repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
rajegannathan/grasp-lift-eeg-cat-dog-solution-updated
python-packages/nolearn-0.5/build/lib.linux-x86_64-2.7/nolearn/tests/test_dbn.py
2
4191
import numpy as np from scipy.sparse import csr_matrix from sklearn.cross_validation import cross_val_score from sklearn import datasets from sklearn.metrics import f1_score from ..dataset import Dataset def pytest_funcarg__digits(request): digits = datasets.load_digits() n_samples = len(digits.images) data = digits.images.reshape((n_samples, -1)) ds = Dataset(data, digits.target).scale() ds.test_size = 0.5 return ds.train_test_split() def pytest_funcarg__iris(request): iris = datasets.load_iris() ds = Dataset(iris.data, iris.target).scale() return ds def test_callback(digits): from ..dbn import DBN fine_tune_call_args = [] pretrain_call_args = [] def fine_tune_callback(net, epoch): fine_tune_call_args.append((net, epoch)) def pretrain_callback(net, epoch, layer): pretrain_call_args.append((net, epoch, layer)) X_train, X_test, y_train, y_test = digits clf = DBN( [X_train.shape[1], 4, 10], epochs=3, epochs_pretrain=2, use_re_lu=False, fine_tune_callback=fine_tune_callback, pretrain_callback=pretrain_callback, ) clf.fit(X_train, y_train) assert fine_tune_call_args == [ (clf, 1), (clf, 2), (clf, 3)] assert pretrain_call_args == [ (clf, 1, 0), (clf, 2, 0), (clf, 1, 1), (clf, 2, 1)] def test_errors(digits): from ..dbn import DBN X_train, X_test, y_train, y_test = digits clf = DBN( [-1, 4, 10], epochs=3, epochs_pretrain=3, use_re_lu=False, ) clf.fit(X_train, y_train) assert len(clf.errors_pretrain_) == 2 assert len(clf.errors_pretrain_[0]) == 3 assert len(clf.errors_pretrain_[1]) == 3 assert len(clf.errors_fine_tune_) == 3 assert len(clf.losses_fine_tune_) == 3 def test_labelencoding(iris): from ..dbn import DBN X_train, X_test, y_train, y_test = iris.train_test_split() y_train = y_train * 1.3 y_test = y_test * 1.3 clf = DBN( [-1, 4, -1], epochs=10, ) clf.fit(X_train, y_train) predicted_labels = np.unique(clf.predict(X_test)) assert len(predicted_labels) > 1 for label in predicted_labels: # predicted labels should correspond to what's in y_test assert label in y_test def test_functional_iris(iris): from ..dbn import DBN X_train, X_test, y_train, y_test = iris.train_test_split() clf = DBN( [-1, 4, 3], learn_rates=0.3, output_act_funct='Linear', epochs=50, ) scores = cross_val_score(clf, iris.data, iris.target, cv=5) assert scores.mean() > 0.85 def test_functional_digits_no_pretrain(digits): from ..dbn import DBN X_train, X_test, y_train, y_test = digits clf = DBN( [64, 32, 10], verbose=0, ) clf.fit(X_train, y_train) predicted = clf.predict(X_test) assert f1_score(y_test, predicted) > 0.9 assert 0.9 < clf.score(X_test, y_test) < 1.0 def test_functional_digits_with_pretrain(digits): from ..dbn import DBN X_train, X_test, y_train, y_test = digits clf = DBN( [64, 32, 10], epochs_pretrain=10, use_re_lu=False, verbose=0, ) clf.fit(X_train, y_train) predicted = clf.predict(X_test) assert f1_score(y_test, predicted) > 0.9 assert 0.9 < clf.score(X_test, y_test) < 1.0 def test_sparse_support(digits): from ..dbn import DBN X_train, X_test, y_train, y_test = digits X_train = csr_matrix(X_train) X_test = csr_matrix(X_test) clf = DBN( [64, 32, 10], epochs_pretrain=10, use_re_lu=False, verbose=0, ) clf.fit(X_train, y_train) predicted = clf.predict(X_test) assert f1_score(y_test, predicted) > 0.9 assert 0.9 < clf.score(X_test, y_test) < 1.0 def test_layer_sizes_auto(iris): from ..dbn import DBN X_train, X_test, y_train, y_test = iris.train_test_split() clf = DBN( [-1, 4, -1], ) clf.fit(X_train, y_train) assert clf.net_.weights[0].shape == (4, 4) assert clf.net_.weights[1].shape == (4, 3)
bsd-3-clause
meduz/scikit-learn
examples/linear_model/plot_polynomial_interpolation.py
168
2088
#!/usr/bin/env python """ ======================== Polynomial interpolation ======================== This example demonstrates how to approximate a function with a polynomial of degree n_degree by using ridge regression. Concretely, from n_samples 1d points, it suffices to build the Vandermonde matrix, which is n_samples x n_degree+1 and has the following form: [[1, x_1, x_1 ** 2, x_1 ** 3, ...], [1, x_2, x_2 ** 2, x_2 ** 3, ...], ...] Intuitively, this matrix can be interpreted as a matrix of pseudo features (the points raised to some power). The matrix is akin to (but different from) the matrix induced by a polynomial kernel. This example shows that you can do non-linear regression with a linear model, using a pipeline to add non-linear features. Kernel methods extend this idea and can induce very high (even infinite) dimensional feature spaces. """ print(__doc__) # Author: Mathieu Blondel # Jake Vanderplas # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import Ridge from sklearn.preprocessing import PolynomialFeatures from sklearn.pipeline import make_pipeline def f(x): """ function to approximate by polynomial interpolation""" return x * np.sin(x) # generate points used to plot x_plot = np.linspace(0, 10, 100) # generate points and keep a subset of them x = np.linspace(0, 10, 100) rng = np.random.RandomState(0) rng.shuffle(x) x = np.sort(x[:20]) y = f(x) # create matrix versions of these arrays X = x[:, np.newaxis] X_plot = x_plot[:, np.newaxis] colors = ['teal', 'yellowgreen', 'gold'] lw = 2 plt.plot(x_plot, f(x_plot), color='cornflowerblue', linewidth=lw, label="ground truth") plt.scatter(x, y, color='navy', s=30, marker='o', label="training points") for count, degree in enumerate([3, 4, 5]): model = make_pipeline(PolynomialFeatures(degree), Ridge()) model.fit(X, y) y_plot = model.predict(X_plot) plt.plot(x_plot, y_plot, color=colors[count], linewidth=lw, label="degree %d" % degree) plt.legend(loc='lower left') plt.show()
bsd-3-clause
simpeg/processing
processing/DCIPtools/sectionPlotting.py
1
4283
import matplotlib.pyplot as plt import numpy as np import JDataObject as Jdata import pylab as plt from scipy.interpolate import griddata ################################################################ # define the file required for import fileName = "/Users/juan/Documents/testData/DAT_B.DAT" unitType = "appResistivity" # unitType = "appChareability" xp = [] yp = [] val = [] val2 = [] Nlevel = ["N = 1", "N = 2", "N = 3", "N = 4", "N = 5", "N = 6", "N = 7"] z_n = [-100, -200, -300, -400, -500, -600, -700] vmin_rho, vmax_rho = 10, 4000 vmin_mx, vmax_mx = 0, 18 # ================================================================= # Code Start patch = Jdata.loadDias(fileName) # loads data # calculated mid-pt data points for src in range(len(patch.readings)): for rx in range(len(patch.readings[src].Vdp)): xp.append( patch.readings[src].Vdp[rx].getXplotpoint(patch.readings[src].Idp)) yp.append( patch.readings[src].Vdp[rx].getZplotpoint(patch.readings[src].Idp)) val.append( np.abs(patch.readings[src].Vdp[rx].Rho)) val2.append( np.abs(patch.readings[src].Vdp[rx].Mx)) # convert to numpy midx = np.asarray(xp) midz = np.asarray(yp) rho = np.asarray(val) mx = np.asarray(val2) xNLevel = np.min(midx) - 200 x_n = np.zeros(len(z_n)) x_n = x_n + xNLevel # Grid points grid_x, grid_z = np.mgrid[np.min(midx):np.max(midx), np.min(midz):np.max(midz)] # create an axes to plot on ax = plt.subplot(2, 1, 1, aspect='equal') # create an axes to plot on ax2 = plt.subplot(2, 1, 2, aspect='equal') # check which data to plot # if unitType == "appResistivity": vmin = vmin_rho vmax = vmax_rho ax.axes.set_title("Apparent Resistivity (ohm-m)", y=1.14) grid_rho = griddata(np.c_[midx, midz], rho.T, (grid_x, grid_z), method='cubic') grid_rho = np.ma.masked_where(np.isnan(grid_rho), grid_rho) name = 'custom_div_cmap' pcolorOpts = {} from matplotlib.colors import LinearSegmentedColormap custom_map = LinearSegmentedColormap.from_list(name=name, colors=['aqua', [0, 0.85, 1, 1], [0.1, 1, 0.1, 1], 'yellow', [1, 0.7, 0, 1], [1, 0.2, 0.2, 1], [0.95, 0.9, 1, 1]], N=200) CS = ax.contour(grid_x[:, 0], grid_z[0, :], grid_rho.T, 15, linewidths=0.5, colors='k') ph = ax.pcolormesh(grid_x[:, 0], grid_z[0, :], grid_rho.T, cmap=custom_map, clim=(vmin, vmax), vmin=vmin, vmax=vmax, **pcolorOpts) # , vmin=vmin, vmax=vmax, {}) cbar = plt.colorbar(ph, ax=ax, format="%.0f", fraction=0.04, orientation="vertical") cbar.set_label("App.Res.", size=12) for i, txt in enumerate(val): ax.annotate(int(rho[i]), (midx[i], midz[i]), size=8) # else: vmin = vmin_mx vmax = vmax_mx ax2.axes.set_title("Apparent Chargeability (mV/V)", y=1.11) grid_mx = griddata(np.c_[midx, midz], mx.T, (grid_x, grid_z), method='cubic') grid_mx = np.ma.masked_where(np.isnan(grid_mx), grid_mx) name = 'custom_div_cmap1' pcolorOpts = {} # from matplotlib.colors import LinearSegmentedColormap # custom_map = LinearSegmentedColormap.from_list(name=name, colors=['aqua', [0, 0.85, 1, 1], [0.1, 1, 0.1, 1], 'yellow', [1, 0.7, 0, 1], [1, 0.2, 0.2, 1], [0.95, 0.9, 1, 1]], N=200) CS2 = ax2.contour(grid_x[:, 0], grid_z[0, :], grid_mx.T, 15, linewidths=0.5, colors='k') ph2 = ax2.pcolormesh(grid_x[:, 0], grid_z[0, :], grid_mx.T, cmap=custom_map, clim=(vmin, vmax), vmin=vmin, vmax=vmax, **pcolorOpts) # , vmin=vmin, vmax=vmax, {}) cbar2 = plt.colorbar(ph2, ax=ax2, format="%.0f", fraction=0.04, orientation="vertical") cbar2.set_label("App.Mx.", size=12) for i, txt in enumerate(val): ax2.annotate(int(mx[i]), (midx[i], midz[i]), size=8) for i, txt in enumerate(Nlevel): ax.annotate(Nlevel[i], (x_n[i], z_n[i]), size=9) ax2.annotate(Nlevel[i], (x_n[i], z_n[i]), size=9) ax.axes.get_yaxis().set_visible(False) ax.axes.set_ylim(np.min(midz) - 50, np.max(midz) + 50) ax.axes.set_xlim(np.min(midx) - 250, np.max(midx) + 100) ax.xaxis.tick_top() ax.xaxis.set_label_position('top') ax.tick_params(labelsize=8) ax2.axes.get_yaxis().set_visible(False) ax2.axes.set_ylim(np.min(midz) - 50, np.max(midz) + 50) ax2.axes.set_xlim(np.min(midx) - 250, np.max(midx) + 100) ax2.xaxis.tick_top() ax2.xaxis.set_label_position('top') ax2.tick_params(labelsize=8) plt.show()
mit
pylayers/pylayers
pylayers/antprop/antenna.py
1
183342
# -*- coding:Utf-8 -*- """ .. currentmodule:: pylayers.antprop.antenna .. autosummary:: :members: """ from __future__ import print_function import doctest import os import glob import re import pdb import sys import numpy as np import scipy.linalg as la import matplotlib.pylab as plt from scipy import io from matplotlib import rc from matplotlib import cm # colormaps from mpl_toolkits.mplot3d import axes3d from mpl_toolkits.axes_grid1 import make_axes_locatable from matplotlib.ticker import MaxNLocator from scipy.special import sici, fresnel import pandas as pd import pylayers.util.pyutil as pyu import pylayers.util.geomutil as geu from pylayers.util.project import PyLayers from pylayers.antprop.spharm import * from pylayers.antprop.antssh import ssh, SSHFunc2, SSHFunc, SSHCoeff, CartToSphere from pylayers.antprop.coeffModel import * import copy from mayavi import mlab try: from pylayers.antprop.antvsh import vsh except: pass import PIL.Image as Image class Pattern(PyLayers): """ Class Pattern MetaClass of Antenna A pattern is evaluated with the 3 np.array parameters theta phi fGHz This class implements pattern methods. The name of a pattern method starts by p. Each pattern method has a unique dictionnary argument 'param' If self.grid dimensions are Nt x Np x Nf else: Ndir x Nf """ def __init__(self): PyLayers.__init__(self) self.grid = False self.evaluated = False self.full = False def eval(self, **kwargs): """ evaluate pattern functions Parameters ---------- th: np.array if this array is present it means grid = False ph: np.array pt : np.array (3,N) pr : np.array (3,N) azoffset : int (0) Rfloor:bool if true add gain value to reflected ray on the floor. values are append at the end of sqG. fGHz:list [] nth: int 90 nph: int 181 first: boolean True if first call (to define self.param) th0 : float theta initial value th1 : float theta finale value ph0 : float phi initial value ph1 : float phi final value Examples -------- >>> from pylayers.antprop.aarray import * >>> A0=Antenna('Omni', param={'pol':'t','GmaxdB':0}) >>> A1=Antenna('Gauss') >>> A2=Antenna('3gpp') >>> A3=ULArray() >>> A0.eval() >>> A1.eval() >>> A2.eval() >>> #A3.eval() """ defaults = {'Rfloor': False, 'nth': 90, 'nph': 181, 'th0': 0, 'th1': np.pi, 'ph0': 0, 'ph1': 2*np.pi, 'azoffset': 0, 'inplace': True } for k in defaults: if k not in kwargs: kwargs[k] = defaults[k] if 'fGHz' not in kwargs: # case antenna has been measured if hasattr(self,'_fGHz'): self.fGHz=self._fGHz elif 'fGHz' not in self.__dict__: self.fGHz = np.array([2.4]) else: if type(kwargs['fGHz'])==np.ndarray: self.fGHz = kwargs['fGHz'] else: self.fGHz = np.array([kwargs['fGHz']]) # if current antenna is a measured antenna, pass the request frequencies # in particular if antenna pattern is type = nfc if hasattr(self,'_fGHz'): self.param.update({'fGHz':self.fGHz}) self.nf = len(self.fGHz) # # if th and ph are empty # if pt and pr are empty # calculates from th0,th1,nth # ph0,phi,nph # else # calculates from points coordinates pt and pr # else # take specified values # if ('th' not in kwargs) and ('ph' not in kwargs): if ('pt' not in kwargs) and ('pr' not in kwargs): # grid = True # Determine theta and phi fr self.theta = np.linspace(kwargs['th0'],kwargs['th1'],kwargs['nth']) self.phi = np.linspace(kwargs['ph0'],kwargs['ph1'],kwargs['nph'],endpoint=False) self.grid = True condth = np.abs((kwargs['th1']-kwargs['th0'])-np.pi)<1e-2 condph = np.abs((kwargs['ph1']-kwargs['ph0'])-2*np.pi)<1e-2 if (condth and condph): self.full = True else: # Gain between 2 points (One or 2 directions (uf Rfloor) # grid = False si = kwargs['pr']-kwargs['pt'] ssi = np.sqrt(np.sum(si*si,axis=0)) sn = si/ssi[None,:] self.theta = np.arccos(sn[2,:]) self.phi = np.mod(np.arctan2(sn[1,:],sn[0,:])+kwargs['azoffset'],2*np.pi) self.grid = False if kwargs['Rfloor']: dR = np.sqrt(ssi**2 + (kwargs['pr'][2,:] + kwargs['pt'][2,:])**2) #  reflexion length thetaR = np.arccos((kwargs['pr'][2,:] + kwargs['pt'][2,:]) / dR) self.theta = np.hstack([self.theta,thetaR]) self.phi = np.hstack([self.phi,self.phi]) else : self.grid = False self.full = False assert(len(kwargs['th'])==len(kwargs['ph'])) self.theta = kwargs['th'] self.phi = kwargs['ph'] if self.typ=='azel': self.theta=np.linspace(-np.pi,np.pi,360) self.phi=np.linspace(-np.pi,np.pi,360) self.nth = len(self.theta) self.nph = len(self.phi) # # evaluation of the specific Pattern__p function # Ft,Fp = eval('self._Pattern__p'+self.typ)(param=self.param) if kwargs['inplace']: self.Ft = Ft self.Fp = Fp self.evaluated = True self.gain() else: return Ft,Fp def vsh(self,threshold=-1): if self.evaluated: vsh(self) self.C.s1tos2() self.C.s2tos3(threshold=threshold) else: print('antenna must be evaluated to be converted into spherical harmonics.') def ssh(self,L=89,dsf=1): if self.evaluated: ssh(self,L,dsf) def __pdipole(self,**kwargs): """ dipole antenna along z axis From Balanis (Formula 4.62(a)) .. math:: F_{\theta}(\theta,\phi) = \left[ \frac{\cos\left(\frac{kl}{2}\cos\theta\right)- \cos\left(\frac{kl}{2}\right)}{\sin \theta} \right] """ defaults = { 'param' : { 'l' : 0.25 } } if 'param' not in kwargs or kwargs['param']=={}: kwargs['param']=defaults['param'] l = kwargs['param']['l'] if self.grid: # Nth x Nphx Nf k = 2*np.pi*self.fGHz[None,None,:]/0.3 usmall = self.theta<=1e-1 Ft = (np.cos((k*l/2)*np.ones(len(self.phi))[None,:,None]*np.cos(self.theta[:,None,None]))-np.cos(k*l/2))/np.sin(self.theta[:,None,None]) Ft[usmall,:,:] = -(k*l/4)*self.theta[usmall][:,None,None]*np.sin(k*l/2) self.evaluated = True else: k = 2*np.pi*np.fGHz[None,:] /0.3 usmall = self.theta<=1e-1 Ft = (np.cos((k*l/2)*np.cos(self.theta[:,None]))-np.cos(k*l/2))/np.sin(self.theta[:,None]) Ft[usmall,:,:] = -(k*l/4)*self.theta[usmall][:,None,None]*np.sin(k*l/2) # Nd x Nf Fp = np.zeros(Ft.shape) return Ft,Fp def __pPatch(self,**kwargs): """ Patch antenna from Balanis (14-40b) page 835 (Rectangular Patch) """ defaults = { 'param' : { 'h':0.001588, 'W':0.01186, 'L':0.00906 } } if 'param' not in kwargs or kwargs['param']=={}: kwargs['param']=defaults['param'] def __pOmni(self,**kwargs): """ omnidirectional pattern Parameters ---------- param : dict dictionnary of parameters + pol : string 't'| 'p' + GmaxdB : float 0 self.grid is used for switching between : if True angular grid : nth x nph x nf if False direction : ndir x nf """ defaults = { 'param' : { 'pol' : 't', 'GmaxdB': 0 } } if 'param' not in kwargs or kwargs['param']=={}: kwargs['param']=defaults['param'] self.param = kwargs['param'] self.GmaxdB = self.param['GmaxdB'] self.pol = self.param['pol'] G = pow(10.,self.GmaxdB/10.) # linear gain if self.grid: # Nth x Nphx Nf self.sqG = np.array(np.sqrt(G))*np.ones(len(self.fGHz))[None,None,:] self.evaluated = True else: # Nd x Nf self.sqG = np.array(np.sqrt(G))*np.ones(len(self.fGHz))[None,:] Ft,Fp = self.radF() return Ft,Fp def __paperture(self,**kwargs): """ Aperture Pattern Aperture in the (x,y) plane. Main lobe in theta=0 direction polar indicates the orientation of the Electric field either 'x' or 'y' See theoretical background in : http://www.ece.rutgers.edu/~orfanidi/ewa/ch18.pdf Parameters ---------- HPBW_x_deg : float Half Power Beamwidth (degrees) HPBW_y_deg : float Half Power Beamwidth (degrees) """ defaults = {'param': {'HPBW_x_deg':40, 'HPBW_y_deg':10, 'Gfactor':27000, 'fcGHz': 27.5, 'polar':'x', 'window':'rect' }} if 'param' not in kwargs or kwargs['param']=={}: kwargs['param']=defaults['param'] self.param = kwargs['param'] deg_to_rad = np.pi/180. ld_c = 0.3/self.param['fcGHz'] ld = 0.3/self.fGHz Dx = 0.886*ld_c/(self.param['HPBW_x_deg']*deg_to_rad) Dy = 0.886*ld_c/(self.param['HPBW_y_deg']*deg_to_rad) Dx_n = Dx/ld Dy_n = Dy/ld if self.grid: # Nth x Nph x Nf theta = self.theta[:,None,None] phi = self.phi[None,:,None] else: # Ndir x Nf theta = self.theta[:,None] phi = self.phi[:,None] vx = Dx_n[...,:]*np.sin(theta)*np.cos(phi) # 18.1.4 vy = Dy_n[...,:]*np.sin(theta)*np.sin(phi) # 18.1.4 F_nor = ((1+np.cos(theta))/2.)*np.abs(np.sinc(vx)*np.sinc(vy)) HPBW_x = (0.886*ld/Dx)/deg_to_rad HPBW_y = (0.886*ld/Dy)/deg_to_rad Gmax = self.param['Gfactor']/(HPBW_x*HPBW_y) F = np.sqrt(Gmax[...,:])*F_nor # Ndir x Nf # Handling repartition on both vector components # enforce E.y = 0 if self.param['polar']=='x': Ft = F/np.sqrt(1+(np.cos(theta)*np.sin(phi)/np.cos(phi))**2) Fp = (-np.cos(theta)*np.sin(phi)/np.cos(phi))*Ft nan_bool = np.isnan(Fp) Fp[nan_bool] = F[nan_bool] # enforce E.x = 0 if self.param['polar']=='y': Ft = F/np.sqrt(1+(np.cos(theta)*np.cos(phi)/np.sin(phi))**2) Fp = (np.cos(theta)*np.cos(phi)/np.sin(phi))*Ft nan_bool = np.isnan(Fp) Fp[nan_bool] = F[nan_bool] # enforce E.x = 0 # # This is experimental # How to apply the 2D windowing properly ? # # if self.param['window']!='rect': # Nt = self.Fp.shape[0] # Np = self.Fp.shape[1] # Wp = np.fft.ifftshift(np.hamming(Nt)[:,None]*np.ones(Np)[None,:])[:,:,None] # Wt = np.fft.ifftshift(np.ones(Nt)[:,None]*np.hamming(Np)[None,:])[:,:,None] # Wu = np.fft.ifftshift(np.ones(Nt)[:,None]*np.ones(Np)[None,:])[:,:,None] # Wi = np.fft.ifftshift(np.hamming(Nt)[:,None]*np.hamming(Np)[None,:])[:,:,None] # W = np.fft.fftshift(np.hamming(Nt)[:,None]*np.hamming(Np)[None,:])[:,:,None] # # Fp : t x p x f ou r x f # # Ft : t x p x f ou r x f # # Kp = np.fft.ifft2(self.Fp,axes=(0,1)) # Kt = np.fft.ifft2(self.Ft,axes=(0,1)) # # self.Fp = np.fft.fft2(Kp*Wt,axes=(0,1)) # self.Ft = np.fft.fft2(Kt*Wp,axes=(0,1)) return Ft,Fp def __pnfc(self,**kwargs): """ nfc Pattern interpolation of Ft,Fp for measured antenna Interpolation between known values of Ft and Fp contained in self._Ft and self._Fp to a given set of theta, phi. """ defaults = {'param': {'fGHz':[]}} if 'param' not in kwargs or kwargs['param']=={}: kwargs['param']=defaults['param'] self.param = kwargs['param'] # if self.grid: # # Nth x Nph x Nf # theta = self.theta[:,None,None] # phi = self.phi[None,:,None] # else: uf=np.ndarray(shape=0,dtype=int) for k in self.param['fGHz']: uf = np.hstack((uf,np.where(self._fGHz<=k)[0][-1])) theta = self.theta phi = self.phi # th0=np.array([0.12,3.1415,0.01]) # ph0=np.array([0.01,0.5,2]) # find closest theta arg : N dth = self._theta[:,None]-theta udth = abs(dth).argmin(axis=0) # determine sign of this arg to know which from N-1 or N+1 is candidate sdth = np.sign(np.diag(dth[udth])) # specific process if the find argument is N-1 or N+1 a.k.a self._theta-th >0 or <0 neg_mask = sdth<0 pos_mask = ~neg_mask cudth= np.ndarray((len(theta)),dtype=int) cudth[pos_mask]=udth[pos_mask]-1 cudth[neg_mask]=udth[neg_mask] ratio_th = (theta-self._theta[cudth])/(self._theta[cudth+1]-self._theta[cudth]) # find closest phi arg : N dph = self._phi[:,None]-phi udph = abs(dph).argmin(axis=0) # determine sign of this arg to know which from N-1 or N+1 is candidate sdph = np.sign(np.diag(dph[udph])) # specific process if the find argument is N-1 or N+1 a.k.a self._phi-ph >0 or <0 neg_mask = sdph<0 pos_mask = ~neg_mask cudph= np.ndarray((len(phi)),dtype=int) cudph[pos_mask]=udph[pos_mask]-1 cudph[neg_mask]=udph[neg_mask] ratio_ph = (phi-self._phi[cudph])/(self._phi[cudph+1]-self._phi[cudph]) if self.grid: Ft=self._Ft[cudth,:,:][...,uf]*(1.-ratio_th[:,None,None])+ratio_th[:,None,None]*self._Ft[cudth+1,:,:][...,uf] Ft=Ft[:,cudph,:]*(1.-ratio_ph[None,:,None])+ratio_ph[None,:,None]*Ft[:,cudph+1,:] Fp=self._Fp[cudth,:,:][...,uf]*(1.-ratio_th[:,None,None])+ratio_th[:,None,None]*self._Fp[cudth+1,:,:][...,uf] Fp=Fp[:,cudph,:]*(1.-ratio_ph[None,:,None])+ratio_ph[None,:,None]*Fp[:,cudph+1,:] else: Ft0=self._Ft[cudth,cudph,:][...,uf]*(1.-ratio_th[:,None])+ratio_th[:,None]*self._Ft[cudth+1,cudph,:][...,uf] Ft1=self._Ft[cudth,cudph+1,:][...,uf]*(1.-ratio_th[:,None])+ratio_th[:,None]*self._Ft[cudth+1,cudph+1,:][...,uf] Ft = Ft0*(1.-ratio_ph[:,None])+Ft1*ratio_ph[:,None] Fp0=self._Fp[cudth,cudph,:][...,uf]*(1.-ratio_th[:,None])+ratio_th[:,None]*self._Fp[cudth+1,cudph,:][...,uf] Fp1=self._Fp[cudth,cudph+1,:][...,uf]*(1.-ratio_th[:,None])+ratio_th[:,None]*self._Fp[cudth+1,cudph+1,:][...,uf] Fp = Fp0*(1.-ratio_ph[:,None])+Fp1*ratio_ph[:,None] return Ft,Fp def __paperture2(self,**kwargs): """ Aperture Pattern Aperture in the (x,y) plane. Main lobe in theta=0 direction polar indicates the orientation of the Electric field either 'x' or 'y' See theoretical background in : http://www.ece.rutgers.edu/~orfanidi/ewa/ch18.pdf Parameters ---------- HPBW_x_deg : float Half Power Beamwidth (degrees) HPBW_y_deg : float Half Power Beamwidth (degrees) """ defaults = {'param': {'HPBW_a_deg':40, 'HPBW_b_deg':10, 'Gfactor':27000, 'fcGHz': 27.5, 'polar':'x', 'window':'rect' }} if 'param' not in kwargs or kwargs['param']=={}: kwargs['param']=defaults['param'] self.param = kwargs['param'] deg_to_rad = np.pi/180. ld_c = 0.3/self.param['fcGHz'] ld = 0.3/self.fGHz a = 1.189*ld_c/(self.param['HPBW_a_deg']*deg_to_rad) b = 0.886*ld_c/(self.param['HPBW_b_deg']*deg_to_rad) a_n = a/ld b_n = b/ld if self.grid: # Nth x Nph x Nf theta = self.theta[:,None,None] phi = self.phi[None,:,None] else: # Ndir x Nf theta = self.theta[:,None] phi = self.phi[:,None] vx = a_n[...,:]*np.sin(theta)*np.cos(phi) # 18.1.4 vy = b_n[...,:]*np.sin(theta)*np.sin(phi) # 18.1.4 #F_nor = ((1+np.cos(theta))/2.)*np.abs(np.sinc(vx)*np.sinc(vy)) F_nor = (1+np.cos(theta))/2*(np.cos(np.pi*vx)/(1-4*vx**2))*np.sinc(vy) # 18.1.3 + suppression rear radiation HPBW_a = (1.189*ld/a)/deg_to_rad HPBW_b = (0.886*ld/b)/deg_to_rad Gmax = self.param['Gfactor']/(HPBW_a*HPBW_b) F = np.sqrt(Gmax[...,:])*F_nor # Ndir x Nf # Handling repartition on both vector components # enforce E.y = 0 if self.param['polar']=='x': Ft = F/np.sqrt(1+(np.cos(theta)*np.sin(phi)/np.cos(phi))**2) Fp = (-np.cos(theta)*np.sin(phi)/np.cos(phi))*Ft nan_bool = np.isnan(Fp) Fp[nan_bool] = F[nan_bool] # enforce E.x = 0 if self.param['polar']=='y': Ft = F/np.sqrt(1+(np.cos(theta)*np.cos(phi)/np.sin(phi))**2) Fp = (np.cos(theta)*np.cos(phi)/np.sin(phi))*Ft nan_bool = np.isnan(Fp) Fp[nan_bool] = F[nan_bool] # enforce E.x = 0 # # This is experimeintal # How to apply the 2D windowing properly ? # # if self.param['window']!='rect': # Nt = self.Fp.shape[0] # Np = self.Fp.shape[1] # Wp = np.fft.ifftshift(np.hamming(Nt)[:,None]*np.ones(Np)[None,:])[:,:,None] # Wt = np.fft.ifftshift(np.ones(Nt)[:,None]*np.hamming(Np)[None,:])[:,:,None] # Wu = np.fft.ifftshift(np.ones(Nt)[:,None]*np.ones(Np)[None,:])[:,:,None] # Wi = np.fft.ifftshift(np.hamming(Nt)[:,None]*np.hamming(Np)[None,:])[:,:,None] # W = np.fft.fftshift(np.hamming(Nt)[:,None]*np.hamming(Np)[None,:])[:,:,None] # # Fp : t x p x f ou r x f # # Ft : t x p x f ou r x f # # Kp = np.fft.ifft2(self.Fp,axes=(0,1)) # Kt = np.fft.ifft2(self.Ft,axes=(0,1)) # # self.Fp = np.fft.fft2(Kp*Wt,axes=(0,1)) # self.Ft = np.fft.fft2(Kt*Wp,axes=(0,1)) return Ft,Fp def __phplanesectoralhorn(self,**kwargs): """ H plane sectoral horn Parameters ---------- rho1 : float sector radius (meter) a1 : float aperture dimension along x (greatest value in meters) b1 : float aperture dimension along y (greatest value in meters) Notes ----- Maximum gain in theta =0 Polarized along y axis (Jx=0,Jz=0) """ defaults = {'param': {'rho1':0.198, 'a1':0.088, # aperture dimension along x 'b1':0.0126, # aperture dimension along y 'fcGHz':28, 'GcmaxdB':19, 'Nx':20, 'Ny':20}} if 'param' not in kwargs or kwargs['param']=={}: kwargs['param']=defaults['param'] self.param = kwargs['param'] #H-plane antenna rho1 = self.param['rho1'] a1 = self.param['a1'] b1 = self.param['b1'] Nx = self.param['Nx'] Ny = self.param['Ny'] fcGHz = self.param['fcGHz'] GcmaxdB = self.param['GcmaxdB'] assert(a1>b1), "a1 should be greater than b1 (see fig 13.1O(a) Balanis" lbda = 0.3/self.fGHz k = 2*np.pi/lbda eta0 = np.sqrt(4*np.pi*1e-7/8.85429e-12) if self.grid: # X,Y aperture points (t,p,x,y,f) X = np.arange(-a1/2,a1/2,a1/(Nx-1))[None,None,:,None,None] Y = np.arange(-b1/2,b1/2,b1/(Ny-1))[None,None,None,:,None] # angular domain (theta,phi) Theta= self.theta[:,None,None,None,None] Phi = self.phi[None,:,None,None,None] else: # X,Y aperture points (r,x,y,f) X = np.arange(-a1/2,a1/2,a1/(Nx-1))[None,:,None,None] Y = np.arange(-b1/2,b1/2,b1/(Ny-1))[None,None,:,None] # angular domain (theta,phi) Theta= self.theta[:,None,None,None] Phi= self.phi[:,None,None,None] #% Aperture field Ea: # Ea is an approximation of the aperture field: # (from: C. A. Balanis, Antenna Theoy: Analysis and Design. New York # Wiley, 1982. ... Section 13.3.1 ) Ea = np.cos(X*np.pi/a1)*np.exp(-.5*1j*k*((X**2)/(rho1)+(Y**2)/(rho1))) Jy = -Ea/eta0 Mx = Ea # cosine direction ctsp = np.cos(Theta)*np.sin(Phi) cp = np.cos(Phi) ctcp = np.cos(Theta)*np.cos(Phi) sp = np.sin(Phi) stcp = np.sin(Theta)*np.cos(Phi) stsp = np.sin(Theta)*np.sin(Phi) # N & L ejkrrp = np.exp(1j*k*( X*stcp + Y*stsp)) # exp(jk (r.r')) if self.grid: N_theta = np.einsum('tpnmf->tpf',Jy*ctsp*ejkrrp) # 12-12 a assuming Jx,Jz=0 N_phi = np.einsum('tpnmf->tpf',Jy*cp*ejkrrp) # 12-12 b "" L_theta = np.einsum('tpnmf->tpf',Mx*ctcp*ejkrrp) # 12-12 c assuming My,Mz=0 L_phi = np.einsum('tpnmf->tpf',-Mx*sp*ejkrrp) # 12-12 d "" else: N_theta = np.einsum('rnmf->rf',Jy*ctsp*ejkrrp) # 12-12 a assuming Jx,Jz=0 N_phi = np.einsum('rnmf->rf',Jy*cp*ejkrrp) # 12-12 b "" L_theta = np.einsum('rnmf->rf',Mx*ctcp*ejkrrp) # 12-12 c assuming My,Mz=0 L_phi = np.einsum('rnmf->rf',-Mx*sp*ejkrrp) # 12-12 d "" # Far-Field Ft = -L_phi - eta0*N_theta # 12-10b p 661 Fp = L_theta - eta0*N_phi # 12-10c p 661 G = Ft*np.conj(Ft)+Fp*np.conj(Fp) if self.grid: # Umax : ,f self.Umax = G.max(axis=(0,1)) Ft = Ft/np.sqrt(self.Umax[None,None,:]) Fp = Fp/np.sqrt(self.Umax[None,None,:]) # centered frequency range fcc = np.abs(self.fGHz-fcGHz) idxc = np.where(fcc==np.min(fcc))[0][0] # Gain @ center frequency #G = _gain(Ft[:,:,idxc],Fp[:,:,idxc]) G = _gain(Ft,Fp) # effective half power beamwidth self.ehpbw, self.hpster = _hpbw(G,self.theta,self.phi) self.Gfactor = 10**(GcmaxdB/10.)*self.ehpbw[idxc] Gmax = self.Gfactor/self.ehpbw Ft = np.sqrt(Gmax[None,None,:])*Ft Fp = np.sqrt(Gmax[None,None,:])*Fp else: ## ## Ft (r x f ) ## Fp (r x f ) ## Ft = Ft/np.sqrt(self.Umax[None,:]) Fp = Fp/np.sqrt(self.Umax[None,:]) Gmax = self.Gfactor/self.ehpbw Ft = np.sqrt(Gmax[None,:])*Ft Fp = np.sqrt(Gmax[None,:])*Fp return Ft,Fp def __patoll(self,**kwargs): """ """ paramdef = {'iband':0, 'polar':-45.0, 'tilt':0 } param = kwargs.pop('param') if param =={}: param = paramdef iband = param.pop('iband') polar = param.pop('polar') tilt = param.pop('tilt') # TODO check tilt value is compatible lbands = list(dict(self.atoll).keys()) # Gver : 360,Nf # Ghor : 360,Nf Gver = self.atoll[lbands[iband]][polar]['ver'][:,tilt,:] self.fGHz = self.atoll[lbands[iband]][polar]['freq'] self.tilt_theo = self.atoll[lbands[iband]][polar]['tilt'][tilt] Ghor = self.atoll[lbands[iband]][polar]['hor'][:,tilt,:] shG = Gver.shape Nhor = Ghor.shape[0] Nver = Gver.shape[0] # grid mode (180,360,Nf) rmax = int(Nver/2) self.theta = np.linspace(0,np.pi,rmax+1) self.phi = np.linspace(0,2*np.pi-2*np.pi/Nhor,Nhor) #self.nth = len(self.theta) #self.nph = len(self.phi) #a1 = np.kron(self.theta,np.ones(len(self.phi))) #2 = np.kron(np.ones(len(self.theta)),self.phi) #g = np.hstack((a1[:,None],a2[:,None])) sqG = np.ones((181,360,shG[-1])) uvermax = zeros(shG[-1]).astype(int) for k in range(shG[-1]): # find the maximum in the vertical plane uvermax[k] = np.where(Gver[:,k]==np.max(Gver[:,k]))[0][0] # offset of vertical pattern Gver_roll = np.roll(Gver[:,k],-uvermax[k]) # first row (pole) sqG[0,:,k] = np.sqrt(10**(Gver_roll[0]/10)) # last row (pole) sqG[-1,:,k] = np.sqrt(10**(Gver_roll[rmax]/10)) # first column (Vertical) c1 = 0 sqG[:,c1,k] = np.sqrt(10**(Gver_roll[0:rmax+1]/10)) # third column (Vertical) c3 = 180 sqG[1:-1,c3,k] = np.sqrt(10**(Gver_roll[rmax+1:][::-1]/10)) # second column (Horizontal) c2 = 90 sqG[:,c2,k] = np.sqrt(10**(Ghor[0:181,k]/10)) # fourth column (Horizontal) c4 = 270 sqG[1:-1,c4,k] = np.sqrt(10**(Ghor[rmax+1:,k][::-1]/10)) u1 = np.linspace(1,89,89)/89. # # interpolation # sqG[1:-1,1:90,k] = sqG[1:-1,0,k][:,None]*(1-u1[None,:])+sqG[1:-1,90,k][:,None]*u1[None,:] sqG[1:-1,91:180,k]= sqG[1:-1,90,k][:,None]*(1-u1[None,:])+sqG[1:-1,180,k][:,None]*u1[None,:] sqG[1:-1,181:270,k] = sqG[1:-1,180,k][:,None]*(1-u1[None,:])+sqG[1:-1,270,k][:,None]*u1[None,:] sqG[1:-1,271:,k]= sqG[1:-1,270,k][:,None]*(1-u1[None,:])+sqG[1:-1,0,k][:,None]*u1[None,:] #plt.plot(sqG[:,0,:]) #plt.plot(sqG[:,180,:]) #plt.plot(sqG[:,90,:]) #plt.plot(sqG[:,270,:]) Ft = sqG/np.sqrt(2) Fp = sqG/np.sqrt(2) return Ft,Fp def __phorn(self,**kwargs): """ Horn antenna http://www.ece.rutgers.edu/~orfanidi/ewa/ch18.pdf (18.2) Parameters ---------- Half Power Beamwidth (degrees) """ defaults = {'param': {'sigma_a':1.2593, 'sigma_b':1.0246, 'A_wl':16, 'B_wl':3, 'fcGHz':28., 'polar':'x' }} if 'param' not in kwargs or kwargs['param']=={}: kwargs['param']=defaults['param'] self.param = kwargs['param'] deg_to_rad = np.pi/180. ld_c = 0.3/self.param['fcGHz'] ld = 0.3/self.fGHz A_wl = kwargs['param']['A_wl'] B_wl = kwargs['param']['B_wl'] A = A_wl*ld_c B = B_wl*ld_c sigma_a = kwargs['param']['sigma_a'] sigma_b = kwargs['param']['sigma_b'] #b = kwargs['param']['b'] #Ra = (A/(A-a))*RA #Rb = (B/(B-b))*RB #La = np.sqrt(Ra**2+A**2/4) #Lb = np.sqrt(Rb**2+B**2/4) #alpha = np.arctan(A/(2*Ra)) #beta = np.arctan(B/(2*Rb)) #Delta_a = A**2/(8*Ra) #Delta_b = B**2/(8*Rb) #sigma_a = A/np.sqrt((2*ld*Ra)) #sigma_b = B/np.sqrt((2*ld*Rb)) A_n = A/ld B_n = B/ld if self.grid: # Nth x Nph x Nf theta = self.theta[:,None,None] phi = self.phi[None,:,None] else: # Ndir x Nf theta = self.theta[:,None] phi = self.phi[:,None] vx = A_n[...,:]*np.sin(theta)*np.cos(phi) # 18.3.4 vy = B_n[...,:]*np.sin(theta)*np.sin(phi) # 18.3.4 F = ((1+np.cos(theta))/2.)*(F1(vx,sigma_a)*F0(vy,sigma_b)) normF = np.abs(F1(0,sigma_a)*F0(0,sigma_b))**2 F_nor = F/np.sqrt(normF) efficiency = 0.125*normF # 18.4.3 Gmax = efficiency*4*np.pi*A*B/ld**2 F = np.sqrt(Gmax[...,:])*F_nor # Ndir x Nf # Handling repatition on both vector components # enforce E.y = 0 if self.param['polar']=='x': Ft = F/np.sqrt(1+(np.cos(theta)*np.sin(phi)/np.cos(phi))**2) Fp = (-np.cos(theta)*np.sin(phi)/np.cos(phi))*Ft nan_bool = np.isnan(Fp) Fp[nan_bool] = F[nan_bool] # enforce E.x = 0 if self.param['polar']=='y': Ft = F/np.sqrt(1+(np.cos(theta)*np.cos(phi)/np.sin(phi))**2) Fp = (np.cos(theta)*np.cos(phi)/np.sin(phi))*Ft nan_bool = np.isnan(Fp) Fp[nan_bool] = F[nan_bool] return Ft,Fp def __pazel(self,**kwargs): """ Azimuth elevation pattern from file Parameters ---------- filename : ANT filename Notes ----- The 3D pattern is obtained by taking the product of azimuth pattern and elevation pattern. """ defaults = {'param': {'filename' : '', 'pol':'V'}} f = open(kwargs['param']['filename']) Gthetaphi = f.readlines() f.close() Gthetaphi = np.array(Gthetaphi).astype('float') Gaz = Gthetaphi[360:] Gel = Gthetaphi[:360] sqGazlin = np.sqrt(pow(10,Gaz/10.)) sqGellin = np.sqrt(pow(10,Gel/10.)) if self.grid : # Nth x Nph x Nf if kwargs['param']['pol']=='V': Ft = np.ones((360,360,1)) Fp = np.zeros((360,360,1)) #Ft[180,:] = sqGazlin[:,None] #Ft[:,180] = sqGellin[:,None] Ft = sqGazlin[None,:,None]*sqGellin[:,None,None] if kwargs['param']['pol']=='H': Fp = np.ones((360,360,1)) Ft = np.zeros((360,360,1)) Fp = sqGazlin[None,:,None]*sqGellin[:,None,None] #self.Fp[180,:]= sqGazlin[:,None] #self.Fp[:,180]= sqGellin[:,None] if kwargs['param']['pol']=='45': Fp = np.ones((360,360,1)) Ft = np.ones((360,360,1)) # Azimuth Ft = (1/sqrt(2))*sqGazlin[None,:,None]*sqGellin[:,None,None] Fp = (1/sqrt(2))*sqGazlin[None,:,None]*sqGellin[:,None,None] #self.Fp[180,:]= sqGazlin[:,None] #self.Fp[180,:]= (1/sqrt(2))*sqGazlin[:,None] #Ft[180,:]= (1/sqrt(2))*sqGazlin[:,None] # Elevation #self.Fp[:,180]= (1/sqrt(2))*sqGellin[:,None] #Ft[:,180]= (1/sqrt(2))*sqGellin[:,None] #Ft = sqGthlin[:,None,None] #self.Fp = sqGphlin[None,:,None] # Ft = self.sqGmax * ( np.exp(-2.76*argth[:,None,None]) * np.exp(-2.76*argphi[None,:,None]) ) # self.Fp = self.sqGmax * ( np.exp(-2.76*argth[:,None,None]) * np.exp(-2.76*argphi[None,:,None]) ) self.evaluated = True else: pass # # # # Nd x Nf # # # Ft = self.sqGmax * ( np.exp(-2.76*argth) * np.exp(-2.76*argphi) ) # Fp = self.sqGmax * ( np.exp(-2.76*argth) * np.exp(-2.76*argphi) ) # # add frequency axis (Ndir x Nf) # Ft = np.dot(Ft[:,None],np.ones(len(self.fGHz))[None,:]) # self.Fp = np.dot(Fp[:,None],np.ones(len(self.fGHz))[None,:]) return Ft,Fp def __pGauss(self,**kwargs): """ Gauss pattern Parameters ---------- p0 : phi main lobe (0-2pi) p3 : 3dB aperture angle t0 : theta main lobe (0-pi) t3 : 3dB aperture angle TODO : finish implementation of polar """ defaults = {'param':{'p0' : 0, 't0' : np.pi/2, 'p3' : np.pi/6, 't3' : np.pi/6, 'pol':'th' }} if 'param' not in kwargs or kwargs['param']=={}: kwargs['param']=defaults['param'] self.typ='Gauss' self.param = kwargs['param'] p0 = self.param['p0'] t0 = self.param['t0'] p3 = self.param['p3'] t3 = self.param['t3'] pol = self.param['pol'] self.Gmax = 16/(t3*p3) self.GdB = 10*np.log10(self.Gmax) self.sqGmax = np.sqrt(self.Gmax) argth = ((self.theta-t0)**2)/t3 e1 = np.mod(self.phi-p0,2*np.pi) e2 = np.mod(p0-self.phi,2*np.pi) e = np.minimum(e1,e2) argphi = (e**2)/p3 Nf = len(self.fGHz) if self.grid : Nt = len(self.theta) Np = len(self.phi) # Nth x Nph x Nf # Ft = self.sqGmax * ( np.exp(-2.76*argth[:,None,None]) * np.exp(-2.76*argphi[None,:,None]) ) # self.Fp = self.sqGmax * ( np.exp(-2.76*argth[:,None,None]) * np.exp(-2.76*argphi[None,:,None]) ) if pol=='th': Ft = self.sqGmax * ( np.exp(-2.76*argth[:,None,None]) * np.exp(-2.76*argphi[None,:,None]) *np.ones(len(self.fGHz))[None,None,:]) Fp = np.zeros((Nt,Np,Nf)) if pol=='ph': Ft = np.zeros((Nt,Np,Nf)) Fp = self.sqGmax * ( np.exp(-2.76*argth[:,None,None]) * np.exp(-2.76*argphi[None,:,None]) *np.ones(len(self.fGHz))[None,None,:]) else: # # Nd x Nf # Nd = len(self.theta) assert(len(self.phi)==Nd) if pol=='th': Ft = self.sqGmax * ( np.exp(-2.76*argth) * np.exp(-2.76*argphi) ) Fp = np.zeros(Nd) if pol=='ph': Ft = np.zeros(Nd) Fp = self.sqGmax * ( np.exp(-2.76*argth) * np.exp(-2.76*argphi) ) # add frequency axis (Ndir x Nf) Ft = np.dot(Ft[:,None],np.ones(len(self.fGHz))[None,:]) Fp = np.dot(Fp[:,None],np.ones(len(self.fGHz))[None,:]) return Ft,Fp def __p3gpp(self,**kwargs): """ 3GPP antenna pattern Parameters ---------- thtilt : theta tilt antenna hpbwv : half power beamwidth v hpbwh : half power beamwidth h sllv : side lobe level fbrh : front back ratio gm : pol : h | v | c if pattern Ft nth x nphi x nf Fp nth x nphi x nf else Ft ndir x nf (==nth, ==nph) Fp ndir x nf (==nth, ==nph) """ defaults = {'param' : {'thtilt':0, # antenna tilt 'hpbwv' :6.2,# half power beamwidth v 'hpbwh' :65, # half power beamwidth h 'sllv': -18, # side lobe level 'fbrh': 30, # front back ratio 'gm': 18, # 'pol':'p' #t , p , c }} if 'param' not in kwargs or kwargs['param']=={}: kwargs['param'] = defaults['param'] #if 'param' not in kwargs: #kwargs['param']=defaults['param'] self.typ = "3gpp" self.param = kwargs['param'] thtilt = self.param['thtilt'] hpbwh = self.param['hpbwh'] hpbwv = self.param['hpbwv'] sllv = self.param['sllv'] fbrh = self.param['fbrh'] gm = self.param['gm'] pol = self.param['pol'] self.pol = pol # convert radian to degree phi = self.phi*180/np.pi-180 theta = self.theta*180/np.pi-90 if self.grid: #Nth x Nph x Nf GvdB = np.maximum(-12*((theta-thtilt)/hpbwv)**2,sllv)[:,None,None] GhdB = (-np.minimum(12*(phi/hpbwh)**2,fbrh)+gm)[None,:,None] GdB = GhdB+GvdB self.sqG = np.sqrt(10**(GdB/10.))*np.ones(self.nf)[None,None,:] self.evaluated = True else: #Nd x Nf GvdB = np.maximum(-12*((theta-thtilt)/hpbwv)**2,sllv)[:,None] GhdB = (-np.minimum(12*(phi/hpbwh)**2,fbrh)+gm)[:,None] GdB = GhdB+GvdB self.sqG = np.sqrt(10**(GdB/10.)) # radiating functions are deduced from square root of gain Ft,Fp = self.radF() return Ft,Fp def __pvsh1(self,**kwargs): """ calculate pattern from VSH Coeffs (shape 1) Parameters ---------- theta : ndarray (1xNdir) phi : ndarray (1xNdir) k : int frequency index Returns ------- Ft , Fp """ assert hasattr(self,'C'),'no spherical coefficient' assert hasattr(self.C.Br,'s1'),'no shape 1 coeff in vsh' if self.grid: theta = np.kron(self.theta, np.ones(self.nph)) phi = np.kron(np.ones(self.nth),self.phi) else: theta = self.theta phi = self.phi Nt = len(theta) Np = len(phi) if self.grid: theta = np.kron(theta, np.ones(Np)) phi = np.kron(np.ones(Nt),phi) nray = len(theta) Br = self.C.Br.s1[:, :, :] Bi = self.C.Bi.s1[:, :, :] Cr = self.C.Cr.s1[:, :, :] Ci = self.C.Ci.s1[:, :, :] L = self.C.Br.L1 M = self.C.Br.M1 # The - sign is necessary to get the good reconstruction # deduced from observation # May be it comes from a different definition of theta in SPHEREPACK ind = index_vsh(L, M) l = ind[:, 0] m = ind[:, 1] # V, W = VW(l, m, theta, phi) # # broadcasting along frequency axis # V = np.expand_dims(V,0) W = np.expand_dims(V,0) # # k : frequency axis # l : axis l (theta) # m : axis m (phi) # # The following cannot work du to shape issue!: # Fth = np.einsum('klm,kilm->ki',Br,np.real(V.T)) - \ # np.einsum('klm,kilm->ki',Bi,np.imag(V.T)) + \ # np.einsum('klm,kilm->ki',Ci,np.real(W.T)) + \ # np.einsum('klm,kilm->ki',Cr,np.imag(W.T)) # Fph = -np.einsum('klm,kilm->ki',Cr,np.real(V.T)) + \ # np.einsum('klm,kilm->ki',Ci,np.imag(V.T)) + \ # np.einsum('klm,kilm->ki',Bi,np.real(W.T)) + \ # np.einsum('klm,kilm->ki',Br,np.imag(W.T)) # this is replaced without garantee of correct # broadcasting on fequency by : Brr = Br[:,l,m] Bir = Bi[:,l,m] Crr = Cr[:,l,m] Cir = Ci[:,l,m] Fth = np.dot(Brr, np.real(V.T)) - \ np.dot(Bir, np.imag(V.T)) + \ np.dot(Cir, np.real(W.T)) + \ np.dot(Crr, np.imag(W.T)) Fph = -np.dot(Crr, np.real(V.T)) + \ np.dot(Cir, np.imag(V.T)) + \ np.dot(Bir, np.real(W.T)) + \ np.dot(Brr, np.imag(W.T)) # here Nf x Nd Ft = Fth.transpose() Fp = Fph.transpose() # then Nd x Nf if self.grid: # Nth x Nph x Nf Ft = Ft.reshape(self.nth, self.nph,self.nf) Fp = Fp.reshape(self.nth, self.nph,self.nf) # last axis should be frequency assert(Ft.shape[-1]==self.nf) assert(Fp.shape[-1]==self.nf) return Ft, Fp def __pvsh3(self,**kwargs): """ calculate pattern from vsh3 """ assert hasattr(self,'C'),'no spherical coefficient' assert hasattr(self.C.Br,'s3'),'no shape 3 coeff in vsh' if self.grid: theta = np.kron(self.theta, np.ones(self.nph)) phi = np.kron(np.ones(self.nth),self.phi) else: theta = self.theta phi = self.phi Br = self.C.Br.s3 lBr = self.C.Br.ind3[:, 0] mBr = self.C.Br.ind3[:, 1] Bi = self.C.Bi.s3 Cr = self.C.Cr.s3 Ci = self.C.Ci.s3 L = lBr.max() M = mBr.max() # vector spherical harmonics basis functions # V, W = VW(lBr, mBr, theta, phi) V, W = VW(lBr, mBr, theta, phi) Fth = np.dot(Br, np.real(V.T)) - \ np.dot(Bi, np.imag(V.T)) + \ np.dot(Ci, np.real(W.T)) + \ np.dot(Cr, np.imag(W.T)) Fph = -np.dot(Cr, np.real(V.T)) + \ np.dot(Ci, np.imag(V.T)) + \ np.dot(Bi, np.real(W.T)) + \ np.dot(Br, np.imag(W.T)) # here Nf x Nd Ft = Fth.transpose() Fp = Fph.transpose() # then Nd x Nf if self.grid: # Nth x Nph x Nf Ft = Ft.reshape(self.nth, self.nph,self.nf) Fp = Fp.reshape(self.nth, self.nph,self.nf) # last axis should be frequency assert(Ft.shape[-1]==self.nf) assert(Fp.shape[-1]==self.nf) return Ft,Fp def __psh3(self,**kwargs): """ calculate pattern for sh3 Parameters ---------- """ assert hasattr(self,'S'),'no spherical coefficient' assert hasattr(self.S.Cx,'s3'),'no shape 3 coeff in ssh' if self.grid: theta = np.kron(self.theta, np.ones(self.nph)) phi = np.kron(np.ones(self.nth),self.phi) else: theta = self.theta phi = self.phi cx = self.S.Cx.s3 cy = self.S.Cy.s3 cz = self.S.Cz.s3 lmax = self.S.Cx.lmax Y ,indx = SSHFunc2(lmax, theta,phi) k = self.S.Cx.k2 if self.grid: Ex = np.dot(cx,Y[k]) Ey = np.dot(cy,Y[k]) Ez = np.dot(cz,Y[k]) Fth,Fph = CartToSphere(theta, phi, Ex, Ey,Ez, bfreq = True, pattern = True ) Ft = Fth.transpose() Fp = Fph.transpose() Ft = Ft.reshape(self.nth, self.nph,self.nf) Fp = Fp.reshape(self.nth, self.nph,self.nf) else: Ex = np.dot(cx,Y[k]) Ey = np.dot(cy,Y[k]) Ez = np.dot(cz,Y[k]) Fth,Fph = CartToSphere(theta, phi, Ex, Ey,Ez, bfreq = True, pattern = False) Ft = Fth.transpose() Fp = Fph.transpose() assert(Ft.shape[-1]==self.nf) assert(Fp.shape[-1]==self.nf) return Ft,Fp def __pwireplate(self,**kwargs): """ pattern wire plate antenna """ defaults = {'param':{'t0' : 5*np.pi/6, 'GmaxdB': 5 }} if 'param' not in kwargs or kwargs['param']=={}: kwargs['param']=defaults['param'] self.typ='wireplate' self.param = kwargs['param'] t0 = self.param['t0'] GmaxdB = self.param['GmaxdB'] Gmax = pow(GmaxdB/10.,10) sqGmax = np.sqrt(Gmax) uth1 = np.where(self.theta < t0)[0] uth2 = np.where(self.theta >= t0)[0] p = t0 q = np.pi/2. A = np.array(([[3*p**2,2*p,1],[p**3,p**2,p],[q**3,q**2,q]])) Y = np.array(([0,1,1/(1.*sqGmax)])) self.poly = la.solve(A,Y) argth1 = np.abs(self.poly[0]*self.theta[uth1]**3 + self.poly[1]*self.theta[uth1]**2 + self.poly[2]*self.theta[uth1]) argth2 = -(1/(np.pi-t0)**2)*(self.theta[uth2]-t0)**2+1 argth = np.hstack((argth1,argth2))[::-1] if self.grid: Ft = sqGmax * (argth[:,None]) Fp = sqGmax * (argth[:,None]) else: Fat = sqGmax * argth Fap = sqGmax * argth Ft = np.dot(Fat[:,None],np.ones(len(self.fGHz))[None,:]) Fp = np.dot(Fap[:,None],np.ones(len(self.fGHz))[None,:]) return Ft,Fp def __pcst(self,**kwargs): """ read antenna in text format """ defaults = {'param':{'p' : 2, 'directory':'ant/FF_Results_txt_port_1_2/', 'fGHz':np.arange(2,6.5,0.5)}} if 'param' not in kwargs or kwargs['param']=={}: param=defaults['param'] else: param=kwargs['param'] self.fGHz = param['fGHz'] self.nf = len(self.fGHz) for f in param['fGHz']: if ((int(f*10))%10)==0: _filename1 = 'E_port'+str(param['p'])+'_f'+str(int(f))+'GHz.txt' _filename2 = 'E_port'+str(param['p'])+'_f'+str(int(f))+'Ghz.txt' # print 'toto' else: _filename1 = 'E_port'+str(param['p'])+'_f'+str(f)+'GHz.txt' _filename2 = 'E_port'+str(param['p'])+'_f'+str(f)+'Ghz.txt' filename1 = pyu.getlong(_filename1, param['directory']) filename2 = pyu.getlong(_filename2, param['directory']) try: df = pd.read_csv(filename1,sep=';') except: df = pd.read_csv(filename2,sep=';') columns = df.columns theta = (df[columns[0]]*np.pi/180).values.reshape(72,37) phi = (df[columns[1]]*np.pi/180).values.reshape(72,37) modGrlzdB = df[columns[2]] mFt = df[columns[3]] pFt = df[columns[4]] mFp = df[columns[5]] pFp = df[columns[6]] ratiodB = df[columns[7]] Ft = (10**(mFt/20)*np.exp(1j*pFt*np.pi/180)).values.reshape(72,37) Fp = (10**(mFp/20)*np.exp(1j*pFp*np.pi/180)).values.reshape(72,37) Ft = Ft.swapaxes(0,1) Fp = Fp.swapaxes(0,1) try: tFt=np.concatenate((tFt,Ft[...,None]),axis=2) tFp=np.concatenate((tFp,Fp[...,None]),axis=2) except: tFt=Ft[...,None] tFp=Fp[...,None] self.phi = phi[:,0] self.theta = theta[0,:] self.nth = len(self.theta) self.nph = len(self.phi) Ft = tFt Fp = tFp return Ft,Fp def __pHertz(self,**kwargs): """ Hertz dipole param = {'param':{'le':np.array([0,0,1])}} le unit vector defining the dipole orientation """ defaults = {'param':{'le':np.array([0,0,1])}} if 'param' not in kwargs or kwargs['param']=={}: kwargs['param']=defaults['param'] #k = 2*np.pi*self.fGHz[None,None,None,:]/0.3 param=kwargs['param'] if self.grid: le = param['le'][:,None,None] xr = np.sin(self.theta)[None,:,None]*np.cos(self.phi)[None,None,:] yr = np.sin(self.theta)[None,:,None]*np.sin(self.phi)[None,None,:] zr = np.cos(self.theta)[None,:,None]*np.ones(len(self.phi))[None,None,:] r = np.concatenate((xr,yr,zr),axis=0) xp = -np.sin(self.phi)[None,None,:]*np.ones(len(self.theta))[None,:,None] yp = np.cos(self.phi)[None,None,:]*np.ones(len(self.theta))[None,:,None] zp = np.zeros(len(self.phi))[None,None,:]*np.ones(len(self.theta))[None,:,None] ph = np.concatenate((xp,yp,zp),axis=0) xt = np.cos(self.theta)[None,:,None]*np.cos(self.phi)[None,None,:] yt = np.cos(self.theta)[None,:,None]*np.sin(self.phi)[None,None,:] zt = -np.sin(self.theta)[None,:,None]*np.ones(len(self.phi))[None,None,:] th = np.concatenate((xt,yt,zt),axis=0) vec = le - np.einsum('kij,kij->ij',le,r)[None,...]*r #G = 1j*30*k*vec Ft = np.sqrt(3/2.)*np.einsum('kij,kij->ij',vec,th)[...,None] Fp = np.sqrt(3/2.)*np.einsum('kij,kij->ij',vec,ph)[...,None] else: le = param['le'][:,None] xr = np.sin(self.theta)*np.cos(self.phi) yr = np.sin(self.theta)*np.sin(self.phi) zr = np.cos(self.theta) r = np.concatenate((xr,yr,zr),axis=0) xp = -np.sin(self.phi) yp = np.cos(self.phi) zp = np.zeros(len(self.phi)) ph = np.concatenate((xp,yp,zp),axis=0) xt = np.cos(self.theta)*np.cos(self.phi) yt = np.cos(self.theta)*np.sin(self.phi) zt = -np.sin(self.theta) th = np.concatenate((xt,yt,zt),axis=0) vec = le - np.einsum('ki,ki->i',le,r)[None,...]*r #G = 1j*30*k*vec Ft = np.sqrt(3/2.)*np.einsum('ki,ki->i',vec,th)[...,None] Fp = np.sqrt(3/2.)*np.einsum('ki,ki->i',vec,ph)[...,None] return Ft,Fp def __pHuygens(self,**kwargs): """ Huygens source param : dict le : direction of electric current n : normal to aperture """ defaults = {'param':{'le':np.array([0,0,1]), 'n':np.array([1,0,0])}} if 'param' not in kwargs or kwargs['param']=={}: kwargs['param']=defaults['param'] #k = 2*np.pi*self.fGHz[None,None,None,:]/0.3 param=kwargs['param'] if self.grid: le = param['le'][:,None,None] n = param['n'][:,None,None] xr = np.sin(self.theta)[None,:,None]*np.cos(self.phi)[None,None,:] yr = np.sin(self.theta)[None,:,None]*np.sin(self.phi)[None,None,:] zr = np.cos(self.theta)[None,:,None]*np.ones(len(self.phi))[None,None,:] r = np.concatenate((xr,yr,zr),axis=0) xp = -np.sin(self.phi)[None,None,:]*np.ones(len(self.theta))[None,:,None] yp = np.cos(self.phi)[None,None,:]*np.ones(len(self.theta))[None,:,None] zp = np.zeros(len(self.phi))[None,None,:]*np.ones(len(self.theta))[None,:,None] ph = np.concatenate((xp,yp,zp),axis=0) xt = np.cos(self.theta)[None,:,None]*np.cos(self.phi)[None,None,:] yt = np.cos(self.theta)[None,:,None]*np.sin(self.phi)[None,None,:] zt = -np.sin(self.theta)[None,:,None]*np.ones(len(self.phi))[None,None,:] th = np.concatenate((xt,yt,zt),axis=0) vec1 = le - np.einsum('kij,kij->ij',le,r)[None,...]*r cro1 = np.cross(le,n,axisa=0,axisb=0,axisc=0) vec2 = np.cross(cro1,r,axisa=0,axisb=0,axisc=0) vec = vec1-vec2 #G = 1j*30*k*vec Ft = np.sqrt(3/4.)*np.einsum('kij,kij->ij',vec,th)[...,None] Fp = np.sqrt(3/4.)*np.einsum('kij,kij->ij',vec,ph)[...,None] #Ft = np.einsum('kij,kij->ij',vec,th)[...,None] #Fp = np.einsum('kij,kij->ij',vec,ph)[...,None] else: le = param['le'][:,None] xr = np.sin(self.theta)*np.cos(self.phi) yr = np.sin(self.theta)*np.sin(self.phi) zr = np.cos(self.theta) r = np.concatenate((xr,yr,zr),axis=0) xp = -np.sin(self.phi) yp = np.cos(self.phi) zp = np.zeros(len(self.phi)) ph = np.concatenate((xp,yp,zp),axis=0) xt = np.cos(self.theta)*np.cos(self.phi) yt = np.cos(self.theta)*np.sin(self.phi) zt = -np.sin(self.theta) th = np.concatenate((xt,yt,zt),axis=0) vec1 = le - np.einsum('ki,ki->i',le,r)[None,...]*r cro1 = np.cross(le,n,axisa=0,axisb=0,axisc=0) vec2 = np.cross(cro1,r,axisa=0,axisb=0,axisc=0) vec = vec1-vec2 #G = 1j*30*k*vec Ft = np.sqrt(3)*np.einsum('ki,ki->i',vec,th)[...,None] Fp = np.sqrt(3)*np.einsum('ki,ki->i',vec,ph)[...,None] return Ft,Fp def __pArray(self,**kwargs): """ Array factor Parameters ---------- Sc : np.array coupling S matrix Notes ----- Nd : Number of directions Np : Number of points (antenna elements) Nf : Number of frequency Nb : Number of beams """ defaults = {'param':{'Sc':[]}} if 'param' not in kwargs or kwargs['param']=={}: kwargs['param']=defaults['param'] self.param = kwargs['param'] lamda = (0.3/self.fGHz) k = 2*np.pi/lamda if self.grid: sx = np.sin(self.theta[:,None])*np.cos(self.phi[None,:]) # Ntheta x Nphi sy = np.sin(self.theta[:,None])*np.sin(self.phi[None,:]) # Ntheta x Nphi sz = np.cos(self.theta[:,None])*np.ones(len(self.phi))[None,:] # Ntheta x Nphi sx = sx.reshape(self.nth*self.nph) sy = sy.reshape(self.nth*self.nph) sz = sz.reshape(self.nth*self.nph) else: sx = np.sin(self.theta)*np.cos(self.phi) # ,Nd sy = np.sin(self.theta)*np.sin(self.phi) # ,Nd sz = np.cos(self.theta) # ,Nd self.s = np.vstack((sx,sy,sz)).T # Nd x 3 # # F = exp(+jk s.p) # lshp = np.array(self.p.shape) if len(lshp)>2: Np = np.prod(lshp[1:]) p = self.p.reshape(3,Np) else: p = self.p Np = p.shape[1] self.Sc = self.param['Sc'] if self.Sc==[]: # Sc : Np x Np x Nf self.Sc = np.eye(Np)[...,None] #Sc2 = np.random.rand(Np,Np)[...,None] #pdb.set_trace() # # Get the weights # # w : b x a x f lshw = np.array(self.w.shape) if len(lshw)>2: Np2 = np.prod(lshw[0:-1]) assert(Np2==Np) w = self.w.reshape(Np,lshw[-1]) else: w = self.w # s : Nd x 3 # p : 3 x Np # # sdotp : Nd x Np sdotp = np.dot(self.s,p) # s . p for a in self.la: if not self.grid: a.eval(grid=self.grid,ph=self.phi,th=self.theta) else: a.eval(grid=self.grid) # aFt : Nt x Np x Nf |Nd x Nf # aFp : Nt x Np x Nf |Nd x Nf aFt = a.Ft aFp = a.Fp # # Force conversion to Nd x Nf # shF = aFt.shape aFt = aFt.reshape(np.prod(shF[0:-1]),shF[-1]) aFp = aFp.reshape(np.prod(shF[0:-1]),shF[-1]) # # Same pattern on each point # aFt = aFt[:,None,:] aFp = aFp[:,None,:] # # Nf : frequency # Nd : direction # Np : points or array antenna element position # Nb : number of beams # # w : Np x Nf # Sc : Np x Np x Nf # # # w' = w.Sc Np x Nf # # Coupling is implemented here # Rules : The repeated index k is the common dimension of the product # w : Np(k) x Nf(i) # Sc : Np(k) x Np(m) x Nf(i) # wp : Np(m) x Nf(i) wp = np.einsum('ki,kmi->mi',w,self.Sc) # add direction axis (=0) in w #if len(.w.shape)==3: # self.wp = self.wp[None,:,:,:] # aFT : Nd x Np x Nf # E : Nd x Np x Nf E = np.exp(1j*k[None,None,:]*sdotp[:,:,None]) # # wp : Np x Nf # Fp : Nd x Np x Nf # Ft : Nd x Np x Nf # Ft = wp[None,...]*aFt*E Fp = wp[None,...]*aFp*E if self.grid: # # Integrate over the Np points (axis =1) # only if self.grid # Fp : Nd x Nf # Ft : Nd x Nf # Ft = np.sum(Ft,axis=1) Fp = np.sum(Fp,axis=1) sh = Ft.shape Ft = Ft.reshape(self.nth,self.nph,sh[1]) Fp = Fp.reshape(self.nth,self.nph,sh[1]) return Ft,Fp def radF(self): """ evaluate radiation fonction w.r.t polarization self.pol : 't' : theta , 'p' : phi n, 'c' : circular """ assert self.pol in ['t','p','c'] if self.pol=='p': Fp = self.sqG Ft = np.zeros(Fp.shape) #if len(self.sqG.shape)==3: # Ft = np.array([0])*np.ones(len(self.fGHz))[None,None,:] #else: # Ft = np.array([0])*np.ones(len(self.fGHz))[None,:] if self.pol=='t': #if len(self.sqG.shape)==3: # Fp = np.array([0])*np.ones(len(self.fGHz))[None,None,:] #else: # Fp = np.array([0])*np.ones(len(self.fGHz))[None,:] Ft = self.sqG Fp = np.zeros(Ft.shape) if self.pol=='c': Fp = (1./np.sqrt(2))*self.sqG Ft = (1j/np.sqrt(2))*self.sqG return Ft,Fp def gain(self): """ calculates antenna gain Notes ----- This function updates the following attributes + self.G : np.array(Nt,Np,Nf) dtype:float linear gain or np.array(Nr,Nf) + self.sqG : np.array(Nt,Np,Nf) dtype:float linear sqare root of gain or np.array(Nr,Nf) + self.efficiency : np.array (,Nf) dtype:float efficiency + self.hpster : np.array (,Nf) dtype:float half power solid angle : 1 ~ 4pi steradian + self.ehpbw : np.array (,Nf) dtyp:float equivalent half power beamwidth (radians) .. math:: G(\\theta,\\phi) = |F_{\\theta}|^2 + |F_{\\phi}|^2 """ self.G = np.real( self.Fp * np.conj(self.Fp) + self.Ft * np.conj(self.Ft)) if self.grid: dt = self.theta[1]-self.theta[0] dp = self.phi[1]-self.phi[0] Nt = len(self.theta) Np = len(self.phi) Gs = self.G * np.sin(self.theta)[:, None, None] * np.ones(Np)[None, :, None] self.efficiency = np.sum(np.sum(Gs,axis=0),axis=0)*dt*dp/(4*np.pi) self.sqG = np.sqrt(self.G) self.GdB = 10*np.log10(self.G) # GdBmax (,Nf) # Get direction of Gmax and get the polarisation state in that direction self.GdBmax = np.max(np.max(self.GdB,axis=0),axis=0) # # The GdB maximum is determined over all the frequencies # GdBmax = np.max(self.GdBmax) #self.umax = np.array(np.where(self.GdB==self.GdBmax))[:,0] self.umax = np.array(np.where(self.GdB==GdBmax))[:,0] self.theta_max = self.theta[self.umax[0]] self.phi_max = self.phi[self.umax[1]] M = geu.SphericalBasis(np.array([[self.theta_max,self.phi_max]])) self.sl = M[:,2].squeeze() uth = M[:,0] uph = M[:,1] el = self.Ft[tuple(self.umax)]*uth + self.Fp[tuple(self.umax)]*uph eln = el/np.linalg.norm(el) self.el = eln.squeeze() self.hl = np.cross(self.sl,self.el) #assert((self.efficiency<1.0).all()),pdb.set_trace() self.hpster=np.zeros(len(self.fGHz)) self.ehpbw=np.zeros(len(self.fGHz)) for k in range(len(self.fGHz)): U = np.zeros((Nt,Np)) A = self.GdB[:,:,k]*np.ones(Nt)[:,None]*np.ones(Np)[None,:] u = np.where(A>(self.GdBmax[k]-3)) U[u] = 1 V = U*np.sin(self.theta)[:,None] self.hpster[k] = np.sum(V)*dt*dp/(4*np.pi) self.ehpbw[k] = np.arccos(1-2*self.hpster[k]) else: self.sqG = np.sqrt(self.G) self.GdB = 10*np.log10(self.G) def plotG(self,**kwargs): """ antenna plot gain in 2D Parameters ---------- fGHz : frequency plan : 'theta' | 'phi' depending on the selected plan to be displayed angdeg : phi or theta in degrees, if plan=='phi' it corresponds to theta GmaxdB : max gain to be displayed (20) polar : boolean dyn : 8 , legend : True, polar : boolean linear or polar representation topos : False, source :satimo, show : True, mode : string 'index' | color: string 'black' Returns ------- fig ax Notes ----- self.nth and self.nph has to be correctly set Examples -------- .. plot:: :include-source: >>> import matplotlib.pyplot as plt >>> from pylayers.antprop.antenna import * >>> A = Antenna('defant.vsh3') >>> fig,ax = A.plotG(fGHz=[2,3,4],plan='theta',angdeg=0) >>> fig,ax = A.plotG(fGHz=[2,3,4],plan='phi',angdeg=90) """ if not self.evaluated: self.eval(pattern=True) dtr = np.pi/180. defaults = {'fGHz' : [], 'dyn' : 8 , 'plan': 'phi', 'angdeg' : 90, 'legend':True, 'GmaxdB':20, 'polar':True, 'topos':False, 'source':'satimo', 'show':True, 'mode':'index', 'color':'black', 'u':0, } for k in defaults: if k not in kwargs: kwargs[k] = defaults[k] args = {} for k in kwargs: if k not in defaults: args[k] = kwargs[k] if 'fig' not in kwargs: fig = plt.figure(figsize=(8, 8)) else: fig = kwargs['fig'] if 'ax' not in kwargs: #ax = fig.add_axes([0.1, 0.1, 0.8, 0.8], polar=True, facecolor='#d5de9c') if kwargs['polar']: ax = fig.add_axes([0.1, 0.1, 0.8, 0.8], polar=True ) else: ax = fig.add_subplot(111) else: ax = kwargs['ax'] u = kwargs['u'] rc('grid', color='#316931', linewidth=1, linestyle='-') rc('xtick', labelsize=15) rc('ytick', labelsize=15) DyndB = kwargs['dyn'] * 5 GmindB = kwargs['GmaxdB'] - DyndB #print "DyndB",DyndB #print "GmindB",GmindB # force square figure and square axes looks better for polar, IMO t1 = np.arange(5, DyndB + 5, 5) t2 = np.arange(GmindB + 5, kwargs['GmaxdB'] + 5, 5) col = ['k', 'r', 'g', 'b', 'm', 'c', 'y'] cpt = 0 #if len(self.fGHz) > 1 : # fstep = self.fGHz[1]-self.fGHz[0] #else : # fstep = np.array((abs(self.fGHz-kwargs['fGHz'][0])+1)) #dtheta = self.theta[1,0]-self.theta[0,0] #dphi = self.phi[0,1]-self.phi[0,0] dtheta = self.theta[1]-self.theta[0] dphi = self.phi[1]-self.phi[0] if kwargs['fGHz']==[]: lfreq = [self.fGHz[0]] else: lfreq = kwargs['fGHz'] for f in lfreq: df = abs(self.fGHz-f) ik0 = np.where(df==min(df)) ik = ik0[0][0] #ik=0 chaine = 'f = %3.2f GHz' %(self.fGHz[ik]) # all theta if kwargs['plan']=='theta': itheta = np.arange(self.nth) iphi1 = np.where(abs(self.phi-kwargs['angdeg']*dtr)<dphi)[0][0] Np = self.nph # 0 <= theta <= pi/2 u1 = np.where((self.theta <= np.pi / 2.) & (self.theta >= 0))[0] # 0 < theta < pi u2 = np.arange(self.nth) # pi/2 < theta <= pi u3 = np.nonzero((self.theta <= np.pi) & ( self.theta > np.pi / 2))[0] # # handle broadcasted axis =1 --> index 0 shsqG = self.sqG.shape if shsqG[0]==1: u1 = 0 u2 = 0 u3 = 0 if shsqG[1]==1: iphi1 = 0 iphi2 = 0 if len(shsqG)==3: # if only one frequency point if shsqG[2]==1: ik = 0 else: if shsqG[3]==1: ik = 0 # handle parity if np.mod(Np, 2) == 0: iphi2 = np.mod(iphi1 + int(Np / 2), Np) else: iphi2 = np.mod(iphi1 + int((Np - 1) / 2), Np) if len(shsqG)==3: arg1 = (u1,iphi1,ik) arg2 = (u2,iphi2,ik) arg3 = (u3,iphi1,ik) else: if shsqG[3]==1: u = 0 arg1 = (u1,iphi1,u,ik) arg2 = (u2,iphi2,u,ik) arg3 = (u3,iphi1,u,ik) # polar diagram #pdb.set_trace() if kwargs['polar']: if kwargs['source']=='satimo': r1 = -GmindB + 20 * np.log10( self.sqG[arg1]+1e-12) r2 = -GmindB + 20 * np.log10( self.sqG[arg2]+1e-12) r3 = -GmindB + 20 * np.log10( self.sqG[arg3]+1e-12) #print max(r1)+GmindB #print max(r2)+GmindB #print max(r3)+GmindB if kwargs['source']=='cst': r1 = -GmindB + 20 * np.log10( self.sqG[arg1]/np.sqrt(30)+1e-12) r2 = -GmindB + 20 * np.log10( self.sqG[arg2]/np.sqrt(30)+1e-12) r3 = -GmindB + 20 * np.log10( self.sqG[arg3]/np.sqrt(30)+1e-12) if type(r1)!= np.ndarray: r1 = np.array([r1])*np.ones(len(self.phi)) if type(r2)!= np.ndarray: r2 = np.array([r2])*np.ones(len(self.phi)) if type(r3)!= np.ndarray: r3 = np.array([r3])*np.ones(len(self.phi)) negr1 = np.nonzero(r1 < 0) negr2 = np.nonzero(r2 < 0) negr3 = np.nonzero(r3 < 0) r1[negr1[0]] = 0 r2[negr2[0]] = 0 r3[negr3[0]] = 0 r = np.hstack((r1[::-1], r2, r3[::-1], r1[-1])) a1 = np.arange(0, 360, 30) a2 = [90, 60, 30, 0, 330, 300, 270, 240, 210, 180, 150, 120] rline2, rtext2 = plt.thetagrids(a1, a2) # linear diagram else: r1 = 20 * np.log10( self.sqG[arg1]+1e-12) r2 = 20 * np.log10( self.sqG[arg2]+1e-12) r3 = 20 * np.log10( self.sqG[arg3]+1e-12) r = np.hstack((r1[::-1], r2, r3[::-1], r1[-1])) # angular basis for phi angle = np.linspace(0, 2 * np.pi, len(r), endpoint=True) plt.title(u'$\\theta$ plane') if kwargs['plan']=='phi': iphi = np.arange(self.nph) itheta = np.where(abs(self.theta-kwargs['angdeg']*dtr)<dtheta)[0][0] angle = self.phi[iphi] if len(self.sqG.shape)==3: arg = [itheta,iphi,ik] else: arg = [itheta,iphi,u,ik] if kwargs['polar']: if np.prod(self.sqG.shape)!=1: r = -GmindB + 20 * np.log10(self.sqG[arg]) neg = np.nonzero(r < 0) r[neg] = 0 else: r = -GmindB+ 20*np.log10(self.sqG[0,0,0]*np.ones(np.shape(angle))) # plt.title(u'H plane - $\phi$ degrees') a1 = np.arange(0, 360, 30) a2 = [0, 30, 60, 90, 120 , 150 , 180 , 210, 240 , 300 , 330] #rline2, rtext2 = plt.thetagrids(a1, a2) else: r = 20 * np.log10(self.sqG[arg]) plt.title(u'$\\phi$ plane ') # actual plotting if len(lfreq)>1: ax.plot(angle, r, color=col[cpt], lw=2, label=chaine) else: ax.plot(angle, r, color=kwargs['color'], lw=2, label=chaine) cpt = cpt + 1 if kwargs['polar']: rline1, rtext1 = plt.rgrids(t1, t2) #ax.set_rmax(t1[-1]) #ax.set_rmin(t1[0]) if kwargs['legend']: ax.legend() if kwargs['show']: plt.ion() plt.show() return(fig,ax) class Antenna(Pattern): """ Antenna Attributes ---------- name : Antenna name nf : number of frequency nth : number of theta nph : number of phi Ft : Normalized Ftheta (ntheta,nphi,nf) Fp : Normalized Fphi (ntheta,nphi,nf) sqG : square root of gain (ntheta,nphi,nf) theta : theta base 1 x ntheta phi : phi base 1 x phi C : VSH Coefficients Methods ------- info : Display information about antenna vsh : calculates Vector Spherical Harmonics show3 : Geomview diagram plot3d : 3D diagram plotting using matplotlib toolkit Antenna trx file can be stored in various order natural : HFSS ncp : near filed chamber It is important when initializing an antenna object to be aware of the typ of trx file .trx (ASCII Vectorial antenna Pattern) F Phi Theta Fphi Ftheta """ def __init__(self,typ='Omni',**kwargs): """ class constructor Parameters ---------- typ : 'Omni','Gauss','WirePlate','3GPP','atoll' _filename : string antenna file name directory : str antenna subdirectory of the current project the file is seek in the $BASENAME/ant directory nf : integer number of frequency ntheta : integer number of theta (default 181) nphi : integer number of phi (default 90) source : string source of data { 'satimo' | 'cst' | 'hfss' } Notes ----- The supported data formats for storing antenna patterns are 'mat': Matlab File 'vsh2': unthresholded vector spherical coefficients 'vsh3': thresholded vector spherical cpoefficients 'atoll': Atoll antenna file format 'trx' : Satimo NFC raw data 'trx1' : Satimo NFC raw data (deprecated) A = Antenna('my_antenna.mat') """ defaults = {'directory': 'ant', 'source':'satimo', 'ntheta':90, 'nphi':181, 'L':90, # L max 'param':{}, } for k in defaults: if k not in kwargs: kwargs[k] = defaults[k] if 'fGHz' in kwargs: if type(kwargs['fGHz'])==np.ndarray: self.fGHz=kwargs['fGHz'] else: self.fGHz=np.array([kwargs['fGHz']]) #mayavi selection self._is_selected=False self.source = kwargs['source'] self.param = kwargs['param'] # super(Antenna,self).__init__() #Pattern.__init__(self) # # if typ string has an extension it is a file # if isinstance(typ,str): AntennaName,Extension = os.path.splitext(typ) self.ext = Extension[1:] if self.ext=='': self.fromfile = False else: self.fromfile = True else: self.fromfile = True self.tau = 0 self.evaluated = False #determine if pattern for all theta/phi is constructed if self.fromfile: if isinstance(typ,str): self._filename = typ if self.ext == 'vsh3': self.typ='vsh3' self.loadvsh3() if self.ext == 'vsh2': self.typ='vsh2' self.loadvsh2() if self.ext == 'sh3': self.typ='sh3' self.loadsh3() if self.ext == 'sh2': self.typ='sh2' self.loadsh2() if self.ext == 'trx1': self.typ='trx' self.load_trx(kwargs['directory'],self.nf,self.nth,self.nph) if self.ext == 'trx': self.typ='trx' self.loadtrx(kwargs['directory'],kwargs['param']) if self.ext == 'mat': self.typ='mat' self.loadmat(kwargs['directory']) if self.ext == 'cst': self.typ='cst' if self.ext == 'txt': self.typ='atoll' self.load_atoll(kwargs['directory']) elif isinstance(typ,list): self._filename = typ self.ext='hfss' self.loadhfss(typ, self.nth, self.nph) else: # not from file self.typ = typ self._filename = typ if self.typ=='vsh3': self.initvsh() else: self.eval() def __repr__(self): st = '' st = st + 'type : ' + self.typ +'\n' st = st+'------------------------\n' if 'param' in self.__dict__: for k in self.param: st = st + ' ' + k + ' : ' + str(self.param[k])+'\n' if hasattr(self,'atoll'): for k1 in list(dict(self.atoll).keys()): st = st + str(k1)+'\n' for k2 in self.atoll[k1]: st = st + ' '+ str(k2)+'\n' st = st+'------------------------\n' rtd = 180./np.pi if self.fromfile: if isinstance(self._filename,str): st = st + 'file name : ' + self._filename+'\n' else: for i in range(len(self._filename)): st = st + 'FileName : ' + self._filename[i]+'\n' # #st = st + 'file type : ' + self.typ+'\n' if 'fGHz' in self.__dict__: st = st + "fmin : %4.2f" % (self.fGHz[0]) + "GHz\n" st = st + "fmax : %4.2f" % (self.fGHz[-1]) + "GHz\n" try: st = st + "step : %4.2f" % (1000*(self.fGHz[1]-self.fGHz[0])) + "MHz\n" except: st = st + "step : None\n" st = st + "Nf : %d" % (len(self.fGHz)) +"\n" # # if hasattr(self,'C'): st = st + self.C.__repr__() if hasattr(self,'S'): st = st + self.S.__repr__() if self.evaluated: st = st + '-----------------------\n' st = st + ' evaluated \n' st = st + '-----------------------\n' st = st + "Ntheta : %d" % (self.nth) + "\n" st = st + "Nphi : %d" % (self.nph) + "\n" # kwargs[k] = defaults[k] u = np.where(self.sqG==self.sqG.max()) if self.grid: if len(u[0])>1: S = self.sqG[(u[0][0],u[1][0],u[2][0])] ut = u[0][0] up = u[1][0] uf = u[2][0] else: S = self.sqG[u] ut = u[0] up = u[1] uf = u[2] else: if len(u[0])>1: S = self.sqG[(u[0][0],u[1][0])] ud = u[0][0] uf = u[1][0] else: S = self.sqG[u] ud = u[0] uf = u[1] st = st + "GdBmax :"+str(self.GdBmax[0])+' '+str(self.GdBmax[-1])+'\n' st = st + "Gmax direction : .sl" + str(self.sl)+'\n' st = st + "Orientation of E field in Gmax direction : .el " + str(self.el)+'\n' st = st + "Orientation of H field in Gmax direction : .hl " + str(self.hl)+'\n' st = st + "effective HPBW : .ehpbw " + str(self.ehpbw[0])+' '+str(self.ehpbw[-1])+'\n' if self.source=='satimo': GdB = 20*np.log10(S) # see WHERE1 D4.1 sec 3.1.1.2.2 if self.source=='cst': GdB = 20*np.log10(S/np.sqrt(30)) #st = st + "GmaxdB : %4.2f dB \n" % (GdB) st = st + " f = %4.2f GHz \n" % (self.fGHz[uf]) if self.grid: st = st + " theta = %4.2f (degrees) \n" % (self.theta[ut]*rtd) st = st + " phi = %4.2f (degrees) \n" % (self.phi[up]*rtd) else: st = st + " Ray n :" + str(ud)+' \n' else: st = st + 'Not evaluated\n' # # # if self.typ == 'mat': # #st = st + self.DataFile + '\n' # st = st + 'antenna name : '+ self.AntennaName + '\n' # st = st + 'date : ' + self.Date +'\n' # st = st + 'time : ' + self.StartTime +'\n' # st = st + 'Notes : ' + self.Notes+'\n' # st = st + 'Serie : ' + str(self.Serie)+'\n' # st = st + 'Run : ' + str(self.Run)+'\n' # st = st + "Nb theta (lat) : "+ str(self.nth)+'\n' # st = st + "Nb phi (lon) :"+ str(self.nph)+'\n' # # if self.typ == 'Gauss': # st = st + 'Gaussian pattern' + '\n' # st = st + 'phi0 : ' + str(self.p0) +'\n' # st = st + 'theta0 :' + str(self.t0) + '\n' # st = st + 'phi 3dB :' + str(self.p3) + '\n' # st = st + 'theta 3dB :' + str(self.t3) + '\n' # st = st + 'Gain dB :' + str(self.GdB) + '\n' # st = st + 'Gain linear :' + str(self.G ) + '\n' # st = st + 'sqrt G :' + str(self.sqG) + '\n' return(st) def initvsh(self,lmax=45): """ Initialize a void vsh structure Parameters ---------- fGHz : array lmax : int level max """ nf = len(self.fGHz) Br = 1j * np.zeros((nf, lmax, lmax-1)) Bi = 1j * np.zeros((nf, lmax, lmax-1)) Cr = 1j * np.zeros((nf, lmax, lmax-1)) Ci = 1j * np.zeros((nf, lmax, lmax-1)) Br = VCoeff(typ='s1', fmin=self.fGHz[0], fmax=self.fGHz[-1], data=Br) Bi = VCoeff(typ='s1', fmin=self.fGHz[0], fmax=self.fGHz[-1], data=Bi) Cr = VCoeff(typ='s1', fmin=self.fGHz[0], fmax=self.fGHz[-1], data=Cr) Ci = VCoeff(typ='s1', fmin=self.fGHz[0], fmax=self.fGHz[-1], data=Ci) self.C = VSHCoeff(Br, Bi, Cr, Ci) def ls(self, typ='vsh3'): """ list the antenna files in antenna project directory Parameters ---------- typ : string optional {'mat'|'trx'|'vsh2'|'sh2'|'vsh3'|'sh3'} Returns ------- lfile_s : list sorted list of all the .str file of strdir """ if typ=='vsh3': pathname = pstruc['DIRANT'] + '/*.' + typ if typ=='sh3': pathname = pstruc['DIRANT'] + '/*.' + typ if typ=='mat': pathname = pstruc['DIRANT'] + '/*.' + typ if typ=='trx': pathname = pstruc['DIRANT'] + '/*.' + typ lfile_l = glob.glob(basename+'/'+pathname) lfile_s = [] for fi in lfile_l: fis = pyu.getshort(fi) lfile_s.append(fis) lfile_s.sort() return lfile_s def photo(self,directory=''): """ show a picture of the antenna Parameters ---------- directory : string """ if directory == '': directory = os.path.join('ant','UWBAN','PhotosVideos') _filename = 'IMG_'+self.PhotoFile.split('-')[1]+'.JPG' filename = pyu.getlong(_filename,directory) if sys.version_info.major==2: I = Image.open(filename) else: I = image.open(filename) I.show() def load_atoll(self,directory="ant"): """ load antenna from Atoll file Atoll format provides Antenna gain in the horizontal and vertical plane for different frequencies and different tilt values Parameters ---------- directory : string Notes ----- attol dictionnary is created atoll[keyband][polar]['hor'] = Ghor.reshape(360,ct,cf) atoll[keyband][polar]['ver'] = Gver.reshape(360,ct,cf) atoll[keyband][polar]['tilt'] = np.array(tilt) atoll[keyband][polar]['freq'] = np.array(tilt) """ _filemat = self._filename fileatoll = pyu.getlong(_filemat, directory) fd = open(fileatoll) lis = fd.readlines() tab = [] for li in lis: lispl= li.split('\t') if (lispl[0]!=''): tab.append(lispl) deg_to_rad = np.pi/180. lbs_to_kg = 0.45359237 columns = tab[0] #pdb.set_trace() for k in np.arange(len(tab)-1): df = pd.DataFrame([tab[k+1]],columns=columns) try: dff=dff.append(df) except: dff= df self.raw = dff dff = dff.iloc[:,[0,8,9,10,2,5,7,14,11,16,17,13,6,12]] #dff = df['Name','Gain (dBi)','FMin','FMax','FREQUENCY','Pattern','V_WIDTH','H_WIDTH','DIMENSIONS HxWxD (INCHES)','WEIGHT (LBS)'] dff.columns = ['Name','Fmin','Fmax','F','Gmax','G','Hpbw','H_width','V_width','HxWxD','Weight','Tilt','Etilt','Ftob'] dff=dff.apply(lambda x :pd.to_numeric(x,errors='ignore')) # # Parse polarization in the field name # upolarp45 = ['(+45)' in x for x in dff['Name']] upolarm45 = ['(-45)' in x for x in dff['Name']] if (sum(upolarp45)>0): dff.loc[upolarp45,'Polar']=45 if (sum(upolarm45)>0): dff.loc[upolarm45,'Polar']=-45 atoll = {} dfband = dff.groupby(['Fmin']) for b in dfband: keyband = str(b[0])+'-'+str(b[1]['Fmax'].values[0]) atoll[keyband]={} # band dfpol = b[1].groupby(['Polar']) for p in dfpol: atoll[keyband][p[0]] = {} # polar dftilt = p[1].groupby(['Tilt']) Ghor = np.empty((360,1)) # angle , tilt , frequency Gver = np.empty((360,1)) # angle , ct = 0 tilt = [] for t in dftilt: dffreq = t[1].groupby(['F']) ct+=1 cf=0 tilt.append(t[0]) freq = [] for f in dffreq: freq.append(f[0]) cf+=1 if len(f[1])==1: df = f[1] else: df = f[1].iloc[0:1] Gmax = df['Gmax'].values str1 = df.loc[:,'G'].values[0].replace(' ',' ') lstr = str1.split(' ') Pattern = [ eval(x) for x in lstr[0:-1]] # 4 fist field / # of points Nd,db,dc,Np = Pattern[0:4] #print(Nd,b,c,Np) tmp = np.array(Pattern[4:4+2*Np]).reshape(Np,2) ah = tmp[:,0] ghor = Gmax-tmp[:,1] # 4 fist field / # of points da,db,dc,dd = Pattern[4+2*Np:4+2*Np+4] #pdb.set_trace() #print a,b,c,d tmp = np.array(Pattern[4+2*Np+4:]).reshape(dc,2) gver = Gmax-tmp[:,0] av = tmp[:,1] try: Ghor = np.hstack((Ghor,ghor[:,None])) Gver = np.hstack((Gver,gver[:,None])) except: pdb.set_trace() Ghor = np.delete(Ghor,0,1) Gver = np.delete(Gver,0,1) atoll[keyband][p[0]]['hor'] = Ghor.reshape(360,ct,cf) atoll[keyband][p[0]]['ver'] = Gver.reshape(360,ct,cf) atoll[keyband][p[0]]['tilt'] = np.array(tilt) atoll[keyband][p[0]]['freq'] = np.array(freq) self.atoll = atoll # lbands : list of antenna bands # Gmax = eval(self.df['Gain (dBi)'].values[0]) #fig = plt.figure() #ax =plt.gca(projection='polar') #ax =plt.gca() #ax.plot(H2[:,1]*deg_to_rad,Gain-H2[:,0],'r',label='vertical',linewidth=2) #ax.plot(H1[:,0]*deg_to_rad,Gain-H1[:,1],'b',label='horizontal',linewidth=2) #ax.set_rmin(-30) #plt.title(dir1+'/'+filename+' Gain : '+df['Gain (dBi)'].values[0]) #BXD-634X638XCF-EDIN.txt #BXD-636X638XCF-EDIN.txt def loadmat(self, directory="ant"): """ load an antenna stored in a mat file Parameters ---------- directory : str , optional default 'ant' Examples -------- .. plot:: :include-source: >>> import matplotlib.pyplot as plt >>> from pylayers.antprop.antenna import * >>> A = Antenna('S1R1.mat',directory='ant/UWBAN/Matfile') >>> f,a = A.plotG(plan='theta',angdeg=0) >>> f,a = A.plotG(plan='phi',angdeg=90,fig=f,ax=a) >>> txt = plt.title('S1R1 antenna : st loadmat') >>> plt.show() """ _filemat = self._filename filemat = pyu.getlong(_filemat, directory) d = io.loadmat(filemat, squeeze_me=True, struct_as_record=False) ext = _filemat.replace('.mat', '') d = d[ext] # # # self.typ = 'mat' self.Date = str(d.Date) self.Notes = str(d.Notes) self.PhotoFile = str(d.PhotoFile) self.Serie = eval(str(d.Serie)) self.Run = eval(str(d.Run)) self.DataFile = str(d.DataFile) self.StartTime = str(d.StartTime) self.AntennaName = str(d.AntennaName) self.fGHz = d.freq/1.e9 self.theta = d.theta self.phi = d.phi self.Ft = d.Ftheta self.Fp = d.Fphi self.Fp = self.Fp.swapaxes(0, 2) self.Fp = self.Fp.swapaxes(0, 1) self.Ft = self.Ft.swapaxes(0, 2) self.Ft = self.Ft.swapaxes(0, 1) Gr = np.real(self.Fp * np.conj(self.Fp) + \ self.Ft * np.conj(self.Ft)) self.sqG = np.sqrt(Gr) self.nth = len(self.theta) self.nph = len(self.phi) if type(self.fGHz) == float: self.nf = 1 else: self.nf = len(self.fGHz) self.evaluated = True self.grid = True def load_trx(self, directory="ant", nf=104, ntheta=181, nphi=90, ncol=6): """ load a trx file (deprecated) Parameters ---------- directory : str directory where is located the trx file (default : ant) nf : float number of frequency points ntheta : float number of theta nphi : float number of phi TODO : DEPRECATED (Fix the Ft and Fp format with Nf as last axis) """ _filetrx = self._filename filename = pyu.getlong(_filetrx, directory) if ncol == 6: pattern = """^.*\t.*\t.*\t.*\t.*\t.*\t.*$""" else: pattern = """^.*\t.*\t.*\t.*\t.*\t.*\t.*\t.*$""" fd = open(filename, 'r') d = fd.read().split('\r\n') fd.close() k = 0 #while ((re.search(pattern1,d[k]) is None ) & (re.search(pattern2,d[k]) is None )): while re.search(pattern, d[k]) is None: k = k + 1 d = d[k:] N = len(d) del d[N - 1] r = '\t'.join(d) r.replace(' ', '') d = np.array(r.split()).astype('float') # # TODO Parsing the header # #nf = 104 #nphi = 90 #ntheta = 181 N = nf * nphi * ntheta d = d.reshape(N, 7) F = d[:, 0] PHI = d[:, 1] THETA = d[:, 2] Fphi = d[:, 3] + d[:, 4] * 1j Ftheta = d[:, 5] + d[:, 6] * 1j self.Fp = Fphi.reshape((nf, nphi, ntheta)) self.Ft = Ftheta.reshape((nf, nphi, ntheta)) Ttheta = THETA.reshape((nf, nphi, ntheta)) Tphi = PHI.reshape((nf, nphi, ntheta)) Tf = F.reshape((nf, nphi, ntheta)) self.Fp = self.Fp.swapaxes(1, 2) self.Ft = self.Ft.swapaxes(1, 2) Ttheta = Ttheta.swapaxes(1, 2) Tphi = Tphi.swapaxes(1, 2) Tf = Tf.swapaxes(1, 2) self.fGHz = Tf[:, 0, 0] self.theta = Ttheta[0, :, 0] #self.phi = Tphi[0,0,:] # # Temporaire # A1 = self.Fp[:, 90:181, :] A2 = self.Fp[:, 0:91, :] self.Fp = np.concatenate((A1, A2[:, ::-1, :]), axis=2) A1 = self.Ft[:, 90:181, :] A2 = self.Ft[:, 0:91, :] self.Ft = np.concatenate((A1, A2[:, ::-1, :]), axis=2) self.theta = np.linspace(0, np.pi, 91) self.phi = np.linspace(0, 2 * np.pi, 180, endpoint=False) self.nth = 91 self.nph = 180 self.nf = 104 self.evaluated = True def pattern(self,theta=[],phi=[],typ='s3'): """ return multidimensionnal radiation patterns Parameters ---------- theta : array 1xNt phi : array 1xNp typ : string {s1|s2|s3} """ if theta == []: theta = np.linspace(0,np.pi,30) if phi == []: phi = np.linspace(0,2*np.pi,60) self.grid = True Nt = len(theta) Np = len(phi) Nf = len(self.fGHz) #Th = np.kron(theta, np.ones(Np)) #Ph = np.kron(np.ones(Nt), phi) if typ =='s1': FTh, FPh = self.Fsynth1(theta, phi) if typ =='s2': FTh, FPh = self.Fsynth2b(theta,phi) if typ =='s3': FTh, FPh = self.Fsynth3(theta, phi) #FTh = Fth.reshape(Nf, Nt, Np) #FPh = Fph.reshape(Nf, Nt, Np) return(FTh,FPh) def coeffshow(self,**kwargs): """ display antenna coefficient typ : string 'ssh' |'vsh' L : maximum level kf : frequency index vmin : float vmax : float """ defaults = {'typ':'vsh', 'L':20, 'kf':46, 'vmin':-40, 'vmax':0, 'cmap':cm.hot_r, 'dB':True } for k in defaults: if k not in kwargs: kwargs[k]=defaults[k] L = kwargs['L'] kf = kwargs['kf'] # calculates mode energy # linear and log scale # E : f , l , m if kwargs['typ']=='vsh': E = self.C.energy(typ='s1') if kwargs['typ']=='ssh': E = self.S.energy(typ='s1') # Aem : f,l # calculates energy integrated over m Aem = np.sum(E,axis=2) Aem_dB = 10*np.log10(Aem) # Ael : f,m # calculates energy integrated over l Ael = np.sum(E,axis=1) Ael_dB = 10*np.log10(Ael) fig, ax = plt.subplots() fig.set_figwidth(15) fig.set_figheight(10) if kwargs['dB']: im = ax.imshow(10*np.log10(E[kf,:,:]), vmin = kwargs['vmin'], vmax = kwargs['vmax'], extent =[-L,L,L,0], interpolation = 'nearest', cmap = kwargs['cmap']) divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="5%", pad=0.05) axHistx = divider.append_axes("top", 1., pad=0.5, sharex=ax) axHisty = divider.append_axes("left", 1., pad=0.5, sharey=ax) #axHistx.bar(range(-L,L),Aem) #axHisty.barh(range(0,L),Ael ) axHistx.yaxis.set_ticks(np.array([0,0.2,0.4,0.6,0.8])) axHisty.xaxis.set_ticks(np.array([0,0.1,0.2,0.3])) cbar = plt.colorbar(im, cax=cax) fig.tight_layout() plt.text(-0.02,0.6 ,'levels', horizontalalignment='right', verticalalignment='top', transform=ax.transAxes, rotation =90, fontsize= 15) plt.text(0.6,1.1 ,'free space', horizontalalignment='right', verticalalignment='top', transform=ax.transAxes, fontsize= 15) plt.text(0.55,-0.1 ,'modes', horizontalalignment='right' ,verticalalignment='top', transform=ax.transAxes, fontsize= 15) return fig,ax def errel(self,kf=-1, dsf=1, typ='s3'): """ calculates error between antenna pattern and reference pattern Parameters ---------- kf : integer frequency index. If k=-1 integration over all frequency dsf : down sampling factor typ : Returns ------- errelTh : float relative error on :math:`F_{\\theta}` errelPh : float relative error on :math:`F_{\phi}` errel : float Notes ----- .. math:: \epsilon_r^{\\theta} = \\frac{|F_{\\theta}(\\theta,\phi)-\hat{F}_{\\theta}(\\theta,\phi)|^2} {|F_{\\theta}(\\theta,\phi)|^2} \epsilon_r^{\phi} = \\frac{|F_{\phi}(\\theta,\phi)-\hat{F}_{\phi}(\\theta,\phi)|^2} {|F_{\\theta}(\\theta,\phi)|^2} """ # # Retrieve angular bases from the down sampling factor dsf # theta = self.theta[::dsf] phi = self.phi[::dsf] Nt = len(theta) Np = len(phi) #Th = np.kron(theta, np.ones(Np)) #Ph = np.kron(np.ones(Nt), phi) if typ =='s1': FTh, FPh = self.Fsynth1(theta, phi) if typ =='s2': FTh, FPh = self.Fsynth2b(theta, phi) if typ =='s3': FTh, FPh = self.Fsynth3(theta, phi) #FTh = Fth.reshape(self.nf, Nt, Np) #FPh = Fph.reshape(self.nf, Nt, Np) # # Jacobian # #st = outer(sin(theta),ones(len(phi))) st = np.sin(theta).reshape((len(theta), 1)) # # Construct difference between reference and reconstructed # if kf!=-1: dTh = (FTh[kf, :, :] - self.Ft[kf, ::dsf, ::dsf]) dPh = (FPh[kf, :, :] - self.Fp[kf, ::dsf, ::dsf]) # # squaring + Jacobian # dTh2 = np.real(dTh * np.conj(dTh)) * st dPh2 = np.real(dPh * np.conj(dPh)) * st vTh2 = np.real(self.Ft[kf, ::dsf, ::dsf] \ * np.conj(self.Ft[kf, ::dsf, ::dsf])) * st vPh2 = np.real(self.Fp[kf, ::dsf, ::dsf] \ * np.conj(self.Fp[kf, ::dsf, ::dsf])) * st mvTh2 = np.sum(vTh2) mvPh2 = np.sum(vPh2) errTh = np.sum(dTh2) errPh = np.sum(dPh2) else: dTh = (FTh[:, :, :] - self.Ft[:, ::dsf, ::dsf]) dPh = (FPh[:, :, :] - self.Fp[:, ::dsf, ::dsf]) # # squaring + Jacobian # dTh2 = np.real(dTh * np.conj(dTh)) * st dPh2 = np.real(dPh * np.conj(dPh)) * st vTh2 = np.real(self.Ft[:, ::dsf, ::dsf] \ * np.conj(self.Ft[:, ::dsf, ::dsf])) * st vPh2 = np.real(self.Fp[:, ::dsf, ::dsf] \ * np.conj(self.Fp[:, ::dsf, ::dsf])) * st mvTh2 = np.sum(vTh2) mvPh2 = np.sum(vPh2) errTh = np.sum(dTh2) errPh = np.sum(dPh2) errelTh = (errTh / mvTh2) errelPh = (errPh / mvPh2) errel =( (errTh + errPh) / (mvTh2 + mvPh2)) return(errelTh, errelPh, errel) def loadhfss(self,lfa = [], Nt=72,Np=37): """ load antenna from HFSS file Parameters ---------- lfa : list of antenna file Nt : int Number of angle theta Np : int Number of angle phi Notes ----- One file per frequency point th , ph , abs_grlz,th_absdB,th_phase,ph_absdB,ph_phase_ax_ratio """ # lfa : list file antenna self.nf = len(lfa) fGHz = [] lacsv = [] Fphi = np.empty((self.nf,self.nth,self.nph)) Ftheta = np.empty((self.nf,self.nth,self.nph)) SqG = np.empty((self.nf,self.nth,self.nph)) for i in range (len(lfa)): fGHz.append(eval(lfa[i].split('.csv')[0][-4])) lacsv.append(pd.read_csv(lfa[i], header=False, sep=',', names=['th','ph','abs_grlz','th_absdB','th_phase','ph_absdB','ph_phase','ax_ratio'], index_col=False)) th=lacsv[i].th.reshape(Np,Nt)*np.pi/180. ph=lacsv[i].ph.reshape(Np,Nt)*np.pi/180. Greal = lacsv[i].abs_grlz.reshape(Np,Nt) th_dB = lacsv[i].th_absdB.reshape(Np,Nt) ph_dB = lacsv[i].ph_absdB.reshape(Np,Nt) th_lin = pow(10,th_dB/20.) ph_lin = pow(10,ph_dB/20.) #th_phase = lacsv[i].th_phase.reshape(72,37)*np.pi/180. #ph_phase = lacsv[i].ph_phase.reshape(72,37)*np.pi/180. #axratio=lacsv[i].ax_ratio.reshape(72,37) Fphi[i,:,:] = ph_lin.swapaxes(1,0) Ftheta[i,:,:] = th_lin.swapaxes(1,0) SqG[i,:,:] = Greal.swapaxes(1,0) self.fGHz = np.array(fGHz) #self.theta = th[0,:].reshape(Nt,1) #self.phi = ph[:,0].reshape(1,Np) self.theta = th[0,:] self.phi = ph[:,0] self.Fp=Fphi self.Ft=Ftheta self.sqG=SqG def loadtrx(self,directory,param={}): """ load trx file (SATIMO Near Field Chamber raw data) Parameters ---------- directory self._filename: short name of the antenna file the file is seek in the $BASENAME/ant directory fmin fmax Nf phmin phmax Nphi thmin thmax Ntheta #EDelay 0 1 2 3 4 5 6 7 8 9 1 10 121 0 6.19 72 0 3.14 37 0 param : dict mode : string mode 1 : columns are organized ['f','phi','th','ReFph','ImFphi','ReFth','ImFth'] mode 2 : columns are organized ['f','phi','th','GdB','GdB_ph','GdB_th'] mode2 corresponds to TRXV2 The measured values of Fp Ft and sqG and the associated theta and phi range are stored using the underscore prefix. e.g. self._Ft; self._Fp; self._sqG Notes ------ for mode 2 : it is require to create a header file "header_<_filename>.txt with the structure # fmin fmax Nf phmin phmax Nphi thmin thmax Ntheta #EDelay and to remove header for trx file. Warning Mode 2 invert automatocally apply _swap_theta_phi ! """ if param== {}: param = {'mode' : 1} _filetrx = self._filename _headtrx = 'header_' + _filetrx _headtrx = _headtrx.replace('trx', 'txt') headtrx = pyu.getlong(_headtrx, directory) filename = pyu.getlong(_filetrx, directory) # # Trx header structure # # fmin fmax Nf phmin phmax Nphi thmin thmax Ntheta #EDelay # 0 1 2 3 4 5 6 7 8 9 # 1 10 121 0 6.19 72 0 3.14 37 0 # # foh = open(headtrx) ligh = foh.read() foh.close() fmin = eval(ligh.split()[0]) fmax = eval(ligh.split()[1]) nf = eval(ligh.split()[2]) phmin = eval(ligh.split()[3]) phmax = eval(ligh.split()[4]) nphi = eval(ligh.split()[5]) thmin = eval(ligh.split()[6]) thmax = eval(ligh.split()[7]) ntheta = eval(ligh.split()[8]) # # The electrical delay in column 9 is optional # try: tau = eval(ligh.split()[9]) # tau : delay (ns) except: tau = 0 # # Data are stored in 7 columns in mode 1 # # 0 1 2 3 4 5 6 # f phi th ReFph ImFphi ReFth ImFth # # fi = open(filename) d = np.array(fi.read().split()) N = len(d) if param['mode'] == 1: M = N / 7 d = d.reshape(M, 7) elif param['mode'] == 2: M = N / 6 d = d.reshape(M, 6) d = d.astype('float') f = d[:, 0] if f[0] == 0: print("error : frequency cannot be zero") # detect frequency unit # if values are above 2000 its means frequency is not expressed # in GHz # if (f[0] > 2000): f = f / 1.0e9 phi = d[:, 1] theta = d[:, 2] # # type : refers to the way the angular values are stored in the file # Detection of file type # # nfc # f phi theta # 2 1 0 # Natural # f phi theta # 2 0 1 # # auto detect storage mode looping # dphi = abs(phi[0] - phi[1]) dtheta = abs(theta[0] - theta[1]) if (dphi == 0) & (dtheta != 0): typ = 'nfc' if (dtheta == 0) & (dphi != 0): typ = 'natural' self.typ = typ if param['mode']==1: Fphi = d[:, 3] + d[:, 4] * 1j Ftheta = d[:, 5] + d[:, 6] * 1j elif param['mode']==2: Fphi = 10**(d[:, 4]/20) Ftheta = 10**(d[:, 5]/20) # # Normalization # G = np.real(Fphi * np.conj(Fphi) + Ftheta * np.conj(Ftheta)) SqG = np.sqrt(G) #Fphi = Fphi/SqG #Ftheta = Ftheta/SqG #Fphi = Fphi #Ftheta = Ftheta # # Reshaping # if typ == 'natural': self._Fp = Fphi.reshape((nf, ntheta, nphi)) self._Ft = Ftheta.reshape((nf, ntheta, nphi)) self._sqG = SqG.reshape((nf, ntheta, nphi)) Ttheta = theta.reshape((nf, ntheta, nphi)) Tphi = phi.reshape((nf, ntheta, nphi)) Tf = f.reshape((nf, ntheta, nphi)) self._Fp = self.Fp.swapaxes(0, 1).swapaxes(1,2) self._Ft = self.Ft.swapaxes(0, 1).swapaxes(1,2) self._sqG = self.sqG.swapaxes(0, 1).swapaxes(1,2) Ttheta = Ttheta.swapaxes(0, 1).swapaxes(1,2) Tphi = Tphi.swapaxes(0, 1).swapaxes(1,2) Tf = Tf.swapaxes(0, 1).swapaxes(1,2) if typ == 'nfc': self._Fp = Fphi.reshape((nf, nphi, ntheta)) self._Ft = Ftheta.reshape((nf, nphi, ntheta)) self._sqG = SqG.reshape((nf, nphi, ntheta)) Ttheta = theta.reshape((nf, nphi, ntheta)) Tphi = phi.reshape((nf, nphi, ntheta)) Tf = f.reshape((nf, nphi, ntheta)) # # Force natural order (f,theta,phi) # This is not the order of the satimo nfc which is (f,phi,theta) # # self.Fp = self.Fp.swapaxes(1, 2) # self.Ft = self.Ft.swapaxes(1, 2) # self.sqG = self.sqG.swapaxes(1, 2) self._Fp = self._Fp.swapaxes(0, 2) self._Ft = self._Ft.swapaxes(0, 2) self._sqG = self._sqG.swapaxes(0, 2) Ttheta = Ttheta.swapaxes(0, 2) Tphi = Tphi.swapaxes(0, 2) Tf = Tf.swapaxes(0, 2) # sqg=np.sqrt(10**(d[:,3]/10)) # self.sqG=sqg.reshape((nf, nphi, ntheta)).swapaxes(0, 2) self._fGHz = Tf[0, 0, :] self._theta = Ttheta[:, 0, 0] self._phi = Tphi[0, :, 0] # # check header consistency # np.testing.assert_almost_equal(self._fGHz[0],fmin,6) np.testing.assert_almost_equal(self._fGHz[-1],fmax,6) np.testing.assert_almost_equal(self._theta[0],thmin,3) np.testing.assert_almost_equal(self._theta[-1],thmax,3) np.testing.assert_almost_equal(self._phi[0],phmin,3) np.testing.assert_almost_equal(self._phi[-1],phmax,3) self._nf = nf self._nth = ntheta self._nph = nphi self._tau = tau if param['mode']==2: self._swap_theta_phi() self.evaluated = False def _swap_theta_phi(self): """ swapping theta and phi in case where e.g. theta in [0, 2*pi] and phi in [0,pi] swapping allow to correctly return with the assumption where theta in [0,pi] and phi [0,2*pi] and allow e.g using vsh methods. """ assert self._nth>self._nph,'nth < nph so swapping is not possible' mid_nth = int(np.ceil(self._nth/2.)) new_nph = self._nph*2 # process for self.sqG B1=self._sqG[:mid_nth,...]#self.sqG[:65,...] B2=self._sqG[mid_nth:,...]#self.sqG[65:,...] B2i= B2[::-1,...] R=np.zeros((mid_nth,new_nph,self._nf))#R=np.zeros((65,128,31)) R[:,:mid_nth-1,:]=B1 #R[:,:64,:]=B1 R[:-1,mid_nth-1:,:]=B2i # R[:-1,64:,:]=B2i R[-1,mid_nth-1:,:]=B1[-1,:,:]# R[-1,64:,:]=B1[-1,:,:] self._sqG = R # process for self.Ft B1=self._Ft[:mid_nth,...]#self.Ft[:65,...] B2=self._Ft[mid_nth:,...]#self.Ft[65:,...] B2i= B2[::-1,...] R=np.zeros((mid_nth,new_nph,self._nf))#R=np.zeros((65,128,31)) R[:,:mid_nth-1,:]=B1 #R[:,:64,:]=B1 R[:-1,mid_nth-1:,:]=B2i # R[:-1,64:,:]=B2i R[-1,mid_nth-1:,:]=B1[-1,:,:]# R[-1,64:,:]=B1[-1,:,:] self._Ft = R # process for self.Fp B1=self._Fp[:mid_nth,...]#self.Ft[:65,...] B2=self._Fp[mid_nth:,...]#self.Ft[65:,...] B2i= B2[::-1,...] R=np.zeros((mid_nth,new_nph,self._nf))#R=np.zeros((65,128,31)) R[:,:mid_nth-1,:]=B1 #R[:,:64,:]=B1 R[:-1,mid_nth-1:,:]=B2i # R[:-1,64:,:]=B2i R[-1,mid_nth-1:,:]=B1[-1,:,:]# R[-1,64:,:]=B1[-1,:,:] self._Fp = R # update theta,phi self._theta = np.linspace(0,np.pi,mid_nth) self._phi = np.linspace(0,2*np.pi,new_nph) self._nth = mid_nth self._nph = new_nph def checkpole(self, kf=0): """ display the reconstructed field on pole for integrity verification Parameters ---------- kf : int frequency index default 0 """ Ft0 = self.Ft[kf, 0, :] Fp0 = self.Fp[kf, 0, :] Ftp = self.Ft[kf, -1, :] Fpp = self.Fp[kf, -1, :] phi = self.phi Ex0 = Ft0 * np.cos(phi) - Fp0 * np.sin(phi) Ey0 = Ft0 * np.sin(phi) + Fp0 * np.cos(phi) Exp = Ftp * np.cos(phi) - Fpp * np.sin(phi) Eyp = Ftp * np.sin(phi) + Fpp * np.cos(phi) plt.subplot(4, 2, 1) plt.plot(phi, np.real(Ex0)) plt.subplot(4, 2, 2) plt.plot(phi, np.imag(Ex0)) plt.subplot(4, 2, 3) plt.plot(phi, np.real(Ey0)) plt.subplot(4, 2, 4) plt.plot(phi, np.imag(Ey0)) plt.subplot(4, 2, 5) plt.plot(phi, np.real(Exp)) plt.subplot(4, 2, 6) plt.plot(phi, np.imag(Exp)) plt.subplot(4, 2, 7) plt.plot(phi, np.real(Eyp)) plt.subplot(4, 2, 8) plt.plot(phi, np.imag(Eyp)) def info(self): """ gives info about antenna object """ print(self._filename) print("type : ", self.typ) if self.typ == 'mat': print(self.DataFile) print(self.AntennaName) print(self.Date) print(self.StartTime) print(self.Notes) print(self.Serie) print(self.Run) print("Nb theta (lat) :", self.nth) print("Nb phi (lon) :", self.nph) if self.typ =='nfc': print( "--------------------------") print( "fmin (GHz) :", self.fGHz[0]) print( "fmax (GHz) :", self.fGHz[-1]) print( "Nf :", self.nf) print( "thmin (rad) :", self.theta[0]) print( "thmax (rad) :", self.theta[-1]) print( "Nth :", self.nth) print( "phmin (rad) :", self.phi[0]) print( "phmax (rad) :", self.phi[-1]) print( "Nph :", self.nph) try: self.C.info() except: print("No vsh coefficient calculated yet") #@mlab.show def _show3(self,bnewfig = True, bcolorbar =True, name=[], binteract=False, btitle=True, bcircle=True, **kwargs ): """ show3 mayavi Parameters ---------- btitle : boolean display title bcolorbar : boolean display colorbar binteract : boolean enable interactive mode bcircle : boolean draw a circle newfig: boolean see also -------- antprop.antenna._computemesh """ if not self.evaluated: self.eval(pattern=True) # k is the frequency index if hasattr(self, 'p'): lpshp = len(self.p.shape) sum_index = tuple(np.arange(1, lpshp)) po = np.mean(self.p, axis=sum_index) kwargs['po'] = po x, y, z, k, scalar = self._computemesh(**kwargs) if bnewfig: mlab.clf() f = mlab.figure(bgcolor=(1, 1, 1), fgcolor=(0, 0, 0)) else: f = mlab.gcf() if 'opacity' in kwargs: opacity = kwargs['opacity'] else: opacity = 1 self._mayamesh = mlab.mesh(x, y, z, scalars= scalar, resolution = 1, opacity = opacity,reset_zoom=False) if name == []: f.children[-1].name = 'Antenna ' + self._filename else : f.children[-1].name = name + self._filename if bcolorbar : mlab.colorbar() if btitle: mlab.title(self._filename + ' @ ' + str(self.fGHz[k]) + ' GHz',height=1,size=0.5) def circle(typ='xy',a=1.2): phi = np.linspace(0, 2*np.pi, 2000) if typ=='xy': return [ a*np.cos(phi) , a*np.sin(phi) , np.zeros(len(phi)) ] if typ=='yz': return [ np.zeros(len(phi)), a*np.cos(phi) , a*np.sin(phi) ] if typ=='xz': return [ a*np.cos(phi), a*np.zeros(len(phi)), np.sin(phi) ] # draw 3D circle around the pattern if bcircle: xc,yc,zc =circle('xy') # blue mlab.plot3d(xc,yc,zc,color=(0,0,1)) xc,yc,zc =circle('yz') # red mlab.plot3d(xc,yc,zc,color=(1,0,0)) xc,yc,zc =circle('xz') # green mlab.plot3d(xc,yc,zc,color=(0,1,0)) if binteract: self._outline = mlab.outline(self._mayamesh, color=(.7, .7, .7)) self._outline.visible=False def picker_callback(picker): """ Picker callback: this get called when on pick events. """ if picker.actor in self._mayamesh.actor.actors: self._outline.visible = not self._outline.visible self._is_selected=self._outline.visible picker = f.on_mouse_pick(picker_callback) return(f) def _computemesh(self,**kwargs): """ compute mesh from theta phi Parameters ---------- fGHz : np.array() default [] : takes center frequency fa[len(fa)/2] po : np.array() location point of the antenna T : np.array rotation matrix minr : float minimum radius in meter maxr : float maximum radius in meters tag : string ilog : boolean title : boolean Returns ------- (x, y, z, k) x , y , z values in cartesian axis k frequency point evaluated """ defaults = {'fGHz': [], 'po': np.array([0, 0, 0]), 'T': np.eye(3), 'minr': 0.1, 'maxr': 1, 'scale': 1., 'tag' : 'Pat', 'txru' : 0, 'ilog' : False, 'title': True, } for key, value in defaults.items(): if key not in kwargs: kwargs[key] = value fGHz = kwargs['fGHz'] minr = kwargs['minr'] maxr = kwargs['maxr'] tag = kwargs['tag'] ilog = kwargs['ilog'] txru = kwargs['txru'] scale = kwargs['scale'] po = kwargs['po'] # T is an unitary matrix T = kwargs['T'] if fGHz == []: # self.ext == '' <=> mathematically generated => nf = 1 if self.ext != '': k = int(len(self.fGHz)/2) else: k = 0 else : if self.ext != '': k = np.where(self.fGHz>=fGHz)[0][0] else: k = 0 if len(self.Ft.shape)==2: r = self.sqG[:,k] elif len(self.Ft.shape)==3: r = self.sqG[:,:,k] else: r = self.sqG[:,:,txru,k] th = self.theta[:,None] phi = self.phi[None,:] if ilog : r = 10*np.log10(abs(r)) else: r = abs(r) if r.max() != r.min(): u = (r - r.min()) /(r.max() - r.min()) else : u = r r = minr + (maxr-minr) * u x = scale*r * np.sin(th) * np.cos(phi) y = scale*r * np.sin(th) * np.sin(phi) z = scale*r * np.cos(th) if z.shape[1] != y.shape[1]: z = z*np.ones(y.shape[1]) p = np.concatenate((x[...,None], y[...,None], z[...,None]),axis=2) # # antenna cs -> glogal cs # q : Nt x Np x 3 q = np.einsum('ij,klj->kli',T,p) # # translation # scalar=(q[...,0]**2+q[...,1]**2+q[...,2]**2) q[...,0]=q[...,0]+po[0] q[...,1]=q[...,1]+po[1] q[...,2]=q[...,2]+po[2] x = q[...,0] y = q[...,1] z = q[...,2] return x, y, z, k, scalar def show3(self,k=0,po=[],T=[],txru=0,typ='G', mode='linear', silent=False): """ show3 geomview Parameters ---------- k : frequency index po : poition of the antenna T : GCS of the antenna typ : string 'G' | 'Ft' | 'Fp' mode : string 'linear'| 'not implemented' silent : boolean True | False Examples -------- >>> from pylayers.antprop.antenna import * >>> import numpy as np >>> import matplotlib.pylab as plt >>> A = Antenna('defant.sh3') >>> #A.show3() """ if not self.evaluated: self.eval(pattern=True) f = self.fGHz[k] # 3 axis : nth x nph x nf if len(self.Ft.shape)==3: if typ == 'G': V = self.sqG[:, :,k] if typ == 'Ft': V = self.Ft[:, :,k] if typ == 'Fp': V = self.Fp[:, :,k] if typ == 'Ft': V = self.Ft[:,:,k] # 4 axis : nth x nph x ntxru x nf if len(self.Ft.shape)==4: if typ == 'G': V = self.sqG[:, :, txru,k] if typ == 'Ft': V = self.Ft[:, : ,txru,k] if typ == 'Fp': V = self.Fp[:, :,txru,k] if po ==[]: po = np.array([0, 0, 0]) if T ==[]: T = np.eye(3) _filename = 'antbody' geo = geu.Geomoff(_filename) # geo.pattern requires the following shapes # theta (Ntx1) # phi (1xNp) #if len(np.shape(self.theta))==1: # theta = self.theta[:,None] #else: # theta=self.theta theta = self.theta #if len(np.shape(self.phi))==1: # phi = self.phi[None,:] #else: # phi=self.phi phi = self.phi geo.pattern(theta,phi,V,po=po,T=T,ilog=False,minr=0.01,maxr=0.2) #filename = geom_pattern(self.theta, self.phi, V, k, po, minr, maxr, typ) #filename = geom_pattern(self.theta, self.phi, V, k, po, minr, maxr, typ) if not silent: geo.show3() def plot3d(self, k=0, typ='Gain', col=True): """ show 3D pattern in matplotlib Parameters ---------- k : frequency index typ = 'Gain' = 'Ftheta' = 'Fphi' if col -> color coded plot3D else -> simple plot3D """ fig = plt.figure() ax = axes3d.Axes3D(fig) if typ == 'Gain': V = self.sqG[:, :,k] if typ == 'Ftheta': V = self.Ft[ :, :,k] if typ == 'Fphi': V = self.Fp[ :, :,k] vt = np.ones(self.nth) vp = np.ones(self.nph) Th = np.outer(self.theta, vp) Ph = np.outer(vt, self.phi) pdb.set_trace() X = abs(V) * np.cos(Ph) * np.sin(Th) Y = abs(V) * np.sin(Ph) * np.sin(Th) Z = abs(V) * np.cos(Th) ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_zlabel('Z') if col: ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.hot_r,shade=True) else: ax.plot3D(np.ravel(X), np.ravel(Y), np.ravel(Z)) plt.show() def pol3d(self, k=0, R=50, St=4, Sp=4, silent=False): """ Display polarisation diagram in 3D Parameters ---------- k : int frequency index R : float radius of the sphere St : int downsampling factor along theta Sp : int downsampling factor along phi silent : Boolean (if True the file is created and not displayed') The file created is named : Polar{ifreq}.list it is placed in the /geom directory of the project """ _filename = 'Polar' + str(10000 + k)[1:] + '.list' filename = pyu.getlong(_filename, pstruc['DIRGEOM']) fd = open(filename, "w") fd.write("LIST\n") Nt = self.nth Np = self.nph N = 10 plth = np.arange(0, Nt, St) plph = np.arange(0, Np, Sp) for m in plph: for n in plth: #theta = self.theta[n,0] theta = self.theta[n] #print "m,theta= :",m,theta*180/np.pi #phi = self.phi[0,m] phi = self.phi[m] #print "n,phi=:",n,phi*180/np.pi B = geu.vec_sph(theta, phi) p = R * np.array((np.cos(phi) * np.sin(theta), np.sin(phi) * np.sin(theta), np.cos(theta))) fd.write('{\n') geu.ellipse(fd, p, B[0, :], B[1, :], self.Ft[n, m , k], self.Fp[n, m , k], N) fd.write('}\n') fd.close() if not silent: chaine = "geomview " + filename + " 2>/dev/null &" os.system(chaine) def mse(self, Fth, Fph, N=0): """ mean square error between original and reconstructed Parameters ---------- Fth : np.array Fph : np.array N : int Notes ----- Calculate the relative mean square error between original pattern A.Ftheta , A.Fphi and the pattern given as argument of the function Fth , Fph The mse is evaluated on both polarization and normalized over the energy of each original pattern. The function returns the maximum between those two errors N is a parameter which allows to suppress value at the pole for the calculation of the error if N=0 all values are kept else N < n < Nt - N """ sh = np.shape(self.Ft) Nf = sh[0] Nt = sh[1] Np = sh[2] # plage de theta (exclusion du pole) pt = np.arange(N, Nt - N, 1) Fthr = Fth.reshape(sh) Fphr = Fph.reshape(sh) Gr = np.real(Fphr * np.conj(Fphr) + Fthr * np.conj(Fthr)) SqGr = np.sqrt(Gr) Fthr = Fthr[:, pt, :].ravel() Fphr = Fphr[:, pt, :].ravel() SqGr = SqGr[:, pt, :].ravel() Ftho = self.Ft[:, pt, :].ravel() Fpho = self.Fp[:, pt, :].ravel() SqGo = self.sqG[:, pt, :].ravel() Etho = np.sqrt(np.dot(np.conj(Ftho), Ftho)) Epho = np.sqrt(np.dot(np.conj(Fpho), Fpho)) Eo = np.sqrt(np.dot(np.conj(Ftho), Ftho) + np.dot(np.conj(Fpho), Fpho)) errth = Ftho - Fthr errph = Fpho - Fphr Err = np.real(np.sqrt(np.dot(np.conj(errth), errth) + np.dot(np.conj(errph), errph))) Errth = np.real(np.sqrt(np.dot(np.conj(errth), errth))) Errph = np.real(np.sqrt(np.dot(np.conj(errph), errph))) #Errth_rel = Errth/Etho #Errph_rel = Errph/Epho Errth_rel = Errth / Eo Errph_rel = Errph / Eo Err_rel = Err / Eo return Err_rel, Errth_rel, Errph_rel def getdelay(self,delayCandidates = np.arange(-10,10,0.001)): """ get electrical delay Parameters ---------- delayCandidates : ndarray dalay in (ns) default np.arange(-10,10,0.001) Returns ------- electricalDelay : float Author : Troels Pedersen (Aalborg University) B.Uguen """ if self.evaluated: maxPowerInd = np.unravel_index(np.argmax(abs(self.Ft)),np.shape(self.Ft)) elD = delayCandidates[np.argmax(abs( np.dot(self.Ft[maxPowerInd[0],maxPowerInd[1],:] ,np.exp(2j*np.pi*self.fGHz[:,None] *delayCandidates[None,:]))))] #electricalDelay = delayCandidates[np.argmax(abs( # np.dot(self.Ft[:,maxPowerInd[1],maxPowerInd[2]] # ,np.exp(2j*np.pi*freq.reshape(len(freq),1) # *delayCandidates.reshape(1,len(delayCandidates)))) # ))] return(elD) else: raise Warning('Antenna has not been evaluated') def elec_delay(self,tau): r""" apply an electrical delay Parameters ---------- tau : float electrical delay in nanoseconds Notes ----- This function applies an electrical delay math::`\exp{+2 j \pi f \tau)` on the phase of diagram math::``F_{\theta}`` and math::`F_{\phi}` Examples -------- .. plot:: :include-source: >>> from pylayers.antprop.antenna import * >>> A = Antenna('S2R2.sh3') >>> A.eval() >>> tau = A.getdelay() >>> A.elec_delay(tau) """ self.tau = self.tau+tau if self.evaluated: Ftheta = self.Ft Fphi = self.Fp sh = np.shape(Ftheta) e = np.exp(2 * np.pi * 1j * self.fGHz[None,None,:]* tau) #E = np.outer(e, ones(sh[1] * sh[2])) #Fth = Ftheta.reshape(sh[0], sh[1] * sh[2]) #EFth = Fth * E #self.Ft = EFth.reshape(sh[0], sh[1], sh[2]) self.Ft = self.Ft*e self.Fp = self.Fp*e #Fph = Fphi.reshape(sh[0], sh[1] * sh[2]) #EFph = Fph * E #self.Fp = EFph.reshape(sh[0], sh[1], sh[2]) else: raise Warning('antenna has not been evaluated') def Fsynth(self,theta=[],phi=[],): """ Perform Antenna synthesis Parameters ---------- theta : np.array phi : np.array call Antenna.Fpatt or Antenna.Fsynth3 Notes ----- The antenna pattern synthesis is done either from spherical harmonics coefficients or from an analytical expression of the radiation pattern. """ if ((self.fromfile) or (self.typ=='vsh') or (self.typ=='ssh')): Ft,Fp = self.Fsynth3(theta,phi) self.gain() self.evaluated=True else : Ft = self.Ft Fp = self.Fp self.theta = theta self.phi = phi eval('self.p'+self.typ)() #Ft,Fp = self.Fpatt(theta,phi,pattern) return (Ft,Fp) #def Fsynth1(self, theta, phi, k=0): def Fsynth1(self, theta, phi): """ calculate complex antenna pattern from VSH Coefficients (shape 1) Parameters ---------- theta : ndarray (1xNdir) phi : ndarray (1xNdir) k : int frequency index Returns ------- Ft , Fp """ Nt = len(theta) Np = len(phi) if self.grid: theta = np.kron(theta, np.ones(Np)) phi = np.kron(np.ones(Nt),phi) nray = len(theta) #Br = self.C.Br.s1[k, :, :] #Bi = self.C.Bi.s1[k, :, :] #Cr = self.C.Cr.s1[k, :, :] #Ci = self.C.Ci.s1[k, :, :] Br = self.C.Br.s1[:, :, :] Bi = self.C.Bi.s1[:, :, :] Cr = self.C.Cr.s1[:, :, :] Ci = self.C.Ci.s1[:, :, :] N = self.C.Br.N1 M = self.C.Br.M1 #print "N,M",N,M # # The - sign is necessary to get the good reconstruction # deduced from observation # May be it comes from a different definition of theta in SPHEREPACK x = -np.cos(theta) Pmm1n, Pmp1n = AFLegendre3(N, M, x) ind = index_vsh(N, M) n = ind[:, 0] m = ind[:, 1] #~ V, W = VW(n, m, x, phi, Pmm1n, Pmp1n) V, W = VW(n, m, x, phi) # # broadcasting along frequency axis # V = np.expand_dims(V,0) W = np.expand_dims(V,0) # # k : frequency axis # l : coeff l # m # Fth = np.eisum('klm,kilm->ki',Br,np.real(V.T)) - \ # np.eisum('klm,kilm->ki',Bi,np.imag(V.T)) + \ # np.eisum('klm,kilm->ki',Ci,np.real(W.T)) + \ # np.eisum('klm,kilm->ki',Cr,np.imag(W.T)) # Fph = -np.eisum('klm,kilm->ki',Cr,np.real(V.T)) + \ # np.eisum('klm,kilm->ki',Ci,np.imag(V.T)) + \ # np.eisum('klm,kilm->ki',Bi,np.real(W.T)) + \ # np.eisum('klm,kilm->ki',Br,np.imag(W.T)) Brr = Br[:,l,m] Bir = Bi[:,l,m] Crr = Cr[:,l,m] Cir = Ci[:,l,m] Fth = np.dot(Brr, np.real(V.T)) - \ np.dot(Bir, np.imag(V.T)) + \ np.dot(Cir, np.real(W.T)) + \ np.dot(Crr, np.imag(W.T)) Fph = -np.dot(Crr, np.real(V.T)) + \ np.dot(Cir, np.imag(V.T)) + \ np.dot(Bir, np.real(W.T)) + \ np.dot(Brr, np.imag(W.T)) #Fth = np.dot(Br, np.real(V.T)) - \ # np.dot(Bi, np.imag(V.T)) + \ # np.dot(Ci, np.real(W.T)) + \ # np.dot(Cr, np.imag(W.T)) #Fph = -np.dot(Cr, np.real(V.T)) + \ # np.dot(Ci, np.imag(V.T)) + \ # np.dot(Bi, np.real(W.T)) + \ # np.dot(Br, np.imag(W.T)) if self.grid: Nf = len(self.fGHz) Fth = Fth.reshape(Nf, Nt, Np) Fph = Fph.reshape(Nf, Nt, Np) return Fth, Fph def Fsynth2s(self,dsf=1): """ pattern synthesis from shape 2 vsh coefficients Parameters ---------- phi Notes ----- Calculate complex antenna pattern from VSH Coefficients (shape 2) for the specified directions (theta,phi) theta and phi arrays needs to have the same size """ theta = self.theta[::dsf] phi = self.phi[::dsf] Nt = len(theta) Np = len(phi) theta = np.kron(theta, np.ones(Np)) phi = np.kron(np.ones(Nt), phi) Ndir = len(theta) Br = self.C.Br.s2 # Nf x K2 Bi = self.C.Bi.s2 # Nf x K2 Cr = self.C.Cr.s2 # Nf x K2 Ci = self.C.Ci.s2 # Nf x K2 Nf = np.shape(self.C.Br.s2)[0] K2 = np.shape(self.C.Br.s2)[1] L = self.C.Br.N2 # int M = self.C.Br.M2 # int #print "N,M",N,M # # The - sign is necessary to get the good reconstruction # deduced from observation # May be it comes from a different definition of theta in SPHEREPACK x = -np.cos(theta) Pmm1n, Pmp1n = AFLegendre3(L, M, x) ind = index_vsh(L, M) l = ind[:, 0] m = ind[:, 1] V, W = VW2(l, m, x, phi, Pmm1n, Pmp1n) # K2 x Ndir # Fth , Fph are Nf x Ndir tEBr = [] tEBi = [] tECr = [] tECi = [] for k in range(K2): BrVr = np.dot(Br[:,k].reshape(Nf,1), np.real(V.T)[k,:].reshape(1,Ndir)) BiVi = np.dot(Bi[:,k].reshape(Nf,1), np.imag(V.T)[k,:].reshape(1,Ndir)) CiWr = np.dot(Ci[:,k].reshape(Nf,1), np.real(W.T)[k,:].reshape(1,Ndir)) CrWi = np.dot(Cr[:,k].reshape(Nf,1), np.imag(W.T)[k,:].reshape(1,Ndir)) CrVr = np.dot(Cr[:,k].reshape(Nf,1), np.real(V.T)[k,:].reshape(1,Ndir)) CiVi = np.dot(Ci[:,k].reshape(Nf,1), np.imag(V.T)[k,:].reshape(1,Ndir)) BiWr = np.dot(Bi[:,k].reshape(Nf,1), np.real(W.T)[k,:].reshape(1,Ndir)) BrWi = np.dot(Br[:,k].reshape(Nf,1), np.imag(W.T)[k,:].reshape(1,Ndir)) EBr = np.sum(BrVr*np.conj(BrVr)*np.sin(theta)) + \ np.sum(BrWi*np.conj(BrWi)*np.sin(theta)) EBi = np.sum(BiVi*np.conj(BiVi)*np.sin(theta)) + \ np.sum(BiWr*np.conj(BiWr)*np.sin(theta)) ECr = np.sum(CrWi*np.conj(CrWi)*np.sin(theta)) + \ + np.sum(CrVr*np.conj(CrVr)*np.sin(theta)) ECi = np.sum(CiWr*np.conj(CiWr)*np.sin(theta)) + \ + np.sum(CiVi*np.conj(CiVi)*np.sin(theta)) tEBr.append(EBr) tEBi.append(EBi) tECr.append(ECr) tECi.append(ECi) #Fth = np.dot(Br, np.real(V.T)) - np.dot(Bi, np.imag(V.T)) + \ # np.dot(Ci, np.real(W.T)) + np.dot(Cr, np.imag(W.T)) #Fph = -np.dot(Cr, np.real(V.T)) + np.dot(Ci, np.imag(V.T)) + \ # np.dot(Bi, np.real(W.T)) + np.dot(Br, np.imag(W.T)) return np.array(tEBr),np.array(tEBi),np.array(tECr),np.array(tECi) def Fsynth2b(self, theta, phi): """ pattern synthesis from shape 2 vsh coefficients Parameters ---------- theta : 1 x Nt phi : 1 x Np Notes ----- Calculate complex antenna pattern from VSH Coefficients (shape 2) for the specified directions (theta,phi) theta and phi arrays needs to have the same size """ Nt = len(theta) Np = len(phi) if self.grid: theta = np.kron(theta, np.ones(Np)) phi = np.kron(np.ones(Nt),phi) Br = self.C.Br.s2 # Nf x K2 Bi = self.C.Bi.s2 # Nf x K2 Cr = self.C.Cr.s2 # Nf x K2 Ci = self.C.Ci.s2 # Nf x K2 L = self.C.Br.N2 # int M = self.C.Br.M2 # int #print "N,M",N,M # # The - sign is necessary to get the good reconstruction # deduced from observation # May be it comes from a different definition of theta in SPHEREPACK x = -np.cos(theta) Pmm1n, Pmp1n = AFLegendre3(L, M, x) ind = index_vsh(L, M) l = ind[:, 0] m = ind[:, 1] V, W = VW2(l, m, x, phi, Pmm1n, Pmp1n) # K2 x Ndir # Fth , Fph are Nf x Ndir Fth = np.dot(Br, np.real(V.T)) - np.dot(Bi, np.imag(V.T)) + \ np.dot(Ci, np.real(W.T)) + np.dot(Cr, np.imag(W.T)) Fph = -np.dot(Cr, np.real(V.T)) + np.dot(Ci, np.imag(V.T)) + \ np.dot(Bi, np.real(W.T)) + np.dot(Br, np.imag(W.T)) if self.grid: Nf = len(self.fGHz) Fth = Fth.reshape(Nf, Nt, Np) Fph = Fph.reshape(Nf, Nt, Np) return Fth, Fph def Fsynth2(self, theta, phi, typ = 'vsh'): """ pattern synthesis from shape 2 vsh coeff Parameters ---------- theta : array 1 x Nt phi : array 1 x Np pattern : boolean default False typ : string {vsh | ssh} Notes ----- Calculate complex antenna pattern from VSH Coefficients (shape 2) for the specified directions (theta,phi) theta and phi arrays needs to have the same size """ self.nth = len(theta) self.nph = len(phi) self.nf = len(self.fGHz) if typ =='vsh' : if self.grid: theta = np.kron(theta, np.ones(self.nph)) phi = np.kron(np.ones(self.nth),phi) Br = self.C.Br.s2 Bi = self.C.Bi.s2 Cr = self.C.Cr.s2 Ci = self.C.Ci.s2 N = self.C.Br.N2 M = self.C.Br.M2 #print "N,M",N,M # # The - sign is necessary to get the good reconstruction # deduced from observation # May be it comes from a different definition of theta in SPHEREPACK x = -np.cos(theta) Pmm1n, Pmp1n = AFLegendre3(N, M, x) ind = index_vsh(N, M) n = ind[:, 0] m = ind[:, 1] #~ V, W = VW(n, m, x, phi, Pmm1n, Pmp1n) V, W = VW(n, m, x, phi) Fth = np.dot(Br, np.real(V.T)) - np.dot(Bi, np.imag(V.T)) + \ np.dot(Ci, np.real(W.T)) + np.dot(Cr, np.imag(W.T)) Fph = -np.dot(Cr, np.real(V.T)) + np.dot(Ci, np.imag(V.T)) + \ np.dot(Bi, np.real(W.T)) + np.dot(Br, np.imag(W.T)) if self.grid: Fth = Fth.reshape(self.nf, self.nth, self.nph) Fph = Fph.reshape(self.nf, self.nth, self.nph) if typ=='ssh': cx = self.S.Cx.s2 cy = self.S.Cy.s2 cz = self.S.Cz.s2 lmax = self.S.Cx.lmax Y ,indx = SSHFunc(lmax, theta,phi) Ex = np.dot(cx,Y).reshape(self.nf,self.nth,self.nph) Ey = np.dot(cy,Y).reshape(self.nf,self.nth,self.nph) Ez = np.dot(cz,Y).reshape(self.nf,self.nth,self.nph) Fth,Fph = CartToSphere (theta, phi, Ex, Ey,Ez, bfreq = True ) self.evaluated = True return Fth, Fph def Fsynth3(self,theta=[],phi=[],typ='vsh'): r""" synthesis of a complex antenna pattern from SH coefficients (vsh or ssh in shape 3) Ndir is the number of directions Parameters ---------- theta : ndarray (1xNdir if not pattern) (1xNtheta if pattern) phi : ndarray (1xNdir if not pattter) (1xNphi if pattern) pattern : boolean if True theta and phi are reorganized for building the pattern typ : 'vsh' | 'ssh' | 'hfss' Returns ------- if self.grid: Fth : ndarray (Ntheta x Nphi) Fph : ndarray (Ntheta x Nphi) else: Fth : ndarray (1 x Ndir) Fph : ndarray (1 x Ndir) See Also -------- pylayers.antprop.channel._vec2scalA Examples -------- .. plot:: :include-source: >>> from pylayers.antprop.antenna import * >>> import numpy as np >>> import matplotlib.pylab as plt >>> A = Antenna('defant.vsh3') >>> F = A.eval(grid=True) All Br,Cr,Bi,Ci have the same (l,m) index in order to evaluate only once the V,W function If the data comes from a cst file like the antenna used in WHERE1 D4.1 the pattern is multiplied by $\frac{4\pi}{120\pi}=\frac{1}{\sqrt{30}$ """ #typ = self.typ #self._filename.split('.')[1] #if typ=='satimo': # coeff=1. #if typ=='cst': # coeff=1./sqrt(30) #assert typ in ['ssh','vsh','hfss'], assert (hasattr(self,'C') or hasattr(self,'S')),"No SH coeffs evaluated" Nf = len(self.fGHz) if theta==[]: theta=np.linspace(0,np.pi,45) if phi == []: phi= np.linspace(0,2*np.pi,90) Nt = len(theta) Np = len(phi) self.nth = len(theta) self.nph = len(phi) if self.grid: #self.theta = theta[:,None] #self.phi = phi[None,:] self.theta = theta self.phi = phi theta = np.kron(theta, np.ones(Np)) phi = np.kron(np.ones(Nt),phi) if typ =='vsh': nray = len(theta) Br = self.C.Br.s3 lBr = self.C.Br.ind3[:, 0] mBr = self.C.Br.ind3[:, 1] Bi = self.C.Bi.s3 Cr = self.C.Cr.s3 Ci = self.C.Ci.s3 L = lBr.max() M = mBr.max() # vector spherical harmonics basis functions V, W = VW(lBr, mBr, theta, phi) Fth = np.dot(Br, np.real(V.T)) - \ np.dot(Bi, np.imag(V.T)) + \ np.dot(Ci, np.real(W.T)) + \ np.dot(Cr, np.imag(W.T)) Fph = -np.dot(Cr, np.real(V.T)) + \ np.dot(Ci, np.imag(V.T)) + \ np.dot(Bi, np.real(W.T)) + \ np.dot(Br, np.imag(W.T)) if self.grid: Fth = Fth.reshape(Nf, Nt, Np) Fph = Fph.reshape(Nf, Nt, Np) if typ == 'ssh': cx = self.S.Cx.s3 cy = self.S.Cy.s3 cz = self.S.Cz.s3 lmax = self.S.Cx.lmax Y ,indx = SSHFunc2(lmax, theta,phi) #k = self.S.Cx.k2[:,0] # same k for x y and z k = self.S.Cx.k2 if pattern : Ex = np.dot(cx,Y[k]) Ey = np.dot(cy,Y[k]) Ez = np.dot(cz,Y[k]) Fth,Fph = CartToSphere(theta, phi, Ex, Ey,Ez, bfreq = True, pattern = True ) Fth = Fth.reshape(Nf,Nt,Np) Fph = Fph.reshape(Nf,Nt,Np) else: Ex = np.dot(cx,Y[k]) Ey = np.dot(cy,Y[k]) Ez = np.dot(cz,Y[k]) Fth,Fph = CartToSphere (theta, phi, Ex, Ey,Ez, bfreq = True, pattern = False) #self.Fp = Fph #self.Ft = Fth #G = np.real(Fph * np.conj(Fph) + Fth * np.conj(Fth)) #self.sqG = np.sqrt(G) #if self.grid: # self.Fp = Fph # self.Ft = Fth # G = np.real(Fph * np.conj(Fph) + Fth * np.conj(Fth)) # self.sqG = np.sqrt(G) self.evaluated = True #if typ == 'hfss': # scipy.interpolate.griddata() # Fth = self.Ft # Fph = self.Fp # TODO create 2 different functions for pattern and not pattern #if not self.grid: return Fth, Fph #else: # return None,None def movie_vsh(self, mode='linear'): """ animates vector spherical coeff w.r.t frequency Parameters ---------- mode : string 'linear' | """ Brmin = abs(self.C.Br[:, 0:20, 0:20]).min() Brmax = abs(self.C.Br[:, 0:20, 0:20]).max() Bimin = abs(self.C.Bi[:, 0:20, 0:20]).min() Bimax = abs(self.C.Bi[:, 0:20, 0:20]).max() Crmin = abs(self.C.Cr[:, 0:20, 0:20]).min() Crmax = abs(self.C.Cr[:, 0:20, 0:20]).max() Cimin = abs(self.C.Ci[:, 0:20, 0:20]).min() Cimax = abs(self.C.Ci[:, 0:20, 0:20]).max() # print(Brmin, Brmax, Bimin, Bimax, Crmin, Crmax, Cimin, Cimax) for k in range(self.nf): plt.figure() stf = ' f=' + str(self.fGHz[k]) + ' GHz' subplot(221) pcolor(abs(self.C.Br.s1[k, 0:20, 0:20]), vmin=Brmin, vmax=Brmax, edgecolors='k') #xlabel('m',fontsize=12) ylabel('n', fontsize=12) title('$|Br_{n}^{(m)}|$' + stf, fontsize=10) colorbar() subplot(222) pcolor(abs(self.C.Bi.s1[k, 0:20, 0:20]), vmin=Bimin, vmax=Bimax, edgecolors='k') #xlabel('m',fontsize=12) ylabel('n', fontsize=12) title('$|Bi_{n}^{(m)}|$' + stf, fontsize=10) colorbar() subplot(223) pcolor(abs(self.C.Cr.s1[k, 0:20, 0:20]), vmin=Crmin, vmax=Crmax, edgecolors='k') xlabel('m', fontsize=12) #ylabel('n',fontsize=12) title('$|Cr_{n}^{(m)}|$' + stf, fontsize=10) colorbar() subplot(224) pcolor(abs(self.C.Ci.s1[k, 0:20, 0:20]), vmin=Cimin, vmax=Cimax, edgecolors='k') xlabel('m', fontsize=12) #ylabel('n',fontsize=12) title('$|Ci_{n}^{(m)}|$' + stf, fontsize=10) colorbar() filename = str('%03d' % k) + '.png' savefig(filename, dpi=100) clf() command = ('mencoder', 'mf://*.png', '-mf', 'type=png:w=800:h=600:fps=1', '-ovc', 'lavc', '-lavcopts', 'vcodec=mpeg4', '-oac', 'copy', '-o', 'vshcoeff.avi') subprocess.check_call(command) def minsh3(self, emax=0.05): """ creates vsh3 with significant coeff until given relative reconstruction error Parameters ---------- emax : float error default 0.05 Notes ----- Create antenna's vsh3 file which only contains the significant vsh coefficients in shape 3, in order to obtain a reconstruction maximal error = emax This function requires a reading of .trx file before being executed """ #th = np.kron(self.theta, np.ones(self.nph)) #ph = np.kron(np.ones(self.nth), self.phi) if not self.grid: self.grid = True Fth3, Fph3 = self.Fsynth3(self.theta, self.phi) Err = self.mse(Fth3, Fph3, 0) Enc = self.C.ens3() n = len(Enc) pos = 0 while (pos < n) & (Err[0] < emax): Emin = Enc[pos] d = self.C.drag3(Emin) Fth3, Fph3 = self.Fsynth3(self.theta, self.phi) Err = self.mse(Fth3, Fph3, 0) if Err[0] >= emax: i = d[0][0] i3 = d[1][0] self.C.put3(i, i3) Fth3, Fph3 = self.Fsynth3(self.theta,self.phi) Err = self.mse(Fth3, Fph3, 0) pos = pos + 1 def savevsh3(self,force=False): """ save antenna in vsh3 format Create a .vsh3 antenna file """ # create vsh3 file _filevsh3 = os.path.splitext(self._filename)[0]+'.vsh3' filevsh3 = pyu.getlong(_filevsh3, pstruc['DIRANT']) #filevsh3 = pyu.getlong(self._filename,'ant') if os.path.isfile(filevsh3) and not force: print( filevsh3, ' already exist') else: print( 'create ', filevsh3, ' file') coeff = {} coeff['fmin'] = self.fGHz[0] coeff['fmax'] = self.fGHz[-1] coeff['Br.ind'] = self.C.Br.ind3 coeff['Bi.ind'] = self.C.Bi.ind3 coeff['Cr.ind'] = self.C.Cr.ind3 coeff['Ci.ind'] = self.C.Ci.ind3 coeff['Br.k'] = self.C.Br.k2 coeff['Bi.k'] = self.C.Bi.k2 coeff['Cr.k'] = self.C.Cr.k2 coeff['Ci.k'] = self.C.Ci.k2 coeff['Br.s3'] = self.C.Br.s3 coeff['Bi.s3'] = self.C.Bi.s3 coeff['Cr.s3'] = self.C.Cr.s3 coeff['Ci.s3'] = self.C.Ci.s3 if self.evaluated: coeff['sl'] = self.sl coeff['el'] = self.el io.savemat(filevsh3, coeff, appendmat=False) def savesh2(self): """ save coeff in .sh2 antenna file """ # create sh2 file #typ = self._filename.split('.')[1] #self.typ = typ _filesh2 = self._filename.replace('.'+ self.typ, '.sh2') filesh2 = pyu.getlong(_filesh2, pstruc['DIRANT']) if os.path.isfile(filesh2): print(filesh2, ' already exist') else: print('create ', filesh2, ' file') coeff = {} coeff['fmin'] = self.fGHz[0] coeff['fmax'] = self.fGHz[-1] coeff['Cx.ind'] = self.S.Cx.ind2 coeff['Cy.ind'] = self.S.Cy.ind2 coeff['Cz.ind'] = self.S.Cz.ind2 coeff['Cx.lmax']= self.S.Cx.lmax coeff['Cy.lmax']= self.S.Cy.lmax coeff['Cz.lmax']= self.S.Cz.lmax coeff['Cx.s2'] = self.S.Cx.s2 coeff['Cy.s2'] = self.S.Cy.s2 coeff['Cz.s2'] = self.S.Cz.s2 io.savemat(filesh2, coeff, appendmat=False) def savesh3(self): """ save antenna in sh3 format create a .sh3 antenna file """ # create sh3 file # if self._filename has an extension # it is replace by .sh3 #typ = self._filename.split('.')[1] #self.typ = typ _filesh3 = self._filename.replace('.'+ self.typ, '.sh3') filesh3 = pyu.getlong(_filesh3, pstruc['DIRANT']) if os.path.isfile(filesh3): print(filesh3, ' already exist') else: print('create ', filesh3, ' file') coeff = {} coeff['fmin'] = self.fGHz[0] coeff['fmax'] = self.fGHz[-1] coeff['Cx.ind'] = self.S.Cx.ind3 coeff['Cy.ind'] = self.S.Cy.ind3 coeff['Cz.ind'] = self.S.Cz.ind3 coeff['Cx.k'] = self.S.Cx.k2 coeff['Cy.k'] = self.S.Cy.k2 coeff['Cz.k'] = self.S.Cz.k2 coeff['Cx.lmax']= self.S.Cx.lmax coeff['Cy.lmax']= self.S.Cy.lmax coeff['Cz.lmax']= self.S.Cz.lmax coeff['Cx.s3'] = self.S.Cx.s3 coeff['Cy.s3'] = self.S.Cy.s3 coeff['Cz.s3'] = self.S.Cz.s3 io.savemat(filesh3, coeff, appendmat=False) def loadvsh3(self): """ Load antenna's vsh3 file vsh3 file contains a thresholded version of vsh coefficients in shape 3 """ _filevsh3 = self._filename filevsh3 = pyu.getlong(_filevsh3, pstruc['DIRANT']) self.evaluated = False if os.path.isfile(filevsh3): coeff = io.loadmat(filevsh3, appendmat=False) # # This test is to fix a problem with 2 different # behavior of io.loadmat # if type(coeff['fmin']) == float: fmin = coeff['fmin'] fmax = coeff['fmax'] else: fmin = coeff['fmin'][0][0] fmax = coeff['fmax'][0][0] # .. Warning # Warning modification takes only one dimension for k # if the .vsh3 format evolve it may not work anymore # Br = VCoeff('s3', fmin, fmax, coeff['Br.s3'], coeff['Br.ind'], coeff['Br.k'][0]) Bi = VCoeff('s3', fmin, fmax, coeff['Bi.s3'], coeff['Bi.ind'], coeff['Bi.k'][0]) Cr = VCoeff('s3', fmin, fmax, coeff['Cr.s3'], coeff['Cr.ind'], coeff['Cr.k'][0]) Ci = VCoeff('s3', fmin, fmax, coeff['Ci.s3'], coeff['Ci.ind'], coeff['Ci.k'][0]) self.C = VSHCoeff(Br, Bi, Cr, Ci) self.nf = np.shape(Br.s3)[0] self.fGHz = np.linspace(fmin, fmax, self.nf) if 'sl' in coeff: self.sl = coeff['sl'][0] self.el = coeff['el'][0] else: print(_filevsh3, ' does not exist') def loadsh3(self): """ Load antenna's sh3 file sh3 file contains a thesholded version of ssh coefficients in shape 3 """ _filesh3 = self._filename.split('.')[0]+'.sh3' filesh3 = pyu.getlong(_filesh3, pstruc['DIRANT']) self.evaluated = False if os.path.isfile(filesh3): coeff = io.loadmat(filesh3, appendmat=False) # # This test is to fix a problem with 2 different # behavior of io.loadmat # if type(coeff['fmin']) == float: fmin = coeff['fmin'] fmax = coeff['fmax'] else: fmin = coeff['fmin'][0][0] fmax = coeff['fmax'][0][0] # .. Warning # Warning modification takes only one dimension for k # if the .sh3 format evolve it may not work anymore # if type(coeff['Cx.lmax']) == float: lmax = coeff['Cx.lmax'] else: lmax = coeff['Cx.lmax'][0][0] Cx = SCoeff(typ = 's3', fmin = fmin , fmax = fmax , lmax = lmax, data = coeff['Cx.s3'], ind = coeff['Cx.ind'], k = np.squeeze(coeff['Cx.k'])) Cy = SCoeff(typ= 's3', fmin = fmin , fmax = fmax , lmax = lmax, data = coeff['Cy.s3'], ind = coeff['Cy.ind'], k = np.squeeze(coeff['Cy.k'])) Cz = SCoeff(typ = 's3', fmin = fmin , fmax = fmax , data = coeff['Cz.s3'], lmax = lmax, ind = coeff['Cz.ind'], k = np.squeeze(coeff['Cz.k'])) if not 'S' in self.__dict__.keys(): self.S = SSHCoeff(Cx, Cy,Cz) else: self.S.sets3(Cx,Cy,Cz) self.nf = np.shape(Cx.s3)[0] self.fGHz = np.linspace(fmin, fmax, self.nf) else: print(_filesh3, ' does not exist') def savevsh2(self, filename = ''): """ save coeff in a .vsh2 antenna file Parameters ---------- filename : string """ # create vsh2 file if filename == '': _filevsh2 = self._filename.replace('.trx', '.vsh2') _filevsh2 = filename filevsh2 = pyu.getlong(_filevsh2, pstruc['DIRANT']) if os.path.isfile(filevsh2): print(filevsh2, ' already exist') else: print('create ', filevsh2, ' file') coeff = {} coeff['fmin'] = self.fGHz[0] coeff['fmax'] = self.fGHz[-1] coeff['Br.ind'] = self.C.Br.ind2 coeff['Bi.ind'] = self.C.Bi.ind2 coeff['Cr.ind'] = self.C.Cr.ind2 coeff['Ci.ind'] = self.C.Ci.ind2 coeff['Br.s2'] = self.C.Br.s2 coeff['Bi.s2'] = self.C.Bi.s2 coeff['Cr.s2'] = self.C.Cr.s2 coeff['Ci.s2'] = self.C.Ci.s2 io.savemat(filevsh2, coeff, appendmat=False) def loadsh2(self): """ load spherical harmonics coefficient in shape 2 """ _filesh2 = self._filename.split('.')[0]+'.sh2' filesh2 = pyu.getlong(_filesh2, pstruc['DIRANT']) if os.path.isfile(filesh2): coeff = io.loadmat(filesh2, appendmat=False) # # This test is to fix a problem with 2 different # behavior of io.loadmat # if type(coeff['fmin']) == float: fmin = coeff['fmin'] fmax = coeff['fmax'] else: fmin = coeff['fmin'][0][0] fmax = coeff['fmax'][0][0] if type(coeff['Cx.lmax']) == float: lmax = coeff['Cx.lmax'] else: lmax = coeff['Cx.lmax'][0][0] Cx = SCoeff(typ='s2', fmin=fmin, fmax=fmax, lmax = lmax, data=coeff['Cx.s2'], ind=coeff['Cx.ind']) Cy = SCoeff(typ='s2', fmin=fmin, fmax=fmax, lmax = lmax, data=coeff['Cy.s2'], ind=coeff['Cy.ind']) Cz = SCoeff(typ='s2', fmin=fmin, fmax=fmax, lmax = lmax, data=coeff['Cz.s2'], ind=coeff['Cz.ind']) self.S = SSHCoeff(Cx, Cy,Cz) Nf = np.shape(Cx.s2)[0] self.fGHz = np.linspace(fmin, fmax, Nf) else: print( _filesh2, ' does not exist') def loadvsh2(self): """ load antenna from .vsh2 file format Load antenna's vsh2 file which only contains the vsh coefficients in shape 2 """ _filevsh2 = self._filename filevsh2 = pyu.getlong(_filevsh2, pstruc['DIRANT']) if os.path.isfile(filevsh2): coeff = io.loadmat(filevsh2, appendmat=False) # # This test is to fix a problem with 2 different # behavior of io.loadmat # if type(coeff['fmin']) == float: fmin = coeff['fmin'] fmax = coeff['fmax'] else: fmin = coeff['fmin'][0][0] fmax = coeff['fmax'][0][0] Br = VCoeff(typ='s2', fmin=fmin, fmax=fmax, data=coeff['Br.s2'], ind=coeff['Br.ind']) Bi = VCoeff(typ='s2', fmin=fmin, fmax=fmax, data=coeff['Bi.s2'], ind=coeff['Bi.ind']) Cr = VCoeff(typ='s2', fmin=fmin, fmax=fmax, data=coeff['Cr.s2'], ind=coeff['Cr.ind']) Ci = VCoeff(typ='s2', fmin=fmin, fmax=fmax, data=coeff['Ci.s2'], ind=coeff['Ci.ind']) self.C = VSHCoeff(Br, Bi, Cr, Ci) Nf = np.shape(Br.s2)[0] self.fGHz = np.linspace(fmin, fmax, Nf) else: print( _filevsh2, ' does not exist') def loadvsh3_old(self): """ Load antenna vsh coefficients in shape 3 """ _filevsh3 = self._filename filevsh3 = getlong(_filevsh3, pstruc['DIRANT']) fmin = 2. fmax = 8. if os.path.isfile(filevsh3): coeff = io.loadmat(filevsh3, appendmat=False) Br = VCoeff('s3', fmin, fmax, coeff['Br.s3'], coeff['Br.ind'], coeff['Br.k']) Bi = VCoeff('s3', fmin, fmax, coeff['Bi.s3'], coeff['Bi.ind'], coeff['Bi.k']) Cr = VCoeff('s3', fmin, fmax, coeff['Cr.s3'], coeff['Cr.ind'], coeff['Cr.k']) Ci = VCoeff('s3', fmin, fmax, coeff['Ci.s3'], coeff['Ci.ind'], coeff['Ci.k']) self.C = VSHCoeff(Br, Bi, Cr, Ci) self.fGHz = np.linspace(fmin, fmax, 121) else: print(_filevsh3, ' does not exist') def pol2cart(self, ith): """ converts FTheta, FPhi to Fx,Fy,Fz for theta=ith Parameters ---------- ith : theta index Returns ------- Fx Fy Fz See Also -------- cart2pol """ Fth = self.Ft[:, ith, :] Fph = self.Fp[:, ith, :] th = self.theta[ith] ph = self.phi Fx = Fth * np.cos(th) * np.cos(ph) - Fph * np.sin(ph) Fy = Fth * np.cos(th) * np.sin(ph) + Fph * np.cos(ph) Fz = (-1) * Fth * np.sin(th) return(Fx, Fy, Fz) def cart2pol(self, Fx, Fy, Fz, ith): """ converts Fx,Fy,Fz to Ftheta, Fphi for theta=ith Parameters ---------- Fx : np.array Fy : np.array Fz : np.array ith : theta index See Also -------- pol2cart """ th = self.theta[ith] ph = self.phi Fth = Fx * np.cos(th) * np.cos(ph) + Fy * np.cos(th) * np.sin(ph) - Fz * np.sin(th) Fph = -Fx * np.sin(ph) + Fy * np.cos(th) SqG = np.sqrt(np.real(Fph * np.conj(Fph) + Fth * np.conj(Fth))) self.sqG[:, ith, :] = SqG self.Ft[:, ith, :] = Fth self.Fp[:, ith, :] = Fph def forcesympol(A): """ plot VSH transform vsh basis in 3D plot Parameters ---------- n,m : integer values (m<=n) theta : ndarray phi : ndarray sf : boolean if sf : plotted figures are saved in a *.png file else : plotted figures aren't saved Examples -------- .. plot:: :include-source: >>> from pylayers.antprop.antenna import * >>> import matplotlib.pyplot as plt >>> import numpy as np >>> n=5 >>> m=3 >>> theta = np.linspace(0,np.pi,30) >>> phi = np.linspace(0,2*np.pi,60) >>> plotVW(n,m,theta,phi) """ # calculate v and w if m <= n: theta[np.where(theta == np.pi / 2)[0]] = np.pi / 2 + \ 1e-10 # .. todo :: not clean x = -np.cos(theta) Pmm1n, Pmp1n = AFLegendre(n, m, x) t1 = np.sqrt((n + m) * (n - m + 1)) t2 = np.sqrt((n - m) * (n + m + 1)) y1 = t1 * Pmm1n[:, m, n] - t2 * Pmp1n[:, m, n] y2 = t1 * Pmm1n[:, m, n] + t2 * Pmp1n[:, m, n] Ephi = np.exp(1j * m * phi) cphi = np.cos(m * phi) if m == 0: sphi = 1e-10 else: sphi = np.sin(m * phi) ny = len(y1) ne = len(Ephi) vy = np.ones(ny) ve = np.ones(ne) Y1 = np.outer(y1, ve) Y2 = np.outer(y2, ve) EPh = np.outer(vy, Ephi) const = (-1.0) ** n / (2 * np.sqrt(n * (n + 1))) V = const * Y1 * EPh #V[np.isinf(V)|isnan(V)]=0 Vcos = cphi * V Vsin = sphi * V if m == 0: #W=np.zeros((len(theta),len(phi))) W = np.ones((len(theta), len(phi))) * 1e-10 else: Waux = Y2 * EPh x1 = 1.0 / x W = np.outer(x1, const) * Waux Wcos = cphi * W Wsin = sphi * W # plot V and W Ntheta = np.size(theta) vt = np.ones(Ntheta) Nphi = np.size(phi) vp = np.ones(Nphi) Phi = np.outer(vt, phi) Theta = np.outer(theta, vp) #figdirV='/home/rburghel/Bureau/bases_decomposition_VW/base_V_Vsin_Vcos/' figdirV = './' ext1 = '.pdf' ext2 = '.eps' ext3 = '.png' fig = plt.figure() ax = axes3d.Axes3D(fig) X = abs(V) * np.cos(Phi) * np.sin(Theta) Y = abs(V) * np.sin(Phi) * np.sin(Theta) Z = abs(V) * np.cos(Theta) ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_zlabel('Z') ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.hot_r) ax.set_xlim3d([-1, 1]) ax.set_ylim3d([-1, 1]) ax.set_zlim3d([-1, 1]) if sf: sz = fig.get_size_inches() fig.set_size_inches(sz * 1.8) figname = figdirV + 'V' + str(n) + str(m) fig.savefig(figname + ext1, orientation='portrait') fig.savefig(figname + ext2, orientation='portrait') fig.savefig(figname + ext3, orientation='portrait') fig = plt.figure() ax = axes3d.Axes3D(fig) X = abs(Vcos) * np.cos(Phi) * np.sin(Theta) Y = abs(Vcos) * np.sin(Phi) * np.sin(Theta) Z = abs(Vcos) * np.cos(Theta) ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_zlabel('Z') ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.hot_r) ax.set_xlim3d([-1, 1]) ax.set_ylim3d([-1, 1]) ax.set_zlim3d([-1, 1]) if sf: sz = fig.get_size_inches() fig.set_size_inches(sz * 1.8) figname = figdirV + 'Vcos' + str(n) + str(m) + '.jpg' fig.savefig(figname + ext1, orientation='portrait') fig.savefig(figname + ext2, orientation='portrait') fig.savefig(figname + ext3, orientation='portrait') fig = plt.figure() ax = axes3d.Axes3D(fig) X = abs(Vsin) * np.cos(Phi) * np.sin(Theta) Y = abs(Vsin) * np.sin(Phi) * np.sin(Theta) Z = abs(Vsin) * np.cos(Theta) ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_zlabel('Z') ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.hot_r) ax.set_xlim3d([-1, 1]) ax.set_ylim3d([-1, 1]) ax.set_zlim3d([-1, 1]) if sf: sz = fig.get_size_inches() fig.set_size_inches(sz * 1.8) figname = figdirV + 'Vsin' + str(n) + str(m) + '.jpg' fig.savefig(figname + ext1, orientation='portrait') fig.savefig(figname + ext2, orientation='portrait') fig.savefig(figname + ext3, orientation='portrait') #figdirW='/home/rburghel/Bureau/bases_decomposition_VW/base_W_Wsin_Wcos/' figdirW = './' fig = plt.figure() ax = axes3d.Axes3D(fig) X = abs(W) * np.cos(Phi) * np.sin(Theta) Y = abs(W) * np.sin(Phi) * np.sin(Theta) Z = abs(W) * np.cos(Theta) ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_zlabel('Z') ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.hot_r) ax.set_xlim3d([-1, 1]) ax.set_ylim3d([-1, 1]) ax.set_zlim3d([-1, 1]) if sf: sz = fig.get_size_inches() fig.set_size_inches(sz * 1.8) figname = figdirW + 'W' + str(n) + str(m) fig.savefig(figname + ext1, orientation='portrait') fig.savefig(figname + ext2, orientation='portrait') fig.savefig(figname + ext3, orientation='portrait') fig = plt.figure() ax = axes3d.Axes3D(fig) X = abs(Wcos) * np.cos(Phi) * np.sin(Theta) Y = abs(Wcos) * np.sin(Phi) * np.sin(Theta) Z = abs(Wcos) * np.cos(Theta) ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_zlabel('Z') ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.hot_r) ax.set_xlim3d([-1, 1]) ax.set_ylim3d([-1, 1]) ax.set_zlim3d([-1, 1]) if sf: sz = fig.get_size_inches() fig.set_size_inches(sz * 1.8) figname = figdirW + 'Wcos' + str(n) + str(m) fig.savefig(figname + ext1, orientation='portrait') fig.savefig(figname + ext2, orientation='portrait') fig.savefig(figname + ext3, orientation='portrait') fig = plt.figure() ax = axes3d.Axes3D(fig) X = abs(Wsin) * np.cos(Phi) * np.sin(Theta) Y = abs(Wsin) * np.sin(Phi) * np.sin(Theta) fig = plt.figure() ax = axes3d.Axes3D(fig) X = abs(Wsin) * np.cos(Phi) * np.sin(Theta) Y = abs(Wsin) * np.sin(Phi) * np.sin(Theta) Z = abs(Wsin) * np.cos(Theta) ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_zlabel('Z') ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.hot_r) ax.set_xlim3d([-1, 1]) ax.set_ylim3d([-1, 1]) ax.set_zlim3d([-1, 1]) if sf: sz = fig.get_size_inches() fig.set_size_inches(sz * 1.8) figname = figdirW + 'Wsin' + str(n) + str(m) fig.savefig(figname + ext1, orientation='portrait') fig.savefig(figname + ext2, orientation='portrait') fig.savefig(figname + ext3, orientation='portrait') plt.show() else: print("Error: m>n!!!") def compdiag(k, A, th, ph, Fthr, Fphr, typ='modulus', lang='english', fontsize=18): """ makes comparison between original pattern and reconstructed pattern Parameters ---------- k : frequency index A : Antenna ph : phi base (1 x Np) th : theta base (1 x Nt) Fthr : Fth output of Fsynth Nf x (Ntheta*Tphi) Fphr : Fth output of Fsynth Nf x (Ntheta*Tphi) lang = 'french' = 'english' """ Nf = np.shape(Fthr)[0] #Fthr = Fthr.reshape(Nf,len(th),len(ph)) #Fphr = Fphr.reshape(Nf,len(th),len(ph)) plt.figure() rc('text', usetex=True) Ftho = A.Ftheta Fpho = A.Fphi # limites module Fthr, Ftho, Fphr, Fpho maxTr = abs(Fthr[:, :, k]).max() maxTo = abs(Ftho[:, :, k ]).max() MmT = max(maxTr, maxTo) minTr = abs(Fthr[ :, :, k ]).min() minTo = abs(Ftho[ :, :, k ]).min() mmT = min(minTr, minTo) maxPr = abs(Fphr[ :, :, k ]).max() maxPo = abs(Fpho[ :, :, k ]).max() MmP = max(maxPr, maxPo) minPr = abs(Fphr[ :, :, k ]).min() minPo = abs(Fpho[ :, :, k ]).min() mmP = min(minPr, minPo) # limites real Fthr, Ftho, Fphr, Fpho maxTrr = np.real(Fthr[ :, :, k ]).max() maxTor = np.real(Ftho[ :, :, k ]).max() MrT = max(maxTrr, maxTor) minTrr = np.real(Fthr[ :, :, k ]).min() minTor = np.real(Ftho[ :, :, k ]).min() mrT = min(minTrr, minTor) maxPrr = np.real(Fphr[ :, :, k ]).max() maxPor = np.real(Fpho[ :, :, k ]).max() MrP = max(maxPrr, maxPor) minPrr = np.real(Fphr[ :, :, k ]).min() minPor = np.real(Fpho[ :, :, k ]).min() mrP = min(minPrr, minPor) # limites real Fthr, Ftho, Fphr, Fpho maxTri = np.imag(Fthr[ :, :, k ]).max() maxToi = np.imag(Ftho[ :, :, k ]).max() MiT = max(maxTri, maxToi) minTri = np.imag(Fthr[ :, :, k ]).min() minToi = np.imag(Ftho[ :, :, k ]).min() miT = min(minTri, minToi) maxPri = np.imag(Fphr[ :, :, k ]).max() maxPoi = np.imag(Fpho[ :, :, k ]).max() MiP = max(maxPri, maxPoi) minPri = np.imag(Fphr[ :, :, k ]).min() minPoi = np.imag(Fpho[ :, :, k ]).min() miP = min(minPri, minPoi) # limithes arg Fth,Fph maxATr = np.angle(Fthr[ :, :, k ]).max() maxATo = np.angle(Ftho[ :, :, k ]).max() maT = max(maxATr, maxATo) minATr = np.angle(Fthr[ :, :, k ]).min() minATo = np.angle(Ftho[ :, :, k ]).min() maT0 = min(minATr, minATo) maxAPr = np.angle(Fphr[ :, :, k ]).max() maxAPo = np.angle(Fpho[ :, :, k ]).max() maP = max(maxAPr, maxAPo) minAPr = np.angle(Fphr[ :, :, k ]).min() minAPo = np.angle(Fpho[ :, :, k ]).min() maP0 = min(minAPr, minAPo) ax = plt.axes([0, 0, 360, 180]) rtd = 180 / np.pi plt.subplot(221) if typ == 'modulus': # #cmap=cm.jet #pcolor(A.phi*rtd,A.theta*rtd,abs(Ftho[k,:,:]),vmin=0,vmax=mmT) # #cmap= gray #pcolor(A.phi*rtd,A.theta*rtd,abs(Ftho[k,:,:]),cmap=cm.gray_r,vmin=0,vmax=mmT) # #cmap=cm.hot plt.pcolor(A.phi * rtd, A.theta * rtd, abs(Ftho[ :, :, k ]), cmap=cm.hot_r, vmin=mmT, vmax=MmT) plt.title(r'$|F_{\theta}|$ original', fontsize=fontsize) if typ == 'real': #pcolor(A.phi*rtd,A.theta*rtd,real(Ftho[k,:,:]),cmap=cm.gray_r,vmin=0,vmax=mmT) plt.pcolor(A.phi * rtd, A.theta * rtd, np.real(Ftho[ :, :, k ]), cmap=cm.hot_r, vmin=mrT, vmax=MrT) title(r'Re ($F_{\theta}$) original', fontsize=fontsize) if typ == 'imag': #pcolor(A.phi*rtd,A.theta*rtd,imag(Ftho[k,:,:]),cmap=cm.gray_r,vmin=0,vmax=mmT) pcolor(A.phi * rtd, A.theta * rtd, np.imag(Ftho[ :, :, k ]), cmap=cm.hot_r, vmin=miT, vmax=MiT) title(r'Im ($F_{\theta}$) original', fontsize=fontsize) if typ == 'phase': #pcolor(A.phi*rtd,A.theta*rtd,angle(Ftho[k,:,:]),cmap=cm.gray_r,vmin=maT0,vmax=maT) plt.pcolor(A.phi * rtd, A.theta * rtd, np.angle(Ftho[ :, :, k ]), cmap=cm.hot_r, vmin=maT0, vmax=maT) if lang == 'french': plt.title(r'Arg ($F_{\theta}$) original', fontsize=fontsize) else: plt.title(r'Ang ($F_{\theta}$) original', fontsize=fontsize) plt.axis([0, 360, 0, 180]) plt.ylabel(r'$\theta$ (deg)', fontsize=fontsize) plt.xticks(fontsize=fontsize) plt.yticks(fontsize=fontsize) cbar = plt.colorbar() for t in cbar.ax.get_yticklabels(): t.set_fontsize(fontsize) plt.subplot(222) if typ == 'modulus': plt.pcolor(A.phi * rtd, A.theta * rtd, abs(Fpho[:, :, k ]), cmap=cm.hot_r, vmin=mmP, vmax=MmP) plt.title('$|F_{\phi}|$ original', fontsize=fontsize) if typ == 'real': plt.pcolor(A.phi * rtd, A.theta * rtd, np.real(Fpho[ :, :, k ]), cmap=cm.hot_r, vmin=mrP, vmax=MrP) plt.title('Re ($F_{\phi}$) original', fontsize=fontsize) if typ == 'imag': plt.pcolor(A.phi * rtd, A.theta * rtd, np.imag(Fpho[ :, :, k ]), cmap=cm.hot_r, vmin=miP, vmax=MiP) plt.title('Im ($F_{\phi}$) original', fontsize=fontsize) if typ == 'phase': plt.pcolor(A.phi * rtd, A.theta * rtd, np.angle(Fpho[ :, :, k ]), cmap=cm.hot_r, vmin=maP0, vmax=maP) if lang == 'french': plt.title('Arg ($F_{\phi}$) original', fontsize=fontsize) else: plt.title('Ang ($F_{\phi}$) original', fontsize=fontsize) plt.axis([0, 360, 0, 180]) plt.xticks(fontsize=fontsize) plt.yticks(fontsize=fontsize) cbar = plt.colorbar() for t in cbar.ax.get_yticklabels(): t.set_fontsize(fontsize) plt.subplot(223) if typ == 'modulus': plt.pcolor(ph * rtd, th * rtd, abs(Fthr[:, :, k ]), cmap=cm.hot_r, vmin=mmT, vmax=MmT) if lang == 'french': plt.title(r'$|F_{\theta}|$ reconstruit', fontsize=fontsize) else: plt.title(r'$|F_{\theta}|$ reconstructed', fontsize=fontsize) if typ == 'real': plt.pcolor(ph * rtd, th * rtd, np.real(Fthr[:,:,k ]), cmap=cm.hot_r, vmin=mrT, vmax=MrT) if lang == 'french': title(r'Re ($F_{\theta}$) reconstruit', fontsize=fontsize) else: title(r'Re ($F_{\theta}$) reconstructed', fontsize=fontsize) if typ == 'imag': plt.pcolor(ph * rtd, th * rtd, np.imag(Fthr[ :, :, k ]), cmap=cm.hot_r, vmin=miT, vmax=MiT) if lang == 'french': plt.title(r'Im ($F_{\theta}$) reconstruit', fontsize=fontsize) else: plt.title(r'Im ($F_{\theta}$) reconstructed', fontsize=fontsize) if typ == 'phase': plt.pcolor(A.phi * rtd, A.theta * rtd, np.angle(Fthr[:,:,k]), cmap=cm.hot_r, vmin=maT0, vmax=maT) if lang == 'french': plt.title(r'Arg ($F_{\theta}$) reconstruit', fontsize=fontsize) else: plt.title(r'Ang ($F_{\theta}$) reconstructed', fontsize=fontsize) plt.axis([0, 360, 0, 180]) plt.xlabel(r'$\phi$ (deg)', fontsize=fontsize) plt.ylabel(r'$\theta$ (deg)', fontsize=fontsize) plt.xticks(fontsize=fontsize) plt.yticks(fontsize=fontsize) cbar = plt.colorbar() for t in cbar.ax.get_yticklabels(): t.set_fontsize(fontsize) plt.subplot(224) if typ == 'modulus': plt.pcolor(ph * rtd, th * rtd, abs(Fphr[ :, :,k]), cmap=cm.hot_r, vmin=mmP, vmax=MmP) if lang == 'french': plt.title('$|F_{\phi}|$ reconstruit', fontsize=fontsize) else: plt.title('$|F_{\phi}|$ reconstructed', fontsize=fontsize) if typ == 'real': plt.pcolor(ph * rtd, th * rtd, np.real(Fphr[ :, :,k]), cmap=cm.hot_r, vmin=mrP, vmax=MrP) if lang == 'french': plt.title('Re ($F_{\phi}$) reconstruit', fontsize=fontsize) else: plt.title('Re ($F_{\phi}$) reconstructed', fontsize=fontsize) if typ == 'imag': plt.pcolor(ph * rtd, th * rtd, np.imag(Fphr[ :, :,k]), cmap=cm.hot_r, vmin=miP, vmax=MiP) if lang == 'french': plt.title('Im ($F_{\phi}$) reconstruit', fontsize=fontsize) else: plt.title('Im ($F_{\phi}$) reconstructed', fontsize=fontsize) if typ == 'phase': plt.pcolor(A.phi * rtd, A.theta * rtd, np.angle(Fphr[ :, :,k]), cmap=cm.hot_r, vmin=maP0, vmax=maP) if lang == 'french': plt.title('Arg ($F_{\phi}$) reconstruit', fontsize=fontsize) else: plt.title('Ang ($F_{\phi}$) reconstructed', fontsize=fontsize) plt.axis([0, 360, 0, 180]) plt.xlabel(r'$\phi$ (deg)', fontsize=fontsize) plt.xticks(fontsize=fontsize) plt.yticks(fontsize=fontsize) cbar = plt.colorbar() for t in cbar.ax.get_yticklabels(): t.set_fontsize(fontsize) def BeamGauss(theta,phi,Gmax=19.77,HPBW_az=10,HPBW_el=40,Tilt=10): """ Beam with a Gaussian shape Parameters ---------- theta : float angle in degree phi : float angle in degree Gmax : float HPBW_az : float Half Power Beamwidth azimuth degree HPBW_el : float Half Power Beamwidth elevation degree Tilt : float angle in degree """ c = np.pi/180. az = c*(theta-(Tilt+90))*2*np.sqrt(np.log(2)) el = c*phi*2*np.sqrt(np.log(2)) taz = -(az/(HPBW_az*c))**2 tel = -(el/(HPBW_el*c))**2 gain = 10**(Gmax/10.)*np.exp(taz)*np.exp(tel) return(gain) def show3D(F, theta, phi, k, col=True): """ show 3D matplotlib diagram Parameters ---------- F : ndarray (Nf,Nt,Np) theta : ndarray (1xNt) angle phi : ndarray (1xNp) angle theta : ndarray (Nt) k : int frequency index col : boolean if col -> color coded plot3D if col == False -> simple plot3D Examples -------- .. plot:: :include-source: >>> import matplotlib.pyplot as plt >>> from pylayers.antprop.antenna import * >>> A = Antenna('defant.vsh3') >>> A.eval(grid=True) Warnings -------- len(theta) must be equal with shape(F)[1] len(phi) must be equal with shape(F)[2] """ nth = len(theta) nph = len(phi) if k >= np.shape(F)[0]: print('Error: frequency index k not in F defined interval') if nth != np.shape(F)[1]: print('Error: shape mistmatch between theta and F') if nph != np.shape(F)[2]: print('Error: shape mistmatch between phi and F') fig = plt.figure() ax = axes3d.Axes3D(fig) V = F[k, :, :] vt = np.ones(nth) vp = np.ones(nph) Th = np.outer(theta, vp) Ph = np.outer(vt, phi) X = abs(V) * np.cos(Ph) * np.sin(Th) Y = abs(V) * np.sin(Ph) * np.sin(Th) Z = abs(V) * np.cos(Th) ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_zlabel('Z') if (col): ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.hot_r) else: ax.plot3D(np.ravel(X), np.ravel(Y), np.ravel(Z)) class AntPosRot(Antenna): """ Antenna + position + Rotation Notes ----- This class implement an antenna at a position p with an orientation T """ def __init__(self,name,p,T): #super(AntPosRot,self).__init__(self,typ=name) Antenna.__init__(self,typ=name) self.p = p self.T = T def __repr__(self): st = self._filename+'\n\n' st = st +"p: "+ str(self.p)+'\n\n' st = st +"T: "+ str(self.T)+'\n' return(st) def show3(self,**kwargs): self._show3(newfig=False, interact=False, T=self.T, po=self.p, **kwargs) def field(self,p): """ calculate field at points p Parameters ---------- p : np.array (N,3) observation point """ rad_to_deg = 180/np.pi assert p.shape[-1]==3 if len(p.shape)==1: r = p[None,:]-self.p[None,:] else: r = p-self.p[None,:] dist = np.sqrt(np.sum(r*r,axis=-1))[:,None] u = r/dist th = np.arccos(u[:,2]) ph = np.arctan2(u[:,1],u[:,0]) tang = np.vstack((th,ph)).T #print("global",tang*rad_to_deg) tangl,Rt = geu.BTB(tang, self.T) #print("local",tangl*rad_to_deg) self.eval(th=tangl[:,0],ph=tangl[:,1],grid=False) E = (self.Ft[:,None,:]*self.T[:,2][None,:,None] +self.Fp[:,None,:]*self.T[:,0][None,:,None]) P = np.exp(-1j*2*np.pi*self.fGHz[None,None,:]*dist[...,None]/0.3)/dist[...,None] EP = E*P return(EP) def _gain(Ft,Fp): """ calculates antenna gain Parameters ---------- Ft Fp Returns ------- G : np.array(Nt,Np,Nf) dtype:float linear gain or np.array(Nr,Nf) sqG : np.array(Nt,Np,Nf) dtype:float linear sqare root of gain or np.array(Nr,Nf) efficiency : np.array (,Nf) dtype:float efficiency hpster : np.array (,Nf) dtype:float half power solid angle : 1 ~ 4pi steradian ehpbw : np.array (,Nf) dtyp:float equivalent half power beamwidth (radians) Notes ----- .. math:: G(\theta,phi) = |F_{\\theta}|^2 + |F_{\\phi}|^2 """ G = np.real( Fp * np.conj(Fp) + Ft * np.conj(Ft) ) return(G) def _hpbw(G,th,ph): """ half power beamwidth Parameters ---------- Gain : Ftheta Nt x Np th : np.array ,Nt ph : np.array ,Np Returns ------- ehpbw : effective half power beamwidth hpster : half power solid angle (steradians) """ # GdB = 10*np.log10(G) GdBmax = np.max(np.max(GdB,axis=0),axis=0) dt = th[1]-th[0] dp = ph[1]-ph[0] Nt = len(th) Np = len(ph) Nf = GdB.shape[2] hpster = np.zeros(Nf) ehpbw = np.zeros(Nf) for k in range(Nf): U = np.zeros((Nt,Np)) A = GdB[:,:,k]*np.ones(Nt)[:,None]*np.ones(Np)[None,:] u = np.where(A>(GdBmax[k]-3)) U[u] = 1 V = U*np.sin(th)[:,None] hpster[k] = np.sum(V)*dt*dp/(4*np.pi) ehpbw[k] = np.arccos(1-2*hpster[k]) return ehpbw,hpster def _efficiency(G,th,ph): """ determine antenna efficiency Parameters ---------- Gain : Ftheta Nt x Np th : np.array ,Nt ph : np.array ,Np Returns ------- oefficiency : """ # dt = th[1]-th[0] dp = ph[1]-ph[0] Nt = len(th) Np = len(ph) Gs = G*np.sin(th)[:,None,None]*np.ones(Np)[None,:,None] efficiency = np.sum(np.sum(Gs,axis=0),axis=0)*dt*dp/(4*np.pi) return efficiency def _dirmax(G,th,ph): """ determine information in Gmax direction Parameters ---------- Gain : Ftheta Nt x Np th : np.array ,Nt # GdBmax (,Nf) # Get direction of Gmax and get the polarisation state in that direction # Returns -------- """ GdB = 10*np.log10(G) GdBmax = np.max(np.max(GdB,axis=0),axis=0) umax = np.array(np.where(GdB==GdBmax))[:,0] theta_max = th[umax[0]] phi_max = ph[umax[1]] M = geu.SphericalBasis(np.array([[theta_max,phi_max]])) sl = M[:,2].squeeze() uth = M[:,0] uph = M[:,1] el = Ft[tuple(umax)]*uth + Fp[tuple(umax)]*uph eln = el/np.linalg.norm(el) el = np.abs(eln.squeeze()) hl = np.cross(sl,el) return GdBmax,theta_max,phi_max,(hl,sl,el) def F0(nu,sigma): """ F0 function for horn antenna pattern Parameters ---------- nu : np.array (....,nf) sigma : np.array (,nf) Notes ----- http://www.ece.rutgers.edu/~orfanidi/ewa/ch18.pdf 18.3.2 """ nuos = nu/sigma argp = nuos + sigma argm = nuos - sigma expf = np.exp(1j*(np.pi/2)*nuos**2) sf = 1./sigma sp , cp = fresnel(argp) sm , cm = fresnel(argm) Fp = cp-1j*sp Fm = cm-1j*sm F = sf*expf*(Fp -Fm) return F def F1(nu,sigma): """ F1 function for horn antenna pattern http://www.ece.rutgers.edu/~orfanidi/ewa/ch18.pdf 18.3.3 """ F = 0.5*(F0(nu+0.5,sigma)+F0(nu-0.5,sigma)) return F if (__name__ == "__main__"): doctest.testmod()
mit
Haunter17/MIR_SU17
exp3/exp3k/exp3k.py
1
23423
import numpy as np import tensorflow as tf import h5py import time import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import sys # Functions for initializing neural nets parameters def init_weight_variable(shape, nameIn): initial = tf.truncated_normal(shape, stddev=0.1, dtype=tf.float32) return tf.Variable(initial, name=nameIn) def init_bias_variable(shape, nameIn): initial = tf.constant(0.1, shape=shape, dtype=tf.float32) return tf.Variable(initial, name=nameIn) def conv2d(x, W): return tf.nn.conv2d(x, W, [1, 1, 1, 1], 'VALID') def loadData(filepath): ''' Load and return four variables from the file with path filepath X_train: input data for training y_train: labels for X_train X_val: input data for validation y_val: labels for X_val ''' print('==> Experiment 2l') print('==> Loading data from {}'.format(filepath)) # benchmark t_start = time.time() # reading data f = h5py.File(filepath) X_train = np.array(f.get('trainingFeatures')) y_train = np.array(f.get('trainingLabels')) X_val = np.array(f.get('validationFeatures')) y_val = np.array(f.get('validationLabels')) t_end = time.time() print('--Time elapsed for loading data: {t:.2f} \ seconds'.format(t = t_end - t_start)) del f print('-- Number of training samples: {}'.format(X_train.shape[0])) print('-- Number of validation samples: {}'.format(X_val.shape[0])) print('Shape of X_train: %s'%str(X_train.shape)) print('Shape of y_train: %s'%str(y_train.shape)) print('Shape of X_val: %s'%str(X_val.shape)) print('Shape of y_val: %s'%str(y_val.shape)) return [X_train, y_train, X_val, y_val] #self, X_train, y_train, X_val, y_val, num_freq, filter_row, filter_col, k1, k2, learningRate, pooling_strategy): # set up property that makes it only be set once # we'll use this to avoid adding tensors to the graph multiple times import functools def lazy_property(function): attribute = '_cache_' + function.__name__ @property @functools.wraps(function) def decorator(self): if not hasattr(self, attribute): setattr(self, attribute, function(self)) return getattr(self, attribute) return decorator class Model: def __init__(self, num_freq, X_train, y_train, X_val, y_val, filter_row, filter_col, k1, learningRate, debug): ''' Initializer for the model ''' # store the data self.X_train, self.y_train, self.X_val, self.y_val = X_train, y_train, X_val, y_val # store the parameters sent to init that define our model self.num_freq, self.filter_row, self.filter_col, self.k1, self.learningRate, self.debug = num_freq, filter_row, filter_col, k1, learningRate, debug # find num_training_vec, total_features, num_frames, num_classes, and l from the shape of the data # and store them self.storeParamsFromData() # Set-up and store the input and output placeholders x = tf.placeholder(tf.float32, [None, self.total_features]) y_ = tf.placeholder(tf.float32, [None, self.num_classes]) self.x = x self.y_ = y_ # Setup and store tensor that performs the one-hot encoding y_train_OHEnc = tf.one_hot(self.y_train.copy(), self.num_classes) y_val_OHEnc = tf.one_hot(self.y_val.copy(), self.num_classes) self.y_train_OHEnc = y_train_OHEnc self.y_val_OHEnc = y_val_OHEnc # create each lazy_property # each lazy_property will add tensors to the graph self.y_conv self.cross_entropy self.train_step self.accuracy # properties for use in debugging if self.debug: self.grads_and_vars # print to the user that the network has been set up, along with its properties print("Setting up Single Conv Layer Neural net with %g x %g filters, k1 = %g, learningRate = %g"%(filter_row, filter_col, k1, learningRate)) def storeParamsFromData(self): ''' Calculate and store parameters from the raw data total_features: The number of CQT coefficients total (incldues all context frames) num_training_vec: The number of training examples in your dataset num_frames: The number of context frames in each training example (total_features / num_freq) num_classes: The number of songs we're distinguishing between in our output l: The length of our second convolutional kernel - for now, its equal to num_frames ''' # Neural-network model set-up # calculating some values which will be nice as we set up the model num_training_vec, total_features = self.X_train.shape num_frames = int(total_features / self.num_freq) print('-- Num frames: {}'.format(num_frames)) num_classes = int(max(self.y_train.max(), self.y_val.max()) + 1) l = num_frames # store what will be helpful later self.total_features = total_features self.num_training_vec = num_training_vec self.num_frames = num_frames self.num_classes = num_classes self.l = l @lazy_property def y_conv(self): # reshape the input into the form of a spectrograph x_image = tf.reshape(self.x, [-1, self.num_freq, self.num_frames, 1]) x_image = tf.identity(x_image, name="x_image") # first convolutional layer parameters W_conv1 = init_weight_variable([self.filter_row, self.filter_col, 1, self.k1], "W_conv1") b_conv1 = init_bias_variable([self.k1], "b_conv1") # tensor that computes the output of the first convolutional layer h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) h_conv1 = tf.identity(h_conv1, name="h_conv_1") # flatten out the output of the first convolutional layer to pass to the softmax layer h_conv1_flat = tf.reshape(h_conv1, [-1, (self.num_freq - self.filter_row + 1) * (self.num_frames - self.filter_col + 1) * self.k1]) h_conv1_flat = tf.identity(h_conv1_flat, name="h_conv1_flat") # softmax layer parameters W_sm = init_weight_variable([(self.num_freq - self.filter_row + 1) * (self.num_frames - self.filter_col + 1) * self.k1, self.num_classes], "W_sm") b_sm = init_bias_variable([self.num_classes], "b_sm") # the output of the layer - un-normalized and without a non-linearity # since cross_entropy_with_logits takes care of that y_conv = tf.matmul(h_conv1_flat, W_sm) + b_sm y_conv = tf.identity(y_conv, name="y_conv") return y_conv # would want to softmax it to get an actual prediction @lazy_property def cross_entropy(self): ''' Create a tensor that computes the cross entropy cost Use the placeholder y_ as the labels, with input y_conv Note that softmax_cross_entropy_with_logits takes care of normalizing y_conv to make it a probability distribution This tensor can be accessed using: self.cross_entropy ''' cross_entropy = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(labels=self.y_, logits=self.y_conv)) cross_entropy = tf.identity(cross_entropy, name="cross_entropy") return cross_entropy @lazy_property def optimizer(self): ''' Create a tensor that represents the optimizer. This tensor can be accessed using: self.optimizer ''' optimizer = tf.train.AdamOptimizer(learning_rate = self.learningRate) return optimizer @lazy_property def train_step(self): ''' Creates a tensor that represents a single training step. This tensor can be passed a feed_dict that has x and y_, and it will compute the gradients and perform a single step. This tensor can be accessed using: self.train_step ''' return self.optimizer.minimize(self.cross_entropy) @lazy_property def accuracy(self): ''' Create a tensor that computes the accuracy, using the placeholder y_ as the labeled data and y_conv for the predictions of the network. This tensor can be accessed using: self.accuracy ''' correct_prediction = tf.equal(tf.argmax(self.y_conv, 1), tf.argmax(self.y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) return accuracy ''' Properties that we'll use for debugging ''' @lazy_property def grads_and_vars(self): grads_and_vars = self.optimizer.compute_gradients(self.cross_entropy, tf.trainable_variables()) return grads_and_vars def train(self, batch_size, num_epochs, print_freq, debug_out='debug.txt'): ''' Train the Network on the data that will have been loaded when the NN is initialized Trained on: self.X_train, and a OH encoding of self.y_train Trains with batch_size batches for num_epochs epochs Debugging info is written to debug.txt (can add params to have more places to write out to) ''' # Starting an interactive session and initializing the parameters #sess = tf.InteractiveSession(config=tf.ConfigProto(log_device_placement=True)) sess = tf.InteractiveSession() sess.run(tf.global_variables_initializer()) # replace it with the one-hot encoded one --- should I replace? y_trainOH = sess.run(self.y_train_OHEnc)[:, 0, :] y_valOH = sess.run(self.y_val_OHEnc)[:, 0, :] # lists to record accuracy at several points during training train_acc_list = [] val_acc_list = [] train_acc_on_batch_list = [] # lists to record the error at several points during training train_err_list = [] val_err_list = [] train_err_on_batch_list = [] # track which epochs you record data during epoch_numbers = [] # record the start time t_start = time.time() for epoch in range(num_epochs): epochStart = time.time() # train by systematically pulling batches of batch_size from # the training set and taking a training step on each batch for i in range(0, self.num_training_vec, batch_size): batch_end_point = min(i + batch_size, self.num_training_vec) train_batch_data = self.X_train[i : batch_end_point] train_batch_label = y_trainOH[i : batch_end_point] self.train_step.run(feed_dict={self.x: train_batch_data, self.y_: train_batch_label}) epochEnd = time.time() # print and record data now that we've trained on our full training set if (epoch + 1) % print_freq == 0: # timing for the measurements of cost and accuracy evaluationStart = time.time() # compute training (on the most recent batch and the full data set) # and validation cost and accuracy, then print them and add them to the list # we start with accuracy: train_acc = self.evalByBatch(self.accuracy, X_train, y_trainOH, 5000) train_acc_list.append(train_acc) val_acc = self.evalByBatch(self.accuracy, X_val, y_valOH, 5000) val_acc_list.append(val_acc) # Now we compute the error on each set: train_err = self.evalByBatch(self.cross_entropy, X_train, y_trainOH, 5000) train_err_list.append(train_err) val_err = self.evalByBatch(self.cross_entropy, X_val, y_valOH, 5000) val_err_list.append(val_err) # keep track of which epochs we have data for epoch_numbers += [epoch] # this marks the end of our evaluation evaluationEnd = time.time() # print a summary of our NN at this epoch print("epoch: %d, time (train, evaluation): (%g, %g), t acc, v acc, t cost, v cost: %.5f, %.5f, %.5f, %.5f"%(epoch+1, epochEnd - epochStart, evaluationEnd - evaluationStart, train_acc, val_acc, train_err, val_err)) # debugging print outs if self.debug: # print out step / current value ratio for each parameter in our network # based on training data from the most recent batch # to the file with name debug_out self.debug_WriteGradAndVar(train_batch_data, train_batch_label, epoch, debug_out) # record the total time spent training the neural network t_end = time.time() print('--Time elapsed for training for %g epochs: %g'%(num_epochs, t_end - t_start)) # return the lists of logged data return [train_acc_list, val_acc_list, train_err_list, val_err_list, epoch_numbers] def evalByBatch(self, toEval, x, y_, batchSize): weightedAvg = 0.0 for i in range(0, len(x), batchSize): batch_end_point = min(i + batchSize, len(x)) batch_data = x[i : batch_end_point] batch_label = y_[i : batch_end_point] curAmount = toEval.eval(feed_dict={self.x: batch_data, self.y_: batch_label}) # weight by the length of the batch and keep adding on weightedAvg = weightedAvg + curAmount * float(batch_end_point - i) / len(x) return weightedAvg def debug_WriteGradAndVar(self, xDebug, yDebug, epoch, debug_out): ''' Helper function that prints the ratio of the training step that would be taken on input data and labels xDebug and yDebug to the magnitude of each parameter in the network. This gives us a sense of how much each parameter is changing. Inputs: xDebug: input data to calculate the gradient from yDebug: labels for the input data epoch: the number of the epoch (to print out to the file) debug_out: the file to write to - if it doesn't exist it will be created ''' file_object = open(debug_out, 'a+') # record which epoch this is file_object.write("Epoch: %d\n"%(epoch)) # find the current learning rate - this will be used with the gradient to find the step size curLearningRate = self.optimizer._lr # print each gradient and the variables they are associated with # the gradients are stored in tuples, where the first element is a tensor # that computes the gradient, and the second is the parameter that gradient # is associated with for gv in self.grads_and_vars: curGrads = gv[0].eval(feed_dict={self.x: xDebug, self.y_: yDebug}) curSteps = curGrads * curLearningRate # scale down the graident by the learning rate curVars = gv[1].eval() # How much, compared to the magnitude of the weight, are we stepping stepToVarRatio = np.absolute(np.divide(curSteps, curVars)) # print the name of the variable, then all the step ratios (step amount / current value) # these values will have been averaged across the training examples curName = gv[1].name file_object.write("Variable: " + curName + "\n") for index, step in np.ndenumerate(stepToVarRatio): file_object.write(str(index) + ": " + str(step) + "\n") # print summary statistics for this layer maxVal = np.amax(stepToVarRatio) thirdQuartile = np.percentile(stepToVarRatio, 75) mean = np.mean(stepToVarRatio) median = np.median(stepToVarRatio) firstQuartile = np.percentile(stepToVarRatio, 25) minVal = np.amin(stepToVarRatio) file_object.write("Statistics: (%g, %g, %g, %g, %g, %g)\n"%(minVal, firstQuartile, median, mean, thirdQuartile, maxVal)) file_object.write("---------------------------------------\n") # close the file file_object.close() def makeTrainingPlots(epochs, paramValues, trainingMetricLists, validationMetricLists, paramName, metricName, titles, filenames): ''' Plots of the given training and validation metrics versus epoch number. One plot per list in trainingMetricLists and validationMetricLists. Assume there will be the same number of sublists in both those parameters. Titles will hold a list of strings that will be used for the titles of the graphs. The last title will be for the plot with all the validation curves. Filenames is a list of filenames to save your plots to Input: epochs: a list of the epochs on which data was taken - assume all of them took data at the same epoch numbers paramValues: the values of the param that we were varying (to label the curves in our validation plot) trainingMetricLists: a list of lists, where each list represents some metric on the progress of training throughout training validationMetricLists: a list of lists, where each list represents some metric on the progress of training throughout training paramName: name of the parameter you're varying (e.g. learningRate or kernel height) metricName: the name of the metric (e.g. accuracy, or cross-entropy error), to be used on the y-axis titles: titles for the graph (will include info on the params used). *The last title will be for the validation plot filename: the filenames to write the graphs to (will include info on the params used) * the last filename will be for the validation plot Output: Write a png file for each list in trainingMetricLists/validationMetricLists with the desired plot ''' # figure with all the validation curves validationFig = plt.figure(figsize=(7, 4)) validationPlot = validationFig.add_subplot(111) # go through each setup and make a plot for each for i in range(len(trainingMetricLists)): # pull out the list we're concerned with trainingMetric = trainingMetricLists[i] validationMetric = validationMetricLists[i] # make the figure, add plots, axis lables, a title, and legend fig = plt.figure(figsize=(7, 4)) myPlot = fig.add_subplot(111) myPlot.plot(epochs, trainingMetric, '-', label="Training") myPlot.plot(epochs, validationMetric, '-', label="Validation") myPlot.set_xlabel("Epoch Number") myPlot.set_ylabel(metricName) myPlot.set_title(titles[i]) myPlot.legend(loc="best", frameon=False) # Write the figure fig.savefig(filenames[i]) # update the figure with all the validation curves validationPlot.plot(epochs, validationMetric, '-', label=(paramName + " = " + str(paramValues[i]))) # finish labeling + write the validation plot validationPlot.set_xlabel("Epoch Number") validationPlot.set_ylabel(metricName) validationPlot.set_title(titles[-1]) validationPlot.legend(loc="best", frameon=False) validationFig.savefig(filenames[-1]) def makeBestResultPlot(paramValues, trainingMetricLists, validationMetricLists, paramName, metricName, title, filename): ''' Plot the "best" value of the training and validation metric against the param that led to it Best is assumed to be the largest value of the metric Input: trainingMetricLists: a list of lists, where each list represents some metric on the progress of training throughout training validationMetricLists: a list of lists, where each list represents some metric on the progress of training throughout training paramName: metricName: title: the title of the graph (will include info on the params used) filename: the filename to write the graph to (will include info on the params used) Output: Write a png file with the desired plot Is there a way to call the other one to do this? if didn't assume epoch number then yes - oh well ''' bestTrainingMetrics = [max(curList) for curList in trainingMetricLists] bestValidationMetrics = [max(curList) for curList in validationMetricLists] # make the figure, add plots, axis lables, a title, and legend fig = plt.figure(figsize=(7, 4)) myPlot = fig.add_subplot(111) myPlot.plot(paramValues, bestTrainingMetrics, '-', label="Training") myPlot.plot(paramValues, bestValidationMetrics, '-', label="Validation") myPlot.set_xlabel(paramName) myPlot.set_ylabel(metricName) myPlot.set_title(title) myPlot.legend(loc="best", frameon=False) # Write the figure fig.savefig(filename) def makeEndResultPlot(paramValues, trainingMetricLists, validationMetricLists, paramName, metricName, title, filename): ''' Plot the final value of the training and validation metric against the param that led to it Input: trainingMetricLists: a list of lists, where each list represents some metric on the progress of training throughout training validationMetricLists: a list of lists, where each list represents some metric on the progress of training throughout training paramName: metricName: title: the title of the graph (will include info on the params used) filename: the filename to write the graph to (will include info on the params used) Output: Write a png file with the desired plot Is there a way to call the other one to do this? if didn't assume epoch number then yes - oh well ''' finalTrainingMetrics = [curList[-1] for curList in trainingMetricLists] finalValidationMetrics = [curList[-1] for curList in validationMetricLists] # make the figure, add plots, axis lables, a title, and legend fig = plt.figure(figsize=(7, 4)) myPlot = fig.add_subplot(111) myPlot.plot(paramValues, finalTrainingMetrics, '-', label="Training") myPlot.plot(paramValues, finalValidationMetrics, '-', label="Validation") myPlot.set_xlabel(paramName) myPlot.set_ylabel(metricName) myPlot.set_title(title) myPlot.legend(loc="best", frameon=False) # Write the figure fig.savefig(filename) ''' Our main, with 121x1 convolutional layer. ''' # read in command line parameters try: # read in a list of the row numbers for the kernels filterRowsString = sys.argv[1] filterRowsIn = map(int, filterRowsString.strip('[]').split(',')) # read in a list of the col numbers for the kernels filterColsString = sys.argv[2] # map it from a string into a list of ints filterColsIn = map(int, filterColsString.strip('[]').split(',')) # read in the number of epochs numEpochs = int(sys.argv[3]) finalPlotName = sys.argv[4] except Exception, e: print('-- {}'.format(e)) # filepath to the data you want to laod filepath = '/pylon2/ci560sp/cstrong/exp3/exp3_taylorswift_d15_1s_C1C8.mat' # define the configurations we're going to be looking at # in this exp: just change the number of rows in a vertical kernel filterCols = filterColsIn filterRows = filterRowsIn k1s = [39] * len(filterRows) learningRates = [0.001] * len(filterRows) # set training parameters batchSize = 1000 print_freq = 1 # make lists to store data train_acc_lists = [] val_acc_lists = [] train_err_lists = [] val_err_lists = [] epoch_number_lists = [] # load data [X_train, y_train, X_val, y_val] = loadData(filepath) # loop through the setups and make a model each time for i in range(len(filterRows)): # create the model - this will create the TF graph as well as load the data m = Model(169, X_train, y_train, X_val, y_val, filterRows[i], filterCols[i], k1s[i], learningRates[i], False) # actually train the model (on the data it already loaded) [train_acc_list, val_acc_list, train_err_list, val_err_list, epoch_numbers] = m.train(1000, numEpochs, print_freq) # store the new data train_acc_lists.append(train_acc_list) val_acc_lists.append(val_acc_list) train_err_lists.append(train_err_list) val_err_lists.append(val_err_list) epoch_number_lists.append(epoch_numbers) del m # clear out the model to avoid huge buildup of memory # printing print("Filter Rows: %s"%(filterRows)) print("Filter Cols: %s"%(filterCols)) print("K1s: %s"%(k1s)) print("Learning Rates: %s"%(learningRates)) print("Train acc list: %s"%(str(train_acc_lists))) print("Val acc list: %s"%(str(val_acc_lists))) print("Train err list: %s"%(str(train_err_lists))) print("Val err list: %s"%(str(val_err_lists))) print("Epoch number lists: %s"%(str(epoch_number_lists))) bestValues = [min(curList) for curList in val_err_lists] print("Best Values: %s"%str(bestValues)) # plotting trainingPlotTitles = ['Single Layer CNN with %gx%g kernels and k1=%g, LR=%f'%(filterRows[i], filterCols[i], k1s[i], learningRates[i]) for i in range(len(filterRows))] trainingPlotTitles.append('Exp 3k, Validation Cross-Entropy Cost vs. Epoch') trainingPlotFiles = ['exp3k_training_%gx%g_k1=%g_LR=%f_%gEpochs.png'%(filterRows[i], filterCols[i], k1s[i], learningRates[i], numEpochs) for i in range(len(filterRows))] trainingPlotFiles.append('exp3k_validationCurves_%gEpochs'%(numEpochs)) makeTrainingPlots(epoch_number_lists[0], zip(filterRows, filterCols), train_err_lists, val_err_lists, "Shape of Kernel", "Cross Entropy Cost", trainingPlotTitles, trainingPlotFiles)
mit
roxyboy/bokeh
bokeh/charts/builder/tests/test_bar_builder.py
33
6390
""" This is the Bokeh charts testing interface. """ #----------------------------------------------------------------------------- # Copyright (c) 2012 - 2014, Continuum Analytics, Inc. All rights reserved. # # Powered by the Bokeh Development Team. # # The full license is in the file LICENSE.txt, distributed with this software. #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- from __future__ import absolute_import from collections import OrderedDict import unittest import numpy as np import pandas as pd from bokeh.charts import Bar from bokeh.charts.builder.tests._utils import create_chart from bokeh.models import Range1d, FactorRange #----------------------------------------------------------------------------- # Classes and functions #----------------------------------------------------------------------------- class TestBar(unittest.TestCase): def test_supported_input(self): xyvalues = OrderedDict() xyvalues['python'] = [2, 5] xyvalues['pypy'] = [12, 40] xyvalues['jython'] = [22, 30] for i, _xy in enumerate([xyvalues, dict(xyvalues), pd.DataFrame(xyvalues)]): bar = create_chart(Bar, _xy) builder = bar._builders[0] np.testing.assert_array_equal(builder._data['pypy'], np.array(xyvalues['pypy'])) np.testing.assert_array_equal(builder._data['python'], np.array(xyvalues['python'])) np.testing.assert_array_equal(builder._data['jython'], np.array(xyvalues['jython'])) # test mid values, that should always be y/2 .. np.testing.assert_array_equal(builder._data['midpython'], np.array([1, 2.5])) np.testing.assert_array_equal(builder._data['midpypy'], np.array([6, 20])) np.testing.assert_array_equal(builder._data['midjython'], np.array([11, 15])) # stacked values should be 0 as base and + y/2 of the column # skipping plain dict case as stacked values randomly fails due to # dictionary unordered nature if i != 1: np.testing.assert_array_equal(builder._data['stackedpython'], np.array([1, 2.5])) np.testing.assert_array_equal(builder._data['stackedpypy'], np.array([8, 25])) np.testing.assert_array_equal(builder._data['stackedjython'], np.array([25, 60])) np.testing.assert_array_equal(builder._data['cat'], np.array(['0', '1'])) np.testing.assert_array_equal(builder._data['width'], np.array([0.8, 0.8])) np.testing.assert_array_equal(builder._data['width_cat'], np.array([0.2, 0.2])) lvalues = [[2, 5], [12, 40], [22, 30]] for i, _xy in enumerate([lvalues, np.array(lvalues)]): bar = create_chart(Bar, _xy) builder = bar._builders[0] np.testing.assert_array_equal(builder._data['0'], np.array(lvalues[0])) np.testing.assert_array_equal(builder._data['1'], np.array(lvalues[1])) np.testing.assert_array_equal(builder._data['2'], np.array(lvalues[2])) # test mid values, that should always be y/2 .. np.testing.assert_array_equal(builder._data['mid0'], np.array([1, 2.5])) np.testing.assert_array_equal(builder._data['mid1'], np.array([6, 20])) np.testing.assert_array_equal(builder._data['mid2'], np.array([11, 15])) # stacked values should be 0 as base and + y/2 of the column np.testing.assert_array_equal(builder._data['stacked0'], np.array([1, 2.5])) np.testing.assert_array_equal(builder._data['stacked1'], np.array([8, 25])) np.testing.assert_array_equal(builder._data['stacked2'], np.array([25, 60])) np.testing.assert_array_equal(builder._data['cat'], np.array(['0', '1'])) np.testing.assert_array_equal(builder._data['width'], np.array([0.8, 0.8])) np.testing.assert_array_equal(builder._data['width_cat'], np.array([0.2, 0.2])) def test_all_positive_input(self): source = OrderedDict() source['percent change 1'] = [1, 13] source['percent change 2'] = [12, 40] bar_chart = create_chart(Bar, source) self.assertEqual(bar_chart._builders[0].y_range.start, 0) self.assertEqual(bar_chart._builders[0].y_range.end, 40 * 1.1) def test_all_negative_input(self): source = OrderedDict() source['percent change 1'] = [-1, -13] source['percent change 2'] = [-12, -40] bar_chart = create_chart(Bar, source) # We want the start to be negative, so that data points downwards self.assertEqual(bar_chart._builders[0].y_range.start, -40 * 1.1) self.assertEqual(bar_chart._builders[0].y_range.end, 0) def test_mixed_sign_input(self): source = OrderedDict() source['percent change 1'] = [-1, -13] source['percent change 2'] = [12, 40] bar_chart = create_chart(Bar, source) self.assertEqual(bar_chart._builders[0].y_range.start, -13 * 1.1) self.assertEqual(bar_chart._builders[0].y_range.end, 40 * 1.1) def test_set_custom_continuous_range(self): # Users can specify their own y_range for cases where the # default guess is not what's desired. source = OrderedDict() source['percent change 1'] = [25, -13] source['percent change 2'] = [-12, -40] custom_y_range = Range1d(50, -50) bar_chart = create_chart(Bar, source, continuous_range=custom_y_range) self.assertEqual(bar_chart._builders[0].y_range, custom_y_range) def test_invalid_continuous_range_raises_error(self): source = OrderedDict({'p': [0, 1]}) bad_y_range = range(0, 50) # Not a Range object with self.assertRaises(ValueError): create_chart(Bar, source, continuous_range=bad_y_range) def test_non_range1d_continuous_range_raises_value_error(self): source = OrderedDict({'p': [0, 1]}) non_1d_range = FactorRange(factors=['a', 'b']) with self.assertRaises(ValueError): create_chart(Bar, source, continuous_range=non_1d_range)
bsd-3-clause
georgek/KAT
scripts/kat_plot_density.py
1
5902
#!/usr/bin/env python3 import argparse import numpy as np import scipy.ndimage as ndimage import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import kat_plot_colormaps as cmaps from kat_plot_misc import * # ----- command line parsing ----- parser = argparse.ArgumentParser( description="""Create K-mer Density Plots. Creates a scatter plot, where the density or "heat" at each point represents the number of distinct K-mers at that point. Typically this is used to visualise a matrix produced by the "kat comp" tool to compare multiplicities from two K-mer hashes produced by different NGS reads, or to visualise the GC vs K-mer multiplicity matrices produced by the "kat gcp" tool.""") parser.add_argument("matrix_file", type=str, help="The input matrix file from KAT") parser.add_argument("-o", "--output", type=str, default="kat-density", help="The path to the output file.") parser.add_argument("-p", "--output_type", type=str, help="The plot file type to create (default is based on " \ "given output name).") parser.add_argument("-t", "--title", type=str, help="Title for plot") parser.add_argument("-a", "--x_label", type=str, help="Label for x-axis") parser.add_argument("-b", "--y_label", type=str, help="Label for y-axis") parser.add_argument("-c", "--z_label", type=str, help="Label for z-axis") parser.add_argument("-x", "--x_max", type=int, help="Maximum value for x-axis") parser.add_argument("-y", "--y_max", type=int, help="Maximum value for y-axis") parser.add_argument("-z", "--z_max", type=int, help="Maximum value for z-axis") parser.add_argument("-w", "--width", type=int, default=8, help="Width of canvas") parser.add_argument("-l", "--height", type=int, default=6, help="Height of canvas") parser.add_argument("--contours", choices=["none", "normal", "smooth"], default="normal") parser.add_argument("--not_rasterised", dest="rasterised", action="store_false", help="Don't rasterise graphics (slower).") parser.add_argument("--dpi", type=int, default=300, help="Resolution in dots per inch of output graphic.") parser.set_defaults(rasterised=True) parser.add_argument("-v", "--verbose", dest="verbose", action="store_true", help="Print extra information") parser.set_defaults(verbose=False) args = parser.parse_args() # ----- end command line parsing ----- # load header information input_file = open(args.matrix_file) header = readheader(input_file) if args.title is not None: title = args.title elif "Title" in header: title = header["Title"] else: title = "Density Plot" if args.x_label is not None: x_label = args.x_label elif "XLabel" in header: x_label = header["XLabel"] else: x_label = "X" if args.y_label is not None: y_label = args.y_label elif "YLabel" in header: y_label = header["YLabel"] else: y_label = "Y" if args.z_label is not None: z_label = args.z_label elif "ZLabel" in header: z_label = header["ZLabel"] else: z_label = "Z" matrix = np.loadtxt(input_file) if "Transpose" in header and header["Transpose"] == '1': matrix = np.transpose(matrix) input_file.close() if args.verbose: print("{:d} by {:d} matrix file loaded.".format(matrix.shape[0], matrix.shape[1])) if args.contours == "smooth": matrix_smooth = ndimage.gaussian_filter(matrix, sigma=2.0, order=0) if args.x_max is None or args.y_max is None or args.z_max is None: # find peaks msum = np.sum(matrix) xsums = np.sum(matrix, 0) ysums = np.sum(matrix, 1) peakx = findpeaks(xsums) peaky = findpeaks(ysums) # ignore peaks at 1 peakx = peakx[peakx != 1] peaky = peaky[peaky != 1] peakz = matrix[peaky,:][:,peakx] # peakxv = xsums[peakx] # print "peakxv: ", peakxv # xmax = np.max(peakx[peakxv > (msum * 0.0005)]) * 2 # peakyv = ysums[peaky] # print "peakyv: ", peakyv # ymax = np.max(peaky[peakyv > (msum * 0.0005)]) * 2 xmax = len(xsums) ymax = len(ysums) for i in range(1, len(xsums), int(len(xsums)/40) + 1): if np.sum(xsums[:i]) >= msum * 0.995: xmax = i break for i in range(1, len(ysums), int(len(ysums)/40) + 1): if np.sum(ysums[:i]) >= msum * 0.995: ymax = i break zmax = np.max(peakz) * 1.1 if args.verbose: print("Automatically detected axis limits:") print("xmax: ", xmax) print("ymax: ", ymax) print("zmax: ", zmax) if args.x_max is not None: xmax = args.x_max if args.y_max is not None: ymax = args.y_max if args.z_max is not None: zmax = args.z_max plt.figure(num = None, figsize=(args.width, args.height)) pcol = plt.pcolormesh(matrix, vmin=0, vmax=zmax, cmap=cmaps.viridis, rasterized=args.rasterised) plt.axis([0,xmax,0,ymax]) cbar = plt.colorbar() cbar.set_label(wrap(z_label)) cbar.solids.set_rasterized(args.rasterised) if zmax > 0: levels = np.arange(zmax/8, zmax, zmax/8) if args.contours == "normal": plt.contour(matrix, colors="white", alpha=0.6, levels=levels) elif args.contours == "smooth": plt.contour(matrix_smooth, colors="white", alpha=0.6, levels=levels) title = plt.title(wrap(title)) plt.xlabel(wrap(x_label)) plt.ylabel(wrap(y_label)) plt.grid(True, color="white", alpha=0.2) plt.tight_layout() if args.output_type is not None: output_name = args.output + '.' + args.output_type else: output_name = args.output plt.savefig(correct_filename(output_name), dpi=args.dpi)
gpl-3.0
Philip-Bachman/ICML-2015
utils.py
1
11903
""" This file contains different utility functions that are not connected in anyway to the networks presented in the tutorials, but rather help in processing the outputs into a more understandable way. For example ``tile_raster_images`` helps in generating a easy to grasp image from a set of samples or weights. """ import numpy as np import PIL as PIL # Stuff for visualizing diagnostics from sklearn.neighbors import KernelDensity import matplotlib as mpl mpl.use('Agg') class batch(object): def __init__(self,batch_size): self.batch_size = batch_size def __call__(self,f): def wrapper(t,X): X = np.array(X) p = 0 rem = 0 results = [] while p < len(X): Z = X[p:p+self.batch_size] if Z.shape[0] != self.batch_size: zeros = np.zeros((self.batch_size-len(Z),X.shape[1])) rem = len(Z) Z = np.array(np.vstack((Z,zeros)),dtype=X.dtype) temp_results = f(t,Z) if rem != 0: temp_results = temp_results[:rem] results.extend(temp_results) p += self.batch_size return np.array(results,dtype='float32') return wrapper def scale_to_unit_interval(ndar, eps=1e-8): """ Scales all values in the ndarray ndar to be between 0 and 1 """ ndar = ndar.copy() ndar -= ndar.min() ndar *= 1.0 / (ndar.max() + eps) return ndar def tile_raster_images(X, img_shape=None, tile_shape=None, tile_spacing=(0, 0), scale=True, output_pixel_vals=True, colorImg=False): """ Transform an array with one flattened image per row, into an array in which images are reshaped and layed out like tiles on a floor. This function is useful for visualizing datasets whose rows are images, and also columns of matrices for transforming those rows (such as the first layer of a neural net). """ X = X * 1.0 # converts ints to floats if colorImg: channelSize = X.shape[1]/3 X = (X[:,0:channelSize], X[:,channelSize:2*channelSize], X[:,2*channelSize:3*channelSize], None) assert len(img_shape) == 2 assert len(tile_shape) == 2 assert len(tile_spacing) == 2 # The expression below can be re-written in a more C style as # follows : # # out_shape = [0,0] # out_shape[0] = (img_shape[0] + tile_spacing[0]) * tile_shape[0] - # tile_spacing[0] # out_shape[1] = (img_shape[1] + tile_spacing[1]) * tile_shape[1] - # tile_spacing[1] out_shape = [(ishp + tsp) * tshp - tsp for ishp, tshp, tsp in zip(img_shape, tile_shape, tile_spacing)] if isinstance(X, tuple): assert len(X) == 4 # Create an output np ndarray to store the image if output_pixel_vals: out_array = np.zeros((out_shape[0], out_shape[1], 4), dtype='uint8') else: out_array = np.zeros((out_shape[0], out_shape[1], 4), dtype=X.dtype) #colors default to 0, alpha defaults to 1 (opaque) if output_pixel_vals: channel_defaults = [0, 0, 0, 255] else: channel_defaults = [0., 0., 0., 1.] for i in xrange(4): if X[i] is None: # if channel is None, fill it with zeros of the correct # dtype out_array[:, :, i] = np.zeros(out_shape, dtype='uint8' if output_pixel_vals else out_array.dtype ) + channel_defaults[i] if i < 3: print('WHY AM I HERE (utils.py line 101)?') else: # use a recurrent call to compute the channel and store it # in the output xi = X[i] if scale: # shift and scale this channel to be in [0...1] xi = (X[i] - X[i].min()) / (X[i].max() - X[i].min()) out_array[:, :, i] = tile_raster_images(xi, img_shape, tile_shape, tile_spacing, False, output_pixel_vals) return out_array else: # if we are dealing with only one channel H, W = img_shape Hs, Ws = tile_spacing # generate a matrix to store the output out_array = np.zeros(out_shape, dtype='uint8' if output_pixel_vals else X.dtype) for tile_row in xrange(tile_shape[0]): for tile_col in xrange(tile_shape[1]): if tile_row * tile_shape[1] + tile_col < X.shape[0]: if scale: # if we should scale values to be between 0 and 1 # do this by calling the `scale_to_unit_interval` # function tmp = X[tile_row * tile_shape[1] + tile_col].reshape(img_shape) this_img = scale_to_unit_interval(tmp) else: this_img = X[tile_row * tile_shape[1] + tile_col].reshape(img_shape) # add the slice to the corresponding position in the # output array out_array[ tile_row * (H+Hs): tile_row * (H + Hs) + H, tile_col * (W+Ws): tile_col * (W + Ws) + W ] \ = this_img * (255 if output_pixel_vals else 1) return out_array def visualize(EN, proto_key, layer_num, file_name): W = EN.proto_nets[proto_key][layer_num].W.get_value(borrow=True).T size = int(np.sqrt(W.shape[1])) # hist(W.flatten(),bins=50) image = PIL.Image.fromarray(tile_raster_images(X=W, \ img_shape=(size, size), tile_shape=(10,W.shape[0]/10),tile_spacing=(1, 1))) image.save(file_name) return def visualize_net_layer(net_layer, file_name, colorImg=False, \ use_transpose=False, transform=None): W = net_layer.W.get_value(borrow=False).T if use_transpose: W = net_layer.W.get_value(borrow=False) if not (transform is None): W = transform(W) if colorImg: size = int(np.sqrt(W.shape[1] / 3.0)) else: size = int(np.sqrt(W.shape[1])) num_rows = 10 num_cols = int((W.shape[0] / num_rows) + 0.999) img_shape = (size, size) tile_shape = (num_rows, num_cols) image = tile_raster_images(X=W, img_shape=img_shape, tile_shape=tile_shape, \ tile_spacing=(1, 1), scale=True, colorImg=colorImg) image = PIL.Image.fromarray(image) image.save(file_name) return def visualize_samples(X_samp, file_name, num_rows=10): d = int(np.sqrt(X_samp.shape[1])) # hist(W.flatten(),bins=50) image = PIL.Image.fromarray(tile_raster_images(X=X_samp, img_shape=(d, d), \ tile_shape=(num_rows,X_samp.shape[0]/num_rows),tile_spacing=(1, 1))) image.save(file_name) return # Matrix to image def mat_to_img(X, file_name, img_shape, num_rows=10, \ scale=True, colorImg=False, tile_spacing=(1,1)): num_rows = int(num_rows) num_cols = int((X.shape[0] / num_rows) + 0.999) tile_shape = (num_rows, num_cols) # make a tiled image from the given matrix's rows image = tile_raster_images(X=X, img_shape=img_shape, \ tile_shape=tile_shape, tile_spacing=tile_spacing, \ scale=scale, colorImg=colorImg) # convert to a standard image format and save to disk image = PIL.Image.fromarray(image) image.save(file_name) return def plot_kde_histogram(X, f_name, bins=25): """ Plot KDE-smoothed histogram of the data in X. Assume data is univariate. """ import matplotlib.pyplot as plt X_samp = X.ravel()[:,np.newaxis] X_min = np.min(X_samp) X_max = np.max(X_samp) X_range = X_max - X_min sigma = X_range / float(bins) plot_min = X_min - (X_range/3.0) plot_max = X_max + (X_range/3.0) plot_X = np.linspace(plot_min, plot_max, 1000)[:,np.newaxis] # make a kernel density estimator for the data in X kde = KernelDensity(kernel='gaussian', bandwidth=sigma).fit(X_samp) # make a figure fig = plt.figure() ax = fig.add_subplot(111) ax.plot(plot_X, np.exp(kde.score_samples(plot_X))) fig.savefig(f_name, dpi=None, facecolor='w', edgecolor='w', \ orientation='portrait', papertype=None, format=None, \ transparent=False, bbox_inches=None, pad_inches=0.1, \ frameon=None) plt.close(fig) return def plot_kde_histogram2(X1, X2, f_name, bins=25): """ Plot KDE-smoothed histogram of the data in X1/X2. Assume data is 1D. """ import matplotlib.pyplot as plt # make a figure and configure an axis fig = plt.figure() ax = fig.add_subplot(111) ax.hold(True) for (X, style) in [(X1, '-'), (X2, '--')]: X_samp = X.ravel()[:,np.newaxis] X_min = np.min(X_samp) X_max = np.max(X_samp) X_range = X_max - X_min sigma = X_range / float(bins) plot_min = X_min - (X_range/3.0) plot_max = X_max + (X_range/3.0) plot_X = np.linspace(plot_min, plot_max, 1000)[:,np.newaxis] # make a kernel density estimator for the data in X kde = KernelDensity(kernel='gaussian', bandwidth=sigma).fit(X_samp) ax.plot(plot_X, np.exp(kde.score_samples(plot_X)), linestyle=style) fig.savefig(f_name, dpi=None, facecolor='w', edgecolor='w', \ orientation='portrait', papertype=None, format=None, \ transparent=False, bbox_inches=None, pad_inches=0.1, \ frameon=None) plt.close(fig) return def plot_stem(x, y, f_name): """ Plot a stem plot. """ import matplotlib.pyplot as plt fig = plt.figure() ax = fig.add_subplot(111) ax.stem(x, y, linefmt='b-', markerfmt='bo', basefmt='r-') fig.savefig(f_name, dpi=None, facecolor='w', edgecolor='w', \ orientation='portrait', papertype=None, format=None, \ transparent=False, bbox_inches=None, pad_inches=0.1, \ frameon=None) plt.close(fig) return def plot_line(x, y, f_name): """ Plot a line plot. """ import matplotlib.pyplot as plt fig = plt.figure() ax = fig.add_subplot(111) ax.plot(x, y) fig.savefig(f_name, dpi=None, facecolor='w', edgecolor='w', \ orientation='portrait', papertype=None, format=None, \ transparent=False, bbox_inches=None, pad_inches=0.1, \ frameon=None) plt.close(fig) return def plot_scatter(x, y, f_name, x_label=None, y_label=None): """ Plot a scatter plot. """ import matplotlib.pyplot as plt if x_label is None: x_label = 'Posterior KLd' if y_label is None: y_label = 'Expected Log-likelihood' fig = plt.figure() ax = fig.add_subplot(111) box = ax.get_position() ax.set_position([box.x0+(0.05*box.width), box.y0+(0.05*box.height), 0.96*box.width, 0.96*box.height]) ax.set_xlabel(x_label, fontsize=22) ax.set_ylabel(y_label, fontsize=22) ax.hold(True) ax.scatter(x, y, s=24, alpha=0.5, c=u'b', marker=u'o') plt.sca(ax) x_locs, x_labels = plt.xticks() plt.xticks(x_locs, fontsize=18) y_locs, y_labels = plt.yticks() plt.yticks(y_locs, fontsize=18) fig.savefig(f_name, dpi=None, facecolor='w', edgecolor='w', \ orientation='portrait', papertype=None, format='png', \ transparent=False, bbox_inches=None, pad_inches=0.1, \ frameon=None) plt.close(fig) return
mit
xujun10110/AIL-framework
bin/Repartition_graph.py
2
2494
#!/usr/bin/python2.7 # -*-coding:UTF-8 -* import redis import argparse import ConfigParser from pubsublogger import publisher import matplotlib.pyplot as plt def main(): """Main Function""" # CONFIG # cfg = ConfigParser.ConfigParser() cfg.read('./packages/config.cfg') # SCRIPT PARSER # parser = argparse.ArgumentParser( description='''This script is a part of the Analysis Information Leak framework.''', epilog='''''') parser.add_argument('-f', type=str, metavar="filename", default="figure", help='The absolute path name of the "figure.png"', action='store') args = parser.parse_args() # REDIS # r_serv = redis.StrictRedis( host=cfg.get("Redis_Level_DB_Hashs", "host"), port=cfg.getint("Redis_Level_DB_Hashs", "port"), db=cfg.getint("Redis_Level_DB_Hashs", "db")) # LOGGING # publisher.port = 6380 publisher.channel = "Graph" # FUNCTIONS # publisher.info("""Creating the Repartition Graph""") total_list = [] codepad_list = [] pastie_list = [] pastebin_list = [] for hash in r_serv.keys(): total_list.append(r_serv.scard(hash)) code = 0 pastie = 0 pastebin = 0 for paste in r_serv.smembers(hash): source = paste.split("/")[5] if source == "codepad.org": code = code + 1 elif source == "pastie.org": pastie = pastie + 1 elif source == "pastebin.com": pastebin = pastebin + 1 codepad_list.append(code) pastie_list.append(pastie) pastebin_list.append(pastebin) codepad_list.sort(reverse=True) pastie_list.sort(reverse=True) pastebin_list.sort(reverse=True) total_list.sort(reverse=True) plt.plot(codepad_list, 'b', label='Codepad.org') plt.plot(pastebin_list, 'g', label='Pastebin.org') plt.plot(pastie_list, 'y', label='Pastie.org') plt.plot(total_list, 'r', label='Total') plt.xscale('log') plt.xlabel('Hashs') plt.ylabel('Occur[Hash]') plt.title('Repartition') plt.legend() plt.grid() plt.tight_layout() plt.savefig(args.f+".png", dpi=None, facecolor='w', edgecolor='b', orientation='portrait', papertype=None, format="png", transparent=False, bbox_inches=None, pad_inches=0.1, frameon=True) if __name__ == "__main__": main()
agpl-3.0
rexshihaoren/scikit-learn
examples/applications/face_recognition.py
15
5394
""" =================================================== Faces recognition example using eigenfaces and SVMs =================================================== The dataset used in this example is a preprocessed excerpt of the "Labeled Faces in the Wild", aka LFW_: http://vis-www.cs.umass.edu/lfw/lfw-funneled.tgz (233MB) .. _LFW: http://vis-www.cs.umass.edu/lfw/ Expected results for the top 5 most represented people in the dataset:: precision recall f1-score support Gerhard_Schroeder 0.91 0.75 0.82 28 Donald_Rumsfeld 0.84 0.82 0.83 33 Tony_Blair 0.65 0.82 0.73 34 Colin_Powell 0.78 0.88 0.83 58 George_W_Bush 0.93 0.86 0.90 129 avg / total 0.86 0.84 0.85 282 """ from __future__ import print_function from time import time import logging import matplotlib.pyplot as plt from sklearn.cross_validation import train_test_split from sklearn.datasets import fetch_lfw_people from sklearn.grid_search import GridSearchCV from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix from sklearn.decomposition import RandomizedPCA from sklearn.svm import SVC print(__doc__) # Display progress logs on stdout logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s') ############################################################################### # Download the data, if not already on disk and load it as numpy arrays lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4) # introspect the images arrays to find the shapes (for plotting) n_samples, h, w = lfw_people.images.shape # for machine learning we use the 2 data directly (as relative pixel # positions info is ignored by this model) X = lfw_people.data n_features = X.shape[1] # the label to predict is the id of the person y = lfw_people.target target_names = lfw_people.target_names n_classes = target_names.shape[0] print("Total dataset size:") print("n_samples: %d" % n_samples) print("n_features: %d" % n_features) print("n_classes: %d" % n_classes) ############################################################################### # Split into a training set and a test set using a stratified k fold # split into a training and testing set X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.25) ############################################################################### # Compute a PCA (eigenfaces) on the face dataset (treated as unlabeled # dataset): unsupervised feature extraction / dimensionality reduction n_components = 150 print("Extracting the top %d eigenfaces from %d faces" % (n_components, X_train.shape[0])) t0 = time() pca = RandomizedPCA(n_components=n_components, whiten=True).fit(X_train) print("done in %0.3fs" % (time() - t0)) eigenfaces = pca.components_.reshape((n_components, h, w)) print("Projecting the input data on the eigenfaces orthonormal basis") t0 = time() X_train_pca = pca.transform(X_train) X_test_pca = pca.transform(X_test) print("done in %0.3fs" % (time() - t0)) ############################################################################### # Train a SVM classification model print("Fitting the classifier to the training set") t0 = time() param_grid = {'C': [1e3, 5e3, 1e4, 5e4, 1e5], 'gamma': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.1], } clf = GridSearchCV(SVC(kernel='rbf', class_weight='balanced'), param_grid) clf = clf.fit(X_train_pca, y_train) print("done in %0.3fs" % (time() - t0)) print("Best estimator found by grid search:") print(clf.best_estimator_) ############################################################################### # Quantitative evaluation of the model quality on the test set print("Predicting people's names on the test set") t0 = time() y_pred = clf.predict(X_test_pca) print("done in %0.3fs" % (time() - t0)) print(classification_report(y_test, y_pred, target_names=target_names)) print(confusion_matrix(y_test, y_pred, labels=range(n_classes))) ############################################################################### # Qualitative evaluation of the predictions using matplotlib def plot_gallery(images, titles, h, w, n_row=3, n_col=4): """Helper function to plot a gallery of portraits""" plt.figure(figsize=(1.8 * n_col, 2.4 * n_row)) plt.subplots_adjust(bottom=0, left=.01, right=.99, top=.90, hspace=.35) for i in range(n_row * n_col): plt.subplot(n_row, n_col, i + 1) plt.imshow(images[i].reshape((h, w)), cmap=plt.cm.gray) plt.title(titles[i], size=12) plt.xticks(()) plt.yticks(()) # plot the result of the prediction on a portion of the test set def title(y_pred, y_test, target_names, i): pred_name = target_names[y_pred[i]].rsplit(' ', 1)[-1] true_name = target_names[y_test[i]].rsplit(' ', 1)[-1] return 'predicted: %s\ntrue: %s' % (pred_name, true_name) prediction_titles = [title(y_pred, y_test, target_names, i) for i in range(y_pred.shape[0])] plot_gallery(X_test, prediction_titles, h, w) # plot the gallery of the most significative eigenfaces eigenface_titles = ["eigenface %d" % i for i in range(eigenfaces.shape[0])] plot_gallery(eigenfaces, eigenface_titles, h, w) plt.show()
bsd-3-clause
IshankGulati/scikit-learn
sklearn/neighbors/graph.py
36
6650
"""Nearest Neighbors graph functions""" # Author: Jake Vanderplas <[email protected]> # # License: BSD 3 clause (C) INRIA, University of Amsterdam from .base import KNeighborsMixin, RadiusNeighborsMixin from .unsupervised import NearestNeighbors def _check_params(X, metric, p, metric_params): """Check the validity of the input parameters""" params = zip(['metric', 'p', 'metric_params'], [metric, p, metric_params]) est_params = X.get_params() for param_name, func_param in params: if func_param != est_params[param_name]: raise ValueError( "Got %s for %s, while the estimator has %s for " "the same parameter." % ( func_param, param_name, est_params[param_name])) def _query_include_self(X, include_self): """Return the query based on include_self param""" if include_self: query = X._fit_X else: query = None return query def kneighbors_graph(X, n_neighbors, mode='connectivity', metric='minkowski', p=2, metric_params=None, include_self=False, n_jobs=1): """Computes the (weighted) graph of k-Neighbors for points in X Read more in the :ref:`User Guide <unsupervised_neighbors>`. Parameters ---------- X : array-like or BallTree, shape = [n_samples, n_features] Sample data, in the form of a numpy array or a precomputed :class:`BallTree`. n_neighbors : int Number of neighbors for each sample. mode : {'connectivity', 'distance'}, optional Type of returned matrix: 'connectivity' will return the connectivity matrix with ones and zeros, and 'distance' will return the distances between neighbors according to the given metric. metric : string, default 'minkowski' The distance metric used to calculate the k-Neighbors for each sample point. The DistanceMetric class gives a list of available metrics. The default distance is 'euclidean' ('minkowski' metric with the p param equal to 2.) include_self : bool, default=False. Whether or not to mark each sample as the first nearest neighbor to itself. If `None`, then True is used for mode='connectivity' and False for mode='distance' as this will preserve backwards compatibilty. p : int, default 2 Power parameter for the Minkowski metric. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. metric_params : dict, optional additional keyword arguments for the metric function. n_jobs : int, optional (default = 1) The number of parallel jobs to run for neighbors search. If ``-1``, then the number of jobs is set to the number of CPU cores. Returns ------- A : sparse matrix in CSR format, shape = [n_samples, n_samples] A[i, j] is assigned the weight of edge that connects i to j. Examples -------- >>> X = [[0], [3], [1]] >>> from sklearn.neighbors import kneighbors_graph >>> A = kneighbors_graph(X, 2, mode='connectivity', include_self=True) >>> A.toarray() array([[ 1., 0., 1.], [ 0., 1., 1.], [ 1., 0., 1.]]) See also -------- radius_neighbors_graph """ if not isinstance(X, KNeighborsMixin): X = NearestNeighbors(n_neighbors, metric=metric, p=p, metric_params=metric_params, n_jobs=n_jobs).fit(X) else: _check_params(X, metric, p, metric_params) query = _query_include_self(X, include_self) return X.kneighbors_graph(X=query, n_neighbors=n_neighbors, mode=mode) def radius_neighbors_graph(X, radius, mode='connectivity', metric='minkowski', p=2, metric_params=None, include_self=False, n_jobs=1): """Computes the (weighted) graph of Neighbors for points in X Neighborhoods are restricted the points at a distance lower than radius. Read more in the :ref:`User Guide <unsupervised_neighbors>`. Parameters ---------- X : array-like or BallTree, shape = [n_samples, n_features] Sample data, in the form of a numpy array or a precomputed :class:`BallTree`. radius : float Radius of neighborhoods. mode : {'connectivity', 'distance'}, optional Type of returned matrix: 'connectivity' will return the connectivity matrix with ones and zeros, and 'distance' will return the distances between neighbors according to the given metric. metric : string, default 'minkowski' The distance metric used to calculate the neighbors within a given radius for each sample point. The DistanceMetric class gives a list of available metrics. The default distance is 'euclidean' ('minkowski' metric with the param equal to 2.) include_self : bool, default=False Whether or not to mark each sample as the first nearest neighbor to itself. If `None`, then True is used for mode='connectivity' and False for mode='distance' as this will preserve backwards compatibilty. p : int, default 2 Power parameter for the Minkowski metric. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. metric_params : dict, optional additional keyword arguments for the metric function. n_jobs : int, optional (default = 1) The number of parallel jobs to run for neighbors search. If ``-1``, then the number of jobs is set to the number of CPU cores. Returns ------- A : sparse matrix in CSR format, shape = [n_samples, n_samples] A[i, j] is assigned the weight of edge that connects i to j. Examples -------- >>> X = [[0], [3], [1]] >>> from sklearn.neighbors import radius_neighbors_graph >>> A = radius_neighbors_graph(X, 1.5, mode='connectivity', include_self=True) >>> A.toarray() array([[ 1., 0., 1.], [ 0., 1., 0.], [ 1., 0., 1.]]) See also -------- kneighbors_graph """ if not isinstance(X, RadiusNeighborsMixin): X = NearestNeighbors(radius=radius, metric=metric, p=p, metric_params=metric_params, n_jobs=n_jobs).fit(X) else: _check_params(X, metric, p, metric_params) query = _query_include_self(X, include_self) return X.radius_neighbors_graph(query, radius, mode)
bsd-3-clause
hainm/open-forcefield-group
nmr/code/analyze_dcd.py
2
2427
import os import itertools import mdtraj import pandas as pd cos = np.cos sin = np.sin ave = lambda x: x.mean(0).mean(0) phi0 = np.deg2rad(0.0) amino_acids = ["A" , "C" , "D" , "E" , "F" , "G" , "H" , "I" , "K" , "L" , "M" , "N" , "Q" , "R" , "S" , "T" , "V" , "W" , "Y"] labels = ["%s%s" % (a0,a1) for (a0, a1) in itertools.product(amino_acids, repeat=2)] bad_pairs = ["AI","AY","CV","CY","DW","EF","EW","FA","FC","FI","FM","FN","FQ","FT","FY","IF","IM","IT","IV","IW","IY","LF","LI","LV","LW","MF","MI","ML","MM","MY","NY","QF","QY","SF","SI","TF","TI","TW","VF","VI","VV","VW","WA","WC","WF","WI","WL","WN","WV","YF","YI","YL","YM","YN","YV"] bad_pairs.extend(["HH", "TH", "KH"]) bad_pairs.extend(["DI", "DK"]) bad_pairs.extend(["AD","CD","DD","FD","KD","LD","ND","QD","RD","TD","VD","WD","YD","EC","EH","SE","LE"]) bad_pairs.extend(["G%s" % aa for aa in amino_acids]) bad_pairs.extend(["%sG" % aa for aa in amino_acids]) labels = list(set(labels).difference(set(bad_pairs))) small = pd.read_csv("/home/kyleb/src/tjlane/scalar-couplings/kyleb/smaller_couplings.csv", index_col=0) large = pd.read_csv("/home/kyleb/src/tjlane/scalar-couplings/kyleb/larger_couplings.csv", index_col=0) averaged = 0.5 * (small + large) data = pd.DataFrame(index=labels, columns=["expt", "C1", "C2", "S1", "S2", "CS"], dtype='float') for label in labels: a0, a1 = label if not os.path.exists("/home/kyleb/dat/peptides/dcd/%s-capped.dcd" % (label)): continue traj = mdtraj.load("/home/kyleb/dat/peptides/dcd/%s-capped.dcd" % (label), top="/home/kyleb/dat/peptides/raw/%s-capped.pdb" % (label)) rid, indices = mdtraj.geometry.atom_sequence_finder(traj, ["H","N", "CA", "HA"], residue_offsets=[0, 0, 0, 0]) phi = mdtraj.geometry.dihedral.compute_dihedrals(traj, indices) phi = mdtraj.geometry.dihedral.compute_phi(traj)[1] data["C1"][label] = ave(cos(phi + phi0)) data["C2"][label] = ave(cos(phi + phi0) ** 2.) data["S1"][label] = ave(sin(phi + phi0)) data["S2"][label] = ave(sin(phi + phi0) ** 2.) data["CS"][label] = ave(sin(phi + phi0) * cos(phi + phi0)) data["expt"][label] = averaged[a1][a0] data = data.dropna(axis=0) y, X = dmatrices('expt ~ C1 + C2 + S1', data=data, return_type='dataframe') model = sm.OLS(y, X) results = model.fit() print results.summary() data["yhat"] = results.predict() data["delta"] = data.expt - data.yhat rms = (data.delta ** 2.).mean() ** 0.5 rms
gpl-2.0
RedhawkSDR/integration-gnuhawk
gnuradio/gr-filter/examples/fir_filter_ccc.py
13
3154
#!/usr/bin/env python from gnuradio import gr, filter from gnuradio import eng_notation from gnuradio.eng_option import eng_option from optparse import OptionParser try: import scipy except ImportError: print "Error: could not import scipy (http://www.scipy.org/)" sys.exit(1) try: import pylab except ImportError: print "Error: could not import pylab (http://matplotlib.sourceforge.net/)" sys.exit(1) class example_fir_filter_ccc(gr.top_block): def __init__(self, N, fs, bw, tw, atten, D): gr.top_block.__init__(self) self._nsamps = N self._fs = fs self._bw = bw self._tw = tw self._at = atten self._decim = D taps = filter.firdes.low_pass_2(1, self._fs, self._bw, self._tw, self._at) print "Num. Taps: ", len(taps) self.src = gr.noise_source_c(gr.GR_GAUSSIAN, 1) self.head = gr.head(gr.sizeof_gr_complex, self._nsamps) self.filt0 = filter.fir_filter_ccc(self._decim, taps) self.vsnk_src = gr.vector_sink_c() self.vsnk_out = gr.vector_sink_c() self.connect(self.src, self.head, self.vsnk_src) self.connect(self.head, self.filt0, self.vsnk_out) def main(): parser = OptionParser(option_class=eng_option, conflict_handler="resolve") parser.add_option("-N", "--nsamples", type="int", default=10000, help="Number of samples to process [default=%default]") parser.add_option("-s", "--samplerate", type="eng_float", default=8000, help="System sample rate [default=%default]") parser.add_option("-B", "--bandwidth", type="eng_float", default=1000, help="Filter bandwidth [default=%default]") parser.add_option("-T", "--transition", type="eng_float", default=100, help="Transition band [default=%default]") parser.add_option("-A", "--attenuation", type="eng_float", default=80, help="Stopband attenuation [default=%default]") parser.add_option("-D", "--decimation", type="int", default=1, help="Decmation factor [default=%default]") (options, args) = parser.parse_args () put = example_fir_filter_ccc(options.nsamples, options.samplerate, options.bandwidth, options.transition, options.attenuation, options.decimation) put.run() data_src = scipy.array(put.vsnk_src.data()) data_snk = scipy.array(put.vsnk_out.data()) # Plot the signals PSDs nfft = 1024 f1 = pylab.figure(1, figsize=(12,10)) s1 = f1.add_subplot(1,1,1) s1.psd(data_src, NFFT=nfft, noverlap=nfft/4, Fs=options.samplerate) s1.psd(data_snk, NFFT=nfft, noverlap=nfft/4, Fs=options.samplerate) f2 = pylab.figure(2, figsize=(12,10)) s2 = f2.add_subplot(1,1,1) s2.plot(data_src) s2.plot(data_snk.real, 'g') pylab.show() if __name__ == "__main__": try: main() except KeyboardInterrupt: pass
gpl-3.0
andrewnc/scikit-learn
sklearn/utils/metaestimators.py
283
2353
"""Utilities for meta-estimators""" # Author: Joel Nothman # Andreas Mueller # Licence: BSD from operator import attrgetter from functools import update_wrapper __all__ = ['if_delegate_has_method'] class _IffHasAttrDescriptor(object): """Implements a conditional property using the descriptor protocol. Using this class to create a decorator will raise an ``AttributeError`` if the ``attribute_name`` is not present on the base object. This allows ducktyping of the decorated method based on ``attribute_name``. See https://docs.python.org/3/howto/descriptor.html for an explanation of descriptors. """ def __init__(self, fn, attribute_name): self.fn = fn self.get_attribute = attrgetter(attribute_name) # update the docstring of the descriptor update_wrapper(self, fn) def __get__(self, obj, type=None): # raise an AttributeError if the attribute is not present on the object if obj is not None: # delegate only on instances, not the classes. # this is to allow access to the docstrings. self.get_attribute(obj) # lambda, but not partial, allows help() to work with update_wrapper out = lambda *args, **kwargs: self.fn(obj, *args, **kwargs) # update the docstring of the returned function update_wrapper(out, self.fn) return out def if_delegate_has_method(delegate): """Create a decorator for methods that are delegated to a sub-estimator This enables ducktyping by hasattr returning True according to the sub-estimator. >>> from sklearn.utils.metaestimators import if_delegate_has_method >>> >>> >>> class MetaEst(object): ... def __init__(self, sub_est): ... self.sub_est = sub_est ... ... @if_delegate_has_method(delegate='sub_est') ... def predict(self, X): ... return self.sub_est.predict(X) ... >>> class HasPredict(object): ... def predict(self, X): ... return X.sum(axis=1) ... >>> class HasNoPredict(object): ... pass ... >>> hasattr(MetaEst(HasPredict()), 'predict') True >>> hasattr(MetaEst(HasNoPredict()), 'predict') False """ return lambda fn: _IffHasAttrDescriptor(fn, '%s.%s' % (delegate, fn.__name__))
bsd-3-clause
henridwyer/scikit-learn
examples/linear_model/plot_bayesian_ridge.py
248
2588
""" ========================= Bayesian Ridge Regression ========================= Computes a Bayesian Ridge Regression on a synthetic dataset. See :ref:`bayesian_ridge_regression` for more information on the regressor. Compared to the OLS (ordinary least squares) estimator, the coefficient weights are slightly shifted toward zeros, which stabilises them. As the prior on the weights is a Gaussian prior, the histogram of the estimated weights is Gaussian. The estimation of the model is done by iteratively maximizing the marginal log-likelihood of the observations. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from scipy import stats from sklearn.linear_model import BayesianRidge, LinearRegression ############################################################################### # Generating simulated data with Gaussian weigthts np.random.seed(0) n_samples, n_features = 100, 100 X = np.random.randn(n_samples, n_features) # Create Gaussian data # Create weigts with a precision lambda_ of 4. lambda_ = 4. w = np.zeros(n_features) # Only keep 10 weights of interest relevant_features = np.random.randint(0, n_features, 10) for i in relevant_features: w[i] = stats.norm.rvs(loc=0, scale=1. / np.sqrt(lambda_)) # Create noise with a precision alpha of 50. alpha_ = 50. noise = stats.norm.rvs(loc=0, scale=1. / np.sqrt(alpha_), size=n_samples) # Create the target y = np.dot(X, w) + noise ############################################################################### # Fit the Bayesian Ridge Regression and an OLS for comparison clf = BayesianRidge(compute_score=True) clf.fit(X, y) ols = LinearRegression() ols.fit(X, y) ############################################################################### # Plot true weights, estimated weights and histogram of the weights plt.figure(figsize=(6, 5)) plt.title("Weights of the model") plt.plot(clf.coef_, 'b-', label="Bayesian Ridge estimate") plt.plot(w, 'g-', label="Ground truth") plt.plot(ols.coef_, 'r--', label="OLS estimate") plt.xlabel("Features") plt.ylabel("Values of the weights") plt.legend(loc="best", prop=dict(size=12)) plt.figure(figsize=(6, 5)) plt.title("Histogram of the weights") plt.hist(clf.coef_, bins=n_features, log=True) plt.plot(clf.coef_[relevant_features], 5 * np.ones(len(relevant_features)), 'ro', label="Relevant features") plt.ylabel("Features") plt.xlabel("Values of the weights") plt.legend(loc="lower left") plt.figure(figsize=(6, 5)) plt.title("Marginal log-likelihood") plt.plot(clf.scores_) plt.ylabel("Score") plt.xlabel("Iterations") plt.show()
bsd-3-clause
dud225/incubator-airflow
airflow/www/views.py
1
84314
# -*- coding: utf-8 -*- # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import sys import os import pkg_resources import socket import importlib from functools import wraps from datetime import datetime, timedelta import dateutil.parser import copy from itertools import chain, product from past.utils import old_div from past.builtins import basestring import inspect import subprocess import traceback import sqlalchemy as sqla from sqlalchemy import or_, desc, and_ from flask import redirect, url_for, request, Markup, Response, current_app, render_template from flask_admin import BaseView, expose, AdminIndexView from flask_admin.contrib.sqla import ModelView from flask_admin.actions import action from flask_login import flash from flask._compat import PY2 import jinja2 import markdown import json from wtforms import ( Form, SelectField, TextAreaField, PasswordField, StringField) from pygments import highlight, lexers from pygments.formatters import HtmlFormatter import airflow from airflow import configuration as conf from airflow import models from airflow import settings from airflow.exceptions import AirflowException from airflow.settings import Session from airflow.models import XCom from airflow.operators import BaseOperator, SubDagOperator from airflow.utils.logging import LoggingMixin from airflow.utils.json import json_ser from airflow.utils.state import State from airflow.utils.db import provide_session from airflow.utils.helpers import alchemy_to_dict from airflow.utils import logging as log_utils from airflow.www import utils as wwwutils from airflow.www.forms import DateTimeForm, DateTimeWithNumRunsForm QUERY_LIMIT = 100000 CHART_LIMIT = 200000 dagbag = models.DagBag(os.path.expanduser(conf.get('core', 'DAGS_FOLDER'))) login_required = airflow.login.login_required current_user = airflow.login.current_user logout_user = airflow.login.logout_user FILTER_BY_OWNER = False DEFAULT_SENSITIVE_VARIABLE_FIELDS = ( 'password', 'secret', 'passwd', 'authorization', 'api_key', 'apikey', 'access_token', ) if conf.getboolean('webserver', 'FILTER_BY_OWNER'): # filter_by_owner if authentication is enabled and filter_by_owner is true FILTER_BY_OWNER = not current_app.config['LOGIN_DISABLED'] def dag_link(v, c, m, p): url = url_for( 'airflow.graph', dag_id=m.dag_id) return Markup( '<a href="{url}">{m.dag_id}</a>'.format(**locals())) def log_url_formatter(v, c, m, p): return Markup( '<a href="{m.log_url}">' ' <span class="glyphicon glyphicon-book" aria-hidden="true">' '</span></a>').format(**locals()) def task_instance_link(v, c, m, p): url = url_for( 'airflow.task', dag_id=m.dag_id, task_id=m.task_id, execution_date=m.execution_date.isoformat()) url_root = url_for( 'airflow.graph', dag_id=m.dag_id, root=m.task_id, execution_date=m.execution_date.isoformat()) return Markup( """ <span style="white-space: nowrap;"> <a href="{url}">{m.task_id}</a> <a href="{url_root}" title="Filter on this task and upstream"> <span class="glyphicon glyphicon-filter" style="margin-left: 0px;" aria-hidden="true"></span> </a> </span> """.format(**locals())) def state_token(state): color = State.color(state) return Markup( '<span class="label" style="background-color:{color};">' '{state}</span>'.format(**locals())) def state_f(v, c, m, p): return state_token(m.state) def duration_f(v, c, m, p): if m.end_date and m.duration: return timedelta(seconds=m.duration) def datetime_f(v, c, m, p): attr = getattr(m, p) dttm = attr.isoformat() if attr else '' if datetime.now().isoformat()[:4] == dttm[:4]: dttm = dttm[5:] return Markup("<nobr>{}</nobr>".format(dttm)) def nobr_f(v, c, m, p): return Markup("<nobr>{}</nobr>".format(getattr(m, p))) def label_link(v, c, m, p): try: default_params = eval(m.default_params) except: default_params = {} url = url_for( 'airflow.chart', chart_id=m.id, iteration_no=m.iteration_no, **default_params) return Markup("<a href='{url}'>{m.label}</a>".format(**locals())) def pool_link(v, c, m, p): url = '/admin/taskinstance/?flt1_pool_equals=' + m.pool return Markup("<a href='{url}'>{m.pool}</a>".format(**locals())) def pygment_html_render(s, lexer=lexers.TextLexer): return highlight( s, lexer(), HtmlFormatter(linenos=True), ) def render(obj, lexer): out = "" if isinstance(obj, basestring): out += pygment_html_render(obj, lexer) elif isinstance(obj, (tuple, list)): for i, s in enumerate(obj): out += "<div>List item #{}</div>".format(i) out += "<div>" + pygment_html_render(s, lexer) + "</div>" elif isinstance(obj, dict): for k, v in obj.items(): out += '<div>Dict item "{}"</div>'.format(k) out += "<div>" + pygment_html_render(v, lexer) + "</div>" return out def wrapped_markdown(s): return '<div class="rich_doc">' + markdown.markdown(s) + "</div>" attr_renderer = { 'bash_command': lambda x: render(x, lexers.BashLexer), 'hql': lambda x: render(x, lexers.SqlLexer), 'sql': lambda x: render(x, lexers.SqlLexer), 'doc': lambda x: render(x, lexers.TextLexer), 'doc_json': lambda x: render(x, lexers.JsonLexer), 'doc_rst': lambda x: render(x, lexers.RstLexer), 'doc_yaml': lambda x: render(x, lexers.YamlLexer), 'doc_md': wrapped_markdown, 'python_callable': lambda x: render( inspect.getsource(x), lexers.PythonLexer), } def data_profiling_required(f): ''' Decorator for views requiring data profiling access ''' @wraps(f) def decorated_function(*args, **kwargs): if ( current_app.config['LOGIN_DISABLED'] or (not current_user.is_anonymous() and current_user.data_profiling()) ): return f(*args, **kwargs) else: flash("This page requires data profiling privileges", "error") return redirect(url_for('admin.index')) return decorated_function def fused_slots(v, c, m, p): url = ( '/admin/taskinstance/' + '?flt1_pool_equals=' + m.pool + '&flt2_state_equals=running') return Markup("<a href='{0}'>{1}</a>".format(url, m.used_slots())) def fqueued_slots(v, c, m, p): url = ( '/admin/taskinstance/' + '?flt1_pool_equals=' + m.pool + '&flt2_state_equals=queued&sort=10&desc=1') return Markup("<a href='{0}'>{1}</a>".format(url, m.queued_slots())) def recurse_tasks(tasks, task_ids, dag_ids, task_id_to_dag): if isinstance(tasks, list): for task in tasks: recurse_tasks(task, task_ids, dag_ids, task_id_to_dag) return if isinstance(tasks, SubDagOperator): subtasks = tasks.subdag.tasks dag_ids.append(tasks.subdag.dag_id) for subtask in subtasks: if subtask.task_id not in task_ids: task_ids.append(subtask.task_id) task_id_to_dag[subtask.task_id] = tasks.subdag recurse_tasks(subtasks, task_ids, dag_ids, task_id_to_dag) if isinstance(tasks, BaseOperator): task_id_to_dag[tasks.task_id] = tasks.dag def should_hide_value_for_key(key_name): return any(s in key_name for s in DEFAULT_SENSITIVE_VARIABLE_FIELDS) \ and conf.getboolean('admin', 'hide_sensitive_variable_fields') class Airflow(BaseView): def is_visible(self): return False @expose('/') @login_required def index(self): return self.render('airflow/dags.html') @expose('/chart_data') @data_profiling_required @wwwutils.gzipped # @cache.cached(timeout=3600, key_prefix=wwwutils.make_cache_key) def chart_data(self): session = settings.Session() chart_id = request.args.get('chart_id') csv = request.args.get('csv') == "true" chart = session.query(models.Chart).filter_by(id=chart_id).first() db = session.query( models.Connection).filter_by(conn_id=chart.conn_id).first() session.expunge_all() session.commit() session.close() payload = {} payload['state'] = 'ERROR' payload['error'] = '' # Processing templated fields try: args = eval(chart.default_params) if type(args) is not type(dict()): raise AirflowException('Not a dict') except: args = {} payload['error'] += ( "Default params is not valid, string has to evaluate as " "a Python dictionary. ") request_dict = {k: request.args.get(k) for k in request.args} from airflow import macros args.update(request_dict) args['macros'] = macros sql = jinja2.Template(chart.sql).render(**args) label = jinja2.Template(chart.label).render(**args) payload['sql_html'] = Markup(highlight( sql, lexers.SqlLexer(), # Lexer call HtmlFormatter(noclasses=True)) ) payload['label'] = label import pandas as pd pd.set_option('display.max_colwidth', 100) hook = db.get_hook() try: df = hook.get_pandas_df(wwwutils.limit_sql(sql, CHART_LIMIT, conn_type=db.conn_type)) df = df.fillna(0) except Exception as e: payload['error'] += "SQL execution failed. Details: " + str(e) if csv: return Response( response=df.to_csv(index=False), status=200, mimetype="application/text") if not payload['error'] and len(df) == CHART_LIMIT: payload['warning'] = ( "Data has been truncated to {0}" " rows. Expect incomplete results.").format(CHART_LIMIT) if not payload['error'] and len(df) == 0: payload['error'] += "Empty result set. " elif ( not payload['error'] and chart.sql_layout == 'series' and chart.chart_type != "datatable" and len(df.columns) < 3): payload['error'] += "SQL needs to return at least 3 columns. " elif ( not payload['error'] and chart.sql_layout == 'columns'and len(df.columns) < 2): payload['error'] += "SQL needs to return at least 2 columns. " elif not payload['error']: import numpy as np chart_type = chart.chart_type data = None if chart_type == "datatable": chart.show_datatable = True if chart.show_datatable: data = df.to_dict(orient="split") data['columns'] = [{'title': c} for c in data['columns']] # Trying to convert time to something Highcharts likes x_col = 1 if chart.sql_layout == 'series' else 0 if chart.x_is_date: try: # From string to datetime df[df.columns[x_col]] = pd.to_datetime( df[df.columns[x_col]]) except Exception as e: raise AirflowException(str(e)) df[df.columns[x_col]] = df[df.columns[x_col]].apply( lambda x: int(x.strftime("%s")) * 1000) series = [] colorAxis = None if chart_type == 'datatable': payload['data'] = data payload['state'] = 'SUCCESS' return wwwutils.json_response(payload) elif chart_type == 'para': df.rename(columns={ df.columns[0]: 'name', df.columns[1]: 'group', }, inplace=True) return Response( response=df.to_csv(index=False), status=200, mimetype="application/text") elif chart_type == 'heatmap': color_perc_lbound = float( request.args.get('color_perc_lbound', 0)) color_perc_rbound = float( request.args.get('color_perc_rbound', 1)) color_scheme = request.args.get('color_scheme', 'blue_red') if color_scheme == 'blue_red': stops = [ [color_perc_lbound, '#00D1C1'], [ color_perc_lbound + ((color_perc_rbound - color_perc_lbound)/2), '#FFFFCC' ], [color_perc_rbound, '#FF5A5F'] ] elif color_scheme == 'blue_scale': stops = [ [color_perc_lbound, '#FFFFFF'], [color_perc_rbound, '#2222FF'] ] elif color_scheme == 'fire': diff = float(color_perc_rbound - color_perc_lbound) stops = [ [color_perc_lbound, '#FFFFFF'], [color_perc_lbound + 0.33*diff, '#FFFF00'], [color_perc_lbound + 0.66*diff, '#FF0000'], [color_perc_rbound, '#000000'] ] else: stops = [ [color_perc_lbound, '#FFFFFF'], [ color_perc_lbound + ((color_perc_rbound - color_perc_lbound)/2), '#888888' ], [color_perc_rbound, '#000000'], ] xaxis_label = df.columns[1] yaxis_label = df.columns[2] data = [] for row in df.itertuples(): data.append({ 'x': row[2], 'y': row[3], 'value': row[4], }) x_format = '{point.x:%Y-%m-%d}' \ if chart.x_is_date else '{point.x}' series.append({ 'data': data, 'borderWidth': 0, 'colsize': 24 * 36e5, 'turboThreshold': sys.float_info.max, 'tooltip': { 'headerFormat': '', 'pointFormat': ( df.columns[1] + ': ' + x_format + '<br/>' + df.columns[2] + ': {point.y}<br/>' + df.columns[3] + ': <b>{point.value}</b>' ), }, }) colorAxis = { 'stops': stops, 'minColor': '#FFFFFF', 'maxColor': '#000000', 'min': 50, 'max': 2200, } else: if chart.sql_layout == 'series': # User provides columns (series, x, y) xaxis_label = df.columns[1] yaxis_label = df.columns[2] df[df.columns[2]] = df[df.columns[2]].astype(np.float) df = df.pivot_table( index=df.columns[1], columns=df.columns[0], values=df.columns[2], aggfunc=np.sum) else: # User provides columns (x, y, metric1, metric2, ...) xaxis_label = df.columns[0] yaxis_label = 'y' df.index = df[df.columns[0]] df = df.sort(df.columns[0]) del df[df.columns[0]] for col in df.columns: df[col] = df[col].astype(np.float) for col in df.columns: series.append({ 'name': col, 'data': [ (k, df[col][k]) for k in df[col].keys() if not np.isnan(df[col][k])] }) series = [serie for serie in sorted( series, key=lambda s: s['data'][0][1], reverse=True)] if chart_type == "stacked_area": stacking = "normal" chart_type = 'area' elif chart_type == "percent_area": stacking = "percent" chart_type = 'area' else: stacking = None hc = { 'chart': { 'type': chart_type }, 'plotOptions': { 'series': { 'marker': { 'enabled': False } }, 'area': {'stacking': stacking}, }, 'title': {'text': ''}, 'xAxis': { 'title': {'text': xaxis_label}, 'type': 'datetime' if chart.x_is_date else None, }, 'yAxis': { 'title': {'text': yaxis_label}, }, 'colorAxis': colorAxis, 'tooltip': { 'useHTML': True, 'backgroundColor': None, 'borderWidth': 0, }, 'series': series, } if chart.y_log_scale: hc['yAxis']['type'] = 'logarithmic' hc['yAxis']['minorTickInterval'] = 0.1 if 'min' in hc['yAxis']: del hc['yAxis']['min'] payload['state'] = 'SUCCESS' payload['hc'] = hc payload['data'] = data payload['request_dict'] = request_dict return wwwutils.json_response(payload) @expose('/chart') @data_profiling_required def chart(self): session = settings.Session() chart_id = request.args.get('chart_id') embed = request.args.get('embed') chart = session.query(models.Chart).filter_by(id=chart_id).first() session.expunge_all() session.commit() session.close() if chart.chart_type == 'para': return self.render('airflow/para/para.html', chart=chart) sql = "" if chart.show_sql: sql = Markup(highlight( chart.sql, lexers.SqlLexer(), # Lexer call HtmlFormatter(noclasses=True)) ) return self.render( 'airflow/highchart.html', chart=chart, title="Airflow - Chart", sql=sql, label=chart.label, embed=embed) @expose('/dag_stats') #@login_required def dag_stats(self): states = [ State.SUCCESS, State.RUNNING, State.FAILED, State.UPSTREAM_FAILED, State.UP_FOR_RETRY, State.QUEUED, ] task_ids = [] dag_ids = [] for dag in dagbag.dags.values(): task_ids += dag.task_ids if not dag.is_subdag: dag_ids.append(dag.dag_id) TI = models.TaskInstance DagRun = models.DagRun session = Session() LastDagRun = ( session.query(DagRun.dag_id, sqla.func.max(DagRun.execution_date).label('execution_date')) .group_by(DagRun.dag_id) .subquery('last_dag_run') ) RunningDagRun = ( session.query(DagRun.dag_id, DagRun.execution_date) .filter(DagRun.state == State.RUNNING) .subquery('running_dag_run') ) # Select all task_instances from active dag_runs. # If no dag_run is active, return task instances from most recent dag_run. qry = ( session.query(TI.dag_id, TI.state, sqla.func.count(TI.task_id)) .outerjoin(RunningDagRun, and_( RunningDagRun.c.dag_id == TI.dag_id, RunningDagRun.c.execution_date == TI.execution_date) ) .outerjoin(LastDagRun, and_( LastDagRun.c.dag_id == TI.dag_id, LastDagRun.c.execution_date == TI.execution_date) ) .filter(TI.task_id.in_(task_ids)) .filter(TI.dag_id.in_(dag_ids)) .filter(or_( RunningDagRun.c.dag_id != None, LastDagRun.c.dag_id != None )) .group_by(TI.dag_id, TI.state) ) data = {} for dag_id, state, count in qry: if dag_id not in data: data[dag_id] = {} data[dag_id][state] = count session.commit() session.close() payload = {} for dag in dagbag.dags.values(): payload[dag.safe_dag_id] = [] for state in states: try: count = data[dag.dag_id][state] except: count = 0 d = { 'state': state, 'count': count, 'dag_id': dag.dag_id, 'color': State.color(state) } payload[dag.safe_dag_id].append(d) return wwwutils.json_response(payload) @expose('/code') @login_required def code(self): dag_id = request.args.get('dag_id') dag = dagbag.get_dag(dag_id) title = dag_id try: m = importlib.import_module(dag.module_name) code = inspect.getsource(m) html_code = highlight( code, lexers.PythonLexer(), HtmlFormatter(linenos=True)) except IOError as e: html_code = str(e) return self.render( 'airflow/dag_code.html', html_code=html_code, dag=dag, title=title, root=request.args.get('root'), demo_mode=conf.getboolean('webserver', 'demo_mode')) @expose('/dag_details') @login_required def dag_details(self): dag_id = request.args.get('dag_id') dag = dagbag.get_dag(dag_id) title = "DAG details" session = settings.Session() TI = models.TaskInstance states = ( session.query(TI.state, sqla.func.count(TI.dag_id)) .filter(TI.dag_id == dag_id) .group_by(TI.state) .all() ) return self.render( 'airflow/dag_details.html', dag=dag, title=title, states=states, State=State) @current_app.errorhandler(404) def circles(self): return render_template( 'airflow/circles.html', hostname=socket.getfqdn()), 404 @current_app.errorhandler(500) def show_traceback(self): from airflow.utils import asciiart as ascii_ return render_template( 'airflow/traceback.html', hostname=socket.getfqdn(), nukular=ascii_.nukular, info=traceback.format_exc()), 500 @expose('/sandbox') @login_required def sandbox(self): title = "Sandbox Suggested Configuration" cfg_loc = conf.AIRFLOW_CONFIG + '.sandbox' f = open(cfg_loc, 'r') config = f.read() f.close() code_html = Markup(highlight( config, lexers.IniLexer(), # Lexer call HtmlFormatter(noclasses=True)) ) return self.render( 'airflow/code.html', code_html=code_html, title=title, subtitle=cfg_loc) @expose('/noaccess') def noaccess(self): return self.render('airflow/noaccess.html') @expose('/headers') def headers(self): d = { 'headers': {k: v for k, v in request.headers}, } if hasattr(current_user, 'is_superuser'): d['is_superuser'] = current_user.is_superuser() d['data_profiling'] = current_user.data_profiling() d['is_anonymous'] = current_user.is_anonymous() d['is_authenticated'] = current_user.is_authenticated() if hasattr(current_user, 'username'): d['username'] = current_user.username return wwwutils.json_response(d) @expose('/pickle_info') def pickle_info(self): d = {} dag_id = request.args.get('dag_id') dags = [dagbag.dags.get(dag_id)] if dag_id else dagbag.dags.values() for dag in dags: if not dag.is_subdag: d[dag.dag_id] = dag.pickle_info() return wwwutils.json_response(d) @expose('/login', methods=['GET', 'POST']) def login(self): return airflow.login.login(self, request) @expose('/logout') def logout(self): logout_user() flash('You have been logged out.') return redirect(url_for('admin.index')) @expose('/rendered') @login_required @wwwutils.action_logging def rendered(self): dag_id = request.args.get('dag_id') task_id = request.args.get('task_id') execution_date = request.args.get('execution_date') dttm = dateutil.parser.parse(execution_date) form = DateTimeForm(data={'execution_date': dttm}) dag = dagbag.get_dag(dag_id) task = copy.copy(dag.get_task(task_id)) ti = models.TaskInstance(task=task, execution_date=dttm) try: ti.render_templates() except Exception as e: flash("Error rendering template: " + str(e), "error") title = "Rendered Template" html_dict = {} for template_field in task.__class__.template_fields: content = getattr(task, template_field) if template_field in attr_renderer: html_dict[template_field] = attr_renderer[template_field](content) else: html_dict[template_field] = ( "<pre><code>" + str(content) + "</pre></code>") return self.render( 'airflow/ti_code.html', html_dict=html_dict, dag=dag, task_id=task_id, execution_date=execution_date, form=form, title=title,) @expose('/log') @login_required @wwwutils.action_logging def log(self): BASE_LOG_FOLDER = os.path.expanduser( conf.get('core', 'BASE_LOG_FOLDER')) dag_id = request.args.get('dag_id') task_id = request.args.get('task_id') execution_date = request.args.get('execution_date') dag = dagbag.get_dag(dag_id) log_relative = "{dag_id}/{task_id}/{execution_date}".format( **locals()) loc = os.path.join(BASE_LOG_FOLDER, log_relative) loc = loc.format(**locals()) log = "" TI = models.TaskInstance session = Session() dttm = dateutil.parser.parse(execution_date) ti = session.query(TI).filter( TI.dag_id == dag_id, TI.task_id == task_id, TI.execution_date == dttm).first() dttm = dateutil.parser.parse(execution_date) form = DateTimeForm(data={'execution_date': dttm}) if ti: host = ti.hostname log_loaded = False if os.path.exists(loc): try: f = open(loc) log += "".join(f.readlines()) f.close() log_loaded = True except: log = "*** Failed to load local log file: {0}.\n".format(loc) else: WORKER_LOG_SERVER_PORT = \ conf.get('celery', 'WORKER_LOG_SERVER_PORT') url = os.path.join( "http://{host}:{WORKER_LOG_SERVER_PORT}/log", log_relative ).format(**locals()) log += "*** Log file isn't local.\n" log += "*** Fetching here: {url}\n".format(**locals()) try: import requests response = requests.get(url) response.raise_for_status() log += '\n' + response.text log_loaded = True except: log += "*** Failed to fetch log file from worker.\n".format( **locals()) if not log_loaded: # load remote logs remote_log_base = conf.get('core', 'REMOTE_BASE_LOG_FOLDER') remote_log = os.path.join(remote_log_base, log_relative) log += '\n*** Reading remote logs...\n' # S3 if remote_log.startswith('s3:/'): log += log_utils.S3Log().read(remote_log, return_error=True) # GCS elif remote_log.startswith('gs:/'): log += log_utils.GCSLog().read(remote_log, return_error=True) # unsupported elif remote_log: log += '*** Unsupported remote log location.' session.commit() session.close() if PY2 and not isinstance(log, unicode): log = log.decode('utf-8') title = "Log" return self.render( 'airflow/ti_code.html', code=log, dag=dag, title=title, task_id=task_id, execution_date=execution_date, form=form) @expose('/task') @login_required @wwwutils.action_logging def task(self): dag_id = request.args.get('dag_id') task_id = request.args.get('task_id') # Carrying execution_date through, even though it's irrelevant for # this context execution_date = request.args.get('execution_date') dttm = dateutil.parser.parse(execution_date) form = DateTimeForm(data={'execution_date': dttm}) dag = dagbag.get_dag(dag_id) if not dag or task_id not in dag.task_ids: flash( "Task [{}.{}] doesn't seem to exist" " at the moment".format(dag_id, task_id), "error") return redirect('/admin/') task = dag.get_task(task_id) task = copy.copy(task) task.resolve_template_files() attributes = [] for attr_name in dir(task): if not attr_name.startswith('_'): attr = getattr(task, attr_name) if type(attr) != type(self.task) and \ attr_name not in attr_renderer: attributes.append((attr_name, str(attr))) title = "Task Details" # Color coding the special attributes that are code special_attrs_rendered = {} for attr_name in attr_renderer: if hasattr(task, attr_name): source = getattr(task, attr_name) special_attrs_rendered[attr_name] = attr_renderer[attr_name](source) return self.render( 'airflow/task.html', attributes=attributes, task_id=task_id, execution_date=execution_date, special_attrs_rendered=special_attrs_rendered, form=form, dag=dag, title=title) @expose('/xcom') @login_required @wwwutils.action_logging def xcom(self): dag_id = request.args.get('dag_id') task_id = request.args.get('task_id') # Carrying execution_date through, even though it's irrelevant for # this context execution_date = request.args.get('execution_date') dttm = dateutil.parser.parse(execution_date) form = DateTimeForm(data={'execution_date': dttm}) dag = dagbag.get_dag(dag_id) if not dag or task_id not in dag.task_ids: flash( "Task [{}.{}] doesn't seem to exist" " at the moment".format(dag_id, task_id), "error") return redirect('/admin/') session = Session() xcomlist = session.query(XCom).filter( XCom.dag_id == dag_id, XCom.task_id == task_id, XCom.execution_date == dttm).all() attributes = [] for xcom in xcomlist: if not xcom.key.startswith('_'): attributes.append((xcom.key, xcom.value)) title = "XCom" return self.render( 'airflow/xcom.html', attributes=attributes, task_id=task_id, execution_date=execution_date, form=form, dag=dag, title=title)\ @expose('/run') @login_required @wwwutils.action_logging @wwwutils.notify_owner def run(self): dag_id = request.args.get('dag_id') task_id = request.args.get('task_id') origin = request.args.get('origin') dag = dagbag.get_dag(dag_id) task = dag.get_task(task_id) execution_date = request.args.get('execution_date') execution_date = dateutil.parser.parse(execution_date) force = request.args.get('force') == "true" deps = request.args.get('deps') == "true" try: from airflow.executors import DEFAULT_EXECUTOR as executor from airflow.executors import CeleryExecutor if not isinstance(executor, CeleryExecutor): flash("Only works with the CeleryExecutor, sorry", "error") return redirect(origin) except ImportError: # in case CeleryExecutor cannot be imported it is not active either flash("Only works with the CeleryExecutor, sorry", "error") return redirect(origin) ti = models.TaskInstance(task=task, execution_date=execution_date) executor.start() executor.queue_task_instance( ti, force=force, ignore_dependencies=deps) executor.heartbeat() flash( "Sent {} to the message queue, " "it should start any moment now.".format(ti)) return redirect(origin) @expose('/clear') @login_required @wwwutils.action_logging @wwwutils.notify_owner def clear(self): dag_id = request.args.get('dag_id') task_id = request.args.get('task_id') origin = request.args.get('origin') dag = dagbag.get_dag(dag_id) task = dag.get_task(task_id) execution_date = request.args.get('execution_date') execution_date = dateutil.parser.parse(execution_date) confirmed = request.args.get('confirmed') == "true" upstream = request.args.get('upstream') == "true" downstream = request.args.get('downstream') == "true" future = request.args.get('future') == "true" past = request.args.get('past') == "true" recursive = request.args.get('recursive') == "true" dag = dag.sub_dag( task_regex=r"^{0}$".format(task_id), include_downstream=downstream, include_upstream=upstream) end_date = execution_date if not future else None start_date = execution_date if not past else None if confirmed: count = dag.clear( start_date=start_date, end_date=end_date, include_subdags=recursive) flash("{0} task instances have been cleared".format(count)) return redirect(origin) else: tis = dag.clear( start_date=start_date, end_date=end_date, include_subdags=recursive, dry_run=True) if not tis: flash("No task instances to clear", 'error') response = redirect(origin) else: details = "\n".join([str(t) for t in tis]) response = self.render( 'airflow/confirm.html', message=( "Here's the list of task instances you are about " "to clear:"), details=details,) return response @expose('/blocked') @login_required def blocked(self): session = settings.Session() DR = models.DagRun dags = ( session.query(DR.dag_id, sqla.func.count(DR.id)) .filter(DR.state == State.RUNNING) .group_by(DR.dag_id) .all() ) payload = [] for dag_id, active_dag_runs in dags: max_active_runs = 0 if dag_id in dagbag.dags: max_active_runs = dagbag.dags[dag_id].max_active_runs payload.append({ 'dag_id': dag_id, 'active_dag_run': active_dag_runs, 'max_active_runs': max_active_runs, }) return wwwutils.json_response(payload) @expose('/success') @login_required @wwwutils.action_logging @wwwutils.notify_owner def success(self): dag_id = request.args.get('dag_id') task_id = request.args.get('task_id') origin = request.args.get('origin') dag = dagbag.get_dag(dag_id) task = dag.get_task(task_id) execution_date = request.args.get('execution_date') execution_date = dateutil.parser.parse(execution_date) confirmed = request.args.get('confirmed') == "true" upstream = request.args.get('upstream') == "true" downstream = request.args.get('downstream') == "true" future = request.args.get('future') == "true" past = request.args.get('past') == "true" recursive = request.args.get('recursive') == "true" MAX_PERIODS = 1000 # Flagging tasks as successful session = settings.Session() task_ids = [task_id] dag_ids = [dag_id] task_id_to_dag = { task_id: dag } end_date = ((dag.latest_execution_date or datetime.now()) if future else execution_date) if 'start_date' in dag.default_args: start_date = dag.default_args['start_date'] elif dag.start_date: start_date = dag.start_date else: start_date = execution_date start_date = execution_date if not past else start_date if recursive: recurse_tasks(task, task_ids, dag_ids, task_id_to_dag) if downstream: relatives = task.get_flat_relatives(upstream=False) task_ids += [t.task_id for t in relatives] if recursive: recurse_tasks(relatives, task_ids, dag_ids, task_id_to_dag) if upstream: relatives = task.get_flat_relatives(upstream=False) task_ids += [t.task_id for t in relatives] if recursive: recurse_tasks(relatives, task_ids, dag_ids, task_id_to_dag) TI = models.TaskInstance if dag.schedule_interval == '@once': dates = [start_date] else: dates = dag.date_range(start_date, end_date=end_date) tis = session.query(TI).filter( TI.dag_id.in_(dag_ids), TI.execution_date.in_(dates), TI.task_id.in_(task_ids)).all() tis_to_change = session.query(TI).filter( TI.dag_id.in_(dag_ids), TI.execution_date.in_(dates), TI.task_id.in_(task_ids), TI.state != State.SUCCESS).all() tasks = list(product(task_ids, dates)) tis_to_create = list( set(tasks) - set([(ti.task_id, ti.execution_date) for ti in tis])) tis_all_altered = list(chain( [(ti.task_id, ti.execution_date) for ti in tis_to_change], tis_to_create)) if len(tis_all_altered) > MAX_PERIODS: flash("Too many tasks at once (>{0})".format( MAX_PERIODS), 'error') return redirect(origin) if confirmed: for ti in tis_to_change: ti.state = State.SUCCESS session.commit() for task_id, task_execution_date in tis_to_create: ti = TI( task=task_id_to_dag[task_id].get_task(task_id), execution_date=task_execution_date, state=State.SUCCESS) session.add(ti) session.commit() session.commit() session.close() flash("Marked success on {} task instances".format( len(tis_all_altered))) return redirect(origin) else: if not tis_all_altered: flash("No task instances to mark as successful", 'error') response = redirect(origin) else: tis = [] for task_id, task_execution_date in tis_all_altered: tis.append(TI( task=task_id_to_dag[task_id].get_task(task_id), execution_date=task_execution_date, state=State.SUCCESS)) details = "\n".join([str(t) for t in tis]) response = self.render( 'airflow/confirm.html', message=( "Here's the list of task instances you are about " "to mark as successful:"), details=details,) return response @expose('/tree') @login_required @wwwutils.gzipped @wwwutils.action_logging def tree(self): dag_id = request.args.get('dag_id') blur = conf.getboolean('webserver', 'demo_mode') dag = dagbag.get_dag(dag_id) root = request.args.get('root') if root: dag = dag.sub_dag( task_regex=root, include_downstream=False, include_upstream=True) session = settings.Session() base_date = request.args.get('base_date') num_runs = request.args.get('num_runs') num_runs = int(num_runs) if num_runs else 25 if base_date: base_date = dateutil.parser.parse(base_date) else: base_date = dag.latest_execution_date or datetime.now() dates = dag.date_range(base_date, num=-abs(num_runs)) min_date = dates[0] if dates else datetime(2000, 1, 1) DR = models.DagRun dag_runs = ( session.query(DR) .filter( DR.dag_id==dag.dag_id, DR.execution_date<=base_date, DR.execution_date>=min_date) .all() ) dag_runs = { dr.execution_date: alchemy_to_dict(dr) for dr in dag_runs} tis = dag.get_task_instances( session, start_date=min_date, end_date=base_date) dates = sorted(list({ti.execution_date for ti in tis})) max_date = max([ti.execution_date for ti in tis]) if dates else None task_instances = {} for ti in tis: tid = alchemy_to_dict(ti) dr = dag_runs.get(ti.execution_date) tid['external_trigger'] = dr['external_trigger'] if dr else False task_instances[(ti.task_id, ti.execution_date)] = tid expanded = [] # The default recursion traces every path so that tree view has full # expand/collapse functionality. After 5,000 nodes we stop and fall # back on a quick DFS search for performance. See PR #320. node_count = [0] node_limit = 5000 / max(1, len(dag.roots)) def recurse_nodes(task, visited): visited.add(task) node_count[0] += 1 children = [ recurse_nodes(t, visited) for t in task.upstream_list if node_count[0] < node_limit or t not in visited] # D3 tree uses children vs _children to define what is # expanded or not. The following block makes it such that # repeated nodes are collapsed by default. children_key = 'children' if task.task_id not in expanded: expanded.append(task.task_id) elif children: children_key = "_children" def set_duration(tid): if isinstance(tid, dict) and tid.get("state") == State.RUNNING: d = datetime.now() - dateutil.parser.parse(tid["start_date"]) tid["duration"] = d.total_seconds() return tid return { 'name': task.task_id, 'instances': [ set_duration(task_instances.get((task.task_id, d))) or { 'execution_date': d.isoformat(), 'task_id': task.task_id } for d in dates], children_key: children, 'num_dep': len(task.upstream_list), 'operator': task.task_type, 'retries': task.retries, 'owner': task.owner, 'start_date': task.start_date, 'end_date': task.end_date, 'depends_on_past': task.depends_on_past, 'ui_color': task.ui_color, } data = { 'name': '[DAG]', 'children': [recurse_nodes(t, set()) for t in dag.roots], 'instances': [ dag_runs.get(d) or {'execution_date': d.isoformat()} for d in dates], } data = json.dumps(data, indent=4, default=json_ser) session.commit() session.close() form = DateTimeWithNumRunsForm(data={'base_date': max_date, 'num_runs': num_runs}) return self.render( 'airflow/tree.html', operators=sorted( list(set([op.__class__ for op in dag.tasks])), key=lambda x: x.__name__ ), root=root, form=form, dag=dag, data=data, blur=blur) @expose('/graph') @login_required @wwwutils.gzipped @wwwutils.action_logging def graph(self): session = settings.Session() dag_id = request.args.get('dag_id') blur = conf.getboolean('webserver', 'demo_mode') arrange = request.args.get('arrange', "LR") dag = dagbag.get_dag(dag_id) if dag_id not in dagbag.dags: flash('DAG "{0}" seems to be missing.'.format(dag_id), "error") return redirect('/admin/') root = request.args.get('root') if root: dag = dag.sub_dag( task_regex=root, include_upstream=True, include_downstream=False) nodes = [] edges = [] for task in dag.tasks: nodes.append({ 'id': task.task_id, 'value': { 'label': task.task_id, 'labelStyle': "fill:{0};".format(task.ui_fgcolor), 'style': "fill:{0};".format(task.ui_color), } }) def get_upstream(task): for t in task.upstream_list: edge = { 'u': t.task_id, 'v': task.task_id, } if edge not in edges: edges.append(edge) get_upstream(t) for t in dag.roots: get_upstream(t) dttm = request.args.get('execution_date') if dttm: dttm = dateutil.parser.parse(dttm) else: dttm = dag.latest_execution_date or datetime.now().date() DR = models.DagRun drs = ( session.query(DR) .filter_by(dag_id=dag_id) .order_by(desc(DR.execution_date)).all() ) dr_choices = [] dr_state = None for dr in drs: dr_choices.append((dr.execution_date.isoformat(), dr.run_id)) if dttm == dr.execution_date: dr_state = dr.state class GraphForm(Form): execution_date = SelectField("DAG run", choices=dr_choices) arrange = SelectField("Layout", choices=( ('LR', "Left->Right"), ('RL', "Right->Left"), ('TB', "Top->Bottom"), ('BT', "Bottom->Top"), )) form = GraphForm( data={'execution_date': dttm.isoformat(), 'arrange': arrange}) task_instances = { ti.task_id: alchemy_to_dict(ti) for ti in dag.get_task_instances(session, dttm, dttm)} tasks = { t.task_id: { 'dag_id': t.dag_id, 'task_type': t.task_type, } for t in dag.tasks} if not tasks: flash("No tasks found", "error") session.commit() session.close() doc_md = markdown.markdown(dag.doc_md) if hasattr(dag, 'doc_md') else '' return self.render( 'airflow/graph.html', dag=dag, form=form, width=request.args.get('width', "100%"), height=request.args.get('height', "800"), execution_date=dttm.isoformat(), state_token=state_token(dr_state), doc_md=doc_md, arrange=arrange, operators=sorted( list(set([op.__class__ for op in dag.tasks])), key=lambda x: x.__name__ ), blur=blur, root=root or '', task_instances=json.dumps(task_instances, indent=2), tasks=json.dumps(tasks, indent=2), nodes=json.dumps(nodes, indent=2), edges=json.dumps(edges, indent=2),) @expose('/duration') @login_required @wwwutils.action_logging def duration(self): session = settings.Session() dag_id = request.args.get('dag_id') dag = dagbag.get_dag(dag_id) base_date = request.args.get('base_date') num_runs = request.args.get('num_runs') num_runs = int(num_runs) if num_runs else 25 if base_date: base_date = dateutil.parser.parse(base_date) else: base_date = dag.latest_execution_date or datetime.now() dates = dag.date_range(base_date, num=-abs(num_runs)) min_date = dates[0] if dates else datetime(2000, 1, 1) root = request.args.get('root') if root: dag = dag.sub_dag( task_regex=root, include_upstream=True, include_downstream=False) all_data = [] for task in dag.tasks: data = [] for ti in task.get_task_instances(session, start_date=min_date, end_date=base_date): if ti.duration: data.append([ ti.execution_date.isoformat(), float(ti.duration) / (60*60) ]) if data: all_data.append({'data': data, 'name': task.task_id}) tis = dag.get_task_instances( session, start_date=min_date, end_date=base_date) dates = sorted(list({ti.execution_date for ti in tis})) max_date = max([ti.execution_date for ti in tis]) if dates else None session.commit() session.close() form = DateTimeWithNumRunsForm(data={'base_date': max_date, 'num_runs': num_runs}) return self.render( 'airflow/chart.html', dag=dag, data=json.dumps(all_data), chart_options={'yAxis': {'title': {'text': 'hours'}}}, height="700px", demo_mode=conf.getboolean('webserver', 'demo_mode'), root=root, form=form, ) @expose('/landing_times') @login_required @wwwutils.action_logging def landing_times(self): session = settings.Session() dag_id = request.args.get('dag_id') dag = dagbag.get_dag(dag_id) base_date = request.args.get('base_date') num_runs = request.args.get('num_runs') num_runs = int(num_runs) if num_runs else 25 if base_date: base_date = dateutil.parser.parse(base_date) else: base_date = dag.latest_execution_date or datetime.now() dates = dag.date_range(base_date, num=-abs(num_runs)) min_date = dates[0] if dates else datetime(2000, 1, 1) root = request.args.get('root') if root: dag = dag.sub_dag( task_regex=root, include_upstream=True, include_downstream=False) all_data = [] for task in dag.tasks: data = [] for ti in task.get_task_instances(session, start_date=min_date, end_date=base_date): if ti.end_date: ts = ti.execution_date if dag.schedule_interval: ts = dag.following_schedule(ts) secs = old_div((ti.end_date - ts).total_seconds(), 60*60) data.append([ti.execution_date.isoformat(), secs]) all_data.append({'data': data, 'name': task.task_id}) tis = dag.get_task_instances( session, start_date=min_date, end_date=base_date) dates = sorted(list({ti.execution_date for ti in tis})) max_date = max([ti.execution_date for ti in tis]) if dates else None session.commit() session.close() form = DateTimeWithNumRunsForm(data={'base_date': max_date, 'num_runs': num_runs}) return self.render( 'airflow/chart.html', dag=dag, data=json.dumps(all_data), height="700px", chart_options={'yAxis': {'title': {'text': 'hours after 00:00'}}}, demo_mode=conf.getboolean('webserver', 'demo_mode'), root=root, form=form, ) @expose('/paused') @login_required @wwwutils.action_logging def paused(self): DagModel = models.DagModel dag_id = request.args.get('dag_id') session = settings.Session() orm_dag = session.query( DagModel).filter(DagModel.dag_id == dag_id).first() if request.args.get('is_paused') == 'false': orm_dag.is_paused = True else: orm_dag.is_paused = False session.merge(orm_dag) session.commit() session.close() dagbag.get_dag(dag_id) return "OK" @expose('/refresh') @login_required @wwwutils.action_logging def refresh(self): DagModel = models.DagModel dag_id = request.args.get('dag_id') session = settings.Session() orm_dag = session.query( DagModel).filter(DagModel.dag_id == dag_id).first() if orm_dag: orm_dag.last_expired = datetime.now() session.merge(orm_dag) session.commit() session.close() dagbag.get_dag(dag_id) flash("DAG [{}] is now fresh as a daisy".format(dag_id)) return redirect('/') @expose('/refresh_all') @login_required @wwwutils.action_logging def refresh_all(self): dagbag.collect_dags(only_if_updated=False) flash("All DAGs are now up to date") return redirect('/') @expose('/gantt') @login_required @wwwutils.action_logging def gantt(self): session = settings.Session() dag_id = request.args.get('dag_id') dag = dagbag.get_dag(dag_id) demo_mode = conf.getboolean('webserver', 'demo_mode') root = request.args.get('root') if root: dag = dag.sub_dag( task_regex=root, include_upstream=True, include_downstream=False) dttm = request.args.get('execution_date') if dttm: dttm = dateutil.parser.parse(dttm) else: dttm = dag.latest_execution_date or datetime.now().date() form = DateTimeForm(data={'execution_date': dttm}) tis = [ ti for ti in dag.get_task_instances(session, dttm, dttm) if ti.start_date] tis = sorted(tis, key=lambda ti: ti.start_date) tasks = [] data = [] for i, ti in enumerate(tis): end_date = ti.end_date or datetime.now() tasks += [ti.task_id] color = State.color(ti.state) data.append({ 'x': i, 'low': int(ti.start_date.strftime('%s')) * 1000, 'high': int(end_date.strftime('%s')) * 1000, 'color': color, }) height = (len(tis) * 25) + 50 session.commit() session.close() hc = { 'chart': { 'type': 'columnrange', 'inverted': True, 'height': height, }, 'xAxis': {'categories': tasks, 'alternateGridColor': '#FAFAFA'}, 'yAxis': {'type': 'datetime'}, 'title': { 'text': None }, 'plotOptions': { 'series': { 'cursor': 'pointer', 'minPointLength': 4, }, }, 'legend': { 'enabled': False }, 'series': [{ 'data': data }] } return self.render( 'airflow/gantt.html', dag=dag, execution_date=dttm.isoformat(), form=form, hc=json.dumps(hc, indent=4), height=height, demo_mode=demo_mode, root=root, ) @expose('/object/task_instances') @login_required @wwwutils.action_logging def task_instances(self): session = settings.Session() dag_id = request.args.get('dag_id') dag = dagbag.get_dag(dag_id) dttm = request.args.get('execution_date') if dttm: dttm = dateutil.parser.parse(dttm) else: return ("Error: Invalid execution_date") task_instances = { ti.task_id: alchemy_to_dict(ti) for ti in dag.get_task_instances(session, dttm, dttm)} return json.dumps(task_instances) @expose('/variables/<form>', methods=["GET", "POST"]) @login_required @wwwutils.action_logging def variables(self, form): try: if request.method == 'POST': data = request.json if data: session = settings.Session() var = models.Variable(key=form, val=json.dumps(data)) session.add(var) session.commit() return "" else: return self.render( 'airflow/variables/{}.html'.format(form) ) except: return ("Error: form airflow/variables/{}.html " "not found.").format(form), 404 class HomeView(AdminIndexView): @expose("/") @login_required def index(self): session = Session() DM = models.DagModel qry = None # filter the dags if filter_by_owner and current user is not superuser do_filter = FILTER_BY_OWNER and (not current_user.is_superuser()) if do_filter: qry = ( session.query(DM) .filter( ~DM.is_subdag, DM.is_active, DM.owners.like('%' + current_user.username + '%')) .all() ) else: qry = session.query(DM).filter(~DM.is_subdag, DM.is_active).all() orm_dags = {dag.dag_id: dag for dag in qry} import_errors = session.query(models.ImportError).all() for ie in import_errors: flash( "Broken DAG: [{ie.filename}] {ie.stacktrace}".format(ie=ie), "error") session.expunge_all() session.commit() session.close() dags = dagbag.dags.values() if do_filter: dags = { dag.dag_id: dag for dag in dags if ( dag.owner == current_user.username and (not dag.parent_dag) ) } else: dags = {dag.dag_id: dag for dag in dags if not dag.parent_dag} all_dag_ids = sorted(set(orm_dags.keys()) | set(dags.keys())) return self.render( 'airflow/dags.html', dags=dags, orm_dags=orm_dags, all_dag_ids=all_dag_ids) class QueryView(wwwutils.DataProfilingMixin, BaseView): @expose('/') @wwwutils.gzipped def query(self): session = settings.Session() dbs = session.query(models.Connection).order_by( models.Connection.conn_id).all() session.expunge_all() db_choices = list( ((db.conn_id, db.conn_id) for db in dbs if db.get_hook())) conn_id_str = request.args.get('conn_id') csv = request.args.get('csv') == "true" sql = request.args.get('sql') class QueryForm(Form): conn_id = SelectField("Layout", choices=db_choices) sql = TextAreaField("SQL", widget=wwwutils.AceEditorWidget()) data = { 'conn_id': conn_id_str, 'sql': sql, } results = None has_data = False error = False if conn_id_str: db = [db for db in dbs if db.conn_id == conn_id_str][0] hook = db.get_hook() try: df = hook.get_pandas_df(wwwutils.limit_sql(sql, QUERY_LIMIT, conn_type=db.conn_type)) # df = hook.get_pandas_df(sql) has_data = len(df) > 0 df = df.fillna('') results = df.to_html( classes=[ 'table', 'table-bordered', 'table-striped', 'no-wrap'], index=False, na_rep='', ) if has_data else '' except Exception as e: flash(str(e), 'error') error = True if has_data and len(df) == QUERY_LIMIT: flash( "Query output truncated at " + str(QUERY_LIMIT) + " rows", 'info') if not has_data and error: flash('No data', 'error') if csv: return Response( response=df.to_csv(index=False), status=200, mimetype="application/text") form = QueryForm(request.form, data=data) session.commit() session.close() return self.render( 'airflow/query.html', form=form, title="Ad Hoc Query", results=results or '', has_data=has_data) class AirflowModelView(ModelView): list_template = 'airflow/model_list.html' edit_template = 'airflow/model_edit.html' create_template = 'airflow/model_create.html' column_display_actions = True page_size = 500 class ModelViewOnly(wwwutils.LoginMixin, AirflowModelView): """ Modifying the base ModelView class for non edit, browse only operations """ named_filter_urls = True can_create = False can_edit = False can_delete = False column_display_pk = True class PoolModelView(wwwutils.SuperUserMixin, AirflowModelView): column_list = ('pool', 'slots', 'used_slots', 'queued_slots') column_formatters = dict( pool=pool_link, used_slots=fused_slots, queued_slots=fqueued_slots) named_filter_urls = True class SlaMissModelView(wwwutils.SuperUserMixin, ModelViewOnly): verbose_name_plural = "SLA misses" verbose_name = "SLA miss" column_list = ( 'dag_id', 'task_id', 'execution_date', 'email_sent', 'timestamp') column_formatters = dict( task_id=task_instance_link, execution_date=datetime_f, timestamp=datetime_f, dag_id=dag_link) named_filter_urls = True column_searchable_list = ('dag_id', 'task_id',) column_filters = ( 'dag_id', 'task_id', 'email_sent', 'timestamp', 'execution_date') form_widget_args = { 'email_sent': {'disabled': True}, 'timestamp': {'disabled': True}, } class ChartModelView(wwwutils.DataProfilingMixin, AirflowModelView): verbose_name = "chart" verbose_name_plural = "charts" form_columns = ( 'label', 'owner', 'conn_id', 'chart_type', 'show_datatable', 'x_is_date', 'y_log_scale', 'show_sql', 'height', 'sql_layout', 'sql', 'default_params',) column_list = ( 'label', 'conn_id', 'chart_type', 'owner', 'last_modified',) column_formatters = dict(label=label_link, last_modified=datetime_f) column_default_sort = ('last_modified', True) create_template = 'airflow/chart/create.html' edit_template = 'airflow/chart/edit.html' column_filters = ('label', 'owner.username', 'conn_id') column_searchable_list = ('owner.username', 'label', 'sql') column_descriptions = { 'label': "Can include {{ templated_fields }} and {{ macros }}", 'chart_type': "The type of chart to be displayed", 'sql': "Can include {{ templated_fields }} and {{ macros }}.", 'height': "Height of the chart, in pixels.", 'conn_id': "Source database to run the query against", 'x_is_date': ( "Whether the X axis should be casted as a date field. Expect most " "intelligible date formats to get casted properly." ), 'owner': ( "The chart's owner, mostly used for reference and filtering in " "the list view." ), 'show_datatable': "Whether to display an interactive data table under the chart.", 'default_params': ( 'A dictionary of {"key": "values",} that define what the ' 'templated fields (parameters) values should be by default. ' 'To be valid, it needs to "eval" as a Python dict. ' 'The key values will show up in the url\'s querystring ' 'and can be altered there.' ), 'show_sql': "Whether to display the SQL statement as a collapsible " "section in the chart page.", 'y_log_scale': "Whether to use a log scale for the Y axis.", 'sql_layout': ( "Defines the layout of the SQL that the application should " "expect. Depending on the tables you are sourcing from, it may " "make more sense to pivot / unpivot the metrics." ), } column_labels = { 'sql': "SQL", 'height': "Chart Height", 'sql_layout': "SQL Layout", 'show_sql': "Display the SQL Statement", 'default_params': "Default Parameters", } form_choices = { 'chart_type': [ ('line', 'Line Chart'), ('spline', 'Spline Chart'), ('bar', 'Bar Chart'), ('para', 'Parallel Coordinates'), ('column', 'Column Chart'), ('area', 'Overlapping Area Chart'), ('stacked_area', 'Stacked Area Chart'), ('percent_area', 'Percent Area Chart'), ('heatmap', 'Heatmap'), ('datatable', 'No chart, data table only'), ], 'sql_layout': [ ('series', 'SELECT series, x, y FROM ...'), ('columns', 'SELECT x, y (series 1), y (series 2), ... FROM ...'), ], 'conn_id': [ (c.conn_id, c.conn_id) for c in ( Session().query(models.Connection.conn_id) .group_by(models.Connection.conn_id) ) ] } def on_model_change(self, form, model, is_created=True): if model.iteration_no is None: model.iteration_no = 0 else: model.iteration_no += 1 if not model.user_id and current_user and hasattr(current_user, 'id'): model.user_id = current_user.id model.last_modified = datetime.now() class KnowEventView(wwwutils.DataProfilingMixin, AirflowModelView): verbose_name = "known event" verbose_name_plural = "known events" form_columns = ( 'label', 'event_type', 'start_date', 'end_date', 'reported_by', 'description') column_list = ( 'label', 'event_type', 'start_date', 'end_date', 'reported_by') column_default_sort = ("start_date", True) class KnowEventTypeView(wwwutils.DataProfilingMixin, AirflowModelView): pass ''' # For debugging / troubleshooting mv = KnowEventTypeView( models.KnownEventType, Session, name="Known Event Types", category="Manage") admin.add_view(mv) class DagPickleView(SuperUserMixin, ModelView): pass mv = DagPickleView( models.DagPickle, Session, name="Pickles", category="Manage") admin.add_view(mv) ''' class VariableView(wwwutils.LoginMixin, AirflowModelView): verbose_name = "Variable" verbose_name_plural = "Variables" def hidden_field_formatter(view, context, model, name): if should_hide_value_for_key(model.key): return Markup('*' * 8) return getattr(model, name) form_columns = ( 'key', 'val', ) column_list = ('key', 'val', 'is_encrypted',) column_filters = ('key', 'val') column_searchable_list = ('key', 'val') form_widget_args = { 'is_encrypted': {'disabled': True}, 'val': { 'rows': 20, } } column_sortable_list = ( 'key', 'val', 'is_encrypted', ) column_formatters = { 'val': hidden_field_formatter } def on_form_prefill(self, form, id): if should_hide_value_for_key(form.key.data): form.val.data = '*' * 8 class JobModelView(ModelViewOnly): verbose_name_plural = "jobs" verbose_name = "job" column_default_sort = ('start_date', True) column_filters = ( 'job_type', 'dag_id', 'state', 'unixname', 'hostname', 'start_date', 'end_date', 'latest_heartbeat') column_formatters = dict( start_date=datetime_f, end_date=datetime_f, hostname=nobr_f, state=state_f, latest_heartbeat=datetime_f) class DagRunModelView(ModelViewOnly): verbose_name_plural = "DAG Runs" can_delete = True can_edit = True can_create = True column_editable_list = ('state',) verbose_name = "dag run" column_default_sort = ('execution_date', True) form_choices = { 'state': [ ('success', 'success'), ('running', 'running'), ('failed', 'failed'), ], } column_list = ( 'state', 'dag_id', 'execution_date', 'run_id', 'external_trigger') column_filters = column_list column_searchable_list = ('dag_id', 'state', 'run_id') column_formatters = dict( execution_date=datetime_f, state=state_f, start_date=datetime_f, dag_id=dag_link) @action('set_running', "Set state to 'running'", None) def action_set_running(self, ids): self.set_dagrun_state(ids, State.RUNNING) @action('set_failed', "Set state to 'failed'", None) def action_set_failed(self, ids): self.set_dagrun_state(ids, State.FAILED) @action('set_success', "Set state to 'success'", None) def action_set_success(self, ids): self.set_dagrun_state(ids, State.SUCCESS) @provide_session def set_dagrun_state(self, ids, target_state, session=None): try: DR = models.DagRun count = 0 for dr in session.query(DR).filter(DR.id.in_(ids)).all(): count += 1 dr.state = target_state if target_state == State.RUNNING: dr.start_date = datetime.now() else: dr.end_date = datetime.now() session.commit() flash( "{count} dag runs were set to '{target_state}'".format(**locals())) except Exception as ex: if not self.handle_view_exception(ex): raise Exception("Ooops") flash('Failed to set state', 'error') class LogModelView(ModelViewOnly): verbose_name_plural = "logs" verbose_name = "log" column_default_sort = ('dttm', True) column_filters = ('dag_id', 'task_id', 'execution_date') column_formatters = dict( dttm=datetime_f, execution_date=datetime_f, dag_id=dag_link) class TaskInstanceModelView(ModelViewOnly): verbose_name_plural = "task instances" verbose_name = "task instance" column_filters = ( 'state', 'dag_id', 'task_id', 'execution_date', 'hostname', 'queue', 'pool', 'operator', 'start_date', 'end_date') named_filter_urls = True column_formatters = dict( log_url=log_url_formatter, task_id=task_instance_link, hostname=nobr_f, state=state_f, execution_date=datetime_f, start_date=datetime_f, end_date=datetime_f, queued_dttm=datetime_f, dag_id=dag_link, duration=duration_f) column_searchable_list = ('dag_id', 'task_id', 'state') column_default_sort = ('start_date', True) form_choices = { 'state': [ ('success', 'success'), ('running', 'running'), ('failed', 'failed'), ], } column_list = ( 'state', 'dag_id', 'task_id', 'execution_date', 'operator', 'start_date', 'end_date', 'duration', 'job_id', 'hostname', 'unixname', 'priority_weight', 'queue', 'queued_dttm', 'try_number', 'pool', 'log_url') can_delete = True page_size = 500 @action('set_running', "Set state to 'running'", None) def action_set_running(self, ids): self.set_task_instance_state(ids, State.RUNNING) @action('set_failed', "Set state to 'failed'", None) def action_set_failed(self, ids): self.set_task_instance_state(ids, State.FAILED) @action('set_success', "Set state to 'success'", None) def action_set_success(self, ids): self.set_task_instance_state(ids, State.SUCCESS) @action('set_retry', "Set state to 'up_for_retry'", None) def action_set_retry(self, ids): self.set_task_instance_state(ids, State.UP_FOR_RETRY) @provide_session def set_task_instance_state(self, ids, target_state, session=None): try: TI = models.TaskInstance for count, id in enumerate(ids): task_id, dag_id, execution_date = id.split(',') execution_date = datetime.strptime(execution_date, '%Y-%m-%d %H:%M:%S') ti = session.query(TI).filter(TI.task_id == task_id, TI.dag_id == dag_id, TI.execution_date == execution_date).one() ti.state = target_state count += 1 session.commit() flash( "{count} task instances were set to '{target_state}'".format(**locals())) except Exception as ex: if not self.handle_view_exception(ex): raise Exception("Ooops") flash('Failed to set state', 'error') class ConnectionModelView(wwwutils.SuperUserMixin, AirflowModelView): create_template = 'airflow/conn_create.html' edit_template = 'airflow/conn_edit.html' list_template = 'airflow/conn_list.html' form_columns = ( 'conn_id', 'conn_type', 'host', 'schema', 'login', 'password', 'port', 'extra', 'extra__jdbc__drv_path', 'extra__jdbc__drv_clsname', 'extra__google_cloud_platform__project', 'extra__google_cloud_platform__key_path', 'extra__google_cloud_platform__scope', ) verbose_name = "Connection" verbose_name_plural = "Connections" column_default_sort = ('conn_id', False) column_list = ('conn_id', 'conn_type', 'host', 'port', 'is_encrypted', 'is_extra_encrypted',) form_overrides = dict(_password=PasswordField) form_widget_args = { 'is_extra_encrypted': {'disabled': True}, 'is_encrypted': {'disabled': True}, } # Used to customized the form, the forms elements get rendered # and results are stored in the extra field as json. All of these # need to be prefixed with extra__ and then the conn_type ___ as in # extra__{conn_type}__name. You can also hide form elements and rename # others from the connection_form.js file form_extra_fields = { 'extra__jdbc__drv_path' : StringField('Driver Path'), 'extra__jdbc__drv_clsname': StringField('Driver Class'), 'extra__google_cloud_platform__project': StringField('Project Id'), 'extra__google_cloud_platform__key_path': StringField('Keyfile Path'), 'extra__google_cloud_platform__scope': StringField('Scopes (comma seperated)'), } form_choices = { 'conn_type': [ ('fs', 'File (path)'), ('ftp', 'FTP',), ('google_cloud_platform', 'Google Cloud Platform'), ('hdfs', 'HDFS',), ('http', 'HTTP',), ('hive_cli', 'Hive Client Wrapper',), ('hive_metastore', 'Hive Metastore Thrift',), ('hiveserver2', 'Hive Server 2 Thrift',), ('jdbc', 'Jdbc Connection',), ('mysql', 'MySQL',), ('postgres', 'Postgres',), ('oracle', 'Oracle',), ('vertica', 'Vertica',), ('presto', 'Presto',), ('s3', 'S3',), ('samba', 'Samba',), ('sqlite', 'Sqlite',), ('ssh', 'SSH',), ('cloudant', 'IBM Cloudant',), ('mssql', 'Microsoft SQL Server'), ('mesos_framework-id', 'Mesos Framework ID'), ] } def on_model_change(self, form, model, is_created): formdata = form.data if formdata['conn_type'] in ['jdbc', 'google_cloud_platform']: extra = { key:formdata[key] for key in self.form_extra_fields.keys() if key in formdata} model.extra = json.dumps(extra) @classmethod def alert_fernet_key(cls): return conf.get('core', 'fernet_key') is None @classmethod def is_secure(self): """ Used to display a message in the Connection list view making it clear that the passwords and `extra` field can't be encrypted. """ is_secure = False try: import cryptography conf.get('core', 'fernet_key') is_secure = True except: pass return is_secure def on_form_prefill(self, form, id): try: d = json.loads(form.data.get('extra', '{}')) except Exception as e: d = {} for field in list(self.form_extra_fields.keys()): value = d.get(field, '') if value: field = getattr(form, field) field.data = value class UserModelView(wwwutils.SuperUserMixin, AirflowModelView): verbose_name = "User" verbose_name_plural = "Users" column_default_sort = 'username' class VersionView(wwwutils.SuperUserMixin, LoggingMixin, BaseView): @expose('/') def version(self): # Look at the version from setup.py try: airflow_version = pkg_resources.require("airflow")[0].version except Exception as e: airflow_version = None self.logger.error(e) # Get the Git repo and git hash git_version = None try: with open(os.path.join(*[settings.AIRFLOW_HOME, 'airflow', 'git_version'])) as f: git_version = f.readline() except Exception as e: self.logger.error(e) # Render information title = "Version Info" return self.render('airflow/version.html', title=title, airflow_version=airflow_version, git_version=git_version) class ConfigurationView(wwwutils.SuperUserMixin, BaseView): @expose('/') def conf(self): raw = request.args.get('raw') == "true" title = "Airflow Configuration" subtitle = conf.AIRFLOW_CONFIG if conf.getboolean("webserver", "expose_config"): with open(conf.AIRFLOW_CONFIG, 'r') as f: config = f.read() else: config = ( "# You Airflow administrator chose not to expose the " "configuration, most likely for security reasons.") if raw: return Response( response=config, status=200, mimetype="application/text") else: code_html = Markup(highlight( config, lexers.IniLexer(), # Lexer call HtmlFormatter(noclasses=True)) ) return self.render( 'airflow/code.html', pre_subtitle=settings.HEADER + " v" + airflow.__version__, code_html=code_html, title=title, subtitle=subtitle) class DagModelView(wwwutils.SuperUserMixin, ModelView): column_list = ('dag_id', 'owners') column_editable_list = ('is_paused',) form_excluded_columns = ('is_subdag', 'is_active') column_searchable_list = ('dag_id',) column_filters = ( 'dag_id', 'owners', 'is_paused', 'is_active', 'is_subdag', 'last_scheduler_run', 'last_expired') form_widget_args = { 'last_scheduler_run': {'disabled': True}, 'fileloc': {'disabled': True}, 'is_paused': {'disabled': True}, 'last_pickled': {'disabled': True}, 'pickle_id': {'disabled': True}, 'last_loaded': {'disabled': True}, 'last_expired': {'disabled': True}, 'pickle_size': {'disabled': True}, 'scheduler_lock': {'disabled': True}, 'owners': {'disabled': True}, } column_formatters = dict( dag_id=dag_link, ) can_delete = False can_create = False page_size = 50 list_template = 'airflow/list_dags.html' named_filter_urls = True def get_query(self): """ Default filters for model """ return ( super(DagModelView, self) .get_query() .filter(or_(models.DagModel.is_active, models.DagModel.is_paused)) .filter(~models.DagModel.is_subdag) ) def get_count_query(self): """ Default filters for model """ return ( super(DagModelView, self) .get_count_query() .filter(models.DagModel.is_active) .filter(~models.DagModel.is_subdag) )
apache-2.0
ej81/mercator
mercator/coastline.py
1
3283
"""Coastline polygons read from an ESRI shapefile, for plotting with matplotlib.""" __author__ = "Eric Jansen" __email__ = "[email protected]" import os import shapefile import warnings import numpy as np from matplotlib.path import Path from matplotlib.patches import Polygon def _find(name, path): if os.path.isfile(os.path.join(path, name)): return os.path.join(path, name) else: name = os.path.basename(name) for root, dirs, files in os.walk(path): if name in files: return os.path.join(root, name) return None def _split(points, parts): num = len(parts) if num > 1: result = [] for index in range(0, num): start = parts[index] if index < num-1: end = parts[index+1] else: end = -1 result += [points[start:end]] return result else: return [points] class Coastline(Polygon): """ Coastline background polygon. Clips itself to the axes when drawn. """ def __init__(self, filename, **kwargs): """ Create a new coastline polygon. Parameters ---------- color : color, optional, default 'gray' Line color of the coastline. land : color, optional, default 'seashell' Fill color of the land polygons. Other parameters ---------------- kwargs : polygon properties Other parameters passed on to :class:`~matplotlib.patches.Polygon`, e.g. zorder=N to control drawing the land polygons above/below other data. """ color = kwargs.pop('color', 'gray') land = kwargs.pop('land', 'seashell') self.data = [] self.extents = None if not color: color = 'none' if not land: land = 'none' xy = [[None, None], [None, None]] Polygon.__init__(self, xy, edgecolor=color, facecolor=land, **kwargs) datapath = os.path.join(os.path.dirname(__file__), 'data') coastfile = _find(filename, datapath) if coastfile: file = shapefile.Reader(coastfile) for shape in file.shapes(): for points in _split(shape.points, shape.parts): self.data += [Path(points)] else: raise Warning('coastline "%s" not found in directory "%s"' % (filename, datapath)) def draw(self, renderer): """ Clip the polygons to the view limits and let the parent handle drawing. """ bbox = self.axes.viewLim if not np.array_equal(bbox.get_points(), self.extents): self._visible = False xy = [[None, None], [None, None]] for path in self.data: try: for point in path.clip_to_bbox(bbox).vertices: xy += [point] self._visible = True except ValueError: pass if not np.array_equal(xy[-1], [None, None]): xy += [[None, None]] self.set_xy(xy) self.extents = np.copy(bbox.get_points()) return super(Coastline, self).draw(renderer)
bsd-2-clause
yl565/statsmodels
statsmodels/regression/tests/test_regression.py
2
38342
""" Test functions for models.regression """ # TODO: Test for LM from statsmodels.compat.python import long, lrange import warnings import pandas import numpy as np from numpy.testing import (assert_almost_equal, assert_approx_equal, assert_, assert_raises, assert_equal, assert_allclose) from scipy.linalg import toeplitz from statsmodels.tools.tools import add_constant, categorical from statsmodels.compat.numpy import np_matrix_rank from statsmodels.regression.linear_model import OLS, WLS, GLS, yule_walker from statsmodels.datasets import longley from scipy.stats import t as student_t DECIMAL_4 = 4 DECIMAL_3 = 3 DECIMAL_2 = 2 DECIMAL_1 = 1 DECIMAL_7 = 7 DECIMAL_0 = 0 class CheckRegressionResults(object): """ res2 contains results from Rmodelwrap or were obtained from a statistical packages such as R, Stata, or SAS and were written to model_results """ decimal_params = DECIMAL_4 def test_params(self): assert_almost_equal(self.res1.params, self.res2.params, self.decimal_params) decimal_standarderrors = DECIMAL_4 def test_standarderrors(self): assert_almost_equal(self.res1.bse,self.res2.bse, self.decimal_standarderrors) decimal_confidenceintervals = DECIMAL_4 def test_confidenceintervals(self): #NOTE: stata rounds residuals (at least) to sig digits so approx_equal conf1 = self.res1.conf_int() conf2 = self.res2.conf_int() for i in range(len(conf1)): assert_approx_equal(conf1[i][0], conf2[i][0], self.decimal_confidenceintervals) assert_approx_equal(conf1[i][1], conf2[i][1], self.decimal_confidenceintervals) decimal_conf_int_subset = DECIMAL_4 def test_conf_int_subset(self): if len(self.res1.params) > 1: ci1 = self.res1.conf_int(cols=(1,2)) ci2 = self.res1.conf_int()[1:3] assert_almost_equal(ci1, ci2, self.decimal_conf_int_subset) else: pass decimal_scale = DECIMAL_4 def test_scale(self): assert_almost_equal(self.res1.scale, self.res2.scale, self.decimal_scale) decimal_rsquared = DECIMAL_4 def test_rsquared(self): assert_almost_equal(self.res1.rsquared, self.res2.rsquared, self.decimal_rsquared) decimal_rsquared_adj = DECIMAL_4 def test_rsquared_adj(self): assert_almost_equal(self.res1.rsquared_adj, self.res2.rsquared_adj, self.decimal_rsquared_adj) def test_degrees(self): assert_equal(self.res1.model.df_model, self.res2.df_model) assert_equal(self.res1.model.df_resid, self.res2.df_resid) decimal_ess = DECIMAL_4 def test_ess(self): #Explained Sum of Squares assert_almost_equal(self.res1.ess, self.res2.ess, self.decimal_ess) decimal_ssr = DECIMAL_4 def test_sumof_squaredresids(self): assert_almost_equal(self.res1.ssr, self.res2.ssr, self.decimal_ssr) decimal_mse_resid = DECIMAL_4 def test_mse_resid(self): #Mean squared error of residuals assert_almost_equal(self.res1.mse_model, self.res2.mse_model, self.decimal_mse_resid) decimal_mse_model = DECIMAL_4 def test_mse_model(self): assert_almost_equal(self.res1.mse_resid, self.res2.mse_resid, self.decimal_mse_model) decimal_mse_total = DECIMAL_4 def test_mse_total(self): assert_almost_equal(self.res1.mse_total, self.res2.mse_total, self.decimal_mse_total, err_msg="Test class %s" % self) decimal_fvalue = DECIMAL_4 def test_fvalue(self): #didn't change this, not sure it should complain -inf not equal -inf #if not (np.isinf(self.res1.fvalue) and np.isinf(self.res2.fvalue)): assert_almost_equal(self.res1.fvalue, self.res2.fvalue, self.decimal_fvalue) decimal_loglike = DECIMAL_4 def test_loglike(self): assert_almost_equal(self.res1.llf, self.res2.llf, self.decimal_loglike) decimal_aic = DECIMAL_4 def test_aic(self): assert_almost_equal(self.res1.aic, self.res2.aic, self.decimal_aic) decimal_bic = DECIMAL_4 def test_bic(self): assert_almost_equal(self.res1.bic, self.res2.bic, self.decimal_bic) decimal_pvalues = DECIMAL_4 def test_pvalues(self): assert_almost_equal(self.res1.pvalues, self.res2.pvalues, self.decimal_pvalues) decimal_wresid = DECIMAL_4 def test_wresid(self): assert_almost_equal(self.res1.wresid, self.res2.wresid, self.decimal_wresid) decimal_resids = DECIMAL_4 def test_resids(self): assert_almost_equal(self.res1.resid, self.res2.resid, self.decimal_resids) decimal_norm_resids = DECIMAL_4 def test_norm_resids(self): assert_almost_equal(self.res1.resid_pearson, self.res2.resid_pearson, self.decimal_norm_resids) #TODO: test fittedvalues and what else? class TestOLS(CheckRegressionResults): @classmethod def setupClass(cls): from .results.results_regression import Longley data = longley.load() data.exog = add_constant(data.exog, prepend=False) res1 = OLS(data.endog, data.exog).fit() res2 = Longley() res2.wresid = res1.wresid # workaround hack cls.res1 = res1 cls.res2 = res2 res_qr = OLS(data.endog, data.exog).fit(method="qr") model_qr = OLS(data.endog, data.exog) Q, R = np.linalg.qr(data.exog) model_qr.exog_Q, model_qr.exog_R = Q, R model_qr.normalized_cov_params = np.linalg.inv(np.dot(R.T, R)) model_qr.rank = np_matrix_rank(R) res_qr2 = model_qr.fit(method="qr") cls.res_qr = res_qr cls.res_qr_manual = res_qr2 def test_eigenvalues(self): eigenval_perc_diff = (self.res_qr.eigenvals - self.res_qr_manual.eigenvals) eigenval_perc_diff /= self.res_qr.eigenvals zeros = np.zeros_like(eigenval_perc_diff) assert_almost_equal(eigenval_perc_diff, zeros, DECIMAL_7) # Robust error tests. Compare values computed with SAS def test_HC0_errors(self): #They are split up because the copied results do not have any DECIMAL_4 #places for the last place. assert_almost_equal(self.res1.HC0_se[:-1], self.res2.HC0_se[:-1], DECIMAL_4) assert_approx_equal(np.round(self.res1.HC0_se[-1]), self.res2.HC0_se[-1]) def test_HC1_errors(self): assert_almost_equal(self.res1.HC1_se[:-1], self.res2.HC1_se[:-1], DECIMAL_4) assert_approx_equal(self.res1.HC1_se[-1], self.res2.HC1_se[-1]) def test_HC2_errors(self): assert_almost_equal(self.res1.HC2_se[:-1], self.res2.HC2_se[:-1], DECIMAL_4) assert_approx_equal(self.res1.HC2_se[-1], self.res2.HC2_se[-1]) def test_HC3_errors(self): assert_almost_equal(self.res1.HC3_se[:-1], self.res2.HC3_se[:-1], DECIMAL_4) assert_approx_equal(self.res1.HC3_se[-1], self.res2.HC3_se[-1]) def test_qr_params(self): assert_almost_equal(self.res1.params, self.res_qr.params, 6) def test_qr_normalized_cov_params(self): #todo: need assert_close assert_almost_equal(np.ones_like(self.res1.normalized_cov_params), self.res1.normalized_cov_params / self.res_qr.normalized_cov_params, 5) def test_missing(self): data = longley.load() data.exog = add_constant(data.exog, prepend=False) data.endog[[3, 7, 14]] = np.nan mod = OLS(data.endog, data.exog, missing='drop') assert_equal(mod.endog.shape[0], 13) assert_equal(mod.exog.shape[0], 13) def test_rsquared_adj_overfit(self): # Test that if df_resid = 0, rsquared_adj = 0. # This is a regression test for user issue: # https://github.com/statsmodels/statsmodels/issues/868 with warnings.catch_warnings(record=True): x = np.random.randn(5) y = np.random.randn(5, 6) results = OLS(x, y).fit() rsquared_adj = results.rsquared_adj assert_equal(rsquared_adj, np.nan) def test_qr_alternatives(self): assert_allclose(self.res_qr.params, self.res_qr_manual.params, rtol=5e-12) def test_norm_resid(self): resid = self.res1.wresid norm_resid = resid / np.sqrt(np.sum(resid**2.0) / self.res1.df_resid) model_norm_resid = self.res1.resid_pearson assert_almost_equal(model_norm_resid, norm_resid, DECIMAL_7) def test_norm_resid_zero_variance(self): with warnings.catch_warnings(record=True): y = self.res1.model.endog res = OLS(y,y).fit() assert_allclose(res.scale, 0, atol=1e-20) assert_allclose(res.wresid, res.resid_pearson, atol=5e-11) class TestRTO(CheckRegressionResults): @classmethod def setupClass(cls): from .results.results_regression import LongleyRTO data = longley.load() res1 = OLS(data.endog, data.exog).fit() res2 = LongleyRTO() res2.wresid = res1.wresid # workaround hack cls.res1 = res1 cls.res2 = res2 res_qr = OLS(data.endog, data.exog).fit(method="qr") cls.res_qr = res_qr class TestFtest(object): """ Tests f_test vs. RegressionResults """ @classmethod def setupClass(cls): data = longley.load() data.exog = add_constant(data.exog, prepend=False) cls.res1 = OLS(data.endog, data.exog).fit() R = np.identity(7)[:-1,:] cls.Ftest = cls.res1.f_test(R) def test_F(self): assert_almost_equal(self.Ftest.fvalue, self.res1.fvalue, DECIMAL_4) def test_p(self): assert_almost_equal(self.Ftest.pvalue, self.res1.f_pvalue, DECIMAL_4) def test_Df_denom(self): assert_equal(self.Ftest.df_denom, self.res1.model.df_resid) def test_Df_num(self): assert_equal(self.Ftest.df_num, 6) class TestFTest2(object): """ A joint test that the coefficient on GNP = the coefficient on UNEMP and that the coefficient on POP = the coefficient on YEAR for the Longley dataset. Ftest1 is from statsmodels. Results are from Rpy using R's car library. """ @classmethod def setupClass(cls): data = longley.load() data.exog = add_constant(data.exog, prepend=False) res1 = OLS(data.endog, data.exog).fit() R2 = [[0,1,-1,0,0,0,0],[0, 0, 0, 0, 1, -1, 0]] cls.Ftest1 = res1.f_test(R2) hyp = 'x2 = x3, x5 = x6' cls.NewFtest1 = res1.f_test(hyp) def test_new_ftest(self): assert_equal(self.NewFtest1.fvalue, self.Ftest1.fvalue) def test_fvalue(self): assert_almost_equal(self.Ftest1.fvalue, 9.7404618732968196, DECIMAL_4) def test_pvalue(self): assert_almost_equal(self.Ftest1.pvalue, 0.0056052885317493459, DECIMAL_4) def test_df_denom(self): assert_equal(self.Ftest1.df_denom, 9) def test_df_num(self): assert_equal(self.Ftest1.df_num, 2) class TestFtestQ(object): """ A joint hypothesis test that Rb = q. Coefficient tests are essentially made up. Test values taken from Stata. """ @classmethod def setupClass(cls): data = longley.load() data.exog = add_constant(data.exog, prepend=False) res1 = OLS(data.endog, data.exog).fit() R = np.array([[0,1,1,0,0,0,0], [0,1,0,1,0,0,0], [0,1,0,0,0,0,0], [0,0,0,0,1,0,0], [0,0,0,0,0,1,0]]) q = np.array([0,0,0,1,0]) cls.Ftest1 = res1.f_test((R,q)) def test_fvalue(self): assert_almost_equal(self.Ftest1.fvalue, 70.115557, 5) def test_pvalue(self): assert_almost_equal(self.Ftest1.pvalue, 6.229e-07, 10) def test_df_denom(self): assert_equal(self.Ftest1.df_denom, 9) def test_df_num(self): assert_equal(self.Ftest1.df_num, 5) class TestTtest(object): """ Test individual t-tests. Ie., are the coefficients significantly different than zero. """ @classmethod def setupClass(cls): data = longley.load() data.exog = add_constant(data.exog, prepend=False) cls.res1 = OLS(data.endog, data.exog).fit() R = np.identity(7) cls.Ttest = cls.res1.t_test(R) hyp = 'x1 = 0, x2 = 0, x3 = 0, x4 = 0, x5 = 0, x6 = 0, const = 0' cls.NewTTest = cls.res1.t_test(hyp) def test_new_tvalue(self): assert_equal(self.NewTTest.tvalue, self.Ttest.tvalue) def test_tvalue(self): assert_almost_equal(self.Ttest.tvalue, self.res1.tvalues, DECIMAL_4) def test_sd(self): assert_almost_equal(self.Ttest.sd, self.res1.bse, DECIMAL_4) def test_pvalue(self): assert_almost_equal(self.Ttest.pvalue, student_t.sf( np.abs(self.res1.tvalues), self.res1.model.df_resid)*2, DECIMAL_4) def test_df_denom(self): assert_equal(self.Ttest.df_denom, self.res1.model.df_resid) def test_effect(self): assert_almost_equal(self.Ttest.effect, self.res1.params) class TestTtest2(object): """ Tests the hypothesis that the coefficients on POP and YEAR are equal. Results from RPy using 'car' package. """ @classmethod def setupClass(cls): R = np.zeros(7) R[4:6] = [1,-1] data = longley.load() data.exog = add_constant(data.exog, prepend=False) res1 = OLS(data.endog, data.exog).fit() cls.Ttest1 = res1.t_test(R) def test_tvalue(self): assert_almost_equal(self.Ttest1.tvalue, -4.0167754636397284, DECIMAL_4) def test_sd(self): assert_almost_equal(self.Ttest1.sd, 455.39079425195314, DECIMAL_4) def test_pvalue(self): assert_almost_equal(self.Ttest1.pvalue, 2*0.0015163772380932246, DECIMAL_4) def test_df_denom(self): assert_equal(self.Ttest1.df_denom, 9) def test_effect(self): assert_almost_equal(self.Ttest1.effect, -1829.2025687186533, DECIMAL_4) class TestGLS(object): """ These test results were obtained by replication with R. """ @classmethod def setupClass(cls): from .results.results_regression import LongleyGls data = longley.load() exog = add_constant(np.column_stack((data.exog[:,1], data.exog[:,4])), prepend=False) tmp_results = OLS(data.endog, exog).fit() rho = np.corrcoef(tmp_results.resid[1:], tmp_results.resid[:-1])[0][1] # by assumption order = toeplitz(np.arange(16)) sigma = rho**order GLS_results = GLS(data.endog, exog, sigma=sigma).fit() cls.res1 = GLS_results cls.res2 = LongleyGls() # attach for test_missing cls.sigma = sigma cls.exog = exog cls.endog = data.endog def test_aic(self): assert_approx_equal(self.res1.aic+2, self.res2.aic, 3) def test_bic(self): assert_approx_equal(self.res1.bic, self.res2.bic, 2) def test_loglike(self): assert_almost_equal(self.res1.llf, self.res2.llf, DECIMAL_0) def test_params(self): assert_almost_equal(self.res1.params, self.res2.params, DECIMAL_1) def test_resid(self): assert_almost_equal(self.res1.resid, self.res2.resid, DECIMAL_4) def test_scale(self): assert_almost_equal(self.res1.scale, self.res2.scale, DECIMAL_4) def test_tvalues(self): assert_almost_equal(self.res1.tvalues, self.res2.tvalues, DECIMAL_4) def test_standarderrors(self): assert_almost_equal(self.res1.bse, self.res2.bse, DECIMAL_4) def test_fittedvalues(self): assert_almost_equal(self.res1.fittedvalues, self.res2.fittedvalues, DECIMAL_4) def test_pvalues(self): assert_almost_equal(self.res1.pvalues, self.res2.pvalues, DECIMAL_4) def test_missing(self): endog = self.endog.copy() # copy or changes endog for other methods endog[[4,7,14]] = np.nan mod = GLS(endog, self.exog, sigma=self.sigma, missing='drop') assert_equal(mod.endog.shape[0], 13) assert_equal(mod.exog.shape[0], 13) assert_equal(mod.sigma.shape, (13,13)) class TestGLS_alt_sigma(CheckRegressionResults): """ Test that GLS with no argument is equivalent to OLS. """ @classmethod def setupClass(cls): data = longley.load() data.exog = add_constant(data.exog, prepend=False) ols_res = OLS(data.endog, data.exog).fit() gls_res = GLS(data.endog, data.exog).fit() gls_res_scalar = GLS(data.endog, data.exog, sigma=1) cls.endog = data.endog cls.exog = data.exog cls.res1 = gls_res cls.res2 = ols_res cls.res3 = gls_res_scalar # self.res2.conf_int = self.res2.conf_int() def test_wrong_size_sigma_1d(self): n = len(self.endog) assert_raises(ValueError, GLS, self.endog, self.exog, sigma=np.ones(n-1)) def test_wrong_size_sigma_2d(self): n = len(self.endog) assert_raises(ValueError, GLS, self.endog, self.exog, sigma=np.ones((n-1,n-1))) # def check_confidenceintervals(self, conf1, conf2): # assert_almost_equal(conf1, conf2, DECIMAL_4) class TestLM(object): @classmethod def setupClass(cls): # TODO: Test HAC method X = np.random.randn(100,3) b = np.ones((3,1)) e = np.random.randn(100,1) y = np.dot(X,b) + e # Cases? # Homoskedastic # HC0 cls.res1_full = OLS(y,X).fit() cls.res1_restricted = OLS(y,X[:,0]).fit() cls.res2_full = cls.res1_full.get_robustcov_results('HC0') cls.res2_restricted = cls.res1_restricted.get_robustcov_results('HC0') cls.X = X cls.Y = y def test_LM_homoskedastic(self): resid = self.res1_restricted.wresid n = resid.shape[0] X = self.X S = np.dot(resid,resid) / n * np.dot(X.T,X) / n Sinv = np.linalg.inv(S) s = np.mean(X * resid[:,None], 0) LMstat = n * np.dot(np.dot(s,Sinv),s.T) LMstat_OLS = self.res1_full.compare_lm_test(self.res1_restricted) LMstat2 = LMstat_OLS[0] assert_almost_equal(LMstat, LMstat2, DECIMAL_7) def test_LM_heteroskedastic_nodemean(self): resid = self.res1_restricted.wresid n = resid.shape[0] X = self.X scores = X * resid[:,None] S = np.dot(scores.T,scores) / n Sinv = np.linalg.inv(S) s = np.mean(scores, 0) LMstat = n * np.dot(np.dot(s,Sinv),s.T) LMstat_OLS = self.res2_full.compare_lm_test(self.res2_restricted, demean=False) LMstat2 = LMstat_OLS[0] assert_almost_equal(LMstat, LMstat2, DECIMAL_7) def test_LM_heteroskedastic_demean(self): resid = self.res1_restricted.wresid n = resid.shape[0] X = self.X scores = X * resid[:,None] scores_demean = scores - scores.mean(0) S = np.dot(scores_demean.T,scores_demean) / n Sinv = np.linalg.inv(S) s = np.mean(scores, 0) LMstat = n * np.dot(np.dot(s,Sinv),s.T) LMstat_OLS = self.res2_full.compare_lm_test(self.res2_restricted) LMstat2 = LMstat_OLS[0] assert_almost_equal(LMstat, LMstat2, DECIMAL_7) def test_LM_heteroskedastic_LRversion(self): resid = self.res1_restricted.wresid resid_full = self.res1_full.wresid n = resid.shape[0] X = self.X scores = X * resid[:,None] s = np.mean(scores, 0) scores = X * resid_full[:,None] S = np.dot(scores.T,scores) / n Sinv = np.linalg.inv(S) LMstat = n * np.dot(np.dot(s,Sinv),s.T) LMstat_OLS = self.res2_full.compare_lm_test(self.res2_restricted, use_lr = True) LMstat2 = LMstat_OLS[0] assert_almost_equal(LMstat, LMstat2, DECIMAL_7) def test_LM_nonnested(self): assert_raises(ValueError, self.res2_restricted.compare_lm_test, self.res2_full) class TestOLS_GLS_WLS_equivalence(object): @classmethod def setupClass(cls): data = longley.load() data.exog = add_constant(data.exog, prepend=False) y = data.endog X = data.exog n = y.shape[0] w = np.ones(n) cls.results = [] cls.results.append(OLS(y, X).fit()) cls.results.append(WLS(y, X, w).fit()) cls.results.append(GLS(y, X, 100*w).fit()) cls.results.append(GLS(y, X, np.diag(0.1*w)).fit()) def test_ll(self): llf = np.array([r.llf for r in self.results]) llf_1 = np.ones_like(llf) * self.results[0].llf assert_almost_equal(llf, llf_1, DECIMAL_7) ic = np.array([r.aic for r in self.results]) ic_1 = np.ones_like(ic) * self.results[0].aic assert_almost_equal(ic, ic_1, DECIMAL_7) ic = np.array([r.bic for r in self.results]) ic_1 = np.ones_like(ic) * self.results[0].bic assert_almost_equal(ic, ic_1, DECIMAL_7) def test_params(self): params = np.array([r.params for r in self.results]) params_1 = np.array([self.results[0].params] * len(self.results)) assert_allclose(params, params_1) def test_ss(self): bse = np.array([r.bse for r in self.results]) bse_1 = np.array([self.results[0].bse] * len(self.results)) assert_allclose(bse, bse_1) def test_rsquared(self): rsquared = np.array([r.rsquared for r in self.results]) rsquared_1 = np.array([self.results[0].rsquared] * len(self.results)) assert_almost_equal(rsquared, rsquared_1, DECIMAL_7) class TestGLS_WLS_equivalence(TestOLS_GLS_WLS_equivalence): # reuse test methods @classmethod def setupClass(cls): data = longley.load() data.exog = add_constant(data.exog, prepend=False) y = data.endog X = data.exog n = y.shape[0] np.random.seed(5) w = np.random.uniform(0.5, 1, n) w_inv = 1. / w cls.results = [] cls.results.append(WLS(y, X, w).fit()) cls.results.append(WLS(y, X, 0.01 * w).fit()) cls.results.append(GLS(y, X, 100 * w_inv).fit()) cls.results.append(GLS(y, X, np.diag(0.1 * w_inv)).fit()) def test_rsquared(self): # TODO: WLS rsquared is ok, GLS might have wrong centered_tss # We only check that WLS and GLS rsquared is invariant to scaling # WLS and GLS have different rsquared assert_almost_equal(self.results[1].rsquared, self.results[0].rsquared, DECIMAL_7) assert_almost_equal(self.results[3].rsquared, self.results[2].rsquared, DECIMAL_7) class TestNonFit(object): @classmethod def setupClass(cls): data = longley.load() data.exog = add_constant(data.exog, prepend=False) cls.endog = data.endog cls.exog = data.exog cls.ols_model = OLS(data.endog, data.exog) def test_df_resid(self): df_resid = self.endog.shape[0] - self.exog.shape[1] assert_equal(self.ols_model.df_resid, long(9)) class TestWLS_CornerCases(object): @classmethod def setupClass(cls): cls.exog = np.ones((1,)) cls.endog = np.ones((1,)) weights = 1 cls.wls_res = WLS(cls.endog, cls.exog, weights=weights).fit() def test_wrong_size_weights(self): weights = np.ones((10,10)) assert_raises(ValueError, WLS, self.endog, self.exog, weights=weights) class TestWLSExogWeights(CheckRegressionResults): #Test WLS with Greene's credit card data #reg avgexp age income incomesq ownrent [aw=1/incomesq] def __init__(self): from .results.results_regression import CCardWLS from statsmodels.datasets.ccard import load dta = load() dta.exog = add_constant(dta.exog, prepend=False) nobs = 72. weights = 1/dta.exog[:,2] # for comparison with stata analytic weights scaled_weights = ((weights * nobs)/weights.sum()) self.res1 = WLS(dta.endog, dta.exog, weights=scaled_weights).fit() self.res2 = CCardWLS() self.res2.wresid = scaled_weights ** .5 * self.res2.resid # correction because we use different definition for loglike/llf corr_ic = 2 * (self.res1.llf - self.res2.llf) self.res2.aic -= corr_ic self.res2.bic -= corr_ic self.res2.llf += 0.5 * np.sum(np.log(self.res1.model.weights)) def test_wls_example(): #example from the docstring, there was a note about a bug, should #be fixed now Y = [1,3,4,5,2,3,4] X = lrange(1,8) X = add_constant(X, prepend=False) wls_model = WLS(Y,X, weights=lrange(1,8)).fit() #taken from R lm.summary assert_almost_equal(wls_model.fvalue, 0.127337843215, 6) assert_almost_equal(wls_model.scale, 2.44608530786**2, 6) def test_wls_tss(): y = np.array([22, 22, 22, 23, 23, 23]) X = [[1, 0], [1, 0], [1, 1], [0, 1], [0, 1], [0, 1]] ols_mod = OLS(y, add_constant(X, prepend=False)).fit() yw = np.array([22, 22, 23.]) Xw = [[1,0],[1,1],[0,1]] w = np.array([2, 1, 3.]) wls_mod = WLS(yw, add_constant(Xw, prepend=False), weights=w).fit() assert_equal(ols_mod.centered_tss, wls_mod.centered_tss) class TestWLSScalarVsArray(CheckRegressionResults): @classmethod def setupClass(cls): from statsmodels.datasets.longley import load dta = load() dta.exog = add_constant(dta.exog, prepend=True) wls_scalar = WLS(dta.endog, dta.exog, weights=1./3).fit() weights = [1/3.] * len(dta.endog) wls_array = WLS(dta.endog, dta.exog, weights=weights).fit() cls.res1 = wls_scalar cls.res2 = wls_array #class TestWLS_GLS(CheckRegressionResults): # @classmethod # def setupClass(cls): # from statsmodels.datasets.ccard import load # data = load() # cls.res1 = WLS(data.endog, data.exog, weights = 1/data.exog[:,2]).fit() # cls.res2 = GLS(data.endog, data.exog, sigma = data.exog[:,2]).fit() # # def check_confidenceintervals(self, conf1, conf2): # assert_almost_equal(conf1, conf2(), DECIMAL_4) def test_wls_missing(): from statsmodels.datasets.ccard import load data = load() endog = data.endog endog[[10, 25]] = np.nan mod = WLS(data.endog, data.exog, weights = 1/data.exog[:,2], missing='drop') assert_equal(mod.endog.shape[0], 70) assert_equal(mod.exog.shape[0], 70) assert_equal(mod.weights.shape[0], 70) class TestWLS_OLS(CheckRegressionResults): @classmethod def setupClass(cls): data = longley.load() data.exog = add_constant(data.exog, prepend=False) cls.res1 = OLS(data.endog, data.exog).fit() cls.res2 = WLS(data.endog, data.exog).fit() def check_confidenceintervals(self, conf1, conf2): assert_almost_equal(conf1, conf2(), DECIMAL_4) class TestGLS_OLS(CheckRegressionResults): @classmethod def setupClass(cls): data = longley.load() data.exog = add_constant(data.exog, prepend=False) cls.res1 = GLS(data.endog, data.exog).fit() cls.res2 = OLS(data.endog, data.exog).fit() def check_confidenceintervals(self, conf1, conf2): assert_almost_equal(conf1, conf2(), DECIMAL_4) #TODO: test AR # why the two-stage in AR? #class test_ar(object): # from statsmodels.datasets.sunspots import load # data = load() # model = AR(data.endog, rho=4).fit() # R_res = RModel(data.endog, aic="FALSE", order_max=4) # def test_params(self): # assert_almost_equal(self.model.rho, # pass # def test_order(self): # In R this can be defined or chosen by minimizing the AIC if aic=True # pass class TestYuleWalker(object): @classmethod def setupClass(cls): from statsmodels.datasets.sunspots import load data = load() cls.rho, cls.sigma = yule_walker(data.endog, order=4, method="mle") cls.R_params = [1.2831003105694765, -0.45240924374091945, -0.20770298557575195, 0.047943648089542337] def test_params(self): assert_almost_equal(self.rho, self.R_params, DECIMAL_4) class TestDataDimensions(CheckRegressionResults): @classmethod def setupClass(cls): np.random.seed(54321) cls.endog_n_ = np.random.uniform(0,20,size=30) cls.endog_n_one = cls.endog_n_[:,None] cls.exog_n_ = np.random.uniform(0,20,size=30) cls.exog_n_one = cls.exog_n_[:,None] cls.degen_exog = cls.exog_n_one[:-1] cls.mod1 = OLS(cls.endog_n_one, cls.exog_n_one) cls.mod1.df_model += 1 cls.res1 = cls.mod1.fit() # Note that these are created for every subclass.. # A little extra overhead probably cls.mod2 = OLS(cls.endog_n_one, cls.exog_n_one) cls.mod2.df_model += 1 cls.res2 = cls.mod2.fit() def check_confidenceintervals(self, conf1, conf2): assert_almost_equal(conf1, conf2(), DECIMAL_4) class TestGLS_large_data(TestDataDimensions): @classmethod def setupClass(cls): nobs = 1000 y = np.random.randn(nobs,1) X = np.random.randn(nobs,20) sigma = np.ones_like(y) cls.gls_res = GLS(y, X, sigma=sigma).fit() cls.gls_res_scalar = GLS(y, X, sigma=1).fit() cls.gls_res_none= GLS(y, X).fit() cls.ols_res = OLS(y, X).fit() def test_large_equal_params(self): assert_almost_equal(self.ols_res.params, self.gls_res.params, DECIMAL_7) def test_large_equal_loglike(self): assert_almost_equal(self.ols_res.llf, self.gls_res.llf, DECIMAL_7) def test_large_equal_params_none(self): assert_almost_equal(self.gls_res.params, self.gls_res_none.params, DECIMAL_7) class TestNxNx(TestDataDimensions): @classmethod def setupClass(cls): super(TestNxNx, cls).setupClass() cls.mod2 = OLS(cls.endog_n_, cls.exog_n_) cls.mod2.df_model += 1 cls.res2 = cls.mod2.fit() class TestNxOneNx(TestDataDimensions): @classmethod def setupClass(cls): super(TestNxOneNx, cls).setupClass() cls.mod2 = OLS(cls.endog_n_one, cls.exog_n_) cls.mod2.df_model += 1 cls.res2 = cls.mod2.fit() class TestNxNxOne(TestDataDimensions): @classmethod def setupClass(cls): super(TestNxNxOne, cls).setupClass() cls.mod2 = OLS(cls.endog_n_, cls.exog_n_one) cls.mod2.df_model += 1 cls.res2 = cls.mod2.fit() def test_bad_size(): np.random.seed(54321) data = np.random.uniform(0,20,31) assert_raises(ValueError, OLS, data, data[1:]) def test_const_indicator(): np.random.seed(12345) X = np.random.randint(0, 3, size=30) X = categorical(X, drop=True) y = np.dot(X, [1., 2., 3.]) + np.random.normal(size=30) modc = OLS(y, add_constant(X[:,1:], prepend=True)).fit() mod = OLS(y, X, hasconst=True).fit() assert_almost_equal(modc.rsquared, mod.rsquared, 12) def test_706(): # make sure one regressor pandas Series gets passed to DataFrame # for conf_int. y = pandas.Series(np.random.randn(10)) x = pandas.Series(np.ones(10)) res = OLS(y,x).fit() conf_int = res.conf_int() np.testing.assert_equal(conf_int.shape, (1, 2)) np.testing.assert_(isinstance(conf_int, pandas.DataFrame)) def test_summary(): # test 734 import re dta = longley.load_pandas() X = dta.exog X["constant"] = 1 y = dta.endog with warnings.catch_warnings(record=True): res = OLS(y, X).fit() table = res.summary().as_latex() # replace the date and time table = re.sub("(?<=\n\\\\textbf\{Date:\} &).+?&", " Sun, 07 Apr 2013 &", table) table = re.sub("(?<=\n\\\\textbf\{Time:\} &).+?&", " 13:46:07 &", table) expected = """\\begin{center} \\begin{tabular}{lclc} \\toprule \\textbf{Dep. Variable:} & TOTEMP & \\textbf{ R-squared: } & 0.995 \\\\ \\textbf{Model:} & OLS & \\textbf{ Adj. R-squared: } & 0.992 \\\\ \\textbf{Method:} & Least Squares & \\textbf{ F-statistic: } & 330.3 \\\\ \\textbf{Date:} & Sun, 07 Apr 2013 & \\textbf{ Prob (F-statistic):} & 4.98e-10 \\\\ \\textbf{Time:} & 13:46:07 & \\textbf{ Log-Likelihood: } & -109.62 \\\\ \\textbf{No. Observations:} & 16 & \\textbf{ AIC: } & 233.2 \\\\ \\textbf{Df Residuals:} & 9 & \\textbf{ BIC: } & 238.6 \\\\ \\textbf{Df Model:} & 6 & \\textbf{ } & \\\\ \\bottomrule \\end{tabular} \\begin{tabular}{lcccccc} & \\textbf{coef} & \\textbf{std err} & \\textbf{t} & \\textbf{P$>$$|$t$|$} & \\textbf{[0.025} & \\textbf{0.975]} \\\\ \\midrule \\textbf{GNPDEFL} & 15.0619 & 84.915 & 0.177 & 0.863 & -177.029 & 207.153 \\\\ \\textbf{GNP} & -0.0358 & 0.033 & -1.070 & 0.313 & -0.112 & 0.040 \\\\ \\textbf{UNEMP} & -2.0202 & 0.488 & -4.136 & 0.003 & -3.125 & -0.915 \\\\ \\textbf{ARMED} & -1.0332 & 0.214 & -4.822 & 0.001 & -1.518 & -0.549 \\\\ \\textbf{POP} & -0.0511 & 0.226 & -0.226 & 0.826 & -0.563 & 0.460 \\\\ \\textbf{YEAR} & 1829.1515 & 455.478 & 4.016 & 0.003 & 798.788 & 2859.515 \\\\ \\textbf{constant} & -3.482e+06 & 8.9e+05 & -3.911 & 0.004 & -5.5e+06 & -1.47e+06 \\\\ \\bottomrule \\end{tabular} \\begin{tabular}{lclc} \\textbf{Omnibus:} & 0.749 & \\textbf{ Durbin-Watson: } & 2.559 \\\\ \\textbf{Prob(Omnibus):} & 0.688 & \\textbf{ Jarque-Bera (JB): } & 0.684 \\\\ \\textbf{Skew:} & 0.420 & \\textbf{ Prob(JB): } & 0.710 \\\\ \\textbf{Kurtosis:} & 2.434 & \\textbf{ Cond. No. } & 4.86e+09 \\\\ \\bottomrule \\end{tabular} %\\caption{OLS Regression Results} \\end{center}""" assert_equal(table, expected) class TestRegularizedFit(object): # Make sure there are no issues when there are no selected # variables. def test_empty_model(self): np.random.seed(742) n = 100 endog = np.random.normal(size=n) exog = np.random.normal(size=(n, 3)) model = OLS(endog, exog) result = model.fit_regularized(alpha=1000) assert_equal(result.params, 0.) def test_regularized(self): import os from . import glmnet_r_results cur_dir = os.path.dirname(os.path.abspath(__file__)) data = np.loadtxt(os.path.join(cur_dir, "results", "lasso_data.csv"), delimiter=",") tests = [x for x in dir(glmnet_r_results) if x.startswith("rslt_")] for test in tests: vec = getattr(glmnet_r_results, test) n = vec[0] p = vec[1] L1_wt = float(vec[2]) lam = float(vec[3]) params = vec[4:].astype(np.float64) endog = data[0:int(n), 0] exog = data[0:int(n), 1:(int(p)+1)] endog = endog - endog.mean() endog /= endog.std(ddof=1) exog = exog - exog.mean(0) exog /= exog.std(0, ddof=1) mod = OLS(endog, exog) rslt = mod.fit_regularized(L1_wt=L1_wt, alpha=lam) assert_almost_equal(rslt.params, params, decimal=3) # Smoke test for summary smry = rslt.summary() # Smoke test for profile likeihood result = mod.fit_regularized(L1_wt=L1_wt, alpha=lam, profile_scale=True) def test_formula_missing_cat(): # gh-805 import statsmodels.api as sm from statsmodels.formula.api import ols from patsy import PatsyError dta = sm.datasets.grunfeld.load_pandas().data dta.ix[0, 'firm'] = np.nan mod = ols(formula='value ~ invest + capital + firm + year', data=dta.dropna()) res = mod.fit() mod2 = ols(formula='value ~ invest + capital + firm + year', data=dta) res2 = mod2.fit() assert_almost_equal(res.params.values, res2.params.values) assert_raises(PatsyError, ols, 'value ~ invest + capital + firm + year', data=dta, missing='raise') def test_missing_formula_predict(): # see 2171 nsample = 30 data = pandas.DataFrame({'x': np.linspace(0, 10, nsample)}) null = pandas.DataFrame({'x': np.array([np.nan])}) data = pandas.concat([data, null]) beta = np.array([1, 0.1]) e = np.random.normal(size=nsample+1) data['y'] = beta[0] + beta[1] * data['x'] + e model = OLS.from_formula('y ~ x', data=data) fit = model.fit() pred = fit.predict(exog=data[:-1]) def test_fvalue_implicit_constant(): nobs = 100 np.random.seed(2) x = np.random.randn(nobs, 1) x = ((x > 0) == [True, False]).astype(int) y = x.sum(1) + np.random.randn(nobs) w = 1 + 0.25 * np.random.rand(nobs) from statsmodels.regression.linear_model import OLS, WLS res = OLS(y, x).fit(cov_type='HC1') assert_(np.isnan(res.fvalue)) assert_(np.isnan(res.f_pvalue)) res.summary() res = WLS(y, x).fit(cov_type='HC1') assert_(np.isnan(res.fvalue)) assert_(np.isnan(res.f_pvalue)) res.summary() if __name__=="__main__": import nose # run_module_suite() nose.runmodule(argv=[__file__,'-vvs','-x','--pdb', '--pdb-failure'], exit=False) # nose.runmodule(argv=[__file__,'-vvs','-x'], exit=False) #, '--pdb'
bsd-3-clause
kagayakidan/scikit-learn
examples/cluster/plot_digits_linkage.py
369
2959
""" ============================================================================= Various Agglomerative Clustering on a 2D embedding of digits ============================================================================= An illustration of various linkage option for agglomerative clustering on a 2D embedding of the digits dataset. The goal of this example is to show intuitively how the metrics behave, and not to find good clusters for the digits. This is why the example works on a 2D embedding. What this example shows us is the behavior "rich getting richer" of agglomerative clustering that tends to create uneven cluster sizes. This behavior is especially pronounced for the average linkage strategy, that ends up with a couple of singleton clusters. """ # Authors: Gael Varoquaux # License: BSD 3 clause (C) INRIA 2014 print(__doc__) from time import time import numpy as np from scipy import ndimage from matplotlib import pyplot as plt from sklearn import manifold, datasets digits = datasets.load_digits(n_class=10) X = digits.data y = digits.target n_samples, n_features = X.shape np.random.seed(0) def nudge_images(X, y): # Having a larger dataset shows more clearly the behavior of the # methods, but we multiply the size of the dataset only by 2, as the # cost of the hierarchical clustering methods are strongly # super-linear in n_samples shift = lambda x: ndimage.shift(x.reshape((8, 8)), .3 * np.random.normal(size=2), mode='constant', ).ravel() X = np.concatenate([X, np.apply_along_axis(shift, 1, X)]) Y = np.concatenate([y, y], axis=0) return X, Y X, y = nudge_images(X, y) #---------------------------------------------------------------------- # Visualize the clustering def plot_clustering(X_red, X, labels, title=None): x_min, x_max = np.min(X_red, axis=0), np.max(X_red, axis=0) X_red = (X_red - x_min) / (x_max - x_min) plt.figure(figsize=(6, 4)) for i in range(X_red.shape[0]): plt.text(X_red[i, 0], X_red[i, 1], str(y[i]), color=plt.cm.spectral(labels[i] / 10.), fontdict={'weight': 'bold', 'size': 9}) plt.xticks([]) plt.yticks([]) if title is not None: plt.title(title, size=17) plt.axis('off') plt.tight_layout() #---------------------------------------------------------------------- # 2D embedding of the digits dataset print("Computing embedding") X_red = manifold.SpectralEmbedding(n_components=2).fit_transform(X) print("Done.") from sklearn.cluster import AgglomerativeClustering for linkage in ('ward', 'average', 'complete'): clustering = AgglomerativeClustering(linkage=linkage, n_clusters=10) t0 = time() clustering.fit(X_red) print("%s : %.2fs" % (linkage, time() - t0)) plot_clustering(X_red, X, clustering.labels_, "%s linkage" % linkage) plt.show()
bsd-3-clause
nilmtk/nilmtk
nilmtk/legacy/disaggregate/fhmm_exact.py
1
21202
import itertools from copy import deepcopy from collections import OrderedDict from warnings import warn import pickle import nilmtk import pandas as pd import numpy as np from hmmlearn import hmm from ...feature_detectors import cluster from . import Disaggregator from ...datastore import HDFDataStore def sort_startprob(mapping, startprob): """ Sort the startprob according to power means; as returned by mapping """ num_elements = len(startprob) new_startprob = np.zeros(num_elements) for i in range(len(startprob)): new_startprob[i] = startprob[mapping[i]] return new_startprob def sort_covars(mapping, covars): new_covars = np.zeros_like(covars) for i in range(len(covars)): new_covars[i] = covars[mapping[i]] return new_covars def sort_transition_matrix(mapping, A): """Sorts the transition matrix according to increasing order of power means; as returned by mapping Parameters ---------- mapping : A : numpy.array of shape (k, k) transition matrix """ num_elements = len(A) A_new = np.zeros((num_elements, num_elements)) for i in range(num_elements): for j in range(num_elements): A_new[i, j] = A[mapping[i], mapping[j]] return A_new def sort_learnt_parameters(startprob, means, covars, transmat): mapping = return_sorting_mapping(means) means_new = np.sort(means, axis=0) startprob_new = sort_startprob(mapping, startprob) covars_new = sort_covars(mapping, covars) transmat_new = sort_transition_matrix(mapping, transmat) assert np.shape(means_new) == np.shape(means) assert np.shape(startprob_new) == np.shape(startprob) assert np.shape(transmat_new) == np.shape(transmat) return [startprob_new, means_new, covars_new, transmat_new] def compute_A_fhmm(list_A): """ Parameters ----------- list_pi : List of PI's of individual learnt HMMs Returns -------- result : Combined Pi for the FHMM """ result = list_A[0] for i in range(len(list_A) - 1): result = np.kron(result, list_A[i + 1]) return result def compute_means_fhmm(list_means): """ Returns ------- [mu, cov] """ states_combination = list(itertools.product(*list_means)) num_combinations = len(states_combination) means_stacked = np.array([sum(x) for x in states_combination]) means = np.reshape(means_stacked, (num_combinations, 1)) cov = np.tile(5 * np.identity(1), (num_combinations, 1, 1)) return [means, cov] def compute_pi_fhmm(list_pi): """ Parameters ----------- list_pi : List of PI's of individual learnt HMMs Returns ------- result : Combined Pi for the FHMM """ result = list_pi[0] for i in range(len(list_pi) - 1): result = np.kron(result, list_pi[i + 1]) return result def create_combined_hmm(model): list_pi = [model[appliance].startprob_ for appliance in model] list_A = [model[appliance].transmat_ for appliance in model] list_means = [model[appliance].means_.flatten().tolist() for appliance in model] pi_combined = compute_pi_fhmm(list_pi) A_combined = compute_A_fhmm(list_A) [mean_combined, cov_combined] = compute_means_fhmm(list_means) combined_model = hmm.GaussianHMM(n_components=len(pi_combined), covariance_type='full') combined_model.startprob_ = pi_combined combined_model.transmat_ = A_combined combined_model.covars_ = cov_combined combined_model.means_ = mean_combined return combined_model def return_sorting_mapping(means): means_copy = deepcopy(means) means_copy = np.sort(means_copy, axis=0) # Finding mapping mapping = {} for i, val in enumerate(means_copy): mapping[i] = np.where(val == means)[0][0] return mapping def decode_hmm(length_sequence, centroids, appliance_list, states): """ Decodes the HMM state sequence """ hmm_states = {} hmm_power = {} total_num_combinations = 1 for appliance in appliance_list: total_num_combinations *= len(centroids[appliance]) for appliance in appliance_list: hmm_states[appliance] = np.zeros(length_sequence, dtype=np.int) hmm_power[appliance] = np.zeros(length_sequence) for i in range(length_sequence): factor = total_num_combinations for appliance in appliance_list: # assuming integer division (will cause errors in Python 3x) factor = factor // len(centroids[appliance]) temp = int(states[i]) / factor hmm_states[appliance][i] = temp % len(centroids[appliance]) hmm_power[appliance][i] = centroids[ appliance][hmm_states[appliance][i]] return [hmm_states, hmm_power] def _check_memory(num_appliances): """ Checks if the maximum resident memory is enough to handle the combined matrix of transition probabilities """ # Each transmat is small (usually 2x2 or 3x3) but the combined # matrix is dense, using much more memory # Get the approximate memory in MB try: # If psutil is installed, we can get the correct total # physical memory of the system import psutil available_memory = psutil.virtual_memory().total >> 20 except ImportError: # Otherwise use a crude approximation available_memory = 16 << 10 # We use (num_appliances + 1) here to get a pessimistic approximation: # 8 bytes * (2 ** (num_appliances + 1)) ** 2 required_memory = ((1 << (2 * (num_appliances + 1))) << 3) >> 20 if required_memory >= available_memory: warn("The required memory for the model may be more than the total system memory!" " Try using fewer appliances if the training fails.") class FHMM(Disaggregator): """ Attributes ---------- model : dict predictions : pd.DataFrame() meters : list MIN_CHUNK_LENGTH : int """ def __init__(self): self.model = {} self.predictions = pd.DataFrame() self.MIN_CHUNK_LENGTH = 100 self.MODEL_NAME = 'FHMM' def train_across_buildings(self, ds, list_of_buildings, list_of_appliances, min_activation=0.05, **load_kwargs): """ :param ds: nilmtk.Dataset :param list_of_buildings: List of buildings to use for training :param list_of_appliances: List of appliances (nilm-metadata names) :param min_activation: Minimum activation (in fraction) to use a home in training :param load_kwargs: :return: """ _check_memory(len(list_of_appliances)) self.list_of_appliances = list_of_appliances models = {} for appliance in list_of_appliances: print("Training for", appliance) o = [] for building_num in list_of_buildings: building = ds.buildings[building_num] elec = building.elec try: df = next(elec[appliance].load(**load_kwargs)).squeeze() appl_power = df.dropna().values.reshape(-1, 1) activation = (df > 10).sum() * 1.0 / len(df) if activation > min_activation: o.append(appl_power) except: pass if len(o) > 1: o = np.array(o) mod = hmm.GaussianHMM(2, "full") mod.fit(o) models[appliance] = mod print("Means for %s are" % appliance) print(mod.means_) else: print("Not enough samples for %s" % appliance) new_learnt_models = OrderedDict() for appliance, appliance_model in models.items(): startprob, means, covars, transmat = sort_learnt_parameters( appliance_model.startprob_, appliance_model.means_, appliance_model.covars_, appliance_model.transmat_) new_learnt_models[appliance] = hmm.GaussianHMM( startprob.size, "full", startprob, transmat) new_learnt_models[appliance].means_ = means new_learnt_models[appliance].covars_ = covars learnt_model_combined = create_combined_hmm(new_learnt_models) self.individual = new_learnt_models self.model = learnt_model_combined self.meters = [nilmtk.global_meter_group.select_using_appliances(type=appliance).meters[0] for appliance in self.individual.keys()] def train(self, metergroup, num_states_dict={}, **load_kwargs): """Train using 1d FHMM. Places the learnt model in `model` attribute The current version performs training ONLY on the first chunk. Online HMMs are welcome if someone can contribute :) Assumes all pre-processing has been done. """ learnt_model = OrderedDict() num_meters = len(metergroup.meters) if num_meters > 12: max_num_clusters = 2 else: max_num_clusters = 3 _check_memory(len((metergroup.submeters().meters))) for i, meter in enumerate(metergroup.submeters().meters): power_series = meter.power_series(**load_kwargs) meter_data = next(power_series).dropna() X = meter_data.values.reshape((-1, 1)) if not len(X): print("Submeter '{}' has no samples, skipping...".format(meter)) continue assert X.ndim == 2 self.X = X num_total_states = None # Check if the user has specific the number of states for this meter num_total_states = num_states_dict.get(meter) # If not, check if the number of states for the appliances was specified if num_total_states is None: num_apps_states = [] for appliance in meter.appliances: num_app_state = num_states_dict.get(appliance) if num_app_state is None: num_app_state = num_states_dict.get(appliance.identifier.type) if num_app_state is not None: num_apps_states.append(num_app_state) if num_apps_states: num_total_states = sum(num_apps_states) if num_states_dict.get(meter) is not None or num_states_dict.get(meter) is not None: # User has specified the number of states for this appliance num_total_states = num_states_dict.get(meter) # Otherwise, find the optimum number of states via clustering if num_total_states is None: states = cluster(meter_data, max_num_clusters) num_total_states = len(states) print("Training model for submeter '{}' with {} states".format(meter, num_total_states)) learnt_model[meter] = hmm.GaussianHMM(num_total_states, "full") # Fit learnt_model[meter].fit(X) # Check to see if there are any more chunks. # TODO handle multiple chunks per appliance. try: next(power_series) except StopIteration: pass else: warn("The current implementation of FHMM" " can only handle a single chunk. But there are multiple" " chunks available. So have only trained on the" " first chunk!") # Combining to make a AFHMM self.meters = [] new_learnt_models = OrderedDict() for meter in learnt_model: startprob, means, covars, transmat = sort_learnt_parameters( learnt_model[meter].startprob_, learnt_model[meter].means_, learnt_model[meter].covars_, learnt_model[meter].transmat_) new_learnt_models[meter] = hmm.GaussianHMM(startprob.size, "full") new_learnt_models[meter].startprob_ = startprob new_learnt_models[meter].transmat_ = transmat new_learnt_models[meter].means_ = means new_learnt_models[meter].covars_ = covars # UGLY! But works. self.meters.append(meter) learnt_model_combined = create_combined_hmm(new_learnt_models) self.individual = new_learnt_models self.model = learnt_model_combined def disaggregate_chunk(self, test_mains): """Disaggregate the test data according to the model learnt previously Performs 1D FHMM disaggregation. For now assuming there is no missing data at this stage. """ # See v0.1 code # for ideas of how to handle missing data in this code if needs be. # Array of learnt states learnt_states_array = [] test_mains = test_mains.dropna() length = len(test_mains.index) temp = test_mains.values.reshape(length, 1) learnt_states_array.append(self.model.predict(temp)) # Model means = OrderedDict() for elec_meter, model in self.individual.items(): means[elec_meter] = ( model.means_.round().astype(int).flatten().tolist()) means[elec_meter].sort() decoded_power_array = [] decoded_states_array = [] for learnt_states in learnt_states_array: [decoded_states, decoded_power] = decode_hmm( len(learnt_states), means, means.keys(), learnt_states) decoded_states_array.append(decoded_states) decoded_power_array.append(decoded_power) prediction = pd.DataFrame( decoded_power_array[0], index=test_mains.index) return prediction def disaggregate(self, mains, output_datastore, **load_kwargs): '''Disaggregate mains according to the model learnt previously. Parameters ---------- mains : nilmtk.ElecMeter or nilmtk.MeterGroup output_datastore : instance of nilmtk.DataStore subclass For storing power predictions from disaggregation algorithm. sample_period : number, optional The desired sample period in seconds. **load_kwargs : key word arguments Passed to `mains.power_series(**kwargs)` ''' load_kwargs = self._pre_disaggregation_checks(load_kwargs) load_kwargs.setdefault('sample_period', 60) load_kwargs.setdefault('sections', mains.good_sections()) timeframes = [] building_path = '/building{}'.format(mains.building()) mains_data_location = building_path + '/elec/meter1' data_is_available = False for chunk in mains.power_series(**load_kwargs): # Check that chunk is sensible size before resampling if len(chunk) < self.MIN_CHUNK_LENGTH: continue # Record metadata timeframes.append(chunk.timeframe) measurement = chunk.name # Start disaggregation predictions = self.disaggregate_chunk(chunk) for meter in predictions.columns: meter_instance = meter.instance() cols = pd.MultiIndex.from_tuples([chunk.name]) predicted_power = predictions[[meter]] if len(predicted_power) == 0: continue data_is_available = True output_df = pd.DataFrame(predicted_power) output_df.columns = pd.MultiIndex.from_tuples([chunk.name]) key = '{}/elec/meter{}'.format(building_path, meter_instance) output_datastore.append(key, output_df) # Copy mains data to disag output output_datastore.append(key=mains_data_location, value=pd.DataFrame(chunk, columns=cols)) if data_is_available: self._save_metadata_for_disaggregation( output_datastore=output_datastore, sample_period=load_kwargs['sample_period'], measurement=measurement, timeframes=timeframes, building=mains.building(), meters=self.meters ) def disaggregate_across_buildings(self, ds, output_datastore, list_of_buildings, **load_kwargs): """ :param ds: :param list_of_buildings: :return: """ def get_meter_instance(ds, building_num, appliance): elec = ds.buildings[building_num].elec meters = elec.submeters().meters for meter in meters: if meter.appliances[0].type['type'] == appliance: return meter.instance() return -1 for building in list_of_buildings: print("Disaggregating for building %d" % building) mains = ds.buildings[building].elec.mains() load_kwargs = self._pre_disaggregation_checks(load_kwargs) load_kwargs.setdefault('sample_period', 60) load_kwargs.setdefault('sections', mains.good_sections()) timeframes = [] building_path = '/building{}'.format(mains.building()) mains_data_location = building_path + '/elec/meter1' data_is_available = False building_elec = ds.buildings[building].elec self.meters = [] for appliance in self.list_of_appliances: m_instance = get_meter_instance(ds, building, appliance) if m_instance != -1: self.meters.append(building_elec[m_instance]) else: pass for chunk in mains.power_series(**load_kwargs): # Check that chunk is sensible size before resampling if len(chunk) < self.MIN_CHUNK_LENGTH: continue # Record metadata timeframes.append(chunk.timeframe) measurement = chunk.name # Start disaggregation predictions = self.disaggregate_chunk(chunk) for meter in predictions.columns: if type(meter) is str: # training done across homes meter_instance = get_meter_instance(ds, building, meter) if meter_instance == -1: continue else: meter_instance = meter.instance() cols = pd.MultiIndex.from_tuples([chunk.name]) predicted_power = predictions[[meter]] if len(predicted_power) == 0: continue data_is_available = True output_df = pd.DataFrame(predicted_power) output_df.columns = pd.MultiIndex.from_tuples([chunk.name]) key = '{}/elec/meter{}'.format(building_path, meter_instance) output_datastore.append(key, output_df) # Copy mains data to disag output output_datastore.append(key=mains_data_location, value=pd.DataFrame(chunk, columns=cols, dtype='float32')) if data_is_available: self._save_metadata_for_disaggregation( output_datastore=output_datastore, sample_period=load_kwargs['sample_period'], measurement=measurement, timeframes=timeframes, building=mains.building(), meters=self.meters ) def import_model(self, filename): with open(filename, 'rb') as in_file: imported_model = pickle.load(in_file) self.model = imported_model.model self.individual = imported_model.individual # Recreate datastores from filenames for meter in self.individual.keys(): store_filename = meter.store meter.store = HDFDataStore(store_filename) self.meters = list(self.individual.keys()) def export_model(self, filename): # Can't pickle datastore, so convert to filenames original_stores = [] meters = self.meters self.meters = None for meter in self.individual.keys(): original_store = meter.store original_stores.append(original_store) meter.store = original_store.store.filename try: with open(filename, 'wb') as out_file: pickle.dump(self, out_file) finally: # Restore the meters and stores even if the pickling fails for original_store, meter in zip(original_stores, self.individual.keys()): meter.store = original_store self.meters = meters
apache-2.0
massmutual/pystruct
examples/multiclass_comparision_svm_struct.py
4
6536
""" ================================= Comparing PyStruct and SVM-Struct ================================= This example compares the performance of pystruct and SVM^struct on a multi-class problem. For the example to work, you need to install SVM^multiclass and set the path in this file. We are not using SVM^python, as that would be much slower, and we would need to implement our own model in a SVM^python compatible way. Instead, we just call the SVM^multiclass binary. This comparison is only meaningful in the sense that both libraries use general structured prediction solvers to solve the task. The specialized implementation of the Crammer-Singer SVM in LibLinear is much faster than either one. For SVM^struct, the plot show CPU time as reportet by SVM^struct. For pystruct, the plot shows the time spent in the fit function according to time.clock. Both models have disabled constraint caching. With constraint caching, SVM^struct is somewhat faster, but PyStruct doesn't gain anything. """ import tempfile import os from time import clock import numpy as np from sklearn.datasets import dump_svmlight_file from sklearn.datasets import fetch_mldata, load_iris, load_digits from sklearn.metrics import accuracy_score from sklearn.cross_validation import train_test_split import matplotlib.pyplot as plt from pystruct.models import MultiClassClf from pystruct.learners import OneSlackSSVM # please set the path to the svm-struct multiclass binaries here svmstruct_path = "/home/user/amueller/tools/svm_multiclass/" class MultiSVM(): """scikit-learn compatible interface for SVM^multi. Dumps the data to a file and calls the binary. """ def __init__(self, C=1.): self.C = C def fit(self, X, y): self.model_file = tempfile.mktemp(suffix='.svm') train_data_file = tempfile.mktemp(suffix='.svm_dat') dump_svmlight_file(X, y + 1, train_data_file, zero_based=False) C = self.C * 100. * len(X) svmstruct_process = os.popen(svmstruct_path + "svm_multiclass_learn -w 3 -c %f %s %s" % (C, train_data_file, self.model_file)) self.output_ = svmstruct_process.read().split("\n") self.runtime_ = float(self.output_[-4].split(":")[1]) def _predict(self, X, y=None): if y is None: y = np.ones(len(X)) train_data_file = tempfile.mktemp(suffix='.svm_dat') dump_svmlight_file(X, y, train_data_file, zero_based=False) prediction_file = tempfile.mktemp(suffix='.out') os.system(svmstruct_path + "svm_multiclass_classify %s %s %s" % (train_data_file, self.model_file, prediction_file)) return np.loadtxt(prediction_file) def predict(self, X): return self._predict(X)[:, 0] - 1 def score(self, X, y): y_pred = self.predict(X) return accuracy_score(y, y_pred) def decision_function(self, X): return self._predict(X)[:, 1:] def eval_on_data(X_train, y_train, X_test, y_test, svm, Cs): # evaluate a single svm using varying C accuracies, times = [], [] for C in Cs: svm.C = C start = clock() svm.fit(X_train, y_train) if hasattr(svm, "runtime_"): times.append(svm.runtime_) else: times.append(clock() - start) accuracies.append(accuracy_score(y_test, svm.predict(X_test))) return accuracies, times def plot_curves(curve_svmstruct, curve_pystruct, Cs, title="", filename=""): # plot nice graphs comparing a value for the two implementations plt.figure(figsize=(7, 4)) plt.plot(curve_svmstruct, "--", label="SVM^struct", c='red', linewidth=3) plt.plot(curve_pystruct, "-.", label="PyStruct", c='blue', linewidth=3) plt.xlabel("C") plt.xticks(np.arange(len(Cs)), Cs) plt.legend(loc='best') plt.title(title) if filename: plt.savefig("%s" % filename, bbox_inches='tight') def do_comparison(X_train, y_train, X_test, y_test, dataset): # evaluate both svms on a given datasets, generate plots Cs = 10. ** np.arange(-4, 1) multisvm = MultiSVM() svm = OneSlackSSVM(MultiClassClf(), tol=0.01) accs_pystruct, times_pystruct = eval_on_data(X_train, y_train, X_test, y_test, svm, Cs=Cs) accs_svmstruct, times_svmstruct = eval_on_data(X_train, y_train, X_test, y_test, multisvm, Cs=Cs) plot_curves(times_svmstruct, times_pystruct, Cs=Cs, title="learning time (s) %s" % dataset, filename="times_%s.pdf" % dataset) plot_curves(accs_svmstruct, accs_pystruct, Cs=Cs, title="accuracy %s" % dataset, filename="accs_%s.pdf" % dataset) def main(): if not os.path.exists(svmstruct_path + "svm_multiclass_learn"): print("Please install SVM^multi and set the svmstruct_path variable " "to run this example.") return datasets = ['iris', 'digits'] #datasets = ['iris', 'digits', 'usps', 'mnist'] # IRIS if 'iris' in datasets: iris = load_iris() X, y = iris.data, iris.target X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) do_comparison(X_train, y_train, X_test, y_test, "iris") # DIGITS if 'digits' in datasets: digits = load_digits() X, y = digits.data / 16., digits.target X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) do_comparison(X_train, y_train, X_test, y_test, "digits") # USPS if 'usps' in datasets: digits = fetch_mldata("USPS") X, y = digits.data, digits.target.astype(np.int) - 1 X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) do_comparison(X_train, y_train, X_test, y_test, "USPS") # MNIST if 'mnist' in datasets: digits = fetch_mldata("MNIST original") X, y = digits.data / 255., digits.target.astype(np.int) X_train, X_test = X[:60000], X[60000:] y_train, y_test = y[:60000], y[60000:] do_comparison(X_train, y_train, X_test, y_test, "MNIST") plt.show() if __name__ == "__main__": main()
bsd-2-clause
HolgerPeters/scikit-learn
examples/plot_digits_pipe.py
65
1652
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Pipelining: chaining a PCA and a logistic regression ========================================================= The PCA does an unsupervised dimensionality reduction, while the logistic regression does the prediction. We use a GridSearchCV to set the dimensionality of the PCA """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model, decomposition, datasets from sklearn.pipeline import Pipeline from sklearn.model_selection import GridSearchCV logistic = linear_model.LogisticRegression() pca = decomposition.PCA() pipe = Pipeline(steps=[('pca', pca), ('logistic', logistic)]) digits = datasets.load_digits() X_digits = digits.data y_digits = digits.target # Plot the PCA spectrum pca.fit(X_digits) plt.figure(1, figsize=(4, 3)) plt.clf() plt.axes([.2, .2, .7, .7]) plt.plot(pca.explained_variance_, linewidth=2) plt.axis('tight') plt.xlabel('n_components') plt.ylabel('explained_variance_') # Prediction n_components = [20, 40, 64] Cs = np.logspace(-4, 4, 3) # Parameters of pipelines can be set using ‘__’ separated parameter names: estimator = GridSearchCV(pipe, dict(pca__n_components=n_components, logistic__C=Cs)) estimator.fit(X_digits, y_digits) plt.axvline(estimator.best_estimator_.named_steps['pca'].n_components, linestyle=':', label='n_components chosen') plt.legend(prop=dict(size=12)) plt.show()
bsd-3-clause
caidongyun/BuildingMachineLearningSystemsWithPython
ch06/utils.py
22
6937
# This code is supporting material for the book # Building Machine Learning Systems with Python # by Willi Richert and Luis Pedro Coelho # published by PACKT Publishing # # It is made available under the MIT License import os import sys import collections import csv import json from matplotlib import pylab import numpy as np DATA_DIR = "data" CHART_DIR = "charts" if not os.path.exists(DATA_DIR): raise RuntimeError("Expecting directory 'data' in current path") if not os.path.exists(CHART_DIR): os.mkdir(CHART_DIR) def tweak_labels(Y, pos_sent_list): pos = Y == pos_sent_list[0] for sent_label in pos_sent_list[1:]: pos |= Y == sent_label Y = np.zeros(Y.shape[0]) Y[pos] = 1 Y = Y.astype(int) return Y def load_sanders_data(dirname=".", line_count=-1): count = 0 topics = [] labels = [] tweets = [] with open(os.path.join(DATA_DIR, dirname, "corpus.csv"), "r") as csvfile: metareader = csv.reader(csvfile, delimiter=',', quotechar='"') for line in metareader: count += 1 if line_count > 0 and count > line_count: break topic, label, tweet_id = line tweet_fn = os.path.join( DATA_DIR, dirname, 'rawdata', '%s.json' % tweet_id) try: tweet = json.load(open(tweet_fn, "r")) except IOError: print(("Tweet '%s' not found. Skip." % tweet_fn)) continue if 'text' in tweet and tweet['user']['lang'] == "en": topics.append(topic) labels.append(label) tweets.append(tweet['text']) tweets = np.asarray(tweets) labels = np.asarray(labels) return tweets, labels def plot_pr(auc_score, name, phase, precision, recall, label=None): pylab.clf() pylab.figure(num=None, figsize=(5, 4)) pylab.grid(True) pylab.fill_between(recall, precision, alpha=0.5) pylab.plot(recall, precision, lw=1) pylab.xlim([0.0, 1.0]) pylab.ylim([0.0, 1.0]) pylab.xlabel('Recall') pylab.ylabel('Precision') pylab.title('P/R curve (AUC=%0.2f) / %s' % (auc_score, label)) filename = name.replace(" ", "_") pylab.savefig(os.path.join(CHART_DIR, "pr_%s_%s.png" % (filename, phase)), bbox_inches="tight") def show_most_informative_features(vectorizer, clf, n=20): c_f = sorted(zip(clf.coef_[0], vectorizer.get_feature_names())) top = list(zip(c_f[:n], c_f[:-(n + 1):-1])) for (c1, f1), (c2, f2) in top: print("\t%.4f\t%-15s\t\t%.4f\t%-15s" % (c1, f1, c2, f2)) def plot_log(): pylab.clf() pylab.figure(num=None, figsize=(6, 5)) x = np.arange(0.001, 1, 0.001) y = np.log(x) pylab.title('Relationship between probabilities and their logarithm') pylab.plot(x, y) pylab.grid(True) pylab.xlabel('P') pylab.ylabel('log(P)') filename = 'log_probs.png' pylab.savefig(os.path.join(CHART_DIR, filename), bbox_inches="tight") def plot_feat_importance(feature_names, clf, name): pylab.clf() coef_ = clf.coef_ important = np.argsort(np.absolute(coef_.ravel())) f_imp = feature_names[important] coef = coef_.ravel()[important] inds = np.argsort(coef) f_imp = f_imp[inds] coef = coef[inds] xpos = np.array(list(range(len(coef)))) pylab.bar(xpos, coef, width=1) pylab.title('Feature importance for %s' % (name)) ax = pylab.gca() ax.set_xticks(np.arange(len(coef))) labels = ax.set_xticklabels(f_imp) for label in labels: label.set_rotation(90) filename = name.replace(" ", "_") pylab.savefig(os.path.join( CHART_DIR, "feat_imp_%s.png" % filename), bbox_inches="tight") def plot_feat_hist(data_name_list, filename=None): pylab.clf() num_rows = 1 + (len(data_name_list) - 1) / 2 num_cols = 1 if len(data_name_list) == 1 else 2 pylab.figure(figsize=(5 * num_cols, 4 * num_rows)) for i in range(num_rows): for j in range(num_cols): pylab.subplot(num_rows, num_cols, 1 + i * num_cols + j) x, name = data_name_list[i * num_cols + j] pylab.title(name) pylab.xlabel('Value') pylab.ylabel('Density') # the histogram of the data max_val = np.max(x) if max_val <= 1.0: bins = 50 elif max_val > 50: bins = 50 else: bins = max_val n, bins, patches = pylab.hist( x, bins=bins, normed=1, facecolor='green', alpha=0.75) pylab.grid(True) if not filename: filename = "feat_hist_%s.png" % name pylab.savefig(os.path.join(CHART_DIR, filename), bbox_inches="tight") def plot_bias_variance(data_sizes, train_errors, test_errors, name): pylab.clf() pylab.ylim([0.0, 1.0]) pylab.xlabel('Data set size') pylab.ylabel('Error') pylab.title("Bias-Variance for '%s'" % name) pylab.plot( data_sizes, train_errors, "-", data_sizes, test_errors, "--", lw=1) pylab.legend(["train error", "test error"], loc="upper right") pylab.grid() pylab.savefig(os.path.join(CHART_DIR, "bv_" + name + ".png")) def load_sent_word_net(): sent_scores = collections.defaultdict(list) sentiwordnet_path = os.path.join(DATA_DIR, "SentiWordNet_3.0.0_20130122.txt") if not os.path.exists(sentiwordnet_path): print("Please download SentiWordNet_3.0.0 from http://sentiwordnet.isti.cnr.it/download.php, extract it and put it into the data directory") sys.exit(1) with open(sentiwordnet_path, 'r') as csvfile: reader = csv.reader(csvfile, delimiter='\t', quotechar='"') for line in reader: if line[0].startswith("#"): continue if len(line) == 1: continue POS, ID, PosScore, NegScore, SynsetTerms, Gloss = line if len(POS) == 0 or len(ID) == 0: continue # print POS,PosScore,NegScore,SynsetTerms for term in SynsetTerms.split(" "): # drop #number at the end of every term term = term.split("#")[0] term = term.replace("-", " ").replace("_", " ") key = "%s/%s" % (POS, term.split("#")[0]) sent_scores[key].append((float(PosScore), float(NegScore))) for key, value in sent_scores.items(): sent_scores[key] = np.mean(value, axis=0) return sent_scores def log_false_positives(clf, X, y, name): with open("FP_" + name.replace(" ", "_") + ".tsv", "w") as f: false_positive = clf.predict(X) != y for tweet, false_class in zip(X[false_positive], y[false_positive]): f.write("%s\t%s\n" % (false_class, tweet.encode("ascii", "ignore"))) if __name__ == '__main__': plot_log()
mit
xavierwu/scikit-learn
sklearn/cluster/tests/test_hierarchical.py
230
19795
""" Several basic tests for hierarchical clustering procedures """ # Authors: Vincent Michel, 2010, Gael Varoquaux 2012, # Matteo Visconti di Oleggio Castello 2014 # License: BSD 3 clause from tempfile import mkdtemp import shutil from functools import partial import numpy as np from scipy import sparse from scipy.cluster import hierarchy from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import ignore_warnings from sklearn.cluster import ward_tree from sklearn.cluster import AgglomerativeClustering, FeatureAgglomeration from sklearn.cluster.hierarchical import (_hc_cut, _TREE_BUILDERS, linkage_tree) from sklearn.feature_extraction.image import grid_to_graph from sklearn.metrics.pairwise import PAIRED_DISTANCES, cosine_distances,\ manhattan_distances, pairwise_distances from sklearn.metrics.cluster import normalized_mutual_info_score from sklearn.neighbors.graph import kneighbors_graph from sklearn.cluster._hierarchical import average_merge, max_merge from sklearn.utils.fast_dict import IntFloatDict from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_warns def test_linkage_misc(): # Misc tests on linkage rng = np.random.RandomState(42) X = rng.normal(size=(5, 5)) assert_raises(ValueError, AgglomerativeClustering(linkage='foo').fit, X) assert_raises(ValueError, linkage_tree, X, linkage='foo') assert_raises(ValueError, linkage_tree, X, connectivity=np.ones((4, 4))) # Smoke test FeatureAgglomeration FeatureAgglomeration().fit(X) # test hiearchical clustering on a precomputed distances matrix dis = cosine_distances(X) res = linkage_tree(dis, affinity="precomputed") assert_array_equal(res[0], linkage_tree(X, affinity="cosine")[0]) # test hiearchical clustering on a precomputed distances matrix res = linkage_tree(X, affinity=manhattan_distances) assert_array_equal(res[0], linkage_tree(X, affinity="manhattan")[0]) def test_structured_linkage_tree(): # Check that we obtain the correct solution for structured linkage trees. rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) # Avoiding a mask with only 'True' entries mask[4:7, 4:7] = 0 X = rng.randn(50, 100) connectivity = grid_to_graph(*mask.shape) for tree_builder in _TREE_BUILDERS.values(): children, n_components, n_leaves, parent = \ tree_builder(X.T, connectivity) n_nodes = 2 * X.shape[1] - 1 assert_true(len(children) + n_leaves == n_nodes) # Check that ward_tree raises a ValueError with a connectivity matrix # of the wrong shape assert_raises(ValueError, tree_builder, X.T, np.ones((4, 4))) # Check that fitting with no samples raises an error assert_raises(ValueError, tree_builder, X.T[:0], connectivity) def test_unstructured_linkage_tree(): # Check that we obtain the correct solution for unstructured linkage trees. rng = np.random.RandomState(0) X = rng.randn(50, 100) for this_X in (X, X[0]): # With specified a number of clusters just for the sake of # raising a warning and testing the warning code with ignore_warnings(): children, n_nodes, n_leaves, parent = assert_warns( UserWarning, ward_tree, this_X.T, n_clusters=10) n_nodes = 2 * X.shape[1] - 1 assert_equal(len(children) + n_leaves, n_nodes) for tree_builder in _TREE_BUILDERS.values(): for this_X in (X, X[0]): with ignore_warnings(): children, n_nodes, n_leaves, parent = assert_warns( UserWarning, tree_builder, this_X.T, n_clusters=10) n_nodes = 2 * X.shape[1] - 1 assert_equal(len(children) + n_leaves, n_nodes) def test_height_linkage_tree(): # Check that the height of the results of linkage tree is sorted. rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) X = rng.randn(50, 100) connectivity = grid_to_graph(*mask.shape) for linkage_func in _TREE_BUILDERS.values(): children, n_nodes, n_leaves, parent = linkage_func(X.T, connectivity) n_nodes = 2 * X.shape[1] - 1 assert_true(len(children) + n_leaves == n_nodes) def test_agglomerative_clustering(): # Check that we obtain the correct number of clusters with # agglomerative clustering. rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) n_samples = 100 X = rng.randn(n_samples, 50) connectivity = grid_to_graph(*mask.shape) for linkage in ("ward", "complete", "average"): clustering = AgglomerativeClustering(n_clusters=10, connectivity=connectivity, linkage=linkage) clustering.fit(X) # test caching try: tempdir = mkdtemp() clustering = AgglomerativeClustering( n_clusters=10, connectivity=connectivity, memory=tempdir, linkage=linkage) clustering.fit(X) labels = clustering.labels_ assert_true(np.size(np.unique(labels)) == 10) finally: shutil.rmtree(tempdir) # Turn caching off now clustering = AgglomerativeClustering( n_clusters=10, connectivity=connectivity, linkage=linkage) # Check that we obtain the same solution with early-stopping of the # tree building clustering.compute_full_tree = False clustering.fit(X) assert_almost_equal(normalized_mutual_info_score(clustering.labels_, labels), 1) clustering.connectivity = None clustering.fit(X) assert_true(np.size(np.unique(clustering.labels_)) == 10) # Check that we raise a TypeError on dense matrices clustering = AgglomerativeClustering( n_clusters=10, connectivity=sparse.lil_matrix( connectivity.toarray()[:10, :10]), linkage=linkage) assert_raises(ValueError, clustering.fit, X) # Test that using ward with another metric than euclidean raises an # exception clustering = AgglomerativeClustering( n_clusters=10, connectivity=connectivity.toarray(), affinity="manhattan", linkage="ward") assert_raises(ValueError, clustering.fit, X) # Test using another metric than euclidean works with linkage complete for affinity in PAIRED_DISTANCES.keys(): # Compare our (structured) implementation to scipy clustering = AgglomerativeClustering( n_clusters=10, connectivity=np.ones((n_samples, n_samples)), affinity=affinity, linkage="complete") clustering.fit(X) clustering2 = AgglomerativeClustering( n_clusters=10, connectivity=None, affinity=affinity, linkage="complete") clustering2.fit(X) assert_almost_equal(normalized_mutual_info_score(clustering2.labels_, clustering.labels_), 1) # Test that using a distance matrix (affinity = 'precomputed') has same # results (with connectivity constraints) clustering = AgglomerativeClustering(n_clusters=10, connectivity=connectivity, linkage="complete") clustering.fit(X) X_dist = pairwise_distances(X) clustering2 = AgglomerativeClustering(n_clusters=10, connectivity=connectivity, affinity='precomputed', linkage="complete") clustering2.fit(X_dist) assert_array_equal(clustering.labels_, clustering2.labels_) def test_ward_agglomeration(): # Check that we obtain the correct solution in a simplistic case rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) X = rng.randn(50, 100) connectivity = grid_to_graph(*mask.shape) agglo = FeatureAgglomeration(n_clusters=5, connectivity=connectivity) agglo.fit(X) assert_true(np.size(np.unique(agglo.labels_)) == 5) X_red = agglo.transform(X) assert_true(X_red.shape[1] == 5) X_full = agglo.inverse_transform(X_red) assert_true(np.unique(X_full[0]).size == 5) assert_array_almost_equal(agglo.transform(X_full), X_red) # Check that fitting with no samples raises a ValueError assert_raises(ValueError, agglo.fit, X[:0]) def assess_same_labelling(cut1, cut2): """Util for comparison with scipy""" co_clust = [] for cut in [cut1, cut2]: n = len(cut) k = cut.max() + 1 ecut = np.zeros((n, k)) ecut[np.arange(n), cut] = 1 co_clust.append(np.dot(ecut, ecut.T)) assert_true((co_clust[0] == co_clust[1]).all()) def test_scikit_vs_scipy(): # Test scikit linkage with full connectivity (i.e. unstructured) vs scipy n, p, k = 10, 5, 3 rng = np.random.RandomState(0) # Not using a lil_matrix here, just to check that non sparse # matrices are well handled connectivity = np.ones((n, n)) for linkage in _TREE_BUILDERS.keys(): for i in range(5): X = .1 * rng.normal(size=(n, p)) X -= 4. * np.arange(n)[:, np.newaxis] X -= X.mean(axis=1)[:, np.newaxis] out = hierarchy.linkage(X, method=linkage) children_ = out[:, :2].astype(np.int) children, _, n_leaves, _ = _TREE_BUILDERS[linkage](X, connectivity) cut = _hc_cut(k, children, n_leaves) cut_ = _hc_cut(k, children_, n_leaves) assess_same_labelling(cut, cut_) # Test error management in _hc_cut assert_raises(ValueError, _hc_cut, n_leaves + 1, children, n_leaves) def test_connectivity_propagation(): # Check that connectivity in the ward tree is propagated correctly during # merging. X = np.array([(.014, .120), (.014, .099), (.014, .097), (.017, .153), (.017, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .152), (.018, .149), (.018, .144)]) connectivity = kneighbors_graph(X, 10, include_self=False) ward = AgglomerativeClustering( n_clusters=4, connectivity=connectivity, linkage='ward') # If changes are not propagated correctly, fit crashes with an # IndexError ward.fit(X) def test_ward_tree_children_order(): # Check that children are ordered in the same way for both structured and # unstructured versions of ward_tree. # test on five random datasets n, p = 10, 5 rng = np.random.RandomState(0) connectivity = np.ones((n, n)) for i in range(5): X = .1 * rng.normal(size=(n, p)) X -= 4. * np.arange(n)[:, np.newaxis] X -= X.mean(axis=1)[:, np.newaxis] out_unstructured = ward_tree(X) out_structured = ward_tree(X, connectivity=connectivity) assert_array_equal(out_unstructured[0], out_structured[0]) def test_ward_linkage_tree_return_distance(): # Test return_distance option on linkage and ward trees # test that return_distance when set true, gives same # output on both structured and unstructured clustering. n, p = 10, 5 rng = np.random.RandomState(0) connectivity = np.ones((n, n)) for i in range(5): X = .1 * rng.normal(size=(n, p)) X -= 4. * np.arange(n)[:, np.newaxis] X -= X.mean(axis=1)[:, np.newaxis] out_unstructured = ward_tree(X, return_distance=True) out_structured = ward_tree(X, connectivity=connectivity, return_distance=True) # get children children_unstructured = out_unstructured[0] children_structured = out_structured[0] # check if we got the same clusters assert_array_equal(children_unstructured, children_structured) # check if the distances are the same dist_unstructured = out_unstructured[-1] dist_structured = out_structured[-1] assert_array_almost_equal(dist_unstructured, dist_structured) for linkage in ['average', 'complete']: structured_items = linkage_tree( X, connectivity=connectivity, linkage=linkage, return_distance=True)[-1] unstructured_items = linkage_tree( X, linkage=linkage, return_distance=True)[-1] structured_dist = structured_items[-1] unstructured_dist = unstructured_items[-1] structured_children = structured_items[0] unstructured_children = unstructured_items[0] assert_array_almost_equal(structured_dist, unstructured_dist) assert_array_almost_equal( structured_children, unstructured_children) # test on the following dataset where we know the truth # taken from scipy/cluster/tests/hierarchy_test_data.py X = np.array([[1.43054825, -7.5693489], [6.95887839, 6.82293382], [2.87137846, -9.68248579], [7.87974764, -6.05485803], [8.24018364, -6.09495602], [7.39020262, 8.54004355]]) # truth linkage_X_ward = np.array([[3., 4., 0.36265956, 2.], [1., 5., 1.77045373, 2.], [0., 2., 2.55760419, 2.], [6., 8., 9.10208346, 4.], [7., 9., 24.7784379, 6.]]) linkage_X_complete = np.array( [[3., 4., 0.36265956, 2.], [1., 5., 1.77045373, 2.], [0., 2., 2.55760419, 2.], [6., 8., 6.96742194, 4.], [7., 9., 18.77445997, 6.]]) linkage_X_average = np.array( [[3., 4., 0.36265956, 2.], [1., 5., 1.77045373, 2.], [0., 2., 2.55760419, 2.], [6., 8., 6.55832839, 4.], [7., 9., 15.44089605, 6.]]) n_samples, n_features = np.shape(X) connectivity_X = np.ones((n_samples, n_samples)) out_X_unstructured = ward_tree(X, return_distance=True) out_X_structured = ward_tree(X, connectivity=connectivity_X, return_distance=True) # check that the labels are the same assert_array_equal(linkage_X_ward[:, :2], out_X_unstructured[0]) assert_array_equal(linkage_X_ward[:, :2], out_X_structured[0]) # check that the distances are correct assert_array_almost_equal(linkage_X_ward[:, 2], out_X_unstructured[4]) assert_array_almost_equal(linkage_X_ward[:, 2], out_X_structured[4]) linkage_options = ['complete', 'average'] X_linkage_truth = [linkage_X_complete, linkage_X_average] for (linkage, X_truth) in zip(linkage_options, X_linkage_truth): out_X_unstructured = linkage_tree( X, return_distance=True, linkage=linkage) out_X_structured = linkage_tree( X, connectivity=connectivity_X, linkage=linkage, return_distance=True) # check that the labels are the same assert_array_equal(X_truth[:, :2], out_X_unstructured[0]) assert_array_equal(X_truth[:, :2], out_X_structured[0]) # check that the distances are correct assert_array_almost_equal(X_truth[:, 2], out_X_unstructured[4]) assert_array_almost_equal(X_truth[:, 2], out_X_structured[4]) def test_connectivity_fixing_non_lil(): # Check non regression of a bug if a non item assignable connectivity is # provided with more than one component. # create dummy data x = np.array([[0, 0], [1, 1]]) # create a mask with several components to force connectivity fixing m = np.array([[True, False], [False, True]]) c = grid_to_graph(n_x=2, n_y=2, mask=m) w = AgglomerativeClustering(connectivity=c, linkage='ward') assert_warns(UserWarning, w.fit, x) def test_int_float_dict(): rng = np.random.RandomState(0) keys = np.unique(rng.randint(100, size=10).astype(np.intp)) values = rng.rand(len(keys)) d = IntFloatDict(keys, values) for key, value in zip(keys, values): assert d[key] == value other_keys = np.arange(50).astype(np.intp)[::2] other_values = 0.5 * np.ones(50)[::2] other = IntFloatDict(other_keys, other_values) # Complete smoke test max_merge(d, other, mask=np.ones(100, dtype=np.intp), n_a=1, n_b=1) average_merge(d, other, mask=np.ones(100, dtype=np.intp), n_a=1, n_b=1) def test_connectivity_callable(): rng = np.random.RandomState(0) X = rng.rand(20, 5) connectivity = kneighbors_graph(X, 3, include_self=False) aglc1 = AgglomerativeClustering(connectivity=connectivity) aglc2 = AgglomerativeClustering( connectivity=partial(kneighbors_graph, n_neighbors=3, include_self=False)) aglc1.fit(X) aglc2.fit(X) assert_array_equal(aglc1.labels_, aglc2.labels_) def test_connectivity_ignores_diagonal(): rng = np.random.RandomState(0) X = rng.rand(20, 5) connectivity = kneighbors_graph(X, 3, include_self=False) connectivity_include_self = kneighbors_graph(X, 3, include_self=True) aglc1 = AgglomerativeClustering(connectivity=connectivity) aglc2 = AgglomerativeClustering(connectivity=connectivity_include_self) aglc1.fit(X) aglc2.fit(X) assert_array_equal(aglc1.labels_, aglc2.labels_) def test_compute_full_tree(): # Test that the full tree is computed if n_clusters is small rng = np.random.RandomState(0) X = rng.randn(10, 2) connectivity = kneighbors_graph(X, 5, include_self=False) # When n_clusters is less, the full tree should be built # that is the number of merges should be n_samples - 1 agc = AgglomerativeClustering(n_clusters=2, connectivity=connectivity) agc.fit(X) n_samples = X.shape[0] n_nodes = agc.children_.shape[0] assert_equal(n_nodes, n_samples - 1) # When n_clusters is large, greater than max of 100 and 0.02 * n_samples. # we should stop when there are n_clusters. n_clusters = 101 X = rng.randn(200, 2) connectivity = kneighbors_graph(X, 10, include_self=False) agc = AgglomerativeClustering(n_clusters=n_clusters, connectivity=connectivity) agc.fit(X) n_samples = X.shape[0] n_nodes = agc.children_.shape[0] assert_equal(n_nodes, n_samples - n_clusters) def test_n_components(): # Test n_components returned by linkage, average and ward tree rng = np.random.RandomState(0) X = rng.rand(5, 5) # Connectivity matrix having five components. connectivity = np.eye(5) for linkage_func in _TREE_BUILDERS.values(): assert_equal(ignore_warnings(linkage_func)(X, connectivity)[1], 5) def test_agg_n_clusters(): # Test that an error is raised when n_clusters <= 0 rng = np.random.RandomState(0) X = rng.rand(20, 10) for n_clus in [-1, 0]: agc = AgglomerativeClustering(n_clusters=n_clus) msg = ("n_clusters should be an integer greater than 0." " %s was provided." % str(agc.n_clusters)) assert_raise_message(ValueError, msg, agc.fit, X)
bsd-3-clause
rkmaddox/mne-python
mne/preprocessing/maxwell.py
3
103429
# -*- coding: utf-8 -*- # Authors: Mark Wronkiewicz <[email protected]> # Eric Larson <[email protected]> # Jussi Nurminen <[email protected]> # License: BSD (3-clause) from collections import Counter, OrderedDict from functools import partial from math import factorial from os import path as op import numpy as np from .. import __version__ from ..annotations import _annotations_starts_stops from ..bem import _check_origin from ..transforms import (_str_to_frame, _get_trans, Transform, apply_trans, _find_vector_rotation, _cart_to_sph, _get_n_moments, _sph_to_cart_partials, _deg_ord_idx, _average_quats, _sh_complex_to_real, _sh_real_to_complex, _sh_negate, quat_to_rot, rot_to_quat) from ..forward import _concatenate_coils, _prep_meg_channels, _create_meg_coils from ..surface import _normalize_vectors from ..io.constants import FIFF, FWD from ..io.meas_info import _simplify_info, Info from ..io.proc_history import _read_ctc from ..io.write import _generate_meas_id, DATE_NONE from ..io import (_loc_to_coil_trans, _coil_trans_to_loc, BaseRaw, RawArray, Projection) from ..io.pick import pick_types, pick_info from ..utils import (verbose, logger, _clean_names, warn, _time_mask, _pl, _check_option, _ensure_int, _validate_type, use_log_level) from ..fixes import _safe_svd, bincount from ..channels.channels import _get_T1T2_mag_inds, fix_mag_coil_types # Note: MF uses single precision and some algorithms might use # truncated versions of constants (e.g., μ0), which could lead to small # differences between algorithms # Changes to arguments here should also be made in find_bad_channels_maxwell @verbose def maxwell_filter(raw, origin='auto', int_order=8, ext_order=3, calibration=None, cross_talk=None, st_duration=None, st_correlation=0.98, coord_frame='head', destination=None, regularize='in', ignore_ref=False, bad_condition='error', head_pos=None, st_fixed=True, st_only=False, mag_scale=100., skip_by_annotation=('edge', 'bad_acq_skip'), extended_proj=(), verbose=None): """Maxwell filter data using multipole moments. Parameters ---------- raw : instance of mne.io.Raw Data to be filtered. .. warning:: It is critical to mark bad channels in ``raw.info['bads']`` prior to processing in order to prevent artifact spreading. Manual inspection and use of :func:`~find_bad_channels_maxwell` is recommended. %(maxwell_origin)s %(maxwell_int)s %(maxwell_ext)s %(maxwell_cal)s %(maxwell_cross)s st_duration : float | None If not None, apply spatiotemporal SSS with specified buffer duration (in seconds). MaxFilter™'s default is 10.0 seconds in v2.2. Spatiotemporal SSS acts as implicitly as a high-pass filter where the cut-off frequency is 1/st_duration Hz. For this (and other) reasons, longer buffers are generally better as long as your system can handle the higher memory usage. To ensure that each window is processed identically, choose a buffer length that divides evenly into your data. Any data at the trailing edge that doesn't fit evenly into a whole buffer window will be lumped into the previous buffer. st_correlation : float Correlation limit between inner and outer subspaces used to reject ovwrlapping intersecting inner/outer signals during spatiotemporal SSS. %(maxwell_coord)s %(maxwell_dest)s %(maxwell_reg)s %(maxwell_ref)s %(maxwell_cond)s %(maxwell_pos)s .. versionadded:: 0.12 %(maxwell_st_fixed_only)s %(maxwell_mag)s .. versionadded:: 0.13 %(maxwell_skip)s .. versionadded:: 0.17 %(maxwell_extended)s %(verbose)s Returns ------- raw_sss : instance of mne.io.Raw The raw data with Maxwell filtering applied. See Also -------- mne.preprocessing.annotate_flat mne.preprocessing.find_bad_channels_maxwell mne.chpi.filter_chpi mne.chpi.read_head_pos mne.epochs.average_movements Notes ----- .. versionadded:: 0.11 Some of this code was adapted and relicensed (with BSD form) with permission from Jussi Nurminen. These algorithms are based on work from :footcite:`TauluKajola2005` and :footcite:`TauluSimola2006`. It will likely use multiple CPU cores, see the :ref:`FAQ <faq_cpu>` for more information. .. warning:: Maxwell filtering in MNE is not designed or certified for clinical use. Compared to the MEGIN MaxFilter™ software, the MNE Maxwell filtering routines currently provide the following features: .. table:: :widths: auto +-----------------------------------------------------------------------------+-----+-----------+ | Feature | MNE | MaxFilter | +=============================================================================+=====+===========+ | Maxwell filtering software shielding | ✓ | ✓ | +-----------------------------------------------------------------------------+-----+-----------+ | Bad channel reconstruction | ✓ | ✓ | +-----------------------------------------------------------------------------+-----+-----------+ | Cross-talk cancellation | ✓ | ✓ | +-----------------------------------------------------------------------------+-----+-----------+ | Fine calibration correction (1D) | ✓ | ✓ | +-----------------------------------------------------------------------------+-----+-----------+ | Fine calibration correction (3D) | ✓ | | +-----------------------------------------------------------------------------+-----+-----------+ | Spatio-temporal SSS (tSSS) | ✓ | ✓ | +-----------------------------------------------------------------------------+-----+-----------+ | Coordinate frame translation | ✓ | ✓ | +-----------------------------------------------------------------------------+-----+-----------+ | Regularization using information theory | ✓ | ✓ | +-----------------------------------------------------------------------------+-----+-----------+ | Movement compensation (raw) | ✓ | ✓ | +-----------------------------------------------------------------------------+-----+-----------+ | Movement compensation (:func:`epochs <mne.epochs.average_movements>`) | ✓ | | +-----------------------------------------------------------------------------+-----+-----------+ | :func:`cHPI subtraction <mne.chpi.filter_chpi>` | ✓ | ✓ | +-----------------------------------------------------------------------------+-----+-----------+ | Double floating point precision | ✓ | | +-----------------------------------------------------------------------------+-----+-----------+ | Seamless processing of split (``-1.fif``) and concatenated files | ✓ | | +-----------------------------------------------------------------------------+-----+-----------+ | Automatic bad channel detection (:func:`~find_bad_channels_maxwell`) | ✓ | ✓ | +-----------------------------------------------------------------------------+-----+-----------+ | Head position estimation (:func:`~mne.chpi.compute_head_pos`) | ✓ | ✓ | +-----------------------------------------------------------------------------+-----+-----------+ | Certified for clinical use | | ✓ | +-----------------------------------------------------------------------------+-----+-----------+ | Extended external basis (eSSS) | ✓ | | +-----------------------------------------------------------------------------+-----+-----------+ Epoch-based movement compensation is described in :footcite:`TauluKajola2005`. Use of Maxwell filtering routines with non-Neuromag systems is currently **experimental**. Worse results for non-Neuromag systems are expected due to (at least): * Missing fine-calibration and cross-talk cancellation data for other systems. * Processing with reference sensors has not been vetted. * Regularization of components may not work well for all systems. * Coil integration has not been optimized using Abramowitz/Stegun definitions. .. note:: Various Maxwell filtering algorithm components are covered by patents owned by MEGIN. These patents include, but may not be limited to: - US2006031038 (Signal Space Separation) - US6876196 (Head position determination) - WO2005067789 (DC fields) - WO2005078467 (MaxShield) - WO2006114473 (Temporal Signal Space Separation) These patents likely preclude the use of Maxwell filtering code in commercial applications. Consult a lawyer if necessary. Currently, in order to perform Maxwell filtering, the raw data must not have any projectors applied. During Maxwell filtering, the spatial structure of the data is modified, so projectors are discarded (unless in ``st_only=True`` mode). References ---------- .. footbibliography:: """ # noqa: E501 logger.info('Maxwell filtering raw data') params = _prep_maxwell_filter( raw=raw, origin=origin, int_order=int_order, ext_order=ext_order, calibration=calibration, cross_talk=cross_talk, st_duration=st_duration, st_correlation=st_correlation, coord_frame=coord_frame, destination=destination, regularize=regularize, ignore_ref=ignore_ref, bad_condition=bad_condition, head_pos=head_pos, st_fixed=st_fixed, st_only=st_only, mag_scale=mag_scale, skip_by_annotation=skip_by_annotation, extended_proj=extended_proj) raw_sss = _run_maxwell_filter(raw, **params) # Update info _update_sss_info(raw_sss, **params['update_kwargs']) logger.info('[done]') return raw_sss @verbose def _prep_maxwell_filter( raw, origin='auto', int_order=8, ext_order=3, calibration=None, cross_talk=None, st_duration=None, st_correlation=0.98, coord_frame='head', destination=None, regularize='in', ignore_ref=False, bad_condition='error', head_pos=None, st_fixed=True, st_only=False, mag_scale=100., skip_by_annotation=('edge', 'bad_acq_skip'), extended_proj=(), reconstruct='in', verbose=None): # There are an absurd number of different possible notations for spherical # coordinates, which confounds the notation for spherical harmonics. Here, # we purposefully stay away from shorthand notation in both and use # explicit terms (like 'azimuth' and 'polar') to avoid confusion. # See mathworld.wolfram.com/SphericalHarmonic.html for more discussion. # Our code follows the same standard that ``scipy`` uses for ``sph_harm``. # triage inputs ASAP to avoid late-thrown errors _validate_type(raw, BaseRaw, 'raw') _check_usable(raw) _check_regularize(regularize) st_correlation = float(st_correlation) if st_correlation <= 0. or st_correlation > 1.: raise ValueError('Need 0 < st_correlation <= 1., got %s' % st_correlation) _check_option('coord_frame', coord_frame, ['head', 'meg']) head_frame = True if coord_frame == 'head' else False recon_trans = _check_destination(destination, raw.info, head_frame) if st_duration is not None: st_duration = float(st_duration) st_correlation = float(st_correlation) st_duration = int(round(st_duration * raw.info['sfreq'])) if not 0. < st_correlation <= 1: raise ValueError('st_correlation must be between 0. and 1.') _check_option('bad_condition', bad_condition, ['error', 'warning', 'ignore', 'info']) if raw.info['dev_head_t'] is None and coord_frame == 'head': raise RuntimeError('coord_frame cannot be "head" because ' 'info["dev_head_t"] is None; if this is an ' 'empty room recording, consider using ' 'coord_frame="meg"') if st_only and st_duration is None: raise ValueError('st_duration must not be None if st_only is True') head_pos = _check_pos(head_pos, head_frame, raw, st_fixed, raw.info['sfreq']) _check_info(raw.info, sss=not st_only, tsss=st_duration is not None, calibration=not st_only and calibration is not None, ctc=not st_only and cross_talk is not None) # Now we can actually get moving info = raw.info.copy() meg_picks, mag_picks, grad_picks, good_mask, mag_or_fine = \ _get_mf_picks_fix_mags(info, int_order, ext_order, ignore_ref) # Magnetometers are scaled to improve numerical stability coil_scale, mag_scale = _get_coil_scale( meg_picks, mag_picks, grad_picks, mag_scale, info) # # Extended projection vectors # _validate_type(extended_proj, (list, tuple), 'extended_proj') good_names = [info['ch_names'][c] for c in meg_picks[good_mask]] if len(extended_proj) > 0: extended_proj_ = list() for pi, proj in enumerate(extended_proj): item = 'extended_proj[%d]' % (pi,) _validate_type(proj, Projection, item) got_names = proj['data']['col_names'] missing = sorted(set(good_names) - set(got_names)) if missing: raise ValueError('%s channel names were missing some ' 'good MEG channel names:\n%s' % (item, ', '.join(missing))) idx = [got_names.index(name) for name in good_names] extended_proj_.append(proj['data']['data'][:, idx]) extended_proj = np.concatenate(extended_proj_) logger.info(' Extending external SSS basis using %d projection ' 'vectors' % (len(extended_proj),)) # # Fine calibration processing (load fine cal and overwrite sensor geometry) # sss_cal = dict() if calibration is not None: calibration, sss_cal = _update_sensor_geometry( info, calibration, ignore_ref) mag_or_fine.fill(True) # all channels now have some mag-type data # Determine/check the origin of the expansion origin = _check_origin(origin, info, coord_frame, disp=True) # Convert to the head frame if coord_frame == 'meg' and info['dev_head_t'] is not None: origin_head = apply_trans(info['dev_head_t'], origin) else: origin_head = origin update_kwargs = dict( origin=origin, coord_frame=coord_frame, sss_cal=sss_cal, int_order=int_order, ext_order=ext_order, extended_proj=extended_proj) del origin, coord_frame, sss_cal origin_head.setflags(write=False) # # Cross-talk processing # meg_ch_names = [info['ch_names'][p] for p in meg_picks] ctc, sss_ctc = _read_cross_talk(cross_talk, meg_ch_names) update_kwargs['sss_ctc'] = sss_ctc del sss_ctc # # Translate to destination frame (always use non-fine-cal bases) # exp = dict(origin=origin_head, int_order=int_order, ext_order=0) all_coils = _prep_mf_coils(info, ignore_ref) S_recon = _trans_sss_basis(exp, all_coils, recon_trans, coil_scale) exp['ext_order'] = ext_order exp['extended_proj'] = extended_proj del extended_proj # Reconstruct data from internal space only (Eq. 38), and rescale S_recon S_recon /= coil_scale if recon_trans is not None: # warn if we have translated too far diff = 1000 * (info['dev_head_t']['trans'][:3, 3] - recon_trans['trans'][:3, 3]) dist = np.sqrt(np.sum(_sq(diff))) if dist > 25.: warn('Head position change is over 25 mm (%s) = %0.1f mm' % (', '.join('%0.1f' % x for x in diff), dist)) # Reconstruct raw file object with spatiotemporal processed data max_st = dict() if st_duration is not None: if st_only: job = FIFF.FIFFV_SSS_JOB_TPROJ else: job = FIFF.FIFFV_SSS_JOB_ST max_st.update(job=job, subspcorr=st_correlation, buflen=st_duration / info['sfreq']) logger.info(' Processing data using tSSS with st_duration=%s' % max_st['buflen']) st_when = 'before' if st_fixed else 'after' # relative to movecomp else: # st_duration from here on will act like the chunk size st_duration = min(max(int(round(10. * info['sfreq'])), 1), len(raw.times)) st_correlation = None st_when = 'never' update_kwargs['max_st'] = max_st del st_fixed, max_st # Figure out which transforms we need for each tSSS block # (and transform pos[1] to times) head_pos[1] = raw.time_as_index(head_pos[1], use_rounding=True) # Compute the first bit of pos_data for cHPI reporting if info['dev_head_t'] is not None and head_pos[0] is not None: this_pos_quat = np.concatenate([ rot_to_quat(info['dev_head_t']['trans'][:3, :3]), info['dev_head_t']['trans'][:3, 3], np.zeros(3)]) else: this_pos_quat = None _get_this_decomp_trans = partial( _get_decomp, all_coils=all_coils, cal=calibration, regularize=regularize, exp=exp, ignore_ref=ignore_ref, coil_scale=coil_scale, grad_picks=grad_picks, mag_picks=mag_picks, good_mask=good_mask, mag_or_fine=mag_or_fine, bad_condition=bad_condition, mag_scale=mag_scale) update_kwargs.update( nchan=good_mask.sum(), st_only=st_only, recon_trans=recon_trans) params = dict( skip_by_annotation=skip_by_annotation, st_duration=st_duration, st_correlation=st_correlation, st_only=st_only, st_when=st_when, ctc=ctc, coil_scale=coil_scale, this_pos_quat=this_pos_quat, meg_picks=meg_picks, good_mask=good_mask, grad_picks=grad_picks, head_pos=head_pos, info=info, _get_this_decomp_trans=_get_this_decomp_trans, S_recon=S_recon, update_kwargs=update_kwargs) return params def _run_maxwell_filter( raw, skip_by_annotation, st_duration, st_correlation, st_only, st_when, ctc, coil_scale, this_pos_quat, meg_picks, good_mask, grad_picks, head_pos, info, _get_this_decomp_trans, S_recon, update_kwargs, reconstruct='in', copy=True): # Eventually find_bad_channels_maxwell could be sped up by moving this # outside the loop (e.g., in the prep function) but regularization depends # on which channels are being used, so easier just to include it here. # The time it takes to recompute S and pS themselves is roughly on par # with the np.dot with the data, so not a huge gain to be made there. S_decomp, S_decomp_full, pS_decomp, reg_moments, n_use_in = \ _get_this_decomp_trans(info['dev_head_t'], t=0.) update_kwargs.update(reg_moments=reg_moments.copy()) if ctc is not None: ctc = ctc[good_mask][:, good_mask] add_channels = (head_pos[0] is not None) and (not st_only) and copy raw_sss, pos_picks = _copy_preload_add_channels( raw, add_channels, copy, info) sfreq = info['sfreq'] del raw if not st_only: # remove MEG projectors, they won't apply now _remove_meg_projs(raw_sss) # Figure out which segments of data we can use onsets, ends = _annotations_starts_stops( raw_sss, skip_by_annotation, invert=True) max_samps = (ends - onsets).max() if not 0. < st_duration <= max_samps + 1.: raise ValueError('st_duration (%0.1fs) must be between 0 and the ' 'longest contiguous duration of the data ' '(%0.1fs).' % (st_duration / sfreq, max_samps / sfreq)) # Generate time points to break up data into equal-length windows starts, stops = list(), list() for onset, end in zip(onsets, ends): read_lims = np.arange(onset, end + 1, st_duration) if len(read_lims) == 1: read_lims = np.concatenate([read_lims, [end]]) if read_lims[-1] != end: read_lims[-1] = end # fold it into the previous buffer n_last_buf = read_lims[-1] - read_lims[-2] if st_correlation is not None and len(read_lims) > 2: if n_last_buf >= st_duration: logger.info( ' Spatiotemporal window did not fit evenly into' 'contiguous data segment. %0.2f seconds were lumped ' 'into the previous window.' % ((n_last_buf - st_duration) / sfreq,)) else: logger.info( ' Contiguous data segment of duration %0.2f ' 'seconds is too short to be processed with tSSS ' 'using duration %0.2f' % (n_last_buf / sfreq, st_duration / sfreq)) assert len(read_lims) >= 2 assert read_lims[0] == onset and read_lims[-1] == end starts.extend(read_lims[:-1]) stops.extend(read_lims[1:]) del read_lims st_duration = min(max_samps, st_duration) # Loop through buffer windows of data n_sig = int(np.floor(np.log10(max(len(starts), 0)))) + 1 logger.info( ' Processing %s data chunk%s' % (len(starts), _pl(starts))) for ii, (start, stop) in enumerate(zip(starts, stops)): if start == stop: continue # Skip zero-length annotations tsss_valid = (stop - start) >= st_duration rel_times = raw_sss.times[start:stop] t_str = '%8.3f - %8.3f sec' % tuple(rel_times[[0, -1]]) t_str += ('(#%d/%d)' % (ii + 1, len(starts))).rjust(2 * n_sig + 5) # Get original data orig_data = raw_sss._data[meg_picks[good_mask], start:stop] # This could just be np.empty if not st_only, but shouldn't be slow # this way so might as well just always take the original data out_meg_data = raw_sss._data[meg_picks, start:stop] # Apply cross-talk correction if ctc is not None: orig_data = ctc.dot(orig_data) out_pos_data = np.empty((len(pos_picks), stop - start)) # Figure out which positions to use t_s_s_q_a = _trans_starts_stops_quats(head_pos, start, stop, this_pos_quat) n_positions = len(t_s_s_q_a[0]) # Set up post-tSSS or do pre-tSSS if st_correlation is not None: # If doing tSSS before movecomp... resid = orig_data.copy() # to be safe let's operate on a copy if st_when == 'after': orig_in_data = np.empty((len(meg_picks), stop - start)) else: # 'before' avg_trans = t_s_s_q_a[-1] if avg_trans is not None: # if doing movecomp S_decomp_st, _, pS_decomp_st, _, n_use_in_st = \ _get_this_decomp_trans(avg_trans, t=rel_times[0]) else: S_decomp_st, pS_decomp_st = S_decomp, pS_decomp n_use_in_st = n_use_in orig_in_data = np.dot(np.dot(S_decomp_st[:, :n_use_in_st], pS_decomp_st[:n_use_in_st]), resid) resid -= np.dot(np.dot(S_decomp_st[:, n_use_in_st:], pS_decomp_st[n_use_in_st:]), resid) resid -= orig_in_data # Here we operate on our actual data proc = out_meg_data if st_only else orig_data _do_tSSS(proc, orig_in_data, resid, st_correlation, n_positions, t_str, tsss_valid) if not st_only or st_when == 'after': # Do movement compensation on the data for trans, rel_start, rel_stop, this_pos_quat in \ zip(*t_s_s_q_a[:4]): # Recalculate bases if necessary (trans will be None iff the # first position in this interval is the same as last of the # previous interval) if trans is not None: S_decomp, S_decomp_full, pS_decomp, reg_moments, \ n_use_in = _get_this_decomp_trans( trans, t=rel_times[rel_start]) # Determine multipole moments for this interval mm_in = np.dot(pS_decomp[:n_use_in], orig_data[:, rel_start:rel_stop]) # Our output data if not st_only: if reconstruct == 'in': proj = S_recon.take(reg_moments[:n_use_in], axis=1) mult = mm_in else: assert reconstruct == 'orig' proj = S_decomp_full # already picked reg mm_out = np.dot(pS_decomp[n_use_in:], orig_data[:, rel_start:rel_stop]) mult = np.concatenate((mm_in, mm_out)) out_meg_data[:, rel_start:rel_stop] = \ np.dot(proj, mult) if len(pos_picks) > 0: out_pos_data[:, rel_start:rel_stop] = \ this_pos_quat[:, np.newaxis] # Transform orig_data to store just the residual if st_when == 'after': # Reconstruct data using original location from external # and internal spaces and compute residual rel_resid_data = resid[:, rel_start:rel_stop] orig_in_data[:, rel_start:rel_stop] = \ np.dot(S_decomp[:, :n_use_in], mm_in) rel_resid_data -= np.dot(np.dot(S_decomp[:, n_use_in:], pS_decomp[n_use_in:]), rel_resid_data) rel_resid_data -= orig_in_data[:, rel_start:rel_stop] # If doing tSSS at the end if st_when == 'after': _do_tSSS(out_meg_data, orig_in_data, resid, st_correlation, n_positions, t_str, tsss_valid) elif st_when == 'never' and head_pos[0] is not None: logger.info(' Used % 2d head position%s for %s' % (n_positions, _pl(n_positions), t_str)) raw_sss._data[meg_picks, start:stop] = out_meg_data raw_sss._data[pos_picks, start:stop] = out_pos_data return raw_sss def _get_coil_scale(meg_picks, mag_picks, grad_picks, mag_scale, info): """Get the magnetometer scale factor.""" if isinstance(mag_scale, str): if mag_scale != 'auto': raise ValueError('mag_scale must be a float or "auto", got "%s"' % mag_scale) if len(mag_picks) in (0, len(meg_picks)): mag_scale = 100. # only one coil type, doesn't matter logger.info(' Setting mag_scale=%0.2f because only one ' 'coil type is present' % mag_scale) else: # Find our physical distance between gradiometer pickup loops # ("base line") coils = _create_meg_coils([info['chs'][pick] for pick in meg_picks], 'accurate') grad_base = {coils[pick]['base'] for pick in grad_picks} if len(grad_base) != 1 or list(grad_base)[0] <= 0: raise RuntimeError('Could not automatically determine ' 'mag_scale, could not find one ' 'proper gradiometer distance from: %s' % list(grad_base)) grad_base = list(grad_base)[0] mag_scale = 1. / grad_base logger.info(' Setting mag_scale=%0.2f based on gradiometer ' 'distance %0.2f mm' % (mag_scale, 1000 * grad_base)) mag_scale = float(mag_scale) coil_scale = np.ones((len(meg_picks), 1)) coil_scale[mag_picks] = mag_scale return coil_scale, mag_scale def _remove_meg_projs(inst): """Remove inplace existing MEG projectors (assumes inactive).""" meg_picks = pick_types(inst.info, meg=True, exclude=[]) meg_channels = [inst.ch_names[pi] for pi in meg_picks] non_meg_proj = list() for proj in inst.info['projs']: if not any(c in meg_channels for c in proj['data']['col_names']): non_meg_proj.append(proj) inst.add_proj(non_meg_proj, remove_existing=True, verbose=False) def _check_destination(destination, info, head_frame): """Triage our reconstruction trans.""" if destination is None: return info['dev_head_t'] if not head_frame: raise RuntimeError('destination can only be set if using the ' 'head coordinate frame') if isinstance(destination, str): recon_trans = _get_trans(destination, 'meg', 'head')[0] elif isinstance(destination, Transform): recon_trans = destination else: destination = np.array(destination, float) if destination.shape != (3,): raise ValueError('destination must be a 3-element vector, ' 'str, or None') recon_trans = np.eye(4) recon_trans[:3, 3] = destination recon_trans = Transform('meg', 'head', recon_trans) if recon_trans.to_str != 'head' or recon_trans.from_str != 'MEG device': raise RuntimeError('Destination transform is not MEG device -> head, ' 'got %s -> %s' % (recon_trans.from_str, recon_trans.to_str)) return recon_trans @verbose def _prep_mf_coils(info, ignore_ref=True, verbose=None): """Get all coil integration information loaded and sorted.""" coils, comp_coils = _prep_meg_channels( info, accurate=True, head_frame=False, ignore_ref=ignore_ref, do_picking=False, verbose=False)[:2] mag_mask = _get_mag_mask(coils) if len(comp_coils) > 0: meg_picks = pick_types(info, meg=True, ref_meg=False, exclude=[]) ref_picks = pick_types(info, meg=False, ref_meg=True, exclude=[]) inserts = np.searchsorted(meg_picks, ref_picks) # len(inserts) == len(comp_coils) for idx, comp_coil in zip(inserts[::-1], comp_coils[::-1]): coils.insert(idx, comp_coil) # Now we have: # [c['chname'] for c in coils] == # [info['ch_names'][ii] # for ii in pick_types(info, meg=True, ref_meg=True)] # Now coils is a sorted list of coils. Time to do some vectorization. n_coils = len(coils) rmags = np.concatenate([coil['rmag'] for coil in coils]) cosmags = np.concatenate([coil['cosmag'] for coil in coils]) ws = np.concatenate([coil['w'] for coil in coils]) cosmags *= ws[:, np.newaxis] del ws n_int = np.array([len(coil['rmag']) for coil in coils]) bins = np.repeat(np.arange(len(n_int)), n_int) bd = np.concatenate(([0], np.cumsum(n_int))) slice_map = {ii: slice(start, stop) for ii, (start, stop) in enumerate(zip(bd[:-1], bd[1:]))} return rmags, cosmags, bins, n_coils, mag_mask, slice_map def _trans_starts_stops_quats(pos, start, stop, this_pos_data): """Get all trans and limits we need.""" pos_idx = np.arange(*np.searchsorted(pos[1], [start, stop])) used = np.zeros(stop - start, bool) trans = list() rel_starts = list() rel_stops = list() quats = list() weights = list() for ti in range(-1, len(pos_idx)): # first iteration for this block of data if ti < 0: rel_start = 0 rel_stop = pos[1][pos_idx[0]] if len(pos_idx) > 0 else stop rel_stop = rel_stop - start if rel_start == rel_stop: continue # our first pos occurs on first time sample # Don't calculate S_decomp here, use the last one trans.append(None) # meaning: use previous quats.append(this_pos_data) else: rel_start = pos[1][pos_idx[ti]] - start if ti == len(pos_idx) - 1: rel_stop = stop - start else: rel_stop = pos[1][pos_idx[ti + 1]] - start trans.append(pos[0][pos_idx[ti]]) quats.append(pos[2][pos_idx[ti]]) assert 0 <= rel_start assert rel_start < rel_stop assert rel_stop <= stop - start assert not used[rel_start:rel_stop].any() used[rel_start:rel_stop] = True rel_starts.append(rel_start) rel_stops.append(rel_stop) weights.append(rel_stop - rel_start) assert used.all() # Use weighted average for average trans over the window if this_pos_data is None: avg_trans = None else: weights = np.array(weights) quats = np.array(quats) weights = weights / weights.sum().astype(float) # int -> float avg_quat = _average_quats(quats[:, :3], weights) avg_t = np.dot(weights, quats[:, 3:6]) avg_trans = np.vstack([ np.hstack([quat_to_rot(avg_quat), avg_t[:, np.newaxis]]), [[0., 0., 0., 1.]]]) return trans, rel_starts, rel_stops, quats, avg_trans def _do_tSSS(clean_data, orig_in_data, resid, st_correlation, n_positions, t_str, tsss_valid): """Compute and apply SSP-like projection vectors based on min corr.""" if not tsss_valid: t_proj = np.empty((clean_data.shape[1], 0)) else: np.asarray_chkfinite(resid) t_proj = _overlap_projector(orig_in_data, resid, st_correlation) # Apply projector according to Eq. 12 in :footcite:`TauluSimola2006` msg = (' Projecting %2d intersecting tSSS component%s ' 'for %s' % (t_proj.shape[1], _pl(t_proj.shape[1], ' '), t_str)) if n_positions > 1: msg += ' (across %2d position%s)' % (n_positions, _pl(n_positions, ' ')) logger.info(msg) clean_data -= np.dot(np.dot(clean_data, t_proj), t_proj.T) def _copy_preload_add_channels(raw, add_channels, copy, info): """Load data for processing and (maybe) add cHPI pos channels.""" if copy: raw = raw.copy() raw.info['chs'] = info['chs'] # updated coil types if add_channels: kinds = [FIFF.FIFFV_QUAT_1, FIFF.FIFFV_QUAT_2, FIFF.FIFFV_QUAT_3, FIFF.FIFFV_QUAT_4, FIFF.FIFFV_QUAT_5, FIFF.FIFFV_QUAT_6, FIFF.FIFFV_HPI_G, FIFF.FIFFV_HPI_ERR, FIFF.FIFFV_HPI_MOV] out_shape = (len(raw.ch_names) + len(kinds), len(raw.times)) out_data = np.zeros(out_shape, np.float64) msg = ' Appending head position result channels and ' if raw.preload: logger.info(msg + 'copying original raw data') out_data[:len(raw.ch_names)] = raw._data raw._data = out_data else: logger.info(msg + 'loading raw data from disk') with use_log_level(False): raw._preload_data(out_data[:len(raw.ch_names)]) raw._data = out_data assert raw.preload is True off = len(raw.ch_names) chpi_chs = [ dict(ch_name='CHPI%03d' % (ii + 1), logno=ii + 1, scanno=off + ii + 1, unit_mul=-1, range=1., unit=-1, kind=kinds[ii], coord_frame=FIFF.FIFFV_COORD_UNKNOWN, cal=1e-4, coil_type=FWD.COIL_UNKNOWN, loc=np.zeros(12)) for ii in range(len(kinds))] raw.info['chs'].extend(chpi_chs) raw.info._update_redundant() raw.info._check_consistency() assert raw._data.shape == (raw.info['nchan'], len(raw.times)) # Return the pos picks pos_picks = np.arange(len(raw.ch_names) - len(chpi_chs), len(raw.ch_names)) return raw, pos_picks else: if copy: if not raw.preload: logger.info(' Loading raw data from disk') raw.load_data(verbose=False) else: logger.info(' Using loaded raw data') return raw, np.array([], int) def _check_pos(pos, head_frame, raw, st_fixed, sfreq): """Check for a valid pos array and transform it to a more usable form.""" _validate_type(pos, (np.ndarray, None), 'head_pos') if pos is None: return [None, np.array([-1])] if not head_frame: raise ValueError('positions can only be used if coord_frame="head"') if not st_fixed: warn('st_fixed=False is untested, use with caution!') if not isinstance(pos, np.ndarray): raise TypeError('pos must be an ndarray') if pos.ndim != 2 or pos.shape[1] != 10: raise ValueError('pos must be an array of shape (N, 10)') t = pos[:, 0] if not np.array_equal(t, np.unique(t)): raise ValueError('Time points must unique and in ascending order') # We need an extra 1e-3 (1 ms) here because MaxFilter outputs values # only out to 3 decimal places if not _time_mask(t, tmin=raw._first_time - 1e-3, tmax=None, sfreq=sfreq).all(): raise ValueError('Head position time points must be greater than ' 'first sample offset, but found %0.4f < %0.4f' % (t[0], raw._first_time)) max_dist = np.sqrt(np.sum(pos[:, 4:7] ** 2, axis=1)).max() if max_dist > 1.: warn('Found a distance greater than 1 m (%0.3g m) from the device ' 'origin, positions may be invalid and Maxwell filtering could ' 'fail' % (max_dist,)) dev_head_ts = np.zeros((len(t), 4, 4)) dev_head_ts[:, 3, 3] = 1. dev_head_ts[:, :3, 3] = pos[:, 4:7] dev_head_ts[:, :3, :3] = quat_to_rot(pos[:, 1:4]) pos = [dev_head_ts, t - raw._first_time, pos[:, 1:]] return pos def _get_decomp(trans, all_coils, cal, regularize, exp, ignore_ref, coil_scale, grad_picks, mag_picks, good_mask, mag_or_fine, bad_condition, t, mag_scale): """Get a decomposition matrix and pseudoinverse matrices.""" from scipy import linalg # # Fine calibration processing (point-like magnetometers and calib. coeffs) # S_decomp_full = _get_s_decomp( exp, all_coils, trans, coil_scale, cal, ignore_ref, grad_picks, mag_picks, mag_scale) S_decomp = S_decomp_full[good_mask] # # Extended SSS basis (eSSS) # extended_proj = exp.get('extended_proj', ()) if len(extended_proj) > 0: rcond = 1e-4 thresh = 1e-4 extended_proj = extended_proj.T * coil_scale[good_mask] extended_proj /= np.linalg.norm(extended_proj, axis=0) n_int = _get_n_moments(exp['int_order']) if S_decomp.shape[1] > n_int: S_ext = S_decomp[:, n_int:].copy() S_ext /= np.linalg.norm(S_ext, axis=0) S_ext_orth = linalg.orth(S_ext, rcond=rcond) assert S_ext_orth.shape[1] == S_ext.shape[1] extended_proj -= np.dot(S_ext_orth, np.dot(S_ext_orth.T, extended_proj)) scale = np.mean(np.linalg.norm(S_decomp[n_int:], axis=0)) else: scale = np.mean(np.linalg.norm(S_decomp[:n_int], axis=0)) mask = np.linalg.norm(extended_proj, axis=0) > thresh extended_remove = list(np.where(~mask)[0] + S_decomp.shape[1]) logger.debug(' Reducing %d -> %d' % (extended_proj.shape[1], mask.sum())) extended_proj /= np.linalg.norm(extended_proj, axis=0) / scale S_decomp = np.concatenate([S_decomp, extended_proj], axis=-1) if extended_proj.shape[1]: S_decomp_full = np.pad( S_decomp_full, ((0, 0), (0, extended_proj.shape[1])), 'constant') S_decomp_full[good_mask, -extended_proj.shape[1]:] = extended_proj else: extended_remove = list() del extended_proj # # Regularization # S_decomp, reg_moments, n_use_in = _regularize( regularize, exp, S_decomp, mag_or_fine, extended_remove, t=t) S_decomp_full = S_decomp_full.take(reg_moments, axis=1) # # Pseudo-inverse of total multipolar moment basis set (Part of Eq. 37) # pS_decomp, sing = _col_norm_pinv(S_decomp.copy()) cond = sing[0] / sing[-1] if bad_condition != 'ignore' and cond >= 1000.: msg = 'Matrix is badly conditioned: %0.0f >= 1000' % cond if bad_condition == 'error': raise RuntimeError(msg) elif bad_condition == 'warning': warn(msg) else: # condition == 'info' logger.info(msg) # Build in our data scaling here pS_decomp *= coil_scale[good_mask].T S_decomp /= coil_scale[good_mask] S_decomp_full /= coil_scale return S_decomp, S_decomp_full, pS_decomp, reg_moments, n_use_in def _get_s_decomp(exp, all_coils, trans, coil_scale, cal, ignore_ref, grad_picks, mag_picks, mag_scale): """Get S_decomp.""" S_decomp = _trans_sss_basis(exp, all_coils, trans, coil_scale) if cal is not None: # Compute point-like mags to incorporate gradiometer imbalance grad_cals = _sss_basis_point(exp, trans, cal, ignore_ref, mag_scale) # Add point like magnetometer data to bases. if len(grad_picks) > 0: S_decomp[grad_picks, :] += grad_cals # Scale magnetometers by calibration coefficient if len(mag_picks) > 0: S_decomp[mag_picks, :] /= cal['mag_cals'] # We need to be careful about KIT gradiometers return S_decomp @verbose def _regularize(regularize, exp, S_decomp, mag_or_fine, extended_remove, t, verbose=None): """Regularize a decomposition matrix.""" # ALWAYS regularize the out components according to norm, since # gradiometer-only setups (e.g., KIT) can have zero first-order # (homogeneous field) components int_order, ext_order = exp['int_order'], exp['ext_order'] n_in = _get_n_moments(int_order) n_out = S_decomp.shape[1] - n_in t_str = '%8.3f' % t if regularize is not None: # regularize='in' in_removes, out_removes = _regularize_in( int_order, ext_order, S_decomp, mag_or_fine, extended_remove) else: in_removes = [] out_removes = _regularize_out(int_order, ext_order, mag_or_fine, extended_remove) reg_in_moments = np.setdiff1d(np.arange(n_in), in_removes) reg_out_moments = np.setdiff1d(np.arange(n_in, S_decomp.shape[1]), out_removes) n_use_in = len(reg_in_moments) n_use_out = len(reg_out_moments) reg_moments = np.concatenate((reg_in_moments, reg_out_moments)) S_decomp = S_decomp.take(reg_moments, axis=1) if regularize is not None or n_use_out != n_out: logger.info(' Using %s/%s harmonic components for %s ' '(%s/%s in, %s/%s out)' % (n_use_in + n_use_out, n_in + n_out, t_str, n_use_in, n_in, n_use_out, n_out)) return S_decomp, reg_moments, n_use_in @verbose def _get_mf_picks_fix_mags(info, int_order, ext_order, ignore_ref=False, verbose=None): """Pick types for Maxwell filtering and fix magnetometers.""" # Check for T1/T2 mag types mag_inds_T1T2 = _get_T1T2_mag_inds(info, use_cal=True) if len(mag_inds_T1T2) > 0: fix_mag_coil_types(info, use_cal=True) # Get indices of channels to use in multipolar moment calculation ref = not ignore_ref meg_picks = pick_types(info, meg=True, ref_meg=ref, exclude=[]) meg_info = pick_info(_simplify_info(info), meg_picks) del info good_mask = np.zeros(len(meg_picks,), bool) good_mask[pick_types(meg_info, meg=True, ref_meg=ref, exclude='bads')] = 1 n_bases = _get_n_moments([int_order, ext_order]).sum() if n_bases > good_mask.sum(): raise ValueError('Number of requested bases (%s) exceeds number of ' 'good sensors (%s)' % (str(n_bases), good_mask.sum())) recons = [ch for ch in meg_info['bads']] if len(recons) > 0: msg = ' Bad MEG channels being reconstructed: %s' % recons else: msg = ' No bad MEG channels' logger.info(msg) ref_meg = False if ignore_ref else 'mag' mag_picks = pick_types(meg_info, meg='mag', ref_meg=ref_meg, exclude=[]) ref_meg = False if ignore_ref else 'grad' grad_picks = pick_types(meg_info, meg='grad', ref_meg=ref_meg, exclude=[]) assert len(mag_picks) + len(grad_picks) == len(meg_info['ch_names']) # Determine which are magnetometers for external basis purposes mag_or_fine = np.zeros(len(meg_picks), bool) mag_or_fine[mag_picks] = True # KIT gradiometers are marked as having units T, not T/M (argh) # We need a separate variable for this because KIT grads should be # treated mostly like magnetometers (e.g., scaled by 100) for reg coil_types = np.array([ch['coil_type'] for ch in meg_info['chs']]) mag_or_fine[(coil_types & 0xFFFF) == FIFF.FIFFV_COIL_KIT_GRAD] = False # The same thing goes for CTF gradiometers... ctf_grads = [FIFF.FIFFV_COIL_CTF_GRAD, FIFF.FIFFV_COIL_CTF_REF_GRAD, FIFF.FIFFV_COIL_CTF_OFFDIAG_REF_GRAD] mag_or_fine[np.in1d(coil_types, ctf_grads)] = False msg = (' Processing %s gradiometers and %s magnetometers' % (len(grad_picks), len(mag_picks))) n_kit = len(mag_picks) - mag_or_fine.sum() if n_kit > 0: msg += ' (of which %s are actually KIT gradiometers)' % n_kit logger.info(msg) return meg_picks, mag_picks, grad_picks, good_mask, mag_or_fine def _check_regularize(regularize): """Ensure regularize is valid.""" if not (regularize is None or (isinstance(regularize, str) and regularize in ('in',))): raise ValueError('regularize must be None or "in"') def _check_usable(inst): """Ensure our data are clean.""" if inst.proj: raise RuntimeError('Projectors cannot be applied to data during ' 'Maxwell filtering.') current_comp = inst.compensation_grade if current_comp not in (0, None): raise RuntimeError('Maxwell filter cannot be done on compensated ' 'channels, but data have been compensated with ' 'grade %s.' % current_comp) def _col_norm_pinv(x): """Compute the pinv with column-normalization to stabilize calculation. Note: will modify/overwrite x. """ norm = np.sqrt(np.sum(x * x, axis=0)) x /= norm u, s, v = _safe_svd(x, full_matrices=False, **check_disable) v /= norm return np.dot(v.T * 1. / s, u.T), s def _sq(x): """Square quickly.""" return x * x def _check_finite(data): """Ensure data is finite.""" if not np.isfinite(data).all(): raise RuntimeError('data contains non-finite numbers') def _sph_harm_norm(order, degree): """Compute normalization factor for spherical harmonics.""" # we could use scipy.special.poch(degree + order + 1, -2 * order) # here, but it's slower for our fairly small degree norm = np.sqrt((2 * degree + 1.) / (4 * np.pi)) if order != 0: norm *= np.sqrt(factorial(degree - order) / float(factorial(degree + order))) return norm def _concatenate_sph_coils(coils): """Concatenate MEG coil parameters for spherical harmoncs.""" rs = np.concatenate([coil['r0_exey'] for coil in coils]) wcoils = np.concatenate([coil['w'] for coil in coils]) ezs = np.concatenate([np.tile(coil['ez'][np.newaxis, :], (len(coil['rmag']), 1)) for coil in coils]) bins = np.repeat(np.arange(len(coils)), [len(coil['rmag']) for coil in coils]) return rs, wcoils, ezs, bins _mu_0 = 4e-7 * np.pi # magnetic permeability def _get_mag_mask(coils): """Get the coil_scale for Maxwell filtering.""" return np.array([coil['coil_class'] == FWD.COILC_MAG for coil in coils]) def _sss_basis_basic(exp, coils, mag_scale=100., method='standard'): """Compute SSS basis using non-optimized (but more readable) algorithms.""" from scipy.special import sph_harm int_order, ext_order = exp['int_order'], exp['ext_order'] origin = exp['origin'] assert 'extended_proj' not in exp # advanced option not supported # Compute vector between origin and coil, convert to spherical coords if method == 'standard': # Get position, normal, weights, and number of integration pts. rmags, cosmags, ws, bins = _concatenate_coils(coils) rmags -= origin # Convert points to spherical coordinates rad, az, pol = _cart_to_sph(rmags).T cosmags *= ws[:, np.newaxis] del rmags, ws out_type = np.float64 else: # testing equivalence method rs, wcoils, ezs, bins = _concatenate_sph_coils(coils) rs -= origin rad, az, pol = _cart_to_sph(rs).T ezs *= wcoils[:, np.newaxis] del rs, wcoils out_type = np.complex128 del origin # Set up output matrices n_in, n_out = _get_n_moments([int_order, ext_order]) S_tot = np.empty((len(coils), n_in + n_out), out_type) S_in = S_tot[:, :n_in] S_out = S_tot[:, n_in:] coil_scale = np.ones((len(coils), 1)) coil_scale[_get_mag_mask(coils)] = mag_scale # Compute internal/external basis vectors (exclude degree 0; L/RHS Eq. 5) for degree in range(1, max(int_order, ext_order) + 1): # Only loop over positive orders, negative orders are handled # for efficiency within for order in range(degree + 1): S_in_out = list() grads_in_out = list() # Same spherical harmonic is used for both internal and external sph = sph_harm(order, degree, az, pol) sph_norm = _sph_harm_norm(order, degree) # Compute complex gradient for all integration points # in spherical coordinates (Eq. 6). The gradient for rad, az, pol # is obtained by taking the partial derivative of Eq. 4 w.r.t. each # coordinate. az_factor = 1j * order * sph / np.sin(np.maximum(pol, 1e-16)) pol_factor = (-sph_norm * np.sin(pol) * np.exp(1j * order * az) * _alegendre_deriv(order, degree, np.cos(pol))) if degree <= int_order: S_in_out.append(S_in) in_norm = _mu_0 * rad ** -(degree + 2) g_rad = in_norm * (-(degree + 1.) * sph) g_az = in_norm * az_factor g_pol = in_norm * pol_factor grads_in_out.append(_sph_to_cart_partials(az, pol, g_rad, g_az, g_pol)) if degree <= ext_order: S_in_out.append(S_out) out_norm = _mu_0 * rad ** (degree - 1) g_rad = out_norm * degree * sph g_az = out_norm * az_factor g_pol = out_norm * pol_factor grads_in_out.append(_sph_to_cart_partials(az, pol, g_rad, g_az, g_pol)) for spc, grads in zip(S_in_out, grads_in_out): # We could convert to real at the end, but it's more efficient # to do it now if method == 'standard': grads_pos_neg = [_sh_complex_to_real(grads, order)] orders_pos_neg = [order] # Deal with the negative orders if order > 0: # it's faster to use the conjugation property for # our normalized spherical harmonics than recalculate grads_pos_neg.append(_sh_complex_to_real( _sh_negate(grads, order), -order)) orders_pos_neg.append(-order) for gr, oo in zip(grads_pos_neg, orders_pos_neg): # Gradients dotted w/integration point weighted normals gr = np.einsum('ij,ij->i', gr, cosmags) vals = np.bincount(bins, gr, len(coils)) spc[:, _deg_ord_idx(degree, oo)] = -vals else: grads = np.einsum('ij,ij->i', grads, ezs) v = (np.bincount(bins, grads.real, len(coils)) + 1j * np.bincount(bins, grads.imag, len(coils))) spc[:, _deg_ord_idx(degree, order)] = -v if order > 0: spc[:, _deg_ord_idx(degree, -order)] = \ -_sh_negate(v, order) # Scale magnetometers S_tot *= coil_scale if method != 'standard': # Eventually we could probably refactor this for 2x mem (and maybe CPU) # savings by changing how spc/S_tot is assigned above (real only) S_tot = _bases_complex_to_real(S_tot, int_order, ext_order) return S_tot def _sss_basis(exp, all_coils): """Compute SSS basis for given conditions. Parameters ---------- exp : dict Must contain the following keys: origin : ndarray, shape (3,) Origin of the multipolar moment space in meters int_order : int Order of the internal multipolar moment space ext_order : int Order of the external multipolar moment space coils : list List of MEG coils. Each should contain coil information dict specifying position, normals, weights, number of integration points and channel type. All coil geometry must be in the same coordinate frame as ``origin`` (``head`` or ``meg``). Returns ------- bases : ndarray, shape (n_coils, n_mult_moments) Internal and external basis sets as a single ndarray. Notes ----- Does not incorporate magnetometer scaling factor or normalize spaces. Adapted from code provided by Jukka Nenonen. """ rmags, cosmags, bins, n_coils = all_coils[:4] int_order, ext_order = exp['int_order'], exp['ext_order'] n_in, n_out = _get_n_moments([int_order, ext_order]) rmags = rmags - exp['origin'] # do the heavy lifting max_order = max(int_order, ext_order) L = _tabular_legendre(rmags, max_order) phi = np.arctan2(rmags[:, 1], rmags[:, 0]) r_n = np.sqrt(np.sum(rmags * rmags, axis=1)) r_xy = np.sqrt(rmags[:, 0] * rmags[:, 0] + rmags[:, 1] * rmags[:, 1]) cos_pol = rmags[:, 2] / r_n # cos(theta); theta 0...pi sin_pol = np.sqrt(1. - cos_pol * cos_pol) # sin(theta) z_only = (r_xy <= 1e-16) sin_pol_nz = sin_pol.copy() sin_pol_nz[z_only] = 1. # will be overwritten later r_xy[z_only] = 1. cos_az = rmags[:, 0] / r_xy # cos(phi) cos_az[z_only] = 1. sin_az = rmags[:, 1] / r_xy # sin(phi) sin_az[z_only] = 0. # Appropriate vector spherical harmonics terms # JNE 2012-02-08: modified alm -> 2*alm, blm -> -2*blm r_nn2 = r_n.copy() r_nn1 = 1.0 / (r_n * r_n) S_tot = np.empty((n_coils, n_in + n_out), np.float64) S_in = S_tot[:, :n_in] S_out = S_tot[:, n_in:] for degree in range(max_order + 1): if degree <= ext_order: r_nn1 *= r_n # r^(l-1) if degree <= int_order: r_nn2 *= r_n # r^(l+2) # mu_0*sqrt((2l+1)/4pi (l-m)!/(l+m)!) mult = 2e-7 * np.sqrt((2 * degree + 1) * np.pi) if degree > 0: idx = _deg_ord_idx(degree, 0) # alpha if degree <= int_order: b_r = mult * (degree + 1) * L[degree][0] / r_nn2 b_pol = -mult * L[degree][1] / r_nn2 S_in[:, idx] = _integrate_points( cos_az, sin_az, cos_pol, sin_pol, b_r, 0., b_pol, cosmags, bins, n_coils) # beta if degree <= ext_order: b_r = -mult * degree * L[degree][0] * r_nn1 b_pol = -mult * L[degree][1] * r_nn1 S_out[:, idx] = _integrate_points( cos_az, sin_az, cos_pol, sin_pol, b_r, 0., b_pol, cosmags, bins, n_coils) for order in range(1, degree + 1): ord_phi = order * phi sin_order = np.sin(ord_phi) cos_order = np.cos(ord_phi) mult /= np.sqrt((degree - order + 1) * (degree + order)) factor = mult * np.sqrt(2) # equivalence fix (MF uses 2.) # Real idx = _deg_ord_idx(degree, order) r_fact = factor * L[degree][order] * cos_order az_fact = factor * order * sin_order * L[degree][order] pol_fact = -factor * (L[degree][order + 1] - (degree + order) * (degree - order + 1) * L[degree][order - 1]) * cos_order # alpha if degree <= int_order: b_r = (degree + 1) * r_fact / r_nn2 b_az = az_fact / (sin_pol_nz * r_nn2) b_az[z_only] = 0. b_pol = pol_fact / (2 * r_nn2) S_in[:, idx] = _integrate_points( cos_az, sin_az, cos_pol, sin_pol, b_r, b_az, b_pol, cosmags, bins, n_coils) # beta if degree <= ext_order: b_r = -degree * r_fact * r_nn1 b_az = az_fact * r_nn1 / sin_pol_nz b_az[z_only] = 0. b_pol = pol_fact * r_nn1 / 2. S_out[:, idx] = _integrate_points( cos_az, sin_az, cos_pol, sin_pol, b_r, b_az, b_pol, cosmags, bins, n_coils) # Imaginary idx = _deg_ord_idx(degree, -order) r_fact = factor * L[degree][order] * sin_order az_fact = factor * order * cos_order * L[degree][order] pol_fact = factor * (L[degree][order + 1] - (degree + order) * (degree - order + 1) * L[degree][order - 1]) * sin_order # alpha if degree <= int_order: b_r = -(degree + 1) * r_fact / r_nn2 b_az = az_fact / (sin_pol_nz * r_nn2) b_az[z_only] = 0. b_pol = pol_fact / (2 * r_nn2) S_in[:, idx] = _integrate_points( cos_az, sin_az, cos_pol, sin_pol, b_r, b_az, b_pol, cosmags, bins, n_coils) # beta if degree <= ext_order: b_r = degree * r_fact * r_nn1 b_az = az_fact * r_nn1 / sin_pol_nz b_az[z_only] = 0. b_pol = pol_fact * r_nn1 / 2. S_out[:, idx] = _integrate_points( cos_az, sin_az, cos_pol, sin_pol, b_r, b_az, b_pol, cosmags, bins, n_coils) return S_tot def _integrate_points(cos_az, sin_az, cos_pol, sin_pol, b_r, b_az, b_pol, cosmags, bins, n_coils): """Integrate points in spherical coords.""" grads = _sp_to_cart(cos_az, sin_az, cos_pol, sin_pol, b_r, b_az, b_pol).T grads = (grads * cosmags).sum(axis=1) return bincount(bins, grads, n_coils) def _tabular_legendre(r, nind): """Compute associated Legendre polynomials.""" r_n = np.sqrt(np.sum(r * r, axis=1)) x = r[:, 2] / r_n # cos(theta) L = list() for degree in range(nind + 1): L.append(np.zeros((degree + 2, len(r)))) L[0][0] = 1. pnn = np.ones(x.shape) fact = 1. sx2 = np.sqrt((1. - x) * (1. + x)) for degree in range(nind + 1): L[degree][degree] = pnn pnn *= (-fact * sx2) fact += 2. if degree < nind: L[degree + 1][degree] = x * (2 * degree + 1) * L[degree][degree] if degree >= 2: for order in range(degree - 1): L[degree][order] = (x * (2 * degree - 1) * L[degree - 1][order] - (degree + order - 1) * L[degree - 2][order]) / (degree - order) return L def _sp_to_cart(cos_az, sin_az, cos_pol, sin_pol, b_r, b_az, b_pol): """Convert spherical coords to cartesian.""" out = np.empty((3,) + sin_pol.shape) out[0] = sin_pol * cos_az * b_r + cos_pol * cos_az * b_pol - sin_az * b_az out[1] = sin_pol * sin_az * b_r + cos_pol * sin_az * b_pol + cos_az * b_az out[2] = cos_pol * b_r - sin_pol * b_pol return out def _get_degrees_orders(order): """Get the set of degrees used in our basis functions.""" degrees = np.zeros(_get_n_moments(order), int) orders = np.zeros_like(degrees) for degree in range(1, order + 1): # Only loop over positive orders, negative orders are handled # for efficiency within for order in range(degree + 1): ii = _deg_ord_idx(degree, order) degrees[ii] = degree orders[ii] = order ii = _deg_ord_idx(degree, -order) degrees[ii] = degree orders[ii] = -order return degrees, orders def _alegendre_deriv(order, degree, val): """Compute the derivative of the associated Legendre polynomial at a value. Parameters ---------- order : int Order of spherical harmonic. (Usually) corresponds to 'm'. degree : int Degree of spherical harmonic. (Usually) corresponds to 'l'. val : float Value to evaluate the derivative at. Returns ------- dPlm : float Associated Legendre function derivative """ from scipy.special import lpmv assert order >= 0 return (order * val * lpmv(order, degree, val) + (degree + order) * (degree - order + 1.) * np.sqrt(1. - val * val) * lpmv(order - 1, degree, val)) / (1. - val * val) def _bases_complex_to_real(complex_tot, int_order, ext_order): """Convert complex spherical harmonics to real.""" n_in, n_out = _get_n_moments([int_order, ext_order]) complex_in = complex_tot[:, :n_in] complex_out = complex_tot[:, n_in:] real_tot = np.empty(complex_tot.shape, np.float64) real_in = real_tot[:, :n_in] real_out = real_tot[:, n_in:] for comp, real, exp_order in zip([complex_in, complex_out], [real_in, real_out], [int_order, ext_order]): for deg in range(1, exp_order + 1): for order in range(deg + 1): idx_pos = _deg_ord_idx(deg, order) idx_neg = _deg_ord_idx(deg, -order) real[:, idx_pos] = _sh_complex_to_real(comp[:, idx_pos], order) if order != 0: # This extra mult factor baffles me a bit, but it works # in round-trip testing, so we'll keep it :( mult = (-1 if order % 2 == 0 else 1) real[:, idx_neg] = mult * _sh_complex_to_real( comp[:, idx_neg], -order) return real_tot def _bases_real_to_complex(real_tot, int_order, ext_order): """Convert real spherical harmonics to complex.""" n_in, n_out = _get_n_moments([int_order, ext_order]) real_in = real_tot[:, :n_in] real_out = real_tot[:, n_in:] comp_tot = np.empty(real_tot.shape, np.complex128) comp_in = comp_tot[:, :n_in] comp_out = comp_tot[:, n_in:] for real, comp, exp_order in zip([real_in, real_out], [comp_in, comp_out], [int_order, ext_order]): for deg in range(1, exp_order + 1): # only loop over positive orders, figure out neg from pos for order in range(deg + 1): idx_pos = _deg_ord_idx(deg, order) idx_neg = _deg_ord_idx(deg, -order) this_comp = _sh_real_to_complex([real[:, idx_pos], real[:, idx_neg]], order) comp[:, idx_pos] = this_comp comp[:, idx_neg] = _sh_negate(this_comp, order) return comp_tot def _check_info(info, sss=True, tsss=True, calibration=True, ctc=True): """Ensure that Maxwell filtering has not been applied yet.""" for ent in info['proc_history']: for msg, key, doing in (('SSS', 'sss_info', sss), ('tSSS', 'max_st', tsss), ('fine calibration', 'sss_cal', calibration), ('cross-talk cancellation', 'sss_ctc', ctc)): if not doing: continue if len(ent['max_info'][key]) > 0: raise RuntimeError('Maxwell filtering %s step has already ' 'been applied, cannot reapply' % msg) def _update_sss_info(raw, origin, int_order, ext_order, nchan, coord_frame, sss_ctc, sss_cal, max_st, reg_moments, st_only, recon_trans, extended_proj): """Update info inplace after Maxwell filtering. Parameters ---------- raw : instance of mne.io.Raw Data to be filtered origin : array-like, shape (3,) Origin of internal and external multipolar moment space in head coords (in meters) int_order : int Order of internal component of spherical expansion ext_order : int Order of external component of spherical expansion nchan : int Number of sensors sss_ctc : dict The cross talk information. sss_cal : dict The calibration information. max_st : dict The tSSS information. reg_moments : ndarray | slice The moments that were used. st_only : bool Whether tSSS only was performed. recon_trans : instance of Transformation The reconstruction trans. extended_proj : ndarray Extended external bases. """ n_in, n_out = _get_n_moments([int_order, ext_order]) raw.info['maxshield'] = False components = np.zeros(n_in + n_out + len(extended_proj)).astype('int32') components[reg_moments] = 1 sss_info_dict = dict(in_order=int_order, out_order=ext_order, nchan=nchan, origin=origin.astype('float32'), job=FIFF.FIFFV_SSS_JOB_FILTER, nfree=np.sum(components[:n_in]), frame=_str_to_frame[coord_frame], components=components) max_info_dict = dict(max_st=max_st) if st_only: max_info_dict.update(sss_info=dict(), sss_cal=dict(), sss_ctc=dict()) else: max_info_dict.update(sss_info=sss_info_dict, sss_cal=sss_cal, sss_ctc=sss_ctc) # Reset 'bads' for any MEG channels since they've been reconstructed _reset_meg_bads(raw.info) # set the reconstruction transform raw.info['dev_head_t'] = recon_trans block_id = _generate_meas_id() raw.info['proc_history'].insert(0, dict( max_info=max_info_dict, block_id=block_id, date=DATE_NONE, creator='mne-python v%s' % __version__, experimenter='')) def _reset_meg_bads(info): """Reset MEG bads.""" meg_picks = pick_types(info, meg=True, exclude=[]) info['bads'] = [bad for bad in info['bads'] if info['ch_names'].index(bad) not in meg_picks] check_disable = dict(check_finite=False) def _orth_overwrite(A): """Create a slightly more efficient 'orth'.""" # adapted from scipy/linalg/decomp_svd.py u, s = _safe_svd(A, full_matrices=False, **check_disable)[:2] M, N = A.shape eps = np.finfo(float).eps tol = max(M, N) * np.amax(s) * eps num = np.sum(s > tol, dtype=int) return u[:, :num] def _overlap_projector(data_int, data_res, corr): """Calculate projector for removal of subspace intersection in tSSS.""" # corr necessary to deal with noise when finding identical signal # directions in the subspace. See the end of the Results section in # :footcite:`TauluSimola2006` # Note that the procedure here is an updated version of # :footcite:`TauluSimola2006` (and used in MF's tSSS) that uses residuals # instead of internal/external spaces directly. This provides more degrees # of freedom when analyzing for intersections between internal and # external spaces. # Normalize data, then compute orth to get temporal bases. Matrices # must have shape (n_samps x effective_rank) when passed into svd # computation # we use np.linalg.norm instead of sp.linalg.norm here: ~2x faster! from scipy import linalg n = np.linalg.norm(data_int) n = 1. if n == 0 else n # all-zero data should gracefully continue data_int = _orth_overwrite((data_int / n).T) n = np.linalg.norm(data_res) n = 1. if n == 0 else n data_res = _orth_overwrite((data_res / n).T) if data_int.shape[1] == 0 or data_res.shape[1] == 0: return np.empty((data_int.shape[0], 0)) Q_int = linalg.qr(data_int, overwrite_a=True, mode='economic', **check_disable)[0].T Q_res = linalg.qr(data_res, overwrite_a=True, mode='economic', **check_disable)[0] C_mat = np.dot(Q_int, Q_res) del Q_int # Compute angles between subspace and which bases to keep S_intersect, Vh_intersect = _safe_svd(C_mat, full_matrices=False, **check_disable)[1:] del C_mat intersect_mask = (S_intersect >= corr) del S_intersect # Compute projection operator as (I-LL_T) Eq. 12 in # :footcite:`TauluSimola2006` V_principal should be shape # (n_time_pts x n_retained_inds) Vh_intersect = Vh_intersect[intersect_mask].T V_principal = np.dot(Q_res, Vh_intersect) return V_principal def _prep_fine_cal(info, fine_cal): from ._fine_cal import read_fine_calibration _validate_type(fine_cal, (dict, 'path-like')) if not isinstance(fine_cal, dict): extra = op.basename(str(fine_cal)) fine_cal = read_fine_calibration(fine_cal) else: extra = 'dict' logger.info(f' Using fine calibration {extra}') ch_names = _clean_names(info['ch_names'], remove_whitespace=True) info_to_cal = OrderedDict() missing = list() for ci, name in enumerate(fine_cal['ch_names']): if name not in ch_names: missing.append(name) else: oi = ch_names.index(name) info_to_cal[oi] = ci meg_picks = pick_types(info, meg=True, exclude=[]) if len(info_to_cal) != len(meg_picks): raise RuntimeError( 'Not all MEG channels found in fine calibration file, missing:\n%s' % sorted(list({ch_names[pick] for pick in meg_picks} - set(fine_cal['ch_names'])))) if len(missing): warn('Found cal channel%s not in data: %s' % (_pl(missing), missing)) return info_to_cal, fine_cal, ch_names def _update_sensor_geometry(info, fine_cal, ignore_ref): """Replace sensor geometry information and reorder cal_chs.""" info_to_cal, fine_cal, ch_names = _prep_fine_cal(info, fine_cal) grad_picks = pick_types(info, meg='grad', exclude=()) mag_picks = pick_types(info, meg='mag', exclude=()) # Determine gradiometer imbalances and magnetometer calibrations grad_imbalances = np.array([fine_cal['imb_cals'][info_to_cal[gi]] for gi in grad_picks]).T if grad_imbalances.shape[0] not in [0, 1, 3]: raise ValueError('Must have 1 (x) or 3 (x, y, z) point-like ' + 'magnetometers. Currently have %i' % grad_imbalances.shape[0]) mag_cals = np.array([fine_cal['imb_cals'][info_to_cal[mi]] for mi in mag_picks]) # Now let's actually construct our point-like adjustment coils for grads grad_coilsets = _get_grad_point_coilsets( info, n_types=len(grad_imbalances), ignore_ref=ignore_ref) calibration = dict(grad_imbalances=grad_imbalances, grad_coilsets=grad_coilsets, mag_cals=mag_cals) # Replace sensor locations (and track differences) for fine calibration ang_shift = list() used = np.zeros(len(info['chs']), bool) cal_corrs = list() cal_chans = list() adjust_logged = False for oi, ci in info_to_cal.items(): assert not used[oi] used[oi] = True info_ch = info['chs'][oi] ch_num = int(fine_cal['ch_names'][ci].lstrip('MEG').lstrip('0')) cal_chans.append([ch_num, info_ch['coil_type']]) # Some .dat files might only rotate EZ, so we must check first that # EX and EY are orthogonal to EZ. If not, we find the rotation between # the original and fine-cal ez, and rotate EX and EY accordingly: ch_coil_rot = _loc_to_coil_trans(info_ch['loc'])[:3, :3] cal_loc = fine_cal['locs'][ci].copy() cal_coil_rot = _loc_to_coil_trans(cal_loc)[:3, :3] if np.max([np.abs(np.dot(cal_coil_rot[:, ii], cal_coil_rot[:, 2])) for ii in range(2)]) > 1e-6: # X or Y not orthogonal if not adjust_logged: logger.info(' Adjusting non-orthogonal EX and EY') adjust_logged = True # find the rotation matrix that goes from one to the other this_trans = _find_vector_rotation( ch_coil_rot[:, 2], cal_coil_rot[:, 2]) cal_loc[3:] = np.dot(this_trans, ch_coil_rot).T.ravel() # calculate shift angle v1 = _loc_to_coil_trans(cal_loc)[:3, :3] _normalize_vectors(v1) v2 = _loc_to_coil_trans(info_ch['loc'])[:3, :3] _normalize_vectors(v2) ang_shift.append(np.sum(v1 * v2, axis=0)) if oi in grad_picks: extra = [1., fine_cal['imb_cals'][ci][0]] else: extra = [fine_cal['imb_cals'][ci][0], 0.] cal_corrs.append(np.concatenate([extra, cal_loc])) # Adjust channel normal orientations with those from fine calibration # Channel positions are not changed info_ch['loc'][3:] = cal_loc[3:] assert (info_ch['coord_frame'] == FIFF.FIFFV_COORD_DEVICE) meg_picks = pick_types(info, meg=True, exclude=()) assert used[meg_picks].all() assert not used[np.setdiff1d(np.arange(len(used)), meg_picks)].any() # This gets written to the Info struct sss_cal = dict(cal_corrs=np.array(cal_corrs), cal_chans=np.array(cal_chans)) # Log quantification of sensor changes # Deal with numerical precision giving absolute vals slightly more than 1. ang_shift = np.array(ang_shift) np.clip(ang_shift, -1., 1., ang_shift) np.rad2deg(np.arccos(ang_shift), ang_shift) # Convert to degrees logger.info(' Adjusted coil positions by (μ ± σ): ' '%0.1f° ± %0.1f° (max: %0.1f°)' % (np.mean(ang_shift), np.std(ang_shift), np.max(np.abs(ang_shift)))) return calibration, sss_cal def _get_grad_point_coilsets(info, n_types, ignore_ref): """Get point-type coilsets for gradiometers.""" _rotations = dict( x=np.array([[0, 0, 1, 0], [0, 1, 0, 0], [1, 0, 0, 0], [0, 0, 0, 1.]]), y=np.array([[1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 1.]]), z=np.eye(4)) grad_coilsets = list() grad_picks = pick_types(info, meg='grad', exclude=[]) if len(grad_picks) == 0: return grad_coilsets grad_info = pick_info(_simplify_info(info), grad_picks) # Coil_type values for x, y, z point magnetometers # Note: 1D correction files only have x-direction corrections for ch in grad_info['chs']: ch['coil_type'] = FIFF.FIFFV_COIL_POINT_MAGNETOMETER orig_locs = [ch['loc'].copy() for ch in grad_info['chs']] for rot in 'xyz'[:n_types]: # Rotate the Z magnetometer orientation to the destination orientation for ci, ch in enumerate(grad_info['chs']): ch['loc'][3:] = _coil_trans_to_loc(np.dot( _loc_to_coil_trans(orig_locs[ci]), _rotations[rot]))[3:] grad_coilsets.append(_prep_mf_coils(grad_info, ignore_ref)) return grad_coilsets def _sss_basis_point(exp, trans, cal, ignore_ref=False, mag_scale=100.): """Compute multipolar moments for point-like mags (in fine cal).""" # Loop over all coordinate directions desired and create point mags S_tot = 0. # These are magnetometers, so use a uniform coil_scale of 100. this_cs = np.array([mag_scale], float) for imb, coils in zip(cal['grad_imbalances'], cal['grad_coilsets']): S_add = _trans_sss_basis(exp, coils, trans, this_cs) # Scale spaces by gradiometer imbalance S_add *= imb[:, np.newaxis] S_tot += S_add # Return point-like mag bases return S_tot def _regularize_out(int_order, ext_order, mag_or_fine, extended_remove): """Regularize out components based on norm.""" n_in = _get_n_moments(int_order) remove_homog = ext_order > 0 and not mag_or_fine.any() return list(range(n_in, n_in + 3 * remove_homog)) + extended_remove def _regularize_in(int_order, ext_order, S_decomp, mag_or_fine, extended_remove): """Regularize basis set using idealized SNR measure.""" n_in, n_out = _get_n_moments([int_order, ext_order]) # The "signal" terms depend only on the inner expansion order # (i.e., not sensor geometry or head position / expansion origin) a_lm_sq, rho_i = _compute_sphere_activation_in( np.arange(int_order + 1)) degrees, orders = _get_degrees_orders(int_order) a_lm_sq = a_lm_sq[degrees] I_tots = np.zeros(n_in) # we might not traverse all, so use np.zeros in_keepers = list(range(n_in)) out_removes = _regularize_out(int_order, ext_order, mag_or_fine, extended_remove) out_keepers = list(np.setdiff1d(np.arange(n_in, S_decomp.shape[1]), out_removes)) remove_order = [] S_decomp = S_decomp.copy() use_norm = np.sqrt(np.sum(S_decomp * S_decomp, axis=0)) S_decomp /= use_norm eigs = np.zeros((n_in, 2)) # plot = False # for debugging # if plot: # import matplotlib.pyplot as plt # fig, axs = plt.subplots(3, figsize=[6, 12]) # plot_ord = np.empty(n_in, int) # plot_ord.fill(-1) # count = 0 # # Reorder plot to match MF # for degree in range(1, int_order + 1): # for order in range(0, degree + 1): # assert plot_ord[count] == -1 # plot_ord[count] = _deg_ord_idx(degree, order) # count += 1 # if order > 0: # assert plot_ord[count] == -1 # plot_ord[count] = _deg_ord_idx(degree, -order) # count += 1 # assert count == n_in # assert (plot_ord >= 0).all() # assert len(np.unique(plot_ord)) == n_in noise_lev = 5e-13 # noise level in T/m noise_lev *= noise_lev # effectively what would happen by earlier multiply for ii in range(n_in): this_S = S_decomp.take(in_keepers + out_keepers, axis=1) u, s, v = _safe_svd(this_S, full_matrices=False, **check_disable) del this_S eigs[ii] = s[[0, -1]] v = v.T[:len(in_keepers)] v /= use_norm[in_keepers][:, np.newaxis] eta_lm_sq = np.dot(v * 1. / s, u.T) del u, s, v eta_lm_sq *= eta_lm_sq eta_lm_sq = eta_lm_sq.sum(axis=1) eta_lm_sq *= noise_lev # Mysterious scale factors to match MF, likely due to differences # in the basis normalizations... eta_lm_sq[orders[in_keepers] == 0] *= 2 eta_lm_sq *= 0.0025 snr = a_lm_sq[in_keepers] / eta_lm_sq I_tots[ii] = 0.5 * np.log2(snr + 1.).sum() remove_order.append(in_keepers[np.argmin(snr)]) in_keepers.pop(in_keepers.index(remove_order[-1])) # heuristic to quit if we're past the peak to save cycles if ii > 10 and (I_tots[ii - 1:ii + 1] < 0.95 * I_tots.max()).all(): break # if plot and ii == 0: # axs[0].semilogy(snr[plot_ord[in_keepers]], color='k') # if plot: # axs[0].set(ylabel='SNR', ylim=[0.1, 500], xlabel='Component') # axs[1].plot(I_tots) # axs[1].set(ylabel='Information', xlabel='Iteration') # axs[2].plot(eigs[:, 0] / eigs[:, 1]) # axs[2].set(ylabel='Condition', xlabel='Iteration') # Pick the components that give at least 98% of max info # This is done because the curves can be quite flat, and we err on the # side of including rather than excluding components max_info = np.max(I_tots) lim_idx = np.where(I_tots >= 0.98 * max_info)[0][0] in_removes = remove_order[:lim_idx] for ii, ri in enumerate(in_removes): logger.debug(' Condition %0.3f/%0.3f = %03.1f, ' 'Removing in component %s: l=%s, m=%+0.0f' % (tuple(eigs[ii]) + (eigs[ii, 0] / eigs[ii, 1], ri, degrees[ri], orders[ri]))) logger.debug(' Resulting information: %0.1f bits/sample ' '(%0.1f%% of peak %0.1f)' % (I_tots[lim_idx], 100 * I_tots[lim_idx] / max_info, max_info)) return in_removes, out_removes def _compute_sphere_activation_in(degrees): u"""Compute the "in" power from random currents in a sphere. Parameters ---------- degrees : ndarray The degrees to evaluate. Returns ------- a_power : ndarray The a_lm associated for the associated degrees (see :footcite:`KnuutilaEtAl1993`). rho_i : float The current density. References ---------- .. footbibliography:: """ r_in = 0.080 # radius of the randomly-activated sphere # set the observation point r=r_s, az=el=0, so we can just look at m=0 term # compute the resulting current density rho_i # This is the "surface" version of the equation: # b_r_in = 100e-15 # fixed radial field amplitude at distance r_s = 100 fT # r_s = 0.13 # 5 cm from the surface # rho_degrees = np.arange(1, 100) # in_sum = (rho_degrees * (rho_degrees + 1.) / # ((2. * rho_degrees + 1.)) * # (r_in / r_s) ** (2 * rho_degrees + 2)).sum() * 4. * np.pi # rho_i = b_r_in * 1e7 / np.sqrt(in_sum) # rho_i = 5.21334885574e-07 # value for r_s = 0.125 rho_i = 5.91107375632e-07 # deterministic from above, so just store it a_power = _sq(rho_i) * (degrees * r_in ** (2 * degrees + 4) / (_sq(2. * degrees + 1.) * (degrees + 1.))) return a_power, rho_i def _trans_sss_basis(exp, all_coils, trans=None, coil_scale=100.): """Compute SSS basis (optionally) using a dev<->head trans.""" if trans is not None: if not isinstance(trans, Transform): trans = Transform('meg', 'head', trans) assert not np.isnan(trans['trans']).any() all_coils = (apply_trans(trans, all_coils[0]), apply_trans(trans, all_coils[1], move=False), ) + all_coils[2:] if not isinstance(coil_scale, np.ndarray): # Scale all magnetometers (with `coil_class` == 1.0) by `mag_scale` cs = coil_scale coil_scale = np.ones((all_coils[3], 1)) coil_scale[all_coils[4]] = cs S_tot = _sss_basis(exp, all_coils) S_tot *= coil_scale return S_tot # intentionally omitted: st_duration, st_correlation, destination, st_fixed, # st_only @verbose def find_bad_channels_maxwell( raw, limit=7., duration=5., min_count=5, return_scores=False, origin='auto', int_order=8, ext_order=3, calibration=None, cross_talk=None, coord_frame='head', regularize='in', ignore_ref=False, bad_condition='error', head_pos=None, mag_scale=100., skip_by_annotation=('edge', 'bad_acq_skip'), h_freq=40.0, extended_proj=(), verbose=None): r"""Find bad channels using Maxwell filtering. Parameters ---------- raw : instance of Raw Raw data to process. limit : float Detection limit for noisy segments (default is 7.). Smaller values will find more bad channels at increased risk of including good ones. This value can be interpreted as the standard score of differences between the original and Maxwell-filtered data. See the ``Notes`` section for details. .. note:: This setting only concerns *noisy* channel detection. The limit for *flat* channel detection currently cannot be controlled by the user. Flat channel detection is always run before noisy channel detection. duration : float Duration of the segments into which to slice the data for processing, in seconds. Default is 5. min_count : int Minimum number of times a channel must show up as bad in a chunk. Default is 5. return_scores : bool If ``True``, return a dictionary with scoring information for each evaluated segment of the data. Default is ``False``. .. warning:: This feature is experimental and may change in a future version of MNE-Python without prior notice. Please report any problems and enhancement proposals to the developers. .. versionadded:: 0.21 %(maxwell_origin)s %(maxwell_int)s %(maxwell_ext)s %(maxwell_cal)s %(maxwell_cross)s %(maxwell_coord)s %(maxwell_reg)s %(maxwell_ref)s %(maxwell_cond)s %(maxwell_pos)s %(maxwell_mag)s %(maxwell_skip)s h_freq : float | None The cutoff frequency (in Hz) of the low-pass filter that will be applied before processing the data. This defaults to ``40.``, which should provide similar results to MaxFilter. If you do not wish to apply a filter, set this to ``None``. %(maxwell_extended)s %(verbose)s Returns ------- noisy_chs : list List of bad MEG channels that were automatically detected as being noisy among the good MEG channels. flat_chs : list List of MEG channels that were detected as being flat in at least ``min_count`` segments. scores : dict A dictionary with information produced by the scoring algorithms. Only returned when ``return_scores`` is ``True``. It contains the following keys: - ``ch_names`` : ndarray, shape (n_meg,) The names of the MEG channels. Their order corresponds to the order of rows in the ``scores`` and ``limits`` arrays. - ``ch_types`` : ndarray, shape (n_meg,) The types of the MEG channels in ``ch_names`` (``'mag'``, ``'grad'``). - ``bins`` : ndarray, shape (n_windows, 2) The inclusive window boundaries (start and stop; in seconds) used to calculate the scores. - ``scores_flat`` : ndarray, shape (n_meg, n_windows) The scores for testing whether MEG channels are flat. These values correspond to the standard deviation of a segment. See the ``Notes`` section for details. - ``limits_flat`` : ndarray, shape (n_meg, 1) The score thresholds (in standard deviation) above which a segment was classified as "flat". - ``scores_noisy`` : ndarray, shape (n_meg, n_windows) The scores for testing whether MEG channels are noisy. These values correspond to the standard score of a segment. See the ``Notes`` section for details. - ``limits_noisy`` : ndarray, shape (n_meg, 1) The score thresholds (in standard scores) above which a segment was classified as "noisy". .. note:: The scores and limits for channels marked as ``bad`` in the input data will be set to ``np.nan``. See Also -------- annotate_flat maxwell_filter Notes ----- All arguments after ``raw``, ``limit``, ``duration``, ``min_count``, and ``return_scores`` are the same as :func:`~maxwell_filter`, except that the following are not allowed in this function because they are unused: ``st_duration``, ``st_correlation``, ``destination``, ``st_fixed``, and ``st_only``. This algorithm, for a given chunk of data: 1. Runs SSS on the data, without removing external components. 2. Excludes channels as *flat* that have had low variability (standard deviation < 0.01 fT or fT/cm in a 30 ms window) in the given or any previous chunk. 3. For each channel :math:`k`, computes the *range* or peak-to-peak :math:`d_k` of the difference between the reconstructed and original data. 4. Computes the average :math:`\mu_d` and standard deviation :math:`\sigma_d` of the differences (after scaling magnetometer data to roughly match the scale of the gradiometer data using ``mag_scale``). 5. Marks channels as bad for the chunk when :math:`d_k > \mu_d + \textrm{limit} \times \sigma_d`. Note that this expression can be easily transformed into :math:`(d_k - \mu_d) / \sigma_d > \textrm{limit}`, which is equivalent to :math:`z(d_k) > \textrm{limit}`, with :math:`z(d_k)` being the standard or z-score of the difference. Data are processed in chunks of the given ``duration``, and channels that are bad for at least ``min_count`` chunks are returned. Channels marked as *flat* in step 2 are excluded from all subsequent steps of noisy channel detection. This algorithm gives results similar to, but not identical with, MaxFilter. Differences arise because MaxFilter processes on a buffer-by-buffer basis (using buffer-size-dependent downsampling logic), uses different filtering characteristics, and possibly other factors. Channels that are near the ``limit`` for a given ``min_count`` are particularly susceptible to being different between the two implementations. .. versionadded:: 0.20 """ if h_freq is not None: if raw.info.get('lowpass') and raw.info['lowpass'] < h_freq: msg = (f'The input data has already been low-pass filtered with a ' f'{raw.info["lowpass"]} Hz cutoff frequency, which is ' f'below the requested cutoff of {h_freq} Hz. Not applying ' f'low-pass filter.') logger.info(msg) else: logger.info(f'Applying low-pass filter with {h_freq} Hz cutoff ' f'frequency ...') raw = raw.copy().load_data().filter(l_freq=None, h_freq=h_freq) limit = float(limit) onsets, ends = _annotations_starts_stops( raw, skip_by_annotation, invert=True) del skip_by_annotation # operate on chunks starts = list() stops = list() step = int(round(raw.info['sfreq'] * duration)) for onset, end in zip(onsets, ends): if end - onset >= step: ss = np.arange(onset, end - step + 1, step) starts.extend(ss) ss = ss + step ss[-1] = end stops.extend(ss) min_count = min(_ensure_int(min_count, 'min_count'), len(starts)) logger.info('Scanning for bad channels in %d interval%s (%0.1f sec) ...' % (len(starts), _pl(starts), step / raw.info['sfreq'])) params = _prep_maxwell_filter( raw, skip_by_annotation=[], # already accounted for origin=origin, int_order=int_order, ext_order=ext_order, calibration=calibration, cross_talk=cross_talk, coord_frame=coord_frame, regularize=regularize, ignore_ref=ignore_ref, bad_condition=bad_condition, head_pos=head_pos, mag_scale=mag_scale, extended_proj=extended_proj) del origin, int_order, ext_order, calibration, cross_talk, coord_frame del regularize, ignore_ref, bad_condition, head_pos, mag_scale good_meg_picks = params['meg_picks'][params['good_mask']] assert len(params['meg_picks']) == len(params['coil_scale']) assert len(params['good_mask']) == len(params['meg_picks']) noisy_chs = Counter() flat_chs = Counter() flat_limits = dict(grad=0.01e-13, mag=0.01e-15) these_limits = np.array([ flat_limits['grad'] if pick in params['grad_picks'] else flat_limits['mag'] for pick in good_meg_picks]) flat_step = max(20, int(30 * raw.info['sfreq'] / 1000.)) all_flats = set() # Prepare variables to return if `return_scores=True`. bins = np.empty((len(starts), 2)) # To store start, stop of each segment # We create ndarrays with one row per channel, regardless of channel type # and whether the channel has been marked as "bad" in info or not. This # makes indexing in the loop easier. We only filter this down to the subset # of MEG channels after all processing is done. ch_names = np.array(raw.ch_names) ch_types = np.array(raw.get_channel_types()) scores_flat = np.full((len(ch_names), len(starts)), np.nan) scores_noisy = np.full_like(scores_flat, fill_value=np.nan) thresh_flat = np.full((len(ch_names), 1), np.nan) thresh_noisy = np.full_like(thresh_flat, fill_value=np.nan) for si, (start, stop) in enumerate(zip(starts, stops)): n_iter = 0 orig_data = raw.get_data(None, start, stop, verbose=False) chunk_raw = RawArray( orig_data, params['info'], first_samp=raw.first_samp + start, copy='data', verbose=False) t = chunk_raw.times[[0, -1]] + start / raw.info['sfreq'] logger.info(' Interval %3d: %8.3f - %8.3f' % ((si + 1,) + tuple(t[[0, -1]]))) # Flat pass: SD < 0.01 fT/cm or 0.01 fT for at 30 ms (or 20 samples) n = stop - start flat_stop = n - (n % flat_step) data = chunk_raw.get_data(good_meg_picks, 0, flat_stop) data.shape = (data.shape[0], -1, flat_step) delta = np.std(data, axis=-1).min(-1) # min std across segments # We may want to return this later if `return_scores=True`. bins[si, :] = t[0], t[-1] scores_flat[good_meg_picks, si] = delta thresh_flat[good_meg_picks] = these_limits.reshape(-1, 1) chunk_flats = delta < these_limits chunk_flats = np.where(chunk_flats)[0] chunk_flats = [raw.ch_names[good_meg_picks[chunk_flat]] for chunk_flat in chunk_flats] flat_chs.update(chunk_flats) all_flats |= set(chunk_flats) chunk_flats = sorted(all_flats) these_picks = [pick for pick in good_meg_picks if raw.ch_names[pick] not in chunk_flats] # Bad pass chunk_noisy = list() params['st_duration'] = int(round( chunk_raw.times[-1] * raw.info['sfreq'])) for n_iter in range(1, 101): # iteratively exclude the worst ones assert set(raw.info['bads']) & set(chunk_noisy) == set() params['good_mask'][:] = [ chunk_raw.ch_names[pick] not in raw.info['bads'] + chunk_noisy + chunk_flats for pick in params['meg_picks']] chunk_raw._data[:] = orig_data delta = chunk_raw.get_data(these_picks) with use_log_level(False): _run_maxwell_filter( chunk_raw, reconstruct='orig', copy=False, **params) if n_iter == 1 and len(chunk_flats): logger.info(' Flat (%2d): %s' % (len(chunk_flats), ' '.join(chunk_flats))) delta -= chunk_raw.get_data(these_picks) # p2p range_ = np.ptp(delta, axis=-1) cs_picks = np.searchsorted(params['meg_picks'], these_picks) range_ *= params['coil_scale'][cs_picks, 0] mean, std = np.mean(range_), np.std(range_) # z score z = (range_ - mean) / std idx = np.argmax(z) max_ = z[idx] # We may want to return this later if `return_scores=True`. scores_noisy[these_picks, si] = z thresh_noisy[these_picks] = limit if max_ < limit: break name = raw.ch_names[these_picks[idx]] logger.debug(' Bad: %s %0.1f' % (name, max_)) these_picks.pop(idx) chunk_noisy.append(name) noisy_chs.update(chunk_noisy) noisy_chs = sorted((b for b, c in noisy_chs.items() if c >= min_count), key=lambda x: raw.ch_names.index(x)) flat_chs = sorted((f for f, c in flat_chs.items() if c >= min_count), key=lambda x: raw.ch_names.index(x)) # Only include MEG channels. ch_names = ch_names[params['meg_picks']] ch_types = ch_types[params['meg_picks']] scores_flat = scores_flat[params['meg_picks']] thresh_flat = thresh_flat[params['meg_picks']] scores_noisy = scores_noisy[params['meg_picks']] thresh_noisy = thresh_noisy[params['meg_picks']] logger.info(' Static bad channels: %s' % (noisy_chs,)) logger.info(' Static flat channels: %s' % (flat_chs,)) logger.info('[done]') if return_scores: scores = dict(ch_names=ch_names, ch_types=ch_types, bins=bins, scores_flat=scores_flat, limits_flat=thresh_flat, scores_noisy=scores_noisy, limits_noisy=thresh_noisy) return noisy_chs, flat_chs, scores else: return noisy_chs, flat_chs def _read_cross_talk(cross_talk, ch_names): sss_ctc = dict() ctc = None if cross_talk is not None: sss_ctc = _read_ctc(cross_talk) ctc_chs = sss_ctc['proj_items_chs'] # checking for extra space ambiguity in channel names # between old and new fif files if ch_names[0] not in ctc_chs: ctc_chs = _clean_names(ctc_chs, remove_whitespace=True) ch_names = _clean_names(ch_names, remove_whitespace=True) missing = sorted(list(set(ch_names) - set(ctc_chs))) if len(missing) != 0: raise RuntimeError('Missing MEG channels in cross-talk matrix:\n%s' % missing) missing = sorted(list(set(ctc_chs) - set(ch_names))) if len(missing) > 0: warn('Not all cross-talk channels in raw:\n%s' % missing) ctc_picks = [ctc_chs.index(name) for name in ch_names] ctc = sss_ctc['decoupler'][ctc_picks][:, ctc_picks] # I have no idea why, but MF transposes this for storage.. sss_ctc['decoupler'] = sss_ctc['decoupler'].T.tocsc() return ctc, sss_ctc @verbose def compute_maxwell_basis(info, origin='auto', int_order=8, ext_order=3, calibration=None, coord_frame='head', regularize='in', ignore_ref=True, bad_condition='error', mag_scale=100., extended_proj=(), verbose=None): r"""Compute the SSS basis for a given measurement info structure. Parameters ---------- info : instance of Info The measurement info. %(maxwell_origin)s %(maxwell_int)s %(maxwell_ext)s %(maxwell_cal)s %(maxwell_coord)s %(maxwell_reg)s %(maxwell_ref)s %(maxwell_cond)s %(maxwell_mag)s %(maxwell_extended)s %(verbose)s Returns ------- S : ndarray, shape (n_meg, n_moments) The basis that can be used to reconstruct the data. pS : ndarray, shape (n_moments, n_good_meg) The (stabilized) pseudoinverse of the S array. reg_moments : ndarray, shape (n_moments,) The moments that were kept after regularization. n_use_in : int The number of kept moments that were in the internal space. Notes ----- This outputs variants of :math:`\mathbf{S}` and :math:`\mathbf{S^\dagger}` from equations 27 and 37 of :footcite:`TauluKajola2005` with the coil scale for magnetometers already factored in so that the resulting denoising transform of the data to obtain :math:`\hat{\phi}_{in}` from equation 38 would be:: phi_in = S[:, :n_use_in] @ pS[:n_use_in] @ data_meg_good .. versionadded:: 0.23 References ---------- .. footbibliography:: """ from ..io import RawArray _validate_type(info, Info, 'info') raw = RawArray(np.zeros((len(info['ch_names']), 1)), info.copy(), verbose=False) logger.info('Computing Maxwell basis') params = _prep_maxwell_filter( raw=raw, origin=origin, int_order=int_order, ext_order=ext_order, calibration=calibration, coord_frame=coord_frame, destination=None, regularize=regularize, ignore_ref=ignore_ref, bad_condition=bad_condition, mag_scale=mag_scale, extended_proj=extended_proj) _, S_decomp_full, pS_decomp, reg_moments, n_use_in = \ params['_get_this_decomp_trans'](info['dev_head_t'], t=0.) return S_decomp_full, pS_decomp, reg_moments, n_use_in
bsd-3-clause
Reagankm/KnockKnock
venv/lib/python3.4/site-packages/matplotlib/delaunay/interpolate.py
21
7262
from __future__ import (absolute_import, division, print_function, unicode_literals) import six import numpy as np from matplotlib._delaunay import compute_planes, linear_interpolate_grid from matplotlib._delaunay import nn_interpolate_grid from matplotlib._delaunay import nn_interpolate_unstructured __all__ = ['LinearInterpolator', 'NNInterpolator'] def slice2gridspec(key): """Convert a 2-tuple of slices to start,stop,steps for x and y. key -- (slice(ystart,ystop,ystep), slice(xtart, xstop, xstep)) For now, the only accepted step values are imaginary integers (interpreted in the same way numpy.mgrid, etc. do). """ if ((len(key) != 2) or (not isinstance(key[0], slice)) or (not isinstance(key[1], slice))): raise ValueError("only 2-D slices, please") x0 = key[1].start x1 = key[1].stop xstep = key[1].step if not isinstance(xstep, complex) or int(xstep.real) != xstep.real: raise ValueError("only the [start:stop:numsteps*1j] form supported") xstep = int(xstep.imag) y0 = key[0].start y1 = key[0].stop ystep = key[0].step if not isinstance(ystep, complex) or int(ystep.real) != ystep.real: raise ValueError("only the [start:stop:numsteps*1j] form supported") ystep = int(ystep.imag) return x0, x1, xstep, y0, y1, ystep class LinearInterpolator(object): """Interpolate a function defined on the nodes of a triangulation by using the planes defined by the three function values at each corner of the triangles. LinearInterpolator(triangulation, z, default_value=numpy.nan) triangulation -- Triangulation instance z -- the function values at each node of the triangulation default_value -- a float giving the default value should the interpolating point happen to fall outside of the convex hull of the triangulation At the moment, the only regular rectangular grids are supported for interpolation. vals = interp[ystart:ystop:ysteps*1j, xstart:xstop:xsteps*1j] vals would then be a (ysteps, xsteps) array containing the interpolated values. These arguments are interpreted the same way as numpy.mgrid. Attributes: planes -- (ntriangles, 3) array of floats specifying the plane for each triangle. Linear Interpolation -------------------- Given the Delauany triangulation (or indeed *any* complete triangulation) we can interpolate values inside the convex hull by locating the enclosing triangle of the interpolation point and returning the value at that point of the plane defined by the three node values. f = planes[tri,0]*x + planes[tri,1]*y + planes[tri,2] The interpolated function is C0 continuous across the convex hull of the input points. It is C1 continuous across the convex hull except for the nodes and the edges of the triangulation. """ def __init__(self, triangulation, z, default_value=np.nan): self.triangulation = triangulation self.z = np.asarray(z, dtype=np.float64) self.default_value = default_value self.planes = compute_planes(triangulation.x, triangulation.y, self.z, triangulation.triangle_nodes) def __getitem__(self, key): x0, x1, xstep, y0, y1, ystep = slice2gridspec(key) grid = linear_interpolate_grid( x0, x1, xstep, y0, y1, ystep, self.default_value, self.planes, self.triangulation.x, self.triangulation.y, self.triangulation.triangle_nodes, self.triangulation.triangle_neighbors) return grid class NNInterpolator(object): """Interpolate a function defined on the nodes of a triangulation by the natural neighbors method. NNInterpolator(triangulation, z, default_value=numpy.nan) triangulation -- Triangulation instance z -- the function values at each node of the triangulation default_value -- a float giving the default value should the interpolating point happen to fall outside of the convex hull of the triangulation At the moment, the only regular rectangular grids are supported for interpolation. vals = interp[ystart:ystop:ysteps*1j, xstart:xstop:xsteps*1j] vals would then be a (ysteps, xsteps) array containing the interpolated values. These arguments are interpreted the same way as numpy.mgrid. Natural Neighbors Interpolation ------------------------------- One feature of the Delaunay triangulation is that for each triangle, its circumcircle contains no other point (although in degenerate cases, like squares, other points may be *on* the circumcircle). One can also construct what is called the Voronoi diagram from a Delaunay triangulation by connecting the circumcenters of the triangles to those of their neighbors to form a tesselation of irregular polygons covering the plane and containing only one node from the triangulation. Each point in one node's Voronoi polygon is closer to that node than any other node. To compute the Natural Neighbors interpolant, we consider adding the interpolation point to the triangulation. We define the natural neighbors of this point as the set of nodes participating in Delaunay triangles whose circumcircles contain the point. To restore the Delaunay-ness of the triangulation, one would only have to alter those triangles and Voronoi polygons. The new Voronoi diagram would have a polygon around the inserted point. This polygon would "steal" area from the original Voronoi polygons. For each node i in the natural neighbors set, we compute the area stolen from its original Voronoi polygon, stolen[i]. We define the natural neighbors coordinates phi[i] = stolen[i] / sum(stolen,axis=0) We then use these phi[i] to weight the corresponding function values from the input data z to compute the interpolated value. The interpolated surface is C1-continuous except at the nodes themselves across the convex hull of the input points. One can find the set of points that a given node will affect by computing the union of the areas covered by the circumcircles of each Delaunay triangle that node participates in. """ def __init__(self, triangulation, z, default_value=np.nan): self.triangulation = triangulation self.z = np.asarray(z, dtype=np.float64) self.default_value = default_value def __getitem__(self, key): x0, x1, xstep, y0, y1, ystep = slice2gridspec(key) grid = nn_interpolate_grid( x0, x1, xstep, y0, y1, ystep, self.default_value, self.triangulation.x, self.triangulation.y, self.z, self.triangulation.circumcenters, self.triangulation.triangle_nodes, self.triangulation.triangle_neighbors) return grid def __call__(self, intx, inty): intz = nn_interpolate_unstructured(intx, inty, self.default_value, self.triangulation.x, self.triangulation.y, self.z, self.triangulation.circumcenters, self.triangulation.triangle_nodes, self.triangulation.triangle_neighbors) return intz
gpl-2.0
mikofski/pvlib-python
pvlib/tests/test_inverter.py
1
7415
import numpy as np import pandas as pd from conftest import assert_series_equal from numpy.testing import assert_allclose from conftest import DATA_DIR import pytest from pvlib import inverter def test_adr(adr_inverter_parameters): vdcs = pd.Series([135, 154, 390, 420, 551]) pdcs = pd.Series([135, 1232, 1170, 420, 551]) pacs = inverter.adr(vdcs, pdcs, adr_inverter_parameters) assert_series_equal(pacs, pd.Series([np.nan, 1161.5745, 1116.4459, 382.6679, np.nan])) def test_adr_vtol(adr_inverter_parameters): vdcs = pd.Series([135, 154, 390, 420, 551]) pdcs = pd.Series([135, 1232, 1170, 420, 551]) pacs = inverter.adr(vdcs, pdcs, adr_inverter_parameters, vtol=0.20) assert_series_equal(pacs, pd.Series([104.8223, 1161.5745, 1116.4459, 382.6679, 513.3385])) def test_adr_float(adr_inverter_parameters): vdcs = 154. pdcs = 1232. pacs = inverter.adr(vdcs, pdcs, adr_inverter_parameters) assert_allclose(pacs, 1161.5745) def test_adr_invalid_and_night(sam_data): # also tests if inverter.adr can read the output from pvsystem.retrieve_sam inverters = sam_data['adrinverter'] testinv = 'Zigor__Sunzet_3_TL_US_240V__CEC_2011_' vdcs = np.array([39.873036, 0., np.nan, 420]) pdcs = np.array([188.09182, 0., 420, np.nan]) pacs = inverter.adr(vdcs, pdcs, inverters[testinv]) assert_allclose(pacs, np.array([np.nan, -0.25, np.nan, np.nan])) def test_sandia(cec_inverter_parameters): vdcs = pd.Series(np.linspace(0, 50, 3)) idcs = pd.Series(np.linspace(0, 11, 3)) pdcs = idcs * vdcs pacs = inverter.sandia(vdcs, pdcs, cec_inverter_parameters) assert_series_equal(pacs, pd.Series([-0.020000, 132.004308, 250.000000])) def test_sandia_float(cec_inverter_parameters): vdcs = 25. idcs = 5.5 pdcs = idcs * vdcs pacs = inverter.sandia(vdcs, pdcs, cec_inverter_parameters) assert_allclose(pacs, 132.004278, 5) # test at low power condition vdcs = 25. idcs = 0 pdcs = idcs * vdcs pacs = inverter.sandia(vdcs, pdcs, cec_inverter_parameters) assert_allclose(pacs, -1. * cec_inverter_parameters['Pnt'], 5) def test_sandia_Pnt_micro(): """ Test for issue #140, where some microinverters were giving a positive AC power output when the DC power was 0. """ inverter_parameters = { 'Name': 'Enphase Energy: M250-60-2LL-S2x (-ZC) (-NA) 208V [CEC 2013]', 'Vac': 208.0, 'Paco': 240.0, 'Pdco': 250.5311318, 'Vdco': 32.06160667, 'Pso': 1.12048857, 'C0': -5.76E-05, 'C1': -6.24E-04, 'C2': 8.09E-02, 'C3': -0.111781106, 'Pnt': 0.043, 'Vdcmax': 48.0, 'Idcmax': 9.8, 'Mppt_low': 27.0, 'Mppt_high': 39.0, } vdcs = pd.Series(np.linspace(0, 50, 3)) idcs = pd.Series(np.linspace(0, 11, 3)) pdcs = idcs * vdcs pacs = inverter.sandia(vdcs, pdcs, inverter_parameters) assert_series_equal(pacs, pd.Series([-0.043, 132.545914746, 240.0])) def test_sandia_multi(cec_inverter_parameters): vdcs = pd.Series(np.linspace(0, 50, 3)) idcs = pd.Series(np.linspace(0, 11, 3)) / 2 pdcs = idcs * vdcs pacs = inverter.sandia_multi((vdcs, vdcs), (pdcs, pdcs), cec_inverter_parameters) assert_series_equal(pacs, pd.Series([-0.020000, 132.004308, 250.000000])) # with lists instead of tuples pacs = inverter.sandia_multi([vdcs, vdcs], [pdcs, pdcs], cec_inverter_parameters) assert_series_equal(pacs, pd.Series([-0.020000, 132.004308, 250.000000])) # with arrays instead of tuples pacs = inverter.sandia_multi(np.array([vdcs, vdcs]), np.array([pdcs, pdcs]), cec_inverter_parameters) assert_series_equal(pacs, pd.Series([-0.020000, 132.004308, 250.000000])) def test_sandia_multi_length_error(cec_inverter_parameters): vdcs = pd.Series(np.linspace(0, 50, 3)) idcs = pd.Series(np.linspace(0, 11, 3)) pdcs = idcs * vdcs with pytest.raises(ValueError, match='p_dc and v_dc have different'): inverter.sandia_multi((vdcs,), (pdcs, pdcs), cec_inverter_parameters) def test_sandia_multi_array(cec_inverter_parameters): vdcs = np.linspace(0, 50, 3) idcs = np.linspace(0, 11, 3) pdcs = idcs * vdcs pacs = inverter.sandia_multi((vdcs,), (pdcs,), cec_inverter_parameters) assert_allclose(pacs, np.array([-0.020000, 132.004278, 250.000000])) def test_pvwatts_scalars(): expected = 85.58556604752516 out = inverter.pvwatts(90, 100, 0.95) assert_allclose(out, expected) # GH 675 expected = 0. out = inverter.pvwatts(0., 100) assert_allclose(out, expected) def test_pvwatts_possible_negative(): # pvwatts could return a negative value for (pdc / pdc0) < 0.006 # unless it is clipped. see GH 541 for more expected = 0 out = inverter.pvwatts(0.001, 1) assert_allclose(out, expected) def test_pvwatts_arrays(): pdc = np.array([[np.nan], [0], [50], [100]]) pdc0 = 100 expected = np.array([[np.nan], [0.], [47.60843624], [95.]]) out = inverter.pvwatts(pdc, pdc0, 0.95) assert_allclose(out, expected, equal_nan=True) def test_pvwatts_series(): pdc = pd.Series([np.nan, 0, 50, 100]) pdc0 = 100 expected = pd.Series(np.array([np.nan, 0., 47.608436, 95.])) out = inverter.pvwatts(pdc, pdc0, 0.95) assert_series_equal(expected, out) def test_pvwatts_multi(): pdc = np.array([np.nan, 0, 50, 100]) / 2 pdc0 = 100 expected = np.array([np.nan, 0., 47.608436, 95.]) out = inverter.pvwatts_multi((pdc, pdc), pdc0, 0.95) assert_allclose(expected, out) # with 2D array pdc_2d = np.array([pdc, pdc]) out = inverter.pvwatts_multi(pdc_2d, pdc0, 0.95) assert_allclose(expected, out) # with Series pdc = pd.Series(pdc) out = inverter.pvwatts_multi((pdc, pdc), pdc0, 0.95) assert_series_equal(expected, out) # with list instead of tuple out = inverter.pvwatts_multi([pdc, pdc], pdc0, 0.95) assert_series_equal(expected, out) INVERTER_TEST_MEAS = DATA_DIR / 'inverter_fit_snl_meas.csv' INVERTER_TEST_SIM = DATA_DIR / 'inverter_fit_snl_sim.csv' @pytest.mark.parametrize('infilen, expected', [ (INVERTER_TEST_MEAS, {'Paco': 333000., 'Pdco': 343251., 'Vdco': 740., 'Pso': 1427.746, 'C0': -5.768e-08, 'C1': 3.596e-05, 'C2': 1.038e-03, 'C3': 2.978e-05, 'Pnt': 1.}), (INVERTER_TEST_SIM, {'Paco': 1000., 'Pdco': 1050., 'Vdco': 240., 'Pso': 10., 'C0': 1e-6, 'C1': 1e-4, 'C2': 1e-2, 'C3': 1e-3, 'Pnt': 1.}), ]) def test_fit_sandia(infilen, expected): curves = pd.read_csv(infilen) dc_power = curves['ac_power'] / curves['efficiency'] result = inverter.fit_sandia(ac_power=curves['ac_power'], dc_power=dc_power, dc_voltage=curves['dc_voltage'], dc_voltage_level=curves['dc_voltage_level'], p_ac_0=expected['Paco'], p_nt=expected['Pnt']) assert expected == pytest.approx(result, rel=1e-3)
bsd-3-clause
glwagner/py2Periodic
tests/twoDimTurbulence/quantifyTimeStepperError.py
1
1833
import time, sys import numpy as np import matplotlib.pyplot as plt sys.path.append('../../') from py2Periodic.physics import twoDimTurbulence from numpy import pi def many2DTurbulenceSimulations(params, dt, nSteps, timeSteppers, q0): solutions = {} # Instantiate and run a bunch of two-dimensional turbulence models. for timeStepper in timeSteppers: m = twoDimTurbulence.model(timeStepper = timeStepper, dt = dt, **params) m.set_physical_soln(q0) m.step_nSteps(nSteps=nSteps) m.update_state_variables() solutions[timeStepper] = m.q return solutions nSteps0 = 1e2 dtz = [1.0e-3, 2.0e-3, 4.0e-3, 1.0e-2, 2.0e-2, 4.0e-2, 1.0e-1] timeSteppers = ['forwardEuler', 'RK4', 'RKW3', 'ETDRK4'] params = { 'nx' : 128, 'Lx' : 2.0*pi, 'visc' : 4.0e-4, 'viscOrder' : 4.0, 'nThreads' : 4, } # Define initial condition q0 = np.random.standard_normal((params['nx'], params['nx'], 1)) # Run many simulations solutions = {} for dt in dtz: solutions[dt] = many2DTurbulenceSimulations( params, dt, int(nSteps0*dtz[-1]/dt), timeSteppers, q0) # Analyze results bulkError = {} answer = solutions[ dtz[-1] ][ 'RK4' ] for timeStepper in timeSteppers: bulkError[timeStepper] = np.zeros_like(dtz) for ii, dt in enumerate(dtz): errorDensity = np.abs(answer-solutions[dt][timeStepper])**2.0 bulkError[timeStepper][ii] = errorDensity.sum() # Plot the results fig = plt.figure(('Bulk error'), figsize=(3, 3)); plt.clf() plt.plot(dtz, bulkError[timeSteppers[0]], 'ko--') plt.plot(dtz, bulkError[timeSteppers[1]], 'b^-') plt.plot(dtz, bulkError[timeSteppers[2]], 'rs--') plt.plot(dtz, bulkError[timeSteppers[3]], 'gp-') print("\nClose the figure to end the program") plt.show()
mit
jmmease/pandas
pandas/tests/indexes/datetimes/test_indexing.py
6
10289
import pytest import pytz import numpy as np import pandas as pd import pandas.util.testing as tm import pandas.compat as compat from pandas import notna, Index, DatetimeIndex, datetime, date_range class TestDatetimeIndex(object): def test_where_other(self): # other is ndarray or Index i = pd.date_range('20130101', periods=3, tz='US/Eastern') for arr in [np.nan, pd.NaT]: result = i.where(notna(i), other=np.nan) expected = i tm.assert_index_equal(result, expected) i2 = i.copy() i2 = Index([pd.NaT, pd.NaT] + i[2:].tolist()) result = i.where(notna(i2), i2) tm.assert_index_equal(result, i2) i2 = i.copy() i2 = Index([pd.NaT, pd.NaT] + i[2:].tolist()) result = i.where(notna(i2), i2.values) tm.assert_index_equal(result, i2) def test_where_tz(self): i = pd.date_range('20130101', periods=3, tz='US/Eastern') result = i.where(notna(i)) expected = i tm.assert_index_equal(result, expected) i2 = i.copy() i2 = Index([pd.NaT, pd.NaT] + i[2:].tolist()) result = i.where(notna(i2)) expected = i2 tm.assert_index_equal(result, expected) def test_insert(self): idx = DatetimeIndex( ['2000-01-04', '2000-01-01', '2000-01-02'], name='idx') result = idx.insert(2, datetime(2000, 1, 5)) exp = DatetimeIndex(['2000-01-04', '2000-01-01', '2000-01-05', '2000-01-02'], name='idx') tm.assert_index_equal(result, exp) # insertion of non-datetime should coerce to object index result = idx.insert(1, 'inserted') expected = Index([datetime(2000, 1, 4), 'inserted', datetime(2000, 1, 1), datetime(2000, 1, 2)], name='idx') assert not isinstance(result, DatetimeIndex) tm.assert_index_equal(result, expected) assert result.name == expected.name idx = date_range('1/1/2000', periods=3, freq='M', name='idx') # preserve freq expected_0 = DatetimeIndex(['1999-12-31', '2000-01-31', '2000-02-29', '2000-03-31'], name='idx', freq='M') expected_3 = DatetimeIndex(['2000-01-31', '2000-02-29', '2000-03-31', '2000-04-30'], name='idx', freq='M') # reset freq to None expected_1_nofreq = DatetimeIndex(['2000-01-31', '2000-01-31', '2000-02-29', '2000-03-31'], name='idx', freq=None) expected_3_nofreq = DatetimeIndex(['2000-01-31', '2000-02-29', '2000-03-31', '2000-01-02'], name='idx', freq=None) cases = [(0, datetime(1999, 12, 31), expected_0), (-3, datetime(1999, 12, 31), expected_0), (3, datetime(2000, 4, 30), expected_3), (1, datetime(2000, 1, 31), expected_1_nofreq), (3, datetime(2000, 1, 2), expected_3_nofreq)] for n, d, expected in cases: result = idx.insert(n, d) tm.assert_index_equal(result, expected) assert result.name == expected.name assert result.freq == expected.freq # reset freq to None result = idx.insert(3, datetime(2000, 1, 2)) expected = DatetimeIndex(['2000-01-31', '2000-02-29', '2000-03-31', '2000-01-02'], name='idx', freq=None) tm.assert_index_equal(result, expected) assert result.name == expected.name assert result.freq is None # see gh-7299 idx = date_range('1/1/2000', periods=3, freq='D', tz='Asia/Tokyo', name='idx') with pytest.raises(ValueError): idx.insert(3, pd.Timestamp('2000-01-04')) with pytest.raises(ValueError): idx.insert(3, datetime(2000, 1, 4)) with pytest.raises(ValueError): idx.insert(3, pd.Timestamp('2000-01-04', tz='US/Eastern')) with pytest.raises(ValueError): idx.insert(3, datetime(2000, 1, 4, tzinfo=pytz.timezone('US/Eastern'))) for tz in ['US/Pacific', 'Asia/Singapore']: idx = date_range('1/1/2000 09:00', periods=6, freq='H', tz=tz, name='idx') # preserve freq expected = date_range('1/1/2000 09:00', periods=7, freq='H', tz=tz, name='idx') for d in [pd.Timestamp('2000-01-01 15:00', tz=tz), pytz.timezone(tz).localize(datetime(2000, 1, 1, 15))]: result = idx.insert(6, d) tm.assert_index_equal(result, expected) assert result.name == expected.name assert result.freq == expected.freq assert result.tz == expected.tz expected = DatetimeIndex(['2000-01-01 09:00', '2000-01-01 10:00', '2000-01-01 11:00', '2000-01-01 12:00', '2000-01-01 13:00', '2000-01-01 14:00', '2000-01-01 10:00'], name='idx', tz=tz, freq=None) # reset freq to None for d in [pd.Timestamp('2000-01-01 10:00', tz=tz), pytz.timezone(tz).localize(datetime(2000, 1, 1, 10))]: result = idx.insert(6, d) tm.assert_index_equal(result, expected) assert result.name == expected.name assert result.tz == expected.tz assert result.freq is None def test_delete(self): idx = date_range(start='2000-01-01', periods=5, freq='M', name='idx') # prserve freq expected_0 = date_range(start='2000-02-01', periods=4, freq='M', name='idx') expected_4 = date_range(start='2000-01-01', periods=4, freq='M', name='idx') # reset freq to None expected_1 = DatetimeIndex(['2000-01-31', '2000-03-31', '2000-04-30', '2000-05-31'], freq=None, name='idx') cases = {0: expected_0, -5: expected_0, -1: expected_4, 4: expected_4, 1: expected_1} for n, expected in compat.iteritems(cases): result = idx.delete(n) tm.assert_index_equal(result, expected) assert result.name == expected.name assert result.freq == expected.freq with pytest.raises((IndexError, ValueError)): # either depeidnig on numpy version result = idx.delete(5) for tz in [None, 'Asia/Tokyo', 'US/Pacific']: idx = date_range(start='2000-01-01 09:00', periods=10, freq='H', name='idx', tz=tz) expected = date_range(start='2000-01-01 10:00', periods=9, freq='H', name='idx', tz=tz) result = idx.delete(0) tm.assert_index_equal(result, expected) assert result.name == expected.name assert result.freqstr == 'H' assert result.tz == expected.tz expected = date_range(start='2000-01-01 09:00', periods=9, freq='H', name='idx', tz=tz) result = idx.delete(-1) tm.assert_index_equal(result, expected) assert result.name == expected.name assert result.freqstr == 'H' assert result.tz == expected.tz def test_delete_slice(self): idx = date_range(start='2000-01-01', periods=10, freq='D', name='idx') # prserve freq expected_0_2 = date_range(start='2000-01-04', periods=7, freq='D', name='idx') expected_7_9 = date_range(start='2000-01-01', periods=7, freq='D', name='idx') # reset freq to None expected_3_5 = DatetimeIndex(['2000-01-01', '2000-01-02', '2000-01-03', '2000-01-07', '2000-01-08', '2000-01-09', '2000-01-10'], freq=None, name='idx') cases = {(0, 1, 2): expected_0_2, (7, 8, 9): expected_7_9, (3, 4, 5): expected_3_5} for n, expected in compat.iteritems(cases): result = idx.delete(n) tm.assert_index_equal(result, expected) assert result.name == expected.name assert result.freq == expected.freq result = idx.delete(slice(n[0], n[-1] + 1)) tm.assert_index_equal(result, expected) assert result.name == expected.name assert result.freq == expected.freq for tz in [None, 'Asia/Tokyo', 'US/Pacific']: ts = pd.Series(1, index=pd.date_range( '2000-01-01 09:00', periods=10, freq='H', name='idx', tz=tz)) # preserve freq result = ts.drop(ts.index[:5]).index expected = pd.date_range('2000-01-01 14:00', periods=5, freq='H', name='idx', tz=tz) tm.assert_index_equal(result, expected) assert result.name == expected.name assert result.freq == expected.freq assert result.tz == expected.tz # reset freq to None result = ts.drop(ts.index[[1, 3, 5, 7, 9]]).index expected = DatetimeIndex(['2000-01-01 09:00', '2000-01-01 11:00', '2000-01-01 13:00', '2000-01-01 15:00', '2000-01-01 17:00'], freq=None, name='idx', tz=tz) tm.assert_index_equal(result, expected) assert result.name == expected.name assert result.freq == expected.freq assert result.tz == expected.tz
bsd-3-clause
janmtl/pypsych
tests/data_sources/eprime/test_eprime.py
1
2866
#!/usr/bin/env python # -*- coding: utf-8 -*- """ test_eprime ---------------------------------- Tests for `EPrime` Data Source provided in pypsych.data_sources.eprime module. """ import unittest import pandas as pd pd.set_option('display.max_rows', 50) pd.set_option('display.max_columns', 500) pd.set_option('display.width', 1000) from pkg_resources import resource_filename from pypsych.config import Config from pypsych.schedule import Schedule from pypsych.data_sources.eprime import EPrime class EprimeLoading(unittest.TestCase): """ Asserts that bad config and schedule yaml files cannot be loaded. """ def setUp(self): # Load a config and a schedule config = Config(path=resource_filename('tests.config', 'config.yaml')) config.load() schedule = Schedule(path=resource_filename('tests.schedule', 'schedule.yaml')) schedule.load() schedule.compile('tests/data') # Extract the configuration and schedule for just one task self.subconfig = config.get_subconfig('Mock1', 'EPrime') self.subschedule = schedule.get_subschedule('Mock1', 'EPrime') self.file_paths = schedule.get_file_paths(101, 'Mock1', 'EPrime') def test_create_eprime(self): """Should not throw errors when correct configuration is loaded.""" eprime = EPrime(config=self.subconfig, schedule=self.subschedule) # Check that eprime instance matches self.assertIsInstance(eprime, EPrime) def test_load_eprime(self): """Should not throw errors when correct file is loaded.""" eprime = EPrime(config=self.subconfig, schedule=self.subschedule) eprime.load(self.file_paths) class EPrimeBinData(unittest.TestCase): """ Tests that EPrime correctly bins data to take statistics. """ def setUp(self): # Load a config and a schedule config = Config(path=resource_filename('tests.config', 'config.yaml')) config.load() schedule = Schedule(path=resource_filename('tests.schedule', 'schedule.yaml')) schedule.load() schedule.compile('tests/data') # Extract the configuration and schedule for just one task subconfig = config.get_subconfig('Mock1', 'EPrime') subschedule = schedule.get_subschedule('Mock1', 'EPrime') file_paths = schedule.get_file_paths(101, 'Mock1', 'EPrime') # Create an instance of the eprime data source self.eprime = EPrime(config=subconfig, schedule=subschedule) self.eprime.load(file_paths) self.eprime.merge_data() def test_bin_data(self): """Test if stats are being calculated correctly.""" self.eprime.bin_data() if __name__ == '__main__': unittest.main()
bsd-3-clause
NTMatBoiseState/FiberFit
src/fiberfit_model/computerVision_BP.py
1
10936
import sys import matplotlib import numpy as np import scipy import scipy.ndimage import scipy.interpolate import scipy.optimize import scipy.integrate import scipy.stats import math import time import glob from pylab import * from pandas import DataFrame from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas import matplotlib.pyplot as plt from src.fiberfit_model.EllipseDirectFit import* from src.fiberfit_model import helpers figSize = 4.5 # cs font and ticksfont is used to style the matplotlib figures csfont = {'fontname':'Times New Roman', 'size':'14', } ticksfont = {'fontname':'Times New Roman'} def process_histogram(PabsFlip, N1, uCut, lCut, angleInc, radStep): """ Create orientation Histogram Sum pixel intensity along different angles :param PabsFlip: :param N1: :param uCut: upper-cut parameter from the settings.SettingsWindow :param lCut: lower-cut parameter form the settings.SettingsWindow :param angleInc: angle-increment from the :param radStep: radial-step :return: """ n1 = np.round(N1 / 2) - 1 freq = np.arange(-n1, n1 + 1, 1) x, y = freq, freq # Variables for settings CO_lower = lCut CO_upper = uCut angleInc = angleInc radStep = radStep # Set up polar coordinates prior to summing the spectrum theta1Rad = np.linspace(0.0, 2 * math.pi, num=360/angleInc) f1 = np.round_(N1 / (2 * CO_lower)) f2 = np.round_(N1 / (2 * CO_upper)) rho1 = np.linspace(f1, f2, num=(f2 - f1)/radStep) # frequency band PowerX = np.zeros((theta1Rad.size, theta1Rad.size)) PowerY = np.zeros((theta1Rad.size)) # Interpolate using a Spine PowerSpline = scipy.interpolate.RectBivariateSpline(y=y, x=x, z=PabsFlip) n_dx = 0.001 for p in range(0, theta1Rad.size): # converting theta1Rad and rho1 to cartesian coordinates xfinal = rho1 * math.cos(theta1Rad[p]) yfinal = rho1 * math.sin(theta1Rad[p]) # Evaluate spin on path px = PowerSpline.ev(yfinal, xfinal) PowerY[p] = np.sum(px) # Only use the data in the first two quadrants (Spectrum is symmetric) num = len(theta1Rad) PowerYFinal = PowerY[0:num // 2] theta1RadFinal = theta1Rad[0:num // 2] power_area = np.trapz(PowerYFinal, theta1RadFinal) normPower = PowerYFinal / power_area # TODO: Ask Rici what those are return normPower, theta1RadFinal def process_ellipse(normPower, theta1RadFinal, figWidth, figHeigth, dir, number): """ :param normPower: :param theta1RadFinal: :param figWidth: width of the figure :param figHeigth: height of the figure :param dir: full path to the directory where one wants to store the intermediate images :param number: :return: """ # Combine data into [XY] to fit to an ellipse Mirtheta1RadFinal1 = np.concatenate([theta1RadFinal.T, (theta1RadFinal + np.pi).T]) MirnormPower = np.concatenate([normPower.T, normPower.T]) # Convert mirrored polar coords to cartesian coords xdata, ydata = pol2cart(Mirtheta1RadFinal1, MirnormPower) ell_data = np.vstack([xdata, ydata]) ell_data = ell_data.T # Python fitting function, see EllipseDirectFit A, centroid = EllipseDirectFit(ell_data) t = orientation(A) # Plot Lower Left - Polar plot of angular distribution angDist = plt.figure(figsize=(figWidth, figHeigth)) # Creates a figure containing angular distribution. r_line = np.arange(0, max(MirnormPower) + .5, .5) th = np.zeros(len(r_line)) for i in range(0, len(r_line)): th[i] = t th = np.concatenate([th, (th + 180)]) r_line = np.concatenate([r_line, r_line]) plt.polar(Mirtheta1RadFinal1, MirnormPower, color ='k', linewidth=2) plt.polar(th * pi / 180, r_line, color='r', linewidth=3) if (max(MirnormPower)<2): inc = 0.5 elif (max(MirnormPower)<5): inc = 1 elif max(MirnormPower)<20: inc = 5 else: inc = 10 plt.yticks(np.arange(inc, max(MirnormPower), inc), **ticksfont) plt.xticks(**ticksfont) angDist.savefig(dir+'angDist_' + number.__str__(), bbox_inches='tight') plt.close() return t, angDist def process_kappa(t_final, theta1RadFinal, normPower, figWidth, figHeigth, dir, number): """ :param t_final: :param theta1RadFinal: :param normPower: :param figWidth: :param figHeigth: :param dir: :param number: :return: """ t_final_rad = t_final * pi / 180 def fitted_func(thetas, c): int_value, int_err = scipy.integrate.quadrature(func=lambda x: exp(c * cos(x)), a=0.0, b=np.pi) return ((np.pi * (1.0 / np.pi * (int_value))) ** - 1) * \ np.exp(c * np.cos(2 * (thetas - t_final_rad))) c0 = 15 kappa, kappa_pcov = scipy.optimize.curve_fit(f=fitted_func, p0=(c0,), xdata=theta1RadFinal, ydata=normPower) # Shift data for plotting purposes t = t_final diff = abs(theta1RadFinal - (t * pi / 180)) centerLoc = find(diff == min(diff)) num_angles = len(theta1RadFinal) shift = (round(num_angles / 2) - (num_angles - centerLoc)) normPower1 = np.roll(normPower, -shift) theta1RadFinal1 = np.roll(theta1RadFinal, -shift) if (shift > 0): s = num_angles - shift for k in range(s, num_angles): theta1RadFinal1[k] = pi + theta1RadFinal1[k] elif (shift < 0): for k in range(0, -shift): theta1RadFinal1[k] = -pi + theta1RadFinal1[k] # Plot Lower Right - Distribution on a cartesian plane with appropriate shift cartDist = plt.figure(figsize=(figWidth, figHeigth)) # Creates a figure containing cartesian distribution. h2 = plt.bar((theta1RadFinal1 * 180 / pi), normPower1, edgecolor = 'k', color = 'k') plt.xticks(np.arange(-360, 360, 45,), **ticksfont) plt.xlim([t - 100, t + 100]) p_act = fitted_func(theta1RadFinal1, kappa) h3, = plt.plot(theta1RadFinal1 * 180 / pi, p_act, linewidth=3) #plt.title('Fiber Distribution', **csfont) plt.xlabel('Angle (°)', **csfont) plt.ylabel('Normalized Intensity', **csfont) if (max(normPower)<2): inc = 0.5 elif (max(normPower)<5): inc = 1 elif (max(normPower)<20): inc = 5 else: inc = 10 plt.yticks(np.arange(0, max(normPower1) + .3, inc), **ticksfont) plt.ylim([0, max(normPower1) + .3]) cartDist.savefig(dir + 'cartDist_' + number.__str__(), bbox_inches='tight') plt.close() slope, intercept, rValue, pValue, stderr = scipy.stats.linregress(p_act, normPower1) return kappa, cartDist, rValue def process_image(name, uCut, lCut, angleInc, radStep, screenDim, dpi, directory, number): """ FFT // POWER SPECTRUM // ANGULAR DISTRIBUTION SIMPLE FFT :param name: :param uCut: :param lCut: :param angleInc: :param radStep: :param screenDim: :param dpi: :param directory: :param number: :return: """ dir = directory + "/" start_time = time.time() figWidth = 4.5 figHeigth = 4.5 im = scipy.ndimage.imread(fname=str(name)) m, n = im.shape # Remove a row and column if the dimension of the image is odd if (m % 2 == 1): im = np.delete(im, (0), axis=0) if (n % 2 == 1): im = np.delete(im, (0), axis=1) # Plot Upper left - Original Image originalImage = plt.figure(frameon=False, figsize=(figWidth, figHeigth)) # Makes it so the image fits entire dedicated space. ax = plt.Axes(originalImage, [0., 0., 1., 1.]) ax.set_axis_off() originalImage.add_axes(ax) plt.imshow(im, cmap='gray', aspect='auto') plt.axis('off') originalImage.savefig(dir + 'orgImg_' + number.__str__()) plt.close() fft_result = np.fft.fft2(im) Fshift = np.fft.fftshift(fft_result) Pabs = np.abs(Fshift) ** 2 # shift in terms of image because power specrum is the mirroR of lines so # misrroring back in terms of image would give right allignment PabsFlip1 = np.rot90(Pabs) PabsFlip = np.flipud(PabsFlip1) PabsFlip = np.delete(PabsFlip, (0), axis=0) PabsFlip = np.delete(PabsFlip, (0), axis=1) # Plot Upper Right - Power Spectrum on logrithmic scale logScale = plt.figure(frameon=False, figsize=(figWidth, figHeigth)) # Makes it so the image fits entire dedicated space. ax = plt.Axes(logScale, [0., 0., 1., 1.]) ax.set_axis_off() logScale.add_axes(ax) plt.axis('off') plt.imshow(log(PabsFlip), cmap='gray', aspect='auto') logScale.savefig(dir + 'logScl_' + number.__str__()) plt.close() M, N1 = im.shape normPower, theta1RadFinal = process_histogram(PabsFlip, N1, uCut, lCut, angleInc, radStep) # theta and angular distribution are getting retrieved. t_final, angDist = process_ellipse(normPower, theta1RadFinal, figWidth, figHeigth, dir, number) # k and cartesian distrubution are getting retrieved. k, cartDist, rValue = process_kappa(t_final, theta1RadFinal, normPower, figWidth, figHeigth, dir, number) # Rounding results for Title of Figure krnd = math.ceil(k * 1000) / 1000 thrnd = math.ceil(t_final * 1000) / 1000 krnd = math.trunc(krnd * 100) / 100 thrnd = math.trunc(thrnd * 100) / 100 a = 32.02 b= -12.43 c = 47.06 d = -0.9185 e = 19.43 f = -0.07693 x = k[0] sig = math.exp(b*x) + c*math.exp(d*x) + e*exp(f*x) end_time = time.time() return sig, k[0], t_final, rValue**2, angDist, cartDist, logScale, originalImage, figWidth, figHeigth, (end_time-start_time) def pol2cart(theta, radius): xx = radius * np.cos(theta) yy = radius * np.sin(theta) return (xx, yy) def orientation(A): if (abs(A[1]) < (1 * 10 ^ (-15))): if (A[0] <= A[2]): # Ellipse is horizontal angle = 0; major = sqrt(1 / A[0]) minor = sqrt(1 / A[2]) else: angle = np.pi / 2; major = sqrt(1 / A[2]) minor = sqrt(1 / A[0]) else: R = ((A[2] - A[0]) / A[1]) tg = R - sqrt((R * R) + 1) angle = math.atan(tg) P = (2 * tg) / (1 + (tg * tg)) if ((A[0] > 0 and A[1] > 0 and A[2] > 0)): if (angle < (-pi / 4)): angle = angle + np.pi else: angle = angle elif ((A[1] / P <= (-A[1] / P))): if (angle < 0): angle = angle + np.pi / 2 else: angle = angle - np.pi / 2 elif (A[0] < 0 and A[1] < 0 and A[2] < 0): if (angle < 0): angle = angle + np.pi else: angle = angle - np.pi else: # Switch if (angle < 0): angle = angle + np.pi / 2 else: angle = angle - np.pi / 2 t_New = angle * 180 / np.pi return (t_New)
lgpl-3.0
kenshay/ImageScripter
ProgramData/SystemFiles/Python/Lib/site-packages/matplotlib/testing/decorators.py
6
16219
from __future__ import (absolute_import, division, print_function, unicode_literals) import six import functools import gc import inspect import os import sys import shutil import warnings import unittest # Note - don't import nose up here - import it only as needed in functions. This # allows other functions here to be used by pytest-based testing suites without # requiring nose to be installed. import numpy as np import matplotlib as mpl import matplotlib.style import matplotlib.units import matplotlib.testing from matplotlib import cbook from matplotlib import ticker from matplotlib import pyplot as plt from matplotlib import ft2font from matplotlib import rcParams from matplotlib.testing.noseclasses import KnownFailureTest, \ KnownFailureDidNotFailTest, ImageComparisonFailure from matplotlib.testing.compare import comparable_formats, compare_images, \ make_test_filename def knownfailureif(fail_condition, msg=None, known_exception_class=None ): """ Assume a will fail if *fail_condition* is True. *fail_condition* may also be False or the string 'indeterminate'. *msg* is the error message displayed for the test. If *known_exception_class* is not None, the failure is only known if the exception is an instance of this class. (Default = None) """ # based on numpy.testing.dec.knownfailureif if msg is None: msg = 'Test known to fail' def known_fail_decorator(f): # Local import to avoid a hard nose dependency and only incur the # import time overhead at actual test-time. import nose def failer(*args, **kwargs): try: # Always run the test (to generate images). result = f(*args, **kwargs) except Exception as err: if fail_condition: if known_exception_class is not None: if not isinstance(err,known_exception_class): # This is not the expected exception raise # (Keep the next ultra-long comment so in shows in console.) raise KnownFailureTest(msg) # An error here when running nose means that you don't have the matplotlib.testing.noseclasses:KnownFailure plugin in use. else: raise if fail_condition and fail_condition != 'indeterminate': raise KnownFailureDidNotFailTest(msg) return result return nose.tools.make_decorator(f)(failer) return known_fail_decorator def _do_cleanup(original_units_registry, original_settings): plt.close('all') gc.collect() mpl.rcParams.clear() mpl.rcParams.update(original_settings) matplotlib.units.registry.clear() matplotlib.units.registry.update(original_units_registry) warnings.resetwarnings() # reset any warning filters set in tests class CleanupTest(object): @classmethod def setup_class(cls): cls.original_units_registry = matplotlib.units.registry.copy() cls.original_settings = mpl.rcParams.copy() matplotlib.testing.setup() @classmethod def teardown_class(cls): _do_cleanup(cls.original_units_registry, cls.original_settings) def test(self): self._func() class CleanupTestCase(unittest.TestCase): '''A wrapper for unittest.TestCase that includes cleanup operations''' @classmethod def setUpClass(cls): import matplotlib.units cls.original_units_registry = matplotlib.units.registry.copy() cls.original_settings = mpl.rcParams.copy() @classmethod def tearDownClass(cls): _do_cleanup(cls.original_units_registry, cls.original_settings) def cleanup(style=None): """ A decorator to ensure that any global state is reset before running a test. Parameters ---------- style : str, optional The name of the style to apply. """ # If cleanup is used without arguments, `style` will be a # callable, and we pass it directly to the wrapper generator. If # cleanup if called with an argument, it is a string naming a # style, and the function will be passed as an argument to what we # return. This is a confusing, but somewhat standard, pattern for # writing a decorator with optional arguments. def make_cleanup(func): if inspect.isgeneratorfunction(func): @functools.wraps(func) def wrapped_callable(*args, **kwargs): original_units_registry = matplotlib.units.registry.copy() original_settings = mpl.rcParams.copy() matplotlib.style.use(style) try: for yielded in func(*args, **kwargs): yield yielded finally: _do_cleanup(original_units_registry, original_settings) else: @functools.wraps(func) def wrapped_callable(*args, **kwargs): original_units_registry = matplotlib.units.registry.copy() original_settings = mpl.rcParams.copy() matplotlib.style.use(style) try: func(*args, **kwargs) finally: _do_cleanup(original_units_registry, original_settings) return wrapped_callable if isinstance(style, six.string_types): return make_cleanup else: result = make_cleanup(style) style = 'classic' return result def check_freetype_version(ver): if ver is None: return True from distutils import version if isinstance(ver, six.string_types): ver = (ver, ver) ver = [version.StrictVersion(x) for x in ver] found = version.StrictVersion(ft2font.__freetype_version__) return found >= ver[0] and found <= ver[1] class ImageComparisonTest(CleanupTest): @classmethod def setup_class(cls): CleanupTest.setup_class() try: matplotlib.style.use(cls._style) matplotlib.testing.set_font_settings_for_testing() cls._func() except: # Restore original settings before raising errors during the update. CleanupTest.teardown_class() raise @classmethod def teardown_class(cls): CleanupTest.teardown_class() @staticmethod def remove_text(figure): figure.suptitle("") for ax in figure.get_axes(): ax.set_title("") ax.xaxis.set_major_formatter(ticker.NullFormatter()) ax.xaxis.set_minor_formatter(ticker.NullFormatter()) ax.yaxis.set_major_formatter(ticker.NullFormatter()) ax.yaxis.set_minor_formatter(ticker.NullFormatter()) try: ax.zaxis.set_major_formatter(ticker.NullFormatter()) ax.zaxis.set_minor_formatter(ticker.NullFormatter()) except AttributeError: pass def test(self): baseline_dir, result_dir = _image_directories(self._func) for fignum, baseline in zip(plt.get_fignums(), self._baseline_images): for extension in self._extensions: will_fail = not extension in comparable_formats() if will_fail: fail_msg = 'Cannot compare %s files on this system' % extension else: fail_msg = 'No failure expected' orig_expected_fname = os.path.join(baseline_dir, baseline) + '.' + extension if extension == 'eps' and not os.path.exists(orig_expected_fname): orig_expected_fname = os.path.join(baseline_dir, baseline) + '.pdf' expected_fname = make_test_filename(os.path.join( result_dir, os.path.basename(orig_expected_fname)), 'expected') actual_fname = os.path.join(result_dir, baseline) + '.' + extension if os.path.exists(orig_expected_fname): shutil.copyfile(orig_expected_fname, expected_fname) else: will_fail = True fail_msg = 'Do not have baseline image %s' % expected_fname @knownfailureif( will_fail, fail_msg, known_exception_class=ImageComparisonFailure) def do_test(fignum, actual_fname, expected_fname): figure = plt.figure(fignum) if self._remove_text: self.remove_text(figure) figure.savefig(actual_fname, **self._savefig_kwarg) err = compare_images(expected_fname, actual_fname, self._tol, in_decorator=True) try: if not os.path.exists(expected_fname): raise ImageComparisonFailure( 'image does not exist: %s' % expected_fname) if err: raise ImageComparisonFailure( 'images not close: %(actual)s vs. %(expected)s ' '(RMS %(rms).3f)'%err) except ImageComparisonFailure: if not check_freetype_version(self._freetype_version): raise KnownFailureTest( "Mismatched version of freetype. Test requires '%s', you have '%s'" % (self._freetype_version, ft2font.__freetype_version__)) raise yield do_test, fignum, actual_fname, expected_fname def image_comparison(baseline_images=None, extensions=None, tol=0, freetype_version=None, remove_text=False, savefig_kwarg=None, style='classic'): """ Compare images generated by the test with those specified in *baseline_images*, which must correspond else an ImageComparisonFailure exception will be raised. Keyword arguments: *baseline_images*: list A list of strings specifying the names of the images generated by calls to :meth:`matplotlib.figure.savefig`. *extensions*: [ None | list ] If *None*, default to all supported extensions. Otherwise, a list of extensions to test. For example ['png','pdf']. *tol*: (default 0) The RMS threshold above which the test is considered failed. *freetype_version*: str or tuple The expected freetype version or range of versions for this test to pass. *remove_text*: bool Remove the title and tick text from the figure before comparison. This does not remove other, more deliberate, text, such as legends and annotations. *savefig_kwarg*: dict Optional arguments that are passed to the savefig method. *style*: string Optional name for the base style to apply to the image test. The test itself can also apply additional styles if desired. Defaults to the 'classic' style. """ if baseline_images is None: raise ValueError('baseline_images must be specified') if extensions is None: # default extensions to test extensions = ['png', 'pdf', 'svg'] if savefig_kwarg is None: #default no kwargs to savefig savefig_kwarg = dict() def compare_images_decorator(func): # We want to run the setup function (the actual test function # that generates the figure objects) only once for each type # of output file. The only way to achieve this with nose # appears to be to create a test class with "setup_class" and # "teardown_class" methods. Creating a class instance doesn't # work, so we use type() to actually create a class and fill # it with the appropriate methods. name = func.__name__ # For nose 1.0, we need to rename the test function to # something without the word "test", or it will be run as # well, outside of the context of our image comparison test # generator. func = staticmethod(func) func.__get__(1).__name__ = str('_private') new_class = type( name, (ImageComparisonTest,), {'_func': func, '_baseline_images': baseline_images, '_extensions': extensions, '_tol': tol, '_freetype_version': freetype_version, '_remove_text': remove_text, '_savefig_kwarg': savefig_kwarg, '_style': style}) return new_class return compare_images_decorator def _image_directories(func): """ Compute the baseline and result image directories for testing *func*. Create the result directory if it doesn't exist. """ module_name = func.__module__ if module_name == '__main__': # FIXME: this won't work for nested packages in matplotlib.tests warnings.warn('test module run as script. guessing baseline image locations') script_name = sys.argv[0] basedir = os.path.abspath(os.path.dirname(script_name)) subdir = os.path.splitext(os.path.split(script_name)[1])[0] else: mods = module_name.split('.') if len(mods) >= 3: mods.pop(0) # mods[0] will be the name of the package being tested (in # most cases "matplotlib") However if this is a # namespace package pip installed and run via the nose # multiprocess plugin or as a specific test this may be # missing. See https://github.com/matplotlib/matplotlib/issues/3314 if mods.pop(0) != 'tests': warnings.warn(("Module '%s' does not live in a parent module " "named 'tests'. This is probably ok, but we may not be able " "to guess the correct subdirectory containing the baseline " "images. If things go wrong please make sure that there is " "a parent directory named 'tests' and that it contains a " "__init__.py file (can be empty).") % module_name) subdir = os.path.join(*mods) import imp def find_dotted_module(module_name, path=None): """A version of imp which can handle dots in the module name. As for imp.find_module(), the return value is a 3-element tuple (file, pathname, description).""" res = None for sub_mod in module_name.split('.'): try: res = file, path, _ = imp.find_module(sub_mod, path) path = [path] if file is not None: file.close() except ImportError: # assume namespace package path = list(sys.modules[sub_mod].__path__) res = None, path, None return res mod_file = find_dotted_module(func.__module__)[1] basedir = os.path.dirname(mod_file) baseline_dir = os.path.join(basedir, 'baseline_images', subdir) result_dir = os.path.abspath(os.path.join('result_images', subdir)) if not os.path.exists(result_dir): cbook.mkdirs(result_dir) return baseline_dir, result_dir def switch_backend(backend): # Local import to avoid a hard nose dependency and only incur the # import time overhead at actual test-time. import nose def switch_backend_decorator(func): def backend_switcher(*args, **kwargs): try: prev_backend = mpl.get_backend() matplotlib.testing.setup() plt.switch_backend(backend) result = func(*args, **kwargs) finally: plt.switch_backend(prev_backend) return result return nose.tools.make_decorator(func)(backend_switcher) return switch_backend_decorator
gpl-3.0
wallarelvo/golddigger
golddigger/learningFork.py
1
2924
# from sklearn import tree from sklearn.metrics import roc_auc_score, roc_curve from sklearn.decomposition import PCA from sklearn import linear_model from progressbar import ProgressBar import tableFork class GroupLearner(object): def __init__(self, num_groups, data_table): self.num_groups = num_groups self.dt = data_table def learn(self, classifier, **kwargs): self.models = list() self.weights = list() self.probs = list() self.pca = PCA().fit(self.dt.get_all_training_inputs()) h_inputs = self.dt.get_holdout_inputs() h_outputs = self.dt.get_holdout_outputs() progress = ProgressBar() for i in progress(xrange(self.num_groups)): inputs = self.dt.get_training_inputs(i) outputs = self.dt.get_training_outputs(i) clf = classifier(**kwargs) clf.fit(inputs, outputs) preds = clf.predict(h_inputs) self.weights.append(roc_auc_score(h_outputs, preds)) self.models.append(clf) self.probs = map(lambda w: w / sum(self.weights), self.weights) return self def predict(self, inputs): print "Predicting..." progress = ProgressBar() inputs = inputs ret_sum = 0.0 for i, model in progress(enumerate(self.models)): ret_sum += self.probs[i] * model.predict_proba(inputs)[:, 1] return ret_sum def compute_auc(self): h_inputs = self.dt.get_unseen_inputs() h_outputs = self.dt.get_unseen_outputs() pred_out = self.predict(h_inputs) fpr, tpr, thresholds = roc_curve(h_outputs, pred_out) print fpr print tpr print thresholds return roc_auc_score(h_outputs, pred_out) def generate_kaggle_file(self, kaggle_file): self.compute_auc() print "Generating Kaggle file..." progress = ProgressBar() test_inputs = self.dt.get_test_inputs() ids = self.dt.get_test_ids() preds = self.predict(test_inputs) with open(kaggle_file, "w") as f: f.write("id,repeatProbability\n") for buyer_id, pred in progress(zip(ids, preds)): f.write("{},{}\n".format(buyer_id, pred)) return self class GroupLearnerClassifier(GroupLearner): def predict(self, inputs): inputs = inputs ret_sum = 0.0 for i, model in enumerate(self.models): ret_sum += model.predict(inputs) return ret_sum / len(self.models) if __name__ == "__main__": num_groups = 500 kaggle_file = "output_cat_final.csv" print "Loading data..." dt = tableFork.DataTable().load(num_groups) print "Learning..." df = GroupLearnerClassifier(num_groups, dt) df.learn(linear_model.RidgeClassifierCV, class_weight={1: 2, 0: 1})\ .generate_kaggle_file(kaggle_file)
apache-2.0
yyjiang/scikit-learn
sklearn/semi_supervised/tests/test_label_propagation.py
307
1974
""" test the label propagation module """ import nose import numpy as np from sklearn.semi_supervised import label_propagation from numpy.testing import assert_array_almost_equal from numpy.testing import assert_array_equal ESTIMATORS = [ (label_propagation.LabelPropagation, {'kernel': 'rbf'}), (label_propagation.LabelPropagation, {'kernel': 'knn', 'n_neighbors': 2}), (label_propagation.LabelSpreading, {'kernel': 'rbf'}), (label_propagation.LabelSpreading, {'kernel': 'knn', 'n_neighbors': 2}) ] def test_fit_transduction(): samples = [[1., 0.], [0., 2.], [1., 3.]] labels = [0, 1, -1] for estimator, parameters in ESTIMATORS: clf = estimator(**parameters).fit(samples, labels) nose.tools.assert_equal(clf.transduction_[2], 1) def test_distribution(): samples = [[1., 0.], [0., 1.], [1., 1.]] labels = [0, 1, -1] for estimator, parameters in ESTIMATORS: clf = estimator(**parameters).fit(samples, labels) if parameters['kernel'] == 'knn': continue # unstable test; changes in k-NN ordering break it assert_array_almost_equal(clf.predict_proba([[1., 0.0]]), np.array([[1., 0.]]), 2) else: assert_array_almost_equal(np.asarray(clf.label_distributions_[2]), np.array([.5, .5]), 2) def test_predict(): samples = [[1., 0.], [0., 2.], [1., 3.]] labels = [0, 1, -1] for estimator, parameters in ESTIMATORS: clf = estimator(**parameters).fit(samples, labels) assert_array_equal(clf.predict([[0.5, 2.5]]), np.array([1])) def test_predict_proba(): samples = [[1., 0.], [0., 1.], [1., 2.5]] labels = [0, 1, -1] for estimator, parameters in ESTIMATORS: clf = estimator(**parameters).fit(samples, labels) assert_array_almost_equal(clf.predict_proba([[1., 1.]]), np.array([[0.5, 0.5]]))
bsd-3-clause
LiquidGalaxyLAB/FlOYBD
DataMining/weather/weatherGraphs.py
2
2794
import matplotlib import os import time matplotlib.use('Agg') import matplotlib.pyplot as plt import pandas as pd import numpy as np import shutil from cassandra.cluster import Cluster from pyspark import SparkContext, SparkConf from pyspark.sql import SQLContext, SparkSession def initEnvironment(): global sc, sql, cluster, session conf = SparkConf() #conf.setMaster("spark://192.168.246.236:7077") conf.setMaster("local[*]") conf.setAppName("Spark Graphs Generation") conf.set("spark.cassandra.connection.host", "192.168.246.236") conf.set("spark.executor.memory", "10g") conf.set("spark.num.executors", "1") sc = SparkContext(conf=conf) sql = SQLContext(sc) cluster = Cluster(['192.168.246.236']) session = cluster.connect("dev") def loadData(): global stations, clean_daily stations = sql.read.format("org.apache.spark.sql.cassandra").load(keyspace="dev", table="station") clean_daily = sql.read.format("org.apache.spark.sql.cassandra").load(keyspace="dev", table="clean_daily_measurement") def createDir(dirName): if not os.path.exists(dirName): os.makedirs(dirName) def generateGraphs(): start_time = time.time() basePath = "/home/ubuntu/GSOC17/FlOYBD/Flask/graphs/" stationsPd = stations.toPandas() columnsList = ["max_temp", "med_temp", "min_temp", "max_pressure", "min_pressure", "precip", "insolation"] stationCount = 1 for index, row in stationsPd.iterrows(): print(str(stationCount) + ":\t" + row.station_id) stationpath = basePath + row.station_id createDir(stationpath) station_data = clean_daily[clean_daily.station_id == row.station_id] dataframe = station_data.sort("measure_date", ascending=True).toPandas() for column in columnsList: dataframe[column] = dataframe[column].apply(pd.to_numeric) numregs = dataframe[column].count() plot = dataframe.plot(y=column, x=dataframe['measure_date'], figsize=(20, 15)) n = int(0.034*numregs) #ticks = plot.xaxis.get_ticklocs() #ticklabels = [l.get_text() for l in plot.xaxis.get_ticklabels()] #plot.xaxis.set_ticks(ticks[::n]) #plot.xaxis.set_ticklabels(ticklabels[::n]) fig = plot.get_figure() fig.savefig(stationpath + "/" + row.station_id + "_" + column + ".png") plt.close(fig) stationCount += 1 print("--- %s seconds ---" % (time.time() - start_time)) if __name__ == "__main__": # matplotlib.style.use('ggplot') initEnvironment() loadData() shutil.rmtree("/home/ubuntu/GSOC17/FlOYBD/Flask/graphs/") generateGraphs()
mit
Collumbus/ann_xor
SIARP.py
1
18419
#!/usr/bin/env python # -*- coding: utf-8 -*- __author__ = 'Collumbus' from pybrain.supervised.trainers import BackpropTrainer from pybrain.tools.shortcuts import buildNetwork from pybrain.structure import TanhLayer, SigmoidLayer, LinearLayer from pybrain.datasets import SupervisedDataSet from sklearn.metrics import r2_score import numpy as np import matplotlib from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg from matplotlib.figure import Figure import matplotlib.pyplot as plt import Tkinter as tk from Tkinter import * from PIL import ImageTk, Image import os matplotlib.use('TkAgg') #Window root configs root = tk.Tk() root.title("RNA para previsão de valores da porta XOR") root.geometry("1260x1030+400+100") #### Just to work on Mac #img = ImageTk.PhotoImage(Image.open('pybrain_logoe.gif')) #panel = tk.Label(root, image = img) #panel.grid(row=0, column=0, columnspan=2, rowspan=4, sticky=W+E+N+S, padx=5, # pady=5) img1 = ImageTk.PhotoImage(Image.open('pybrain_logoe.gif')) panel1 = tk.Label(root, image = img1) panel1.grid(row=0, column=0, columnspan=2, rowspan=4, sticky=W+E+N+S, padx=5, pady=5) #Set up misc. widgets # Settings Label Label(root, text="Configurações", font=('Verdana','13','bold'), width=60, bg='#135823', fg='grey' ).grid(row=0,columnspan=2) # Epochs Label(root, text="Épocas", font=('Verdana','11','bold')).grid(row=1) var1 = IntVar() e1 = Entry( root, text = var1) e1.grid(row=2) var1.set(1000) # Max Error Label(root, text="Erro Máximo", font=('Verdana','11','bold')).grid(row=3) var6 = DoubleVar() e7 = Entry( root, text = var6) var6.set(0.0001) e7.grid(row=4) # Momentum Label(root, text="Momento", font=('Verdana','11','bold')).grid(row=1,column=1) var2 = DoubleVar() e2 = Scale( root, variable = var2, from_=0.0, to=1.0, resolution=0.01, orient=HORIZONTAL) e2.grid(row=2,column=1) e2.set(0.90) # Learning Rate Label(root, text="Aprendizagem", font=('Verdana','11','bold')).grid(row=3, column=1) var3 = DoubleVar() e3 = Scale( root, variable = var3, from_=0.001, to=0.9, resolution=0.001, orient=HORIZONTAL) e3.grid(row=4, column=1) e3.set(0.01) # Activation Bias Label(root, text="Ativar Bias", font=('Verdana','11','bold')).grid(row=3, column=0, columnspan=2) e4 = IntVar(value=True) chk = Checkbutton(root, variable=e4,onvalue=True, offvalue=False).grid(row=4, column=0, columnspan=2) # Activation Function Label(root, text="Função de Ativação", font=('Verdana','11','bold')).grid(row=5, column=0, columnspan=2) e5 = StringVar() e5.set("TanhLayer") # default value var4 = OptionMenu(root, e5, 'TanhLayer', 'SigmoidLayer').grid(row=6, column=0, columnspan=2,) var4 = StringVar() #Setting Weights Label(root, text="Pesos", font=('Verdana','11','bold')).grid(row=5, column=0) e6 = StringVar() e6.set("Padrão") # default value var5 = OptionMenu(root, e6, 'Padrão', '(-1,0)', '(-1,1)', '(0,1)', '(-0.1,0.1)' ).grid(row=6, column=0) var5 = DoubleVar() # Questions Label Label(root, text="Questionário", font=('Verdana','13','bold'), width=60, bg='#135823', fg='grey' ).grid(row=0, column=3, columnspan=2) #Label(root, height=20, width=2, bg='#135823', fg='grey' ).grid(row=0, column=1,rowspan=9, sticky=E) #Label(root, height=20, width=2, bg='#135823', fg='grey' ).grid(row=0, column=0,rowspan=9, sticky=W) # Question 1 Label(root, text="1) É uma cirurgia de emergência?", font=('Verdana','11','bold')).grid(row=1, column=3,sticky=W) q1 = StringVar() q1.set("Não") # default value qvar1 = OptionMenu(root, q1, 'Sim', 'Não').grid(row=2, column=3,sticky=W) qvar1 = StringVar() # Question 2 Label(root, text="2) Há condições cardíacas ativas?", font=('Verdana','11','bold')).grid(row=3, column=3,sticky=W) q2 = StringVar() q2.set("Não") # default value qvar2 = OptionMenu(root, q2, 'Sim', 'Não').grid(row=4, column=3,sticky=W) qvar2 = StringVar() # Question 3 Label(root, text="3) O risco cirúrgico é baixo?", font=('Verdana','11','bold')).grid(row=5, column=3,sticky=W) q3 = StringVar() q3.set("Não") # default value qvar3 = OptionMenu(root, q3, 'Sim', 'Não').grid(row=6, column=3,sticky=W) qvar3 = StringVar() img2 = ImageTk.PhotoImage(Image.open('risc.gif')) panel2 = tk.Label(root, image = img2) panel2.grid(row=7, column=3, columnspan=3, rowspan=8, sticky=W+E+N+S, padx=5, pady=5) # Question 4 Label(root, text="4) A capacidade funcional é maior ou igual a 4 MET's e sem sintomas?", font=('Verdana','11','bold')).grid(row=15, column=3,sticky=W) q4 = StringVar() q4.set("Não") # default value qvar4 = OptionMenu(root, q4, 'Sim', 'Não').grid(row=16, column=3,sticky=W) qvar4 = StringVar() # Question 5 Label(root, text="5)Existem quantos fatores clínicos de risco?", font=('Verdana','11','bold')).grid(row=17, column=3,sticky=W) q5 = StringVar() q5.set("Nenhum") # default value qvar5 = OptionMenu(root, q5, 'Nenhum', '1 ou 2', '3 ou mais').grid(row=18, column=3,sticky=W) qvar5 = StringVar() img3 = ImageTk.PhotoImage(Image.open('risc2.gif')) panel3 = tk.Label(root, image = img3) panel3.grid(row=19, column=3, columnspan=3, rowspan=6, sticky=W+E+N, padx=5, pady=5) def runi(): print net.activate([0, 0, 0, 0, 0])[0] rrt = IntVar(value=True) rrf = IntVar(value=False) # Train Button submit = Button(root, bg='#98FB98', activebackground='#FF7F50', text="Treinar", width=13, command=lambda: all(int(e1.get()), e2.get(),e3.get(),e4.get(),e5.get(),e6.get(),float(e7.get()), q1.get(),q2.get(),q3.get(),q4.get(),q5.get(),rrt.get())).grid(row=7, column=0, pady=4) #Run button Button (root, text="Rodar", bg='#98FB98', activebackground='#FF7F50', command=lambda: all(int(e1.get()), e2.get(),e3.get(),e4.get(),e5.get(),e6.get(),float(e7.get()), q1.get(),q2.get(),q3.get(),q4.get(),q5.get(), rrf.get())).grid(row=7, column=1, pady=4) # Results Label Label(root, text="Resultados", font=('Verdana','13','bold'), width=60, bg='#135823', fg='grey' ).grid(row=8,columnspan=2) #Show total of epochs Label(root,text='Numero de épocas percorridas: ',fg = 'red', font=('Verdana', '11',"bold")).grid(row=9,columnspan=2) epo = IntVar() epoc1 = Label(textvariable=epo, font=('Verdana','11',"bold")).grid(row=10, columnspan=2) #Show error Label(root, text='Erro final:',fg = 'red', font=('Verdana','11',"bold")).grid( row=11,columnspan=2) er = StringVar() Label(root,textvariable=er, font=('Verdana','11',"bold")).grid(row=12, columnspan=2) #Show out esp Label(root, text='\nA classificação indicada ao paciente é:',fg = 'blue', font=('Verdana','11',"bold")).grid(row=13,columnspan=2) m1 = StringVar() Label(root, textvariable=m1, font=('Verdana','13',"bold")).grid(row=14, columnspan=2) #Variables to make plots it = DoubleVar() err = DoubleVar() sc = DoubleVar() ds = DoubleVar() dp = DoubleVar() def all(e1, e2=0.0, e3=0.0, e4=True, e5="TanhLayer", e6='Padrão', e7=0.0001, q1='Não', q2='Não', q3='Não', q4='Não', q5='Não', rr=True): def rerun(epocas, e2, e3, e4, e5, e6, e7, q1, q2, q3, q4, q5): #Making the net #The first 3 parameters are the nember of layers: In-Hidden-Out global net net = buildNetwork(5, 4, 1, bias=e4, hiddenclass=eval(e5)) p1 = net.params ps = net.params.shape #Setting Weights if e6 == '(-1,0)': net._setParameters(np.random.uniform(-1.0,0.0,net.params.shape[0])) elif e6 == '(-1,1)': net._setParameters(np.random.uniform(-1.0,1.0,net.params.shape[0])) elif e6 == '(0,1)': net._setParameters(np.random.uniform(0.0,1.0,net.params.shape[0])) elif e6 == '(-0.1,0.1)': net._setParameters(np.random.uniform(-0.1,0.1,net.params.shape[0])) ################# Instantiating the weights correctly to show ########## w_instance = [] w_instance = net.params.tolist() #Creating training data global ds ds = SupervisedDataSet(5, 1) ds.addSample([0, 0, 0, 0, 0], [0]) ds.addSample([0, 0, 0, 0, 1], [1]) ds.addSample([0, 0, 0, 0, 2], [2]) ds.addSample([0, 0, 0, 1, 0], [2]) ds.addSample([0, 0, 0, 1, 1], [0]) ds.addSample([0, 0, 0, 1, 2], [0]) ds.addSample([0, 0, 1, 0, 0], [0]) ds.addSample([0, 0, 1, 0, 1], [0]) ds.addSample([0, 0, 1, 0, 2], [0]) ds.addSample([0, 0, 1, 1, 0], [0]) ds.addSample([0, 0, 1, 1, 1], [0]) ds.addSample([0, 0, 1, 1, 2], [0]) ds.addSample([0, 1, 0, 0, 0], [0]) ds.addSample([0, 1, 0, 0, 1], [0]) ds.addSample([0, 1, 0, 0, 2], [0]) ds.addSample([0, 1, 0, 1, 0], [0]) ds.addSample([0, 1, 0, 1, 1], [0]) ds.addSample([0, 1, 0, 1, 2], [0]) ds.addSample([0, 1, 1, 0, 0], [0]) ds.addSample([0, 1, 1, 0, 1], [0]) ds.addSample([0, 1, 1, 0, 2], [0]) ds.addSample([0, 1, 1, 1, 0], [0]) ds.addSample([0, 1, 1, 1, 1], [0]) ds.addSample([0, 1, 1, 1, 2], [0]) ds.addSample([1, 0, 0, 0, 0], [0]) ds.addSample([1, 0, 0, 0, 1], [0]) ds.addSample([1, 0, 0, 0, 2], [0]) ds.addSample([1, 0, 0, 1, 0], [0]) ds.addSample([1, 0, 0, 1, 1], [0]) ds.addSample([1, 0, 0, 1, 2], [0]) ds.addSample([1, 0, 1, 0, 0], [0]) ds.addSample([1, 0, 1, 0, 1], [0]) ds.addSample([1, 0, 1, 0, 2], [0]) ds.addSample([1, 0, 1, 1, 0], [0]) ds.addSample([1, 0, 1, 1, 1], [0]) ds.addSample([1, 0, 1, 1, 2], [0]) ds.addSample([1, 1, 0, 0, 0], [0]) ds.addSample([1, 1, 0, 0, 1], [0]) ds.addSample([1, 1, 0, 0, 2], [0]) ds.addSample([1, 1, 0, 1, 0], [0]) ds.addSample([1, 1, 0, 1, 1], [0]) ds.addSample([1, 1, 0, 1, 2], [0]) ds.addSample([1, 1, 1, 0, 0], [0]) ds.addSample([1, 1, 1, 0, 1], [0]) ds.addSample([1, 1, 1, 0, 2], [0]) ds.addSample([1, 1, 1, 1, 0], [0]) ds.addSample([1, 1, 1, 1, 1], [0]) #Creating backdropTrainer trainer = BackpropTrainer(net, ds, learningrate=e3, momentum=e2) #max_error = 1 error = 0.00001 epocasPercorridas = 0 #Training compared by error or epochs global it global err global sc err = [] it = [] sc = [] score = 0 while epocas > 0: y_true = [0, 1, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] y_pred = [net.activate([0, 0, 0, 0, 0])[0], net.activate([0, 0, 0, 0, 1])[0], net.activate([0, 0, 0, 0, 2])[0], net.activate([0, 0, 0, 1, 0])[0], net.activate([0, 0, 0, 1, 1])[0], net.activate([0, 0, 0, 1, 2])[0], net.activate([0, 0, 1, 0, 0])[0], net.activate([0, 0, 1, 0, 1])[0], net.activate([0, 0, 1, 0, 2])[0], net.activate([0, 0, 1, 1, 0])[0], net.activate([0, 0, 1, 1, 1])[0], net.activate([0, 0, 1, 1, 2])[0], net.activate([0, 1, 0, 0, 0])[0], net.activate([0, 1, 0, 0, 1])[0], net.activate([0, 1, 0, 0, 2])[0], net.activate([0, 1, 0, 1, 0])[0], net.activate([0, 1, 0, 1, 1])[0], net.activate([0, 1, 0, 1, 2])[0], net.activate([0, 1, 1, 0, 0])[0], net.activate([0, 1, 1, 0, 1])[0], net.activate([0, 1, 1, 0, 2])[0], net.activate([0, 1, 1, 1, 0])[0], net.activate([0, 1, 1, 1, 1])[0], net.activate([0, 1, 1, 1, 2])[0], net.activate([1, 0, 0, 0, 0])[0], net.activate([1, 0, 0, 0, 1])[0], net.activate([1, 0, 0, 0, 2])[0], net.activate([1, 0, 0, 1, 0])[0], net.activate([1, 0, 0, 1, 1])[0], net.activate([1, 0, 0, 1, 2])[0], net.activate([1, 0, 1, 0, 0])[0], net.activate([1, 0, 1, 0, 1])[0], net.activate([1, 0, 1, 0, 2])[0], net.activate([1, 0, 1, 1, 0])[0], net.activate([1, 0, 1, 1, 1])[0], net.activate([1, 0, 1, 1, 2])[0], net.activate([1, 1, 0, 0, 0])[0], net.activate([1, 1, 0, 0, 1])[0], net.activate([1, 1, 0, 0, 2])[0], net.activate([1, 1, 0, 1, 0])[0], net.activate([1, 1, 0, 1, 1])[0], net.activate([1, 1, 0, 1, 2])[0], net.activate([1, 1, 1, 0, 0])[0], net.activate([1, 1, 1, 0, 1])[0], net.activate([1, 1, 1, 0, 2])[0], net.activate([1, 1, 1, 1, 0])[0], net.activate([1, 1, 1, 1, 1])[0]] score = r2_score(y_true, y_pred) error = trainer.train() epocas = epocas - 1 epocasPercorridas = epocasPercorridas + 1 sc.append(score) err.append(error) it.append(epocasPercorridas) if error < e7: break #Show total of epochs global epo epo.set(epocasPercorridas) #Show error global er #er.set("%f "%(error)) er.set(error) #Specialist input esp = np.array([q1,q2,q3,q4]) esp = np.where(esp == 'Sim', 1,0) if q5 == 'Nenhum': esp =np.append(esp,0) elif q5 == '1 ou 2': esp = np.append(esp,1) elif q5 == '3 ou mais': esp = np.append(esp,2) global pred_esp pred_esp = net.activate(esp)[0] #Show out esp global m1 if -0.2 < pred_esp < 0.2: m1.set('Classe I') elif 0.8 < pred_esp < 1.2: m1.set('Classe IIb') elif 1.8 < pred_esp < 2.2: m1.set('Classe IIa') global dp dp = np.array([net.activate([0, 0, 0, 0, 0])[0], net.activate([0, 0, 0, 0, 1])[0], net.activate([0, 0, 0, 0, 2])[0], net.activate([0, 0, 0, 1, 0])[0], net.activate([0, 0, 1, 0, 0])[0], net.activate([0, 1, 0, 0, 0])[0], net.activate([1, 0, 0, 0, 0])[0]]) root.update_idletasks() debug = True if debug: print '\n######################################### DEBUG ###########################################\n' print "\n\nPesos finais: ", net.params print "\nErro final: ", error print "\n\nTotal de epocas percorridas: ", epocasPercorridas print '\n\nSIARP_net 0: Esperado = 0, Calculado = ', net.activate([0, 0, 0, 0, 0])[0] print 'SIARP_net 1: Esperado = 1, Calculado =', net.activate([0, 0, 0, 0, 1])[0] print 'SIARP_net 2: Esperado = 2, Calculado =', net.activate([0, 0, 0, 0, 2])[0] print 'SIARP_net 3: Esperado = 2, Calculado =', net.activate([0, 0, 0, 1, 0])[0] print 'SIARP_net 4: Esperado = 0, Calculado =', net.activate([0, 0, 1, 0, 0])[0] print 'SIARP_net 5: Esperado = 0, Calculado =', net.activate([0, 1, 0, 0, 0])[0] print 'SIARP_net 6: Esperado = 0, Calculado =', net.activate([1, 0, 0, 0, 0])[0] print net['bias'] print 'O DP é:', dp print "Pesos iniciais: ", p1 print"Novos pesos:", np.array(w_instance) print"Score:", score print 'e6 =', e6 print 'e5 =', e5 print 'pred_esp:', pred_esp if rr: rerun(e1, e2, e3, e4, e5, e6, e7, q1, q2, q3, q4, q5) #Specialist input esp = np.array([q1,q2,q3,q4]) esp = np.where(esp == 'Sim', 1,0) if q5 == 'Nenhum': esp =np.append(esp,0) elif q5 == '1 ou 2': esp = np.append(esp,1) elif q5 == '3 ou mais': esp = np.append(esp,2) global pred_esp pred_esp = net.activate(esp)[0] #Show out esp global m1 if -0.2 < pred_esp < 0.2: m1.set('\nClasse I:\nBenefício >>>risco, cirurgia indicada') elif 0.8 < pred_esp < 1.2: m1.set('\nClasse IIb:\nBenefício >>risco, cirurgia provavelmente indicada') elif 1.8 < pred_esp < 2.2: m1.set('\nClasse IIa:\nBenefício > ou igual, risco indicação cirúrgica \npode ser considerada') print 'pred_esp:', pred_esp root.mainloop() #Create an empyt plotgrid #Learning fig1 = Figure(figsize=(6.3,5.15)) canvas1 = FigureCanvasTkAgg(fig1, master=root) canvas1.get_tk_widget().grid(row=20,column=0,columnspan=2) canvas1.draw() def plot_error (): fig1 = Figure(figsize=(6.3,5.15)) a = fig1.add_subplot(111) a.plot(it, err,color='blue', linewidth=2) a.set_title('Curva de erro', fontsize=16) a.set_xlabel('Epoca', fontsize=14) a.set_ylabel('Erro', fontsize=14, labelpad=7)#.set_rotation(0) a.set_yscale('log') a.grid() canvas1 = FigureCanvasTkAgg(fig1, master=root) canvas1.get_tk_widget().grid(row=20,column=0,columnspan=2) canvas1.draw() def plot_learn (): fig1 = Figure(figsize=(6.3,5.15)) b = fig1.add_subplot(111) b.plot(it, sc,color='red', linewidth=2) b.set_title('Curva de Aprendizado', fontsize=16) b.grid() b.set_yscale('log') canvas1 = FigureCanvasTkAgg(fig1, master=root) canvas1.get_tk_widget().grid(row=20,column=0,columnspan=2) canvas1.draw() #Plot error button Button (root, text="Erro", command=plot_error).grid(row=18, column=0, pady=4) #Plot learning button Button (root, text="Aprendizado", command=plot_learn).grid(row=18, column=1, pady=4) Label(root, text=u"\u00a9 Collumbus.2017", font=('Verdana','9'), foreground="#5c5555").grid(row=21,columnspan=2) mainloop()
mit
jwpeterson/libmesh
doc/statistics/libmesh_pagehits.py
2
11534
#!/usr/bin/env python import matplotlib.pyplot as plt import numpy as np # Import stuff for working with dates from datetime import datetime from matplotlib.dates import date2num # Hits/month, pages, and gigabytes served. # To get the Google analytics data: # .) Go to analytics.google.com. # .) There should be (as of July 2017) a "Google Analytics Home" box at the top left of the dashboard. # .) Click the "Audience Overview" link at the bottom right corner of this box. # .) Adjust date range to previous month. # .) Record the number of "Pageviews" in the "Hits" column below. # The data below are from the libmesh.github.io site, which uses the # number UA-24978333-1. # # Note: we do not have control over the analytics for the # https://www.github.com/libMesh/libmesh page. If you look at the page # source, analytics code UA-3769691-2 appears, but if I try to add # this property in my analytics account, Google assigns me the number # UA-24978333-{2,3,...} (where the last digit may change depending on # how many times you tried to add/remove this property in the # Analytics Dashboard) and there does not seem to be a straightforward # way of inserting this code into the source. There have been some # README.md based hacks for doing this in the past, but I don't think # they are particularly reliable... # Hits, pages, GB served data = [ # 'Jan 2003', 616, 616, 0 # 'Feb 2003', 2078, 2078, 0, # 'Mar 2003', 3157, 3157, 0, # 'Apr 2003', 7800, 7800, 0, # 'May 2003', 4627, 4627, 0, # 'Jun 2003', 6156, 6156, 0, # 'Jul 2003', 6389, 6389, 0, # 'Aug 2003', 10136, 10136, 0, # 'Sep 2003', 8871, 8871, 0, # 'Oct 2003', 9703, 9703, 0, # 'Nov 2003', 9802, 9802, 0, # 'Dec 2003', 9123, 9123, 0, # 'Jan 2004', 13599, 13599, 0, # 'Feb 2004', 11018, 11018, 0, # 'Mar 2004', 11713, 11713, 0, # 'Apr 2004', 14995, 14995, 0, # 'May 2004', 11285, 11285, 0, # 'Jun 2004', 12974, 12974, 0, # 'Jul 2004', 12939, 12939, 0, # 'Aug 2004', 9708, 9708, 0, # 'Sep 2004', 7994, 7994, 0, # 'Oct 2004', 6920, 6920, 0, # 'Nov 2004', 10261, 10261, 0, # 'Dec 2004', 7483, 7483, 0, # 'Jan 2005', 3184, 3184, 0, # 'Feb 2005', 37733, 14077, .4373, # 'Mar 2005', 43927, 16408, .5637, # 'Apr 2005', 29792, 8518, .2890, # 'May 2005', 51288, 17629, .5689, # 'Jun 2005', 40617, 16599, .5379, # 'Jul 2005', 29944, 10006, .3363, # 'Aug 2005', 39592, 14556, .4577, # 'Sep 2005', 57638, 14666, .4881, # 'Oct 2005', 48336, 17976, .5749, # 'Nov 2005', 49563, 15308, .5810, # 'Dec 2005', 90863, 40736, .9415, # 'Jan 2006', 46723, 13487, .5662, # 'Feb 2006', 62285, 26567, .8229, # 'Mar 2006', 47446, 14711, .6534, # 'Apr 2006', 90314, 29635, .9762, # 'May 2006', 68209, 20998, .7949, # 'Jun 2006', 50495, 17128, .6881, # 'Jul 2006', 42387, 10958, .6016, # 'Aug 2006', 55658, 11793, .6174, # 'Sep 2006', 54919, 20591, .9056, # 'Oct 2006', 52916, 17944, .9015, # 'Nov 2006', 55382, 19833, .9439, # 'Dec 2006', 54265, 22688, .9162, # 'Jan 2007', 53813, 19881, 1.0 , # 'Feb 2007', 52434, 17920, .9472, # 'Mar 2007', 61530, 21172, 1.2, # 'Apr 2007', 125578, 77539, 1.3, # 'May 2007', 182764, 129596, 1.6, # 'Jun 2007', 115730, 38571, 1.7, # 'Jul 2007', 121054, 42757, 1.8, # 'Aug 2007', 81192, 28187, 1.3, # 'Sep 2007', 143553, 39734, 2.3, # 'Oct 2007', 110449, 42111, 2.4, # 'Nov 2007', 128307, 57851, 2.3, # 'Dec 2007', 80584, 42631, 2.0, # 'Jan 2008', 69623, 34155, 2.0, # 'Feb 2008', 144881, 111751, 2.5, # 'Mar 2008', 69801, 29211, 1.9, # 'Apr 2008', 74023, 31149, 2.0, # 'May 2008', 63123, 23277, 1.8, # 'Jun 2008', 66055, 25418, 2.1, # 'Jul 2008', 60046, 22082, 2.0, # 'Aug 2008', 60206, 24543, 2.0, # 'Sep 2008', 53057, 18635, 1.6, # 'Oct 2008', 64828, 27042, 2.1, # 'Nov 2008', 72406, 29767, 2.3, # 'Dec 2008', 76248, 31690, 2.3, # 'Jan 2009', 73002, 29744, 2.0, # 'Feb 2009', 70801, 29156, 2.1, # 'Mar 2009', 78200, 31139, 2.1, # 'Apr 2009', 70888, 26182, 1.7, # 'May 2009', 67263, 26210, 1.8, # 'Jun 2009', 73146, 31328, 2.6, # 'Jul 2009', 77828, 33711, 2.4, # 'Aug 2009', 64378, 28542, 1.9, # 'Sep 2009', 76167, 33484, 2.2, # 'Oct 2009', 95727, 41062, 2.8, # 'Nov 2009', 88042, 38869, 2.5, # 'Dec 2009', 76148, 37609, 2.3, # 'Jan 2010', 268856, 45983, 3.2, # 'Feb 2010', 208210, 42680, 3.0, # 'Mar 2010', 116263, 42660, 2.6, # 'Apr 2010', 102493, 32942, 2.4, # 'May 2010', 117023, 37107, 2.5, # 'Jun 2010', 128589, 38019, 2.5, # 'Jul 2010', 87183, 34026, 2.2, # 'Aug 2010', 99161, 33199, 2.5, # 'Sep 2010', 81657, 32305, 2.5, # 'Oct 2010', 98236, 42091, 3.4, # 'Nov 2010', 115603, 48695, 3.4, # 'Dec 2010', 105030, 45570, 3.4, # 'Jan 2011', 133476, 43549, 3.1, # 'Feb 2011', 34483, 15002, 1.1, # 'Mar 2011', 0, 0, 0.0, # 'Apr 2011', 0, 0, 0.0, # 'May 2011', 0, 0, 0.0, # 'Jun 2011', 0, 0, 0.0, # 'Jul 2011', 0, 0, 0.0, 'Aug 2011', 10185, 0, 0.0, # New "Pageviews" data from google analytics, does not seem comparable to sf.net pagehits data 'Sep 2011', 10305, 0, 0.0, 'Oct 2011', 14081, 0, 0.0, 'Nov 2011', 13397, 0, 0.0, 'Dec 2011', 13729, 0, 0.0, 'Jan 2012', 11050, 0, 0.0, 'Feb 2012', 12779, 0, 0.0, 'Mar 2012', 12970, 0, 0.0, 'Apr 2012', 13051, 0, 0.0, 'May 2012', 11857, 0, 0.0, 'Jun 2012', 12584, 0, 0.0, 'Jul 2012', 12995, 0, 0.0, 'Aug 2012', 13204, 0, 0.0, 'Sep 2012', 13170, 0, 0.0, 'Oct 2012', 13335, 0, 0.0, 'Nov 2012', 11337, 0, 0.0, 'Dec 2012', 10108, 0, 0.0, # libmesh switched to github on December 10, 2012 'Jan 2013', 13029, 0, 0.0, 'Feb 2013', 10420, 0, 0.0, 'Mar 2013', 13400, 0, 0.0, 'Apr 2013', 14416, 0, 0.0, 'May 2013', 13875, 0, 0.0, 'Jun 2013', 13747, 0, 0.0, 'Jul 2013', 14019, 0, 0.0, 'Aug 2013', 10828, 0, 0.0, 'Sep 2013', 9969, 0, 0.0, 'Oct 2013', 13083, 0, 0.0, 'Nov 2013', 12938, 0, 0.0, 'Dec 2013', 9079, 0, 0.0, 'Jan 2014', 9736, 0, 0.0, 'Feb 2014', 11824, 0, 0.0, 'Mar 2014', 10861, 0, 0.0, 'Apr 2014', 12711, 0, 0.0, 'May 2014', 11177, 0, 0.0, 'Jun 2014', 10738, 0, 0.0, 'Jul 2014', 10349, 0, 0.0, 'Aug 2014', 8877, 0, 0.0, 'Sep 2014', 9226, 0, 0.0, 'Oct 2014', 8052, 0, 0.0, # Google analytics number moved over to libmesh.github.io in Oct 2014 'Nov 2014', 9243, 0, 0.0, 'Dec 2014', 10714, 0, 0.0, 'Jan 2015', 11508, 0, 0.0, 'Feb 2015', 11278, 0, 0.0, 'Mar 2015', 13305, 0, 0.0, 'Apr 2015', 12347, 0, 0.0, 'May 2015', 11368, 0, 0.0, 'Jun 2015', 11203, 0, 0.0, 'Jul 2015', 10419, 0, 0.0, 'Aug 2015', 11282, 0, 0.0, 'Sep 2015', 13535, 0, 0.0, 'Oct 2015', 12912, 0, 0.0, 'Nov 2015', 13894, 0, 0.0, 'Dec 2015', 11694, 0, 0.0, 'Jan 2016', 11837, 0, 0.0, 'Feb 2016', 14102, 0, 0.0, 'Mar 2016', 13212, 0, 0.0, 'Apr 2016', 13355, 0, 0.0, 'May 2016', 12486, 0, 0.0, 'Jun 2016', 13973, 0, 0.0, 'Jul 2016', 10688, 0, 0.0, 'Aug 2016', 10048, 0, 0.0, 'Sep 2016', 10847, 0, 0.0, 'Oct 2016', 10984, 0, 0.0, 'Nov 2016', 12233, 0, 0.0, 'Dec 2016', 11430, 0, 0.0, 'Jan 2017', 10327, 0, 0.0, 'Feb 2017', 11039, 0, 0.0, 'Mar 2017', 12986, 0, 0.0, 'Apr 2017', 9773, 0, 0.0, 'May 2017', 10880, 0, 0.0, 'Jun 2017', 9179, 0, 0.0, 'Jul 2017', 8344, 0, 0.0, 'Aug 2017', 8617, 0, 0.0, 'Sep 2017', 8576, 0, 0.0, 'Oct 2017', 11255, 0, 0.0, 'Nov 2017', 10362, 0, 0.0, 'Dec 2017', 7948, 0, 0.0, 'Jan 2018', 9376, 0, 0.0, 'Feb 2018', 8864, 0, 0.0, 'Mar 2018', 10339, 0, 0.0, 'Apr 2018', 10958, 0, 0.0, 'May 2018', 10151, 0, 0.0, 'Jun 2018', 8981, 0, 0.0, 'Jul 2018', 8619, 0, 0.0, 'Aug 2018', 9226, 0, 0.0, 'Sep 2018', 8507, 0, 0.0, 'Oct 2018', 9150, 0, 0.0, 'Nov 2018', 8135, 0, 0.0, 'Dec 2018', 7522, 0, 0.0, 'Jan 2019', 8643, 0, 0.0, 'Feb 2019', 8729, 0, 0.0, 'Mar 2019', 7916, 0, 0.0, 'Apr 2019', 9256, 0, 0.0, 'May 2019', 8841, 0, 0.0, 'Jun 2019', 7443, 0, 0.0, 'Jul 2019', 7718, 0, 0.0, 'Aug 2019', 6167, 0, 0.0, 'Sep 2019', 7215, 0, 0.0, 'Oct 2019', 8026, 0, 0.0, 'Nov 2019', 6529, 0, 0.0, 'Dec 2019', 6468, 0, 0.0, 'Jan 2020', 6545, 0, 0.0, 'Feb 2020', 6577, 0, 0.0, 'Mar 2020', 5658, 0, 0.0, 'Apr 2020', 6349, 0, 0.0, 'May 2020', 7004, 0, 0.0, 'Jun 2020', 7590, 0, 0.0, 'Jul 2020', 6093, 0, 0.0, 'Aug 2020', 6113, 0, 0.0, 'Sep 2020', 5608, 0, 0.0, 'Oct 2020', 6978, 0, 0.0, 'Nov 2020', 7045, 0, 0.0, 'Dec 2020', 5522, 0, 0.0, 'Jan 2021', 5426, 0, 0.0, 'Feb 2021', 5320, 0, 0.0, 'Mar 2021', 7747, 0, 0.0, 'Apr 2021', 8797, 0, 0.0, 'May 2021', 7382, 0, 0.0, 'Jun 2021', 6377, 0, 0.0, ] # Extract number of hits/month n_hits_month = data[1::4] # Divide by 1000 for plotting... n_hits_month = np.divide(n_hits_month, 1000.) # Extract list of date strings date_strings = data[0::4] # Convert date strings into numbers date_nums = [] for d in date_strings: date_nums.append(date2num(datetime.strptime(d, '%b %Y'))) # Get a reference to the figure fig = plt.figure() # 111 is equivalent to Matlab's subplot(1,1,1) command ax = fig.add_subplot(111) # Make the bar chart. We have one number/month, there are about 30 # days in each month, this defines the bar width... # The color used comes from sns.color_palette("muted").as_hex() They # are the "same basic order of hues as the default matplotlib color # cycle but more attractive colors." ax.plot(date_nums, n_hits_month, marker='o', linewidth=2, color=u'#4878cf') # Create title fig.suptitle('libmesh.github.io Hits/Month (in Thousands)') # Set up x-tick locations ticks_names = ['2012', '2013', '2014', '2015', '2016', '2017', '2018', '2019', '2020', '2021'] # Get numerical values for the names tick_nums = [] for x in ticks_names: tick_nums.append(date2num(datetime.strptime('Jan ' + x, '%b %Y'))) # Set tick labels and positions ax.set_xticks(tick_nums) ax.set_xticklabels(ticks_names) # Set x limits for the plot plt.xlim(date_nums[0], date_nums[-1]+30); # Make x-axis ticks point outward ax.get_xaxis().set_tick_params(direction='out') # Save as PDF plt.savefig('libmesh_pagehits.pdf') # Local Variables: # python-indent: 2 # End:
lgpl-2.1
laurent-george/protolab_sound_recognition
sound_classification/generate_feature_database.py
1
2699
__author__ = 'lgeorge' """ little script to offline generate features database from wav file """ import glob import os import traceback import pandas as pd from sound_processing.features_extraction import extract_mfcc_features_one_channel, _flatten_features_dict from sound_processing.sig_proc import downsample_signal from sound_processing.io_sound import load_sound def _generate_8k_dataset_dict(glob_file_pattern='/mnt/protolab_server_8k/fold*/*.wav', nfft=1024, downsampling_freq=None): """ :param glob_file_pattern: :param nfft: :param downsampling_freq: if set it's used for downsampling :return: """ files = glob.glob(glob_file_pattern) assert(files!=[]) res = [] for num, f in enumerate(files): try: data = {} data['file_path'], data['file_name'] = os.path.split(f) signal, fs = load_sound(f) # using channel_1 only if downsampling_freq: signal, fs = downsample_signal(signal, origin_fs=fs, final_fs=downsampling_freq) data['fs'] = fs try: features = extract_mfcc_features_one_channel(signal, nfft=nfft) data['features'] = features except Exception as e: import IPython IPython.embed() res.append(data) except Exception as e: print("ERROR on %s" % f) print(traceback.format_exc()) return res def generate_8k_dataset(glob_file_pattern='/mnt/protolab_server_8k/fold*/*.wav', nfft=1024, downsampling_freq=None): dict_with_features = _generate_8k_dataset_dict(glob_file_pattern=glob_file_pattern, nfft=nfft) df = pd.DataFrame(dict_with_features) df['fold'] = df['file_path'].apply(lambda x: int(os.path.basename(x)[4:])) # string = foldXY , so we take string[4: df['features'] = df['features'].apply(lambda x : _flatten_features_dict(x)) df['expected_class'] = df['file_name'].apply(lambda x: _add_class_from_filename_8kdataset(x)) return df def _add_class_from_filename_8kdataset(x): """ :param df: a dataframe with columns file_name, file_path, 'fs', :return: """ # adding class name to dataframe class_id_to_name = {0:"air_conditioner", 1:"car_horn", 2:"children_playing", 3:"dog_bark", 4:"drilling", 5:"engine_idling", 6:"gun_shot", 7:"jackhammer", 8:"siren", 9:"street_music"} return class_id_to_name[int(x.split('-')[1])]
mit
richardwolny/sms-tools
lectures/08-Sound-transformations/plots-code/FFT-filtering.py
21
1723
import math import matplotlib.pyplot as plt import numpy as np import time, os, sys sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../../../software/models/')) import dftModel as DFT import utilFunctions as UF (fs, x) = UF.wavread('../../../sounds/orchestra.wav') N = 2048 start = 1.0*fs x1 = x[start:start+N] plt.figure(1, figsize=(12, 9)) plt.subplot(321) plt.plot(np.arange(N)/float(fs), x1*np.hamming(N), 'b', lw=1.5) plt.axis([0, N/float(fs), min(x1*np.hamming(N)), max(x1*np.hamming(N))]) plt.title('x (orchestra.wav)') mX, pX = DFT.dftAnal(x1, np.hamming(N), N) startBin = int(N*500.0/fs) nBins = int(N*4000.0/fs) bandpass = (np.hanning(nBins) * 60.0) - 60 filt = np.zeros(mX.size)-60 filt[startBin:startBin+nBins] = bandpass mY = mX + filt plt.subplot(323) plt.plot(fs*np.arange(mX.size)/float(mX.size), mX, 'r', lw=1.5, label = 'mX') plt.plot(fs*np.arange(mX.size)/float(mX.size), filt+max(mX), 'k', lw=1.5, label='filter') plt.legend(prop={'size':10}) plt.axis([0,fs/4.0,-90,max(mX)+2]) plt.title('mX + filter') plt.subplot(325) plt.plot(fs*np.arange(pX.size)/float(pX.size), pX, 'c', lw=1.5) plt.axis([0,fs/4.0,min(pX),8]) plt.title('pX') y = DFT.dftSynth(mY, pX, N)*sum(np.hamming(N)) mY1, pY = DFT.dftAnal(y, np.hamming(N), N) plt.subplot(322) plt.plot(np.arange(N)/float(fs), y, 'b') plt.axis([0, float(N)/fs, min(y), max(y)]) plt.title('y') plt.subplot(324) plt.plot(fs*np.arange(mY1.size)/float(mY1.size), mY1, 'r', lw=1.5) plt.axis([0,fs/4.0,-90,max(mY1)+2]) plt.title('mY') plt.subplot(326) plt.plot(fs*np.arange(pY.size)/float(pY.size), pY, 'c', lw=1.5) plt.axis([0,fs/4.0,min(pY),8]) plt.title('pY') plt.tight_layout() plt.savefig('FFT-filtering.png') plt.show()
agpl-3.0
drakipovic/deep-learning
lab4/vae.py
1
7985
import numpy as np import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import os from PIL import Image from utils import tile_raster_images import math import matplotlib.pyplot as plt mnist = input_data.read_data_sets('MNIST_data', one_hot=True) n_samples = mnist.train.num_examples learning_rate = 0.001 batch_size = 100 n_hidden_recog_1=200 # 1 sloj enkodera n_hidden_recog_2=200 # 2 sloj enkodera n_hidden_gener_1=200 # 1 sloj dekodera n_hidden_gener_2=200 # 2 sloj dekodera n_z=20 # broj skrivenih varijabli n_input=784 # MNIST data input (img shape: 28*28) def draw_reconstructions(ins, outs, states, shape_in, shape_state, Nh): """Vizualizacija ulaza i pripadajucih rekonstrkcija i stanja skrivenog sloja ins -- ualzni vektori outs -- rekonstruirani vektori states -- vektori stanja skrivenog sloja shape_in -- dimezije ulaznih slika npr. (28,28) shape_state -- dimezije za 2D prikaz stanja (npr. za 100 stanja (10,10) """ plt.figure(figsize=(8, 12*4)) for i in range(20): plt.subplot(20, 4, 4*i + 1) plt.imshow(ins[i].reshape(shape_in), vmin=0, vmax=1, interpolation="nearest") #plt.title("Test input") plt.subplot(20, 4, 4*i + 2) plt.imshow(outs[i][0:784].reshape(shape_in), vmin=0, vmax=1, interpolation="nearest") #plt.title("Reconstruction") plt.subplot(20, 4, 4*i + 3) plt.imshow(states[i][0:Nh].reshape(shape_state), vmin=0, vmax=1, interpolation="nearest") #plt.title("States") plt.tight_layout() def weight_variable(shape, name): """Kreiranje tezina""" # http://andyljones.tumblr.com/post/110998971763/an-explanation-of-xavier-initialization return tf.get_variable(name, shape=shape, initializer=tf.contrib.layers.xavier_initializer()) def bias_variable(shape): """Kreiranje pomaka""" initial = tf.zeros(shape, dtype=tf.float32) return tf.Variable(initial) def variable_summaries(var, name): """Prikupljanje podataka za Tensorboard""" with tf.name_scope('summaries'): mean = tf.reduce_mean(var) tf.scalar_summary('mean/' + name, mean) with tf.name_scope('stddev'): stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean))) tf.scalar_summary('stddev/' + name, stddev) tf.scalar_summary('max/' + name, tf.reduce_max(var)) tf.scalar_summary('min/' + name, tf.reduce_min(var)) tf.histogram_summary(name, var) def vae_layer(input_tensor, input_dim, output_dim, layer_name, act=tf.nn.softplus): """Kreiranje jednog skrivenog sloja""" # Adding a name scope ensures logical grouping of the layers in the graph. with tf.name_scope(layer_name): # This Variable will hold the state of the weights for the layer with tf.name_scope('weights'): weights = weight_variable([input_dim, output_dim], layer_name + '/weights') variable_summaries(weights, layer_name + '/weights') with tf.name_scope('biases'): biases = bias_variable([output_dim]) variable_summaries(biases, layer_name + '/biases') with tf.name_scope('Wx_plus_b'): preactivate = tf.matmul(input_tensor, weights) + biases tf.histogram_summary(layer_name + '/pre_activations', preactivate) activations = act(preactivate, name='activation') tf.histogram_summary(layer_name + '/activations', activations) return activations tf.reset_default_graph() sess = tf.InteractiveSession() # definicije ulaznog tenzora x = tf.placeholder(tf.float32, [None, 784]) # TODO definirajte enkoiderski dio layer_e1 = vae_layer(x, n_input, n_hidden_recog_1, 'layer_e1') layer_e2 = vae_layer(layer_e1, n_hidden_recog_1, n_hidden_recog_2, 'layer_e2') with tf.name_scope('z'): # definirajte skrivene varijable i pripadajuci generator suma z_mean = vae_layer(layer_e2, n_hidden_recog_2, n_z, 'z_mean', act=tf.identity) z_log_sigma_sq = vae_layer(layer_e2, n_hidden_recog_2, n_z, 'z_log_sigma_sq', act=tf.identity) eps = tf.random_normal((batch_size, n_z), 0, 1, dtype=tf.float32) z = tf.add(z_mean, tf.mul(tf.sqrt(tf.exp(z_log_sigma_sq)), eps)) tf.histogram_summary('z/activations', z) # definirajte dekoderski dio layer_d1 = vae_layer(z, n_z, n_hidden_gener_1, 'layer_d1') layer_d2 = vae_layer(layer_d1, n_hidden_gener_1, n_hidden_gener_2, 'layer_d2') # definirajte srednju vrijednost rekonstrukcije x_reconstr_mean = vae_layer(layer_d2, n_hidden_gener_2, n_input, 'x', act=tf.identity) x_reconstr_mean_out = tf.nn.sigmoid(x_reconstr_mean) # definirajte dvije komponente funkcije cijene with tf.name_scope('costs'): # komponenta funkcije cijene - unakrsna entropija #cost1 = tf.nn.softmax_cross_entropy_with_logits(x_reconstr_mean, x) #cost1 = -tf.reduce_sum(x*tf.log(1e-6+x_reconstr_mean)+(1-x)+tf.log(1e-6+1-x_reconstr_mean), axis=1) cost1 = tf.reduce_sum(-x_reconstr_mean * x + tf.log(1 + tf.exp(x_reconstr_mean)), axis=1) # komponenta funkcije cijene - KL divergencija cost2 = -0.5 * tf.reduce_sum(1 + z_log_sigma_sq - tf.square(z_mean) - tf.exp(z_log_sigma_sq), axis=1) #tf.scalar_summary('cost2', cost2) cost = tf.reduce_mean(cost1) + tf.reduce_mean(cost2) # average over batch tf.scalar_summary('cost', cost) # ADAM optimizer with tf.name_scope('train'): optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) # Prikupljanje podataka za Tensorboard merged = tf.merge_all_summaries() train_writer = tf.train.SummaryWriter('train', sess.graph) init = tf.initialize_all_variables() sess.run(init) saver = tf.train.Saver() n_epochs = 5 for epoch in range(n_epochs): avg_cost = 0. total_batch = int(n_samples / batch_size) for i in range(total_batch): batch_xs, _ = mnist.train.next_batch(batch_size) opt, cos = sess.run((optimizer, cost), feed_dict={x: batch_xs}) avg_cost += cos / n_samples * batch_size if epoch % 2 == 0: print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost)) run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) run_metadata = tf.RunMetadata() summary, _ = sess.run([merged, optimizer], feed_dict={x: batch_xs}, options=run_options, run_metadata=run_metadata) train_writer.add_run_metadata(run_metadata, 'epoch%03d' % epoch) train_writer.add_summary(summary, i) saver.save(sess, os.path.join('train', "model.ckpt"), epoch) train_writer.close() # vizualizacija rekonstrukcije i stanja x_sample = mnist.test.next_batch(100)[0] x_reconstruct, z_out = sess.run([x_reconstr_mean_out, z], feed_dict={x: x_sample}) draw_reconstructions(x_sample, x_reconstruct, z_out, (28, 28), (4,5), 20) # Vizualizacija raspored testnih uzoraka u 2D prostoru skrivenih varijabli - 1. nacin x_sample, y_sample = mnist.test.next_batch(5000) z_mu = sess.run(z_mean, feed_dict={x: x_sample}) plt.figure(figsize=(8, 6)) plt.scatter(z_mu[:, 0], z_mu[:, 1], c=np.argmax(y_sample, 1)) plt.colorbar() # # Vizualizacija raspored testnih uzoraka u 2D prostoru skrivenih varijabli - 2. nacin # nx = ny = 20 # x_values = np.linspace(-3, 3, nx) # y_values = np.linspace(-3, 3, ny) # canvas = np.empty((28*ny, 28*nx)) # for i, yi in enumerate(x_values): # for j, xi in enumerate(y_values): # z_mu = np.array([[xi, yi]]) # print z_mu.shape # x_mean = sess.run(x_reconstr_mean_out, feed_dict={z: np.repeat(z_mu,100,0)}) # canvas[(nx-i-1)*28:(nx-i)*28, j*28:(j+1)*28] = x_mean[0].reshape(28, 28) # plt.figure(figsize=(8, 10)) # Xi, Yi = np.meshgrid(x_values, y_values) # plt.imshow(canvas, origin="upper") # plt.tight_layout() plt.show()
mit
srowen/spark
python/pyspark/pandas/tests/test_dataframe_conversion.py
15
11321
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import shutil import string import tempfile import unittest import numpy as np import pandas as pd from distutils.version import LooseVersion from pyspark import pandas as ps from pyspark.testing.pandasutils import PandasOnSparkTestCase, TestUtils from pyspark.testing.sqlutils import SQLTestUtils class DataFrameConversionTest(PandasOnSparkTestCase, SQLTestUtils, TestUtils): """Test cases for "small data" conversion and I/O.""" def setUp(self): self.tmp_dir = tempfile.mkdtemp(prefix=DataFrameConversionTest.__name__) def tearDown(self): shutil.rmtree(self.tmp_dir, ignore_errors=True) @property def pdf(self): return pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}, index=[0, 1, 3]) @property def psdf(self): return ps.from_pandas(self.pdf) @staticmethod def strip_all_whitespace(str): """A helper function to remove all whitespace from a string.""" return str.translate({ord(c): None for c in string.whitespace}) def test_to_html(self): expected = self.strip_all_whitespace( """ <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"><th></th><th>a</th><th>b</th></tr> </thead> <tbody> <tr><th>0</th><td>1</td><td>4</td></tr> <tr><th>1</th><td>2</td><td>5</td></tr> <tr><th>3</th><td>3</td><td>6</td></tr> </tbody> </table> """ ) got = self.strip_all_whitespace(self.psdf.to_html()) self.assert_eq(got, expected) # with max_rows set expected = self.strip_all_whitespace( """ <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"><th></th><th>a</th><th>b</th></tr> </thead> <tbody> <tr><th>0</th><td>1</td><td>4</td></tr> <tr><th>1</th><td>2</td><td>5</td></tr> </tbody> </table> """ ) got = self.strip_all_whitespace(self.psdf.to_html(max_rows=2)) self.assert_eq(got, expected) @staticmethod def get_excel_dfs(pandas_on_spark_location, pandas_location): return { "got": pd.read_excel(pandas_on_spark_location, index_col=0), "expected": pd.read_excel(pandas_location, index_col=0), } @unittest.skip("openpyxl") def test_to_excel(self): with self.temp_dir() as dirpath: pandas_location = dirpath + "/" + "output1.xlsx" pandas_on_spark_location = dirpath + "/" + "output2.xlsx" pdf = self.pdf psdf = self.psdf psdf.to_excel(pandas_on_spark_location) pdf.to_excel(pandas_location) dataframes = self.get_excel_dfs(pandas_on_spark_location, pandas_location) self.assert_eq(dataframes["got"], dataframes["expected"]) psdf.a.to_excel(pandas_on_spark_location) pdf.a.to_excel(pandas_location) dataframes = self.get_excel_dfs(pandas_on_spark_location, pandas_location) self.assert_eq(dataframes["got"], dataframes["expected"]) pdf = pd.DataFrame({"a": [1, None, 3], "b": ["one", "two", None]}, index=[0, 1, 3]) psdf = ps.from_pandas(pdf) psdf.to_excel(pandas_on_spark_location, na_rep="null") pdf.to_excel(pandas_location, na_rep="null") dataframes = self.get_excel_dfs(pandas_on_spark_location, pandas_location) self.assert_eq(dataframes["got"], dataframes["expected"]) pdf = pd.DataFrame({"a": [1.0, 2.0, 3.0], "b": [4.0, 5.0, 6.0]}, index=[0, 1, 3]) psdf = ps.from_pandas(pdf) psdf.to_excel(pandas_on_spark_location, float_format="%.1f") pdf.to_excel(pandas_location, float_format="%.1f") dataframes = self.get_excel_dfs(pandas_on_spark_location, pandas_location) self.assert_eq(dataframes["got"], dataframes["expected"]) psdf.to_excel(pandas_on_spark_location, header=False) pdf.to_excel(pandas_location, header=False) dataframes = self.get_excel_dfs(pandas_on_spark_location, pandas_location) self.assert_eq(dataframes["got"], dataframes["expected"]) psdf.to_excel(pandas_on_spark_location, index=False) pdf.to_excel(pandas_location, index=False) dataframes = self.get_excel_dfs(pandas_on_spark_location, pandas_location) self.assert_eq(dataframes["got"], dataframes["expected"]) def test_to_json(self): pdf = self.pdf psdf = ps.from_pandas(pdf) self.assert_eq(psdf.to_json(orient="records"), pdf.to_json(orient="records")) def test_to_json_negative(self): psdf = ps.from_pandas(self.pdf) with self.assertRaises(NotImplementedError): psdf.to_json(orient="table") with self.assertRaises(NotImplementedError): psdf.to_json(lines=False) def test_read_json_negative(self): with self.assertRaises(NotImplementedError): ps.read_json("invalid", lines=False) def test_to_json_with_path(self): pdf = pd.DataFrame({"a": [1], "b": ["a"]}) psdf = ps.DataFrame(pdf) psdf.to_json(self.tmp_dir, num_files=1) expected = pdf.to_json(orient="records") output_paths = [path for path in os.listdir(self.tmp_dir) if path.startswith("part-")] assert len(output_paths) > 0 output_path = "%s/%s" % (self.tmp_dir, output_paths[0]) self.assertEqual("[%s]" % open(output_path).read().strip(), expected) def test_to_json_with_partition_cols(self): pdf = pd.DataFrame({"a": [1, 2, 3], "b": ["a", "b", "c"]}) psdf = ps.DataFrame(pdf) psdf.to_json(self.tmp_dir, partition_cols="b", num_files=1) partition_paths = [path for path in os.listdir(self.tmp_dir) if path.startswith("b=")] assert len(partition_paths) > 0 for partition_path in partition_paths: column, value = partition_path.split("=") expected = pdf[pdf[column] == value].drop("b", axis=1).to_json(orient="records") output_paths = [ path for path in os.listdir("%s/%s" % (self.tmp_dir, partition_path)) if path.startswith("part-") ] assert len(output_paths) > 0 output_path = "%s/%s/%s" % (self.tmp_dir, partition_path, output_paths[0]) with open(output_path) as f: self.assertEqual("[%s]" % open(output_path).read().strip(), expected) @unittest.skip("Pyperclip could not find a copy/paste mechanism for Linux.") def test_to_clipboard(self): pdf = self.pdf psdf = self.psdf self.assert_eq(psdf.to_clipboard(), pdf.to_clipboard()) self.assert_eq(psdf.to_clipboard(excel=False), pdf.to_clipboard(excel=False)) self.assert_eq( psdf.to_clipboard(sep=";", index=False), pdf.to_clipboard(sep=";", index=False) ) def test_to_latex(self): pdf = self.pdf psdf = self.psdf self.assert_eq(psdf.to_latex(), pdf.to_latex()) self.assert_eq(psdf.to_latex(col_space=2), pdf.to_latex(col_space=2)) self.assert_eq(psdf.to_latex(header=True), pdf.to_latex(header=True)) self.assert_eq(psdf.to_latex(index=False), pdf.to_latex(index=False)) self.assert_eq(psdf.to_latex(na_rep="-"), pdf.to_latex(na_rep="-")) self.assert_eq(psdf.to_latex(float_format="%.1f"), pdf.to_latex(float_format="%.1f")) self.assert_eq(psdf.to_latex(sparsify=False), pdf.to_latex(sparsify=False)) self.assert_eq(psdf.to_latex(index_names=False), pdf.to_latex(index_names=False)) self.assert_eq(psdf.to_latex(bold_rows=True), pdf.to_latex(bold_rows=True)) self.assert_eq(psdf.to_latex(decimal=","), pdf.to_latex(decimal=",")) if LooseVersion(pd.__version__) < LooseVersion("1.0.0"): self.assert_eq(psdf.to_latex(encoding="ascii"), pdf.to_latex(encoding="ascii")) def test_to_records(self): if LooseVersion(pd.__version__) >= LooseVersion("0.24.0"): pdf = pd.DataFrame({"A": [1, 2], "B": [0.5, 0.75]}, index=["a", "b"]) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.to_records(), pdf.to_records()) self.assert_eq(psdf.to_records(index=False), pdf.to_records(index=False)) self.assert_eq(psdf.to_records(index_dtypes="<S2"), pdf.to_records(index_dtypes="<S2")) def test_from_records(self): # Assert using a dict as input self.assert_eq( ps.DataFrame.from_records({"A": [1, 2, 3]}), pd.DataFrame.from_records({"A": [1, 2, 3]}) ) # Assert using a list of tuples as input self.assert_eq( ps.DataFrame.from_records([(1, 2), (3, 4)]), pd.DataFrame.from_records([(1, 2), (3, 4)]) ) # Assert using a NumPy array as input self.assert_eq(ps.DataFrame.from_records(np.eye(3)), pd.DataFrame.from_records(np.eye(3))) # Asserting using a custom index self.assert_eq( ps.DataFrame.from_records([(1, 2), (3, 4)], index=[2, 3]), pd.DataFrame.from_records([(1, 2), (3, 4)], index=[2, 3]), ) # Assert excluding excluding column(s) self.assert_eq( ps.DataFrame.from_records({"A": [1, 2, 3], "B": [1, 2, 3]}, exclude=["B"]), pd.DataFrame.from_records({"A": [1, 2, 3], "B": [1, 2, 3]}, exclude=["B"]), ) # Assert limiting to certain column(s) self.assert_eq( ps.DataFrame.from_records({"A": [1, 2, 3], "B": [1, 2, 3]}, columns=["A"]), pd.DataFrame.from_records({"A": [1, 2, 3], "B": [1, 2, 3]}, columns=["A"]), ) # Assert limiting to a number of rows self.assert_eq( ps.DataFrame.from_records([(1, 2), (3, 4)], nrows=1), pd.DataFrame.from_records([(1, 2), (3, 4)], nrows=1), ) if __name__ == "__main__": from pyspark.pandas.tests.test_dataframe_conversion import * # noqa: F401 try: import xmlrunner # type: ignore[import] testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2) except ImportError: testRunner = None unittest.main(testRunner=testRunner, verbosity=2)
apache-2.0
waynenilsen/statsmodels
docs/sphinxext/numpy_ext/plot_directive.py
65
20399
""" A special directive for generating a matplotlib plot. .. warning:: This is a hacked version of plot_directive.py from Matplotlib. It's very much subject to change! Usage ----- Can be used like this:: .. plot:: examples/example.py .. plot:: import matplotlib.pyplot as plt plt.plot([1,2,3], [4,5,6]) .. plot:: A plotting example: >>> import matplotlib.pyplot as plt >>> plt.plot([1,2,3], [4,5,6]) The content is interpreted as doctest formatted if it has a line starting with ``>>>``. The ``plot`` directive supports the options format : {'python', 'doctest'} Specify the format of the input include-source : bool Whether to display the source code. Default can be changed in conf.py and the ``image`` directive options ``alt``, ``height``, ``width``, ``scale``, ``align``, ``class``. Configuration options --------------------- The plot directive has the following configuration options: plot_include_source Default value for the include-source option plot_pre_code Code that should be executed before each plot. plot_basedir Base directory, to which plot:: file names are relative to. (If None or empty, file names are relative to the directoly where the file containing the directive is.) plot_formats File formats to generate. List of tuples or strings:: [(suffix, dpi), suffix, ...] that determine the file format and the DPI. For entries whose DPI was omitted, sensible defaults are chosen. plot_html_show_formats Whether to show links to the files in HTML. TODO ---- * Refactor Latex output; now it's plain images, but it would be nice to make them appear side-by-side, or in floats. """ import sys, os, glob, shutil, imp, warnings, cStringIO, re, textwrap, traceback import sphinx import warnings warnings.warn("A plot_directive module is also available under " "matplotlib.sphinxext; expect this numpydoc.plot_directive " "module to be deprecated after relevant features have been " "integrated there.", FutureWarning, stacklevel=2) #------------------------------------------------------------------------------ # Registration hook #------------------------------------------------------------------------------ def setup(app): setup.app = app setup.config = app.config setup.confdir = app.confdir app.add_config_value('plot_pre_code', '', True) app.add_config_value('plot_include_source', False, True) app.add_config_value('plot_formats', ['png', 'hires.png', 'pdf'], True) app.add_config_value('plot_basedir', None, True) app.add_config_value('plot_html_show_formats', True, True) app.add_directive('plot', plot_directive, True, (0, 1, False), **plot_directive_options) #------------------------------------------------------------------------------ # plot:: directive #------------------------------------------------------------------------------ from docutils.parsers.rst import directives from docutils import nodes def plot_directive(name, arguments, options, content, lineno, content_offset, block_text, state, state_machine): return run(arguments, content, options, state_machine, state, lineno) plot_directive.__doc__ = __doc__ def _option_boolean(arg): if not arg or not arg.strip(): # no argument given, assume used as a flag return True elif arg.strip().lower() in ('no', '0', 'false'): return False elif arg.strip().lower() in ('yes', '1', 'true'): return True else: raise ValueError('"%s" unknown boolean' % arg) def _option_format(arg): return directives.choice(arg, ('python', 'lisp')) def _option_align(arg): return directives.choice(arg, ("top", "middle", "bottom", "left", "center", "right")) plot_directive_options = {'alt': directives.unchanged, 'height': directives.length_or_unitless, 'width': directives.length_or_percentage_or_unitless, 'scale': directives.nonnegative_int, 'align': _option_align, 'class': directives.class_option, 'include-source': _option_boolean, 'format': _option_format, } #------------------------------------------------------------------------------ # Generating output #------------------------------------------------------------------------------ from docutils import nodes, utils try: # Sphinx depends on either Jinja or Jinja2 import jinja2 def format_template(template, **kw): return jinja2.Template(template).render(**kw) except ImportError: import jinja def format_template(template, **kw): return jinja.from_string(template, **kw) TEMPLATE = """ {{ source_code }} {{ only_html }} {% if source_link or (html_show_formats and not multi_image) %} ( {%- if source_link -%} `Source code <{{ source_link }}>`__ {%- endif -%} {%- if html_show_formats and not multi_image -%} {%- for img in images -%} {%- for fmt in img.formats -%} {%- if source_link or not loop.first -%}, {% endif -%} `{{ fmt }} <{{ dest_dir }}/{{ img.basename }}.{{ fmt }}>`__ {%- endfor -%} {%- endfor -%} {%- endif -%} ) {% endif %} {% for img in images %} .. figure:: {{ build_dir }}/{{ img.basename }}.png {%- for option in options %} {{ option }} {% endfor %} {% if html_show_formats and multi_image -%} ( {%- for fmt in img.formats -%} {%- if not loop.first -%}, {% endif -%} `{{ fmt }} <{{ dest_dir }}/{{ img.basename }}.{{ fmt }}>`__ {%- endfor -%} ) {%- endif -%} {% endfor %} {{ only_latex }} {% for img in images %} .. image:: {{ build_dir }}/{{ img.basename }}.pdf {% endfor %} """ class ImageFile(object): def __init__(self, basename, dirname): self.basename = basename self.dirname = dirname self.formats = [] def filename(self, format): return os.path.join(self.dirname, "%s.%s" % (self.basename, format)) def filenames(self): return [self.filename(fmt) for fmt in self.formats] def run(arguments, content, options, state_machine, state, lineno): if arguments and content: raise RuntimeError("plot:: directive can't have both args and content") document = state_machine.document config = document.settings.env.config options.setdefault('include-source', config.plot_include_source) # determine input rst_file = document.attributes['source'] rst_dir = os.path.dirname(rst_file) if arguments: if not config.plot_basedir: source_file_name = os.path.join(rst_dir, directives.uri(arguments[0])) else: source_file_name = os.path.join(setup.confdir, config.plot_basedir, directives.uri(arguments[0])) code = open(source_file_name, 'r').read() output_base = os.path.basename(source_file_name) else: source_file_name = rst_file code = textwrap.dedent("\n".join(map(str, content))) counter = document.attributes.get('_plot_counter', 0) + 1 document.attributes['_plot_counter'] = counter base, ext = os.path.splitext(os.path.basename(source_file_name)) output_base = '%s-%d.py' % (base, counter) base, source_ext = os.path.splitext(output_base) if source_ext in ('.py', '.rst', '.txt'): output_base = base else: source_ext = '' # ensure that LaTeX includegraphics doesn't choke in foo.bar.pdf filenames output_base = output_base.replace('.', '-') # is it in doctest format? is_doctest = contains_doctest(code) if options.has_key('format'): if options['format'] == 'python': is_doctest = False else: is_doctest = True # determine output directory name fragment source_rel_name = relpath(source_file_name, setup.confdir) source_rel_dir = os.path.dirname(source_rel_name) while source_rel_dir.startswith(os.path.sep): source_rel_dir = source_rel_dir[1:] # build_dir: where to place output files (temporarily) build_dir = os.path.join(os.path.dirname(setup.app.doctreedir), 'plot_directive', source_rel_dir) if not os.path.exists(build_dir): os.makedirs(build_dir) # output_dir: final location in the builder's directory dest_dir = os.path.abspath(os.path.join(setup.app.builder.outdir, source_rel_dir)) # how to link to files from the RST file dest_dir_link = os.path.join(relpath(setup.confdir, rst_dir), source_rel_dir).replace(os.path.sep, '/') build_dir_link = relpath(build_dir, rst_dir).replace(os.path.sep, '/') source_link = dest_dir_link + '/' + output_base + source_ext # make figures try: results = makefig(code, source_file_name, build_dir, output_base, config) errors = [] except PlotError, err: reporter = state.memo.reporter sm = reporter.system_message( 2, "Exception occurred in plotting %s: %s" % (output_base, err), line=lineno) results = [(code, [])] errors = [sm] # generate output restructuredtext total_lines = [] for j, (code_piece, images) in enumerate(results): if options['include-source']: if is_doctest: lines = [''] lines += [row.rstrip() for row in code_piece.split('\n')] else: lines = ['.. code-block:: python', ''] lines += [' %s' % row.rstrip() for row in code_piece.split('\n')] source_code = "\n".join(lines) else: source_code = "" opts = [':%s: %s' % (key, val) for key, val in options.items() if key in ('alt', 'height', 'width', 'scale', 'align', 'class')] only_html = ".. only:: html" only_latex = ".. only:: latex" if j == 0: src_link = source_link else: src_link = None result = format_template( TEMPLATE, dest_dir=dest_dir_link, build_dir=build_dir_link, source_link=src_link, multi_image=len(images) > 1, only_html=only_html, only_latex=only_latex, options=opts, images=images, source_code=source_code, html_show_formats=config.plot_html_show_formats) total_lines.extend(result.split("\n")) total_lines.extend("\n") if total_lines: state_machine.insert_input(total_lines, source=source_file_name) # copy image files to builder's output directory if not os.path.exists(dest_dir): os.makedirs(dest_dir) for code_piece, images in results: for img in images: for fn in img.filenames(): shutil.copyfile(fn, os.path.join(dest_dir, os.path.basename(fn))) # copy script (if necessary) if source_file_name == rst_file: target_name = os.path.join(dest_dir, output_base + source_ext) f = open(target_name, 'w') f.write(unescape_doctest(code)) f.close() return errors #------------------------------------------------------------------------------ # Run code and capture figures #------------------------------------------------------------------------------ import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import matplotlib.image as image from matplotlib import _pylab_helpers import exceptions def contains_doctest(text): try: # check if it's valid Python as-is compile(text, '<string>', 'exec') return False except SyntaxError: pass r = re.compile(r'^\s*>>>', re.M) m = r.search(text) return bool(m) def unescape_doctest(text): """ Extract code from a piece of text, which contains either Python code or doctests. """ if not contains_doctest(text): return text code = "" for line in text.split("\n"): m = re.match(r'^\s*(>>>|\.\.\.) (.*)$', line) if m: code += m.group(2) + "\n" elif line.strip(): code += "# " + line.strip() + "\n" else: code += "\n" return code def split_code_at_show(text): """ Split code at plt.show() """ parts = [] is_doctest = contains_doctest(text) part = [] for line in text.split("\n"): if (not is_doctest and line.strip() == 'plt.show()') or \ (is_doctest and line.strip() == '>>> plt.show()'): part.append(line) parts.append("\n".join(part)) part = [] else: part.append(line) if "\n".join(part).strip(): parts.append("\n".join(part)) return parts class PlotError(RuntimeError): pass def run_code(code, code_path, ns=None): # Change the working directory to the directory of the example, so # it can get at its data files, if any. pwd = os.getcwd() old_sys_path = list(sys.path) if code_path is not None: dirname = os.path.abspath(os.path.dirname(code_path)) os.chdir(dirname) sys.path.insert(0, dirname) # Redirect stdout stdout = sys.stdout sys.stdout = cStringIO.StringIO() # Reset sys.argv old_sys_argv = sys.argv sys.argv = [code_path] try: try: code = unescape_doctest(code) if ns is None: ns = {} if not ns: exec setup.config.plot_pre_code in ns exec code in ns except (Exception, SystemExit), err: raise PlotError(traceback.format_exc()) finally: os.chdir(pwd) sys.argv = old_sys_argv sys.path[:] = old_sys_path sys.stdout = stdout return ns #------------------------------------------------------------------------------ # Generating figures #------------------------------------------------------------------------------ def out_of_date(original, derived): """ Returns True if derivative is out-of-date wrt original, both of which are full file paths. """ return (not os.path.exists(derived) or os.stat(derived).st_mtime < os.stat(original).st_mtime) def makefig(code, code_path, output_dir, output_base, config): """ Run a pyplot script *code* and save the images under *output_dir* with file names derived from *output_base* """ # -- Parse format list default_dpi = {'png': 80, 'hires.png': 200, 'pdf': 50} formats = [] for fmt in config.plot_formats: if isinstance(fmt, str): formats.append((fmt, default_dpi.get(fmt, 80))) elif type(fmt) in (tuple, list) and len(fmt)==2: formats.append((str(fmt[0]), int(fmt[1]))) else: raise PlotError('invalid image format "%r" in plot_formats' % fmt) # -- Try to determine if all images already exist code_pieces = split_code_at_show(code) # Look for single-figure output files first all_exists = True img = ImageFile(output_base, output_dir) for format, dpi in formats: if out_of_date(code_path, img.filename(format)): all_exists = False break img.formats.append(format) if all_exists: return [(code, [img])] # Then look for multi-figure output files results = [] all_exists = True for i, code_piece in enumerate(code_pieces): images = [] for j in xrange(1000): img = ImageFile('%s_%02d_%02d' % (output_base, i, j), output_dir) for format, dpi in formats: if out_of_date(code_path, img.filename(format)): all_exists = False break img.formats.append(format) # assume that if we have one, we have them all if not all_exists: all_exists = (j > 0) break images.append(img) if not all_exists: break results.append((code_piece, images)) if all_exists: return results # -- We didn't find the files, so build them results = [] ns = {} for i, code_piece in enumerate(code_pieces): # Clear between runs plt.close('all') # Run code run_code(code_piece, code_path, ns) # Collect images images = [] fig_managers = _pylab_helpers.Gcf.get_all_fig_managers() for j, figman in enumerate(fig_managers): if len(fig_managers) == 1 and len(code_pieces) == 1: img = ImageFile(output_base, output_dir) else: img = ImageFile("%s_%02d_%02d" % (output_base, i, j), output_dir) images.append(img) for format, dpi in formats: try: figman.canvas.figure.savefig(img.filename(format), dpi=dpi) except exceptions.BaseException, err: raise PlotError(traceback.format_exc()) img.formats.append(format) # Results results.append((code_piece, images)) return results #------------------------------------------------------------------------------ # Relative pathnames #------------------------------------------------------------------------------ try: from os.path import relpath except ImportError: # Copied from Python 2.7 if 'posix' in sys.builtin_module_names: def relpath(path, start=os.path.curdir): """Return a relative version of a path""" from os.path import sep, curdir, join, abspath, commonprefix, \ pardir if not path: raise ValueError("no path specified") start_list = abspath(start).split(sep) path_list = abspath(path).split(sep) # Work out how much of the filepath is shared by start and path. i = len(commonprefix([start_list, path_list])) rel_list = [pardir] * (len(start_list)-i) + path_list[i:] if not rel_list: return curdir return join(*rel_list) elif 'nt' in sys.builtin_module_names: def relpath(path, start=os.path.curdir): """Return a relative version of a path""" from os.path import sep, curdir, join, abspath, commonprefix, \ pardir, splitunc if not path: raise ValueError("no path specified") start_list = abspath(start).split(sep) path_list = abspath(path).split(sep) if start_list[0].lower() != path_list[0].lower(): unc_path, rest = splitunc(path) unc_start, rest = splitunc(start) if bool(unc_path) ^ bool(unc_start): raise ValueError("Cannot mix UNC and non-UNC paths (%s and %s)" % (path, start)) else: raise ValueError("path is on drive %s, start on drive %s" % (path_list[0], start_list[0])) # Work out how much of the filepath is shared by start and path. for i in range(min(len(start_list), len(path_list))): if start_list[i].lower() != path_list[i].lower(): break else: i += 1 rel_list = [pardir] * (len(start_list)-i) + path_list[i:] if not rel_list: return curdir return join(*rel_list) else: raise RuntimeError("Unsupported platform (no relpath available!)")
bsd-3-clause
awickert/river-network-evolution
run_ThreeChannels_generalizing.py
1
4095
import numpy as np from scipy.sparse import spdiags, block_diag from scipy.sparse.linalg import spsolve, isolve from matplotlib import pyplot as plt import copy import time import ThreeChannels_generalizing reload(ThreeChannels_generalizing) r = ThreeChannels_generalizing.rnet() self = r plt.ion() # PER RIVER # ############# self.eta = [] self.nx = 4E0 + 1 ####################### ### INPUT VARIABLES ### ####################### # GLOBAL UNIFORM # ################## self.D = 200E-3 # [m] [uniform so far] porosity = lambda_p = 0.35 # [-] n_time_steps = 1 self.flow_from_to = np.array([[0,2],[1,2]]) self.flow_from = [[], [], [0,1]] self.flow_to = [[2], [2], []] self.b = [20, 20, 40] self.segment_Q_in = self.headwaters_segments = np.array([[0,40],[1,20]]) self.nsegments = len(self.b) #self.flow_from_to = np.array([[0,1]]) #self.flow_from = [[], [0]] #self.flow_to = [[1], []] self.flow_from_to = np.array([[0,2],[1,2],[2,4],[3,4]]) self.flow_from = [[], [], [0,1], [], [2,3]] self.flow_to = [[2], [2], [4], [4], []] self.b = [20, 20, 40, 20, 60] #self.b = [20, 30, 50, 10, 60] self.segment_Q_in = self.headwaters_segments = np.array([[0,40],[1,20],[3,50]]) self.nsegments = len(self.flow_from) """ self.flow_from_to = np.array([[]]) self.flow_from = [[]] self.flow_to = [[]] self.b = [20] #self.b = [20, 30, 50, 10, 60] self.segment_Q_in = self.headwaters_segments = np.array([[0,40]]) self.nsegments = len(self.flow_from) """ """ self.flow_from_to = np.array([[0,1]]) self.flow_from = [[], [0]] self.flow_to = [[1], []] #self.b = [20, 20, 40, 20, 60] self.b = [20, 20] """ # 3 rivers -- would often pull them in from GIS # Keep everything uniform for starters xmax = 1E3 self.B = 100 * np.ones(self.nx) S = 1E-2 self.dt = 3.15E2 self.x = [] self.dx = [] self.h = [] self.eta = [] # Multiple rivers for Si in range(len(self.flow_to)): self.x.append(np.linspace(0, xmax, self.nx)) self.dx.append(np.mean(np.diff(self.x[-1]))) # Special case of uniform grid spacing self.h.append(2. * np.ones(self.nx)) # specific case of 2 m depth everywhere #self.x[-1] += self.x[-2][-1] + self.dx[-1] #Very specific to this 3-river set here self.x[-3] += self.x[1][-1] + self.dx[-1] #Very specific to this 5-river set here self.x[-2] += self.x[1][-1] + self.dx[-1] #Very specific to this 5-river set here self.x[-1] += self.x[2][-1] + self.dx[-1] #Very specific to this 5-river set here #self.x[-1] += self.x[-2][-1] + self.dx[-1] #Very specific to this 2-river set here for row in self.x: self.eta.append( -S * row + np.max(self.x)*S ) self.eta[-1] = np.round(self.eta[-1], 6) # coarse trick to rmv floating point issues self.eta0 = copy.deepcopy(self.eta) ######################### ### DERIVED VARIABLES ### ######################### self.nts = np.linspace(0, n_time_steps, n_time_steps+1) # start at 1 below, t0 is initial self.A0 = [] for Si in range(len(self.x)): self.A0.append( 11.325 / (1 - lambda_p) * self.h[Si]/self.D ) #q_s_in = 0.69623693 # [m^3 s^{-1}] # q_s for equilibrium in each channel; used for transport slope upstream # boundary conditions #q_s_out = whatever it has to be to transport out as much material as it receives q_s_equilibrium = np.array(self.sediment__discharge_per_unit_width()) #print np.mean(eta) # Ignoring for now -- for iterating # Assuming in order: so flow_from is really irrelavant; flow_to is the important part """ fig = plt.figure() plt.ylim((0,50)) ax = plt.subplot(111) """ #for row in self.eta: # row += 10 for ts in range(1): # self.nts # 3 iterations is usually good; nothing special about it, though. self.eta_iter = copy.deepcopy(self.eta) # For iteration self.stack_vars() for iter_i in range(1): self.build_coeff_matrix(q_s_equilibrium) self.build_RHS() #print np.max(np.hstack(self.eta_iter)) self.solve() self.update() """ ax.clear() if ts % 25 == 0: self.riverplot(linewidth=2) #plt.ylim((0,40)) #plt.draw() plt.pause(0.0001) """ self.stack_vars() #self.plot_coeff_matrix() #plt.ylim((0,40)) self.riverplot(linewidth=4, plot_start=True) plt.show()
gpl-3.0
wdurhamh/statsmodels
statsmodels/examples/ex_univar_kde.py
34
5127
""" This example tests the nonparametric estimator for several popular univariate distributions with the different bandwidth selction methods - CV-ML; CV-LS; Scott's rule of thumb. Produces six different plots for each distribution 1) Beta 2) f 3) Pareto 4) Laplace 5) Weibull 6) Poisson """ from __future__ import print_function import numpy as np import scipy.stats as stats import matplotlib.pyplot as plt import statsmodels.api as sm KDEMultivariate = sm.nonparametric.KDEMultivariate np.random.seed(123456) # Beta distribution # Parameters a = 2 b = 5 nobs = 250 support = np.random.beta(a, b, size=nobs) rv = stats.beta(a, b) ix = np.argsort(support) dens_normal = KDEMultivariate(data=[support], var_type='c', bw='normal_reference') dens_cvls = KDEMultivariate(data=[support], var_type='c', bw='cv_ls') dens_cvml = KDEMultivariate(data=[support], var_type='c', bw='cv_ml') plt.figure(1) plt.plot(support[ix], rv.pdf(support[ix]), label='Actual') plt.plot(support[ix], dens_normal.pdf()[ix], label='Scott') plt.plot(support[ix], dens_cvls.pdf()[ix], label='CV_LS') plt.plot(support[ix], dens_cvml.pdf()[ix], label='CV_ML') plt.title("Nonparametric Estimation of the Density of Beta Distributed " \ "Random Variable") plt.legend(('Actual', 'Scott', 'CV_LS', 'CV_ML')) # f distribution df = 100 dn = 100 nobs = 250 support = np.random.f(dn, df, size=nobs) rv = stats.f(df, dn) ix = np.argsort(support) dens_normal = KDEMultivariate(data=[support], var_type='c', bw='normal_reference') dens_cvls = KDEMultivariate(data=[support], var_type='c', bw='cv_ls') dens_cvml = KDEMultivariate(data=[support], var_type='c', bw='cv_ml') plt.figure(2) plt.plot(support[ix], rv.pdf(support[ix]), label='Actual') plt.plot(support[ix], dens_normal.pdf()[ix], label='Scott') plt.plot(support[ix], dens_cvls.pdf()[ix], label='CV_LS') plt.plot(support[ix], dens_cvml.pdf()[ix], label='CV_ML') plt.title("Nonparametric Estimation of the Density of f Distributed " \ "Random Variable") plt.legend(('Actual', 'Scott', 'CV_LS', 'CV_ML')) # Pareto distribution a = 2 nobs = 150 support = np.random.pareto(a, size=nobs) rv = stats.pareto(a) ix = np.argsort(support) dens_normal = KDEMultivariate(data=[support], var_type='c', bw='normal_reference') dens_cvls = KDEMultivariate(data=[support], var_type='c', bw='cv_ls') dens_cvml = KDEMultivariate(data=[support], var_type='c', bw='cv_ml') plt.figure(3) plt.plot(support[ix], rv.pdf(support[ix]), label='Actual') plt.plot(support[ix], dens_normal.pdf()[ix], label='Scott') plt.plot(support[ix], dens_cvls.pdf()[ix], label='CV_LS') plt.plot(support[ix], dens_cvml.pdf()[ix], label='CV_ML') plt.title("Nonparametric Estimation of the Density of Pareto " \ "Distributed Random Variable") plt.legend(('Actual', 'Scott', 'CV_LS', 'CV_ML')) # Laplace Distribution mu = 0 s = 1 nobs = 250 support = np.random.laplace(mu, s, size=nobs) rv = stats.laplace(mu, s) ix = np.argsort(support) dens_normal = KDEMultivariate(data=[support], var_type='c', bw='normal_reference') dens_cvls = KDEMultivariate(data=[support], var_type='c', bw='cv_ls') dens_cvml = KDEMultivariate(data=[support], var_type='c', bw='cv_ml') plt.figure(4) plt.plot(support[ix], rv.pdf(support[ix]), label='Actual') plt.plot(support[ix], dens_normal.pdf()[ix], label='Scott') plt.plot(support[ix], dens_cvls.pdf()[ix], label='CV_LS') plt.plot(support[ix], dens_cvml.pdf()[ix], label='CV_ML') plt.title("Nonparametric Estimation of the Density of Laplace " \ "Distributed Random Variable") plt.legend(('Actual', 'Scott', 'CV_LS', 'CV_ML')) # Weibull Distribution a = 1 nobs = 250 support = np.random.weibull(a, size=nobs) rv = stats.weibull_min(a) ix = np.argsort(support) dens_normal = KDEMultivariate(data=[support], var_type='c', bw='normal_reference') dens_cvls = KDEMultivariate(data=[support], var_type='c', bw='cv_ls') dens_cvml = KDEMultivariate(data=[support], var_type='c', bw='cv_ml') plt.figure(5) plt.plot(support[ix], rv.pdf(support[ix]), label='Actual') plt.plot(support[ix], dens_normal.pdf()[ix], label='Scott') plt.plot(support[ix], dens_cvls.pdf()[ix], label='CV_LS') plt.plot(support[ix], dens_cvml.pdf()[ix], label='CV_ML') plt.title("Nonparametric Estimation of the Density of Weibull " \ "Distributed Random Variable") plt.legend(('Actual', 'Scott', 'CV_LS', 'CV_ML')) # Poisson Distribution a = 2 nobs = 250 support = np.random.poisson(a, size=nobs) rv = stats.poisson(a) ix = np.argsort(support) dens_normal = KDEMultivariate(data=[support], var_type='o', bw='normal_reference') dens_cvls = KDEMultivariate(data=[support], var_type='o', bw='cv_ls') dens_cvml = KDEMultivariate(data=[support], var_type='o', bw='cv_ml') plt.figure(6) plt.plot(support[ix], rv.pmf(support[ix]), label='Actual') plt.plot(support[ix], dens_normal.pdf()[ix], label='Scott') plt.plot(support[ix], dens_cvls.pdf()[ix], label='CV_LS') plt.plot(support[ix], dens_cvml.pdf()[ix], label='CV_ML') plt.title("Nonparametric Estimation of the Density of Poisson " \ "Distributed Random Variable") plt.legend(('Actual', 'Scott', 'CV_LS', 'CV_ML')) plt.show()
bsd-3-clause
cdondrup/strands_qsr_lib
qsr_lib/scripts/basic_qsr_visualiser.py
8
6789
#!/usr/bin/env python # -*- coding: utf-8 -*- """Graphical Visualisation for QSR Relations :Author: Peter Lightbody <[email protected]> :Organization: University of Lincoln :Date: 12 September 2015 :Version: 0.1 :Status: Development :Copyright: STRANDS default """ import argparse import matplotlib import matplotlib.pyplot as plt import matplotlib as mpl from random import randint from pylab import * import textwrap import math from math import sin, cos, radians from matplotlib.widgets import CheckButtons import time from qsrlib.qsrlib import QSRlib, QSRlib_Request_Message from qsrlib_io.world_trace import Object_State, World_Trace class qsr_gui(): bb1 = None # (x1, y1, x1+w1, y1+h1) bb2 = None # (x2, y2, x2+w2, y2+h2) qsr = list() qsr_type = ("rcc2", "rcc3", "rcc8", "cardir", "argd") def __compute_qsr(self, bb1, bb2): if not self.qsr: return "" ax, ay, bx, by = self.bb1 cx, cy, dx, dy = self.bb2 qsrlib = QSRlib() world = World_Trace() world.add_object_state_series([Object_State(name="red", timestamp=0, x=((ax+bx)/2.0), y=((ay+by)/2.0), xsize=abs(bx-ax), ysize=abs(by-ay)), Object_State(name="yellow", timestamp=0, x=((cx+dx)/2.0), y=((cy+dy)/2.0), xsize=abs(dx-cx), ysize=abs(dy-cy))]) dynamic_args = {"argd": {"qsr_relations_and_values": self.distance}} qsrlib_request_message = QSRlib_Request_Message(which_qsr=self.qsr, input_data=world, dynamic_args=dynamic_args) qsrlib_response_message = qsrlib.request_qsrs(req_msg=qsrlib_request_message) for t in qsrlib_response_message.qsrs.get_sorted_timestamps(): foo = "" for k, v in zip(qsrlib_response_message.qsrs.trace[t].qsrs.keys(), qsrlib_response_message.qsrs.trace[t].qsrs.values()): foo += str(k) + ":" + str(v.qsr) + "; \n" return foo def randomBB(self): x1 = randint(1,10); y1 = randint(1,10); w1 = randint(1,10); h1 = randint(1,10); x2 = randint(1,10); y2 = randint(1,10); w2 = randint(1,10); h2 = randint(1,10); self.bb1 = (x1, y1, x1+w1, y1+h1) self.bb2 = (x2, y2, x2+w2, y2+h2) def EventClick(self,label): if label in self.qsr: self.qsr.remove(label) else: self.qsr.append(label) if not (self.args.placeOne and self.args.placeTwo): self.randomBB() self.updateWindow() def updateWindow(self): plt.subplot(2, 2, (1, 2)).clear() plt.subplot(2, 2, 3) plt.subplot(2, 2, 3).clear() plt.axis('off') plt.text(1, 1, (self.__compute_qsr(self.bb1, self.bb2)), family='serif', style='italic', ha='center') rect1 = matplotlib.patches.Rectangle((self.bb1[0],self.bb1[1]), abs(self.bb1[2]-self.bb1[0]), abs(self.bb1[1]-self.bb1[3]), color='yellow', alpha=0.5) rect2 = matplotlib.patches.Rectangle((self.bb2[0],self.bb2[1]), abs(self.bb2[2]-self.bb2[0]), abs(self.bb2[1]-self.bb2[3]), color='red', alpha=0.5) ax, ay, bx, by = self.bb1 cx, cy, dx, dy = self.bb2 plt.subplot(2, 2, (1, 2)).add_patch(rect1) plt.subplot(2, 2, (1, 2)).add_patch(rect2) self.qsr_specific_reference_gui() xlim([min(ax,bx,cx,dx)-15,max(ay,by,cy,dy)+15]) ylim([min(ax,bx,cx,dx)-15,max(ay,by,cy,dy)+15]) draw() def qsr_specific_reference_gui(self): ax, ay, bx, by = self.bb1 cx, cy, dx, dy = self.bb2 # Centre of BB1 on the X angle AcentreX = ((ax+bx)/2.0) # Centre of BB1 on the Y angle AcentreY = ((ay+by)/2.0) # Centre of BB2 on the X angle BcentreX = ((cx+dx)/2.0) # Centre of BB2 on the Y angle BcentreY = ((cy+dy)/2.0) plt.subplot(2, 2, (1, 2)) if "cardir" in self.qsr: # Draws a Line between the centre of bb1 and bb2 verts = [(AcentreX, AcentreY), (BcentreX, BcentreY)] xs, ys = zip(*verts) plot(xs, ys, 'x--', lw=1, color='black') # Draws the compass shaped guide around bb1 to help identify regions for index in range(1,8): angle = math.pi/8+(index*math.pi/4) distanceBetweenObjects = math.sqrt(math.pow(dx,2) + math.pow(dy,2)) distance = (16) verts = [(((distance * math.cos(angle)) + AcentreX), ((distance * math.sin(angle)) + AcentreY)), (((distance * math.cos(angle+math.pi)) + AcentreX), ((distance * math.sin(angle+math.pi))+ AcentreY))] xs, ys = zip(*verts) plot(xs, ys, 'x--', lw=1, color='green') # Add circles around bb1 to identify distance regions if "argd" in self.qsr: for k in self.distance.keys(): plt.subplot(2, 2, (1, 2)).add_patch(plt.Circle((AcentreX,AcentreY),self.distance[k], fill=False, color='green')) def initWindow(self): if not (self.args.placeOne and self.args.placeTwo): self.randomBB() axes().set_aspect('equal', 'datalim') plt.subplot(2, 2, (1, 2)) plt.subplot(2, 2, (1, 2)).set_aspect('equal') subplots_adjust(left=0.31) subplots_adjust(bottom=-0.7) plt.title('QSR Visualisation') axcolor = 'lightgoldenrodyellow' rax = plt.axes([0.03, 0.4, 0.22, 0.45], axisbg=axcolor) checkBox = CheckButtons(rax, self.qsr_type,(False,False,False,False,False)) checkBox.on_clicked(self.EventClick) plt.subplot(2, 2, 3) plt.axis('off') plt.text(1, 1, (self.__compute_qsr(self.bb1, self.bb2)), family='serif', style='italic', ha='center') if self.qsr: self.updateWindow() plt.show() def processArgs(self): parser = argparse.ArgumentParser() parser.add_argument("-pOne","--placeOne", help="specify the location of object one", nargs='+', type=int) parser.add_argument("-pTwo","--placeTwo", help="specify the location of object two", nargs='+', type=int) parser.add_argument("-argd","--distance", help="specify the distances for argd", nargs='+', type=float) self.args = parser.parse_args() self.bb1 = self.args.placeOne self.bb2 = self.args.placeTwo self.distance = dict() if self.args.distance: for x, d in enumerate(self.args.distance): self.distance[str(x)] = d else: self.distance = {"0": 4., "1": 8., "2": 12., "3":16.} if __name__ == "__main__": vis = qsr_gui() vis.processArgs() vis.initWindow()
mit
lbeltrame/mnegri-ov170
programs/dump_counts.py
1
4110
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 2014 Luca Beltrame <[email protected]> # # This file is part of utils. # # utils is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # utils is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with utils. If not, see <http://www.gnu.org/licenses/>. import argparse from collections import defaultdict, Counter import itertools from gemini import GeminiQuery import cruzdb import pandas as pd # This uses the public UCSC instance. In case MySQL is blocked, you can # point it using a valid SQLalchemy URL to an existing database server. ucsc = cruzdb.Genome(db="hg19") # These work around proper gene association bugs (due to amplicon extending # past boundaries, or annotation picking things on the wrong strand) substitutions = { "ZEB1-AS1": "ZEB1", # Different strand "RHNO1": "FOXM1", # Different strand # "PLA2G6": np.nan, # off-target? "C3orf72": "FOXL2", # Different strand # "MC1R": np.nan, # past the promoter "ACAA1": "MYD88", # Different strand "VIM-AS1": "VIM", # Different strand "LOC100507424": "FOXM1", # Wrong annotation? "MTOR-AS1": "MTOR", "EGFR-AS1": "EGFR", "WRAP53": "TP53", "EPM2AIP1": "MLH1", "C5orf22": "DROSHA", "C9orf53": "CDKN2A", "LYRM5": "KRAS", "N4BP2L1": "BRCA2", "RMDN3": "RAD51", "NBR2": "BRCA1", "CNTD2": "AKT2", "HSCB": "CHEK2", "NPAT": "ATM", "MC1R": "TUBB3" } def get_nearby_gene(chrom, start, end): nearest = ucsc.knearest("refFlat", chrom, start, end) nearest = pd.Series([item.geneName for item in nearest]) nearest = nearest.apply(lambda x: substitutions[x] if x in substitutions else x) try: nearest = nearest.drop_duplicates().item() except Exception: print(nearest.drop_duplicates()) raise # assert len(nearest) == 1 return nearest def summarize_by_gene_and_sample(db, coding_only=True): "This is copied from GEMINI's own burden tool" query = ("select chrom, start, end, gene, impact, info from variants where" " impact != 'synonymous_coding' and in_1kg=0 ") if coding_only: query += " and codon_change != 'None'" gq = GeminiQuery(db) gq.run(query, show_variant_samples=True) burden = defaultdict(Counter) for row in gq: gene_name = row['gene'] if not gene_name: gene_name = get_nearby_gene(row["chrom"], row["start"], row["end"]) new_counts = Counter(row["HET_samples"]) # Counter can't do scalar multiplication new_counts = new_counts + Counter(row["HOM_ALT_samples"]) new_counts = new_counts + Counter(row["HOM_ALT_samples"]) del new_counts[''] burden[gene_name] += new_counts dfs = list() for gene_name, counts in burden.items(): df = pd.DataFrame(counts, columns=counts.keys(), index=[gene_name]) dfs.append(df) df = pd.concat(dfs) df = df.fillna(0) return df def main(): parser = argparse.ArgumentParser() parser.add_argument("-c", "--coding-only", action="store_true") parser.add_argument("source", help="Source GEMINI database") parser.add_argument("destination", help="destination file to save to") options = parser.parse_args() df = summarize_by_gene_and_sample(options.source, options.coding_only) with open(options.destination, "w") as handle: df.to_csv(handle, sep="\t", na_rep="NA") if __name__ == '__main__': main()
gpl-2.0
7630155/tushare
test/storing_test.py
40
1729
# -*- coding:utf-8 -*- import os from sqlalchemy import create_engine from pandas.io.pytables import HDFStore import tushare as ts def csv(): df = ts.get_hist_data('000875') df.to_csv('c:/day/000875.csv',columns=['open','high','low','close']) def xls(): df = ts.get_hist_data('000875') #直接保存 df.to_excel('c:/day/000875.xlsx', startrow=2,startcol=5) def hdf(): df = ts.get_hist_data('000875') # df.to_hdf('c:/day/store.h5','table') store = HDFStore('c:/day/store.h5') store['000875'] = df store.close() def json(): df = ts.get_hist_data('000875') df.to_json('c:/day/000875.json',orient='records') #或者直接使用 print(df.to_json(orient='records')) def appends(): filename = 'c:/day/bigfile.csv' for code in ['000875', '600848', '000981']: df = ts.get_hist_data(code) if os.path.exists(filename): df.to_csv(filename, mode='a', header=None) else: df.to_csv(filename) def db(): df = ts.get_tick_data('600848',date='2014-12-22') engine = create_engine('mysql://root:[email protected]/mystock?charset=utf8') # db = MySQLdb.connect(host='127.0.0.1',user='root',passwd='jimmy1',db="mystock",charset="utf8") # df.to_sql('TICK_DATA',con=db,flavor='mysql') # db.close() df.to_sql('tick_data',engine,if_exists='append') def nosql(): import pymongo import json conn = pymongo.Connection('127.0.0.1', port=27017) df = ts.get_tick_data('600848',date='2014-12-22') print(df.to_json(orient='records')) conn.db.tickdata.insert(json.loads(df.to_json(orient='records'))) # print conn.db.tickdata.find() if __name__ == '__main__': nosql()
bsd-3-clause
wanatpj/h_blind
compute_linear_correlation.py
1
2168
import os import numpy from matplotlib import pyplot from optparse import OptionParser from PIL import Image from common import * def _parse_flags(): global indir, inreferencefile, referencefile, versuswatermark parser = OptionParser() parser.add_option("-i", "--in", dest="indir", help="location to directory that containes images to watermark", metavar="DIR") parser.add_option("-v", "--inreference", dest="inreference", help="monochrome image; black pixel denotes 1, white pixel denotes -1", metavar="FILE") parser.add_option("-w", "--reference", dest="reference", help="monochrome image; black pixel denotes 1, white pixel denotes -1", metavar="FILE") (options, args) = parser.parse_args() if (options.indir != None and options.inreference != None) \ or (options.indir == None and options.inreference == None): raise Exception("define: indir xor inreference") if options.indir != None: indir = options.indir versuswatermark = False elif options.inreference != None: inreferencefile = options.inreference versuswatermark = True referencefile = options.reference class ComputeLinearCorrelation: def __init__(self, reference, indir): self.reference = reference self.indir = indir def __call__(self, f): return linear_correlation( numpy.array(Image.open(self.indir + "/" + f).convert("L").getdata()), self.reference) def main(): global indir, inreferencefile, referencefile, versuswatermark _parse_flags() (width, height), reference = get_watermark(referencefile) if versuswatermark: (inwidth, inheight), inreference = get_watermark(inreferencefile) lcs = [linear_correlation(reference, inreference)] else: lcs = get_pool().map( ComputeLinearCorrelation(reference, indir), filter(ImageSizeFilter((width, height), indir), os.listdir(indir))) print "Mean: " + str(numpy.mean(lcs)) print "Median: " + str(numpy.median(lcs)) print "Variance: " + str(numpy.var(lcs)) bins = numpy.linspace(-2, 2, 200) pyplot.hist(lcs, bins, alpha=0.5, label='lc') pyplot.show() main()
gpl-3.0
evgchz/scikit-learn
sklearn/metrics/scorer.py
9
12826
""" The :mod:`sklearn.metrics.scorer` submodule implements a flexible interface for model selection and evaluation using arbitrary score functions. A scorer object is a callable that can be passed to :class:`sklearn.grid_search.GridSearchCV` or :func:`sklearn.cross_validation.cross_val_score` as the ``scoring`` parameter, to specify how a model should be evaluated. The signature of the call is ``(estimator, X, y)`` where ``estimator`` is the model to be evaluated, ``X`` is the test data and ``y`` is the ground truth labeling (or ``None`` in the case of unsupervised models). """ # Authors: Andreas Mueller <[email protected]> # Lars Buitinck <[email protected]> # Arnaud Joly <[email protected]> # License: Simplified BSD from abc import ABCMeta, abstractmethod import numpy as np from . import (r2_score, median_absolute_error, mean_absolute_error, mean_squared_error, accuracy_score, f1_score, roc_auc_score, average_precision_score, precision_score, recall_score, log_loss) from .cluster import adjusted_rand_score from ..utils.multiclass import type_of_target from ..externals import six class _BaseScorer(six.with_metaclass(ABCMeta, object)): def __init__(self, score_func, sign, kwargs): self._kwargs = kwargs self._score_func = score_func self._sign = sign @abstractmethod def __call__(self, estimator, X, y, sample_weight=None): pass def __repr__(self): kwargs_string = "".join([", %s=%s" % (str(k), str(v)) for k, v in self._kwargs.items()]) return ("make_scorer(%s%s%s%s)" % (self._score_func.__name__, "" if self._sign > 0 else ", greater_is_better=False", self._factory_args(), kwargs_string)) def _factory_args(self): """Return non-default make_scorer arguments for repr.""" return "" class _PredictScorer(_BaseScorer): def __call__(self, estimator, X, y_true, sample_weight=None): """Evaluate predicted target values for X relative to y_true. Parameters ---------- estimator : object Trained estimator to use for scoring. Must have a predict_proba method; the output of that is used to compute the score. X : array-like or sparse matrix Test data that will be fed to estimator.predict. y_true : array-like Gold standard target values for X. sample_weight : array-like, optional (default=None) Sample weights. Returns ------- score : float Score function applied to prediction of estimator on X. """ y_pred = estimator.predict(X) if sample_weight is not None: return self._sign * self._score_func(y_true, y_pred, sample_weight=sample_weight, **self._kwargs) else: return self._sign * self._score_func(y_true, y_pred, **self._kwargs) class _ProbaScorer(_BaseScorer): def __call__(self, clf, X, y, sample_weight=None): """Evaluate predicted probabilities for X relative to y_true. Parameters ---------- clf : object Trained classifier to use for scoring. Must have a predict_proba method; the output of that is used to compute the score. X : array-like or sparse matrix Test data that will be fed to clf.predict_proba. y : array-like Gold standard target values for X. These must be class labels, not probabilities. sample_weight : array-like, optional (default=None) Sample weights. Returns ------- score : float Score function applied to prediction of estimator on X. """ y_pred = clf.predict_proba(X) if sample_weight is not None: return self._sign * self._score_func(y, y_pred, sample_weight=sample_weight, **self._kwargs) else: return self._sign * self._score_func(y, y_pred, **self._kwargs) def _factory_args(self): return ", needs_proba=True" class _ThresholdScorer(_BaseScorer): def __call__(self, clf, X, y, sample_weight=None): """Evaluate decision function output for X relative to y_true. Parameters ---------- clf : object Trained classifier to use for scoring. Must have either a decision_function method or a predict_proba method; the output of that is used to compute the score. X : array-like or sparse matrix Test data that will be fed to clf.decision_function or clf.predict_proba. y : array-like Gold standard target values for X. These must be class labels, not decision function values. sample_weight : array-like, optional (default=None) Sample weights. Returns ------- score : float Score function applied to prediction of estimator on X. """ y_type = type_of_target(y) if y_type not in ("binary", "multilabel-indicator"): raise ValueError("{0} format is not supported".format(y_type)) try: y_pred = clf.decision_function(X) # For multi-output multi-class estimator if isinstance(y_pred, list): y_pred = np.vstack(p for p in y_pred).T except (NotImplementedError, AttributeError): y_pred = clf.predict_proba(X) if y_type == "binary": y_pred = y_pred[:, 1] elif isinstance(y_pred, list): y_pred = np.vstack([p[:, -1] for p in y_pred]).T if sample_weight is not None: return self._sign * self._score_func(y, y_pred, sample_weight=sample_weight, **self._kwargs) else: return self._sign * self._score_func(y, y_pred, **self._kwargs) def _factory_args(self): return ", needs_threshold=True" def get_scorer(scoring): if isinstance(scoring, six.string_types): try: scorer = SCORERS[scoring] except KeyError: raise ValueError('%r is not a valid scoring value. ' 'Valid options are %s' % (scoring, sorted(SCORERS.keys()))) else: scorer = scoring return scorer def _passthrough_scorer(estimator, *args, **kwargs): """Function that wraps estimator.score""" return estimator.score(*args, **kwargs) def check_scoring(estimator, scoring=None, allow_none=False, score_overrides_loss=False): """Determine scorer from user options. A TypeError will be thrown if the estimator cannot be scored. Parameters ---------- estimator : estimator object implementing 'fit' The object to use to fit the data. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. allow_none : boolean, optional, default: False If no scoring is specified and the estimator has no score function, we can either return None or raise an exception. Returns ------- scoring : callable A scorer callable object / function with signature ``scorer(estimator, X, y)``. """ has_scoring = scoring is not None if not hasattr(estimator, 'fit'): raise TypeError("estimator should a be an estimator implementing " "'fit' method, %r was passed" % estimator) elif hasattr(estimator, 'predict') and has_scoring: return get_scorer(scoring) elif hasattr(estimator, 'score'): return _passthrough_scorer elif not has_scoring: if allow_none: return None raise TypeError( "If no scoring is specified, the estimator passed should " "have a 'score' method. The estimator %r does not." % estimator) else: raise TypeError( "The estimator passed should have a 'score' or a 'predict' " "method. The estimator %r does not." % estimator) def make_scorer(score_func, greater_is_better=True, needs_proba=False, needs_threshold=False, **kwargs): """Make a scorer from a performance metric or loss function. This factory function wraps scoring functions for use in GridSearchCV and cross_val_score. It takes a score function, such as ``accuracy_score``, ``mean_squared_error``, ``adjusted_rand_index`` or ``average_precision`` and returns a callable that scores an estimator's output. Parameters ---------- score_func : callable, Score function (or loss function) with signature ``score_func(y, y_pred, **kwargs)``. greater_is_better : boolean, default=True Whether score_func is a score function (default), meaning high is good, or a loss function, meaning low is good. In the latter case, the scorer object will sign-flip the outcome of the score_func. needs_proba : boolean, default=False Whether score_func requires predict_proba to get probability estimates out of a classifier. needs_threshold : boolean, default=False Whether score_func takes a continuous decision certainty. This only works for binary classification using estimators that have either a decision_function or predict_proba method. For example ``average_precision`` or the area under the roc curve can not be computed using discrete predictions alone. **kwargs : additional arguments Additional parameters to be passed to score_func. Returns ------- scorer : callable Callable object that returns a scalar score; greater is better. Examples -------- >>> from sklearn.metrics import fbeta_score, make_scorer >>> ftwo_scorer = make_scorer(fbeta_score, beta=2) >>> ftwo_scorer make_scorer(fbeta_score, beta=2) >>> from sklearn.grid_search import GridSearchCV >>> from sklearn.svm import LinearSVC >>> grid = GridSearchCV(LinearSVC(), param_grid={'C': [1, 10]}, ... scoring=ftwo_scorer) """ sign = 1 if greater_is_better else -1 if needs_proba and needs_threshold: raise ValueError("Set either needs_proba or needs_threshold to True," " but not both.") if needs_proba: cls = _ProbaScorer elif needs_threshold: cls = _ThresholdScorer else: cls = _PredictScorer return cls(score_func, sign, kwargs) # Standard regression scores r2_scorer = make_scorer(r2_score) mean_squared_error_scorer = make_scorer(mean_squared_error, greater_is_better=False) mean_absolute_error_scorer = make_scorer(mean_absolute_error, greater_is_better=False) median_absolute_error_scorer = make_scorer(median_absolute_error, greater_is_better=False) # Standard Classification Scores accuracy_scorer = make_scorer(accuracy_score) f1_scorer = make_scorer(f1_score) # Score functions that need decision values roc_auc_scorer = make_scorer(roc_auc_score, greater_is_better=True, needs_threshold=True) average_precision_scorer = make_scorer(average_precision_score, needs_threshold=True) precision_scorer = make_scorer(precision_score) recall_scorer = make_scorer(recall_score) # Score function for probabilistic classification log_loss_scorer = make_scorer(log_loss, greater_is_better=False, needs_proba=True) # Clustering scores adjusted_rand_scorer = make_scorer(adjusted_rand_score) SCORERS = dict(r2=r2_scorer, median_absolute_error=median_absolute_error_scorer, mean_absolute_error=mean_absolute_error_scorer, mean_squared_error=mean_squared_error_scorer, accuracy=accuracy_scorer, f1=f1_scorer, roc_auc=roc_auc_scorer, average_precision=average_precision_scorer, precision=precision_scorer, recall=recall_scorer, log_loss=log_loss_scorer, adjusted_rand_score=adjusted_rand_scorer)
bsd-3-clause
MECTsrl/imx_mect
projects/testing/cgi_trends_compare.py
1
3713
import pandas as pd import json import os import glob import csv import urllib.request as url import difflib import sys import time import itertools import threading import socket import subprocess import shutil from urllib.error import HTTPError, URLError processDone = False def loadJsonData (URLvars): try: jsondata = json.loads(url.urlopen(URLvars,timeout=20).read().decode()) time.sleep(1) return jsondata except HTTPError as error: print("HTTP Timeout!") processDone = True exit() #here is the animation def animate(): for c in itertools.cycle(['|', '/', '-', '\\']): if processDone: sys.stdout.write('\r ') break sys.stdout.write('\r ' + c) sys.stdout.flush() time.sleep(0.1) sys.stdout.write('\r ') def prepend_line(file_name, line): """ Insert given string as a new line at the beginning of a file """ # define name of temporary dummy file dummy_file = file_name + '.bak' # open original file in read mode and dummy file in write mode with open(file_name, 'r') as read_obj, open(dummy_file, 'w') as write_obj: # Write given line to the dummy file write_obj.write(line + '\n') # Read lines from original file one by one and append them to the dummy file for line in read_obj: write_obj.write(line) # remove original file os.remove(file_name) # Rename dummy file as the original file os.rename(dummy_file, file_name) IP= sys.argv[1] #IP= "192.168.5.123"; URLvars="http://"+IP+"/get_trends.cgi" jsonTrendPath = "jsontrend" if os.path.exists(jsonTrendPath): shutil.rmtree(jsonTrendPath, ignore_errors=True) os.mkdir(jsonTrendPath) print("Loading trends from "+ IP + "\n") t = threading.Thread(target=animate) t.start() jsondata = loadJsonData(URLvars) processDone=True trendsNameArray = jsondata['query']['trends'] print("\nWriting cgi_json_data.csv\n") df = pd.DataFrame(jsondata['trends']) df = df['filename'] for index in df.index: df_track = pd.DataFrame(jsondata['trends'][index]['track']) df_track['id'] = df_track['id'].str.pad(32, side='right', fillchar=' ') df_track.to_csv(jsonTrendPath+"/"+df[index],sep=';',header=False,index=False) prepend_line(jsonTrendPath+"/"+df[index],'L') print("Downloading original files \n") trendPath = "customtrend" if os.path.exists(trendPath): shutil.rmtree(trendPath, ignore_errors=True) try: subprocess.call(["rsync", "-Havx", "root@"+IP+":/local/data/"+trendPath, "./"]) # fRes = subprocess.call(["rsync", "-Havx", "[email protected]:/local/data/"+trendPath, "./"]) except subprocess.CalledProcessError as rsyncRes: print("error code", rsyncRes.returncode, rsyncRes.output) differenceFile = "data_difference_trends.diff" print("Looking for differences \n") for index in df.index: with open(trendPath + '/' + df[index], 'r') as t1, open(jsonTrendPath+"/"+df[index], 'r') as t2: fileone = t1.readlines() filetwo = t2.readlines() fileone = [line.replace(' ', '') for line in fileone] filetwo = [line.replace(' ', '') for line in filetwo] with open(differenceFile, 'a') as outFile: for line in difflib.unified_diff(fileone, filetwo, fromfile=trendPath + '/' + df[index], tofile=jsonTrendPath+"/"+df[index]): outFile.write(line) if not os.stat(differenceFile).st_size == 0: print("Done! Differences are loaded in "+ differenceFile) else: print("Done! No differences were found!") #clean shutil.rmtree(trendPath, ignore_errors=True) shutil.rmtree(jsonTrendPath, ignore_errors=True) os.remove(differenceFile)
gpl-2.0
kmike/scikit-learn
sklearn/tests/test_random_projection.py
6
13183
from __future__ import division import warnings import numpy as np import scipy.sparse as sp from sklearn.metrics import euclidean_distances from sklearn.random_projection import ( johnson_lindenstrauss_min_dim, gaussian_random_matrix, sparse_random_matrix, SparseRandomProjection, GaussianRandomProjection) from sklearn.utils.testing import ( assert_less, assert_raises, assert_raise_message, assert_array_equal, assert_equal, assert_almost_equal, assert_in, assert_array_almost_equal) all_sparse_random_matrix = [sparse_random_matrix] all_dense_random_matrix = [gaussian_random_matrix] all_random_matrix = set(all_sparse_random_matrix + all_dense_random_matrix) all_SparseRandomProjection = [SparseRandomProjection] all_DenseRandomProjection = [GaussianRandomProjection] all_RandomProjection = set(all_SparseRandomProjection + all_DenseRandomProjection) # Make some random data with uniformly located non zero entries with # Gaussian distributed values def make_sparse_random_data(n_samples, n_features, n_nonzeros): rng = np.random.RandomState(0) data_coo = sp.coo_matrix( (rng.randn(n_nonzeros), (rng.randint(n_samples, size=n_nonzeros), rng.randint(n_features, size=n_nonzeros))), shape=(n_samples, n_features)) return data_coo.toarray(), data_coo.tocsr() def densify(matrix): if not sp.issparse(matrix): return matrix else: return matrix.toarray() n_samples, n_features = (10, 1000) n_nonzeros = n_samples * n_features / 100. data, data_csr = make_sparse_random_data(n_samples, n_features, n_nonzeros) ############################################################################### # test on JL lemma ############################################################################### def test_invalid_jl_domain(): assert_raises(ValueError, johnson_lindenstrauss_min_dim, 100, 1.1) assert_raises(ValueError, johnson_lindenstrauss_min_dim, 100, 0.0) assert_raises(ValueError, johnson_lindenstrauss_min_dim, 100, -0.1) assert_raises(ValueError, johnson_lindenstrauss_min_dim, 0, 0.5) def test_input_size_jl_min_dim(): assert_raises(ValueError, johnson_lindenstrauss_min_dim, 3 * [100], 2 * [0.9]) assert_raises(ValueError, johnson_lindenstrauss_min_dim, 3 * [100], 2 * [0.9]) johnson_lindenstrauss_min_dim(np.random.randint(1, 10, size=(10, 10)), 0.5 * np.ones((10, 10))) ############################################################################### # tests random matrix generation ############################################################################### def check_input_size_random_matrix(random_matrix): assert_raises(ValueError, random_matrix, 0, 0) assert_raises(ValueError, random_matrix, -1, 1) assert_raises(ValueError, random_matrix, 1, -1) assert_raises(ValueError, random_matrix, 1, 0) assert_raises(ValueError, random_matrix, -1, 0) def check_size_generated(random_matrix): assert_equal(random_matrix(1, 5).shape, (1, 5)) assert_equal(random_matrix(5, 1).shape, (5, 1)) assert_equal(random_matrix(5, 5).shape, (5, 5)) assert_equal(random_matrix(1, 1).shape, (1, 1)) def check_zero_mean_and_unit_norm(random_matrix): # All random matrix should produce a transformation matrix # with zero mean and unit norm for each columns A = densify(random_matrix(10000, 1, random_state=0)) assert_array_almost_equal(0, np.mean(A), 3) assert_array_almost_equal(1.0, np.linalg.norm(A), 1) def check_input_with_sparse_random_matrix(random_matrix): n_components, n_features = 5, 10 for density in [-1., 0.0, 1.1]: assert_raises(ValueError, random_matrix, n_components, n_features, density=density) def test_basic_property_of_random_matrix(): """Check basic properties of random matrix generation""" for random_matrix in all_random_matrix: check_input_size_random_matrix(random_matrix) check_size_generated(random_matrix) check_zero_mean_and_unit_norm(random_matrix) for random_matrix in all_sparse_random_matrix: check_input_with_sparse_random_matrix(random_matrix) random_matrix_dense = \ lambda n_components, n_features, random_state: random_matrix( n_components, n_features, random_state=random_state, density=1.0) check_zero_mean_and_unit_norm(random_matrix_dense) def test_gaussian_random_matrix(): """Check some statical properties of Gaussian random matrix""" # Check that the random matrix follow the proper distribution. # Let's say that each element of a_{ij} of A is taken from # a_ij ~ N(0.0, 1 / n_components). # n_components = 100 n_features = 1000 A = gaussian_random_matrix(n_components, n_features, random_state=0) assert_array_almost_equal(0.0, np.mean(A), 2) assert_array_almost_equal(np.var(A, ddof=1), 1 / n_components, 1) def test_sparse_random_matrix(): """Check some statical properties of sparse random matrix""" n_components = 100 n_features = 500 for density in [0.3, 1.]: s = 1 / density A = sparse_random_matrix(n_components, n_features, density=density, random_state=0) A = densify(A) # Check possible values values = np.unique(A) assert_in(np.sqrt(s) / np.sqrt(n_components), values) assert_in(- np.sqrt(s) / np.sqrt(n_components), values) if density == 1.0: assert_equal(np.size(values), 2) else: assert_in(0., values) assert_equal(np.size(values), 3) # Check that the random matrix follow the proper distribution. # Let's say that each element of a_{ij} of A is taken from # # - -sqrt(s) / sqrt(n_components) with probability 1 / 2s # - 0 with probability 1 - 1 / s # - +sqrt(s) / sqrt(n_components) with probability 1 / 2s # assert_almost_equal(np.mean(A == 0.0), 1 - 1 / s, decimal=2) assert_almost_equal(np.mean(A == np.sqrt(s) / np.sqrt(n_components)), 1 / (2 * s), decimal=2) assert_almost_equal(np.mean(A == - np.sqrt(s) / np.sqrt(n_components)), 1 / (2 * s), decimal=2) assert_almost_equal(np.var(A == 0.0, ddof=1), (1 - 1 / s) * 1 / s, decimal=2) assert_almost_equal(np.var(A == np.sqrt(s) / np.sqrt(n_components), ddof=1), (1 - 1 / (2 * s)) * 1 / (2 * s), decimal=2) assert_almost_equal(np.var(A == - np.sqrt(s) / np.sqrt(n_components), ddof=1), (1 - 1 / (2 * s)) * 1 / (2 * s), decimal=2) ############################################################################### # tests on random projection transformer ############################################################################### def test_sparse_random_projection_transformer_invalid_density(): for RandomProjection in all_SparseRandomProjection: assert_raises(ValueError, RandomProjection(density=1.1).fit, data) assert_raises(ValueError, RandomProjection(density=0).fit, data) assert_raises(ValueError, RandomProjection(density=-0.1).fit, data) def test_random_projection_transformer_invalid_input(): for RandomProjection in all_RandomProjection: assert_raises(ValueError, RandomProjection(n_components='auto').fit, [0, 1, 2]) assert_raises(ValueError, RandomProjection(n_components=-10).fit, data) def test_try_to_transform_before_fit(): for RandomProjection in all_RandomProjection: assert_raises(ValueError, RandomProjection(n_components='auto').transform, data) def test_too_many_samples_to_find_a_safe_embedding(): data, _ = make_sparse_random_data(1000, 100, 1000) for RandomProjection in all_RandomProjection: rp = RandomProjection(n_components='auto', eps=0.1) expected_msg = ( 'eps=0.100000 and n_samples=1000 lead to a target dimension' ' of 5920 which is larger than the original space with' ' n_features=100') assert_raise_message(ValueError, expected_msg, rp.fit, data) def test_random_projection_embedding_quality(): data, _ = make_sparse_random_data(8, 5000, 15000) eps = 0.2 original_distances = euclidean_distances(data, squared=True) original_distances = original_distances.ravel() non_identical = original_distances != 0.0 # remove 0 distances to avoid division by 0 original_distances = original_distances[non_identical] for RandomProjection in all_RandomProjection: rp = RandomProjection(n_components='auto', eps=eps, random_state=0) projected = rp.fit_transform(data) projected_distances = euclidean_distances(projected, squared=True) projected_distances = projected_distances.ravel() # remove 0 distances to avoid division by 0 projected_distances = projected_distances[non_identical] distances_ratio = projected_distances / original_distances # check that the automatically tuned values for the density respect the # contract for eps: pairwise distances are preserved according to the # Johnson-Lindenstrauss lemma assert_less(distances_ratio.max(), 1 + eps) assert_less(1 - eps, distances_ratio.min()) def test_SparseRandomProjection_output_representation(): for SparseRandomProjection in all_SparseRandomProjection: # when using sparse input, the projected data can be forced to be a # dense numpy array rp = SparseRandomProjection(n_components=10, dense_output=True, random_state=0) rp.fit(data) assert isinstance(rp.transform(data), np.ndarray) sparse_data = sp.csr_matrix(data) assert isinstance(rp.transform(sparse_data), np.ndarray) # the output can be left to a sparse matrix instead rp = SparseRandomProjection(n_components=10, dense_output=False, random_state=0) rp = rp.fit(data) # output for dense input will stay dense: assert isinstance(rp.transform(data), np.ndarray) # output for sparse output will be sparse: assert sp.issparse(rp.transform(sparse_data)) def test_correct_RandomProjection_dimensions_embedding(): for RandomProjection in all_RandomProjection: rp = RandomProjection(n_components='auto', random_state=0, eps=0.5).fit(data) # the number of components is adjusted from the shape of the training # set assert_equal(rp.n_components, 'auto') assert_equal(rp.n_components_, 110) if RandomProjection in all_SparseRandomProjection: assert_equal(rp.density, 'auto') assert_almost_equal(rp.density_, 0.03, 2) assert_equal(rp.components_.shape, (110, n_features)) projected_1 = rp.transform(data) assert_equal(projected_1.shape, (n_samples, 110)) # once the RP is 'fitted' the projection is always the same projected_2 = rp.transform(data) assert_array_equal(projected_1, projected_2) # fit transform with same random seed will lead to the same results rp2 = RandomProjection(random_state=0, eps=0.5) projected_3 = rp2.fit_transform(data) assert_array_equal(projected_1, projected_3) # Try to transform with an input X of size different from fitted. assert_raises(ValueError, rp.transform, data[:, 1:5]) # it is also possible to fix the number of components and the density # level if RandomProjection in all_SparseRandomProjection: rp = RandomProjection(n_components=100, density=0.001, random_state=0) projected = rp.fit_transform(data) assert_equal(projected.shape, (n_samples, 100)) assert_equal(rp.components_.shape, (100, n_features)) assert_less(rp.components_.nnz, 115) # close to 1% density assert_less(85, rp.components_.nnz) # close to 1% density def test_warning_n_components_greater_than_n_features(): n_features = 20 data, _ = make_sparse_random_data(5, n_features, int(n_features / 4)) for RandomProjection in all_RandomProjection: with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") RandomProjection(n_components=n_features + 1).fit(data) assert_equal(len(w), 1) assert issubclass(w[-1].category, UserWarning)
bsd-3-clause
power-system-simulation-toolbox/psst
psst/plot/plot.py
2
5051
import operator import networkx as nx from networkx.drawing.nx_agraph import graphviz_layout from mpl_toolkits.axes_grid1 import make_axes_locatable import matplotlib import matplotlib.pyplot as plt import matplotlib.lines as mlines from matplotlib import cm import matplotlib.patches as mpatches import matplotlib.colors as colors import numpy as np from ..utils import make_interpolater from ..case.utils import calculate_segments cdict = {'red': ((0.0, 0.0, 0.0), # From 0 to 0.25, we fade the red and green channels (0.25, 0.5, 0.5), # up a little, to make the blue a bit more grey (0.25, 0.0, 0.0), # From 0.25 to 0.75, we fade red from 0.5 to 1 (0.75, 1.0, 1.0), # to fade from green to yellow (1.0, 0.5, 0.5)), # From 0.75 to 1.0, we bring the red down from 1 # to 0.5, to go from bright to dark red 'green': ((0.0, 0.0, 0.0), # From 0 to 0.25, we fade the red and green channels (0.25, 0.6, 0.6), # up a little, to make the blue a bit more grey (0.25, 1.0, 1.0), # Green is 1 from 0.25 to 0.75 (we add red (0.75, 1.0, 1.0), # to turn it from green to yellow) (0.75, 0.0, 0.0), # No green needed in the red upper quarter (1.0, 0.0, 0.0)), 'blue': ((0.0, 0.9, 0.9), # Keep blue at 0.9 from 0 to 0.25, and adjust its (0.25, 0.9, 0.9), # tone using the green and red channels (0.25, 0.0, 0.0), # No blue needed above 0.25 (1.0, 0.0, 0.0)) } cmap = colors.LinearSegmentedColormap('BuGnYlRd',cdict) def plot_network_with_results(psstc, model, time=0): G = create_network(psstc) fig, axs = plt.subplots(1, 1, figsize=(12, 9)) ax = axs line_color_dict = dict() hour = 0 for i, b in branch_df.iterrows(): if model.ThermalLimit[i] != 0: line_color_dict[(b['F_BUS'], b['T_BUS'])] = round(abs(model.LinePower[i, hour].value / model.ThermalLimit[i]), 2) else: line_color_dict[(b['F_BUS'], b['T_BUS'])] = 0 gen_color_dict = dict() hour = 0 for i, g in generator_df.iterrows(): gen_color_dict[(i, g['GEN_BUS'])] = round(abs(model.PowerGenerated[i, hour].value / model.MaximumPowerOutput[i]), 2) color_dict = line_color_dict.copy() color_dict.update(gen_color_dict) edge_color = list() for e in G.edges(): try: edge_color.append( color_dict[(e[0], e[1])] ) except KeyError: edge_color.append( color_dict[(e[1], e[0])] ) ax.axis('off') pos = graphviz_layout(G, prog='sfdp') nx.draw_networkx_nodes(G, pos, list(generator_df.index),) nx.draw_networkx_nodes(G, pos, list(bus_df.index), node_color='black',) edges = nx.draw_networkx_edges(G, pos, edge_color=edge_color, edge_cmap=cmap, width=3) nx.draw_networkx_edge_labels(G, pos, edge_labels=color_dict) divider = make_axes_locatable(ax) cax = divider.append_axes("left", size="5%", pad=0.05) cb = plt.colorbar(edges, cax=cax) cax.yaxis.set_label_position('left') cax.yaxis.set_ticks_position('left') # cb.set_label('Voltage (V)') def plot_stacked_power_generation(results, ax=None, kind='bar', legend=False): if ax is None: fig, axs = plt.subplots(1, 1, figsize=(16, 10)) ax = axs df = results.power_generated cols = (df - results.unit_commitment*results.maximum_power_output).std().sort_values().index df = df[[c for c in cols]] df.plot(kind=kind, stacked=True, ax=ax, colormap=cm.jet, alpha=0.5, legend=legend) df = results.unit_commitment * results.maximum_power_output df = df[[c for c in cols]] df.plot.area(stacked=True, ax=ax, alpha=0.125/2, colormap=cm.jet, legend=None) ax.set_ylabel('Dispatch and Committed Capacity (MW)') ax.set_xlabel('Time (h)') return ax def plot_costs(case, number_of_segments=1, ax=None, legend=True): if ax is None: fig, axs = plt.subplots(1, 1, figsize=(16, 10)) ax = axs color_scale = make_interpolater(0, len(case.gen_name), 0, 1) color = {g: plt.cm.jet(color_scale(i)) for i, g in enumerate(case.gen_name)} for s in calculate_segments(case, number_of_segments=number_of_segments): pmin, pmax = s['segment'] x = np.linspace(pmin, pmax) y = x * s['slope'] ax.plot(x, y, color=color[s['name']]) ax = ax.twinx() for s in calculate_segments(case, number_of_segments=number_of_segments): pmin, pmax = s['segment'] x = np.linspace(pmin, pmax) y = [s['slope'] for _ in x] ax.plot(x, y, color=color[s['name']]) ax.set_ylim(0, 1.2*y[-1]) if legend: lines = list() for g in case.gen_name: lines.append(mlines.Line2D([], [], color=color[g], label=g)) ax.legend(handles=lines, loc='upper left') return ax
mit
hsaputra/tensorflow
tensorflow/contrib/learn/python/learn/estimators/estimators_test.py
9
6700
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Custom optimizer tests.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import random import numpy as np from tensorflow.python.training import training_util from tensorflow.contrib.learn.python import learn from tensorflow.contrib.learn.python.learn import datasets from tensorflow.contrib.learn.python.learn import metric_spec from tensorflow.contrib.learn.python.learn.estimators import estimator as estimator_lib from tensorflow.contrib.learn.python.learn.estimators._sklearn import accuracy_score from tensorflow.contrib.learn.python.learn.estimators._sklearn import train_test_split from tensorflow.python.framework import constant_op from tensorflow.python.ops import string_ops from tensorflow.python.ops import variables as variables_lib from tensorflow.python.platform import test from tensorflow.python.training import momentum as momentum_lib class FeatureEngineeringFunctionTest(test.TestCase): """Tests feature_engineering_fn.""" def testFeatureEngineeringFn(self): def input_fn(): return { "x": constant_op.constant([1.]) }, { "y": constant_op.constant([11.]) } def feature_engineering_fn(features, labels): _, _ = features, labels return { "transformed_x": constant_op.constant([9.]) }, { "transformed_y": constant_op.constant([99.]) } def model_fn(features, labels): # dummy variable: _ = variables_lib.Variable([0.]) _ = labels predictions = features["transformed_x"] loss = constant_op.constant([2.]) update_global_step = training_util.get_global_step().assign_add(1) return predictions, loss, update_global_step estimator = estimator_lib.Estimator( model_fn=model_fn, feature_engineering_fn=feature_engineering_fn) estimator.fit(input_fn=input_fn, steps=1) prediction = next(estimator.predict(input_fn=input_fn, as_iterable=True)) # predictions = transformed_x (9) self.assertEqual(9., prediction) metrics = estimator.evaluate( input_fn=input_fn, steps=1, metrics={"label": metric_spec.MetricSpec(lambda predictions, labels: labels)}) # labels = transformed_y (99) self.assertEqual(99., metrics["label"]) def testFeatureEngineeringFnWithSameName(self): def input_fn(): return { "x": constant_op.constant(["9."]) }, { "y": constant_op.constant(["99."]) } def feature_engineering_fn(features, labels): # Github #12205: raise a TypeError if called twice. _ = string_ops.string_split(features["x"]) features["x"] = constant_op.constant([9.]) labels["y"] = constant_op.constant([99.]) return features, labels def model_fn(features, labels): # dummy variable: _ = variables_lib.Variable([0.]) _ = labels predictions = features["x"] loss = constant_op.constant([2.]) update_global_step = training_util.get_global_step().assign_add(1) return predictions, loss, update_global_step estimator = estimator_lib.Estimator( model_fn=model_fn, feature_engineering_fn=feature_engineering_fn) estimator.fit(input_fn=input_fn, steps=1) prediction = next(estimator.predict(input_fn=input_fn, as_iterable=True)) # predictions = transformed_x (9) self.assertEqual(9., prediction) metrics = estimator.evaluate( input_fn=input_fn, steps=1, metrics={"label": metric_spec.MetricSpec(lambda predictions, labels: labels)}) # labels = transformed_y (99) self.assertEqual(99., metrics["label"]) def testNoneFeatureEngineeringFn(self): def input_fn(): return { "x": constant_op.constant([1.]) }, { "y": constant_op.constant([11.]) } def feature_engineering_fn(features, labels): _, _ = features, labels return { "x": constant_op.constant([9.]) }, { "y": constant_op.constant([99.]) } def model_fn(features, labels): # dummy variable: _ = variables_lib.Variable([0.]) _ = labels predictions = features["x"] loss = constant_op.constant([2.]) update_global_step = training_util.get_global_step().assign_add(1) return predictions, loss, update_global_step estimator_with_fe_fn = estimator_lib.Estimator( model_fn=model_fn, feature_engineering_fn=feature_engineering_fn) estimator_with_fe_fn.fit(input_fn=input_fn, steps=1) estimator_without_fe_fn = estimator_lib.Estimator(model_fn=model_fn) estimator_without_fe_fn.fit(input_fn=input_fn, steps=1) # predictions = x prediction_with_fe_fn = next( estimator_with_fe_fn.predict( input_fn=input_fn, as_iterable=True)) self.assertEqual(9., prediction_with_fe_fn) prediction_without_fe_fn = next( estimator_without_fe_fn.predict( input_fn=input_fn, as_iterable=True)) self.assertEqual(1., prediction_without_fe_fn) class CustomOptimizer(test.TestCase): """Custom optimizer tests.""" def testIrisMomentum(self): random.seed(42) iris = datasets.load_iris() x_train, x_test, y_train, y_test = train_test_split( iris.data, iris.target, test_size=0.2, random_state=42) def custom_optimizer(): return momentum_lib.MomentumOptimizer(learning_rate=0.01, momentum=0.9) classifier = learn.DNNClassifier( hidden_units=[10, 20, 10], feature_columns=learn.infer_real_valued_columns_from_input(x_train), n_classes=3, optimizer=custom_optimizer, config=learn.RunConfig(tf_random_seed=1)) classifier.fit(x_train, y_train, steps=400) predictions = np.array(list(classifier.predict_classes(x_test))) score = accuracy_score(y_test, predictions) self.assertGreater(score, 0.65, "Failed with score = {0}".format(score)) if __name__ == "__main__": test.main()
apache-2.0
polysimtools/pysimm
pysimm/system.py
1
186350
# ****************************************************************************** # pysimm.system module # ****************************************************************************** # # ****************************************************************************** # License # ****************************************************************************** # The MIT License (MIT) # # Copyright (c) 2016 Michael E. Fortunato # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. from __future__ import print_function import os import re import sys import json from xml.etree import ElementTree as Et from random import random from io import StringIO from urllib.request import urlopen from urllib.error import HTTPError, URLError from itertools import permutations from math import sin, cos, sqrt, pi, acos, floor, ceil try: from subprocess import call except ImportError: call = None try: import numpy as np except ImportError: np = None try: import pandas as pd except ImportError: pd = None from pysimm import calc from pysimm import error_print from pysimm import warning_print from pysimm import verbose_print from pysimm import debug_print from pysimm import PysimmError from pysimm.calc import rotate_vector from pysimm.utils import PysimmError, Item, ItemContainer class Particle(Item): """pysimm.system.Particle Objects inheriting from :class:`~pysimm.utils.Item` can contain arbitrary data. Keyword arguments are assigned as attributes. Attributes usually used are given below. Attributes: x: x coordinate y: y coordinate z: z coordinate charge: partial charge type: :class:`~ParticleType` object reference """ def __init__(self, **kwargs): Item.__init__(self, **kwargs) def coords(self): return (self.x, self.y, self.z) def check(self, style='full'): if style == 'full': if self.x is None: error_print('particle %s has no x coordinate' % self.tag) return False if self.y is None: return False if self.z is None: return False if self.charge is None: return False if self.type is None or not self.type.check(): return False return True else: error_print('style %s not supported yet' % style) return False def delete_bonding(self, s): """pysimm.system.Particle.delete_bonding Iterates through s.bonds, s.angles, s.dihedrals, and s.impropers and removes those which contain this :class:`~pysimm.system.Particle`. Args: s: :class:`~pysimm.system.System` object from which bonding objects will be removed Returns: None """ if self.bonds: for b in self.bonds: if b in s.bonds: s.bonds.remove(b.tag) else: for b in s.bonds: if self is b.a or self is b.b: s.bonds.remove(b.tag) if self.angles: for a in self.angles: if a in s.angles: s.angles.remove(a.tag) else: for a in s.angles: if self is a.a or self is a.b or self is a.c: s.angles.remove(a.tag) if self.dihedrals: for d in self.dihedrals: if d in s.dihedrals: s.dihedrals.remove(d.tag) else: for d in s.dihedrals: if self is d.a or self is d.b or self is d.c or self is d.d: s.dihedrals.remove(d.tag) if self.impropers: for i in self.impropers: if i in s.impropers: s.impropers.remove(i.tag) else: for i in s.impropers: if self is i.a or self is i.b or self is i.c or self is i.d: s.impropers.remove(i.tag) def translate(self, dx, dy, dz): """pysimm.system.Particle.translate Shifts Particle position by dx, dy, dz. Args: dx: distance to shift in x direction dy: distance to shift in y direction dz: distance to shift in z direction Returns: None """ self.x += dx self.y += dy self.z += dz def __sub__(self, other): """pysimm.system.Particle.__sub__ Implements subtraction between :class:`~pysimm.system.Particle` objects to calculate distance. Args: other: :class:`~pysimm.system.Particle` object Returns: distance calculated by :func:`~pysimm.calc.distance`. This does not consider pbc """ if isinstance(other, Particle): return calc.distance(self, other) else: return None def __rsub__(self, other): self.__sub__(other) class ParticleType(Item): """pysimm.system.ParticleType Objects inheriting from :class:`~pysimm.utils.Item` can contain arbitrary data. Keyword arguments are assigned as attributes. Attributes usually used are given below. Attributes: sigma: LJ sigma value (Angstrom) epsilon: LJ epsilon value (kcal/mol) elem: element abbreviation, i.e. 'H' for Hydrogen, 'Cl' for Chlorine name: force field particle type name """ def __init__(self, **kwargs): Item.__init__(self, **kwargs) def form(self, style='lj_12-6', d_range=None): """pysimm.system.ParticleType.form Returns data to plot functional form for the potential energy with the given style. Args: style: string for pair style of ParticleType (lj_12-6, lj_9-6, buck) Returns: x, y for plotting functional form (energy vs distance) """ if not d_range: d_range = np.linspace(0.1, 8, 79) if style == 'lj_12-6': e = np.array([calc.LJ_12_6(self, d) for d in d_range]) return d_range, e elif style == 'lj_9-6': e = np.array([calc.LJ_9_6(self, d) for d in d_range]) return d_range, e elif style.startswith('buck'): e = np.array([calc.buckingham(self, d) for d in d_range]) return d_range, e @classmethod def guess_style(cls, nparam): if nparam == 2: return 'lj' elif nparam == 3: return 'buck' elif nparam == 4: return 'charmm' else: raise PysimmError('Cannot guess pair style') @classmethod def parse_lammps(cls, line, style): tmp = line.split('#') data = tmp.pop(0).strip().split() name = ','.join(re.split(',|\s+', tmp[0].strip())) if tmp else None if style == 'mass': if len(data) != 2: raise PysimmError('LAMMPS data improperly formatted for mass info') return cls(tag=int(data[0]), name=name, mass=float(data[1])) elif style.startswith('lj') or style.startswith('class2'): if len(data) != 3: raise PysimmError('LAMMPS data improperly formatted for LJ style') return cls( tag=int(data[0]), name=name, epsilon=float(data[1]), sigma=float(data[2]) ) elif style.startswith('charmm'): if len(data) == 3: return cls( tag=int(data[0]), name=name, epsilon=float(data[1]), sigma=float(data[2]), epsilon_14=float(data[1]), sigma_14=float(data[2]) ) elif len(data) == 5: return cls( tag=int(data[0]), name=name, epsilon=float(data[1]), sigma=float(data[2]), epsilon_14=float(data[3]), sigma_14=float(data[4]) ) else: raise PysimmError('LAMMPS data improperly formatted for charmm style') elif style.startswith('buck'): if len(data) != 4: raise PysimmError('LAMMPS data improperly formatted for buckingham style') return cls( tag=int(data[0]), name=name, a=float(data[1]), rho=float(data[2]), c=float(data[3]) ) else: raise PysimmError('LAMMPS pair style {} not supported yet'.format(style)) def write_lammps(self, style='lj'): """pysimm.system.ParticleType.write_lammps Formats a string to define particle type coefficients for a LAMMPS data file given the provided style. Args: style: string for pair style of ParticleType (lj, class2, mass, buck) Returns: LAMMPS formatted string with pair coefficients """ if style.startswith('lj'): return '{:4}\t{}\t{}\t# {}\n'.format( self.tag, self.epsilon, self.sigma, self.name ) elif style.startswith('charmm'): if self.epsilon_14 and self.sigma_14: return '{:4}\t{}\t{}\t{}\t{}\t# {}\n'.format( self.tag, self.epsilon, self.sigma, self.epsilon_14, self.sigma_14, self.name ) else: return '{:4}\t{}\t{}\t{}\t{}\t# {}\n'.format( self.tag, self.epsilon, self.sigma, self.epsilon, self.sigma, self.name ) elif style.startswith('class2'): return '{:4}\t{}\t{}\t# {}\n'.format( self.tag, self.epsilon, self.sigma, self.name ) elif style.startswith('mass'): return '{:4}\t{}\t# {}\n'.format( self.tag, self.mass, self.name ) elif style.startswith('buck'): return '{:4}\t{}\t{}\t{}\t# {}\n'.format( self.tag, self.a, self.rho, self.c, self.name ) else: raise PysimmError('cannot understand pair style {}'.format(style)) class Bond(Item): """pysimm.system.Bond Bond between particle a and b a--b Objects inheriting from :class:`~pysimm.utils.Item` can contain arbitrary data. Keyword arguments are assigned as attributes. Attributes usually used are given below. Attributes: a: :class:`~pysimm.system.Particle` object involved in bond b: :class:`~pysimm.system.Particle` object involved in bond type: BondType object reference """ def __init__(self, **kwargs): Item.__init__(self, **kwargs) def get_other_particle(self, p): if p is not self.a and p is not self.b: return None else: return self.a if p is self.b else self.b def distance(self): """pysimm.system.Bond.distance Calculates distance between :class:`~pysimm.system.Particle` a and :class:`~pysimm.system.Particle` b in this Bond object. Sets distance to dist attribute of self. Does not consider pbc. Args: None Returns: Distance between Particle a and Particle b (not considering pbc) """ if isinstance(self.a, Particle) and isinstance(self.b, Particle): self.dist = calc.distance(self.a, self.b) return self.dist else: return None class BondType(Item): """pysimm.system.BondType Objects inheriting from :class:`~pysimm.utils.Item` can contain arbitrary data. Keyword arguments are assigned as attributes. Attributes usually used are given below. Attributes: k: harmonic bond force constant (kcal/mol/A^2) r0: bond equilibrium distance (Angstrom) name: force field bond type name """ def __init__(self, **kwargs): Item.__init__(self, **kwargs) if self.name: self.rname = ','.join(reversed(self.name.split(','))) @classmethod def guess_style(cls, nparam): if nparam == 2: return 'harmonic' elif nparam == 4: return 'class2' else: raise PysimmError('Cannot guess bond style') @classmethod def parse_lammps(cls, line, style): tmp = line.split('#') data = tmp.pop(0).strip().split() name = ','.join(re.split(',|\s+', tmp[0].strip())) if tmp else None if style.startswith('harm'): if len(data) != 3: raise PysimmError('LAMMPS data improperly formatted for harmonic bond') return cls( tag=int(data[0]), name=name, k=float(data[1]), r0=float(data[2]) ) elif style.startswith('class2'): if len(data) != 5: raise PysimmError('LAMMPS data improperly formatted for class2 bond') return cls( tag=int(data[0]), name=name, r0=float(data[1]), k2=float(data[2]), k3=float(data[3]), k4=float(data[4]) ) else: raise PysimmError('LAMMPS bond style {} not supported yet'.format(style)) def write_lammps(self, style='harmonic'): """pysimm.system.BondType.write_lammps Formats a string to define bond type coefficients for a LAMMPS data file given the provided style. Args: style: string for pair style of BondType (harmonic, class2) Returns: LAMMPS formatted string with bond coefficients """ if style.startswith('harm'): return '{:4}\t{}\t{}\t# {}\n'.format( self.tag, self.k, self.r0, self.name ) elif style.startswith('class2'): return '{:4}\t{}\t{}\t{}\t{}\t# {}\n'.format( self.tag, self.r0, self.k2, self.k3, self.k4, self.name ) else: raise PysimmError('cannot understand pair style {}'.format(style)) def form(self, style='harmonic', d_range=None): """pysimm.system.BondType.form Returns data to plot functional form for the potential energy with the given style. Args: style: string for pair style of BondType (harmonic, class2) Returns: x, y for plotting functional form (energy vs distance) """ if not d_range: d_range = np.linspace(self.r0-0.5, self.r0+0.5, 100) if style == 'harmonic': e = np.array([calc.harmonic_bond(self, d) for d in d_range]) return d_range, e elif style == 'class2': e = np.array([calc.class2_bond(self, d) for d in d_range]) return d_range, e class Angle(Item): """pysimm.system.Angle Angle between particles a, b, and c a--b--c Objects inheriting from :class:`~pysimm.utils.Item` can contain arbitrary data. Keyword arguments are assigned as attributes. Attributes usually used are given below. Attributes: a: :class:`~pysimm.system.Particle` object involved in angle b: :class:`~pysimm.system.Particle` object involved in angle (middle particle) c: :class:`~pysimm.system.Particle` object involved in angle type: AngleType object reference """ def __init__(self, **kwargs): Item.__init__(self, **kwargs) def angle(self, radians=False): """pysimm.system.Angle.angle Calculate angle. Args: radians: True to return value in radians (default: False) Returns: Angle between Particle a, b, and c """ self.theta = calc.angle(self.a, self.b, self.c, radians) return self.theta class AngleType(Item): """pysimm.system.AngleType Objects inheriting from :class:`~pysimm.utils.Item` can contain arbitrary data. Keyword arguments are assigned as attributes. Attributes usually used are given below. Attributes: k: harmonic angle bend force constant (kcal/mol/radian^2) theta0: angle equilibrium value (degrees) name: force field angle type name """ def __init__(self, **kwargs): Item.__init__(self, **kwargs) if self.name: self.rname = ','.join(reversed(self.name.split(','))) @classmethod def guess_style(cls, nparam): if nparam == 2: return 'harmonic' elif nparam == 4: return 'class2' else: raise PysimmError('Cannot guess angle style') @classmethod def parse_lammps(cls, line, style): tmp = line.split('#') data = tmp.pop(0).strip().split() name = ','.join(re.split(',|\s+', tmp[0].strip())) if tmp else None if style.startswith('harm'): if len(data) != 3: raise PysimmError('LAMMPS data improperly formatted for harmonic angle') return cls( tag=int(data[0]), name=name, k=float(data[1]), theta0=float(data[2]) ) elif style.startswith('class2'): if len(data) != 5: raise PysimmError('LAMMPS data improperly formatted for class2 angle') return cls( tag=int(data[0]), name=name, theta0=float(data[1]), k2=float(data[2]), k3=float(data[3]), k4=float(data[4]) ) elif style.startswith('charmm'): if len(data) != 5: raise PysimmError('LAMMPS data improperly formatted for harmonic angle') return cls( tag=int(data[0]), name=name, k=float(data[1]), theta0=float(data[2]), k_ub=float(data[3]), r_ub=float(data[4]) ) else: raise PysimmError('LAMMPS angle style {} not supported yet'.format(style)) def write_lammps(self, style='harmonic', cross_term=None): """pysimm.system.AngleType.write_lammps Formats a string to define angle type coefficients for a LAMMPS data file given the provided style. Args: style: string for pair style of AngleType (harmonic, class2, charmm) cross_term: type of class2 cross term to write (default=None) - BondBond - BondAngle Returns: LAMMPS formatted string with angle coefficients """ if style.startswith('harm'): return '{:4}\t{}\t{}\t# {}\n'.format( self.tag, self.k, self.theta0, self.name ) elif style.startswith('class2'): if not cross_term: return '{:4}\t{}\t{}\t{}\t{}\t# {}\n'.format( self.tag, self.theta0, self.k2, self.k3, self.k4, self.name ) elif cross_term == 'BondBond': return '{:4}\t{}\t{}\t{}\t# {}\n'.format( self.tag, self.m, self.r1, self.r2, self.name ) elif cross_term == 'BondAngle': return '{:4}\t{}\t{}\t{}\t{}\t# {}\n'.format( self.tag, self.n1, self.n2, self.r1, self.r2, self.name ) elif style.startswith('charmm'): return '{:4}\t{}\t{}\t{}\t{}\t# {}\n'.format( self.tag, self.k, self.theta0, self.k_ub, self.r_ub, self.name ) else: raise PysimmError('cannot understand pair style {}'.format(style)) def form(self, style='harmonic', d_range=None): """pysimm.system.AngleType.form Returns data to plot functional form for the potential energy with the given style. Args: style: string for pair style of AngleType (harmonic, class2, charmm) Returns: x, y for plotting functional form (energy vs angle) """ if not d_range: d_range = np.linspace(self.theta0-1, self.theta0+1, 100) if style == 'harmonic': e = np.array([calc.harmonic_angle(self, d) for d in d_range]) return d_range, e elif style == 'charmm': e = np.array([calc.harmonic_angle(self, d) for d in d_range]) return d_range, e elif style == 'class2': e = np.array([calc.class2_angle(self, d) for d in d_range]) return d_range, e class Dihedral(Item): """pysimm.system.Dihedral Dihedral between particles a, b, c, and d a--b--c--d Objects inheriting from :class:`~pysimm.utils.Item` can contain arbitrary data. Keyword arguments are assigned as attributes. Attributes usually used are given below. Attributes: a: :class:`~pysimm.system.Particle` object involved in dihedral b: :class:`~pysimm.system.Particle` object involved in dihedral (middle particle) c: :class:`~pysimm.system.Particle` object involved in dihedral (middle particle) d: :class:`~pysimm.system.Particle` object involved in dihedral type: :class:`~pysimm.system.DihedralType` object reference """ def __init__(self, **kwargs): Item.__init__(self, **kwargs) class DihedralType(Item): """pysimm.system.DihedralType Objects inheriting from :class:`~pysimm.utils.Item` can contain arbitrary data. Keyword arguments are assigned as attributes. Attributes usually used are given below. Attributes: k: dihedral energy barrier (kcal/mol) d: minimum (+1 or -1) n: multiplicity (integer >= 0) name: force field dihedral type name """ def __init__(self, **kwargs): Item.__init__(self, **kwargs) if self.name: self.rname = ','.join(reversed(self.name.split(','))) @classmethod def guess_style(cls, nparam): if nparam == 3: return 'harmonic' elif nparam % 3 == 1: return 'fourier' elif nparam == 6: return 'class2' else: raise PysimmError('Cannot guess dihedral style') @classmethod def parse_lammps(cls, line, style): tmp = line.split('#') data = tmp.pop(0).strip().split() name = ','.join(re.split(',|\s+', tmp[0].strip())) if tmp else None if style.startswith('harm'): if len(data) != 4: raise PysimmError('LAMMPS data improperly formatted for harmonic dihedral') return cls( tag=int(data[0]), name=name, k=float(data[1]), d=int(data[2]), n=int(data[3]) ) elif style.startswith('fourier'): if len(data) % 3 != 2: raise PysimmError('LAMMPS data improperly formatted for fourier dihedral') tag = int(data.pop(0)) m = int(data.pop(0)) k = [] n = [] d = [] for i in range(m): k.append(data.pop(0)) n.append(data.pop(0)) d.append(data.pop(0)) return cls( tag=tag, name=name, m=m, k=list(map(float, k)), n=list(map(int, n)), d=list(map(float, d)) ) elif style.startswith('class2'): if len(data) != 7: raise PysimmError('LAMMPS data improperly formatted for class2 dihedral') return cls( tag=int(data[0]), name=name, k1=float(data[1]), phi1=float(data[2]), k2=float(data[3]), phi2=float(data[4]), k3=float(data[5]), phi3=float(data[6]), ) elif style.startswith('charmm'): if len(data) != 5: raise PysimmError('LAMMPS data improperly formatted for charmm dihedral') return cls( tag=int(data[0]), name=name, k=float(data[1]), n=float(data[2]), d=float(data[3]), w=float(data[4]) ) elif style.startswith('opls'): if len(data) != 5: raise PysimmError('LAMMPS data improperly formatted for opls dihedral') return cls( tag=int(data[0]), name=name, k1=float(data[1]), k2=float(data[2]), k3=float(data[3]), k4=float(data[4]) ) else: raise PysimmError('LAMMPS dihedral style {} not supported yet'.format(style)) def write_lammps(self, style='harmonic', cross_term=None): """pysimm.system.DihedralType.write_lammps Formats a string to define dihedral type coefficients for a LAMMPS data file given the provided style. Args: style: string for pair style of DihedralType (harmonic, class2, fourier) cross_term: type of class2 cross term to write (default=None) - MiddleBond - EndBond - Angle - AngleAngle - BondBond13 Returns: LAMMPS formatted string with dihedral coefficients """ if style.startswith('harm'): return '{:4}\t{:f}\t{:d}\t{:d}\t# {}\n'.format( self.tag, self.k, int(self.d), int(self.n), self.name ) elif style.startswith('charmm'): return '{:4}\t{:f}\t{:d}\t{:d}\t{:f}\t# {}\n'.format( self.tag, self.k, int(self.n), int(self.d), self.w, self.name ) elif style.startswith('opls'): return '{:4}\t{:f}\t{:f}\t{:f}\t{:f}\t# {}\n'.format( self.tag, self.k1, self.k2, self.k3, self.k4, self.name ) elif style.startswith('fourier'): st = '{:4}\t{:d}'.format(self.tag, self.m) for k, n, d in zip(self.k, self.n, self.d): st += '\t{}\t{:d}\t{}'.format(k, int(n), d) st += '\t# {}\n'.format(self.name) return st elif style.startswith('class2'): if not cross_term: return '{:4}\t{}\t{}\t{}\t{}\t{}\t{}\t# {}\n'.format( self.tag, self.k1, self.phi1, self.k2, self.phi2, self.k3, self.phi3, self.name ) elif cross_term == 'MiddleBond': return '{:4}\t{}\t{}\t{}\t{}\t# {}\n'.format( self.tag, self.a1, self.a2, self.a3, self.r2, self.name ) elif cross_term == 'EndBond': return '{:4}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t# {}\n'.format( self.tag, self.b1, self.b2, self.b3, self.c1, self.c2, self.c3, self.r1, self.r3, self.name ) elif cross_term == 'Angle': return '{:4}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t# {}\n'.format( self.tag, self.d1, self.d2, self.d3, self.e1, self.e2, self.e3, self.theta1, self.theta2, self.name ) elif cross_term == 'AngleAngle': return '{:4}\t{}\t{}\t{}\t# {}\n'.format( self.tag, self.m, self.theta1, self.theta2, self.name ) elif cross_term == 'BondBond13': if self.n is None: self.n = 0.0 return '{:4}\t{}\t{}\t{}\t# {}\n'.format( self.tag, self.n, self.r1, self.r3, self.name ) else: raise PysimmError('cannot understand pair style {}'.format(style)) def form(self, style='harmonic', d_range=None): """pysimm.system.DihedralType.form Returns data to plot functional form for the potential energy with the given style. Args: style: string for pair style of DihedralType (harmonic, class2, fourier) Returns: x, y for plotting functional form (energy vs angle) """ if not d_range: d_range = np.linspace(-180, 180, 100) if style == 'harmonic': e = np.array([calc.harmonic_dihedral(self, d) for d in d_range]) return d_range, e elif style == 'fourier': e = np.array([calc.fourier_dihedral(self, d) for d in d_range]) return d_range, e elif style == 'class2': e = np.array([calc.class2_dihedral(self, d) for d in d_range]) return d_range, e elif style == 'opls': e = np.array([calc.opls_dihedral(self, d) for d in d_range]) return d_range, e class Improper(Item): """pysimm.system.Improper Improper dihedral around particle a, bonded to b, c, and d | b | | | a--d | | | c Objects inheriting from :class:`~pysimm.utils.Item` can contain arbitrary data. Keyword arguments are assigned as attributes. Attributes usually used are given below. Attributes: a: :class:`~pysimm.system.Particle` object involved in improper (middle particle) b: :class:`~pysimm.system.Particle` object involved in improper c: :class:`~pysimm.system.Particle` object involved in improper d: :class:`~pysimm.system.Particle` object involved in improper type: :class:`~pysimm.system.ImproperType` object reference """ def __init__(self, **kwargs): Item.__init__(self, **kwargs) class ImproperType(Item): """pysimm.system.ImproperType Objects inheriting from :class:`~pysimm.utils.Item` can contain arbitrary data. Keyword arguments are assigned as attributes. Attributes usually used are given below. Attributes: k: improper energy barrier (kcal/mol) x0: equilibrium value (degrees) name: force field improper type name """ def __init__(self, **kwargs): Item.__init__(self, **kwargs) if self.name: self.rname = ','.join(reversed(self.name.split(','))) @classmethod def guess_style(cls, nparam): if nparam == 2: return 'harmonic' if nparam == 3: return 'cvff' else: raise PysimmError('Cannot guess improper style') @classmethod def parse_lammps(cls, line, style): tmp = line.split('#') data = tmp.pop(0).strip().split() name = ','.join(re.split(',|\s+', tmp[0].strip())) if tmp else None if style.startswith('harm') or style.startswith('class2') or style.startswith('umbrella'): if len(data) != 3: raise PysimmError('LAMMPS data improperly formatted for harmonic improper') return cls( tag=int(data[0]), name=name, k=float(data[1]), x0=float(data[2]) ) elif style.startswith('cvff'): if len(data) != 4: raise PysimmError('LAMMPS data improperly formatted for harmonic improper') return cls( tag=int(data[0]), name=name, k=float(data[1]), d=int(data[2]), n=int(data[3]) ) else: raise PysimmError('LAMMPS improper style {} not supported yet'.format(style)) def write_lammps(self, style='harmonic', cross_term=None): """pysimm.system.ImproperType.write_lammps Formats a string to define improper type coefficients for a LAMMPS data file given the provided style. Args: style: string for pair style of ImproperType (harmonic, class2, cvff) cross_term: type of class2 cross term to write (default=None) - AngleAngle Returns: LAMMPS formatted string with dihedral coefficients """ if style.startswith('harmonic'): return '{:4}\t{}\t{}\t# {}\n'.format( self.tag, self.k, self.x0, self.name ) elif style.startswith('umbrella'): return '{:4}\t{}\t{}\t# {}\n'.format( self.tag, self.k, self.x0, self.name ) elif style.startswith('cvff'): return '{:4}\t{}\t{}\t{}\t# {}\n'.format( self.tag, self.k, self.d, self.n, self.name ) elif style.startswith('class2'): if self.k is None: self.k = 0.0 if self.x0 is None: self.x0 = 0.0 if not cross_term: return '{:4}\t{}\t{}\t# {}\n'.format( self.tag, self.k, self.x0, self.name ) elif cross_term == 'AngleAngle': return '{:4}\t{}\t{}\t{}\t{}\t{}\t{}\t# {}\n'.format( self.tag, self.m1, self.m2, self.m3, self.theta1, self.theta2, self.theta3, self.name ) else: raise PysimmError('cannot understand pair style {}'.format(style)) def form(self, style='harmonic', d_range=None): """pysimm.system.ImproperType.form Returns data to plot functional form for the potential energy with the given style. Args: style: string for pair style of ImproperType (harmonic, cvff) Returns: x, y for plotting functional form (energy vs angle) """ if not d_range: d_range = np.linspace(-2, 2, 100) if style == 'harmonic': e = np.array([calc.harmonic_improper(self, d) for d in d_range]) return d_range, e elif style == 'cvff': e = np.array([calc.cvff_improper(self, d) for d in d_range]) return d_range, e elif style == 'umbrella': e = np.array([calc.umbrella_improper(self, d) for d in d_range]) return d_range, e class Dimension(Item): """pysimm.system.Dimension Objects inheriting from :class:`~pysimm.utils.Item` can contain arbitrary data. Keyword arguments are assigned as attributes. Attributes usually used are given below. Attributes: xlo: minimum value in x dimension xhi: maximum value in x dimension ylo: minimum value in y dimension yhi: maximum value in y dimension zlo: minimum value in z dimension zhi: maximum value in z dimension dx: distance in x dimension dy: distance in y dimension dz: distance in z dimension """ def __init__(self, **kwargs): center = kwargs.get('center') Item.__init__(self, **kwargs) if center: self.translate(*center) del self.center def check(self): if self.dx is not None and self.dy is not None and self.dz is not None: return True else: return False def size(self): return (self.dx, self.dy, self.dz) def translate(self, x, y, z): """pysimm.system.Dimension.translate Shifts box bounds by x, y, z. Args: x: distance to shift box bounds in x direction y: distance to shift box bounds in y direction z: distance to shift box bounds in z direction Returns: None """ self.xlo += x self.xhi += x self.ylo += y self.yhi += y self.zlo += z self.zhi += z @property def dx(self): if self.xhi is None or self.xlo is None: return None else: return self.xhi-self.xlo @dx.setter def dx(self, dx): if dx is None: return center = 0 if self.xlo is not None and self.xhi is not None: center = float(self.xhi + self.xlo)/2 self.xlo = center - float(dx)/2 self.xhi = center + float(dx)/2 @property def dy(self): if self.yhi is None or self.ylo is None: return None else: return self.yhi-self.ylo @dy.setter def dy(self, dy): if dy is None: return center = 0 if self.ylo is not None and self.yhi is not None: center = float(self.yhi + self.ylo)/2 self.ylo = center - float(dy)/2 self.yhi = center + float(dy)/2 @property def dz(self): if self.zhi is None or self.zlo is None: return None else: return self.zhi-self.zlo @dz.setter def dz(self, dz): if dz is None: return center = 0 if self.zlo is not None and self.zhi is not None: center = float(self.zhi + self.zlo)/2 self.zlo = center - float(dz)/2 self.zhi = center + float(dz)/2 class System(object): """pysimm.system.System Object representation of molecular system. Contains information required for molecular simulation. Attributes: dim: Dimension object reference particles: :class:`~pysimm.utils.ItemContainer` for Particle organization particle_types: :class:`~pysimm.utils.ItemContainer` for ParticleType organization bonds: :class:`~pysimm.utils.ItemContainer` for Bond organization bond_types: :class:`~pysimm.utils.ItemContainer` for BondType organization angles: :class:`~pysimm.utils.ItemContainer` for Angle organization angle_types: :class:`~pysimm.utils.ItemContainer` for AngleType organization dihedrals: :class:`~pysimm.utils.ItemContainer` for Dihedral organization dihedral_types: :class:`~pysimm.utils.ItemContainer` for DihedralType organization impropers: :class:`~pysimm.utils.ItemContainer` for Improper organization improper_types: :class:`~pysimm.utils.ItemContainer` for ImproperType organization molecules: :class:`~pysimm.utils.ItemContainer` for Molecule organization """ def __init__(self, **kwargs): self.objectified = False self.name = kwargs.get('name', 'pySIMM System Object') self.ff_class = kwargs.get('ff_class') self.forcefield = kwargs.get('forcefield') self.dim = Dimension(xlo=kwargs.get('xlo'), xhi=kwargs.get('xhi'), ylo=kwargs.get('ylo'), yhi=kwargs.get('yhi'), zlo=kwargs.get('zlo'), zhi=kwargs.get('zhi'), dx=kwargs.get('dx'), dy=kwargs.get('dy'), dz=kwargs.get('dz'), center=kwargs.get('center')) self.dim_check = self.dim.check() self.mass = kwargs.get('mass', 0.0) self.particle_types = kwargs.get('particle_types', ItemContainer()) self.bond_types = kwargs.get('bond_types', ItemContainer()) self.angle_types = kwargs.get('angle_types', ItemContainer()) self.dihedral_types = kwargs.get('dihedral_types', ItemContainer()) self.improper_types = kwargs.get('improper_types', ItemContainer()) self.molecule_types = kwargs.get('molecule_types', ItemContainer()) self.particles = kwargs.get('particles', ItemContainer()) self.bonds = kwargs.get('bonds', ItemContainer()) self.angles = kwargs.get('angles', ItemContainer()) self.dihedrals = kwargs.get('dihedrals', ItemContainer()) self.impropers = kwargs.get('impropers', ItemContainer()) self.molecules = kwargs.get('molecules', ItemContainer()) self.write_coeffs = kwargs.get('write_coeffs', True) self.set_mass() self.set_volume() self.set_density() self.set_cog() def __getattr__(self, name): return None def copy(self, rotate_x=None, rotate_y=None, rotate_z=None, dx=0, dy=0, dz=0): """pysimm.system.System.copy Create duplicate :class:`~pysimm.system.System` object. Default behavior does not modify particle positions. Args: rotate_x: rotate duplicate system around x axis by this value (radians) rotate_y: rotate duplicate system around y axis by this value (radians) rotate_z: rotate duplicate system around z axis by this value (radians) dx: translate duplicate system in x dimension by this value (Angstrom) dy: translate duplicate system in y dimension by this value (Angstrom) dz: translate duplicate system in z dimension by this value (Angstrom) """ new = System() new.ff_class = self.ff_class new.forcefield = self.forcefield new.pair_style = self.pair_style new.bond_style = self.bond_style new.angle_style = self.angle_style new.dihedral_style = self.dihedral_style new.improper_style = self.improper_style new.dim = self.dim.copy() for _ in self.molecules: new.molecules.add(Molecule(tag=_.tag)) for pt in self.particle_types: new.particle_types.add(pt.copy()) for bt in self.bond_types: new.bond_types.add(bt.copy()) for at in self.angle_types: new.angle_types.add(at.copy()) for dt in self.dihedral_types: new.dihedral_types.add(dt.copy()) for it in self.improper_types: new.improper_types.add(it.copy()) for p in self.particles: new_p = p.copy() if p.type: new_p.type = new.particle_types[p.type.tag] new_p.molecule = new.molecules[p.molecule.tag] if rotate_x or rotate_y or rotate_z: new_p.x, new_p.y, new_p.z = rotate_vector(new_p.x, new_p.y, new_p.z, rotate_x, rotate_y, rotate_z) new_p.x += dx new_p.y += dy new_p.z += dz new.particles.add(new_p) new_p.molecule.particles.add(new_p) new_p.bonds = ItemContainer() new_p.angles = ItemContainer() new_p.dihedrals = ItemContainer() new_p.impropers = ItemContainer() for b in self.bonds: new_b = b.copy() new_b.a = new.particles[b.a.tag] new_b.b = new.particles[b.b.tag] if b.type: new_b.type = new.bond_types[b.type.tag] new.bonds.add(new_b) new_b.a.molecule.bonds.add(new_b) new_b.a.bonds.add(new_b) new_b.b.bonds.add(new_b) for a in self.angles: new_a = Angle(a=new.particles[a.a.tag], b=new.particles[a.b.tag], c=new.particles[a.c.tag]) if a.type: new_a.type=new.angle_types[a.type.tag] new.angles.add(new_a) new_a.a.molecule.angles.add(new_a) for d in self.dihedrals: new_d = Dihedral(a=new.particles[d.a.tag], b=new.particles[d.b.tag], c=new.particles[d.c.tag], d=new.particles[d.d.tag]) if d.type: new_d.type=new.dihedral_types[d.type.tag] new.dihedrals.add(new_d) new_d.a.molecule.dihedrals.add(new_d) for i in self.impropers: new_i = Improper(a=new.particles[i.a.tag], b=new.particles[i.b.tag], c=new.particles[i.c.tag], d=new.particles[i.d.tag]) if i.type: new_i.type = new.improper_types[i.type.tag] new.impropers.add(new_i) new_i.a.molecule.impropers.add(new_i) for k, v in vars(self).items(): if not isinstance(v, ItemContainer) and not isinstance(v, Item): setattr(new, k, v) return new def add(self, other, **kwargs): """pysimm.system.System.add Add other :class:`~pysimm.system.System` to this. Optionally remove duplicate types (default behavior). Args: other: :class:`~pysimm.system.System` object to add unique_types (optional): Remove duplicate types and reassign references to existing types (True) change_dim (optional): Update :class:`~pysimm.system.Dimension` object so that :class:`~pysimm.system.Particle` objects do not exist outside of :class:`~pysimm.system.Dimension` extremes (True) update_properties (optional): Update system-wide mass, volume, density, center of gravity, and velocity properties (True) """ unique_types = kwargs.get('unique_types', True) change_dim = kwargs.get('change_dim', True) update_properties = kwargs.get('update_properties', True) for pt in other.particle_types: if unique_types: if pt.name not in [x.name for x in self.particle_types]: del pt.tag self.particle_types.add(pt) else: del pt.tag self.particle_types.add(pt) for bt in other.bond_types: if unique_types: if bt.name not in [x.name for x in self.bond_types]: del bt.tag self.bond_types.add(bt) else: del bt.tag self.bond_types.add(bt) for at in other.angle_types: if unique_types: if at.name not in [x.name for x in self.angle_types]: del at.tag self.angle_types.add(at) else: del at.tag self.angle_types.add(at) for dt in other.dihedral_types: if unique_types: if dt.name not in [x.name for x in self.dihedral_types]: del dt.tag self.dihedral_types.add(dt) else: del dt.tag self.dihedral_types.add(dt) for it in other.improper_types: if unique_types: if it.name not in [x.name for x in self.improper_types]: del it.tag self.improper_types.add(it) else: del it.tag self.improper_types.add(it) for p in other.particles: del p.tag if change_dim: self.dim.xhi = max(p.x, self.dim.xhi) self.dim.xlo = min(p.x, self.dim.xlo) self.dim.yhi = max(p.y, self.dim.yhi) self.dim.ylo = min(p.y, self.dim.ylo) self.dim.zhi = max(p.z, self.dim.zhi) self.dim.zlo = min(p.z, self.dim.zlo) if unique_types and p.type not in self.particle_types: pt = self.particle_types.get(p.type.name) if not pt or len(pt) > 1: error_print('ParticleType error') else: p.type = pt[0] self.particles.add(p) for b in other.bonds: del b.tag if unique_types and b.type not in self.bond_types: bt = self.bond_types.get(b.type.name) if not bt or len(bt) > 1: error_print('BondType error') else: b.type = bt[0] self.bonds.add(b) for a in other.angles: del a.tag if unique_types and a.type not in self.angle_types: at = self.angle_types.get(a.type.name) if not at or len(at) > 1: error_print('AngleType error') else: a.type = at[0] self.angles.add(a) for d in other.dihedrals: del d.tag if unique_types and d.type not in self.dihedral_types: dt = self.dihedral_types.get(d.type.name) if not dt: error_print('DihedralType error') elif len(dt) > 1: index = 0 x = 5 for i in range(len(dt)): if dt[i].name.count('X') < x: index = i x = dt[i].name.count('X') d.type = dt[index] else: d.type = dt[0] self.dihedrals.add(d) for i in other.impropers: del i.tag if unique_types and i.type not in self.improper_types: it = self.improper_types.get(i.type.name) if not it: error_print('ImproperType error') else: i.type = it[0] self.impropers.add(i) for m in other.molecules: del m.tag self.molecules.add(m) p_list = m.particles.get('all') m.particles.remove('all') for p in p_list: m.particles.add(p) if update_properties: self.set_mass() self.set_volume() self.set_density() self.set_cog() self.set_velocity() def distance(self, p1, p2): """pysimm.system.System.distance Calculate distance between two particles considering pbc. Args: p1: :class:`~pysimm.system.Particle` object p2: :class:`~pysimm.system.Particle` object Returns: distance between particles considering pbc """ return calc.pbc_distance(self, p1, p2) def wrap(self): """pysimm.system.System.wrap Wrap :class:`~pysimm.system.Particle` images into box defined by :class:`~pysimm.system.Dimension` object. Ensure particles are contained within simulation box. Args: None Returns: None """ self.dim.check() for p in self.particles: while p.x > self.dim.xhi: p.x -= self.dim.dx while p.x < self.dim.xlo: p.x += self.dim.dx while p.y > self.dim.yhi: p.y -= self.dim.dy while p.y < self.dim.ylo: p.y += self.dim.dy while p.z > self.dim.zhi: p.z -= self.dim.dz while p.z < self.dim.zlo: p.z += self.dim.dz def unwrap(self): """pysimm.system.System.unwrap() Unwraps :class:`~pysimm.system.Particle` images such that no bonds cross box edges. Args: None Returns: None """ self.dim.check() self.add_particle_bonding() next_to_unwrap = [] for p in self.particles: p.unwrapped = False for m in self.molecules: for p0 in m.particles: p0.unwrapped = True next_to_unwrap.append(p0) for p in next_to_unwrap: for pb in p.bonded_to: if pb.unwrapped: continue next_to_unwrap.append(pb) pb.unwrapped = True dx = p.x - pb.x while abs(dx) > self.dim.dx / 2: if dx > 0: pb.x += self.dim.dx else: pb.x -= self.dim.dx dx = p.x - pb.x dy = p.y - pb.y while abs(dy) > self.dim.dy / 2: if dy > 0: pb.y += self.dim.dy else: pb.y -= self.dim.dy dy = p.y - pb.y dz = p.z - pb.z while abs(dz) > self.dim.dz / 2: if dz > 0: pb.z += self.dim.dz else: pb.z -= self.dim.dz dz = p.z - pb.z for b in self.bonds: if b.distance() > 5: print('unwrap probably failed') return False return True def particles_df(self, columns=['tag', 'x', 'y', 'z', 'q'], index='tag', extras=[]): if pd is None: raise PysimmError('pysimm.system.System.particles_df function requires pandas') data = [{c: getattr(p, c) for c in columns} for p in self.particles] if extras: for d in data: if 'type.name' in extras: d['type.name'] = self.particles[d['tag']].type.name if 'type.tag' in extras: d['type.tag'] = self.particles[d['tag']].type.tag df = pd.DataFrame(data=data) if index in columns: df = df.set_index(index) return df def unite_atoms(self): for p in self.particles: p.implicit_h = 0 if p.elem != 'C': continue for b in p.bonds: pb = b.a if b.b is p else b.b if pb.elem =='H': p.implicit_h += 1 p.charge += pb.charge self.particles.remove(pb.tag, update=False) self.remove_spare_bonding() def quality(self, tolerance=0.1): """pysimm.system.System.quality Attemps to assess quality of :class:`~pysimm.system.System` based on bond lengths in unwrapped system. Args: tolerance: fractional value of equilibrium bond length that is acceptable Returns: number of bonds in system outside tolerance """ self.unwrap() bad_bonds = 0 for b in self.bonds: if b.distance() > b.type.r0*(1+tolerance) or b.distance() < b.type.r0*(1-tolerance): bad_bonds += 1 verbose_print('%s of %s bonds found to be outside of tolerance' % (bad_bonds, self.bonds.count)) self.wrap() def shift_to_origin(self): """pysimm.system.System.shift_to_origin Shifts simulation box to begin at origin. i.e. xlo=ylo=zlo=0 Args: None Returns: None """ for p in self.particles: p.x -= self.dim.xlo p.y -= self.dim.ylo p.z -= self.dim.zlo self.dim.xhi -= self.dim.xlo self.dim.yhi -= self.dim.ylo self.dim.zhi -= self.dim.zlo self.dim.xlo -= self.dim.xlo self.dim.ylo -= self.dim.ylo self.dim.zlo -= self.dim.zlo def set_charge(self): """pysimm.system.System.set_charge Sets total charge of all :class:`~pysimm.system.Particle` objects in System.particles Args: None Returns: None """ self.charge = 0 for p in self.particles: self.charge += p.charge def zero_charge(self): """pysimm.system.System.zero_charge Enforces total :class:`~pysimm.system.System` charge to be 0.0 by subtracting excess charge from last particle Args: None: Returns: None """ charge = 0. for p in self.particles: charge += p.charge if charge != 0: p.charge -= charge self.set_charge() def check_items(self): """pysimm.system.System.check_items Checks particles, bonds, angles, dihedrals, impropers, and molecules containers and raises exception if the length of items in the container does not equal the count property Args: None: Returns: None """ if len(self.particles) != self.particles.count: raise PysimmError('particles missing') if len(self.bonds) != self.bonds.count: raise PysimmError('bonds missing') if len(self.angles) != self.angles.count: raise PysimmError('angles missing') if len(self.dihedrals) != self.dihedrals.count: raise PysimmError('dihedrals missing') if len(self.impropers) != self.impropers.count: raise PysimmError('impropers missing') if len(self.molecules) != self.molecules.count: raise PysimmError('molecules missing') def update_ff_types_from_ac(self, ff, acname): """pysimm.system.System.update_ff_types_from_ac Updates :class:`~pysimm.system.ParticleType` objects in system using type names given in antechamber (ac) file. Retrieves type from System if possible, then searches force field provided by ff. Args: ff: forcefield to search for Type objects acname: ac filename containing type names Returns: None """ self.particle_types.remove('all') with open(acname) as f: for line in f: if line.startswith('ATOM'): tag = int(line.split()[1]) tname = line.split()[-1] s_pt = self.particle_types.get(tname) if not s_pt: s_pt = ff.particle_types.get(tname) if not s_pt: error_print('cannot find type with name {}'.format(tname)) self.particle_types.add(s_pt[0].copy()) self.particles[tag].type = self.particle_types.get(tname)[0] def update_particle_types_from_forcefield(self, f): """pysimm.system.System.update_types_from_forcefield Updates :class:`~pysimm.system.ParticleType` data from :class:`~pysimm.forcefield.Forcefield` object f based on :class:`~pysimm.system.ParticleType`.name Args: f: :class:`~pysimm.forcefield.Forcefield` object reference Returns: None """ for pt in self.particle_types: name_ = pt.name.split('@')[-1] linker = False if pt.name.find('@') >= 0: linker = pt.name.split('@')[0] pt_ = f.particle_types.get(name_) if pt_: new = pt_[0].copy() new.tag = pt.tag if linker: new.name = '%s@%s' % (linker, new.name) self.particle_types.remove(pt.tag) self.particle_types.add(new) def make_linker_types(self): """pysimm.system.System.make_linker_types Identifies linker particles and creates duplicate :class:`~pysimm.system.ParticleType objects with new names. Identification is performed by :class:`~pysimm.system.Particle`.linker attribute. New :class:`~pysimm.system.ParticleType` name is prepended with [H or T]L@ to designate head or tail linker Args: None Returns: None """ for p in self.particles: if p.linker == 'head': head_linker = self.particle_types.get('HL@%s' % p.type.name) if head_linker: p.type = head_linker[0] else: p.type = p.type.copy() p.type.name = 'HL@%s' % p.type.name self.particle_types.add(p.type) elif p.linker == 'tail': tail_linker = self.particle_types.get('TL@%s' % p.type.name) if tail_linker: p.type = tail_linker[0] else: p.type = p.type.copy() p.type.name = 'TL@%s' % p.type.name self.particle_types.add(p.type) elif p.linker: linker = self.particle_types.get('L@%s' % p.type.name) if linker: p.type = linker[0] else: p.type = p.type.copy() p.type.name = 'L@%s' % p.type.name self.particle_types.add(p.type) def remove_linker_types(self): """pysimm.system.System.remove_linker_types Reassigns :class:`~pysimm.system.Particle`.type references to original :class:`~pysimm.system.ParticleType` objects without linker prepend Args: None Returns: None """ for p in self.particles: if p.type.name.find('@') >= 0: pt = self.particle_types.get(p.type.name.split('@')[-1]) if pt: p.type = pt[0] else: print('cannot find regular type for linker %s' % p.type.name) def read_lammps_dump(self, fname): """pysimm.system.System.read_lammps_dump Updates particle positions and box size from LAMMPS dump file. Assumes following format for each atom line: tag charge xcoord ycoord zcoord xvelocity yvelocity zvelocity Args: fname: LAMMPS dump file Returns: None """ nparticles = 0 with open(fname) as f: line = f.readline() while line: if len(line.split()) > 1 and line.split()[1] == 'NUMBER': nparticles = int(f.readline()) elif len(line.split()) > 1 and line.split()[1] == 'BOX': self.dim.xlo, self.dim.xhi = map(float, f.readline().split()) self.dim.ylo, self.dim.yhi = map(float, f.readline().split()) self.dim.zlo, self.dim.zhi = map(float, f.readline().split()) self.set_volume() self.set_density() elif len(line.split()) > 1 and line.split()[1] == 'ATOMS': for i in range(nparticles): tag, q, x, y, z, vx, vy, vz = map(float, f.readline().split()) tag = int(tag) if self.particles[tag]: p = self.particles[tag] p.charge = q p.x = x p.vx = vx p.y = y p.vy = vy p.z = z p.vz = vz line = f.readline() def read_lammpstrj(self, trj, frame=1): """pysimm.system.System.read_lammpstrj Updates particle positions and box size from LAMMPS trajectory file at given frame. Assumes one of following formats for each atom line: tag xcoord ycoord zcoord OR tag type_id xcoord ycoord zcoord OR tag type_id xcoord ycoord zcoord ximage yimage zimage Args: trj: LAMMPS trajectory file frame: sequential frame number (not LAMMPS timestep) default=1 Returns: None """ t_frame = 0 nparticles = 0 updated = 0 with open(trj) as f: line = f.readline() while line: if len(line.split()) > 1 and line.split()[1] == 'TIMESTEP': t_frame += 1 elif len(line.split()) > 1 and line.split()[1] == 'NUMBER': nparticles = int(f.readline()) elif (len(line.split()) > 1 and line.split()[1] == 'BOX' and t_frame == frame): self.dim.xlo, self.dim.xhi = map(float, f.readline().split()) self.dim.ylo, self.dim.yhi = map(float, f.readline().split()) self.dim.zlo, self.dim.zhi = map(float, f.readline().split()) elif (len(line.split()) > 1 and line.split()[1] == 'ATOMS' and t_frame == frame): for i in range(nparticles): line = f.readline().split() if len(line) == 4: id_, x, y, z = map(float, line) elif len(line) == 5: id_, type_, x, y, z = map(float, line) elif len(line) == 8: id_, type_, x, y, z, ix, iy, iz = map(float, line) else: error_print('cannot understand lammpstrj formatting; exiting') return id_ = int(id_) if self.particles[id_]: updated += 1 self.particles[id_].x = x self.particles[id_].y = y self.particles[id_].z = z line = f.readline() verbose_print('updated particle positions for %s of %s particles from trajectory' % (updated, nparticles)) def read_xyz(self, xyz, frame=1, quiet=False): """pysimm.system.System.read_xyz Updates particle positions and box size from xyz file at given frame Args: xyz: xyz trajectory file frame: sequential frame number default=1 quiet: True to print status default=False Returns: None """ if not quiet: verbose_print('reading particle positions from %s' % xyz) warning_print('particles are assumed to be in order in xyz file') t_frame = 0 with open(xyz) as f: line = f.readline() while line: t_frame += 1 assert int(line.split()[0]) == self.particles.count line = f.readline() for n in range(1, self.particles.count + 1): p = self.particles[n] if t_frame == 1: if not p.type.elem and p.type.name: if p.type.name[0].lower() != 'l': p.type.elem = p.type.name[0].upper() else: p.type.elem = p.type.name[1].upper() line = f.readline() if t_frame == frame: x, y, z = map(float, line.split()[1:]) p.x = x p.y = y p.z = z if t_frame == frame: print('read %s particle positions from %s' % (self.particles.count, xyz)) line = f.readline() def update_types(self, ptypes, btypes, atypes, dtypes, itypes): """pysimm.system.System.update_types Updates type objects from a given list of types. Args: ptypes: list of :class:`~pysimm.system.ParticleType` objects from which to update btypes: list of :class:`~pysimm.system.BondType` objects from which to update atypes: list of :class:`~pysimm.system.AngleType` objects from which to update dtypes: list of :class:`~pysimm.system.DihedralType` objects from which to update itypes: list of :class:`~pysimm.system.ImproperType` objects from which to update """ if ptypes is not None: for p in self.particles: pt = self.particle_types.get(p.type.name, first=True) if pt: p.type = pt[0] self.particle_types.remove('all') for pt in ptypes: self.particle_types.add(pt) if btypes is not None: for b in self.bonds: bt = self.bond_types.get(b.type.name, first=True) if bt: b.type = bt[0] self.bond_types.remove('all') for bt in btypes: self.bond_types.add(bt) if atypes is not None: for a in self.angles: at = self.angle_types.get(a.type.name, first=True) if at: a.type = at[0] self.angle_types.remove('all') for at in atypes: self.angle_types.add(at) if dtypes is not None: for d in self.dihedrals: dt = self.dihedral_types.get(d.type.name, first=True) if dt: d.type = dt[0] self.dihedral_types.remove('all') for dt in dtypes: self.dihedral_types.add(dt) if itypes is not None: for i in self.impropers: it = self.improper_types.get(i.type.name, first=True) if it: i.type = it[0] self.improper_types.remove('all') for it in itypes: self.improper_types.add(it) def read_type_names(self, types_file): """pysimm.system.System.read_type_names Update :class:`~pysimm.system.ParticleType` names from file. Args: types_file: type dictionary file name Returns: None """ ptypes = dict() btypes = dict() atypes = dict() dtypes = dict() itypes = dict() if os.path.isfile(types_file): f = open(types_file) elif isinstance(types_file, str): f = StringIO(types_file) for line in f: line = line.split() if line and line[0].lower() == 'atom': for i in range(self.particle_types.count): line = next(f).split() ptypes[int(line[0])] = line[1] elif line and line[0].lower() == 'bond': for i in range(self.bond_types.count): line = next(f).split() btypes[int(line[0])] = line[1] elif line and line[0].lower() == 'angle': for i in range(self.angle_types.count): line = next(f).split() atypes[int(line[0])] = line[1] elif line and line[0].lower() == 'dihedral': for i in range(self.dihedral_types.count): line = next(f).split() dtypes[int(line[0])] = line[1] elif line and line[0].lower() == 'improper': for i in range(self.improper_types.count): line = next(f).split() itypes[int(line[0])] = line[1] for t in self.particle_types: t.name = ptypes[t.tag] if t.name[0] == 'L': if t.name[1].upper() in ['H', 'C', 'N', 'O']: t.elem = t.name[1].upper() else: if t.name[0].upper() in ['H', 'C', 'N', 'O']: t.elem = t.name[0].upper() for t in self.bond_types: t.name = btypes[t.tag] t.rname = ','.join(reversed(t.name.split(','))) for t in self.angle_types: t.name = atypes[t.tag] t.rname = ','.join(reversed(t.name.split(','))) for t in self.dihedral_types: t.name = dtypes[t.tag] t.rname = ','.join(reversed(t.name.split(','))) for t in self.improper_types: t.name = itypes[t.tag] t.rname = ','.join(reversed(t.name.split(','))) def remove_spare_bonding(self, update_tags=True): """pysimm.system.System.remove_spare_bonding Removes bonds, angles, dihedrals and impropers that reference particles not in :class:`~pysimm.system.System`.particles Args: update_tags: True to update all tags after removal of bonding items default=True """ for b in self.bonds: if b.a not in self.particles or b.b not in self.particles: self.bonds.remove(b.tag, update=False) for a in self.angles: if (a.a not in self.particles or a.b not in self.particles or a.c not in self.particles): self.angles.remove(a.tag, update=False) for d in self.dihedrals: if (d.a not in self.particles or d.b not in self.particles or d.c not in self.particles or d.d not in self.particles): self.dihedrals.remove(d.tag, update=False) for i in self.impropers: if (i.a not in self.particles or i.b not in self.particles or i.c not in self.particles or i.d not in self.particles): self.impropers.remove(i.tag, update=False) if update_tags: self.update_tags() def update_tags(self): """pysimm.system.System.update_tags Update Item tags in :class:`~pysimm.utils.ItemContainer` objects to preserve continuous tags. Removes all objects and then reinserts them. Args: None Returns: None """ particles = self.particles.get('all') self.particles.remove('all') for p in particles: del p.tag self.particles.add(p) ptypes = self.particle_types.get('all') self.particle_types.remove('all') for pt in ptypes: del pt.tag self.particle_types.add(pt) bonds = self.bonds.get('all') self.bonds.remove('all') for b in bonds: del b.tag self.bonds.add(b) btypes = self.bond_types.get('all') self.bond_types.remove('all') for bt in btypes: del bt.tag self.bond_types.add(bt) angles = self.angles.get('all') self.angles.remove('all') for a in angles: del a.tag self.angles.add(a) atypes = self.angle_types.get('all') self.angle_types.remove('all') for at in atypes: del at.tag self.angle_types.add(at) dihedrals = self.dihedrals.get('all') self.dihedrals.remove('all') for d in dihedrals: del d.tag self.dihedrals.add(d) dtypes = self.dihedral_types.get('all') self.dihedral_types.remove('all') for dt in dtypes: del dt.tag self.dihedral_types.add(dt) impropers = self.impropers.get('all') self.impropers.remove('all') for i in impropers: del i.tag self.impropers.add(i) itypes = self.improper_types.get('all') self.improper_types.remove('all') for it in itypes: del it.tag self.improper_types.add(it) def set_references(self): """pysimm.system.System.set_references Set object references when :class:`~pysimm.system.System` information read from text file. For example, if bond type value 2 is read from file, set :class:`~pysimm.system.Bond`.type to bond_types[2] Args: None Returns: None """ for p in self.particles: if isinstance(p.type, int) and self.particle_types[p.type]: p.type = self.particle_types[p.type] elif isinstance(p.type, int) and not self.particle_types[p.type]: error_print('error: Cannot find type with tag %s in system ' 'particles types' % p.type) for b in self.bonds: if isinstance(b.type, int) and self.bond_types[b.type]: b.type = self.bond_types[b.type] elif isinstance(b.type, int) and not self.bond_types[b.type]: error_print('error: Cannot find type with tag %s in system ' 'bond types' % b.type) for a in self.angles: if isinstance(a.type, int) and self.angle_types[a.type]: a.type = self.angle_types[a.type] elif isinstance(b.type, int) and not self.angle_types[a.type]: error_print('error: Cannot find type with tag %s in system ' 'angle types' % a.type) for d in self.dihedrals: if isinstance(d.type, int) and self.dihedral_types[d.type]: d.type = self.dihedral_types[d.type] elif isinstance(d.type, int) and not self.dihedral_types[d.type]: error_print('error: Cannot find type with tag %s in system ' 'dihedral types' % d.type) for i in self.impropers: if isinstance(i.type, int) and self.improper_types[i.type]: i.type = self.improper_types[i.type] elif isinstance(i.type, int) and not self.improper_types[i.type]: error_print('error: Cannot find type with tag %s in system ' 'improper types' % i.type) def objectify(self): """pysimm.system.System.objectify Set references for :class:`~pysimm.system.Bond`, :class:`~pysimm.system.Angle`, :class:`~pysimm.system.Dihedral`, :class:`~pysimm.system.Improper` objects. For example, if read from file that bond #1 is between particle 1 and 2 set :class:`~pysimm.system.Bond`.a to particles[1], etc. Args: None Returns: None """ if self.objectified: return 'already objectified' self.set_references() for p in self.particles: if not isinstance(p.molecule, Molecule): if not self.molecules[p.molecule]: m = Molecule() m.tag = p.molecule self.molecules.add(m) p.molecule = self.molecules[p.molecule] self.molecules[p.molecule.tag].particles.add(p) p.bonds = ItemContainer() p.angles = ItemContainer() p.dihedrals = ItemContainer() p.impropers = ItemContainer() for b in self.bonds: if type(b.a) == int: b.a = self.particles[b.a] b.b = self.particles[b.b] b.a.bonds.add(b) b.b.bonds.add(b) if b.a.molecule: b.a.molecule.bonds.add(b) for a in self.angles: if type(a.a) == int: a.a = self.particles[a.a] a.b = self.particles[a.b] a.c = self.particles[a.c] if a.a.molecule: a.a.molecule.angles.add(a) for d in self.dihedrals: if type(d.a) == int: d.a = self.particles[d.a] d.b = self.particles[d.b] d.c = self.particles[d.c] d.d = self.particles[d.d] if d.a.molecule: d.a.molecule.dihedrals.add(d) for i in self.impropers: if type(i.a) == int: i.a = self.particles[i.a] i.b = self.particles[i.b] i.c = self.particles[i.c] i.d = self.particles[i.d] if i.a.molecule: i.a.molecule.impropers.add(i) self.objectified = True def add_particle_bonding(self): """pysimm.system.System.add_particle_bonding Update :class:`~pysimm.system.Particle` objects such that :class:`~pysimm.system.Particle`.bonded_to contains other :class:`~pysimm.system.Particle` objects invloved in bonding Args: None Returns: None """ for p in self.particles: p.bonded_to = ItemContainer() p.bonds = ItemContainer() for b in self.bonds: b.a.bonded_to.add(b.b) b.a.bonds.add(b) b.b.bonded_to.add(b.a) b.b.bonds.add(b) def set_excluded_particles(self, bonds=True, angles=True, dihedrals=True): """pysimm.system.System.set_excluded_particles Updates :class:`~pysimm.system.Particle` object such that :class:`~pysimm.system.Particle`.excluded_particles contains other :class:`~pysimm.system.Particle` objects involved in 1-2, 1-3, and/or 1-4 interactions Args: bonds: exclude particles involved in 1-2 interactions angles: exclude particles involved in 1-3 interactions dihedrals: exclude particles involved in 1-4 interactions """ for p in self.particles: p.excluded_particles = ItemContainer() if bonds: for b in self.bonds: if b.a.tag < b.b.tag: b.a.excluded_particles.add(b.b) else: b.b.excluded_particles.add(b.a) if angles: for a in self.angles: if a.a.tag < a.b.tag: a.a.excluded_particles.add(a.b) if a.a.tag < a.c.tag: a.a.excluded_particles.add(a.c) if a.b.tag < a.a.tag: a.b.excluded_particles.add(a.a) if a.b.tag < a.c.tag: a.b.excluded_particles.add(a.c) if a.c.tag < a.a.tag: a.c.excluded_particles.add(a.a) if a.c.tag < a.b.tag: a.c.excluded_particles.add(a.b) if dihedrals: for d in self.dihedrals: if d.a.tag < d.b.tag: d.a.excluded_particles.add(d.b) if d.a.tag < d.c.tag: d.a.excluded_particles.add(d.c) if d.a.tag < d.d.tag: d.a.excluded_particles.add(d.d) if d.b.tag < d.a.tag: d.b.excluded_particles.add(d.a) if d.b.tag < d.c.tag: d.b.excluded_particles.add(d.c) if d.b.tag < d.d.tag: d.b.excluded_particles.add(d.d) if d.c.tag < d.a.tag: d.c.excluded_particles.add(d.a) if d.c.tag < d.b.tag: d.c.excluded_particles.add(d.b) if d.c.tag < d.d.tag: d.c.excluded_particles.add(d.d) if d.d.tag < d.a.tag: d.d.excluded_particles.add(d.a) if d.d.tag < d.b.tag: d.d.excluded_particles.add(d.b) if d.d.tag < d.c.tag: d.d.excluded_particles.add(d.c) def set_atomic_numbers(self): """pysimm.system.System.set_atomic_numbers Updates :class:`~pysimm.system.ParticleType` objects with atomic number based on :class:`~pysimm.system.ParticleType`.elem Args: None Returns: None """ for pt in self.particle_types: if pt.elem == 'H': pt.atomic_number = 1 elif pt.elem == 'He': pt.atomic_number = 2 elif pt.elem == 'Li': pt.atomic_number = 3 elif pt.elem == 'Be': pt.atomic_number = 4 elif pt.elem == 'B': pt.atomic_number = 5 elif pt.elem == 'C': pt.atomic_number = 6 elif pt.elem == 'N': pt.atomic_number = 7 elif pt.elem == 'O': pt.atomic_number = 8 elif pt.elem == 'F': pt.atomic_number = 9 elif pt.elem == 'Ne': pt.atomic_number = 10 elif pt.elem == 'Na': pt.atomic_number = 11 elif pt.elem == 'Mg': pt.atomic_number = 12 elif pt.elem == 'Al': pt.atomic_number = 13 elif pt.elem == 'Si': pt.atomic_number = 14 elif pt.elem == 'P': pt.atomic_number = 15 elif pt.elem == 'S': pt.atomic_number = 16 elif pt.elem == 'Cl': pt.atomic_number = 17 elif pt.elem == 'Ar': pt.atomic_number = 18 elif pt.elem == 'K': pt.atomic_number = 19 elif pt.elem == 'Ca': pt.atomic_number = 20 elif pt.elem == 'Br': pt.atomic_number = 35 elif pt.elem == 'I': pt.atomic_number = 53 def add_particle_bonded_to(self, p, p0, f=None, sep=1.5): """pysimm.system.System.add_particle_bonded_to Add new :class:`~pysimm.system.Particle` to :class:`~pysimm.system.System` bonded to p0 and automatically update new forcefield types Args: p: new :class:`~pysimm.system.Particle` object to be added p0: original :class:`~pysimm.system.Particle` object in :class:`~pysimm.system.System` to which p will be bonded f: :class:`~pysimm.forcefield.Forcefield` object from which new force field types will be retrieved Returns: new Particle being added to system for convenient reference """ if p.x is None or p.y is None or p.z is None: phi = random() * 2 * pi theta = acos(random() * 2 - 1) p.x = p0.x + sep * cos(theta) * sin(phi) p.y = p0.y + sep * sin(theta) * sin(phi) p.z = p0.z + sep * cos(phi) if p.charge is None: p.charge = 0 if p.molecule is None: p.molecule = p0.molecule self.add_particle(p) self.add_bond(p0, p, f) if not p0.bonded_to: self.add_particle_bonding() for p_ in p0.bonded_to: if p_ is not p: self.add_angle(p_, p0, p, f) for p_b in p_.bonded_to: if p_b is not p0: self.add_dihedral(p_b, p_, p0, p, f) return p def add_particle(self, p): """pysimm.system.System.add_particle Add new :class:`~pysimm.system.Particle` to :class:`~pysimm.system.System`. Args: p: new :class:`~pysimm.system.Particle` object to be added Returns: None """ self.particles.add(p) def rotate(self, around=None, theta_x=0, theta_y=0, theta_z=0, rot_matrix=None): """pysimm.system.System.rotate *** REQUIRES NUMPY *** Rotates entire system around given :class:`~pysimm.system.Particle` by user defined angles Args: around: :class:`~pysimm.system.Particle` around which :class:`~pysimm.system.System` will be rotated default=None theta_x: angle around which system will be rotated on x axis theta_y: angle around which system will be rotated on y axis theta_z: angle around which system will be rotated on z axis rot_matrix: rotation matrix to use for rotation Returns: None """ if not np: raise PysimmError('pysimm.system.System.rotate function requires numpy') theta_x = random() * 2 * pi if theta_x is 'random' else theta_x theta_y = random() * 2 * pi if theta_y is 'random' else theta_y theta_z = random() * 2 * pi if theta_z is 'random' else theta_z if around is None: around = [] self.set_cog() around.append(self.cog[0]) around.append(self.cog[1]) around.append(self.cog[2]) elif isinstance(around, Particle): around = [around.x, around.y, around.z] if (isinstance(around, list) and len(around) == 3 and len(set([isinstance(x, float) for x in around])) == 1 and isinstance(around[0], float)): for p in self.particles: p.x -= around[0] p.y -= around[1] p.z -= around[2] if rot_matrix is not None: p.x, p.y, p.z = [x[0] for x in (rot_matrix*np.matrix([[p.x], [p.y], [p.z]])).tolist()] else: p.x, p.y, p.z = rotate_vector(p.x, p.y, p.z, theta_x, theta_y, theta_z) p.x += around[0] p.y += around[1] p.z += around[2] def make_new_bonds(self, p1=None, p2=None, f=None, angles=True, dihedrals=True, impropers=True): """pysimm.system.System.make_new_bonds Makes new bond between two particles and updates new force field types Args: p1: :class:`~pysimm.system.Particle` object involved in new bond p2: :class:`~pysimm.system.Particle` object involved in new bond f: :class:`~pysimm.forcefield.Forcefield` object from which new force field types will be retrieved angles: True to update new angles default=True dihedrals: True to update new dihedrals default=True impropers: True to update new impropers default=True Returns: None """ self.add_particle_bonding() if p1.molecule is not p2.molecule: if p1.molecule.particles.count < p2.molecule.particles.count: old_molecule_tag = p1.molecule.tag for p_ in p1.molecule.particles: p_.molecule = p2.molecule else: old_molecule_tag = p2.molecule.tag for p_ in p2.molecule.particles: p_.molecule = p1.molecule self.molecules.remove(old_molecule_tag) self.add_bond(p1, p2, f) if angles or dihedrals or impropers: for p in p1.bonded_to: if angles: if p is not p2: self.add_angle(p, p1, p2, f) if dihedrals: for pb in p.bonded_to: if pb is not p1 and p is not p2: self.add_dihedral(pb, p, p1, p2, f) for p in p2.bonded_to: if angles: if p is not p1: self.add_angle(p1, p2, p, f) if dihedrals: for pb in p.bonded_to: if pb is not p2 and p is not p1: self.add_dihedral(p1, p2, p, pb, f) if dihedrals: for pb1 in p1.bonded_to: for pb2 in p2.bonded_to: if pb1 is not p2 and pb2 is not p1: self.add_dihedral(pb1, p1, p2, pb2, f) if impropers: if self.ff_class == '2': for perm in permutations(p1.bonded_to, 3): unique = True for i in self.impropers: if i.a is not p1: continue if set([i.b, i.c, i.d]) == set([perm[0], perm[1], perm[2]]): unique = False break if unique: self.add_improper(p1, perm[0], perm[1], perm[2], f) for perm in permutations(p2.bonded_to, 3): unique = True for i in self.impropers: if i.a is not p2: continue if set([i.b, i.c, i.d]) == set([perm[0], perm[1], perm[2]]): unique = False break if unique: self.add_improper(p2, perm[0], perm[1], perm[2], f) def add_bond(self, a=None, b=None, f=None): """pysimm.system.System.add_bond Add :class:`~pysimm.system.Bond` to system between two particles Args: a: :class:`~pysimm.system.Particle` involved in new :class:`~pysimm.system.Bond` b: :class:`~pysimm.system.Particle` involved in new :class:`~pysimm.system.Bond` f: :class:`~pysimm.forcefield.Forcefield` object from which new force field type will be retrieved Returns: None """ if a is b: return a_name = a.type.eq_bond or a.type.name b_name = b.type.eq_bond or b.type.name btype = self.bond_types.get('%s,%s' % (a_name, b_name)) if not btype and f: btype = f.bond_types.get('%s,%s' % (a_name, b_name)) if btype: bt = btype[0].copy() self.bond_types.add(bt) btype = self.bond_types.get('%s,%s' % (a_name, b_name)) if btype: new_b = Bond(type=btype[0], a=a, b=b) self.bonds.add(new_b) if a.bonded_to is None or b.bonded_to is None: self.add_particle_bonding() if a.bonded_to and b not in a.bonded_to: a.bonded_to.add(b) if b.bonded_to and a not in b.bonded_to: b.bonded_to.add(a) else: error_print('error: system does not contain bond type named %s,%s ' 'or could not find type in forcefield supplied' % (a_name, b_name)) return def add_angle(self, a=None, b=None, c=None, f=None): """pysimm.system.System.add_angle Add :class:`~pysimm.system.Angle` to system between three particles Args: a: :class:`~pysimm.system.Particle` involved in new :class:`~pysimm.system.Angle` b: :class:`~pysimm.system.Particle` involved in new :class:`~pysimm.system.Angle` (middle particle) c: :class:`~pysimm.system.Particle` involved in new :class:`~pysimm.system.Angle` f: :class:`~pysimm.forcefield.Forcefield` object from which new force field type will be retrieved Returns: None """ if a is c: return a_name = a.type.eq_angle or a.type.name b_name = b.type.eq_angle or b.type.name c_name = c.type.eq_angle or c.type.name atype = self.angle_types.get( '%s,%s,%s' % (a_name, b_name, c_name), item_wildcard=None ) if not atype and f: atype = self.angle_types.get( '%s,%s,%s' % (a_name, b_name, c_name) ) atype.extend( f.angle_types.get( '%s,%s,%s' % (a_name, b_name, c_name) ) ) atype = sorted(atype, key=lambda x: x.name.count('X')) if atype: if not self.angle_types.get(atype[0].name, item_wildcard=None): atype = self.angle_types.add(atype[0].copy()) else: atype = self.angle_types.get(atype[0].name, item_wildcard=None)[0] elif atype: atype = atype[0] if atype: self.angles.add(Angle(type=atype, a=a, b=b, c=c)) else: error_print('error: system does not contain angle type named ' '%s,%s,%s or could not find type in forcefield supplied' % (a_name, b_name, c_name)) return def add_dihedral(self, a=None, b=None, c=None, d=None, f=None): """pysimm.system.System.add_dihedral Add :class:`~pysimm.system.Dihedral` to system between four particles Args: a: :class:`~pysimm.system.Particle` involved in new :class:`~pysimm.system.Dihedral` b: :class:`~pysimm.system.Particle` involved in new :class:`~pysimm.system.Dihedral` (middle particle) c: :class:`~pysimm.system.Particle` involved in new :class:`~pysimm.system.Dihedral` (middle particle) d: :class:`~pysimm.system.Particle` involved in new :class:`~pysimm.system.Dihedral` f: :class:`~pysimm.forcefield.Forcefield` object from which new force field type will be retrieved Returns: None """ if a is c or b is d: return a_name = a.type.eq_dihedral or a.type.name b_name = b.type.eq_dihedral or b.type.name c_name = c.type.eq_dihedral or c.type.name d_name = d.type.eq_dihedral or d.type.name dtype = self.dihedral_types.get( '%s,%s,%s,%s' % (a_name, b_name, c_name, d_name), item_wildcard=None ) if not dtype and f: dtype = self.dihedral_types.get( '%s,%s,%s,%s' % (a_name, b_name, c_name, d_name) ) dtype.extend( f.dihedral_types.get( '%s,%s,%s,%s' % (a_name, b_name, c_name, d_name) ) ) dtype = sorted(dtype, key=lambda x: x.name.count('X')) if dtype: if not self.dihedral_types.get(dtype[0].name, item_wildcard=None): dtype = self.dihedral_types.add(dtype[0].copy()) else: dtype = self.dihedral_types.get(dtype[0].name, item_wildcard=None)[0] elif dtype: dtype = dtype[0] if dtype: self.dihedrals.add(Dihedral(type=dtype, a=a, b=b, c=c, d=d)) else: error_print('error: system does not contain dihedral type named ' '%s,%s,%s,%s or could not find type in forcefield ' 'supplied' % (a_name, b_name, c_name, d_name)) error_print('tags: %s %s %s %s' % (a.tag, b.tag, c.tag, d.tag)) return def add_improper(self, a=None, b=None, c=None, d=None, f=None): """pysimm.system.System.add_improper Add :class:`~pysimm.system.Improper` to system between four particles Args: a: :class:`~pysimm.system.pysimm.system.Particle` involved in new :class:`~pysimm.system.Improper` (middle particle) b: :class:`~pysimm.system.pysimm.system.Particle` involved in new :class:`~pysimm.system.Improper` c: :class:`~pysimm.system.pysimm.system.Particle` involved in new :class:`~pysimm.system.Improper` d: :class:`~pysimm.system.pysimm.system.Particle` involved in new :class:`~pysimm.system.Improper` f: :class:`~pysimm.system.pysimm.forcefield.Forcefield` object from which new force field type will be retrieved Returns: None """ if a is b or a is c or a is d: return a_name = a.type.eq_improper or a.type.name b_name = b.type.eq_improper or b.type.name c_name = c.type.eq_improper or c.type.name d_name = d.type.eq_improper or d.type.name itype = self.improper_types.get('%s,%s,%s,%s' % (a_name, b_name, c_name, d_name), improper_type=True, item_wildcard=None) if not itype and f: itype = self.improper_types.get( '%s,%s,%s,%s' % (a_name, b_name, c_name, d_name), improper_type=True ) itype.extend( f.improper_types.get( '%s,%s,%s,%s' % (a_name, b_name, c_name, d_name), improper_type=True ) ) itype = sorted(itype, key=lambda x: x.name.count('X')) if itype: if not self.improper_types.get(itype[0].name, item_wildcard=None, improper_type=True): itype = self.improper_types.add(itype[0].copy()) else: itype = self.improper_types.get(itype[0].name, item_wildcard=None, improper_type=True)[0] elif itype: itype = itype[0] if itype: self.impropers.add(Improper(type=itype, a=a, b=b, c=c, d=d)) else: return def check_forcefield(self): """pysimm.system.System.check_forcefield Iterates through particles and prints the following: tag type name type element type description bonded elements Args: None Returns: None """ if not self.objectified: self.objectify() for p in self.particles: p.bond_elements = [x.a.type.elem if p is x.b else x.b.type.elem for x in p.bonds] p.nbonds = len(p.bond_elements) print(p.tag, p.type.name, p.type.elem, p.type.desc, p.bond_elements) def apply_forcefield(self, f, charges='default', set_box=True, box_padding=10, update_ptypes=False, skip_ptypes=False): """pysimm.system.System.apply_forcefield Applies force field data to :class:`~pysimm.system.System` based on typing rules defined in :class:`~pysimm.forcefield.Forcefield` object f Args: f: :class:`~pysimm.forcefield.Forcefield` object from which new force field type will be retrieved charges: type of charges to be applied default='default' set_box: Update simulation box information based on particle positions default=True box_padding: Add padding to simulation box if updating dimensions default=10 (Angstroms) update_ptypes: If True, update particle types based on current :class:`~pysimm.system.ParticleType` names default=False skip_ptypes: if True, do not change particle types Returns: None """ self.ff_class = f.ff_class self.forcefield = f.name if update_ptypes: self.update_particle_types_from_forcefield(f) skip_ptypes = True if not skip_ptypes: f.assign_ptypes(self) if self.bonds.count > 0: f.assign_btypes(self) f.assign_atypes(self) f.assign_dtypes(self) f.assign_itypes(self) if charges: f.assign_charges(self, charges=charges) if set_box: self.set_box(box_padding, center=False) def apply_charges(self, f, charges='default'): """pysimm.system.System.apply_charges Applies charges derived using method provided by user. Defaults to 'default'. Calls :func:`~pysimm.forcefield.Forcefield.assign_charges` method of forcefield object provided. Args: f: :class:`~pysimm.forcefield.Forcefield` object charges: type of charges to be applied default='default' Returns: None """ f.assign_charges(self, charges=charges) def write_lammps_mol(self, out_data): """pysimm.system.System.write_lammps_mol Write :class:`~pysimm.system.System` data formatted as LAMMPS molecule template Args: out_data: where to write data, file name or 'string' Returns: None or string if data file if out_data='string' """ if out_data == 'string': out_file = StringIO() else: out_file = open(out_data, 'w+') self.set_mass() self.set_cog() out_file.write('%s\n\n' % self.name) out_file.write('%s atoms\n' % self.particles.count) out_file.write('%s bonds\n' % self.bonds.count) out_file.write('%s angles\n' % self.angles.count) out_file.write('%s dihedrals\n' % self.dihedrals.count) out_file.write('%s impropers\n' % self.impropers.count) if self.particles.count > 0: out_file.write('Coords\n\n') for p in self.particles: out_file.write('{} {} {} {}\n'.format(p.tag, p.x, p.y, p.z)) out_file.write('\n') if self.particles.count > 0: out_file.write('Types\n\n') for p in self.particles: out_file.write('{} {}\n'.format(p.tag, p.type.tag)) out_file.write('\n') if self.particles.count > 0: out_file.write('Charges\n\n') for p in self.particles: out_file.write('{} {}\n'.format(p.tag, p.charge)) out_file.write('\n') if self.bonds.count > 0: out_file.write('Bonds\n\n') for b in self.bonds: out_file.write('{} {} {} {}\n'.format(b.tag, b.type.tag, b.a.tag, b.b.tag)) out_file.write('\n') if self.angles.count > 0: out_file.write('Angles\n\n') for a in self.angles: out_file.write('{} {} {} {} {}\n'.format(a.tag, a.type.tag, a.a.tag, a.b.tag, a.c.tag)) out_file.write('\n') if self.dihedrals.count > 0: out_file.write('Dihedrals\n\n') for d in self.dihedrals: out_file.write('{} {} {} {} {} {}\n'.format(d.tag, d.type.tag, d.a.tag, d.b.tag, d.c.tag, d.d.tag)) out_file.write('\n') if self.impropers.count > 0: out_file.write('Impropers\n\n') for i in self.impropers: out_file.write('{} {} {} {} {} {}\n'.format(i.tag, i.type.tag, i.a.tag, i.b.tag, i.c.tag, i.d.tag)) if out_data == 'string': s = out_file.getvalue() out_file.close() return s else: out_file.close() def write_lammps(self, out_data, **kwargs): """pysimm.system.System.write_lammps Write :class:`~pysimm.system.System` data formatted for LAMMPS Args: out_data: where to write data, file name or 'string' Returns: None or string if data file if out_data='string' """ empty = kwargs.get('empty') pair_style = kwargs.get('pair_style', self.pair_style) bond_style = kwargs.get('bond_style', self.bond_style) angle_style = kwargs.get('angle_style', self.angle_style) dihedral_style = kwargs.get('dihedral_style', self.dihedral_style) improper_style = kwargs.get('improper_style', self.improper_style) if out_data == 'string': out_file = StringIO() else: out_file = open(out_data, 'w+') if empty: out_file.write('%s\n\n' % self.name) out_file.write('%s atoms\n' % 0) out_file.write('%s bonds\n' % 0) out_file.write('%s angles\n' % 0) out_file.write('%s dihedrals\n' % 0) out_file.write('%s impropers\n' % 0) else: out_file.write('%s\n\n' % self.name) out_file.write('%s atoms\n' % self.particles.count) out_file.write('%s bonds\n' % self.bonds.count) out_file.write('%s angles\n' % self.angles.count) out_file.write('%s dihedrals\n' % self.dihedrals.count) out_file.write('%s impropers\n' % self.impropers.count) out_file.write('\n') out_file.write('%s atom types\n' % self.particle_types.count) if self.bond_types.count > 0: out_file.write('%s bond types\n' % self.bond_types.count) if self.angle_types.count > 0: out_file.write('%s angle types\n' % self.angle_types.count) if self.dihedral_types.count > 0: out_file.write('%s dihedral types\n' % self.dihedral_types.count) if self.improper_types.count > 0: out_file.write('%s improper types\n' % self.improper_types.count) out_file.write('\n') out_file.write('%f %f xlo xhi\n' % (self.dim.xlo, self.dim.xhi)) out_file.write('%f %f ylo yhi\n' % (self.dim.ylo, self.dim.yhi)) out_file.write('%f %f zlo zhi\n' % (self.dim.zlo, self.dim.zhi)) out_file.write('\n') if self.particle_types.count > 0: out_file.write('Masses\n\n') for pt in self.particle_types: out_file.write(pt.write_lammps('mass')) out_file.write('\n') if self.write_coeffs and self.particle_types.count > 0: out_file.write('Pair Coeffs\n\n') for pt in self.particle_types: out_file.write(pt.write_lammps(pair_style)) out_file.write('\n') if self.write_coeffs and self.bond_types.count > 0: out_file.write('Bond Coeffs\n\n') for b in self.bond_types: out_file.write(b.write_lammps(bond_style)) out_file.write('\n') if self.write_coeffs and self.angle_types.count > 0: out_file.write('Angle Coeffs\n\n') for a in self.angle_types: out_file.write(a.write_lammps(angle_style)) out_file.write('\n') if self.write_coeffs and (self.angle_types.count > 0 and (self.ff_class == '2' or angle_style == 'class2')): out_file.write('BondBond Coeffs\n\n') for a in self.angle_types: out_file.write(a.write_lammps(angle_style, cross_term='BondBond')) out_file.write('\n') out_file.write('BondAngle Coeffs\n\n') for a in self.angle_types: out_file.write(a.write_lammps(angle_style, cross_term='BondAngle')) out_file.write('\n') if self.write_coeffs and self.dihedral_types.count > 0: out_file.write('Dihedral Coeffs\n\n') for dt in self.dihedral_types: out_file.write(dt.write_lammps(dihedral_style)) out_file.write('\n') if self.write_coeffs and self.dihedral_types.count > 0 and (self.ff_class == '2' or dihedral_style == 'class2'): out_file.write('MiddleBondTorsion Coeffs\n\n') for d in self.dihedral_types: out_file.write(d.write_lammps(dihedral_style, cross_term='MiddleBond')) out_file.write('\n') out_file.write('EndBondTorsion Coeffs\n\n') for d in self.dihedral_types: out_file.write(d.write_lammps(dihedral_style, cross_term='EndBond')) out_file.write('\n') out_file.write('AngleTorsion Coeffs\n\n') for d in self.dihedral_types: out_file.write(d.write_lammps(dihedral_style, cross_term='Angle')) out_file.write('\n') out_file.write('AngleAngleTorsion Coeffs\n\n') for d in self.dihedral_types: out_file.write(d.write_lammps(dihedral_style, cross_term='AngleAngle')) out_file.write('\n') out_file.write('BondBond13 Coeffs\n\n') for d in self.dihedral_types: out_file.write(d.write_lammps(dihedral_style, cross_term='BondBond13')) out_file.write('\n') if self.write_coeffs and self.improper_types.count > 0: out_file.write('Improper Coeffs\n\n') for i in self.improper_types: out_file.write(i.write_lammps(improper_style)) out_file.write('\n') if self.write_coeffs and self.improper_types.count > 0 and (self.ff_class == '2' or improper_style == 'class2'): out_file.write('AngleAngle Coeffs\n\n') for i in self.improper_types: out_file.write(i.write_lammps(improper_style, cross_term='AngleAngle')) out_file.write('\n') if self.particles.count > 0 and not empty: out_file.write('Atoms\n\n') for p in self.particles: if not p.molecule: p.molecule = Item() p.molecule.tag = 1 if not p.charge: p.charge = 0 if isinstance(p.molecule, int): out_file.write('%4d\t%d\t%d\t%s\t%s\t%s\t%s\n' % (p.tag, p.molecule, p.type.tag, p.charge, p.x, p.y, p.z)) else: out_file.write('%4d\t%d\t%d\t%s\t%s\t%s\t%s\n' % (p.tag, p.molecule.tag, p.type.tag, p.charge, p.x, p.y, p.z)) out_file.write('\n') out_file.write('Velocities\n\n') for p in self.particles: if not p.vx: p.vx = 0. if not p.vy: p.vy = 0. if not p.vz: p.vz = 0. out_file.write('%4d\t%s\t%s\t%s\n' % (p.tag, p.vx, p.vy, p.vz)) out_file.write('\n') if self.bonds.count > 0 and not empty: out_file.write('Bonds\n\n') for b in self.bonds: out_file.write('%4d\t%d\t%d\t%d\n' % (b.tag, b.type.tag, b.a.tag, b.b.tag)) out_file.write('\n') if self.angles.count > 0 and not empty: out_file.write('Angles\n\n') for a in self.angles: out_file.write('%4d\t%d\t%d\t%d\t%d\n' % (a.tag, a.type.tag, a.a.tag, a.b.tag, a.c.tag)) out_file.write('\n') if self.dihedrals.count > 0 and not empty: out_file.write('Dihedrals\n\n') for d in self.dihedrals: out_file.write('%4d\t%d\t%d\t%d\t%d\t%d\n' % (d.tag, d.type.tag, d.a.tag, d.b.tag, d.c.tag, d.d.tag)) out_file.write('\n') if self.impropers.count > 0 and not empty: out_file.write('Impropers\n\n') for i in self.impropers: if self.ff_class == '2' or self.improper_style == 'class2': out_file.write('%4d\t%d\t%d\t%d\t%d\t%d\n' % (i.tag, i.type.tag, i.b.tag, i.a.tag, i.c.tag, i.d.tag)) else: out_file.write('%4d\t%d\t%d\t%d\t%d\t%d\n' % (i.tag, i.type.tag, i.a.tag, i.b.tag, i.c.tag, i.d.tag)) out_file.write('\n') if out_data == 'string': s = out_file.getvalue() out_file.close() return s else: out_file.close() def write_xyz(self, outfile='data.xyz', **kwargs): """pysimm.system.System.write_xyz Write :class:`~pysimm.system.System` data in xyz format Args: outfile: where to write data, file name or 'string' Returns: None or string of data file if out_data='string' """ elem = kwargs.get('elem', True) append = kwargs.get('append') if outfile == 'string': out = StringIO() else: if append: out = open(outfile, 'a') else: out = open(outfile, 'w') out.write('%s\n' % self.particles.count) out.write('xyz file written from pySIMM system module\n') for p in self.particles: if elem and p.type and p.type.elem is not None: out.write('%s %s %s %s\n' % (p.type.elem, p.x, p.y, p.z)) elif elem and p.elem is not None: out.write('%s %s %s %s\n' % (p.elem, p.x, p.y, p.z)) else: out.write('%s %s %s %s\n' % (p.type.tag, p.x, p.y, p.z)) if outfile == 'string': s = out.getvalue() out.close() return s else: out.close() def write_chemdoodle_json(self, outfile, **kwargs): """pysimm.system.System.write_chemdoodle_json Write :class:`~pysimm.system.System` data in chemdoodle json format Args: outfile: where to write data, file name or 'string' Returns: None or string of data file if out_data='string' """ atoms = [] bonds = [] for p in self.particles: if p.type and p.type.elem: atoms.append({"x": p.x, "y": p.y, "z": p.z, "l": p.type.elem, "i": p.type.name, "c": p.charge}) elif p.elem and p.type: atoms.append({"x": p.x, "y": p.y, "z": p.z, "l": p.elem, "i": p.type.name, "c": p.charge}) elif p.elem: atoms.append({"x": p.x, "y": p.y, "z": p.z, "l": p.elem}) else: atoms.append({"x": p.x, "y": p.y, "z": p.z, "i": p.type.name, "c": p.charge}) for b in self.bonds: if b.order: bonds.append({"b": b.a.tag-1, "e": b.b.tag-1, "o": b.order}) else: bonds.append({"b": b.a.tag-1, "e": b.b.tag-1}) j = {"a": atoms, "b": bonds} if outfile == 'string': out = StringIO() else: out = open(outfile, 'w+') out.write(json.dumps(j)) if outfile == 'string': s = out.getvalue() out.close() return s else: out.close() def write_mol(self, outfile='data.mol'): """pysimm.system.System.write_mol Write :class:`~pysimm.system.System` data in mol format Args: outfile: where to write data, file name or 'string' Returns: None or string of data file if out_data='string' """ if outfile == 'string': out = StringIO() else: out = open(outfile, 'w+') out.write('system\n') out.write('written using pySIMM system module\n\n') out.write('%s\t%s\n' % (self.particles.count, self.bonds.count)) for p in self.particles: if not p.charge: p.charge = 0.0 if p.type and p.type.elem: out.write('%10.4f%10.4f%10.4f %s 0 %10.4f\n' % (p.x, p.y, p.z, '{0: >3}'.format(p.type.elem), p.charge)) elif p.elem: out.write('%10.4f%10.4f%10.4f %s 0 %10.4f\n' % (p.x, p.y, p.z, '{0: >3}'.format(p.elem), p.charge)) elif p.type: out.write('%10.4f%10.4f%10.4f %s 0 %10.4f\n' % (p.x, p.y, p.z, '{0: >3}'.format(p.type.tag), p.charge)) for b in self.bonds: if b.order: out.write('%s\t%s\t%s\t%s\t%s\t%s\n' % (b.a.tag, b.b.tag, b.order, 0, 0, 0)) else: out.write('%s\t%s\t%s\t%s\t%s\t%s\n' % (b.a.tag, b.b.tag, 1, 0, 0, 0)) out.write('M END') if outfile == 'string': s = out.getvalue() out.close() return s else: out.close() def write_pdb(self, outfile='data.pdb', type_names=True): """pysimm.system.System.write_pdb Write :class:`~pysimm.system.System` data in pdb format Args: outfile: where to write data, file name or 'string' Returns: None or string of data file if out_data='string' """ if outfile == 'string': out = StringIO() else: out = open(outfile, 'w+') out.write('{:<10}pdb written using pySIMM system module\n' .format('HEADER')) for m in self.molecules: for p in sorted(m.particles, key=lambda x: x.tag): if p.type: out.write( '{:<6}{:>5} {:>4} RES {:4} {: 8.3f}{: 8.3f}{: 8.3f}{:>22}{:>2}\n'.format( 'ATOM', p.tag, p.type.name[0:4] if type_names else p.type.elem, p.molecule.tag, p.x, p.y, p.z, '', p.type.elem ) ) elif p.elem: out.write( '{:<6}{:>5} {:>4} RES {:4} {: 8.3f}{: 8.3f}{: 8.3f}{:>22}{:>2}\n'.format( 'ATOM', p.tag, p.elem, p.molecule.tag, p.x, p.y, p.z, '', p.elem ) ) out.write('TER\n') for p in self.particles: if p.bonds: out.write('{:<6}{:>5}' .format('CONECT', p.tag)) for t in sorted([x.a.tag if p is x.b else x.b.tag for x in p.bonds]): out.write('{:>5}'.format(t)) out.write('\n') if outfile == 'string': s = out.getvalue() out.close() return s else: out.close() def write_yaml(self, file_): """pysimm.system.System.write_yaml Write :class:`~pysimm.system.System` data in yaml format Args: outfile: file name to write data Returns: None """ n = self.copy() s = vars(n) for k, v in s.items(): if isinstance(v, ItemContainer): s[k] = vars(v) for k_, v_ in s[k].items(): if k_ == '_dict': for t, i in v_.items(): s[k][k_][t] = vars(i) for key, value in s[k][k_][t].items(): if isinstance(value, ItemContainer) or (isinstance(value, list) and value and isinstance(value[0], Item)): s[k][k_][t][key] = [x.tag for x in value] elif isinstance(value, Item) or isinstance(value, System) and value.tag: s[k][k_][t][key] = value.tag elif isinstance(v, Item): s[k] = vars(v) else: s[k] = v if file_ == 'string': f = StringIO() f.write(json.dumps(s, indent=4, separators=(',', ': '))) yaml_ = f.getvalue() f.close() return yaml_ with open(file_, 'w') as f: f.write(json.dumps(s, indent=4, separators=(',', ': '))) def write_cssr(self, outfile='data.cssr', **kwargs): """pysimm.system.System.write_cssr Write :class:`~pysimm.system.System` data in cssr format file format: line, format, contents 1: 38X, 3F8.3 : - length of the three cell parameters (a, b, and c) in angstroms. 2: 21X, 3F8.3, 4X, 'SPGR =', I3, 1X, A11 : - a, b, g in degrees, space group number, space group name. 3: 2I4, 1X, A60 : - Number of atoms stored, coordinate system flag (0=fractional, 1=orthogonal coordinates in Angstrom), first title. 4: A53 : - A line of text that can be used to describe the file. 5-: I4, 1X, A4, 2X, 3(F9.5.1X), 8I4, 1X, F7.3 : - Atom serial number, atom name, x, y, z coordinates, bonding connectivities (max 8), charge. Note: The atom name is a concatenation of the element symbol and the atom serial number. Args: outfile: where to write data, file name or 'string' frac: 0 for using fractional coordinates aname: 0 for using element as atom name; else using atom type name Returns: None or string of data file if out_data='string' """ if outfile == 'string': out = StringIO() else: out = open(outfile, 'w+') frac = kwargs.get('frac', 1) aname = kwargs.get('aname', 0) out.write('%s%8.3f%8.3f%8.3f\n' % (38*' ', self.dim.dx, self.dim.dy, self.dim.dz)) out.write('%s%8.3f%8.3f%8.3f SPGR= %3d %s\n' % (21*' ', 90.0, 90.0, 90.0, 1, 'P 1')) out.write('%4d%4d %s\n' % (self.particles.count, frac, 'CSSR written using pySIMM system module')) out.write('%s\n' % self.name) for p in self.particles: if not p.charge: p.charge = 0.0 if p.type: if aname == 0: if p.type.elem: name = p.type.elem elif p.elem: name = p.elem else: name = p.type.tag else: if p.type.name: name = p.type.name else: name = p.type.tag else: name = p.tag if frac == 0: x = p.x/self.dim.dx y = p.y/self.dim.dy z = p.z/self.dim.dz else: x = p.x y = p.y z = p.z bonds = '' n_bonds = 0 for b in p.bonds: if p is b.a: bonds += ' {:4d}'.format(b.b.tag) else: bonds += ' {:4d}'.format(b.a.tag) n_bonds += 1 for i in range(n_bonds+1, 9): bonds = bonds + ' {:4d}'.format(0) out.write('%4d %4s %9.5f %9.5f %9.5f %s %7.3f\n' % (p.tag, name, x, y, z, bonds, p.charge)) out.write('\n') if outfile == 'string': s = out.getvalue() out.close() return s else: out.close() def consolidate_types(self): """pysimm.system.System.consolidate_types Removes duplicate types and reassigns references Args: None Returns: None """ for pt in self.particle_types: for dup in self.particle_types: if pt is not dup and pt.name == dup.name: for p in self.particles: if p.type == dup: p.type = pt self.particle_types.remove(dup.tag) for bt in self.bond_types: for dup in self.bond_types: if bt is not dup and bt.name == dup.name: for b in self.bonds: if b.type == dup: b.type = bt self.bond_types.remove(dup.tag) for at in self.angle_types: for dup in self.angle_types: if at is not dup and at.name == dup.name: for a in self.angles: if a.type == dup: a.type = at self.angle_types.remove(dup.tag) for dt in self.dihedral_types: for dup in self.dihedral_types: if dt is not dup and dt.name == dup.name: for d in self.dihedrals: if d.type == dup: d.type = dt self.dihedral_types.remove(dup.tag) for it in self.improper_types: for dup in self.improper_types: if it is not dup and it.name == dup.name: for i in self.impropers: if i.type == dup: i.type = it self.improper_types.remove(dup.tag) def set_cog(self): """pysimm.system.System.set_cog Calculate center of gravity of :class:`~pysimm.system.System` and assign to :class:`~pysimm.system.System`.cog Args: None Returns: None """ self.cog = [0, 0, 0] for p in self.particles: self.cog[0] += p.x self.cog[1] += p.y self.cog[2] += p.z if self.particles.count: self.cog = [c / self.particles.count for c in self.cog] def shift_particles(self, shiftx, shifty, shiftz): """pysimm.system.System.shift_particles Shifts all particles by shiftx, shifty, shiftz. Recalculates cog. Args: shiftx: distance to shift particles in x direction shifty: distance to shift particles in y direction shiftz: distance to shift particles in z direction Returns: None """ for p in self.particles: p.translate(shiftx, shifty, shiftz) self.set_cog() def center(self, what='particles', at=[0, 0, 0], move_both=True): """pysimm.system.System.center Centers particles center of geometry or simulation box at given coordinate. A vector is defined based on the current coordinate for the center of either the particles or the simulation box and the "at" parameter. This shift vector is applied to the entity defined by the "what" parameter. Optionally, both the particles and the box can be shifted by the same vector. Args: what: what is being centered: "particles" or "box" at: new coordinate for center of particles or box move_both: if True, determines vector for shift defined by "what" and "at" parameters, and applies shift to both particles and box. If false, only shift what is defined by "what" parameter. Returns: None """ if what == 'particles': self.set_cog() move_vec = [at[n] - self.cog[n] for n in range(3)] self.shift_particles(*move_vec) if move_both: self.dim.translate(*move_vec) elif what == 'box': self.dim.size() box_center = [self.dim.xlo+self.dim.dx/2, self.dim.ylo+self.dim.dy/2, self.dim.zlo+self.dim.dz/2] move_vec = [at[n] - box_center[n] for n in range(3)] self.dim.translate(*move_vec) if move_both: self.shift_particles(*move_vec) else: error_print('can only choose to center "particles" or "box"') def center_system(self): """pysimm.system.System.center_system DEPRECATED: Use :class:`~pysimm.system.System`.center('box', [0, 0, 0], True) instead Args: None Returns: None """ warning_print("DEPRECATED: Use System.center('box', [0, 0, 0], True) instead of System.center_system())") self.center('box', [0, 0, 0], True) def center_at_origin(self): """pysimm.system.System.center_at_origin DEPRECATED: Use :class:`~pysimm.system.System`.center('particles', [0, 0, 0], True) instead Args: None Returns: None """ warning_print("DEPRECATED: Use System.center('particles', [0, 0, 0], True) instead of System.center_at_origin())") self.center('particles', [0, 0, 0], True) def set_mass(self): """pysimm.system.System.set_mass Set total mass of particles in :class:`~pysimm.system.System` Args: None Returns: None """ self.mass = 0 for p in self.particles: if p.type.mass is None: self.mass = 0 warning_print('Some particles do not have a mass') break self.mass += p.type.mass def set_volume(self): """pysimm.system.System.set_volume Set volume of :class:`~pysimm.system.System` based on Dimension Args: None Returns: None """ if self.dim.check(): self.volume = ((self.dim.xhi - self.dim.xlo) * (self.dim.yhi - self.dim.ylo) * (self.dim.zhi - self.dim.zlo)) def set_density(self): """pysimm.system.System.set_density Calculate density of :class:`~pysimm.system.System` from mass and volume Args: None Returns: None """ self.set_mass() self.set_volume() if self.mass and self.volume: self.density = self.mass / 6.02e23 / self.volume * 1e24 def set_velocity(self): """pysimm.system.System.set_velocity Calculate total velocity of particles in :class:`~pysimm.system.System` Args: None Returns: None """ self.vx = 0.0 self.vy = 0.0 self.vz = 0.0 for p in self.particles: if p.vx is None: p.vx = 0 self.vx += p.vx if p.vy is None: p.vy = 0 self.vy += p.vy if p.vz is None: p.vz = 0 self.vz += p.vz def zero_velocity(self): """pysimm.system.System.zero_velocity Enforce zero shift velocity in :class:`~pysimm.system.System` Args: None Returns: None """ self.set_velocity() shift_x = shift_y = shift_z = 0.0 if self.vx != 0: shift_x = self.vx / self.particles.count if self.vy != 0: shift_y = self.vy / self.particles.count if self.vz != 0: shift_z = self.vz / self.particles.count if shift_x != 0 or shift_y != 0 or shift_z != 0: for p in self.particles: p.vx -= shift_x p.vy -= shift_y p.vz -= shift_z self.set_velocity() def set_box(self, padding=0., center=True): """pysimm.system.System.set_box Update :class:`~pysimm.system.System`.dim with user defined padding. Used to construct a simulation box if it doesn't exist, or adjust the size of the simulation box following system modifications. Args: padding: add padding to all sides of box (Angstrom) center: if True, place center of box at origin default=True Returns: None """ xmin = ymin = zmin = sys.float_info.max xmax = ymax = zmax = sys.float_info.min for p in self.particles: if p.x < xmin: xmin = p.x if p.x > xmax: xmax = p.x if p.y < ymin: ymin = p.y if p.y > ymax: ymax = p.y if p.z < zmin: zmin = p.z if p.z > zmax: zmax = p.z self.dim.xlo = xmin - padding self.dim.xhi = xmax + padding self.dim.ylo = ymin - padding self.dim.yhi = ymax + padding self.dim.zlo = zmin - padding self.dim.zhi = zmax + padding if center: self.center('particles', [0, 0, 0], True) def set_mm_dist(self, molecules=None): """pysimm.system.System.set_mm_dist Calculate molecular mass distribution (mainly for polymer systems). Sets :class:`~pysimm.system.System`.mw, :class:`~pysimm.system.System`.mn, and :class:`~pysimm.system.System`.disperisty Args: molecules: :class:`~pysimm.utils.ItemContainer` of molecules to calculate distributions defaul='all' Returns: None """ if molecules is None or molecules == 'all': molecules = self.molecules for m in molecules: m.set_mass() self.mn = 0 self.mw = 0 for m in molecules: self.mn += m.mass self.mw += pow(m.mass, 2) self.mw /= self.mn self.mn /= molecules.count self.dispersity = self.mw / self.mn self.pdi = self.mw / self.mn def set_frac_free_volume(self, v_void=None): """pysimm.system.System.set_frac_free_volume Calculates fractional free volume from void volume and bulk density Args: v_void: void volume if not defined in :class:`~pysimm.system.System`.void_volume default=None Returns: None """ if not v_void and not self.void_volume: error_print('Void volume not provided, cannot calculate fractional free volume') return elif not v_void: self.set_density() self.frac_free_volume = calc.frac_free_volume(1/self.density, self.void_volume) elif not self.void_volume: self.set_density() self.frac_free_volume = calc.frac_free_volume(1/self.density, v_void) if not self.frac_free_volume or self.frac_free_volume < 0: self.frac_free_volume = 0.0 def visualize(self, vis_exec='vmd', **kwargs): """pysimm.system.System.visualize Visualize system in third party software with given executable. Software must accept pdb or xyz as first command line argument. Args: vis_exec: executable to launch visualization software default='vmd' unwrap (optional): if True, unwrap :class:`~pysimm.system.System` first default=None format (optional): set format default='xyz' Returns: None """ if not call: raise PysimmError('pysimm.system.System.visualize function requires subprocess.call') unwrap = kwargs.get('unwrap') format = kwargs.get('format', 'xyz') verbose_print(self.dim.dx, self.dim.xlo, self.dim.xhi) verbose_print(self.dim.dy, self.dim.ylo, self.dim.yhi) verbose_print(self.dim.dz, self.dim.zlo, self.dim.zhi) if unwrap: self.unwrap() if format == 'xyz': name_ = 'pysimm_temp.xyz' self.write_xyz(name_) elif format == 'pdb': name_ = 'pysimm_temp.pdb' self.write_pdb(name_) call('%s %s' % (vis_exec, name_), shell=True) os.remove(name_) def viz(self, **kwargs): self.visualize(vis_exec='vmd', unwrap=False, format='xyz', **kwargs) class Molecule(System): """pysimm.system.Molecule Very similar to :class:`~pysimm.system.System`, but requires less information """ def __init__(self, **kwargs): System.__init__(self, **kwargs) mt = kwargs.get('tag') if mt and isinstance(mt, int): self.tag = mt def read_yaml(file_, **kwargs): """pysimm.system.read_yaml Interprets yaml file and creates :class:`~pysimm.system.System` object Args: file_: yaml file name Returns: :class:`~pysimm.system.System` object """ if os.path.isfile(file_): dict_ = json.loads(open(file_).read()) else: dict_ = json.loads(file_) s = System() for k, v in dict_.items(): if not isinstance(v, dict): setattr(s, k, v) if isinstance(dict_.get('dim'), dict): s.dim = Dimension(**dict_.get('dim')) if isinstance(dict_.get('particle_types'), dict): s.particle_types = ItemContainer() for pt in dict_.get('particle_types').get('_dict').values(): s.particle_types.add(ParticleType(**pt)) if isinstance(dict_.get('bond_types'), dict): s.bond_types = ItemContainer() for bt in dict_.get('bond_types').get('_dict').values(): s.bond_types.add(BondType(**bt)) if isinstance(dict_.get('angle_types'), dict): s.angle_types = ItemContainer() for at in dict_.get('angle_types').get('_dict').values(): s.angle_types.add(AngleType(**at)) if isinstance(dict_.get('dihedral_types'), dict): s.dihedral_types = ItemContainer() for dt in dict_.get('dihedral_types').get('_dict').values(): s.dihedral_types.add(DihedralType(**dt)) if isinstance(dict_.get('improper_types'), dict): s.improper_types = ItemContainer() for it in dict_.get('improper_types').get('_dict').values(): s.improper_types.add(ImproperType(**it)) if isinstance(dict_.get('particles'), dict): s.particles = ItemContainer() for p in dict_.get('particles').get('_dict').values(): s.particles.add(Particle(**p)) if isinstance(dict_.get('bonds'), dict): s.bonds = ItemContainer() for b in dict_.get('bonds').get('_dict').values(): s.bonds.add(Bond(**b)) if isinstance(dict_.get('angles'), dict): s.angles = ItemContainer() for a in dict_.get('angles').get('_dict').values(): s.angles.add(Angle(**a)) if isinstance(dict_.get('dihedrals'), dict): s.dihedrals = ItemContainer() for d in dict_.get('dihedrals').get('_dict').values(): s.dihedrals.add(Dihedral(**d)) if isinstance(dict_.get('impropers'), dict): s.impropers = ItemContainer() for i in dict_.get('impropers').get('_dict').values(): s.impropers.add(Improper(**i)) if isinstance(dict_.get('molecules'), dict): s.molecules = ItemContainer() for m in dict_.get('molecules').get('_dict').values(): mol = Molecule() for k, v in m.items(): if isinstance(v, list) and not v: setattr(mol, k, ItemContainer()) else: setattr(mol, k, v) particles = [x for x in mol.particles] mol.particles = ItemContainer() for n in particles: mol.particles.add(s.particles[n]) bonds = [x for x in mol.bonds] mol.bonds = ItemContainer() for n in bonds: mol.bonds.add(s.bonds[n]) angles = [x for x in mol.angles] mol.angles = ItemContainer() for n in angles: mol.angles.add(s.angles[n]) dihedrals = [x for x in mol.dihedrals] mol.dihedrals = ItemContainer() for n in dihedrals: mol.dihedrals.add(s.dihedrals[n]) impropers = [x for x in mol.impropers] mol.impropers = ItemContainer() for n in impropers: mol.impropers.add(s.impropers[n]) s.molecules.add(mol) for p in s.particles: if s.particle_types[p.type]: p.type = s.particle_types[p.type] if s.molecules[p.molecule]: p.molecule = s.molecules[p.molecule] bonds = [x for x in p.bonds] p.bonds = ItemContainer() for n in bonds: p.bonds.add(s.bonds[n]) angles = [x for x in p.angles] for n in angles: p.angles.add(s.angles[n]) dihedrals = [x for x in p.dihedrals] for n in dihedrals: p.dihedrals.add(s.dihedrals[n]) impropers = [x for x in p.impropers] for n in impropers: p.impropers.add(s.impropers[n]) for b in s.bonds: if s.bond_types[b.type]: b.type = s.bond_types[b.type] b.a = s.particles[b.a] b.b = s.particles[b.b] for a in s.angles: if s.angle_types[a.type]: a.type = s.angle_types[a.type] a.a = s.particles[a.a] a.b = s.particles[a.b] a.c = s.particles[a.c] for d in s.dihedrals: if s.dihedral_types[d.type]: d.type = s.dihedral_types[d.type] d.a = s.particles[d.a] d.b = s.particles[d.b] d.c = s.particles[d.c] d.d = s.particles[d.d] for i in s.impropers: if s.improper_types[i.type]: i.type = s.improper_types[i.type] i.a = s.particles[i.a] i.b = s.particles[i.b] i.c = s.particles[i.c] i.d = s.particles[i.d] return s def read_xyz(file_, **kwargs): """pysimm.system.read_xyz Interprets xyz file and creates :class:`~pysimm.system.System` object Args: file_: xyz file name quiet(optional): if False, print status Returns: :class:`~pysimm.system.System` object """ quiet = kwargs.get('quiet') if os.path.isfile(file_): debug_print('reading file') f = open(file_) elif isinstance(file_, str): debug_print('reading string') f = StringIO(file_) s = System() nparticles = int(next(f).strip()) name = next(f).strip() s.name = name for _ in range(nparticles): elem, x, y, z = next(f).split() x = float(x) y = float(y) z = float(z) s.particles.add(Particle(elem=elem, x=x, y=y, z=z)) f.close() for p in s.particles: pt = s.particle_types.get(p.elem) if pt: p.type = pt[0] else: pt = ParticleType(elem=p.elem, name=p.elem) p.type = pt s.particle_types.add(pt) if not quiet: verbose_print('read %s particles' % s.particles.count) s.set_box(padding=0.5) return s def read_chemdoodle_json(file_, **kwargs): """pysimm.system.read_chemdoodle_json Interprets ChemDoodle JSON (Java Script Object Notation) file and creates :class:`~pysimm.system.System` object Args: file_: json file name quiet(optional): if False, print status Returns: :class:`~pysimm.system.System` object """ quiet = kwargs.get('quiet') if os.path.isfile(file_): debug_print('reading file') f = open(file_) elif isinstance(file_, str): debug_print('reading string') f = StringIO(file_) s = System() data = json.loads(f.read()) for a in data.get('a'): s.particles.add(Particle( x=a.get('x'), y=a.get('y'), z=a.get('z'), charge=a.get('c'), elem=a.get('l'), type_name=a.get('i') )) for b in data.get('b'): s.bonds.add(Bond( a=s.particles[b.get('b')+1], b=s.particles[b.get('e')+1], order=b.get('o') )) return s def read_lammps(data_file, **kwargs): """pysimm.system.read_lammps Interprets LAMMPS data file and creates :class:`~pysimm.system.System` object Args: data_file: LAMMPS data file name quiet(optional): if False, print status atom_style (optional): option to let user override (understands charge, molecular, full) pair_style (optional): option to let user override bond_style (optional): option to let user override angle_style (optional): option to let user override dihedral_style (optional): option to let user override improper_style (optional): option to let user override set_types (optional): if True, objectify default=True name (optional): provide name for system Returns: :class:`~pysimm.system.System` object """ atom_style = kwargs.get('atom_style') pair_style = kwargs.get('pair_style') bond_style = kwargs.get('bond_style') angle_style = kwargs.get('angle_style') dihedral_style = kwargs.get('dihedral_style') improper_style = kwargs.get('improper_style') set_types = kwargs.get('set_types', True) name = kwargs.get('name') quiet = kwargs.get('quiet') if os.path.isfile(data_file): if not quiet: verbose_print('reading lammps data file "%s"' % data_file) f = open(data_file) elif isinstance(data_file, str): if not quiet: verbose_print('reading lammps data file from string') f = StringIO(data_file) else: raise PysimmError('pysimm.system.read_lammps requires either ' 'file or string as first argument') if name: if not quiet: verbose_print('creating pysimm.system.System object with name %s' % name) s = System(name=name) else: s = System(name=next(f).strip()) nparticles = nparticle_types = nbonds = nbond_types = 0 nangles = nangle_types = ndihedrals = ndihedral_types = 0 nimpropers = nimproper_types = 0 for line in f: line = line.split() if len(line) > 1 and line[1] == 'atoms': nparticles = int(line[0]) elif len(line) > 1 and line[1] == 'atom': nparticle_types = int(line[0]) elif len(line) > 1 and line[1] == 'bonds': nbonds = int(line[0]) elif len(line) > 1 and line[1] == 'bond': nbond_types = int(line[0]) elif len(line) > 1 and line[1] == 'angles': nangles = int(line[0]) elif len(line) > 1 and line[1] == 'angle': nangle_types = int(line[0]) elif len(line) > 1 and line[1] == 'dihedrals': ndihedrals = int(line[0]) elif len(line) > 1 and line[1] == 'dihedral': ndihedral_types = int(line[0]) elif len(line) > 1 and line[1] == 'impropers': nimpropers = int(line[0]) elif len(line) > 1 and line[1] == 'improper': nimproper_types = int(line[0]) elif len(line) > 3 and line[2] == 'xlo': s.dim.xlo = float(line[0]) s.dim.xhi = float(line[1]) elif len(line) > 3 and line[2] == 'ylo': s.dim.ylo = float(line[0]) s.dim.yhi = float(line[1]) elif len(line) > 3 and line[2] == 'zlo': s.dim.zlo = float(line[0]) s.dim.zhi = float(line[1]) elif len(line) > 0 and line[0] == 'Masses': next(f) for i in range(nparticle_types): pt = ParticleType.parse_lammps(next(f), 'mass') if s.particle_types[pt.tag]: s.particle_types[pt.tag].mass = pt.mass else: s.particle_types.add(pt) if not quiet: verbose_print('read masses for %s ParticleTypes' % s.particle_types.count) elif len(line) > 0 and line[0] == 'Pair': if '#' in line and not pair_style: line = ' '.join(line).split('#') pair_style = line[1].strip() next(f) for i in range(nparticle_types): line = next(f) if not pair_style: warning_print('unknown pair style - infering from number of parameters (2=lj 3=buck 4=charmm)') pair_style = ParticleType.guess_style( len(line.split('#')[0].split()[1:]) ) if pair_style: pt = ParticleType.parse_lammps(line, pair_style) if s.particle_types[pt.tag]: s.particle_types[pt.tag].set(**vars(pt)) else: s.particle_types.add(pt) verbose_print('read "%s" nonbonded parameters ' 'for %s ParticleTypes' % (pair_style, s.particle_types.count)) elif len(line) > 0 and line[0] == 'Bond': next(f) for i in range(nbond_types): line = next(f) if not bond_style: warning_print('unknown bond_style - infering from number of parameters (2=harmonic 4=class2)') bond_style = BondType.guess_style( len(line.split('#')[0].split()[1:]) ) if bond_style: s.bond_types.add(BondType.parse_lammps(line, bond_style)) verbose_print('read "%s" bond parameters ' 'for %s BondTypes' % (bond_style, s.bond_types.count)) elif len(line) > 0 and line[0] == 'Angle': next(f) for i in range(nangle_types): line = next(f) if not angle_style: warning_print('unknown angle_style - infering from number of parameters (2=harmonic)') angle_style = AngleType.guess_style( len(line.split('#')[0].split()[1:]) ) if angle_style: s.angle_types.add(AngleType.parse_lammps(line, angle_style)) verbose_print('read "%s" angle parameters ' 'for %s AngleTypes' % (angle_style, s.angle_types.count)) elif len(line) > 0 and line[0] == 'BondBond': next(f) for i in range(nangle_types): line = next(f).strip().split() tag = int(line[0]) s.angle_types[tag].m = float(line[1]) s.angle_types[tag].r1 = float(line[2]) s.angle_types[tag].r2 = float(line[3]) verbose_print('read "%s" angle (bond-bond) ' 'parameters for %s AngleTypes' % (angle_style, s.angle_types.count)) elif len(line) > 0 and line[0] == 'BondAngle': next(f) for i in range(nangle_types): line = next(f).strip().split() tag = int(line[0]) s.angle_types[tag].n1 = float(line[1]) s.angle_types[tag].n2 = float(line[2]) s.angle_types[tag].r1 = float(line[3]) s.angle_types[tag].r2 = float(line[4]) if angle_style: verbose_print('read "%s" angle (bond-angle) ' 'parameters for %s AngleTypes' % (angle_style, s.angle_types.count)) elif len(line) > 0 and line[0] == 'Dihedral': next(f) for i in range(ndihedral_types): line = next(f) if not dihedral_style: warning_print('unknown dihedral_style - infering from number of parameters (3=harmonic 6=class2 [7, 10]=fourier)') dihedral_style = DihedralType.guess_style( len(line.split('#')[0].split()[1:]) ) if dihedral_style: dt = DihedralType.parse_lammps(line, dihedral_style) s.dihedral_types.add(dt) verbose_print('read "%s" dihedral parameters ' 'for %s DihedralTypes' % (dihedral_style, s.dihedral_types.count)) elif len(line) > 0 and line[0] == 'MiddleBondTorsion': next(f) for i in range(ndihedral_types): line = next(f).strip().split() tag = int(line[0]) s.dihedral_types[tag].a1 = float(line[1]) s.dihedral_types[tag].a2 = float(line[2]) s.dihedral_types[tag].a3 = float(line[3]) s.dihedral_types[tag].r2 = float(line[4]) if dihedral_style: verbose_print('read "%s" dihedral ' '(middle-bond-torsion parameters for ' '%s DihedralTypes' % (dihedral_style, ndihedral_types)) elif len(line) > 0 and line[0] == 'EndBondTorsion': next(f) for i in range(ndihedral_types): line = next(f).strip().split() tag = int(line[0]) s.dihedral_types[tag].b1 = float(line[1]) s.dihedral_types[tag].b2 = float(line[2]) s.dihedral_types[tag].b3 = float(line[3]) s.dihedral_types[tag].c1 = float(line[4]) s.dihedral_types[tag].c2 = float(line[5]) s.dihedral_types[tag].c3 = float(line[6]) s.dihedral_types[tag].r1 = float(line[7]) s.dihedral_types[tag].r3 = float(line[8]) if dihedral_style: verbose_print('read "%s" dihedral ' '(end-bond-torsion parameters for ' '%s DihedralTypes' % (dihedral_style, ndihedral_types)) elif len(line) > 0 and line[0] == 'AngleTorsion': next(f) for i in range(ndihedral_types): line = next(f).strip().split() tag = int(line[0]) s.dihedral_types[tag].d1 = float(line[1]) s.dihedral_types[tag].d2 = float(line[2]) s.dihedral_types[tag].d3 = float(line[3]) s.dihedral_types[tag].e1 = float(line[4]) s.dihedral_types[tag].e2 = float(line[5]) s.dihedral_types[tag].e3 = float(line[6]) s.dihedral_types[tag].theta1 = float(line[7]) s.dihedral_types[tag].theta2 = float(line[8]) if dihedral_style: verbose_print('read "%s" dihedral ' '(angle-torsion parameters for ' '%s DihedralTypes' % (dihedral_style, ndihedral_types)) elif len(line) > 0 and line[0] == 'AngleAngleTorsion': next(f) for i in range(ndihedral_types): line = next(f).strip().split() tag = int(line[0]) s.dihedral_types[tag].m = float(line[1]) s.dihedral_types[tag].theta1 = float(line[2]) s.dihedral_types[tag].theta2 = float(line[3]) if dihedral_style: verbose_print('read "%s" dihedral ' '(angle-angle-torsion parameters for ' '%s DihedralTypes' % (dihedral_style, ndihedral_types)) elif len(line) > 0 and line[0] == 'BondBond13': next(f) for i in range(ndihedral_types): line = next(f).strip().split() tag = int(line[0]) s.dihedral_types[tag].n = float(line[1]) s.dihedral_types[tag].r1 = float(line[2]) s.dihedral_types[tag].r3 = float(line[3]) if dihedral_style: verbose_print('read "%s" dihedral ' '(bond-bond-1-3 parameters for ' '%s DihedralTypes' % (dihedral_style, ndihedral_types)) elif len(line) > 0 and line[0] == 'Improper': next(f) for i in range(nimproper_types): line = next(f) if not improper_style: warning_print('unknown improper_style - infering from number of parameters (3=cvff)') improper_style = ImproperType.guess_style( len(line.split('#')[0].split()[1:]) ) if improper_style.startswith('harmonic') and 'class2' in [bond_style, angle_style, dihedral_style]: improper_style = 'class2' if improper_style: s.improper_types.add(ImproperType.parse_lammps(line, improper_style)) verbose_print('read "%s" improper parameters ' 'for %s ImproperTypes' % (improper_style, s.improper_types.count)) elif len(line) > 0 and line[0] == 'AngleAngle': improper_style = 'class2' next(f) for i in range(nimproper_types): line = next(f).strip().split() tag = int(line[0]) s.improper_types[tag].m1 = float(line[1]) s.improper_types[tag].m2 = float(line[2]) s.improper_types[tag].m3 = float(line[3]) s.improper_types[tag].theta1 = float(line[4]) s.improper_types[tag].theta2 = float(line[5]) s.improper_types[tag].theta3 = float(line[6]) if improper_style: verbose_print('read "%s" improper ' '(angle-angle parameters for ' '%s ImproperTypes' % (improper_style, nimproper_types)) elif len(line) > 0 and line[0] == 'Atoms': next(f) for i in range(nparticles): line = next(f).strip().split() tag = int(line[0]) if not atom_style: if len(line) == 7: atom_style = 'full' elif len(line) == 6: try: int(line[2]) atom_style = 'molecular' except: atom_style = 'charge' else: warning_print('cannot determine atom_style; assuming atom_style "full"') atom_style = 'full' if atom_style == 'full': d_ = {'tag': tag, 'molecule': int(line[1]), 'type': int(line[2]), 'charge': float(line[3]), 'x': float(line[4]), 'y': float(line[5]), 'z': float(line[6])} elif atom_style == 'charge': d_ = {'tag': tag, 'molecule': 0, 'type': int(line[1]), 'charge': float(line[2]), 'x': float(line[3]), 'y': float(line[4]), 'z': float(line[5])} elif atom_style == 'molecular': d_ = {'tag': tag, 'molecule': int(line[1]), 'type': int(line[2]), 'charge': 0., 'x': float(line[3]), 'y': float(line[4]), 'z': float(line[5])} if s.particles[tag]: p = s.particles[tag] p.set(**d_) else: p = Particle(vx=0., vy=0., vz=0., **d_) s.particles.add(p) p.frac_x = p.x / s.dim.dx p.frac_y = p.y / s.dim.dy p.frac_z = p.z / s.dim.dz if not quiet: verbose_print('read %s particles' % nparticles) elif len(line) > 0 and line[0] == 'Velocities': next(f) for i in range(nparticles): line = next(f).strip().split() tag = int(line[0]) if s.particles[tag]: p = s.particles[tag] d_ = {'vx': float(line[1]), 'vy': float(line[2]), 'vz': float(line[3])} p.set(**d_) else: p = Particle(tag=tag, vx=float(line[1]), vy=float(line[2]), vz=float(line[3])) s.particles.add(p) if not quiet: verbose_print('read velocities for %s particles' % nparticles) elif len(line) > 0 and line[0] == 'Bonds': next(f) for i in range(nbonds): line = next(f).strip().split() tag = int(line[0]) b = Bond(tag=tag, type=int(line[1]), a=int(line[2]), b=int(line[3])) s.bonds.add(b) if not quiet: verbose_print('read %s bonds' % nbonds) elif len(line) > 0 and line[0] == 'Angles': next(f) for i in range(nangles): line = next(f).strip().split() tag = int(line[0]) a = Angle(tag=tag, type=int(line[1]), a=int(line[2]), b=int(line[3]), c=int(line[4])) s.angles.add(a) if not quiet: verbose_print('read %s angles' % nangles) elif len(line) > 0 and line[0] == 'Dihedrals': next(f) for i in range(ndihedrals): line = next(f).strip().split() tag = int(line[0]) d = Dihedral(tag=tag, type=int(line[1]), a=int(line[2]), b=int(line[3]), c=int(line[4]), d=int(line[5])) s.dihedrals.add(d) if not quiet: verbose_print('read %s dihedrals' % ndihedrals) elif len(line) > 0 and line[0] == 'Impropers': next(f) for i in range(nimpropers): line = next(f).strip().split() tag = int(line[0]) if (s.ff_class == '2' or improper_style == 'class2' or (s.improper_types[1] and s.improper_types[1].m1 is not None)): s.impropers.add(Improper(tag=tag, type=int(line[1]), a=int(line[3]), b=int(line[2]), c=int(line[4]), d=int(line[5]))) else: s.impropers.add(Improper(tag=tag, type=int(line[1]), a=int(line[2]), b=int(line[3]), c=int(line[4]), d=int(line[5]))) if not quiet: verbose_print('read %s impropers' % nimpropers) f.close() s.atom_style = atom_style s.pair_style = pair_style s.bond_style = bond_style s.angle_style = angle_style s.dihedral_style = dihedral_style if improper_style: s.improper_style = improper_style elif not improper_style and s.impropers.count > 1: if not quiet: verbose_print('improper style not set explicitly ' 'but impropers exist in system, guessing style ' 'based on other forcefield styles...') if (s.bond_style.startswith('harm') or s.angle_style.startswith('harm') or s.dihedral_style.startswith('harm')): improper_style = 'harmonic' s.improper_style = 'harmonic' elif (s.bond_style.startswith('class2') or s.angle_style.startswith('class2') or s.dihedral_style.startswith('class2')): improper_style = 'class2' s.improper_style = 'class2' if s.improper_style: if not quiet: verbose_print('setting improper style to "%s", ' 'if this is incorrect try explicitly setting ' 'improper_style as argument in ' 'pysimm.system.read_lammps' % improper_style) else: if not quiet: error_print('still cannot determine improper style...') if pair_style and pair_style.startswith('lj'): if ((s.bond_style and s.bond_style.startswith('class2')) or (s.angle_style and s.angle_style.startswith('class2')) or (s.dihedral_style and s.dihedral_style.startswith('class2'))): s.pair_style = 'class2' styles = [s.pair_style, s.bond_style, s.angle_style, s.dihedral_style, s.improper_style] if 'class2' in styles: s.ff_class = '2' else: s.ff_class = '1' if 'harmonic' in styles and 'class2' in styles: if not quiet: warning_print('it appears there is a mixture of class1 and class2 ' 'forcefield styles in your system...this is usually ' 'unadvised') if set_types: s.objectify() for pt in s.particle_types: if pt.name and pt.name.find('@') >= 0: if pt.name.split('@')[-1][0].upper() in ['H', 'C', 'N', 'O', 'F', 'S']: pt.elem = pt.name.split('@')[-1][0].upper() if pt.name and pt.name[0] == 'L' and pt.name[1] != 'i': pt.elem = pt.name[1].upper() elif pt.name: pt.elem = pt.name[0:2] if pt.name[1:3] == 'Na': pt.elem = 'Na' if pt.name[0].upper() in ['H', 'C', 'N', 'O', 'F', 'S']: pt.elem = pt.name[0].upper() for p in s.particles: if isinstance(p.type, ParticleType) and p.type.name and p.type.name.find('@') >= 0: if p.type.name[0].upper() == 'H': p.linker = 'head' elif p.type.name[0].upper() == 'T': p.linker = 'tail' elif p.type.name[0].upper() == 'L': p.linker = True if s.objectified: s.set_cog() s.set_mass() s.set_volume() s.set_density() s.set_velocity() return s def read_pubchem_smiles(smiles, quiet=False, type_with=None): """pysimm.system.read_pubchem_smiles Interface with pubchem restful API to create molecular system from SMILES format Args: smiles: smiles formatted string of molecule type_with: :class:`~pysimm.forcefield.Forcefield` object to type with default=None Returns: :class:`~pysimm.system.System` object """ req = ('https://pubchem.ncbi.nlm.nih.gov/' 'rest/pug/compound/smiles/%s/SDF/?record_type=3d' % smiles) if not quiet: print('making request to pubchem RESTful API:') print(req) try: resp = urlopen(req) return read_mol(resp.read().decode('utf-8'), type_with=type_with) except (HTTPError, URLError): print('Could not retrieve pubchem entry for smiles %s' % smiles) def read_pubchem_cid(cid, type_with=None): """pysimm.system.read_pubchem_smiles Interface with pubchem restful API to create molecular system from SMILES format Args: smiles: smiles formatted string of molecule type_with: :class:`~pysimm.forcefield.Forcefield` object to type with default=None Returns: :class:`~pysimm.system.System` object """ req = ('https://pubchem.ncbi.nlm.nih.gov/rest/pug/compound/cid/{}/SDF/?record_type=3d'.format(cid)) print('making request to pubchem RESTful API:') print(req) try: resp = urlopen(req) return read_mol(resp.read().decode('utf-8'), type_with=type_with) except (HTTPError, URLError): print('Could not retrieve pubchem entry for cid %s' % cid) def read_cml(cml_file, **kwargs): """pysimm.system.read_cml Interprets cml file and creates :class:`~pysimm.system.System` object Args: cml_file: cml file name linkers (optional): if True, use spinMultiplicity to determine linker default=None Returns: :class:`~pysimm.system.System` object """ linkers = kwargs.get('linkers') if os.path.isfile(cml_file): debug_print('reading file') iter_parse = Et.iterparse(cml_file) elif isinstance(cml_file, str): debug_print('reading string') iter_parse = Et.iterparse(StringIO(cml_file)) else: raise PysimmError('pysimm.system.read_cml requires a file as argument') for _, el in iter_parse: if '}' in el.tag: el.tag = el.tag.split('}', 1)[1] root = iter_parse.root s = System(name='read using pysimm.system.read_cml') particles = root.find('atomArray') bonds = root.find('bondArray') for p_ in particles: tag = int(p_.attrib['id'].replace('a', '').replace(',', '')) elem = p_.attrib['elementType'] x = float(p_.attrib['x3']) y = float(p_.attrib['y3']) z = float(p_.attrib['z3']) if linkers: linker = True if p_.attrib.get('spinMultiplicity') else None else: linker = None p = Particle(tag=tag, elem=elem, x=x, y=y, z=z, charge=0, molecule=1, linker=linker) s.particles.add(p) for b_ in bonds: a, b = b_.attrib['atomRefs2'].split() a = int(a.replace('a', '').replace(',', '')) b = int(b.replace('a', '').replace(',', '')) order = b_.attrib['order'] if order == 'A': order = 4 else: order = int(order) b = Bond(a=a, b=b, order=order) s.bonds.add(b) s.objectify() return s def read_mol(mol_file, type_with=None, version='V2000'): """pysimm.system.read_mol Interprets mol file and creates :class:`~pysimm.system.System` object Args: mol_file: mol file name f (optional): :class:`~pysimm.forcefield.Forcefield` object to get data from version: version of mol file to expect default='V2000' Returns: :class:`~pysimm.system.System` object """ if os.path.isfile(mol_file): debug_print('reading file') f = open(mol_file) elif isinstance(mol_file, str): debug_print('reading string') f = StringIO(mol_file) else: raise PysimmError('pysimm.system.read_mol requires either ' 'file or string as argument') s = System(name='read using pysimm.system.read_mol') for n in range(3): next(f) line = next(f) nparticles = int(line.split()[0]) nbonds = int(line.split()[1]) if len(line.split()) >= 3: version = line.split()[-1] if version == 'V2000': for n in range(nparticles): line = next(f) x, y, z, elem, something, charge = line.split()[:6] p = Particle(x=float(x), y=float(y), z=float(z), molecule=1, elem=elem, charge=float(charge)) s.particles.add(p) if p.elem[0] == 'L': p.linker = True p.elem = p.elem[1:] elif p.charge == 5: p.linker = True p.charge = 0 for n in range(nbonds): line = next(f) a, b, order = map(int, line.split()[:3]) new_bond = s.bonds.add(Bond(a=a, b=b, order=order)) elif version == 'V3000': next(f) line = next(f) nparticles = int(line.split()[3]) nbonds = int(line.split()[4]) next(f) for n in range(nparticles): line = next(f) id_, elem, x, y, z, charge = line.split()[2:8] p = Particle(x=float(x), y=float(y), z=float(z), molecule=1, elem=elem, charge=float(charge)) s.particles.add(p) next(f) next(f) for n in range(nbonds): line = next(f) id_, order, a, b = map(int, line.split()[2:6]) s.bonds.add(Bond(a=a, b=b, order=order)) s.objectify() if type_with: try: s.apply_forcefield(type_with) except Exception: print('forcefield typing with forcefield %s unsuccessful' % type_with.name) return s def read_prepc(prec_file): """pysimm.system.read_prepc Interprets prepc file and creates :class:`~pysimm.system.System` object Args: prepc_file: ac file name Returns: :class:`~pysimm.system.System` object """ if os.path.isfile(prec_file): debug_print('reading file') f = open(prec_file) elif isinstance(prec_file, str): debug_print('reading string') f = StringIO(prec_file) else: raise PysimmError('pysimm.system.read_pdb requires either ' 'file or string as argument') s = System(name='read using pysimm.system.read_prepc') for line in f: for _ in range(10): line = next(f) while line.split(): tag = int(line.split()[0]) name = line.split()[1] type_name = line.split()[2] x = float(line.split()[4]) y = float(line.split()[5]) z = float(line.split()[6]) charge = float(line.split()[7]) elem = type_name[0] p = Particle(tag=tag, name=name, type_name=type_name, x=x, y=y, z=z, elem=elem, charge=charge) if not s.particles[tag]: s.particles.add(p) line = next(f) break f.close() return s def read_ac(ac_file): """pysimm.system.read_ac Interprets ac file and creates :class:`~pysimm.system.System` object Args: ac_file: ac file name Returns: :class:`~pysimm.system.System` object """ if os.path.isfile(ac_file): debug_print('reading file') f = open(ac_file) elif isinstance(ac_file, str): debug_print('reading string') f = StringIO(ac_file) else: raise PysimmError('pysimm.system.read_pdb requires either ' 'file or string as argument') s = System(name='read using pysimm.system.read_ac') for line in f: if line.startswith('ATOM'): tag = int(line.split()[1]) name = line.split()[2] resname = line.split()[3] resid = line.split()[4] x = float(line.split()[5]) y = float(line.split()[6]) z = float(line.split()[7]) charge = float(line.split()[8]) type_name = line.split()[9] elem = type_name[0] p = Particle(tag=tag, name=name, type_name=type_name, resname=resname, resid=resid, x=x, y=y, z=z, elem=elem, charge=charge) if not s.particles[tag]: s.particles.add(p) if line.startswith('BOND'): tag = int(line.split()[1]) a = s.particles[int(line.split()[2])] b = s.particles[int(line.split()[3])] b = Bond(tag=tag, a=a, b=b) if not s.bonds[tag]: s.bonds.add(b) f.close() return s def read_pdb(pdb_file): """pysimm.system.read_pdb Interprets pdb file and creates :class:`~pysimm.system.System` object Args: pdb_file: pdb file name Returns: :class:`~pysimm.system.System` object """ if os.path.isfile(pdb_file): debug_print('reading file') f = open(pdb_file) elif isinstance(pdb_file, str): debug_print('reading string') f = StringIO(pdb_file) else: raise PysimmError('pysimm.system.read_pdb requires either ' 'file or string as argument') s = System(name='read using pysimm.system.read_pdb') for line in f: if line.startswith('ATOM'): tag = int(line[6:11].strip()) name = line[12:16].strip() resname = line[17:20].strip() chainid = line[21] resid = line[22:26].strip() x = float(line[30:38].strip()) y = float(line[38:46].strip()) z = float(line[46:54].strip()) elem = line[76:78].strip() p = Particle(tag=tag, name=name, resname=resname, chainid=chainid, resid=resid, x=x, y=y, z=z, elem=elem) if not s.particles[tag]: s.particles.add(p) f.close() return s def compare(s1, s2): print('Particle Types:\n') for pt in s1.particle_types: s2_pt = s2.particle_types.get(pt.name) if s2_pt and len(s2_pt) == 1: s2_pt = s2_pt[0] print('%s\n%s\n' % (vars(pt), vars(s2_pt))) print('\n\nBond Types:\n') for bt in s1.bond_types: s2_bt = s2.bond_types.get(bt.name) if s2_bt and len(s2_bt) == 1: s2_bt = s2_bt[0] print('%s\n%s\n' % (vars(bt), vars(s2_bt))) print('\n\nAngle Types:\n') for at in s1.angle_types: s2_at = s2.angle_types.get(at.name) if s2_at and len(s2_at) == 1: s2_at = s2_at[0] print('%s\n%s\n' % (vars(at), vars(s2_at))) print('\n\nDihedral Types:\n') for dt in s1.dihedral_types: s2_dt = s2.dihedral_types.get(dt.name) if s2_dt and len(s2_dt) == 1: s2_dt = s2_dt[0] print('%s\n%s\n' % (vars(dt), vars(s2_dt))) print('\n\nImproper Types:\n') for it in s1.improper_types: s2_it = s2.improper_types.get(it.name) if s2_it and len(s2_it) == 1: s2_it = s2_it[0] print('%s\n%s\n' % (vars(it), vars(s2_it))) def get_types(*arg, **kwargs): """pysimm.system.get_types Get unique type names from list of systems Args: write (optional): if True, write types dictionary to filename Returns: (ptypes, btypes, atypes, dtypes, itypes) *** for use with update_types *** """ write = kwargs.get('write') ptypes = ItemContainer() btypes = ItemContainer() atypes = ItemContainer() dtypes = ItemContainer() itypes = ItemContainer() for s in arg: for t in s.particle_types: if t.name and t.name not in [x.name for x in ptypes]: ptypes.add(t.copy()) for t in s.bond_types: if t.name and t.name not in [x.name for x in btypes]: btypes.add(t.copy()) for t in s.angle_types: if t.name and t.name not in [x.name for x in atypes]: atypes.add(t.copy()) for t in s.dihedral_types: if t.name and t.name not in [x.name for x in dtypes]: dtypes.add(t.copy()) for t in s.improper_types: if t.name and t.name not in [x.name for x in itypes]: itypes.add(t.copy()) if write: t_file = open('types.txt', 'w+') if ptypes.count > 0: t_file.write('atom types\n') for t in ptypes: t_file.write('%s %s\n' % (t.tag, t.name)) if btypes.count > 0: t_file.write('\nbond types\n') for t in btypes: t_file.write('%s %s\n' % (t.tag, t.name)) if atypes.count > 0: t_file.write('\nangle types\n') for t in atypes: t_file.write('%s %s\n' % (t.tag, t.name)) if dtypes.count > 0: t_file.write('\ndihedral types\n') for t in dtypes: t_file.write('%s %s\n' % (t.tag, t.name)) if itypes.count > 0: t_file.write('\nimproper types\n') for t in itypes: t_file.write('%s %s\n' % (t.tag, t.name)) t_file.close() return ptypes, btypes, atypes, dtypes, itypes def distance_to_origin(p): """pysimm.system.distance_to_origin Calculates distance of particle to origin. Args: p: Particle object with x, y, and z attributes Returns: Distance of particle to origin """ return sqrt(pow(p.x, 2) + pow(p.y, 2) + pow(p.z, 2)) def replicate(ref, nrep, s_=None, density=0.3, rand=True, print_insertions=True): """pysimm.system.replicate Replicates list of :class:`~pysimm.system.System` objects into new (or exisintg) :class:`~pysimm.system.System`. Can be random insertion. Args: ref: reference :class:`~pysimm.system.System`(s) (this can be a list) nrep: number of insertions to perform (can be list but must match length of ref) s_: :class:`~pysimm.system.System` into which insertions will be performed default=None density: density of new :class:`~pysimm.system.System` default=0.3 (set to None to not change box) rand: if True, random insertion is performed print_insertions: if True, update screen with number of insertions """ if not isinstance(ref, list): ref = [ref] if not isinstance(nrep, list): nrep = [nrep] assert len(ref) == len(nrep) if s_ is None: s_ = System() s_.ff_class = ref[0].ff_class s_.forcefield = ref[0].forcefield s_.pair_style = ref[0].pair_style s_.bond_style = ref[0].bond_style s_.angle_style = ref[0].angle_style s_.dihedral_style = ref[0].dihedral_style s_.improper_style = ref[0].improper_style for r in ref: r.set_mass() r.center('particles', [0, 0, 0], True) r.r = 0 for p in r.particles: r.r = max(r.r, distance_to_origin(p)) s_.molecule_types.add(r) mass = 0 for i, r in enumerate(ref): mass += r.mass * nrep[i] mass /= 6.02e23 if density: volume = float(mass) / density boxl = pow(volume, 1 / 3.) * 1e8 s_.dim.xlo = -1. * boxl / 2. s_.dim.xhi = boxl / 2. s_.dim.ylo = -1. * boxl / 2. s_.dim.yhi = boxl / 2. s_.dim.zlo = -1. * boxl / 2. s_.dim.zhi = boxl / 2. num = 0 for j, r in enumerate(ref): for n in range(nrep[j]): if rand: rotate_x = random() * 2 * pi rotate_y = random() * 2 * pi rotate_z = random() * 2 * pi dx = s_.dim.xhi - s_.dim.xlo dx = (-dx / 2. + r.r) + random() * (dx - 2 * r.r) dy = s_.dim.yhi - s_.dim.ylo dy = (-dy / 2. + r.r) + random() * (dy - 2 * r.r) dz = s_.dim.zhi - s_.dim.zlo dz = (-dz / 2. + r.r) + random() * (dz - 2 * r.r) r_ = r.copy(rotate_x=rotate_x, rotate_y=rotate_y, rotate_z=rotate_z, dx=dx, dy=dy, dz=dz) else: r_ = r.copy() s_.add(r_, change_dim=False, update_properties=False) num += 1 if print_insertions: verbose_print('Molecule %s inserted' % num) s_.set_density() s_.set_cog() s_.set_velocity() return s_
mit
LorenzoBi/computational_physics
class_exercises/Lorenzo_Biasi_es8.py
1
2687
import numpy as np from random import random, uniform import matplotlib.pyplot as plt def simulate_decay(n_atoms, probability): iteration = 0 nuclei = np.ones(n_atoms) n_active = n_atoms while n_active > 0: for i in range(n_atoms): if random() < probability and nuclei[i] != 0: nuclei[i] = 0 n_active -= 1 iteration += 1 return iteration def simultaneous_walks(step, n_drunks): positions = np.zeros((n_drunks, 2)) N_ITER_MAX = 100 mean_x = np.zeros(N_ITER_MAX) mean_y = np.zeros(N_ITER_MAX) mean_x2 = np.zeros(N_ITER_MAX) mean_y2 = np.zeros(N_ITER_MAX) for iteration in range(N_ITER_MAX): for i in range(n_drunks): angle = uniform(0, 2 * np.pi) positions[i, :] += np.array([np.cos(angle), np.sin(angle)]) * step mean_x[iteration] += positions[i, 0] mean_y[iteration] += positions[i, 1] mean_x2[iteration] += positions[i, 0] ** 2 mean_y2[iteration] += positions[i, 1] ** 2 mean_x[iteration] = mean_x[iteration] / float(n_drunks) mean_y[iteration] = mean_y[iteration] / float(n_drunks) mean_x2[iteration] = mean_x2[iteration] / float(n_drunks) mean_y2[iteration] = mean_y2[iteration] / float(n_drunks) return mean_x, mean_y, mean_x2, mean_y2 def montecarlo_quart_circle(n_shoot): n_hits = 0 for i in range(n_shoot): if random() < np.sqrt(1 - random() ** 2): n_hits += 1 return n_hits def problem1(): n_atoms = 1000 probability = .2 N_TIMES = 20 average = 0 for i in range(N_TIMES): average += simulate_decay(n_atoms, probability) print 'Average life time for' print 'p =', probability, ' and number of atoms', n_atoms print average / float(N_TIMES) def problem2(): mean_x, mean_y, mean_x2, mean_y2 = simultaneous_walks(1, 1000) iterations = np.arange(1, len(mean_x) + 1) plt.figure('random_walk') plt.rc('text', usetex=True) plt.plot(iterations, mean_x, '.', label=r'$<x>$') plt.plot(iterations, mean_x2, '.', label=r'$<x^2>$') plt.plot(iterations, mean_y, '.', label=r'$<y>$') plt.plot(iterations, mean_y2, '.', label=r'$<y^2>$') plt.plot(iterations, iterations / 2., label=r'$\frac{t}{2}$') plt.legend() plt.grid() def problem3(): n_total = 100000 print 'Montecarlo value:' print montecarlo_quart_circle(n_total) / float(n_total) print 'Actual value:' print np.pi / 4. if __name__ == '__main__': print 'Problem 1 \n' problem1() problem2() print '\n\nProblem 2 \n' problem3() plt.show()
mit
ak110/pytoolkit
pytoolkit/pipeline/xgb.py
1
4775
"""xgboost""" from __future__ import annotations import logging import pathlib import typing import numpy as np import pandas as pd import sklearn.metrics import pytoolkit as tk from .core import Model logger = logging.getLogger(__name__) class XGBModel(Model): """XGBoostのモデル。 Args: params: XGBoostのパラメータ nfold: cvの分割数 models_dir: 保存先ディレクトリ early_stopping_rounds: xgboost.cvのパラメータ num_boost_round: xgboost.cvのパラメータ verbose_eval: xgboost.cvのパラメータ callbacks: xgboost.cvのパラメータ cv_params: xgboost.cvのパラメータ (kwargs) """ def __init__( self, params: typing.Dict[str, typing.Any], nfold: int, models_dir: tk.typing.PathLike, early_stopping_rounds: int = 200, num_boost_round: int = 9999, verbose_eval: int = 100, callbacks: typing.List[typing.Callable[[typing.Any], None]] = None, cv_params: typing.Dict[str, typing.Any] = None, preprocessors: tk.pipeline.EstimatorListType = None, postprocessors: tk.pipeline.EstimatorListType = None, ): import xgboost super().__init__(nfold, models_dir, preprocessors, postprocessors) self.params = params self.early_stopping_rounds = early_stopping_rounds self.num_boost_round = num_boost_round self.verbose_eval = verbose_eval self.callbacks = callbacks self.cv_params = cv_params self.gbms_: typing.Optional[typing.List[xgboost.Booster]] = None self.best_ntree_limit_: typing.Optional[int] = None def _save(self, models_dir: pathlib.Path): assert self.gbms_ is not None tk.utils.dump(self.gbms_, models_dir / "model.pkl") tk.utils.dump(self.best_ntree_limit_, models_dir / "best_ntree_limit.pkl") # ついでにfeature_importanceも。 df_importance = self.feature_importance() df_importance.to_excel(str(models_dir / "feature_importance.xlsx")) def _load(self, models_dir: pathlib.Path): self.gbms_ = tk.utils.load(models_dir / "model.pkl") self.best_ntree_limit_ = tk.utils.load(models_dir / "best_ntree_limit.pkl") assert self.gbms_ is not None assert len(self.gbms_) == self.nfold def _cv(self, dataset: tk.data.Dataset, folds: tk.validation.FoldsType) -> None: import xgboost assert isinstance(dataset.data, pd.DataFrame) train_set = xgboost.DMatrix( data=dataset.data, label=dataset.labels, weight=dataset.weights, feature_names=dataset.data.columns.values, ) self.gbms_ = [] def model_extractor(env): assert self.gbms_ is not None self.gbms_.clear() self.gbms_.extend([f.bst for f in env.cvfolds]) eval_hist = xgboost.cv( self.params, dtrain=train_set, folds=folds, callbacks=(self.callbacks or []) + [model_extractor], num_boost_round=self.num_boost_round, early_stopping_rounds=self.early_stopping_rounds, verbose_eval=self.verbose_eval, **(self.cv_params or {}), ) scores = {} for k, v in eval_hist.items(): if k.endswith("-mean"): name, score = k[:-5], v.values[-1] scores[name] = score logger.info(f"cv {name}: {score:,.3f}") self.best_ntree_limit_ = len(v) def _predict(self, dataset: tk.data.Dataset, fold: int) -> np.ndarray: import xgboost assert self.gbms_ is not None assert self.best_ntree_limit_ is not None assert isinstance(dataset.data, pd.DataFrame) data = xgboost.DMatrix( data=dataset.data, feature_names=dataset.data.columns.values ) return self.gbms_[fold].predict(data, ntree_limit=self.best_ntree_limit_) def feature_importance(self, importance_type: str = "total_gain"): """Feature ImportanceをDataFrameで返す。""" assert self.gbms_ is not None columns = self.gbms_[0].feature_names for gbm in self.gbms_: assert tuple(columns) == tuple(gbm.feature_names) fi = np.zeros((len(columns),), dtype=np.float32) for gbm in self.gbms_: d = gbm.get_score(importance_type=importance_type) fi += [d.get(c, 0) for c in columns] return pd.DataFrame(data={"importance": fi}, index=columns) def xgb_r2(preds, dtrain): """XGBoost用R2""" labels = dtrain.get_label() return "r2", np.float32(sklearn.metrics.r2_score(labels, preds))
mit
VipinRathor/zeppelin
python/src/main/resources/python/bootstrap_sql.py
60
1189
# Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Setup SQL over Pandas DataFrames # It requires next dependencies to be installed: # - pandas # - pandasql from __future__ import print_function try: from pandasql import sqldf pysqldf = lambda q: sqldf(q, globals()) except ImportError: pysqldf = lambda q: print("Can not run SQL over Pandas DataFrame" + "Make sure 'pandas' and 'pandasql' libraries are installed")
apache-2.0
alfayez/gnuradio
gnuradio-core/src/examples/volk_benchmark/volk_plot.py
78
6117
#!/usr/bin/env python import sys, math import argparse from volk_test_funcs import * try: import matplotlib import matplotlib.pyplot as plt except ImportError: sys.stderr.write("Could not import Matplotlib (http://matplotlib.sourceforge.net/)\n") sys.exit(1) def main(): desc='Plot Volk performance results from a SQLite database. ' + \ 'Run one of the volk tests first (e.g, volk_math.py)' parser = argparse.ArgumentParser(description=desc) parser.add_argument('-D', '--database', type=str, default='volk_results.db', help='Database file to read data from [default: %(default)s]') parser.add_argument('-E', '--errorbars', action='store_true', default=False, help='Show error bars (1 standard dev.)') parser.add_argument('-P', '--plot', type=str, choices=['mean', 'min', 'max'], default='mean', help='Set the type of plot to produce [default: %(default)s]') parser.add_argument('-%', '--percent', type=str, default=None, metavar="table", help='Show percent difference to the given type [default: %(default)s]') args = parser.parse_args() # Set up global plotting properties matplotlib.rcParams['figure.subplot.bottom'] = 0.2 matplotlib.rcParams['figure.subplot.top'] = 0.95 matplotlib.rcParams['figure.subplot.right'] = 0.98 matplotlib.rcParams['ytick.labelsize'] = 16 matplotlib.rcParams['xtick.labelsize'] = 16 matplotlib.rcParams['legend.fontsize'] = 18 # Get list of tables to compare conn = create_connection(args.database) tables = list_tables(conn) M = len(tables) # Colors to distinguish each table in the bar graph # More than 5 tables will wrap around to the start. colors = ['b', 'r', 'g', 'm', 'k'] # Set up figure for plotting f0 = plt.figure(0, facecolor='w', figsize=(14,10)) s0 = f0.add_subplot(1,1,1) # Create a register of names that exist in all tables tmp_regs = [] for table in tables: # Get results from the next table res = get_results(conn, table[0]) tmp_regs.append(list()) for r in res: try: tmp_regs[-1].index(r['kernel']) except ValueError: tmp_regs[-1].append(r['kernel']) # Get only those names that are common in all tables name_reg = tmp_regs[0] for t in tmp_regs[1:]: name_reg = list(set(name_reg) & set(t)) name_reg.sort() # Pull the data out for each table into a dictionary # we can ref the table by it's name and the data associated # with a given kernel in name_reg by it's name. # This ensures there is no sorting issue with the data in the # dictionary, so the kernels are plotted against each other. table_data = dict() for i,table in enumerate(tables): # Get results from the next table res = get_results(conn, table[0]) data = dict() for r in res: data[r['kernel']] = r table_data[table[0]] = data if args.percent is not None: for i,t in enumerate(table_data): if args.percent == t: norm_data = [] for name in name_reg: if(args.plot == 'max'): norm_data.append(table_data[t][name]['max']) elif(args.plot == 'min'): norm_data.append(table_data[t][name]['min']) elif(args.plot == 'mean'): norm_data.append(table_data[t][name]['avg']) # Plot the results x0 = xrange(len(name_reg)) i = 0 for t in (table_data): ydata = [] stds = [] for name in name_reg: stds.append(math.sqrt(table_data[t][name]['var'])) if(args.plot == 'max'): ydata.append(table_data[t][name]['max']) elif(args.plot == 'min'): ydata.append(table_data[t][name]['min']) elif(args.plot == 'mean'): ydata.append(table_data[t][name]['avg']) if args.percent is not None: ydata = [-100*(y-n)/y for y,n in zip(ydata,norm_data)] if(args.percent != t): # makes x values for this data set placement # width of bars depends on number of comparisons wdth = 0.80/(M-1) x1 = [x + i*wdth for x in x0] i += 1 s0.bar(x1, ydata, width=wdth, color=colors[(i-1)%M], label=t, edgecolor='k', linewidth=2) else: # makes x values for this data set placement # width of bars depends on number of comparisons wdth = 0.80/M x1 = [x + i*wdth for x in x0] i += 1 if(args.errorbars is False): s0.bar(x1, ydata, width=wdth, color=colors[(i-1)%M], label=t, edgecolor='k', linewidth=2) else: s0.bar(x1, ydata, width=wdth, yerr=stds, color=colors[i%M], label=t, edgecolor='k', linewidth=2, error_kw={"ecolor": 'k', "capsize":5, "linewidth":2}) nitems = res[0]['nitems'] if args.percent is None: s0.set_ylabel("Processing time (sec) [{0:G} items]".format(nitems), fontsize=22, fontweight='bold', horizontalalignment='center') else: s0.set_ylabel("% Improvement over {0} [{1:G} items]".format( args.percent, nitems), fontsize=22, fontweight='bold') s0.legend() s0.set_xticks(x0) s0.set_xticklabels(name_reg) for label in s0.xaxis.get_ticklabels(): label.set_rotation(45) label.set_fontsize(16) plt.show() if __name__ == "__main__": main()
gpl-3.0
jseabold/scikit-learn
sklearn/metrics/setup.py
299
1024
import os import os.path import numpy from numpy.distutils.misc_util import Configuration from sklearn._build_utils import get_blas_info def configuration(parent_package="", top_path=None): config = Configuration("metrics", parent_package, top_path) cblas_libs, blas_info = get_blas_info() if os.name == 'posix': cblas_libs.append('m') config.add_extension("pairwise_fast", sources=["pairwise_fast.c"], include_dirs=[os.path.join('..', 'src', 'cblas'), numpy.get_include(), blas_info.pop('include_dirs', [])], libraries=cblas_libs, extra_compile_args=blas_info.pop('extra_compile_args', []), **blas_info) return config if __name__ == "__main__": from numpy.distutils.core import setup setup(**configuration().todict())
bsd-3-clause
neuroidss/nupic.research
projects/vehicle-control/agent/run_sm.py
6
7819
#!/usr/bin/env python # ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2015, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- from collections import defaultdict import operator import time import numpy from unity_client.server import Server from nupic.encoders.coordinate import CoordinateEncoder from nupic.encoders.scalar import ScalarEncoder from nupic.algorithms.monitor_mixin.trace import CountsTrace from sensorimotor.extended_temporal_memory import ApicalTiebreakPairMemory from htmresearch.support.apical_tm_pair_monitor_mixin import ( ApicalTMPairMonitorMixin) class MonitoredApicalTiebreakPairMemory( ApicalTMPairMonitorMixin, ApicalTiebreakPairMemory): pass SCALE = 5 RADIUS = 10 class Agent(object): def __init__(self): self.encoder = CoordinateEncoder(n=1024, w=21) self.motorEncoder = ScalarEncoder(21, -1, 1, n=1024) self.tm = MonitoredApicalTiebreakPairMemory( columnDimensions=[2048], basalInputDimensions: (999999,) # Dodge input checking. cellsPerColumn=1, initialPermanence=0.5, connectedPermanence=0.6, permanenceIncrement=0.1, permanenceDecrement=0.02, minThreshold=35, activationThreshold=35, maxNewSynapseCount=40) self.plotter = Plotter(self.tm, showOverlaps=False, showOverlapsValues=False) self.lastState = None self.lastAction = None self.prevMotorPattern = () def sync(self, outputData): if not ("location" in outputData and "steer" in outputData): print "Warning: Missing data:", outputData return reset = outputData.get("reset") or False if reset: print "Reset." self.tm.reset() location = outputData["location"] steer = outputData["steer"] x = int(location["x"] * SCALE) z = int(location["z"] * SCALE) coordinate = numpy.array([x, z]) encoding = self.encoder.encode((coordinate, RADIUS)) motorEncoding = self.motorEncoder.encode(steer) sensorPattern = set(encoding.nonzero()[0]) motorPattern = set(motorEncoding.nonzero()[0]) self.tm.compute(sensorPattern, activeCellsExternalBasal=motorPattern, reinforceCandidatesExternalBasal=self.prevMotorPattern, growthCandidatesExternalBasal=self.prevMotorPattern) print self.tm.mmPrettyPrintMetrics(self.tm.mmGetDefaultMetrics()) self.plotter.update(encoding, reset) if reset: self.plotter.render() self.lastState = encoding self.lastAction = steer self.prevMotorPattern = motorPattern class Plotter(object): def __init__(self, tm, showOverlaps=False, showOverlapsValues=False): self.tm = tm self.showOverlaps = showOverlaps self.showOverlapsValues = showOverlapsValues self.encodings = [] self.resets = [] self.numSegmentsPerCell = [] self.numSynapsesPerSegment = [] import matplotlib.pyplot as plt self.plt = plt import matplotlib.cm as cm self.cm = cm from pylab import rcParams if self.showOverlaps and self.showOverlapsValues: rcParams.update({'figure.figsize': (20, 20)}) else: rcParams.update({'figure.figsize': (6, 12)}) rcParams.update({'figure.autolayout': True}) rcParams.update({'figure.facecolor': 'white'}) rcParams.update({'ytick.labelsize': 8}) def update(self, encoding, reset): self.encodings.append(encoding) self.resets.append(reset) # TODO: Deal with empty segments / unconnected synapses numSegmentsPerCell = [len(segments) for segments in self.tm.connections._segmentsForCell.values()] self.numSegmentsPerCell.append(numpy.array(numSegmentsPerCell)) numSynapsesPerSegment = [len(synapses) for synapses in self.tm.connections._synapsesForSegment.values()] self.numSynapsesPerSegment.append(numpy.array(numSynapsesPerSegment)) def render(self): timestamp = int(time.time()) self.plt.figure(1) self.plt.clf() self._renderMetrics(timestamp) if self.showOverlaps: self.plt.figure(2) self.plt.clf() self._renderOverlaps(timestamp) def _renderMetrics(self, timestamp): traces = self.tm.mmGetDefaultTraces() traces = [trace for trace in traces if type(trace) is CountsTrace] t = len(traces) n = t + 2 for i in xrange(t): trace = traces[i] self.plt.subplot(n, 1, i+1) self._plot(trace.data, trace.title) self.plt.subplot(n, 1, t+1) self._plotDistributions(self.numSegmentsPerCell, "# segments per cell") self.plt.subplot(n, 1, t+2) self._plotDistributions(self.numSynapsesPerSegment, "# synapses per segment") self.plt.draw() self.plt.savefig("sm-{0}_A.png".format(timestamp)) def _renderOverlaps(self, timestamp): self.plt.subplot(1, 1, 1) overlaps = self._computeOverlaps() self._imshow(overlaps, "Overlaps", aspect=None) for i in self._computeResetIndices(): self.plt.axvline(i, color='black', alpha=0.5) self.plt.axhline(i, color='black', alpha=0.5) if self.showOverlapsValues: for i in range(len(overlaps)): for j in range(len(overlaps[i])): overlap = "%.1f" % overlaps[i][j] self.plt.annotate(overlap, xy=(i, j), fontsize=6, color='red', verticalalignment='center', horizontalalignment='center') self.plt.draw() self.plt.savefig("sm-{0}_B.png".format(timestamp)) def _computeOverlaps(self): overlaps = [] encodings = self.encodings for i in range(len(encodings)): row = [] for j in range(len(encodings)): n = max(encodings[i].sum(), encodings[j].sum()) overlap = (encodings[i] & encodings[j]).sum() / float(n) row.append(overlap) overlaps.append(row) return overlaps def _computeResetIndices(self): return numpy.array(self.resets).nonzero()[0] def _plot(self, data, title): self.plt.plot(range(len(data)), data) self._finishPlot(data, title) def _finishPlot(self, data, title): self.plt.title(title) self.plt.xlim(0, len(data)) for i in self._computeResetIndices(): self.plt.axvline(i, color='black', alpha=0.5) def _imshow(self, data, title, aspect='auto'): self.plt.title(title) self.plt.imshow(data, cmap=self.cm.Greys, interpolation="nearest", aspect=aspect, vmin=0, vmax=1) def _plotDistributions(self, data, title): means = [numpy.mean(x) if len(x) else 0 for x in data] maxs = [numpy.max(x) if len(x) else 0 for x in data] self.plt.plot(range(len(data)), means, label='mean') self.plt.plot(range(len(data)), maxs, label='max') self.plt.legend(loc='lower right') self._finishPlot(data, title) if __name__ == "__main__": agent = Agent() Server(agent)
agpl-3.0
aetilley/scikit-learn
examples/decomposition/plot_pca_3d.py
354
2432
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Principal components analysis (PCA) ========================================================= These figures aid in illustrating how a point cloud can be very flat in one direction--which is where PCA comes in to choose a direction that is not flat. """ print(__doc__) # Authors: Gael Varoquaux # Jaques Grobler # Kevin Hughes # License: BSD 3 clause from sklearn.decomposition import PCA from mpl_toolkits.mplot3d import Axes3D import numpy as np import matplotlib.pyplot as plt from scipy import stats ############################################################################### # Create the data e = np.exp(1) np.random.seed(4) def pdf(x): return 0.5 * (stats.norm(scale=0.25 / e).pdf(x) + stats.norm(scale=4 / e).pdf(x)) y = np.random.normal(scale=0.5, size=(30000)) x = np.random.normal(scale=0.5, size=(30000)) z = np.random.normal(scale=0.1, size=len(x)) density = pdf(x) * pdf(y) pdf_z = pdf(5 * z) density *= pdf_z a = x + y b = 2 * y c = a - b + z norm = np.sqrt(a.var() + b.var()) a /= norm b /= norm ############################################################################### # Plot the figures def plot_figs(fig_num, elev, azim): fig = plt.figure(fig_num, figsize=(4, 3)) plt.clf() ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=elev, azim=azim) ax.scatter(a[::10], b[::10], c[::10], c=density[::10], marker='+', alpha=.4) Y = np.c_[a, b, c] # Using SciPy's SVD, this would be: # _, pca_score, V = scipy.linalg.svd(Y, full_matrices=False) pca = PCA(n_components=3) pca.fit(Y) pca_score = pca.explained_variance_ratio_ V = pca.components_ x_pca_axis, y_pca_axis, z_pca_axis = V.T * pca_score / pca_score.min() x_pca_axis, y_pca_axis, z_pca_axis = 3 * V.T x_pca_plane = np.r_[x_pca_axis[:2], - x_pca_axis[1::-1]] y_pca_plane = np.r_[y_pca_axis[:2], - y_pca_axis[1::-1]] z_pca_plane = np.r_[z_pca_axis[:2], - z_pca_axis[1::-1]] x_pca_plane.shape = (2, 2) y_pca_plane.shape = (2, 2) z_pca_plane.shape = (2, 2) ax.plot_surface(x_pca_plane, y_pca_plane, z_pca_plane) ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) elev = -40 azim = -80 plot_figs(1, elev, azim) elev = 30 azim = 20 plot_figs(2, elev, azim) plt.show()
bsd-3-clause
nsoranzo/tools-iuc
tools/fsd/fsd.py
17
44897
#!/usr/bin/env python # Family size distribution of SSCSs # # Author: Monika Heinzl, Johannes-Kepler University Linz (Austria) # Contact: [email protected] # # Takes at least one TABULAR file with tags before the alignment to the SSCS, but up to 4 files can be provided, as input. # The program produces a plot which shows the distribution of family sizes of the all SSCSs from the input files and # a tabular file with the data of the plot, as well as a TXT file with all tags of the DCS and their family sizes. # If only one file is provided, then a family size distribution, which is separated after SSCSs without a partner and DCSs, is produced. # Whereas a family size distribution with multiple data in one plot is produced, when more than one file (up to 4) is given. # USAGE: python FSD_Galaxy_1.4_commandLine_FINAL.py --inputFile1 filename --inputName1 filename --inputFile2 filename2 --inputName2 filename2 --inputFile3 filename3 --inputName3 filename3 --inputFile4 filename4 --inputName4 filename4 --log_axis --output_tabular outptufile_name_tabular --output_pdf outptufile_name_pdf import argparse import sys import matplotlib.pyplot as plt import numpy from matplotlib.backends.backend_pdf import PdfPages plt.switch_backend('agg') def readFileReferenceFree(file): with open(file, 'r') as dest_f: data_array = numpy.genfromtxt(dest_f, skip_header=0, delimiter='\t', comments='#', dtype=str) return(data_array) def make_argparser(): parser = argparse.ArgumentParser(description='Family Size Distribution of duplex sequencing data') parser.add_argument('--inputFile1', help='Tabular File with three columns: ab or ba, tag and family size.') parser.add_argument('--inputName1') parser.add_argument('--inputFile2', default=None, help='Tabular File with three columns: ab or ba, tag and family size.') parser.add_argument('--inputName2') parser.add_argument('--inputFile3', default=None, help='Tabular File with three columns: ab or ba, tag and family size.') parser.add_argument('--inputName3') parser.add_argument('--inputFile4', default=None, help='Tabular File with three columns: ab or ba, tag and family size.') parser.add_argument('--inputName4') parser.add_argument('--log_axis', action="store_false", help='Transform y axis in log scale.') parser.add_argument('--rel_freq', action="store_false", help='If False, the relative frequencies are displayed.') parser.add_argument('--output_pdf', default="data.pdf", type=str, help='Name of the pdf file.') parser.add_argument('--output_tabular', default="data.tabular", type=str, help='Name of the tabular file.') return parser def compare_read_families(argv): parser = make_argparser() args = parser.parse_args(argv[1:]) firstFile = args.inputFile1 name1 = args.inputName1 secondFile = args.inputFile2 name2 = args.inputName2 thirdFile = args.inputFile3 name3 = args.inputName3 fourthFile = args.inputFile4 name4 = args.inputName4 log_axis = args.log_axis rel_freq = args.rel_freq title_file = args.output_tabular title_file2 = args.output_pdf sep = "\t" plt.rc('figure', figsize=(11.69, 8.27)) # A4 format plt.rcParams['patch.edgecolor'] = "black" plt.rcParams['axes.facecolor'] = "E0E0E0" # grey background color plt.rcParams['xtick.labelsize'] = 14 plt.rcParams['ytick.labelsize'] = 14 list_to_plot = [] label = [] data_array_list = [] list_to_plot_original = [] colors = [] bins = numpy.arange(1, 22) with open(title_file, "w") as output_file, PdfPages(title_file2) as pdf: fig = plt.figure() fig.subplots_adjust(left=0.12, right=0.97, bottom=0.23, top=0.94, hspace=0) fig2 = plt.figure() fig2.subplots_adjust(left=0.12, right=0.97, bottom=0.23, top=0.94, hspace=0) if firstFile is not None: file1 = readFileReferenceFree(firstFile) integers = numpy.array(file1[:, 0]).astype(int) # keep original family sizes list_to_plot_original.append(integers) colors.append("#0000FF") # for plot: replace all big family sizes by 22 data1 = numpy.clip(integers, bins[0], bins[-1]) name1 = name1.split(".tabular")[0] if len(name1) > 40: name1 = name1[:40] list_to_plot.append(data1) label.append(name1) data_array_list.append(file1) legend = "\n\n\n{}".format(name1) fig.text(0.05, 0.11, legend, size=10, transform=plt.gcf().transFigure) fig2.text(0.05, 0.11, legend, size=10, transform=plt.gcf().transFigure) legend1 = "singletons:\nnr. of tags\n{:,} ({:.3f})".format(numpy.bincount(data1)[1], float(numpy.bincount(data1)[1]) / len(data1)) fig.text(0.32, 0.11, legend1, size=10, transform=plt.gcf().transFigure) fig2.text(0.32, 0.11, legend1, size=10, transform=plt.gcf().transFigure) legend3b = "PE reads\n{:,} ({:.3f})".format(numpy.bincount(data1)[1], float(numpy.bincount(data1)[1]) / sum(integers)) fig.text(0.45, 0.11, legend3b, size=10, transform=plt.gcf().transFigure) fig2.text(0.45, 0.11, legend3b, size=10, transform=plt.gcf().transFigure) legend4 = "family size > 20:\nnr. of tags\n{:,} ({:.3f})".format(len(integers[integers > 20]), float(len(integers[integers > 20])) / len(integers)) fig.text(0.58, 0.11, legend4, size=10, transform=plt.gcf().transFigure) fig2.text(0.58, 0.11, legend4, size=10, transform=plt.gcf().transFigure) legend5 = "PE reads\n{:,} ({:.3f})".format(sum(integers[integers > 20]), float(sum(integers[integers > 20])) / sum(integers)) fig.text(0.70, 0.11, legend5, size=10, transform=plt.gcf().transFigure) fig2.text(0.70, 0.11, legend5, size=10, transform=plt.gcf().transFigure) legend6 = "total nr. of\ntags\n{:,}".format(len(data1)) fig.text(0.82, 0.11, legend6, size=10, transform=plt.gcf().transFigure) fig2.text(0.82, 0.11, legend6, size=10, transform=plt.gcf().transFigure) legend6b = "PE reads\n{:,}".format(sum(integers)) fig.text(0.89, 0.11, legend6b, size=10, transform=plt.gcf().transFigure) fig2.text(0.89, 0.11, legend6b, size=10, transform=plt.gcf().transFigure) if secondFile is not None: file2 = readFileReferenceFree(secondFile) integers2 = numpy.array(file2[:, 0]).astype(int) # keep original family sizes list_to_plot_original.append(integers2) colors.append("#298A08") data2 = numpy.clip(integers2, bins[0], bins[-1]) list_to_plot.append(data2) name2 = name2.split(".tabular")[0] if len(name2) > 40: name2 = name2[:40] label.append(name2) data_array_list.append(file2) fig.text(0.05, 0.09, name2, size=10, transform=plt.gcf().transFigure) fig2.text(0.05, 0.09, name2, size=10, transform=plt.gcf().transFigure) legend1 = "{:,} ({:.3f})".format(numpy.bincount(data2)[1], float(numpy.bincount(data2)[1]) / len(data2)) fig.text(0.32, 0.09, legend1, size=10, transform=plt.gcf().transFigure) fig2.text(0.32, 0.09, legend1, size=10, transform=plt.gcf().transFigure) legend3 = "{:,} ({:.3f})".format(numpy.bincount(data2)[1], float(numpy.bincount(data2)[1]) / sum(integers2)) fig.text(0.45, 0.09, legend3, size=10, transform=plt.gcf().transFigure) fig2.text(0.45, 0.09, legend3, size=10, transform=plt.gcf().transFigure) legend4 = "{:,} ({:.3f})".format(len(integers2[integers2 > 20]), float(len(integers2[integers2 > 20])) / len(integers2)) fig.text(0.58, 0.09, legend4, size=10, transform=plt.gcf().transFigure) fig2.text(0.58, 0.09, legend4, size=10, transform=plt.gcf().transFigure) legend5 = "{:,} ({:.3f})".format(sum(integers2[integers2 > 20]), float(sum(integers2[integers2 > 20])) / sum(integers2)) fig.text(0.70, 0.09, legend5, size=10, transform=plt.gcf().transFigure) fig2.text(0.70, 0.09, legend5, size=10, transform=plt.gcf().transFigure) legend6 = "{:,}".format(len(data2)) fig.text(0.82, 0.09, legend6, size=10, transform=plt.gcf().transFigure) fig2.text(0.82, 0.09, legend6, size=10, transform=plt.gcf().transFigure) legend6b = "{:,}".format(sum(integers2)) fig.text(0.89, 0.09, legend6b, size=10, transform=plt.gcf().transFigure) fig2.text(0.89, 0.09, legend6b, size=10, transform=plt.gcf().transFigure) if thirdFile is not None: file3 = readFileReferenceFree(thirdFile) integers3 = numpy.array(file3[:, 0]).astype(int) # keep original family sizes list_to_plot_original.append(integers3) colors.append("#DF0101") data3 = numpy.clip(integers3, bins[0], bins[-1]) list_to_plot.append(data3) name3 = name3.split(".tabular")[0] if len(name3) > 40: name3 = name3[:40] label.append(name3) data_array_list.append(file3) fig.text(0.05, 0.07, name3, size=10, transform=plt.gcf().transFigure) fig2.text(0.05, 0.07, name3, size=10, transform=plt.gcf().transFigure) legend1 = "{:,} ({:.3f})".format(numpy.bincount(data3)[1], float(numpy.bincount(data3)[1]) / len(data3)) fig.text(0.32, 0.07, legend1, size=10, transform=plt.gcf().transFigure) fig2.text(0.32, 0.07, legend1, size=10, transform=plt.gcf().transFigure) legend3b = "{:,} ({:.3f})".format(numpy.bincount(data3)[1], float(numpy.bincount(data3)[1]) / sum(integers3)) fig.text(0.45, 0.07, legend3b, size=10, transform=plt.gcf().transFigure) fig2.text(0.45, 0.07, legend3b, size=10, transform=plt.gcf().transFigure) legend4 = "{:,} ({:.3f})".format(len(integers3[integers3 > 20]), float(len(integers3[integers3 > 20])) / len(integers3)) fig.text(0.58, 0.07, legend4, size=10, transform=plt.gcf().transFigure) fig2.text(0.58, 0.07, legend4, size=10, transform=plt.gcf().transFigure) legend5 = "{:,} ({:.3f})".format(sum(integers3[integers3 > 20]), float(sum(integers3[integers3 > 20])) / sum(integers3)) fig.text(0.70, 0.07, legend5, size=10, transform=plt.gcf().transFigure) fig2.text(0.70, 0.07, legend5, size=10, transform=plt.gcf().transFigure) legend6 = "{:,}".format(len(data3)) fig.text(0.82, 0.07, legend6, size=10, transform=plt.gcf().transFigure) fig2.text(0.82, 0.07, legend6, size=10, transform=plt.gcf().transFigure) legend6b = "{:,}".format(sum(integers3)) fig.text(0.89, 0.07, legend6b, size=10, transform=plt.gcf().transFigure) fig2.text(0.89, 0.07, legend6b, size=10, transform=plt.gcf().transFigure) if fourthFile is not None: file4 = readFileReferenceFree(fourthFile) integers4 = numpy.array(file4[:, 0]).astype(int) # keep original family sizes list_to_plot_original.append(integers4) colors.append("#04cec7") data4 = numpy.clip(integers4, bins[0], bins[-1]) list_to_plot.append(data4) name4 = name4.split(".tabular")[0] if len(name4) > 40: name4 = name4[:40] label.append(name4) data_array_list.append(file4) fig.text(0.05, 0.05, name4, size=10, transform=plt.gcf().transFigure) fig2.text(0.05, 0.05, name4, size=10, transform=plt.gcf().transFigure) legend1 = "{:,} ({:.3f})".format(numpy.bincount(data4)[1], float(numpy.bincount(data4)[1]) / len(data4)) fig.text(0.32, 0.05, legend1, size=10, transform=plt.gcf().transFigure) fig2.text(0.32, 0.05, legend1, size=10, transform=plt.gcf().transFigure) legend3b = "{:,} ({:.3f})".format(numpy.bincount(data4)[1], float(numpy.bincount(data4)[1]) / sum(integers4)) fig.text(0.45, 0.05, legend3b, size=10, transform=plt.gcf().transFigure) fig2.text(0.45, 0.05, legend3b, size=10, transform=plt.gcf().transFigure) legend4 = "{:,} ({:.3f})".format(len(integers4[integers4 > 20]), float(len(integers4[integers4 > 20])) / len(integers4)) fig.text(0.58, 0.05, legend4, size=10, transform=plt.gcf().transFigure) fig2.text(0.58, 0.05, legend4, size=10, transform=plt.gcf().transFigure) legend5 = "{:,} ({:.3f})".format(sum(integers4[integers4 > 20]), float(sum(integers4[integers4 > 20])) / sum(integers4)) fig.text(0.70, 0.05, legend5, size=10, transform=plt.gcf().transFigure) fig2.text(0.70, 0.05, legend5, size=10, transform=plt.gcf().transFigure) legend6 = "{:,}".format(len(data4)) fig.text(0.82, 0.05, legend6, size=10, transform=plt.gcf().transFigure) fig2.text(0.82, 0.05, legend6, size=10, transform=plt.gcf().transFigure) legend6b = "{:,}".format(sum(integers4)) fig.text(0.89, 0.05, legend6b, size=10, transform=plt.gcf().transFigure) fig2.text(0.89, 0.05, legend6b, size=10, transform=plt.gcf().transFigure) list_to_plot2 = list_to_plot if rel_freq: ylab = "Relative Frequency" else: ylab = "Absolute Frequency" # PLOT FSD based on tags fig.suptitle('Family Size Distribution (FSD) based on families', fontsize=14) ax = fig.add_subplot(1, 1, 1) ticks = numpy.arange(1, 22, 1) ticks1 = [str(_) for _ in ticks] ticks1[len(ticks1) - 1] = ">20" ax.set_xticks([], []) if rel_freq: w = [numpy.zeros_like(data) + 1. / len(data) for data in list_to_plot2] counts = ax.hist(list_to_plot2, weights=w, bins=numpy.arange(1, 23), stacked=False, edgecolor="black", color=colors, linewidth=1, label=label, align="left", alpha=0.7, rwidth=0.8) ax.set_ylim(0, 1.07) else: counts = ax.hist(list_to_plot2, bins=numpy.arange(1, 23), stacked=False, edgecolor="black", linewidth=1, label=label, align="left", alpha=0.7, rwidth=0.8, color=colors) ax.set_xticks(numpy.array(ticks)) ax.set_xticklabels(ticks1) ax.legend(loc='upper right', fontsize=14, frameon=True, bbox_to_anchor=(0.9, 1)) ax.set_ylabel(ylab, fontsize=14) ax.set_xlabel("Family size", fontsize=14) if log_axis: ax.set_yscale('log') ax.grid(b=True, which="major", color="#424242", linestyle=":") ax.margins(0.01, None) pdf.savefig(fig) # PLOT FSD based on PE reads fig2.suptitle('Family Size Distribution (FSD) based on PE reads', fontsize=14) ax2 = fig2.add_subplot(1, 1, 1) ticks = numpy.arange(1, 22) ticks1 = [str(_) for _ in ticks] ticks1[len(ticks1) - 1] = ">20" reads = [] reads_rel = [] barWidth = 0 - (len(list_to_plot) + 1) / 2 * 1. / (len(list_to_plot) + 1) ax2.set_xticks([], []) for i in range(len(list_to_plot2)): x = list(numpy.arange(1, 22).astype(float)) unique, c = numpy.unique(list_to_plot2[i], return_counts=True) y = unique * c if sum(list_to_plot_original[i] > 20) > 0: y[len(y) - 1] = sum(list_to_plot_original[i][list_to_plot_original[i] > 20]) y = [y[x[idx] == unique][0] if x[idx] in unique else 0 for idx in range(len(x))] reads.append(y) reads_rel.append(list(numpy.float_(y)) / sum(y)) if len(list_to_plot2) == 1: x = [xi * 0.5 for xi in x] w = 0.4 else: x = [xi + barWidth for xi in x] w = 1. / (len(list_to_plot) + 1) if rel_freq: ax2.bar(x, list(numpy.float_(y)) / numpy.sum(y), align="edge", width=w, edgecolor="black", label=label[i], linewidth=1, alpha=0.7, color=colors[i]) ax2.set_ylim(0, 1.07) else: ax2.bar(x, y, align="edge", width=w, edgecolor="black", label=label[i], linewidth=1, alpha=0.7, color=colors[i]) if i == len(list_to_plot2) - 1: barWidth += 1. / (len(list_to_plot) + 1) + 1. / (len(list_to_plot) + 1) else: barWidth += 1. / (len(list_to_plot) + 1) ax2.legend(loc='upper right', fontsize=14, frameon=True, bbox_to_anchor=(0.9, 1)) if len(list_to_plot2) == 1: ax2.set_xticks(numpy.array([xi + 0.2 for xi in x])) else: ax2.set_xticks(numpy.array(ticks)) ax2.set_xticklabels(ticks1) ax2.set_xlabel("Family size", fontsize=14) ax2.set_ylabel(ylab, fontsize=14) if log_axis: ax2.set_yscale('log') ax2.grid(b=True, which="major", color="#424242", linestyle=":") ax2.margins(0.01, None) pdf.savefig(fig2) plt.close() # write data to CSV file tags counts = [numpy.bincount(di, minlength=22)[1:] for di in list_to_plot2] # original counts of family sizes output_file.write("Values from family size distribution with all datasets based on families\n") output_file.write("\nFamily size") for i in label: output_file.write("{}{}".format(sep, i)) output_file.write("\n") j = 0 for fs in bins: if fs == 21: fs = ">20" else: fs = "={}".format(fs) output_file.write("FS{}{}".format(fs, sep)) for n in range(len(label)): output_file.write("{}{}".format(int(counts[n][j]), sep)) output_file.write("\n") j += 1 output_file.write("sum{}".format(sep)) for i in counts: output_file.write("{}{}".format(int(sum(i)), sep)) # write data to CSV file PE reads output_file.write("\n\nValues from family size distribution with all datasets based on PE reads\n") output_file.write("\nFamily size") for i in label: output_file.write("{}{}".format(sep, i)) output_file.write("\n") j = 0 for fs in bins: if fs == 21: fs = ">20" else: fs = "={}".format(fs) output_file.write("FS{}{}".format(fs, sep)) if len(label) == 1: output_file.write("{}{}".format(int(reads[0][j]), sep)) else: for n in range(len(label)): output_file.write("{}{}".format(int(reads[n][j]), sep)) output_file.write("\n") j += 1 output_file.write("sum{}".format(sep)) if len(label) == 1: output_file.write("{}{}".format(int(sum(numpy.concatenate(reads))), sep)) else: for i in reads: output_file.write("{}{}".format(int(sum(i)), sep)) output_file.write("\n") # Family size distribution after DCS and SSCS for dataset, data_o, name_file in zip(list_to_plot, data_array_list, label): tags = numpy.array(data_o[:, 2]) seq = numpy.array(data_o[:, 1]) data = numpy.array(dataset) data_o = numpy.array(data_o[:, 0]).astype(int) # find all unique tags and get the indices for ALL tags, but only once u, index_unique, c = numpy.unique(numpy.array(seq), return_counts=True, return_index=True) d = u[c > 1] # get family sizes, tag for duplicates duplTags_double = data[numpy.in1d(seq, d)] duplTags_double_o = data_o[numpy.in1d(seq, d)] duplTags = duplTags_double[0::2] # ab of DCS duplTags_o = duplTags_double_o[0::2] # ab of DCS duplTagsBA = duplTags_double[1::2] # ba of DCS duplTagsBA_o = duplTags_double_o[1::2] # ba of DCS # get family sizes for SSCS with no partner ab = numpy.where(tags == "ab")[0] abSeq = seq[ab] ab_o = data_o[ab] ab = data[ab] ba = numpy.where(tags == "ba")[0] baSeq = seq[ba] ba_o = data_o[ba] ba = data[ba] dataAB = ab[numpy.in1d(abSeq, d, invert=True)] dataAB_o = ab_o[numpy.in1d(abSeq, d, invert=True)] dataBA = ba[numpy.in1d(baSeq, d, invert=True)] dataBA_o = ba_o[numpy.in1d(baSeq, d, invert=True)] list1 = [duplTags_double, dataAB, dataBA] # list for plotting list1_o = [duplTags_double_o, dataAB_o, dataBA_o] # list for plotting # information for family size >= 3 dataAB_FS3 = dataAB[dataAB >= 3] dataAB_FS3_o = dataAB_o[dataAB_o >= 3] dataBA_FS3 = dataBA[dataBA >= 3] dataBA_FS3_o = dataBA_o[dataBA_o >= 3] duplTags_FS3 = duplTags[(duplTags >= 3) & (duplTagsBA >= 3)] # ab+ba with FS>=3 duplTags_FS3_BA = duplTagsBA[(duplTags >= 3) & (duplTagsBA >= 3)] # ba+ab with FS>=3 duplTags_double_FS3 = len(duplTags_FS3) + len(duplTags_FS3_BA) # both ab and ba strands with FS>=3 # original FS duplTags_FS3_o = duplTags_o[(duplTags_o >= 3) & (duplTagsBA_o >= 3)] # ab+ba with FS>=3 duplTags_FS3_BA_o = duplTagsBA_o[(duplTags_o >= 3) & (duplTagsBA_o >= 3)] # ba+ab with FS>=3 duplTags_double_FS3_o = sum(duplTags_FS3_o) + sum(duplTags_FS3_BA_o) # both ab and ba strands with FS>=3 fig = plt.figure() plt.subplots_adjust(left=0.12, right=0.97, bottom=0.3, top=0.94, hspace=0) if rel_freq: w = [numpy.zeros_like(dj) + 1. / len(numpy.concatenate(list1)) for dj in list1] plt.hist(list1, bins=numpy.arange(1, 23), stacked=True, label=["duplex", "ab", "ba"], weights=w, edgecolor="black", linewidth=1, align="left", color=["#FF0000", "#5FB404", "#FFBF00"], rwidth=0.8) plt.ylim(0, 1.07) else: plt.hist(list1, bins=numpy.arange(1, 23), stacked=True, label=["duplex", "ab", "ba"], edgecolor="black", linewidth=1, align="left", color=["#FF0000", "#5FB404", "#FFBF00"], rwidth=0.8) # tick labels of x axis ticks = numpy.arange(1, 22, 1) ticks1 = [str(_) for _ in ticks] ticks1[len(ticks1) - 1] = ">20" plt.xticks(numpy.array(ticks), ticks1) singl = len(data_o[data_o == 1]) last = len(data_o[data_o > 20]) # large families if log_axis: plt.yscale('log') plt.legend(loc='upper right', fontsize=14, bbox_to_anchor=(0.9, 1), frameon=True) plt.title("{}: FSD based on families".format(name_file), fontsize=14) plt.xlabel("Family size", fontsize=14) plt.ylabel(ylab, fontsize=14) plt.margins(0.01, None) plt.grid(b=True, which="major", color="#424242", linestyle=":") # extra information beneath the plot legend = "SSCS ab= \nSSCS ba= \nDCS (total)= \ntotal nr. of tags=" plt.text(0.1, 0.09, legend, size=10, transform=plt.gcf().transFigure) legend = "nr. of tags\n\n{:,}\n{:,}\n{:,} ({:,})\n{:,} ({:,})".format(len(dataAB), len(dataBA), len(duplTags), len(duplTags_double), (len(dataAB) + len(dataBA) + len(duplTags)), (len(ab) + len(ba))) plt.text(0.23, 0.09, legend, size=10, transform=plt.gcf().transFigure) legend5 = "PE reads\n\n{:,}\n{:,}\n{:,} ({:,})\n{:,} ({:,})".format(sum(dataAB_o), sum(dataBA_o), sum(duplTags_o), sum(duplTags_double_o), (sum(dataAB_o) + sum(dataBA_o) + sum(duplTags_o)), (sum(ab_o) + sum(ba_o))) plt.text(0.38, 0.09, legend5, size=10, transform=plt.gcf().transFigure) legend = "rel. freq. of tags\nunique\n{:.3f}\n{:.3f}\n{:.3f}\n{:,}".format( float(len(dataAB)) / (len(dataAB) + len(dataBA) + len(duplTags)), float(len(dataBA)) / (len(dataAB) + len(dataBA) + len(duplTags)), float(len(duplTags)) / (len(dataAB) + len(dataBA) + len(duplTags)), (len(dataAB) + len(dataBA) + len(duplTags))) plt.text(0.54, 0.09, legend, size=10, transform=plt.gcf().transFigure) legend = "total\n{:.3f}\n{:.3f}\n{:.3f} ({:.3f})\n{:,}".format(float(len(dataAB)) / (len(ab) + len(ba)), float(len(dataBA)) / (len(ab) + len(ba)), float(len(duplTags)) / (len(ab) + len(ba)), float(len(duplTags_double)) / (len(ab) + len(ba)), (len(ab) + len(ba))) plt.text(0.64, 0.09, legend, size=10, transform=plt.gcf().transFigure) legend1 = "\nsingletons:\nfamily size > 20:" plt.text(0.1, 0.03, legend1, size=10, transform=plt.gcf().transFigure) legend4 = "{:,}\n{:,}".format(singl, last) plt.text(0.23, 0.03, legend4, size=10, transform=plt.gcf().transFigure) legend3 = "{:.3f}\n{:.3f}".format(float(singl) / len(data), float(last) / len(data)) plt.text(0.64, 0.03, legend3, size=10, transform=plt.gcf().transFigure) legend3 = "\n\n{:,}".format(sum(data_o[data_o > 20])) plt.text(0.38, 0.03, legend3, size=10, transform=plt.gcf().transFigure) legend3 = "{:.3f}\n{:.3f}".format(float(singl) / sum(data_o), float(sum(data_o[data_o > 20])) / sum(data_o)) plt.text(0.84, 0.03, legend3, size=10, transform=plt.gcf().transFigure) legend = "PE reads\nunique\n{:.3f}\n{:.3f}\n{:.3f}\n{:,}".format( float(sum(dataAB_o)) / (sum(dataAB_o) + sum(dataBA_o) + sum(duplTags_o)), float(sum(dataBA_o)) / (sum(dataAB_o) + sum(dataBA_o) + sum(duplTags_o)), float(sum(duplTags_o)) / (sum(dataAB_o) + sum(dataBA_o) + sum(duplTags_o)), (sum(dataAB_o) + sum(dataBA_o) + sum(duplTags_o))) plt.text(0.74, 0.09, legend, size=10, transform=plt.gcf().transFigure) legend = "total\n{:.3f}\n{:.3f}\n{:.3f} ({:.3f})\n{:,}".format( float(sum(dataAB_o)) / (sum(ab_o) + sum(ba_o)), float(sum(dataBA_o)) / (sum(ab_o) + sum(ba_o)), float(sum(duplTags_o)) / (sum(ab_o) + sum(ba_o)), float(sum(duplTags_double_o)) / (sum(ab_o) + sum(ba_o)), (sum(ab_o) + sum(ba_o))) plt.text(0.84, 0.09, legend, size=10, transform=plt.gcf().transFigure) pdf.savefig(fig) plt.close() # PLOT FSD based on PE reads fig3 = plt.figure() plt.subplots_adjust(left=0.12, right=0.97, bottom=0.3, top=0.94, hspace=0) fig3.suptitle("{}: FSD based on PE reads".format(name_file), fontsize=14) ax2 = fig3.add_subplot(1, 1, 1) ticks = numpy.arange(1, 22) ticks1 = [str(_) for _ in ticks] ticks1[len(ticks1) - 1] = ">20" reads = [] reads_rel = [] # barWidth = 0 - (len(list_to_plot) + 1) / 2 * 1. / (len(list_to_plot) + 1) ax2.set_xticks([], []) list_y = [] label = ["duplex", "ab", "ba"] col = ["#FF0000", "#5FB404", "#FFBF00"] for i in range(len(list1)): x = list(numpy.arange(1, 22).astype(float)) unique, c = numpy.unique(list1[i], return_counts=True) y = unique * c if sum(list1_o[i] > 20) > 0: y[len(y) - 1] = sum(list1_o[i][list1_o[i] > 20]) y = [y[x[idx] == unique][0] if x[idx] in unique else 0 for idx in range(len(x))] reads.append(y) reads_rel.append(list(numpy.float_(y)) / sum(numpy.concatenate(list1_o))) if rel_freq: y = list(numpy.float_(y)) / sum(numpy.concatenate(list1_o)) ax2.set_ylim(0, 1.07) else: y = y list_y.append(y) if i == 0: ax2.bar(x, y, align="center", width=0.8, edgecolor="black", label=label[0], linewidth=1, alpha=1, color=col[0]) elif i == 1: ax2.bar(x, y, bottom=list_y[i - 1], align="center", width=0.8, edgecolor="black", label=label[1], linewidth=1, alpha=1, color=col[1]) elif i == 2: bars = numpy.add(list_y[0], list_y[1]).tolist() ax2.bar(x, y, bottom=bars, align="center", width=0.8, edgecolor="black", label=label[2], linewidth=1, alpha=1, color=col[2]) ax2.legend(loc='upper right', fontsize=14, frameon=True, bbox_to_anchor=(0.9, 1)) singl = len(data_o[data_o == 1]) last = len(data_o[data_o > 20]) # large families ax2.set_xticks(numpy.array(ticks)) ax2.set_xticklabels(ticks1) ax2.set_xlabel("Family size", fontsize=14) ax2.set_ylabel(ylab, fontsize=14) if log_axis: ax2.set_yscale('log') ax2.grid(b=True, which="major", color="#424242", linestyle=":") ax2.margins(0.01, None) # extra information beneath the plot legend = "SSCS ab= \nSSCS ba= \nDCS (total)= \ntotal nr. of tags=" plt.text(0.1, 0.09, legend, size=10, transform=plt.gcf().transFigure) legend = "nr. of tags\n\n{:,}\n{:,}\n{:,} ({:,})\n{:,} ({:,})".format(len(dataAB), len(dataBA), len(duplTags), len(duplTags_double), (len(dataAB) + len(dataBA) + len(duplTags)), (len(ab) + len(ba))) plt.text(0.23, 0.09, legend, size=10, transform=plt.gcf().transFigure) legend5 = "PE reads\n\n{:,}\n{:,}\n{:,} ({:,})\n{:,} ({:,})".format(sum(dataAB_o), sum(dataBA_o), sum(duplTags_o), sum(duplTags_double_o), (sum(dataAB_o) + sum(dataBA_o) + sum(duplTags_o)), (sum(ab_o) + sum(ba_o))) plt.text(0.38, 0.09, legend5, size=10, transform=plt.gcf().transFigure) legend = "rel. freq. of tags\nunique\n{:.3f}\n{:.3f}\n{:.3f}\n{:,}".format( float(len(dataAB)) / (len(dataAB) + len(dataBA) + len(duplTags)), float(len(dataBA)) / (len(dataAB) + len(dataBA) + len(duplTags)), float(len(duplTags)) / (len(dataAB) + len(dataBA) + len(duplTags)), (len(dataAB) + len(dataBA) + len(duplTags))) plt.text(0.54, 0.09, legend, size=10, transform=plt.gcf().transFigure) legend = "total\n{:.3f}\n{:.3f}\n{:.3f} ({:.3f})\n{:,}".format(float(len(dataAB)) / (len(ab) + len(ba)), float(len(dataBA)) / (len(ab) + len(ba)), float(len(duplTags)) / (len(ab) + len(ba)), float(len(duplTags_double)) / (len(ab) + len(ba)), (len(ab) + len(ba))) plt.text(0.64, 0.09, legend, size=10, transform=plt.gcf().transFigure) legend1 = "\nsingletons:\nfamily size > 20:" plt.text(0.1, 0.03, legend1, size=10, transform=plt.gcf().transFigure) legend4 = "{:,}\n{:,}".format(singl, last) plt.text(0.23, 0.03, legend4, size=10, transform=plt.gcf().transFigure) legend3 = "{:.3f}\n{:.3f}".format(float(singl) / len(data), float(last) / len(data)) plt.text(0.64, 0.03, legend3, size=10, transform=plt.gcf().transFigure) legend3 = "\n\n{:,}".format(sum(data_o[data_o > 20])) plt.text(0.38, 0.03, legend3, size=10, transform=plt.gcf().transFigure) legend3 = "{:.3f}\n{:.3f}".format(float(singl) / sum(data_o), float(sum(data_o[data_o > 20])) / sum(data_o)) plt.text(0.84, 0.03, legend3, size=10, transform=plt.gcf().transFigure) legend = "PE reads\nunique\n{:.3f}\n{:.3f}\n{:.3f}\n{:,}".format( float(sum(dataAB_o)) / (sum(dataAB_o) + sum(dataBA_o) + sum(duplTags_o)), float(sum(dataBA_o)) / (sum(dataAB_o) + sum(dataBA_o) + sum(duplTags_o)), float(sum(duplTags_o)) / (sum(dataAB_o) + sum(dataBA_o) + sum(duplTags_o)), (sum(dataAB_o) + sum(dataBA_o) + sum(duplTags_o))) plt.text(0.74, 0.09, legend, size=10, transform=plt.gcf().transFigure) legend = "total\n{:.3f}\n{:.3f}\n{:.3f} ({:.3f})\n{:,}".format( float(sum(dataAB_o)) / (sum(ab_o) + sum(ba_o)), float(sum(dataBA_o)) / (sum(ab_o) + sum(ba_o)), float(sum(duplTags_o)) / (sum(ab_o) + sum(ba_o)), float(sum(duplTags_double_o)) / (sum(ab_o) + sum(ba_o)), (sum(ab_o) + sum(ba_o))) plt.text(0.84, 0.09, legend, size=10, transform=plt.gcf().transFigure) pdf.savefig(fig3) plt.close() # write same information to a csv file count = numpy.bincount(data_o) # original counts of family sizes output_file.write("\nDataset:{}{}\n".format(sep, name_file)) output_file.write("max. family size:{}{}\n".format(sep, max(data_o))) output_file.write("absolute frequency:{}{}\n".format(sep, count[len(count) - 1])) output_file.write("relative frequency:{}{:.3f}\n\n".format(sep, float(count[len(count) - 1]) / sum(count))) output_file.write("median family size:{}{}\n".format(sep, numpy.median(numpy.array(data_o)))) output_file.write("mean family size:{}{}\n\n".format(sep, numpy.mean(numpy.array(data_o)))) output_file.write( "{}singletons:{}{}{}family size > 20:{}{}{}{}length of dataset:\n".format(sep, sep, sep, sep, sep, sep, sep, sep)) output_file.write( "{}nr. of tags{}rel. freq of tags{}rel.freq of PE reads{}nr. of tags{}rel. freq of tags{}nr. of PE reads{}rel. freq of PE reads{}total nr. of tags{}total nr. of PE reads\n".format( sep, sep, sep, sep, sep, sep, sep, sep, sep)) output_file.write("{}{}{}{}{:.3f}{}{:.3f}{}{}{}{:.3f}{}{}{}{:.3f}{}{}{}{}\n\n".format( name_file, sep, singl, sep, float(singl) / len(data), sep, float(singl) / sum(data_o), sep, last, sep, float(last) / len(data), sep, sum(data_o[data_o > 20]), sep, float(sum(data_o[data_o > 20])) / sum(data_o), sep, len(data), sep, sum(data_o))) # information for FS >= 1 output_file.write( "The unique frequencies were calculated from the dataset where the tags occured only once (=ab without DCS, ba without DCS)\n" "Whereas the total frequencies were calculated from the whole dataset (=including the DCS).\n\n") output_file.write( "FS >= 1{}nr. of tags{}nr. of PE reads{}rel. freq of tags{}{}rel. freq of PE reads:\n".format(sep, sep, sep, sep, sep)) output_file.write("{}{}{}unique:{}total{}unique{}total:\n".format(sep, sep, sep, sep, sep, sep)) output_file.write("SSCS ab{}{}{}{}{}{:.3f}{}{:.3f}{}{:.3f}{}{:.3f}\n".format( sep, len(dataAB), sep, sum(dataAB_o), sep, float(len(dataAB)) / (len(dataAB) + len(dataBA) + len(duplTags)), sep, float(len(dataAB)) / (len(ab) + len(ba)), sep, float(sum(dataAB_o)) / (sum(dataAB_o) + sum(dataBA_o) + sum(duplTags_o)), sep, float(sum(dataAB_o)) / (sum(ab_o) + sum(ba_o)))) output_file.write("SSCS ba{}{}{}{}{}{:.3f}{}{:.3f}{}{:.3f}{}{:.3f}\n".format( sep, len(dataBA), sep, sum(dataBA_o), sep, float(len(dataBA)) / (len(dataAB) + len(dataBA) + len(duplTags)), sep, float(len(dataBA)) / (len(ab) + len(ba)), sep, float(sum(dataBA_o)) / (sum(dataAB_o) + sum(dataBA_o) + sum(duplTags_o)), sep, float(sum(dataBA_o)) / (sum(ab_o) + sum(ba_o)))) output_file.write( "DCS (total){}{} ({}){}{} ({}){}{:.3f}{}{:.3f} ({:.3f}){}{:.3f}{}{:.3f} ({:.3f})\n".format( sep, len(duplTags), len(duplTags_double), sep, sum(duplTags_o), sum(duplTags_double_o), sep, float(len(duplTags)) / (len(dataAB) + len(dataBA) + len(duplTags)), sep, float(len(duplTags)) / (len(ab) + len(ba)), float(len(duplTags_double)) / (len(ab) + len(ba)), sep, float(sum(duplTags_o)) / (sum(dataAB_o) + sum(dataBA_o) + sum(duplTags_o)), sep, float(sum(duplTags_o)) / (sum(ab_o) + sum(ba_o)), float(sum(duplTags_double_o)) / (sum(ab_o) + sum(ba_o)))) output_file.write("total nr. of tags{}{}{}{}{}{}{}{}{}{}{}{}\n".format( sep, (len(dataAB) + len(dataBA) + len(duplTags)), sep, (sum(dataAB_o) + sum(dataBA_o) + sum(duplTags_o)), sep, (len(dataAB) + len(dataBA) + len(duplTags)), sep, (len(ab) + len(ba)), sep, (sum(dataAB_o) + sum(dataBA_o) + sum(duplTags_o)), sep, (sum(ab_o) + sum(ba_o)))) # information for FS >= 3 output_file.write( "\nFS >= 3{}nr. of tags{}nr. of PE reads{}rel. freq of tags{}{}rel. freq of PE reads:\n".format(sep, sep, sep, sep, sep)) output_file.write("{}{}{}unique:{}total{}unique{}total:\n".format(sep, sep, sep, sep, sep, sep)) output_file.write("SSCS ab{}{}{}{}{}{:.3f}{}{:.3f}{}{:.3f}{}{:.3f}\n".format( sep, len(dataAB_FS3), sep, sum(dataAB_FS3_o), sep, float(len(dataAB_FS3)) / (len(dataAB_FS3) + len(dataBA_FS3) + len(duplTags_FS3)), sep, float(len(dataAB_FS3)) / (len(dataBA_FS3) + len(dataBA_FS3) + duplTags_double_FS3), sep, float(sum(dataAB_FS3_o)) / (sum(dataAB_FS3_o) + sum(dataBA_FS3_o) + sum(duplTags_FS3_o)), sep, float(sum(dataAB_FS3_o)) / (sum(dataBA_FS3_o) + sum(dataBA_FS3_o) + duplTags_double_FS3_o))) output_file.write("SSCS ba{}{}{}{}{}{:.3f}{}{:.3f}{}{:.3f}{}{:.3f}\n".format( sep, len(dataBA_FS3), sep, sum(dataBA_FS3_o), sep, float(len(dataBA_FS3)) / (len(dataBA_FS3) + len(dataBA_FS3) + len(duplTags_FS3)), sep, float(len(dataBA_FS3)) / (len(dataBA_FS3) + len(dataBA_FS3) + duplTags_double_FS3), sep, float(sum(dataBA_FS3_o)) / (sum(dataBA_FS3_o) + sum(dataBA_FS3_o) + sum(duplTags_FS3_o)), sep, float(sum(dataBA_FS3_o)) / (sum(dataBA_FS3_o) + sum(dataBA_FS3_o) + duplTags_double_FS3_o))) output_file.write( "DCS (total){}{} ({}){}{} ({}){}{:.3f}{}{:.3f} ({:.3f}){}{:.3f}{}{:.3f} ({:.3f})\n".format( sep, len(duplTags_FS3), duplTags_double_FS3, sep, sum(duplTags_FS3_o), duplTags_double_FS3_o, sep, float(len(duplTags_FS3)) / (len(dataAB_FS3) + len(dataBA_FS3) + len(duplTags_FS3)), sep, float(len(duplTags_FS3)) / (len(dataAB_FS3) + len(dataBA_FS3) + duplTags_double_FS3), float(duplTags_double_FS3) / (len(dataAB_FS3) + len(dataBA_FS3) + duplTags_double_FS3), sep, float(sum(duplTags_FS3_o)) / (sum(dataAB_FS3_o) + sum(dataBA_FS3_o) + sum(duplTags_FS3_o)), sep, float(sum(duplTags_FS3_o)) / (sum(dataAB_FS3_o) + sum(dataBA_FS3_o) + duplTags_double_FS3_o), float(duplTags_double_FS3_o) / (sum(dataAB_FS3_o) + sum(dataBA_FS3_o) + duplTags_double_FS3_o))) output_file.write("total nr. of tags{}{}{}{}{}{}{}{}{}{}{}{}\n".format( sep, (len(dataAB_FS3) + len(dataBA_FS3) + len(duplTags_FS3)), sep, (sum(dataAB_FS3_o) + sum(dataBA_FS3_o) + sum(duplTags_FS3_o)), sep, (len(dataAB_FS3) + len(dataBA_FS3) + len(duplTags_FS3)), sep, (len(dataAB_FS3) + len(dataBA_FS3) + duplTags_double_FS3), sep, (sum(dataAB_FS3_o) + sum(dataBA_FS3_o) + sum(duplTags_FS3_o)), sep, (sum(dataAB_FS3_o) + sum(dataBA_FS3_o) + duplTags_double_FS3_o))) counts = [numpy.bincount(dk, minlength=22)[1:] for dk in list1] # original counts of family sizes output_file.write("\nValues from family size distribution based on families\n") output_file.write("{}duplex{}ab{}ba{}sum\n".format(sep, sep, sep, sep)) j = 0 for fs in bins: if fs == 21: fs = ">20" else: fs = "={}".format(fs) output_file.write("FS{}{}".format(fs, sep)) for n in range(3): output_file.write("{}{}".format(int(counts[n][j]), sep)) output_file.write("{}\n".format(counts[0][j] + counts[1][j] + counts[2][j])) j += 1 output_file.write("sum{}".format(sep)) for i in counts: output_file.write("{}{}".format(int(sum(i)), sep)) output_file.write("{}\n".format(sum(counts[0] + counts[1] + counts[2]))) output_file.write("\nValues from family size distribution based on PE reads\n") output_file.write("{}duplex{}ab{}ba{}sum\n".format(sep, sep, sep, sep)) j = 0 for fs in bins: if fs == 21: fs = ">20" else: fs = "={}".format(fs) output_file.write("FS{}{}".format(fs, sep)) for n in range(3): output_file.write("{}{}".format(int(reads[n][j]), sep)) output_file.write("{}\n".format(reads[0][j] + reads[1][j] + reads[2][j])) j += 1 output_file.write("sum{}".format(sep)) for i in reads: output_file.write("{}{}".format(int(sum(i)), sep)) output_file.write("{}\n".format(sum(reads[0] + reads[1] + reads[2]))) print("Files successfully created!") if __name__ == '__main__': sys.exit(compare_read_families(sys.argv))
mit
hitszxp/scikit-learn
examples/neural_networks/plot_rbm_logistic_classification.py
258
4609
""" ============================================================== Restricted Boltzmann Machine features for digit classification ============================================================== For greyscale image data where pixel values can be interpreted as degrees of blackness on a white background, like handwritten digit recognition, the Bernoulli Restricted Boltzmann machine model (:class:`BernoulliRBM <sklearn.neural_network.BernoulliRBM>`) can perform effective non-linear feature extraction. In order to learn good latent representations from a small dataset, we artificially generate more labeled data by perturbing the training data with linear shifts of 1 pixel in each direction. This example shows how to build a classification pipeline with a BernoulliRBM feature extractor and a :class:`LogisticRegression <sklearn.linear_model.LogisticRegression>` classifier. The hyperparameters of the entire model (learning rate, hidden layer size, regularization) were optimized by grid search, but the search is not reproduced here because of runtime constraints. Logistic regression on raw pixel values is presented for comparison. The example shows that the features extracted by the BernoulliRBM help improve the classification accuracy. """ from __future__ import print_function print(__doc__) # Authors: Yann N. Dauphin, Vlad Niculae, Gabriel Synnaeve # License: BSD import numpy as np import matplotlib.pyplot as plt from scipy.ndimage import convolve from sklearn import linear_model, datasets, metrics from sklearn.cross_validation import train_test_split from sklearn.neural_network import BernoulliRBM from sklearn.pipeline import Pipeline ############################################################################### # Setting up def nudge_dataset(X, Y): """ This produces a dataset 5 times bigger than the original one, by moving the 8x8 images in X around by 1px to left, right, down, up """ direction_vectors = [ [[0, 1, 0], [0, 0, 0], [0, 0, 0]], [[0, 0, 0], [1, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 1], [0, 0, 0]], [[0, 0, 0], [0, 0, 0], [0, 1, 0]]] shift = lambda x, w: convolve(x.reshape((8, 8)), mode='constant', weights=w).ravel() X = np.concatenate([X] + [np.apply_along_axis(shift, 1, X, vector) for vector in direction_vectors]) Y = np.concatenate([Y for _ in range(5)], axis=0) return X, Y # Load Data digits = datasets.load_digits() X = np.asarray(digits.data, 'float32') X, Y = nudge_dataset(X, digits.target) X = (X - np.min(X, 0)) / (np.max(X, 0) + 0.0001) # 0-1 scaling X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=0) # Models we will use logistic = linear_model.LogisticRegression() rbm = BernoulliRBM(random_state=0, verbose=True) classifier = Pipeline(steps=[('rbm', rbm), ('logistic', logistic)]) ############################################################################### # Training # Hyper-parameters. These were set by cross-validation, # using a GridSearchCV. Here we are not performing cross-validation to # save time. rbm.learning_rate = 0.06 rbm.n_iter = 20 # More components tend to give better prediction performance, but larger # fitting time rbm.n_components = 100 logistic.C = 6000.0 # Training RBM-Logistic Pipeline classifier.fit(X_train, Y_train) # Training Logistic regression logistic_classifier = linear_model.LogisticRegression(C=100.0) logistic_classifier.fit(X_train, Y_train) ############################################################################### # Evaluation print() print("Logistic regression using RBM features:\n%s\n" % ( metrics.classification_report( Y_test, classifier.predict(X_test)))) print("Logistic regression using raw pixel features:\n%s\n" % ( metrics.classification_report( Y_test, logistic_classifier.predict(X_test)))) ############################################################################### # Plotting plt.figure(figsize=(4.2, 4)) for i, comp in enumerate(rbm.components_): plt.subplot(10, 10, i + 1) plt.imshow(comp.reshape((8, 8)), cmap=plt.cm.gray_r, interpolation='nearest') plt.xticks(()) plt.yticks(()) plt.suptitle('100 components extracted by RBM', fontsize=16) plt.subplots_adjust(0.08, 0.02, 0.92, 0.85, 0.08, 0.23) plt.show()
bsd-3-clause
Gorbagzog/StageIAP
Poubelle/JeanCatalog2.py
1
1651
# coding: utf-8 get_ipython().magic('matplotlib osx') import pyfits import numpy as np import matplotlib.pyplot as plt import scipy from astropy.cosmology import Planck15 as cosmo def comov_volume(omega_sample, zmin, zmax): "Compute the comoving volume between two redshifts in a solid angle." V = omega_sample/41253*(cosmo.comoving_volume(zmax)-cosmo.comoving_volume( zmin)) return V """Load Jean's Catalog""" hdulist = pyfits.open('../Data/COSMOS2015_clustering_v2.0_clean.fits') tdata = hdulist[1].data hdulist.close() tdata = tdata[tdata['photo_z']<99] tdata = tdata[tdata['clean']>0] tdata = tdata[tdata['mstar_cosmo']>7.2] #Redshift selection zmin = 0.3 zmax=0.7 zbin = tdata[tdata['photo_z']>zmin] zbin = zbin[zbin['photo_z']<zmax] n = 100 #number of mass bins for our graph mmin = zbin['mstar_cosmo'].min() mmax = zbin['mstar_cosmo'].max() step = (mmax-mmin)/n #resolution omega_sample = 1.2 V = comov_volume(omega_sample, zmin, zmax) zmoy = np.average(zbin['photo_z']) #We take the average z to compute h h = cosmo.H(zmoy)/(100*cosmo.H0.unit) V_corr = V*h*h*h V_corr = V_corr.value N = np.empty(n) for i in range(n): "Compute the number of galaxies more massive than m for each mass bin" N[i] = np.sum(zbin['mstar_cosmo']>(mmin+step*i)) N = N / (V*h*h*h) #plot fig, ax = plt.subplots() ax.plot(np.linspace(mmin, mmax, num=n)*h,N) ax.set_title('Abundance for Jean\'s catalog') ax.set_ylabel('N(>M*), $h^{3}.Mpc^{-3}$', size=14) ax.set_xlabel('Mass, $log(M_{\odot}/h)$', size=14) plt.show() # a = 1/(1+zmoy) # print('Le redshift moyen est '+str(zmoy)+', le facteur d\'échelle est donc de '+str(a))
gpl-3.0
ishank08/scikit-learn
sklearn/linear_model/tests/test_omp.py
76
7752
# Author: Vlad Niculae # License: BSD 3 clause import numpy as np from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_warns from sklearn.utils.testing import ignore_warnings from sklearn.linear_model import (orthogonal_mp, orthogonal_mp_gram, OrthogonalMatchingPursuit, OrthogonalMatchingPursuitCV, LinearRegression) from sklearn.utils import check_random_state from sklearn.datasets import make_sparse_coded_signal n_samples, n_features, n_nonzero_coefs, n_targets = 20, 30, 5, 3 y, X, gamma = make_sparse_coded_signal(n_targets, n_features, n_samples, n_nonzero_coefs, random_state=0) G, Xy = np.dot(X.T, X), np.dot(X.T, y) # this makes X (n_samples, n_features) # and y (n_samples, 3) def test_correct_shapes(): assert_equal(orthogonal_mp(X, y[:, 0], n_nonzero_coefs=5).shape, (n_features,)) assert_equal(orthogonal_mp(X, y, n_nonzero_coefs=5).shape, (n_features, 3)) def test_correct_shapes_gram(): assert_equal(orthogonal_mp_gram(G, Xy[:, 0], n_nonzero_coefs=5).shape, (n_features,)) assert_equal(orthogonal_mp_gram(G, Xy, n_nonzero_coefs=5).shape, (n_features, 3)) def test_n_nonzero_coefs(): assert_true(np.count_nonzero(orthogonal_mp(X, y[:, 0], n_nonzero_coefs=5)) <= 5) assert_true(np.count_nonzero(orthogonal_mp(X, y[:, 0], n_nonzero_coefs=5, precompute=True)) <= 5) def test_tol(): tol = 0.5 gamma = orthogonal_mp(X, y[:, 0], tol=tol) gamma_gram = orthogonal_mp(X, y[:, 0], tol=tol, precompute=True) assert_true(np.sum((y[:, 0] - np.dot(X, gamma)) ** 2) <= tol) assert_true(np.sum((y[:, 0] - np.dot(X, gamma_gram)) ** 2) <= tol) def test_with_without_gram(): assert_array_almost_equal( orthogonal_mp(X, y, n_nonzero_coefs=5), orthogonal_mp(X, y, n_nonzero_coefs=5, precompute=True)) def test_with_without_gram_tol(): assert_array_almost_equal( orthogonal_mp(X, y, tol=1.), orthogonal_mp(X, y, tol=1., precompute=True)) def test_unreachable_accuracy(): assert_array_almost_equal( orthogonal_mp(X, y, tol=0), orthogonal_mp(X, y, n_nonzero_coefs=n_features)) assert_array_almost_equal( assert_warns(RuntimeWarning, orthogonal_mp, X, y, tol=0, precompute=True), orthogonal_mp(X, y, precompute=True, n_nonzero_coefs=n_features)) def test_bad_input(): assert_raises(ValueError, orthogonal_mp, X, y, tol=-1) assert_raises(ValueError, orthogonal_mp, X, y, n_nonzero_coefs=-1) assert_raises(ValueError, orthogonal_mp, X, y, n_nonzero_coefs=n_features + 1) assert_raises(ValueError, orthogonal_mp_gram, G, Xy, tol=-1) assert_raises(ValueError, orthogonal_mp_gram, G, Xy, n_nonzero_coefs=-1) assert_raises(ValueError, orthogonal_mp_gram, G, Xy, n_nonzero_coefs=n_features + 1) def test_perfect_signal_recovery(): idx, = gamma[:, 0].nonzero() gamma_rec = orthogonal_mp(X, y[:, 0], 5) gamma_gram = orthogonal_mp_gram(G, Xy[:, 0], 5) assert_array_equal(idx, np.flatnonzero(gamma_rec)) assert_array_equal(idx, np.flatnonzero(gamma_gram)) assert_array_almost_equal(gamma[:, 0], gamma_rec, decimal=2) assert_array_almost_equal(gamma[:, 0], gamma_gram, decimal=2) def test_estimator(): omp = OrthogonalMatchingPursuit(n_nonzero_coefs=n_nonzero_coefs) omp.fit(X, y[:, 0]) assert_equal(omp.coef_.shape, (n_features,)) assert_equal(omp.intercept_.shape, ()) assert_true(np.count_nonzero(omp.coef_) <= n_nonzero_coefs) omp.fit(X, y) assert_equal(omp.coef_.shape, (n_targets, n_features)) assert_equal(omp.intercept_.shape, (n_targets,)) assert_true(np.count_nonzero(omp.coef_) <= n_targets * n_nonzero_coefs) omp.set_params(fit_intercept=False, normalize=False) omp.fit(X, y[:, 0]) assert_equal(omp.coef_.shape, (n_features,)) assert_equal(omp.intercept_, 0) assert_true(np.count_nonzero(omp.coef_) <= n_nonzero_coefs) omp.fit(X, y) assert_equal(omp.coef_.shape, (n_targets, n_features)) assert_equal(omp.intercept_, 0) assert_true(np.count_nonzero(omp.coef_) <= n_targets * n_nonzero_coefs) def test_identical_regressors(): newX = X.copy() newX[:, 1] = newX[:, 0] gamma = np.zeros(n_features) gamma[0] = gamma[1] = 1. newy = np.dot(newX, gamma) assert_warns(RuntimeWarning, orthogonal_mp, newX, newy, 2) def test_swapped_regressors(): gamma = np.zeros(n_features) # X[:, 21] should be selected first, then X[:, 0] selected second, # which will take X[:, 21]'s place in case the algorithm does # column swapping for optimization (which is the case at the moment) gamma[21] = 1.0 gamma[0] = 0.5 new_y = np.dot(X, gamma) new_Xy = np.dot(X.T, new_y) gamma_hat = orthogonal_mp(X, new_y, 2) gamma_hat_gram = orthogonal_mp_gram(G, new_Xy, 2) assert_array_equal(np.flatnonzero(gamma_hat), [0, 21]) assert_array_equal(np.flatnonzero(gamma_hat_gram), [0, 21]) def test_no_atoms(): y_empty = np.zeros_like(y) Xy_empty = np.dot(X.T, y_empty) gamma_empty = ignore_warnings(orthogonal_mp)(X, y_empty, 1) gamma_empty_gram = ignore_warnings(orthogonal_mp)(G, Xy_empty, 1) assert_equal(np.all(gamma_empty == 0), True) assert_equal(np.all(gamma_empty_gram == 0), True) def test_omp_path(): path = orthogonal_mp(X, y, n_nonzero_coefs=5, return_path=True) last = orthogonal_mp(X, y, n_nonzero_coefs=5, return_path=False) assert_equal(path.shape, (n_features, n_targets, 5)) assert_array_almost_equal(path[:, :, -1], last) path = orthogonal_mp_gram(G, Xy, n_nonzero_coefs=5, return_path=True) last = orthogonal_mp_gram(G, Xy, n_nonzero_coefs=5, return_path=False) assert_equal(path.shape, (n_features, n_targets, 5)) assert_array_almost_equal(path[:, :, -1], last) def test_omp_return_path_prop_with_gram(): path = orthogonal_mp(X, y, n_nonzero_coefs=5, return_path=True, precompute=True) last = orthogonal_mp(X, y, n_nonzero_coefs=5, return_path=False, precompute=True) assert_equal(path.shape, (n_features, n_targets, 5)) assert_array_almost_equal(path[:, :, -1], last) def test_omp_cv(): y_ = y[:, 0] gamma_ = gamma[:, 0] ompcv = OrthogonalMatchingPursuitCV(normalize=True, fit_intercept=False, max_iter=10, cv=5) ompcv.fit(X, y_) assert_equal(ompcv.n_nonzero_coefs_, n_nonzero_coefs) assert_array_almost_equal(ompcv.coef_, gamma_) omp = OrthogonalMatchingPursuit(normalize=True, fit_intercept=False, n_nonzero_coefs=ompcv.n_nonzero_coefs_) omp.fit(X, y_) assert_array_almost_equal(ompcv.coef_, omp.coef_) def test_omp_reaches_least_squares(): # Use small simple data; it's a sanity check but OMP can stop early rng = check_random_state(0) n_samples, n_features = (10, 8) n_targets = 3 X = rng.randn(n_samples, n_features) Y = rng.randn(n_samples, n_targets) omp = OrthogonalMatchingPursuit(n_nonzero_coefs=n_features) lstsq = LinearRegression() omp.fit(X, Y) lstsq.fit(X, Y) assert_array_almost_equal(omp.coef_, lstsq.coef_)
bsd-3-clause
bryanwweber/UConnRCMPy
docs/conf.py
1
10603
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # UConnRCMPy documentation build configuration file, created by # sphinx-quickstart on Sat Jan 9 10:26:33 2016. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os import pkg_resources import datetime # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. on_travis = os.environ.get('TRAVIS') == 'True' if not on_travis: sys.path.insert(0, os.path.abspath('..')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.napoleon', 'sphinx.ext.mathjax', 'sphinx.ext.coverage', 'sphinx.ext.intersphinx', ] # add_function_parentheses = False autodoc_default_flags = ['members'] # autodoc_member_order = 'bysource' autoclass_content = 'class' napoleon_numpy_docstring = True napoleon_google_docstring = False # napoleon_use_ivar = True intersphinx_mapping = {'python': ('https://docs.python.org/3.6', None), 'numpy': ('http://docs.scipy.org/doc/numpy/', None), 'scipy': ('http://docs.scipy.org/doc/scipy/reference/', None), 'matplotlib': ('http://matplotlib.org/2.0.1/', None), 'cantera': ('http://cantera.github.io/docs/sphinx/html/', None), } # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The encoding of source files. # source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = 'UConnRCMPy' author = 'Bryan W. Weber' this_year = datetime.date.today().year copyright = '{}, {}'.format(this_year, author) # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The full version, including alpha/beta/rc tags. try: release = pkg_resources.get_distribution(project).version except: release = 'unknown' # The short X.Y version. version = '.'.join(release.split('.')[:1]) # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: # today = '' # Else, today_fmt is used as the format for a strftime call. # today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all # documents. default_role = 'py:obj' # If true, '()' will be appended to :func: etc. cross-reference text. # add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). # add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. # show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. # modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. # keep_warnings = False # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'alabaster' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. html_theme_options = { 'github_user': 'bryanwweber', 'github_repo': 'uconnrcmpy', 'github_banner': True, 'github_button': True, 'show_powered_by': True, } # Add any paths that contain custom themes here, relative to this directory. # html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". # html_title = None # A shorter title for the navigation bar. Default is the same as html_title. # html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. # html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. # html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. # html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. # html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. # html_use_smartypants = True # Custom sidebar templates, maps document names to template names. html_sidebars = { '**': [ 'about.html', 'navigation.html', 'relations.html', 'searchbox.html', ] } # Additional templates that should be rendered to pages, maps page names to # template names. # html_additional_pages = {} # If false, no module index is generated. # html_domain_indices = True # If false, no index is generated. # html_use_index = True # If true, the index is split into individual pages for each letter. # html_split_index = False # If true, links to the reST sources are added to the pages. # html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. # html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. # html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. # html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). # html_file_suffix = None # Language to be used for generating the HTML full-text search index. # Sphinx supports the following languages: # 'da', 'de', 'en', 'es', 'fi', 'fr', 'h', 'it', 'ja' # 'nl', 'no', 'pt', 'ro', 'r', 'sv', 'tr' # html_search_language = 'en' # A dictionary with options for the search language support, empty by default. # Now only 'ja' uses this config value # html_search_options = {'type': 'default'} # The name of a javascript file (relative to the configuration directory) that # implements a search results scorer. If empty, the default will be used. # html_search_scorer = 'scorer.js' # Output file base name for HTML help builder. htmlhelp_basename = 'UConnRCMPydoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # 'preamble': '', # Latex figure (float) alignment # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'UConnRCMPy.tex', 'UConnRCMPy Documentation', 'Bryan W. Weber', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. # latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. # latex_use_parts = False # If true, show page references after internal links. # latex_show_pagerefs = False # If true, show URL addresses after external links. # latex_show_urls = False # Documents to append as an appendix to all manuals. # latex_appendices = [] # If false, no module index is generated. # latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'uconnrcmpy', 'UConnRCMPy Documentation', [author], 1) ] # If true, show URL addresses after external links. # man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'UConnRCMPy', 'UConnRCMPy Documentation', author, 'UConnRCMPy', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. # texinfo_appendices = [] # If false, no module index is generated. # texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. # texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. # texinfo_no_detailmenu = False
bsd-3-clause
carolinarias/Sensing-the-City
data_visualization/web/radialboxplots/cumulativedata.py
1
4503
#!/usr/bin/env python # This script generate the csv with cumulative data to be plotted in radial box plot from monary import Monary from datetime import datetime, timedelta from pprint import pprint from pymongo import MongoClient import sys import numpy as np import numpy.ma as ma import json import collections import time import glob import struct import pandas as pd start = datetime.strptime('2013-11-01', '%Y-%m-%d') # inizio dal primo giorno completo #stop = datetime.strptime('2013-11-08', '%Y-%m-%d') # fine ultimo giorno completo #start = datetime.strptime('2013-11-08', '%Y-%m-%d') # inizio dal primo giorno completo #stop = datetime.strptime('2013-11-15', '%Y-%m-%d') # fine ultimo giorno completo #start = datetime.strptime('2013-11-15', '%Y-%m-%d') # inizio dal primo giorno completo #stop = datetime.strptime('2013-11-22', '%Y-%m-%d') # fine ultimo giorno completo #start = datetime.strptime('2013-11-22', '%Y-%m-%d') # inizio dal primo giorno completo #stop = datetime.strptime('2013-11-29', '%Y-%m-%d') # fine ultimo giorno completo #start = datetime.strptime('2013-11-29', '%Y-%m-%d') # inizio dal primo giorno completo #stop = datetime.strptime('2013-12-06', '%Y-%m-%d') # fine ultimo giorno completo #start = datetime.strptime('2013-12-06', '%Y-%m-%d') # inizio dal primo giorno completo #stop = datetime.strptime('2013-12-13', '%Y-%m-%d') # fine ultimo giorno completo #start = datetime.strptime('2013-12-13', '%Y-%m-%d') # inizio dal primo giorno completo #stop = datetime.strptime('2013-12-20', '%Y-%m-%d') # fine ultimo giorno completo #start = datetime.strptime('2013-12-20', '%Y-%m-%d') # inizio dal primo giorno completo #stop = datetime.strptime('2013-12-27', '%Y-%m-%d') # fine ultimo giorno completo #start = datetime.strptime('2013-12-25', '%Y-%m-%d') # inizio dal primo giorno completo stop = datetime.strptime('2014-01-01', '%Y-%m-%d') # fine ultimo giorno completo #stop = datetime.strptime('2014-01-01', '%Y-%m-%d') # fine ultimo giorno completo print start startm = str(start.month) startd = str(start.day) print stop stopm = str(stop.month) stopd = str(stop.day) print '-------------------------' ## DATABASE CONNECTION USING MONARY client = Monary('localhost', 27017) obj = {} while (start < stop) : # pipeline = [{"$match": {"ts" : start} },{"$unwind" : "$data_mi"},{"$group" : {"_id" : "$cellId", "smsin" : {"$sum" : "$data_mi.sms_in"}}}] # only sms_in values pipeline = [{"$match": {"ts" : start} },{"$unwind" : "$data_mi"},{"$group" : {"_id" : "$cellId", "smsin" : {"$sum" : "$data_mi.sms_in"}, "smsout" : {"$sum" : "$data_mi.sms_out"}, "callin" : {"$sum" : "$data_mi.call_in"}, "callout" : {"$sum" : "$data_mi.call_out"}, "inttraf" : {"$sum" : "$data_mi.int_traf"}}}] obj[start] = client.aggregate( "tlc", # database name "data", # collection name for real data pipeline, # query agregate pipeline for while cicle # TODO use this for all the information set ["_id", "smsin", "smsout", "callin", "callout", "inttraf"], # field names (in Mongo record) ["int32", "float64", "float64", "float64", "float64", "float64"] # Monary field types # TODO use this for only smsin subset # ["_id", "smsin"], # field names (in Mongo record) # ["int32", "float64"] # Monary field types ) start = start + timedelta(minutes = 10) smsin_obj = {} smsout_obj = {} callin_obj = {} callout_obj = {} inttraf_obj = {} series = pd.Series(obj) d = {} d["timestamp"] = [] d["smsin"] = [] d["smsout"] = [] d["callin"] = [] d["callout"] = [] d["inttraf"] = [] #pprint(series) for ts, array in series.iteritems(): # pprint(array[1].data) # vector of values long the number of cells sum_smsin = sum(array[1].data) sum_smsout = sum(array[2].data) sum_callin = sum(array[3].data) sum_callout = sum(array[4].data) sum_inttraf = sum(array[5].data) # print(sum(array[1].data)) # print type(sum_values) d["timestamp"] += [ts] d["smsin"] += [sum_smsin] d["smsout"] += [sum_smsout] d["callin"] += [sum_callin] d["callout"] += [sum_callout] d["inttraf"] += [sum_inttraf] df_all = pd.DataFrame(d) print df_all df_all.to_csv('../csv_graph/cumulative_'+startm+'-'+startd+'_'+stopm+'-'+stopd+'.csv', sep=',', index_label='index', encoding='utf-8') # ATT the labels on the d list and the index_label='index' must match the names used on the javascript side
mit
nealbob/nealbob.github.io
code/MLdemo.py
1
5234
import econlearn import numpy as np import sklearn from matplotlib import pyplot as plt X = np.random.rand(100) Y = np.maximum(X - 0.5, 0) + np.random.normal(scale=0.1, size=100) Xt = np.arange(min(X), max(X), 0.001) Nt = Xt.shape[0] folder = '/home/nealbob/Dropbox/Presentations/ML/' def plot_line(X, Y, Xt, Yt, name): plt.scatter(X, Y, marker="+") plt.xlim(0,1) plt.ylim(-0.2,0.8) Y_act = np.maximum(Xt - 0.5, 0) plt.plot(Xt, Y_act, color="blue", linewidth="0.3") plt.plot(Xt, Yt, color="g", linewidth="2.5") plt.savefig(folder + name, dpi=200) plt.show() plt.scatter(X, Y, marker="+") plt.xlim(0,1) plt.ylim(-0.2,0.8) plt.savefig(folder + "data.png", dpi=200) plt.show() plt.scatter(X, Y, marker="+") plt.xlim(0,1) plt.ylim(-0.2,0.8) Yt = np.maximum(Xt - 0.5, 0) plt.plot(Xt, Yt, color="blue", linewidth="0.3") plt.savefig(folder + "datamodel.png", dpi=200) plt.show() ols = sklearn.linear_model.LinearRegression(fit_intercept=True) ols.fit(X.reshape([100,1]), Y) Yt = ols.predict(Xt.reshape([Nt,1])) plot_line(X, Y, Xt, Yt, 'linear.png') tile = econlearn.TilecodeRegressor(1, [4], 1) tile.fit(X, Y) Yt = tile.predict(Xt) plot_line(X, Y, Xt, Yt, 'bias.png') tile = econlearn.TilecodeRegressor(1, [40], 1) tile.fit(X, Y) Yt = tile.predict(Xt) plot_line(X, Y, Xt, Yt, 'noise.png') Y_act = np.maximum(X - 0.5, 0) ols.fit(Y_act.reshape([100,1]), Y) Yt = np.maximum(Xt - 0.5, 0) Yt = ols.predict(Yt.reshape([Nt,1])) plot_line(X, Y, Xt, Yt, 'true.png') R2 = np.zeros(30) CV = np.zeros(30) for i in range(30): for j in range(1000): Xtemp = np.random.rand(100) Ytemp = np.maximum(Xtemp - 0.5, 0) + np.random.normal(scale=0.1, size=100) Xtest = np.random.rand(1000) Ytest = np.maximum(Xtest - 0.5, 0) + np.random.normal(scale=0.1, size=1000) tile = econlearn.TilecodeRegressor(1, [i+1], 1) tile.fit(Xtemp, Ytemp, score=True) R2[i] += (tile.tile.R2)*0.001 Ytt = tile.predict(Xtest) ss_res = np.dot((Ytest - Ytt),(Ytest - Ytt)) ymean = np.mean(Ytest) ss_tot = np.dot((Ytest-ymean),(Ytest-ymean)) CV[i] += (1-ss_res/ss_tot)*0.001 plt.plot(range(1,31), CV, label="out-of-sample fit") plt.plot(range(1,31), R2, label="in-sample fit") plt.xlabel("number of bins") plt.ylabel("$R^2$") plt.legend() plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=2, mode="expand", borderaxespad=0.) plt.ylim(0,1) plt.xlim(0,30) plt.savefig(folder + 'performance.png', dpi=200) imax = np.where(CV == np.max(CV)) imax[0][0] = imax[0][0] + 1 plt.scatter(imax, np.array(CV[imax])) plt.ylim(0,1) plt.xlim(0,30) plt.savefig(folder + 'maxperformance.png', dpi=200) plt.show() tile = econlearn.TilecodeRegressor(1, [imax[0][0]], 1) tile.fit(X, Y) Yt = tile.predict(Xt) plot_line(X, Y, Xt, Yt, 'good.png') tile = econlearn.TilecodeRegressor(1, [3], 80) tile.fit(X, Y, method="SGD", n_iters=30, eta=0.15) Yt = tile.predict(Xt) plot_line(X, Y, Xt, Yt, 'ensemble.png') CV_OLS = np.zeros(30) CV_ML = np.zeros(30) CV_ML2 = np.zeros(30) CV_ACT = np.zeros(30) sample = np.zeros(30) for i in range(30): N = 8 + 5*i sample[i] = N for j in range(200): X = np.random.rand(N) Y = np.maximum(X - 0.5, 0) + np.random.normal(scale=0.1, size=N) Xtest = np.random.rand(1000) Ytest = np.maximum(Xtest - 0.5, 0) + np.random.normal(scale=0.1, size=1000) #tile = econlearn.TilecodeRegressor(1, [8], 1) #tile.fit(X, Y) #Yt = tile.predict(Xtest) #ss_res = np.dot((Ytest - Yt),(Ytest - Yt)) #ymean = np.mean(Ytest) #ss_tot = np.dot((Ytest-ymean),(Ytest-ymean)) #CV_ML[i] += (1-ss_res/ss_tot)*(1/200.0) tile = econlearn.TilecodeRegressor(1, [3], 80) tile.fit(X, Y, method="SGD", n_iters=30, eta=0.15) Yt = tile.predict(Xtest) ss_res = np.dot((Ytest - Yt),(Ytest - Yt)) ymean = np.mean(Ytest) ss_tot = np.dot((Ytest-ymean),(Ytest-ymean)) CV_ML2[i] += (1-ss_res/ss_tot)*(1/200.0) ols.fit(X.reshape([N,1]), Y) Yt = ols.predict(Xtest.reshape([1000,1])) ss_res = np.dot((Ytest - Yt),(Ytest - Yt)) ymean = np.mean(Ytest) ss_tot = np.dot((Ytest-ymean),(Ytest-ymean)) CV_OLS[i] += (1-ss_res/ss_tot)*(1/200.0) Y_act = np.maximum(X - 0.5, 0) ols.fit(Y_act.reshape([N,1]), Y) X_act = np.maximum(Xtest - 0.5, 0) Yt = ols.predict(X_act.reshape([1000,1])) ss_res = np.dot((Ytest - Yt),(Ytest - Yt)) ymean = np.mean(Ytest) ss_tot = np.dot((Ytest-ymean),(Ytest-ymean)) CV_ACT[i] += (1-ss_res/ss_tot)*(1/200.0) plt.plot(sample, CV_OLS, color="blue", label="OLS: linear") plt.plot(sample, CV_ACT, color="blue", linestyle="dashed", label="OLS: true") plt.xlabel("sample size") plt.ylabel("out-of-sample $R^2$") plt.ylim(0,0.9) #plt.plot(sample, CV_ML, color="green", linestyle="dashed", label="ML: step function") plt.plot(sample, CV_ML2, color="green", label="ML") plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=3, mode="expand", borderaxespad=0.) plt.savefig(folder + 'samplesize2.png', dpi=200) plt.show()
mit
BasuruK/sGlass
Outdoor_Object_Recognition_Engine/train_CNN.py
1
7200
from keras.models import Sequential from keras.layers import Conv2D from keras.layers import MaxPooling2D from keras.layers import Flatten from keras.layers import Dense, Dropout from keras.callbacks import History, ModelCheckpoint from keras.preprocessing.image import ImageDataGenerator from keras.models import load_model from keras.preprocessing import image as img import datetime import os.path import matplotlib.pyplot as plt import numpy as np # Initialize the CNN classifier = Sequential() # Step 1 - Convolution classifier.add(Conv2D(32, (5, 5), input_shape = (64, 64, 3), activation = 'relu', padding='same')) classifier.add(MaxPooling2D(pool_size = (2, 2))) # Step 2 - Add more Convolution Layers making it Deep followed by a Pooling Layer classifier.add(Conv2D(32, (5, 5), activation = 'relu', padding='same')) classifier.add(MaxPooling2D(pool_size = (2, 2))) classifier.add(Dropout(0.25)) classifier.add(Conv2D(64, (5, 5), activation = 'relu', padding='same')) classifier.add(MaxPooling2D(pool_size = (2, 2))) classifier.add(Conv2D(128, (5, 5), activation = 'relu', padding='same')) classifier.add(MaxPooling2D(pool_size = (2, 2))) classifier.add(Dropout(0.25)) # Step 3 - Flattening classifier.add(Flatten()) # Step 4 - Fully Connected Neural Network # Hidden Layer 1 - Activation Function RELU classifier.add(Dense(units = 512, activation = 'relu')) classifier.add(Dropout(0.5)) classifier.add(Dense(units = 3, activation = 'softmax')) # Compile the CNN # Categorical Crossentropy - to classify between multiple classes of images classifier.compile(optimizer = 'adam', loss = 'categorical_crossentropy', metrics = ['accuracy']) # Image Augmentation and Training Section # Image Augmentation to prevent Overfitting (Applying random transformation on images to train set.ie. # scaling, rotating and stretching) train_datagen = ImageDataGenerator( rescale=1./255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True, vertical_flip=True, rotation_range=0.3, width_shift_range=0.3, height_shift_range=0.3 ) test_datagen = ImageDataGenerator(rescale=1./255) # Load the training dataset folder training_set = train_datagen.flow_from_directory( 'dataset/training_set', target_size=(64, 64), batch_size=105, class_mode='categorical') # Load the test data set folder test_set = test_datagen.flow_from_directory( 'dataset/test_set', target_size=(64, 64), batch_size=105, class_mode='categorical') # Get the accuracy and loss data to plot the graph history = History() # checkpoint = ModelCheckpoint(filepath='models_backups/' + str(str(datetime.datetime.now().hour)), monitor='val_loss', # verbose=0, mode='auto', period=1) print(classifier.summary()) # Fit the clasifier on the CNN data if os.path.isfile('my_model.h5') == False: classifier.fit_generator( training_set, steps_per_epoch=3000, epochs=5, validation_data=test_set, validation_steps=3000, callbacks=[history] ) # Save the generated model to my_model.h5 classifier.save('my_model.h5') else: classifier = load_model('my_model.h5') # Returns the labels for the classes according to the folder structre of clases def get_labels_for_clases(): # return ['car', 'cat', 'dog', 'shoe'] return ['car', 'cat', 'dog'] # Run prediction for a single image def predict_for_single_image(image): # label the images according the folder structure lables = get_labels_for_clases() out = classifier.predict_classes(image, verbose=0) return lables[out[0]] # Run Prediction for image and give the output as percentages for each class similarities def predict_probabilities_for_classes(classifier, image): labels = get_labels_for_clases() probabilities = classifier.predict(image) print(probabilities) # Expand two arrays to relevant class structure probabilities = [(format(x * 100, '.2f') + "%") for x in probabilities[0]] print(list(zip(labels, probabilities))) # Plot the graphs def plot_graphs_on_data(history): # Plot Accuracy plt.plot(history.history['acc']) plt.plot(history.history['val_acc']) plt.title('Model Accuracy') plt.ylabel('Accuracy') plt.xlabel('Epocs') plt.legend(['Train Data', 'Test Data'], loc='upper left') plt.show() # Plot Loss plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('Model Loss') plt.ylabel('Loss') plt.xlabel('Epocs') plt.legend(['Train Data', 'Test Data'], loc='upper left') plt.show() # Preparedness image def preprocess_image(folder_name, file_name): image = img.load_img(folder_name + '/' + file_name, target_size=(64, 64)) test_image = img.img_to_array(image) test_image = np.expand_dims(test_image, axis=0) return test_image # Run custom set testing def custom_set_accuracy_test(input_folder_name): files_in_directory = os.listdir(input_folder_name + '/') match_count = 0 fail_count = 0 match_and_fail_count_list = [] columns = 6 i = 0 plt.figure(figsize=(15, 15)) # for each image in the directory run prediction and display that with the image for file_name in files_in_directory: test_image = preprocess_image(input_folder_name, file_name) prediction_for_image = predict_for_single_image(test_image) # Plot the images on a graph plt.subplot(len(files_in_directory) / columns + 1, columns, i + 1) if file_name.split(".")[0] == prediction_for_image: match_and_fail_count_list.append(file_name + " =======>" + " Match") match_count += 1 # Plot Positive Images on the graph plt.title(file_name) plt.xlabel(prediction_for_image) plt.imshow(plt.imread(input_folder_name + '/' + file_name)) else: match_and_fail_count_list.append( file_name + " =======>" + " Fail. " + "Predicted => " + prediction_for_image) fail_count += 1 # Plot Positive Images on the graph plt.title(file_name) plt.xlabel(prediction_for_image) plt.imshow(plt.imread(input_folder_name + '/' + file_name)) i += 1 plt.tight_layout(pad=0.4, w_pad=0.5, h_pad=1.0) plt.show() [print(x) for x in match_and_fail_count_list] # Print each item in list custom_set_accuracy = (match_count / len(files_in_directory)) * 100 print('Total Images : ', len(files_in_directory)) print('Successes : ', match_count) print('Failures : ', fail_count) print("Custom Set accuracy = ", custom_set_accuracy) # Draw the Graph for the predicted Results # use this only after training. # plot_graphs_on_data(history) # image = img.load_img('custom_test/dog.1.jpg', target_size=(64, 64)) # test_image = img.img_to_array(image) # test_image = np.expand_dims(test_image, axis=0) # print(training_set.class_indices) # predict_probabilities_for_classes(classifier, test_image) custom_set_accuracy_test('custom_test')
gpl-3.0
jkarnows/scikit-learn
sklearn/neighbors/base.py
115
29783
"""Base and mixin classes for nearest neighbors""" # Authors: Jake Vanderplas <[email protected]> # Fabian Pedregosa <[email protected]> # Alexandre Gramfort <[email protected]> # Sparseness support by Lars Buitinck <[email protected]> # Multi-output support by Arnaud Joly <[email protected]> # # License: BSD 3 clause (C) INRIA, University of Amsterdam import warnings from abc import ABCMeta, abstractmethod import numpy as np from scipy.sparse import csr_matrix, issparse from .ball_tree import BallTree from .kd_tree import KDTree from ..base import BaseEstimator from ..metrics import pairwise_distances from ..metrics.pairwise import PAIRWISE_DISTANCE_FUNCTIONS from ..utils import check_X_y, check_array from ..utils.fixes import argpartition from ..utils.validation import DataConversionWarning from ..utils.validation import NotFittedError from ..externals import six VALID_METRICS = dict(ball_tree=BallTree.valid_metrics, kd_tree=KDTree.valid_metrics, # The following list comes from the # sklearn.metrics.pairwise doc string brute=(list(PAIRWISE_DISTANCE_FUNCTIONS.keys()) + ['braycurtis', 'canberra', 'chebyshev', 'correlation', 'cosine', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule', 'wminkowski'])) VALID_METRICS_SPARSE = dict(ball_tree=[], kd_tree=[], brute=PAIRWISE_DISTANCE_FUNCTIONS.keys()) class NeighborsWarning(UserWarning): pass # Make sure that NeighborsWarning are displayed more than once warnings.simplefilter("always", NeighborsWarning) def _check_weights(weights): """Check to make sure weights are valid""" if weights in (None, 'uniform', 'distance'): return weights elif callable(weights): return weights else: raise ValueError("weights not recognized: should be 'uniform', " "'distance', or a callable function") def _get_weights(dist, weights): """Get the weights from an array of distances and a parameter ``weights`` Parameters =========== dist: ndarray The input distances weights: {'uniform', 'distance' or a callable} The kind of weighting used Returns ======== weights_arr: array of the same shape as ``dist`` if ``weights == 'uniform'``, then returns None """ if weights in (None, 'uniform'): return None elif weights == 'distance': # if user attempts to classify a point that was zero distance from one # or more training points, those training points are weighted as 1.0 # and the other points as 0.0 if dist.dtype is np.dtype(object): for point_dist_i, point_dist in enumerate(dist): # check if point_dist is iterable # (ex: RadiusNeighborClassifier.predict may set an element of # dist to 1e-6 to represent an 'outlier') if hasattr(point_dist, '__contains__') and 0. in point_dist: dist[point_dist_i] = point_dist == 0. else: dist[point_dist_i] = 1. / point_dist else: with np.errstate(divide='ignore'): dist = 1. / dist inf_mask = np.isinf(dist) inf_row = np.any(inf_mask, axis=1) dist[inf_row] = inf_mask[inf_row] return dist elif callable(weights): return weights(dist) else: raise ValueError("weights not recognized: should be 'uniform', " "'distance', or a callable function") class NeighborsBase(six.with_metaclass(ABCMeta, BaseEstimator)): """Base class for nearest neighbors estimators.""" @abstractmethod def __init__(self): pass def _init_params(self, n_neighbors=None, radius=None, algorithm='auto', leaf_size=30, metric='minkowski', p=2, metric_params=None, **kwargs): if kwargs: warnings.warn("Passing additional arguments to the metric " "function as **kwargs is deprecated " "and will no longer be supported in 0.18. " "Use metric_params instead.", DeprecationWarning, stacklevel=3) if metric_params is None: metric_params = {} metric_params.update(kwargs) self.n_neighbors = n_neighbors self.radius = radius self.algorithm = algorithm self.leaf_size = leaf_size self.metric = metric self.metric_params = metric_params self.p = p if algorithm not in ['auto', 'brute', 'kd_tree', 'ball_tree']: raise ValueError("unrecognized algorithm: '%s'" % algorithm) if algorithm == 'auto': alg_check = 'ball_tree' else: alg_check = algorithm if callable(metric): if algorithm == 'kd_tree': # callable metric is only valid for brute force and ball_tree raise ValueError( "kd_tree algorithm does not support callable metric '%s'" % metric) elif metric not in VALID_METRICS[alg_check]: raise ValueError("Metric '%s' not valid for algorithm '%s'" % (metric, algorithm)) if self.metric_params is not None and 'p' in self.metric_params: warnings.warn("Parameter p is found in metric_params. " "The corresponding parameter from __init__ " "is ignored.", SyntaxWarning, stacklevel=3) effective_p = metric_params['p'] else: effective_p = self.p if self.metric in ['wminkowski', 'minkowski'] and effective_p < 1: raise ValueError("p must be greater than one for minkowski metric") self._fit_X = None self._tree = None self._fit_method = None def _fit(self, X): if self.metric_params is None: self.effective_metric_params_ = {} else: self.effective_metric_params_ = self.metric_params.copy() effective_p = self.effective_metric_params_.get('p', self.p) if self.metric in ['wminkowski', 'minkowski']: self.effective_metric_params_['p'] = effective_p self.effective_metric_ = self.metric # For minkowski distance, use more efficient methods where available if self.metric == 'minkowski': p = self.effective_metric_params_.pop('p', 2) if p < 1: raise ValueError("p must be greater than one " "for minkowski metric") elif p == 1: self.effective_metric_ = 'manhattan' elif p == 2: self.effective_metric_ = 'euclidean' elif p == np.inf: self.effective_metric_ = 'chebyshev' else: self.effective_metric_params_['p'] = p if isinstance(X, NeighborsBase): self._fit_X = X._fit_X self._tree = X._tree self._fit_method = X._fit_method return self elif isinstance(X, BallTree): self._fit_X = X.data self._tree = X self._fit_method = 'ball_tree' return self elif isinstance(X, KDTree): self._fit_X = X.data self._tree = X self._fit_method = 'kd_tree' return self X = check_array(X, accept_sparse='csr') n_samples = X.shape[0] if n_samples == 0: raise ValueError("n_samples must be greater than 0") if issparse(X): if self.algorithm not in ('auto', 'brute'): warnings.warn("cannot use tree with sparse input: " "using brute force") if self.effective_metric_ not in VALID_METRICS_SPARSE['brute']: raise ValueError("metric '%s' not valid for sparse input" % self.effective_metric_) self._fit_X = X.copy() self._tree = None self._fit_method = 'brute' return self self._fit_method = self.algorithm self._fit_X = X if self._fit_method == 'auto': # A tree approach is better for small number of neighbors, # and KDTree is generally faster when available if (self.n_neighbors is None or self.n_neighbors < self._fit_X.shape[0] // 2): if self.effective_metric_ in VALID_METRICS['kd_tree']: self._fit_method = 'kd_tree' else: self._fit_method = 'ball_tree' else: self._fit_method = 'brute' if self._fit_method == 'ball_tree': self._tree = BallTree(X, self.leaf_size, metric=self.effective_metric_, **self.effective_metric_params_) elif self._fit_method == 'kd_tree': self._tree = KDTree(X, self.leaf_size, metric=self.effective_metric_, **self.effective_metric_params_) elif self._fit_method == 'brute': self._tree = None else: raise ValueError("algorithm = '%s' not recognized" % self.algorithm) return self class KNeighborsMixin(object): """Mixin for k-neighbors searches""" def kneighbors(self, X=None, n_neighbors=None, return_distance=True): """Finds the K-neighbors of a point. Returns distance Parameters ---------- X : array-like, last dimension same as that of fit data, optional The query point or points. If not provided, neighbors of each indexed point are returned. In this case, the query point is not considered its own neighbor. n_neighbors : int Number of neighbors to get (default is the value passed to the constructor). return_distance : boolean, optional. Defaults to True. If False, distances will not be returned Returns ------- dist : array Array representing the lengths to points, only present if return_distance=True ind : array Indices of the nearest points in the population matrix. Examples -------- In the following example, we construct a NeighborsClassifier class from an array representing our data set and ask who's the closest point to [1,1,1] >>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]] >>> from sklearn.neighbors import NearestNeighbors >>> neigh = NearestNeighbors(n_neighbors=1) >>> neigh.fit(samples) # doctest: +ELLIPSIS NearestNeighbors(algorithm='auto', leaf_size=30, ...) >>> print(neigh.kneighbors([1., 1., 1.])) # doctest: +ELLIPSIS (array([[ 0.5]]), array([[2]]...)) As you can see, it returns [[0.5]], and [[2]], which means that the element is at distance 0.5 and is the third element of samples (indexes start at 0). You can also query for multiple points: >>> X = [[0., 1., 0.], [1., 0., 1.]] >>> neigh.kneighbors(X, return_distance=False) # doctest: +ELLIPSIS array([[1], [2]]...) """ if self._fit_method is None: raise NotFittedError("Must fit neighbors before querying.") if n_neighbors is None: n_neighbors = self.n_neighbors if X is not None: query_is_train = False X = check_array(X, accept_sparse='csr') else: query_is_train = True X = self._fit_X # Include an extra neighbor to account for the sample itself being # returned, which is removed later n_neighbors += 1 train_size = self._fit_X.shape[0] if n_neighbors > train_size: raise ValueError( "Expected n_neighbors <= n_samples, " " but n_samples = %d, n_neighbors = %d" % (train_size, n_neighbors) ) n_samples, _ = X.shape sample_range = np.arange(n_samples)[:, None] if self._fit_method == 'brute': # for efficiency, use squared euclidean distances if self.effective_metric_ == 'euclidean': dist = pairwise_distances(X, self._fit_X, 'euclidean', squared=True) else: dist = pairwise_distances(X, self._fit_X, self.effective_metric_, **self.effective_metric_params_) neigh_ind = argpartition(dist, n_neighbors - 1, axis=1) neigh_ind = neigh_ind[:, :n_neighbors] # argpartition doesn't guarantee sorted order, so we sort again neigh_ind = neigh_ind[ sample_range, np.argsort(dist[sample_range, neigh_ind])] if return_distance: if self.effective_metric_ == 'euclidean': result = np.sqrt(dist[sample_range, neigh_ind]), neigh_ind else: result = dist[sample_range, neigh_ind], neigh_ind else: result = neigh_ind elif self._fit_method in ['ball_tree', 'kd_tree']: if issparse(X): raise ValueError( "%s does not work with sparse matrices. Densify the data, " "or set algorithm='brute'" % self._fit_method) result = self._tree.query(X, n_neighbors, return_distance=return_distance) else: raise ValueError("internal: _fit_method not recognized") if not query_is_train: return result else: # If the query data is the same as the indexed data, we would like # to ignore the first nearest neighbor of every sample, i.e # the sample itself. if return_distance: dist, neigh_ind = result else: neigh_ind = result sample_mask = neigh_ind != sample_range # Corner case: When the number of duplicates are more # than the number of neighbors, the first NN will not # be the sample, but a duplicate. # In that case mask the first duplicate. dup_gr_nbrs = np.all(sample_mask, axis=1) sample_mask[:, 0][dup_gr_nbrs] = False neigh_ind = np.reshape( neigh_ind[sample_mask], (n_samples, n_neighbors - 1)) if return_distance: dist = np.reshape( dist[sample_mask], (n_samples, n_neighbors - 1)) return dist, neigh_ind return neigh_ind def kneighbors_graph(self, X=None, n_neighbors=None, mode='connectivity'): """Computes the (weighted) graph of k-Neighbors for points in X Parameters ---------- X : array-like, last dimension same as that of fit data, optional The query point or points. If not provided, neighbors of each indexed point are returned. In this case, the query point is not considered its own neighbor. n_neighbors : int Number of neighbors for each sample. (default is value passed to the constructor). mode : {'connectivity', 'distance'}, optional Type of returned matrix: 'connectivity' will return the connectivity matrix with ones and zeros, in 'distance' the edges are Euclidean distance between points. Returns ------- A : sparse matrix in CSR format, shape = [n_samples, n_samples_fit] n_samples_fit is the number of samples in the fitted data A[i, j] is assigned the weight of edge that connects i to j. Examples -------- >>> X = [[0], [3], [1]] >>> from sklearn.neighbors import NearestNeighbors >>> neigh = NearestNeighbors(n_neighbors=2) >>> neigh.fit(X) # doctest: +ELLIPSIS NearestNeighbors(algorithm='auto', leaf_size=30, ...) >>> A = neigh.kneighbors_graph(X) >>> A.toarray() array([[ 1., 0., 1.], [ 0., 1., 1.], [ 1., 0., 1.]]) See also -------- NearestNeighbors.radius_neighbors_graph """ if n_neighbors is None: n_neighbors = self.n_neighbors # kneighbors does the None handling. if X is not None: X = check_array(X, accept_sparse='csr') n_samples1 = X.shape[0] else: n_samples1 = self._fit_X.shape[0] n_samples2 = self._fit_X.shape[0] n_nonzero = n_samples1 * n_neighbors A_indptr = np.arange(0, n_nonzero + 1, n_neighbors) # construct CSR matrix representation of the k-NN graph if mode == 'connectivity': A_data = np.ones(n_samples1 * n_neighbors) A_ind = self.kneighbors(X, n_neighbors, return_distance=False) elif mode == 'distance': A_data, A_ind = self.kneighbors( X, n_neighbors, return_distance=True) A_data = np.ravel(A_data) else: raise ValueError( 'Unsupported mode, must be one of "connectivity" ' 'or "distance" but got "%s" instead' % mode) kneighbors_graph = csr_matrix((A_data, A_ind.ravel(), A_indptr), shape=(n_samples1, n_samples2)) return kneighbors_graph class RadiusNeighborsMixin(object): """Mixin for radius-based neighbors searches""" def radius_neighbors(self, X=None, radius=None, return_distance=True): """Finds the neighbors within a given radius of a point or points. Return the indices and distances of each point from the dataset lying in a ball with size ``radius`` around the points of the query array. Points lying on the boundary are included in the results. The result points are *not* necessarily sorted by distance to their query point. Parameters ---------- X : array-like, (n_samples, n_features), optional The query point or points. If not provided, neighbors of each indexed point are returned. In this case, the query point is not considered its own neighbor. radius : float Limiting distance of neighbors to return. (default is the value passed to the constructor). return_distance : boolean, optional. Defaults to True. If False, distances will not be returned Returns ------- dist : array, shape (n_samples,) of arrays Array representing the distances to each point, only present if return_distance=True. The distance values are computed according to the ``metric`` constructor parameter. ind : array, shape (n_samples,) of arrays An array of arrays of indices of the approximate nearest points from the population matrix that lie within a ball of size ``radius`` around the query points. Examples -------- In the following example, we construct a NeighborsClassifier class from an array representing our data set and ask who's the closest point to [1, 1, 1]: >>> import numpy as np >>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]] >>> from sklearn.neighbors import NearestNeighbors >>> neigh = NearestNeighbors(radius=1.6) >>> neigh.fit(samples) # doctest: +ELLIPSIS NearestNeighbors(algorithm='auto', leaf_size=30, ...) >>> rng = neigh.radius_neighbors([1., 1., 1.]) >>> print(np.asarray(rng[0][0])) # doctest: +ELLIPSIS [ 1.5 0.5] >>> print(np.asarray(rng[1][0])) # doctest: +ELLIPSIS [1 2] The first array returned contains the distances to all points which are closer than 1.6, while the second array returned contains their indices. In general, multiple points can be queried at the same time. Notes ----- Because the number of neighbors of each point is not necessarily equal, the results for multiple query points cannot be fit in a standard data array. For efficiency, `radius_neighbors` returns arrays of objects, where each object is a 1D array of indices or distances. """ if self._fit_method is None: raise NotFittedError("Must fit neighbors before querying.") if X is not None: query_is_train = False X = check_array(X, accept_sparse='csr') else: query_is_train = True X = self._fit_X if radius is None: radius = self.radius n_samples = X.shape[0] if self._fit_method == 'brute': # for efficiency, use squared euclidean distances if self.effective_metric_ == 'euclidean': dist = pairwise_distances(X, self._fit_X, 'euclidean', squared=True) radius *= radius else: dist = pairwise_distances(X, self._fit_X, self.effective_metric_, **self.effective_metric_params_) neigh_ind_list = [np.where(d <= radius)[0] for d in dist] # See https://github.com/numpy/numpy/issues/5456 # if you want to understand why this is initialized this way. neigh_ind = np.empty(n_samples, dtype='object') neigh_ind[:] = neigh_ind_list if return_distance: dist_array = np.empty(n_samples, dtype='object') if self.effective_metric_ == 'euclidean': dist_list = [np.sqrt(d[neigh_ind[i]]) for i, d in enumerate(dist)] else: dist_list = [d[neigh_ind[i]] for i, d in enumerate(dist)] dist_array[:] = dist_list results = dist_array, neigh_ind else: results = neigh_ind elif self._fit_method in ['ball_tree', 'kd_tree']: if issparse(X): raise ValueError( "%s does not work with sparse matrices. Densify the data, " "or set algorithm='brute'" % self._fit_method) results = self._tree.query_radius(X, radius, return_distance=return_distance) if return_distance: results = results[::-1] else: raise ValueError("internal: _fit_method not recognized") if not query_is_train: return results else: # If the query data is the same as the indexed data, we would like # to ignore the first nearest neighbor of every sample, i.e # the sample itself. if return_distance: dist, neigh_ind = results else: neigh_ind = results for ind, ind_neighbor in enumerate(neigh_ind): mask = ind_neighbor != ind neigh_ind[ind] = ind_neighbor[mask] if return_distance: dist[ind] = dist[ind][mask] if return_distance: return dist, neigh_ind return neigh_ind def radius_neighbors_graph(self, X=None, radius=None, mode='connectivity'): """Computes the (weighted) graph of Neighbors for points in X Neighborhoods are restricted the points at a distance lower than radius. Parameters ---------- X : array-like, shape = [n_samples, n_features], optional The query point or points. If not provided, neighbors of each indexed point are returned. In this case, the query point is not considered its own neighbor. radius : float Radius of neighborhoods. (default is the value passed to the constructor). mode : {'connectivity', 'distance'}, optional Type of returned matrix: 'connectivity' will return the connectivity matrix with ones and zeros, in 'distance' the edges are Euclidean distance between points. Returns ------- A : sparse matrix in CSR format, shape = [n_samples, n_samples] A[i, j] is assigned the weight of edge that connects i to j. Examples -------- >>> X = [[0], [3], [1]] >>> from sklearn.neighbors import NearestNeighbors >>> neigh = NearestNeighbors(radius=1.5) >>> neigh.fit(X) # doctest: +ELLIPSIS NearestNeighbors(algorithm='auto', leaf_size=30, ...) >>> A = neigh.radius_neighbors_graph(X) >>> A.toarray() array([[ 1., 0., 1.], [ 0., 1., 0.], [ 1., 0., 1.]]) See also -------- kneighbors_graph """ if X is not None: X = check_array(X, accept_sparse=['csr', 'csc', 'coo']) n_samples2 = self._fit_X.shape[0] if radius is None: radius = self.radius # construct CSR matrix representation of the NN graph if mode == 'connectivity': A_ind = self.radius_neighbors(X, radius, return_distance=False) A_data = None elif mode == 'distance': dist, A_ind = self.radius_neighbors(X, radius, return_distance=True) A_data = np.concatenate(list(dist)) else: raise ValueError( 'Unsupported mode, must be one of "connectivity", ' 'or "distance" but got %s instead' % mode) n_samples1 = A_ind.shape[0] n_neighbors = np.array([len(a) for a in A_ind]) A_ind = np.concatenate(list(A_ind)) if A_data is None: A_data = np.ones(len(A_ind)) A_indptr = np.concatenate((np.zeros(1, dtype=int), np.cumsum(n_neighbors))) return csr_matrix((A_data, A_ind, A_indptr), shape=(n_samples1, n_samples2)) class SupervisedFloatMixin(object): def fit(self, X, y): """Fit the model using X as training data and y as target values Parameters ---------- X : {array-like, sparse matrix, BallTree, KDTree} Training data. If array or matrix, shape = [n_samples, n_features] y : {array-like, sparse matrix} Target values, array of float values, shape = [n_samples] or [n_samples, n_outputs] """ if not isinstance(X, (KDTree, BallTree)): X, y = check_X_y(X, y, "csr", multi_output=True) self._y = y return self._fit(X) class SupervisedIntegerMixin(object): def fit(self, X, y): """Fit the model using X as training data and y as target values Parameters ---------- X : {array-like, sparse matrix, BallTree, KDTree} Training data. If array or matrix, shape = [n_samples, n_features] y : {array-like, sparse matrix} Target values of shape = [n_samples] or [n_samples, n_outputs] """ if not isinstance(X, (KDTree, BallTree)): X, y = check_X_y(X, y, "csr", multi_output=True) if y.ndim == 1 or y.ndim == 2 and y.shape[1] == 1: if y.ndim != 1: warnings.warn("A column-vector y was passed when a 1d array " "was expected. Please change the shape of y to " "(n_samples, ), for example using ravel().", DataConversionWarning, stacklevel=2) self.outputs_2d_ = False y = y.reshape((-1, 1)) else: self.outputs_2d_ = True self.classes_ = [] self._y = np.empty(y.shape, dtype=np.int) for k in range(self._y.shape[1]): classes, self._y[:, k] = np.unique(y[:, k], return_inverse=True) self.classes_.append(classes) if not self.outputs_2d_: self.classes_ = self.classes_[0] self._y = self._y.ravel() return self._fit(X) class UnsupervisedMixin(object): def fit(self, X, y=None): """Fit the model using X as training data Parameters ---------- X : {array-like, sparse matrix, BallTree, KDTree} Training data. If array or matrix, shape = [n_samples, n_features] """ return self._fit(X)
bsd-3-clause
fengzhyuan/scikit-learn
examples/decomposition/plot_ica_vs_pca.py
306
3329
""" ========================== FastICA on 2D point clouds ========================== This example illustrates visually in the feature space a comparison by results using two different component analysis techniques. :ref:`ICA` vs :ref:`PCA`. Representing ICA in the feature space gives the view of 'geometric ICA': ICA is an algorithm that finds directions in the feature space corresponding to projections with high non-Gaussianity. These directions need not be orthogonal in the original feature space, but they are orthogonal in the whitened feature space, in which all directions correspond to the same variance. PCA, on the other hand, finds orthogonal directions in the raw feature space that correspond to directions accounting for maximum variance. Here we simulate independent sources using a highly non-Gaussian process, 2 student T with a low number of degrees of freedom (top left figure). We mix them to create observations (top right figure). In this raw observation space, directions identified by PCA are represented by orange vectors. We represent the signal in the PCA space, after whitening by the variance corresponding to the PCA vectors (lower left). Running ICA corresponds to finding a rotation in this space to identify the directions of largest non-Gaussianity (lower right). """ print(__doc__) # Authors: Alexandre Gramfort, Gael Varoquaux # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.decomposition import PCA, FastICA ############################################################################### # Generate sample data rng = np.random.RandomState(42) S = rng.standard_t(1.5, size=(20000, 2)) S[:, 0] *= 2. # Mix data A = np.array([[1, 1], [0, 2]]) # Mixing matrix X = np.dot(S, A.T) # Generate observations pca = PCA() S_pca_ = pca.fit(X).transform(X) ica = FastICA(random_state=rng) S_ica_ = ica.fit(X).transform(X) # Estimate the sources S_ica_ /= S_ica_.std(axis=0) ############################################################################### # Plot results def plot_samples(S, axis_list=None): plt.scatter(S[:, 0], S[:, 1], s=2, marker='o', zorder=10, color='steelblue', alpha=0.5) if axis_list is not None: colors = ['orange', 'red'] for color, axis in zip(colors, axis_list): axis /= axis.std() x_axis, y_axis = axis # Trick to get legend to work plt.plot(0.1 * x_axis, 0.1 * y_axis, linewidth=2, color=color) plt.quiver(0, 0, x_axis, y_axis, zorder=11, width=0.01, scale=6, color=color) plt.hlines(0, -3, 3) plt.vlines(0, -3, 3) plt.xlim(-3, 3) plt.ylim(-3, 3) plt.xlabel('x') plt.ylabel('y') plt.figure() plt.subplot(2, 2, 1) plot_samples(S / S.std()) plt.title('True Independent Sources') axis_list = [pca.components_.T, ica.mixing_] plt.subplot(2, 2, 2) plot_samples(X / np.std(X), axis_list=axis_list) legend = plt.legend(['PCA', 'ICA'], loc='upper right') legend.set_zorder(100) plt.title('Observations') plt.subplot(2, 2, 3) plot_samples(S_pca_ / np.std(S_pca_, axis=0)) plt.title('PCA recovered signals') plt.subplot(2, 2, 4) plot_samples(S_ica_ / np.std(S_ica_)) plt.title('ICA recovered signals') plt.subplots_adjust(0.09, 0.04, 0.94, 0.94, 0.26, 0.36) plt.show()
bsd-3-clause
joshbohde/scikit-learn
examples/svm/plot_separating_hyperplane.py
2
1239
""" ========================================= SVM: Maximum margin separating hyperplane ========================================= Plot the maximum margin separating hyperplane within a two-class separable dataset using a Support Vector Machines classifier with linear kernel. """ print __doc__ import numpy as np import pylab as pl from sklearn import svm # we create 40 separable points np.random.seed(0) X = np.r_[np.random.randn(20, 2) - [2,2], np.random.randn(20, 2) + [2, 2]] Y = [0]*20 + [1]*20 # fit the model clf = svm.SVC(kernel='linear') clf.fit(X, Y) # get the separating hyperplane w = clf.coef_[0] a = -w[0]/w[1] xx = np.linspace(-5, 5) yy = a*xx - (clf.intercept_[0])/w[1] # plot the parallels to the separating hyperplane that pass through the # support vectors b = clf.support_vectors_[0] yy_down = a*xx + (b[1] - a*b[0]) b = clf.support_vectors_[-1] yy_up = a*xx + (b[1] - a*b[0]) # plot the line, the points, and the nearest vectors to the plane pl.set_cmap(pl.cm.Paired) pl.plot(xx, yy, 'k-') pl.plot(xx, yy_down, 'k--') pl.plot(xx, yy_up, 'k--') pl.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=80, facecolors='none') pl.scatter(X[:,0], X[:,1], c=Y) pl.axis('tight') pl.show()
bsd-3-clause
RPGOne/scikit-learn
sklearn/metrics/base.py
46
4627
""" Common code for all metrics """ # Authors: Alexandre Gramfort <[email protected]> # Mathieu Blondel <[email protected]> # Olivier Grisel <[email protected]> # Arnaud Joly <[email protected]> # Jochen Wersdorfer <[email protected]> # Lars Buitinck # Joel Nothman <[email protected]> # Noel Dawe <[email protected]> # License: BSD 3 clause from __future__ import division import numpy as np from ..utils import check_array, check_consistent_length from ..utils.multiclass import type_of_target from ..exceptions import UndefinedMetricWarning as _UndefinedMetricWarning from ..utils import deprecated @deprecated("UndefinedMetricWarning has been moved into the sklearn.exceptions" " module. It will not be available here from version 0.19") class UndefinedMetricWarning(_UndefinedMetricWarning): pass def _average_binary_score(binary_metric, y_true, y_score, average, sample_weight=None): """Average a binary metric for multilabel classification Parameters ---------- y_true : array, shape = [n_samples] or [n_samples, n_classes] True binary labels in binary label indicators. y_score : array, shape = [n_samples] or [n_samples, n_classes] Target scores, can either be probability estimates of the positive class, confidence values, or binary decisions. average : string, [None, 'micro', 'macro' (default), 'samples', 'weighted'] If ``None``, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data: ``'micro'``: Calculate metrics globally by considering each element of the label indicator matrix as a label. ``'macro'``: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. ``'weighted'``: Calculate metrics for each label, and find their average, weighted by support (the number of true instances for each label). ``'samples'``: Calculate metrics for each instance, and find their average. sample_weight : array-like of shape = [n_samples], optional Sample weights. binary_metric : callable, returns shape [n_classes] The binary metric function to use. Returns ------- score : float or array of shape [n_classes] If not ``None``, average the score, else return the score for each classes. """ average_options = (None, 'micro', 'macro', 'weighted', 'samples') if average not in average_options: raise ValueError('average has to be one of {0}' ''.format(average_options)) y_type = type_of_target(y_true) if y_type not in ("binary", "multilabel-indicator"): raise ValueError("{0} format is not supported".format(y_type)) if y_type == "binary": return binary_metric(y_true, y_score, sample_weight=sample_weight) check_consistent_length(y_true, y_score, sample_weight) y_true = check_array(y_true) y_score = check_array(y_score) not_average_axis = 1 score_weight = sample_weight average_weight = None if average == "micro": if score_weight is not None: score_weight = np.repeat(score_weight, y_true.shape[1]) y_true = y_true.ravel() y_score = y_score.ravel() elif average == 'weighted': if score_weight is not None: average_weight = np.sum(np.multiply( y_true, np.reshape(score_weight, (-1, 1))), axis=0) else: average_weight = np.sum(y_true, axis=0) if average_weight.sum() == 0: return 0 elif average == 'samples': # swap average_weight <-> score_weight average_weight = score_weight score_weight = None not_average_axis = 0 if y_true.ndim == 1: y_true = y_true.reshape((-1, 1)) if y_score.ndim == 1: y_score = y_score.reshape((-1, 1)) n_classes = y_score.shape[not_average_axis] score = np.zeros((n_classes,)) for c in range(n_classes): y_true_c = y_true.take([c], axis=not_average_axis).ravel() y_score_c = y_score.take([c], axis=not_average_axis).ravel() score[c] = binary_metric(y_true_c, y_score_c, sample_weight=score_weight) # Average the results if average is not None: return np.average(score, weights=average_weight) else: return score
bsd-3-clause
toobaz/pandas
pandas/tests/reshape/test_melt.py
2
33227
import numpy as np from numpy import nan import pytest import pandas as pd from pandas import DataFrame, lreshape, melt, wide_to_long import pandas.util.testing as tm class TestMelt: def setup_method(self, method): self.df = tm.makeTimeDataFrame()[:10] self.df["id1"] = (self.df["A"] > 0).astype(np.int64) self.df["id2"] = (self.df["B"] > 0).astype(np.int64) self.var_name = "var" self.value_name = "val" self.df1 = pd.DataFrame( [ [1.067683, -1.110463, 0.20867], [-1.321405, 0.368915, -1.055342], [-0.807333, 0.08298, -0.873361], ] ) self.df1.columns = [list("ABC"), list("abc")] self.df1.columns.names = ["CAP", "low"] def test_top_level_method(self): result = melt(self.df) assert result.columns.tolist() == ["variable", "value"] def test_method_signatures(self): tm.assert_frame_equal(self.df.melt(), melt(self.df)) tm.assert_frame_equal( self.df.melt(id_vars=["id1", "id2"], value_vars=["A", "B"]), melt(self.df, id_vars=["id1", "id2"], value_vars=["A", "B"]), ) tm.assert_frame_equal( self.df.melt(var_name=self.var_name, value_name=self.value_name), melt(self.df, var_name=self.var_name, value_name=self.value_name), ) tm.assert_frame_equal(self.df1.melt(col_level=0), melt(self.df1, col_level=0)) def test_default_col_names(self): result = self.df.melt() assert result.columns.tolist() == ["variable", "value"] result1 = self.df.melt(id_vars=["id1"]) assert result1.columns.tolist() == ["id1", "variable", "value"] result2 = self.df.melt(id_vars=["id1", "id2"]) assert result2.columns.tolist() == ["id1", "id2", "variable", "value"] def test_value_vars(self): result3 = self.df.melt(id_vars=["id1", "id2"], value_vars="A") assert len(result3) == 10 result4 = self.df.melt(id_vars=["id1", "id2"], value_vars=["A", "B"]) expected4 = DataFrame( { "id1": self.df["id1"].tolist() * 2, "id2": self.df["id2"].tolist() * 2, "variable": ["A"] * 10 + ["B"] * 10, "value": (self.df["A"].tolist() + self.df["B"].tolist()), }, columns=["id1", "id2", "variable", "value"], ) tm.assert_frame_equal(result4, expected4) def test_value_vars_types(self): # GH 15348 expected = DataFrame( { "id1": self.df["id1"].tolist() * 2, "id2": self.df["id2"].tolist() * 2, "variable": ["A"] * 10 + ["B"] * 10, "value": (self.df["A"].tolist() + self.df["B"].tolist()), }, columns=["id1", "id2", "variable", "value"], ) for type_ in (tuple, list, np.array): result = self.df.melt(id_vars=["id1", "id2"], value_vars=type_(("A", "B"))) tm.assert_frame_equal(result, expected) def test_vars_work_with_multiindex(self): expected = DataFrame( { ("A", "a"): self.df1[("A", "a")], "CAP": ["B"] * len(self.df1), "low": ["b"] * len(self.df1), "value": self.df1[("B", "b")], }, columns=[("A", "a"), "CAP", "low", "value"], ) result = self.df1.melt(id_vars=[("A", "a")], value_vars=[("B", "b")]) tm.assert_frame_equal(result, expected) def test_single_vars_work_with_multiindex(self): expected = DataFrame( { "A": {0: 1.067683, 1: -1.321405, 2: -0.807333}, "CAP": {0: "B", 1: "B", 2: "B"}, "value": {0: -1.110463, 1: 0.368915, 2: 0.08298}, } ) result = self.df1.melt(["A"], ["B"], col_level=0) tm.assert_frame_equal(result, expected) def test_tuple_vars_fail_with_multiindex(self): # melt should fail with an informative error message if # the columns have a MultiIndex and a tuple is passed # for id_vars or value_vars. tuple_a = ("A", "a") list_a = [tuple_a] tuple_b = ("B", "b") list_b = [tuple_b] msg = r"(id|value)_vars must be a list of tuples when columns are a MultiIndex" for id_vars, value_vars in ( (tuple_a, list_b), (list_a, tuple_b), (tuple_a, tuple_b), ): with pytest.raises(ValueError, match=msg): self.df1.melt(id_vars=id_vars, value_vars=value_vars) def test_custom_var_name(self): result5 = self.df.melt(var_name=self.var_name) assert result5.columns.tolist() == ["var", "value"] result6 = self.df.melt(id_vars=["id1"], var_name=self.var_name) assert result6.columns.tolist() == ["id1", "var", "value"] result7 = self.df.melt(id_vars=["id1", "id2"], var_name=self.var_name) assert result7.columns.tolist() == ["id1", "id2", "var", "value"] result8 = self.df.melt( id_vars=["id1", "id2"], value_vars="A", var_name=self.var_name ) assert result8.columns.tolist() == ["id1", "id2", "var", "value"] result9 = self.df.melt( id_vars=["id1", "id2"], value_vars=["A", "B"], var_name=self.var_name ) expected9 = DataFrame( { "id1": self.df["id1"].tolist() * 2, "id2": self.df["id2"].tolist() * 2, self.var_name: ["A"] * 10 + ["B"] * 10, "value": (self.df["A"].tolist() + self.df["B"].tolist()), }, columns=["id1", "id2", self.var_name, "value"], ) tm.assert_frame_equal(result9, expected9) def test_custom_value_name(self): result10 = self.df.melt(value_name=self.value_name) assert result10.columns.tolist() == ["variable", "val"] result11 = self.df.melt(id_vars=["id1"], value_name=self.value_name) assert result11.columns.tolist() == ["id1", "variable", "val"] result12 = self.df.melt(id_vars=["id1", "id2"], value_name=self.value_name) assert result12.columns.tolist() == ["id1", "id2", "variable", "val"] result13 = self.df.melt( id_vars=["id1", "id2"], value_vars="A", value_name=self.value_name ) assert result13.columns.tolist() == ["id1", "id2", "variable", "val"] result14 = self.df.melt( id_vars=["id1", "id2"], value_vars=["A", "B"], value_name=self.value_name ) expected14 = DataFrame( { "id1": self.df["id1"].tolist() * 2, "id2": self.df["id2"].tolist() * 2, "variable": ["A"] * 10 + ["B"] * 10, self.value_name: (self.df["A"].tolist() + self.df["B"].tolist()), }, columns=["id1", "id2", "variable", self.value_name], ) tm.assert_frame_equal(result14, expected14) def test_custom_var_and_value_name(self): result15 = self.df.melt(var_name=self.var_name, value_name=self.value_name) assert result15.columns.tolist() == ["var", "val"] result16 = self.df.melt( id_vars=["id1"], var_name=self.var_name, value_name=self.value_name ) assert result16.columns.tolist() == ["id1", "var", "val"] result17 = self.df.melt( id_vars=["id1", "id2"], var_name=self.var_name, value_name=self.value_name ) assert result17.columns.tolist() == ["id1", "id2", "var", "val"] result18 = self.df.melt( id_vars=["id1", "id2"], value_vars="A", var_name=self.var_name, value_name=self.value_name, ) assert result18.columns.tolist() == ["id1", "id2", "var", "val"] result19 = self.df.melt( id_vars=["id1", "id2"], value_vars=["A", "B"], var_name=self.var_name, value_name=self.value_name, ) expected19 = DataFrame( { "id1": self.df["id1"].tolist() * 2, "id2": self.df["id2"].tolist() * 2, self.var_name: ["A"] * 10 + ["B"] * 10, self.value_name: (self.df["A"].tolist() + self.df["B"].tolist()), }, columns=["id1", "id2", self.var_name, self.value_name], ) tm.assert_frame_equal(result19, expected19) df20 = self.df.copy() df20.columns.name = "foo" result20 = df20.melt() assert result20.columns.tolist() == ["foo", "value"] def test_col_level(self): res1 = self.df1.melt(col_level=0) res2 = self.df1.melt(col_level="CAP") assert res1.columns.tolist() == ["CAP", "value"] assert res2.columns.tolist() == ["CAP", "value"] def test_multiindex(self): res = self.df1.melt() assert res.columns.tolist() == ["CAP", "low", "value"] @pytest.mark.parametrize( "col", [ pd.Series(pd.date_range("2010", periods=5, tz="US/Pacific")), pd.Series(["a", "b", "c", "a", "d"], dtype="category"), pd.Series([0, 1, 0, 0, 0]), ], ) def test_pandas_dtypes(self, col): # GH 15785 df = DataFrame( {"klass": range(5), "col": col, "attr1": [1, 0, 0, 0, 0], "attr2": col} ) expected_value = pd.concat([pd.Series([1, 0, 0, 0, 0]), col], ignore_index=True) result = melt( df, id_vars=["klass", "col"], var_name="attribute", value_name="value" ) expected = DataFrame( { 0: list(range(5)) * 2, 1: pd.concat([col] * 2, ignore_index=True), 2: ["attr1"] * 5 + ["attr2"] * 5, 3: expected_value, } ) expected.columns = ["klass", "col", "attribute", "value"] tm.assert_frame_equal(result, expected) def test_melt_missing_columns_raises(self): # GH-23575 # This test is to ensure that pandas raises an error if melting is # attempted with column names absent from the dataframe # Generate data df = pd.DataFrame(np.random.randn(5, 4), columns=list("abcd")) # Try to melt with missing `value_vars` column name msg = "The following '{Var}' are not present in the DataFrame: {Col}" with pytest.raises( KeyError, match=msg.format(Var="value_vars", Col="\\['C'\\]") ): df.melt(["a", "b"], ["C", "d"]) # Try to melt with missing `id_vars` column name with pytest.raises(KeyError, match=msg.format(Var="id_vars", Col="\\['A'\\]")): df.melt(["A", "b"], ["c", "d"]) # Multiple missing with pytest.raises( KeyError, match=msg.format(Var="id_vars", Col="\\['not_here', 'or_there'\\]"), ): df.melt(["a", "b", "not_here", "or_there"], ["c", "d"]) # Multiindex melt fails if column is missing from multilevel melt multi = df.copy() multi.columns = [list("ABCD"), list("abcd")] with pytest.raises(KeyError, match=msg.format(Var="id_vars", Col="\\['E'\\]")): multi.melt([("E", "a")], [("B", "b")]) # Multiindex fails if column is missing from single level melt with pytest.raises( KeyError, match=msg.format(Var="value_vars", Col="\\['F'\\]") ): multi.melt(["A"], ["F"], col_level=0) class TestLreshape: def test_pairs(self): data = { "birthdt": [ "08jan2009", "20dec2008", "30dec2008", "21dec2008", "11jan2009", ], "birthwt": [1766, 3301, 1454, 3139, 4133], "id": [101, 102, 103, 104, 105], "sex": ["Male", "Female", "Female", "Female", "Female"], "visitdt1": [ "11jan2009", "22dec2008", "04jan2009", "29dec2008", "20jan2009", ], "visitdt2": ["21jan2009", nan, "22jan2009", "31dec2008", "03feb2009"], "visitdt3": ["05feb2009", nan, nan, "02jan2009", "15feb2009"], "wt1": [1823, 3338, 1549, 3298, 4306], "wt2": [2011.0, nan, 1892.0, 3338.0, 4575.0], "wt3": [2293.0, nan, nan, 3377.0, 4805.0], } df = DataFrame(data) spec = { "visitdt": ["visitdt{i:d}".format(i=i) for i in range(1, 4)], "wt": ["wt{i:d}".format(i=i) for i in range(1, 4)], } result = lreshape(df, spec) exp_data = { "birthdt": [ "08jan2009", "20dec2008", "30dec2008", "21dec2008", "11jan2009", "08jan2009", "30dec2008", "21dec2008", "11jan2009", "08jan2009", "21dec2008", "11jan2009", ], "birthwt": [ 1766, 3301, 1454, 3139, 4133, 1766, 1454, 3139, 4133, 1766, 3139, 4133, ], "id": [101, 102, 103, 104, 105, 101, 103, 104, 105, 101, 104, 105], "sex": [ "Male", "Female", "Female", "Female", "Female", "Male", "Female", "Female", "Female", "Male", "Female", "Female", ], "visitdt": [ "11jan2009", "22dec2008", "04jan2009", "29dec2008", "20jan2009", "21jan2009", "22jan2009", "31dec2008", "03feb2009", "05feb2009", "02jan2009", "15feb2009", ], "wt": [ 1823.0, 3338.0, 1549.0, 3298.0, 4306.0, 2011.0, 1892.0, 3338.0, 4575.0, 2293.0, 3377.0, 4805.0, ], } exp = DataFrame(exp_data, columns=result.columns) tm.assert_frame_equal(result, exp) result = lreshape(df, spec, dropna=False) exp_data = { "birthdt": [ "08jan2009", "20dec2008", "30dec2008", "21dec2008", "11jan2009", "08jan2009", "20dec2008", "30dec2008", "21dec2008", "11jan2009", "08jan2009", "20dec2008", "30dec2008", "21dec2008", "11jan2009", ], "birthwt": [ 1766, 3301, 1454, 3139, 4133, 1766, 3301, 1454, 3139, 4133, 1766, 3301, 1454, 3139, 4133, ], "id": [ 101, 102, 103, 104, 105, 101, 102, 103, 104, 105, 101, 102, 103, 104, 105, ], "sex": [ "Male", "Female", "Female", "Female", "Female", "Male", "Female", "Female", "Female", "Female", "Male", "Female", "Female", "Female", "Female", ], "visitdt": [ "11jan2009", "22dec2008", "04jan2009", "29dec2008", "20jan2009", "21jan2009", nan, "22jan2009", "31dec2008", "03feb2009", "05feb2009", nan, nan, "02jan2009", "15feb2009", ], "wt": [ 1823.0, 3338.0, 1549.0, 3298.0, 4306.0, 2011.0, nan, 1892.0, 3338.0, 4575.0, 2293.0, nan, nan, 3377.0, 4805.0, ], } exp = DataFrame(exp_data, columns=result.columns) tm.assert_frame_equal(result, exp) spec = { "visitdt": ["visitdt{i:d}".format(i=i) for i in range(1, 3)], "wt": ["wt{i:d}".format(i=i) for i in range(1, 4)], } msg = "All column lists must be same length" with pytest.raises(ValueError, match=msg): lreshape(df, spec) class TestWideToLong: def test_simple(self): np.random.seed(123) x = np.random.randn(3) df = pd.DataFrame( { "A1970": {0: "a", 1: "b", 2: "c"}, "A1980": {0: "d", 1: "e", 2: "f"}, "B1970": {0: 2.5, 1: 1.2, 2: 0.7}, "B1980": {0: 3.2, 1: 1.3, 2: 0.1}, "X": dict(zip(range(3), x)), } ) df["id"] = df.index exp_data = { "X": x.tolist() + x.tolist(), "A": ["a", "b", "c", "d", "e", "f"], "B": [2.5, 1.2, 0.7, 3.2, 1.3, 0.1], "year": [1970, 1970, 1970, 1980, 1980, 1980], "id": [0, 1, 2, 0, 1, 2], } expected = DataFrame(exp_data) expected = expected.set_index(["id", "year"])[["X", "A", "B"]] result = wide_to_long(df, ["A", "B"], i="id", j="year") tm.assert_frame_equal(result, expected) def test_stubs(self): # GH9204 df = pd.DataFrame([[0, 1, 2, 3, 8], [4, 5, 6, 7, 9]]) df.columns = ["id", "inc1", "inc2", "edu1", "edu2"] stubs = ["inc", "edu"] # TODO: unused? df_long = pd.wide_to_long(df, stubs, i="id", j="age") # noqa assert stubs == ["inc", "edu"] def test_separating_character(self): # GH14779 np.random.seed(123) x = np.random.randn(3) df = pd.DataFrame( { "A.1970": {0: "a", 1: "b", 2: "c"}, "A.1980": {0: "d", 1: "e", 2: "f"}, "B.1970": {0: 2.5, 1: 1.2, 2: 0.7}, "B.1980": {0: 3.2, 1: 1.3, 2: 0.1}, "X": dict(zip(range(3), x)), } ) df["id"] = df.index exp_data = { "X": x.tolist() + x.tolist(), "A": ["a", "b", "c", "d", "e", "f"], "B": [2.5, 1.2, 0.7, 3.2, 1.3, 0.1], "year": [1970, 1970, 1970, 1980, 1980, 1980], "id": [0, 1, 2, 0, 1, 2], } expected = DataFrame(exp_data) expected = expected.set_index(["id", "year"])[["X", "A", "B"]] result = wide_to_long(df, ["A", "B"], i="id", j="year", sep=".") tm.assert_frame_equal(result, expected) def test_escapable_characters(self): np.random.seed(123) x = np.random.randn(3) df = pd.DataFrame( { "A(quarterly)1970": {0: "a", 1: "b", 2: "c"}, "A(quarterly)1980": {0: "d", 1: "e", 2: "f"}, "B(quarterly)1970": {0: 2.5, 1: 1.2, 2: 0.7}, "B(quarterly)1980": {0: 3.2, 1: 1.3, 2: 0.1}, "X": dict(zip(range(3), x)), } ) df["id"] = df.index exp_data = { "X": x.tolist() + x.tolist(), "A(quarterly)": ["a", "b", "c", "d", "e", "f"], "B(quarterly)": [2.5, 1.2, 0.7, 3.2, 1.3, 0.1], "year": [1970, 1970, 1970, 1980, 1980, 1980], "id": [0, 1, 2, 0, 1, 2], } expected = DataFrame(exp_data) expected = expected.set_index(["id", "year"])[ ["X", "A(quarterly)", "B(quarterly)"] ] result = wide_to_long(df, ["A(quarterly)", "B(quarterly)"], i="id", j="year") tm.assert_frame_equal(result, expected) def test_unbalanced(self): # test that we can have a varying amount of time variables df = pd.DataFrame( { "A2010": [1.0, 2.0], "A2011": [3.0, 4.0], "B2010": [5.0, 6.0], "X": ["X1", "X2"], } ) df["id"] = df.index exp_data = { "X": ["X1", "X1", "X2", "X2"], "A": [1.0, 3.0, 2.0, 4.0], "B": [5.0, np.nan, 6.0, np.nan], "id": [0, 0, 1, 1], "year": [2010, 2011, 2010, 2011], } expected = pd.DataFrame(exp_data) expected = expected.set_index(["id", "year"])[["X", "A", "B"]] result = wide_to_long(df, ["A", "B"], i="id", j="year") tm.assert_frame_equal(result, expected) def test_character_overlap(self): # Test we handle overlapping characters in both id_vars and value_vars df = pd.DataFrame( { "A11": ["a11", "a22", "a33"], "A12": ["a21", "a22", "a23"], "B11": ["b11", "b12", "b13"], "B12": ["b21", "b22", "b23"], "BB11": [1, 2, 3], "BB12": [4, 5, 6], "BBBX": [91, 92, 93], "BBBZ": [91, 92, 93], } ) df["id"] = df.index expected = pd.DataFrame( { "BBBX": [91, 92, 93, 91, 92, 93], "BBBZ": [91, 92, 93, 91, 92, 93], "A": ["a11", "a22", "a33", "a21", "a22", "a23"], "B": ["b11", "b12", "b13", "b21", "b22", "b23"], "BB": [1, 2, 3, 4, 5, 6], "id": [0, 1, 2, 0, 1, 2], "year": [11, 11, 11, 12, 12, 12], } ) expected = expected.set_index(["id", "year"])[["BBBX", "BBBZ", "A", "B", "BB"]] result = wide_to_long(df, ["A", "B", "BB"], i="id", j="year") tm.assert_frame_equal(result.sort_index(axis=1), expected.sort_index(axis=1)) def test_invalid_separator(self): # if an invalid separator is supplied a empty data frame is returned sep = "nope!" df = pd.DataFrame( { "A2010": [1.0, 2.0], "A2011": [3.0, 4.0], "B2010": [5.0, 6.0], "X": ["X1", "X2"], } ) df["id"] = df.index exp_data = { "X": "", "A2010": [], "A2011": [], "B2010": [], "id": [], "year": [], "A": [], "B": [], } expected = pd.DataFrame(exp_data).astype({"year": "int"}) expected = expected.set_index(["id", "year"])[ ["X", "A2010", "A2011", "B2010", "A", "B"] ] expected.index.set_levels([0, 1], level=0, inplace=True) result = wide_to_long(df, ["A", "B"], i="id", j="year", sep=sep) tm.assert_frame_equal(result.sort_index(axis=1), expected.sort_index(axis=1)) def test_num_string_disambiguation(self): # Test that we can disambiguate number value_vars from # string value_vars df = pd.DataFrame( { "A11": ["a11", "a22", "a33"], "A12": ["a21", "a22", "a23"], "B11": ["b11", "b12", "b13"], "B12": ["b21", "b22", "b23"], "BB11": [1, 2, 3], "BB12": [4, 5, 6], "Arating": [91, 92, 93], "Arating_old": [91, 92, 93], } ) df["id"] = df.index expected = pd.DataFrame( { "Arating": [91, 92, 93, 91, 92, 93], "Arating_old": [91, 92, 93, 91, 92, 93], "A": ["a11", "a22", "a33", "a21", "a22", "a23"], "B": ["b11", "b12", "b13", "b21", "b22", "b23"], "BB": [1, 2, 3, 4, 5, 6], "id": [0, 1, 2, 0, 1, 2], "year": [11, 11, 11, 12, 12, 12], } ) expected = expected.set_index(["id", "year"])[ ["Arating", "Arating_old", "A", "B", "BB"] ] result = wide_to_long(df, ["A", "B", "BB"], i="id", j="year") tm.assert_frame_equal(result.sort_index(axis=1), expected.sort_index(axis=1)) def test_invalid_suffixtype(self): # If all stubs names end with a string, but a numeric suffix is # assumed, an empty data frame is returned df = pd.DataFrame( { "Aone": [1.0, 2.0], "Atwo": [3.0, 4.0], "Bone": [5.0, 6.0], "X": ["X1", "X2"], } ) df["id"] = df.index exp_data = { "X": "", "Aone": [], "Atwo": [], "Bone": [], "id": [], "year": [], "A": [], "B": [], } expected = pd.DataFrame(exp_data).astype({"year": "int"}) expected = expected.set_index(["id", "year"]) expected.index.set_levels([0, 1], level=0, inplace=True) result = wide_to_long(df, ["A", "B"], i="id", j="year") tm.assert_frame_equal(result.sort_index(axis=1), expected.sort_index(axis=1)) def test_multiple_id_columns(self): # Taken from http://www.ats.ucla.edu/stat/stata/modules/reshapel.htm df = pd.DataFrame( { "famid": [1, 1, 1, 2, 2, 2, 3, 3, 3], "birth": [1, 2, 3, 1, 2, 3, 1, 2, 3], "ht1": [2.8, 2.9, 2.2, 2, 1.8, 1.9, 2.2, 2.3, 2.1], "ht2": [3.4, 3.8, 2.9, 3.2, 2.8, 2.4, 3.3, 3.4, 2.9], } ) expected = pd.DataFrame( { "ht": [ 2.8, 3.4, 2.9, 3.8, 2.2, 2.9, 2.0, 3.2, 1.8, 2.8, 1.9, 2.4, 2.2, 3.3, 2.3, 3.4, 2.1, 2.9, ], "famid": [1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3], "birth": [1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3], "age": [1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2], } ) expected = expected.set_index(["famid", "birth", "age"])[["ht"]] result = wide_to_long(df, "ht", i=["famid", "birth"], j="age") tm.assert_frame_equal(result, expected) def test_non_unique_idvars(self): # GH16382 # Raise an error message if non unique id vars (i) are passed df = pd.DataFrame( {"A_A1": [1, 2, 3, 4, 5], "B_B1": [1, 2, 3, 4, 5], "x": [1, 1, 1, 1, 1]} ) msg = "the id variables need to uniquely identify each row" with pytest.raises(ValueError, match=msg): wide_to_long(df, ["A_A", "B_B"], i="x", j="colname") def test_cast_j_int(self): df = pd.DataFrame( { "actor_1": ["CCH Pounder", "Johnny Depp", "Christoph Waltz"], "actor_2": ["Joel David Moore", "Orlando Bloom", "Rory Kinnear"], "actor_fb_likes_1": [1000.0, 40000.0, 11000.0], "actor_fb_likes_2": [936.0, 5000.0, 393.0], "title": ["Avatar", "Pirates of the Caribbean", "Spectre"], } ) expected = pd.DataFrame( { "actor": [ "CCH Pounder", "Johnny Depp", "Christoph Waltz", "Joel David Moore", "Orlando Bloom", "Rory Kinnear", ], "actor_fb_likes": [1000.0, 40000.0, 11000.0, 936.0, 5000.0, 393.0], "num": [1, 1, 1, 2, 2, 2], "title": [ "Avatar", "Pirates of the Caribbean", "Spectre", "Avatar", "Pirates of the Caribbean", "Spectre", ], } ).set_index(["title", "num"]) result = wide_to_long( df, ["actor", "actor_fb_likes"], i="title", j="num", sep="_" ) tm.assert_frame_equal(result, expected) def test_identical_stubnames(self): df = pd.DataFrame( { "A2010": [1.0, 2.0], "A2011": [3.0, 4.0], "B2010": [5.0, 6.0], "A": ["X1", "X2"], } ) msg = "stubname can't be identical to a column name" with pytest.raises(ValueError, match=msg): wide_to_long(df, ["A", "B"], i="A", j="colname") def test_nonnumeric_suffix(self): df = pd.DataFrame( { "treatment_placebo": [1.0, 2.0], "treatment_test": [3.0, 4.0], "result_placebo": [5.0, 6.0], "A": ["X1", "X2"], } ) expected = pd.DataFrame( { "A": ["X1", "X1", "X2", "X2"], "colname": ["placebo", "test", "placebo", "test"], "result": [5.0, np.nan, 6.0, np.nan], "treatment": [1.0, 3.0, 2.0, 4.0], } ) expected = expected.set_index(["A", "colname"]) result = wide_to_long( df, ["result", "treatment"], i="A", j="colname", suffix="[a-z]+", sep="_" ) tm.assert_frame_equal(result, expected) def test_mixed_type_suffix(self): df = pd.DataFrame( { "A": ["X1", "X2"], "result_1": [0, 9], "result_foo": [5.0, 6.0], "treatment_1": [1.0, 2.0], "treatment_foo": [3.0, 4.0], } ) expected = pd.DataFrame( { "A": ["X1", "X2", "X1", "X2"], "colname": ["1", "1", "foo", "foo"], "result": [0.0, 9.0, 5.0, 6.0], "treatment": [1.0, 2.0, 3.0, 4.0], } ).set_index(["A", "colname"]) result = wide_to_long( df, ["result", "treatment"], i="A", j="colname", suffix=".+", sep="_" ) tm.assert_frame_equal(result, expected) def test_float_suffix(self): df = pd.DataFrame( { "treatment_1.1": [1.0, 2.0], "treatment_2.1": [3.0, 4.0], "result_1.2": [5.0, 6.0], "result_1": [0, 9], "A": ["X1", "X2"], } ) expected = pd.DataFrame( { "A": ["X1", "X1", "X1", "X1", "X2", "X2", "X2", "X2"], "colname": [1, 1.1, 1.2, 2.1, 1, 1.1, 1.2, 2.1], "result": [0.0, np.nan, 5.0, np.nan, 9.0, np.nan, 6.0, np.nan], "treatment": [np.nan, 1.0, np.nan, 3.0, np.nan, 2.0, np.nan, 4.0], } ) expected = expected.set_index(["A", "colname"]) result = wide_to_long( df, ["result", "treatment"], i="A", j="colname", suffix="[0-9.]+", sep="_" ) tm.assert_frame_equal(result, expected) def test_col_substring_of_stubname(self): # GH22468 # Don't raise ValueError when a column name is a substring # of a stubname that's been passed as a string wide_data = { "node_id": {0: 0, 1: 1, 2: 2, 3: 3, 4: 4}, "A": {0: 0.80, 1: 0.0, 2: 0.25, 3: 1.0, 4: 0.81}, "PA0": {0: 0.74, 1: 0.56, 2: 0.56, 3: 0.98, 4: 0.6}, "PA1": {0: 0.77, 1: 0.64, 2: 0.52, 3: 0.98, 4: 0.67}, "PA3": {0: 0.34, 1: 0.70, 2: 0.52, 3: 0.98, 4: 0.67}, } wide_df = pd.DataFrame.from_dict(wide_data) expected = pd.wide_to_long( wide_df, stubnames=["PA"], i=["node_id", "A"], j="time" ) result = pd.wide_to_long(wide_df, stubnames="PA", i=["node_id", "A"], j="time") tm.assert_frame_equal(result, expected)
bsd-3-clause
justacec/bokeh
sphinx/source/conf.py
3
8374
# -*- coding: utf-8 -*- from __future__ import unicode_literals import os # # Bokeh documentation build configuration file, created by # sphinx-quickstart on Sat Oct 12 23:43:03 2013. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.autosummary', 'sphinx.ext.graphviz', 'sphinx.ext.ifconfig', 'sphinx.ext.inheritance_diagram', 'sphinx.ext.napoleon', 'sphinx.ext.intersphinx', 'bokeh.sphinxext.bokeh_autodoc', 'bokeh.sphinxext.bokeh_gallery', 'bokeh.sphinxext.bokeh_github', 'bokeh.sphinxext.bokeh_jinja', 'bokeh.sphinxext.bokeh_model', 'bokeh.sphinxext.bokeh_palette', 'bokeh.sphinxext.bokeh_plot', 'bokeh.sphinxext.bokeh_prop', 'bokeh.sphinxext.bokeh_sitemap', 'bokeh.sphinxext.collapsible_code_block', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = 'Bokeh' copyright = '© Copyright 2015, Continuum Analytics.' # Get the standard computed Bokeh version string to use for |version| # and |release| from bokeh import __version__ # The short X.Y version. version = __version__ # The full version, including alpha/beta/rc tags. release = __version__ # Check for version override (e.g. when re-deploying a previously released # docs, or when pushing test docs that do not have a corresponding BokehJS # available on CDN) from bokeh.settings import settings if settings.docs_version(): version = release = settings.docs_version() # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). add_module_names = False # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # Sort members by type autodoc_member_order = 'groupwise' # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'bokeh_theme' html_theme_path = ['.'] MAIN_SITE = '//bokehplots.com' html_context = { 'SITEMAP_BASE_URL': 'http://bokeh.pydata.org/en/', # Trailing slash is needed 'SITENAME': 'Bokeh Docs', 'DESCRIPTION': 'Bokeh visualization library, documentation site.', 'AUTHOR': 'Bokeh contributors', 'VERSION': version, # Nav 'NAV': ( ('About', MAIN_SITE + '/pages/about-bokeh.html'), ('Gallery', '/docs/gallery.html'), ('Docs', '//bokeh.pydata.org/en/latest/'), ('Github', '//github.com/bokeh/bokeh'), ), # Links 'LINKS': ( ('FAQs', MAIN_SITE + '/pages/faqs.html'), ('Technical vision', MAIN_SITE + '/pages/technical-vision.html'), ('Roadmap', MAIN_SITE + '/pages/roadmap.html'), ('Citation', MAIN_SITE + '/pages/citation.html'), ), # About Links 'ABOUT': ( ('About', MAIN_SITE + '/pages/about-bokeh.html'), ('Team', MAIN_SITE + '/pages/team.html'), ('Contact', MAIN_SITE + '/pages/contact.html'), ), # Social links 'SOCIAL': ( ('Contribute', MAIN_SITE + '/pages/contribute.html'), ('Mailing list', '//groups.google.com/a/continuum.io/forum/#!forum/bokeh'), ('Github', '//github.com/bokeh/bokeh'), ('Twitter', '//twitter.com/BokehPlots'), ('YouTube', '//www.youtube.com/channel/UCK0rSk29mmg4UT4bIOvPYhw') ), # Links for the docs sub navigation 'NAV_DOCS': ( ('Installation', 'installation'), ('User Guide', 'user_guide'), ('Gallery', 'gallery'), ('Reference', 'reference'), ('Releases', 'releases/%s' % version), ('Developer Guide', 'dev_guide'), ), 'ALL_VERSIONS': ['0.11.1', '0.11.0', '0.10.0', '0.9.3', '0.8.2'], 'css_server': os.environ.get('BOKEH_DOCS_CSS_SERVER', 'bokehplots.com'), } # If true, links to the reST sources are added to the pages. html_show_sourcelink = True # Output file base name for HTML help builder. htmlhelp_basename = 'Bokehdoc' # -- Options for LaTeX output -------------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'Bokeh.tex', u'Bokeh Documentation', u'Continuum Analytics', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output -------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'bokeh', u'Bokeh Documentation', [u'Continuum Analytics'], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------------ # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'Bokeh', u'Bokeh Documentation', u'Continuum Analytics', 'Bokeh', 'Interactive Web Plotting for Python', 'Graphics'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # intersphinx settings intersphinx_mapping = { 'python': ('https://docs.python.org/', None), 'pandas': ('http://pandas.pydata.org/pandas-docs/stable/', None), 'numpy': ('http://docs.scipy.org/doc/numpy/', None) }
bsd-3-clause
kiyoto/statsmodels
statsmodels/datasets/utils.py
25
10983
from statsmodels.compat.python import (range, StringIO, urlopen, HTTPError, URLError, lrange, cPickle, urljoin, BytesIO) import sys import shutil from os import environ from os import makedirs from os.path import expanduser from os.path import exists from os.path import join import numpy as np from numpy import array from pandas import read_csv, DataFrame, Index def webuse(data, baseurl='http://www.stata-press.com/data/r11/', as_df=True): """ Download and return an example dataset from Stata. Parameters ---------- data : str Name of dataset to fetch. baseurl : str The base URL to the stata datasets. as_df : bool If True, returns a `pandas.DataFrame` Returns ------- dta : Record Array A record array containing the Stata dataset. Examples -------- >>> dta = webuse('auto') Notes ----- Make sure baseurl has trailing forward slash. Doesn't do any error checking in response URLs. """ # lazy imports from statsmodels.iolib import genfromdta url = urljoin(baseurl, data+'.dta') dta = urlopen(url) dta = BytesIO(dta.read()) # make it truly file-like if as_df: # could make this faster if we don't process dta twice? return DataFrame.from_records(genfromdta(dta)) else: return genfromdta(dta) class Dataset(dict): def __init__(self, **kw): # define some default attributes, so pylint can find them self.endog = None self.exog = None self.data = None self.names = None dict.__init__(self, kw) self.__dict__ = self # Some datasets have string variables. If you want a raw_data # attribute you must create this in the dataset's load function. try: # some datasets have string variables self.raw_data = self.data.view((float, len(self.names))) except: pass def __repr__(self): return str(self.__class__) def process_recarray(data, endog_idx=0, exog_idx=None, stack=True, dtype=None): names = list(data.dtype.names) if isinstance(endog_idx, int): endog = array(data[names[endog_idx]], dtype=dtype) endog_name = names[endog_idx] endog_idx = [endog_idx] else: endog_name = [names[i] for i in endog_idx] if stack: endog = np.column_stack(data[field] for field in endog_name) else: endog = data[endog_name] if exog_idx is None: exog_name = [names[i] for i in range(len(names)) if i not in endog_idx] else: exog_name = [names[i] for i in exog_idx] if stack: exog = np.column_stack(data[field] for field in exog_name) else: exog = data[exog_name] if dtype: endog = endog.astype(dtype) exog = exog.astype(dtype) dataset = Dataset(data=data, names=names, endog=endog, exog=exog, endog_name=endog_name, exog_name=exog_name) return dataset def process_recarray_pandas(data, endog_idx=0, exog_idx=None, dtype=None, index_idx=None): data = DataFrame(data, dtype=dtype) names = data.columns if isinstance(endog_idx, int): endog_name = names[endog_idx] endog = data[endog_name] if exog_idx is None: exog = data.drop([endog_name], axis=1) else: exog = data.filter(names[exog_idx]) else: endog = data.ix[:, endog_idx] endog_name = list(endog.columns) if exog_idx is None: exog = data.drop(endog_name, axis=1) elif isinstance(exog_idx, int): exog = data.filter([names[exog_idx]]) else: exog = data.filter(names[exog_idx]) if index_idx is not None: # NOTE: will have to be improved for dates endog.index = Index(data.ix[:, index_idx]) exog.index = Index(data.ix[:, index_idx]) data = data.set_index(names[index_idx]) exog_name = list(exog.columns) dataset = Dataset(data=data, names=list(names), endog=endog, exog=exog, endog_name=endog_name, exog_name=exog_name) return dataset def _maybe_reset_index(data): """ All the Rdatasets have the integer row.labels from R if there is no real index. Strip this for a zero-based index """ if data.index.equals(Index(lrange(1, len(data) + 1))): data = data.reset_index(drop=True) return data def _get_cache(cache): if cache is False: # do not do any caching or load from cache cache = None elif cache is True: # use default dir for cache cache = get_data_home(None) else: cache = get_data_home(cache) return cache def _cache_it(data, cache_path): if sys.version_info[0] >= 3: # for some reason encode("zip") won't work for me in Python 3? import zlib # use protocol 2 so can open with python 2.x if cached in 3.x open(cache_path, "wb").write(zlib.compress(cPickle.dumps(data, protocol=2))) else: open(cache_path, "wb").write(cPickle.dumps(data).encode("zip")) def _open_cache(cache_path): if sys.version_info[0] >= 3: # NOTE: don't know why but decode('zip') doesn't work on my # Python 3 build import zlib data = zlib.decompress(open(cache_path, 'rb').read()) # return as bytes object encoded in utf-8 for cross-compat of cached data = cPickle.loads(data).encode('utf-8') else: data = open(cache_path, 'rb').read().decode('zip') data = cPickle.loads(data) return data def _urlopen_cached(url, cache): """ Tries to load data from cache location otherwise downloads it. If it downloads the data and cache is not None then it will put the downloaded data in the cache path. """ from_cache = False if cache is not None: cache_path = join(cache, url.split("://")[-1].replace('/', ',') + ".zip") try: data = _open_cache(cache_path) from_cache = True except: pass # not using the cache or didn't find it in cache if not from_cache: data = urlopen(url).read() if cache is not None: # then put it in the cache _cache_it(data, cache_path) return data, from_cache def _get_data(base_url, dataname, cache, extension="csv"): url = base_url + (dataname + ".%s") % extension try: data, from_cache = _urlopen_cached(url, cache) except HTTPError as err: if '404' in str(err): raise ValueError("Dataset %s was not found." % dataname) else: raise err data = data.decode('utf-8', 'strict') return StringIO(data), from_cache def _get_dataset_meta(dataname, package, cache): # get the index, you'll probably want this cached because you have # to download info about all the data to get info about any of the data... index_url = ("https://raw.github.com/vincentarelbundock/Rdatasets/master/" "datasets.csv") data, _ = _urlopen_cached(index_url, cache) # Python 3 if sys.version[0] == '3': # pragma: no cover data = data.decode('utf-8', 'strict') index = read_csv(StringIO(data)) idx = np.logical_and(index.Item == dataname, index.Package == package) dataset_meta = index.ix[idx] return dataset_meta["Title"].item() def get_rdataset(dataname, package="datasets", cache=False): """download and return R dataset Parameters ---------- dataname : str The name of the dataset you want to download package : str The package in which the dataset is found. The default is the core 'datasets' package. cache : bool or str If True, will download this data into the STATSMODELS_DATA folder. The default location is a folder called statsmodels_data in the user home folder. Otherwise, you can specify a path to a folder to use for caching the data. If False, the data will not be cached. Returns ------- dataset : Dataset instance A `statsmodels.data.utils.Dataset` instance. This objects has attributes:: * data - A pandas DataFrame containing the data * title - The dataset title * package - The package from which the data came * from_cache - Whether not cached data was retrieved * __doc__ - The verbatim R documentation. Notes ----- If the R dataset has an integer index. This is reset to be zero-based. Otherwise the index is preserved. The caching facilities are dumb. That is, no download dates, e-tags, or otherwise identifying information is checked to see if the data should be downloaded again or not. If the dataset is in the cache, it's used. """ # NOTE: use raw github bc html site might not be most up to date data_base_url = ("https://raw.github.com/vincentarelbundock/Rdatasets/" "master/csv/"+package+"/") docs_base_url = ("https://raw.github.com/vincentarelbundock/Rdatasets/" "master/doc/"+package+"/rst/") cache = _get_cache(cache) data, from_cache = _get_data(data_base_url, dataname, cache) data = read_csv(data, index_col=0) data = _maybe_reset_index(data) title = _get_dataset_meta(dataname, package, cache) doc, _ = _get_data(docs_base_url, dataname, cache, "rst") return Dataset(data=data, __doc__=doc.read(), package=package, title=title, from_cache=from_cache) # The below function were taken from sklearn def get_data_home(data_home=None): """Return the path of the statsmodels data dir. This folder is used by some large dataset loaders to avoid downloading the data several times. By default the data dir is set to a folder named 'statsmodels_data' in the user home folder. Alternatively, it can be set by the 'STATSMODELS_DATA' environment variable or programatically by giving an explit folder path. The '~' symbol is expanded to the user home folder. If the folder does not already exist, it is automatically created. """ if data_home is None: data_home = environ.get('STATSMODELS_DATA', join('~', 'statsmodels_data')) data_home = expanduser(data_home) if not exists(data_home): makedirs(data_home) return data_home def clear_data_home(data_home=None): """Delete all the content of the data home cache.""" data_home = get_data_home(data_home) shutil.rmtree(data_home) def check_internet(): """Check if internet is available""" try: urlopen("https://github.com") except URLError as err: return False return True
bsd-3-clause
uqyge/combustionML
som/som.py
1
9210
import tensorflow as tf import numpy as np class SOM(object): """ 2-D Self-Organizing Map with Gaussian Neighbourhood function and linearly decreasing learning rate. """ #To check if the SOM has been trained _trained = False def __init__(self, m, n, dim, n_iterations=100, alpha=None, sigma=None): """ Initializes all necessary components of the TensorFlow Graph. m X n are the dimensions of the SOM. 'n_iterations' should should be an integer denoting the number of iterations undergone while training. 'dim' is the dimensionality of the training inputs. 'alpha' is a number denoting the initial time(iteration no)-based learning rate. Default value is 0.3 'sigma' is the the initial neighbourhood value, denoting the radius of influence of the BMU while training. By default, its taken to be half of max(m, n). """ #Assign required variables first self._m = m self._n = n if alpha is None: alpha = 0.3 else: alpha = float(alpha) if sigma is None: sigma = max(m, n) / 2.0 else: sigma = float(sigma) self._n_iterations = abs(int(n_iterations)) ##INITIALIZE GRAPH self._graph = tf.Graph() ##POPULATE GRAPH WITH NECESSARY COMPONENTS with self._graph.as_default(): ##VARIABLES AND CONSTANT OPS FOR DATA STORAGE #Randomly initialized weightage vectors for all neurons, #stored together as a matrix Variable of size [m*n, dim] self._weightage_vects = tf.Variable(tf.random_normal( [m*n, dim])) #Matrix of size [m*n, 2] for SOM grid locations #of neurons self._location_vects = tf.constant(np.array( list(self._neuron_locations(m, n)))) ##PLACEHOLDERS FOR TRAINING INPUTS #We need to assign them as attributes to self, since they #will be fed in during training #The training vector self._vect_input = tf.placeholder(tf.float32, [dim]) #Iteration number self._iter_input = tf.placeholder(tf.float32) ##CONSTRUCT TRAINING OP PIECE BY PIECE #Only the final, 'root' training op needs to be assigned as #an attribute to self, since all the rest will be executed #automatically during training #To compute the Best Matching Unit given a vector #Basically calculates the Euclidean distance between every #neuron's weightage vector and the input, and returns the #index of the neuron which gives the least value bmu_index = tf.argmin(tf.sqrt(tf.reduce_sum( tf.pow(tf.subtract(self._weightage_vects, tf.stack( [self._vect_input for i in range(m*n)])), 2), 1)), 0) #This will extract the location of the BMU based on the BMU's #index slice_input = tf.pad(tf.reshape(bmu_index, [1]), np.array([[0, 1]])) bmu_loc = tf.reshape(tf.slice(self._location_vects, slice_input, tf.constant(np.array([1, 2]))), [2]) #To compute the alpha and sigma values based on iteration #number learning_rate_op = tf.subtract(1.0, tf.div(self._iter_input, self._n_iterations)) _alpha_op = tf.multiply(alpha, learning_rate_op) _sigma_op = tf.multiply(sigma, learning_rate_op) #Construct the op that will generate a vector with learning #rates for all neurons, based on iteration number and location #wrt BMU. bmu_distance_squares = tf.reduce_sum(tf.pow(tf.subtract( self._location_vects, tf.stack( [bmu_loc for i in range(m*n)])), 2), 1) neighbourhood_func = tf.exp(tf.negative(tf.div(tf.cast( bmu_distance_squares, "float32"), tf.pow(_sigma_op, 2)))) learning_rate_op = tf.multiply(_alpha_op, neighbourhood_func) #Finally, the op that will use learning_rate_op to update #the weightage vectors of all neurons based on a particular #input learning_rate_multiplier = tf.stack([tf.tile(tf.slice( learning_rate_op, np.array([i]), np.array([1])), [dim]) for i in range(m*n)]) weightage_delta = tf.multiply( learning_rate_multiplier, tf.subtract(tf.stack([self._vect_input for i in range(m*n)]), self._weightage_vects)) new_weightages_op = tf.add(self._weightage_vects, weightage_delta) self._training_op = tf.assign(self._weightage_vects, new_weightages_op) ##INITIALIZE SESSION self._sess = tf.Session() ##INITIALIZE VARIABLES #init_op = tf.initialize_all_variables() init_op = tf.global_variables_initializer() self._sess.run(init_op) def _neuron_locations(self, m, n): """ Yields one by one the 2-D locations of the individual neurons in the SOM. """ #Nested iterations over both dimensions #to generate all 2-D locations in the map for i in range(m): for j in range(n): yield np.array([i, j]) def train(self, input_vects): """ Trains the SOM. 'input_vects' should be an iterable of 1-D NumPy arrays with dimensionality as provided during initialization of this SOM. Current weightage vectors for all neurons(initially random) are taken as starting conditions for training. """ #Training iterations for iter_no in range(self._n_iterations): #Train with each vector one by one for input_vect in input_vects: self._sess.run(self._training_op, feed_dict={self._vect_input: input_vect, self._iter_input: iter_no}) print(str(iter_no)+'/'+str(self._n_iterations)) #Store a centroid grid for easy retrieval later on centroid_grid = [[] for i in range(self._m)] self._weightages = list(self._sess.run(self._weightage_vects)) self._locations = list(self._sess.run(self._location_vects)) for i, loc in enumerate(self._locations): centroid_grid[loc[0]].append(self._weightages[i]) self._centroid_grid = centroid_grid self._trained = True def get_centroids(self): """ Returns a list of 'm' lists, with each inner list containing the 'n' corresponding centroid locations as 1-D NumPy arrays. """ if not self._trained: raise ValueError("SOM not trained yet") return self._centroid_grid def map_vects(self, input_vects): """ Maps each input vector to the relevant neuron in the SOM grid. 'input_vects' should be an iterable of 1-D NumPy arrays with dimensionality as provided during initialization of this SOM. Returns a list of 1-D NumPy arrays containing (row, column) info for each input vector(in the same order), corresponding to mapped neuron. """ if not self._trained: raise ValueError("SOM not trained yet") to_return = [] for vect in input_vects: min_index = min([i for i in range(len(self._weightages))], key=lambda x: np.linalg.norm(vect- self._weightages[x])) to_return.append(self._locations[min_index]) return to_return #For plotting the images from matplotlib import pyplot as plt #Training inputs for RGBcolors colors = np.array( [[0., 0., 0.], [0., 0., 1.], [0., 0., 0.5], [0.125, 0.529, 1.0], [0.33, 0.4, 0.67], [0.6, 0.5, 1.0], [0., 1., 0.], [1., 0., 0.], [0., 1., 1.], [1., 0., 1.], [1., 1., 0.], [1., 1., 1.], [.33, .33, .33], [.5, .5, .5], [.66, .66, .66]]) color_names = \ ['black', 'blue', 'darkblue', 'skyblue', 'greyblue', 'lilac', 'green', 'red', 'cyan', 'violet', 'yellow', 'white', 'darkgrey', 'mediumgrey', 'lightgrey'] #Train a 20x30 SOM with 400 iterations som = SOM(20, 20, 3, 400) som.train(colors) #Get output grid image_grid = som.get_centroids() #Map colours to their closest neurons mapped = som.map_vects(colors) #Plot plt.imshow(image_grid) plt.title('Color SOM') for i, m in enumerate(mapped): plt.text(m[1], m[0], color_names[i], ha='center', va='center', bbox=dict(facecolor='white', alpha=0.5, lw=0)) plt.show()
mit
BuzzFeedNews/zika-data
scripts/parse-colombia.py
1
1215
#!/usr/bin/env python import pdfplumber import pdfplumber.utils import pandas as pd from collections import OrderedDict def get_column(chars, x_start, x_end, dtype): return chars[ (chars["x0"] >= x_start) & (chars["x0"] < x_end) ].groupby("doctop")\ .apply(pdfplumber.utils.collate_chars)\ .str.strip()\ .astype(dtype)\ .values def parse(pdf): chars = pd.DataFrame(pdf.chars) data_chars = chars[ (chars["fontname"] == "QURFPK+ArialNarrow") ].sort_values(["doctop", "x0"]) counts = pd.DataFrame(OrderedDict([ ("region", get_column(data_chars, 0, 200, str)), ("samples_received", get_column(data_chars, 200, 283, int)), ("samples_testable", get_column(data_chars, 283, 366, int)), ("samples_tested", get_column(data_chars, 366, 452, int)), ("samples_in_progress", get_column(data_chars, 452, 512, int)), ])) return counts if __name__ == "__main__": import sys if hasattr(sys.stdin, "buffer"): buf = sys.stdin.buffer else: buf = sys.stdin pdf = pdfplumber.load(buf) data = parse(pdf) data.to_csv(sys.stdout, index=False, encoding="utf-8")
mit
AlexRobson/scikit-learn
sklearn/tests/test_qda.py
155
3481
import numpy as np from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_raises from sklearn.utils.testing import ignore_warnings from sklearn import qda # Data is just 6 separable points in the plane X = np.array([[0, 0], [-2, -2], [-2, -1], [-1, -1], [-1, -2], [1, 3], [1, 2], [2, 1], [2, 2]]) y = np.array([1, 1, 1, 1, 1, 2, 2, 2, 2]) y3 = np.array([1, 2, 3, 2, 3, 1, 2, 3, 1]) # Degenerate data with 1 feature (still should be separable) X1 = np.array([[-3, ], [-2, ], [-1, ], [-1, ], [0, ], [1, ], [1, ], [2, ], [3, ]]) # Data that has zero variance in one dimension and needs regularization X2 = np.array([[-3, 0], [-2, 0], [-1, 0], [-1, 0], [0, 0], [1, 0], [1, 0], [2, 0], [3, 0]]) # One element class y4 = np.array([1, 1, 1, 1, 1, 1, 1, 1, 2]) # Data with less samples in a class than n_features X5 = np.c_[np.arange(8), np.zeros((8,3))] y5 = np.array([0, 0, 0, 0, 0, 1, 1, 1]) def test_qda(): # QDA classification. # This checks that QDA implements fit and predict and returns # correct values for a simple toy dataset. clf = qda.QDA() y_pred = clf.fit(X, y).predict(X) assert_array_equal(y_pred, y) # Assure that it works with 1D data y_pred1 = clf.fit(X1, y).predict(X1) assert_array_equal(y_pred1, y) # Test probas estimates y_proba_pred1 = clf.predict_proba(X1) assert_array_equal((y_proba_pred1[:, 1] > 0.5) + 1, y) y_log_proba_pred1 = clf.predict_log_proba(X1) assert_array_almost_equal(np.exp(y_log_proba_pred1), y_proba_pred1, 8) y_pred3 = clf.fit(X, y3).predict(X) # QDA shouldn't be able to separate those assert_true(np.any(y_pred3 != y3)) # Classes should have at least 2 elements assert_raises(ValueError, clf.fit, X, y4) def test_qda_priors(): clf = qda.QDA() y_pred = clf.fit(X, y).predict(X) n_pos = np.sum(y_pred == 2) neg = 1e-10 clf = qda.QDA(priors=np.array([neg, 1 - neg])) y_pred = clf.fit(X, y).predict(X) n_pos2 = np.sum(y_pred == 2) assert_greater(n_pos2, n_pos) def test_qda_store_covariances(): # The default is to not set the covariances_ attribute clf = qda.QDA().fit(X, y) assert_true(not hasattr(clf, 'covariances_')) # Test the actual attribute: clf = qda.QDA().fit(X, y, store_covariances=True) assert_true(hasattr(clf, 'covariances_')) assert_array_almost_equal( clf.covariances_[0], np.array([[0.7, 0.45], [0.45, 0.7]]) ) assert_array_almost_equal( clf.covariances_[1], np.array([[0.33333333, -0.33333333], [-0.33333333, 0.66666667]]) ) def test_qda_regularization(): # the default is reg_param=0. and will cause issues # when there is a constant variable clf = qda.QDA() with ignore_warnings(): y_pred = clf.fit(X2, y).predict(X2) assert_true(np.any(y_pred != y)) # adding a little regularization fixes the problem clf = qda.QDA(reg_param=0.01) with ignore_warnings(): clf.fit(X2, y) y_pred = clf.predict(X2) assert_array_equal(y_pred, y) # Case n_samples_in_a_class < n_features clf = qda.QDA(reg_param=0.1) with ignore_warnings(): clf.fit(X5, y5) y_pred5 = clf.predict(X5) assert_array_equal(y_pred5, y5)
bsd-3-clause
GeraldLoeffler/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/cm.py
70
5385
""" This module contains the instantiations of color mapping classes """ import numpy as np from numpy import ma import matplotlib as mpl import matplotlib.colors as colors import matplotlib.cbook as cbook from matplotlib._cm import * def get_cmap(name=None, lut=None): """ Get a colormap instance, defaulting to rc values if *name* is None """ if name is None: name = mpl.rcParams['image.cmap'] if lut is None: lut = mpl.rcParams['image.lut'] assert(name in datad.keys()) return colors.LinearSegmentedColormap(name, datad[name], lut) class ScalarMappable: """ This is a mixin class to support scalar -> RGBA mapping. Handles normalization and colormapping """ def __init__(self, norm=None, cmap=None): """ *norm* is an instance of :class:`colors.Normalize` or one of its subclasses, used to map luminance to 0-1. *cmap* is a :mod:`cm` colormap instance, for example :data:`cm.jet` """ self.callbacksSM = cbook.CallbackRegistry(( 'changed',)) if cmap is None: cmap = get_cmap() if norm is None: norm = colors.Normalize() self._A = None self.norm = norm self.cmap = cmap self.colorbar = None self.update_dict = {'array':False} def set_colorbar(self, im, ax): 'set the colorbar image and axes associated with mappable' self.colorbar = im, ax def to_rgba(self, x, alpha=1.0, bytes=False): '''Return a normalized rgba array corresponding to *x*. If *x* is already an rgb array, insert *alpha*; if it is already rgba, return it unchanged. If *bytes* is True, return rgba as 4 uint8s instead of 4 floats. ''' try: if x.ndim == 3: if x.shape[2] == 3: if x.dtype == np.uint8: alpha = np.array(alpha*255, np.uint8) m, n = x.shape[:2] xx = np.empty(shape=(m,n,4), dtype = x.dtype) xx[:,:,:3] = x xx[:,:,3] = alpha elif x.shape[2] == 4: xx = x else: raise ValueError("third dimension must be 3 or 4") if bytes and xx.dtype != np.uint8: xx = (xx * 255).astype(np.uint8) return xx except AttributeError: pass x = ma.asarray(x) x = self.norm(x) x = self.cmap(x, alpha=alpha, bytes=bytes) return x def set_array(self, A): 'Set the image array from numpy array *A*' self._A = A self.update_dict['array'] = True def get_array(self): 'Return the array' return self._A def get_cmap(self): 'return the colormap' return self.cmap def get_clim(self): 'return the min, max of the color limits for image scaling' return self.norm.vmin, self.norm.vmax def set_clim(self, vmin=None, vmax=None): """ set the norm limits for image scaling; if *vmin* is a length2 sequence, interpret it as ``(vmin, vmax)`` which is used to support setp ACCEPTS: a length 2 sequence of floats """ if (vmin is not None and vmax is None and cbook.iterable(vmin) and len(vmin)==2): vmin, vmax = vmin if vmin is not None: self.norm.vmin = vmin if vmax is not None: self.norm.vmax = vmax self.changed() def set_cmap(self, cmap): """ set the colormap for luminance data ACCEPTS: a colormap """ if cmap is None: cmap = get_cmap() self.cmap = cmap self.changed() def set_norm(self, norm): 'set the normalization instance' if norm is None: norm = colors.Normalize() self.norm = norm self.changed() def autoscale(self): """ Autoscale the scalar limits on the norm instance using the current array """ if self._A is None: raise TypeError('You must first set_array for mappable') self.norm.autoscale(self._A) self.changed() def autoscale_None(self): """ Autoscale the scalar limits on the norm instance using the current array, changing only limits that are None """ if self._A is None: raise TypeError('You must first set_array for mappable') self.norm.autoscale_None(self._A) self.changed() def add_checker(self, checker): """ Add an entry to a dictionary of boolean flags that are set to True when the mappable is changed. """ self.update_dict[checker] = False def check_update(self, checker): """ If mappable has changed since the last check, return True; else return False """ if self.update_dict[checker]: self.update_dict[checker] = False return True return False def changed(self): """ Call this whenever the mappable is changed to notify all the callbackSM listeners to the 'changed' signal """ self.callbacksSM.process('changed', self) for key in self.update_dict: self.update_dict[key] = True
agpl-3.0
saiwing-yeung/scikit-learn
examples/applications/plot_outlier_detection_housing.py
28
5563
""" ==================================== Outlier detection on a real data set ==================================== This example illustrates the need for robust covariance estimation on a real data set. It is useful both for outlier detection and for a better understanding of the data structure. We selected two sets of two variables from the Boston housing data set as an illustration of what kind of analysis can be done with several outlier detection tools. For the purpose of visualization, we are working with two-dimensional examples, but one should be aware that things are not so trivial in high-dimension, as it will be pointed out. In both examples below, the main result is that the empirical covariance estimate, as a non-robust one, is highly influenced by the heterogeneous structure of the observations. Although the robust covariance estimate is able to focus on the main mode of the data distribution, it sticks to the assumption that the data should be Gaussian distributed, yielding some biased estimation of the data structure, but yet accurate to some extent. The One-Class SVM algorithm First example ------------- The first example illustrates how robust covariance estimation can help concentrating on a relevant cluster when another one exists. Here, many observations are confounded into one and break down the empirical covariance estimation. Of course, some screening tools would have pointed out the presence of two clusters (Support Vector Machines, Gaussian Mixture Models, univariate outlier detection, ...). But had it been a high-dimensional example, none of these could be applied that easily. Second example -------------- The second example shows the ability of the Minimum Covariance Determinant robust estimator of covariance to concentrate on the main mode of the data distribution: the location seems to be well estimated, although the covariance is hard to estimate due to the banana-shaped distribution. Anyway, we can get rid of some outlying observations. The One-Class SVM is able to capture the real data structure, but the difficulty is to adjust its kernel bandwidth parameter so as to obtain a good compromise between the shape of the data scatter matrix and the risk of over-fitting the data. """ print(__doc__) # Author: Virgile Fritsch <[email protected]> # License: BSD 3 clause import numpy as np from sklearn.covariance import EllipticEnvelope from sklearn.svm import OneClassSVM import matplotlib.pyplot as plt import matplotlib.font_manager from sklearn.datasets import load_boston # Get data X1 = load_boston()['data'][:, [8, 10]] # two clusters X2 = load_boston()['data'][:, [5, 12]] # "banana"-shaped # Define "classifiers" to be used classifiers = { "Empirical Covariance": EllipticEnvelope(support_fraction=1., contamination=0.261), "Robust Covariance (Minimum Covariance Determinant)": EllipticEnvelope(contamination=0.261), "OCSVM": OneClassSVM(nu=0.261, gamma=0.05)} colors = ['m', 'g', 'b'] legend1 = {} legend2 = {} # Learn a frontier for outlier detection with several classifiers xx1, yy1 = np.meshgrid(np.linspace(-8, 28, 500), np.linspace(3, 40, 500)) xx2, yy2 = np.meshgrid(np.linspace(3, 10, 500), np.linspace(-5, 45, 500)) for i, (clf_name, clf) in enumerate(classifiers.items()): plt.figure(1) clf.fit(X1) Z1 = clf.decision_function(np.c_[xx1.ravel(), yy1.ravel()]) Z1 = Z1.reshape(xx1.shape) legend1[clf_name] = plt.contour( xx1, yy1, Z1, levels=[0], linewidths=2, colors=colors[i]) plt.figure(2) clf.fit(X2) Z2 = clf.decision_function(np.c_[xx2.ravel(), yy2.ravel()]) Z2 = Z2.reshape(xx2.shape) legend2[clf_name] = plt.contour( xx2, yy2, Z2, levels=[0], linewidths=2, colors=colors[i]) legend1_values_list = list(legend1.values()) legend1_keys_list = list(legend1.keys()) # Plot the results (= shape of the data points cloud) plt.figure(1) # two clusters plt.title("Outlier detection on a real data set (boston housing)") plt.scatter(X1[:, 0], X1[:, 1], color='black') bbox_args = dict(boxstyle="round", fc="0.8") arrow_args = dict(arrowstyle="->") plt.annotate("several confounded points", xy=(24, 19), xycoords="data", textcoords="data", xytext=(13, 10), bbox=bbox_args, arrowprops=arrow_args) plt.xlim((xx1.min(), xx1.max())) plt.ylim((yy1.min(), yy1.max())) plt.legend((legend1_values_list[0].collections[0], legend1_values_list[1].collections[0], legend1_values_list[2].collections[0]), (legend1_keys_list[0], legend1_keys_list[1], legend1_keys_list[2]), loc="upper center", prop=matplotlib.font_manager.FontProperties(size=12)) plt.ylabel("accessibility to radial highways") plt.xlabel("pupil-teacher ratio by town") legend2_values_list = list(legend2.values()) legend2_keys_list = list(legend2.keys()) plt.figure(2) # "banana" shape plt.title("Outlier detection on a real data set (boston housing)") plt.scatter(X2[:, 0], X2[:, 1], color='black') plt.xlim((xx2.min(), xx2.max())) plt.ylim((yy2.min(), yy2.max())) plt.legend((legend2_values_list[0].collections[0], legend2_values_list[1].collections[0], legend2_values_list[2].collections[0]), (legend2_keys_list[0], legend2_keys_list[1], legend2_keys_list[2]), loc="upper center", prop=matplotlib.font_manager.FontProperties(size=12)) plt.ylabel("% lower status of the population") plt.xlabel("average number of rooms per dwelling") plt.show()
bsd-3-clause
elijah513/scikit-learn
sklearn/linear_model/tests/test_bayes.py
299
1770
# Author: Alexandre Gramfort <[email protected]> # Fabian Pedregosa <[email protected]> # # License: BSD 3 clause import numpy as np from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import SkipTest from sklearn.linear_model.bayes import BayesianRidge, ARDRegression from sklearn import datasets from sklearn.utils.testing import assert_array_almost_equal def test_bayesian_on_diabetes(): # Test BayesianRidge on diabetes raise SkipTest("XFailed Test") diabetes = datasets.load_diabetes() X, y = diabetes.data, diabetes.target clf = BayesianRidge(compute_score=True) # Test with more samples than features clf.fit(X, y) # Test that scores are increasing at each iteration assert_array_equal(np.diff(clf.scores_) > 0, True) # Test with more features than samples X = X[:5, :] y = y[:5] clf.fit(X, y) # Test that scores are increasing at each iteration assert_array_equal(np.diff(clf.scores_) > 0, True) def test_toy_bayesian_ridge_object(): # Test BayesianRidge on toy X = np.array([[1], [2], [6], [8], [10]]) Y = np.array([1, 2, 6, 8, 10]) clf = BayesianRidge(compute_score=True) clf.fit(X, Y) # Check that the model could approximately learn the identity function test = [[1], [3], [4]] assert_array_almost_equal(clf.predict(test), [1, 3, 4], 2) def test_toy_ard_object(): # Test BayesianRegression ARD classifier X = np.array([[1], [2], [3]]) Y = np.array([1, 2, 3]) clf = ARDRegression(compute_score=True) clf.fit(X, Y) # Check that the model could approximately learn the identity function test = [[1], [3], [4]] assert_array_almost_equal(clf.predict(test), [1, 3, 4], 2)
bsd-3-clause
Clyde-fare/scikit-learn
sklearn/datasets/tests/test_rcv1.py
322
2414
"""Test the rcv1 loader. Skipped if rcv1 is not already downloaded to data_home. """ import errno import scipy.sparse as sp import numpy as np from sklearn.datasets import fetch_rcv1 from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import SkipTest def test_fetch_rcv1(): try: data1 = fetch_rcv1(shuffle=False, download_if_missing=False) except IOError as e: if e.errno == errno.ENOENT: raise SkipTest("Download RCV1 dataset to run this test.") X1, Y1 = data1.data, data1.target cat_list, s1 = data1.target_names.tolist(), data1.sample_id # test sparsity assert_true(sp.issparse(X1)) assert_true(sp.issparse(Y1)) assert_equal(60915113, X1.data.size) assert_equal(2606875, Y1.data.size) # test shapes assert_equal((804414, 47236), X1.shape) assert_equal((804414, 103), Y1.shape) assert_equal((804414,), s1.shape) assert_equal(103, len(cat_list)) # test ordering of categories first_categories = [u'C11', u'C12', u'C13', u'C14', u'C15', u'C151'] assert_array_equal(first_categories, cat_list[:6]) # test number of sample for some categories some_categories = ('GMIL', 'E143', 'CCAT') number_non_zero_in_cat = (5, 1206, 381327) for num, cat in zip(number_non_zero_in_cat, some_categories): j = cat_list.index(cat) assert_equal(num, Y1[:, j].data.size) # test shuffling and subset data2 = fetch_rcv1(shuffle=True, subset='train', random_state=77, download_if_missing=False) X2, Y2 = data2.data, data2.target s2 = data2.sample_id # The first 23149 samples are the training samples assert_array_equal(np.sort(s1[:23149]), np.sort(s2)) # test some precise values some_sample_ids = (2286, 3274, 14042) for sample_id in some_sample_ids: idx1 = s1.tolist().index(sample_id) idx2 = s2.tolist().index(sample_id) feature_values_1 = X1[idx1, :].toarray() feature_values_2 = X2[idx2, :].toarray() assert_almost_equal(feature_values_1, feature_values_2) target_values_1 = Y1[idx1, :].toarray() target_values_2 = Y2[idx2, :].toarray() assert_almost_equal(target_values_1, target_values_2)
bsd-3-clause
gfyoung/pandas
pandas/tests/apply/test_series_transform.py
1
2526
import numpy as np import pytest from pandas import Series, concat import pandas._testing as tm from pandas.core.base import SpecificationError from pandas.core.groupby.base import transformation_kernels # tshift only works on time index and is deprecated # There is no Series.cumcount series_kernels = [ x for x in sorted(transformation_kernels) if x not in ["tshift", "cumcount"] ] @pytest.mark.parametrize("op", series_kernels) def test_transform_groupby_kernel(string_series, op): # GH 35964 args = [0.0] if op == "fillna" else [] ones = np.ones(string_series.shape[0]) expected = string_series.groupby(ones).transform(op, *args) result = string_series.transform(op, 0, *args) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "ops, names", [ ([np.sqrt], ["sqrt"]), ([np.abs, np.sqrt], ["absolute", "sqrt"]), (np.array([np.sqrt]), ["sqrt"]), (np.array([np.abs, np.sqrt]), ["absolute", "sqrt"]), ], ) def test_transform_listlike(string_series, ops, names): # GH 35964 with np.errstate(all="ignore"): expected = concat([op(string_series) for op in ops], axis=1) expected.columns = names result = string_series.transform(ops) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("box", [dict, Series]) def test_transform_dictlike(string_series, box): # GH 35964 with np.errstate(all="ignore"): expected = concat([np.sqrt(string_series), np.abs(string_series)], axis=1) expected.columns = ["foo", "bar"] result = string_series.transform(box({"foo": np.sqrt, "bar": np.abs})) tm.assert_frame_equal(result, expected) def test_transform_wont_agg(string_series): # GH 35964 # we are trying to transform with an aggregator msg = "Function did not transform" with pytest.raises(ValueError, match=msg): string_series.transform(["min", "max"]) msg = "Function did not transform" with pytest.raises(ValueError, match=msg): with np.errstate(all="ignore"): string_series.transform(["sqrt", "max"]) def test_transform_axis_1_raises(): # GH 35964 msg = "No axis named 1 for object type Series" with pytest.raises(ValueError, match=msg): Series([1]).transform("sum", axis=1) def test_transform_nested_renamer(): # GH 35964 match = "nested renamer is not supported" with pytest.raises(SpecificationError, match=match): Series([1]).transform({"A": {"B": ["sum"]}})
bsd-3-clause
mac-theobio/Lab_meeting
dataviz/plotly_python_qz/main.py
1
2358
import dash import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output import plotly.express as px import pandas as pd external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css'] app = dash.Dash(__name__, external_stylesheets=external_stylesheets) ##df = pd.read_csv("./data/full.csv") df = pd.read_csv("./data/monthly.csv") order = ['January', 'February', "March",'April', 'May', 'June', 'July', 'August'] color_map = dict(zip([i for i in df["theme"].unique()],px.colors.qualitative.Plotly[:9])) theme_names = df['theme'].unique() app.layout = html.Div(children=[ html.H1(children='Youtube Viz'), html.Div(children=''' Use the slider below to see monthly trends. '''), html.H6("Monthly Theme Counts"), dcc.Graph(id='graph_with_slider'), dcc.Slider( id='month-slider', min=df['published_month'].min(), max=df['published_month'].max(), marks=dict(zip([i for i in range(1,10)],order)), step=None, value=1 ), html.Div( children=''' ''', style = {'padding':50}), dcc.Dropdown(id='dropdown', options=[{'label':i, 'value':i} for i in theme_names], value= theme_names[0], style={'width':'70%'} ), dcc.Graph(id='graph_with_dropdown') ]) @app.callback( Output('graph_with_dropdown', 'figure'), [Input('dropdown', 'value')]) def update_dropdown(selected_theme): filtered_df = df.copy() filtered_df = filtered_df[filtered_df['theme']==selected_theme] fig = px.bar(filtered_df, x='published_month', y='count', color='theme', color_discrete_map= color_map) fig.update_yaxes(range=[0,35]) fig.update_layout(#title=go.layout.Title("Number of videos per month"), transition_duration=500) return fig @app.callback( Output('graph_with_slider', 'figure'), [Input('month-slider', 'value')]) def update_figure(selected_month): filtered_df = df[df['published_month']==selected_month] fig = px.bar(filtered_df,x="theme", y="count", color="theme", color_discrete_map=color_map, #color_discrete_sequence=px.colors.qualitative.T10, #yaxis=dict(range=[0, 35]), labels= {"count":"Count"}) fig.update_yaxes(range=[0,35]) fig.update_layout(#title=go.layout.Title("Number of videos per month"), transition_duration=500) return fig if __name__ == '__main__': app.run_server(debug=True)
gpl-3.0
natanielruiz/android-yolo
jni-build/jni/include/tensorflow/contrib/learn/python/learn/tests/dataframe/feeding_functions_test.py
30
4777
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests feeding functions using arrays and `DataFrames`.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf import tensorflow.contrib.learn.python.learn.dataframe.queues.feeding_functions as ff # pylint: disable=g-import-not-at-top try: import pandas as pd HAS_PANDAS = True except ImportError: HAS_PANDAS = False def vals_to_list(a): return {key: val.tolist() if isinstance(val, np.ndarray) else val for key, val in a.items()} class _FeedingFunctionsTestCase(tf.test.TestCase): """Tests for feeding functions.""" def testArrayFeedFnBatchOne(self): array = np.arange(32).reshape([16, 2]) placeholders = ["index_placeholder", "value_placeholder"] aff = ff._ArrayFeedFn(placeholders, array, 1) # cycle around a couple times for x in range(0, 100): i = x % 16 expected = {"index_placeholder": [i], "value_placeholder": [[2 * i, 2 * i + 1]]} actual = aff() self.assertEqual(expected, vals_to_list(actual)) def testArrayFeedFnBatchFive(self): array = np.arange(32).reshape([16, 2]) placeholders = ["index_placeholder", "value_placeholder"] aff = ff._ArrayFeedFn(placeholders, array, 5) # cycle around a couple times for _ in range(0, 101, 2): aff() expected = {"index_placeholder": [15, 0, 1, 2, 3], "value_placeholder": [[30, 31], [0, 1], [2, 3], [4, 5], [6, 7]]} actual = aff() self.assertEqual(expected, vals_to_list(actual)) def testArrayFeedFnBatchOneHundred(self): array = np.arange(32).reshape([16, 2]) placeholders = ["index_placeholder", "value_placeholder"] aff = ff._ArrayFeedFn(placeholders, array, 100) expected = {"index_placeholder": list(range(0, 16)) * 6 + list(range(0, 4)), "value_placeholder": np.arange(32).reshape([16, 2]).tolist() * 6 + [[0, 1], [2, 3], [4, 5], [6, 7]]} actual = aff() self.assertEqual(expected, vals_to_list(actual)) def testPandasFeedFnBatchOne(self): if not HAS_PANDAS: return array1 = np.arange(32, 64) array2 = np.arange(64, 96) df = pd.DataFrame({"a": array1, "b": array2}, index=np.arange(96, 128)) placeholders = ["index_placeholder", "a_placeholder", "b_placeholder"] aff = ff._PandasFeedFn(placeholders, df, 1) # cycle around a couple times for x in range(0, 100): i = x % 32 expected = {"index_placeholder": [i + 96], "a_placeholder": [32 + i], "b_placeholder": [64 + i]} actual = aff() self.assertEqual(expected, vals_to_list(actual)) def testPandasFeedFnBatchFive(self): if not HAS_PANDAS: return array1 = np.arange(32, 64) array2 = np.arange(64, 96) df = pd.DataFrame({"a": array1, "b": array2}, index=np.arange(96, 128)) placeholders = ["index_placeholder", "a_placeholder", "b_placeholder"] aff = ff._PandasFeedFn(placeholders, df, 5) # cycle around a couple times for _ in range(0, 101, 2): aff() expected = {"index_placeholder": [127, 96, 97, 98, 99], "a_placeholder": [63, 32, 33, 34, 35], "b_placeholder": [95, 64, 65, 66, 67]} actual = aff() self.assertEqual(expected, vals_to_list(actual)) def testPandasFeedFnBatchOneHundred(self): if not HAS_PANDAS: return array1 = np.arange(32, 64) array2 = np.arange(64, 96) df = pd.DataFrame({"a": array1, "b": array2}, index=np.arange(96, 128)) placeholders = ["index_placeholder", "a_placeholder", "b_placeholder"] aff = ff._PandasFeedFn(placeholders, df, 100) expected = { "index_placeholder": list(range(96, 128)) * 3 + list(range(96, 100)), "a_placeholder": list(range(32, 64)) * 3 + list(range(32, 36)), "b_placeholder": list(range(64, 96)) * 3 + list(range(64, 68)) } actual = aff() self.assertEqual(expected, vals_to_list(actual)) if __name__ == "__main__": tf.test.main()
apache-2.0
rasbt/python-machine-learning-book
code/optional-py-scripts/ch12.py
4
33098
# Sebastian Raschka, 2015 (http://sebastianraschka.com) # Python Machine Learning - Code Examples # # Chapter 12 - Training Artificial Neural Networks for Image Recognition # # S. Raschka. Python Machine Learning. Packt Publishing Ltd., 2015. # GitHub Repo: https://github.com/rasbt/python-machine-learning-book # # License: MIT # https://github.com/rasbt/python-machine-learning-book/blob/master/LICENSE.txt import os import struct import numpy as np from scipy.special import expit import sys import matplotlib.pyplot as plt ############################################################################# print(50 * '=') print('Obtaining the MNIST dataset') print(50 * '-') s = """ The MNIST dataset is publicly available at http://yann.lecun.com/exdb/mnist/ and consists of the following four parts: - Training set images: train-images-idx3-ubyte.gz (9.9 MB, 47 MB unzipped, 60,000 samples) - Training set labels: train-labels-idx1-ubyte.gz (29 KB, 60 KB unzipped, 60,000 labels) - Test set images: t10k-images-idx3-ubyte.gz (1.6 MB, 7.8 MB, 10,000 samples) - Test set labels: t10k-labels-idx1-ubyte.gz (5 KB, 10 KB unzipped, 10,000 labels) In this section, we will only be working with a subset of MNIST, thus, we only need to download the training set images and training set labels. After downloading the files, I recommend unzipping the files using the Unix/Linux gzip tool from the terminal for efficiency, e.g., using the command gzip *ubyte.gz -d in your local MNIST download directory, or, using your favorite unzipping tool if you are working with a machine running on Microsoft Windows. The images are stored in byte form, and using the following function, we will read them into NumPy arrays that we will use to train our MLP. """ print(s) _ = input("Please hit enter to continue.") def load_mnist(path, kind='train'): """Load MNIST data from `path`""" labels_path = os.path.join(path, '%s-labels-idx1-ubyte' % kind) images_path = os.path.join(path, '%s-images-idx3-ubyte' % kind) with open(labels_path, 'rb') as lbpath: magic, n = struct.unpack('>II', lbpath.read(8)) labels = np.fromfile(lbpath, dtype=np.uint8) with open(images_path, 'rb') as imgpath: magic, num, rows, cols = struct.unpack(">IIII", imgpath.read(16)) images = np.fromfile(imgpath, dtype=np.uint8).reshape(len(labels), 784) return images, labels X_train, y_train = load_mnist('mnist', kind='train') print('Training rows: %d, columns: %d' % (X_train.shape[0], X_train.shape[1])) X_test, y_test = load_mnist('mnist', kind='t10k') print('Test rows: %d, columns: %d' % (X_test.shape[0], X_test.shape[1])) fig, ax = plt.subplots(nrows=2, ncols=5, sharex=True, sharey=True,) ax = ax.flatten() for i in range(10): img = X_train[y_train == i][0].reshape(28, 28) ax[i].imshow(img, cmap='Greys', interpolation='nearest') ax[0].set_xticks([]) ax[0].set_yticks([]) # plt.tight_layout() # plt.savefig('./figures/mnist_all.png', dpi=300) plt.show() fig, ax = plt.subplots(nrows=5, ncols=5, sharex=True, sharey=True,) ax = ax.flatten() for i in range(25): img = X_train[y_train == 7][i].reshape(28, 28) ax[i].imshow(img, cmap='Greys', interpolation='nearest') ax[0].set_xticks([]) ax[0].set_yticks([]) # plt.tight_layout() # plt.savefig('./figures/mnist_7.png', dpi=300) plt.show() """ Uncomment the following lines to optionally save the data in CSV format. However, note that those CSV files will take up a substantial amount of storage space: - train_img.csv 1.1 GB (gigabytes) - train_labels.csv 1.4 MB (megabytes) - test_img.csv 187.0 MB - test_labels 144 KB (kilobytes) """ # np.savetxt('train_img.csv', X_train, fmt='%i', delimiter=',') # np.savetxt('train_labels.csv', y_train, fmt='%i', delimiter=',') # X_train = np.genfromtxt('train_img.csv', dtype=int, delimiter=',') # y_train = np.genfromtxt('train_labels.csv', dtype=int, delimiter=',') # np.savetxt('test_img.csv', X_test, fmt='%i', delimiter=',') # np.savetxt('test_labels.csv', y_test, fmt='%i', delimiter=',') # X_test = np.genfromtxt('test_img.csv', dtype=int, delimiter=',') # y_test = np.genfromtxt('test_labels.csv', dtype=int, delimiter=',') ############################################################################# print(50 * '=') print('Implementing a multi-layer perceptron') print(50 * '-') class NeuralNetMLP(object): """ Feedforward neural network / Multi-layer perceptron classifier. Parameters ------------ n_output : int Number of output units, should be equal to the number of unique class labels. n_features : int Number of features (dimensions) in the target dataset. Should be equal to the number of columns in the X array. n_hidden : int (default: 30) Number of hidden units. l1 : float (default: 0.0) Lambda value for L1-regularization. No regularization if l1=0.0 (default) l2 : float (default: 0.0) Lambda value for L2-regularization. No regularization if l2=0.0 (default) epochs : int (default: 500) Number of passes over the training set. eta : float (default: 0.001) Learning rate. alpha : float (default: 0.0) Momentum constant. Factor multiplied with the gradient of the previous epoch t-1 to improve learning speed w(t) := w(t) - (grad(t) + alpha*grad(t-1)) decrease_const : float (default: 0.0) Decrease constant. Shrinks the learning rate after each epoch via eta / (1 + epoch*decrease_const) shuffle : bool (default: True) Shuffles training data every epoch if True to prevent circles. minibatches : int (default: 1) Divides training data into k minibatches for efficiency. Normal gradient descent learning if k=1 (default). random_state : int (default: None) Set random state for shuffling and initializing the weights. Attributes ----------- cost_ : list Sum of squared errors after each epoch. """ def __init__(self, n_output, n_features, n_hidden=30, l1=0.0, l2=0.0, epochs=500, eta=0.001, alpha=0.0, decrease_const=0.0, shuffle=True, minibatches=1, random_state=None): np.random.seed(random_state) self.n_output = n_output self.n_features = n_features self.n_hidden = n_hidden self.w1, self.w2 = self._initialize_weights() self.l1 = l1 self.l2 = l2 self.epochs = epochs self.eta = eta self.alpha = alpha self.decrease_const = decrease_const self.shuffle = shuffle self.minibatches = minibatches def _encode_labels(self, y, k): """Encode labels into one-hot representation Parameters ------------ y : array, shape = [n_samples] Target values. Returns ----------- onehot : array, shape = (n_labels, n_samples) """ onehot = np.zeros((k, y.shape[0])) for idx, val in enumerate(y): onehot[val, idx] = 1.0 return onehot def _initialize_weights(self): """Initialize weights with small random numbers.""" w1 = np.random.uniform(-1.0, 1.0, size=self.n_hidden*(self.n_features + 1)) w1 = w1.reshape(self.n_hidden, self.n_features + 1) w2 = np.random.uniform(-1.0, 1.0, size=self.n_output*(self.n_hidden + 1)) w2 = w2.reshape(self.n_output, self.n_hidden + 1) return w1, w2 def _sigmoid(self, z): """Compute logistic function (sigmoid) Uses scipy.special.expit to avoid overflow error for very small input values z. """ # return 1.0 / (1.0 + np.exp(-z)) return expit(z) def _sigmoid_gradient(self, z): """Compute gradient of the logistic function""" sg = self._sigmoid(z) return sg * (1 - sg) def _add_bias_unit(self, X, how='column'): """Add bias unit (column or row of 1s) to array at index 0""" if how == 'column': X_new = np.ones((X.shape[0], X.shape[1]+1)) X_new[:, 1:] = X elif how == 'row': X_new = np.ones((X.shape[0]+1, X.shape[1])) X_new[1:, :] = X else: raise AttributeError('`how` must be `column` or `row`') return X_new def _feedforward(self, X, w1, w2): """Compute feedforward step Parameters ----------- X : array, shape = [n_samples, n_features] Input layer with original features. w1 : array, shape = [n_hidden_units, n_features] Weight matrix for input layer -> hidden layer. w2 : array, shape = [n_output_units, n_hidden_units] Weight matrix for hidden layer -> output layer. Returns ---------- a1 : array, shape = [n_samples, n_features+1] Input values with bias unit. z2 : array, shape = [n_hidden, n_samples] Net input of hidden layer. a2 : array, shape = [n_hidden+1, n_samples] Activation of hidden layer. z3 : array, shape = [n_output_units, n_samples] Net input of output layer. a3 : array, shape = [n_output_units, n_samples] Activation of output layer. """ a1 = self._add_bias_unit(X, how='column') z2 = w1.dot(a1.T) a2 = self._sigmoid(z2) a2 = self._add_bias_unit(a2, how='row') z3 = w2.dot(a2) a3 = self._sigmoid(z3) return a1, z2, a2, z3, a3 def _L2_reg(self, lambda_, w1, w2): """Compute L2-regularization cost""" return (lambda_/2.0) * (np.sum(w1[:, 1:] ** 2) + np.sum(w2[:, 1:] ** 2)) def _L1_reg(self, lambda_, w1, w2): """Compute L1-regularization cost""" return (lambda_/2.0) * (np.abs(w1[:, 1:]).sum() + np.abs(w2[:, 1:]).sum()) def _get_cost(self, y_enc, output, w1, w2): """Compute cost function. Parameters ---------- y_enc : array, shape = (n_labels, n_samples) one-hot encoded class labels. output : array, shape = [n_output_units, n_samples] Activation of the output layer (feedforward) w1 : array, shape = [n_hidden_units, n_features] Weight matrix for input layer -> hidden layer. w2 : array, shape = [n_output_units, n_hidden_units] Weight matrix for hidden layer -> output layer. Returns --------- cost : float Regularized cost. """ term1 = -y_enc * (np.log(output)) term2 = (1 - y_enc) * np.log(1 - output) cost = np.sum(term1 - term2) L1_term = self._L1_reg(self.l1, w1, w2) L2_term = self._L2_reg(self.l2, w1, w2) cost = cost + L1_term + L2_term return cost def _get_gradient(self, a1, a2, a3, z2, y_enc, w1, w2): """ Compute gradient step using backpropagation. Parameters ------------ a1 : array, shape = [n_samples, n_features+1] Input values with bias unit. a2 : array, shape = [n_hidden+1, n_samples] Activation of hidden layer. a3 : array, shape = [n_output_units, n_samples] Activation of output layer. z2 : array, shape = [n_hidden, n_samples] Net input of hidden layer. y_enc : array, shape = (n_labels, n_samples) one-hot encoded class labels. w1 : array, shape = [n_hidden_units, n_features] Weight matrix for input layer -> hidden layer. w2 : array, shape = [n_output_units, n_hidden_units] Weight matrix for hidden layer -> output layer. Returns --------- grad1 : array, shape = [n_hidden_units, n_features] Gradient of the weight matrix w1. grad2 : array, shape = [n_output_units, n_hidden_units] Gradient of the weight matrix w2. """ # backpropagation sigma3 = a3 - y_enc z2 = self._add_bias_unit(z2, how='row') sigma2 = w2.T.dot(sigma3) * self._sigmoid_gradient(z2) sigma2 = sigma2[1:, :] grad1 = sigma2.dot(a1) grad2 = sigma3.dot(a2.T) # regularize grad1[:, 1:] += (w1[:, 1:] * (self.l1 + self.l2)) grad2[:, 1:] += (w2[:, 1:] * (self.l1 + self.l2)) return grad1, grad2 def predict(self, X): """Predict class labels Parameters ----------- X : array, shape = [n_samples, n_features] Input layer with original features. Returns: ---------- y_pred : array, shape = [n_samples] Predicted class labels. """ if len(X.shape) != 2: raise AttributeError('X must be a [n_samples, n_features] array.\n' 'Use X[:,None] for 1-feature classification,' '\nor X[[i]] for 1-sample classification') a1, z2, a2, z3, a3 = self._feedforward(X, self.w1, self.w2) y_pred = np.argmax(z3, axis=0) return y_pred def fit(self, X, y, print_progress=False): """ Learn weights from training data. Parameters ----------- X : array, shape = [n_samples, n_features] Input layer with original features. y : array, shape = [n_samples] Target class labels. print_progress : bool (default: False) Prints progress as the number of epochs to stderr. Returns: ---------- self """ self.cost_ = [] X_data, y_data = X.copy(), y.copy() y_enc = self._encode_labels(y, self.n_output) delta_w1_prev = np.zeros(self.w1.shape) delta_w2_prev = np.zeros(self.w2.shape) for i in range(self.epochs): # adaptive learning rate self.eta /= (1 + self.decrease_const*i) if print_progress: sys.stderr.write('\rEpoch: %d/%d' % (i+1, self.epochs)) sys.stderr.flush() if self.shuffle: idx = np.random.permutation(y_data.shape[0]) X_data, y_enc = X_data[idx], y_enc[:, idx] mini = np.array_split(range(y_data.shape[0]), self.minibatches) for idx in mini: # feedforward a1, z2, a2, z3, a3 = self._feedforward(X_data[idx], self.w1, self.w2) cost = self._get_cost(y_enc=y_enc[:, idx], output=a3, w1=self.w1, w2=self.w2) self.cost_.append(cost) # compute gradient via backpropagation grad1, grad2 = self._get_gradient(a1=a1, a2=a2, a3=a3, z2=z2, y_enc=y_enc[:, idx], w1=self.w1, w2=self.w2) delta_w1, delta_w2 = self.eta * grad1, self.eta * grad2 self.w1 -= (delta_w1 + (self.alpha * delta_w1_prev)) self.w2 -= (delta_w2 + (self.alpha * delta_w2_prev)) delta_w1_prev, delta_w2_prev = delta_w1, delta_w2 return self nn = NeuralNetMLP(n_output=10, n_features=X_train.shape[1], n_hidden=50, l2=0.1, l1=0.0, epochs=1000, eta=0.001, alpha=0.001, decrease_const=0.00001, minibatches=50, shuffle=True, random_state=1) nn.fit(X_train, y_train, print_progress=True) plt.plot(range(len(nn.cost_)), nn.cost_) plt.ylim([0, 2000]) plt.ylabel('Cost') plt.xlabel('Epochs * 50') # plt.tight_layout() # plt.savefig('./figures/cost.png', dpi=300) plt.show() batches = np.array_split(range(len(nn.cost_)), 1000) cost_ary = np.array(nn.cost_) cost_avgs = [np.mean(cost_ary[i]) for i in batches] plt.plot(range(len(cost_avgs)), cost_avgs, color='red') plt.ylim([0, 2000]) plt.ylabel('Cost') plt.xlabel('Epochs') # plt.tight_layout() # plt.savefig('./figures/cost2.png', dpi=300) plt.show() y_train_pred = nn.predict(X_train) if sys.version_info < (3, 0): acc = ((np.sum(y_train == y_train_pred, axis=0)).astype('float') / X_train.shape[0]) else: acc = np.sum(y_train == y_train_pred, axis=0) / X_train.shape[0] print('Training accuracy: %.2f%%' % (acc * 100)) y_test_pred = nn.predict(X_test) if sys.version_info < (3, 0): acc = ((np.sum(y_test == y_test_pred, axis=0)).astype('float') / X_test.shape[0]) else: acc = np.sum(y_test == y_test_pred, axis=0) / X_test.shape[0] print('Test accuracy: %.2f%%' % (acc * 100)) miscl_img = X_test[y_test != y_test_pred][:25] correct_lab = y_test[y_test != y_test_pred][:25] miscl_lab = y_test_pred[y_test != y_test_pred][:25] fig, ax = plt.subplots(nrows=5, ncols=5, sharex=True, sharey=True,) ax = ax.flatten() for i in range(25): img = miscl_img[i].reshape(28, 28) ax[i].imshow(img, cmap='Greys', interpolation='nearest') ax[i].set_title('%d) t: %d p: %d' % (i+1, correct_lab[i], miscl_lab[i])) ax[0].set_xticks([]) ax[0].set_yticks([]) # plt.tight_layout() # plt.savefig('./figures/mnist_miscl.png', dpi=300) plt.show() ############################################################################# print(50 * '=') print('Debugging neural networks with gradient checking') print(50 * '-') class MLPGradientCheck(object): """ Feedforward neural network / Multi-layer perceptron classifier. Parameters ------------ n_output : int Number of output units, should be equal to the number of unique class labels. n_features : int Number of features (dimensions) in the target dataset. Should be equal to the number of columns in the X array. n_hidden : int (default: 30) Number of hidden units. l1 : float (default: 0.0) Lambda value for L1-regularization. No regularization if l1=0.0 (default) l2 : float (default: 0.0) Lambda value for L2-regularization. No regularization if l2=0.0 (default) epochs : int (default: 500) Number of passes over the training set. eta : float (default: 0.001) Learning rate. alpha : float (default: 0.0) Momentum constant. Factor multiplied with the gradient of the previous epoch t-1 to improve learning speed w(t) := w(t) - (grad(t) + alpha*grad(t-1)) decrease_const : float (default: 0.0) Decrease constant. Shrinks the learning rate after each epoch via eta / (1 + epoch*decrease_const) shuffle : bool (default: False) Shuffles training data every epoch if True to prevent circles. minibatches : int (default: 1) Divides training data into k minibatches for efficiency. Normal gradient descent learning if k=1 (default). random_state : int (default: None) Set random state for shuffling and initializing the weights. Attributes ----------- cost_ : list Sum of squared errors after each epoch. """ def __init__(self, n_output, n_features, n_hidden=30, l1=0.0, l2=0.0, epochs=500, eta=0.001, alpha=0.0, decrease_const=0.0, shuffle=True, minibatches=1, random_state=None): np.random.seed(random_state) self.n_output = n_output self.n_features = n_features self.n_hidden = n_hidden self.w1, self.w2 = self._initialize_weights() self.l1 = l1 self.l2 = l2 self.epochs = epochs self.eta = eta self.alpha = alpha self.decrease_const = decrease_const self.shuffle = shuffle self.minibatches = minibatches def _encode_labels(self, y, k): """Encode labels into one-hot representation Parameters ------------ y : array, shape = [n_samples] Target values. Returns ----------- onehot : array, shape = (n_labels, n_samples) """ onehot = np.zeros((k, y.shape[0])) for idx, val in enumerate(y): onehot[val, idx] = 1.0 return onehot def _initialize_weights(self): """Initialize weights with small random numbers.""" w1 = np.random.uniform(-1.0, 1.0, size=self.n_hidden*(self.n_features + 1)) w1 = w1.reshape(self.n_hidden, self.n_features + 1) w2 = np.random.uniform(-1.0, 1.0, size=self.n_output*(self.n_hidden + 1)) w2 = w2.reshape(self.n_output, self.n_hidden + 1) return w1, w2 def _sigmoid(self, z): """Compute logistic function (sigmoid) Uses scipy.special.expit to avoid overflow error for very small input values z. """ # return 1.0 / (1.0 + np.exp(-z)) return expit(z) def _sigmoid_gradient(self, z): """Compute gradient of the logistic function""" sg = self._sigmoid(z) return sg * (1 - sg) def _add_bias_unit(self, X, how='column'): """Add bias unit (column or row of 1s) to array at index 0""" if how == 'column': X_new = np.ones((X.shape[0], X.shape[1]+1)) X_new[:, 1:] = X elif how == 'row': X_new = np.ones((X.shape[0]+1, X.shape[1])) X_new[1:, :] = X else: raise AttributeError('`how` must be `column` or `row`') return X_new def _feedforward(self, X, w1, w2): """Compute feedforward step Parameters ----------- X : array, shape = [n_samples, n_features] Input layer with original features. w1 : array, shape = [n_hidden_units, n_features] Weight matrix for input layer -> hidden layer. w2 : array, shape = [n_output_units, n_hidden_units] Weight matrix for hidden layer -> output layer. Returns ---------- a1 : array, shape = [n_samples, n_features+1] Input values with bias unit. z2 : array, shape = [n_hidden, n_samples] Net input of hidden layer. a2 : array, shape = [n_hidden+1, n_samples] Activation of hidden layer. z3 : array, shape = [n_output_units, n_samples] Net input of output layer. a3 : array, shape = [n_output_units, n_samples] Activation of output layer. """ a1 = self._add_bias_unit(X, how='column') z2 = w1.dot(a1.T) a2 = self._sigmoid(z2) a2 = self._add_bias_unit(a2, how='row') z3 = w2.dot(a2) a3 = self._sigmoid(z3) return a1, z2, a2, z3, a3 def _L2_reg(self, lambda_, w1, w2): """Compute L2-regularization cost""" return (lambda_/2.0) * (np.sum(w1[:, 1:] ** 2) + np.sum(w2[:, 1:] ** 2)) def _L1_reg(self, lambda_, w1, w2): """Compute L1-regularization cost""" return (lambda_/2.0) * (np.abs(w1[:, 1:]).sum() + np.abs(w2[:, 1:]).sum()) def _get_cost(self, y_enc, output, w1, w2): """Compute cost function. Parameters ---------- y_enc : array, shape = (n_labels, n_samples) one-hot encoded class labels. output : array, shape = [n_output_units, n_samples] Activation of the output layer (feedforward) w1 : array, shape = [n_hidden_units, n_features] Weight matrix for input layer -> hidden layer. w2 : array, shape = [n_output_units, n_hidden_units] Weight matrix for hidden layer -> output layer. Returns --------- cost : float Regularized cost. """ term1 = -y_enc * (np.log(output)) term2 = (1 - y_enc) * np.log(1 - output) cost = np.sum(term1 - term2) L1_term = self._L1_reg(self.l1, w1, w2) L2_term = self._L2_reg(self.l2, w1, w2) cost = cost + L1_term + L2_term return cost def _get_gradient(self, a1, a2, a3, z2, y_enc, w1, w2): """ Compute gradient step using backpropagation. Parameters ------------ a1 : array, shape = [n_samples, n_features+1] Input values with bias unit. a2 : array, shape = [n_hidden+1, n_samples] Activation of hidden layer. a3 : array, shape = [n_output_units, n_samples] Activation of output layer. z2 : array, shape = [n_hidden, n_samples] Net input of hidden layer. y_enc : array, shape = (n_labels, n_samples) one-hot encoded class labels. w1 : array, shape = [n_hidden_units, n_features] Weight matrix for input layer -> hidden layer. w2 : array, shape = [n_output_units, n_hidden_units] Weight matrix for hidden layer -> output layer. Returns --------- grad1 : array, shape = [n_hidden_units, n_features] Gradient of the weight matrix w1. grad2 : array, shape = [n_output_units, n_hidden_units] Gradient of the weight matrix w2. """ # backpropagation sigma3 = a3 - y_enc z2 = self._add_bias_unit(z2, how='row') sigma2 = w2.T.dot(sigma3) * self._sigmoid_gradient(z2) sigma2 = sigma2[1:, :] grad1 = sigma2.dot(a1) grad2 = sigma3.dot(a2.T) # regularize grad1[:, 1:] += (w1[:, 1:] * (self.l1 + self.l2)) grad2[:, 1:] += (w2[:, 1:] * (self.l1 + self.l2)) return grad1, grad2 def _gradient_checking(self, X, y_enc, w1, w2, epsilon, grad1, grad2): """ Apply gradient checking (for debugging only) Returns --------- relative_error : float Relative error between the numerically approximated gradients and the backpropagated gradients. """ num_grad1 = np.zeros(np.shape(w1)) epsilon_ary1 = np.zeros(np.shape(w1)) for i in range(w1.shape[0]): for j in range(w1.shape[1]): epsilon_ary1[i, j] = epsilon a1, z2, a2, z3, a3 = self._feedforward(X, w1 - epsilon_ary1, w2) cost1 = self._get_cost(y_enc, a3, w1-epsilon_ary1, w2) a1, z2, a2, z3, a3 = self._feedforward(X, w1 + epsilon_ary1, w2) cost2 = self._get_cost(y_enc, a3, w1 + epsilon_ary1, w2) num_grad1[i, j] = (cost2 - cost1) / (2 * epsilon) epsilon_ary1[i, j] = 0 num_grad2 = np.zeros(np.shape(w2)) epsilon_ary2 = np.zeros(np.shape(w2)) for i in range(w2.shape[0]): for j in range(w2.shape[1]): epsilon_ary2[i, j] = epsilon a1, z2, a2, z3, a3 = self._feedforward(X, w1, w2 - epsilon_ary2) cost1 = self._get_cost(y_enc, a3, w1, w2 - epsilon_ary2) a1, z2, a2, z3, a3 = self._feedforward(X, w1, w2 + epsilon_ary2) cost2 = self._get_cost(y_enc, a3, w1, w2 + epsilon_ary2) num_grad2[i, j] = (cost2 - cost1) / (2 * epsilon) epsilon_ary2[i, j] = 0 num_grad = np.hstack((num_grad1.flatten(), num_grad2.flatten())) grad = np.hstack((grad1.flatten(), grad2.flatten())) norm1 = np.linalg.norm(num_grad - grad) norm2 = np.linalg.norm(num_grad) norm3 = np.linalg.norm(grad) relative_error = norm1 / (norm2 + norm3) return relative_error def predict(self, X): """Predict class labels Parameters ----------- X : array, shape = [n_samples, n_features] Input layer with original features. Returns: ---------- y_pred : array, shape = [n_samples] Predicted class labels. """ if len(X.shape) != 2: raise AttributeError('X must be a [n_samples, n_features] array.\n' 'Use X[:,None] for 1-feature classification,' '\nor X[[i]] for 1-sample classification') a1, z2, a2, z3, a3 = self._feedforward(X, self.w1, self.w2) y_pred = np.argmax(z3, axis=0) return y_pred def fit(self, X, y, print_progress=False): """ Learn weights from training data. Parameters ----------- X : array, shape = [n_samples, n_features] Input layer with original features. y : array, shape = [n_samples] Target class labels. print_progress : bool (default: False) Prints progress as the number of epochs to stderr. Returns: ---------- self """ self.cost_ = [] X_data, y_data = X.copy(), y.copy() y_enc = self._encode_labels(y, self.n_output) delta_w1_prev = np.zeros(self.w1.shape) delta_w2_prev = np.zeros(self.w2.shape) for i in range(self.epochs): # adaptive learning rate self.eta /= (1 + self.decrease_const*i) if print_progress: sys.stderr.write('\rEpoch: %d/%d' % (i+1, self.epochs)) sys.stderr.flush() if self.shuffle: idx = np.random.permutation(y_data.shape[0]) X_data, y_enc = X_data[idx], y_enc[idx] mini = np.array_split(range(y_data.shape[0]), self.minibatches) for idx in mini: # feedforward a1, z2, a2, z3, a3 = self._feedforward(X[idx], self.w1, self.w2) cost = self._get_cost(y_enc=y_enc[:, idx], output=a3, w1=self.w1, w2=self.w2) self.cost_.append(cost) # compute gradient via backpropagation grad1, grad2 = self._get_gradient(a1=a1, a2=a2, a3=a3, z2=z2, y_enc=y_enc[:, idx], w1=self.w1, w2=self.w2) # start gradient checking grad_diff = self._gradient_checking(X=X_data[idx], y_enc=y_enc[:, idx], w1=self.w1, w2=self.w2, epsilon=1e-5, grad1=grad1, grad2=grad2) if grad_diff <= 1e-7: print('Ok: %s' % grad_diff) elif grad_diff <= 1e-4: print('Warning: %s' % grad_diff) else: print('PROBLEM: %s' % grad_diff) # update weights; [alpha * delta_w_prev] for momentum learning delta_w1, delta_w2 = self.eta * grad1, self.eta * grad2 self.w1 -= (delta_w1 + (self.alpha * delta_w1_prev)) self.w2 -= (delta_w2 + (self.alpha * delta_w2_prev)) delta_w1_prev, delta_w2_prev = delta_w1, delta_w2 return self nn_check = MLPGradientCheck(n_output=10, n_features=X_train.shape[1], n_hidden=10, l2=0.0, l1=0.0, epochs=10, eta=0.001, alpha=0.0, decrease_const=0.0, minibatches=1, shuffle=False, random_state=1) nn_check.fit(X_train[:5], y_train[:5], print_progress=False)
mit
davebx/tools-iuc
tools/repmatch_gff3/repmatch_gff3_util.py
22
17958
import bisect import csv import os import shutil import sys import tempfile import matplotlib matplotlib.use('Agg') from matplotlib import pyplot # noqa: I202,E402 # Graph settings Y_LABEL = 'Counts' X_LABEL = 'Number of matched replicates' TICK_WIDTH = 3 # Amount to shift the graph to make labels fit, [left, right, top, bottom] ADJUST = [0.180, 0.9, 0.9, 0.1] # Length of tick marks, use TICK_WIDTH for width pyplot.rc('xtick.major', size=10.00) pyplot.rc('ytick.major', size=10.00) pyplot.rc('lines', linewidth=4.00) pyplot.rc('axes', linewidth=3.00) pyplot.rc('font', family='Bitstream Vera Sans', size=32.0) COLORS = 'krb' ISPY2 = sys.version_info[0] == 2 class Replicate(object): def __init__(self, id, dataset_path): self.id = id self.dataset_path = dataset_path if ISPY2: fh = open(dataset_path, 'rb') else: fh = open(dataset_path, 'r', newline='') self.parse(csv.reader(fh, delimiter='\t')) def parse(self, reader): self.chromosomes = {} for line in reader: if line[0].startswith("#") or line[0].startswith('"'): continue cname, junk, junk, mid, midplus, value, strand, junk, attrs = line attrs = parse_gff_attrs(attrs) distance = int(attrs['cw_distance']) mid = int(mid) midplus = int(midplus) value = float(value) if cname not in self.chromosomes: self.chromosomes[cname] = Chromosome(cname) chrom = self.chromosomes[cname] chrom.add_peak(Peak(cname, mid, value, distance, self)) for chrom in self.chromosomes.values(): chrom.sort_by_index() def filter(self, up_limit, low_limit): for chrom in self.chromosomes.values(): chrom.filter(up_limit, low_limit) def size(self): return sum([len(c.peaks) for c in self.chromosomes.values()]) class Chromosome(object): def __init__(self, name): self.name = name self.peaks = [] def add_peak(self, peak): self.peaks.append(peak) def sort_by_index(self): self.peaks.sort(key=lambda peak: peak.midpoint) self.keys = make_keys(self.peaks) def remove_peak(self, peak): i = bisect.bisect_left(self.keys, peak.midpoint) # If the peak was actually found if i < len(self.peaks) and self.peaks[i].midpoint == peak.midpoint: del self.keys[i] del self.peaks[i] def filter(self, up_limit, low_limit): self.peaks = [p for p in self.peaks if low_limit <= p.distance <= up_limit] self.keys = make_keys(self.peaks) class Peak(object): def __init__(self, chrom, midpoint, value, distance, replicate): self.chrom = chrom self.value = value self.midpoint = midpoint self.distance = distance self.replicate = replicate def normalized_value(self, med): return self.value * med / self.replicate.median class PeakGroup(object): def __init__(self): self.peaks = {} def add_peak(self, repid, peak): self.peaks[repid] = peak @property def chrom(self): return list(self.peaks.values())[0].chrom @property def midpoint(self): return int(median([peak.midpoint for peak in self.peaks.values()])) @property def num_replicates(self): return len(self.peaks) @property def median_distance(self): return int(median([peak.distance for peak in self.peaks.values()])) @property def value_sum(self): return sum([peak.value for peak in self.peaks.values()]) def normalized_value(self, med): values = [] for peak in self.peaks.values(): values.append(peak.normalized_value(med)) return median(values) @property def peakpeak_distance(self): keys = list(self.peaks.keys()) return abs(self.peaks[keys[0]].midpoint - self.peaks[keys[1]].midpoint) class FrequencyDistribution(object): def __init__(self, d=None): self.dist = d or {} def add(self, x): self.dist[x] = self.dist.get(x, 0) + 1 def graph_series(self): x = [] y = [] for key, val in self.dist.items(): x.append(key) y.append(val) return x, y def mode(self): return max(self.dist.items(), key=lambda data: data[1])[0] def size(self): return sum(self.dist.values()) def stop_err(msg): sys.stderr.write(msg) sys.exit(1) def median(data): """ Find the integer median of the data set. """ if not data: return 0 sdata = sorted(data) if len(data) % 2 == 0: return (sdata[len(data) // 2] + sdata[len(data) // 2 - 1]) / 2 else: return sdata[len(data) // 2] def make_keys(peaks): return [data.midpoint for data in peaks] def get_window(chromosome, target_peaks, distance): """ Returns a window of all peaks from a replicate within a certain distance of a peak from another replicate. """ lower = list(target_peaks)[0].midpoint upper = list(target_peaks)[0].midpoint for peak in target_peaks: lower = min(lower, peak.midpoint - distance) upper = max(upper, peak.midpoint + distance) start_index = bisect.bisect_left(chromosome.keys, lower) end_index = bisect.bisect_right(chromosome.keys, upper) return (chromosome.peaks[start_index: end_index], chromosome.name) def match_largest(window, peak, chrum): if not window: return None if peak.chrom != chrum: return None return max(window, key=lambda cpeak: cpeak.value) def match_closest(window, peak, chrum): if not window: return None if peak.chrom != chrum: return None return min(window, key=lambda match: abs(match.midpoint - peak.midpoint)) def frequency_histogram(freqs, dataset_path, labels=[], title=''): pyplot.clf() pyplot.figure(figsize=(10, 10)) for i, freq in enumerate(freqs): xvals, yvals = freq.graph_series() # Go from high to low xvals.reverse() pyplot.bar([x - 0.4 + 0.8 / len(freqs) * i for x in xvals], yvals, width=0.8 / len(freqs), color=COLORS[i]) pyplot.xticks(range(min(xvals), max(xvals) + 1), map(str, reversed(range(min(xvals), max(xvals) + 1)))) pyplot.xlabel(X_LABEL) pyplot.ylabel(Y_LABEL) pyplot.subplots_adjust(left=ADJUST[0], right=ADJUST[1], top=ADJUST[2], bottom=ADJUST[3]) ax = pyplot.gca() for l in ax.get_xticklines() + ax.get_yticklines(): l.set_markeredgewidth(TICK_WIDTH) pyplot.savefig(dataset_path) METHODS = {'closest': match_closest, 'largest': match_largest} def gff_attrs(l): if len(l) == 0: return '.' return ';'.join('%s=%s' % (tup[0], tup[1]) for tup in l) def parse_gff_attrs(s): d = {} if s == '.': return d for item in s.split(';'): key, val = item.split('=') d[key] = val return d def gff_row(cname, start, end, score, source, stype='.', strand='.', phase='.', attrs=None): return (cname, source, stype, start, end, score, strand, phase, gff_attrs(attrs or [])) def get_temporary_plot_path(): """ Return the path to a temporary file with a valid image format file extension that can be used with bioformats. """ tmp_dir = tempfile.mkdtemp(prefix='tmp-repmatch-') fd, name = tempfile.mkstemp(suffix='.pdf', dir=tmp_dir) os.close(fd) return name def process_files(dataset_paths, galaxy_hids, method, distance, step, replicates, up_limit, low_limit, output_files, output_matched_peaks, output_unmatched_peaks, output_detail, output_statistics_table, output_statistics_histogram): output_statistics_histogram_file = output_files in ["all"] and method in ["all"] if len(dataset_paths) < 2: return if method == 'all': match_methods = METHODS.keys() else: match_methods = [method] for match_method in match_methods: statistics = perform_process(dataset_paths, galaxy_hids, match_method, distance, step, replicates, up_limit, low_limit, output_files, output_matched_peaks, output_unmatched_peaks, output_detail, output_statistics_table, output_statistics_histogram) if output_statistics_histogram_file: tmp_statistics_histogram_path = get_temporary_plot_path() frequency_histogram([stat['distribution'] for stat in [statistics]], tmp_statistics_histogram_path, METHODS.keys()) shutil.move(tmp_statistics_histogram_path, output_statistics_histogram) def perform_process(dataset_paths, galaxy_hids, method, distance, step, num_required, up_limit, low_limit, output_files, output_matched_peaks, output_unmatched_peaks, output_detail, output_statistics_table, output_statistics_histogram): output_detail_file = output_files in ["all"] and output_detail is not None output_statistics_table_file = output_files in ["all"] and output_statistics_table is not None output_unmatched_peaks_file = output_files in ["all", "matched_peaks_unmatched_peaks"] and output_unmatched_peaks is not None output_statistics_histogram_file = output_files in ["all"] and output_statistics_histogram is not None replicates = [] for i, dataset_path in enumerate(dataset_paths): try: galaxy_hid = galaxy_hids[i] r = Replicate(galaxy_hid, dataset_path) replicates.append(r) except Exception as e: stop_err('Unable to parse file "%s", exception: %s' % (dataset_path, str(e))) attrs = 'd%sr%s' % (distance, num_required) if up_limit != 1000: attrs += 'u%d' % up_limit if low_limit != -1000: attrs += 'l%d' % low_limit if step != 0: attrs += 's%d' % step def td_writer(file_path): # Returns a tab-delimited writer for a certain output if ISPY2: fh = open(file_path, 'wb') return csv.writer(fh, delimiter='\t') else: fh = open(file_path, 'w', newline='') return csv.writer(fh, delimiter='\t', quoting=csv.QUOTE_NONE) labels = ('chrom', 'median midpoint', 'median midpoint+1', 'median normalized reads', 'replicates', 'median c-w distance', 'reads sum') for replicate in replicates: labels += ('chrom', 'median midpoint', 'median midpoint+1', 'c-w sum', 'c-w distance', 'replicate id') matched_peaks_output = td_writer(output_matched_peaks) if output_statistics_table_file: statistics_table_output = td_writer(output_statistics_table) statistics_table_output.writerow(('data', 'median read count')) if output_detail_file: detail_output = td_writer(output_detail) detail_output.writerow(labels) if output_unmatched_peaks_file: unmatched_peaks_output = td_writer(output_unmatched_peaks) unmatched_peaks_output.writerow(('chrom', 'midpoint', 'midpoint+1', 'c-w sum', 'c-w distance', 'replicate id')) # Perform filtering if up_limit < 1000 or low_limit > -1000: for replicate in replicates: replicate.filter(up_limit, low_limit) # Actually merge the peaks peak_groups = [] unmatched_peaks = [] freq = FrequencyDistribution() def do_match(reps, distance): # Copy list because we will mutate it, but keep replicate references. reps = reps[:] while len(reps) > 1: # Iterate over each replicate as "main" main = reps[0] reps.remove(main) for chromosome in list(main.chromosomes.values()): peaks_by_value = chromosome.peaks[:] # Sort main replicate by value peaks_by_value.sort(key=lambda peak: -peak.value) def search_for_matches(group): # Here we use multiple passes, expanding the window to be # +- distance from any previously matched peak. while True: new_match = False for replicate in reps: if replicate.id in group.peaks: # Stop if match already found for this replicate continue try: # Lines changed to remove a major bug by Rohit Reja. window, chrum = get_window(replicate.chromosomes[chromosome.name], list(group.peaks.values()), distance) match = METHODS[method](window, peak, chrum) except KeyError: continue if match: group.add_peak(replicate.id, match) new_match = True if not new_match: break # Attempt to enlarge existing peak groups for group in peak_groups: old_peaks = list(group.peaks.values()) search_for_matches(group) for peak in list(group.peaks.values()): if peak not in old_peaks: peak.replicate.chromosomes[chromosome.name].remove_peak(peak) # Attempt to find new peaks groups. For each peak in the # main replicate, search for matches in the other replicates for peak in peaks_by_value: matches = PeakGroup() matches.add_peak(main.id, peak) search_for_matches(matches) # Were enough replicates matched? if matches.num_replicates >= num_required: for peak in list(matches.peaks.values()): peak.replicate.chromosomes[chromosome.name].remove_peak(peak) peak_groups.append(matches) # Zero or less = no stepping if step <= 0: do_match(replicates, distance) else: for d in range(0, distance, step): do_match(replicates, d) for group in peak_groups: freq.add(group.num_replicates) # Collect together the remaining unmatched_peaks for replicate in replicates: for chromosome in replicate.chromosomes.values(): for peak in chromosome.peaks: freq.add(1) unmatched_peaks.append(peak) # Average the unmatched_peaks count in the graph by # replicates med = median([peak.value for group in peak_groups for peak in group.peaks.values()]) for replicate in replicates: replicate.median = median([peak.value for group in peak_groups for peak in group.peaks.values() if peak.replicate == replicate]) statistics_table_output.writerow((replicate.id, replicate.median)) for group in peak_groups: # Output matched_peaks (matched pairs). matched_peaks_output.writerow(gff_row(cname=group.chrom, start=group.midpoint, end=group.midpoint + 1, score=group.normalized_value(med), source='repmatch', stype='.', strand='.', phase='.', attrs=[('median_distance', group.median_distance), ('value_sum', group.value_sum), ('replicates', group.num_replicates)])) if output_detail_file: matched_peaks = (group.chrom, group.midpoint, group.midpoint + 1, group.normalized_value(med), group.num_replicates, group.median_distance, group.value_sum) for peak in group.peaks.values(): matched_peaks += (peak.chrom, peak.midpoint, peak.midpoint + 1, peak.value, peak.distance, peak.replicate.id) detail_output.writerow(matched_peaks) if output_unmatched_peaks_file: for unmatched_peak in unmatched_peaks: unmatched_peaks_output.writerow((unmatched_peak.chrom, unmatched_peak.midpoint, unmatched_peak.midpoint + 1, unmatched_peak.value, unmatched_peak.distance, unmatched_peak.replicate.id)) if output_statistics_histogram_file: tmp_statistics_histogram_path = get_temporary_plot_path() frequency_histogram([freq], tmp_statistics_histogram_path) shutil.move(tmp_statistics_histogram_path, output_statistics_histogram) return {'distribution': freq}
mit
rhyolight/nupic.research
projects/sp_paper/plot_noise_robustness.py
4
2710
#!/usr/bin/env python # ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2016, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- from htmresearch.support.sp_paper_utils import * import matplotlib as mpl from scipy.optimize import curve_fit mpl.rcParams['pdf.fonttype'] = 42 def nakaRushton(x, c50): n=5 c = 1-x y = 1/(1 + 1/(c/c50)**n) return y expName = 'randomSDRVaryingSparsityContinuousLearning_seed_41' plt.figure() legendList = [] epochCheck = [0, 5, 10, 20, 40] for epoch in epochCheck: nrData = np.load \ ('./results/input_output_overlap/{}/epoch_{}.npz'.format(expName, epoch)) noiseLevelList = nrData['arr_0'] inputOverlapScore = np.mean(nrData['arr_1'], 0) outputOverlapScore = np.mean( nrData['arr_2'], 0) plt.plot(noiseLevelList, outputOverlapScore) popt, pcov = curve_fit(nakaRushton, noiseLevelList, outputOverlapScore, p0=[0.5]) yfit = nakaRushton(noiseLevelList, popt) # plt.plot(noiseLevelList, yfit, 'k--') legendList.append('epoch {}'.format(epoch)) plt.legend(legendList) plt.xlabel('Noise Level') plt.ylabel('Change of SP output') plt.savefig('./figures/noise_robustness_{}_beforeChange.pdf'.format(expName)) expName = 'randomSDRVaryingSparsityContinuousLearning_seed_41' changeDataAt = 50 plt.figure() legendList = [] epochCheck = [changeDataAt-1, changeDataAt, 119] for epoch in epochCheck: nrData = np.load( './results/input_output_overlap/{}/epoch_{}.npz'.format(expName, epoch)) noiseLevelList = nrData['arr_0'] inputOverlapScore = nrData['arr_1'] outputOverlapScore = np.mean(nrData['arr_2'], 0) plt.plot(noiseLevelList, outputOverlapScore) legendList.append('epoch {}'.format(epoch)) plt.legend(legendList) plt.xlabel('Noise Level') plt.ylabel('Change of SP output') plt.savefig('./figures/noise_robustness_{}.pdf'.format(expName))
gpl-3.0
WarrenWeckesser/scipy
scipy/stats/__init__.py
3
12250
""" .. _statsrefmanual: ========================================== Statistical functions (:mod:`scipy.stats`) ========================================== .. currentmodule:: scipy.stats This module contains a large number of probability distributions, summary and frequency statistics, correlation functions and statistical tests, masked statistics, kernel density estimation, quasi-Monte Carlo functionality, and more. Statistics is a very large area, and there are topics that are out of scope for SciPy and are covered by other packages. Some of the most important ones are: - `statsmodels <https://www.statsmodels.org/stable/index.html>`__: regression, linear models, time series analysis, extensions to topics also covered by ``scipy.stats``. - `Pandas <https://pandas.pydata.org/>`__: tabular data, time series functionality, interfaces to other statistical languages. - `PyMC3 <https://docs.pymc.io/>`__: Bayesian statistical modeling, probabilistic machine learning. - `scikit-learn <https://scikit-learn.org/>`__: classification, regression, model selection. - `Seaborn <https://seaborn.pydata.org/>`__: statistical data visualization. - `rpy2 <https://rpy2.github.io/>`__: Python to R bridge. Probability distributions ========================= Each univariate distribution is an instance of a subclass of `rv_continuous` (`rv_discrete` for discrete distributions): .. autosummary:: :toctree: generated/ rv_continuous rv_discrete rv_histogram Continuous distributions ------------------------ .. autosummary:: :toctree: generated/ alpha -- Alpha anglit -- Anglit arcsine -- Arcsine argus -- Argus beta -- Beta betaprime -- Beta Prime bradford -- Bradford burr -- Burr (Type III) burr12 -- Burr (Type XII) cauchy -- Cauchy chi -- Chi chi2 -- Chi-squared cosine -- Cosine crystalball -- Crystalball dgamma -- Double Gamma dweibull -- Double Weibull erlang -- Erlang expon -- Exponential exponnorm -- Exponentially Modified Normal exponweib -- Exponentiated Weibull exponpow -- Exponential Power f -- F (Snecdor F) fatiguelife -- Fatigue Life (Birnbaum-Saunders) fisk -- Fisk foldcauchy -- Folded Cauchy foldnorm -- Folded Normal genlogistic -- Generalized Logistic gennorm -- Generalized normal genpareto -- Generalized Pareto genexpon -- Generalized Exponential genextreme -- Generalized Extreme Value gausshyper -- Gauss Hypergeometric gamma -- Gamma gengamma -- Generalized gamma genhalflogistic -- Generalized Half Logistic genhyperbolic -- Generalized Hyperbolic geninvgauss -- Generalized Inverse Gaussian gilbrat -- Gilbrat gompertz -- Gompertz (Truncated Gumbel) gumbel_r -- Right Sided Gumbel, Log-Weibull, Fisher-Tippett, Extreme Value Type I gumbel_l -- Left Sided Gumbel, etc. halfcauchy -- Half Cauchy halflogistic -- Half Logistic halfnorm -- Half Normal halfgennorm -- Generalized Half Normal hypsecant -- Hyperbolic Secant invgamma -- Inverse Gamma invgauss -- Inverse Gaussian invweibull -- Inverse Weibull johnsonsb -- Johnson SB johnsonsu -- Johnson SU kappa4 -- Kappa 4 parameter kappa3 -- Kappa 3 parameter ksone -- Distribution of Kolmogorov-Smirnov one-sided test statistic kstwo -- Distribution of Kolmogorov-Smirnov two-sided test statistic kstwobign -- Limiting Distribution of scaled Kolmogorov-Smirnov two-sided test statistic. laplace -- Laplace laplace_asymmetric -- Asymmetric Laplace levy -- Levy levy_l levy_stable logistic -- Logistic loggamma -- Log-Gamma loglaplace -- Log-Laplace (Log Double Exponential) lognorm -- Log-Normal loguniform -- Log-Uniform lomax -- Lomax (Pareto of the second kind) maxwell -- Maxwell mielke -- Mielke's Beta-Kappa moyal -- Moyal nakagami -- Nakagami ncx2 -- Non-central chi-squared ncf -- Non-central F nct -- Non-central Student's T norm -- Normal (Gaussian) norminvgauss -- Normal Inverse Gaussian pareto -- Pareto pearson3 -- Pearson type III powerlaw -- Power-function powerlognorm -- Power log normal powernorm -- Power normal rdist -- R-distribution rayleigh -- Rayleigh rice -- Rice recipinvgauss -- Reciprocal Inverse Gaussian semicircular -- Semicircular skewcauchy -- Skew Cauchy skewnorm -- Skew normal t -- Student's T trapezoid -- Trapezoidal triang -- Triangular truncexpon -- Truncated Exponential truncnorm -- Truncated Normal tukeylambda -- Tukey-Lambda uniform -- Uniform vonmises -- Von-Mises (Circular) vonmises_line -- Von-Mises (Line) wald -- Wald weibull_min -- Minimum Weibull (see Frechet) weibull_max -- Maximum Weibull (see Frechet) wrapcauchy -- Wrapped Cauchy Multivariate distributions -------------------------- .. autosummary:: :toctree: generated/ multivariate_normal -- Multivariate normal distribution matrix_normal -- Matrix normal distribution dirichlet -- Dirichlet wishart -- Wishart invwishart -- Inverse Wishart multinomial -- Multinomial distribution special_ortho_group -- SO(N) group ortho_group -- O(N) group unitary_group -- U(N) group random_correlation -- random correlation matrices multivariate_t -- Multivariate t-distribution multivariate_hypergeom -- Multivariate hypergeometric distribution Discrete distributions ---------------------- .. autosummary:: :toctree: generated/ bernoulli -- Bernoulli betabinom -- Beta-Binomial binom -- Binomial boltzmann -- Boltzmann (Truncated Discrete Exponential) dlaplace -- Discrete Laplacian geom -- Geometric hypergeom -- Hypergeometric logser -- Logarithmic (Log-Series, Series) nbinom -- Negative Binomial nchypergeom_fisher -- Fisher's Noncentral Hypergeometric nchypergeom_wallenius -- Wallenius's Noncentral Hypergeometric nhypergeom -- Negative Hypergeometric planck -- Planck (Discrete Exponential) poisson -- Poisson randint -- Discrete Uniform skellam -- Skellam yulesimon -- Yule-Simon zipf -- Zipf (Zeta) zipfian -- Zipfian An overview of statistical functions is given below. Many of these functions have a similar version in `scipy.stats.mstats` which work for masked arrays. Summary statistics ================== .. autosummary:: :toctree: generated/ describe -- Descriptive statistics gmean -- Geometric mean hmean -- Harmonic mean kurtosis -- Fisher or Pearson kurtosis mode -- Modal value moment -- Central moment skew -- Skewness kstat -- kstatvar -- tmean -- Truncated arithmetic mean tvar -- Truncated variance tmin -- tmax -- tstd -- tsem -- variation -- Coefficient of variation find_repeats trim_mean gstd -- Geometric Standard Deviation iqr sem bayes_mvs mvsdist entropy differential_entropy median_absolute_deviation median_abs_deviation Frequency statistics ==================== .. autosummary:: :toctree: generated/ cumfreq itemfreq percentileofscore scoreatpercentile relfreq .. autosummary:: :toctree: generated/ binned_statistic -- Compute a binned statistic for a set of data. binned_statistic_2d -- Compute a 2-D binned statistic for a set of data. binned_statistic_dd -- Compute a d-D binned statistic for a set of data. Correlation functions ===================== .. autosummary:: :toctree: generated/ f_oneway alexandergovern pearsonr spearmanr pointbiserialr kendalltau weightedtau somersd linregress siegelslopes theilslopes multiscale_graphcorr Statistical tests ================= .. autosummary:: :toctree: generated/ ttest_1samp ttest_ind ttest_ind_from_stats ttest_rel chisquare cramervonmises cramervonmises_2samp power_divergence kstest ks_1samp ks_2samp epps_singleton_2samp mannwhitneyu tiecorrect rankdata ranksums wilcoxon kruskal friedmanchisquare brunnermunzel combine_pvalues jarque_bera page_trend_test .. autosummary:: :toctree: generated/ ansari bartlett levene shapiro anderson anderson_ksamp binom_test binomtest fligner median_test mood skewtest kurtosistest normaltest Quasi-Monte Carlo ================= .. toctree:: :maxdepth: 4 stats.qmc Masked statistics functions =========================== .. toctree:: stats.mstats Other statistical functionality =============================== Transformations --------------- .. autosummary:: :toctree: generated/ boxcox boxcox_normmax boxcox_llf yeojohnson yeojohnson_normmax yeojohnson_llf obrientransform sigmaclip trimboth trim1 zmap zscore Statistical distances --------------------- .. autosummary:: :toctree: generated/ wasserstein_distance energy_distance Random variate generation ------------------------- .. autosummary:: :toctree: generated/ rvs_ratio_uniforms Circular statistical functions ------------------------------ .. autosummary:: :toctree: generated/ circmean circvar circstd Contingency table functions --------------------------- .. autosummary:: :toctree: generated/ chi2_contingency contingency.crosstab contingency.expected_freq contingency.margins contingency.relative_risk contingency.association fisher_exact barnard_exact Plot-tests ---------- .. autosummary:: :toctree: generated/ ppcc_max ppcc_plot probplot boxcox_normplot yeojohnson_normplot Univariate and multivariate kernel density estimation ----------------------------------------------------- .. autosummary:: :toctree: generated/ gaussian_kde Warnings used in :mod:`scipy.stats` ----------------------------------- .. autosummary:: :toctree: generated/ F_onewayConstantInputWarning F_onewayBadInputSizesWarning PearsonRConstantInputWarning PearsonRNearConstantInputWarning SpearmanRConstantInputWarning """ from .stats import * from .distributions import * from .morestats import * from ._binomtest import binomtest from ._binned_statistic import * from .kde import gaussian_kde from . import mstats from . import qmc from ._multivariate import * from . import contingency from .contingency import chi2_contingency from ._entropy import * from ._hypotests import * from ._rvs_sampling import rvs_ratio_uniforms from ._page_trend_test import page_trend_test from ._mannwhitneyu import mannwhitneyu __all__ = [s for s in dir() if not s.startswith("_")] # Remove dunders. from scipy._lib._testutils import PytestTester test = PytestTester(__name__) del PytestTester
bsd-3-clause
yuyu2172/chainercv
examples/fpn/demo.py
3
2626
import argparse import matplotlib.pyplot as plt import chainer from chainercv.datasets import coco_bbox_label_names from chainercv.datasets import coco_instance_segmentation_label_names from chainercv.links import FasterRCNNFPNResNet101 from chainercv.links import FasterRCNNFPNResNet50 from chainercv.links import MaskRCNNFPNResNet101 from chainercv.links import MaskRCNNFPNResNet50 from chainercv import utils from chainercv.visualizations import vis_bbox from chainercv.visualizations import vis_instance_segmentation def main(): parser = argparse.ArgumentParser() parser.add_argument( '--model', choices=('faster_rcnn_fpn_resnet50', 'faster_rcnn_fpn_resnet101', 'mask_rcnn_fpn_resnet50', 'mask_rcnn_fpn_resnet101'), default='faster_rcnn_fpn_resnet50') parser.add_argument('--gpu', type=int, default=-1) parser.add_argument('--pretrained-model') parser.add_argument( '--dataset', choices=('coco',), default='coco') parser.add_argument('image') args = parser.parse_args() if args.model == 'faster_rcnn_fpn_resnet50': mode = 'bbox' cls = FasterRCNNFPNResNet50 elif args.model == 'faster_rcnn_fpn_resnet101': mode = 'bbox' cls = FasterRCNNFPNResNet101 elif args.model == 'mask_rcnn_fpn_resnet50': mode = 'instance_segmentation' cls = MaskRCNNFPNResNet50 elif args.model == 'mask_rcnn_fpn_resnet101': mode = 'instance_segmentation' cls = MaskRCNNFPNResNet101 if args.dataset == 'coco': if args.pretrained_model is None: args.pretrained_model = 'coco' if mode == 'bbox': label_names = coco_bbox_label_names elif mode == 'instance_segmentation': label_names = coco_instance_segmentation_label_names model = cls(n_fg_class=len(label_names), pretrained_model=args.pretrained_model) if args.gpu >= 0: chainer.cuda.get_device_from_id(args.gpu).use() model.to_gpu() img = utils.read_image(args.image) if mode == 'bbox': bboxes, labels, scores = model.predict([img]) bbox = bboxes[0] label = labels[0] score = scores[0] vis_bbox( img, bbox, label, score, label_names=label_names) elif mode == 'instance_segmentation': masks, labels, scores = model.predict([img]) mask = masks[0] label = labels[0] score = scores[0] vis_instance_segmentation( img, mask, label, score, label_names=label_names) plt.show() if __name__ == '__main__': main()
mit
trnewman/VT-USRP-daughterboard-drivers
gr-utils/src/python/plot_data.py
5
5834
# # Copyright 2007,2008 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # try: import scipy except ImportError: print "Please install SciPy to run this script (http://www.scipy.org/)" raise SystemExit, 1 try: from pylab import * except ImportError: print "Please install Matplotlib to run this script (http://matplotlib.sourceforge.net/)" raise SystemExit, 1 from optparse import OptionParser class plot_data: def __init__(self, datatype, filenames, options): self.hfile = list() self.legend_text = list() for f in filenames: self.hfile.append(open(f, "r")) self.legend_text.append(f) self.block_length = options.block self.start = options.start self.sample_rate = options.sample_rate self.datatype = datatype self.sizeof_data = datatype().nbytes # number of bytes per sample in file self.axis_font_size = 16 self.label_font_size = 18 self.title_font_size = 20 self.text_size = 22 # Setup PLOT self.fig = figure(1, figsize=(16, 9), facecolor='w') rcParams['xtick.labelsize'] = self.axis_font_size rcParams['ytick.labelsize'] = self.axis_font_size self.text_file_pos = figtext(0.10, 0.88, "File Position: ", weight="heavy", size=self.text_size) self.text_block = figtext(0.40, 0.88, ("Block Size: %d" % self.block_length), weight="heavy", size=self.text_size) self.text_sr = figtext(0.60, 0.88, ("Sample Rate: %.2f" % self.sample_rate), weight="heavy", size=self.text_size) self.make_plots() self.button_left_axes = self.fig.add_axes([0.45, 0.01, 0.05, 0.05], frameon=True) self.button_left = Button(self.button_left_axes, "<") self.button_left_callback = self.button_left.on_clicked(self.button_left_click) self.button_right_axes = self.fig.add_axes([0.50, 0.01, 0.05, 0.05], frameon=True) self.button_right = Button(self.button_right_axes, ">") self.button_right_callback = self.button_right.on_clicked(self.button_right_click) self.xlim = self.sp_f.get_xlim() self.manager = get_current_fig_manager() connect('key_press_event', self.click) show() def get_data(self, hfile): self.text_file_pos.set_text("File Position: %d" % (hfile.tell()//self.sizeof_data)) f = scipy.fromfile(hfile, dtype=self.datatype, count=self.block_length) #print "Read in %d items" % len(self.f) if(len(f) == 0): print "End of File" else: self.f = f self.time = [i*(1/self.sample_rate) for i in range(len(self.f))] def make_plots(self): self.sp_f = self.fig.add_subplot(2,1,1, position=[0.075, 0.2, 0.875, 0.6]) self.sp_f.set_title(("Amplitude"), fontsize=self.title_font_size, fontweight="bold") self.sp_f.set_xlabel("Time (s)", fontsize=self.label_font_size, fontweight="bold") self.sp_f.set_ylabel("Amplitude (V)", fontsize=self.label_font_size, fontweight="bold") self.plot_f = list() maxval = -1e12 minval = 1e12 for hf in self.hfile: # if specified on the command-line, set file pointer hf.seek(self.sizeof_data*self.start, 1) self.get_data(hf) # Subplot for real and imaginary parts of signal self.plot_f += plot(self.time, self.f, 'o-') maxval = max(maxval, max(self.f)) minval = min(minval, min(self.f)) self.sp_f.set_ylim([1.5*minval, 1.5*maxval]) self.leg = self.sp_f.legend(self.plot_f, self.legend_text) draw() def update_plots(self): maxval = -1e12 minval = 1e12 for hf,p in zip(self.hfile,self.plot_f): self.get_data(hf) p.set_data([self.time, self.f]) maxval = max(maxval, max(self.f)) minval = min(minval, min(self.f)) self.sp_f.set_ylim([1.5*minval, 1.5*maxval]) draw() def click(self, event): forward_valid_keys = [" ", "down", "right"] backward_valid_keys = ["up", "left"] if(find(event.key, forward_valid_keys)): self.step_forward() elif(find(event.key, backward_valid_keys)): self.step_backward() def button_left_click(self, event): self.step_backward() def button_right_click(self, event): self.step_forward() def step_forward(self): self.update_plots() def step_backward(self): for hf in self.hfile: # Step back in file position if(hf.tell() >= 2*self.sizeof_data*self.block_length ): hf.seek(-2*self.sizeof_data*self.block_length, 1) else: hf.seek(-hf.tell(),1) self.update_plots() def find(item_in, list_search): try: return list_search.index(item_in) != None except ValueError: return False
gpl-3.0
rcs-analytics/icy
icy/ml/prep.py
1
5004
import pandas as pd import numpy as np import scipy.sparse as sparse from xgboost import DMatrix from copy import deepcopy from sklearn.preprocessing import StandardScaler, MinMaxScaler def drop_nan_bulk(data, how='all', axes=[0, 1]): for key in data: for axis in axes: # axis=0: rows, axis=1: cols # how=all: drop if all values are nan, how=any: drop if any value is nan data[key].dropna(axis=axis, how=how, inplace=True) return data def fill_nan_bulk(data, fill='const'): if fill in ['mean', 'median', 'mode', 'min', 'max']: for key in data: data[key].fillna(-1, inplace=True) for col in data[key].select_dtypes(include=[np.number]): if fill == 'mean': data[key].loc[:, col].replace(-1, data[key].loc[:, col].mean(), inplace=True) elif fill == 'median': data[key].loc[:, col].replace(-1, data[key].loc[:, col].median(), inplace=True) elif fill == 'mode': data[key].loc[:, col].replace(-1, data[key].loc[:, col].mode(), inplace=True) elif fill == 'min': data[key].loc[:, col].replace(-1, data[key].loc[:, col].min(), inplace=True) elif fill == 'max': data[key].loc[:, col].replace(-1, data[key].loc[:, col].max(), inplace=True) elif fill == 'const': for key in data: data[key].fillna(-1, inplace=True) elif type(fill) == [int, str]: for key in data: data[key].fillna(fill, inplace=True) return data def scale_minmax_bulk(scale, data): for key in data: data[key] = pd.DataFrame(MinMaxScaler(scale).fit_transform(data[key]), index=data[key].index, columns=data[key].columns) return data def scale_std_bulk(data, mean=True, std=True): for key in data: data[key] = pd.DataFrame(StandardScaler(with_mean=mean, with_std=std).fit_transform(data[key]), index=data[key].index, columns=data[key].columns) return data def remove_duplicates_bulk(data): for key in data: print(key, 'rows') data[key] = data[key].drop_duplicates() # rows print(key, 'cols') data[key] = data[key].T.drop_duplicates().T # columns - very slow, try ndarray.swapaxes() ? return data def convert_numeric_bulk(data, dtype=None, strict=False): for k in data: if dtype != None: if strict: data[k] = data[k].astype(dtype) else: for col in data[key].select_dtypes(exclude=[np.number]): data[k].loc[:, col] = data[k].loc[:, col].astype(dtype) # for col in data[k]: # if data[k][col].dtype not in ['bool', 'int64', 'float64']: # data[k].loc[:, col] = data[k].loc[:, col].astype(dtype) else: data[k] = data[k].convert_objects(convert_dates=False, convert_numeric=True, convert_timedeltas=False) return data def to_dmatrix(data, labels=None): if type(data) in [pd.DataFrame, pd.Series]: if labels != None and type(labels) in [pd.DataFrame, pd.Series]: return DMatrix(data.values, labels.values) else: return DMatrix(data.values) else: if labels != None: return DMatrix(data, labels) else: return DMatrix(data) def to_sparse(data, kind='csr', fill_value=0): # add csc, coo variants? if type(data) in [pd.DataFrame, pd.Series]: data = data.to_sparse(fill_value) elif type(data) == np.ndarray: data = sparse.csr_matrix(data) return data def to_dense(data): # add csc, coo variants? if type(data) in [pd.DataFrame, pd.Series]: data = data.to_dense() else: data = pd.DataFrame(data.todense()) return data def join(data, joins): for key1, key2, col in joins: if type(col) == str: if col in data[key1] or col in data[key2]: proceed = True else: proceed = False else: for e in col: if e in data[key1] or e in data[key2]: proceed = True else: proceed = False break if proceed: data[key2].columns = [key2+'_'+c for c in data[key2].columns] try: if type(col) == str: right_on = key2 + '_' + col else: right_on = [key2 + '_' + c for c in col] data[key1] = pd.merge(data[key1], data[key2], how='left', left_on=col, right_on=right_on, sort=False) except KeyError: data[key1] = data[key1].join(data[key2], on=col) for key1, key2, col in joins: # if col in data[key1]: # data[key1].drop(col, axis=1, inplace=True) if key2 in data: del data[key2] return data
mit
ornlneutronimaging/ResoFit
ResoFit/data/IPTS_13639/ipts_13639_In.py
1
4179
from ResoFit.calibration import Calibration from ResoFit.fitresonance import FitResonance import matplotlib.pyplot as plt import numpy as np from ResoFit._utilities import get_foil_density_gcm3 from ResoFit._utilities import Layer import pprint # Global parameters energy_min = 1 energy_max = 1000 energy_step = 0.01 # Input sample name or names as str, case sensitive layers = Layer() # layers.add_layer(layer='Ag', thickness_mm=0.025) # layers.add_layer(layer='Co', thickness_mm=0.025) # layers.add_layer(layer='Hf', thickness_mm=0.025) # layers.add_layer(layer='W', thickness_mm=0.05) layers.add_layer(layer='In', thickness_mm=0.05) # layers.add_layer(layer='Cd', thickness_mm=0.5) # layers.add_layer(layer='Au', thickness_mm=0.01) # simu = Simulation(energy_min=energy_min, energy_max=energy_max, energy_step=energy_step) # simu.add_Layer(layer=layers) # peak_dict = simu.peak_map(thres=0.015, min_dist=20) # pprint.pprint(peak_dict) folder = 'data/IPTS_13639/reso_data_13639' data_file = 'In.csv' spectra_file = 'spectra.csv' image_start = 300 # Can be omitted or =None image_end = 2730 # Can be omitted or =None # norm_to_file = 'ob_1.csv' #'Ag.csv' # norm_to_file = 'Ag.csv' norm_to_file = 'ob_all.csv' baseline = False each_step = False repeat = 1 source_to_detector_m = 16.126845685903064 # 16#16.445359069030175#16.447496101100739 offset_us = -12112.431834715671 # 0#2.7120797253959119#2.7355447625559037 # Calibrate the peak positions calibration = Calibration(data_file=data_file, spectra_file=spectra_file, layer=layers, energy_min=energy_min, energy_max=energy_max, energy_step=energy_step, folder=folder, baseline=baseline) calibration.experiment.norm_to(norm_to_file) calibration.experiment.slice(start=image_start, end=image_end) # calibration.experiment.plot( # x_type='energy', # source_to_detector_m=source_to_detector_m, # offset_us=offset_us, # logx=True, # fmt='-' # ) calibrate_result = calibration.calibrate(source_to_detector_m=source_to_detector_m, offset_us=offset_us, vary='none', each_step=each_step) calibration.index_peak(thres_exp=0.05, min_dist_exp=10, min_dist_map=5, thres_map=0.05, rel_tol=0.05) # calibration.analyze_peak() calibration.plot(y_type='attenuation', # y_type='transmission', x_type='energy', # t_unit='ms', # before=True, # interp=True, mixed=True, # peak_exp='all', table=False, peak_exp='indexed', peak_height=True, index_level='iso', peak_id='all', logx=True, ) plt.xlim(left=0, right=1000) plt.show() df = calibration.export(y_type='attenuation', # y_type='transmission', x_type='energy', # t_unit='ms', # before=True, # interp=True, # mixed=True, index_level='iso', peak_id='all') # # Fit the peak height # fit = FitResonance(folder=folder, # spectra_file=spectra_file, # data_file=data_file, # repeat=repeat, # energy_min=energy_min, # energy_max=energy_max, # energy_step=energy_step, # calibrated_offset_us=calibration.calibrated_offset_us, # calibrated_source_to_detector_m=calibration.calibrated_source_to_detector_m, # norm_to_file=norm_to_file, # slice_start=image_start, # slice_end=image_end, # baseline=baseline) # fit_result = fit.fit(layer, vary='thickness', each_step=each_step) # fit.molar_conc() # fit.plot() #
bsd-3-clause
IndraVikas/scikit-learn
sklearn/utils/testing.py
84
24860
"""Testing utilities.""" # Copyright (c) 2011, 2012 # Authors: Pietro Berkes, # Andreas Muller # Mathieu Blondel # Olivier Grisel # Arnaud Joly # Denis Engemann # License: BSD 3 clause import os import inspect import pkgutil import warnings import sys import re import platform import scipy as sp import scipy.io from functools import wraps try: # Python 2 from urllib2 import urlopen from urllib2 import HTTPError except ImportError: # Python 3+ from urllib.request import urlopen from urllib.error import HTTPError import tempfile import shutil import os.path as op import atexit # WindowsError only exist on Windows try: WindowsError except NameError: WindowsError = None import sklearn from sklearn.base import BaseEstimator from sklearn.externals import joblib # Conveniently import all assertions in one place. from nose.tools import assert_equal from nose.tools import assert_not_equal from nose.tools import assert_true from nose.tools import assert_false from nose.tools import assert_raises from nose.tools import raises from nose import SkipTest from nose import with_setup from numpy.testing import assert_almost_equal from numpy.testing import assert_array_equal from numpy.testing import assert_array_almost_equal from numpy.testing import assert_array_less import numpy as np from sklearn.base import (ClassifierMixin, RegressorMixin, TransformerMixin, ClusterMixin) __all__ = ["assert_equal", "assert_not_equal", "assert_raises", "assert_raises_regexp", "raises", "with_setup", "assert_true", "assert_false", "assert_almost_equal", "assert_array_equal", "assert_array_almost_equal", "assert_array_less", "assert_less", "assert_less_equal", "assert_greater", "assert_greater_equal"] try: from nose.tools import assert_in, assert_not_in except ImportError: # Nose < 1.0.0 def assert_in(x, container): assert_true(x in container, msg="%r in %r" % (x, container)) def assert_not_in(x, container): assert_false(x in container, msg="%r in %r" % (x, container)) try: from nose.tools import assert_raises_regex except ImportError: # for Python 2 def assert_raises_regex(expected_exception, expected_regexp, callable_obj=None, *args, **kwargs): """Helper function to check for message patterns in exceptions""" not_raised = False try: callable_obj(*args, **kwargs) not_raised = True except expected_exception as e: error_message = str(e) if not re.compile(expected_regexp).search(error_message): raise AssertionError("Error message should match pattern " "%r. %r does not." % (expected_regexp, error_message)) if not_raised: raise AssertionError("%s not raised by %s" % (expected_exception.__name__, callable_obj.__name__)) # assert_raises_regexp is deprecated in Python 3.4 in favor of # assert_raises_regex but lets keep the bacward compat in scikit-learn with # the old name for now assert_raises_regexp = assert_raises_regex def _assert_less(a, b, msg=None): message = "%r is not lower than %r" % (a, b) if msg is not None: message += ": " + msg assert a < b, message def _assert_greater(a, b, msg=None): message = "%r is not greater than %r" % (a, b) if msg is not None: message += ": " + msg assert a > b, message def assert_less_equal(a, b, msg=None): message = "%r is not lower than or equal to %r" % (a, b) if msg is not None: message += ": " + msg assert a <= b, message def assert_greater_equal(a, b, msg=None): message = "%r is not greater than or equal to %r" % (a, b) if msg is not None: message += ": " + msg assert a >= b, message def assert_warns(warning_class, func, *args, **kw): """Test that a certain warning occurs. Parameters ---------- warning_class : the warning class The class to test for, e.g. UserWarning. func : callable Calable object to trigger warnings. *args : the positional arguments to `func`. **kw : the keyword arguments to `func` Returns ------- result : the return value of `func` """ # very important to avoid uncontrolled state propagation clean_warning_registry() with warnings.catch_warnings(record=True) as w: # Cause all warnings to always be triggered. warnings.simplefilter("always") # Trigger a warning. result = func(*args, **kw) if hasattr(np, 'VisibleDeprecationWarning'): # Filter out numpy-specific warnings in numpy >= 1.9 w = [e for e in w if e.category is not np.VisibleDeprecationWarning] # Verify some things if not len(w) > 0: raise AssertionError("No warning raised when calling %s" % func.__name__) found = any(warning.category is warning_class for warning in w) if not found: raise AssertionError("%s did not give warning: %s( is %s)" % (func.__name__, warning_class, w)) return result def assert_warns_message(warning_class, message, func, *args, **kw): # very important to avoid uncontrolled state propagation """Test that a certain warning occurs and with a certain message. Parameters ---------- warning_class : the warning class The class to test for, e.g. UserWarning. message : str | callable The entire message or a substring to test for. If callable, it takes a string as argument and will trigger an assertion error if it returns `False`. func : callable Calable object to trigger warnings. *args : the positional arguments to `func`. **kw : the keyword arguments to `func`. Returns ------- result : the return value of `func` """ clean_warning_registry() with warnings.catch_warnings(record=True) as w: # Cause all warnings to always be triggered. warnings.simplefilter("always") if hasattr(np, 'VisibleDeprecationWarning'): # Let's not catch the numpy internal DeprecationWarnings warnings.simplefilter('ignore', np.VisibleDeprecationWarning) # Trigger a warning. result = func(*args, **kw) # Verify some things if not len(w) > 0: raise AssertionError("No warning raised when calling %s" % func.__name__) found = [issubclass(warning.category, warning_class) for warning in w] if not any(found): raise AssertionError("No warning raised for %s with class " "%s" % (func.__name__, warning_class)) message_found = False # Checks the message of all warnings belong to warning_class for index in [i for i, x in enumerate(found) if x]: # substring will match, the entire message with typo won't msg = w[index].message # For Python 3 compatibility msg = str(msg.args[0] if hasattr(msg, 'args') else msg) if callable(message): # add support for certain tests check_in_message = message else: check_in_message = lambda msg: message in msg if check_in_message(msg): message_found = True break if not message_found: raise AssertionError("Did not receive the message you expected " "('%s') for <%s>, got: '%s'" % (message, func.__name__, msg)) return result # To remove when we support numpy 1.7 def assert_no_warnings(func, *args, **kw): # XXX: once we may depend on python >= 2.6, this can be replaced by the # warnings module context manager. # very important to avoid uncontrolled state propagation clean_warning_registry() with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') result = func(*args, **kw) if hasattr(np, 'VisibleDeprecationWarning'): # Filter out numpy-specific warnings in numpy >= 1.9 w = [e for e in w if e.category is not np.VisibleDeprecationWarning] if len(w) > 0: raise AssertionError("Got warnings when calling %s: %s" % (func.__name__, w)) return result def ignore_warnings(obj=None): """ Context manager and decorator to ignore warnings Note. Using this (in both variants) will clear all warnings from all python modules loaded. In case you need to test cross-module-warning-logging this is not your tool of choice. Examples -------- >>> with ignore_warnings(): ... warnings.warn('buhuhuhu') >>> def nasty_warn(): ... warnings.warn('buhuhuhu') ... print(42) >>> ignore_warnings(nasty_warn)() 42 """ if callable(obj): return _ignore_warnings(obj) else: return _IgnoreWarnings() def _ignore_warnings(fn): """Decorator to catch and hide warnings without visual nesting""" @wraps(fn) def wrapper(*args, **kwargs): # very important to avoid uncontrolled state propagation clean_warning_registry() with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') return fn(*args, **kwargs) w[:] = [] return wrapper class _IgnoreWarnings(object): """Improved and simplified Python warnings context manager Copied from Python 2.7.5 and modified as required. """ def __init__(self): """ Parameters ========== category : warning class The category to filter. Defaults to Warning. If None, all categories will be muted. """ self._record = True self._module = sys.modules['warnings'] self._entered = False self.log = [] def __repr__(self): args = [] if self._record: args.append("record=True") if self._module is not sys.modules['warnings']: args.append("module=%r" % self._module) name = type(self).__name__ return "%s(%s)" % (name, ", ".join(args)) def __enter__(self): clean_warning_registry() # be safe and not propagate state + chaos warnings.simplefilter('always') if self._entered: raise RuntimeError("Cannot enter %r twice" % self) self._entered = True self._filters = self._module.filters self._module.filters = self._filters[:] self._showwarning = self._module.showwarning if self._record: self.log = [] def showwarning(*args, **kwargs): self.log.append(warnings.WarningMessage(*args, **kwargs)) self._module.showwarning = showwarning return self.log else: return None def __exit__(self, *exc_info): if not self._entered: raise RuntimeError("Cannot exit %r without entering first" % self) self._module.filters = self._filters self._module.showwarning = self._showwarning self.log[:] = [] clean_warning_registry() # be safe and not propagate state + chaos try: from nose.tools import assert_less except ImportError: assert_less = _assert_less try: from nose.tools import assert_greater except ImportError: assert_greater = _assert_greater def _assert_allclose(actual, desired, rtol=1e-7, atol=0, err_msg='', verbose=True): actual, desired = np.asanyarray(actual), np.asanyarray(desired) if np.allclose(actual, desired, rtol=rtol, atol=atol): return msg = ('Array not equal to tolerance rtol=%g, atol=%g: ' 'actual %s, desired %s') % (rtol, atol, actual, desired) raise AssertionError(msg) if hasattr(np.testing, 'assert_allclose'): assert_allclose = np.testing.assert_allclose else: assert_allclose = _assert_allclose def assert_raise_message(exceptions, message, function, *args, **kwargs): """Helper function to test error messages in exceptions Parameters ---------- exceptions : exception or tuple of exception Name of the estimator func : callable Calable object to raise error *args : the positional arguments to `func`. **kw : the keyword arguments to `func` """ try: function(*args, **kwargs) except exceptions as e: error_message = str(e) if message not in error_message: raise AssertionError("Error message does not include the expected" " string: %r. Observed error message: %r" % (message, error_message)) else: # concatenate exception names if isinstance(exceptions, tuple): names = " or ".join(e.__name__ for e in exceptions) else: names = exceptions.__name__ raise AssertionError("%s not raised by %s" % (names, function.__name__)) def fake_mldata(columns_dict, dataname, matfile, ordering=None): """Create a fake mldata data set. Parameters ---------- columns_dict : dict, keys=str, values=ndarray Contains data as columns_dict[column_name] = array of data. dataname : string Name of data set. matfile : string or file object The file name string or the file-like object of the output file. ordering : list, default None List of column_names, determines the ordering in the data set. Notes ----- This function transposes all arrays, while fetch_mldata only transposes 'data', keep that into account in the tests. """ datasets = dict(columns_dict) # transpose all variables for name in datasets: datasets[name] = datasets[name].T if ordering is None: ordering = sorted(list(datasets.keys())) # NOTE: setting up this array is tricky, because of the way Matlab # re-packages 1D arrays datasets['mldata_descr_ordering'] = sp.empty((1, len(ordering)), dtype='object') for i, name in enumerate(ordering): datasets['mldata_descr_ordering'][0, i] = name scipy.io.savemat(matfile, datasets, oned_as='column') class mock_mldata_urlopen(object): def __init__(self, mock_datasets): """Object that mocks the urlopen function to fake requests to mldata. `mock_datasets` is a dictionary of {dataset_name: data_dict}, or {dataset_name: (data_dict, ordering). `data_dict` itself is a dictionary of {column_name: data_array}, and `ordering` is a list of column_names to determine the ordering in the data set (see `fake_mldata` for details). When requesting a dataset with a name that is in mock_datasets, this object creates a fake dataset in a StringIO object and returns it. Otherwise, it raises an HTTPError. """ self.mock_datasets = mock_datasets def __call__(self, urlname): dataset_name = urlname.split('/')[-1] if dataset_name in self.mock_datasets: resource_name = '_' + dataset_name from io import BytesIO matfile = BytesIO() dataset = self.mock_datasets[dataset_name] ordering = None if isinstance(dataset, tuple): dataset, ordering = dataset fake_mldata(dataset, resource_name, matfile, ordering) matfile.seek(0) return matfile else: raise HTTPError(urlname, 404, dataset_name + " is not available", [], None) def install_mldata_mock(mock_datasets): # Lazy import to avoid mutually recursive imports from sklearn import datasets datasets.mldata.urlopen = mock_mldata_urlopen(mock_datasets) def uninstall_mldata_mock(): # Lazy import to avoid mutually recursive imports from sklearn import datasets datasets.mldata.urlopen = urlopen # Meta estimators need another estimator to be instantiated. META_ESTIMATORS = ["OneVsOneClassifier", "OutputCodeClassifier", "OneVsRestClassifier", "RFE", "RFECV", "BaseEnsemble"] # estimators that there is no way to default-construct sensibly OTHER = ["Pipeline", "FeatureUnion", "GridSearchCV", "RandomizedSearchCV"] # some trange ones DONT_TEST = ['SparseCoder', 'EllipticEnvelope', 'DictVectorizer', 'LabelBinarizer', 'LabelEncoder', 'MultiLabelBinarizer', 'TfidfTransformer', 'TfidfVectorizer', 'IsotonicRegression', 'OneHotEncoder', 'RandomTreesEmbedding', 'FeatureHasher', 'DummyClassifier', 'DummyRegressor', 'TruncatedSVD', 'PolynomialFeatures', 'GaussianRandomProjectionHash', 'HashingVectorizer', 'CheckingClassifier', 'PatchExtractor', 'CountVectorizer', # GradientBoosting base estimators, maybe should # exclude them in another way 'ZeroEstimator', 'ScaledLogOddsEstimator', 'QuantileEstimator', 'MeanEstimator', 'LogOddsEstimator', 'PriorProbabilityEstimator', '_SigmoidCalibration', 'VotingClassifier'] def all_estimators(include_meta_estimators=False, include_other=False, type_filter=None, include_dont_test=False): """Get a list of all estimators from sklearn. This function crawls the module and gets all classes that inherit from BaseEstimator. Classes that are defined in test-modules are not included. By default meta_estimators such as GridSearchCV are also not included. Parameters ---------- include_meta_estimators : boolean, default=False Whether to include meta-estimators that can be constructed using an estimator as their first argument. These are currently BaseEnsemble, OneVsOneClassifier, OutputCodeClassifier, OneVsRestClassifier, RFE, RFECV. include_other : boolean, default=False Wether to include meta-estimators that are somehow special and can not be default-constructed sensibly. These are currently Pipeline, FeatureUnion and GridSearchCV include_dont_test : boolean, default=False Whether to include "special" label estimator or test processors. type_filter : string, list of string, or None, default=None Which kind of estimators should be returned. If None, no filter is applied and all estimators are returned. Possible values are 'classifier', 'regressor', 'cluster' and 'transformer' to get estimators only of these specific types, or a list of these to get the estimators that fit at least one of the types. Returns ------- estimators : list of tuples List of (name, class), where ``name`` is the class name as string and ``class`` is the actuall type of the class. """ def is_abstract(c): if not(hasattr(c, '__abstractmethods__')): return False if not len(c.__abstractmethods__): return False return True all_classes = [] # get parent folder path = sklearn.__path__ for importer, modname, ispkg in pkgutil.walk_packages( path=path, prefix='sklearn.', onerror=lambda x: None): if ".tests." in modname: continue module = __import__(modname, fromlist="dummy") classes = inspect.getmembers(module, inspect.isclass) all_classes.extend(classes) all_classes = set(all_classes) estimators = [c for c in all_classes if (issubclass(c[1], BaseEstimator) and c[0] != 'BaseEstimator')] # get rid of abstract base classes estimators = [c for c in estimators if not is_abstract(c[1])] if not include_dont_test: estimators = [c for c in estimators if not c[0] in DONT_TEST] if not include_other: estimators = [c for c in estimators if not c[0] in OTHER] # possibly get rid of meta estimators if not include_meta_estimators: estimators = [c for c in estimators if not c[0] in META_ESTIMATORS] if type_filter is not None: if not isinstance(type_filter, list): type_filter = [type_filter] else: type_filter = list(type_filter) # copy filtered_estimators = [] filters = {'classifier': ClassifierMixin, 'regressor': RegressorMixin, 'transformer': TransformerMixin, 'cluster': ClusterMixin} for name, mixin in filters.items(): if name in type_filter: type_filter.remove(name) filtered_estimators.extend([est for est in estimators if issubclass(est[1], mixin)]) estimators = filtered_estimators if type_filter: raise ValueError("Parameter type_filter must be 'classifier', " "'regressor', 'transformer', 'cluster' or None, got" " %s." % repr(type_filter)) # drop duplicates, sort for reproducibility return sorted(set(estimators)) def set_random_state(estimator, random_state=0): if "random_state" in estimator.get_params().keys(): estimator.set_params(random_state=random_state) def if_matplotlib(func): """Test decorator that skips test if matplotlib not installed. """ @wraps(func) def run_test(*args, **kwargs): try: import matplotlib matplotlib.use('Agg', warn=False) # this fails if no $DISPLAY specified import matplotlib.pyplot as plt plt.figure() except ImportError: raise SkipTest('Matplotlib not available.') else: return func(*args, **kwargs) return run_test def if_not_mac_os(versions=('10.7', '10.8', '10.9'), message='Multi-process bug in Mac OS X >= 10.7 ' '(see issue #636)'): """Test decorator that skips test if OS is Mac OS X and its major version is one of ``versions``. """ mac_version, _, _ = platform.mac_ver() skip = '.'.join(mac_version.split('.')[:2]) in versions def decorator(func): if skip: @wraps(func) def func(*args, **kwargs): raise SkipTest(message) return func return decorator def clean_warning_registry(): """Safe way to reset warnings """ warnings.resetwarnings() reg = "__warningregistry__" for mod_name, mod in list(sys.modules.items()): if 'six.moves' in mod_name: continue if hasattr(mod, reg): getattr(mod, reg).clear() def check_skip_network(): if int(os.environ.get('SKLEARN_SKIP_NETWORK_TESTS', 0)): raise SkipTest("Text tutorial requires large dataset download") def check_skip_travis(): """Skip test if being run on Travis.""" if os.environ.get('TRAVIS') == "true": raise SkipTest("This test needs to be skipped on Travis") def _delete_folder(folder_path, warn=False): """Utility function to cleanup a temporary folder if still existing. Copy from joblib.pool (for independance)""" try: if os.path.exists(folder_path): # This can fail under windows, # but will succeed when called by atexit shutil.rmtree(folder_path) except WindowsError: if warn: warnings.warn("Could not delete temporary folder %s" % folder_path) class TempMemmap(object): def __init__(self, data, mmap_mode='r'): self.temp_folder = tempfile.mkdtemp(prefix='sklearn_testing_') self.mmap_mode = mmap_mode self.data = data def __enter__(self): fpath = op.join(self.temp_folder, 'data.pkl') joblib.dump(self.data, fpath) data_read_only = joblib.load(fpath, mmap_mode=self.mmap_mode) atexit.register(lambda: _delete_folder(self.temp_folder, warn=True)) return data_read_only def __exit__(self, exc_type, exc_val, exc_tb): _delete_folder(self.temp_folder) with_network = with_setup(check_skip_network) with_travis = with_setup(check_skip_travis)
bsd-3-clause
NumCosmo/NumCosmo
examples/example_hiprim_Tmodes.py
1
6080
#!/usr/bin/env python try: import gi gi.require_version('NumCosmo', '1.0') gi.require_version('NumCosmoMath', '1.0') except: pass import math import numpy as np import matplotlib.pyplot as plt from gi.repository import GObject from gi.repository import NumCosmo as Nc from gi.repository import NumCosmoMath as Ncm # # Initializing the library objects, this must be called before # any other library function. # Ncm.cfg_init () # # Script parameters # # Maximum multipole lmax = 2500 # # Creating a new instance of HIPrimPowerLaw # prim = Nc.HIPrimPowerLaw.new () r = 1.0 prim.props.T_SA_ratio = r prim.props.n_T = -1.0 * r / 8.0 # # New CLASS backend precision object # Lets also increase k_per_decade_primordial since we are # dealing with a modified spectrum. # cbe_prec = Nc.CBEPrecision.new () cbe_prec.props.k_per_decade_primordial = 50.0 # # New CLASS backend object # cbe = Nc.CBE.prec_new (cbe_prec) # # New CLASS backend object # Bcbe = Nc.HIPertBoltzmannCBE.full_new (cbe) Bcbe.set_TT_lmax (lmax) # Setting which CMB data to use Bcbe.set_target_Cls (Nc.DataCMBDataType.TT) # Setting if the lensed Cl's are going to be used or not. Bcbe.set_lensed_Cls (True) # Setting if the tensor contribution is going to be used or not. Bcbe.set_tensor (True) Bcbe.append_target_Cls (Nc.DataCMBDataType.TT) Bcbe.append_target_Cls (Nc.DataCMBDataType.TE) Bcbe.append_target_Cls (Nc.DataCMBDataType.EE) Bcbe.append_target_Cls (Nc.DataCMBDataType.BB) Bcbe.set_TT_lmax (lmax) Bcbe.set_TE_lmax (lmax) Bcbe.set_EE_lmax (lmax) Bcbe.set_BB_lmax (30) # # New homogeneous and isotropic cosmological model NcHICosmoDEXcdm # cosmo = Nc.HICosmo.new_from_name (Nc.HICosmo, "NcHICosmoDEXcdm") cosmo.omega_x2omega_k () cosmo.param_set_by_name ("Omegak", 0.0) # # New homogeneous and isotropic reionization object # reion = Nc.HIReionCamb.new () # # Adding submodels to the main cosmological model. # cosmo.add_submodel (reion) cosmo.add_submodel (prim) # # Preparing the Class backend object # fact = 1.0e200 ln10e10ASA = prim.props.ln10e10ASA T_SA_ratio = prim.props.T_SA_ratio prim.props.ln10e10ASA = prim.props.ln10e10ASA + math.log (1.0 / fact) prim.props.T_SA_ratio = prim.props.T_SA_ratio * fact Bcbe.prepare (cosmo) Cls1_TT = Ncm.Vector.new (lmax + 1) Cls2_TT = Ncm.Vector.new (lmax + 1) Cls1_TE = Ncm.Vector.new (lmax + 1) Cls2_TE = Ncm.Vector.new (lmax + 1) Cls1_EE = Ncm.Vector.new (lmax + 1) Cls2_EE = Ncm.Vector.new (lmax + 1) Cls1_BB = Ncm.Vector.new (31) Cls2_BB = Ncm.Vector.new (31) Bcbe.get_TT_Cls (Cls1_TT) Bcbe.get_TE_Cls (Cls1_TE) Bcbe.get_EE_Cls (Cls1_EE) Bcbe.get_BB_Cls (Cls1_BB) prim.props.ln10e10ASA = ln10e10ASA prim.props.T_SA_ratio = T_SA_ratio prim.props.T_SA_ratio = 1.0 / fact Bcbe.prepare (cosmo) Bcbe.get_TT_Cls (Cls2_TT) Bcbe.get_TE_Cls (Cls2_TE) Bcbe.get_EE_Cls (Cls2_EE) Bcbe.get_BB_Cls (Cls2_BB) Cls1_TT_a = Cls1_TT.dup_array () Cls1_TE_a = Cls1_TE.dup_array () Cls1_EE_a = Cls1_EE.dup_array () Cls1_BB_a = Cls1_BB.dup_array () Cls2_TT_a = Cls2_TT.dup_array () Cls2_TE_a = Cls2_TE.dup_array () Cls2_EE_a = Cls2_EE.dup_array () Cls2_BB_a = Cls2_BB.dup_array () ell = np.array (list(range(2, lmax + 1))) ell_BB = np.array (list(range(2, 31))) Cls1_TT_a = ell * (ell + 1.0) * np.array (Cls1_TT_a[2:]) Cls1_TE_a = ell * (ell + 1.0) * np.array (Cls1_TE_a[2:]) Cls1_EE_a = ell * (ell + 1.0) * np.array (Cls1_EE_a[2:]) Cls1_BB_a = ell_BB * (ell_BB + 1.0) * np.array (Cls1_BB_a[2:]) Cls2_TT_a = ell * (ell + 1.0) * np.array (Cls2_TT_a[2:]) Cls2_TE_a = ell * (ell + 1.0) * np.array (Cls2_TE_a[2:]) Cls2_EE_a = ell * (ell + 1.0) * np.array (Cls2_EE_a[2:]) Cls2_BB_a = ell_BB * (ell_BB + 1.0) * np.array (Cls2_BB_a[2:]) print ("TT") print (Cls1_TT_a[:28]) print (Cls2_TT_a[:28]) print ("TE") print (Cls1_TE_a[:28]) print (Cls2_TE_a[:28]) print ("EE") print (Cls1_EE_a[:28]) print (Cls2_EE_a[:28]) print ("BB") print (Cls1_EE_a[:28]) print (Cls2_EE_a[:28]) # # Ploting the TT angular power spcetrum # plt.title (r'With and without tensor contribution to $C_\ell^\mathrm{TT}$') plt.plot (ell[:28], Cls1_TT_a[:28], 'r', label="tensor") plt.plot (ell[:28], Cls2_TT_a[:28], 'b--', label="scalar") plt.xlabel(r'$\ell$') plt.ylabel(r'$C_\ell$') plt.legend(loc='best') #plt.xscale ('log') #plt.yscale ('symlog') plt.savefig ("hiprim_tensor_Cls_TT.pdf") plt.clf () plt.title (r'With and without tensor contribution to $C_\ell^\mathrm{TE}$') plt.plot (ell[:28], Cls1_TE_a[:28], 'r', label="tensor") plt.plot (ell[:28], Cls2_TE_a[:28], 'b--', label="scalar") plt.xlabel(r'$\ell$') plt.ylabel(r'$C_\ell$') plt.legend(loc='best') #plt.xscale ('log') #plt.yscale ('symlog') plt.savefig ("hiprim_tensor_Cls_TE.pdf") plt.clf () plt.title (r'With and without tensor contribution to $C_\ell^\mathrm{EE}$') plt.plot (ell[:28], Cls1_EE_a[:28], 'r', label="tensor") plt.plot (ell[:28], Cls2_EE_a[:28], 'b--', label="scalar") plt.xlabel(r'$\ell$') plt.ylabel(r'$C_\ell$') plt.legend(loc='best') #plt.xscale ('log') #plt.yscale ('symlog') plt.savefig ("hiprim_tensor_Cls_EE.pdf") plt.clf () plt.title (r'With and without tensor contribution to $C_\ell^\mathrm{BB}$') plt.plot (ell_BB[:28], Cls1_BB_a[:28], 'r', label="tensor") plt.plot (ell_BB[:28], Cls2_BB_a[:28], 'b--', label="scalar") plt.xlabel(r'$\ell$') plt.ylabel(r'$C_\ell$') plt.legend(loc='best') #plt.xscale ('log') #plt.yscale ('symlog') plt.savefig ("hiprim_tensor_Cls_BB.pdf") plt.clf () theta = np.linspace (math.pi / 3.0, math.pi, 1000) smap = Ncm.SphereMap.new (128) smap.set_lmax (lmax) smap.set_Cls (Cls1_TT) s = smap.calc_Ctheta (1.0e-7) Ctheta1 = np.vectorize (s.eval) (theta) smap.set_Cls (Cls2_TT) s = smap.calc_Ctheta (1.0e-7) Ctheta2 = np.vectorize (s.eval) (theta) plt.title (r'$C^\mathrm{TT}(\theta)$') plt.plot (theta, Ctheta1, 'r', lw=0.1, label=r'$C(\theta)^\mathrm{tensor}$') plt.plot (theta, Ctheta2, 'b', lw=0.1, label=r'$C(\theta)^\mathrm{scalar}$') plt.xlabel(r'$\theta$') plt.ylabel(r'$C(\theta)$') plt.legend(loc='best') #plt.xscale ('log') #plt.yscale ('symlog') plt.savefig ("hiprim_tensor_Ctheta_TT.pdf") plt.clf ()
gpl-3.0
ifarup/tc1-82
ciefunctions.py
2
36878
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ ciefunctions: GUI application for the calculation of the CIE cone-fundamental-based colorimetric functions provided by CIE TC 1-97. Copyright (C) 2012-2020 Ivar Farup and Jan Henrik Wold This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. """ import tc1_97 import tc1_97.description import tc1_97.plot import tc1_97.table from tc1_97.utils import resource_path import sys import os import numpy as np from PyQt5 import QtWidgets, QtGui, QtCore, QtWebEngineWidgets from matplotlib.backends.backend_qt5agg \ import FigureCanvasQTAgg as FigureCanvas from matplotlib.backends.backend_qt5agg \ import NavigationToolbar2QT \ as NavigationToolbar from matplotlib.figure import Figure class AppForm(QtWidgets.QMainWindow): """ The main application window. """ def __init__(self, parent=None): QtWidgets.QMainWindow.__init__(self, parent) QtWidgets.QWidget.move(self, 0, 0) self.setWindowTitle(' CIE Functions') self.create_menu() self.create_main_frame() self.on_compute() def save_table(self): file_choices = "CSV (*.csv)|*.csv" pre = '' post = '' if self.plot_combo.currentIndex() == self.COMBO_LMS: pre = 'cie2006_lms' elif self.plot_combo.currentIndex() == self.COMBO_LMSBASE: pre = 'cie2006_lms_9figs' elif self.plot_combo.currentIndex() == self.COMBO_MB: pre = 'macleod_boynton_cc' elif self.plot_combo.currentIndex() == self.COMBO_LM: pre = 'maxwellian_cc' elif self.plot_combo.currentIndex() == self.COMBO_XYZ: pre = 'cie_xyz_F' elif self.plot_combo.currentIndex() == self.COMBO_XY: pre = 'cie_cc_F' elif self.plot_combo.currentIndex() == self.COMBO_PURPLE_XYZ: pre = 'purple_xyz_F' elif self.plot_combo.currentIndex() == self.COMBO_PURPLE_XY: pre = 'purple_cc_F' if ((self.plot_combo.currentIndex() in [self.COMBO_LMS, self.COMBO_LMSBASE]) and self.log_check.isChecked()): post = '__logarithmic_values' elif (self.plot_combo.currentIndex() == self.COMBO_LM or ((self.plot_combo.currentIndex() in [self.COMBO_XYZ, self.COMBO_XY, self.COMBO_PURPLE_XYZ, self.COMBO_PURPLE_XY]) and self.norm_check.isChecked())): post = '__renormalized_values' if ((self.plot_combo.currentIndex() == self.COMBO_XYZSTD) and (self.field_combo.currentIndex() == self.STD_31)): suggest = 'cie_xyz__standard1931__fs_2.csv' elif (self.plot_combo.currentIndex() == self.COMBO_XYZSTD and self.field_combo.currentIndex() == self.STD_64): suggest = 'cie_xyz__standard1964__fs_10.csv' elif (self.plot_combo.currentIndex() == self.COMBO_XYSTD and self.field_combo.currentIndex() == self.STD_31): suggest = 'cie_cc__standard1931__fs_2.csv' elif (self.plot_combo.currentIndex() == self.COMBO_XYSTD and self.field_combo.currentIndex() == self.STD_64): suggest = 'cie_cc__standard1964__fs_10.csv' else: suggest = (pre + '__fs_' + str(self.field_spin.value()) + '__age_' + str(self.age_spin.value()) + '__domain_' + str(self.lambda_min_spin.value()) + '-' + str(self.lambda_max_spin.value()) + '__step_' + str(self.resolution_spin.value()) + post + '.csv') path = QtWidgets.QFileDialog.getSaveFileName(self, 'Save file', suggest, file_choices)[0] if path: if self.plot_combo.currentIndex() == self.COMBO_LMS: if self.log_check.isChecked(): np.savetxt(path, self.results['logLMS'], '%.1f, %.5f, %.5f, %.5f') else: np.savetxt(path, self.results['LMS'], '%.1f, %.5e, %.5e, %.5e') elif self.plot_combo.currentIndex() == self.COMBO_LMSBASE: if self.log_check.isChecked(): np.savetxt(path, self.results['logLMS_base'], '%.1f, %.8f, %.8f, %.8f') else: np.savetxt(path, self.results['LMS_base'], '%.1f, %.8e, %.8e, %.8e') elif self.plot_combo.currentIndex() == self.COMBO_MB: np.savetxt(path, self.results['lms_mb'], '%.1f, %.6f, %.6f, %.6f') elif self.plot_combo.currentIndex() == self.COMBO_LM: np.savetxt(path, self.results['lms_mw'], '%.1f, %.6f, %.6f, %.6f') elif self.plot_combo.currentIndex() == self.COMBO_XYZ: if self.norm_check.isChecked(): np.savetxt(path, self.results['XYZ_N'], '%.1f, %.6e, %.6e, %.6e') else: np.savetxt(path, self.results['XYZ'], '%.1f, %.6e, %.6e, %.6e') elif self.plot_combo.currentIndex() == self.COMBO_XY: if self.norm_check.isChecked(): np.savetxt(path, self.results['xyz_N'], '%.1f, %.5f, %.5f, %.5f') else: np.savetxt(path, self.results['xyz'], '%.1f, %.5f, %.5f, %.5f') elif self.plot_combo.currentIndex() == self.COMBO_PURPLE_XYZ: if self.norm_check.isChecked(): np.savetxt(path, self.results['XYZ_purples_N'], '%.1f, %.6e, %.6e, %.6e') else: np.savetxt(path, self.results['XYZ_purple'], '%.1f, %.6e, %.6e, %.6e') elif self.plot_combo.currentIndex() == self.COMBO_PURPLE_XY: if self.norm_check.isChecked(): np.savetxt(path, self.results['xyz_purples_N'], '%.1f, %.5f, %.5f, %.5f') else: np.savetxt(path, self.results['xyz_purples'], '%.1f, %.5f, %.5f, %.5f') elif self.plot_combo.currentIndex() == self.COMBO_XYZSTD: if self.field_combo.currentIndex() == self.STD_31: np.savetxt(path, self.results['XYZ31'], '%.1f, %.6e, %.6e, %.6e') else: np.savetxt(path, self.results['XYZ64'], '%.1f, %.6e, %.6e, %.6e') elif self.plot_combo.currentIndex() == self.COMBO_XYSTD: if self.field_combo.currentIndex() == self.STD_31: np.savetxt(path, self.results['xyz31'], '%.1f, %.5f, %.5f, %.5f') else: np.savetxt(path, self.results['xyz64'], '%.1f, %.5f, %.5f, %.5f') def options(self): """ Return a dict() with the current plot options for the plot module. """ return {'grid': self.grid_check.isChecked(), 'cie31': self.cie31_check.isChecked(), 'cie64': self.cie64_check.isChecked(), 'labels': self.wavelength_check.isChecked(), 'log10': self.log_check.isChecked(), 'norm': self.norm_check.isChecked(), 'label_fontsize': 7, 'title_fontsize': 10.5, 'full_title': True, 'axis_labels': True} def on_about(self): msg = """ CIE Functions: Calculates the CIE cone-fundamental-based colorimetric \ functions according to CIE TC 1-97. Copyright (C) 2012-2020 Ivar Farup and Jan Henrik Wold This program is free software: you can redistribute it and/or modify it \ under the terms of the GNU General Public License as published by the \ Free Software Foundation, either version 3 of the License, or (at your \ option) any later version. This program is distributed in the hope that it will be useful, but \ WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY \ or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License \ for more details. You should have received a copy of the GNU General Public License along \ with this program. If not, see <http://www.gnu.org/licenses/>. """ QtWidgets.QMessageBox.about(self, "About CIE Functions", msg.strip()) def on_grid(self): self.axes.grid(self.grid_check.isChecked()) self.canvas.draw() def on_draw(self, redraw_description=True): # Reset GUI values that have not been computed self.field_spin.setValue(self.last_field) self.age_spin.setValue(self.last_age) self.lambda_min_spin.setValue(self.last_lambda_min) self.lambda_max_spin.setValue(self.last_lambda_max) self.resolution_spin.setValue(self.last_resolution) self.mpl_toolbar.update() # reset the views history (fixes #124) if self.plot_combo.currentIndex() not in \ [self.COMBO_XYSTD, self.COMBO_XYZSTD]: self.field_spin.show() self.field_combo.hide() self.age_label.show() self.age_spin.show() self.resolution_label.show() self.resolution_spin.show() self.compute_button.show() self.lambda_min_max_label.show() self.lambda_min_max_dash.show() self.lambda_min_spin.show() self.lambda_max_spin.show() else: self.field_spin.hide() self.field_combo.show() self.age_label.hide() self.age_spin.hide() self.resolution_label.hide() self.resolution_spin.hide() self.compute_button.hide() self.lambda_min_max_label.hide() self.lambda_min_max_dash.hide() self.lambda_min_spin.hide() self.lambda_max_spin.hide() if self.plot_combo.currentIndex() in [self.COMBO_LMS, self.COMBO_LMSBASE]: self.norm_label.setVisible(False) self.norm_check.setVisible(False) self.log_label.setVisible(True) self.log_check.setVisible(True) elif self.plot_combo.currentIndex() == self.COMBO_LM: self.log_label.setVisible(False) self.log_check.setVisible(False) self.norm_check.setVisible(False) self.norm_label.setVisible(True) elif self.plot_combo.currentIndex() in [self.COMBO_XYZ, self.COMBO_XY, self.COMBO_PURPLE_XYZ, self.COMBO_PURPLE_XY]: self.log_label.setVisible(False) self.log_check.setVisible(False) self.norm_label.setVisible(True) self.norm_check.setVisible(True) else: self.log_label.setVisible(False) self.log_check.setVisible(False) self.norm_label.setVisible(False) self.norm_check.setVisible(False) # # CIE LMS cone fundamentals # (description, plot and table) # if self.plot_combo.currentIndex() == self.COMBO_LMS: # Setup GUI self.compare_label_31.setDisabled(True) self.compare_label_64.setDisabled(True) self.wavelength_check.setDisabled(True) self.wavelength_label.setDisabled(True) self.cie31_check.setDisabled(True) self.cie64_check.setDisabled(True) # Create html description html_string = tc1_97.description.LMS(self.results, self.plot_combo.currentText(), self.options(), True) # Create plot tc1_97.plot.LMS(self.axes, self.plots, self.options()) # Create html table html_table = tc1_97.table.LMS(self.results, self.options(), True) # # CIE LMS cone fundamentals (9 sign. figs.) # (description, plot and table) # elif self.plot_combo.currentIndex() == self.COMBO_LMSBASE: # Setup GUI self.compare_label_31.setDisabled(True) self.compare_label_64.setDisabled(True) self.wavelength_check.setDisabled(True) self.wavelength_label.setDisabled(True) self.cie31_check.setDisabled(True) self.cie64_check.setDisabled(True) # Create html description html_string = tc1_97.description.LMS_base( self.results, self.plot_combo.currentText(), self.options(), True) # Create plot tc1_97.plot.LMS_base(self.axes, self.plots, self.options()) # Create html table html_table = tc1_97.table.LMS_base(self.results, self.options(), True) # # MacLeod-Boynton ls chromaticity diagram # (description, plot and table) # elif self.plot_combo.currentIndex() == self.COMBO_MB: # Setup GUI self.compare_label_31.setDisabled(True) self.compare_label_64.setDisabled(True) self.wavelength_check.setEnabled(True) self.wavelength_label.setEnabled(True) self.cie31_check.setDisabled(True) self.cie64_check.setDisabled(True) # Create html description html_string = tc1_97.description.lms_mb( self.results, self.plot_combo.currentText(), self.options(), True) # Create plot tc1_97.plot.ls_mb(self.axes, self.plots, self.options()) # Create html table html_table = tc1_97.table.lms_mb(self.results, self.options(), True) # # Maxwellian lm chromaticity diagram # (description, plot and table) # elif self.plot_combo.currentIndex() == self.COMBO_LM: # Setup GUI self.compare_label_31.setDisabled(True) self.compare_label_64.setDisabled(True) self.wavelength_check.setEnabled(True) self.wavelength_label.setEnabled(True) self.cie31_check.setDisabled(True) self.cie64_check.setDisabled(True) # Create html description html_string = tc1_97.description.lms_mw( self.results, self.plot_combo.currentText(), self.options(), True) # Create plot tc1_97.plot.lm_mw(self.axes, self.plots, self.options()) # Create html table html_table = tc1_97.table.lms_mw( self.results, self.options(), True) # # CIE XYZ cone-fundamental-based tristimulus functions # (description, plot and table) # elif self.plot_combo.currentIndex() == self.COMBO_XYZ: # Setup GUI self.compare_label_31.setEnabled(True) self.compare_label_64.setEnabled(True) self.wavelength_check.setDisabled(True) self.wavelength_label.setDisabled(True) self.cie31_check.setEnabled(True) self.cie64_check.setEnabled(True) # Create html description html_string = tc1_97.description.XYZ(self.results, self.plot_combo.currentText(), self.options(), True) # Create plot tc1_97.plot.XYZ(self.axes, self.plots, self.options()) # Create html table html_table = tc1_97.table.XYZ(self.results, self.options(), True) # # CIE xy cone-fundamental-based chromaticity diagram # (description, plot and table) # elif self.plot_combo.currentIndex() == self.COMBO_XY: # Setup GUI self.compare_label_31.setEnabled(True) self.compare_label_64.setEnabled(True) self.wavelength_check.setEnabled(True) self.wavelength_label.setEnabled(True) self.cie31_check.setEnabled(True) self.cie64_check.setEnabled(True) # Create html description html_string = tc1_97.description.xyz(self.results, self.plot_combo.currentText(), self.options(), True) # Create plot tc1_97.plot.xy(self.axes, self.plots, self.options()) # Create html table html_table = tc1_97.table.xyz(self.results, self.options(), True) # # XYZ cone-fundamental-based tristimulus functions for # purple-line stimuli (description, plot and table) # elif self.plot_combo.currentIndex() == self.COMBO_PURPLE_XYZ: # Setup GUI self.compare_label_31.setEnabled(False) self.compare_label_64.setEnabled(False) self.wavelength_check.setDisabled(True) self.wavelength_label.setDisabled(True) self.cie31_check.setEnabled(False) self.cie64_check.setEnabled(False) # Create html descriptions html_string = tc1_97.description.XYZ_purples( self.results, self.plot_combo.currentText(), self.options(), True) # Create plot tc1_97.plot.XYZ_purples(self.axes, self.plots, self.options()) # Create html table html_table = tc1_97.table.XYZ_purples(self.results, self.options(), True) # # xy cone-fundamental-based chromaticity diagram (purple-line stimuli) # (description, plot and table) # elif self.plot_combo.currentIndex() == self.COMBO_PURPLE_XY: # Setup GUI self.compare_label_31.setEnabled(False) self.compare_label_64.setEnabled(False) self.wavelength_check.setEnabled(True) self.wavelength_label.setEnabled(True) self.cie31_check.setEnabled(False) self.cie64_check.setEnabled(False) # Create html description html_string = tc1_97.description.xyz_purples( self.results, self.plot_combo.currentText(), self.options(), True) # Create plot tc1_97.plot.xy_purples(self.axes, self.plots, self.options()) # Create html table html_table = tc1_97.table.xyz_purples(self.results, self.options(), True) # # CIE XYZ standard colour-matching functions # (description, plot and table) # elif self.plot_combo.currentIndex() == self.COMBO_XYZSTD: # Setup GUI self.wavelength_check.setDisabled(True) self.wavelength_label.setDisabled(True) if self.field_combo.currentIndex() == self.STD_31: # Setup GUI self.compare_label_31.setDisabled(True) self.compare_label_64.setEnabled(True) self.cie31_check.setDisabled(True) self.cie64_check.setEnabled(True) # Create html description html_string = tc1_97.description.XYZ31( self.results, self.plot_combo.currentText(), self.options(), True) # Create plot tc1_97.plot.XYZ31(self.axes, self.plots, self.options()) # Create html table html_table = tc1_97.table.XYZ31(self.results, self.options(), True) else: # STD_64 # Setup GUI self.compare_label_31.setEnabled(True) self.compare_label_64.setDisabled(True) self.cie31_check.setEnabled(True) self.cie64_check.setDisabled(True) # Create html description html_string = tc1_97.description.XYZ64( self.results, self.plot_combo.currentText(), self.options(), True) # Create plot tc1_97.plot.XYZ64(self.axes, self.plots, self.options()) # Create html table html_table = tc1_97.table.XYZ64(self.results, self.options(), True) # # CIE xy standard chromaticity diagrams # (description, plot and table) # elif self.plot_combo.currentIndex() == self.COMBO_XYSTD: # Setup GUI self.wavelength_check.setEnabled(True) self.wavelength_label.setEnabled(True) if self.field_combo.currentIndex() == self.STD_31: # Setup GUI self.compare_label_31.setDisabled(True) self.compare_label_64.setEnabled(True) self.cie31_check.setDisabled(True) self.cie64_check.setEnabled(True) # Create html description html_string = tc1_97.description.xyz31( self.results, self.plot_combo.currentText(), self.options(), True) # Create plot tc1_97.plot.xy31(self.axes, self.plots, self.options()) # Create html table html_table = tc1_97.table.xyz31(self.results, self.options(), True) else: # STD_64 # Setup GUI self.compare_label_31.setEnabled(True) self.compare_label_64.setDisabled(True) self.cie31_check.setEnabled(True) self.cie64_check.setDisabled(True) # Create html description html_string = tc1_97.description.xyz64( self.results, self.plot_combo.currentText(), self.options(), True) # Create plot tc1_97.plot.xy64(self.axes, self.plots, self.options()) # Create html table html_table = tc1_97.table.xyz64(self.results, self.options(), True) # # Refresh GUI # base_url = QtCore.QUrl.fromLocalFile(os.getcwd() + os.sep) if redraw_description: self.transformation.setHtml(html_string, baseUrl=base_url) self.html_table.setHtml(html_table, baseUrl=base_url) self.canvas.draw() return def on_draw_plot_only(self): self.on_draw(False) def on_draw_all(self): self.on_draw(True) def on_compute(self): if self.lambda_max_spin.value() < 700: self.lambda_max_spin.setValue(700) self.lambda_max_spin.setMinimum(700) self.last_age = self.age_spin.value() self.last_field = self.field_spin.value() self.last_resolution = tc1_97.my_round(self.resolution_spin.value(), 1) self.last_lambda_min = tc1_97.my_round(self.lambda_min_spin.value(), 1) self.last_lambda_max = tc1_97.my_round(self.lambda_max_spin.value(), 1) self.results, self.plots = tc1_97.compute_tabulated( self.last_field, self.last_age, self.last_lambda_min, self.last_lambda_max, self.last_resolution) if self.results['XYZ'][-1, 0] < 700: self.lambda_max_spin.setMinimum(self.results['XYZ'][-1, 0]) if self.results['XYZ'][-1, 0] != self.last_lambda_max: self.last_lambda_max = self.results['XYZ'][-1, 0] self.lambda_max_spin.setValue(self.last_lambda_max) self.on_draw(True) def add_actions(self, target, actions): for action in actions: if action is None: target.addSeparator() else: target.addAction(action) def create_action(self, text, slot=None, shortcut=None, icon=None, tip=None, checkable=False, signal="triggered()"): action = QtWidgets.QAction(text, self) if icon is not None: action.setIcon(QtGui.QIcon(":/%s.png" % icon)) if shortcut is not None: action.setShortcut(shortcut) if tip is not None: action.setToolTip(tip) action.setStatusTip(tip) if slot is not None: self.connect(action, QtCore.SIGNAL(signal), slot) if checkable: action.setCheckable(True) return action def create_menu(self): self.file_menu = self.menuBar().addMenu("&File") quit_action = self.file_menu.addAction("&Quit") quit_action.triggered.connect(self.close) self.help_menu = self.menuBar().addMenu("&Help") about_action = self.help_menu.addAction("&About") about_action.triggered.connect(self.on_about) def create_main_frame(self): self.main_frame = QtWidgets.QWidget() # Create the mpl Figure and FigCanvas objects. # 5x4 inches, 100 dots-per-inch # self.dpi = 100 self.fig = Figure((10.0, 8.0), dpi=self.dpi) self.canvas = FigureCanvas(self.fig) self.canvas.setParent(self.main_frame) # Since we have only one plot, we can use add_axes # instead of add_subplot, but then the subplot # configuration tool in the navigation toolbar wouldn't # work. # self.axes = self.fig.add_subplot(111) # Create the navigation toolbar, tied to the canvas # self.mpl_toolbar = NavigationToolbar(self.canvas, self.main_frame) # Other GUI controls # self.field_spin = QtWidgets.QDoubleSpinBox() self.field_spin.setLocale(QtCore.QLocale('C')) self.field_spin.setMinimum(1) self.field_spin.setMaximum(10) self.field_spin.setDecimals(1) self.field_spin.setValue(2) self.field_spin.setSingleStep(0.1) self.field_combo = QtWidgets.QComboBox() self.field_combo.addItem(u'2\N{DEGREE SIGN} (1931)') self.STD_31 = 0 self.field_combo.addItem(u'10\N{DEGREE SIGN} (1964)') self.STD_64 = 1 self.field_combo.hide() self.field_combo.currentIndexChanged.connect(self.on_draw_all) self.age_spin = QtWidgets.QSpinBox() self.age_spin.setMinimum(20) self.age_spin.setMaximum(80) self.age_spin.setValue(32) self.lambda_min_spin = QtWidgets.QDoubleSpinBox() self.lambda_min_spin.setLocale(QtCore.QLocale('C')) self.lambda_min_spin.setMinimum(390) self.lambda_min_spin.setMaximum(400) self.lambda_min_spin.setDecimals(1) self.lambda_min_spin.setValue(390) self.lambda_min_spin.setSingleStep(0.1) self.lambda_max_spin = QtWidgets.QDoubleSpinBox() self.lambda_max_spin.setLocale(QtCore.QLocale('C')) self.lambda_max_spin.setMinimum(700) self.lambda_max_spin.setMaximum(830) self.lambda_max_spin.setDecimals(1) self.lambda_max_spin.setValue(830) self.lambda_max_spin.setSingleStep(0.1) self.resolution_spin = QtWidgets.QDoubleSpinBox() self.resolution_spin.setLocale(QtCore.QLocale('C')) self.resolution_spin.setMinimum(0.1) self.resolution_spin.setMaximum(5) self.resolution_spin.setDecimals(1) self.resolution_spin.setValue(1) self.resolution_spin.setSingleStep(0.1) self.plot_combo = QtWidgets.QComboBox() self.plot_combo.addItem('CIE LMS cone fundamentals') self.COMBO_LMS = 0 self.plot_combo.addItem('CIE LMS cone fundamentals (9 sign. figs.)') self.COMBO_LMSBASE = 1 self.plot_combo.addItem( u'MacLeod\u2013Boynton ls chromaticity diagram') self.COMBO_MB = 2 self.plot_combo.addItem('Maxwellian lm chromaticity diagram') self.COMBO_LM = 3 self.plot_combo.addItem( 'CIE XYZ cone-fundamental-based tristimulus functions') self.COMBO_XYZ = 4 self.plot_combo.addItem( 'CIE xy cone-fundamental-based chromaticity diagram') self.COMBO_XY = 5 self.plot_combo.addItem( 'XYZ cone-fundamental-based tristimulus functions for ' + 'purple-line stimuli') self.COMBO_PURPLE_XYZ = 6 self.plot_combo.addItem( 'xy cone-fundamental-based chromaticity diagram ' + '(purple-line stimuli)') self.COMBO_PURPLE_XY = 7 self.plot_combo.addItem('CIE XYZ standard colour-matching functions') self.COMBO_XYZSTD = 8 self.plot_combo.addItem('CIE xy standard chromaticity diagram') self.COMBO_XYSTD = 9 self.plot_combo.currentIndexChanged.connect(self.on_draw_all) self.grid_check = QtWidgets.QCheckBox() self.grid_check.stateChanged.connect(self.on_grid) self.wavelength_check = QtWidgets.QCheckBox() self.wavelength_check.stateChanged.connect(self.on_draw_plot_only) self.cie31_check = QtWidgets.QCheckBox() self.cie31_check.stateChanged.connect(self.on_draw_plot_only) self.cie64_check = QtWidgets.QCheckBox() self.cie64_check.stateChanged.connect(self.on_draw_plot_only) self.norm_check = QtWidgets.QCheckBox() self.norm_check.stateChanged.connect(self.on_draw_all) self.log_check = QtWidgets.QCheckBox() self.log_check.stateChanged.connect(self.on_draw_all) self.save_table_button = QtWidgets.QPushButton('&Save table') self.save_table_button.clicked.connect(self.save_table) self.compute_button = QtWidgets.QPushButton(' &Compute ') self.compute_button.clicked.connect(self.on_compute) self.transformation = QtWebEngineWidgets.QWebEngineView() self.html_table = QtWebEngineWidgets.QWebEngineView() # Layout with labels # self.compare_label_31 = QtWidgets.QLabel( u'Compare with CIE 1931 2\N{DEGREE SIGN}') self.compare_label_64 = QtWidgets.QLabel( u'Compare with CIE 1964 10\N{DEGREE SIGN}') self.grid_label = QtWidgets.QLabel('Grid') self.wavelength_label = QtWidgets.QLabel('Labels') self.norm_label = QtWidgets.QLabel(' Renormalized values ') self.log_label = QtWidgets.QLabel(' Logarithmic values ') self.field_label = QtWidgets.QLabel(u' Field size (\N{DEGREE SIGN})') self.age_label = QtWidgets.QLabel(' Age (yr)') self.lambda_min_max_label = QtWidgets.QLabel(' Domain (nm)') self.lambda_min_max_dash = QtWidgets.QLabel(u'\u2013') self.resolution_label = QtWidgets.QLabel(' Step (nm)') grid = QtWidgets.QGridLayout() grid.setRowMinimumHeight(0, 34) grid.addWidget(self.field_label, 0, 0, QtCore.Qt.AlignRight) grid.addWidget(self.age_label, 0, 2, QtCore.Qt.AlignRight) grid.addWidget(self.lambda_min_max_label, 0, 4, QtCore.Qt.AlignRight) grid.addWidget(self.lambda_min_max_dash, 0, 6) grid.addWidget(self.resolution_label, 0, 8, QtCore.Qt.AlignRight) grid.addWidget(QtWidgets.QLabel(''), 0, 10) grid.addWidget(self.field_spin, 0, 1) grid.addWidget(self.field_combo, 0, 1) grid.addWidget(self.age_spin, 0, 3) grid.addWidget(self.lambda_min_spin, 0, 5) grid.addWidget(self.lambda_max_spin, 0, 7) grid.addWidget(self.resolution_spin, 0, 9) grid.addWidget(self.compute_button, 0, 11) grid.setColumnStretch(2, 11) grid.setColumnStretch(4, 16) grid.setColumnStretch(8, 13) grid.setColumnStretch(10, 8) inner_vbox = QtWidgets.QVBoxLayout() inner_vbox.addWidget(self.mpl_toolbar) inner_vbox.addWidget(self.canvas) check_bar = QtWidgets.QGridLayout() check_bar.addWidget(self.compare_label_31, 0, 0, QtCore.Qt.AlignRight) check_bar.addWidget(self.cie31_check, 0, 1) check_bar.addWidget(QtWidgets.QLabel(''), 0, 2) check_bar.addWidget(self.compare_label_64, 0, 3, QtCore.Qt.AlignRight) check_bar.addWidget(self.cie64_check, 0, 4) check_bar.addWidget(self.grid_label, 0, 5, QtCore.Qt.AlignRight) check_bar.addWidget(self.grid_check, 0, 6) check_bar.addWidget(self.wavelength_label, 0, 7, QtCore.Qt.AlignRight) check_bar.addWidget(self.wavelength_check, 0, 8) check_bar.setColumnStretch(2, 8) check_bar.setColumnStretch(3, 16) check_bar.setColumnStretch(5, 14) check_bar.setColumnStretch(7, 16) check_widget = QtWidgets.QWidget() check_widget.setLayout(check_bar) inner_vbox.addWidget(check_widget) inner_widget = QtWidgets.QWidget() inner_widget.setLayout(inner_vbox) table_vbox = QtWidgets.QVBoxLayout() table_vbox.addWidget(self.html_table) table_vbox.addWidget(self.save_table_button) table_widget = QtWidgets.QWidget() table_widget.setLayout(table_vbox) spectral_tabs = QtWidgets.QTabWidget() spectral_tabs.addTab(inner_widget, 'Plot') spectral_tabs.addTab(table_widget, 'Table') combo_grid = QtWidgets.QGridLayout() combo_grid.addWidget(self.plot_combo, 0, 0) combo_grid.addWidget(QtWidgets.QLabel(' '), 0, 1) combo_grid.addWidget(self.norm_label, 0, 2, QtCore.Qt.AlignRight) combo_grid.addWidget(self.norm_check, 0, 3) combo_grid.addWidget(self.log_label, 0, 2, QtCore.Qt.AlignRight) combo_grid.addWidget(self.log_check, 0, 3) combo_grid.setColumnMinimumWidth(0, 650) combo_grid.setColumnMinimumWidth(2, 150) combo_grid.setColumnMinimumWidth(3, 20) combo_grid.setColumnStretch(0, 1) combo_grid.setSpacing(0) spectral_innerwidget = QtWidgets.QWidget() spectral_vbox = QtWidgets.QVBoxLayout(spectral_innerwidget) spectral_vbox.addWidget(spectral_tabs) spectral_vbox.addLayout(combo_grid) spectral_vbox.addLayout(grid) spectral_splitter = QtWidgets.QSplitter() spectral_splitter.addWidget(spectral_innerwidget) spectral_splitter.addWidget(self.transformation) vbox = QtWidgets.QVBoxLayout() vbox.addWidget(spectral_splitter) self.main_frame.setLayout(vbox) self.setCentralWidget(self.main_frame) def main(): """ Run the CIE Functions application. """ app = QtWidgets.QApplication(sys.argv) app_icon = QtGui.QIcon() app_icon.addFile(resource_path('icons/ciefunctions_icon (16x16) .png'), QtCore.QSize(16, 16)) app_icon.addFile(resource_path('icons/ciefunctions_icon (24x24) .png'), QtCore.QSize(24, 24)) app_icon.addFile(resource_path('icons/ciefunctions_icon (32x32) .png'), QtCore.QSize(32, 32)) app_icon.addFile(resource_path('icons/ciefunctions_icon (48x48) .png'), QtCore.QSize(48, 48)) app_icon.addFile(resource_path('icons/ciefunctions_icon (256x256) .png'), QtCore.QSize(256, 256)) app.setWindowIcon(app_icon) form = AppForm() form.show() app.exec_() if __name__ == '__main__': main()
gpl-3.0
neddles/Loss-Analysis
loss_analysis/loss_analysis.py
1
27502
# port "loss analysis v5.xlsx" by Ziv Hameiri to python3 import openpyxl import numpy as np import sys import os import re from collections import OrderedDict import matplotlib.pyplot as plt import warnings # modules for this package import analysis from scipy import constants T = 300 # TODO: make optional input? Vth = constants.k * T / constants.e def waterfall(ax, y, xlabels=None): ''' Create a waterfall plot. Assumes the first value is the starting point, all other values are set to negative creating a 'waterfall' downwards. ''' y = abs(np.array(y)) y[1:] = -1 * y[1:] x = np.arange(len(y)) y_bot = np.append(0, y[:-1].cumsum()) ax.bar(x, y, bottom=y_bot, align='center') ax.set_ylim(ymin = y_bot[-1] + y[-1]) if xlabels is not None: ax.set_xticks(np.arange(len(xlabels))) ax.set_xticklabels(xlabels, rotation=40, ha='right') return ax class Refl(object): def __init__(self, fname): self.load(fname) def process(self, f_metal=None, wlbounds=(900, 1000), wljunc=600): ''' Performs several calculations including: - Average Reflection (AR) - Weighted Average Reflection (WAR) - Light lost from front surface escape the results are loaded into attributes ''' # xxx need upper bound for this? self.AR = np.trapz(self.refl / 100, x=self.wl) self.AM15G_Jph = analysis.AM15G_resample(self.wl) i_upper = (self.wl <= 1000) self.WAR = (np.dot(self.refl[i_upper], self.AM15G_Jph[i_upper]) / np.sum(self.AM15G_Jph[i_upper])) if f_metal is None: index = (self.wl >= 400) * i_upper refl_min = np.amin(self.refl[index]) self.f_metal = refl_min else: self.f_metal = f_metal index_l = (self.wl >= wlbounds[0]) index = (self.wl <= wlbounds[1]) * index_l # use numpys implementation for line fitting popt, pcov = np.polyfit(self.wl[index], self.refl[index], 1, cov=True) self.refl_wo_escape = np.copy(self.refl) self.refl_wo_escape[index_l] = np.polyval(popt, self.wl[index_l]) # defined as area between 100% and the given curve, to simplify calculations Jloss = OrderedDict() Jloss['max_limit'] = np.sum(self.AM15G_Jph) Jloss['metal_shading'] = np.dot(self.f_metal / 100 \ * np.ones(len(self.AM15G_Jph)), self.AM15G_Jph) Jloss['refl_wo_escape'] = np.dot(self.refl_wo_escape / 100 \ , self.AM15G_Jph) \ - Jloss['metal_shading'] Jloss['front_escape'] = np.dot(self.refl / 100, self.AM15G_Jph) \ - Jloss['metal_shading'] \ - Jloss['refl_wo_escape'] # this makes qe Jloss calculations easier idx_junc = analysis.find_nearest(wljunc, self.wl) Jloss['front_escape_blue'] = np.dot(self.refl[:idx_junc] / 100, self.AM15G_Jph[:idx_junc]) Jloss['front_escape_red'] = np.dot(self.refl[idx_junc:] / 100, self.AM15G_Jph[idx_junc:]) self.Jloss = Jloss def plot(self, ax): ax.plot(self.wl, self.refl, '-o') ax.plot(self.wl, self.refl_wo_escape, '-o') ax.plot(self.wl, np.ones(len(self.wl)) * self.f_metal, 'r-') ax.set_ylabel('Reflectance [%]') ax.grid(True) def plot_QE(self, ax): ax.fill_between(self.wl, 100 - self.refl, 100 - self.refl_wo_escape) ax.legend(loc='best') # ax.set_ylabel('Reflectance [%]') # ax.grid(True) def load(self, raw_data_file): '''Loads Reflectance data in attributes''' self.filepath = raw_data_file self.filename = os.path.basename(raw_data_file) data_array = np.genfromtxt(raw_data_file, usecols=(0, 1), skip_header=1, delimiter=',').transpose() # is this needed? if data_array[0, 0] > data_array[0, -1]: data_array = data_array[:, ::-1] self.wl = data_array[0, :] self.refl = data_array[1, :] class QE(object): def __init__(self, fname): self.load(fname) def process(self, wl, refl, refl_wo_escape, Jloss, wljunc=600): ''' Performs several calculations from QE and Reflectance data including: - IQE - Leff and SRV_rear - Current loss from each region of the device the results are saved into attributes ''' self.IQE = self.EQE / (100 - refl) self.output_Basore_fit, self.plot_Basore_fit = analysis.fit_Basore( self.wl, self.IQE) EQE_on_eta_c = self.EQE / self.output_Basore_fit['eta_c'] idx = analysis.find_nearest(750, wl) total_min = np.minimum((100 - refl_wo_escape), EQE_on_eta_c) self.EQE_xxx_unnamed = np.append(100 - refl_wo_escape[:idx], total_min[idx:]) AM15G_Jph = analysis.AM15G_resample(self.wl) Jloss_qe = Jloss.copy() del Jloss_qe['front_escape_red'] del Jloss_qe['front_escape_blue'] idx_junc = analysis.find_nearest(wljunc, self.wl) Jloss_qe['parasitic_absorption'] = np.dot((100 - self.EQE_xxx_unnamed[idx_junc:]) / 100, AM15G_Jph[idx_junc:]) \ - Jloss['front_escape_red'] Jloss_qe['bulk_recomm'] = np.dot((100 - self.EQE[idx_junc:]) / 100, AM15G_Jph[idx_junc:]) \ - Jloss['front_escape_red'] \ - Jloss_qe['parasitic_absorption'] Jloss_qe['blue_loss'] = np.dot((100 - self.EQE[:idx_junc]) / 100, AM15G_Jph[:idx_junc]) \ - Jloss['front_escape_blue'] self.Jloss_qe = Jloss_qe # print(Jloss_qe) def plot_EQE(self, ax): line_EQE = ax.plot(self.wl, self.EQE, '-o', label='EQE') ax.set_xlabel('Wavelength [$nm$]') ax.set_ylabel('QE [%]') ax.legend(loc='best') ax.grid(True) return line_EQE # xxx currently not working def plot_IQE(self, ax): ax.plot(self.wl, self.IQE, '-o', label='IQE') ax.set_xlabel('Wavelength [$nm$]') ax.set_ylabel('QE [%]') ax.legend(loc='best') ax.grid(True) def plot_Jloss(self, ax): waterfall(ax, list(self.Jloss_qe.values()), list(self.Jloss_qe.keys())) def load(self, raw_data_file): '''Loads EQE data into attributes''' self.filepath = raw_data_file self.filename = os.path.basename(raw_data_file) # the other columns are ignored data_array = np.genfromtxt(raw_data_file, usecols=(0, 1), skip_header=1, skip_footer=8) self.wl = data_array[:, 0] self.EQE = data_array[:, 1] f = open(raw_data_file, 'r') d = {} for line in f.readlines()[-7:-1]: d.update(dict([line.strip('\n').split(':')])) d['Jsc'] = round(float(d['Jsc']) / 1e3, 7) self.output = d class IVLight(object): def __init__(self, fname): self.load(fname) def process(self, Rsh, Rs): ''' Light IV calculations caculates the ideal fill factors: FF0 FFs FF The the loss from the current FF_Rsh FF_Rsh FF_other These are all stored within two dictionaries. Inputs: Rsh: The shunt resistance Rs: The series resistance Outputs: None ''' self.m = analysis.ideality_factor( self.V, -1 * (self.J - self.output['Jsc']), Vth) ideal_FF = OrderedDict() ideal_FF['FF_0'] = analysis.ideal_FF(self.output['Voc']) ideal_FF['FF_s'] = analysis.ideal_FF_series(self.output['Voc'], self.output['Jsc'], Rs) ideal_FF['FF_s_sh'] = analysis.ideal_FF_series_shunt(self.output['Voc'], self.output['Jsc'], Rs, Rsh) self.ideal_FF = ideal_FF FF_loss = OrderedDict() FF_loss['FF_0'] = analysis.ideal_FF(self.output['Voc']) FF_loss['FF_Rs'] = analysis.FF_loss_series(self.output['Voc'], self.output['Jsc'], self.output['Jmp'], Rs) FF_loss['FF_Rsh'] = analysis.FF_loss_shunt(self.output['Voc'], self.output['Jsc'], self.output['Vmp'], self.output['Jmp'], Rs, Rsh) # for waterfall plot FF_loss['FF_other'] = (FF_loss['FF_0'] \ - self.output['FF'] \ - FF_loss['FF_Rs'] \ - FF_loss['FF_Rsh']) self.FF_loss = FF_loss def plot(self, ax): ''' Plots the current voltage curve inputs: ax: A figure axes to which is plotted ''' ax.plot(self.V, self.J, '-o', label='light IV') ax.set_xlabel('Voltage [$V$]') ax.set_ylabel('Current Density [$A cm^{-2}$]') ax.grid(True) # ax.legend(loc='best') def plot_m(self, ax): # trims some noise at ends of array ax.plot(self.V[10:-5], self.m[10:-5], '-o', label='Light IV') ax.set_xlabel('Voltage [$V$]') ax.set_ylabel('Ideality Factor []') ax.grid(True) ax.legend(loc='best') ax.set_ylim(ymin=0) def plot_FF1(self, ax): waterfall(ax, list(self.FF_loss.values()), list(self.FF_loss.keys())) def load(self, raw_data_file): '''Loads Light IV data into attributes''' self.filepath = raw_data_file self.filename = os.path.basename(raw_data_file) f = open(raw_data_file, 'r') d = OrderedDict() # rows which contain floats in lightIV data file header float_rows = [2] float_rows.extend(list(range(6, 18))) for i, line in enumerate(f.readlines()[1:19]): # convert to float for future calculations if i in float_rows: key_temp, val = line.strip('\n').split(':\t') key = key_temp.strip() d[key] = float(val) else: d.update(dict([line.strip('\n').split(':\t')])) data_array = np.genfromtxt(raw_data_file, skip_header=20) self.V = data_array[:, 0] self.J = data_array[:, 1] / d['Cell Area (sqr cm)'] self.output = d class IVSuns(object): filepath = None filename = None def __init__(self, fname): self.load(fname) def process(self): '''Suns Voc calculations''' self.m = analysis.ideality_factor(self.V, self.effsuns, Vth) def plot_IV(self, ax): ax.plot(self.V, self.J, '-o', label='suns Voc') ax.set_xlabel('Voltage [$V$]') ax.set_ylabel('Current Density [$A cm^{-2}$]') ax.grid(True) ax.legend(loc='best') ax.set_ylim(ymin=0) def plot_tau(self, ax): # TODO: trims off some noise, use better method? ax.loglog(self.Dn[5:-5], self.tau_eff[5:-5], '-o', label='Suns Voc') ax.set_xlabel('$\Delta n$ [$cm^{-3}$]') ax.set_ylabel(r'$\tau_{eff}$ [s]') ax.grid(True) ax.legend(loc='best') # ax.set_xlim(xmin=1e11) def plot_m(self, ax): # trims some noise at ends of array ax.plot(self.V[10:-5], self.m[10:-5], '-o', label='suns Voc') ax.set_xlabel('Voltage [$V$]') ax.set_ylabel('Ideality Factor []') ax.grid(True) ax.legend(loc='best') ax.set_ylim(ymin=0) def plot_log_IV(self, ax): # trims some noise at ends of array # TODO: Link this to Jsc rather than this manual index # check for real values index = np.isfinite(self.J) # find the meaured Jsc Jsc_index = abs(self.V[index]) == np.min(abs(self.V[index])) ax.plot(self.V, -1 * ( self.J - self.J[index][Jsc_index]), '-o', label='Suns Voc') ax.set_xlabel('Voltage [$V$]') ax.set_ylabel('Ideality Factor []') ax.grid(True) ax.legend(loc='best') def load(self, raw_data_file, text_format=False): '''Loads Suns Voc data in attributes''' self.filepath = raw_data_file self.filename = os.path.basename(raw_data_file) if text_format: data_array = np.genfromtxt(raw_data_file, usecols=(0, 1, 2, 3, 4), skip_header=1) else: # suppress annoying warning with warnings.catch_warnings(): warnings.simplefilter('ignore') wb = openpyxl.load_workbook(raw_data_file, read_only=True, data_only=True) ws_RawData = wb.get_sheet_by_name('RawData') ws_User = wb.get_sheet_by_name('User') last_cell = 'J' + str(ws_RawData.max_row) data_array = np.array([[i.value for i in j] for j in ws_RawData['E2':last_cell]]) # try: ?? # np.asarray(xlSheet.Range("A9:I133").Value, dtype=np.float64) params = [i.value for i in ws_User['A5':'F5'][0]] vals = [i.value for i in ws_User['A6':'F6'][0]] self.params = dict(zip(params, vals)) params = [i.value for i in ws_User['A8':'L8'][0]] # Reduce 13 significant figures in .xlsx file to 6 (default of .format()) # vals = [float('{:f}'.format(i.value)) for i in # ws_User['A6':'F6'][0]] vals = [float('{:e}'.format(i.value)) for i in ws_User['A9':'L9'][0]] self.output = dict(zip(params, vals)) self.effsuns = data_array[:, 0] # Effective Suns self.V = data_array[:, 1] self.J = data_array[:, 2] self.P = data_array[:, 3] self.Dn = data_array[:, 4] self.tau_eff = data_array[:, 5] class IVDark(object): def __init__(self, fname): self.load(fname) def process(self): ''' This performs the Dark IV calculations for loss analysis It currently caculates: the idealify factor as a function of voltage ''' # Ideality factor self.m = analysis.ideality_factor(self.V, self.J, Vth) # Shunt resistance, at 30mV # TODO: do linear fit with zero intercept? Rsh = 0.03 / analysis.find_nearest(0.03, self.V, self.J) return Rsh def plot_log_IV(self, ax): ax.semilogy(self.V, self.J, '-o', label='Dark IV') ax.set_xlabel('Voltage [$V$]') ax.set_ylabel('Current Density [$A cm^{-2}$]') ax.grid(True) ax.legend(loc='best') def plot_m(self, ax): ax.plot(self.V, self.m, '-o', label='dark IV') ax.set_xlabel('Voltage [$V$]') ax.set_ylabel('Ideality Factor []') ax.grid(True) ax.legend(loc='best') def load(self, raw_data_file): '''Loads Dark IV data in attributes''' self.filepath = raw_data_file self.filename = os.path.basename(raw_data_file) f = open(raw_data_file, 'r') d = OrderedDict() # rows which contain floats in lightIV data file header float_rows = [1, 6, 7, 8] for i, line in enumerate(f.readlines()[1:10]): # convert to float for future calculations key, val = line.strip('\n').split(':\t') if i in float_rows: d[key] = float(val) else: d[key] = val # d.update(dict(re.findall(r'([\s\S]+)\s*:\t([^\n]+)', line))) # d.update(dict([line.strip('\n').split(':\t')])) # for line in f.readlines()[1:10]: # d.update(dict(re.findall(r'([\s\S]+)\s*:\t([^\n]+)', line))) # d['Cell Area in sqr cm'] = float(d['Cell Area in sqr cm']) self.output = d data_array = np.genfromtxt( raw_data_file, usecols=(0, 1), skip_header=11) self.V = data_array[:, 0] self.J = data_array[:, 1] / d['Cell Area in sqr cm'] class Cell(object): def __init__(self, thickness=None, **kwargs): self.thickness = thickness # [cm] self.sample_names = {} self.input_errors = {} self.refl = Refl(kwargs['reflectance_fname']) self.qe = QE(kwargs['EQE_fname']) self.sunsVoc = IVSuns(kwargs['suns Voc_fname']) self.div = IVDark(kwargs['dark IV_fname']) self.liv = IVLight(kwargs['light IV_fname']) self.example_dir = os.path.join(os.pardir, 'example_cell') self.check_input_vals() def check_input_vals(self): ''' Check the input cell parameters are consistent between measurements. Gives the error as a percentage. ''' # sample names self.sample_names['Light IV'] = self.liv.output['Cell Name '] self.sample_names['Suns Voc'] = self.sunsVoc.params['Sample Name'] self.sample_names['Dark IV'] = self.div.output['Cell Name'] # Cell area # tolerance = 1e-3 area_liv = self.liv.output['Cell Area (sqr cm)'] area_div = self.div.output['Cell Area in sqr cm'] delta = (area_div - area_liv) / area_liv self.input_errors['Cell Area'] = delta # thickness self.thickness = self.sunsVoc.params['Wafer Thickness (cm)'] tck_user_input = self.thickness tck_sunsVoc = self.sunsVoc.params['Wafer Thickness (cm)'] delta = (tck_sunsVoc - tck_user_input) / tck_user_input self.input_errors['Cell thickness'] = delta # Voc Voc_liv = self.liv.output['Voc'] Voc_div = self.sunsVoc.output['Voc (V)'] delta = (Voc_div - Voc_liv) / Voc_liv self.input_errors['Voc'] = delta # Jsc Jsc_liv = self.liv.output['Jsc'] Jsc_iqe = self.qe.output['Jsc'] delta = (Jsc_iqe - Jsc_liv) / Jsc_liv self.input_errors['Jsc'] = delta # some checks on the data assert abs(self.input_errors['Cell Area'] ) < 0.01, "Provided sample area's disagrees: {0:.1f} cm^2 {1:.1f} cm^2".format(area_liv, area_div) assert abs(self.input_errors['Cell thickness'] ) < 0.01, "Provided sample thickness disagrees: {0:.4f} cm {1:.4f} cm".format(tck_user_input, tck_sunsVoc) assert abs(self.input_errors['Voc'] ) < 0.01, "Provided Voc disagree: {0:.0f} mV {1:.0f} mV".format(Voc_liv * 1000, Voc_div * 1000) assert abs(self.input_errors['Jsc'] ) < 0.1, "Provided Jsc disagree: {0:.0f} mA {1:.0f} mA".format(Jsc_liv * 1000, Jsc_iqe * 1000) def collect_outputs(self): '''Collects input and output parameters into self.output_list''' output_list = [] def quick_print(key, val): output_list.append('{:>30}, {:<20}'.format(key, val)) output_list.append('\n') quick_print('##### Inputs check: Percentage difference', '',) for key, val in self.sample_names.items(): quick_print(key, val) for key, val in self.input_errors.items(): quick_print(key, '{:.3e}%'.format(val * 100)) output_list.append('\n') quick_print('##### Reflectance', '') quick_print('filename', self.refl.filename) output_list.append('\n') quick_print('##### QE', '') quick_print('filename', self.qe.filename) for key, val in self.qe.output.items(): quick_print(key, val) quick_print('Basore fit Leff', '{:.3e}'.format( self.qe.output_Basore_fit['Leff'])) quick_print('Basore fit eta_c', '{:.3f}'.format( self.qe.output_Basore_fit['eta_c'])) output_list.append('\n') quick_print('##### Light IV', '') quick_print('filename', self.liv.filename) for key, val in self.liv.output.items(): quick_print(key, val) output_list.append('\n') quick_print('##### Suns Voc', '') quick_print('filename', self.sunsVoc.filename) for key, val in self.sunsVoc.params.items(): quick_print(key, val) for key, val in self.sunsVoc.output.items(): quick_print(key, val) output_list.append('\n') quick_print('##### Dark IV', '') quick_print('filename', self.div.filename) for key, val in self.div.output.items(): quick_print(key, val) output_list.append('\n') quick_print('##### Calclated', '') quick_print('### Reflectance', '') quick_print('AR', '{:.3f}'.format(self.refl.AR)) quick_print('WAR', '{:.3f}'.format(self.refl.WAR)) quick_print('f_metal', '{:.3f}'.format(self.refl.f_metal)) quick_print('### Parasitic resistances', '') quick_print('Rsh (Ohm cm2)', '{:.3e}'.format(self.Rsh)) quick_print('Rs1 (Ohm cm2)', '{:.3e}'.format(self.Rs_1)) quick_print('Rs2 (Ohm cm2)', '{:.3e}'.format(self.Rs_2)) quick_print('### Current losses', '') for key, val in self.qe.Jloss_qe.items(): quick_print(key + ' (mA)', '{:.3f}'.format(val)) quick_print('### Fill Factor', '') for key, val in self.liv.ideal_FF.items(): quick_print(key, '{:.3f}'.format(val)) self.output_list = output_list def print_output_to_file(self): filename = self.cell_name + '_loss_analysis_summary.csv' output_file = open(os.path.join(self.output_dir, filename), 'w') for item in self.output_list: output_file.write(item + '\r\n') output_file.close() def plot_all(self, save_fig_bool): '''Plot the output of previous calculations''' # for reflectance fig_QE = plt.figure('QE', figsize=(30 / 2.54, 15 / 2.54)) fig_QE.clf() ax_refl = fig_QE.add_subplot(2, 2, 1) ax_QE = fig_QE.add_subplot(2, 2, 2) ax_QE_fit = fig_QE.add_subplot(2, 2, 3) ax_QE_layered = fig_QE.add_subplot(2, 2, 4) self.refl.plot(ax_refl) self.refl.plot(ax_QE) self.qe.plot_EQE(ax_QE) self.qe.plot_IQE(ax_QE) # for light and dark IV fig_IV = plt.figure('IV', figsize=(30 / 2.54, 15 / 2.54)) fig_IV.clf() # get the plotting axes ax_logIV = fig_IV.add_subplot(2, 2, 1) ax_ideality = fig_IV.add_subplot(2, 2, 3) ax_lightIV = fig_IV.add_subplot(2, 2, 2) ax_tau = fig_IV.add_subplot(2, 2, 4) # plot light IV first, as is typically the noisest self.liv.plot_m(ax_ideality) self.liv.plot(ax_lightIV) # plot suns Voc self.sunsVoc.plot_m(ax_ideality) self.sunsVoc.plot_IV(ax_lightIV) self.sunsVoc.plot_tau(ax_tau) self.sunsVoc.plot_log_IV(ax_logIV) # plot dark IV as least noisest self.div.plot_log_IV(ax_logIV) self.div.plot_m(ax_ideality) # plot the EQE fitted data self.qe.plot_Basore_fit(ax_QE_fit) # this is doing some loss analysis filling dummy_ones = np.ones(len(self.refl.wl)) ax_QE_layered.fill_between(self.refl.wl, dummy_ones * 100, 100 - dummy_ones * self.refl.f_metal, color='blue') ax_QE_layered.fill_between(self.refl.wl, 100 - dummy_ones * self.refl.f_metal, 100 - self.refl.refl_wo_escape, color='green') ax_QE_layered.fill_between(self.refl.wl, 100 - self.refl.refl_wo_escape, 100 - self.refl.refl, color='red') ax_QE_layered.fill_between(self.refl.wl, 100 - self.refl.refl, self.qe.EQE_xxx_unnamed, color='cyan') # ax_QE_layered.plot(self.refl.wl, self.qe.EQE_xxx_unnamed) ax_QE_layered.fill_between(self.refl.wl, self.qe.EQE_xxx_unnamed, self.qe.EQE, color='magenta') # line_EQE, = self.qe.plot_EQE(ax_QE_layered) # line_EQE.set_marker('x') # self.refl.plot_QE(ax_QE_layered) # for loss analysis summary fig_LA = plt.figure('LA', figsize=(30 / 2.54, 15 / 2.54)) fig_LA.clf() ax_FF = fig_LA.add_subplot(2, 2, 1) ax_Jloss = fig_LA.add_subplot(2, 2, 2) self.liv.plot_FF1(ax_FF) self.qe.plot_Jloss(ax_Jloss) fig_QE.set_tight_layout(True) fig_IV.set_tight_layout(True) if save_fig_bool: fig_QE.savefig(os.path.join(self.output_dir, self.cell_name + '_QE.png')) fig_IV.savefig(os.path.join(self.output_dir, self.cell_name + '_IV.png')) plt.show() def process_all(self, save_fig_bool, output_dir, cell_name): ''' A function that calls all the processing functions. ''' if cell_name == '': self.cell_name = self.liv.output['Cell Name '] else: self.cell_name = cell_name self.output_dir = output_dir self.sunsVoc.process() self.refl.process() self.qe.process(self.refl.wl, self.refl.refl, self.refl.refl_wo_escape, self.refl.Jloss) self.Rsh = self.div.process() self.Rs_1 = analysis.Rs_calc_1(self.liv.output['Vmp'], self.liv.output['Jmp'], self.sunsVoc.V, self.sunsVoc.J) self.Rs_2 = analysis.Rs_calc_2(self.liv.output['Voc'], self.liv.output['Jsc'], self.liv.output['FF'], self.sunsVoc.output['PFF']) self.liv.process(self.Rsh, self.Rs_1) self.collect_outputs() self.print_output_to_file() self.plot_all(save_fig_bool) if __name__ == "__main__": example_dir = os.path.join(os.pardir, 'example_cell') files = { 'reflectance_fname': os.path.join(example_dir, 'example_reflectance.csv'), 'EQE_fname': os.path.join(example_dir, 'example_EQE.txt'), 'light IV_fname': os.path.join(example_dir, 'example_lightIV.lgt'), 'suns Voc_fname': os.path.join(example_dir, 'example_sunsVoc.xlsm'), 'dark IV_fname': os.path.join(example_dir, 'example_darkIV.drk')} cell1 = Cell(**files) cell1.process_all()
mit
jkibele/OpticalRS
OpticalRS/GroundTruthShp.py
1
34647
""" I'm copying this from some of my much older work. It's probably going to be buggy. Yep, it was. I've done some refactoring and whatnot but it could probably use some more. Maybe combine with `GeoDFUtils`? It would be nice to be able to easily operate on GDF subsets and selections. `buffer` and `rasterize` are working pretty well. Still need tests and whatnot but those methods are the main use for this module at the moment. The two `error_matrix` functions are useful and working too. """ #from error_matrix import * from RasterDS import RasterDS from ErrorMatrix import ErrorMatrix from scipy.stats.stats import mode import numpy as np import pandas as pd import geopandas as gpd import os from osgeo import ogr, gdal, osr import shapely as shpl from scipy.stats import mode as scipymode from tempfile import mkdtemp import shutil class GroundTruthGDF(gpd.GeoDataFrame): def __init__(self, *args, **kwargs): hf = kwargs.pop('habfield', 'habitat') hc = kwargs.pop('habcodefield', 'hab_num') super(GroundTruthGDF, self).__init__(*args, **kwargs) self.habfield = hf self.habcodefld = hc @classmethod def new(cls,*args,**kwargs): return cls(*args,**kwargs) @classmethod def from_file(cls, filename, **kwargs): hf = kwargs.pop('habfield', 'habitat') hc = kwargs.pop('habcodefield', 'hab_num') gdf = gpd.io.file.read_file(filename, **kwargs) return cls(gdf, habfield=hf, habcodefield=hc) @property def codes_habitat(self): """ Return a dictionary just like habitat_codes only backwards. """ hf = self.habfield hcf = self.habcodefld hcd = dict() for cl in self[hcf].unique(): if cl > 0: sers = self[self[hcf]==cl][hf] if sers.count() > 1: hcd[cl] = sers.mode().item() elif sers.count() > 0: hcd[cl] = sers.item() return hcd def __getitem__(self, key): result = super(GroundTruthGDF, self).__getitem__(key) if isinstance(result, gpd.GeoDataFrame): result.__class__ = GroundTruthGDF result.habfield = self.habfield result.habcodefld = self.habcodefld return result def query(self, expr, inplace=False, **kwargs): result = super(GroundTruthGDF, self).query(expr, inplace=False, **kwargs) if isinstance(result, gpd.GeoDataFrame): result.__class__ = GroundTruthGDF result.habfield = self.habfield result.habcodefld = self.habcodefld return result def comparison_df(self, rds, radius=0, generous=False, band_index=0, out_of_bounds=np.nan, with_unclassed=False): """ There can be problems if there are codes in the raster that do not exist in the geodataframe. I should probably check for this condition and raise an exception. No time right now. """ pred = self.compare_raster(rds, radius=radius, generous=generous, band_index=band_index, out_of_bounds=out_of_bounds) truth = self.__getitem__(self.habcodefld) truth.name = 'truth' pred.name = 'pred' preddf = pd.concat((truth, pred), axis=1) if not with_unclassed: # Get rid of any row that has a zero in it preddf = preddf[(preddf!=0).all(1)] return preddf def error_matrix(self, rds, radius=0, generous=False, band_index=0, out_of_bounds=np.nan, with_unclassed=False): from sklearn.metrics import confusion_matrix compdf = self.comparison_df(rds, radius=radius, generous=generous, band_index=band_index, out_of_bounds=out_of_bounds, with_unclassed=with_unclassed).dropna() # scikit-learn returns pred on x and true on y. I want it the other # way around so .T em = confusion_matrix(compdf.truth, compdf.pred).T.view(ErrorMatrix) codes = np.sort(np.unique(compdf.dropna())) em.categories = map(lambda s: self.codes_habitat.get(s, "Unclassified"), codes) return em def compare_raster(self, rds, radius=0, generous=False, band_index=0, out_of_bounds=np.nan): """ Compare habitat codes in `gdf` with codes in corresponding locations of a raster habitat map (`rds`). This can be an exact point to point comparison (when `radius`=0) or can be more forgiving. When `radius`>0 and `generous` is `False`, the mode (most common) value within `radius` of each point will be returned. When `radius`>0 and `generous` is True, ground truth habitat codes will be returned if found within `radius` of each point, and the mode will be returned if not. Parameters ---------- rds : OpticalRS.RasterDS The habitat map (or whatever raster) you want to compare to the `GroundTruthShapefile` (self). The projection of this raster must match the projection of the `GroundTruthShapefile`. If it doesn't match, you might get results but they'll be wrong. radius : float The radius with which to buffer `point`. The units of this value depend on the projection being used. generous : boolean If False (default), mode will be returned. If True, habitat code will be returned if within `radius`. See function description for more info. band_index : int Index of the image band to sample. Zero indexed (band 1 = 0). For single band rasters, this should be left at the default value (0). out_of_bounds : float, int, or nan (default) If `point` is not within `self.raster_extent`, `out_of_bounds` will be returned. Returns ------- pandas Series The values from `rds` that correspond to each point in `gdf`. """ column = self.habcodefld if generous: rcheck = lambda row: rds.radiused_point_check(row.geometry, radius=radius, search_value=row[column], band_index=band_index, out_of_bounds=out_of_bounds) else: rcheck = lambda row: rds.radiused_point_check(row.geometry, radius=radius, search_value=None, band_index=band_index, out_of_bounds=out_of_bounds) return self.apply(rcheck, axis=1) class GroundTruthShapefile(object): """ This class contains code for relating point ground truth shapefiles (such as the ones generated by Benthic Photo Survey) to raster maps. The default values (for `habfield` and `habcodefield`) assume that there's a field called habitat that contains a text description of the habitat class for each point. """ def __init__(self, file_path, habfield='habitat', habcodefield='hab_num'): self.habfield = habfield self.habcodefld = habcodefield self.file_path = file_path self.ds = open_shapefile(self.file_path) self.hab_dict = self.__setup_hab_dict() self.legit_habs = sorted( [ h for h in self.habitats if h ] ) # Exclude None as a habitat value self.habitat_codes = self.__setup_hab_codes() # dict( zip( legit_habs, range( 1, len(legit_habs) + 1 ) ) ) def __setup_hab_dict(self): """ The hab_dict is a dictionary that contains a list of ogr features for each habitat key. """ hab_dict = {} for hab in self.habitats: hab_dict[hab] = [f for f in self.features if f.__getattr__(self.habfield)==hab] return hab_dict def __setup_hab_codes(self): """ There should be habitat codes in the shapefile in a field called hab_num. We need to get them and set up the matching names. This only works for BPS shapefiles with a hab_num field set up to match the habitat field. If `self.habfield` is set to something else, we'll just generate integer codes. """ # Exclude None from list of habitats hcd = {} if self.habcodefld is not None: for hab in self.legit_habs: feat = self.hab_dict[hab][0] hcd[hab] = feat.__getattr__(self.habcodefld) else: for i, hab in enumerate(self.legit_habs): hcd[hab] = i+1 # +1 to make it not zero indexed return hcd @property def features(self): fts = [f for f in self.ds.GetLayer()] self.ds.GetLayer().ResetReading() return fts @property def habitats(self): habs = sorted( set([f.__getattr__(self.habfield) for f in self.features])) return habs @property def legit_habs_code_sorted(self): """ Return the legit habitats sorted by order of their numeric codes. """ return [v for k,v in sorted(self.codes_habitat.items())] @property def geo_data_frame(self): """ Return a GeoPandas GeoDataFrame object. """ gtgdf = GroundTruthGDF.from_file(self.file_path, habfield=self.habfield, habcodefield=self.habcodefld) # gtgdf = gpd.GeoDataFrame.from_file(self.file_path) return gtgdf def geopandas_subset(self, query, file_name=None): """ Create a `GroundTruthShapefile` based on a geopandas subset of `self.geo_data_frame`. If `file_name` is `None` (default), then the file will only be temporarily saved. It will be deleted before this function returns. This seems to work fine for generating error matrices from subsets but it could have unintended consequences elsewhere. If you provide a `file_name`, a shapefile will be saved from the output. Parameters ---------- query : string or pandas Series If `query` is a string, `pandas.DataFrame.query` will be used to generate the subset. Otherwise, query is assumed to be a series that can be used to index `self.geo_data_frame`. file_name : string file path or None If `None`, a temporary shapefile will be created and immediately deleted. Otherwise, the subset will be saved as a shapefile. Returns ------- GroundTruthShapefile A `GroundTruthShapefile` object containing only the selected subset of features. """ if file_name is None: tdir = mkdtemp() tfn = os.path.join(tdir, 'temp.shp') else: tfn = file_name if type(query) is str: gdf = self.geo_data_frame.query(query) else: gdf = self.geo_data_frame[query] # save the subset to a file gdf.to_file(tfn) # make a new GroundTruthShapefile gts = GroundTruthShapefile(tfn, self.habfield, self.habcodefld) if file_name is None: shutil.rmtree(tdir) return gts @property def spatial_reference(self): """ Return the OGR spatial reference object for the shapefile. """ return self.ds.GetLayer().GetSpatialRef() @property def projection_wkt(self): """ Return the well known text (WKT) representation of the shapefile's projection. """ return self.spatial_reference.ExportToWkt() @property def projcs(self): """ Return the PROJCS value from the shapefile's spatial reference. This is basically the name of the projection. ...I think. """ return self.spatial_reference.GetAttrValue('PROJCS') @property def geometry_type(self): """ Just return whether it's a type of point, line, or polygon. """ type_name = ogr.GeometryTypeToName( self.ds.GetLayer().GetGeomType() ).lower() if type_name.find('point') <> -1: return 'point' elif type_name.find('line') <> -1: return 'line' elif type_name.find('polygon') <> -1: return 'polygon' else: return None @property def hab_colors(self): """ return a dictionary with hab codes as keys and hab colors as values. """ legit_habs = sorted( [ h for h in self.habitats if h ] ) hcd = {} for hab in legit_habs: feat = self.hab_dict[hab][0] hcd[hab] = feat.hab_color return hcd @property def codes_habitat(self): """ Return a dictionary just like habitat_codes only backwards. """ chd = {} for k,v in self.habitat_codes.items(): chd[v] = k return chd @property def qgis_vector(self): qvl = QgsVectorLayer(self.file_path,'grnd_truth','ogr') if qvl.isValid(): return qvl else: raise Exception("Failed to create a QGis Vector Layer. QGis provider path problems, perhaps?") def buffer(self, radius=1.0, file_path=None): """ Buffer the geometries in `self` and return a new `ogr` datasource. If `file_path` is `None`, just create the datasource in memory. If a file path is given, write out a shapefile. All fields and values (aside from geometry) are cloned. """ if file_path == None: drvname = 'Memory' else: drvname = 'ESRI Shapefile' srcds = self.ds # get projection lyr = srcds.GetLayer(0) sptrf = lyr.GetSpatialRef() proj = osr.SpatialReference() proj.ImportFromWkt(sptrf.ExportToWkt()) drv = ogr.GetDriverByName(drvname) if file_path == None: dst_ds = drv.CreateDataSource('out') elif os.path.exists(file_path): raise Exception("{} already exists!".format(file_path)) else: dst_ds = drv.CreateDataSource(file_path) dst_lyr = dst_ds.CreateLayer('', srs=proj, geom_type=ogr.wkbPolygon) # copy all the fields to the destination ds featr = lyr.GetFeature(0) nfields = featr.GetFieldCount() for i in range(nfields): fld = featr.GetFieldDefnRef(i) dst_lyr.CreateField(fld) feat_defn = dst_lyr.GetLayerDefn() # reset the feature counter lyr.ResetReading() # buffer the geometries and copy the fields for i in range(lyr.GetFeatureCount()): # get the feature and geometry feat = lyr.GetFeature(i) geom = feat.GetGeometryRef() # create a new feature newfeat = feat.Clone() # get the buffered geometry bufgeom = geom.Buffer(radius) # set the new geometry to the buffered geom newfeat.SetGeometry(bufgeom) # add the new feature to the destination layer dst_lyr.CreateFeature(newfeat) # clean up newfeat.Destroy() feat.Destroy() # ensure the new features are written dst_lyr.SyncToDisk() return dst_ds def rasterize(self, buffer_radius=None, raster_template=None, pixel_size=1.99976, value_field='hab_num', float_values=False, array_only=False, out_file_path=None): """ Return a raster that can be used for classification training. buffer_radius: A float value in projection units to buffer the geometries by. If buffer_radius is left None then only pixels right under points will be classified. raster_template: A RasterDS object. If supplied, the resulting rasterized image will have the same extent and geotransform as the template. Also, if a raster_template is provided, the pixel_size keyword value will be ignored and pixel size will come from the template. pixel_size: A float value representing pixel size in projection units. This value will be ignored if a raster_template is supplied. value_field: A string representing the name of the field in the shapefile that holds the numeric code that will be burned into the raster output as the pixel value. float_values: Boolean. If `True`, the output raster will contain floats. If `False`, the output will be integers. Default is `False`. array_only: A boolean. If true we'll try to just write the raster to memory and not to disk. If you don't need to keep the raster, this will just keep you from having to clean up useless files later. Then we'll just return an array instead of GroundTruthRaster object. out_file_path: String. Path to the raster file output. If `None` (default) and `array_only=False`, a file name based on the `GroundTruthShapefile` file name will be created. If `array_only=True`, `out_file_path` is ignored. """ if float_values: datatype = gdal.GDT_Float32 else: datatype = gdal.GDT_Byte # Make a copy of the layer's data source because we'll need to # modify its attributes table if buffer_radius: source_ds = ogr.GetDriverByName("Memory").CopyDataSource( self.buffer(radius=buffer_radius), "" ) else: source_ds = ogr.GetDriverByName("Memory").CopyDataSource( self.ds, "") source_layer = source_ds.GetLayer(0) source_srs = source_layer.GetSpatialRef() if raster_template: gTrans = raster_template.gdal_ds.GetGeoTransform() pixsizeX = gTrans[1] pixsizeY = gTrans[5] x_res = raster_template.gdal_ds.RasterXSize y_res = raster_template.gdal_ds.RasterYSize rdsarr = raster_template.band_array # if np.ma.is_masked(rdsarr): # mask = rdsarr[...,0].mask # else: # mask = None else: x_min, x_max, y_min, y_max = source_layer.GetExtent() # Create the destination data source x_res = int((x_max - x_min) / pixel_size) y_res = int((y_max - y_min) / pixel_size) if out_file_path: targ_fn = out_file_path else: # make a target ds with filename based on source filename targ_fn = self.file_path.rsplit(os.path.extsep, 1)[0] + '_rast' + os.path.extsep + 'tif' # print "x_res: %i, y_res: %i" % (x_res,y_res) target_ds = gdal.GetDriverByName('GTiff').Create(targ_fn, x_res, y_res, 1, datatype) if raster_template: # Use the raster template supplied so that we get the same extent as the raster # we're trying to classify target_ds.SetGeoTransform( gTrans ) else: # None supplied so use the pixel_size value and the extent of the shapefile target_ds.SetGeoTransform(( x_min, pixel_size, 0, y_max, 0, -pixel_size, )) if raster_template: target_ds.SetProjection( raster_template.gdal_ds.GetProjection() ) elif source_srs: # Make the target raster have the same projection as the source target_ds.SetProjection(source_srs.ExportToWkt()) else: # Source has no projection (needs GDAL >= 1.7.0 to work) target_ds.SetProjection('LOCAL_CS["arbitrary"]') # Rasterize err = gdal.RasterizeLayer(target_ds, [1], source_layer, burn_values=[0], options=["ATTRIBUTE=%s" % value_field]) if err != 0: raise Exception("error rasterizing layer: %s" % err) # clean up source_layer = None source_srs = None source_ds = None if array_only: out_array = target_ds.ReadAsArray() target_ds = None os.remove( targ_fn ) return out_array else: target_ds = None return RasterDS(targ_fn) def error_matrix(self, classification_ds, with_unclassed=False): """ Take a RasterDS (classification_ds) and create a user / producer accuracy table. Return as an array so it can be displayed in multiple ways. See the `ErrorMatrix` module for more information on the returned object. Parameters ---------- classification_ds : OpticalRS.RasterDS The habitat map (or whatever raster) you want to compare to the `GroundTruthShapefile` (self). The projection of this raster must match the projection of the `GroundTruthShapefile`. If it doesn't match, you might get results but they'll be wrong. Returns ------- ErrorMatrix See the `ErrorMatrix` module for more information on the returned object. Notes ----- This function should be merged in some way with `error_matrix_buffered`. There's a bunch of redundancy between the two. I don't have time to do it right now. """ maxcode = max(self.habitat_codes.values()) if with_unclassed: maxcode += 1 errmat = np.zeros((maxcode, maxcode), int) cats = list() rext = classification_ds.raster_extent for hab,code in self.habitat_codes.items(): for feature in self.hab_dict[hab]: ref_val = code geom = feature.geometry() pnt = shpl.geometry.base.geom_from_wkb(geom.ExportToWkb()) if pnt.within(rext): cls_val = classification_ds.value_at_point( geom ) else: # this means that the point is not within the raster # I think that means we don't want to count this point at # all in the accuracy assessment. continue if with_unclassed: errmat[ cls_val ][ ref_val ] += 1 elif cls_val == 0: # If we're not including unclassified values # we don't want this showing up in the totals. continue else: errmat[ cls_val - 1 ][ ref_val - 1 ] += 1 # Get rid of all zero rows and columns. This can happen if hab codes # skip an integer. em = errmat.view( ErrorMatrix ).clean_zeros(with_unclassed) # Rows and Columns of errmat end up sorted by hab code. This next line # will give the habitat names sorted by hab code number. if with_unclassed: em.categories = ['Unclassified'] + sorted(self.habitat_codes, key=self.habitat_codes.get) else: em.categories = sorted(self.habitat_codes, key=self.habitat_codes.get) return em def error_matrix_buffered(self, classification_ds, radius=2.0, with_unclassed=False): """ Take a RasterDS (classification_ds) and create a user / producer accuracy table. Ground Truth points will be buffered and matching habitat codes within `radius` of a point will be considered success. Return as an array so it can be displayed in multiple ways. See the `ErrorMatrix` module for more information on the returned object. Parameters ---------- classification_ds : OpticalRS.RasterDS The habitat map (or whatever raster) you want to compare to the `GroundTruthShapefile` (self). The projection of this raster must match the projection of the `GroundTruthShapefile`. If it doesn't match, you might get results but they'll be wrong. radius : float The radius with which to buffer points. The units of this value depend on the projection being used. You can use `GroundTruthShapefile.projection_wkt` to examine the projection and find the units. Returns ------- ErrorMatrix See the `ErrorMatrix` module for more information on the returned object. """ maxcode = max(self.habitat_codes.values()) if with_unclassed: maxcode += 1 errmat = np.zeros((maxcode, maxcode), int) cats = list() rext = classification_ds.raster_extent for hab,code in self.habitat_codes.items(): for feature in self.hab_dict[hab]: ref_val = code geom = feature.geometry() pnt = shpl.geometry.base.geom_from_wkb(geom.ExportToWkb()) if pnt.within(rext): clsarr = classification_ds.geometry_subset(pnt.buffer(radius), all_touched=True) else: # this means that the point is not within the raster # I think that means we don't want to count this point at # all in the accuracy assessment. continue if ref_val in clsarr.compressed(): cls_val = ref_val # this counts as success elif not pnt.within(rext): # this means that the point is not within the raster # I think that means we don't want to count this point at # all in the accuracy assessment. continue else: # our reference value was not found within radius of point # so we'll report it as the most common class within radius if len(clsarr.compressed()) == 0: cls_val = 0 # Assuming zero is code for unclassified else: cls_val = scipymode(clsarr.compressed()).mode.item() if with_unclassed: errmat[ cls_val ][ ref_val ] += 1 elif cls_val == 0: # If we're not including unclassified values # we don't want this showing up in the totals. continue else: errmat[ cls_val - 1 ][ ref_val - 1 ] += 1 # Get rid of all zero rows and columns. This can happen if hab codes # skip an integer. em = errmat.view( ErrorMatrix ).clean_zeros(with_unclassed) # Rows and Columns of errmat end up sorted by hab code. This next line # will give the habitat names sorted by hab code number. if with_unclassed: em.categories = ['Unclassified'] + sorted(self.habitat_codes, key=self.habitat_codes.get) else: em.categories = sorted(self.habitat_codes, key=self.habitat_codes.get) return em @property def hab_dict_counts(self): ret_dict = {} for hab in self.habitats: ret_dict[hab] = len( self.hab_dict[hab] ) return ret_dict def add_raster_values(self, raster_ds): """ The raster data source here is assumed to be a classified image. The raster values should correspond to classes. """ trans = transform_dict(raster_ds) band = raster_ds.GetRasterBand(1) self.features = [ add_raster_value(f,trans,band) for f in self.ds.GetLayer() ] self.ds.GetLayer().ResetReading() self.hab_dict = self.__setup_hab_dict() @property def unsupervised_habitat_class_dict(self): """ For each habitat, give a list of raster values that correspond to the ground truth points of that habitat type. This will be used with unsupervised classifications to figure out which, if any, of the classes correspond to particular habitat types. """ try: hcd = {} for hab in self.habitats: hcd[hab] = [ f.raster_value for f in self.hab_dict[hab] ] except AttributeError: raise AttributeError("Features need to be assigned raster values before you can create a habitat class dictionary.") return hcd @property def unsupervised_habitat_class_modes(self): hcm = {} for hab in self.habitats: md, cn = mode( self.unsupervised_habitat_class_dict[hab] ) if len( md )==1: hcm[hab] = md[0] else: hcm[hab] = None return hcm def __output_training_LAN(self,img,buffer_radius=3.5,driver_str='LAN'): """ DEPRICATED! -> This only works for points. I think I can use the rasterize method instead. I need to verify and then get rid of this method. This method also has the habitat field hard coded (search for feat.habitat). That would need to be changed to feat.__getattr__(self.habfield) to make this work correctly. Create a raster input for supervised classifications. img is the image that we want to classify (in the form of a gdal datasource). Spectral can't use tifs so we will create LAN file. A buffer radius of 3.5 meters gives us 3 x 3 sets of pixels with our point feature in the center. This, of course, assumes that we're dealing with WV2 imagery and a projection with meters as the units. This works for me on my project but might now work for others. """ if driver_str=='LAN': f_ext = 'lan' elif driver_str=='GTiff': f_ext = 'tif' else: raise ValueError("At this point, the output_training_LAN method only knows how to deal with LAN and GTiff file types. Sorry.") lyr = self.ds.GetLayer() lyr.ResetReading() trans = transform_dict(img) driver = gdal.GetDriverByName(driver_str) rows = img.RasterYSize cols = img.RasterXSize fname = img.GetDescription().rsplit(os.path.extsep)[0] + '_train' + os.path.extsep + f_ext add_num = 0 while os.path.exists(fname): add_num += 1 if add_num==1: fname = fname.replace( os.path.extsep + f_ext, '_%i' % add_num + os.path.extsep + f_ext ) else: old = '_%i.%s' % ( add_num - 1, f_ext ) new = '_%i.%s' % ( add_num, f_ext ) fname = fname.replace( old, new ) outDs = driver.Create(fname, cols, rows, 1, GDT_Int16) if outDs is None: print 'Could not create %s' % fname sys.exit(1) outBand = outDs.GetRasterBand(1) pixel_count = 0 hab_pix_count = dict( zip( [h for h in self.habitats if h], np.zeros( len([h for h in self.habitats if h]), dtype=np.int ) ) ) for feat in lyr: if not feat.habitat: continue if self.hab_dict_counts[feat.habitat] < 24: continue if buffer_radius: geom = feat.geometry().Buffer(buffer_radius) elp = envelope_dict(geom) xtop = elp['xLeft'] ytop = elp['yTop'] xOffset = int( (xtop - trans['originX']) / trans['pixWidth'] ) yOffset = int( (ytop - trans['originY']) / trans['pixHeight'] ) xdist = elp['xRight'] - elp['xLeft'] ydist = elp['yBottom'] - elp['yTop'] cols = int( xdist / trans['pixWidth'] ) rows = int( ydist / trans['pixHeight'] ) pixarr = int( self.habitat_codes[feat.habitat] ) * np.ones((rows,cols), dtype=np.int16) else: geom = feat.geometry() xOffset = int( (geom.GetX() - trans['originX']) / trans['pixWidth'] ) yOffset = int( (geom.GetY() - trans['originY']) / trans['pixHeight'] ) pixarr = np.array( [[ self.habitat_codes[feat.habitat] ]] ) outBand.WriteArray(pixarr,xOffset,yOffset) pixel_count += pixarr.size hab_pix_count[feat.habitat] += pixarr.size outBand.FlushCache() outBand.SetNoDataValue(0) # georeference the image and set the projection outDs.SetGeoTransform(img.GetGeoTransform()) outDs.SetProjection(img.GetProjection()) # build pyramids gdal.SetConfigOption('HFA_USE_RRD', 'YES') outDs.BuildOverviews(overviewlist=[2,4,8,16,32,64,128]) print "%i pixels total" % pixel_count for hab in self.habitats: if hab: print "%i pixels for %s" % ( hab_pix_count[hab], hab ) return GroundTruthRaster( outDs.GetDescription() ) def training_classes(self, rds, buffer_radius=None,calc_stats=0): """ I think I should move some of this functionality over to the GroundTruthRaster class in common.py. I'm generating classes okay from what I can tell but I get a singular matrix error when I try to run the Gaussian Classifier. I have no idea why. Baffled, I am. """ grnd_truth = self.rasterize(buffer_radius=buffer_radius,raster_template=rds,array_only=True) sp_img = rds.spy_image.load() return sp.create_training_classes(sp_img, grnd_truth,calc_stats=calc_stats) def add_raster_value(feature, trans, band ): geom = feature.geometry() x = geom.GetX() y = geom.GetY() xOffset = int( (x - trans['originX']) / trans['pixWidth'] ) yOffset = int( (y - trans['originY']) / trans['pixHeight'] ) data = band.ReadAsArray(xOffset, yOffset, 1, 1) feature.raster_value = data[0,0] return feature def open_shapefile(filename): """Take a file path string and return an ogr shape""" # open the shapefile and get the layer driver = ogr.GetDriverByName('ESRI Shapefile') shp = driver.Open(filename) if shp is None: print 'Could not open %s' % filename sys.exit(1) return shp
bsd-3-clause
MohammedWasim/scikit-learn
sklearn/metrics/classification.py
95
67713
"""Metrics to assess performance on classification task given classe prediction Functions named as ``*_score`` return a scalar value to maximize: the higher the better Function named as ``*_error`` or ``*_loss`` return a scalar value to minimize: the lower the better """ # Authors: Alexandre Gramfort <[email protected]> # Mathieu Blondel <[email protected]> # Olivier Grisel <[email protected]> # Arnaud Joly <[email protected]> # Jochen Wersdorfer <[email protected]> # Lars Buitinck <[email protected]> # Joel Nothman <[email protected]> # Noel Dawe <[email protected]> # Jatin Shah <[email protected]> # Saurabh Jha <[email protected]> # License: BSD 3 clause from __future__ import division import warnings import numpy as np from scipy.sparse import coo_matrix from scipy.sparse import csr_matrix from scipy.spatial.distance import hamming as sp_hamming from ..preprocessing import LabelBinarizer, label_binarize from ..preprocessing import LabelEncoder from ..utils import check_array from ..utils import check_consistent_length from ..utils import column_or_1d from ..utils.multiclass import unique_labels from ..utils.multiclass import type_of_target from ..utils.validation import _num_samples from ..utils.sparsefuncs import count_nonzero from ..utils.fixes import bincount from .base import UndefinedMetricWarning def _check_targets(y_true, y_pred): """Check that y_true and y_pred belong to the same classification task This converts multiclass or binary types to a common shape, and raises a ValueError for a mix of multilabel and multiclass targets, a mix of multilabel formats, for the presence of continuous-valued or multioutput targets, or for targets of different lengths. Column vectors are squeezed to 1d, while multilabel formats are returned as CSR sparse label indicators. Parameters ---------- y_true : array-like y_pred : array-like Returns ------- type_true : one of {'multilabel-indicator', 'multiclass', 'binary'} The type of the true target data, as output by ``utils.multiclass.type_of_target`` y_true : array or indicator matrix y_pred : array or indicator matrix """ check_consistent_length(y_true, y_pred) type_true = type_of_target(y_true) type_pred = type_of_target(y_pred) y_type = set([type_true, type_pred]) if y_type == set(["binary", "multiclass"]): y_type = set(["multiclass"]) if len(y_type) > 1: raise ValueError("Can't handle mix of {0} and {1}" "".format(type_true, type_pred)) # We can't have more than one value on y_type => The set is no more needed y_type = y_type.pop() # No metrics support "multiclass-multioutput" format if (y_type not in ["binary", "multiclass", "multilabel-indicator"]): raise ValueError("{0} is not supported".format(y_type)) if y_type in ["binary", "multiclass"]: y_true = column_or_1d(y_true) y_pred = column_or_1d(y_pred) if y_type.startswith('multilabel'): y_true = csr_matrix(y_true) y_pred = csr_matrix(y_pred) y_type = 'multilabel-indicator' return y_type, y_true, y_pred def _weighted_sum(sample_score, sample_weight, normalize=False): if normalize: return np.average(sample_score, weights=sample_weight) elif sample_weight is not None: return np.dot(sample_score, sample_weight) else: return sample_score.sum() def accuracy_score(y_true, y_pred, normalize=True, sample_weight=None): """Accuracy classification score. In multilabel classification, this function computes subset accuracy: the set of labels predicted for a sample must *exactly* match the corresponding set of labels in y_true. Read more in the :ref:`User Guide <accuracy_score>`. Parameters ---------- y_true : 1d array-like, or label indicator array / sparse matrix Ground truth (correct) labels. y_pred : 1d array-like, or label indicator array / sparse matrix Predicted labels, as returned by a classifier. normalize : bool, optional (default=True) If ``False``, return the number of correctly classified samples. Otherwise, return the fraction of correctly classified samples. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- score : float If ``normalize == True``, return the correctly classified samples (float), else it returns the number of correctly classified samples (int). The best performance is 1 with ``normalize == True`` and the number of samples with ``normalize == False``. See also -------- jaccard_similarity_score, hamming_loss, zero_one_loss Notes ----- In binary and multiclass classification, this function is equal to the ``jaccard_similarity_score`` function. Examples -------- >>> import numpy as np >>> from sklearn.metrics import accuracy_score >>> y_pred = [0, 2, 1, 3] >>> y_true = [0, 1, 2, 3] >>> accuracy_score(y_true, y_pred) 0.5 >>> accuracy_score(y_true, y_pred, normalize=False) 2 In the multilabel case with binary label indicators: >>> accuracy_score(np.array([[0, 1], [1, 1]]), np.ones((2, 2))) 0.5 """ # Compute accuracy for each possible representation y_type, y_true, y_pred = _check_targets(y_true, y_pred) if y_type.startswith('multilabel'): differing_labels = count_nonzero(y_true - y_pred, axis=1) score = differing_labels == 0 else: score = y_true == y_pred return _weighted_sum(score, sample_weight, normalize) def confusion_matrix(y_true, y_pred, labels=None): """Compute confusion matrix to evaluate the accuracy of a classification By definition a confusion matrix :math:`C` is such that :math:`C_{i, j}` is equal to the number of observations known to be in group :math:`i` but predicted to be in group :math:`j`. Read more in the :ref:`User Guide <confusion_matrix>`. Parameters ---------- y_true : array, shape = [n_samples] Ground truth (correct) target values. y_pred : array, shape = [n_samples] Estimated targets as returned by a classifier. labels : array, shape = [n_classes], optional List of labels to index the matrix. This may be used to reorder or select a subset of labels. If none is given, those that appear at least once in ``y_true`` or ``y_pred`` are used in sorted order. Returns ------- C : array, shape = [n_classes, n_classes] Confusion matrix References ---------- .. [1] `Wikipedia entry for the Confusion matrix <http://en.wikipedia.org/wiki/Confusion_matrix>`_ Examples -------- >>> from sklearn.metrics import confusion_matrix >>> y_true = [2, 0, 2, 2, 0, 1] >>> y_pred = [0, 0, 2, 2, 0, 2] >>> confusion_matrix(y_true, y_pred) array([[2, 0, 0], [0, 0, 1], [1, 0, 2]]) >>> y_true = ["cat", "ant", "cat", "cat", "ant", "bird"] >>> y_pred = ["ant", "ant", "cat", "cat", "ant", "cat"] >>> confusion_matrix(y_true, y_pred, labels=["ant", "bird", "cat"]) array([[2, 0, 0], [0, 0, 1], [1, 0, 2]]) """ y_type, y_true, y_pred = _check_targets(y_true, y_pred) if y_type not in ("binary", "multiclass"): raise ValueError("%s is not supported" % y_type) if labels is None: labels = unique_labels(y_true, y_pred) else: labels = np.asarray(labels) n_labels = labels.size label_to_ind = dict((y, x) for x, y in enumerate(labels)) # convert yt, yp into index y_pred = np.array([label_to_ind.get(x, n_labels + 1) for x in y_pred]) y_true = np.array([label_to_ind.get(x, n_labels + 1) for x in y_true]) # intersect y_pred, y_true with labels, eliminate items not in labels ind = np.logical_and(y_pred < n_labels, y_true < n_labels) y_pred = y_pred[ind] y_true = y_true[ind] CM = coo_matrix((np.ones(y_true.shape[0], dtype=np.int), (y_true, y_pred)), shape=(n_labels, n_labels) ).toarray() return CM def cohen_kappa_score(y1, y2, labels=None): """Cohen's kappa: a statistic that measures inter-annotator agreement. This function computes Cohen's kappa [1], a score that expresses the level of agreement between two annotators on a classification problem. It is defined as .. math:: \kappa = (p_o - p_e) / (1 - p_e) where :math:`p_o` is the empirical probability of agreement on the label assigned to any sample (the observed agreement ratio), and :math:`p_e` is the expected agreement when both annotators assign labels randomly. :math:`p_e` is estimated using a per-annotator empirical prior over the class labels [2]. Parameters ---------- y1 : array, shape = [n_samples] Labels assigned by the first annotator. y2 : array, shape = [n_samples] Labels assigned by the second annotator. The kappa statistic is symmetric, so swapping ``y1`` and ``y2`` doesn't change the value. labels : array, shape = [n_classes], optional List of labels to index the matrix. This may be used to select a subset of labels. If None, all labels that appear at least once in ``y1`` or ``y2`` are used. Returns ------- kappa : float The kappa statistic, which is a number between -1 and 1. The maximum value means complete agreement; zero or lower means chance agreement. References ---------- .. [1] J. Cohen (1960). "A coefficient of agreement for nominal scales". Educational and Psychological Measurement 20(1):37-46. doi:10.1177/001316446002000104. .. [2] R. Artstein and M. Poesio (2008). "Inter-coder agreement for computational linguistics". Computational Linguistic 34(4):555-596. """ confusion = confusion_matrix(y1, y2, labels=labels) P = confusion / float(confusion.sum()) p_observed = np.trace(P) p_expected = np.dot(P.sum(axis=0), P.sum(axis=1)) return (p_observed - p_expected) / (1 - p_expected) def jaccard_similarity_score(y_true, y_pred, normalize=True, sample_weight=None): """Jaccard similarity coefficient score The Jaccard index [1], or Jaccard similarity coefficient, defined as the size of the intersection divided by the size of the union of two label sets, is used to compare set of predicted labels for a sample to the corresponding set of labels in ``y_true``. Read more in the :ref:`User Guide <jaccard_similarity_score>`. Parameters ---------- y_true : 1d array-like, or label indicator array / sparse matrix Ground truth (correct) labels. y_pred : 1d array-like, or label indicator array / sparse matrix Predicted labels, as returned by a classifier. normalize : bool, optional (default=True) If ``False``, return the sum of the Jaccard similarity coefficient over the sample set. Otherwise, return the average of Jaccard similarity coefficient. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- score : float If ``normalize == True``, return the average Jaccard similarity coefficient, else it returns the sum of the Jaccard similarity coefficient over the sample set. The best performance is 1 with ``normalize == True`` and the number of samples with ``normalize == False``. See also -------- accuracy_score, hamming_loss, zero_one_loss Notes ----- In binary and multiclass classification, this function is equivalent to the ``accuracy_score``. It differs in the multilabel classification problem. References ---------- .. [1] `Wikipedia entry for the Jaccard index <http://en.wikipedia.org/wiki/Jaccard_index>`_ Examples -------- >>> import numpy as np >>> from sklearn.metrics import jaccard_similarity_score >>> y_pred = [0, 2, 1, 3] >>> y_true = [0, 1, 2, 3] >>> jaccard_similarity_score(y_true, y_pred) 0.5 >>> jaccard_similarity_score(y_true, y_pred, normalize=False) 2 In the multilabel case with binary label indicators: >>> jaccard_similarity_score(np.array([[0, 1], [1, 1]]),\ np.ones((2, 2))) 0.75 """ # Compute accuracy for each possible representation y_type, y_true, y_pred = _check_targets(y_true, y_pred) if y_type.startswith('multilabel'): with np.errstate(divide='ignore', invalid='ignore'): # oddly, we may get an "invalid" rather than a "divide" error here pred_or_true = count_nonzero(y_true + y_pred, axis=1) pred_and_true = count_nonzero(y_true.multiply(y_pred), axis=1) score = pred_and_true / pred_or_true # If there is no label, it results in a Nan instead, we set # the jaccard to 1: lim_{x->0} x/x = 1 # Note with py2.6 and np 1.3: we can't check safely for nan. score[pred_or_true == 0.0] = 1.0 else: score = y_true == y_pred return _weighted_sum(score, sample_weight, normalize) def matthews_corrcoef(y_true, y_pred): """Compute the Matthews correlation coefficient (MCC) for binary classes The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary (two-class) classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] Only in the binary case does this relate to information about true and false positives and negatives. See references below. Read more in the :ref:`User Guide <matthews_corrcoef>`. Parameters ---------- y_true : array, shape = [n_samples] Ground truth (correct) target values. y_pred : array, shape = [n_samples] Estimated targets as returned by a classifier. Returns ------- mcc : float The Matthews correlation coefficient (+1 represents a perfect prediction, 0 an average random prediction and -1 and inverse prediction). References ---------- .. [1] `Baldi, Brunak, Chauvin, Andersen and Nielsen, (2000). Assessing the accuracy of prediction algorithms for classification: an overview <http://dx.doi.org/10.1093/bioinformatics/16.5.412>`_ .. [2] `Wikipedia entry for the Matthews Correlation Coefficient <http://en.wikipedia.org/wiki/Matthews_correlation_coefficient>`_ Examples -------- >>> from sklearn.metrics import matthews_corrcoef >>> y_true = [+1, +1, +1, -1] >>> y_pred = [+1, -1, +1, +1] >>> matthews_corrcoef(y_true, y_pred) # doctest: +ELLIPSIS -0.33... """ y_type, y_true, y_pred = _check_targets(y_true, y_pred) if y_type != "binary": raise ValueError("%s is not supported" % y_type) lb = LabelEncoder() lb.fit(np.hstack([y_true, y_pred])) y_true = lb.transform(y_true) y_pred = lb.transform(y_pred) with np.errstate(invalid='ignore'): mcc = np.corrcoef(y_true, y_pred)[0, 1] if np.isnan(mcc): return 0. else: return mcc def zero_one_loss(y_true, y_pred, normalize=True, sample_weight=None): """Zero-one classification loss. If normalize is ``True``, return the fraction of misclassifications (float), else it returns the number of misclassifications (int). The best performance is 0. Read more in the :ref:`User Guide <zero_one_loss>`. Parameters ---------- y_true : 1d array-like, or label indicator array / sparse matrix Ground truth (correct) labels. y_pred : 1d array-like, or label indicator array / sparse matrix Predicted labels, as returned by a classifier. normalize : bool, optional (default=True) If ``False``, return the number of misclassifications. Otherwise, return the fraction of misclassifications. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- loss : float or int, If ``normalize == True``, return the fraction of misclassifications (float), else it returns the number of misclassifications (int). Notes ----- In multilabel classification, the zero_one_loss function corresponds to the subset zero-one loss: for each sample, the entire set of labels must be correctly predicted, otherwise the loss for that sample is equal to one. See also -------- accuracy_score, hamming_loss, jaccard_similarity_score Examples -------- >>> from sklearn.metrics import zero_one_loss >>> y_pred = [1, 2, 3, 4] >>> y_true = [2, 2, 3, 4] >>> zero_one_loss(y_true, y_pred) 0.25 >>> zero_one_loss(y_true, y_pred, normalize=False) 1 In the multilabel case with binary label indicators: >>> zero_one_loss(np.array([[0, 1], [1, 1]]), np.ones((2, 2))) 0.5 """ score = accuracy_score(y_true, y_pred, normalize=normalize, sample_weight=sample_weight) if normalize: return 1 - score else: if sample_weight is not None: n_samples = np.sum(sample_weight) else: n_samples = _num_samples(y_true) return n_samples - score def f1_score(y_true, y_pred, labels=None, pos_label=1, average='binary', sample_weight=None): """Compute the F1 score, also known as balanced F-score or F-measure The F1 score can be interpreted as a weighted average of the precision and recall, where an F1 score reaches its best value at 1 and worst score at 0. The relative contribution of precision and recall to the F1 score are equal. The formula for the F1 score is:: F1 = 2 * (precision * recall) / (precision + recall) In the multi-class and multi-label case, this is the weighted average of the F1 score of each class. Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`. Parameters ---------- y_true : 1d array-like, or label indicator array / sparse matrix Ground truth (correct) target values. y_pred : 1d array-like, or label indicator array / sparse matrix Estimated targets as returned by a classifier. labels : list, optional The set of labels to include when ``average != 'binary'``, and their order if ``average is None``. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in ``y_true`` and ``y_pred`` are used in sorted order. pos_label : str or int, 1 by default The class to report if ``average='binary'``. Until version 0.18 it is necessary to set ``pos_label=None`` if seeking to use another averaging method over binary targets. average : string, [None, 'binary' (default), 'micro', 'macro', 'samples', \ 'weighted'] This parameter is required for multiclass/multilabel targets. If ``None``, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data: ``'binary'``: Only report results for the class specified by ``pos_label``. This is applicable only if targets (``y_{true,pred}``) are binary. ``'micro'``: Calculate metrics globally by counting the total true positives, false negatives and false positives. ``'macro'``: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. ``'weighted'``: Calculate metrics for each label, and find their average, weighted by support (the number of true instances for each label). This alters 'macro' to account for label imbalance; it can result in an F-score that is not between precision and recall. ``'samples'``: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification where this differs from :func:`accuracy_score`). Note that if ``pos_label`` is given in binary classification with `average != 'binary'`, only that positive class is reported. This behavior is deprecated and will change in version 0.18. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- f1_score : float or array of float, shape = [n_unique_labels] F1 score of the positive class in binary classification or weighted average of the F1 scores of each class for the multiclass task. References ---------- .. [1] `Wikipedia entry for the F1-score <http://en.wikipedia.org/wiki/F1_score>`_ Examples -------- >>> from sklearn.metrics import f1_score >>> y_true = [0, 1, 2, 0, 1, 2] >>> y_pred = [0, 2, 1, 0, 0, 1] >>> f1_score(y_true, y_pred, average='macro') # doctest: +ELLIPSIS 0.26... >>> f1_score(y_true, y_pred, average='micro') # doctest: +ELLIPSIS 0.33... >>> f1_score(y_true, y_pred, average='weighted') # doctest: +ELLIPSIS 0.26... >>> f1_score(y_true, y_pred, average=None) array([ 0.8, 0. , 0. ]) """ return fbeta_score(y_true, y_pred, 1, labels=labels, pos_label=pos_label, average=average, sample_weight=sample_weight) def fbeta_score(y_true, y_pred, beta, labels=None, pos_label=1, average='binary', sample_weight=None): """Compute the F-beta score The F-beta score is the weighted harmonic mean of precision and recall, reaching its optimal value at 1 and its worst value at 0. The `beta` parameter determines the weight of precision in the combined score. ``beta < 1`` lends more weight to precision, while ``beta > 1`` favors recall (``beta -> 0`` considers only precision, ``beta -> inf`` only recall). Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`. Parameters ---------- y_true : 1d array-like, or label indicator array / sparse matrix Ground truth (correct) target values. y_pred : 1d array-like, or label indicator array / sparse matrix Estimated targets as returned by a classifier. beta: float Weight of precision in harmonic mean. labels : list, optional The set of labels to include when ``average != 'binary'``, and their order if ``average is None``. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in ``y_true`` and ``y_pred`` are used in sorted order. pos_label : str or int, 1 by default The class to report if ``average='binary'``. Until version 0.18 it is necessary to set ``pos_label=None`` if seeking to use another averaging method over binary targets. average : string, [None, 'binary' (default), 'micro', 'macro', 'samples', \ 'weighted'] This parameter is required for multiclass/multilabel targets. If ``None``, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data: ``'binary'``: Only report results for the class specified by ``pos_label``. This is applicable only if targets (``y_{true,pred}``) are binary. ``'micro'``: Calculate metrics globally by counting the total true positives, false negatives and false positives. ``'macro'``: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. ``'weighted'``: Calculate metrics for each label, and find their average, weighted by support (the number of true instances for each label). This alters 'macro' to account for label imbalance; it can result in an F-score that is not between precision and recall. ``'samples'``: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification where this differs from :func:`accuracy_score`). Note that if ``pos_label`` is given in binary classification with `average != 'binary'`, only that positive class is reported. This behavior is deprecated and will change in version 0.18. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- fbeta_score : float (if average is not None) or array of float, shape =\ [n_unique_labels] F-beta score of the positive class in binary classification or weighted average of the F-beta score of each class for the multiclass task. References ---------- .. [1] R. Baeza-Yates and B. Ribeiro-Neto (2011). Modern Information Retrieval. Addison Wesley, pp. 327-328. .. [2] `Wikipedia entry for the F1-score <http://en.wikipedia.org/wiki/F1_score>`_ Examples -------- >>> from sklearn.metrics import fbeta_score >>> y_true = [0, 1, 2, 0, 1, 2] >>> y_pred = [0, 2, 1, 0, 0, 1] >>> fbeta_score(y_true, y_pred, average='macro', beta=0.5) ... # doctest: +ELLIPSIS 0.23... >>> fbeta_score(y_true, y_pred, average='micro', beta=0.5) ... # doctest: +ELLIPSIS 0.33... >>> fbeta_score(y_true, y_pred, average='weighted', beta=0.5) ... # doctest: +ELLIPSIS 0.23... >>> fbeta_score(y_true, y_pred, average=None, beta=0.5) ... # doctest: +ELLIPSIS array([ 0.71..., 0. , 0. ]) """ _, _, f, _ = precision_recall_fscore_support(y_true, y_pred, beta=beta, labels=labels, pos_label=pos_label, average=average, warn_for=('f-score',), sample_weight=sample_weight) return f def _prf_divide(numerator, denominator, metric, modifier, average, warn_for): """Performs division and handles divide-by-zero. On zero-division, sets the corresponding result elements to zero and raises a warning. The metric, modifier and average arguments are used only for determining an appropriate warning. """ result = numerator / denominator mask = denominator == 0.0 if not np.any(mask): return result # remove infs result[mask] = 0.0 # build appropriate warning # E.g. "Precision and F-score are ill-defined and being set to 0.0 in # labels with no predicted samples" axis0 = 'sample' axis1 = 'label' if average == 'samples': axis0, axis1 = axis1, axis0 if metric in warn_for and 'f-score' in warn_for: msg_start = '{0} and F-score are'.format(metric.title()) elif metric in warn_for: msg_start = '{0} is'.format(metric.title()) elif 'f-score' in warn_for: msg_start = 'F-score is' else: return result msg = ('{0} ill-defined and being set to 0.0 {{0}} ' 'no {1} {2}s.'.format(msg_start, modifier, axis0)) if len(mask) == 1: msg = msg.format('due to') else: msg = msg.format('in {0}s with'.format(axis1)) warnings.warn(msg, UndefinedMetricWarning, stacklevel=2) return result def precision_recall_fscore_support(y_true, y_pred, beta=1.0, labels=None, pos_label=1, average=None, warn_for=('precision', 'recall', 'f-score'), sample_weight=None): """Compute precision, recall, F-measure and support for each class The precision is the ratio ``tp / (tp + fp)`` where ``tp`` is the number of true positives and ``fp`` the number of false positives. The precision is intuitively the ability of the classifier not to label as positive a sample that is negative. The recall is the ratio ``tp / (tp + fn)`` where ``tp`` is the number of true positives and ``fn`` the number of false negatives. The recall is intuitively the ability of the classifier to find all the positive samples. The F-beta score can be interpreted as a weighted harmonic mean of the precision and recall, where an F-beta score reaches its best value at 1 and worst score at 0. The F-beta score weights recall more than precision by a factor of ``beta``. ``beta == 1.0`` means recall and precision are equally important. The support is the number of occurrences of each class in ``y_true``. If ``pos_label is None`` and in binary classification, this function returns the average precision, recall and F-measure if ``average`` is one of ``'micro'``, ``'macro'``, ``'weighted'`` or ``'samples'``. Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`. Parameters ---------- y_true : 1d array-like, or label indicator array / sparse matrix Ground truth (correct) target values. y_pred : 1d array-like, or label indicator array / sparse matrix Estimated targets as returned by a classifier. beta : float, 1.0 by default The strength of recall versus precision in the F-score. labels : list, optional The set of labels to include when ``average != 'binary'``, and their order if ``average is None``. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in ``y_true`` and ``y_pred`` are used in sorted order. pos_label : str or int, 1 by default The class to report if ``average='binary'``. Until version 0.18 it is necessary to set ``pos_label=None`` if seeking to use another averaging method over binary targets. average : string, [None (default), 'binary', 'micro', 'macro', 'samples', \ 'weighted'] If ``None``, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data: ``'binary'``: Only report results for the class specified by ``pos_label``. This is applicable only if targets (``y_{true,pred}``) are binary. ``'micro'``: Calculate metrics globally by counting the total true positives, false negatives and false positives. ``'macro'``: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. ``'weighted'``: Calculate metrics for each label, and find their average, weighted by support (the number of true instances for each label). This alters 'macro' to account for label imbalance; it can result in an F-score that is not between precision and recall. ``'samples'``: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification where this differs from :func:`accuracy_score`). Note that if ``pos_label`` is given in binary classification with `average != 'binary'`, only that positive class is reported. This behavior is deprecated and will change in version 0.18. warn_for : tuple or set, for internal use This determines which warnings will be made in the case that this function is being used to return only one of its metrics. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- precision: float (if average is not None) or array of float, shape =\ [n_unique_labels] recall: float (if average is not None) or array of float, , shape =\ [n_unique_labels] fbeta_score: float (if average is not None) or array of float, shape =\ [n_unique_labels] support: int (if average is not None) or array of int, shape =\ [n_unique_labels] The number of occurrences of each label in ``y_true``. References ---------- .. [1] `Wikipedia entry for the Precision and recall <http://en.wikipedia.org/wiki/Precision_and_recall>`_ .. [2] `Wikipedia entry for the F1-score <http://en.wikipedia.org/wiki/F1_score>`_ .. [3] `Discriminative Methods for Multi-labeled Classification Advances in Knowledge Discovery and Data Mining (2004), pp. 22-30 by Shantanu Godbole, Sunita Sarawagi <http://www.godbole.net/shantanu/pubs/multilabelsvm-pakdd04.pdf>` Examples -------- >>> from sklearn.metrics import precision_recall_fscore_support >>> y_true = np.array(['cat', 'dog', 'pig', 'cat', 'dog', 'pig']) >>> y_pred = np.array(['cat', 'pig', 'dog', 'cat', 'cat', 'dog']) >>> precision_recall_fscore_support(y_true, y_pred, average='macro') ... # doctest: +ELLIPSIS (0.22..., 0.33..., 0.26..., None) >>> precision_recall_fscore_support(y_true, y_pred, average='micro') ... # doctest: +ELLIPSIS (0.33..., 0.33..., 0.33..., None) >>> precision_recall_fscore_support(y_true, y_pred, average='weighted') ... # doctest: +ELLIPSIS (0.22..., 0.33..., 0.26..., None) It is possible to compute per-label precisions, recalls, F1-scores and supports instead of averaging: >>> precision_recall_fscore_support(y_true, y_pred, average=None, ... labels=['pig', 'dog', 'cat']) ... # doctest: +ELLIPSIS,+NORMALIZE_WHITESPACE (array([ 0. , 0. , 0.66...]), array([ 0., 0., 1.]), array([ 0. , 0. , 0.8]), array([2, 2, 2])) """ average_options = (None, 'micro', 'macro', 'weighted', 'samples') if average not in average_options and average != 'binary': raise ValueError('average has to be one of ' + str(average_options)) if beta <= 0: raise ValueError("beta should be >0 in the F-beta score") y_type, y_true, y_pred = _check_targets(y_true, y_pred) present_labels = unique_labels(y_true, y_pred) if average == 'binary' and (y_type != 'binary' or pos_label is None): warnings.warn('The default `weighted` averaging is deprecated, ' 'and from version 0.18, use of precision, recall or ' 'F-score with multiclass or multilabel data or ' 'pos_label=None will result in an exception. ' 'Please set an explicit value for `average`, one of ' '%s. In cross validation use, for instance, ' 'scoring="f1_weighted" instead of scoring="f1".' % str(average_options), DeprecationWarning, stacklevel=2) average = 'weighted' if y_type == 'binary' and pos_label is not None and average is not None: if average != 'binary': warnings.warn('From version 0.18, binary input will not be ' 'handled specially when using averaged ' 'precision/recall/F-score. ' 'Please use average=\'binary\' to report only the ' 'positive class performance.', DeprecationWarning) if labels is None or len(labels) <= 2: if pos_label not in present_labels: if len(present_labels) < 2: # Only negative labels return (0., 0., 0., 0) else: raise ValueError("pos_label=%r is not a valid label: %r" % (pos_label, present_labels)) labels = [pos_label] if labels is None: labels = present_labels n_labels = None else: n_labels = len(labels) labels = np.hstack([labels, np.setdiff1d(present_labels, labels, assume_unique=True)]) ### Calculate tp_sum, pred_sum, true_sum ### if y_type.startswith('multilabel'): sum_axis = 1 if average == 'samples' else 0 # All labels are index integers for multilabel. # Select labels: if not np.all(labels == present_labels): if np.max(labels) > np.max(present_labels): raise ValueError('All labels must be in [0, n labels). ' 'Got %d > %d' % (np.max(labels), np.max(present_labels))) if np.min(labels) < 0: raise ValueError('All labels must be in [0, n labels). ' 'Got %d < 0' % np.min(labels)) y_true = y_true[:, labels[:n_labels]] y_pred = y_pred[:, labels[:n_labels]] # calculate weighted counts true_and_pred = y_true.multiply(y_pred) tp_sum = count_nonzero(true_and_pred, axis=sum_axis, sample_weight=sample_weight) pred_sum = count_nonzero(y_pred, axis=sum_axis, sample_weight=sample_weight) true_sum = count_nonzero(y_true, axis=sum_axis, sample_weight=sample_weight) elif average == 'samples': raise ValueError("Sample-based precision, recall, fscore is " "not meaningful outside multilabel " "classification. See the accuracy_score instead.") else: le = LabelEncoder() le.fit(labels) y_true = le.transform(y_true) y_pred = le.transform(y_pred) sorted_labels = le.classes_ # labels are now from 0 to len(labels) - 1 -> use bincount tp = y_true == y_pred tp_bins = y_true[tp] if sample_weight is not None: tp_bins_weights = np.asarray(sample_weight)[tp] else: tp_bins_weights = None if len(tp_bins): tp_sum = bincount(tp_bins, weights=tp_bins_weights, minlength=len(labels)) else: # Pathological case true_sum = pred_sum = tp_sum = np.zeros(len(labels)) if len(y_pred): pred_sum = bincount(y_pred, weights=sample_weight, minlength=len(labels)) if len(y_true): true_sum = bincount(y_true, weights=sample_weight, minlength=len(labels)) # Retain only selected labels indices = np.searchsorted(sorted_labels, labels[:n_labels]) tp_sum = tp_sum[indices] true_sum = true_sum[indices] pred_sum = pred_sum[indices] if average == 'micro': tp_sum = np.array([tp_sum.sum()]) pred_sum = np.array([pred_sum.sum()]) true_sum = np.array([true_sum.sum()]) ### Finally, we have all our sufficient statistics. Divide! ### beta2 = beta ** 2 with np.errstate(divide='ignore', invalid='ignore'): # Divide, and on zero-division, set scores to 0 and warn: # Oddly, we may get an "invalid" rather than a "divide" error # here. precision = _prf_divide(tp_sum, pred_sum, 'precision', 'predicted', average, warn_for) recall = _prf_divide(tp_sum, true_sum, 'recall', 'true', average, warn_for) # Don't need to warn for F: either P or R warned, or tp == 0 where pos # and true are nonzero, in which case, F is well-defined and zero f_score = ((1 + beta2) * precision * recall / (beta2 * precision + recall)) f_score[tp_sum == 0] = 0.0 ## Average the results ## if average == 'weighted': weights = true_sum if weights.sum() == 0: return 0, 0, 0, None elif average == 'samples': weights = sample_weight else: weights = None if average is not None: assert average != 'binary' or len(precision) == 1 precision = np.average(precision, weights=weights) recall = np.average(recall, weights=weights) f_score = np.average(f_score, weights=weights) true_sum = None # return no support return precision, recall, f_score, true_sum def precision_score(y_true, y_pred, labels=None, pos_label=1, average='binary', sample_weight=None): """Compute the precision The precision is the ratio ``tp / (tp + fp)`` where ``tp`` is the number of true positives and ``fp`` the number of false positives. The precision is intuitively the ability of the classifier not to label as positive a sample that is negative. The best value is 1 and the worst value is 0. Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`. Parameters ---------- y_true : 1d array-like, or label indicator array / sparse matrix Ground truth (correct) target values. y_pred : 1d array-like, or label indicator array / sparse matrix Estimated targets as returned by a classifier. labels : list, optional The set of labels to include when ``average != 'binary'``, and their order if ``average is None``. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in ``y_true`` and ``y_pred`` are used in sorted order. pos_label : str or int, 1 by default The class to report if ``average='binary'``. Until version 0.18 it is necessary to set ``pos_label=None`` if seeking to use another averaging method over binary targets. average : string, [None, 'binary' (default), 'micro', 'macro', 'samples', \ 'weighted'] This parameter is required for multiclass/multilabel targets. If ``None``, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data: ``'binary'``: Only report results for the class specified by ``pos_label``. This is applicable only if targets (``y_{true,pred}``) are binary. ``'micro'``: Calculate metrics globally by counting the total true positives, false negatives and false positives. ``'macro'``: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. ``'weighted'``: Calculate metrics for each label, and find their average, weighted by support (the number of true instances for each label). This alters 'macro' to account for label imbalance; it can result in an F-score that is not between precision and recall. ``'samples'``: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification where this differs from :func:`accuracy_score`). Note that if ``pos_label`` is given in binary classification with `average != 'binary'`, only that positive class is reported. This behavior is deprecated and will change in version 0.18. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- precision : float (if average is not None) or array of float, shape =\ [n_unique_labels] Precision of the positive class in binary classification or weighted average of the precision of each class for the multiclass task. Examples -------- >>> from sklearn.metrics import precision_score >>> y_true = [0, 1, 2, 0, 1, 2] >>> y_pred = [0, 2, 1, 0, 0, 1] >>> precision_score(y_true, y_pred, average='macro') # doctest: +ELLIPSIS 0.22... >>> precision_score(y_true, y_pred, average='micro') # doctest: +ELLIPSIS 0.33... >>> precision_score(y_true, y_pred, average='weighted') ... # doctest: +ELLIPSIS 0.22... >>> precision_score(y_true, y_pred, average=None) # doctest: +ELLIPSIS array([ 0.66..., 0. , 0. ]) """ p, _, _, _ = precision_recall_fscore_support(y_true, y_pred, labels=labels, pos_label=pos_label, average=average, warn_for=('precision',), sample_weight=sample_weight) return p def recall_score(y_true, y_pred, labels=None, pos_label=1, average='binary', sample_weight=None): """Compute the recall The recall is the ratio ``tp / (tp + fn)`` where ``tp`` is the number of true positives and ``fn`` the number of false negatives. The recall is intuitively the ability of the classifier to find all the positive samples. The best value is 1 and the worst value is 0. Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`. Parameters ---------- y_true : 1d array-like, or label indicator array / sparse matrix Ground truth (correct) target values. y_pred : 1d array-like, or label indicator array / sparse matrix Estimated targets as returned by a classifier. labels : list, optional The set of labels to include when ``average != 'binary'``, and their order if ``average is None``. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in ``y_true`` and ``y_pred`` are used in sorted order. pos_label : str or int, 1 by default The class to report if ``average='binary'``. Until version 0.18 it is necessary to set ``pos_label=None`` if seeking to use another averaging method over binary targets. average : string, [None, 'binary' (default), 'micro', 'macro', 'samples', \ 'weighted'] This parameter is required for multiclass/multilabel targets. If ``None``, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data: ``'binary'``: Only report results for the class specified by ``pos_label``. This is applicable only if targets (``y_{true,pred}``) are binary. ``'micro'``: Calculate metrics globally by counting the total true positives, false negatives and false positives. ``'macro'``: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. ``'weighted'``: Calculate metrics for each label, and find their average, weighted by support (the number of true instances for each label). This alters 'macro' to account for label imbalance; it can result in an F-score that is not between precision and recall. ``'samples'``: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification where this differs from :func:`accuracy_score`). Note that if ``pos_label`` is given in binary classification with `average != 'binary'`, only that positive class is reported. This behavior is deprecated and will change in version 0.18. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- recall : float (if average is not None) or array of float, shape =\ [n_unique_labels] Recall of the positive class in binary classification or weighted average of the recall of each class for the multiclass task. Examples -------- >>> from sklearn.metrics import recall_score >>> y_true = [0, 1, 2, 0, 1, 2] >>> y_pred = [0, 2, 1, 0, 0, 1] >>> recall_score(y_true, y_pred, average='macro') # doctest: +ELLIPSIS 0.33... >>> recall_score(y_true, y_pred, average='micro') # doctest: +ELLIPSIS 0.33... >>> recall_score(y_true, y_pred, average='weighted') # doctest: +ELLIPSIS 0.33... >>> recall_score(y_true, y_pred, average=None) array([ 1., 0., 0.]) """ _, r, _, _ = precision_recall_fscore_support(y_true, y_pred, labels=labels, pos_label=pos_label, average=average, warn_for=('recall',), sample_weight=sample_weight) return r def classification_report(y_true, y_pred, labels=None, target_names=None, sample_weight=None, digits=2): """Build a text report showing the main classification metrics Read more in the :ref:`User Guide <classification_report>`. Parameters ---------- y_true : 1d array-like, or label indicator array / sparse matrix Ground truth (correct) target values. y_pred : 1d array-like, or label indicator array / sparse matrix Estimated targets as returned by a classifier. labels : array, shape = [n_labels] Optional list of label indices to include in the report. target_names : list of strings Optional display names matching the labels (same order). sample_weight : array-like of shape = [n_samples], optional Sample weights. digits : int Number of digits for formatting output floating point values Returns ------- report : string Text summary of the precision, recall, F1 score for each class. Examples -------- >>> from sklearn.metrics import classification_report >>> y_true = [0, 1, 2, 2, 2] >>> y_pred = [0, 0, 2, 2, 1] >>> target_names = ['class 0', 'class 1', 'class 2'] >>> print(classification_report(y_true, y_pred, target_names=target_names)) precision recall f1-score support <BLANKLINE> class 0 0.50 1.00 0.67 1 class 1 0.00 0.00 0.00 1 class 2 1.00 0.67 0.80 3 <BLANKLINE> avg / total 0.70 0.60 0.61 5 <BLANKLINE> """ if labels is None: labels = unique_labels(y_true, y_pred) else: labels = np.asarray(labels) last_line_heading = 'avg / total' if target_names is None: width = len(last_line_heading) target_names = ['%s' % l for l in labels] else: width = max(len(cn) for cn in target_names) width = max(width, len(last_line_heading), digits) headers = ["precision", "recall", "f1-score", "support"] fmt = '%% %ds' % width # first column: class name fmt += ' ' fmt += ' '.join(['% 9s' for _ in headers]) fmt += '\n' headers = [""] + headers report = fmt % tuple(headers) report += '\n' p, r, f1, s = precision_recall_fscore_support(y_true, y_pred, labels=labels, average=None, sample_weight=sample_weight) for i, label in enumerate(labels): values = [target_names[i]] for v in (p[i], r[i], f1[i]): values += ["{0:0.{1}f}".format(v, digits)] values += ["{0}".format(s[i])] report += fmt % tuple(values) report += '\n' # compute averages values = [last_line_heading] for v in (np.average(p, weights=s), np.average(r, weights=s), np.average(f1, weights=s)): values += ["{0:0.{1}f}".format(v, digits)] values += ['{0}'.format(np.sum(s))] report += fmt % tuple(values) return report def hamming_loss(y_true, y_pred, classes=None): """Compute the average Hamming loss. The Hamming loss is the fraction of labels that are incorrectly predicted. Read more in the :ref:`User Guide <hamming_loss>`. Parameters ---------- y_true : 1d array-like, or label indicator array / sparse matrix Ground truth (correct) labels. y_pred : 1d array-like, or label indicator array / sparse matrix Predicted labels, as returned by a classifier. classes : array, shape = [n_labels], optional Integer array of labels. Returns ------- loss : float or int, Return the average Hamming loss between element of ``y_true`` and ``y_pred``. See Also -------- accuracy_score, jaccard_similarity_score, zero_one_loss Notes ----- In multiclass classification, the Hamming loss correspond to the Hamming distance between ``y_true`` and ``y_pred`` which is equivalent to the subset ``zero_one_loss`` function. In multilabel classification, the Hamming loss is different from the subset zero-one loss. The zero-one loss considers the entire set of labels for a given sample incorrect if it does entirely match the true set of labels. Hamming loss is more forgiving in that it penalizes the individual labels. The Hamming loss is upperbounded by the subset zero-one loss. When normalized over samples, the Hamming loss is always between 0 and 1. References ---------- .. [1] Grigorios Tsoumakas, Ioannis Katakis. Multi-Label Classification: An Overview. International Journal of Data Warehousing & Mining, 3(3), 1-13, July-September 2007. .. [2] `Wikipedia entry on the Hamming distance <http://en.wikipedia.org/wiki/Hamming_distance>`_ Examples -------- >>> from sklearn.metrics import hamming_loss >>> y_pred = [1, 2, 3, 4] >>> y_true = [2, 2, 3, 4] >>> hamming_loss(y_true, y_pred) 0.25 In the multilabel case with binary label indicators: >>> hamming_loss(np.array([[0, 1], [1, 1]]), np.zeros((2, 2))) 0.75 """ y_type, y_true, y_pred = _check_targets(y_true, y_pred) if classes is None: classes = unique_labels(y_true, y_pred) else: classes = np.asarray(classes) if y_type.startswith('multilabel'): n_differences = count_nonzero(y_true - y_pred) return (n_differences / (y_true.shape[0] * len(classes))) elif y_type in ["binary", "multiclass"]: return sp_hamming(y_true, y_pred) else: raise ValueError("{0} is not supported".format(y_type)) def log_loss(y_true, y_pred, eps=1e-15, normalize=True, sample_weight=None): """Log loss, aka logistic loss or cross-entropy loss. This is the loss function used in (multinomial) logistic regression and extensions of it such as neural networks, defined as the negative log-likelihood of the true labels given a probabilistic classifier's predictions. For a single sample with true label yt in {0,1} and estimated probability yp that yt = 1, the log loss is -log P(yt|yp) = -(yt log(yp) + (1 - yt) log(1 - yp)) Read more in the :ref:`User Guide <log_loss>`. Parameters ---------- y_true : array-like or label indicator matrix Ground truth (correct) labels for n_samples samples. y_pred : array-like of float, shape = (n_samples, n_classes) Predicted probabilities, as returned by a classifier's predict_proba method. eps : float Log loss is undefined for p=0 or p=1, so probabilities are clipped to max(eps, min(1 - eps, p)). normalize : bool, optional (default=True) If true, return the mean loss per sample. Otherwise, return the sum of the per-sample losses. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- loss : float Examples -------- >>> log_loss(["spam", "ham", "ham", "spam"], # doctest: +ELLIPSIS ... [[.1, .9], [.9, .1], [.8, .2], [.35, .65]]) 0.21616... References ---------- C.M. Bishop (2006). Pattern Recognition and Machine Learning. Springer, p. 209. Notes ----- The logarithm used is the natural logarithm (base-e). """ lb = LabelBinarizer() T = lb.fit_transform(y_true) if T.shape[1] == 1: T = np.append(1 - T, T, axis=1) # Clipping Y = np.clip(y_pred, eps, 1 - eps) # This happens in cases when elements in y_pred have type "str". if not isinstance(Y, np.ndarray): raise ValueError("y_pred should be an array of floats.") # If y_pred is of single dimension, assume y_true to be binary # and then check. if Y.ndim == 1: Y = Y[:, np.newaxis] if Y.shape[1] == 1: Y = np.append(1 - Y, Y, axis=1) # Check if dimensions are consistent. check_consistent_length(T, Y) T = check_array(T) Y = check_array(Y) if T.shape[1] != Y.shape[1]: raise ValueError("y_true and y_pred have different number of classes " "%d, %d" % (T.shape[1], Y.shape[1])) # Renormalize Y /= Y.sum(axis=1)[:, np.newaxis] loss = -(T * np.log(Y)).sum(axis=1) return _weighted_sum(loss, sample_weight, normalize) def hinge_loss(y_true, pred_decision, labels=None, sample_weight=None): """Average hinge loss (non-regularized) In binary class case, assuming labels in y_true are encoded with +1 and -1, when a prediction mistake is made, ``margin = y_true * pred_decision`` is always negative (since the signs disagree), implying ``1 - margin`` is always greater than 1. The cumulated hinge loss is therefore an upper bound of the number of mistakes made by the classifier. In multiclass case, the function expects that either all the labels are included in y_true or an optional labels argument is provided which contains all the labels. The multilabel margin is calculated according to Crammer-Singer's method. As in the binary case, the cumulated hinge loss is an upper bound of the number of mistakes made by the classifier. Read more in the :ref:`User Guide <hinge_loss>`. Parameters ---------- y_true : array, shape = [n_samples] True target, consisting of integers of two values. The positive label must be greater than the negative label. pred_decision : array, shape = [n_samples] or [n_samples, n_classes] Predicted decisions, as output by decision_function (floats). labels : array, optional, default None Contains all the labels for the problem. Used in multiclass hinge loss. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- loss : float References ---------- .. [1] `Wikipedia entry on the Hinge loss <http://en.wikipedia.org/wiki/Hinge_loss>`_ .. [2] Koby Crammer, Yoram Singer. On the Algorithmic Implementation of Multiclass Kernel-based Vector Machines. Journal of Machine Learning Research 2, (2001), 265-292 .. [3] `L1 AND L2 Regularization for Multiclass Hinge Loss Models by Robert C. Moore, John DeNero. <http://www.ttic.edu/sigml/symposium2011/papers/ Moore+DeNero_Regularization.pdf>`_ Examples -------- >>> from sklearn import svm >>> from sklearn.metrics import hinge_loss >>> X = [[0], [1]] >>> y = [-1, 1] >>> est = svm.LinearSVC(random_state=0) >>> est.fit(X, y) LinearSVC(C=1.0, class_weight=None, dual=True, fit_intercept=True, intercept_scaling=1, loss='squared_hinge', max_iter=1000, multi_class='ovr', penalty='l2', random_state=0, tol=0.0001, verbose=0) >>> pred_decision = est.decision_function([[-2], [3], [0.5]]) >>> pred_decision # doctest: +ELLIPSIS array([-2.18..., 2.36..., 0.09...]) >>> hinge_loss([-1, 1, 1], pred_decision) # doctest: +ELLIPSIS 0.30... In the multiclass case: >>> X = np.array([[0], [1], [2], [3]]) >>> Y = np.array([0, 1, 2, 3]) >>> labels = np.array([0, 1, 2, 3]) >>> est = svm.LinearSVC() >>> est.fit(X, Y) LinearSVC(C=1.0, class_weight=None, dual=True, fit_intercept=True, intercept_scaling=1, loss='squared_hinge', max_iter=1000, multi_class='ovr', penalty='l2', random_state=None, tol=0.0001, verbose=0) >>> pred_decision = est.decision_function([[-1], [2], [3]]) >>> y_true = [0, 2, 3] >>> hinge_loss(y_true, pred_decision, labels) #doctest: +ELLIPSIS 0.56... """ check_consistent_length(y_true, pred_decision, sample_weight) pred_decision = check_array(pred_decision, ensure_2d=False) y_true = column_or_1d(y_true) y_true_unique = np.unique(y_true) if y_true_unique.size > 2: if (labels is None and pred_decision.ndim > 1 and (np.size(y_true_unique) != pred_decision.shape[1])): raise ValueError("Please include all labels in y_true " "or pass labels as third argument") if labels is None: labels = y_true_unique le = LabelEncoder() le.fit(labels) y_true = le.transform(y_true) mask = np.ones_like(pred_decision, dtype=bool) mask[np.arange(y_true.shape[0]), y_true] = False margin = pred_decision[~mask] margin -= np.max(pred_decision[mask].reshape(y_true.shape[0], -1), axis=1) else: # Handles binary class case # this code assumes that positive and negative labels # are encoded as +1 and -1 respectively pred_decision = column_or_1d(pred_decision) pred_decision = np.ravel(pred_decision) lbin = LabelBinarizer(neg_label=-1) y_true = lbin.fit_transform(y_true)[:, 0] try: margin = y_true * pred_decision except TypeError: raise TypeError("pred_decision should be an array of floats.") losses = 1 - margin # The hinge_loss doesn't penalize good enough predictions. losses[losses <= 0] = 0 return np.average(losses, weights=sample_weight) def _check_binary_probabilistic_predictions(y_true, y_prob): """Check that y_true is binary and y_prob contains valid probabilities""" check_consistent_length(y_true, y_prob) labels = np.unique(y_true) if len(labels) != 2: raise ValueError("Only binary classification is supported. " "Provided labels %s." % labels) if y_prob.max() > 1: raise ValueError("y_prob contains values greater than 1.") if y_prob.min() < 0: raise ValueError("y_prob contains values less than 0.") return label_binarize(y_true, labels)[:, 0] def brier_score_loss(y_true, y_prob, sample_weight=None, pos_label=None): """Compute the Brier score. The smaller the Brier score, the better, hence the naming with "loss". Across all items in a set N predictions, the Brier score measures the mean squared difference between (1) the predicted probability assigned to the possible outcomes for item i, and (2) the actual outcome. Therefore, the lower the Brier score is for a set of predictions, the better the predictions are calibrated. Note that the Brier score always takes on a value between zero and one, since this is the largest possible difference between a predicted probability (which must be between zero and one) and the actual outcome (which can take on values of only 0 and 1). The Brier score is appropriate for binary and categorical outcomes that can be structured as true or false, but is inappropriate for ordinal variables which can take on three or more values (this is because the Brier score assumes that all possible outcomes are equivalently "distant" from one another). Which label is considered to be the positive label is controlled via the parameter pos_label, which defaults to 1. Read more in the :ref:`User Guide <calibration>`. Parameters ---------- y_true : array, shape (n_samples,) True targets. y_prob : array, shape (n_samples,) Probabilities of the positive class. sample_weight : array-like of shape = [n_samples], optional Sample weights. pos_label : int (default: None) Label of the positive class. If None, the maximum label is used as positive class Returns ------- score : float Brier score Examples -------- >>> import numpy as np >>> from sklearn.metrics import brier_score_loss >>> y_true = np.array([0, 1, 1, 0]) >>> y_true_categorical = np.array(["spam", "ham", "ham", "spam"]) >>> y_prob = np.array([0.1, 0.9, 0.8, 0.3]) >>> brier_score_loss(y_true, y_prob) # doctest: +ELLIPSIS 0.037... >>> brier_score_loss(y_true, 1-y_prob, pos_label=0) # doctest: +ELLIPSIS 0.037... >>> brier_score_loss(y_true_categorical, y_prob, \ pos_label="ham") # doctest: +ELLIPSIS 0.037... >>> brier_score_loss(y_true, np.array(y_prob) > 0.5) 0.0 References ---------- http://en.wikipedia.org/wiki/Brier_score """ y_true = column_or_1d(y_true) y_prob = column_or_1d(y_prob) if pos_label is None: pos_label = y_true.max() y_true = np.array(y_true == pos_label, int) y_true = _check_binary_probabilistic_predictions(y_true, y_prob) return np.average((y_true - y_prob) ** 2, weights=sample_weight)
bsd-3-clause