistviewOptions.append(item) self.menulistviewOptions.show_all() def on_menulistview_activate(self,widget,widget2,widget_position): listMenus = { 0:"title", 1:"date", 2:"distance", 3:"sport", 4:"time", 5:"beats", 6:"maxbeats", 7:"average", 8:"calories" } items = self.menulistviewOptions.get_children() if items[widget_position-1].get_active(): newValue = "False" else: newValue = "True" menufile = XMLParser(self.fileconf) menufile.setValue("listviewmenu",listMenus[widget_position-1],newValue) self.showAllRecordTreeViewColumns() def showAllRecordTreeViewColumns(self): menufile = XMLParser(self.fileconf) listMenus = { "id_record":0, "title":1, "date":2, "distance":3, "sport":4, "time":5, "beats":6, "maxbeats":7, "average":8, "calories":9 } columns = self.allRecordTreeView.get_columns() menuItems = self.menulistviewOptions.get_children() for column in listMenus: visible = menufile.getValue("listviewmenu",column) if visible == "True": visible = True else: visible = False numcolumn = listMenus[column] #show the selected columns columns[numcolumn].set_visible(visible) #select the choice in the menu if numcolumn != 0 and self.menublocking != 1: menuItems[numcolumn-1].set_active(visible) self.menublocking = 1 def zoom_graph(self, y1limits=None, y1color=None, y1_linewidth=1): logging.debug(">>") logging.debug("Reseting graph Y axis with ylimits: %s", y1limits) self.drawarearecord.drawgraph(self.record_list,self.laps, y1limits=y1limits, y1color=y1color, y1_linewidth=y1_linewidth) logging.debug("<<") def update_athlete_item(self, idx, date, weight, bf, restingHR, maxHR): logging.debug(">>") #Prepare vars idx = str(idx) date = str(date) weight = str(weight) bf = str(bf) restingHR = str(restingHR) maxHR = str(maxHR) #Set vars self.labelAthleteIdx.set_text(idx) self.entryAthleteDate.set_text(date) self.entryAthleteWeight.set_text(weight) self.entryAthleteBF.set_text(bf) self.entryAthleteRestingHR.set_text(restingHR) self.entryAthleteMaxHR.set_text(maxHR) logging.debug("<<") ###################### ## Lista de eventos ## ###################### def on_xaxischange(self, widget, data=None, activity=None): '''Handler for record graph axis selection changes''' if widget.get_active(): activity.x_axis = data self.actualize_recordgraph(activity) def on_xlapschange(self, widget, activity=None): if widget.get_active(): activity.show_laps = True else: activity.show_laps = False self.actualize_recordgraph(activity) def on_gridchange(self, widget, axis=None, activity=None): '''Handler for record graph grid selection changes''' if axis == 'y1': activity.y1_grid = not activity.y1_grid elif axis == 'y2': activity.y2_grid = not activity.y2_grid elif axis == 'x': activity.x_grid = not activity.x_grid self.actualize_recordgraph(activity) def on_y1colorchange(self, widget, box, graphdata, activity): '''Hander for changes to y1 color selection''' logging.debug("Setting %s to color %s", graphdata, widget.get_color()) if activity.x_axis == "distance": activity.distance_data[graphdata].set_color(str(widget.get_color())) elif activity.x_axis == "time": activity.time_data[graphdata].set_color(str(widget.get_color())) #Replot the activity self.actualize_recordgraph(activity) def on_y2colorchange(self, widget, box, graphdata, activity): '''Hander for changes to y2 color selection''' logging.debug("Setting %s to color %s", graphdata, widget.get_color()) if activity.x_axis == "distance": activity.distance_data[graphdata].set_color(None, str(widget.get_color())) elif activity.x_axis == "time": activity.time_data[graphdata].set_color(None, str(widget.get_color())) #Replot the activity self.actualize_recordgraph(activity) def on_y1change(self, widget, box, graphdata, activity): '''Hander for changes to y1 selection''' logging.debug("Y1 selection toggled: %s", graphdata) #Loop through all options at set data correctly for child in box.get_children(): if activity.x_axis == "distance": for item in activity.distance_data: if activity.distance_data[item].title == child.get_label(): logging.debug("Setting %s to %s", item, child.get_active()) activity.distance_data[item].show_on_y1 = child.get_active() elif activity.x_axis == "time": for item in activity.time_data: if activity.time_data[item].title == child.get_label(): logging.debug("Setting %s to %s", item, child.get_active()) activity.time_data[item].show_on_y1 = child.get_active() #Replot the activity self.actualize_recordgraph(activity) def on_y2change(self, widget, box, graphdata, activity): '''Hander for changes to y2 selection''' logging.debug("Y2 selection toggled: %s", graphdata) #Loop through all options at set data correctly for child in box.get_children(): if activity.x_axis == "distance": for item in activity.distance_data: if activity.distance_data[item].title == child.get_label(): logging.debug("Setting %s to %s", item, child.get_active()) activity.distance_data[item].show_on_y2 = child.get_active() elif activity.x_axis == "time": for item in activity.time_data: if activity.time_data[item].title == child.get_label(): logging.debug("Setting %s to %s", item, child.get_active()) activity.time_data[item].show_on_y2 = child.get_active() #Replot the activity self.actualize_recordgraph(activity) def on_setlimits(self, widget, activity, reset, data): '''Handler for setting graph limits buttons''' if data is None: logging.debug("Resetting graph limits...") activity.x_limits_u = (None, None) activity.y1_limits_u = (None, None) activity.y2_limits_u = (None, None) #Replot the activity self.actualize_recordgraph(activity) else: #Setting to limits in boxes logging.debug("Setting graph limits...") #Determine contents of boxes... xmin = self._float_or(gtk_str(data['xminlabel'].get_text()), activity.x_limits[0]) xmax = self._float_or(gtk_str(data['xmaxlabel'].get_text()), activity.x_limits[1]) y1min = self._float_or(gtk_str(data['y1minlabel'].get_text()), activity.y1_limits[0]) y1max = self._float_or(gtk_str(data['y1maxlabel'].get_text()), activity.y1_limits[1]) y2min = self._float_or(gtk_str(data['y2minlabel'].get_text()), activity.y2_limits[0]) y2max = self._float_or(gtk_str(data['y2maxlabel'].get_text()), activity.y2_limits[1]) logging.debug("Setting graph limits x: (%s,%s), y1: (%s,%s), y2: (%s,%s)", xmin, xmax, y1min, y1max, y2min, y2max) activity.x_limits_u = (xmin, xmax) activity.y1_limits_u = (y1min, y1max) activity.y2_limits_u = (y2min, y2max) #Replot the activity self.actualize_recordgraph(activity) def on_window1_configure_event(self, widget, event): #print widget #window widget #print event # resize event self.size = self.window1.get_size() def on_buttonShowOptions_clicked(self, widget): position_set = self.hpaned1.get_property('position-set') if position_set: #Currently not showing options - show them self.hpaned1.set_property('position-set', False) self.buttonShowOptions.set_tooltip_text(_('Hide graph display options') ) else: #Hide options self.hpaned1.set_position(0) self.buttonShowOptions.set_tooltip_text(_('Show graph display options') ) logging.debug('Position set: %s', self.hpaned1.get_property('position-set')) def on_buttonGraphHideOptions_clicked(self, widget): logging.debug('on_buttonGraphHideOptions_clicked') self.buttonGraphHideOptions.hide() self.scrolledwindowGraphOptions.hide() #for child in self.graph_data_hbox.get_children(): # if isinstance(child, Gtk.Frame): # child.hide() self.buttonGraphShowOptions.show() def on_buttonGraphShowOptions_clicked(self, widget): logging.debug('on_buttonGraphShowOptions_clicked') self.buttonGraphShowOptions.hide() #for child in self.graph_data_hbox.get_children(): # if isinstance(child, Gtk.Frame): # child.show() self.scrolledwindowGraphOptions.show() self.buttonGraphHideOptions.show() def on_buttonRedrawMap_clicked(self, widget): logging.debug('on_buttonRedrawMap_clicked') self.parent.refreshMapView() def on_radiobuttonMap_toggled(self, widget): #Ignore the deselected toggle event if widget.get_active() == False: return logging.debug('on_radiobuttonMap_toggled %s activated', widget.get_name()) self.parent.refreshMapView() def on_comboMapLineType_changed(self, widget): logging.debug('on_comboMapLineType_changed %s = %s', widget.get_name(), widget.get_active()) self.parent.refreshMapView() def on_hpaned1_move_handle(self, widget): logging.debug("Handler %s", widget) def on_spinbuttonY1_value_changed(self, widget): y1min = self.spinbuttonY1Min.get_value() y1max = self.spinbuttonY1Max.get_value() #Check to see if the min and max have the same... if y1min == y1max: if widget.get_name() == "spinbuttonY1Min": #User was changing the min spinbutton, so move max up y1max += 1 else: #Move min down y1min -= 1 self.y1_limits=(y1min, y1max) self.zoom_graph(y1limits=self.y1_limits, y1color=self.y1_color, y1_linewidth=self.y1_linewidth) def on_buttonResetGraph_clicked(self, widget): #self.zoom_graph() #Reset stored values self.y1_limits = None self.y1_color = None self.y1_linewidth = 1 self.zoom_graph() def on_colorbuttonY1LineColor_color_set(self, widget): y1color = widget.get_color() cs = y1color.to_string() self.y1_color = cs[0:3] + cs[5:7] + cs[9:11] self.drawarearecord.drawgraph(self.record_list,self.laps, y1limits=self.y1_limits, y1color=self.y1_color, y1_linewidth=self.y1_linewidth) def on_spinbuttonY1LineWeight_value_changed(self, widget): self.y1_linewidth = self.spinbuttonY1LineWeight.get_value_as_int() self.drawarearecord.drawgraph(self.record_list,self.laps, y1limits=self.y1_limits, y1color=self.y1_color, y1_linewidth=self.y1_linewidth) def on_edit_clicked(self,widget): selected,iter = self.recordTreeView.get_selection().get_selected() id_record = selected.get_value(iter,0) self.parent.editRecord(id_record, self.selected_view) def on_remove_clicked(self,widget): selected,iter = self.recordTreeView.get_selection().get_selected() id_record = selected.get_value(iter,0) self.parent.removeRecord(id_record) def on_export_csv_activate(self,widget): self.parent.exportCsv() def on_newrecord_clicked(self,widget): if self.selected_view == 'athlete': #print 'New athlete' self.on_athleteTreeView_edit( None, None) else: self.parent.newRecord(view=self.selected_view) def on_edituser_activate(self,widget): self.parent.editProfile() def on_calendar_doubleclick(self,widget): self.parent.newRecord() def on_sportlist_changed(self,widget): logging.debug("--") if gtk_str(self.sportlist.get_active_text()) != self.activeSport: self.activeSport = gtk_str(self.sportlist.get_active_text()) self.parent.refreshListRecords() self.parent.refreshGraphView(self.selected_view) else: logging.debug("on_sportlist_changed called with no change") def on_page_change(self,widget,gpointer,page): logging.debug("--") if page == 0: self.selected_view="record" elif page == 1: self.selected_view="day" elif page == 2: self.selected_view="week" elif page == 3: self.selected_view="month" elif page == 4: self.selected_view="year" elif page == 5: self.selected_view="athlete" elif page == 6: self.selected_view="stats" else: self.selected_view="record" self.parent.refreshGraphView(self.selected_view) def on_recordpage_change(self,widget,gpointer,page): if page == 0: selected_view="info" elif page == 1: selected_view="graphs" elif page == 2: selected_view="map" elif page == 3: selected_view="heartrate" elif page == 4: selected_view="analytics" self.parent.refreshRecordGraphView(selected_view) def on_showmap_clicked(self,widget): self.infoarea.hide() self.maparea.show() self.parent.refreshMapView(full_screen=True) def on_hidemap_clicked(self,widget): self.maparea.hide() self.infoarea.show() def on_btnShowLaps_toggled(self,widget): logging.debug("--") self.parent.refreshGraphView(self.selected_view) def on_day_combovalue_changed(self,widget): logging.debug("--") self.parent.refreshGraphView(self.selected_view) def on_week_combovalue_changed(self,widget): logging.debug("--") self.parent.refreshGraphView(self.selected_view) def on_month_combovalue_changed(self,widget): logging.debug("--") self.parent.refreshGraphView(self.selected_view) def on_year_combovalue_changed(self,widget): logging.debug("--") self.parent.refreshGraphView(self.selected_view) def on_total_combovalue_changed(self,widget): logging.debug("--") self.parent.refreshGraphView(self.selected_view) def on_calendar_selected(self, widget): logging.debug(">>") logging.debug("Block (%s) | Selected view: %s", self.block, self.selected_view) if self.block: self.block = False else: if self.selected_view == "record": self.recordview.set_current_page(0) self.parent.refreshRecordGraphView("info") self.parent.refreshListRecords() self.parent.refreshGraphView(self.selected_view) logging.debug("<<") def on_calendar_changemonth(self,widget): logging.debug("--") self.block = True self.notebook.set_current_page(3) self.selected_view="month" self.parent.refreshListRecords() self.parent.refreshGraphView(self.selected_view) def on_calendar_next_year(self,widget): logging.debug("--") self.block = True self.notebook.set_current_page(4) self.selected_view="year" self.parent.refreshListRecords() self.parent.refreshGraphView(self.selected_view) def on_classicview_activate(self,widget): self.waypointarea.hide() self.listarea.hide() #self.athletearea.hide() self.selected_view = "record" self.classicarea.show() def on_listview_activate(self,widget): self.waypointarea.hide() self.classicarea.hide() #self.athletearea.hide() self.selected_view = "listview" #self.parent.refreshListView() self.parent.refreshListView(self.listsearch.condition) self.listarea.show() def on_athleteview_activate(self,widget=None): #self.waypointarea.hide() #self.classicarea.hide() #self.listarea.hide() self.parent.refreshAthleteView() #self.athletearea.show() def on_statsview_activate(self,widget=None): self.parent.refreshStatsView() def on_waypointsview_activate(self,widget): self.listarea.hide() self.classicarea.hide() #self.athletearea.hide() self.parent.refreshWaypointView() self.waypointarea.show() def on_menu_importdata_activate(self,widget): self.parent.importData() def on_extensions_activate(self,widget): self.parent.editExtensions() def on_gpsplugins_activate(self,widget): self.parent.editGpsPlugins() #hasta aqui revisado def on_recordTreeView_button_press_event(self, treeview, event): ''' Handler for clicks on recordTreeview list (all records for a day) event.button = mouse button pressed (i.e. 1 = left, 3 = right) ''' logging.debug(">>") x = int(event.x) y = int(event.y) time = event.time pthinfo = treeview.get_path_at_pos(x, y) if pthinfo is not None: path, col, cellx, celly = pthinfo treeview.grab_focus() treeview.set_cursor(path, col, 0) if event.button == 3: selected,iter = treeview.get_selection().get_selected() #Por si hay un registro (malo) sin fecha, pa poder borrarlo try: date = self.parent.date.getDate() except: date = None self.popup.show(selected.get_value(iter,0), event.button, time, str(date)) elif event.button == 1: self.notebook.set_current_page(0) self.parent.refreshGraphView("record") logging.debug("<<") return False def on_allRecordTreeView_button_press(self, treeview, event): ''' Handler for clicks on listview list event.button = mouse button pressed (i.e. 1 = left, 3 = right) ''' logging.debug(">>") x = int(event.x) y = int(event.y) time = event.time pthinfo = treeview.get_path_at_pos(x, y) if pthinfo is not None: path, col, cellx, celly = pthinfo treeview.grab_focus() treeview.set_cursor(path, col, 0) if event.button == 3: selected,iter = treeview.get_selection().get_selected() #Por si hay un registro (malo) sin fecha, pa poder borrarlo try: date = self.parent.date.getDate() except: pass self.popup.show(selected.get_value(iter,0), event.button, time, selected.get_value(iter,2)) elif event.button == 1: self.notebook.set_current_page(0) self.parent.refreshGraphView("record") logging.debug("<<") return False def actualize_recordTreeView(self, date): logging.debug(">>") iterOne = False store = Gtk.TreeStore( GObject.TYPE_INT, #record_id GObject.TYPE_STRING, #Time GObject.TYPE_STRING, #Sport GObject.TYPE_STRING, #Distance object) if self.activeSport: sport = self._sport_service.get_sport_by_name(self.activeSport) else: sport = None for activity in self.pytrainer_main.activitypool.get_activities_for_day(date, sport=sport): iter = store.append(None) if not iterOne: iterOne = iter localTime = activity.date_time.strftime("%H:%M") dist = self.uc.distance(activity.distance) distance = "%0.2f" % (float(dist) ) store.set ( iter, 0, activity.id, 1, localTime, 2, activity.sport.name, 3, str(distance) #Needs to be US pref aware.... ) for lap in activity.Laps: lapNumber = "%s %02d" % (_("lap"), lap.lap_number + 1) dist = self.uc.distance(lap.distance) distance = "%0.2f" % (float(dist) / 1000.0) timeHours = int(lap.duration / 3600) timeMin = int((lap.duration / 3600.0 - timeHours) * 60) timeSec = lap.duration - (timeHours * 3600) - (timeMin * 60) if timeHours > 0: duration = "%d%s%02d%s%02d%s" % (timeHours, _("h"), timeMin, _("m"), timeSec, _("s")) else: duration = "%2d%s%02d%s" % (timeMin, _("m"), timeSec, _("s")) child_iter = store.append(iter) store.set ( child_iter, 0, activity.id, 1, lapNumber, 2, duration, 3, distance ) store.set_sort_column_id(1, Gtk.SortType.ASCENDING) self.recordTreeView.set_model(store) if iterOne: self.recordTreeView.get_selection().select_iter(iterOne) logging.debug("<<") def parseFloat(self,string): try: return float(string) except: return float(0) def actualize_calendar(self,record_list): logging.debug(">>") self.calendar.clear_marks() #Mark each day that has activity for i in record_list: self.calendar.mark_day(i) #Turn on displaying of week numbers display_options = self.calendar.get_display_options() self.calendar.set_display_options(display_options|Gtk.CalendarDisplayOptions.SHOW_WEEK_NUMBERS) logging.debug("<<") def on_about_activate(self,widget): if self.aboutwindow is None: self.aboutwindow = About(self.data_path, self.version) self.aboutwindow.run() else: self.aboutwindow.present() def getSportSelected(self): sport = self.sportlist.get_active() if (sport > 0): return gtk_str(self.sportlist.get_active_text()) else: return None def quit(self, *args): window_size = "%d, %d" % self.size self.pytrainer_main.profile.setValue("pytraining","window_size", window_size) self.parent.quit() #sys.exit("Exit!") #self.parent.webservice.stop() #self.gtk_main_quit() def on_yearview_clicked(self,widget): self.notebook.set_current_page(2) self.selected_view="year" self.actualize_yearview() def on_recordTree_clicked(self,widget,num,num2): selected,iter = widget.get_selection().get_selected() self.parent.editRecord(selected.get_value(iter,0), self.selected_view) ### athleteview events ### def on_athleteTreeView_button_press_event(self, treeview, event): x = int(event.x) y = int(event.y) time = event.time pthinfo = treeview.get_path_at_pos(x, y) if pthinfo is not None: path, col, cellx, celly = pthinfo treeview.grab_focus() treeview.set_cursor(path, col, 0) selected,iter = treeview.get_selection().get_selected() if event.button == 3: #Right mouse button... idx = selected.get_value(iter,0) date = selected.get_value(iter,1) weight = selected.get_value(iter,2) bf = selected.get_value(iter,3) restingHR = selected.get_value(iter,4) maxHR = selected.get_value(iter,5) #print "show popup etc (clicked on idx %s, date %s)" % (idx, date) #Show popup menu... popup = Gtk.Menu() #Edit Entry Item menuitem = Gtk.MenuItem(label=_("Edit Entry")) menuitem.connect("activate", self.on_athleteTreeView_edit, {'id':idx, 'date':date, 'weight':weight, 'bf':bf, 'restingHR':restingHR, 'maxHR':maxHR}) popup.attach(menuitem, 0, 1, 0, 1) #New Entry Item menuitem = Gtk.MenuItem(label=_("New Entry")) menuitem.connect("activate", self.on_athleteTreeView_edit, None) popup.attach(menuitem, 0, 1, 1, 2) #Separator menuitem = Gtk.SeparatorMenuItem() popup.attach(menuitem, 0, 1, 2, 3) #Delete Entry Item menuitem = Gtk.MenuItem(label=_("Delete Entry")) menuitem.connect("activate", self.on_athleteTreeView_delete, idx) popup.attach(menuitem, 0, 1, 3, 4) popup.show_all() popup.popup_at_pointer(None) else: #Left mouse - so display this row pass ''' idx = selected.get_value(iter,0) date = selected.get_value(iter,1) weight = selected.get_value(iter,2) bf = selected.get_value(iter,3) restingHR = selected.get_value(iter,4) maxHR = selected.get_value(iter,5) self.update_athlete_item(idx, date, weight, bf, restingHR, maxHR)''' def on_athleteTreeView_edit(self, widget, data): logging.debug('>>') if data is None: #New entry... logging.debug('New athlete entry') title = _('Create Athlete Entry') data = {'id': None, 'date': Date().getDate().strftime("%Y-%m-%d"), 'weight': None, 'bf': None, 'restingHR': None, 'maxHR': None} else: logging.debug('Edit existing athlete entry: %s', data) title = _('Edit Athlete Entry') dialog = Gtk.Dialog(title=title, parent=self.pytrainer_main.windowmain.window1, flags= Gtk.DialogFlags.DESTROY_WITH_PARENT, buttons=(Gtk.STOCK_CANCEL, Gtk.ResponseType.REJECT, Gtk.STOCK_SAVE, Gtk.ResponseType.ACCEPT)) dialog.set_modal(False) #Get Content area of dialog vbox = dialog.get_content_area() #Build data display table = Gtk.Table(1,2) self.entryList = [] #Add date label = Gtk.Label(label=_("<b>Date</b>")) label.set_use_markup(True) entry = Gtk.Entry() entry.set_text(data['date']) self.entryList.append(entry) #Date calander widget cal = Gtk.Image() cal.set_from_stock(Gtk.STOCK_INDEX, Gtk.IconSize.BUTTON) calbut = Gtk.Button() calbut.add(cal) calbut.connect("clicked", self.on_athletecalendar_clicked) table.attach(label,0,1,0,1) table.attach(entry,1,2,0,1) #table.attach(calbut,2,3,0,1) #TODO #Add weight label = Gtk.Label(label=_("<b>Weight</b>")) label.set_use_markup(True) entry = Gtk.Entry() if data['weight']: entry.set_text(str(round(data['weight'], 2))) self.entryList.append(entry) table.attach(label,0,1,1,2) table.attach(entry,1,2,1,2) #Add Body fat label = Gtk.Label(label=_("<b>Body Fat</b>")) label.set_use_markup(True) entry = Gtk.Entry() if data['bf']: entry.set_text(str(round(data['bf'], 2))) self.entryList.append(entry) table.attach(label,0,1,2,3) table.attach(entry,1,2,2,3) #Add Resting HR label = Gtk.Label(label=_("<b>Resting Heart Rate</b>")) label.set_use_markup(True) entry = Gtk.Entry() if data['restingHR']: entry.set_text(str(data['restingHR'])) self.entryList.append(entry) table.attach(label,0,1,3,4) table.attach(entry,1,2,3,4) #Add Max HR label = Gtk.Label(label=_("<b>Max Heart Rate</b>")) label.set_use_markup(True) entry = Gtk.Entry() if data['maxHR']: entry.set_text(str(data['maxHR'])) self.entryList.append(entry) table.attach(label,0,1,4,5) table.attach(entry,1,2,4,5) vbox.add(table) vbox.show_all() response = dialog.run() #dialog.destroy() if response == Gtk.ResponseType.ACCEPT: #print "on_athleteTreeView_edit save called", data data['date'] = gtk_str(self.entryList[0].get_text()) data['weight'] = gtk_str(self.entryList[1].get_text()) data['bf'] = gtk_str(self.entryList[2].get_text()) data['restingHR'] = gtk_str(self.entryList[3].get_text()) data['maxHR'] = gtk_str(self.entryList[4].get_text()) self.on_athleteSave(data) logging.debug('Athlete data saved: %s', data) dialog.destroy() logging.debug('<<') def on_athleteTreeView_delete(self, widget, data): '''User has opted to delete entry''' logging.debug(">>") msg = _("Delete this database entry?") md = Gtk.MessageDialog(self.pytrainer_main.windowmain.window1, Gtk.DialogFlags.DESTROY_WITH_PARENT, Gtk.MessageType.QUESTION, Gtk.ButtonsType.OK_CANCEL, msg) md.set_title(_("Are you sure?")) response = md.run() md.destroy() if response == Gtk.ResponseType.OK: logging.debug("User confirmed deletion of athlete entry with id: %s", data) self.pytrainer_main.athlete.delete_record(data) self.parent.refreshAthleteView() else: logging.debug("User canceled athlete record deletion for id %s", data) logging.debug("<<") def on_athleteSave(self, data): #Get data in fields id_athletestat = data['id'] date = data['date'] #Check if valid date supplied try: _date = dateutil.parser.parse(date).date() except (ValueError) as e: logging.error("Invalid date %s", e) return weight = data['weight'] or None bodyfat = data['bf'] or None restinghr = data['restingHR'] or None maxhr = data['maxHR'] or None #TODO - are any other fields required? #Check if an entry has been edited or is a new one if id_athletestat is None or id_athletestat == "": #New entry logging.debug('Creating new entry with values: date %s, weight %s, bodyfat %s, restinghr %s, maxhr %s', date, weight, bodyfat, restinghr, maxhr) self.parent.athlete.insert_athlete_stats(date, weight, bodyfat, restinghr, maxhr) else: #Edited existing entry logging.debug('Updating id_athletestat:%s with values: date %s, weight %s, bodyfat %s, restinghr %s, maxhr %s', id_athletestat, date, weight, bodyfat, restinghr, maxhr) self.parent.athlete.update_athlete_stats(id_athletestat, date, weight, bodyfat, restinghr, maxhr) self.parent.refreshAthleteView() def on_athletecalendar_clicked(self,widget): logging.debug(">>") calendardialog = WindowCalendar(self.data_path,self) calendardialog.run() logging.debug("<<") def setDate(self,date): logging.debug(date) #self.entryAthleteDate.set_text(date) ######## waypoints events ########## def on_savewaypoint_clicked(self,widget): selected,iter = self.waypointTreeView.get_selection().get_selected() id_waypoint = selected.get_value(iter,0) lat = gtk_str(self.waypoint_latitude.get_text()) lon = gtk_str(self.waypoint_longitude.get_text()) name = gtk_str(self.waypoint_name.get_text()) desc = gtk_str(self.waypoint_description.get_text()) sym = gtk_str(self.waypoint_type.get_active_text()) self.parent.updateWaypoint(id_waypoint,lat,lon,name,desc,sym) def on_removewaypoint_clicked(self,widget): selected,iter = self.waypointTreeView.get_selection().get_selected() id_waypoint = selected.get_value(iter,0) self.parent.removeWaypoint(id_waypoint) def on_hrpiebutton_clicked(self,widget): self.heartrate_vbox2.show() self.heartrate_vbox.hide() self.heartrate_vbox3.hide() def on_hrplotbutton_clicked(self,widget): self.heartrate_vbox.show() self.heartrate_vbox2.hide() self.heartrate_vbox3.hide() def on_hrhistobutton_clicked(self,widget): self.heartrate_vbox3.show() self.heartrate_vbox.hide() self.heartrate_vbox2.hide() def _totals_from_activities(self, activity_list): tbeats = 0 distance = 0 calories = 0 timeinseconds = 0 beats = 0 maxbeats = 0 maxspeed = 0 average = 0 maxpace = "0:00" pace = "0:00" totalascent = 0 totaldescent = 0 for activity in activity_list: distance += activity.distance if activity.calories: calories += activity.calories timeinseconds += activity.duration if activity.upositive: totalascent += activity.upositive if activity.unegative: totaldescent += activity.unegative if activity.beats: tbeats += activity.beats*(activity.duration/60/60) if activity.maxspeed and activity.maxspeed > maxspeed: maxspeed = activity.maxspeed if activity.maxbeats and activity.maxbeats > maxbeats: maxbeats = activity.maxbeats distance = self.uc.distance(distance) maxspeed = self.uc.speed(maxspeed) if tbeats > 0 and timeinseconds > 0: tbeats = tbeats/(timeinseconds/60/60) if distance > 0 and timeinseconds > 0: average = distance/(float(timeinseconds)/60/60) if maxspeed > 0: maxpace = "%d:%02d" %((3600/maxspeed)/60,(3600/maxspeed)%60) if average > 0: pace = "%d:%02d" %((3600/average)/60,(3600/average)%60) return tbeats, distance, calories, timeinseconds, beats, maxbeats, maxspeed, average, maxpace, pace, totalascent, totaldescent
gpl-2.0
pankajk/MasterThesis
Code/Graph_Kernels/SKG/kroneckerTester.py
1
2542
from KroneckerInitMatrix import InitMatrix import KroneckerGenerator import numpy as np import networkx as nx import testgg as test import matplotlib.pyplot as plt def get_graph(nxgraph): x = nxgraph cc_conn = nx.connected_components(x) num_cc = nx.number_connected_components(x) #largest_cc = len(cc_conn[0]) return x, cc_conn, num_cc #, largest_cc def create_graph_stats(nxgraph): (x, cc_conn, num_cc) = get_graph(nxgraph) #, largest_cc cc = nx.closeness_centrality(x) bc = nx.betweenness_centrality(x) deg = nx.degree_centrality(x) dens = nx.density(x) stats = {'cc':cc, 'bc':bc, 'deg':deg, \ 'num_cc':num_cc, 'dens':dens}#, 'largest_cc':largest_cc} return stats #conn, #above are methods to make input for histogram nodes = 2 init = InitMatrix(nodes) init.make() #Alpha Beta Method of Testing init.addEdge(0, 1) init.addSelfEdges() init.makeStochasticAB(0.4, 0.2) #Custom Method of Testing #p = 15 #c = 6 #probArr = np.array([1, c*p, p/c, 0, 0, c*p, 1, p/c, 0, 0, p/c, p/c, 1, p/c, p/c, 0, 0, p/c, 1, c*p, 0, 0, p/c, c*p, 1]) #init.makeStochasticCustom(probArr) #Networkx Graph Gen as Seed, Alpha Beta after Testing #G = nx.watts_strogatz_graph(5, 2, 0.1) #nx.draw(G) #plt.show() # if you want to visualize your seed graph first #init = InitMatrix(nodes) #init = init.makeStochasticABFromNetworkxGraph(G, 0.75, 0.5) #Networkx Graph Gen as Seed Testing, not Stochastic after #G = nx.watts_strogatz_graph(5, 3, 0.1) #G = nx.hypercube_graph(3) #nx.draw(G) #plt.show() # if you want to visualize your seed graph first #init = InitMatrix(nodes) #init = init.makeFromNetworkxGraph(G) #init.addSelfEdges() # if you want to ensure self edges for Kronecker k = 5 print ("Seed Matrix Nodes:") print (nodes) print ("Kronecker Iterations:") print (k) nxgraph = KroneckerGenerator.generateStochasticKron(init, k, True) #for line in nx.generate_edgelist(nxgraph, data=False): # print(line) print ("Done Creating Network!") is_bipart = nx.is_bipartite(nxgraph) print ("is_bipart:") print (is_bipart) is_conn = nx.is_connected(nxgraph) print ("is_conn:") print (is_conn) #test #print "Exporting to GML File" #nx.write_gml(nxgraph,"KronSeed1_75a5b.gml") #export to gml file for gephi #nx.draw(nxgraph, pos=nx.spring_layout(nxgraph)) #plt.show() #print "Printing Statistics..." #stats = create_graph_stats(nxgraph) #print "Density: " #print stats['dens'] #print "Creating Histogram..." #histogramInput = create_graph_stats(nxgraph) #test.histogram(histogramInput, 30)
mit
mmottahedi/neuralnilm_prototype
scripts/e125.py
2
4535
from __future__ import print_function, division import matplotlib matplotlib.use('Agg') # Must be before importing matplotlib.pyplot or pylab! from neuralnilm import Net, RealApplianceSource, BLSTMLayer, SubsampleLayer, DimshuffleLayer from lasagne.nonlinearities import sigmoid, rectify from lasagne.objectives import crossentropy, mse from lasagne.init import Uniform, Normal from lasagne.layers import LSTMLayer, DenseLayer, Conv1DLayer, ReshapeLayer from lasagne.updates import adagrad, nesterov_momentum from functools import partial import os from neuralnilm.source import standardise from neuralnilm.experiment import run_experiment from neuralnilm.net import TrainingError import __main__ NAME = os.path.splitext(os.path.split(__main__.__file__)[1])[0] PATH = "/homes/dk3810/workspace/python/neuralnilm/figures" SAVE_PLOT_INTERVAL = 250 GRADIENT_STEPS = 100 """ e103 Discovered that bottom layer is hardly changing. So will try just a single lstm layer e104 standard init lower learning rate e106 lower learning rate to 0.001 e108 is e107 but with batch size of 5 e109 Normal(1) for LSTM e110 * Back to Uniform(5) for LSTM * Using nntools eb17bd923ef9ff2cacde2e92d7323b4e51bb5f1f RESULTS: Seems to run fine again! e111 * Try with nntools head * peepholes=False RESULTS: appears to be working well. Haven't seen a NaN, even with training rate of 0.1 e112 * n_seq_per_batch = 50 e114 * Trying looking at layer by layer training again. * Start with single LSTM layer e115 * Learning rate = 1 e116 * Standard inits e117 * Uniform(1) init e119 * Learning rate 10 # Result: didn't work well! e120 * init: Normal(1) * not as good as Uniform(5) e121 * Uniform(25) e122 * Just 10 cells * Uniform(5) e125 * Pre-train lower layers """ def exp_a(name): source = RealApplianceSource( filename='/data/dk3810/ukdale.h5', appliances=[ ['fridge freezer', 'fridge', 'freezer'], 'hair straighteners', 'television' # 'dish washer', # ['washer dryer', 'washing machine'] ], max_appliance_powers=[300, 500, 200], #, 2500, 2400], on_power_thresholds=[20, 20, 20], #, 20, 20], max_input_power=1000, min_on_durations=[60, 60, 60], #, 1800, 1800], window=("2013-06-01", "2014-07-01"), seq_length=1000, output_one_appliance=False, boolean_targets=False, min_off_duration=60, train_buildings=[1], validation_buildings=[1], skip_probability=0, n_seq_per_batch=50 ) net = Net( experiment_name=name, source=source, save_plot_interval=SAVE_PLOT_INTERVAL, loss_function=crossentropy, updates=partial(nesterov_momentum, learning_rate=1.0), layers_config=[ { 'type': LSTMLayer, 'num_units': 50, 'W_in_to_cell': Uniform(25), 'gradient_steps': GRADIENT_STEPS, 'peepholes': False }, { 'type': DenseLayer, 'num_units': source.n_outputs, 'nonlinearity': sigmoid } ], layer_changes={ 251: { 'remove_from': -3, 'new_layers': [ { 'type': LSTMLayer, 'num_units': 50, 'W_in_to_cell': Uniform(10), 'gradient_steps': GRADIENT_STEPS, 'peepholes': False }, { 'type': DenseLayer, 'num_units': source.n_outputs, 'nonlinearity': sigmoid } ] } } ) return net def init_experiment(experiment): full_exp_name = NAME + experiment func_call = 'exp_{:s}(full_exp_name)'.format(experiment) print("***********************************") print("Preparing", full_exp_name, "...") net = eval(func_call) return net def main(): for experiment in list('a'): full_exp_name = NAME + experiment path = os.path.join(PATH, full_exp_name) try: net = init_experiment(experiment) run_experiment(net, path, epochs=5000) except KeyboardInterrupt: break except TrainingError as e: print("EXCEPTION:", e) if __name__ == "__main__": main()
mit